

Modèles structuraux et fonctionnels du site actif des hydrogénases [NiFe]: de nouveaux catalyseurs bio-inspirés pour la production d'hydrogène

Yohan Oudart

Directeur de thèse: Pr. Marc Fontecave Responsable de thèse: Dr. Vincent Artero

Laboratoire de Chimie et Biochimie des Centres Redox Biologiques CEA Grenoble

28 septembre 2006

ntroduction

Le pétrole comme source énergétique

- 36 % de la consommation mondiale d'énergie
- Quasi monopole dans les transports
- Mauvaise répartition des ressources: tensions géopolitiques
- Hydrocarbures responsables de 75 % des émissions de CO₂
- Effet de serre: + 0,5° C en 50 ans
- Réserves limitées

→Recherche d'une altenative: gaz naturel, biocarburants, hydrogène

L'économie de l'hydrogène comme vecteur énergétique

Les piles à combustibles

• Principe:

 $H_2 + 1/2 O_2 \longrightarrow H_2O$

 ΔrG° = + 285 kJ/mol

• Fonctionnement:

Polymer Electrolyte Membrane Fuel Cell (PEMFC)

• Problèmes de la production, du transport et du stockage de H₂

La production d'hydrogène par électrolyse

• Principe:

$$H_2O \longrightarrow H_2 + 1/2O_2 \qquad \Delta rG^\circ = -285 \text{ kJ/mol}$$

A la cathode, en milieu acide:

$$2H^+ + 2e^- \rightarrow H_2$$

Platine:

Réaction réversible à E_{her} = -420mV/ENH (H₂O, 30°C, pH=7, 1 bar H₂)

 Problème: coût du platine ou dépense énergétique importante: Au moins 3 x plus cher que le vaporéformage

Introduction La production d'hydrogène par électrolyse $2H^+ + 2e^- \longrightarrow H_2$ her pour hydrogen evolution reaction

• Réaction d'her très connue en catalyse hétérogène

Réaction moins courante en catalyse homogène

-Paramètres importants pour l'activité inconnus

Solution : les hydrogénases ?

ntroduction I.C. Les hydrogénases

• Catalyse d'une réaction simple mais difficile:

2H⁺ +2e⁻ 🔫 H₂

E= -400mV/ENH (30°C, pH=7, 0,1 bar H₂)

Jones et al., Chem. Commun. 2002

Des sites actifs originaux:

Site actif supposé des hydrogénases à fer, forme oxydée

Site actif des hydrogénases [NiFe], forme réduite

Deux grandes classes d'hydrogénases:¹

ntroduction .C. Les hydrogénases

Les hydrogénases [NiFe]

 Cystéines du nickel: environnement tétraédrique distordu

Pas de modèles fonctionnels au début de ces travaux

Conception de catalyseurs en 3 étapes :

Synthèse de nouveaux complexes bio-inspirés

2. Caractérisations

3. Activité catalytique: la réduction des protons

Synthèse de nouveaux complexes
 Approche bio-inspirée

Motif inspiré du site actif

Inspiré de la chimie des hydrures/catalyse d'hydrogénation

 $Motif \{Ni(\mu-SR)_2M\}$

Synthèse de nouveaux complexes
 Approche bio-inspirée

- Complexes de ruthénium (II) utilisés en catalyse d'hydrogénation

- Ligands soufrés du ruthénium:

Synthèse de nouveaux complexes
 Approche bio-inspirée

 Synthèse et caractérisation de complexes inspirés du site actif des hydrogénases

• Rôle de la binucléarité: motif $\{M(\mu-SR)_2M\}$

• Rôle d'un site basique adjacent

Structure supposée du site actif des hydrogénases à fer

Synthèse de nouveaux complexes Synthèses

Dérivés du [Ni(xbsms)]:

Oudart et al., Inorg. Chem., 2006

Synthèse de nouveaux complexes Synthèses

Cys Cys-S Cys-S Cys-S Cys Site actif des H_2 ases [NiFe]

Rigidité en solution

15

Synthèse de nouveaux complexes Synthèses

Rigidité en solution

16

Synthèse de nouveaux complexes Synthèses

Longueur d'onde en cm⁻¹

2. Caractérisations 2.a. Caractérisations RMN et IR

Richesse en électrons des centres métalliques

Sonde Infrarouge

Sonde RMN ¹H

2. Caractérisations

2.b. Caractérisation électrochimique

• {Ru(CO)₂Cl₂} plus riche en électrons que {RuCl(*p*-cyméne)}⁺

3. La catalyse de réduction des protons 3.a. Généralités

3.La réduction des protons **3.**a.Généralités

22

3. La réduction des protons 3. La voltampérométrie cyclique

Effet de la binucléarité

3. La réduction des protons 3. La voltampérométrie cyclique

Effet d'un site de protonation

Diminution de la surtension d'activation

3.La réduction des protons **3.**C. L'électrolyse

- Étude de la stabilité sur plusieurs heures
- Rendement faradique
- Détection de dihydrogène

26

3.La réduction des protons **3.**C. L'électrolyse

3.La réduction des protons **3.**C. L'électrolyse

•{Ru(p-cymène)Cl}⁺ important pour la cinétique

3.La réduction des protons **3.C.**L'électrolyse

• Pas de corrélation entre E_{her} et vitesse catalytique

- Mécanisme ECCE

- Mécanisme CECE avec induction EC

Richesse en électron et E_{her}

 Richesse en électrons croissantes et surtension décroissante

Richesse en électron et E_{her}

 Richesse en électrons croissantes et surtension décroissante

La protonation comme étape limitante

- E_{her} indépendant de la charge du complexe
- Simulation des voltampérogrammes de [Ni(xbsms)Ru(CO)₂Cl₂]
- Linéarité entre TOF max et nombres d'équivalents d'acide c

• Site basique proche du métal pouvant améliorer l'activité

3. La réduction des protons3. Discussion

Comparaison avec d'autres composés:

Conclusion:

- Approche originale:
 - Quatre nouveaux complexes nickel-ruthénium
 - Quatre nouveaux complexes mononucléaires de ruthénium
- Premiers modèles fonctionnels catalytiques des hydrogénases [NiFe]

- Mise en évidence de paramètres importants pour l'her :
 - \rightarrow Importance de la proximité de deux métaux: effet synergique
 - \rightarrow Importance de la proximité d'un site basique
 - → Importance de la richesse électronique pour la diminution de la surtension
 - → Importance du motif {Ru(p-cymène)Cl}⁺ pour la cinétique
- Mécanismes: la protonation comme étape limitante

Perspectives

 \rightarrow Diversifier les ligands du ruthénium:

 \rightarrow Faciliter la protonation:

Jacques Pécaut, Colette Lebrun

Dominique Marion

La montagne, Estelle et les amis

Marc Fontecave Vincent Artero

Tout le CB

