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Résumé

La biologie systémique cherche à comprendre la dy-
namique cellulaire qui émerge des interactions des
constituantes cellulaires au cours du temps. La
modélisation et la simulation sont des méthodes fon-
damentales de ce domaine.
Nous nous inspirons de la proposition de Regev et
Shapiro (2002) consistant à appliquer le pi-calcul
stochastique comme langage formel de représentation
de connaissances biomoléculaires. Nos études por-
tent sur la modélisation à l´échelle moléculaire de
l’expression génétique bactérienne et s’avèrent perti-
nentes pour des organismes supérieurs. Nos points
de départs sont des études de cas concrets de la
régulation de la bascule génétique du phage lambda,
de la transcription et de la traduction. Ces études
révèlent l’utilité de concepts de programmation tels
que les objets concurrents et motivent une extension
du pi-calcul stochastique avec des motifs de réception.
Nous présentons une sémantique pour ce langage qui
attribue des châınes Markoviennes en temps continu
aux programmes. Nous validons nos modèles par des
simulations stochastiques.
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Résumé long

La biologie systémique cherche à comprendre la dynamique cellulaire qui
émerge des interactions des constituants cellulaires au cours du temps. La
modélisation et la simulation sont des méthodes fondamentales de ce do-
maine. Idéalement, les modèles informels peuvent être affinés en modèles
formels, permettant ainsi leur simulation. Ceci permet de valider la cohérence
des connaissances que le modèle intègre, d’obtenir des prédictions, et
éventuellement d’approfondir la compréhension du comportement cellulaire.

Dans cette thèse, nous étudions la modélisation et la simulation de
l’expression génétique. Nous nous concentrons sur l’étude des bactéries, qui
ont été l’objet de recherches approfondies au cours des dernières decénnies
en biologie. La modélisation des systèmes d’expression génétique bactérienne
s’en trouve d’autant facilitée au niveau de précision nécessaire à la simula-
tion. Quoique plus simples, les phénomènes associés à l’expression génétique
bactérienne sont également pertinents pour l’étude d’organismes supérieurs.

Nous nous inspirons de la proposition de Regev et Shapiro (2002)
consistant à appliquer le π-calcul stochastique comme langage formel de
représentation de connaissances biomoléculaires. Le π-calcul est un langage
fondamental pour décrire le comportement dynamique d’acteurs concurrents
en interaction. Suivant la métaphore chimique, les acteurs sont des molécules
et les interactions des réactions chimiques. Milner, Parrow et Walker (1992)
ont conçu les opérateurs du π-calcul afin d’être fortement expressifs, quoique
abstraits et minimalistes. La sémantique stochastique du π-calcul par Priami
(1995) ajoute une notion de vitesse de réaction, déterminant les distributions
des instants de réactions au cours du temps.

Cette thèse a pour amorce des d’études de modélisation de cas concrets.
Celles-ci nous mènent à considérer des concepts de programmation tels que les
objets concurrents, motivant une extension de notre langage de modélisation :
le π-calcul.

Étude de modélisation de la bascule du phage lambda. Nous
étudions la régulation transcriptionelle de la bascule du phage lambda
(Ptashne, 2004). Depuis des décennies, cet exemple bactérien prototype
reste central au déchiffrement des principes de la régulation génétique. La
régulation transcriptionelle est un phénomène clé.

Les modèles quantitatifs précédents du contrôle de la transcription de la
bascule du phage lambda reposent majoritairement sur l’analyse de Shea et
Ackers (1985). Les approches de ce type mènent à des prédictions exactes de
l’évolution temporelle à l’échelle de populations bactériennes. Néanmoins,
elles laissent de côté les interactions individuelles entre molécules, interac-
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tions qui déterminent la dynamique du contrôle de la transcription pour un
gène unique. Par conséquent, elles ne peuvent prédire la dynamique de la
population moléculaire au sein d’une unique cellule bactérienne.

Les techniques expérimentales pour l’évaluation quantitative de
l’expression génétique de cellules individuelles ont considérablement
progressé ces dernières années. De nouvelles données expérimentales
suggèrent la réflexion par de nouvelles études de modélisation et simulation,
et tenant compte des interactions précises entre molécules individuelles, per-
mettant ainsi de prédire leur dynamique. Notre étude de l’initiation de la
transcription de la bascule du phage lambda représente un premier modèle
de ce type, et permet des simulations correspondantes.

Outre l’identification des acteurs et de leurs interactions précises dans la
littérature, l’une des difficultés de ce travail est la quantification stochastique
précise de toutes les réactions.

Langage et concepts de modélisation. Nous considérons le contrôle
de l’initiation de la transcription de la bascule du phage lambda au niveau
moléculaire en tant que contrôle concurrent dans le π-calcul stochastique.
Des sémaphores correspondent à des sites opératoires de l’ADN, auxquels
précisément une protéine peut être liée, en exclusion mutuelle de l’accès de
l’Arn polymérase aux promoteurs chevauchants. Nous montrons comment
formuler le renforcement coopératif du taux de réactions chimiques en tant
que modulation de taux de fonctions dans le π-calcul.

La transcription et la traduction procèdent itérativement le long des
macromolécules linéaires d’ADN et d’ARNm, qui sont considérés commes
listes. Il est possible de modéliser les éléments de telles listes comme des
objets concurrents, afin que l’héritage entre objets permette de déduire des
modèles d’ADN et d’ARNm d’un modèle commun de liste élémentaire.

Néanmoins, le π-calcul stochastique ne facilite guère l’expression de tels
objets concurrents. Vasconcelos et al. (1993) résolvent ce problème pour le
π-calcul asynchrone — qui sous-tend le langage de programmation distribué
TyCO— en proposant une extension avec des motifs de réception.

Dans cette thèse, nous présentons une extension du π-calcul stochas-
tique avec des motifs de réception, permettant d’exprimer des objets con-
currents et qui s’avère utile en tant que langage de modélisation pour la
biologie systémique. En sus d’introduire et motiver l’usage des motifs de
réception pour le π-calcul stochastique, une difficulté de ce travail réside dans
la définition d’une sémantique stochastique en termes de châınes Markovi-
ennes en temps continu. L’algorithme de Gillespie (1976) spécifie l’exécution
de telles châınes de Markov, c’est à dire montre comment calculer des traces
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de simulation à partir de programmes en π-calcul stochastique. Nous mon-
trons comment encoder les motifs de réception dans le π-calcul considéré
sans ces dernières, et prouvons que cette opération préserve la sémantique
stochastique.

Simulation stochastique. Nous faisons usage du système BioSpi afin
d’implanter et d’exécuter nos modèles dans le π-calcul stochastique sans mo-
tifs de réception. Ceci est possible grâce à notre codage. Nous menons
des simulations stochastiques exhaustives du système contrôlant la bascule
du phage λ, ainsi que de la transcription et traduction bactrérienne. Nos
résultats sont en accord quantitatif avec les connaissances expérimentales, ce
qui souligne la pertinence de notre approche.
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Abstract

Systems biology seeks to understand the cellular-level
dynamics arising from the interaction of cellular con-
stituents over time. Modeling and simulation are
essential techniques of the field. We follow Regev
and Shapiro (2002) in using the stochastic pi-calculus
as a formal representation language for biomolecu-
lar knowledge. We elaborate molecular level mod-
eling studies for bacterial gene expression, which is
relevant to higher organisms as well. Our starting
point are concrete case studies on regulation at the
lambda switch, transcription and translation. These
reveal the usefulness of programming concepts such
as concurrent objects, and motivate an extension of
the stochastic pi-calculus with input patterns. We
present a semantics for this language that maps pro-
grams to continuous time Markov chains. We validate
our models through exhaustive stochastic simulation.
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Extended abstract

Systems biology seeks to understand the cellular-level dynamics arising from
the interaction of cellular constituents over time. Modeling and simulation
are essential techniques of the field. Ideally, informal models can be refined
into formal models, that can be executed to yield simulations, which allow
to validate the coherence of the knowledge incorporated in the model, obtain
predictions, and eventually deepen the understanding of the cell’s behavior.

In this thesis, we study the modeling and simulation of gene expression.
We restrict ourselves to bacteria, since these have been investigated more
thoroughly over the last decades from the biological perspective. This fa-
cilitates modeling of systems of bacterial gene expression at the necessary
precision for simulation. Even though simpler, the phenomena arising in
bacterial gene regulation are relevant to higher organisms as well.

We follow the approach of Regev and Shapiro (2002) in using the stochas-
tic π-calculus as a formal modeling language for biomolecular knowledge. The
π-calculus is a fundamental language for the investigation of the behavior of
concurrent actors, and the dynamics of their interactions. In the chemical
metaphor, actors can be molecules and interactions chemical reactions. Mil-
ner, Parrow, and Walker (1992) designed the operators of the π-calculus to
be highly expressive, even though abstract and minimalistic. The stochastic
semantics of the π-calculus by Priami (1995) adds a notion of reaction speed,
determining the temporal distribution of reaction time points.

In this thesis project, we start with concrete modeling case studies. This
leads us to programming concepts such as concurrent objects, that motivate
extensions of the stochastic π-calculus, our modeling language.

Lambda switch modeling study. We study transcriptional regulation
at the λ switch (Ptashne, 2004). This prototypical bacterial example has
for decades remained central to unraveling the principles of gene expression.
Transcriptional regulation is a key aspect.

Previous quantitative models of transcription control at the λ switch are
based on Shea and Ackers (1985). This class of approaches yields accurate
predictions of the temporal evolution at the level of bacterial populations.
They however disregard interactions between individual molecules, which
determine the temporal dynamics of transcription control from a single gene.
As a consequence, they lack the ability to predict the dynamic evolution of
the molecular population within an individual bacterial cell.

In recent years, the experimental techniques for quantitative assessment
of gene expression in single cells considerably advanced. New experimental
results stimulate reflection by new modeling and simulation studies, taking
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into account the precise interactions of individual molecules, so that their
temporal dynamics can be predicted. Our case study on transcription initia-
tion at the lambda switch provides a first such model and the corresponding
simulations. Besides distilling the actors and their interactions from the
literature, the most demanding aspect consists in the accurate stochastic
quantification of all reactions.

Modeling language and concepts. We capture the molecular-level con-
trol of transcription initiation at the λ switch as concurrent control in the
stochastic π-calculus. Semaphores correspond to operator sites on Dna,
where precisely one protein may bind, in mutual exclusion with Rnap’s ac-
cess to overlapping promoters. We show how to express cooperative en-
hancement of chemical reaction rates as modulation of function rates in the
π-calculus.

Transcription and translation consist in iterated processing of the linear
macromolecules Dna and mRna, which can be seen as lists. It is convenient
to model the elements of such lists as concurrent objects, so that object inher-
itance permits to infer models of Dna and mRna from a common basic list
model. Unfortunately however, it is not easy to express concurrent objects
in the stochastic π-calculus. Vasconcelos and Tokoro (1993) solve this prob-
lem for the asynchronous π-calculus underlying the distributed programming
language TyCO by proposing an extension by input patterns.

In this thesis, we present an extension of the stochastic π-calculus by in-
put patterns so that it can express concurrent objects, and use it as modeling
language for systems biology. Besides discovering the usefulness of input pat-
terns for the synchronous π-calculus, the difficult part is to define a stochas-
tic semantics in terms of continuous time Markov chains. The algorithm
of Gillespie (1976) specifies the execution of such Markov chains, i.e. how
to compute simulation traces for programs of the stochastic π-calculus. We
show how to encode input patterns in the π-calculus without input patterns,
and prove that the stochastic semantics is preserved.

Stochastic simulation. We use the BioSpi system for implementing and
executing our models in the stochastic π-calculus with input patterns. This
becomes possible due to our above encoding of input patterns. We conduct
exhaustive simulations of both the λ switch control system, and transcription
and translation. Our results are in quantitative agreement with experimental
knowledge, and thus supports the appropriateness of the approach.
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CHAPTER 1

Introduction

The young field of systems biology seeks to aid the quantitative understand-
ing of cellular biology. The term was coined by Ideker et al. (2001) and
is meanwhile well established1. Systems biology complements research in
the established area of molecular biology, which through wet-lab experimen-
tation yields detailed descriptions of biomolecules and their interactions in
living cells (Alberts et al., 2002; Lodish, 2003). Systems biology aims to
contribute to better understanding of the overall dynamics of living matter,
that arises from the interaction of many components, and is only partially
understood.

Modeling and simulation is an important branch of systems biology, and
the domain to which this thesis subscribes. It is concerned with the for-
mal modeling of the behavior of cellular systems, in terms of quantities and
time. Such models should be executable, so that they yield simulations by
which to validate the coherence of the integrated knowledge, and eventually
predict the system’s behavior, and its response to perturbations. A comple-
mentary branch of systems biology deals with the systematic acquisition of
biological data through techniques that are high-throughput, quantitative,
and large-scale. While these reveal less detail than more traditional manual
experimentation, they enable rapid knowledge discovery.

Gene expression is the biological phenomenon addressed in this thesis
(Lewin, 2003). Gene expression is the sophisticated multi-step transfor-

1Systems biology is presented in recent textbooks by Alon (2006) and Palsson (2006),
and article collections of Szallasi et al. (2006), Kitano (2001), and Bower and Bolouri
(2001), where the latter not yet adopts this term.



3

mation of hereditary information, statically encoded in Dna, into those
biomolecules that carry out the cell’s vital functions: proteins. Many aspects
of the exploitation of genetic material remain intricate to elucidate. Numer-
ous interdependent components contribute to gene expression, and virtually
any intermediate of the activities they perform can be modulated. The dy-
namics arising from this control or regulation of gene expression (Davidson,
2006; Ptashne and Gann, 2002) rapidly surpasses intuitive understanding.

Bacteria play a fundamental role in biological research (Trun and Trempy,
2003). The knowledge gained through the study of bacterial systems often
yields insights relevant to other kinds of cells, which refine and complement
the observed mechanisms. This namely holds for gene expression and reg-
ulation. Their central mechanisms were discovered within the bacterium
Escherichia coli (Jacob and Monod, 1961), and their principles understood
through two prototypical systems: the lac operon and the λ switch (Müller-
Hill, 1996; Ptashne, 2004). Gene regulation at this latter has for decades
remained a fruitful research field (Gottesman, 1999), and keeps providing
important new insights (Gottesman and Weisberg, 2004; Dodd et al., 2005;
Oppenheim et al., 2005). The λ switch frequently serves for benchmarking
simulation methods (Hasty et al., 2001).

Regev and Shapiro (2002) suggested to abstract biomolecular knowledge
in terms of concurrent computation in the π-calculus of Milner, Parrow,
and Walker (1992), and base quantitative simulations on it. For the purpose
of simulation, Priami, Regev, Shapiro, and Silverman (2001) adapted the
stochastic variant of the π-calculus of Priami (1995) to the well-established
simulation algorithm of Gillespie (1976). This latter accurately gives rise to
the temporal and quantitative dynamics of biochemical systems at the level
of molecular interactions.

This proposal raised numerous questions. While cellular networks were
shaped by evolution and exhibit properties whose origins are difficult to un-
ravel, the situation in engineering is complementary. Complex computational
systems are incrementally assembled from fully specified components in or-
der to reach specific goals. Methodologies and strategies play an important
role in the design of software systems. The π-calculus however does not ease
systematic and structured model creation. Its means of expression are in-
deed restrained to the very essence of concurrent computation, for the sake
of semantic precision. It should be considered as an assembler or machine
code, as opposed to higher languages with built-in support for actual pro-
graming techniques. From a methodological perspective, this thesis seeks to
remedy drawbacks in the development, understanding, extension and sharing
of biological models based on the π-calculus approach.
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Figure 1.1: Overview of bacterial gene expression: decoding genes into pro-
teins

1.1 Bacterial gene expression

Diverse activities co-exist in living cells. They ensure its vital functions,
response to changes in the environment, allow the cell to fulfill its role in multi
cellular organisms, and transmit its hereditary material from one generation
to the next.

Gene expression is a major cellular activity. Figure 1.1 sketches this
transfer of hereditary information from the sequence encoded in the macro
molecule Dna (grey strip) via mRna (yellow strip) to proteins. Numerous
enzymes contribute. In the first step of gene expression, Rna polymerase
(short: Rnap 2) locates a promoter site on Dna, which indicates the start of
a gene. Several Rnap may proceed along the same gene at the same time, all
transcribing the Dna nucleotide sequence into mRna. While transcription
continues, the mRna becomes accessible to ribosomes that bind at a dedi-
cated start site (blue), in order to build proteins from its information content.
This is called translation. More of it can start as long as the degradosome
has not yet accessed the mRna’s 5′ end in order to degrade the transcript.

Summarizing, our overview of gene expression illustrated first aspects
of coordination, competition, and simultaneity between the various actors.
These soon give rise to intricate dependencies.

Regulation of gene expression. Cells use their genetic material to pro-
duce appropriate quantities of products at the right time. The principles of
regulation were understood in bacterial systems (Müller-Hill, 1996; Ptashne,
2004), which still offer many insights. Gene expression is controlled within
all phases, it is most effective however to regulate it early – before tran-
scription starts. Many discrete molecular events contribute to this control of

2Rnap polymerizes Rna, hence its name
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transcription initiation that occurs at promoters, i.e. the Dna areas mark-
ing the start of a gene, colored in pink in Figure 1.1. Proteins find operator
sites on Dna, located within or in the vicinity of promoters. The Velcro
rule 3 summarizes transcription control by protein that bind to operators,
remain fixed there for a while (from seconds to hours), and eventually fall
off. Protein presence affects Rnap’s interaction with the promoter.

The repertoire of molecular mechanisms for repression and activation of
transcription initiation through Dna binding proteins is well identified in
bacteria. In the simplest case, transcription is repressed by protein binding
to an operator within the promoter. This excludes Rnap from promoter
access; see Figure 1.6 on page 16. Activation conversely occurs through op-
erator binding nearby, but outside the promoter. In this case the protein
is beneficial to interactions between Rnap and the promoter, i.e. stability
of binding and efficiency of transcription initiation. Both activation and re-
pression in bacteria necessitate only a couple of regulatory proteins, while in
higher organisms several dozens are involved. In this thesis, we will inves-
tigate fundamental mechanisms of repression and activation in bacteria, at
the example of two promoters at the λ switch.

Regulatory patterns depend on protein quantities. Transcriptional
regulation in bacteria depends on comparatively few components, the inter-
action between these may nevertheless challenge intuition. Consider an E.coli
bacterium infected by the λ virus. The viral DNA can either be integrated in
the hosts’s genome, and remain dormant, or hijack the host cell machinery to
produce a new crop of viruses. This fundamental lifestyle choice depends on
two viral genes cI and cro, that code for regulatory proteins Rep (λ repressor)
and Cro. Both control their own transcription and the other’s through Dna
binding. The protein binding patterns to Dna operator sites, and thus the
regulatory outcome, heavily depend on protein quantities.

Figure 1.2 visualizes the regulatory influences by a diagrammatic nota-
tion, in which black horizontal bars represent genes. Assuming gene names
A and B, a directed arrow from A to B represents the regulatory influence of
gene A’s protein on the transcription of gene B. The kind of arrowhead indi-
cates repression (T-shaped) and activation (triangle). Note auto-regulatory
genes, and expression without explicit activation as visualized by an activat-
ing arrow starting in the void.

3Central contribution of M. Ptashne, Lasker laureate of 1997. Velcro is the trademark
of a fastener for clothes or other items, consisting of two strips of thin plastic sheet, one
covered with tiny loops and the other with tiny flexible hooks, which adhere when pressed
together and can be separate when pulled apart deliberately (McKean, 2005).
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Figure 1.2: Regulatory patterns between the λ switch genes cI and cro
depend on protein abundance.

While Figure 1.2 distinguishes the regulatory patterns due to alternative
abundances of Cro and Rep, the alternative promoters (see also Section 2.3)
for cI remain implicit. The promoter for repressor establishment PRE con-
tributes to the viral lifestyle choice following infection. Transcription of cI
in immunized cells initiates from the promoter for repressor maintenance.
PRM neighbors cro’s promoter PR. Both PRM and PR are controlled from
the same three operators sites on Dna, that remain implicit in the illustra-
tion. Protein binding to either operator affects Rnap-promoter interactions
in a distinct manner. It is important to underline the different specificity for
each combination of operator, Cro and Rep binding. The stability of protein
operator complexes scales with specificity; fewer proteins suffice to saturate
more specific operators.

Item (3) summarizes the initial decision upon infection of the host cell by
the λ virus. As long as neither Cro nor Rep are available, basal transcription
of cro is possible. In the same setting cI’s transcription depends on the
protein products of the genes cII and N, which in turn are repressed by Cro.
The impact of environmental conditions on this initial decision is still not
fully understood. As Cro wins the race, it represses the expression of Rep
(item 2). This enables the production of new λ viruses that eventually kill
the host cell. After reaching a higher level, Cro represses itself (item 1).

If conversely Rep wins the initial race, it rapidly shuts off Cro, and up
to intermediary concentrations activates transcription from its own promoter
PRM (item 4). Rep immunizes the host cell and its off-spring against further
infections, and eventually suppresses its own expression at higher concentra-
tions (item 5). The molecular mechanism for auto-inibition was only recently
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Figure 1.3: Observation of Rnap stepping over Dna

identified by Dodd et al. (2001): under physiological concentrations it neces-
sitates a complex formed between multiple Rep bound to the Dna operator
sites mentioned so far, and distal ones on λ Dna.

Certain environmental conditions lead to massive Rep decay, which ef-
ficiently re-activates the λ virus. This phenomenon called induction is not
covered by our illustration. The traditional view of Cro’s contribution to in-
duction has been revised by Svenningsen et al. (2005), who reconsidered the
influence of minor to moderate Cro amounts on immunized cells at typical
Rep concentrations.

Observing gene expression in real time. We report recent quantitative
assessment of the temporal dynamics of gene expression in a single cell, that
are of interest to the modeling work in this thesis.

Abbondanzieri et al. (2005) provide evidence that transcribing Rnap ad-
vances over the coding region of Dna in discrete steps of a length equivalent
to that of a single base of Dna (3.7 Å). The one-step advancement hypoth-
esis had remained under debate since proposed by von Heijne et al. (1977).
It is well understood that each advance over a single nucleotide subsumes in-
termediary steps, in which Rnap reads the Dna sequence, and takes up the
suitable material from the environment to reflect the appropriate nucleotide
in the nascent mRna. Figure 1.3 is also important to understand the timing
of Rnap advancement. It visibly clarifies that in each step, a unique internal
reaction limits Rnap in taking the next step. Assuming each forward step
has constant probability to occur per unit time, Rnap’s movement corre-
sponds to a Poisson process, implying an exponential distribution of waiting
times between steps (Manabe, 1981; Kampen, 2001).

Golding et al. (2005) tracked the dynamics of mRna production from
a single gene, transcribed from the strongly repressible bacterial promoter
Plac/ara. This revealed that transcription can occur in quantal bursts, i.e.
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Figure 1.4: mRna numbers (red points) produced from a single gene over
time (in minutes)

meaning that long phases of repression take turns with such in which tran-
scription occurs. The former are annotated as ∆tOFF, the latter as ∆tON

in Figure 1.4. The durations of the periods of inactivity are characterized
by an exponential distribution. In each activity period, varying numbers of
transcriptions occur, annotated as ∆n.

Based on a wealth of recent experimental studies in single cells, Kou et al.
(2005) discuss the kinetics of enzymatic reactions at the level of individual
reactions. This embraces activities of the molecular machines of gene expres-
sion. The authors argue that the appropriate representation is in terms of
probabilities for the enzyme to be in one among multiple states in its path-
way. This is in contrast to the usual bulk reactions of biochemistry, where
kinetics is expressed in terms of concentrations.

1.2 Concurrent modeling languages

Concurrent computation extends sequential computation by notions of con-
current actors, that may progress independently. Concurrent actors exchange
information and resources by communication, and synchronize until enough
resources and information are available. Actors may know each other or
belong to private groups unknown to the external world.

Research on concurrent computation is traditionally motivated by appli-
cations within distributed networks, multi-tasking operating systems, parallel
computers, and concurrent programming languages. Nondeterminism is un-
avoidable in concurrent computation. It arises once two actors compete for
a resource, that is is only attributed to one. The omnipresence of nondeter-
minism renders concurrent systems notoriously difficult to analyze, model,
and understand.

A number of formal languages were proposed to model concurrent sys-
tems. The earliest are Petri nets (Petri, 1962), a graphical language with
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states and actions reminiscent of finite automata. State charts are a more
recent graphical formalism (Harel, 1987). Both found applications in biolog-
ical modeling (Goss and Peccoud, 1998; Fisher et al., 2005). The calculus of
communication systems (CCS) is a process algebra (Milner, 1980) preceding
the π-calculus. It corresponds to the fragment of the π-calculus where all
messages are void.

The π-calculus by Milner, Parrow, and Walker (1992) is a more recent lan-
guage providing a purely syntactical notation for modeling concurrent com-
putation on a high level of abstraction. Its syntax is built from a minimalistic
set of operators that can be freely composed with each other. These oper-
ators include parallel composition, channel creation, expressions for channel
communication, and possibly choice operators 4.

Even though minimalistic, the π-calculus is very expressive. Besides of
many different aspects of concurrent control, it permits to express sequential
computation in the λ-calculus, a Turing complete foundation of functional
computation5. Two major variants of the π-calculus are to be distinguished
following Palamidessi (2003). The asynchronous π-calculus is frequently
studied in the context of distributed programming languages, where central-
ized control is neither available nor expressible. The more expressive syn-
chronous π-calculus is advantageous for modeling in systems biology, where
the stochastic scheduler needs to be implemented by a centralized controller
anyway.

Banâtre and Metayer (1986) proposed to base concurrent computation
on the chemical metaphor, where molecules interact according to chemical
reaction rules6. Berry and Boudol (1990) followed this idea in presenting
a so called chemical abstract machine as alternative formalization of the π-
calculus semantics. What this model lacks however, is a notion of reaction
speed.

The stochastic π-calculus of Priami (1995) extends the synchronous π-
calculus by this lacking notion of time. It associates stochastic parameters
to all channels, which defines the speed of interaction on this channel. The

4Choice operators are often omitted in asynchronous π-calculus dialects, since they are
dispensable to nondeterminism, and often undesired in the context of concurrent program-
ming languages. Choice operators are essential ingredients of the synchronous π-calculus
though. Indeed, they are convenient constructs for modeling applications in systems biol-
ogy.

5Beyond its enormous fundamental importance, the λ-calculus has also been used for
modeling in biology (Fontana and Buss, 1996).

6This work has led to the development of the Gamma programming language (Banâtre
and Métayer, 1993; Banâtre et al., 2001, 2005). In the latter, a minimalistic model for
chemical programming called γ0 was proposed concomitantly with a comparison to the
chemical abstract machine.
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deg : D + P
k1−→ D

dim: P + P
k2−→ P2

(a) Chemical reactions

pub l i c deg ( k1 ) , pub l i c dim ( k2 )

P , deg ? ( ) .0 + dim ! ( ) .P2 + dim ?( ) .0
D , deg ! ( ) .D

(b) π-calculus definitions

Figure 1.5: Defining chemical rules in the π-calculus: shifting the perspective
from reaction rules to objects

stochastic parameter defines an exponential distribution of delays, until reac-
tions happen. This idea dates back to the stochastic process algebra Pepa by
Hillston (1995), that defines semantics in terms of continuous time Markov
chains (CTMCs).

Modeling biochemical reactions in the stochastic π-calculus. Regev
and Shapiro (2002) propose to apply formal languages of concurrency to
model molecular networks in cellular biology. This approach is inverse to
that of Berry and Boudol, i.e. to use the chemical metaphor to formalize
languages for the description of concurrent computation.

The stochastic π-calculus is the language chosen by Regev and Shapiro.
It offers the advantage that processes defined it can be executed by the sim-
ulation algorithm of Gillespie (1976). Due to its suitably defined stochastic
semantics, the stochastic π-calculus of Priami, Regev, Shapiro, and Silver-
man (2001) becomes a formal modeling language yielding quantitative sim-
ulations.

An underlying idea in using the π-calculus for descriptions of chemical
reactions is the shifted perspective from rules to objects, i.e. objects represent
molecules of different species, nucleotides or whole segments of Dna and
Rna. In chemistry’s rule-based view, one enumerates the reaction rules for
all objects present in a chemical solution. Taking the alternative perspective
of the π-calculus, one independently states each object’s reaction capabilities.

Let us illustrate the perspective shift at the example of Figure 1.5. We
consider two chemical reaction rules. The first is named deg and describes the
degradation of a protein of species P by an enzyme of species D. The reaction
speed is defined as rate k1 which is some positive real number. In terms of
mesoscopic chemical kinetics, it characterizes an exponential distribution of
waiting times between reactions specified by the rule deg. The second rule is
named dim. It represents the complexation of two P proteins to a heterodimer
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of type P2. This reaction proceeds at rate k2.
The π-calculus specification in Figure 1.5(b) first introduces two public

channel names deg and dim, assigned the stochastic rates k1 and k2, respec-
tively. Objects may use channel names to communicate, as walkie-talkie7

users must agree. The speed of communication acts is defined by the stochas-
tic rates of the channel in use.

P objects may play three different roles, that correspond to the three
occurrences of P as reactants in the rules of Figure 1.5(a). The π-calculus
definition of process type P in Figure 1.5(b) renders these three roles as
alternatives of a choice +:

deg?().0: as second participant of rule deg, a P object may receive the
dummy message over channel deg. As a consequence, it becomes the
inert process 0;

dim!().P2: as first participant of rule dim, a P object may send a dummy
message () over channel dim, and then continue as P2;

dim?().0: as second participant of rule dim, a P object may receive the
dummy message over channel dim and disappear.

D objects may play only a single role, given there is a single occurrence of
D as reactant of the chemical rules. This role is expressed by sending the
dummy message on channel deg, once some P object is willing to receive
it. In this case, the D object is re-incarnated as such, while the P object
vanishes.

Two design decisions underly this encoding. Similarly to the order of
participants in chemical reaction rules, they are somehow arbitrary:

1. First participants in chemical reactions always send, while second par-
ticipants receive. Given that no true message is exchanged (so far),
this design decision does not matter and could be inverted.

2. First participants always survive and continue as the product of the
reaction, while second participants disappear. This design decision is
arbitrary too, and could be inverted as well.

Chemical solutions are seen as multisets of objects. In the π-calculus, such
multisets are expressed by parallel compositions of objects. The solution
P | P | D for instance may either reduce to P2 | D in one step, or to P | D,
depending on which reaction rule is used.

7or: two-way radio
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Discussion. Regev formulates the above ideas in terms of modeling guide-
lines for systems biology. These guidelines are sufficient for modeling systems
of chemical reactions, but leave a broad design space for cases in which rule
application depends on fine grained control. As a consequence, models may
rapidly become obfuscated. Model legibility often suffers from lacking disci-
pline in nomenclature, e.g. for a set of processes representing the same bio-
logical entity in various scenarios. This limits the scalability of this modeling
approach, and indeed only fairly small modeling tasks have been approached
in practice so far.

To conclude the situation as this thesis started in 2003, one can say
that the π-calculus approach to modeling systems biology remained impaired
by lack of programming language concepts and programming techniques,
both with respect to the design and the understandability of models. These
problem quickly appeared with the case studies of this thesis, which therefore
contributes to remedy the situation.

1.3 Contributions

We first present an extension of the stochastic π-calculus that supports a
richer notion objects, with features known from object-oriented programming
languages. In particular it explicits notions of functions, interfaces, and
inheritance. We then discuss modeling and simulation studies within this
π-calculus extension.

1.3.1 Modeling language and concepts

The objects seen so far lack notions of persistent object identities and func-
tions. This makes it impossible to distinguish different objects offering each
the same functions, such as the many different building blocks of Dna. Let
us consider a simpler example, with two promoters regulated in the same
manner for different genes on the same Dna. Assume these promoters can
be bound by Rna polymerase (Rnap) according to the following two chem-
ical rules:

b ind 1 : PR f r ee 1 + RNAP → PR bound1

b ind 2 : PR f r ee 2 + RNAP → PR bound2

As before, the activities of the two promoters can be expressed by two defi-
nitions in the π-calculus:

PR f ree 1 , b ind 1 ? ( ) . PR bound1 + . . .

PR f ree 2 , b ind 2 ? ( ) . PR bound2 + . . .
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What is less nice here, is that both definitions are alike except for the identity,
since both promoters do the same but at different places. Hence one might
prefer having a unique definition, that is parameterized by the promoter’s
identity. It could be of the following form, where the channel me is universally
quantified:

PR f ree (me) , me? b ind ( ) . PR bound (me) + . . .

Promoter identities are now distinguished by their channel names me,
along which individual promoters receive function calls. All promoters offer
a function bind that is addressed by the promoter’s identity. Hence they
provide the same interface, i.e. the same set of function names. Inheritance
can be defined as the addition of new functions to objects.

Unfortunately however, function names are not available in the stochastic
π-calculus (Priami et al., 2001), which motivates an extension. The idea of
function names as input patterns in the π-calculus is not new, though. It
was proposed by Vasconcelos and Tokoro (1993) in order to extend the asyn-
chronous π-calculus with objects, and lays the foundation of the distributed
programming language TyCO of Paulino et al. (2003). Note that objects
can receive only such inputs, for which they provide a matching pattern. The
test whether some pattern matches is closely tied to communication.

We present the stochastic π-calculus with input patterns that extends
the synchronous stochastic π-calculus by input pattern with function names.
The parametric promoter above is a first definition in that calculus. Besides
discovering the usefulness of input patterns for the synchronous case, the
difficult part is to define the stochastic semantics of this π-calculus.

Stochastic rates are now assigned to pairs of channel and function names.
From the semantical perspective, programs in our stochastic π-calculus define
continuous time Markov chains (CTMCs). The stochastic semantics for the
π-calculus with input patterns that we propose defines an assignment of
CTMCs to π-calculus programs. Our semantics copes with instantaneous
reactions, i.e. calls to functions with infinite rates. These are necessary to
deal with concurrent control between more than a pair of concurrent actors.
The problem is to appropriately define the Markov chain of a process, under
the assumption that there are no instantaneous loops. Previous work does
either not define Markov chains explicitly (Priami et al., 2001; Phillips and
Cardelli, 2004) so that correctness propositions can only be stated partially,
or differently (Priami, 1995) which is less relevant to application in systems
biology.

The essential benefit that our language offers to model building is the ex-
pression of concurrent objects with multiple profiles, i.e. multiple states with
possibly different interfaces. We show how to define object extension by in-
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heritance on a meta level. This representation style permits to accommodate
precise information on quantitative and concurrent control, while retaining
a maximal ease of notation, legibility, maintenance and extensibility.

We also show how to encode the stochastic π-calculus with input patterns
back into the π-calculus without. We prove that our translation is correct, in
that it preserves the Markov chains. Hence, existing simulation machines can
be used to execute models formulated in our π-calculus with input patterns.

1.3.2 Lambda switch modeling studies

We investigate two cases in bacterial gene expression and regulation. First,
we show how to model the control of transcription initiation at the λ switch
promoters PRM and PR. Second, we present an general model of bacterial
transcription and translation, that may be refined to numerous specific cases.

We express molecular actors in terms of concurrent objects in our stochas-
tic π-calculus with input patterns, and regulatory mechanisms as concurrent
control. It should be noted that semaphores appear all over. Each operator
and promoter side forms a semaphore, since it can be bound by at most one
protein or Rna polymerase. Another point is that we model coding regions
of Dna and Rna as lists of nucleotides. Each nucleotide is an object, that
can e.g. be rendered degradable by object inheritance, and leaves space for
future refinement.

Our λ switch model substantially differs from previous work. We are
more fine grained in that we explicitly render the discrete events in tran-
scriptional regulation. These are abstracted away in kinetic models of gene
regulation following the tradition of Shea and Ackers (1985), namely the
major other models of the λ switch by Aurell et al. (2002) and Aurell and
Sneppen (2002), as well as that of Arkin, Ross, and McAdams (1998). It is
worthwhile emphasizing that this latter model only stochastically deals with
gene expression beyond the point of initiation control, to which it applies the
framework of Shea and Ackers.

More fine grained models may capture the level of observations enabled by
recent experimental advances. Thus new methods of computational modeling
and simulation are increasingly seeked. Independently of the present thesis,
Saiz and Vilar (2006) propose a model that yields CTMC descriptions of
events in transcription regulation at the λ switch.

Quantification of the models. We model the quantitative behavior by
stochastic rates that determine the speed of all interactions in the system.
Due to the high level of detail of our models, the literature provided only
partial information, notably regarding the discrete events in transcription
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control at the λ switch, such as dimerization, binding, and quantitative con-
trol of interdependent events8.

One of the problems was to differentiate between forward and backward
directions of reversible reactions, as Dna binding and dimerization of pro-
teins. These are disregarded by continuous models, as that by Shea and
Ackers of the λ switch. Albeit valid for general biochemistry, it is increas-
ingly emphasized that this simplification reaches its limits in genetic networks
(Fedoroff and Fontana, 2002). With respect to transcription control in an
individual cell, it means to disregard essential intermediary stages, that can
persist over minutes (Bryant and Ptashne, 2003; Halford et al., 2004), while
typical time scales of biochemical systems range around fractions of seconds.

Cooperative enhancement. Dna-bound proteins can increase each
other’s specificity by adhesive contacts. Positive control of Rnap in tran-
scription initiation boils down to modulate the speeds at which Rnap’s pos-
sible interactions occur. We present a modeling technique for the stochas-
tic π-calculus to modulate the externally observable rate of communication.
This technique applied to all other cases of biomolecular interactions we en-
countered, in which concurrent control affects reaction rates.

1.3.3 Stochastic simulation

We encoded our models in a format amenable to execution with the stochastic
π-calculus simulator BioSpi, and conducted exhaustive simulations herein.
This is enabled through our encoding of input patterns, since neither BioSpi
nor SPiM support them as primitives9. For analysis of simulation traces and
visualization of data, we developed tools in Perl and R (R Development Core
Team, 2006).

In a first simulation study, we validate our models of transcription ini-
tiation control at the λ switch by reproducing well-established results from

8 Useful new sources became available after finalization of our work in fall 2005 (Kuttler
and Niehren, 2006): The highly valuable textbook by Sneppen and Zocchi (2005) covers
the biophysical and quantitative aspects of gene regulation, including a chapter on the
λ switch. Saiz and Vilar (2006) propose a full stochastic model of discrete events in
transcriptional regulation at the λ switch, that is compatible with ours in that it gives rise
to CTMCs (its scope is wider than ours, since it covers longe-range regulatory interactions
on Dna). Golding et al. (2005) monitor mRna production from the promoter PRM at
the λ switch in real time, and Kobiler et al. (2005) real-time protein levels in E. coli cells,
during the decision between lysogeny and lysis upon infection by the λ virus.

9Our early models did neither use concurrent objects nor input patterns. Instead
they relied on sophisticated protocols, that made these models difficult to understand,
parametrize, and extend. Note also that the SPiM system was not available at that time.
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Figure 1.6: States of repressible promoter:(1) free, (2) blocked, (3) bound

experiments and deterministic simulation. For this we summarize longitudi-
nal observations of repressor binding to operators. Furthermore, at a greater
level of detail, we report the activity of the promoter PRM, varying the con-
trol by dimerization, quantities of repressor protein, and cooperative binding.
Herein we illustrate the variability of results for series of simulation runs un-
der equal conditions. Again, our results well reproduce the effects attributed
to the various regulatory mechanisms.

In a second study, we simulate combined dynamics of bacterial transcrip-
tion and translation. Here, we concentrate on the effect of translational
bursting, that has been identified as a key to stochasticity in bacterial gene
expression (Kaern et al., 2005; Raser and O’Shea, 2005). It arises from varia-
tions in the quantitative control of transcription initiation versus translation
initiation. We consider it worthwhile mentioning that the representation of
gene expression in the π-calculus approach of Blossey, Cardelli, and Phillips
(2006) lacks the means to capture translational bursting. This is due to an
atomic representation of gene expression, which disregards those details of
quantitative control that our model emphasizes.

1.3.4 Modeling example

Figure 1.6 illustrates the concurrent control of a promoter by an overlapping
operator. This Dna sites can respectively be bound by Rnap and the re-
pressor protein Rep. Importantly, these bindings are mutually exclusive. In
setting (1) the promoter is not involved in any interaction, nor is the oper-
ator, hence we consider both as free. In (2) Rep’s binding to overlapping
operator site results in the promoter being blocked, while in (3) the promoter
is bound by Rnap. We can similarly define states of the operator, Rnap and
Rep.

Notably, the states free, blocked and bound determine the promoter’s
next possible interactions. In setting (1), binding can occur. In setting (2),
Rep can unbind the operator, while the promoter may not accept Rnap’s
binding. In setting (3) the bound Rnap may either fall off Dna, or initiate
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� �
1 module ’ r e p r e s s i b l e promoter ’
2 pub l i c rnap with b ind /1
3 export Promoter with i n i t i a t e /0 , unb ind /0 , b l o ck /0 , f r e e /0
4 def ine

5 Promoter (me , op ) , Promo t e r f r e e (me , op )
6
7 Promo t e r f r e e (me , op ) ,
8 rnap ? b ind ( c ) . c ! (me) . Promoter bound (me , op )
9 + me? b l o ck ( ) . P romote r b l ocked (me , op )

10 + op ! unb lock ( ) . P r omo t e r f r e e (me , op )
11
12 Promoter bound (me , op ) ,
13 me? unbind ( ) . P r omo t e r f r e e (me , op )
14 + me? i n i t i a t e ( ) . P r omo t e r f r e e (me , op )
15 + op ! b l o ck ( ) . Promoter bound (me , op )
16
17 Promote r b l ocked (me , op ) ,
18 me? unb lock ( ) . P r omo t e r f r e e (me , op )� �

Figure 1.7: Repressible promoter as π-calculus object

transcription along it, while Rep’s access to the operator is suspended.
Figure 1.7 lists the module ’repressible promoter’. It formally specifies

this narrated behavior in our π-calculus, defining a concurrent object Pro-
moter with three profiles. The export statement in line 3 declares the Pro-
moter object delivered by the module. The keyword with documents that
each Promoter provides the functions initiate and unbind for interaction with
Rnap, and block versus unblock to keep the operator synchronized with the
operator. Note we also declare the arities of functions. The module’s core
follows the keyword define. It provides four parametric process definition.

The first definition in line 5 defines how a Promoter object is created.
The remaining three definitions define the profiles of Promoter, each corre-

sponding to one of the previously discussed states. Note that all profiles take
two parameters. The dedicated channel me represents the object’s constant
identity, while the other parameter op grants access to the object representing
the operator site.

Each profile is defined as choice between pattern inputs over me, and
communication over other channels. Pattern input over me correspond to
function invocations on the object at this channel. The acceptance of pattern
input is determined by the object’s current profile. Our π-calculus dialect
refuses function calls on an object, aka pattern input over me, that do not
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match the current profile. This works by requiring communication not only
to agree the names of channels, but also in the function symbol.

For instance, Promoter blocked ignores unbind requests. It is only able to
respond to a unblock invocation, see line 18.

As Promoter is bound, the abstraction of the visiting Rnap can call either
function unbind or initiate, see lines 13 and 14. Promoter bound also causes
a transition of the operator to profile blocked, by calling the block on op, see
line 15.

We last consider the profile free, in which a Promoter is created. It offers
three interactions. Before explaining the first, we need to comment on line 2
of the module. It declares a public channel rnap, and associates it with pat-
tern input of the unary bind. Channel rnap is used in the binding of a Rnap
representative to Promoter free, see line 8. Using this public channel allows
initial Rnap-promoter binding to occur between any possible pair of molec-
ular actors, in a many-to-many fashion known from concurrent scenarios.
Upon binding, the Promoter extrudes its identifier channel me to the Rnap
representative that contacted it. In doing so, Promoter uses the dedicated
channel c it was passed in the preceding step 10.

Promoter free has to other ways to interact, which both regard synchro-
nizations with its sibling Operator at channel op. In line 9, the Operator
causes Promoter’s transition to the blocked profile. This occurs when we are
in scenario (2) from Figure 1.6, i.e. a repressor is bound to the operator,
and the promoter representative must adjust to this state. The communi-
cation in line 10 is realized after Promoter’s transition from profile bound to
free. It corresponds to the adjustment of the operator representative, that
accordingly switches from blocked to free.

1.4 Organization of this document

Part I introduces the biological material dealt with in this thesis: While
Chapter 2 presents the overall mechanisms of transcription and translation,
Chapter 3 details on transcriptional regulation at the λ switch.

Part II presents our methodological contribution. Its core consists in the
stochastic π-calculus for concurrent objects (core SpiCO) from Chapter 4.
We map it into CTMCs by its stochastic semantics, and we show an encoding
allowing to rewrite programs such that they become executable with previ-
ously proposed stochastic π-calculus engines.
Chapter 5 introduces our notion of objects and a simple module system that

10Throughout this work we emulate function-call-and-return in the π-calculus as
sketched in Milner (2004).
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is useful for later model building. These notions are illustrated at the exam-
ple of various kinds of list, that constitute the basis for our later models of
Dna and mRna.
Chapter 6 proposes modeling techniques for concurrent objects expressed in
our π-calculus, that may be useful beyond our own work.

Part III presents our modeling and simulation studies, based on the pre-
viously introduced concepts and biological background. Chapter 7 is devoted
to the general mechanisms of transcription and translation, Chapter 8 to λ
switch regulation.

Chapter 9 concludes.

1.5 Bibliographic note

Two thirds of the technical contributions in this thesis are published in inter-
national journals (Articles 1 and 2), the remaining third so far as a conference
paper (Article 3). Two further publications report early ideas, and survey
related simulation frameworks.

Article 1. Céline Kuttler. Simulating bacterial transcription and trans-
lation in a stochastic pi calculus. In Transactions on Computational
Systems Biology VI, volume 4220 of LNCS, pages 113–149. Springer
2006. Special issue of CMSB 2005.

This journal article presents the modeling study on bacterial transcription
and translation in the stochastic π-calculus with input patterns. It is cov-
ered by three chapters in this thesis: Chapter 2 presents the biological back-
ground. Chapter 5 elaborates on the notions of objects, inheritance, and
modules; it also includes the discussion of lists as examples. Chapter 7 cov-
ers the π-calculus models of transcription and translation, and highlights
some simulation results.

Article 2. Céline Kuttler and Joachim Niehren. Gene regulation in the
pi calculus: Simulating cooperativity at the lambda switch. In Trans-
actions on Computational Systems Biology VII, volume 4230 of LNCS,
pages 24-55. Springer, 2006. Special issue of BioConcur 2004.

This journal publication presents the λ switch model in the original stochastic
π-calculus. In Chapter 8 of this thesis, we simplify this model by reformu-
lating it in the π-calculus with concurrent objects. Chapter 6 distills generic
modeling techniques that are of major use to our λ switch model. Chapter 3
discusses the λ switch biology, basically following this paper. It complements
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with a rule-based representation, and relates its stochastic parameterization
to that of our model in the π-calculus with objects.

Article 3. Céline Kuttler, Cédric Lhoussaine, and Joachim Niehren. A
stochastic pi calculus for concurrent objects. In Proceedings of the
Second International Conference on Algebraic Biology, volume 4545 of
LNCS, pages 232-246, 2007.

This article corresponds to Chapter 4, that furthermore includes full proofs
from the INRIA technical report 6076, 2006.

Article 4. Denys Duchier and Céline Kuttler. Biomolecular agents as
multi-behavioural concurrent objects. In Proceedings of the First In-
ternational Workshop on Methods and Tools for Coordinating Concur-
rent, Distributed and Mobile Systems, volume 150 of ENTCS, pages
31–49, 2006.

This workshop paper contains early ideas on a new programming language
with multi-profile objects and argues their advantage for modeling in systems
biology. A formalization of this modeling language is still lacking, but much
of the ideas can be expressed in the stochastic π-calculus with input patterns.

Article 5. Adelinde M. Uhrmacher and Céline Kuttler. Multi-level mod-
eling in systems biology by discrete event approaches. it – Information
Technology, 48(3):148–153, 2006.

This journal article compares the π-calculus with two discrete event modeling
frameworks, currently used in systems biology: state charts of Harel (1987)
and Devs proposed by Zeigler (1984).

1.6 Related work

In this section, we first discuss related work in the areas of formal languages
inspired by the chemical metaphor and dedicated to biological modeling. We
then sketch actual modeling and simulation studies carried out in π-calculi
and some close relatives.

Further related work follows later, after setting up some biological back-
ground: studies in stochastic simulation of bacterial gene expression are dis-
cussed in Section 2.5, and on the the λ switch in Section 3.3.



1.6 Related work 21

1.6.1 Modeling languages

A number of alternative modeling languages have been proposed for systems
biology.

BioCham. BioCham (Chabrier-Rivier et al., 2004, 2005) is a rule-based
language for the representation of biomolecular systems, with a notation
reminiscent of that of chemistry. It is well-suited to consider dynamics by
distinguishing three levels of semantics: a boolean, one at concentrations
level, and stochastic that allows for simulation. BioCham offers querying of
model properties by formulae in the temporal logic CTL (Emerson, 1990),
and model input via SBML (Hucka et al., 2003).

Computing with membranes. Membranes allow to structure space into
distinct compartments, and are another basic notion that fits naturally with
the chemical metaphor, and indeed, they are basic to the minimalistic chem-
ical programming model γ0 of Banâtre et al. (2005). Computing with mem-
branes was promoted by Păun (2000), whose P-systems consist of nested
membranes in which molecules interact. The ambient calculus of Cardelli
and Gordon (2000) is another instance inspired by the π-calculus. Motivated
by modeling needs in biology, it was succeeded by the bio-ambient calculus
of Regev et al. (2004) and the brane calculus of Cardelli (2005).

Kappa calculus. The κ-calculus of Danos and Laneve (2004) aims to ex-
press the combinatorics between proteins. Its conceptional starting point is
reminiscent of StochSim’s by Morton-Firth and Bray (1998) (see page 42).
In this view, multi-state molecules are sets of binary flags. Proteins in the
κ-calculus are represented as a set of sites. The evolvable configurations of
sites are termed interfaces ; individual sites can be either free, hidden, or
bound (by an edge to another protein’s site).

Beta binders. The β-binders formalism of Priami and Quaglia (2005) is
a biologically motivated variation of the π-calculus. A leading desire is to
eliminate the strict channel complementarity for interaction. Communication
is enabled upon agreeing types, rather than names. It appears that composite
β-binders are related to the interfaces of objects expressed in our π-calculus
with pattern input, and that the operations of hiding and unhiding of β-
binders correspond to profile transitions in multi-profile objects. In contrast
to a driving point in the development of our calculus, β-binders do not allow
to address a specific individual of a given species. A thorough discussion of
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the β-binders and our calculus with respect to biological modeling is planned
for future work.

Pathway modeling language. Chang (2007) proposed the draft of a
Pathway Modeling Language (PML), a high-level language that can be down-
compiled to the π-calculus, suggesting it could yield models of more evident
structure and modularization, that would be safer to compose.

Other languages. Ciocchetta and Priami (2006) propose a stochas-
tic π-calculus with transactions, that permits atomic expressions of multi-
participant interactions.
Danos and Krivine (2007) propose CCS-R, a variant of the CCS calculus
by Milner (1980). It explicitly supports reversible reactions frequently en-
countered in biomolecular networks. The language is further investigated in
Danos and Krivine (2004) and Danos and Krivine (2005).

1.6.2 Modeling studies

A number of modeling case studies have been elaborated in the stochastic
π-calculus or in stochastic process algebras.

Lymphocyte recruitment Lecca et al. (2004) examine lymphocyte re-
cruitment in inflamed brain vessels with the stochastic π-calculus engine
BioSpi. Their results are the first based on this approach to faithfully agree
with experimental knowledge. Their model doesn’t include use of the choice
operator.

Metabolism Curti et al. (2005) and Chiarugi et al. (2006) examine the
metabolic pathways of a hypothetic minimal bacterium, that they modeled
in a fragment of the stochastic π-calculus, with synchronizations but devoid
of message-passing and recursion/replication.

The observation of internal states was crucial to this study, which lead
the authors to develop their own abstract π-calculus machine, based on SPiM
that does not directly support this possibility.

FGF signaling pathways Tymchyshyn et al. (2006) examine the quan-
titative properties of the FGF signaling pathway through simulation in the
stochastic π-calculus of Priami et al. (2001), making comprehensive use of its
linguistic features. Independently of the π-calculus specification, they elab-
orate a CTMC description of the same model. It is analyzed by Heath et al.
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(2006) through CTMC probabilistic model checking, using the Prism tool
of Kwiatkowska et al. (2004). Kwiatkowska et al. (2006) thoroughly review
the methodological toolset and related formalisms.

ERK signaling pathway Calder, Gilmore, and Hillston (2006) differ to
the previous modeling studies in the view they adapt on the ERK signaling
pathway: in addition to a molecule-centric model, they propose to make a
correspondence between a subpathway and a process. They express this the
process algebra Pepa , for which Hillston (1995) developed a mapping into
CTMCs.
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Bacterial Gene Expression





CHAPTER 2

Transcription and Translation

In this chapter, we first overview the main activities during transcription
and translation, contemporaneous events in gene expression, and interde-
pendencies between its phases. Section 2.2 follows with a presentation of
the details of transcription and translation at the level of molecular inter-
actions. This constitutes the foundation for our later discrete event mod-
eling. Section 2.3 presents particular cases of transcriptional organization
in bacteria, that can have interesting impact on the quantitative patterns
of gene expression. Section 2.4 discusses the quantitative parameters that
control transcription, translation and mRna decay - they are indispensable
for stochastic simulation. We put an emphasis on parameter combinations
leading to translational bursting, one of the major intrinsic origins of stochas-
ticity in bacterial gene expression. Finally, in Section 2.5 we review modeling
and simulation studies that influenced our own work.

2.1 Overview of genetic actors and activities

Each cell contains the complete hereditary information of an organism, that
is transmitted from one cellular generation to the next. This information is
encoded in a linear, double-stranded Dna macromolecule, that winds up to a
helix. Each of the two strands of Dna contains a sequence over the four-letter
alphabet of nucleotides {A, C,G, T}. The sequences on both strands are
complementary, A faces T, while C faces G. A gene is a segment of one strand
of Dna, with explicit begin and end delimiters. Its information content can
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Dna −→ mRna −→ proteins
transcription translation

Figure 2.1: The central dogma of molecular biology summarizes bacterial
gene expression.

Figure 2.2: Dna processing by Rna polymerase (Rnap): promoter binding
and initiation, transcript elongation, termination with release of Rna

be transcribed into a single-stranded Rna molecule, and translated for such
Rna encoding proteins. Figure 2.1 summarizes these two phases of bacterial
gene expression.

Transcription of a gene is carried out by Rna polymerase. Rnap as-
sembles Rna molecules, that reflect the information content of the template
Dna strand. Certain categories of transcripts have an immediate functional
role in the cell. Messenger Rna (mRna) acts as an information carrier. It
is subject to two competing subsequent processing phases: translation into
proteins and degradation.

Both transcription and translation follow a similar scheme of three phases,
illustrated in Figure 2.2 for transcription:

Initiation. Rnap localizes its start point on Dna, a promoter sequence,
where it reversibly binds. Upon successful initiation it opens the
double-stranded Dna, making its information content accessible.
Rnap reads out the first portion of the template Dna strand, assembles
the 5′ end of a new Rna molecule, and continues into elongation.

Elongation. Rnap translocates over Dna in discrete steps of one nu-
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cleotide, and for each adds a complementary nucleotide to the growing
transcript. Throughout elongation, Rnap maintains a tight contact
to the growing extremity of the nascent Rna, as well as the template
Dna strand.

Termination. Rnap unbinds from Dna and releases the transcript when
it recognizes a terminator sequence.

Translation of mRna into proteins is performed by ribosomes, the largest
macromolecular complexes in the cell. Ribosomes read out the genetic code
from mRna in three-letter words (called codons), corresponding to amino
acids, assemble these into growing sequences of amino acids, that subse-
quently fold into three-dimensional proteins.

mRNA decay. Besides carrying the code for proteins, a second decisive
property of mRna is its rapid degradation. Instability was indeed the definin-
ing feature as mRna was discovered (Brenner et al., 1961; Gros et al., 1961).
Degradation is accomplished by the degradosome, an ensemble encompassing
several enzymes and their respective actions. With respect to translation, the
decisive step is the degradosome’s initial access to the 5′ end of mRna. Fig-
ure 2.3 illustrates its competion with ribosomal access for translation initia-
tion. The reviews of Carpousis (2002) and Grunberg-Manago (1999) account
for the full details of degradation, that may be covered by refinement of the
formal model presented in this thesis.

Proteins are the most prominent active constituents of a cell. In brief,
proteins carry out instructions that are hard-wired in Dna. They can be en-
zymes that catalyze reactions, receptors sitting on the cell’s outer membrane
and conferring information about the environment to the inside, signaling
molecules that carry on information within the cell, transcription factors
that control gene expression through binding to Dna, or others. All proteins
are subject to degradation, with half-lives exceeding those of mRna by far.

Concurrent features of gene expression. Many aspects of gene expres-
sion has a flavor of concurrency. The first is simultaneous processing of the
same macromolecule by several molecular actors. The second are interdepen-
dencies, or couplings, between the different phases of gene expression, that
are not yet visible in the simple scheme of Figure 2.1. The third is immediate
competition for a resource, as the race for mRna between ribosomes and the
degradosome.
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Figure 2.3: mRna is subject to competing translation and degradation. The
latter initiates at the 5′ end, while the ribosome assembles on the nearby
ribosomal binding site Rbs. Actual translation begins with the start codon,
here ’Aug’.

(a) DNA (b) mRNA

Figure 2.4: Simultaneous processing of Dna and mRna (Alberts et al.,
2002)

The macromolecules Dna and mRna are typically processed by multiple
actors at the same time. Bacterial genomes contain several thousand genes,
many of which may undergo transcription at any instant. In addition, each
gene can simultaneously be transcribed by several Rnap. Consider the struc-
ture reminiscent of a comb in Figure 2.4(a). The backbone is a Dna region
encoding one gene. The comb’s teeth are formed by nascent Rna transcripts.
Althoughh we can not discern the Rnap themselves, the increasing lengths
of transcripts indicates that transcription initiates at the left, and that elon-
gation proceeds in left-to-right orientation 1. The end point of transcription
is easy to recognize: the non-coding stretch of Dna remains naked. Note
that because transcription of this gene initiates with high efficiency, Rnap
densely follow each other. Figure 2.4(b) shows the analogous phenomenon of
queueing in translation. While the mRna itself can not be seen, the visible
blobs are ribosomes that rapidly follow each other.

1These transcripts are not protein coding. Starting from their respective 5′ ends, they
gradually fold into three dimensional structures, which become ribosome constituents.
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Coupling between phases of gene expression. Unlike in eukaryotes
where they are separated in time and space, transcription and translation
are contemporaneous in bacteria. While one end of an mRna molecule is
being elongated by Rnap, ribosomes start accessing the other. The coupling
between transcription and translation can become very tight, and fulfill spe-
cific goals (discussed in Gowrishankar and Harinarayanan (2004)). Transcrip-
tional attenuation is a regulatory mechanism in which transcription stops
unless the growing mRna is efficiently translated, as discovered by Yanofsky
(1981).

The complexity of couplings dramatically increases in eukaryotic cells,
as Orphanides and Reinberg (2002) and Maniatis and Need (2002) review.
Recent system-level analysis by high-throughput methods reveal surprising
aspects (Maciag et al., 2006).

2.2 Molecular events

In this section, we represent the molecular events in transcription, translation
and mRna decay in terms of chemical reactions. This representation is as
general as possible. It does not intend to reflect any particular gene, but
emphasizes the core mechanisms by which any gene is transcribed by Rnap,
any mRna processed by ribosomes in translation, or degraded.

The level of resolution with respect to the elongation mechanisms is that
commonly adopted by stochastic models: each elongation step is considered
as atomic, accounting for the unique rate-limiting step in the advance of
the macromolecular machines Rnap and ribosome. It does not consider the
internals of actually appending new elements to a nascent mRna or protein.
Quantitative descriptions of these are recent, e.g. Greive and von Hippel
(2005).

2.2.1 DNA and transcription

Table 2.1 summarizes the discrete interactions between Dna and Rnap fol-
lowing the scheme of McClure (1985) for initiation, and McAdams and Arkin
(1997) for elongation. It also comprises the parameters of quantitative con-
trol, necessary to reproduce the dynamics of transcription in stochastic sim-
ulation.

Reactions (2.2.1) to (2.2.3) represent the essential steps of transcription
initiation: initial reversible binding of Rnap to the promoter (Prom), fol-
lowed by transition to the open complex. The parameter kon for binding
to an arbitrary promoter in the binding reaction (2.2.1) subsumes the time
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Rnap + Prom →kon (Rnap · Prom)closed (2.2.1)

(Rnap · Prom)closed →koff
Rnap + Prom (2.2.2)

(Rnap · Prom)closed →kinit (Rnap · Prom)open (2.2.3)

(Rnap · Prom)open →kelong
Rnap ·Dna1 (2.2.4)

Rnap ·Dnan →kelong
Rnap ·Dnan+1 (2.2.5)

Rnap ·Dnaterminator →kelong
Rnap + Dnaterminator + mRna (2.2.6)

Table 2.1: Reaction rules for transcription

Rnap spends scanning Dna, until it recognizes and binds. At this point,
promoter and Rnap form a closed complex, in which the two strands of
Dna are firmly associated. Rnap may unbind without any further effect,
see reaction (2.2.2). The stability of the closed complex is reflected by the
promoter specific parameter koff . In successful initiation Rnap unwinds the
duplex Dna locally – we then reach the open complex (reaction (2.2.3)).
The parameter kinit reflects the promoter specific efficiency of transcription
initiation.

Elongation: After a successful transition to the open complex, Rnap
starts to transcribe information content from Dna into Rna, at a first cod-
ing nucleotide (2.2.4). During elongation (2.2.5), it continues the synthesis of
Rna complementary to the template Dna strand. The nucleotide wise ad-
vance of Rnap was experimentally confirmed by Abbondanzieri et al. (2005).
These steps are separated by waiting times following an exponential distri-
bution, determined by the parameter kelong

2.

Interesting details in elongation are that Rnap may stall, slow down and
pause on certain sequences (Wagner, 2000). Also, the promoter becomes
available for further binding only after Rnap has cleared the length of its
own footprint (a few tens of nucleotides). This promoter clearance becomes
rate-limiting at highly efficient promoters such as the one from Figure 2.4(a)
3.

Termination can be summarized as follows. Rnap dissociates from Dna
when recognizing a terminator sequence on the template strand. It then

2 Note the reaction-base notation disregards the nascent mRna.
3This aspect is incorporated in our executable models, yet not technically discussed in

this thesis. For details, see (Hsu, 2002).
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Figure 2.5: Control of bacterial promoters. Regulatory proteins apply
as small catalog of molecular mechanisms when binding Dna for repression
(left) and activation (right) of transcription initiation. From Browning and
Busby (2004).

releases the completed transcript. Reaction (2.2.6) summarizes this intrinsic
termination.

A regulatory detail not considered in this thesis is that under certain
circumstances, small molecules can load on elongating Rnap, and cause it
to overrun intrinsic terminators. This is referred to as anti-termination, and
can be explained by a more detailed model of intrinsic termination. An
alternative termination mechanism is called rho-dependent. In it, a small
protein slides along the transcript starting from its 5′ end, reaches Rnap
and causes it to terminate. We will not cover this mechanism either, for
details see Banerjee et al. (2006) and Henkin (2000),

Regulation of initiation: Bacteria apply various strategies to use their
genetic material with great effectiveness, in the correct amount and at the
appropriate time. Transcription initiation is controlled by Dna binding
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Ribosome + mRnaRBS →kon Ribosome ·mRnaRBS (2.2.7)

Ribosome ·mRnaRBS →koff
Ribosome + mRnaRBS (2.2.8)

Ribosome ·mRnaRBS →kinit
Ribosome ·mRna1 (2.2.9)

Ribosome ·mRnan →kelong
Ribosome ·mRnan+1 (2.2.10)

Ribosome ·mRnaterminator →kelong
Ribosome + Protein (2.2.11)

+mRnaterminator

Degradosome + mRnaRBS →kd
Degradosome ·mRnaRBS(2.2.12)

Table 2.2: Reaction rules for translation and mRna decay

proteins4. Repressors exclude Rnap from promoters by stable binding to
overlapping sequences. Activators conversely attach in the vicinity of the
promoter, and favor initiation by increasing the transition rate to the open
complex kinit , or stabilize Rnap by lowering koff .

The repertoire of regulatory interactions between proteins and bacterial
Dna is actually small. Figure 2.5 illustrates essential molecular mechanisms
of repression (left) and activation (right), depending on no more than two
proteins.

In Chapter 3, we will detail on promoter repression by steric hindrance,
depicted uppermost in the left column. It lead to the actual discovery 5

of gene regulation Jacob and Monod (1961), is the simplest mechanism of
repression, and the most frequent. Steric hindrance is encountered at λ
switch promoters, for which we develop π-calculus models in Chapter 8.
These models refine the sketch from Section 1.3.4.

Among the mechanisms of activation, we will focus on cooperative binding
of regulatory proteins, depicted as case (C) in the right column of Figure 2.5,
and their positive control of Rnap. Cooperativity activates the λ switch
promoter PRM, and it is the key to transcription control in higher organisms
(Müller-Hill, 2006; Ptashne, 2005).

2.2.2 mRNA, translation and degradation

Translation, the flow of mRna encoded information into proteins, is again
subdivided into initiation, (protein) elongation, and termination. Table 2.2
summarizes.

4Reviewed by Barnard et al. (2004) and Browning and Busby (2004).
5Awarded a Nobel prize in 1965.
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Initiation. Reaction (2.2.7) represents the initial step of ribosome bind-
ing and assembly on a dedicated mRna sequence, the r ibosomal binding s ite.
As depicted in Figure 2.3 on page 29, the Rbs is located nearby the mRna’s
5′ end. The ribosome may dissociate readily. The parameter koff in reaction
(2.2.8) reflects its stability of binding, that depends on the agreement with an
ideal sequence mRna. The abbreviation mRnaRnaRBS in Table 2.2 refers
to the 5′ end of mRna, including both the Rbs and the start sequence, e.g.
’Aug’ in Figure 2.3. The actual combination of RBS and start sequence de-
termines the efficiency of translation initiation, see parameter kinit in reaction
(2.2.9).

In elongation, the ribosome slides over mRna, reads out information con-
tent and assembles a growing chain of amino acids. Unlike transcription that
maps individual nucleotides, translation proceeds over mRna in three let-
ter words (codons), that each code for one amino acid. For simplification,
it is however common practice in mathematical modeling to consider only
the average elongation delay per mRna nucleotide. It is accounted for by
the parameter kelong in equation (2.2.10). While illustrative comics of elon-
gation are widespread in the biological literature as Alberts et al. (2002),
the detailed internal functioning of ribosomes is only partially understood,
see Frank and Agrawal (2000). Elongation ends as the ribosome reaches a
dedicated terminator signal on mRna (2.2.11). The protein is then released.

Degradation: Table 2.2 covers the initial step of degradation as reac-
tion (2.2.12). After this, decay to proceeds with the same net orientation
as translation. It hence does not affect translation that already initiatied.
Note that this scheme approximates the net outcome of multiple degrada-
tion pathways in a phenomenological manner. For details, see Carrier and
Keasling (1997), Grunberg-Manago (1999), and Steege (2000). For long, the
detailed understanding of mRna degradation lagged far behind that of other
steps in gene expression, recent discoveries are reported by Carpousis (2002)
and Regonesi et al. (2006).

2.3 Particular promoter arrangements

In this section we sketch specific cases in the arrangement of genes and pro-
moters in bacterial genomes. They have important impact on expression
patterns, and are difficult to explicitly represent in previous modeling ap-
proaches.
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(a) operon
(b) regulon

(c) tandem promoters (d) convergent promoters

Figure 2.6: Particular promoter arrangements. Horizontal arrows indicate
the orientation of transcription.

Operons are sequences of several genes, co-transcribed in one go from a
common promoter. Figure 2.6(a) presents an example. Operons yield poly-
cistronic mRna molecules. Each mRna segment called cistron corresponds
to one gene, hence codes for a different protein. While decay initiates at the
common 5′ end as it does for monocistronic mRna, translation is distinctly
controlled across cistrons, each bearing their own ribosomal binding site and
translation start signal. The translational efficiency across cistrons on the
same mRna can vary up to a factor of 1000 across cistrons (Ray and Pearson,
1974). Section 7.4.1 deals with modeling operons and polycistronic mRna
in our π-calculus with concurrent objects.

Regulons illustrated in Figure 2.6(b) are sets of genes, each transcribed
from its individual promoter. The point that matters is that these promot-
ers depend on the same regulatory signal. Assuming the signal reaches all
promoters in this regulon, the genes are transcribed under the same circum-
stances.

In our illustration, the regulatory signal consists in repression by the
same protein. Operons eliminate the need for multiple promoters. It appears
interesting to compare the sensitivity of operons and regulons to a common
regulatory signal, however we do not elaborate on this aspect in this thesis.

Tandem promoters are sketched in Figure 2.6(c). They lie close by on the
same Dna strand, and control the transcription of the same gene(s). Tandem
promoters offer two interesting aspects to fine tune expression levels. First,
they can be activated independently, in response to different environmental
signals. Second, the mRna initiated from P2 is longer and thus contains
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more information, compared to that from P1. The different 5′ ends can
have important consequences, since both translation and degradation initiate
there. The longer transcript may contain a second ribosomal binding site, or
translation start signal. It may be more resistant to decay due to secondary
structures, into which its longer 5′ end folds.

The fine-tuning of translation efficiency by transcripts of the same gene,
initiated at alternative promoters is an interesting regulatory strategy. It
is commonly applied by bacterial viruses as λ, that after infecting a bacte-
rial cell, must take a decision to either enter their dormant state, or start
multiplying at the expense of their host cell (Schmeissner et al., 1980). The
most prominent example of alternative promoters however is ribosomal Rna
genes in bacteria. These account for 90% of transcription in rapidly growing
cells (Dennis et al., 2004; Paul et al., 2004). Beyond bacteria, alternative
promoters are also relevant to gene regulation in higher organisms.

In humans, an interesting example is the control of alternative promot-
ers for the cancer-inducing Epstein-Barr virus, see Thompson and Kurzrock
(2004) and Young and Rickinson (2004). This virus infects over 90% of the
world population. Its switch from the dormant to the cancer-inducing mode
depends on the control of alternative promoters.

We will discuss the modeling of a tandem promoter in the π-calculus in
Section 7.4.2, however not enter the details of parameterization and simula-
tion.

Convergent promoters are the fourth promoter arrangement illustrated
in Figure 2.6(d). The crucial point about convergent promoters arranged
on opposing strands of Dna is that Rnap starting from them proceed over
the two strands with converging orientations. However transcriptional traffic
over double stranded Dna occurs on a single lane, two way street. Head-
on collisions between two Rnap causes at least one participant to fall off
Dna, releasing a truncated transcript. This suppressive influence is known
as transcriptional interference, and can be used as a regulatory mechanism
(Shearwin et al., 2005). This thesis only deals with single stranded Dna,
leaving the treatment of the concurrent control of transcriptional interference
in the π-calculus to future work.

2.4 Quantitative control

Cell-to-cell variability contronts biologists with intriguing questions. A fre-
quent observation is that cells from a genetically identical population exhibit
widely differing behavior, although being exposed to the same, precisely con-
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parameter (reaction) value comment

Transcription of DNA
kon (in 2.2.1) 0.1 sec−1 binding: equally fast for all

promoters
kon

koff
(in 2.2.1 and 2.2.2) 106 to 109 unbinding: promoter specific

kinit (in 2.2.3) 10−3 to 10−1 sec−1 initiation: promoter specific
kelong (in 2.2.5) 1

30
sec−1 elongation speed: 30 nu-

cleotides/sec

Repression

repressors: kon

koff
107 to 1011 attachment to operators

ranges from seconds to several
bacterial generations

Translation and degradation of mRNA
1 to 100 gene specific mean protein

crop per transcript, depending
on koff , kinit and kd

kelong (in 2.2.10) 1
100

sec−1 elongation speed: 100 nu-
cleotides/sec

Table 2.3: Quantitative control of gene expression. Reaction numbers refer
to Tables 2.1 and 2.2.

trolled environment. Such differences may lead to visibly distinct behavior
or appearance of the cells. In quantitative terms, they correspond to fluctu-
ation of protein amounts, within a cell over time, as well as across cells in a
population snapshot.

Part of the variability in gene expression originates from the inherently
stochastic nature of the biochemical reactions, combined with low numbers
of molecules in regulatory events (Sneppen and Zocchi, 2005). Other effects
are due to the specific quantitative control for a given gene of interest, i.e.
the efficiencies of transcription and translation initiation. Tables 2.1 and 2.2
listed the main parameters as reaction labels: kon , koff , kinit , kelong , and kd .

In this section we first consider value ranges for these parameters. We
then discuss the impact of actual parameter combinations on the overall
dynamics of gene expression, that can be considerable.
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2.4.1 Parameter ranges

Table 2.3 reports some ranges of relevant values. The quantitative properties
of promoters vary greatly. On some Rnap falls off the closed complex within
fractions of seconds, while on others with favorable koff parameter, it may
remain stably bound for minutes. Transition to the open complex depends on
the parameter kinit in reaction (2.2.3), at strong promoters it occurs within
a second, while at weak ones after minutes. As a consequence, the frequency
of transcription per gene varies from one per second (ribosomal Rna) to one
per cell generation (certain regulatory proteins). Rnap elongates transcripts
with an average rate of 30 nucleotides per second.6 With an average gene
length of 1000 nucleotides, this combines to an average transcript elongation
delay around 30 seconds.

We recall that Rnap’s access to promoters can be hindered by repressor
proteins, bound to Dna. A repressor protein can stick to highly specific
operator sequences for several bacterial generations of each 30 min – 1 hour;
while at less specific sequences it falls off within seconds.

Translation proceeds faster than transcription, such that the average time
required for the translation of a protein from a mRna is in the order of 10
seconds. Note that degradation can start before a first protein has been
completed from an mRna, and that a ribosome bound to the Rbs protects
mRna from decay until it either unbinds or dissociates. As a consequence of
degradation, average mRna lifetimes range from few seconds to 30 minutes
(Grunberg-Manago, 1999).

2.4.2 Translational bursting

The average number of proteins produced from a single mRna is gene spe-
cific, typically ranges are between 1 and 100. It is important to consider
the fluctuations of protein crops around these averages, for transcripts of the
same gene. These depend on the outcome of the race between degradation
and translation. When translation initiates efficiently, and the crop for the
transcript is high, ribosomes queue on mRna, and all proteins are released
soon after transcript completion. With long spacings between transcriptions,
this combines to translational bursts, i.e. rapid release of comparatively high
numbers of proteins.

Only a minority of bacterial genes yield averages of fewer than 5 proteins
per transcript, a value of 20 is rather normal – and burst sizes increase with

6This is a considerable simplification of the quantitative details of individual steps in
mRna elongation. Greive and von Hippel (2005) review current methods of quantitative
assessment.
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Figure 2.7: A geometric distribution characterizes the fluctuations around
the mean crop of proteins per mRna. P [X > x] for different mean values.

these means. Combined with the fact that most genes are only transcribed
occasionally, translational bursting becomes prevalent. Figure 2.8 (left) on
page 41 illustrates it. It contrasts the resulting dynamics at protein level
for average crops per transcript of 10 proteins (up) with one of 1 (low).
Importantly, in both cases the combination with transcriptional efficiencies
yields the same average protein level.

Translational bursting significantly contributes to stochasticity in gene
expression, which has attracted much attention in recent years, reviewed
by Kaern et al. (2005), Paulsson (2005), and Raser and O’Shea (2005). It
explains why two cells with identical genetic material, under the same con-
ditions, can exhibit significantly variable individual behavior. The effects
can propagate up to the level of population of cells, which are partitioned
into sub-populations with externally distinct characteristics. While these
consequences have been known for long, the origins have have only become
observable recently through real time courses of levels in proteins and mRna,
as in the experiments of Kobiler et al. (2005) and Golding et al. (2005).

Geometric distribution. We consider the geometric distribution, that
illuminates the increase of the stochastic variability tied to increasing aver-
age protein crops per transcript. Let p be the probability that translation
succeeds in one round, over degradation that has a probability of (1 − p).
Considering several rounds of this race, the probability to produce x proteins
from one transcript before it is degraded is given by px(1− p): with a prob-
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ability of p, translation succeeds for each of x rounds, and then degradation
wins with the complementary probability of (1−p). This is a geometric distri-
bution function, which is characterized by asymmetry and many large values.
Figure 2.7 illustrates the complementary cumulative distribution function for
geometric distributions with different mean values. It indicates the proba-
bility to obtain more than x transcripts from one transcript, P [X > x]. For
example, if the mean crop per transcript is 10, 9% of the transcripts yield
each over 25 proteins.

2.5 Related models

We report on studies of bacterial gene expression that our work draws from,
dealing with modeling, simulation and experimental investigation. After this,
we briefly sketch software packages for stochastic simulation, and comment
on continuous modeling approaches.

Carrier and Keasling (1997) elucidated the relation between molecular
actors in mRna processing. Based on the prevalent narrative theories of
prokaryotic mRna, they developed a mechanistic model of discrete interac-
tions between the various sets of enzymes contributing to degradation, and
the initiation of translation by ribosomes. The authors performed simula-
tions of the alternative models and tested their ability to reproduce dynamic
effects known from wet lab experiments. We will follow their conceptional
scheme in mRna decay, that is rarely explicitly rendered by other models in
the field.

McAdams and Arkin (1997) attracted wide attention with a scheme for
simulation of gene expression. It combines a continuous model of transcrip-
tion initiation in the tradition of Shea and Ackers (1985) with a stochastic
account of transcript elongation and subsequent processing of mRna (based
on Gillespie’s algorithm). We adhere to this conceptional scheme for the race
between the initiation of translation versus degradation. Arkin, Ross, and
McAdams (1998) applied this generic model to the initial decision between
the lysogenic and lytic pathways bacteriophage lambda. We discuss points
that we deem critical in their parameterization on page 52. Namely, they
neglected the importance of distinct translational efficiencies, giving rise to
differences in stochastic fluctuations in protein levels.

Kierzek, Zaim, and Zielenkiewicz (2001) systematically addressed this as-
pect, for bacterial gene expression in general. They clarified the contribution
of translational efficiencies to noise at the protein level in stochastic simu-
lation while systematically varying translation and transcription initiation
frequencies.
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Figure 2.8: Translational bursting. The experiments of Ozbudak et al.
(2002) confirmed the hypothesis consolidated through modeling and simula-
tion, that efficiently translated transcripts together with rare transcription
initiations are a major source of stochasticity in bacterial gene expression.
(left) simulation data, (right) data points .

Ozbudak et al. (2002) confirmed Kierzek et al.’s predictions experimen-
tally. They systematically varied single bases in the sequences of Dna
determining transcription initiation efficiencies, and those transcribed into
the translation initiation sequence (Rbs) on mRna. For these modified se-
quences, they quantified the resulting initiation efficiencies. In addition, they
monitored the resulting dynamics at protein level for different combinations
of promoter and Rbs sequences. Their experimental observations support
the proposal of Kierzek et al. (2001) that stochastic noise increases with the
combination of high translational efficiency and rare transcription initiation.
Figure 2.8 summarizes the observations of protein levels in silico (left) and
vitro (right).

Software packages for stochastic simulation of gene expression
While most of the above studies were performed with ad hoc implementa-
tions of algorithms for stochastic simulation, in recent years several dedicated
software packages have been proposed.

STOCKS. Kierzek (2002) contributed a tool used for his own simulation
studies, that executes chemical reaction rules specified in a reaction
based syntax according to Gillespie’s algorithm.
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Dizzy. 7 This tool by Ramsey et al. (2005) and Orrell et al. (2005) imple-
ments current variants of Gillespie’s algorithm of improved efficiency,
for large-scale simulation of genetic networks. It includes explicit sup-
port for the multi-step reactions in transcription and translation, and
reusable templates for the creation of large-scale models of regulatory
dependencies between genes. Models are specified in a rule-based lan-
guage via a graphical interface. The paper by Ramsey et al. (2005)
includes a comprehensive overview of software packages for stochastic
simulation.

STOCHSIM. Multi-state molecules are one of the central ideas realized
in StochSim, a general purpose biochemical simulator described in
Morton-Firth (1998) and Morton-Firth and Bray (1998). StochSim
represents individual molecules interacting stochastically, however with
time steps at even pace. Multi-state molecules possess a set of binary
flags, indicating possible modifications as the presence of a smaller
molecule.

BioNet. 8 For completeness we list the stochastic ODE solver of Adalsteins-
son et al. (2004). It proved insightful through the recent simulation
studies of Guido et al. (2006), dealing with the construction of a syn-
thetic bacterial promoter.

Deterministic models. Continuous deterministic models have a decade-
long tradition in chemistry, biochemistry, or physics. They are mostly rep-
resented in the unifying framework of differential reactions (Voit, 2000). By
their design deterministic models abstract from the nondeterministic behav-
ior of individual molecules. Their aim is to reproduce average behavior of
systems with huge numbers of components, where discrete interactions may
be disregarded. Although their predictive power with respect to detailed
level as consider in our work is limited, such approaches have indeed proven
insightful to gene expression, see e.g. Leloup and Goldbeter (1999), and von
Dassow et al. (2000).

7http://magnet.systemsbiology.net/software/Dizzy
8http://x.amath.unc.edu/BioNetS

http://magnet.systemsbiology.net/software/Dizzy
http://x.amath.unc.edu/BioNetS


CHAPTER 3

Transcription Regulation at the Lambda Switch

Bacteriophage λ is a virus which infects the bacterium Escherichia coli. In-
jecting its genome into the bacterial cell, two developmental pathways are
possible, as illustrated in Figure 3.1. In lytic growth the viral genome uses
the molecular machinery of the bacterial cell to produce new viruses and
eventually burst the host. Alternatively, the viral genome gets integrated
into the bacterial genome. Note the highlighted segment within the bacterial
genome in Figure 3.1. The only viral protein expressed after the decision
for lysogeny is the λ repressor. It represses the expression of all other viral
genes. The host cell is now immune against further infections. Both the viral
genome, and the immunity, are subsequently transmitted in a passive way.
This state called lysogeny is extremely stable, and usually maintained for
many bacterial generations. Spontaneous transitions from lysogeny to the
state of lytic growth would occur about once every 5000 years for a single
bacterial cell (Dodd et al., 2005). Taking into account that the bacterium
divides into two daughter cells within less than an hour, the lysogenic state
is extremely stable.

But surprisingly, upon an environmental signal the phage genome can
efficiently become re-activated – this is called induction. Now, the bacterium
switches from lysogeny into the phase of lytic growth. The viral genome is
extracted from the host’s, and uses the cell machinery to produce a fresh
crop of viruses. This unavoidably leads to the lysis, or destruction of the
host cell.
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Figure 3.1: Two pathways of λ infected E.coli bacterium: lysogeny and lytic
growth.

3.1 Molecular events

What happens during induction, as well as the maintenance of lysogeny,
crucially depends on the control of transcription initiation within OR, the
r ight operator region of phage λ’s genome. OR is commonly referred to as
the λ switch.

The control of transcription initiation at the λ switch illustrates phenom-
ena of cooperativity, which are increasingly important for gene regulation in
higher forms of life (Ptashne and Gann, 2002). Cooperative enhancement
of a reaction between two molecular actors means that its strength is en-
hanced by a third, otherwise independent actor. We will see two instances
of cooperative enhancement at the λ switch: positive control and cooperative
binding.

Genes and promoters: By the λ switch we refer to a segment of phage
λ’s genome, that comprises the control regions for the genes cI and cro,
illustrated Figure 3.2. Their transcription initiates at the promoters PRM and
PR respectively, the transcripts are subsequently translated to the proteins
Rep and Cro.

Cro and Rep proteins appear in two forms, as dimers and monomers
which can be distinguished in Figure 3.4. When expressed they first appear
as monomers. They can only bind to Dna after having associated pairwise.
Dimers are unstable, unless bound to Dna they soon dissociate back to
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Figure 3.2: A spatial view of the λ switch, a segment of phage lambda’s
genome.

gene protein promoter
cI Rep PRM: promoter for synthesis of repressor during

maintenance of lysogeny
cro Cro PR: r ight promoter

Figure 3.3: Genes, proteins, and promoters at the λ switch

monomers. The higher the protein concentration in the cell, the higher is
the degree of dimerization.

In lysogeny, the regulatory network is characterized by a high number of
Rep and negligible amount of Cro proteins; these frequencies are inverted
during lytic growth. The environmental signal upon induction leads to a
massive destruction of Rep proteins. PR then becomes activated automat-
ically, while transcription from PRM ceases. These are consequences of the
network controlling transcription initiation.

Repression of promoters by steric hindrance: The regulatory pro-
teins Rep and Cro bind to the three neighboring operator regions OR1, OR2,
and OR3. By doing so, they control Rnap access to the promoters. As
Figure 3.2 indicates OR1 and OR2 both overlap the promoter PR, while OR3

lies within PRM. A protein bound within a promoter blocks recognition of
the promoter by Rnap. This principle is called steric hindrance. The typical
constellations are sketched in Figure 3.4. Note that all bindings are reversible,
i.e. the proteins dissociate from the Dna strand after some time. Similarly,
Rnap frequently falls off a promoter without initiating transcription.

The maintenance of lysogeny depends on the presence of a sufficient
amount of repressor, that is predominantly bound at OR1 and OR2. This
impedes Rnap binding to PR. As a consequence, Cro and all other viral
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Figure 3.4: Network states during lysogeny and lytic growth. In lysogeny,
Rep attached to either or both of the binding sites OR1 and OR2 blocks
recognition of the promoter PR by Rnap, and thus prevents transcription
of the gene cro. At the same time, interactions between Rep at OR2 and
Rnap at PRM stimulate transcription of the gene cI, which allows for the
production of new Rep.

genes are repressed.

Cooperative enhancement of repressor binding at OR2 : The in-
trinsic binding affinity of Rep for OR1 is tenfold higher than for OR2 and
OR3. Thus, Rep is more likely to be found at OR1. Furthermore, Rep at
OR1 significantly favors binding of another Rep to OR2 – this is what we
call cooperative binding. One could say that the λ repressor at OR1 recruits
another to OR2 (Ptashne and Gann, 2002).

Positive control of transcription initiation is needed for virtually all genes.
It refers to the fact that Rnap bound to a promoter needs the help of regula-
tory proteins in order to successfully initiate transcription. At PRM, Rnap’s
initiation frequency increases through a physical contact with Rep bound
at OR2. This second instance of cooperative enhancement, called positive
control, is decisive for maintenance of the lysogenic state. Without it Rnap
would rather fall off the inherently weak promoter PRM than start to tran-
scribe.

The production of Rep ceases once the available quantities fill the operator
site site OR3, in addition to OR1 and OR2. At this point Rep inhibits its own
production by steric hindrance of PRM in a negative feedback loop.

Upon induction, the number of repressors rapidly decreases due to an
external signal, so that OR1 and OR2 become more and more likely to remain
vacant. Now polymerases find frequent opportunities to bind to PR. As PR
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TF + ORi koff

kon TF ·ORi (3.1.1)

Rnap + PRM koff

kon (Rnap · PRM)closed (3.1.2)

(Rnap · PRM)closed →kinit (Rnap · PRM)open (3.1.3)

Rnap + PR koff

kon (Rnap · PR)closed (3.1.4)

(Rnap · PR)closed →kinit (Rnap · PR)open (3.1.5)

Table 3.1: Reaction rules for protein-Dna interactions at the λ switch

is inherently a strong promoter, these bindings rapidly ensue transcription,
followed by the production of Cro proteins.

3.2 Quantitative control

The stochastic π-calculus assumes rates that determine the speed of reac-
tions. In this section, we discuss how to distill such rates from the literature.
The resulting parameters are summarized in Table 3.2.

Table 3.1 summarizes the reactions for Rnap-promoter interactions, and
protein binding to operators and at the λ switch, i.e. TF ∈ {Rep,Cro}
and i ∈ {1, 2, 3}. It is however not straightforward to include the mutual
affections of these reactions. Table 3.2 explicits all side conditions.

In our system reversible binding reactions are frequent, such as by λ
repressor to the operator OR1:

Rep + OR1 koff

kon Rep ·OR1 (3.2.1)

This bidirectional reaction converges to an equilibrium, in which the num-
ber of reactants on both sides remains constant. The association constant
kon determines the speed of the association reaction. It measures the num-
ber of Rep-OR1-pairs that form complexes per mol and second. For the case
of regulatory proteins the association rate constant kon has been experimen-
tally determined – see Berg et al. (1981); Wagner (2000); Sneppen and Zocchi
(2005). It is given by the net rate with which a protein locates its target site
on Dna:

kon =
108

mol sec
(3.2.2)

We assume this value for all combinations of proteins and operator sites 1.

1This constant exceeds three dimensional diffusion by two orders of magnitude, and
subsumes a number of mechanisms of target site location by proteins. In its search process
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Table 3.2: Parameterizing the λ switch
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The dissociation constant koff specifies the speed of the de-complexation.
It measures the proportion of complexes that is resolved per second. As we
will see, for the case of Rep binding to OR1 we can assume it to be koff = 0.155

sec
.

However, it is less obvious to infer such dissociation rates the literature.
What is determined experimentally for such reactions is mostly Gibbs free
energy ∆G – a notion from thermodynamics. The value of ∆G quantifies the
effort necessary for decomplexation. In the concrete example of OR1, Ackers
et al. (1982) provide ∆G = −12.5kcal

mol
. This energy is negative, reflecting

that binding requires an effort by the environment, while unbinding happens
voluntarily. Non cooperative binding of Rep at the weaker binding site OR2

yields a value of ∆G = −10.5kcal
mol

, for OR3 we obtain ∆G = −9.5kcal
mol

. Note
that a smaller value indicates stronger binding, and that a difference of 1kcal
ensues a tenfold difference in binding strength.

Gibbs free energy correlates with the equilibrium constant Keq of the
binding reaction, which expresses the quantities of unbound pairs Rep and
OR1 compared to complexes Rep · OR1 in equilibrium. The relationship is
expressed through the equation:

Keq = exp(
−∆G

R · T
) (3.2.3)

where R = 1.9872 cal
mol Kelvin

is the universal gas constant and T =
310.15 Kelvin is the absolute temperature at which the experiments were
performed (it corresponds to 37 Celsius).

The equilibrium constant Keq represents the ratio of association and dis-
sociation rate constants as shows the following kinetic equation:

Keq =
kon

koff

mol (3.2.4)

The experimental data on Gibbs energy together with equations (3.2.2),
(3.2.3), and (3.2.4) are sufficient to compute the dissociation rate koff by
straightforward arithmetics2.

The rate constants kon and koff we have met so far are macroscopic
– as in chemical kinetics. They do not depend on the actual numbers of

a protein first diffuses three-dimensionally through the cytoplasm, hits the Dna and sub-
sequently slides along the Dna, rapidly scanning it for its specific site. A model explaining
this has been proposed by Slutsky and Mirny (2004).

2The following set of equations determines the values of all rates for the example:

∆G = −12.5 · 103cal/mol
R = 1.9872 cal/(mol Kelvin)
T = 310.15 Kelvin

Keq = exp−∆G/(R T )

kon = 108/(mol sec)
koff = kon/Keq mol
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∆G koff binding strength
OR1 −12.5 0.155 strongest
OR2 (coop) −12.5 0.155
OR2 (isolated) −10.5 3.99
OR3 −9.5 20.22 weakest

Figure 3.5: Parameters for λ repressor binding to the three operator sites

molecules, but on concentrations. Gillespie’s algorithm, however, and thus
the stochastic π-calculus use mesoscopic rate constants as their stochastic
rates. These refer to actual numbers of molecules and are determined from
their macroscopic counterparts as follows:

kmeso
on = ka

A V
, kmeso

off = koff ,

where A = 6.023 · 1023 is Avogadro’s number – i.e. number of molecules per
mole – and V = 1.7 · 10−15l is the E. coli cell volume. We need to divide by
A ·V for reactions involving two reactants, such as binding; for reactions that
transform a single reactant as unbinding, the macroscopic and mesoscopic
rates coincide. Note that we assume the cell volume to be constant while
ignoring cell growth. Evaluating our equation yields the following final rates
for the considered example reaction between OR1 and Rep:

kmeso
on = 0.098/ sec kmeso

off = 0.155/ sec

We can now quantify the effects of cooperative binding between repressors at
OR1 and OR2. Cooperativity adds a favorable term of −2kcal

mol
to the Gibbs

binding energy of Rep at OR2 (Shea and Ackers, 1985) 3. Due to the exponen-
tial relation between free energies and equilibrium constants this massively
strengthens the binding: the mesoscopic dissociation rate koff for OR2 de-
creases from 3.99 to 0.155, the same value as for OR1. Table 3.5 summarizes.

Finally, we need rates for transcription initiation, in which we follow
the scheme of McClure (1985): After binding, the complex of Rnap and
promoter P undergoes an irreversible transition from a closed state into an
open one, in which the two strands of Dna have locally been separated.
Then transcription proceeds.

Rnap + P 
Keq (Rnap · P )closed →kinit
(Rnap · P )open (3.2.5)

3Cooperativity also has a helping effect to binding at OR1, however we chose to neglect
this in our model as the effect at OR2 predominates.
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The kinit rates for the promoter PR and PRM can be found in Hawley et al.
(1985) and Li et al. (1997). Positive control of Rnap by repressor binding
at OR2 increases the kinit rate of PRM roughly tenfold. Note that the dissoci-
ation rate of Rnap binding at PRM is not affected, which distinguishes this
mechanism from cooperative binding of regulatory proteins.

Throughout this paper we assume a constant Rnap concentration of c =
30 · 10−9 mol according to Shea and Ackers (1985). This corresponds to a
population of circa 30 Rnap molecules via the simple calculation #RNAP =
c · V · A = 30.7, with A and V as above.

Finally, we assume the rate at which repressor monomers associate to
dimers to be 0.025 sec−1(nM)−1 (mesoscopic: 0.048) while setting the disso-
ciation rate to 0.5/ sec following Bundschuh et al. (2003).

3.3 Related models

The λ switch might be the case of gene expression that is most frequently
approached by modeling and simulation studies. The central questions ad-
dressed at a systems level are:

• How is the initial decision between lytic and lysogenic pathways deter-
mined, after infection?

• How is the lysogenic state maintained?

We review hallmark studies in modeling and simulation of bacteriophage
λ, in chronological order. Note that the questions addressed by these models
are distinct from ours, as well as the modeling frameworks applied. Also,
covering a maximal number of existing models remains beyond our intention.

The first quantitative model of λ switch regulation through protein bind-
ing, to the best of our knowledge, is that of Ackers, Johnson, and Shea (1982).
They started from experimental data of Johnson, Meyer, and Ptashne (1979)
reporting the concentration of repressor required for half-saturation of oper-
ator sites, and converted these into a set of thermodynamic free energies.
Ackers et al. derived the probability to find repressor proteins bound to
the operator sites OR1, OR2 and OR3, distinguishing eight possible binding
configurations. This allows to calculate the degrees of promoter repression,
depending on repressor levels. Importantly, the model also allows to predict
promoter repression under the assumption that repressors at OR1 and OR2 do
not bind cooperatively. This data supported the view that would have been
difficult to confirm experimentally, that cooperativity improves PR repression
in lysogeny.
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Shea and Ackers (1985) extend this model, to include binding of Rnap
to the promoters as well as Cro’s to the operators. The number of possible
configurations increases from 8 to 40 by the additional information. Impor-
tantly, in contrast to the previous, this model version is dynamic. It was used
to predict the maintenance of lysogeny, and induction of the lytic pathway.

The model of McAdams and Shapiro (1995) was the first to follows λ’s
dynamics from the moment the virus infects the host cell, through the de-
cision between the lytic and lysogenic pathway. It does so in a qualitative
manner, and concludes that detailed simulation of genetic mechanisms are
necessary to model regulatory circuits quantitatively.

Arkin, Ross, and McAdams (1998) deal with the initial decision between
the lysogenic and lytic pathways bacteriophage lambda in quantitative terms.
This model integrates a promoter control model following Shea and Ackers
(1985) with a stochastic account of transcript elongation and mRna process-
ing.

The next two studies deal with the maintenance of the lysogenic state.
Aurell, Brown, Johanson, and Sneppen (2002) mathematically deal with the
remarkable stability at which it is inherited from one bacterial genetics to the
next. Their investigation includes experimental data of Little et al. (1999),
that report robustness of the switch with respect to modifications of protein
binding strengths to the operators OR1, OR2, OR3. Aurell et al. conclude
that the knowledge available at the time of their work does not yet allow
to account for the experimentally observed stability, and thus appears in-
complete. Aurell and Sneppen (2002) develop a generic framework for the
investigation of the stability of epigenetic states (i.e. passing on lysogeny
from one generation to the next), and apply it to λ.

Other models centering on induction were proposed by Chung and
Stephanopoulos (1996), Tian and Burrage (2004), and Zhu, Yin, Hood, and
Ao (2004), while Thomas et al. (1976) and Thieffry and Thomas (1995) dealt
with the initial lysis-lysogeny decision in logical formalisms.

Discussion of parameterization in Arkin et al. (1998)

It is worthwhile mentioning that while the work of Arkin et al. was an impor-
tant source of inspiration for our own model of transcription and translation,
in what regards the parameterization of the λ model our choices widely dif-
fer from theirs. Regarding dimerization, we follow Bundschuh et al. (2003),
who corrects the rates of Arkin et al. by a factor nano, i.e. nine orders of
magnitude. Without this, it would not have been possible to simulate the
dynamics of dimer formation and breakage. Regarding transcription control,
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our parameter set developed in Section 3.2 is novel4; the level of resolution
of Arkin et al. disregards those aspects that are of importance to us. Re-
garding protein decay, they assume repressor half-lives of 40 min. However
to the best of our knowledge, the λ repressor is remarkably stable in the ab-
sence of the signal for induction. We follow Parsell et al. (1990) who report
half-lives in time scales of 10 hours or more, i.e. repressor degradation is
not relevant to our model since we consider shorter time scales5. Last it was
a choice of this thesis not cover the quantitative control of translation for
the λ proteins. However, we report that to the best of our knowledge, we
identified important flaws in the parameter set of Arkin et al.. Their work
assumes an average crop of 10 proteins for all transcripts, including those of
the cI gene transcribed from PRM. This clearly contradicts to the findings
of Balakin et al. (1992) that this transcript belongs to a minority with un-
usual translation initiation properties, the so called leaderless mRna. PRM

initiated cI transcripts lack a ribosomal binding sites, translation initiates
directly on the start codon. This results in poor efficiency, yielding in av-
erage 1 protein per cI transcript. Ribosomal assembly on such transcripts
follows a peculiar pathway, see Moll et al. (2002), Moll et al. (2004). It was
previously not reported for bacterial mRna– however exhibits parallels to
translation initiation in archeal and eukaryotic cells. We deem these choices
in parameterization to have important impact on the simulation results of
Arkin et al., notably on the prediction of variability in protein levels.

4An similarly derived by Saiz and Vilar (2006).
5Degradation would importantly matter if considering induction of the lytic pathway.
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CHAPTER 4

A Stochastic Pi Calculus for Concurrent Objects

The π-calculus by Milner, Parrow, and Walker (1992) is an expressive formal
language for describing systems of concurrent actors and their interactions. It
supports a minimalistic set of operators, describing concurrent systems on a
high level of abstraction, while ignoring specific aspects of applications. The
synchronous π-calculus is more expressive than the asynchronous π-calculus,
in that it can express centralized control (Palamidessi, 2003). Distributed
programming languages are the prototypical application of the asynchronous
π-calculus, since no centralized control is available there.

The stochastic π-calculus of Priami (1995) adds a temporal perspective
to the synchronous π-calculus. The speed of reaction x is specified by a
stochastic parameter, that is assigned to channel x. Such parameters define
exponential distributions of waiting times, associated with reactions on the
channel. A one-step reduction based semantics1 is given in Priami et al.
(2001). This semantics can be implemented by the simulation algorithm of
Gillespie (1976).

The two implementations available so far, SPiM (Phillips and Cardelli,
2004) and BioSpi (Priami et al., 2001), were already applied in a number
of simulation cases studies in systems biology beside those presented in this
thesis (Lecca et al., 2004; Blossey et al., 2006; Kwiatkowska et al., 2006).
From the modeling perspective in systems biology, the minimality of the π-
calculus is sometimes unfortunate. Objects help specifying the interfaces of

1The alternative SOS style semantics was used in the original π-calculus (Milner et al.,
1992) and in the original stochastic π-calculus (Priami, 1995).
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concurrent actors, so that they can be refined by inheritance. This permits
to add new functionality to concurrent actors, while remaining consistent
with their previous interface.

The lack of object-oriented features in the asynchronous π-calculus was
perceived early from the programming language perspective. Vasconcelos
and Tokoro (1993) proposed a suitable extension of the asynchronous π-
calculus to remedy the situation, that lead to the development of the TyCO
programming language (Paulino et al., 2003). The main idea is to extend the
asynchronous π-calculus by input patterns with function names, in order to
define object-oriented programming abstractions.

In this chapter, we extend the stochastic π-calculus by input patterns
with function names. In doing so, we are driven by the motivation to define
notions of concurrent objects, that we introduce later in Chapter 5. These
notions will be more general than those in TyCO, and are based on syn-
chronous communication. This increase expressiveness is required for our
modeling studies. Beside discovering the usefulness of input pattern for the
synchronous π-calculus, the main contribution of this chapter is a stochas-
tic semantics for the π-calculus with input patterns. It assigns stochastic
rates to pairs of channel and function names. The challenge is to define the
stochastic semantics such that it specifies a continuous time Markov chain
for every process. Gillespie’s algorithm allows to execute this Markov chain,
i.e. to compute simulation traces.

Our semantics copes with instantaneous reactions. Again, the problem is
to appropriately define the Markov chain of a process, under the assumption
that there are no immediate loops. Previous work on the stochastic π-calculus
does either not define Markov chains explicitly (Priami et al., 2001; Phillips
and Cardelli, 2004) so that correctness propositions can only be stated par-
tially, or differently (Priami, 1995) which is less relevant to applications in
systems biology. Experiments with the existing implementations – SPiM–
confirm a correct treatments nevertheless.

Finally, we show how to encode the stochastic π-calculus with input pat-
terns back into the original stochastic π-calculus without. We prove that
our translation is correct, in that it preserves Markov chains. Hence, exist-
ing simulation machines can be used to execute models formulated in our
π-calculus with input patterns.

Outline. We present our π-calculus with input patterns (Section 4.1),
recall continuous time Markov chains and relate them to chemical reaction
(Section 4.2). The stochastic semantics of our π-calculus extension is pre-
sented in Section 4.3. We then show how to encode input patterns (Sec-
tion 4.4). Finally we discuss yet another extension, one by higher-order
definitions, that allows to express classes (Section 4.5). Chapter 5 separately
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Processes P ::= P1 | P2 parallel composition
| new x:ρ. P channel creation
| C1 + . . . + Cn sum (n ≥ 0)
| A(x̃) application

Guarded processes C ::= x?f(ỹ).P pattern input
| x!f(ỹ).P tuple output

Definitions D ::= A(ỹ) , P

Table 4.1: Syntax of Core SpiCO

discusses how to define different notions of concurrent objects.

4.1 The language

The core of SpiCO (Core SpiCO) consists in a novel stochastic π-calculus
with input patterns, a linguistic feature introduced by Vasconcelos and
Tokoro for typed concurrent objects in the asynchronous π-calculus (TyCO)
(Paulino et al., 2003; Vasconcelos and Tokoro, 1993). Input patterns are mo-
tivated by pattern matching in functional programming languages of the ML
family. In TyCO, they are closely tied to communication: objects only
receive tuples if they provide a matching input pattern.

Core SpiCO’s vocabulary consists in an infinite set of channel names
N = {x, y, z, . . .}, a set of process names A, and a set of function names
f ∈ F . Process and function names have fixed arities. We write A/n or
f/n for a symbol of arity n ≥ 0. In order to account for stochastic rates, the
vocabulary comprises functions ρ : F →]0,∞] to define stochastic rates for
every channel. If some function ρ is assigned to x then ρ(f) is the rate of
the pair (x, f).

Table 4.1 defines the syntax of Core SpiCO. We write x̃ for finite, possibly
empty sequences of channels x1, . . . , xn where n ≥ 0. When using tuples f(x̃)
or terms A(x̃) the number of arguments (the length of x̃) is assumed equal to
the respective arity of f or A. Process expressions are ranged over by P . The
only atomic expression (not decomposable into others) is the guarded choice
of length n = 0 that we write as 0. Expressions P1|P2 denote the parallel
composition of processes P1 and P2. A term new x:ρ. P introduces a new
channel x scoping over P ; the rate function ρ fixes stochastic rates ρ(f) for
all pairs (x, f) where f ∈ F . We can omit rate functions ρ in the declaration
of a channel x if all reactions on x are instantaneous, i.e. ρ(f) = ∞ for all
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fv(x?f(ỹ).P ) = {x} ∪ (fv(P )− {ỹ})
fv(P1 | P2) = fv(P1) ∪ fv(P2)

fv(x!f(ỹ).P ) = {x} ∪ fv(P ) ∪ {ỹ}
fv(new x:ρ. P ) = fv(P )− {x}

fv(C1 + . . . + Cn) = fv(C1) ∪ . . . ∪ fv(Cn)

Table 4.2: Free variables

f ∈ F . An expression A(x̃) applies the definition of a parametric process A
with actual parameters x̃.

A sum of guarded processes C1 + . . . + Cn offers a choice between n ≥ 0
communication alternatives C1, . . . , Cn. A guarded input x?f(ỹ) describes a
communication act, ready to receive over x a tuple constructed by f . The
channels ỹ in input guards serve as pattern variables; these bound variables
are replaced by the channels received as input. An output guarded pro-
cess x!f(ỹ).P describes a communication act willing to send tuple f(ỹ) over
channel x and continue as P .

A definition of a parametric process has the form A(x̃) , P where A is
a process name with x̃ as formal parameters - that is, a sequence of bound
channels. For modeling convenience, we permit free channel names in P
besides the parameters in x̃. The set of free channel names for processes P
and guarded processes C are denoted by fv(P ) and fv(C) respectively. There
are three scope baring constructs: new binder new x:ρ. P , input patterns
?f(x̃).P , and definitions A(x̃) , P . Formally, these sets are defined by

induction on the structure of such expressions in Table 4.2.

We define an (non-stochastic) operational semantics for the π-calculus
in terms of a binary relation between expressions, the so called (one step)
reduction. We will later refine it to a ternary relation adding stochastic
labels. The reduction relation is closed under the usual structural congruence
between expressions.

The structural congruence is the smallest relation induced by the axioms
in Table 4.3. It identifies expressions modulo associativity and commutativity
of parallel composition, i.e. the order in P1| . . . |Pn does not matter, order
independence of alternatives in sums, and scope extrusion. We also assume
congruence of α-convertible processes, i.e. that can be obtained from another
by renaming bound names, without capturing free names. See for instance
(Honda, 1992) for a formal definition of α-conversion.

Table 4.4 defines the reduction relation. The first axiom tells how to in-
terpret choices; it comprises channel communication and pattern matching.
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(P1|P2)|P3 ≡ P1|(P2|P3)
P1|P2 ≡ P2|P1

. . . + C1 + C2 + . . . ≡ . . . + C2 + C1 + . . .
P |0 ≡ P
P1 ≡ P2 if P1 ≡α P2

new x1:ρ1. new x2:ρ2. P ≡ new x2:ρ2. new x1:ρ1. P if x1 6= x2

new x:ρ. (P1|P2) ≡ P1| new x:ρ. P2 if x /∈ fv(P1)

Table 4.3: Axioms of the structural congruence

Communication, choice, and pattern matching:

x!f(ỹ).P1 + . . . | x?f(z̃).P2 + . . . → P1 | P2[z̃ 7→ ỹ] if z̃ free for ỹ in P2

Application of definitions:

A(x̃) → P [ỹ 7→ x̃] if A(ỹ) , P in ∆, and ỹ free for x̃ in P

Context and congruence closure:

P → P ′

new c:ρ. P → new c:ρ. P ′
P → P ′

P | Q → P ′ | Q
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

Table 4.4: Reduction relation for a finite set of definitions ∆

It applies to two complementary matching alternatives in parallel choices,
an output alternative x!f(ỹ).P1 willing to send a term f(ỹ) and an input
pattern x?f(z̃).P2 on the same channel x; this pattern matches in that it is
built using the same function symbol f . Reduction cancels all other alter-
natives, substitutes the pattern’s variables z̃ by the received channels ỹ in
the continuation P2 of the input, and reduces the result in parallel with the
continuation of the output P1.

Only matching tuples can be received over a channel. Other sending at-
tempts suspend until a suitable input pattern becomes available. This fact
proves extremely useful for concurrent modeling. Upon reception, tuples
are immediately decomposed, in contrast to the π-calculus with data terms
(Baldamus et al., 2005).

The application axiom unfolds one of the definitions of the parametric
processes in a given set ∆. An application A(ỹ) reduces in one step to
definition P in which the formal parameters ỹ were replaced by the actual
parameters x̃. Parametric definitions may be recursive, e.g. A may occur
in P . Reduction can be applied in arbitrary contexts, however not under
choices or in definitions.
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Syntactic sugar for polyadic input and output. The syntax of the
biochemical stochastic π-calculus is the same as ours except for function
names, and our more flexible assignment of stochastic rates. We can express
polyadic input and output by using dummy function names uniti for all
arities i ≥ 0 in following shortcuts for all sequences ỹ of channel names of
length i:

x?(ỹ).P =def x?(uniti(ỹ)).P and x!(ỹ).P =def x!(uniti(ỹ)).P

Discussion on pattern matching. Input patterns as presented here are
motivated by pattern matching in functional programming languages of the
ML family. Pattern matching is the standard operation used there to decom-
pose data structures containing value tuples.

In contrast, the input patterns presented here are closely tied to commu-
nication. A process can only receive tuples for which it provides a matching
input pattern. Otherwise it refuses the communication offer, until it a change
of state provides the required pattern.

Vasconcelos and Tokoro (1993) proposed input patterns for the asyn-
chronous π-calculus 2. They restrict sums to input patterns on the same
channel x?f1(ỹ1)+ . . .+x?fn(ỹn). Outputs x!f(ỹ).0 are asynchronous there;
they have no continuation and cannot appear in proper sums. In our model-
ing work we will need mixed inputs and outputs, both over possibly different
channels, all with their continuations.

Compared to the π-calculus with data terms of Baldamus, Parrow, and
Victor (2005), the π-calculus presented here cannot pass arbitrary nested
tuples around. One can only pass flat tuples f(ỹ), and needs an f headed
pattern in order to receive them.

Example. Semaphores control the access to shared resources in concurrent
systems (Dijkstra, 1971). They are widespread in programming languages,
operating systems, or distributed databases. A semaphore restricts the ac-
cess to a resource to single user at a time. We consider simple semaphores
with two states - free or bound. When free, they can become bound, and
when bound they can become free. Importantly, a bound semaphore may
not be bound a second time. Any binding attempt on a bound semaphore is
suspended until the semaphore becomes free.

Semaphore f r e e (me), me? b ind . Semaphore bound (me)

Semaphore bound (me), me? f r e e . Semaphore f r e e (me)

2Note that mutually recursive definitions were absent in the original proposal of Vascon-
celos and Tokoro (1993) but have been added on the way to the distributed programming
language TyCO (Paulino et al., 2003).
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Consider the reduction sequence of the following process expression, of a
bound semaphore, located at site s, in parallel with a bind request and a free
request.

Semaphore bound ( s ) | s ! b ind ( ) . 0 | s ! f r e e ( ) . 0
→ s ? f r e e ( ) . Semaphore f r e e ( s ) | s ! b ind ( ) . 0 | s ! f r e e ( ) . 0
→ Semaphore f r e e ( s ) | s ! b ind ( ) . 0
→ s ? b ind ( ) . Semaphore bound ( s ) | s ! b ind ( ) . 0
→ Semaphore bound ( s )

In a first step, the bound semaphore s unfolds its definition. This creates an
input offer on s, able to receive a free message. Other messages cannot be
received on s in this state, namely no bind requests. Hence, the site s cannot
get bound a second time. Only after the free message was received, s is able
to accept the next bind request, while becoming bound again.

4.2 Markov chains for chemical reactions

The stochastic semantics of our π-calculus is guided by the analogy to con-
tinuous time Markov chains (CTMCs) for chemical reactions.

We first recall CTMCs with countably infinite state spaces. We assume a
countable set S called the state space. A continuous time stochastic process
with states q ∈ S is a family {Xt | t ∈ R+} of random variables with values
in S. These define probabilities Pr(Xt ∈ S ′) for all subsets S ′ ⊆ S, i.e. the
probability that the process is in some state of S ′ at time t.
A continuous time Markov chain (CTMC) is a continuous time stochastic
process (CTSP), with memoryless sojourn times for all states. More formally,
a CTMC over S is a CTSP {Xt | t ∈ R+} with states in S, that satisfies the
Markov property, i.e. for all q0, . . . , qn+1 ∈ S and all time points 0 ≤ t0 <
. . . < tn+1:

Pr(Xtn+1 = qn+1 | Xtn = qn, . . . , Xt0 = q0) = Pr(Xtn+1 = qn+1 | Xtn = qn)

The probabilistic behavior of a CTMC is determined by the distribution
of its initial states (at time 0) and its transition rates. The transition rate r
from state q to state q′ is a value that “scales how the (one step) transition
probability between q and q′ increases with time” (Hermanns, 2002). We
write q

r−→ q′ in this case. For simplicity, we consider CTMCs with a single
initial state. These can be identified with a Markovian transition system
(S, (

r−→)r∈R+ , q0) where q0 ∈ S is the initial state and
r−→ ⊆ S × S are

transition relations for all r ∈ R+, such that for all q, q′ ∈ S there exists at
most one r ∈ R+ satisfying q

r−→ q′.
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The stochastic time evolution of a CTMC can be computed by Gillespie’s
first reaction method (1976) (Gillespie, 1976) if each state permits only a
finite number of transitions, as we assume in the sequel. At time 0 the
process starts in state q0. Suppose that the process has moved to state q at
time point t and let q{ ri−→ qi}i be all (finitely many) transitions starting in
q. Draw delays ti > 0 for all i from an exponential distribution with rate ri.
Draw with equal probability some j, with minimal tj. Move to state qj at
time point t + tj.

Gillespie’s direct method equivalently determines the stochastic behavior
of a CTMC (Gillespie, 1976). In state q at time t it first computes the delay
until the next transition (called sojourn time), by drawing a number from
the exponential distribution with rate ↓ s =def

∑
q

ri−→qi

ri. Second, the state

qj to go to is drawn with probability Pr(q −→ qj) =def rj/
∑

q
r′−→q′

r′ if q
rj−→ qj

and 0 otherwise.

4.2.1 Chemical reactions

We next illustrate CTMCs for systems of chemical reaction rules. We start
from a set of chemical species X, Y, Z and a set of chemical reaction rules of
the following form, where r ∈ R+, reserving the symbol + for choice:

X | Y r−→ Z1 | . . . | Zk

Chemical solutions P are multisets of species, where each occurrence in
the multiset represents a molecule of the species. Chemical rules as above
apply as follows to a chemical solution P . Each pair of molecules of species
X and Y can interact at rate r, yielding one molecule of each of the species
Z1, . . . , Zk. The solution obtained is P −{| X, Y |}∪ {| Z1, . . . , Zk |}. Accord-
ing to the Chemical Law of Mass Action, the speed of a chemical reaction in
a solution is proportional to the number of possible interactions of its reac-
tants in the solution. It is distributed exponentially, and defines a CTMC
with chemical solutions as states and the following transitions:

P
n·r−→

{
P − {| X, Y |}
∪{| Z1, . . . , Zk |}

where n =

 ](X ∈ P )× ](Y ∈ P ) if X 6= Y(
](X ∈ P )

2

)
else

The expression

(
m
2

)
= 1

2
m (m−1) counts the number of two-element subsets

in sets of cardinality m.
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4.3 Stochastic semantics of core SpiCO

We define the stochastic semantics of Core SpiCO by associating a π-calculus
process with a CTMC. The states of this Markov chain are the (countably
infinite) set of congruence classes of π-calculus processes with respect to
structural congruence. This differs from (Priami, 1995) where two congruent
processes are associated with two different states. Since congruent processes
are behaviorally equivalent we believe that their associated stochastic states
should not be distinguished neither. Moreover, in (Priami, 1995), the author
proposes a labeled semantics where labels are so-called proof terms, i.e. (pos-
sibly long) strings used to localize interacting sub-terms. Those labels are
necessary to properly calculate interaction rates. We instead propose a re-
duction semantics, a style for defining semantics known to be more intuitive
and elegant. Still, we temporarily use labels but in a much simpler form: a
label is an integer or a tuple of four integers. Finally, and contrary to (Pri-
ami, 1995), our semantics takes into account immediate transitions of which
we emphasized the importance in the biological example in section 6.3. Such
transitions require specific consideration: we show how they can be removed
in order to obtain an equivalent Markovian transition system. The theorem
1 states the correctness of this transformation.

4.3.1 Transition relations

We first consider the fragment of the π-calculus without proper summation,
parametric processes, infinite rates, and new-binders. The remaining pro-
cesses are parallel compositions C1 | . . . | Cn. The structural congruence
turns them into multisets of guarded processes, i.e. into chemical solutions
whose species are guarded processes.

Suppose we know the rate functions %(x) for all channels x. The π-
calculus with input patterns then defines the following chemical reaction
rule:

x?f(z̃).Q1 | x!f(ỹ).Q2
%(x)(f)−−−−→ Q1[z̃ 7→ ỹ] | Q2

This defines a CTMC. For example, assume n molecules of a first species
x!f().P1 and m of another different one x!f().P2, which all want to react
with a single molecule of a third kind x?f().P . The Markovian transitions
are:

n∏
i=1

x!f().P1 |
m∏

i=1

x!f().P2 | x?f().P


n×%(x)(f)−−−−−−→

∏n−1
i=1 x!f().P1 |

∏m
i=1 x!f().P2 | P

m×%(x)(f)−−−−−−−→
∏n

i=1 x!f().P1 |
∏m−1

i=1 x!f().P2 | P
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Labeled reduction steps

(com)

Cj1
i1

= x?f(z̃).new x̃1:ρ1. Q1 Cj2
i2

= x!f(ỹ).new x̃2:ρ2. Q2

Πn
i=1

∑mi

j=1 Cj
i

%(x)(f)−−−−−→
i1,j1,i2,j2

{
new x̃1:ρ1. new x̃2:ρ2.

(Q1[z̃ 7→ ỹ] | Q2 | Πn
i=1,i6=i1,i2

∑mi

j=1 Cj
i )

where Q1, Q2 have no top-level new-binders and
1 ≤ i1 6= i2 ≤ n, 1 ≤ j1 ≤ mi1 , 1 ≤ j2 ≤ mi2

(app)
Pi1 = A(ỹ) A(x̃) , new z̃:ρ. Q in ∆

Πn
i=1Pi

∞−→
i1

new z̃:ρ. (Q[x̃ 7→ ỹ] | Πn
i=1,i6=i1

Pi)

where Q has no top-level new-binders and 1 ≤ i1 ≤ n

(new)
P

s−→
w

Q %(x) = ρ

new x:ρ. P
s−→
w

new x:ρ. Q
where s ∈ R+ ∪ {∞}, w ∈ N ∪ N4

Time consuming transitions (r, r′ ∈ R+, w ∈ N4)

(sum)

P ≡ P ′ r =
∑

P ′
r′−→
w

Q′≡Q

r′ 6= 0 ¬∃R∃w′ ∈ N ∪ N4. P ′ ∞−→
w′

R

P
r−→ Q

Immediate transitions

(count)
P ≡ P ′

n = ]{w ∈ N ∪ N4 | P ′ ∞−→
w

Q′ ≡ Q} 6= 0

m = ]{w ∈ N ∪ N4 | P ′ ∞−→
w

Q′′}

P
∞(n/m)−−−−→ Q

Table 4.5: Timed transitions of Core SpiCO with respect to a set ∆ of
definitions in prenex normal form, and a global assignment % of channels to
rate functions.

We first discuss time consuming transitions P
r−→ P ′ where r ∈ R+. These

capture everything, except parametric process unfolding and invocation of
functions of rate ∞.

We first define labeled reduction steps P
s−→
w

Q where P and Q are in

prenex normal form, that is a parallel composition of sums where restrictions
have been pushed ahead and in which bound variables are renamed apart.
The rate function %(x) is then read off from the quantifier prefix in rule
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(new).
Definition. P is in prenex normal form (pnf for short) iff
P = new x̃:ρ. (P1 | . . . | Pm) where each Pi either is an application
A(ỹ), or a sum C1 + . . . + Cn where each Cj is in pnf, or a guarded process
x?f(ỹ).Q or x!f(ỹ).Q where Q is in pnf. Moreover, a definition A(ỹ) , P is
in pnf iff P is in pnf.

What remains from pnfs after removing top-level new-binders are mul-
tisets of sums and applications. All applications must have been reduced
before time consuming transitions can apply, so we have a multiset of sums.
Each sum is like a molecule, except that each of its choices offers its own
interactions.

In x?f().0+x?f().0 | x!f().0 there are two possible interactions with rate
r = %(x)(f) leading to the same state. We can think of x?f().0 + x?f().0 as
a protein with two identical domains, complementary to one domain of some
other protein represented by x!f().0. The overall rate of the interaction thus
doubles:

x?f() .0 + x?f().0 | x!f() .0
r−−−→

1.1.2.1
0

and x?f().0 + x?f() .0 | x!f() .0
r−−−→

1.2.2.1
0

sums up to x?f().0 + x?f().0 | x!f().0
2r−→ 0

Rule (com) defines labeled reductions P
r−−−−−→

i1,j1,i2,j2
Q that distinguish com-

munication actions with identical reactants and results, while using different
occurrences of choice alternatives in sums. Those occurrences are identified
by labels in N4 that specify the numbers of the reacting sums (i1, i2) and the
reacting choices (j1, j2). Rule (sum) defines transitions P

r−→ Q by summing
up all rates of all different interactions leading from P to Q. These reduction
rules are defined with care, so that corresponding interactions in structurally
congruent processes are not counted twice.

We next turn to immediate transitions P
∞(p)−−−→ Q, where p ∈ [0, 1] is a

probability. Rule (sum) ensures that time consuming transitions apply only
after all immediate have been reduced. In this case, all calls A(ỹ) on top
level must have been reduced before. Note that this order is important for
a proper count of the possible interactions. Indeed, if an application hides
an interaction on some pattern, the application unfolding changes the rate
of the action involving this pattern. Immediate transitions can be licensed
by communication (com), or by applications of parametric process defini-
tions (app). Their labels are in N ∪ N4. Note that the labeled reduction is
independent of the choice of the pnf.
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Lemma 1 Let P and P ′ be in prenex normal form and s ∈ R+ ∪ {∞}. If
P ≡ P ′ and P

s−→
w

Q, then there exist Q′ ≡ Q and w′ such that P ′ s−→
w′

Q′.

Proof. Straightforward.

We merge labeled immediate transitions with rule (count). Although
being immediate we want to associate probabilities, which characterize the
number of immediate interactions leading to a common state with respect
to the total number of enabled immediate interactions. For instance, let
%(x)(f) = ∞, in x?f().P + x?f().P | x?f().Q | x!f().0, for some P 6≡ Q, the
associated probabilities reflect that 2 out of 3 interactions lead to P , and 1
out of 3 to Q:

x?f().P + x?f().P | x?f().Q | x!f().0
∞(2/3)−−−−→ P

x?f().P + x?f().P | x?f().Q | x!f().0
∞(1/3)−−−−→ Q

Lemma 2 The following properties hold:

1. ≡ ◦ r−→ ◦ ≡ ⊆ r−→,

2. ≡ ◦ ∞(p)−−−→ ◦ ≡ ⊆ ∞(p)−−−→,

3. if P
r−→ Q and P

r′−→ Q then r = r′,

4. if P
∞(p1)−−−→ Q and P

∞(p2)−−−→ Q then p1 = p2, and

5. for all P :
∑

P
∞(p)−−−→Q

p = 1.

Proof.

1. Let P ≡ ◦ r−→ ◦ ≡ Q, then there are P ′ and Q′ such that P ≡ P ′, P ′ r−→
Q′ and Q′ ≡ Q. Since P ′ r−→ Q′ is necessarily inferred by (sum), there
is P ′′ ≡ P ′ (1) such that r =

∑
P ′′

r′−→
w

Q′′≡Q′
r′ 6= 0 (2), and ¬∃R∃w′ ∈

N ∪ N4.P ′′ ∞−→
w′

R (3). From P ′ ≡ P and (1), we have P ≡ P ′′ (1’), and

by Q′ ≡ Q and (2) we have r =
∑

P ′′
r′−→
w

Q′′≡Q
r′ 6= 0 (2’). Then, by (1’),

(2’), (3) and by (sum), we conclude P
r−→ Q.

2. Similar to the previous point, by rule (count) and Lemma 1.
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3. Suppose that P
r−→ Q and P

r′−→ Q, then by rule (sum), there are P1

and P2 such that P1 ≡ P ≡ P2 and r =
∑

P1

r1−→
w1

Q1≡Q
r1 and r′ =∑

P2

r2−→
w2

Q2≡Q
r2. However, by Lemma 1, there is Q1 ≡ Q such that

P1
r1−→
w1

Q1 iff there is Q2 ≡ Q such that P2
r2−→
w2

Q2 and r1 = r2.

Therefore, r = r′.

4. Similar to the previous point, using Lemma 1.

5. Assume, without loss of generality, that P is in prenex normal form.
Let {Q1, . . . , Qk} be the set (up-to ≡) of all the possible immediate and

distinct derivatives of P , that is satisfying ∀i ∈ {1, . . . , k} P
∞(pi)−−−→ Qi

and i 6= j ⇒ Qi 6≡ Qj. Let X = {w ∈ N ∪ N4 | P
∞−→
w

Q′′} and

Yi = {w ∈ N∪N4 | P ∞−→
w

Q′ ≡ Qi}. It is clear that, i 6= j ⇒ Yi∩Yj = ∅
(since Qi 6≡ Qj) and

⋃
1≤i≤k Yi = X. Therefore

∑
1≤i≤k ]Yi = ]X, and,

since pi = ]Yi/]X,
∑

1≤i≤k pi = 1. ut

4.3.2 CTMCs with immediate reactions

In the presence of immediate transitions, the reduction relation
r−→ does not

define a Markovian transition system (in which all rates are finite). To cap-
ture the stochastic dynamics of processes, we instead define the sojourn time
parameters (i.e. the parameter of an exponentially distributed probability
which determine the sojourn time in a given state) and the probabilities of
state changes for all P, Q as follows3:

↓ P =

{
∞ if P

∞(p)−−−→ Q,∑
P

r−→Q
r otherwise.

Pr(P −→ Q) =


r/

∑
P

r′−→Q′
r′ if P

r−→ Q

p if P
∞(p)−−−→ Q

0 otherwise
We are now giving an interpretation of the reduction semantics with im-

mediate transitions in terms of CTMCs for processes that can not exhibit
infinite sequences of immediate transitions. The Markovian transition system
deriving statements P

r
=⇒ Q is defined in Table 4.6. The idea is quite similar

3we assume if X is exponentially distributed with parameter ∞ then Pr(X = 0) = 1.
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(elim1)
P

∞−→
w

Q n = ]{w′ ∈ N ∪ N4 | P ∞−→
w′

Q′}

P
∞(1/n)−−−−→

w
Q

w ∈ N ∪ N4

(elim2)
P

r−→
w

Q Q
∞(p1)−−−→

w1

. . .
∞(pn)−−−→

wn

Qn 6
∞−→

P
rp1...pn
=⇒

ww1...wn

Qn

r ∈ R+

(elimsum)
P ≡ P ′ r =

∑
P ′

r′
=⇒

w1...wn
Q′≡Q

r′

P
r

=⇒ Q

Table 4.6: Elimination of immediate transitions and merging timed transi-
tions

to that of (Bernardo et al., 1994): the transitions are obtained by integrating
immediate transitions into time consuming transitions. An example for this
transformation is as follows:

P


r1−→ Q1 6

∞−→
r2−→ Q2

{ ∞(p)−−−→ Q21 6
∞−→

∞(1−p)−−−−→ Q22 6
∞−→

becomes P


r1=⇒ Q1
r2p
=⇒ Q21

r2(1−p)
=⇒ Q22

In general, a sequence of reductions P
r−→ P1

∞(p1)−−−→ . . . Pn
∞(pn)−−−→ Q 6 ∞−→

reduces to P
rp1...pn
=⇒ Q. However, we must beware of merging initially distinct

states. Indeed, in the previous example, if Q22 ≡ Q1 then the CTMC should

have transitions P
r1+r2(1−p)

=⇒ Q1 and P
r2p
=⇒ Q21. In order to infer these

transitions correctly, the elimination procedure defines labeled transitions
r

=⇒
w

with labels w ∈ (N ∪ N4)? representing paths in the labeled derivation

trees of
r−→.

Lemma 3 Let P and P ′ be in prenex normal form. If P ≡ P ′ and P
r

=⇒
w

Q

(resp. P
∞(p)
=⇒

w
Q), then there exists Q′ ≡ Q and w′ such that P ′ r

=⇒
w′

Q′ (resp.

P ′ ∞(p)
=⇒
w′

Q′).

Proof.

1. Suppose that P
r

=⇒
w

Q, by rule (elim2), we have P
r0−→
w0

Q0 and

Q0
∞(p1)−−−→

w1

· · · ∞(pn)−−−→
wn

Qn = Q 6 ∞−→ where r = r0p1 . . . pn and w =
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w0w1 . . . wn. By Lemma 1, there exists Q′
0 ≡ Q0 such that P ′ r0−→

w′0

Q′
0.

Q′
0 is necessarily in prenex normal form. Thus by Lemma 1, there

are Q′
1 ≡ Q1, . . . Q

′
n = Q′ ≡ Q all in prenex normal form such that

Q′
0

∞(p1)−−−→
w′1

· · · ∞(pn)−−−→
w′n

Q′
n 6
∞−→. Therefore, by rule (elim2), P ′ r

=⇒
w′

Q′ ≡ Q

where w′ = w′
0w

′
1 . . . w′

n.

2. Suppose that P
∞(p)−−−→

w
Q, by rule (elim1), we have P

∞−→
w

Q and p =

1/]{w0 ∈ N ∪ N4 | P ∞−→
w0

R}. By Lemma 1, there exist w′ and Q′ ≡ Q

such that P ′ ∞−→
w′

Q′ and ]{w0 ∈ N ∪ N4 | P
∞−→
w0

R} = ]{w′
0 ∈ N ∪ N4 |

P ′ ∞−→
w′0

R′}. Therefore, by (elim1), we have P ′ ∞(p)−−−→
w′

Q′. ut

Lemma 4 ≡ ◦ r
=⇒ ◦ ≡ ⊆ r

=⇒ and if P
r

=⇒ Q and P
r′

=⇒ Q then r = r′.

Proof. Similar to the proof of Lemma 2 using Lemma 3.

For any P such that P 6 ∞−→, (P/≡, (
r

=⇒)r∈R+ , P/≡) is a Markovian transi-
tion system4 with sojourn time parameters and transition probabilities:

⇓ P =
∑

P
r

=⇒Q

r and Pr(P ⇒ Q) =

{
r/

∑
P

r′
=⇒Q′

r′ if P
r

=⇒ Q

0 otherwise

In order to show that this defines a Markovian model for the reduction
semantics with immediate transitions, we show that their dynamics coincide,
that is: the sojourn time parameters and the transition probabilities with
respect to

r−→ are identical to those of
r

=⇒. However, transition probabilities
can be compared only for processes performing timed transitions. We thus
define a suitable transition probability Pr(P � Q) for P 6 ∞−→ and Q 6 ∞−→, that
is the probability to reach Q from P by a sequence of transitions made of
one timed transition and possibly several intermediate immediate transitions.
Formally, Pr(P � Q) is the sum of the probabilities of all such sequences:

Pr(P � Q) =
∑

P
r−→Q1

∞(p1)−−−→...Qn

∞(pn)−−−→Q6
∞−→

(
Pr(P −→ Q1)×

∏n
i=1 pi

)
4For P

∞−→ it suffices to start with a process Q = x!f().0 | x?f().P such that %(x)(f) =
1 in order to obtain a set of initial processes together with an initial probability distribution
of those processes rather than a single initial process.
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Theorem 1 If P 6 ∞−→ and if no infinite sequence of immediate transitions is
reachable from P , then

• (Timed correctness) ↓ P = ⇓ P ,

• (Probabilistic correctness) Pr(P � Q) = Pr(P ⇒ Q).

Proof of Theorem 1

• Timed correctness. First, note that for any P we have
∑

P
∞(p)−−−→

w
Q

p = 1.

In order to show that ↓ P = ⇓ P , it is sufficient, by rules (sum) and
(elimsum) to show that

∑
P

r−→
w

Q

r =
∑

P
r

=⇒
w

Q

r (4.3.1)

For any n ≥ 1, we define the relation P
( ∞(p)−−−→

w

)n
Q meaning the longest

derivation of immediate actions leading from P to Q and which length

is smaller or equal to n. More formally, P
( ∞(p)−−−→

w

)n
Q iff

– either if there exists a (unique) sequence P
∞(p1)−−−→

w1

Q1 . . .
∞(pn)−−−→

wn

Qn = Q and such that p = pi × . . .× pn and w = w1 . . . wn, or

– or if n > 1 and P
( ∞(p)−−−→

w

)(n−1)
Q.

Given P , let us define nP as the length of the longest derivation of
immediate actions leading from P to some process Q. By the hypothesis
of none infinite sequences of immediate actions, such an integer always

exists and if P
( ∞(p)−−−→

w

)nP Q then Q 6 ∞−→. It is clear that P
r

=⇒
w

Q iff either

P
r−→
w

Q 6 ∞−→ or, P
r′−→
w0

R
( ∞(p)−−−→

w′

)nRQ for some R and where r = pr′ and

w = w0w
′. Moreover, one can easily show (by induction on n) that for
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any P and n,
∑

P
( ∞(p)−−−→

w

)n

Q
p = 1. Therefore, given P , we have

∑
P

r
=⇒

w
Q

r =
∑

P
r′−→
w0

R

(
r ×

( ∑
R
( ∞(p)−−−→

w′

)nR
Q

p
))

=
∑

P
r′−→
w0

R

(
r × 1

)
=

∑
P

r−→
w

Q

r

which proves (4.3.1).

• Probabilistic correctness. By timed correctness, we have
∑

P
r′

=⇒Q
r′ =∑

P
r′−→Q

r′ (1). Moreover, one can easily show that P
∞(p)−−−→ Q, iff∑

P
∞(p′)−−−→

w
R≡Q

p′ = p (2). Given P , Q and length derivation n, we

have:

Pr(P
r−→ Q1

∞(p1)−−−→ . . . Qn
∞(pn)−−−→ Qn+1 ≡ Q 6 ∞−→)

= (
∑

P
r′−→Q′

r′)−1(r ×
∏

1≤i≤n pi)

= (
∑

P
r′

=⇒Q′
r′)−1(r ×

∏
1≤i≤n pi) by (1)

= (
∑

P
r′

=⇒Q′
r′)−1

(
(
∑

P
r′−→
w

Q′≡Q1

r′)×
∏

1≤i≤n

(∑
Qi

∞(p′
i
)

−−−→
w

Q′≡Qi+1

p′i
))

by (2)

= (
∑

P
r′

=⇒Q′
r′)−1

(∑
P

r0−→
w0

Q′
1

∞(p′1)

−−−→
w1

...
∞(p′n)−−−→

wn
Q′

n+1≡Q

(r0 ×
∏

1≤i≤n p′i)
)

Therefore, summing over all length derivations n, we conclude that
Pr(P � Q) = Pr(P ⇒ Q). ut

4.4 Encoding input patterns

We now encode SpiCO back into the stochastic π-calculus. The latter can
be identified as the special case with a unique function name per arity (we
assume arities bounded by some max): F ′ = {uniti | 0 ≤ i ≤ max}. In
what follows, we write unit instead of uniti.
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Jnew x:ρ. P K =def new xf1 :ρ(f1). · · · .new xfn :ρ(fn). JP K
JP1 | P2K =def JP1K | JP2K
JA(ỹ)K =def A(ỹF )
JC1 + · · ·+ CnK =def JC1K + · · ·+ JCnK
JA(x̃) , P K =def A(x̃F ) , JP K
Jx?f(ỹ).P K =def xf?(ỹF ).JP K
Jx!f(ỹ).P K =def xf !(ỹF ).JP K

Table 4.7: Encoding of input patterns

4.4.1 Translation

We assume a total ordering < on a finite set of function names F . This means
that F has a unique representation F = {f1, . . . , fn} with f1 < . . . < fn.
Our encoding uses channel names from the set N ×F . We denote elements
(x, f) of this set by xf . For each channel x we define a sequence of n channels
xF as follows: xF =def xf1 , . . . , xfn . Channels in the target language are
associated a rate (that may be infinite) by means of the encoding of % defined
as J%K(xf ) = %(x)(f). We write x̃, ỹ for the concatenation of two sequences
x̃ and ỹ. If x̃ = x1, . . . , xn then we let x̃F =def x1F , . . . , xnF . The encoding
is given in Table 4.7.

Lemma 5 For all processes P, P ′ with functions in F and variable sequences
ỹ, z̃ of the same length:

1. ỹ is free for z̃ in P if and only if ỹF is free for z̃F in JP K.

2. JP [ỹ 7→ z̃]K = JP K [ỹF 7→ z̃F ]

3. If JP K ≡ Q then there exists P ′ ∈ JQK−1 such that P ≡ P ′.

4. P ≡ P ′ if and only if JP K ≡ JP ′K.

5. P is in prenex normal form iff JP K is.

Proof.

1. By induction on the definition of freeness conditions.

2. By induction on the structure of P . Note that the lemma may fail for
processes P with function symbols outside F . As a counter example
let F = ∅ and consider x?f().0[x 7→ y].

3. By induction on the structure of P .
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4. By induction on derivations of P ≡ P ′ resp. JP K ≡ JP ′K.

5. By induction on the structure of P .

The following theorem states the correctness of our encoding. It allows
us to run simulations of models expressed in SpiCO, via an implementation
of the original stochastic π-calculus, as implemented in the SPiM system
(Phillips and Cardelli, 2004).

Theorem 2 The encoding defines a stochastic bisimulation: for all processes
P, Q and finite sets of definitions ∆, and all rates s ∈ R+∪{∞(p) | p ∈]0, 1]}
it holds that P

s→ Q relative to ∆ if and only if JP K s→ JQK relative to J∆K.

The statement P
s→ Q relative to ∆ means that there exists some function

% : N → F → (R+ ∪ {∞}) such that P
s→ Q relative to ∆ and %. The

values %(x) will be the rate ρ assigned to x in the declaration new x:ρ. It
holds for all ρ and x that %(x) = ρ iff J%K(xf ) = ρ(f) for all f ∈ F .

The statement JP K s→ JQK relative to J∆K means that there exists some
function %′ : {xf | f ∈ F , x ∈ N } → (R+ ∪ {∞}) such that JP K s→ JQK
relative to J∆K and %′. The situation differs in that there exists only a single
function unit for all arities. We are a little sloppy in identifying a constant
function with its constant value, i.e. %′(xf ) = %′(xf )(unit).

4.4.2 Correctness proof

We prove a slightly stronger proposition than Theorem 2. We define a trans-
lation of functions % : N → F → (R+ ∪ {∞}) to functions J%K : {xf | f ∈
F , x ∈ N } such that for all x ∈ N and f ∈ F :

J%K(xf ) =def %(x)(f)

The translation is onto, i.e for all %′ : {xf | f ∈ F , x ∈ N } → (R+ ∪ {∞})
there exists some % : N → F → (R+ ∪{∞}) such that %′ = J%K. Hence, the
theorem follows from the following proposition:

Proposition 1 P
s→ Q with respect to ∆ and % iff JP K s→ JQK with respect

to J∆K and J%K.

We need some auxiliary lemmas, before we can show the proposition for
infinite rates in Lemma 9 and for finite rates in Lemma 10. All these Lemmas
hold for all processes P, Q, Q′ and definitions ∆ with functions in F , rates
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s ∈ R+ ∪ {∞} or r ∈ R+, functions %, labels w ∈ N ∪ N4, and probabilities
p ∈]0, 1]. For convenience, we define

Jnew y1:ρ1. · · · . new yn:ρnK =def Jnew y1:ρ1K. · · · . Jnew yn:ρnK
Jnew y:ρK =def new yf1 :ρ(f1). · · · . new yfn :ρ(fn)

Lemma 6 If P
s−→
w

Q with respect to ∆ and %, then JP K s−→
w

JQK with respect

to J∆K and J%K.

Proof. By rule induction. We need to consider the three rules (new), (app),
and (com) by which to infer P

s−→
w

Q.

• Rule (new). Suppose that new x:ρ. P
s−→
w

new x:ρ. Q is inferred as

follows:

P
s−→
w

Q %(x) = ρ

new x:ρ. P
s−→
w

new x:ρ. Q

The induction hypothesis yields that JP K s−→
w

JQK. As argued above,

%(x) = ρ is equivalent to that J%K(xf ) = ρ(f) for all f ∈ F . We can

thus infer Jnew x:ρ. P K r−→
w

Jnew x:ρ. QK by applying the (new) rule

in an iterative manner:

JP K s−→
w

JQK %(xf1) = JρK(f1) . . . J%K(xfn) = ρ(fn)

new xf1 :ρ(f1). · · · . new xfn :ρ(fn). JP K s−→
w

new xf1 :ρ(f1). · · · . new xfn :ρ(fn). JQK

• Rule (app). In this case, the judgment has been derived as follows:

Pi1 = A(ỹ) A(x̃) , new z̃:ρ. Q in ∆

Πn
i=1Pi

∞−→
i1

new z̃:ρ. (Q[x̃ 7→ ỹ] | Πn
i=1,i6=i1

Pi)

By translation the following rule instance applies too:

JPi1K = A(ỹF ) A(x̃F ) , Jnew z̃:ρ. QK in J∆K
Πn

i=1JPiK
∞−→
i1

Jnew z̃:ρK (JQK[x̃F 7→ ỹF ] | Πn
i=1,i6=i1

JPiK)

By Lemma 5, this is JΠn
i=1PiK

∞−→
i1

Jnew z̃:ρ. (Q[x̃ 7→ ỹ] | Πn
i=1,i6=i1

Pi)K.
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• Rule (com). The judgment has thus been inferred by an application
of the communication rule:

Cj1
i1

= x?f(z̃).new x̃1:ρ1. Q1 Cj2
i2

= x!f(ỹ).new x̃2:ρ2. Q2

Πn
i=1

∑mi

j=1 Cj
i

%(x)(f)−−−−−→
i1,j1,i2,j2

{
new x̃1:ρ1. new x̃2:ρ2.

(Q1[z̃ 7→ ỹ] | Q2 | Πn
i=1,i6=i1,i2

∑mi

j=1 Cj
i )

We can then apply the communication rule as follows too:

JCj1
i1

K = xf?(z̃F ).Jnew x̃1:ρ1. Q1K JCj2
i2

K = xf !(ỹF ).Jnew x̃2:ρ2. Q2K

Πn
i=1

∑mi

j=1JC
j
i K

%(xf )
−−−−−→
i1,j1,i2,j2

{
Jnew x̃1:ρ1. new x̃2:ρ2.

(Q1[z̃ 7→ ỹ] | Q2 | Πn
i=1,i6=i1,i2

∑mi

j=1 Cj
i )K

Lemma 7 If JP K s−→
w

Q′ with respect to J∆K and J%K then there exists

Q ∈ JQ′K−1 such that P
s−→
w

Q with respect to ∆ and %.

Proof. By rule induction. We need to consider the three rules (new), (app),
and (com) by which to infer JP K s−→

w
Q′ with respect to J∆K and J%K.

• Rule (new). In this case, the above judgment was inferred as follows:

JP1K
s−→
w

Q′
1 J%K(xf1) = ρ(f1) . . . J%K(xfn) = ρ(fn)

JP K = new xf1 :ρ(f1). · · · . new xfn :ρ(fn). JP1K
s−→
w

Q′ = new xf1 :ρ(f1). · · · . new xfn :ρ(fn). Q′
1

By induction hypothesis, there exists Q1 ∈ JQ′
1K−1 such that P1

s−→
w

Q1

with respect to ∆ and %. The hypotheses of the rule yield %(x) = ρ.
We can thus apply the (new) rule as follows:

P1
s−→
w

Q1 %(x) = ρ

new x:ρ. P1
s−→
w

new x:ρ. Q1

Lemma 6 shows that Jnew x:ρ. P1K
s−→
w

Jnew x:ρ. Q1K. This is equiva-

lent to:

JP K s−→
w

new xf1 :ρ(f1). · · · . new xfn :ρ(fn). JQ1K = Q′



4.4 Encoding input patterns 77

• Rule (app). The judgment has in this case been inferred as follows:

JPi1K = A(ỹF ) A(x̃F ) , Jnew z̃:ρ. Q1K in J∆K
JP K = Πn

i=1JPiK
∞−→
i1

Q′ = Jnew z̃:ρK (JQ1K[x̃F 7→ ỹF ] | Πn
i=1,i6=i1

JPiK)

By Lemma 5, we have JQ1K[x̃F 7→ ỹF ] = JQ1[x̃ 7→ ỹ]K. Hence, Q′ = JQK
where Q = new ỹ:ρ. (Q1[x̃ 7→ ỹ] | Πn

i=1,i6=i1
Pi). Furthermore, we can

infer P
∞−→
i1

Q as follows:

Pi1 = A(ỹ) A(x̃) , new ỹ:ρ. Q1 in ∆

P = Πn
i=1Pi

∞−→
i1

Q = new ỹ:ρ. (Q1[x̃ 7→ ỹ] | Πn
i=1,i6=i1

Pi)

• Rule (com). The judgment is now inferred as follows:

JCj1
i1

K = xf?(z̃F ).Jnew x̃1:ρ1. Q1K JCj2
i2

K = xf !(ỹF ).Jnew x̃2:ρ2. Q2K

JP K = Πn
i=1

∑mi

j=1JC
j
i K

%(xf )
−−−−−→
i1,j1,i2,j2

Q′

where Q′ = Jnew x̃1:ρ1K Jnew x̃2:ρ2K (JQ1K[z̃F 7→ ỹF ] |
JQ2K | Πn

i=1,i6=i1,i2

∑mi

j=1JC
j
i K). The substitution Lemma 5 yields equal-

ity between JQ1K[z̃F 7→ ỹF ] and JQ1[z̃ 7→ ỹ]K. Thus, Q′ = JQK where
Q = new x̃1:ρ1. new x̃2:ρ2. (Q1[z̃ 7→ ỹ] | Q2 | Πn

i=1,i6=i1,i2

∑mi

j=1 Cj
i ).

Hence, we can infer P
%(x)(f)−−−−−→

i1,j1,i2,j2
Q as follows:

Cj1
i1

= x?f(z̃).new x̃1:ρ1. Q1 Cj2
i2

= x!f(ỹ).new x̃2:ρ2. Q2

Πn
i=1

∑mi

j=1 Cj
i

%(x)(f)−−−−−→
i1,j1,i2,j2

{
new x̃1:ρ1. new x̃2:ρ2.

(Q1[z̃ 7→ ỹ] | Q2 | Πn
i=1,i6=i1,i2

∑mi

j=1 Cj
i )

Lemma 8 P
s−→
w

Q with respect to ∆ and % iff JP K s−→
w

JQK with respect to

J∆K and J%K.

Proof. The implication from the left to the right is shown by Lemma 6. For
the converse assume JP K s−→

w
JQK with respect to J∆K and J%K. By Lemma 7

there exists R ∈ JJQKK−1 such that P
s−→
w

R. Since J·K is injective, it follows

that R = Q so that P
s−→
w

Q.
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Lemma 9 P
∞(p)−−−→ Q with respect to ∆ and % iff JP K

∞(p)−−−→ JQK with respect
to J∆K and J%K.

Proof.

’⇒’ Judgments P
∞(p)−−−→ Q with respect to ∆ and % are derived by rule

(count):

P ≡ P ′
n = ]{w ∈ N ∪ N4 | P ′ ∞−→

w
R′ ≡ Q} 6= 0

m = ]{w ∈ N ∪ N4 | P ′ ∞−→
w

R′}

P
∞(n/m)−−−−→ Q

(4.4.1)

The corresponding judgment can be derived as follows by rule (count):

JP K ≡ JP ′K
n = ]{w ∈ N ∪ N4 | JP ′K ∞−→

w
R ≡ JQK} 6= 0

m = ]{w ∈ N ∪ N4 | JP ′K ∞−→
w

R}

JP K
∞(n/m)−−−−→ JQK

(4.4.2)

To see this, we must show that ∃R′.P ′ ∞−→
w

R′ ≡ Q is equivalent to

∃R.JP ′K ∞−→
w

R ≡ JQK. This follows from Lemmas 5, 6, and 7.

’⇐’ The judgment JP K
∞(n/m)−−−−→ JQK must be inferred as follows:

JP K ≡ P1

n = ]{w ∈ N ∪ N4 | P1
∞−→
w

R ≡ JQK} 6= 0

m = ]{w ∈ N ∪ N4 | P1
∞−→
w

R}

JP K
∞(n/m)−−−−→ JQK

Since JP K ≡ P1 we can apply Lemma 5 which yields the existence of
P ′ ∈ JP1K−1 such that P ≡ P ′. With this P ′ the inference step (4.4.2)

becomes valid, so that we can infer P
∞(n/m)−−−−→ Q with respect to ∆

and % as in (4.4.1).

Lemma 10 P
r−→ Q with respect to ∆ and % iff JP K r−→ JQK with respect to

J∆K and J%K.

Proof.
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’⇒’ The judgment P
r−→ Q with respect to ∆ and % is inferred by rule

(sum).

P ≡ P ′ r =
∑

P ′
r′−→
w

R′≡Q

r′ 6= 0 ¬∃R′′∃w′. P ′ ∞−→
w′

R′′

P
r−→ Q

(4.4.3)

The corresponding judgment can be inferred as follows:

JP K ≡ JP ′K r =
∑

JP ′K
r′−→
w

R≡JQK

r′ 6= 0 ¬∃R′′∃w′. JP ′K ∞−→
w′

R′′

JP K r−→ JQK

(4.4.4)

To see this, it is sufficient to show two equivalences, both following
from Lemmas 5, 6, and 7:

1. ∃R′.P ′ r′−→
w

R′ ≡ Q iff ∃R.JP ′K r′−→
w

R ≡ JQK.

2. ∃R′.P ′ ∞−→
w

R′ iff ∃R.JP ′K ∞−→
w

R.

’⇐’ The judgment JP K r−→ JQK must be inferred as follows:

JP K ≡ P1 r =
∑

P1
r′−→
w

R≡JQK

r′ 6= 0 ¬∃R′′∃w′. P1
∞−→
w′

R′′

JP K r−→ JQK

Since JP K ≡ P1, Lemma 5 yields the existence of P ′ ∈ JP1K−1 such that
P ≡ P ′. With this P ′ the inference step (4.4.4) becomes valid, so that
we can infer P

r−→ Q with respect to ∆ and % as in (4.4.3).

4.5 Higher-order definitions

Our process definitions up to now are first-order, in that they need to be pro-
vided statically at compile time. We show how to render definitions higher-
order, so that they may also be determined dynamically at run time. The
definitions we obtain hereby are reminiscent of procedures in Mozart-Oz5 of
Smolka (1995).

5http://www.mozart-oz.org

http://www.mozart-oz.org
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Processes P ::= P1 | P2 parallel composition
| new x:ρ. P channel creation
| C1 + . . . + Cn sum (n ≥ 0)
| x(ỹ) application

| x(ỹ) , P definition
Guarded processes C ::= x?f(ỹ).P pattern input

| x!f(ỹ).P tuple output

Table 4.8: Syntax of the stochastic π-calculus with higher-order definitions
and input patterns

In a first-order setting, it is impossible to define classes of objects as
functions which create objects. Rather, all objects must be defined statically.
Dynamic values are passed as parameters during object invocation. The
drawback of this programming style is that argument lists quickly reach a
considerable length.

We obtain a simpler syntax by incorporating higher-order definitions into
the π-calculus. The syntactic categories of names of channels x and paramet-
ric processes A are unified, same for the two syntactic categories of definitions
D and processes P . Parametric definitions become replicated inputs and be-
long to the category of processes; definitions can be composed by parallel
composition in order to build sets thereof.

The syntax of the extended π-calculus is listed in Table 4.8. It is built
from an infinite set of channel names N = {x, y, z, . . .}, and a set of function
names f ∈ F . Note that definitions x(ỹ) , P are drawn from the same
alphabet as channels. In the literature, they are often written as replicated
inputs !x?(ỹ).P . The fragment with higher-order definitions, yet no sums,
was studied by Niehren (2000). It can express both the eager and the lazy
λ-calculus.

The reduction semantics needs to be adapted in the application rule for
parametric processes, where the definitions become internal.

z(x̃) | z(ỹ) , P → P [ỹ 7→ x̃] | z(ỹ) , P

if ỹ free is for x̃ in P . The stochastic semantics is not affected either, except
for the application rule:

Pi1 = z(ỹ) Pi2 = z(x̃) , new ỹ:ρ. Q

|ni=1Pi
∞−→
i1

new ỹ:ρ. (Q[x̃ 7→ ỹ] | |ni=1,i6=i1
Pi)



4.5 Higher-order definitions 81

where 1 ≤ i1, i2 ≤ n and Q contain no top-level new-binders. We illustrate
the usefulness of higher-order definitions at the example of class definitions.
Consider promoter objects with two profiles:

PR f ree (me , op ) , rnap ? b ind ( ) . PR bound (me , op ) + . . .

PR bound (me , op ) , me? f r e e ( ) . PR f r ee (me , op )
+ op ! b l o ck ( ) . PR bound + . . .

Instead of threading identities me, one might want them to become global
names, that are passed at object creation time. Promoter creation can then
be defined as follows, assuming that all promoters start in free:

make pr (me , op ) , new p r f r e e . new pr bound .

p r f r e e ( ) , rnap ? b ind ( ) . pr bound ( ) + . . . |
pr bound ( ) , me? f r e e ( ) . p r f r e e ( )

+ op ! b l o ck ( ) . pr bound + . . . |
p r f r e e ( )

With this we can create distinct promoters dynamically, by applying the
definition of make pr. We need to pass as arguments the actual name mei

of the object, and the name of its operator site opi . The channel rnap can
remain global.

make pr (me1 , op1 ) | make pr (me2 , op1 )

We consider processes as erroneous if they use the same name for naming
different definitions, i.e. if some x occurs in subexpressions of the following
form: x(ỹ) , P | x(ỹ′) , P ′. Such errors can be excluded statically by
syntax restrictions as in TyCO, or raise errors dynamically as in Mozart-Oz.
The static way would be to introduce all definitions by recursive let-operators.
This is generally sufficient; see for the above example:

make pr (me , op ) ,
l e t r e c

p r f r e e ( ) , rnap ? b ind ( ) . pr bound ( ) + . . . |
pr bound ( ) , me? f r e e ( ) . p r f r e e ( )

+ op ! b l o ck ( ) . pr bound ( ) + . . . |
i n

p r f r e e ( )
end

Finally, let us note a second kind of type errors which may arise now, since we
no longer fix the arity of defined names (in contrast to names of parametric
processes before). These errors have the form x(z̃) | x(ỹ) , P where the
lengths of z̃ and ỹ differ.
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4.6 Summary

In this chapter, we have presented the stochastic π-calculus with input pat-
terns. We have defined the stochastic semantics of processes in this calculus
in terms of continuous time Markov chains. Our definition of these CTMCs
is new, even for the case without input patterns, but it induces existing simu-
lation machines. We have shown how to encode input patterns, so that their
stochastic semantics in terms of CTMCs is preserved.

As we will see in the next chapter, input pattern permit to define object-
oriented abstractions. These can greatly facilitate π-calculus based modeling
and simulation for systems biology, as illustrated by the modeling studies in
the remaining chapters.



CHAPTER 5

Concurrent Objects and Modules

This chapter first introduces notions of concurrent objects in the stochastic
π-calculus with input patterns. We then show how to define object extension
on meta level, making use of suitable notions of inheritance. Objects with
inheritance are among the central reasons for the extensibility of the model
of transcription and translation presented in Chapter 7. Note that previous
π-calculus based approaches to biomolecular modeling do not use object-
orientation.

We consider different object notions with increasing expressiveness. Ob-
jects may be passive, active, or mixed, depending on whether they may send
or receive messages, or both. They may use particular channels for differ-
ent kinds of interactions, or may restrict themselves to a single channel, the
object’s identity. Multi-profile objects offer different interfaces in different
states, while single-profile objects stick to a permanent interface.

The objects of the TyCO language are passive, interact on a single chan-
nel, and may have multiple profiles. In this context multi-profile objects are
termed non-uniform, see Ravara and Vasconcelos (2000). The objects pre-
sented in our work are more general, in that they may comprise both active
and passive aspects, and permit interactions on multiple channels.

The use of multi-profile concurrent objects for modeling in systems biol-
ogy was originally proposed by Duchier and Kuttler (2006). At that time
however nor formal language existed to express such objects. The addition of
input patterns to the synchronous π-calculus solves this problem at the sym-
bolic level, the definition of the stochastic semantics of the previous chapter
solves the numeric question.
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The purpose of inheritance is to extend objects with new functions. We
define inheritance for multi-profile objects on meta-level, rather than express-
ing it within the π-calculus. We keep the notion of inheritance static, so that
all extension operations can be compiled away; the result is an expression of
the stochastic π-calculus. Richer dynamic notions of inheritance are left to
future research.

We present a module system for defining multi-profile objects in the
stochastic π-calculus, while using inheritance. Modules are collections of def-
initions; we use them to specify multi-profile objects or collections thereof.
The module system is inspired by that of Mozart-Oz, except for the aspect of
inheritance. This latter is in turn inspired by that of SML, except for typing
aspects.

5.1 Multi-profile objects

Multi-profile objects are objects with multiple states, each of which may offer
a distinct interface. An interface is the set of function names for which the
object provides definitions.

In the stochastic π-calculus, we express classes Obj of multi-profile objects
by a set of definitions, one per state. For all states p of the object, we assume
a parametric process name Obj p in order to name this profile of the object
Obj. The class of a multi-profile object Obj with profiles p1, ..., pn is defined
by a collection of mutually recursive definitions of the following form:

Obj p1 ( z̃1 ) , C1
1 + . . . + C1

k1

. . .

Obj pn ( z̃n ) , Cn
1 + . . . + Cn

kn

An object of this class in some profile pi is created by the application
Obj pi(ỹ). Single profile objects are a special case of multi-profile objects,
where the number of profiles n equals 1.

Let us consider Semaphore objects as a first example. These are like rooms
or sites, that can be occupied at most by a single visitor. We represent
semaphores as objects with two profiles free and bound. Each Semaphore
is given an identity by some channel name me. The state transitions of
Semaphores are depicted in Figure 5.1. In state free, a Semaphore can only
accept a bind message and become bound. In state bound a Semaphore can
only receive a free message and become Semaphore free. It crucially matters
that Semaphore may not accept bind messages, while in the bound profile.
We obtain this behavior with the definitions in Figure 5.2.

We call a multi-profile object passive if all guarded processes Cj
i in its
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Figure 5.1: State transitions of a Semaphore

Semaphore f r e e (me) , me? b ind ( ) . Semaphore bound (me)

Semaphore bound (me) , me? f r e e ( ) . Semaphore f r e e (me)

Figure 5.2: Defining semaphores in the π-calculus as multi-profile objects

definitions are inputs, active if all of them are outputs, and mixed otherwise.
In TyCO, all objects are passive and furthermore restricted to input on
a same dedicated channel me, that identifies the object. In this case, all
definitions have the following form:

Obj p(me , z̃ ) , me? f 1 ( x̃1 ) .P1 + . . .+ me? f n ( x̃n ) .Pn

The symbols f i name the functions offered by the object in that profile, and
determine its interface or type.

5.2 Inheritance

In our modeling studies, we will frequently extend object classes by new func-
tions. Our class specifications by inheritance can be compiled into ordinary
π-calculus definitions.

Let us begin with single profile objects, considering the class Obj with the
following definition:

Obj ( z̃) , C1 + . . . + Ck

We extend the class Obj to Obj2 by adding new alternative behaviors:

Obj2 extends Obj
Obj2 ( z̃) extended by Ck+1 + . . .+ Cl

This definition by inheritance can be resolved into a regular π-calculus defi-
nition as follows:

Obj2 ( z̃) , C1 + . . . + Cl [ Obj 7→ Obj2 ]
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The substitution [Obj 7→ Obj2] denotes the renaming of all recursive calls to
some Obj into recursive calls to Obj2. For multi-profile objects, the situation
is somewhat more tedious. We consider some class Obj with n profiles:

Obj p1 ( z̃1 ) , C1
1 + . . . + C1

k1

. . .

Obj pn ( z̃n ) , Cn
1 + . . . + Cn

kn

We extend class Obj to Obj2 in the following manner:

Obj2 extends Obj
Obj2 p1 ( z̃1 ) extended by C1

k1+1 + . . . + C1
l1

. . .
Obj2 pn ( z̃n ) extended by Cn

kn+1 + . . . + Cn
ln

This specification with inheritance is to be resolved into the following π-
calculus definitions:

Obj2 p1 ( z̃1 ) , C1
1 + . . . + C1

l1
[ Obj 7→ Obj2 ]

. . .

Obj2 pn ( z̃n ) , Cn
1 + . . . + Cn

ln
[ Obj 7→ Obj2 ]

The substitution renames all recursive calls to profiles Obj pi into recursive
calls to Obj2 pi for 1 ≤ i ≤ n.

5.3 Module system

We present a module notation for the definition of multi-profile objects in
the stochastic π-calculus, taking advantage of inheritance. This module sys-
tem is inspired by that of Mozart-Oz (Roy, 2005), except for the aspect of
inheritance. This latter is in turn inspired by the module system of SML
except for typing aspects.

Basically, a module is a name for a collection of definitions. Such col-
lections can be defined by importing definitions from other modules, or by
inheritance from existing definitions. Modules export only distinguished def-
initions, while keeping others internal. Modules are self contained, in that
all names used in a module must be declared either in the module’s header,
or within the module itself. We provide some type annotations in module
headers, aiming to improve legibility and facilitate the application of the
contributed definitions.

As a first example, we turn the Semaphore definitions from Figure 5.2 into
the module ’semaphore’ in Figure 5.3. This module exports a unique process
named Semaphore, with 0-ary function symbols bind and free. The definitions
of Semaphore free and Semaphore bound remain internal to the module.
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� �
1 module ’ semaphore ’
2 export
3 Semaphore with b ind /0 , f r e e /0
4 def ine

5 Semaphore (me) , Semaphore f r e e (me)

6 Semaphore f r e e (me) , me? b ind ( ) . Semaphore bound (me)

7 Semaphore bound (me) , me? f r e e ( ) . Semaphore f r e e (me)� �
Figure 5.3: Semaphore module

Preamble. Modules start with a preamble, containing declarations and
other statements, followed by definitions. The first line of the preamble
defines the module’s name.

module <module name>

Module names are character strings. We discuss further preamble statements
in the order they typically occur.

Public channels. Some objects communicate via public channels, which
are neither part of their parameter list, nor locally created. We provide the
following statements to declare such channels:

pub l i c <channel name>
pub l i c <channel name> with <type>
pub l i c <channel name> as <channel name>
pub l i c <channel name> from <Table>

The first statement authorizes output on a public1 channel, the second spec-
ifies the patterns locally defined objects may receive over some public chan-
nel. The third statement <public channel> as < local channel> is useful to
address a public channel by another name, local to the module. The last
declares channels introduced and assigned a stochastic parameterization in
some table.

Import statements. Each module delivers material that can be re-used
by other modules. We reserve the following statements for imports:

import <module name>
import <d e f i n i t i o n n ame > from <module name>
import <module name>(<d e f i n i t i o n n ame > , . . . ,

d e f i n i t i o n n ame ) from <module name>

1We use the alternative wordings global channel and public.



88 Concurrent Objects and Modules

The first makes all exported definitions of the imported module available,
while the second selects a few. The third allows to tag the component Object
imported from module Othermodule, that we can address by the name Oth-
ermodule.Object. This is useful when importing definitions using the same
name in different modules, or when extending on a definition from another
module.

Rate function statements. We have not yet considered the parameteri-
zation of our objects, i.e. the rates determining the actual temporal behavior
of interaction in the π-calculus. As introduced in Chapter 4 channels are as-
sociated with rate functions ρ upon creation (new x:ρ). These fix stochastic
rates ρ(f) for all pairs (x,f) where f are the patterns exchanged over channel
x. We conveniently import such rate definitions into a module, defined in an
external table, using the following statement:

rate <rho> from <Table>

Export statements. We specify the interface of defined objects by export
statements.

export <d e f i n i t i o n n ame > with <type>
export <d e f i n i t i o n n ame >

In <type>, we list all input patterns an object may receive over its iden-
tifier channel me. Note that this does not reveal any internal detail of the
object. For instance, it does not tell when input patterns may by received,
which may depend on the current profile of an object. Note also that the
export statement only fixes the arity of functions, yet not their stochastic
parameterization.

We document inheritance relations at the level of export statements.

<d e f i n i t i o n n ame > extends <Othermodule . Object> by <type>
<d e f i n i t i o n n ame > extends <Othermodule . Object>

The first statement is used to signalize the addition of new pattern input over
an object’s identifier channel me, the second for new interaction potential
using another channel.

Definitions. Finally, the keyword

def ine

delimits the end of the preamble. The module’s definitions follow. Note that
in the module’s core part, we use
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� �
1 module ’ p e r s i s t e n t l i s t ’
2 export
3 Node with getNext /1 , ge tVa lue /1 , i s N i l /1
4 N i l with i s N i l /1
5 def ine

6 Node (me , next , v a l ) ,
7 me? getNext ( c ) . c ! ( nex t ) . Node (me , next , v a l )
8 + me? ge tVa lue ( c ) . c ! ( v a l ) . Node (me , next , v a l )
9 + me? i s N i l ( c ) . c ! f a l s e ( ) . Node (me , next , v a l )

10 N i l (me) , me? i s N i l ( c ) . c ! t r u e ( ) . N i l (me)� �
Figure 5.4: Persistent list module

<d e f i n i t i o n n a m e p r o f i l e > extended by Ck+1 + . . .+ Cl

to detail on an extension, that in the preamble was announced as

<d e f i n i t i o n n ame > extends <module name>.<
d e f i n i t i o n n ame >

Comments. Modules may comprise comment lines starting in the delim-
iter //, which must be repeated if the comment exceeds one line. In this
document, for the sake of legibility we color comments in grey.

Nothing , 0 // t h i s p r o c e s s has van i s h ed !

5.4 Examples

We first present persistent lists as an example for single-profile objects, which
we turn into degradable list by inheritance. As an example of multi-profile
objects we then discuss persistent queuing lists, and render them degradable
by inheritance.

5.4.1 Persistent lists

A list consists of a sequence of nodes, each with a successor next and a
value val. We design the class Node with three parameters: me, next, and
val. The successor of a list’s last Node is represented by a dedicated Nil
object. Interfaces of Node objects specified in Figure 5.4 export three unary
functions: getNext, getValue, and isNil. The Nil object provides only the
unary function isNil.
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Consider a list [a,b] of length 2. It is represented by the parametric
process List, using the module ’persistent list’.

module ’ p e r s i s t e n t l i s t [ a , b ] ’
import Node N i l from ’ p e r s i s t e n t l i s t ’
export L i s t
def ine

L i s t ( n1 ) , new n2 : ρplist .new n i l : ρplist .
Node ( n1 , n2 , a ) | Node ( n2 , n i l , b ) | N i l ( n i l )

We fix the stochastic behavior of persistent Node and Nil objects as fol-
lows:

ρplist(getNext)=30 ρplist(getValue)=∞
ρplist(isNil)=∞ ρpnil(isNil)=∞

The rate function ρplist fixes the temporal behavior of the second node of the
list, located at n2, ρpnil that of the Nil object. We illustrate list processing
with a Walker. It traverses the list by querying each node for it successor via
calling the function getNext, and stops after identifying Nil by its positive
response to isNil.

Walker ( node ) ,
new c1 . node ! i s N i l (c1 ) .

c1? t r u e ( ) . 0
+ c1? f a l s e ( ) .

new c2 . node ! getNext (c2 ) . c2 ?( nex t ) . Walker ( nex t )

Two notes about the Walker are in order.
First, it does not strictly adhere to our definition of object, since it uses a

new-binder in front of a sum. More importantly, it is unclear how to define
a useful notion of inheritance for Walker like processes, so that they they do
different things while walking over a list. The same problem applies to all
devices processing representatives of macromolecules (i.e., data structures)
in Chapters 7 and 8: the abstractions of Rnap and ribosome proceed by
calling functions that are offered by Dna and mRna representatives.

The second point worthwhile stating regards the creation of new channels
in this example. When emulating a function call in the π-calculus, we pass
a fresh private channel on which the result comes back2, in this case the
Walker’s c1 and c2. Such channels are of infinite rate. Note that for channels
not assigned any ρ upon creation, all interactions are instantaneous (see
page 58).

After importing module ’persistent list [a,b]’, we let the Walker run over
an example list instantiated at channel n1:

2See (Milner, 2004).
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Figure 5.5: Walker stepping through a list; Node(ni,ni+1,vi) is here abbreviated
as Node(ni).

L i s t ( n1 ) | Walker ( n1 )
→ new n2 : ρplist .new n i l : ρpnil . Walker ( n1 ) | Nodes

where Nodes = Node ( n1 , n2 , a ) | Node ( n2 , n i l , b )
| N i l ( n i l )

→∗ new n2 : ρplist .new n i l : ρpnil . Walker ( n2 ) | Nodes
→∗ new n2 : ρplist .new n i l : ρpnil . Walker ( n i l ) | Nodes
→∗ new n2 : ρplist .new n i l : ρpnil . Nodes
= L i s t ( n1 )

Suppose the first node’s identifier n1 was introduced with the same rates
ρplist. All calls to getNext functions are then associated with a stochastic rate
of 30. This is the single parameter determining an exponential distribution
of waiting times, i.e. the inverse of its mean. Our Walker hence traverses lists
at an average speed of 30 nodes per second. Besides merely running down
the list, the Walker does not perform any further action. This could be done
by a Copier inspired by the Walker such that:

L i s t ( n1 ) | Cop i e r ( n1 , n2 ) →∗ L i s t ( n1 ) | L i s t ( n2 )

While we leave the Copier’s definition to the reader, we will later present
our abstraction of Rnap for the related task of transcription from Dna into
mRna.

5.4.2 Degradable lists

We now illustrate object extension by deriving a degradable list variant from
the previous, persistent one. The distinguishing feature is that degradable
may be destroyed while processing.

The import statement in line 2 of their defining module (Figure 5.6) im-
ports the specifications of Node and Nil from the module ’persistent lists’,
which it refers to as Plist. With this, Plist.Node and Plist.Nil denote the
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� �
1 module ’ d e g r adab l e l i s t ’
2 import P l i s t (Node , N i l ) from ’ p e r s i s t e n t l i s t ’
3 export
4 Node extends P l i s t . Node by k i l l /0
5 N i l extends P l i s t . N i l by k i l l /0
6 def ine
7 Node (me , next , v a l ) extended by me? k i l l ( ) . 0
8 N i l (me) extended by me? k i l l ( ) . 0� �

Figure 5.6: Degradable list module

respective objects of persistent lists, clearly distinguished from the corre-
sponding objects in non-persistent lists. The export statement tells that this
module provides definitions for Node and Nil. These objects provide the same
functions as their analogs from the ’persistent list’ module, and additionally
kill of arity zero.

A non-persistent list [a,b] can now be built by the same definition as a
persistent list [a,b]. The only difference is that we have to import module
’degradable list’ instead of ’persistent list’. Destructing a non-persistent list
is easy. A Killer proceeds like a Walker, except that it kills a Node before
continuing with the next:

K i l l e r ( node ) ,
new c1 . node ! i s N i l (c1 ) .

c1? t r u e ( ) . node ! k i l l ( ) . 0
+ c1? f a l s e ( ) .new c2 . node ! getNext (c2 ) . c2 ?( nex t ) .

node ! k i l l ( ) . K i l l e r ( nex t )

It is worthwhile observing that Walkers are able to traverse non-persistent
lists, without changing their code. This is one of the main advantages of the
object-oriented approach proposed in this work. Objects of non-persistent
lists specialize those of persistent lists, so we can always replace the latter by
the former. This would not hold for our model encoded in the biochemical
stochastic π-calculus of Priami et al. (2001). We will discuss the reasons on
page 94.

5.4.3 Queuing lists

The persistent and degradable lists presented so far can be traversed by sev-
eral visitors at the same time, e.g. by a Walker and by a Reader. Each visitor
proceeds over the nodes, and hereby draws waiting times independently of
the others. This permits overtaking of one visitor by another, which is how-
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Figure 5.7: Transition diagram: persistent queuing list Node� �
1 module ’ p e r s i s t e n t queu ing l i s t ’
2 export
3 Node with getNext /1 , ge tVa lue /1 , i s N i l /1
4 N i l with i s N i l /1
5 def ine

6 Node (me , next , v a l ) , Node f r e e (me , next , v a l )

7 Node f r e e (me , next , v a l ) ,
8 me? b ind ( ) . Node bound (me , next , v a l )

9 Node bound (me , next , v a l ) ,
10 me? getNext ( c ) . nex t ! b ind ( ) . c ! ( nex t ) .
11 Node f r e e (me , next , v a l )
12 + me? ge tVa lue ( c ) . c ! ( v a l ) . Node bound (me , next , v a l )
13 + me? i s N i l ( c ) . c ! f a l s e ( ) . Node bound (me , next , v a l )

14 N i l (me) ,
15 me? b ind ( ) . N i l (me)
16 + me? i s N i l ( c ) . c ! t r u e ( ) . N i l (me)� �

Figure 5.8: Persistent queuing list module

ever not possible in transcription of Dna, nor in translation of mRna or its
degradation.

We impose queuing on visitors of a persistent list by incorporating a
semaphore style behavior, distinguishing free and bound. Figure 5.7 illus-
trates the transitions between these profiles of a Node, defined by the module
’persistent queuing list’ in Figure 5.8. The functions exported on the interface
can only be used when the Node is in profile bound. Note that the function
bind is not exported outside the module, but can only be called on a node by
its predecessor. This happens during the call of the getNext function, which
is re-defined compared to our previous list module: Upon a getNext request
a Node binds its successor - if necessary it waits - before passing over the
reference next (line 10).

Note that before the Walker can operate on a persistent queuing list, we
need to bind its first node:
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� �
1 module ’ d e g r adab l e queu ing l i s t ’
2 import
3 P l i s t (Node , N i l ) from ’ p e r s i s t e n t queu ing l i s t ’
4 export
5 Node extends P l i s t . Node by k i l l /0
6 N i l extends P l i s t . N i l by k i l l /0
7 def ine
8 Node f r e e (me , next , v a l ) extended by me? k i l l ( ) . 0
9 N i l (me) extended by me? k i l l ( ) . 0� �

Figure 5.9: Degradable queuing list module

L i s t ( head ) | head ! b ind ( ) . 0 | Walker ( head )
→∗ new n1 : ρpqlist .new n2 : ρpqnil . Node f r e e ( head , n1 , a ) |

Node bound ( n1 , n2 , b ) | N i l ( n2 ) | Walker ( n1 )
→∗ . . .

A degradable queuing list can easily be obtained by inheritance, see Fig-
ure 5.9. Its members are equipped with a kill function for stepwise destruc-
tion. As for the Walker, the Killer remains functional starting on a bound first
node.

5.5 Discussion: input patterns or protocols?

Let us discuss an alternative encoding of persistent nodes in the π-calculus.
Instead of defining object interfaces by input patterns, we use smart hand-
shake protocols. This works fine, but beyond poor legibility, it has the major
inconvenience that inheritance gets out of reach.

Each function of Node bound is now represented by a fresh name, which
is created by the Node free before profile switching. These names are passed
from the nodes to the visitor following a handshake protocol illustrated in
Figure 5.10. In a first step, the Node receives input some channel c over
its me channel, knowing this is a binding request and that in step 2, it is
supposed to return the channels associated with its interactions in the bound
profile over channel c. The receiver in turn has precise knowledge on how to
make subsequent use of these channels.

Let us now consider the difference between persistent and degradable
node variants from a Visitor’s perspective. Node extrudes one fresh private
channels per possible interaction in step 2 of the protocol: getValue and
getNext are extruded in either case, while only the degradable node passes
kill. Visitors designed to interact with persistent Nodes can not be used on
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Figure 5.10: Handshake protocol for Node binding in π-calculus without
pattern input. Degradable and persistent nodes differ in their protocols since
only the former creates and extrudes a kill channel in step 2.

degradable ones, in contrast to our previous Walker encoded in our object
π-calculus on page 90.

The reason is the modified protocol. Hence if we wanted to design both
Walkers and Killers for such lists in the π-calculus without pattern input, we
would have to pass on the full channel set to both Walkers and Killers - even
if the former never made use of kill.

The code spells out as follows for the persistent versions:

Node f r e e (me , next , v a l ) ,
me?( c ) . // handshake s t ep 1

new getNext .new ge tVa lue .
c ! ( getNext , ge tVa lue ) . // handshake s t ep 2
Node bound (me , next , va l , getNext , ge tVa lue )

Node bound (me , next , va l , getNext , ge tVa lue ) ,
ge tVa lue ?( c ) . c ! ( v a l ) .

Node bound (me , next , va l , getNext , ge tVa lue )
+ getNext ?( c ) . c ! ( nex t ) . Node f r e e (me , next , v a l )

While for the degradable case, it is:

Node f r e e (me , next , va l , kill ) ,
me?( c ) . // handshake s t ep 1

new getNext .new ge tVa lue .new kill n .
c ! ( getNext , getVa lue , kill n) . // handshake s t ep 2
Node bound (me , next , va l , getNext , getVa lue , kill n)

+ kill ? ( ) . 0

Node bound (me , next , va l , getNext , getVa lue , kill ) ,
ge tVa lue ?( c ) . c ! ( v a l ) .

Node bound (me , next , va l , getNext , getVa lue , kill )
+ getNext ?( c ) . c ! ( nex t ) . Node f r e e (me , next , va l , kill )



CHAPTER 6

Modeling Techniques

This chapter presents recurrent modeling techniques emanating from the
modeling studies of Chapters 7 and 8. We illustrate these by artificial exam-
ples, focusing on elements of concurrent control that are indeed encountered
in biological cases, but may also occur at other places.

These techniques address phenomena of many-to-many communication
(Section 6.1), applied for multiple entry points to queuing lists (Section 6.2),
overlapping sites with mutually exclusive binding (Section 6.3), where we
develop a mechanism that is useful to other cases of mutual dependencies
beyond pairs of actors. We introduce timers (Section 6.4), and show the
application of these to the modulation of stochastic rates of object functions
(Section 6.5). Our approach to these phenomena in novel to modeling in
systems biology, since it heavily relies on multi-profile objects (beyond those
of TyCO). Thus, our technical solutions could not easily be expressed in
previous π-calculus dialects.

Several among these phenomena regard the stochastic behavior. Indeed,
the stochastic semantics is essential to the correct treatment overlapping
sites, and other examples. We must prevent events at one site, that would
disregard the peer site’s state. In our models, inconsistent states can indeed
be reached, yet our stochastic semantics ensures that they may not be abused
of. Inconsistent states are left by immediate transitions, which are executed
prior to any time-consuming transitions that might abuse of it.

The avoidance of inconsistent intermediate states is a well-known prac-
tical issue, e.g. in distributed databases (Vossen and Weikum, 2001). The
solution there is to introduce transactions, and by them to render sequences of
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(a) between visits (b) during a visit

Figure 6.1: Many-to-many communication: at most one Visitor per Site.

actions atomic. Transactions for the π-calculus were proposed by Ciocchetta
and Priami (2006). Fortunately, such heavier operations are not needed for
the purpose of this thesis, thanks to our stochastic semantics with immediate
transitions.

6.1 Many to many communication

Many-to-many communication over the same channel is inherently difficult,
it requires not to mix up the messages of different partners.

Handshake protocols are the common technique to model many-to-many
communication over the same channel in the π-calculus. As two actors estab-
lish a contact over this channel, they exchange a private channel, on which
they subsequently continue their interaction. This private data exchange
prohibits other concurrent actors from interfering.

We suggest a convenient alternative to handshaking for multi-profile ob-
jects. It applies to scenarios with many sites and visitors, where each site
accepts at most one visitor at any time. Figure 6.1(a) illustrates the scenario
without ongoing visits. We model sites and visitors as objects, assuming that
Sites have unique identities mei. During the initial interaction, a Site passes
its identity to the Visitor, by communication over the public channel visit.
Visitors can then invocate functions on the Site. This constellation during
interaction is depicted in Figure 6.1(b).

The semaphore-type requirement that Sites accept maximally one Visitor
at a time can be fulfilled as previously with semaphores, i.e. by state changes
of multi-profile objects. A Site grants access to its identity only while in free
state. As this occurs, it changes into a bound state. Once the Visitor leaves the
Site, the latter becomes free again. Before leaving, the Visitor must discard
any further access capabilities on the Site’s identifier.
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� �
1 pub l i c v i s i t

2 S i t e f r e e (me) , v i s i t ! b ind (me) . S i t e bound (me)

3 S i t e bound (me) , me? unbind ( ) . S i t e f r e e (me)

4 V i s i t o r f r e e ( ) , v i s i t ? b ind ( s i t e ) . V i s i t o r b o u nd ( s i t e )

5 V i s i t o r b o u nd ( s i t e ) , s i t e ! unb ind ( ) . V i s i t o r f r e e ( )
6
7 new me1 . new me2 .
8 S i t e f r e e (me1 ) | S i t e f r e e (me2 ) |
9 V i s i t o r f r e e ( ) | V i s i t o r f r e e ( )� �

Figure 6.2: Implementing scenario with 2 visitors and 2 sites

Figure 6.3: A list offering multiple entry points (green) to Walkers

The above scenario with each two Visitors and Sites is implemented in Fig-
ure 6.2. Note that Sites and Visitors may be enriched with further functions
by inheritance.

In biological examples, many-to-many communication over global chan-
nels occurs between abstractions of Rnap and promoters in Section 7.1, in
protein binding to operators modeled in Section 8.2, as well as in mRna
processing from Section 7.2.

6.2 Queuing lists with multiple entry points

Our next matter of interest is a list offering multiple points of entry, as
illustrated in Figure 6.3. Each list Node can be visited by at most one Walker
at the same time. Walkers can either come from the previous Node, or access
the Node directly by using the public channel visit.

This is indeed a special case of the many-to-many scenario from Sec-
tion 6.1. The Nodes in this list correspond to the previous Sites, the Walkers
to Visitors. In contrast the previous setting, the sites are no longer indepen-
dent, but part of a queuing list. This is because we want to prohibit a Walker
from overtaking others, as appears when modeling Rna polymerases that
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� �
1 import
2 QLis t (Node , N i l ) from ’ p e r s i s t e n t queu ing l i s t ’ // F ig . 5.8
3 pub l i c
4 v i s i t
5 export
6 Node extends QLis t . Node // sends b ind ove r v i s i t
7 Walker
8 def ine
9 Node f r e e (me , next , v a l ) extended by

10 v i s i t ! b ind (me) . Node bound (me , next , v a l )

11 Walker ( ) , Wa l k e r f r e e ( )

12 Wa l k e r f r e e ( ) , v i s i t ? b ind ( n ) . Walker bound ( n )

13 Walker bound ( n ) , new c .
14 me! getNext ( c ) . c ?( nex t ) . Walker bound ( nex t )� �

Figure 6.4: Implementing queuing lists with multiple entry points

transcribe through Dna, after starting at promoters.
The implementation is listed in Figure 6.4. Nodes extend those of per-

sistent queuing lists. The profile Node free is extended by the capability to
receive a visitor, as Site free in Figure 6.2. Walker free binds to a site in the
same way as Visitor free did before. But now, instead of being able to unbind,
the walker needs to continue traversing the remaining list, similarly to the
walker on page 90. It should be noted that multi-profile objects permit both
mixed input and output, while using more than one interaction channel.

In our biological modeling, multiple entry points to lists are useful for
several cases. One are tandem promoters, dealt with in Section 7.4.2. The
abstraction of the mRna transcribed there applies a solution developed for
internal ribosomal binding sites, transcribed within polycistronic mRna from
operons (Figure 7.11).

6.3 Overlapping sites

We next model overlapping sites at s1 and s2 which may not receive visitors
simultaneously, as illustrated in Figure 6.5(a). Whenever either of them is
bound, the other becomes blocked. We must carefully prohibit inconsistent
configurations in which the Site at s1 is bound while that at s2 is free, or vice
versa.

In our models, inconsistent states can indeed be reached, yet may not be
abused. We always provide immediate transitions leaving inconsistent con-
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(a) unbound state

Site(s1,s2) Site(s2,s1) interaction delay
free free s1.bind() timed
bound free s2.block() immediate
bound blocked s1.unbind() timed
free blocked s2.unblock() immediate
free free

(b) Sample trajectory

Figure 6.5: Overlapping sites at s1 and s2

figurations. Their execution precedes any time-consuming transitions that
might abuse it. The higher priority of immediate transitions is enforced by
rule (sum) of the stochastic semantics of our π-calculus in Table 4.5.

One possible state trajectory is given in Figure 6.5(b). Initially, we as-
sume a parallel composition of each two Site free and Visitor free. The first
parameter of a Site refers to its identity, and the second to its peer’s:

S i t e f r e e ( s1 , s2 ) | S i t e f r e e ( s2 , s1 ) | V i s i t o r f r e e |
V i s i t o r f r e e

The first reduction is an application s1.bind() which we assume time consum-
ing. With some finite rate r we enter an inconsistent configuration:

r−→ S i t e bound ( s1 , s2 ) | S i t e f r e e ( s2 , s1 ) | V i s i t o r f r e e |
V i s i t o r b o u nd ( s1 )

Now comes the trick. Site free(s2,s1) has a choice between a time con-
suming transition through function s2.bind() (with the Visitor free), and an
immediate one by function s2.block() for which Site bound(s1,s2) acts as coun-
terpart. The priority given to immediate transitions in our semantics ensures
that only the latter function is applied:

∞−→ S i t e bound ( s1 , s2 ) | S i t e b l o c k e d ( s2 , s1 ) |
V i s i t o r b o u nd ( s1 ) | V i s i t o r f r e e

Thus, it is impossible to enter an erroneous configuration in which both Sites
are bound at the same time:

6 r−→ S i t e bound ( s1 , s2 ) | S i t e bound ( s2 , s1 )
| V i s i t o r b o u nd ( s1 ) | V i s i t o r b o u nd ( s2 )

An implementation of Site objects with these three profiles is listed in
Figure 6.6. The first two profiles free and bound are analogous to the previ-
ous Semaphore’s. The third profile blocked accounts for mutual exclusion of
site inhibition. To complete the example, we provide an implementation of
visitors in Figure 6.7.
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� �
1 module ’ o v e r l a p p i n g s i t e s ’
2 export
3 S i t e with b ind /0 , unbind /0 , b l o ck /0 , unb lock /0
4 def ine

5 S i t e (me , o t h e r ) , S i t e f r e e (me , o t h e r )
6
7 S i t e f r e e (me , o t h e r ) ,
8 me? b ind ( ) . S i t e bound (me , o t h e r ) // t imed
9 + me? b l o ck ( ) . S i t e b l o c k e d (me , o t h e r ) // immediate

10 + othe r ! unb lock ( ) . S i t e f r e e (me , o t h e r ) // immediate
11
12 S i t e bound (me , o t h e r ) ,
13 me? unbind ( ) . S i t e f r e e (me , o t h e r ) // t imed
14 + othe r ! b l o ck ( ) . S i t e bound (me , o t h e r ) // immediate
15
16 S i t e b l o c k e d (me , o t h e r ) ,
17 me? unb lock ( ) . S i t e f r e e (me , o t h e r ) // immediate� �

Figure 6.6: Module ’overlapping sites’

� �
1 module ’ v i s i t o r s of o v e r l a p p i n g s i t e s ’
2 pub l i c s1 s2

3 export
4 V i s i t o r
5 def ine

6 V i s i t o r ( ) , V i s i t o r f r e e ( )
7
8 V i s i t o r f r e e ( ),
9 s1 ! b ind ( ) . V i s i t o r b o u nd ( s1 )

10 + s2 ! b ind ( ) . V i s i t o r b o u nd ( s2 )
11
12 V i s i t o r b o u nd ( s i t e ) , s i t e ! unb ind ( ) . V i s i t o r f r e e ( )� �

Figure 6.7: Visitor module
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Figure 6.8: Transitions of overlapping sites at s1 and s2 in Petri net style� �
1 module ’ t ime r ( f 1 , . . . , f n ) ’
2 export
3 Timer
4 def ine

5 Timer ( c ) ,
6 c ! f 1 ( ) . Timer ( c )
7 + . . .
8 + c ! f n ( ) . Timer ( c )� �

Figure 6.9: Module ’timer(f1,...,fn)’

Figure 6.8 illustrates the synchronized state transitions of the pair of
objects Site(s1,s2 ) and Site(s2,s1). Colored transitions are due to calls of
immediate functions block and unblock, and pass through the boxed synchro-
nization points. Black edges denote timed interaction with the Visitor, not
included in the illustration for the sake of clarity.

6.4 Timers

Timers proposed by Regev (2002) catalyze activities involving a single en-
tity. When such are modeled in the π-calculus, due to its binary interaction
paradigm these reactions nevertheless require some partner. An elementary
timer on channel c sends the void message to c, whenever it is requested.
We will use a somewhat more powerful Timers for multi-profile objects, in-
stantiated at channel c. Such timers defined in Figure 6.9 provide co-actions
fi requested by alternative profiles. A first significant use case for these
Timer processes, that can trigger actions with different rates depending on
the function name, is shown in the following. The construction will also
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� �
1 module ’ e l emen ta r y t imer ’
2 export Timer
3 def ine

4 Timer ( c ) , c ! ( ) . Timer ( c )� �

Figure 6.10: Transitions of Site with unbind function of mutable rate

demonstrate its versatility when modeling transcription regulation at the λ
switch in Chapter 8.

6.5 Mutable rates

It is sometimes wishful to modify the stochastic rate of an object’s function f.
Achieving this is however not evident, since the function rates are determined
upon creation of the object’s identifier channel, by means of the associated
ρ.

The alternative to rate modification would be to introduce a new function
f’, performing the same activity as the original f yet with a different rate.
This would come at the expense of affecting the object’s interface, require
any interaction partners to know when to invocate which among f and f’.
We favor as solution preserving the object’s interface.

We illustrate our technique at the example of a Site, where as usual vis-
itors may come and go. While binding itself occurs at a fixed rate, the sta-
bility of the bound state is mutable, i.e the response rate to calls to function
unbind depends on some external condition. Figure 6.10 illustrates. Both
Site boundWeak and Site boundStrong offer the unbind. Site is synchronized
with an external partner, that via calls of its functions setStrong and setWeak
may enforce profile adjustments. The trick is now simple: while unbind itself
is immediate, its externally experienced rate is determined by timed internal
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� �
1 module ’ S i t e with mutable unb ind i ng rate ’
2 import
3 Timer from ’ t ime r ( weakTimer , s t rongT imer ) // F ig . 6.9
4 export
5 S i t e with b ind /1 , unbind /0 , setWeak /0 , s e t S t r o ng /0
6 def ine

7 S i t e (me) , S i t e f r e e (me) | Timer (me)
8
9 S i t e f r e e (me) , me? b ind ( c ) . c ! (me) . Site boundWeak (me)

10
11 Site boundWeak (me) ,
12 me?weakTimer ( ) .me? unbind ( ) . S i t e f r e e (me)
13 + me? s e tS t r o ng ( ) . S i t e boundSt r ong (me)
14
15 S i t e boundSt r ong (me) ,
16 me? s t rongT imer ( ) .me? unbind ( ) . S i t e f r e e (me)
17 + me? setWeak ( ) . Site boundWeak (me)� �

Figure 6.11: Site with unbind function of mutable rate

Figure 6.12: Module dependencies when using ’timer(f1,...,fn)’

communication with a tailored Timer.
The complete definition is given in Figure 6.11. We obtain the desired

temporal behavior with a suitable choice of timed versus immediate function
rates, such as:

bind 7→ 1, strongTimer 7→ 1, weakTimer 7→ 10,
setStrong 7→ ∞, setWeak 7→ ∞ unbind 7→ ∞.

Notice that the mechanism for switching between Site boundWeak and
Site boundStrong depends on immediate functions, and is reminiscent of that
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for overlapping sites from Section 6.3.
In our biological modeling studies, the combination of Timers with im-

mediate profile synchronizations from Section 6.3 will prove to deal with:
specificity between proteins and Dna operator sites, cooperative binding of
proteins on distinct Dna operator sites, and positive control of transcription
initiation. Figure 6.12 illustrates the module dependencies, when dealing
with specific biological modeling issues.



Part III

Modeling and Simulation
Studies





CHAPTER 7

Transcription and Translation

This chapter is dedicated to our models of bacterial transcription and transla-
tion in the stochastic π-calculus with pattern input, and stochastic simulation
based on these. Our design of biological model components benefits from the
toolset introduced in the previous chapters. Objects with multiple profiles
are essential to our modeling. The re-use of functionalities from existing
components, i.e. object extension, greatly facilitates the development of our
biological abstractions.

Abstracting macromolecules. In Section 7.1 we develop abstractions of
Rnap and Dna. To deal with Dna, we introduce three different multi-profile
objects sketched in Figure 7.1: Promoter, Nucleotide, and Terminator. Two
among these objects provide functionalities ascribed sequences as a whole
– promoters and terminators. In contrast, we represent individual coding
nucleotides, again as objects. These abstraction levels are distinguished by

Figure 7.1: The DNA Module defines the objects Promoter, Nucleotide, Ter-
minator, here abbreviated as P, N, and T respectively
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Figure 7.2: Module dependencies and inheritance

coloring in Figure 7.1. Our switching between abstraction levels follows the
reaction-based representation in Table 2.1, which as previously discussed
(see Section 2.5) constitutes the core of related stochastic models of gene
expression. Our abstraction of mRna in Section 7.2 follows similar rough
lines.

Extending on lists. Figure 7.2 overviews how in this chaper, we extend
the available list variants: we base models of Dna on persistent queuing
lists, and those of mRna on their degradable extension. For promoters, we
initially present a stand-alone abstraction. It is later refined to comprise the
functionalities of a Dna nucleotide representative. As such it may smoothly
combine with a predecessor Nucleotide, as illustrated in Figure 7.1. To certain
biological cases, this aspect matters, while for the simulation of others it may
be disregarded.

Chapter outline. After introducing our generic models of Dna and
mRna, we provide suitable ρ definitions for the stochastic parameterization
of our objects in Section 7.3. To illustrate how our models can accommodate
further biological information, in Section 7.4 we refine our genetic library
to special cases of transcriptional organization in bacteria, as introduced in
Section 2.3. To keep the balance, in Section 7.5 we discuss open challenges to
the coverage of further regulatory mechanisms within our framework. Last
but not least, we move on to the simulation of the combined dynamics of
bacterial transcription and translation in Section 7.6. We namely investigate
the effect of translational bursting.
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reaction
in
Tab. 2.1

Rnap in
profile

line in
Fig 7.4

sends to DNA
representa-
tive

line in
Fig.7.6

Promoter
(2.2.1) free 7 bind free 15
(2.2.2) closed 9 unbind closed 17
(2.2.3) closed 10 initiate closed 18
(2.2.4) open 12 startTranscript open 21
(2.2.5) elongating 17 elongate Nucleotide 27

bound
(2.2.6) elongating 16 terminate Terminator 32

bound

Figure 7.3: Relating the reaction-based view of transcription to interactions
between π-calculus objects

7.1 DNA and transcription

Figure 7.3 summarizes our mapping of the reaction-based view from Ta-
ble 2.1 on communication between concurrent π-calculus objects: interac-
tions between Rnap and promoter sequences on Dna during initiation as
sketched in reactions (2.2.1) to (2.2.4), transcript elongation in steps of one
Dna nucleotide from reaction (2.2.5), and termination on terminator Dna
sequences, i.e. reaction (2.2.6).

Let us precede the discussion of the components with a comment on a
central design choice. In our model, we want to explicit the growth of the
transcript, that is not represented in the reaction-based view. Recall that
Rna is assembled on Dna by Rnap. In the π-calculus model, the transcript
representative must be spawned by one among these. We attribute the task
to the Dna representative, which by its sequence determines the information
content of the transcript. Due to this choice, our representative of Rnap is
simpler to explain than those of Dna.

Abstraction of RNAP. Rnap has four profiles introduced in Figure 7.4:
free, closed, open, transcribing. The first three deal with transcription initia-
tion – they have corresponding Promoter profiles. The fourth covers elonga-
tion, and roughly resembles our previous Walker. We first consider formation
of the closed promoter complex, i.e. binding of Rnap to some promoter
as summarized by reaction (2.2.1): Rnap free invocates bind over the global
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� �
1 module ’RNAP’
2 pub l i c rnap
3 export Rnap
4 def ine

5 Rnap , Rnap f r e e

6 Rnap f r e e ,
7 new c . rnap ! b ind ( c ) . c ?( prom ) . Rnap c l o s ed ( prom )

8 Rnap c lo s ed ( prom ) ,
9 prom ! unbind ( ) . Rnap f r e e

10 + prom ! i n i t i a t e ( ) . Rnap open ( prom )

11 Rnap open ( prom ), new c1 .new c2 .
12 prom ! s t a r t T r a n s c r i p t (c1 ) . c1 ?( rna ) .
13 prom ! getNext (c2 ) . c2 ?( dna ) .
14 Rnap e l onga t i ng ( dna , rna )

15 Rnap e l onga t i ng ( dna , rna ) , new c1 . dna ! isTerm (c1 ) .
16 c1? t r u e ( ) . dna ! t e rm i na t e ( rna ) . Rnap f r e e
17 + c1? f a l s e ( ) .new c2 . dna ! e l o n g a t e ( rna , c2 ) .
18 c2 ?( r n a n x t ) .
19 new c3 . dna ! getNext (c3 ) . c3 ?( dna nxt ) .
20 Rnap e l onga t i ng ( dna nxt , r n a n x t )� �

Figure 7.4: Rnap module

channel rnap (line 7).1 It waits for satisfaction by a Promoter, that is nonde-
terministically selected among several available in profile free, and extrudes
its me channel. As the bind interaction succeeds, Rnap and Promoter switch
to their closed profiles. They now jointly represent the closed promoter com-
plex. As such they can interact over Promoter’s shared me channel, by the
competing functions unbind and initiate. The race between these is controlled
by the rates koff in reaction (2.2.2) and kinit in reaction (2.2.3), which en-
ter the model over the ρ function that quantifies the Promoter’s channel
me. Unbinding without transcription initiation is straightforward. It causes
transitions from closed to free (line 9). If conversely initiate succeeds, both
switch to their open profile (line 10). Transcription subsequently launches
upon a startTranscript call, reflecting reaction (2.2.4). Promoter open creates
the first transcript segment, and returns a reference to its growing end rna.
Rnap open continues as elongating, using rna and the second parameter dna,
that it obtains by a getNext call (line 13).

Rnap elongating traverses the Dna representative, calling elongate on each

1See Section 6.1 for establishment of a private connection over a global channel in a
many-to-many setting.
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(a) Transition diagram: Promoter

(b) Transition diagram: Nucleotide. The functions with shaded labels are inher-
ited from a persistent queuing list Node, the underlined are new.

Figure 7.5: Dna abstraction: profile transitions

Nucleotide over its extruded me channelo, see line 17. This accounts for re-
action (2.2.5). Recall that we left it to the abstraction of Dna to actually
create that of mRna, upon these calls of function elongate. After reaching
the Terminator, Rnap returns to free (line 16), while the Terminator actu-
ally completes and releases the transcript. This behavior corresponds to
reaction (2.2.6). Notice that the recycling of Rnap objects differs from the
behaviour of the previous Walker, that terminates as 0 reaching the end of a
list.

Abstraction of DNA. Our module ’DNA’ in Figure 7.6 provides the
complementary actions to Rnap. Promoter implements the access control to
genes, with three profiles analogous to those of Rnap: Promoter free is dual to
Rnap free, and so forth. Transcription ensues once both Rnap and Promoter
are open. As a result of a startTranscript call (line 12), Promoter open spawns
a RBS abstracting the first chunk of the transcript, and returns the channel
rna pointing to its growing end to Rnap open. The transition to Promoter free
is caused by Rnap open’s following call to getNext.

Both Nucleotide and Terminator extend on the persistent queuing Node.
Rnap distinguishes them via isTerm queries, determining whether elongation
should cease: Nucleotide returns false, whereas Terminator returns true. When
calling elongate, Rnap sends a reference rna to the transcript’s growing end.
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� �
1 module ’DNA( ’ your f a v o r i t e p r o t e i n ’ ) ’
2 pub l i c
3 rnap with b ind /1
4 import
5 L i s t (Node , N i l ) from ’ p e r s i s t e n t queu ing l i s t ’ // F ig 5.8
6 Mrna ( Nuc l eo t i d e , Terminator ,RBS) from ’mRNA( ’ your

f a v o r i t e p r o t e i n ’ ) ’ // F ig 7.8
7 rate ρrna , ρrbs from ’ Table 7.1 ’
8 export
9 Promoter with unbind /0 , i n i t i a t e /0 , s t a r t T r a n s c r i p t /1

10 Nuc l e o t i d e extends L i s t . Node by i sTerm /1 , e l o n g a t e /2
11 Terminator extends L i s t . Node by i sTerm /1 , t e rm i n a t e /1
12 def ine

13 Promoter (me , nex t ) , Promo t e r f r e e (me , nex t )

14 Promo t e r f r e e (me , nex t ) ,
15 rnap ? b ind ( c ) . c ! (me) . P romot e r c l o s ed (me , nex t )

16 Promot e r c l o s ed (me , nex t ) ,
17 me? unbind ( ) . P r omo t e r f r e e (me , nex t )
18 + me? i n i t i a t e ( ) . Promoter open (me , nex t )

19 Promoter open (me , nex t ) ,
20 new me2 : ρrbs .new rna : ρrna .
21 me? s t a r t T r a n s c r i p t (c1 ) . c1 ! ( rna ) .
22 me? getNext (c2 ) . nex t ! b ind ( ) . c2 ! ( nex t ) .
23 Promo t e r f r e e (me , nex t ) | Mrna .RBS(me2 , rna )
24
25 Nuc l eo t i d e bound (me , next , v ) extended by
26 me? isTerm ( c ) . c ! f a l s e ( ) . Nuc l eo t i d e bound (me , next , v )
27 + me? e l o ng a t e ( rna , c ) .new r n a n x t : ρrna . c ! ( r n a n x t ) .
28 Nuc l eo t i d e bound (me , next , v )
29 | Mrna . Nuc l e o t i d e ( rna , rna nx t , v ’ )
30 Terminator bound (me , next , v ) extended by
31 me? isTerm ( c ) . c ! t r u e ( ) . Terminator bound (me , next , v )
32 + me? t e rm i na t e ( rna ) .new l a s t : ρrna .
33 Te rm i n a t o r f r e e (me , next , v )
34 | Mrna . Terminator ( rna , l a s t , v ’ ) | L i s t . N i l ( l a s t )� �

Figure 7.6: Dna module

The Dna Nucleotide appends a Nucleotide of complementary content (for
simplification indicated by v’) imported from the ’mRNA’ module. It returns
the new growing extremity rna nxt to Rnap. The hybrid Terminator completes
the nascent transcript with an mRNA.Terminator, followed by a Nil.
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Figure 7.7: mRna abstraction comprising processes RBS, Nucleotide, and
Terminator. The latter two (here N and T) are based on the module ’degrad-
able queuing list’. Note that the mRna representative actually ends in a Nil
object.

7.2 mRNA, translation and degradation

We base our model of mRna on the module ’degradable queuing list’ (Fig-
ure 5.9 on page 94). This accounts for two biologically relevant properties
via object inheritance: the molecule’s unstable character, and the queuing of
the ribosomes and degradosomes processing it. Similarly as we did for Dna,
we assemble mRna from three components at different levels of abstraction
illustrated in Figure 7.7. Different than in Dna processing, we do not ex-
plicity track the growth of the nascent transript while the abstraction of the
translating ribosome proceeds along mRna.

RBS. The two-profile RBS defined in Figure 7.8 represents the 5′ end of
mRna, including the ribosomal binding site and the translation start signal.
It implements the co-transcriptional race between translation and degrada-
tion. Decay initiates over the global channel degradosome in the free profile:
after RBS has passed the reference to its successor (that it sends to profile
bound) it becomes the inert process 0 in line 15. If alternatively a Ribosome
binds over the global channel ribosome, it causes a switch from RBS free to
RBS bound (line 16). Similarly to the unstable intermediate on promoters,
two interactions unbind (line 19) and initiate (line 18) become possible, re-
flecting reactions (2.2.8) and (2.2.9) in Table 2.2. Their quantitative behavior
is fixed as usual by the ρ function associated with the RBS’s me channel. We
will give sample values in the following section.

Ribosome. In discussing translation elongation, we first consider the ri-
bosome representative specified in Figure 7.9. Similarly as Rnap, it advances
over individual Nucleotides of mRna, while calling their elongate function in
line 16. This accounts for reaction (2.2.10) in Table 2.2. Notice that elongate
on mRna takes no parameter, in contrast to that of Dna propagating the
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� �
1 module ’mRNA( ’ your f a v o r i t e p r o t e i n ’ ) ’
2 pub l i c
3 r ibosome with b ind /1
4 degradosome with b ind /1
5 import
6 L i s t (Node , N i l ) from ’ d e g r adab l e queu ing l i s t ’ // F ig5.9
7 Pro t e i n from ’ your f a v o r i t e p r o t e i n ’
8 export
9 RBS with i n i t /1 , unb ind /0

10 Nuc l e o t i d e extends L i s t . Node by i sTerm /1 , e l o n g a t e /0
11 Terminator extends L i s t . Node by i sTerm /1 , t e rm i n a t e /0
12 def ine

13 RBS(me , nex t ) , RBS free (me , nex t )

14 RBS free (me , nex t ) ,
15 degradosome ? b ind ( c ) . nex t ! b ind ( ) . c ! ( nex t ) . 0
16 + r ibosome ? b ind ( c ) . c ! (me) . RBS bound (me , nex t )

17 RBS bound (me , nex t ) ,
18 me? i n i t ( c ) . nex t ! b ind ( ) . c ! ( nex t ) . RBS free (me , nex t )

19 + me? unbind ( ) . RBS free (me , nex t )
20
21 Nuc l eo t i d e bound (me , next , v a l ) extended by
22 me? isTerm ( c ) . c ! f a l s e ( ) . Nuc l eo t i d e bound (me , next , v )
23 + me? e l o ng a t e ( ) . Nuc l eo t i d e bound (me , next , v )
24
25 Terminator bound (me , next , v a l ) extended by
26 me? isTerm ( c ) . c ! t r u e ( ) . Terminator bound (me)
27 + me? t e rm i na t e ( ) .
28 Te rm i n a t o r f r e e (me , next , v a l ) | Pro t e i n� �

Figure 7.8: mRna module

reference to the transcript’s growing end. That is because our abstraction
of translation disregards the actual assembly of a sequence of amino acids
(which however may be covered by further refinement).

Reaching the Terminator the full protein representative is spawn via func-
tion terminate called by Ribsome elongating in line 14. This corresponds to
reaction (2.2.11).

Nucleotide and Terminator. Nucleotide objects propagate both transla-
tion and degradation, where the latter occurs via the function kill inherited
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� �
1 module ’ r ibosome ’
2 pub l i c r ibosome
3 export Ribosome
4 def ine

5 Ribosome ( ) , R ibo some f r e e ( )

6 R ibo some f r e e ( ) , new c
7 r ibosome ! b ind ( c ) . c ?( rna ) . Ribosome bound ( rna )

8 Ribosome bound ( rna ) , new c .
9 rna ! i n i t ( c ) . c ?( nex t ) . R i bo some e l onga t i ng ( next )

10 + rna ! unbind ( ) . R i bo some f r e e ( )

11 R ibo some e l onga t i ng ( rna ) ,
12 new c1 . rna ! isTerm (c1 )
13 c1? t r u e ( ) .
14 rna ! t e rm i n a t e ( ) . R i bo some f r e e ( )
15 + c1? f a l s e ( ) .
16 rna ! e l o n g a t e ( ) .
17 new c2 . rna ! getNext (c2 ) . c2 ?( nex t ) .
18 R ibo some e l onga t i ng ( next )� �

Figure 7.9: Ribosome module

from a degradable queuing nodes. The Ribosome uses the inherited function
getNext to step through the mRna representative in translation; it stops on
the Terminator due to its positive response to isTerm. The function elongate
(line 27) that Ribosome calls remains without effect in this basic Nucleotide
model.

Degradosome. The degradosome specification in Figure 7.10 is straight-
forward: after gaining access to the RBS, it stepwise destructs the whole
mRNA, calling getNext (line 12) and kill (line 13) on each of its Nucleotides.
Degradation stops at the end of the transcript (line 11) - note this occurs
on Nil, not on the Terminator as does translation, by using functions isNil
rather than isTerm. This distinction will prove useful when dealing with
polycistronic mRna. Another point worthwhile stating is that the propaga-
tion of decay is not covered by the reaction based view in Table 2.2.

Proteins. Proteins have many functions in the cell, that are not covered
in this chapter. The only point we mention beyond their expression is their
limited lifetime, reflected by a kill function for the degradation of Proteins of
a certain type identified by prot:
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� �
1 module ’ degradosome ’
2 pub l i c degradosome
3 export Degradosome
4 def ine

5 Degradosome ( ) , Degradosome f ree ( )

6 Degradosome f ree ( ) , new c .
7 degradosome ! b ind ( c ) . c ?( rna ) . Degradosome work ing ( rna )
8
9 Degradosome work ing ( rna ) ,

10 new b . rna ! i s N i l ( b ) .
11 b? t r u e ( ) . rna ! k i l l ( ) . Degradosome f ree
12 + b? f a l s e ( ) .new c . rna ! getNext ( c ) . c ?( nex t ) .
13 rna ! k i l l ( ) . Degradosome work ing ( next )� �

Figure 7.10: Degradosome module

channel ρchannel(function) quantifies

rnap ρrnap(bind)=0.1 Rnap access to promoters over
global channel

prom ρprom(initiate)=0.1 Rnap interaction with individual
Promoter

ρprom(unbind)=0.1
dna ρdna(getNext)=30 Rnap’s interaction with individual

Nucleotide and Terminator of Dna

ribosome ρribosome(bind)=1 Ribosome’s initial access to RBS
degradosome ρdegradosome(bind)=0.1 Degradosome’s access to RBS
rbs ρrbs(init)=0.5 Ribosome’s interaction with a RBS

ρrbs(unbind)=2.25
rna ρrna(getNext) = 100 Ribosome’s and Degradosome’s in-

teraction with mRna Nucleotide
and Terminator

protein ρprotein(kill)=0.002 protein degradation

Table 7.1: ρ definitions for transcription, translation and mRna decay

Pro t e i n , p ro t ? k i l l ( ) . 0
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� �
1 module ’ operon ’
2 pub l i c r ibosome with b ind /1
3 rate ρrna from ’ Table 7.1 ’
4 import
5 L i s t (Node ) from ’ p e r s i s t e n t queu ing l i s t ’ // F ig . 5.8
6 Mrna ( Nuc l eo t i d e , Terminator ,RBS) from ’mRNA’ // F ig . 7.8
7 export
8 OperonL inke r extends L i s t . Node by i sTerm /1 , e l o n g a t e /2
9 I n t e rna lRBS extends Mrna . Nuc l e o t i d e

10 def ine

11 Ope r o nL i n k e r f r e e (me , next , v ) , L i s t . Node (me , next , v )
12 OperonL inker bound (me , next , v ) extended by
13 me? isTerm ( c ) . c ! f a l s e ( ) . OperonL inke r (me , next , v )
14 + me? e l o ng a t e ( rna , c ) .
15 new r n a n x t : ρrna . n ew rna nx t2 : ρrna . c ! ( r n a nx t 2 ) .
16 OperonL inker bound (me , next , v )
17 | Mrna . Terminator ( rna , r n a n x t )
18 | I n t e rna lRBS ( rna nx t , r n a nx t 2 )

19 I n t e rna lRBS (me , next , v ) , I n t e r n a l RBS f r e e (me , next , v )
20 I n t e r n a l RBS f r e e (me , next , v ) extended by
21 + r ibosome ? b ind ( c ) . c ! (me) . In te rna lRBS bound (me , next , v )

22 I n t e rna lRBS bound (me , next , v ),Mrna . RBS bound (me , next , v )� �
Figure 7.11: Operon module

7.3 Parameterization

Table 7.1 gives sample values of the ρ function attributing rates to functions
for transcription and translation. Functions not associated with a rate are
instantaneous. Recall that each object is identified by its me channel, over
which its function are invocated. This allows to associate method calls on
different objects of the same class with distinct rates, as notably useful for
initiation rates on promoters or ribosomal binding sites.

7.4 Particular promoter arrangements

We extend our components to cover particular promoter arrangements intro-
duced in Section 2.3 on page 34.
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7.4.1 Operons and polycistronic mRna

We devote a module to operons, and the polycistronic mRna transcribed
from them (Figure 7.11). It defines the processes OperonLinker and Inter-
nalRBS, that can be used in abstactions of Dna and mRna respectively.
OperonLinker is used to connect two genes that are co-transcribed within an
operon. The interface it offers to Rnap elongating is that of a regular Nu-
cleotide on Dna, namely functions isTerm in line 13, and elongate in line 14.
This second is of particular interest: it spawns a transcript that comprises a
mRna Terminator, on which translation of the first protein stops (line 17),
combined with an InternalRBS (spawn in line 18). On this latter, translation
of the second protein may initiate – yet not degradation. Initial binding of
the Ribosome occurs as on a regular RBS, via the global channel ribosome
(line 21) while decay propagation is inherited from a regular mRna Nu-
cleotide. Ribosome unbinding and translation initiation are inherited from a
regular RBS object in profile bound.

We can assemble an Operon after importing the previous modules. For
better legibility we omit channel creations and parameterization.

Operon ,
Dna . Promoter

Πlength(gene 1)
i=1 Dna . Nuc l e o t i d e | OperonL inke r |

Πlength(gene 2)
i=1 Dna . Nuc l e o t i d e | Dna . Terminator

The transcription of our operon yields polycistronic mRna coding for two
different proteins2, which are translated with distinct efficiencies (depending
on the ρ function of RBS’s me). Notice that translation of the first cistron
ceases on the first terminator, while propagation continues over it.

Po l y c i s t r o n i cM rn a ,

Mrna .RBS | Πlength(gene 1)
i=1 Mrna . Nuc l e o t i d e | Mrna .

Terminator

| I n t e rna lRBS | Πlength(gene 2)
i=1 | Mrna . Nuc l e o t i d e

| Mrna . Terminator | Node . N i l

When composing the operon in parallel with the molecular machines of tran-
scription, translation, and mRna decay, we obtain the following reduction
sequence:

Operon | Rnap | Ribosome | Degradosome
→∗ Operon | Rnap | Ribosome | Degradosome |

| Po l y c i s t r o n i cM rn a
→∗ Operon | Rnap | Ribosome | Degradosome

2 Notice the convenient parametricity of our module ’mRNA’ in proteins.
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Figure 7.12: Transitions of tandem promoter. Underlined functions extend
on those of the corresponding profiles of a DNA Promoter.

Πn
i=1 Prote inA | Πm

i=1 Prote inB

Eventually, the polycistronic mRna has been transcribed, has yielded dis-
tinct numbers n and m of A and B proteins, and been degraded.

7.4.2 Tandem promoter

Let us now consider promoters arranged in a tandem, illustrated in Fig-
ure 2.6(c) on page 35. The interesting question lies in the representation of
the internal promoter, over which transcription proceeds after it has initi-
ated at the outer. Figure 7.13 presents the profile transitions of the tandem
promoter as a stochastic π-calculus object, specified in Figure 7.13.

Promoter free allows for binding of RNAP, and transcription initiation,
as inherited from a regular promoter. The profile bound, that is not present
for the previous promoter abstraction, offers RNAP elongating the same in-
terface as a regular Nucleotide from the ’DNA’ module3. It is entered as
RNAP elongationg is about to leave the preceding Nucleotide, relying on the
usual binding mechanism for queuing nodes: a call of function bind in line 10,
triggered by RNAP’s call of getNext on the predecessor nucleotide. In Pro-
moter bound the interesting point is the function elongate in line 15. Upon its
call the transcript is appended a new element, offering translation initiation,
but only propagation of decay. We previously designed an element of this
functionality for transcripts resulting from operons: InternalRBS.

Promoter clearance. One of our simplifications so far is that a Promoter
becomes available for new Rnap free immediately upon after initiation, when
switching to free. In reality Rnap clears its footprint stepwise, inducing a
possibly limiting delay for highly efficient promoters, as those depicted in
Figure 2.4(a). The model can be extended with an additional profile to

3It would fully do so by offering an additional function isNil, present in a persistent
queing list node.
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� �
1 module ’ tandem promoter ’
2 import
3 P( Promoter ) from ’DNA’ // se e F i gu r e 7.6
4 I n t e rna lRBS from ’ operon ’ // s e e F i gu r e 7.11
5 rate ρrna from ’ Table 7.1 ’
6 export
7 Promoter extends P . Promoter by b ind /0 , isTerm /1 ,

getNext /1 , e l o n g a t e /2
8 def ine
9 Promo t e r f r e e (me , nex t ) extended by

10 + me? b ind ( ) . Promoter bound (me , nex t )
11
12 Promoter bound (me , nex t ) ,
13 me? isTerm ( c ) . c ! f a l s e ( ) . Promoter bound (me , nex t )
14 + me? getNext ( c ) . nex t ! b ind ( ) . c ! nex t . P r omo t e r f r e e (me ,

nex t )
15 + me? e l o ng a t e ( rna , c ) .new r n a n x t : ρrna . c ! ( r n a n x t ) .
16 Promoter bound (me , nex t ) | I n t e rna lRBS ( rna , r n a n x t )� �

Figure 7.13: Tandem promoter module

reflect this synchronization, delaying the return to profile free until Rnap has
moved far enough. We included this is in our implementation, used for the
simulations in Section 7.6.

7.5 Discussion: challenges in modeling

The integration of more biological detail can become increasingly challenging,
namely when it comes to cover aspects related to secondary structures of
mRna (intrinsic termination of transcription, transcriptional attenuation),
and two-way traffic on Dna and mRna.

Attenuation of transcription. Consider the regulatory mechanism of
transcriptional attenuation. In this case, transcription termination is de-
termined by the efficiency at which translation proceeds over the nascent
transcript. The crucial detail is that intrinsic termination depends on more
than mere recognition of a terminator sequence. Terminator sequences ac-
tually comprise two sub-sequences with different effects. The first codes for
an mRna sequence that quickly forms a stable secondary structure, called
hairpin. It is followed by a Dna sequence on which Rnap stalls. Both fac-
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tors contribute to destabilize elongating Rnap, allowing the transcript below
its footprint to partly dissociate from the template strand. Rnap eventually
falls off Dna. In transcriptional attenuation, the formation of the mRna sec-
ondary structured is impaired by ribosomes that translate the mRna portion
forming the hairpin with sufficient efficiency. Rnap recovers from its speed
loss and continues transcription over the terminator. Capturing this would
require more elaborate mechanisms of concurrent control than so far, specif-
ically regarding Rnap’s dependency on the last chunk of mRna assembled.

Antitermination of transcription on intrinsic terminators is related
to attenuation. Regarding certain cases one could satisfyingly deal with
it, while covering less detail than required for attenuation. The simplest
strategy would be to introduce an additional profile antiterminated for RNAP,
which continues over terminator signals. Transition to this profile would be
triggered by interaction of Rnap elongating with regulatory proteins.

Two-way traffic occurs both on Dna and mRna. The concurrent control
supported so far can not yet account for traffic problems on double-stranded
Dna (one of two Rnap falls off after a head-on collision), nor for details
of mRna decay. So far we only realized queuing control on single stranded
macromolecules, which are processed in one direction. Our model of mRna
decay is phenomenological, a detailed one would cover the initial step of
decay, in which the transcript is cleaved by one member of the degrado-
some proceeding with the same orientation as transcription, and subsequent
decomposition of isolated mRna chunks by another enzyme in opposite di-
rection.

7.6 Simulation of translational bursting

In this section we present simulations obtained from our model components
with the BioSpi tool (Priami et al., 2001), after encoding input patterns
within the stochastic π-calculus. Our focus lies on the effect of translational
bursting introduced in page 38. We hence compare the dynamics of unregu-
lated expression of a single gene under variation of two crucial parameters.
The underlying model is that of a single gene comprising 1000 nucleotides,
its transcription into mRna, and subsequent translation and degradation.
As experimentally confirmed by Ozbudak et al. (2002), the variation of tran-
scription of translation initiation parameters leads to significant differences
in expression patterns. These would not appear in continuous deterministic
simulation, which nevertheless yield comparable average expression levels,
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nor can they be reproduced by one step models of gene expression as that of
Blossey, Cardelli, and Phillips (2006). Our parameter combinations are the
following:

(a) In the setting we refer to as bursty, the promoter yields rare transcription
initiations (kinit of 0.01). This is combined with efficient translation
(kinit of 1).

(b) The smooth setting inverts the parameters: transcription initiates more
frequently (kinit of 0.1), while translation initiation is rarer (kinit of 0.1).

The mRna and protein decay rates are the same for both settings, 0.1 and
0.002 respectively. They are taken from Ozbudak et al. (2002) as the above
parameters, and the number of Rnap, ribosomes and degradosomes. We
executed both combinations for 7 hours of simulated time.

Figure 7.14 reports a representative run for each of the two settings.
The left curve in Figure 7.14(a) displays the evolution of the protein level
over time for an execution of the bursty combination. The protein level
fluctuates strongly around an average of 55, marked by a horizontal line. The
fourth hour exhibits the strongest variability: after it has almost emptied, the
protein pool replenishes rapidly to a maximal level around 140. We provide
a summary of the protein levels observed over the whole simulation period
by the histogram to the right of Figure 7.14(a). Here the simulated time is
divided into equally long intervals. The bars indicate by their height how
often a given number of proteins (labeled on the horizontal axis) is observed.

Simulations based on the smooth setting have a clearly distinct behav-
ior, as shows Figure 7.14(b) where the protein level only weakly fluctuates
around an average of 464. The histogram confirms that the distribution is
pronouncedly narrowed compared with the previous setting.

An alternative interpretation of the histograms is as population snap-
shots, with respect to the expression level of a given protein. In this view the
height of the bars indicate the fraction of the population with a certain pro-
tein level. This shows how for the setting bursty, the variability propagates
from the time course within an individual cell, up to population heterogene-
ity; while for the setting smooth the population remains considerably more
homogeneous.

In the following table we adopt another perspective on the same data.
The second column reports the mean protein crop per transcript, which av-
erages to 10 for setting bursty. New transcripts appear about every 100

4When averaging over many simulation runs, both settings yield the same average
protein level.
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(a) bursty gene expression

(b) smooth gene expression

Figure 7.14: Basal expression of a single gene under parameter variation,
yielding average protein crops per mRna: (a) 10, (b) 1. Left: time course
of protein numbers, right: histogram of protein number over the simulated
period.

seconds (3rd column). This explains the drops observed in Figure 7.14(a)
over periods in which the effect of protein degradation surpasses that of ex-
pression. Setting smooth behaves differently. It yields approximately one
protein per transcript, fresh transcripts become available every 10 seconds,
and both together result in weak fluctuations. Note that while the total num-
ber of transcriptions for setting smooth almost tenfold exceeds that of bursty
(4th column), the total number of protein produced differ far less across the
two settings (5th column):



7.6 Simulation of translational bursting 125

Figure 7.15: Concurrent translation of mRna by multiple ribosomes during
simulation from Figure 7.14(a).

setting proteins
per tran-
script

avg. spacing be-
tween transcript
initiations

total
transcrip-
tions

total
transla-
tions

bursty ≈ 10 ≈ 100 sec 250 2725
smooth ≈ 1 ≈ 10 sec 2318 2338

Origin of translational bursting. We could not yet observe the origin
of the strong bursts in protein numbers in Figure 7.14(a). This motivates fur-
ther inspection of setting bursty ’s simulation data. Figure 7.15 displays the
numbers of translating ribosomes (circles) within the fourth hour of the simu-
lation period, in which the protein pool empties, and then rapidly replenishes
to the maximum. While the number of full mRna molecules a never times
exceeds two (data not shown), these are simultaneously processed by up to 50
ribosomes. As discussed page 38 the strongest bursts in protein levels occur
when for a mRna, the number of translations by far exceeds the average.
The column-reminiscent peaks mark transcripts yielding exceptionally high
protein crops; this is in agreement with a geometric distribution.

The circles forming the bottom line may first appear peculiar. They can
be explained as follows. For setting bursty new transcriptions are completed
every 100 seconds. However, recall that nascent transcripts are translated
co-transcriptionally. This means that whenever some Rnap is producing a
transcript (which takes around 100 seconds), one or more ribosomes closely
follow it on the nascent mRna. Hence the bottom line reflects that there
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is virtually always some coupled transcription and concomitant translation
going on.



CHAPTER 8

Transcription Regulation at the Lambda Switch

The discussion in the previous chapter considered only basal gene expression.
The expression of any actual gene is however subject to regulation. This
chapter is dedicated to modeling transcription initiation control at the λ
switch in our stochastic π-calculus with concurrent objects, and validation
of this model through simulation with the BioSpi engine. We will cover the
details of regulatory interactions described in Chapter 3, involving the two
promoters PRM and PR, the three operator regions on Dna controlling them,
and the regulatory proteins Cro and λ repressor. In modeling transcriptional
regulation at the λ switch, we make large use of the modeling techniques
from Chapter 6.

Figure 8.1: Sketch of regulatory region
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Figure 8.2: Molecular population and regulatory interactions

8.1 Overview

Before presenting the comprehensive model of the λ switch, we discuss mod-
eling techniques for isolated aspects. Let us begin with a promoter, that
is subject to control by one Dna operator region to which proteins bind.
The outline of its π-calculus model in Figure 8.1, does not yet specify the
actual mechanism regulating transcription initiation. Negative control would
mean mutually exclusive access relation between the promoter and operator
region. This can be covered by the mutual exclusion mechanism introduced
in Section 6.3. Alternatively the gene may be positively controlled : Rnap’s
transcription initiation frequency could increase through the presence of a
regulatory protein at the operator (not overlapping the promoter, but lo-
cated in its vicinity). This would in a stochastic π-calculus model be reflected
by adjustment of the promoter’s initiate rate, based on the mechanism from
Section 6.5

Population members and interaction topology. Let us now consider
more detail to incorporate into our model. Figure 8.2 summarizes the λ
switches’ population: the operators OR1, OR2, and OR3 can be bound by
the regulatory proteins Cro and Rep– in our model this occurs over the
global channel pro. The promoters PRM and PR can be bound by RNAP via
channel rnap. These two bindings occur in a many-to-many fashion using
the mechanism from Section 6.1. Our model introduces the following pro-
files. Operator representatives can be free, rep, cro, or blocked. Promoter
PR complements the profiles introduced in Section 7.1, where we did not
yet consider repression, by a blocked profile. PRM additionally replaces the
Rnap-bound profile closed by two others, in oder to distinguish the efficiency
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OR1 OR2 OR3 PR PRM

protein specific unbinding rate
√ √ √

mutual exclusion
√ √ √ √ √

quantitative control of other
√ √

quantitatively controlled by other
√ √

Figure 8.3: Summary: interactions and dependencies at the λ switch

of transcription initiation at high or low level, depending on OR2’s binding
state.

Concurrent control. We distinguishing two types of edges that indicate
relations between operators and promoters.1 Red edges represent mutual
exclusion relations between population members. Each such edge yields four
functions, for blocking and unblocking of the respective molecular actors. We
introduce mnemonic names. For instance, the red edge between PRM and
OR3 will be realized by OR3’s function blockedByPrm, PRM’s blockedByOr3,
and two functions for the reverse actions of unblocking. All these basically
rely on the mutual exclusion mechanism from Section 6.3.

Green edges indicate quantitative control of reactions, i.e. cooperative
binding of the λ repressor protein to OR2 and OR1, and positive control of
transcription initiation frequency at PRM. We here instantiate the mecha-
nism for rate adjustment from Section 6.5, i.e. for up- and downregulating
OR2’s unbind rate and that of PRM’s initiate. Figure 8.3 summarizes the
mechanisms observed for the various members of the population. Each entry
is realized as an object function in our model.

Promoters. Summarizing, the abstractions of the λ switch promoters PR

and PRM extend on the generic Promoter from the module ’DNA’ (see Fig-
ure 7.6) as follows. They are repressible by the operators overlapping them.
Modeling this relies on the mutual exclusion mechanism from Section 6.3.
In addition, the efficiency of transcription initiation at PRM increases as Re-
pressor is bound to OR2. For this, we instantiate the technique introduced
in Section 6.5. Notice that we could, in principle, obtain the model of PR
by extension from the generic one, since all necessary operations represent
additional input patterns in the respective profiles.2 Regarding PRM, we
would need to rewrite some more, in order to distinguish the transcription

1Each of these edges replaces an update channel in the topology of our earlier stochastic
π-calculus model (Kuttler and Niehren, 2006).

2The only real obstacle would be to separately fix the ρ of the Rbs representative.



130 Transcription Regulation at the Lambda Switch

� �
1 P r o t e i n f r e e ,
2 new c . pro ! b ind ( c ) . c ?( or ) . P ro t e i n bound ( or )

3 Pro t e i n bound ( or ) , or ! unb ind ( ) . P r o t e i n f r e e
4
5 OR free (me) , pro ? b ind ( c ) . c ! (me) . OR bound (me)

6 OR bound (me) , me? unbind ( ) . OR free (me)� �
Figure 8.4: Many-to-many docking of proteins to Dna operator sites.

initiation levels. For the sake of presentation, in this document we however
spell out the complete ’PRM’ and ’PR’ modules.

Operator regions. Throughout this chapter we will incrementally refine
models of operator regions on Dna to include all required aspects. Let us
start with the minimal version, that is analogous to the previous Site from
Figure 6.2 (page 98). The OR defined in Figure 8.4 offers many-to-many
binding to proteins over a global channel pro while in profile free, and subse-
quent communication over its private channel while bound.

Let us relate this π-calculus model to the chemical reaction in Table 3.1,
page 47. The communication on channel pro corresponds to the forward di-
rection in reaction (3.1.1). The offer pro?bind made by the process OR free
(line 5) accounts for the participation of molecule OR, that of process Pro-
tein free in line 2 to that of the transcription factor TF .

Upon binding, Protein obtains the OR’s identifier channel, over which it
later invocates function unbind (lines 3 and 6)

Specificity of operator protein pairs. Proteins specifically attach to
Dna, i.e. with a stability reflecting their match with the operator region’s
sequence: the same protein can bind more or less stably to different re-
gions; while at the same site, the binding of different proteins can vary in
strength. We introduced a technique to modify a function’s apparent rate
in Section 6.5. Here we use the same strategy to build an abstraction of an
operator region offering a uniform unbind function to any protein attached,
while adjusting its rate to the actual protein. The operator’s profile name
explicitly reflects this information.

Figure 8.5 lists this module ’OR with specificity’. In order to select the
appropriate unbinding rate, the site identifies the protein upon binding, see
lines 10–11. We therefore introduce an explicit profile OR switching, exposing
two functions specCro and specRep. These are requested by the proteins Cro
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� �
1 module ’OR with s p e c i f i c i t y ’
2 pub l i c pro with b ind /1
3 export
4 OR with unbind /0 , specCro /0 , specRep /0
5 Timer
6 def ine

7 OR(me) , OR free (me) | Timer (me)

8 OR free (me) , pro ? b ind ( c ) . c ! (me) . OR swi tch ing (me)

9 OR swi tch ing (me) ,
10 me? specCro ( ) . OR cro (me)
11 + me? specRep ( ) . OR rep (me)

12 OR cro (me) , me? t imerCro ( ) .me? unbind ( ) . OR free (me)

13 OR rep (me) , me? t imerRep ( ) .me? unbind ( ) . OR free (me)

14 Timer ( c ),
15 c ! t ime rCro ( ) . Timer ( c )
16 + c ! t imerRep ( ) . Timer ( c )� �
Figure 8.5: Operator adjusting its unbinding rate to proteins Cro and Rep

and Rep binding the operator, thus identifying themselves and causing the
operator’s continuation in the appropriate bound profile.3

Repressor protein. Figure 8.6 specifies the abstraction of the λ repressor
protein, that as a dimer regulates the λ switch through binding to the sites
OR1, OR2, and OR3. Rep dimer binds Dna through many-to-many commu-
nication over pro, hereby identifying itself to operators by calling the func-
tion specRep. For completeness the module also includes dimerization of the
monomeric form. We omit a statement in the module that would be used to
create and export a population Rep monomers of a given size, together with
one timer providing co-actions on lam undimerize.

Our following discussion of the λ switch constituents proceeds from the
simpler OR3 (with only a mutual exclusion edge in the above population
diagram), to the other operator regions and promoters with refined control

3A note on the possibility of unspecific protein binding. Our Operator switching could
additionally offer a function unspecific, and proteins could request this upon binding, as
an alternative to their respective specific functions. The problem is that such a solution
does not yet combine with our semantics, in which alternative (instantaneous) choices are
resolved non-deterministically. It would however work if choices between instantaneous
alternatives were worked through sequentially, until the first match is found. An alterna-
tive would consist in an explicit conditional statement with otherwise, as offered by the
BioSpi tool.
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� �
1 module ’ lambda r e p r e s s o r ’
2 pub l i c pro , l am und imer i z e , l am d ime r i z e
3 export Rep monomer
4 def ine

5 Rep monomer ,
6 l am d ime r i z e ! ( ) . Rep dimer
7 + lam d ime r i z e ? ( ) . 0

8 Rep dimer , new c .
9 pro ! b ind ( c ) . c ?( o r ) . o r ! specRep ( ) . Rep bound ( or )

10 + lam und ime r i z e ? ( ) . Rep monomer | Rep monomer

11 Rep bound ( or ) , or ! unb ind ( ) . Rep dimer� �
Figure 8.6: Module ’lambda repressor’

mechanism (see their increasing connective).

Parameterization. Figure 8.7 gives an overview of the functions offered
by our objects (identified by the channels of corresponding names), together
with their parameterization which is based on Table 3.2 on page 48. We
would like to emphasize the crucial importance of the functions with infinite
stochastic rates, which are executed without advance of the simulation clock.

8.2 Model components

We now specify the abstractions of our three operator sites and two promoters
at the λ switch.

8.2.1 Abstraction of OR3

We consider the abstraction of the site OR3, that overlaps with the promoter
PRM and thus determines repression of the cI gene. It is the least complicated
component of the λ switch, as indicated by the smaller number of edges
interconnecting it, in the population overview of Figure 8.2. It nonetheless
integrates the mechanism of specific binding for the proteins Rep and Cro.

Protein binding via the global channel pro occurs in the usual many-
to-many manner, introduced in Section 6.1. Identification of the protein
type occurs on the fly in lines 10-11, as introduced by the generic operator in
Figure 8.5. Profile OR free offers two other interactions: Line 12 accepts pat-
tern input matching blockedByPrm, this corresponds to become occluded and
is performed by PRM residing in some bound profile. As a consequence, PR
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channel ρchannel(function)

rnap ρrnap(bind)=0.098
prm ρprm(initiate)=∞ ρprm(unbind)=0.788

ρprm(highTimer)=0.086 ρprm(lowTimer)=0.005
ρprm(getNext)=30 ρprm(startTranscript)=30
ρprm(freedByOr3)= ∞ ρprm(blockedByOr3)= ∞
ρprm(raisedByOr2)= ∞ ρprm(resetByOr2)= ∞

pr ρpr(initiate)=0.05 ρpr(unbind)=0.155
ρpr(freedByOr2)= ∞ ρpr(blockedByOr2)= ∞
ρpr(freedByOr1)= ∞ ρpr(blockedByOr1)= ∞
ρpr(getNext)=30 ρpr(startTranscript)=30

pro ρpro(bind)=0.098
or1 ρor1(unbind)= ∞

ρor1(timerRep)=0.155 ρor1(timerCro)=2.45
ρor1(specRep)=∞ ρor1(specCro)=∞
ρor1(freedByPr)=∞ ρor1(blockedByPr)=∞

or2 ρor2(unbind)= ∞ ρor2(timerRepHigh)=0.155
ρor2(timerRepLow)=3.99 ρor2(timerCro)=2.45
ρor2(specRep)=∞ ρor2(specCro)=∞
ρor2(freedByPr)=∞ ρor2(blockedByPr)=∞
ρor2(raisedByOr1)=∞ ρor2(resetByOr1)=∞

or3 ρor3(unbind)= ∞
ρor3(timerRep)=20.22 ρor3(timerCro)=0.29
ρor3(specRep)=∞ ρor3(specCro)=∞
ρor3(freedByPrm)=∞ ρor3(blockedByPrm)=∞

lam dimerize ρlam dimerize=0.048
lam undimerize ρlam undimerize=0.5

Figure 8.7: Public channels of the λ switch model and their ρ definitions

switches to its blocked profile. In line 13, OR3 free releases a block on PRM by
calling its freeByOr3. This is performed instantaneously upon becoming free.
This mutual exclusion with PRM relies on the technique introduced in the
module ’Overlapping Space’ from Section 6.3. Note that loops of free/block
calls without advance of the simulation are excluded, under the assumption
of an appropriate stochastic parameterization. In such, all communications
are instantaneous, except for calls of bind over the global channel pro, and
unbind over the operator’s identifier.
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� �
1 module ’OR3 ’
2 pub l i c pro with b ind /1 , or3 as me , prm
3 import
4 Timer from ’ t ime r ( t imerCro , t imerRep ) ’ // s e e F ig . 6.9
5 export OR3 with unbind /0 , specCro /0 , specRep /0 ,

blockedbyPrm /0 , freedByPrm/0
6 def ine

7 OR3 , OR3 free | Timer (me)

8 OR3 free ,
9 pro ? b ind ( c ) . c ! (me) .

10 me? specCro ( ) . OR3 cro
11 + me? specRep ( ) . OR3 rep
12 + me?blockedByPrm ( ) . OR3 blocked
13 + prm ! f reedByOr3 ( ) . OR3 free

14 OR3 rep ,
15 me? t imerRep ( ) .me? unbind ( ) . OR3 free
16 + prm ! blockedByOr3 ( ) . OR3 rep

17 OR3 cro ,
18 me? t imerCro ( ) .me? unbind ( ) . OR3 free
19 + prm ! blockedByOr3 ( ) . OR3 cro

20 OR3 blocked ,
21 me? freedByPrm ( ) . OR3 free� �

Figure 8.8: OR3 module

8.2.2 Abstraction of OR1

OR1 exhibits only a single feature not yet present at OR3, beyond mutual
exclusion with PR and specific protein binding. It quantitatively controls the
binding rate of the λ repressor protein at OR2, as symbolized by a green edge
in Figure 8.2. In order to reflect this, our model OR1 rep calls the function
raisedByOr1 on OR2, see line 20 in Figure 8.9. The reverse reaction occurs
once the repressor protein has left, see OR1 free’s call of resetByOr1 on OR2
in line 13. We discuss OR2’s responses to these function calls in the following
section.

8.2.3 Abstraction of OR2

OR2 is the most demanding λ switch component from the modeling point
of view, since it combines all control aspects as reported in Figure 8.3. We
summarize the state transition of OR2 in Figure 8.10 and list its specification
in Figure 8.11.
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� �
1 module ’OR1 ’
2 pub l i c pro with b ind /1 , pr , or2 , or1 as me
3 import
4 Timer from ’ t ime r ( t imerCro , t imerRep ) ’ // F ig . 6.9
5 export OR1 with unbind /0 , specCro /0 , specRep /0 ,
6 f r eedByPr /0 , b lockedByPr /0
7 def ine

8 OR1 , OR1 free | Timer (me)

9 OR1 free ,
10 pro ? b ind ( c ) . c ! (me) .
11 me? specCro ( ) . OR1 cro
12 + me? specRep ( ) . OR1 rep
13 + or2 ! re se tByOr1 ( ) . OR1 free
14 + me? blockedByPr ( ) . OR1 blocked

15 OR1 cro ,
16 me? t imerCro ( ) .me? unbind ( ) . pr ! f reedByOr1 ( ) . OR1 free
17 + pr ! blockedByOr1 ( ) . OR1 cro

18 OR1 rep ,
19 me? t imerRep ( ) .me? unbind ( ) . pr ! f reedByOr1 ( ) .

OR1 free
20 + or2 ! ra i s edByOr1 ( ) . OR1 rep
21 + pr ! blockedByOr1 ( ) . OR1 rep

22 OR1 blocked ,
23 me? f reedByPr ( ) . OR1 free� �

Figure 8.9: OR1 module

Figure 8.10: Transitions of OR2

Specific protein binding. Docking of regulatory proteins occurs in the
usual fashion in profile free, line 12. Note that all three protein-bound
profiles offer the unbind function. The timing of this latter relies on
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the complementary action of a tailored Timer, created from module
’timer(f1,. . . ,fn)’.

Cooperative repressor binding with OR1. Note that as a repressor
protein binds, OR2 initially switches to rep low, regardless of the possi-
ble presence of another repressor at the OR1 representative. Figure 8.10
summarizes what happens next. A transition to OR2 rep high ensues
instantaneously by OR1 rep, calling raisedByOr1 in its line 29. OR2’s
profile for cooperative binding rep high is left in line 29, because OR1
becomes free, or in line 27 upon local unbinding of repressor.

Positive control of initiation at PRM. OR2 exerts positive control of
transcription initiation by calling raisedByOr2 over PRM’s identifier
channel prm. It does so in profile rep low (line 24), as well as rep high
(lines 30).

Mutual exclusion of binding with PR. In all three protein bound pro-
files, OR2 inhibits PR by calling blockeByOr2 (lines 19, 23, and 31).

8.2.4 Abstraction of PR

The abstractions of two λ switch promoters PR and PRM resemble that of
the generic model in Figure 7.6, while adding their distinct features. The
specialty of PR is to depend on a more intricate mutual exclusion mechanism
than PRM. We need to cope with mutual exclusion with both operator regions
OR1 and OR2. Each of these is covered by our usual mechanism from Figure
8.13 on page 139, i.e. by dedicated functions for blocking and reversing the
block.

It is worthwhile pointing out that both representatives OR1 and OR2 send
PR blocked to PR free as themselves become free upon protein unbinding. In
this case however, the respectively other operator forces PR back to blocked
instantaneously if itself is still bound by some protein: OR1 ensures this
in lines 17 and 21, see Figure 8.9. For OR2 listed in Figure 8.11 see lines
19 (in profile cro), in profiles rep low and rep high lines 23 and 31. These
multiple dependencies are not evident from PR’s isolated transition diagram
in Figure 8.12.

8.2.5 Abstraction of PRM

Last but not least, we move to the abstraction of PRM. There is one signifi-
cant difference to consider, compared to PR: positive control of transcription
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� �
1 module ’OR2 ’
2 pub l i c pro with b ind /1 , or2 as me , prm , pr
3 import
4 Timer from ’ t ime r ( t imerRepHigh , timerRepLow , t ime rCro ) ’
5 // see F ig . 6.9
6 export
7 OR2 with unbind /0 , specCro /0 , specRep /0 ,
8 blockedByPr /0 , f r eedByPr /0 , ra i s edByOr1 /0 , re se tByOr1 /0
9 def ine

10 OR2 , OR2 free | Timer (me)

11 OR2 free ,
12 + pro ? b ind ( c ) . c ! (me) .
13 me? specCro ( ) . OR2 cro
14 + me? specRep ( ) . OR2 rep low
15 + prm ! rese tByOr2 ( ) . OR2 free
16 + me? blockedByPr ( ) . OR2 blocked

17 OR2 cro ,
18 me? t imerCro ( ) .me? unbind ( ) . pr ! f reedByOr2 ( ) . OR2 free
19 + pr ! blockedByOr2 ( ) . OR2 cro

20 OR2 rep low ,
21 me? timerRepLow ( ) .me? unbind ( ) . pr ! f reedByOr2 ( ) .

OR2 free
22 + me? ra i s edByOr1 ( ) . OR2 rep h igh
23 + pr ! blockedByOr2 ( ) . OR2 rep low
24 + prm ! ra i s edByOr2 ( ) . OR2 rep low

25 OR2 rep h igh ,
26 me? t imerRepHigh ( ) .
27 me? unbind ( ) .
28 pr ! f reedByOr2 ( ) . OR2 free
29 + me? rese tByOr1 ( ) . OR2 rep low
30 + prm ! ra i s edByOr2 ( ) . OR2 rep h igh
31 + pr ! blockedByOr2 ( ) . OR2 rep h igh

32 OR2 blocked , me? f reedByPr ( ) . OR2 free� �
Figure 8.11: OR2 module

initiation. Rnap switches between two alternative rates for its function ini-
tiate, reflecting the presence of a repressor protein at OR2.

Our model in Figure 8.14 deals with this quantitative control in the pre-
viously introduced manner. It maintains the interface, i.e. the functions
offered to the Rnap representative while varying the initiation rate. As pre-
viously the technical solution consists in introducing alternative profiles for
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Figure 8.12: Transitions of PR

the Rnap bound state, PRM low and PRM high. In both the externally ap-
parent rate of function initiate is internally determined by a Timer. Switching
between the two profiles is subject to concurrent control by OR2, via invo-
cations of the instantaneous functions raisedByOr2 (line 20) and resetByOr2
(line 25).

8.3 Simulation and discussion

We next validate our π-calculus model of the dynamics at the λ switch by
exhaustive stochastic simulation. These are performed by execution with the
BioSpi system (Priami et al., 2001).

Given its complexity, it does not make sense to directly simulationg the
complete system. We use a sequence of models of distinguished subsystems in
order to evaluate the different components independently. From the software
engineering perspective, this allows to to successively validate the compo-
nents. During our own work, the bottom-up approach to simulation was
central to the establishment of a faithful set of stochastic parameters. From
the biological standpoint, it is a current practice to isolate subsystems in
order to observe their aspects as independently as possibly. The π-calculus
programming approach is advantageous in that perspective, in that it allows
to freely design and compose subsystems of interest.

It is a particular concern of ours to perform simulations of subsystems
that can be clearly related to existing knowledge, either experimental or from
established other simulation studies. Our strategy is incremental and bot-
tom up. First we present simulations of repressor dimerization. We continue
with binding of the protein Rep to Dna, and the impact of dimerization on
binding patterns and cooperative interaction between Rep on Dna. Finally
we investigate interactions between Rnap, the promoter PRM, and Rep’s
positive control thereof. The control of transcription initiation from PRM is
highly relevant. It has been subject to a number of theoretical and experi-
mental studies as those of Baek et al. (2003), Bakk (2005) Li et al. (1997),
Shea and Ackers (1985). The key to repression of this promoter has recently
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� �
1 module ’PR’
2 pub l i c rnap with b ind /1 , pr as me ,
3 c r o g ene as next , or1 , or2
4 rate ρrbs pr ,ρrna from ’ Table 7.1 ’
5 import RBS from module ’mRNA’ // F ig7.8
6 export PR with blockedByOr1 /0 , f reedByOr1 /0 ,
7 blockedByOr2 /0 , f reedByOr2 /0 , unb ind /0 , i n i t i a t e /1 ,
8 f r e e /1 , s t a r t T r a n s c r i p t /1
9 def ine

10 PR , PR f ree

11 PR f ree ,
12 rnap ? b ind ( c ) . c ! (me) . PR c lo sed
13 + me? blockedByOr2 ( ) . PR blocked
14 + me? blockedByOr1 ( ) . PR blocked
15 + or1 ! f r eedByPr ( ) . PR f r ee
16 + or2 ! f r eedByPr ( ) . PR f r ee
17
18 PR blocked ,
19 me? freedByOr1 ( ) . PR f r ee
20 + me? freedByOr2 ( ) . PR f r ee
21
22 PR c losed ,
23 me? unbind ( ) . PR f r ee
24 + me? i n i t i a t e ( ) . PR open
25 + or1 ! b lockedByPr ( ) . PR c lo sed
26 + or2 ! b lockedByPr ( ) . PR c lo sed
27
28 PR open ,
29 new rbs pr : ρrbs pr .new rna : ρrna .
30 me? s t a r t T r a n s c r i p t ( c ) . c ! ( rna ) .
31 me? getNext (c2 ) . c2 ! ( nex t ) .
32 PR f ree | RBS(rbs pr , rna )� �

Figure 8.13: PR module

been revealed (Dodd et al., 2001). The model presented in this thesis may
be extended to cover it in the future.

8.3.1 Dynamics of dimer formation and breakage

The essential point about repressor dimerization is the concentration depen-
dent equilibrium (Ptashne, 2004). Figure 8.15 visualizes the dynamics of
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� �
1 module ’PRM’
2 pub l i c rnap with b ind /1 , prm as me ,
3 c I g e n e as next , or2 , or3
4 rate ρrbs prm ,ρrna from ’ Table 7.1 ’
5 import
6 RBS from module ’mRNA’ // F ig7.8
7 Timer from ’ t ime r ( lowTimer , h ighTimer ) ’ // F ig . 6.9
8 export PRM with getNext /0 , unb ind /0 , i n i t i a t e /0 ,
9 s t a r t T r a n s c r i p t /1 , f reedByOr3 /0 , blockedByOr3 /0 ,

10 r a i s edByOr2 /0 , re se tByOr2 /0
11 def ine

12 PRM , PRM vacant | Timer (me)

13 PRM free ,
14 me? blockedByOr3 ( ) . PRM blocked
15 + or3 ! freedByPrm ( ) . PRM free
16 + rnap ? b ind ( c ) . c ! (me) . PRM low

17 PRM low ,
18 me? lowTimer ( ) .me? i n i t i a t e ( ) . PRM open
19 + me? unbind ( ) . PRM free
20 + me? ra i s edByOr2 ( ) . PRM high
21 + or3 ! blockedByPrm ( ) . PRM low

22 PRM high ,
23 me? highTimer ( ) .me? i n i t i a t e ( ) . PRM open
24 + me? unbind ( ) . PRM free
25 + me? rese tByOr2 ( ) . PRM low
26 + or3 ! blockedByPrm ( ) . PRM high

27 PRM open ,
28 new rbs prm : ρrbs prm .new rna : ρrna .
29 me? s t a r t T r a n s c r i p t ( c ) . c ! ( rna ) .
30 me? getNext (c2 ) . c2 ! ( nex t ) .
31 PRM free | RBS(rbs prm , rna )

32 PRM blocked ,
33 me? freedByOr3 ( ) . PRM free� �

Figure 8.14: PRM module

dimerization, starting with different numbers of monomers, as declared in
Figure 8.17.

When launched with 20 monomers, such a system tends towards a mean
setting in which around around half the total repressors can be found as
monomers, while the others are present as dimers. Note that in this case,
one observes strong fluctuations (see Figure 8.15 left). Only a rough quarter
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Figure 8.15: Dynamics of formation and breakage of λ repressor dimers over
30 simulated seconds, starting from 20 monomers (left) or 200 (right)

Figure 8.16: Shift of concentra-
tion dependent equilibrium be-
tween monomers and dimers
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� �
1 pub l i c l am und imer i z e , l am d ime r i z e from ’ Table 8.7 ’
2 import
3 ’ lambda r e p r e s s o r ’ // s e e F i gu r e 8.6
4 Timer from ’ e l emen ta r y t imer ’ // s e e page 103
5 def ine
6 Πn

i=1 Rep monomer | Timer ( l am und ime r i z e )� �
Figure 8.17: Setup: simulating dimerization starting from n repressor
monomers

Figure 8.18: Binding to
isolated operator sites,
assuming 100 repressor
monomers.

∆G mean
sojourn

bound

OR1 −12.5 6.4 96 %
OR2 −10.5 0.25 46 %
OR3 −9.5 0.05 15 %

of initially 200 monomers are present as such in average, while around 75%
are dimer-bound - with less important fluctuations. The shift of the equi-
librium towards dimers becomes more obvious as we plot the average ratio
of repressors present as monomers to that of dimer-bound ones over a long
time range for various total repressor amounts, see Figure 8.16.

8.3.2 Repressor interactions with and on DNA

We now consider the binding of repressor dimers to operator sites on Dna.
The set up in Figure 8.20 permits to simulate site OR1 and n repressor dimers
that can reversibly attach to it, or dissociate back to monomers: By adjust-
ment of ρori(unbind) we can simulate binding to the isolated sites OR1, OR2

and OR3. Figure 8.18 summarizes the corresponding simulations, emphasiz-
ing the impact of different binding site site affinities. Recall from Section 3.2
that a smaller value of the Gibbs free energy ∆G indicates a stronger binding,
hence a higher saturation of the site.

We make two corresponding observations. The complex of repressor and
operator site is most stable at OR1, where we observe an average sojourn time
of Rep of 6.4 seconds (this value is the mean of an exponential distribution
not shown here). This is consistent with reports of Ptashne (2004) that
binding of repressor to OR1 persists in the order of up to 10 seconds. For
OR2 and OR3 less favorable ∆Gs lead to drastic drops of complex stability.

The effect is also visible when considering not individual binding events,
but average behavior. For a given concentration and a long time scale, OR1 is
better saturated with repressor than any of the other sites. The last column
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Figure 8.19: Occupancy of sites OR1, OR2 and OR3 in the presence of dimer-
ization and cooperative binding. Each point represents the relative occu-
pancy of a site over 5000 simulated seconds, for some total repressor number.
In a lysogen, one can expect 100-200 total repressors.

� �
1 pub l i c pro , o r i , l am d ime r i z e , l am und ime r i z e //i ∈ {1, 2, 3} ’
2 import
3 ’ lambda r e p r e s s o r ’ // s e e F i gu r e 8.6
4 OR from ’OR with s p e c i f i c i t y ’ // s e e F i gu r e 8.5
5 Timer from ’ e l emen ta r y t imer ’ // s e e page 103
6 rate ρori from ’ Table 8.7 ’
7 def ine
8 OR( or i ) | Πn

k=1 Rep dimer | Timer ( l am und ime r i z e )� �
Figure 8.20: Setup: simulating repressor binding to isolated operator ORi
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Figure 8.21: Occupancy of isolated operator region OR1 as a function of re-
pressor concentration and dimerization. Our results (left), benchmark from
Ptashne (2004) (right). Dashed lines: all repressors are found as dimers re-
gardless of concentration. Solid lines: dimerization of repressors is included,
hence the concentration-dependent equilibrium affects the binding curve.

in Table 8.18 reports the fraction of time the respective sites are bound
when 100 Rep are included and dimerization activated. With respect to
promoter control, these results show that PRM is not yet efficiently repressed
(via OR3 binding), based on the knowledge that our model integrates, neither
at lysogenic repressor concentrations, nor when exceeding this level tenfold
4.

Synopsis: repressor binding to the three operator sites

Figure 8.19 shows the saturation of sites OR1, OR2 and OR3 as they arise
in our simulations of the λ switch when both repressor dimerization and
cooperative repressor binding between OR1 and OR2 are enabled. Each of
the curves summarizes a series of experiments for varying Rep levels. Before
discussing the full system, we investigate the underlying components and
mechanisms one by one.

Dimerization sharpens response at OR1

Figure 8.21 (left) illustrates the saturation of OR1 as a function of repres-
sor level. Each of the two curves summarizes a series of experiments. For

4In this light, the relevance of the quantitative predictions of repression of the cI gene,
of Blossey, Cardelli, and Phillips (2006), encompassed by a representation of the sytem of
Guet et al. (2002) appear questionable.
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the solid line dimerization is enabled, i.e. only part of the total repressors
are present as dimers and thus able to bind the operator. The dashed line
assumes that dimers are stable at all concentrations, meaning that 100% of
total repressors are found as dimers regardless of the concentration5. The
horizontal axis indicates the number of total repressors on a logarithmic scale,
while the vertical axis gives the relative occupancy of OR1. Each data point
represents the relative occupancy of OR1 for an experiment simulating the
full dynamics of docking to DNA with or without dimerization over 5000
seconds.

Over this time scale, we can relate our results based on a stochastic dis-
crete event approach to other’s from deterministic continuous models, which
compute only averages: one sees both qualitative and quantitative agreement
with results6 reported in Ptashne (2004), reproduced in Figure 8.21 (right).
Dimerization has the effect to change the shape of the binding curve, namely
to give a sharper response in terms of site occupancy as the amount of re-
pressor increases.

Superimposing dimerization and cooperative binding at OR2

Figure 8.22 summarizes how the second operator site fills with Rep for three
scenarios. The dashed curve illustrates binding to OR2 in presence of OR1,
cooperative binding7 and dimerization. We contrast this with binding to the
isolated OR2 with and without dimerization. Note that the effect of dimer-
ization is far less pronounced at an isolated OR2 than it was OR1, where
dimerization lead to a sharp increase of sensitivity in the lower concentra-
tion range. This can be explained because the isolated weaker OR2 only fills
notably at higher Rep concentrations, when the equilibrium is heavily bi-
ased toward dimers. However, now the combined effect of cooperativity and
dimerization becomes prominent. Recall that binding at OR2 is cooperatively
strengthened as OR1 is placed next to it. As can be seen from the dashed
curve in Figure 8.22 the predominant cause of OR2’s saturation at lysogenic
repressor concentration levels is cooperative binding with OR1. This cooper-
ativity propagates OR1’s stronger sensitivity to OR2.

5We eliminate communication over the undimerization channel in the module ’lambda
repressor’, by commenting out the corresponding line in Figure 8.20.

6Simulations by Keith Shearwin.
7Technically, we eliminate cooperative binding by commenting out the corresponding

lines in the definition of either module ’OR2’, or ’OR1’.
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Figure 8.22: Occupancy of site OR2, as a function of repressor level,
dimerization and cooperativity. We consider isolated OR2 for the curves
’with’/’without’ dimerization, and a system comprising both OR1 and OR2

for the curve ’OR2, coop and dimerization’. Because at very low concentra-
tions, binding occurs mainly at OR1, the cooperative advantage only becomes
visible at a certain level.
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Negative auto-regulation of Rep at OR3

Our results on Rep binding to the third operator OR3 are included in Fig-
ure 8.19. The binding curve is again based on the observation of the isolated
operator, under variation of repressor level while disregarding interfering traf-
fic between Rnap and PRM. The most striking effect when comparing the
binding curve with the other operators’ is that the site fills to a significantly
lower degree. It reaches around 30% when 200 repressors are included in the
simulation. Even with an amount of 1000 repressors the isolated OR3 remains
unsaturated. As we will report later the saturation further decreases to 4%
as Rnap docking to PRM interferes.

These results agree with recent experimental findings. Dodd et al. (2001)
have demonstrated that an additional layer of cooperativity is needed for ef-
fective repression of PRM at lysogenic repressor concentrations. Révet et al.
(1999) first observed a long-range DNA loop between the right operator and
another distal region in λ’s genome. As was subsequently understood, this
loop is stabilized by an assembly of eight repressor proteins, in which the
two repressor dimers cooperatively bound to OR1 and OR2 participate. They
cooperatively interact with another repressor tetramer bound to λ’s left oper-
ator region OL - while looping the DNA between the two regions. The large
assembly further stabilizes all participants. More importantly, it juxtaposes
OR3 with a third site at the left operator, OL3. This allows for cooperative
binding of repressor at OR3 and OL3.

This additional level of cooperativity is a recent finding and not, as yet,
fully characterized. However its importance is clearly described by Vilar and
Saiz (2005). It allows to repress PRM and maintain a low level of Rep, that is
not yet ensured by binding to OR3 alone. Thus in a bacterium hosting phage
λ, the lysogenic repressor concentration never surpasses a range allowing to
return to the level in which OR1 and OR2 can be vacated. This is the key to
induction back from lysogeny to the state of lytic growth (Dodd et al., 2004).

8.3.3 Monitoring the activity of PRM

We further widen the scope of the model, by adding PRM and Rnap to the
three operator sites and repressors simulated so far (see Figure 8.23). We
study this system over 20 minutes simulated time, comparable with the life
span of an individual bacterium. This allows to observe the occupancy pat-
terns of both PRM and the operators, as well as the initiation of transcription
for the cI gene. We first consider the impact of varying repressor levels in
a model including the essential cooperative features - dimerization, cooper-
ative repressor binding and positive control of transcription initiation. Next
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� �
1 module ’PRM a c t i v i t y with n r e p r e s s o r s ’
2 pub l i c rnap , pro , or1 , or2 , or3 , pr , prm , c I g ene ,
3 l am d ime r i z e , l am und ime r i z e from ’ Table 8.7 ’
4 import ’ lambda r e p r e s s o r ’ , ’PRM’ ,
5 ’OR1 ’ , ’OR2 ’ , ’OR3 ’ , ’RNAP’ , ’ Timer ’
6 def ine
7 OR1 | OR2 | OR3 | PRM | Timer ( l am und ime r i z e ) |
8 Πn

i=1 | Rep monomer | Π30
i=1 RNAP� �

Figure 8.23: Setup: simulating the activity of PRM in the presence of n
repressor monomers

we perturb our model and study the consequences.
Table 8.1 summarizes a series of simulations. For each set-up we indicate

the number of repressors included, and whether cooperative binding and
positive control are enabled. Each line of the table summarizes one simulation
run, for which we report the following quantities:

• absolute number of transcription initiations from PRM observed. This
should be related to the theoretical upper bound of 103, estimated form
PRM’s maximal rate of 0.086 initiations per second and the simulated
time of 1200 seconds.

• absolute time that Rnap is bound to PRM (in sec),

• absolute time PRM is repressed as a consequence of Rep binding to OR3

(in sec),

• vacancy of PRM (in sec),

• occupancy of OR2 by repressor (in sec).

To begin with, we mimic the system’s behavior under lysogenic repressor
concentrations with 100 repressors. The first block in Table 8.1 summarizes
five executions of our model. For all runs PRM is bound by Rnap in approx-
imately 70 % of the time, PRM is inhibited via competing Rep binding to
OR3 for 4 % of the time, and otherwise vacant. The second operator site OR2

is bound by Rep around 92 % of the time for all five runs. The numbers of
transcription initiations range between 58 and 76. Note that the variability
of this figure is significantly higher than that of any other considered.

The actual number of transcript initiations from PRM in a single lyso-
genic bacterium is difficult to determine experimentally. For long a precise
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coop pos
ctrl

Rep transcription
initiations
from PRM

Rnap
at PRM

(sec)

PRM

repressed
(sec)

PRM

vacant
(sec)

Rep
at OR2

(sec)
58 873 46 280 1111
76 870 46 279 1120

100 71 873 46 279 1120
58 889 44 266 1110
74 903 43 253 1111
67 901 19 281 990

on on 50 69 921 14 265 985
70 899 18 283 972
46 917 5 278 728

25 52 929 5 266 730
51 922 5 273 727
19 927 < 1 272 305

10 26 932 < 1 267 323
28 922 < 1 277 300

38 886 41 273 570
off on 100 35 867 45 285 587

31 890 43 267 575

5 899 41 260 1108
on off 100 6 915 39 246 1118

4 898 44 258 1101

Table 8.1: Simulation runs over 1200 seconds: PRM activity (absolute num-
ber of transcription initiations). Values are in units of simulated seconds for
the following columns: PRM repression, PRM vacancy, and occupancy of OR2

by Rep. First block: results for varied repressor levels when both cooperative
repressor binding and positive control are enabled. Second and third block:
simulation results under elimination of either of the two mechanisms, for a
level of 100 repressors.
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level was deemed necessary for the maintenance of lysogeny (Johnson et al.,
1981). This was rectified by recent experiments of Baek, Svenningsen, Eisen,
Sneppen, and Brown (2003) showing that repressor levels varies widely from
cell to cell. This phenomenon is known as transcriptional noise. Our result
are in agreement with an estimated average number of transcripts per cell
cycle of 70.

Reactions to partial and near-total Rep depletion:

Our next step is to preserve the system’s essential characteristics - dimeriza-
tion, positive control and cooperative binding - but to thin out the repressor
pool. In the remainder of Table 8.1’s first block we report the outcomes of
each three simulations with 50, 25 and 10 total repressors.

The primary effect is that saturation of OR2 drops nonlinearly. This has
important secondary effects on transcription initiation from PRM. A first
reduction to 50 repressors de-represses PRM and seems to favor initiation, at
least in these runs. As a reaction to further depletion transcription visibly
reduces, while the actual PRM saturation by Rnap increases: in the presence
of 10 repressors, initiations drop to around a third of those seen with 50
repressors. This should be related to the increasing vacancy of OR2. It gives
a first impression of how the system of positive auto-regulation breaks down.

Examining this question in detail seems promising for two reasons. First,
the λ switch is known to be extremely robust. It needs to cope with tran-
sient fluctuations of Rep level. Nevertheless, induction relies on the system’s
ability to escape from the lysogenic state when repressor falls below a critical
threshold. Recall that as both OR1 and OR2 are vacated, PRM’s antagonist
PR becomes likely to take over. A detailed investigation remains beyond the
scope of this thesis.

The impact of cooperative repressor binding

on PRM activity is another point of interest. After we have observed its
immediate impact at OR2, we move on to a larger perspective. We perturb
our π-calculus model by lowering the cooperative dissociation rate of Rep
at OR2 to the basal one. This lowers OR2’s saturation to half the previous
amount, see Table 8.1 (second block, last column). And it has consequences
for Rnap at PRM. The binding itself is not lowered - our simulations even
indicate a slightly higher promoter saturation. Nevertheless, the number of
transcription initiations drops to half that of the wild type.
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Impact of positive control

We last eliminated the positive control of transcription initiation in our
model. This is reached by setting the parameter for promoted transcrip-
tion the basal one, i.e. ρprm(highTimer) = ρprm(lowTimer) = 0.005 . Our
resulting in silico experiments are summarized in the last block in Table 8.1.
The number of initiations in presence of 100 total repressors dramatically de-
creases from an average of 67 in the initial system to an average of 5. All the
while, immediate Rnap bindings as well as all other features are not affected,
when compared to the original setting. This underlines the importance of
positive control.

This simulation scenario was motivated by wet lab experiments with mod-
ified λ repressors. These mutants bind cooperatively but fail to stimulate
transcription. As Hawley and McClure (1983) reported the λ switch was no
longer functional. Our simulation outcomes seem in rough agreement with
this, even though we can not directly compare the results. Michalowski and
Little (2005) suggested that positive auto-regulation may be a dispensable
feature altogether. They experimentally observed that the λ switch remains
functional if positive control is eliminated, but at the same time PRM’s in-
trinsic initiation rate kf increased.







CHAPTER 9

Conclusion

We followed the approach of Regev (2002) in using the stochastic π-calculus
as a modeling language yielding simulation in systems biology. Our driv-
ing question was how well the stochastic π-calculus lends itself to modeling
gene expression and regulation. It motivated us to investigate bacterial gene
expressions through two larger case studies.

Our experience soon showed that the pure stochastic π-calculus lacks
many useful programming language concepts. As a bottleneck we identified
difficulties to create object-oriented abstractions. This motivated us to aug-
ment the stochastic π-calculus with input patterns, that render appropriate
object-oriented abstractions available. The main difficulty was to define the
stochastic semantics. We proposed a module system atop the stochastic π-
calculus with input patterns, that provides a syntax for specifying objects in
the π-calculus while using inheritance.

Based on these contributions, we performed two modeling case studies:
transcription initiation at the λ switch, and bacterial transcription and trans-
lation. Both confirmed the appropriateness and conciseness of our new mod-
eling language. We proved that this language can be compiled into the
original stochastic π-calculus. This in turn enabled us to implement and
test our models within the BioSpi system. Based on this we have conducted
exhausting simulations with excellent results.

In future work, it remains to design a new simulation system directly
implementing the new modeling language. Open questions are on remain on
how to integrate higher-order definitions and dynamic notions of inheritance.

On the modeling side, the largest remaining challenge is to tackle simu-
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lation questions of interest for experimentalists, beyond bacteriology. Phe-
nomena as Dna looping at the λ switch are of particular interest, due to
their fundamental relevance to eukaryotic gene regulation.
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Banâtre, J.-P., P. Fradet, and Y. Radenac (2005, June). Principles of chemi-
cal programming. In S. Abdennadher and C. Ringeissen (Eds.), 5th Inter-
national Workshop on Rule-Based Programming, Volume 124 of Electron-
ical notes in theoretical computer science, pp. 133–147. Elsevier.
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