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1.1 Kondo effect 11

1.1 Kondo effect

1.1.1 Metals with impurities

Conduction electrons in normal metals behave as weakly coupled (interacting) quasi-
particles. A good description is provided by the theory of Fermi liquid developed by
L. Landau. Considering normal metals containing impurities it was shown that in the
framework of the Fermi liquid description the electric resistivity of the metal sample
drops when temperature decreases. The resistance starts saturating as temperature is
lowered below about 10 K due to static defects in the material. Generally the temper-
ature dependence of the resistance is given by

ρ(T ) = ρ0

(
1 + aT 2

)
(1.1)

where ρ0 is the zero-temperature conductance. ρ0 comes essentially from the scattering
of conduction electrons by static impurities while the quadratic term is due to other
types of scattering processes, like the scattering of electrons by electrons or by lattice
vibrations, which becomes weaker and weaker as temperature is lowered. The value of
the low-temperature resistance depends on the number of defects in the metallic sample
but the character of the temperature dependence remains the same. Some metals,
however, can have their electric resistance dropped at low temperature and become
superconducting. In our work we will not consider the case of superconducting metals
and focus instead on normal metals.

However the low-temperature behavior changes drastically when magnetic atoms are
added. The electronic shells of these atoms correspond to only partially filled outer d
or f shells and may have nonzero net magnetic moment, such as for example cobalt,
27Co, iron, 26Fe, or manganese 25Mn. The resistance of this alloys first decreases and
then increases as temperature is lowered. The origin of this increase of the resistance
has been the subject of many theoretical studies. It was established experimentally that
the minimum appears when and only when the alloy contains magnetic impurities, the
resistance minimum is thus a universal phenomenon of dilute magnetic alloys. Another
important point was clarified later on through the measurements of the resistance of
diluted alloys with an impurity concentration less than 0.1 at.%. This result showed
that the residual resistance is proportional to the impurity concentration and increases
as temperature is lowered. Thus it was established that the phenomenon is a single
impurity effect rather than due to the interaction between impurities.

To summarize, any theoretical analysis is confronted with three main obstacles. The
first one is the resistance increase when temperature is lowered. Any source of electron
scattering should vanish as temperature is lowered and the scattering probability should
decrease in metals except in very special cases. The second one is the fact that residual
resistance is not a constant but varies at very low temperatures. The origin of the
corresponding energy scale was not clear. The third difficulty is the universality of the
phenomenon. A large number of alloys were tested experimentally and all lead to the
similar results. From the latter reason one expect the model to be relatively simple and
very general, universal for all magnetic alloys. In fact, the standard model introduced



12 Chapter 1. General introduction

Figure 1.1: Temperature dependence of the resistivity of pure metal (Cu) and dilute
magnetic alloy [1].

to describe localized moments in a metal is the so-called s–d model, which was treated
extensively and found to give a monotonic decrease of the resistance below the Neel
temperature [2, 3].

1.1.2 Scattering by impurities

In the case of the scattering by impurities which do not own any internal degree of
freedom, as for example for the scattering by a potential

∑

i

v(r − Ri) (1.2)

the scattering can be analyzed in terms of a one-particle problem since each electron
sees the same scattering potential. The situation is very different when the scatterer
owns internal degrees of freedom as, for example, spin or orbital degeneracy. After each
scattering event the ground state of the scatterer and therefore the potential seen by the
electrons may change. Correlations between electrons are introduced and the problem,
thus, is no longer a one-particle but rather a many-body problem. In addition to the
potential expressed in Eq.1.2 the interaction energy of an electron with a magnetic atom
contains a coupling term between the spins σ and S of the conduction electron and the
impurity. It can be written in the framework of the s-d model

Vs = −(J/n)
∑

i

σ · Si δ(r − Ri) (1.3)
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Figure 1.2: Temperature dependence of the resistivity for different concentrations of
impurity atoms - comparison between experiment (circles) and theory (curves) [4].

The coefficient J has the dimension of energy. J is several times lower than the electron
energies, which are of the order of µ, whereas the usual spin-independent interaction of
an electron with an impurity atom is of the order of µ. The latter interactions do not
interfere in the scattering probability and one may consider them separately.

The spin part of the interaction gives a contribution of the order of J2S2/µ2 to
the scattering probability with respect to the usual interaction. It seems that this is
a small effect which can be neglected. It is known that usually the interaction is not
weak and one has to take into account higher order terms in the calculation of the
scattering probability. However, more detailed calculations in this case show that the
result remains similar.

The situation is rather different for the spin-dependent part of the interaction. Al-
though it is smaller than the spinless part there is nevertheless a significant difference.
The importance of the higher order corrections was first shown by Jun Kondo [4]. The
point is that the interaction described in Eq.1.3 corresponds to the physical process in
which the electron spin can flip together with a simultaneous spin-flip of the impurity.
When an electron is scattered off an usual atom its spin keeps its orientation. The
correction appears to be dependent on the energy of electron leading to a temperature
dependence of the resistance. Jun Kondo showed that the minimum of the resistance is
due to the process of spin exchange between free electrons and the localized impurity.
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The scattering probability calculated at the third order in J is proportional to log T as
a result of the non-commutativity of the spin operators. The sign of this log T term
depends on the sign of J . The scattering amplitude decreases for positive values of J
and increases if J < 0. This effect has a physical explanation. If J > 0, then the
interaction is of ferromagnetic type and favors the parallel alignment of spins σ and S.
In this case the spin-flip scattering is suppressed and the scattering amplitude (and thus
the resistance) decreases with temperature. Conversely, for negative J the interaction is
antiferromagnetic and the processes with a flip of electron spins are now possible. This
leads to an increase of the resistance when the temperature is lowered.

At high temperatures the main contribution to the resistance is due to electron-
phonon scattering. The thermal dependence of the resistance is given by

ρ = ρv + cm a ln
µ

T
+ bT 5 (1.4)

where cm is the atomic concentration of magnetic impurities, a and b are constants and
ρv is the contribution to the resistivity brought by the potential scattering. The latter
term, resulting from the electron-phonon interaction, increases with temperature. The
interplay between the two last contributions gives rise to a minimum in the resistance
as a function of temperature at Tmin given by

Tmin =
[cm a

5b

]1/5

(1.5)

As can be seen Tmin is proportional to c
1/5
m and hence weakly depends on cm. J. Kondo

have also shown that the scattering cross-section obtained by perturbation expansion
diverges as a given temperature. The temperature at which the logarithmic term in the
perturbation expansion becomes large is given by

TK ∼ (Jµ)1/2 exp

[
− n

|J | ν(µ)

]
(1.6)

where ν(µ) is the electron density of states at the Fermi level. This temperature is called
the Kondo temperature.

The physical phenomena related to this process are known as the Kondo effect

whereas the class of theoretical models proposed to describe this effect are called -
the Kondo models. Since then the properties of Kondo systems have intensively been
studied. A complete and detailed overview of this question can be found in the book of
A.Hewson [5].

Earlier, in the late 50s the concept of ”virtual bound state” was introduced by
J.Friedel. These are states which are almost localized due to the resonant scattering
by the impurity. This idea was developed later on by P.W. Anderson (1963) in a
paper in which he proposed the ”Anderson model” [6]. This model has then played a
very important role. The model contains, in addition to the resonance at the impurity
site, a strong on-site interaction arising from the Coulomb repulsion between impurity
electrons. This interaction is responsible for the formation of a localized magnetic
moment at the impurity site. For the calculation of the resistance, Kondo assumed
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(it was the intrinsic property of the model considered) a local magnetic moment to be
associated with the spin S. The Anderson model is more general than the s-d model –
the latter can be deduced from the former in a given limit. The transformation mapping
the Anderson Hamiltonian to the s–d (or Kondo) hamiltonian can be performed using
unitary operators. It is known as the Schrieffer-Wolff (canonical) transformation (1966).

1.1.3 Kondo effect at low temperatures

1.1.3.a Perturbation expansion

Perturbation theory expansion in J leads to unphysical predictions such as a divergence
of the resistivity at T = 0. The summation of the infinite series of leading order
logarithmically divergent terms was performed by A.A.Abrikosov [7]. His result extends
the calculation of J. Kondo. The expression that he gets for the resistivity leads to
reliable results for the ferromagnetic case J > 0. For the antiferromagnetic case, J < 0,
the resistance becomes infinite at the Kondo temperature TK . The divergence of the
resistance results from the formation of a singlet state (Kondo singlet) between the
spins of the conduction electrons and the spin of the impurity [8]. In other words,
it corresponds to a complete screening of the impurity by the conduction electrons
surrounding it, forming what is called the ”Kondo cloud”.

Perturbation theory provides a good description of the magnetic impurity systems
for T ≫ TK but the expansion breaks down at T ≪ TK . The perturbation expansion
predicts a log T -form for the resistance at low temperatures while experimental studies
show that both thermodynamic and transport quantities give power laws in T . The
resistivity, for example, deviates from its T = 0 value by T 2 terms. Non-perturbative
techniques are required to investigate the low-T regime.

1.1.3.b Scaling

In the late 60s Anderson and coworkers introduced a new theoretical framework based
on the ideas of scaling [9, 10]. They proposed to perturbatively eliminate higher-order
excitations allowing then to derive an effective model valid at low energy scales. The
width of the conduction band in this method is gradually reduced so that finally only
low-energy excitations are allowed. This procedure generates a set of effective models,
each one characterized by its own coupling J . Additional couplings are also generated
in this procedure but most of them are ”small” and can be neglected. Thus the coupling
J varies with the width of the conduction band: J = J(D). The scaling approach leads
to the concept of the existence of fixed point when J(D) becomes scaling-invariant. The
system is then described by the fixed point corresponding to the value of J∗ = J(D′)
where D′ is defined from

[
d J(D)

dD

]

D=D′

= 0. (1.7)

The scaling approach leads to an increase of the effective coupling strength between
the spins of conduction electron and of the impurity when D decreases, allowing one
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Figure 1.3: Formation of the spin singlet complex at low temperatures. Magnetic impu-
rity virtually traps one conduction electron in order to compensate its magnetic moment.

to describe the low temperature behavior of the system. The perturbation approach
breaks down when J becomes too large but Anderson assumed that the approach is still
valid at very low temperatures, T → 0. If the scaling is pursued further, the coupling J
increases to infinity as D is reduced. Such a scaling behavior implies the formation of a
ground state with an infinite coupling in which the impurity is bound to the conduction
electrons in a spin singlet state. The behavior at low temperatures is similar to that of
a non-magnetic impurity, Fig.1.3.

An outstanding result of the scaling approach is that each set of effective models is
characterized by a single energy scale, TK , which is a scaling invariant. Systems with
different values of the parameters J and D but with the same TK = TK(J,D) exhibit
the same low energy behavior. Hence, for example, the low-temperature dependence of
the resistance is given by

ρ(T ) = F

(
T

TK

)
(1.8)

where F (x) is a universal function.

1.1.3.c Numerical renormalization group approaches

An important contribution was made by K.G.Wilson. He developed a non-perturbative
method - the numerical renormalization group approach (NRG). Wilson combined the
renormalization group ideas coming from field theory with scaling arguments derived
from condensed matter physics. He was then able to confirm Anderson’s hypotheses
[11, 12]. Wilson, after solving numerous technical problems, obtained the solution for the
ground state and the low-energy excitations of the s-d (Kondo) model with impurity spin
S = 1

2
. One of the more spectacular results concerns the value of the ratio χ/γ (where

χ is the magnetic susceptibility and γ is the low temperature specific heat coefficient)
named since then as the Wilson ratio. The value of this ratio was found to be twice the
value of non-interacting electrons.
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1.1.3.d Local Fermi liquid

P. Nozières gave an interpretation of Wilson’s low temperature results in terms of a
Landau Fermi liquid theory [13]. At low temperatures T ≪ TK the impurity spin is
completely screened, i.e. the total spin of the composite formed by the impurity and
the screening conduction electrons is zero. This composite induces polarizability effects.
One electron polarizes the composite and then this polarized composite acts on another
electron. This mechanism provides an indirect interaction between conduction electrons
located in the vicinity of the composite. Therefore, an interaction is induced between
conduction electrons leading to the formation of a local Fermi liquid. The problem of
the magnetic impurity coupled to a gas of non-interacting electrons is then replaced
by that of quasiparticles interacting through the non-magnetic composite. The latter
interaction is local, acting at the site of the impurity hence the name of ”local Fermi
liquid”.

Within this description Nozières gave a simple derivation of the χ/γ result as well
as an exact calculation of the T 2 coefficient for the resistivity. In a phenomenological
way Nozières incorporated in his Fermi liquid description the values of the parameters
extracted from Wilson’s calculations in the Fermi liquid description.

1.1.3.e Bethe-Ansatz

In the early 80s N. Andrei [14, 15] and independently P.B. Wiegmann [16, 17] showed
that the Kondo model is an integrable model and found the exact solution using the
Bethe-Ansatz. They derived a set of integral equations the resolution of which allows
them to derive the temperature behavior of thermodynamic quantities over the whole
range of temperatures. This result confirmed Wilson’s calculations. More importantly
the method proved to be generalizable to other models like, for example, Anderson
model. Most of the models proposed for the description of dilute magnetic alloys were
proved to be integrable. Let us remind that the Bethe ansatz method, originally pro-
posed to solve the 1D Heisenberg model, was used to solve other one-dimensional models.
The condition behind is that only the electronic waves of s-wave symmetry contribute
to the scattering off the Kondo impurity (s-wave scattering). Then the problem can be
reduced to an effective 1D problem.

1.1.3.f Large-N approach

In order to discuss the results obtained by various experimental techniques is physi-
cal systems, such as photoemission and neutron scattering experiments, the dynamic
response functions are required. These functions can not be calculated in the frame-
work of the Bethe anzats. Many approximate techniques then were developed based on
large-N approaches where N is the degeneracy of the localized states. In some physical
systems the degeneracy of the localized state can be as large as N = 6 for Ce or N = 8
for Y b. Asymptotically this description gives the exact result in the limit N → ∞.
At finite N , one needs to introduce 1/N (or (1/N)2) corrections. This is done by ac-
counting for the gaussian fluctuations around the mean field solution, or using other
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variational or diagrammatic techniques. These methods were used to calculate the one
electron density of states and the dynamic susceptibility. What was clearly shown was
the formation of a very narrow many-body resonance in the density of states at the
Fermi level in the Kondo regime (known as the Kondo resonance). This resonance is
responsible for the anomalous low-temperature behavior of many physical quantities.

1.1.4 Universality and crossover

One of the most essential property of the Kondo effect is the universality. It was found
that all physical quantities are universal functions of energy (T or H for example)
renormalized by the Kondo temperature TK : T/TK , H/TK ... when the conduction
bandwidth D is the largest energy scale of the problem. This property implies that
in a set of experimental systems corresponding to different values of parameters, the
measured physical quantities exhibit the same (universal) behavior as a functions of
renormalized variables T/TK or H/TK .

Therefore, the Kondo temperature is the only energy scale of the problem at low
temperatures. This energy scale defines the range of applicability of the perturbation
expansion. TK , is neither a property of the host metal nor of the impurity atoms
but is generated dynamically by the interaction between them. In the intermediate
temperature regime, T ∼ TK , which separates the low-energy Kondo regime from the
high-temperature (perturbative) regime, the properties of the system change gradually
around TK defining the crossover as a contrast to a phase transition.

1.1.5 Phase shift

Since the impurity is local each quasiparticle state in the electron system is characterized
by a given phase shift, δ. All the physical properties of the model at zero temperature
can be expressed in terms of this quantity. Thus the phase shift is one of the most
fundamental quantity of the model allowing to describe the zero temperature behavior.
In dilute magnetic alloys, i.e. for magnetic impurities imbedded in a bulk metal, the
direct observation of the phase shift is out of scope.

As we will see later on the scattering phase can not be obtained from simple trans-
port experiments where only conductance (or resistivity) is measured. Only indirect
observation is possible. At very low temperatures the effective coupling between the
spin of an impurity and the spin of conduction electrons becomes infinite. As a result
the scattering crossection reaches its maximum value at T = 0 (this regime is often
named as the unitary limit). The phase shift then is supposed to be equal to π

2
in order

to ensure the maximum of the resistivity. A direct measurement of the phase shift has
become possible in quantum dots thanks to combined progress realized in nanofabrica-
tion and quantum interferometry. The results obtained in a series of recent experiments
do not confirm the expected value. These results gave us the motivation for the study
undertaken in this thesis.

We will present in the next section the different experiments carried out to measure
the phase shift.
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1.2 Measuring the electron transmission phase

Landauer showed [18, 19, 20] that a tunnelling event can be considered as a scattering
experiment. In the case of a single plane wave scattered by a center, the conductance
is shown to be proportional to the square of the magnitude of the transmission ampli-
tude of the scatterer. It is therefore obvious that the difference of phase between the
incoming and outgoing electron waves can not be measured in a transport experiment.
In coherent processes, the phase of the transmission amplitude plays a role and brings
additional information which is not contained in conductance measurements. The phase
can be determined by using Aharonov-Bohm effect which directly probes both the trans-
mission amplitude and probability provided that transport is coherent. In general, the
Aharonov-Bohm ring conductance shows oscillations as a function of a magnetic field
penetrating its inner core, with a periodicity equal to one flux quantum h/e. One thus
expects these oscillations to persist when a quantum dot is embedded to one of the arms
of Aharonov-Bohm ring as soon as transmission through the quantum dot is coherent.

The idea and the practical implementation of devices for measuring the electron
transmission phase through a quantum dot was developed in a series of ingenious experi-
ments [21],[22] at the Weizmann Institute. The experiments utilized an Aharonov–Bohm
(AB) ring with a quantum dot embedded in one of its arms. The measurements of the
electron phase revealed a number of unexpected results. The technique for measuring
the electron phase and the main experimental results are described in this section.

1.2.1 Quantum dots

The interest in measuring the transmission phase resulting from the scattering off a
quantum dot is due to certain similarities existing between real atoms and quantum
dots in their electronic properties. A quantum dot can be viewed as a large atom [23,
24, 25, 26, 27, 28] the radius of which is of the order of a few hundreds of nm, containing
up to a few hundreds of electrons. As it is dictated by quantum mechanics, particles
confined in a finite-size box have a discrete energy spectrum with spacing proportional
to (1/L)D where L is the characteristic size of the system and D its dimensionality.
The energy spectrum of the dot is constituted by single particle levels, each one being
broadened due to tunnelling into and out of the quantum dot. Because of its small
electric capacitance the addition of an extra electron into the quantum dot requires a
relatively large energy, named as the charging energy e2/2C where C is the capacitance
of the dot. As a result the states corresponding to different values of occupation of
the quantum dot, appear to be separated by a large energy gap (with the exception for
the case of resonances - when the quantum dot is in a mixed state between |N〉 and
|N + 1〉). Thus the total charge located in the dot is a well defined integer number. It
may happen that the quantum dot is occupied by an odd number of electrons. This
implies a non-zero total magnetic moment in the quantum dot. A quantum dot in this
case behaves as a (atomic-type) magnetic impurity embedded in a host metal.

The quantum dots turn out to be tunable devices. The corresponding parameters,
which are out of control in the case of magnetic impurities in bulk metals can now be
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Figure 1.4: Left: Scanning electron microscope image of a typical quantum dot (top
view). The black regions indicate the 2DEG, gray regions indicate the metal gates [29].
Right: Schematic representation of quantum a dot structure.

tuned experimentally, opening the way to systematic study of the underlying physics.

A typical quantum dot is represented in Fig.1.4 (left). The experimental setup was
realized on the top of a GaAs–AlGaAs heterostructure supporting a two-dimensional
electron gas (2DEG). The quantum dot was designed by depositing metal gates on the
surface of the heterostructure and subsequently biasing them negatively in order to
deplete the electron gas underneath. The dot is connected to the source and the drain
via quantum point contacts. A bias voltage, the difference in potential between the
source and the drain, can be applied resulting in a current flow through the dot. The
conductance of the dot can be adjusted by tuning the lateral gate voltage (upper and
lower gates on the left side of Fig.1.4(Left)) which control the transparency of these
quantum point contacts via the lateral gate voltages VgS and VgD. This set-up enables
a continuous variation of the dot’s resistance. A third gate (the central gate on the left
side of Fig.1.4(Left)) controls the area and the electrostatic potential in the dot. The
dot is about 100×100 nm in size. The quantum dot has usually a very small capacitance
C corresponding to a large charging energy e2/2C - the energy which is necessary to
add (or remove) one electron in (from) the dot.

Quantum dots can be modelled as schematized in Fig.1.4 (right). The central region,
which corresponds to the dot (see Fif.1.4 (left)), displays a discrete energy spectrum.
It is coupled via tunnel barriers to the source and the drain which are modelled by
Fermi seas. It is possible to make a one-to-one correspondence between the parameters
of this model and the experimental parameters. The energy of the localized level in
the dot, ε0, is equivalent to the gate voltage, VG. Further, the relation between them
is assumed to be linear. By tuning the gate voltage one adjusts the level position in
the dot relatively to the chemical potentials in the leads. Once the dot contains N
electrons it costs U to add another electron to the dot, where U = e2/2C is the charging
energy. The rates at which electrons enter and leave the dot, ΓL and ΓR, are controlled
experimentally by tuning the lateral gate voltages, VgS and VgD. The bias voltage, VSD,
controls the difference between the chemical potentials in the left and right reservoirs,
i.e. VSD = e(µL − µR).
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Figure 1.5: (A) Conductance through the quantum dot as a function of gate voltage VG,
[30]. The quantum dot is either in a ”locked” (B) or an ”open” (C) regime.

1.2.2 Transport properties of the quantum dots

1.2.2.a Coulomb Blockade

When the Fermi energy in the leads, µ, lies within the gap between the topmost occupied,
ε0, and the first empty, ε0 +U , energy levels the number of electrons in the dot is almost
fixed, Fig.1.5(B). Putting an additional electron into the dot costs an extra energy
equal to the charging energy e2/2C where C is the capacitance of the device. When
temperature is low enough and the charging energy is large the probability of such an
event becomes small and the electron transfer from one to another reservoir is strongly
reduced. As a result the conductance through the quantum dot is almost zero [31]. The
transport through the dot is said to be locked.

By tuning the gate voltage one can align the energy of the localized level, ε0, with
the Fermi energy in the leads, µ, Fig.1.5(C). In this case the electrostatic energies of the
quantum dot with N or N + 1 electrons are equal. Such a degeneracy between different
charge states of a quantum dot allows the electron of one reservoir to tunnel through the
dot into the other reservoir. The charge transport is made possible leading to a finite
conductance through the dot. The calculations show that the conductance through the
quantum dot remaines finite in a narrow region of width Γ = ΓL + ΓR around µ or or a
thermal window of width T , depending whether Γ or T is the large energy scale.

Experimentally, when tuning continuously the gate voltage VG and measuring the
conductance of a quantum dot, one observes a series of high and narrow peaks separated
by valleys of almost zero conductance, Fig.1.5(A). The resulting oscillatory dependence
of the conductance G(VG) is the signature of the Coulomb Blockade effect. The dot
is then said to be in the Coulomb Blockade regime. The contrast between the con-
ductance in the Coulomb blockade valleys and resonances becomes larger and larger as
temperature is lowered. Conductance peaks correspond to values of the gate voltage
VG for which the energy of one of the localized levels in the dot is close to the Fermi
energy in the leads. For all the other values of VG the conductance is very low. When
VG continuously increases and the conductance passes a resonance, it means that one
electron is added to the dot. The neighboring valleys thus can be characterized by the
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Figure 1.6: Conductance as a function of VG for different temperatures. T ranges from
15 mK (black trace) up to 800 mK (red trace) [32].

number of electrons in the dot. The gate voltage VG effectively controls the occupation
of the dot. Depending on the parity of the occupation in the dot, one can distinguish
”even” or ”odd” conductance valleys.

As temperature increases the probability for one electron to tunnel through the
blockaded dot increases. The conductance in the valleys then increases with temperature
in both the ”even” and ”odd” conductance valleys. The peaks becomes larger and of
smaller height when temperature increases.

1.2.2.b Kondo effect in quantum dots

If an odd number of electrons occupies the dot, the total spin of the dot is necessarily
non-zero. It has a minimum value of S = 1

2
. This localized spin S, coupled to the source

and the drain, mimics the behavior of a localized magnetic impurity in the host metal.
As we will show later, these two systems are equivalent and many of Kondo phenomena
can be expected to occur in quantum dots.

One of the most distinct features between quantum dot and magnetic impurity in
metal is related to their different geometries. In real metals the magnetic impurities
scatter the conduction electrons which strongly contributes to the resistance. In a
quantum dot all the electrons have to travel through the scatterer, as there is no electrical
path around it. In this case the onset of a new scattering mechanism due to the Kondo
resonance contributes to the conductance. As the resistance in bulk metals in the Kondo
regime, the conductance of the quantum dot at low temperatures depends only on the
ratio T/TK , where TK is Kondo temperature.
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Figure 1.7: Conductance as a function of temperature for different values of gate voltage
VG. Plotted as functions of T/TK all the curves show a universal behavior [32].

The conductance of a quantum dot as a function of the gate voltage was measured
in the experiments of D.Goldhaber-Gordon et al. [32], Fig.1.6. For an even number
of electrons, the conductance decreases as the temperature is lowered from 0.8 K to
15 mK. This behavior indicates that there is no Kondo effect when the number of
electrons in the dot is even. In contrast, when the number of electrons is odd the
conductance of the dot increases when the temperature is lowered. Moreover, at lowest
temperatures the conductance approaches the quantum limit of conductance 2e2/h. In
terms of the scattering description of electronic transport, the quantum dot in the limit
T = 0 becomes completely transparent, the probability of an electron to be transmitted
from the source to the drain equals unity. The dot is said to be in the unitary limit
(UL) regime. In the low temperature limit the conductance measured at different values
of the gate voltage VG, i.e. different values of ε0, shows clearly different temperature
behavior. But plotted as a function of T/TK , all the curves lie on top of each other,
i.e. the experimental data exhibit universal behavior below TK . The three following
features — the asymmetry in the low-temperature behavior of the conductance between
the Coulomb blockade valleys of different parity; the increase of the conductance in
the ”odd” valleys reaching the unitary limit 2e2/h under some condition its universal
low-temperature behavior — constitute clear manifestations of the Kondo effect.

1.2.3 Two-terminal Interferometers. Experiment of Yacoby et
al. Phase locking.

The first experiment addressing the electron phase through a quantum dot was realized
by Yacoby et al. [21]. The experiment utilized a novel device (see Fig.1.8) to measure
the phase evolution through the dot against a reference phase which is supposed to be
fixed. The Aharonov-Bohm interferometer was composed of two arms forming the ring.
The quantum dot was inserted in one arm of an Aharonov–Bohm ring. The basic idea
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Figure 1.8: Electron micrograph of the Aharonov-Bohm interferometer used in the [21].
The black regions indicate the 2DEG, gray regions indicate the metal gates. Electrons
flow between source and drain through the left or the right arm of the Aharonov–Bohm
ring. The quantum dot is inserted in the left arm. The central metallic island is biased
via an air bridge (B) [21].

is to extract the transmission phase through the quantum dot from the phase of the
Aharonov–Bohm current collected at the drain. The dot was about 0.4µm × 0.5µm
in size. A special lithographic process, invoking a metallic air bridge (B), enabled to
contact the center metal gate that depleted the electrons underneath the ring’s center.
Each of the arms of the Aharonov-Bohm ring supported a few conducting modes. The
ring was connected to two external contacts, source (S) and drain (D), between which
a small voltage was applied.

The elastic mean free path in the two–dimensional electron gas was estimated to be
about 10 µm while the diameter of the Aharonov–Bohm ring was L ≈ 1− 1.5 µm. The
phase coherence length Lφ was larger than the ring’s circumference. The quantum dot
had a resistance of 1MΩ and a very small capacitance C ≈ 160 aF corresponding to the
charging energy e2/2C ≈ 0.5 meV . The dot contained around 200 electrons. The bare
average single–particle level spacing was ∆ ≈ 40 µeV . The experiment was performed
at a temperature around 100 mK corresponding to the thermal energy kT ≈ 9 µeV .
The intrinsic width Γ of the Coulomb peaks was estimated from the conductance peak
height to Γ ≈ 0.2 µeV . These scales imply that the quantum dot was in the Coulomb
blockade regime, and that the transmission at each Coulomb peak resulted from resonant
tunnelling through a single resonant level of the quantum dot.

The experiment [21] demonstrated for the first time that part of the tunnelling
current through a quantum dot is coherent. The experimental evidence is presented in
Fig.1.9. The figure shows the ring current as a function of the plunger voltage VP (also
often referred as the gate voltage, VG) for a fixed small source–drain voltage. The ring
current was obtained by subtracting from the total current across the ring – a large
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Figure 1.9: The ring current as a function of the plunger gate voltage. The large current
of the reference (right) arm has been subtracted. The top left part shows the Aharonov–
Bohm oscillations of the current as a function of magnetic field at fixed VP = Vm. In
the inset: oscillation contrast defined as the amplitude of the ring current oscillations
vs. the average current through the dot [21].

VP –independent background current due to the right arm. The Coulomb blockade in
the dot manifest itself in a series of sharp conductance peaks in the ring current at fixed
magnetic field. Fixing the voltage VP on the side of a current peak and sweeping the
magnetic field, one observes periodic current oscillations. The period of the oscillations
corresponds to one flux quantum threading the area of the ring, in very good agreement
with the expected period of Aharonov–Bohm oscillations, providing a direct indication
that transport through the quantum dot has a coherent component. The oscillation
contrast, defined as the peak–to–peak current over the average current, does not varies
much and is in the range 0.2 to 0.4.

In a next step, the current oscillations were investigated at different values of the
plunger voltage VP . A change in VP was expected to modify both the magnitude and the
phase of the transmission amplitude through the dot. The experiment was motivated
by the idea that the change in the transmission phase would be directly reflected in a
shift of the Aharonov–Bohm oscillations which, in turn, could be seen experimentally.
This one–to–one correspondence is suggested by the following argument: suppose the
ring and the leads support only one conducting channel. According to the Landauer
formula, the zero–temperature current between the leads is proportional to the ring
transmission coefficient |t(EF )|2 at the Fermi energy EF . For fully coherent transport,
t = tR exp(2πiΦ/Φ0) + tL, where tR and tL are the transmission amplitudes through
the right and the left arm, respectively, Φ is the flux through the ring and Φ0 the flux
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Figure 1.10: (a) A series of three Coulomb peaks and (b) the current oscillations mea-
sured at the marked points A, B, and C. All oscillations are seen to be in phase. The
large current of the reference (right) arm has been subtracted [21].

quantum. This leads to the interference term

2Re{tLt∗R exp(−2πiΦ/Φ0)} = 2|tR||tL| cos(ξL − ξR − 2πΦ/Φ0), (1.9)

where ξR = arg(tR), ξL = arg(tL). Any shift in the phase ξL−ξR should thus be directly
reflected in a shift of the Aharonov–Bohm oscillations.

The above argument turned out to be incorrect. It neglects multiple reflections
through the ring. The argument fails in particular for a two–terminal geometry, i.e. a
ring connected to two external leads. It was realized just after the experiments were
performed that Onsager relations valid for a two–terminal device restrict the phase of
the Aharonov–Bohm oscillations to either 0 or π, spoiling the correspondence between
the Aharonov–Bohm phase and the transmission phase through the quantum dot. This
property is general for systems where current is conserved and time-reversal symmetry
is satisfied [33]. Only abrupt jumps between the two allowed phase values are possible.
Physically, this is a direct result of the interference between the different paths that
traverse the ring. Nevertheless the idea of measuring the electron phase was later realized
in the multiple–terminal device of Schuster et al. [22].

Figure 1.10 shows the ring current and the Aharonov–Bohm oscillations measured
at three successive peaks. The oscillations at similar points (A, B, and C in the figure)
have the same Aharonov–Bohm phase. This repetition of the phase was found within the
whole sequence of Coulomb peaks (comprising 12 peaks) investigated in the experiment.
The evolution of the Aharonov–Bohm phase along a single Coulomb peak is displayed in
Fig. 1.11. Four different interference patterns taken at the points 1, 2, 3, and 4 specified
in Fig. 1.11(a) are shown in Fig. 1.11(b). The Aharonov–Bohm phase of the patterns
jumps by π as one sweeps through the peak. The jump happens abruptly between
the points 2 and 3. This can be seen in Fig. 1.11(c) which summarizes the phase
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Figure 1.11: Evolution of the Aharonov–Bohm phase through a current peak. (a)
Current as a function of gate voltage (or plunger voltage VP ≡ VG) at a current peak.
(b) A series of interference patterns taken at the points specified in (a). Note the
phase jump between patterns 2 and 3. (c) Phase measured at two peaks (circles and
triangles). The broken line is guide to the eye. The expected behavior of the quantum
dot transmission phase in a 1D resonant tunneling model is shown by the solid line [21].
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measurements along a Coulomb peak. The sharp jump in the measured Aharonov–
Bohm phase is in contradiction with the expected phase evolution of the transmission
amplitude assuming resonant tunnelling through a single level of the quantum dot. The
latter phase increases smoothly on the scale of the peak width (which is of order kT ).
This disagreement arises from the fact that closed two-terminal Aharonov-Bohm ring
can not be described by the ”two-slit” result expressed in Eq.1.9 and one needs to take
multiple reflections through the ring into account in order to recover the correct result.

1.2.4 Open interferometers

1.2.4.a Experiment of Schuster. Coulomb blockade regime.

The Aharonov–Bohm phase in a two–terminal device is restricted to 0 or π. This phase
rigidity which is a general property of closed interferometers does not exist in a double-
slit-like interference set-up as realized by a many-terminal device. Schuster et al. [22]
used such a device, Fig.1.12, to measure directly the magnitude and the phase of the
transmission amplitude through a quantum dot in the Coulomb Blockade regime. The
electron micrograph of the device and a schematic description of the experiment are
shown in Figs. 1.12, 1.13. The central element of the device is an Aharonov–Bohm ring
with a quantum dot embedded in its right arm. Several contacts are connected to the
ring, namely the emitter (E), the collector (C) and a base region (B). The base contacts
were held at zero chemical potential in order to collect all back-scattered electrons
and to ensure that only two forward propagating electron waves reach the collector.
The special type of gates, reflectors, were also introduced into the structure of the
interferometer. They reflect diverging electrons into the two–slit device and towards
the collector. The reflectors were necessary to enhance the collector signal that could
otherwise not be measured. All contacts were designed by negatively biased gates on
top of the heterostructure.

The quantum dot contained roughly 200 electrons with a mean single–particle level
spacing around 55 µeV . The temperature of the two–dimensional electron gas was
Tel ≈ 80 mK. The intrinsic (zero–temperature) width Γ of the Coulomb peaks was
estimated to be of the order or even larger than kT . Collector and emitter support
only one transverse mode. The quantum dot in this experiment was in the Coulomb
Blockade regime.

At low temperatures both the phase coherent length and the elastic mean free path
exceed the size of the sample. Then collector current was measured. They observed
oscillations of the current as a function of magnetic field with period Φ0. The absence
of higher harmonics (with periods Φ0/n) strongly suggests that the two direct paths
predominantly contribute to the interference.

It the experiment the measured quantity was the voltage drop VCB between collec-
tor and base for a fixed excitation voltage VEB applied between the emitter and the
base. The Aharonov–Bohm interference in the transmission coefficient TEC leads to
an oscillatory contribution to VCB from which the Aharonov–Bohm phase is extracted.
Fig. 1.14(a) shows VCB measured as a function of the gate voltage VP for a fixed mag-
netic field. One observes pronounced resonance peaks as expected for a quantum dot in
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Figure 1.12: A top-view scanning electron micrograph of the double–slit device used
in the Schuster–experiment [22]. The grey areas are metallic gates on the top of the
heterostructure. The quantum dot is inserted in the right slit [22].
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Figure 1.13: Schematic description of the device structure of the double-slit-like exper-
iment. An Aharonov–Bohm ring is coupled to an emitter (E), a collector (C) and a
base region (B). Reflector gates reflect diverging electrons towards the collector. The
quantum dot is designed by the central electrode and the three electrodes on the right
hand side of the structure [22].
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the Coulomb Blockade regime. When the magnetic field is changed, the collector signal
shows AB oscillations with the expected period ∆B = Φ0/A where A is the area of the
AB ring. The observed oscillation patterns measured at the four points 1, 2, 3, and 4
close to a resonance are shown in Fig. 1.14(b). The oscillation pattern shifts smoothly
as one moves through the resonance. Fig. 1.14(c) displays the phase and the squared
magnitude of the AB signal at a resonance peak. The data points are represented by
full circles. The phase shows the expected monotonic rise by π over the width of the
resonance.

Schuster et al. compared their data with a theoretical model for resonant scattering.
They described the coherent part tQD of the transmission amplitude through the dot by
the Breit–Wigner formula [34]

tQD = iCN
ΓN/2

EF − EN + iΓN/2
, (1.10)

where CN is a complex amplitude, EF the energy of the electrons transmitted through
the device, and EN and ΓN the energy and the width of the resonance in the quantum
dot. Both the squared magnitude |tQD|2 and the phase arg tQD are compared with exper-
imental data in Fig. 1.14(c) and are found to be in very good agreement with Eq.1.10.
These results clearly show that the transmission through the dot in the Coulomb Block-
ade regime is correctly described by a Breit-Wigner formula.

The collector voltage VCB, the magnitude, and the phase of the AB oscillations
measured over a sequence of five peaks are shown in Fig. 1.15. The striking observation
is that the phase is very similar at all peaks. The phase increases roughly by π at each
peak. Note that the peaks widen and start to overlap as the plunger voltage increases.
At the same time, the overall variation of the phase is reduced. The likely origin of these
effects is the electrostatic influence of the plunger on the point contacts at the quantum
dot. They open slightly with increasing plunger voltage. A striking feature of the data
is the sharp phase lapse by π between the resonances. The phase lapse occurs when
the magnitude of the AB oscillations vanishes. Using the simple arguments brought by
the scattering off a series of distant quasi-localized states the phase of the transmission
amplitude should increase by π each time a localized state crosses the Fermi level in
the leads. Thus the phase should exhibit a staircase-like behavior and the phase in the
neighboring valleys (or peaks) should differ by π. The experimental observations are in
contradiction with this result. Numerous works have been devoted to this subject but
it seems that a more fundamental explanation is still lacking.

1.2.4.b Experiment of Heiblum. Kondo correlation and unitary limit regimes.

Similar experiments were performed using smaller quantum dots [36, 35] compared to
the previous ones [21, 22]. In the left arm of the AB interferometer a tiny quantum dot
(180 nm × 200 nm) is embedded, Fig.1.16. This quantum dot has a charging energy
UC ∼ 1.5 meV and a relatively large single-particle mean level spacing ∆ ∼ 0.5 meV,
allowing strong coupling to the leads without overlapping of the energy levels in the
quantum dot. The Kondo temperature for such a quantum dot can be as high as 1.5
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Figure 1.14: Conductance and phase evolution along a Coulomb peak. (a) Resonance
peaks as a function of the plunger gate voltage. (b) A series of interference patterns
taken at the points specified in (a). (c) Squared magnitude and phase of the Aharonov–
Bohm oscillations (dots). The solid and dashed line are fits for the phase and the squared
magnitude obtained with a Breit–Wigner model [22].
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Figure 1.15: (a) A series of Coulomb peaks; (b) Magnitude of the Aharonov–Bohm
oscillations; (c) Phase of the Aharonov–Bohm oscillations as a function of plunger gate
voltage. The solid lines are guides to the eye [22].
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Figure 1.16: A top-view scanning electron micrograph of the double–slit device used
in the Yang–experiment [35]. The black zones represent 2DEG and the grey areas are
metallic gates on the top of the heterostructure. The quantum dot is inserted in the left
slit. The barrier gate is added in order to shut off the reference arm and test the bare
quantum dot [35].

K. Thus the low-temperature behavior, T ≪ TK , is made accessible for experimental
investigations. The Aharonov-Bohm ring is supplied with a new gate - the barrier gate,
which allows to shut off the reference (right) arm and test the bare quantum dot.

First, measuring the conductance through the bare quantum dot (with the pinched
off reference arm) Kondo correlations were identified. A peak conductance of ∼ 1.9e2/h
was measured, suggesting that the quantum dot is in the unitary limit regime. The
conductance in two neighboring valleys with (presumably) zero net spin in the quantum
dot is found to be suppressed as temperature lowered, as it is expected for the Coulomb
blockade regime. As the temperature or the dc bias voltage across the quantum dot is
increased, a valley is formed and the single broad peak dissolves into two CB peaks,
however the conductance of the outer CB valleys increases. This is the typical behavior
of a conductance of the quantum dot with Kondo correlations.

The phase and magnitude of the complex transmission amplitude through the quan-
tum dot are obtained as previously - from the measurements of the drain current as a
function of the magnetic field and plunger gate voltage.

The main results are reported in Fig.1.17. The complex transmission amplitude
(phase and magnitude) are plotted vs plunger gate voltage for different couplings be-
tween the leads and the quantum dot. Reducing the coupling strength is equivalent to
reducing the Kondo temperature TK . The coupling strength gets weaker from (a) to
(d) in Fig.1.17 and the quantum dot moves from the Kondo regime to the Coulomb
blockade regime. In the unitary limit the phase exhibits an almost linear growth of 1.5π
(a). In the regime (b) it develops a plateau and later, as the coupling weakens further,
the quantum dot enters into the Coulomb blockade regime observed in previous experi-
ments [22]. In the case of low coupling to the leads and higher temperature, Tel ∼ 100
mK, [36] the phase span through the Kondo valley is ∼ 2π with a clear plateau at π.
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Figure 1.17: The complex transmission amplitude (phase and amplitude) of the quantum
dot as a function of energy (plunger gate voltage) for different coupling strengths of the
quantum dot to the leads. The coupling gets weaker from (a), the unitary limit, to (d),
Coulomb blockade regime [35].

The phase exhibits a striking behavior in the CB valley. While the phase lapse for the
quantum dots in the Coulomb blockade regime is always of order of π, the phase in each
CB valley returns to zero, the phase lapse in the CB valley following the Kondo valley
does not returns to its initial value.

The evolution of the phase and magnitude of the transmission amplitude with in-
creasing temperature or bias voltage is also measured. In both cases the Kondo corre-
lations are found to be suppressed.

To summarize, two main (troubling) features stand out. The first one is the behavior
of the phase as a function of the gate voltage and its large span, twice larger than the
theoretically predicted value [37, 38] when the system is in the Kondo regime. The
second striking feature is the phase behavior in the CB regime adjacent to the Kondo
correlated regime with the existence of the phase lapse or abrupt phase evolutions. The
origin of the phase lapses has not been well understood so far.

1.2.5 Theoretical works

In this section we will briefly review the main results obtained for the transmission phase
shift.

1.2.5.a Phase shift

One of the first theoretical predictions for the phase shift was made by D. Langreth in
1966. He analyzed the scattering states and calculated the S-matrix in the framework of
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the 3D Anderson model. He showed that the Friedel sum rule is an exact consequence
of the Anderson Hamiltonian for the case where there is no local moment. His main
conclusion can be outlined in the following way: at zero temperature the sum of all the
phase shifts at the Fermi level is equal to π times the charge displaced by the impurity.
For the single-level Anderson model in the absence of magnetic field the phase shifts
per each spin are equal and each of them takes the value of πn0/2, where n0 is total
occupation of the impurity site.

In the context of quantum dots the important contribution was made by D. Gerland
and collaborators in 2000. They analyze the dependence of the transmission phase
shift as the function of the energy of the localized level (or applied gate voltage) for a
quantum dot in presence of Kondo correlations. The authors assume that the phase shift
measured in the Aharonov-Bohm interferometry experiment at zero temperature and
magnetic field, coincide with the phase of the retarded Green function of the localized
electrons evaluated at the Fermi level. The phase is then calculated using the numerical
renormalization group approach (NRG) and Bethe anzats. In this work authors predict
that the transmission phase shift of a quantum dot in the presence of Kondo correlations
is equal to π/2 in the unitary limit regime. The dependence of the phase shift with bias
voltage and temperature is also analyzed and we will come back to this question in
Chapter 4.

1.2.5.b Phase lapses

Simple arguments show that the phase in the neighbouring conductance valleys should
differ by pi, exhibiting the so called ”off-phase” behaviour that clearly contradicts the
experimental observation. The phase slips in each conductance valley by an amount of
π, resulting in the so called ”in-phase” behaviour. This phenomenon is largely discussed
in the literature. The analysis, however, is restricted only to the case of a quantum dot
in the Coulomb blockade regime.

The origin of the phase lapses was first studied by Levy Yeyati and Buttiker [39].
They discussed the subject in terms of the Friedel sum rule. The authors emphasized
that one has to take into account the additional charge induced in a conduction region
which includes not only the quantum dot but also the Aharonov-Bohm ring. In a model
calculation for a two terminal device using proper values of the extra charge, sequences
of two or three consecutive in-phase resonances are found.

The connection between the Friedel sum rule and the phase lapses was reconsidered
by Lee [40] and Taniguchi and Buttiker [41]. They conclude that the transmission phase
shift can deviate from the Friedel sum rule at some special points where the transmission
through the quantum dot vanishes. A transmission zero corresponds to a singular point
of the transmission phase. The phase jumps abruptly by pi when the system is swept
through the transmission zero. The authors also show that the spatial dimension of the
scattering region is important: while the neighbouring resonances are always off-phase
in strictly 1D systems, both off-phase and in-phase resonances can be found in higher
dimensional systems.

The sharp phase lapse between the resonances was investigated by Hackenbroich and
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Weidenmuller [42] for the weak coupling regime Γ < T < ∆ where Γ is the width of
the resonance, T is the temperature and ∆ is the mean level spacing. In this regime
the transmission amplitude can be reduced to a sum of Breit-Wigner resonances. The
obtained phase shows an increase by π on the scale T at each resonance. Between each
resonance, the phase slips by π on the scale of the resonance width Γ.

In 1998, a number of authors [43, 44, 45, 46] studied models for the transmission
through a quantum dot and found abrupt jumps of the transmission phase. The jumps
occurred at singular points where the magnitude of the transmission amplitude vanishes.
Transmission zeros were found in numerical studies exploring Fano resonances [43, 44, 45]
and the interplay with multiple resonances [46]. In Refs. [43, 44, 45] a quantum dot
is modelled as a quasi-1D or 2D region. A more general approach to the connection
between transmission zeros and in-phase resonances was presented by Lee [40]. He
showed that the transmission always vanishes between neighbouring in-phase resonances,
provided that the scattering region is connected to two single-channel leads and the
system is time-reversal invariant.

In spite of all these efforts a more fundamental explanation is lacking. Each of the
proposed mechanisms can be criticized since they rely on some given assumption.
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2.1 Introduction

We study the effects of Kondo correlations on the transmission phase shift of a quan-
tum dot coupled to two leads in comparison with the experimental measurements made
by Aharonov-Bohm (AB) quantum interferometry. We propose here a theoretical in-
terpretation of these results based on scattering theory combined with Bethe ansatz
calculations. We show that there is a factor of 2 difference between the phase of the
S-matrix responsible for the shift in the AB oscillations, and the one controlling the
conductance. Quantitative agreement is obtained with experimental results for two
different values of the coupling to the leads.

Quantum dots (QD), small puddles of electrons connected to leads, can be obtained
in a controlled fashion thanks to recent progress in nanolithography. Under certain
conditions a dot can be modeled as a localized spin coupled to Fermi baths (the leads). A
Kondo effect takes place [29, 47, 32] when the temperature is lowered . A key ingredient
of the Kondo effect is the phase shift δ an electron undergoes when it crosses the dot.
While its direct measurement was out of scope in bulk systems, it became feasible
recently in quantum dots via Aharonov-Bohm (AB) interferometery [36]. We mention
here the experimental results obtained in two cases corresponding to a strong coupling
to the leads [36, 35]. In the unitary limit, the phase shift climbs almost linearly with VG

with a value at the middle of the Kondo enhanced valley which is almost π. At a smaller
value of the coupling strength, the phase shift develops a wide plateau at almost π. We
will call the latter case the ”Kondo correlation regime”. Early theoretical work on the
phase shift for the bulk Kondo effect [37, 48] predicts δ = π/2. In the context of QD,
Gerland et al [38] had obtained, on the basis of NRG and Bethe ansatz calculations,
a variation of δ with the energy of the localized state leading to a value of π/2 in
the symmetric limit, in disagreement with the recent experimental results quoted above
[36, 35]. In this chapter, we propose a new theoretical interpretation of the experimental
results based on scattering theory and Bethe ansatz calculations. Our main prediction
concerns a factor of 2 difference found between the phase of the S-matrix observed by
the phase shift measurements and the phase governing the conductance.

2.2 Scattering Phase Shift

2.2.1 Two-reservoir Anderson model

Let us consider a quantum dot coupled via tunnel barriers to two leads L and R, and
capacitively to a gate maintained at the voltage VG. Following Glazman and Raikh
[49] and Ng and Lee [50], one can describe the system by a generalized one-dimensional
Anderson model in which the localized state of energy ε0 lies at the i = 0 site, and
the sites i ≤ −1 (i ≥ 1) simulate the left and right reservoirs. The corresponding
hamiltonian is written as follows
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Figure 2.1: A schematic representation of the one-dimentional Anderson model (left).
The i = 0 site represents the localized state of energy ε0. The model can be sketched in
another way (right) which indicates the inner structure of the impurity.

H = −V
∑

σ

∑

i≥1

(c†i,σci+1,σ + h.c.)

−V
∑

σ

∑

i≤−2

(c†i,σci+1,σ + h.c.) − VR

∑

σ

(c†0,σc1,σ + h.c.) − VL

∑

σ

(c†−1,σc0,σ + h.c.) (2.1)

+ε0

∑

σ

n0σ + Un0↑n0↓,

where the operator c†i,σ creates a conduction electron on site i with spin σ = ±1/2 and

c†0,σ creates an electron on the localized state at the site 0 while n0σ = c†0,σc0,σ is the
occupation number of the localized state with spin σ. U is the Coulomb interaction
between two electrons of different spins on the localized state and V , VR and VL are the
hopping integrals between neighboring sites. The parameters VR and VL simulate the
potential barriers between the impurity site and the left and right reservoirs respectively.
In realistic systems, the i = 0 site represents a localized state of energy ε0; the parameters
VR and VL generally are small as they decrease exponentially with the distance between
the localized site and the left or right electrode. This model is very similar to the
one-impurity Anderson model with the impurity d orbital replaced by a localized state
and the conduction band replaced by left and right Fermi seas. The distinct feature of
the model described by the Hamiltonian Eq.2.1 from the one-impurity Anderson model
is that the left and right Fermi seas in general may have different chemical potentials
so that the out of equilibrium properties of the system can be investigated. Here we
will focus on the equilibrium situation. In this case both models are equivalent. We
will come back to this question later when we will discuss the value of the occupation
number, n0.
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2.2.2 Scattering theory for the Anderson model

2.2.2.a S-matrix

When the size of the conductor is much smaller than the phase-coherence length the
transport is coherent and one can calculate the transport properties by solving the
Schrödinger equation. Assuming that out of a region of finite size around the impurity,
the potential is zero (or negligible), the solutions of the Schrödinger equation are given
by plane waves and the transport properties of the conductor can be related to the
S-matrix relating the incoming (incident) and outgoing (scattered) plane waves. Thus
tunnelling can be viewed as a scattering process, and the problem can be analyzed in
terms of elastic scattering of electrons off an impurity. If we denote the spin-σ electron
wave functions on the left(and right) side by u

L(R)
kσ eikx + v

L(R)
kσ e−ikx respectively (see

Fig.2.2), one can derive the S-matrix from the expressions of the incoming and outgoing
scattering states

(
uL

kσ

vR
kσ

)
= Ŝkσ

(
vL

kσ

uR
kσ

)
. (2.2)

The S-matrix can be expressed as

Ŝkσ = Cσ(Î − iT̂ res
kσ ) (2.3)

where Cσ is a multiplicative phase factor that will be determined later on, and T̂ res
kσ is

the T-matrix in the process of resonant tunnelling the elements of which are given by

T res,αβ
kσ = 2πVαVβρσ(εk)Gσ(εk + iη), (2.4)

α, β = L or R, η is a positive infinitesimal, ρσ(εk) is the density of states of conduction
electrons with spin σ at energy εk, and Gσ(εk+iη)) is the exact retarded Green’s function
of an electron on the localized state with spin σ and energy εk. As defined in Eqs.2.2-2.4
the S-matrix is equivalent to the S-matrix derived by Langreth for the 3D Anderson
model.

In general the S-matrix which satisfies time-reversal symmetry can be parametrized
as

Ŝ =

(
iei(θ+ϕ) sin φ eiθ cos φ

eiθ cos φ iei(θ−ϕ) sin φ

)
(2.5)

Figure 2.2: Scattering of plane waves. A right-moving arrow corresponds to the plane
wave eikx, a left-moving arrow corresponds to the plane wave e−ikx.
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with real phases θ, ϕ and φ. The diagonal matrix elements, S1,1 ≡ SLL and S2,2 ≡ SRR,
correspond to the reflection amplitudes for the left and right Fermi seas. In the case of
a symmetric (with respect to the reflection x → −x) scattering potential we have ϕ = 0.
The most important for us is the property shown by the off-diagonal elements, S1,2 ≡ SLR

and S2,1 ≡ SRL, which are equal due to time-reversal symmetry, i.e. SLR = SRL. As it
was shown by Landauer, the linear response conductance is related to the probability
of the electron to be transmitted through the scattering region which, in turn, can be
expressed in terms of SLR. Moreover, the phase of SLR gives the phase of the outgoing
scattered wave as can be seen from the definition of S-matrix in Eq.2.2.

2.2.2.b The Friedel sum rule

Let us consider a system composed of a charged impurity surrounded by a static gas of
free (conduction) electrons. Some general properties hold for the stationary states of the
electron subsystem. In the present case of a charged impurity, the free electron gas is
perturbed by the Coulomb potential created by the impurity. However, it is known that
no macroscopic electric field can exist within a metal. So the charge must be screened
by the conduction electrons on the atomic scale. Depending on the sign of the charge,
Z, the electron gas is either depleted (if Z < 0) or accumulated (if Z > 0) in the
vicinity of the impurity. Generally the effect is more complicated - the charge density
shows an oscillating behavior with a decreasing magnitude with distance (schematically
represented in Fig.2.3).

The density of states of free electrons is affected by the presence of the impurity.
The change in the number of states needed to compensate the charge of the impurity,
∆N , must be equal to the impurity charge Z in order to preserve the charge neutrality
of the entire system: |e|δN = Z. This statement provides the basic idea underlying the
Friedel Sum Rule.

We will start with the usual derivation of the Friedel sum rule for the case of the
scattering by a potential (for example, by the Coulomb potential created by a charged
ion) in the 3D case. This type of description corresponds to the case of a free electron
gas in a metal containing impurities.

The radial part of the scattering wave functions in the absence of the impurity
exhibits the asymptotic behavior of the form

Rlk(r) ∼ sin(kr − lπ/2) for r → ∞ (2.6)

If, for example, we consider a spherical sample of large radius L and impose the boundary
condition Ψ(r = L) = 0, where Ψ(r) is the total scattering wave function, this leads to
a quantization of the wave vector according to

knl =
πn

L
+

lπ

2L
(2.7)

The electronic density of states per unit of k, is ρl(k) = 1/(kn+1−kn), can then be found

ρl(k) =
L

π
(2.8)
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Now let the impurity be located at the center of a sphere. Since the boundary
condition is not changed, it follows that the values of k must change. Eq.2.6 in this case
takes the following form

Rlk(r) ∼ sin(kr − lπ/2 + δl) for r → ∞ (2.9)

with the new condition of the quantization of the wave vector

k′
nl =

πn

L
+

lπ

2L
− δl

L
(2.10)

Here we have to take the k-dependence of the phase shift δl = δl(k) into account. We
can write

k ′
n+1L − lπ

2
+ δl(k

′
n+1) = (n + 1)π , (2.11)

k ′
nL − lπ

2
+ δl(k

′
n) = nπ ,

which gives

(k ′
n+1 − k ′

n)

(
L +

dδl

dk ′
n

)
= π (2.12)

The density of states per unit of k ′ is

ρ ′
l(k) =

1

π

(
L +

dδl

dk

)
(2.13)

The first term in the right-hand side of Eq.2.14 corresponds to the electron density of
states in the system without impurity. The change in the density of states due to the
presence of the impurity is

δρ ′
l(k) =

1

π

dδl

dk
(2.14)

It is useful to rewrite this expression in order to obtain the density of states per unit of
energy

δρ ′
l(ω) =

1

π

dδl

dω
(2.15)

If the summation is carried out over all l values, assuming that for each orbital
moment l there are (2l + 1) possible values of its projections ml and that we have
two possible spin projections, σ, we obtain the total change in the number of states of
energies lower or equal to ǫ

∆N(ǫ) =
∑

l

∑

ml

∑

σ

∫ ǫ

δρ ′
l(ω)dω =

2

π

∑

l

(2l + 1) δl(ǫ) (2.16)
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where we have assumed that the phase shift at the bottom of the band is zero. The
change in the number of states below the Fermi energy is equal to the change in the
number of electrons. Because of the property of electroneutrality, the screening of the
impurity by the conduction electrons is total and the latter quantity must be equal to
the excess charge brought by the impurity, i.e. to the difference between the impurity
ion and that of the ions of the rest of the lattice. Thus, we have

Z =
2

π

∑

l

(2l + 1) δl(ǫF ) (2.17)

This relation is called the Friedel sum rule. If now the impurity is taken as point-like,
according to quantum mechanics, it is sufficient to take into account only s-scattering.
In the case of spin degeneracy

δ0(ǫF ) =
πZ

2
(2.18)

The Friedel sum rule relates the charge of the impurity to the phase shift at the
Fermi level.

2.2.2.c The partial Friedel sum rule

It was shown [37],[50] that the Friedel sum rule is applicable for the interacting Anderson
model in each spin channel. We will not give here the detailed derivation of this theorem.
The derivation makes use of some exact properties of the localized electron retarded
Green function. It turns out to be exact in the case of a wide flat conduction band. The
letter condition is not necessary. If it is not the case one has to include the contribution
of the free electron gas to the charge of the impurity.

The expression of the retarded Green function, Gσ(ε), in Eq.2.4 generally is unknown.
Nevertheless, the use of exact results for the self-energy at T = 0 in an interacting Fermi
liquid [37, 5] provides us with useful information about Gσ(ε). At zero temperature only
electrons at the Fermi surface, i.e. at εk = µ, are relevant and one can show that

n0σ =
1

π
Im lnGσ(µ + iη). (2.19)

This relation is known as the generalized Friedel sum rule. The Friedel sum rule which
expresses the complete screening of the impurity by conduction electrons (see Fig.2.3) in
each spin channel, imposes that n0σ is equal to the change in the number of conduction
electrons with spin σ resulting from the addition of the impurity, and hence is related
to the transmission phase shift δσ at the Fermi level, n0σ = 1

π
δσ. Therefore δσ coincides

with the phase of the Green’s function at the Fermi level Gσ(µ + iη) = |Gσ(µ + iη)| eiδσ .
If we denote the associated self-energy by Σσ(µ + iη), one gets

ImGσ(µ + iη) = Im [ Σσ(µ + iη)] |Gσ(µ + iη)|2 (2.20)

and finally, since |Gσ(µ + iη)| = ImGσ(µ + iη)/ sin δσ, we have
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Figure 2.3: Dependence of the charge density (vertical axis) as a function of distance
(schematically). Dashed line corresponds to the unperturbed charge density.

Gσ(µ + iη)) = sin δσe
iδσ/ ImΣσ(µ + iη). (2.21)

Using exact results for the self-energy of a Fermi liquid at Fermi level, εk = µ, and T = 0
and considering elastic scattering only, one can show that the only contribution to the
imaginary part of self-energy is brought by the hopping terms and one has ImΣσ(µ +
iη) = −π(V 2

L + V 2
R)ρσ(µ) leading to

T res,αβ
kF σ = −2

VαVβ

(V 2
L + V 2

R)
sin δσe

iδσ . (2.22)

Equation (2.22) extends the result obtained by Ng and Lee [50] for the magnitude of
the transmission amplitude to the full complex transmission amplitude including the
phase factor. In the case of a symmetric quantum dot when VL = VR = V , one has
ŜkF σ = CσŜ

res
kF σ, where Ŝres

kF σ is given by

Ŝres
kF σ = eiδσ

(
cos δσ i sin δσ

i sin δσ cos δσ

)
. (2.23)

The multiplicative phase factor Cσ contains additional information about the spec-
trum and the filling of the quantum dot. To determine it, we will make use of Levinson’s
theorem[51],[52].

2.2.2.d Levinson’s theorem

In its original form, Levinson’s theorem applies to the scattering of a particle of angular
momentum l by a spherically symmetric potential [51] which falls off sufficiently rapidly
at large distances. It relates the zero-energy phase shift δl to the number of bound
states, NB

l , of the same angular momentum l supported by the potential

δl(k = 0) = πNB
l (2.24)

where the phase is defined as usual from the solution of the Schrödinger equation for
the radial part of the wave function

[
d2

dx2
+ k2 +

l(l + 1)

r2
− U(r)

]
fl(r) = 0 (2.25)
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where fl(r) ∼ sin(kr − lπ/2 + δ(k)) in the limit r → ∞ and U(r) is the scattering
potential. The scattering phase shift, δ(k), is a continuous function of k with δ(k) → 0
as k → ∞.

If now we consider the scattering of the particles by a many-body system, such as
the collisions of nucleons with light nuclei or of the electrons with atoms, the phase
shift does not show any apparent relation to the number of composite bound states, so
that the correspondence between the zero-energy phase shift and the number of bound
states seems to be lost. The need of a generalization of Levinson’s theorem to include
spin or non-local potentials was first pointed out by P. Swan [53] in 1955. Of special
interest to the problem considered in our work is the extension of Levinson’s theorem
to the scattering of a particle by a compound system, i.e. for instance by an atom.
In a pioneering paper in 1955, Swan relates δl(0) to the number of composite bound
states NB

l of angular momentum ~l formed by the incident particle and the atom, plus

an additional number denoted by NPauli, equal to the number of states from which the
incident particle is excluded by the Pauli principle. Thus the extension of Levinson’s
theorem to that problem reads:

δl(0) = π(NB
l + NPauli) (2.26)

A large number of papers [54],[55] in nuclear physics has then been devoted to
this subject and corroborated Swan’s statement. One can also find in these papers
illustrations of Levinson’s theorem for some given examples of the scattering of a particle
by an atom (see Table 1 of [53] or Table I of [55]).

In the case of electron-hydrogen scattering, the composite bound state formed by the
electron and hydrogen atom can be either a triplet or a singlet spin state (corresponding
to antisymmetric or symmetric spatial wave function respectively). In each of the two
cases, the phase shift is found to be π. But whereas for the singlet spin state, the value
of π arises from the formation of 1 bound state (H−), the origin of the π value for the
phase shift in the triplet spin state is of different nature: even if there is no bound state
formed, the number of excluded states equal to 1 in this case still guarantees a value of
π for the phase shift. The corresponding triplet state (antisymmetric with respect to
spacial coordinates of the incident and target electrons) of H− is a 1s2s state because
of the Pauli exclusion principle and it is known to be not found. The excluded state is
1s↑s↑. The 2s wave function has an extra node as compared to the 1s function Fig.2.4.
The scattering of an electron by H at small energies involves the same function inside
the potential well range as for an electron forming a virtual state of H−. Hence an
extra loop will give a contribution of π to the zero-energy phase shift δ(0) without the
formation of any bound state. We will keep this example in mind in the following when
we will consider the scattering of an electron by a quantum dot.

In the case of a QD which can be viewed as an artificial atom [23, 24, 25, 26, 27, 28]
in the configuration 1s, it follows that ln det ŜkF σ/(2iπ) is equal to the total number
of states i.e.

∑
σ n0σ = n0 in which n0−σ is the number of bound states formed by the

incident particle and the atom (Kondo singlet state in the Kondo regime), and n0σ is
the number of states from which the incident particle is excluded by the Pauli principle
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Figure 2.4: Bound and free wave functions for the 1s and 2s states.

1

2πi
ln det ŜkF σ = n0 (2.27)

Clearly the latter result disagrees with what can be deduced from Eq.2.23, ln det ŜkF σ/(2i) =
πn0σ which is a generalization of the result obtained in Ref.[50]. Our physical under-
standing of this discrepancy is that the Anderson model fails to capture the full physics
describing the experimental device. We believe instead that the quantum dot is more
properly described by an artificial atom. We do not intend for the moment to treat
the more general problem of the electron scattering by an artificial atom. We pro-
pose instead to keep on working with the simplified Anderson model and to capture
the extra physical ingredients contained in the artificial atom by introducing a multi-
plicative phase factor Cσ in front of the S-matrix, Eq.2.3. One can easily check that
the so-defined ŜkF σ is still a unitary matrix and that the optical theorem is satisfied:

T̂kF σT̂
†
kF σ = −2 Im T̂kF σ, where T̂kF σ = −i(1 − ŜkF σ). The value of Cσ is determined

in order to guarantee extended Levinson’s theorem. By applying extended Levinson’s
theorem, Eq.2.27 to ŜkF σ given by Eq.2.3,

1

2πi
ln det ŜkF σ =

1

2πi
ln

{
C2

σ e2iδσ
}

(2.28)

one finds Cσ = eiδ−σ and

ŜkF σ = eiδ

(
cos δσ i sin δσ

i sin δσ cos δσ

)
, (2.29)

where δ =
∑

σ δσ.
According to extended Levinson’s theorem, the phase shift counts not only the num-

ber of bound states formed by the conduction electron and the scatterer, but also the
number of states from which the electrons are excluded by the Pauli principle. As a
result, the scattering phase is related to the total occupancy of the quantum dot, i.e.
(n0↑ + n0↓), and our belief is that this is precisely what the quantum interferometry
experiments measure.
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Figure 2.5: The conductance through the scattering region is proportional to the prob-
ability for the electron to be transmitted.

2.2.3 Landauer conductance and Aharonov-Bohm effect

2.2.3.a Landauer approach

In the Landauer approach the current through a conductor is expressed in terms of the
probability with which an electron can be transmitted through it. This approach has
proved to be very useful for the description of mesoscopic transport. To simplify the
discussion we consider the zero temperature limit. Then the current is finite in the
energy range µL > ǫ > µR only, where µL(R) is the left(right) chemical potential. If
one considers the transport properties at equilibrium, µL ≈ µR, one can assume that
the transmission does not depend of energy so that the entire energy range can be
viewed as a single energy channel. Under these assumptions the conductance through
the mesoscopic device is given by the Landauer formula

G =
2e2

h
MT (2.30)

where T is the transmittance or transmission probability that an electron injected at
one end of the conductor is transmitted to the other end. The multiplicative factor M
is the number of transverse modes in the conductor. In the case when the transmission
probability is different in each channel, one should consider the summation over all the
transmitting channels separately. Generally we will assume that M = 1. Suppose now
that the scattering problem for the conductor can be solved and the outgoing waves are
related to the incoming ones by the S-matrix. The transmission probability can then
be easily calculated

T (ǫ) = |SLR(ǫ)|2 (2.31)

where SLR is the off-diagonal element of the S-matrix. In the case of a two-terminal
conductor with a single conducting mode we finally have

G =
2e2

h
T (2.32)

where T is given by Eq.2.31. This result has been generalized by Buttiker in the case
of multi-terminal conductors.

So the conductance through a mesoscopic conductor depends on the magnitude of
the transmission amplitude, |SLR| and not on its phase. So the phase shift can not be
deduced from conductance measurements. We will discuss in the following an alternative
experimental setup which allows one to determine the phase shift.
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Figure 2.6: Schematic representation of an Aharonov-Bohm interferometer. Electrons
injected at the source (S) are collected at the drain (D). The ring of the interferometer
consists of two arms: the reference arm and the one in which the quantum dot is
imbedded. The closed interferometer (left) is not equivalent to the double slit experiment
since it includes multiple traversals of the ring and therefore does not provide access to
δQD. To overcome this difficulty base regions (B) are introduced (right) which collect
the back-scattered electrons to ensure that only two forward-propagating paths reach
the drain.

2.2.3.b Aharonov-Bohm effect in an open interferometer

In an Aharonov-Bohm interferometry experiment, spin-σ electrons coming from the
source through each of the two arms interfere at the drain. When a magnetic flux Φ
threads the ring formed by two arms, a possible gauge transformation for the transmis-
sion and reflection amplitudes in both arms yields

tref → tref eiθ

tQD → tQD (2.33)

where θ = 2πΦ/Φ0, is the Aharonov-Bohm phase, and Φ0 = h/e is the quantum of
magnetic flux. We choose to let the transmission amplitude through the quantum dot
unchanged. For the sake of simplicity we assume the transmission amplitude through
the reference arm in the absence of magnetic field to be real, arg(tref ) = 0. In general we
can also assume the two arms of the interferometer to be geometrically equivalent. The
latter assumption is not always satisfied. The geometric difference between the arms
may lead to a constant contribution to the phase shift which does not play any role.
We also assume the current through the quantum dot to be fully coherent. Moreover,
because of its open structure there is no multiple traversals of the ring which is equivalent
to a double-slit geometry setup. The source-drain conductance can then be computed
using the Landauer formula Eq.2.32

GAB =
2e2

h
|trefe

iθ + tQD|2 (2.34)

where the transmission amplitude of the quantum dot is complex tQD = |tQD| eiδQD .
One gets

GAB =
2e2

h
t2ref +

2e2

h
|tQD|2 +

4e2

h
tref |tQD| cos(θ − δQD) (2.35)
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The first two terms of Eq.2.35 correspond to the conductance of the reference arm and
quantum dot respectively. The last term is due to the interference of the electron wave
function leading to oscillations of the conductance as a function of the magnetic flux Φ
enclosed by the ”ring” formed by the two arms. One gets for the periodic conductance
oscillations, δG, at the drain

δGAB =
2e2

h

∑

σ

cos(2πΦe/h − δQD), (2.36)

where we have replaced the factor 2 by the summation over the spin indices.
The periodic AB oscillations are entirely determined by the phase difference between

the transmission amplitudes of both arms, i.e. 2πΦe/h + δQD, where δQD is the trans-
mission phase shift introduced by the quantum dot. Contrary to the conductance the
Aharonov-Bohm current is sensitive to the phase of transmission amplitude, SLR. Thus
the interference experiment opens the way to the measurements of the transmission
phase shift introduced by (magnetic) impurities.

In practice, the phase shift is measured in the following way. For a given value of
the gate voltage VG applied to the quantum dot (here we consider that all the other
voltages, for instance the one controlling the coupling strength to the leads ΓL(R) are
kept unchanged) the Aharonov-Bohm oscillations of the conductance (or current) are
given by δG(B ; VG) as a function of the magnetic field Φ = BS (where S is the surface
enclosed by the ring, and B is the magnetic field which is assumed to be constant). Then
tuning the gate voltage to VG+δVG, the Aharonov-Bohm oscillations are measured again
and lead to δG′ = δG(B ; VG + δVG). Since the transmission phase shift, δQD, varies
with VG, the oscillations for VG + δVG are shifted towards those observed at VG by an
amount of δ(δVG) ≡ δQD(VG) − δQD(VG + δVG). Then the evolution of a phase shift as
the function of VG can be studied. So even if two arms are not identical geometrically
and tref introduces an additional phase in the oscillations, this one is cancelled in the
final and geometric asymmetry does not cause any trouble.

In this work, we neglect the role of the Fano effect on the phase shift considered
by some authors [56] and concentrate on the contribution of the quantum dot to the
interference pattern.

2.2.3.c Experimental check of the dependence of the conductance with the
phase shift

In our approach according to Eq.2.29, δQD is equal to δ = πn0, and the phase of the
AB oscillations measures δ, i.e. the total occupation number n0 within a multiplicative
factor of π. As far as the conductance is concerned, its expression is given by the
Landauer formula, G ∝ ∑

σ |TLR
kF σ|2. Using Eq.2.29, TLR

kF σ = i sin δσe
iδ, and one has

G ∝ ∑
σ sin2 δσ. In the absence of magnetic field, δ↑ = δ↓ = δ/2, one gets

G ∝
∑

σ

sin2 δ/2. (2.37)

The latter result was already obtained by Ng and Lee Ref.[50]. The experimental situ-
ation has evolved since then and one now disposes of simultaneous measurements of G
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Figure 2.7: Experimental conductance Gexp(VG) (red squares) and phase shift Φ(VG)
(blue triangles) as a function of the gate voltage VG (values taken from Ref.[35] incor-
porating a shift in the VG-scale for Gexp(VG) evaluated to ∆VG = 15mV , and a shift in
the δ-scale equal to ∆δ = 0.29π). The comparison of the curve G(VG) = sin2(Φ(VG)/2)
(black squares) with Gexp(VG) (red squares) provides a check to the prediction made in
Eq. 2.37.

and δQD. Our suggestion in this work is to check the theoretical prediction of Eq.2.37
by reporting the experimental results obtained in the unitary limit at different values
of the gate voltage, for the conductance G on the one hand, and the phase shift δexp

extracted from the shift of the periodic conductance oscillations on the other hand.

Before examining the experimental test, let us make the following remarks: (i) in an
interferometry experiment, only relative values of the transmission phase shifts can be
measured since the zero is entirely undetermined. We propose to fix the zero in order to
enforce δ = π at the position of the maximum of the visibility, evaluated to VG = 423mV .
This implies a shift in the δ-scale evaluated to ∆δ = 0.29π with φ = δ+∆δ; (ii) typically
the measurement of the conductance G is performed in an ”one-arm” device (pinching
off the reference arm with the barrier gate) while that of the phase shift or visibility
is done in a ”two-arm” device as realized in an AB interferometer. Provided that the
transport is coherent, the evolution of the visibility with the gate voltage is known to
mimic that of the conductance. Yet getting both dependences closer, shows that the
passage from an ”one-arm” to a ”two-arm” experiment introduces a shift in the gate
voltage scale. We evaluate this shift to be ∆VG = 15mV , Fig.2.8. To be consistent
with, we then take the values of G at (VG − ∆VG), and of δ at VG; (iii) lastly the
conductance is normalized by its maximum value at VG = 423mV . Taking all these
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Figure 2.8: VG-dependence of both the conductance, G, of the quantum dot measured in
an ”one-arm” experiment and the visibility measured in a ”two-arm” experiment [35].
The comparison of these 2 curves let a shift appear δVG of the order of 15 mV.

points into account, the result of the test is reported in Fig.2.7. One can see from the
graph that the experimental dependence of sin2 δ/2 with the gate voltage reproduces that
of the ”shifted” conductance Gexp in a quite remarkable way. The latter experimental
test brings further support to the validity of Eqs.(2.36-2.37) with δQD = δ. A shifted
conductance G(VG − δVG) is deduced as a function of VG (used in Fig.2.8).

2.2.4 Scattering phase shift

2.2.4.a Diagonalization of the hamiltonian of the Anderson model with two
reservoirs

As discussed previously, according to the Friedel sum rule, the transmission phase shift
δ is given by the occupation number n0 of the localized state within a multiplicative
factor of π. Following Eq.(2.1), the system is described by a Anderson model with
two reservoirs, left and right. An important step has been got over by Glazman and
Raikh[49] by diagonalizing the starting hamiltonian. It is easier to work with the An-
derson hamiltonian written in the momentum representation
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H =
∑

kσ

εkc
†
kσLckσL +

∑

kσ

εkc
†
kσRckσR + ε0

∑

σ

d†
σdσ + Un0↑n0↓ + (2.38)

∑

kσ

(
VLc†kσL dσ + h.c.

)
+

∑

kσ

(
VRc†kσR dσ + h.c.

)

where c†kσL, c†kσR and d† are operators which create an electron in a state with momentum
k and spin σ in the left and right reservoirs and at the impurity site respectively;
n0σ = d†

σdσ is the particle operator at the impurity site. One can express the Hamiltonian
defined in Eq.2.38 in terms of quasiparticle creation operators

α†
kσ = u c†kσL + v c†kσR (2.39)

β†
kσ = u c†kσR − v c†kσL

which are symmetrized and antisymmetrized combinations of the initial ”left” and
”right” reservoir creation operators. The parameters of the Bogoliubov transformation
are given by

u = VL/V

v = VR/V (2.40)

V =
√

|VL|2 + |VR|2

it is easy to see that the hamiltonian take the following diagonal form

H =
∑

kσ

εkα
†
kσαkσ + ε0

∑

σ

d†
σdσ + Un0↑n0↓ + V

∑

kσ

(
α†

kσ dσ + d†
σ αkσ

)

+
∑

kσ

εkβ
†
kσβkσ (2.41)

One can see from Eq.2.39, only one type of states is hybridized to the localized state
whereas the other one is fully decoupled from it. Therefore the system is described by a
Anderson model with a single reservoir and a hybridization potential Ṽ =

√
V 2

L + V 2
R,

equal to V
√

2 in the case of a symmetric quantum dot when VL = VR = V . This
property of the two-reservoir Anderson model shows that the problem of calculating,
for example, the tunnelling transparency can be reduced to the well-known problem of
conductivity of a metal. Thus in the case of interest of a quantum dot connected to two
reservoirs of electrons (see Fig.2.1) the transparency of barrier will increase under the
same condition as when the Kondo effect manifest itself in bulk metals.

2.2.4.b Solution of the Anderson model

As it is known, the Anderson model is integrable and an exact solution exists based
on the use of the Bethe ansatz [17],[15]. The occupation number n0 can be derived by



54
Chapter 2. Theoretical analysis of the transmission phase shift of a quantum dot at zero

temperature in the presence of Kondo correlations

Figure 2.9: Different regimes of the Anderson model in the ”weak” coupling regime
Γ ≪ U . The dashed line corresponds to the occupation number (schematic). The
symmetric limit correspond to values of ε0 such that (U + 2ε0) ≪

√
UΓ. Detailed

calculations show that in this limit n0 = 1 and the deviation at ε0 + U/2 ∼
√

UΓ is
estimated to 1−n0 ∼ (Γ/U)3/2. The asymmetric limit corresponds to (U +2ε0) ≫

√
UΓ.

In the weak coupling regime, Γ ≪ U , and in the intermediate valence regime |ε0| ≪ U
(represented by two white vertical lines), n0 exhibits a universal behavior as a function
of ε∗0 (Eq.2.42). At ε∗0 = 0 the occupation number takes the universal value n0 = 2−

√
2.

The empty orbital regime is obtained when n0 → 0.

solving a system of integral equations. We have solved the equations of the Bethe ansatz
(B.A.) numerically at T = 0 (integral equations [2a-2b-4a-4b] of Ref.[57]). This allows
us to determine the value of n0 as a function of the parameters of the Anderson model
ε0, V and U .

It turns out that the three parameters, ε0, V and U , do not affect the results of the
B.A. calculations in a separate way but only via their combined ratios ε0/U and Γ/U ,
where Γ = πV 2ρ0 is the width of the virtual bound state and ρ0 is the bare density of
states of conduction electrons at the Fermi level.

Let us then denote by n0(ε0, Γ/U) the value of the localized state occupation number
for the corresponding values of the parameters. Due to the particle-hole symmetry of
the model (Eq.(3.6) of [58]), the following relation stands: nd(−(ε0 + U), Γ/U) = 2 −
nd(ε0, Γ/U). This automatically ensures the occupation number in the symmetric limit
ε0 = −U/2 to be equal to 1, i.e. nd(−U/2, Γ/U) = 1 whatever Γ/U is. Furthermore it
follows from the preceding relation that the study can be restricted to −U/2 ≤ ε0 ≤ U/2,
since the results for −U/2 ≥ ε0 ≥ −3U/2 can easily be derived from them. The
results of the calculations are reported in Fig.2.10(a) showing the dependence of n0 as
a function of the normalized energy −(ε0/U + 1/2) at different values of Γ/U . For
large coupling strengths Γ/U ≥ 0.25, we have checked that the variation of n0 with ε0

obeys the Breit-Wigner formula associated with the formation of a virtual bound state,
i.e. n0 = 1 − 2

π
arctan(ε̃0/Γ) in which ε̃0 is the renormalized energy of the localized

state. Oppositely for weak coupling strengths Γ/U ≤ 0.25, the energy dependence of n0

exhibits a plateau around the symmetric limit ε0 = −U/2. This plateau is the direct
manifestation of the Kondo resonance formed at the Fermi level. The latter feature can
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be viewed as the beginnings of the ”staircase” variation of n0 with ε0 that is reached in
the localized regime Γ/U → 0.

Figure 2.10: (a) Occupation number n0 as a function of the normalized energy (−ε0/U +
1/2) of the localized state for the Anderson model at different values of Γ/U where Γ =
πV 2ρ0(EF ). Note that n0 = 1 at the symmetric limit ε0 = −U/2. Let us also remark the
presence of a plateau in the vicinity of the symmetric limit in the weak coupling regime
Γ/U ≤ 0.25 resulting from the formation of the Kondo resonance at the Fermi level; (b)
The same quantity as a function of renormalized energy −ε∗0/Γ = −ε0/Γ−1/π ln(αU/Γ)
(with α = πe/4) at different values of Γ/U . Note the existence of a universal behavior
in the asymmetric regime when Γ/U ≤ 0.25.
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Figure 2.11: Fit of the experimental data on the gate voltage dependence of the phase
shift with the theoretical results on δ = πn0 as a function of −ε∗0/Γ. Making use of the
electron-hole symmetry, the experimental results obtained above the symmetric limit
are reported in the same scale as those obtained below it. They are represented by
triangles pointing down and up respectively in the unitary limit, and by squares and
circles respectively in the weak-coupling regime. The values are extracted from ref.[35]
adding a shift in the δ-scale equal to 0.29π and 0.01π in the unitary limit and weak-
coupling regimes respectively. The best fit is obtained for Γ/U = 0.5 in the unitary
limit both below and above the symmetric limit, and for Γ/U = 0.07 or 0.05 in the
weak-coupling regime depending whether the experimental results below or above the
symmetric limit respectively are considered.

Therefore one disposes of two parameters, Γ/U and ε0/U , to fit the experimental
data. The value of ε0 is governed by the strength of the gate voltage VG. As usual, we
consider a linear correspondence between both quantities. In order to help us finding
the best fitting parameter Γ/U , we propose to take advantage of a result pointed out
by Haldane [59] according to which the physical quantities observed in the asymmetric
regime of the Anderson model are universal functions of the renormalized energy

ε∗0/Γ = ε0/Γ + 1/π ln(αU/Γ) (2.42)

where α = πe/4. In Fig.2.10(b), we have plotted the results of our calculation for n0 as
a function of −ε∗0/Γ. In the asymmetric regime when (U + 2ε0) ≫

√
ΓU and |ε0| ≪ U

(intermediate valence region), the behavior of n0 as a function of −ε∗0 is universal as it is
observed in Fig.2.10(b). The universality is reached when Γ/U ≤ 0.25 and the validity
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Figure 2.12: Phase shift as a function of the gate voltage VG. (a) unitary limit. The-
oretical results from Bethe ansatz calculations at Γ/U = 0.5 (blue line) compared to
the experimental data for Φ/π = δexp/π +0.29 represented by triangles pointing up and
down successively; (b) weak-coupling regime. Theoretical results from Bethe ansatz
calculations at Γ/U = 0.07 and 0.04 (red and green lines respectively) compared to the
experimental data for Φ/π = δexp/π + 0.01 represented by circles and squares succes-
sively.
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of the universal behavior holds along the range |ε∗0/Γ − 1/π ln(αU/Γ)| ≪ U/Γ. The
domain of universality shrinks when Γ/U increases until vanishing when Γ/U ≥ 0.25.
As a general result, ε∗0 = 0 belongs to the domain of universality and n0(ε

∗
0 = 0, Γ/U ≪

0.25) = 2−
√

2. Lastly one can see that in the limit n0 → 0, the curves n0 = f(ε∗0/Γ, Γ/U)
at various values of Γ/U , lie on top of each other displaying an asymptotic behavior.
This can be proved by noticing that in the expression of n0(−ε∗0/Γ) resulting from the
Breit-Wigner formula the renormalization of Γ is negligible in the n0 → 0 limit. The
existence of both these universal and asymptotic behaviors is of the valuable help in
fitting the experimental data. Fig.2.12 reports the results of the fit in comparison with
the experimental data available for the unitary limit and weak coupling regimes.

The experimental results incorporates a shift in the δ-scale, Φ = δ+∆δ in order to get
Φ = π at the symmetric limit (signaled either by a maximum or a dip in the visibility as
a function of VG in each of the two regimes considered). One gets ∆δ = O.29π and 0.01π
respectively. The best fit is obtained for Γ/U = 0.5 in the unitary limit both below and
above the symmetric limit, and for Γ/U = 0.07 or 0.05 in the weak coupling strength
regime depending whether one considers the regime below or above the symmetric limit.
Finally we go back to the variation of δ with (−ε0/U +1/2) at the values of Γ/U defined
just above, and fit the experimental data Φ(VG) with them. Once having the x-scales
translated in order to let the symmetric limit δ = π coincide, the last thing that we
have to do is to fix the ε0/U ↔ VG correspondence. The best choice in both regimes
considered is obtained for ∆VG/∆(ε0/U) = 32mV . As can been seen from Fig.2.12, our
theoretical predictions are in remarkable quantitative agreement with the experimental
data. The fit is all the more remarkable that it is done in presence of a single fitting
parameter Γ/U that we have adjusted by taking benefit of the existence of a universal
behavior in the asymmetric regime.

2.3 Conclusion

In conclusion, we have proposed a theoretical analysis of the transmission phase shift
of a quantum dot in the presence of Kondo correlations and confronted our results to
the Aharonov-Bohm interferometry and conductance measurements. We have shown the
presence of a factor of 2 of difference between the total phase of the S-matrix (responsible
for the shift in the A-B oscillations), and the one appearing in the expression of the
conductance G ∼ sin2(δ/2) implying a partial phase shift per spin. Our calculations
based on Bethe ansatz combined with the use of the Friedel sum rule lead to a remarkable
quantitative agreement with experimental results. The whole discussion so far has been
restricted to the low temperature limit. One of the upcoming goals will be to include
finite temperature effects as well as to study the influence of a magnetic field. It will also
be interesting in the future to investigate the out-of-equilibrium situation. The analysis
of these questions requires some special techniques and will be discussed in Chapter 4.
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Quantum dots (QD), small puddles of electrons con-
nected to leads, can be obtained in a controlled fashion
because of recent progress in nanolithography. Under cer-
tain conditions a dot can be modeled as a localized spin
coupled to Fermi baths (the leads). A Kondo effect takes
place [1–3] when the temperature is lowered. A key in-
gredient of the Kondo effect is the phase shift � an electron
undergoes when it crosses the dot. While its direct mea-
surement was out of scope in bulk systems, it became
feasible recently in quantum dots via Aharonov-Bohm
(AB) interferometery [4]. We mention here the experimen-
tal results obtained in two cases corresponding to a strong
coupling to the leads [4,5]. In the unitary limit, the phase
shift climbs almost linearly with VG with a value at the
middle of the Kondo enhanced valley which is almost �.
At a smaller value of the coupling strength, the phase shift
develops a wide plateau at almost �. We call the latter case
the ‘‘Kondo regime.’’ Early theoretical work on the phase
shift for the bulk Kondo effect [6,7] predicts � � �=2. In
the context of QD, Gerland et al. [8] had obtained, on the
basis of numerical renormalization group and Bethe an-
satz calculations, a variation of � with the energy of
the localized state leading to a value of �=2 in the sym-
metric limit, in disagreement with the recent experi-
mental results quoted above [4,5]. In this Letter, we pro-
pose a new theoretical interpretation of the experimental
results based on scattering theory and Bethe ansatz calcu-
lations. Our main prediction concerns a factor of 2 differ-
ence found between the phase of the S matrix observed by
the phase shift measurements and the phase governing the
conductance.

Let us consider a quantum dot coupled via tunnel bar-
riers to two leads L and R, and capacitively to a gate
maintained at the voltage VG. The system can be described
[9,10] by a one-dimensional Anderson model with two
reservoirs L and R,

H��t
X

�

�

X

i�1

�cyi;�ci�1;��H:c:��
X

i��2

�cyi;�ci�1;��H:c:�
�

�VR

X

�

�cy0;�c1;��H:c:��VL

X

�

�cy�1;�c0;��H:c:�

�"0
X

�

n0��Un0"n0#; (1)

Consider the elastic component of the S matrix, Ŝk�,
describing the scattering of a spin-� electron with momen-

tum k off the impurity. It is given by [6,10,11] Ŝk� �
C��Î � iT̂res

k��, where C� is a multiplicative phase factor

and T̂res
k� is the T matrix with matrix elements given by

Tres;��
k� � 2�V�V����"k�G��"k � i��; (2)

where �;� � L or R, ���"k� is the density of states of
conduction electrons for � and "k, and G��"k � i�� is the
exact localized electron retarded Green’s function. Using
exact results [6,12] on the self-energy at T � 0 in an
interacting Fermi liquid, one can show that n0� �
1
�
Im lnG���� i��. Friedel’s sum rule [12,13] requires

n0� to be equal to the change in the number of conduction
electrons with spin � resulting from the addition of the
impurity. Hence it is related to the transmission phase shift
�� at the Fermi level, n0� � 1

�
��. Therefore �� coincides

with the phase of the Green’s function at the Fermi level
G���� i��. If we denote the associated self-energy by
P

���� i��, one gets G���� i�� � sin��e
i��=

Im����� i��. with Im����� i�� � ���V2
L � V2

R� �
����� [6,12] at T � 0 leading to

Tres;��
kF�

� �2
V�V�

�V2
L � V2

R�
sin��e

i�� : (3)

In the case of a symmetric QD with VL � VR � V, one has
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SLRkF� � SRLkF� � C�i sin��e
i�� and SLLkF� � SRRkF� � C� �

cos��e
i�� . The multiplicative phase factor C� contains

additional information about the spectrum and the filling
of the quantum dot. To determine it, we make use of
Levinson’s theorem [14,15]. In its original form, the theo-
rem applies to the potential scattering of a particle in a
given momentum l and relates the zero-energy phase shift
�l to the number of bound states of the same l supported by
the potential. It was generalized [16,17] later on to the case
of the scattering of a particle by a neutral compound
system as constituted, for instance, by an atom. In the
present case of a QD, which can be viewed as an artificial

atom, it follows that ln detŜkF�=�2i�� is equal to the total

number of states, i.e.,
P

�n0� � n0. By applying general-

ized Levinson’s theorem to ŜkF�, one finds C� � ei��� and

Ŝ kF�
� ei�

cos�� i sin��

i sin�� cos��

� �

; (4)

where � � P

���. One can easily check that, ŜkF� being a

unitary matrix, the optical theorem is fulfilled: T̂kF�
T̂y
kF�

�
�2 ImT̂kF�

, where T̂kF�
� �i�Î � ŜkF��.

In an open Aharonov-Bohm interferometry experiment
[5], spin-� electrons coming from the source through each
of the two arms interfere coherently at the drain, leading to
periodic oscillations of the differential conductance, the
argument of which is given by 2��e=h� �QD. � is the

magnetic flux and �QD is the transmission phase shift

introduced by the QD, equal to � � �n0 [cf. Eq. (4)].
In this Letter, we neglect the role of the reference arm
on the phase shift considered by some authors [18] and
concentrate on the contribution of the quantum dot to
the interference pattern. The conductance through the
QD is expressed by the Landauer formula [19,20], G /
P

�jTLR
kF�

j2. Using Eq. (4), we get G / P

�sin
2��. In the

absence of magnetic field, �" � �# � �=2, one gets

G /
X

�

sin2�=2: (5)

Because of recent developments in experimental tech-
niques, one now disposes of simultaneous measurements
of G and �QD. In this Letter we check the validity of the

theoretical prediction of Eqs. (4) and (5) by reporting the
experimental results for G and �QD obtained in the unitary

limit at different values of VG. Before examining the
experimental test, we make the following remarks: (i) in
an interferometry experiment, only relative values of the
transmission phase shifts can be measured. Hence we
set � � � at the location of the maximum of the visibil-
ity, evaluated to VG � 423 mV. This implies a shift in the
� scale evaluated to �� � 0:29� with ’ � �� ��;
(ii) typically the measurement of the conductance G is
performed in a ‘‘one-arm’’ device (pinching off the refer-
ence arm with the barrier gate), whereas that of the visi-

bility is done in a ‘‘two-arm’’ device. As a result, while the
evolution of the visibility with VG mimics that of the
conductance, the value of the former is shifted with respect
to that of the latter, by �VG � 15 mV. Therefore we take
the values of G at �VG ��VG�, and of � at VG; (iii) the
conductance is normalized by its maximum value at VG �
423 mV. Taking all these points into account, the graph
reported in Fig. 1 shows that the experimental dependence
of sin2’=2 with VG reproduces that of the ‘‘shifted’’ con-
ductance Gexp in a quite remarkable way, providing further

support to the validity of Eqs. (4) and (5) [21].
We now want to evaluate n0 in order to derive � � �n0.

Starting from Eq. (1), one can show [9] that only the
symmetric linear combination of electrons couples to the
localized state. Therefore if we are interested only in n0, it
is sufficient to study a single reservoir Anderson model

with a hybridization potential ~V �
������������������

V2
L � V2

R

q

. We have

solved the equations of the Bethe ansatz (BA) numerically
at T � 0 [22–24]. This allows us to determine the value of
n0 as a function of the parameters of the Anderson model
"0, V, and U. The three parameters enter through their
ratios "0=U and �=U, where � � �V2�0. Denote by
n0�"0;�=U� the value of n0 for the corresponding values
of the parameters. The following relation holds due to the
particle-hole symmetry of the model [23]: n0�� �"0 �
U�;�=U� � 2� n0�"0;�=U�. This automatically ensures
n0��U=2;�=U� � 1 in the symmetric limit "0 � �U=2
whatever �=U is. Furthermore, it follows from the preced-
ing relation that the study can be restricted to �U=2 �
"0 � U=2 and the remaining part can be deduced from it.
The results of the calculations are reported in Fig. 2(a). For
strong coupling strengths �=U � 0:25, n0 is found to
climb almost linearly with ��"0=U� 1=2�, whereas for
weak coupling strengths �=U � 0:25, the energy depen-
dence of n0 develops a plateau around "0 � �U=2. This

FIG. 1 (color online). Experimental conductance Gexp�VG� and
phase shift ’�VG� as a function of VG (values taken from
Ref. [4]; cf. text). Comparison is made with the curve G�VG� �
sin2	’�VG�=2
.
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change of behavior is due to the fact that the extent of the
local moment regime (centered around 	0 � �U=2 with
n0 ’ 1) increases when �=U decreases. As the temperature
is lowered, the Kondo resonance develops through this
local moment regime. This plateaulike structure can be
viewed as the beginnings of the ‘‘staircase’’ variation of
n0 with "0 obtained in the localized regime �=U ! 0.

The experimental data can be fitted then with two pa-
rameters, �=U and "0=U. The value of "0 is governed by
the strength of the gate voltage. Fitting the experimental
data from results presented in Fig. 2(a) is a difficult task
since one needs to fix the correspondence between "0=U
and VG on the one hand (we take it linear as usual,
independent of the regime considered), and to find the
best fitting value for �=U in the different regimes on the
other hand. A valuable help for doing this is provided by
taking advantage of some special properties of the
Anderson model. These properties can easily be recog-
nized when physical quantities such as n0 are plotted as a

function of some renormalized energy defined as "�=� �
"0=�� g�U=��. In the asymmetric regime [24] when

�U� 2"0� �
�������

�U
p

and j"0j  U, g	U=�
 equals 1
�
�

ln��eU=�4��� and the behavior of n0 as a function of
�"�0=� is universal [24,25]. This property is illustrated in

Fig. 2(b). The universality is reached when �=U � 0:25
and the range of energy over which universal behavior
extends is given by j"�0=�� 1=� ln��U=��j  U=�.

One can also see from Fig. 2(b) that in the empty level
regime (n0 ! 0), the curves n0 � f�"�0=�;�=U� at various

values of �=U merge, displaying an asymptotic behavior
[26]. The existence of both these universal and asymptotic
behaviors is of valuable help in fitting the experimental
data. Figure 3 reports the results of the fit in the unitary
limit and Kondo regimes. The experimental results incor-
porate a shift in the � scale, ’ � �� �� in order to get
’ � � at the symmetric limit. We establish the correspon-
dence between VG and "0=U by fitting the experimental
data to the theoretical results in the empty level regime
when all the curves merge. One finds �VG=��"0=U� of the
order of 30 mV in both of the regimes considered. The best
fit is obtained for �=U � 0:5 in the unitary limit both
below and above the symmetric limit, and for �=U �
0:04 or 0.07 in the Kondo regime (below or above the
symmetric limit, respectively). Finally, by keeping the
same correspondence between VG and "0=U and using
� � �n0, we derive the dependence of the phase shift
with VG from results obtained in Fig. 2(a). As can been

FIG. 3 (color online). Fit of the experimental data for the VG

dependence of the phase shift with the BA results for � � �n0
as a function of �"�0=�. Making use of the electron-hole sym-

metry, experimental results both below and above the symmet-
ric limit are reported using the same scales. They are repre-
sented by triangles pointing down and up, respectively, in the
unitary limit, and by circles and squares, respectively, in the
Kondo regime (incorporating a shift in the � scale; cf. text). The
best fit is obtained for �=U � 0:5 in the unitary limit (both
below and above the symmetric limit), and for �=U � 0:07 or
0.05 in the Kondo regime (below or above the symmetric limit,
respectively).

FIG. 2 (color online). (a) Theoretical results from the BA
calculations for the occupation number n0 as a function of the
normalized energy ��"0=U� 1=2� at different values of �=U.
Note that n0 � 1 at the symmetric limit "0 � �U=2 and the
existence of a plateau in its vicinity when �=U � 0:25. (b) The
same quantity as a function of the renormalized energy "�=� at
different values of �=U.
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3.1 Introduction

In the experiment the transmission phase shift is obtained from the measurements of the
net current at the drain of the Aharonov-Bohm interferometer ring. For a given value
of the gate voltage VG which controls the occupancy of the quantum dot Aharonov-
Bohm oscillations of the drain current are observed as a function of the magnetic flux
threading the ring. These oscillations are shifted when a gate voltage is applied to the
dot. The value of the corresponding shift is related to the transmission phase shift
through the quantum dot. The phase determined by quantum interferometry increases
continuously with the gate voltage VG until exhibiting an abrupt jump at a given value
of VG corresponding to an even number of electrons in the dot. The latter jump is
also named as a ”phase lapse”. The detailed description of the experimental technique
and the main results are given in Sec.1.2. A large number of papers is devoted to the
interpretation of the abrupt jumps observed in the phase shift [39, 40, 41, 42]. A review
of the different approaches can be found in Ref.[60].

In this chapter we propose to discuss the evolution of the coherent contribution to the
drain current as a function of the magnetic field and the gate voltage, IAB = IAB(B, VG),
rather then the behavior of the transmission phase shift of the quantum dot as a function
of VG, δ = δ(VG). The results for the current are represented as a 2D plot in the plane
(B, VG). The evolution of the transmission phase shift of the quantum dot is then
deduced from these plots as the change in the position of the maxima of IAB with the
gate voltage VG. Thus, we carry out the analysis in a way analogous to the one used by
experimentalists.

The drain current strongly depends on the state of the quantum dot. We calculate
the drain current in the cases when the quantum dot is in the unitary limit, the Kondo
correlation and the Coulomb blockade regimes. We briefly discuss each of these regimes
and the crossover between them.

3.2 Phase lapse at T = 0 in the unitary limit and

Kondo correlation regimes

3.2.1 Magnetic and non-magnetic regimes. Phase diagram at
T = 0

Following Ref.[6], when the Coulomb repulsion energy U is large, the ground state of
the system described by the Anderson model is most of the time nonmagnetic. Using
the Hartree-Fock approximation, Anderson showed that the model leads to a transition
between a magnetic and a non-magnetic states depending on the values of the density of
state of conduction electrons, the coupling strength and the Coulomb repulsion energy
(see for example Eq.2.38 or Fig.2.1). Fig.3.1 reports the phase diagram of the model as
a function of πΓ/U and ǫF − ǫ0/U . It shows that in the case of large coupling strength
Γ & U there is no magnetic moment at the impurity site. On the contrary, small
values of the coupling strength Γ ≪ U lead to the formation of a magnetic moment at
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Figure 3.1: Phase diagram of the Anderson model as a function of πΓ/U and ǫF − ǫ0/U
in the Hartree-Fock approximation (Ref.[6]).

the impurity site. The system shows a magnetic behavior in a range of ǫF − ǫ0 which
becomes larger and larger when Γ/U decreases.

The Hartree-Fock approximation used by Anderson [6] qualitatively describes the
system at high-temperatures. At low temperatures due to the Kondo effect, the magnetic
moment at the impurity site is screened by the spins of the conduction electrons. The
ground state is therefore nonmagnetic too. Thus, in the limit of zero temperature the
system shows a non-magnetic behavior for any value of the parameters ǫ0, Γ and U . In
this limit the results presented in the Chapter 2 hold and we will derive benefit from
them.

3.2.2 Net current through an Aharonov-Bohm ring

The net current at the drain of an AB ring at equilibrium is proportional to the bias
voltage IAB = VSD GAB where GAB is the total conductivity of the ring given by

GAB =
2e2

h
|tref |2 +

2e2

h
|tQD|2 +

4e2

h
Re

[
tref t

∗
QD

]
(3.1)

For the transmission amplitude tQD of the quantum dot, we take the expression derived
in Chapter 2

tQD = −ieiδ sin δ/2 (3.2)

where δ = πn0. Thus the knowledge of the occupation number as a function of the
energy (or the gate voltage) is sufficient to calculate the ring current. The ring current
can then be calculated as a function of the magnetic field, Φ = BS, and the gate voltage,
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n0 = n0(VG). The transmission amplitude tref through the reference arm can be taken
as real. First, we assume that tref = 1. Later we will address the question of the effect
of the magnitude of tref on the ring current.

Now we assume Eq.3.2 to be valid in the case when the spectral density on the
impurity site is given by a series of localized levels (or resonances)

ǫ0

∑

σ

c†σcσ 7−→
∑

λ

ǫλ

∑

σ

c†σλcσλ (3.3)

The total occupation number is given by the sum of the occupation numbers of each
localized level

n0 =
∑

λ

∑

σ

n0λσ =
∑

λ

n0λ (3.4)

where n0λ =
∑

σ n0λσ. For simplicity, we assume all the resonances to be described by
the same parameters. To calculate the ring current, given by Eq.3.1, we use the sum
of the solutions of the Bethe ansatz equations for the occupation number for each λ,
Eq.3.4. We study two different regimes: the unitary limit and the Kondo correlation
regimes for which Γ/U = 0.5 and Γ/U = 0.04 respectively.

3.2.2.a Unitary limit regime

The unitary limit regime corresponds to large values of the coupling strength. We take
the value obtained from the fit performed in Chapter 2: Γ/U = 0.5. In this case the
Kondo temperature is high, TK from 1.5 to 2 K. The low-temperature limit, T ≪ TK , is
then experimentally accessible. The occupation number in this regime increases almost
linearly as a function of the energy (or the gate voltage), see Fig.1.17(a) or Fig.2.12(a).
The occupation number as a function of ǫ0 is obtained from the exact Bethe ansatz
solution of the Anderson model for the case Γ/U = 0.5.

The 2D plot of the ring current as a function of the Aharonov-Bohm phase, θ =
2πΦ/Φ0, and gate voltage, VG, is shown in Fig.3.2. To fit the experimental results we
need to consider the opposite direction of the magnetic field: θ → −θ. This 2D-plot is
in excellent agreement with the experimental results (see Fig.2a of Ref.[35]). The phase
shift defined as earlier shows a gradual increase from 0 to 2π. 2π corresponds to the
period of the Aharonov-Bohm oscillations of the current. The points where IAB = Iref

are indicated by a dashed (see Figs.3.2 and 3.3) line which corresponds to the evolution
of the phase shift as a function of VG.

The transmission amplitude tQD vanishes when the occupation of the dot reaches
the value n0 = 2 i.e. when δ = 2π since sin δ/2 = 0. This fact results in a abrupt
change of the position of the maxima of the Aharonov-Bohm current oscillations and
therefore in a ”phase lapse” in the phase evolution. Strictly speaking, at this point there
is no oscillation of the current. When the transmission amplitude vanishes, the arm of
the interferometer which the quantum dot is embedded in, is locked. The source-drain
current is then given by the current through the reference arm Iref ∝ |tref |2 only which
does not depend on the magnetic flux. When the gate voltage VG further increases, the
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Figure 3.2: The 2D plot of the ring current (transparency) as a function of the magnetic
field θ and the gate voltage VG when the quantum dot is in the unitary limit regime.

maxima of the ring current turn out to be shifted by half of the period of the Aharonov-
Bohm oscillations ∆δ = π. The maxima of the ring current do not return to their
initial positions. This feature of the transmission phase shift is usually named as an
”incomplete phase lapse”. It results from the change of sign of the magnitude of the
transmission amplitude when δ reaches the value 2π. We would like to emphasize at this
point the importance of the factor of 2 that we found in the factor sin δ/2 contained in
tQD, to get an incomplete phase lapse

3.2.2.b Kondo correlation regime

The Kondo correlation regime corresponds to small values of the coupling strength Γ.
We take the value obtained from one of the fits given in Chapter 2: Γ/U = 0.04. This
regime corresponds to a very low Kondo temperature: TK from 1.0 to 0.1 mK. The
occupation number in this regime exhibits a staircase behavior as a function of the
energy or the gate voltage. The plateau occurs in the vicinity of ǫλ = −U/2.

The 2D plot of the ring current as a function of the Aharonov-Bohm phase, θ =
2πΦ/Φ0, and the gate voltage, VG, is shown in Fig.3.3. Since the Kondo temperature is
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Figure 3.3: The 2D plot of the ring current (transparency) as a function of the magnetic
field θ and the gate voltage VG when the quantum dot is in the Kondo correlation regime.

low, the temperature at which the experiments are performed always puts the system
at T > TK (high temperature limit). The conductance in the vicinity of the symmetric
limit of the Anderson model (at the middle of the odd valley, n0 = 1) is suppressed. On
the contrary, our result, displayed in Fig.3.3 corresponds to the T = 0 limit, when the
conductance reaches the unitary limit 2e2/h.

The phase evolution shows a gradual increase from 0 to π followed by a plateau, and
then again by an increase from π to 2π. When the phase reaches the value δ = 2π the
transmission amplitude, tQD, vanishes. This zero of the transmission amplitude results
in an abrupt change of the position of the maxima of the Aharonov-Bohm current
oscillations. When the gate voltage VG further increases, the maxima of the ring current
turn out to be shifted by half of the period of Aharonov-Bohm current oscillations exactly
as in the previous case when the coupling strength to the leads is strong (unitary limit,
see Fig.3.2). As before, we emphasize that the ”incomplete phase lapse” which occurs
in the VG-dependence of the phase results from the factor of 2 difference between the
sinus and exponential terms in tQD.
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Figure 3.4: The 2D plot of the ring transparency as a function of θ = 2πΦ/Φ0 and
δ = πn0(VG) at different values of tref : 1.0, 0.7 and 0.3. The points where TAB = 0.2
are indicated by a dashed line.

3.2.3 Dependence of the source-drain current with the trans-
mission amplitude of the reference arm tref

Previously, we have assumed that the transmission amplitude through the reference
arm is real and corresponds to a fully open channel tref = 1. In general situations, it is
not true, the reference arm may introduce an additional phase to the Aharonov-Bohm
current oscillations. The conductance of the reference arm is generally lower than the
conductance of an open channel, especially in the case of open interferometers. The
transmission amplitude of the reference arm can be written as tref = |tref |eiα. If now we
assume that the phase α does not depend on the gate voltage VG and magnetic flux Φ,
it can be omitted in the discussion since the measurements can only determine relative
phase shift. The phase factor of the transmission amplitude of the reference arm gives
a constant contribution to the phase which can be removed in the determination of
δQD. Therefore one assumes the transmission amplitude through the reference arm to
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be real, tref = |tref |. The question of the influence of the magnitude of tref may then be
addressed. In the linear-response regime the current is proportional to the transparency.
The complete expression for the ring transparency at T = 0 is given by

TAB(δ, θ) = t2ref + sin2(δ/2) + 2tref sin(δ/2) sin(θ − δ) (3.5)

Here we have replaced the dependence of the current on the gate voltage by the phase δ
which is a monotonous function of VG as it is given by the sum rule expressed in Eq.2.27.
For the transmission amplitude through the arm which the quantum dot is embedded
in, we have used tQD = ieiδ sin(δ/2) (see Chapter 2). The result is shown in Fig.3.4.
The ring transparency is determined for 3 values of tref (1.0, 0.7 and 0.3). When the
reference transmission decreases, the peaks of the current are reduced in height and
broadened. The height of the peaks decreases from TAB = 4 for tref = 1, to TAB = 1.7
for tref = 0.3. In Fig.3.4 the points where TAB = 0.2 are indicated by a dashed line.
One can clearly see from Fig.3.4 that when tref is small, the consecutive peaks are
separated by a large region where the ring current is small. This can be the reason why
experimentally the span of the phase through two (single-particle) resonances is lower
than the expected value of 2π. Nevertheless, one can notice that the main feature, the
existence of an incomplete phase lapse, occurs at any value of tref .

3.3 Conductance evolution in the low-temperature

(T ≪ TK) and high-temperature (T ≫ TK) regimes

3.3.1 Phase diagram at finite T

At T = 0 and when the quantum dot is in the nonmagnetic state, we have shown that
the conductance is given by

G = G0 sin2 δ

2
(3.6)

where δ = πn0 and G0 = 2e2/h is twice the quantum of conductance. In the context
of quantum dots, we have tested this prediction using independent experimental deter-
minations [36, 35] of the transmission phase shift, δ, and of the conductivity G (see
Fig.2.7). The question which now arises is the following: what happens to the transport
through a quantum dot when the temperature increases?

To simplify the discussion, we assume that the coherent contribution to the current
is brought by the electrons at the Fermi level only. The effect of temperature on the
transmission phase shift will be discussed in Chapter 4.

3.3.1.a T ≪ TK

In the framework of the local Fermi liquid theory the low temperature corrections to the
resistivity were calculated by P.Nozieres [48]. Since the correction to the resistivity are
given by the expansion of sin2[δ(ǫ)] on powers of ǫ one can transpose the result obtained
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Figure 3.5: Phase diagram of the Anderson model for U = 1.5 meV and Γ/U = 0.05.

for the resistivity in 3D, to the conductance of a quantum dot in 1D. Taking only the
s-scattering (l = 0) into account, the conductivity is given by

G(T ) = G(0)

[
1 − c

(
T

TK

)2
]

(3.7)

with c = π4/16 ≈ 6.088. This expression is in good agreement with the almost ex-
act NRG calculations [61] in the range of temperatures 0 ≤ T ≤ 0.1 TK , see Fig.3.5.
The behavior is clearly observed experimentally. In Fig.3.6 we have compared the VG-
dependence of the experimentally measured conductance at T = 150 mK in the unitary
limit regime (page ”Kondo effect at Unitary Limit (increasing temperature)” of Ref.[62])
and the prediction for G(T ) given by Eq.3.7 where the zero temperature conductance,
G(0), is taken from Eq.3.6. The lowest experimentally accessible temperature T = 50
mK is assimilated to the zero temperature limit (see Fig.2.7). One can notice that
the conductance G as a function of VG exhibits a peak around the value that we de-
note by V 0

G. The value that we find for V 0
G is V 0

G = −397 mV. For the dependence
of TK with VG, we use a periodic parametrization, TK = T 0

K + a(VG − V 0
G)2 where T 0

K

is the Kondo temperature in the symmetric limit (minTK = T 0
K) and a is the cur-

vature. This parametrization is not correct generally and if not, one should use the
exact expression given in Ref.[59]. However the experimental results [29] show that the
parabolic parametrization leads to reliable results for TK = f(VG). Since the exper-
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Figure 3.6: Experimentally measured conductance of the quantum dot at T = 150 mK
(orange squares, [62]) compared to the low-temperature Fermi-liquid prediction (blue
triangles) as a function of VG.

imental temperature is fixed, the parameter that one can use to fit the experimental
curve is the Kondo temperature TK(VG). The best fit is obtained for T 0

K = 1.824 K and
a = 0.09 K/mV2. Thus the temperature at which the experiments are carried out is
low, T ≪ T 0

K = min TK (see Fig.3.5), and the system is always in the low-temperature
regime described by the Fermi liquid theory. The conductance given by the expression
of Eq.3.7 is in good agreement with the experimentally measured conductance for all
values of VG.

The experimental conductance at T = 300 mK and at higher temperatures are out of
scope of the low temperature Fermi liquid description. They correspond to a crossover
[12, 61] between the low-temperature (strong coupling) and high-temperature regimes.

3.3.1.b T ≥ TK

At temperatures T ≥ TK the system is no longer described by the Fermi liquid theory.
Performing parquet diagram summation, Hamann [63] showed that in the limit T ≫ TK

the T -dependence of the conductance is given by

G(T ) =
G(0)

2

[
1 − ln(T/TKH)

[
ln2(T/TKH) + π2S(S + 1)

]1/2

]
(3.8)
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Figure 3.7: Experimentally measured conductance of the quantum dot [62] compared
to the high-temperature results given by Eq.3.8, as a function of VG at T = 750 mK
(above) and T = 1000 mK (below). The experimental data are represented by red
circles (at 750 mK) and green triangles (at 1000 mK). In both cfigures the theoretical
points are represented by blue triangles.
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where TKH = TK/1.2 and S is the total spin of the impurity (we take S = 1/2).
The result expressed in Eq.3.8 is in good agreement with the NRG results [61] in the
range TK ≤ T ≤ 10 TK . In the range 0.5TK < T < TK the comparison with the
NRG results show that the expression given by Eq.3.8 gives the correct result within an
error of ∼ 10% (see Fig.13 in Ref.[61]). The crossover regime that we have mentioned
earlier takes place in the temperature range 0.1TK < T < TK , see Fig.3.5. At higher
temperatures, T > 10 TK , the conductance given by Eq.3.8 deviates considerably from
the correct result since it is derived for s-d model which neglects the charge fluctuations.
The latter are important at high temperatures.

In Fig.3.7 we have compared the VG dependence of the conductance measured at
750 and 1000 mK and the prediction following Eq.3.8 where we have kept the same
VG-dependence of TK as the one chosen in the low temperature regime (T ≪ TK).
One can note that the temperature at which the experiments are carried out is lower
than the Kondo temperature at the symmetric limit when TK takes its minimum value,
T 0

K . Nevertheless, the conductance given by Eq.3.8 is in good agreement with the
experimentally measured conductance in the vicinity of the symmetric limit (VG = −397
mV). Away from the symmetric limit, the Kondo temperature is higher and, as a result,
the fit is less accurate.

We want to emphasize that once the Kondo temperature is fixed, there is no other
fitting parameter left in the description.

3.3.1.c T ≫ Γ

When the temperature is larger than T = Γ ≫ TK , the conductance given by Eq.3.8
strongly deviates from the correct results (given, for example, by NRG calculations [61]).
When the temperature is lower than both the mean level spacing and the Coulomb re-
pulsion energy, T ≪ δE ≪ U , only one localized state participates in the transmission
of electrons between the leads and the dot. In this regime the coherent part of the
conductance results from the the resonant scattering by the localized state. The trans-
mission amplitude is then given by the Breit-Wigner formula [34] which can be rewritten
in the form

tQD = ieiδ sin δ (3.9)

where δ = πn0λ and n0λ = arctan Γλ

ǫ−ǫ0λ
is the occupation of one localized level. Now we

propose to make the same assumption as for the transmission amplitude of a quantum
dot at T = 0 (see Sec.3.2.2). We assume that Eq.3.9 is valid in the case when the
spectral density on the impurity site is given by a series of localized levels. n0 is then
equal to the total occupation of the dot.

3.3.1.d Experimental situation

The experimental temperature Texp corresponds to a horizontal line on the phase dia-
gram sketched in Fig.3.5. When the temperature at which the experiment is carried
out is very low, T ≪ T 0

K , the system is in the low-temperature regime for all values of
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Figure 3.8: The 2D plot of the ring current (transparency) as a function of the magnetic
field θ and the gate voltage VG when the quantum dot is in the Coulomb blockade regime.

ǫ0. A different situation takes place when Texp is comparable to the other temperatures
characteristic of the system.

When the temperature increases, in the vicinity of the symmetric limit of the Ander-
son model, the system enters into a crossover regime between the low-temperature and
the high-temperature regimes. Away from the symmetric limit the system is still in the
low-temperature regime. The conductance is well described by the Fermi liquid theory
(Eq.3.7) in a range of ǫ0 far from the symmetric limit (see Fig.3.5) while in the vicinity
of the symmetric limit it is strongly suppressed. Nevertheless, the coherent contribution
to the current through the quantum dot or its transparency is still given by Eq.3.6.
Thus even if the total ring current at the middle of the valley (symmetric limit) is weak
if is not zero the phase shift does not exhibit any phase lapse.

When the temperature is increased further, the system enters into the Coulomb
blockade regime. The coherent part of the ring current can then be calculated using
Eq.3.1 with the transmission amplitude given by Eq.3.9.
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3.4 Ring current in the Coulomb blockade regime

In order to calculate the ring current, we consider two localized levels with energies
ǫ0 and ǫ0 + U with the same coupling strength Γ which is taken to be small Γ ≪ U .
The total occupation number n0 is then given by Eq.3.4 with λ = 1 and 2. It can be
approximated by

n0(ǫ) =
1

π

[
arctan

Γ

ǫ0 − ǫ
+ arctan

Γ

ǫ0 + U − ǫ

]
(3.10)

where Γ ≪ U .
The coherent part of the total ring conductance as a function of the magnetic field

and the gate voltage is shown in Fig.3.8. The shift of the periodic Aharonov-Bohm
oscillations from their initial position increases from 0 to π where π coincide with half of
the period of the oscillations as a function of the magnetic field. At this point, δ = π, the
current through the arm with the quantum dot, vanishes and the oscillations disappear.
When the gate voltage increases again, the oscillations turn out to be shifted by half of
the period of the Aharonov-Bohm oscillations. As far as the transmission phase shift is
considered, this corresponds to a complete phase lapse.

3.5 Conclusions

The expression for the transmission amplitude for the quantum dot in the Kondo regime
at T = 0 obtained in Chapter 2 correctly describes (i) the conductance of the quantum
dot, (ii) the phase evolution with the energy ǫ0 of the localized level and (iii) the unex-
pected abrupt change of the transmission phase shift - the phase lapses which are found
to be incomplete. All these results are in agreement with the experimental observations.
Using the same arguments as for the case of a quantum dot in the Kondo regime, we
show the presence of a complete phase lapse in the Coulomb blockade regime.

Experimentally, the crossover between the Kondo and the Coulomb blockade regimes
is characterized by a complex behavior of the system. At the same temperature the
quantum dot can be in different regimes depending on the value of the gate voltage
VG. In the odd valley at low temperatures (in the Kondo regime), the phase shift
does not show any phase lapse, the phase exhibits an ”off-resonant” behavior. When
the temperature T increases (or the coupling strength Γ is reduced), the quantum dot
gradually passes into the Coulomb blockade regime. The increase of the transmission
phase shift by π in the vicinity of each resonance is governed by the resonant scattering
off a quasilocal state in the dot. A complete phase lapse occurs at the middle of the
valley when Γ ≪ T ≪ δE ≪ U . The net current through the quantum dot has
also an incoherent component resulting in a finite value of the conductance (at finite
temperatures) contrary to the result, given by Eq.3.9 (δ = π at the middle of the valley).
We have neglected the latter contribution in this chapter.
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4.1 Introduction

4.1.0.e Quantum dots vs impurity atoms

Quantum dots have provided one with new opportunities to control the Kondo effect
experimentally. Whereas the values of the parameters such as the coupling strength
of the impurity spin to the spins of the conduction electrons or the Coulomb repulsion
energy between electrons on the impurity site are out of experimental control and even
generally unknown in bulk systems, they can instead be turned individually in quantum
dots.

This opens the way to a systematic study of the Kondo effect. Moreover, the quantum
dot investigation field can also push research on the Kondo effect into new directions,
and artificial structures can be studied in regimes which are out of scope for magnetic
impurities in bulk systems. Thus new physical questions can be addressed.

4.1.0.f Nonequilibrium

In this chapter we propose to investigate one of these new directions, namely the nonequi-
librium situation. We will also focus our attention on the scattering phase shift. There
exist different types of nonequilibrium setups, but we will focus our attention mostly on
nonequilibrium implementation at finite (static) bias voltages. For the case of a mag-
netic atom embedded in a bulk metal, achieving the nonequilibrium situation may be
daunting, but this is not the case for quantum dots. A quantum dot weakly coupled to
its leads constitutes a Kondo system in which nonequilibrium regime can be routinely
achieved. More generally, an impurity in a small structure in which the applied bias
voltage is dropped over a mesoscopic length is a nonequilibrium Kondo system.

Measurements of the phase shift (as well as of the conductance, but we will not
address this question here) in nonequilibrium quantum dot setups have been performed
in Heiblum’s group [36, 35] at the Weizmann Institute of Science.

Quantum dots are small confined puddles of electrons realized at the surface of two-
dimensional electron gas. These devices are characterized by large charging energy which
in our description corresponds to the Coulomb repulsion energy U . This parameter
essentially depends on the size of the device. Other parameters as the coupling strength
to each lead, the energy structure or the filling of the quantum dot can be controlled
individually. The Coulomb blockade and Kondo effects were observed under certain
conditions in these quantum dots. Thus the quantum dots can be used to investigate
the nonequilibrium manifestation of the Kondo effect. The applied bias voltage, as it has
been observed, has nearly the same effect on the phase shift as heating - it leads to the
suppression of the Kondo plateau located at δ ≈ π but owns also some characteristic
features. As it was already mentioned, this type of measurements is possible only
under the condition that the coherence length is much larger than the system size
(which in the context of the phase measurements is not the size of the quantum dot
only but that of the Aharonov-Bohm interferometer). Usually, at equilibrium, this
condition imposes restrictions on temperature, but the presence of finite bias voltage,
VSD 6= 0, also introduces decoherence processes which result in a reduced visibility
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Figure 4.1: The two-reservoir Anderson model. The localized doubly degenerated
discrete interacting level is coupled via tunnel barriers to two reservoirs of free elec-
trons (Fermi seas). In general, the reservoirs can have different chemical potentials,
µL − µR = eVSD, that corresponds to the source-drain (bias) voltage. In the case then
VSD = 0 this model is equivalent to the standard equilibrium one-reservoir Anderson
model.

(roughly speaking, the interference contribution to the Aharonov-Bohm source-drain
current) and this makes the phase shift measurements impossible. Thus, experimentally
measurements are limited both by temperature and bias voltage.

4.1.0.g Anderson model

As we have already mentioned in Chapter 1, following Glazman and Raikh [49] and Ng
and Lee [50], one can describe the quantum dot coupled to two leads by a model anal-
ogous to the the Anderson model — a site with discrete, interacting levels coupled to
two reservoirs — named as the Anderson model with two reservoirs sketched in Fig.4.1.
As it was proved by Glazman and Raikh [49] at equilibrium these models are equiv-
alent. This equivalence shows that the quantum dots can be described by a standard
Anderson model which under certain conditions gives rise to a to the Kondo effect at
low temperatures. This model has been used successfully to describe experiments on
quantum dots at equilibrium. On the contrary, at nonequilibrium the two-reservoir An-
derson model can not be mapped to the single-reservoir Anderson model. One needs to
work with a two-reservoir Anderson model to describe the Kondo effect when the dot
is biased out of equilibrium. The latter model is more general and has proved to give
an excellent description in both the equilibrium and the nonequilibrium situation. The
nonequilibrium properties have been intensively investigated since then. Here we use
this model to describe the scattering off the quantum dot driven out of equilibrium.

Coming back to the equilibrium situation it was established that at zero temperature
the Kondo resonance in the density of states pinned at the chemical potential in the leads
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leads to a perfect transparency of a quantum dot when it is symmetrically coupled to the
leads. More precisely, for all the values of ε0 between 0 and U , where ε0 is the bare-level
energy and U is Coulomb repulsion energy, the conductance of the dot is 2e2/h. Out of
equilibrium, the presence of the two chemical potentials dramatically affects the Kondo
resonance. The latter is found to be splitted and strongly reduced in height [64, 65].
This effect is responsible for the suppression of the enhanced conductance through a
quantum dot in the Kondo regime. It is thus expected that the scattering phase shift is
affected by the presence of VSD, as it is experimentally observed.

It is important to note that the (equilibrium) Anderson model is integrable and
that an exact solution can be found by use of Bethe Anzatz method [17],[15]. The
arguments of integrability are also used to solve the two-reservoir Anderson model out
of equilibrium [66]. Although the integrability is used, the nature of the problem is
such that the results that are obtained are not exact, but should be considered as an
approximation.

4.1.0.h Calculation of the current

In the framework of the Keldysh nonequilibrium technique it is possible to derive a for-
mal expression for the fully nonlinear current through the nonequilibrium QD in terms
of the localized electron exact Green function [67, 68]. The analysis supports arbitrary
interactions in the mesoscopic region, but the leads are assumed to be noninteracting.
It was shown then that the nonequilibrium current through a quantum dot can be ex-
pressed in a way similar to the equilibrium case. However, the expression for the current
in the interacting case (U 6= 0) cannot be obtained in general from the Landauer formula
,i.e. the transmission function (or the transmission probability) cannot be written as
T(ǫ) = t†(ǫ)t(ǫ), where t(ǫ) is the transmission amplitude containing additional infor-
mation about the transmission phase shift [67]. The Landauer formula for the linear
response in conductance holds for the noninteracting case (U = 0) and the interacting
case at zero temperature. At finite temperatures and bias voltages, current has both
coherent and incoherent contributions [69, 68]. The first one, the coherent contribution,
obeys the Landauer formula and is supposed in our approach to be the only contribution
to the interference current.

4.1.0.i Calculation of the phase

As far as phase shift calculations are concerned, an important contribution was made
by Gerland et al.[38]. The effect of the Kondo correlations on the phase shift (indeed,
on the transmission amplitude) was studied. The evolution of the phase shift in the
different regimes finite temperatures, magnetic fields and/or bias voltages was investi-
gated as well. At equilibrium these calculations confirm the Friedel sum rule within high
accuracy. The transport properties are found to be drastically affected by the source-
drain voltage, VSD. The transmission amplitude was calculated using mainly numerical
renormalization group (NRG) approach.

The phase is calculated in the linear response regime (in the case of a finite voltage
for a large range of temperatures). The expression for the total transmission amplitude
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is given by the ”thermally averaged transmission amplitude” through the dot for the
electrons incident with mean energy eVSD, Eq.(2) of [38]. Within this approximation,
roughly speaking, only electrons within the thermal energy window µ ± T , where T is
the temperature, contribute to the current. Out of equilibrium one expects the current
to be carried by electrons within wider energy window µL+T > ε > µR−T [69] (here we
consider µL > µR). Another important point is the assumption that the quantum dot
is not driven out of equilibrium by the source and drain. This assumption is believed to
be realistic for real Aharonov-Bohm interferometers. Nevertheless at large bias voltages
the ground state of a quantum dot in general is not an equilibrium one and we propose
to take into account the corresponding effects.

We derive the fully nonlinear expression for the scattering phase shift at finite
bias voltages and temperatures. The calculations that we performed are based on the
Landauer-Buttiker approach and do not involve linear-response formalism. The linear-
response expression, as well as the equilibrium results, can be obtained as a limiting case
of our calculations. We define the scattering phase shift as the shift of the Aharonov-
Bohm source-drain current oscillations, ∆(VG) ≡ δIAB(θ; VG), where θ = 2πΦ/Φ0 is the
Aharonov-Bohm phase and VG is the gate voltage which controls the ground state of the
quantum dot. This definition is consistent with the experimentally measured quantity.
So, starting from the expression for the current through the A-B ring, we are able to
express the scattering phase shift, ∆, in terms of the localized electrons retarded Green
function. The latter Green function, is generally difficult to obtain analytically. This
part of the work was done numerically. Furthermore, using Kramers-Kronig relations
one can relate the real and imaginary parts of the retarded Green function. Thus to
obtain ∆ it is enough to know the density of states of the localized electrons. To obtain
the values of the density of states we used the Keldysh technique [70, 71], appropriate
for nonequilibrium problems, combined with perturbative methods (that we will present
later on). We expect our result to correctly describe the nonequilibrium behavior of the
system.

Let us comment about shortcomings of the method that we propose. To obtain
the density of states of localized electrons we apply the non-crossing approximation
[72, 73, 74]. We know that the latter approximation may lead to a considerable error
in the evaluating of the height of the Kondo peak. As the scattering phase shift de-
pends strongly on the behavior of the density of states at the Fermi level, unlike the
occupation number, for example, we expect our result to be less accurate in certain
cases. The most ”sensitive” regime is the equilibrium zero-temperature limit. Although
the zero-temperature equilibrium phase shift can be obtained using Levinson’s theorem
combined with the Friedel sum rule, see Chapter 2, the equilibrium regime (µL = µR) at
zero temperature is out of reach of this method. The error introduced by this method
remains considerable up to temperatures of the order of several TK [75]. Nevertheless,
at high temperatures or finite bias voltages, the error is expected to be not crucial. An-
other important shortcoming of our approach is the use of a finite-U Anderson model.
This assumption is experimentally justified. It turns out that the Coulomb repulsion
energy is the largest energy scale in the described systems but, however, all the experi-
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mentally studied systems correspond to a large but finite U . Thus we can only propose
a qualitative analysis of the problem.
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4.2 Noncrossing approximation (NCA)

To obtain a well-behaved density of states from the non-equilibrium perturbation theory,
one needs some way of summing diagrams to all orders in the hopping V . In finite-order
perturbation theory there exist divergences associated with the bare level ǫ0 and, at
T = 0, logarithmic divergences near the chemical potentials due to the Kondo effect.
To control these divergences, we employ the noncrossing approximation, which has been
used successfully to treat the infinite-U Anderson model at equilibrium [72, 76].

4.2.1 Large-N expansion

When the diagrammatic perturbation theory is used, the introduction of a new param-
eter N , the degeneracy factor, makes some new techniques available which provide one
with a way of calculating dynamic response functions or the one-electron Green func-
tion. These are the 1/N expansion or large-N approaches. Some simplifications are
found in the large-N limit and the method itself becomes exact in the limit N → ∞.
These simple approximation schemes work very well for values of N that are of interest
for application to rare earth impurities. Even for N = 2, which is also the case of
quantum dots, one can get semi-quantitative results, which can be accurate to within a
few percents for some physical quantities [76].

It is possible to classify the terms in the perturbation expansion in powers of the
hopping V according to the order in 1/N . We will not give here a complete set of rules
of drawing and evaluating the diagrams but we propose a simple analysis in terms of a
1/N expansion.

The lower order non-vanishing terms for the reduced resolvent propagators in a
perturbation expansion in V are given by

R
(2)
0 (ω) =

∑

k,m

|Vk|2
(ω − ǫ0)2

f(ǫk)

ω − ǫm + ǫk

(4.1)

R
(2)
1,m(ω) =

∑

k

|Vk|2
(ω − ǫm)2

1 − f(ǫk)

ω − ǫ0 + ǫk

(4.2)

where ǫ0 is the energy of the empty site, ǫm is the energy of the site occupied by a single
electron with momentum projection m, ǫk is the energy of conduction electron and f(ǫ)
is the Fermi distribution function. The reduced resolvent is

Rα(ω) = Trc〈α|〈c|(ω − Ĥ)−1|c〉|α〉/Zc

where the subscript c denotes the trace over the conduction states, |c〉; |α〉 are the im-
purity states |nF , 0〉 and |nF +1,m〉. The states |α〉 are many-body states which include
Coulomb interactions. The standard diagrammatic methods which use Wick’s theorem
are not applicable. Nevertheless one can develop an applicable form of perturbation
theory but we do not address this question here. Our aim is just to classify the terms in
the perturbation expansion along their dependence on the degeneracy factor N . Later
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we will use the perturbation expansion for the Anderson hamiltonian in the slave boson
representation. These auxiliary particles can be treated as ordinary particles.

The diagrams of the next, third, order in the expansion for R0(ω) are given in Fig.4.2.
Contributions from diagrams with non-overlapping conduction electrons, such as Fig.4.2

Figure 4.2: All the diagrams of order |V |6 contributing to the R0(ω). Solid, dashed
and wavy lines represent conduction electron propagator, zero-order R1,m(ω) and R0(ω)
correspondingly.

(1), (2) and (3), factorize. All the self-energies presented in the diagram Fig.4.2(1), the
last part of diagram Fig.4.2(2) and the first part of diagram Fig.4.2(3) correspond to
second order self-energy terms. The first part of diagram Fig.4.2(2) and the last part of
diagram diagram Fig.4.2(3) represent the fourth order self-energy term.

The diagrams may be classified along their dependence on the degeneracy factor N .
If the hopping matrix element is scaled along a factor 1/

√
N , V → V/

√
N , then the

diagrams can be classified according to their dependence on (1/N)r, where r ∈ N. This
scaling is required to enable a physically meaningful limit N → ∞ to be taken. One
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Figure 4.3: The leading order diagrams for R1,m(ω) in a 1/N expansion. The double
wavy line represents the ”dressed” R0(ω) propagator.

can see that in the diagram Fig.4.2(1) 3 independent m summations show up and so is
of order (1/N)0. The contribution to R0(ω) self-energy shown in Fig.4.2(2), (3) and (5)
are of order (1/N)1 since they have only two independent m summations, and diagrams
(4) and (6) have only one free m and are of order (1/N)2.

The order (1/N)0 diagrams for R0(ω) are summed by taking the second order self-
energy into account. The lowest order diagrams for R1,m(ω) are of order (1/N)1. All the
diagrams for G1,m(ω) to order (1/N)1 are obtained by dressing the internal propagator
G0(ω) with the second order self-energy term. This is schematized diagrammatically in
Fig.4.3.

4.2.2 NCA

We now consider ways of taking more diagrams into account by setting up self-consistent
calculations for the two lowest order diagrams for the R0(ω) and R1,m(ω) propagators
(or self-energy terms). As it can be seen, at lowest order in perturbation theory the
Σ0(ω) self-energy involves Σ1,m(ω) while Σ1,m(ω) self-energy involves Σ1,m(ω). By using
the two relations self-consistently, one obtains a set of coupled integral equations. The
coupled equation for the self-energies (for a flat conducting band) are

Σ0(ω) =
N∆

π

∫
f(ǫ)

ω − ǫm + ǫ − Σ1,m(ω + ǫ)
dǫ (4.3)

Σ1,m(ω) =
∆

π

∫
1 − f(ǫ)

ω − ǫ0 − ǫ − Σ0(ω − ǫ)
dǫ (4.4)

where ∆ = π|V |2ρ. This procedure allows us to take all non-crossing diagrams into
account, and known generally as the Non-Crossing Approximation (NCA).

Solving these self-consistent equations corresponds to summing a subset of diagrams
to all orders in the hopping matrix element V . This subset includes all diagrams with
noncrossing conducting lines but does not correspond to any specific order in the 1/N
expansion. It can be shown that all diagrams of leading order in 1/N (i.e. (1/N)0 and
(1/N)1), where N is the number of (spin) degrees of freedom, are included in this subset.
The lowest order diagram, which is not included in R0(ω) is the one in Fig.4.2(6), which
is of order (1/N)2. In principle, those coupled equations can be made exact by including
the vertex parts, Λ(ω, ǫk), in the integrals to take into account the crossing diagrams
(see Fig.4.4). As the lowest order contribution to these vertex parts, such as diagram
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Figure 4.4: A schematic representation of the complete sum of diagrams for Σ1,m(ω)
self-energy, where Λk,m take into account all the vertices.

(6) in Fig.4.2, are of order (1/N)2 or higher, they are negligible in the large-N limit.
Therefore the noncrossing approximation is expected exact in the large-N limit.
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4.3 Slave bosons

The Anderson Hamiltonian can be studied using perturbation expansion theory in pow-
ers of the Coulomb interaction U . The expansion is performed about the non-interacting
limit U = 0, so that the standard Feynman diagram method based on Wick’s theorem
can be used. The main problem in using this approach comes from the fact that, in
systems of physical interest, U is usually the largest energy scales in the problem. In
the latter case the result of perturbation theory to finite order are in general not good
enough. In order to get reliable result in the strong coupling limit the summation of
infinite series of diagrams is required. Diagrammatic techniques are reliable when the
expansion parameter is a small quantity. For the Anderson impurity with U → ∞, one
can think of treating the hopping strength V as a perturbation. However, the standard
diagrammatic approach also requires that the unperturbed hamiltonian to be that of a
noninteracting system, i.e. quadratic in the second-quantized operators. In the limit of
infinite U the bare Hamiltonian can be made quadratic by transforming the Hamilto-
nian into a new Hamiltonian, expressed in terms of new local operators. These operators
create the three possible states of the site: a boson operator b†, which creates an empty
site, and two fermion operators [77, 78, 79], f †

σ, which create a singly occupied states.

{
|0〉 = b†|Ω〉
|σ〉 = f †

σ|Ω〉 (4.5)

In these expressions |Ω〉 is the vacuum state. The initial ordinary electron operator
on the site, which transforms an empty site into singly occupied site or vice versa, are
decomposed into a boson operator and fermion operator

cσ = b†fσ

c†σ = f †
σ b

(4.6)

The slave bosons in (4.6) acts as a bookkeeping device which prevents double occupancy
of the site. When an electron creation operator acts on the occupied site, the boson
part acting on the vacuum annihilates the state

c†σf
†
σ̄|Ω〉 = f †

σbf
†
σ̄|Ω〉 = 0 (4.7)

In the slave boson representation, the Hamiltonian for the infinite-U Anderson model
becomes

H =
∑

σ;k∈L,R

ǫσkc
†
σkcσk +

∑

σ

ǫσf
†
σfσ +

∑

σ;k∈L,R

(
Vkσc

†
σb

†fσ + H.c.
)

(4.8)

The first two terms form the unperturbed, quadratic Hamiltonian and the last term,
which represents hopping between site and leads, can be handled as a perturbation. The
fermions and bosons are treated as ordinary particles in the perturbation expansion.
The lowest-order diagrams are shown for the boson and fermion propagators in Fig.4.5.
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Figure 4.5: Diagrammatic expansion for (a) the slave-boson and (b) the fermion propa-
gators. Wavy, dashed and solid lines correspond to the boson, fermion and lead electrons
propagators respectively. The coupling between site and leads is treated as perturbation,
so each vertex corresponds to a tunneling event.

While summation of few lower-diagrams is possible, techniques are also available to sum
whole classes of diagrams such as NCA approach discussed previously.

So far we seem to have the great advantage that we are now dealing with operators
for which the standard Wick’s theorem is applicable. However, we still have to apply
the constraint

Q = b†b +
∑

σ

f †
σfσ = 1 (4.9)

which states that the physical states are restricted to the Q = 1 ensemble. This diffi-
culty can be solved by introducing a Lagrange multiplier (which is also named as the
”complex chemical potential”). We will show below, when we will describe the Keldysh
diagrammatic approach, how this constraint can be handled.



92
Chapter 4. Transmission phase shift at finite temperature in the out of equilibrium

situation

4.4 Keldysh formalism

We will now describe how to set up a diagram technique that is in principle suitable for
calculating the Green’s functions of systems in any non-equilibrium state. The diagram
technique enables us to express the Green function of a system of interacting particles
in terms of the functions for an ideal gas.

The usual (equilibrium) diagram technique at zero temperature involves the calcu-
lation of chronological products as

〈φ|T {A(t)B(t′)...} |φ〉 (4.10)

where A(t), B(t) ... are operators in the Heisenberg representation and |φ〉 is the
eigenstate of the system. A simplification is possible using the interaction representation

|φ(t)〉 = eiH0te−iHt|φ(0)〉 (4.11)

where the full hamiltonian of the system, H, can be divided into two parts: the un-
perturbed hamiltonian, H0, and the interaction part, Hint, so that H = H0 + Hint.
Note, that H0 does not commute with the interaction part Hint and Eq.4.11 cannot be
compressed. In the interaction representation Eq.4.10 takes the following form

〈φ0|S(−∞, +∞)T
{

Ã(t)B̃(t′)... S(+∞,−∞)
}
|φ0〉 (4.12)

The matrix S is defined by

S(t′, t) = T

[
exp

{
−i

∫ t′

t

Hint(τ) dτ

}]
(4.13)

Where the shortcoming notation means the expansion of exp(x) in a Taylor series. The
interaction Hamiltonian Hint is supposed to be adiabatically turned on from t = −∞,
and turned off at t = +∞. The advantage of this description is that for evaluating the
mean values on the exact eigenstates |ψ〉 of the system in the presence of interactions
(generally unknown) one can use the eigenstates |φ0〉 of the unperturbed Hamiltonian,
which are much easier to find. The main effort now is the evaluation of the S matrix.
In the absence of irreversible effects, following Gell-Mann and Low theorem, the state
of the system at t = +∞ is identical to the state of the system at t = −∞ up to a phase
factor

S(+∞,−∞)|φ0〉 = eiα|φ0〉 (4.14)

so that

〈φ0|S(−∞, +∞)T
{

Ã(t)B̃(t′)... S(+∞,−∞)
}
|φ0〉 =

〈φ0|T
{

Ã(t)B̃(t′)... S(+∞,−∞)
}
|φ0〉

〈φ0|S(+∞,−∞)|φ0〉
(4.15)
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The result expressed in Eq.4.14 is in the basis of the equilibrium diagrammatic
approach. Out of equilibrium, in the presence of irreversible effects, this statement is no
longer valid. The mean values can still be calculated as before using Eq.4.10, the only
difference is that averaging is now taken over any quantum state of the system, and not
necessary over the stationary state as in the equilibrium case. Since in a nonequilibrium
system real dissipation or absorption of energy can occur, the state of the system in
general is not known at t = +∞ and one mast relate all quantities to the state of
the system at t = −∞. Such kind of generalization of the usual zero-temperature
formulation is possible. In practice, this means that instead of having integrals from
t = −∞ to t = +∞, as in Eq.4.13, all integrals have to be carried out along the path
that starts and ends at t = −∞. One can rewrite Eq.4.12 in terms of generalized
time-ordering operator Tc

〈φ0|S(−∞, +∞)T
{

Ã(t)B̃(t′)...S(+∞,−∞)
}
|φ0〉 = 〈φ0|Tc

{
Ã(t)B̃(t′)... Sc

}
|φ0〉
(4.16)

where Tc is an operator ordering the times from left to right, not as usual from −∞ to
+∞, but along the contour C made of a ”positive” branch going from −∞ to +∞ and
with a ”negative” branch going from +∞ to −∞ as it is shown in Fig.4.6.

Figure 4.6: Keldysh contour C where t < t′′ < t′ but tc < t′c < t′′c .

Thus on the ”positive” branch, the times are ordered from −∞ to +∞, while on
the ”negative” branch the time order is inverted compared to the usual case: from +∞
to −∞. Any time of the negative branch (t” from Fig.4.6) is considered as posterior to
any time on the positive branch (any of t or t′ from Fig.4.6). All the times {t, t′, ...} of
the chronological product in Eq.4.16 are on the positive branch, but the S-matrix

Sc = S(−∞, +∞)S(+∞,−∞) = T

[
exp

{
−i

∫

c

Hint(τ) dτ

}]
(4.17)

will introduce times on the negative branch of the contour in the perturbation expansion.
Consequently, a Green function will depend not only on the times at which the operator
acts, but also on the corresponding branch of the contour. Thus the Green function
carries the additional indices and the usual perturbation expansion of the Dyson equa-
tion takes a matrix form. It is now possible to calculate the expression Eq.4.16 using
standard diagram technique but since the times belonging to the negative branch (noted
with subscript −) are posterior to any time belonging to the positive branch (noted with
subscript +), we must introduce four Green functions
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Figure 4.7: The four Green functions depending whether the time variables t and t′ are
on the positive or negative branches of the contour C





Gc(r, t; r′, t′) = −i〈Tc

{
c(r, t+)c†(r′, t′+)

}
〉 = −i〈T

{
c(r, t)c†(r′, t′)

}
〉

Gc̄(r, t; r′, t′) = −i〈Tc

{
c(r, t−)c†(r′, t′+)

}
〉 = −i〈T̄

{
c(r, t)c†(r′, t′)

}
〉

G>(r, t; r′, t′) = −i〈Tc

{
c(r, t−)c†(r′, t′+)

}
〉 = −i〈c(r, t)c†(r′, t′)〉

G<(r, t; r′, t′) = −i〈Tc

{
c(r, t+)c†(r′, t′−)

}
〉 = i〈c†(r′, t′)c(r, t)〉

(4.18)

where T orders the times from −∞ to +∞ and T̄ from +∞ to −∞.
In the diagram calculation the integrations, as we have already mentioned, are per-

formed along the contour C; this is equivalent to perform the integrations from −∞ to
+∞ and sum over subscript (+) or (−) of the branches of the contour C. Because the
negative branch of the of the contour C goes from +∞ to −∞, any point of this branch
corresponds to a (−) sign (because of time differential dt− = −dt), or equivalently any
interaction on this branch corresponds to a (−) sign. This summation over the branch
indices is equivalent to using 2 × 2 matrices. Therefore the standard diagrammatic
technique still holds, if one defines a Green function matrix

G =

(
Gc G>

G< Gc̄

)
(4.19)

The Dyson equation may then be written as

G(r, t; r′, t′) = G0(r, t; r′, t′) +

∫
G0(r, t; r1, t1)Σ(r1, t1; r2, t2)G(r2, t2; r

′, t′) dr1dr2dt1dt2

(4.20)
where

Σ =

(
Σc Σ>

Σ< Σc̄

)
(4.21)

is the self-energy matrix and G0 is the Green function matrix in the absence of interac-
tion.
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In an inhomogeneous non-equilibrium system the Green functions depend on the
pairs of variables X = (r, t) and X ′ = (r′, t′) separately, and not only on their difference
X − X ′ as in the equilibrium case. However, if the system is in the steady state or,
more generally, when the hamiltonian does not depends on time in the Shrödinger
representation, all Green functions depend only on the difference t − t′. We will also
consider that the system is spatially homogeneous so that all functions depend only on
the difference of coordinates r− r′ and then can be Fourier-transformed with respect to
these variables

G = G0 + G0ΣG (4.22)

where the Green functions G and self-energies Σ are the matrices defined by Eqs. 4.19
- 4.21. The four Green functions thus defined are not independent. They are linearly
related in a way that is obvious from their definitions

Gc + Gc̄ = G< + G> (4.23)

In the same way

Σc + Σc̄ = −(Σ< + Σ>) (4.24)

The set of equations Eqs.4.22 has the shortcoming of not taking into account the linear
dependence of the Green functions (and self-energies). To avoid this problem one can
use a linear transformation of the matrix G in order to reduce one of its elements to
zero (using Eq.4.23). This is done with the aid of the formula

G̃ = R−1GR (4.25)

where

R =
1√
2

(
1 1
−1 1

)
, R−1 =

1√
2

(
1 −1
1 1

)
(4.26)

It is easily seen that the transformed matrix can be expressed as

G̃ =

(
0 GA

GR F

)
(4.27)

where

F = Gc + Gc̄ = G< + G> (4.28)

When the matrices G0 and Σ are transformed in this way, the Dyson equation expressed
in Eq.4.22 remains invariant

G̃ = G̃0 + G̃0Σ̃G̃ (4.29)
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The transformed matrix Σ is

Σ̃ = R−1ΣR =

(
Ω ΣR

ΣA 0

)
(4.30)

using the notations

Ω = Σc + Σc̄ , ΣR = Σc + Σ> , ΣA = Σc + Σ< (4.31)

This can be proved by direct calculation, using the equation

Σc + Σc̄ = −(Σ> + Σ<) (4.32)

Now expanding the transformed matrix Dyson equation we obtain the three following
equations.

GR = G0R + G0R ΣR GR (4.33)

GA = G0A + G0A ΣA GA (4.34)

F = F 0 + G0R ΣR F + F 0 ΣA GA + G0R Ω GA (4.35)

Two of them, the equations for GR and GA, are obviously complex conjugates.
Eqs.4.33-4.35 provide a complete description of the system out of equilibrium.

In some cases it is convenient to work with minor, G<, and major, G>, Green
functions as they carry information on the occupation of the impurity site. Here we give
the Dyson equations for these functions [80]

G< =
[
1 + GRΣR

]
G<

0

[
1 + GAΣA

]
+ GRΣ<GA (4.36)

G> =
[
1 + GRΣR

]
G>

0

[
1 + GAΣA

]
+ GRΣ>GA (4.37)

For the problem considered in our work (Anderson model), at the starting time
t = −∞ the impurity and the leads are unconnected and separately at equilibrium,
possibly with different chemical potentials. Formally, the hopping is turned on slowly,
and non-equilibrium properties are evaluated long after the hopping is fully established,
when a steady state has been achieved, but before the current flow has changed the
chemical potentials in the leads.

Before applying the Keldysh formalism to the slave-boson Hamiltonian Eq.4.8, one
has to overcome the difficulty associated with the constraint that the physical states
are restricted to the Q = 1 ensemble. The problem is that one can not perform dia-
grammatic calculation in a restricted ensemble. If we use perturbation theory in V we
have to enforce the constraint at each order, projecting out all contributions outside the
physical subspace. In this sense the Dyson equation is not valid because it was derived
for the unrestricted ensemble. The problem can be handled with the aid of a Lagrange
multiplier or, as it is often named, a complex chemical potential.
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We will start with the formal expression of the expectation values at non-equilibrium.
In the Q = 1 ensemble, the expectation value of an operator O can be written as

〈O〉Q=1 =
1

ZQ=1

Tr
{
e−β(H0−µLNL−µRNR) δQ,1 Tc [Sc O]

}
(4.38)

where H0 corresponds to the unconnected leads and dot and the partition function is
given by

ZQ=n = Tr
{
e−β(H0−µLNL−µRNR) δQ,1 Tc [Sc]

}
(4.39)

with Q = 1. Since the hamiltonian commutes with the charge operator Q the projection
on the Q = 1 ensemble can be performed by using a Kronecker δ-function in the statis-
tical averages of Eq.4.38 and Eq.4.39. To relate the averages in the restricted ensemble
and in the unrestricted ensemble, we represent the Kronecker a δ-function as an integral
over a complex chemical potential

δQ,1 =
β

2π

∫ π/β

−π/β

dλ e−iβλ(Q−1) (4.40)

Incorporating this expression into Eq.4.38 we get

〈O〉Q=1 =
1

ZQ=1

β

2π

∫ π/β

−π/β

eiβλdλ Tr
{
e−β(H0−µLNL−µRNR+iλQ) Tc [Sc O]

}
(4.41)

and then

〈O〉Q=1 =
1

ZQ=1

β

2π

∫ π/β

−π/β

eiβλdλ ZGC〈O〉GC (4.42)

with

〈O〉GC =
1

ZGC

Tr
{
e−β(H0−µLNL−µRNR+iλQ) Tc [Sc O]

}
(4.43)

and

ZGC = Tr
{
e−β(H0−µLNL−µRNR+iλQ) Tc [Sc]

}
(4.44)

where Eq.4.43 gives the average value of the operator O calculated in the grand canonical
ensemble and Eq.4.44 gives the partition function of the grand canonical ensemble.

The average value of an operator O expressed in Eq.4.43 now obeys Wick’s theo-
rem and we can use conventional perturbation theory to calculate it. In principle, we
can stop here, evaluate averages in the grand canonical ensemble, and project on the
physical ensemble by a final integrating over the imaginary chemical potential. Further
simplification can be gained, however, by noticing that the grand canonical partition
function can be rewritten as a sum over partition functions in the canonical ensembles
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ZGC =
∞∑

Q=0

ZC(Q)e−iβλQ (4.45)

By expanding the expression in the grand canonical ensemble as power series we get

〈O〉GC = 〈O〉0 + 〈O〉1 e−iβλ + 〈O〉2 e−2iβλ + ... (4.46)

ZGC = Z(0) + Z(1) e−iβλ + Z(2) e−2iβλ + ... (4.47)

Since Q = 0 corresponds to the case where there is no Anderson impurity all the physical
operators satisfy the condition that 〈O〉0 = 0. Making use of this property we can write

〈O〉GC = 〈O〉1 Z(0) e−iβλ + 〈O〉1 Z(1) e−2iβλ + 〈O〉2 Z(0) e−2iβλ + ... (4.48)

all the other terms in the expansion given by Eq.4.48 are of higher orders in e−iβλ. If
we perform this expansion for the average value in the restricted ensemble (Eq.4.42)

〈O〉Q=1 =
1

ZQ=1

β

2π

∫ π/β

−π/β

eiβλdλ
[
〈O〉1 Z(0) e−iβλ (4.49)

+ (〈O〉1 Z(1) + 〈O〉2 Z(0)) e−2iβλ + ...
]

Then

〈O〉Q=1 =
1

ZQ=1

β

2π

∫ π/β

−π/β

dλ 〈O〉1Z(0) (4.50)

+
1

ZQ=1

β

2π

∫ π/β

−π/β

e−iβλ dλ {〈O〉1 Z(1) + 〈O〉2 Z(0)} + ...

It is easy to see that the second term in the right-hand side of Eq.4.50 (and higher
terms) vanishes since it corresponds to integration of periodic function on a period. So
finally we have

〈O〉Q=1 =
ZQ=0

ZQ=1

〈O〉1 (4.51)

where Z(0) = ZQ=0 is the partition function in the absence of impurity. The average
〈O〉 ≡ 〈O〉GC is given by Eq.4.43 and 〈O〉1 is the coefficient in front of of the term of
order exp(−iβλ) in 〈O〉GC .
The important point is that 〈O〉GC takes the standard form of diagrammatic perturba-
tion theory since the traces in Eq.4.43 and in the partition function expressed in Eq.4.44
are over all states without any restriction. According to Eq.4.51, the non-equilibrium
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expectation value of an operator O in the Q = 1 ensemble results from two contribu-
tions: a normalization factor ZQ=0/ZQ=1, and a coefficient in front of exp(−iβλ) for
the same operator in the grand canonical ensemble with complex chemical potential iλ.
The normalization factor can be obtained using the identity

〈Q〉Q=1 = 1 (4.52)

which implies

ZQ=1

ZQ=0

= 〈b†b〉1 +
∑

σ

〈f †
σfσ〉1 (4.53)

Later, when we will introduce the noncrossing approximation we will come back to
this question of how to project our all the contributions to the Dyson equation of the
unphysical states.
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Figure 4.8: Diagrammatic representation of the coupled integral equations for sum-
ming diagrams with noncrossing lines (NCA integral equations). Double lines repre-
sent dressed propagators. These integral equations include all contributions O(1) and
O(1/N) in the large-N expansion.

4.5 NCA for the Anderson model in the slave-boson

representation

As it can be seen from Fig.4.5, at lowest order in perturbation theory the boson self-
energy involves the fermion propagator while the fermion self-energy involves the boson
propagator. By using the two relation self-consistently — the noncrossing approxima-
tion, see Fig.4.8 — one obtains a set of coupled integral equations, which can be solved
numerically. Solving these self-consistent equations corresponds to summing a subset
of diagrams to all orders in the hopping matrix element V . It can be shown that all
diagrams of leading order in 1/N , where N is the number of spin degrees of freedom, are
included in this subset. For the case, N = 2, of interest for quantum dots, it was shown
that the calculated equilibrium occupation number and susceptibility agree with the
exact Bethe-Ansatz result to within 0.5%. The method is less accurate for the linear-
response conductance. At worst, the linear-response conductance is overestimated by
15% [68], and this can be taken as a limit on the quantitative accuracy of the method.

The NCA coupled integral equations for boson and fermion propagators are presented
diagrammatically in Fig.4.8. Each diagram is assigned to a single self-energy bubble,
which is determined self-consistently, and the self-energies are iterated to all orders in
hopping, V , via Dyson equations.

4.5.1 Application to the out-of-equilibrium regime

Here we present the noncrossing approximation generalized to nonequilibrium. The
equations involve not only retarded Green functions, but also the minor and major
ones, leading to slightly more complicated equations than at equilibrium.

We will start by calculating the density of states for the U → ∞ Anderson model
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Figure 4.9: (a) A diagrammatic representation of the physical two-particle correlation
function within the NCA. (b) The neglected vertex corrections are of order O

[
(1/N)2

]
.

out of equilibrium. The density of states can be expressed in terms of retarded Green
function

ρσ(ω) =
ZQ=0

ZQ=1

[
− 1

π
ImG

R (1)
σ,iλ (ω)

]
(4.54)

where

G
R (1)
σ,iλ (t) = −iθ(t)〈{cσ(t), c†σ(0)}〉(1)iλ (4.55)

is the expectation value of the retarded electron Green function when the Lagrange
multiplier iλ is introduced to enforce the constraint Eq.4.9. Within the noncrossing
approximation, the retarded Green function can be expressed in terms of the full propa-
gators for bosons and fermions. In the slave-boson representation they can be expressed
as a Green functions

G
R (1)
σ,iλ (t) = −iθ(t)〈{b†(t)fσ(t), f †

σ(0)b(0)}〉(1)iλ (4.56)

The evaluation of G
R (1)
σ,iλ functions would require, in principle, further diagrammatic

expansion. In the noncrossing approximation, however, we can factorize the boson and
fermion parts in Eq.4.56. This latter step corresponds to a neglect of vertex corrections
(which are of order O (1/N)2) in the expansion of the two-particle correlation functions
and keeping only the lowest-order terms in the 1/N expansion. This type of diagrams
is represented in Fig.4.9(b). So far we have obtained

G
R (1)
σ,iλ (t) = −iθ(t)

[
〈b†(t)b(0)〉〈fσ(t)f †

σ(0)〉 + 〈f †
σ(0)fσ(t)〉〈b(0)b†(t)〉

](1)

iλ
(4.57)

This expression can be written as

G
R (1)
σ,iλ (t) = −iθ(t)

[
D>(−t)G<

fσ(t) − D<(−t)G>
fσ(t)

]
(4.58)

where the following notations are used
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D>(t) = −i〈b(t)b†(0)〉(0)iλ (4.59)

D<(t) = −i〈b†(0)b(t)〉(1)iλ

G>
fσ(t) = −i〈fσ(t)f †

σ(0)〉(0)iλ

G<
fσ(t) = i〈f †

σ(0)fσ(t)〉(1)iλ

Here it is important to note, that the leading term in the expansion in powers of exp(iλβ)
is of zero order, O(1) for the major Green functions both for boson and fermions, G>

fσ

and D>, and of order O(exp(iλβ)) for the minor Green functions, G<
fσ and D<. Since

each term in Eq.4.58 contains exactly one minor operator, with one boson or fermion
lowering operator acting directly to the right, the overall result for the retarded Green
function is of order O (exp(iλβ)) as required.

Because the Hamiltonian is time-independent, it is simplest to evaluate the boson
and fermion Green functions in the frequency representation. The physical density of
states is then given by

ρσ(ω) =
1

4π2

ZQ=0

ZQ=1

∫ ∞

−∞

dω′
[
D>(ω′)G<

fσ(ω + ω′) − D<(ω′)G>
fσ(ω + ω′)

]
(4.60)

The minor and major Green functions can be found using Dyson equations. One can
note that in the Dyson equations, additional terms involving minor and major boson
and fermion Green functions on the uncoupled site is zero. This contribution can be
written as

(1 + GrΣr) G<
0 (1 + GaΣa) (4.61)

which can be written in the following way

Gr
0 (1 + GrΣr)

G<
0

Gr
0G

a
0

(1 + GaΣa) Ga
0 (4.62)

Using Dyson equations for Gr and Ga given in Eqs.4.33-4.34

|Gr|2
|Gr

0|2
G<

0 =
(ω − ǫ0)

2

(ω − ǫ̃0)2 + Γ2
2πif(ω)δ(ω − ǫ0) (4.63)

where ǫ̃0 corresponds to the renormalization level energy and f(ω) is the Fermi distri-
bution function. This term thus equals to zero. As we will see later the fermion minor
Green function contains information about the occupation of the site. This property,
in fact, reflects the loss of memory of the initial occupation of the site in the coupled
system. The Dyson equations can be written as

D≶(ω) = Dr(ω)Π≶(ω)Da(ω) (4.64)

G≶
fσ(ω) = Gr

fσ(ω)Σ≶
fσ(ω)Ga

fσ(ω) (4.65)
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where the self energies are given by

Π≶(ω) = − i

2π

∫ +∞

−∞

dω′
∑

σ,k∈L,R

|Vkσ|2g≷
kσ(ω′ − ω)G≶

fσ(ω′) (4.66)

Σ≶
fσ(ω) =

i

2π

∫ +∞

−∞

dω′
∑

k∈L,R

|Vkσ|2g≶
kσ(ω − ω′)D≶(ω′) (4.67)

In Eq.4.66-Eq.4.67 the functions g(ω) are the Green functions of conduction electrons
in the leads not coupled to the site.

g>
k,σ = −2πi[1 − fL,R(ω)]δ(ω − ǫk,σ) (4.68)

g<
k,σ = 2πifL,R(ω)δ(ω − ǫk,σ) (4.69)

It would be correct to include self-energies for the Green functions of the electrons in
the leads, which would correspond to calculating the full propagator in the presence
of slave fermions and bosons. The self-energy corrections to the conduction electron
propagators includes the fermion-boson loop, which brings an extra unwanted factor
of exp(−iβλ), and will be projected out when final integration over λ is done. As
a consequence, one always works with bare conductance electron propagators, which
again, is not what one gets initially from the unprojected NCA equations and is not an
additional approximation.

Several other relations are required to close the equations for the non-crossing approx-
imation. The retarded Green functions for the boson and fermions in Eq.4.64-Eq.4.65
are given by

Dr(ω) =
1

ω − Πr(ω)
(4.70)

Gr
fσ(ω) =

1

ω − ǫσ − Σr
fσ(ω)

(4.71)

where the retarded self-energies are Hilbert transforms of the major self-energies

Πr(ω) =
i

2π

∫ +∞

−∞

dω′ Π>(ω′)

ω − ω′ + iη
(4.72)

Σr
fσ(ω) =

i

2π

∫ +∞

−∞

dω′
Σ>

fσ(ω′)

ω − ω′ + iη
(4.73)

The advanced Green functions Da and Ga
fσ in Eq.4.64-Eq.4.65 are complex conjugates

of the retarded Green functions Dr and Gr
fσ. By definition, all retarded Green functions

and self-energies can be written as a difference of major and minor Green functions

Gr(t) = θ(t) (G>(t) − G<(t)) (4.74)
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The leading term in the expansion in powers of e−iβλ of the minor Green function is
O(e−iβλ) so it must be dropped from the expression for the retarded Green functions
Eq.4.74 which are O(1). Further, by taking the Fourier transform of the latter equation
we will get the useful relations

D>(ω) = 2i ImDr(ω) (4.75)

G>
fσ(ω) = 2i ImGr

fσ(ω)

To derive these relations, we have used the property that the major Green functions
have only imaginary component G>

fσ(ω) = i ImG>
fσ. The same set of relations holds for

the boson and fermion self-energies

Π>(ω) = 2i ImΠr(ω) (4.76)

Σ>
fσ(ω) = 2i ImΣr

fσ(ω)

Once we know the imaginary parts of the retarded self-energies, we can find their real
parts using Kramers-Kronig relation

ReF (ω) = − 1

π
P.v.

∫ +∞

−∞

ImF (ω′)

ω − ω′
dω′ (4.77)

For example the retarded fermion self-energy is

Σr
fσ(ω) = ReΣr

fσ(ω) + i ImΣr
fσ(ω) =

i

2π

(
P.v.

∫ +∞

−∞

Σ>
fσ (ω′)

ω − ω′
dω′ − πi

∫ +∞

−∞

Σ>
fσ (ω′)δ(ω − ω′) dω′

)
= (4.78)

i

2π

∫ +∞

−∞

Σ>
fσ (ω′) dω′

ω − ω′ + iη

What gives the expression Eq.4.73. Eq.4.72 can be obtained in an analogous way.
These equations form a closed set of equations for the noncrossing approximation

from which all the unwanted contributions in the e−iβλ expansion are projected out. This
set of equations can be solved iteratively. In practice, one starts with an initial guess for
the major boson Green function, D>(ω). Then the major fermion self-energy , Σ>

fσ(ω),
can be calculated using Eq.4.67. Once Σ>

fσ(ω) is calculated, the retarded self-energy is
obtained by using Eq.4.73. Then, the retarded fermion Green function can be easily
obtained from Eq.4.71. The values of the major fermion Green function, Eq.4.75, can
be used in a parallel way to obtain an improved major boson Green function, D>(ω).
This procedure is iterated to convergence. At the end of the procedure we obtain the
retarded boson and fermion Green functions. A similar procedure is then followed for the
minor Green functions. Following the initial guess for D<(ω), the fermion self-energies
Σ<

fσ(ω) are obtained from Eq.4.67, and G<
fσ(ω) are determined from Eq.4.65. Then by
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combining Eq.4.66 and Eq.4.64 one obtains the values of minor boson Green function
D<(ω). The steps are repeated for D<(ω), and the process iterated to convergence.
Finally, the physical density of states ρσ(ω) is evaluated by the convolution of the boson
and fermion Green functions (Eq.4.60).

In principle one can stop here and evaluate ρσ(ω) numerically in or out of equilibrium.
Nevertheless, an important simplification of the self-consistent procedure can be made.

Following the work performed for equilibrium case, one can take the energy depen-
dence of the couplings between the reservoirs and the site in the dot to the leads to be
Lorentzian

ΓL(R)
σ (ω) = 2π

∑

k∈L(R)

|Vkσ|2δ(ω − ǫkσ) ≡ Γ
L(R)
0σ

W 2

(ω − ǫ0)2 + W 2
(4.79)

where W is the bandwidth in the leads. The choice of a Lorentzian form allows a
simplification of the self-consistent equations. In general, to iterate the noncrossing
approximation equations, the retarded self-energies for the bosons and fermions must
be evaluated by double integrals over the major Green function. For the Lorentzian
coupling, however, one of these integrals can be performed analytically. Combining
Eqs.4.66-4.67 with Eqs.4.72-4.73, the boson retarded self-energy can be written as a
single integral

Πr(ω) =
∑

σ

∑

L,R

∫ +∞

−∞

dω′HL(R)
σ (ω′ − ω)G>(ω′) (4.80)

with the kernels

HL(R)
σ (ω) =

1

(2π)2
ΓL(R)

σ (ω)

[
π fL(R)(ω) + i Re

(
Ψ

(
1

2
− iβ(ω − µL(R))

2π

)

−Ψ

(
1

2
+

β
[
W − i(ǫL(R) − µL(R))

]

2π

))
(4.81)

−i
ω − ǫL(R)

W

{
π

2
+ Im

[
1

2
+

β
[
W − ı(ǫL(R) − µL(R))

]

2π

]}]

where β is the inverse temperature and Ψ(z) is the Digamma function. The fermion
retarded self-energies can be written as single integrals

Σr
fσ(ω) =

∑

L,R

∫ +∞

−∞

dω′ KL(R)
σ (ω − ω′)D>(ω′) (4.82)

with the kernels
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HL(R)
σ (ω) =

1

(2π)2
ΓL(R)

σ (ω)

[
[1 − π fL(R)(ω)] + i Re

(
Ψ

(
1

2
− iβ(ω − µL(R))

2π

)

−Ψ

(
1

2
+

β
[
W − i(ǫL(R) − µL(R))

]

2π

))
(4.83)

+i
ω − ǫL(R)

W

{
π

2
− Im

[
1

2
+

β
[
W − ı(ǫL(R) − µL(R))

]

2π

]}]

Since the major Green functions and self-energies are just the imaginary parts of the
corresponding retarded Green functions (Eq.4.75), the above equations together with
relations Eq.4.70 and Eq.4.71 between the retarded Green functions and self-energies,
form a closed set. In practice, we start with an initial guess for the major boson Green
function and then iterate the equations to convergence. The accuracy of the result can
be checked by comparing to the sum rules on the boson and fermion retarded Green
functions

∫ +∞

−∞

dω

[
− 1

π
ImDr(ω)

]
= 1 (4.84)

∫ +∞

−∞

dω

[
− 1

π
ImGr

fσ(ω)

]
= 1

Once the retarded Green functions are calculated, a separate iterative loop is required
to evaluate the minor Green functions and energies. Equations Eq.4.66 and Eq.4.67 for
the boson and fermion self-energies can be rewritten as

Π<(ω) = − 1

2π

∑

σ

∑

L,R

∫ +∞

−∞

dω′ ΓL(R)
σ (ω′ − ω)

[
1 − fL(R)(ω

′ − ω)
]
G<

fσ(ω′) (4.85)

and

Σ<
fσ(ω) = − 1

2π

∑

L,R

∫ +∞

−∞

dω′ ΓL(R)
σ (ω − ω′)fL(R)(ω − ω′)D<(ω′) (4.86)

Together with Eq.4.64 and Eq.4.65, these equations form a closed set of equation for
the minor Green function and self-energies. Again, following an initial guess for the
boson minor Green function, these equations are iterated to convergence. Since the
minor Green functions are defined up to an overall normalization factor, to check the
convergence it is necessary to monitor a normalized quantity. The most natural choice
is, for simplicity, to monitor the occupation number for each spin state

〈nσ〉 =
ZQ=0

ZQ=1

[
− i

2π

∫ +∞

−∞

dω G<
fσ(ω)

]
(4.87)



4.5 NCA for the Anderson model in the slave-boson representation 107

where the normalization is provided by the ratio of partition functions, which from
Eq.4.49 is given by

ZQ=1

ZQ=0

=
i

2π

∫ +∞

−∞

dω

[
D<(ω) −

∑

σ

G<
fσ(ω)

]
(4.88)

Finally, the accuracy of the calculations can be verified by the sum rule for the
infinite U Anderson model relating the total density of states of one spin state to the
occupancy of all the other spin states. In the case of interest (only two spin states σ =↑
and σ =↓) the infinite integral of the density of states is given by

∫ +∞

−∞

ρσ(ω)dω =
1

4π2

ZQ=0

ZQ=1

∫ +∞

−∞

∫ +∞

−∞

(
D>(ω′)G<

fσ(ω + ω′) − D<(ω′)G>
fσ(ω + ω′)

)
dω′dω

(4.89)
which can be written as

1

4π2

ZQ=0

ZQ=1

∫ +∞

−∞

dω′

(
D>(ω′)

∫ +∞

−∞

dω G<
fσ(ω + ω′) − D<(ω′)

∫ +∞

−∞

dω G>
fσ(ω + ω′)

)

(4.90)
The integration over ω can be performed independently of the integration over ω′ using
the substitution ω′′ = ω + ω′. Since the major fermion Green function is just the
imaginary part of the retarded Green function, from the sum rule Eq.4.84 we get

∫ +∞

−∞

dω G>
fσ(ω + ω′) = −2πi (4.91)

Together with the expression for the occupation number per spin Eq.4.87, one gets

∫ +∞

−∞

ρσ(ω)dω = nσ +
i

2π

ZQ=0

ZQ=1

∫ +∞

−∞

D<(ω′) dω′ (4.92)

where the normalization factor is given by Eq.4.88. Under the notations

F =

∫ +∞

−∞

F (ω) dω (4.93)

the latter expression can be rewritten as

∫ +∞

−∞

ρσ(ω)dω = − Gσ

D − Gσ − G−σ

+
D

D − Gσ − G−σ

=
−Gσ + D

D − Gσ − G−σ

(4.94)

after some not complicated algebra this equation becomes

1 +
G−σ

D − Gσ − G−σ

(4.95)
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∫ +∞

−∞

dω ρσ(ω) = 1 −
∑

σ′ 6=σ

〈nσ′〉 (4.96)

This relation is always satisfied to within 0.001% in our numerical calculations.
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4.6 Numerical solution of the NCA equations

In this section we describe the numerical solution of the NCA equations presented earlier
in details.

In the calculations that we have performed we used for the value of the bandwidth
W = 60 Γ. The Green functions are evaluated on the range [−10W ; 10W ]. All energies
and temperatures are taken in units of the total coupling strength to the leads, Γ, and are
counted from the bare level energy, ǫ0. We use an homogenous mesh with a number of
points N = 220. This choice is imposed by the fast fourier transform (FFT) procedures
which we use to calculate the convolution and the correlation -type integrals.

The algorithm is made of three main steps: the first step is the loop consisted in
calculating the retarded (boson and fermion) Green functions; the second one is the loop
consisted in calculating the minor (boson and fermion) Green function and finally the
third step is built for the final reconstruction of the retarded Green function of physical
electrons from auxiliary slave bosons and fermions Green functions.

The closed sets of equations were given in the previous section. Each loop starts with
an initial guess for the corresponding (major or minor) boson Green function. We find
it appropriate to start with the following expression for the unperturbed major Green
function:

D>
0 (ω) = −2iImDr

0(ω) = −2i
Γ0

ω2 + Γ2
0

(4.97)

The major Green functions are purely imaginary functions. From a technical point of
view we prefer to rewrite all the equations in order to work instead with real functions.

Once the initial guess for the major Green function is made the iterations can start.
Any cycle of convergence loop provides us with an improved boson major Green function.
The convergence criterium is then tested. We choose to estimate the following integral

∫ +∞

−∞

∣∣D>
n−1(ω) − D>

n (ω)
∣∣ dω < εr (4.98)

where n is the number of iterations and εr is the required precision. In the first loop
corresponding to the calculation of the retarded Green function we usually take εr ∼
10−10. Most of the time, from 3 to 6 iterations were required to reach convergence. As
soon as the condition Eq.4.98 is fulfilled one obtains the retarded boson and fermion
Green functions, required to calculate the minor Green functions. The accuracy of
the retarded Green functions that are obtained can be tested by use of the sum rules.
Usually the sum rules are satisfied with an accuracy better than 0.1% .

The second loop corresponding to the calculation of the minor Green functions starts
with an initial guess for the boson Green function. We have used the same initial guess
as for the first loop, Eq.4.97. To control the convergence in this loop, one needs to
examine any physical quantity since the normalization is not fixed for the minor Green
functions and the condition Eq.4.98 cannot be applied. The simplest choice, in this case,
is to monitor the occupation per spin. Within the required precision of ε< ∼ 10−6 the
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Figure 4.10: Energy dependence of the density of states, ρσ(ω) at equilibrium. Draw at
T = 0.005 Γ, µL = µR = 2 Γ, W = 100 Γ, the number of points used is N = 222. The
total occupation number is found to be close to the exact value.

solution converges generally after 5 or 7 iterations. The numerical error in calculating
the minor Green functions includes the error generated in the calculation of the retarded
Green functions.

At a final step we calculate the physical density of states, ρσ(ω). The final accuracy
is controlled by the sum rule for the infinite-U model relating the density of states per
spin to the occupancy of all the other spin states (i.e. to the occupation of the opposite
spin state in the case considered). This relation is always satisfied to within 0.01%. In
order to obtain the full retarded Green function of physical electrons one has to calculate
its real part. Relating the density of states to the imaginary part of the retarded Green
function, the real part can be obtained by using Kramers-Kronig relations.

In Fig.4.10 the energy dependence of the density of states is reported at T = 0.005 Γ.
This curve was drawn using the same set of parameters as in Ref.[65] to ensure that our
numerical procedures work correctly. Usually we use the lower value of the bandwidth,
W , in order to use fewer points that make the calculations easier. The evolution of the
density of states with temperature is reported in Fig.4.11. The height of the sharp peak
at the Fermi energy is gradually suppressed when temperature is increased and the peak
completely disappears at T = 0.8 Γ.

The non-equilibrium density of states is shown in Fig.4.12. The applied bias voltage,
eVSD = 0.2 Γ, splits the Kondo peak into two peaks with strongly reduced height, each of
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Figure 4.11: Temperature dependence of the equilibrium density of states. To calculate
these curves we used: W = 60 Γ, µL = µR = 2 Γ, N = 220.

these two peaks taking placed at the chemical potentials µL and µR. As the temperature
is increased the peaks merge loosing height and finally disappears at T = 0.5 Γ. For
larger values of the bias voltage, Fig.4.13, the height of the peaks is drastically reduced
even at very low temperature, T = 0.005 Γ. Increasing temperature, as usual, leads to
a suppression of the peaks.
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Figure 4.12: Temperature dependence of the non-equilibrium density of states at eVSD =
0.4 Γ (for W = 60 Γ, µL = 2.0 Γ, µR = 2.2 Γ and N = 220).
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Figure 4.13: Temperature dependence of the non-equilibrium density of states at eVSD =
1 Γ (for W = 60 Γ, µL = 2 Γ, µR = 3 Γ and N = 220).
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4.7 Transmission phase shift of a quantum dot out

of equilibrium

In this section we present the study of the effect of finite voltage and temperature on
the transmission phase shift of a quantum dot. The non-equilibrium Keldysh formalism
together with non-crossing approximation applied to the infinite-U Anderson model
allows one to go beyond the linear-response description. We discuss some particular
features of the out-of-equilibrium behavior of the transmission phase shift.

The section is organized as follows. First we explain the basic idea of phase shift
measurements at equilibrium. In an analogous way, using the Landauer-Buttiker formal-
ism, we define the quantity to be measured in the non-equilibrium setup and derive the
expression for this quantity in terms of the localized electron retarded Green function.
Then, we present the model and list the methods that we used to solve the problem.
The descriptions of the methods themselves were given in the precedent sections. Next,
we present the results of our study for the occupation number and the phase shift. We
end up this section by giving a brief conclusions.

4.7.1 Phase shift

At equilibrium the transmission phase shift can be calculated in an open Aharonov-
Bohm interferometers under the assumptions that (i) the transport through the quantum
dot is fully coherent and (ii) the source and the drain do not drive the quantum dot out
of equilibrium. In this case the source-drain conductance, GSD, can be calculated using
the Landauer formula

GSD ∝ |trefe
iθ + tQDeiδ|2 (4.99)

The further assumptions are made: (iii) only one conduction mode carries the current
between source and drain, (iv) both paths are geometrically equivalent and (v) due to
the open structure of the interferometer there is no multiple traversal of the ring, which
makes the set-up equivalent to the double-slit geometry experiment. The quantities tref

and tQD are chosen to be real, θ = 2πΦ/Φ0 is the Aharonov-Bohm phase and δ is the
transmission phase shift of the quantum dot. The oscillating part of the conductance
with the magnetic field is written as

δGSD ∝ tref tQD cos(θ − δ) (4.100)

where the quantity δ is measured experimentally. The phase shift is the deviation of
the Aharonov-Bohm conductance oscillations as a function of the gate voltage. The os-
cillating term in the expression of the conductance comes from the interference between
the electron electronic wave functions transmitted through the reference arm and the
arm in which the quantum dot is embedded.

At large bias voltages or/and high temperatures the assumptions (i), (ii) and (iii)
are not valid: the transport through the dot has an incoherent component, the dot
has a non-equilibrium density of states and several modes carry the current. At zero
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Figure 4.14: Sketch of an Aharonov-Bohm interferometer ring. The electron from the
source (µL) can reach the drain (µR) through either the upper (reference) or lower arm
which the quantum dot is embedded in.

temperature the current through the dot is carried by the electrons in the energy layer
eVSD. In order to find out which phase (shift) is measured at the experiment, we need to
calculate the oscillating part of the source-drain current with the magnetic field. Then
again, as in the equilibrium, the transmission phase shift is identified with the shift of
the periodic A.B. oscillations with the gate voltage.

We also consider that there is no energy-relaxation process inside the ring. Electrons
should be in the same quantum state to interfere, the electron at different energies
strictly speaking do not participate in the formation of the interference pattern. If we
denote i(ǫ)∆ǫ the current carried by the electrons in the energy interval ǫ → ǫ + ∆ǫ in
the limit ∆ǫ → 0, the net drain current can be written as an integral over the energy
[69]

ISD =

∫
i(ǫ) dǫ (4.101)

where the current i(ǫ) can be calculated using the Landauer-Buttiker formalism

i(ǫ) =
2e

h
T(ǫ) [fL(ǫ) − fR(ǫ)] (4.102)

Note that this formula, Eq.4.101, goes beyond the linear response theory. The expression
for the current per energy, i(ǫ), given by Eq.4.102 takes into account finite temperature
and bias voltage effects. The linear response theory can be applied to the case when the
transmission probability, T(ǫ), is approximately constant over the energy range where
transport occurs and can be assumed to be unaffected by the bias. In the equilibrium,
µL ≈ µR ≈ µ, and at low temperatures, T → 0, one can simplify Eq.4.102 by using a
Taylor’s series expansion

fL(ǫ) − fR(ǫ) ≈ (µL − µR)
∂f

∂µ
= −(µL − µR)

∂f

∂ǫ
(4.103)

At low temperatures

∂f

∂ǫ
≈ δ(ǫ − µ) (4.104)
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And one obtains the linear response source-drain current

ISD =
µL − µR

e
GSD (4.105)

where GSD is the linear response Landauer conductance.
From the above derivation it seems that the response should be linear if the bias

(µL − µR) is much less than T , so that the Taylor’s series expansion is accurate. We
find it useful to note that this is a sufficient but not a necessary condition (otherwise
there would be no linear response at T = 0). A general criterion for linear response can
be obtained by rewriting the general expression for the current Eq.4.101-Eq.4.102 in the
form

I =
1

e

∫ µL

µR

Ĝ(ǫ′) dǫ′ (4.106)

where the conductance function Ĝ(ǫ) is defined as

Ĝ(ǫ′) =
2e2

h

∫ +∞

−∞

dǫ T (ǫ)
d

dǫ
f(ǫ − ǫ′) (4.107)

This expression shows that the current will respond linearly if the conductance function
Ĝ(ǫ) is independent of energy in the energy range µL > ǫ > µR.

Here we will assume that the transmission amplitude through the reference arm tref

does not depend on the energy of the electron as well as the Aharonov-Bohm phase
θ = 2πΦ/Φ0. The expression Eq.4.102 is valid if there is no inelastic scattering off
the dot so that TL→R = TR→L. This is not true at finite temperatures and voltages
(∼ TK): when the current has both coherent and incoherent components. In order to
calculate the net current through the dot the corrections (for example due to interactions
inside the scattering region) should be taken into account. The net current through the
interacting quantum dot out of equilibrium can be written as [67]

IQD =
e

h

∫ +∞

−∞

[fL(ǫ) − fR(ǫ)] Tr
{
GaΓRGrΓLΣ−1

0 Σ
}

(4.108)

where Σ = Σr − Σa and Σ0, the self-energy for the non-interacting case, is equal to
−i(ΓL + ΓR). The coherent component of the current is due to the ”non-interacting”
scattering off the dot. The incoherent contribution to the net current does not contribute
to the interference pattern, it changes only the mean value of the current through the
ring and so has no interest for us. Taking into account only the Σ0 term from Σ = Σ0+Σi

and inserting it into Eq.4.108 we get

IQD =
e

h

∫ +∞

−∞

[fL(ǫ) − fR(ǫ)] Tr
{
GaΓRGrΓL

}
(4.109)

The coherent part of the current has the usual Landauer form

IQD =
e

h

∫ +∞

−∞

[fL(ǫ) − fR(ǫ)] Tr
{
t†t

}
(4.110)
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where t = cΓLGr is the transmission amplitude an the phase factor |c|2 = 1 does not
effect the current.

The energy-dependent ring transmission probability, T(ǫ), can be written as

T(ǫ) = |trefe
iθ + tQD(ǫ)eiδ(ǫ)|2 (4.111)

The total (coherent) current then can be calculated using Eq.4.101

ISD =
2e

h

∫
|trefe

iθ + tQD(ǫ)eiδ(ǫ)|2 [fL(ǫ) − fR(ǫ)] dǫ (4.112)

Here we are interested only in the oscillating part of the drain current. The square of
the magnitude of the coherent sum of the transmission amplitudes in the Eq.4.112 gives
two field-independent contributions, which correspond to the transmission through each
arm of the interferometer plus an interference term. The oscillating part of the drain
current with the magnetic field is given by

δISD(θ) =
4e

h
tref

∫
tQD(ǫ) cos

(
θ − δ(ǫ)

)
[fL(ǫ) − fR(ǫ)] dǫ (4.113)

It is a 2π-periodic: δISD(θ + 2π) = δISD(θ) as it should be in the case of A.B. effect.
From here we will omit the coefficient in front of the expression of δISD(θ). By expanding
cos

(
θ − δ(ǫ)

)
we get

δISD(θ) ∝ cos θ
∫

tQD(ǫ) cos(δ (ǫ)) [fL(ǫ) − fR(ǫ)] dǫ+
+ sin θ

∫
tQD(ǫ) sin(δ (ǫ)) [fL(ǫ) − fR(ǫ)] dǫ

(4.114)

In this expression the dependence on the magnetic field, θ, is independent of the inte-
gration over the energy. One can notice that the integrals in the Eq.4.114 are nothing
else that the currents at a given value of the magnetic field

δISD(θ) ∝ cos θ δISD(0) + sin θ δISD(π/2) (4.115)

This expression can be written in a simpler form which defines the effective phase shift
of the quantum dot out of equilibrium, ∆

δISD(θ) ∝ cos (θ − ∆) (4.116)

where

tan
(
∆

)
= δISD(π/2)/δISD(0) (4.117)

Eq.4.117 defines the transmission phase shift in the case of non-equilibrium transport at
finite temperature. Note that this expression gives the correct result in the limit of linear
response and zero temperature ∆ = δ(µ). In order to obtain ∆ we need to calculate
the retarded Green function, Gr

dσ, at the impurity site. Then the magnitude of the
transmission amplitude, tQD, can be easily calculated while the phase, φ = arg (cΓGr

dσ),
depends on the unknown phase factor c. At equilibrium the additional phase introduced
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by this factor is found using Levinson’s theorem but out of equilibrium its validity can
be questioned. In general, one needs some type of non-equilibrium generalization of
Levinson’s theorem to determine the value of the unknown phase factor c. The phase
of the retarded Green function can be found using Kramers-Kronig relations.

We have directly calculated ∆ in the high-temperature limit (T ∼ 0.5Γ) at equilib-
rium and found quite reasonable agreement between πn0 and ∆ as a function of the lo-
calized level energy, ǫ0. The difference is due to the temperature smearing (many modes
participates in the charge transfer) as well as the inaccuracy of the NCA method. We
expect the phase ∆ to tends towards the occupation πn0 as the temperature is lowered.
We know that in this limit (linear response in VSD and at low temperatures T → 0) the
phase shift ∆ satisfies Levinson’s theorem and ∆ = πn0 (in this limit ∆ ≡ δ). But at low
temperatures the NCA method becomes less accurate. The method is known to overes-
timate the Kondo peak amplitude somewhat for chemical potentials within a few Γ of
the bare-level energies. This directly affects the calculations of ∆. The method recovers
the correct result far from the bare-level energy |µ− ǫ0| ≫ Γ where δ(µ) asymptotically
tends towards the occupation number, πn0. So we suppose that c = 1 in our numerical
calculations. We will come back to the temperature dependence of the transmission
phase shift, ∆, later, when we will present the results of the calculations.

Assuming that, arg c = 0, Eq.4.114 in the case of a symmetrically coupled quantum
dot, ΓL = ΓR, can be written as

δISD(θ) ∝ cos θ
∫

Γ ReGr
dσ [fL(ǫ) − fR(ǫ)] dǫ+

+ sin θ
∫

Γ ImGr
dσ [fL(ǫ) − fR(ǫ)] dǫ

(4.118)

We can express the phase ∆ defined by Eq.4.117 in terms of the localized electron
retarded Green function.

tan ∆ =

∫
Im {Gr

dσ(ǫ)} [fL(ǫ) − fR(ǫ)] dǫ∫
Re {Gr

dσ(ǫ)} [fL(ǫ) − fR(ǫ)] dǫ
(4.119)

where Im {Gr
dσ(ǫ)} = −πρσ(ǫ) and the real part of the retarded Green function can be

obtained using the Kramers-Kronig relations

Re {Gr
dσ(ǫ)} = P.v.

∫
ρσ(ǫ′)

1

ǫ − ǫ′
d ǫ′ (4.120)

We have already mentioned that the phase shift ∆ given by Eq.4.117 gives the
correct equilibrium zero-temperature limit. Thus Eq.4.119 also shows this property and
in addition the finite-T limit coincides with the previously used definition of the finite-T
phase shift [38]

tan ∆ =

∫
Im {Gr

dσ(ǫ)} ∂f(ǫ)
∂ǫ

dǫ
∫

Re {Gr
dσ(ǫ)} ∂f(ǫ)

∂ǫ
dǫ

(4.121)
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The complete expression for the oscillating part of the source-drain current is given
by

δIAB =
4e

h
tref |tQD| cos(θ − ∆) (4.122)

where ∆ is given by Eq.4.119 and the ”total” transmission amplitude tQD is the thermal
average of the transmission amplitude at the energy ǫ: tQD(ǫ) = ΓGr

dσ(ǫ).

tQD = Γ

∫ +∞

−∞

Gr
dσ(ǫ) [fL(ǫ) − fR(ǫ)] dǫ (4.123)

4.7.2 Modelling

We model the quantum dot with its leads by an Anderson Hamiltonian with two reser-
voirs

H =
∑

σ; k∈L,R ǫkσc
†
kσckσ + ǫ0

∑
σ d†

σdσ + Un↑n↓

+
∑

σ; k∈L,R

(
Vk σc

†
kσdσ + H.c.

) (4.124)

where c†kσ (ckσ) creates (annihilates) an electron with momentum k and spin σ in one
of the two leads, and d†

σ (dσ) creates (annihilates) a spin-σ electron in the quantum
dot. The third term describes the Coulomb interactions among electrons on the dot.
We assume that U → ∞, forbidding double occupancy. The forth term describes the
hopping between the leads and the dot, and fixes the coupling strength via Γ

L(R)
σ (ω) =

2π
∑

k∈L(R) |Vk σ|2δ(ω − ǫkσ). We restrict ourself to the case of a symmetric quantum
dots where ΓL = ΓR.

Our aim is to calculate the occupation number n0 of the quantum dot and the phase
shift ∆ out of equilibrium. We have used three standard methods in our study:

(a) In order to apply perturbation expansion in the hopping strength Γ in the limit
U → ∞ we use the slave-boson representation of the hamiltonian Eq.4.124.

(b) Since we address the non-equilibrium properties we use the Keldysh formalism
which allows to go beyond the linear response theory.

(c) In order to obtain a well-behaved density of states in the non-equilibrium pertur-
bation theory we use the noncrossing approximation, which has been successfully used
to treat the infinite-U Anderson model at equilibrium.

The NCA equations for the components of the Keldysh Green functions were solved
self-consistently. At the end, the properties of physical electrons are derived from the
results for the auxiliary bosons and fermions (from the slave-boson representation).

4.7.3 Results

In this section, we present the numerical results for the occupation number and the
transmission phase shift for the Anderson model in and out of equilibrium. The phase
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shift ∆ can be calculated within the required accuracy in the limits described in Fig.4.15.
First we will discuss the linear response case (Fig.4.15(a)) where the bias voltages are
small compared to the bare level width, |µL − µR| ≪ Γ. In this limit, the phase shift ∆
can be calculated in the high-temperature limit. Then we will discuss the asymptotic
limits (Fig.4.15(b)-(c)) when the Fermi levels are far from the energy of the localized
state. Afterwards, the behavior of the phase shift ∆ in the intermediate region for the
bias voltages, eVSD ≡ µL − µR ∼ Γ, Fig.4.15(d), will be presented. We will finish this
section by considering the interesting limit of a large bias voltage, Fig.4.15(e).

Figure 4.15: Limit cases: (a) equilibrium regime µL−µR ≪ Γ at relatively high temper-
atures; (b) and (c) asymptotic behavior: µL−µR ∼ Γ with |µL,R| ≫ Γ; (d) µL−µR ∼ Γ
and |µL,R| ∼ Γ, (e) µL − µR ≫ Γ

4.7.4 Results for the occupation number

The occupation number is calculated as a function of the localized level energy ǫ0.
The source-drain voltage VSD and the temperature T are taken as parameters. In our
calculations we count all the energies from the bare-level energy, ǫ0, so that all the
curves are plotted as a function of distance between ǫ0 and the mean chemical potential,
1
2
(µL + µR). All the energies are taken in units of the total coupling strength to the

leads, Γ.
The occupation number, n0, at different values of the bias voltages and at the lowest

temperature T = 0.005Γ is presented in Fig.4.16. In the limits |ǫ0| ≫ µL, µR the
occupation number asymptotically tends towards the equilibrium curve at all values of
VSD. In the limit of large bias voltages VSD/e > 2Γ, the occupation number exhibits a
plateau-type structure at the vicinity of ǫ0− (µL +µR)/2 = 0. For smaller bias voltages,
VSD/e < 2Γ, the deviation from the equilibrium curve consists in larger values of the
occupation number in the regime between ǫ0 − µL ≫ Γ and µR − ǫ0 ≫ Γ.

The occupation number at µL − µR = 1.0Γ and µL − µR = 5.0Γ at different tem-
peratures are reported in the Fig.4.7.4 and Fig.4.18 respectively. The total occupation
number is not sensitive to the behavior near the Fermi surface, and therefore the curves
do not show significant temperature dependence up to T ∼ 1Γ. In the case of large
bias voltage, eVSD = 5.0Γ, the occupation number, n0, exhibits a plateau at the level
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Figure 4.16: The occupation number as a function of the mean chemical potential in the
leads (µL + µR)/2 measured from the position ǫ0 of the localized level (in units of Γ) at
T = 0.005Γ and different voltage eVSD = µL − µR (including the equilibrium situation
µL = µR).

0.6 < n0 < 0.7. At high temperatures (T ∼ 0.5Γ) the plateau is smeared and finally
disappears as temperature is increased (at T ∼ 1.0Γ).

4.7.5 Results for the transmission phase shift

The transmission phase shift, ∆, is calculated as a function of the localized level energy
ǫ0. The source-drain voltage VSD and the temperature T are taken as parameters.

4.7.5.a Effect of the temperature at equilibrium

In the expression for the transmission phase shift ∆, Eq.4.119, the retarded Green func-
tion can be expanded into Taylor’s series around ǫ = µ. For relatively low temperatures
we can stop at the second order term

Gr
dσ(ǫ) = Gr

dσ(µ) +
d

dǫ
Gr

dσ(ǫ)∣∣
µ

· (ǫ − µ) +
1

2

d2

dǫ2
Gr

dσ(ǫ)∣∣
µ

· (ǫ − µ)2 + ... (4.125)

The difference between the Fermi distribution functions of the electrons in the different
leads can be also replaced by derivative following Eq.4.103 since the bias voltage is a
small quantity. One can note, that all the odd powers of (ǫ − µ) are antisymmetric
functions while the integration with symmetric one, ∂f(ǫ)/∂ǫ, over infinite interval will
give zero. We can write
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Figure 4.17: (Left) the occupation number as a function of the mean chemical potential
in the leads (µL +µR)/2 measured from the position ǫ0 of the localized level (in units of
Γ) for eVSD = Γ at different temperatures. Note that the temperature affects the result
in a significant way when T > 0.5Γ.

Figure 4.18: (Right) the occupation number as a function of the mean chemical potential
in the leads (µL + µR)/2 measured from the position ǫ0 of the localized level (in units
of Γ) for eVSD = 5Γ at different temperatures. Note the onset of a plateau around
(µL + µR)/2 − ǫ0 = 0. As before, the temperature affects the result in a significant way
when T > 0.5Γ. The plateau disappears when T > Γ.

tan ∆ =

∫ +∞

−∞
(∂f(ǫ)/∂ǫ)

[
ImGr

dσ(µ) + 1
2

d2

dǫ2
ImGr

dσ(ǫ)∣∣
µ

· (ǫ − µ)2

]
dǫ

∫ +∞

−∞
(∂f(ǫ)/∂ǫ)

[
ReGr

dσ(µ) + 1
2

d2

dǫ2
ReGr

dσ(ǫ)∣∣
µ

· (ǫ − µ)2

]
dǫ

(4.126)

using

∫ +∞

−∞

∂f(ǫ)

∂ǫ
dǫ = 1 (4.127)

Eq.4.126 can be rewritten as

tan ∆ =

ImGr
dσ(µ) + 1

2
d2

dǫ2
ImGr

dσ(ǫ)∣∣
µ

∫ +∞

−∞
(ǫ − µ)2 (∂f(ǫ)/∂ǫ) dǫ

ReGr
dσ(µ) + 1

2
d2

dǫ2
ReGr

dσ(ǫ)∣∣
µ

∫ +∞

−∞
(ǫ − µ)2 (∂f(ǫ)/∂ǫ) dǫ

(4.128)

The integral in the nominator and denominator does not depends on the retarded Green
function and can be considered as a temperature dependent factor

εT ≡
∫ +∞

−∞

∂f(ǫ)

∂ǫ
(ǫ − µ)2 dǫ ∝ T 2 (4.129)
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Figure 4.19: Real and imaginary parts of the retarded Green function as a function of
ω − ǫ0 for µ = 2Γ and T = 0.8Γ. The point ω − ǫ0 = µ is indicated by an arrow.

so that in the T → 0 limit additional contribution vanishes and the phase ∆ reaches
the correct equilibrium zero-temperature value. Within this notation Eq.4.119 takes the
form

tan ∆ =
ImGr

dσ(µ) + [ImGr
dσ(ǫ)]′′µ εT

ReGr
dσ(µ) + [ReGr

dσ(ǫ)]′′µ εT

(4.130)

where [φ(x)]′′x0
denotes the second derivative of the function φ(x) calculated at x = x0.

Following Eq.4.130, the behavior of the phase shift ∆ depends on the values and, more
importantly, on the sign of the second derivative of the real and imaginary parts of the
retarded Green function. The characteristic high-temperature behavior of the real and
imaginary parts of retarded Green function, T ∼ 0.8Γ, is given on the Fig.4.19.

Note that the energy dependence of the real part of the retarded Green function
shows a special point, ω = ǫ̃0, where ReGr

dσ(ω) and its second derivative are equal
to zero. This point approximately corresponds to the renormalized bare level energy
which is defined as the position of the maximum of the electron density of states. The
imaginary part of the retarded Green function, ImGr

dσ(ω), at this point has a finite value
as well as the thermally weighted integral in its vicinity. The phase shift ∆ at this point
does not see thermal smearing and, following Eq.4.119, equals π/2 (See Fig.4.20).

The second derivative of the electron density of states or, equivalently, of the imagi-
nary part of the retarded Green function has a constant sign in the vicinity of the point
ω = ǫ̃0. On the contrary, the

[
ReGr

dσ(µ)
]′′

changes sign. From this simple analysis
we can conclude, that the behavior of the phase ∆ is ”asymmetric” around this point
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Figure 4.20: Phase shift ∆ as a function of µ − ǫ0 at different temperatures for eVSD =
10−5Γ (equilibrium regime). For comparison πn0 as a function of µ− ǫ0 at T = 0 is also
reported – black line (result obtained in Ref.[65]). Let us remaind that πn0 coincide
with ∆ at T = 0.

by comparison with the equilibrium zero-temperature phase shift. The real situation
is more complicated, however, since the Green function itself is a finite temperature
Green function, its values can significantly deviate from the zero-temperature result.
The curves drawn from numerical calculations are reported in Fig.4.20.

At high temperatures, when the Kondo peak in the local density of states, ρσ(ω),
is suppressed, the transmission phase shift can be calculated in different regimes. The
high temperature limit corresponds to T ≥ 0.4Γ. At lower temperatures, ρσ(ω) exhibits
the Kondo peak and our method becomes less accurate. Thus at equilibrium we are
restricted to relatively high temperatures. Nevertheless, the zero-temperature limit is
accessible through the occupation number, n0. This quantity can be calculated in the
NCA approach with high accuracy (up to within 0, 5% compared to the exact Bethe-
Ansatz results).

4.7.5.b Asymptotic behavior

In this limit the phase of the retarded the Green function as well as Green function itself
is nearly constant in the range of energies where transport takes place. In Eq.4.114 giving
the expression of δISD as a function of θ, one can approximate the cos(δ(ǫ)) and sin(δ(ǫ))
factors by
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Figure 4.21: The phase arg Gr
dσ(ω) of the retarded localized electron Green function as

a function of (ω − ǫ0) both (i) at equilibrium at µ = µ1 and µ = µ2 for T = 0.05Γ, and
(ii) out-of-equilibrium at T = 0.8Γ and T = 0.05Γ for µL = µ1 and µR = µ2. (Left)
result for the values µ1 = 2Γ and µ2 = 3Γ. (Right) results for the values µ1 = 5Γ and
µ2 = 6Γ. The position of (µ1 − ǫ0) and (µ2 − ǫ0) respectively is indicated by an arrow.
Note that arg Gr

dσ(ω) depends strongly with ω when (µ1 − ǫ0), (µ2 − ǫ0) is small (left)
whereas its energy dependence is negligible when (µ1 − ǫ0), (µ2 − ǫ0) is large (right).

cos(δ(ǫ)) = cos(δ̄ + ∂δ(ǫ)) ≈ cos δ̄ + O(∂δ) (4.131)

with analogous expansion for the sin-factor

sin(δ(ǫ)) = sin(δ̄ + ∂δ(ǫ)) ≈ sin δ̄ + O(∂δ) (4.132)

where δ̄ is chosen the high-temperature phase (See Fig.4.21, red curves) and ∂δ is the
maximum deviation max |δ(ǫ) − δ̄|. The phase shift ∆ then can be estimated to

tan ∆ =
(sin δ̄ + O(∂δ))

∫
tQD(ǫ) [fL(ǫ) − fR(ǫ)] dǫ

(cos δ̄ + O(∂δ))
∫

tQD(ǫ) [fL(ǫ) − fR(ǫ)] dǫ
(4.133)

Using the condition that | cos δ̄| ≫ ∂δ which is justified in the limit |ǫ− ǫ̃0| ≫ Γ we can
write

tan ∆ = tan δ̄ + O(∂δ) (4.134)

Even if we discuss the finite-T out-of-equilibrium case, the transport can be described
in terms of linear response theory. The phase, thus, can be replaced by δ = πn0 as in
the equilibrium situation. At the finite temperatures the phase is averaged in the sense
of Eq.4.119 where, as we have already noticed, the retarded Green function is nearly
constant. Thus the thermal averaging do not change the phase shift, ∆ ≈ δ. As for
n0, we know from the results for the occupation number discussed previously, that
the non-equilibrium occupation number asymptotically tends towards the equilibrium
occupation far from ǫ̃0, see Fig.4.16. The deviation from the true value can be estimated
to within a few percents and becomes smaller as |µ − ǫ0| increases (see Fig.4.21).
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On the contrary, when the left and right chemical potentials are close to the (renor-
malized) energy of the localized level, ǫ̃0, this type of approximation in no longer valid
and the values of the phase shift ∆ should be calculated numerically using Eq.4.119
(regime (d) of Fig.4.15).

To summarize, let us note that far away from the renormalized energy of the localized
state, ǫ̃0, the phase shift ∆ asymptotically tends towards the equilibrium transmission
phase shift, δ, both at finite bias voltages and temperatures.

4.7.5.c Intermediate regime

The behavior of the phase ∆ at finite bias voltages, far from the linear response regime
(when |µL −µR| ≪ Γ), is discussed in this subsection. The phase ∆ as a function of the
distance between the bare-level energy and the mean chemical potential, ǫ0− 1

2
(µL+µR),

is calculated at three values of the bias voltage eVSD: 1.0 Γ (Fig.4.22); 2.0 Γ (Fig.4.23)
and 4.0 Γ (Fig.4.24). In each case the phase ∆ is calculated at different temperatures,
generally in the range from low-temperature, 0.05 Γ, to the high temperature limit,
1.0 Γ. In any case ∆ is almost temperature independent in the low temperature limit.
Significant deviations from the low-temperature behavior are observed only at high
temperatures, T ∼ 1 Γ, (see Figs.4.22-4.24).

The low-temperature behavior of the phase ∆ as a function of ǫ0 at different values
of the bias voltage is shown in Fig.4.25. At low bias voltages ∆ behaves as n0. Like the
occupation number, the phase ∆ slightly ”shifts” towards negative chemical potentials
(where ǫ0 lies the above mean chemical potential) when the bias voltage is increased.
Starting approximately from eVSD = 4.0 Γ the phase shift ∆ exhibits a shoulder structure
approximately around ǫ0− 1

2
(µL−µR) = 0. At high temperatures this feature disappears.

Note that at a given bias voltage the curves obtained at various temperatures in-
tersect in the vicinity of the point where ∆ = π/2. At equilibrium, see Fig.4.20, this
property results from a symmetry property of the (real and imaginary parts of the)
retarded Green function.

4.7.5.d Large bias voltage regime

As we have seen, when the bias voltage becomes large, the phase shift ∆ exhibits a
shoulder structure in the vicinity of the point ǫ0 = 1

2
(µL + µR). Here we show the

behavior of ∆ in the limit eVSD ≫ Γ. In Fig.4.26 the phase ∆ is plotted as a function
of ǫ0 − 1

2
(µL − µR) at the bias voltages 10.0 Γ and 15.0 Γ in the low-temperature limit

(T = 0.05 Γ). The shoulder structure in these cases is more pronounced compared to the
previous case represented in Fig.4.24. If µL ≪ ǫ̃0 ≪ −µR the numerator of the right-
hand side of Eq.4.119 is almost independent of ǫ0 while its denominator is ǫ0-dependent.
The interplay of these two effects gives rise to the formation of a shoulder in the behavior
of the phase ∆. The phase shift asymptotically tends towards the equilibrium phase
shift.
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Figure 4.22: Phase shift ∆ as a function of µ−ǫ0 at different temperatures for eVSD = Γ
(out of equilibrium).
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Figure 4.23: Phase shift ∆ as a function of µ−ǫ0 at different temperatures for eVSD = 2Γ
(out of equilibrium).
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Figure 4.24: Phase shift ∆ as a function of µ−ǫ0 at different temperatures for eVSD = 4Γ
(out of equilibrium). Note the presence of a shoulder structure in the evolution which
disappears when T > 0.9Γ.

4.7.6 Comparison with experiments

Since a quantum dot weakly coupled to the leads can be described by an Anderson
model, we can discuss the behavior of the experimental system in the light of the results
obtained in the previous section. Unfortunately, since the calculations are performed
for the infinite-U model we can not present any fit of the experimental data because
the experimental setup corresponds to a large but finite Coulomb interaction energy
U . Nevertheless we can examine the qualitative behavior of the phase shift ∆ with
the temperature and bias voltage. Theoretical curves are drawn at different values of
both temperature T and chemical potentials difference µL − µR. As we have already
mentioned, neither the occupation number nor the phase shift ∆ depend on temperature
at T < 0.4 Γ. In this regime then we are left with a single parameter µL − µR.

The evolution of the transmission phase shift that we obtained from NCA calcula-
tions above reproduce the evolution observed experimentally: at low bias voltages the
phase shift is larger than at equilibrium. To illustrate this effect the phase should be
plotted as a function of the difference between the bare-level energy, ǫ0, and the mean
chemical potential, (µL + µR)/2. At high bias voltages, eVSD ≥ 4.0 Γ, the phase shift
exhibits a shoulder structure which is more pronounced at high voltages. Let us note
that VSD = −100 µV already corresponds to the ”high bias” regime since the measured
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Figure 4.25: Phase shift ∆ as a function of µ− ǫ0 at different values of the bias voltage
eVSD (the temperature considered in each case varies but is always low). Note that the
evolution exhibits a shoulder-structure when VSD becomes large.

phase shift develops a shoulder-like structure [35].
The high temperature and bias voltage regimes in the real A.B. rings result in a

strong dephasing processes. The coherent contribution to the current is thus reduced
by processes which are not accounted for in our analysis.

4.7.7 Conclusions

4.7.7.a What is good?

We have analyzed the effects of finite bias voltage and finite temperature on a behavior
of the transmission phase shift of a conduction electron scattered off the quantum dot
embedded in one of the arms of the A.B. ring. Our analysis goes beyond the linear-
response theory that enables us to investigate the behavior of the phase shift and the
occupation number at high bias voltages and temperatures. We have proposed to define
the transmission phase shift as the shift of the periodic Aharonov-Bohm ring current
oscillations as the gate voltage VG is changed, in analogy with the equilibrium phase
shift. The phase shift defined in such a way corresponds to the experimentally measured
quantity. We have derived the expression for the phase shift in terms of the retarded
Green function of the impurity site (quantum dot in our case) for arbitrary temperatures
and bias voltages. We have shown that the expression for the phase shift gives correct
result in the limit of zero temperature at equilibrium and reproduces the expression
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Figure 4.26: Phase sift ∆ as a function of µ − ǫ0 at different values of the bias voltage
µL − µR for T = 0.05Γ (low temperature regime).

previously established in the linear-response regime.
In order to apply the theory to the case of quantum dots, we have solved the system

of equations numerically in order to derive the retarded non-equilibrium temperature de-
pendent Green function. The values of the retarded Green function have then been used
to obtain the transmission phase shift. We have analyzed the behavior of the occupation
number and transmission phase shift out of equilibrium and at finite temperatures.

4.7.7.b What is bad?

We have studied only the symmetric quantum dot with ΓL = ΓR. It would be interesting
to also study asymmetric quantum dots. This asymmetry is known to lead to a reduction
of the conductance by a factor 4ΓLΓR/(ΓL+ΓR)2. As far as the phase shift is concerned,
the effect could be completely different.

Our study can not be extended to the equilibrium situation at low T . To be able to
distinguish the transition from the high temperature limit to the low-temperature (Fermi
liquid) regime at the equilibrium one needs to apply more sophisticated methods able to
describe with higher accuracy the behavior near the Fermi surface at low temperatures.
One should also think whether or not Levinson’s theorem can be extended to the out-
of-equilibrium situation.
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General conclusion

The first part of the thesis is devoted to the study of the effects of Kondo correlations
on the transmission phase shift of a quantum dot (QD) coupled to two leads. Experi-
mental determination of the phase shift made by embedding a quantum dot in one of
the arms of a (an open) Aharonov-Bohm interferometer leads to a value of the phase
which differs from the well-known theoretical predictions obtained both analytically and
by numerical calculations. The present work is motivated by this discrepancy. We have
proposed a theoretical interpretation of these results based on scattering theory com-
bined with Bethe ansatz calculations in the framework of the single-impurity Anderson
model. We have proved the existence of a factor of 2 of difference between the total
phase of the S-matrix (responsible for the shift in the A-B oscillations), and the one
appearing in the expression of the conductance G ∼ sin2(δ/2) implying a partial phase
shift-per spin-. The transmission phase shift, following the Friedel sum rule, is equal to
the occupation of the impurity site in units of π. We have solved the equations of the
Bethe ansatz numerically at T = 0. This allows us to determine the value of n0 as a
function of the parameters of the Anderson model. As it follows from general proper-
ties of the model, the occupation has a single fitting parameter. We have established
a scheme to find out the appropriate value of the fitting parameter assuming a linear
dependence of the applied gate voltage with the energy of localized level. Taking the
particle-hole symmetry into account we have been able to fit the experimental results on
the range of VG corresponding to two successive resonances in different regimes. Quanti-
tative agreement is obtained with experimental results both in the unitary limit and the
weak Kondo coupling regimes. In the low-temperature limit, T ≪ TK , this prediction
is in excellent agreement with experimental data. This result so far has been restricted
to the unitary limit case. When the Kondo correlations are suppressed by temperature
or external field, the system is far from the unitary limit and the experimental results
strongly deviate from the predicted behavior.

The expression for the transmission amplitude of the quantum dot in the Kondo
regime obtained in the first part of this work correctly describes the conductance of the
quantum dot, the behavior of the transmission phase shift as a function of the energy
of the localized level ǫ0, and explains the unexpected abrupt change of the transmission
phase shift - the phase lapses. The latter question is discussed in the second part of
this work. For the quantum dot in the Kondo regime, the phase lapses are found to
be incomplete. This result is in agreement with the experimental observations. Using
the same arguments as for the case of the quantum dot in the Kondo regime, we show
the presence of a complete phase lapse in the Coulomb blockade regime. The phase
lapses result from the change of sign of the transmission amplitude of the quantum dot.
The phase lapses in both regimes, the Kondo and the Coulomb blockade regimes, is
not associated with any related energy scale. The dependence of the ring conductance
with the transparency of the reference arm of an Aharonov-Bohm interferometer is also
discussed.

In the third part, we have studied the transmission phase shift at finite bias voltages
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and temperatures. This part is motivated by experimental measurements performed at
finite temperatures and finite bias voltages. In order to apply perturbation expansion in
the coupling strength Γ in the U → ∞ limit we have used the slave-boson representation.
Since we address the non-equilibrium properties we have used the Keldysh formalism.
To obtain a well-behaved density of states from the non-equilibrium perturbation theory
we have employed the noncrossing approximation, which has been successfully used by
other authors to treat the infinite-U Anderson model in equilibrium. In order to apply
the theory to the case of interest, the quantum dots, we have numerically solved the
system of equations which define the non-equilibrium retarded temperature dependent
Green function. The values of the retarded Green function have then been used to derive
the transmission phase shift which we proposed to define as the deviation of the periodic
Aharonov-Bohm ring current oscillations when the gate voltage varies, making an anal-
ogy with the equilibrium phase shift. The phase shift thus defined corresponds to the
experimentally measured quantity. We have then analyzed the behavior of the occupa-
tion number and transmission phase sift out of equilibrium and at finite temperatures.
Qualitative agreement has been obtained with experimental data.
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