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The Josephson effects are probably one of the most striking signatures of extended 

quantum coherent states of matter, like superfluids, superconductors, and the more 

recently achieved atomic Bose-Einstein condensates. Our description of these 

remarkable systems is based on the use of a single macroscopic wave function to 

account for the collective quantum state of a very large number of particles. The 

Josephson effects appear when one creates a weak-link allowing particles to flow 

between two reservoirs of these quantum systems, thereby establishing phase coherence 

between the two corresponding macroscopic wave functions. 

These effects are named after B. D. Josephson who described them for the case of 

superconductors in 1962 [1]. He predicted that an electrical current could flow in 

absence of any voltage and that this supercurrent is driven by the phase difference δ  

between the two reservoirs. This so-called dc Josephson effect was first experimentally 

observed in 1963 by Anderson and Rowell [2]. Josephson also predicted that under a 

constant voltage bias V , ac currents should appear at a frequency 0 0Vν φ= , where 

( )0 2h eφ =  is the flux quantum, the ratio of two fundamental constants of nature. This 
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second effect, known as the ac Josephon effect, was also first experimentally reported in 

1963, by S. Shapiro [3]. 

Since then, the Josephson effects have also been explored in great detail in 

superfluids [4] and to some extent in Bose-Einstein condensates [5]. Furthermore, in the 

field of superconductivity these effects have been observed in fact in a variety of weak-

links (tunnel junctions, proximity effect bridges, microbridges, point contacts…) [6, 7, 

8], which have lead to numerous applications (radiation detectors, magnetometers, 

voltage standards…). Nevertheless, it was only in the 1990’s [9] that a unifying picture, 

able to treat on the same footing all the different coupling structures, emerged in the 

framework of mesoscopic superconductivity. 

This modern view of the Josephson effect, which is described in chapter 1, is 

based on the combination of two important concepts. The first one, coming from the 

field of mesoscopic physics, states that in a generic coherent structure electrical 

transport occurs through independent conduction channels [10], characterized by a set 

of transmission coefficients { }iτ  nicknamed the mesoscopic PIN code [11]. The second 

one is the concept of Andreev reflection, now regarded as the basic microscopic 

mechanism at the heart of superconductivity. The combination of these two concepts 

leads to a picture in which the Josephson coupling through an arbitrary weak-link is 

determined in each channel by two localized Andreev bound states1. The phase 

dependent energies of these states lie inside the superconducting gap between −∆  and 

+∆  (see Figure 1): 

 

( ) ( )2, 1 sin 2E δ τ τ δ± = ±∆ −  

 

The zero temperature Josephson coupling energy ( ),JE δ τ  for one channel is 

simply the energy of the Andreev ground state ( ) ( ), ,JE Eδ τ δ τ−= . 

 

                                                 
1 This description is valid only in the case where the channel is short compared with the 

superconducting coherence length 0ξ . If not, a new pair of Andreev state has to be 

considered each time the length exceeds a multiple of 0ξ . 
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Figure 1: Energy spectra of the two Andreev bound states as a function of the phase 
difference between two superconducting electrodes connected through a single short 
channel of transmission 0.99τ = . 

 

The two states carry opposite currents given by: 

 

 ( ) ( ) ( )
( )2

, sin2,
2 1 sin 2

Ee eI
δ τ τ δ

δ τ
δ τ δ

±
±

∂ ∆
= =

∂ −
∓  (1) 

 

This current-phase relationship for a single channel is the central prediction 

of the mesoscopic theory of the Josephson effect. It describes the equilibrium 

properties of the Josephson weak-link under a constant (or more generally adiabatic) 

phase bias. The net supercurrent flowing in a channel is determined by the imbalance in 

the populations of the two Andreev bound levels. The critical current of a channel is the 

maximum supercurrent that can be sustained in absence of any voltage. Beyond this 

value, a voltage develops across the system, i.e. transport becomes dissipative. 

The theory also copes with this out-of-equilibrium situation. Essentially, this 

dissipative current is carried by multiple Andreev reflection (MAR) processes [12], 

which were observed as early as in 1963 [13, 14], and which can be understood in terms 

of a non-adiabatic evolution of the Andreev levels population [15, 16]. In its most 

fundamental form the theory predicts the time dependence of the current through a 

single channel of arbitrary transmission at finite voltage bias [15, 17, 18]. Under a 

constant voltage bias the phase evolves linearly in time following 02 tδ πν= . Because 

the current phase relation (equation (1)) is non-sinusoidal, ac currents should appear at 

the Josephson frequency and all its harmonics. In general, the time dependence of the 

current writes in this case: 
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( ) ( ) 02, in t
n

n
I V t I V e πν

+∞

=−∞

= ∑  

The dc component ( )0I V  contains both the supercurrent at zero voltage and the 

dissipative current carried through MAR at finite voltage. Actually, it is only very 

recently that the progressive and continuous transformation of the supercurrent into 

MAR current as the voltage is increased could be explained by taking into account the 

effect of an electromagnetic environment in a self-consistent manner [19]. 

The goal of this thesis work is to explore the validity of this mesoscopic point 

of view of the Josephson effect. For this purpose, we have performed several 

experiments on superconducting atomic size contacts, which are fully characterized 

quantum coherent conductors accommodating just a small number of channels. Because 

we know how to measure from their current-voltage characteristics their mesoscopic 

PIN code [20], which can be varied in-situ over a wide range, these contacts allow for a 

direct comparison between theory and experiment with no adjustable parameters. We 

report experiments on three different aspects of the Josephson effect: 

 

• The supercurrent peak around zero voltage, 

• The ac Josephson currents (Shapiro resonances and photon 

assisted multiple Andreev reflections), 

• The current-phase relationship. 

 

This work completes and extends the one that Ronald Cron, my predecessor in the 

Quantronics group, carried out in 2001 [21]. 

 

 

The supercurrent peak around zero voltage 
 

How the Josephson effect actually manifests itself in an experiment depends on 

the way the structure is biased, and on the amplitude of the fluctuations (both thermal 

and quantum) around the mean bias conditions. In practice one can distinguish the case 

when a Josephson structure is dissipatively biased using either an external voltage or 

current source, or when it is inserted in a totally superconducting loop in which case it is 

phase-biased. During this thesis work we have used all possible bias schemes.  
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Under dissipative bias, a Josephson atomic contact develops in its current-voltage 

characteristics a so-called “phase diffusion branch” in which the voltage is actually not 

zero, albeit small (see Figure 2). 
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∆ = 178 µeV
τ = {0.454, 0.105, 0.030}
I0 = 14.6 nA

 

Figure 2: IV  characteristic of a contact in a current bias setup. Below a threshold 
value of the current, the system stays on the phase-diffusion branch at very small 
voltage (inset). Above this threshold value, the contact switches to a finite voltage state 
(typically of the order of the superconducting gap e∆ ) determined by the load-line of 
the setup. 

 

 

This is due to the fact that for contacts containing only a few channels the Josephson 

coupling energy is small, and the role of thermal fluctuations is not negligible even at 

the lowest achieved temperatures. 

In a current-bias mode, as the current is increased the contact switches at some point 

from this branch to a state in which a finite voltage of the order of the superconducting 

gap e∆  develops. The current at which the switching occurs is a stochastic variable 

and its value approaches the critical current at low enough temperature if the contact is 

embedded in an appropriate electromagnetic environment that damps the fluctuations of 

the phase at high frequencies [22]. Goffman et al. [23] already carried out detailed 

measurements of this kind in atomic contacts and found a quite good agreement with 

the predictions of equation (1), but for very highly transmitting channels. It is important 

to note that the switching instability prevents from observing the negative differential 

resistance parts of the IV  characteristic. 
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In the voltage-biased experiment reported in chapter 2, we go one step further. A small 

shunt resistor placed in parallel with the contact prevents the structure from switching 

and makes it possible to measure the entire supercurrent peak [24], of which the phase 

diffusion branch is only the positive differential resistance part (see Figure 3). 
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201                    229
266                    286
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I0 = 16.2 nA

 

 

I (
nA

)
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Figure 3: Supercurrent peak for an aluminum atomic contact containing three channels 
for five values of the refrigerator temperature fridgeT . The full lines are the predictions of 
the theory based on the current-phase relationship, using the independently measured 
set of transmissions of the contact and parameters of the biasing setup. The temperature 

effT  of the dissipative elements of the environment was the only adjustable parameter 
and is higher than the refrigerator temperature due to spurious noise. 
 

 

The shape of the peak is essentially determined by the electromagnetic environment 

close to the contact. Its height is determined by the ratio { }( )B Jk T E τ  which compares 

the energy of thermal fluctuations in the bias resistor with the Josephson energy 

characteristic of the coupling between the two reservoirs. 

We show that experimental supercurrent peaks are very well described by a model 

taking into account the phase dynamics with no other adjustable parameter than the 

temperature of the environment (the admittance of the electromagnetic environment and 

the mesoscopic PIN code of the contact are both independently measured). We did not 

observe with this setup significant deviations from the expected behavior even for the 
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largest transmissions explored. However, due to spurious noise, the temperature used to 

fit the data is higher than the actual fridge temperature. 

 

 

The ac Josephson currents 
 

Shapiro resonances 
 

The experiments reported in chapter 3 aimed at probing not only the dc 

component ( )0I V  of the current but also its ac components. To do so, an external 

microwave signal of frequency rν  is applied to the contact. The beatings of this signal 

with the Josephson currents when their frequencies are commensurate ( 0 rq pν ν= , with 

p , q  integer numbers) give rise to resonances on the dc IV  characteristic of the 

contact. These so-called Shapiro resonances are replicas of the supercurrent peak 

centered at well defined values of the dc voltage, given by: 

0 r
pV
q

φ ν= . 

 

Cuevas et al. [25] have calculated the zero temperature amplitude of these resonances 

for a channel of arbitrary transmission in the case of an ideal dc voltage-bias. 

Furthermore, during the course of this thesis work, and motivated by our results, a 

Fokker-Planck treatment of the dynamics of the phase in a contact under irradiation and 

embedded in a finite impedance environment was developed by Duprat & Levy Yeyati 

[26]. 

We find that on contacts with channels of moderate transmissions (up to 0.8τ ∼ ), 

only integer Shapiro resonances ( 1q = ) are visible on the IV  characteristics (see 

Figure 4). This is so because the current phase relation is in this case still very close to 

the sine function characteristic of tunnel junctions. The predictions of the model of 

replicas, which coincides exactly with the more rigorous Fokker-Plank treatment in this 

case, describe the experimental results on a quantitative basis. 
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Figure 4: Shapiro resonances for an atomic contact containing only low transmission 
channels. Only integer resonances are observed. Dots are experimental results at 

20 mKfridgeT = . The microwave frequency was 5.150 GHzrν = . The full line is the 
prediction of the theory by Duprat & Levy Yeyati [26] with no adjustable parameters 
other than the effective temperature ( 120 mKT = ). 

 

 

For contacts containing highly transmitting channels, the important qualitative outcome 

is that, in addition to the well known integer Shapiro resonances, fractional resonances 

( 1q > ) also appear (see Figure 5). They are the direct signature of a non-sinusoidal 

current-phase relation. However, the fractional resonances are very small compared to 

the integer ones. This is due to the fact that thermal phase fluctuations have a stronger 

effect on the former than on the latter [26, 27]. If the amplitudes of the integer 

resonances and of the supercurrent peak correspond to a noise temperature T , then for a 

fractional resonance p q  the effect of temperature is amplified by a factor q . 

Moreover, the background itself is deeply modified by the microwaves (see below). 

Therefore, the IV  characteristics are more complex, as the Shapiro resonances 

superimpose on top of the background current due to MAR which is then sizeable even 

at very low voltages. 
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Figure 5: Shapiro resonances for an atomic contact containing a high transmission 
channel. The external microwave frequency was 9.3156 GHzrν = . Small fractional 
resonances are observed. Black dotted lines are experimental results. The full grayed 
lines are the predictions of the theory of replicas with no other adjustable parameter 
than the temperature. 

 

 

Photon assisted multiple Andreev reflections (PAMAR) 
 

As mentioned before, when microwaves are applied to a contact, Shapiro 

resonances appear on the dc IV  characteristic superimposed on the background MAR 

current. The background itself is also modified by the microwaves due to absorption or 

stimulated emission of one or several photons during the transfer of electronic charges 

through MAR processes (see Figure 6). The voltage threshold for the onset of an m-

photon assisted MAR process of order n  is given by: 

 

 2 rmheV
n n

ν∆
= ±  (2) 
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Figure 6: Schematic representation of a one-photon assisted MAR process of order 
three. The grayed rectangles represent the occupied states in the left and right 
electrodes which are biased at a constant voltage V. Empty states (white rectangles) are 
at a distance 2∆  in energy from the occupied states. This particular MAR process is a 
three step process, involving an Andreev reflection at each electrode, which transfers 
all in all three electronic charges from left to right. In the case illustrated here, a 
photon is absorbed by the hole traveling to the left during the second step, thus 
lowering the voltage threshold of the full  process from ( )2 3e∆  to ( ) ( )2 3rh eν∆ − . 

 

 

Dayem and Martin [28] already pointed out the effect of microwave on tunneling 

between two superconductors in an experiment on a Josephson tunnel junction. Tien 

and Gordon [29] could qualitatively account for this effect with their calculation on 

multiphoton assisted tunneling. Later on, Gregers-Hansen [30], in an experiment on 

Dayem microbridges, observed that in presence of microwave the subgap structure 

developed sidebands at values given by equation (2). But it is only recently that the size 

of these sidebands could be predicted using, once again, the full microscopic quantum 

theory [25]. 

We show on Figure 7 an example of the differential conductance of a voltage-

biased contact measured as a function of voltage in presence of microwaves. As shown 

in chapter 3, we find a semi-quantitative agreement between the experimental results 

and the predictions of the existing theory [25]. Note however that the latter doesn’t 

include the effect of the finite impedance and finite temperature of the environment. 
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Figure 7: Measured (black line) differential conductance of an atomic contact in 
presence of microwave irradiation at 8.2935 GHzrν = . The sidebands around 2 e∆  
correspond to photon assisted tunneling of single electrons from one superconducting 
electrode to the other. The sidebands around ( )2 2e∆  and ( )2 3e∆  correspond to 
photon assisted MAR of order two and three, respectively. The grayed line is the 
prediction of the theory of photon assisted multiple Andreev reflections (for a perfectly 
voltage biased contact), in which we have plugged the independently measured 
transmissions of the contact. 

 

 

The current phase relationship 
 

A direct measurement of the equilibrium current phase relationship requires to 

phase-bias the atomic contact. This can be achieved by placing the contact in a 

superconducting loop and applying an external magnetic flux. Koops et al. [31] carried 

out such a measurement in Nb atomic contacts. However, the direct comparison with 

theory was lacking since the transmissions couldn’t be measured in this setup. Placing 

the contact in a superconducting loop makes it difficult, if not impossible, to voltage-

bias it in order to extract the mesoscopic PIN code from the IV . 

We have designed and implemented an experiment, described in chapter 4, which 

allows for the two biasing schemes (voltage and phase) to be achieved in the same 
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setup. In this experiment, the atomic contact is placed in parallel with a large Josephson 

tunnel junction (see Figure 8), with a critical current 0
tI  one order of magnitude larger 

than the one of the contact. The contact forms with the tunnel junction a 

superconducting loop (an atomic contact-SQUID) hence allowing for an almost perfect 

phase bias. However, if an external bias current I  larger than 0
tI  is applied through the 

device, the tunnel junction acts as a reversible superconducting switch that “opens” 

electrically the loop. A voltage develops across the parallel setup which allows for the 

measurement of its IV . As on the other hand the contact can be itself completely open 

physically, it is possible to calibrate separately the contribution to the dissipative current 

of the tunnel junction alone.  

 

µwave
out

µwave
in

I

δ

φ
C

 

Figure 8: Atomic contact-SQUID setup used for the direct measurement of the current-
phase relation of an atomic contact (triangular symbols with central dot). δ  is the 
superconducting phase difference across the atomic contact. The crossed box is a 
Josephson tunnel junction. An external magnetic flux φ  is applied to the small 
superconducting loop connecting the two elements. The external capacitor C  forms a 
resonator with the Josephson inductance of the device. The bias line allows to inject a 
dc bias I  and a microwave excitation, and to recover the microwave signal reflected by 
the device. 

 

We have used two methods to measure the current-phase relationship of the contacts 

with this setup. The first one relies on the direct measurement of the switching current 
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of the atomic contact-SQUID as a function of the external flux, as shown in Figure 9. 

Essentially, the modulations SIδ  with the external flux φ  of the average total switching 

current around the switching current of the bare junction correspond to the current-

phase relation of the contact. The experimental data are reasonably well described by 

the theoretical current-phase relation calculated using the independently measured 

mesoscopic PIN code. 
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Figure 9: Modulation SIδ  of the SQUID mean switching current as a function of the 
external flux φ  threading the loop. Dots are experimental results. The measurements 
were performed at 26 mK. Lines are theoretical predictions calculated from the 
independently measured mesoscopic pin code of the contact ( { }0.983τ = ). The dashed 
line is the zero temperature prediction. The solid line is the prediction at an effective 
noise temperature of 200 mK. 
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The second method is based on the fact that any Josephson structure behaves as an 

inductor with an inductance inversely proportional to the first derivative of its current 

phase relation: 

 

( ) ( )
1

2 /
L

e I
δ

δ δ−
−

=
∂ ∂

 

 

By adding a suitable capacitor in parallel with the atom-SQUID one creates an LC-

resonator which can be probed near its resonance frequency by a very small external 

microwave field. The signal reflected by the oscillator carries all the information on the 

Josephson inductance of the contact and thus on its current-phase relation. As shown for 

example in Figure 10, the experimental data compare qualitatively quite well with the 

predictions of the theory for the reflection coefficient Rν  at the frequency ν . 
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Figure 10: Reflection coefficient measured as a function of the external flux φ  at 0I =  
(left panel) and as a function of the bias current I  at 0φ =  (right panel). 0

tI  is the 
critical current of the Josephson tunnel junction. The atomic contact is the same as in 
Figure 9 ( { }0.983τ = ). Dots are experimental results. The solid line is the zero 
temperature theoretical prediction calculated from the independently measured 
mesoscopic pin code of the contact. 

 

 

To conclude this introduction, we think that the experiments on superconducting atomic 

contacts described in this thesis illustrate the profound unity behind a variety of 

transport phenomena observed in superconducting weak links. They firmly support the 

idea that the basic microscopic transport mechanism behind ac Josephson supercurrents 
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is Andreev reflection, or more precisely multiple Andreev reflections. During this thesis 

work we strongly interacted with the theory group formed by Juan Carlos Cuevas (then 

at Karlsruhe), Alvaro Martín Rodero and Alfredo Levy Yeyati in Madrid, and very 

often developments on one side motivated new developments on the other one, leading 

to a deeper understanding of superconducting contacts under different bias conditions. 

For example, we have now a clear picture on how the supercurrent transforms 

continuously into the MAR dissipative current at finite voltage. In fact, there is no 

fundamental difference between the two, as both contributions to the total current can 

be treated on the same footing within a formalism that takes into account the 

electromagnetic environment of the contact [19]. We have also put into evidence the 

richness of the spectrum of the ac currents in highly transmitting junctions, through the 

detection of both fractional Shapiro resonances and photon assisted MAR. Finally, 

although the experimental results are still preliminary, our direct measurements of the 

current-phase relation provide strong support to the picture of transport through 

Andreev bound levels. 

The experiments reported here suffered from several limitations, and there is certainly 

room for technical improvement in many aspects. First, in all three experiments the 

effective temperature was larger than expected, indicating that some noise was not 

completely filtered out, despite our efforts. It should be possible to really cool down the 

electrons in these devices to the base temperature of the refrigerator. Secondly, a finer 

tuning of the dissipative elements of the environment should help to get narrower, and 

thus easier to detect fractional Shapiro resonances. Finally, the microwave reflectometry 

experiment could benefit from the use of cryogenic amplifiers. 

From the physics point of view, several questions remain unanswered. First, is it 

possible to perform the spectroscopy of Andreev levels? Are the relaxation and 

dephasing times long enough [32] to perform coherent manipulations within the 

Andreev doublet of each channel [33, 34]? Second, when the series impedance of the 

environment becomes larger than what we have implemented here, the classical 

treatment of the phase dynamics that we have used all along this thesis ceases to be 

valid and has to be replaced by a quantum description. In this situation, multiple 

Andreev reflections are subject to dynamical Coulomb blockade [35] and a detailed 

experimental confirmation of this is still missing [21]. Finally, the description of the 

Josephson effect in terms of Andreev bound levels is universal, and it would be 

interesting to explore this physics with quantum point contacts tailored in two-
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dimensional electron gases, with superconductivity induced by the proximity effect. In 

this case the ideal situation of a single channel of tunable transmission can be accessed. 
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 As pointed out in the introduction, the goal of this thesis work is to explore the 

validity of the modern description of the Josephson effects that emerged in the 1990’s in 

the general framework of mesoscopic physics. This description is based on two 

cornerstone concepts. On the one hand, the idea of conductance channels, central to the 

Landauer scattering picture of coherent transport. On the other hand, the idea of 

Andreev reflection, central to superconducting transport. This chapter will therefore be 

devoted to a presentation of these two concepts and of their combination, which leads to 

a unifying picture of electronic transport in Josephson weak links. 

 

 

1 Scattering formalism of transport 
 

The idea behind this formalism introduced by Landauer [1] in 1957 is that an electronic 

transport experiment through a coherent device can be viewed as a scattering problem 

for electronic waves. Electrons1 are injected from reservoirs into the propagating states 

of ideal leads. The coherent conductor acts as a scattering center, where the electrons 

can either be reflected or transmitted (see Figure 1). 

 

 

Reservoir Reservoir

Coherent
scatterer

Lead
A1

B1

A2
Lead

B2
S

 

Figure 1: Schematic representation of the electronic transport through a quantum 
coherent conductor. Electrons from the reservoirs propagating through the leads are 
fed onto the coherent scatterer. They can be either back-scattered (reflected) or 
forward-scattered (transmitted) with a probability depending on the microscopic details 
of the scatterer. 

 

The reservoirs are supposed to be perfect “black-bodies” which absorb all electrons 

incoming on them. The leads, which confine laterally the electrons, can be viewed as 

                                                 
1 For the sake of simplicity, we consider here a fluid of non-interacting electrons. But 

the arguments apply to more general quasiparticles. 
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electron “waveguides” along which only a finite number of modes can propagate. The 

number of modes scales like 2
Fk A , where A is the cross section of the leads and Fk  the 

Fermi wave vector of the electrons in the material. 

The scattering matrix S  relates the amplitudes of the incoming modes to those of the 

outgoing ones on both sides of the coherent scatterer: 

1 1

2 2

B A
S

B A
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 

11 12

21 22

s s
S

s s

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

The off diagonal blocks describe the transmission of the electronic waves and the 

diagonal ones represent their reflection. The S  matrix verifies † † 1S S SS= =  because 

of particle conservation. 

It is possible to change the basis of the propagating states in the leads to reduce the 

scattering problem to independent conduction channels. These are simply the 

eigenmodes of the scattering problem. In this new basis, the scattering matrix writes: 

 

ir t
S

t ir
−⎛ ⎞

′ = ⎜ ⎟−⎝ ⎠
, 

 

where r  and t  are real, positive and diagonal matrices. The coefficients of the matrices 

r  and t  are the reflection and transmission probability amplitudes of the independent 

conduction channels. They carry all the information necessary to describe the electronic 

properties of the conductor. 

For example, the conductance G  of a quantum coherent conductor can be simply 

expressed in terms of the coefficients of the matrix t  as: 

 

{ }†
0 0Tr i

i
G G t t G τ= = ∑ , 
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where ( ) 12
0 2 / 77 µS 12.927 kG e h −= ≈ ≈ Ω  is the conductance quantum, and the 

2
i itτ =  are the eigenvalues of the †t t  matrix, or transmission probabilities. 

This is the famous Landauer formula. In this formula, the coefficients it  are supposed to 

be energy independent. This assumption is justified in the experiments presented here, 

where the maximum voltage applied across the atomic contacts is of the order of 1 meV 

and the Fermi energy for aluminum is 11.7 eV. 

Since the late 1980’s, many experiments have been carried out that support the validity 

of this scattering formalism. Different physical properties have been measured in 

various kinds of mesoscopic conductors and structures. 

In seminal experiments, B. J. van Wees et al. [2], and D. A. Wharam et al. [3] showed 

that in point contacts tailored in a two-dimensional electron gas, the conductance 

changes in steps of 22e h  as conduction channels open one by one when the width of 

the contact is increased with an electrostatic gate. This is due to the quantization of 

transverse electronic modes in the contact region. 

Measuring the subgap structure on the IV  characteristic of superconducting single 

atom contacts Scheer et al. [4] devised a method to obtain the ensemble of the 

transmission probabilities { }iτ . Because most of the transport properties depend in fact 

only on these probabilities, the ensemble { }iτ  has been nicknamed the mesoscopic pin 

code of the contact. Later on, using this method, Scheer et al. [5] showed that the 

number of channels in a one-atom contact is determined by the number of valence 

orbitals of the atom at the constriction. 

 

The scattering formalism can also account for the fluctuations of the current through a 

quantum coherent conductor. Of course, at finite temperature noise arises because the 

occupation number of the states in the reservoirs fluctuate. But even at zero 

temperature, i.e. in absence of fluctuations in these occupation numbers, the current in 

the leads fluctuates due to the stochastic nature of the scattering events in the conductor. 

Obviously, the zero temperature noise should vanish in the vanishing transmission limit 

because in this case the conductor is an open circuit. It should also vanish for perfect 

transmission since no scattering events occur in this case. At low frequency, the spectral 

density of the current fluctuations through a quantum coherent conductor with a 

mesoscopic pin code { }1, ..., Nτ τ  is given by [6, 7]: 
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 { }( ) ( ) 2
1 0 0

1 1

, , , ..., 2 coth 1 4
2

N N

I N i i B i
i iB

eVS V T eV G k TG
k T

τ τ τ τ τ
= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑  (1) 

 

where V  is the voltage across the conductor and T  the temperature. 

When 1
B

eV
k T

, (1) simply rewrites: 

{ }( )1 0
1

, ..., 4 4
N

I N B i B
i

S k TG k TGτ τ τ
=

= =∑ . 

 

This is the spectral density of the Johnson-Nyquist noise. 

In the opposite limit, 1
B

eV
k T

, the spectral density is given by: 

{ }( ) 2
1

1 1
, , , ..., 2 1

N N

I N i i
i i

S V T eIτ τ τ τ
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑ . 

 

This is shot noise, although reduced from its Poissonian limit 2eI  by the Fano factor 

{ }( ) 2
1

1 1
, ..., 2 1

N N

N i i
i i

F eIτ τ τ τ
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑ . This fact was beautifully demonstrated in the 

mid 1990’s by Reznikov et al. [8] and by A. Kumar et al. [9] on 2D quantum point 

contacts. Later on, Cron et al. [10] measured this noise reduction in normal 

multichannel atomic contacts and found a quantitative agreement with the theoretical 

predictions when the independently measured transmissions were plugged in (1). 

The thermopower of atomic-size metallic contacts is another physical quantity that has 

been investigated. B. Ludolph and J. M. van Ruitenbeek [11] found good agreement 

with the calculation achieved by E. N. Bogachek et al. in 1996 [12] within the 

framework of the scattering formalism and in the linear response approximation. 

It is important to note that, if the noise and the conductance are entirely determined by 

just the mesoscopic pin code of the conductor, other physical quantities can also depend 

on the coefficient of the r  matrix. This is the case for example for the tensile force of a 

one-atom contact when it is stretched [13, 14]. Indeed the mechanical stability comes 

from electrons delocalized between the two sides of the one-atom constriction. In this 

sense, conduction channels can be seen as metallic bonds whose strength depends on 
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the interference of right and left moving electrons at the constriction. Therefore, the full 

information on the phase of the S  matrix coefficients is necessary. 

 

In conclusion, the scattering formalism is a powerful framework to describe transport 

properties of mesoscopic structures. To describe transport in structures involving 

superconductors, one needs to add just the concept of Andreev reflection, that we 

describe in the next paragraph. 

 

 

2 Andreev reflection - Bogoliubov de Gennes equations 
 

The most general theory of superconductivity, able to deal with inhomogeneous 

systems (disordered superconductors, structures involving normal-superconductor 

interfaces…), is based on the so-called Bogoliubov de Gennes equations. 

In the electron-hole representation the superconducting hamiltonian ˆ
SH  writes [15]: 

 

( )† † † †ˆ
S k k k k k k k k k

k

H c c b b c b b cξ ∗= − − ∆ − ∆∑  

 

where †
kc  and kc  are the creation and annihilation operators of the normal state electron 

quasiparticles with spin up, and †
kb  and kb  are those for holes with spin down. The 

energies of the normal state quasiparticles are kξ  for the electrons and kξ−  for the holes 

of same wavevector k. The effective electron-electron interaction responsible for 

superconductivity corresponds to the electron and hole states of the same wave vector 

(and opposite energies kξ±  with respect to the chemical potential) being coupled 

through the pairing potential ∆ . Within this framework, the superconducting 

quasiparticles are coherent superpositions of a normal state electron of spin up and its 

time-reversed counterpart, i.e. a hole of spin down. 

The Bogoliubov de Gennes equations express this physics in a form that allows to deal 

with inhomogeneous structures. They consist in two coupled Schrödinger equations for 

the two-component wavefunction of the quasiparticles. In one dimension, they write: 
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( ) ( )
( ) ( )

( )
( )

( )
( )

N

N

u x u xH x x
E

x H x v x v x∗ ∗

⎛ ⎞ ⎛ ⎞∆⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∆ −⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2) 

 

where ( ) ( )
2 2

22N
dH x U x

m dx
µ= − + −  is the normal state hamiltonian, ( )U x  is the 

potential seen by the electrons, and µ  is the chemical potential. ∆  is the complex 

superconducting order parameter that couples the two components of the vector 
( )
( )

u x

v x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

describing the quasiparticle. The solutions of equation (2) can be chosen so that the 

upper component of the vector represents the “electron” amplitude of the quasiparticle, 

and the lower component its “hole” amplitude. In what follows we will assume free 

electrons and no magnetic field, so that ( ) 0U x =  and N NH H ∗= . One searches for 

solutions of the Bogoliubov de Gennes equations of the general form: 

( )
( )
( ) ( )

0

0

ikx

i x

u x u
e

vv x

x e φ

⎧⎛ ⎞ ⎛ ⎞
=⎪⎜ ⎟ ⎜ ⎟⎪⎜ ⎟ ⎝ ⎠⎨⎝ ⎠

⎪
∆ = ∆⎪⎩

. 

where φ  is the space dependent phase of the local order parameter The solutions can be 

classified in two types. There are electron-like 
( )
( )

0

0

e

e e
ik x

e e

u x u
e

v x v
±

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, or hole-like 

quasiparticles 
( )
( )

0

0

h

h h
ik x

h h

u x u
e

v x v
±

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, in the sense that this is what they describe when 

0∆→ , or when E ∆ . 

There are no propagating solutions for E < ∆  and the density of states ( )n E  (see 

Figure 2) develops a gap and a divergence at the gap edges: 

 

( ) ( )2
1

0

F
E

n E
n E E

E

∆⎧
≥ ∆⎪⎪= ∆ −⎨

⎪
< ∆⎪⎩

, 

 

Fn  being the density of states at the Fermi energy in the normal metal. 
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Figure 2: Density of states in a BCS superconducting metal around the Fermi energy 
( 0E = ). We recall that in the experiments, we are probing energies only a few 
millielectronvolts away from the Fermi energy. Fn  is the density of states at the Fermi 
energy in the normal metal. 

 

For each energy E ≥ ∆  there are four solutions (electron-like and hole like 

quasiparticles in both propagation directions) with wave-vectors satisfying the 

dispersion relations: 

 

( ) ( )( )221 2 sgnek E m E Eµ= + − ∆ , 

( ) ( )( )221 2 sgnhk E m E Eµ= − − ∆ . 

 

The eigenvectors for the electron-like quasiparticles correspond to: 

 

( )( )220

0

1 sgn
e

e i

v E E E
u e φ= − − ∆

∆
, 

 

and those for the hole-like quasiparticles are given by: 

 

( )( )220

0

1 sgn
h

h i

v E E E
u e φ= + − ∆

∆
. 
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The superconducting quasiparticles are superpositions of electron and hole normal 

quasiparticles and the charge they carry varies continuously between e±  (for E ∆ ) 

and zero at E = ∆ . In the limits 0∆→  or E ∆ , one recovers the normal state 

quasiparticles: 

electrons 0

0

1
0

e

e

u

v

⎛ ⎞ ⎛ ⎞
→⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, and holes 0

0

0
1

h

h

u

v

⎛ ⎞ ⎛ ⎞
→⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. 

 

We now turn into the discussion of Andreev reflection, the key concept to understand 

the electronic transport in structures involving one or several superconducting 

electrodes. Let us consider a normal-superconductor interface2 as depicted in Figure 3. 

 

ie φ∆

x
 

Figure 3: Profile of the superconducting order parameter at a NS interface. Taking a 
step function means neglecting the proximity effect. 

 

When an electron incident from the normal electrode impinges on the superconducting 

one, it can of course be fully reflected (i.e. as an electron) therefore not contributing to 

the current. But it can also be reflected as a hole with a probability ( ),a E φ  in what is 

called an Andreev reflection process [16]. More precisely it is reflected at the order 

parameter discontinuity, generating an electron-like quasiparticle in the superconductor 

propagating in the same direction, and a hole in the normal electrode propagating in the 

opposite direction [17]. The wavefunction describing the situation in the normal side is: 

 

                                                 
2 It is important to note that although Andreev reflection is usually associated in the 

literature almost exclusively with what happens at the interface between a normal metal 

and a superconductor, it is in fact the microscopic mechanism at the heart of 

superconductivity responsible for the coupling of the electrons and holes dynamics. 



 40 

( )
1 0

,
0 1

N N
e hik x ik xe a E eφ+ +⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 

The upperscript N  in the wave vectors in the normal region denotes the fact that we 

have let 0∆→  in the general expression for the wavevectors. At the interface ( 0x = ), 

this must match the wavefunction of the superconducting electron-like quasiparticle, 

and thus: 

 

( ) 0

0

1 0
,

0 1

e

e

u
a E

v
φ

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

 

from which one finds the probability amplitude ( ) 0

0

,
e

e

va E
u

φ =  to Andreev reflect an 

electron into a hole: 

( ) ( )( )221, sgnia E E E E
e φφ = − − ∆

∆
 

 

We have taken by convention: 

 

( )2 22 2sgnE i E E− ∆ = ∆ −  if E < ∆ . 

 

We can then rewrite the Andreev reflection amplitude as: 

 

( )
( )( )

( )

22

2 2

1 sgn
,

1

i

i

E E E E
e

a E
E i E E

e

φ

φ

φ

⎧ − − ∆ > ∆⎪ ∆⎪= ⎨
⎪ − ∆ − < ∆
⎪ ∆⎩

 

 

The Andreev reflection amplitude of a hole into an electron is simply given by 

( ),a E φ− . The variations with energy of the Andreev reflection amplitude are plotted 

in Figure 4. As the energy varies from −∞  to +∞ , ( ),a E φ  runs over a half-circle in 
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the complex plane. For an electron impinging with an energy inside the gap ( E < ∆ ), 

the modulus of ( ),a E φ  is unity, i.e. Andreev reflection is complete. 

 

( )Im , 0a E φ =⎡ ⎤⎣ ⎦

( )Re , 0a E φ =⎡ ⎤⎣ ⎦
1+1−

1−
0E =

E = + ∆E = − ∆ E = +∞E = −∞

( )Im , 0a E φ =⎡ ⎤⎣ ⎦

( )Re , 0a E φ =⎡ ⎤⎣ ⎦
1+1−

1−
0E =

E = + ∆E = − ∆ E = +∞E = −∞

-3 -2 -1 0 1 2 3
0.0
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( ),a E φ  

 

 E ∆
-3 -2 -1 0 1 2 3

( )arg ,a E φ⎡ ⎤⎣ ⎦

2φ π+

φ π+

φ

 

 

 E ∆

 

Figure 4: Modulus  (top-left) and phase (top-right) of the Andreev reflection probability 
amplitude as a function of the quasiparticle energy in units of ∆ . Bottom: polar 
representation of the Andreev reflection probability amplitude for 0φ = . φ  is the phase 
of the superconducting complex order parameter. 

 

 

We can now introduce this concept of Andreev reflection within the scattering theory of 

transport. 

 

 

3 Andreev bound states – current-phase relation – Josephson 

inductance 
 

We consider the simple situation of two superconducting reservoirs weakly 

coupled through a single short conduction channel of arbitrary transmission. In this 
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context, weakly coupled means that a phase difference can be sustained between both 

sides. Short means smaller than the superconducting coherence length, so that it is 

possible to have quasiparticle states which probe both sides, and therefore can sense the 

two different phases. 

To describe the transport properties of this structure we need to account for two 

different scattering mechanisms. On the one hand the scattering due to the finite 

reflection probability of the channel. On the other hand, Andreev reflections due to the 

superconducting phase mismatch. Although these processes actually take place in the 

same region, it is convenient to assume they arise separately. For this purpose, we 

consider between the superconducting reservoirs a region where the pairing potential is 

zero, in other words we suppose that the connecting channel is normal, as depicted in 

Figure 5. As a consequence Andreev reflections occur at the two resulting fictitious NS 

interfaces, and normal scattering in the conduction channel, which has been divided into 

two parts, 1 and 2 on each side of the scaterrer for the purposes of section 3.2. 

Eventually, the length of this fictitious normal region can be taken to be zero. 

Rie φ∆

x

Lie φ∆
τ

11 22

 

Figure 5: Schematic representation of a SNS structure used to model two 
superconducting reservoirs connected through a single conduction channel of arbitrary 
transmission τ . 

 

The normal scattering in the conduction channel is described by the 2 2×  matrix: 

 

ir t
S

t ir
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

 

When a phase difference R Lδ φ φ= −  is applied between the two superconductors, the 

electrons (and holes) reflected at both interfaces interfere, producing, like in a Fabry-

Perot, two resonant states known as Andreev bound states. 
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Locally, the density of states of the continuum is also modified [18], and the 

singularities at ±∆  disappear. Instead, two Andreev levels with energies ( )E δ±  appear 

inside the gap (see Figure 6). At the interface between the two superconductors, the 

expression for the density of states of the continuum is: 

 

 ( ) ( )
( ) ( )

( )2

2 2

1 1 11 1
2 1 sin 2F

En E
E E

n E
τ

τ δ
+ −

= ∆ − ∆ ≥
∆ ∆ − +

 (3) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

 

 

δ π=

( )
F

n E
n

E ∆
 

Figure 6: Local density of states at the constriction for four different values of the 
transmission: 0τ =  (solid line), 0.1τ = (dashed line), 0.5τ =  (dotted line), 0.9τ =  
(dashed-dotted line). The case 0τ =  corresponds to having two uncoupled 
superconductors and one therefore recovers the previously calculated BCS density of 
states. The vertical lines corresponds to the Andreev levels of energy E+ . The curves 
have been sketched for a phase difference δ π=  across the weak link. For clarity only 
the energy range 0E >  is represented. The local density of states for 0E <  is obtained 
by symmetry with respect to the 0E =  vertical line. 

 

 

3.1 Ballistic limit 
 

In the ballistic limit ( 1τ = ), no backscattering occurs in the conduction channels. 

Any incoming wave is perfectly transmitted. 
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A right moving electron (see Figure 7) with an energy inside the gap ( E < ∆ ) is 

Andreev reflected with probability one by the right superconductor into a left moving 

hole, leaving a charge 2e  in the right superconductor. The left moving hole is Andreev 

reflected back by the left superconductor into a right moving electron, taking a charge 

2e  from the left superconductor. During one of these cycles a Cooper pair is transferred 

from the left to the right superconductor. The electron acquires a phase shift 

( )arg , Ra E φ⎡ ⎤⎣ ⎦  at the reflection on the right superconductor and ( )arg , La E φ−⎡ ⎤⎣ ⎦  on 

the left one. Of course, a similar situation arises for left moving electrons. In a short 

weak link (i.e. of length much smaller than the superconducting coherence length), one 

can neglect the phase acquired by the electrons and the holes while they propagate in 

the normal region. 

 

e

h

h

e

( ), La E φ− ( ), Ra E φ

Lφ Rφ

 

Figure 7: Schematic representation of the Cooper pair transfer process by the ballistic 
Andreev bound states. 

 

Constructive interferences will therefore occur if: 

 

( ) ( ) [ ]arg , arg , 0 mod 2R La E a Eφ φ π+ − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

 

Expliciting the phase shifts as: 

( )
2 2

arg , arctanR R

E
a E

E
φ φ

⎛ ⎞∆ −⎜ ⎟= − + −⎡ ⎤⎣ ⎦ ⎜ ⎟
⎝ ⎠

, 

( )
2 2

arg , arctanL L

E
a E

E
φ φ

⎛ ⎞∆ −⎜ ⎟− = + −⎡ ⎤⎣ ⎦ ⎜ ⎟
⎝ ⎠

, 
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one gets for the resonance condition: 

2 2

2arctan 0
E

E
δ

⎛ ⎞∆ −⎜ ⎟− − =
⎜ ⎟
⎝ ⎠

, 

 

which leads to the appearance of two ballistic Andreev bound states with phase 

dependent energies located inside the gap: 

 

( ) cos sgn sin
2 2

E δ δδ ⎡ ⎤⎛ ⎞ ⎛ ⎞= ∆ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∓

 

 

Figure 8 shows the 2π periodic energies of these two states, which cross at δ π= . 

 

 

E→

E←

δπ 2π

−∆

+∆

 

Figure 8: Energy of the two ballistic Andreev bound states as a function of the phase. 

 

 

These two states carry opposite currents (see Figure 9) given by the current-phase 

relationship: 

 

( )
0

1 2 sin
2 2

E e
I δδ

ϕ δ
∂ ∆ ⎛ ⎞= = ± ⎜ ⎟∂ ⎝ ⎠

, where 0 2e
ϕ = . 
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I→

I←

δπ 2π

e∆
+

e∆
−

 

Figure 9: Current carried by the two Andreev bound states of a ballistic channel. 

 

 

3.2 Conduction channel of arbitrary transmission 
 

In this case, in which there is a finite backscattering probability in the normal 

region, a right moving electron (or hole) can be reflected back into a left moving 

electron (or hole) (see Figure 10). This couples the two ballistic Andreev bound states, 

and results in the opening of a gap in the Andreev spectrum at the crossing at δ π= . 

 

e

h

h

e

( ), La E φ− ( ), Ra E φ

Lφ Rφ
τ

 

Figure 10: Schematic representation of the Cooper pair transfer process by the Andreev 
bound states in a channel with a transmission 1τ < . The normal reflection process 
couples the two ballistic Andreev bound states resulting in the opening of a gap in their 
energy spectrum. 

 

The wavefunctions on each side of the scattering center in the conduction channel (see 

Figure 5) can be written as: 
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( )1 1 1 1 1

1 1 0 0
0 0 1 1

N N N N
e e h hik x ik x ik x ik xe e h hx A e B e A e B eψ + − − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( )2 2 2 2 2

1 1 0 0
0 0 1 1

N N N N
e e h hik x ik x ik x ik xe e h hx A e B e A e B eψ − + + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

The coefficients in front of the electron (or hole) wave functions are related by the 

scattering matrix as follows: 

 1 1

2 2

e e

e e

B A
S

B A

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4) 

and: 

 1 1

2 2

h h

h h

B A
S

B A
∗⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5) 

 

 

And the electron and hole coefficients are related by the Andreev reflection amplitude 

matrix. 

At the right interface: 

 
( )

( )
2 2

2 2

, 0
0 ,

h e
R

e h
R

A a E B
a EA B

φ
φ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

 (6) 

 

and at the left interface: 

 
( )

( )
1 1

1 1

, 0
0 ,

h e
L

e h
L

A a E B
a EA B

φ
φ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

 (7) 

 

One can combine equations (4), (5), (6) and (7) to obtain the following equation: 

1 1

2 2

e e

e e

A A
M

A A

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 

 

with 
( )

( )
( )

( )
, 0 , 0
0 , 0 ,

L L

R R

a E a E
M S S

a E a E
φ φ

φ φ
∗−⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
. 

 

This has a non zero solution if 
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( ) ( ) ( )( ) ( )2 42 2det 1 2 1 cos 0M I E t t Eγ δ γ− = − − + + = , 

where I  is the 2 2×  identity matrix and ( )
2 2E i E

Eγ
− ∆ −

=
∆

. 

 

This leads to the energy of the two Andreev bound states (see Figure 11), 

 

( )21 sin 2E τ δ± = ± ∆ − , 

where 2tτ = . 

 

The energy spectra of the two Andreev bound states for a single channel of arbitrary 

transmission are the central prediction of this mesoscopic theory of the Josephson 

effects. 

 

0

E−

E+

2ππ

+∆

−∆

δ

 

Figure 11: Energy of the two Andreev bound states as a function of the phase in a 
channel of transmission 0.99τ = . 

 

As shown in Figure 12, these two Andreev bound states still carry opposite currents, 

given by the generalized current-phase relation: 

 

 ( ) ( )
( )2

0

sin1
2 1 sin 2

eEI
τ δ

δ
ϕ δ τ δ

±
±

∆∂
= =

∂ −
∓  (8) 
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Since the conduction channels are independent, the current-phase relation of any weak-

link can be calculated from equation (8) by adding up the contribution of the different 

channels (if the mesoscopic PIN code { }1, ..., Nτ τ of the structure is known). 

 

 

( ) 0I Iδ−

π δ2π

( ) 0I Iδ+

1

1−
 

Figure 12: Current carried by the two Andreev bound states of a channel of 
transmission 0.99τ = . The two curves have been normalized by 0I , the maximum of 

( )I δ± . 

 

 

3.3 Josephson inductance 
 

In section 3.1 and 3.2, we have derived an expression for the phase driven 

supercurrent in a single channel of arbitrary transmission. This current, which is a 

physical quantity amenable to measurement (see chapter 4) is proportional to the phase 

derivative of the Andreev bound state energy. 

 

Another quantity amenable to measurement and carrying some information on the 

spectrum of the Andreev bound state is the Josephson inductance. The two constitutive 

relations of a Josephson weak link are the current phase relation and the second 

Josephson relation, stating that the voltage across it is proportional to the time 

derivative of the phase: 
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( )
0

,I I

V

δ τ

ϕ δ
±⎧ =⎪

⎨
=⎪⎩

 

 

Combining these two relations leads to: 

 

( )
0

,
dIV

dI d dt
ϕ
δ τ δ

±

±

= . 

 

The voltage across the Jospehson weak link is proportional to the time derivative of the 

current flowing through it. This defines the non linear Josephson inductance: 

 

( ) ( ) ( )

2
0 0

2 2,
, ,

L
dI d d E d

ϕ ϕδ τ
δ τ δ δ τ δ±

± ±

= =  

 

In chapter 4, microwave reflectometry experiments aiming to probe the Josephson 

inductance of an atomic contact are presented. 

 

 

4 Multiple Andreev reflections 
 

In the previous paragraph we calculated the supercurrent through a single 

channel Josephson weak-link when it is phase biased. However, it is also possible to 

calculate within this picture of Andreev levels what happens when the system is voltage 

biased. The basic microscopic charge transfer mechanism in this case was identified in 

1982 by Blonder et al. [17], who calculated the dissipative current within a semi-

classical approach. In the mid 1990’s a complete quantum description was achieved by 

several groups [19, 20, 21]. Following D. Averin and A. Bardas [19], we will sketch, in 

what follows, the fully quantum scattering formalism developed to calculate the time 

dependent currents when a voltage V  is applied through a single channel weak-link of 

arbitrary transmission. 

Under a voltage bias V , electrons and holes gain or lose an energy eV  when they 

propagate through the conduction channel, i.e. transport becomes inelastic. As a 

consequence Andreev bound states cannot exist any longer. Instead, a quasiparticle 
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entering from one of the reservoirs will give rise to a scattering state containing all 

possible quasiparticle states with energies 2E neV+ , where n  is an integer. The 

components of the wavefunction of this scattering state have different time 

dependencies giving rise to a time dependent current. This is the so-called ac Josephson 

effect. 

More precisely, a quasiparticle of energy E  coming from the left superconductor (see 

Figure 13) is injected as an electron in the normal region with a probability amplitude 

( ) ( ) 2
1 , 0J E a E= − . In the normal region an infinite series of Andreev reflection is 

generated. They occur at energies 2E neV+  ( n∈ ) on the left interface and at 

energies ( )2 1E n eV+ +  ( n∈ ) on the right interface. This infinite series is called 

multiple Andreev reflections (MAR) and is the fundamental process that carries the 

current when a voltage is applied across a Josephson weak link. 

 

2E neV+

( )2 1E n eV+ +

( )2 1E n eV+ −

nB
2n na A

nA
2n na B

1nD −

2 1 1n na C− −

1nC −

nC

2 1n na D+

nD

E
( )J E

Scatterer

Region 1
(N)

Region 2
(N)

Superconductor (L) Superconductor (R)

 

Figure 13: Multiple Andreev reflections in a channel connecting two superconducting 
reservoirs. Dashed arrows represent holes. Solid arrows represent electrons. The 
vertical dotted line schematically represents the scattering center. In this figure the 
chemical potential of both reservoirs are kept at the same level, independently of the 
bias. The voltage dependence is taken into account through the kinetic energy gained by 
the electrons and the holes from the electrical field localized in the channel. 
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In the two normal regions, the electron and hole wave functions can be written as a sum 

of different components shifted by the quantity 2eV . In region 1, the wave function 

writes: 

 

( )
( )( ) ( )

( )

2 /
2 0

1 2 /
2

N N
e e

N N
h h

i E neV tik x ik x
n n n n

n

i E neV tik x ik x
n n n

n

a A J E e B e e
x

A e a B e e

δ
ψ

− +−

∈

− +−

∈

⎛ ⎞⎡ ⎤+ +⎣ ⎦⎜ ⎟
= ⎜ ⎟

⎡ ⎤⎜ ⎟+⎜ ⎟⎣ ⎦⎝ ⎠

∑

∑
, 

 

nA ( nB ) are respectively the probability amplitude associated with a left moving hole 

(electron) of energy 2E neV+ , and ( , 0)ka a E keV= + . 0nδ  is the Kronecker symbol, 

defined as: 0

1 if 0
0 if 0n

n
n

δ
=⎧

= ⎨ ≠⎩
  

Similarly, the wave function in region 2 is: 

 

( )

( )( )

( )( )

2 1 /
2 1

2 2 1 /
2 1

N N
e e

N N
h h

i E n eV tik x ik x
n n n

n

i E n eV tik x ik x
n n n

n

C e a D e e
x

a C e D e e
ψ

− + +−
+

∈

− + +−
+

∈

⎛ ⎞⎡ ⎤+⎣ ⎦⎜ ⎟
= ⎜ ⎟

⎡ ⎤⎜ ⎟+⎜ ⎟⎣ ⎦⎝ ⎠

∑

∑
 

where nC  ( nD ) are respectively the probability amplitude associated with a right 

moving electron (hole) of energy ( )2 1E n eV+ + . 

 

The coefficients in regions 1 and 2 are not independent, as they are related through the 

scattering matrix. For the electrons, this relation writes [19]: 

 

( )2 0

2 1

n n nn

n n n

a A J EB
S

C a D
δ

+

⎛ + ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 

 

and for the electrons: 

2

1 2 1 1

n n n

n n n

A a B
S

D a C
∗

− − −

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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The coefficients nC  and nD  can be expressed in terms of nA  and nB , which can 

themselves be calculated from a recurrence relation. 

 

The current is then expressed as [19]: 

 

 ( ) ( ) 0, ik t
k

k

I V t I V e ω
+∞

=−∞

= ∑  (9) 

 

where 0 2eVω =  is the Josephson frequency and: 

( ) ( ) ( ) ( )

2

0 2 2 2 2( )

2

tanh 1
2

k

k k k k k n n k n n k n n k
nB

eI
h

EeV dE J E a A a A a a A A B B
k T

δ ∗ ∗ ∗ ∗
− − + + +

= ×

⎧ ⎫⎛ ⎞ ⎡ ⎤− + + + −⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎩ ⎭
∑∫

 

The current oscillates at all the harmonics of the Josephson frequency. The dc 

component of the current leads to the highly non linear dc IV  characteristics from 

which the mesoscopic pin code of the contact can be extracted [4]. 

Let us conclude this section by saying that in 1996, J. C. Cuevas et al. [21] developed a 

different formalism to calculate the components of the current in a voltage biased single 

channel contact. Their calculation is based on a tight-binding model Hamiltonian that 

describes the charge transfer through the weak link, and uses non-equilibrium Keldysh 

Green functions to calculate the current. This formalism is more general than the 

scattering formalism developed by Averin and Bardas because it allows in principle to 

include all type of scattering mechanisms which can modify the electronic distribution 

(electron-electron interactions, impurities, etc…) [22]. For example, it can handle 

inhomogeneous or disordered systems. In these specific cases, it is indeed very difficult 

if not impossible to compute the wave functions which are the input of the scattering 

formalism. For example, the case S-N(diffusive)-S is a situation where the scattering 

formalism cannot account for the spatial variations of the superconducting correlations 

in the normal diffusive wire [23]. Of course, this new approach contains all the results 

predicted by the scattering formalism. 
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5 From the supercurrent to MAR 
 

In the previous sections the non-dissipative and the dissipative currents in a 

single channel weak-link were described on separate grounds, in the sense that different 

and contradictory bias conditions were assumed. On one hand the supercurrent is 

calculated by assuming a perfect phase bias, and on the other hand the MAR current is 

evaluated assuming a perfectly voltage biased contact. The issue we address in this 

paragraph is the link between these two dichotomic approaches. More detailed 

discussions of this point can be found in [19, 21]. 

The MAR current, which is driven by the voltage, is simply the dc component of 

expression (9), i.e. the time average of the ac Josephson currents. Figure 14 shows the 

IV  characteristic of a single channel contact for different values of the transmission, 

calculated using a code developed by J. C. Cuevas [21]. 
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Figure 14: MAR current (lines) and critical current (dots) in channels of various 
transmissions under perfect voltage bias V . 

 

In the 0V →  limit, the number of MAR processes contributing to the current grows 

indefinetly, but each step of the MAR ladder (Figure 13) gets smaller and smaller. 

Eventually, at exactly zero voltage, the infinite series of MAR gives rise to the two 

Andreev bound states shown on Figure 8 and Figure 11. These two states are 

responsible for the supercurrent which is driven now by the superconducting phase 
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difference. The solid dots at zero voltage in Figure 14 represent the maximum 

supercurrent that the channel can sustain without any voltage, i.e. its critical current 0I , 

obtained for a phase of / 2π  in the tunnel limit. At zero voltage, the channel can in fact 

accommodate any current in the interval [ ]0 0,I I− , the actual value being determined by 

the static superconducting phase difference δ  across the contact, according to equation 

(8). 

Under a constant voltage V the phase acquires a dynamics 0Vδ ϕ= . As the phase is 

swept across π , this dynamics can induce Landau-Zener transitions from the lower to 

the upper Andreev bound level as shown in Figure 15. These non-adiabatic transitions 

are responsible for the crossover from supercurrent to MAR current. 
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E−

E+

2ππ
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−∆

δ
LZP

1 LZP−

 

Figure 15: Landau-Zener transitions between the two Andreev bound states (in a 
channel of transmission 0.99), as the phase is swept at high speed across the Andreev 
gap ( 2 1 τ∆ − ) at δ π= . 

 

When the superconducting phase difference δ  is swept through the value π , the system 

can either follow the lower level (adiabatic limit) or jump to the upper level (diabatic 

limit). This problem is well known as the standard level crossing problem, ubiquitous in 

physics and chemistry. The probability to go from the lower to the upper level when the 

parameter is driven at constant velocity was calculated independently by Landau and 

Zener in the 1930’s [24]: 
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( ) 2

2exp a lc
LZ

b

lc

P

t

ν
π

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥= −

∂⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

 (10) 

 

where aν  ( bν ) is the transition frequency between the two adiabatic (ballistic) levels 

(see sections 3.1 and 3.2). The subscript lc  indicates values taken at the level crossing. 

 

( ) 2 1a lc h
ν τ∆

= −  

 

0

b b

lc lc

d V
t dt h
ν ν δ

δ ϕ
∂ ∂ ∆⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

 

In our specific case equation (10) rewrites as: 

( )exp 1LZP
eV

π τ∆⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

As the transmission of the channel increases, the Andreev gap at δ π=  shrinks and the 

transition probability increases. 

It is possible to understand the MAR current as Landau-Zener transitions between the 

two stationary Andreev bound states [19, 25] in the limit3 ( )1 1
eV

π τ∆
− > . At finite 

voltage, the current flowing through the channel can be expressed as a sum of two 

terms. If the system follows the adiabatic limit (probability 1 LZP− ), the current is given 

by 
0 00

1

V t

E

δ ϕ δϕ δ
−

= +

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

. Whereas if the system follows the diabatic limit (probability 

LZP ), the current is given by 
0 00

1

V t

E

δ ϕ δϕ δ
→

= +

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 We can therefore write the current as: 

 

 ( ) ( )( ) ( )
0 0 0 00 0

1 1, 1 LZ LZ
V t V t

EEI V t P V P V
δ ϕ δ δ ϕ δϕ δ ϕ δ

→−

= + = +

∂∂ ⎛ ⎞⎛ ⎞≈ − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (11) 

                                                 

3 Ultimately, i.e. for ( )1 1
eV

π τ∆
− , this corresponds to the adiabatic limit ( 0LZP = ). 
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Because the current phase relation of the lower Andreev level E−  is an odd function of 

the phase, the first term of equation (11) is an odd function of time, which can therefore 

be expanded into a sine Fourier series, and which averages out to zero in time. 

However, the current phase relation of the ballistic level E→  is an even function of the 

phase. The second term of equation (11) is therefore an even function of time, with a 

non zero average, and can be expanded into a cosine Fourier series. Therefore, the dc 

current at finite voltage writes: 

 

 ( ) ( )
[ ]

( )
0, 20

1 4 exp 1
2LZ

E eI V P V
eVδ π

π τ
ϕ δ π

→

∈

∂ ∆ ∆⎡ ⎤≈ = − −⎢ ⎥∂ ⎣ ⎦
 (12) 

 

Figure 16 compares the predictions of this approximate expression with the predictions 

of the full theory of MAR in the limit ( )1 1
eV

π τ∆
− > . The good agreement between the 

two approaches indicates that, within this limit, the MAR current can be viewed as 

resulting from the Landau-Zener transitions between the stationary Andreev bound 

states. Equation (11) shows that when the voltage is progressively increased from zero, 

the MAR current (second term) increases while the supercurrent (first term) decreases. 

Equation (11) brings out some insight on equation (9). The sine terms in the current 

expansion of the time dependent current come from the adiabatic dynamics of the 

system on the lower Andreev level, whereas the cosine terms are the signature of 

Landau-Zener transitions between the two levels. 
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Figure 16: Solid line: prediction of equation (12) for the current arising at low voltages 
from Landau-Zener transitions between the two Andreev bound levels of a 0.9τ =  
channel. Dots: full microscopic calculation of MAR current. 

 

The discussion sketched here has the merit to point out that there is no fundamental 

difference between the supercurrent at zero voltage and the MAR current at finite 

voltage despite the dichotomy in their description. They both arise from the same basic 

microscopic mechanism.  

We will see in chapter 2 that in practice, the contact is never perfectly voltage biased. 

The finite impedance of a realistic setup imposes voltage and therefore phase 

fluctuations which lead to a smooth transition from an essentially non dissipative 

transport regime to an essentially dissipative one. The voltage range in which this 

smooth transition happens depends on the environment. There is a voltage range in 

which supercurrent and MAR current contributions completely mix one with each other. 

Of course, this is only noticeable for highly transmitting channels where the MAR 

current is sizeable at very low voltages. In weakly transmitting channels, as the Landau-

Zener probability is vanishingly small at small voltages, there is no overlap of the 

supercurrent and the MAR current contributions. 
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 In this chapter we report experiments on the dc current flowing in voltage and 

current biased atomic contacts. The current-voltage characteristics strongly depend in 

these situations on the fluctuations imposed on the superconducting phase by the 

electromagnetic environment of the contact, and we discuss this physics in detail. We 

report measurements on contacts with transmissions up to the ballistic limit and 

compare the experimental results with the theoretical predictions. In particular we show 

the crossover from the supercurrent to the dissipative current arising from multiple 

Andreev reflections. 

We first present some theoretical elements on the supercurrent in phase biased 

Josephson weak links at finite temperature. 

 

 

1 Current-phase relation of a Josephson weak link at finite 

temperature 
 

When a Josephson weak link is phase biased, the voltage across it is perfectly 

zero, according to the second Josephson relation 0V ϕ δ= . However, current can still 

flow through the structure if an imbalance in the population of the current carrying 

Andreev bound levels exists. 

The goal of this paragraph is to establish how much current can flow in a phase biased 

single channel at thermal equilibrium. Thermalization occurs through relaxation 

processes between the two Andreev bound states. The relaxation by phonons has been 

addressed in [1, 2]. The relaxation of the upper state by the emission of photons in the 

environment, already pointed out by Goffman et al. [3] has been described in detail by 

M. A. Despósito and A. Levy Yeyati in [4]. The relaxation by the exchange of 

quasiparticles with states in the bulk superconductors has been described in [5, 6]. None 

of these processes is very efficient except at some specific values of the phase: at 

0, 2δ π=  for the exchange of quasiparticles with the continuum and at δ π=  for the 

emission of photons in the environment. The coupling to the phonons is never very 

efficient. 

Considering the fermionic nature of the Andreev bound states, there are four different 

ways of occupying a pair of them. They are summarized in Table 1. Note that the total 
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number of superconducting quasiparticles occupying the two Andreev levels is not fixed 

and is either zero, one or two. 

 

Occupation number of 
the lower Andreev 
level 

Occupation number 
of the upper 
Andreev level 

Total energy of the 
configuration 

Current carried in 
the configuration 

0 0 0 0 
1 0 E- I- 
0 1 E+ I+ 
1 1 E- + E+ = 0 I- + I+ = 0 

Table 1: The four different configurations for occupying a pair of Andreev bound states. 
Each line in the table corresponds to a given configuration. 

 

The partition function Ξ  writes: 

 
( ) ( ), ,2 E Ee eβ δ τ β δ τ− +− −Ξ = + + , 

 

where 
( )

( ) 2

1

, 1 sin
2

Bk T

E

β

δδ τ τ±

=⎧
⎪
⎨ ⎛ ⎞= ±∆ −⎪ ⎜ ⎟

⎝ ⎠⎩

. 

 

At equilibrium, the current through the channel thus writes: 

 

( ) ( ) ( ) ( ) ( ), ,1, , 0 , , 0E EI T e I e Iβ δ τ β δ τδ τ δ τ δ τ− +− −
− +

⎡ ⎤= + + +⎣ ⎦Ξ
 

 

with ( ) ( ) ( )
0 2

, sin1,
2

1 sin
2

E eI
δ τ τ δ

δ τ
ϕ δ δτ

±
±

∂ ∆
= =

∂ ⎛ ⎞− ⎜ ⎟
⎝ ⎠

∓ . 

 

The current phase relation of the Andreev ground state ( ),I δ τ−  is plotted on Figure 1 

for different values of the channel transmission. 
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0.1, 0.9, 0.99, 0.999τ =

( ) ( )0, 0,I I Tδ τ τ− =

δ

From left to right

π 2π

1

1−

 

Figure 1: Current phase relation of the Andreev ground state for different transmissions 
( 0.1, 0.9, 0.99, 0.999τ = ) of the channel. The current phase relations have been 
normalized to their respective zero temperature critical currents ( )0 0,I T τ=  (see 
below). 

 

Given the fact that E E− += −  and I I+ −= − , the finite temperature1 current phase 

relation simply rewrites: 

 

 ( ) ( ) ( )
2

sin ,
, , tanh

2 2
1 sin

2

EeI T
τ δ β δ τ

δ τ
δτ

+⎡ ⎤∆
= ⎢ ⎥

⎛ ⎞ ⎣ ⎦− ⎜ ⎟
⎝ ⎠

 (1) 

 

The critical current is ( ) ( ){ }0 , max , ,I T I T
δ

τ δ τ=  which at zero temperature reduces to 

(see Figure 2): 

( ) ( )0 0, 1 1eI T τ τ∆
= = − − . 

                                                 
1 For simplicity, we don’t consider here the temperature dependence of the 

superconducting gap. This is valid for temperatures well below the critical temperature. 
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Figure 2: Transmission dependence of the critical current of a single channel contact at 
zero temperature. 

 

For a contact with N  channels, the generalization is straightforward. The contribution 

of the different channels simply sum up: 

 

{ }( ) ( ) ( )
1

, , ,δ τ δ τ δ τ+ + − −
=

⎡ ⎤= +⎣ ⎦∑
N

i i
i i

i
I n I n I  

 

where in+  and in−  are respectively the occupation numbers of the upper and lower 

Andreev bound state in the i-th channel. Because the channels are independent, at 

thermal equilibrium, we have: 
( ),β δ τ±−

± = Ξ

iE
i

i

en , 

 

with the partition function ( ) ( ), ,2 i iE E
i e eβ δ τ β δ τ− +− −Ξ = + + . 

 

The total thermal equilibrium current phase relation is then: 
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{ }( ) ( ) ( )

( ) ( )

1

1 2

, , , ,

sin ,
tanh

2 2
1 sin

2

N
i i

i i
i

N
i i

i
i

I T n I n I

Ee

δ τ δ τ δ τ

τ δ β δ τ

δτ

+ + − −
=

+

=

⎡ ⎤= +⎣ ⎦

⎧ ⎫
⎪ ⎪⎡ ⎤∆ ⎪ ⎪= ⎨ ⎬⎢ ⎥

⎛ ⎞ ⎣ ⎦⎪ ⎪− ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑
 (2) 

 

There is no simple analytical formula for the critical current in the general case. The 

calculation has to be performed numerically. 

Nevertheless, a simple formula can be found for the temperature dependence of the 

critical current in the tunnel limit. This result was first established by Ambegaokar and 

Baratoff in 1963 [7, 8]. A tunnel junction is a quantum coherent conductor containing 

only channels of very small transmission. 

Rewriting equation (2) with 1iτ  leads to: 

{ }( ) ( )
1

, , tanh sin
2 2

N

i
i

eI T βδ τ τ δ
=

∆ ∆⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
∑ . 

Hence the well known result: 

( )0 tanh
2 2

NGI T
e

π β∆ ∆⎡ ⎤= ⎢ ⎥⎣ ⎦
, 

where 
2

1

2 N

N i
i

eG
h

τ
=

= ∑  is the normal state conductance of the tunnel junction. 

 

For a channel of perfect transmission, the two Andreev bound states cross each other at 

δ π= (see Figure 3), and their energies are: 

 

( ) [ ]

( ) ( )

cos , 0, 2
2

2

E

E E

δδ δ π

δ π δ

⎧ ⎛ ⎞= ∆ ∈⎜ ⎟⎪
⎝ ⎠⎨

⎪ + =⎩

∓
 

 



 67

E→

E←

δπ 2π

−∆

+∆

 

Figure 3: Phase dependence of the energy of the ballistic Andreev bound states. The 
wiggly line represents relaxation processes from the upper Andreev level. 

 

 

Therefore, the current carried by the ballistic bound states writes: 

( ) 2 sin
2 2
eI δδ ∆ ⎛ ⎞= ± ⎜ ⎟

⎝ ⎠
. 

Whatever the phase, the Andreev level of energy E→  carry the positive current I→ ; the 

level of energy E←  carry the opposite current I← , as shown on Figure 4. 

 

I→

I←

δπ 2π

e∆
+

e∆
−

 

Figure 4: Phase dependence of the current carried by the two ballistic Andreev bound 
states. 

 

 

The case of transmission perfectly one is singular because ( )I δ  have a non zero 

phase average. Nevertheless, this singularity disappears if relaxation processes between 

the two ballistic bound states (see Figure 3) occur at a fast enough rate for the thermal 
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equilibrium to be reached at each value of the phase. In this case, the equilibrium 

current phase relation ( ), 1,I Tδ τ =  is simply given by equation (1), letting 1τ −→ : 

 

( ) ( ) ( ) cos
sin 2, 1, , 1 , tanh

2 2cos
2

B

eI T I T
k T

δ
δ

δ τ δ τ
δ

−

⎡ ⎤⎛ ⎞∆ ⎜ ⎟⎢ ⎥∆ ⎝ ⎠⎢ ⎥= = → =
⎢ ⎥⎛ ⎞

⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

 

 

In the zero temperature limit, this simply rewrites: 

 

( ) ( ) ( )sin
, 1, 0 , 1

2 cos
2

eI T I
δ

δ τ δ τ
δ

−
−

∆
= → = → =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

The low temperature ( 0T → ) equilibrium current phase relation of a single channel 

contact of transmission 1 is represented on Figure 5. 

 

π 2π

e∆
+

e∆
−

( ), 1, 0I Tδ τ = →

δ

 

Figure 5: Low temperature ( 0T → ) equilibrium current-phase relation of a single 
channel contact of transmission one. 
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2 Phase dynamics in a purely ohmic environment 
 

In the previous paragraph, we assumed the Josephson weak link to be phase 

biased. However, in the experiments carried out on the supercurrent, the contacts were 

embedded in an electromagnetic environment to measure their IV  characteristics. In 

such a setup, the phase is a dynamical variable that experiences both thermal and 

quantum fluctuations. If the phase fluctuations are too large, then the supercurrent is 

averaged out. Therefore, to measure a maximum supercurrent close to the critical 

current, it is necessary to damp the fluctuations of the phase. For this purpose, the 

contact has to be embedded in an on-chip dissipative electromagnetic environment. 

 

Let us start by describing the simplest dissipative electromagnetic environment. It 

consists of a resistor in parallel with the Josephson weak link. Actually, the Josephson 

weak link itself consists of the parallel combination of two elements: a pure Josephson 

element and an intrinsic capacitor (the geometric capacitance of the two 

superconducting electrodes that form the weak link). This is the well known resistively 

and capacitively shunted junction (RCSJ) model (see Figure 6). We will start by 

describing the phase dynamics in this circuit. 

 

 

r

IB

V I

C

 

Figure 6: Electromagnetic environment of the RCSJ model. 

 

 

The Kirchhoff laws for this circuit writes 

 ( ) ( )B n
V dVI i t I C
r dt

δ= + + +  (3) 
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where ni  is the Johnson Nyquist current noise associated with the resistor r . ni  is 

Gaussian white noise characterized by: ( ) 0ni t =  and ( ) ( ) 2' ( ')B
n n

k Ti t i t t t
r

δ= − . 

 

In equation (3), the phase is treated as a classical variable that doesn’t experience 

quantum fluctuations. Only phase fluctuations due to thermal noise of the resistor are 

taken into account. In the circuit presented on Figure 6, the condition for the phase to be 

classical is [9]: 

 1CEβ
πρ

 (4) 

with 1

Bk T
β = , 

22
C

eE
C

=  the charging energy and 
Q

r
R

ρ = , where 24Q
hR
e

=  is the 

resistance quantum. In the following, we will assume a classical behavior for the phase. 

 

Using the second Josephson relation 0V ϕ δ= , one obtains the equation governing the 

dynamics of the phase in this circuit: 

 

 ( ) ( )( )
2

2 0
0 0 0 0 0nC i t I I s

r
ϕϕ δ δ ϕ ϕ δ+ + + − =  (5) 

 

where 
0

BIs
I

=  and ( ){ }0 MaxI I
δ

δ= . 

The dynamics of the phase is therefore equivalent to the Brownian motion of a particle 

of mass m  in a potential ( )U δ , submitted to a random force ( )f t  with a friction 

coefficient λ , according to the following replacing rules: 

( ) ( )( ) ( )

( )

2
0

0 0 0 00

0

2
0

( )

J

n

m C

U I x dx I s E I s

f t i t

r

δ

ϕ

δ ϕ δ δ ϕ δ

ϕ

ϕλ

⎧ =
⎪
⎪ = − = −
⎪
⎨ = −⎪
⎪
⎪ =
⎩

∫
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( )U δ  is the so-called tilted washboard potential, represented on Figure 7 for two single 

channel contacts of different transmissions. ( )JE δ  corresponds to the Josephson 

coupling energy already defined in the introduction. In the following, the notation “ JE ” 

will refer just to the maximum of this coupling ( 0 0JE I ϕ= ), and will not contain its 

phase dependence. 
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Figure 7: Tilted washboard potential for two single channel contacts of transmission 
0.5 and 0.99. The parameter s has been set to 0.5 in both these plots. Only the ground 
Andreev level is assumed to be occupied. 

 

For small transmissions, ( )U δ  is close to the tilted cosine function of the tunnel 

junction. For transmissions close to unity, the shape of the potential is strongly 

modified. 

The particle can oscillate around a minimum of the potential well. These oscillations are 

called plasma oscillations. From equation (5), we can determine the frequency of the 

free oscillations of the fictitious particle in the potential well around 0δ =  for 0s = . In 

the limit of small oscillations, i.e. for 1δ , ( )
0

I
I
δ

αδ≈ , where α  depends on the 

current-phase relation of the contact. For a Josephson tunnel junction, ( ) ( )0 sinI Iδ δ=  
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and 1α = . For a single channel contact of arbitrary transmission τ , 
( )2 1 1

τα
τ

=
− −

. 

In absence of tilt ( 0s = ), the plasma frequency thus simply writes2: 

( ) 0

0

10,
2p

Is
C

αν α
π ϕ

= =  

 

As an example, the plasma frequency for a single channel contact of transmission 0.7 is 

34.2 GHz (assuming a typical geometric capacitance 1 fFC =  between the two 

superconducting electrodes). 

 

In fact, as the potential is highly anharmonic, the oscillation frequency decreases with 

amplitude. A Josephson weak link can therefore be considered as a non-linear inductor. 

To calculate the Josephson inductance at any given value of the phase δ , one goes back 

to the two fundamental Josephson relations: 

( )
0

I I

V

δ

ϕ δ

⎧ =⎪
⎨

=⎪⎩
 

Combining these two relations leads to: 

 

( )
0 dIV

dI d dt
ϕ
δ δ

= . 

 

The voltage across the Josephson weak link is proportional to the time derivative of the 

current flowing through it. This defines the non linear Josephson inductance: 

 

( ) ( )
0L

dI d
ϕδ
δ δ

= . 

 

                                                 
2 When the washboard potential is tilted 0s ≠ , the plasma frequency of a Josephson 

tunnel junction ( 1α = ) can be expressed as: 

( ) ( ) ( ) ( ) ( )
1 12 4 4, 1 0, 1 1 0, 1 2 1p p ps s s s sν α ν α ν α= = = = − ≈ = = −⎡ ⎤⎣ ⎦ . The oscillations 

become slower when the bias current increases because the potential becomes smoother. 



 73

Two dynamical regimes can be distinguished depending on whether the plasma 

oscillations are underdamped or overdamped. The oscillations are overdamped if the 

characteristic damping time is shorter than the period of the oscillations: 0

0

CrC
I
ϕ . 

This condition can be expressed as: 
2

0

0

1r CI
ϕ

. 

The quantity 2
0 0r CI ϕ  is the so-called McCumber Stewart parameter [10, 11]. 

 

In the following, we will focus on the overdamped regime, since in this case, the 

dynamics of the phase is exactly solvable. In the overdamped limit, the inertial term of 

equation (5) can be neglected. Therefore the equation of motion rewrites: 

 ( ) ( ) 0
dU

f t
d
δ

λδ
δ

− + =  (6) 

 

An analytical solution can be found for the mean voltage 0V ϕ δ=  across the 

Josephson element and current ( )0 sinI I δ=  flowing through it. This solution was 

first established in 1968 by Ivanchenko and Zil’berman [12] for a tunnel junction. Their 

result was recovered by Ambegaokar and Halperin [13, 14] who developed a more 

general approach able to treat arbitrary potentials ( )U δ . In particular, their approach 

enables us to treat the case of a weak link containing channels of arbitrary 

transmissions. 

 

 

2.1 The Ivanchenko Zil’Berman solution 
 

Ivanchenko & Zil’berman calculated the dc IV  characteristic of a tunnel 

junction solving the Fokker-Planck3 equation (7) associated with the Langevin equation 

(6). 

                                                 
3 In the specific case of a Langevin equation in the overdamped regime, the Fokker-

Planck equation is called a Smoluchowski equation. 
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( ) ( )

2

2

1

cos sin

B

J
J

W U WW k T
t

W W WE W s
E t

λ δ δ δ

λ β δ δ
δ δ

∂ ∂ ⎡ ∂ ∂ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂ ∂

= + + −⎡ ⎤⎣ ⎦∂ ∂ ∂

 (7) 

 

where W  is the probability density to find the phase in the interval [ ], dδ δ δ+  at time 

t  when at 0t t= , the phase was 0δ . 

 

Then, it is useful to take the Fourier transform of W : 

( ) ( , )in
nx t e W t dδ δ δ

+∞

−∞

= ∫  

In terms of nx , the Josephson current is then: 

( ) ( ) ( )1 1
0 0lim sin ( , )

2t

x x
I I W t d I

i
δ δ δ

+∞
−

→∞
−∞

∞ − ∞
= =∫  

W  is real therefore n nx x ∗
−=  and ( ){ }0 1ImI I x= ∞ . 

The nx verify the equation: 

( ) 1 1

2
n n n

J n
J

x x x
n E n is x

E t
λ β + −∂ −⎡ ⎤= − − +⎢ ⎥∂ ⎣ ⎦

 

In the limit t →∞ , the system reaches a steady state, i.e. 0nx
t

∂
=

∂
. The nx  verify the 

recurrence relation ( ) ( ) ( ) ( )1 12 J n n nE n is x x xβ + −− ∞ = ∞ − ∞  which is similar to the 

recurrence relation verified by the modified Bessel function of the first kind: 

( ) ( ) ( )1 12 I z z I z I zη η ηη − +⎡ ⎤= −⎣ ⎦  

W  is normalized, as a consequence 0 1x = and: 

( )
( )
( )

1
1

J

J

is E J

is E J

I E
x

I E
β

β

β
β

−

−

∞ =  

Finally: 

( ) 0
0

, JB
B IZ

B

EI
I I I f

I k T
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, where ( ) ( )
( )

1, Im ixy
IZ

ixy

I y
f x y

I y
−

−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
. 
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The voltage through the junction is then calculated using the relation ( )( )B BV r I I I= − . 

 

At zero temperature, this can be simplified as: 

 

( )
0

2
0

0 ; 0

1 1 ; 0

B BI I I V

I V rIV V
r V

≤ ≤ =⎧
⎪⎪ ⎛ ⎞= ⎨ ⎛ ⎞⎜ ⎟+ − ≠⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

 

 

IV  characteristics of a tunnel junction at different temperatures are plotted on Figure 8 

in reduced units. The natural units are 0I  for the current scale and 0rI  for the voltage 

scale. The supercurrent branch at 0V =  of the phase biased weak link broadens to form 

a supercurrent peak centered around zero voltage when it is placed in an 

electromagnetic circuit. 
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Figure 8: IV  characteristic of a tunnel junction at different temperatures calculated 
using the Ivanchenko Zil’Berman result. 

 

The shape of the supercurrent peak calculated by Ivanchenko and Zil’berman can be 

understood by means of a qualitative analysis. The dynamics of the phase in this 

potential depends on the value of s  compared to 1 (see Figure 9 and Figure 10). 

At zero temperature, as long as 0 1s< < , the particle sits in a minimum of the potential. 
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Therefore the average voltage across the junction is perfectly zero if one assumes a 

perfectly classical behavior for the phase. Actually, the phase can oscillate even at zero 

temperature because of zero point fluctuations. 

When s  reaches and goes beyond the value 1, the washboard potential has no minima 

any longer. Therefore the particle starts to run away in the potential at a constant 

velocity fixed by the dissipation in the resistor. A voltage appears across the junction. 

 

 

 

running state s > 1 (R)

phase trapped in
a potential well s < 1 (T)

zero temperature

s > 1
s < 1

s = 0

run away

(R)

(T)

I

V

U

δ
 

Figure 9: Pictorial illustration of the phase dynamics at 0T = . As long as s < 1, the 
particle sits in a minimum of the potential well and the voltage across the junction is 
zero. For s > 1, the particle starts to run away in the potential and a finite voltage 
develops across the junction. 

 

 

At finite temperature, the situation is more complex. Indeed, even for 0 1s< < , 

the particle can be activated out of a potential minimum. But if the dissipation is large 

enough, it can be retrapped in the next one, from where it is activated once again and so 

on. In this case, the motion of the particle in the potential is diffusive, and the average 

velocity δ  is small but non zero: a small voltage appears across the junction. 
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running state s > 1 (R)

phase diffusion 0 < s < 1 (D)

finite temperature

s > 1

s < 1

s = 0

thermal
escape

run away

(D)

(R)

retrappping

I

V

U

δ
 

Figure 10: Pictorial illustration of the phase dynamics at finite temperature. At s = 0, 
the particle oscillates in a minimum of the potential well. When s is increased, the 
particle has a diffusive motion in the potential: it is successively activated out of a 
minimum of the well and retrapped, resulting in a small voltage across the junction. For 
larger s, the particle runs away in the potential and a large voltage develops across the 
junction.  

 

 

2.2 The Ambegaokar Halperin method 
 

Ambeagaokar & Halperin proposed a slightly different approach, which can deal 

with any type of current-phase relation. They start from the very same Smoluchowski 

equation (equation (7)): 

 

1
B

W U W JW k T
t λ δ δ δ δ

∂ ∂ ⎡ ∂ ∂ ⎤ ∂⎛ ⎞= + = −⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
 

 

where 1
B

U WJ W k T
λ δ δ
⎡ ∂ ∂ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

 is the probability current. It is worth noticing that 

W J
t δ

∂ ∂
= −

∂ ∂
 is a continuity equation, where the current is the sum of two terms. The 

first one describes the deterministic evolution of W  whereas the second one describes 

its diffusive evolution due to the random force. 
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In steady state, W  is time independent. As a consequence, J  doesn’t depend on δ . 

Therefore it is easy to find a solution for W  in terms of J . For periodic boundary 

conditions ( ( ) ( )0 2W Wδ δ π= = = ), this solution writes [13, 14, 15]: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

0

0 2
2 0B

SJ dx dxW S S
k T S S S x S x

δ π

δ

δλδ π
π

⎡ ⎤
= +⎢ ⎥− ⎣ ⎦

∫ ∫ , 

with ( ) ( )
exp

B

U
S

k T
δ

δ
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

. 

For an atomic contact with N channels, ( )U δ  writes (considering only the ground 

Andreev state of each channel to be occupied): 

( ) 2

1
1 sin

2

N

J i
iJ

U E s
E

δδ τ δ
=

⎛ ⎞∆ ⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  

Therefore: 

( ) ( )
( ) ( ) ( ) ( )

2

0

exp 2
exp 2 1 J

J

S dx dxW J s E
s E S x S x

δ π

δ

δ
δ β λ π β

π β
⎡ ⎤

= +⎢ ⎥− ⎣ ⎦
∫ ∫  

Using the normalization condition ( )
2

0

1W d
π

δ δ =∫ , one finds: 

( )

( ) ( ) ( ) ( )
2 2

0 0

exp 2 1

exp 2

J

J

s E
J

dx dxS s E d
S x S x

π δ π

δ

π β

βλ δ π β δ

−
=

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∫ ∫ ∫

, 

It is possible to express the average phase velocity, and thus the mean voltage across the 

contact, in terms of the probability current. 

From equation (6), the time averaged phase velocity defined by ( )
0

1lim
D

D
t dt

D
δ δ

→∞

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫  

in the stationary limit is given by: 

( ) ( ) ( )1 1dU dU
f t

d d
δ δ

δ
λ δ λ δ

= − = , 

because ( ) 0f t = . 

Therefore ( ) ( ) ( )2 2

0 0

1 2BdU dWk TW d J d J
d d

π πδ δ
δ δ δ δ π

λ δ λ δ
⎛ ⎞

= = − =⎜ ⎟
⎝ ⎠

∫ ∫ , because J  

doesn’t depend on the phase and ( ) ( )0 2W Wδ δ π= = = . 
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Thus the dc voltage across the contact simply writes as: 

0 0 2V Jϕ δ ϕ π= =  

Hence: 

( )

( ) ( ) ( ) ( )

0
2 2

0 0

exp 2 12

exp 2

J

J
J

s ErIV
E dx dxS s E d

S x S x

π δ π

δ

π βπ
β

δ π β δ

−
=

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∫ ∫ ∫

. 

 

And the current simply writes: 0 BI sI V r I V r= − = − . 

 

This calculation by Ambegaokar and Halperin reproduces the Ivanchenko Zil’berman 

result in the tunnel limit. It doesn’t provide us with an analytical result but it applies to 

any potential ( )U δ . 

 

It appears that the shape of the supercurrent peak is only slightly dependent on the 

transmission of the channel, as shown on Figure 11. 
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Figure 11: Calculated supercurrent peaks for single channel contacts of various 
transmissions. The right panel is a zoom around the maximum of the peaks. 

 

The curves presented here have been in fact calculated using a code developed by A. L. 

Yeyati & R. Duprat (see section III. of [16]). 

 

Only for transmissions very close to unity, i.e. in the ballistic limit, the shape of the 

peak starts to depart from the Ivanchenko Zil’berman result for tunnel junctions (see 
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Figure 11). Therefore the shape of the supercurrent peak is not a good tool, having a 

large discriminating power, to extract the current phase relation of the weak link. In 

chapter 3 and specially chapter 4, we present other techniques to really measure the 

current-phase relation of an atomic contact. 

 

Anyhow, it is worth noticing here that the Ambegaokar Halperin calculation does not 

describe the reality correctly for highly transmitting channels. Indeed, this calculation 

assumes that the system stays in the lower Andreev bound state by taking the adiabatic 

current phase relation to be valid even at finite voltages. But at finite voltages, the phase 

acquires a dynamics which can induce Landau-Zener transitions to the upper Andreev 

level when the phase δ  is swept through δ π=  (see chapter 1). This happens only in 

highly transmitting channels, when the Andreev gap between the two levels is small 

enough for the Landau-Zener probability to be sizeable. Therefore, the measured IV  

characteristics at low voltage look very different from the IV  calculated within this 

simple adiabatic formalism because in highly transmitting channels, the current due to 

MAR processes start at voltages within the width of the supercurrent peak. In this 

voltage range, the supercurrent and MAR current interfere to build up the total current, 

as described in paragraph 2.3. 

Thermal fluctuations in the contact electrodes [17] also change the occupation numbers 

of the Andreev bound states. This effect, addressed in [18, 19] for contacts containing 

only ballistic channels is not included in our theoretical analysis. This simplification is 

justified for contacts with channels of not too high transmission, however the effect 

should become sizeable for high enough transmissions. 

 

 

2.3 From the supercurrent to MAR 
 

In chapter 1, we showed that Landau-Zener transitions between the two Andreev 

bound states were responsible for the MAR current at finite voltages. A. L. Yeyati [20] 

has extended Cuevas et al. [21] calculation, which corresponds to the perfect voltage 

bias case, to account for the electromagnetic environment of the contact. Within this 

new approach, both the supercurrent peak and the MAR current can be obtained at once 

for a Josephson weak link embedded in an ohmic environment (see Figure 12). In 
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particular, it can account for the IV  characteristic at small voltages, when both MAR 

current and supercurrent mix in highly transmitting channels. This calculation is based 

on a selfconsistent method and goes as follows for each value of the bias current BI : 

 

 

r

IB

V I

 

Figure 12: Atomic contact embedded in an ohmic environement r. 

 

1) A guess dc voltage V  is chosen. 

2) All the harmonics (sines and cosines components) of the current (see chapter 1) 

are calculated at the voltage V  using the MAR formalism for a perfect voltage 

bias [21]. They define an "effective", voltage dependent, current-phase relation. 

3) This effective current phase relation is plugged in the Smoluchovski equation (7) 

to take into account the effect of the fluctuations in the resistor. A new dc 

voltage V  is obtained from the resolution of the Smoluchovski equation, as well 

as the corresponding dc current BI I V r= − . 

4) Steps 2 and 3 are iterated until the value of the voltage V  has converged. 

Each point on the IV  curve is calculated in the same way by sweeping the bias current 

BI . The outcome of this selfconsistent calculation is presented on Figure 13. The MAR 

and supercurrent contributions don’t add up independently but rather interfere to build 

up the full IV  curve. 
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Figure 13: Comparison of the adiabatic calculation (Ambegaokar Halperin) with the 
self consistent approach for a channel of transmission 0.999. 

 

It is worth looking at the case of transmission very close to unity to clearly understand 

the effect of the Landau-Zener transitions on the magnitude of the supercurrent peak. 

Figure 14 shows the IV  curve calculated at finite temperature for a single channel of 

transmission 0.9999. 

0 2 4 6 8 10 12

0

5

10

15

20

25

30

Ambegaokar Halperin
result

 

 

I (
nA

)

V (µV)

∆ = 178 µeV
T = 200 mK
r = 40 Ω
τ = 0.9999

Selfconsistent
calculation

 

Figure 14: IV  curve at small voltages for an almost ballistic channel. The predictions 
of the adiabatic Ambegaokar Halperin calculation and of the selfconsistent calculation 
are displayed. 

 



 83

The IV  curves on Figure 14 clearly exhibit the fact that Landau-Zener transitions4 

enhance the magnitude of the supercurrent peak in almost ballistic channels. 

 

This statement can easily be understood by means of a handwaving argument. As the 

ballistic Andreev bound state always carry a positive current (see Figure 15), it is clear 

that thermal fluctuations of the phase will have a smaller effect on the maximum of the 

supercurrent peak than for contacts with transmission smaller than 1 where phase 

fluctuations can wash out completely the supercurrent. 

 

δ2ππ

( ) ( )0 0, 1I I Tδ τ→ = =

( )
( )0

, 1
0, 1

I
I T

δ τ
τ

−

=

1

1−

 

Figure 15: The current phase relations have been normalized by their respective zero 
temperature critical currents (see section 1). The ballistic bound state E→  always carry 
the positive current ( )I δ→ . Fluctuations of the phase have therefore a smaller impact 
than in a channel with a current phase relation with zero average.  

 

 

 

 

 

 

                                                 

4 We recall that the Landau-Zener probability is given by ( )exp 1LZP
eV

π τ∆⎡ ⎤= − −⎢ ⎥⎣ ⎦
. For 

channels with very high transmissions, the Landau-Zener probability becomes sizeable 

even for a slow velocity of the phase. At the maximum of the supercurrent peak of 

Figure 14, the voltage is 0.76 µVV = . Therefore the Landau Zener probability is 

0.93LZP ≈ . 
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2.4 Temperature dependence of the maximum of the supercurrent 

peak 
 

We have calculated the maximum of the supercurrent peak at different 

temperatures using the self consistent calculation developed by A. L. Yeyati and 

presented in section 2.3. The results are shown on Figure 16. 
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Figure 16: Calculated temperature dependence of the maximum of the supercurrent 
peak for channels of different transmissions. 

 

The effect of fluctuations on the maximum of the supercurrent peak in a ballistic (or 

almost ballistic) channel is smaller than on a channel with intermediate transmission. 

The fundamental reason is the fact that the ballistic current phase relationship has a non 

zero phase average. 
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3 Phase dynamics in a frequency dependent electromagnetic 

environment 
 

In section 2, the atomic contact was embedded in an purely ohmic environment. 

The resistor played two roles: first to voltage bias the contact at zero frequency, and 

provide damping for the high frequency phase fluctuations, so as to observe a well 

developed supercurrent peak. 

In practice, it is very hard to implement a purely ohmic environment. Indeed, the 

characteristic frequency of the oscillating Josephson currents is in the GHz frequency 

range. Therefore, the dissipative elements have to be small and they have to be 

fabricated on-chip, very close to the junction to avoid parasitic capacitances and 

inductances. However, some power is dissipated in the resistors and heats them up. It is 

thus necessary that the resistors have a large enough volume for the electrons to release 

their energy in the phonon bath. These conflicting requirements on the size of the 

resistors impose to find a compromise when designing the environment, as explained in 

detail in chapter 5. The best environment that we have designed to fulfill these 

requirements is sketched on Figure 17a. The basic idea is to split the resistance 

providing the dissipation in two parts: the dissipation for the dc voltage bias takes place 

in a macroscopic resistor R . The ac dissipation for the damping of the phase 

fluctuations is ensured by the on-chip resistors r , close to the junction. In chapter 5, we 

show that seen from the junction, the electric circuit of Figure 17a is very well 

approximated by the simpler electric circuit depicted on Figure 17b. The phase 

dynamics will therefore be studied in this simpler circuit. 
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Figure 17: a) Actual electromagnetic environment implemented in the experiments. The 
conductors between the two capacitors of each branch correspond to the metallic 
substrate which provides the ground potential. b) Simplified electromagnetic 
environment seen by the contact. 

 

 

The electrical equations (Kirchhoff law and second Josephson relation) of the circuit 

(see Figure 17) write: 

 

( ) ( )

( ) ( )( )0

R rC C
B n

r
C n

V dVI i t I C
R r dt
V r I i t

δ

ϕ δ δ

+⎧ = + + +⎪ +⎨
⎪ = − +⎩

 

 

where x
ni  ( ,x r R r= + ) is the current noise associated with each one of the resistor. This 

is Gaussian white noise characterized by ( ) 0x
ni t =  and ( ) ( ) 2' ( ')x x B

n n
k Ti t i t t t
x

δ= − . 

We assume here that the two resistors are thermalized at the same temperature T . This 

set of coupled differential equations can be solved by numerical integration. 

Nevertheless, it is by far more efficient to first derive a Fokker-Planck equation and 

proceed with the numerics afterwards. The Fokker-Planck equation establishes the time 

evolution for the probability density ( ), ,CW V tδ  of finding, at time t, a phase 
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difference in the interval [ ], dδ δ δ+  and a voltage across the capacitor in the interval 

[ ],C C CV V dV+ . 

 

R. Duprat & A. L. Yeyati derived the Fokker Planck equation associated with this set of 

coupled differential equations (Section V of [16]). The Fokker-Planck equation writes5: 

 

 

( ) ( ) ( )( )
( )

( )

0

2 2

2 22 2
0

B CC

C

B B

C

R r I I VV rIW W W
t V R r C

k T W rk T W
R r C V

δδ
δ ϕ

δϕ

⎡ ⎤+ − −−⎡ ⎤∂ ∂ ∂
= − − ⎢ ⎥⎢ ⎥∂ ∂ ∂ +⎢ ⎥⎣ ⎦ ⎣ ⎦

∂ ∂
+ +

+ ∂∂

 (8) 

 

The details of the resolution of equation (8) are presented in [16]. 

 

As shown on Figure 18, the effect of the capacitance is essentially to modify the width 

of the peak but not its amplitude. If the shunt capacitor is large enough, then the 

environment seen from the junction is essentially a single resistor r . Therefore the 

Fokker-Planck calculation reproduces the Ivanchenko Zil’berman result. But if the 

capacitors are smaller, then the frequency dependence of the environment comes into 

play and deviations from the Ivanchenko Zil’berman result can be observed on the 

IV ’s (see Figure 18). This theory allows also to treat weak links with several channels 

of arbitrary transmissions6. 

 

A simpler approach (single frequency model) has been investigated to describe the 

shape of the supercurrent peak of a Josephson weak link embedded in a non-ohmic 

environment. This approach is based on the crude approximation that at a given voltage 

V , only Josephson currents at the frequency 0J Vω ϕ=  oscillate in the weak link. 

Therefore, at each value of the dc voltage V  on the IV  characteristic, the dissipation 

R  of the purely ohmic case is replaced by ( )Re JZ ω⎡ ⎤⎣ ⎦  for a contact in an environment 

                                                 
5 Here, we have set the oscillating drive of [16] to zero. 
6 On Figure 18, the IV  curves have been calculated for a tunnel junction to allow 

comparison with the Ivanchenko Zil’berman result. 
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of impedance ( )Z ω . However, as seen in Figure 18, the predictions of this crude model 

are not in good agreement with the full calculation (see dotted line on Figure 18). 
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Figure 18: IV  characteristics of a tunnel junction embedded in a ( )( )//r r R C+ +  
environment for different values of the capacitor C  (The “+ ” symbolizes the series 
combination of two elements, whereas the “ // ” represents the parallel combination.). 
The dotted line is the prediction of the single frequency model for 10 pFC = . 

 

 

4 Observation of the supercurrent peak 
 

In this paragraph we present experimental results on the supercurrent peak of 

atomic contacts measured in two different biasing schemes: the atomic contact was 

either voltage biased or current biased. Goffmann et al. [3] already measured the 

supercurrent peak of a current biased contact. In their setup, it was only possible to 

measure the diffusion branch because the part of the supercurrent peak with negative 

slope was unstable. In our experiments, we go one step beyond by voltage biasing the 

contacts. This allows the measurement of the full supercurrent peak. A detailed analysis 

of the conditions for voltage biasing the contact and damping the fluctuations of the 

phase can be found in chapter 5. 
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We measured the supercurrent peaks of aluminum atomic contacts containing channels 

of different transmissions at various temperatures. Figure 19 shows a schematic 

representation of the setup. The detailed wiring can be found in chapter 5. 

A current source BI  shunted by a resistor 50R ≈ Ω  provides the atomic contact with a 

voltage bias. The four resistances 40r ≈ Ω  fabricated on chip, close to the junction 

provide the necessary dissipation at high frequency to damp the phase fluctuations. 

The current I  through the atomic contact is measured by monitoring the voltage drop 

across a resistor r . The voltage V  across the contact is directly measured. 

 

 

r r

r rC

C

C

C
R

IB

V
I

CHIP

Voltage
measurement

Current
measurement

 

Figure 19: Schematic representation of the experimental setup used for measuring the 
supercurrent peak. 

 

For each contact, the transmissions and the superconducting gap of the aluminum 

contact were fitted using the procedure described in chapter 5. The parameters of the 

electromagnetic environment have been measured independently (see Table 2 and 

Figure 19). 

The value of the capacitors ( 92 pFC = ) was deduced from the surface of the 

connecting pads and from the value of the polyimide dielectric constant and thickness. 

All these contacts were obtained on the same sample. The values of the resistors are 

slightly different for the different contacts because the experimental setup had to be 

warmed up at room temperature at some point between two runs. The values 
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{ }50.3 , 39.4R r= Ω = Ω  were the values before the warming up and the values 

{ }50.2 , 40.5R r= Ω = Ω  were the values after. 

 

 

Contact 
# 

Pin code Superconducting 
gap (µeV) 

Critical current 
(nA) 

R (Ω ) r (Ω ) 

1 {0.398, 0.215, 
0.067} 177.5 16.07 50.2 40.5 

2 {0.603, 0.110, 
0.061} 179.0 19.87 50.3 39.4 

3 {0.677, 0.391, 
0.201, 0.2, 0.2} 178.0 41.76 50.2 40.5 

4 {0.995, 0.372, 
0.174, 0.022} 179.3 49.89 50.3 39.4 

5 {0.389, 0.238, 
0.055} 178.2 16.18 50.2 40.5 

Table 2: Characteristics of the five contacts used in the experiments. All the contacts 
were obtained on the same sample. 

 

 

4.1 Contacts with not too high transmissions 
 

The supercurrent peaks of contacts #1 and #2 containing channels of 

intermediate transmissions have first been fitted with the Ivanchenko Zil’berman result 

for a Josephson tunnel junction of same critical current embedded in a resistive 

environment r . The only adjustable parameter was the temperature of the resistor r . 

The experimental data and the corresponding Ivanchenko Zil’berman fits are shown on 

Figure 20 and Figure 21. 

 

The theory describes the experimental results quite well, however, the width of the 

experimental supercurrent peak is slightly larger than predicted by the Ivanchenko 

Zil’berman result. This is an effect of the actual environment which is not a simple 

resistor but rather the ( )( )//r r R C+ +  combination7. The dynamics of the phase in this 

                                                 
7 The “+ ” symbolizes the series combination of two elements, whereas the “ // ” 

represents the parallel combination. 
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more complex environment can be accounted for by the theory presented in paragraph 

3. This calculation also includes the non tunnel nature of the Josephson weak link. The 

predictions of this full theory are compared to the experimental data on Figure 22 and 

Figure 23, in a smaller window centered on zero voltage to enhance the differences with 

the Ivanchenko Zil’berman fits of Figure 20 and Figure 21. Once again, the only 

adjustable parameter was the temperature T  of the two resistors r  and R . The width of 

the peak is better accounted for by including the effects of the non ohmic environment. 

The noise temperatures extracted from the full calculation are very close to the values 

obtained from the fits to the Ivanchenko Zil’berman predictions. 

 

Nevertheless, the effective noise temperatures are much higher than the fridge 

temperature at which the experiments were performed. We attribute this to spurious 

noise from the measurement and biasing lines, at intermediate frequencies, that we 

could not eliminate despite filtering. The effective noise temperatures found from the 

fits are summarized in Table 3. 

 

 

Contact # 
Mesoscopic pin code 

Effective noise temperature 
(Ivanchenko Zil’berman) 
(mK) 

Effective noise temperature 
(full calculation) (mK) 

#1 
{0.398, 0.215, 0.067} 162 155 

#2 
{0.603, 0.110, 0.061} 88 80 

Table 3: Summary of the fitted effective temperatures for the contacts 1 and 2. 

 

The description of the supercurrent peak of contacts #1 and #2 is rather straightforward. 

Indeed, the contribution of the supercurrent and of the MAR current don’t overlap since 

the transmissions of the contact are small. The onset of the MAR current occurs at 

voltages where the tail of the supercurrent peak doesn’t contribute any longer. The 

adiabatic theory presented in paragraph 3 is therefore sufficient to account for the 

results on these two contacts. This is not the case for contacts containing highly 

transmitting channels. 
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Figure 20: Supercurrent peak of contact #1. The solid line is the fit with the Ivanchenko 
Zil’berman result, 162 mKeffT = . The actual fridge temperature was 20 mK. 
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Figure 21: . Supercurrent peak of contact #2. The solid line is the fit with the 
Ivanchenko Zil’berman result, 88 mKeffT = . The actual fridge temperature was 20 mK. 
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Figure 22: Supercurrent peak of contact #1. The solid line is the prediction of the full 
calculation, 155 mKeffT = . Dashed line: fit with the Ivanchenko Zil’Berman result. The 
actual fridge temperature was 20 mK. 
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Figure 23: Supercurrent peak of contact #2. The solid line is the prediction of the full 
calculation, 80 mKeffT = . Dashed line: fit with the Ivanchenko Zil’Berman result. The 
actual fridge temperature was 20 mK. 
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4.2 From the supercurrent to MAR – contacts with well transmitting 

channels 
 

The MAR contribution to the dc current is not included in the adiabatic 

calculation of paragraph 3. 

 

In section 2.3, we presented a selfconsistent theory developed by A. L. Yeyati which 

treats the supercurrent and the MAR current on the same footing. Within this new 

approach, it is possible to calculate the full IV  curve of a contact containing several 

channels of arbitrary transmissions and embedded in an ohmic environment. 

In particular, the transition from essentially non dissipative transport (supercurrent) at 

small voltage to dissipative transport (MAR current) at finite voltage can be accounted 

for. This progressive transformation from the supercurrent into MAR current at higher 

voltages is shown on Figure 24 for contact #3 ( { }0.677, 0.391, 0.201, 0.2, 0.2τ = ). For 

this particular contact, the crossover occurs at a voltage around 50 µV. 
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Figure 24: contact #3 ( { }0.677, 0.391, 0.201, 0.2, 0.2τ = ). Smooth transition from the 
supercurrent around zero voltage to the MAR current at finite voltage. Comparison 
between the experiment (dots) and the selfconsistent calculation (solid line) of section 
2.3. The only adjustable parameter in the theory was the effective noise temperature of 
the resistor r: 125 mKeffT = . 
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In contacts containing highly transmitting channels, the MAR and supercurrent 

contributions don’t add up independently but rather interfere to build up the full IV  

curve at low voltages, as shown on Figure 25, on which the measured low voltage IV  

of contact #4 ( { }0.995, 0.372, 0.174, 0.022τ = ) and the predictions of the selfconsistent 

calculation are compared. 
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Figure 25: Supercurrent peak of contact #4 (containing a highly transmitting channel). 
Open circles are experimental data. The solid line is the prediction of the selfconsistent 
calculation. The MAR current (dashed line) starts to be sizeable at a voltage within the 
width of the supercurrent peak. The dotted line is the prediction, at 125 mK, of the 
adiabatic calculation for the supercurrent peak. 
 

 

The theory describes quite well the experimental results. We attribute the small 

discrepancy to the purely ohmic environment assumed for the calculation. The actual 

electromagnetic environment is not a simple resistor r  but, as already mentioned, rather 

the ( )( )//r r R C+ +  combination (see Table 2). 
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4.3 Temperature dependence of the maximum of the supercurrent 

peak 
 

Detailed temperature studies of the maximum of the supercurrent peak have 

been carried out on contact #4 ( { }0.995, 0.372, 0.174, 0.022τ = ) and on contact #5 

( { }0.389, 0.238, 0.055τ = ). We first present the results obtained for contact #5 on 

Figure 26 and Figure 27. Figure 26 presents several supercurrent peaks measured at 

different temperatures and the corresponding fits with the Ivanchenko Zil’berman result. 
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Figure 26: Supercurrent peaks of contact #5 and corresponding fits with the 
Ivanchenko Zil’berman result at different temperatures. The fridge temperature T  and 
the corresponding fit temperature effT  are indicated on the graph for each curve. 
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On Figure 27 we have plotted the maximum of the supercurrent peak (notation “ maxI ”) 

as a function of the fridge temperature in reduced units. At high enough temperatures, 

the experimental points are well described by the theory of paragraph 3. However at low 

temperatures, the current saturates at max 0 0.47I I = , which corresponds to an effective 

noise temperature 135 mKeffT ≈ . This is due to spurious noise incoming on the atomic 

contact. 
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Figure 27: Temperature dependence of the maximum of the supercurrent peak of 
contact #5. Closed circles are experimental data. The solid line is the prediction of the 
adiabatic theory of paragraph 3. 
 

 

Figure 28 shows the temperature dependence of the maximum of the supercurrent peak 

for contact #4 which contains a highly transmitting channel. 
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Figure 28: Temperature dependence of the maximum of the supercurrent peak of 
contact 4. Closed circles are experimental data. The open squares  are the prediction of 
the adiabatic theory of paragraph 3 (the line is just a guide for the eye). 
 

We don’t observe deviations from the adiabatic theory on the maximum of the 

supercurrent peak for contact 4. The Landau-Zener probability to jump from the lower 

to the upper level is still too small to play a role as described in paragraph 2.3. For this 

contact, we have indeed checked that the predictions of A. L. Yeyati’s selfconsistent 

theory for the temperature dependence of the maximum of the supercurrent peak 

(section 2.3) are indistinguishable from those of the adiabatic theory. 

 

 

4.4 Diffusion branch and switching 
 

The same temperature studies have been performed on current biased contacts. 

The experimental setup for the measurement of the switching current is similar to the 

setup for measuring the full supercurrent peak. The only difference is that the atomic 

contact is no longer shunted at dc by a resistor R . The contact is current biased by a 

voltage source BV  in series with a large bias resistor BR , as shown on Figure 29. The 

detailed wiring can be found in the appendix of this chapter. 
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Figure 29: Experimental setup for the current bias mode. 
 

 

In this setup, only the diffusion branch can be measured and not the full supercurrent 

peak. Indeed, when the current in the contact approaches the maximum of the 

supercurrent peak that would be measured in a voltage bias setup, then the system 

switches to the dissipative branch at larger voltages. We present a typical IV  

characteristic displaying switching on Figure 30. In the experiments, the maximum 

value of the current that the contact can sustain at zero voltage, called the switching 

current, was measured. A detailed analysis of the switching process can be found in R. 

Cron’s Ph.D. thesis [22] and in [23]. In the latter, P. Joyez et al. showed that for a 

contact embedded in the dissipative environment of Figure 29, the mean value of the 

switching current is very close to the maximum of the supercurrent peak that would be 

measured in a voltage bias setup. 
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Figure 30: Typical IV  characteristic of an atomic contact measured in a current bias 
setup. When increasing the bias current, a threshold value is reached: The system 
switches from the diffusion branch (inset) at very small voltages to a state with a 
voltage of the order of / e∆ . 

 

 

The measurement of the switching current SI  goes as follows (see Figure 31). A current 

ramp of both polarities is applied through the contact with a voltage source BV  in series 

with a large bias resistor BR . Two timers (Fluke PM6680B & Philips PM 6680) 

measure the elapsed time between the center of the ramp and the switching event 

characterized by the sudden onset of a voltage across the contact. Both polarities ( 0I >  

and 0I < ) were measured to compensate for offsets in the biasing line. The start signal 

is the TTL synchronization signal of the voltage source. The stop signal is the voltage 

across the contact after amplification. The wiring of the timers is schematically 

represented on Figure 31. The switching current is obtained from the two times 1
St  

( 0I > ) and 2
St  ( 0I < ) measured by the timers and from the slew rate 

( )1 B BR dV dtα =  of the current ramp as: ( )1 2 2S S SI t tα= + . About 104 switching 

events were recorded to have a good accuracy on the mean value of the switching 

current. Typical values for the ramp parameters were 2 kHz for the frequency and 
-17.7 mA.sα = . 
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Figure 31: Schematic representation of the setup for measuring the switching current. 
 

 

Experimental results obtained for the mean switching current are compared to the 

theoretical predictions, calculated with the Ambegaokar and Halperin method, for the 

maximum of the supercurrent peak at finite temperature. Figure 32 and Figure 33 show 

the temperature dependence of the mean switching current in two different contacts. 

The resistor r  (see Figure 29) has been calibrated independently and its value is 

indicated on each graph. 

 

Results on a contact containing channels with intermediate transmissions are presented 

on Figure 32. 
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Figure 32: Temperature dependence of the mean switching current SI  in a contact 
containing channels of intermediate transmissions. Closed circles are experimental 
data. The line is the theoretical prediction of Ambegaokar and Halperin adiabatic 
calculation. 
 

The theory describes the experiment quite well but for the lowest and highest 

temperatures. Figure 32 shows that the switching current saturates at the lowest 

temperatures, like the maximum of the supercurrent peak (section 4.3.) due, once again, 

to spurious noise incoming on the atomic contact. The experimental point at the highest 

temperature lies beneath the theoretical predictions because the reduction of the 

superconducting gap with temperature was not included in the theory. 

 

Figure 33 displays the results obtained on a contact containing a highly transmitting 

channel. With the set of transmissions we have measured for this contact, we show that 

the experimental data cannot be explained neither by the adiabatic theory nor by the 

selfconsistent calculation8. At high temperature, the experimental data lie indeed above 

the theoretical prediction. 

 

                                                 
8 For the set of transmissions that we have extracted from the IV  characteristic of the 

contact, we have checked that both theories give exactly the same result. 
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Figure 33: Temperature dependence of the switching current in a contact with a highly 
transmitting channel. The solid dots are experimental data. The open squares are the 
theoretical prediction of the Ambegaokar and Halperin adiabatic calculation. (The line 
is just a guide for the eyes.) 
 

 

It is worth recalling here that during R. Cron’s Ph.D. work [22] Goffman et al. [3] 

already observed that in contacts containing highly transmitting channels, the theory 

could not account for the excess switching current measured at high temperatures. At 

that time, this effect was already attributed to Landau-Zener transitions from the lower 

to the upper level. However, the Landau-Zener probability corresponding to the 

transmissions fitted from the IV ’s was found to be too small to account for these 

experimental results. Therefore, a full understanding of the temperature dependence of 

the switching current was lacking. 

Both in their and our experiments, we attribute the discrepancy with the theory to a 

wrong determination of the transmissions of the contact. For current biased contacts, the 

fit underestimates the actual value of the transmission of the almost ballistic channel. 

Indeed, as switching occurs for current biased contacts, the very low voltage part of the 

IV  characteristic is not amenable to measurement. And the crucial information on 

highly transmitting channels is concentrated in this region. It is the IV  at low voltages 
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that can make the difference between a 0.999 channel and a 0.9999 channel, the current 

at a large voltage being almost identical for these two transmissions. 

 

We now think that both Cron’s and our result could be explained within the self 

consistent theory of A. L. Yeyati by simply increasing the transmission of the most 

transmitting channel of the contacts. 
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5 Appendix 
 

The detailed wiring of the experiment on the measurement of the diffusion 

branch in current biased atomic contacts is presented on Figure 34. The details on the 

different lines, filters, amplifiers and voltage source can be found in the section 3 of 

chapter 5. 
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Figure 34: Detailed wiring of the experiment for measuring the diffusion branch of 
current biased atomic contacts. 
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1 Introduction 
 

When a constant voltage is applied across a superconducting weak link, the phase 

acquires a linear time dependence, which gives rise to oscillating Josephson currents in 

the structure. This is the ac Josephson effect. This chapter is devoted to the study of 

these alternating currents and their relation to the current phase relationship. 

 

In particular, this chapter will deal with the interplay of these alternating Josephson 

currents with an external microwave signal. This interplay gives rise to a twofold 

modification of the dc current flowing through the weak link: 

 

• Replica of the supercurrent peak will appear at well definite values of the dc voltage 

on the IV  characteristic. These replica are the so-called Shapiro resonances, which 

can be understood as beatings between the Josephson currents and the external 

microwave. 

 

• The MAR current on which the Shapiro resonances superimpose will itself be 

modified in presence of microwave. This modification of the MAR current is 

referred to as photon assisted multiple Andreev reflections (PAMAR) current. The 

fundamental processes responsible for this PAMAR current are the absorption and 

stimulated emission of one ore several microwave photons during the transfer of 

multiple electronic charges across the Josephson weak link. 

 

 

1.1 Shapiro resonances in the adiabatic limit 
 

This paragraph aims to give some insight and a qualitative understanding of 

Shapiro resonances. The current phase relation for a single channel contact of arbitrary 

transmission τ  at zero temperature is an odd function of the phase δ  which can be 

decomposed in a sine Fourier series: 
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( ) ( ) ( ) ( )sin

12

sin
, sin

2
1 sin

2

n
n

eI I n
τ δ

δ τ τ δ
δτ

+∞

−
=

∆
= =

⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑  

 

When applying a constant bias voltage V  across a Josephson weak link (Figure 1), the 

phase evolves linearly in time following the second Josephson relation, i.e. 

( ) 0 0t tδ δ ω= + , where 0 2eVω =  is the Josephson frequency. In the adiabatic 

approximation, we suppose that the system stays always in the ground Andreev level, 

i.e. the dynamics of the phase does not induce transitions to the excited level. 

 

By plugging the linear time dependence of the phase in the current phase relation, one 

obtains the time dependent Josephson currents (see equation (1)) which oscillate at all 

the harmonics of the Josephson frequency and which average out in time to zero. 

 

 ( ) ( )( )sin
0 0

1
, sinn

n
I V t I n tδ ω

+∞

=

= +∑  (1) 

 

( )I δ

VV
 

Figure 1: Atomic contact (double triangle symbol) with a perfect voltage bias V. 

 

In tunnel junctions, because the zero voltage current phase relation is purely sinusoidal, 

the ac currents flowing in the junction under constant voltage bias are also sinusoidal at 

the Josephson frequency 0 2eVω = . In weak links containing channels of arbitrary 

transmission, the current phase relation departs from the sine function. As a 

consequence, ac currents oscillate not only at the Josephson frequency but also at all its 

harmonics. The spectrum of the ac currents is therefore a fingerprint of the current 

phase relation of the Josephson weak link. The ac Josephson currents were first directly 
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observed by I. K. Yanson, V. M. Svistunov, and I. M. Dmitrenko [1], I. Giaever [2], and 

D. N. Langenberg et al. [3, 4]. These currents have frequencies lying in the microwave 

domain. Indeed, the Josephson frequency 0ν  corresponding to a bias voltage V  is 

0 2eV hν = . A voltage of ~ 2.07 µV corresponds to a Josephson frequency of ~ 1 GHz. 

 

In our experiments, the ac Josephson currents are not directly measured. They are 

revealed by applying an external microwave ( )cos rA tω  on the contact in addition to 

the dc voltage bias V . The voltage across the contact is then ( ) ( )cos rv t V A tω= +  (see 

Figure 2). 

( )cos rA tω

v

( )I δ

VV

 

Figure 2: Atomic contact (double triangle symbol) perfectly voltage biased by a dc 
source V  and a microwave source. 

 

In addition to its linear time dependence, the phase acquires an oscillating part: 

 

( ) ( )0
0

2 sin r
Vt t tδ δ α ω
ϕ

= + + , 

where 
r

eAα
ω

= ; and the current phase relation is no longer swept at a constant velocity: 

 ( ) ( )( )( )sin
0 0

1
, sin 2 sinn r

n
I V t I n t tδ ω α ω

+∞

=

= + +∑  (2) 

 

Depending on the initial phase difference 0δ , the time averaged current flowing in the 

junction can be either negative or positive, as shown on Figure 3. 

 



 112 

-10 -5 0 5 10

-1

0

1

 

 

I(t
) /

 I 0

ω
r
t

( ) 0I t ≠

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

τ = 0.995

 

 
I(δ

) /
 I 0

δ / (2π)

 

Figure 3: Shapiro resonances result from beatings between the external microwave and 
the oscillating Josephson currents. Illustration for the ½ Shapiro resonance on a 

0.995τ =  channel. The dc current depends on the initial phase 0δ . On the graph, we 

have taken 0.5α =  and the value of 0δ  which maximizes ( )I t . 

 

 

This extra dc current resulting from the beatings between the Josephson ac currents and 

the external microwave will appear on the IV  characteristic at well defined values of 

the voltage (see Figure 4). The condition for the beating to appear is: 

 

0 rq pω ω= , 

 

which expresses that the frequencies of the Josephson currents have to be 

commensurate with the external microwave frequency. The voltage values at which the 

resonances appear are then: 

2 r
pV
q e

ω= . 
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Figure 4: Integer Shapiro resonances 1, 2, 3p q =  and supercurrent peak 0p q =  in 
a tunnel junction ( 1α =  and rω = ∆ ). NG  is the normal state conductance of the 
tunnel junction. 

 

These resonances were first observed in 1963 on a Josephson tunnel junction by S. 

Shapiro [5]. They are historically called Shapiro steps because they were first observed 

in current biased junction. Their exact shape depends in fact on the biasing setup. 

In Josephson weak links with well transmitting channels, fractional Shapiro resonances 

( 1q > ) should appear in addition to the well known integer resonances of tunnel 

junctions. Fractional resonances are thus the signature of a non sinusoidal current phase 

relation. 

 

 

1.2 Effect of Landau-Zener transitions 
 

In the general case, the time dependence of the phase can’t just be taken into 

account within a simple adiabatic approximation like in equations (1) and (2). Indeed, 

the dynamics of the phase can induce Landau-Zener transitions [6] between the two 

Andreev bound states of the conduction channel. In this non-adiabatic situation, the 

total current can be decomposed in a Fourier series, as shown in chapter 1. At a voltage 

V  the current oscillates at all the harmonics of the Josephson frequency 0 2eVω = : 
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 ( ) ( ) ( )0 0, in t
n

n

I V t I V e δ ω
+∞

+

=−∞

= ∑  (3) 

 

This Fourier expansion can always be rewritten on the basis of sines and cosines, which, 

in the adiabatic limit, reduces to equation (1). We saw in chapter 1 that the sine 

components of equation (3) arise from the adiabatic evolution of the system on the 

lower Andreev level, whereas the cosine components originate in Landau-Zener 

transitions between the two levels and result in the MAR current at finite voltage. When 

a microwave is applied on the contact, the sine terms contribute only to the Shapiro 

resonances whereas the cosine terms are also responsible for the onset of the PAMAR 

current. The PAMAR current on which the Shapiro resonances superimpose can be seen 

as a modulation of the MAR current by the external microwave. 

 

Actually, the microwave itself modifies the dynamics of the phase in the general case 

and the formalism leading to equation (3) needs to be extended to account for an 

oscillatory part of the voltage bias. J. C. Cuevas et al. [7] have calculated the time 

dependent Josephson currents in a single channel of arbitrary transmission, perfectly 

voltage biased by a dc voltage source on which a microwave voltage is superimposed 

( ( ) ( )cos rv t V A tω= + ). They have calculated the IV  characteristics of single channel 

contacts of various transmissions and show the dependence of both Shapiro resonance 

amplitudes and PAMAR current on the microwave parameters. 

 

To conclude this section, it is worth defining the range of validity of the adiabatic 

approximation. To ensure the adiabatic approximation is valid, the Landau-Zener 

probability has to be small: 1LZP . In presence of microwave, the Landau-Zener 

probability writes: 

 

 
( )( ) ( )exp 1

cosLZ
r lc

P
e V A t

π τ
ω

⎡ ⎤∆
= − −⎢ ⎥

+⎢ ⎥⎣ ⎦
 (4) 
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where ( )( ) 0cos r lcV A tω ϕ+  is the instantaneous phase velocity at the level crossing. 

The time lct  is solution of the equation ( ) ( )0
0 0

sinlc lc r lc
r

V At t tδ π δ ω π
ϕ ϕ ω

= ⇔ + + = . 

The condition of small Landau-Zener probability simply rewrites: 

 

( )
1

e V A π
τ
+

< ∆
−

. 

 

For aluminum contacts ( 180 µeV∆ ≈ ), with an external microwave frequency 

10 GHzrν = , this condition holds up to the second Shapiro resonance provided 

( ) 2reA hα ν= <  and 0.78τ < . 

 

 

2 Shapiro resonances within the adiabatic approximation 
 

In this section, we calculate the amplitudes of the Shapiro resonances assuming 

that the system doesn’t experience any Landau-Zener transitions to the upper Andreev 

level, i.e. that the adiabatic approximation is valid. 

 

 

2.1 Perfect voltage bias 
 

We first consider the ideal case of a Josephson weak link under perfect voltage 

bias. This ideal limit is never achieved in reality because of the unavoidable fluctuations 

in the electric circuit in which it is embedded. However, this is a good starting point and 

the effect of fluctuations will be addressed later on. 

 

For a contact with a perfect voltage bias consisting of an oscillating part superimposed 

on a dc value: ( ) ( )cos rv t V A tω= + , the time evolution of the phase writes: 

 

( ) ( )0
0

2 sin r
Vt t tδ δ α ω
ϕ

= + + , 
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where 
r

eAα
ω

= . 

 

The ground Andreev state current-phase relation of a N-channel structure writes as: 

 

{ }( ) ( )
1

, ,
2

N

i
i

eI Iδ τ δ τ−
=

∆
= ∑ , 

 

{ }( ),I δ τ  is an odd and periodic function of the phase. It can be expanded in a Fourier 

series as: 

{ }( ) { }( ) ( )sin

1

, sinm
m

I I mδ τ τ δ
∞

=

=∑ , 

 

where { }( ) ( )sin sin

1

N

m m i
i

I Iτ τ
=

=∑ . 

 

The first Fourier coefficients ( )sin
mI τ  entering the sine expansion are plotted versus the 

transmission on Figure 5. 
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Figure 5: Fourier coefficients of the single channel current phase relation as a function 
of the channel transmission. 
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The adiabatic approximation means that one can directly plug the temporal evolution of 

the phase into the ground state current phase relation to obtain the time dependence of 

the Josephson currents: 

{ }( ) { }( ) ( )sin
0

1 0

, sin 2 sinm r
m

VI t I m t tτ τ δ α ω
ϕ

∞

=

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  

In terms of Bessel functions, this last expression can be expanded as: 

 
{ }( ) { }( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

sin
0

1 1

1

, sin 2 sin 2

1 sin 2

m r k
m k

k
r k

k

I t I m J m m k J m

m k J m

τ τ θ α θ θ α

θ θ α

≥ ≥

≥

⎧= + +⎨
⎩

⎫
+ − − ⎬

⎭

∑ ∑

∑
 (5) 

 

where ( ) 0
0

Vt tθ δ
ϕ

= +  and ( )r rt tθ ω= . 

 

Let’s now calculate the dc current across the junction by time averaging equation (5). 

The time average is different from zero only for the three following sets of values of the 

applied dc voltage V : 

 

0V = :   { }( ) { }( ) ( ) ( )sin
0 00

1
, 2 sinmV

m
I t I J m mτ τ α δ

=
≥

=∑  

0 r
kV
m
ϕ ω= :  { }( ) { }( ) ( )( ) ( )

0

sin
0

1

, 2 1 sin
r

n k
k n m n kV

nm

I t I J nm nm
ϕ ω

τ τ α δ×
× ×=

≥

= −∑  

0 r
kV
m
ϕ ω= − :  { }( ) { }( ) ( ) ( )

0

sin
0

1

, 2 sin
r

k n m n kV
nm

I t I J nm nm
ϕ ω

τ τ α δ× ×=−
≥

= ∑  

 

The first condition corresponds to the supercurrent whose amplitude is affected by the 

microwaves. The two other conditions define the positions of the Shapiro resonances. If 

the quantities 0mω  and rkω  are commensurate, then multiples of 0mω  will also be 

commensurate with the same multiples of rkω . An infinity of Josephson ac components 

thus contribute to the same resonance. In the expressions for the voltages at which the 

resonances appear, k m  must be irreducible fractions because the different 

contributions to a same beating are taken into account by the summation over the index 
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n . The amplitude k mS  of the Shapiro resonances are calculated by taking the maximum 

over the initial phase 0δ  of the three above expressions: 

 

 { }( ) { }( )
0

0, max ,k m V
S I t

δ
τ τ±

⎡ ⎤= ⎣ ⎦  (6) 

with 00, r
kV
m
ϕ ω= ±  

 

In practice, this maximization has to be performed numerically in the general case. 

Figure 6 shows the transmission dependence of the amplitudes of three Shapiro 

resonances in a single channel contact. Figure 7 shows the dependence of the 

amplitudes for a channel of transmission 0.8 as a function of the microwave parameter 

α . 

 

1E-3 0.01 0.1 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
k/

m
 / 

(G
N
∆

/e
)

1-τ

 

 

   k/m = 1
   k/m = 1/2
   k/m = 1/3

ballistic tunnel

 

Figure 6: Amplitude of the Shapiro resonances 1, 1 2, 1 3k m =  as a function of the 
channel transmission, calculated within the adiabatic approximation for 0.25α = . Note 
the horizontal axis: data are plotted as a function of the reflection coefficient ( )1 τ−  on 

a logarithmic scale to highlight the high transmissions. ( )22NG e h τ=  is the normal 
state conductance of the channel. 
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Figure 7: Amplitude of the supercurrent and Shapiro resonances 1, 1 2, 1 3k m =  for a 
single channel contact of transmission 0.8 as a function of the microwave parameter α , 
within the adiabatic approximation. 
 

 

In the tunnel case, 1iτ . Hence, sin
1 0mI I= =  (the critical current of the Josephson tunnel 

junction) and sin
1 0mI > = . Simplified expressions can be obtained for the amplitudes of the 

Shapiro resonances: 

 

 { }( ) ( )0 0 01 2S I Jτ α=  (7) 

 

 { }( ) ( )0 2 1
1

0 1
k

k m

I J m
S

m
α

τ±

=⎧⎪= ⎨
>⎪⎩

 (8) 
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In Josephson tunnel junctions, Shapiro resonances only occur at voltages corresponding 

to integer multiples of the Josephson frequency. They are the well-known integer 

Shapiro resonances. 

However, for junctions of arbitrary transmission, Shapiro resonances also appear on the 

IV  at fractional multiples of the Josephson voltage 0 rϕ ω . Fractional Shapiro 

resonances are the signature of a non sinusoidal current phase relation (see Figure 6 and 

Figure 7). On Figure 7 it is worth noticing that the α -dependence of the Shapiro 

resonance amplitudes deviates from the simple Bessel functions observed in the tunnel 

case (equations (7) and (8)). In particular, the minima of the arches don’t necessarily go 

to zero. 

 

 

2.2 Effect of the environment: imperfect voltage bias 
 

In reality, a Josephson weak link can never be perfectly voltage biased because 

the finite impedance of the biasing circuit imposes fluctuations. To observe well 

developed beatings, the weak link must therefore be embedded in a dissipative 

environment in order to damp the fluctuations of the phase. Otherwise, the supercurrrent 

is washed out. In this section, the effect of the fluctuations on the beatings is analyzed in 

detail. In particular, we show that in presence of an environment, a Shapiro resonance 

doesn’t appear as a singular vertical branch1 (resp. current step) on the IV  

characteristic, like in the perfectly voltage (resp. current) biased case, but it rather 

acquires a peaked shape with a finite width (see Figure 8). 

 

                                                 
1 Note the vertical current branches on Figure 4: the Josephson junction was assumed to 

be perfectly voltage biased. 
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Figure 8: Integer Shapiro resonances measured on a contact with mesoscopic pin code 
{ }0.573, 0.233, 0.037τ = . The resonances don’t appear as vertical branches on the IV  

characteristic. The imperfect voltage bias and the fluctuations in the electromagnetic 
environment lead to a peaked shape of the resonances. 

 

 

2.2.1 Shapiro resonances as replicas of the supercurrent peak: 

mapping approach 
 

Figure 9 shows the simplest realistic circuit in which a Josephson weak link can 

be integrated: The electromagnetic environment of the contact is a simple resistor r , 

inducing fluctuations of the dc voltage bias BV  because of the Johnson Nyquist noise 

represented by a voltage source ( )ne t . In this paragraph, we show that Shapiro 

resonances can be described as replicas of the supercurrent peak. 
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v

( )I δ
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Figure 9: Atomic contact (double triangle symbol) embedded in a resistive environment 
and biased by both a dc voltage BV  and an oscillating voltage of amplitude A and 
frequency ( )2r rν ω π= . ne  is the noise voltage source associated with the resistor r.  

 

 

Using the Kirchoff’s law and the second Josephson relation, the voltage across the weak 

link writes: 

 

 ( )( ) ( ) ( )0 cosn B rv rI t e t V A tϕ δ δ ω= = + + +  (9) 

 

The Johnson Nyquist voltage noise associated with the resistor r  is Gaussian white 

noise characterized by ( ) 0ne t =  and ( ) ( )' 2 ( ')n n Be t e t k Tr t tδ= −  according to the 

fluctuation-dissipation theorem. 

 

We want to describe the dynamics of the superconducting phase difference δ  in the 

vicinity of the p q  Shapiro resonance. Right at the center of this resonance, 

0B r
pV v V
q
ϕ ω= = =  because there is no net dc current flowing (see Figure 8). One 

can rewrite equation (9) to obtain the evolution of δ : 

( ) ( ) ( )
0

sinr r
r

p At t t t
q

δ ω ω γ
ω ϕ

= + + , 

where γ  represents the stochastic part of the time dependence of the superconducting 

phase difference around the p q  resonance. The time evolution of γ  is governed by the 

following equation: 

 ( ) ( )( )0 0B r n
pV e t rI t
q

ϕ γ ϕ ω δ
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

 (10) 
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It is possible to Fourier expand the current phase relation: 

( )( ) ( )( ) ( ) ( )sin sin

1 1
sin sin 2 sinm m r r

m m

pI t I m t I m t t t
q

δ δ ω α ω γ
∞

= ≥
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= = + +⎢ ⎥⎜ ⎟
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∑ ∑ , 
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r

eAα
ω

= . 

 

Leading to: 

( )( ) ( ) ( )

( ) ( )

sin

1

sin cos 2 sin

cos sin 2 sin

m r r
m

r r

pI t I m t t m t
q

pm t t m t
q

δ ω γ α ω

ω γ α ω

≥

⎧ ⎡ ⎤⎛ ⎞⎪= + ⎡ ⎤⎨ ⎢ ⎥⎜ ⎟ ⎣ ⎦
⎝ ⎠⎪ ⎣ ⎦⎩

⎫⎡ ⎤⎛ ⎞ ⎪+ + ⎡ ⎤⎬⎢ ⎥⎜ ⎟ ⎣ ⎦
⎝ ⎠ ⎪⎣ ⎦ ⎭

∑
 

 

And finally: 

 

 
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

sin
0 2

1 1

2 1
0

sin 2 2 2 cos 2

cos 2 2 sin 2 1

m r k r
m k
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k

pI t I m t t J m J m k t
q
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q

δ ω γ α α ω

ω γ α ω

≥ ≥

+
≥
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⎡ ⎤ ⎫⎛ ⎞ ⎡ ⎤
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∑ ∑

∑

 (11) 

 

 

We are interested in the dynamics of γ , which is slow compared to the frequency of the 

microwave drive rω . We can therefore approximate ( )( )I tδ  by replacing the 

oscillatory terms by their time average in equation (11). This leads to: 

 
( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )

sin
2

1 1

sin
2 1

1 0

2 sin 2 cos cos 2

2 sin 2 sin sin 2 1

m k r r
m k

m k r r
m k

pI t I m t J m m t k t
q

pI m t J m m t k t
q

δ γ α ω ω

γ α ω ω

≥ ≥

+
≥ ≥

⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

 (12) 

 

Let us concentrate on the first term of equation (12): 
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( )
1 2
2cos cos 2
0 otherwise

r r

pm kp qm t k t
q
ω ω

⎧ =⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪⎩

 

The non zero contributions to the first term arise for ,m lq l ∗= ∈ . Then 2k lp= . 

If p  is even then l  can be either odd or even and the first term writes: 

( ) ( )( )sin

1
2 sinlq lp

l
I J lq lq tα γ

≥
∑  

If p  is odd then l  has to be even and the first term writes: 

( ) ( ) ( )( ) ( ) ( )( )sin
2 2

1
2 2 sin 2l q l p

l
I J l q l q tα γ

≥
∑  

 

A similar analysis is carried out for the second term of equation (12): 

( )( )
1 2 1
2sin sin 2 1
0 otherwise

r r

pm kp qm t k t
q
ω ω

⎧ = +⎛ ⎞ ⎪+ = ⎨⎜ ⎟
⎝ ⎠ ⎪⎩

 

The non zero contributions to the second term arise for ,m lq l ∗= ∈ . Then 2 1k lp+ = . 

If p  is even, there is no solution for l  and the second term is zero. 

If p  is odd then l  has to be odd and the second term writes: 

( ) ( ) ( )( ) ( ) ( )( )sin
2 1 2 1

0
2 2 1 sin 2 1l q l p

l
I J l q l q tα γ+ +

≥

+ +∑  

 

In all cases, we find the following approximated expression for the current: 

 

 ( )( ) ( ) ( ) ( )( )sin

1
1 2 sinlp

lq lp
l

I t I J lq lq tδ α γ
≥

≈ −∑  (13) 

 

We then define a new phase ( ) ( )t q tθ γ= . One can then combine equations (10) and 

(13) to obtain the time evolution of ( )tθ : 

 

 ( ) ( ) ( ) ( ) ( )( )sin
0 0

1

1 2 sinlp
B r n lq lp

l

pt q V qe t r q I J lq l t
q

ϕ θ ϕ ω α θ
≥

⎛ ⎞
= − + + × −⎜ ⎟

⎝ ⎠
∑ (14) 
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This dynamics of ( )tθ  around the p q  peak is thus described by a Langevin equation, 

similar to the one that describes the dynamics of δ  giving rise to the supercurrent peak 

in absence of microwaves. The IV  characteristic around the p q  Shapiro resonance is 

obtained by calculating the time average of ( )( )I tδ , i.e. 

( ) ( ) ( )( )sin

1
1 2 sinlp

lq lp
l

I J lq lq tα γ
≥

−∑  as a function of BV . For this purpose, one has to 

solve the Langevin equation (14) using the Ambegaokar Halperin method described in 

chapter 2. 

 

However, a simple result describing the p q  resonance as a replica of the supercurrent 

peak with effective parameters can be established if one keeps only the 1l =  term in 

equation (13). In this case, equation (14) rewrites: 

 

 ( ) ( ) ( ) ( ) ( )( )sin
0 0 1 2 sinp

B r n q p
pt q V qe t r q I J q t
q

ϕ θ ϕ ω α θ
⎛ ⎞

= − + + × −⎜ ⎟
⎝ ⎠

 (15) 

 

This equation is equivalent to the equation obtained in chapter 2 for the calculation of 

the supercurrent peak. It only differs by a scaling and an offset of the parameters. Let us 

briefly recall the Ivanchenko Zil’Berman result for the supercurrent peak. In the 

overdamped limit and in absence of microwaves, the Langevin equation governing the 

phase dynamics in a Josephson tunnel junction writes (see chapter 2 and Figure 10): 

 

 ( ) ( )0
0 sinn Bi t I I

r
ϕ δ δ+ + =  (16) 

 

Where ( )ni t  is the Johnson-Nyquist current noise associated to the resistor r . 
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Figure 10: Electromagnetic environment of the tunnel junction (cross symbol) in the 
Ivanchenko Zil’berman calculation for the supercurrent peak. 

 

Ivanchenko & Zil’Berman calculated the time average of ( )I δ  as a function of BI : 

( ) ( ) ( ) 0 0
0 0

0

sin ,B
B B IZ

B

III I I I I f
I k T

ϕδ
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

, 

where ( ) ( )
( )

1, Im ixy
IZ

ixy

I y
f x y

I y
−

−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
. 

Equation (16) can be rewritten in the Thevenin representation, using voltage sources 

instead of current sources (Norton representation): 

 ( ) ( )0 0 sinn Be t rI Vϕ δ δ+ + =  (17) 

with B BV rI= , and ( ) ( )n ne t ri t=  the voltage noise of the resistor. In Thevenin’s 

representation, the Ivanchenko Zil’Berman result rewrites: 

( ) ( ) ( ) 0 0
0 0

0

sin ,B
B B IZ

B

IVI V I V I f
rI k T

ϕδ
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

. 

The analogy between equations (15) and (17) leads to an expression for the dc current 

around the p q  peak: 

( ) 0 0
0

0

,
effeff

eff B
B IZ eff eff

B

IVI V I f
rI k T

ϕ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

with effective parameters: 

( )sin
0

0

2eff
q p

eff

eff
B B r

I I J q

T qT
pV V
q

α

ϕ ω

⎧
=⎪

⎪⎪ =⎨
⎪
⎪ = −
⎪⎩
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Shapiro resonances are thus replica of the supercurrent peak with effective parameters. 

The striking result is that the effective noise temperature for a p q  resonance is qT . 

This explains why fractional Shapiro resonances ( 1q > ) are really hard to observe 

experimentally: they are washed out by the fluctuations of the phase [8, 9]. 

 

Within this mapping approach, it is possible to calculate the IV  characteristic of the 

Josephson weak link around each Shapiro resonance. 

In the next section, a rigorous treatment of the phase dynamics is briefly presented. 

Within this formalism, it is possible to calculate the full IV  in presence of microwave. 

Figure 12 compares the predictions of the mapping approach with the rigorous Fokker-

Planck calculation for the first Shapiro resonance of a single channel ( 0.5τ = ). Around 

the resonance, both approaches give the same result. 

 

 

2.2.2 Rigorous treatment for the ohmic environment: Fokker-Planck 

equation in presence of microwaves 
 

Let’s now consider the same circuit than in the previous section but in the 

Norton representation. This circuit is sketched on Figure 11. 

 

 

niBI( )cos rB tω

v ( )I δ

r
 

Figure 11: Atomic contact embedded in a dissipative environment. This representation 
is the Norton equivalent of the circuit of Figure 9 with B A r= , B BI V r=  and 

n ni e r= . 

 

The electrical equations (Khirchoff’s law and second Josephson relation) of the circuit 

write: 
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( ) ( ) ( )

0

cosB r n
vI B t i t I
r

v

ω δ

ϕ δ

⎧ + = + +⎪
⎨
⎪ =⎩

 

 

giving rise to the following Langevin equation for the superconducting phase difference 

across the Josephson weak link: 

 

 ( ) ( ) ( )0 cosB r nI B t i t I
r
ϕ δ ω δ= + − −  (18) 

 

In chapter 2, we presented two methods to calculate the supercurrent peak of a 

Josephson weak link in absence of microwave starting from equation (18) with 0B =  

and deriving from it a Smoluchowski equation. We recall here that a Smoluchowski 

equation is a specific form of Fokker-Planck equation (see chapter 2 and [10]). The first 

method, by Ivanchenko and Zil’berman provides us with an analytic result but only 

applies for a sinusoidal current phase relation ( )I δ . The second one, by Ambegaokar 

and Halperin can deal with any kind of current phase relation. R. Duprat and A. L. 

Yeyati have extended those two calculations to include a microwave drive ( )cos rB tω , 

as in the Langevin equation (18). Their work is consistent with the results obtained 

earlier by D. Averin and A. Bardas [11] for a ballistic channel at zero temperature. R. 

Duprat and A. L. Yeyati first derive a Smoluchowski equation from the Langevin 

equation (18) and then calculate the mean current I  and mean voltage V  in terms of a 

matrix continued fraction (see sections II and III of [9]). A typical IV  characteristic 

obtained within this approach is presented on Figure 12a. 
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Figure 12: Calculated IV  characteristic of a single channel contact ( 0.5τ = ) in 
presence of microwave ( 10 GHzrν = , 0.484α = ). a): large scale IV  calculated within 
the Fokker-Planck approach. The Shapiro resonances 1 and 2 are visible. b): Zoom on 
the first Shapiro resonance to compare the predictions of the mapping approach (solid 
line) with the predictions of the Fokker-Planck calculation (open dots). ( )0 2h eφ =  is 
the flux quantum. 

 

 

On Figure 12b, the predictions of the Fokker-Planck calculation are compared with the 

result of the mapping approach for the first Shapiro resonance: both approaches give the 

same result. 

 

 

3 Ac currents for a non adiabatic evolution of the phase 
 

Equation (4) gives the Landau-Zener probability of ending on the upper Andreev 

bound state when starting on the lower one and crossing δ π= . Once this probability 

starts to be sizeable, the adiabatic approximation breaks down. It is no longer true to 

consider that the system always follows the lower Andreev level when the phase 

evolves in time. 

 

The aim of this section is to understand the modification of the Shapiro resonances and 

the onset of the PAMAR current when Landau-Zener transitions are taken into account. 
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3.1 Perfect voltage bias 
 

As in section 2 for the adiabatic evolution of the phase, we start for simplicity by 

the ideal case of a perfectly voltage biased Josephson weak link with no fluctuations. 

 

 

3.1.1 Empiric calculation for the Shapiro resonances 
 

The aim of this section is to find an expression for the amplitude of the Shapiro 

resonances that takes into account transitions to the upper Andreev level. The way we 

proceed here is really similar to the strategy developed in chapter 1, where the MAR 

current was explained in terms of Landau-Zener transitions between the stationary 

Andreev levels. 

 

Following the procedure of chapter 1, it is possible to write an empiric expression for 

the Josephson currents flowing in the contact: 

 

 { }( ) ( ) ( )( ){ ( ) ( )( )}
1

, 1 ,
N

LZ i LZ i i
i

I t P I t P I tτ τ δ τ δ τ→ −
=

≈ + −⎡ ⎤⎣ ⎦∑  (19) 

 

with ( ) ( )0
0 0

sin r
r

V At t tδ δ ω
ϕ ϕ ω

= + + , and ( )LZ iP τ  is given by equation (4). 

Equation (19) states that the total current is the average of two terms: the current carried 

by the lower Andreev level E− , with weight 1 LZP− ; and the current carried by the 

ballistic level E→ , with weight LZP . When the quantity in the exponential of equation 

(4) for the Landau-Zener probability goes below 1, the Landau-Zener probability 

becomes sizeable and transitions occur when the phase is swept through δ π= . 

Therefore, the contribution to the total current from the ballistic Andreev level 

increases. 

 

The total dc current at the voltage V  is then: 
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{ }( ) ( ) ( ) ( ) ( ){ }
1

, 1 ,
N

LZ i LZ i iV VV
i

I t P I t P I tτ τ τ τ→ −
=

≈ + −⎡ ⎤⎣ ⎦∑ . 

 

The quantity ( ),
V

I t τ−  has been calculated in section 2.1. We now turn to the 

calculation of ( )
V

I t→ . 

The current phase relation ( ) 2 sin
2 2
eI δδ→
∆ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, which is a periodic even function, 

can be expanded into a cosine Fourier series as: 

( ) ( )cos

0

cosm
m

I I mδ δ
∞

→
=

= ∑ , 

with 

( )

cos

2

4 0
2

8 0
21 4

m

e m
I e m

m

π

π

∆⎧ =⎪⎪= ⎨ ∆
⎪ >

−⎪⎩

 

 

 

Figure 13 displays the amplitude of these Fourier coefficients. 
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( ) ( )cos

0
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m

I I mδ δ
∞

→
=

= ∑

m
 

Figure 13: Fourier coefficients of the ballistic current phase relation. 
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The calculation of the Shapiro resonance amplitudes is performed in the same manner 

as for the sine Fourier decomposition. There is a noticeable fact to remark which is the 

existence of a dc background current cos
0

4
2m
eI

π=
∆

=  on which the resonances will 

superimpose. The positions and amplitudes of the resonances for a 1τ =  ballistic 

channel are given below: 

 

0V = :   ( ) ( ) ( )cos
0 00

1

2 cosmV
m

I t I J m mα δ→ =
≥

= ∑  

0 r
kV
m
ϕ ω= :  ( ) ( ) ( ) ( )cos

0
1

2 1 cosn k
n m n kV k m

n

I t I J nm nmα δ×
→ × ×=

≥

= −∑  

0 r
kV
m
ϕ ω= − :  ( ) ( ) ( )cos

0
1

2 cosn m n kV k m
n

I t I J nm nmα δ→ × ×=−
≥

= ∑  

 

The amplitude of the supercurrent and of the Shapiro resonances in a N-channel contact 

in presence of microwaves thus writes: 

 

 { }( ) ( ) ( ) ( ) ( ){ }
0

0,
1

max 1 ,
N

k m LZ i LZ i iV V
i

S P I t P I t
δ

τ τ τ τ± → −
=

⎧ ⎫= + −⎡ ⎤⎨ ⎬⎣ ⎦
⎩ ⎭
∑  (20) 

 

with 00, r
kV
m
ϕ ω= ± . 

 

In the following, we restrict the model to the case A V  (see equation (4)). This means 

that transitions to the upper state due to the oscillatory dynamics of the phase are not 

accounted for in this model. Within this restriction, the Landau-Zener probability at the 

k m  resonance writes: 

 

 ( ) ( )
0

exp 1LZ
r

mP
k e

τ π τ
ϕ ω

⎡ ⎤∆
= − −⎢ ⎥

⎣ ⎦
 (21) 

 

Figure 14 shows the predictions of this empiric calculation for the microwave power 

dependence of the Shapiro resonances, and a comparison with the adiabatic 

approximation. 
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Figure 14: Microwave power dependence of the Shapiro resonance amplitudes in a 
single channel contact of transmission 0.995. Comparison between the adiabatic 
approximation (dotted line) and the empiric calculation (solid line) for a microwave 
frequency 0.5r hν = ∆ . 
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The empiric calculation predicts smaller Shapiro resonances than the adiabatic 

approximation. This striking feature can be better understood by looking at Figure 16 

and Figure 17, where the predictions of the two approaches for the transmission 

dependence of the resonance amplitudes are plotted, and can be explained by means of 

qualitative arguments as follows: 

The amplitude of Shapiro resonances increases with the anharmonicity of the ac 

Josephson currents. The comparison of Figure 5 and Figure 13 shows that the Fourier 

weights of the current phase relation are smaller for a ballistic channel than for a 

channel with 1τ −= . In the adiabatic approximation, this implies that the ac Josephson 

currents are more anharmonic in a channel with 1τ −=  than in a ballistic channel and 

thus that the amplitudes of the resonances reach their maxima for 1τ −=  (see Figure 16 

and Figure 17). However, in reality, Landau-Zener transitions become frequent when 

the transmission of the channel approaches one. Therefore, for a transmission close to 

unity, the system follows almost always the ballistic Andreev level with the 

consequence that the Josephson currents “lose” some of their anharmonicity. The 

transmission τ ∗  maximizing the anharmonicity of the Josephson currents is not 1τ ∗ −=  

as predicted by the adiabatic approximation, but verifies 1τ ∗ <  in reality, as observed 

on Figure 16 and Figure 17. The results of Figure 14 are simply explained by these 

hand-waving arguments saying that for the parameters of the graphs, the transmission 

0.995τ τ ∗= > . 

 

The threshold τ ∗  is smaller on Figure 17 ( 0.5 /r hν = ∆ ) than on Figure 16 

( 0.1 /r hν = ∆ ). Indeed, the condition for the Landau-Zener probability given by 

equation (21) to remain small is: 

 ( ) 11
2r

m
k h

τ
ν π
∆

− >  (22) 

 

Therefore, the higher the frequency, the smaller the transmission should be. For high 

frequencies, the Shapiro resonances appear at larger voltages on the IV  characteristics, 

corresponding to a faster linear drift of the phase and a larger Landau-Zener probability. 
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For aluminum contacts ( 180 µeV∆ ≈ ), with an external microwave frequency 

10 GHzrν = , the condition of equation (22) holds up to the second Shapiro resonance 

( 2k m = ) provided 0.92τ < . 

 

 

3.1.2 Full microscopic calculation 
 

The empiric calculation of the last paragraph provides us with some insight on 

the effect of Landau-Zener transitions. 

 

As already mentioned in section 1.2, J. C. Cuevas et al. [7] calculated the time 

dependence of the Josephson currents in a single channel of arbitrary transmission 

under a perfect voltage bias ( ) ( )cos rv t V A tω= + . Their method is based on a tight-

binding like Hamiltonian [12] that describes the charge transfer between the two 

superconducting electrodes. To calculate the current, they use out of equilibrium Green 

function techniques within the Keldysh formalism. They show that the current writes: 

 

 ( ) ( ) ( )0 0

,

, , , , , ri n t m tm
r n r

n m

I V A t I V A e δ ω ωω ω + +⎡ ⎤⎣ ⎦= ∑  (23) 

 

with 0 2 /eVω =  the Josephson frequency. 

 

The dc component can be explicited as: 

 

background ShapiroI I I= + , 

with: 

 0
background 0I I=  (24) 

 

and: 

 ( ) 0
Shapiro 0

,
, , inm

n r r
n m

mI I V A e V
n

δω δ ϕ ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  (25) 
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where 
0

0

0

0

1

r

r

r

mV
m nV

mn V
n

ϕ ω
δ ϕ ω

ϕ ω

⎧ ≠⎪⎪⎛ ⎞− = ⎨⎜ ⎟
⎝ ⎠ ⎪ =

⎪⎩

 

 

This explicit decomposition of the current through the Josephson weak link into two 

parts is specific to the perfectly voltage biased case. In this ideal case, Shapiro 

resonances appear on the IV  characteristic as discontinuities of the current (see Figure 

15), at well defined value of the voltage. However, in practice, Shapiro resonances 

acquire a finite width because of the unavoidable fluctuations of the bias voltage. It is 

therefore no longer possible to split the contributions of the background and Shapiro 

currents. 

 

The dc component in equation (23) is plotted on Figure 15. The Shapiro resonances 

superimpose on a background current, which is due to photon assisted multiple Andreev 

reflections (PAMAR). For comparison, the MAR current in absence of microwave is 

also shown. The background current in presence of microwaves will be thoroughly 

studied in section 5. 
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Figure 15: dc IV  characteristic of a single channel contact ( 0.8τ = ). The dashed line 
is the IV  without microwave ( ( )/ 0reA hα ν= = ). The solid line is the IV  with 1α = . 

( )22NG e h τ=  is the normal state conductance of the contact (reproduced from [7]). 
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Figure 16 and Figure 17 show the transmission dependence of the Shapiro resonance 

amplitudes predicted for a single channel contact by this theory. Comparisons with the 

adiabatic approximation and the empiric calculation are also displayed. 

• The three calculations predict the same amplitudes for low enough transmission 

because in this case, the system always follows adiabatically the lower Andreev 

level. 

• At high enough transmissions, the empiric calculation and the full calculation 

predict the same result because the system experiences almost always Landau-Zener 

transitions and thus follows the ballistic level. 

• For intermediate transmissions, the difference in the predictions of the full and 

empiric calculations can be interpreted as follows: 

At small enough microwave power (Figure 16: 0.1 /r hν = ∆  and 0.25α = ), the 

Landau-Zener transitions are dominated by the linear drift of the phase and not by 

its oscillatory dynamics, therefore the empiric calculation, which does not take into 

account the oscillatory dynamics in the Landau-Zener probability and the full 

calculation predict almost the same results. 

At larger microwave power (Figure 17: 0.5 /r hν = ∆  and 0.25α = ), the transitions 

due to the oscillatory dynamics of the phase become important, resulting in an 

enhanced anharmonicity of the Josephson currents. This explains that the full 

calculation predicts larger fractional Shapiro resonances than the empiric 

calculation. 

 

Figure 18 shows the microwave power dependence of the Shapiro resonance amplitudes 

for a single channel contact of transmission 0.8τ = . Comparisons with the adiabatic 

approximation and with the empiric calculation are displayed. For the parameters 

chosen, the empiric calculation and the adiabatic approximation predict the same 

results. This indicates that the linear drift of the phase doesn’t induce Landau-Zener 

transitions for the chosen set of parameters. At low enough microwave power, the full 

calculation predicts the same results as the two other calculations. However, above a 

certain microwave power, it predicts enhanced amplitudes for the fractional Shapiro 

resonances, as a consequence of Landau-Zener transitions due to the oscillatory 

dynamics of the phase. This is coherent with the previous discussion on Figure 16 and 

Figure 17. 
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Figure 16: Amplitude of the Shapiro resonances 1, 1 2, 1 3k m =  for 0.25α = . Note 
the horizontal axis: data are plotted as a function of the reflection coefficient ( )1 τ−  on 
a logarithmic scale to highlight the high transmissions. The dotted lines are the 
predictions of the adiabatic approximation. The dashed (resp. solid) lines are the 
predictions of the empiric (resp. full microscopic) calculation for a microwave 
frequency 0.1r hν = ∆ . 
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Figure 17: Amplitude of the Shapiro resonances 1, 1 2, 1 3k m =  for 0.25α = . Note 
the horizontal axis: data are plotted as a function of the reflection coefficient ( )1 τ−  on 
a logarithmic scale to highlight the high transmissions. The dotted lines are the 
predictions of the adiabatic approximation. The dashed (resp. solid) lines are the 
predictions of the empiric (resp. full microscopic) calculation for a microwave 
frequency 0.5r hν = ∆ . 
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Figure 18: Amplitude of the Shapiro resonances 1, 1 2, 1 3k m =  as a function of α  
for a single channel contact of transmission 0.8τ = . The dotted lines are the 
predictions of the adiabatic approximation and of the empiric calculation for a 
microwave frequency 0.5r hν = ∆ . For this set of parameters, both calculations give 
the same results. The solid lines are the predictions of the full microscopic calculation 
at the same frequency. 
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3.2 Effect of the environment on the Shapiro resonances: imperfect 

voltage bias 
 

So far, the non adiabatic evolution of the phase has been treated in an ideal case, 

which is the perfect voltage bias. This can never be achieved in practice since the 

voltage always experiences fluctuations. In this section, we present an empirical 

approach aiming to describe the shape of the Shapiro resonances in Josephson weak 

links embedded in a resistive environment including the possibility for a non adiabatic 

evolution of the phase. 

 

This approach is based on the mapping approach developed in paragraph 2.2.1, where a 

Shapiro resonance p q  is described as a replica of the supercurrent peak with effective 

parameters: 

( )0

0

2eff
q p

eff

eff
B B r

I I J q

T qT
pV V
q

α

ϕ ω

⎧
=⎪

⎪⎪ =⎨
⎪
⎪ = −
⎪⎩

 

 

The effective critical current 0
effI  appearing in the mapping approach is nothing but the 

maximum amplitude p qS  of the Shapiro resonance p q  calculated for a perfectly 

voltage biased contact. The effects of the fluctuations are accounted by mapping the 

dynamics of the phase around a Shapiro resonance to the dynamics of the phase around 

zero voltage in absence of microwaves. 

 

( )2q pI J qα  is the value of p qS  predicted by the adiabatic calculation. To account for 

the non adiabatic dynamics of the phase, we propose to take for p qS  the value 

calculated within the microscopic calculation of J. C. Cuevas et al. [7]. According to 

equation (25), p qS  writes in this case: 

 

 0

0
0

1
max , , ilqlp

p q lq r r
l

pS I A e
q

δ

δ
ϕ ω ω

≥

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  (26) 
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Another possibility for p qS  is the value obtained in the empiric calculation (equation 

(20)). 

 

 

4 Experimental results on Shapiro resonances 
 

In this section, we first describe the experimental setups that we have engineered 

to measure the Shapiro resonances. Then we present results on contacts with not too 

highly transmitting channels. These results can therefore be interpreted by the adiabatic 

theory developed in section 2. Finally, we present results on contacts containing an 

almost ballistic channel, where the results are interpreted with the theory of section 3, 

which takes into account the Landau-Zener transitions induced by the phase dynamics. 

 

 

4.1 The two experimental setups 
 

Like for the supercurrent peak, measuring Shapiro resonances requires to voltage 

bias the atomic contact. In a current bias setup, switching would occur each time the 

current would reach the maximum of a resonance and the resonances of smaller 

amplitude could be missed. For details on how to voltage bias an atomic contact, the 

reader is referred to chapter 5. 

In the experiments we have used two different setups which essentially differ by the 

way the current in the contact is measured. In both setups, the break junction is placed 

in series with a microfabricated resistor. 

The first technique to measure the current through the contact is to divert part of it by 

using the microfabricated resistor as a pick-up resistor, and feeding it into the input coil 

of a SQUID amplifier [13, 14, 15] (see Figure 19). 

The second technique is to measure the voltage drop across this microfabricated resistor 

using high input impedance Field Effect Transistor (FET) amplifiers (see Figure 20). 
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4.1.1 SQUID setup 
 

In our setup, the resistance in series with the contact must be small to allow for 

voltage biasing the contact (see chapter 5). It is therefore advantageous to use a SQUID 

amplifier because such amplifiers have a low noise level when measuring signals 

arising from low impedance sources. 
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Figure 19: Experimental setup used for the measurement of Shapiro resonances using a 
SQUID as an ammeter. 

 

In this setup, two quantities are measured: the voltage SV  across the bias resistor R , 

and the current diverted into the input coil of the SQUID amplifier, input coilI  (see chapter 

5 for details on the SQUID amplifier). The voltage V  across the junction and the 

current I  through the junction are calculated by: 

3

2

2 3

2 3

1 input coil

S

rI I
r

r rV V r I
r r

⎧ ⎛ ⎞
= +⎪ ⎜ ⎟
⎝ ⎠⎪

⎨
⎛ ⎞⎪ = − +⎜ ⎟⎪ +⎝ ⎠⎩

 

 

where 3r  is the dc resistance of the lossy twisted pair going from the chip to the SQUID 

amplifier. At low temperatures, the measured values of the various resistors are: 
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25.3 0.05R = ± Ω , 7.4 0.05r = ± Ω , 2 6.2 0.05r = ± Ω , 3 12.8 0.05r = ± Ω . The 

detailed wiring of the experiment is presented in chapter 5. 

 

 

4.1.2 Field Effect Transistor (FET) amplifier setup 
 

Even though FET amplifiers are not well adapted to measure signals on small 

impedances, we have designed an other setup to use such an amplifier for measuring the 

current in the contact, because we have suspected some back-action from the SQUID 

amplifier. This setup is schematically represented on Figure 20. 
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Figure 20: Experimental setup used in the experiment on Shapiro resonances and in the 
experiment on photon assisted multiple Andreev reflection. The current through the 
contact is obtained by measuring the voltage drop across one of the on-chip resistors. 
 

In this setup, one actually obtains directly the current through the junction by measuring 

the voltage drop across one of the on chip resistors. Two lock-in detectors were used to 

measure the differential conductance of the atomic contact as a function of the dc 

voltage bias. The IV  characteristics of the contact could thus either be directly 

measured or obtained by numerical integration of the differential conductance signal. 

 

At low temperatures, the resistances were: 50R ≈ Ω , 40r ≈ Ω . For the detailed wiring 

of this setup, we refer the reader to chapter 5. 
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4.2 Contacts with not too high transmissions 
 

4.2.1 Sample measured with the SQUID setup 
 

We have measured Shapiro resonances on a contact with a mesoscopic pin code 

{ }0.626, 0.232, 0.033τ = . The results are presented on Figure 21. 
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Figure 21: Measured integer Shapiro resonances. The frequency of the external 
radiation was 9.3156 GHzrν = . For clarity, the two upper curves have been shifted by 
20 and 30 nA respectively. 

 

 

Only integer resonances are present on Figure 21 because the current phase relation of 

such a contact is still very close to a sine function. The voltage positions of the 

resonances are given by ( )2 19.3 µVn rV n h e nν= × ≈ × . 

The non-monotonic dependence of the amplitudes of the resonances with α  (already 

seen in sections 2 and 3) will be studied later on in greater detail. 

 

Beforehand, it is necessary to present the procedure used to describe the effects of the 

environment and of the voltage fluctuations on the Shapiro resonances. This procedure 

corresponds to the mapping approach presented in section 2.2.1: 
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• First the amplitudes of the resonances are calculated at zero temperature for a 

perfectly voltage biased contact using the expression (6) obtained for an adiabatic 

evolution of the phase. 

• Then the effect of the finite temperature environment is taken into account by 

mapping the dynamics of the phase around a Shapiro resonance to its dynamics 

around zero voltage, without microwave. 

A Shapiro resonance is thus obtained as a replica of the supercurrent peak. 

 

As shown in chapter 5, the electromagnetic environment seen by the junction in the 

electric circuit of Figure 19 can be approximated by the model environment of Figure 

22. The supercurrent peak of an atomic contact embedded in such an environment was 

calculated in section 3 of chapter 2. 

 

r = 7.4 Ω

C R+r2//r3
=29.5 Ω

 

Figure 22: Simplified environment seen from the contact. 

 

 

The result of the mapping approach for the first Shapiro resonance is presented on 

Figure 23. 
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Figure 23: First integer Shapiro resonance on a contact with not too high transmission. 
The experimental curve is compared to a replica of the supercurrent peak as predicted 
by the mapping approach for an effective noise temperature of 235 mK. The 
experiments were carried out at the fridge base temperature (20 mK) 

 

 

The width of the theoretical prediction does not reproduce the experimental data. We 

attribute this effect to the physical implementation of the 100 pFC =  capacitor. This 

planar capacitor was obtained between a microfabricated top electrode and the metallic 

substrate, the dielectric being the polyimide layer. Not all of this capacitance is seen by 

the contact because of the stray inductance and the finite resistivity of the top electrode. 

 

We have measured the variation of the resonance amplitudes with the microwave 

power. The results are shown on Figure 24. 

 



 148 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

12

∆ = 178.3 µeV
τ = {0.626, 0.232, 0.033}
I0 = 22.87 nA

Tfridge = 20 mK

νr = 9.3156 GHz

 

 

R
es

on
an

ce
 a

m
pl

itu
de

 (n
A

)

α

Experimental data:
 supercurrent
 resonance 1
 resonance 2

Solid lines:
mapping with Teff = 175 mK

 

Figure 24: Variation of the resonance amplitudes with the reduced microwave power 
eA
h

α
ν

= . Dots are experimental results. Solid lines are predictions of the mapping 

approach for an effective noise temperature 175 mKeffT = . The experiments were 
performed at the fridge base temperature (20 mK). 

 

The theoretical lines have been calculated using the mapping approach with the 

environment2 of Figure 22 for an effective noise temperature 175 mKeffT = . At large 

microwave amplitude, the experimental points depart from the theoretical predictions, 

because more microwave power is burnt in the on-chip dissipative elements and heats 

them up. In all cases, the effective noise temperature is well above the actual fridge 

temperature (20 mK) because of spurious noise on the contact. 

 

In the following, we present the same type of measurements but performed on a 

different sample and using a different measurement setup (see Figure 20). 

 

 

                                                 
2 We have shown that this approximate environment doesn’t reproduce the width of the 

Shapiro resonances in a satisfactory manner (Figure 23). However we showed in section 

3 of chapter 2 that the height of the supercurrent peak depends very little on the details 

of the environment, provided it is dissipative at all frequencies. 
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4.2.2 Sample measured with the FET amplifier setup 
 

In the previous experiment, a good control of the on-chip environment was 

lacking. We have therefore redone the experiments using the chips designed for the 

supercurrent peak experiment of chapter 2 for which the environment is better known. 

The experimental setup and the chip are schematically represented on Figure 20. As 

shown in chapter 5, the on-chip electromagnetic environment seen by the junction is 

equivalent to the circuit sketched on Figure 25. 

 

r = 39.4 Ω

C =
92 pF

R+r =
89.7 Ω

 

Figure 25: Electromagnetic environment of the atomic contact on the sample measured 
with the FET setup. 

 

Even if this electromagnetic environment does not implement a perfectly frequency 

independent impedance, it is nearly equivalent, for most of the frequency range of the 

phase dynamics, to a single 39.4 Ω  resistor. This was already pointed out in the 

experiments on the supercurrent peak presented in chapter 2, where we showed that the 

supercurrrent peaks could be perfectly fitted assuming an ohmic environment. 

 

To confirm this, Figure 26 shows the predictions for the first Shapiro resonance of two 

calculations: 

• The rigorous treatment of the phase dynamics in an ohmic environment based on the 

Fokker-Planck equation (see section 2.2.2). 

• The outcome of the mapping approach. The amplitude of the resonance is first 

calculated at zero temperature, assuming that the contact is perfectly voltage biased. 

Then the effects of the environment represented on Figure 25 are taken into account 

by mapping the dynamics of the phase around the resonance by its dynamics around 

zero voltage in absence of microwaves. 



 150 

18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5

-2

-1

0

1

2

 

 

I (
nA

)

V (µV)

τ = 0.5
∆ = 180 µeV

νr = 10.0 GHz
α = 0.967

T = 150 mK

first resonance
hνr/(2e) = 20.7 µV

dotted line: Fokker Planck
r = 39.4 Ω

solid line: mapping
r = 39.4 Ω
R = 50.3 Ω
C  = 92 pF

 

Figure 26: Comparison of two theoretical predictions for the first Shapiro resonance of 
a 0.5τ =  single channel contact. Dashed line: predictions of the Fokker-Planck 
treatment of the dynamics of the phase in an ohmic environment ( 39.4r = Ω ). Solid 
line: predictions of the mapping approach for the environment of Figure 25. 

 

Figure 26 exhibits only small deviations between the predictions of the two calculations. 

This confirms the fact that, for the dynamics of the phase, the electromagnetic 

environment of Figure 25 is equivalent to a resistor. 

 

On Figure 27 we present experimental results obtained on a contact with mesoscopic 

pin code { }0.573, 0.233, 0.037τ =  for two different values of the microwave 

amplitude. The experimental results are compared to the predictions of the rigorous 

Fokker-Planck calculation assuming an ohmic environment. We have indeed just seen 

that this assumption was justified. The advantage of using the rigorous Fokker-Planck 

calculation is that it predicts the IV  characteristic as a whole, and not only parts 

centered on the Shapiro resonances like the mapping approach. 
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Figure 27: Shapiro resonances measured in a contact with mesoscopic pin code 
{ }0.573, 0.233, 0.037τ =  at a microwave frequency 4.892 GHzrν = . The 

superconducting gap was 179.7 µeV∆ =  and the critical current 0 21.4 nAI = . On 
each graph, open dots are experimental results and the solid line is the prediction of the 
Fokker-Planck treatment of the dynamics of the phase in a purely ohmic environment 
( 39.4r = Ω ). The parameters of the physical environment were 39.4r = Ω , 

50.3R = Ω , and 92 pFC = . The effective noise temperature entering the theory is 120 
mK, well above the fridge base temperature at which the experiments were carried out 
( 20 mKfridgeT = ). The upper curve corresponds to 0.453α =  and the lower one to 

0.855α = . 
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The agreement between the experimental data and the Fokker-Planck theory is entirely 

satisfactory. The effective noise temperature entering the theory is 120 mK, well above 

the fridge temperature (20 mK) at which the experiments were carried out. 

 

We also have measured the amplitude of the Shapiro resonances as a function of the 

microwave amplitude. The results are presented on Figure 28. The effective noise 

temperatures entering the Fokker-Planck theory lie between 125 mK and 155 mK, 

depending on the microwave amplitude. At large amplitude, the effective noise 

temperature is larger because more microwave power is burnt in the on-chip dissipative 

elements. 
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Figure 28: Dependence of the Shapiro resonance amplitudes with the microwave 
power. Squares: supercurrent. Circles: first resonance. Up-triangles: second 
resonance. Down-triangles: third resonance. The upper (resp. lower) solid lines are the 
theoretical predictions at 125 mK (resp. 155 mK). 

 

The power dependence of the Shapiro resonances in contacts with not too highly 

transmitting channels is a benchmark result used to calibrate the microwave power on 

the contact. 
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In summary, integer Shapiro resonances are well described by the Fokker-Planck 

treatment of the adiabatic dynamics of the phase presented in section 2.2.2. However, in 

the experiments we were unable to reach effective noise temperatures smaller than 130 

mK. We attribute this to spurious noise incoming on the atomic contact despite the 

heavy filtering. 

 

 

4.3 Contacts with high transmissions 
 

4.3.1 Sample measured with the SQUID setup 
 

Figure 29 shows IV  characteristics obtained on a contact with mesoscopic pin 

code { }0.992, 0.279, 0.278τ =  for three different values of the microwave power. 
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Figure 29: Shapiro resonances obtained on a { }0.992, 0.279, 0.278τ =  contact with a 
microwave of frequency 9.3156 GHzrν = . The superconducting gap was 

177.0 µeV∆ = . The two upper curves are shifted by 10 and 30 nA respectively. 
Underlying gray lines are the predictions of the mapping approach for an effective 
noise temperature of 200 mK. The experiments were performed at the fridge base 
temperature (20 mK). 
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For 0.21α =  and 0.43α = , the Shapiro resonances 1/2 and 1/3 are clearly 

distinguishable. For 1.17α = , it is possible to distinguish the resonance 3/2. Fractional 

Shapiro resonances are the hallmark of the non sinusoidal current phase relation of 

contacts containing channels with transmission close to unity. (For a microwave 

frequency 0.1 /r hν = ∆  with 0.25α = , fractional Shapiro resonances become sizeable 

for conduction channels of transmission 0.9τ > , as shown on Figure 16.) 

 

The underlying gray lines are the predictions of the mapping approach (see section 3.2) 

at 200 mK even though the experiments were carried out at the fridge base temperature 

(20 mK), as previously pointed out. 

 

The amplitude of each resonance is first calculated at zero temperature for a perfect 

voltage bias within the framework of the full microscopic theory which accounts for the 

non adiabatic phase dynamics. Then the effects of the environment are taken into 

account by mapping the dynamics of the phase around the resonance by its dynamics 

around zero voltage in absence of microwaves. A linear background term has also been 

added to take into account the background current on which the Shapiro resonances 

superimpose. 

 

The agreement between the experiment and the result of the mapping approach is good 

on a qualitative basis. We can’t expect a better agreement because the mapping 

approach completely ignores the structure of the microwave dependent background 

current on which the Shapiro resonances superimpose. 

 

To further investigate the range of validity of this mapping approach, we have measured 

the amplitude of the Shapiro resonances as a function of the microwave amplitude. The 

results are shown on Figure 30. 
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Figure 30: Power dependence of Shapiro resonances 1 and 2 for a contact containing a 
highly transmitting channel. Closed circles: experimental data. Dotted lines: adiabatic 
approximation (see section 2.1). Dashed lines: empiric calculation (see section 3.1.1). 
Solid lines: full microscopic calculation (see section 3.1.2.). In the three theoretical 
predictions, the effects of the temperature and of the environment are taken into account 
via the mapping approach (see section 2.2.1 & 3.2) with an effective noise temperature 
of 200 mK. The experiment was performed at the fridge base temperature (20 mK). 

 

The errors bars in Figure 30 are just estimated errors which arise when a linear 

background term is subtracted around each resonance to extract its amplitude. As 

already pointed out, the structure of the background current is completely ignored with 

this rough technique.  

 

Both the full microscopic calculation (section 3.1.2) and the empiric calculation (see 

section 3.1.1) reproduce the experimental results reasonably well. The adiabatic 

approximation (section 2.1) overestimates the amplitude of the Shapiro resonances. A 

qualitative explanation of this was given in section 3.1.2 (see Figure 16 and Figure 17). 

We briefly recall here the assumption behind these three calculations: 

• The adiabatic approximation assumes that the systems always stays on the lower 

Andreev level when the phase evolves in time. 
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• The empiric calculation does take into account Landau-Zener transitions to the 

upper Andreev level, but only the transitions due to the linear drift of the phase at a 

velocity given by the voltage at which the resonance appears. 

• The full microscopic calculation takes also into account the Landau-Zener 

transitions due to the oscillatory dynamics of the phase. 

In the experiment presented on Figure 30, the empiric calculation and the full 

microscopic calculation give similar results because the microwave amplitude is small 

enough for Landau-Zener transitions to the upper Andreev level being mainly due to the 

linear drift of the phase. 

 

 

4.3.2 Sample measured with the FET amplifier setup 
 

We present fractional Shapiro resonances measured with the FET setup. Figure 

31 shows the IV  characteristics obtained on a contact with mesoscopic pin code 

{ }0.988, 0.321, 0.102, 0.061τ =  for three different values of the microwave amplitude. 
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Figure 31: Shapiro resonances 1 2  and 1. For clarity, the two upper curves have been 
shifted by 5 and 10 nA respectively. The solid lines are the experimental data measured 
at a fridge temperature of 20 mK. The underlying gray lines are the predictions of the 
mapping approach at 180 mK. 
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Once again, the presence of mainly the fractional Shapiro resonance 1/2 indicates a non 

sinusoidal current phase relation. The underlying gray lines are predictions of the 

mapping approach at 180 mKeffT = , a temperature still well above the fridge 

temperature (20 mK). As before, a linear background term has been added to the 

prediction of the mapping approach to take into account the background current on 

which the Shapiro resonances superimpose. 

 

In summary, fractional Shapiro resonances appear on the IV  characteristic of contacts 

containing highly transmitting channels in presence of microwave. These fractional 

resonances are the hallmark of a non sinusoidal current phase relation. However, their 

amplitudes are very small because we have been unable in the experiments to lower the 

noise temperature below 180 mK. We have seen indeed that thermal phase fluctuations 

have a stronger effect on the fractional resonances than on the integer ones. If the 

amplitudes of the integer resonances correspond to a noise temperature of T , then for a 

fractional resonance p q  the effect of temperature is amplified by a factor q . 

It is possible to describe the shape of the resonances using the mapping approach 

presented in section 3.2. However, the agreement is only qualitative because this 

empirical description doesn’t account for the photon assisted multiple Andreev 

reflections (PAMAR) current on which the resonances superimpose. In the following 

section, the structure of this PAMAR current will be studied in detail. 

 

 

5 Experimental results on photon assisted multiple Andreev 

reflections (PAMAR) 
 

This section is devoted to the experimental results obtained for the interplay of 

an external applied microwave with the MAR current. The calculation mentioned in 

section 3.1.2 shows that in presence of microwaves, the MAR current is modified (see 

Figure 15) due to the absorption or stimulated emission of one or several photons during 

the charge transfer process (see Figure 32). This fundamental mechanism is called 

photon assisted multiple Andreev reflections. 
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Figure 32: Schematic representation of a one-photon assisted MAR process of order 
three. The grayed rectangles represent the occupied states in the left and right 
electrodes which are biased at a constant voltage V. Empty states (white rectangles) are 
at a distance 2∆  in energy from the occupied states. This particular MAR process is a 
three step process, involving an Andreev reflection at each electrode, which transfers 
all in all three electronic charges from left to right. In the case illustrated here, a 
photon is absorbed by the hole traveling to the left during the second step, thus 
lowering the voltage threshold of the full process from ( )2 3e∆  to ( ) ( )2 3h eν∆ − . 

 

The experiments have been carried on with the FET amplifier setup. The differential 

conductance dI dV  was measured as a function of the voltage V  across the atomic 

contact. The IV  were obtained either by direct measurements or by numerical 

integration of the dI dV . 

 

We report measurements obtained on four different contacts obtained on the same 

sample. 

 

 

5.1 Comparison between experiments and the full microscopic 

calculation 
 

The interaction between the ac Josephson currents and an external microwave 

field has been reported since 1962 in various structures coupling weakly two 

superconductors [16, 17, 18, 19]. In 1963, P. K. Tien and J. P. Gordon [20] already 

came with a qualitative explanation for the effects observed by A. H. Dayem and R. J. 
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Martin [16] in 1962 on Al-Al2O3-Pb tunnel junctions in terms of photon assisted 

tunneling. To our knowledge, it is the first time that a semi-quantitative agreement 

between experiments and theory is reported (see Figure 33). Let us recall that no 

adjustable parameters enters the theory. The following parameters -microwave 

amplitude, superconducting gap and mesoscopic pin code- have been determined with 

independent measurements. 

 

In this section, the measured differential conductance is compared to the predictions of 

the full microscopic calculation briefly presented in section 3.1.2, with no adjustable 

parameter. 
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Figure 33: Differential conductance measured as a function of the voltage for three 
different contacts in presence of a microwave drive of frequency 5.15, 10.06 and 8.2935 
GHz. Black dots are the experimental results. The underlying gray lines are the 
predictions of the theory of photon assisted multiple Andreev reflections (for a perfectly 
voltage biased contact), in which we have plugged the independently measured 
transmissions of the contact. 
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The agreement with the theory is only semi quantitative. We can attribute the rounding 

observed on the experimental results to both technical and physical reasons: 

• The measurement: the ac excitation for the measurement of the differential 

conductance was -210 e∆∼ . The measured dI dV  cannot resolve details of smaller 

width. 

• The full microscopic calculation assumes a perfectly voltage biased contact. This is 

not achieved in reality, as seen for the Shapiro resonances. The fluctuations of the 

bias voltage result in a broadening of the PAMAR structure, a feature that the 

present state of the theory cannot account for. 

 

In the next section we analyze in detail the features that can be observed on the three 

graphs of Figure 33. In particular, we focus on the peaks and side peaks (satellites) 

appearing around the voltage threshold of the MAR of order n  given by ( )2nV ne= ∆ . 

The side peaks correspond to the absorption or emission of one or several photons 

during the charge transfer process. 

 

 

5.2 General features of the PAMAR current 
 

Figure 34 shows two IV  measured on a contact with mesoscopic pin code 

{ }0.396, 0.219, 0.066τ =  to illustrate the effect of the microwaves on the background 

current. In absence of microwaves, the voltage thresholds at which the current suddenly 

increase are ( )2nV ne= ∆ . They correspond to the onset of a MAR process of order n . 

In presence of microwaves, the MAR current is modified as shown on Figure 34. Figure 

35, Figure 36 and Figure 37 show the differential conductance as a function of the 

voltage. The voltage thresholds appear as a peak on the dI dV . In presence of 

microwave, they are replicated. 
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Figure 34: Experimental comparison of the MAR current (open dots) with the PAMAR 
current (solid line) when microwaves are switched on. 

 

 

The condition for a PAMAR process of order n  involving m  photons to occur is: 

 

2 rmheV
n n

ν∆
= ±  

 

The minus (resp. plus) sign correspond to the absorption (resp. stimulated emission) of 

m  photons, each of energy rhν  during the charge transfer process. On the IV  

characteristic, the distance between the center peaks and its satellites is given by the 

quantity 

 rmh
ne
ν  (27) 

where m  is the number of photons absorbed or emitted and n  is the order of the MAR 

process (i. e. the total number of electronic charges transferred, see e.g. Figure 32). In 

the next subsections, this is illustrated for PAMAR of order 1, 2 and 3. 
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5.2.1 PAMAR of order 1 
 

Figure 35 shows the side peaks around 1 2V e= ∆ . The case 1n =  is specific 

since it doesn’t involve any Andreev reflection in the coupling structure. It corresponds 

to the tunneling of a single electron from an occupied state at energy −∆  to an empty 

state at energy +∆ . Processes of assisted tunneling with one ( 1m = ) and two ( 2m = ) 

photons are visible. The solid line on Figure 35 is the theoretical prediction of the 

calculation presented in section 3.1.2. Note the normalization factor rh eν on the 

horizontal axis in order to clearly exhibit the fractions m n  of expression (27). 
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Figure 35: Dots: measured differential conductance around 1 2V e= ∆  of an atomic 
contact for three different values of the microwave power. Solid line: theory for 

3.46α = . The satellite peaks correspond to photon assisted tunneling of a single 
electron. 

 

 

5.2.2 PAMAR of order 2 
 

Figure 36 shows the side peaks around around ( )2 2 2V e= ∆ . The processes 

involve one Andreev reflection during the charge transfer. The distances to the MAR 
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threshold voltage3 in absence of microwaves are 2rmhν . PAMAR involving one, two 

and three photons are visible. 

0
0.0

0.5

1.0

1.5

2.0

1/2

∆ = 177.5 µeV
τ = {0.396, 0.219, 0.066}
ν

r
 = 5.15 GHz

α=0.42

α=1.94

dI
/d

V
 / 

(2
e2 /h

)

 

(V-V2') / (hνr/e)

 

Figure 36: Measured differential conductance around ( )2 0.98 2 2V e′ = × ∆  of an atomic 
contact for two different values of the microwave power. The satellite peaks correspond 
to a single Andreev reflection assisted by one, two or three photon(s). 

 

 

5.2.3 PAMAR of order 3 
 

The next results correspond to processes involving two Andreev reflections. The 

satellite peaks appearing when the microwave is switched on are photon assisted 

processes involving a single photon. The offset voltage 3V ′  is close to the MAR 

threshold voltage ( )3 2 3V e= ∆ : 3 30.98V V′ = ×  (see footnote 3). 

                                                 

3 On Figure 36 the curves have been shifted by an offset 2V ′  close but different from the 

MAR threshold voltage ( )2 2 2V e= ∆ . The reason is that the local maximum of the 

dI dV  without microwave occurs at a voltage 2 20.98V V′ = × . 
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Figure 37: Measured differential conductance around ( )3 0.98 2 3V e′ = × ∆  of an atomic 
contact for two different values of the microwave power. The satellite peaks correspond 
to a charge transfer process involving two Andreev reflections, each one assisted by a 
single photon. 

 

 

5.3 Frequency dependence of the satellite positions 
 

We have checked that the distance between the center peak and the satellite 

peaks scales linearly with the frequency. This experiment is performed for the charge 

transfer process involving a single Andreev reflection. The satellite peaks on Figure 38 

correspond to the absorption (left) or stimulated emission (right) of a single photon. 
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Figure 38: Differential conductance of an atomic contact around ( )2 0.98 2 2V e′ = × ∆  
at different microwave frequencies. The distance of the first satellite to the center peak 
scales linearly with the radiation frequency rν . The normalization factor rh eν  of the 
horizontal axis is different for each one of the four curves. 

 

Figure 39 shows a linear fit of the distance in voltage between the satellites and the 

center peak. The distance between the center peak and the first satellite for the charge 

transfer process involving a single Andreev reflection is 
2

rhV
e
ν

∆ = . The experimental 

result is in good agreement with this prediction. 
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Figure 39: Linear fits of the distance between the satellites and the center peak for a 
charge transfer process, in presence of microwaves at the frequency rν , involving a 
single Andreev reflection. 

 

 

6 Outlook 
 

There is a lack of theory to describe the interplay between a microwave and the 

ac Josephson currents in contacts containing highly transmitting channels for the 

realistic case of an imperfect voltage bias. 

As the transmissions go close to one, the Shapiro resonances superimpose on the 

PAMAR current. Because of the environment in which the contact is embedded, the 

Shapiro resonances acquire a finite width. Therefore, the separation of the current into a 

Shapiro resonance current and a PAMAR current is no longer possible like in the 

perfectly voltage biased case, since both contributions completely mix one with each 

other. 

 

This effect was already pointed out in chapter 2 concerning the supercurrent peak of 

highly transmitting channels. At low voltages, the MAR and supercurrent contributions 

to the total dc current are indistinguishable. 
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A. L. Yeyati carried out a calculation showing the smooth transition from supercurrent 

into MAR current for an atomic contact embedded in an ohmic environment at finite 

temperature (chapter 2 section 2.3). The input of this self-consistent calculation were 

the current components (see equation (3)) obtained from a microscopic approach [12] 

for a perfectly voltage biased contact. 

 

A similar calculation should be possible to account for the Shapiro resonances and the 

PAMAR current, when a microwave field is applied on the contact. The main difference 

is the set of current components used for the input of the self-consistent calculation. 

Instead of taking the current components calculated for a constant voltage bias, one 

should consider the current components, when in addition to the dc voltage bias, a 

microwave voltage is superimposed. These current components (see equation (23)) were 

already calculated by J. C. Cuevas et al. [7] in 2002. However the numerical evaluation 

of these current components is a time consuming task that prevented us from carrying 

out the self-consistent calculation. Such a calculation should predict the full IV  

characteristics of an atomic contact embedded in an ohmic environment and in presence 

of an external microwave. 
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Chapter 4: Direct measurements of the current-
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1 Introduction 
 

We have seen in chapters 2 and 3 that the supercurrent and the Shapiro resonances do 

not give full access to the current phase relation of a Josephson weak link. 

The aim of this chapter is to present two methods for investigating more directly 

the current phase relation of superconducting atomic size contacts. 

 

As shown in chapter 1, in a single channel Josephson weak link, the supercurrent is 

carried by two Andreev bound states with phase dependent energies E+  and E− . These 

two bound states carry opposite currents: 

 

( ) ( ) ( )
0 2

, sin1,
2

1 sin
2

E eI
δ τ τ δ

δ τ
ϕ δ δτ

±
±

∂ ∆
= =

∂ ⎛ ⎞− ⎜ ⎟
⎝ ⎠

∓ . 

 

Figure 1 shows the current carried by the ground Andreev bound state E−  as a function 

of the superconducting phase difference δ  across the weak link. For channels with a 

transmission close to one, the current phase relation deviates from the well know sine 

function of the Josephson tunnel junction. 
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Figure 1: Current carried by the ground Andreev bound state E−  for different values of 
the channel transmission. For transmission close to one, the current phase relation 
deviates from the well known sine function of the Josephson tunnel junction. Each curve 
has been normalized by its respective critical current, ( )max ,I

δ
δ τ−⎡ ⎤⎣ ⎦ . 

 

For an arbitrary multichannel Josephson weak link characterized by its mesoscopic pin 

code { } { }1 2, , ..., Nτ τ τ τ= , the current phase relationship is given, by: 

 

 { }( ) ( ) ( )
1

, , ,
N

i i
i i

i
I n I n Iδ τ δ τ δ τ+ + − −

=

⎡ ⎤= +⎣ ⎦∑  (1) 

 

where in+  and in−  are the occupation numbers of the upper and lower Andreev bound 

state in the i-th channel respectively. in+  and in−  can take either the values 0 or 1 (see 

chapter 2, paragraph 1). At thermal equilibrium, i in n+ +=  and i in n− −= , and the thermal 

equilibrium current phase relation is then: 

 

{ }( ) ( ) ( )
1

, , , ,
N

i i
i i

i

I T n I n Iδ τ δ τ δ τ+ + − −
=

⎡ ⎤= +⎣ ⎦∑  

 

The expression of in±  is given in the paragraph 1 of chapter 2. 
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For the sake of clarity and simplicity, we adopt the following notations to refer to the 

different expressions of the current phase relation that will be used throughout this 

chapter: 

 

 ( ) { }( ), ,cI I Tδ δ τ=  (2) 

 

 ( ) ( )
1

,
N

c i
i

I Iδ δ τ−
−

=

= ∑  (3) 

 

Equation (2) is the thermal average of the contribution of the Andreev states of each 

channel to the total current. Equation (3) assumes that only the lower Andreev bound 

state of each channel is occupied. 

 

In the previous experiments presented throughout this thesis, the atomic contact was 

either voltage biased or current biased. However, in order to measure a current phase 

relation one should phase bias the atomic contact and measure the current flowing 

through it. 

This was already performed in an experiment by M. C. Koops et al. [1], where they 

inserted an atomic contact in a superconducting ring. However, in their setup, the set of 

transmissions of the contact could not be measured, which prevented a comparison with 

equation (1). 

 

To measure, for a given contact, both the current phase relationship and the 

transmissions, the challenge is to find a setup that enables the contact to be reversibly 

phase biased or voltage biased. The latter situation allows to extract the mesoscopic pin 

code of the contact from the measurement of its IV  characteristic. 

 

The solution that we propose is to place the atomic contact in parallel with a large 

Josephson tunnel junction which will act like a reversible superconducting switch. This 

is largely inspired from the Quantronium QUBIT setup [2]. We thus form an 

unbalanced SQUID, as represented on Figure 2. The tunnel junction is designed so that 

its critical current 0
tI  is one order of magnitude larger than the critical current of a 

typical aluminum atomic contact 0
cI . 
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Iφ

V

γδ

tIcI

 

Figure 2: The atomic contact (double triangle symbol) is placed in parallel with a large 
Josephson tunnel junction (crossed box). δ  and γ  are the superconducting phase 
differences across the atomic contact and the Josephson tunnel junction respectively. φ  
is the magnetic flux enclosed by the SQUID. 

 

 

As long as the current tI  in the Josephson tunnel junction is smaller than its critical 

current, it is possible to phase bias the atomic contact by applying a magnetic flux 

through the loop of the SQUID. Once the current exceeds its critical current, the tunnel 

junction switches to a finite voltage state, which enables us to measure the IV  

characteristic of the SQUID. We can then obtain the IV  characteristic of the contact by 

subtracting the contribution of the tunnel junction, which can be accurately calibrated 

by fully opening the contact. 

 

In the following sections, we present the two methods that we have used to investigate 

the current phase relation of atomic contacts with this SQUID device. We first start by 

presenting the method we have used to measure the mesoscopic pin code of the atomic 

contact shunted by the large Josephson tunnel junction. 
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2 Determination of the mesoscopic pin code of the contact 
 

The IV  characteristic of the tunnel junction alone is first measured after 

opening completely the contact. It is presented on Figure 3. 
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Figure 3: IV characteristic of the tunnel junction alone measured at 26 mK. Note the 
supercurrent branch at zero voltage. 

 

The critical current of the junction can be determined by the Ambegaokar Baratoff 

relation (see chapter 2) using the value of the superconducting gap determined on 

Figure 3: 

 ( ) ( ) ( )0 tanh
2 2

π∆ ∆⎛ ⎞
= ⎜ ⎟

⎝ ⎠
t

N B

T T
I T

eR k T
, (4) 

 

where NR  is the normal state resistance of the tunnel junction, and ( )T∆  the 

superconducting gap1 [3]. This value is consistent with the switching measurements of 

                                                 
1 Throughout all this chapter, the reduction of the superconducting gap with temperature 

is taken into account because experiments at temperatures of the order of half the 

critical temperature of aluminum ( ( )0 178 µeVT∆ = = , 1.17 KcriticalT = ) are carried 

out. 
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the tunnel junction alone, from which we extracted [4, 5] a critical current ( )0 0tI T =  of 

750 nA. We attribute this discrepancy to non-thermal spurious noise which was not 

included in the model used to extract ( )0 0tI T =  from the switching measurements. 

Throughout this chapter, the finite temperature critical current ( )0
tI T  of the Josephson 

tunnel junction is calculated with the Ambegaokar Baratoff relation, taking 

( )0 0 750 nAtI T = = . 

 

Figure 4 shows an IV  characteristic of the SQUID formed by the tunnel junction and a 

one atom contact. It looks very similar to the IV  of the tunnel junction alone because 

the current flowing in the contact is much smaller than the current in the junction. The 

IV  characteristic of the contact is then obtained by subtracting from the one of the 

SQUID the contribution of the tunnel junction. 
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Figure 4: IV  characteristic of an atomic contact SQUID. 

 

After subtracting the contribution of the tunnel junction from the IV  characteristic of 

the SQUID, one is left with the IV  characteristic of the contact, shown on Figure 5. 
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Figure 5: IV  characteristic of the atomic contact after subtracting the contribution of 
the tunnel junction to the total current in the SQUID. The solid line is the fit with the 
MAR theory. The arrow pointing to 2V e= ∆  indicates the voltage around which 
experimental points had to be removed before performing the fit of the transmissions 
(see text). 

 

A few experimental points around 2 e∆  (see arrow on Figure 5) had to be removed to 

perform the fit because of the particular shape of the IV  characteristic of the tunnel 

junction at the gap discontinuity. We attribute this peculiar non-monotonous behavior to 

heating effects that lower the value of the gap as the current is increased. 

 

The IV  characteristic of the contact is then fitted using the procedure described in 

chapter 5 to obtain the mesoscopic pin code of the contact. Because of the noise on the 

IV  characteristic of the junction, the fit is less accurate that what was achieved in the 

experiments described in chapters 2 and 3, where the current through the contact was 

directly measured. 

 

 

 

 

 

 



 179

3 Two methods of investigation of the current-phase relation 
 

The first method provides directly the current-phase relation, and is based on the 

measurement of the SQUID switching current as a function of the external magnetic 

flux threading it. 

The second method is a measurement of the Josephson inductance of the contact, a 

quantity simply inversely proportional to the phase derivative of the current-phase 

relation. This measurement involves a small microwave excitation of the phase across 

the contact, and the measurement of the signal reflected by the SQUID. 

 

 

3.1 Switching method 
 

A schematic representation of the experimental setup is presented on Figure 6. In 

the experiments, a current ramp I  is applied through the SQUID with the current 

source. After amplification, the voltage across the SQUID is fed into a timer which is 

triggered above a threshold value. The timer measures the elapsed time between the 

beginning of the ramp and the onset of the voltage across the SQUID, which gives 

access to the switching current. Thousands of switching events are recorded for each 

value of the magnetic flux φ  to have enough statistics on the switching process and 

determine the mean switching current with a good accuracy. The detailed wiring can be 

found in section 6. For more details on the operation of the timers, we refer the reader to 

chapter 2. The bias tee represented on Figure 6 (ac and dc inputs) isolates galvanically 

the resistor R  from the SQUID, which is therefore not shunted at dc, a basic 

requirement to measure switching. However, at finite frequencies, and especially at its 

plasma frequency, the SQUID sees a dissipation fixed by the combination of r  and R , 

that ensures an overdamped dynamics of the phase. We recall that the small resistor r  

represents the on-chip dissipation. 
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Figure 6: Schematic representation of the circuit used to measure the switching current 
of the atomic SQUID. The atomic contact (double triangle symbol) is placed in parallel 
with a large Josephson tunnel junction (crossed box). δ  and γ  are the superconducting 
phase differences across the atomic contact and the Josephson tunnel junction 
respectively. φ  is the magnetic flux enclosed by the SQUID. The SQUID is shunted on-
chip by a large capacitor. The bias tee (rectangle with dc and ac inputs) isolates 
galvanically the resistor R  from the SQUID, so that it is not shunted at dc. However, at 
finite frequency the SQUID sees a dissipation fixed by the combination of r  and R . The 
small resistor r  represents the on-chip dissipation. 

 

 

The total dc current through the SQUID is the sum of the current in the tunnel junction 

and the current in the atomic contact: 

 

 ( ) ( )0 sint c t cI I I I Iγ δ−= + = +  (5) 

 

where 0
tI  is the critical current of the Josephson tunnel junction and ( )cI δ−  the current 

phase relation of the atomic contact that one wishes to measure, assuming that only the 

lower Andreev levels are occupied. 
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The superconducting phase differences γ  and δ  are related by the quantization of the 

magnetic flux in the superconducting loop formed by the SQUID: 

 

 
0

2 (mod 2 )φπ δ γ π
φ

= −  (6) 

 

where φ  is the magnetic flux enclosed in the superconducting ring2, and ( )0 2h eφ =  is 

the flux quantum. Therefore, equation (5) rewrites: 

 

 ( ) ( )0
0sin 2t c t cI I I I Iγ π φ φ γ−= + = + +  (7) 

 

The critical current 0I  of the SQUID is the largest value of the bias current I  for which 

equation (7) has a solution. Because the critical current of the Josephson tunnel junction 

is one order of magnitude larger than the critical current of the atomic contact, the 

critical current of the SQUID is reached for a value of the phase γ S  lower but very close 

to 2π . The critical current of the SQUID therefore writes: 

 

( ) ( )0 0
02 2t cI I Iφ π φ φ π−≈ + +  

 

The magnetic flux φ  modulates the SQUID critical current 0I  around the critical 

current of the tunnel junction, 0
tI . This modulation writes ( ) ( )0 0 0

tI I Iδ φ φ= − . 

 

                                                 
2 φ  differs from the external applied flux aφ  by the screening flux of the 

superconducting loop. However, the geometric inductance of the ( )23 3 µm×  

superconducting loop is very small ( 30 pHL ≈ ). Assuming this geometric inductance 

to be equally distributed on the two arms of the SQUID, an upper bound for the 

screening flux is ( )0 0
02 0.6%c tL I I φ+ ≈ , taking 0 50 nAcI =  and 0 750 nAtI = . 

Therefore aφ φ≈ . 
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The current-phase relation ( )cI δ  of the atomic contact can therefore be obtained from 

( )0Iδ φ  using the following identities: 

 

( ) ( )
( )

0

02 2
cI Iδ δ φ

δ φ π φ φ π

−⎧ =⎪
⎨

≈ +⎪⎩
 

 

This analysis assumes that there are no fluctuations (thermal or quantum) in the system. 

However, experiments are performed at finite temperature, in which case the critical 

current of the SQUID is never reached. The quantity amenable to measurement in the 

experiments is actually the switching current of the SQUID. 

The switching of the SQUID is a stochastic process whose rate increases when the ratio 
0I I  gets closer to unity. The switching current is always smaller than the critical 

current. Only at zero temperature, in absence of any fluctuations, the switching current 

equals the critical current. 

 

The quantity deduced from the experiments is therefore not ( )0Iδ φ  but rather ( )SIδ φ , 

the modulation of the SQUID switching current with the magnetic flux φ . Because of 

the fluctuations, the amplitude of the modulation ( )SIδ φ  is smaller than the critical 

current of the atomic contact. Figure 7 shows the comparison between the zero 

temperature current-phase relation for two contacts, as calculated from their pin code, 

and the measured modulations ( )SIδ φ . 
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Figure 7: Open circles: measured modulation of the switching current of the SQUID 
due to the atomic contact. The solid line is the zero temperature current phase relation 
calculated with the mesoscopic pin code fitted from the IV  of the contact. 

 

On the left panel of Figure 7, the measured modulation is nearly sinusoidal because the 

contact doesn’t contain channels with high transmission. On the right panel of Figure 7, 

the modulation is clearly anharmonic. This particular contact contains indeed a single 

conduction channel of transmission close to one. The amplitude of the modulations are 

smaller than the critical currents of the atomic contacts, due to fluctuations of the phase 

across the contacts. 

 

In section 4, we present a theory taking into account the thermal fluctuations which 

predicts the variations of the switching current of the SQUID both as a function of 

magnetic flux and of temperature. 

 

 

3.2 Microwave reflectometry 
 

The second experimental strategy that we have implemented is based on the 

measurement of the Josephson inductance of the SQUID device. As shown in chapter 1 

and 2, any Josephson weak link behaves as a non-linear inductor. In a conduction 

channel of transmission τ , each Andreev bound state is characterized by an inductance 

given by: 
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( ) ( ) ( )

2
0 0

2 2,
, ,

L
dI d d E d

ϕ ϕδ τ
δ τ δ δ τ δ±

± ±

= = , 

 

Here, L+  (respectively L− ) is the inductance of the system when it is in the upper 

(respectively lower) Andreev bound state of energy E+  (respectively E− ). In a contact 

containing N  channels, the contributions to the total admittance simply add up to build 

up the inverse inductance of the contact, according to: 

 

{ }( ) ( ) ( )1 11

1

, , ,
N

i i
i i

i

L n L n Lδ τ δ τ δ τ− −−
+ + − −

=

⎡ ⎤= +⎣ ⎦∑  

 

It is convenient to deal with admittances since a Josephson weak link is a parallel 

combination of independent conduction channels. 

 

Like for the current phase relation at finite temperature T , the thermal equilibrium 

value of the inductance is given by: 

 

{ }( ) ( ) ( )1 11

1
, , , ,

N
i i

i i
i

L T n L n Lδ τ δ τ δ τ− −−
+ + − −

=

⎡ ⎤= +⎣ ⎦∑ , 

 

The expression of in±  is given in section 1 of chapter 2. 

 

Like for the current phase relation, we simplify the notations that we use throughout this 

chapter to refer to the Josephson inductance of the contact: 

 

 ( ) { }( )1 1 , ,cL L Tδ δ τ− −=  (8) 

 

 ( ) ( )1 1

1
,

N

c i
i

L Lδ δ τ
− −−

−
=

= ∑  (9) 

 

( )1 δ−
cL  given by Equation (8) is the inverse of the thermal averaged inductance of an 

atomic contact at temperature T . ( )1 δ−−
cL given by Equation (9) is the inverse of the 
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atomic contact inductance, assuming that in each channel, only the lower Andreev level 

is occupied. 

 

The microwave reflectometry experiment probes the Josephson inductance of the 

contact. The key idea of this method is to form a microwave resonator between the 

Josephson tunnel junction and an on chip fabricated capacitor (see Figure 8). The 

atomic contact, in parallel with the tunnel junction, modulates the effective inductance 

of the resonator when a magnetic flux is applied through the superconducting loop. The 

reflection properties of the resonator are probed around its bare resonance frequency rν , 

defined as the resonance (or plasma) frequency of the LC-oscillator formed just by the 

tunnel junction and the capacitor, i.e. when the atomic contact is fully open and with no 

applied bias current I . The bare plasma frequency is given by: 

 
0

0

1
2

t
r

I
C

ν
π ϕ

=  

 

The capacitor was designed for rν  to be between 1 and 2 GHz, in the bandwidth of the 

available cryogenic microwave elements (bias-tee, directional coupler, circulators, 

amplifiers, … See section 6). The two parameters are 0 750 nAtI =  and 34 pFC = , 

leading to a resonance frequency 1.28 GHzrν =  at 0T = . The value of the capacitor 

has been estimated from the surface of the pads, the thickness of the insulating 

polyimide layer and its dielectric constant (see chapter 5). 

 

What is actually measured is the reflection coefficient Rν  of the resonator at the 

frequency ν  as a function of the magnetic flux3 φ  and of the bias current I . Equation 

(7) shows that in the limit 0 0
t cI I , the dc bias current I  essentially changes the 

inductance of the Josephson tunnel junction whereas the magnetic flux essentially 

modifies the inductance of the atomic contact. To measure Rν , a microwave signal of 

                                                 
3 We recall that the magnetic flux enclosed by the superconducting loop φ  is almost 

identical to the externally applied magnetic flux aφ  when the geometric inductance of 

the loop is negligible. 



 186 

frequency rν ν≈  is sent on the resonator and the reflected signal is monitored by a 

network analyzer. 

 

The experimental setup that we have used for measuring the reflection coefficient Rν  is 

largely inspired from [6], and is presented on Figure 8. The detailed wiring can be found 

in section 6 (Figure 23). The microwave source of a vector network analyzer (internal 

impedance 50 Ω ) delivers an harmonic signal ( )0 cos 2V V tπν=  which is fed into a 

microwave directional coupler. The role of the directional coupler is to separate the 

signal reflected by the resonator from the incident signal. The incident microwave 

excitation is then fed into the ac input of a bias-tee whose output is connected to the 

resonator. The bias-tee fully isolates the dc and ac lines, and it is therefore possible to 

drive a dc current through the SQUID. The signal reflected by the resonator travels all 

the way back to the directional coupler, which directs it into the measurement port of 

the vector network analyzer. The vector network analyzer measures the reflection 

coefficient (modulus and phase): 

 

( )
( )

( )
0 2

r r

i

V V
R

V Vν

ν ν
ν

= = . 

 

φ γδ

cI tI

2iV V=

rV

( )0 cos 2V V tπν=

50R = Ω

r

C
q

I

ac

dc
Directional

coupler

Vector network analyzer

 

Figure 8: Schematic representation of the experimental setup used to measure the 
reflection coefficient of the resonator formed by the SQUID and the capacitor. 
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In the linear approximation, the reflection coefficient Rν  is simply given by: 

 

 0

0

Z ZR
Z Z

ν
ν

ν

−
=

+
 (10) 

 

with 0Z  the characteristic impedance of the microwave line connecting the sample 

( 0 50Z = Ω ) to the source and the measurement apparatus, and Zν  the impedance of the 

resonator given by: 

 1 1 2
2 1 2tot

jC
Z jL jrCν

πν
πν πν−= +

+
 (11) 

 

where 1 11
tot t cL L L− −−− −= + . 

 

The Josephson inductance of the tunnel junction writes: 

 

 ( ) ( ) ( )
0 0

0 2
0

0

cos
1

t
t

t
t

t

L
I I

I
I

ϕ ϕγ
γ γ

= =
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (12) 

 

And the inductance of the contact, ( )cL δ− , is given by equation (9). Here we assume 

that only the lower Andreev level is occupied in each channel. Therefore, the effective 

inductance of the resonator is given, as a function of the two control parameters φ  and 

I , by: 

 

 ( ) ( )( )
( )

2
0

1

0
0 0 ,

, 1, 1 ct c
tot

t I

I I II IL I
I δ φ

δ φ
φ

ϕ ϕ δ

− −
−−

⎛ ⎞− ∂
= − +⎜ ⎟⎜ ⎟ ∂⎝ ⎠

 (13) 

 

where ( ), Iδ φ  is solution of the equation: 

 

 ( )
0

0

2 arcsin c

t

I I
I

δφδ π
φ

−⎛ ⎞−
= + ⎜ ⎟

⎝ ⎠
 (14) 
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As a zero order approximation one can neglect the current flowing in the contact 

branch. The phase across the contact then writes: 

 

 ( ) ( )0

0

, 2 arcsin tI I Iφδ φ π
φ

≈ +  (15) 

 

This leads to a simplified expression for the effective inductance: 

 

 ( )
( )0

0

20
1

0
0 0 2 arcsin

1, 1
t

t c
tot

t I I

I I IL I
I δ πφ φ

φ
ϕ ϕ δ

−
−−

= +

⎛ ⎞ ∂
= − +⎜ ⎟ ∂⎝ ⎠

 (16) 

 

 

We now present results obtained on two different contacts for the modulus of the 

reflection coefficient as a function of the external magnetic flux and of the dc bias 

current (Figure 9 and Figure 10). In the setup shown on Figure 8, the bias tee (ac and dc 

inputs) isolates completely the ac and dc lines and enables us to drive a dc current 

through the SQUID while measuring the reflection properties of the resonator. The 

frequency of the microwave signal was 1.24 GHzν =  for the two contacts we have 

investigated. 

 

The full lines on Figure 9 and Figure 10 are the zero temperature theoretical predictions 

of equation (10). For the superconducting gap, we have taken ( )0 178 µeVT∆ = = . The 

only adjustable parameters were the values of the resistor 0.57r = Ω  and of the 

capacitor 33.7 pFC = , in good agreement with the value expected from the geometry of 

the capacitor (34 pF ). In the expression of the effective inductance of the resonator, we 

have taken for ( ), Iδ φ  the expression given by equation (15) but we have checked that 

it was almost identical to the solution of equation (14). 

The absolute value of the measured reflection coefficient is calibrated by measuring it 

when the SQUID has switched and can therefore be characterized by its normal state 

resistance. 

 



 189

-1.0 -0.5 0.0 0.5 1.0

-6

-5

-4

I = 0

 

 

|R
ν| (

dB
)

φ / φ0

-1.0 -0.5 0.0 0.5 1.0
-12

-10

-8

-6

-4

-2

0

I / I0
t

φ = 0

 

 

 
|R

ν| (
dB

)

 

Figure 9: Modulus of the reflection coefficient Rν  for a contact with mesoscopic pin 
code { }0.475, 0.138, 0.019τ = . The fridge temperature was 20 mK. Lower graph: 
modulus as a function of the dc bias current I  at 0φ = . Upper graph: modulus as a 
function of the external magnetic flux φ  threading the loop at 0I = . Dots: experimental 
data. The full lines are the zero temperature theoretical predictions of equation (10). 
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Figure 10: Modulus of the reflection coefficient for a contact with mesoscopic pin code 
{ }0.983τ = . The fridge temperature was 26 mK. Lower graph: modulus as a function of 

the dc bias current I  at 0φ = . Upper graph: modulus as a function of the external 
magnetic flux φ  threading the loop at 0I = . Dots: experimental data. The full lines are 
the zero temperature theoretical predictions of equation (10). 
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The experimental results obtained at the base temperature of the fridge can be semi-

quantitatively explained by the simple model we have just presented. We attribute the 

discrepancies to the anharmonicity of the oscillations of the phase, to thermal 

fluctuations and to transitions within each pair of Andreev levels. These three effects 

are studied in more details in section 5. 

 

 

4 Switching at finite temperature 
 

As seen in section 3.1, the thermal fluctuations of the phase reduce the 

modulation of the SQUID switching current. The goal of this section is to calculate the 

mean switching current of the SQUID as a function of the external magnetic flux, taking 

into account the thermal fluctuations of the phase across the contact. 

 

 

4.1 Calculation of the SQUID mean switching current 
 

As shown in chapter 2, the dynamics of the phase δ  is equivalent to the motion 

of a particle in the so-called tilted washboard potential ( ), ,U Iδ φ− : 

 

( ) ( ) ( )0
0 0

1

, , , cos 2
N

i t
i

U I E I Iδ φ δ τ ϕ δ π φ φ δ− −
=

⎡ ⎤= − − +⎣ ⎦∑  

 

The subscript “-” in ( ), ,U Iδ φ−  indicates that in each of the N  channels of the atomic 

contact, only the lower Andreev bound state is occupied. 

 

The SQUID is characterized by two degrees of freedom. However, because the 

geometric inductance of the loop can be neglected (see footnote 2), the two phases δ  

and γ  are rigidly linked by equation (6) and the potential remains unidimensional, like 

in chapter 2 where only a single Josephson element was considered. On Figure 11, the 

potential ( )0, 0.4 , 0tU I Iδ φ− = =  is plotted for a SQUID with a single channel contact 
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of transmission 0.7. We have taken 0 750 nAtI =  and 178 µeV∆ = , which are the zero 

temperature values. 
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Figure 11: Tilted washboard potential of the SQUID assuming that only the lower 
Andreev bound state is populated. 

 

 

The switching to a voltage state occurs when the fictitious particle escapes from the 

potential well and starts to runaway. In addition to thermal activation, escape from the 

well can also occur by quantum tunneling through the barrier. Tunneling is a process 

with no classical analog and has a rate which is temperature independent. Therefore, 

tunneling becomes predominant at low temperatures. In the low damping regime 

( 1
tot

RQ
L C−

= > ), it can be shown [4] that the crossover temperature from quantum to 

classical escape is ( )2co p BT kω π−= . In our experiments, 1Q >  and coT T> . Therefore 

the predominant process is thermal activation out of the potential well. The rate of this 

process is given by: 

( ) ( ) ( ), ,
, exp

2
p

t
B

I U I
I a

k T
ω φ φ

φ
π

−
−

−

∆⎛ ⎞
Γ = −⎜ ⎟

⎝ ⎠
, 

where ( ),U I φ−∆  is the barrier height, and ( ) ( ), 2p Iω φ π−  is the frequency of the 

plasma oscillations in the potential well. Both quantities are calculated numerically. The 
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plasma frequency is obtained from ( ), 1p totI L Cω φ− −=  with ( )
2

0
2

2

,totL I
d U
d δ δ

ϕφ

δ ∗
−

−

−

=

= . 

The prefactor ta  can be calculated exactly [7] and turns out to be of order unity. For 

simplicity, in the following, we will take 1ta = . 

 

The switching rate depends exponentially on the ratio of the barrier height to the 

thermal excitation energy. The barrier height U−∆  depends on the bias current and on 

the external magnetic flux. 

 

The probability W  of switching during the time interval dt  is W dt−= Γ . In the 

experiment a current ramp ( )I t tα=  is applied through the SQUID starting at 0t = . In 

this configuration, we want to calculate the switching current SI  of the SQUID as a 

function of the external magnetic flux φ  and temperature T . 

 

The mean switching current SI  of the SQUID writes: 
( ) ( )

0

,

0

,I I
dIS I

I I e dI
φ

α
φ

α

− ′Γ
′−∞ −Γ∫= × ×∫ , 

where 
( )

0

,I I
dI

e
φ

α
− ′Γ

′−∫  is the probability that the SQUID has not switched in the current 

interval [ ]0, I , and ( ),I
dI

φ
α

−Γ
 the probability that it switches between I  and I dI+ . 

 

 

4.2 Experimental results 
 

We present experimental results obtained on two contacts with different 

mesoscopic pin codes and at different temperatures and compare with the theoretical 

predictions of section 4.1. The zero temperature critical current of the Josephson tunnel 

junction is 0 750 nAtI =  and the zero temperature superconducting gap is 178 µeV∆ = . 

In the theoretical predictions, the reduction of the gap with the temperature is taken into 
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account [3], as well as the temperature dependence of the tunnel junction critical current 

(see equation (4)). 

 

Figure 12 and Figure 13 show, rather than the SQUID switching current itself SI , the 

flux modulation of the SQUID switching current ( ) ( )S S SI I Iδ φ φ= − , where SI  is the 

mean value of ( )SI φ  taken over the magnetic flux. Because the SQUID is highly 

asymmetric ( 0 0
t cI I ), its mean switching current SI  is very close to the switching 

current of the Josephson tunnel junction by itself S
tI . 

 

Figure 12 shows the modulation of the SQUID switching current when an atomic 

contact with mesoscopic pin code { }0.475, 0.138, 0.019τ =  was formed. 
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Figure 12: Modulation of the SQUID switching current as a function of the reduced 
magnetic flux threading the loop. The mesoscopic pin code of the atomic contact is 

{ }0.475, 0.138, 0.019τ = . Open circles: experimental results, the fridge temperature 
was 20 mK. Solid line: prediction of the theory presented in section 4.1 at an effective 
temperature of 420 mK. Dashed line: prediction of the zero temperature theory 
(presented in section 3.1). 
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The modulation of the SQUID switching current is sinusoidal because the atomic 

contact doesn’t contain channels with high transmission. The data obtained in the 

experiments can be described by the theory of the switching presented in section 4.1 

provided the effective noise temperature entering the theory is assumed to be 420 mK, 

well above the fridge temperature at which the experiments were carried out (20 mK). 

 

 

Figure 13a shows the modulation of the SQUID switching current measured at different 

temperatures for an atomic contact with mesoscopic pin code { }0.983τ = . As already 

mentioned, the modulation is not sinusoidal because of the high transmission of the 

channel (see Figure 1). As expected, the amplitude of modulation decreases with the 

temperature. Figure 13b, Figure 13c and Figure 13d present the experimental data with 

the predictions of the theory for each value of the temperature. 
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Figure 13: Contact with mesoscopic pin code { }0.983τ = . Symbols are experimental 
points. a) Measured modulation of the SQUID switching current for three different 
values of the fridge temperature (26, 200, 528 mK). b) Comparison of the experimental 
results at T = 26 mK with both the predictions of the zero temperature theory of section 
3.1 (dashed line) and the predictions at 450 mK of the theory of section 4.1. (solid line). 
c) (resp. d)) Comparison of the experimental results at 200 mK (resp. 528 mK) with the 
predictions of the theory of section 4.1 at 580 mK (resp. 860 mK). 

 

 

Once again, the theory describes qualitatively the experimental data, but the 

temperatures entering the theory are well above the fridge temperature at which the 

experiments were performed. In fact, transitions between the lower and upper Andreev 

levels could play a major role on the measured mean switching current. In the 

following, we present a model aiming to account for the effect of these transitions. 
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4.3 Population of the Andreev levels in the atomic contact 
 

If the system always stays in the lower Andreev bound state, its contribution to 

the total current through the Josephson tunnel junction is a smooth function of the phase 

difference across it. However, if there is a sudden transition to the upper Andreev level, 

the current in the Josephson tunnel junction changes abruptly, resulting in a drastic 

change of the switching rate. 

This effect is completely ignored in the previous theoretical description. 

 

The goal of this section is to extend the last model to take into account transitions to the 

upper Andreev level. Instead of describing the system by a single potential ( ), ,U Iδ φ− , 

assuming that the atomic contact stays in the lower Andreev level, the system is now 

described by a potential ( ), , , ,U n n Iδ φ+ −  which depends on the occupation numbers 

n+  and n−  of the upper and lower Andreev levels respectively ( 0, 1n± = ). Here we 

assume a single channel contact. The expressions of this potential is then: 

 

 ( ) ( ) ( ) ( )2 0
0 0 0, , , , 1 sin 2 cos 2tU n n I n n I Iδ φ τ δ ϕ δ π φ φ ϕ δ+ − + −= − ∆ − − − −

 (17) 

 

On Figure 14, we have represented the three following potentials for a single channel 

contact of transmission 0.9τ =  for 00.9 tI I=  and 00.1φ φ= . For simplicity, we have 

adopted the following notations: 

 

( ) ( )
( ) ( )
( ) ( ) ( )0

, , 0, 1, , ,

, , 1, 0, , ,

, , 0, 0, , , 1, 1, , ,

U I U n n I

U I U n n I

U I U n n I U n n I

δ φ δ φ

δ φ δ φ

δ φ δ φ δ φ

− + −

+ + −

+ − + −

= = =

= = =

= = = = = =
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Figure 14: The three tilted washboard potentials ( )0
0, 0.9 , 0.1tU I Iδ φ φ± = =  and 

( )0
0 0, 0.9 , 0.1tU I Iδ φ φ= = . 

 

 

The switching rate including these transitions between levels can then empirically be 

written as: 

 

( ) ( )( ) ( )( ) ( )( )( )0 0, , , , , , , , ,
0

1, 2U I I U I I U I II e e eβ δ φ φ β δ φ φ β δ φ φφ
∗ ∗ ∗

− − + +− − −

− +Γ = Γ + Γ + Γ
Ξ

, 

 

with the partition function ( )( ), , , , , , ,

0, 1

U n n n n I I

n
e β δ φ φ∗

+ − + −

±

−

=

Ξ = ∑ , where ( ), , ,n n Iδ φ∗
+ −  is 

the value of the phase δ  across the atomic contact which minimizes the total energy 

( ), , , ,U n n Iδ φ+ − . For simplicity we have adopted the following notations (Figure 14): 
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( ) ( )
( ) ( )
( ) ( ) ( ) ( )0

0 0

, 0, 1, ,

, 1, 0, ,

, 0, 0, , 1, 1, , arcsin 2t

I n n I

I n n I

I n n I n n I I I

δ φ δ φ

δ φ δ φ

δ φ δ φ δ φ π φ φ

∗ ∗
− + −

∗ ∗
+ + −

∗ ∗ ∗
+ − + −

= = =

= = =

= = = = = = = +

 

 

Note that when no current is flowing through the atomic contact ( 0n± =  or 1n± = ), the 

expression of the phase difference ( ), , ,n n Iδ φ∗
+ −  is analytical. 

 

−Γ  (resp. +Γ , 0Γ ) is the switching rate of the SQUID when its total energy is given by 

U−  (resp. U+ , 0U ). To be valid, this empiric formula requires the transitions between 

the Andreev levels to occur at rate faster than the frequency of the current ramp used to 

record the switching events (~ 1 kHz typically). 

 

The expressions for the rates +Γ , −Γ , and 0Γ , as a function of the magnetic flux φ  

threading the loop and of the bias current I  write: 

 

( ) ( ) ( ), ,
, exp

2

j
p j

j
B

I U I
I

k T
ω φ φ

φ
π

∆⎛ ⎞
Γ = −⎜ ⎟

⎝ ⎠
, , 0j = ± . 

 

As can be seen on Figure 14, the barrier heights jU∆  may differ by a sizeable factor. 

For the set of parameters chosen on Figure 14, the rate +Γ  will therefore be much larger 

than the rate −Γ . 

 

The plasma frequencies are obtained from ( ), 1j j
p totI L Cω φ =  with 

( )
2

0
2

2

,

j

j
tot

j

L I
d U
d

δ δ

ϕφ

δ ∗=

= . 

 

Both j
pω  and jU∆  are calculated numerically. On Figure 15, the predictions of this 

model are compared with the experimental data obtained at different temperatures, on 

the contact with mesoscopic pin code { }0.983τ = . In the theory, the reduction of the 
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gap with temperature is taken into account [3], as well as the temperature dependence of 

the tunnel junction critical current (see equation (4)). 
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Figure 15: Contact with mesoscopic pin code { }0.983τ = . Symbols are experimental 
points. a) Measured modulation of the SQUID switching current for three different 
values of the fridge temperature (26, 200, 528 mK). b) Comparison of the experimental 
results at 26 mK with both the predictions of the zero temperature theory of section 3.1 
(dashed line) and the predictions at 200 mK of the above theory including transitions 
between the Andreev states (solid line). c) (resp. d)) Comparison of the experimental 
results at 200 mK (resp. 528 mK) with the above theory (solid line) at 300 mK (resp. 
530 mK). 

 

 

At the highest temperature, the effective temperature entering the theory is consistent 

with the measured fridge temperature. However, the effective temperature saturates at 

200 mK for the lowest fridge temperature. We think that despite heavy filtering and 

attenuation of the lines some spurious electromagnetic noise still reaches the SQUID, in 



 201

particular through the microwave measurement line (the circulators provide only limited 

protection outside their working bandwidth). 

 

The effective temperatures found within the two theoretical approaches are summarized 

on Table 1. 

 

fridgeT  (mK) effT  (mK) 
System in ground Andreev level 

(section 4.1 & 4.2) 

effT  (mK) 
Thermal equilibrium population of 

Andreev levels (section 4.3) 
26 450 200 
200 580 300 
528 860 530 

Table 1: Summary of the effective switching temperatures found within the two 
theoretical approaches. In the approach assuming the system in the ground Andreev 
level, the effective temperatures entering the theory are well above the fridge 
temperatures. In the theory accounting for the population of the upper Andreev level, 
the effective temperature is consistent with the fridge temperature at the highest 
temperature investigated. However, the effective temperature saturates at 200 mK for 
the lowest fridge temperature, probably due to spurious electromagnetic noise incoming 
on the SQUID. 

 

Another possible approach to account for the population of the upper Andreev level is 

to calculate a switching rate for an effective potential, in which the contribution of the 

two Andreev bound states energies enters by their thermal average. For a single channel 

contact, this effective potential writes: 

 

( ) ( )
( )( ) ( ) ( )( ) ( )( )

0
0 0

, , , , , ,

, , cos 2

1
eff t

U I I U I I

U I I I

e E e Eβ δ φ φ β δ φ φ

δ φ ϕ δ π φ φ δ

δ δ
∗ ∗

− − + +− −

− +

⎡ ⎤= − − +⎣ ⎦

+ +
Ξ

, 

 

with the partition function ( )( ), , , , , , ,

0, 1

U n n n n I I

n

e β δ φ φ∗
+ − + −

±

−

=

Ξ = ∑ . 

 

However, to be valid, this approximation requires that transitions between the Andreev 

levels occur at a frequency larger than the frequency of the plasma oscillations of the 

phase (~ 1 GHz). We have checked (results not shown) that the predictions of this 
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approximation4 display strong distortions of the modulation of the SQUID switching 

current, indicating that the effective potential approximation is not justified. 

 

As a conclusion, the switching of the SQUID is indeed a direct way of tracking the 

current phase relation of the superconducting atomic size contact placed in parallel with 

the Josephson tunnel junction. However, the thermal fluctuations of the phase reduce 

the modulation amplitude, which can never reach the critical current of the atomic 

contact. The theory of the switching process that we have presented in section 4.3 

quantitatively describes the experimental results. However the effective noise 

temperatures are well above the fridge temperature, for the lowest temperatures at 

which the experiments were performed. This could partly be attributed to spurious noise 

incoming on the SQUID, but we cannot exclude that an ingredient is missing in this 

theoretical description of the switching process. 

 

 

5 Microwave reflectometry 
 

In this section, we present a reflection coefficient calculation that goes one step 

beyond the approximation of section 3.2 where the reflection coefficient was calculated 

as 0

0

Z ZR
Z Z

ν
ν

ν

−
=

+
, by treating the Josephson elements as simple linear inductors. This 

calculation is based on the full resolution of the dynamics of the superconducting phase 

difference across the SQUID in presence of the external microwave drive. Moreover, 

the Johnson Nyquist Gaussian white noise sources associated with the two resistors of 

the circuit are included. 

 

In presence of the microwave voltage drive ( )0 cos 2V V tπν= , the superconducting 

phase difference will acquire a time dependence given, in the steady state, by: 

                                                 
4 As usual, the reduction of the gap with temperature is taken into account [3] in the 

theory, as well as the temperature dependence of the tunnel junction critical current (see 

equation (4)). 
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( ) ( )t tδ δ δ= + , where δ  is the mean value of the phase around which it oscillates. 

The two phases δ  and γ  are rigidly linked by the magnetic flux bias φ  according to 

equation (6). Therefore the time dependence of γ  writes ( ) ( )02t tγ δ π φ φ δ= − + . The 

linear regime is simply defined by ( ) 1tδ . In this limit, the Josephson elements can 

be considered as linear inductors and the treatment presented in section 3.2 is valid. 

However, as soon as the amplitude of ( )tδ  starts to be sizeable, the Josephson elements 

are not linear any longer and the treatment of section 3.2 breaks down. 

 

It is clear that in the experiment, the ac modulation ( )tδ  can be reduced to remain in 

the linear regime by reducing the microwave amplitude 0V . However, there is a 

threshold level below which the reflected signal is completely buried in the noise. In 

practice the experiments have been performed with 0
0 0.084 tV RI= × , where 50R = Ω  

and 0 750 nAtI = . 

 

The calculation of the reflection coefficient is carried out in the equivalent circuit 

schematically represented in Figure 16. The bias tee is simply represented by the 

capacitor C′  on its ac input. All the dc current I  is forced to flow in the two arms of 

the SQUID. 
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cI tI 2
t r i

r

V V V
V V

= +
= +

( )0 cos 2V V tπν=
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Figure 16: Discrete element circuit for the calculation of the reflection coefficient Rν . 
This circuit can be described by the three following independent variables: the charge 
q  on the on-chip capacitor C , the charge q′  on the capacitor C′  of the bias tee, and 
the superconducting phase difference δ  across the contact. The total voltage tV  across 
the resonator can be decomposed in the sum of two terms: the voltage rV  corresponding 
to the signal reflected by the resonator, and the voltage 2iV V=  delivered by the 50 Ω  
internal impedance source of the vector network analyzer. 

 

Using the second Josephson relation, the three electrical equations for the variables q , 

q′ , and δ  (see Figure 16) of the circuit write: 

 

( ) ( )
( )

( ) ( )

0 0

0

0

cos 2

2

R

r

c t

V t q C Rq e t

q C rq e t

I q I I q

πν ϕ δ

ϕ δ

δ δ π φ φ−

⎧ ′ ′ ′= + + +
⎪⎪ = + +⎨
⎪ ′+ = + − +⎪⎩

 

 

where ( )re t  and ( )Re t  are the random Johnson Nyquist voltage noise sources 

associated with the resistors r  and R  respectively. This set of equation can be rewritten 

as follows: 
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( ) ( ) ( ) ( ) ( )( ){ } ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

0

0 0

0 0

0 0

1 cos 2 2

1 cos 2 2

1 cos 2 2

t

R c t r

R r c t

R r c t

V

r V t e t q C R I I I Rq C e t
R r

q V t e t e t q C q C R I I I
R r

q V t e t e t q C q C r I I I
R r

ϕ δ

πν δ δ π φ φ

πν δ δ π φ φ

πν δ δ π φ φ

−

−

−

⎧ =
⎪
⎪ ⎡ ⎤′ ′= − − + − − − + +⎣ ⎦⎪ +⎪
⎨ ⎡ ⎤′′= − − − − + − − −⎪ ⎢ ⎥⎣ ⎦+⎪
⎪ ⎡ ⎤′′ ′= − − − − − − − −⎪ ⎢ ⎥⎣ ⎦⎩ +
 

It is possible to simplify the last set of equations if one assumes the capacitor C′  of the 

bias tee being infinitely large. In this limit, the capacitor C′  behaves as a perfect voltage 

source. Therefore the variable q′  drops out of the equations: 

 

( ) ( ) ( ) ( ) ( )( ){ } ( )

( ) ( ) ( ) ( ) ( )( )

0

0 0

0 0

1 cos 2 2

1 cos 2 2

t

R c t r

R r c t

V

r V t e t R I I I Rq C e t
R r

q V t e t e t q C R I I I
R r

ϕ δ

πν δ δ π φ φ

πν δ δ π φ φ

−

−

⎧
⎪ =
⎪
⎪ ⎡ ⎤= − + − − − + +⎨ ⎣ ⎦+⎪
⎪

⎡ ⎤= − − − + − − −⎪ ⎣ ⎦⎩ +

 

 

These two first order coupled differential equations can be solved numerically in order 

to obtain the reflection coefficient Rν . The modulus of the reflection coefficient is 

simply given by: 

( )
( )

( ) ( ) 0

0 0

2
2 2

r tr

i

V V VV
R

V V Vν

ν νν
ν

−
= = = , 

 

where ( )tV ν  is the Fourier weight of the voltage ( )tV t  across the resonator in steady 

state ( t → ∞ ). 

 

In the two following sections, the predictions of this model are compared with the 

experimental results, to understand the non linear effects and the effect of thermal phase 

fluctuations. 
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5.1 Non linearity of the Josephson inductors 
 

In this section, the zero temperature predictions of the above theoretical model 

are compared with the experimental data (measured at the fridge base temperature, i.e. 

20 mK) and with the zero temperature linear approximation of section 3.2. Figure 17 

shows the comparison for the contact with mesoscopic pin code 

{ }0.475, 0.138, 0.019τ = . Figure 18 shows the comparison for the contact with a 

single, highly transmitting channel { }0.983τ = . 

 

In the theoretical predictions presented on Figure 17 and Figure 18, we have taken 

( )0 178 µeVT∆ = =  for the superconducting gap. The only adjustable parameters were 

the values of the resistor 0.57r = Ω  and of the capacitor 33.7 pFC = , in good 

agreement with the value expected from the geometry of the capacitor (34 pF ). The 

frequency of the microwave signal was 1.24 GHzν =  for the two contacts we have 

investigated. The absolute value of the measured reflection coefficient was calibrated 

when the SQUID had switched and behaved as a resistor corresponding to its normal 

state resistance. 

 

 

 

 

 

 

 

 

 

 

 

 



 207

-1.0 -0.5 0.0 0.5 1.0

-6

-5

-4

I = 0

 

 

|R
ν| (

dB
)

φ / φ0

-1.0 -0.5 0.0 0.5 1.0
-12

-10

-8

-6

-4

-2

0

I / I0t

φ = 0

 

 

 
|R

ν| (
dB

)

 

Figure 17: Modulus of the reflection coefficient Rν  for a contact with mesoscopic pin 
code { }0.475, 0.138, 0.019τ = . The fridge temperature was 20 mK. Lower graph: 
modulus as a function of the dc bias current I  at 0φ = . Upper graph: modulus as a 
function of the external magnetic flux φ  threading the loop at 0I = . Dots: experimental 
results. Dashed lines: zero temperature prediction of the linear approximation 
presented in section 3.2. Solid lines: zero temperature prediction of the numerical 
simulation of the phase dynamics. 
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Figure 18: Modulus of the reflection coefficient for a contact with mesoscopic pin code 
{ }0.983τ = . The fridge temperature was 26 mK. Lower graph: modulus as a function of 

the dc bias current I  at 0φ = . Upper graph: modulus as a function of the external 
magnetic flux φ  threading the loop at 0I = . Dots: experimental results. Dashed lines: 
zero temperature prediction of the linear approximation presented in section 3.2. Solid 
lines: zero temperature prediction of the numerical simulation of the phase dynamics. 
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The predictions of the simulation of the non-linear phase dynamics for the reflection 

coefficient describe the experimental data slightly better than the linear approximation, 

the main improvement being essentially on the absolute value of the reflection 

coefficient. We conclude that the amplitude of the microwave excitation that we have 

used in the experiments was therefore slightly too large to remain in the regime where 

the Josephson elements can be described as linear inductors. 

 

The twofold effect of the temperature (population of the Andreev levels and thermal 

phase fluctuations) is described in the next section. 

 

 

5.2 Effect of the temperature - population of the Andreev levels and 

thermal phase fluctuations 
 

The effect of temperature on the modulus of the measured reflection coefficient 

is shown on Figure 19 for the contact with mesoscopic pin code { }0.983τ = . The main 

features are the following: 

• A reduction of the modulation amplitude of the reflection coefficient, both as a 

function of the magnetic flux (Figure 19, left panel) and of the dc bias current 

(Figure 19, right panel), 

• A reduction of the mean value of the reflection coefficient. 

 

There is almost no difference between the data at 26 mK and 200 mK, meaning that the 

system does not cool below 200 mK, as already suggested by the switching 

experiments. 
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Figure 19: Measured modulus of the reflection coefficient (at the frequency 
1.24 GHzν = ) for the atomic contact with mesoscopic pin code { }0.983τ =  at three 

different temperatures (26 mK, 200 mK, 528 mK). Right panel: modulus as a function of 
the dc bias current I  at 0φ = . Left panel: modulus as a function of the external 
magnetic flux φ  threading the loop at 0I = . 

 

 

The previous calculations of the reflection coefficient (section 3.2 and section 5) were 

based on an adiabatic approximation assuming that in each channel only the lower 

Andreev level is occupied. In the following, we present two approaches aiming to 

describe the effect of the population imbalance of the two Andreev states on the 

reflection coefficient (see Figure 19). For simplicity, only the case of a single channel 

contact is presented. 

 

The first approach consists in calculating the reflection coefficient according to equation 

(10), where in the expression of the resonator impedance Zν , we take the thermally 

averaged inductance ( ),totL I φ  of the SQUID. The inductance of the SQUID is related 

to the curvature of the potential ( ), , , ,U n n Iδ φ+ −  given by equation (17) as follows: 

 

( ) ( )

2
0

2 2, , , ,
, , , ,totL n n I

U n n I
ϕδ φ

δ φ δ+ −
+ −

=
∂ ∂
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The thermally averaged inductance ( ),totL I φ  corresponding to the oscillations around a 

minimum of the potential ( ), , , ,U n n Iδ φ+ −  therefore writes: 

 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )0 0

, , , , , ,

, , , 0

1, , , , , , ,

2 arcsin

U I I U I I
tot tot tot

U I I
t t

L I e L I I e L I I

e L I I

β δ φ φ β δ φ φ

β δ φ φ

φ δ φ φ δ φ φ
∗ ∗

− − + +

∗

− −∗ ∗
− − + +

−

⎡= +⎢⎣Ξ
⎤+ ⎥⎦

, 

 

where   ( ) ( ), , 1, 0, , ,tot totL I L n n Iδ φ δ φ+ + −= = =  

( ) ( ), , 0, 1, , ,tot totL I L n n Iδ φ δ φ− + −= = =  

( )( ) ( )
( )

0arcsin 0, 0, , ,

1, 1, , ,
t t tot

tot

L I I L n n I

L n n I

δ φ

δ φ

+ −

+ −

= = =

= = =
 

 

( )tL γ  is the inductance of the tunnel junction alone and is given by equation (12). 

Indeed, when no current is flowing in the atomic contact ( 0n± =  or 1n± = ), it is 

equivalent to an infinite impedance and the total inductance of the SQUID reduces to 

the one of the tunnel junction alone. All the other notations have already been defined in 

section 4.3. 

 

 

The second approach consists in calculating the reflection coefficients Rν
−  (resp. Rν

+ , 

0Rν ) corresponding to the four occupation configurations of the Andreev level 

( 0, 1n± = ) and taking their thermal average to obtain the mean reflection coefficient as: 

 

( )( ) ( )( ) ( )( )( )0 0, , , , , , , , , 01 2U I I U I I U I IR e R e R e Rβ δ φ φ β δ φ φ β δ φ φ
ν ν ν ν

∗ ∗ ∗
− − + +− − −− += + +

Ξ
. 

 

These two different approaches for averaging, as well as their range of validity have 

already been mentioned in section 4.3 when discussing the effect on the switching of 

thermally populating the excited Andreev level. 
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On Figure 20, the experimental results at 528 mK are compared with the predictions of 

the two linear approaches described above. 
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Figure 20: Modulus of the reflection coefficient (at the frequency 1.24 GHzν = ) for an 
atomic contact of mesoscopic pin code { }0.983τ = . Open triangles: experimental 
results at 528 mK. Lines: theoretical predictions for the reflection coefficient at 528 mK 
(the reduction of the gap has been taken into account: ( )528 mK 173 µeVT∆ = = ). 
Solid line 1 (resp. 2): linear approach based on the thermal average of the inductance 
(resp. reflection coefficient). Dashed line: linear approach based on the adiabatic 
approximation (see section 3.2). Left panel: Rν  as a function of the external magnetic 

flux φ  at 0I = . Right panel: Rν  as a function of the dc bias current I  at 0φ = . The 
three lines are superposed on the right panel. 

 

 

These two linear approaches taking into account the population of the upper Andreev 

level do not describe quantitatively the experimental results obtained at 528 mK. 

However, they show a better agreement with the experiment than the predictions of the 

linear approach of section 3.2 which assumes than only the lower Andreev bound level 

is occupied. Note that two ingredients are missing in these three approaches: the non-

linearity of the Josephson inductors and the thermal fluctuations of the phase. 

 

 

To try to explain the experimental results obtained at 528 mK, we have used the finite 

temperature simulations of the phase dynamics presented in section 5. These 

simulations include the two missing ingredients mentioned above. However, they 

disregard the occupation of the upper Andreev level. The predictions of these 
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simulations are presented on Figure 21: they qualitatively agree with the experimental 

results of Figure 19. Namely, the simulations show that the overall level of the reflected 

signal decreases with the temperature. However, as shown on Figure 22, the predictions 

of the phase dynamics simulation at 528 mK better agree with the data measured at 200 

mK than with the data measured at 528 mK. At this stage, the effect of temperature on 

the measured reflection coefficient is still not well understood. 
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Figure 21: Predictions of the phase dynamics simulation for the modulus of the 
reflection coefficient Rν  (at the frequency 1.24 GHzν = ) for an atomic contact of 
mesoscopic pin code { }0.983τ = . Left panel: Rν  as a function of the external 

magnetic flux φ  at 0I = . Right panel: Rν  as a function of the dc bias current I  at 
0φ = . The solid lines are the predictions at zero temperature. Closed triangles are the 

predictions at 528 mK, where the reduction of the gap has been taken into account 
( ( )528 mK 173 µeVT∆ = = ). In the numerical simulations, the adiabatic current phase 
relation of the contact, ( )cI δ− , was used (see equation (3)). 

 



 214 

-0.5 0.0 0.5
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

I = 0

 

 
|R

ν| (
dB

)

φ / φ0

-1.0 -0.5 0.0 0.5 1.0

-12

-10

-8

-6

-4

-2

0

I / I0t

φ = 0

 

 

|R
ν| (

dB
)

 

Figure 22: Closed triangles: predictions of the phase dynamics simulation (528 mK) for 
the modulus of the reflection coefficient Rν  (at the frequency 1.24 GHzν = ). In the 
simulation, the adiabatic current phase relation of the contact, ( )cI δ− , was used (see 
equation (3)) and the reduction of the gap was taken into account 
( ( )528 mK 173 µeVT∆ = = ). Open dots: experimental results at 200 mK. Open 
triangles: experimental results at 528 mK. The mesoscopic pin code of the contact is 

{ }0.983τ = . Left panel: Rν  as a function of the external magnetic flux φ  at 0I = . 

Right panel: Rν  as a function of the dc bias current I  at 0φ = . 

 

 

As a conclusion, the reflection coefficient on the resonator formed by the parallel 

combination of the two Josephson elements and the capacitor carries all the information 

on the Josephson inductance of the contact and thus on its current-phase relation. The 

experimental data compare quite well with the predictions of the theory for the 

reflection coefficient Rν  at low temperature. However, the data at high temperatures 

couldn’t be explained by our simple models. A perspective for the future would be to 

include transitions between Andreev levels in the numerical simulation of section 5. 

 

 

6 Wiring of the experiment 
 

The detailed wiring of the two experiments of chapter 4 is schematically 

represented on Figure 23. Six lines of the cryostat were used to perform this set of 

experiments: four dc lines (on the left on Figure 23) and two microwave lines (on the 

right on Figure 23). 
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• microwave lines: 

 

Although the two microwave lines were used only in the reflectometry measurements, 

they were always connected to the sample. The internal microwave source of the vector 

network analyzer injects a signal through the first line. Attenuators and filters are placed 

along this microwave biasing line to reduce the noise level on the on-chip resonator. 

The reflected signal is fed into the second microwave line by the directional coupler. No 

attenuator is placed on this measurement line in order not to reduce the magnitude of the 

signal one wishes to measure. As a compromise, circulators are used instead, which 

provide good isolation, although only in the their working bandwidth(1.3 – 1.8 GHz). 

The reflected signal is almost perfectly transmitted by the circulators, whereas the noise 

coming from the hotter parts of the cryostat is directed into the 50 Ω  resistors and 

dissipated (see arrows on the circulators represented on Figure 23). The ensemble of 

these elements results in a narrow bandwidth for the experiment (1.3 – 2 GHz). The 

reflected signal is amplified at room temperature (+ 80 dB) before entering the network 

vector analyzer. Care is taken to thermally anchor all the elements (filters, attenuators, 

circulators, directional coupler) and the lines at the different stages of the cryostat. 

 

• dc lines: 

 

Two of the four dc lines have been used in the two experiments to thread a magnetic 

flux through the loop of the SQUID, and to apply a dc bias current through the SQUID. 

The two measurement lines have been used in the switching experiment only. The total 

dc current in the SQUID is monitored by measuring the voltage drop across a 400 Ω  

resistor. The dc lines are completely isolated from the microwave lines by a bias tee. It 

is therefore possible to both apply a dc current through the SQUID while probing the 

reflection properties of the resonator with a microwave signal. The current through the 

coil is obtained from a dc voltage source in series with a 5 kΩ  biasing resistor. 

 

 

 



 216 

Directional
coupler

BP
1.3 - 3.5 GHz

LP  3.3GHz

LP  5.4GHz

1K

circulator

LP 2 GHz

- 20 dB

1 kΩ

600 mK - 10 dB

20 mK

4K
300 K

LP  2 GHz

BP  1.3 - 3.5 GHz

- 20 dB

- 30 dB

- 10 dB

50 Ω

50 Ω50 Ω50 Ω50 Ω

- 3 dB

LP
1.35 GHz

CHIP

400 Ω

wounded
filter 400 Ω

Bias
tee ac

dc

microfab
filter 1.5 kΩ

Vector network
analyzer

Voltage source

Voltage
measurement

Current
measurement

I

INOUT

φ

=
dc source

10 kΩ

5 kΩ + 80 dB

 
 

Figure 23: Detailed wiring of the experimental setup used for the two experiments of 
chapter 4 (switching and microwave reflectometry). 

 



 217

References of chapter 4 
 

 

                                                 

[1] M. C. Koops, G. V. van Duyneveldt, and R. de Bruyn Ouboter, Phys. Rev. Lett. 77, 

2542 (1996). 

[2] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. 

H. Devoret, Science 296, 286 (2002). 

[3] M. Tinkham, Introduction to superconductivity Second Edition, Dover Publications, 

New York (2004). 

[4] Macroscopic Quantum Mechanics of the Current-Biased Josephson Junction, M. H. 

Devoret, D. Esteve, C. Urbina, J. Martinis, A. Cleland and J. Clarke, in Exploring the 

Quantum/Classical Frontier: Recent Advances in Macroscopic Quantum Phenomena, 

Jonathan Friedman and Siyuan Han (eds.) Nova Science Publishers, Inc., New York, 

2003, pp. 1-34. 

[5] Michel H. Devoret, John M. Martinis, and John Clarke, Phys. Rev. Lett. 55, 1908 

(1985). 

[6] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and 

M. H. Devoret, Phys. Rev. Lett. 93, 207002 (2004). 

[7] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990). 





 219

Chapter 5: Experimental techniques 
 

 

 

Chapter 5: Experimental techniques........................................................................... 219 

1 Obtaining atomic size contacts with the nanofabricated mechanically controllable 

break junction technique ................................................................................................... 220 

2 Observing the Josephson effects in atomic contacts ..................................................... 224 
2.1 The two experimental setups.................................................................................................... 225 

2.1.1 SQUID amplifier setup..................................................................................................... 227 

2.1.2 FET amplifier setup .......................................................................................................... 231 

2.2 Dc voltage biasing the atomic contact...................................................................................... 235 

2.3 Phase biasing atomic contacts .................................................................................................. 239 

3 Measurements at low temperature, example of the FET amplifier setup .................. 241 

4 Determination of the mesoscopic pin code of the contact ............................................ 244 

Appendix 1: Sample fabrication........................................................................................ 248 
1 Wafer preparation........................................................................................................................ 248 

2 Electron beam lithography and metal deposition ........................................................................ 250 

3 Reactive ion etching of the polyimide layer................................................................................ 253 

4 Embedding the break junction in an on-chip electromagnetic environment ............................... 253 

4.1 Samples measured with the SQUID amplifier setup ........................................................... 253 

4.2 Samples measured with the FET amplifier setup ................................................................ 254 

4.3 Samples measured in the current phase relation experiment ............................................... 255 

Appendix 2: SQUID amplifier as an ammeter ................................................................. 256 
1 Presentation of the experimental setup........................................................................................ 256 

2 Principle of operation of the SQUID amplifier ........................................................................... 259 

3 Feedback electronics ................................................................................................................... 261 

4 Wiring of the amplifier................................................................................................................ 263 

Appendix 3: Wiring of the cryostat................................................................................... 266 

References of chapter 5 ...................................................................................................... 268 

 

 

Section 1 and appendix 1 of this chapter are inspired from R. Cron’s Ph.D. thesis [1]. 
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 In this chapter, we describe the techniques that were used to perform the three 

experiments presented throughout this thesis. These techniques were dictated by a series 

of basic requirements. 

First, the measurements that are carried out on a given atomic contact usually last for 

several hours or even several days. It is therefore crucial to form mechanically stable 

atomic contacts. Secondly, as the Josephson coupling established through an atom 

between the superconducting electrodes is small (~ 1 K for a typical aluminum single 

atom contact), the experiments must be performed at low temperature (20 mK), i.e. in a 

dilution refrigerator. Third, it is necessary to impose stable bias conditions and to be 

able to measure small voltages and small currents. The experimental setup had thus to 

be shielded from the ambient electromagnetic noise. Finally, in order to control the 

evolution of the superconducting phase difference, it is necessary to provide a well 

defined electromagnetic environment to the contact, over a broad range of frequencies 

going from dc up to the plasma frequency (typically in the tens of gigahertz range). 

We first show how to obtain stable and clean atomic contacts using microfabricated 

mechanically controllable break junctions (MCBJ). 

Then we discuss how to voltage bias or phase bias atomic contacts, by embedding them 

in specific on-chip environments. 

We then detail the techniques used in our experiments to perform low-noise 

measurements at low temperatures. 

Finally, we explain how to measure the mesoscopic PIN code of superconducting 

atomic size contacts, the crucial feature that makes them fully characterized coherent 

conductors. 

The more specific fabrication recipes, the operation of the SQUID amplifier used to 

measure the current in the contact, and the wiring of the cryostat are presented in the 

appendices at the end of the chapter. 

 

 

1 Obtaining atomic size contacts with the nanofabricated 

mechanically controllable break junction technique 
 

The first experiments on small metallic contacts were performed by bringing a 

needle into contact with a metallic surface. This technique, first used by I. K Yanson in 
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1974 [2] and developed later on by A. G. M. Jansen [3], allowed to obtain contacts with 

a diameter of a few tens of nanometers. The ultimate size of these contacts was limited 

by the poor mechanical stability of the needle with respect to the surface. Later on, 

stable contacts with dimensions down to the atomic scale were obtained. Ultimately, the 

technical progresses of the field lead to the invention of the scanning tunneling 

microscope (STM) by G. Binnig and H. Rohrer in 1981 [4]. Since then, a variety of 

STM related techniques have been used to achieve reproducibly atomic size contacts [5, 

6]. 

Atomic contacts formed using the break-junction technique were first obtained in the 

group of J. M. van Ruitenbeek at Leiden, at the beginning of the 1990’s [7]. In 

conventional MCBJ, a metallic wire of a few tens of microns in diameter is glued with 

two droplets of epoxy on an elastic substrate and notched in its center with a knife. 

Then, the substrate is bent in order to break the wire at its weak point. By releasing the 

strain on the substrate, the electrodes formed by the two pieces of wire are brought back 

together, until forming a single atom contact. The stability reached within this technique 

allowed to carry out a wide range of experiments [6]. Recently, a variant of the 

conventional MCBJ technique incorporating a force sensor based on a piezoelectric 

quartz tuning fork enabled the simultaneous measurement of electrical conductance and 

force gradient between two sharp gold tips [8]. The high resolution measurements 

enabled a quantitative study of the interaction between the electrodes. 

In our experiments, we have used the nanofabricated mechanically controllable break 

junction technique to obtain highly stable atomic size contacts [9]. Appendix 1 presents 

in detail the electron-beam lithography steps necessary to obtain the narrow metallic 

bridge, suspended over a few microns on a flexible substrate, shown in Figure 1. The 

central constriction is initially 100 nm∼  in diameter, and corresponds thus to a contact 

of several million atoms between the two sides. 
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Figure 1: Scanning electron microscope (SEM) micrograph of a nanofabricated 
metallic bridge after etching of the polyimide layer. 

 

 

The substrate is then placed on a three point bending bench (see Figure 2 and Figure 3), 

thermally anchored to the mixing chamber of a dilution refrigerator and sitting in 

cryogenic vacuum. The axes of the two counter-supports are a distance 14 mmL =  

apart. A differential screw, with a 100 µm pitch, controls the relative translation 

between the pushing rod and the counter-supports. The sample is mounted with the 

bridge centered with respect to the pushing rod. Initially, the distance between the two 

anchors of the bridge is 0 3 µmu ≈ . The substrate (thickness 0.3 mmt ≈ ) is then bent by 

pushing in its center with the pushing rod. The strain imposed on the metallic layer is 

geometrically concentrated at the constriction. The distance u  between the two anchors 

is increased until the metallic layer breaks at the constriction. The two resulting 

electrodes are then brought back into contact by pulling the pushing rod backwards. 

Assuming an elastic uniform deformation of the substrate, one finds that a longitudinal 

displacement xδ  of the pushing rod results in a change in the inter-electrode distance 

D r xδ δ= , where the reduction ratio 2 5
06 9 10r u t L −= ≈ ×  [9]. As the rotation of the 



 223

differential screw can be controlled with a precision better than 1°, xδ  can be adjusted 

with submicron accuracy. The intrinsic leverage of the system allows then to control the 

contact between the electrodes at the atomic level. 
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Figure 2: Bending mechanism used to form an atomic contact with the suspended 
nanofabricated bridge. 
 

These techniques, developed within the Quantronics Group at Saclay [9], lead to a 

greatly improved mechanical stability of contacts as compared with the standard MCBJ 

technique. Indeed, in the latter the smaller achievable distance between the anchor pads 

(epoxy droplets in this case) is typically 0 0.5 mmu ≈ , thus limiting the reduction ratio 

to 210r −≈ . 

Besides the increased stability of the nanofabricated MCBJ technique, another great 

advantage is the possibility of embedding the contact in an on-chip electromagnetic 

environment (see section 2). This is done by designing a specific pattern for the electron 

beam exposure, according to the electrical circuit one wishes to implement around the 

junction. The fabrication procedures of the different electromagnetic environments that 

we have used in the experiments are presented in appendix 1. 
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Figure 3: Photograph of the bending mechanism. The chip is placed between two 
counter-supports (small horizontal cylinders, 14 mm apart from each other) and a 
pushing-rod. Spring probes pressed on millimetric pads on the chip connect the sample 
through a 50 Ω  line to the external signals. A small superconducting coil (400 turns of 
niobium wire of 0.2 mm in diameter) has been added on the pushing rod to apply a 
magnetic field on the sample. 
 

 

2 Observing the Josephson effects in atomic contacts 
 

The experiments performed throughout this thesis demanded the design of 

specific electromagnetic environments for the atomic contact, fulfilling the following 

inter-related and sometimes contradictory requirements: 

 

• Provide, at low frequencies, either a voltage, current or phase bias. 

• Damp, at all frequencies up to the plasma frequency, the fluctuations of the 

superconducting phase difference across the contact. 
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• Keep the electrons in the dissipative elements cold enough to reduce the Johnson 

Nyquist noise incoming on the contact. 

• Measure the current flowing through the contact (with sub-nanoampere precision) 

and the voltage across it (with sub-microvolt precision). 

 

 

2.1 The two experimental setups 
 

We present here the two experimental setups that we have implemented to voltage bias 

the contacts, and establish the necessary conditions on the different elements of the 

environment to ensure that the full current-voltage is amenable to measurement. 

Figure 4 presents a scheme of principle for a basic IV  measurement setup imposing a 

voltage bias. 
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Figure 4: Basic setup to measure the current-voltage characteristic of atomic contacts. 
The two impedances ( )1Z ω  and ( )2Z ω  represent the electric lines connecting the chip 
to the voltage source and the ammeter. Cc is the capacitance between the two electrodes 
forming the contact. 
 

In this setup an ideal current source BI  shunted by a resistor of small enough resistance 

r  provides a voltage bias for the contact and an ideal ammeter measures the current in 

the contact without disturbing the voltage bias. The resistor has to behave as such at all 

frequencies up to the plasma frequency, as it also provides the necessary dissipation for 

damping the high-frequency fluctuations of the phase. 
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However, in practice it is difficult to implement along these lines a setup that fulfills the 

requirements listed above. The main difficulty is that the line connecting the chip to the 

source, typically shunts the resistor r  at high frequency and the phase fluctuations are 

not damped as desired. A solution would be to microfabricate the resistor r  on chip, 

very close to the contact, to avoid the stray capacitance. However, the volume of such a 

resistor would be too small for the electrons to thermalize at the temperature of the 

phonon bath (assumed to be equal to the fridge temperature) when submitted to the 

Joule heating of the dc bias. On the ammeter side the requirements are less stringent. 

The total impedance as seen from the chip has to be small enough at all frequencies, so 

that the voltage bias is not perturbed. 

A known solution [16] to the problem just mentioned is to split the biasing resistor in 

two (see Figure 5). In this configuration, the dissipation associated to the dc voltage bias 

takes place in a macroscopic resistor R  (placed either on-chip or off-chip). The ac 

dissipation takes place in a microfabricated on-chip resistor r , placed as close as 

possible to the junction to avoid any stray inductance and capacitance. The large on-

chip capacitor provides at high frequencies a short that makes the contact insensitive to 

the impedance of the lines connecting it to the source. 
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Figure 5: Schematic representation of a generic setup fulfilling the requirements for the 
measurement of the supercurrent peak. The large capacitor is at high frequencies a 
short that isolates the on-chip circuitry from the rest of the setup. The dc shunt resistor 
R  has been represented off chip. 

 

With appropriate values for the three elements of this setup it is possible to voltage bias 

the contact, damp the phase fluctuations at all frequencies and keep the electrons cold, 

an important requirement to investigate physics involving energies of the order of the 
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Josephson coupling in atomic contacts. Essentially, the capacitance C has to be as large 

as possible (an infinite capacitor provides a perfect voltage source). The small 

microfabricated resistor r has to be small enough for the dynamics of the phase across 

the contact to be classical and overdamped. The first requirement is fulfilled for 

26 kQr R ≈ Ω . Assuming C →∞ , the second criterion imposes cr Z , where 

( )0 0c c c cZ L C C Iϕ= =  is the impedance of the Josephson weak link. For typical 

values of the intrinsic capacitance of the contact cC  (a few fF) and of the Josephson 

inductance cL  (a few nH) this leads to 1 kr Ω . However as the external capacitor is 

finite (typically not much larger than 100 pF with the simple technology used here), it is 

also a necessary condition (assuming 0cC → ) to obey 

( )0 0 10cr L C CIϕ= Ω∼ . The overall criterion is therefore 10 1 krΩ Ω . 

Of course, from the point of view of Joule dissipation it is favorable to have the smallest 

possible resistance within this range. 

Finally, the resistor R plays a role mainly in determining the low frequency stability of 

the IV  measurement. The precise conditions imposed on its value will be discussed 

later on. 

In practice, we have tried to implement this idea of a split circuit in two different setups 

that differ essentially in the exact configuration of the on-chip ac dissipation and by the 

technique used to measure the current flowing through the contact. They are presented 

in the next subsections. 

 

 

2.1.1 SQUID amplifier setup 
 

Figure 6 presents a setup in which the current through the contact was measured 

using a SQUID array amplifier [14, 15] provided by Prof. Martin E. Huber of the 

University of Colorado at Denver. This setup was used in the experiment on the Shapiro 

resonances described in chapter 3. A SQUID amplifier1 is very well adapted to measure 

small signals on low impedance sources, and has been used already to measure the 

supercurrent peak in planar tunnel junctions [16]. The dc voltage bias is provided by the 

                                                 
1 Details on the operation of the SQUID amplifier can be found in appendix 2. 
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current source BI  shunted by the resistor R . In this setup, R  is a surface mounted 

component placed on the chip (see Figure 6). The ac dissipation is ensured by the 

resistor r , microfabricated close to the contact, and the large capacitor C  formed by a 

very large on-chip contact pad and the ground plane of the substrate. 
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Figure 6: Electric circuit in which the atomic contact is embedded for the measurement 
of the current with the SQUID amplifier. 

 

The role of the resistor 2r  is to pick-up a fraction of the current in the contact 

and feed it in the input coil of the SQUID to measure it. As depicted on Figure 6, the 

lossy twisted pair line connecting the chip to the SQUID superconducting input coil, 

can be represented essentially by two resistors, the same on each wire, shunted by the 

capacitance C′  of a second smaller connecting pad. Therefore, a fraction ( )2 2 3r r r+  of 

the dc current in the contact is fed into the input coil of the SQUID. 

To establish the conditions on the values of the different resistors ( R , r , 2r , 3r ) to 

voltage bias the contact, we can model the electromagnetic environment of Figure 6 by 

a simplified version of it, respecting both the dc and high frequency limits for the 

dissipation seen by the junction, as sketched in Figure 7. It corresponds to the circuit of 

chapter 2, section 3, for which the full form of the supercurrent peak can be calculated. 
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Figure 7: Simplified version of the electromagnetic environment seen by the junction in 
the circuit of Figure 6. 

 

 

The on-chip physical realization of this experimental setup is presented on Figure 8. 
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Figure 8: SEM micrographs (3 successive zooms) and on-chip finite elements circuit 
scheme of one of the samples in which the current through the contact is measured 
using a SQUID amplifier. The biasing resistor R is a commercial component mounted 
on the chip with silver epoxy. The two microfabricated resistors r and r2 are carved in a 
60 nm thick Au:Cu alloy layer. The two capacitors are formed between the contact pads 
and the metallic substrate, the dielectric being a 1.6 µm thick polyimide layer. Typical 
values are 250 , 7 , 6 , 100 pF, and 30 pF.R r r C C′Ω Ω Ω∼ ∼ ∼ ∼ ∼  
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Let’s comment here on the expected electronic temperature of the resistors. The 

electrons heat up because of the power P  dissipated by the current traversing the 

resistor. If they cool down just by relaxing their energy into the phonon bath (assumed 

at temperature phT ), the temperature elT  at which the electrons thermalize is limited to 

[10]: 
1/5

5
el ph

PT T
V

⎛ ⎞= +⎜ ⎟Σ⎝ ⎠
, 

where V is the volume and Σ  depends on the material considered. A typical value for 

the metals and alloys considered here is ( )-3-52 nW.K . µm . 

For a macroscopic resistor the volume is large enough for the electrons to completely 

thermalize with the phonon bath. On the contrary, the volume of the microfabricated 

resistors r  and 2r  is only of the order of 3100 µmV ∼ . In a typical experiment aiming 

to measure the supercurrent peak of an atomic contact with a critical current 

0 50 nAI = , the maximum dc power dissipated is 2
0 20 fWP rI= ∼ . If one assumes the 

phonon bath to be thermalized at the cryostat temperature (i.e. 20 mKphT = ), the 

electronic temperature is then expected to saturate at 100 mKelT ≈ . In fact, this is a 

worse case estimation as we haven’t taken into account the possibility for the hot 

electrons to diffuse away from the resistor into one of the attached large pads. The 

actual temperature of the electrons in the resistors is thus expected to be lower than this 

estimation. 

 

 

2.1.2 FET amplifier setup 
 

In practice, as discussed in chapter 3, the electromagnetic environment of the 

contact in the previous setup was not as good as required. We could attribute this to the 

physical implementation of the large capacitor C . The “L” shape of this structure and 

its rather large dimensions made in fact its stray inductance and parasitic resistance not 

negligible. As a result, this large pad did not behave as a simple large capacitor at the 

highest frequencies. Moreover, as we suspected the SQUID to be the source of at least 

part of the spurious noise we observed in the experiments, we decided to implement a 

different current monitoring scheme. 
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Figure 9a presents a second setup used in the experiments on the supercurrent peak and 

on the ac Josephson currents aiming to a better control of the environment seen by the 

atomic contact. It is essentially a four-point measurement setup. The voltage bias is 

ensured by the current source shunted by the off-chip resistor R . The ac currents are 

damped locally on the small loops formed by the four on-chip microfabricated resistors 

r  (see Figure 11), and the shorting capacitors. In this setup, the current through the 

contact is obtained by measuring the voltage drop across one of the on-chip resistors r  

with a room temperature low-noise JFET amplifier. 
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Figure 9: Actual (a) and simplified (b) electromagnetic environments of the atomic 
contact (double triangle symbol). The current in the contact is obtained by directly 
measuring the voltage drop across one of the on-chip resistors r. 

 

Figure 9b shows an almost equivalent circuit for the electromagnetic environment as 

seen by the junction in the circuit of Figure 9a. The impedances aZ  and bZ  seen by the 

contact in both situations are compared on Figure 10, where their real and imaginary 

parts are plotted versus frequency. The values chosen for the graph are 50R = Ω , 

40r = Ω  and 100 pFC = , very close to those implemented in practice. 
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Figure 10: Comparison of the impedances aZ  (solid line) and bZ  (dashed line) seen by 
the contact in the actual and simplified electromagnetic environments of Figure 9. 

 

The simplified environment of Figure 9b, reproduces almost perfectly the real 

environment of Figure 9a at all frequencies. The on-chip realization of this experimental 

setup is presented on Figure 11. 
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Figure 11: SEM micrographs (4 successive zooms) and on-chip finite elements circuit 
scheme of a sample in which the IV  characteristic are monitored using a four point 
measurement technique. The resistors are 500 nm wide, 70 µm long wires carved in a 
30 nm thick pure gold layer. The four capacitors are formed between the very large 
gold contact pads and the metallic substrate, the dielectric being a 1.6 µm thick 
polyimide layer.  
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As the volume of the resistors r  is in this case very small ( 31 µmV ∼ ), the electronic 

temperature is expected to saturate slightly below 140 mKelT ≈ , the latter value 

corresponding to the case where the only cooling mechanism is the electron-phonon 

coupling. 

 

 

2.2 Dc voltage biasing the atomic contact 
 

When measuring the IV  characteristic of an electrical dipole presenting regions 

of negative differential resistance, like the sharp supercurrent peak in our atomic 

contacts, one has to make sure to provide a source with a quite small impedance. If not, 

some parts of the IV  characteristic will become unstable and therefore won’t be 

amenable to measurement. The choice of the source impedance value is therefore 

dictated by two contradictory conditions. One the one hand it cannot be to small to 

avoid excessive overheating. On the other hand it has to be kept as small as possible in 

order to provide the contact with a voltage V  not too dependent on the current I  

flowing through it. Of course, for a perfect voltage bias the resistance has to be 

vanishing small. But this requirement is not strictly necessary to guarantee the stability 

of the measurement of the IV . It is sufficient that the load line 

( ) B
X VI V I

X r X r
= −

+ +
 imposed by the current source BI  is steeper than the ( )I V  

characteristic of the contact in the regions of negative differential resistance (see Figure 

12). In the setup presented in section 2.1.1 2 3//X R r r r= + + , and X R r= +  in the 

setup of section 2.1.2. Depending on the slope of the loadline, the system admits 

different solutions. 

If the load line is not steep enough, there can be three solutions for a given value of the 

bias current. The solution M is only metastable, and the system eventually switches to 

the stable point S, because of the thermal fluctuations in the resistors. The solution U is 

unstable because at that point the IV  characteristic is steeper than the loadline. 
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On the contrary, for a steep load line the system has only one stable solution S for a 

given value of BI , i.e. a good voltage bias is achieved. Therefore, on regions of negative 

slope on the ( )I V  characteristic, the following condition has to be satisfied: 

 

( )
( )

1 1I V
X r

I VX r V
V

∂
− < − ⇔ < −

∂+ ∂
−

∂

 

 

This inequality defines an upper bound R∗  for the value R  of the dc shunt resistor This 

value differs between the two setups. 

Voltage bias
R < R*

R > R*
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Figure 12: Simplified circuit in which the atomic contact is embedded (upper panel). If 
the loadline defined by the biasing circuit is steeper than the negative differential 
resistance regions of the IV  a single stable solution exists and the full curve can be 
swept continuously (left bottom panel). If not (right bottom panel), for a given bias 
current there can be three solutions: a stable one (S) at large voltages, an unstable one 
(U) at intermediate voltages, and a metastable one (M) in the phase diffusion branch, 
from which the system eventually switches to (S). 
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For the SQUID setup (Figure 6) the upper bound R∗  for the value of the dc shunt 

resistor is: 

 

( )
2 3

2 3
2 3

min

1 // 2 2
( )

r rR r r r r
I V r r r

V

ρ∗ ⎛ ⎞
= − − = − −⎜ ⎟∂⎛ ⎞ +⎝ ⎠−⎜ ⎟∂⎝ ⎠

, 

 

where 

( )
min

1
I V

r
V

ρ =
∂⎛ ⎞

− ⎜ ⎟∂⎝ ⎠

. 

 

and ( )I V  is the current-voltage characteristic of the contact calculated for the 

simplified environment of Figure 7. 

Similarly, for the FET setup (Figure 9), the upper bound R∗  for R is: 

( ) ( )

min

1 2 2R r r
I V

V

ρ∗ = − = −
∂⎛ ⎞

−⎜ ⎟∂⎝ ⎠

, 

 

In general, the determination of R∗  is a complicated task because the IV  characteristic 

of the junction itself depends on the electromagnetic environment in which it is 

embedded, i.e. ρ  depends on the three parameters R , r , and C  (for the FET setup). 

Nevertheless, as shown in chapter 3, if the capacitor C  shunting R  is large enough, the 

shape of the IV  is essentially determined by the resistor r . We have therefore 

calculated ρ  for a Josephson tunnel junction embedded in a purely ohmic environment 

r , using the analytical Ivanchenko-Zil’berman result of chapter 2 (see Figure 13). 
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Figure 13: ρ  as a function of the reduced temperature. The calculation of ρ  has been 
carried out using the Ivanchenko-Zil’berman result for a Josephson tunnel junction. 

 

It is clear that ρ  is an increasing function of B

J

k T
E

 since the IV  becomes smoother as 

the ratio B

J

k T
E

 increases. For the FET setup (Figure 9), there is a threshold value 

0.056B

J

k T
E

= , reached when 2ρ = , below which the supercurrent peak becomes too 

sharp, making thus impossible to really voltage bias the contact with this setup. A 

similar threshold exists for the SQUID setup, but its exact value depends on the resistors 

2r  and 3r  used to probe the current. Even though ρ  is calculated for a Josephson tunnel 

junction, the result can be safely applied to the case of contacts with sizeable 

transmissions. Indeed we have seen in chapter 2 that the shape of the supercurrent 

doesn’t depend too much on the value of the transmission. It is only for contacts with 

transmission close to unity, that a detailed analysis has to be performed because the 

shape of the IV ’s at low voltages highly depends on the exact transmissions. 

Moreover, as was shown in chapter 2, the effect of the finite capacitance C  is to stretch 

the IV  of the contact on the voltage axis. It therefore tends to reduce the steepness of 

the IV . Therefore the value of R∗  obtained in the large capacitance limit will always be 

beyond the actual threshold value when finite capacitance effects comes into play. 
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At the end, one is forced to adopt a reasonable compromise within all the constraints 

mentioned above. For example, in the experiments on the supercurrent peak with the 

FET setup, the values chosen for the resistors were 50R ≈ Ω , and 40r ≈ Ω . The 

condition ( )2R rρ< −  rewrites 2 R
r

ρ > + . In the experiments this leads to 3.25ρ >  

which is equivalent to 0.1747B

J

k T
E

>  from the B

J

k T
E

ρ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 plot. Therefore, contacts with 

critical current above 30 nA displayed some switching at the lowest electronic 

temperatures ( 125mK∼ ) reached in the experiments. 

Of course by choosing a large enough shunt resistor it is always possible to current bias 

the contacts. Switching measurements performed on current biased contacts are reported 

in chapter 2.  

 

 

2.3 Phase biasing atomic contacts 
 

Chapter 4 presents experiments aiming at the direct measurement of the current 

phase relation of an atomic contact for which the mesoscopic pin code is known. To 

measure, for a given contact, both the current phase relationship and the transmissions, 

the challenge is to find a setup that enables the contact to be reversibly phase biased or 

voltage biased, the latter situation allowing to extract the mesoscopic pin code of the 

contact from the measurement of its IV  characteristic. 

 

The solution that we propose is to place the atomic contact in parallel with a large 

Josephson tunnel junction which acts like a reversible superconducting switch. The 

physical implementation of the on-chip circuit is presented on Figure 14. 
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Figure 14: SEM micrographs (2 successive zooms) and equivalent circuit of the sample 
used in the current-phase relation experiment (chapter 4). In the discrete elements 
equivalent circuit, the cross box symbol represents the large Josephson tunnel junction 
and the double triangle symbol the atomic contact. 
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3 Measurements at low temperature, example of the FET 

amplifier setup 
 

The Josephson coupling energy for a weak link of critical current 0I  is 

0 0JE I ϕ= . For a typical value of the critical current - 0 40 nAI = -, this energy is 

B0.953 k KJE = . Experiments must therefore be performed at temperatures well below 

1 K. Measurements were carried out in a Oxford 3He/4He dilution refrigerator, with a 

base temperature of 17 mK. The metallic substrate is thermalized through the pushing 

rod and the two countersupports of the bending mechanism. The full bending 

mechanism is enclosed in a shield consisting of 2 boxes, the outermost one in copper 

and the inner one in aluminum, to screen the magnetic flux and the electromagnetic 

noise. The whole setup is attached to the mixing chamber of the cryostat. Before 

entering the shields all the wires necessary to bias and measure the sample are filtered. 

The detailed wiring of the cryostat can be found in appendix 3. 

 

The experimental setup presented here was used to measure the IV  characteristics of 

voltage biased contacts. With this setup, it was therefore possible to go beyond the 

experiments performed by M. F. Goffman et al. [11] by measuring the full supercurrent 

peak and not only the diffusion branch, the only part of the supercurrent peak amenable 

to measurement for a current biased contact.  
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Figure 15: Detailed wiring of the experimental setup for measuring IV  characteristics 
both in the supercurrent peak and in the ac Josephson currents experiments with a FET 
amplifier to measure the current. The box Σ  represents a bipolar summing amplifier. 
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The voltage bias V  across the atomic contact is obtained by using a voltage division 

between a large bias resistor 400 kΩBR =  and a small shunt resistor 50 ΩR = . This 

setup enabled both to measure the IV  characteristic of the contact and also its 

differential conductance. The voltage source (Agilent 33250A) was used as a ramp 

generator in the experiments. To measure the IV  characteristic, the switch is placed in 

position 1. Measurements were performed at frequencies within the bandwidth of the 

lines, at around 1 kHz. 

To measure the differential conductance, the switch is placed in position 2. The 

summing amplifier (box Σ ) adds up the two signals: the dc voltage provided by the 

voltage source and the ac excitation provided by the lock-in source (Stanford SR 830). 

 

The dc current I  through the contact is obtained by measuring the voltage drop across 

one of the on chip resistors r . The dc voltage V  across the contact is directly measured. 

Both signals are measured using low-noise battery powered differential FET-

preamplifiers of fixed gain 100×  (NF LI-75A) followed by an amplifier of selectable 

gain (Stanford SR 560). The signals were then digitized by a Nicolet Pro44 oscilloscope 

(for an IV  characteristic measurement) or by the Stanford SR 830 lock-in detectors (for 

measuring the differential conductance) and transferred to a PC for treatment. 

 

It is necessary to know the value of the resistor r  for the measurement of the dc current 

I . Therefore, the two resistors R  and r  were precisely measured. One measures the 

resistor R  by fully opening the atomic contact. In this configuration, all the bias current 

flows through the resistor R , whose value is then obtained by measuring the voltage 

drop across it. Once the value of R  is known, the bridge is closed as much as possible 

so as to have a large critical current. r  is determined by measuring the voltage drop 

across it, knowing that only a fraction ( )2R R r+  of the bias current flows through it 

(provided the contact stays on its supercurrent branch at 0V = ). In the experiments, the 

typical values were 50R = Ω  and 40r = Ω . 

 

In the experiments on the ac Josephson currents (chapter 3), the microwaves were 

applied on the contact through a 20 GHz bandwidth line along which attenuators have 

been placed at different stages of the cryostat to reduce the noise reaching the contact. 
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In this setup the microwave is coupled to the contact through an antenna placed 2 mm 

away from the contact region. 

 

 

4 Determination of the mesoscopic pin code of the contact 
 

In chapter 1, we showed that the IV  characteristics of Josephson weak links 

were highly non linear in the voltage range 2V e< ∆ , where the processes responsible 

for carrying the current are multiple Andreev reflections. The onset of these processes 

occurs at well defined values of the voltage, leading to a rich structure on the IV . Since 

atomic contacts accommodate only a small number of channels, their IV  characteristics 

contain enough information to extract their mesoscopic pin code. In this section, we 

review the standard procedure used throughout this Ph.D. work to determine the 

transmissions of the atomic contacts. 

 

The determination of the pin code is done by decomposing the IV  characteristic into 

the contribution of a few independent conduction channels: 

 

( ) ( )
1

, ,
N

i
i

I V I V τ
=

= ∆∑ , 

 

where N  is the total number of channels in the contact and ∆  the superconducting gap. 

 

The procedure used to extract the mesoscopic pin code { } { }1, ..., Nτ τ τ=  is a least-

square fit based on a Monte-Carlo algorithm. The code has been developed by G. R. 

Bollinger at UAM [12]. The theoretical elementary IV ’s have been calculated using a 

code developed by J. C. Cuevas et al. [13]. 

 

In a first step, the number of channels and the value of the superconducting gap are 

determined. For aluminum contacts, the actual value of the gap is searched for in the 

interval from 175 to 185 µeV by steps of 0.1 µeV. The number of channels is first set to 

ten which corresponds to contacts larger than the largest contacts we have actually 

measured. 
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The fitting procedure is then started. For each value of the gap, the Monte-Carlo fit of 

the transmissions is ran. As this step is only intended to determine the value of the 

superconducting gap and the number of channels but not their transmissions, the 

number of Monte-Carlo iterations is limited to 100000 for each gap value. Moreover, 

the transmissions are allowed to explore a broad range around their current value to 

ensure a sufficient convergence within the allowed number of iterations. The chi-

squared is calculated for each value of the gap scanned. The actual value of the gap is 

the one that minimizes the chi-squared. Once the gap is determined, its value is kept 

constant throughout the rest of the fitting procedure and the number of channels is reset 

to the number of channels with a transmission different from zero. Limiting the number 

of channels to its actual value speeds up the second step of the fitting procedure. 

 

The second step is intended to determine the transmission of each channel accurately. 

The Monte-Carlo fitting procedure is no longer limited by the number of iterations. We 

leave it running as long as necessary to reach a steady situation where the transmissions 

no longer change. Throughout the second step of the Monte-Carlo fit, the allowed noise 

on the channel transmissions is progressively reduced to obtain a fit with the best 

accuracy. 

 

On Figure 16, IV  characteristics of two contacts with different mesoscopic pin code 

and their corresponding fits are plotted. The two contacts presented here have nearly the 

same normal state conductance but completely different mesoscopic pin codes. The 

value of the gap differs on the two curves of Figure 16, even if they have been measured 

on the same sample. The dilution fridge had to be opened and put at atmospheric 

pressure between the two measurements, resulting in a possible contamination of the 

aluminum electrodes. 
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Figure 16: Two IV  characteristics of aluminum single atom contacts. The two contacts 
have nearly the same normal state conductance but correspond in fact to different 
mesoscopic pin codes. 
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It is interesting to discuss the contribution to the current of channels with 1τ , 1τ ∼  

and channels of intermediate transmissions: 

• The current through a channel with 1τ  is vanishingly small for 2V e∆ . It 

only becomes sizeable above this threshold. Moreover, it doesn’t carry any excess 

current2 at large enough voltages. Therefore the information on the channels with 

1τ  lies in the slope of the IV  at large voltages.  

• On the contrary, highly transmitting channels give a large contribution to the current 

at low voltages and they also carry some excess current. Therefore, the information 

on the highly transmitting channels lies both at low voltages and high voltages on 

the IV  characteristic of a contact. 

• The information on channels with intermediate transmission lies in the non-

linearities on the IV  in the voltage range 2V e< ∆ . 

 

For details on the accuracy of the fit of the transmissions, we refer the reader to R. 

Cron’s Ph.D. thesis [1]. 

 

                                                 

2 The excess current is defined as ( ) ( )lim
V

V V

I V
I V V

V′→∞
′=

⎡ ⎤∂⎛ ⎞
′ ′− ×⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
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Appendix 1: Sample fabrication 
 

This appendix presents the nanofabrication steps involved to obtain a narrow 

metallic bridge suspended over a few microns on a flexible substrate (see Figure 1). In 

the experiments, the metallic bridge is broken by bending the substrate under cryogenic 

vacuum to obtain the atomic contact. The on-chip environment in which the contact is 

embedded is also fabricated at the same time. 

First, an insulating polyimide layer is deposited on the flexible metallic substrate and 

topped with an electrosensitive resist. Then, the resist is exposed to the electron beam of 

a scanning electron microscope. During the development, the exposed parts of the resist 

are dissolved and a mask is obtained on top of the polyimide. Metal is then deposited 

through the mask on the polyimide. During the lift-off, the remaining resist is dissolved 

and only regions corresponding to the openings of the mask are left with a metallic 

layer. This procedure is repeated two times: first to fabricate the on-chip dissipative 

environment (made out of Au or Au:Cu alloy) and then to fabricate the metallic bridge 

(aluminum). The different steps of the fabrication of a sample are now presented in 

more detail. 

 

 

1 Wafer preparation 
 

Polishing of the wafer 

 

The substrates are 0.3 mm thick and 3 inches in diameter bronze wafers. The wafers are 

first roughly polished using abrasive disks and water as lubricating agent to remove the 

larger scratches. In a second step, soft disks loaded with diamond paste with particles of 

9, 6, 3 and 1 µm are used successively to obtain a residual roughness of about 1 µm. 

During this step, oil is used to lubricate the disks. The wafer is carefully rinsed between 

each diamond paste step to avoid contamination by larger particles. During the whole 

process, the spin speed of the rotating polishing machine is kept low, at about 30 rpm. 

Each polishing step lasts for about 30 min. 
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The wafer is then processed in a clean room. It is first cleaned in an ultrasonic bath with 

isopropanol and acetone. It is rinsed with isopropanol and blow dried with nitrogen. 

 

 

Polyimide layer deposition 

 

First an adhesion promoter (Ultradel A600) is spun at 2000 rpm for 30 s. Then the wafer 

is dried on a hot plate at 100°C for 1 min. It is cooled down afterwards with a nitrogen 

blow. A solution of PI2611 in N-methyl-2-pyrrolidone (30 g (HD Microsystems 

PI26113) + 30 mL (N-methyl-2-pyrrolidone)) is spun at 2000 rpm for 1 min. Then it is 

baked in an oven for one hour, starting from room temperature, up to 180°C to remove 

the solvent and get a uniform thickness over the wafer thanks to surface tension. 

Finally, the polyimide is annealed at 350°C for 1 hour in a vacuum chamber under a 

residual pressure of 10-6 mbar. This last step ensures that the polyimide film will keep 

its elastic properties at low temperatures. The final thickness of the polyimide is 1.6 µm. 

It is measured by laser interferometry, knowing the refractive index provided by HD 

Microsystems ( 1.90n = ). 

 

The polyimide layer planarizes the surface of the substrate. It also insulates the 

nanocircuit from the substrate. The capacitors of the on-chip environment can be 

designed using the metallic substrate as a ground plane and the polyimide layer as a 

dielectric. The polyimide can also be etched to fabricate the suspended bridge that we 

break to form the atomic contact. 

 

 

Electrosensitive resist deposition. 

 

To realize the suspended masks through which the metallic thin films will be 

evaporated, a bilayer of electrosensitive resists is used. The bottom layer (MMA/MAA 

8.5 EL10) is spun on the polyimide at 2500 rpm for 1 min. Then the solvent is 

evaporated on a hot plate at 160°C. This layer has a thickness of about 500 nm. The top 

                                                 
3 The PI 2611 solution of HD Microsystems contains 13.5% in weight of polymer. The 

solvent is N-methyl-2-pyrrolidone. 
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layer (PMMA 950 A3) is spun at 4800 rpm for 1 min. The thickness of this layer is 

around 100 nm. The bilayer is then baked for 25 min on a hot plate at 160°C. 

 

Using this electrosensitive bilayer is a convenient way to obtain a suspended mask by 

electron beam lithography. The bottom layer, which has a greater electron sensitivity, 

sustains the suspended mask through which metals are deposited. The two main 

advantages of having a suspended mask are the following: 

• It is possible to deposit the metallic layers at an angle, a useful technique to 

fabricate tunnel junctions, 

• The lift-off is easier. 

 

 

Cutting of the substrate into chips 

 

Then the substrate is cut into chips that will be processed individually later on. The 

chips are rectangles of size 16 mm by 6 mm. 

 

 

2 Electron beam lithography and metal deposition 
 

The successive steps described in this section are summarized on Figure 17. 

 

Electron beam exposure 

 

The lithography is performed in a scanning electron microscope (SEM) whose beam is 

driven by a computer according to a pattern defined in the Elphy Quantum software. 

The exposure dose of the bilayer is 180 µC/cm2 with a 25 keV electron beam. The SEM 

has different beam currents and magnifications which are chosen depending on the sizes 

of the structures to pattern. The currents range from 15 pA to 100 nA. The smaller the 

pattern, the smaller the current and the greater the magnification. 

 

The electrons penetrate the bilayer and lose their energy in the resist. In irradiated 

regions, the polymers chains are broken into small pieces. 



 251

The MMA/MAA layer is affected by the electron beam in a broader region because it 

has a greater sensitivity. Moreover it is closer from the metallic substrate and 

experiences more backscattered electrons than the PMMA layer. This undercut can be 

enhanced locally by an additional low dose affecting only the bottom layer. 

 

 

 

Development 

 

The chips are placed in a solvent (MIBK 1vol : isopropanol 3vol) for 35 sec at 20°C. 

The irradiated parts of the resist are completely removed whereas the non-exposed 

regions remain unaffected. The mask is then rinsed for 20 s in isopropanol and blow 

dried with nitrogen. 

 

 

Metallic thin film deposition 

 

The metallic thin films are deposited using an electron gun evaporator or a Joule 

evaporator. The metals are deposited at a typical rate of 1nm/s and at a pressure 
62 10 mbar−× . The typical thickness of the films deposited is 100 nm. The sample is 

fixed on a tiltable sample holder enabling evaporation at different angles. 

 

 

Lift off 

 

After the evaporation, the chips are immersed in acetone at 65°C for 10 min. The mask 

and the metal on top of it are completely removed. The sample is rinsed with 

isopropanol and blow dried with nitrogen. Care is taken so that the sample doesn’t dry 

between the lift-off and the rinsing. After lift-off, the sample is left with the desired 

metallic structure at the position of the openings in the suspended mask. 
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Figure 17: Successive steps in the lithography process. On panel d), some metal is 
deposited on the wall of the MMA/MAA bottom layer where no additional low dose 
exposure has taken place. This metal is removed during the lift off. 
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3 Reactive ion etching of the polyimide layer 
 

To obtain the suspended bridge the polyimide is isotropically dried etched in a 

reactive ion etcher. To ensure the isotropic etching, the sample is maintained at 200°C 

during the etching. 

The plasma conditions were the following: 

A flow of 50 sccm O2 and 5 sccm SF6 at a total pressure of 0.3 mbar and an auto-

polarization voltage of 25 V. 

The vertical etching depth is monitored by means of a laser interferometer. Etching 1 

µm vertically is sufficient to free the metallic bridge from the surface (see Figure 1). 

 

 

4 Embedding the break junction in an on-chip electromagnetic 

environment 
 

One of the great advantages of the nanofabricated mechanically controllable 

break junction technique is the possibility of embedding the junction in an on-chip 

electromagnetic environment. This is done by designing a specific pattern for the 

electron beam exposure, according to the electrical circuit one wishes to implement 

around the junction. The detailed fabrication procedures, very similar from one kind of 

chip to the other, are presented in the next subsections. 

 

 

4.1 Samples measured with the SQUID amplifier setup 
 

Resistors were made out of Au:Cu alloy (3:1 in weight) and capacitors were 

formed between the Au:Cu large pads and the metallic substrate, the dielectric being the 

polyimide layer. The chips were obtained with two lithography steps, with an 

intermediate alignment procedure. In the first step, the large pads, the resistors and 

alignment crosses were deposited in a Joule evaporator (1 nm Ti @ 0.1 nm/s, 60 nm 

Au:Cu @ 1nm/s). A few atomic layers of titanium are deposited before the Au:Cu alloy 

to increase its adhesion. After lift-off, a new bilayer is deposited on the single chip and 
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another lithography cycle is performed to obtain the aluminum bridge and the 

connections to the Au:Cu structures. It is possible to align the second lithography 

pattern on the Au:Cu structures because the bilayer is almost transparent to electrons, 

which allows for tracking the alignment crosses. Before depositing aluminum (100 nm 

@ 1 nm/s) in an electron gun evaporator, the Au:Cu structures are cleaned with an ion-

milling procedure to ensure good electric contact between the two layers. The ion-

milling is performed with ionized argon at an energy of 500 eV with a current density of 
-21 mA.cm∼  during 2 seconds. The next step is the etching of the polyimide layer. At 

last, a surface mounted component (resistor 25.3R = Ω ) is glued with silver epoxy on 

the substrate. 

 

The resistance per square of the 60 nm thick Au:Cu layer is 1.48 Ω  at 300 K and 

1.26 Ω  at 4.2 K. 

The measured resistances at 20 mK were 2 6.2r = Ω  and 7.4r = Ω . 

 

The relative dielectric constant of the polyimide has been measured at 300 K and at low 

frequency (1 kHz) was 3.2 (in good agreement with the value provided by HD 

Microsystems: 2.9). The expected capacitances were thus 100 pFC =  and 30 pFC′ =  

according to the surface of the pads and the thickness of the polyimide. 

 

4.2 Samples measured with the FET amplifier setup 
 

Instead of depositing a Au:Cu alloy in a Joule evaporator, Au (99.999% purity) 

was deposited in an electron gun evaporator in two different lithography steps. In the 

first step, a thin layer of gold was evaporated (1 nm Ti @ 0.1 nm/s, 30 nm Au @ 1 

nm/s) to fabricate the resistors. Then a thicker layer of gold was deposited (200 nm Au 

@ 1 nm/s) to form the large pads. Because the sample had to be processed in air 

between the two layers of gold, an ion-milling cleaning was performed before 

depositing the second gold layer. We use a thicker layer for the connecting pads because 

the connecting spring probes would damage the thin layer used to obtain the desired 

value of the resistors. Also, this thick gold layer provides extra volume for the electrons 

in the resistors to thermalize with the phonon bath. 
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At 20 mK, the resistance per square of the 30 nm thick Au layer is 0.27 Ω . 

The resistors r  were 500 nm wide, 70 µm long, leading to a resistance of 40 Ω∼ . 

 

According to their surface and to the polyimide thickness and dielectric constant, the 

expected capacitance C  of each large pad to the metallic substrate is 92 pF . 

 

 

4.3 Samples measured in the current phase relation experiment 
 

Gold was deposited (1 nm Ti @ 0.1 nm/s, 100 nm Au @ 1 nm/s) in an electron 

gun evaporator to fabricate the large pad forming the capacitor with the metallic 

substrate. In the second lithography step, aluminum was deposited at two different 

angles (0° and 55°) with an intermediate oxidation procedure. First, the metallic bridge 

and the first electrode of the tunnel junction are evaporated (100 nm Al @ 1 nm/s) 

perpendicularly to the substrate. Then the aluminum layer is oxidized under a total 

pressure of 8 mbar (15% O2, 85% Ar (mol)) for 10 minutes. Then the sample is tilted to 

55° and a second layer of aluminum (250 nm @ 1 nm/s) is deposited to form the top 

electrode of the tunnel junction. Because the width of the mask opening at the bridge 

constriction is 100 nm, equal to the thickness of the PMMA layer, the second image of 

the bridge consists of two disconnected electrodes. At the end, we are thus left with only 

one metallic bridge. 
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Appendix 2: SQUID amplifier as an ammeter 
 

In section 2.1, two ways of measuring the current in the contact were presented: 

either using a SQUID amplifier setup or using a FET amplifier setup. To measure small 

signals on small impedances, a SQUID amplifier [14, 15, 16] is better suited. The 

experimental setup using a FET amplifier was presented in detail in section 3. We now 

present the experimental setup in which the SQUID amplifier was used. 

 

 

1 Presentation of the experimental setup 
 

The experimental setup depicted on Figure 18 was used in the Shapiro resonance 

experiment to measure IV  characteristics of atomic contacts in presence of 

microwaves. As in the experimental setup presented in section 3, the requirement is to 

voltage bias the contact. The voltage bias is produced by feeding a current into the shunt 

resistor R  in nearly the same way as in the setup depicted on Figure 15. The difference 

is the wiring: instead of using a twisted pair, a coaxial line was used to bias the sample, 

with a lossy part from 4 K to 20 mK and a microfabricated filter was placed at 4 K to 

prevent noise from reaching the contact. We had to use a coaxial line because all the 

lossy twisted pair lines from 300 K to 1K were used (3 for the SQUID amplifier and one 

for the measuring the voltage SV  (see Figure 18). 

 

Instead of measuring the voltage drop across a resistor in series with the atomic contact, 

a fraction input coilI  of the current in the atomic contact is diverted into the input coil of a 

SQUID amplifier and measured. In this setup, the other measured quantity is not the 

voltage across the contact directly, but rather the voltage SV  across the shunt resistor R . 

The voltage V  across the junction and the current I  through the junction are then 

deduced using: 
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The values of the three resistors r , 2r  and 3r  have to be known with precision to deduce 

the IV  characteristic of the contact. Before turning to the principle of operation of the 

SQUID amplifier, we present the measurement procedure of these resistors. 

The resistance 3r  of the twisted pair line going from the sample to the input coil of the 

SQUID amplifier was measured independently at low temperature. 

The resistor R  is a surface mounted component that can be calibrated in situ by fully 

opening the contact. In this configuration, all the bias current flows in the resistor R  

and the voltage drop is measured across it. 

The resistors r  and 2r  can be measured in the supercurrent branch of a contact with 

large critical current. As long as the contact stays on its supercurrent branch ( 0V = ), 

( )( )2 3// //S BV R r r r I= + . We can therefore obtain the value of the ( )2 3//r r r+  resistor 

combination. Then 2r  is deduced from the following equality: 

( )
3

2 3 2

1
// B input coil

rR I I
R r r r r

⎛ ⎞
= +⎜ ⎟+ + ⎝ ⎠

. 

The left hand side is the current I  expressed as the division of the bias current BI  into 

two branches. 

At last, r  is deduced from the value of the ( )2 3//r r r+  combination, using 2r  and 3r  

previously measured. 

 

At low temperatures, the measured values of the various resistors are: 25.3R = Ω , 

7.4r = Ω , 2 6.2r = Ω , 3 12.8r = Ω . 
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Figure 18: Experimental setup used for the measurement of Shapiro resonances with a 
SQUID as an ammeter. For biasing the sample, a coaxial line with a lossy part between 
4 K and 20 mK is used. A microfabricated filter (dc resistance 1 kΩ∼ ) has been placed 
at 4 K, a refrigerator stage with sufficient cooling power to absorb the heat produced 
by Joule effect. The voltage SV  is measured with a lossy shielded twisted pair line to 
avoid thermoelectric voltages. 
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2 Principle of operation of the SQUID amplifier 
 

A SQUID amplifier is well suited to measure small signals on small impedances. 

Indeed, the key figures of such an amplifier is the current noise - typically 1 pA/ Hz  

referred to input -, and the extremely low voltage noise in the standard conditions of 

operation. 

 

The principle of operation of this amplifier is the following. The SQUID array (100 

SQUID’s in series) is biased by a constant current I . The current one wishes to 

measure is fed into the input coil and produces a flux, coupled to the squid array with 

the constant -1
021.06 µA/INM φ=  ( ( )0 2h eφ = ). When the current changes in the input 

coil, a feedback electronics maintains the voltage across the SQUID array at a constant 

value by driving a current in the feedback coil to cancel the flux produced by the input 

coil. This feedback coil is coupled to the SQUID array with a constant 
1

0221.1 µA/FBM φ− = . 

The difference in the mutual inductances is essentially due to the difference in the 

number of turns of each coil. Each mutual can easily be calibrated. 

Therefore, the current in the feedback coil, which is easy to measure, is an image of the 

input coil current, which is what we are actually interested in. 

 

The IV  of the array of 100N =  SQUID’s is shown on Figure 19. Each squid is dc 

shunted by a small resistor of the order of 1 Ω  to avoid hysteresis on the IV  

characteristic of the array. The tunnel junctions are in niobium which has a 

superconducting gap 1.4 meV∆ = . The advantage of taking 100 SQUID’s and not only 

one is that the voltage on which the feedback is performed is hundred times larger. 
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Figure 19: IV  characteristic of the array of 100 SQUID’s at zero flux. I ∗  is the bias 
current that maximizes the voltage modulation by the magnetic flux. This current I ∗  
corresponds to a voltage 0V  on the SQUID’s IV  characteristic. 

 

 

To operate the amplifier at its maximum of sensitivity, one has to set it in a 

configuration of maximum Vγ
φ

∂
=
∂

. To maximize γ  one first has to find the value I ∗  

of the bias current I  that maximizes the voltage modulation with respect to the flux. 

The modulation curve is shown on Figure 20. Then, the feedback setpoint SPV  on the 

voltage across the array has to be chosen at the maximum slope of the ( )V φ  (see Figure 

20). A typical value for γ  is 04 mV/φ . 
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Figure 20: Modulation of the voltage across the SQUID array as a function of the flux 
threading each of the 100 SQUID’s. 0V  is the voltage corresponding to the biasing 
current I ∗  at zero flux (see Figure 19). The feedback is performed on the voltage across 
the SQUID array after amplification by a gain 1G  (see Figure 21). 

 

 

3 Feedback electronics 
 

When the amplifier is operating, i.e. in feedback mode, the monitored quantity is 

the voltage on the bias resistor FBR  of the feedback coil. This voltage is proportional to 

the current in the input coil. This section is devoted to the analysis of the frequency 

response of the feedback electronics, whose schematic representation is shown on 

Figure 21. We use the standard formalism of the Laplace transforms to describe the gain 

of the different elements in the frequency domain. 
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Figure 21: Schematic representation of the feedback electronics. The gain of the 
amplifiers are given within the Laplace transform formalism. 

 

The feedback is performed on the voltage across the SQUID array after amplification by 

a gain 1G . The setpoint of the feedback is SPV . The integrator amplifier, characterized 

by its gain ( )2
1G p A
pτ

= +  in the frequency domain, tries to maintain the difference 

1 SPGV V−  close to zero. τ  is the time constant of the integrator amplifier. 

 

In feedback mode, when the flux produced by the input coil changes, the electronics 

changes the current in the feedback coil to compensate for the flux variation, according 

to: 

( )FB FB INGδφ δφ δφ= + , 

 

where ( )G p  is the transfer function with the feedback loop open. 

 

( ) ( )1 2
1 1

FB
FB

G p G G p M K A
R p

γ
τ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
 with 1

1
FB

FB

K G M
R

γ=  

 

The parameters entering in ( )G p  are self-explained on Figure 21. The transfer function 

with the feedback loop closed thus writes: 
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( ) ( )
( )1

FB

IN

G p
F p

G p
δφ
δφ

= =
−

. 

 

( )
0

lim 1
p

F p
→

= − : At low frequency ( 0p → ), the feedback electronics can follow 

perfectly the variations of the flux of the input coil; FB INδφ δφ= − . 

 

( )lim
1p

KAF p
KA→∞

=
−

: At too high frequency ( p →∞ ), the feedback loop cannot follow 

the variations of the flux of the input coil any longer; 
1FB IN

KA
KA

δφ δφ=
−

. 

 

The cut-off frequency cf  is given by 2p π  with p  satisfying ( ) 1G p = . 

2 22 1
c

Kf
A Kπτ

=
−

. 

Typical values of the parameter are: 

1.8K ≈  (with 1 kΩFBR = ) 

0.047A ≈  
60.94 10 sτ −≈ ×  

 

Therefore:    0.3 MHzcf ≈  

 

In practice, the amplifier has been used at much lower frequencies (~ 1 kHz) because of 

the heavy filtering that was placed on the lines of the amplifier. 

 

 

4 Wiring of the amplifier 
 

In the experiment, the SQUID amplifier was placed at the 1K pot in the cryostat. 

The wiring of the amplifier is sketched on Figure 22. The four lines connected to the 

amplifier are lossy shielded twisted pairs. The inner conductors of the twisted pair going 

from the sample to the input coil are polyimide coated 0.2 mm diameter manganin wires 
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(15 /mΩ , 7 Ω  per wire) inside a stainless steel capillary shield ( int 0.7 mmφ =  and 

ext 1 mmφ = ). 

 

The amplifier of gain 1 100G  (see Figure 21 and Figure 22) is a low noise battery 

powered differential preamplifier (NF LI-75A). The amplifier used to monitor the 

feedback signal is a low noise battery powered differential amplifier of variable gain 

(Stanford SR560) (see Figure 22). In the experiments, the feedback monitor signal (see 

Figure 21 and Figure 22) is digitized by a Nicolet Pro 44 oscilloscope and transfer to a 

PC for treatment. 
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Figure 22: Wiring of the SQUID amplifier thermally anchored at the 1 K pot of the 
dilution refrigerator. The SQUID array is placed in a Nb shielded box to screen the 
external flux. All the lines arriving on the SQUID array and the two coils are lossy 
shielded twisted pairs. 
 

 

 

 

 



 266 

 

Appendix 3: Wiring of the cryostat 
 

The cryostat is equipped with 4 shielded twisted pairs and 3 coaxial lines. 

 

• Shielded twisted pairs 

 

The inner conductors of three twisted pairs going from 300 K to 1K are polyimide 

coated 0.1 mm diameter manganin wires ( 60 /mΩ , 70 Ω  per wire at room temperature) 

inside a stainless steel capillary shield ( int 0.4 mmφ =  and ext 1.0 mmφ = ). The inner 

conductors of those going from 1 K to 20 mK are 0.05 mm diameter manganin wires 

( 240 /mΩ , 130 Ω  per wire) inside a int 0.2 mmφ = , ext 0.7 mmφ =  shield. The 

resistivity of the manganin doesn’t change much with temperature: ( )
( )
300 K

1.1
4.2 K

ρ
ρ

= . 

The inner conductors of the fourth twisted pair going from 300 K to 1K are polyimide 

coated 0.18 mm diameter manganin wires (18.5 /mΩ , 20 Ω  per wire) inside a Cu-Ni 

capillary shield ( int 0.7 mmφ =  and ext 1.0 mmφ = ). 

 

• Coaxial lines 

 

All coaxial lines lines from 300 K to 4 K are microwave lines. They are characterized 

by low losses and a 50 Ω  characteristic impedance. From 4 K to 20 mK, there are two 

microwave lines and one lossy coaxial line. The inner conductor is polyimide coated 

0.05 mm diameter manganin wire ( 240 /mΩ , 130 Ω  per wire) inside a stainless steel 

capillary shield ( int 0.2 mmφ = , ext 0.7 mmφ = ). 

 

The lossy lines (shielded twisted pair and coaxial) are used to transmit low frequency 

signals. The microwave lines have a bandwidth of 20 GHz. 

All the lines have been designed to minimize the heat flow into the coldest part of the 

cryostat and are carefully thermally anchored at the different stages of the cryostat. 

To minimize the electromagnetic noise reaching the contact, filters and attenuators are 

placed along the lines. 
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The lossy lines act as distributed RC filters (100 pF/m to the ground for each of the 

inner conductors) and prevent high frequency noise from reaching the sample. With the 

1 kΩ  (resp. 10 kΩ ) resistors placed at 1K (see Figure 15), they form RC filters with a 

cut-off frequency of 10 MHz (resp. 1 MHz). 

 

Microfabricated distributed RC filters [17] (cut-off frequency: 50 kHz) shaped as 

meander lines are inserted in the lossy lines. They have a dc resistance of the order of 

1 kΩ  on each wire of the pair. 

 



 268 

 

References of chapter 5 
 

 

                                                 

[1] R. Cron, Atomic Contacts: a Test-Bed for Mesoscopic Physics, Ph.D. thesis, 

Université Paris 6 (2001); 

http://www-

drecam.cea.fr/drecam/spec/Pres/Quantro/Qsite/archives/theses/RCronThesis.pdf. 

[2] I. K. Yanson, Zh. Eksp. Teor. Fiz. 66, 1035 (1974) translated in Sov. Phys. JETP 39, 

506 (1974). 

[3] A. G. M. Jansen, A. P. van Gelder, and P. Wyder, J. Phys. C: Solid St. Phys. 13, 

6073 (1980). 

[4] G. Binnig, H. Rohrer, C. Gerber, and E. Weibl, Appl. Phys. Lett. 40, 178 (1982). 

[5] D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature 352, 600 (1991). 

[6] J. M. van Ruitenbeek, in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. 

Kouwenhoven, and G. Schön (Kluwer, Dordrecht, 1997). 

[7] C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Physica C 191, 485 (1992). 

[8] G. Rubio-Bollinger, P. Joyez, and N. Agraït, Phys. Rev. Lett. 93, 116803 (2004). 

[9] J. M. van Ruitenbeek et al., Rev. Sci. Instrum. 67, 108 (1996). 

[10] F. C. Wellstood, C. Urbina, and John Clarke, Phys. Rev. B 49 5942 (1994). 

[11] M. F. Goffman et al., Phys. Rev. Lett. 85, 170 (2000). 

[12] J. J. Riquelme, L. de la Vega, A. Levy Yeyati, N. Agraït, A. Martin-Rodero and G. 

Rubio-Bollinger, Europhys. Lett. 70 (5), 663 (2005). 

[13] J. C. Cuevas, A. Martín-Rodero, and A. Levy Yeyati, Phys. Rev. B 54, 7366 

(1996). 

[14] R. P. Welty and J. M. Martinis, IEEE Trans. Magn. 27, 2924 (1991). 

[15] M. E. Huber et al., Appl. Supercond. 5, 425 (1998). 

[16] A. Steinbach et al., Phys. Rev. Lett. 87, 137003 (2001). 

[17] D. Vion et al., J. Appl. Phys. 77, 2519 (1995). 




