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Chapter 1

Introduction

In his landmark 1948 paper which established the theoretical foundations of Information theory,

Claude E. Shannon formulated elegantly the problem of communication systems design as follows

“The fundamental problem of communication is that of reproducing at one point either

exactly or approximately a message selected at another point”.

In many (if not all) everyday life communications channels, the message picked up by the receiver is

very likely to be somehow different from the signal that was sent by the transmitter. Appropriate signal

processing techniques are thus required to recover the transmitted data from a noisy and possibly

distorted observation at the channel output with the ultimate goal of minimizing the probability of

selecting an incorrect message.

Nowadays, the ever-growing demand for multimedia services combined with the increasing com-

mercial success of portable terminals such as mobile telephones confront the communication system

designer with the conflicting requirements of transmitting information at higher data rates, with lower

error probability and over channels affected by severe disturbance while maintaining low cost and low

power consumption for the equipment. In addition, an efficient utilization of the spectrum resources is

of premium importance to avoid future congestion in the frequency bands available for radio transmis-

sions. As an illustration, even communication links for deep-space missions which were traditionally

considered as severely power-limited and essentially unaffected by bandwidth limitations are expected

to encounter such restrictions with the increasing number of simultaneous missions.

This challenging task calls for the development of more sophisticated solutions than those cur-

rently in use. At the same time, the complexity of the resulting transmissions systems must remain

compatible with the current hardware and software technologies evolutions to be implementable in

practice.

1



2 CHAPTER 1. INTRODUCTION

Context of this work

This work was motivated by the desire to achieve reliable communications by making efficient use of

the available resource (bandwidth and power) at a reasonable cost over channels affected by severe

disturbance. Specifically, we focus here on the class of frequency-selective channels, which are subject

to intersymbol interference. Intersymbol interference arises when successive transmitted symbols are

smeared together in time by the communication channel to the extent that they overlap at the receiver

side. Such a phenomenon is commonly encountered over radio links for example, where the signal at

the receiving unit is formed by the superposition of multiple propagations paths affected by different

delays of arrival.

Single-carrier modulation combined with equalization techniques is a well-established technology

to combat intersymbol interference. Other solutions exist (multi-carrier modulation for instance) but

will not be considered here. The topic of equalization dates back to the early sixties, so that it would

seem unlikely that anything new could be said about it at the current date. However, the introduction

of turbo-codes and more generally turbo-processing has renewed considerable interest in the field.

Modern communication systems typically consist of a cascade of several subsystems, each opti-

mized to perform a single task. Such a decoupling greatly simplifies the receiver design in practice.

However, functions located higher up in the chain do not benefit from information derived by subse-

quent processing stages. With turbo-processing, an iterative exchange of information is established

between two or more receiver functions in order to improve the overall system performance. An in-

teresting example of turbo-processing is turbo-equalization, a concept introduced at ENST Bretagne

in 1995. Turbo-equalization combines equalization with channel decoding in an efficient manner and

offers significant gains with respect to the conventional approach where equalization and decoding

are realized independently.

In this thesis, we focus on the combination of turbo-equalization with bandwidth-efficient coded

modulation schemes, where channel coding and modulation are optimized in order to achieve signif-

icant coding gains over conventional uncoded transmission, but without compromising the spectral

efficiency of the transmission system. Particular attention is devoted to the design of low-complexity

receivers able to cope with multilevel modulations over intersymbol interference channels exhibiting

long delay spreads.

Outline of the thesis

This dissertation is organized in 6 chapters. We expect the reader to be familiar with the basics of

digital communications and channel coding.
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Chapter 2 presents some relevant background material regarding the respective topics of coded

modulation and equalization. The first section of this chapter offers a review of the code/modulation

design problem for bandlimited channels. Specifically, we focus on two practical coded modula-

tion schemes that have found widespread use in current transmission systems, namely trellis-coded

modulation (TCM) and bit-interleaved coded modulation (BICM). Both solutions are exposed and

compared by considering different typical transmission scenarios. In the second part of this chap-

ter, we present a structured and detailed survey of classical equalization techniques. A theoretical

performance comparison is provided and illustrated by a simple case-study.

We turn our attention in chapter 3 to the important problem of combining equalization and decod-

ing in an efficient manner at the receiver side. After a brief survey of the conventional solutions advo-

cated in the literature, we introduce the turbo-equalization scheme in its standard from for TCM and

BICM transmission systems. This structure relies on a trellis-based so-called “BCJR-MAP" equalizer

which is optimum in the sense of minimizing the symbol error probability. We examine the asymptotic

performance of this receiver in the presence of perfect a priori information and present several sim-

ulation results over different transmission scenarios. We finally apply a semi-analytical analysis tool,

the EXIT chart, to the turbo-equalization scheme in order to gain more insight into the convergence

behavior of the iterative process.

Chapter 4 is devoted to the study of low-complexity turbo-equalizers optimized according to the

minimum-mean square error criterion. These structures provide an interesting alternative to con-

ventional MAP turbo-equalization for multilevel signaling over long delay spread channels, where

the complexity of the latter solution is usually untractable. We review the major contributions in

the field and introduce a novel equalization scheme which is derived both in infinite-length form as

well as under finite-length realization constraints. Simulation results are presented in order to eval-

uate the performance of the proposed turbo-equalization scheme. A comparison with the optimum

MAP turbo-equalizer is provided. Finally, we investigate the realization of the turbo-equalizer in

the frequency-domain and examine the complexity reductions that may be achieved with respect to a

conventional time-domain implementation over channels with a very large number of coefficients.

Chapter 5 explores the implementation of the low-complexity turbo-equalization scheme intro-

duced in chapter 4 on a low-cost and low-power consumption digital signal processing (DSP) device.

The development platform and the considered transmission scenario are described. The DSP imple-

mentation of the turbo-equalizer is then discussed, with an emphasis on the data representation and

computation constraints arising from the use of fixed-point arithmetic. We examine the storage re-

quirements as well as the maximum bit rate achievable on the DSP and present some experimental

results.

Finally in chapter 6, we summarize this work and give some concluding remarks as well as sug-

gestions for future research.
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Thesis contributions and publications

We summarize below the main contributions of this dissertation:

• Theoretical proof of the convergence of a MAP turbo-equalizer towards the performance of the

underlying system over an ISI-free channel (chapter 3)

• A rigorous derivation of the time-varying MMSE equalizer initially proposed by M. Tüchler

(chapter 4)

• The introduction of a novel low-complexity MMSE equalizer with a priori information (the

MMSE IC-LE, chapter 4)

• Presentation of a low-complexity approximate method to compute the MMSE IC-LE equalizer

coefficients and relying on the Fast Fourier Transform (chapter 4)

• Implementation of a low-complexity MMSE turbo-equalization scheme on a fixed-point DSP

device (chapter 5)

In particular, we hope that our theoretical treatment of MMSE equalization with a priori information

in chapter 4 will help understand the potential and advantages offered by this approach, and ultimately

inspire the design of new classes of low-complexity equalizers with improved performance.

At the present date, parts of the material presented in this thesis have led to the writing of three

technical reports [105, 106, 107], three conference publications [104, 108, 109] and the submission

of one journal paper [103].



Chapter 2

Digital communications over

frequency-selective channels

Digital transmissions over band-limited channels will typically encounter two majors impairments for

reliable communications, namely additive noise and intersymbol interference (ISI). In addition, a third

impediment may also arise over radio links, where the received signal power fluctuates randomly with

time and sometimes encounters deep fades, a perturbation called signal fading.

Additive noise is a phenomenon of all practical transmission systems, and is usually mitigated

through the use of appropriate channel coding techniques. ISI constitutes one of the major obstacles to

reliable high-speed data transmission techniques over high signal-to-noise ratio (SNR) channels with

limited bandwidth. A common solution to combat ISI involves deploying equalization techniques at

the receiver side. Finally, signal fading is usually overcome through the use of diversity techniques,

where the receiver is supplied with several independent replicas of the transmitted message. Then, the

probability that all signal components will fade simultaneously is reduced considerably.

This chapter aims at providing the reader with some relevant background material regarding the

subjects of channel coding and equalization. Interestingly, it turns out that properly designed coding

and equalization schemes provide a built-in degree of diversity, and thus are robust against signal

fading.

The first section of this chapter is devoted to the combination of channel coding with modulation,

in order to achieve significant coding gains over conventional uncoded transmission, but without com-

promising the spectral efficiency of the transmission system. Two practical coded modulation schemes

are considered in this thesis: trellis-coded modulations (TCM) and bit-interleaved coded modulation

(BICM). These solutions were selected because of their widespread use in current communication

systems. The two coded modulation schemes are exposed, and a comparison of performance is pro-

5
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vided on the basis of simple codes, by considering different typical transmission scenarios that may

be encountered in practice.

In the second part, we focus on the problem of intersymbol interference, and review classical

equalization techniques which precisely aim at mitigating ISI, namely: maximum-likelihood sequence

detection, linear equalization, decision-feedback equalization, and interference cancellation. A theo-

retical comparison of these equalizers is provided, and illustrated through a simple case study.

2.1 Coded modulation for band-limited channels

Channel coding essentially involves introducing some form of controlled redundancy in the transmit-

ted message, which may then be exploited by the receiving terminal to detect and/or recover some of

the transmission errors introduced by the noisy channel. Introducing redundancy reduces the effec-

tive transmission rate. Generally, there exist two possibilities to compensate for the rate loss: either

increasing the modulation rate, if the channel permits bandwidth expansion, or enlarging the signal

set of the modulation system if the channel is bandwidth-constrained. The latter solution necessarily

leads to the use of nonbinary modulation, and comes at the expense of reduced noise immunity, since

at constant average power, signal points are then spaced more closely together with respect to uncoded

transmission. If modulation is considered independently of channel coding, the use of powerful codes

(with large block or constraint length) is required to offset the performance loss caused by the expan-

sion of the signal set. With the seminal work of Ungerboeck [179, 181] and Imai [90] in the early

eighties, it was quickly recognized that modulation and coding could be advantageously optimized as

a single entity to obtain significant coding gains with simpler codes, thus pioneering the field of coded

modulation.

To understand the potential improvement to be expected from a clever combination of coding

and modulation, it is insightful to consider the fundamental limits promised by information theory.

In particular, information theory which dates back to the landmark paper of Shannon in 1948 [155]

provides an upper bound on the maximum information rate that can be achieved with arbitrarily low

error probabilities over physical channels, through the notion of channel capacity. Following the

analysis of Forney and Ungerboeck [65], there exist coding schemes that can achieve arbitrarily low

error probabilities over an ideal additive white Gaussian noise (AWGN) channel, at signal-to-noise

ratios approximately 9 dB lower than those required to achieve error rates of the order of 10−5−10−6

with conventional quadrature-amplitude modulation (QAM). In fact, this gap of 9 dB can be separated

into an effective coding gap of 7.5 dB and an asymptotic shaping gap of about 1.5 dB. The latter

follows from the use of a uniform rather than Gaussian distribution over the signal set, and may

be recovered independently of the coding gain by proper signal shaping techniques [61]. Similar
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conclusions hold for the fully-interleaved Rayleigh fading channel1, where significantly higher coding

gains, more than 30 dB, could theoretically be achieved [23, chap. 13].

In the last two decades, practical coded modulation schemes have been devised which allow us to

recover most of the SNR gap from capacity, both for the AWGN and Rayleigh channels. We focus

exclusively in this thesis on two particular instances of coded modulation, which combine a binary

convolutional encoder with a memoryless symbol mapping function, namely trellis-coded modulation

(TCM) and bit-interleaved coded modulation (BICM). The philosophy behind the two approaches is

quite different. TCM were originally designed for the AWGN channel, and generally prove to be

less suited for the fully-interleaved Rayleigh fading channel. In contrast, BICM was introduced as

a promising coding scheme for fading channels, but has been shown to perform close to the limits

promised by information theory on the AWGN channel as well, with the use of appropriate codes and

labelling rules combined with iterative decoding at the receiver side.

In this section, we first introduce some preliminary definitions and notations to describe and char-

acterize band-pass transmission systems, employing some form of convolutional encoding and op-

erating over bandlimited channels. Then, the fundamental principles of TCM and BICM are briefly

reviewed, and examples of practical codes are exposed and compared. We should mention that since

the combination of equalization with decoding is our main concern in this thesis, we have purposely

restricted our attention to simple TCM and BICM schemes with low complexity and moderate cod-

ing gains. Better performance could be achieved by considering more elaborate coded modulation

schemes such as Turbo TCM [145] or BICM with Turbo-Codes [110, 111] for example.

2.1.1 Preliminary definitions and notations

Consider the block diagram shown in figure 2.1. An ideal information source delivers a sequence of

independent and identically distributed random information bits {bi
k}. The information sequence en-

ters a rate Rc = kc/nc binary convolutional encoder, which delivers the corresponding coded sequence

{ci
k}. More precisely, we assume that an input sequence of kc successive information bits (b1

k , . . . ,b
kc

k )

is encoded into a sequence of nc coded bits (c1
k , . . . ,c

nc

k ) at time index k. The whole coded sequence

is eventually shuffled by a bit interleaver. We recall that an interleaver is a one-to-one permutation

π : Z 7→ Z of the integers, that rearranges the ordering of a sequence of symbols in a deterministic

manner. The interleaved coded sequence is denoted {ci
n}. The coded bits enter a memoryless symbol

mapper. The symbol mapping operation is a one-to-one mapping which assigns an M-ary symbol x

to an input group of m successive bits, with M = 2m. We assume for convenience that m = nc, so that

nc successive coded bits (c1
n, . . . ,c

nc
n ) are mapped onto the symbol xn at time n. The symbols xn are

generally complex, and chosen from some finite discrete alphabet S, with cardinality |S| = M. We

1The fully-interleaved Rayleigh fading channel refers to a flat-fading channel where successive transmitted symbols face

uncorrelated attenuations with Rayleigh-distributed squared magnitude.
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Figure 2.1: Block diagram of a generic pass-band transmitter in the presence of convolutional channel coding.
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Figure 2.2: Signal sets for some common phase and amplitude/phase modulation.

shall denote by ℓi(s) the value of the ith bit of the label of s ∈ S, with i = 1,2, . . . ,m. Accordingly, we

shall denote by S i
b the subset of all signals s ∈ S whose label ℓi(s) has value b = {0,1} in position i.

Examples of common signal sets are shown in figure 2.2. A symbol interleaver may follow the signal

mapping function.

As illustrated in figure 2.1, our definition of coded modulation encompasses the operations of

convolutional encoding, symbol mapping, and possible bit-wise interleaving in between. We define

the code rate RCM of the coded modulation as the number of information bits conveyed per output

symbol (or channel use), yielding

RCM = Rc log2 M = mRc information bits/symbol (2.1)

The discrete-time symbols {xn} are delivered to the signal modulator at the rate R = 1/T symbol per

second, where T is the symbol period.

In the rest of this thesis, we shall make the important assumption that the transmission system is

constrained to use only a portion of the available spectrum resources, as a consequence of some phys-

ical or system design constraints. More precisely, we suppose that the transmission band is limited to

some bandwidth W Hz. In view of this restriction, it is interesting to measure how efficiently a com-

munication system makes use of the available spectrum resources. This is answered by considering

the spectral efficiency η of the transmission, which basically tells us how many bits per second are
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transmitted in a given bandwidth W , and is given by

η =
Rc log2 M

WT
=

RCM

WT
information bits/s/Hz

From Nyquist’s theorem, we know that pass-band transmission of 1 signal every T seconds requires

a minimum bandwidth W = 1/T Hz in the absence of intersymbol interference (more about this in

section 2.2). It follows that the maximum theoretical spectral efficiency that could be achieved by

such a system is ηmax = RCM.

2.1.2 Trellis-coded modulation

The concept of trellis-coded modulation was initially introduced by Ungerboeck in 1976 [181], and

later developed in [179, 180]. TCM has undergone a rapid transition from theoretical investigations

to practical applications, bringing in particular the field of wireline modems close to the capacity of

the telephone channel. The subject of TCM is covered in depth in many textbooks (see e.g. [31, 91]

or [152]), so that we shall only recall the basic principles in this section.

The conventional structure of a TCM encoder is shown in figure 2.3. It comprises a binary con-

volutional encoder followed by a special memoryless symbol mapper. Let us assume that we want

to transmit m bits of information per encoder/modulator operation. Then, the signal constellation

is enlarged from M = 2m to M′ = 2m+1 signals. m̃ ≤ m information bits are expanded by the rate

Rc = m̃/(m̃ + 1) binary convolutional encoder into m̃ + 1 coded bits. These bits are used to select

one of 2m̃+1 subsets of the M′-ary signal set. The remaining m− m̃ uncoded bits determine which of

the 2m−m̃ signals in this subset is to be transmitted. The encoding operation thus directly occurs in

signal space. The set of coded signal sequences may be conveniently described by a trellis diagram

which has the same number of states as the considered convolutional encoder, and which presents the

particularity that parallel transitions may occur, due to the presence of uncoded bits (when m̃ 6= m).

Through the introduction of redundancy, coding aims at restricting the set of allowed signals

at a given instant in time so as to maximize the difference between pairs of valid coded sequences.

Considering transmission over the AWGN channel, this translates mathematically into the requirement

that coded sequences should be located as far apart from each other as possible in the Euclidean

signal space. TCM uses the fundamental concept of mapping by set-partitioning, which divides the

signal constellation into smaller subsets with increasing Euclidean distance between signal points. A

computer search is then performed to select the convolutional code, with a prescribed complexity,

essentially yielding the maximum free Euclidean distance between pairs of coded sequences. Tables

of good codes to be used with TCM can be found in [180]. Soft-decision decoding is performed at

the receiver side, using a slightly modified version (to account for eventual parallel transitions) of the

conventional Viterbi algorithm for decoding convolutional codes. TCM offer significant coding gains
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Figure 2.3: Block diagram of a TCM encoder.

over uncoded modulation at values of spectral efficiency above and including 2 bit/symbol. Roughly

speaking, it is possible to gain 3 dB with 4 states, 4 dB with 8 states, nearly 5 dB with 16 states and

up to 6 dB with 128 or more states.

TCM, however, suffers from two drawbacks. First, it proves necessary in many applications to

adapt the spectral efficiency of the coding scheme as the channel conditions change over time, in order

to maintain a given reliability for the transmission. Unfortunately, achieving optimum TCM code

design in such a variable-rate environment requires implementing distinct encoders and decoders,

with very different trellis structures. Capitalizing on some remarks by Clark and Cain [42, chap. 8],

Viterbi et al [186] have proposed an elegant remedy to this problem, which was later refined by Wolf

and Zehavi [194]. Called pragmatic TCM, their approach uses a fixed 64-state standard convolutional

code with maximum free distance, combined with a different mapping rule than set partitioning. Rate

adaptation is obtained by proper puncturing of the convolutional code. Although suboptimum in

principle, this configuration yields performance very close to that obtained with the best Ungerboeck

codes at similar encoder complexity, with the advantage of versatility.

But more importantly, TCM schemes optimized for the AWGN channel are generally not opti-

mal for the fully-interleaved Rayleigh fading channel, a valid model for several important wireless

communication systems. As suggested in figure 2.1, the use of TCM over fading channels requires

symbol-wise interleaving at the output of the signal mapper, where the interleaver depth is typically

larger than the maximum fade duration anticipated. This essentially results in a memoryless channel

at the receiver side, where successive transmitted symbols undergo uncorrelated signal fadings. The

suboptimality of Ungerboeck’s TCM schemes stems from the fact that one of the most relevant param-

eters for code design over fully-interleaved fading channels turns out to be the minimum Hamming

distance of the code2, i.e. the number of symbols in which two valid coded sequences disagree, rather

than the free Euclidean distance [160]. Classical TCM schemes generally have a low code diversity.

Consequently, several approaches have been investigated in order to design efficient TCM schemes

2 Sometimes called diversity order of the code in this context.
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for the fading channel. A notable example is the use of Multiple TCM (MTCM), where more than

one signal is assigned onto each transition in the trellis [31, chap. 9]. More recently, Al-Semari and

Fuja have suggested using distinct encoders for the in-phase and quadrature components of the trans-

mitted signal [10], an approach called I-Q TCM. Zehavi took a different look at this problem, and

found that by employing bit-wise interleaving at the convolutional encoder output, and by using an

appropriate soft-decision metric in the Viterbi decoder, the code diversity can be made equal to the

smallest number of distinct bits (rather than symbols) between coded sequences [199]. Such a strat-

egy, which essentially decouples coding and modulation, was later coined the name bit-interleaved

coded modulation by Caire et al in [34].

2.1.3 Bit-interleaved coded modulation

The generic transmitter model for BICM is shown in figure 2.4, and usually consists of a serial con-

catenation of a binary convolutional encoder, a bit interleaver and a memoryless symbol mapper.

❨✭❩ ❬ ❭ ❩ ❪ ❫ ❴ ❵ ❩ ❬ ❛ ❪
❜ ❬ ❝ ❩ ❞ ❡ ❢ Π

❣ ❵ ❴
❤ ❬ ❴ ❡ ❢ ❪ ❡ ❛ ❭ ❡ ❢

✐ ❥ ❦✗❧ ❩ ❪
♠ ❛ ♥ ♥ ❵ ❬ ♦ ♣ qr s t

✉ s t ✉ q t

Figure 2.4: Block diagram of a BICM encoder.

The notable difference with a classical TCM encoder is the presence of the bit interleaver, which

randomizes the mapping of binary coded sequences onto the signal set. Like pragmatic TCM, variable-

rate transmissions are obtained by puncturing the output of the convolutional code. Two problems

arise with such an approach.

1. The random mapping operation reduces the minimum Euclidean distance between pairs of

coded sequences, by comparison with TCM where both functions are jointly optimized.

2. Exact maximum-likelihood (ML) decoding of BICM requires joint signal demapping and de-

coding at the receiver side, in order to account for the dependency between coded bits assigned

to the same channel symbol which results from the signal labelling rule. However, this operation

is rendered impractical by the bit interleaver.

Regarding these two points, Zehavi suggested the use of a signal set with Gray labelling instead of Set

Partitioning, and proposed a two-step suboptimal decoding procedure, where simplified bit metrics are

generated first by a soft-output demodulator, and then used in Viterbi decoding of the convolutional

code after deinterleaving (see figure 2.5).
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Figure 2.5: General form of a BICM decoder. The elements shown as dashed lines figure the feedback link

used in iterative decoding.

A thorough analysis of the performance of BICM was later carried out by Caire et al [34]. They

obtained tight upper bounds on the bit error probability for BICM over the AWGN and uncorrelated

Rayleigh fading channels in the presence of ideal (infinite) interleaving, and suggested the following

design guidelines: a) given a signal set, pick up a standard convolutional code with maximum free

distance and code rate compatible with the desired spectral efficiency; b) select the signal labelling

map according to some practical optimality criterion, which depends on the channel model and the

decoding strategy, and essentially amounts to translating a large Hamming distance into a large Eu-

clidean distance. In particular, Gray mapping was conjectured to be the best choice for the “one-shot"

decoding procedure proposed by Zehavi.

In fact, the choice of the mapping rule has turned out to be of central importance for BICM design

with the introduction of iterative decoding strategies, an approach called BICM-ID (Iterative Decod-

ing). Iterative decoding was initially proposed by Li and Ritcey, who recognized the suboptimality

of Zehavi’s approach and suggested the use of hard-decision feedback from the decoder [116, 117].

Their approach was later refined in [39, 115] and [121] to include soft-decision feedback, in accor-

dance with the so-called Turbo principle [80]. A similar receiver was independently proposed in

[165]. For convenience, the description of iterative decoding is deferred to the next chapter. It suffices

to mention for the moment that the symbol demapper and the convolutional decoder exchange soft in-

formation about the transmitted message in an iterative manner (see figure 2.5). The key point of this

approach is that iterative decoding resolves to some extent the problem of low minimum Euclidean

distance encountered with conventional BICM schemes employing Gray mapping. In fact, assuming

error-free feedback, it is possible to design labelling maps yielding higher free Euclidean distance

than standard TCM schemes. However, as pointed out in [165] and [162], there is a trade-off to find

between good asymptotic performance of the BICM-ID scheme, and sensitivity of the mapping rule

to feedback errors, which is measured by the minimum SNR (also called convergence threshold) upon

which successive iterations begin to improve the bit-error rate. A similar issue arises when considering

iterative equalization and decoding, as we shall see in the next chapter. Hence, while Gray labelling is

optimal for conventional (one-shot) BICM decoding, better labelling maps may be found for iterative
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decoding, depending on the considered channel model and the desired performance. Design criterions

have been proposed in the aforementioned papers as well as in [77] for optimizing the signal mapping

rule. Significant improvements over both TCM and conventional BICM schemes have been obtained,

but the subject still lacks some maturity at the present time.

2.1.4 Examples of practical coded modulation schemes

We introduce in this section three examples of coded modulation schemes, that achieve a maximal

spectral efficiency of 2 bits/s/Hz with similar encoder complexity.

The first one is a TCM that combines an 8-PSK signal set with an 8-state rate Rc = 2/3 convolu-

tional encoder. A possible realization of the TCM encoder is shown in figure 2.6. This code is known

to achieve a theoretical asymptotic coding gain of 3.6 dB with respect to uncoded QPSK [179].
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Figure 2.6: A possible realization of the encoder for the 8-state 8-PSK TCM, with the corresponding trellis

representation.

The second scheme is a BICM that employs an 8-PSK constellation and an 8-state rate Rc = 2/3

convolutional code with maximum free distance dfree = 4. The transfer function matrix of this code

was obtained from [92]

G(D) =

(

1+D D 1

D2 1 1+D+D2

)

Finally, the third code is another BICM that combines a 16-QAM signal set with an 8-state rate

Rc = 1/2 convolutional encoder with maximum free distance dfree = 6 and transfer function matrix

G(D) =
(

1+D+D3 1+D+D2 +D3
)

A set partitioning labelling map (see figure 2.7) and a random interleaver of size 8196 coded bits were

considered for the two BICM schemes.
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Figure 2.7: Set-partitioning labelling maps for 8-PSK and 16-QAM.

In order to illustrate the previous discussions, the three coded modulation schemes have been

simulated by considering different typical transmission scenarios. We caution the reader that the

purpose of these case-studies is certainly not to advocate which coded modulation scheme should be

retained for a particular communication system, a problem for which no general solution exists, but

simply to highlight the respective strengths and weaknesses of BICM-ID and TCM through simple

examples.

Performance over the AWGN channel

Figure 2.8 presents the bit-error rate (BER) obtained by simulation of the three coded modulation

schemes over an AWGN channel. Iterative decoding was used for the BICM. Accordingly, we present

both the theoretical asymptotic performance achieved by a genie receiver which has perfect prior

knowledge about the transmitted bits (ideal feedback from the decoder), and the practical performance

obtained after 10 iterations. We first note that the TCM scheme provides an effective coding gain of

2.7 dB over conventional uncoded QPSK3 at an error probability of 10−5, thereby showing the benefits

of a clever combination of coding and modulation. Interestingly, the simulation results also show that

BICM with iterative decoding is able to recover the loss in free Euclidean distance resulting from the

separate optimization of coding and modulation. In fact, it even outperforms TCM for Eb/N0 values

in the range 3.5–7 dB, although the asymptotic slopes of the curves suggest that TCM remains the

best choice at higher SNR. We emphasize however that labelling maps with improved asymptotic

performance over set partitioning mapping exist for both 8-PSK and 16-QAM (see [39, 77, 115]).

Finally, it is interesting to observe that the 16-QAM BICM performs better than its 8-PSK counterpart.

This is a consequence of the combination of set-partitioning labelling with iterative decoding. In fact,

the inverse phenomenon can be observed with a Gray labelling map (not shown here), where iterative

decoding does not offer significant improvement over a conventional "one-shot" BICM receiver. But

in the latter case, the BICM schemes only offer a marginal coding gain with respect to uncoded

3We recall that the theoretical coding gain of 3.6 dB is only valid asymptotically. In particular, depending on the TCM

distance spectrum, very large SNR may sometimes be required to obtain such a coding gain.
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Figure 2.8: Performance of the considered coded modulations over the AWGN channel.

QPSK,and thus are significantly outperformed by the TCM at all SNR values.

Performance over the fully-interleaved Rayleigh flat-fading channel

Let us consider now transmission over a fully-interleaved Rayleigh flat-fading channel. Such a model

assumes that the channel state varies independently between successive symbols. In practice, this

assumption usually requires the presence of an interleaver whose depth exceeds the coherence time of

the fading process, which is defined as the time beyond which successive samples can be considered

as independent.

Simulation results for this channel model are shown in figure 2.9, where we have assumed ideal

(infinite-depth) symbol interleaving, both in the TCM and BICM cases. We observe that thanks to

the presence of the additional bit interleaver, the two BICM schemes benefit from an increased code

diversity and thus offer significant coding gains over the TCM scheme, 5 and 7 dB respectively at a

bit-error probability of 10−4. Although this is not reported on the plots, similar simulations have been

conducted for the two BICM schemes but with Gray labelling. We observed that the iterative process

combined with set-partitioning offered respective gains of 2 dB for the 8-PSK BICM-ID and 4 dB for

the 16-QAM BICM-ID with respect to the one-shot approach with Gray mapping over this channel.

At several occasions in this document, we shall be interested in evaluating the diversity order

achieved by a transmission scheme. We recall that a system is said to achieve a diversity order L on
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Figure 2.9: Performance of the considered coded modulations over the fully-interleaved Rayleigh flat-fading

channel.

a fading channel, where L is an integer, if the probability of error decreases as the inverse of the Lth

power of the signal-to-noise ratio [23, chap. 13]. A simple method to measure the diversity order

of a transmission scheme thus consists in superposing curves of the form 1/SNRL to the plots of

the system performance, and searching for the value L which matches the asymptotic slopes of the

system performance curves. By applying such a technique with the simulation results of figure 2.9,

with SNR = RCMEb/N0, we were able to verify that the TCM scheme has an asymptotic diversity

order L = 2 (the length of the smallest error event), whereas the 8-PSK and 16-QAM BICM schemes

achieve respective asymptotic diversity orders L = 4 and L = 6 (the free distance of their respective

inner convolutional encoders). This is consistent with the discussions in the previous sections.

Performance over a quasi-static Rayleigh flat-fading channel

In several practical applications, such as real-time speech transmission, a strict decoding delay is

imposed at the receiver side. This precludes the use of large interleavers. In this case, depending on

the channel coherence time, a transmitted data sequence may experience only a few different fading

values, which makes the assumption of a memoryless channel, normally achieved by long-enough

interleaving, no longer valid. We shall consider here a worst-case scenario where a whole data block

is affected by the same random attenuation, which varies independently between successive blocks.

Such a model is commonly called quasi-static channel. Since deep fades may cause the loss of entire
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Figure 2.10: Performance of the considered coded modulations over a quasi-static Rayleigh flat-fading channel.

blocks, irrespective of the error-correction capabilities of the channel code, the relevant parameter for

evaluating the system performance is no longer the bit-error rate, but rather the frame-error rate (FER)

which measures the average number of received data blocks that have been decoded without errors.

In order to match the quasi-static model assumption, we have considered data blocks with a fixed

size of 256 modulated symbols for each of the three coded modulation schemes, which seems a

reasonable choice. Bit-interleavers with size 768 and 1024 coded bits were used for the 8-PSK and

16-QAM BICM schemes respectively.

Figure 2.10 presents the FER performance obtained with the three coded modulation schemes over

a quasi-static Rayleigh flat-fading channel. On inspection of these curves, we first observe that the

different schemes do not offer any diversity gain with respect to the uncoded transmission, since the

asymptotic slopes are identical in all cases. The error-correction capabilities of the coded modulation

schemes then simply translate into a horizontal shift of the performance curve towards lower signal-

to-noise ratio at a given error probability. This comes from the fact that the channel can be considered

as Gaussian, given the knowledge of the fading value affecting a block. Hence, codes optimized

for the AWGN channel are likely to be good also for the quasi-static fading channel, and Euclidean

minimum distance becomes the relevant parameter again. In particular, we note that in contrast with

the previous transmission scenarios, BICM with iterative decoding is unable to reach the performance

of the genie receiver. Hence, the BICM schemes only provide a marginal improvement with respect

to the TCM. This is a consequence of the appearance of deep fades, which preclude the convergence
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of the iterative process and thus penalize the frame-error rate.

It is clear that additional diversity techniques are required to achieve reliable communications on

such severe channel models. In fact, an effective way of achieving a form of code diversity involves

splitting a coded sequence into several blocks at the transmitted side, each block suffering from dif-

ferent channel attenuation. This transforms the quasi-static channel model into a block-fading channel

model. This is precisely the solution adopted for the GSM telephony standard, where the blocks mod-

ulate 4 or 8 carriers whose spacing is larger than the coherence bandwidth of the channel (a diversity

method called frequency-hopping), resulting in virtually uncorrelated blocks with constant channel

coefficients at reasonable mobile speeds. Then, the sensible parameter governing the code design is

no longer the Hamming distance between coded sequences, but rather the block Hamming distance,

i.e. the number of blocks in which two coded sequences differ. We shall not delve into this issue any

further in this work, and the interested reader is referred to [95, 96] for relevant discussions about this

topic.

Discussion

The main purpose of these case-studies was to emphasize the fact that the choice of a coded modu-

lation scheme is usually dictated by several considerations, including the channel model, the desired

performance, and the complexity which is affordable at the transmitter and receiver side. We have

seen in particular that with judicious code design, significant diversity gains can be obtained on fully-

interleaved Rayleigh channels. In contrast, in more severe conditions, as arise for example with the

class of quasi-static channels, additional diversity techniques may be required in order to obtain reli-

able transmissions at reasonable SNR values.

Having described solutions to realize reliable bandwidth-efficient transmissions in the presence

of additive noise and possible signal fading, we now turn our attention to the important problem of

combatting intersymbol interference arising in frequency-selective channels, by proper equalization

techniques.

2.2 Equalization techniques for frequency-selective channels

All real channels exhibit some form of time dispersion. In radio links, this dispersion may be due to

multi-path propagation, while in a telephone channel, it results from the imperfect transfer character-

istics of the transmission system. In data transmission, this distortion causes successive transmitted

symbols to be smeared in time and thus to overlap to the point that they may be no longer distin-

guishable as distinct pulses at the receiving terminal, a phenomenon known as intersymbol interfer-
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ence (ISI). From a frequency-domain perspective, the channel transfer function exhibits frequency-

dependent attenuations and delays over the transmission bandwidth, hence the alternative designation

of frequency-selective channels. The impairments caused by ISI become greater as successive symbols

are spaced more closely together in time to increase the data rate, and as the bandwidth restrictions

are more stringent (then requiring transmit pulses with larger temporal support, by virtue of the time-

frequency duality). In fact, the effects of ISI may be so large on some pathological channels as to

preclude reliable communication on the data system, even in the absence of noise. As an illustration,

it is not uncommon today to encounter highly dispersive channels exhibiting delay spreads spanning

up to a hundred symbol periods, as arise for example in the context of underwater communications

[159] or broadband wireless access [15].

When the channel characteristics are known beforehand with a high degree of accuracy, it is

theoretically possible to carefully design the transmit and receiver filters so as to eliminate ISI at the

sampling instants, if the transmission rate R (in symbols per second) is less than the system bandwidth

W (Hz) for a band-pass transmission. This condition is known as the Nyquist criterion for zero ISI

[138, chap. 9]. In practice however, the frequency response of the channel is usually not known with

sufficient precision, and appropriate methods must be deployed to compensate the ISI and achieve

reliable communications.

We classically distinguish between three strategies to combat ISI. The first approach employs

spread-spectrum signalling, where the transmission bandwidth W is much larger than the informa-

tion rate R [138, 177]. Another solution involves using multicarrier transmission techniques, such

as Discrete Multi-Tone (DMT) or Orthogonal Frequency-Division Multiplexing (OFDM) [18, 32].

This thesis focusses exclusively on a third approach which combines single-carrier transmission with

equalization techniques at the receiver side, a solution dating back, in fact, to the early ages of digital

communication [119].

After introducing the discrete-time model for data transmission over a frequency-selective chan-

nel, this section provides an overview and comparison of the classical equalization strategies that may

be encountered in practical systems. Complementary material may be found e.g. in [139, 187] or [61,

chap. 2], as well as in any textbook on digital communications.

2.2.1 A mathematical model for transmission over ISI channels

We shall consider in this work the following fundamental discrete-time baseband equivalent model

for digital data transmission in the presence of intersymbol interference (see figure 2.11)

yn =
L−1

∑
ℓ=0

hℓxn−ℓ +wn (2.2)
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Figure 2.11: Discrete-time baseband equivalent channel model

Following the definitions and notations introduced in the previous section, the data symbols {xn} are

modeled as a sequence of independent, identically distributed (i.i.d.) complex random variables xn,

with mean 0 and variance σ 2
x , drawn from a finite alphabet S, the signal constellation, with cardinality

M = |S|. While the assumption of uncorrelated data symbols is intuitively satisfying for BICM, it in

fact also holds for many of Ungerboeck’s TCM schemes (including the one considered in this thesis),

as pointed out by Biglieri [30]. The data symbols are transmitted at the rate R = 1/T , where T is

the symbol period (in seconds). The additive noise samples wn are modeled as a zero-mean, wide-

sense stationary, circularly-symmetric, white Gaussian complex random process with total variance

σ 2
w. The real and imaginary components of the noise are thus independent and identically distributed,

with the same variance σ 2
w/2. Moreover, the noise is usually assumed to be uncorrelated with the

transmitted data sequence {xn}. The action of the ISI channel is modeled as a discrete-time finite-

impulse response (FIR) filter with L complex coefficients {h0, . . . ,hL−1}. As illustrated in figure

2.11, this representation includes the combined operations of transmit filtering, propagation over the

continuous-time channel, receive filtering and symbol-spaced sampling, assuming perfect coherent

demodulation and timing synchronization [112, 138].

The discrete-time equivalent channel model is conveniently described by its z-transform

H(z) =
L−1

∑
ℓ=0

hℓz
−ℓ (2.3)

The frequency response of the discrete-time channel is obtained by letting z = e jωT in the previous

expression, yielding

H(ω) =
L−1

∑
ℓ=0

hℓe
− jωℓT , |ω | ≤ +π/T (2.4)

Let us denote by Ho(ω) the frequency response of the underlying overall continuous-time baseband

equivalent channel formed by the cascade of the transmit filter HT (ω), channel HC(ω) and receiver
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filter HR(ω)

Ho(ω) = HT (ω)HC(ω)HR(ω) (2.5)

The frequency response of the discrete-time channel is related to the frequency response of the

continuous-time channel by

H(ω) =
1
T ∑

m

Ho

(

ω − 2mπ

T

)

, |ω | ≤ +π/T (2.6)

which shows that H(ω) is simply obtained as the folded-spectrum of Ho(ω) [139].

In order to complete the description of the transmission model, we shall finally introduce two ad-

ditional quantities that will be useful in subsequent discussions, namely the channel gain and channel

signal-to-noise ratio (SNR) function. The channel gain is written ‖h‖ and defined by

‖h‖ =
√

Rhh,0 =

√
L−1

∑
ℓ=0

|hℓ|2 =

(
T

2π

∫ +π/T

−π/T
|H(ω)|2 dω

)1/2

(2.7)

where Rhh,0 denotes the sampled autocorrelation function of the discrete-time sequence {h0, . . . ,hL−1}
evaluated at time n = 0. The channel SNR function SNRC(ω), or spectral SNR, measures the signal-

to-noise ratio at the output of the discrete-time equivalent channel, for a given angular frequency ω in

the range [−π/T,+π/T ]. It is defined as follows [61, 65]

SNRC(ω) =
σ2

x |H(ω)|2
σ2

w

(2.8)

This quantity naturally arises in the study of ISI channels, considering for example channel capacity

calculation using standard water-pouring arguments [112, chap. 10], as well as in the evaluation of

the theoretical performance of equalization schemes, as we shall see later in this chapter.

Let us now discuss the validity of the proposed discrete-time equivalent model for the transmis-

sion. Ideally, the receiver front end which comprises the receiver filter followed by the symbol-

rate sampler should provide an information-lossless transition from continuous-time to T -spaced

discrete-time. We know from classical estimation theory that the observations sampled at the symbol

rate 1/T at the output of a receiver filter matched to the cascade of the transmit filter and channel

HR(ω) = H∗
T (ω)H∗

C(ω), provides a set of sufficient statistics for the estimation of the transmitted data

sequence (see e.g. [63], [23, chap. 7] or [138, chap. 10] for a proof). However, the noise is usually

correlated at the output of the matched filter, so that it is desirable to cascade the matched filter with

an appropriate continuous-time noise whitening filter in order to simplify the analysis and receiver

design. This particular receiver front end is called the whitened matched filter (WMF) [12, 63]. From

the reversibility theorem4, it follows that the WMF, when it exists, also forms an information-lossless

4 The reversibility theorem essentially states than an invertible operation does not entail any loss of information since it
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canonical receiver front end. Accordingly, the discrete-time model of equation 2.2 contains all the

relevant information for the estimation of the transmitted sequence {xn}, regardless of the criterion of

optimality considered in the receiver design, when the receiver filter is chosen as the WMF.

Another interesting situation for which the model of equation 2.2 equivalently applies arises when

the receiver filter is constrained to be a fixed square-root raised cosine filter [138, chap. 9]. Such a

receiver filter is usually matched to the transmit pulse shape, and provides uncorrelated noise at the

sampler input. It must be noted however that the receiver front end no longer delivers a set of sufficient

statistics for the estimation of the transmitted sequence in this case, since it does not include a filter

matched to the cascade H∗
T (ω)H∗

C(ω) 5. Although sub-optimal, this solution is commonly adopted in

practical transmission systems for several reasons. First, a fixed filter simplifies the receiver design,

especially on time-varying channels where the synthesis of the optimum matched filter would require

the use of continuous-time adaptive algorithms. Moreover, it has been shown in [73] that a fixed

square-root Nyquist receiver filter with a carefully optimized roll-off factor may cause only a small

degradation with respect to the optimum WMF. Finally, the square-root raised cosine filter acts as a

low-pass filter. Consequently, sampling rates higher than the symbol rate 1/T may be employed so

that no spectrum aliasing occurs, yielding a fractionally spaced receiver front end. The matched filter

may then be moved to discrete-time without loss of optimality, which greatly simplifies the receiver

design.

For the ease of exposition, we have thus limited ourselves in this work with the model given by

equation 2.2, assuming uncorrelated data symbols and noise samples. We emphasize that unless the

receiver filter is chosen as the WMF, an optimum receiver designed with respect to that discrete-

time model will be sub-optimal with respect to the underlying continuous-time transmission model.

The reader is referred to [112, chap. 10] for a thorough discussion about more general discrete-time

models, which take into account colored noise and/or a colored data sequence, and the corresponding

modifications that occur on the equalizers structure.

2.2.2 Matched filter bound

The matched filter bound (MFB) establishes a lower bound on the performance of any receiver in

the presence of ISI. It is based on the idea that no receiver can have a lower error probability than

the optimum receiver designed for the ISI-free transmission of a single data symbol x0, which simply

consists of a discrete-time filter matched to H(z) followed by a symbol-by-symbol decision device

[112, 138]. The sample delivered by the matched filter is written z0 = Rhh,0x0 +ν0, with Rhh,0 = ‖h‖2

can always be reversed [195].
5 Strictly speaking, this solution remains optimal as long as the impulse response hc(t) of the continuous-time channel

consists of discrete pulses separated by multiples of the symbol period. For this particular case, the optimal matched filter

may still be realized in T -spaced discrete-time without loss of information.
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and where ν0 denotes the filtered noise sample at the output of the matched filter H∗(z−∗) at time 0.

The effective signal variance is σ 2
x ‖h‖4 and the effective noise variance is σ 2

ν = σ 2
w ‖h‖2, so that the

signal-to-noise ratio corresponding to the matched filter bound is

SNRMFB =
σ2

x ‖h‖2

σ2
w

=
T

2π

∫ +π/T

−π/T
SNRC(ω) dω = A(SNRC(ω)) (2.9)

where A(SNRC(ω)) denotes the arithmetic mean of the function channel SNR function SNRC(ω).

It is instructive to note that the matched filter collects the whole channel energy and maximizes the

signal-to-noise ratio at the decision point. SNRMFB thus places an upper bound on the SNR that can

be achieved by any practical receiver at the input of the symbol-by-symbol detector. Since the noise is

Gaussian at the output of the matched filter, the lower bound on the symbol error probability is simply

obtained by applying standard formulas for uncoded modulations over an AWGN channel (see e.g.

[138, chap. 5] or [23, chap. 5]), where the channel SNR is now given by SNRMFB.

2.2.3 Maximum-likelihood sequence detection

Let us consider the transmission of a data sequence {xn} with finite length N, where N may be as

large as desired. The corresponding discrete-time observation at the receiver side is denoted {yn}
and will typically have a larger temporal support than the transmitted sequence, as a result of the

time-dispersive propagation. The optimum equalization structure for a discrete data sequence in the

presence of ISI generally is considered to be maximum-likelihood sequence detection (MLSD). The

maximum-likelihood sequence detector determines the most probable transmitted sequence that re-

sulted in a particular received signal. From a probabilistic point of view, MLSD selects the candidate

sequence {x̂n} that maximizes the likelihood Pr({yn}|{x̂n}). When the transmitted sequences are all

equally likely, a very common assumption, maximum-likelihood sequence estimation becomes equiv-

alent to maximum a-posteriori sequence detection, where we search for the candidate sequence {x̂n}
that maximizes the a posteriori sequence probabilities Pr({x̂n}|{yn}|).

It must be emphasized that MLSD is not the optimum receiver from a digital transmission per-

spective, since sequences with a large number of errors are weighted the same as sequences with

as small as one error. Consequently, MLSD does not minimize the probability of symbol error

PS(E ) , Pr(x̂n 6= xn), which is obviously the most relevant criterion for the receiver design. Min-

imizing PS(E ) in turn requires computing the set of a posteriori symbol probabilities Pr(x̂n|{yn})
for all admissible symbols at any time n, based upon the whole received observation, and selecting

the symbols that maximize these quantities. This yields the maximum a-posteriori symbol detector

[19, 85, 118]. In practice, comparable performance with the optimum symbol detector (at high SNR)

as well as an elegant implementation and mathematical tractability in determining performance have

made the MLSD an attractive receiver, in the absence of particular prior knowledge about the trans-
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Figure 2.12: Example of trellis description for a BPSK transmission over the discrete-time 3-tap ISI channel

H(z) = 1+ z−1 + z−2.

mitted symbols. Otherwise, and as we shall see in chapters 3-4, there can be considerable benefit in

employing equalizers that explicitly take into account a priori information about the data.

When the channel impulse response has finite length L, it can be modeled as a finite-state machine

with ML−1 states, and thus admits an equivalent trellis representation (see figure 2.12). As shown by

Forney [63], an ML−1-state Viterbi algorithm may then be used to implement MLSD for such a system.

The salient feature of the Viterbi algorithm is that optimum detection of an entire transmitted sequence

is performed sequentially, with a computational cost growing linearly (and not exponentially as would

happen with a “brute-force” approach) with the length N of the sequence. Forney’s receiver was

originally derived for pulse-amplitude modulation (PAM) in the presence of white noise. Ungerboeck

later extended this approach to work with complex signals, without the need for a noise whitening

filter [178]. Both receivers have the same overall complexity. Tutorial expositions about the Viterbi

algorithm and its application to MLSD may be found e.g. in [64, 84].

In addition to lending itself to a straightforward implementation, the Viterbi algorithm is relatively

easy to analyze. Using the key concept of error events, Forney obtained upper and lower bounds for

the symbol error rate, which are tight at moderate to high SNR [62, 63]. These bounds were further

discussed and refined in [40, 66, 123, 130, 183], and show that the performance of MLSD depends

principally on the minimum Euclidean distance between allowed noiseless transmitted sequences at

the output of the ISI channel. In particular, for channels with small amounts of ISI, it is often the

case that the minimum distance error event is a single symbol error. Consequently, the minimum dis-

tance between sequence pairs reduces to the minimum distance between any two uncoded modulation

symbols, and MLSD achieves the effective SNR of the matched filter bound.

Although linear in the block length, the complexity of MLSD still remains exponential in the

number ML−1 of states, and thus becomes rapidly prohibitive when the length L of the channel impulse

response and/or the number M of points in the signal set increase. Thus, a significant amount of

research has been devoted to alternative equalization methods that essentially retain the performance

characteristics of MLSD but at reduced complexity. Early attempts essentially considered the use of
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a prefilter to concentrate the energy in the first taps of the channels, so as to reduce the length L of

the ISI span (see e.g. [60, 114] or [7]). Following the analogy with the problem of decoding long

constraint-length convolutional codes, sequential detection was also proposed for long delay spread

channels [197]. To date however, the most successful approach in retrospect has involved attacking

directly the complexity of the Viterbi algorithm by reducing the number of searched paths in the trellis,

employing truncation of the channel impulse response combined with state partitioning techniques and

possible per-survivor processing [140]. An illuminating exposition of these algorithms is provided in

[17], which encompasses as particular cases the M algorithm [13, 14], the T algorithm [157], delayed

decision-feedback sequence estimation (DDFSE) [51], reduced-state sequence estimation (RSSE) [57,

94], or the Generalized Viterbi Algorithm (GVA) [83].

Rather than focussing on developing reduced-complexity variants of the optimum MLSD when

the Viterbi algorithm becomes too complicated for implementation, one may as well consider simpler

receiver structures, obtained by considering an alternative criterion to the direct minimization of the

error probability, and by imposing particular constraints on the receiver design. This yields the gen-

eral class of filtering-based equalizers. Although necessarily sub-optimal, such receivers often offer

entirely adequate performance, and at a much lower cost than MLSD.

2.2.4 Filtering-based equalizers

Filtering-based equalizers employ linear filters to compensate for the channel distortions, so that the

cascade of the channel with the equalizer ideally approaches a flat Nyquist folded spectrum (hence

the name equalizer). Consequently, they turn the frequency-selective channel into an (almost) ISI-

free equivalent channel. A memoryless symbol-by-symbol detector is then applied at the output of the

equalizer (figure 2.13). As we shall see, such a transformation does not come without loss. Indeed, it

usually results in noise enhancement, so that the signal-to-noise ratio at the slicer input remains lower

than the ideal SNR of the matched filter bound.

✺✖✻ ✼ ✽ ✾ ✿ ❀ ❁ ❂ ❃ ✾ ❄
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Figure 2.13: Generic block-diagram for filtering-based equalizer

Until recently, filtering-based equalizers were almost exclusively realized in adaptive form, op-

erating in data-aided or decision-directed mode, and where the coefficients are adjusted iteratively

from an error signal [139]. However, this approach may be unsuited to short packet transmission

schemes due to the possible large number of training symbols (typically a few hundred) required for

the adaptive equalizer to reach its steady-state. Therefore, we consider an alternative strategy in this

thesis, where the filter coefficients are computed from an estimate of the channel impulse re-
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sponse, which is turn is typically obtained using a known training sequence embedded in each packet.

Moreover, in our simulation, we shall make the important assumptions of ideal synchronization and

channel estimation.

Depending on the hypothesis considered in the equalizer design, we distinguish three different

classes of filtering-based equalizers: linear equalization (LE), decision-feedback equalization (DFE),

and interference cancellation (IC). Regardless of the particular structure of the equalizer, the filter

coefficients may be optimized according to different criteria. Direct minimization of the symbol error

probability leads to a set of nonlinear equations to solve, for which the solution may only be obtained

by numerical techniques and with significant effort, thus precluding this approach for practical use [1,

154, 198]. Consequently, one must resort to more tractable but sub-optimal optimization criteria, such

as the zero-forcing (ZF) or the minimum mean-square error (MMSE) criteria [112, 138]. ZF equalizers

attempt to completely eliminate ISI at the slicer input, without regard for the noise. As a result, they

essentially invert the channel frequency response, which may lead to severe noise enhancement for

channels with spectral nulls or near-nulls. In contrast, the MMSE criterion allows residual ISI at

the slicer input, and attempts to minimize conjointly the sum of ISI and noise. This reduces the

variance of the noise and often procures a net advantage in SNR over ZF equalizers at the slicer input.

Consequently, we shall focus only on MMSE-optimized equalizers in the following6.

The filter coefficients of MMSE-based equalizers are optimized to minimize the mean-square error

ε2 , E
(

|zn − xn|2
)

(2.10)

at the input of the symbol-by-symbol detector, where expectation is taken with respect to both the data

and noise statistics. Unfortunately, performance analysis is complicated by the fact that minimization

of the MSE does not necessarily translate into minimization of the symbol error probability since the

noise is not strictly Gaussian at the slicer input. Consequently, an alternative figure of merit has to

be defined in order to assess the performance of different MMSE equalization schemes. A common

practice involves defining an equivalent signal-to-noise ratio at the equalizer output

SNRE ,
σ2

x

ε2
=

σ2
x

E
(

|zn − xn|2
) (2.11)

The intuitive justification for this choice is that we expect the equalizer with the highest output SNR to

lead to the lowest error probability. This assumption holds rigorously true only for Gaussian additive

distortion7, but offers insightful results in practice and leads to manageable mathematics. The situation

is however further complicated by the fact that MMSE-optimized equalizers are inherently biased, i.e.

6 The corresponding ZF equalizers are easily deduced from the MMSE equalizers by letting σ 2
w → 0 in the expression

of the filter coefficients.
7 In fact, such an assumption holds practically for low to moderate channel SNR, where the filtered noise usually

dominates the residual ISI contribution at the equalizer output.
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they deliver estimates of the form

zn = g0(xn +ξn) (2.12)

where g0 is a real positive bias term, and ξn is an additive distortion term taking into account the

residual ISI and the filtered noise at the equalizer output, that we suppose independent of xn, with

zero-mean and variance σ 2
ξ . The presence of the bias has two consequences. First, it virtually in-

creases the output SNR, so that SNRE may exceed the matched filter bound SNRMFB in some situa-

tions. Moreover, the decision rule are now biased and therefore sub-optimal with respect to the error

probability. Consequently and as advocated in [41, 61], we will consistently use in the following the

unbiased SNR, denoted SNRE,U, as the relevant figure of merit to assess the performance of MMSE

equalization schemes. The unbiased SNR is easily deduced from the knowledge of SNRE by (see [41]

for a proof of this general result)

SNRE,U =
σ2

x

E
(

|ξn|2
) =

σ2
x − ε2

ε2
= SNRE −1 (2.13)

and corresponds to the SNR obtained at the output of an unbiased MMSE equalizer, where the bias g0

has been removed prior to the decision device (figure 2.14). In fact, removing the bias increases the

MSE and reduces the SNR, but improves the error probability8.
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Figure 2.14: Block diagram of the unbiased MMSE equalizer

We now proceed to introduce the three classes of MMSE-optimized filtering-based equalizers. The

equalizers are derived both in infinite-length form as well as under the constraint of a finite-length FIR

realization, which is of great practical importance. In the latter case, we shall find it convenient to use

the following model for the transmission, obtained from (2.2) by collecting N successive observations

yn in vector form

yn = Hxn +wn (2.14)

8Obviously, another solution involves modifying the decision regions of the slicer to take the bias into account.
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where we have defined

yn , [yn, . . . ,yn−N+1]
T (2.15)

wn , [wn, . . . ,wn−N+1]
T (2.16)

xn , [xn, . . . ,xn−L−N+1]
T (2.17)

and where H is the N × (N +L−1) channel convolution matrix defined by

H =










h0 h1 . . . hL−1 0 . . . 0

0 h0 h1 . . . hL−1

...
...

. . . . . .
...

0 . . . 0 h0 h1 . . . hL−1










(2.18)

where we have assumed that the channel coefficients are invariant at least over N successive symbol

periods. Note that H is a Toeplitz matrix.

2.2.5 MMSE linear equalization

As shown in figure 2.15, the MMSE linear equalizer is simply obtained by placing a linear filter in the

path of the received signal, followed by a memoryless decision device that selects the discrete symbol

closest (in the minimum Euclidean distance sense) to the filter output.

q✳r s t ✉ ✈✜✇✖r ① ② t ✈
③ ④

⑤ ① r ⑥ t ✈
⑦ ④ ⑧ ④⑨⑩ ⑦❶❸❷

Figure 2.15: Block diagram of the MMSE linear equalizer

Infinite-length realization

The optimum transfer function P(z) of the MMSE linear equalizer results from the minimization of

the MSE ε2 = E
(

|zn − xn|2
)

. We obtain the following solution [112, 138]

P(z) =
σ2

x H∗(z−∗)
σ2

x H(z)H∗(z−∗)+σ 2
w

(2.19)

where the notation H∗(z−∗) is a shortcut for H∗(1/z∗). We observe that the transfer function of the

MMSE equalizer may be decomposed into a discrete-time matched filtering operation, followed by

a purely recursive filter. Such a filter has infinite length and must be truncated in practice. The



2.2. EQUALIZATION TECHNIQUES FOR FREQUENCY-SELECTIVE CHANNELS 29

corresponding minimum MSE is given by

ε2
min,MMSE-LE =

T

2π

∫ +π/T

−π/T

σ2
x σ2

w

σ2
x |H(ω)|2 +σ 2

w

dω (2.20)

from which we deduce the biased SNR at the equalizer output

SNRMMSE-LE =
σ2

x

ε2
min,MMSE-LE

=

(
T

2π

∫ +π/T

−π/T
(SNRC(ω)+1)−1 dω

)−1

=H(SNRC(ω)+1) (2.21)

We note from the last expression that the biased SNR is given by the harmonic mean H of the function

SNRC(ω)+1. Finally, the unbiased SNR for the MMSE linear equalizer is obtained as

SNRMMSE-LE,U = H(SNRC(ω)+1)−1 (2.22)

Finite-length realization

We now derive the MMSE linear equalizer under the constraint that the filter P(z) is FIR, with N

coefficients. Let us express P(z) in vector form: p = [p0, . . . , pN−1]
T. Exploiting the notations of

(2.14), the equalized sample at time n is then given by

zn = pTyn (2.23)

The filter coefficients are computed to minimize the MSE ε 2 , E
(

|zn − xn−∆|2
)

, where 0 ≤ ∆ ≤
N + L − 2 is a discrete delay introduced to approximate the anti-causality of the equalizer. This

optimization problem yields the solution

p∗ = R−1
yy Ryx (2.24)

where we have introduced

Ryy , E
(
ynyH

n

)
= σ 2

x HHH +σ 2
w I (N ×N matrix)

Ryx , E
(
ynx∗n−∆

)
= σ 2

x h∆ (N ×1 vector)

h∆ is defined as the product of the matrix H with the unit vector e∆ having a 1 in position ∆ 9, and

thus denotes the column ∆ of H. I is the identity matrix, and the superscript H denotes the hermitian

transpose. It can be shown that in the presence of white noise (σ 2
w > 0), the autocorrelation matrix Ryy

is strictly positive definite, and hence always invertible. Note also that Ryy is Toeplitz. This structural

property can be advantageously exploited to carry out the matrix inversion using computationally

9 We assume hereafter in this dissertation that indices for rows and columns are numbered starting from 0 (and not from

1, as is usual in mathematics).
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efficient methods such as the Levinson-Durbin algorithm [76]. The corresponding MSE is given by

ε2
min,MMSE-LE = σ 2

x −RH
yx p∗ = σ 2

x −RH
yx R−1

yy Ryx (2.25)

The output biased and unbiased SNR are easily deduced from the last expression using (2.11) and

(2.13). We note that the MSE and hence the output SNR are a function of the delay ∆. In fact,

this parameter adds a degree of freedom in the equalizer design and may be optimized to improve

the performance, especially for small equalizer length N. The optimum restitution delay is given in

closed-form by [107, app. C]

∆opt = argmin
0≤i≤N+L−2

Ji,i , with J , HHR−1
yy H (2.26)

Ji, j denotes the (i, j) element of matrix J. In practice, choosing ∆ ≈ (N +L)/2 will generally provide

good results if N is high enough. We would finally like to point out that the equivalence between finite-

length and infinite-length equalizers can be established for N → ∞ using the particular properties of

Toeplitz matrices [79, 139].

2.2.6 MMSE decision-feedback equalization

The MMSE linear equalizer described above may suffer from noise enhancement which penalizes its

performance, particularly at high SNR. The MMSE decision-feedback equalizer (DFE) is a simple

non-linear alternative structure which attempts to somewhat circumvent this phenomenon by em-

ploying tentative decisions. The basic underlying idea is that if the receiver is operating with a low

error-rate, then almost all past decisions are correct, and thus may be used to cancel the postcursor ISI

by subtracting the past detected symbols with appropriate weighting from the equalizer output. The

structure of the decision-feedback equalizer is presented in figure 2.16. It comprises a feedforward

filter P(z) which conceptually shapes the discrete-time channel model into a causal transfer function,

and a strictly causal feedback filter Q(z) which reconstructs the part of ISI from the present estimate

caused by previous symbols. The equalized signal is the sum of the forward and feedback paths, and

enters a memoryless threshold detector.

Infinite-length realization

Assume that the decisions on the past symbols are correct. As usual, the optimum transfer functions

P(z) and Q(z) are obtained by minimizing the quantity ε 2 = E(|zn−xn|2). The derivation requires the

introduction of the discrete-time spectral factorization theorem, summarized below (see [134] for a

proof of this theorem).
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Figure 2.16: Block diagram of the MMSE decision-feedback equalizer

Theorem 2.1 (Discrete-time spectral factorization). Let S(z) be any discrete-time autocorrelation

function with power spectrum S(ω) such that both S(ω) and logS(ω) are integrable over the interval

−π ≤ ω ≤ +π (Paley-Wiener conditions). Then there exists a unique, canonical (i.e. causal, monic10

and minimum-phase11) discrete-time sequence with z-transform F(z) and spectrum F(ω) such that

S(z) = S0F(z)F∗(z−∗) (2.27)

S(ω) = S0 |F(ω)|2 (2.28)

where the real-valued constant S0 > 0 is the geometric mean of the power spectrum S(ω)

logS0 =
1

2π

∫ +π

−π
logS(ω) dω (2.29)

The logarithms may have any common base.

Consider now the z-transform Syy(z) of the autocorrelation of the received observations {yn},

which is given by

Syy(z) = σ 2
x H(z)H∗(z−∗)+σ 2

w (2.30)

The previous expression is sometimes called the key equation [41]. Syy(z) is a polynomial in z with

2L− 1 coefficients, whose frequency response satisfies Syy(ω) > 0 in the presence of noise. Hence,

following theorem 2.1, Syy(z) may be factored into the product of a monic minimum-phase filter F(z)

with a monic maximum-phase filter F∗(z−∗)

Syy(z) = S0F(z)F∗(z−∗) , with S0 > 0 (2.31)

This factorization is unique and depends on the channel model and signal-to-noise ratio at the chan-

nel output. The MMSE-optimum infinite-length transfer functions for the feedforward and feedback

10 f0 = 1.
11 F(z) has all its poles inside the unit circle, and all its zeros inside or on the unit circle.



32 CHAPTER 2. DIGITAL COMMUNICATIONS OVER FREQUENCY-SELECTIVE CHANNELS

filters are then given by (see [41, 112])

P(z) =
σ2

x H∗(z−∗)
S0F∗(z−∗)

(2.32)

Q(z) = F(z)−1 (2.33)

Note that the feedforward filter P(z) is anticausal, while the feedback filter is strictly causal. The

corresponding figure of merits at the MMSE-DFE output are

ε2
min,MMSE-DFE =

σ2
x σ2

w

S0

= σ 2
x exp−

(
T

2π

∫ +π/T

−π/T
log(SNRC(ω)+1) dω

)

(2.34)

SNRMMSE-DFE = exp

(
T

2π

∫ +π/T

−π/T
log(SNRC(ω)+1) dω

)

= G(SNRC(ω)+1) (2.35)

SNRMMSE-DFE,U = G(SNRC(ω)+1)−1 (2.36)

where G( f ) denotes the geometric mean of the function f .

Finite-length realization

Suppose now that the feedforward and feedback filters are finite-length FIR filters with Np and Nq

coefficients respectively. In vector form, we have p = [p0, . . . , pNp−1]
T and q = [q0, . . . ,qNq−1]

T. The

feedback filter is strictly causal, with 0 ≤ Nq ≤ L−1. The optimum filters are obtained by minimiz-

ing the mean-square error ε2 = E
(

|yn − xn−∆|2
)

where 0 ≤ ∆ ≤ Np + L− 2 is the parameterizable

restitution delay of the feedforward filter. Our derivation follows the one by Al-Dhahir and Cioffi [5],

which highlights the analogy with the infinite-length approach. Assuming correct past decisions, the

equalized sample zn at the input of the decision device at time n may be expressed as

zn = pTyn −qTxn−∆−1 (2.37)

where yn is the Np ×1 vector defined by [yn, . . . ,yn−Np+1]
T, and xn−∆−1 is the Nq ×1 vector obtained

by collecting the last Nq symbol estimates [xn−∆−1, . . . ,xn−∆−Nq
]T after a delay ∆ + 1. It proves to be

mathematically convenient to introduce the augmented feedback vector q̃ , [01×∆ 1 qT 01×s]
T, where

s satisfies Np +L−1 = ∆+1+Nq + s. We define the following Cholesky factorization [76], which is

the finite-length equivalent of spectral factorization

σ2
x HHH+σ 2

w I = LDLH (2.38)

where L is an (Np + L − 1)× (Np + L − 1) lower triangular matrix, with 1’s on the main diag-

onal, and where D is an (Np + L − 1)× (Np + L − 1) diagonal matrix, with positive real entries,
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D , diag{d0, . . . ,dNp+L−2}. The MMSE-optimum filters are then given by

q̃ = Le∆ (2.39)

p∗ =
σ2

x H(LH)−1e∆

d∆

(2.40)

H is the Np × (Np +L−1) Toeplitz channel convolution matrix, with first row [h0 . . .hL−1 01×(Np−1)].

The minimum MSE at the equalizer output is

ε2
min,MMSE-DFE =

σ2
x σ2

w

d∆

(2.41)

from which we deduce the unbiased SNR, which admits a simple closed form

SNRMMSE-DFE,U =
d∆

σ2
w

−1 (2.42)

Like for the finite-length MMSE LE, the MSE and hence the SNR depend on the delay ∆. Optimiza-

tion of this parameter is especially important for short-length DFE. It has been shown in [6] that the

optimum delay is given by

∆opt = argmin
0≤i≤Np+L−2

{di} (2.43)

In practice, ∆ may be safely set to Np − 1 for most practical channels and noise scenarios without

compromising performance, when Np is of sufficient length. In this case, p is strictly anticausal. Ob-

taining the equalizer’s coefficients essentially involves computing the Cholesky factorization (2.38).

Efficient methods for realizing this task have been proposed in [4, 8, 9], both for the symbol-spaced

as well as the fractionally-spaced cases.

Discussion

Worth mentioning is the fact that an alternative realization exists for the MMSE DFE, that was initially

introduced by Belfiore and Park [22]. This structure, commonly called noise-predictive DFE (NP

DFE), consists of an MMSE linear equalizer as the feedforward filter, and a linear noise predictor as

the feedback filter, as shown in the configuration of figure 2.17. This structure is equivalent to the

classical MMSE DFE under the condition that the filters have infinite length, and become sub-optimal

otherwise. In spite of this fact, the NP DFE has been successfully used with trellis-coded signals, for

which classical DFE do not apply directly because of system delay restrictions [56, 201].

The previous analysis has so far assumed correct past decisions for the sake of mathematical

tractability, and thus leads to optimistic bounds regarding the performance of the MMSE DFE. In

practice however, occasional incorrect decisions made by the slicer may propagate down the feedback
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Figure 2.17: Block diagram of the noise-predictive interpretation of the MMSE DFE

section and alter the optimality of the equalizer’s design. Analytical results on the probability of error

for DFE in the presence of error propagation are available in the literature (see e.g. [11, 52, 158] and

the references therein). To date however, the most efficient way to assess the influence of feedback

errors has often been via measurements or Monte-Carlo simulations. On most practical channels,

catastrophic error propagation rarely materializes, so that the MMSE DFE will generally (and often

significantly) outperform the MMSE LE, except at very low SNR.

When the channel impulse response is known in advance, or in the presence of a reliable feedback

link between the transmitter and receiver, efficient signal precoding techniques can be employed to

mitigate error propagation as well as noise enhancement. Precoding is a transmitter equalization

technique which essentially moves the feedback section of the DFE to the transmitter side. Modulo

arithmetic is then required to limit the power enhancement that results. A comprehensive treatment of

signal precoding techniques is available in the recent book by Fischer [61].

2.2.7 MMSE interference cancellation

The concept of decision feedback of past data symbols to cancel ISI can theoretically be extended

to include future data symbols as well. If all past and future data symbols were assumed to be

known exactly at the receiver side, then given a perfect model of the ISI process, all ISI could be

cancelled exactly and without the noise enhancement phenomenon which affects linear as well as

decision-feedback equalization. The resulting equalizer is called the MMSE interference canceller

(IC). Initially suggested by Proakis [137], this equalization technique was later refined by Mueller

and Salz [131] and Gersho and Lim [72]. The structure of the MMSE interference canceller is shown

in figure 2.18. It includes a feedforward filter P(z) in combination with a feedback filter Q(z), which

is in charge of reconstructing the precursor and postcursor ISI affecting the current sample, from an

estimate {xn} of the transmitted sequence. Unlike the DFE, the feedback filter may be noncausal. In

the following analysis and like for the DFE, we assume perfect data estimates, i.e. xn = xn.
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Figure 2.18: Block diagram of the MMSE interference canceller

Infinite-length realization

The optimum infinite-length transfer functions P(z) and Q(z) are obtained by minimizing the quantity

E
(

|zn − xn|2
)

at the slicer input, under the additional constraint that q0 = 0, q0 being the reference

tap of the feedback filter. This hypothesis is required to avoid the trivial solution pn = 0 and qn = δn

which arises with the assumption of perfect decisions. With this constraint, the feedback filter is now

restricted to the removal of ISI. Solving the optimization problem yields [101]

P(z) =
σ2

x

σ2
x ‖h‖2 +σ 2

w

H∗(z−∗) (2.44)

Q(z) = H(z)P(z)−g0 , with g0 =
σ2

x ‖h‖2

σ2
x ‖h‖2 +σ 2

w

(2.45)

It is interesting to note that the optimum feedforward filter is a simple matched filter, up to a constant

factor. In fact, the particular form of the optimum filters immediately suggests an alternative realiza-

tion of the MMSE IC, shown in figure 2.19. The latter is equivalent to the structure of figure 2.18, but

will require fewer coefficients and thus may be more suited to a practical implementation.
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Figure 2.19: An alternative realization of the MMSE interference canceller

The minimum MSE at the MMSE IC output is given by

ε2
min,MMSE-IC =

σ2
x σ2

w

σ2
x ||h||2 +σ 2

w

(2.46)
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from which we deduce the biased SNR

SNRMMSE-IC =
σ2

x ‖h‖2

σ2
w

+1 =
T

2π

∫ +π/T

−π/T
(SNRC(ω)+1) dω = A(SNRC(ω)+1) (2.47)

For this particular equalizer, the unbiased SNR admits an interesting closed form

SNRMMSE-IC,U = A(SNRC(ω)+1)−1 = A(SNRC(ω)) = SNRMFB (2.48)

Thus, and in contrast with DFE or LE, the ideal MMSE IC is potentially able to eliminate all ISI

without noise enhancement, since it theoretically achieves the matched filter bound. Note that the

ISI-free noise samples at the input of the decision device are generally correlated.

Finite-length realization

The finite-length form of the MMSE IC follows immediately if one notes that the optimum uncon-

strained filters given by (2.44) are in fact finite-length FIR. Realization of the feedforward filter P(z)

indeed requires only L coefficients, and the feedback filter Q(z) necessitates in turn 2L−1 coefficients.

The optimal MMSE IC is thus naturally a finite-length equalizer when the discrete-time channel model

can be approximated as FIR. The feedforward filter is strictly noncausal, so that a minimum restitution

delay ∆ ≥ L−1 is required for the realization of the MMSE IC. For the sake of completeness, we give

the corresponding filters in vector form

p =
σ2

x

σ2
x ‖h‖2 +σ 2

w

[h∗L−1, . . . ,h
∗
0]

T (2.49)

q = HTp− σ2
x ‖h‖2

σ2
x ‖h‖2 +σ 2

w

eL (2.50)

Discussion

The previous results have so far assumed perfect knowledge of the transmitted data. In practice how-

ever, application of the MMSE IC requires a first equalization step in order to provide preliminary de-

cisions on the data, which typically involves a (possibly adaptive) MMSE LE [72]. Both Wesolowski

[191] and Agazzi and Sheshadri [2] pointed out that the error performance of the canceller is critically

dependent on the first stage decision device that generates the tentative decisions. The MMSE IC

proves indeed to be more sensitive to error propagation than the DFE, a problem which has precluded

its use in practical transmission systems. However, interference cancellation has recently met with

renewed interest with the advent of “Turbo” processing techniques, as we shall see in chapter 4.
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2.2.8 Comparison of equalization schemes

Theoretical comparison

We first provide a theoretical comparison of the performance of the aforementioned equalizers in

infinite-length form, based on the unbiased SNR. For a positive argument f , the following inequalities

hold between the arithmetic, geometric and harmonic means [190]

H( f ) ≤ G( f ) ≤A( f ) (2.51)

Combining the previous result with (2.9), (2.22), (2.36) and (2.48), it follows that

SNRMMSE-LE,U ≤ SNRMMSE-DFE,U ≤ SNRMMSE-IC,U = SNRMFB (2.52)

Strict inequalities hold in all cases except on the ideal AWGN channel, for which SNRC(ω) = cte.

Consequently, linear equalization is expected to perform worse than (ideal) decision-feedback equal-

ization, which is surpassed in turn by (ideal) interference cancellation. Performance of maximum-

likelihood sequence detection lies between the performance of DFE and the upper limit of the matched

filter bound at high SNR.

A simple case-study

The four equalization schemes have been simulated in a BPSK transmission context over the 5-tap

severe-ISI Proakis C channel model, with impulse response [0.227,0.460,0.688,0.460,0.227] [138,

chap. 10]. The filtering-based equalizers were realized in finite-length form. The number of coef-

ficients and restitution delay were optimized to closely match the performance of the corresponding

infinite-length equalizers over a wide SNR range, yielding (Np = 32,∆ = 18) for the MMSE LE,

(Np = 15,Nq = 4,∆ = 14) for the MMSE DFE, and (Np = 5,Nq = 9,∆ = 4) for the MMSE IC respec-

tively. The DFE was simulated assuming perfect feedback as well as with tentative decisions, in order

to assess the influence of error propagation. The same applied to the MMSE IC which was simulated

both with perfect decisions and within a two-stage configuration comprising an MMSE LE as the first

equalizer, delivering tentative decisions to the IC. The measured symbol-error rates (SER) are shown

in figure 2.20 as a function of the normalized SNR per bit Eb/N0. We first note that linear equaliza-

tion suffers from significant noise enhancement on this channel. As a consequence of the unreliable

estimates delivered by the MMSE LE, the interference canceller with tentative decisions from the LE

performs even worse. Consequently, decision-feedback equalization provides a significant advantage

over the LE for this severe ISI channel, but is surpassed in turn by optimum MLSD. Finally and as

expected, ideal interference cancellation effectively achieves the matched filter bound. This is not the

case for MLSD, which presents a theoretical asymptotic performance loss of 5 dB on this channel
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model, with respect to the ISI-free AWGN channel [146, chap. 2].
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Figure 2.20: Symbol-error rate for the different equalizers with BPSK modulation over the Proakis C channel.

2.3 Summary

In this chapter, we have reviewed two functions of a digital transmission scheme that play an important

role in the goal of achieving reliable communications in the presence of additive noise, intersymbol

interference, and possibly signal fading, namely channel coding and equalization.

The first part of this chapter was concerned with the desire to combine channel coding techniques

with modulation in order to increase the robustness of the system against noise, but without compro-

mising the spectral efficiency of the transmission. Two coded modulation schemes (TCM and BICM)

have been introduced which realize attractive solutions for practical transmission systems, depending

on the channel characteristics and the complexity that is affordable at the receiver side.

The second part of the chapter was devoted to a survey of the classical equalization strategies

that are usually considered for combating ISI over frequency-selective channels. In particular, it has

been stressed that while MLSD is theoretically optimum from a communication system design point of

view, sub-optimal filtering-based equalizers often offer satisfactory performance, and are considerably

less complex to implement in practice.
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We now turn our attention in the next chapter to the important problem of combining equalization

and decoding in an efficient manner, such that each operation can take advantage of the result of the

other in the process of recovering the transmitted message from a received observation.





Chapter 3

Iterative equalization and decoding:

Turbo-Equalization

Building upon the tutorial exposition of chapter 2, it is now clear that reliable bandwidth-efficient

data transmission over frequency-selective channels calls for some combination of equalization and

decoding at the receiver side, in order to overcome the impairments caused by ISI and noise, and

possibly mitigate the influence of signal fading.

We first present the general problem of combining equalization and decoding for TCM and BICM,

and briefly review the classical solutions advocated as a response in the literature. Then, we introduce

the turbo-equalization scheme, where equalization and decoding are performed in an iterative manner,

by exchanging soft information at all stages of the process. Specifically, we focus in this chapter on a

particular class of turbo-equalizers employing optimal BCJR-MAP symbol detectors and decoders.

The turbo-equalizer is described both in the BICM and TCM cases, and we rigorously prove

that the resulting receiver converges towards the performance obtained over an ISI-free channel at

high-enough signal-to-noise ratios, assuming sufficient interleaving. In particular, it is shown that the

turbo-equalizer may achieve a maximum diversity order of L× Lc over fully-interleaved multipath

Rayleigh fading channels, where L denotes the number of independent propagation paths and Lc is

the diversity order of the inner code. Several simulation results are presented by considering different

transmission scenarios, which confirm that turbo-equalization may offer significant improvements

over the conventional approach where equalization and decoding are usually performed in a separate

manner.

We finally apply a semi-analytical analysis tool, the EXIT chart, to the turbo-equalization scheme

in order to gain more insight into the convergence behavior of the iterative process, so as to deduce

some system design guidelines in return.

41
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3.1 On combined equalization and decoding

Let us consider the general problem of recovering an information message from encoded data in the

presence of noise and intersymbol interference. We know from classical estimation theory that the

optimal (in the ML or MAP sense) receiver should then perform equalization and decoding jointly,

by taking simultaneously into account the constraints introduced by the code and the ISI channel.

This however requires us to consider a super-trellis whose overall complexity is proportional to the

cartesian product of the individual code and ISI trellises.

As an illustration, consider the problem of detecting TCM signals on time-invariant channels in

the presence of ISI. Assuming a TCM encoder with S states, an expanded signal set of M points

and an ISI channel with L taps, it is known that the resulting super-trellis has S(M/2)L−1 states,

with M/2 transitions emerging from each state [38]. The complexity of the optimal receiver then

rapidly becomes prohibitive for practical implementation as the channel memory increases. This

is all the more true because TCMs usually employ multilevel signal sets with M = 8 points or more.

Hence, several reduced-complexity MLSD algorithms have been suggested, which are similar to those

mentioned in section 2.2.3 and operate on a reduced number of combined code and ISI states [38,

58]. In particular, an interesting receiver with moderate complexity arises when the super-trellis is

reduced to the inner TCM code trellis. ISI is then not taken into account in the trellis states, but

rather in the edge metrics, using principles similar to classical decision-feedback equalization. This

yields the so-called parallel decision-feedback decoder (PDFD), that was first proposed in [192]. In

spite of their tractable implementation and good performance, it must be stressed that these practical

solutions remain inherently sub-optimal with respect to a full-blown ML receiver operating on the

original super-trellis. In fact, a minimum SNR gap of 1–2 dB usually subsists with respect to the

ideal performance promised by the matched filter bound. Considering now the detection of TCM

signals in time-varying multipath environments, we know that symbol interleaving is usually required

in order to combat correlated fadings. However, this results in a super-trellis whose complexity is

exponential in the interleaver length. The optimal receiver is thus clearly untractable, and one has to

resort to a suboptimal two-stage approach, where equalization and decoding are performed separately,

preferably with an exchange of soft information in between the two functions. A similar problem

is encountered when considering BICM transmissions over frequency-selective channels, where the

systematic presence of the bit interleaver precludes a joint equalization and decoding approach, even

on time-invariant ISI channels [97].

A major breakthrough occurred in 1995 in the field of combined equalization and decoding with

the pioneering work of Douillard et al. on Turbo-Equalization [47, 50], building upon the principle

of Turbo-Coding first introduced by Berrou et al. in 1993 [27]. Consider the canonical transmission

schemes for BICM and TCM over frequency-selective channels depicted in figure 3.1. Note that we

have purposely introduced a symbol interleaver in front of the discrete-time ISI channel, be it time-
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Figure 3.1: Respective block diagrams for BICM and TCM transmission over a discrete-time ISI channel.

varying or time-invariant, in the TCM case. These two transmission systems share striking similarities

with a serial concatenation of codes with interleavers [23, chap. 11], where the ISI channel (combined

with the mapping operation in the BICM case) acts as a pseudo inner code, whereas the outer code

is the BICM convolutional code or a TCM respectively. In the light of this analogy, it thus seems

natural to apply a turbo-decoding strategy, where equalization and decoding are performed iteratively

with an exchange of soft information. It is expected that as the SNR increases, the performance of

the iterative receiver will converge to the optimum performance of the ideal ML receiver operating

on the super-trellis which takes into account the constraints imposed by the code, interleaver and

ISI channel. Although we are still lacking formal proof of this result yet, the excellent performance

obtained by simulation in fact supports such an assumption. Since its introduction, turbo-equalization

has received increasing attention, in particular for mobile communications systems [20, 69] and in the

field of equalization for magnetic recording channels (see [196] and references therein).

At the core of the turbo-equalizer, we find Soft-Input Soft-Output (SISO) modules, i.e. devices

which accept and deliver soft decisions. We shall focus in this chapter on a particular form of turbo-

equalizer where the SISO equalizer and SISO decoder are implemented using the BCJR-MAP algo-

rithm, which is optimal in the sense of minimizing the symbol error rate (see [19] and the tutorial

exposition in appendix C). Hence, the resulting turbo-equalization scheme will be called MAP turbo-

equalizer in the following, to make the distinction between such a solution and the alternative low-

complexity approaches introduced in the next chapter. We now describe in more detail the operations

realized by the MAP turbo-equalizer.

3.2 The MAP turbo-equalizer

MAP turbo-equalization was initially proposed for BICM signals transmitted over ISI channels. How-

ever, the basic principles are fairly general, and we describe in this section the MAP turbo-equalization

scheme as it applies both to TCM and BICM. In fact, the two receivers share the same basic functions,
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namely an SISO equalizer and a SISO decoder, separated by an interleaving operation. However, they

differ in the fact that the SISO modules operate at the symbol level in the TCM case, and at the bit

level for BICM. We first define the concept of log-likelihood ratio, which will be used extensively in

the subsequent discussions.

3.2.1 Log-likelihood ratios

Let us first consider a coded bit ci
n ∈ {0,1}. The binary log-likelihood ratio (LLR, or L-value) for ci

n

is denoted L(ci
n) and defined as follows

L(ci
n) = ln

Pr(ci
n = 1)

Pr(ci
n = 0)

(3.1)

From this definition, one easily obtains that

Pr(ci
n = b) =

exp[b ·L(ci
n)]

1+ exp[L(ci
n)]

, with b = {0,1} (3.2)

The generalization of these definitions to conditional probabilities is straightforward.

Consider now a signal set S with cardinality |S| = M = 2m, and assume that the sequence of m

coded bits {c1
n, . . . ,c

m
n } is mapped onto some symbol xn = s at time n, with s ∈ S. The coded bits ci

n

take their value in {0,1} as a function of the considered symbol s and the labelling map. We define

the symbol log-likelihood ratio Ln(s) for s at time n as follows

Ln(s) = ln
Pr(xn = s)

Pr(xn = s0)
(3.3)

where s0 is some reference symbol in the signal set. One notices that we can define M different symbol

LLRs at any time n, one for each symbol in the signal set. Moreover, we always have Ln(s0) = 0. The

symbol probabilities are obtained from the symbol LLRs as follows

Pr(xn = s) = Kn × exp[Ln(s)] (3.4)

where the factor Kn is equal to Pr(xn = s0) and common to all symbol LLRs at time n.

The reference symbol s0 may be chosen arbitrary. However, it proves particularly convenient to

choose s0 such that we have ci
n = 0 for all i = 1, ...,m according to the signal labelling rule. This

convention indeed raises some interesting properties. In particular, let us assume that coded bits ci
n

are i.i.d., owing to the presence of a bit interleaver, for example. Then we have

Pr(xn = s) =
m

∏
i=1

Pr(ci
n = ℓi(s)) (3.5)
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where, according to section 2.1.1, ℓi(s) denotes the value of the ith bit which is mapped onto the

symbol s. Using (3.1), (3.3) and (3.5), we obtain the following interesting relationship between the

symbol LLRs and binary LLRs on the coded bits

Ln(s) =
m

∑
i=1

ℓi(s)×L(ci
n) , with ℓi(s) ∈ {0,1} (3.6)

Finally, the conversion from symbol LLRs to bit LLRs does not require any independence as-

sumption, and is obtained by noting that

Pr(ci
n = b) = ∑

s∈S i
b

Pr(xn = s) , with b = {0,1} (3.7)

We recall that S i
b denotes the subset of all signals s ∈ S whose label ℓi(s) has value b = {0,1} in

position i. This yields

L(ci
n) = ln

∑s∈S1

b
exp[Ln(s)]

∑s∈S0

b
exp[Ln(s)]

(3.8)

3.2.2 MAP turbo-equalization for TCM

Consider the turbo-equalization scheme for TCM as depicted in figure 3.2. As exposed in chapter

2, we recall that the transmission of m information bits per modulated symbol requires an expanded

signal set with M = 2m+1 points. In the sequel, we shall consider packet transmission of finite-length

messages {x0, . . . ,xN−1}. The corresponding sequence of N observations {yn} at the channel output

will be denoted hereafter by Y = {y0, . . . ,yN−1}. The following exposition makes use of the notations

introduced in section 2.1.1 and figure 3.1. We note that a similar derivation has been proposed in

[120], but where symbol probabilities are used instead of symbol LLRs.
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Figure 3.2: Turbo-equalization scheme for TCM.

On the basis of the observation Y and the a priori symbol LLRs La,n(s) available at its input, the
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SISO symbol equalizer internally computes the a posteriori symbol LLRs Ln(s) defined by

Ln(s) = ln
Pr(xn = s|Y,{La,n(s)})
Pr(xn = s0|Y,{La,n(s)})

(3.9)

Let us introduce the max∗ operator, defined by

max∗(x,y) = ln(ex + ey) = max(x,y)+ ln
(

1+ e−|x−y|
)

(3.10)

Application of the BCJR-MAP algorithm yields the computation procedure [24]

Ln(s) = max∗
v→v′:s

{
An−1(v)+Γn(v → v′)+Bn(v

′)
}
− max∗

v→v′:s0

{
An−1(v)+Γn(v → v′)+Bn(v

′)
}

(3.11)

where the notation v → v′ : s denotes the subset of all transitions labelled with the symbol s between

pairs of states (v,v′) in the ISI trellis at time n. The quantity Γn(v → v′) is precisely the branch metric

associated with those transitions, and reads

Γn(v → v′) = − 1
σ2

w

∣
∣
∣
∣
∣
yn −h0s−

L−1

∑
ℓ=1

hℓx̂n−ℓ(v)

∣
∣
∣
∣
∣

2

+La,n(s) (3.12)

where the L−1 symbol estimates x̂n−ℓ(v) are obtained from the knowledge of the starting state v. The

partial state metrics An(v) and Bn(v′) are computed in a recursive manner, using the relations

An(v
′) = max∗

v→v′

{
An−1(v)+Γn(v → v′)

}
+K1 (3.13)

Bn(v) = max∗
v→v′

{
Γn+1(v → v′)+Bn+1(v

′)
}

+K2 (3.14)

where K1 and K2 are suitable normalization constants satisfying

max∗
all v

{An(v)} = max∗
all v

{Bn(v)} = 0 , at any time n (3.15)

We suppose that the trellis begins in the zero-state, but is left unterminated, so that we have the

respective initial and final conditions







A0(0) = 0, A0(v) = 0 for v > 0

BN(v) = − lnM for all v
(3.16)

The SISO equalizer delivers extrinsic symbols LLRs Le,n(s), given by

Le,n(s) = Ln(s)−La,n(s) (3.17)

The set of extrinsic symbol LLRs is deinterleaved, yielding the shuffled sequence La,k(s), which is
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then sent to the SISO TCM decoder. It is interesting to note that for an ISI-free channel, the SISO

symbol equalizer reduces to a symbol soft-output demodulator, delivering the metrics required for

MAP/ML decoding of the TCM in LLR form.

The SISO TCM decoder uses the a priori information La,k(s) to evaluate in turn new a posteriori

symbols LLRs Lk(s), defined by

Lk(s) = ln
Pr(xn = s|{La,k(s)})
Pr(xn = s0|{La,k(s)})

(3.18)

The application of the BCJR-MAP algorithm yields

Lk(s) = max∗
v→v′:s

{
Ak−1(v)+Γk(v → v′)+Bk(v

′)
}
− max∗

v→v′:s0

{
Ak−1(v)+Γk(v → v′)+Bk(v

′)
}

(3.19)

where the max∗ operation is still performed over the subset of transitions v → v′ labelled with the

desired symbols, but in the TCM trellis. The partial state metrics Ak(v) and Bk(v) are recursively

computed using (3.13) and (3.14), except that the trellis is now assumed to begin and end in the

zero-state 





A0(0) = 0, A0(v) = 0 for v > 0

BN(0) = 0, BN(v) = 0 for v > 0
(3.20)

The major difference occurs with the branch metrics Γk(v → v′) which are now simply given by [24]

Γk(v → v′) = La,k(s) (3.21)

assuming that s is the symbol labelling the considered transition. The SISO decoder finally delivers

hard decisions b̂i
k on the information bits, as well as updated extrinsic LLRs on the modulated symbols

Le,k(s) = Lk(s)−La,k(s) (3.22)

These extrinsic LLRs are interleaved again, and sent back to the SISO equalizer where they are ex-

ploited as updated a priori information for a new equalization attempt at the next iteration. This

completes the description of the system in the symbol-level case.

3.2.3 MAP turbo-equalization for BICM

We now present the turbo-equalization in its most classical form, as it applies to BICM transmissions

(see figure 3.3). We recall that in contrast to the previous scheme, both the SISO equalizer and the

SISO decoder operate here at the bit-level.

Several detailed derivations of the SISO equalizer at the bit-level are available in the literature
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Figure 3.3: Turbo-equalization scheme for BICM.

(see e.g. [21]). However we find it more insightful to consider the alternative interpretation shown in

figure 3.4, which is naturally suggested by the fact that the SISO equalizer necessarily works at the

symbol-level internally.
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Figure 3.4: An alternative interpretation for the bit-level SISO equalizer.

The inner SISO symbol equalizer operates exactly in the same way as for the TCM case to compute

the a posteriori LLRs Ln(s) on the modulation symbols. However, a first operation is required at the

equalizer input, to convert the a priori LLRs La(ci
n) on the coded bits into a priori LLRs La,n(s) on

the modulated symbols. To be precise, assuming that successive coded bits are independent due to the

presence of the bit interleaver, we obtain using (3.6)

La,n(s) =
m

∑
i=1

ℓi(s)×La(c
i
n) (3.23)

Conversely, the a posteriori LLRs L(ci
n) on the coded bits are evaluated from the knowledge of the a

posteriori symbol LLRs Ln(s) delivered by the symbol equalizer using (3.8)

L(ci
n) = max∗

s∈S1

b

{Ln(s)}−max∗
s∈S0

b

{Ln(s)} (3.24)

The extrinsic LLRs Le(ci
n) are finally obtained by subtracting the a priori information relative to the

considered coded bit, yielding

Le(c
i
n) = L(ci

n)−La(c
i
n) (3.25)

The extrinsic LLRs are deinterleaved, yielding the shuffled sequence La(ci
k) which is then sent to the
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SISO convolutional decoder. Note that for an ISI-free channel, the SISO bit-level equalizer reduces

to a conventional SISO symbol demapper, delivering the metrics required for the MAP/ML decoding

of the outer convolutional code in LLR form.

On the basis of the a priori information La(ci
k), the SISO decoder computes a posteriori LLRs

L(ci
k) on the coded bits defined as follows

L(ci
k) = ln

Pr(ci
k = 1|{La(ci

k)})
Pr(ci

k = 0|{La(ci
k)})

(3.26)

Applying again the BCJR-MAP algorithm yields the computation procedure

L(ci
k) = max∗

v→v′:ci
k=1

{
Ak−1(v)+Γk(v → v′)+Bk(v

′)
}
− max∗

v→v′:ci
k=0

{
Ak−1(v)+Γk(v → v′)+Bk(v

′)
}

(3.27)

where the max∗ operation is performed over all transitions v → v′ in the convolutional code trellis

labelled with the desired value (0 or 1) for the coded bit ci
k at time k. The trellis is assumed to begin

and end in the zero-state. The partial state metrics Ak(v) and Bk(v) are computed in a recursive manner

using (3.13) and (3.14). The branch metric Γk(v → v′) admits the following expression

Γk(v → v′) =
nc

∑
i=1

ci ·La(c
i
k) (3.28)

where the coded bits ci take their value in {0,1} as a function of the considered transition. The SISO

decoder finally delivers hard decisions b̂i
k on the information message, as well as updated extrinsic

LLRs Le(ci
k) on the coded bits, given by

Le(c
i
k) = L(ci

k)−La(c
i
k) (3.29)

These extrinsic LLRs are interleaved again and sent back to the SISO equalizer for the next iteration.

3.3 Asymptotic performance bounds for MAP turbo-equalization

We establish in this section simple lower bounds on the performance of turbo-equalization for TCM

and BICM, in the limit of perfect feedback from the decoder. The latter assumption equivalently

translates into the hypothesis of ideal a priori information at the equalizer input.

These bounds are of great practical importance since, as the SNR increases, the soft decisions

delivered by the decoder tend to become more and more reliable. As a result, the turbo-equalizer

effectively converges towards these bounds, which are in fact quite intuitive, and easily suggested by

simulations. However, we are not aware of any previous formal proof of these results in the literature.
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We first consider the TCM case.

Proposition 3.1 (Asymptotic bound for TCM turbo-equalization). In the limit of perfect a priori

knowledge about the transmitted symbols, turbo-equalization for TCM approaches the performance

of MAP/ML decoding of TCM over an ISI free channel with equivalent signal-to-noise ratio SNRMFB,

independently of the ISI channel characteristics.

Proof. Consider the SISO symbol equalizer operating in the presence of perfect a priori knowledge

about the transmitted data sequence. In such conditions, the a posteriori LLR about the symbol s at

time n is given by

Ln(s) = ln
Pr(xn = s|{yk},{xk}k 6=n)

Pr(xn = s0|{yk},{xk}k 6=n)
(3.30)

Using the chain rule of conditional probabilities1, the previous expression may be equivalently rewrit-

ten

Ln(s) = ln
Pr(xn = s)

Pr(xn = s0)
︸ ︷︷ ︸

=La,n(s)

+ ln
P({xk}k 6=n|xn = s)

P({xk}k 6=n|xn = s0)
︸ ︷︷ ︸

=0

+ ln
P({yk}|{xk}k 6=n,xn = s)

P({yk}|{xk}k 6=n,xn = s0)
(3.31)

where the cancellation of the second member comes from the fact that successive coded symbols are

supposed independent owing to the presence of the symbol interleaver. We deduce that the extrinsic

LLR on the symbol s at time n admits the following expression

Le,n(s) = Ln(s)−La,n(s) = ln
P({yk}|{xk}k 6=n,xn = s)

P({yk}|{xk}k 6=n,xn = s0)
(3.32)

Assume an ISI channel model with L taps hℓ. Then, the observations yk for k < n and k ≥ L are

irrelevant to xn given the knowledge of the partial data sequence {xk}k 6=n. Under the assumption of

independent noise samples, Le,n(s) simplifies into

Le,n(s) = ln
∏

L−1
i=0 P(yn+i|xn = s,{xn+i−ℓ}ℓ=0,...,L−1;ℓ6=i)

∏
L−1
i=0 P(yn+i|xn = s0,{xn+i−ℓ}ℓ=0,...,L−1;ℓ6=i)

(3.33)

with

P(yn+i|xn = s,{xn+i−ℓ}ℓ=0,...,L−1;ℓ6=i) =
1

σ2
w

exp−
[∣

∣yn+i −his−∑ℓ6=i hℓxn+i−ℓ

∣
∣2

σ2
w

]

(3.34)

The previous expression can be rewritten in more compact form as follows

Le,n(s) =
1

σ2
w

L−1

∑
i=0

[

|yn+i −his0 − yn+i|2 −|yn+i −his− yn+i|2
]

(3.35)

1 f (x1, . . . ,xN) = f (x1) f (x2|x1) · · · f (xN |x1, . . . ,xN−1).
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where we have introduced the quantity yn+i = ∑ℓ6=i hℓxn+i−ℓ. We recall that yn is given by (see (2.2))

yn =
L−1

∑
ℓ=0

hℓxn−ℓ +wn (3.36)

It follows that yn+i − yn+i = hixn +wn+1. Inserting this expression into equation (3.35) yields

Le,n(s) =
1

σ2
w

L−1

∑
i=0

[

|hi(xn − s0)+wn+i|2 −|hi(xn − s)+wn+i|2
]

(3.37)

=
1

σ2
w

L−1

∑
i=0

[

|hi|2 (|xn − s0|2 −|xn − s|2)+2 Re
{

hi(s− s0)w
∗
n+i

}]

(3.38)

=
1

σ2
w

L−1

∑
i=0

[

|hi|2 (|s0|2 −|s|2 +2 Re{(s− s0)x
∗
n})+2 Re

{
hi(s− s0)w

∗
n+i

}]

(3.39)

Let ‖h‖2 = ∑
L−1
ℓ=0 |hℓ|2, and define

zn = ‖h‖2 xn +
L−1

∑
ℓ=0

h∗ℓwn+ℓ (3.40)

Then, Le,n(s) can be equivalently rewritten

Le,n(s) =
1

σ2
w

[

‖h‖2 (|s0|2 −|s|2)+2 Re{(s− s0)z
∗
n}

]

(3.41)

=
1

‖h‖2 σ2
w

[∣
∣
∣zn −‖h‖2 s0

∣
∣
∣

2

−
∣
∣
∣zn −‖h‖2 s

∣
∣
∣

2
]

(3.42)

= ln
P(zn|xn = s)

P(zn|xn = s0)
(3.43)

where we have identified zn with an observation at the output of an ISI free channel with gain factor

‖h‖2 and additive colored Gaussian noise with total variance ‖h‖2 σ2
w. Hence, it looks as if the equal-

izer had converted the original ISI channel into an equivalent ISI free channel with signal-to-noise

ratio SNR = SNRMFB = σ 2
x ‖h‖2 /σ 2

w, from the viewpoint of the TCM inner SISO decoder. The fi-

nal expression obtained for Le,n(s) corresponds precisely to the a priori LLRs required for MAP/ML

decoding of the TCM over this equivalent ISI free channel. This concludes the proof.

Regarding now the turbo-equalization scheme for BICM, we have the following proposition.

Proposition 3.2 (Asymptotic bound for BICM turbo-equalization). In the limit of perfect a pri-

ori knowledge about the transmitted coded bits, turbo-equalization for BICM approaches the perfor-

mance of iterative demapping and decoding with perfect feedback from the decoder (the genie receiver

of section 2.1.4) over an ISI free channel with equivalent signal-to-noise ratio SNRMFB, independently

of the ISI channel characteristics.
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Proof. The proof essentially follows along the same lines as for the TCM case. Hence, we do not

develop all the calculations, but rather highlight the main points in the derivations.

Consider the SISO bit-level equalizer operating in the presence of perfect a priori information

about the transmitted coded bits. The a posteriori LLR L(ci
n) computed at time n by the equalizer is

defined as

L(ci
n) = ln

P(ci
n = 1|{yk},{xk}k 6=n,{c j

n} j 6=i)

P(ci
n = 0|{yk},{xk}k 6=n,{c j

n} j 6=i)
(3.44)

where we have used the fact that there is a one-to-one correspondence between the set of coded bits

and the transmitted data sequence {xk}. Using again the chain rule of conditional probabilities, one

obtains the following expression for the extrinsic LLR about ci
n

Le(c
i
n) = ln

P({yk}|{xk}k 6=n,{c j
n} j 6=i,ci

n = 1)

P({yk}|{xk}k 6=n,{c j
n} j 6=i,ci

n = 0)
(3.45)

Now let s(1) and s(0) denote the two symbols in the signal set S which are perfectly defined by the

knowledge of the m−1 coded bits {c j
n} j 6=i at time n, and which differ only by the value taken by ci

n

(1 or 0). Then, Le(ci
n) can be equivalently rewritten as

Le(c
i
n) = ln

P({yk}|{xk}k 6=n,xn = s(1))

P({yk}|{xk}k 6=n,xn = s(0))
(3.46)

Exploiting the results derived in the TCM case, we finally obtain

Le(c
i
n) =

1

‖h‖2 σ2
w

[∣
∣
∣zn −‖h‖2 s(0)

∣
∣
∣

2

−
∣
∣
∣zn −‖h‖2 s(1)

∣
∣
∣

2
]

= ln
P(zn|xn = s(1))

P(zn|xn = s(0))
(3.47)

where we have introduced the quantity zn, defined as follows

zn = ‖h‖2 xn +
L−1

∑
ℓ=0

h∗ℓwn+ℓ (3.48)

Hence, it again looks as if the SISO equalizer had turned the ISI channel into an equivalent ISI free

channel with signal-to-noise ratio SNR = SNRMFB = σ 2
x ‖h‖2 /σ 2

w. Moreover, one recognizes in (3.47)

the extrinsic LLRs that would be delivered with a SISO demapper operating over this equivalent chan-

nel, in the presence of perfect a priori information about the transmitted coded bits. This corresponds

precisely to the first stage of the genie receiver for BICM-ID introduced in section 2.1.4, and thus

completes the proof.
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Discussion

The two previous propositions have important practical consequences.

First, they show that the turbo-equalization scheme is theoretically able to completely eliminate

ISI at high enough SNRs, thereby achieving the ideal matched filter bound at the equalizer’s output. In

particular, we have seen that the turbo-equalizer approaches an ideal iterative demapping and decod-

ing scheme in the BICM case. This suggests that, for BICM transmissions over frequency-selective

channels, any signal set labelling optimization is worth having a look. In particular, Gray mapping

may not be the optimum choice, depending on the desired bit-error rate and convergence threshold.

Now, let us consider the situation where the channel tap coefficients {hℓ} are time-varying inde-

pendent complex random variables with Rayleigh-distributed square magnitude. We have shown that

the turbo-equalizer ideally converts the ISI channel into an equivalent ISI free channel with average

signal-to-noise ratio

SNRMFB =
σ2

x

σ2
w

E
(

‖h‖2
)

=
σ2

x

σ2
w

L−1

∑
ℓ=0

E
(

|hℓ|2
)

(3.49)

But this is exactly the signal-to-noise ratio obtained at the output of a maximum-ratio combiner, in the

presence of L independent (and ISI free) diversity branches, with respective average signal-to-noise

ratio [23, sec. 13.4]

SNRℓ =
σ2

x

σ2
w

E
(

|hℓ|2
)

(3.50)

on each branch. Hence, we conclude that in the limit of perfect a priori information, the turbo-

equalization scheme may achieve a maximum asymptotic diversity order L at the equalizer’s output,

if the L taps have equal average power. Provided that the inner coding scheme itself provides a code

diversity of order Lc, we may thus expect the turbo-equalizer to provide an overall maximum diversity

order L×Lc, over a fully-interleaved multipath Rayleigh fading channel with taps of equal average

power, where coded symbols (or bits) face independent realizations of the channel coefficients.

As a final remark, it is interesting to note that the proofs of these bounds provide explicit sup-

port for the use of extrinsic information in iterative decoding schemes, a quantity that was initially

introduced in a somewhat heuristic manner for turbo-codes [26]. Moreover, an exact expression for

extrinsic information has been obtained in the limit of perfect a priori information. We believe that

interesting results could be obtained by applying similar arguments to parallel and serial turbo-codes.

3.4 Simulation results

In order to support the previous discussions, we now present some performance results obtained by

Monte-Carlo simulations of the MAP turbo-equalizer for the three examples of coded modulation
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Figure 3.5: BER performance of the MAP turbo-equalizer for the 8-PSK TCM scheme, with 10 iterations, over

the Proakis B channel model.

schemes introduced in section 2.1.4.

3.4.1 Performance over a time-invariant channel

We first present the performance obtained over the 3-tap severe-ISI time-invariant channel model

Proakis B, obtained from [138, chap. 10], and with impulse response [0.407,0.815,0.407]. For all

three codes, a random interleaver was used with size 8196 (coded symbols for TCM, or coded bits for

BICM), and 10 iterations were performed. 100 erroneous frames were totalized for each simulation

point.

Figure 3.5 shows the system bit-error rate (BER) of the TCM scheme for the different iterations

and as a function of the normalized signal-to-noise ratio per information bit Eb/N0 (in decibels).

We first observe that the turbo-equalizer essentially reaches the performance obtained with MAP

decoding of the TCM code over an AWGN channel for SNR values equal to or greater than 5.5 dB.

This result confirms that the MAP turbo-equalizer can effectively achieve the lower bound presented

in the previous section in practice, at sufficiently high SNRs. In addition, only 5-6 iterations are

necessary. Not shown here but worth mentioning is the fact that a significant performance gain, about

4 dB, is obtained with respect to the first iteration, where equalization does not benefit from any prior

information from the decoder.
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Figures 3.6 and 3.7 show the system BER obtained respectively with the 8-PSK and 16-QAM

BICM schemes. We observe in both cases a convergence of the turbo-equalizer toward the perfor-

mance obtained with the genie receiver of section 2.1.4 (over an AWGN channel), once the SNR

reaches a given minimum threshold (of 7.2 dB for the 8-PSK code, and 9.25 dB for the 16-QAM

code). We note by extrapolating the curves that significant performance gains are then obtained with

respect to the first iteration. This validates the second lower bound introduced in section 3.3.
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Figure 3.6: BER performance of the MAP turbo-equalizer for the 8-PSK BICM scheme, with 10 iterations,

over the Proakis B channel model.

If we finally compare the performance of the three schemes, the TCM clearly appears as the most

interesting solution for this channel model. This conclusion stems from the fact that for the BICM

schemes, the convergence only occurs at SNR values where they are outperformed by the TCM code

over an ISI-free channel.

3.4.2 Performance over a fully-interleaved multipath Rayleigh fading channel

The same transmission systems have been simulated over a discrete-time multipath Rayleigh fading

channel, consisting of two symbol-spaced taps of equal average power. We call this model EQ2. More

generally, the name EQX will in this document designate a multipath Rayleigh fading channel with X

taps of equal power, spaced T seconds apart where T is the symbol period.

In fact, a fast-fading channel was considered, characterized by a normalized Doppler bandwidth
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Figure 3.7: BER performance of the MAP turbo-equalizer for the 16-QAM BICM scheme, with 10 iterations,

over the Proakis B channel model.

BdT = 10−2, where Bd is the two-sided Doppler bandwidth. In these conditions, we found that an

interleaver size of 8196 coded symbols (or coded bits for BICM) was in fact sufficient to satisfy the

hypothesis of a memoryless channel at the receiver input. The multipath Rayleigh fading channel was

simulated according to the method described in [200]. 10 iterations were performed in each case.

The simulation results for the three coded modulation schemes are shown in figures 3.8 to 3.10.

We have also included the curves obtained in chapter 2 over the AWGN channel and the one-path

(EQ1) fully-interleaved Rayleigh channel for reference purposes. Using the technique introduced in

section 2.1.4, we measured the total diversity order Ltot at the turbo-equalizer output and obtained

Ltot = 2×2 = 4 for the TCM, Ltot = 2×4 = 8 for the 8-PSK BICM-ID, and Ltot = 2×6 = 12 for the

16-QAM BICM-ID respectively. This confirms our previous claim that on fully-interleaved multipath

Rayleigh channels with taps of equal average power, the turbo-equalizer is able to simultaneously

exploit the full diversity offered both by the multipath channel and the inner code, thereby providing

significant performance improvement over the flat-fading case.

Moreover, the following observations can be drawn from inspection of the simulation results.

• The performance gain obtained with respect to the flat-fading channel is all the more important

that the coding scheme has a low diversity order. As an illustration, we observe at a BER of

10−4 a 4 dB gain for the TCM, a 2.5 dB gain for the 8-PSK BICM-ID, and a 1.4 dB gain only
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for the 16-QAM BICM-ID.

• The best asymptotic performance is obtained with the coding schemes having the highest diver-

sity order. In particular, the performance of the 16-QAM BICM-ID at a BER of 2.10−5 over the

EQ2 channel is only 1.5 dB away from the performance over the AWGN channel.
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Figure 3.8: BER performance of the MAP turbo-equalizer for the 8-PSK TCM scheme, with 10 iterations, over

the fully-interleaved EQ2 multipath Rayleigh fading channel model.

To summarize, the code diversity order clearly plays an even more important role on fully-

interleaved multipath Rayleigh fading channels than it does for flat-fading channels, assuming turbo-

equalization at the receiver side in the former case. Hence, it should not come as a surprise that the

BICM-ID schemes outperform the TCM in this context.

3.4.3 Performance over a quasi-static multipath Rayleigh fading channel

To conclude this study, we finally simulated the coded modulation schemes over a quasi-static EQ2

multipath Rayleigh fading channel. Data blocks of 256 modulated symbols were considered, to remain

consistent with the quasi-static assumption. 10 iterations were performed in each case. The frame-

error rate for the three transmission systems is shown in figures 3.11 to 3.13. The curves obtained in

chapter 2 over a one-path (EQ1) quasi-static channel have been included for reference purposes. We

have also shown the ideal performance that could be reached over the EQ2 channel with a genie-aided

MAP equalizer, supplied with perfect feedback from the decoder (dashed lines).
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Figure 3.9: BER performance of the MAP turbo-equalizer for the 8-PSK BICM scheme, with 10 iterations,

over the fully-interleaved EQ2 multipath Rayleigh fading channel model.
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Figure 3.10: BER performance of the MAP turbo-equalizer for the 16-QAM BICM scheme, with 10 iterations,

over the fully-interleaved EQ2 multipath Rayleigh fading channel model.
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Figure 3.11: FER performance of the MAP turbo-equalizer for the 8-PSK TCM scheme, with 10 iterations,

over the quasi-static EQ2 multipath Rayleigh fading channel model.

We first notice that the three systems appear to achieve an overall diversity order of 2. In fact,

simulations at lower FER would be required to strictly confirm this assertion. In other words, the

turbo-equalizer may only benefit from the diversity offered by the multipath channel. This is con-

sistent with the observation made in section 2.1.4 that the coding schemes do not offer any diversity

gain over quasi-static channels. Moreover, the three coded modulation schemes essentially present

similar performance after 10 iterations over this channel model. In particular, the TCM offers the best

trade-off between complexity and performance since the performance of the genie-aided equalizer is

reached with only 3–4 iterations. In contrast, the performance of the two BICM-ID schemes remain

several dB away from the genie receiver over the EQ2 channel, although a net gain is observed after

4–5 iterations with respect to the conventional disjoint approach (at the first iteration).

Two conclusions should be drawn from these results. First, codes optimized for the AWGN chan-

nel also perform well on a quasi-static channel when turbo-equalization is used at the receiver side.

In addition, diversity techniques such as time-hopping or frequency-hopping, for example, are clearly

required to improve the system performance on such severe channel models.
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Figure 3.12: FER performance of the MAP turbo-equalizer for the 8-PSK BICM scheme, with 10 iterations,

over the quasi-static EQ2 multipath Rayleigh fading channel model.
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Figure 3.13: FER performance of the MAP turbo-equalizer for the 16-QAM BICM scheme, with 10 iterations,

over the quasi-static EQ2 multipath Rayleigh fading channel model.
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3.5 Convergence analysis using EXIT charts

From the simulation results exposed in the previous section, we notice that the performance of the

turbo-equalization scheme is characterized by the existence of a minimum SNR value, the conver-

gence threshold, beyond which successive iterations begin to bring improvements in the bit-error

rate. The system then progressively converges towards the lower bounds developed in section 3.3 as

the SNR increases, when a sufficient number of iterations is considered. Experience shows that the

value of the threshold greatly depends on various parameters such as the code properties, the inter-

leaver characteristics, the channel model, and the detection and decoding algorithms. It is thus of

particular importance to understand the exact impact of these parameters on the convergence of the

turbo-equalization scheme, so as to develop some general design guidelines in response.

Appropriate techniques have been recently developed to deal with such issues. An iterative de-

coding process (including turbo-equalization) can be viewed as a dynamical non-linear system with

feedback. The basic idea behind the convergence analysis techniques involves studying the evolution

of the extrinsic information messages as they evolve across the iterations, but from a probabilistic

point of view since the component SISO decoders are by nature probabilistic devices. Moreover, to

get rid of the interleaver influence and simplify the analysis, an ideal (infinite-length) interleaver is

usually assumed. The most sophisticated technique is called density evolution and was in fact first sug-

gested by Gallager in [70, p. 48]. Density evolution precisely tracks the probability density functions

(densities) of the exchanged messages from iteration to iteration. Detailed presentations of density

evolution are available in [142, 143] as well as in [136] and [184]. Albeit general and accurate in

practice, density evolution requires significant computation efforts since one has to track densities,

which are by definition multi-dimensional (theoretically infinite) quantities. Several simplified anal-

yses have thus been suggested, which essentially propose tracking a single-dimensional parameter

rather than an entire density from iteration to iteration (see e.g. [48, 54]).

In this section, we apply the EXtrinsic Information Transfer (EXIT) chart to the analysis of turbo-

equalization schemes. Introduced by ten Brink in [161], the EXIT chart measures the evolution of

mutual information across the iterative process, and constitutes a valuable and general graphical tool

for convergence analysis and design of iterative decoding systems. Motivations behind our choice

include the fact that mutual information is an accurate robust measure for predicting the convergence,

as verified in [163, 176], which possesses interesting provable properties [16].

In the sequel, we first review the basic principles of the EXIT chart method. Then, as a tutorial

introduction, we consider its application to the convergence analysis of the BICM-ID schemes ex-

posed in chapter 2. The analysis is extended to the convergence study of MAP turbo-equalization of

BICM over time-invariant channels. Finally, we examine the influence of the ISI channel and inner

convolutional code characteristics on the convergence.
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Figure 3.14: Model of an iterative decoder for a generic serially concatenated coding scheme.

For simplicity, we have restricted ourselves to bit-level iterative decoding schemes in this work,

since EXIT charts were originally introduced in this context. We nevertheless believe that the method

could be extended to the analysis of symbol-based turbo-equalization as well, using for example the

techniques proposed in [151] or [78].

3.5.1 The EXIT chart technique

Consider a generic iterative decoder model for serially concatenated coding schemes as shown in fig-

ure 3.14. For convenience, we shall restrict ourselves to BCJR-MAP SISO detectors and decoders as

exposed at the beginning of the chapter. Depending on the nature of the inner and outer SISO decoders

(labelled SISO DEC1 and SISO DEC2 respectively), such a model may hold for serially concatenated

turbo-codes, turbo-equalization (TCM or BICM), or iterative demapping and decoding (BICM-ID) as

particular examples. For each iteration, the inner decoder takes channel observations Y and a priori

LLRs LA1, and outputs extrinsic LLRs LE1 which are then passed through the bit interleaver, to be-

come a priori information A2 for the outer decoder. The latter feeds back in turn extrinsic LLRs LE2,

which are reinterleaved and become new a priori information for the inner decoder.

In essence, the EXIT chart analysis proceeds as follows. First, mutual information is used to char-

acterize the component decoders separately. We recall that mutual information between two random

variables measures the average amount of information conveyed by the knowledge of one variable

about the other, and reciprocally. Let IA1
denote the mutual information between the a priori LLRs

LA1 and the transmitted coded bits at the input of the inner decoder. Furthermore, let IE1
denote the

mutual information associated with the extrinsic LLRs LE1 at the decoder output. The action of inner

decoder may then be described by a transfer function of the form

IE1
= T1(IA1

,channel) (3.51)

where we have made explicit the fact that the output mutual information IE1
is necessarily a function

of channel-dependent parameters (signal-to-noise ratio, ISI channel model, etc.). Similarly, the action

of the outer decoder may be described by a second transfer function, depending solely on the average
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mutual information at the decoder input (the outer decoder is not connected to the channel)

IE2
= T2(IA2

) (3.52)

Such functions are called the extrinsic information transfer characteristics of the component decoders.

The EXIT chart is obtained in a second step by superposing these two characteristics in the same

graph, as shown in figure 3.15. Note that since IA1
= IE2

and IA2
= IE1

, the abscissas and ordinates of

the outer decoder transfer function have to be swapped in the EXIT chart. The exchange of extrinsic

information is then visualized as a “zig-zag" decoding trajectory in the EXIT chart. In particular, the

iterative process reaches a saturation point (or fixed point) when the two characteristics intersect, since

in this case, no innovation can be gained from either one of the component decoders. This allows the

prediction of the convergence threshold of the system, under the assumption of ideal interleaving.

➏➑➐❵➏➒➔➓→❀→➣→=
 ↔➙↕

➏➛➐➜➏➒➝➓➞✸➞➟➞=
 ↔➙➠ ➡ ➡ ➡ ↕

➏➢➏➒✸➓➞➢→➤

➏❀➏➒❀➓→✸➞➤

➥➦➥➧
➨➩➫
➭
➯ ➲ ➯ ➳✮➵✼➸ ➺ ➻

Figure 3.15: Typical diagram of an EXIT chart. The dashed lines figure the trajectory of the iterative decoding

process, assuming infinite-length interleaving.

We now give general expressions for mutual information in the binary case. We denote by C the

transmitted coded bits, and by L the corresponding (a priori or extrinsic) binary LLRs. For conve-

nience, we assume that the coded bits take their value in {−1,+1} rather than in {0,1}, according to

the mapping rule 0 7→ −1 and 1 7→ +1. Then, assuming that the transmitted code bits are i.i.d., it is

known that (see e.g. [71])

I(L,C) =
1
2 ∑

C=±1

∫ +∞

−∞

P(L|C) log2

[
P(L|C)

(1/2)[P(L|C = −1)+P(L|C = +1)]

]

dL (3.53)

For most practical channels as well as for BCJR-MAP decoders, the conditional densities P(L|C) are

symmetric with respect to 0, i.e. P(L|C = +1) = P(−L|C = −1). This yields the following simpler
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expression for the mutual information

I(L,C) = 1−
∫ +∞

−∞

P(L|C = −1) log2

[

1+
P(L|C = +1)

P(L|C = −1)

]

dL (3.54)

= 1−EL|−1

{

log2

[

1+
P(L|C = +1)

P(L|C = −1)

]}

(3.55)

Furthermore, the following inequalities are satisfied [71]

0 ≤ I(L,C) ≤ H(C) = 1 (3.56)

Mutual information of 0 means that the random variables L and C are independent. Consequently, the

knowledge of L does not bring any information about the value of C. Conversely, L perfectly identifies

C in a deterministic manner when I(L,C) = 1.

Analytical expressions for the transfer functions T1 and T2 have not been found yet, except for

some very simple codes. Consequently, these characteristics have to be evaluated numerically for

each component decoder. We now present practical methods that can be used to obtain the transfer

characteristics T1 and T2.

We begin by describing the computation of the mutual information IA in the input of the SISO

modules. From equation (3.55), we notice that the knowledge of the conditional density P(L|C =

−1) is in fact required. This is problematic since we do not have exact analytical expressions for

this density. However, experimental evidence suggests that the extrinsic LLRs exchanged across the

iterative process are well approximated by independent and identically distributed Gaussian random

variables [48, 106, 193]. Moreover, under the assumption of large interleaving, it is usual to assume

that under certain mild hypothesis about the channel model, the density of extrinsic information is

asymptotically consistent, i.e. it satisfies an exponential symmetry condition which translates into

(see [142])
P(L|C = +1)

P(L|C = −1)
= exp[L] (3.57)

Application of the consistency condition to a Gaussian density with parameters N (±µ,σ 2) given the

knowledge of a binary random variable in {±1} yields the result σ 2 = 2 |µ| (the variance is twice

the mean). Hence, the conditional density P(L|C = −1) can be conveniently modeled by a Gaussian

distribution with mean −µA and variance 2µA. The corresponding mutual information in input IA

finally reads

IA = J(µA) = 1−ELA|−1 {log2(1+ exp[LA])} (3.58)

where expectation is taken over the conditional density

P(LA|C = −1) =
1

2
√

πµA

exp−
[
(LA + µA)2

4µA

]

(3.59)
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Figure 3.16: Graphical illustration of the method used to obtain the transfer characteristics of the component

decoders in the bit-level case.

The resulting function J(µA) is easily evaluated by numerical integration. It is monotonically increas-

ing and thus reversible, with limits

lim
µA→0

J(µA) = 0, lim
µA→∞

J(µA) = 1 (3.60)

Now, to calculate the transfer function IE = T (IA,channel) in response to an input mutual informa-

tion value of IA (in combination with other channel parameters for the inner decoder), one simply has

to apply independent Gaussian random variables with parameter µA = J−1(IA) at the decoder input,

conditionally on the knowledge of the transmitted coded bits, and then measure the mutual informa-

tion IE obtained in response. By repeating the previous procedure for different values of IA, one finally

obtains an estimate of the extrinsic information characteristics T1 and T2. The method is illustrated in

figure 3.16.

In practice, IE can be accurately computed from expression (3.55), using numerical integration

techniques and an estimate of the conditional densities P(L|C) at the decoder output. The latter esti-

mates are typically from histograms. A simpler approach was however suggested in [81]. Let us again

apply the consistency condition (3.57) to expression (3.55). We obtain

IE = 1−ELE |−1 {log2(1+ exp[LE ])} (3.61)

Hence, by invoking the ergodic assumption, IE can be determined experimentally from N realizations

of (ci
n,Le(ci

n)) using the sample mean estimator and applying a correction for positive ci
n, yielding

IE ≈ 1− 1
N

N−1

∑
n=0

log2(1+ exp[−ci
nLe(c

i
n)]) (3.62)

In such a way, it is not necessary to determine the density of the output extrinsic LLRs, which consid-

erably reduces the computational cost of the analysis.
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3.5.2 EXIT chart analysis for BICM-ID

Having described the fundamentals of EXIT charts, we first apply this technique to the convergence

analysis of the two BICM-ID schemes introduced in section 2.1.4.

Figure 3.17 shows the transfer characteristics of the SISO demapper for an 8-PSK signal set (la-

belled DEM), as a function of the channel SNR and signal labelling map (Set-Partitioning, labelled

SP, or Gray labelling). We observe that the curves are almost horizontal for Gray labelling. This

confirms that Gray labelling does not benefit from the iterative process. In contrast, the mutual in-

formation in the output progressively increases for the set-partitioning labelling map, which suggests

intuitively that set-partioning may lead to better asymptotic performance than standard Gray labelling.

We mention that similar results have been observed with a 16-QAM signal set (not reported here).
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Figure 3.17: Transfer characteristics of the SISO demapper for different signal labelling maps. The character-

istics are presented for Eb/N0 values ranging from 2 dB (bottom) to 8 dB (top) in steps of 1 dB.

The EXIT charts for the 8-PSK and 16-QAM BICM-ID schemes are shown in figures 3.19 and

3.20. The demapper characteristics are presented for different values of the channel SNR. We have

also figured as dashed lines the transfer characteristics obtained with a genie-aided demapper, with

perfect feedback from the decoder. These curves are in fact horizontal, since the transfer functions

then only depend on the a priori LLR on the current coded bit, information which is subtracted at the

demapper output to produce the extrinsic LLRs.

A few definitions are in order before commenting the EXIT charts. We define a saturation point of
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the system as the intersection of the inner (the SISO demapper here) and outer decoders characteristics.

Convergence is then measured by the mutual information gap (taken at the demapper output / decoder

input) between the saturation point obtained with the genie-aided demapper, and the saturation point

reached by the iterative process at a given channel SNR value. We say that convergence occurs when

the two saturation points come close enough together that they progressively become indistinguishable

in the EXIT chart. In our context here, this is tantamount to saying that the iterative decoding scheme

has essentially reached the ideal performance obtained with a genie-aided demapper. This concept of

mutual information gap and convergence is illustrated in figure 3.18 at an SNR value Eb/N0 = 2 dB.
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Figure 3.18: Zoom of figure 3.19 at Eb/N0 = 2 dB in order to illustrate the concept of mutual information gap

with respect to the performance of the genie-aided demapper.

Inspection of the EXIT charts of figures 3.19 and 3.20 reveals that once the channel reaches a

given minimum SNR value (of about 3 dB for the 8-PSK scheme, and between 3 and 4 dB in the 16-

QAM case), a tunnel is progressively opened between the transfer characteristics of the demapper and

decoder, which allows for a progressive convergence of the iterative process towards the performance

of the genie-aided demapper. This phenomenon precisely characterizes the convergence threshold of

the system. Regarding now the simulation results presented in section 2.1.4 (figure 2.8), we obtained

convergence thresholds of 4 dB, both for the 8-PSK and 16-QAM BICM-ID schemes. These values

do not match the predictions of the EXIT chart exactly, but one has to recall that EXIT chart analysis

only holds rigorously in the presence of large interleaving.
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Figure 3.19: EXIT chart for the 8-PSK BICM-ID scheme. The demapper characteristics are presented for

Eb/N0 values ranging from 2 dB (bottom) to 8 dB (top) in steps of 1 dB. The experimental trajectory of the

iterative decoding process is also figured for Eb/N0 = 4 dB.
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Figure 3.20: EXIT chart for the 16-QAM BICM-ID scheme. The demapper characteristics are presented for

Eb/N0 values ranging from 2 dB (bottom) to 8 dB (top) in steps of 1 dB.
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In order to further verify the accuracy of the EXIT chart method, we simulated the whole iterative

decoding system for the 8-PSK BICM-ID scheme, with an interleaver size of 2.105 coded bits and at an

SNR value Eb/N0 = 4 dB, and measured the mutual information at the output of the SISO modules at

each iteration. We obtained an experimental trajectory for the iterative process that has been reported

in figure 3.19. We observe that the experimental trajectory closely follows the convergence behavior

predicted by the EXIT chart. This confirms the accuracy of the EXIT chart analysis when large

interleavers are used.

In addition to offering a pertinent graphical interpretation of the convergence behavior (obtained at

a low computational cost), the EXIT chart may also be used to predict the BER that could be obtained

under the assumption of ideal interleaving. It suffices to introduce a new transfer characteristic for

the outer SISO decoder, giving the BER as a function of the mutual information IA2 in input. Such

characteristics are shown in figure 3.21 for the convolutional codes used in the two BICM-ID schemes

considered. Then, we simply have to transfer the ordinate of the saturation point obtained in the

EXIT chart to the abscissa of the BER characteristics, and we obtain the corresponding BER. As an

illustration, consider the EXIT chart characteristic of the 8-PSK BICM-ID scheme in figure 3.19 at an

SNR value of 4 dB. The saturation point occurs for a value IA2 ≈ 0.86, which when transferred to the

graph in figure 3.21 gives us a BER value of about 10−3. This is consistent with the simulation results

of figure 2.8.
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Figure 3.21: BER characteristics for the two convolutional codes considered in the BICM schemes.
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3.5.3 EXIT chart analysis of MAP turbo-equalization for BICM

We now apply the EXIT chart technique to the analysis of MAP turbo-equalization for BICM-ID.

Specifically, we focus on the transmission scenario introduced in section 3.4.1 over the severe-ISI

Proakis B channel model. The corresponding EXIT charts obtained with the two BICM schemes over

this static channel are shown in figures 3.22 and 3.23 respectively. The transfer characteristics of the

SISO MAP equalizer (labelled by EQ) are presented for different values of the channel SNR. We have

also included the curves obtained with a genie-aided demapper over an AWGN channel for reference

purposes (dashed lines). These curves correspond to the lower bound established in section 3.3.

By inspection of the plots, we observe that convergence theoretically occurs between 6 and 7

dB for the 8-PSK BICM-ID, and around 8 dB for the 16-QAM BICM-ID. Moreover, once the con-

vergence threshold is reached, the turbo-equalizer is expected to converge quickly (i.e. with few

iterations) towards the performance of the genie-aided demapper in both situations. Interestingly, this

analysis demonstrates again the ability of the turbo-equalizer to effectively achieve in practice the

theoretical lower bounds established previously (at least under the assumption of large interleaving),

once the channel SNR is high enough. Note however that the the simulation results obtained in section

3.4.1 show that the convergence occurs in fact at SNR values about 1.0 dB higher than those predicted

by the EXIT chart. This mainly stems from the moderate interleaver size (8196 coded bits) considered

in our simulations. Finally, the system BER can be predicted quite accurately using the BER transfer

functions of figure 3.21, using the method described in the previous subsection.

On the basis of these results, it is clear that the shape of the transfer characteristics of the inner

and outer decoder has a strong influence on the convergence behavior of the iterative process. Hence,

it seems interesting to study the impact of some particular system parameters on these transfer func-

tions. More precisely, we shall now consider the influence of the channel characteristics and outer

convolutional code parameters on the convergence behavior of the turbo-equalization scheme2.

2Parts of this study were presented at the 18th GRETSI Symposium [109].
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Figure 3.22: EXIT chart for MAP turbo-equalization of the 8-PSK BICM-ID scheme over the Proakis B

channel model. The equalizer characteristics are presented for Eb/N0 values ranging from 4 dB (bottom) to 8

dB (top) in steps of 1 dB.
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Figure 3.23: EXIT chart for MAP turbo-equalization of the 16-QAM BICM-ID scheme over the Proakis B

channel model. The equalizer characteristics are presented for Eb/N0 values ranging from 5 dB (bottom) to 10

dB (top) in steps of 1 dB.
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3.5.4 Influence of the channel characteristics on the convergence

Inspecting the EXIT charts in the previous subsection, we immediately notice that as the channel SNR

increases, the transfer characteristics of the MAP equalizer are shifted upwards. Hence, the iterative

process progressively requires fewer iterations to reach the optimal performance, and the convergence

is faster. In fact, the transfer functions approach the straight line IE1 = 1 in the limit of infinite SNR.

This is intuitively satisfying since in such an ideal situation, the presence of prior information about

the transmitted message becomes irrelevant to the decision.

We now investigate the influence of the severity of the ISI channel on the equalizer transfer func-

tion. For convenience, we shall restrict ourselves to an 8-PSK signal set. The extrinsic information

transfer characteristic for the MAP equalizer has been computed for several time-invariant ISI channel

models, including

• the AWGN channel

• the Proakis B channel model

• the CRIT3 channel model, with impulse response [0.5,0.71,0.5], that was introduced in [138,

chap. 10] as a worst-case 3-taps ISI model for trellis-based equalizers

• the EQUI2 and EQUI3 models, consisting of 2 and 3 taps of equal magnitude respectively

• an almost ISI-free channel with impulse response [1.0,0.3,0.2], that we called TEST3

BER simulations of the SISO equalizer over these various ISI channels models revealed that they may

be classified as follows, in order of increasing severity

AWGN < TEST3 < EQUI2 < EQUI3 < PROAKIS B < CRIT3

The resulting transfer characteristics for the equalizer are shown in figure 3.24. These curves

were obtained at Eb/N0 = 5 dB. We observe that the more severe the channel is, the lower is the

mutual information at the equalizer output in the absence of particular prior information (IA1 = 0),

and thus the higher the convergence threshold will be. However, this also implies that the slopes of

the characteristics increase with the severity of the ISI channel. Clearly, in the neighborhood of the

convergence threshold, a transfer function with a steep slope is more likely to require fewer iterations

to reach the optimal performance than a transfer function which approaches a straight line,

To summarize, we conclude that a channel with small or moderate ISI will have a low convergence

threshold, but will also offer small improvements across the iterative process. Conversely, a channel
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Figure 3.24: Transfer characteristics of the SISO MAP equalizer for different ISI channel models, at an SNR

value Eb/N0 = 5 dB.

with severe ISI will require higher SNR values to converge, but is expected to offer significant perfor-

mance improvements with turbo-equalization once the convergence threshold is reached. We mention

that similar conclusions were obtained in [162].

3.5.5 Influence of the inner code characteristics on the convergence

We finally investigate the influence of the parameters of the outer convolutional code on the shape of

the extrinsic information characteristic of the outer SISO decoder. For the sake of conciseness, we

only consider rate Rc = 1/2 convolutional codes. However, our conclusions apply to other code rates

as well.

Figure 3.25 shows the extrinsic information transfer characteristics of the outer decoder for some

rate 1/2 maximum free distance convolutional codes with different memory values. It clearly appears

that the code memory has a strong influence on the shape of the characteristics. The two extremes are

obtained with the simple repetition code, for which IE2
= IA2

, and a convolutional code with infinite

memory respectively [163]. For the latter code, the extrinsic transfer characteristic tends to approach
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Figure 3.25: Extrinsic information transfer characteristics of the APP outer bit-level decoder for some rate 1/2

maximum free distance convolutional codes with different memories.

a step function

IE2
=







0 0 ≤ IA2
< 0.5

0.5 IA2
= 0.5

1 0.5 < IA2
≤ 1

(3.63)

As shown in figures 3.26 and 3.27 however, it appears that using different generator polynomials,

or switching from a non-recursive non-systematic (NRNS) encoder to a recursive systematic (RS)

encoder has little influence on the shape of the characteristics3. Thus, from this analysis, it becomes

evident that the code memory is the single most important parameter of the outer code, together with

the code rate, from a convergence behavior point of view.

An additional important observation is in order here. The use of convolutional codes with a high

memory is required to improve the asymptotic performance of the overall iterative scheme, at least

for BICM-ID and turbo-equalization. However, the shape of the transfer functions in figure 3.25

suggests that codes with a small memory are very likely to have a smaller convergence threshold than

codes with a high memory, regardless of the shape of the characteristic for the inner SISO decoder.

Hence, there is a trade-off to find between good asymptotic performance and early convergence of the

iterative process. Such a phenomenon was mentioned briefly in chapter 2 when discussing BICM-ID.

More generally, this may be a symptomatic dilemma of every iterative decoding scheme relying on

the Turbo principle. As an illustration, we refer the reader to the discussion about convergence issues

3These modifications may however have a significant impact on the BER performance of the system.
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versus minimum distance for turbo-codes in [25].
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Figure 3.26: Influence of the generator polynomials on the shape of extrinsic information transfer characteristic

for the APP outer bit-level decoder.
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Figure 3.27: Influence of the encoder structure (Non-Recursive Non-Systematic or Recursive Systematic) on

the shape of extrinsic information transfer characteristic for the APP outer bit-level decoder.
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3.6 Concluding remarks

This chapter was devoted to the problem of combining equalization and decoding in an efficient man-

ner at the receiver side, in the presence of interleaving. Traditional systems usually address this issue

by performing one-time equalization and decoding. However, such a strategy is sub-optimal from a

system performance point of view. Turbo-equalization offers an alternative approach, where an itera-

tive exchange of soft information is established between the equalizer and the decoder. It is expected

that as the SNR increases, the performance of the overall iterative scheme will converge towards the

performance of an ideal receiver taking simultaneously into account the constraints imposed by the

coding scheme, the interleaver and the ISI channel.

The turbo-equalization scheme has been introduced both for TCM and BICM transmissions.

Lower-bounds on the performance of the turbo-equalizer have been established assuming large enough

interleaving and ideal feedback from the decoder. On the basis of these assumptions, we have

proved that the turbo-equalizer essentially converts the ISI channel into an equivalent ISI-free channel,

thereby achieving the ideal matched-filter bound. For the particular case of a fully-interleaved multi-

path Rayleigh fading channel, we have shown that the turbo-equalizer is able to exploit the diversity

offered both by the multipath propagation and the inner coding scheme.

Simulation results have been presented for different transmission scenarios. We have verified that

the turbo-equalization scheme provides significant performance gains over the conventional approach,

and effectively reaches in practice the lower bounds established previously at high enough SNR. In

order to gain more insight into the convergence behavior of the iterative process, the EXIT chart tool

has been introduced and applied to the analysis of the turbo-equalization scheme. We have examined

the influence of the channel and outer convolutional code characteristics, and observed in particular

that there exists a trade-off to find between good asymptotic performance and an early convergence of

the turbo-equalization process.

In view of these remarks, turbo-equalization may appear as an attractive receiver in the context

of bandwidth-efficient transmissions over ISI channels. However, it was assumed in this chapter

that both the equalizer and decoder are implemented using the BJCR-MAP algorithm. While this

algorithm is optimal in the sense of minimizing the symbol error probability, its complexity becomes

rapidly untractable as the number of channel taps increases, especially when high-order modulations

are considered (which is typical of bandwidth-efficient transmission schemes). Hence, the desire to

transmit at higher data-rates over ISI channels calls for the introduction of reduced-complexity turbo-

equalization schemes. This is the subject of the next chapter.



Chapter 4

Low-complexity efficient MMSE

Turbo-Equalizers

The SISO equalizers presented in the previous chapter have a computational complexity which in-

creases exponentially as a function of the dimension of the signal set and the length of the discrete-

time channel impulse response. This precludes their practical use in broadband wireless transmission

systems, where multilevel signalling is usually required and where long-delay spread ISI channels

may be encountered. Research efforts have thus been devoted to the design of reduced-complexity

SISO equalizers conserving performance as close as possible to the optimal BCJR-MAP equalizer, in

view of their inclusion in a turbo-equalization scheme.

The proposed solutions usually fall into two main classes, whether they rely on reduced-states

trellis-based algorithms, or filtering-based equalizers. The two approaches essentially explore the

issue of accommodating classical equalization structures, as exposed in chapter 2, with the support of

reliability information, i.e. soft inputs and soft outputs. Among the class of trellis-based equalizers,

we mention the notable contributions of Penther [135], Berthet and Visoz [28, 29, 185], Colavolpe et

al [43], and Fragouli et al [67], who each extended different reduced-complexity MLSD algorithms

to the SISO case. We shall however be concerned in this chapter with the alternative solution offered

by filtering-based equalizers, optimized according the minimum-mean square error criterion.

Glavieux et al were the first to propose the use of MMSE equalizers in a turbo-equalization scheme

[75, 101, 102]. They considered an MMSE interference cancellation structure supplied with soft

estimates on the transmitted data computed from the soft decisions delivered by the decoder. The

equalizer coefficients were updated in adaptive way using the standard least-mean square (LMS)

algorithm. Interestingly, it was observed that this adaptive configuration in fact approached a classical

MMSE linear equalizer at the first iteration, and then progressively converged in an adaptive manner

towards an ideal MMSE interference canceller as the number of iterations and the SNR increased,

77
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with large enough interleavers. Adaptive MMSE turbo-equalization has been extensively studied by

Langlais in [99]. In particular, it has been successfully applied to High-Frequency (HF) transmissions

over severe-ISI ionospheric channels (see also [100]). An improved realization of the adaptive turbo-

equalizer was recently proposed in [88] where a blind equalizer is used at the first iteration in order to

improve the spectral efficiency of the transmission by suppressing the need for a training sequence.

A significant breakthrough occurred in the field with the work of Tüchler et al. Building upon

previous work of Wang and Poor [189] (see also [141]), Tüchler obtained a closed-form expression

for a time-varying MMSE linear equalizer where the a priori knowledge available from the decoder is

explicitly taken into account into the calculation of the filter coefficients [172, 174, 175]. In particular,

Tüchler formally proved that the resulting equalizer was respectively equivalent to a classical MMSE

linear equalizer in the absence of particular knowledge about the transmitted symbols, and to an ideal

MMSE interference canceller in the presence of perfect a priori information. This equalizer was

successfully integrated in a turbo-equalizer in [175]. The extension to higher-level signal sets was

studied in more details by Dejonghe and Vandendorpe in [45] and [46].

Tüchler restricted his attention to finite-length equalizers. Capitalizing on his results and on pre-

vious work from Chan and Wornell [35, 36], Laot et al obtained an MMSE interference canceller

in infinite-length form, termed MMSE IC-LE1 [103], which presents a self-reconfigurable structure

switching progressively from a classical MMSE linear equalizer to an ideal MMSE interference can-

celler as the reliability of the data estimates increases. Interestingly, it was found later that under

finite-length realization constraints, the proposed equalizer in fact reduces to the low-complexity ap-

proximate implementation of the previous time-varying equalizer, that was suggested in a heuristic

manner by Tüchler in [175, section III.B]. Our approach has, nonetheless, the merit of providing a

rigorous derivation for this solution.

As we shall see in the sequel, these equalizers generally achieve good performance, sometimes

falling very close to the optimum BCJR-MAP equalizer. Moreover, they maintain a reasonable com-

plexity, growing almost independently of the dimension of the signal set and linearly with the length

of the channel impulse response. Finally, they lend themselves readily to an adaptive implementation

in order to track eventual channel variations. Hence, this class of equalizers constitutes an attractive

candidate for broadband transmission over long-delay spread channels, especially when spectrally-

efficient channel coding schemes are considered at the transmitter side.

This chapter is organized as follows. We first examine the general structure shared by the SISO

MMSE equalizers considered in this dissertation. Then, we review the time-varying finite-length

MMSE equalizer proposed by Tüchler, as well as its low-complexity approximate implementation.

Building upon these results but considering the problem from a different perspective, we introduce

the MMSE IC-LE which constitutes our major contribution in this work. This equalizer is derived

1The acronym IC-LE stands for Interference Canceller - Linear Equalizer.
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Figure 4.1: Block diagram of a generic SISO MMSE equalizer.

both in infinite-length and finite-length form. The equivalence of the latter with the above-mentioned

time-invariant equalizer is established. A low-complexity method for computing the equalizer coef-

ficients is suggested and analyzed. We briefly examine the asymptotic performance obtained with

MMSE turbo-equalization schemes, and show that they achieve the same lower bounds as their MAP

counterpart under the assumption of perfect a priori information if the inner MMSE equalizer is prop-

erly designed. Several simulation results are presented over different transmission scenarios. It is

shown that the MMSE IC-LE realizes an interesting tradeoff between complexity and performance

over long delay spread channels with low to moderate ISI. Finally, we derive the frequency-domain

MMSE IC-LE turbo-equalizer and take a close look at the complexity savings that may result in

comparison with a time-domain turbo-equalizer, over channels with very long impulse responses.

4.1 The general structure of SISO MMSE equalizers

The general structure shared by the SISO MMSE equalizers considered in this thesis is depicted in

figure 4.1.

On the basis of the a priori symbols LLRs (for TCM) or bits LLRs (for BICM) available at its

input, a soft symbol mapper first computes soft symbol estimates xn on the transmitted data sequence,

as well as a reliability measure denoted υ2
n for each of these estimates. These quantities are sent to

an MMSE equalizer, which exploits this a priori information together with the channel observations

yn to produce an estimate zn of a transmitted symbol xn−∆, assuming that the equalizer introduces
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an overall restitution delay ∆. Finally, given the knowledge of the equalizer characteristics, a SISO

demapper calculates updated extrinsic LLRs from the equalized sample zn. Note that for the particular

case of BICM-ID with non-binary modulation, the a priori LLRs La(ci
n) on the coded bits are usually

required in the demapping process, as shown by the dashed line in figure 4.1.

This structure is intuitively satisfying since, over an AWGN channel, it is well known that MMSE

equalization reduces to a multiplication of the received observation by a constant factor (the so-called

MMSE bias). Then, the overall SISO equalizer of figure 4.1 takes the form of a soft demodulator in

the symbol-level case, or a SISO symbol demapper in the bit-level case respectively. This is consistent

with the behavior observed in chapter 3 with BJCR-MAP equalizers.

Before discussing the realization of the inner MMSE equalizer, which is the subject of the next

two sections, it is instructive to describe in more detail the calculations realized by the soft symbol

mapper and the SISO demapper respectively.

4.1.1 The soft symbol mapper

The role of the soft symbol mapper is twofold: computing the soft estimates xn on the basis of the prior

LLRs available in the input, and providing a measure of the reliability of these estimates, information

that we shall later exploit to derive the optimum equalizer coefficients.

Let us denote by La,n the set of (symbol or bit) a priori LLRs relative to the transmitted symbol

xn at time n. Then, the soft estimate xn is given by the expectation of xn conditioned to La,n, viz.

xn = E (xn|La,n) (4.1)

This expression is evaluated in practice using a priori symbol probabilities Pa,n(s) computed from the

prior LLRs. In the symbol-level case, these prior probabilities are directly obtained from the prior

symbol LLRs delivered by the decoder at the previous iteration using relation (3.3). In the bit-level

case, they are computed on the basis of the a priori LLRs La(ci
n) on the coded bits using expressions

(3.5) and (3.2). The data estimate xn is finally obtained as

xn = ∑
s∈S

s×Pa,n(s) (4.2)

This estimator has a number of valuable properties that we shall exploit in the derivation of the

MMSE IC-LE in section 4.3. For the moment, it suffices to mention that this choice minimizes the

mean-square error between xn and xn [150], and is particularly consistent with the definition of a

soft estimator. Under the common assumption of i.i.d transmitted symbols, we indeed have xn = 0.

Conversely, for perfect prior information, xn identifies xn in a deterministic manner so that xn → xn.
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Regarding now the reliability measure υ2
n , it is calculated as the variance of xn conditioned to

La,n, and reads

υ2
n = E

(

|xn − xn|2 |La,n

)

= ∑
s∈S

|s|2 ×Pa,n(s)−|xn|2 (4.3)

Note that this definition conforms to the requirements of a reliability measure in the sense that we

have υ2
n → 0 in the limit of perfect a priori information about xn, and υ2

n = σ 2
x under the general but

not really informative assumption of i.i.d. transmitted symbols.

Motivations behind these formulations of xn and υ2
n should become clearer as we derive the form

of the different equalizers in sections 4.2 and 4.3. We now turn our attention to the operations realized

by the SISO demapper.

4.1.2 The SISO symbol demapper

The SISO symbol demapper has to compute extrinsic LLRs on the transmitted symbols or coded bits

on the basis of the data estimates delivered by the equalizer. One can show that for filtering-based

equalizers, assuming a restitution delay ∆, the equalized sample zn delivered at time n can always be

written as a sum of two terms

zn = µnxn−∆ +ηn (4.4)

where the first quantity denotes the desired signal, µn being a bias term introduced by the equalizer,

and where ηn is a zero-mean additive interference term encompassing filtered noise and residual ISI at

the equalizer output, which is independent of the data sample xn at time n. The SISO demapping mod-

ule operates by assuming that the perturbation ηn follows a (usually complex) Gaussian distribution,

with parameters N (0,ν2
n ) at time n. This is tantamount to assuming that the equalizer has turned the

ISI channel into an equivalent AWGN channel2. As we shall see later in this chapter, the parameters

(µn,ν
2
n ) are easily determined from the knowledge of the equalizer filter coefficients.

On the basis of the equivalent AWGN channel assumption at the equalizer output, the a posteriori

probability of having transmitted symbol s at time n conditioned to the observation zn reads

P(xn = s|zn) ∝ P(zn|xn = s)Pa,n(s) (4.5)

From the definition of the extrinsic probability relative to the symbol s at time n, we obtain

Pe,n(s) =
P(xn = s|zn)

Pa,n(s)
∝ P(zn|xn = s) (4.6)

2We recall that such an assumption only rigorously holds on ISI channels in the presence of an ideal MMSE interference

canceller with perfect a priori knowledge about the transmitted symbols. However, it offers good results in practice.
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where the conditional probability P(zn|xn = s) is given by

P(zn|xn = s) =
1

πν2
n

exp

[

−|zn −µns|2
ν2

n

]

(4.7)

In the symbol-level case (e.g. for TCM), the extrinsic symbol LLRs follow from a direct application

of relation (3.3) once the symbol extrinsic probabilities have been evaluated. An additional step is

required in the bit-level case, where we have to convert the symbol extrinsic probabilities into extrinsic

LLRs on the coded bits. The a posteriori LLR on a coded bit ci
n is defined by

L(ci
n) = ln

∑s:ci
n=1 P(zn|xn = s)Pa,n(s)

∑s:ci
n=0 P(zn|xn = s)Pa,n(s)

= ln
∑s:ci

n=1 Pe,n(s)∏
m
j=1 Pa(c

j
n)

∑s:ci
n=0 Pe,n(s)∏

m
j=1 Pa(c

j
n)

(4.8)

Consequently, the extrinsic LLR on ci
n is finally given by

Le(c
i
n) = ln

∑s:ci
n=1 Pe,n(s)∏

m
j=1, j 6=i Pa(c

j
n)

∑s:ci
n=0 Pe,n(s)∏

m
j=1, j 6=i Pa(c

j
n)

= L(ci
n)−La(c

i
n) (4.9)

where we have used definition (3.2) to obtain the last equality.

4.2 Finite-length MMSE equalization with a priori information

In this section, we review the time-varying finite-length MMSE equalizer proposed by Tüchler, as

well as its low-complexity time-invariant approximation. Our exposition, however, differs from the

one originally adopted by Tüchler. Specifically, building upon the presentation of similar receivers

in [53] and [153], the equalizers are derived here in the general framework of MMSE interference

cancellation. This yields a rigorous formulation for the equalizer coefficients, and also provides a

theoretical justification for the definition of the quantities xn and υ2
n as introduced previously.

4.2.1 Preliminary notations and definitions

Our derivation is based on the following vector model for data transmission over an ISI channel with

L taps (see section 2.2.4)

yn = Hxn +wn (4.10)

where the vectors yn, xn and wn have respective sizes N ×1,J×1 and N ×1, and where H is an N ×J

channel convolution matrix, with J , N + L−1. We shall be interested in the sequel in isolating the

contribution of a particular data symbol xn−∆. In this case, it is convenient to modify the previous
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Figure 4.2: Block diagram of a finite-length MMSE interference canceller.

expression for yn as follows

yn = h∆ xn−∆ +Hx̃n +wn (4.11)

where h∆ denotes column ∆ of matrix H, and where x̃n is the vector xn whose component ∆ has been

set to zero, viz.

x̃n = xn − xn−∆ e∆ (4.12)

e∆ being the unit vector having a 1 in position ∆.

We now introduce a few definitions that will play an important role in the following discussions.

We denoted in section 4.1.1 by La,n the set of a priori LLRs (on symbols or coded bits) relative to the

transmitted symbol xn at time n. Similarly, we now define by La the set of all a priori LLRs available

at the SISO equalizer input. Finally, we denote by La,[n−∆] the set of all a priori LLRs available in

the input, with the exception of the LLRs relative to the symbol xn−∆. Formally, we can write

La,[n−∆] = La \La,n−∆ (4.13)

The reader is recommended to become familiar with these definitions since they will appear on several

occasions in this chapter as well as in the derivations of appendix A.

4.2.2 The time-varying solution

Consider a general finite-length interference cancellation structure as in figure 4.2. Without loss of

generality, we assume that the feedforward filter coefficients vector pn has size N, and is allowed to

change with time, hence the subscript n. Assuming that the feedforward filter introduces a restitution

delay ∆, the filtered sample z̃n at time n is an estimate of the data symbol xn−∆ transmitted at time

n−∆. Using (4.12), we may decompose the expression of z̃n as a sum of three terms

z̃n = pT
n yn = pT

n h∆ xn−∆
︸ ︷︷ ︸

µn xn−∆

+pT
n Hx̃n

︸ ︷︷ ︸

in

+pTwn
︸ ︷︷ ︸

ζn

(4.14)
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The first quantity is the desired signal, up to a time-varying bias factor µn. The second quantity in is

the residual interference at the filter output. The third term ζn is a filtered noise sample. On the basis

of some kind of estimate xn on the transmitted data, the feedback filter qn then aims at reconstructing

an estimate of the residual interference în, which is then subtracted from z̃n to obtain an improved

estimate zn of the data symbol xn−∆, namely

zn = z̃n − în (4.15)

The standard MMSE equalization problem then involves finding the optimum values for the feed-

forward filter pn and the interference estimate in which minimize the error signal zn − xn−∆ in the

mean-square error sense.

In fact, in the presence of a priori information about the transmitted data, in LLR form for in-

stance, we can do better. The philosophy is the following: just as we use a priori probabilities derived

from extrinsic LLRs to improve detection/decoding with the BCJR-MAP algorithm, we may take

advantage of these a priori probabilities to improve equalization structures relying on the MMSE cri-

terion as well. Hence, we propose here to jointly optimize the feedforward filter coefficients and the

interference estimate so as to minimize the mean-square error between the data symbol xn−∆ and its

estimate zn, conditioned to the set La,[n−∆] of all a priori LLRs available in the input which are not

related to the current symbol of interest xn−∆. The omission of the LLRs relative to xn−∆ is motivated

by the desire to conform to the so-called Turbo Principle, which essentially states that any a priori

information used to process a given symbol should not be propagated to subsequent decoding stages

[80]. This optimization problem may thus be formally stated as follows

(pn, in) = arg min
(pn,in)

E
(

|zn − xn−∆|2 |La,[n−∆]

)

(4.16)

The solution is given in appendix A.1, and the results are summarized in table 4.1 below. ε2
n denotes

the (conditional) minimum mean-square error at the equalizer output at time n.

We first observe that the optimum interference estimate in has the form (see appendix A.1)

in = qT
n E

(
xn|La,[n−∆]

)
(4.17)

where qn is the coefficient vector for the feedback filter whose expression is given in table 4.1. Note

that this filter has been constructed so that the central coefficient qn,∆ is zero, as required for inter-

ference cancellation. As mentioned in the appendix, we can safely assume that the a priori LLRs

relative to different data symbols xn are independent, owing to the presence of interleavers in a turbo-

equalization scheme. Then, from the expression of the optimum interference estimate, one obtains
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Parameters Dimensions

Cxx,n = diag
{

υ2
n , . . . ,υ2

n−J+1

}
J× J real matrix

Sn = HCxx,nHH +σ 2
w I N ×N complex matrix

p̃∗
n = σ 2

x S−1
n h∆ N ×1 complex vector

µ̃n = p̃T
n h∆ real scalar

λn = σ 2
x /(σ 2

x +(σ 2
x −υ2

n−∆
)µ̃n) real scalar

pn = λn p̃n N ×1 complex vector
µn = pT

n h∆ = λn µ̃n real scalar
qn = HTpn −µne∆ J×1 complex vector
ν2

n = σ 2
x µn(1−µn) real scalar

ε2
n = σ 2

x (1−µn) real scalar

Table 4.1: Parameters for the time-varying finite-length MMSE equalizer with a priori information.

that the optimum data estimates xn are in fact given by

xn = E (xn|La,n) (4.18)

This is precisely the form that was presented without proof in subsection 4.1.1, but it finds here a rig-

orous justification. Similarly, we note from table 4.1 that the computation of the optimum feedforward

filter pn makes use of the reliability measures υ2
n as defined in subsection 4.1.1.

In order to gain more insight into the behavior of this equalizer, it is instructive to study the limiting

forms obtained under the assumption of uniform and perfect prior knowledge about the transmitted

symbols respectively. Assuming i.i.d. transmitted symbols, as we usually do at the first iteration in a

turbo-equalization process, we have xn = 0 and υ2
n = σ 2

x . In this case, the feedback branch is of no

use and can be safely ignored. Then, the optimum feedforward filter becomes time-invariant and has

the following expression

p∗
n = σ 2

x

[
σ2

x HHH +σ 2
w I

]
h∆ (4.19)

We recognize here the form of a classical finite-length MMSE linear equalizer, as presented in chapter

2, section 2.2.5. Conversely, under the assumption of perfect a priori knowledge about the data

symbols xn, we have xn → xn and υ2
n → 0. It follows from table 4.1 that in this case,

pn −→
σ2

x

σ2
x ‖h‖2 +σ 2

w

h∗
∆ , with ‖h‖2

, hH
∆ h∆ (4.20)

qn −→ HTp− σ2
x ‖h‖2

σ2
x ‖h‖2 +σ 2

w

e∆ (4.21)

Again, we observe that the optimum filters become time-invariant, and we recognize the form of an

ideal finite-length MMSE interference canceller supplied with perfect estimates about the transmitted
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data (see chapter 2, section 2.2.7). To summarize, this equalizer adapts its equalization strategy as a

function of the reliability of the data estimates xn, on a per-symbol basis.

When discussing MMSE interference cancellation in chapter 2, we showed that the resulting

equalizer could be realized in two different ways. In the classical structure, the interference is sub-

tracted at the output of the feedforward filter, as shown in figure 4.2 for instance. However there is

another option which involves reconstructing the ISI contribution and subtracting it from the channel

observation, in front of the feedforward filter. This alternative structure is shown in figure 4.3 and can

be identified with the equalization scheme originally proposed by Tüchler. The equivalence between

the two structures is straightforward to establish. Note, however, that the equalizer of figure 4.3 re-

quires fewer coefficients for the cancellation process (L instead of J = L + M − 1), and thus may be

preferred for a practical implementation.

❑ ▲ ▼ ▲

◆ ▲

❖✎P

◗☎❘ ❙ ❚ ❚ ❯ ❱
❲ ❙ ❳ ❨ ❩ ❬

❭

❪ ❯ ❯ ❫ ❴ ❵ ❨ ❛✢❙ ❨ ❫❪ ❩ ❱ ❳ ❯ ❨ ❜ ▲✤▲◆
−∆


Figure 4.3: Equivalent block diagram of the finite-length MMSE equalizer with a priori information.

A discussion about the complexity of implementation is finally in order here. The computation of

the equalizer coefficients is a computationally demanding task, since it requires the inversion of the

N ×N matrix Sn for every symbol. Direct matrix inversion is an O(N3) process in the general case3.

However, noting the time coherence of the matrix S−1
n , Tüchler developed an efficient time-recursive

method to compute S−1
n from S−1

n−1, thereby reducing the computational load to O(N2 +L2) operations

per symbol [172, 175]. While this achievement may offer an appreciable speed gain over standard

matrix inversion, this equalizer remains merely of theoretical interest at the present date, in view of

the current hardware/software capabitilities. For this reason, several approximate implementations

with a much lower computational cost were suggested in [174, 175], and we shall now examine one

of these solutions that we find particularly attractive.

3We refer the interested reader to appendix B for a discussion about the meaning of the O(·) notation.
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4.2.3 A time-invariant approximation

Clearly, the key issue in reducing the complexity of the previous approach involves devising a time-

invariant equalizer, whose coefficients need only be computed once per processed data block. In

particular, Tüchler suggested in [175] computing the time average υ2 over the set of conditional

variances {υ2
n}

υ2 =
1

NS

NS−1

∑
n=0

υ2
n (NS: number of symbols in a data block) (4.22)

and then substituting the time-varying covariance matrix Cxx,n in the calculation of the optimum filters

with the time-invariant average covariance matrix Cxx, defined by

Cxx = υ2I (4.23)

This yields a time-invariant equalizer, whose parameters are summarized in table 4.2. Again, the

quantity ε2 denotes the minimum mean-square error at the equalizer output.

Parameters Dimensions

Cxx = υ2 I J× J real matrix
S = HCxxHH +σ 2

w I N ×N complex matrix
p̃∗ = σ 2

x S−1h∆ N ×1 complex vector
µ̃ = p̃Th∆ real scalar
λ = σ 2

x /(σ 2
x +(σ 2

x −υ2)µ̃) real scalar
p = λ p̃ N ×1 complex vector
µ = pTh∆ = λ µ̃ real scalar
q = HTp−µe∆ J×1 complex vector
ν2 = σ 2

x µ(1−µ) real scalar
ε2 = σ 2

x (1−µ) real scalar

Table 4.2: Parameters for the time-invariant finite-length MMSE equalizer with a priori information.

This solution may be viewed as an average realization of the previous time-varying equalizer.

Consequently, the equalization strategy is adapted here on a per data block basis rather than for every

processed symbol, and the resulting equalizer is thus naturally expected to offer lower performance.

How much exactly is lost will be examined by simulation in section 4.5. This approximate solution

features, nonetheless, a number of attractive properties.

First, it is straightforward to verify from the parameters in table 4.2 that this time-invariant ap-

proximation has the same limiting forms as the time-varying solution in the presence of uniform and

perfect prior knowledge about the transmitted symbols respectively. The last observation implies in
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particular that both equalizers are expected to offer the same asymptotic performance when integrated

in a turbo-equalization scheme, as the SNR increases. In addition, this time-invariant equalizer is par-

ticularly well suited for a practical implementation from a complexity point of view. Only one matrix

inversion is in fact required per data block. In addition, for symbol-spaced equalizers and transmis-

sions over time-invariant, quasi-static or block-fading channels, the matrix H is Toeplitz. In this case,

S is also Toeplitz and its inversion can be carried out using computationally efficient methods such

as the Levinson-Durbin algorithm [76] in O(N2) operations. In fact, computing the optimum coeffi-

cients for this equalizer should not require more operations than computing the optimum settings for

a classical MMSE linear or decision-feedback equalizer.

We conclude this exposition by mentioning that like for the time-varying solution, this equalizer

can be implemented in practice using either the structure in figure 4.2 or the one in figure 4.3.

4.3 The MMSE IC-LE

In this section, we introduce a novel form of MMSE equalizer, called the MMSE IC-LE, that was

inspired by the respective works of Laot et al [102], Tüchler [175], and Chan and Wornell [36].

In contrast with the approach adopted in section 4.2, we take here a different look at the problem

of designing MMSE equalizers in the presence of a priori information. Specifically, we start from

a classical MMSE interference cancellation structure, but where we do explicitly account for the

fact that the supplied data estimates may not be perfect. In other words, we provide the interference

canceller with some form of a priori knowledge about the reliability of the data estimates, information

that is in fact captured by the variance of these estimates. We obtain a time-invariant equalizer, which

can be derived both in infinite-length form, as well as under finite-length realization constraints.

The MMSE IC-LE shares striking similarities with the equalizer proposed by Tüchler. In par-

ticular, it also presents a self-reconfigurable structure, which switches progressively from a classical

MMSE linear equalizer to an ideal MMSE interference canceller as the reliability of the soft estimates

increases. This analogy culminates with the derivation of the finite-length MMSE IC-LE, which is

shown to be equivalent to the time-invariant approximation introduced in section 4.2.3. However, this

equalizer is given here a rigorous definition, on the basis of adequate assumptions about the statistics

of the data estimates.

We begin by examining the statistical properties of the sequence of soft data estimates delivered to

the interference canceller. Then, we derive the MMSE IC-LE both in infinite-length and finite-length

form. In the latter case, the equivalence with the equalizer of section 4.2.3 is established. Finally, we

expose a low-complexity approximate method for computing the equalizer coefficients, which relies

on the Fast Fourier Transform.
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4.3.1 Statistical properties of the soft data estimates

We consider an MMSE interference canceller supplied with soft data estimates xn that are computed

as described in subsection 4.1.1, viz.

xn = E (xn|La,n) (4.24)

where we recall that the notation La,n refers to the set of a priori LLRs that pertain to the data

symbol xn at time n. Derivation of the optimum filters for the MMSE interference canceller requires

the knowledge of both the auto-correlation Rxx,k of the sequence {xn} and the cross-correlation Rxx,k

between the sequences {xn} and {xn}. We shall now show how to model these quantities from the

statistical properties of xn.

Since xn is defined as the MMSE estimate of the random variable xn given the observation of the

set of random variables La,n, the following equalities hold

E (xn) = E (E (xn|La,n)) = E(xn) (4.25)

E (xnx∗n) = E (xnx∗n) = E
(

|xn|2
)

(4.26)

We refer the reader to [150, chap. 2] or [93, app. 3.A] for detailed proofs of these very general results.

We suppose in the sequel that the transmitted symbols xn have zero mean and are uncorrelated, a valid

model for many practical transmission systems. Then, it follows from the previous equalities that

E (xn) = 0 (4.27)

E (xnx∗n) = E
(

|xn|2
)

= σ 2
x (4.28)

where σ 2
x denotes the variance of the data estimates xn. Some remarks are in order here. Assuming

uniform prior knowledge about the transmitted data symbols, we have seen in section 4.1.1 that the

soft estimates xn are identically zero. Clearly then, we have E (xnx∗n) = 0 and thus σ 2
x = 0. In contrast,

assuming that xn is a perfect estimate of xn, we observe from property (4.28) that σ 2
x becomes equal to

the variance σ 2
x of the transmitted data (just substitute xn with xn in the equation to obtain this result).

In other words, the variance σ 2
x of the soft data estimates is an indicator of the reliability of these

estimates. Finally, owing to the presence of an interleaver in a turbo-equalization scheme, it seems

reasonable to suppose that the data estimates are uncorrelated, so that we obtain the following model

for the auto- and cross-correlation functions

Rxx,k = E
(
xnx∗n−k

)
= E

(
xnx∗n−k

)
= Rxx,k = σ 2

x δk (4.29)

We now describe two methods to estimate σ 2
x in practice.

Since the data estimates xn have zero mean, their variance σ 2
x can be calculated on a per data block
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basis using the sample mean estimator

σ2
x ≈ 1

NS

NS−1

∑
n=0

|xn|2 (NS: number of symbols in a data block) (4.30)

There is however another solution which involves computing σ 2
x from the time average υ2 of the

conditional variances υ2
n delivered by the soft symbol mapper, a quantity that was introduced in section

4.2.3. In fact, this second method is suggested by noting that the variance σ 2
x of the data estimates is

theoretically related to the expected value E
(
υ2

n

)
of the quantities υ2

n as follows

E
(
υ2

n

)
= E

(

E
(

|xn − xn|2 |La,n

))

(4.31)

= E
(

E
(

|xn|2 |La,n

))

−E
(

|xn|2
)

(4.32)

= E
(

|xn|2
)

−E
(

|xn|2
)

(4.33)

= σ 2
x −σ 2

x (4.34)

Since υ2 is by definition an estimate of E
(
υ2

n

)
, we obtain the approximate equality

σ2
x ≈ σ 2

x −υ2 (4.35)

This expression will be used later to prove the equivalence between the finite-length MMSE IC-LE

and the time-invariant equalizer of section 4.2.3. We considered the two solutions (4.30) and (4.35)

for estimating σ 2
x in our simulations and found that they perform nearly equally well. Method (4.30)

should be preferred in a practical implementation since it requires fewer computations.

4.3.2 The infinite-length MMSE IC-LE

Consider now an infinite-length MMSE interference cancellation structure as shown in chapter 2,

figure 2.18. We propose to determine the form of the optimum feedforward filter P(ω) and feedback

filter Q(ω) which minimize the mean-square error between the data symbol xn and its estimate zn, on

the basis of the correlation properties of the soft data estimates established in the previous subsection.

This optimization problem can be stated formally as follows

(P(ω),Q(ω)) = arg min
(P(ω),Q(ω))

E
(

|zn − xn|2
)

(4.36)

where we impose the condition q0 = 0, q0 being the reference tap of the feedback filter, since Q(ω)

aims only at cancelling the residual ISI at the output of the feedforward filter. This condition further-

more conforms to the Turbo Principle. This optimization problem is solved in appendix A.2, and we
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obtain

P(ω) = λ
σ2

x H∗(ω)

(σ 2
x −σ 2

x ) |H(ω)|2 +σ 2
w

(4.37)

Q(ω) = H(ω)P(ω)−µ (4.38)

where we have introduced the following scalar parameters

µ̃ =
1

2π

∫ +π

−π

σ2
x |H(ω)|2

(σ 2
x −σ 2

x ) |H(ω)|2 +σ 2
w

dω (4.39)

λ =
σ2

x

1+ µ̃σ 2
x

(4.40)

µ = λ µ̃ =
1

2π

∫ +π

−π
H(ω)P(ω) dω (4.41)

Note that µ is defined as the reference tap of the overall filter formed by the cascade of the channel

with the feedforward filter P(ω), and thus corresponds to the bias factor introduced by the equalizer.

We recall that this parameter is required by the SISO demapper (see section 4.1.2), as well as the

variance ν2 of the equivalent noise at the equalizer output, which is given by (see appendix A.2)

ν2 = σ 2
x µ(1−µ) (4.42)

Finally, the minimum mean-square error ε2 at the equalizer output admits the following expression

ε2 = σ 2
x (1−µ) (4.43)

This completes the description of the infinite-length MMSE IC-LE.

It is straightforward to verify that in the presence of uniform a priori information, i.e. σ 2
x =

0, the MMSE IC-LE reduces to a classical infinite-length MMSE linear equalizer (section 2.2.5).

Conversely, assuming perfect knowledge of the data symbols, we have σ 2
x → σ 2

x and the MMSE IC-

LE converges towards an ideal MMSE interference canceller supplied with perfect estimates (section

2.2.7). Hence, like for the finite-length equalizers introduced by Tüchler, we observe that the MMSE

IC-LE adapts its equalization strategy as a function of the reliability of the data estimates, information

which is captured by the variance of these estimates.

4.3.3 The finite-length MMSE IC-LE

The filters derived previously have infinite-length and thus need to be truncated for a practical im-

plementation. A better approach then involves deriving the optimum filters under the constraint of

a finite-length realization. Accordingly, we consider now a finite-length MMSE interference can-
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cellation structure as in figure 4.2, but where the feedforward filter p and the feedback filter q are

time-invariant. We furthermore suppose that p has size N. Assuming that the discrete-time channel

model spans L symbol periods, the convolution of the channel with the feedforward filter cannot span

more than J = N +L−1 symbol periods. Consequently, the feedback filter q requires J coefficients at

most. Assuming that the feedforward filter introduces a restitution delay ∆, the optimization problem

here involves finding the optimum finite-length filters p and q which minimize the mean-square error

between xn−∆ and its estimate zn at time n

(p,q) = arg min
(p,q)

E
(

|zn − xn−∆|2
)

(4.44)

under the constraint that the reference tap q∆ of the feedback filter is zero, and taking into account the

correlation properties of the data estimates xn established in section 4.3.1. This optimization problem

is solved in appendix A.3, and the parameters of the resulting equalizer are summarized in table 4.3.

ε2 denotes the minimum mean-square error at the equalizer output.

Parameters Dimensions

S = (σ 2
x −σ 2

x ) HHH +σ 2
w I N ×N complex matrix

p̃∗ = S−1h∆ N ×1 complex vector
µ̃ = p̃Th∆ real scalar
λ = σ 2

x /(1+σ 2
x µ̃) real scalar

p = λ p̃ N ×1 complex vector
µ = pTh∆ = λ µ̃ real scalar
q = HTp−µe∆ J×1 complex vector
ν2 = σ 2

x µ(1−µ) real scalar
ε2 = σ 2

x (1−µ) real scalar

Table 4.3: Parameters for the finite-length MMSE IC-LE.

Inspecting tables 4.3 and 4.2, we observe that the finite-length MMSE IC-LE is very similar to

the time-invariant approximate equalizer presented in section 4.2.3. In fact, the equivalence between

the two solutions can be readily established from relation (4.35) and by performing a few changes

of variables. Since these equalizers are rigorously equivalent, they share the same properties and

the remarks introduced in section 4.2.3 thus apply to the finite-length MMSE IC-LE as well. In

particular, the coefficients of the MMSE IC-LE need only be calculated once per data block, and their

computation is an O(N2) process in the most favorable case.
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4.3.4 A low-complexity procedure for computing the filter coefficients

We finally describe an approximate but rather simple method that can be used to obtain the MMSE

IC-LE filter coefficients in finite-length form. This method constitutes an alternative to the matrix

inversion required by the computation procedure exposed in the previous subsection. It involves

evaluating the frequency response P(ω) in equation (4.37) at the set of N uniformly spaced discrete

frequencies {ωk = 2πk/N}. Such a computation can be carried out efficiently in O(N log2 N) opera-

tions using the FFT if N is chosen as a power of 2. Then, performing an inverse FFT on the sampled

frequency response returns the impulse response {pk} of the feedforward filter in the time-domain.

The impulse response {qk} of the feedback filter is finally obtained as the convolution of the feedfor-

ward filter response {pk} with the channel impulse response {hk}, and by setting q∆ = 0. Note that

by virtue of the FFT properties, the resulting equalizer introduces a fixed restitution delay ∆ = N/2.

This procedure is summarized in table 4.4. We mention that similar approaches have already been

proposed in the literature, but for computing the settings of conventional equalization structures (see

for example [148] or [113]).

1. Compute the FFT {Hk} of {hk} on N points

2. Compute P
′

k = H∗
k /[(σ 2

x −σ 2
x )|Hk|2 +σ 2

w] for k = 0..N −1

3. Compute µ̃ = (1/N)∑
N−1
k=0 HkP

′

k

4. Compute λ = σ 2
x /(1+σ 2

x µ̃), and µ = λ µ̃

5. Compute Pk = λP
′

k for k = 0..N −1

6. Take the IFFT of {Pk} on N points to get the impulse response {pk}
7. Compute {qk} as the convolution of {pk} with {hk} and set q0 = 0

Table 4.4: Low-complexity approximate method for computing the MMSE IC-LE filter coefficients.

Let us first examine the reduction in complexity resulting from the use of the FFT method with

respect to the optimal computation procedure of table 4.3 relying on the Levinson-Durbin algorithm.

We propose to measure the computational cost of the two methods in terms of flops, where one flop

stands for one basic floating-point operation (addition, subtraction, multiply or divide between real

numbers). We stress however that flop counting is a crude approach to measuring the efficiency of an

algorithm. In particular, it assigns the same weight to different elementary operations such as addition

and division, which do not really have the same cost in hardware. Hence, one should not infer too

much from a comparison of flop counts. We focus here on the computation of the feedforward filter,

and disregard the other operations. From [76], we obtain that the Levinson-Durbin approach has

an overall cost of 4N2 flops. In constrast, the FFT method only requires one FFT and one IFFT to

obtain {pk}, resulting in a global cost of 2×5N log2 N = 10N log2 N flops [132]. A simple numerical

evaluation of the previous costs then suggests that the FFT method may potentially offer significant



94 CHAPTER 4. LOW-COMPLEXITY EFFICIENT MMSE TURBO-EQUALIZERS

computation savings for N ≥ 15. However, we recall that this solution is only a sub-optimal approach,

and that we also have to examine the accuracy of the resulting set of coefficients.

Mathematically, the FFT method amounts to approximating the Toeplitz matrix S in table 4.3 with

its corresponding circulant matrix SC where each column is a obtained as a “downshifted” version of

its predecessor. It is well known (see e.g. [79, chap. 4]) that the matrices S and SC are asymptotically

equivalent when N → ∞. Hence, the accuracy of the FFT method with respect to an optimum cal-

culation of the finite-length filters will greatly depend on the number N of coefficients considered in

the FFT calculations. In order to find the minimum value for N required to closely match the perfor-

mance obtained with the optimum approach, we undertook the following experiment. Both methods

were simulated over 5000 random realizations of a quasi-static multipath Rayleigh fading channel

with 5 taps of equal average power. The average mean-square error at the equalizer output was mea-

sured for increasing values of N and different values of the channel SNR Es/N0. The parameter σ 2
x

was set to zero, so that the MMSE IC-LE reduces to a classical MMSE IC-LE. This constitutes a

worst-case study since as the reliability of the data estimates increases, the MMSE IC-LE converges

towards an ideal MMSE IC which generally requires fewer coefficients than an MMSE LE. The sim-

ulation results are shown in figure 4.4. We observe that choosing N = 32 provides performance close

to optimum in this context, except at high SNR. In the latter case, the MMSE LE in fact approaches

a Zero-Forcing LE and more coefficients are required with the FFT method to compensate for deep

attenuations in the channel frequency response. On the other hand, the MMSE IC-LE is very likely

to converge quickly towards the ideal MMSE IC at such SNR values, so that a small loss at the first

iteration should not dramatically affect the overall performance. In contrast, the FFT computation

method delivers highly unreliable coefficients for a very small equalizer length.

From the previous observations, we conclude that for N ≤ 16 coefficients, the optimum approach

(matrix inversion) should be preferred both from a performance and complexity point of view. In con-

trast, the FFT method may realize an interesting alternative for N ≥ 16. In our experience, choosing

N = 32 usually guarantees good performance with the latter approach.

4.3.5 Additional remarks

We conclude this presentation of SISO equalization structures optimized according to the MMSE

criterion by discussing two issues of practical importance, and that concern both the MMSE IC-LE

and the time-varying equalizer proposed by Tüchler.

We first take a look at the problem of choosing the adequate number of coefficients N and restitu-

tion delay ∆ for a finite-length implementation. As explained in the previous subsection, it is generally

a good idea to optimize these parameters so that the resulting equalizer will offer good performance

at the first iteration (where it reduces in fact to a classical MMSE LE). In particular, the restitution
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Figure 4.4: Average mean-square error obtained at the MMSE IC-LE output with both computation methods

and measured over 5000 realizations of a quasi-static channel with 5 taps of equal average power.

delay ∆ may be carefully adjusted using the methods described in chapter 2, especially for a small

equalizer length. On the other hand, ∆ should be chosen large enough to allow for the realization of

the matched-filter without truncation, as required with an ideal MMSE interference canceller. In other

words, it is wise to set ∆ ≥ L−1 to guarantee optimum performance at high SNR over a discrete-time

channel model with L taps.

Consider now the situation of a transmission over a time-varying multipath Rayleigh fading chan-

nel which does not obey the quasi-static assumption. In this context, the channel variations have to be

tracked and the equalizer coefficients have to be adjusted accordingly. While the time-varying equal-

izer proposed by Tüchler may be well-suited in such a scenario, it remains computationally-intensive

to implement in practice. On the other hand, the time-invariant equalizers studied previously im-
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plicitly suppose that the channel coefficients remain approximatively constant over a data block and

thus are not directly applicable in this context. A possible solution would then involve computing the

equalizer coefficients using a channel estimate at the beginning of the data block, and then updating

the resulting coefficients on a per-symbol basis using standard adaptive algorithm (LMS or RLS). The

resulting turbo-equalizer will then be almost identical to the solution initially proposed by Glavieux

et al. This issue goes beyond the scope of this dissertation, but would merit attention for certain

applications.

4.4 Asymptotic performance bounds for MMSE turbo-equalization

Just as we did in chapter 3 with the MAP turbo-equalizer, it is instructive to examine here the asymp-

totic performance reached by the different MMSE turbo-equalizers introduced in sections 4.2 and 4.3,

under the assumption of perfect a priori information about the transmitted coded bits or symbols.

We have pointed out that in the presence of perfect data estimates, all the MMSE equalizers

considered converge towards an ideal MMSE interference cancellation scheme. The signal at the

output of an ideal MMSE IC has the form

zn = ‖h‖2 xn−∆ +
L−1

∑
ℓ=0

h∗−ℓwn−ℓ (4.45)

where we have defined ‖h‖2 = ∑
L−1
ℓ=0

∣
∣h2

ℓ

∣
∣ = hH

∆
h∆. In fact, from expression (4.45), we observe that an

ideal MMSE IC converts the ISI channel into an ISI-free channel with gain factor ‖h‖2, perturbed by

additive correlated Gaussian noise. The signal-to-noise ratio at the equalizer output then reads

SNR =
σ2

x ‖h‖4

σ2
w ‖h‖2

=
σ2

x ‖h‖2

σ2
w

= SNRMFB (4.46)

where the last equality comes from definition (2.9). This expression demonstrates that the MMSE

equalizers achieve the matched-filter bound for perfect a priori information. Now considering the gen-

eral structure of MMSE SISO equalizers shown in figure 4.1, it follows that MMSE turbo-equalizers

then achieve the same asymptotic performance as MAP turbo-equalizers. This fundamental result

is summarized in the following proposition, which holds both for TCM and BICM MMSE turbo-

equalization schemes.

Proposition 4.1 (Asymptotic bound for MMSE turbo-equalization). In the limit of perfect a pri-

ori knowledge about the transmitted symbols (or coded bits), turbo-equalization structures optimized

according to the MMSE criterion have the same asymptotic performance as the corresponding MAP

turbo-equalizers if the inner MMSE equalizer converges towards an ideal MMSE interference can-

celler.
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In summary, MMSE turbo-equalizers converge towards the performance of the underlying coded

modulation scheme over an equivalent AWGN channel in the limit of perfect a priori information.

Similar conclusions were also raised by Langlais in [99] and Dejonghe and Vandendorpe in [46].

4.5 Performance results

We examine in this section the performance obtained with the MMSE turbo-equalization structures.

For the sake of conciseness and due to time limitations, we restrict ourselves to time-invariant ISI

channel models. As mentioned briefly in subsection 4.3.5, fully-interleaved Rayleigh fading channels

require additional studies that are beyond the scope of this work since some kind of adaptive algorithm

is required to track the channel variations. On the other hand, simulation results over quasi-static

fading channels can be found in [103], where we have investigated the application of the MMSE

IC-LE turbo-equalizer to the EDGE wireless telephony standard and obtained encouraging results.

Note finally that the finite-length MMSE equalizers have been computed using exact matrix inversion

techniques rather than the FFT method in all the following simulations.

4.5.1 Comparison between the different turbo-equalizers

We first propose to compare the performance obtained with a MAP equalizer, the time-varying MMSE

equalizer proposed by Tüchler and the MMSE IC-LE respectively. Motivated by the case study pre-

sented in [175], we considered a simple BICM transmission system with BPSK modulation and a

recursive systematic convolutional encoder with transfer function G(D) =
[

1, 1+D2

1+D+D2

]

. A random

interleaver of size 65536 bits was used. The system was simulated over the 5-tap severe-ISI Proakis C

channel model, with impulse response [0.227,0.460,0.688,0.460,0.227] [138]. The MMSE equaliz-

ers were realized using N = 15 coefficients and a restitution delay ∆ = 9. Each receiver performed 15

iterations. The results are shown in figure 4.5, where the label TV MMSE-LE stands for Time-Varying

MMSE linear equalizer (section 4.2).

We observe that the turbo-equalizer relying on the time-varying MMSE equalizer comes very

close to the performance offered by optimum MAP turbo-equalization on this severe channel. In

addition, the MMSE IC-LE only suffers a convergence SNR penalty of about 1 dB with respect to the

time-varying equalizer in this case. Since the latter has a much higher complexity in practice, we shall

only consider the MMSE IC-LE in the following simulations since it realizes the best tradeoff between

performance and computational cost. We mention that extensive simulations have been carried out

over a wide range of transmission scenarios in [107] in order to quantify precisely the performance loss

resulting from the use of the MMSE IC-LE with respect to the time-varying solution. We measured a

gap of 1 dB at most, the worst-cases occurring with severe-ISI channels.
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Figure 4.5: BER performance obtained with different turbo-equalization schemes after 15 iterations and over

the severe-ISI 5-taps time-invariant Proakis C channel model.
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Figure 4.6: EXIT chart for different turbo-equalization schemes over the Proakis C channel at Eb/N0 = 5 dB.
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Figure 4.6 shows the corresponding EXIT charts for the three turbo-equalizers. They were com-

puted at a signal-to-noise ratio Eb/N0 = 5 dB. We observe that the characteristic of the time-varying

equalizer opens a wider tunnel than the transfer function of the MMSE IC-LE with respect to the

decoder curve. Hence, the time-varying equalizer enables an earlier and faster convergence, as shown

by the simulation results of figure 4.5. This difference between the two characteristics stems from

the fact that the time-varying equalizer reconfigures itself for every processed symbol, whereas the

MMSE IC-LE only operates on the basis of an average reliability measure about the data estimates.

4.5.2 Performance with high-order modulations over low to moderate ISI channels

In order to demonstrate the ability of the MMSE IC-LE turbo-equalizer to deal efficiently with con-

figurations untractable with a standard MAP turbo-equalizer, we simulated the three coded mod-

ulation schemes of chapter 2 over the 11-taps Proakis A channel model, with impulse response

[0.04,−0.05,0.07,−0.21,−0.5,0.72,0.36,0,0.21,0.03,0.07] [138].

Considering either an 8-PSK or a 16-QAM signal set, applying a MAP equalizer in this context

would require working with trellises with more than 109 states, a configuration which is clearly pro-

hibitive for practical systems. In contrast, we used here an equalizer with only N = 15 coefficients

and a restitution delay ∆ = 10. As in the previous chapter, random interleavers of size 8196 (symbols

for the TCM, or coded bits for the BICM schemes) were used. 10 iterations were performed in each

case. The simulation results are shown in figures 4.7 to 4.9. We observe that the MMSE IC-LE turbo-

equalizer is able to eliminate all ISI at moderate SNR values and thus reaches the ideal performance

of the ISI-free channel both with the TCM and the BICM-ID schemes. We have to mention that sim-

ilar results were presented in [46]. These results suggest that the MMSE IC-LE turbo-equalizer may

realize an attractive low-complexity receiver offering good performance for bandwidth-efficient trans-

missions with coded modulation over ISI channels. However, we must emphasize that in spite of its

long impulse response, the Proakis A channel model is relatively easy to equalize. Hence, the previous

conclusion should be nuanced for more severe ISI channels, as we shall see in the next subsection.
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Figure 4.7: BER performance for MMSE turbo-equalization with the 8-PSK TCM scheme over the Proakis A

channel model (10 iterations).
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A channel model (10 iterations).
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Figure 4.9: BER performance for MMSE turbo-equalization with the 16-QAM BICM-ID scheme over the

Proakis A channel model (10 iterations).

4.5.3 Performance with high-order modulations over severe ISI channels

In order to measure the efficiency of the MMSE IC-LE turbo-equalizer over severe ISI channels, we

finally simulated the two BICM-ID schemes of chapter 2 over the 3-tap Proakis B channel, a model

that was already considered for MAP turbo-equalization schemes in chapter 3, section 3.4. We used

an equalizer with N = 15 coefficients and a restitution delay ∆ = 8. Again, a random interleaver of

size 8196 coded bits was considered, and 10 iterations were performed. The simulation results are

shown in figures 4.10 and 4.11. For comparison purposes, the performance obtained in section 3.4

with a MAP turbo-equalizer after 10 iteration has also been reported.

From these simulation results, we observe an important SNR gap of 10 dB for the 8-PSK BICM-

ID and 8 dB for the 16-QAM BICM-ID respectively, at a BER of 10−4, between the performance

obtained with the MMSE IC-LE turbo-equalizer and that obtained with a MAP turbo-equalizer. This

gap is supported by the EXIT chart analysis shown in figures 4.12 and 4.13, where we note that the

convergence theoretically occurs at Eb/N0 values between 14 and 15 dB for the 8-PSK BICM-ID, and

between 12 and 13 dB for the 16-QAM BICM-ID.

Several remarks are in order here. First, the MMSE IC-LE is penalized by the poor performance

of the MMSE LE at the first iteration on this severe channel. This penalty is all the more important
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that high-order modulations are considered, as shown by the EXIT charts. In addition, the choice

of set-partitioning labelling for the underlying BICM-ID schemes delays the convergence of the

iterative process. To illustrate this phenomenon, we show in figure 4.14 the EXIT charts obtained

with a MAP turbo-equalizer and the MMSE IC-LE turbo-equalizer over the Proakis B channel respec-

tively, but with an 8-PSK BICM scheme with Gray Mapping. We observe that the convergence gap

between MAP turbo-equalization and MMSE turbo-equalization reduces from 10 dB to only 4 dB in

this case, thanks to the use of Gray mapping. Finally, it must be stressed that the Proakis B is merely

a theoretical channel model, and such models seldom arise in many practical transmission scenarios.

In fact, our simulations performed in the EDGE context have shown that the MMSE IC-LE offers

attractive performance over a wide range of channel conditions [103].

In summary, MMSE turbo-equalization presents an interesting tradeoff between complexity and

performance, especially for coded transmissions with non-binary modulations and over long delay

spread channels with low to moderate ISI. These conclusions should be nuanced over severe ISI

channels. In this case, it may be desirable to employ BICM with standard Gray mapping in

order to accelerate the convergence of the iterative process.

More generally, designing low-complexity turbo-equalization schemes that are robust to severe ISI

channels and able to cope with long delay spread channels as well still constitutes an open research

topic.
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Figure 4.10: BER performance for MMSE turbo-equalization of the 8-PSK BICM-ID scheme over the Proakis

B channel model, with 10 iterations.
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Figure 4.11: BER performance for MMSE turbo-equalization of the 16-QAM BICM-ID scheme over the

Proakis B channel model, with 10 iterations.

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A1

 / I
E2

I
E1

 / I
A2

DEC
MMSE IC−LE

Figure 4.12: EXIT chart for MMSE turbo-equalization of the 8-PSK BICM-ID scheme over the Proakis B

channel model. The equalizer characteristics are presented for Eb/N0 values ranging from 10 dB (bottom) to

16 dB (top) in steps of 2 dB.
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Figure 4.13: EXIT chart for MMSE turbo-equalization of the 16-QAM BICM-ID scheme over the Proakis B

channel model. The equalizer characteristics are presented for Eb/N0 values ranging from 10 dB (bottom) to

16 dB (top) in steps of 2 dB.
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Figure 4.14: EXIT chart for MAP and MMSE turbo-equalization of the 8-PSK BICM-ID scheme with Gray

mapping over the Proakis B channel model.
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4.6 Frequency-domain MMSE turbo-equalization

It is not uncommon today to encounter multipath channels spanning several tens of symbol periods.

Such a situation arises for example in broadband cellular wireless access systems where transmis-

sion occurs at rates of several megabits per second, and where multiple echoes of the transmitted

signal may be received with delay spreads of up to tens of microseconds [55]. In this case, single-

carrier transmission with time-domain equalization may require costly filtering operations, involving

50 or more coefficients to deal with the resulting ISI, and thus become unattractive with respect to

the solution offered by multicarrier modulation. However, it has been pointed out by several re-

searchers that single-carrier transmission with frequency-domain equalization (SC-FDE) may offer a

competitive alternative to multicarrier modulation methods with essentially the same overall complex-

ity (see for example [149] and [59]). As an illustration, the IEEE 802.16 standardization group has

recently approved a physical layer specially designed for SC-FDE in the context of broadband wire-

less metropolitan area networks (MANs) operating in the 2-11 GHz band and over non-line-of-sight

conditions [89]. Such transmission scenarios may constitute potential applications for low-complexity

MMSE turbo-equalizers.

In this section, we first derive the frequency-domain version of the MMSE IC-LE turbo-equalizer.

Then, we take a close look at the computational savings that may be achieved with a full frequency-

domain implementation in the presence of long-delay spread channels, by comparison with the more

traditional time-domain realization considered in the previous sections. Our analysis extends some

results previously reported by Tüchler in [173].

4.6.1 Derivation of the frequency-domain MMSE IC-LE

The philosophy of frequency-domain equalization is the following. Rather than computing the equal-

izer coefficient from a channel estimate and then performing the equalization task by filtering in the

time-domain, the whole procedure may be realized entirely in the frequency-domain. As with OFDM,

frequency-domain equalization requires the insertion of a cyclic prefix at the beginning of each trans-

mitted block. The cyclic prefix is a simple copy of the last data symbols in a block (figure 4.15). Its

length should be chosen long enough to cope with the maximum delay spread of the channel. The

role of the cyclic prefix is twofold. It first acts as a guard interval and prevents inter-block interference

(IBI) between successive blocks at the receiver side. In addition, it makes the received block appear

to be periodic with a period equal to the block size, so that the time-domain linear convolution with

the channel impulse response is turned into a circular convolution, which corresponds to multiplica-

tions in the frequency-domain. The cyclic prefix is finally discarded at the receiver input before the

equalization process.
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Figure 4.15: Construction of the cyclic prefix.

Let us consider the transmission of blocks of size N data symbols. Mathematically, the corre-

sponding channel observations can be written in vector form as follows at the receiver input, after

suppression of the cyclic prefix

y = Hx+w (4.47)

where y, x and w are N ×1 vectors, and where H is the square N ×N circulant matrix given by

H =










h0 h1 . . . hL−1 0 . . . 0

0 h0 h1 . . . hL−1

...
...

. . . . . .
...

h1 . . . hL−1 . . . . . . . . . h0










(4.48)

where each row is deduced from a right-shift of its predecessor. We have dropped for convenience the

time subscript n in our vector notation since we operate here on a data block basis.

Suppose now that we take the N-point Discrete Fourier Transform (DFT) of the received sequence

{yn}. It is well known that every circulant matrix H can be diagonalized by the Discrete Fourier

Transform (DFT) matrix, i.e. it holds that HF = FHFH, where F is the DFT matrix of size N

Fi,k =
1√
N

exp−
[

j2πik

N

]

i,k = 0, . . . ,N −1 (4.49)

which satisfies FFH = I, and where HF is an N×N diagonal matrix whose eigenvalues are the samples

{Hk} of the DFT of the first row of H. If we define the frequency-transformed vectors

yF = Fy, xF = Fx, wF = Fw (4.50)

that is, {yF,xF,wF} are the DFTs of the vectors {y,x,w}, then it is straightforward to verify that the

following relation holds

yF = HFxF +wF (4.51)

or, equivalently,

Yk = HkXk +Wk k = 0, . . . ,N −1 (4.52)

where we have denoted by {Yk},{Xk},{Wk} the respective N-points DFT of the discrete-time se-

quences {yn},{xn}, and {wn}.
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Operating in the frequency-domain on a block per block basis, MMSE interference cancellation

takes the following form

Zk = PkYk −QkXk k = 0, . . . ,N −1 (4.53)

where {Zk} is the DFT of the equalized sequence, {X k} is the DFT of the sequence of soft data es-

timates, and {Pk} and {Qk} are the respective DFTs of the feedforward and feedback filters. The

time-domain equalized sequence {zn} is finally obtained by taking the IDFT of {Zk}. Taking into ac-

count the statistical properties established in section 4.3.1, we thus have to find the optimum discrete-

frequency responses {Pk} and {Qk} which minimize the mean-square error between the sequences

{Zk} and {Xk}, that is

(Pk,Qk) = arg min
(Pk,Qk)

E
(

|Zk −Xk|2
)

for all k = 0, . . . ,N −1 (4.54)

This optimization problem is solved in appendix A.4. We summarize the parameters of the result-

ing frequency-domain equalizer in table 4.5. ε2 denotes the total minimum mean-square error at the

equalizer output.

Parameters

P̃k = H∗
k /[(σ 2

x −σ 2
x ) |Hk|2 +σ 2

w] for k = 0, . . . ,N −1
µ̃ = (1/N)∑

N−1
k=0 HkP̃k

λ = σ 2
x /(1+σ 2

x µ̃)
Pk = λ P̃k for k = 0, . . . ,N −1
µ = λ µ̃
Qk = HkPk −µ for k = 0, . . . ,N −1
ν2 = σ 2

x µ(1−µ)
ε2 = σ 2

x (1−µ)

Table 4.5: Parameters for the frequency-domain MMSE IC-LE.

4.6.2 Complexity issues

In order to compare the respective complexity of the time- and frequency-domain implementation of

the MMSE IC-LE equalizer, a theoretical estimation of the computational cost has been conducted

for the two approaches. We focus here only on the computation of the equalizer coefficients and the

filtering operations, and therefore purposely omit the soft mapping and demapping operations since

they are identical for the two solutions. In the following discussions, the parameters N, L and M

denote the size of a data block, the number of channel taps and the number of coefficients for the

feedforward filter p respectively. The latter only appears with the time-domain implementation.
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The frequency-domain approach

Table 4.6 summarizes the main steps of the frequency-domain (FD) MMSE IC-LE algorithm, and

provides an estimation of the corresponding number of operations (real additions, multiplications and

reciprocal computation4). Note that these results were obtained by considering that a complex FFT

on N points requires 2N log2 N real multiplications and 3N log2 N real additions [132].

Building upon the contents of this table, a raw estimation of the overall computational cost can

be obtained by flop counting. This estimation is targeted towards an implementation on a digital

signal processing (DSP) device, so that we assign a default unitary cost of 1 flop to real additions and

multiplications, which are both DSP elementary operations. In contrast, division is not a native DSP

instruction and usually has to be emulated in software. Consequently, we assign a cost of 40 flops

to divisions. This choice is consistent with the number of cycles required to perform a division on

current fixed-point DSP devices [169]. These approximations yield the following estimation for the

implementation’s cost CFD of the frequency-domain equalizer

CFD = N(20log2 N +66)+84 flops (4.55)

We observe that the complexity is a function of the sole parameter N. More precisely, the computa-

tional cost grows asymptotically like O(N log2 N +N) with respect to N.

The time-domain approach

A similar analysis has been carried out for the time-domain implementation of the MMSE IC-LE. The

equalizer is realized according to the structure shown in figure 4.3 since it requires fewer coefficients

than the standard interference cancellation structure. In addition, computation of the filter coefficients

takes advantage of the low-complexity approximate method exposed in section 4.3.4, relying on the

FFT. Table 4.7 summarizes the main steps of the time-domain (TD) implementation of the MMSE IC-

LE, together with the corresponding number of operations. We mention that the following proposition

has been exploited to estimate the number of operations required by complex FIR filtering.

Proposition 4.2. Filtering a complex discrete-time sequence of length N by a FIR with M complex

coefficients requires 4NM real multiplications and 2N(2M−1) real additions.

Proof. Assuming that the FIR memory is properly initialized, the filtering operation requires NM

complex multiplies and N(M−1) complex additions. Accounting for the fact that a complex addition

involves 2 real additions and that a complex multiply involves 4 real multiplies and 2 real additions,

we obtain the claimed result.

4The reciprocal of x is 1/x.
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Using the results of table 4.7 and again assigning a default cost of 1 flop to real additions and

multiplications, and 40 flops to reciprocal computations, we obtain the following estimation for the

overall cost CT D of the time-domain approach

CT D = M(10log2 M +8N +52)+N(8L−2)+84 flops (4.56)

We note that the complexity now depends on the three system parameters N, M and L. In particular,

the computational cost grows linearly with respect to N and L, and like O(M log2 M +M) with respect

to parameter M.

Comparison and discussion

In order to compare the complexity of the time-domain and frequency-domain implementation, we

have computed the theoretical number of flops required by the two approaches using (4.55) and (4.56)

for increasing values of the length L of the channel impulse response. A fixed data blocksize of 512

symbols was assumed. For the time-domain implementation, the number of coefficients M was set

to 2L for the feedforward filter. This is a conservative choice that should realize a satisfying tradeoff

between performance and complexity over a wide range of channel conditions. The results are shown

in figure 4.16.
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Figure 4.16: Complexity comparison between the time-domain and frequency-domain realizations of the

MMSE IC-LE.
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• Inputs:

– N sampled observations {yn} and N soft estimates {xn}

– the noise variance σ 2
w and L channel taps {hℓ}

– the average variance σ 2
x of the data estimates

• Algorithm:

1. Frequency-domain transposition

(a) {Yn} = FFTN{yn}

(b) {Hn} = FFTN{hn}

(c) {Xn} = FFTN{xn}

2. Feedforward filter and bias computation

(a) P′

n = H∗

n /[(σ 2
x −σ 2

x ) |Hn|
2 +σ 2

w], n = 0, . . . ,N −1

(b) µ̃ = 1

N ∑
N−1

n=0
HnP′

n

(c) λ = 1/(1+ µ̃σ2
x )

(d) Pn = λP′

n, n = 0, . . . ,N −1

(e) µ = λ µ̃

3. Feedback filter computation

Qn = HnPn −µ , n = 0, . . . ,N −1

4. Frequency-domain equalization

Zn = PnYn −QnXn, n = 0, . . . ,N −1

5. Time-domain transposition

{zn} = IFFTN{Zn}

• Outputs:

– the equalized sequence {zn} and the equalizer bias µ

• Note: (I)FFTN = complex (inverse) FFT on N points

Step #Add. #Mul. #1/x

1(a)-1(c) 9N log2 N 6N log2 N -

2(a) 2N +1 5N N +1

2(b) N 2N -

2(c) 1 1 1

2(d) - 2N -

2(e) - 1 -

3 2N 2N -

4 4N 6N -

5 3N log2 N 2N log2 N -

Total N(12log2 N +9)+2 N(8log2 N +17)+2 N +2

Table 4.6: Computation steps and theoretical number of operations for the FD MMSE IC-LE.
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• Inputs:

– N sampled observations {yn} and N soft estimates {xn}

– the noise variance σ 2
w and L channel taps {hℓ}

– the variance σ 2
x of the soft estimates

• Algorithm:

1. Frequency-domain transposition of the channel taps

{Hn} = FFTM{hn}

2. Feedforward filter and bias computation

(a) P′

n = H∗

n /[(σ 2
x −σ 2

x ) |Hn|
2 +σ 2

w], n = 0, . . . ,M−1

(b) µ̃ = 1

M ∑
M−1

n=0
HnP′

n

(c) λ = 1/(1+ µ̃σ2
x )

(d) Pn = λP′

n, n = 0, . . . ,M−1

(e) µ = λ µ̃

3. Feedforward filter’s impulse response

{pn} = IFFTM{Pn}

4. Time-domain equalization

(a) z̃n = yn −∑
L−1

ℓ=0
hℓxn−ℓ, n = ∆, . . . ,N +∆−1

(b) zn = ∑
M−1

k=0
pk z̃n−k, n = ∆, . . . ,N +∆−1

• Outputs:

– the equalized sequence {zn} and the equalizer bias µ

• Notes:

– (I)FFTM = complex (inverse) FFT on M points

– The equalizer introduces a restitution delay ∆ = M/2 samples

Step #Add. #Mul. #1/x

1 3M log2 M 2M log2 M -

2(a) 2M +1 5M M +1

2(b) M 2M -

2(c) 1 1 1

2(d) - 2M -

2(e) - 1 -

3 3M log2 M 2M log2 M -

4(a) 4NL 4NL -

4(b) 2N(2M−1) 4NM -

Total M(6log2 M +4N +3) M(4log2 M +4N +9) M +2

+N(4L−2)+2 +4NL+2

Table 4.7: Computation steps and theoretical number of operations for the TD MMSE IC-LE.
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As can be seen from (4.55), the cost of the frequency-domain is a sole function of the blocksize

N and thus does not depend on the number of channel taps. We observe that the frequency-domain

approach begins to offer complexity savings with respect to the time-domain implementation for chan-

nels with 15 coefficients or more. With 100 coefficients, the frequency-domain solution is one order

of magnitude less complex to implement than its time-domain counterpart.

This analysis demonstrates the potential savings that may be realized by implementing the MMSE

IC-LE turbo-equalizer in the frequency-domain in the presence of channels with very long delay

spreads. We stress however that our analysis is merely theoretical in the sense that it does not capture

all the factors that may influence the choice of a solution for a practical system. In particular, important

issues such as the degree of parallelism or the data quantization requirements should be carefully

examined to determine the best approach for hardware or software implementation.

4.7 Concluding remarks

This chapter was devoted to the study of low-complexity turbo-equalization structures that may rep-

resent an interesting alternative to conventional MAP turbo-equalization for multilevel signaling over

long delay spread channels, where the complexity of the latter solution is usually intractable. Specifi-

cally, we focused on filtering-based turbo-equalizers where the inner equalization scheme is optimized

according to the MMSE criterion.

Several equalizers have been introduced, which share the common property of accounting explic-

itly for the presence of a priori information about the transmitted data (available from the iterative

process) to adapt the equalization strategy accordingly. A novel equalizer, the MMSE IC-LE, has

been derived both in infinite-length form as well as under finite-length realization constraints. We

have furthermore established the equivalence of the finite-length implementation with another similar

equalizer introduced earlier in a somewhat heuristic manner in the literature.

Several simulation results have been presented, which demonstrate that MMSE turbo-equalization

structures constitute attractive receivers which realize an interesting tradeoff between performance and

complexity for bandwidth-efficient communications over long delay spread channels with low to mod-

erate ISI. We have also noticed that such receivers may suffer from performance losses over severe-ISI

channels when non-binary modulations are used, depending on the bit-labelling strategy considered.

In particular, Gray mapping may be used to reduce the resulting performance gap. Although such

channels are seldom encountered in many practical transmission systems, further research work is re-

quired to address this issue, either by improving the above-mentioned MMSE equalization structures,

or by considering the alternative offered by reduced-state trellis-based SISO equalizers.
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Since it is not uncommon today to encounter transmission scenarios where ISI may span up

to several tens of symbol periods, we have finally examined the possibility of realizing the turbo-

equalization process entirely in the frequency-domain. Having derived the frequency-domain form of

the MMSE IC-LE, we have conducted a theoretical estimation of the computational cost required both

by a time-domain and frequency-domain implementation of the filtering operations. Our results show

that the frequency-domain equalizer may offer significant complexity savings over its time-domain

counterpart over very long delay spread channels.





Chapter 5

DSP implementation of the MMSE

IC-LE Turbo-Equalizer

Having described and analyzed several receiver structures which combine equalization with decod-

ing in an efficient manner, we now turn our attention to the important problem of realizing such

solutions in practice. This chapter exposes the implementation of the low-complexity MMSE IC-LE

turbo-equalizer studied in section 4.3 on a fixed-point digital signal processor (DSP). This work was

conducted as a proof of concept, motivated by the desire to show that efficient low-complexity turbo-

equalization structures are actually manageable on current hardware. Our study constitutes the first

step towards the realization of a real-time demonstration platform. This work was supported in part

by Texas Instruments ELITE university program.

This chapter is organized as follow. We first describe the development platform that was con-

sidered in this study. Then, we provide a general overview of the transmission scenario retained for

our application. Recalling Lao Tzu’s precept that “The longest journey starts with but a single step”,

we shall restrict ourselves here to a simple bit-interleaved coded modulation scheme combining a

4-state rate one-half convolutional code with QPSK modulation. The DSP implementation of the

turbo-equalizer is discussed, with an emphasis on the data representation and computation constraints

arising from the use of fixed-point arithmetic. Finally, we examine the storage requirements as well

as the maximum bit rate achievable on the DSP. Some experimental results are provided. They show

that our receiver suffers no real performance loss with respect to an ideal (unquantized) floating-point

implementation.

115
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Figure 5.1: Block diagram of the demonstration platform

5.1 Description of the platform

The demonstration platform is composed of a host PC communicating with a target DSP evaluation

module, as depicted in figure 5.1. The host PC runs a monitoring application which is responsible for

the tasks of configuring the transmission link and the DSP board, generating the data at the channel

output, sending the resulting signal to the DSP which implements equalization and decoding, retriev-

ing the processed data, and updating the link metrology (bit error rate, symbol error rate and frame

error rate).

The DSP board, shown in figure 5.2, is a stand-alone evaluation card from Spectrum Digital,

Inc. It features in particular a Texas Instrument TMS320VC5509 DSP device operating at 120 MHz,

4 megawords of 16-bits on-board DRAM memory, an embedded IEEE 1149.1 JTAG emulator, and

various I/O capabilities including a USB port, an ADC/DAC stereo codec, as well as serial and parallel

port interfaces.

The TI C5509 device is a high performance low-cost 16-bits fixed-point DSP with low-power

dissipation. It is typically targeted towards embedded communications applications such as 2G – 3G

cell phones, wireless modems, and multimedia applications (digital audio and still cameras, voice

recognition, etc.). Table 5.1 summarizes the main features of the DSP device. Detailed coverage of

the DSP capabilities are provided in [167, 168, 170]. This processor manipulates 16-bit fixed-point

numbers, and actually supports fixed-point computations with an internal precision of up to 40 bits,

which is the maximum length of the accumulator registers. Appendix D provides a review of fixed-

point arithmetic. It also introduces useful notations to characterize fixed-point data types that we shall

exploit in subsequent sections of this chapter.
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Table 5.1: Overview of the key features of the TI C5509 DSP device provided by the EVM

Figure 5.2: Spectrum Digital, Inc. TMS320VC5509 evaluation module
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Communication between the DSP board and the host PC uses the Real-Time Data eXchange

(RTDX) protocol offered by Texas Instrument. RTDX allows developers to transfer data between

the host computer and DSP devices throughout the JTAG emulation link, without stopping the target

application. A block diagram of the RTDX communication protocol is included in figure 5.1. An

RTDX target library runs on the target application. Function calls to this library’s application pro-

gramming interface (API) allow the DSP to transfer data to/from the host in the background, while

the target application keeps running. On the host platform, an RTDX host library operates in conjunc-

tion with the Code Composer Studio development environment and provides a simple API relying on

the Windows Component Object Model (COM) interface to obtain and/or to send data to the target

application. RTDX offers transfer data rates typically ranging from 30 to 50 Kb/s, the latest improve-

ment (High-Speed RTDX) allowing up to 2Mb/s. Reference [166] provides a comprehensive overview

of the RTDX technology.

5.2 Overview of the transmission scheme

Figure 5.3 presents the block diagram of the communication scenario that was considered in our

application. This section provides a general overview of the transmitter and receiver functions, as

well as discussions about the assumptions made about the channel model for the implementation of

the turbo-equalizer.

5.2.1 Transmit processing

The transmitter functions implement a simple bit-interleaved coded modulation scheme. Frames of

Ni information bits {bk} are encoded by a rate 1/2 recursive systematic convolutional (RSC) encoder

with memory 2, free distance dfree = 5, and generator polynomials (1,1+D2/1+D+D2). 2 tailbits

are appended at the end of the information sequence in order to force zero-state trellis termination at

the end of the message. The effective code rate is thus

Rc =
1
2

Ni

Ni +2
(5.1)

This convolutional code was selected because of its low decoding complexity (4 states only). Addi-

tionally, the systematic property of the code simplifies SISO decoding since the APP on the code bits

are required solely to extract both the hard decisions on the information bits and the extrinsic infor-

mation on the coded bits in the same pass. The Nc = 2Ni +4 coded bits {ci
k} are interleaved according

to a pre-computed S-random permutation function [49] with parameter S = ⌊
√

Nc/2⌋, and mapped

onto discrete-time complex QPSK symbols {xn} with zero mean and unit variance σ 2
x = 1. A Gray

labelling map was selected (figure 5.4).
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Figure 5.3: Block diagram of the transmission scheme
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Figure 5.4: QPSK signal set with Gray labelling
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Figure 5.5: Description of the burst format

The discrete-time modulated symbols enter a burst mapping module which formats the incoming

data into transmission bursts. The general structure of a burst is described in figure 5.5, and comprises

a data payload section of Npay information symbols, prefixed by a unique word (UW) with length Nuw

symbols. The unique word is inserted for channel estimation and frame synchronization purposes. It

derives from Frank-Zadoff sequences [68] and thus possesses constant amplitude zero autocorrelation

(CAZAC) properties [128]. For best performance, the length of the unique word should be at least

as long as the expected channel maximum delay spread. As we shall see in the next subsection, we

currently limit ourselves to channel models spanning a maximum of 16 symbol periods. Hence, Nuw

was set to 16, and the corresponding unique word is

UW = {+1,+1,+1,+1,+1,+i,−1,−i,+1,−1,+1,−1,+1,−i,−1,+i}

In our application, the data payload size was set to Npay = 512 QPSK symbols. The corresponding

values for the other parameters at the transmitter side are summarized in table 5.2.

Modulation QPSK

Number of information bits per burst Ni = 510

Number of coded bits per burst Nc = 1024

Number of payload symbols per burst Npay = 512

Size of the unique word Nuw = 16

Table 5.2: Parameters of the transmission link

5.2.2 Channel and receiver front-end modeling

Following the conventions introduced in chapter 2, we assume here a coherent demodulator, i.e. per-

fect carrier and phase offset compensation, as well as perfect timing synchronization. Hence, the

discrete-time baseband channel resulting from the cascade of the transmit filter, ISI channel, receive

filter and symbol-rate sampler can be modeled as a FIR filter with L symbol-spaced coefficients. The
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observation yn received at time n at the turbo-equalizer input is then given by

yn =
L−1

∑
ℓ=0

hℓxn−ℓ +wn (5.2)

where the noise samples wn are zero-mean, circularly-symmetric, wide-sense stationary uncorrelated

Gaussian random variables with total variance σ 2
w. The receiver front-end is shown in figure 5.3

and consists of a fixed filter matched to the transmit pulse shape, followed by a symbol-rate sam-

pler, a quantizer delivering fixed-point numbers in Q15 representation (see appendix D), and a burst

demapper. We currently assume in our application that the discrete-time baseband channel model is

time-invariant and spans a maximum number of 16 symbol periods (16 coefficients).

Any practical receiver would include an amplitude gain control (AGC) device, whose role is to

maintain the average received power at a desired level by properly adjusting the received signal ampli-

tude. Such an operation is typically realized in continuous-time on analog signals by hardware devices

[127]. The choice of the desired average power Pdes at the input of the quantization device is an im-

portant issue for the design of the receiver front-end. The Q15 data representation format applies to

real numbers in the range [−1,+1), and values outside this interval must be saturated. It follows that

Pdes must be chosen high enough so that the received data may be quantized with enough precision,

while avoiding excess saturation in order for the receiver to operate in a linear A/D conversion regime

most of the time. It has been found by simulation that the value Pdes = 0.25 provides a good balance

between these two objectives. It is assumed hereafter in this chapter that the AGC scaling factor is

tacitly taken into account into the definition of the channel coefficients {hℓ} and noise variance σ 2
w in

equation (5.2).

5.2.3 The turbo-equalization receiver

Depicted in figure 5.3, the turbo-equalization scheme is implemented on the C5509 target device. The

host PC provides the DSP with the sampled data {yn} composing the received burst, quantized in Q15

representation. In spite of the presence of a training sequence, both perfect channel estimation and

frame synchronization are currently assumed at the receiver side.

Before the turbo-equalization scheme, the burst demapping module discards the training sequence

and provides the SISO equalizer with the payload data symbols. The SISO equalizer implements the

finite-length form of the MMSE IC-LE structure introduced in chapter 4, section 4.3. Regarding the

computation of the equalizer coefficients, we suppose that the noise variance σ 2
w is perfectly known at

the receiver side. At the present date, the turbo-equalizer is designed to operate with signal-to-noise

ratios in the 0–15 dB range.
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For the ease of implementation, a fixed number of 5 iterations was considered in our application.

However, a practical system could benefit from the use of an appropriate early stopping criterion,

which essentially halts the iterative process when the estimated data reach a given reliability. As the

SNR increases, this usually results in substantial throughput gains (or reduced power consumption)

without significant performance degradation with respect to the case where the number of iterations

is fixed in advance. The design of a proper early stopping criterion is discussed in [21] and [122] for

example.

The equalized sequence {zn} as well as hard decisions {b̂k} on the information message are fed

back to the host PC for metrology purposes (BER, SER and FER measurements) at each iteration.

Table 5.3 summarizes the design parameters that were used in the realization of the turbo-equalizer.

Parameters Value Comments

Complex channel impulse response length 16 System parameter

Channel impulse response - Assumed available

Transmitted power σ 2
x 1.0 System parameter

Noise variance σ 2
w - Assumed available

Number of iterations 5 System parameter

Table 5.3: Design parameters for the turbo-equalizer

5.3 Implementation of the turbo-equalizer

This section describes the fixed-point implementation of the turbo-equalizer on the C5509 device1.

We first expose the general development strategy that was adopted for the implementation. Then,

we examine the number of bits required to represent the different quantities involved in the turbo-

equalization process with sufficient accuracy. Finally, we discuss the implementation of the different

operations realized by the turbo-equalizer, with the exception of the interleaving/deinterleaving func-

tions that are realized using simple look-up table consultation in the DSP RAM.

5.3.1 Strategy of development

We have chosen to implement the turbo-equalizer using the C language solely, in order to speed-

up the development process. As a result, our implementation is certainly not optimal from a code

performance point of view. In fact, we can expect speed improvements by a factor two or more with

a receiver entirely realized in optimized assembly language.

1Parts of this study have been presented in [108].
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The Texas Instruments C55x C compiler provides several intrinsics. Intrinsics are special C func-

tions that map directly onto inlined specific C55x assembly language instructions. Examples of intrin-

sics include saturated additions and subtractions, multiplies, multiply-accumulate (MAC) operations,

etc. [169]. Although interesting from a code optimization perspective, the use of intrinsics has been

voluntarily kept to a minimum to favor code portability and reusability. In contrast, we have made

use whenever possible of the general purpose digital signal processing functions provided by Texas

Instrument Digital Signal Processing Library (DSPLIB) [171]. This library includes optimized assem-

bly routines such as FFT, bit-reversing, convolution, FIR and IIR filtering functions, and is currently

available for a wide range of TI DSP devices.

5.3.2 Data quantization

The received samples {yn} and channel coefficients {hℓ} are delivered in Q15 representation from the

receiver front-end. However, finding the right number of bits required to represent the other quantities

involved in the turbo-equalization scheme without sacrificing performance turns out to be a crucial

issue in the receiver design. This problem has been addressed in two steps.

First, a campaign of simulations was performed with a floating-point C model of the turbo-

equalizer in order to evaluate the dynamics of the values exchanged between the receiver functions.

The corresponding fixed-point formats used in our implementation are summarized in table 5.4. We

refer the reader to appendix D for a description of the S(a,b) notation.

Quantity Fixed-point format

Received symbols yn Q15

Channel taps hℓ Q15

Noise variance σ 2
w Q15

Soft symbol estimates xn Q15

Equalized symbols zn S(3,12)
Extrinsic LLRs Le(c

i
n) at the SISO equalizer output S(4,5)

Extrinsic LLRs Le(c
i
k) at the SISO decoder output S(3,5)

Table 5.4: Data quantization table

The previous step has allowed us to specify adequate representations for the quantities in the input

and output of each signal processing block in the turbo-equalizer. Second, additional studies regarding

the representation of the data manipulated internally by these different functions were then performed

case by case.

We now describe in greater details the implementation of the different signal processing blocks

composing the turbo-equalizer.
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5.3.3 The soft mapping module

We recall that the soft mapping module is in charge of computing the soft symbol estimates {x̄n}
from the set of prior LLRs {La(ci

n)} delivered by the SISO decoder at the previous iteration. The soft

estimates are computed assuming a signal set with unit power σ 2
x = 1. Hence, they fit naturally well

into the DSP native Q15 representation. The mapping equations are summarized in the upper part of

table 5.5.

Soft mapping equations Re(xn) = 1√
2

tanh
(

La(c
1
n)

2

)

Im(xn) = 1√
2

tanh
(

La(c
2
n)

2

)

Soft demapping equations Le(c1
n) = 4√

2(1−µ)
Re(zn)

Le(c2
n) = 4√

2(1−µ)
Im(zn)

Table 5.5: Soft mapping and demapping equations for QPSK modulation with Gray labelling.

We note that the mapping operation makes use of the non linear mathematical tanh(ℓ/2) function.

Since this function does not exist in the DSP instruction set, it has to be tabulated in RAM. Experi-

ments have shown that a quantization range ℓ ∈ [−8.0, . . . ,+8.0) with a quantization step ∆ℓ = 1/32

yield virtually no performance degradation with respect to the unquantized implementation. In addi-

tion, this choice has the advantage of matching directly the fixed-point format of the extrinsic LLRs

delivered by the SISO decoder, which are quantized in S(3,5) representation. We then obtain a look-

up table with 512 entries for the tanh(ℓ/2) function.

The soft symbol mapper also calculates the variance σ 2
x of the soft symbol estimates {x̄n}, a

quantity which actually measures the reliability of these estimates. σ 2
x is computed using the sample

variance estimator, assuming E(x̄n) = 0 and σ 2
x = 1. We obtain

σ2
x =

1
Npay

Npay−1

∑
n=0

|x̄n|2 (5.3)

By definition (see section 4.3.1), σ 2
x satisfies the inequalities 0 ≤ σ 2

x ≤ 1. Hence, it is quantized in

Q15 representation.

5.3.4 The MMSE IC-LE equalizer

Implementing the MMSE IC-LE equalizer proved to be a challenging task. Obtaining a fixed-point

implementation exhibiting a small degradation with regard to an ideal unquantized receiver was all

the more important that the overall turbo-equalization scheme critically relies on the equalizer perfor-
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mance. A detailed analysis was conducted in order to select the most promising approach for a DSP

implementation, between a time-domain and frequency-domain realization of the equalizer [105]. It

was found that the two systems have approximately the same complexity in our context. We first

investigated the frequency-domain approach. However, accuracy problems were encountered with

divisions, owing to important scaling operations required by the (I)FFT operations. Hence, we finally

turned our attention to the time-domain implementation of the MMSE IC-LE.

The MMSE IC-LE equalizer was realized using Np = 32 taps for the feedforward filter and Nq =

32 + 16 − 1 = 47 taps for the feedback filter respectively. The coefficients were computed using

the low-complexity method described in section 4.3.4 and relying on the Fast Fourier Transform. In

this case, the MMSE IC-LE introduces a restitution delay ∆ = 16. Table 4.7 in the previous chapter

summarizes the main steps of the equalization process. Simulations were performed with a floating-

point C model of the equalizer in order to determine the number of bits required for the filter taps

{pk} and {qk}. We found that the S(3,12) fixed-point format was well-suited to accurately represent

these quantities.

5.3.5 The soft demapping module

The soft demapping module extracts extrinsic LLRs Le(ci
n) from the equalized samples {zn}. The

demapping equations are shown in the lower part of table 5.5. Note that the a priori LLRs La(ci
n) are

not required for a QPSK signal set. In fact, the extrinsic LLRs are computed using 16 bits and finally

saturated in S(4,5) representation to match the fixed-point format expected at the decoder input.

5.3.6 The SISO decoder

The SISO convolutional decoder implements the Max-Log-MAP decoding algorithm [144]. The no-

tations used in this subsection closely follows those introduced in chapter 3 section 3.2.3 to describe

the turbo-equalization scheme for BICM.

One-shot decoding is performed here on the whole coded sequence, thus maximizing computation

efficiency at the expense of higher storage requirements with respect to a sliding-window implementa-

tion. The decoder proceeds in three steps. The backward recursion is performed first, and the resulting

backward state metrics Bk(v) at all nodes v in the trellis are stored in RAM. Then, the decoder per-

forms simultaneously the forward recursion and the calculation of the a posteriori LLRs L(ci
k) on the

coded bits. During the forward recursion, only the forward path metrics for the previous and current

state Ak−1(v) and Ak(v) need to be stored. This requires only 8 memory words in our application.

Finally, extrinsic LLRs Le(ci
k) on the coded bits as well as hard decisions b̂k on the information bits

(thanks to the systematic property of the code) are extracted from the a posteriori LLRs. It is worth
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noting that no additional storage is required for the transitions metrics Γk(v → v′) since they admit

here a simple expression and are thus recomputed at each trellis step during the backward and forward

recursion.

Since the state metrics Ak(v) and Bk(v) are represented by finite fixed-point values and accumulate

during the forward and backward recursions, care must be taken to avoid overflows during the com-

putation and storage of the metrics. Several remedies are known to this problem, the most common

approach involving subtracting the value of one metric (usually the one with the largest value) to the

other metrics at each step in the trellis. We considered here an interesting alternative approach which

has the advantage of not requiring any explicit normalization operation at all.

This method extends techniques used for the Viterbi algorithm to the Max-Log-MAP algorithm.

It is well known that for the Viterbi algorithm, the difference between state metrics remains bounded

in magnitude by a fixed quantity δM at each time instant k (see e.g. [87, 156]). The key idea here is

not to invest to avoid overflow, but rather to accommodate the overflow so that it does not affect the

accuracy of the results. This is accomplished by using two’s complement arithmetic (see appendix D)

with a number of bits sufficient to represent the maximum difference δM. Similar properties have been

shown to hold for the Max-Log-MAP and Log-MAP algorithms in [129] and [33] respectively. This

solution is particularly attractive since the C5509 fixed-point DSP intrinsically uses two’s complement

arithmetic over 16 bits for its computations. Hence, the problem here involves finding the minimum

number of bits necessary to represent the quantities used in the decoding process so as to make sure

that they fit within the 16-bit DSP format. The latter condition prevents overflows during metric

accumulation and LLR computation.

Several upper bounds are known for δM, which depend on the code characteristics. However, they

are usually not tight. Here, we used the experimental method proposed by Boutillon et al in [33] to

find the exact maximum values assumed by the partial state metrics, a posteriori LLRs and extrinsic

LLRs during decoding respectively. The following properties were obtained.

Properties: let the input prior LLRs La(ci
k) be in the range −M ≤ La(ci

k) < M. Then we have

−3M ≤ Ak(v) < 3M−1 (5.4)

−3M ≤ Bk(v) < 3M−1 (5.5)

−5M ≤ L(ci
k) < 5M−1 (5.6)

−4M ≤ Le(c
i
k) < 4M−1 (5.7)

In other words, if n bits are required to represent the input a priori LLRs (sign included), the partial

state metrics Ak(v) and Bk(v) require in turn n+2 bits, the a posteriori LLRs L(ci
k) require n+3 bits,

and the extrinsic Le(ci
k) finally require n + 2 bits to avoid any overflow during the decoding process.
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We stress that these properties only hold for the convolutional code considered in our application.

Similar analysis should be carried out for other codes.

Now if we choose to represent the input LLRs with 10 bits, the computation of the a posteriori

LLRs require 13 bits, a value which remains lower than the 16-bit accuracy offered by the DSP. In this

case, normalization is accomplished in a transparent way by the processor. This justifies our choice

to quantize the a priori LLRs using only 10 bits, in S(4.5) representation, at the decoder input. In this

case, the updated extrinsic LLRs delivered by the decoder are in fact internally computed in S(6.5)

format. Hence, these quantities have to be clipped to the range [−9.0,+9.0) to match the S(3.5)

fixed-point format expected at the input of the soft mapping module.

5.4 System performance

We finally examine in this section the storage requirements as well as the maximum bit rate achievable

by our DSP implementation. Some experimental results are also provided in order to measure the

performance loss obtained with respect to an ideal (unquantized) floating-point receiver.

5.4.1 Achievable bit-rates and storage requirements

Table 5.6 summarizes the average number of DSP cycles required to perform the different signal pro-

cessing functions in the turbo-equalizer. These measurements were obtained using the optimization

level -o3 of Code Composer Studio C Compiler. The total number of cycles per iteration is also shown.

Function Average number of cycles

SISO mapping 17258 Tc

Time-domain equalization 115965 Tc

SISO demapping 21835 Tc

Interleaving/Deinterleaving 6157 Tc each

SISO decoding 126977 Tc

Total 294349 Tc

Table 5.6: Average number of DSP cycles per subfunction of the turbo-equalization scheme.

We observe that one iteration of the turbo-equalizer requires in average 294349 DSP cycles. Since

one DSP cycle is executed in 8.33 ns (table 5.1), one iteration is performed in about 2.45 millisec-

onds. Taking into account the fact that one burst conveys 510 information bits, we obtain a maximum

achievable information bit-rate of about 207 Kbits/s per iteration, or, equivalently, 41 Kbits/s with 5
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iterations. To the best of the author’s knowledge, this is the first DSP implementation result reported

so far in the literature.

A close look at these timings reveals that the SISO equalizer and decoder account for 53% and

43% of the total running time per iteration respectively. Higher data rates are thus to be expected

with proper assembly language programming. In particular, it would be worth optimizing the decoder

implementation by taking advantage of the dedicated Add-Compare-Select instructions offered by the

C5509 DSP.

Regarding now the storage requirements, our implementation has a code size of 3747 words (we

recall that 1 word = 16 bits) and uses an overall amount of 10118 words in data memory. These values

are fully compatible with the 32 Kwords of on-chip DARAM available on the C5509 device (table

5.1). We emphasize that no particular attempt was made in order to optimize the storage requirements.

In particular, unused memory is not shared between separate processing functions. A clever reuse of

memory could yield some savings.

5.4.2 Experimental results

In order to compare the performance of our fixed-point DSP implementation with an ideal (unquan-

tized) floating-point C model of the receiver, simulations were conducted with the two systems over

three different channel models:

• the moderate-ISI time-invariant Porat channel model, with complex impulse response

h = {2−0.4 j,1.5+1.8 j,1,1.2−1.3 j,0.8+1.6 j}

• the severe-ISI time-invariant Proakis C channel model, with impulse response

h = {0.227,0.460,0.688,0.460,0.227}

• the time-varying quasi-static EQ6 channel model, with 6 taps of equal average power

The results are shown in figures 5.6 to 5.8 at the first and fifth iterations respectively. We observe

that our fixed-point DSP receiver exhibits virtually no performance degradation in comparison with

the floating-point implementation. These results were further confirmed by additional simulations

over other channel models. We recall that better performance could be obtained over the Proakis C

channel by considering larger interleavers (see for example the simulation results in section 4.5.1).
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Figure 5.6: BER performance with 5 iterations over the Porat static channel model.
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Figure 5.7: BER performance with 5 iterations over the Proakis C static channel model.
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Figure 5.8: BER performance with 5 iterations over the EQ6 quasi-static channel model.

5.5 Concluding remarks

We have described in this chapter the implementation of the MMSE IC-LE turbo-equalizer on a low-

cost fixed-point DSP with low power consumption. Using only C programming, a promising data rate

of 41 Kbits/s has been achieved with 5 iterations. In addition, the fixed-point implementation does

not exhibit any performance loss with respect to an ideal unquantized receiver. These results clearly

demonstrate the possibility of implementing low-complexity turbo-equalization structures in practice

on portable terminals.

This study constitutes the first step towards the realization of a demonstration platform. However,

much work remains to complete this objective. In particular, a carefully optimized assembly language

implementation will be necessary in order to further improve the data rate. Estimation of the channel

characteristics (noise variance and channel coefficients) as well as frame synchronization will also

have to be included.

The implementation of this turbo-equalizer on Field Programmable Gate Arrays (FPGA) consti-

tutes another interesting perspective with a view to achieving higher data rates compatible with the

requirements of broadband wireless transmissions. A flexible solution in this context involves realiz-

ing the computation of the equalizer coefficients on a general purpose DSP core, and then performing

the costly filtering operations directly in hardware [147, chap. 5]. The DSP core may then be used to
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perform other modem functions as well. However, hardware complexity is an increasing function of

the number of bits used to represent the data. This calls for additional studies in order to determine the

minimum wordlength that is really required at each stage of the turbo-equalization process without

compromising the overall performance too much.





Chapter 6

Conclusions

Summary

This work was motivated by the desire to achieve reliable transmission with bandwidth-efficient coded

modulation schemes over frequency-selective channels.

We have seen in chapter 3 that an optimal receiver realizing equalization and decoding in a joint

manner is prohibitively complex to implement in the presence of interleaving. Hence, the conven-

tional approach involves performing the equalization task first, followed by the decoding operation

and preferably with an exchange of soft information in between the two functions. We have then in-

troduced the turbo-equalization scheme, where equalization and decoding are combined in an iterative

process so that each operation benefits from the information delivered by the other. Significant perfor-

mance gains have been observed with respect to the conventional approach. We have investigated the

theoretical asymptotic performance of the turbo-equalizer in the presence of perfect a priori informa-

tion (an assumption that holds at high SNR) and formally proved that the iterative scheme then essen-

tially converts the ISI channel into an ISI-free channel without noise enhancement, thereby achieving

the ideal matched-filter bound. For the particular case of a fully-interleaved multipath Rayleigh fading

channel, we have also shown that the turbo-equalizer is able to exploit the diversity offered both by

the multipath propagation and by the outer coding scheme. We have finally applied a semi-analytical

analysis tool, the EXIT chart, to the turbo-equalization scheme in order to gain more insight into the

convergence behavior of the iterative process. We have examined in particular the influence of the

channel and outer convolutional code characteristics, and observed that there exists a trade-off to find

between good asymptotic performance and early convergence of the turbo-equalization process.

Although the turbo-equalizers studied in chapter 3 constitute attractive receivers in the context of

bandwidth-efficient transmissions over ISI channels, they rely on trellis-based optimum MAP equaliz-

133
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ers whose complexity becomes rapidly untractable as the number of channel taps increases, especially

when high-order modulations are considered (which is typical of bandwidth-efficient transmission

schemes). Hence, reduced-complexity turbo-equalization schemes have been investigated in chapter

4. Several filtering-based equalizers optimized according to the MMSE criterion have been intro-

duced, which share the common property of accounting explicitly for the presence of a priori informa-

tion about the transmitted data (available from the iterative process) to adapt the equalization strategy

accordingly. A novel equalizer, the MMSE IC-LE, has been derived both in infinite-length form as

well as under finite-length realization constraints. We have furthermore established the equivalence

of the finite-length implementation with another similar equalizer introduced earlier in a somewhat

heuristic manner in the literature. Our analyses have shown that MMSE turbo-equalizers offer an at-

tractive alternative to MAP turbo-equalizers for multilevel coded transmissions over long delay spread

channels. In addition, channels with a large (50 or more) number of coefficients can be efficiently ad-

dressed by a frequency-domain realization of the turbo-equalizer. We have also noticed that MMSE

turbo-equalizers may suffer from performance losses over some severe ISI channels, depending in

particular on the bit-labelling strategy considered (for BICM). However, it should be noted that such

channels are seldom encountered in many practical transmission systems.

We have finally described the implementation of a low-complexity MMSE turbo-equalizer on a

low-cost fixed-point DSP which is typically targeted towards portable terminals such as 2.5G–3G

mobile phones. Using only C programming, a promising data rate of 41 Kbits/s has been achieved

with 5 iterations. In addition, the fixed-point implementation does not exhibit any performance loss

with respect to an ideal unquantized receiver. These results demonstrate the possibility of implement-

ing low-complexity turbo-equalization structures on portable terminals in practice, and also offer an

interesting perspective for the realization of an FPGA prototype able to work at significantly higher

data rates. The latter may constitute an attractive receiver solution for broadband wireless systems

operating in non-line-of-sight environments.

Future directions

A natural direction of future research is the extension of the MMSE IC-LE turbo-equalization scheme

to multiple-input multiple-output (MIMO) systems, where the turbo-equalizer could fully exploit the

diversity offered by a rich-scattering multipath environment.

We have purposely disregarded the problem of channel estimation in our work. However, this

issue should not be overlooked in practice, and it is desirable to examine in particular the robustness

of MMSE turbo-equalizers with respect to a mismatched estimation. Another interesting research

topic involves investigating the possibility of taking explicitly advantage of a priori information in the

channel estimation process, just as we do in the derivation of the equalizer. Solutions in this direction
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have been reported for example in [133], where the authors propose an improved form of the standard

RLS adaptive algorithm suitable for fast-varying fading channels.

We have seen that MMSE turbo-equalizers may exhibit performance losses over severe ISI chan-

nels, especially when high-order modulations are used. It is the author’s belief that the potential of

MMSE equalization in the presence of a priori information has not been fully exploited yet, and

that better equalizers remain to be found. Another approach also exists, which involves transforming

a severe channel into a channel well-suited for MMSE turbo-equalization. In particular, a form of

channel-independent precoding was suggested in [37], where frequency-domain interleaving is per-

formed at the transmitted side to appropriately condition the channel. Frequency-domain equalization

is then used at the receiving unit. It would be interesting to measure precisely the performance gains

(if any) that could be obtained with this approach for frequency-domain MMSE turbo-equalizers op-

erating over severe channels.

A novel turbo-equalizer able to deal with multilevel modulations and long delay spread channels

has recently been proposed in [82]. This turbo-equalizer relies on a LISt-Sequential (LISS) SISO

equalizer using a modified stack algorithm operating on a tree. It would be interesting to further

investigate this solution and examine in particular how it compares with MMSE turbo-equalization

schemes, both from a performance and complexity point of view, in the context of broadband wireless

transmissions.

Finally, we have seen from the EXIT chart analysis that the parameters of the outer error-correcting

code involved in the turbo-equalization scheme have an important impact on the convergence behav-

ior of the overall iterative equalization and decoding process. Given a channel model and a SISO

equalization algorithm, it would be desirable to optimize the characteristics of the outer code so as to

yield an earlier convergence threshold without affecting the asymptotic performance too much. This

issue was briefly examined in [174]. A more general framework for this problem was introduced in

[164] where it is shown that code optimization can be interpreted as a curve-fitting procedure on EXIT

charts. Several solutions have been suggested in order to construct coding schemes with prescribed

convergence properties. Applying this method in a turbo-equalization context constitutes an interest-

ing topic of research when the channel characteristics are known in advance, as happens for example

with magnetic recording systems.





Appendix A

Derivations of the equalizers of chapter 4

This appendix groups together the derivations of the MMSE equalizers introduced in chapter 4. We

shall on several occasions use the rules of derivation with respect to complex-valued vectors. For

convenience, these rules are summarized in table A.1. We recall that z∗ and zH denote the conjugate

and hermitian transpose of a vector z respectively.

f (z) ∂ f (z)
∂z

∂ f (z)
∂z∗

aTz = zTa a 0

aTz∗ = zHa 0 c

zHz = zTz∗ z∗ z

zHMz = zTMTz∗ MTz∗ Mz

Table A.1: Derivatives of some important functions with respect to a complex-valued vector.

A.1 Derivation of the finite-length time-varying MMSE equalizer

We have to solve the following optimization problem

(pn, in) = arg min
(pn,in)

E
(

|zn − xn−∆|2 |La,[n−∆]

)

(A.1)

An important observation is in order here. Since the set of a priori LLRs La,[n−∆] does not include

the LLRs relative to the considered data symbol xn−∆ at time n, we have

E
(
xn−∆|La,[n−∆]

)
= E (xn−∆) = 0 (A.2)

var
(
xn−∆|La,[n−∆]

)
= var(xn−∆) = σ 2

x (A.3)
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In order to simplify the notations, we define

Ea(xn) , E
(
xn|La,[n−∆]

)
(A.4)

for the following calculations in this section.

We begin by developing the expression of the cost function to minimize

ε2
n = Ea

(

|zn − xn−∆|2
)

= Ea

(∣
∣pT

n yn − in − xn−∆

∣
∣
2
)

(A.5)

= pH
n Ea

(
ynyH

n

)
pn −pT

n Ea (yn(in + xn−∆)∗)−pH
n Ea (y∗n(in + xn−∆))+Ea

(

|in + xn−∆|2
)

(A.6)

Let us develop the different terms that appear in the cost function. Using (4.11), we first obtain

Ea

(
ynyH

n

)
= Ea

(
[h∆ xn−∆ +Hx̃n +wn][h∆ xn−∆ +Hx̃n +wn]

H
)

(A.7)

= σ 2
x h∆hH

∆ +HEa

(
x̃nx̃H

n

)
HH +σ 2

w I (A.8)

where the second line comes from definition (4.12) and property (A.3), and where we have assumed

that the noise samples are uncorrelated and independent of the transmitted data. Regarding the second

and third terms, we have using (4.11) and (A.3)

Ea

(
yn(i

∗
n + x∗n−∆)

)
= Ea ([h∆ xn−∆ +Hx̃n +wn](in + xn−∆)∗) (A.9)

= σ 2
x h∆ +HEa(x̃n)i

∗
n (A.10)

Using finally (A.2) and (A.3) the fourth term simplifies into

Ea

(

|in + xn−∆|2
)

= |in|2 +σ 2
x (A.11)

The optimization problem (A.1) is solved using standard minimization techniques. Setting ∂ε 2
n/∂ in =

0, we first obtain

in = pT
n HEa(x̃n) (A.12)

Now setting ∂ε2
n/∂pn = 0 and exploiting the previous result yields

[
H(Ea(x̃nx̃H

n )−Ea(x̃n)Ea(x̃
H
n ))HH +σ 2

x h∆hH
∆ +σ 2

w I
]

p∗
n = σ 2

x h∆ (A.13)

Let us introduce the J × J covariance matrix Cx̃x̃,n of the vector x̃n at time n conditioned to the LLRs

set La,[n−∆]. This matrix admits the following expression

Cx̃x̃,n , Cov
(
x̃nx̃H

n |La,[n−∆]

)
= Ea(x̃nx̃H

n )−Ea(x̃n)Ea(x̃
H
n ) (A.14)

= diag
{

υ2
n , . . . ,υ2

n−∆+1,0,υ2
n−∆−1, . . . ,υ

2
n−J+1

}
(A.15)
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where the second line follows from definitions (4.3) and (4.12), and from the assumption that a priori

LLRs belonging to different data symbols xk and xn are independent1, viz.

E
(
xnx∗k |La,[n−∆]

)
=







E (xn|La,n)E
(
x∗k |La,k

)
= xnx∗k for k 6= n

E
(

|xn|2 |La,n

)

= υ2
n + |xn|2 for k = n

(A.16)

From (A.13) and (A.14), we finally obtain the following expression for the optimum feedforward filter

p∗
n = σ 2

x [HCx̃x̃,nHH +σ 2
x h∆hH

∆ +σ 2
w I]−1h∆ (A.17)

To complete the description of the equalizer, we need to derive the value of the minimum mean-

square error at the equalizer output, as well as the expression of the parameters (µn,ν
2
n ) required by the

SISO symbol demapping device. We recall that the last two parameters are obtained by considering

that the equalized sample zn at time n may be written as (see section 4.1.2)

zn = µnxn−∆ +ηn (A.18)

where ηn is an additive perturbation term encompassing filtered noise and residual ISI, that we sup-

pose uncorrelated with xn−∆ and Gaussian-distributed with parameters N (0,ν 2
n ) at time n. From the

discussion in section 4.2, we readily obtain that the time-varying bias factor µn is given by

µn = hT
∆pn = pT

n h∆ (A.19)

Finding ν2
n is a little more involved. First note that using property (A.3) we can write

ν2
n = Ea

(

|zn −µnxn−∆|2
)

= Ea(|zn|2)−σ 2
x µ2

n (A.20)

For the subsequent calculations, it is convenient to express zn as follow

zn = pT
n (yn −HEa(x̃n)) (A.21)

where we have used expression (A.12) to obtain the previous result. Developing the term Ea(|zn|2)
then yields

Ea(|zn|2) = pT
n Ea

(
[yn −HEa(x̃n)][yn −HEa(x̃n)]

H
)

p∗
n (A.22)

= pT
n [H(Ea(xnxH

n )−Ea(x̃n)Ea(x̃
H
n ))HH +σ 2

w I]p∗
n (A.23)

= pT
n [HCx̃x̃,nHH +σ 2

x h∆hH
∆ +σ 2

w I]p∗
n (A.24)

= pT
n (σ 2

x h∆) = σ 2
x µn (A.25)

1Such an assumption is justified by the presence of interleavers in a turbo-equalization scheme.
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The second line follows from definitions (4.11) and (4.12). The third line follows from (A.14) and the

fourth line from (A.17) and (A.19). We obtain the following closed-form result for ν 2
n

ν2
n = σ 2

x µn(1−µn) (A.26)

To obtain the minimum MSE ε2
n , we finally note that combining (A.18) with (A.5) yields

ε2
n = Ea

(

|(1−µn)xn−∆ +ηn|2
)

= σ 2
x |1−µn|2 +ν2

n (A.27)

From (A.26), we readily obtain the result

ε2
n = σ 2

x (1−µn) (A.28)

This completes the description of the equalizer.

In fact, we can go a little step further and express the optimum feedforward filters coefficient

vector pn as a function of the covariance matrix Cxx,n of the vector xn, conditioned to the full set of

a priori LLRs denoted by La. Note that this new set includes the LLRs relative to the symbol xn−∆

at time n. The resulting solution will prove to be useful in identifying the similarities between this

equalizer and the alternative solution proposed in section 4.3.

We begin by introducing a new coefficient vector p̃n defined by

p̃∗
n = σ 2

x [HCxx,nHH +σ 2
w I]−1h∆ (A.29)

where the covariance matrix Cxx,n is given by

Cxx,n , Cov
(
xnxH

n |La

)
= diag

{
υ2

n , . . . ,υ2
n−J+1

}
(A.30)

Following the approach of [175], we shall now show that the coefficients vectors pn and p̃n are in fact

equivalent up to a time-varying scalar factor λn. We first observe that the following relationship holds

between the matrices Cxx,n and Cx̃x̃,n

Cxx,n = Cx̃x̃,n +υ2
n−∆ e∆eH

∆ (A.31)

where we recall that e∆ is a unit vector having a 1 in position ∆. Inserting this expression into the form

of the optimum filter pn given by equation (A.17) yields

p∗
n = σ 2

x

[
HCxx,nHH +σ 2

w I+(σ 2
x −υ2

n−∆)h∆hH
∆

]−1
h∆ (A.32)

Invoking Woodward’s identity2 on the quantity in brackets, using (A.29) and after some algebraic

2(A+uv
H)−1 = A

−1 − A
−1

uv
H

A
−1

1+vHA−1u
.
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manipulations, one finally obtains the desired result, viz.

pn = λn p̃n (A.33)

with

λn =
σ2

x

σ2
x +(σ 2

x −υ2
n−∆

)µ̃n

(A.34)

and where we have introduced the scalar quantity µ̃n, defined by analogy with expression (A.19) as

µ̃n = p̃T
n h∆ (A.35)

The other equalizer parameters are left unchanged.

A.2 Derivation of the infinite-length MMSE IC-LE

We have to solve the following optimization problem

(P(ω),Q(ω)) = arg min
(P(ω),Q(ω))

E
(

|zn − xn|2
)

(A.36)

under the constraint q0 = 0, q0 being the reference tap of the feedback filter Q(ω). Using (2.2), the

equalized sample zn at time n is given by

zn = ∑
k

pkyn−k −∑
k

qkxn−k = ∑
k

gkxn−k −∑
k

qkxn−k +∑
k

pkwn−k (A.37)

where xn is the soft estimate of the transmitted symbol xn, and where we have introduced the transfer

function G(ω) with coefficients {gk} defined by

G(ω) = H(ω)P(ω) (A.38)

Equivalently, we can write

zn = g0xn +ηn (A.39)

where ηn denotes the residual interference and filtered noise at the equalizer output. Note that the

parameters (µ,ν2) required by the SISO demapper (see section 4.1.2) are related to the quantities g0

and ηn by µ = g0 and ν2 = var(ηn). We can then define the signal to interference + noise ratio (SINR)

at the equalizer output as follows

SINR =
|µ|2 σ2

x

ν2
(A.40)
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Following [36] (see also [74]), we propose here to determine the optimum filters P(ω) and Q(ω)

which maximize the SINR at the equalizer output. In fact, the Max-SINR criterion constitutes a

generalization of the standard MMSE criterion, as will be apparent later, and results from the fact that

a filtering-based equalizer can be viewed as a device in charge of converting an ISI channel into an

equivalent AWGN channel.

We first note that since the quantities xn, wn and xn have zero mean (see section 4.3.1 for a proof

of the latter claim), we have

ν2 = var(ηn) = E
(

|ηn|2
)

(A.41)

Assuming that P(ω) is fixed, we search for the optimum form for Q(ω) which maximizes expression

(A.40), or equivalently minimizes ν2. Developing the expression of ν2, we obtain

ν2 = E





∣
∣
∣
∣
∣
∑
k 6=0

gkxn−k − ∑
k 6=0

qkxn−k +∑
k

pkwn−k

∣
∣
∣
∣
∣

2


 (A.42)

Defining ‖p‖2 = ∑k |pk|2 and assuming that the data xn as well as their soft estimates xn are indepen-

dent of the noise samples wn yields

ν2 = E





∣
∣
∣
∣
∣
∑
k 6=0

gkxn−k − ∑
k 6=0

qkxn−k

∣
∣
∣
∣
∣

2


+σ 2
w ‖p‖2 (A.43)

Recalling that the following property holds between xn and xn (see section 4.3.1)

Rxx,k = E
(
xnx∗n−k

)
= E

(
xnx∗n−k

)
= Rxx,k = σ 2

x δk (A.44)

we obtain from (A.43)

ν2 = σ 2
x ∑

k 6=0

|gk|2 +σ 2
x ∑

k 6=0

|qk|2 −2σ 2
x Re

{

∑
k 6=0

gkq∗k

}

+σ 2
w ‖p‖2 (A.45)

The last equation can be conveniently rewritten as follows

ν2 = (σ 2
x −σ 2

x ) ∑
k 6=0

|gk|2 +σ 2
x ∑

k 6=0

|gk −qk|2 +σ 2
w ‖p‖2 (A.46)

We observe that ν2 is minimum when ∑k 6=0 |gk −qk|2 is minimum, yielding the following solution for

Q(ω)

Q(ω) = G(ω)−µ = H(ω)P(ω)−µ (A.47)

Note that the constraint q0 = 0 is respected.

Having found the expression of Q(ω), we now search for the optimum feedforward filter P(ω)
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that maximizes expression (A.40). Substituting (A.47) into (A.46), we obtain

E
(

|ηn|2
)

= (σ 2
x −σ 2

x )(‖g‖2 −|µ|2)+σ 2
w ‖p‖2 (A.48)

where we have defined ‖g‖2 = ∑k |gk|2. Consequently, using (A.41) and (A.48) with (A.40) yields the

following SINR expression to maximize

SINR =
|µ|2 σ2

x

(σ 2
x −σ 2

x )(‖g‖2 −|µ|2)+σ 2
w ‖p‖2

(A.49)

Applying Parseval’s theorem, we have

‖p‖2 =
1

2π

∫ +π

−π
|P(ω)|2 dω (A.50)

‖g‖2 =
1

2π

∫ +π

−π
|H(ω)P(ω)|2 dω (A.51)

In addition, it follows from definition (A.38) that

µ = g0 =
1

2π

∫ +π

−π
H(ω)P(ω) dω (A.52)

Let us furthermore introduce the following spectral factorization (see chapter 2, theorem 2.1)

|F(ω)|2 = (σ 2
x −σ 2

x ) |H(ω)|2 +σ 2
w (A.53)

which always exists for σ 2
w > 0. Using (A.50)–(A.53) with (A.49), it is straightforward to show that

the SINR admits the following equivalent expression

SINR =
σ2

x
1
µ̃ +(σ 2

x −σ 2
x )

, with µ̃ =

∣
∣ 1

2π

∫ +π
−π H(ω)P(ω)dω

∣
∣
2

1
2π

∫ +π
−π |F(ω)P(ω)|2 dω

(A.54)

Hence, maximizing SINR requires maximizing µ̃ . Applying the Cauchy-Schwartz inequality3 to the

numerator of µ̃ yields

∣
∣
∣
∣

1
2π

∫ +π

−π
H(ω)P(ω)dω

∣
∣
∣
∣

2

=

∣
∣
∣
∣

1
2π

∫ +π

−π

H(ω)

F(ω)
F(ω)P(ω)dω

∣
∣
∣
∣

2

(A.55)

≤
(

1
2π

∫ +π

−π
|F(ω)P(ω)|2 dω

)(

1
2π

∫ +π

−π

∣
∣
∣
∣

H(ω)

F(ω)

∣
∣
∣
∣

2

dω

)

(A.56)

It follows that µ̃ (and hence SINR) is maximum when P(ω)F(ω) = λH∗(ω)/F∗(ω), where λ is a

3|
∫

AB|2 ≤ (
∫
|A|2)(

∫
|B|2) with equality iff A = λB∗.
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positive constant to be determined later. This yields the following solution for P(ω)

P(ω) = λ
H∗(ω)

|F(ω)|
2

= λ
H∗(ω)

(σ 2
x −σ 2

x ) |H(ω)|2 +σ 2
w

(A.57)

The maximum value of SINR is then given by

SINRmax =
σ2

x
1
µ̃ − (σ 2

x −σ 2
x )

, with µ̃ =
1

2π

∫ +π

−π

|H(ω)|2

(σ 2
x −σ 2

x ) |H(ω)|2 +σ 2
w

dω (A.58)

Note finally from (A.52), (A.57) and (A.58) that the following relation holds between µ and µ̃

µ = g0 = λ µ̃ (A.59)

Different equalizers are obtained depending on the value of λ . In particular, setting λ = 1 yields

the unbiased MMSE IC-LE. Here, we are interested in deriving the standard MMSE IC-LE and thus

search for the parameter λ that minimizes the mean-square error between zn and xn. We first write the

mean-square error ε2 at the equalizer output as follows using (A.39) and (A.59)

ε2 = E
(

|zn − xn|2
)

= E
(

|(λ µ̃ −1)xn +ηn|2
)

(A.60)

= σ 2
x |λ µ̃ −1|2 +ν2 (A.61)

The second line comes from definition ν2 = E
(

|ηn|2
)

and from the statistical properties of the soft

data estimates xn established in section 4.3.1. From definition (A.40) and result (A.58), we have

ν2 =
|λ µ̃|2 σ2

x

SINRmax

= λ 2µ̃[1− µ̃(σ 2
x −σ 2

x )] (A.62)

Combining (A.61) and (A.62) yields the following expression of ε2 as a function of λ

ε2 = λ 2µ̃[1− µ̃(σ 2
x −σ 2

x )]+σ 2
x |λ µ̃ −1|2 (A.63)

Setting ∂ε2/∂λ = 0, we finally obtain the solution

λ =
σ2

x

1+ µ̃σ 2
x

(A.64)

Substituting λ with its value in (A.63) and using (A.59), the minimum mean-square error at the

equalizer output is given by

ε2 = σ 2
x (1−µ) (A.65)
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Combining (A.65) with (A.61) finally yields

ν2 = var(ηn) = σ 2
x µ(1−µ) (A.66)

This completes the derivation of the infinite-length MMSE IC-LE.

A.3 Derivation of the finite-length MMSE IC-LE

We have to solve the following optimization problem

(p,q) = arg min
(p,q)

E
(

|zn − xn−∆|2
)

(A.67)

where the equalized datum zn at the equalizer output at time n is given by

zn = pTyn −qTx̃n , with x̃n = xn −xne∆ (A.68)

We recall that e∆ is the unit vector having a 1 in position ∆. Hence, x̃n is simply the vector xn of soft

estimates at time n but whose component ∆ has been set to zero. The optimization problem (A.67)

can be solved using the Max-SINR criterion, just as we did for the infinite-length MMSE IC-LE in

the previous section. It suffices to replace the spectral factorization (A.53) by a Cholesky factoriza-

tion (see [107]). For the sake of simplicity however, we rather resort here to standard minimization

techniques.

Expression (A.68) can be expressed in more compact form as follows

zn = aTbn (A.69)

where we have introduced the vectors

a =

(

p

−q

)

and bn =

(

yn

x̃n

)

(A.70)

Developing the expression of the mean-square error ε 2 = E
(

|zn − xn−∆|2
)

, we obtain

ε2 = σ 2
x +aHE

(
b∗

nbT
n

)
a−aTE

(
bnx∗n−∆

)
−aHE (b∗

nxn−∆) (A.71)

Setting ∂ε2/∂a = 0 yields the solution

E
(
bnbH

n

)
a∗ = E

(
bnx∗n−∆

)
(A.72)
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or equivalently the expanded system




E

(
ynyH

n

)
E

(

ynx̃
H

n

)

E
(
x̃nyH

n

)
E

(

x̃nx̃
H

n

)





(

p∗

−q∗

)

=

(

E
(
ynx∗n−∆

)

E
(
x̃nx∗n−∆

)

)

(A.73)

Using expression (2.2), one readily shows that

E
(
ynyH

n

)
= σ 2

x HHH +σ 2
wI (A.74)

E
(
ynx∗n−∆

)
= σ 2

x h∆ (A.75)

where h∆ denotes column ∆ of convolution matrix H. In addition, exploiting the correlation properties

of the data estimates xn established in section 4.3.1, we have

E
(

x̃nx̃
H

n

)

= σ 2
x (I− e∆eH

∆ ) (A.76)

E
(

ynx̃
H

n

)

= σ 2
x H(I− e∆eH

∆ ) (A.77)

where the expression e∆eH
∆

defines a square matrix with a 1 in position (∆,∆) and zeros everywhere

else. The linear system (A.73) may then be rewritten

(

σ2
x HHH +σ 2

wI σ 2
x H(I− e∆eH

∆
))

σ2
x (I− e∆eH

∆
)HH σ2

x (I− e∆eH
∆
)

)(

p∗

−q∗

)

=

(

σ2
x h∆

0

)

(A.78)

from which we obtain the solutions

q = HTp (A.79)

p∗ = σ 2
x [(σ 2

x −σ 2
x )H(I− e∆eH

∆ )HH +σ 2
wI]−1h∆ (A.80)

Let us define the vector p̃

p̃∗ = σ 2
x [(σ 2

x −σ 2
x )HHH +σ 2

wI]−1h∆ (A.81)

Then invoking Woodward’s identity on the quantity in brackets in (A.80) and using (A.81) just as we

did in section A.1, we find that the optimum feedforward filter p can be equivalently rewritten as

p = λ p̃ with λ =
σ2

x

1+σ 2
x µ̃

(A.82)

where we have introduced the quantity

µ̃ = hT
∆p̃ (A.83)

In addition, by defining

µ = λ µ̃ (A.84)
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we obtain the following expression for the feedback filter q where the condition q∆ = 0 has been

imposed

q = HTp−µe∆ (A.85)

The parameters ν2 required by the SISO demapper and the minimum mean-square error ε 2 at the

equalizer output are calculated in exactly the same way as in section A.1 and we obtain

ν2 = σ 2
x µ(1−µ) (A.86)

and

ε2 = σ 2
x (1−µ) (A.87)

This completes the derivation of the finite-length MMSE IC-LE.

A.4 Derivation of the frequency-domain MMSE IC-LE

Consider the optimization problem

(Pk,Qk) = arg min
(Pk,Qk)

E
(

|Zk −Xk|2
)

for all k = 0, ...,N −1 (A.88)

subject to the constraint

q0 =
1
N

N−1

∑
k=0

Qk = 0 (A.89)

where q0 is the reference tap of the feedback filter with Discrete Fourier Transform (DFT) coefficients

{Qk}. We recall that the kth DFT coefficient Zk of the equalized sequence {zn} is given by

Zk = PkYk −QkXk , with Yk = HkXk +Wk (A.90)

= HkPkXk −QkXk +PkWk (A.91)

The total mean-square error ε2 after returning in the time-domain can be expressed as

ε2 =
1
N

N−1

∑
k=0

ε2
k , where we have defined ε2

k = E
(

|Zk −Xk|2
)

(A.92)

To minimize ε2, we simply need to minimize ε2
k for each component k separately.

We first write the cost function to minimize as follows

ε2
k = E

(∣
∣(HkPk −1)Xk −QkXk +PkWk

∣
∣2

)

+β

(

1
N

N−1

∑
n=0

Qn

)

(A.93)
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where we have used (A.91) and introduced the Lagrange multiplier β to account for constraint (A.89).

Assuming that the transmitted data symbols as well as their soft estimates are independent from the

noise samples, we obtain

ε2
k = E

(∣
∣(HkPk −1)Xk −QkXk

∣
∣2

)

+σ 2
w |Pk|2 +β

(

1
N

N−1

∑
n=0

Qn

)

(A.94)

Now taking into account the statistical properties of the soft estimates (see section 4.3.1), we have

ε2
k = σ 2

x |HkPk −1|2 +σ 2
x

[

|Qk|2 −HkQ∗
k −H∗

k Qk +Q∗
k +Qk

]

+σ 2
w |Pk|2 +β

(

1
N

N−1

∑
n=0

Qn

)

(A.95)

Setting ∂ε2
k /∂Qk = 0 in the previous expression yields

Qk = HkPk −1− β

σ2
x N

(A.96)

Applying constraint (A.89) we obtain the following value for β

β = σ 2
x

[
N−1

∑
n=0

HnPn −N

]

(A.97)

It follows that the optimum DFT coefficients of the feedback filter are given by

Qk = HkPk −µ with µ =
1
N

N−1

∑
n=0

HnPn (A.98)

Setting now ∂ε2
k /∂Pk = 0 in expression (A.95) yields the following relation, after simple algebra,

P∗
k

[

(σ 2
x −σ 2

x ) |Hk|2 +σ 2
w

]

= Hk

[
σ2

x −σ 2
x µ

]
(A.99)

where we have used definition (A.98) of µ . Since µ depends on Pk, solving the previous equation for

Pk requires introducing the quantities P̃k and µ̃ defined respectively by

P̃k =
H∗

k

(σ 2
x −σ 2

x ) |Hk|2 +σ 2
w

(A.100)

and

µ̃ =
1
N

N−1

∑
n=0

HnP̃n (A.101)
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Then equation (A.99) can be rewritten as follows

Pk = λ P̃k (A.102)

where λ is a scalar value given by

λ = σ 2
x −σ 2

x µ (A.103)

By noting from (A.101) and (A.102) that the following relation holds between µ and µ̃

µ = λ µ̃ (A.104)

we can express λ as a sole function of µ̃ (and hence P̃k) using (A.103), yielding

λ =
σ2

x

1+σ 2
x µ̃

(A.105)

To obtain the minimum mean-square error value ε 2 at the frequency-domain equalizer output, we

first substitute Pk and Qk with expressions (A.102) and (A.98) in equation (A.93). This yields after

simplifications

ε2
k = λ

|Hk|2

(σ 2
x −σ 2

x ) |Hk|2 +σ 2
w

[
λ +2σ 2

x −2σ 2
x

]
+ µ2σ2

x −2µσ 2
x +σ 2

x (A.106)

Inserting the previous expression into (A.92) and using (A.98) and (A.104), it follows that

ε2 =
1
N

N−1

∑
k=0

ε2
k = σ 2

x −2σ 2
x µ + µ(λ + µσ 2

x ) (A.107)

Then using (A.105), we finally come up with the desired result, viz.

ε2 = σ 2
x −σ 2

x µ = σ 2
x (1−µ) (A.108)

We also have to determine the parameter ν2 required by the SISO demapper. We recall that the

equalized sample zn at time n in the time-domain is given by

zn = µxn +ηn (A.109)

with var(ηn) = E
(

|ηn|2
)

= ν2. Hence, the minimum mean-square error ε2 at the equalizer output

admits the following expression

ε2 = E
(

|zn − xn|2
)

= E
(

|(µ −1)xn +ηn|2
)

= σ 2
x (1−µ)2 +ν2 (A.110)
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Combining (A.108) with the previous expression, we readily obtain the result

ν2 = ε2 −σ 2
x (1−µ)2 = σ 2

x µ(1−µ) (A.111)

This completes the derivation of the frequency-domain MMSE IC-LE.



Appendix B

On the asymptotic efficiency of

algorithms

On several occasions in this dissertation we use the “big oh” O-notation to describe the asymptotic

complexity of an algorithm. The precise meaning of this notation deserves some clarification. This

discussion follows the exposition given by Cormen et al. in [44, chap. 3].

Let T (n) be some measure of the complexity (typically an estimate of the running time) of an

algorithm with respect to the size n of some input parameter. We are concerned with how the com-

plexity of the algorithm increases as the size n of the input increases without bounds. Usually, an

algorithm that is asymptotically more efficient is expected to be the best choice for all but small input

sizes.

The O-notation gives an asymptotic upper-bound on the complexity of an algorithm, to within a

constant factor. For a given function g(n), we define by O(g(n)) the set of cost functions T (n) for

which there exist positive constants c and n0 such that

0 ≤ T (n) ≤ cg(n) for all n ≥ n0

The upper-bound provided by the O-notation may or may not be asymptotically tight, and describes

the worst-case complexity of an algorithm.
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Appendix C

The Forward-Backward algorithm

The so-called “BCJR-MAP” algorithm is an optimum symbol-by-symbol MAP decoding procedure,

originally devised by Balh et al. in 1974 [19]. It has recently evolved into a basic tool of central impor-

tance for the design of efficient soft-input soft-output (SISO) decoders to be used in iterative “Turbo"

receivers [24]. Thorough expositions of this algorithm and its common variants are now available

in many textbooks (see e.g. [23, 86, 188]). Hence, this appendix does not cover the BCJR-MAP

in its classical form, but rather attempts to provide an original exposition of the Forward-Backward

computation procedure, which lies at the core of the BCJR-MAP. The Forward-Backward algorithm

(FBA) is presented as a generic and efficient method for computing flows in a special kind of directed

graph called a weighted trellis. This particular framework avoids the need to manipulate probabilities,

and leads instead to a simple, graphical derivation of the algorithm, which builds upon the standard

terminology for directed graphs (see e.g. [44, app. B]). Our exposition closely follows some thought-

provoking lecture notes by McEliece [125]. For the interested reader, we mention that other insightful

presentations and generalizations of this algorithm can be found in [3, 98, 126].

C.1 Preliminary definitions

The following definitions build upon the tutorial expositions on the trellis structure of codes provided

by McEliece [124] and Vardy [182].

A trellis T (V,E) of rank n is a directed graph consisting of a set V of vertices, and a set E of

couples (v,v′) with v,v′ ∈V called edges. Every vertex is assigned a “depth”1 in the range {0,1, . . . ,n}.

1 One may think of the depth as a discrete time index in the context of decoding or sequence detection.
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➊ ➋
➌ ➍ ➌ ➎ ➌ ➏ ➌ ➐ ➌ ➑ ➌ ➒

➓

➔

→

➣

↔

↕

➙

➛

➜

➝

Figure C.1: An example of trellis with rank 5. Here, V0 = {A},V1 = {b,c}, E0,1 = {(A,b),(A,c)}, etc.

The set of vertices at depth i is denoted by Vi, and the whole vertex set V can be partitioned as

V = V0 ∪V1 ∪·· ·∪Vn

Each edge (v,v′) ∈ E connects a vertex v at depth i−1 to a vertex v′ at depth i for some i = 1,2, . . . ,n.

Multiple edges between pairs of vertices are allowed. The set of edges connecting vertices at depth

i−1 to those at depth i is denoted by Ei−1,i, so that E admits the partition

E = E0,1 ∪E1,2 ∪·· ·∪En−1,n

If e ∈ E is an edge connecting the vertices v and v′, we call v the initial vertex and v′ the final vertex of

e, and write init(e) = v and fin(e) = v′. For the ease of exposition, we shall assume that there is single

vertex of depth 0 called the source, denoted by A, as well as a single vertex of depth n called the sink,

denoted by B. These assumptions however may be safely relaxed to encompass more general trellis

structures. An trellis example is shown in figure C.1.

A path P of length k in the trellis from a vertex v0 ∈ V to a vertex vk ∈ V is an ordered set of

connected edges P = {e1,e2, . . . ,ek}, such that e1 begins at v0, ek ends at vk, and each consecutive pair

of edges (ei,ei+1) shares a common vertex vi at which ei ends and ei+1 begins. If P is such a path, we

write for short

P : v0 7→ vk

If in addition the path P passes through the intermediate vertex vi at some depth i, we write

P : v0
vi7→ vk

Finally, if the path P contains the edge ei ∈ Ei−1,i for some depth i, we write

P : v0
ei7→ vk
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Let us assume now that each edge e in the trellis is assigned a weight w(e), that we suppose to

be a real number. If P = {e1,e2, . . . ,ek} is a path of length k in T , its weight w(P) is defined as the

product of the individual weights of the component edges

w(P) = w(e1)w(e2) · · ·w(ek)

The fundamental quantities computed by the Forward-Backward algorithm are the flows. If v0 and vk

are vertices in a trellis, the flow from v0 to vk, denoted µ(v0,vk), is defined as the sum of the weights

of all paths connecting v0 to vk

µ(v0,vk) = ∑
P:v0 7→vk

w(P)

If there are no such paths, µ(v0,vk) is defined to be zero. Similarly, if v0, vi and vk are vertices in T ,

the constrained flow from v0 to vk through vi is denoted µvi
(v0,vk) and defined as

µvi
(v0,vk) = ∑

P:v0

vi7→vk

w(P)

Finally, if v0 and vk are vertices and ei is an edge in T , the constrained flow from v0 to vk through ei is

denoted µei
(v0,vk) and defined as

µei
(v0,vk) = ∑

P:v0

ei7→vk

w(P)

C.2 Exposition of the algorithm

The Forward-Backward algorithm offers a computational efficient solution to the following three

problems

1. Compute the flow from A to B, i.e.

µ(A,B) = ∑
P:A7→B

w(P)

2. For a given vertex vi ∈Vi, compute the flow from A to B through vi.

µvi
(A,B) = ∑

P:A
vi7→B

w(P)

3. For a given edge ei ∈ Ei−1,i, compute the flow from A to B through ei

µei
(A,B) = ∑

P:A
ei7→B

w(P)
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It is instructive to note that

∑
ei∈Ei−1,i

µei
(A,B) = ∑

vi∈Vi

µvi
(A,B) = µ(A,B) (C.1)

since each path from A to B must pass through exactly one of the vertices in Vi, or equivalently traverse

exactly one of the edges in Ei−1,i. Consequently, the solution to problem 1 is immediately obtained

as a by-product of the solutions to problems 2 and 3, which essentially involve in turn devising an

efficient method to compute the constrained flows µvi
(A,B) and µei

(A,B).

Given some intermediate vertex vi ∈V , it will prove to be mathematically convenient to define the

partial flows

αi(vi) = µ(A,vi) , βi(vi) = µ(vi,B)

By convention, we define α0(A) = βn(B) = 1. Then, the following two theorems completely describe

the Forward-Backward algorithm.

Theorem C.1 (Factorization of constrained flows). Given some vertex vi ∈V , we have

µvi
(A,B) = µ(A,vi) ·µ(vi,B) = αi(vi) ·βi(vi) (C.2)

Similarly, given some edge ei ∈ Ei−1,i with init(e) = vi−1 and fin(e) = vi, we have

µei
(A,B) = µ(A,vi−1) ·w(ei) ·µ(vi,B) = αi−1(vi−1) ·w(ei) ·βi(vi) (C.3)

Proof. Let us prove (C.2). Suppose that there are m paths, say F1,F2, . . . ,Fm, from A to vi, and n paths,

say G1,G2, . . . ,Gn, from vi to B. Then we count exactly mn paths from A to B, of the form Fi ✶ G j

where the operator ✶ denotes path concatenation, and we have

µvi
(A,B) = ∑

P:A
vi7→B

w(P)

=
m

∑
i=1

n

∑
j=1

w(Fi ✶ G j)

=
m

∑
i=1

n

∑
j=1

w(Fi) ·w(G j)

=

(
m

∑
i=1

w(Fi)

)(
n

∑
j=1

w(G j)

)

= µ(A,vi) ·µ(vi,B)

The proof for (C.3) is similar.

Theorem C.2 (Backward and forward recursions). The partial flow αi(vi) can be recursively com-
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puted using the forward recursion

αi(vi) = ∑
e∈Ei−1,i
fin(e)=vi

αi−1(init(e)) ·w(e) (C.4)

Similarly, the partial flow βi(vi) can be obtained recursively using the backward recursion

βi(vi) = ∑
e∈Ei,i+1

init(e)=vi

w(e) ·βi+1(fin(e)) (C.5)

Proof. We shall only prove (C.4) since a similar derivation holds for (C.5). Each path from A to vi in

the trellis must traverse exactly one edge e ∈ Ei−1,i, connecting some vertex vi−1 at depth i−1 to the

target vertex vi at depth i. Consequently, the partial flow αi(vi) = µ(A,vi) may be obtained as

αi(vi) = ∑
e∈Ei−1,i
fin(e)=vi

µe(A,vi)

Let P be any path from A to the initial vertex vi−1 = init(e) of one of the edges considered above. By

definition of the constrained flow µe(A,vi), we have

µe(A,vi) = ∑
P:A7→init(e)

w(P) ·w(e)

=

(

∑
P:A7→init(e)

w(P)

)

w(e)

= µ(A, init(e)) ·w(e)

= αi−1(init(e)) ·w(e)

which completes the proof.

Depending on the meaning assigned to the weights and flows in the trellis, different applications

of the Forward-Backward algorithm may arise. In particular, the original paper by Bahl et al [19]

presents the application of the FBA to the problem of estimating the a posteriori probabilities (APP)

of the states and transitions of a Markov source observed through a discrete memoryless channel.





Appendix D

On fixed-point arithmetic

In digital hardware, real numbers are stored in binary words which are finite-length sequences of

binary digits (1’s and 0’s). Interpretation of the binary word is described by the data type. Binary

words are commonly represented as either fixed-point or floating-point data types. Floating-point

data types are characterized by a sign bit, a fraction (or mantissa) field, and an exponent field. The

length of these fields is well standardized1 so that a number can be identified without ambiguity from

its binary word representation. Fixed-point data types are characterized by the word size in bits, the

location of the radix (binary) point, and whether the numbers are signed or unsigned. In contrast with

floating-point numbers, they do not explicitly include any scaling information (exponent), so that the

programmer is left with the interpretation of the number. A fixed-point data type is capable of finer

resolution than floating-point for the same binary word length, because of the extra bits available for

the mantissa. On the other hand, fixed-point numbers are limited in that they cannot simultaneously

represent numbers with very large or very small magnitude using a reasonable word length, so that

computations may fail to maintain sufficient accuracy. This appendix introduces some handy notations

to characterize fixed-point numbers, and exposes some fundamental rules of fixed-point arithmetic.

D.1 Unsigned fixed-point representation

We define the notation U(a,b) to indicate a fixed-point unsigned number with a bits of dynamic

(integer part) and b bits of precision (fractional part). When b = 0, we have an integer number. When

a = 0, the number is purely fractional. For a 6= 0 and b 6= 0, we have a mixed-mode fixed-point number.

Representing a U(a,b) fixed-point number requires N = a + b bits. The value of a particular N-bit

1A famous example is the IEEE Standard 754-1985 for binary floating-point arithmetic.
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number x = (x0, . . . ,xN−1) in U(a,b) representation is given by the expression

x =
1
2b

[
N−1

∑
n=0

xn2n

]

where xn represents the value of bit n of x. We use the convention that x0 and xN−1 denote the least

significant bit (LSB) and most significant bit (MSB) of the binary word respectively. The range of a

U(a,b) representation is therefore

0 ≤ x ≤ 2a −2−b

The resolution of the data type (smallest strictly positive representable number) is R(x) = 2−b.

D.2 Signed fixed-point representation

We distinguish between 3 possible binary encodings of signed numbers, namely: sign/magnitude,

one’s complement and two’s complement. We tacitly assume hereafter a two’s complement encoding.

We recall that two’s complement results from a bit inversion (one’s complement) followed the addition

of a 1.

The notation S(a,b) refers to a fixed-point signed number with a bits of dynamic and b bits of

precision. Representing an S(a,b) fixed-point number requires N = a+b+1 bits since one additional

bit is necessary to encode the sign in two’s complement format. The value of a particular N-bit number

x = (x0, . . . ,xN−1) in S(a,b) representation is given by

x =
1
2b

[

−2N−1xN−1 +
N−2

∑
n=0

xn2n

]

The corresponding range is then

−2a ≤ x ≤ +2a −2−b

with a resolution of R(x) = 2−b. Note that with two’s complement representation, one cannot discern

whether numbers are signed or unsigned by simple inspection since this information is not explicitly

encoded within the binary word.

The particular purely fractional number formats S(0,15) and S(0,31) are frequently encountered

when dealing with fixed-point DSP. They are called Q15 and Q31 representation, and have the respec-

tive ranges

−1.0 ≤ xQ15 ≤ +1.0−2−15 , −1.0 ≤ xQ31 ≤ +1.0−2−31
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D.3 Arithmetic operations

Table D.1 lists some fundamental rules of fixed-point arithmetic. When a rule applies both to unsigned

and signed representation, we use the notation X(a,b) where X stands either for U or S. The number

of bits required to represent the final result of an operation is specified, assuming that X(a,b) and

X(c,d) are M- and N-bit numbers respectively.

➞✙➟✲➠✲➡❀➢ ➤ ➥✲➦ ➤ ➧❀➨
➩■➫ ➫ ➭ ➯ ➭ ➲ ➳ ➵ ➸ ➺ ➻ ➯ ➼ ➽ ➾ ➯ ➭ ➲ ➳ ➚■➪ ➽ ➵ ➻ ➶ ➹➘➚■➪ ➽ ➵ ➻ ➶➚■➪ ➽ ➵ ➻ ➶ ➴ ➚■➪ ➽ ➵ ➻ ➶ ➚■➪ ➽ ➹✲➷ ➵ ➻ ➶➚■➪ ➽ ➹✲➷ ➵ ➻ ➶ ➬ ➹✲➷❊➻ ➭ ➯ ➸➬ ➹✲➷❊➻ ➭ ➯ ➸

➬ ➺ ➮ ➯ ➭ ➱ ➮ ➭ ➾ ➽ ➯ ➭ ➲ ➳ ✃✙➪ ➽ ➵ ➻ ➶ ❐■✃■➪ ➾ ➵ ➫ ➶❒ ➪ ➽ ➵ ➻ ➶ ❐ ❒ ➪ ➾ ➵ ➫ ➶ ✃✙➪ ➽ ➹ ➾ ➵ ➻ ➹ ➫ ➶❒ ➪ ➽ ➹ ➾ ➹✲➷ ➵ ➻ ➹ ➫ ➶ ➬ ➹ ❮✷➻ ➭ ➯ ➸➬ ➹ ❮✷➻ ➭ ➯ ➸
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Table D.1: Fixed-point arithmetic rules

This table deserves some remarks. We first note that addition and subtraction only make sense

for numbers with compatible fixed-point representation. Moreover, shifting operations may take one

of two possible interpretations depending on the context. Right/left shifting amounts to a “power-

of-2” multiplication/division respectively. The shifting operation can be implicit: the binary word

is left unchanged but the radix point location is tacitly moved to the left or to the right, so that the

interpretation of the number is modified. We call this shifting to reinterpret scaling. When the shifting

is explicit, the binary word is shifted to the right or to the left, some bits are discarded, and appropriate

bits (set to 0 or resulting from sign bit extension) are inserted to fill in the gap. The fixed-point

representation is left unchanged by the shift. We refer to this second operation as shifting to modify

scaling. Explicit right shifting is commonly used to increase the precision of a fixed-point number

just before performing a computation.

D.4 Additional definitions

We finally introduce a few notions that frequently arise when discussing fixed-point arithmetic issues.
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First, fixed-point numbers approximate arbitrarily precise real-world values with a fixed number

of bits. Consequently, fixed-point representation introduces quantization noise in the computations.

Moreover, the result of most operations on a fixed-point number typically requires a longer word

length than the number’s original format. When the result has to be put back into the original rep-

resentation, one must resort to rounding techniques which increase in turn the computational noise.

We usually identify 4 distinct rounding strategies, namely round towards zero, round towards nearest,

ceil rounding and floor rounding. Each one has its own benefits and disadvantages, depending on the

implementation’s context.

An underflow (respectively overflow) occurs when the result of a computation is too small (resp.

too large) so that it does not fit into the precision (resp. dynamic range) of the number representa-

tion. While underflows typically produce numbers equal to zero, exceeding the number representa-

tion range can lead to undesirable results. Fixed-point computation units usually treat this problem

by operating either in number saturation mode (the result is clipped to the maximum representable

value), or number wrapping mode (a positive number exceeding the allowed dynamic range becomes

negative, and vice-versa).
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Résumé

Cette thèse traite du problème de l’égalisation des modulations codées pour les transmissions haut-
débit sur canaux sélectifs en fréquence, sujets au phénomène d’interférence entre symboles. Nous con-
sidérons plus particulièrement la Turbo-Égalisation, qui instaure un échange réciproque d’information
entre l’égaliseur et le décodeur, et ce de manière itérative. Nous étudions dans un premier temps le
turbo-égaliseur MAP, qui utilise un égaliseur optimal au sens de la minimisation de la probabilité
d’erreur par symbole. Nous montrons que ce récepteur offre des gains de performances importants
en comparaison avec les récepteurs conventionnels où les opérations d’égalisation et décodage sont
généralement effectuées de manière disjointe. En contrepartie, la complexité du turbo-égaliseur MAP
devient rapidement prohibitive en présence de modulations à grand nombre d’états et sur des canaux
présentant des étalements temporels importants. En conséquence, nous nous intéressons à une sec-
onde classe de turbo-égaliseurs de moindre complexité et reposant sur des égaliseurs à base de filtres
linéaires, optimisés selon le critère MEQM. La nouveauté consiste ici à prendre en compte explicite-
ment la présence d’information a priori dans le calcul des coefficients des filtres, ce qui conduit à
des structures bien plus performantes que les égaliseurs MEQM classiques. Nos études montrent
que ce type de récepteur constitue une solution attractive pour les transmissions à grande efficac-
ité spectrale sur canaux sélectifs en fréquence. Finalement, nous présentons la mise en oeuvre d’un
turbo-égaliseur MEQM sur un DSP virgule-fixe et faible coût, le TMS320VC5509, typiquement des-
tiné aux terminaux mobiles. Nous obtenons ainsi un débit utile de 42 Kbits/s après 5 itérations avec
une implémentation en langage C, ce qui démontre la faisabilité de tels récepteurs avec les moyens
technologiques actuels.

Mots clés : égalisation, codage de canal, modulations codées, turbo-égalisation.

Abstract

This thesis deals with the problem of combining equalization with decoding for high data rate
bandwidth-efficient transmissions over frequency-selective channels. Specifically, we focus on Turbo-
Equalization which establishes an exchange of soft information between the equalizer and the decoder
in an iterative manner. We first consider MAP turbo-equalizers which rely on trellis-based equalizers
optimum in the sense of minimizing the symbol error probability. We show that these receivers achieve
significant performance gains over the conventional approach where equalization and decoding are
performed separately. However, the complexity of MAP turbo-equalizers becomes rapidly prohibitive
for transmissions with high-order modulations over long delay spread channels. Hence, we then inves-
tigate reduced-complexity turbo-equalizers relying on filtering-based equalizers optimized according
to the MMSE criterion. These equalizers share the common property of accounting explicitly for
the presence of a priori information in the computation of the optimum filters coefficients and thus
outperform classical MMSE equalizers. Our analysis shows that MMSE turbo-equalizers offer an at-
tractive alternative to MAP turbo-equalizers for multilevel coded transmissions over long delay spread
frequency-selective channels. We finally describe the implementation of an MMSE turbo-equalizer
on the low-cost fixed-point TMS320VC5509 DSP device which is typically targeted at portable ter-
minals. Using only C programming, a promising data rate of 42 Kbits/s has been achieved with 5
iterations. This result demonstrates the possibility of realizing such receivers in practice with current
hardware capabilities.

Keywords : equalization, channel coding, coded modulation, turbo-equalization.
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