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Chapitre 1

Introduction

Nous proposons dans cette these ’étude mathématique détaillée de la transmission d’ondes
électromagnétiques propagées dans des milieux dispersifs a réponse non linéaire.

1.0.1 Contexte

Ce travail s’inscrit a la fois dans le cadre de 'optique géométrique et celui de I'optique
ondulatoire.

L’optique géométrique datant de I’ Antiquité puis établie au XVII®™® siecle par Fermat,
Snell et Descartes, propose une analyse mathématique de la lumiere. Elle est fondée sur
quelques principes simples : propagation rectiligne, réflexion, réfraction. Les lois de Snell
Descarte permettent de décrire les phénomenes de dispersion tels que I’arc-en-ciel.

L’optique ondulatoire date du XIX®™¢ siecle avec Fresnel, Maxwell. Elle postule le carac-
tere vibratoire de la lumiere et permet d’expliquer les phénomenes de polarisation, d’interfé-
rence et de diffraction.

Ces deux optiques se concilient a travers la représentation des rayons sous la forme phase-
amplitude que 'on doit a [31]

(1.0.1) W (t,z) = e%af (t, z)e Pt/

ou ¢ correspond a la longueur d’onde de 'onde, « est un parametre qui caractérise la taille
de Pamplitude et a® est 'amplitude adimensionnée que ’on cherche sous la forme d’un déve-
loppement Wentzel-Kramers-Brillouin (WKB)

(1.0.2) a(t,x) = anan(t,x).

n>0
Cette représentation ondulatoire rend compte aussi de ’aspect corpusculaire de la lumiére si
I'on suppose a® a décroissance rapide (typiquement gaussien).

En cherchant une solution de cette forme de faible amplitude pour les équations de Max-
well on obtient tout d’abord une équation pour la phase (¢, z) : ’équation éikonale, de type
Hamilton-Jacobi, qui donne le trajet du rayon lumineux. Celui-ci est rectiligne pour les ondes
planes. Une telle phase est dite caractéristique pour le probleme linéaire. L’équation éikonale
cesse d’étre résoluble lorsque les caracteristiques se croisent. On dit alors qu’il y a focalisation.

Ensuite on obtient une cascade d’équations de type transport, pour les amplitudes a,,, le
long des rayons dont le trajet est dicté par la phase.

L’analyse asymptotique cesse lorsque les rayons focalisent.



Cette description a donné lieu & un grand nombre de résultats pour des équations hyper-
boliques faiblement non linéaires dans I’espace entier. Entre autres, dans le cas d’une seule
phase, [22] justifie le développement (1.0.2) pour des systémes semi-linéaires et [18] traite
le cas quasi-linéaire. La justification du développement dans un cadre dispersif est réalisée
dans [13, 15] et [13, 14] justifient dans ce cadre le développement de I'optique diffractive avec
I’adjonction d’une nouvelle échelle “lente”, x = ex, dans 'amplitude.

Dans le cas de plusieurs phases [21, 23] introduisent les notions de cohérence et de petit
diviseur qui sont requises pour justifier la convergence d’'un développement multiphasique
indépendemment de €. Sans cette condition [24] montre qu’on peut focaliser en temps e.

La liste des travaux est impressionante et nous nous bornerons a renvoyer le lecteur a
[41] pour une bonne introduction sur le sujet et [16] qui présente une vue d’ensemble tres
complete et synthétique.

L’utilisation du développement phase-amplitude de [31] dans le cas de problémes mixtes
(probléeme de Cauchy dans un domaine borné ou semi-borné) hyperboliques est plus délicate.
En effet, la théorie linéaire sur les problemes mixtes hyperboliques montre (cf.[30, 42]) qu’il
faut adjoindre certaines conditions dites de Lopatinski ou maximales dissipatives sur les
équations supplémentaires au bord pour prétendre & un probléme bien posé (existence et
stabilité). Les conditions de Lopatinski permettent une résolution explicite des ondes réfléchies
et/ou transmises qualifiées d’entrantes.

L’analyse du probleme de transmission de 'optique géométrique non dispersive est faite
dans [37] dans le cadre Lopatinski avec néanmoins I’hypothése restrictive que les ondes en-
trantes sont purement oscillantes. [45] leve cette hypothese et montre Papparition de couches
limites formées de modes évanescents. Dans [47] (§3.F") 'auteur donne une classification com-
plete des ondes engendrées par le bord et traite le cas spécifique d’onde rasantes (glancing)
pour lesquelles ansatz sur Pamplitude requiert une échelle en /cz.

Le cadre dispersif est justifié par [13] dans le cas des équations de Maxwell quasilinéaires
mais restreint a des faisceaux dit paraxiaux pour lesquels les conditions de transmission
au bord peuvent étre approchées par une condition d’onde entrante qui ne sélectionne que
les modes oscillants parmi les modes entrants. La justification repose ici sur la maximale
dissipativité de la condition d’onde entrante et fait appel au résultat de [19] sur l'existence
de solutions pour des problemes hyperboliques mixtes caractéristiques.

Le travail que nous proposons consiste a reprendre ’analyse de P.Donnat sans ’hypothese
d’onde entrante sur le probleme de transmission a coeflicients constants et a bord droit. Plus
généralement il étend les travaux de M.Williams au cadre dispersif. Se faisant il met a jour
le phénomene de génération infini de phases non liées, conséquence de l'interaction au bord
d’ondes dispersives. De nouveaux effets secondaires de génération d’onde sont également
recontrés (cf. chap.1).

1.0.2 Le modele de transmission issu de la physique

La modélisation d’un tel probleme commence dans [13] avec les équations de Maxwell
écrites dans R? pour des milieux diélectriques libres de charges et de courants. En notant



Oy := 0/0t et rotE = (04, Oy, Ony) A E les équations s’écrivent

OB +rotE =0,
(1.0.3) L0, FE —rotB = —pgd, P
div(egE 4+ P) =0, divB =0.

ou E,B € R? sont les champs électrique et magnétique, P € R3 la polarisation qui décrit
I'interaction champ-matiere et ¢, ug les perméabilités linéaires diélectrique et magnétique. Il
existe plusieurs modeles de couplage ; I'un d’eux, le modele de I'oscillateur harmonique non
linéaire (cf.[13]), s’écrit

1
(1.0.4) O} P + 0P+ wlP —d|P|P = v,E.
a

Le probléme de transmission nécessite des conditions de transmission & l'interface (également
libre de charges et de courants)

(1.0.5) [E]An=0, [B]An=0,
[eoE+P]-n=0, [B]'n=0

[E] est le saut du champ électrique & travers l'interface de normale n.

Enfin, pour une transmission effective on se donne une onde incidente. Celle-ci est propagée
par les équations de Maxwell (1.0.3) qui sont des équations d’évolution en temps et néces-
sitent seulement une donnée initiale. Dans le cadre d’ondes électromagnétiques les solutions
recherchées sont fortement oscillantes et on peut prendre une donnée initiale (£),_, B,_,) de
la forme

(1.0.7) E(t=0,z) =e(x)e®,  B(t=0,z)=b(z)e*?,

ou le parametre k est trés grand de sorte que |0ye| << |kle. D’ores et déja on suppose
que cette donnée initiale vérifie les équations de divergence de sorte que la solution satisfait
également ces équations (qui sont transportées par les deux premieres équations d’évolution)
que 'on peut “oublier”.

Comme chacune des équations précédentes fait intervenir des parametres physiques dont
les tailles varient de plusieurs ordres, un adimentionnement préalable est nécéssaire. Nous
renvoyons le lecteur a [13] qui a mis en évidence un petit parametre € dont la définition et la
taille dépendent de la forme (étalement spatio-temporel) de la source (cf.[13] ol est fait une
classification géométrique des sources : de type boulet, cigare ou galette de lumiere). Pour
les boulets ¢ = Treflwref ou T;..z est la largeur temporelle de 'amplitude et w,.r la pulsation
de 'onde). De maniere approchée, 1/ donne le nombre d’oscillations de la phase contenues
dans le support de ’enveloppe.

La description la plus compléte est réalisée pour le boulet de lumiere pour lequel la source
prend la forme

(1.0.8) E(t =0,z) = e%e(x)e™/°.

Pour le probleme de Cauchy on peut citer [4] qui fait une analyse des constantes présentes
dans les estimations de convergence asymptotique vis-a-vis de la forme de la source.



[13] montre que le systéme complet (1.0.3) (sans les équations de divergence),(1.0.4) forme
un systeme hyperbolique. 11 s’écrit sous la forme adimensionnée

L#(e0y,e0,) = 6L1(8t, 0z) + L0+ 212,
ou pour u = (E, B, P,Q = €0, P)

0yB + rotE 0 0
oFE —rotB Q 0
1 _ | o 0, _ 2, _
L™ (0, 0y)u = D,P , Lu= 0 , L*u= 0
DQ AP - 1q

L’opérateur constant e2L? n’ayant d’action qu’a l'ordre supérieur, sa présence est assimilée
celle d’un terme source dans le cas de I'optique géométrique et I'analyse linéaire est celle de
I'opérateur

L(s@t, Eax) = aLl((‘)t, 895) + LO.

Dans le cas de I'optique diffractive L? s’ajoute a I'opérateur L(edy,e0y) (sur 1’échelle lente)
et n’apporte qu'une dérive dans la propagation. Nous 'omettrons par la suite.
Le terme non linéaire est

d|P|*P
Enfin en notant I' € R? un bord régulier de dimension 2, les équations de transmission
s’écrivent
(1.0.9) T(x)u(x) = diag([E] A n(x), [B] An(z),0,0) =0, z €T.

Soit g,y une partition de R3 de frontiere connexe I' réguliere, le probleme de transmission
pour le systeme de Maxwell s’écrit finalement

Ly(e0;,€05)u = ¢pg(u), dans [0,T] x Qg
Lq(e0y,€0,)u = ¢a(u), dans [0,T] x Qg
T(z)u=0, surl
u(t = 0,2) = e®u(x)e¥@)/e,

(1.0.10)

Sous certaines hypotheses, ’étude (existence, et régularité de solutions fortes) de ce systeme
rentre dans le cadre hyperbolique linéaire de J.Rauch et quasi-linéaire d’O.Gues. Ces cadres
généraux dépassent le cadre des équations de Maxwell avec par exemple les équations d’Euler
chez [12] et s’étendent aux équations de la magnéto-hydrodynamique chez [39].

Cependant il faut noter que le cadre des équations de Maxwell se distingue tres nettement
sur deux points qui sont liés. Tout d’abord comme les solutions sont & divergence nulle on
doit vérifier cette propriété a l'instant initial : si u(t = 0) = (e, b, p,q)

(1.0.11) div(e + p) + éV(p.(e—Fp) =0
(1.0.12) div(b) + éVgD.b ~0.

Ensuite cette méme condition de divergence nulle permet d’obtenir une régularité globale
alors que celle du systeme (1.0.10) n’admet qu’une régularité inhomogene (cf. [19]).
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Le but que nous poursuivons a présent est I’étude de solutions de type (1.0.1) ot ampli-
tude se développe ou non sous la forme (1.0.2).

Dans les paragraphes suivants nous présentons le cadre précis et les hypotheses fonda-
mentales que nous faisons pour I’étude de (1.0.10) et nous formulons un premier Ansatz pour
les solutions de type optique géométrique commun aux deux premiers chapitres.

1.0.3 Solutions pour le probléeme mixte hyperbolique (1.0.10)

Les hypothéses fondamentales

Nous présentons en premier lieu les hypotheses générales faites tout au long de ce travail
concernant (1.0.10). Ces hypotheses sont celles de [13] et un cas particulier de [18]. Comme

elles s’énoncent dans le cas de dimension quelconque nous notons z = (g, ...,zq) € R
la variable spatio-temporelle olt ¢ est la variable temporelle et 2/ = (z1,...,24) la variable
d’espace. Nous notons également =’ = (zg,...,24_1).

Equations a coefficients constant et bord droit.

L'opérateur L'(0,) = Oy, + Z;l:l A;0;, a ses coefficients matriciels A; indépendants de
t,z. L’opérateur L° est constant.

Le bord I' est supposé droit. On le choisit comme étant le plan x4 = 0.

EDP symétriques hyperboliques semi-linéaires.
Les matrices A; sont symétriques et L0 est anti-symétrique.

Systéme caractéristique maximal dissipatif.

L’opérateur L est caractéristique : Ay n’est pas inversible (ker A; de codimension égale a
4 pour Maxwell).

L’étude du probléme mixte nécessite alors des conditions sur les équations de bord (cf.[42]).
D’abord I'obtention d’estimations L? requiert de la dissipativité : Adjorr = 0, z € T En-
suite 'existence de solutions pour le probleme de transmission nécessite des conditions de
maximalité : rgl = dimEL ol E:Xd est I’espace propre maximal ou Ay > 0.

Sous ces hypotheses on peut appliquer le théoréme d’existence de [19] qui donne lexistence
d’une unique solution sur un intervalle de temps [0, t°] ou ¢t* dépend de e.

Notons que les résultats de [19] permettent d’élargir I'étude de (1.0.10) & des probleémes
quasi-linéaires, par exemple le modele de I'oscillateur harmonique pour lequel la polarisation
s'écrit P = P, + Py1, Pyp = |E?E (cf.[13]).

On peut également noter que le cadre énoncé concerne les équations d’Euler (cf. [12] ou
les conditions de Rankine-Hugoniot sont assimilées a des équations de transmission).

Temps d’existence

On souhaite étudier la dépendance de t° en fonction de £ et notamment trouver des
conditions pour que t¢ > 1.

[15, 14] montrent que deux parametres interviennent : la taille de amplitude p et 'ordre
d’annulation J de la nonlinéarité : ¢(u) = O(|Ju|’). Le temps d’existence est alors en t° ~
gl-p(J—-1)

Dans le cas de (1.0.10) avec une nonlinéarité cubique J = 3 et le régime d’optique géo-
métrique t© ~ 1 est réalisé avec p = 1/2. Le cas de l'optique diffractive t¢ ~ 1/e requiert

p=1.
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L’étude de sources d’amplitude plus forte nécessite des hypotheses structurelles supplé-
mentaires telles que la transparence (cf. [28]) ou le cas de champ linéairement dégénérés (cf.
[10]) que nous n’aborderons pas dans ce travail.

1.0.4 Transmission de phases; Ansatz

On se place dans le cadre de [13] ol les impulsions possédent un grand nombre d’oscilla-
tions ~ 1/e ce qui permet de considérer des solutions & deux échelles (1.0.1). Tout d’abord
méme si la donnée initiale ne contient qu’une seule phase, la nonlinéarité va engendrer des
harmoniques et ce, en nombre infini. Une premiere approche consiste alors a chercher des
solutions monophasées du type

(1.0.13) u(@) ~ Y Uz, p(x) /)
j>0
(1.0.14) U(x,0) = > Uj(x)e™.
keZ

Cependant des mécanismes de génération d’ondes caractéristiques décrits ci-dessous révelent
I'insuffisance de cet Ansatz (1.0.14). Nous rappelons d’abord quelques définitions.

Variété caractéristique, régularité et harmoniques

Lorsqu’on utilise la forme (1.0.13),(1.0.14) de U dans (1.0.10) on obtient la cascade d’équa-
tions

(1.0.15) L(0x)U° =0
(1.0.16) LY0:)U7 + LOOx) U = F7, j >0

dans le cadre de 'optique faiblement non linéaire. Pour chaque mode de Fourier on obtient
'équation sur Pamplitude L(kV; p(z))UP = 0. Le fondamental : U} est non nul si et seule-
ment si la phase vérifie 'équation etkonale

det(L(Vep) = 0.

On dit alors que @ est caractéristique. Comme le polynome est a coefficients constants il
existe des solutions phase plane ¢ = i£.x. On appelle variété caractéristique de I'opérateur L
notée

charL := {€ = (&, ") € R¥! | det(L(i€)) = 0}.

Comme le systeme (1.0.10) est hyperbolique, le polynéme caractéristique p(€) := det(L(i&))
est scindé sur R, .

On dit que £ € charL est régulier s’il existe un voisinage de (£, ") dans lequel charL est
décrit par une unique équation &y + A(£”) = 0 avec A C*.

Milieux dispersifs : finitude des harmoniques caractéristiques

La présence de la matrice constante L° est responsable du caracteére dispersif de 'opérateur

L(Dy).
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Sans ce terme charL est une réunion de cones vectoriels C et de plans affines P. Ainsi, si
& € C C charL alors toutes ses harmoniques sont caractéristiques : k€ € charL, k € Z.

Lorsque L® # 0, charL contient en plus des nappes courbes qui ne sont ni des cones ni
des plans. Ces nappes sont paramétrées par &y = A(£”) ou A est une fonction non linéaire. Si
&, point régulier de charL, se trouve sur une telle nappe courbe, il existe au plus un nombre
fini d’harmoniques kp, k € Z caractéristiques. Ainsi la somme (1.0.14) est en général finie.

Génération d’harmoniques caractéristiques au bord

A.Mécanismes linéaires.

Soit () = ix.§ la phase plane présente dans (1.0.13). Cette phase et ses harmoniques
sont donc présentes au bord. L’équation au bord pour le profil U J se décompose alors en
TU; g = 0 selon les modes de Fouriers k&’ = k(&o, . ..,&4_1) appelés harmoniques tangentielles.
Cependant, si ky n’est pas caractéristique, U; ,g est déja déterminé et T'U, g = 0 n’est en général
pas satisfaite.

Ceci montre qu’il faut considérer pour chaque phase k¢ dans (1.0.14) toutes
les phases caractéristiques dont la restriction au bord est k‘P\xd:o = ik& 2.

Ces nouvelles phases sont (ik¢’, iozgg) et (ik¢, zﬁ,lg) solutions de

det(Lq(ik¢ ,ial) = 0,1 < degg, det Ly,

(1.0.17) det(Lg(ikﬁ',iﬁ;i) = 0,1 < dege, det Ly.

Dans le cas ott Ly # Lg ces nouvelles phases caractéristiques ne sont en général pas des
harmoniques de phases existantes. Elles peuvent étre complexes puisque les équations précé-
dentes ne sont pas nécessairement hyperbolique en x3. De maniere complete, on a chez [47] la
classification des solutions de (1.0.17) suivante : Une phase réelle caractéristique &y = (&)
réguliere est entrante, sortante ou rasante selon que Verd > 0, < 0 ou = 0. Une phase
complexe est évanescente ou explosive selon que Im&; > 0, < 0.

Notons qu’une onde incidente arrivant & I'interface avec un angle supérieur a ’angle cri-
tique (s'il existe) ne transmet qu’une couche limite & droite au premier ordre. Notre analyse
précise cette description en montrant qu’en général des termes correcteurs oscillant et ré-
sonant sont transmis. Sous certaines conditions (cf.chap.l,Introduction, 4.) de tels termes
d’amplitude € sont générés. De maniere analogue si les ondes transmises relatives aux profils
principaux sont purement oscillantes, il existe en général des termes correcteurs évanescents
(cf.chap.1,Introduction, 3.).

B.Mécanisme non linéaires

Lorsqu’on considere les équations de la cascade (1.0.15) on voit que les F7, j > 0 étendent
le réseau de phases constitué par le spectre des profils U*, k < j.

Tout d’abord le probleme de génération infinie se pose pour le profil principal U° qui vérifie
une équation de transport non linéaire. Comme la non linéarité F© est le développement de
Taylor de ¢ en 0 elle est polynémiale. Nous avons alors fait I'hypothese de I'existence d’un
module A° stable (vis-a-vis des résonances) F© (voir chap.1, hypothese 2.2.9, 1.).

Ensuite pour 7 > 1 la génération de nouvelles phases caractéristiques est en général finie
puisque la variété caractéristique est courbe et la non linéarité FV est polynomiale. Nous
avons néanmoins fait ’hypothese (cf. chap.l., hypothese 2.2.9, 2.) assurant l'existence d’un
ensemble A7, fini, contenant le spectre de U7.
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Néanmoins si a chaque équation de la cascade seul un nombre fini de nouvelles phases
caractéristiques est généré le processus créé de proche en proche un réseau de phases de
dimension infinie.

La description habituelle du profil U par rapport a la variable rapide X (ex. [23]) selon
un module généré par un nombre fini de phases est alors inconsistante.

Ansatz

Nous avons opté pour une description du profil U = U,z + U, ou U,s est un profil
purement oscillant et Up, un profil évanescent qui, contrairement a [47], regroupe les phases
complexes correspondant aux ondes d’amplitudes exponentiellement décroissantes. De fait,
Ue, est solution d’un systeme dissipatif. L’ Ansatz utilisé s’écrit alors

Uz, X) = Yo Ug(, Xg)eX ¢

1.0.18 .
( ) U (x, Xq) = ng Uf(l‘)elxdgd + Uep e/ (x, Xq)

olt les sommes sont finies et U, ¢/(, Xq) ~ e=%Xd pour un ¢ > 0.

1.1 Présentation des chapitres

A présent nous décrivons les trois chapitres de cette these. Le premier chapitre concerne
I’analyse de I’Optique Géométrique sur le probléme de transmission pour des développements
a tous ordres et en donne la convergence. Le second traite le méme probleme dans le cas dif-
fractif c’est-a-dire pour des amplitudes plus petites et des temps plus longs. Enfin le troisieme
propose une étude sans développement WKB de 'amplitude devant satisfaire de maniere la
plus exacte possible ’équation linéaire. Dans ce cadre nous simplifions le probleme de bord
en ne choisissant qu’un seul mode entrant sans harmonique résonante et en négligeant toutes
les autres polarisations ainsi que les couches limites.

1.1.1 Transmission de ’Optique Géométrique.

Dans cette partie nous construisons un développement WKB asymptotique multidimen-
sionnel & tous ordres pour le probleme (1.0.10) avec des coefficients constants et un bord droit
infini. Chaque terme du développement satisfait a I’Ansatz (1.0.18).

La solution approchée WKB

Soit x = (zg,...,xq) oU xyg =t et g = 0 est une paramétrisation du bord. Les équations
considérées s’écrivent pour le premier profil
) 0
(1.1.1) TU2' ;24 =0) =0

et pour les autres

x,
(1.1.2) TUY (2, g = 0) =0
w



Ces équations posent plusieurs problemes. Tout d’abord il faut résoudre les EDP pour
les profils du type (1.0.18). Ensuite il faut résoudre les problemes mixtes avec deux échelles
différentes. Enfin il s’agit de contréler la génération de phases et tout particulierement celles
qui ne sont pas régulieres.

La premiere équation et plus généralement 1’équation sur les variables rapides s’écrit
(1.1.3) L(0x)U = F,

et décrit la polarisation des ondes associées aux phases caractéristiques. Comme nous sou-
haitons résoudre le probleme de génération d’onde au bord notons L(0;) = Ay0,, + L'(0y).
Nous considérons alors 1’équation générique pour chaque fréquence tangentielle £’

(1.1.4) (Aqdx, + L'(i€"))Uer = Fe

Comme A, n’est pas inversible on découple I’équation en deux équations, 'une sur I'image de
Agq lautre sur le noyau. On peut supposer que U = (U, U?) ot U' € Tm Ay et U? € ker Ay. Si
la seconde équation sur ker Ay permet d’exprimer U? en fonction de U! on obtient la nouvelle
équation sur Im Ay

(1.1.5) (0x, + G(i€")) U = Fpr.

Cette équation se découple en une équation sur les profils purement oscillants et une autre
sur la partie évanescente. La premiere redonne la polarisation habituelle suivant chaque phase
imaginaire pure et résonante associée a ¢’. La seconde est une équation d’évolution en Xy,
elliptique car définie sur I’espace propre de G(i£’) associé aux valeurs propres de partie réelle
non nulle. Cette équation nécessite donc une donnée en Xy = 0 qui permet de déterminer le
profil évanescent. On obtient alors le résultat

Résultat 1.1.1. Il existe des projecteurs P et P! ainsi qu’un inverse partiel Q agissant dans
Uespace des profils du type (1.0.18) tels que pour F, profil de type (1.0.18), I’équation (1.1.3)
a une solution U du type (1.0.18) si et seulement si P'F = 0. La solution générale s’écrit

U = QF +PU.

Nous renvoyons au chapitre 2, théoreme 2.2.14 pour un énoncé exact.

La seconde équation concerne la variable lente = pour la partie oscillante du profil U°.
C’est en général une équation de transport non linéaire pour les profils associés aux phases
régulieres (cf. [15]) et une équation des ondes (probleme hyperbolique tangent) pour les phases
non régulieres (ex : & = 0 cf.[32, 44]). Elle nécessite donc des données sur le bord x4 = 0
et/ou initiales selon que I'onde est entrante ou sortante. Plus précisemment la donnée initiale,
polarisée, détermine les profils sortants et I’équation de bord fournit les données relatives aux
profils entrants et évanescents pour chaque & grace a une condition de type Lopatinski sur
T.

Cependant cette condition n’est pas utilisée pour les profils associés a des phases non
régulieres pour lesquelles on se sert de la maximale dissipativité héritée par le probleme
tangent. Chaque profil U7 de type (1.0.18) est donc solution d’un probléeme hyperbolique
maximal dissipatif. Il faut enfin signaler le probleme de compatibilité des données initiales et
de bord pour la régularité en g = x4 = 0. On obtient le résultat
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Theorem 1.1.1. Soit e(z") = 37, eI EI(z”,2" [€), une donnée initiale WKB telle que
EJ = PEJ, j < n infiniment plate en x4 = 0 de spectre oscillant fini et specE® = A° (cf.
1.0.4B).

Il existe t* > 0, une suite de profils U™ € LL([0,t+] x RY; L (RET)) de type (1.0.18),
solution des équations de la cascade (1.1.1),(1.1.2).

Nous renvoyons au chapitre 1, Théoreme 2.16 pour la version exacte.

Convergence

Ensuite on montre la convergence/stabilité du développement asymptotique vers la solu-
tion exacte du probleme 1.0.10.

Le probleme que nous obtenons sur les restes est un probleme mixte hyperbolique singulier
en ¢ et caractéristique. L’obtention d’inégalités d’énergie donc pose plusieurs problemes.

Tout d’abord 'aspect caractéristique du bord fait que I'on doit dinstinguer la régularité
normale (J,,) et conormale (0,/). Plus précisément grace a I'hyperbolicité du systeme on
obtient une certaine régularité conormale et les dérivées normales regagnées en utilisant les
équations cotitent deux dérivées conormales. Nous utilisons donc des espaces d’analyse inho-
mogenes E™¢([0,t*]) (cf. chap.1,§2.2) proches de ceux d’0O.Gues [19] mais bornés en temps.

Ensuite le caractere singulier en ¢ oblige a considérer des e-dérivées. En outre, la encore
il faut distinguer comme dans [13] les dérivées normales qui nécessitent un facteur 2 (2e-
dérivées conormales).

Enfin comme dans [14] nous appliquons la méthode de [18] qui consiste a considérer
~ d/2 termes dans la solution approchée afin d’utiliser I'inégalité de plongement de L>° dans
les Sobolev. En résumé on obtient le résultat

Theorem 1.1.2. Sous les hypothése du théoréeme 1.1.1 et n > M > m > %, m pair, il

existe g > 0 tel que pour tout € €]0,¢e0] le probléme de Cauchy (1.0.10) avec donnée initiale
u(t=0)=e+eMh

ou h est suffisamment plate au bord, a une unique solution u® = Zo<j<n Ui + eMye dans
E™E(]0,t4]) avec v € E™=([0,t*]).

1.1.2 Transmission de ’Optique Diffractive.

Cette partie poursuit I’étude réalisée au premier chapitre et compléte le second chapitre
de [13]. Elle concerne des ondes de plus petite amplitude O(e?) et des temps/distances de
propagation de 'ordre de O(1/¢). L’utilisation de I'ansatz & deux échelles montre qu’alors les
termes correcteurs (du profil principal U°) ne restent pas bornés sur cet intervalle. D’autre
part on s’attend a voir sur ces distances, outre la propagation, la diffraction. L’analyse consiste
(cf. [13]) & introduire une nouvelle échelle ez dans l'ansatz (1.0.18). Comme la nonlinéarité
n’intervient qu’a la troisieme équation le profil principal est défini globalement en la variable
moyenne .

Le but poursuivi est alors d’obtenir des correcteurs ayant également une croissance sous-
linéaire (voire bornés) par rapport a cette variable moyenne. La différence essentielle avec les
travaux [13, 14, 32] vient encore de la présence de phases linéairement indépendantes.
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Plus précisemment les équations de transport dans la variable moyenne contiennent des
termes sources non linéaires de plusieurs type : des termes

-transportés a la vitesse du champ de transport,

-transportés a une vitesse différente,

-non transportés.

Les travaux [13, 14] ne faisaient apparaitre que le premier type de terme source soit &
cause du peu de termes considérés soit parce qu’étant non dipersif. Ce terme est reponsable
de croissance linéaire et doit donc étre compensé par les termes linéaires en une équation sur
les variables lentes.

Dans le cas dispersif de [32], le troisieme type d’interaction apparait. Ce terme n’induit
pas de croissance et est laissé comme terme source dans I’équation de transport.

~ Enfin pour mieux décrire I'action du terme du second type, on a décomposé chaque profil
U, relatif & une phase ia X, résonante

Ul(x 2, X) =U, ,(x,2" —vaz,2,X) + Z Ug{ﬂ(x,x' — g2, 2, X) + Ul (x, z, X),
V3FVa
ol les B sont dans A, un réseau fini de modes résonants et vg les vitesses de groupe associées.
Le terme Ug;’ﬁ prend en compte les interactions du troisieme type. C’est typiquement le produit
d’ondes transportées a des vitesses différentes.

Les équations se découplent et pour chaque 3 tel que vg # v, on a une condition de
résolubilité sur le terme source.

Nous n’avons pas cherché & expliciter plus avant cette condition de type intégrale (ex-
primée sur la caractéristique liée & v,) qui imposait a premiere vue des profils impairs, non
acceptables pour des impulsions laser. Nous avons alors fait I’hypothése qu’aucun terme source
du second type n’était généré. L’Ansatz approprié pour les profils est alors

(1.1.6) Ul(x, 2, X) = U (x, 2 — vaz,2,X) + Ul (x,z, X),

ou la partie transportée & v, est solution d’un probleme de transport diffractif mixte qui
découple les ondes sortantes de celles entrantes.

La convergence de ce développement vers la solution exacte pour des temps diffractifs
en O(1/¢) est calquée sur celle du premier chapitre. Néanmoins 1’équation sur les restes est
modifiée par la présence dans la donnée initiale de Ugjﬁ\t:_to d=—t0 /e T=—10/e2-

La remarque faite par [13] est que pour des impulsions & profil dans I'espace de Schwartz
ce terme est a décroissance rapide. L’analyse appropriée est alors réalisée avec des espaces du
type

P(RY) = {(z" — vt)u(t,a") € HFH (R},

qui permettent de montrer que les U, |j o . . y, , SOnt en O(e™).
t=—tV,t=—tV /e, T=—t"Y /e

Résultat 1.1.2. Soite(z") = > <<y eI EI(ex" 2", 2" [¢) une donnée initiale polarisée, plate
au bord et de spectre fini et specEY = AP,

1. 1l eziste (U7)o<j<n une suite de profiles solutions des équations de la cascade (3.2.1),
s’écrivant sous la forme (1.1.6) et tels que U’ € T(RY)).

2. Il existe t, > —t¥ et & = > 0<i<n U’ + eMv® solution evacte de (1.0.10) définie pour
t<ty/e. o

Nous renvoyons le lecteur au chapitre 3, Théoremes 3.3.1 et 3.3.2.
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1.1.3 Modele de transmission intermédiaire

Ce troisieme chapitre est consacré a la dérivation d’un modele d’optique géométrique dans
lesprit de [6], adapté au cadre de la transmission.
Le modeéle dérivé dans [6]

L’obtention du modele dans [6] débute par la recherche d’une solution exacte au probleme

L(0,)U = F(U), in [0,t] x R?

(1.1.7) U(t _ 0) — epUO(l,//)eigi/_xu/a

sous forme de profil U(z) = ePU(x,0), 2m-périodique en 6 = &,.x/e pour un &, donné,
résonant.
La décomposition spectrale de L(0,)

L(0z) = 0r+ Y mi(0))X; ()
J

conduit a chercher un modele scalaire construit sur A, = A\ (associé a &), proche de (1.1.7)
pour des données initiales oscillantes dont le profile vérifie :

(1.1.8) Uo(a") = 7, (c0y ) Up(2")

Le modele s’écrit :

A (20 +€0/95)—E,.00 _
(11.9) (0, + ACHIEICato () — (201 + E10) P Uspp(,0))
Unpp(t = 0,2".0) = ePUp(z")e'?.

Il néglige donc toutes les autres polarisations créées par le terme non linéaire F'. Elles sont
en effet d’autant plus faibles que

-initialement nulles,

-non résonantes avec &, et supposées non résonantes avec les harmoniques de &,.

-F(z) = O(|z|”), = ~ 0 avec J grand.

En introduisant le parameétre o = eP(/—1)

s’énnonce :

~1 le théoréme obtenu dans [6] dans ce contexte

Theorem 1.1.3. Soit Uy € H¥(R? x T), s > d/2 une donnée initiale satisfaisant (1.1.8). II
existe to > 0 et U = ePU, Uy, solutions de (1.1.7) et de (1.1.9) dans Xy, = L>(0,to; H* (R x
T)) tels que

e U = Uappl x,, = Ofe0).

Le modeéle que nous dérivons

Pour le probleme de transmission on peut alors s’attendre a une équation de transport
pseudo-différentielle en la variable x’. Le probléme auquel on s’intéresse est I’analogue de
(1.1.7) avec une donnée au bord au lieu de la donnée de Cauchy

L(0,)U = F(U), dans R?x [0, 2]

(1110) U(Z _ 0) _ ngO(;U/)eiﬁi.x’/&
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Mais comme L(0,) n’est pas hyperbolique dans la direction dz,(1.1.10) est en général mal
posé. Il faut en effet adjoindre des conditions d’onde entrante au bord et comme le probleme
est non linéaire il faut également des conditions similaires sur les dérivées normales au bord.

Néanmoins dans le cas d’impulsions a spectre étroit, contenu dans une nappe réelle de
charL on peut dériver un modele qui vérifie de maniere approchée I'équation semi-linéaire
dans (1.1.10). Ceci est réalisé en introduisant un opérateur de troncature x., fonction carac-
téristique de la nappe considérée. Le modele s’écrit alors

- U,z = 0,0) = P, (20, + £.9p) X (9 Up(a')e?,

et le profil U est cherché dans I'espace C(0, z; H*(R%)). On a alors le lemme d’existence suivant

Lemma 1.1.4. Soit &, associ€ a &, = (1(&L). Alors il existe zg > 0, et une unique solution
U = Tt U solution de (€) dans X*(zy/0).

Ensuite 'obtention d’un théoreme analogue a 1.1.3 consiste & chercher une solution exacte
de (1.0.10) de type profil, U(z, X), dans une algebre de Wiener. Ce probléeme est I’analogue
de [26] pour le probleme de Cauchy, dans le cadre de problemes mixtes hyperboliques. Ce
probleme parait difficile car le spectre d’une telle solution n’est pas uniquement oscillant et
le spectre oscillant est contenu dans un module de dimension infinie. On s’attend donc a des
osillations denses semblables au cas des équations d’Euler dans [25]. L obtention d’estimations
indépendantes de £ pour chaque mode U solution d’un probleme mixte hyperbolique couplé
semble alors compromise.

Nous avons choisi alors de montrer un théoreme analogue a 1.1.3 non plus avec (1.0.10)
mais avec (1.1.10) que 'on a considéré comme la restriction a z > 0 de (1.0.10) avec une
condition initiale sortante bien choisie de sorte que U(z = 0) soit la trace au bord de 1'onde
transmise.

Cependant, méme dans ce cadre, la recherche d’une solution exacte de (1.1.10) sous la
forme d’un profil U (z, X) ne semble pas réalisable. Nous avons évité cette analyse en cherchant
une solution de (1.1.10) sous la forme

UrU+ceor]

ol ¢ est un correcteur WKB est purement oscillant.

Enfin I'obtention d’un théoreme d’approximation nécessite d’introduire des troncatures
1(t),12(2) car contrairement a la solution exacte dont le support se propage a vitesse finie,
la solution approchée résout des équations pour lesquelles la vitesse de propagation est infinie.

On obtient finalement le théoreme :

Theorem 1.1.5. Soient s un entier superieur strictement a d/2. Il existe zg > 0 et un
correcteur ¢ € X*(zo /o) tel que le probléme mixte

L(9)u = F(u), dans R x [0, 2]
(1.1.12) u(z=0)=¢eP (Uo(:v’)eiﬁf*'”ﬂ’/6 + Eari)
u(t<0)=0

posséde une unique solution

e Puf = oy (t)ba(2) (Z/I(az)eig*w/6 + eori(z, x/e)) + EMre(a:),
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ou ¢ € EST™E([0,¢°]) pour t* = Zy/(vin0) €t Zy < 2.

L’espace E*<([0,¢]) est le méme que pour le théoreme (1.1.2).

Résultats numériques

Nous avons réalisés des calculs sur le modele (1.1.11) et les avons comparés a ceux obtenus
pour 'équation de Schrodinger associée.

Les simulations sont réalisées pour des impulsions & spectre large (impulsions courtes ou
chirpées) de fréquence (, située en divers points de forte courbure de charL.

On observe de grandes différences dans le cas linéaire ou la solution du modele (1.1.11)
est exacte. Notamment, le support spatial de la solution de (1.1.11) est plus grand. En effet
il tient mieux compte des grandes vitesses de groupe temporelles.

Des différences apparaissent également dans le cas non linéaire mais elles sont plus rares.
Elles requierent un équilibre entre la non-linéarité et les effets dispersifs.

1.2 Problemes ouverts : équations a coeflicients variables, bords
et phases courbes

Ces themes qui ne sont pas abordés dans la these sont néanmoins sous-jacents au pro-
bleme (1.0.10). Nous en décrivons quelques aspects comme perspectives possibles.

Tout d’abord, le cas de coefficients variables intervient des que ’on considére des milieux
inhomogenes : I'opérateur de dispersion devient L°(x). Les bords courbes introduisent des
coefficients non constants dans L' tout en préservant la structure hyperbolique de L.

Dans le cas de systemes hyperboliques & deux vitesses, [9] donne une analyse WKB a tous
ordres. Cette analyse est locale dans un ouvert spatio-temporel qui intersecte le bord en un
ouvert O de type “timelike” pour L.

Une telle approche géométrique locale pour le probléeme (1.0.10) semble appropriée pour
une description détaillée des ondes réfléchies et transmises. Ensuite ’hypothese sous-jacente
aux problemes & deux vitesses est une hypothese de cohérence (cf. [23]) qui assure 'existence
globale de deux phases imaginaires pures caractéristiques. Sans cette hypothese [24] donne
des exemples de phases qui focalisent avec perte de régularité et explosion en norme L°°.
Cependant [5] montre que pour des nonlinéarités “assez faibles” (sous critiques) on peut décrire
la propagation des ondes au-dela des caustiques a ’aide d’opérateurs Fourier intégraux. Pour
finir, les données au bord dans [9] sont sortantes et ce indépendemment de = € T'. Or dans le
cas de bords courbes des rayons peuvent étre rasants. L’étude de la transition au niveau d’un
rayon rasant est faite chez [8]. Néanmoins une asymptotique a tous ordres reste ouverte.
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Chapitre 2

Wave transmission in dispersive
media

2.1 Introduction

The aim of this chapter is to make a detailed analysis of the reflected and transmitted high
frequency waves at an interface for nonlinear dispersive equations. For simplicity, we consider
a planar interface, constant coefficient equations and classical incoming wave packets

(2.1.1) v (t,x) = ePRe { A(t, 2)e® 9D/ 1 O(e)

with real planar phases ¢(t,x) = k-2 — wt. The main example we have in mind are Maxwell-
Lorentz equations

(212) rotH — OtD = 0, rot E + 8tB = 0,
(2.1.3) V-D=0, V-B =0,
where D = E + P and H = B with p constant in each medium. These equations are

satisfied on both side of the interface {3 = 0} which separates two different media where
the polarization P satisfies for instance anharmonic equations

(2.1.4) 20PP + Wi P — hy(P) =v,E m e {l,r},

with m = [ [resp. m = r] on the left [resp. right] hand side z3 < 0 [resp. x3 > 0]. The
nonlinear terms h,, are smooth functions of their argument vanishing at least at second
order at P = 0 (typical examples are cubic interactions h,,(P) = &,,|P|*P). The physical
transmission conditions read

(2.1.5) (E, —E;)) An=0, (1B — 1yB1) An =0,

(2.1.6) (D, —D;)-n=0, (B, —Bj) -n=0,

where n = (0,0, 1) is the normal to the interface. We refer to P.Donnat [13] for a justification
of this model and for a detailed discussion of different models arising in nonlinear optics.

This Maxwell Lorentz system can be embedded in a more general setting. Changing z3
to —zg and forgetting the divergence equations Eq. (2.1.3) which are propagated together
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with their transmission conditions Eq. (2.1.6) from the initial data to the solutions, leads to
consider boundary value problems for first order semi-linear dispersive hyperbolic systems in
R}ﬁd ={xq>0}:

L(e0y)v = ®(v), on x4 >0,

(2.1.7)
Tv =0, on x4=20

where v = (E;, By, P, e0;P;, E,, B, P, c0,P,) and

d
(2.1.8) L(edy) :=eL'(0y) + LO = €A;0,,. + L°.
j=0
Here x = (x,x1,...,24) denote the space time variables and zp = ¢ is time. The nonlinear

interaction ® vanishes at order J > 2 at the origin, meaning that V{®(0) = 0 for all |a| <
J — 1. In this setting, the question is to study the reflection at the boundary of an incoming
wave (2.1.1), in the regime of geometric optics.

The weakly nonlinear geometric optics regime concerns solutions of amplitude O(eP) with
p=1/(J—1) (see [13, 15, 14, 32]) : setting w = ePu yields

(2.1.9) L(£0,)u = eF (u,e'/P)

where F(u,e/?) is a smooth function of its arguments. Recall that these amplitudes are com-
puted so that the nonlinear effects appear in time ¢ = O(1). Note that if f is an homogeneous
polynomial of degree .J, then F(u,e'/P) = f(u). This holds in particular for the cubic anhar-
monic Maxwell-Lorentz equations; in this case the choices of p are p = 1/2 in the weakly
non linear geometric optics (p = 1 for diffractive optics). Motivated by this example we will
consider in this paper equations

L(e0y)u = ef (u), on x4 >0,

(2.1.10)
Tu=0 , on x4=20

with f polynomial.

In the non dispersive case LY = 0, the geometric optics regime has been studied by
M. Williams [45, 46, 47]. We stress that the dispersive case involves a much more complicated
pattern of phases. Not only harmonics are presents, but in general there are much more phases
present in the correctors for a transmission or boundary value problem than for an interior
propagation. These extra phases are created by the reflection-transmission process because
the dispersion relation is not homogeneous when L° # 0. In general they span a space of
infinite dimension over Q. Other interesting phenomena can occur : for instance harmonics of
interior propagating waves can produce boundary layers, see the discussion below. Moreover,
we can relax several technical conditions that are present in [47] and motivated by the Maxwell
system Eq. (2.1.2)-(2.1.6) we also consider the case of characteristic boundaries.

The question of transmission of dispersive nonlinear waves was first raised by P.Donnat.
In [13] he assumes that the left (incident) wave is completely given (typically the medium is
linear and the wave is purely monochromatic) and he computes an approximate transmitted
wave solving a boundary value problem on the right. The point is that he does not solve
the exact transmission conditions Eq. (2.1.5), Eq. (2.1.6). His solution satisfies them only at
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the leading order, that is up to a O(e) error. The boundary conditions he considers are not
explicit, they are precisely chosen to eliminate the generation of waves associated to the extra
phases mentioned above. Our goal in this paper is to solve the exact transmission problem
and give a detailed account of correctors including the extra waves.

First, such an analysis enables a global study in strong norms like L°°. In fact as the
leading profile satisfies a non linear equation the whole WKB approximate solution naturally
lies in L°. It is then natural to estimate the difference between the exact solution and the
WKB approximation in this space. This is made possible by taking enough term in the WKB
expansion (when looking for the last mentioned error as a function which is not a profile, one
loses €(@1D/2 in the L norm (see lemma 2.5.14)).

A second reason for computing the correctors is when ¢ is not that small, say ¢ > 107!,
This parameter roughly counts the number of fast oscillations in the wave train. So ¢ ~ 1
is rejected here since the ansatz 2.1.1 doesn’t make sense (see [1] for a radically different
analysis involving continuous spectrum). The case € ~ 107! is reached for femto second pulse
which are delivered by lasers such as [Ti :sapphire] Lasers.

e ~ 107! might also be found in chirped lasers which show up under-structures such
as “speckles” enhancing a new parameter 1 << 71 << e. This new scale may cause a
dramatic change in the nature of the profile equations. However, supposing those struc-
tures remains “separated” while evolving dependently, the wave train could be modelized
by w(x) = > pinite uj(z/n)e’*®/¢. Taking this new scale as reference would enhance the
rescaled parameter /1 >> ¢ which might be "big”.

In the remaining part of this introduction we sketch the main features of our analysis,
pointing out the interesting new phenomena which are described and studied in the paper.

1.Profiles and the fast scale equation. We consider the boundary value problem (2.1.10),
assuming that L is symmetric hyperbolic, that the A; are real symmetric and LV is real skew
symmetric. We further assume that the boundary conditions (or transmission conditions) are
maximal dissipative. In the geometric optics regime we look for solutions

x
2.1.11 & ~ U (x, —
(21.11) w(@) ~ YU, )
Plugging (2.1.11) in Eq. (2.1.10) gives a cascade of equations to solve

L(8x)U° = 0

(2.1.12) { L(Ox)UH + L(0,)UI = FI,  j>0

and solving the equation in X leads to consider the general equation
(2.1.13) L(Ox)U =F, on Xg>0.

Plane wave solutions are

(2.1.14) Ulz,X) = A(x)eP ¥

where 3 solves the dispersion relation

(2.1.15) p(B) := det (L(i3)) = 0,
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and A satisfies the polarization condition
(2.1.16) A(x) € ker L(if3).

Given an outgoing wave U2, of this form, the reflected term U’ o; must satisfy Eq. (2.1.12)
and the boundary condition T'(Ugyt + Urer) = 0. For higher order terms, this leads to solve
Eq. (2.1.13) together with

(2.1.17) TUx,— = Be? X',

where we use the notations X = (X', X;), 8 = (3, 84). As our analysis naturally involves
time description and z description we will use for any R4t! variable

Notations 2.1.1. x = (t,2”) for a time description, x = (2, z) for a z-description.

Assuming that the wave is 2w-periodic in X’ and seeing X4 as an evolution variable, the
solution of (2.1.13) can be looked as U(X) = Ug/(Xq)e’® X" where Ug (X,) satisfies

(2.1.18) L(if,0x,)Us (Xa) =0, TUg|x,—0 = B.

This linear constant coefficient ordinary differential equation leads to solve in £, the dispersion
equation p(3',&;) = 0. The real roots correspond to reflected plane wave solutions of the
form (2.1.14). Complex roots of the dispersion relation with negative imaginary part are
not physical since give exponentially growing solutions. On the other hand, complex roots
with positive imaginary part yield exponentially decaying solutions, which correspond to
evanescent waves or boundary layer. This leads to consider profiles of the following form

U( ZUﬁl Jj‘ Xd) ip' Xl

(2.1.19)
Ug/ x Xd ZUgl Zﬁd Xa —I-Uﬁ/ ev(a: Xd)

with Ug ., exponentially decaying in X4. Note that this class of profiles is stable by nonlinear
composition. This is formal if the sums (series) are infinite, but this is rigorous for finite sums
and polynomial nonlinearities.

In [47] the evanescent term Ug ., is split into complex exponentials, assuming that the
complex roots are semi-simple. Here, we make a global treatment of the decaying part and
therefore we don’t need this technical assumption on the complex roots.

2. Generation of phases. Given an outgoing phase with wave number (3, the reflected waves
are associated to the roots 3' = (3, Bfi) of the dispersion equation p(3’,34) = 0. Nonlinear
interaction will produce oscillations associated to phases 3% = Sy 3 with v; € Z. This is the
classical discussion of nonlinear geometric optics in the interior, and for dispersive equations,
harmonics 3" are very rarely solutions of the dispersion relations (see [13, 15]) and thus very
rarely propagated.

In the construction of correctors for boundary value problems, nonlinear interactions
forces to consider equations Eq. (2.1.13), Eq. (2.1.17) where the phases ” - X and (") - X’
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are present in the source term and in the boundary term respectively. Therefore for all the
harmonics nﬁ' of the tangential wave number, oscillations with space-time wave numbers

(2.1.20) gt = (g, B,
are expected, where the ﬂs’i satisfy the dispersion equations
(2.1.21) p(nf', Ba) = 0.

For non dispersive equations, p is homogeneous and the roots are ﬂg’i = nﬁé. Thus all
the phases remain in the finitely generated group ) Z3*. On the other hand, for dispersive
equations the roots 3" of (2.1.21) are different of nﬂﬁl, and in general they span a group
which is not finitely generated. These extra phases carry oscillations that are propagated at
their own group velocity. Next, the nonlinear term produce phases 8 € > ZB™", but their
tangential component 3’ € Zﬁ' and the phases given by solving p(3’, 34) = 0 are already taken
into account. This shows that for the profiles in (2.1.19) the natural tangential spectrum for
the indices 3’ is

(2.1.22) N =17f,

while the natural spectrum for the index 3 = (5, 84) is

(2.1.23) A=) "zpm,

This discussion extends to the case where there are several outgoing phases, so that the tan-
gential frequencies (3’ are restricted to belong to a Z-module A’ and A is the group generated
by all the real solutions 3 = (', 34) of p(3) = 0 with 8’ € A"

The analysis above indicates what are the expected phases. For the corresponding oscil-
lations to be actually present, one has to check that some interaction coefficients linking the
polarizations (2.1.16) and the boundary conditions do not vanish. The approximate boundary
conditions imposed in [13] are precisely chosen to cancel out these interactions so that the
extra phases (2.1.20) with n # £1 can be ignored.

3. Generation of boundary layers. It is very common that, depending on [, the dispersion
equation p(f3, B4) = 0 may have non real roots. For instance, this is typical of total reflection.
The new phznomenon due to the dispersion is that the roots of p(/3, 54) = 0 can be real, while
the roots for the second harmonic p(23, 34) = 0 are non real. B

Consider for instance the transmission problem for the Maxwell-Lorentz model Eq. (2.1.2)
and Eq. (2.1.4). Denoting by 8 = (7,k1,...,kq) = (1, K, kg) the space-time wave numbers,
the dispersion equations read (m =1 or r)

2
(2124)  p(r k) = 727 = w2, = ) (7272 — w2, = ) — (72— WB) () = 0.
For 7 # 0, wyy,, £1/w2, + Ym, the roots in |k| are given by

(2.1.25) [ = (1 xm(7)), - Xm(7) = 57—
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The (left) incident phase 8 = (7,k) being real, there holds
(2.1.26) K[ < 221+ xi(x))-
There is no real transmitted wave (total reflection) when

(2.1.27) xi(z) > xr(z) and [E|* > 7*(1 4 xr (1))

The additional phenomenon due to dispersion is that for w; < |7| < y/w? 4 v there are
no real roots in ky of the equation p(27,2k’, k;) = 0. Thus if the real incident wave number
B = (z,k) satisfies |7| < w; < 2|7| < \/w? + 7, the second harmonic 26" = 2(z, k) will
necessarily produce a boundary layer in the correctors, on the left side. There is a similar

phenomenon for the transmitted wave : g' can produce a real transmitted wave (present in
the main term) and 23’ produces a transmitted boundary layer (in the first corrector).

4. Transmission of harmonics of totally reflected waves. This is the converse phenomenon. The
main wave can be evanescent and the harmonics (correctors) can propagate in the interior.
Consider again the transmission problem for Maxwell-Lorentz equation. Denote by § = (7, k)
the incident wave number. If (2.1.27) holds (total reflection) the main transmitted wave is a
boundary layer. But if in addition

(2.1.28) Xr(21) > xp(z) and |K* < 2%(1 + x,(27))

the second harmonic transmitted wave is real the second harmonic present in the corrector
term U? in the expansion (2.1.11) is propagated inside the medium on the right.
Note that the first condition in (2.1.28) holds if 27 < w..

5. Propagation equations. In the expansion (2.1.19), the propagating modes Ug(:n)ew'x are
associated to real roots 8 = (', 84) € A of the dispersion relation. For the leading order term
UY in the expansion (2.1.11), the amplitudes satisfy the polarization principle Ug = W(ﬁ)Ug
where () is the spectral projection on ker L(if3). For the correctors U™, n > 1, the non
polarized part (Id — w(ﬁ))Ug are determined by the previous terms (U°,...,U""1) of the
expansion. The evanescent parts U 5,7 o, are determined by the previous terms when n > 1 and
the values on the boundary of m, (8" )U 3 ev| Xg=0 Where Tew((') is a spectral projector which
corresponds to modes £; with Im&; > 0 .

We will assume that all 8 € A\ {0} with p(3) = 0 is a regular point of the characteristic
manifold (see below) so that, in the regime of geometric optics, the polarized part =(3)Up is
determined by a transport equation

d
(2.1.29) (0 + Y- vi(®0s, )7 (A5 = 5
j=1
where v = (v1,...,vy) is the group velocity of the S-wave. The position of v() with respect

to the boundary plays a crucial role : the mode is incoming/outgoing/glancing when v4(3)
is positive/negative/zero . The treatment of glancing modes is explained in [47], they involve
a third scale in x/+/c. In this paper, we will assume for simplicity that glancing modes are
never launched that is that v4(3) # 0 when 8 € A\ {0} with p(5) = 0. For Maxwell-Lorentz
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equations, this assumption is satisfied for almost all choice of 3, the wave number of the
source. B

On the other hand, still for the Maxwell-Lorentz system, the frequency 8 = 0 is not
regular, implying that the propagation equation for w(0)Up is a non diagonal system [32, 44]

(2.1.30) 7(0) LY (8,)7(0)Upy = fo.

The equations Eq. (2.1.29) and Eq. (2.1.30) are coupled through the source terms fg, which
depend (non-linearly for the principal term) on the amplitudes Ug. Moreover, these equa-
tions are supplemented with boundary conditions which couple the traces of the oscillatory
amplitudes Ug g, and of the evanescent parts Ug ¢, :

(2.1.31) T(Z (6", B0)Up By|wy=0 + Wev(ﬂl)Uﬁ’,ewxd:Xd:O) =9gp-
Ba

The well posedness of the boundary problem (2.1.29) (2.1.31) is expressed by two conditions :

1. for ' # 0 we impose a Lopatinski type condition which says that the evanescent part
Teo(B)Upl ev|zy=x,—0 and the oscillatory incoming 7(3’, 84)Us g,)z,—0 can be uniquely
determined from the outgoing 7(3', B4)Up' 5 |x,—0 and gg.

2. for ' = 0, we assume that only the equation Eq. (2.1.30) is present and the maxi-
mal dissipativity of the initial problem implies that the boundary value problem for
Eq. (2.1.30) is maximal dissipative.

Note that the maximal dissipativity of the initial problem also implies that for 3’ # 0 the
problem is maximal dissipative. The condition (i) is slightly stronger and would be automatic
if the initial problem were strictly dissipative. Note also that the Lopatinski condition in (i) is
not exactly the usual hyperbolic Lopatinski condition for L which involves only the principal
part of L ; it is a semi-classical Lopatinski condition.

We also mention that there is an additional difficulty for 3’ = 0. The boundary is cha-
racteristic for Maxwell-Lorentz equations and the hyperplane 7 = 0 is entirely contained in
the characteristic set, implying by nonlinear resonances that all frequencies (0, 34) could be
present. Indeed, a detailed analysis of the interaction coefficients shows that these modes are
not created by interaction and are not present if they are not present in the initial data. This
is linked to the propagation of the vanishing of divB and divD.

6. Reflected waves and their harmonics propagate in different directions. Consider an outgoing
wave number § = (7, ki, ..., kg) = (7, k', ky) for the Maxwell-Lorentz system. The dispersion
relation Eq. (2.1.25) implies that

(2.1.32) k]* = 2°(1 + x(1)) == ¥().

The group velocity is

2.1.33 = = k.
(21.33) v =v(8) = iy b
The wave is outgoing exactly when k; < 0.

The main reflected incoming phase is associated to §! = (r, k... k41, —k,). Tts group

velocity is v! = (vy,..., v, 1, —Vv,) = (v, —v,).
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The second harmonic reflected wave is §2 = (21, 2K’ —/~<;d) where /;d is the positive root
(when it exists) of

(2.1.34) Ak 2+ k2 == ©(27).
Its group velocity is

) -
2.1.35 2= (2K, —kq).

(21.35) ¥ = gy (2~

As usual for dispersive equations, we see that the first and second harmonic time-oscillations
eIt/ and e*I/¢ propagate at different speeds |v!| and |v2| respectively. But because kq # 2k,

we see that they also propagate in different spatial directions if k" # 0.

We end this introduction with several additional remarks.

Remarks 2.1.2. 1. In this paper we consider the equation Eq. (2.1.10) with polynomial
source term f(u). The case of general equation Eq. (2.1.9) with source term F(u,e!/P)
is quite similar (see [27, 32]) : one replaces the expansion (2.1.11) by

2.1.36 Sa) ~ S ePU (5, 2
(2.1.36) u (@) ~ U (w2
and one uses the expansion

(2.1.37) F(u,e/P) ~ Y "™ £ (u)

where the polynomials f,, are given by a Taylor expansion of the original source term
®(v) in Eq. (2.1.7).

2. The dispersive character of the equation implies that in general the principal term U°

is expected to have a finite oscillating spectrum (see [42, 15]). The polynomial character
of f is crucial in the analysis below : it implies that nonlinear interactions create at each
step only finitely many new phases, so that each term in the expansion U" is expected
to have a finite spectrum, increasing with n but finite for each corrector. This allows to
work with profiles (2.1.19) which are finite sums and eliminate the questions about the
convergence of these series.
For non dispersive equations, the spectra are not finite in general, but they are contai-
ned in finitely generated groups so that it is possible to represent the profiles U™
as functions U"(z,¢1/e, ..., pm/€) with a finite number of phases ¢;(z) and profiles
U™(x,01,...,0m) periodic in the fast variables 6; (see e.g. [23, 24, 45, 47]). In this case,
the analysis can be carried out in classical function spaces for the U™, typically Sobolev
spaces. In the dispersive case, in general the expected spectrum is not contained in a
finitely generated group, as explained above. Thus the consideration of non polynomial
interactions f in Eq. (2.1.10) immediately raises the difficult question of convergence of
the series (2.1.19) for correctors and of the choice of good functional spaces. A possibi-
lity, for real analytic f, would be to work within the Wiener algebra of almost periodic
profiles U as in [26, 33].
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3. Finally, we mention the important question of curved boundary and/or non constant
coefficients equations and/or non planar phases. In this case, the dispersion relation
equations are replaced by eikonal equations. Using the polynomial character of f, to find
a finite expansion (2.1.11), we only have to solve a finite number of eikonal equations.
This can be done if one assumes that there is one incident phase ¢ and that (z/, ndLp)
is never a glancing point for all 2/ on the boundary or the interface and all harmonic
n € Z\0. In this context, we refer to [9] for a complete analysis of geometric optics
for non dispersive wave equations. We also refer to [7] for the analysis of a nonlinear
glancing case. In the dispersive case, assuming that all the necessary phases are found,
the analysis below can probably be repeated in the geometric optics regime, using the
appropriate non constant coefficient transport equations to find the profiles and the
appropriate estimates for non constant coefficients hyperbolic boundary value problems
to prove the convergence.

2.2 Dispersive geometric optics at boundaries

2.2.1 Notations and Assumptions

We consider a D x D constant coefficient system (2.1.8) L(ed,) = > eA4;0; + LY on the
half space R1T? = {x, > 0} with boundary conditions 7.

We next give many assumptions often tricky and not obvious at first sight. However all
are duly satisfied by the maxwell system (2.1.2)-(2.1.4). The next section is devoted to check
them.

We assume that this system is hyperbolic symmetric, that the boundary is characteristic
and T is maximal dissipative ( see [38, 42] for example) :

Assumption 2.2.1. (H1) there is a matriz S such that the matrices SA; are symmetric with
SAg definite positive, and SL is skew symmetric.

(H2) dim(ker Ag) = Dy > 1.

(H3) SAy is non negative on the space ker T' and the rank of T is equal to the number of
negative eigenvalues of SAg counted with their multiplicity.

Multiplying the system by on the left by (SAg)~'/2S and on the right by (SAg)~1/2
reduces to the case where S = Ay = Id and the A; are symmetric. and LY is skew symmetric :

(2.2.1) Ag=1d, A;="'A;, Lo=-"L.

Changing bases, we can further assume that
_ (A0
(2.2.2) Ay = < ; 0>.

with Allil invertible. The diagonal blocks have dimension Dy and D respectively, with D +
Dy = D. Since (H3) implies that ker Ay C ker T, there holds

(2.2.3) T=(T" 0)

that is Tu = T u' for u = ‘(ul, u?).
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The symbol of L is
d

(2.2.4) L(i€) =) "igA; + L.

§=0
It is a skew adjoint matrix. Recall the following definitions (see e.g. [15] for the dispersive
framework)
Definition 2.2.2. 1. The real [resp. complex | characteristic set of L is the set of ¢ € R
[resp. € € C*? such that det(L(i€)) = 0.
2. A real mode € € charL is reqular if there is a C*® function X : R — R such that near
§ € charL is locally given by the equation &+ A(€1,...,&q) = 0.

Remark 2.2.3. A real root may be non reqular. This happens for Mazxwell-Lorentz system at
& = 0 where three characteristic sheets meet and at & = (+wy,0,0,0) where two sheets meet
tangentially.

As mentioned in the introduction, the “microscopic” equation reads L(0x)U = F. By

Fourier expansion in ¢ = (&,...,&4_1) € R? this equation is transformed into
(2.2.5) (Aqdx, + L'(i€"))U = L(i¢', 0x,)U = F,
where, using the same block decomposition as in (2.2.2) :
. d-1 ‘ . o2
(2.2.6) L'(ig) = ;}Z@AJ’ + L7 = <L21 L22>

This is a system of ordinary differential equation in X4, which is singular since Ay is not
invertible. Plane wave solutions like e’$¢Xd are found by solving the equation in &4

(2.2.7) det L(i€', i€4) = 0.
From hypothesis (H2), the characteristic polynomial expands
det L(i€) = (i€q)™ det AL det(L#(i¢')) + OB 1.

In particular, the number of roots in &; depends on the invertibility of L?2(i¢’). (see the
analysis in [38]). Referring to [47] we use the following classification :
Definition 2.2.4. 1. A real root in & of (2.2.7) is

(a) hyperbolic incoming if £ = (§',&4) is regular and O, A(§) >0 .

(b) hyperbolic outgoing if & = (£',&q) is reqular and 9, A(§) < 0.

(¢c) glancing if it is reqular and O, \(§) = 0.

2. A complex root in &g of (2.2.7) is

(a) elliptic incoming (evanescent) if Im&q > 0,
(b) elliptic outgoing (explosive) if Im&y; < 0,
We denote by Z, O, G, &y and &g, the associated sets.

In (i), A denotes the local equation of char(L) as in Definition 2.2.2. Complex phases
appear in cases of total reflection or transmission.
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Writing U = (Uy,Us), F = (F1, F2), equation Eq. (2.2.5) reads :

(2.28) AVl ox, Uy + L1 (i) Uy + L2 (i€ ) Uy = Fy
- L2 iUy + L2(i€"\Uy = F.

Its solvability depends on the invertibility of L?2(i¢’). As it is skew adjoint let 722(¢’) be the
orthogonal projector on KerL??(¢') and Q?%(¢') the partial inverse such that Q%2(¢/)n22(¢') =
0. Thus Eq. (2.2.8) is equivalent to

M(¢ ) =72 (1)

(2.2.9) (0xd+G( &)U +(A“)_ (M) U2 (2)
(1= 72(¢"))U2 = QP(¢)(Fr — L*'Uy)  (3)
where
M (&) = 72 (&) L (i€)),
(2.2.10) G( )= (A”) YL (i) — L) Q% (¢ L*' (i¢))),

= (Ag) 1 — LB(i8)Q%(¢) Fa).

We have used the notation for the hermitian transpose M* = ‘M. Note that G is square but
not symmetric.

To solve the equations Eq. (2.2.5), we need assumptions on the matrices L®(i¢’). At
this stage, we do not pretend to full generality but consider cases which are realistic for
the Maxwell’s equations. First, because the profiles we are looking for are periodic or quasi-
periodic functions of the fast variables X, the tangential frequencies ¢ are restricted to belong
to a discrete subset A’ of R?. Because we solve nonlinear equations, we have to consider linear
combinations of oscillations and we assume that A’ is an additive subgroup of R%. Typically,
for one incoming oscillation of space-time frequency § = (é’, § d), the choice is

(2.2.11) A =17g.
Motivated by the example of Maxwell’s equations, we make the following hypothesis :

Assumption 2.2.5. We are given an additive subgroup A’ of R and for all € € A\ 0
1. L%(i¢') is invertible,
2. the real roots in &g of the characteristic equation Eq. (2.2.7) are regular and non glan-
cing.

Under this Assumption, the equations Eq. (2.2.9) simplify and

. ox,U; = —G(&\Uy
2.2.12 L(i¢,0x)U =0 & d 14
( ) ( 3 Xd) { Uy = —(L22(£/)) 1L21(£/)U1
Moreover, &, is a root of the characteristic equation Eq. (2.2.7) if and only if —i&y is an
eigenvalue of G(¢’). They split into real roots, which are by Assumption 2.2.5 either incoming
or outgoing, and non real roots, which are also either incoming or outgoing, according to
Definition 2.2.4. Denote by Ep; -(§) [resp. Ej ,(£')] the spectral space of G(&') associated to
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the incoming hyperbolic [resp. elliptic | roots. Define similarly EEG and EE ¢« the spectral
spaces associated to outgoing modes.
The non-glancing assumption implies for all £’ € A’ \ {0}

(2.2.13) CPt =B () @ Eg (&) @ Ef (&) @ EY o (€).
By (2.2.12), the spaces E;G C CPr and EEG can be lifted to CP :

_ , Id _ ,
EH,L(g) = <—(L22)—1(ig/)Lm(z’g/))EH’G(g)

with a similar formula for the EE ;, and the elliptic spaces E% .- Moreover,

(2.2.14) Ep €)= @B kerL(i¢, i),
€4l (€ .£0)€T

with similar formula for EJI_} ;, and EE ;, summing over the roots &g such that (£',&;) € Z and
(€,&4) € E.p respectively.

So far, the boundary conditions were ignored in the discussion. They come in when one
solves the propagation equations for profiles. Assumption 2.2.5 implies that when £’ # 0, they
are scalar transport equations concerning the hyperbolic modes, see section 4 below. To solve
them, one is lead to impose the following Lopatinski-type conditions (see [30, 38])

Assumption 2.2.6. Lopatinski type conditions : For all ¢ € A’\ 0
dim(Ey ; (£)) + dim(Eg (£) = rg(T),
ker TN (B 1 (&) ®Ep 1 (€) = {0}.

Equivalently, the conditions read
dim(Eg (€")) + dim(Eg (€) = rg(T"),
ker 7' N (B ¢(¢)) © B ¢(€)) = {0}

The case of the frequency ¢ = 0 is quite different. Inspired by Maxwell’s equation, we
make the following assumption

Assumption 2.2.7. For £ =0, the following conditions are satisfied :
1. {0} # ker L?2(0) C ker L'?(0),

2. G(0) =0,
3. the real roots in &, of the characteristic equation L(0,i€z) = 0 are regular except for
§a=0.

Condition (i) is equivalent to L2(0)7?2(0) = 0, hence by symmetry to M (0) := 722(0)L?1(0) =
0. It implies that for all &4,

(2.2.15) (ker L022 (0)) C ker L(0, i&)
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with equality exactly when i§; is not an eigenvalue of G(0). Moreover, (2.2.15) implies that
(2.2.16) {0} x C C charL.

If in addition the regularity condition iii) holds, the dimension of ker L(0, i) is constant for
&4 real positive and £, real negative. Thus, G(0) has no purely imaginary nonzero eigenvalues.
In this context, condition ii) is natural.

Under Assumption 2.2.7, equation Eq. (2.2.8) is equivalent to

722(0)F, =0,
(2.2.17) dx,Ur = F1,
(1 —722(0))Us = Q%(0)(Fy — L**(0)Uy).

We consider now the nonlinear equation Eq. (2.1.10) in the context of geometric optics :
(2.2.18)

where

J
(2.2.19) F) =" f/(u)

J=0

is a polynomial of degree J, sum of homogeneous terms f7 of degree j. According to the
decomposition (2.2.2), we use the notations

f 1(U)>
u) = .
fw (fz(u)
As in [15], the dispersive character of the equation leads to consider oscillations with finite
spectrum. However, property (2.2.16) and the generation of new characteristic modes from
oscillations of boundary terms make the situation more delicate. If (0,&;) belongs to the

spectrum of U, then all the harmonics are created by nonlinearity and are characteristic. To
prevent the spontaneous formation of such modes we make the following hypothesis :

Assumption 2.2.8. For all u, 722(0)f2(u) = 0.

Having taken apart the component {0} x R* of charL, R* = R\{0}, let introduce the
notation

(2.2.20) (charL)* = (charL) \ ({0} x R¥).

Next, we assume (see Assumption 2.2.9) that we can find finite spectra A for which any
resonant harmonic &, ¢ # 0 lies in A N (charL)*.

In practice, such resonances are discrete phenomena, and spectra without resonances are
“generic”. We will explain this on the example of Maxwell’s equations.

We denote by Ag a finite set which will contain the spectrum of the principal profile UY.
We assume that Ag is symmetric, that is Ag = —Agp, so that we can consider real valued
profiles. If U° has its spectrum contained in Ag, then the spectrum of f(U?) is contained in
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(2.2.21) N(ho):= ] 1xAg
{1:£10}

where for all £ € N and all subset I of some space R"

(2.2.22) kT :=T+4... +T.
~—_———
k terms
with the usual convention that for £ = 0 the set in the right hand side is {0}. Similarly, the
spectrum of V, f(U°) is contained in
(2.2.23) N(ho):= | (G—1) =4
{5:f7#0}

We make the following remarks : using the trivial relation £ — £ + £ = &, we see that if T is
symmetric, that is if —I' =T", then k« ' C (k+2)« . If 0 €T, then k«I' C (k+ 1) = I.

Assumption 2.2.9. 1. We are given symmetric finite sets Aj C A’ and Ag C A’ xR such

that

(2.2.24) (Aj x R) N (charL)* ¢ Ag C (Af x R) N charL
and

(2.2.25) N(Ag) N (charL)* C Ag.

2. For all k > 1 in general and for all k odd if f is odd, there is a symmetric finite set
Ay C A such that Ay D kA and Ay = (A} x R) N (charL)? satisfies

(2.2.26) (M (Ag) + A1) N (charL)* C A;.

Remark 2.2.10. Condition 2.2.24 is required in order to include all the possible reflected and
transmitted oscillations. Condition (2.2.25) is a natural extension of Donnat-Rauch condition.
The existence of wave numbers (0,&;) # 0 in N (Ag) cannot be completely ruled out. These
frequencies are necessarily in charL by (2.2.16) and cannot belong to Ag if this set is finite.
In this case Assumption 2.2.8, a transparency-like condition, implies that the bad extra
oscillations will not be created, if not already present in the initial data.

Remark 2.2.11. Let £ € R?\ {0}. For all s € R* denote by & = p(s) the real roots
of det L(is¢’,i&;). The number of roots may depend on s, as in the example of Maxwell
anharmonic model. Take A/ = Zsg', Ny = {£s€,0} and Ay = {(£s¢, 1/ (£5))} U {(0,0)}.
Condition (2.2.25) is violated if there are signs ¢, € {1} and choices j; and j such that

p (ns) = Z,ujk(sks), n= Zak, In| > 2.
In general, the 7 are nonlinear (and non homogeneous) functions of s, and for a given choice of

signs and indices, the condition is satisfied at most for a discrete set of values of s. This shows
that the condition (2.2.25) is satisfied for almost all choice of s. The same reasoning applies
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for all finite number of harmonics A} = {ns¢, |n| < k}, and (2.2.26) is generically satisfied.
This will be made precise for the Maxwell anharmonic model below. This reasoning indicates
that in general, there are no resonances at all. However, our setting allows a finite number
of resonances, to be included in Ag, and this is important for applications for instance to the
harmonic generation.

Remark 2.2.12. When f is odd, one can choose Aj and A} which do not contain 0. This
means that there are no interaction of oscillations with the mean field (no rectification).
In this case, the analysis is much simpler. However, we want to include in our analysis the
possibility of rectification, which in particular occurs if f contains quadratic terms. Thus, the
possibility that 0 € Ag is studied in detail.

2.2.2 Main results

From now on, we always assume that the above assumptions are satisfied.

Profiles.

With A’ C R? the set of tangential modes, one defines P as the set of profile U (2.1.19)
with tangential spectrum contained in A’. For the reader’s convenience we recall the definition
and introduce new notations :

Definition 2.2.13. 1. PZ, is the set of functions U(x, Z) which are finite sums U(x,Z) =
S el 2 U (x) with coefficients U, € HOO(RSJFH).
Pz, is the subspace of sums with frequencies &g # 0.
2. PZ, is the set of functions U(x, Z) such that for some § > 0, Ue®? € H®(RIT! x RY)}.
3. Define P? :=PZ, @ P;,.
4. The space of profiles P is the space of finite sums
(2.2.27) Uz, X) =Y Ug(a,Xg)e™™',  with Ug € P*.
geN
For U € P given by (2.2.27), the tangential spectrum of U is the (finite) set of & such
that Ug # 0. Each Ug is split into

(2.2.28) Uer = Ug o5 + Ugr ey With  Upgr o5 € Pz, Ue v € PZ,.
Moreover,
(2.2.29) U os(,Z) = Y _Ulgr g ()€™,

&

The spectrum of U is the set of (£/,&4) such that Uierep) 7 0. As seen in the previous section,
the mean mode & = 0 plays a very particular role and for £ = 0 we also use the following
decomposition

(2.2.30) U,os(, Z) = Ug ps (2, Z) + Ug(x)
where Uy = U o) corresponds to the frequency ; = 0 in (2.2.29).

The definition above is given for functions of =z € RT’I = {xq > 0}. It immediately
extends to functions of (z, X') with o =t € [0, ¢,], a finite time interval. When it is necessary
to make this explicit, we denote by P([0,.]) the corresponding space.
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The microscopic equation.

Our first result concerns the general solution of equation Eq. (2.2.5) for source term
expanding as a trigonometric sum of tangential modes.

Theorem 2.2.14. There are projectors P and P* and partial inverse Q acting in P such that
such that for all F' € P the equation

LOox)V=F
has a solution V € P if and only if P'F = 0. The general solution is
V =QF +PV.

The precise definition of the projectors is given in section 3. Note that in this theorem, the
slow variable x is a parameter and that the operators act tangential frequency by tangential
frequency : for U given by Eq. (2.2.27), there holds

(2.2.31) PU =Y e X' P(E)Ue
é‘/

with similar formulas for P* and Q. Moreover, for each ¢’, the operators decompose according
to Ug! = US’,os + US’,eva into

(2232) ]P)(g/)UE’ = POS(S/)UE’,OS + ]P)ev(g/)Uf’,ev
the first term belonging to PZ, and the second one to PZ,. In addition, when & = 0,
(2233) ]POS(O)U(] == PZSUE’,OS + EOQO
with PL.U s € Pss" and PyU(z) constant in Z.
Lastly note that the pojectors P and P differ in two ways : For ¢ # 0,P!, = 0 while
P, # 0. Then for £ =0, P = P,,.
WKB solutions.

We look for asymptotic solutions (2.1.11) of the equation Eq. (2.2.18).
We look for a two scales expansion u® = U (e, z, z/e) with

(2.2.34) Ule,z,X) ~ Y U (2,X),
Jj=0

with profiles U7 € P.
Then plugging the WKB expansion (2.2.34) in (2.2.18) yields

(2.2.35) L(edy)uf —ef(uf) ~ Y & (L(Ox)U7™ + L1(9,)U7 — FV)
Jj=0

Canceling successively all the ¢/ coefficients gives the equations :
(2.2.36) L(0x)U° =0,
(2.2.37) L(Ox)U? = FI71 — 11(9,) UL, j>1.
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Similarly, the boundary condition Tu®|,,—o = 0 yields the equations
(2.2.38) TU? )= x,—0 = 0.

In particular the equations for the leading profile U read

(2.2.39) U’ =PU°,
(2.2.40) PIL1(9,)PU° = Pif(U?).
(2.2.41) TUp, —x,=0 = 0-

Initial conditions for U° read
(2.2.42) Upo=xo=0 = H".

For solving these equations, the data must satisfy polarization conditions for the oscilla-
tions, and compatibility conditions at the corner {xg = x4 = 0}. As usual in the analysis of
WKB solutions, we satisfy the polarization condition by choosing

(2.2.43) HO = HO\XO:O with H° e PPzo=0-

Moreover, we choose H? with spectrum contained in Ag and instead of Eq. (2.2.42) we solve

(2.2.44) U%zo = 0) = H.

We do not make explicit the compatibility condition at the corner. We just note that they
are automatically satisfied if H is infinitely flat at x4 = 0.

Theorem 2.2.15. Suppose that H® ¢ PPzy—o has its spectrum contained in Ao and is
infinitely flat at x4 = 0. Then, there is t, > 0 such that the profile equations Eq. (2.2.39),
Eq. (2.2.40) with boundary condition (2.2.41) and Cauchy data (2.2.44) has a solution U° €
P([0,t]) with spectrum contained in Ag.

This theorem is proved in section 4, where we also make explicit the profile equations. We
just point out here several remarks. The polarization condition (2.2.39) implies that

U (2, X) = Ugs (2, X) + Ugy (2, X)

_ 0 i X €4 X
— Z Uler ¢, (2)e (€X' +€aXa)
(€",8a)€M0

* Z Uﬁo’,ev(gj? Xd)eiEIX/
¢ren)

with the Ugo,’ o, €xponentially decaying in Xy. The U, &, £) satisfy the usual polarization condi-
tion

Uler ¢y € ker L(i€',i€y).
The evanescent terms UJ, o Satisfy

U&’,ev) € EE‘,L(él)
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Using the properties (2.2.32) and (2.2.33) and the assumptions of section 2.1, we show in
section 4 that the equations Eq. (2.2.40) read

0 — 10 /
Xeelee = e €70
(2.2.45) KOU(O,O) = F(O,O)’
YU(?::S = YU&@U =0,

where the F(ng,gd) are the Fourier coefficients of FO = f(UY). Moreover, the Xerg,) are

the usual transport at the group velocity corresponding to the regular modes (¢',&y) # 0
(see [15]) and X is the hyperbolic systems associated to the singular mode 0 (see [32]). The
new operator Y is a transport field parallel to the boundary.

The boundary conditions read

{ T( ng U(Ogl’gd)lxdzo) + TUg’7eU‘Z‘d=Xd=0 = 07 5/ ?é 0

2.2.46
( ) TU(O,O) - O

Thus, we see that we have a system of hyperbolic equations for the U?,, coupled through the
nonlinearity f, and coupled to the evanescent part U2 only through the boundary conditions.
That the right hand side of the third equation in Eq. (2.2.45) vanishes, follows from Assump-
tion 2.2.8. In particular, if the initial data for U(())::s and U((]],ev vanish, these terms remain equal
to zero for all time.

The key point for proving Theorem 2.2.15 is that systems (2.2.45) (2.2.46) look like an
hyperbolic maximal dissipative initial-boundary value problem, so that the methods of [42, 19]
can be adapted.

There are similar but linear equations for the other profiles U". They have the general
form

(2.2.47) (1-P)U™=QR"},

(2.2.48) P'Ly(0,)PU™ = P! (f'(U")PU™ + R* 1),

(2.2.49) TPU[; _x,— = R",

(2.2.50) ]P’U‘ZOZO =H",

where the R"~! denote various terms in P which depend only on U°,..., U™

The next result gives the existence of reflected-transmitted WKB geometric optics solu-
tions of infinite order to the problem (2.2.18), under the assumptions of Section 2.1. Given
Ao, we denote by Py, the set of profiles with tangential spectrum contained in a multiple
k= Af), with k odd if f is odd.

Theorem 2.2.16. Let (ﬁ")ngo € PPrinli=o be a sequence of initial data, infinitely flat at
xq = 0, with the spectrum of H® contained in Ag. There is a t, > 0, and a unique sequence
of solutions U™ € Prin([0,t.]) solution of the profile equations.

Convergence.

The WKB solutions provide asymptotic solutions u (2.1.11), to infinite order. Keeping a
finite number of terms in the series we obtain approrimate solutions

(2.2.51) Upp(@) = S Uz, g)
k=0
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which satisfy the equations up to order ™. We look for exact solutions

(2.2.52) uf () = us, () + Mot ().

app
We follow the method developed by O.Gues [20], constructing and estimating v¢ in functional
spaces where the derivatives are weighted by e, so that functions U(x,z/e) are naturally
uniformly bounded in such families of spaces. However, we need to adapt the analysis to the
case of boundary value problem, with possibly characteristic boundaries (see also [13]).

Before stating the results, we introduce the necessary functional spaces, which are also
used in the proof of Theorem 2.2.15.

We use the notations = = (zg,x1,...,%q4) = (x0,2”) = (t,2”), and work in the half space
R4 = {z" : 24 > 0}. Following [42] the tangential spatial Sobolev spaces are :

HERL) ={ue L*RL) : o/ ... " 'ue L my+...+ma1 <m}.
Then the C"™-tangential spaces are

T™((0,t.] x RZ) = (1) C([0, 8], Him " (R)).

tan
r<m

Then, as it is known for maximal dissipative characteristic boundary problems with constant
coefficients one can easily get estimates in 7. But since the boundary is characteristic, in
general, one can’t fully express the normal derivative through the equation. Following [19],
the natural estimates require two tangential derivatives for one normal derivative. This leads
to introduce the spaces

E;Z(]Ri) ={u : aﬁdu € Hy,,(RL) for 2k +7 < m}.

Then the C"™-space
E™([0,t.] xRL) = (] C"([0,t.], ERT).

r<m

These spaces are equipped with the obvious norms.

To prove the stability of the WKB expansion we take into account the fast oscillations
by taking weighted norms : in the definitions above, we replace the tangential derivatives
Orgr--+>Dzy | by €0zy,...,€Dy, , and the normal derivative 0,, by 528“. This does not
change the space but changes the norms. We denote them by using the superscript . For
instance ,

lu®lsmeoey = >0 1 sup [92u(t, ) o,

204+ |<m te[0,tx]

Similar explicit definitions are given in Section 5. As usual, we say that a family v is bounded
in such a family, say E"¢, if the family {||v°|gm.} is bounded.

We can now state the stability theorem. We suppose that we are given a WKB solution
on [0,t,] x R% as in Theorem 2.2.16, and we consider and approximate solution Ugpp @S In
(2.2.51). We consider the Cauchy problem for (2.2.18) with initial data

(2.2.53) U 1= = Usppli=0 + " RE.
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For the initial data, we use the following weighted norms :

||h€||H§”(Rd+) = Z g‘a”‘Ha{?’,’,hHLQ(Ri)'

‘Q’N‘Sm

Theorem 2.2.17. Suppose that n > M > m are integers, with m > dizl even. Suppose that

the family h® is bounded in HI"™ and satisfies
8];(111‘%:0 =0, forke{0,...,m—1}.

xq = 0. Then there is g > 0 such that for all € €]0,g9] the Cauchy problem (2.2.18) (2.2.53)
has a unique solution u® in E™*([0,t.]). Moreover, u® = ug,, +eMv® . with v* bounded in
E™((0, 24]).

Note that the bounds imply that e~ (@+1)/24¢ is bounded in L™ (see Section 5) together
with similar estimates for the derivatives. Thus, choosing M and n large enough, we see that

u® — ug,,, can be made small in any Sobolev space.

2.2.3 Verification of Assumptions for the Maxwell anharmonic oscillator
model.

Assumption 2.2.1 (H1) : Symmetrisable system.
Reducing the problem to a the half space {z4 > 0} leads to L(0,)U = F, x4 > 0 with

L(dy) = (il(oam) LT?@)) = <?>

where L; = Li(0yr,—0,) and L; [resp. L,| is the maxwell operator in the region x4 < 0 [resp.
xq > 0].

i&ol3 if” N - 03 I3
—Zf// A~ iéls 03 03

L Z , 1 — )
1(i(€0,€7)) 0 03 itols —Iy
— 13 03 wily i&ls
. . . S 0 . .
As L is not symmetric we multiply L on the left by S = 0 S where S} is a symmetrizer
T

for L.
Sy = diag(I3, I, wit /s, 1/ 1s).
Interverting the indexes [, r one gets a symmetrizer for L,. The factor u; allows not to sym-
metrise the boundary conditions.
Then, the decomposition of the operator by blocks is achieved by a reordering of the basis
in B = B1UBy where By is the base related to E, £, B, B, and By is related to E,, B,, P, Q.
The boundary matrix then writes

0 0 0 -1
0O 01 O 0
Az = 0 10 0 48
-1 0 0 O
0s,4 0s,8

thus dim(ker(As)) = 8.
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Assumption 2.2.1 (H3) : Maximal dissipative boundary condition

The boundary operator in (2.1.10) takes the form T' = (—As, A3) (12 x 24 matrix) and
the normal matrix of the symmetric operator SL is

(=S435 0
A3_< 0 STA3>'

One has
(AU, U) =E;Ne3 - yB; — E. ANe3 - 1,B, = (E; Aeg) - (B, — yB;) =0

Thus T is dissipative. Then rg(7T") = 4 and the number of positive eigenvalue of Ajz is 4 (2
iy, and 2 p,7,). This proves the maximality.

Assumption 2.2.5.

Here, we compute the characteristic values of L??(i¢’) and the values which are non regular
and glancing for L to deduce a suitable set A’ for which Assumption 2.2.5 is valid.

However using the diagonal shape of L we just need computing the zeros of the characte-
ristic polynomial of L;. Indeed remark that under a simple basis change one has

LD L200)) . iy (L9@) 0
L(ax) ~ <L21(8x) L22(8x)>7 L (ax) —< 0 ng(aﬂﬁ))

So the bad values for L are the union of the bad values of L; and L,.

detL72(i€") = &3(65 — wi — (& — w)*.

Note A2 = {¢' = (£, &1, &2) such that & = 0, +w;, £1/w? + 7} . Choosing a tangential
resonance set Ao’ C R3\ A?? a root in & € Ay’ of detL;(i(&,n,£q)) = 0 is a root of

(2.2.54) (&8 —wi =) — (& =) (Inl* + |€af*) = 0

Setting 0; = w? + v, + |¢”|?, one has & = :I:\/al/Q + y/o? — 4w?|£"|?/2 which is C*° for

all (n,&4) # 0 so it is regular. And g—gg = m. Thus to be non glancing one requires
&4 # 0 that is

(P) €& —wm —ym) # (6 — win)Inl*.
Thus to satisfy Assumption 2.2.5, one must take A’ C R?\ (A?* U A2¥ U A,') where Ay
is the set of tangential resonances satisfying (P;) or (FP,).

Assumption 2.2.6 : The Lopatinski conditions.

First we look for the eigenspaces of G. For each &', on each side, there holds

C'=Eg(¢) @ EH(€) or C*=Eg(¢)eELE).
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Indeed let € an eigenvalue of G then (£',&;) € char(L) and it is solution to Eq. (2.2.54).
Thus (&', —&4) is also in char(L) and —&; an eigenvalue of G. Now, from [13] the dimension
of the eigenspace is two. It looks (in the initial basis)

iz

H(O)Ue = (B, £ AB, (O, iox(OE). ¢ £0 with ¢’ E=0.

Next, to show the second part of Assumption 2.2.6 let solve T'(mU;, n,.U,) = 0 where T
is given in the introduction (Eq. (2.1.5), Eq. (2.1.6)) and mU; € Ey; (&) or E ,(¢') and the
same with .U, (7, is a projector on Ep; (&) or E,  (¢') depending on £ is real or complex).
Note £ = (€,7,£3) and B = (/).

From the jump equation, E,,, = E;;; = E/,. From the jump equation on B, ur(ggEr// —
1" Er3) — m(E5Ey — n' Eig) = 0.

Asn" =1 =n, (ur&s — wE)E)) = (urErs — uEiz)n.

Using the condition E,, - &, = 0, m € {l,r} = E,3¢} = Ej3¢,. Thus scalar-multiplying by

nés
&5 (s — s (—EE3) = Bz (el — i€h)|n|?. And
E =0 <= (& — méh)&8 # — (&l — m&)nl* (@)

with [€5]* = &5 (xr(€0) — x1(€0)) + I€5)°
Thus one chooses Ay C (Aj x R) N {¢, (Q) is true}

Verifying Assumption 2.2.7.

— det(L?%(0)) = 0.

~ L'2(0)7?2(0) : 722(0)W = (FE3, B3, 0,0, x(0)E3,0,0,0), and L?*(0)V = (0,0,0,0,0, E1, Es,0)
so m22(0)L2(0) = 0.

- £ =1(0,&), & # 0 is regular. However £ = 0 is not regular since three distinct sheets

cross in this point : §g = 0 and &y = :l:\/al/2 —\/o? — 4w?[¢"|?/2. The first exhibits

a glancing situation but as all the derivatives of £, = 0 are null one can’t expect the
apparition of a new intermediate scale as described in [47].

— For &, = 0 we make the change of basis : By — Bj = (er, es,e9 — x(0)es, €10, 11, (w? +
x(0)y1)e12, e5+x(0)eg, es) and call P the associated matrix. Thus setting L} = P~'L,P,

04 L2 039
Li= (-2 12 o
023 026 022
Where

05 —D
22 3 12
B <D 03>’ L2 = (0 M)

with D diagonal invertible. Remark in this basis G(0) is equivalent to (%*) with G* =
L12(L22)_1tL12. But
. _ 12y ( 03 —D7! 0y _
e = (2 T () <o
Thus G(0) = 0.
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Verifying Assumption 2.2.8
F, = (03,03,03,h(P)). In the basis (By,B2) it writes F} = (F}',F?) = (0,F?) with

F? =(0,0,03, h(P)) and kerL?(0) = Vect((0,1,03,03), (w?,0,0,0,7,03)). Thus 7?2 F? = 0.
The same analysis runs for the subscript r and lastly in the product space.

An example of Ay which fulfills Assumption 2.2.9.

We consider again the example of Remark 2.2.11. Choose §’ € charL; N Q and take Ag as
a net of basis {££, ££} = {(£¢/, £&(£L))}-

In general except the basis itself, no mode in Ag is resonant. Indeed let £ = a1 + Oégg =
(O'g/,(sfd(g)) with o0 = a1 + s, § = a1 — as.

9 1+ Xr(aéo)
L+x(E,)

¢ € charl, < 6> =0

The fraction must be rational : this is very seldom. In particular, taking all the coefficients
of xr, x; rational except =, , irrational, leads to irrational values of the fraction whatever o.

2.3 The microscopic equation. Proof of Theorem 2.2.14

We consider the fast scale equation L(0x)U = F' in the space of profiles P, with the goal
of making explicit the kernel and the range of L(Jx). In this analysis, the slow variable z is a
parameter and is omitted in the notations for simplicity. Expanding the equation in Fourier
independent tangential modes reduces to solve the equation Eq. (2.2.5), (Aq0x,+L' (i) Usr =
Fy for every & € A\
- ‘First case : ' #£0 ‘ The spaces PZ, and P72, are clearly invariant by Ag0x, + L'(i¢'),
thus is sufficient to study the equation in each space separately.

1. Oscillating terms.
For & € A"\ {0} and &; € R, let 7(¢’,&;) denote the orthogonal projector on the
kernel of L(i¢',i&y). It satisfies

L(igla igd)ﬂ(€,7 gd) = 7T(€,, fd)L(Zfl, ng) =0

and (&', &4) # 0 if and only if (£/,&,) belongs to charL. Let Q(&',&;) denote the
partial inverse of L(i£’,i€;) such that

L(if/,ifd)Q(f/,gd) = Q(g/afd)L(Zf/’igd) =(1- W(fl,fd)),
Q& &a)m(¢, &) = 0.

For U(Z) =Y Ug,e%? € Pz and F = Fy e%? € P2 € P2, let

(231) Pou(€)U(2) = Biy(€)U(2) 1= 3 (€ E0)Ug, 47,
&d
(23.2) Qul(€)F(2) = 3 QI &) P, €47,
&d

With these notations, there holds
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Lemma 2.3.1. For all £ € A"\ {0} and F € PZ; the equation
(2.3.3) (Ag0z + L'(i&)NHU = F

has a solution U € PZ, if and only if P’ (¢')F = 0. In this case, U is a solution if
and only if
U= QOS(fl)F + ]P)os(f/)U-

Démonstration. The equation reads L(i€,i&q)Ue, = F¢, for all £ in the (finite)
normal spectra of U and F'. This has a solution, if and only if 7(¢&’,£4)Fe, = 0 and
U, is a solution if and only if Ug, = Q(&',&a)Fe, + m(€', €a)Ug,-

Adding up in &4 gives the result. O

. Fvanescent terms.

We consider next the equation Eq. (2.3.3) in spaces of evanescent profiles. Using
the block decomposition U = (Uy, Us), Assumption 2.2.5 implies that the equation
reads

(2.3.4) O7UL + G(EU, = AN (Fy — L™ (i) {L*?2 (i)} 1 ),
(2.3.5) Up = {L*?(i€")} 1 (Fr — L (i€")Uh),

Recall that Ep ;(¢) denotes the invariant subspace of G(¢') associated to eigen-
values in {Re > 0}. Denote by HEG(&’ ) the corresponding spectral projector. The
evanescent solutions of (8 + G (&)U = 0 are e=2CE)U(0) with U(0) € Ex (&)
This leads to define the projector

Id _ _
(2.3.6) Pev(gl)U(Z) = (—{L22(§/)}_1 L21(§/)> € GZPEGUl(O)
It maps P?Z, onto the kernel ker(L (i€, 0z)) N Pey.
Lemma 2.3.2. For all F € P?

ev’

(2.3.7) OgU +G(EU =F, Ty 4(EU0) =0,

the problem

has a unique solution U € PZ,. It is given by

UZ)=1F)Z) = / ’ eZVGENI ((&) Feu(y)dy
(2.3.8) 0

_ /Z FNCE (1 — 10, ((€))) Feo (y)dy.

Démonstration. The uniqueness follows from the remark preceding the lemma.
The convergence of the integrals in Eq. (2.3.8) follows from the estimates

|e(Z_y)Gl_[j_E al < e =Y for Z —y >0,

71 —Tg ) <12 —y|N, for Z -y <0,

for some ¢ > 0 and . Indeed, the Assumption 2.2.5 implies that the real eigenva-
lues of G are semi-simple so that one can take NV = 0 in the estimate above. Thus,
for F exponentially decaying, Eq. (2.3.8) defines I(F) which is also exponentially
decaying, and solution to Eq. (2.3.7). O
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For ¢ € A\ {0} and F € P2, define

/ Id 0
Qev(g )F = <—{L22(§/)}_1 L21(§/)> ]I(f) + <{L22(§/)}_1F2>

with F = A7 (F) — L12(¢){L?2(i¢)} 7. With Eq. (2.3.4) Eq. (2.3.5), we see that
U = Qe (&) F is asolution in PZ, of Eq. (2.3.3), and is the unique solution such that
I (§)U1(0) = 0, or equivalently, the unique solution such that Pe,(§")U = 0.

Collecting the results above, we have proved

Lemma 2.3.3. For all ¢ € A\ {0} and all F € PZ, the equation Eq. (2.3.3) has
a solution U € PZ,. Moreover, U € PZ, is a solution if and only if

U= Qev(fl)F + Pev(g/)U'
Because, the equation has a solution for all F', we set

(2.3.9) P (&) = 0.

- ‘Second case : &' =0 ‘

From Assumption 2.2.7, the equation Eq. (2.3.3) for & = 0 reads (see Eq. (2.2.17)) :

0zU1 = F := (A]) 7 (F1 — L(0)Q*(0) Fy),
(1 =7%(0))Uz = —Q%(0)(L* (0)Uz — F3),
722(0)Fy = 0.

1. Ewvanescent terms. For F € P?

Z,» the equation 0zU; = F has a unique solution in
PZ,, namely

02) = 1F)2) = - [ Fludy
Introducing
(2.3.10) Py (0) = P, (0) = (8 77229(0)) s
and

Qev(0)F = <_Q22((If)1 L21(0)> I(F) + <Q22(00)F2>

with F = (AID)7Y(F — L'2(0)Q*2(0) F,) as above, there holds :

Lemma 2.3.4. For ¢ = 0 and F € P?, the equation Eq. (2.3.3) has a solution
U € P, if and only if PL, F = 0. In this case, U € P?, is a solution if and only if

U = Qe(0)F + P, (0)U.
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2. Oscillating terms. Consider U = 3" Ug,e®? € PZ and F = Y Fy ea? € Pz,
The equation L(0,0z)U = F amounts to solve for all {; L(0,i&;)Ue, = F¢,, that
is

i€aUgyn = Fe, = (Aclll)_l(FﬁdJ - L12(0)Q22(0)F5d72)7
(1= 72(0)Ug2 = QP (O)(L* (0)Ug, 1 — Fey ),
7T22(0)F§d72 =0.
The analysis depends on whether &; vanishes or not. This leads to split apart the

frequency zero and use the notations (2.2.30) U = U + U* and F = F + F*.
Consider first the nonzero frequencies. Introduce the projectors

« _ mix 122 (0 0
(2.3.11) P, = Pl =TI @ 20))

which act on PZ. Introduce next

QOS(O)F = <_Q22(0) L21 (0)) Z Efﬁde sa?

£a#0

0
e
with F := (AI)~Y(F — L12(0)Q?%(0) F2) as above,

3. non oscillating terms
Finally, for the frequency &; = 0, consider the projectors and partial inverse

Id 0 i (0 0
Py = <—Q22(0)L21(0)) 7T22(0)> , By ="Ey, @0 = (0 Q22(0)> .

Adding up we define P,5(0)U = P U + P:.U* and similarly P _(0)F and Q,s(0)F.
With these notations, there holds

Lemma 2.3.5. For all F' € P, the equation
(Aq07 + L'(0)U = F

has a solution U € PZ if and only if P’ ,(0)F = 0. Moreover, U € PZ, is a solution,
if and only if
U = Qous(0)F + Pus(0)U.

Remark 2.3.6. For £; = 0 one might have chosen the usual Hermitian projector
m(0) on kerL(0) but to take into account the characteristic block decomposition
above, our choice of P, and P, which are not symmetric is more natural.

Collecting the Lemmas above, the Theorem 2.2.14 follows.
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2.4 Geometric optics, WKB solutions

In this section we solve the mixed boundary value problem (2.2.18) for times t of order
O(1) uniformly with respect to e, proving Theorems 2.2.16. We use a WKB asymptotic
expansion coupled with a discrete mode by mode analysis. We first expose the cascade of
equation and then determine the profiles. We end with the proof of Theorem 2.2.15 and
2.2.16.

2.4.1 The cascade of profile equations

Here we refer to the equations (2.2.36)-(2.2.38) and we expand the non-linear term when
plugging the infinite WKB expansion in it.

Lemma 2.4.1. 1. In the sense of formal Taylor expansions, if U is given by Eq. (2.2.34),

then

(2.4.1) fO)~Y i@, X) FeP.
Moreover,

(2.4.2) FO=f(U°, Fo =F(Usy),

and for j > 1,

(2.4.3) FI =V, fU + F, - Fl =V f(Ug)U3, + Fs

where FJ depends only on wO,..., U7,
Moreover, if f is odd and the tangential spectrum of (U, ..., UJ~Y) contained in an odd
multiple (2k + 1) x A{), then the tangential spectrum of Fi is contained in a odd multiple
(21 4 1) = A},.

2. If the spectrum of U € P is contained in Ag, then the spectrum of PF° is also contained
in Ao N (charL)!. Moreover, if Ay satisfies (2.2.26) and the spectrum of V. € P is
contained in A1, then the spectrum of P(f'(U°)V) is contained in Ay N (charL)®.

Démonstration. Let us note U = U 4+ eR!. Then writing the finite Taylor expansion for the
polynomial f, one has

J
1.
U)=fU"+) =¢'(R',.... R,
F(U) = F(U") ;jlw 2R
J
where J is the degree of f and ¢/ = V7 f(U") is j-linear with coefficients that are polynomial
in U°. Expanding R', there holds in the sense of formal Taylor expansions :

¢(R',....RYY= > Tt ATl U,
K,k >1

Thus Eq. (2.4.1) follows with FO = f(U°) and for j > 1, FV is a polynomial in Uy, ...,U; :

(2.4.4) F= > ¢ U Uk
kl-‘r...—l—kl:j
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Moreover, if f is odd, then in the sum above only terms with [ odd are present. The tangential
Fourier expansion reads

jo_ j k1 ki
(2.4.5) Fl= Y Yo U Uy
ki+..+ki=j & +...+E=¢

This shows (7).

Next, we note that f is a polynomial and that the multiplication of any profile with
an exponentially decaying profile in P,, is exponentially decaying and belongs to P.,. Thus
fU®) — f(UL) € Pey, implying the second part of (2.4.2). The proof of (2.4.3) is similar.

Suppose now that the spectrum of U? is contained in Ag. Then, expanding U2, as a linear
combination of exponential X with & € Ag, we see that the spectrum of f(UY,) is contained
in the set NV(Ag), union of the sets Nj(Ag) = {&' + ... + & : ¢F € Ao}, for j the degrees of
nonvanishing monomials in f, see (2.2.21). Thus

Foo= ) FPe™X and PoFg= Y GerX
§EN (Ao) §EN (Ao)

If ¢ € {0} x R*, G2 = ]P’ZSFgo vanishes by (2.3.11) and Assumption 2.2.8. If £ ¢ charL, then
Gg = 0 by definition of the projectors Pys(&’). Thus Gg =0if £ ¢ N(Ap) N (charL) which by
condition (2.2.25) of Assumption 2.2.9 implies that Gg =0if £ ¢ Ag.

Similarly, the spectrum of (f'(U°))__ = f'(UY,) is contained in A/ "(Ag) and if the spectrum
of V is contained in Aj, the spectrum of G = P(f(U°)V) is contained in N?(Ag) + A;.
With notations as above, the Fourier components G¢ of G,s vanish when £ € {0} x R* by
Assumption 2.2.8 and when & ¢ charL. Thus (2.2.26) implies that that G¢ = 0if £ ¢ Ay. The
proof of the lemma is complete. O

Applying Theorem 2.2.14, we see that the cascade Eq. (2.2.36) Eq. (2.2.37) is equivalent

to
(2.46) U’ =PU°,
o PL,(8,)PU° = P EO,
and for j > 1:
2.4.7) A-P)U = Q(F ™ ~ Li@:)0" ™)
o P'Ly(0,)PU7 = P'(F7 — L1(9,)(1 — P)UY).

From [14, 32] one identifies the first order operator P/ Ly (9, )P. If U (z, X) = 3" X U (2, X ),
then

(2.4.8) P Ly(0:)PU =Y X (P(¢) L1(0,)P(E)Up)

and

P'(€')L1(00)P(E")Ug = Poe(€) L1(02)Pos (€') Ug 05

(2.4.9) o )
+ Pzev(g )Ll (am)]?ev(f )UE’,ev'
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Moreover, when £ = 0 we separate off the 0 frequency and write
Py (0) L1 (0)Pos(0)Uo,os = Pei L1(00)P5,Us os
+ Py L1 (0,) U,
Proposition 2.4.2. 1. If¢ € N\ {0} and U(z,Z) = Y e¥%Z U, (x) € PZ,, then
Xos (€)U = Py (€') L1(02)Pos (€1)U
@4n) = > ((3t TV 5x“)ﬂ5ust§d)
{€a:(¢',€a)€char L}

where, for a reqular real mode & € charL, associated to the eigenvalue (") (see Defi-
nition 2.2.2), ve = Oen X is the associated group velocity.

2. If & € N\ {0}, then P! (&) L1(0,)Pey(€') = 0.
3. For & =0, there holds

(2.4.10)

(2.4.12) PurL1(0:)Ph, = PL,(0)L1(9,)Pey (0) = (8 YW£2(0)>

where Y = 0y + vq - Opr 1S a scalar vector field, tangent to the boundary {xqy = 0}.
4. For € =0, Xo(0,) :==PLLY(0,)P, is a matricial hyperbolic operator on the range of Py,
0 0 0 0
whose characteristic variety is the cone tangent to charL at & = 0.

Démonstration. Property (i) follows from Assumption 2.2.5 and the well known fact that
(&) L1(0p)m(§) = (O + veOypr)w (&) if € is a regular mode (see [15]). Similarly, iv) follows
from [32]. Point i) is trivial since P/(¢’) = 0 when & # 0. By (2.3.10) and (2.3.11), the
operators Pgs L1(0;)P%, and P, (0) L1 (0, )Pey(0) are both equal to

0 0
(0 7722(0)L22(3;)7T22(0)>'
Recall from Assumption 2.2.7 that (0,&,) is characteristic and regular for all £, € R\ 0.
Moreover, P,(0) is the orthogonal projector on KerLZ(0,i{y) for all g # 0, for instance at
€4 = 1. Thus Pgs L1(0,)P:, = YP:, where Y = 0; + vod,» is the scalar transport field
with group velocity associated to the eigenvalue A such that 0 = A(0,1). Since (0,&y) is
characteristic for all £; there holds A(0,£q) = 0 implying that 0¢,A(0,1) = 0, hence that vq

and Y are tangent to the boundary {z4 = 0}. For (iv) we refer to [32].
U

Example 2.4.3. For Maxwell Y is the tangential transport associated to the eigenvalue A = 0
so that the group velocity is zero : Y = 0;. In fact this equation concerns the divergence and
if the initial condition is divergence free this extends to the WKB expansion of the solution
up to an error of truncation.

Next we consider the boundary conditions (2.2.38). For a profile U(z, X) = Y~ Ug/(x, Xq)e X e
P define

TU(2/, X") = TUpyexgm0 = 3 € TUg o x,—0
Then T acts from P to P, the space of profiles V (2, X') that are finite sums 3 Ver (2/)e' X"
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2.4.2 The linearized profile equations

In this section, we solve for U = PU the linear system
(2.4.13) P'Ly(0,)PU =P'F, FecP
together with boundary condition
(2.4.14) TUjgy=x,—0 =TK, KeP
and initial conditions
(2.4.15) Ugo—=o = PH, H € P|—o-

We decompose PU into ZUg(:E,Xd)eiﬁ/X/ and Uy into U, + Uy with Uy = Us.os + Un,ev-
We use similar notations for F' and H and decompose K into K (2, X') = 3 Ker(2)e'€ X',
Proposition 2.4.2 implies that the system above splits into

Uy = 1220, YU, =1I%F,
(2.4.16) { ° ) ‘ :

ﬁ70|:C()=0 = H22]~{07

where I1%2 is the projector defined in Eq. (2.3.10),

(2.4.17) {QO = PoUy, XUy = PyFy,

Qo\gcozo = Boﬁoa Tgopgd:o = TKy,
and for ¢ € A’ \ {0}

Ue/ o5 = Pos(§)Usl o5, Xos()Ugl 05 = Pos (&) Fer o5
Ue 0s)w9=0 = Pos(&') Her o5,

TUg os|z4=x4=0 + TU¢ ev|zy=x,=0 = T K¢,

Ugt ev = Peu(§)Ugr e

(2.4.18)

Note that there is no boundary condition in (2.4.16) since the boundary conditions only
involve the first block of components (see (2.2.3)) so that TTI?? = 0.

We study the solvability of these equations in spaces of smooth functions.

— Because Y is tangent to the boundary, the oscillating and the evanescent modes of Uy
are determined from Eq. (2.4.16) by integration along the integral curves of Y.

— By Proposition 2.4.2, the equation in (2.4.17) is hyperbolic symmetric on the space
ker L(0).

Lemma 2.4.4. The boundary condition T is mazimal dissipative for X on the space ker L(0).

Démonstration. The boundary matrix of X is ‘P AqP, = Ag. Since T and Ay act only on
the first components, Assumption 2.2.1 implies that T is also maximal dissipative w.r.t Ay
on ker L(0). O
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Therefore, the initial boundary value problem for Eq. (2.4.17) has a unique solution in
CY(L?) for data in L? (see [17, 42]). When the data are smooth, for the solution to be smooth
compatibility conditions at the edge {z¢o = x4 = 0} are necessary and sufficient (see [43, 19]).
We recall briefly how these conditions are determined. Write the equation as :

From the equation and the initial condition, one determines the Taylor expansion of the
solution at {zg = 0} : for k = 0 set ®o(H) = H and for k& > 1, let

k—1
(2.4.20) OfUyzg—o = Y (= A0 Flpog + (A H = Op(H, F).

j=0
The compatibility conditions read
(2.4.21) T0(H, Fjzy=o = 9%, Kjzg=o-

They are automatically satisfied if the data vanish on a neighborhood of the corner {z; =
zo = 0}. They are satisfied up to order k if H and K [resp. F] vanish at order k [resp. k — 1]
at the corner.

Consider next the system Eq. (2.4.18) when ¢’ € A\ {0}. Let Z4(¢’) denote the finite set
of real &; such that (¢/,&,) € charL. The polarization condition implies that

(2.4.22) Ug/($, Xd) = Z U(gr@d)(l‘)eigdxd + U§/7ev($, Xd).
Ea(¢)

The propagation equations decouple into a system of transport equations for the Ug ¢, :

U e) = (€, € Uer ¢
(2.4.23) h+veenUeeny =€ ) Feey, & €Zall)
Uer g4 =0 = T(&, €) Her g

The evanescent term Upg ., appears only in the boundary condition and the polarization
condition Ugs ¢y = Pey(§')Ugr ey This constraint is equivalent to

Uﬁ’,ev(l’aXd) = <_{L22(§/)If—1 L21(§/)> e_XdG(fl)V(ﬂf)y

with V'(z) taking its values in Ej; (') (see (2.3.6)). Equivalently, this shows that Ug e, (2, Xq)
is uniquely determined by an arbitrary data

(2.4.24) U§/7ev(l‘, 0) € EE‘,L(él)‘
Therefore, the boundary conditions for Eq. (2.4.23) read

(2.4.25) TUg os)wy=x4=0 € TKer + TEg (&)
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By Assumption 2.2.5, the transport field 0; + v¢0,» are never tangent to the boundary :
the normal speed v¢ 4 # 0. They are incoming or outgoing according to the classification of
(€',&4). Accordingly, we split Z4(¢') into Z;,(£) U ZEgue(€') and

Uf’,os($a Xd) = U{’,in(xa Xd) + Uf’,out(xy Xd)
The polarization condition and (2.2.14) imply that
(2.4.26) Urin€ @D kerL(i¢,itq) =By (€).
§4€Ein (&)
Assumption 2.2.6 implies the following :

Lemma 2.4.5. For ¢ € A"\ {0}, there are matrices Sier ¢,y for &g € Zin(§') and Sey(&') such
that the equations

(2.4.27) TUin +TUey =TK, Uy €Eyp, Uew €Ep
are equivalent to

(2428) U(ﬁ’,fd) = S(s/’gd)K fOT fd € Eln(fl), and Uev = SEUK'

The strategy to solve Eq. (2.4.18) is now clear.
— First one solves the transport equations Eq. (2.4.23) for the outgoing modes § =

(6/7§d) € 07 :
o
(2.4.29) Ue(x) = m(§)He (2" — vexo) + / (&) Fe(s, 2" — ve(so — s))ds.
0
No boundary condition is needed since the vector field is outgoing. Moreover, if the

data are smooth, the solutions are smooth. This determines completely Ug -

— Knowing the boundary value of Ug' out|,~x,—0, the boundary condition and Lemma 2.4.5
uniquely determine

U5/,6U|xd=Xd:0 G EE"[N
Uler £4)jvam0 € ker L(i€',i&q) for &5 € Ein(E).

— For £ = (¢/,&4) € Z, Ug satisfies a mixed initial boundary value scalar problem. When
xq > Ve gro the solution is given by (2.4.29) and when x4 < v¢ gxo by

(2.4.30)

1 [
(2.4.31) Ug(a' — wexq,0) + — / (&) Fe(2' — we(zg — s,8)ds 2z < vct
Ved Jo
where w¢ = L1, Ve, -5 Ved—1). To be smooth, the initial datum must satisfy the

V&d
compatibility conditions, which can be written down in the spirit of (2.4.20). They are

satisfied if the data are flat at the corner.

— Knowing Ug/ ey|p,—x,=0 from step ii), we extend it arbitrarily to z4 > 0, for instance
one can choose

(2.4.32) Ug en(@', 24, X',0) = o(24)Ugs (2,0, X",0)
with ¢ € C°(R) such that ¢(0) = 1. This determines U/ ¢, .
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Remark 2.4.6. There is a lack of uniqueness in the fourth step. This corresponds to a lack
of uniqueness in the representation of boundary layers as > e"U"™(2/, x4, 24/€) since Taylor
expansions of the profiles in x4 yields other expansion. Uniqueness would be restored if one
would choose the description Y e"V"(2/,x4/¢) for the layers (see [40]).

Summing up, we have proved the following

Proposition 2.4.7. Given profiles F € P([0,t,] xR%), H € Py—o(R%) and K € Py([0, 1] x
R, compatible at the corner, for instance infinitely flat at {xg = x4 = 0}, the problem
(2.4.13), (2.4.14), (2.4.14) has solutions U = PU € P([0,t,] x R).

Moreover, the spectrum of Uy is contained in the union of spectra of Fy and Hy ; if the

spectrum of KC is contained in A} and the spectra of F and H are contained in A} x R, then
the spectrum of U — Uy is contained in Ay = (A} x R) N (charL)!.

To solve the profile equations, we use iterative schemes and need estimates for the solu-
tions. We use the Sobolev spaces H™, the spaces with tangential regularity Hj},, the aniso-
tropic spaces Eg and their time dependent versions 7™ and E™ introduced in Section 2.2.2.

We denote by T™([0,t,]) and E™([0,%4]), the spaces defined on [0,t.]. We use the following

notations
V) lzm =D 110 s M =i
j<m
(2.4.33)
V) em =" 1103 M gm—s = > l0%ak Vit
j<m 2k+|a|<m

Proposition 2.4.8. For all even m € N, there is a constant C such that for all smooth U,
satisfying (2.4.17) with K = 0, there holds for t € [0,1] :

t
(2.4.34) \Wo(®)lzm < CITO)]|p + C /0 | Eo(s) | s

Démonstration. We follow [19]. Since the problem is maximal dissipative, one has the usual
L? estimates

t
1Uo()]l2 < CllUO0)][ 2 + C/O 1Eo(s)ll 2ds-

Differentiating tangentially the equation yields the estimates :

t
WUs(0)llr < ClU(0) 7 + C /0 |Ey(s) | mds.

To get the normal derivatives, one uses the equation. We have already noticed that the
boundary matrix in X is A4. Next we compute the lower right block. Using the explicit form
of P, we get

XB(00) = 7(0) L7 (0)7*(0)

which already appears in 1?2 L(9,,)I1?2. Thus X, has the following structure :

o (AVO, +IN@) X))
2=U0 X@ T vErRo)
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The first equation immediately implies
1024 (Uo)1 () lpm—1 < (|Uo(&)]l7m + | Eo () [|m—1-
Differentiating the second equation yields
Y0,,(Ug)2 = X5 (9,)0:,(Ug)1 + 0sy(Fyg)o-

This is a transport equation for 9,,(Uy)2, therefore
100a(U0)a(t) -2 < C (102, (Ug)a (0) 17—
t
[ 10 s + 100, (Eo)a(o)-2)ds).

these estimates imply
t
10, o(®lrn < (100 Lo O)llrn-s + [ 1Ls(s)lrmds

[ OES s + 100, Eofo)-)ds).

Differentiating the equation with respect to x4 the estimate (2.4.34) follows by induction. [

Next we consider the system (2.4.23) for Ug o5 = > Ug ¢,e4%d. Given a space X of
functions of slow variables we use here the notations

(2.4.35) Ueosllx = Y. NUeellx
E4€Eq(&")

Proposition 2.4.9. For & # 0 in A’ and all even m € N, there is a constant C such that for
all smooth Uy s satisfying Eq. (2.4.23) and Eq. (2.4.25) with K¢ = 0, there holds fort <1 :

i<m

The proof is similar and is indeed simpler since the system is non characteristic. However,
since we will couple the two kinds of systems, we give a common estimate in anisotropic
spaces.

2.4.3 Construction of the leading profile

We now proceed to the proof of Theorem 2.2.15. We suppose that the finite sets Aj, and
Ao satisfy Assumption 2.2.9. The initial data HY is given in Plzo=0 With spectrum contained
in Ag and vanishes at infinite order at x4y = 0. With notations as above, we first note that
the profile equations Eq. (2.4.6) for U read

(2.4.37) Ug =108, YUJ =0, Ug\zpo = *H,
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U = PyUY, X, U§ = PyFy,
(2.4.38)

Ublag=0 = PoHj,  TUgjs,=0 =0,
and for & € A\ {0}

Ué),’OS - Pos(gl)Ugﬁs’ Xos(g,)Uﬁo’,os = Pos(fl)Fo’,om
(2.4.39) U oslzo=0 = Pos(&')Her o,
TU§0’708|1‘d=Xd=0 < EE’,L(gl)a

and
(2.4.40) Ugo’,ev = Pev(fl)Ug’,evv TU€0’,€’U|-'Ed:Xd:0 = _TUﬁo’,os\:Bd=Xd=0’

with FO = f(UY).
— The right hand side in Eq. (2.4.37) vanishes thanks to A~ssumption 2.2.8. In particular,
this equation uniquely determines the oscillating part U((]],os and evanescent part U&ev

of U and for all time xo. The spectrum of U&OS is contained in the spectrum of HY
and UY) vanishes at infinite order at the corner {z¢ = x4 = 0}.

— Next we solve the nonlinear systems (2.4.38) and (2.4.39) for all ¢, for the unknowns
V=UY — U&OS. These systems are coupled through their right hand sides

Pos ' = Pos f(U°) = Pos f (Ug,) = Pos f(V + U ).
The spectrum of V is contained in A% := Ag N (charL)* :

V= Z Ve (z)e .

geAl

By Lemma 2.4.1, for such V, the spectrum of f(V + ﬁo,os) is contained in Ag. Therefore,
(2.4.38) (2.4.39) form a finite dimensional system for V' of the form

(2441) LV = F(V + W)v Vv|:cg:0 = ‘/07 T‘/\xdzo = 07

where W € H*([0,1] x R%) and Vj € H*®(RZ) are given and flat at the corner, and F'
is polynomial with F'(0) = 0.

Lemma 2.4.10. £ is hyperbolic symmetric and the boundary conditions T are mazimal
dissipative.

Démonstration. The system (£,7) is diagonal for Vj and Vi 5. The system for V) is sym-
metric and maximal dissipative by Lemma 2.4.4. The system for V¢ ,, is a diagonal system of
non tangential transport equations for the components Vg ¢,, which are split into two groups,
the incoming ones and the outgoing ones. The boundary matrix is diagonal, with positive
[resp. negative | entries for the incoming [resp. outgoing | components. By Lemma 2.4.5, the
boundary conditions read Vs ;, = SVer y¢. Thus there are diagonal symmetrizers which make
the boundary condition strictly maximal dissipative. O
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Proposition 2.4.11. For all data H° € Plzo=0 with spectrum contained in Ay and vanishing
at infinite order at xqg = 0, there is t, > 0 such that the initial boundary value problem for V
has a unique solution V' € Pos([0,1,]) with spectrum contained in Ag.

Démonstration. This theorem follows from the results of [19], adapted to the semi-linear case.
For the convenience of the reader, we recall the main steps of the proof.
1. Reduction to vanishing initial data. We fix m > %. We determine the Taylor ex-

pansion of the solution V' at t = zp = 0 using the equation. This determines V; = GgV‘t:O
as a polynomial function of V5 and W and their derivatives. Thus W; € H* (Ri) and Vj is

flat at the corner. Thus V¢ =377, J,V € H>([0,1] x R%) and is flat at the boundary. In
particular 7V, _o = 0. We look for the solution as V' = V* 4 V". The equation for V" is
similar to Eq. (2.4.41) with vanishing initial data and W replaced by W + V%, Thus, it is
sufficient to solve this equation when W € H>([0,1] x R%) is flat at the corner and

(2.4.42) Vo=0 and & f(W)y=o=0 forj<m.

2. Local ezistence in spaces E™. We assume that (2.4.42) is satisfied.
One uses an iterative scheme to determine V' :

(2.4.43) LV™HL = (V4 W), VL =0, TV, =0

One initializes the scheme by V9 = 0.

By Proposition 2.4.7 there is a sequence V" with (coefficients of ) V" € H*([0,1] x R%
and flat at the corner. Moreover, by induction, one shows that 81{ V™i—o = 0 for j < m. By
Propositions 2.4.8 and 2.4.9 they satisfy the following estimates :

(2.4.44) V(@) e < C /0 1F (V™ + W)(s)l| .

Next we use nonlinear estimates. For ¢ > 0 and m an even integer, denote by F' ™(t)
the space of functions on | — oo,t] x R% such that 8;3‘,/8?5u € L?*(] — o0,t] x R?) for all
|o’| 4+ 20 < m. Introduce next the space F™(t) of functions on [0,#] x RZ whose extension
by 0 for ¢ < 0 belongs to Fm(t) This space is equipped with the obvious norm, which reads

(2.4.45) lullme / u(s HEmds

Cagliardo-Nirenberg estimates are valid in the space F'(0), thus in £'(t) by translation in time,
with constants independent of ¢ (see [19]). In particular, writing f(W+V) = f(W)+g(W, V)V
and noticing that f(W) € F(1) by (2.4.42), we see that there is a constant Cj such that for
all t €]0,1] and all V- € F™(t) :

(2.4.46) LFOW + V)l < Co+ C(IV =) IV [Lpmge

where C(-) is some function on R. Moreover, the Sobolev embedding E;Z(Ri) C L*(R%) is

valid for m even, m > d+1 (see [19] and note that the quasi-homogeneous dimension of R?
associated to Eg is d + 1) Therefore

(2.4.47) IVOlem) < CV Ol < CIVE 5.
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Since the V™ vanish at order m on z¢ = 0, they belong to F(1). Moreover, by (2.4.45),
its norm in F™(t) is bounded by /¢ its norm in E™. Adding up, we see that for all ¢ €]0, 1]
and all n .
VP gy < Co+tC (V™ | Em)-

Thus, for t. > 0 small enough, the sequence V" is bounded by 2C5 in E™(t.), thus in
L([0,t,] x RL).

Similarly, writing the equation for the difference V! — V™ and using the L*™ bounds,
yield for all ¢ €]0,t,] and all n

VA=V gy < Cst([[V™ = VP pmgy ) -

Thus, for ¢ small enough, the scheme is a contraction and V™ converges in E™(t). The limit
is solution to the equation.

Uniqueness of solutions in E™ follows from the L? energy estimate applied to the difference
of two solutions.

3. Propagation of smoothness. Fix mgy > % even. There is ¢, > 0 and a solution

V e E™mo(t,). We prove that V' € E™(t,) for all even m > my. As in step 2, we look for V as
V =V®+ V" and it is sufficient to prove that V" € E™(t,). By step 2, and local uniqueness,
we know that V" € E™(t) for ¢ small, possibly depending on m. To extend the smoothness,
it is sufficient to prove that the norm of V" in E™(¢) is bounded independently of ¢ < ¢,.
But, from step 2 and (2.4.47) we have an L estimate of V" up to time ¢,. Therefore, using
the energy estimate for £, the Gagliardo-Nirenberg estimate (2.4.46) and squaring , yields

t 2
V7 (@&)[3m < C + c(/o [FOW + V4 V) () s
t
<C+ Ct/ |fF(W +VE+ V) (s)|%mds
- ~0 t
< C) +C’(t)/0 V7 ()| Bmds.

Gronwall’s lemma implies the desired uniform estimate of ||[V"(¢)||gm and the proof of Pro-
position 2.4.11 is complete. U

e To finish the proof of Theorem 2.2.15, it remains to determine the components Ugo,m
such that (2.4.40) is satisfied. When £’ ¢ Ay, Ugo,’ o = 0, since the source term vanishes. When
¢ € Aj, the source term _TUgof,oswd:XFO takes its values in the space EI_{,L(fl) by (2.4.39).
As in the linear case, together with the polarization condition, this determines uniquely
Ugo,’ev(x’, 0,X4) € PZ,, and we can extend its definition arbitrarily to x4 > 0, using (2.4.32)
for instance.

2.4.4 Higher order profiles

In this paragraph, we prove Theorem 2.2.16, solving the sequence of equations Eq. (2.4.7).
We proceed by induction, showing that U7 € Py, ([0,%]), the set of profiles in P([0,¢.]) with
tangential spectrum contained in a multiple k x Aj of A, with &k odd if f is odd (we use here
the notations (2.2.22)). Moreover, U7 is flat at the corner.
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In this case, FV~! is a polynomial function of (UY,...,U/~!) and L;(8,)U’~! belongs to
P in. Thus, the first equation determines explicitly (1 —P)U7 € Py;,,([0,¢.]). Substituting in
the second equation and using (2.4.3), we see that the equation for PU/ reads

(2.4.48) PiLy(9,)PU7 = PU(f (UPU?) + PIF
where F' € P ([0,t,]) is known. Similarly, the boundary condition reads
(2.4.49) TPV |y,=x,=0 = TK

where —K € P is the trace of (1 — P)U? which is known. Its spectrum is contained in a
multiple k * A{. By assumption, we are also given the initial values

(2.4.50) PUY |;y—0 = PH’

with H7 € Pinlzo=0 given. For simplicity, we now drop the superscript j. This is a linear
system for U = PU7 and all the data vanish at infinite order at the corner.

The equation Eq. (2.4.48) is similar to Eq. (2.4.13) except for the coupling term P* f/(Up)U.
However, by Assumption 2.2.8 this term does not contribute to the frequencies &' = 0 except
for the mean term. Therefore, with notations as in (2.4.16), the equation for Uy reads

[70 = H22(70, Y(a;)ﬁo = H22F0, (70|500=0 = H22]SI0.

This uniquely determines U. )
Next, we solve the system for V = U — Uy that is for U, and the Ug o, :

(2.4.51) { Uy = PyUy, XoUy= Pj(®y+ Fy),

Upjeo=0 = PoHy, TUpjz,—0 = T Ko,
and for & # 0

Uf’,os = Pos(g/)Uf’,osy Xos(él)Uf’,os = Pos(él)(q>§’,os + Fgo’,os)y
(2.4.52) Ut 05)w9=0 = Pos (&) He/ os,
TUg o5|2y=x4=0 — TKer € Ep 1 (€),

with @ = f/(Up)V and F= F+ f(Uy)Up. This system is easily solved by usual iterations, as in
the previous section, as soon as it is noticed that it involves only a finite number of frequencies
¢'. The tangential spectra of the source terms and data, K, H, F are finite and contained in
a multiple k * Aj,, with k odd if f is odd. By Assumption 2.2.9, these spectra are contained
in a set A} which satisfies (2.2.26). Therefore, if the spectrum of V' is contained in Aj, the
spectrum of P(f'(Up)V') is also contained in Aj. Therefore, the Eq. (2.4.51) Eq. (2.4.52) form
a finite dimensional system for {V, Ve, &’ € A}}, which admits a unique solution in P([0, t.])
with spectrum contained in A}.
It remains to solve

(2453) UE’,ev = Pev(gl)Uﬁ’,eva TUE’,ev|xd:Xd:0 = TKE’ - TU&’,os|:cd:Xd:O7

for & in a finite set. Solutions are constructed as for Proposition 2.4.7. This finishes the
construction of PU? € Py, ([0,¢,]) and the proof of Theorem 2.2.16.
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2.5 Convergence

In this section, we assume that the profiles U; € P([0,t.]) are given, flat at the corner,
and solve the profile equations. Let ug,, denote the approximate solution (2.2.51) at order n.
We show that it is an approximation at order €™ of an exact solution of u¢ = Ugpp + eMoe of
(2.1.10) for times in [0, t,], proving Theorem 2.2.17.

The truncated WKB solution ) | i<n e1U7 satisfies the equations Eq. (2.2.37) up to order
n. Therefore, plugging ug,, in the equation, we see that all the terms in the right hand side
of (2.2.35) of order < n vanish. Therefore

(2.5.1) L(£0z)ugpy — fuay,) = g tlpe r(x) = R(x,

with R € P([0,t.]). Moreover, by construction there holds

(2.5.2) (Tt pp)jg—0 = .

The equation for the remainder v® reads

L(ed,)v° = 6<€"+1_Mr5 + F(ugyy, eMve)v‘E),

€
Tv |zg=0 — 07

(2.5.3)

with .
F(u,v) = / f'(u+ sv)ds.
0

The equation Eq. (2.5.3) is solved by iterations. We follow closely both [19] and [20]. Because
the derivative of the coefficients are not bounded, we are led to introduce the weight € in front
of the derivatives as in [20]. However, because we are dealing with a dispersive equation, we
carefully check that the analysis of characteristic boundary value problem made in [19] extends
to our case (see also [13]).

2.5.1 Linear estimates
We study first the linearized equation :
(2.5.4) L(edz)u=¢ef, Tup,—0=0, ugy—o = h.

Following [19, 42] this equation has a unique solution, which is smooth if f and h are smooth
and satisfy the compatibility conditions at the corner, for instance if they are flat at the
corner.

Since the system is symmetric and maximal dissipative, multiplying the equation by u
and integrating by parts, yields the usual L? estimates

t
lu(®)llz= < Cllhll= + C /0 1£(5) | ods.

Next, one differentiates the equation in the tangential directions 2’ = (g, ..., 24 1), yielding
immediately the estimates :

t
(255) ||u(t)||Tm,s é CHU(O)HT'HL,E —|— C/O Hf(S)HTm,EdS
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where we use the notations
(25.6) lu(®llme == 37 el 108 u(t, )2 e
la’|<m

To get the normal derivatives, one uses the equation. We use the block decomposition of
Ay and L. From the first equation we deduce that

(2.5.7) eAN O, ut = eft — LM (€0 )ut — L' (€0, )u?.
Therefore,
(2.5.8) 0z ut () lpm-1.2 < C(lef* (t)llzm-1.e + ult)llTm.e).

The second equation reads
(2.5.9) L?2(e0,)u? = ef? — L*Y (€0 )u',
implying that

(2.5.10) L?%(20,) (20, u”) = €<E28xdf2 - Lzl(aax/)(saxdu1)>.

The system L??(0,/) is symmetric hyperbolic, as a diagonal block of the original symmetric
hyperbolic system. Moreover, it only involves the tangential directions. Therefore, an estimate
similar to (2.5.5) holds for this system. It implies that

2002 () g2 < C(2100,2(0) -2

t
+/0 (E”axdul(S)HTmfl,s“F€2|’8xdf2(3)”Tm72,5)d8>.

Substituting (2.5.8) in the estimate above yields
t
orgu(O)llrnse < C(2100u0) gmse + [ u(s) s

t
[ s + 10, 0 ) ).

Next we proceed by induction to estimate the higher order derivatives in x4, differentiating
the equations Eq. (2.5.7) and Eq. (2.5.10). Using the notations

lu(@) | gme =Y 105, u(®) | rm-se

2k<m

= Z E2ad+‘a/|”8§u(t7 ')”L?(Ri)’

2a4+[a’|<m

(2.5.11)

we obtain the next proposition.

Proposition 2.5.1. For all even m € N, there is a constant C' such that for all smooth u
satisfying (2.5.4) there holds fort € [0,1] :

t
(2512) ||u(t)||E'm,s S CHU(O)HE’!?L,E + C/(; ||f(S)HEm,EdS
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Remark 2.5.2. The assumption that the boundary {x; = 0} is characteristic means that
v =(0,...,0,1) belongs to the characteristic variety of the principal term L;(0,). If v is a
regular point of this variety, then the principal part in the block L??(9.,) is a transport field. By
restriction to ker L?2(0), it must be equal to the field Y (9, introduced in Proposition 2.4.2.
For Maxwell’s equation, this is 0;. However, note that in general, the zero’th order part in
L?%(2d,/), which is L??(0), is not diagonal.

2.5.2 Nonlinear estimates

The proof of Theorem 2.2.17 is based on the the estimates of the last proposition toge-
ther with estimates for the nonlinear term F(ug,,, eMy#)ve. We need a Sobolev embedding
estimate and Gagliardo-Nirenberg inequalities.

Consider the weighted norms on Eg’;(Ri) :

2 " 1
(25.13) lellgge = >0 e2rlelog 05l e

(®15-2a—1)
2aq+|a”|<m

The next lemma is a refinement of (2.4.47).

Lemma 2.5.3. For m > % even, there is a constant C' such that for all € €]0,1] and all

uEEQ;;

d+1
(2.5.14) &5 ull e < Cllullge.

Démonstration. Using an extension operator, it is sufficient to prove a similar estimate on
R?. For m even, the weighted norm is equivalent to

[ull gre = (1 +€l€”| + e/ 1&al) ™ all 2

where @ denotes the Fourier transform of v and " = (&1,...,&4-1). The L* norm of wu is
dominated by the L' norm of 4 and the estimate follows from Cauchy-Schwartz inequality
and the identity

11+ ele” + eV/IEaD) ™™ 12 =&~ 5 (11 +1€"] + V/IEal) ™ l2

the last norm being finite when m > (d + 1)/2. O

As in Section 2.4, we denote by F™(t) the space of functions on | — 0o, ¢] x R% such that
8§,I8§‘;u € L*(] — 0o, t] x RY) for |o/[ 4 2ag < m together with the weighted norms

(2.5.15) lall pmegy = D SO Ul 2o g xre)-

2ag+|a”[<m

Quasi-homogeneous Gagliardo Niremberg estimates are valid on R x R? (see [19]) : for m
even, there holds
-3 ; 2 _1p+26 _1
2506)  loful <Cluld Y fogulfe for 2= <o
|o/ |+2aqg=m
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Using classical extension operators, these estimates are also valid, on | — oo, t] X Ri, with
constants independent of t. Together with Holder inequality for exponents p between 2 and
the maximal value given in (2.5.16), this implies that

1" 1_2 2 2 / 2
(25.17) 2700 < Ol e, for 1< 2 < PTH200
p m

Lemma 2.5.4. Suppose that G is a smooth function of its argument. For m > % even,

there is a function C(-) from [0, +o00[ to Ry such that for all € €]0,1] and all t € [0,t.], there
holds for all v and w in F™(t)
1F (G pp, €™ 0)wll frmc gy < Cle™ [[0]| L)

(HwHﬁ‘m,E(t) + EM”w”L“’(l + ”U”FMJ(t)))

Démonstration. Noticing that the derivatives s‘a@gugpp are uniformly bounded and using

the chain rule to compute derivatives, we see that it is sufficient to estimate the L? norms of

terms
E2o¢d+\o/|€M(k—l) 8?11) 0
with 20y + |0/ = 20 + V| + ... 4+ 2a% + [a¥'], k > 1 and o/ # 0 if j < k. Choosing the p’
i1 ond
such that 1% < W‘% and ) 1% =1, we bound the L? norm of this term by

k—24+2 1-2 1—2 2
CMED ol e P [0l e W] o (0] B

In addition, if k = 1, there are no v. Using Hoélder inequality, the lemma follows. U

We also need products estimates on H™ (Ri), using the weighted norms :
1P o (et y = > o, hll L2 e )-
‘a//‘gm
Recall that 2" = (x1,...,24) denote the spatial variables.
Lemma 2.5.5. Form > %l, the product (hi, h1) — hihy maps H™™ "1 x H™M™™M2 to H™M™mM—m2
and there is C' such that for all ¢ €]0,1]

_d

Démonstration. The result is classical when e = 1. Using the dilations hj(z”) = a_%ﬁj(az” /€)
reduces to this case. O

2.5.3 Proof of Theorem 2.2.17

We suppose that n > M > m are given with m > % even. We fix a Cy and we consider

the Cauchy problem for (2.5.3) with initial data h € H™(R%), such that

(2.5.20) Ok hjpy—o =0, forke{0,...,m—1}.
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In a first step, we assume that
(2.5.21) h e C5°({xq > 0}).
We look for the solution v as the limit of a sequence v? satisfying

L(ed,)vPTt = €<E”+1_M7’5 + F(ug,,, &?Mvp)vp),
(2.5.22) T, o =0

+1 —
P |t:0 = h.

Following [43], we construct the first term as follows. From the nonlinear equation, one
computes the Taylor expansion of solutions of (2.5.3) in terms of the spatial derivatives of
the initial data. Writing L(€0) = €0y, — A(€0,) and denoting by ®*(x,v) the right hand side
of the equation, the h; = gl 6%014%:0 are computed by induction

(2.5.23) hj = A (edp)h + > AT (ebp)e" (95, @(x,v))

k<j

|zo=0

and ¥ (0% ®(z,v)) o0 1S @ linear combination of terms

"

Gz, %)hﬁ o hy, with i+ ...+ <k

where the coefficients G(z”, X"') are profiles, flat at 24 = 0.

Lemma 2.5.6. For h = hg satisfying (2.5.21), the induction relation (2.5.23) defines h; €
HOO(R‘i), flat on the boundary {xq = 0} then there is v° € HOO(RXM_), flat on the boundary,
supported in the strip {|zo| < 1} and such that

(2.5.24) e 00 pgm0 = by, G <m,

Moreover, there is a constant Cy such that if h satisfies (2.5.19) then h; satisfy for j < m :
(2.5.25) 1]l gm-s < C1,
(2.5.26) SUDP>q |7 02,00 (¢, ’)“H;’L*j(Ri) < (.

Démonstration. The first statement is clear and (2.5.25) follows from Lemma 2.5.5.

Next we lift the traces h; to v? € H*(R x le_). Using dilations, it is sufficient to do it and
prove the estimates when ¢ = 1. Because the h; are flat on the boundary, their extension by
0 for x4 < 0 is smooth. Using adapted lifting operators, these extended traces can be lifted to
zo # 0 and there is 10 € H®(R x R?) satisfying (2.5.24) and vanishing for 24 < 0. Moreover,
v? is bounded in NCY(R, H™™7) if the h; are bounded in H™ 7.

At last, we can multiply v° by a cut-off function in time to make it compactly supported
in zg, increasing the constant C if necessary. O

Following [43], we initialize the scheme by taking v° given by the previous lemma. The
existence and regularity results of [19, 42] recalled at the beginning of Section 2.5.1, imply by
induction on p, that the scheme (2.5.22) defines for p > 1, smooth solutions v € H* ([0, t.] X
]Ri), which are flat at the corner. We show that if € is small enough, the sequence vP is
bounded and converges in the norm EI"([0,t,]). This will be a consequence of the energy
estimates.

63



Following [43], comparing (2.5.23) to the similar relation valid for (2.5.22), we first check
by induction that for all p the Taylor expansion of vP at zy = 0 is that of v :

(2.5.27) 0,0 \gg=0 = hj, < m.

As a consequence, we see that there is a constant Cs such that

(2:5.28) [P O)lleme = S Al ggse < S WAl nmse < Co

Next, we look at the nonlinear source term in the right hand side of (2.5.22). In order to
apply the nonlinear estimates of Lemma 2.5.4 on the intervals [0, t], we use the following trick :
because vP and 1° have the same Taylor expansion, the extension of vP — v% by 0 for/_gg < 0,
denoted by vP — 19, is of class C™; thus, on [0,,], vP is the restriction of v% 4 (vP — v0) €
F™(t,). Moreover,

(2.5.29) Fue, eMow = Fug,, e’ + G(

app’ app’ €MUO7 EM(U - UO))(U - UO)

uprv
where G is a polynomial function of its arguments. Introduce the notations

(2.5.30) ”f”Fm,s([Qﬂ) = Z E2ad+‘aﬂ‘Ha(mlf”LQ([O,t]xRi)‘

2ag+]a”"[<m

Recall that )
”f”%rm»s([o,t]) ~ | f(s)llpmeds.
0

Lemma 2.5.7. Let
fP=enti=Mpe L p( eMyP)P,

There are constants Cs and Cy, such that for all € €]0,1] and h satisfying (2.5.19) (2.5.21),
if

£
uapp ’

EMHUOHLOO([—l,t*]XRi) <1, EM”UPHLOO([O,t*]XRi) <1,

then for allt € [0,t,] :

(2.5.31) 2]l pmee(jo,6)) < C3 + Cal[vP || prmoc(j0,0))-

—_—~—

Démonstration. Use (2.5.29) and replace vP—v° by its extension vP — 0 in G. Then Lemma 2.5.4
implies that if vP and v° satisfy the L> bounds, then

17 e o) < Ca 4 Ca(l[vP = 0 pmeqogy + 100 fmee ) -

Next, note that by Lemma 2.5.6, the norm ||°|| P (t) is uniformly bounded. O
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Proposition 2.5.8. There are 9 > 0 and C' such that for all € €]0,e¢], h satisfying (2.5.19)
(2.5.21), and allp > 0 :

(2.5.32) €M||vp||Loo([07t*]XRi) <1,
(2.5.33) sup ||vP(t)]| pm.e < C.
te[0,tx]

Démonstration. We show that one can choose C', K > 0 and g such that the estimates
(2.5.32) and

(2.5.34) 0P (t)]| prme < CeT.

can be proved by induction on p. For p = 0, we know from (2.5.26) and Lemma 2.5.3 that

d+1

Ll 0 0
e 2 07| poo (1t xrey < C5 sup [[07(#)]| ppe < C5C.
te[—1,t]
Thus, the estimates are satisfied if C' > C5C; and ¢V - < 1 I addition,

— C5C1

d+1
€ 2 HUOHLOO([—Lt*]XRi) <1

as needed in Lemma 2.5.7

For p > 0, we use Proposition 2.5.1 applied to the linear equation Eq. (2.5.22). Squaring
Eq. (2.5.13) and using (2.5.28) and (2.5.31), we see that there is Cg such that if the induction
hypothesis (2.5.32) is satisfied at the order p, there holds for all ¢ € [0, ¢,]

[P Olme < Co -+ Crt | Pl o)
t
< s+ Cy / [07(3) [ 3m.cds.
0

Thus, if (2.5.34) is satisfied at the order p,

L (12 CsC?  ox 2 2Kt
o2 () | SCGJFW(G —1) < C%e™™,

proving (2.5.34) at the order p + 1, if C?> > Cg and 2K > Cs.
Finally, we note that

_d+tl _d+1
Y07 oo oy xmey < Cse™ 73 S [P ()| e < Cse™ ™72 Cel <1
€10,tx

if £ < &g and g is small enough. O

Proposition 2.5.9. For all € €]0,e0], and h satisfying (2.5.19) (2.5.21), the sequence vP
converges in E™(t.). The limit is the unique solution v of the Cauchy problem for (2.5.4) in
the space E™(t.). It satisfies

(2.5.35) sup |[o(t)||gme < C
te[0,t+]

where C' depends only on the initial bound Cjy.
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Démonstration. The energy estimate for vP*!1 — vP reads

1P = o) (t) || m.e <C7t/ 17 = 270 () [ ds

since P! and vP have the same Taylor expansion at xg = 0. We use again (2.5.29) to compute
the difference f? — fP~! which can be written as

é( 3pp’5MUO 5M(Up - UO),€M(UP_1 — UO))(UP — vp_l).

Arguing as in the proof of Lemma 2.5.7, using the bounds given by Proposition 2.5.8 Lemma 2.5.4
and applying Lemma 2.5.3 to bound the L> norm of vP» — vP~!, we obtain that

H(fp - fp_l)(S)H%‘m,s([QtD S CQ”(UP - 'Up_l)(S)H%‘m,s([QtD.
Therefore

t
[P — o)) Bme < Crot / 10 — 1) ()| [Bpmeds
0

which implies that the series Y (vP™! — vP) converges in the norm E™¢([0,.]). The limit is
solution to the Cauchy problem.

Uniqueness easily follows from the basic L? estimate for the difference of two solutions in
L*N L. O

To finish the proof of Theorem 2.2.17 it remains to drop the assumption (2.5.21). If h
satisfies (2.5.19) and (2.5.20), there is a sequence h” which satisfies (2.5.19) and (2.5.21) and
converges to h in H™(R%).

By Proposition 2.5.9, for € €]0, ¢g], the Cauchy problem with initial data h” has a unique
solution v” in E™(]0,t.]), and the sequence is uniformly bounded in the norm E™*¢. Thus, by
Lemma 2.5.3 the eMv” are also uniformly bounded in L>. Moreover, v¥ = v + w” where
v”"0 depends only on the initial data h” and 8’;010”‘960:0 = 0 for £ < m. We prove that, for all
fixed e €]0,¢¢], the sequence v” is a Cauchy sequence in E™°. We use the energy estimate
for the difference v — v#. With obvious notations we obtain

16 = ) Ol me < OO = HO)(O)] B
2.5.36
(25.36) +0 [ = Y6t

The difference f¥ — f* reads

O(us, , M eMul) (v7 — oM.

Uapp>
Arguing as in Lemma 2.5.7 and using the known bounds yields the estimate
LFY =l Eme o) < Cllv™® = 00| e 21,y + ClIv” — v pmee (o,

Substituting in (2.5.36) and using Gronwall’s lemma implies that

(0" = ) ()| Fme < O = 00 (0) [ Fme + [0 = 00| pmec -1 1)

Because the initial data h” form a Cauchy sequence in H™, the right hand side tends to 0
as v and p tend to +oo. Therefore, the sequence v¥ converges, the limit is solution of the
Cauchy problem for (2.5.4) with initial data h, and satisfies the bound (2.5.35). This finishes
the proof of Theorem 2.2.17.
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Chapitre 3

Diffractive wave transmission in
dispersive media

3.1 Introduction, Definitions and Assumptions

The aim of this chapter is to make a detailed analysis of the reflected and transmitted high
frequency waves in the frame of weakly nonlinear diffractive geometric optics for dispersive
hyperbolic equations.

We start by looking for phase-amplitude like approximate solutions U, with infinite
order WKB expansion of the amplitude. For planar waves this enhances at least two scales x
(for the amplitude), X = x/e (for the phase) where ¢ is the small adimentioned wavelength
(see [13], e ~ 1073).

Then to investigate the regime of diffractive optics [14, 27, 32] one must consider time
and distances of order O(1/¢). On such a long scale, in the vacuum, the wave undergoes
modifications which are not due to propagation so the corresponding profile should take it
into account by the mean of a new slow variable x = ex.

In [13], chap.2, the author shows that the regime of diffractive optics in this context is
essentially similar to that for the Cauchy problem set in the whole space, without boundary.
Nevertheless the transmission equations at the boundary are not solved exactly and the WKB
expansion stops at the second corrector. One knows from [35] that solving the boundary
condition increases the set of resonant waves so that the analysis of the nonlinear interaction
becomes trickier. Here we aim at constructing a WKB expansion up to any order. This requires
the profile to have a sub-linear growth with respect to the middle scale (see [32]). In [13] the
first corrector is taken constant on the characteristics. We show that for the next corrector
this cannot be achieved. Moreover we show that the nonlinear interactions can contribute
to not integrable profiles (see lemma 3.4.3). We thus choose bounded profiles as in [14] and
we make an assumption to eliminate any non resonant nonlinear interaction traveling at the
characteristic speed (see Assumption 3.2.20).

We also make the assumption of cubic non-linearity to avoid the mean mode (cf. [14],
oddness hypothesis). The generation of this mode corresponding to a non oscillating phase
is called rectification. This could be considered but in a different context with the use of a
Wiener algebra (see (3.2.3)).
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3.1.1 The equations and main assumptions

Consider a classical planar incoming wave packets
(3.1.1) v (t,x) = ePRe { A(et, ez, t, ) Fe=0/= 1 4 O(e)

with real planar phases ¢(t,x2) = k - © — wt. We have in mind the Maxwell-Lorentz equations
with laser-like solution.

Taking planar phases requires considering planar interface and constant coefficient semi-
linear equations. The reflection transmission problem in Riﬂ = {xqg > 0} then writes

L(ed,)v = ®(v), on x4 >0,

(3.1.2) Tv =0, on g =0
v(t=0) =1
with T" a constant matrix and
d
(3.1.3) L(edy) = eL'(02) + LO = eA;0,;. + L°.
j=0
Here z = (xg,x1,...,24) denote the space time variables and z¢ = t is time. The nonlinear

interaction ® vanishes at order J > 2 at the origin, meaning that V{®(0) = 0 for all |a] <
J — 1. The weakly nonlinear diffractive regime concerns solutions of amplitude O(eP) with
p=2/(J—1) (see [13, 15, 14, 32]) : setting v = ePu yields

(3.1.4) L(dy)u = €2 F(u,e'/P)

where F(u,e'/P) is a smooth function of its arguments. Recall that these amplitudes are
computed so that the nonlinear effects appear in time ¢ = O(1/e). Note that if f is an
homogeneous polynomial of degree .J, then F(u,e'/P) = f(u). This holds in particular for
the cubic anharmonic Maxwell-Lorentz equations; in this case the choices of p are p = 1/2
in the weakly non linear geometric optics and p = 1 for diffractive optics. Motivated by this
example we will consider in this paper the mixed problem

L(e0,)u = €2 f(u), on x4 >0,
(3.1.5) Tu=0 , on zq=0
u(t =0) = ug
with f a polynomial.

We make several assumptions on this system as in [35]. We first give the fundamental
assumptions under which the initial boundary value problem is well posed (cf. [19]).

Assumption 3.1.1. (H1) The matrices A; are symmetric with Ay = Id and L° is skew
symmetric.

(H2) dim(ker Ag) = Dy > 1.

(H3) Ay is non negative on the space ker T' and the rank of T is equal to the number of
positive eigenvalues of Ay counted with their multiplicity.

Changing bases, we can further assume that

_(Ad 0
(3.1.6) Ag= < g 0>.

with Allil invertible.
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3.1.2 The profiles

As our analysis naturally involves propagation we will use for any R4t! variable

Notations 3.1.2. = = (zq,...,xq) = (x0,2") = (2/,24) and as xq is the time variable we
use instead t. One will also use z instead of xq.
We use the same splitting for the dual variable & = (§y,&") = (£, &q)-

We consider WKB solution of (3.1.5) with profile description :

(3.1.7) u (x) =Ul(e,ex,z,x/e)
(3.1.8) Ule,x,z,X) = Zerj(x,x,X).
J=0

Each profile U7 is expected to solve an equation on the fast scale, a boundary equation and
other interior equations with respect to the other scales. Because of the boundary equation,
one knows that both oscillating and evanescent waves are to be generated (cf. [45]). We thus
assume each U7 (x,.) has the following finite decomposition (cf. chapter 2) :

Ux,z,X) = Z Ugr (x, x, Xg)ed X,

¢
(3.1.9) Usl (X7 :1:’ Xd) = U§/7os(x7 x? Xd) + Uﬁl,ev(xy xy Xd)
Uf',OS(Xv x, Xd) = Z U§/7§d (X, ;E)eifd'Xd
&d

where Upg ., is exponentially decaying in Xy. Note that this class of profiles is stable by
nonlinear composition. This is formal if the sums (series) are infinite, but this makes sense
for finite sums and polynomial nonlinearities.

Then extending the notation 3.1.2 on subsets of R*! let introduce A’ C R,

Definition 3.1.3. Let A’ a Z-module on R%. Then define P the formal space of profiles
decomposing finitely according to (3.1.9) on A’ x R.

The set of £ such that Ug # 0 is called the tangential spectrum of U and noted spec,U.
Similarly, the set of ¢ € R? such that Ue # 0 is called the oscillating spectrum of U and noted
specysU .

3.1.3 The initial data

Since the wave is expected to propagate on long distances the geometric scale of reflexion-
transmission is actually the slow scale.

This suggests taking a Gaussian shaped initial data placed away from the boundary on
this scale.

Then we know from the standard linear analysis on the hyperbolic systems that the
data decomposes into different polarizations which generate waves propagating in different
directions. Some of which (outgoing) strike the boundary at different time with respect to
the slow scale and for clearness (but without loss of generality) we choose to describe the
reflexion-transmission of a single such outgoing wave.
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F1G. 3.1 — Diffractive transmission.

Then we rescale the time and choose an initial negative time on the slow scale —t° so
that the outgoing wave strikes the boundary at time t = 0. So one must place it initially
according to its group velocity (see fig.1) on the z axis (on the slow scale). Remark that our
study would be unchanged if other waves would strike the boundary at the same time (see
fig.1).

Note that according to the e-expansion (3.1.7) the initial center of the wave is z = —vt°
if it moves with normal speed v.

Remark that to “see” the transmission one needs to solve (3.1.5) for time duration greater
than t°. One could do as in [13] where the author chooses an initial time t = —1/£%, 0 < § < 1
so that the transmission always happens.

3.2 The cascade of equations.

Plugging (3.1.7) in (3.1.5) gives a cascade of equations to solve

L(0x)U° =0
(3.2.1) L(0x)U' + LY(9,)U° =0
L(Ox)UIT + LY (9,)U7 + LY (8 ) UL = Fi~1, j>1

Each profile U’ appear in three consecutive equations. We next analyse them singly. For
sake of easiness we define and use many projectors to break the equations up in elementary
pieces. We also make assumptions, already given in the previous chapter, which fit the Maxwell
equations. A summary of the profile construction is then given in section §3.3.
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3.2.1 Equation on the fast scale : the microscopic equation

It writes L(0x)U? = FJ where 7/ depends on the profiles (U');<;_1 and on their deriva-
tives. Before recalling the main facts we would like to refer the reader to the previous chapter
where an extensive study is performed. Let consider the first homogeneous equation for U°.
Using the tangential Fourier decomposition (3.1.9) of L(0x)U® = 0 with U® decomposing
according to (3.1.9) leads to solve

(3.2.2) L(i€,07)Ugr = (Ag0z + L' (i€"))UJ = 0.

Decomposing again Ug, in normal modes leads to solve L(zf)Uf0 = 0. Looking for Ug #0
thus requires det L(i§) = 0. Such a & is said to be characteristic.

Definition 3.2.1. i ) The real [resp. complex | characteristic set of L is the set of £ € R1H?
[resp. € € C'F4] such that det(L(i€)) = 0. We note p(¢) = det(L(i€)) the characteristic
polynomial of L.

ii) A real mode € € charL is regular if there is a C* function X : R* — R such that near
§ charL s locally given by the equation & + A&,-.,8q) =0.

The analysis of equation (3.2.2) thus rests on finding the roots of p(£’, &y) in &4 for a given
¢ e R%.
We make the following classification of the modes (see [47, 35]) :

Definition 3.2.2. Let given &' € RY.

i ) A real root in &g of p(¢',&4) =0 is
1) hyperbolic incoming if £ = (§,&4) is reqular and 9, A(§) > 0 .
2) hyperbolic outgoing if & = (£§',&q) is regular and g, A(€) < 0.
3) glancing if it is reqular and g, A\(§) = 0.

ii) A complex root in g of p(€,&4) =0 is
4) elliptic incoming (evanescent) if Im&yg > 0,
5) elliptic outgoing (explosive) if Im &y < 0,

We denote by Z, O, G, Eepy and E., the associated sets.

For ¢ € R 9, A(¢”) is the last component of the group velocity.

From now on we note vg = Ver (") € R%

To deal with the non invertibility of Ay in equation (3.2.2) we place our analysis in the
frame of [35, 38] where one makes a reduction of equation (3.2.2) on the range of Ay. This
leads to decompose L’ according to (3.1.6).

] Lll L12
L/(Zf) = <L21 L22> .

Writing U = (U', U?) the equation (3.2.2) then writes

AN U + LMUT + LU =0
LUt + 12U = 0.

One solves this equation expressing U? in term of U' to get an evolution equation in z on
U'. This process requires inverting L?2. One thus must insure this operation is valid for the
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Maxwell’s case. In [35] one makes two differents assumptions according on that £ # 0 or
¢ = 0. But in [35] and [13] it is shown that the modes £ # 0 such that & = 0 are ruled out
because of the Maxwell divergence equations. We thus don’t consider those modes. Lastly
one does not consider the case of rectification : & = 0 for technical reasons explained in the
next remark.

Remark 3.2.3. As one expects solving a non-linear equation for the leading profile (see
§2.3) the mean mode is bound to be generated. Contrary to [13] and because of the boundary
one cannot make a pseudo-differential analysis. Moreover, taking many correctors increases
the nonlinear interactions and one should adapt to the mixted case the results of [34]. An
interesting problem would be working with only two correctors in a Wiener algebra.

Finally one makes the assumption :

Assumption 3.2.4. For all ¢ € ' we assume that
1) L?2(i€') is invertible,
2) The real roots in & of p are regular and non glancing.

So for Maxwell one does not consider the £ such that & = 0, tw, or § = +/v + w?
(see [35]). As we are in a dispersive context, the finiteness of nonlinear generation shows
that all those special modes can be avoided (with a suitable assumption on the initial set of
resonances) except &y = 0 and more particularly £ = 0.

As we do not want to consider this rectification we must give an example of radical
assumption preventing for its gemeration. A way to avoid this situation is to take F' as a
polynomial with odd powers and A’ odd which means

Definition 3.2.5. for all k € N and all subset I' of some space R™ we note

(3.2.3) k«D:=T+... +T.
N—_———

k terms

with the usual convention that for k = 0 the set in the right hand side is {0}.
So by A odd we mean that there is a Z C R4\ 0 and an odd integer k = 2p +1 € Z so
that A = kxZ'.

Assumption 3.2.6. F and A’ are odd.

Remark 3.2.7. There are some cases where Im (F') C ker(Pg) (Po is a projector on kerL(0))
for example nonlinear Mazwell with anharmonic oscillator model. In this case Assump-
tion 3.2.6 is not needed. The second point of Assumption 3.2.6 is thus not met (ex. 7 =0 for
Mazwell) but every mode is still described through a scalar transport equation.

Lastly we quote the result obtained on equation (3.2.2) in [35].

Theorem 3.2.8. There are projectors P and P and partial inverse Q acting in P such that
for all F € P the equation
Lox)V=F

has a solution V € P if and only if P'F = 0. The general solution is

V = QF +PV.
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The precise definition of the projectors will be made explicit when needed. We just need
to notice they are defined for a given tangential mode £ and they decompose naturally into
an oscillating and evanescent part. For example P? = P{, + P! with P{, = 0; so there is no
condition on the evanescent part of F'. ' '

This theorem thus determines generically (1—P)U J. Then P, Uls and P.,UZ, are determi-
ned from their initial value at Xz = 0. Those values are determined by solving the boundary
equation.

For a profile U € P we define

TUK, ', X)=TU, _, . o= X TUs(,x4=0,.,24 =0, X4 =0)

and T acts from P to Py, the space of profiles V' (x', 2/, X”) that are finite sums > Ve/ (X', z)etd' X,

As in [35] we impose Lopatinski condition on 7" which are satisfied by the Maxwell equa-
tions. But to this goal introduce EI_{ I EJI_} I E;J ;, the spectral spaces associated to the eigen-
value which are in Z, O, &,,. In particular

Eg€)= €D kerL(i€,ia).
€al (¢'.€0)€T
Assumption 3.2.9. Lopatinski type conditions : For all ¢ € A’
dim(Eg ;(€)) + dim(Eg, 1 (£) = rg(T),
ker TN (Ey (&) @ By 1 (€) = {0}
This allows to find the boundary value for the incoming modes and the evanescent modes
in term of the outgoing ones. Moreover since ]P’év = 0 there is no PDE for P.,U,, which must

be chosen as a smooth extension for all z > 0,z > 0 of PeyUey|,_,_,. This indetermination
could be removed looking for elliptic profiles Ue, such that P.,U,, is a function of (X, z’, X).

3.2.2 Equation on the middle scale : transport equation

Using the compatibility condition of theorem 3.2.8 on the second equation gives

(3.2.4) PILY(9,)PU? = 0

This equation concerns only the oscillating modes since P¢, = 0. Equation (3.2.4) de-
composes according to a set A C (A’ x R) N charL. Let us recall PQSUOS = P,sU,s and by
definition

PosUps := Z ﬂ-(g)UfeigXa
£€AN(ZUO)

with Z, O introduced in definition 3.2.2 and 7(&) is the orthogonal projector onto ker L(if).
Fourier decomposing (3.2.4) gives
me L' (0:)meU =0, £€AN(ZUO).

We thus recover the usual transport equation on the middle scale (see [14]). In the sequel we
will note
Xe(0p)me := me LY (9y)me = (O + ve. V) me and

X(0p)PosUos = Y Xe(0u)meUe€™ = Pog L' (95)PosUos-
£€AN(ZUO)
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Now let consider the third equation. Using again the compatibility condition of theo-
rem 3.2.8 gives

(3.2.5) Pos L (03)Pos U = Pog [~L' () + L' (9:)QL (95)] PosU° + Pos FO,

We are thus led to solve the non homogeneous analogue of (3.2.4) :

(3.2.6) Pos L (9, )Pos Ut = Py G

It is well known (see [14, 32]) that P,sG must satisfy conditions for P,sU to have a
controlled growth in time or equivalently in z. Indeed eU’*! is a corrector of U7 only if it
satisfies this sub-linear growth

1 ; .
(3.2.7) le)rglogsgp ||Ug(X,.,Z>||L2(Rd+) =0, Vj.

One can check that if equation (3.2.6) reduces to
(3.2.8) Xe(O)UE =7(§)Ge, with  X¢(9)Ge =0,

then Ug doesn’t satisfy condition 3.2.7 and m(£§)G¢ should cancel.

However in [14] there is just one characteristic mode and thus one speed so equation (3.2.6)
reduces to (3.2.8). Here the multiple speed interaction may lead to intermediate interactions
(see equation (3.2.16)) and locally supported interaction. For consistency we search the profile
in the space of profile decomposing into a sum indexed by A C (A’ x R) N charL of pure
transports and a remainder with global decrease at infinity. First define

Definition 3.2.10. For p € R
s(mdy _ 2md 2\1/2 2 \k/2 2
IS(RY) = {ue L2RY) | 1+ |2’ — p)?(1 + 02)F?ue L?, 1+k< s}
When p = 0 we forget the subscript.

Then let

Definition 3.2.11. £%(A) the set of profiles decomposing into U = U+ ﬁ with
1. U(x) = 3 Ua(x' — vly2) for finite families (v)))acn € R?
and (Uy)aen € T3(R?)
2. U e Ds(R4H).

For U € £ the decomposition U = U + U is unique for s > (d + 1)/2 (see next section
lemma 3.4.1).

Remark 3.2.12. When looking for an outgoing Ug € E%(A) one is lead to solve the Cauchy
problem for X¢(0)Ugs = 0. One finds Ug = U2 — vet). Expressing the latter in term of
x’ — vz shows that UY must lie in a FgO(Rd) with p = —ve/(etg) (see lemma 3.5.5).
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So we look for a solution of equation (3.2.6) in P and such that U € £%°(A). We note

(3.2.9) Ue = Ug + [}g,
(3.2.10) Ue(x) = Z Us o(z" — v, 2).
acl
Now we can define precisely the space for the profiles. Let € := [—t?,t] x Ri. Define the

space for the profiles : P*
Definition 3.2.13. i ) Let Py3°, the set of functions U(x,x, Xq) which are finite sums

U(x,z, Xq) = Z el Xaye (x,z)

with coefficients Ug, € H™(Q; E°(A)).
ii) Let P&, the set of functions U(x, x, Xq) such that for some § > 0, Ue®Xa € H™(Qy; T(RH1))}.
iii) Let P> 1= Poi* @ Py’
iv) The space of profiles P* (also noted P*(, A)) is the space of finite sums
(3.2.11) U(x,z,X) = Z Ugf(x,a:,Xd)e’f/Xl, with  Ug € P**, spec,,U € A.
gen

It splits into P® = P5, @ PS, where PS5, [resp. PZ,] is the space of finite sums like (3.2.11)
with Ug € Poi’ [resp. Ue € P

For £ € charL we want to distinguish U ¢ from Ue o, a # £ in notation (3.2.10). This is
suggested by the paragraph following (3.2.8). So let us define the projectors p, p’ defined for
the profiles writing as (3.2.9),(3.2.10) :

Definition 3.2.14. Let ¢ € AN charL. First define p(€),p'(€) : E%(A) — E%(A) by
P(EUe 1= Us (2" — vez),
p' (U = Ug
Then for U € P;, define
pU =Y p({)Uee™™Y,
3

p'lU :=U.

Remark 3.2.15. Remark that PosL'(0,)pPos = X(0)pPys = 0. Moreover p' and X(0) com-
mute on EX(A).

Making use of these projectors on equation (3.2.6) we get
(3.2.12) P'Pos L (0:)PosU = p'PysG,
(3'2'13) (1 - pi)PosLl(am)PosU = (1 - pi)PosG .

From remark 3.2.15 the second equation is an equation for U. It writes

—
—~—

X(0)U = P,,G.

n

In lemma 3.4.4 we show this equation has a unique solution in I'*° (R‘fl) and we note q the
corresponding inverse defined on I'*® (R‘fl).
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Again from remark 3.2.15 the first equation reads X (9)U = P,.G. It decomposes according
top:

(3.2.14) 0 = pPysG,
(3.2.15) X(9)(p" — p)PosU = (p" — p)PosG .

Equation (3.2.14) was expected since it corresponds to example 3.2.8.
Equation (3.2.15) again splits into distinct transport equations.

(3.2.16) Xﬁ(a)u&a = Fear @ FE.

This compels [~ Fe o(a’ — (v), — vg)z)dz = 0 (see lemma 3.4.3). This enables to define a
projector on the image of X :

Definition 3.2.16. First define the projector jy . : I'°(RY) — C®(R?) by
JowF = / F(2' — (w' —0")2)dz.
Let £ € AN charL. Define j(§) : E¥(A) — EX(A) by

J(g)fﬁ = Z ng,vaff,a'
aeA\{£}

Lastly define j @ Pos — Pos as in definition 3.2.14.

If juo e Fe,o = 0 equation (3.2.16) has a unique solution in I'°(R?) (see lemma 3.4.3) and
one can define an inverse noted q;.
Summarizing we have

Theorem 3.2.17. Let G € Pj,. Then the equation
(3.2.17) Pos L' (0,)PosU = G
has a solution in PS, iff ]G =0 and pG = 0. The general solution writes
PysU = qG + q;G + pU.
Unfortunately it doesn’t seem easy to describe kerJ. Some solutions re given by f(x') =
a(@’.0")b(z" — (2.6")d") with a odd, where &' = v, — v;. But such solutions are not physical.
In [13] the profile are Gaussian shaped profiles thus more even than odd. We thus set a

definitive assumption to avoid those situations : we restrict our analysis to characteristic
profiles propagating at the characteristic speed.

Ansatz 3.2.18.
(3.2.18) p'P,sU = pPy,U.

As a consequence m(§)Ug(x) = Ug g(z’ — vpz) + (1 — p')m(&)Ue(z). We use the notation
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Notations 3.2.19. U := Ug¢.

Using this on the projection (3.2.15) of the third equation (3.2.5) gives (p' — p)Pos F° = 0.
As FY is chosen polynomial, Fg involves products of profiles propagating at the charac-
teristic speed v¢. One thus could meet products of kind

(3.2.19) v, > &=¢

k<d k<d
(3.2.20) Ve = ... = vg, = V' # v,

The ansatz is thus not self-consistent and one must give an assumption leading to a
systematic cancellation of the extra speeds (p' — p)G in equation (3.2.13). It reads

Assumption 3.2.20. Let £ € charL N A.
For all finite odd sequence (ﬂj)j € charLN A such that zj (7 =€ withv! =0t Vj, then

Uﬁ :?}5.

From assumptions 3.2.22 and 3.2.23 the later is supposed to be valid for A = A,, the finite
union of spectrum of F7, j < n with n the order of the WKB expansion.

Lastly one expects to determine pP,sU in (3.2.6) from the compatibility condition pG = 0
of theorem 3.2.17. But this latter equation is a PDE on the slow scale x which requires data
known for all z, X. One thus need to determine p(§)7(§)Ug(v) = Ug (2’ —viz), V€ € ANcharL.
We thus need the initial data and solve the boundary equation.

First the outgoing profiles Ue(x,z"), £ € T is determined from its initial value at —t0
computed at ' — vgz.

Then the incoming waves are determined from the boundary conditions. Thanks to the
Lopatinski condition 3.2.9 one finds Ug|,_._,. The boundary value on the slow scale is then
given by Ug|,_._, comuted at 2’ — vgz.

3.2.3 Equation on the slow scale : the Schréodinger equation

Using the remaining compatibility condition of theorem 3.2.17, pG = 0 gives for the third
equation
(3.2.21) Pos [L'(0x) — L' (02)Qos L' ()] pPosU° = pPos F° .

More generally for the j%** profile

]Pos [Ll(ax) - Ll(ax)QosLl(ax)] p]P)osUj =
pPos { Fs — L' (0x)(1 = Pos)U7 — L'(9:)Qus[F3s — LN (@)U ']}
Remark 3.2.21. The equation (3.2.21) is a nonlinearly coupled system of equations indexed
by £ € charL. For § € charL the corresponding nonlinear equation involves products 11Uy,

with Y, o = & and vy, = vg. This shows that (3.2.21) splits into distinct sets of equations
indexed on the set of characteristic speeds.
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The non-linear terms are F* = f(U°) and for j > 0
(32.22) FI = Vo fUT + F, - F = Vuf(Ug)U3, + F,

where £ depends only on (U°,...,Ui~1) and F on (U, ..., UH).

First note j = 0 is the only index for which F7 is non-linear in U’. Let Ay be the spec-
trum of Uy that we suppose made of characteristic modes. Then equation (3.2.21) generates
harmonics which are combinations of resonant modes of Ay. They are not resonant in general
since the characteristic variety is curved however this generation could be infinite for some
exceptional choice of Ag. As in [35] we do not want to consider those exceptional situations
and we recall assumption 2.9 which is given.

Let us introduce the spectrum related to the polynomial non-linearity f and Vf :

(3.2.23) No):= |J Ixho,  N(Ag)i= | (I—1)xA,.

{l:f15#0} {l:f15#0}
Then as physical waves are real, they involve each mode and its opposite. It is thus physically
meaningfull to suppose that A = —A. One will say that such a set is symmetric. In this case

there holds k* A C (k+2) * A, k € Z. moreover from assumptiom 3.2.6 A and F' are odd
thus for A symmetric A C AN(A). Then one can make the following assumption :

Assumption 3.2.22. We are given symmetric finite sets Ay C A" and Ay C (A{;x R)NcharL
such that

(3.2.24) (A x R)NT C Ao.

(3.2.25) N (Ap) N (charL) C Ap.

The first condition (3.2.24) takes into account the generation at the boundary of all the
incoming waves thanks to the Lopatinski condition. For Maxwell this means that if £ € A{
then (£',&4) € AoNZ = (¢, —&4) € Ap. Though this is a restriction to the choice of A, Ag
in Assumption 3.2.22, one can still generically satisfy the second condition (3.2.25) (cf.[35],
Remark (2.11) and §2.3.7).

Next, for j > 1 the fast scale equation implies specU? O specF7~2. Moreover specU’
should be consistent with the non-linearity F7 and the boundary equation. We would like to
emphasize that most resonant generation is synthesized at the boundary. The new resonant
modes are thus constructed through the tangential spectrum (specF7~2) which is sum of
kind k % A{; with k& odd. We assume as in [35]

Assumption 3.2.23. For all k odd there is a symmetric finite set A} C A’ such that A} D
kx Aj and Ay = (A} x R) N (charL) satisfies

(3.2.26) (AV?(Ag) + A1) N (charL) C A;.
Expressing equation (3.2.21) through Z/{g(:n’ —vgrz) = pUg (', z) shows that it requires

data known for all z/ — véz € R, We thus need to extend I g,a to all z. The initial condition

for the outgoing modes is then I g’e (X", 2" — vet) expressed in the variable 2" — viz. It is noted
e,
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As for the incoming modes one needs solving the boundary data for t < t* :

T (p_UOS(x/, ') + Py Uey (X a:’)) = —T(1 — Pus)Ups(X', ')
- TP+U05(X,7 LE,) - T(l - p)Poons(le x,)a

and from assumption 3.2.20 (p’ — p)P,sUys = 0. Thus the last term is in fact TosqGos(z =
0,2',z = 0) supposing PU satisfies the ansatz 3.2.18. The remaining question is then how to
satisfy the compatibility conditions at the corner t =z = 0.

But as usual (see [38, 19, 35]) one chooses initial outgoing data vanishing near z = 0 which
guaranties the outgoing waves restricted at the bound z = 0 to vanish near t = 0.

3.3 Main results

We first define the space for the initial data. Let

Xp(RY) = HARET(RY) and Y (RY) = () O ([, 1 X;77),
J<s
forgetting the indices when p = 0.
We choose the initial data so that the solution of the Schrédinger equation (3.5.4) strikes
the boundary at time t = 0.

(3.3.1) U‘i:t:T:O — Z Ig(x”,x”)eiﬁx"
£€A0N(ZUO)
where Zg < HS(Ri;FZ? (R7)) with Pe = —’Ugto/ e € R when ¢ € O. Moreover it satisfies

I = 7T(£)I§. Lastly we suppose there is no initial incoming wave : Zg =0, { € T .
Let I*°(A) be the space of Z¢ decomposing as finite sum of kind (3.3.1). We endow this
space with the norm

1Z0rse == > 1Tl o e T3 (RY)):
£e ApN(ZUO)

3.3.1 WKB approximate solution

Before we give the theorem stating the existence of a WKB approximate solution for
(3.1.5) we summarize the set of equations for each profile.
First the leading profile is solution to

U® =PU° = Pe,Uey + PPosUss,

P'LY(9,)PU° =0,

Pos [L*(0x) — L*(02)Qos L' (35)] pPosU° = pPos FY,
TU® =0 .

The initial condition for U° reads

0 IO,E

‘xozfto,xozfto/s,onfto/sz ’
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Since U is polarized, its initial value must also be so : Z%¢ € I*°(Ag). This value just
corresponds to the hyperbolic outgoing modes which reach the boundary at time t = 0; so
it is an initial condition for pP,sU,s. Then this data must satisfy compatibility conditions at
the corner xg = —t%, zg = —t%/¢, xq = x4 = 0 (cf. [19, 35]). However our choice of space
(€) in the middle scale implies that the profiles Ug are determined either globally in R4*! or
in Rg,. So they don’t solve mixted boundary value problem on this scale and compatibility
conditions shouldn’t appear on this scale.

In fact the geometry (reflexion and refraction law) of the problem is described on the slow
scale so one must solve the compatibility conditions on this scale in a way which makes them
also true on the middle scale. Finally note that choosing an initial data vanishing at infinity
at xg = 0 implies that the whole compatibility conditions are satisfied.

Next, the profiles U7, j > 1 are determined through the equations :
(1 =P)U7 = Q(F ™% = LY0,)U7 ™" = L' (99U 7?),
PILY(0,)PUY = PYFI~1 — LY (9,)U~t — LY(9,)(1 — P)UY),
Pos [L' () — L' (92)Qos L' (9r)] pPosU? =
PPos { Fis — L (8)(1 = Pos)U7 — L} (90)Qos[FJ; " = LY (0)U ]}
TU? =0 .
The initial condition for U7 reads

pPosUj = Ijﬁy

‘xozfto,:vozfto/s,onftO/sz
with Z9¢ € I5<(Ay).

Theorem 3.3.1. Let s — n > d/2, suppose given a finite module Ay satisfying Assump-
tion 3.2.20 and a sequence of initial data (I7°)j<, € I77°(Ng) vanishing at z =0 at infinite
order, then there are c,t, > —to, a unique leading term U° € P*(Q¢, Ag), t < ty and for all
j € N a unique UJ € P77 (Q, Aj) satisfying the cascade of problem (P?)j<, (see section 5)
with Aj D Nb(Aj_l) finite. If t, < oo then there is a & such that

. 0 _
tlﬂl* [[4e HLoo(Ride) = +00.

This theorem is proved by recurence in section 5. Let us summarize the main steps :

Thanks to the Ansatz 3.2.18 one can write U7 = (1—P)U7 +P., U’ +p'P,s U7 +pP, U’ First
one determines (1—P)U7 from the microscopic equation and then p’P,,U7 from the L?(R4*1)
part of the middle scale equation. Next, one expresses the outgoing part of pP,sU” (t = 0) with
the initial data and then one gets pP,sU”(t), t < t, by solving a problem on the slow scale.
This problem is in fact a set of independant systems each of which involving nonlinearly
coupled Schrédinger equations related to one characteristic speed (see section §5.2.1). We
point that thanks to the Ansatz the nonlinearity involves only the outgoing part of pP,,U”.

One then gets a boundary value which enables to solve the boundary equation in term
of the incoming waves : P, U j(xd = 0,24 = 0, Xy = 0) and the incoming hyperbolic part of
PP, U7 (xg = 0,24 = 0, Xq = 0). One finally gets P.,U’ thanks to the microscopic equation
and lastly the incoming hyperbolic part of pP,, exactly as the outgoing part of pP,sU-.

Finally one must check that the Ansatz 3.2.18 is stable by non-linearity. This is acheived
by using the Assumption 3.2.20 (see lemma 3.5.9).
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3.3.2 Convergence

As the initial system (3.1.5) is characteristic one must consider spaces with non-homogeneous
regularity as in [19]. So as in [42] introduce the tangential spatial Sobolev spaces :

HERY) ={ue L*RY) : o™ ... 'ue L* my+...+ma1 < m}.
Then the C"™-tangential spaces are

T([0,6.] x RY) = () €7([0, t.], Hit " (RY)).

tan
r<m

Then, as it is known for maximal dissipative characteristic boundary problems with constant
coefficients one can easily get estimates in T™. But since the boundary is characteristic, in
general, one can’t fully express the normal derivative through the equation. Following [19],
the natural estimates require two tangential derivatives for one normal derivative. This leads
to introduce the spaces for m even

Eg;)(Ri) ={u : aﬁdu S Hfan(Ri) for 2k +r < m}.

Then the C™-space
E™([0,t.] xRL) = () C7([0,t.], EZT).

r<m

These spaces are equipped with the obvious norms.

To prove the stability of the WKB expansion we take into account the fast oscillations
by taking weighted norms : in the definitions above, we replace the tangential derivatives
Orgr+-+>0zy , Dy €0py,...,€0,, , and the normal derivative 9., by 528“. This does not
change the space but changes the norms. We denote them by using the superscript . For
instance

(3.3.2) lu@llpmeqoey = >, M sup 105w (t, ) L2 e -
204+a’|<m telo.t.]

We get the following theorem for the convergence.

Theorem 3.3.2. Let n, m = s —n even and M such that m > (d+1)/2, M < n and
s>m+M+d+ 2.

Let ef(a") = ., Tt (ea” 2", 2" J) + eMge(2") with TV € I57Y(Ag) as in theorem
8.3.1 and g¢ € H™(R?), vanishing up to order m at z = 0.

Then there is a t* < t*, independent from € such that for all t < t*/e there is a r € E™*
such that uf(x) = ,., U (ex,z,x/e) + eMre(z) solves (3.1.5).

Remarks 3.3.3. From assumption 3.2.6, the profiles solve non characteristic scalar equations
so that the natural spaces are Sobolevs’.

The time of existence is, as expected, in O(1/e) with respect to the middle variables t but
may not be positive. This would mean no “physical” reflection.
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3.4 Equation on the middle scale

3.4.1 Properties of £°

We first give the essential properties of £°.
Lemma 3.4.1. For u € £, s > (d+ 1)/2 the decomposition u = @ + 1 is unique.

Démonstration. Indeed suppose u = @' + a' = @® + 2.
Suppose u! # 0 so consider a speed v], and set 2’ = x,+uv;,2. Then express u(z(+v,z, z) =

> Uy (g + (v, — vj)z) + at(xh + V%, 2) s Uy (x)). And using the second expression

, , 0 if vy, # vy, VEk
ulwo +vp2, 2) e { UZ(zy) if 3 ¢ such that v}, = v),

This entails 4/ = 0,U* = 0, V4, k except for the (p, ¢) such that vy, = vj. Thus =42 O
Then we give a lemma for non-linear estimates.
Lemma 3.4.2. Let s > (d + 1)/2 and ui,uz € &° and note w = ujuy. Define w(z) =
2 (agyer Ut @ —vg2)Us g(x" — vz) for a finite set I where v, = vjy. Set w = w —w Then
[@lre < C(llurllpo, l[uzllpee) urlle: uzlles, Vo <s—1/2.

Démonstration. We review the different terms involved in w :
1) From [14] as s > (d 4+ 1)/2, Fs(Rﬂlfl) is an algebra and w1ty € FS(RiH).
2) Let show that if vy, # vj then Uy alla 5 € I'7(R4T). For sake of readability we note
a =Uy o and b = Uy 5. It is sufficient to prove
2 /md
< >70%a0%b e L*(RY), |p|+ g+~ <o

Then note DPa =< 2’ — vl,z >3~PI 9P q.

<x>7
DPaD <
<@ — vz >s—IPl< g — Bz >s-ldl HLz(Riﬂ) -

|8 (9)Q@) " Dal| ooy sy 1H LG (@)Q) I DI g,

. 1
where (<) >§ 0 <1, j+m = s, Hp7q(ﬂj) T i —ve >l < — B >s -l and Q(gj) =
€T
<z’ —vez><az'—vPz>"
If s — [p| < s—|q| then Hy, 4,(z) < m It entails that @ is bounded.

Thus ”Hg,q(x)Q(x)praHLzs/j(Riﬂ) < ”WD%HL%/J‘(Rfl)
Make the change of variable 7’ = 2’ — v®z in the first integral.

1 25/ ~ . 1
. p J P 1\|28/3
(3.4.1) ”< " >9(S_|p|_7)p aHLzs/j = /:?:’ |DPa(z’)| /Z < (& vz, z) >20(=IpI=0)/3"
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The last integral is bounded iff 2s6(s—|p| —=)/j > 1 and this uniformly in Z’. The integral
on 7’ is bounded for j < [p| thanks to the Gagliardo-Nirenberg inequality in [14].

Applying the same for the other integral it leads 2s(1 — 0)(s — |p| — v)/m > 1. Thus
s—|p| —v > £ max{j/0,m/(1 — 0)} > 1/2. Hence v + |p| < s — 1/2 which means that one
loses 1/2 derivative.

3) The same analysis shows that @'u? € T'” (Riﬂ), o < s—1/2 (with the difference that
there is no condition coming from %2). O

3.4.2 Proof of Theorem 3.2.17

To show Theorem 3.2.17 one first make a Fourier mode by mode analysis. One has to
solve
(3.4.2) Xg(@)ﬂ'(f)ﬂg = W(S)Gg, in R(_i:_l s Ug, G5 S 5OO(A) .

As in the introduction we separate the transports from the global decreasing part. This
is done through the operator p*(¢) :

The first equation gives the first compatibility condition of theorem 3.2.8.

The second equation requires a compatibility condition given in the lemma :

Lemma 3.4.3. Let f € T*(R?). The equation
(0, + V'V u=f(2' —w'z), v #u,

has a unique solution u(z) =U(z'—w'z), U € T*(RY) iff jowf = [0 f(@'— (W' —0')2)dz =
0.

Démonstration. 1. Suppose u(z) = U(z' — w'z) with U € T'*(R?). Then u(a’,z) —— 0. It

reads jy . f = 0. o

2. Conversely we show that if j,,f = 0 then there is a unique U € I'(R?) such that
u(z) =U(x' —w'z).

Set a(z) = u(x’ +v'z,2). Then d,a(z',2) = f(2' — (W' — v')z). Since f € I'*(RY) and
o AW, Ux)= [ f(@ — (v —v')s)ds converges for all z.

Thus one can look for a(z) = ag(z’) + [ f(2’ — (w’ —v')s)ds where lim._, o a(a’, 2) =
ap(x').

But from the assumption j, ., f = 0, lim,_ 1o a(2/,2) = 0, V2’ € R%. Thus ag = 0 and
u(z) =U(a — 'z, 2).

Then note that U(x — v'z,2) = U (2’ — w'z) with U(a') = fEOO fl@ = (v —")s)ds.

To complete the proof it remains to show that ¢ € T'*(R%).
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Set Dy = (0z, < x >)P and remark DU = 37, ffoo <a' >*0,,7%f(a' —0"s). Thus one
needs only showing the convergence of || fi)oo <a' > 05 f(a' — &' s)ds|| 2 (gay-

Then set §' = (§1,0) = w’ — ', and suppose 61 # 0. One has
0
|y / <’ > P f (o — 8 5)dsl| acay =
oo 1 5 N ) N
-l <1, —216/01 > g(u, §)dul|p2a
6 ) o (RS, )

where u = a1 — 015, o' = (v1,%), § = & + 216/6 and g(u,§) = 57 f(u,§ — 5/81u). One
can check that g € T*(R?).
The crucial observation is that from assumption j, ., f = 0, fméo g(u,g)du = — fxof g(u, g)du.

Thus it is sufficient to show the convergence of the previous integral in L? (R x ]Rg_l).

Next using that |u| > |x1| allows to replace the weight by < u,§ — #16/8; >. Then using
the Cauchy-Schwartz inequality gives

1 _ 1 q 0 B
| <wg- i > gwpdns [ e [ W < g - ed/s > wg)Pdu

—00 —00 —

Replacing g by its definition shows the second integral depends on § — 16 /01 which by
integration over ]Rg_l doesn’t depend on x;. Lastly

x1 ~ - _ ]
||/ <x1,§—210/01 > g(u, §)dul|2ga ) < / / —55 Q| fllpstp & xra-1)-
— 00 z1,Y 21<0 J —c0 u

Take p > 1 for the first double integral to be convergent. O
Lastly for the third equation we have the lemma

Lemma 3.4.4. The equation X (0)u = f with f € Fs(RiH) has a unique solution which
belongs to FU(R‘fl), o < s—1. It reads

o
(3.4.3) u= —/ f(@' —va(z — 8),5)ds.
z
Démonstration. One makes the change of variable & = u(z’ 4+ v'z, 2) so the equation writes

o.u(x', z) = f(x' + 'z, 2).
Next one shows that [ f(z' —v/(z — s), s)ds € FS(RZZ_H).

<a:>“’/ Z?gf(a:’—v’(z—s),s)ds:/ <u+v'z,2>70lf(u+'s,s)ds

<utv'z,2> <0

Where © = 2’ — v'z. Then note for s > z there is a constant C such that TR sl

Then using the Cauchy-Schwartz inequality
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00 1
(3.4.4) / Su+v'zz>7 9 f(uto's, s)ds <|| TETIRES 122 (2,000
(3.4.5) 15 5.6 (w4 0" 22 (200D

With the notation fl+5q(:17) =<2 >0 9% f(x).

At last note that Gathering the results

<u+v 8,8> — <s>

(34.6) | <= >”’/ Oof (2’ = (=2 — 5),8)dsll g < 1 paellrz / / < >25d

The first norm exists if v+ J + |[£| < s and the double integral exists if § > 1. O
.. . . . d+1
We prove a lemma of restriction to R? of function lying in I*°(R%).

Lemma 3.4.5. Let u € FS(RiH) Then uy, _, belongs to (R, o0 < s—3/2.

Démonstration. We prove a little more general property : let £ be an hyperplane in R4*!
with normal v and consider v = uj,. We show that v € I(R%),0 < s —1/2. One has

| <2’ >*d%vls < || <2’ > /ER(V V) u(s)ds||,,
1

< HWHLQ(RCI)H <z >t (v-V)dlu

‘LQ(R‘fl)

This is bounded iff 6 > 1/2 and o+ + |¢| < 5. So v+ |g| < s — 1/2. O

3.5 Construction of the profiles.

We expand the solution :

(3.5.1) uf = Ze"Uj(sx,m,x/e) +eMu(a) = UL (ex, ,x/e) + Mo,
i=0

(3.5.2) uj,_, = ZelIl(ezn”, o’ al fe) + er(al) = T 4 et
<n

We plug (3.5.1) in (3.1.5) and obtains

+eMLF(9)v° — fuf)

app

L0V — f(uf) = [LE(EC‘)X + 0, + éaX)U"

Equating to zero the coefficients of the expansion gives

LOx)UY=0
(PY) TU'=0, z=2=0
(PUO)’t:—tO,t:—tO/e,T:—tO/e2 = 1%,
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L(Ox)U' + L1(0,)U° =0
(pUl)|t:—t0,t=—t0/€,T:—t0/52 — Il,a’
_ L(0x)UTT! 4 Ly(0,)U7 + Ly (9 )UI~F = Fi~t
(P TUH =0, z=2=0

(PUjH)|t=—t0,t=—t0/s,T:—t0/s2 = TIthe,

3.5.1 Construction of the leading profile.

A) First we analyse the microscopic equations :
1. Consider the first equation in (P?). From theorem 3.2.8 there holds U° = PU?.

2. Consider the first equation in (P!). From theorem 3.2.8 this equation has a solu-
tion in P O P* if and only if P*LY(0,)PU® = 0. The solution then reads U! =
PU' — QL' (9, )PU°. Fourier decomposing the compatibility condition on Ag satisfying
assumption 3.2.22 gives

(3.5.3) Xe(0:)UQ =0

From Theorem 3.2.17 P,,U° = p'P,,U° and as we look for U° satisfying the an-
satz (3.2.18) P,sUY = pP,sU°.
3. Consider the first equation in (P?). Again from Theorem 3.2.8 this equation has a
solution if and only if the equation (3.2.5) holds.
B) Analysys of the middle scale equation (3.2.5).
From Theorem 3.2.17 the equation (3.2.5) has a solution iff jG® = 0 and pG® = 0 with
G =Py [-L'(84) + L' (9:)QLY (8,)] PosU° + Py F.
1. Consider the first compatibility condition jG° = 0. This equation only involves (p’ —

p)G° = (p' — p)F°. We next show that under assumption 3.2.20 this quantity vanishes
so that the compatibility condition is satisfied.

Lemma 3.5.1. Let A € R N charl and (Uy)aen @ (finite) family of profiles in
E>®(A). Suppose that Assumption 3.2.20 is satisfied.

Then for all § € A and for all k—uplet (Uq,, ..., Uq,) with k odd and 3y ;<f 0 = €
there holds (p'(€) = p(€)) TT, < U, = 0.

Démonstration. U, € E(A) writes Uy, () = 3 gep Uay p(2" —v52) + (1= p* () Ua, (o).
Then from lemma 3.4.2 the product belongs to £(A). It writes :

Pe(z) := H Un; () = Z Pe (2" =l 2) + Pe(x),

1<j<k ~eA
where P ,(2') = DB, BEA [Ti<jch Uay 8 (), 1/51 = ... = vy = v). From assump-
tion 3.2.20 for v # v, one has P, = 0. Thus (p'(§) — p(¢)) Px(z) = Zv,ﬂévé Pe (2! —
vlz) = 0. O
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2. Then consider the second compatibility condition pG® = 0. This equation involves the
second order operator P,sL1(0,)QL1(0,)P,s which is described in [14], Proposition 3.2
that we recall :

Proposition 3.5.2.
PosLl(ax)QosLl(ax)Pos = iRos(am)Pos-

where Ros(0y) decomposes on Py into Ros(95)U = 3 ¢ R(§)(04)Ug where R(§)(9y) is a
second order scalar operator.

Definition 3.5.3. Let R(£)(d,) the operator defined on T>°(R?) by (Re(0y)Ue) o h =
Re(0z)Ug o h), h: (2',2) — 2’ —viz.
Then define Ros similarly as Xos on pPosP* (e, A) by

RospPosU = Z Rg (895/)7T(§)u§6i5X.
geA

So p(é)Gg = 0 writes
(3.5.4) X(0x) + %R(i)(@a)} UL (x,2") = p(E)m(E)FE (x,2'), €€ Ao

Remark 3.5.4. The Schridinger equation (3.5.4) expresses through a unique slow variable
associated to the operator X¢. Remark that the non-linear term writes as a combination of
resonant harmonic of £ and one essentially expects a sum of odd products U50U9§U50 such as
in [13]. Remark this requires real systems for which —& is resonant when £ is resonant and
V_g = Vg.

Every other resonant combination is nearly unexpected since all combination U&UEMUQ,
would require ng resonant with vye = vg.
3.5.2 Solvability of the leading profile equation

Here we use the fact that the outgoing modes and the incoming modes are completely
decoupled in the equations (3.5.4). Let introduce the projectors

pti= 3 pOn(©),  p =Y pOn()

£eo ¢eT

on the outgoing and incomind modes.

Solvability of the outgoing modes

The outgoing modes are solution to Cauchy problems. So we construct the initial data
Z/{g(t = —t0), £ € O N Aq for the equation (3.5.4) from the initial value I?O e I%*.

Lemma 3.5.5. The Cauchy problem
Xg(@x)z% =0, ’LLf(t = 0) = 2, EeO

has a unique solution ug = Ug(z' — vgz) with Ug € ' (R%).
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Démonstration. For sake of readability we drop the subscript &.
Set v/ = (1,v1...,v4)/vgq . Then, let hZ : R? — R? the isomorphism defined by

hy(a') = (& = vt).mo —vt%/e,  (h5)7H(a") = (2’ — v'2)|em0 — (t°/<,0).

There holds hS (2" — v'2) — hS(0) = 2" — vt.
Let us set
U =1TI°o(hi— h;(0)).

Then u(z) = Z¢(2" — vt) = U(2' — v'z) and since Z°¢ € i 0) (R%,) then U € I'*(RY). O
Now one solves the Cauchy problem for the equation (3.5.4) for pTU°.

Lemma 3.5.6. Let s > d/2 and suppose given an outgoing polarized initial data : T4 €
I9¢(Ag) , then there is a t* and a unique pTU® € P*(Q, Ag), t <t~ satisfying the Cauchy
problem with (3.5.4) for the outgoing modes.

Démonstration. (3.5.4) is a non-linearly coupled system and it decomposes into smaller pro-
blems Pe combining only the modes propagating at speed ve. From assumption 3.2.22 this
set is finite.

Each profile involved in P is a function of the variables X, x — vez. Denoting by O¢(w)

~Re(9:)w | the solution reads

the operator e
ng (t,x",2') = (t)I (X" — et a')

/Ogt—s (S)Fgo(s,x”—vdt—s),m')ds t<te.

For an energy estimate one must first notice Og(t) maps I'*(R?) into I'*(R?) boundedly
with a bound equal to C'(s)e“" where c¢¢ is a constant (cf. [14], lemma 4.2). Then one takes
the X* norm of the previous equation

t
I ()llxs < Co)e < 1T | xs + ¢ \/E/ <= p(E)m () FY (0)]| x+ do.
0
And since in H®,I'? the interpolation inequalities are valid one has the Gagliardo-Niremberg
inequality

1-1/s

l
oo ]Rd XRd HUH /8

10 (< &' >, 02)2U | f2staremay < CIU||
where I + 15 <1, I3 < s. And since F°(0) = 0,
IFY(U)lxs < CUIU o) 1U |5

Then setting NO(t) = ZﬁePg HUg(t)HXs we get

t
NO(t) < ¢1e2*N°(0) + 3 \/’E/ e C(U] 90 )NO(5)ds.
0

So one can use Picard iterates to solve P in the Banach algebra X* and find a time
existence te.
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Then by a Gronwall argument one gets a bound for HL{g(t)HCO([Qt]; x+) Which depends on
supy ||Z/Ig(t)|| Loo(RY xRd)- This suppremum does not depend on s hence neither does te. When
the suppremum tends to infinity the solution stops existing. This gives an explosion criterion.
Lastly use equation (3.5.4) repeatedly to see that ||L{50||Es(9t) < 00, YVt <t

Then set tT = mingeona, ta- O

Next we show the well-posedness of the boundary value problem associated to the equation
(3.5.4) for the incoming modes. We need to solve the boundary problem TPU? = 0. Writing
PUY = pTU® 4+ p~U° + P, U" one gets the convenient form

Tp U° + TP, U° = —TptU".

Then from the Lopatinski conditions 3.2.9 one can define partial inverse for all £’ satisfying
assumption 3.2.4 :

Tl (€, 60), T/ (€) = Po—= P, €a€T,
so that one gets P, U, IS:Z:Z:O =T, (&) (~TptUY). This value is smoothly extended to all
z,z. Next p_Uﬁ:z:0 =T, (¢, &) (~TpTU) is extended to all z through 2’ — v'z.
Thanks to the previous lemma erUO70 is known for all t < tT. We note B = p~U?

‘z— ‘z:O‘

Since B only involves terms of kind p™ U‘(Z):0 whose initial value vanish at the boundary , it

vanishes at t = —t0.
We get the following result for the boundary problem associated to equation (3.5.4).

Lemma 3.5.7. Let s > d/2 an integer . Then there is a t~ < tt and a unique p~U® € P}, €
P, Ao), t <t~ with boundary value B and whose profile Z/{g € Y? satisfy

[Xe(00) + 5 Re(00)] U = p(E)m(€)FY

(3.5.5) U(z=0)=B E€T, t<t”

Démonstration. The proof is almost the same as for the previous lemma except that we get
an energy estimate in z instead of t.

We thus needs to re-express the energy estimate so as to perform Picard iterates. We
can’t simply say there is an energy estimate in z exactly as in the previous lemma concerning
t and recall z < tTv,. Indeed, the common space Y* is designed for a time description.

We recall the notation ve = (vy,v:), vi = (1,vy)/v; With vy, = (v, ..., vy, ;).

Then for z < ttuv,, Z/{g solves a Schrodinger equation in z. Let J; = \|L{50||Hs (RI-1x[0,v¢ . t]) xT'®
and Jy = |Z/{gHHs(Rd71X]%Ztm[)xps. Because of the vanishing initial data Jo = 0. Then

J=| /0 Oc(z — )p(E)T(E)FO(X — Vi(z — 5, 5,2')dsl| 12 gz e

which can be estimated in term of t : set u = (z —s) and b=y — v} u

Ve, ot z
J1 < C/ \/Zequ(g)ﬂ'(f)Fg(t - u/U27 HZ— U, ')||L2(b,w’)dUdZ7
z=0 u=0

using v/z < /v¢ .t and switching the integrals it is majorized by
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Vg, 2t Vg 2t
VAT / / e"llp(§) S)Fg(t—u/vz,.,z—u,.)HLz(b,x/)dzdu.

We bound the integral on z < wg .t by an integral on z € [0,00] then we make the
translation @ =z — u and we set r =t — u/v,. One has finally gets the bound

t
Vit [ e @O

Thus one gets an estimate for all z > 0 (for z > vg .t, U° = 0) and one can perform time
Picard iterates as in lemma 3.5.6. Similarly the solutlon lies in Y*, for all t < t.
Let t7 = mingernag Za- O

Setting t* = min(t~,t), from the previous two lemma one has U? € P*(, Ag), Vt < t*.

3.5.3 Construction of the other profiles.

We explain how to construct U'! and more generally the next profiles solving the cascade of
problem P7. Let us call E7 the first equation in P7 and write Pos(FE7) Pos L1 (0, )PosUI ™1 = RI
((3.2.5) illustrates this with P,s(E?)).

Theorem 3.5.8. Let U? determined as above and let (IT7°)1<j<n € I°77¥(Ag) a sequence
of data. Then under assumption 3.2.20 there is a unique solution U = >_._ IU7 to the

cascade of problem (Pj)jgn+2 satisfying the Ansatz 3.2.18 where each profile belongs to
P (e, Ay), Vit <t* with Ay = Ag and A; D N°(Aj_1) finite.

Jjsn

Démonstration. In the proof we first construct the profiles U' and U7, j > 1 solving (1 —
P (E7), (1 — p!)Pys(EIHY), pPys(E712) together with the initial and boundary condition of
(Pd).

Next we give a lemma stating such a construction satisfies the remaining equations that
is (p' — p)Pos(RY), Vi < n.

Construction of U'.

1. First solve the microscopic equation, (1 —PY)E! : (1 -P)U! = —QL!(9,)U°. Note that
Qos LY (0,)UY, = 0. Also remark (1 —P)U! € P* and specU' = Aq.

2. Next solve the global decreasing part of equation P'E? = P, E? (see (3.2.5)). Taking

(1 — p")P,sE? one gets l:]1 = qP, FY.
3. Lastly determine pP,,U" and P, U from the initial and boundary conditions and using
P,sE3. Indeed Theorem 3.2.17 gives the first solvability condition pP,sR3 = 0. It gives

(X(0y) + iRos(92))pPos UL =pPys(F* — L1(9,)F°) + 2K (8, 0)U"
~X(8)U + K (8y,0,)(U' — QLY (9,)U),

where K (0,,0,) is a second order linear operator defined on P°. Contrary to the nonlinear
Schrodinger equation for the leading term this equation is linear in U'. Since U? is constructed
so as to satisfy the Ansatz 3.2.18, pPosF'' only depends on pU'. Thus, for each caracteristic
velocity v, there is a linear system involving Ué-lk, k < oo where vg, = v, VEk.

Thus one solves this equation as for the leading term (except that it is linear).
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1. First determine the outgoing modes. The Schrodinger initial data is given solving the
midle scale equation

p(g)Ufl(t = _t07XH7 33‘) :Iglﬁ(t = _tO7X”7 33‘” - Ugt)
:L{E(t =t x" 2 — véz), EeAiNO,

And a linear version of lemma 3.5.6 gives p(§ )Uil for all t <t,.

2. Then determine the incoming modes from the boundary condition.

Next the boundary data at the slow scale for p~U"! is given through the middle variable
2’ — vgz and don’t involve (p* — p)U! so it reads

P(E)U¢ (X 2 = 0,2) = = T (ET(E) (1 ~ PE)U' (X, 2 = 0,2" — vgz)
- Pos—l—(g//)Ul (X/7 zZ= 07 l‘/ - ’Uéz)

—i[l(X,,Z:O,l‘,—’UéZ,JEd :0)), e AiNT.

It is defined for all t < t;. From lemma 3.5.1 U'(z4 = 0) € T™(R") and vanishes
infinitely at the corner t =z = 0.

One thus solves the transport-Schrodinger equation with those boundary data which
vanish up to order m at t = 0 thus compatible with the null initial data.

Because of K(0,,0)U° , pPosU' € Y1, And thanks to linearity (of F' w.r.t. U'), the
time existence is also t*.

6. Then ]Pev(f’)Uelvﬁ,(x, x, Xq) is determined from the boundary value Uelv’g, (X, 2, Xq=0)
involving outgoing profile lying in Y*(R%™1) as a Schwartz extension to all z > 0, z.

Construction of U7.

The same approach applies though some modifications occurs :

1. First (1 — P")EY gives (1 — P)U7 = —Q (FV~2 4+ L'(8,)U ! + LY(0,)U?~2) Thus (1 —
P)UJ € Ps—I+L,

Then spec;U’ = spec, V=2 # AJ=! : there are new higher tangential harmonics created
by F7=2. Thanks to Assumption 3.2.23 there is a finite module A; constructed on spec,, F7 >
and stable in the sense of (3.2.26). So spec, U7 C A;.

2. Next P,sF7+! reads

PosLl(ax)PosUj = ]Post_l - SChPosUj_l + POSH(Uk)ij—27

where H(U*)pzj—2 = L'(0¢)(1 = Pos)U7 ™" + L (05)Qos (FI 72 + LY (8)U7 ).

3. Then (1 — p?)P,, B/ *! gives Ui = qﬁm. ‘

4. Next we determine pP,,U7 from P,,E91? exactly as for Ul. We find Z/Ig €Y* 7. And
thanks to linearity (of FV w.r.t. U7), the time existence is also t*.

Checking the remaining equations.

Lemma 3.5.9. Let U¢ constructed as previously. Then the aquations (p' —p)Pos(E7), ¥j < n
are true.
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Démonstration. Since U’ was constructed satisfying the ansatz, one just need to check (p’ —
P)Pos(R7) = 0.

First note this equation only involves the polarizations P,,U*, k < j. Then all linear
expression (L1(9;), R(0;)) preserve the ansatz so they are killed by the projector. Thus one
needs only to check (p’ — p)PysF? = 0 which is true from lemma 3.5.1. O

O

Remark 3.5.10. Remark assumption 3.2.20 is fundamental in this construction. In fact it is
sufficient to the construction : indeed if U7 satisfies the Ansatz 3.2.18 then one can check that
(p" = p)PosRITE = 0 50 Xps(p' — p)Pos U7 = 0 and lemma 3.4.3 implies (p' — p)Po U1 = 0.
This shows the propagation of the Ansatz.

3.6 convergence

Here we prove theorem 3.3.2.

In the last section we have found a WKB approximation for a three scale solution
Ugpplesex,,x/e) = 37, &?U7 of (3.1.5). We have shown the profiles satisfy a Schrodin-
ger equation each involving a global middle variable =’ — v'z.

However the initial condition egp, = Zapp(.€,.,./€) is defined for z > 0 and one has to
extend it for all z. Since it vanishes smoothly at z = 0, one keeps the same notation for the
extension by 0 to z <0.

Plugging ug,, = Ug,,
< n vanish. Therefore

(ex,z,x/e) in the equation (3.1.5), we see that all the terms of order

n n n € € z
(3.6.1) L(€0z )ugy, — 62f(uapp) ="Mt ¢f(z) = Glex, z, E)

with G € P*~"1([0,t]). Moreover, by construction there holds

(3.6.2) (Tun

(lpp)|><d:0,xd:0

=0.

Lastly one must remark the previous WKB construction modifies the initial data since the
initial data are that of p]P’u;Lpp and there are the extra term e’ = (1— pl)]P’osUa”pp(t =0,ex",t =
0,2, T =0,2"/¢).

Now to see this WKB approximation is really close to the initial problem (3.1.5) we look for
the exact solution under the form u* = ugpp—i—&?M v® with initial condition e® = egpp—kel—i-&?M Te.
The remainder v® is solution to :
LE(9p)vf = &2 (enM~1ge 4 F(ugpys eMuvF)of)
(R) Tve =0, z=0
VvE(t = —t9/e) = rf 4 e~ Ml

where F'(u,v) = fol Ouf (u + tv)dt.

Since €’ vanish at z = 0 the compatibility for the whole problem is then insured by taking
r¢ flat up to order m at z = 0.
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—M i

Now we show that e e’ is bounded.

Lemma 3.6.1. There is a constant cpr independent from € such that

E_M”eZ”ng (RY) <cpm sup |(1—p )]P)OSU]HYm+]\/I+d+2 .
i<n
Démonstration. ei == z j<n 5-7(1 — pZ (5))7‘(’(5)[]&]76“:7& t— /e It is then sufficient to show the

Eehy,
inequality for the leading profile. Note ag =(1- pi(f))ﬂ(f)Ug0 <

Has(t——t E., t=—t /E )HHms(Rd)S

0/
H/b o/b <o /b O/t ItIM [t 01 p - - Fo,a2(b 1, )b dtl| e
0= d= —00

—t0 /E 1 M 0
< o W |t] bR atabo...8bda§(b,t,.)dbdt||Hm,s(Ri)

J
bo>0,by>0 1<j<d—1

M

1 0

<c¢ sup <—> llagllymrariasa .
t<—t0/e |t|

M
And sup<_o0 (ﬁ) <M. O

Then for the convergence one needs to give an estimate of ug,, in the inhomogeneous,

p
e-space E"* (cf. (3.3.2)).
Lemma 3.6.2. ”Uapp”E'ms <C|U ppHYm+d+1

For the convergence one can apply the results of [35]. However we recall the main steps.

1. Initialization of the scheme
We suppose that n > M > m are given with m > d+1 even. We fix a Cy and we consider
the Cauchy problem for (3.6.1),(3.6.2) with initial data h € H™(R%), such that

(3.6.3) 121l i ety < Co-

(3.6.4) Ok higy—o =0, for ke {0,...,m—1}.
In a first step, we assume that

(3.6.5) h € C5°({xq > 0}).

To solve (R) one uses a scheme giving a sequence vP with limit v :

L(ed, )Pt = 2 (&m0 4 F(u
(3.6.6) T, o =0
Up+1|t:0 = h.

M ,pY,p
app?g U)U)a

As in [35] we initialize the scheme with v° such that v°(t = 0) = h and (e9;)70°, j<m
is computed by using the equation. The existence and regularity results of [19, 42], imply by
induction on p, that the scheme (3.6.6) defines for p > 1 smooth solutions v? € H* ([0, t,] x
Ri), which are flat at the corner. Then for all p the Taylor expansion of vP at ¢ = 0 is that
of 0.
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2.Global energy Bounds for the sequence.

Proposition 3.6.3. There are g > 0 and C such that for all € €]0,&¢], h satisfying (3.6.3)
(3.6.5), and allp >0 :

(3.6.7) M I1vP | e (o el ) < 1
(3.6.8) sup  |[oP(t)]|gme < C.
te[0,t« /€]

This is a consequence of the linear following estimate (see [35]) :

Lemma 3.6.4. For all even m € N, there is a constant C such that for all smooth u satisfying
L(0,)u = €2 f(u) there holds for t € [0,1] :

t
(3.6.9) |lu(®)||gme < C|lu(0)]|gme + Cs/o I/ (s)||gm.eds

and a non-linear estimates on the full system (R) (cf. [35]). Note the added ¢ in (3.6.9)
in front of the integral. Thanks to it one gets the supremum in (3.6.8) over [0, t./¢].

We next recall the main nonlinear estimate in [35]. It requires the definition of a new space :
for t > 0 and m an even integer, denote by F™(t) the space of functions on | — oo, #] x R%
such that 8;‘,,8%1; € L?(] — 00, t] x RY) for all |o/| + 2a4 < m.

Lemma 3.6.5. Suppose that G is a smooth function of its argument. For m > % even,
there is a function C(-) from [0, +o00[ to Ry such that for all € €]0,1] and all t € [0,t.], there

holds for all v and w in F™(t)
HF(upragMU)wHﬁ‘mvf(t) S C(EM”U”LOO)
(kuﬁm,s(t) +eMfw]| L (1 + ”U”Fm,s(t)))

where the space F™¢(t) is a subset of functions of L?(] — oo, #] x R%) and has associate
weighted norm

2 1"
(3.6.10) [l ey = Y, 2t ‘Haguuy(]_w’ﬂmi).
204+ a|<m
3. convergence
Proposition 3.6.6. For all ¢ €]0,g9|, and h satisfying (3.6.3) (3.6.5), the sequence vP

converges in E™(t./e). The limit is the unique solution v of the Cauchy problem for the
limit system in the space E™(t./e). It satisfies

(3.6.11) sup |[v(t)||gme < C
te[0,tx /]
where C' depends only on the initial bound Cy.
4. Relazxing hypothesis (3.6.5)
This is done by taking a sequence h” € C§°(z > 0) which converges to a h satisfying
(3.6.4). Using the linear and non-linear estimate one gets a Cauchy sequence in E" for the

related sequence v” solution to (R). Since E"¢ is a Banach space one gets a limit v solution
to the Cauchy problem.
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Chapitre 4

Intermediate models for laser
propagation in nonlinear media

4.1 Introduction

4.1.1 Motivations

The aim of this paper is as in [6] to propose new models for the simulation of the pro-
pagation of a laser in nonlinear media. The classical framework [13] is to use the par-axial
approximation. More precisely, one looks to the electric field under the form

4.1.1 E ~ Et,x)e!wt-kx)/e 4 ¢
(4.1.1) (t,x) 7

where ¢ is a small parameter. Then one finds equations satisfied by £ thanks to a WKB expan-
sion on &£. The amplitude £(t, x) is indeed searched as a formal (not necessarily convergent)
Taylor series :

(4.1.2) E(t,x) =P & (t,x),

J

with p a real which parametrizes the amplitude of the wave. It corresponds to that of the
initial datum and its value determines the regime of optics : the smallest it is the farther the
rays can propagate.

Here we consider the envelope of a plane wave (4.1.1) but as in [6] we do not perform the
WKB expansion and look instead for an intermediate equation on the profile £.

One will use this ansatz in the Maxwell system in order to provide an approximation of
quasi-monochromatic rays propagating in dielectric media (see the next examples). In [6] the
case of the Cauchy problem is addressed. Here we address the case of the boundary value
problem.

4.1.2 Two model examples

We introduce two models studied in [13] and [11]. These models are 3-dimensional in
space but we will mainly do computations on the one dimensional problem in order to avoid
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technicalities. Both contains the Maxwell equations for a dielectric which are

OyH +rotE =0,
(4.1.3) 0D —rotH =0,
divD =0, divB =0.

We consider a transmission problem through an interface. The transmission conditions for a
dielectric read :

(4.1.4) [E]An=0, [HAn=0

[E] is the jump of the electric field through the interface whose normal is n. Note that choosing
a divergence free initial condition, the solution of (4.1.3) is divergence free for all time.

(E, B) is the electromagnetic field and (D, H) the electromagnetic impulsion field. D is
linked to the electric field through a constitutive relation :

D= X(E,...,E).
j

(see physic text books : [3],[29], [13]).

In [13] P = x'(E) + x3(E, E, E) where x! is linear in E and gives the linear index of the
medium. y? is a trilinear function which describes the interaction of two populations of ions
in a gas corresponding to two different levels of ionization of a same molecule.

OyH +rotE =0,
OE —rotH + € = —9,(|E|*E),
@P—%zo
atQ‘ng? :’YE

(4.1.6)

Here, the small parameter is ¢ = =

pulse and wy; its frequency. w, ~ 1 is the dimensionless resonance pulsation of the medium
and v ~ 1 is the dimensionless nonlinear strength.

where T)..¢ is the characteristic time of the initial

In [11], one considers a non-isotropic crystal. We work in the crystallographic coordinates
via a two angles rotation. Then P reads P = x'(E) + x*(E, E) with x'(F) = XQ)E +

aax,(ll)E + abxl(,l)E and x? bilinear. The second order tensors Xg?,aa,ab are diagonal with

constant coefficients and «, + ap = Id. X[(ll), Xl()l) are defined by :

1 _ <X£:1) - Xgé)> 1 _ Xgl) - Xg)
=\—7 > Xp S —

Xa _w? o _ w2

2 2
w2 wi

with Xgl) a constant coefficient diagonal tensor. This polarization P describes the interaction
between a fundamental wave and its first harmonic when it is resonant (this requires a phase

matching condition between the pulsation w and the orientation of the Cristal).
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The corresponding system is written in the crystallographic coordinates and reads (in the
dimensionless form)

O¢H + Prot€ = 0,
XL 0E — ProtB + el + ) = 19, (€,€),
O F — 22l =0,
9G — LY =0,
OU + “2F — 0y aTE = 0,
BV + G — @ TE =0,

(4.1.7)

The tensors wg,w, € M3(R) are associated to Lorentz resonances frequencies of the medium
and

cos(p) cos(a) —sin(a) sin(p) cos(a)
P = | cos(p)sin(a) cos(a) sin(y)sin(«)
—sin(yp) 0 cos(p)
is the rotation matrix. Finally 7 = XS’ — X&).

Setting x = (t, x1,x2,x3) Those two systems can be written under the quasi-linear form :
Ly
(4.1.8) L(0,) + — Ju= =0 f (u).

In the first system v = (H, E, Q, P) and f(u) = (0,|E|?>E,0,0) ; in the second u = (H, &, F,G,U, V)
and f(u) = (0,7 (€,€),0,0,0,0).

Moreover the partial differential operator L(9,) = J; + 22:1 Aj0y; (with A; symmetric
and Ay = I) is hyperbolic symmetric in the direction dt. The last matrix L is skew-adjoint.
For the sake of simplicity and as our analysis mainly deals with the linear operator L(9,) +
Lo/e one will replace —0;f(u) by a semi-linear term f(u). We refer the interested reader
to [23] for extending the theoretical arguments to the quasi-linear case. Nevertheless the
numerical computation will be performed on (4.1.8). See also [11] for physical justification of
using semi-linear systems instead of quasi-linear ones

4.1.3 General setting

Notations 4.1.1. Let Q = R" x R" and z = (xg,...,z,). Sometimes one may use xg = t,
T=(x1,...,2n-1), Tn = 2. We also use 2’ = (t,2) and 2" = (%, 2).

For any subset W C R we will note W' C R™ the subset made of the ' for x € W and
W C R™ that of the x". W' will be often referred to as the tangential set of W.

we propose to solve the semilinear boundary-value problem related to (4.1.8) for an inco-
ming wave :

(4.1.9) L(£0z)u® = f(u), 7 eR" 2>0
(4.1.10) u® = 0%, on z=0
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where L(¢0,) = e¢L(d,) + Lo, (with the notations from (4.1.8)) and L(9,) = 0 +
Z?:l A;jOy;. This problem is the natural representation of the transmission of an incident
wave whose value at the boundary z = 0 is b°.

Nevertheless, as L is not hyperbolic in z and because of the nonlinearity, this problem is
in general not well posed.

In fact one should consider the subclass of causal solutions for which one can get estimates
using the hyperbolicity in the direction dt of £. A way is to consider (4.1.9),(4.1.10) as the
restriction to z > 0 of

w = filu), o' €R? z<0
E(s@x)f,: r(up), o €eR™ z2>0
):O, z2=0

(4.1.11) Tt
Wit =0)= Vg, ui(t=0)=0,

with f,, = f and the linear boundary operator 1" is supposed to satisfy a Lopatinski condition
(see [30]). This initial boundary value problem is well posed (cf. [19]). The problem is then
to find V§ so that u5(z = 0) = b°. But since the equation (4.1.9) is nonlinear one can just
hope solving approximately this inverse problem (see section 2 for a discussion about this
problem).

Moreover from [35] one expects the value u5(z = 0) of (4.1.11) to show new propagating
waves and evanescent waves. This gives rise to quite an intricate analysis. A way to simplify
it is to consider (4.1.9),(4.1.10) with (4.1.10) chosen so that it cancels all the waves generated
by the boundary except the considered incoming wave. With such a boundary data there
is an energy estimate for approximate solutions of (4.1.11) involving only oscillating waves.
This is explained in section 4.

If b°* ~ eP and f polynomial one can expect solutions propagating over long distances
2% ~ 1/e? with q depending on p and f (see Remark 4.1.2).

Next as we consider x,, = z to be the evolution variable one must pay attention on the
invertibility of A, (recall L(9;) = > ., A;0;). As it is not invertible in the two previous
examples we will suppose, up to a change of basis that A,, is under the form

11
A, = (A(;L 8) with ALl invertible. Let us denote by d; the rank of ALL.

Now according to (4.1.1),(4.1.2) we look for a solution of (4.1.9) as a modulated plane
wave :

(4.1.12) “(x) = PU(e,x,0), O=ux.t/e, & € R

u
(4.1.13) w(a!, 2 = 0) = = U ()e”),_, ..

where &, is the wave frequency. From the 27-periodicity in 6 of the boundary data it is
reasonable to look for oscillating profiles U(e, x,0) that are also 27-periodic in 6.

Then following [14], we write the singular equation satisfied by the profile U(e, z,0) as
follows

(4.1.14)  L(£0y + £.09)ePU (g, 2, 0) = f(ePU(g,x,0)) Ve = (2,2) e R x RY, 0 = T f*

and we impose that this equation is satisfied for all 2,z and for all § € T with T = Z / 277
thus not only for § = %
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Remark 4.1.2. The size of the profile is O(eP) and the power p determines the distance of
influence of the non-linearity. Indeed, take L = 0., f(u) = u® and set u® = ePU. Then the
equation reads

(e84 £.09)U = ePle= Ve,

If ¢ is small enough and pa > 1 the solution is defined at least on a z interval of size
O(sp(a%l)) and this result is optimal as shown by the case £, = 0 for which an exact solution
can be found.

In the sequel, we suppose that f(U) = ®(U;U,...,U) where V. — ®(X;V,...,V)is J
linear in V' so that f(ePU) = e/P®(ePU; U, ...,U) and we note ®(ePU; U, ...,U) = F(x,0,¢).
Then writing £ = 4,0, + L’ and setting o = e?/~D~1 one gets

(4.1.15) (A 9.+ - (L’(aa’ + &.0p) + ExnAn 89)> U(x,0) = oF(x,0,").

Remark 4.1.3. In the frame of geometric optics (for z € O(1) thusp =1/J —1), one would
use the expansion 4.1.2 for the profile so that one could expand the equation (4.1.14) :

(4.1.16) Z&?J (Ll VU (z,6) + £(§*89 U (x,0) > ZsﬂFﬂ z,0)

where L(gu) = eL'+ Lg. The solution in then found by cancelling the coefficients of the series,
providing two equations for each profile :

L(:0)U° =0
LY(0x)U7 + L(£:0p)U T = Fi

One solves this infinite system inductively and one can see it mainly depends on the inverti-
bility (or not) of L(£.0p).

Define p(§) := det(L(i§)) the characteristic polynomial of L. Then the first equation has
a nontrivial solution iff p(§) = 0. We say that & is characteristic for L.

Definition 4.1.4. Denote charl = {¢ € C"! | p(¢) = 0}.
We say that § € charL is reqular if it is real and if there is a real C* function \ defined
on a neighbourhood of é” such that charL is locally parametrized by &y — A(£") = 0.

Next write £ = 9, + L"(9") with L"(in") skew-symmetric. L” has a semi simple decom-
position with ¢ distinct eigenvalues \; defined for all . By definition p(\;(n"),n”) = 0. This
shows that charl is made of ¢ distinct sheets separated with gaps in the time direction (see
figure 4.1). Finally as the cascade of equation mainly gives transport equations one introduces
the group velocity related to a characteristic mode n = (A(1”),n") : v, = V, A(1)").

Contrary to remark (4.1.3) we look for an exact solution of (4.1.15) which is not a WKB
solution. Unfortunately as the roots of p(¢/,&,) in &, can take real values one can’t expect
the existence of an exact solution of equation (4.1.15). However using cutoff functions one
can get an approximate solution which is better as o tends to zero. The derivation of the
corresponding model is given in section 3 and the existence and stability are discussed in
section 4 and proved in section 5. We next summarize the main results.
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F1G. 4.1 — characteristic manifold w = f(k) for maxwell-Bloch equation (4.1.7).

4.1.4 Main results

We present the results obtained through the example of the system (4.1.6) in the one
dimensional case.

Let wy, ke € R satisfying the Maxwell-Lorentz dispersion relation : k2 = w?(1 + x(wx))
with x(w) = ﬁ Let us denote k(w) = wy/1 + x(w) the root satisfying k(w.) = k..

Then let b°(t) = ePB(t)e™*! a boundary data for (4.1.6) with B(t) polarized and with
Fourier compact support :

k.
(4.1.17)  B(t) = (——=ea,€e1)A(t), e1 = (1,0,0), e = (0,1,0), x«(e0y)B(t) = B(t).
Wy + Eat
A(t) is the scalar amplitude and . is a cutoff function which vanishes outside a closed set
containing k, and on which £ is well defined.

cwxtt+ksz

Theorem 4.1.5. There is a unique solution u(t,z) = ePU(t,z)e'~ =+ ePoO(e) to the
system (4.1.6) with boundary value e B(t)e™*t + ePaO(e) and where the profile U(t, z) is
solution given by

(4.1.18) Ul(t,z) = l1(ws +€0r)an (t, 2) + la(ws + €01)aa(t, 2),

where a1 and ag are solution to

(02 + £ +20) T+ xwn +207) — ke ) a2, 2) =
1 . .
me*(sﬁt) < l](w* +€8t),F(U) >, € {1,2}, z >0,
o5lt, 2 = 0) =<1, B(t) >, e {1,2)

(4.1.19)

with 1; given in section §6.1. Moreover there is a ¢ > 0, z9 > 0 and to > 0 such that the
following error estimate holds :
- Wk kxwz
sup sup ||u® — ePU(t, z)e’ %
te|0,to /o] 2€[0,20 /0]

loo < coeP™L.
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Remark 4.1.6. Performing the limit ¢ — 0 in (4.1.19) and expanding the square root
\/1 + X(wx + £0;) one recovers the usual geometric optic model at first order and the Schro-
dinger equation at second order. Our model is therefore an intermediate model between the
complete Mazwell-Lorentz system and the usual NLS. We expect this model to have an exten-
ded range of validity indeed.

We have performed calculations on (4.1.6) (see section 6) and compared the solution of
the equation (4.1.19) with that of the usual Schrédinger equation. We have checked the errors
predicted by the previous inequality and the known estimate for the Schrédinger model. Then
we have highlighted the difference between the two models. This difference is big mainly in the
linear case for pulses with broad spectrum (that is short or spectrally chirped). In particular
the shape of the profiles greatly differ. In the non-linear case the non-linear effects prevails
on the condition that the dispersion is weak and then the two models are very close.

4.2 The boundary problem (4.1.9),(4.1.10) : a hidden transmis-
sion problem.

The aim of this section is to give a framework for (4.1.9),(4.1.10) to be well-posed and
to discuss about a question related to the link between a Cauchy problem and boundary
problem associated to a given hyperbolic equation.

(4.1.9),(4.1.10) being well-defined, one can then look for the intermediate model (4.1.19)
(see next section for the derivation and sections 4,5 for a justification).

Here we do not perform any rigorous justification but just give some hints.

We propose to re-write (4.1.9),(4.1.10) as the restriction to z > 0 of the transmission
problem

L(e0y)u = edy(wy), xp <0
L(e0y)ur = epp(uy), >0
T(uj,up) =0, x, =0
w(t = 0) = Py (€0, ) Vo (2)e* out/s |, (t =0) =0 .

(4.2.1) (P)

where ¢, = ¢ (as in (4.1.9)) and 7,y is the orthogonal projector on ker £(i€y,) with
Sout0 = Aout(El,). Moreover &,y is an outgoing mode (so called “incident”) for £ : it is
real characteristic and vg,,, » > 0. The boundary condition is supposed to satisfy the Lopa-
tinski conditions which enables to find every incoming mode (the “reflected” on the left side,
the “transmitted” on the right side) in term of the outgoing ones (cf. Kreiss. See [47] for the
analysis in the Geometric optics context).

One checks that u, is indeed solution to (4.1.9),(4.1.10) with boundary value u,|,_,. Since
(4.2.1) is well posed, the solution of (4.1.9),(4.1.10) obtained through this process is well
defined. The main drawback of this construction is that one cannot take general boundary
data b° for (4.1.9),(4.1.10). Moreover since the interior problems are non-linear one cannot
compute explicitly u,(z = 0) in term of the incident wave. However one can hope to get an
approximate relation between u,(z = 0) and Vj.

First, as it is more natural, let us find an approximation of w,(z = 0) in term of Vj.
Using the fact that the searched solution is spatially almost compactly supported and
assuming that the nonlinear interaction is small, a good approximation of u; is given by
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u;’“t + u;ef ! where u;’“t solves the following problem that is posed on the whole space

(4.2.2) L(e0y)u =ep(u), z€[0,T] xR"
- u(t = O) = Epﬂout(&?&g”)Vo(x//)eim”-fé'ut/e

This approximation corresponds to a decoupling between this outgoing wave and all the
incoming ones generated at the boundary. The smaller the nonlinear interaction is the better
the approximation.

This Cauchy problem has a solution u{* defined for ¢ < T' = ¢/o. This solution de-
composes into k distinct waves ﬂj(&?@mu)u;’“t, j < k among which ﬂout(a&vn)uf“t is the main
contribution. From [6] we can replace uf"* by Weie" Eouele = Tout (E0z7 )uf™ where W solves
(4.2.3)

{ O+ 2(Xout (€02 + Ely) — Eout0)W = 0Tout(0yn + €y )d(W), € [0,T] x R"
W(t =0) = mout (€02 + Egu) Vo(z")

and the accuracy of the approximation increases when o decreases.
Now choosing a rapidly decreasing (in z) initial profile Vj, vanishing infinitely at z = 0 and
e small enough, the Cauchy problem (4.2.2) provides a boundary data at z = 0 nearly known
for all ¢ > 0 and vanishing infinitely at ¢ = 0. This value is close t0 [Tous (€05 + &)y )uf™ ]|, -
Finally decomposing [7out (€0, )uf™]|__, according to the transmission problem allows to

use the Lopatinski condition and solve analytically T'([Tout (€02 )uf™]|,_,,b%) = 0.

Next one raises the question of the inverse problem which consists in determining Vj in
term of a given u,|,_, = b°. This requires to solve T'(u;|,_,,b°) = 0 in u;|,_, and then to find
Vo in term of uy,_.

The first step is however not natural : one usually solves the boundary equation by
determining the incoming waves from the outgoing ones (using the Lopatinski condition).

So one supposes given instead, the trace of a polarized outging wave at the left of the boun-
dary : u? = 7~"'out(gaac’)u? where 7~"'out(n/) = 7"'out(nla s 777n7Cout(77/)) with Sout,n = Cout(géut)'
This is the symmetric projector onto ker(L(e0y, (out(€0,7))) defined for ' € F,,,. Finally
one supposes that u? has compact spectrum : u? = Xoutu?.

Then one supposes that the boundary data b° for the equation (4.3.8) is computed by
solving T'(uf, b%) = 0.

Next we look for an approximate way to determine V| thanks to u?. From the discussion
before (4.2.3) one expects that uj can be written under the form uj = [mou(€0pm)uf™]|,_,.
Nevertheless u? and Woutuf“t‘zzo are not polarized on the same space. This is due to the
nonlinearity in equation (4.2.3) and the fact that Vp may have a large spectrum. However, if
o is small the two terms are all more the closer. More precisely one has

Lemma 4.2.1. Consider the equation (4.2.3). Let

Q= {(fl,...,fd) ‘ a7 such that (T,fl,... 7€d—1) c fgout}.

Suppose o = 0 and FVy € D°(Q) where D°(Q) is the set of C°(Q) functions compactly
supported in Q and Fpn is the Fourier transform with respect to x”. Then

(1 - 7~Tout(gam’ + Séut))VV\z:O = 0.
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Démonstration. Indeed, if 0 = 0 then W is solution to

LDy + ifou /)W =0,  tER
W(t=0) =V, t=0
Vo = Wout(gax”)‘/(]a FaurVo € DO(Q)

Let Fpru(t,n”) the Fourier transform of w in 2” then the solution reads Fpru(t,n”) =
e—it()\out_fout,o)/afx//‘/0.

with the notations 4.3.1 we have for all z € R

fju(t, 57 Z) = / eiznn eit(Aout(eg“Fgouty577n+50ut,n)—§out,0)/€

7"'out(gg + goutv ETn + gout,n)fm”‘/o(gy nn)dnn

Thanks to the spectral compactness of Vp, one can make the change of variable Nn —

ENo + gout 0= out(gg + gouta ENn + gout n) Thus ENn + gout,n Cout(5770 + gout 0 55 + gout)
and the bounded Jacobien is Je(no,f) OCout /Oy - The projector then becomes ﬂout(&?f +

gouty Cout (5770 + gout 05 55 + gout)) = Tout (5"70 + gout,Oa e + gout)- As a result the formula reads

(t 57 ) (Je( é‘)eiZ(Cout(5-+§out,07€£+£out)_£out,n)/5
7Tout(‘g- + Sout,Oy Eg + gout)fw”‘/o(éa (Cout(a- + gout,Oa 55 + éout) - Sout)/g)

where .7-"77_01 is the inverse Fourier transform with respect to n9. Applying F,,, gives

W (€, 2) = J5(€ ) Tout (€€ + Eru)VolE, (Cout (€€ + Ey) — Eoutn) /)€ Cont (€ +Eour)Eoutn) /e

which means that W(f/ ,z) is polarized according to 7yy:. This ends the proof. O

Then one expects that Vj ~ w(t = 0) where w is solution to the boundary backward
problem related to (4.2.3) for z > —Z < 0 :
(4.2.4)
{ %(Cout(ga =+ gout) gout,n)w = Jﬁ'out(eam’ + ggut)Xout(€8x/)¢(w), T € Rnx] -7, 0])
w(z =0) =u

Note that even if w(z) = Touw(z) one has w(t = 0) # meuw(t = 0). Thus Vj should
be approximated by 7y, w(t = 0). A lemma similar to lemma 4.2.1 would show that the
approximation improves when o decreases.

In the next section we derive a model from (4.1.9),(4.1.10) then in section 4 we show a
precised convergence theorem. But for the sake of simplicity the result does not concern the
convergence of the model to (4.2.1) but to (4.1.9),(4.1.10) with a boundary data artificially
chosen to be well posed but close to that given in (4.3.8). This is meaningful as long as the
approximation of the boundary data is of same order of that done in the previous discussion
(see section 4, (4.4) and the remark that follows).
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4.3 Formal derivation of the intermediate model

Notations 4.3.1. Let F,/ the Fourier transform with respect to x',0. Denote £ ,p the dual
variables associated to x,0.

Since U is supposed to be 27 periodic in 0, FU(E', z, p) is in fact the p Fourier coefficient
of the Fourier transform in 2’ of U.

FoU)(E 2,p) = i// & =014 ( 2, 0)da’ df.
29T 0Jz

For the sake of simplicity we omit the factor ¢ when it is just used as a parameter (we
note F'(x,0) instead of F(z,0,eP)). Then we use the notation Uy,(¢') = FpU(E',p). Equation
(4.1.15) then writes

130) (A0 + L+ D) + ) ) Byl€'2) = o Fo(€'2)

4.3.1 Reduction of equation (4.3.1)

Lll(in,) le(in/)
L2 (i)~ L*(in)
bloc decomposition as A,. As L'(in) is skew-symmetric L'!(in’) and L??(in’) are also skew-
symmetric while L'2(in') = —(L?'(in/))* where M* is the hermitian transpose of A.

First we display the skew-symmetric matrix L'(in’) = < > in the same

For the sake of simplicity, 7’ will be used instead of &'+, p/e and 0, instead of 0, +&, ,p/e
for algebraic calculation. Then using U = (U',U?) equation (4.3.1) splits into

(43.2) ARLDU + LM (i U + LY(in U = o F?
o L2 (iU + L (in )U* = o F?

The first equation is an evolution equation on the unknown ! in the variable z so we
wish to compute 42 in term of /! from the second equation. We have to make an assumption
on the invertibility of L??(1’) (see next subsection, remark 2).

When L?? is invertible, system (4.3.1) reduces to

(8. 4+ G)U' = o (ALY 1E3,
02 = (L22)-1 <0_132 _ L21L71> ’
G — (All)—l(Lll _ L12(L22)_1L21)
ﬁg _ 131 _ L12(L22)—1132

(4.3.3)

Solving the first equation is strongly linked with the study of the eigenvalues i(;, ¢; € C
of G(in'). Note that necessarily (ir/,i(;) € charL.

If 7o is located in a gap in charl (cf. fig 1, no € [1,6;2,3]), the eigenvalue (; is not real.
This would change dramatically our profile description. So one must insure “artificially” the
nonlinearity spectrum doesn’t spread over the region where (; is real (see subsection 2.3).

Now we define the good tangential set according to the last remark.
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Definition 4.3.2. Let ) € charL, reqular and such that n,= G (ﬂ/). As n is regular there is
a unique A,, a root in o of p such that n, = A(n"). Suppose O\ (n") # 0.

By the implicit function theorem there is a neighbourhood O, C R+ of n such that
no = A\(1") & nn = G0

Define the maximal such neighbourhood : Cy = J Oy.

Then define F to be the connected component ofC{;ﬁ {n', det L?*(n) # 0} containing n' .

As 1/’ stands for en/ + &, let {; be the root of p in n,, associated to &. We note Fy := Fg,.
Then i¢; is an eigenvalue of G which is regular and real on Fj.

Remark 4.3.3. If the A\, doesn’t cross any other sheet excepted tangentially at its extrema

one has
Fp=TIm(\) xR""L

Then define a cut-off function related to fﬁ

Xn(él) =

1 on K}] C Fy —n' compact
0 on K§ with Ké C Kg CFy—1 dz’st(Kﬁl, Ké) > 0.

For proving the convergence of the model toward the initial boundary value problem one
may impose some restrictions on the size of K%, K,27 (cf. lemma 4.5.2). We note x1 := xe,-

After applying this cut-off on equation (4.3.3) one can reasonably solve U'. Indeed define
71]1- the symmetric projector on E]C;, the spectral space associated to ;.
First note the spectral decomposition of G' is semi-simple on F,, for n € charL.

Lemma 4.3.4. Let ﬂ/ € Foy.c;(p))- Then
dim IEJG = dimker L(in), i¢;) -
Démonstration. Introduce the matrices

o (o 9 ()

Next make the product

~ . . B i n—l-G(Z /) (A%l)_lle(Z‘ /)
At plan) = (00 (A Y
Thus
(4.3.4) p(n) = det(in, + G(in'))det(L* (in))det(AL') .

let A, the root related to Flo ¢;0py)- From the hyperbolicity of £ the characteristic poly-

nomial is broken down on R"*! and writes

p(n) = p1(m) (A (n") —mo)™ with p1(n', ¢;(n')) # 0.

Then as (; is a root of det(in, + G(in')) in n, the latter writes det(in, + G(in))) =
C(n)(nn — ¢;('))F with C(n) # 0 in a neighbourhood of (7', ¢; (7).

From (4.3.4) and since det L?2(in') # 0 one sees that m=k.
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We conclude by the two facts : 1) dimker L(ir)’,i(;) = m since £ is symmetric and 2)
dim EZ, > dimker £(in),i¢;) since U € ker L(inf,i¢;) = U € ker(i¢;(1/') + G(in')). This ends
the proof of the lemma.

O

Thus 71]1- is the symmetric projector on ker(i(; ALt + AL'G). As a consequence F;A,lllﬂé =
0 where 0j is the Kronecker symbol. Equation (4.3.3) thus splits for all 7’ € F, into

(0: = i¢;() MAN U = om} FP, < g
Z’J2 _ (L22)—1(0_F\2 . L215[\1).

Moreover doing as in Proposition 3.1 in [14] we get M; = w;A}llﬂjl- = Ujinwjl»(l + H*H)W]1
with vj,, = 9,,,¢;(n') and H = (L*?)"'L?*'. Remark since I + H*H is a definite positive
matrix, M; is definite on Im 7TJ1» and has a sign.

Let qjl» the symmetric partial inverse of M; such that qjl»(l — 71]1) = 0. The equation on
7T]1-Z:[\1 is thus

(0. —i¢;(n")) 7731»2/71 = aq}ﬂ;ﬁ?’.

Next since (lel:{\ L —H 7'(']12:[\ 1) € ker(L(in',i¢;)) one has the following spectral decomposi-
tion

q
(4.3.5) U= TU+V, V=017 ckerA4,
j=1
where II; = le 0 is a projector on ker(L(in',i(;))
77 \-Hnm} 0 e

Plugging this decomposition in equation (4.3.3) and applying successively the projectors

17 we get

(4.3.6) (9. —i¢;(n)) A ILU = oIIF, j<q
(4.3.7) V2 = o(L?)"1F2

As previously and referring again to [14] IT7 A, = v »IIZ11;. Then note Q; the symmetric
partial inverse of v; ,II7II; such that (1 —1II;)Q; = 0.
Finally replace n by £ + &.p/e and 9, by 0, + & np/e. We make a few remarks :

Remark 4.3.5. 1. First as F is a polynomial of U in (4.3.7) the spectrum of U is R™ as
soon as z > 0 even if the initial data is spectrally compactly supported. Thus one needs
to apply x1 on the right hand side of (4.3.7) for (4.3.5) to be valid.

2. Remember we look for solutions of (4.1.9) of kind (4.1.13). From the previous equation
we see that q distinct modes are to be generated, each propagating at different speed.
Then, to select the mode related to &, requires the boundary data to be polarized according
to Hl .
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3. If there exists p € Z such that &p € charLl then the solution of (4.1.9) will generate
this resonant harmonic. As this phenomenon is not generic we assume as in [15] there
is a finite number of resonant harmonics. A sufficient condition given by the authors is

Assumption 4.3.6. det(L'(,)) # 0.

Let R, be the finite set of resonant harmonics {p € charl. We note F,, x, instead
of Fe.p, Xe,p for &p € charl and j, the index of the root (;, related to F, such that

pg*,n = (jp (pgfk)

One expects U = > Uy (', 2)e™? with U, solution of the coupled problem

PERK

(az - %(ij (55/ + gip) - pgt,\n)) up(§/7 Z) =
0Q, (e + Ep)Xp(€) F U 2).
U1 (€, 2 = 0) = TL1 (€ + Ep)xp(e€)Uo (£)

Uy(E',z=0)=0 p#=£l.

(4.3.8)

to provide a profile for an oscillating function of kind (4.1.13) which is a good approximation
of (4.1.9),(4.1.10). As in [6] one expects this model to give a better approximation as the size
of the rescaled initial data o decreases (see section 4 for a precise approximation theorem).

Remark we neglect the part V), of U, since L??(¢,p) is invertible and L?2(&' + &.p/e)xp is
of size 1/e.

4.3.2 Remarks on the model (4.3.8)

1. New model vs Geometric and diffractive model. Let us note that the new model is
similar to the transport equation of Geometric optics or the Schrédinger equation of
diffractive optics and the main change is that it is linearly exact while the other two
are Taylor approximations respectively of first order and second order. Indeed the new
model is based on the exact computation of (1(&, + ¢’) for all & € F; C R while the
other two models (Geometric and Diffractive optics) use a first order (and second order)
approximation (1 & &, ,, +1ie€’ . Ve (1(€L) (—e?VZ(1(€L;€,€7)). One thus sees our model
outperforms the other two in the linear regime. Next, as the computation of (; is easy
for the Maxwell system (one only needs to solve a second order polynomial) the new
model has an algorithmic complexity very close to the other two models.

2. Typical solutions better ruled by the new model than the Geometric and diffractive
ones. The model is spectrally compact so it requires quite regular initial data. When
studying the convergence toward the boundary problem (4.1.9),(4.1.10) one will also
need spatial decay. Thus typical solutions are sharp Gaussian or spectrally chirped
Gaussian. In both cases the wave shows a broad spectrum on which {; may not be well
approximated by the Schrodinger model, typically where charLl is very curved. In the
case of a chirped wave one may enhance an intermediate small parameter (between 1
and ¢) associated to intermediate under-structures that should be taken into account
for a more accurate WKB development. On the contrary the new model doesn’t need
such a discussion. Nevertheless one must take care to the spectrum broadening of U
since the validity of our approach stops when the spectrum reaches the elliptic zone of

L.
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3. Determining F,. For the numerical implementation one needs to determine the 7, on
which L?? is invertible. One thus gives a simple way to identify those roots on the
graph of charL. Those exceptional points 7’ are either in charL and then all the sheet
{n’ =n'} are in charL or they do not belong to charL and then they correspond to an
asymptotic value of a Aj.

To see this let write the characteristic polynomial p and p?? := det L??

p() =po() > ¢l (') = po(n)ex ().
i<k
The first case corresponds to a root of pg. The second is a root of ¢i. Indeed writing
> i<k ci(m)mh = e(nf Yk 4 pi, (mn) one sees there is at least one root of the polynomial

i

o (its degree is strictly smaller). This root goes to infinity as

which is not a root of p
77/ _ ﬂ/'

By definition of Fy every (n',(1(n)), 0 € Fi is a regular point of charl thus the
projector II, is regular even if L?? is not invertible.

Nevertheless (L?2)~'F?2 may not be definite and the model too. Even if it is finite one
cannot neglect it anymore and the model should then take it into account.

Yet, since L?? is almost always invertible it doesn’t matter for numerical calculations.

Indeed if a point of spectral discretization happens to be such that L?? is not invertible
a slight change of the discretization will avoid it.

4. L?-like conservation. Finally let us note that both systems given in the first section have
nonlinearity deriving from a potential : 0, F(U) - U = €0, ®(U). The solutions of our
model then satisfy a L?-like conservation property. Indeed taking the scalar product
of equation (4.3.8) (written as in equation (4.3.7)) by II;i,, taking the real part and
summing over p € R, gives

0, Z < Ujp,nﬂjpup,ﬂjpup >=< X(Eat + f*ag)F(U),u >
pER:

where <, > is the Li,ﬂ scalar product and y is the operator xU = Zpe R, XjpUp- From
equation (4.3.8) U = xU, thus one can forget the truncation in this identity.

The extra non resonant harmonics generated by F'(U) have no influence. Therefore the
r.h.s. of the identity is fx,ﬂ(&?(‘)t +&.09)®(U)dx'df = 0 if D(U)(2) € L*(R™ x T). Finally
we get the conservation N(2) =} cp < vj,nll;,Up, IL; U, >= N(0). If the v;, , have
not the same sign, some harmonic could blow up. Otherwise as the v;, , do not vanish
on F, they keep the same sign and if all of them have the same sign one recovers a
L?-like conservation.

4.4 A partial justification of the derivation. Results

We first give a result for the existence of solution to (4.3.8) in a space of fast transverse
decay. We will motivate this choice in the next discussion.

Then we give a convergence result between (4.3.8) and (4.1.9),(4.1.10) viewed as the
restriction of (4.2.1) to z > 0 in the spirit of that obtained in [6] (Theorem 1.).
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From section 2 and 4 one could reasonably expect a convergence result between (4.3.8) and
(4.2.1) (with initial data found in the previous section). Nevertheless such a result requires
a drastically different analysis compared to that in [6]. Indeed in [6] the authors look for an
exact solution of the Cauchy problem as e Pu®(x) = U*(z,0) + oer®(x,0) with § = {,.x/e
and r¢ 27-periodic in 6.

In contrast it is known (cf.[35]) that the convergence for mixed problems can’t just involve
2m-periodic remainder. The boundary indeed generates an infinite dimensional module of re-
sonant harmonics where some of which are boundary layers. Moreover the well-known energy
estimates using dissipation (cf.[42]) or Kreiss theory (cf.[30]) don’t give obvious e-independent
estimates for a two scale remainder.

That is why one looks for the solution of (4.2.1) as a perturbation depending on the
strength of the non-linearity (o) :

uf(z) = U (z, & fe) + oers (z) + eMré(x),

and the WKB corrector r{(z) = > 1<,y eIUIE(x, &, /e) must be precise enough for 7€ to
solve the remaining equation in strong norms (see [14] in a Cauchy context and [35] for a
mixed problem).

However the study of mixed problems requires the use of oscillating profiles U7¢ with
boundary layer (that is exponentially decaying function in the direction transverse to the
boundary).

For the sake of simplicity one chooses to prove the “convergence” of (4.3.8) toward
(4.1.9),(4.1.10) in a sense close to [13]. We actually mean the succession of those two steps

1. First one constructs a WKB oscillating corrector r{ with 2m-periodic profiles such that
U® +oer] solves accurately the equation £(e0;)U = eo F(U). In view of the convergence
one sets Uy, this approximate solution restricted to ¢ > 0 and enlarged to all z > 0.

2. Then one takes the artificial boundary value for (4.1.9),(4.1.10) Ugpp|.=0 and one shows
the convergence between Uy, and the solution of (4.1.9),(4.1.10) as an homogeneous
mixed hyperbolic problem.

Remark 4.4.1. This choice is similar to that of [13] who chooses to consider only one
mcoming wave and taking boundary data absorbing the other waves. What is important is
that the difference between the artificial boundary value and the “physical” value Z/{fz _, Jwven
by the physical measurements is of same order co of that between the solution of the new
model (4.3.8) and the physical solution of (4.2.1).

This “convergence” raises three difficulties. The first concerns the construction of r{ which
requires a cut-off x;, for any resonant mode p&, (see the Ansatz and (4.4.4)). The other two
come from the restriction of U + oer] tot > 0 and its extension to all z > 0. We refer to
[18], chapter 3 and to fig.2.

We next give a brief commentary on the construction of the corrector.
For the sake of simplicity we strengthen assumption 4.3.6 assuming there is no resonant
harmonics.

Assumption 4.4.2. p(k{,) =0 <=k = £1.
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1450

Zijo

Fia. 4.2 — Convergence frame

Thanks to this assumption the higher harmonics can be found through an elliptic inver-
sion. As for U¢ the fundamental mode must be searched with truncated spectrum (cf. section
2). Then define the truncations operator on profiles V(¢', z,0), 2m-periodic in 6.

(4.4.1) Xr(EEW(E, 2,0) = x1(e€)W1(€, 2)e™ + c.c.

(4.4.2) I (eE)V(E, 2,0) = TT1 (€ + EVI(E, 2)e + c.c.

(4.43) X(EEW(E2,0) = xp (€ W(E 2.0) + Y V(€ 2)e™.
p#+£1

Ansatz 4.4.3. U7° € C([0, 2]; L2(R"™ x T)) and
UTE = x(e0y UPE.
The approximate solution Uy, = U® + oer] will be designed to solve approximately
(4.4.4) L(€0y + £:09)Uapp = o X F(Uqpp)-

This approximation makes sense if (1 — x)F(Ugpp) is smaller than any corrector. Clearly one
needs a lot of regularity (see lemma 4.5.4).

Then one solves (x — xf)U7¢ and (1 — I;)x U7 through elliptic inversions. IL;y ;U7
satisfies a linear equivalent of (4.3.8).

Finally one gives the setting for the convergence. This is summarized in (fig.4.2).
If one refers to the lasers which are spatially localized, the truncation for ¢ > 0 shouldn’t
change the remainder dramatically. We just need to take an initial value for (4.2.1) with
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support far enough from the boundary so that the incident wave hits the boundary for large
enough time in the future.
We first use this localization property taking profiles in I';, (see [13, 36]) :

Ly(R") = {u(a’) | <.—9y >*8; (.)€ L*(R™), a < s}.
It is endowed with the related norm and is an algebra as soon as s > n/2.
Then we look for the boundary data in I%, /U(R") with s big. This means we assume

the incident wave propagates up to ¢;/o. As shown in (figure 4.2) one considers that z =
(ti,Z;) € R™ comes from a Cauchy data initially placed at 2/ = (0, z;). As the ray propagates
at speed v, one has (d;,0) — v.t; = (0, z).

Next showing Uy, — U + oer{ is as small as one wants, requires ¢ < 1 (cf. [13] in the
frame of diffractive optics with o = ¢).

Assumption 4.4.4. p(J —1) > 1.
Since (4.3.8) is almost a transport equation we want to do the analysis in the frame that
propagates with the group velocity v’.

Definition 4.4.5. Let P*(z) the space of profiles satisfying the ansatz and such that the profile
expressed in the group velocity transport frame Ve(a',z) := U (2’ + vl z, z) lies in V° € X3(z)
with
X5z = |J cu0. 2T, (R") x H(T)).
a+b<s
Lemma 4.4.6. Let & with &, = (i1(&)). Let By € Ffv,_/a(]R”) By = IIix1B1 a polarized
truncated boundary amplitude for

Z/If Bie€'/e 4 cc.

z=0 =
Then there is a zg > 0 and a unique U° = Iy x ;U solution of the pseudo-differential system
F~1(4.3.8) such that V¢ lies in X*(zy/0).

We have a similar existence result for the WKB corrector r{. With the previous notations
Lemma 4.4.7. There is a r{ = ZISJSN eIUIE and r§ satisfying the ansatz such that
L(eD)UF + eors) = eoxF(UF 4 cors) +eNrs
yxsri(z=0)=0.
In addition U € P57 (29/0) and 15 € PN (2/0).

In order to solve an homogeneous problem for the remainder between (4.3.8) and (4.1.9),(4.1.10)
one cuts the WKB approximation as explained in 4.4. We thus introduce 11 (t) [resp.12(z)]
a smooth truncation around ¢ = 0 [resp. around z = zp/0] (see step 2 in the convergence).
Then one takes the boundary data

(4.4.5) ePus(z = 0) = ¥y () (U (2!, 0) /% 4 eor§(a’,0,2 /¢,0)).

Finally introduce the inhomogeneous space with twice as much co-normal derivatives than
normal ones (see [35]) : E™(]0,t.]) endowed with the norm

le@lgmeqoey = D, € sup (07u(t, )l (ea).
20n+|a!|<m t€[0,t4]
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Theorem 4.4.8. Let s and N two integers chosen so that s — N > n/2 and s — N even.
Problem 4.1.9 with boundary value (4.4.5) has a unique solution vanishing for t <0

e Put =y (t)a(2) (L{E(:E)eig*'g”/‘E + eori(z,z/e)) + eMpe (1),

where U® and 1§ are given by the previous lemma and ¢ € E*~™([0,t%]), t¢ := Zo/(vsn0)
with Zy < zp.

In particular one has the Corollary

Corollary 4.4.9. Let U the solution given by lemma 4.4.6. Then there is a constant ¢ and
a unique solution u® of (4.1.9) lying in E*~™%([0,1%]) such that

sup  sup |le Pu® — U < coe.
t€[0,t€] 2€[0,20/0]

4.5 Proof of the Results

4.5.1 Lemma 4.4.6

First write the equations for the amplitude Vi (', z) := U (2/ + vz, 2)

150 (0= HGEE +6) ~ un - 26/ ) TE(E2.0) =
(4.5.2) ox1(e€)Qu(e€’ + &) F1(VE)(€, 2,0),

Let us use the Taylor formula for the differential operator :

11 2
(et +6) — 6o — €'t = [ B0 (se8 +.,¢ 6,

S

As usual in order to prove the existence of V¢ € X /o We just give an energy estimate. Apply

Z

0¥ =<1’ >* 8,7 on (4.5.2). Then taking [, R(0¥(4.5.2), HIT, VE) gives

0.110° Thix 1V || p2(ny < ol10° X1 Q1 EF (V)| 12 gy

Next @Q1x1 maps I'¥ onto I'* with a norm that is bounded independently of ¢. Indeed it
commutes with z/-derivatives and one has || < 2/ >¢ Q1X1u||L2(RTL) <D j<a Cj||8g/Q1(€£’ +
£)X11l| 2 (rny- Since Q1x1 as a compactly supported symbol, its jeth_derivative is also com-

pactly supported and smaller by a factor 7.
Finally, from [14], for s > n/2 there is a Gagliardo-Niremberg Moser like estimate in I'®.
All together there is a smooth function C'

O:[Villrs, < oC([Villoo)Villrs, -

By standard Picard iterates and using Gronwall inequality one gets the existence of a
zp > 0 and a unique solution in X3(zp/0).
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4.5.2 Theorem 4.4.8

This proof divides into two parts :

1. Constructing the WKB corrector 77,

2. Proving the convergence of the approximate solution, U* + er{ to the solution of pro-
blem (4.1.9),(4.1.10).

1) First consider (4.4.4) and expand the nonlinear term of degree d :
FU® +eor]) = F(U°) + eaF*(U° +eorf,r])

k—1
e = Z (602' F(k)(ue;ri...,r‘f)
1<j<d '

and F®*) is the k" derivative of F. Then one expands F¢ in power of ¢ :

e _ J i i_ N7 (k) (142 y1¢ Jke
Fe= > &F], Fi=> o > FR Qe uie Y,
j=0 k=1 Jit.tik=j—k+1

Note that FJ = V., F(U;U) 4+ EFJ(U")<;_1). Computing the difference (4.4.4)- (4.3.8)
and dividing by o gives

L(€0y + &:09)r] = (x — Wixyp)F(UT) + eox F*.

IT% is defined similarly as Iy in (4.3.5) but using the hermitian transpose of II; : IT}. The
first nonlinear term has two contributions : x — I} x s = (x = xy) + (1 =1II})xs. Let split F

(4.5.3) F=F+F, E=F,+F,

(4.5.4) Fy=(x—-xp)F, F =Q1-1)xF, F.=IIjxF.
Then decompose the first profile in a similar way :

(4.5.5) Ue=u +ul, W =u+u”

(4.5.6) Uy = (x = x)us, U’ =1 =T)xUe, Ul =Tpxu'e.

Note that U® = U;. '
The key point is that 4’ is not resonant with the linear operator while U/ is. We next
split £ according to (4.5.5) and the last remark

L(£0y 4 £00)U = {L(e0, + £.09,EnOp) + €l(0x) } U + eL.(€0), + .09, 02 )Us
£(€8x + 5*867 5*,n60)g = E(é*aﬁ)uh + {‘C/(gax’ + 25160) + Zf*,nae}ub
10U = 8y, + O.U°

L0, + .0, 00U = (9 = =(C(e0ur +i€L09) = o) ) Us
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Note that LU, = LU,. The equation (4.3.8) thus reads LU = oF,. Next rewrite (4.4.4)
as :

LU + & el (LUTE + LU+ 1(0:)UF) = FUT) +ex Y & (0F) + oF,).
j§>0 j=0

We solve this equation canceling the coefficient of the Taylor series in € :

0) LU’ = FUe)

0.)  LUX =0F),

() LU =R =10, =1
(o)  LUPT=0oF],.

The equations (j) are solved through elliptic inversions while (j,) are propagation equations
linear in U° with zero boundary data.
We first give a lemma to solve (j) :

Lemma 4.5.1. Let F' € P*(z9/0). Then there is a unique solution U = U € P*(zy/0) solving
LU =oF.

Démonstration. One looks for U = Uy, + U? with Uj, = Zp# Upeipe and U’ = Zk22 U +
VPV’ =(0,V"?) € ker A,,. Then
L Uy = —o(L(ip&)) ' Fp, p# L,
2. (C(e€’ + &) + &) IGILU" = ollix s F?, k> 2 and
Vb’2 — O'(L22)_1Xbe’2.

Let hl (e, /i) = ¢j(€0l, )i+ &)+ & n. Using the definition of x ¢ in (4.3.5) one has to show
that hi(ed.,/i)x1(cd, /i) and that L?? are invertible.

Lemma 4.5.2. There is a choice of x1 for which there is an e-independent constant a such
that for all 7 > 2

1hL (8, /i)xa (€8, /) | s —ps > @, ||L*2(e8; + i€)xa (€0, /i) | s —prs >
Démonstration. By Parceval formula the operator applied to a test function u gives
I <. > hl(e)xs(e )] 2 >

1
¢ _inf |/ Vo G(& +et's)ed ds + & + GE)] | < - > 0| 2.
ek Jo

Here K7 is the support of x1. By definition of j, &, +(;(€L) # 0 and one just needs a control
on the integral. Choosing K small enough such that sup; SUDc¢re g V(i€ +e€'s)et!| < e <
ming (., + Cx(€L)) so that the term before the norm is bounded from below independently
from € and the result follows. O

O

Next we give the linear version of lemma 4.4.6 for the equation (j) .
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Lemma 4.5.3. Let VU an affine function defined on 27-periodic profiles by (V') = V, F(U%; V )+
G with G € P*(z¢/0) . Then there is a unique solution V. =V, € P%(zp/o) solving L,V =
oW, (V) with V|__, =0.

z=0

One then constructs the full corrector r{ by recurrence using the two lemma on the
cascade. Then rf (x), p # +1 has a tangential Fourier spectrum as big as K| +...+ K.
’ ~—_—_———

(N+1)J—N term
But what is important is that it doesn’t depend on € so that yi(e.) which is supported by
K /e encircles it.
Finally there is 75 € P*~V(zp/0) such that

L(eD)UF + eor5) = eoxF(UF + eors) + V5.

2) Convergence.

It begins with the second step in the enumeration 4.4. We refer to figure (fig.2). First
because of the pseudo-differential form of the equation for U* the compatibility conditions
are not satisfied at z =t = 0. However the energy at this time is expected to be very small.

Thus let 1! (¢) the smooth truncation function which is 0 for + < 0 and is 1 for ¢t > 7 > 0
close to 0.

Next U¢ is defined for z < zp/o and one needs uniform estimates in E"([0, ¢°]) which
requires integrating the profile for all z > 0. Thus let 1/?(z) the smooth truncation which is
0 for z > zp/o and is 1 for z < zp/o — 1.

Then set Uy = (U + cor§)ptep? and look for e Puf = Uppy + e™r°. The remainder
satisfies

L(£0)eMre = eo(F(e7Puf) — x¢ 12 F(UE + eorf))
+(UE + 0er$) L(£0) (p1p?) + eNFlapleyp?rs
r(z=0)=0, r(t=0)=0.

One thus need to show x¥'9?F (U + eor§) — F(Uypy) and

(UF + oer§)L(20)(1?) are as small as one wants in E™([0, t°]).

This mainly relies on the properties of the truncation operator (1 — y'v?). Writing
(1 — xv™?) = (1 — x)p'? + (1 — ¢1)y? + (1 — %) the smallness then relies both on a
frequency (1 — x) and time/space (1 — '), (1 — 4?) localization.

As 9!, 9? are bounded in H® we just need

Lemma 4.5.4. 1. (1 —x(g0,)) applies from X*(z0/0) to X'~ %(z0/0) with a bound in ce®.
2. (1 — b applies from X™(z9/0) N{t > 0} to X %(z9/0) N {t > 0} with a bound in

a

Let Y = Uy HH(0,4], 1% (B2 x [0, 20/0])

z /o

3. (1 —p?) applies from Y™ to YV~ with a bound in c®.

ce

Démonstration. 1. Let F € X*(R,[0,20/0]). As the spectral decay uses only regularity one
applies only tangential derivatives. Then using the Parceval formula one only needs to esti-
mate

I<. >0 (1= 1 (e)F (. 2) |l L2@mm)) =
| <. >0 (1 —x1(e))F(.,2)| 2
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Since (1 — x1(g¢’)) is uniformly bounded in &’ one has

I<. >0 (1= xa(e)F (. 2)ll2 < ¢ sup I <. >™2 F(.2)lle

cegry < & >0
Remark by definition of K| C Fi, €€y > ¢ > 0. Consequently there is a ¢ > 0 such that

SUDc¢rg I/ w < ce®. Finally one gets the bound

ce’|| <. > F(, 2|2 = | F (o 2)l|lm < | F(2)

z;/o

Integrating in z < zy/0 leaves the result unchanged.
2. For this second truncation one uses the spatial decay. Let us extend (1 — ') smoothly
tot < 0byOfort < —n.

10 = )P 2l e ety < I = BF 2oy

1
< sup
—n<t<ny <t —2/vp —tifo >a/2

HF(wZ)”rga_/g(Rn)-

Then v, , > 0 implies that the fraction is bounded by co%?. Integrating in z < z /o leaves
the result unchanged.
3. The third point is similar to 2 and uses that ¢© = Zy/(ovs,) with Zy < 2. O

One applies this lemma on U® + eor{ where each profile lies in a X¢. However the third
point requires that

Lemma 4.5.5. U*(t,2") = We(t, 2" — vit) with We(t,.) e Y .

Démonstration. This is just an other way of expressing V¢(.,z) € X'(z9/0) with (Z;,0) —
vit; = (0,—2;). As this result enhances the spatial decay we just estimate (for ¢ < ¢ =
20/0/Vin)

[(t) = ” <.+ Zi/a >m/2 WE@? ‘)HLZ(Rgflx[O,zo/J])
= || < = vt (07 Zi/o-) >m/2 ue(tv ‘)||L2(R371X[v*’nt,zo/o+v*,nt})
= —vun| < (@ — yi)0,0) — vi(ug — ti)o) >™2 V(U vy (t — o)) L2 ([t 0] xR 1)

In the last step we have made the change of variable v’ = (ug, @) = (t — 2/Vs n, & — Vx2). Then
there is a constant ¢ such that < (@ — Z;/0,0) — vi(ug — t;/o) ><ec < u' —a} >.

Finally taking the L*([0, ¢]) norm in time gives the bound |[1()]| 20,1 < [IVE |l X2 (20 /0) -

U

As the support of 9p¢p! is that of 1 —1! for t > 0 and the support of 9,12 is that of 1 —)?
for 2 < zy/o the previous lemma applies for (U + er§)L(d)y11)? showing it is as small as
one wants in X"
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All together we have shown the equation for the remainder is
1
(4.5.7) LE(O)rf = 0/ VFU® + cors + seMre)reds + N~ Myplyors.
0

Finally we give the main features of the convergence using the estimates in [35].

Proposition 4.5.6. For all even m € N, there is a constant C' such that for all smooth u
satisfying (4.5.7) with homogeneous initial and boundary data there holds for t € [0,1] :

t
(4.5.8) u()|| e < Cllu(t = 0)[|gme + C /0 1£(5) | e ds.

For non linear estimate one defines the space F™(t) as follows. For t > 0 and m an
even integer, denote by F™(t) the space of functions on | — 0o,#] x R% such that ag,’aggu €
L%(] — 00, t] x RY) for all |o/| + 2a4 < m.

Lemma 4.5.7. Suppose that G is a smooth function of its argument. For m > % even,

there is a function C(-) from [0, +o00[ to Ry such that for all € €]0,1] and all t € [0,t.], there
holds for all v and w in F™(t)

| F (™ 00l oy < C(EM 0]l 20
(el e gy + M lwll o (14 ol e o)

Then recalling U¢ is defined in P*~V(zy/c) one shall try to get uniform estimates on
[0, 20/0] for 4.5.7.

However from the energy estimate (4.5.8) one actually expects to get uniform bound on
interval [0,¢°]. This is fulfilled for small boundary data of order P (see below). Then the
theorem says the solution of problem (4.5.7) nearly propagates as the leading profile thus up
to 2.

Now setting e Pu® = Ug,, + eMpe and using the linear estimate on (4.5.7) with initial
and boundary data r°(z = 0) =0, 7r¢(t = 0) = 0 with ¢ vanishing infinitely at the corner
z=1t=0 we get

t
[ (@)l mee < U/O (CUITzp(3)loos ™ 17 () o) 17 ()| e + VM5 ()| e ) dhs.
By Gronwall lemma

t
I @)llme < VM /0 7 J2 CE I W)llee | 75 (5)]| e .

Using ||76(t)||oo < €™2||78(t)|| gme we see ||eM e (t)]|oo, |7 (£)|| me remain bounded inde-
pendently from ¢ as long as N — M > n/2 and t < a/o for a > 0 small enough.

4.6 Numerical results in 1D

The aim of this part is to provide some numerical result to show that the new model
(4.3.8) provides quite different solutions compared to the model of diffractive optics. We
next perform the calculations of section 1 on the first model (4.1.6) with the third order
non-linearity.
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4.6.1 Calculations for the first model (4.1.6)

We compute the projectors of equation (4.3.8) for the first model. Similar computations
applies for the second model (see [11]).

iwH —ik NE =0,
iwE +ikANH+Q =0,
wP—Q=0
iwQ + w2P = YE.

(4.6.1)

Here n = 3. The case n = 1 will be deduced by just removing the variable & = (x1,z2). As
the matrix As is not of the block form of the section 2 we rearrange the vector U = (H, E, P, Q)
into U* = (U',U?) with U' = (H,,, E;;) and U? = (Hs, E3, P,Q) where E = (E,;, E3).

The system (4.6.1) re-writes similarly with A3 with the desired block decomposition and

0 0 0 1
0 0 -1 0
11 _
Az = 0 -1 0 0
1 0 0 0
Then
. 000 0 0 iky —ik
wh 023 g 4 iky —iki 0 0
L2(iw, ik k) = | 0920 T Iy gy = | 02 032
0 0 -1 0
0 0 w23 iwls 0 -1 03,2
0 —v 0 0

We have det(L% (iw,iky,iks)) = w?(w? — w2 — 7)(w? — w?)?
thus we have to avoid the frequency 0, tw,, ++/w? + 7.
Next we compute the roots in k3 of the characteristic polynomial by looking for solutions
of (4.6.1). The calculation have been done in [13]. Let k = (k1, k2, k3)
- (H,E,P,Q) = (% NE,E,vE/(w? —w?),iwP) together with k- E = 0. So there are two
orthogonal vector polarization v, ve according to Fy = k A u (for u not collinear with
k) and Ey = kN Eq.

— For w # 0, £y/w2 +

D1+ x(W) = K x(w) = -2

2 _ 2
wi—w

Thus there are two roots. If k., is an incoming wave the corresponding root is (1 =
Vw?(1+ x(w)) — k? — k3. Remark that for any Maxwell problem the characteristic
equation is bi-square in k3 so one can compute the roots analytically.
A. The equation for the new model
Here we assume we have just one space dimension. The variables are (t,z) € R x RT and
the dual (w, k) satisfy the dispersion relation k% = w?y(w). let us give (ws, k) satisfying the
dispersion relation.
We re-write (4.3.8) for this example supposing there is no characteristic harmonic.
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Let e1,es the two first basis vector of R3 and let (b1,b2) be the orthogonal basis of
ker(AM (G (iw) —i¢1)) :

(Wi +ew)y/1+ x(wi + ew) o (Wi +ew)y/1 4+ x(ws + ew)
627617)7 b = (_

by =Y
Wi + ew Wi + cw

e1,e2)

Then set fi =! (by, —Hby), fo =" (b, —Hby) where H = (L??(iw, + icw)) ' L?! (here, in 1d,
L?! is a constant matrix since there is no k; nor k2). U solves

<62 — é((e@t + wi) /1 + x(€0; + wy) — k’*)) aj(t, z) =
o (E0) < A0+ @) AU)E2) >, e {1,2)
U(t,z) = fi(ed; +w)ar(t, 2) + f2(e0; + wi)as(t, 2).

(4.6.2)

In practice (cf. §4.6.3) we choose initial data with spectrum contained in F; so that as long as
the spectrum of the solution of (4.6.2) remains contained in F; one can forget the truncation

X1-

B. The equation for the diffractive model
This model differs from the previous by an approximation of order 2 of (; in w and by
the Fourier coefficients which are expressed at wy :

S NS B ‘
(4.6.3) { (0: + 0.0 +iandf)) aj = 0 m—s < fi(ws), F(U)(8,2) >, j € {1,2}

U(t, 2) = fi(ws)ai(t, 2) + fa(ws)as(t, 2).

We have noted v, = 0,(1(wy) = W and a, = 02(1(w«)/2 = ve(1/wi — vi/ky) +
4wawi)?x (wi)3/(k+?). The equation for the geometric model would not involve the second

order derivative term.

4.6.2 The numerical scheme

Now we present the numerical scheme used to solve the equation (4.6.2) (with additional
possible resonances as in the example of (4.1.7) when there is phase matching). We give a
numerical scheme adapted from the Duhamel formulation. We do it for the fundamental wave
(it works similarly with the resonant harmonics with coupling). Let Si(z) the unitary group
operator associated to (; in the linear equation.

First one computes numerically u(z) = S1(z)ug with 49 = x17(ew +wy)lg by a FFT (Fast
Fourier Transform) :

(4.6.4) { (0: 4 L(Ci(ew + ws) + k) G(w, 2) = 0

i

g

(w,z =0) = tp(w, z = 0)
This “propagation” step requires a FFT and its inverse.

Next the solution to Lu = F(u) is computed by Picard iterations with the Duhamel
formula
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0z
(4.6.5) U(dz) = S1(62)Uy + S1(0z — s)F(U(s))ds
0
where one approximates the integral by a second order formula (a two step Runge Kutta
scheme)

6z
S1(6z — s)F(U(s))ds ~ 6z SI(%)F(UW)

(W + LF (W)

The scheme thus reads as follows. Let w, given, representing U (ndz); first compute v, =
Un + %F(un) Then compute u, /2 = Sl(%’z)vn and [,, = Sl(%z)un through (4.6.4). Finally
compute similarly u,+1 = S1(%) (I, + 02 F (Upy1/2))-

Remark that the nonlinear terms are computed in the spatial domain while the linear
equation (4.6.4) is solved in the Fourier domain. Unfortunately this prevents from any L2
conservation property.

Finally note that the method requires two FFT, FFT~! for each step.

0
U6Z/2 _ Sl(

4.6.3 Numerical results

We have performed simulations on the dimensionless equations (4.6.2) and (4.6.3) for
some “extreme” examples considering broad spectrums and laser pulsations located on points
where charl is very curved. For most examples we have compared the two models in the
frame of theorem 4.4.8 and Corollary 4.4.9 and then performed computations out of this
frame.

For physical signification we recall how to obtain a dimensionless model :

t= Treff, 2= Lreyz, &= ErefE', W = Wrerw with Z,..y = cI;¢y. Then ¢ = For

1
Trefw'ref ’
the applications we take the values :

Tref ~ 107135, wyep ~ 100571, B, ~ 107 in s.i. units.
We choose the physical boundary data

(4.6.6) E(z = 0) = Ege~ /1l giacosiot) ¢ [0,10].

where Ey ~ Eyer, te ~ Trer. We note Eo,fc the dimensionless parameters. This data can
describe short and/or spectrally chirped pulse. The chirp can be obtained for example with
a diffractive element.

The energy(=power in 1D) of the wave is F,, = HE||2L2(R,5) = En,refE with Ey, pef =
VT )2E2 (Tye ~ 10° and E, = Eft..

In the next subsections we present a few numerical computations. The diffractive model
is L? conservative and our new model obeys the conservation law

N"Y(2) =< vi(e. + w )i (e. + w ) U™ (., 2), Hyi (e, + w ) UV (., 2) >o9= O,
We thus display the following quantity

Jnew dif .
cons?(s) = N+ U 2)
’Nnew\(z)
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which is expected to remain small. Then setting

(SOO(Z) — HUHCW(’7Z) - Udif(’7Z)HOO
U7 (., 2)[loo ’

_ T, 2) - U 2
[Pl

5 (2)
we also draw

err™(z) = [0%°(2) — 6°(0)| and err®(z) = [6%(z) — 62(0)|.

4.6.4 Short pulse : linear case

We first investigate the cases with low energy, that is when non-linear effects are negligible.
This corresponds roughly to energies F,, << 100J. For those energies the nonlinearity is
very weak and one sees only the linear dispersive effects. Then as the transport is far more
important with respect to diffraction and higher dispersive effects we set in the frame that
travels at the group velocity v, related to k.. Then we wish to compare the diffractive model
with the new model. We give a first example to check the Corollary (4.4.9) when e = 1073 and
p = 1 which is the typical diffractive case since it corresponds to an initial data of amplitude
e. One thus make computations up to zy,ae = 1/¢. One gets on figure (4.3) L> and L? errors
of order . Meanwhile the solutions are superposed.

2 08 4,004 9,005
4,004

15 0,6 g,003
Q4,003

1 04 4,002
{4,002

05 02 4,001
0,001
0 0 0 0

-40 220 0 20 40 -40 20 0 20 40 0 200 400 600 800 1000 O 200 400 600 800 1000

FiGg. 43 - E, =1J, & = 0,7, t. = 2, Zpmaz = 3em. Left-right : [U™Y(z = 0)], U™ (2naz )|
and |UY(2,4,)| (in dots), err™, err?.

Then we want to investigate shorter pulses (thus with larger spectrum) to take into
account the variation of the curvature of charl. This is done in figure (4.4).
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01

01 %15

0 0 0

| W @ w0 0 m 0 M & @ @m0 D D @ @ o
Fig. 44 — E, = 1J, @ = 0,7, t. = 0,5, Znaz = 3cm. From left-right and up-down :
U™ (2 = 0)|, [U™Y (2mae )| and |[UYE(2,42)| (in dots), Real(U™Y (2pmaz)) s Real (U™ (Zmaz ) —

U (242)),err, err?, cons?.

At first sight err® and err? seem too big compared with the visual closeness of the curves
(almost superposed) in the second drawing. In fact one can remark for the evolution of the
L norm that there is a 10 factor between the initial data and the modulus of the solution
at the final step. This is due to a greater dispersion of the short pulse. Next one can see that
on figure (4.4) the real (and imaginary) part of UV(.,z) — U4(. 2) is big as it oscillates
rapidly.

Next in the figure 4.5 we compare the solution of (4.6.2) and (4.6.3) for an energy E,, = 1.J
for different values of e = 1073, 1072, 10~!. We do it by taking different values for T} rat
given wy.r and w, = 0,7.
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FiG. 4.5 - E, = 1J, &, = 0,7. Up-down : € = 1073, t. = 0,5, Zmae = 3cm; e = 1072, t. =
1, Zmae = 0,3mm; e = 107, t. = 2, Znae = 3pm. Left-right : U™ (2 = 0)|, |U™(Zmaz )|
and |U% (2,4, (in dots), err™, err?.

In this example the wave length is A ~ 2,71077. In comparison the spatial steps are
8, ~ 100\, X\, \ for € = 1073,1072,10~ L. The distances are computed so that zq, = 1/e. As
expected, the shorter (e small) is the pulse the larger is the spectrum and the more sensitive
is the variation of the dispersion. For ¢ = 10~! the result begins to be qualitatively bad.

Remark on the errors : why are they so close while the qualitative results deeply differ ?
In fact when e becomes bigger, the propagation distances are smaller so that the dispersive
effects are less important : ||[U™"V(z)]| becomes bigger thus err®™ becomes smaller and the
real and imaginary part of the solution oscillates less so that the error Re (U™ — U%/) is
also smaller.
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Next we give a second example where ¢ = 1072 and a propagation over a longer distance
(we use 4096 points) :

2 0,08

15 006

05 0,02 3 05

o o . = o o
2000 -1000 o 1000 2000 -2000  -1000 o 1000 2000 O 200 400 600 800 1000 O 200 400 600 800 1000

Fi1G. 46 - E,=1J, ® =0,7, t. =1, Zmae = 6mm. Left-right : [U™V(z = 0)|, U™ (zmaz)|
and |U% (2,4, (in dots), err™, err? .

Conclusion for low energies. the diffractive model gives a quite good approximation
to the exact solution of the Maxwell equation in general except when the pulse is very short
(¢ = 1073 and £, = 0,5 or ¢ < 1072) and the dispersion is strongly inhomogeneous (for
the model (4.1.6) for example & € [0.8;1[). For £ > 1072 the Schrédinger doesn’t account
for the shape distortion of the profiles. For ¢ < 1072 it is to be noticed that the modulus
of the solution is better approximated by the Schrédinger model than the real part and the
imaginary part. Those results remain also true on long distances : z > o.

4.6.5 Short pulse : nonlinear case

Now we investigate the nonlinear regime. It is well-known that for this cubic non-linearity
autofocalization effects can occur if the wave if powerful enough. This is reached for energies
of order E,, = 100J.

We next give an example to check the L* estimate given in Corollary 4.4.9. We choose to
propagate over distances of size 1/0 so that the expected L error between our model and the
Schrodinger equation is of size €. Nevertheless without dispersive effects the two models would
give the same solution. One thus place in the case where the dispersion is either stronger or
roughly balances the nonlinear effects.

Nevertheless it is to be noticed that the next examples are quite carefully chosen. In
fact, in the general case either the non-linear effects or the dispersion prevail. This splitting
becomes more clear-cut as the pulse is short. The limit is reached in [1] where the pulse is so
short that all the non-linear effects can be neglected compared to the very strong dispersive
effects.
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In the next example one reaches a balance between the dispersion and the nonlinear effects
with ¢ = 1072 and £, = 0, 7. The figure (4.7) gives the results for two different pulsations.

 —— ! ———————— 02

0,004

15 15 10,0015

0,003

0,001

05 05 10,0005

0,001

025
15 15

02

015

05 05

006

I I VIO T T T, W'} T I T TR 0||||
42 101 2 3 3 2 4 0 1 2 3 0 2 4H 60 & 0 0 20 4 6O 8 I

Fic. 4.7 — E,, = 500J, € = 1072, 2002 = 0,6pum. Up @ = .7, down & = 1.7. Left-right :
U (2 = 0)], |UPY (2maz )| and |UY(2,02)| (in dots), err™; err?.

For @ = 0,7 in figure 4.7 there is a beginning of focusing and it is quite well described
by the diffractive model. On the contrary for @ = 1,7 the error is bigger than the expected
e. In fact we observe a steepening of the pulse tail which seems to be due to higher order
dispersive effects not taken into account by the Schrédinger model. The reason of the difference
of approximation between the case @ = 0,7 and @ = 1,7 is probably that charL is better
approximated by a second order polynomial for w < 1 than for w > /2.

Let consider larger propagation distances :
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Fi1G. 4.8 - E, = 500J, ¢ = 1072. Up @ = .7 and zjae = 30um, down @ = 1.7 and 2p =
3um. Left-right : |UY (2 = 0)], |[U™" (2mae )| and |U(242)| (in dots), Real (U™ (zmaz))
Real(U™™ (2maz) — U (214z)), cons?.

We see that when @ = 0,7 the two models differ radically : despite a similar shape,
the predicted focused peak are almost separated out. then for & = 1,7 one sees that the
steepening corresponds to fast oscillations not well taken into account by the Schrédinger
model. Note that on longer distances the support of the new model solution grows larger too
much fast for our computations.

Conclusion for high energies for the model (4.1.6) of Maxwell 1D with kerr
effect. There is a big difference between the cases @ = .7 and © = 1.7 which correspond to
two distinct sheets of char L. We refer to [4] for similar remarks. For @ = .7 there is focusing but
there is an important time delay observed between the solutions of both models (4.6.2),(4.6.3).
For & = 1.7 the two models give completely different profile solutions.
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Now still in the nonlinear context we state an example highlighting the efficiency of
solving the boundary problem instead of the Cauchy one. For this we refer to the result
of [11] where computations are performed with respect to the Cauchy problem while the
initial data is a boundary data. The example involves the generation of a second resonant
harmonic which is described through the second example (4.1.7) given in the introduction.
As the physical scale are shorter we compare the new model with the geometric optics model.
Both models are considered in the one dimensional case and they are described by similar

equations as (4.6.2),(4.6.3).

For this example we compute err™ through 65°(z) (instead of §°°(z)) defined as follows :

95°(z) = su

new dif
1U77(., 2) = U (5 2)lloo

J€[1,2]

The physical values are taken from [11] : € = 10

0,75, p=1/2, t.=1,5.

1U7 (s 2)lloo

-3

)

Trep = 10713,

)

A\, = 815nm, Ey/eP =

Those values are less critical compared to the previous calculations : the dispersion is
weak so the nonlinear effects prevail. We thus compare our model with the geometric optics

one.
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Fic. 4.9 - zpee = 3mm. Up :

and the second harmonic, err®, err~.
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= 0)|, the fundamental [UP®V| and |U&| (in
dots) at z = Zmaz/3, 2%maz/3; Zmaz ; the second harmonics |[UR%| and |USH| (in dots) at
2 = Zmaz/3s 22Zmaz /35 Zmaz- Down : the evolution of the L> norm of the fundamental (dots)
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We reach the numerical convergence with a z-step of order dz = 1075 ~ 12\ which is
almost ten as much as the value 1.2) in [11] for which there is convergence of the profiles.

We would point that the two upper right figures are made of 3 curves each of which are
in fact two superposed curved : one from our model and the other from the geometric model.

On longer distances one gets :
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FIG. 4.10 — Zpaz = 3em. Up : UV (2 = 0)], the fundamental |UPY (2,40 )| and [US(20.)|
(in dots) ; the second harmonics |UF*Y (24z)| and |US(2,,42)| (in dots). Down : the evolution

of the L> norm of the fundamental (dots) and the second harmonic, err®™, err?.

One can note that despite the errors, the two models do agree on the generation of the
second harmonic. For shorter pulses (¢ = 1072) the geometric optics model and the new
model disagree :
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FIG. 4.11 — zpae = 3em. Up : UV (2 = 0)], the fundamental |UPY (2,40 )| and [USE(20.)|
(in dots) ; the second harmonics |UF®Y (24,)| and |U$(2,,42)| (in dots). Down : the evolution

of the L>™ norm of the fundamental (dots) and the second harmonic, err™, err?.

Conclusion for the generation of the second harmonic. Solving the problem in z
seems to be well adapted for the generation of a second harmonic. We see that the geometric
optics model and the new model provide very close results for small € < 1073 even on long
distance (up to 1000/0, o = 1). When the pulse is shorter, that is when & ~ 1072, the results
greatly differ. This is due to the dispersive effects which play a much more important role
and are not at all taken into account by the geometrical optic model. One should compare
the new model with the diffractive model instead.

4.6.6 Spectrally Chirped pulse.

We present an example of spectrally chirped data according to (4.6.6) with o = 5 and
«a = 10. Such waves are typically obtained through a diffractive element. The interesting
thing is that since the power is conserved the Fourier amplitude is smaller and this is safer
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for the optics material. Contrary to §4.6.4 the spatial width of the pulse is not small so we
do computations for ¢ = 1073,

2 —T—T 2 T 1 T T T T 2
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05 05 05

02

05 05 05 05

0 . . o LA b .
m B0 % W A0 5 W W 0 0 1 B A B N

0 1 1 1 1 1
0 % 10 B W %

FiG. 4.12 - E, = 1J, @ = .8 and Zpae = 107*m. Up : @ = 5, down : o = 10. Left-right :
U™ (2 = 0)|, U™ (2mae)| and [U(242)] (in dots), err™, err? .

One sees on figure 4.12 that as in [6] the diffractive model is very bad. One sees as in
§4.6.4 that contrary to the diffractive effects the full dispersive effects imply a much more
important asymmetry on the profile. This is of great importance for estimating the broadness
of the pulse.

For longer waves, ¢ = 1074, all the frequential modes of the chirp are taken into account
by the spatially longer profile but at the same time its spectrum is more punctual and finally
the Schrodinger model gives a “closer” solution :
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Fia. 413 - E, = 1J, ® = 8, a = 10, 2zmer = 9cm. Left-right : Real(U™V(z = 0)),
U™ (2maz )| and |[UY(242)| (in dots), err®, err? .

Conclusion for chirped pulses. For pulses such that ¢ = 1072 (and even bigger) with
hard chirp the Schrédinger model is not good at all and the new model is recommended all
the more as one propagates on long distances.

For € ~ 10~ the Schrédinger model gives better qualitative results.

4.6.7 Conclusion on the numerical results ; prospects
From the computations one draws two main points :

1) In every (linear or weakly nonlinear) regime one should use the new model instead of
the Schrodinger model as soon as the dispersive effects are non homogeneous : that is when
the characteristic variety of L is curved over the spectrum of the data. The most important
recommended application being addressed for spectrally chirped data.

2) Using the new model for simulating propagation of waves with large spectrum needs
care. First one should check the spectrum broadening of the solution with respect to charlL.
Then, for a good interpretation of the L> and L? errors between two solutions given by two
models involving high order dispersive operators one needs to check the phase shift on the
real part of the error.

Some perspectives would be :

1) To consider the crossing at an interface between two or more media of a spectrally
chirped wave.

2) To perform computations on the 3D Maxwell model to study the additional transversal
effects which are shown to be non negligible in [2].
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