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Interactions fonctionnelles dans les ganglions de la
base étudiées par |I'enregistrement simultané des
activités unitaires discriminées par un algorithme

non supervisé de tri de potentiels d’action

Olga Chibirova

Laboratoire de neurosciences précliniques, CHU, UJF, Grenoble

La thése porte sur une nouvelle méhode de tri non supervisé de potentiels d'action et
sur son application a l'analyse de I'activité neuronale des ganglions de la base. Le
développement de nouvelles approches au tri de potentiels d'action est actuel en vue de
nouveaux outils nécessaires a |’ électrophysiologie effectuée pendent la neurochirurgie
fonctionnelle, autant que pour I’ efficacité des I’ expériences électrophysiologiques en temps
réel.

La méthode présentée dans la premiére partie de cette thése et une nouvelle approche
a ce probléme qui décrit les potentiels d'action a I'aide des équations différentielles avec
perturbation caractérisant la variation interne de leur forme. Le logiciel permettant le tri de
potentiels d’action non supervisé développé a partir de cette méthode comprends un

a gorithme automatique d’ évaluation d’ étalons de classes et de leurs rayons.

La seconde partie présente I'application de la méthode a l'analyse de l'activité
neuronale des ganglions de la base. Les donnés pour les analyses ont été recueillis au bloque
chirurgical du département de neurochirurgie de I'Hopital Universitaire de Grenoble pendent
I électrophysiologie intra chirurgicale et représentent le STN (950 enregistrements), le GPI
(183) et le SNR (105) de 13 patients parkinsoniens et 2 patients souffrant de dystonie. Les
analyses sont destinées a définir les formes typiques de potentiel d’action et a révéler un
paralléle entre la nature de I’ activité neuronale et la gravité des symptomes de la maladie de
Parkinson.
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The present thesis is devoted to the development of a new unsupervised spike sorting
method and its application to the investigation of neurond activity. The development of new
approaches to spike sorting is crucial both for the intrasurgical electrophusiology and for the
efficiency of real time electrophysiological experiences.

The method presented in the first part of this thesis is a novel approach to the problem
which describes action potentiad by means of differential equations with perturbation
characterizing the internal variation of their forms. The unsupervised spike sorting software
implemented on the bass of the presented method comprises an automatic algorithm of

estimation of class centers and their radiuses.

The second part presents the application of the method to the investigation of neuronal
activity in basal ganglia. The data for the analyses were acquired in the surgical room of the
department of neurosurgery of the University Hospital, Grenoble, and represent the STN (950
recordings), the GPI (183) and the SNR (105) of 13 Parkinsonian patients and 2 dystonia
patients. The analyses are aimed to define typical forms of action potential and to revea a
parallel between the nature of neural activity and the gravity of the Parkinsonian disease

symptoms.
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Chapter 1

Introduction

Ce chapitre s’articule autour des deux parties principales du présent document. La
premiere partie et dédiée a une nouvelle méthode de tri des potentiels d’actions. La
deuxieme partie application de cette méthode pour des études de [Ilactivité

neuronale dans les ganglions de la base.

The present work is devoted to the investigation of neuronal activity in basal ganglia
by means of multiunit electrophysiological recording analyses. The first part of the work
presents a novel method of spike sorting. The method is used for the extraction of single units
from multiunit records from STN, SNr and GPi of Parkinsonian and dystonia patients. The
second part of the thesis studies the neuronal activity in STN, SNr and GPi using the obtained

single unit spike trains.

1.1 Multiunit recording and spike sorting. Introduction to Part |

Since the early decades of the electrophysiology in the years 1940s and 1950s, the
“single unit” concept referred to the possibility to record the activity of a single neuron. The
detection of all spikes from a single neuron is a difficult task when the experiment consists of
extracellular recordings of action potentials. The basic hypothesis is that all spikes generated
by one specific neuron are characterized by a similar shape and this shape is unique and
conservative for each distinct neuron during a stationary recording (i.e., in absence of any
movement of the electrode tip with respect to the neural tissue and in absence of any transient
electronic and electric noise). The waveform of extracellularly recorded spike depends on the
electric properties of the microelectrode, on its relative position with respect to the recorded

neurons and on the electric properties of neuronal membrane.

The recording of extracellular neuronal activity in noisy situations (Musial et al.,
2002), such as chronically implanted freely-moving animals (Villa et al., 1999) as well as the
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neurosurgical electrophysiology (Ashkan et al, 2004), represents a crucial step because it
provides unique information about the pattern of neuronal activity of the regions explored
during the electrode penetrations. However, the quality of the information gained during the
advancement of the electrode depends on the spike sorting, i.e. separation from the

background noise of few action potentials (spikes) from the same electrode.

Among different methods used in neurophysiology for spike sorting (Schmidt, 1984;
Lewicki, 1998) template-matching has become one of the most popular. This technique is
based on templates that represent some typical waveform shapes of neuronal discharges in
time domain. The classification of a candidate spike is performed by comparing the electric
signal recorded from the microelectrode to all available templates and then by selecting the
best matching template. Recent developments of this technique have been determined by the
availability of fast computers at cheap price and include computationally intensive methods
such as neural networks (Chandra et Optican, 1997; Kim et Kim, 2003) and wavelet
transforms (Letelier et Weber, 2000; Hulata et Segev, 2002).

These and many other algorithms proceed the spike waveform classification in real
time automatically way. The learning stage of the algorithms is still delicate due to a number
of difficulties caused by the nature of the neuronal activity signal. Among these difficulties
are high level noise, presence of artifacts, variability of individual neuron’s spike waveforms
and finally the ignorance of the number of observed neurons.

A fundamental problem of the template-matching technique is represented by the
number of distinct waveforms that may be separated from one microelectrode signal. The
usual practice is to use a “supervisor”, i.e. an experienced human operator, who can provide a
preliminary classification of the waveforms following a selection of templates corresponding
to distinct single units. Both extracellular and intracellular noise may affect the shape of the
action potential (Fee et Mitra, 1996) and the task of spike sorting is even more difficult when
the recordings are performed from freely-moving animals, due to the presence of noise at
lower frequencies than the signals of interest. The extracellular noise is usually taken into
account by most of models as an additive noise. The intracellular noise may produce intrinsic

variations in the spike waveform and it is more difficult to account for.

Distributed neuronal activity across cell assemblies may generate synchronized firing
across many neurons (Singer, 1999) and complex spatio-temporal interactions (Abeles, 1991;

Villa, 2000). It is then necessary to record multiple spike trains simultaneously in order to
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gain access to distributed brain processes. Here appears the problem of a decomposition of
such records into single unit spike trains. Each spike train is assumed to represent the unique
time series of single neuron action potentials. The accuracy of this assumption is particularly
important with the increase of microelectrode recordings in humans as guidance to the
localization of the optimal site for deep brain stimulation (DBS). The success of DBS for
treatment of motor disorders, in particular Parkinson’s disease opens new perspectives to the
development of electrophysiological techniques in contemporary neurosurgery (Limousin et
al., 1998; Krack et al. 1999).

A method for spike sorting is presented in Part | of the thesis. The mathematical
background of the method was developed in 1999-2000 in the Institute of System Analysis,
Kiev, Ukraine, with participation of the author (Aksenova et al. 2000; Aksenova et al. 2001).
The project was directed by Dr. Aksyonova. The method is based on the use of the inverse
methods of nonlinear oscillation theory (Chertoprud et Gudzenko, 1976) and considered the
problem of spike sorting in phase space of a dynamical self-oscillating system. That makes
possible to account the intracellular noise and to reduce the problem to separation of a mixture
of asymptotically normal distributions. The spike waveform is described as an ordinary
differential equation with perturbation. This mathematical formulation allows us to
characterize the signal distortions in both amplitude and phase. Moreover, an unsupervised
learning algorithm for automatic selection of representative spike templates is developed. On
the basis of the developed algorithm a prototype software for the Unsupervised Spike Sorting
(USS) is created. The algorithms are validated and the USS software is tested on a set of

simulated signals.

1.2 Functional interactions in basal ganglia. Introduction to Part Il

Models of basal ganglia dysfunctions are used to explain the pathophysiological
symptoms that characterize PD. According to the generally accepted model the appearance of
the symptoms associated to Parkinson's disease (PD) is due, at last partly, by the rise in firing
rate of the STN neurons that in turn increase the rate in the neurons of the output basal ganglia
nuclei —=SNr and Gpi, which exert mainly an inhibitory effect via GABA release. The validity
of such models rests upon the correlation between the neuronal activity in the basal ganglia
and the degree of clinical symptoms due to PD (Asai et al., 2003; Abe et al., 2003; Niktarash,
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2003). The investigation of the activity patterns of subthalamic neurons (Magarinos-Ascone et
al., 2000; Liu et al.,2002) represents an important objective for better understanding the
mechanisms that subserve the regulatory loops of the basal ganglia. The STN plays a key role
in the regulation of the output pathway of basal ganglia. The inactivation of STN in patients
affected by PD dramatically reduces much of the clinicll symptoms and its reversible
inactivation by deep brain stimulation is one of most valuable techniques of present
functional neurosurgery (Benabid et al., 1994; Limousin et al., 1998).

It was recently demonstrated that both firing rate and pattern of neuronal activity in
the STN and GPi/SNr are altered profoundly by chronic dopamine depletion that underlies
the pathology of PD (Magill et al., 2001). High and low-frequency oscillatory patterns in basal
ganglia and their modifications in response to behavioral events have been recently studied
(Cassidy et al., 2002; Bevan et al., 2002; Levy et al., 2002b). It has been proposed that an
increase in synchronization between neuronal discharges in the basal ganglia contributes to
generate the appearance of several clinical symptoms typical of PD. Synchronization of the
activity patterns (Levy et al., 2000, 2002) and tremor-related neuronal firing (Rodrigues et al.,
1998; Hurtado et al., 1999; Hutchison et al., 1997) were examined for Parkinsonian patients.
Changes of neuronal firing patterns have been associated to improvement of clinical
symptoms typical for PD during DBS (Benazzouz et al., 2000; Hashimoto et al., 2003).
Different changes in firing rate, firing patterns, oscillatory processes, and synchronization of
activity in the basal ganglia nuclei were revealed by single electrode recordings performed in
human PD patients during surgical intervention aimed to relieve parkinsonian symptoms
(Bergman et al., 1998a; Filion, 1991; Hurtado et al., 1999; Hutchison et al., 1994, 1997;
Merello et al., 1999; Nini et al., 1995).

The present work is a contribution to STN and its output structures SNr and GPi
neuronal activity investigation. The study was carried out in tree directions: definition and
investigation of activity patterns in STN, definition of typical waveforms of neuronal
discharges and their correlation with the defined activity patterns and, finally, the

investigation of dependences between the activity patterns and clinical symptoms of PD.



Part |

Unsupervised Spike Sorting (USS)
algorithm and software



Chapter 2: Spike Sorting

Chapter 2
Spike Sorting

Ce chapitre est une introduction dans le probleme de trie de potentiel d’action
(Spike Sorting). Les potentiels d’action sont de rapide perturbations du champ
électrique produites des cellules nerveuses. lls peuvent étre enregistrés d’'une
maniere extracellulaire a l'aide d’électrodes implantées dans les tissues nerveux.
L'électrode enregistre I'activité des cellules a proximité de sa pointe. Les
enregistrements contiennent de pics étroits (spikes) correspondant aux potentiels
d’action. La tache du trie de potentiel daction est de séparer les spikes
appartenants aux différentes cellules sur la base de leurs formes.

A ce jour, il existe de nombreuses méthodes du tri de potentiel d’action, dont une
bréve revue est présentée dans ce chapitre. Le probleme du développement de
nouvelles approches est néanmoins actuel en vue de nouveaux outils nécessaires a
I’électrophysiologie effectuée pendent la neurochirurgie fonctionnelle, autant que
pour [I'efficacité des I'expériences électrophysiologiques en temps réel.

La variabilité de la forme des potentiels d’action, ainsi que la présence d’artefacts et
du bruit non stationnaire, complique le développement des algorithmes non
supervisées de trie de potentiels d’action. La méthode présentée dans la premiere

partie de cette thése décrit une nouvelle approche a ce probléeme.

For a great number of neurophysiological studies it is necessary to isolate single
neural cell activity. Examples of such studies are investigation and comparison of neuronal
activity in various brain structures, neuronal activity characterization for pathologies, animal
behavioral experiments. During extracellular recording the cells detected by a single electrode
are those lying within tens of microns of the electrode tip and extracellular recording is
usually multineuronal, often referred to multiunit analysis. It is sometimes possible to isolate
a single unit by manipulating the electrode, but these manipulations are, however, difficult or

impossible to execute.

The electric signal recorded by the electrode usually includes the activity of many
cells. It is characterized by occurrences in random times of short impulses of a particular

form, called spikes (figure 2.1). Spike sorting is the signal processing applied to sort spikes
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into groups according to their waveforms, each group being presumed to represent a single
cell. Moreover, the spike sorting approach can provide information that is extremely difficult

to obtain using one-cell-one-electrode approach.

Figure 2.1

Electrophysiological signal recorded extracellulary during a functional neurosurgery of a
Parkinsonian patient. 1-4 — spikes, corresponding to neural action potentials. Spikes 1 and 2 are
similar in waveform and may be single unit spikes.

The aim of the present work is to apply a spike sorting technique that can be used
during functional neurosurgery to increase the efficiency of the intrasurgery electrophysiology.
For that purpose the spike classification algorithm had to be in real-time. Moreover it was
preferable to develop an unsupervised spike sorting to avoid the necessity of the presence of an
experienced electrophysiologist during surgery. The time factor in functional neurosurgery is
crucial, so the learning algorithm for the spike classification had to be efficient and not time
consuming. In the same time the surgery room spike sorting software was to be convenient and
simple, not requiring special computer skills. The efficiency and simplicity of a spike sorting
software is also important for on-line experiments with animals. For the off-line
electrophysiological data treatment the mentioned features are useful as well, since it permits to
treat easily large amounts of data. Thus, despite of a great number of spike sorting methods
available to date it appears necessary to create new and more efficient tools, requiring less user

efforts, getting closer to a fully automatic procedure.

In this chapter the nature of neuron action potentials and the principles of exracellular
electrophysiological recordings are briefly exposed. Then, a general scheme of spike sorting
algorithms is presented as well as a short review of existing spike sorting methods.
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2.1 Action potential
The neurons communicate by means of short local perturbation of the electrical
potentials across the cell membrane, called action potentials. The mechanism of action

potential was discovered and described by Hodgkin et Haxley (1952).

The membrane voltage changes during an action potential result from changes in the
permeability of the membrane to specific ions (particularly sodium Na* and potassium K"),
the internal and external concentrations of which is maintained in an imbalance. This
imbalance makes it possible to generate action potentials but also the resting membrane
potential. Although the concentrations of the different ions attempt to balance out on both
sides of the membrane, they cannot because the cell membrane allows only some ions to pass
through ion channels. At rest, potassium ions (K*) can cross through the membrane easily
through the potassium leak channels, sodium ions outside and negatively charged protein
molecules inside the neuron cannot cross the membrane. The resting membrane potential of a
neuron is about -70 mV. At rest, there are more sodium ions outside and more potassium ions

inside that neuron.

. In a simplified model of the action potential, the resting potential of a patch of
membrane is maintained by a potassium leak channel. The rising phase (figure. 2.2) of the
action potential occurs when the voltage-dependent sodium channels open causing the sodium
permeability to greatly exceed the potassium permeability. This critical opening of the voltage
dependent sodium channels occurs when the membrane potential reaches a critical level,
reffered to as the “threshold potential”. After a short delay, the voltage-dependent potassium
channels opens and the voltage-gated sodium channel become inactiv. As a consequence, the
membrane potential is driven back toward the resting potential, resulting in the action
potential's falling phase. As more potassium channels are open than sodium channels, the
potassium permeability is now larger than it was before the action potential was generated (at
rest only the potassium leak channel is open). As a result, the membrane potential undershoots
the resting potential level. The delayed-rectifier potassium channel, being voltage-dependent,

is closed by the hyperpolarized voltage, and the cell returns to its resting potential.
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Figure 2.2
Schematic action potential with aresting potential at -70mV and a thresholde at -55mV.

Where membrane has undergone an action potential, a refractory period follows. This
period arises primarily because of the voltage-dependent inactivation of sodium channels. In
addition to the voltage-dependent opening of sodium channels, these channels are also
inactivated in a voltage-dependent manner. Immediately after an action potential, during the
absolute refractory period, virtually all sodium channels are inactivated and thus it is
impossible to fire another action potential in that segment of membrane. With time, sodium
channels are reactivated in a stochastic manner and as they become available, it becomes
possible to fire an action potential, albeit one with a much higher threshold. This is the
relative refractory period and together with the absolute refractory period, lasts approximately

five milliseconds.

In many cases a cell fires a group of action potentials spaced by a little more then the
absolute action potential. Such a group is call “burst”. In general, such bursts are not driven
entirely by synaptic input, but rather by the biophysics of the membrane. For example,
extremely long voltage sensitive calcium channels are found in some neurons: the first action
potential in a burst provokes the opening of some of these channels, but they neither close nor
inactivated rapidly. Ca++, which is concentrated outside the cell by the ion pumps, flows in
through these open channels. As a result, as soon as the first action potential is over and the
potassium channels closed, the depolarizing calcium channels can provoke the next action
potential. The current that flow in this and subsequent action potentials may be lower then in
the initial one.
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2.2 Extracellular recording

The mechanism of action potential, as well as many others neuronal phenomena, have
been understood through measurements taken using an intracellular electrode, that is one
which penetrates the cell. It is difficult to record with such an electrode in intact animal and

even more difficult in an awaken one.

Extracellular recording is used to measure the extracellular field potentials outside the
neurons. In its most simple form, extracellular recording can be performed by placing a single
wire electrode in the brain that has insulation covering all but its very tip. Fluctuations in the
voltage between this wire and a neutral reference wire (e.g. a wire attached to a skull screw)
can then be measured. Since the fluctuations in the local field potential that occur in the brain
are commonly in the frequency range of about 1 kHz and less than 1 mV, the signal must be
amplified so that it may be detected and recorded. In the process of amplifying the signal, it is
useful to filter it to remove very low (<1Hz) and very high (>3kHz) frequencies.

In intracellular recording the voltage fluctuations across the resistor of the cell's
membrane are mesured. In extracellular recording, the recording electrode is outside the cell
(fig. 2.3).

sfimulus \M/ﬂ_ﬁ HIL
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Figure 2.3

A schematic diagram, showing an extracellular field potential recording from rat hippocampus.
At the left is a schematic diagram of a presynaptic terminal and postsynaptic neuron (1). Then
the synapse releases glutamate the net flow of current is inward, so a current sink is generated.
An extracellular electrode (3) detects this as negativity. An intracellular electrode placed inside
the cell body (2) records the change in membrane potential that the incoming current causes.

The resistor in extracellular recording is the tip of the electrode itself. Extracellular electrodes
can record transient changes in the local balance of positive and negative charges. Since the

inside of the electrode is electro neutral, and the tip has a resistance, a voltage can develop
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across the electrode tip between the electro neutral interior and the exterior local change in
charge balance.

Using this basic strategy, if the wire is placed near to a neuronal cell body (less than
140 microns according to Henze et al. (2000)), action potentials fired by that cell may be
recorded. This is possible because to fire an action potential the neuron transiently opens
sodium channels allowing positively charged sodium ions to rush down the voltage gradient
into the cell. This movement of ions into the cell creates a negative fluctuation in voltage in
the immediately surrounding area relative to distant locations. This leads to a transient change

in voltage between the extracellular recording electrode and the distant reference wire.

Many cell membranes might lie close to the electrode tip so that many spikes from
many cells are recorded. To isolate a single cell activity the experimenter may move the
electrode so that its tip lies very close to the cell body, and thus the spikes from this cell
appear far larger in amplitude than those from the other cells. Due to such difference in
amplitude a simple hardware device can be used than to record the spike train of the single
cell. However, optimizing the single cell isolation by moving the electrode is difficult if

possible. Instead, spike sorting algorithms can be applied to obtain the single unit isolation.

2.3 Spike Sorting methods review

Single unit activity detection on multiunit extracellulary recorded signal has been an
object of intensive research since last 2-3 decades. During this period many different
approaches to the problem solution were suggested. In general all on-line spike sorting
methods deal in one or another way with the following sub problems:

- Spike event detection —extraction of spikes from the electrical signal.

- Definition of features for the classification, which may be as simple as maximal

amplitude feature, or more sophisticated, like wavelet transform coefficients.

- Learning of the classification algorithm, which requires the number of classes

estimation, as well as the estimation of class’s parameters on a learning set.

- On line classification.
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In different approaches each of these problems may be solved on- or off-line,
automatically, semiatomatically or manually. In many developed approaches the first stage —
spike detection, and the last one — spike classification - are realized on-line and in an
automatic way (Gadike et Albus, 1995; Zouridakis et Tam, 1997; Kreiter et al., 1997; Kim et
Kim, 2003). The most complicated problem is the problem of automatic learning of the
classification algorithm, i.e. automatic estimation of number of classes and of their
parameters. Nevertheless the development of automatic methods of classification is crucial
since the manual classification is not only a time-consuming but also subjective, operator-
depending procedure and the probability of error is high (Harris et al., 2000; Wood et al.,
2004). Many authors suggest an automatic learning procedure which is not robust to outliers
and requires manual collection of the learning set (Forster et Handwerker, 1990; Bergman et
DelLong, 1992). A learning set collected automatically unavoidably contains outliers. Often
the learning procedure results are controlled and corrected by an operator (Gadike et Albus,
1995). In some approaches certain stages may be omitted if a sub problem is not considered
and its solution is considered to be known a priori. For example, in most of technics the
number of classes is assumed to be defined. Some algorithms put together the learning and the
classification stages, providing an off-line clustering on a large data set (Fee et al., 1996;
Sahani, 1999; Quian Quiroga et al., 2004; Shoham et al., 2003).

A number of factors that increase the difficulty of the single unit activity detection
should be taken into account when choosing a method of spike sorting. Most of sophisticated
algorithms provide excellent results on “good” signals where the negative factors are not
important, but these algorithms may be inapplicable in the opposite case. The use of simplest
methods based on threshold crossing is often preferable.

1.3.1 Threshold crossing

The simplest solution of the single unit activity detection problem is the threshold
crossing method (Schmidt, 1984). This method uses one of the principal spike waveform
characteristics — its amplitude, which mostly depends on the distance from the cell to the
electrode. Whenever the signal crosses a threshold set by user, a spike event is recorded. The
obvious advantage of the method is the simplicity and the minimum requirements to the
software and equipment. However by means of the threshold crossing it’s impossible to

distinguish cells with slightly different large spike amplitudes. Moreover this method is
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inapplicable in presence of high amplitude artifacts. All detected spikes, as well as mistaken
artifacts are considered to belong to the same single unit and the firing rate is overestimated.

In the case of threshold crossing only one sub problem of spike sorting is solved -

event detection.

1.3.2 Template Matching and Clustering in Feature Space

All spike sorting algorithm based on spike waveform analysis can be conventionally
divided into two groups: Template Matching (Abeles et Goldstein, 1977; Gadike et Albus,
1995; Forster et Handwerker, 1995; Peterson et Merzenich, 1995; Okada et Maruyama, 1982;
Zouridakis et Tam, 2000; Simon, 1965) and Clustering in Feature Space (Fee et al., 1996;
Sahani, 1999; Quian Quiroga et al., 2004; Shoham et al., 2003; etc).

Template Matching is a group of classification algorithms based on matching spike
waveform to the previously defined templates. Usually each template corresponds to a single
unit. All sample points of the signal on the segment corresponding to a spike are usually used
as features for the classification. In earlier applications the templates were defined manually
by operator (Friedman, 1968; Bergman et DelLong, 1992; Okada et Maruyama, 1982) which
is a time consuming process. In later approaches the templates are estimated as the mean
spike waveform of a group belonging to a signal unit. For that purpose a clustering is
necessary and the mean is estimated for each cluster. Estimation of the class center as the
mean of the cluster has its drawback — the mean is sensible to statistical errors. To make the
estimation more robust the clustering algorithm must take into account the presence of
outliers. An example of such a sophisticated algorithm is a fuzzy clustering (Zouridakis et
Tam, 2000). It is assumed that each spike belongs to all clusters with some probability
according to Euclidian distance to the center of the cluster. The clusters are constructed

iteratively. The iterative procedure requires a large amount of calculations.

Clustering in Feature Space uses as features some spike waveform characteristics such
as maximal and minimal amplitudes, the width of spike etc.) Single unit spikes form a cluster
in the feature space. The aim of the Clustering in Feature Space is to find clusters
corresponding to each observed single unit and to define its boundaries for further
classification. The simplest earlier methods required a manual clustering. Later methods
based on some probabilistic models appeared. Considering the distribution in clusters as
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Gaussian, it is possible to provide a Bayes clustering as it is described in Cheesman et Shutz,
(1988). Moreover, these authors suggest a method of rejecting artifacts by creating a special
class with big radius and small wait. The number of classes is estimated here by maximal
likelihood method for mixtures of different number of Gaussian distribution (Snider et Bond,
1998; Glaser et Marks, 1998). Nevertheless, this method fails if the real distributions differ
significantly from the Gaussian. That is why the later works suggest clustering methods which
are not based on this assumption (Fee et al., 1996; Glaser et Marks, 1998). In the first work
the clustering is realized on the basis of recursive bisection. The set is divided into a large
number of small clusters which are merged then if the probability density between clusters
exceeds a threshold. The second method is analogous and based on the assumption that the
spike waveform variation is continues in time. The small clusters are merged according to this

assumption. Both methods require a large amount of calculations.

Spike Detection

The first stage of Template Matching and Clustering in Feature Space algorithms is
the detection spike occurrences within a multiunit signal. The threshold for spike detection is
usually defined according to statistical characteristics of signal. Segments of the signal around
threshold crossings are considered as potential spikes of one of the observed neuron cells. One
of major problems making difficult a further classification of these signal segments is that
noise is usually nonstationary and its amplitude sometimes can be of the same order of the

signal amplitude. Thus, segments of noise and artifacts are detected together with spikes.

Feature Space

For Clustering in Feature Space some characteristics of spike waveform are used as
features, often it is the extrema amplitudes, time between the local extrema etc. (Feldman et
Roberge, 1971; Dinning, 1981; Lewichki, 1994). Template Matching methods take into
account the entire waveform, here all time samples are considered as features. Feature space
can be optimized using, for example, the principal components method (Glaser, 1971,
Gerstein et al., 1983; Salganicoff et al., 1988) which selects from the initial feature set several
features providing the best classification results to the reduced feature space method (Kreiter
et al., 1989; Lewicki, 1994) which reduces the number of features to minimum necessary for
the calculations. Sometimes the optimization is carried out manually. For example in Kreiter

et al., 1989 the operator selects 8 features as 8 among 64 sample points with maximal
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variance on a learning set. Then, learning and classification are carried out in 8-dimentional

feature space.

Synchronization of spikes

If the signal samples are considered as features then the variability of the spike
waveform leads to the problem of the spike segments synchronization. If the internal noise is
absent spikes can be synchronized by a time shift, for example, by matching the spike mass
centers (Forster et Handwerker, 1990; Bergman et DelLong, 1992). But the spike waveform
may vary because of internal process in the nervous cell (Fee et al., 1996; Quirk et Wilson,
1999; Oweiss et Anderson, 2002). That leads to nonlinear spike waveform variability and
spikes can be no more synchronized by a time shift. In order to take into account the nonlinear
deformation spikes may be dividedinto several segments which are synchronized
independently. The synchronization may be performed, for example, following the principle
of minimal surface between two segments (Kreiter et al., 1989) or by finding the optimal
synchronization iteratively, shifting spikes by one sample point on each step and maximizing

the correlation between them. These procedures increase the time of calculations.

Learning procedure

This is the most complicated stage of spike sorting. It is necessary to construct
templates for Template Matching or to define cluster boundaries in case of Clustering in
Feature Space. The number of classes corresponding to the number of neurons being observed
iIs not known a priori and must be estimated during the learning phase. Moreover, if the
learning set is formed automatically, it contains artifacts and misdetected noise which must be
rejected during the learning process. Finally, if signal samples are taken as classification
features, spike distributions in such feature space in general are not Gaussian (Fee et al., 1996;
Shoham et al., 2003) and the methods based on the assumption of Gaussian distributions in
feature space may not be efficient. Other clustering methods based on more complicated
probabilistic models, for example clustering with gradient of probability density (Fee et al.,
1996), hierarchical model of Gaussian distributions (Sahani, 1999), Student’s distribution
model (Shoham et al., 2003) give better results but often demand more complicated

calculations.

In the simplest case an operator carries out the templates selection based on visual

inspection or on manual tracing of cluster boudaries (Gadike et Albus, 1995; Bergman H.,
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DelLong, 1992; Okada et Maruyama, 1982). This is a time consuming, difficult and subjective
process. For example in Gadike et Albus, (1995) the operator has to estimate boundaries for
27 features used for the clustering. The constraints mentioned above — high amplitude noise,
artifacts, spike waveform nonlinear variability — make the implementation of an automatic
learning procedure rather sophisticated. Often, the learning set must still be inspected by an
operator to reject noise and artifacts. As for the number of classes estimation, sometimes the
automatic clustering is carried out for several possible number of classes. The final number of
classes is selected according to the best clustering by visual inspection (Zouridakis et Tam,
2000; Snider et Bond A.B., 1998; Glaser et Marks, 1968) or by some criteria, for example the

criteria of maximal likelihood (Cheesman et Shutz, 1988).

Classification

This stage of spike sorting is rather simple and consists either in matching a detected
spike with one of the templates defined during the learning stage or by verifying the cluster
boundaries. Many of modern application provide automatic real-time classification (Lewicki,
1994).

In some works the learning and the classification stages are joined together (Oweiss et
Anderson, 2002; Fee et al., 1996; Sahani, 1999; Quian Quiroga et al., 2004; Shoham et al.,
2003). In this case the spike sorting is provided by off-line clustering of a large set of detected
spikes (e.g. 50 000 to 100 000 spikes ( Fee et al., 1990)).

1.3.3 Other spike sorting algorithms

The methods described above use the spike waveform characteristics for the feature
space definition. However, there are also other approaches to the problem. Some of them are
based on frequency methods, such as optimal linear filtration (Roberts et Hartline, 1975;
Gozani et Miller, 1994). The method is based on the optimal filter construction for each of the
template spikes selected manually. This approach shows worse results of the classification but
its advantage is that it allows detection of overlapping spikes. Another approach, allowing as
well the detection of overlapping spikes is the neural network (Yamada et al., 1992;
Mirfakhraei et Horch, 1994). The realization of these algorithms requires a manual learning
set collecting and a prior class number estimation. The most popular modern methods are

based on the wavelet transform (Quian Quiroga et al., 2004; Zouridakis et Tam, 1997; Letelier
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et Weber, 2000). The coefficients of the wavelet decomposition of template spikes are
considered as classification features. Clustering methods in this feature space are analogous to
the methods used in time domain for Clustering in Feature Space and Template Matching and
usually they can be realized automatically in off-line mode. The quality of the classification
in the feature space of wavelet transform coefficients is very high and the latest algorithms
work in a very efficient way. However, a preliminary basis construction is required for these

algorithms.
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Chapter 3

Mathematical purposes

Le tri de potentiels d’action doit considérer deux types de variations de la
forme des potentiels : le bruit externe et la variation intrinséque d’origine
cellulaire. Ce fait implique le probléeme lié a I'observation de potentiels
d’action synchronisés. Il a été démontré que la distribution des potentiels
d’action dans le domaine temporel n’est pas Gaussien. La classification des
potentiels d’action doit étre effectuée en présence d’erreurs d’artéfacts et
au bruit non stationnaire

Le logiciel de Unsupervised Spike Sorting (tri de potentiel d’action non
supervisé) est basé sur une nouvelle méthode de tri de potentiels d’action.
Cette méthode décrit les potentiels d’action a l'aide des équations
différentielles avec perturbation qui caractérisent la variation interne de leur
forme. Ces équations décrivent un systéme dynamique oscillatoire, dont les
propriétés permettent de réduire la tache du tri de potentiels d’action a la
tache de séparation d'un mélange de distributions normales
asymptotiquement dans I'espace de phases du systéme dynamique.

Un algorithme automatique d’évaluation d’étalons de classes et de leurs
rayons a été développé. A chaque itération I'algorithme examine le groupe
d’apprentissage pour trouver le potentiel d’action avec la densité de
probabilité maximale dans leur voisinage. A la derniere itération les
potentiels d’action sont considérés comme étalons des leurs classes

respectives.

This chapter presents the mathematical description of our novel method for spike
sorting. The method belongs to the wide class of template matching algorithms for spike
sorting. Among different methods used in neurophysiology for spike sorting (Schmidt, 1984;
Lewicki, 1998) template matching is one of the most popular. This technique is based on
construction of templates that represent the typical waveform of neuron (Bergman and
DeLong, 1992; Forster and Handwerker, 1995; Gadike and Albus, 1995). The algorithms of

this class compare the candidate spike waveforms with all available templates and select the
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best matching one. Most of the algorithms realize the spike matching in time domain, i.e.
using the sample points of digitized signal. The drawback of this method is that spike
waveforms could be slightly distorted not only in amplitude, but also along the time axis. As a
consequence, classes of spikes in time domain may not form clusters and the distributions

inside the classes may not be Gaussian (Fee et al., 1996).

The present approach is based on the use of the inverse methods of nonlinear
oscillation theory (Chertoprud et Gudzenko, 1976). Spike waveform is described as an
ordinary differential equation with perturbation. This mathematical formulation allows the
characterization of signal distortions in both amplitude and phase. Spike sorting is considered
as a problem of the classification of trajectories in phase space of the dynamical system
corresponding to the differential equations. In this feature space the problem of spike

classification may be reduced to the separation of a mixture of normal distributions.

The implementation of this method includes several steps. Firstly, a procedure for
detecting spike occurrences out of a noisy signal must be performed. Secondly, the estimation
of the trajectories in the phase space must be calculated, by the appropriate numerical
algorithms. Finally, clustering and classification algorithms should be realized in the
transformed feature space. The unsupervised learning algorithm that has been developed here

allows the automatic selection of representative spike templates.

3.1 Model

3.1.1 Dynamical system with perturbation

We suppose that an electrical signal X(t) = x(t)+ £(t) is observed at discrete times;
X(t) 1is the neuronal activity signal without noise; &(t) is a sequence of independent
uniformely distributed random variables with zero mean and finite variance ((5;’2 <o0); X(t) is
characterized by the occurrences of spikes. Spikes X (t +t), 0 <t< T appear at random
times t; and have duration T'. All other time signal X(t) equals zero. Each spike is assumed

to correspond to a neuronal discharge generated by one of p observed neurons. X; denotes

the general population of spikes generated by a single neuron j, 0< j<p<oo;
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X; = {Xi (t'+1),0<t <Ti}. Since the spikes of q single neuron are assumed to be similar,

each general population contains spikes with similar waveform. The general assumption on

which is based the approach is that all spikes of general population X; are solutions of the

same ordinary differential equation with perturbation

n n-1
d"x _ . J[x%} F(X). 3.1)

where n is the order of the equation, F(X,...,t) is a perturbation function and the equation

d"x : d"'x
dtn = fJ(X,...,WJ (3.2)

describes a self-oscillating system with a stable limit cycle x°(t) = (Xlo (t),...,Xg (t))" in

phase space with coordinates

dx d"'x
_ X =

=Xy = (3.3)

X, = X%, X,

The period of stable oscillations is T . The perturbation function F(X,...,1), bounded by a

small value, is a random process with zero mean and small correlation time 7 <<T . f/ is

twice continuously differentiable on all its arguments.
In case of stable oscillations (Eq. 3.2) the trajectory of the signal continuously tends to

the limit cycle X’ (t) whenever it is found in its neighborhood (Bogoljubov et Mitropolsky,

1961). The perturbation function F(X,...,t) in Eq. (3.1) tends to displace the trajectories of
the signal out of the limit trajectory. However, if the perturbation is small enough the

trajectories stay in neighborhood of the limit cycle x° (t), i.e. the solutions of Eq. (3.1) are

similar but do not coincide.
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We introduce local coordinates (n(#),f) in neighborhood of the limit cycle
(Chertoprud et Gudzenko, 1961; Gudzenko, 1962). Let us fix an arbitrary point on the limit
cycle P, as the starting point (figure 3.1). The position of any arbitrary point P on the limit
trajectory can be described by its phase @, which is the time of movement along the limit

cycle from the starting point P, to point P . Phase & unambiguously characterizes all points
of the limit trajectory. Since flin Eq.(3.2) is twice continuously differentiable on all its
arguments, it is possible to construct a hyperplane (and only one) that is normal to the limit
cycle at point P with phase € . Point M (0)of intersection of this hyperplane and an
arbitrary trajectory of Eq.(3.1) corresponds to phase €. The zero point on this trajectory is
M, =M (0). Any trajectory in the vicinity of the limit cycle can be described by variables
(n(@),0), where n(@) is vector PM in the phase space Eq.(3.3). t(#) is the time of
movement along the trajectory from an initial point M (0) to the analyzed pointM (&) . Thus,
the limit trajectory is defined by n(d)=0 and t(f)=6 , where 0 is a vector with all

components equal to 0. So, for the stable limit cycle the phase equals the time of motion.

A -----..__ M:nle) t@E)

¥

Figure 3.1
New variables, phase 6, time motion t(¢) from M, = M (0) to M (&) and normal deviation

N(@) are introduced to describe the trajectories of the analyzed signal in phase space. The

thick line is the limit trajectory. The length of Vector|n((9)| corresponds to the minimal

distance between the signal and the limit trajectory.

From the point of view of the described model the spikes of each general population

X represent cycles in the neighborhood of the stable limit cycle of the appropriate equation.
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The limit trajectory X(; (0), 0<@<T, corresponds to an ideal spike without noise, referred

to as an “undisturbed spike” (Figure 3.2).

Figure 3.2

Trajectories in phase space Eq.(3.3) of spikes of three single neurons recorded simultaneously
from the same microelectrode. Trajectories stay in neighborhood of the limit cycle. They are
similar but do not coincide.

Subsequently, the spike sorting method rests upon the following fundamental

assumptions:

- spike waveforms are considered as solutions of differential equations with perturbation
according to the mathematical model introduced in Eq. (3.1) and Eq. (3.2). The
perturbation represents the internal variation of neuronal discharges and is introduced

directly in the dynamical system.

- The general population X; representing a single unit activity consists of signals

described by the same differential equation, so a single unit activity can be described

by one dynamical system.

3.1.2 Feature space

The problem of spike sorting can be reduced to the problem of separation of a mixture
of normal distributions taking into account some important properties of the self oscillating

system with perturbation, Eq. (3.1) and Eq. (3.2) (Gudzenko, 1962):
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1) Vectors of normal deviations from limit cycle n; (&) in phase space Eq.(3.3) have

an asymptotically Gaussian distribution for any & in case of weakly correlated
noise F(X,...,t) (correlation time 7<<T, T - the period of the oscillating

system).

n(@) ~ N(0,5%) (3.4)

1) The mean trajectory of signals in phase space Eq.(3.3) converges to the limit cycle
in linear approximation if the number of averaged trajectories increases infinitely.

Thus, the mean trajectory represents an estimation of the limit cycle in first
approximation: n"(0) =0, t"(0) 0 (Chertoprud et Gudzenko, 1976; Gudzenko,
1962).

k k
V()= line Y6 €O =lim D k(0 (3.5)

These properties allow the estimation of the limit cycle by calculating the mean
trajectory of the signal in the phase space and the estimation of the “undisturbed spike” (the

ideal spike in phase space) that can be used as a template for spike sorting.

The standard feature space for template matching algorithms is usually formed by

signal samples: X, = X;(t,) t;, i =1,...,M . This feature space of dimension M will be denoted
R™ A transform of this feature space is used for the approach being described in here. The
values of the spike trajectories in phase space Eq.(3.3) at points &,

0<6,<6,<..<6, =T, AG =1 are considered as new features for classification:

X(o,)). (3.6)

where
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dt n-1

The 