
HAL Id: tel-00115720
https://theses.hal.science/tel-00115720

Submitted on 22 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional interactions in basal ganglia studied by
multiple single unit recordings sorted by an
unsupervised template matching algorithm

Olga Chibirova

To cite this version:
Olga Chibirova. Functional interactions in basal ganglia studied by multiple single unit recordings
sorted by an unsupervised template matching algorithm. Neurons and Cognition [q-bio.NC]. Université
Joseph-Fourier - Grenoble I, 2006. English. �NNT : �. �tel-00115720�

https://theses.hal.science/tel-00115720
https://hal.archives-ouvertes.fr


Interactions fonctionnelles dans les ganglions de la base
étudiées par l'enregistrement simultané des activités

unitaires discriminées par un algorithme non supervisé
de tri de potentiels d’action

Functional interactions in basal ganglia studied by multiple single unit
recordings sorted by an unsupervised template matching algorithm

Thèse de doctorat

Présentée à

l’Université Grenoble Joseph Fourier Neurosciences – Neurobiologie

par

Olga Chibirova

Directeur de thèse : Prof. Alessandro E.P. Villa

Jury
Prof.  François Berger, Président

Dr. Jean-Pierrre Rospars, Rapporteur
Dr.  Tatyana Aksyonova, Rapporteur

Prof.  Alessandro E.P. Villa, Directeur de thèse

Grenoble 2006



ii

Adresses

Président du jury : Pr. François BERGER
   UJF Grenoble 1
   Inserm U318, Pav B Anc Maternité
   CHU Micallon, BP 217

38043 Grenoble Cédex 9
   Tel. +33-4-76.76.56.25
   Email: Francois.Berger@ujf-grenoble.fr

Rapporteur 1 :  Dr. Jean-Pierre ROSPARS
   Directeur de recherches
   UMR 1272 UPMC-INRA-INAPG Physiologie de l’insecte
   & Unité Mathématique et Informatique Appliquées
   INRA Centre de Versailles-Grignon, RD 10,
   78026 Versaille Cédex, France
   Tél. +33-1-30.83.33.55
   Email: rospars@versailles.inra.fr

Rapporteur 1 :  Dr. Tatyana AKSYONOVA
   Research Director
   Laboratory of Applied Nonlinear Analyses
   Institute for Applied System Analyses,
   National Academy of Scinces of Ukraine
   37 Prospect Peremogy,
   Kiev 56, 03056, Ukraine
   Tél. +38-044-241.87.05
   Email : aks@consy.ms.kiev.ua

Directeur de Thèse : Pr. Alessandro VILLA
   UJF Grenoble 1
   Inserm U318, Pav B Anc Maternité
   CHU Micallon, BP 217

38043 Grenoble Cédex 9
   Tél. +33-4-76.76.56.25
   Email: Alessandro.Villa@ujf-grenoble.fr



iii

Interactions fonctionnelles dans les ganglions de la
base étudiées par l'enregistrement simultané des
activités unitaires discriminées par un algorithme

non supervisé de tri de potentiels d action

Olga Chibirova

Laboratoire de neurosciences précliniques, CHU, UJF, Grenoble

La thèse porte sur une nouvelle méthode de tri non supervisé de potentiels d'action  et

sur son application à l'analyse de l'activité neuronale des ganglions de la base. Le

développement de nouvelles approches au tri de potentiels d'action est actuel en vue de

nouveaux outils nécessaires à l’électrophysiologie effectuée pendent  la neurochirurgie

fonctionnelle, autant que pour  l’efficacité des l’expériences électrophysiologiques en temps

réel.

La méthode présentée dans la première partie de cette thèse est une nouvelle approche

à ce problème qui décrit les potentiels d’action à l’aide des équations différentielles avec

perturbation caractérisant la variation interne de leur forme. Le logiciel permettant le tri de

potentiels d’action non supervisé développé à partir de cette méthode comprends un

algorithme automatique d’évaluation d’étalons de classes et de leurs rayons.

La seconde partie présente l’application de la méthode à l'analyse de l'activité

neuronale des ganglions de la base. Les donnés pour les analyses ont été recueillis au bloque

chirurgical du département de neurochirurgie de l'Hôpital Universitaire de Grenoble pendent

l’électrophysiologie intra chirurgicale et représentent le STN (950 enregistrements), le GPI

(183) et le SNR (105) de 13 patients parkinsoniens et 2 patients souffrant de dystonie. Les

analyses sont destinées à définir les formes typiques de potentiel d’action et à révéler un

parallèle entre la nature de l’activité neuronale et la gravité des symptômes de la maladie de

Parkinson.
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Functional interactions in basal ganglia studied by
multiple single unit recordings sorted by an
unsupervised template matching algorithm

Olga Chibirova

Laboratoire de neurosciences précliniques, CHU, UJF, Grenoble

The present thesis is devoted to the development of a new unsupervised spike sorting

method and its application to the investigation of neuronal activity. The development of new

approaches to spike sorting is crucial both for the intrasurgical electrophusiology and for the

efficiency of real time electrophysiological experiences.

The method presented in the first part of this thesis is a novel approach to the problem

which describes action potential by means of differential equations with perturbation

characterizing the internal variation of their forms. The unsupervised spike sorting software

implemented on the basis of the presented method comprises an automatic algorithm of

estimation of class centers and their radiuses.

The second part presents the application of the method to the investigation of neuronal

activity in basal ganglia. The data for the analyses were acquired in the surgical room of the

department of neurosurgery of the University Hospital, Grenoble, and represent the STN (950

recordings), the GPI (183) and the SNR (105) of 13 Parkinsonian patients and 2 dystonia

patients. The analyses are aimed to define typical forms of action potential and to reveal a

parallel between the nature of neural activity and the gravity of the Parkinsonian disease

symptoms.
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Chapter 1  

Introduction 

 
Ce chapitre s’articule autour des deux parties principales du présent document. La 

première partie et dédiée à une nouvelle méthode de tri des potentiels  d’actions. La 

deuxième partie  application de cette méthode pour des études de l’activité 

neuronale dans les ganglions de la base.  

 

 

The present work is devoted to the investigation of neuronal activity in basal ganglia 

by means of multiunit electrophysiological recording analyses. The first part of the work 

presents a novel method of spike sorting. The method is used for the extraction of single units 

from multiunit records from STN, SNr and GPi of Parkinsonian and dystonia patients. The 

second part of the thesis studies the neuronal activity in STN, SNr and GPi using the obtained 

single unit spike trains.  

1.1 Multiunit recording and spike sorting. Introduction to Part I 

Since the early decades of the electrophysiology in the years 1940s and 1950s, the 

“single unit” concept referred to the possibility to record the activity of a single neuron. The 

detection of all spikes from a single neuron is a difficult task when the experiment consists of 

extracellular recordings of action potentials.  The basic hypothesis is that all spikes generated 

by one specific neuron are characterized by a similar shape and this shape is unique and 

conservative for each distinct neuron during a stationary recording (i.e., in absence of any 

movement of the electrode tip with respect to the neural tissue and in absence of any transient 

electronic and electric noise).  The waveform of extracellularly recorded spike depends on the 

electric properties of the microelectrode, on its relative position with respect to the recorded 

neurons and on the electric properties of neuronal membrane. 

The recording of extracellular neuronal activity in noisy situations (Musial et al., 

2002), such as chronically implanted freely-moving animals (Villa et al., 1999) as well as the 
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neurosurgical electrophysiology (Ashkan et al, 2004), represents a crucial step because it 

provides unique information about the pattern of neuronal activity of the regions explored 

during the electrode penetrations. However, the quality of the information gained during the 

advancement of the electrode depends on the spike sorting, i.e. separation from the 

background noise of few action potentials (spikes) from the same electrode.  

Among different methods used in neurophysiology for spike sorting (Schmidt, 1984; 

Lewicki, 1998) template-matching has become one of the most popular.  This technique is 

based on templates that represent some typical waveform shapes of neuronal discharges in 

time domain.  The classification of a candidate spike is performed by comparing the electric 

signal recorded from the microelectrode to all available templates and then by selecting the 

best matching template.  Recent developments of this technique have been determined by the 

availability of fast computers at cheap price and include computationally intensive methods 

such as neural networks (Chandra et Optican, 1997; Kim et Kim, 2003) and wavelet 

transforms (Letelier  et Weber, 2000; Hulata et Segev, 2002).   

These and many other algorithms proceed the spike waveform classification in real 

time automatically way. The learning stage of the algorithms is still delicate due to a number 

of difficulties caused by the nature of the neuronal activity signal.  Among these difficulties 

are high level noise, presence of artifacts, variability of individual neuron’s spike waveforms 

and finally the ignorance of the number of observed neurons. 

A fundamental problem of the template-matching technique is represented by the 

number of distinct waveforms that may be separated from one microelectrode signal.  The 

usual practice is to use a “supervisor”, i.e. an experienced human operator, who can provide a 

preliminary classification of the waveforms following a selection of templates corresponding 

to distinct single units. Both extracellular and intracellular noise may affect the shape of the 

action potential (Fee et Mitra, 1996) and the task of spike sorting is even more difficult when 

the recordings are performed from freely-moving animals, due to the presence of noise at 

lower frequencies than the signals of interest.  The extracellular noise is usually taken into 

account by most of models as an additive noise.  The intracellular noise may produce intrinsic 

variations in the spike waveform and it is more difficult to account for.   

Distributed neuronal activity across cell assemblies may generate synchronized firing 

across many neurons (Singer, 1999) and complex spatio-temporal interactions (Abeles, 1991; 

Villa, 2000).  It is then necessary to record multiple spike trains simultaneously in order to 
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gain access to distributed brain processes.  Here appears the problem of a decomposition of 

such records into single unit spike trains.  Each spike train is assumed to represent the unique 

time series of single neuron action potentials.  The accuracy of this assumption is particularly 

important with the increase of microelectrode recordings in humans as guidance to the 

localization of the optimal site for deep brain stimulation (DBS).  The success of DBS for 

treatment of motor disorders, in particular Parkinson’s disease opens new perspectives to the 

development of electrophysiological techniques in contemporary neurosurgery (Limousin et 

al., 1998; Krack et al. 1999).  

A method for spike sorting is presented in Part I of the thesis. The mathematical 

background of the method was developed in 1999-2000 in the Institute of System Analysis, 

Kiev, Ukraine, with participation of the author (Aksenova et al. 2000; Aksenova et al. 2001). 

The project was directed by Dr. Aksyonova. The method  is based on the use of the inverse 

methods of nonlinear oscillation theory (Chertoprud et Gudzenko, 1976) and considered the 

problem of spike sorting in phase space of a dynamical self-oscillating system. That makes 

possible to account the intracellular noise and to reduce the problem to separation of a mixture 

of asymptotically normal distributions.  The spike waveform is described as an ordinary 

differential equation with perturbation.  This mathematical formulation allows us to 

characterize the signal distortions in both amplitude and phase.  Moreover, an unsupervised 

learning algorithm for automatic selection of representative spike templates is developed. On 

the basis of the developed algorithm a prototype software for the Unsupervised Spike Sorting 

(USS) is created. The algorithms are validated and the USS software is tested on a set of 

simulated signals. 

1.2 Functional interactions in basal ganglia.  Introduction to Part II 

Models of basal ganglia dysfunctions are used to explain the pathophysiological 

symptoms that characterize PD. According to the generally accepted model the appearance of 

the symptoms associated to Parkinson's disease (PD) is due, at last partly, by the rise in firing 

rate of the STN neurons that in turn increase the rate in the neurons of the output basal ganglia 

nuclei –SNr and Gpi, which exert mainly an inhibitory effect via GABA release. The validity 

of such models rests upon the correlation between the neuronal activity in the basal ganglia 

and the degree of clinical symptoms due to PD (Asai et al., 2003; Abe et al., 2003; Niktarash, 
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2003).  The investigation of the activity patterns of subthalamic neurons (Magarinos-Ascone et 

al., 2000; Liu et al.,2002) represents an important objective for better understanding the 

mechanisms that subserve the regulatory loops of the basal ganglia.  The STN plays a key role 

in the regulation of the output pathway of basal ganglia. The inactivation of STN in patients 

affected by PD dramatically reduces much of the clinical symptoms and its reversible 

inactivation by deep brain stimulation is one of most valuable techniques of present 

functional neurosurgery (Benabid et al., 1994; Limousin et al., 1998). 

It was recently demonstrated that both firing rate and pattern of neuronal activity in 

the STN and GPi/SNr  are altered profoundly by chronic dopamine depletion that underlies 

the pathology of PD (Magill et al., 2001). High and low-frequency oscillatory patterns in basal 

ganglia and their modifications in response to behavioral events have been recently studied 

(Cassidy et al., 2002; Bevan et al., 2002; Levy et al., 2002b). It has been proposed that an 

increase in synchronization between neuronal discharges in the basal ganglia contributes to 

generate the appearance of several clinical symptoms typical of PD. Synchronization of the 

activity patterns (Levy et al., 2000, 2002) and tremor-related neuronal firing (Rodrigues et al., 

1998; Hurtado et al., 1999; Hutchison et al., 1997) were examined for Parkinsonian patients. 

Changes of neuronal firing patterns have been associated to improvement of clinical 

symptoms typical for PD during DBS (Benazzouz et al., 2000; Hashimoto et al., 2003).  

Different changes in firing rate, firing patterns, oscillatory processes, and synchronization of 

activity in the basal ganglia nuclei were revealed by single electrode recordings performed in 

human PD patients during surgical intervention aimed to relieve parkinsonian symptoms 

(Bergman et al., 1998a; Filion, 1991; Hurtado et al., 1999; Hutchison et al., 1994, 1997; 

Merello et al., 1999; Nini et al., 1995). 

The present work is a contribution to STN and its output structures SNr and GPi 

neuronal activity investigation. The study was carried out in tree directions: definition and 

investigation of activity patterns in STN, definition of typical waveforms of neuronal 

discharges and their correlation with the defined activity patterns and, finally, the 

investigation of dependences between the activity patterns and clinical symptoms of PD. 
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Chapter 2  

Spike Sorting 

 
Ce chapitre est une introduction dans le problème de trie de potentiel d’action 

(Spike Sorting). Les potentiels d’action sont de rapide perturbations du champ 

électrique produites des cellules nerveuses. Ils peuvent être enregistrés d’une 

manière extracellulaire à l’aide d’électrodes implantées dans les tissues nerveux. 

L’électrode enregistre l’activité des cellules à proximité de sa pointe. Les 

enregistrements contiennent de pics étroits (spikes) correspondant aux potentiels 

d’action. La tache du trie de  potentiel d’action est de séparer les spikes 

appartenants aux différentes cellules sur la base de leurs formes. 

A ce jour, il existe de nombreuses méthodes  du tri de  potentiel d’action, dont une 

brève revue est présentée dans ce chapitre. Le problème du développement de 

nouvelles approches est néanmoins actuel en vue de nouveaux outils nécessaires à 

l’électrophysiologie effectuée pendent  la neurochirurgie fonctionnelle, autant que 

pour  l’efficacité des l’expériences électrophysiologiques en temps réel.   

La variabilité de la forme des potentiels d’action, ainsi que la présence d’artefacts et 

du bruit non stationnaire, complique le développement des algorithmes non 

supervisées de trie de potentiels d’action.  La méthode présentée dans la première 

partie de cette thèse décrit une nouvelle approche à ce problème.   

 
  

For a great number of neurophysiological studies it is necessary to isolate single 

neural cell activity. Examples of such studies are investigation and comparison of neuronal 

activity in various brain structures, neuronal activity characterization for pathologies, animal 

behavioral experiments. During extracellular recording the cells detected by a single electrode 

are those lying within tens of microns of the electrode tip and extracellular recording is 

usually multineuronal, often referred to multiunit analysis. It is sometimes possible to isolate 

a single unit by manipulating the electrode, but these manipulations are, however, difficult or 

impossible to execute. 

The electric signal recorded by the electrode usually includes the activity of many 

cells. It is characterized by occurrences in random times of short impulses of a particular 

form, called spikes (figure 2.1). Spike sorting is the signal processing applied to sort spikes 
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into groups according to their waveforms, each group being presumed to represent a single 

cell. Moreover, the spike sorting approach can provide information that is extremely difficult 

to obtain using one-cell-one-electrode approach. 

 

 
Figure 2.1 
Electrophysiological signal recorded extracellulary during a functional neurosurgery of a 
Parkinsonian patient. 1-4 – spikes, corresponding to neural action potentials. Spikes 1 and 2 are 
similar in waveform and may be single unit spikes. 

The aim of the present work is to apply a spike sorting technique that can be used 

during functional neurosurgery to increase the efficiency of the intrasurgery electrophysiology. 

For that purpose the spike classification algorithm had to be in real-time. Moreover it was 

preferable to develop an unsupervised spike sorting to avoid the necessity of the presence of an 

experienced electrophysiologist during surgery. The time factor in functional neurosurgery is 

crucial, so the learning algorithm for the spike classification had to be efficient and not time 

consuming. In the same time the surgery room spike sorting software was to be convenient and 

simple, not requiring special computer skills. The efficiency and simplicity of a spike sorting 

software is also important for on-line experiments with animals. For the off-line 

electrophysiological data treatment the mentioned features are useful as well, since it permits to 

treat easily large amounts of data. Thus, despite of a great number of spike sorting methods 

available to date it appears necessary to create new and more efficient tools, requiring less user 

efforts, getting closer to a fully automatic procedure.  

In this chapter the nature of neuron action potentials and the principles of exracellular 

electrophysiological recordings are briefly exposed. Then, a general scheme of spike sorting 

algorithms is presented as well as a short review of existing spike sorting methods. 
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2.1 Action potential 
The neurons communicate by means of short local perturbation of the electrical 

potentials across the cell membrane, called action potentials. The mechanism of action 

potential was discovered and described by Hodgkin et Haxley (1952).  

The membrane voltage changes during an action potential result from changes in the 

permeability of the membrane to specific ions (particularly sodium Na+  and potassium K+), 

the internal and external concentrations of which is maintained in an imbalance. This 

imbalance makes it possible to generate action potentials but also the resting membrane 

potential. Although the concentrations of the different ions attempt to balance out on both 

sides of the membrane, they cannot because the cell membrane allows only some ions to pass 

through ion channels. At rest, potassium ions (K+) can cross through the membrane easily 

through the potassium leak channels, sodium ions outside and negatively charged protein 

molecules inside the neuron cannot cross the membrane. The resting membrane potential of a 

neuron is about  -70 mV. At rest, there are more sodium ions outside and more potassium ions 

inside that neuron.  

 . In a simplified model of the action potential, the resting potential of a patch of 

membrane is maintained by a potassium leak channel. The rising phase (figure. 2.2) of the 

action potential occurs when the voltage-dependent sodium channels open causing the sodium 

permeability to greatly exceed the potassium permeability. This critical opening of the voltage 

dependent sodium channels occurs when the membrane potential reaches a critical level, 

reffered to as the “threshold potential”. After a short delay, the voltage-dependent potassium 

channels opens and the voltage-gated sodium channel become inactiv. As a consequence, the 

membrane potential is driven back toward the resting potential, resulting in the action 

potential's falling phase. As more potassium channels are open than sodium channels, the 

potassium permeability is now larger than it was before the action potential was generated (at 

rest only the potassium leak channel is open). As a result, the membrane potential undershoots 

the resting potential level. The delayed-rectifier potassium channel, being voltage-dependent, 

is closed by the hyperpolarized voltage, and the cell returns to its resting potential.  
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Figure 2.2 
Schematic action potential with aresting potential at -70mV and a thresholde at -55mV. 

Where membrane has undergone an action potential, a refractory period follows. This 

period arises primarily because of the voltage-dependent inactivation of sodium channels. In 

addition to the voltage-dependent opening of sodium channels, these channels are also 

inactivated in a voltage-dependent manner. Immediately after an action potential, during the 

absolute refractory period, virtually all sodium channels are inactivated and thus it is 

impossible to fire another action potential in that segment of membrane. With time, sodium 

channels are reactivated in a stochastic manner and as they become available, it becomes 

possible to fire an action potential, albeit one with a much higher threshold. This is the 

relative refractory period and together with the absolute refractory period, lasts approximately 

five milliseconds.  

In many cases a cell fires a group of action potentials spaced by a little more then the 

absolute action potential. Such a group is call “burst”. In general, such bursts are not driven 

entirely by synaptic input, but rather by the biophysics of the membrane. For example, 

extremely long voltage sensitive calcium channels are found in some neurons: the first action 

potential in a burst provokes the opening of some of these channels, but they neither close nor 

inactivated rapidly. Ca++, which is concentrated outside the cell by the ion pumps, flows in 

through these open channels. As a result, as soon as the first action potential is over and the 

potassium channels closed, the depolarizing calcium channels can provoke the next action 

potential. The current that flow in this and subsequent action potentials may be lower then in 

the initial one.  
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2.2 Extracellular recording 

The mechanism of action potential, as well as many others neuronal phenomena, have 

been understood through measurements taken using an intracellular electrode, that is one 

which penetrates the cell. It is difficult to record with such an electrode in intact animal and 

even more difficult in an awaken one.   

Extracellular recording is used to measure the extracellular field potentials outside the 

neurons. In its most simple form, extracellular recording can be performed by placing a single 

wire electrode in the brain that has insulation covering all but its very tip. Fluctuations in the 

voltage between this wire and a neutral reference wire (e.g. a wire attached to a skull screw) 

can then be measured. Since the fluctuations in the local field potential that occur in the brain 

are commonly in the frequency range of about 1 kHz and less than 1 mV, the signal must be 

amplified so that it may be detected and recorded. In the process of amplifying the signal, it is 

useful to filter it to remove very low (<1Hz) and very high (>3kHz) frequencies.  

In intracellular recording  the voltage fluctuations across the resistor of the cell's 

membrane are mesured. In extracellular recording, the recording electrode is outside the cell 

(fig. 2.3).  

 

 
Figure 2.3 
A schematic diagram, showing an extracellular field potential recording from rat hippocampus. 
At the left is a schematic diagram of a presynaptic terminal and postsynaptic neuron (1). Then 
the synapse releases glutamate the net flow of current is inward, so a current sink is generated. 
An extracellular electrode (3) detects this as negativity. An intracellular electrode placed inside 
the cell body (2) records the change in membrane potential that the incoming current causes. 

The resistor in extracellular recording is the tip of the electrode itself. Extracellular electrodes 

can record transient changes in the local balance of positive and negative charges. Since the 

inside of the electrode is electro neutral, and the tip has a resistance, a voltage can develop 
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across the electrode tip between the electro neutral interior and the exterior local change in 

charge balance.  

Using this basic strategy, if the wire is placed near to a neuronal cell body (less than 

140 microns according to Henze et al. (2000)), action potentials fired by that cell may be 

recorded. This is possible because to fire an action potential the neuron transiently opens 

sodium channels allowing positively charged sodium ions to rush down the voltage gradient 

into the cell. This movement of ions into the cell creates a negative fluctuation in voltage in 

the immediately surrounding area relative to distant locations. This leads to a transient change 

in voltage between the extracellular recording electrode and the distant reference wire. 

Many cell membranes might lie close to the electrode tip so that many spikes from 

many cells are recorded. To isolate a single cell activity the experimenter may move the 

electrode so that its tip lies very close to the cell body, and thus the spikes from this cell 

appear far larger in amplitude than those from the other cells. Due to such difference in 

amplitude a simple hardware device can be used than to record the spike train of the single 

cell. However, optimizing the single cell isolation by moving the electrode is difficult if 

possible. Instead, spike sorting algorithms can be applied to obtain the single unit isolation. 

2.3 Spike Sorting methods review 

Single unit activity detection on multiunit extracellulary recorded signal has been an 

object of intensive research since last 2-3 decades. During this period many different 

approaches to the problem solution were suggested.  In general all on-line spike sorting 

methods deal in one or another way with the following sub problems: 

- Spike event detection –extraction of spikes from the electrical signal. 

- Definition of features for the classification, which may be as simple as maximal 

amplitude feature, or more sophisticated, like wavelet transform coefficients. 

- Learning of the classification algorithm, which requires the number of classes 

estimation, as well as the estimation of class’s parameters on a learning set. 

- On line classification. 
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In different approaches each of these problems may be solved on- or off-line, 

automatically, semiatomatically or manually. In many developed approaches the first stage – 

spike detection, and the last one – spike classification - are realized on-line and in an 

automatic way (Gadike et Albus, 1995; Zouridakis et Tam, 1997; Kreiter et al., 1997; Kim et 

Kim, 2003). The most complicated problem is the problem of automatic learning of the 

classification algorithm, i.e. automatic estimation of number of classes and of their 

parameters.  Nevertheless the development of automatic methods of classification is crucial 

since the manual classification is not only a time-consuming but also subjective, operator-

depending procedure and the probability of error is high (Harris et al., 2000; Wood et al., 

2004). Many authors suggest an automatic learning procedure which is not robust to outliers 

and requires manual collection of the learning set (Forster et Handwerker, 1990; Bergman et 

DeLong, 1992). A learning set collected automatically unavoidably contains outliers. Often 

the learning procedure results are controlled and corrected by an operator (Gadike et Albus, 

1995). In some approaches certain stages may be omitted if a sub problem is not considered 

and its solution is considered to be known a priori. For example, in most of technics the 

number of classes is assumed to be defined. Some algorithms put together the learning and the 

classification stages, providing an off-line clustering on a large data set (Fee et al., 1996; 

Sahani, 1999; Quian Quiroga et al., 2004; Shoham et al., 2003).    

A number of factors that increase the difficulty of the single unit activity detection 

should be taken into account when choosing a method of spike sorting. Most of sophisticated 

algorithms provide excellent results on “good” signals where the negative factors are not 

important, but these algorithms may be inapplicable in the opposite case.  The use of simplest 

methods based on threshold crossing is often preferable.    

1.3.1 Threshold crossing 

The simplest solution of the single unit activity detection problem is the threshold 

crossing method (Schmidt, 1984). This method uses one of the principal spike waveform 

characteristics – its amplitude, which mostly depends on the distance from the cell to the 

electrode. Whenever the signal crosses a threshold set by user, a spike event is recorded. The 

obvious advantage of the method is the simplicity and the minimum requirements to the 

software and equipment. However by means of the threshold crossing it’s impossible to 

distinguish cells with slightly different large spike amplitudes.  Moreover this method is 
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inapplicable in presence of high amplitude artifacts. All detected spikes, as well as mistaken 

artifacts are considered to belong to the same single unit and the firing rate is overestimated.    

In the case of threshold crossing only one sub problem of spike sorting is solved - 

event detection.  

1.3.2 Template Matching and Clustering in Feature Space 

All spike sorting algorithm based on spike waveform analysis can be conventionally 

divided into two groups: Template Matching (Abeles et Goldstein, 1977; Gadike et Albus, 

1995; Forster et Handwerker, 1995; Peterson et Merzenich, 1995; Okada et Maruyama, 1982; 

Zouridakis et Tam, 2000; Simon, 1965) and Clustering in Feature Space (Fee et al., 1996; 

Sahani, 1999; Quian Quiroga et al., 2004; Shoham et al., 2003; etc). 

Template Matching is a group of classification algorithms based on matching spike 

waveform to the previously defined templates. Usually each template corresponds to a single 

unit. All sample points of the signal on the segment corresponding to a spike are usually used 

as features for the classification. In earlier applications the templates were defined manually 

by operator (Friedman, 1968; Bergman et DeLong, 1992; Okada et Maruyama, 1982) which 

is a time consuming process. In later approaches the templates are estimated as the mean 

spike waveform of a group belonging to a signal unit. For that purpose a clustering is 

necessary and the mean is estimated for each cluster. Estimation of the class center as the 

mean of the cluster has its drawback – the mean is sensible to statistical errors. To make the 

estimation more robust the clustering algorithm must take into account the presence of 

outliers. An example of such a sophisticated algorithm is a fuzzy clustering (Zouridakis et 

Tam, 2000). It is assumed that each spike belongs to all clusters with some probability 

according to Euclidian distance to the center of the cluster. The clusters are constructed 

iteratively. The iterative procedure requires a large amount of calculations.  

Clustering in Feature Space uses as features some spike waveform characteristics such 

as maximal and minimal amplitudes, the width of spike etc.) Single unit spikes form a cluster 

in the feature space. The aim of the Clustering in Feature Space is to find clusters 

corresponding to each observed single unit and to define its boundaries for further 

classification. The simplest earlier methods required a manual clustering.  Later methods 

based on some probabilistic models appeared. Considering the distribution in clusters as 
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Gaussian, it is possible to provide a Bayes clustering as it is described in Cheesman et Shutz, 

(1988). Moreover, these authors suggest a method of rejecting artifacts by creating a special 

class with big radius and small wait. The number of classes is estimated here by maximal 

likelihood method for mixtures of different number of Gaussian distribution (Snider et Bond, 

1998; Glaser et Marks, 1998). Nevertheless, this method fails if the real distributions differ 

significantly from the Gaussian. That is why the later works suggest clustering methods which 

are not based on this assumption (Fee et al., 1996; Glaser et Marks, 1998). In the first work 

the clustering is realized on the basis of recursive bisection. The set is divided into a large 

number of small clusters which are merged then if the probability density between clusters 

exceeds a threshold. The second method is analogous and based on the assumption that the 

spike waveform variation is continues in time. The small clusters are merged according to this 

assumption. Both methods require a large amount of calculations.  

Spike Detection 
The first stage of Template Matching and Clustering in Feature Space algorithms is 

the detection spike occurrences within a multiunit signal. The threshold for spike detection is 

usually defined according to statistical characteristics of signal. Segments of the signal around 

threshold crossings are considered as potential spikes of one of the observed neuron cells. One 

of major problems making difficult a further classification of these signal segments is that 

noise is usually nonstationary and its amplitude sometimes can be of the same order of the 

signal amplitude. Thus, segments of noise and artifacts are detected together with spikes.  

Feature Space 
For Clustering in Feature Space some characteristics of spike waveform are used as 

features, often it is the extrema amplitudes, time between the local extrema etc. (Feldman et 

Roberge, 1971; Dinning, 1981; Lewichki, 1994). Template Matching methods take into 

account the entire waveform, here all time samples are considered as features. Feature space 

can be optimized using, for example, the principal components method (Glaser, 1971; 

Gerstein et al., 1983; Salganicoff et al., 1988) which selects from the initial feature set several 

features providing the best classification results to the reduced feature space method (Kreiter 

et al., 1989; Lewicki, 1994) which reduces the number of features to minimum necessary for 

the calculations. Sometimes the optimization is carried out manually. For example in Kreiter 

et al., 1989 the operator selects 8 features as 8 among 64 sample points with maximal 

 



 
Chapter 2: Spike Sorting                      

15

variance on a learning set. Then, learning and classification are carried out in 8-dimentional 

feature space.  

Synchronization of spikes 
If the signal samples are considered as features then the variability of the spike 

waveform leads to the problem of the spike segments synchronization. If the internal noise is 

absent spikes can be synchronized by a time shift, for example, by matching the spike mass 

centers (Forster et Handwerker, 1990; Bergman et DeLong, 1992). But the spike waveform 

may vary because of internal process in the nervous cell (Fee et al., 1996; Quirk et Wilson, 

1999; Oweiss et Anderson, 2002). That leads to nonlinear spike waveform variability and 

spikes can be no more synchronized by a time shift. In order to take into account the nonlinear 

deformation spikes may be dividedinto several segments which are synchronized 

independently. The synchronization may be performed, for example, following the principle 

of minimal surface between two segments (Kreiter et al., 1989) or by finding the optimal 

synchronization iteratively, shifting spikes by one sample point on each step and maximizing 

the correlation between them. These procedures increase the time of calculations.  

Learning procedure 
This is the most complicated stage of spike sorting. It is necessary to construct 

templates for Template Matching or to define cluster boundaries in case of Clustering in 

Feature Space. The number of classes corresponding to the number of neurons being observed 

is not known a priori and must be estimated during the learning phase. Moreover, if the 

learning set is formed automatically, it contains artifacts and misdetected noise which must be 

rejected during the learning process. Finally, if signal samples are taken as classification 

features, spike distributions in such feature space in general are not Gaussian (Fee et al., 1996; 

Shoham et al., 2003) and the methods based on the assumption of Gaussian distributions in 

feature space may not be efficient. Other clustering methods based on more complicated 

probabilistic models, for example clustering with gradient of probability density (Fee et al., 

1996), hierarchical model of Gaussian distributions (Sahani, 1999), Student’s distribution 

model (Shoham et al., 2003) give better results but often demand more complicated 

calculations.  

In the simplest case an operator carries out the templates selection based on visual 

inspection or on manual tracing of cluster boudaries (Gadike et Albus, 1995; Bergman H., 
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DeLong, 1992; Okada et Maruyama, 1982). This is a time consuming, difficult and subjective 

process. For example in  Gadike et Albus, (1995) the operator has to estimate boundaries for 

27 features used for the clustering.  The constraints mentioned above – high amplitude noise, 

artifacts, spike waveform nonlinear variability – make the implementation of an automatic 

learning procedure rather sophisticated. Often, the learning set must still be inspected by an 

operator to reject noise and artifacts. As for the number of classes estimation, sometimes the 

automatic clustering is carried out for several possible number of classes. The final number of 

classes is selected according to the best clustering by visual inspection (Zouridakis et Tam, 

2000; Snider et Bond A.B., 1998; Glaser et Marks, 1968) or by some criteria, for example the 

criteria of maximal likelihood (Cheesman et Shutz, 1988).  

Classification 
 This stage of spike sorting is rather simple and consists either in matching a detected 

spike with one of the templates defined during the learning stage or by verifying the cluster 

boundaries. Many of modern application provide automatic real-time classification (Lewicki, 

1994).   

In some works the learning and the classification stages are joined together (Oweiss et 

Anderson, 2002; Fee et al., 1996; Sahani, 1999; Quian Quiroga et al., 2004; Shoham et al., 

2003). In this case the spike sorting is provided by off-line clustering of a large set of detected 

spikes (e.g. 50 000 to 100 000 spikes ( Fee et al., 1990)).   

1.3.3 Other spike sorting algorithms 

The methods described above use the spike waveform characteristics for the feature 

space definition. However, there are also other approaches to the problem.  Some of them are 

based on frequency methods, such as optimal linear filtration (Roberts et Hartline, 1975; 

Gozani et Miller, 1994). The method is based on the optimal filter construction for each of the 

template spikes selected manually. This approach shows worse results of the classification but 

its advantage is that it allows detection of overlapping spikes. Another approach, allowing as 

well the detection of overlapping spikes is the neural network (Yamada et al., 1992; 

Mirfakhraei et  Horch, 1994). The realization of these algorithms requires a manual learning 

set collecting and a prior class number estimation. The most popular modern methods are 

based on the wavelet transform (Quian Quiroga et al., 2004; Zouridakis et Tam, 1997; Letelier 
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et Weber, 2000). The coefficients of the wavelet decomposition of template spikes are 

considered as classification features. Clustering methods in this feature space are analogous to 

the methods used in time domain for Clustering in Feature Space and Template Matching and 

usually they can be realized automatically in off-line mode.  The quality of the classification 

in the feature space of wavelet transform coefficients is very high and the latest algorithms 

work in a very efficient way. However, a preliminary basis construction is required for these 

algorithms.   
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Chapter 3 

Mathematical purposes 

 
Le tri de potentiels d’action doit considérer  deux types de variations de la 

forme des potentiels : le bruit externe et la variation intrinsèque d’origine 

cellulaire. Ce fait implique le problème lié à l’observation de potentiels 

d’action synchronisés. Il a été démontré que la distribution des potentiels 

d’action dans le domaine temporel n’est pas Gaussien. La classification des 

potentiels d’action doit être effectuée en présence d’erreurs d’artéfacts et 

au bruit non stationnaire  

Le logiciel de Unsupervised Spike Sorting (tri de potentiel d’action non 

supervisé) est basé sur une nouvelle méthode de tri de potentiels d’action. 

Cette méthode décrit les potentiels d’action  à l’aide des équations 

différentielles avec perturbation qui caractérisent la variation interne de leur 

forme. Ces équations décrivent un système dynamique oscillatoire, dont les 

propriétés permettent de réduire la tâche du tri de potentiels d’action à la 

tâche de séparation d’un mélange de distributions normales 

asymptotiquement dans l’espace de phases du système dynamique.  

Un algorithme automatique d’évaluation d’étalons de classes et de leurs 

rayons a été développé. A chaque itération l’algorithme examine le groupe 

d’apprentissage pour trouver le potentiel d’action avec la densité de 

probabilité maximale dans leur voisinage. A la dernière itération les 

potentiels d’action sont considérés comme étalons des leurs classes 

respectives.  

 

This chapter presents the mathematical description of our novel method for spike 

sorting. The method belongs to the wide class of template matching algorithms for spike 

sorting. Among different methods used in neurophysiology for spike sorting (Schmidt, 1984; 

Lewicki, 1998) template matching is one of the most popular. This technique is based on 

construction of templates that represent the typical waveform of neuron (Bergman and 

DeLong, 1992; Forster and Handwerker, 1995; Gadike and Albus, 1995). The algorithms of 

this class compare the candidate spike waveforms with all available templates and select the 
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best matching one. Most of the algorithms realize the spike matching in time domain, i.e. 

using the sample points of digitized signal. The drawback of this method is that spike 

waveforms could be slightly distorted not only in amplitude, but also along the time axis. As a 

consequence, classes of spikes in time domain may not form clusters and the distributions 

inside the classes may not be Gaussian (Fee et al., 1996). 

 The present approach is based on the use of the inverse methods of nonlinear 

oscillation theory (Chertoprud et Gudzenko, 1976). Spike waveform is described as an 

ordinary differential equation with perturbation. This mathematical formulation allows the 

characterization of signal distortions in both amplitude and phase. Spike sorting is considered 

as a problem of the classification of trajectories in phase space of the dynamical system 

corresponding to the differential equations. In this feature space the problem of spike 

classification may be reduced to the separation of a mixture of normal distributions. 

The implementation of this method includes several steps. Firstly, a procedure for 

detecting spike occurrences out of a noisy signal must be performed. Secondly, the estimation 

of the trajectories in the phase space must be calculated, by the appropriate numerical 

algorithms. Finally, clustering and classification algorithms should be realized in the 

transformed feature space. The unsupervised learning algorithm that has been developed here 

allows the automatic selection of representative spike templates.  

3.1 Model  

3.1.1 Dynamical system with perturbation 

We suppose that an electrical signal )()()(~ ttxtx ξ+=  is observed at discrete times; 

 is the neuronal activity signal without noise; )(tx )(tξ  is a sequence of independent 

uniformely distributed random variables with zero mean and finite variance (σξ
2 < ∞);   is 

characterized by the occurrences of spikes. Spikes , 0 < t≤ T

)(tx

)( * ttx ii + i  appear at random 

times ti
* and have duration Ti. All other time signal  equals zero.  Each spike is assumed 

to correspond to a neuronal discharge generated by one of  p observed neurons.  denotes 

the general population of spikes generated by a single neuron , 

)(tx

jX

j ∞<<≤ pj0 ; 
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{ }i
iij Ttttx <<+= 0),( *X .  Since the spikes of q single neuron are assumed to be similar, 

each general population contains spikes with similar waveform.  The general assumption on 

which is based the approach is that all spikes of general population  are solutions of the 

same ordinary differential equation with perturbation 

jX
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where n is the order of the equation,  is a perturbation function and the equation ),...,( txF
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describes a self-oscillating system with a stable limit cycle  in 

phase space with coordinates   

))(),...,(()( 00
1

0 ′= txtxt nx

1

1

21 ,...,, −

−

=== n

n

n dt
xdx

dt
dxxxx . (3.3)

 

The period of stable oscillations is T . The perturbation function , bounded by a 

small value, is a random process with zero mean and small correlation time 

),...,( txF

T<<τ . f j is 

twice continuously differentiable on all its arguments. 

In case of stable oscillations (Eq. 3.2) the trajectory of the signal continuously tends to 

the limit cycle  whenever it is found in its neighborhood (Bogoljubov et Mitropolsky, 

1961). The perturbation function  in Eq. (3.1) tends to displace the trajectories of 

the signal out of the limit trajectory. However, if the perturbation is small enough the 

trajectories stay in neighborhood of the limit cycle , i.e. the solutions of Eq. (3.1) are 

similar but do not coincide.  

)(0 tx

),...,( txF

)(0 tx



 
Chapter 3: Mathematical purposes  

21

We introduce local coordinates )),(( θθn  in neighborhood of the limit cycle  

(Chertoprud et Gudzenko, 1961; Gudzenko, 1962).  Let us fix an arbitrary point on the limit 

cycle  as the starting point (figure 3.1). The position of any arbitrary point 0P P on the limit 

trajectory can be described by its phaseθ , which is the time of movement along the limit 

cycle from the starting point  to point . Phase 0P P θ  unambiguously characterizes all points 

of the limit trajectory.  Since f j in Eq.(3.2) is twice continuously differentiable on all its 

arguments, it is possible to construct a hyperplane (and only one) that is normal to the limit 

cycle at point  with phase P θ  . Point )(θM of intersection of this hyperplane  and an 

arbitrary trajectory of Eq.(3.1) corresponds to phase  θ . The zero point on this trajectory is 

. Any trajectory in the vicinity of the limit cycle can be described by variables )0(0 MM =

)),(( θθn , where )(θn  is vector  in the phase space Eq.(3.3).  PM )(θt  is the time of 

movement along the trajectory from an initial point  to the analyzed point)0(M )(θM . Thus, 

the limit trajectory is defined by 0n ≡)(θ  and θθ ≡)(t  , where 0 is a vector with all 

components equal to 0. So, for the stable limit cycle the phase equals the time of motion.   

 
 

Figure 3.1  

New variables, phase θ, time motion t(θ) from )0(0 MM =  to )(θM and normal deviation 

)(θn  are introduced to describe the trajectories of the analyzed signal in phase space. The 

thick line is the limit trajectory. The length of vector )(θn  corresponds to the minimal 
distance between the signal and the limit trajectory.   

From the point of view of the described model the spikes of each general population 

 represent cycles in the neighborhood of the stable limit cycle of the appropriate equation.  jX
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The limit trajectory , )(0 θjx T<< θ0 , corresponds to an ideal spike without noise, referred 

to as  an “undisturbed spike” (Figure 3.2).  

 

 

 
Figure 3.2 
Trajectories in phase space Eq.(3.3) of spikes of three single neurons recorded simultaneously 
from the same microelectrode. Trajectories stay in neighborhood of the limit cycle. They are 
similar but do not coincide.  

Subsequently, the spike sorting method rests upon the following fundamental 

assumptions:  

- spike waveforms are considered as solutions of differential equations with perturbation 

according to the mathematical model introduced in Eq. (3.1) and Eq. (3.2). The 

perturbation represents the internal variation of neuronal discharges and is introduced 

directly in the dynamical system.  

-  The general population  representing a single unit activity consists of signals 

described by the same differential equation, so a single unit activity can be described 

by one dynamical system.  

jX

3.1.2 Feature space 

The problem of spike sorting can be reduced to the problem of separation of a mixture 

of normal distributions taking into account some important properties of the self oscillating 

system with perturbation, Eq. (3.1) and Eq. (3.2) (Gudzenko, 1962): 
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i) Vectors of normal deviations from limit cycle )(θjn  in phase space Eq.(3.3)  have 

an asymptotically Gaussian distribution for any θ  in case of weakly correlated 

noise  (correlation time ),...,( txF T<<τ ,  - the period of the oscillating 

system).   

T

 

 
 ),0(~)( 2σθ Nn  (3.4)

ii) The mean trajectory of signals in phase space Eq.(3.3) converges to the limit cycle 

in linear approximation if the number of averaged trajectories increases infinitely. 

Thus, the mean trajectory represents an estimation of the limit cycle in first 

approximation:  (Chertoprud et Gudzenko, 1976; Gudzenko, 

1962).   

n t* *( ) ,θ θ≈ 0   ( ) θ≈

 

 
n∗(θ) = lim

k→∞

1
k

ni(θ)
i=1

k

∑ ,   t∗(θ) = lim
k→∞

1
k

ti(θ),
i=1

k

∑  (3.5)

 

These properties allow the estimation of the limit cycle by calculating the mean 

trajectory of the signal in the phase space and the estimation of the “undisturbed spike” (the 

ideal spike in phase space) that can be used as a template for spike sorting. 

The standard feature space for template matching algorithms is usually formed by 

signal samples:  , . This feature space of dimension )( iii txx = it Mi ,...,1= M  will be denoted 

MR .  A transform of this feature space is used for the approach being described in here. The 

values of the spike trajectories in phase space Eq.(3.3) at points iθ ,  

TM =<<<< θθθ ...0 21 , 1=∆θ  are considered as new features for classification: 

 ( )( ) ( )( ) ( )( )( )′′′′= Mttt θθθ xxxX ...21 , (3.6)
 

where   
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The transformed feature space, which will be denoted Ω  has dimension ,  – order of 

the differential equation. It is important to note that the partition of the interval of spike 

observation becomes generally irregular in time, i.e. 

Mn × n

( ) ( ) 11 ≠−+ ii tt θθ .  The Euclidean norm in 

this feature space is 
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1
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i
ki

i

t
dt

xd θx  (3.7)

 

According to the self oscillating system properties Eq.(3.5), Eq.(3.6) for each general 

population , jX pj <≤0 , the vector  has an asymptotically normal 

distribution with mathematical expectation close to zero for any 

))(()()( 0 θθθ txxn i−=

θ . In the new feature space 

 we have obtained p normally distributed classes corresponding to p general populations, 

i.e. to p observed neurons. So, the problem of classification in the standard feature space with 

generally non-Gaussian distribution (Fee et al., 1996) was replaced by the problem of 

separation of a mixture of asymptotically Gaussian distributions in the transformed feature 

space. An undisturbed “ideal” spike  corresponds to center of class  and can be 

estimated by averaging of the spike trajectories of the general population  in phase space. 

It is important to note that the transformed feature space dimension is  times greater than the 

dimension of the standard feature space,  – order of the differential equation Eq.(3.1).  

Nevertheless, the advantage to have normal distributions in the transformed feature space 

allows the implementation of efficient algorithms. 

Ω

0
jx jX

jX

n

n
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3.2 Algorithms 

3.2.1 Estimation of the trajectory in the phase space 

The method based on the described model requires the estimation of the spike 

trajectories in phase space Eq.(3.3). Higher-order derivatives of the signal should be 

calculated in presence of noise that seriously affects the calculations.  Thus, following 

(Aksenova et Shelekhova, 1994) the following integral operator with a regularization 

parameter was used for the derivative estimation:  

 

 

 ∫ −=
R

kk dttxttxD )()()( )( τωαα , (3.8)

where kernel function αω   satisfies the conditions: 

a) 0=αω ,    when α>t , 

b) , 1)( =−∫
R

dttτωα

c) αω   has  k  continuous derivatives. 

kDα  with parameter of regularization α estimates the smoothed  k-order  derivative  of 

the signal (Aksenova et Shelekhova, 1994).  A computationally efficient algorithm of 

derivative estimation (Aksenova et Shelekhova, 1995; Aksenova et Shelekhova, 1997) is used 

to calculate .   kDα

In phase space spike trajectories are described now in coordinates:  

)(~),...,(~),(~ 110 txDtxDtxD n−
ααα  

 instead of the original coordinates x
dx
dt

d x
dt

n

n, , ,L
−

−

1

1 .  Moreover  is a linear operator. Thus, 

Eq.(3.1) stays the same in linear approximation in coordinates (3.9): 

kDα

 

( ) ( )ttxDFtxDtxDftxD nn ),...,()(),...,(ˆ)( 010
αααα += −  
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The application of the integral operators replaces the complex problem of derivative 

calculation with a simpler calculation of integrals. Any function satisfying the condition set 

(a)-(c), Eq.(3.8) can be used as a kernel function. Selection of both the kernel function and the 

value of parameter α depend on the order of the derivative to be calculated, on the level of the 

additive noise, and on the required smoothness of data.  

3.2.2 Detection of spike occurrences 

The procedure of spike detection is necessary to determine the time intervals of the 

signal that correspond to spike occurrences. Spikes are usually characterized by an amplitude 

which is significantly larger than the level of background noise and their occurrence may be 

detected by threshold crossing. Threshold crossing is applied here to the estimated first 

derivative of the observed signal.  The advantage of this approach is the use of the filtering 

features of the operator Eq.(3.8). Spikes are detected according to the procedure described 

below.  

The observed signal is considered as a mixture of noise )(tξ  and a signal containing 

spikes . If the probability of spike occurrence is small enough, then the parametric values 

of the mixture are close to the same values of the noise itself.  In such case, the values of the 

mixture can be used instead of the noise characteristics even if the estimation is biased.   

)(tx

The same consideration is true for the derivatives since its calculation is reduced to the 

summation: 

∑
−

=
α

α
α ξξ )()(1 tAtD i . 

For the signal with additive noise )()()(~ ttxtx ξ+=  the first derivative variance is  

∑∑
−−

===
α

α
ξ

α

α
αξ σξξσ 2212 )()( iiD AtAtD  

So,   is a random variable with zero mean and variance .   )(1 tD ξα
2

ξσ D

Choosing an appropriate level of confidence, e.g. p=0.99, it is possible to find the 

threshold for spike detection Rdetect  by considering the distribution of  as normal, )(1 tD ξα
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according to the central limit theorem. The obtained threshold is used to detect spike 

occurrences.  

3.2.3 Automatic learning algorithm for spike recognition 

An unsupervised learning algorithm for spike sorting is necessary in order to provide a 

fast and user-friendly selection tool to use during a real-time experiment or during human 

neurosurgery.  

The traditional approach to construct templates for classification matching is to 

estimate the mean trajectories of clusters. However, the estimation of the mean is not robust to 

outliers that unavoidably appear in the learning set collected without user supervision in 

presence of noise and artifacts. Instead of averaging the observed trajectories, the learning 

algorithm selects one of them to be considered as a template representing the class. To 

evaluate this trajectory the algorithm analyzes the learning set to find the trajectories with 

maximal probability density in their neighborhood. The rationale is that for the Gaussian 

distribution with mathematical expectation E the value x* = Ex provides the maximum of 

P(⏐x-x*⏐<R) for any given parameter R.   

The distribution of the squared distances from the center to all other spikes belonging 

to a given class was used to estimate the class radius. If the normally distributed vectors of 

trajectory normal deviation )(θn  are independent the square of the distance from each spike 

to the center of its class follows a  distribution (figure 3.1). 2χ

 

3.2.3.1 Iterative procedure for number of classes and class centers estimation 
Let us suppose that the learning set L  contains only one class trajectories (figure 3.3), 

on the first step the initial estimation of the class center is an arbitrary spike trajectory . 

The subset  is the 

0x

0R R - neighborhood of : 0x { }RxxxR <−=
Ω

0
0 : .  
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Figure 3.3.  
Illustration of the iterative algorithm if the learning set consists of only one class. 

The next estimation  is the element of the subset  minimizing the sum of 

distances between all  elements: 

1x 0R

0R ∑
∈

Ω∈
−=

00
*

*1 minarg
RxRx

xxx . This element realizes the 

maximum of the probability density on . On the next step, the subset : 0R 1R

{ }RxxxR <−=
Ω

1
1 :  is considered, and so on.  Due to the symmetry and unimodality of the 

normal distribution, this procedure converges to the mean value on any choice of the 

parameter R .  However, a larger training set is required for smaller values of R . 

For the simultaneous search of centers of p  classes ( p  is unknown), it is assumed 

that the classes are separated enough to consider that the maxima of the density of joint 

distributions are near the centers of the classes. The maxima of the density are the stationary 

points of the iterative procedure described above. Thus, it is sufficient to select the initial 

estimate points in the neighborhood of each maximum in order to detect all centers of the 

classes. The initial estimates are calculated iteratively following the next procedure described 

below and illustrated by figure 3.4:  
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Figure 3.4  
Illustration of the iterative algorithm if the learning set consists of several classes. 

Firstly, an initial estimated subset  of the learning set 0L L  is constructed as follows. 

any spike  is considered to be the first initial estimate: then the learning set is scanned for 

any element : 

0
1x

0
2x Rxx >−

Ω

0
2

0
1 , where R  is a threshold value. For each next element  of 

the learning set the distance between this element and all previously found elements of   

0
ix

0L

Rxx iji >−
Ω−

00  for all . The number  of  elements in the end of this process 

is the first estimate of the number of classes.  

1,...1 −= ij 0p 0L

First iteration: after all  elements were found, the learning set is scanned in the 

neighborhood of each of them for the elements , such that:  

0L

0
1

ii Rx ∈

 

{ }RxxLxxR ii <−∈=
Ω

0
0 ,: , 

 

minimizing   the sum of the distances to all other elements of the learning set:  

 

∑
∈

Ω∈
−=

00
*

*1 minarg
ii RxRx

i xxx , 
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i.e. the elements maximizing the probability density on each . The elements , 0iR 1
ix 1,...,1 pi =  

form the set of the next estimates .  1L

In an analogous way, the set  of -th estimates  is constructed at k-th 

iteration. At each iteration it is possible that ,  i.e. the algorithm converges to the same 

stationary points from different first estimates.  is the -th estimate of number of classes 

kL k k
k
i pix ,...,1, =

k
j

k
i xx =

kp k

p . 

Since the set of first estimates is chosen in a random way it is possible to loose one of 

the stationary points. Therefore, on several first iterations the  is completed by new 

elements following the same subroutine:  

kL

element : k
k
p LLx

k
\1 ∈+ Rxx k

i
k
pk

<−
Ω+1 ,  kpi ,..,1= , 

element   : k
k
p LLx

k
\2 ∈+

Rxx k
i

k
pk

<−
Ω+2 ,  1,..,1 += kpi , etc. 

The numeric tests showed that the described iterative algorithm converges in 5-7 

iterations. The stationary points of the algorithm are considered as class templates (or class 

centers).  

3.2.3.2 Estimation of class radius 
The distribution of the distances from the center to all spikes of the learning set L  

containing  elements is used to estimate the class radius. According to the model properties 

Eq.(3.4), Eq.(3.5), for the spike trajectories of class 

N

X , for any θ , the vector of normal 

deviations  has a distribution close to the Gaussian distribution with 

zero mean. We will consider the distribution of the random variable  

))(()()( 0 θθθ txxn i−=

20

Ω
−= ixxξ , Ni ,...,1=  

in the case where the spikes  are the elements of the class with the center  and in the case 

where they are not. We will assume that the learning consists of two classes  and 

 with centers in  and .   We will also assume that the variance in the both 

classes is the same for any 

ix 0x

}{ izZ =

}{ iyY = 0z 0y

θ  :  and  .  For each 2
zσ 2

yσ θ   we will consider: 
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),0(~))(()( 20
z

i Ntzz σθθ − , 

),0(~))(()( 20
y

i Ntyy σθθ − , 

)),()((~))(()( 2000
y

i yzNtyz σθθθθ −−  and 

)),()((~))(()( 2000
z

i zyNtzy σθθθθ −− . 

If the random variables )(θn  are independent on different kθ , Mk ≤≤1 , M  - number of 

fragmentation points on interval T<< θ0 , then the random variables   

20
2

1
Ω

−= zz i

z
z σ

ζ  

and 

20
2

1
Ω

−= yyi

y
y σ

ζ  

have a 2χ  distribution with mean value M  and variance M2 . The density of the   

distribution has a maximum in 

2χ

2−M , where M  - degree of freedom, which is the same as 

the number of considered points of the spike trajectory in phase space on the interval 

T<< θ0 . The random variables   

20
2

1
Ω

−= yz i

z
zy σ

ζ   and  
20

2

1
Ω

−= zyi

y
yz σ

ζ  

have noncentral  2χ   distribution with noncentrality parameters   

200
2

1
Ω

−= yzm
z

z σ
 and 

200
2

1
Ω

−= yxm
y

y σ
,  

respectively. 

We consider the random variable 20

Ω
−= ixxξ  as a mixture of random variables 

ζ , yζ , xyζ  and yxζ . Let us assume that impulses of the first and the second classes appear 

with the same probability; then, the distribution density of 20

Ω
−= ixxξ   is a half-sum of 

the probability densities of variables xζ  and xyζ . If the noncentrality parameter is large 
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enough this density is bimodal and the first maximum is defined by the maximum of the 

distribution of the value  

20
2

1
Ω

−= xx i

xσ
ζ . 

Thus, for the random variable: 

20
2 1

Ω
−= xz ix

MM
ξ

σ
 

the first maximum of the distribution density is approximately in the point  

M
x

x

2
2 2σ

σ − . 

 

The argmax estimates the variance if we neglect the second number. The result does not 

significantly change for a greater number of classes.  

Until now we have assumed the independency of the random variables  )(θn  for 

different θ , which in general does not correspond to the problem statement. The random 

variable 20

Ω
−= ixxξ  is a sum of squares of dependent Gaussian random variables )(θn , 

and it can be represented as a square form of some independent Gaussian random variables. 

Such square form has an  distribution (Martynov, 1978), with parameters depending on the 

covariation matrix of original dependent variables 

2ω

)(θn . Since this matrix is unknown, the 

empirical distribution of the random variable 

20
2 1

Ω
−= ix xx

MM
ξσ

 

is approximated by a theoretical  distribution (Press et al, 1994). Quantiles of the  

distribution may be used to estimate the class radiuses, corresponding to an appropriate 

confidential level (Fig.3.5).  

2χ 2χ
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Fugure. 3.5 

Histogram of random variable 20
2 1

Ω
−= ix xx

MM
ξσ  and the graph of the approximating 

 distribution (dot line). 2χ

3.2.3.3 Choice of the parameter for the learning procedure 
The learning procedure is rather robust to the value of  parameter R , but it must be 

bounded by the minimum interclass distance. In addition the value of the parameter  R  

should not be too small since, in this case, we need a larger learning set.  

The choice of the parameter R  is based on an approximate estimate of intraclass 

variances σ  given the assumption that they are similar for all classes. A similar assumption  

was made above for the class radiuses estimation.  Here we consider the distribution of the 

random value  
2

Ω
−= ji xxξ , NjNiji ,...,1;,...,1; ==≠  

 

in the case where the elements of the learning set  and   belong to the same class and in 

the case where they do not. Firstly, we assume that the vectors   

are independent for different 

ix jx

))(())(()( θθθ txtxn jiij −=

θ . 

If in addition we assume that impulses of the first and the second class appear with the 

same probability, the distribution of variable 2

Ω
−= ji xxξ  is a mixture of two  

distribution and two noncentral  distributions. The first maximum is realized 

2χ

2χ
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approximately at point 22 42 σσ
M

− . Even if the class variances are different, we can estimate 

the minimal one.  

For the parameter R  we take the value 

M

2
2 42 σσ − . 

 If  M  is large enough, i.e. σ2~R , which corresponds to the confidential level 0.84 for 

normal distribution.   

Since the assumption of independency of random variables   for different )(θijn θ  in 

general is not true, the empirical distribution of 21
Ω

− ji xx
M

 was approximated with a 

theoretical  distribution (Press et al., 1994). The argmax of the theoretical distribution was 

used as 

2χ

R , i.e. the learning procedure parameter. 

3.2.4 Real-time classification 

The decision function ( )iii Xxppxd =)(  (Gonsales, 1978) was used as classifier for 

class .  is the class probability: iX ip

{ }
{ }∑

=
Ω ′

Ω ′

<−∈

<−∈
=

pj

jj

ii

i

RxxLxx

RxxLxx
p

...1
,:

,:
, 

 

where  *  - number of set elements, p  - number of classes, L  - learning set. Given the 

assumption that random variables  )(θn  are independent for different θ , and the variance 

does not depend on θ , the classifier is Bayesian (Gonsales, 1978):   

 

Ω′
−−− xxp i

i
ii 22

1ln
2
1ln

σ
σ , 
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 where iσ  is the variance of class ,  is the class center.  Since the assumption of 

independency of random variables  

iX ix

)(θn  for different θ  does not correspond to the problem 

statement, for estimation of ( iXxp ) we used the quantiles of  distribution, approximating 

the empirical distribution of variable 

2χ

201
Ω

− ixx
M

 on the learning set. 

Spike  is classified into , if  realizes the maximum of the decision function. 

The probability of erroneously detected noise on the spike detection stage is non zero, such 

that it is necessary that the distance between the trajectory of the spike and the class center 

satisfied also the condition 

)(tx iX iX

ii Rxx <−
Ω′

,  where iR  is the class radius estimated while 

learning. Otherwise the spike  is rejected. )(tx

3.2.5 Choice of the algorithm parameters 

For the realization of the described algorithm a number of parameters should be 

specified:  the order  of the differential equation (3.1), the kernel of operator  for 

derivatives calculation and the regularization parameter  α.  

n kDα

3.2.5.1 Form and order of the differential equation 
The use of equations of a high order decreases the speed of the algorithms since it 

increases the feature space dimension. An equation of second order provides satisfactory 

results (the efficiency evaluation of the algorithms is described in chapter 4).  Then, because 

of the high level of noise we used the equation:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

3

3

,~
dt

xd
dt
dxf

dt
xd

 

 
instead of the equation: 

. 

⎟
⎠
⎞

⎜
⎝
⎛=

dt
dxxf

dt
xd ,2

2

. 



 
Chapter 3: Mathematical purposes  

36

3.2.5.2 The kernel of the integral operator 

The kernel of the operator  Eq.(3.8) used for the numeric differentiation may be 

any function satisfying the conditions: 

kDα

0=αω , then α>t ; ; 1)( =−∫
R

dttτωα αω   has   

continuous derivatives. Using certain piecewise polynomial kernels (Aksenova et Shelekhova, 

1997; Aksenova et Shelekhova 1995) it is possible to provide an efficient numerical 

differentiation of noisy signal, which is particularly important for the real-time algorithms.  

k

For the piecewise polynomial kernels the construction of operators , the carrier kDα

α<t , is divided into fragments. On each fragment the kernel is represented by a polynomial 

function of  order. The kernel must be a  times continuously differentiable function and 

the fragments must be multiple to the digitalization fragments. Thus the kernel is 

unambiguously defined by the order of the differentiation and by the fragmentation of the 

kernel carrier. For the selected model we need the first and the second derivatives estimation. 

For kernels definition a regular fragmentation was considered the following kernel 

1+k k

)(tαω  on 

]0,[ α−∈t  has differentiation of second order: 

⎪
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)(tαω  on ],0( α∈t  is symmetrical. The kernel for the first and the second derivative 

estimation are the first and the second derivatives of )(tαω  respectively, where the kernel for 

the first derivative estimation is a second order polynomial. To simplify the procedure we 

constructed another kernel function  which assures only first order derivative 

estimation, but the  is a polynomial of first order:  

)(* tαω

)()1*( tαω
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Thus we used kernels  and  for the derivatives estimation (Fig. 3.4). )()1*( tαω )()2( tαω

 

 
Figure 3.6:  

Kernel functions  (a) and  (b) used for the first and the second derivative 
estimation. 

)()1*( tαω )()2( tαω

3.2.5.3 Regularization parameter of the integral operator 

For the realization of fast numerical differentiation (Aksenova et Shelekhova, 1997; 

Aksenova et Shelekhova 1995) the regularization parameter α  must be a multiple of the 

digitalization fragments , i.e. for the selected kernel function parameter t∆ α  must by 

multiple of  for the first derivative and multiple to t∆2 t∆4  for the second derivative. 

We considered the integral operator as a band filter   

 

∫ −=
R

dxthty τττ )()()(  . 

 

The spectral densities of the input and the output signal are relied as following (Korn et Korn, 

1984):   
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Φyy (w) = Η(iw) 2Φxx (w), 

 

where  

∫ −=Η
R

iw dehiw ζς ζ)()( . 

For the applied operators of numerical differentiation  

 
)())(()( )()( tth kk

α
ωως α == , 

 

where  is the derivative order. Using the kernel presented on figure  3.6 (a) for the 

estimation of the first derivative if 

k

1=α  (fig.3.7):  

 

( )2
4

1
1

21
1 )5.0sin(2sin64)()( ww

w
wciwH −== . 

 

The transition function  reaches its maximum for )(1
1 wc 7.2≈w . For an arbitrary  α : 

 

)(1)()( 1
12

121 wcwciwH α
ααα == ,  

 

and the maximum is obtained for α/7.2≈w . 

 

 

Figure 3.7: 

Transition function  for kernel  for the first derivative estimation. )(1
1 wc )()1*( tαω
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Normally, the spike duration oscillates near 1 ms. In the frequency domain it 

corresponds to frequency 1=ν kHz. The value of the regularization parameter was chosen so 

that the argmax of the transition function  coincided with this frequency, i.e. )2(1 πναc

πνα 2/7.2≈ . If 1=ν  then 43,0≈α . Thus, for the first derivative estimation for parameter 

α  we used a value which is near  and multiple to two digitalization fragments. 43,0

A similar layout can be carried out for the kernel  used for the second 

derivative estimation (fig.3.6 (b)). If 

)()2( tαω

1=α :   

 

H1
2(iw)

2
= c1

(2)(w) =
642

w4 −1+ 2cos(0.25w) − 2cos(0.75w) + cosw( )2
. 

 

The maximum of the transition function is reached for 8.3≈w  (figure 3.8).  The 

regularization parameter should be chosen near the value , and it must be multiple to four 

digitalization fragments. 

6.0

 

 
Figure 3.8: 

Transition function  for kernel  for the second derivative estimation. )(1
1 wc )()2( tαω
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Chapter 4 

USS Software 

 
Un logiciel permettant le tri de potentiels d’action non supervisé a été développé à 

partir des algorithmes décrits dans le chapitre précédent. Ce chapitre expose la 

structure générale du logiciel, le traitement du signal électrophysiologique, les 

procédures principales  et l’interface utilisateur. 

Le logiciel se compose de trois bloques : les module de calcule, le bloque de lecture 

de donné et l’interface utilisateur. Il est nécessaire d’appliquer une procédure 

d’apprentissage avant le tri proprement dit des potentiels d’action. La procédure 

d’apprentissage construit de manière automatique les étalons représentatifs de 

potentiels d’action. L’apprentissage est rapide, 6-15 secondes selon la puissance de 

l’ordinateur, à partir de la fin de l’enregistrement des signaux. 

 Pour procéder au tri de potentiels d’action l’utilisateur peut visualiser le signal, 

détecter les potentiels d’action et effectuer le tri en temps réel.  A la fin de la 

procédure l’utilisateur peut néanmoins intervenir pour rectifier les résultats 

d’apprentissage.    

 

On the basis of the algorithms described above a crossplatform software was 

developed. It permits an unsupervised spike sorting (USS) with minimal interaction with the 

user on the learning stage. The user is nevertheless allowed to interact in any stage of the 

signal processing.  The USS software consists of three blocks: Data Acquisition Block, 

Calculation Modules and User Interface (figure 4.1). The Calculation Modules are developed 

using the C++ programming language. Their code can be compiled by Microsoft Visual 

Studio 6.0 (MicroSoft Corp., Redmont, WA) running on Microsoft Windows 2000/XP 

(MicroSoft Corp., Redmont, WA) operating system and compiled as dynamic libraries by 

CodeWarrior (Metrowerks, Austin, TX) for Macintosh (Apple Computer Inc., Cupertino, CA) 

platforms with MacOS 9.x (Apple Computer Inc., Cupertino, CA) operating system. The user 

Interface was developed and compiled with LabView 6.0 (National Instruments, Austin, TX). 

The output files corresponding to the spike trains are in standard ASCII format for 

multivariate time series, originally proposed by Professor M. Abeles at the Department of 

Neurophysiology of the Hebrew University, Jerusalem. 
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The software allows off-line analysis of prerecorded data.  Analog files corresponding 

to the electrophysiological signals in standard formats like WAV and AIFF, as well as 

customized formats with defined sampling rates and bits resolution, are readable by the 

program. The Calculation Modules process the data stream independently of the data source. 

The spike sorting speed corresponds to a real-time process.  

 

 

User  Calculation Acquisition  
Modules  Interface  Block  

 
Figure 4.1 
USS software main blocks  

4.1 Software schemes  
The program offers three operating modes: signal visualization without any 

processing, learning set collection and classification. The data stream is recorded in a buffer 

and the buffer is processed according to the operating mode. The signal visualization 

operating mode displays the raw signal and the first order derivative of the signal. This visual 

inspection can be useful for modifying the default values of the level of spike detection 

threshold and regularization parameter for the derivative calculations.  

The user may determine whether the learning phase starts after a minimum interval of 

acquisition or after a minimum number of suprathreshold events has been collected. Learning 

procedure is lunched automatically after the learning set is collected. For a learning set of 300 

spikes the learning process takes about 10-15 seconds on a personal computer equipped with a 

Pentium3 500 MHz (Intel Corp., Santa Clara, CA) and about 6-8 seconds on a Macintosh 

PowerPC G4 400 MHz (Apple Computer Inc., Cupertino, CA). At completion of the learning 

procedure the program is back into the visualization operating mode and ready for spike 

sorting. 

The program works in real-time in signal visualization mode, learning set collection 

mode and classification operating mode. The learning procedure is an off-line procedure. 

Here is a flowchart of the software.   
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Signal

Acquisition Block  

 

 
Figure 4.2 
Flowchart of the electrophysiological signal processing by the USS. The user switches between 
operating modes of “signal visualization”, “learning set accumulation” and “spike sorting” via 
the user interface block. While the software works in one of these modes the data coming from 
the acquisition block is processed on line. The only off line module of the USS is the learning 
procedure which is launched automatically then the learning set accumulation is over. 

The iterative learning procedure used in USS converges to the local maximums of 

probability density not always corresponding to distinct classes. Then not all the templates 

represent a cluster and several templates may represent one class. Some post processing is 

necessary, starting with the elimination of overlapped classes. Classes are formed by all spike 

trajectories in R-vicinity of the template trajectory. If more then p percents of the trajectories 

of one class belong in the same time to another class, both classes are considered to represent 

the same neuron with high probability and the less representative class is eliminated. By 

O
n-line

thread

Calculation Modules  

Buffer

mode

AccumulationVisualization 
Classification 

Spike Detection 

>250 Classification 
Learning  

Procedure 

User Interface  

Off-line  
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default p = 80% but the user is allowed to change this parameter. Some low amplitude classes 

may appear due to background noise, and non-representative classes due to artifacts. To 

eliminate them automatically we used the criterion (a/A) × (n/N ) < k, where a is the 

amplitude of the class template, A is the maximal template amplitude, n is the number of class 

members, N is the learning set volume, k is a parameter. The parameter k is by default equal to 

0.12; this value can be changed by the user. 

After the post-processing the results are displayed graphically to offers the possibility 

to select only specific classes. All the information about selected templates is saved into a file, 

so that the templates could be loaded for later usage. After the selection of templates the 

program is ready to perform the on-line classification of spikes. The suprathreshold events are 

either classified in one of the selected classes and displayed in a classification window (figure 

1(b)) or rejected. The epochs of the events of all classes are recorded as a multivariate time 

series. By default the time resolution of time series is set to 1 ms.  

4.2 User interface 

4.2.1 Main window  

When launched, the USS loads the main window with menu. The files containing the 

recorded signals can be loaded from the menu Files. The software can process a signal 

recorded from one electrode channel. The commands for data processing are available from 

the menu item Operate. All the parameters for the processing are set by default or calculated 

automatically. The user is also allowed to fit them, if necessary, from the menu Operate-

>Parameters or directly via the main window controls. From the menu item View it is 

possible to adjust the signal amplitude to the output graph dimensions. From the menu item 

Help the information about the current version is available.  
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4.2.1.1 Main window controls 
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5. “Stop/Go” and “By Step” buttons. The button “Go” starts the visualization and its 

caption switches to “Stop”. By pressing it again the user can suspend the visualization 

(the button caption changes again to “Go”). Once suspended, the visualization can be 

performed buffer by buffer by pressing the button “By step”. 

 

4.2.1.2 Main window menu  
 

Loading Files. Data files, as well as some additional files, are loaded from the main 

window menu File: 

File->Open; File->Close 

Data can be read from files of the following formats: AIFF, VAW, MAP and from two 

byte integer binary files.  The binary files are supposed to correspond to one channel 

recording with a sampling rate of 48000 Hz. For the other formats the information about 

the count of channels and the sampling rate is read from the file header. If more then one 

channel is recorded in the file, a select channel dialog appears on the monitor (figure 4.4). 

After the channel has been selected the visualization is started. Before opening the next 

file the current one should be closed.  

 

 

 
Figure 4.4 
Channel selection dialog. 

Open additional files. Some files for additional data processing or files keeping the 

information of previous processing can be loaded. 

 
File->Template files

To proceed with the unsupervised spike sorting the learning phase should have been 

completed. This step can be skipped by loading class templates from a pre-recorded file. 
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The template files are internal USS files. The format is described in the following 

sections. They are created automatically then the user starts the detection after the learning 

procedure. After loading a template file the program is ready for spike sorting. 

 
File->Superimpose 

This option was added because it could be necessary to superimpose noise or artifacts on 

the analyzed signal to create test files. Noise can be added to obtain signals with different 

signal-to-noise ratio. Artifacts may be superimposed to a signal file to simulate a signal 

with stimulation artifacts.  The file for the superposition should be a two bite integer 

binary file.  

 

Operating. From this menu item the user operates the software and switches between 

the operating modes.  

 
Operate->Parameters  

After loading all necessary files the user can change the parameters and start the learning 

phase. Some of the parameters can be changed through the main window (see main 

window controls). The other parameters can be changed through the Parameters dialog 

box which is accessible from the menu Operate->Parameters. It is recommended to set all 

the parameters before starting the signal processing. From this dialog box the user can 

change the following settings (figure 4.5): 

1. “Training Start Time” fixes the time from the beginning of the file to start the learning 

set accumulation. By definition it is 0 and the leaning set accumulation is started as 

soon as the user selects the menu item Operate->Training. 

2. “Detection Start Time” fixes the time from the beginning of the file to start spike 

sorting. By definition it is 0 and the spike sorting is started as soon as the user selects 

the menu item Operate->Detection. 

3. “ms Par Bf” is the length of the buffer visualized on the main window in ms.  

4. “Spike duration”. The spike duration may vary slightly such that the length of the 

segment to be extracted as spike could be fitted by the user.  

5. “Accumulation Spike Amount” is amount of spikes to accumulate for the learning set. 

It is not recommended to set this value over 350 spikes because the time for the 
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learning procedure increases significantly. The learning procedure works properly on 

250-300 spikes learning set. 

6. “Detection Radius Coeff” is the coefficient to fit the class radiuses during 

classification. The learning procedure calculates class radiuses automatically. If the 

user is not satisfied with the spike sorting results, the radiuses fit can be adjusted by 

this coefficient. The radiuses are multiplied by the coefficient.  

 

 
Figure 4.5 
Parameters dialog box 

 
Operate->Training 

Starts the collection of spikes detected from the current signal and launches the learning 

procedure. 

 

Operate->Detection 

Starts the spike sorting if the templates are already defined either by the previous learning 

or loaded from a file. Otherwise the system stays in the visualization mode. 

4.2.2 Learning procedure results window 

To start the learning set accumulation the user selects the Operate->Training menu 

item. Then the learning set collection is started. After completion of the learning set 

accumulation the learning procedure starts automatically. The results of the procedure are 

visualized by the results window (figure 4.6). 
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be several templates corresponding to one observed neuron. This feature can be fitted 

in the program code (see Appendix A). 

3) If the results of the training procedure represent too many templates corresponding to 

one observed neuron, it is recommended to increase the “Detection Radius 

Coefficient” on the parameter window before starting the spike sorting. 

4.2.3 Spike sorting progress window 

Then user selects the menu item Operate->Detection and the spike sorting window 

appears (figure 4.7). 

 

 
 

Figure 4.7 
Spike Sorting window 

This window displays the classification process. While spikes extracted from the signal are 

being classified they are visualized on the spike sorting window on the appropriate graph (1) 

as well as their phase portraits (2) and their firing rate (3). The user can visualize also the 

rejected (non classified spikes) in a separate window. If the spike sorting results do not seem 
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satisfactory, the user can stop the classification, change the parameters through the main 

window and through the parameter dialog box (figure 4.5) or repeat the learning and then 

restart the classification at any time. 

Spike sorting starts either after the learning or after providing the templates loaded 

from a file. The “select file” dialog box appears and the user selects a file for output. The 

extension ABL is added to the file. In the same time another file with the same name and 

extension TMPL is created and all the templates are saved in this files (such file is not created 

if the templates were loaded from an external file). 

4.3 File Formats 

4.3.1 USS input files 

USS input files are:  

- Standard audio formats AIFF and WAV 

- Format MAP used in Alpha Omega AlphaMap Software (see Appendix B). 

- Two byte integer binary files containing data samples only.  

4.3.2 USS output files 

The output files corresponding to spike trains are in standard ASCII format for 

multivariate time series, originally proposed by Professor M. Abeles at the Department of 

Neurophysiology of the Hebrew University, Jerusalem. The files have extension ‘abl’ and 

starts with optional headings included into “” containing information of treated data. The data 

part of abeles files consists of series of triples divided by inline space.  

<event type>, <event number>, <time from previous event>  

<event type> used by USS: 1 - for spikes, 51 – for seconds counter 

<event number> - template number to which belongs the spikes or zero if the spike is not 

identified; always 1 for second counter 

<time from previous event> - appears in ms. 
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Each series begins with 0,1,0 and ends with 0,2,0. 0,FFFF,0 means end of file. 

Example: 
 
"Channel 1" 
"start time 13300" 
0,1,0 
1,1,52 
1,3,88 
… 
1,3,30 
51,1,65 
1,4,91 
… 
1,3,16 
1,2,4 
0,2,0 
0,FFFF,0 

4.3.3 USS internal files 

To save the results of learning the USS software creates files with extension ‘tmpl’. 

These files are used to store the information about signals already processed and can be 

reused in off-line mode. The data in ‘tmpl’ files is organized as following 

  
int32 Number of templates 
int32 Template length 
 
For each template: 
 
    single (2bytes)                radius (value used for classification) 
    int32                                extention1 (coefficient of normalization for first derivative) 
    int32                                extention2 (for second derivative) 
    int16[Template length]     row signal  
    int32[Template length]     first derivative  
    int32[Template length]     second derivative 
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Chapter 5 

Validation 

 
La validation et l’évaluation de la performance de l’USS sont effectuées en trois 

étapes. La première étape est la vérification de conformité au modèle utilisé.  Le 

test  de Pearson est utilisé pour la vérification de l’hypothèse de normalité des 

distributions des trajectoires de potentiels d’action dans l’espace de phase Eq.(3.3).   

2χ

A la deuxième étape la performance de la méthode  est évaluée sur des signaux 

simulés avec différentes proportions signal/bruit générés a partir de 3 signaux 

connus. Trois types d’erreur ont été considérés : non détection, classification 

erronée et fausse alarme. La même procédure est appliquée aux signaux 

précédemment  traités par un algorithme de suppression de bruit.   

La troisième étape est la comparaison de l’USS avec d’autres méthodes de tri de 

potentiels d’action.  

5.1 Model verification 
If the neuron firing follows the assumptions made in chapter 2 Eqs.(3.1-3.3), the 

distribution of spike trajectories in phase space must be close to Gaussian.  For the model 

verification it is sufficient to apply a test of normality of distribution for real single unit spike 

trajectories. The real extracellular signal, selected for the verification, represented a well 

isolated single unit activity. For all detected spikes the trajectories in phase space Eq.(3.3) 

were estimated as it is described in chapter 3, section 3.2.1. Then, one of the trajectories was 

selected as the class template  by means of the iterative procedure developed for USS, 

described in section 3.2.3. On this trajectory an arbitrary point 

( )(0 θtx )

( ))( 00 θtx  was fixed and the 

normal to trajectory   hyperplane was constructed to this point. Then the points of 

intersection of all spike trajectories with the normal hyperplane were found. The template 

trajectory is considered as an estimation of the mathematical expectation. Thus, in case of 

good conformity of the model the distribution of vector  

0x

( ) ( ))()()( 0000 θθθ txtxi −=n  should 

be close to the normal with zero mathematical expectation. For the verification of the 
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hypothesis of normality of vector  distribution the Pearson χ)( 0θn 2 test of likelihood with 10 

degrees of freedom was applied to a set of 60 observations. The test showed that the 

hypothesis can be accepted with significance level S*.  

5.2 Evaluation of performance 

5.2.1 Test files 

Analog recordings distributed by Alpha-Omega Inc. (Nazareth, Israel) corresponding 

to a mixture of three single units discharges were digitized at a 50 kHz sampling rate and used 

as raw files. USS was applied to these recordings and extracted three spike templates 

(Fig.5.1).  

  

 
Figure 5.1 
Spikes of the three single units used for the simulation of the electrophysiological signal. 

Test files were obtained by random insertion of these three templates in files with different 

levels of background noise. The noise was extracted from the electrophysiological recordings 

performed in the STN during surgery on a Parkinsonian patient at the University Hospital of 
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Grenoble. Two levels of signal-to-noise ratio (SNR) were used for testing:  SNR=2.5 dB and 

SNR=3.55 dB. For each level of noise the classification scores of USS were computed for two 

sets of data. The first set is the test file without pre-processing, while the second set is the test 

file processed with a Time and Spatial Adaptation (TSA) denoising procedure before 

undergoing USS analysis. The TSA denoising procedure is a wavelet based technique that has 

been originally proposed for denoising speech signals (Bahoura and Rouat, 2001). It is based 

on the principle of time and spatial adaptive thresholding of the wavelet coefficients. TSA 

was selected for the tests because it requires neither an explicit estimation of the noise level 

nor the a priori knowledge of the SNR, which is usually needed in most of popular 

enhancement methods. The originality of TSA resides in its ability to modulate in time and 

scale the wavelet thresholds depending on the noise and on the signal time evolution. 

5.2.2 Tests 

A raw file formed by 1003 events was generated after introducing three template 

spikes at known random times. Two levels of additional noise (SNR = 2.5 dB, SNR = 3.55 

dB) were superimposed to the raw file in order to obtain two test files. The test files were also 

tested after pre-processing by a TSA denoising procedure described above. The performance 

of USS with different test files was determined according to three types of error due to an 

incorrect classification. The first type of error is “false alarms”, i.e. the detection of events 

that were absent in the original unprocessed file. The rate of false alarms can be computed 

exactly as we know the exact epochs of all spikes in the test file without noise and without 

applying denoising pre-processing. The second type of error is defined as “non-detection”, 

which corresponds to missing an event present in the original unprocessed file. The third error 

is “misclassification”. It means that a spike was detected but incorrectlyg classified. 

The comparison of USS performance without any noise and with a background noise 

typical for real data recordings in surgery room (SNR 2.5 - 3.55 dB) showed that about 3% - 

8% of spike occurrences were missed but no misclassification was observed (table 5.1). The 

application of TSA, a wavelet based technique for denoising, did not improve USS 

performance. This result was rather surprising but can be understood as the TSA denoising 

should also be applied to the prototype’s shape. These results suggest that TSA modifies 

spatiotemporal cues of the signal that are used by the USS procedure to perform the spike 

sorting. With or without preprocessing the number of false alarms generated by USS is very 
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low (equal to 0 for SNR of 3.5 dB and 1.5% for recording conditions close to those of the 

surgery room). Conversely, denoising increased the error due to missed detections up to 

nearly 10%.   

 

 
Error type 

 
Test signal 

without noise 

 
SNR=2.5 dB 

 
SNR=3.55 dB 

 
SNR=3.55 dB 
with denoising 

Misclassification 0 0% 0% 0% 
Faulse alarme 0 1% 0% 0% 
Nondetection 0 8% 3% 10% 

Total 0 9% 3% 10% 
 

Table 5.1 
Results of the test spike sorting on the simulated signals with different SNR, with and without a 
previous denoising. 

5.3 Comparison with other algorithms 
The results of the performance evaluation showed that the USS provides a rather 

efficient single unit separation. In addition to that evaluation a comparison of the USS with 

some other available algorithms was carried out. The signals for the performance comparison 

were simulated as proposed by Letelier et Weber, 2000. Inverse Fourier transform was used to 

generate a trial lasting 1000 seconds with an artificial noise at the same level as indicated 

originally (Letelier et Weber, 2000). For spike imitation the same three spike templates were 

used (fig. 5.1). 10,000 instances of each template were added in a random way to the 

background noise avoiding template overlapping.  The resulting data set mimicked three 

neurons firing independently at an average rate of 10 spikes per second.   

The algorithm was trained using the simulated spike train and 3 classes were 

extracted. After spike detection and sorting we compared the epochs of the detected spikes 

with those of the actual simulated spike train. The following error index was used to estimate 

a generalized error: 
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Here  - number of classes,  and 3=N 1e 2e   – number of nonclassified and misclassified 

spikes for each class. The procedure of defining the templates and spike classification were 

repeated five times and the results from five realizations were averaged.  

 The comparison of the performance of our method with the Wavelet Transform 

Coefficients method and with Principal Component Analysis and Reduced Feature Set is 

presented in table 5.2. These methods are wildly used for neurophysiologic studies. For each 

of them the error index was calculated in the same way. All the three methods showed an 

error index greater then the USS.  

 

Error index  

Algorithm Mean     
value 

Standard 
deviation 

Wavelet Transform Coefficients 36 7 

Principal Component Analysis 138 2 

Reduced Feature Set 89 3 

USS algorithm 13 4 

 
Table 5.2 
Mean error indexes (formula 5.1) and its standard deviation for spike classification of a 
simulated test signal, containing spikes of three kinds. The values were obtained after 5 
repetitions of the test spike sorting for each algorithm. 

During the evaluation the classification of overlapped spikes was not considered. The 

test signals did not contain overlapped spikes. However the problem is rose how much spike 

overlapping decreases the performance of the USS method.  The percentage of the 

overlapping spikes depends on the firing rate of the neurons and on the time duration of the 

spikes. Given a firing rate of 30 spikes/second and spike duration equal to 2 ms (Letelier et 

Weber, 2000) one may expect 18% of overlapping spikes. This means that the error index 

(table 5.2) for our method would increase up to 30% if all overlapping spikes were not sorted 

correctly by our program, but even in this case the USS algorithm would perform better than 

the other tested methods.  
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It should be also mentioned that the test protocol used in Letelier et Weber, 2000 was 

not aimed to detect spikes but only to sort them. This may have lead to overestimate the 

performance of other methods compared to USS. This procedure does not take into account 

the number of spikes that could be lost during the spike detection procedure as well as the 

number of noise fluctuations that could be detected as spikes. Different spike detection 

procedures may be associated to spike sorting.  It is therefore difficult to estimate their impact 

on the error index reported in other studies. 

5.4 Discussion 
The extracellular recording of neuronal activity is the most popular method to study 

brain functions. It is usually necessary to separate single unit activity from the multiunit 

record and spike sorting algorithms must be applied. 

A novel method for detection and classification of neuronal discharges based on non 

linear modeling has been presented here. Neuronal discharges are considered as solutions of 

non linear dynamical equations. Each neuron is assumed to have its proper equation. The 

classification of spike waveforms is then considered as a pattern recognition problem in the 

phase space of dynamical systems described by the equations.  Similar approaches based on 

signal processing in phase space were applied to other fields, like cardiology (Aksenova et 

Chibirova, 1996), and analytical chemistry for processing chromatograms assessing drug 

quality control (Aksenova et al., 1999).  In these studies the signal processing could be 

performed off-line and the recognition was achieved by supervised algorithms because the 

training set was available and the number of classes was known. The new application of the 

approach in neurophysiology has required new algorithms and methods. The 

electrophysiological signal is usually characterized by a high level of background noise. 

Moreover the number of classes––number of single units––is not known with anticipation. 

The USS system was developed with aims of application in experimental and clinical 

neurophysiological studies. The USS comprises spike detection and spike classification 

algorithms, as well as an iteration-learning algorithm that estimates the number of classes and 

their centers according to the distance between spike trajectories in phase space is developed. 

This algorithm scans the learning set in order to evaluate spikes trajectories with maximal 

probability density in their neighborhood.  The estimation of neuronal discharges trajectories 
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in phase space required the calculation of the signal derivatives. The integral operators with 

piece-wise polynomial kernels were used to calculate the first and second order derivatives. 

This provided computational efficiency of the developed approach for the real time 

application. The described method provides good results for simulated spike trains (Letelier et 

Weber, 2000) and it favorably compares with other approaches. 

The comparison with some other spike sorting algorithms without spike overlapping 

demonstrated a high level of performance of the developed method. Although some general 

hints show that even in case of overlapping the algorithm will still be competitive with the 

others some additions should be done in perspective to resolve the overlapping problem and, 

thus, improve the performance of the algorithm.   

The USS algorithm demonstrated its performance in separating single unit signals 

with amplitude barely greater than the amplitude of background noise. A denoising procedure 

such as TSA, very efficient for improving the recognition of speech signals in a noisy 

environment (Bahoura and Rouat, 2001), could not improve at all, even worsened, the 

performance of USS. The USS showed a high performance without any pre-processing, the 

performance obtained by USS with SNR as low as 2.5 dB provides evidence that USS may be 

used for medical application with considerable confidence.  
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Chapter 6 

Basal Ganglia and Pathophysiology of Parkinson’s 
Disease 

 
Ce chapitre introduit briévement la physiologie desganglions de la base et du noyau 

sousthalamique en particulier et la physiopathophysiologie de la maladie de 

Parkinson. L’introduction dans la pathophysiologie de la maladie de Parkinson, du 

point de vue du modèle d’Albin-DeLong.  

La chirurgie fonctionnelle et ses cibles chirurgicales pour le traitement de la maladie 

de Parkinson sont également abordées. La stimulation profonde du noyau 

sousthalamique est présentée, ainsi que le rôle de l’électrophysiologie 

intrachirurgical pour le positionnement final de l’électrode de stimulation. 

6.1 Basal Ganglia  
The basal ganglia comprise the following main nuclei (Yelnik, 2002): 

- the striatum, consisting of the caudate nucleus and the putamen; 

- the thalamus;  

- the globus pallidus with its internal (GPi) and external (GPe) segments; 

- the subthalamic nucleus (STN); 

- the substantia nigra subdivided into pars compacta (SNc) and pars reticulata (SNr)  

- the peduncolopontine (PPN). 

Anatomically, all these structures are located subcortically adjacent to the ventricular 

system. These nuclei range in size and shape and have extensive afferent and efferent 

connections to the cerebral cortex, cerebellum and the sensory nuclei. Several 

neurotransmitter systems are active in the basal ganglia. Gamma-aminobutyric acid (GABA) 

and glutamate are the most common neurotransmitters. Dopamine also plays an important role 

in the regulation of the basal ganglia functions. The known dopamine receptors can be 

separated into two distinct families: D1and D2 receptors (Calne et al., 1993). The effect of 

dopamine and dopamine agonists on D1 receptors is excitatory, whereas their action on D2 

receptors is inhibitory.  
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Based on neuroanatomical and neurophysiological studies in animal models of 

Parkinson’s disease (PD) and electrophysiological studies in PD patients undergoing 

functional brain surgery a model of basal ganglia function and physiopathopysiology has been 

proposed (Albin et al., 1989; DeLong, 1990) (figure 6.1). According to this model, the 

connections between the striatum and GPi/SNr can be divided into direct and indirect 

pathways.  

 

 
Figure 6.1  
Simplified schematic diagram showing internal basal ganglia connections. 

The direct pathway consists of monosynaptic neurons containing D1 receptors that 

project from the striatum (caudate and putamen) to GPi/SNr. This is an inhibitory circuit 

whose excitation reduces the output of the basal ganglia. Since the GPi/SNr employs the 

inhibitory neurotransmitter GABA, the excitation of the direct pathway reduces the inhibitory 
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effect on the thalamus and cortex, thus facilitating motor function.  

In the indirect pathway, the striatal neurons containing the D2 receptors project to 

GPi/SNr via the GPe and STN. This is an excitatory circuit whose activation increases the 

GABAergic output of the basal ganglia thus suppressing cortical activity (Russchen et al., 

1985; Lang et Lozano, 1998). The striatum and STN are the main input nuclei of the basal 

ganglia, receiving afferents mainly from the cortex but also from the amygdala (Russchen et 

al., 1985). The output nuclei, GPi and SNr, project back to the cortex via the thalamus, as well 

as to several brain stem structures including the pedunculopontine nucleus (PPN) (Wichmann 

et al.,2003; Nandi et al., 2002). 

This network is composed of several circuits that remain segregated throughout their 

subcortical course. Each of these circuits originates in specific cortical areas, passes through a 

distinct portion of the basal ganglia and thalamus, and project back to the frontal cortical area 

of origin. The cortical sites of origin of these circuits define the presumed function of the 

circuits as “motor”, “oculomotor”, “associative” and “limbic”. In each of basal ganglia- 

thalamocortical circuits, the striatum and STN serve as the input stage of the basal ganglia, 

and the GPi and the SNr as output station (Hazrati et al., 1990; Parent et Hazrati, 1995). 

Computer simulation studies and mathematical analysis of models of the basal ganglia 

are being used increasingly to explore theories of basal ganglia function (Gillies  et 

Arbuthnott, 2000).  In (Gurney et al, 2000, Gurney at al 2004) proposed a computational 

model of basal ganglia describing anatomically defined connections between basal ganglia. 

The models are used to describe basal ganglia interactions during behavioral, cognitive and 

selection tasks.  

6.2 Parkinsonian Disease  

PD is a progressive neurodegenerative disorder of the central nervous system. It 

affects about 1% of the population over 65 years old. The PD is characterized by muscle 

rigidity, bradykinesia, tremor at rest, and postural instability. PD affects the basal ganglia and 

is unique in that the symptoms result from a single transmitter deficit due to the loss of 

dopamine in the substantia nigra, pars compacta. The etiology of the disease is unknown 

(idiopathic), but epidemiological studies have suggested that exposure to toxins and viruses 
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may predispose to the disease along with life events and the ageing process. It is likely that 

about 70-80% of the nigrostriatal neurones have to cease functioning or die before the 

symptoms appear (Kessler, 1972).  

PD is characterized by degeneration of the dopaminergic neurons that therefore results 

in inhibition of movement, and appearance of the clinical hallmarks of akinesia and rigidity. 

Under normal conditions, dopaminergic output from the SNc to the striatum facilitates 

movement by exciting the direct pathway (via D1 receptors) and inhibiting the indirect 

pathway (via D2 receptors) (Wichmann et DeLong, 2003). The depletion of dopamine acting 

through D1 receptors excitatory from the nigrostriatal projection zones in the striatum, results 

in the direct pathway being underactive. This leads to decreased firing of thalamic neurones 

and hence inhibition of initiation of movement. The depletion of dopamine (acting through 

D2 receptors - inhibitory) from the nigrostriatal projections in the striatum, results in the 

indirect pathway being overactive (figure 6.2). Hence, the combined hyperinhibitory outflow 

from GPi may account for the negative symptoms of PD  (rigidity and bradykinesia). 

 

Figure 6.2  
Simplified schematic diagram of basal ganglia in PD. Arrow sizes indicate the degree of the 
activity of the pathways. 
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Hyperkinetic symptoms of PD, such as tremor and involuntary contractions, are more 

difficult to explain in this model. With regard to tremor, studies on primate models of PD 

have shown increased coupling of neighbouring neurons in the STN, GPi and SNr, both in 

terms of oscillatory and non- oscillatory burst activities compared with normal (Bergman et 

Wichmann, 1994; Fillion et Tremblay, 1991). Lack of dopamine in the basal ganglia therefore 

appears to result in the loss of the normal parallel activity of the subcircuits and encourage 

abnormal synchronicity of part or all of the basal ganglia system which then manifests as 

tremor (Bergman et Deuschl, 2002 ). Other involuntary movements seen in PD have been 

explained by the ‘action selection model’ (Alexander et al, 1990). In this hypothesis, when a 

voluntary movement is generated, the basal ganglia facilitate this by inhibiting antagonist 

actions. Loss of this ability due to dopamine depletion in PD leads to abnormal recruitment 

and subsequent involuntary muscle activity. 

Moreover, the basal ganglia disorder in PD may account for both typical motor 

disturbances and also cognitive-emotional deficits often encountered in the advanced stages of 

the disease. It can be explained by the fact that associative-cognitive and emotional basal 

ganglia circuits, as well as motor circuit receive an input from STN, which is abnormally 

hyperactive in PD.   

6.3 The Subthalamic nucleus: anatomy and neurophysiology  
The abnormal activity in the STN is an important feature in the pathogenesis of 

movement disorders, such as Parkinsonism. In vitro recordings of STN neurons suggest that 

these cells have at least two different discharge modes, depending on the membrane potential 

(Beurrier et al., 2000). In a relatively depolarized state, these neurons discharge in a “single 

spike mode”, at frequencies in the 10-20 Hz range, most likely driven by slowly inactivating 

voltage gated sodium channels, and modulated by calcium dependent potassium currents 

(Beurrier et al., 1999; Bevan et Wilson, 1999). At more hyperpolarized potentials, the cells 

discharge in a burst mode, often with regular recurring bursts. The various excitatory and 

inhibitory inputs to the STN utilize and modify these intrinsic discharge properties to produce 

the rich variety of discharge patterns recorded from the STN under in vivo conditions 

(Wichmann et al. 1994). 

In human, the STN is of diencephalic origin arising from the lateral hypothalamic 
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cell column, and is located between the thalamus and the mid-brain. Human STN is lens-

shaped measuring 3x5x12 mm and lying obliquely in all three planes (Yelnik et Percheron 

1979). In rodents, the STN’s dendritic tree extends beyond the limits of the nucleus, hence 

receiving inputs that terminate in the adjacent structures, but in primates the STN is a ‘closed 

nucleus’ implying limitation of the dendrites to the nucleus (Mannen 1960). Thus, the STN 

is both anatomically and physiologically well delineated. 

The STN receives glutamatergic afferents from the cortex (Kitai et Deniau, 1981) and 

the parafascicular nucleus of the thalamus (Mouroux et al., 1995), GABAergic input from the 

GPe (Alexander et Crutcher, 1990), dopaminergic projections from the SNc (Campbell et al., 

1985) and cholinergic/glutamatergic afferents from the PPN (Parent et Hazrati, 1995). Its 

efferents are excitatory glutamatergic and are mainly directed at GPi and SNr (Lang et 

Lozano, 1998). 

6.4 Functional neurosurgery 
To improve motor functions, PD patients are usually treated with levodopa, which 

replaces dopamine in brain. However, as the disease progresses, the levodopa treatment loses 

its efficacy, and at the same time drug-related side effects appear (especially psychosis, motor 

fluctuations, and dyskinesias). At this stage, the best alternative is surgery. 

Discrete surgical brain lesions to treat the symptoms of PD had been widely used 

during the 1950s and 1960s. The low success rate and unacceptable side effects and 

complications of that surgery as well as the introduction of levodopa seemed to indicate to 

abandon surgery as treatment for PD (Giladi  et Melamed,  2000; Honey et al, 1999). For 

several reasons, however, there has been a tremendous resurgence in the surgical therapy for 

PD. This has been prompted by a combination of factors. Firstly, conventional medical 

therapies can loose their effectiveness over time, have been ineffective in preventing long term 

decline and can in many cases be associated with unacceptable side effects including dopa 

induced involuntary movements (dyskinesia) and psychiatric complications (Marsden et al., 

1977; Nutt et al., 1987). Secondly, improved neurosurgical techniques have allowed for more 

consistent results with fewer complications. Thirdly, increased understanding of basal 

ganglia physiology has provided models which account for some of the pathophysiology of 

Parkinsonian features and a scientific rationale for surgical intervention. There are tree 
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categories of surgical treatment of PD: lesions, High Frequency Deep Brain Stimulation (HF 

DBS) and transplantation. Surgical targets for PD are Thalamus - ventral intermediate nucleus 

(VIM), GPi and STN.  

VIM nucleus thalamotomy is quite effective in relieving tremor (Tasker, 1990). Its 

effects on the other clinical features of PD are less prominent and more variable. For this 

reason, thalamotomy is restricted to patients who have predominantly drug resistant tremor. 

This represents a small proportion of the PD population which means that for most patients, 

the thalamus is not the most appropriate surgical target. Chronic DBS of the thalamus, which 

has similar indications, is a nonlesional alternative to thalamotomy (Guiot et al., in 1962).  

Chronic VIM stimulation is highly effective for tremor, with over 85% of patients having a 

very good or excellent response with little or no tremor evident in the contralateral arm 

(Benabid et all, 1996).  While effective for tremor, VIM stimulation did not influence 

bradykinesia or rigidity (Koller et al., 1997).    

Surgical lesioning of GPi (Pallidotomy) as well as HF DBS is mainly used in patients 

in whom rigidity and bradykinesia/dyskinesia are the major reasons for disability. DBS of GPi 

improves all major Parkinsonian features and drug induced dyskinesias (Gross et al., 1997; 

Tronnier et al., 1997). The clinical effects are dependent on which parts of  the  pallidum  are  

stimulated  and  which  stimulating parameters are used (Krack P et al., 1998;  Bejjani et al., 

1997).  

STN lessioning have been used in monkeys with surprisingly good results. Such a 

lesion, however, carries a great risk of persistent contralateral hemiballism. STN lessioning  

has so far not been routinely used in humans. In opposite, STN DBS represents an exciting new 

development in PD surgery.  

6.4.1 High Frequency Deep Brain Stimulation (HF DBS) of STN 

STN is glutamatergic and drives both GPi and the SNr, the two nuclei which constitute 

the collective output of the basal ganglia (figure 6.2). It is therefore strategically situated to 

exert a powerful influence on motor function. Reducing STN activity would diminish the 

driving of GPi and SNr thereby lessening the inhibition of thalamocortical projections and the 

motor cortical system. Such an intervention would thus be expected to facilitate movement. 

This has been supported by experimental data from the animal models of PD. 
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Electrophysiological results in monkeys made Parkinsonian by the injection of 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed a significant increase, as well as 

alterations in the firing pattern of the STN neurons (Bergman et al., 1994; Miller et DeLong, 

1987). It therefore followed that interruption of transmission from the STN might have the 

potential to improve Parkinsonian symptoms. Indeed, Aziz (Aziz et al., 1991), Bergman 

(Bergman et al., 1994) and Guide (Guide et all., 1994) independently demonstrated this 

through lesioning of the STN in the MPTP primate models. The problem encountered with 

these studies, however, was the development of hemiballismus and dyskinetic movements. As 

a result, interest was diverted away from anatomical lesioning of the STN and towards 

modulating its function. HFS (frequency > 100 Hz) of the STN presented a promising 

alternative. 

HFS was known to produce controllable and reversible modulation of the function of 

deep brain nuclei. HFS of the ventral intermediate nucleus of thalamus had already been 

shown to improve Parkinsonian tremor without the adverse effects of thalamotomy (Benabid 

et al, 1987; Benabid et al, 1991; Benabid et al, 1996; Ohye et al., 1989; Tasker et al., 1983). 

On this basis, STN HFS was applied to the MPTP monkey model of PD with significant 

improvement in rigidity and motor scores without hemiballismus (Benazzouz et al., 1993). 

Furthermore, the improvements were comparable with those obtained after levodopa 

treatment (Benazzouz et al., 1996). 

The science was turned into clinical practice in 1993, when bilateral HFS STN 

electrodes were implanted in PD patients. This was associated with improvements in all 

cardinal motor symptoms of PD, as well as a reduction in drug-induced dyskinesias, and 

improvements in the independence and quality of life of the patients (Benabid et al., 1994). 

The three first patients stimulated with implanted quadripolar electrodes showed striking 

improvements in all motor disabilities in PD. These patients were evaluated using the UPDRS 

scale three months after surgery: the activity of daily living scores improved by 58-88%, and 

motor scores by 42-84% (Limousin et al . ,  1995). This has been confirmed later on 

larger series (Limousin et al .,  1998; Kumar et al., 1998). 

6.4.2 Intraoperative electrophysiology 

Neurons within each basal ganglia nucleus have specific patterns of neuronal 

 



 
Chapter 6: Basal Ganglia and Pathophysiology of Parkinson’s Disease                      

68

discharges. Using single cell neuronal recording, these neuronal discharge patterns can be 

recorded and analyzed. Neuronal firing patterns have specific “bursting” and “oscillation” 

patterns in addition to specific discharge rates. These patterns of activity can be useful to map 

specific structures for functional surgery.   

The first operative step is the definition of the anatomical target. The localization of 

the deep brain structures - prior to surgery for PD - is usually achieved using magnetic 

resonance or axial computed tomography-guided stereotactic targeting in concert with 

stereotactic frames, which is then refined by intraoperative electrophysiological techniques. It 

is a ‘theoretical’ target because, firstly, even with the modern neuroimaging techniques and 

stereotactic atlases the location of the STN cannot be defined with 100% accuracy in all 

patients and, secondly, because notwithstanding its small size, the STN appears to have a 

complex internal topography with motor and non-motor areas, which can only be recognized 

by physiological means (Rodriguez-Orzoz et al., 2001). 

Hence, some teams employ intraoperative electrophysiology to increase the accuracy 

of targeting. Intraoperative electrophysiological analysis, including both electrical stimulation 

and electrical recording is aimed at providing functional information and improve the 

confidence in neurosurgery for PD. The microelectrode technique probably yields the highest-

quality localizing information and despite of the extra time, effort, and expense of performing 

intraoperative electrophysiological testing its usefulness for clinical applications has been 

confirmed.  

Electrical recording allows assessment of multi-unit neuronal activities, thus 

identifying the signature pattern of various deep brain nuclei.  The thalamus can be 

recognized by a bursting pattern of discharge. Under the thalamus there is then an area of 

decreased activity - the zona incerta and the Fields of Forel. Then STN is usually 

characterized by a sudden increase in the background noise reflecting the high cellular 

density of the area and neurons that show bursting activity at frequencies of 40 – 50 Hz 

(Benazzouz et al., 2002; Pralong et al., 2002; Pralong et al., 2002). Location within the motor 

area of the STN can be verified by the response of neurons (increased firing audible through 

signal transduction and amplification) to passive movement of limbs or muscular palpation 

(motor response). The motor area is predominantly located in the dorsal portion of the STN 

(Sterio et al., 2002). Entrance into the SNr is identifiable by its high, but regular discharge 

rate of about 70 spikes/s. 
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Electrostimulation is usually performed at several levels. The same parameters as 

those for chronic stimulation (frequency of 130 Hz and pulse width of 0.06 ms) at various 

amplitudes are applied on each level. During the stimulation, the patient is examined 

clinically by a movement disorder neurologist. Clearly patient’s cooperation at this stage is 

crucial. The examination has two purposes, to identify clinical improvement and discover the 

side effects (Pollak et al., 2002 ; Houeto et al., 2003; Krack et al., 1999; Benabid et al., 2000). 
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Chapter 7  

Data Acquisition 

 
Les donnés pour les analyses ont été acquises au bloque chirurgical du département 

de neurochirurgie de l'Hôpital Universitaire de Grenoble pendent l’électrophysiologie 

intra chirurgicale. Ce chapitre est destiné à  exposer les conditions sous lesquelles 

l’acquisition des donnés a été effectuée. Ce chapitre décrit la procédure chirurgicale 

de stimulation profonde, ainsi que quelques détails techniques d’enregistrement des 

signaux électrophysiologiques. 

7.1 Surgical procedure and intrasurgical electrophysiology 
 

The following is a description of the procedure as it has evolved in the Departments of 

Neurosurgery and Clinical Neurosciences of the University Hospital of Grenoble. The 

surgical operation for chronic deep brain stimulation of STN is performed under local 

anesthesia. Pharmacological PD medication is stopped 12 hours before surgery. The bilateral 

procedures were performed consecutively during the same operative session. Patients were 

placed in a stereotaxic frame and bilateral STN were targeted (Benabid et al., 2002). 

 The first operative step is the definition of the anatomical target, which is then refined 

by intraoperative electrophysiological techniques. The location of each STN is determined 

using ventriculography landmarks, i.e. midline of the third ventricule and the anterior (AC) 

and posterior (PC) commissures. The antero-posterior coordinates of STN calculated 

according with atlases (Schaltenbrand and Wahren W, 1977;  Talairach et al., 1957) is then 

used to build a Guiot scheme (Guiot et al., 1968) based on the AC-PC line and the lateral 

coordinates are set at 12 mm from the middle of the third ventricule (figure 7.1).  
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Figure 7.1 
 Anteroposterior (A) and lateral (B) ventriculograms showing the theoretical subthalamic 
nucleus target (TT), anterior commissure (AC), posterior commissure (PC), thalamic height 
(TH) and initial target trajectory (TRAJ). 

A small skin flap is made under local anesthetic and a burr hole is fashioned. To 

approach the target a device containing five parallel tubes is used. The configuration of the 

five electrode guidance tubes is with one at the centre (aimed at the theoretical target) and 

four concentrically in the periphery, each 2 mm apart. This allows insertion of five 

microelectrodes (Tungsten bipolar, impedance 2–6 MΩ, FHC, Bowdoinham, USA) 

simultaneously, and thus enables probing of a larger area to map the STN volume in detail 

and locate the optimal target.  

To locate the functionally optimal target, microrecording and microstimulation are 

used through the same 1-mm tip microelectrodes. Microrecording allows assessment of single 

and multi-unit neuronal activities, thus identifying the signature pattern of various deep brain 

nuclei. Recording is commenced at the AC – PC line. The five microelectrodes are moved 

simultaneously by a microdriver at 0.2-mm intervals. At various stages of the electrode 

advance the position of the microelectrodes is confirmed by intraoperative X-ray radiography. 

During a typical track, the first structure encountered is the thalamus, recognized by a 

bursting pattern of discharge. There is then an area of decreased activity as the electrode tip 

enters the zona incerta and the Fields of Forel. The STN is usually encountered about 3 mm 

below the AC – PC line and is characterized by a sudden increase in the background noise 

reflecting the high cellular density of the area and neurons that show bursting activity at 

frequencies of 40 – 50 spikes/s (Benazzouz et al., 2002; Pralong et al., 2002; Sterio et al., 

2002). Location within the motor area of the STN can be verified by the neuronal response of 
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neurons (increased firing audible through signal transduction and amplification) to passive 

movement of limbs or muscular palpation (motor response). In the series of Sterio et al., this 

area was predominantly located in the dorsal portion of the STN. The STN is usually left 7 – 

8 mm below the AC – PC line. Entrance into the SNr is identifiable by its high, but regular 

discharge rate of about 70 spikes/s. 

Microstimulation then follows during the ascent back out of the brain. 

Microstimulation is usually performed at three levels, typically 7, 5 and 3 mm below the AC – 

PC line. Monopolar stimulation is utilized with patient/frame used as the reference. The same 

parameters as those for chronic stimulation (frequency of 130 Hz and pulse width of 0.06 ms) 

are applied sequentially to each of the five microelectrodes at various amplitudes, starting at 

0.5 µA and increasing up to 5 µA. During the stimulation, the patient is examined clinically 

by a movement disorder neurologist to define the final trajectory and depth for the definitive 

electrode.  

On the basis of this clinical assessment and of the electrophysiological recordings the 

surgical team selects the most appropriate site for the chronic implantation of the stimulating 

macroelectrode (Medtronic 3389, Minneapolis, USA). During and in the end of the surgical 

procedure, a teleradiological X-ray control allowed for identification of the position of the tip 

of each micro-electrode. Five days after surgery, an MRI examination was performed in order 

to assess the final position of the tip of the macroelectrode within the STN and the lack of 

bleeding around it. The definitive electrode is then inserted under fluoroscopic guidance to its 

final location.  

7.2 Data acquisition 
 

The electrophysiological data were collected from 13 Parkinsonian patients mostly 

suffering from severe akinesia with disabling motor fluctuation and rigidity, and, for some of 

them, from tremors and from 2 distonia patients at the Department of Neurosurgery of the 

University Hospital of Grenoble. A surgical microdrive allowing five simultaneous parallel 

trajectories, with four around each 2 mm apart from the central one, was used. Tungsten 

bipolar microelectrodes (Frederick Haer and Co., Brunswick, ME), with impedances ranging 

from 2 to 6 MΩ were used for recording neuronal activity. 
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Recordings were performed at different sites along the trajectory, using the 

MicroGuide™ Intraoperative Microelectrode Recording System for Functional Neurosurgery 

of AlphaOmega, Nazareth, Israel. MicroGuideTM is a modular multi-channel FDA approved 

system which allows manual and computer controlled electrode manipulations. It comprises a 

data acquisition system “Alpha Map” that allows acquiring of a large number of analog and 

digital signals simultaneously in various modes. The Alpha Map can be used as a data logging 

system to save the analog and digital inputs continuously at a high rate to a disk in data 

acquisition internal system files. The MicroGuideTM system comprises also other features that 

can be useful during functional neurosurgery (figure 7.2). The system installed the University 

Hospital Grenoble comprises five isolated preamplifiers that provide five simultaneous 

recordings on each site. Using this system, signals with distinctive neuronal activity were 

selected and digitalized during 90-150 seconds at sampling rate 48 kHz and saved in Alpha 

Map data acquisition files.  

 

 

Figure 7.2 
AlphaMap software.  Visualisation of the data acquisition, some data post processing and  the 
MicroGuide trajectory control. 
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7.3 File format 
 

The Alpha-Map data acquisition files have a specific rather sophisticated binary 

format. These files have extension 'map' and contain a set of consistent blocks. A detailed 

description of the data format is given in Appendix B.  

For reading Alpha-Map data files a shared dynamic library was created and included 

into the USS. The dynamic library is described in Appendix B. 
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Chapter 8 

Spike Train Analysis  

 
L’analyse des trains de potentiel d’action a été effectuée sur les données 

recueillies sur 13 patients parkinsoniens et 2 patients souffrants de dystonie.  

950 trains de potentiel d’action unitaires provenant du NST, 183 trains 

provenant du GPi et 105 trains provenant du SNr ont été extraits de ces 

enregistrements. Les patterns d’activité neuronale dans les structure de NST, 

GPi et SNr ont été comparés en appliquant des test statistiques.  Les résultats 

principaux sont suivants : les patterns d’activité neuronal chez les patients 

individuels se diffèrent significativement ; Nous pouvons observer également 

des différences entre les patterns d’activité dans les structures de NST, GPi et 

SNr, en particulier les différences de l’activité bursté dans GPi et  de l’activité 

oscillatoire en fréquences de tremblement dans NST. 

8.1 Spike sorting  
The first step of the analysis was the separation of single unit spike trains for all the 

electrophysiological data set acquired at the neurosurgery theatre. For this purpose we used 

the USS software described in Part I of this document. The quality of spike train separation by 

means the USS is discussed in Chapter 4. The threshold level for spike detection was set, by 

default, equal to 3 times the variance of the signal derivative in order to exclude most of the 

noise that could interfere. Segments of 1.2-1.4 ms assumed to represent spikes were extracted 

from records. For the learning, sets of 300 spikes were collected. The results of the learning 

procedure were inspected by an expert operator (figure 3.5) in order to select the final 

templates for the spike sorting.  

We analyzed in this way the electrophysiological data of 13 Parkinsonian patients and 

2 dystonia patients who underwent DBS surgeries. About 350 single channel recordings 

characterized by steady state recording conditions and distinguishable neuronal activity were 
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selected. 950 single unit spike trains from STN, 186 spike trains from SNr and 105 spike 

trains from GPi were extracted, which makes in average 3-4 single units per record, up to 8 

single units from 1 channel. 

8.2 Spike train analysis  
The Poissonian process is usually considered as a reference model of point process 

describing the neuronal activity. The usual analyses of spike trains include auto- and 

crosscorrelation analysis as well as spectrum analysis. For the Poissonian process the 

autocorrelation trace, as well as the crosscorrelation trace of two independent Poissonian 

processes, are flat and stay within 99% confidential levels (figure 8.1). In this study neuronal 

spike trains were analyzed following the usual analysis with the addition of specific analyses 

described later in this chapter. Different kinds of deviations from the Poissonian process were 

classified into several groups of particular neuronal activity patterns.  

 

Figure 8.1  
Autocorrelation trace (right) and crosscorrelation traces for cells (left), firing of which 
corresponds to the Poissonian process.  

8.2.1 Time domain analysis of spike train  

Time domain analyses included calculation of autocorrelations for spike trains and of 

crosscorrelations for pairs of them recorded from the same microelectrode. These 

computations were performed with the DAN software accessible on public domain at the 

website http://www.openAdap.net. The calculation of correlations and of the threshold levels 
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corresponding to the Poissonian process is realized following the method described in 

(Abeles, 1982). The auto- and crosscorrelations were calculated twice with bins 2 ms and 8 

ms. The epoch was set to 500 ms for crosscorrelations and 1000 for autocorrelations. Then 

they were analyzed according to the method described in (Villa et Lorenzana, 1997). For the 

units with auto- and crosscorrelations graphics crossing the Poissonian process threshold 

levels the following patterns were defined: 

1) Bursting cells (‘Burst’): the autocorrelation of spike trains of these cells have a 

peak that crosses the upper threshold level close to the Y-axis (figures 8.2, 8.3).  

The burst is characterized by the location of its peak and its duration (Villa et 

Lorenzana, 1997). The duration of the burst is defined as interval with the 

autocorrelation curve above the threshold. 

 

 
Figure 8.2   
“Long” burst: (a) – bursting cell spike waveforms, (b) – raster and (c) – autocorrelation trace. 
The duration of the burst is about 80 ms. 
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Figure 8.3  
“Short” burst: (a) – bursting cell spike waveforms, (b) – raster and (c) – autocorrelation trace. 
The duration of the burst is about 10-15 ms.  

For the analyzed cells the burst duration varies between 3 and 170 ms. Figure 8.4(a) 

represents the histogram of burst durations of all analyzed cells followed the burst pattern. 

The histogram shows that the distributions between 25 and 40 ms are represented less 

frequently than the others and the histogram seems to correspond to a mixture of populations. 

An additional analysis was applied to distinguish bursts of different duration corresponding 

probably to a different kind of bursting activity. It was assumed that the histogram may be 

approximated by a mixture of two normal distributions. The parameters of the mixture were 

found by the maximal likelihood method.  Figure 8.4 (a) represents the histogram and the 

approximating mixture graph, figure 8.4 (b) shows the two distributions of the mixture 

separately. 

  Thus, the burst pattern was divided into two independent patterns represented by one 

of the populations. The point separating the populations was selected as the point equalizing 

the mistake of loss for each population due to their overlapping (figure 8.4 (b)). The patterns 

were named “Short Burst”, the duration of which is less then 30 ms, and “Long Burst”, the 

duration of which is greater then 30ms. 
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Figure 8.4 
(a) Histogram of burst durations of all analyzed cells. The smooth line is a graph of the 

mixture of two normal distributions with parameters defined by the maximal likelihood 
approximating the histogram. 

(b) Two normal distribution of the mixture. The point separating them was defined as the point 
which equalize the squares of two shaded areas i.e. the mistake of misclassification. 

2) Cells with a significant refractory period (‘Refractory Period’): the autocorrelation 

of spike trains that starts with a gap that crosses the lower threshold level (figure 

8.5). The duration of the refractory period, is the interval with the autocorrelation 

trace below the threshold. The histogram of the refractory period is shown at 

figure 8.6. 

 
Figure 8.5 
Cell with refractory period: (a) –spike waveforms, (b) – raster and (c) – autocorrelation trace.  
The refractory period is about 25-30 ms.  
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Figure 8.6 
Histogram of refractory period durations of the analyzed cells.  

3) Correlated cells (‘Correlation’): the crosscorrelation graph of spike trains of these 

cells crosses the upper or the lower threshold level near the Y-axis. An example is 

presented on figures 8.7 and 8.8. On figure 8.7 is presented a correlation trace 

crossing the threshold level.  Figure 8.8 shows rasters, spike waveforms and 

autocorrelation traces of the cell pair. 

 

 

Figure 8.7  
Crosscorrelation trace of a pair of correlated cells.  
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Figure 8.8  
Rasters and spike waveforms (a) of two 2 corellated and their autocorellation graphs (b) (see 
fig. 8.7).   

8.2.2 Frequency domain analysis of spike train  

The analysis of the autocorrelations clearly showed highly distinctive oscillatory 

patterns of different frequencies (figures 8.9, 8.10). Notice that the multiunit channel 

recordings defined during surgery as “tremor cells containing” correspond always to spike 

trains with characteristic oscillation frequency components at about 4–6 Hz (figure 8.9). To 

better reveal the oscillating cells for each single unit time series we calculated the power 
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spectrum by applying the Fast Fourier Transform to the autocorrelogram traces with epochs 

equal to 500, 1000, 2000 ms. The cell was considered oscillating on some frequency if at least 

one of the three power spectrum traces calculated for the three epochs had a significant peak 

on this frequency. The significant peaks of the power spectrums were detected assuming that 

the neuronal firing is a Poissinian process and the confidential level is equal to 0.99 (figures 

8.9(c), 8.10(f)).  

 

 
Figure 8.9 
Single unit characterized by an oscillatory firing pattern with oscillation rates about 5 Hz.. The 
figure represents raster and spike waveform of the oscillating cell (a), its autocorrelogram (b) 
and power spectrums (c) with the confident level.  
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Figure 8.10 
Single unit characterized by an oscillatory firing pattern with oscillation rates about 1 Hz.. The 
figure represents raster and spike waveform of the oscillating cell (d), its autocorrelogram (e) 
and power spectrums (f) with the confident level.  

To define the most representative frequencies the following method was applied: the 

sum of all occurrences of power spectrum threshold crossings for each spike train were 

computed for frequency values ω  in the range [1,50] Hz (figure 8.11). Let us assign )(ωa  the 

number of threshold crossings for each 50,...,1=ω . In case of a Poissonian process the 

probability of the threshold crossing by spectrum is 01.0=p . That means that )(ωa  has a 

binomial distribution. The binomial distribution may be approximated by the normal 

distribution if the number of statistical observation  satisfies the condition n 9)1( ≥− pnp  

(Huber, 1984), i.e. if  then  must be . Thus 01.0=p n 101≥n )(ωa  can be considered as 

normal distributed with mean a  and variance , which depends on . In presence of 

significant peaks we have a mixture of two distributions: the “basic” distribution 

2
aσ n

),( 2
aaN σ  
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and a distribution that corresponds to significant peaks. Let us assume that the normalized 

random value  

ai aa σξ /)( −=  
follows the distribution 

)()()1()( ξδξϕδξδ hP +−= , 
 

where )(ξϕ is a standard normal distribution density and )(ξh  is a distribution density with 

large variance 1>>hσ . In other words this means that we assume to observe a random value 

that follows either the “basic” distribution or )(ξh  that forms the δ  part of the sample. The 

threshold for detecting significant peaks is estimated by the parameters of the “basic” 

distribution considering the model of mixture. For any 2.0<δ , the maximum likelihood 

estimate can be used for the mean and variance of the basic distribution (Ivchenko et 

Medvedev, 1984). We used a threshold corresponding to the confidential level 0.95 estimated 

for the reference hemisphere (side 1) to define the frequency bands with high probability 

density and considered as clusters the areas where the traces were above the threshold line. 

Three frequency bands were defined: [0–2] Hz, [4–6] Hz, [8–10] Hz.  

 

 
Figure 8.11  
Cumulated distribution of significant peaks detected in the spectrum of single units 
characterized by oscillatory patterns. All occurrences of significant peaks in the frequency 
range [0–50] Hz were added together. The trace represents the probabilities of occurrence of the 
peaks at a resolution of 1 Hz. The horizontal line represents a 95% level of significance. The 
following clusters appeared: [0–2] Hz, [4–6] Hz, [8–10] Hz. 
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8.3 Results  
The single unit spike train analysis was aimed to reveal for each single unit if it 

follows one or more of the defined patterns: 

- Short Burst 
- Long Burst 
- Refractory Period 
- Oscillation [0–2] Hz 
- Oscillation [4–6] Hz 
- Oscillation [8–10] Hz 
- Correlation  

Tables 8.1, 8.2 and 8.3 show the results grouped by patients for STN, SNr, and GPi 

respectively. Values in the tables show the absolute number of cells on which the given 

activity pattern was recorded. Values in parentheses present the percentage of cells of the 

given activity pattern with respect to the number of analyzed cells and pairs of cells.  Table 

8.4 recapitulates the results obtained in STN, SNr and GPi. 

 

Long 
burst 

short 
burst  

refractory 
period 0-2Hz 4-6 Hz 10Hz correlation 

patient cell 
count 

pair 
count 

mean 
firing 
rate    

cell number (%) pair num. 
(%) 

JC 81 98 18.6 9 (11%) 5 (6%) 5 (6%) 14 (17%) 12 (15%) 12 (15%) 12 (15%) 

AG 131 257 13.4 36 (27%) 0 (0%) 26 (20%) 53 (40%) 6 (5%) 10 (8%) 44 (17%) 

BS 100 196 18.5 28 (28%) 6 (6%) 18 (18%) 43 (43%) 21 (21%) 12 (12%) 42 (21%) 

CB 107 299 23.0 13 (12%) 1 (1%) 28 (26%) 23 (21%) 3 (3%) 5 (5%) 21 (7%) 

GB 66 71 14.9 4 (6%) 6 (9%) 9 (14%) 9 (14%) 4 (6%) 6 (9%) 19 (27%) 

LS 60 82 20.6 7 (12%) 6 (10%) 13 (22%) 7 (12%) 7 (12%) 0 (0%) 18 (22%) 

DS 123 195 23.5 1 (1%) 21 (17%) 3 (2%) 17 (14%) 16 (13%) 3 (2%) 34 (17%) 

AT 118 205 28.9 2 (2%) 1 (1%) 5 (4%) 8 (7%) 4 (3%) 6 (5%) 89 (43%) 

RW 64 117 21.8 6 (9%) 3 (5%) 6 (9%) 4 (6%) 2 (3%) 4 (6%) 16 (14%) 

CG 60 90 20.7 7 (12%) 7 (12%) 3 (5%) 12 (20%) 2 (3%) 1 (2%) 14 (16%) 

SR 40 72 22.5 0 (0%) 13 (33%) 1 (3%) 4 (10%) 0 (0%) 4 (10%) 20 (28%) 

Total 950 1682 20.54 113(12%) 69 (7%) 117 (12%) 194(20%) 77 (8%) 63 (7%) 329 (20%) 

 
Table 8.1 
Neuronal activity in STN.  Each row corresponds to an individual patient. Values in the tables 
show the absolute number of cells on which the given activity pattern was recorded. Values in 
parentheses present the percentage of cells of the given activity pattern respectively to the 
number of analyzed cells and pairs of cells.   
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long 
burst  

short 
burst  

refractory 
period 0-2Hz 4-6 Hz 10Hz correlation 

patient cell 
count 

pair 
count 

mean 
firing 
rate    

cell number (%) pair num. 
(%) 

AG 25 44 22.6 5 (20%) 0 (0%) 9 (36%) 10 (40%) 1 (4%) 9 (0%) 5 (11%) 

BS 13 19 14.5 4 (33%) 1 (4%) 5 (38%) 7 (50%) 0 (0%) 5 (8%) 3 (16%) 

CB 49 105 19.9 1 (2%) 3 (6%) 5 (10%) 3 (6%) 0 (0%) 5 (10%) 5 (5%) 

AC 35 48 14.2 3 (9%) 8 (23%) 13 (37%) 20 (57%) 2 (6%) 13 (11%) 14 (29%) 

EC 28 32 14.4 0 (0%) 2 (7%) 6 (21%) 8 (29%) 0 (0%) 6 (4%) 10 (31%) 

BM 33 46 26.9 3 (9%) 7 (21%) 15 (45%) 4 (12%) 0 (0%) 15 (9%) 13 (28%) 

Total 183 294 19.27 16 (9%) 21 (11%) 53 (29%) 52 (28%) 3 (2%) 53 (29%) 50 (17%) 

 
Table 8.2 
Neuronal activity per patient in SNr. Each row corresponds to an individual patient. Values in 
the tables show the absolute number of cells on which the given activity pattern was recorded. 
Values in parentheses present the percentage of cells of the given activity pattern respectively 
to the number of analyzed cells and pairs of cells.   

long 
burst  

short 
burst  

refractory 
period 0-2Hz 4-6 Hz 10Hz correlation 

patient cell 
count 

pair 
count 

mean 
firing 
rate    cell number (%) pair num. 

(%) 

AV 25 44 8.8 2 (8%) 2 (8%) 1 (4%) 1 (4%) 1 (4%) 2 (8%) 4 (9%) 

MG 80 324 8.3 27 (34%) 3 (4%) 27 (34%) 24 (30%) 0 (0%) 5 (6%) 23 (7%) 

Total 105 368 8.66 29 (28%) 5 (5%) 28 (27%) 25 (24%) 1 (1%) 7 (7%) 27 (7%) 

 
Table 8.3 
Neuronal activity per patient in GPi. Each row corresponds to an individual patient. Values in 
the tables show the absolute number of cells on which the given activity pattern was recorded. 
Values in parentheses present the percentage of cells of the given activity pattern respectively 
to the number of analyzed cells and pairs of cells.   

long 
burst  

short 
burst  

refractory 
period 0-2Hz 4-6 Hz 10Hz correlation 

zone cell 
count 

pair 
count 

mean 
firing 
rate    cell number (%) pair num. 

(%) 

STN 950 1682 18.68 113(12%) 69 (7%) 117 (12%) 194(20%) 77 (8%) 63 (7%) 329 (20%) 

SNr 183 294 15.27 16 (9%) 21 (11%) 53 (29%) 52 (28%) 3 (2%) 53 (29%) 50 (17%) 

GPi 105 368 8.66 29 (28%) 5 (5%) 28 (27%) 25 (24%) 1 (1%) 7 (7%) 27 (7%) 

 
Table 8.4 
Summary table of neuronal activity in STN, SNr, GPi.  

 



 
Chapter 8: Spike Train Analysis                      

87

In addition for 7 Parkinsonian patients the results obtained for STN are grouped 

according to the initially operated hemisphere (side I) and the other hemisphere (side II) 

(Table 8.5).  

 
long 
burst  

short 
burst  

refractory 
period 0-2Hz 4-6 Hz 10Hz correlation 

Patient side cell 
count 

pair 
count 

mean 
firing 
rate    cell number (%) pair num. 

(%) 

I 60 98 19.3 6 (10%) 0 (0%) 4 (7%) 8 (13%) 5 (8%) 8 (13%) 9 (9%) 
JC 

II 21 20 16.5 3 (14%) 5 (24%) 1 (5%) 6 (29%) 7 (33%) 4 (19%) 3 (15%) 

I 39 38 21.0 7 (18%) 4 (10%) 10 (26%) 7 (18%) 7 (18%) 0 (0%) 5 (13%) 
LS 

II 21 44 20.2 0 (0%) 2 (10%) 3 (14%) 0 (0%) 0 (0%) 0 (0%) 13 (30%) 

I 72 112 21.5 1 (1%) 13 
(18%) 3 (4%) 13 

(18%) 
14 

(19%) 0 (0%) 24 (21%) 
DS 

II 51 83 25.5 0 (0%) 8 (16%) 0 (0%) 4 (8%) 2 (4%) 3 (6%) 10 (12%) 

I 46 68 28.6 2 (4%) 0 (0%) 3 (7%) 6 (13%) 3 (7%) 1 (2%) 9 (13%) 
AT 

II 72 137 28.2 0 (0%) 1 (1%) 2 (3%) 2 (3%) 1 (1%) 5 (7%) 80 (58%) 

I 39 73 22.9 5 (12%) 2 (4%) 3 (8%) 2 (4%) 2 (4%) 3 (8%) 9 (13%) 
RW 

II 25 44 20.7 1 (4%) 1 (4%) 2 (8%) 2 (8%) 0 (0%) 1 (4%) 6 (14%) 

I 33 46 19.9 7 (21%) 6 (18%) 2 (6%) 12 
(36%) 2 (6%) 1 (3%) 11 (24%) 

CG 
II 27 44 21.5 0 (0%) 1 (4%) 1 (4%) 0 (0%) 0 (0%) 0 (0%) 3 (7%) 

I 10 25 26.7 0 (0%) 5 (50%) 1 (10%) 3 (30%) 0 (0%) 0 (0%) 0 (0%) 
RS 

II 30 47 18.2 0 (0%) 8 (27%) 0 (0%) 1 (3%) 0 (0%) 4 (13%) 20 (43%) 

 
Table 8.5 
Activity on the initially operated hemisphere (I) and the second operated hemisphere (II) in 
STN. Each row corresponds to a brain hemisphere of an individual patient. Values in the tables 
show the absolute number of cells on which the given activity pattern was recorded. Values in 
parentheses present the percentage of cells of the given activity pattern respectively to the 
number of analyzed cells and pairs of cells.   

8.4 Statistical tests 
A statistical test was applied to evaluate the variations of the activity pattern 

representation on different patients and in different brain structures. Let us denote  the 

probability, that neuron activity recorded under condition I corresponds to type 

1θ

A  and   – 

the same probability for the activity of a neuron recorded under condition II (by condition we 

mean a patient or a brain structure or a brain hemisphere). For evaluation of the statistical 

likelihood of the assumption about difference of neuronal activity under different condition let 

2θ
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us verify the hypothesis: . For a neuronal activity type 210 : θθ =H A  we have a set of 

random values { }1
ix , observed under condition I and a set of random values { }2

ix  observed 

under condition II. Sets { }1
ix  and { }2

ix  follow a binomial distribution: 

, i=1,2; n))1(,()( j
i

jjjj
i nBxp θθθ −= i – sets lengths.  

Since statistical samples on the patients and on the structures have different sizes the 

bootstrap method was applied. The histograms for each activity pattern were compared using 

the Kolmogorov-Smirnov test of uniformity of two distributions (Ivchenko, press. 1984).  The 

advantage of this test is that it doesn’t suppose any assumption about the data distribution.  

Statistical tests were applied for 4 patients with sample set longer then 100 units (table 

8.1). On each bootstrap simulation their sets for each activity pattern were resampled by 

means of bootstrap method. The simulation was repeated 10 times.  On each simulation a 10 

sample data set were generated.  Table 8.6 shows the confidence levels of the hypothesis of 

difference of frequencies of each activity patterns for different patients .  210 : θθ ≠H

 

  long burst short burst refractory period 
Patients 1 2 3 1 2 3 1 2 3 

1                   

2                  

3 S** S**   S** S**   S* S*   
4 S** S**       S**   S** S**   
  oscillations [0;2]Hz oscillations [4;6]Hz oscillations 10Hz 

Patients 1 2 3 1 2 3 1 2 3 

1                   

2                 

3                   
4 S*   S*    S*     S*   

 
Table 8.6 
Confidence levels of the hypothesis that the frequencies of an activity pattern are different on 
individual patients ( )210 : θθ ≠H , estimated by means of the Kolmogorov-Smirnov test. 
The results are grouped by neuronal activity patterns. For the analysis the data recorded on the 
following 4 patients were used (see table 8.1):  
Patient 1 – AG ; Patient 2 – CB ; Patient 3 – DS ; Patient 4 – AT. 
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The same procedure was performed for the data grouped by brain structures and the 

results are shown in table 8.8. 

 

  STN-SNr SNr-Gpi STN-Gpi 

long burst       

short burst    S*   

refractory period     S* 
Oscillations 0-2Hz       
Oscillations 4-6Hz S*   S** 
Oscillations 10Hz       

 
 
Table 8.7 
Confidence levels of the hypothesis that the frequencies of an activity pattern are different in 
brain structures of STN, GPi and SNr ( )210 : θθ ≠H , estimated by means of the 
Kolmogorov-Smirnov test. 

The results were also compared for the initially operated and the secondly operated 

brain hemispheres. No statistical significant differences were found. However The 

confidential level of the hypothesis  equal to 0.7 was obtained for the long burst 

and oscillations of [1-2]Hz. 

210 : θθ ≠H

We applied also a more sophisticated Fisher test to compare some of observed 

samples. Here we hade to take into account that statistical data is represented by samples of 

different size. For example only 183 cells were observed in SNr and 950 of them in STN.  

Some mathematical hints (Appendix C) allowed using the Fisher test as a test of uniformity 

allowing comparison of differently represented sets without a loss of information and 

provides more accurate results. For a correct application of the test there is a constraint on the 

sample size (see Appendix C):  

)1(
18.1
θθ −

≥n , 

where θ  is the mathematical expectation of the analyzed activity pattern. The mathematical 

expectation may be estimated by the mean value and can be taken from tables 8.1-8.5. 

According with this formula rather large samples are needed and the test can’t be applied here 
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only for a comparison of probabilities of Refractory Period, Oscillations [0,2]Hz and 

Oscillations [4,6]Hz on STN and SNr. The results of the test are the following: 

 

  STN-SNr 

refractory period >0.92 

Oscillations 0-2Hz  very low 

Oscillations 4-6Hz >0.96 

 
 Table 8.8 
Results of the Fisher test estimation of confidential levels of the hypothesis that the frequencies 
of an activity pattern are different in brain structures of STN and SNr . ):( 210 θθ ≠H

8.5 Discussion 
 The presence of bursting and oscillatory activity in the STN is typical for 

Parkinsonian patients and MPTP treated animals (Bergman, 1994; Rodriguez-Oroz et al, 

2001). Here was considered only low frequency band, namely [0-10]Hz. The analyses showed 

that the frequencies of these bands are not represented equally. Thus this band was divided 

into 3 bands, one of them is the tremor frequency band - [4-6] Hz. Oscillations of different 

frequency bands were considered independently. The same procedure was applied for the 

analysis of burst duration. Short burst should correspond to the usual understanding of this 

term while the long burst corresponds to long (>30ms) fluctuations in firing intensity, which 

is represented by condensations and on the cell raster. If the condensations appear regularly 

the cell oscillates at the same time on a low frequency. 

 The mean firing rate of STN cells was 21+/-13 spikes/s. This result is distinct of those 

previously described. According to other data in PD patients, single STN neurons have a 

mean firing rate of 42.30 +/- 22.00 spikes/s (Benazzouz 2002), or 33+/-17 spikes/s (Hutchison 

et al., 1998). We do not exclude that this discrepancy is the result of difference in separation 

of spike trains of individual neurons.  

The mean number of separated individual neurons during the analysis was 4-5 per 

single channel record. Thus this value varied significantly. On some records only 2-3 (and 

 



 
Chapter 8: Spike Train Analysis                      

91

more rare only one) individual neurons were found, on others up to 7-8 neurons could be 

distinguished. 

Table 8.6 shows that the neuronal activity profile varies from patient to patient. The 

statistically significant differences between patients may be due to the physiological 

particularities of each patient or/and to the etiology and progression of the disease. This 

second assumption was studied and the results of the study are presented in chapter 9 of the 

present thesis.  

The comparison of brain structures neuronal activity patterns (table 8.7) showed that 

GPi neuronal activity differs from SNr and STN activity. From the other side, the statistical 

material for GPi analysis was insufficient to draw any a conclusion (105 cells from only 2 

patients). STN and SNr, in turn, differ significantly only in probability of refractory period 

(P>0.8) and of 4-6 Hz oscillations (P>0.95). STN has more 4-6 Hz oscillations than SNr and 

GPi. This frequency often corresponds to tremor. 

The results of these analyses show also that the percentage of bursting and low 

frequency oscillating cells has a tendency to be more abundant in the first operated side, even 

though this difference was not statistically significant. 

The application of the Fisher test where it was possible confirmed the results the 

Kolmogorov-Smirnov test (table 8.8). This fact can be considered as a validation of the 

applied statistical methods and of the results presented here. 
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Chapter 9 

Spike waveform analysis 

 
Les études de l’activité neuronale basées sur le tri de potentiels d’action à l’aide 

de l’USS ont révélé que les formes des potentiels sont sensiblement les même 

pour tous les patients. Ce chapitre décrit les analyses effectuées pour définir les 

formes typiques de la décharge neuronale et leur répartition NST, SNr et GPi. 

Cinq types de formes ont été définis suite à l’application de la procédure de 

clustering  du USS ont été considérés. 

Dans ce chapitre nous analysons les relation entre les différentes formes de 

potentiel d’action et les de patterns d’activité neuronale. Quelques différences 

de patterns ont été trouvées entre deux  de ses types. L’étude de répartition de 

ses types dans NST, SNr et GPi a montré une différence de représentation de 

certains types dans ses structures.   

9.1 Typical Spike Waveforms (TW) 
The studies of neuronal activity based on spike sorting by means of the USS revealed 

that the waveform of some neuronal discharges seems to be reproducible on 

electrophysiological records from different patients. We assumed then that there existed 

several TW and that the spike’s waveform of a firing neuron usually corresponds to one of 

those, thus suggesting that a neuron may be classified according to spike’s waveform.  

The USS is a template matching spike sorting technique and saves template 

waveforms for each detected single unit at the learning stage. The single unit template 

waveforms provided by the USS are denoted as “templates”. All templates generated during 

the spike train analysis were stored in USS internal files. Since the spike amplitude depends, 

among other factors, on the distance between the recording electrode and the cell membrane, 

the collected templates were normalized according to the amplitude. A clustering procedure is 

applied to the cumulated a set of templates and a representative waveform is constructed for 

each cluster. The representative waveforms will form a TW set such that a TW is the center of 
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a cluster of templates, i.e. common for several of single units. All typical waveforms form a 

typical spike waveform library (TWL). 

The same routine may be carried out on two independent sets of templates S1 and S2, 

forming a TWL for each of them (TWL1 and TWL2) to validate the results of clustering. 

Then, the templates from each set should be classified according to TWL1 and to TWL2. The 

results of all four classifications should be compared. The final TWL may be constructed of 

waveforms of TWL1 and TWL2 taking into account the classes overlapping of classes. 

 The general scheme of the analysis carried out for TW definition was the following: 

1. Single units were extracted with USS from multiunit records from STN GPi and 

SNr.  

2. The template single unit spikes generated by USS for each single unit were 

normalized and stored. 

3. All stored template spikes were organized in 4 sets: 2 independent sets S1 and S2 

from STN, a GPi set and an SNr set.  

4. A TWL was generated for each set of templates.  

5. Each TWL was used to classify the corresponding training and test data sets. The 

percentages of templates in the classes and an amount of non-classified templates 

were calculated and compared. 

6. To compare the result of the classifications the percentages of overlapping were 

also calculated between the classes belonging to different TWLs. 

7. A final common TWL is formed by the waveforms of all 4 TWL. 

A further analysis studied the relation between the spike’s waveforms and the activity 

patterns defined by bursting, frequency oscillatory activity and refractory period. 

9.2 Results 
709 STN, 294 Gpi and 186 SNr single unit templates were stored. The STN template 

set was split into 2 sets STN1 and STN2 of 453 and 256 templates. The appropriate 

procedures of the USS were applied for clustering and classification. The clustering procedure 

of USS estimates the cluster center and the radius for each cluster. The cluster centers were 
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considered as typical waveforms and radiuses were used for further classification. The USS 

parameters for clustering and classification were fit once and stayed unchanged through the 

analysis. 

After clustering the following results were obtained: 10 clusters for STN1; 6 clusters 

for STN2; 9 clusters for GPi; 10 clusters for SNr. Clusters constructed by USS are shown on 

figures 9.1-9.4. Clusters are numbered through all 4 sets with a unique cardinal. In each 

cluster a TW was defined. The TWs are shown on the figures as bold lines inside each cluster. 

Images in each frame of the figures correspond to the cluster with the number marked in the 

upper left corner and represent both spike waveforms in time domain and spike trajectory in 

the pase space (2.3) used by USS for clustering and classification procedures.  

 
Figure 9.1   
Clusters and TWs obtained from the GPi data set. 

 
Figure 9.2   
Clusters and TWs obtained from the second independent data set in STN. 

 



 
Chapter 9: Spike Waveform Analysis      

95

 
Figure 9.4  
Clusters and TWs obtained from the GPi data set. 

 
Figure 9.4  
Clusters and TWs obtained from the SNr data set. 

All template sets were classified then according to all constructed TWL, i.e STN1 set 

was classified 4 times according to its own STN1 TWL and also according to ST2 TWL, GPi 

TWL and SNr TWL. The same was done with STN2, GPi and SNr sets. The classes’ 

overlapping is shown in table 9.1. The meaning of table values xij is following: xij % of 

templates of i-th class obtained after classification of a template set on its own TWL  

belonging also to the j-th class after classification on an another template set TWL. The table 

values greater the 80% are marked with dark gray and the values between 40% and 80% are 

marked with light grey. 
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Table 9.1   

Overlapping of crossclassification of each data set respectively to the classification on the own data set’s TWL. Table values xij mean that xij % of 
templates of i-th class obtained after classification of a template set on its own TWL  belong also to the j-th class after classification on an another 
template set TWL. The table values greater the 80% are marked with dark gray and the values between 40% and 80% are marked with light grey.  
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The same information is presented by graphs on figure 9.2. For each pair of data sets 

the overlapping between classes obtained on the own data set’s TWL and on the TWL of 

another data set was considered. If more then 40% of the elements of class A are members of 

class B the classes are connected with a dotted arrow directed from class A to class B. If the 

overlapping is greater then 80% the classes are connected with a solid arrow. 

 
 

   
 
 

    
 
 

  
 

 
 
Figure 9.5 
Overlapping of crossclassification of each set respectively to the classification on its own TWL. 
If overlapping is greater than 80% the classes connected with a solid arrow. If the overlapping 
is greater than 40% and less or equal to 80% the classes are connected with a dotted arrow. 
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Table 9.1 and figure 9.5 show that all classes corresponding to the 35 TWs can be split 

into 5 nearly non overlapped groups of classes: 

Type 1:  3  4  15  19  21  25  27  30 
Type 2:  1  9  16  22 
Type 3:  2  10  12  17  20 24  26  29  31  35 
Type 4:  6  8  13  14  28  33 
Type 5:  5  7  11 18  23  32  34 
 

The distributions of these 5 types in different patients and in different brain structures 

were calculated using 609 STN cells from 7 Parkinsonian patients, 183 SNr cells from 6 

Parkinsonian patients and 105 GPi cells from 2 dystonia patients. Table 9.2 shows how the 

types are distributed in the STN of 11 patients. The analysis per patient in SNr and GPi were 

not carried out because of statistical insignificance of the data. The distributions of the 5 

Types in STN, SNr and GPi were studied and compared overall (tables 9.3, 9.4).   

 

name cell 
count 

non 
identified type 1  type 2 type 3 type 4 type 5 

JC 
81 

(100%) 
2 

(2%) 
29 

(36%) 
12 

(16%) 
13 

(15%) 
9 

(11%) 
16 

(20%) 

AG 
131 

(100%) 
1 

(1%) 
49 

(37%) 
5 

(4%) 
28 

(21%) 
22 

(17%) 
26 

(20%) 

BS 
100 

(100%) 
5 

(5%) 
18 

(18%) 
8 

(8%) 
14 

(14%) 
11 

(11%) 
44 

(44%) 

CB 
107 

(100%) 
7 

(7%) 
52 

(48%) 
3 

(3%) 
29 

(27%) 
3 

(3%) 
13 

(12%) 

GB 
66 

(100%) 
2 

(3%) 
42 

(63%) 
4 

(8%) 
12 

(18%) 
3 

(55%) 
3 

(3%) 

RW 
64 

(100%) 
4 

(6%) 
23 

(37%) 
4 

(6%) 
12 

(19%) 
6 

(9%) 
15 

(23%) 

CG 
60 

(100%) 
2 

(3%) 
19 

(32%) 
5 

(8%) 
7 

(12%) 
8 

(13%) 
19 

(32%) 

Total 
609 

(100%) 
23 

(3%) 
232 

(39%) 
41 

(7%) 
115 

(19%) 
62 

(10%) 
136 

(22%) 

 
Table 9.2   
Distribution of neurons of five Types in STN. Each row corresponds to an individual patient. 
Cell values represent the number of cells’ Type units, values in parenthesis present the 
percentage of cells of the given Type respectively to the number of analyzed cells.  
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structure cell 
count 

non 
identified type 1 type 2 type 3 type 4 type 5 

STN 609 
(100%) 

19 
(3%) 

232 
(38%) 

49 
(8%) 

103 
(17%) 

64 
(10%) 

144 
(24%) 

SNr 183 
(100%) 

5 
(3%) 

62 
(34%) 

7 
(4%) 

30 
(16%) 

10 
(5%) 

69 
(38%) 

Gpi 105 
(100%) 

3 
(3%) 

43 
(40%) 

3 
(3%) 

21 
(20%) 

5 
5(%) 

30 
(29%) 

Total 897 
(100%) 

27 
(3%) 

337 
(37%) 

59 
(7%) 

154 
(17%) 

77 
(9%) 

243 
(27%) 

 
Table 9.3   
Distribution of neurons of five types on brain structures of STN, SNr and GPi. Cell values 
represent the number of cells’ Type units, values in parenthesis present the percentage of cells 
of the given Type respectively to the number of analyzed cells. 

The comparison of the “Type” distribution between structures and patients was done 

by assuming  the probability of type A on structure(patient) I and    – the same 

probability on structure(patient) II. For evaluation of the statistical likelihood of the 

assumption about the difference of type A probabilities the zero hypothesis is . 

The bootstrap method and the Kolmogorov-Smirnov test were employed as it was described 

in chapter 7.  Tables 9.3 and 9.4 show the confidential levels of the hypothesis for brain 

structures and individual patients respectively. 

1θ 2θ

210 : θθ =H

 

 

  
STN-
SNr 

SNr-
Gpi 

STN-
Gpi 

Type 1       
Type 2 S*   S** 
Type 3   S*   
Type 4 S**   S* 
Type 5       

 
Table 9.4 
Confidence levels of the hypothesis of difference of frequencies of activity patterns 

 estimated with the Kolmogorov-Smirnov test. ):( 210 θθ ≠H
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Application of the Fisher test (Appendix D) was possible only for comparison of 

probabilities of Type 1 and Type 5 on STN and SNr. The confidential level obtained for Type 

1 was very low and for Type 2 it was equal to 0.8 which confirms the results obtain with 

application of the Kolmogorov-Smirnov test. 

Table 9.4 shows the probability of activity patterns defined in chapter 7 of each type, 

i.e. the conditional probability ( )typepatternP | . To have a better statistics we took into 

account all cells recorded during DBS surgeries of Parkinsonian patients independently of the 

brain structure. Thus, we assume here that “WT-activity pattern” dependency doesn’t change 

in different brain structures. 1282 cells of 14 Parkinsonian patients were analyzed. After 

waveform classification 50 cells were rejected as unclassified.  Figure 9.6 represents the same 

information in graphical form for the 3 most representative types: Type 1, Type 3 and Type 5.  

 

type cell count long burst short burst ref. per. 0-2Hz 4-6 Hz 10Hz 

1 466 47 (10%) 33 (7%) 61 (13%) 93 (20%) 37 (8%) 33 (7%) 

2 77 3 (4%) 9 (12%) 6 (8%) 17 (22%) 8 (10%) 10 (13%) 

3 250 18 (7%) 13 (5%) 5 (2%) 23 (9%) 15 (6%) 15 (6%) 

4 106 16 (15%) 2 (2%) 5 (5%) 24 (23%) 8 (8%) 6 (6%) 

5 333 63 (19%) 37 (11%) 77 (23%) 103 (31%) 37 (11%) 20 (6%) 

total 1232 148 (12%) 99 (8%) 160 (13%) 271 (22%) 111 (9%) 86 (7%) 

 
Table 9.5   
Number of cells having one of the neuronal activity patterns among cells of a given WT. In 
parenthesis - the percentage of such cells or the conditional probability ( )typepatternP | .  

 
Figure 9.6   
Histograms for the neuronal activity patterns for waveform Types 1, 3 and 5 (table 9.5).   
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The comparison of neuronal activity pattern for these 3 types using the Kolmogorov-

Smirnov test gave the following results (table 9.6): 

 

  TW1-TW3 TW3-TW5 TW1-TW5 

long burst S*     

short burst        

refractory period S** S**   

Oscillations 0-2Hz S*     

Oscillations 4-6Hz       

Oscillations 10Hz       
 
Table 9.6   
Confidence levels of the hypothesis of difference of frequencies of activity patterns 

 estimated using the Kolmogorov-Smirnov test. ):( 210 θθ ≠H

9.3 Discussion 
 

Neuronal spikes usually have a typical waveform consisting of a rapid positive going 

component that lasts a few hundred microseconds, followed by a slower negative going 

component that may last 2–3 times as long (Fee et al, 1996). This waveform nevertheless 

varies according to the distance and the characteristics of the recording microelectrode.  This 

makes it possible to separate spikes belonging to different units from a multiunit recording. If 

the microelectrode moves, then the spike wave form should change continuously. Let us 

assume that neuronal discharges vary also as a function of the neural cell type or of the 

systemic state or other circumstances. We assume that this variation is more significant than 

the variation of the form due to the microelectrode position and that it should be possible to 

group spike waveforms. If we assume that the recording conditions are standardized it is 

possible to postulate that similar waveforms could be identified in different patterns.  

We should notice here that the neuron firing is a non-linear process depending of a 

great number of parameters including physiological type of the cell. We have not suggested a 

model describing the spike waveform variation as a function of neuron physiological type. 

Thus, it is impossible so far to find correspondences between known physiological types and 
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defined here waveform types. The proposed study is an attempt to show that spike waveforms 

of different neurons recorded on different patients can be grouped and the groups don’t 

correspond to individual patients. This study can not answer to the question about the nature 

of the tendency of spike waveforms to form cluster.    

Clustering and classification carried out for two independent homogenous sets of STN 

revealed five groups whose overlapping did not exceed 40%. Two more data sets were added, 

one from SNr and one from GPi.  The classes obtained could still be divided into five non 

overlapping groups (figure 9.2).  

The distribution of waveform types was studied on individual patients. The results of 

the study showed that all defined waveform types are present in all patients, although the 

types may be represented differently (table 9.2). Thus, the difference in spike waveforms can 

not be considered as patient individual physiology.  The study of the distribution of waveform 

types in brain structures of STN, SNr and GPi showed that in spite of the presence of all types 

in all structures, there is some difference between structures. We have to notice here that the 

GPi statistical data was insignificant for final conclusions. The difference between STN and 

SNr was verified statistically with the Kolmogorov-Smirnov test and then verified by the 

Fisher test where it was applicable. The statistical verification showed a significant difference 

in probability of some waveform types. 

A very impotent part of the study is the correspondence between waveform types and 

neuronal activity patterns. For this analysis the three most significant Types were selected. 

The analysis showed no difference in firing patterns for two of these Types. The third of Type 

was significantly different with respect to Long Burst, Refractory Period and Oscillations 

[0,2]Hz.   
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Chapter 10 

PD symptoms and neuronal activity and patterns  

 
Les études de l’activité neuronale exposées dans le chapitre 7 ont démontré que 

les patterns d’activité peuvent apparaître différemment chez les patients 

individuels. Dans ce chapitre nous examinons comment l’activité neuronale 

varie en fonction de la gravité des symptômes parkinsoniens et vice versa. Un 

algorithme basé sur la méthode de réseau de neurones artificiels est appliqué 

pour chercher des dépendances entre les niveaux de gravité des symptômes 

cliniques relevés au cours des suivis neurologiques des patients et les 

probabilités d’apparition des patterns d’activité neuronale définis et estimés 

dans le chapitre 7. Les résultats des calcules montrent les dépendances positives 

entre les patterns d’activité et les symptômes cliniques suivent : Régidité - Burst 

Court ; Trémor – Période Réfractaire ; Trémor – Oscillations de 4-6Hz ; 

Akinesia - Oscillations de 4-6Hz ; Akinésie – Corrélation ; Bradikyneésie - 

Corrélation. 

 

The results of the neuronal activity patterns analysis in STN showed a significant 

difference in probability of certain activity patterns on individual patients. This difference 

may be due to the individual physiology and to the intensity of the movement disorder in each 

patient. Parkinson Disease is indeed characterized by a number of symptoms which may be 

more or less expressed and even absent on different patients. Here is described an attempt to 

correlate the symptomatic characteristics from patient's monitoring and the frequencies of 

neuronal activity patterns defined in chapter 7.   

10.1  PD symptoms  
The information about the disease evaluation was taken from the department of 

Neurology of the University hospital of Grenoble which followed the Parkinsonian patients 
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operated in the Department of Neurosurgery of the same hospital. During the monitoring of 

the evaluation of PD the symptoms are scored under different conditions: on/off medications 

and on/off stimulation on the pre- and postoperative stages. To estimate the gravity of PD 

symptoms the neurologists of the department use the standard Unified Parkinson Disease 

Rating Scale (UPDRS). The symptoms are scored from 0 to 4: 

0=Absent 
1=Slight 
2= Mild 
3=Moderate 
4=Marked 

Four dysfunction types are scored: tremor, rigidity, repetitive movement dysfunction 

and bradikinesia. The evaluation of these dysfunction types, except bradikinesia, includes 

several scorings presented in table 10.1 estimated on the left and the right side separately.  

The official UPDRS contains only 5 steps, nevertheless neurologist often use “+” notation to 

increase the scale resolution (for example 3+ means that the symptom gravity is between 3 

and 4). Values in the table adapt this additional notation by adding 0.5 to the symptom score if 

it was “+” marked by neurophysiologist. Repetitive movements’ dysfunction shows the 

akinesia gravity. 

   

 

Tremor Rigidity Repetitive movements 

  right left   right left   right left 

Bradikin
esia 

upper limb 0.0 0.0 upper limb 3.0 1.5 index-
thumb 3.0 2.0 

inferior limb 1.0 0.0 inferior limb 2.0 0.0 hands 3.0 1.0 
face 0.0 "marionette" 3.5 2.0 

action 1.0 1.0 
neck 3.0 

feet 3.5 1.5 

2.0 

sum 2.0 1.0   8.0 4.5   13.0 6.5 2.0 
 
Table 10.1 
Example of a symptom scores sample according with the sample methodic used at the 
department of Neurology of the Grenoble University Hospital.  

For the present study the motor symptoms scores were sampled before the surgical 

intervention and off-medication. The scores were added together by symptoms and 

hemispheres as it shown in table 10.1. The dysfunctions scores of neck regidity as well as 
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bradikenesia were included in the two side’s sums. The neuronal activity characteristics were 

taken from the results of the neuronal activity patterns analysis described above in Chapter 7 

of the present memoir (Tables 7.1, 7.4). Thus, for each patient we have a vector of activity 

patterns:    

{ burst long,  
  burst short,  
  refractory period,  
  oscillations 0-2Hz,  
  oscillations 4-6Hz,  
  oscillations 10Hz, 
   firing rate,  
  correlation } 

and a vector of symptoms scores: 

{ tremor,   
  rigidity,    
  akinesia,    
  bradikinesia }. 

The symptom scores on the left and the right hemispheres are different and the 

neuronal activity was considered separately for each hemisphere. The symptoms and the 

activity patterns were associated contralaterally, i.e. the scores evaluated for the left limbs 

movement dysfunctions were associated with the data recorded from the right brain 

hemisphere.   

10.2  Modeling with Polynomial Artificial Network (PNN) 
algorithm  

Iterative GMDH-type (Group Method of Data Handling) Robust PNN algorithm 

(Aksenova, 2005) has been employed to provide the analysis of the dependences between 

clinical symptoms and the types of neuronal activity that were found out in STN of PD 

patients. The GMDH approach (Modala, 1994; Yurachkovsky, 1981) for complex data sets 

analysis is aimed at determining internal data relationships, extracting relevant variables and 

presenting knowledge of these relationships in the parametric form of linear and nonlinear 

polynomial regression equations. Robust PNN provides robust linear and nonlinear 

polynomial modeling in the presence of outliers or/and correlated and irrelative variables. For 

a set of independent variables  X ={x1, x2, ..., xm}  and one dependent variable y the 
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purpose of the algorithm is to find a subset of relevant variables {xi1, xi2 , ..., xik} and a 

model Y = f(xi1, xi2, ..., xik), where f(xi1, xi2, ..., xik) is a polynomial that fitted data the 

best way in sense of some criterion.  

The main features of the PNN algorithm are:  fast learning, results in the parametric 

form of the polynomial equation, complexity control and twice-hierarchical neural net 

structure. A common problem is that the power of polynomials increases too fast in the 

traditional GMDH algorithms. Twice-hierarchical neural net structure provides a wide search 

without an increase in complexity. This structure provides the convergence of the coefficients. 

As different from the traditional GMDH algorithms Robust PNN (Aksenova, 2003b) provides 

robust (M-regression) model identification that implements the algorithm in the presence of 

large errors (outliers) in vector Y.  

For PNN analysis the data is presented as a matrix X of observations which 

correspond to the independent variables and a vector of observations Y corresponding to the 

dependent variable y. The fitness of models quality may be estimated by the coefficient r2 of 

correlation between the observed and the values predicted by the model. The hypothesis is 

that Y depends on some components of matrix X. Thus, if for some model “Y predicted” and 

“Y observed” are correlated then we will consider that there is a dependences described by 

this model. If the error in vector Y has equal dispersions for each component and there is no 

error in matrix X the correlation coefficient r2 may be used as a test verifying the 

hypothesis 0...: 100 ≠××× maaaH , i.e. all the coefficients of the polynomial are not equal 

zero and thus the variable y is dependent.  The value r2=0.43 corresponds the hypothesis 

confidential level p=0.95. 
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10.3  Results 

10.3.1  Data matrices 

All patient data was organized as two matrixes. Matrix Y (table 10.2) recapitulated all 

the data related to patterns of temporal neuronal activity with variables: 

Y = {   y1  – percent of long burst cells,  
y2 – percent of short burst cells, 
y3 – percent of cells with refractory period,  
y4 – percent of oscillating cells (0-2 Hz),  
y5 – percent of oscillating cells (4-6 Hz),  
y6 – percent of oscillating cells (10 Hz),  
y7 – mean firing rate, 
y8 – percent of correlated pairs} 

 The clinical symptoms formed matrix X (table 10.3), namely variables:  

X = { x1 – tremor,  
          x2  - rigidity,  
          x3  – akinesia,     
          x4 –  bradikinesia } 

 

 

name side tremor rigidity akinesia bradikinesia 
AG left 2.5 2 3 2.5 
BS right 6 8 12 3 
CB right 6.5 4 7 1.5 
GB right 2 8 13 2 
LS left 8 5 9.5 3 
LS right 5 4 8.5 3 
DS right 8 5 12 2 
DS left 6 4 8 2 
AT left 2 4 8 1 
AT right 2 2 8 1 
RW left 3 4 1.5 2 
RW right 3 5 1 2 
CG left 1.5 10 6.5 2 
CG right 0.5 9 5.5 2 
DS left 3 7.5 6.5 2.5 
DS right 0 8.5 10.5 2.5 

Table 10.2 
Matrix X of symptom scores sampled on left and right sides for each patient.  
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      Oscillations     
Nom Site burst 

long 
burst 
short 

refractory 
period 0-2Hz 4-6 Hz 10Hz firing 

rate  correlation

AG left 0.27 0.00 0.20 0.40 0.05 0.08 13.45 0.17 

BS right 0.28 0.06 0.18 0.43 0.21 0.12 18.51 0.43 

CB right 0.12 0.01 0.26 0.21 0.03 0.05 12.97 0.07 

GB right 0.06 0.09 0.13 0.13 0.06 0.09 14.95 0.26 

LS left 0.18 0.10 0.26 0.18 0.18 0.00 21.01 0.13 

LS right 0.00 0.10 0.14 0.00 0.00 0.00 20.19 0.30 

DS right 0.01 0.18 0.04 0.18 0.19 0.00 21.54 0.21 

DS left 0.00 0.16 0.00 0.08 0.04 0.06 25.48 0.12 

AT left 0.04 0.00 0.07 0.13 0.07 0.02 27.55 0.13 

AT right 0.00 0.01 0.03 0.03 0.01 0.07 28.23 0.59 

RW left 0.12 0.04 0.08 0.04 0.04 0.08 22.95 0.13 

RW right 0.03 0.03 0.08 0.05 0.00 0.03 20.74 0.14 
CG left 0.21 0.18 0.06 0.36 0.06 0.03 19.89 0.23 
CG right 0.00 0.04 0.04 0.00 0.00 0.00 21.45 0.06 
DS left 0.00 0.50 0.10 0.30 0.00 0.00 26.70 0.0 
DS right 0.00 0.27 0.00 0.03 0.00 0.13 18.20 0.44 

 
Table 10.3 

Matrix Y of neuronal activity. Values xij  of this matrix are equal to jnλ , where λ  is the 

frequency of the pattern and  - number of the observed cells on the set, corresponding to a 
brain hemisphere of a patient.  

jn

10.3.2  Dependent symptoms 

Matrix X of symptom scores is considered to be error free. Conversly, the matrix Y of 

activity patterns contains an error. Since the patient’s statistical samples are of different size 

the dispersion of error for the Y components is different. This error is corrected by 

normalization of the matrix Y: each matrix component was divided by jn ,  is the 

number of observations for any j-th  patient.  

jn

The Robust PNN algorithm software of PNN Discovery Client 1.3 

(http://www.pnn.com.ua/) was used to construct models of dependences between variables of 

X and Y. The first part of the analysis included estimation of all dependences yi =f(xj,…,xk), 

where yi is the i-th activity pattern vector for one brain hemisphere of a patient. The PNN 

Discovery Client estimates a few variants of polynomial models in each case. We considered 

the 3 best models with criteria r2 >0.43. This coefficient threshold correspond to the 
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confidential level 0.95 for the hypothesis of existence of a dependency between vector yi and 

matrix X. Table 10.4 presents selected models for each considered activity pattern. 

 

 

activity pattern models r2 dependent 
symptoms 

0.015799*X1+0.001159*(X2**2)-0.000713*(X3**2) 0.58 
0.018488*X1-0.009174*X3+0.001395*(X2**2)  0.56 Y1 Long Burst  
0.011853*X2+0.001757*(X1**2)-0.00075*(X3**2) 0.55 

X1 X2 -x3 

-0.055195+0.01321*X1+0.013959*X2 0.65 

0.008383*X1+0.008144*X2 0.65 Y2 Short Burst  
0.012114*X1+0.011507*X2-0.016602*X4 0.63 

X1 X2 

0.013454*X1+0.026145*X4 0.00528 0.55 
0.010942*X1-0.006215*X2+0.046188*X4 0.57 Y3 Refractory 

Period 
0.015125*X1-0.003684*X3+0.035658*X4  0.57 

X1 X4  

0.030248*X1+0.049463*X2-0.112388*X4  0.79 

-193425+0.024914*X1+0.043958*X2 0.75 Y4 Oscillation       
1-2Hz  

0.009577*X1+0.022959*X2 0.74 

X1 X2 

-0.053833+0.015631*X1+0.007268*X3  0.75 
0.016738*X1 0.76 Y5 Oscillation       

4-6Hz   
0.012552*X1+0.002719*X3 0.73 

X1 x3 

0.05803-0.008746*X1+0.003422*X3 0.5 

0.079064-0.007412*X1 0.42 Y6 Oscillation 10Hz  
0.058119-0.008297*X1+0.011435*X4  0.45 

-X1 X3 X4 

31.104465-0.958834*X1-1.064893*X2  0.57 
28.427741-1.017846*X1-0.084013*(X2**2)  0.55 Y7 Firing Rate  

27.693659-0.814379*X2-0.075934*(X1**2)  0.46 

-X1 -X2 

-0.017489*X1+0.017338*X3+0.058796*X4 0.7 

0.013881*X3+0.040535*X4 0.63 Y8 Correlation 
-0.101291+0.015843*X3+0.077487*X4  0.63 

X3 X4 –x1 

 
Table 10.4 
Results of  yi =f(xj,…,xk)  modeling by Robust PNN. The three best models with criteria r2 
>0.43 were taken into consideration. The dependent symptoms are given in upper case if they 
appear more then once and with a significant coefficient in the models. Dependent symptom 
variables are given in the last column in lower case either if this variable’s coefficients in the 
model are much smaller than other variables coefficients or if the variable appears only once in 
the 3 selected models. Otherwise the dependent symptom variables are given in upper case. 
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10.3.3  Dependent activity patterns 

The Robust PNN is able to treat the presence of outliers in the dependent variable. Let 

us consider the dependences xi=f(yj,…,yk), where xi is the i-th symptom scores vector. Here 

the independent variable contains an error and the criteria r2  can’t be applied. Nevertheless 

the algorithm may still be used and these results may cross verify the first part analysis result. 

Like in the first part we considered the 3 best models suggested by the PNN Discovery Client, 

which are presented in table 10.5. 

 
 

symptoms models r2 dependent activity 
patterns  

(-)14.892275*Y1+25.485394*Y3+30.422389*Y5  0.82 

11.174682*Y3+19.229979*Y5+0.068835*Y7 0.74 X1 Tremor   

.56068+9.25755*Y3+19.936073*Y5 0.72 

Y3 Y5 -y1 y7 

7.708413+10.27329*Y2-0.154016*Y7  0.54 

4.648178+8.882124*Y2  0.46 X2 Rigidity   

4.149816+4.596205*Y1+9.937242*Y2  0.49 

Y2 -y7 y1 

3.978743+21.148461*Y5+11.809496*Y8  0.67 

6.551802-15.792603*Y1+38.189547*Y5  0.66 X3 Akinesy  

20.912704*Y5+0.164459*Y7+14.811012*Y8 0.66 

Y5 Y8 -y1 y7  

1.556933+2.338241*Y3+2.068313*Y8 0.56 

1.679161+1.259394*Y2+1.990788*Y8  0.52 X4 Bradikinesy   

1.835763+1.937433*Y8 0.44 

Y8 y2 y3 

 
Table 10.5 
Results of  xi=f(yj,…,yk)  modeling by Robust PNN. The 3 best models were taken into 
consideration. The dependent activity patterns variables are given in the last column in lower 
case either if this variable’s coefficients in the model are much smaller than other variables 
coefficients or if the variable appears only once in the 3 selected models. Otherwise the 
dependent symptom variables are given in upper case. 

The dependences were considered as “strong” if they appear more than once in the 3 

selected models with significant coefficients, which corresponds to the upper case notation in 

tables 10.4, 10.5. Otherwise, the dependences were considered as “weak”. They correspond to 

the lower case notation in tables 10.4, 10.5.  Figure 10.1 summarizes the significant 

dependences. The dependences found during the first part analysis were taken into account 

only if they were confirmed by a reciprocal dependency found in the second part of the 
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analysis. ”Weak” direct and reciprocal dependences are displayed as dotted arrows in Figure 

10.1. They are shown as double arrows on the schema. If the both dependences are “strong” 

they are represented by a solid arrow. 

  

    
Rigidity Tremor Akinesia Bradikynesia

Refractory Oscillation  Firing Short  Long  
CorrelationBurst Burst Period [4-6]Hz Rate 

 
 
Figure 10.1 
Schema of “symptom – activity pattern” dependences. Symptoms and patterns are connected 
with arrows if dependencies were found during modeling in both directions, i.e. 
Symptom_A=f(pattern_B) and Pattern_B=f(Symptom_A). The arrows are solid if the both 
dependences are “strong” otherwise the arrows are dotted. Negative dependences are marked 
with sighns “-” in round frams. 

10.4 Discussion 
Increased firing rate in STN and, consequently, in the STN target nuclei, i.e. GPi/SNr, 

influences the activity of their ultimate target structures i.e. the thalamus, neocortex and 

brainstem. These changes may impair the normal functioning of the motor system and may 

underlie the Parkinsonian symptoms such as tremor, rigidity, akinesia, gait, and postural 

disturbances (Hamani, 2003).  

Using PNN modeling several dependences were found between the severity of PD 

symptoms and the neuronal activity in STN.  It is worth noting a strong dependency between 

rest tremor and the oscillations at [4,6]Hz. This dependency is well known and illustrates the 
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validity of our approach. Conversely, the association of tremor and refractory period is new 

and less obvious. Oscillations at [4,6]Hz contribute not only to tremor but also to akinesia. 

Bursting activity, in particular “short burst” was associated with rigidity. Correlated activity 

contributes to both akinesia and bradikinesia. 

The overall picture drawn by these associations offers a new and challenging scheme 

of the physiopathology of PD symptoms with respect to the STN activity. Further analysis 

aimed at studying the association of the same symptoms with the activity of the other main 

nuclei of the basal ganglia, i.e. GPi/SNr and Thalamus (VIM) should eventually lead to a 

thorough interpretation of the complex symptomology observed in PD patients.  Another 

perspective is the interpretation of the results according with the existing models of basal 

ganglia (Gurney et al, 1998). From the other side the results could be used for precising and 

developing such models. 
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Appendix A 

USS software implementation  
 
Dynamic link library main classes  
 

1. SpikeChannel – This class includes all the procedures necessary to process a signal 
from one microelectrode (one channel). USS processes the channels consequently, so 
only one object of this class is created. If several channels are supposed to be 
processed simultaneously one object of SpikeChannel must be created for each of 
them.  

2. TArray – Template class to facilitate manipulations with arrays 
3. ImpulseDistance – Includes the procedures to calculate distances between impulses. 
4. AccumulationImpulseArray – Includes a dynamic array of impulses of type Impulse 

(see class 14 “Impulse”) which to be filled during accumulation of the learning set for 
the learning procedure. There are also functions to manipulate this array. 

5. DetectionImpulseArray – During the classification of impulses of type Impulse (see 
class 14 “Impulse”) all candidate impulses extracted from the current buffer are added 
to the dynamic array of this class. Includes also functions to manipulate this array. 

6. TrainingNeuronArray – The class is to manipulate the results of the learning 
procedure and to do the post-processing of the results. Includes an array of all found 
templates of type Neuron (see class 13 “Neuron”). 

7. NeuronArray – A class for manipulation with a dynamic array of type Neuron (see 
class 13 “Neuron”). 

8. THistogram – A class for histograms calculation. 
9. ExportImpulses – Accumulates the classification results as two arrays: neuron 

numbers and occurrence times during the classification and allows copying them to a 
memory buffer. (This functionality is not used in the present version of USS). 

10. TDetection – Includes functions necessary to process the classification. 
11. ChiSquare – A class for χ2 distribution estimation. 
12. TSpike – Keeps detected impulses and their derivatives.  
13. Neuron – Includes the information about impulse classes such as class template and 

class radius. 
14. Impulse - Keeps detected impulses and the information about it. The functions of this 

class allow normalizing and denormalizing an impulse. 
15. ImpulseEntry – a class to process entries (and non entries) of impulses in detected 

classes during learning procedure and its post-processing. 
16. TNeuronCenter – structure to define the center of a class.  
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Classes Diagram 

 
 
 
List of external library functions 
 
EXPORT void all_Init(int channelCount, int 
bufferSize, int* error)  
 
Description: 
Creates channelCount objects of class SpikeChannel 
and initializes their parameters. Sets the global variable 
corresponding to the number of channels to analyze 
simultaneously to channelCount.   
 
Parameters:  
const int channel –number of channels to anywise 
simultaneously 
int bufferSize 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void all_Done(int* error)  
 
Description: 
Deletes all the objects of class SpikeChannel created 
before. Sets the global variable corresponding to the 
number  of channels to analyze simultaneously to 0.   
 
Parameters:  
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT int all_Ready(int* error); 
 
Description:  
Returns 0 if all channels are ready to be analyzed; 0 – 
otherwise. 
Parameters:  
int * error – set to 1 if error, set to 0 if successful. 
 
 

EXPORT void chl_SpikeMain(const int channel, short 
* Buffer, int bufSize, int * error)  
 
Description: 
Processes next buffer of data signal according to the 
current regime of the program: 
Visualization regime - signal derivative estimation; 
Accumulation regime - signal derivative estimation, 
detection of spikes and accumulation of the learning 
set; 
Spike sorting regime - signal derivative estimation, 
detection of spikes and their classification. 
 
Parameters:  
const int channel – channel number 
short * Buffer – pointer to a buffer of data 
int bufSize – size of the buffer 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_StartAccumulation(const int 
channel, const int accumulate Noise,  
  int* accumulateMask, int* keepMask, int size, int * 
error) 
 
Description: 
Sets the regime of accumulation for the specified 
channel set accumulation and creates an object of class 
AccumulationNeuronArray and initializes it. 
 
Parameters:  
const int channel – channel number 
const int accumulate Noise -  
int* accumulateMask -  
int* keepMask -  
int size – learning set size (number of spikes to 
accumulate) 

SpikeChenne
l 

TrainingNeuronArray NeuronArray DetectionImpulseArray AccumulationImpulseArray THistgram TDetection ImpulseDistance ExportImpulses TArray 

Impulse ImpulseEntry Neuron ChiSquare TSpike 
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int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_StartDetection(const int channel, 
int * error) 
 
Description: 
Sets the classification regime for the specified channel.  
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_StopDetection(const int channel, 
int * error) 
 
Description: 
Resets the current regime to the visualization for the 
specified channel. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void all_StartAccumulation(int * error)  
 
Description: 
Sets the regime of accumulation for all the channels 
and creates an object of class 
AccumulationNeuronArray for each of them.  
 
Parameters:  
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void all_StartTraining(int* error)  
 
Description: 
Stops the on-line flow of the program. Stars the 
learning procedure for all the channels for which a 
learning set is accumulated. Creates an object of class 
TrainingNeuronArray with the results of the learning 
procedure for each of them. Resets the on-line flow. 
 
Parameters:  
int * error – set to 1 if error, set to 0 if successful. 
 
 
 
 
EXPORT void chl_TrainingIteration(const int channel, 
int * error)  
 
Description: 
Starts the next iteration of the learning procedure for 
the specified channel. 
 
Parameters:  

const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingMarkSmall(const int 
channel, int * array, const int size, int * error)  
 
Description: 
Learning results post-processing function. Finds the 
non-representative classes and puts information about 
in the array “array”. (Class is considered to be non-
representative if it has less then 3 members.) 
 
Parameters:  
const int channel – channel number 
int * array – array[i] is 1 if the class i is considered to 
be non-representative; 0 – otherwise. 
const int size – size of the array 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingRemoveSmall(const int 
channel, int * error)  
 
Description: 
Learning results post-processing function. Finds and 
removes the non-representative classes. (Class is 
considered to be non-representative if it has less then 3 
members.) 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingRemoveArtifacts(const int 
channel, int * error)  
 
Description: 
Learning results post-processing function. Finds and 
removes the classes, formed by artifacts of large 
amplitude. (Class is considered to be formed by 
artifacts if it has less then 4 members.)  
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingMarkOverlapped(const int 
channel, int * array, const int size, int * error)  
 
Description: 
Learning results post-processing function. Finds the 
overlapped classes and puts information about in the 
array “array”. (Classes are considered overlapped if 
one of them includes more then 80% of members of the 
another one.) 
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Parameters:  
const int channel – channel number 
int * array – array[i] is 1 if the class i is the less 
representative of two overlapped classes; 0 – 
otherwise. 
const int size – size of the array 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingViewOverlapped  
  (const int channel, const int neuron, int * array, const 
int size, int * error) 
 
Description: 
Learning results post-processing function. Finds all the 
classes overlapped with class “neuron” and puts 
information about in the array “array”. (Classes are 
considered overlapped if one of them includes more 
then 80% of members of another one.) 
 
Parameters:  
const int channel – channel number 
const int neuron – class number 
int * array – array[i] is 2 if the class i is overlapped 
with classes “nuron”; 0 – otherwise 
const int size – size of the array 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingRemoveOverlapped(const 
int channel, int * error)  
 
Description: 
Learning results post-processing function. Finds and 
removes the overlapped classes and puts information 
about in the array “array”. (Classes are considered 
overlapped if one of them includes more then 80% of 
members of the another one.) 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_DelTrainingNeuron(const int 
channel, int neuron, int * error)  
 
Description: 
Learning results post-processing function. Deletes 
class “neuron” from the resalts of the learning. 
Parameters:  
const int channel – channel number 
int neuron – class number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_Accept(const int channel, int * 
error)  
 

Description: 
Creates an object of class “DetectionImpulseArray” for 
the channel “channel”, and prepares everything for 
classification according to the accepted templates. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
 
 
EXPORT void all_Accept(int * error)  
 
Description: 
Finds all the channel for which the learning is finished 
and creates an object of class “DetectionImpulseArray” 
for each of them. Prepares everything for classification 
according to the accepted templates. 
 
Parameters:  
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_memcpyD0(const int channel, short 
* DestBuf, int Size, int * error)  
 
Description: 
Copies the currently processed buffer of row signal. 
 
Parameters:  
const int channel – channel number 
short * DestBuf – pointer to the destination array 
int Size – size of the destination array 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_memcpyD1(const int channel, int * 
DestBuf, int Size, int * error) 
 
Description: 
Copies the derivative of row signal estimated for the 
currently processed buffer. 
 
Parameters:  
const int channel – channel number 
short * DestBuf – pointer to the destination array 
int Size – size of the destination array 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_memcpyD2(const int channel, int * 
DestBuf, int Size, int * error)  
 
Description: 
Copies the second derivative of row signal estimated 
for the currently processed buffer.  
 
Parameters:  
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const int channel – channel number 
short * DestBuf – pointer to the destination array 
int Size – size of the destination array 
int * error – set to 1 if error, set to 0 if successful. 
 
EXPORT void chl_GetAlpha(const int channel, int * 
alpha, int * error)  
 
Description: 
Gets the current regularization parameter for the first 
derivative estimation. 
 
Parameters:  
const int channel – channel number 
int * alpha – pointer to the regularization parameter 
value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetAlpha(const int channel, int * 
alpha, int * error)  
 
Description: 
Sets the current regularization parameter for the firs 
derivative estimation. 
 
Parameters:  
const int channel – channel number 
int * alpha – pointer to the regularization parameter 
value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetBeta(const int channel, int * 
beta, int * error)  
 
Description: 
Gets the current regularization parameter for the seconf 
derivative estimation. 
 
Parameters:  
const int channel – channel number 
int * beta - pointer to the regularization parameter 
value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetBeta(const int channel, int * 
beta, int * error)  
 
Description: 
Sets the current regularization parameter for the second 
derivative estimation. 
 
Parameters:  
const int channel – channel number 
int * beta - pointer to the regularization parameter 
value 
int * error – set to 1 if error, set to 0 if successful. 

 
 
EXPORT void chl_GetImpCount(const int channel, int 
* cnt, int * error)  
 
Description: 
Gets the count of impulses in the learning set. 
 
Parameters:  
const int channel – channel number 
int * cnt – pointer tho the value of impulses count 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetImpCount(const int channel, int 
* cnt, int * error)  
 
Description: 
Sets the count of impulses in the learning set. 
 
Parameters:  
const int channel – channel number 
int * cnt – pointer tho the value of impulses count 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetTbefore(const int channel, int * 
Tbefore, int * error)  
 
Description: 
Gets the current parameter of number of point to 
extract before the threshold crossing during detection 
of spikes in row signal.  
 
Parameters:  
const int channel – channel number 
int * Tbefore – pointer to the value of the parameter 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetTbefore(const int channel, int * 
Tbefore, int * error) 
 
Description: 
Sets the current parameter of number of point to extract 
before the threshold crossing during detection of spikes 
in row signal.  
 
Parameters:  
const int channel – channel number 
int * Tbefore – pointer to the value of the parameter 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetTafter(const int channel, int * 
Tafter, int * error)  
 
Description: 

 



 
Appendix A:                    

118

Gets the current parameter of number of point to 
extract after the threshold crossing during detection of 
spikes in row signal.  
 
Parameters:  
const int channel – channel number 
int * Tafter – pointer to the value of the parameter 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetTafter(const int channel, int * 
Tafter, int * error)  
 
Description: 
Sets the current parameter of number of point to 
extract after the threshold crossing during detection of 
spikes in row signal.  
 
Parameters:  
const int channel – channel number 
int * Tafter – pointer to the value of the parameter 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetImpulseSize(const int channel, 
int * ImpulseSize, int * error)  
 
Description: 
Gets the size of the arrays in which the spike and its 
derivatives are kept.  
 
Parameters:  
const int channel – channel number 
int * ImpulseSize – pointer to the value of arrays size 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetAutoThreshold(const int 
channel, int * autoThreshold, int * error)  
 
Description: 
Gets the Boolean value of the automatic threshold 
parameter. If the value is true, the threshold for 
detection of spikes from the signal is recalculated 
automatically for each buffer of signal. Otherwise the 
threshold is set to a fixed value. 
 
Parameters:  
const int channel – channel number 
int * autoThreshold – pointer to the value of the 
parameter 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetAutoThreshold(const int 
channel, int * autoThreshold, int * error)  
Description: 
Gets the Boolean value of the automatic threshold 
parameter. If the value is true, the threshold for 

detection of spikes from the signal is recalculated 
automatically for each buffer of signal. Otherwise the 
threshold is set to a fixed value. 
 
Parameters:  
const int channel – channel number 
int * autoThreshold – pointer to the value of the 
parameter 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetThreshold(const int channel, int 
* threshold, int * error)  
 
Description: 
Gets the value of the current threshold for detection of 
spikes from the. 
 
Parameters:  
const int channel – channel number 
int * threshold – pointer to the value of the threshold 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetThreshold(const int channel, int 
* threshold, int * error)  
 
Description: 
Sets the value of the current threshold for detection of 
spikes from the signal. 
 
Parameters:  
const int channel – channel number 
int * threshold – pointer to the value of the threshold 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetThreshCoeff(const int channel, 
float * threshCoeff, int * error) 
 
Description: 
Gets the value of the parameter of coefficient to 
calculate the threshold for detection of spikes from the 
signal. To calculate the threshold value the standard 
diviation of the signal is multiplied by the coefficient. 
 
Parameters:  
const int channel – channel number 
int * threshold – pointer to the value of the coeffitient 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetThreshCoeff(const int channel, 
float * threshCoeff, int * error)  
 
Description: 
Sets the value of the parameter of coefficient to 
calculate the threshold for detection of spikes from the 
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signal. To calculate the threshold value the standard 
diviation of the signal is multiplied by the coefficient. 
 
Parameters:  
const int channel – channel number 
int * threshold – pointer to the value of the coeffitient 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetDetectionRadiusCoeff(const int 
channel, float * Coeff, int * error)  
 
Description: 
Gets the value of the parameter of coefficient to fit the 
detected classes’ radiuses for the classification. After 
the learning the classes’ radiuses are calculated 
automatically and then they are multiplied by the 
coefficient. 
 
Parameters:  
const int channel – channel number 
int * Coeff – pointer to the value of the coeffitient 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetDetectionRadiusCoeff(const int 
channel, float * Coeff, int * error)  
 
Description: 
Sets the value of the parameter of coefficient to fit the 
detected classes’ radiuses for the classification. After 
the learning the classes’ radiuses are calculated 
automatically and then they are multiplied by the 
coefficient. 
 
Parameters:  
const int channel – channel number 
int * Coeff – pointer to the value of the coeffitient 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetSigma(const int channel, float * 
sigma, int * error)  
 
Description: 
Gets the value of the standard deviation of the signal. 
 
Parameters:  
const int channel – channel number 
int * sigma – pointer to the value of the standard 
deviation 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetNeuronCount(const int channel, 
int * count, int * error)  
 
Description: 

Gets the count of classes, detected during the learning 
stage. 
 
Parameters:  
const int channel – channel number 
int * count – pointer to the value of the count 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetNeuron(const int channel, const 
int neuron, int * Center, float * Radius, int * 
ImpulseCount, int* changeable, int * error) 
 
Description: 
Gets information (see parameters) about class 
“neuron”. 
 
Parameters:  
const int channel – channel number 
const int neuron – class number 
int * Center – number of the impulse, representing the 
class center 
float * Radius – radius of the class 
int * ImpulseCount – number of impulses-members of 
the class 
int* changeable – 1- if the changes of class parameters 
are allowed, 0- otherwise  
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetIsIn(const int channel, const int 
neuron, char* IsIn, int * error) 
 
Description: 
Gets the array containing information about belonging 
of the impulses from the learning set to class “neuron”. 
 
Parameters:  
const int channel – channel number 
const int neuron – class number 
char* IsIn – IsIn[i] is 1 if impulse i belongs to the class, 
0 - otherwise 
int * error – set to 1 if error, set to 0 if successful. 
 
 
 
 
EXPORT void chl_GetMinMaxNeuron(const int 
channel, short* min, short* max, int* error)  
 
Description: 
Gets numbers of classes of maximal and minimal 
amplitudes. 
 
Parameters:  
const int channel – channel number 
short* min – pointer to the minimal amplitude class 
number  
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short* max - pointer to the maximal amplitude class 
number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetImpulse 
  (const int channel, const int impulse, short * data0, int 
* data1, int * data2, int * error) 
 
Description: 
Gets impulse “impulse” from the learning set. 
 
Parameters:  
const int channel – channel number 
const int impulse – impulse number 
short * data0 – pointer to the  array of signal values, 
corresponding to the impulse 
int * data1 - pointer to the  array of signal first 
derivative values 
int * data2 - pointer to the  array 0f signal second 
derivative values 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetImpulseMinMax 
  (const int channel, const int impulse, short * min, 
short * max, int * error) 
 
Description: 
Gets maximal and minimal amplitude values of 
impulse “impulse” from the learning set. 
 
Parameters:  
const int channel – channel number 
const int impulse – impulse number 
short * min – pointer to the minimal amplitude value  
short * max – pointer to the maximal amplitude value  
int * error – set to 1 if error, set to 0 if successful. 
 
 
 
 
EXPORT void chl_GetImpulseTime  (const int 
channel, const int impulse, int * time, int * error) 
 
Description: 
Gets the time of the impulse “impulse” occurrence. 
 
Parameters:  
const int channel – channel number 
const int impulse – impulse number 
int * time – pointer to the occurrence time 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetMeanSpike(const int channel, 
const int neuron, short* data0, int* error)  
 
Description: 

Calls SpikeChannel class methods to calculate mean 
impulse fore class “neuron”. 
 
Parameters:  
const int channel – channel number 
const int neuron – class number 
short* data0 – pointer to the array, containing the mean 
impulse 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_Distr1toAll 
 (const int channel, const int impulse, int * Distr, int 
DistrSize, float Step, int * error) 
 
Description: 
Calls SpikeChannel class methods to calculate 
distribution histogram of distances from impulse 
“impulse” to all other impulses of the learning set. 
 
Parameters:  
const int channel – channel number 
const int impulse – impulse number in the learnn set 
int * Distr – pointer to the array, containing the 
calculated distribution 
int DistrSize – size of the array 
float Step – histogram bin 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetTrainingRadius(const int 
channel, int neuron, float * radius, int * error)  
 
Description: 
Gets class radius. 
 
Parameters:  
const int channel – channel number 
int neuron – class number 
float * radius – pointer to the radius value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetTrainingDistances(const int 
channel,  float * dist, int * error)  
 
Description: 
Gets the array of distances between all the spikes from 
learning set. 
 
Parameters:  
const int channel – channel number 
float * dist – pointer to the distances array 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetTrainingRadius(const int 
channel, int neuron, float * radius, int * error)  
 

 



 
Appendix A:                    

121

Description: 
Sets the class radius for learning. 
 
Parameters:  
const int channel – channel number 
int neuron – class number 
float * radius – pointer to the radius value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_TrainingCalculateRadius(const int 
channel, int* error)  
 
Description: 
Initiates the (re)calculation of detected classes 
radiuses. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetTemplateCount(const int 
channel, int * count, int * error)  
 
Description: 
Gets the count of detected classes. 
 
Parameters:  
const int channel – channel number 
int * count – pointer to detected classes count 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetTemplate(const int channel, 
const int impulse,  
  short* data0, int* data1, int* data2, int* ext1, int* 
ext2, int* error)  
 
Description: 
Gets a detected template. Each template is represented 
by a spike detected from the raw signal. For each spike 
the first and second derivative calculated and may be 
normalized. 
 
Parameters:  
const int channel – channel number 
const int impulse – number of the template to get 
short* data0 – pointer to the array of the spike from 
raw signal  
int* data1 - pointer to the array containing the first 
derivative of the spike 
int* data2 - pointer to the array containing the second 
derivative of the spike 
int* ext1 – pointer to the value of the normalization 
coefficient for the first derivative 
int* ext2 - pointer to the value of the normalization 
coefficient for the second derivative 
int * error – set to 1 if error, set to 0 if successful. 

 
 
EXPORT void chl_GetMinMaxTemplate(const int 
channel, short* min, short* max, int* error)  
 
Description: 
Gets values of minimal and maximal amplitudes on all 
the detected templates. 
 
Parameters:  
const int channel – channel number 
short* min – pointer to the value of minimal amplitude 
short* max – pointer to the value of maximal amplitude 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetExpoImpsCount(const int 
channel, int * count, int * error)  
 
Description: 
Gets count of exported templates. 
 
Parameters:  
const int channel – channel number 
int * count – pointer to the value of template count 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetHistogramSize(const int 
channel, int* size, int* error) 
 
Description: 
Gets the size of a histogram. 
 
Parameters:  
const int channel – channel number 
int * size – pointer to the value of the histogram size 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_ResetHistogram(const int channel, 
int* error)  
 
Description: 
Resets the members of class THistogram to initial 
values. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetHistogram 
  (const int channel, const int neuron, int* good, int* 
bad,  int* chi, int size, 
   float* e1, float* e2, int* error) 
 
Description: 
Gets histogram information. 
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Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetDetectionRadius(const int 
channel, const int neuron, float* radius, int* error)  
 
Description: 
Gets the class radius used for spike sorting. 
 
Parameters:  
const int channel – channel number 
int neuron – class number 
float * radius – pointer to the radius value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_SetDetectionRadius(const int 
channel, const int neuron, float* radius, int* error)  
 
Description: 
The class radius is calculated automatically by learning 
procedure are used for spike sorting. This function 
allows setting the class radius. 
 
Parameters:  
const int channel – channel number 
int neuron – class number 
float * radius – pointer to the radius value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetDetectionSpike(const int 
channel, int  spikeNumber, int* nrn, double* spikeX, 
double* spikeY,  
  double* portretX, double* portretY, int* match, int* 
time, int* error) 
 
Description: 
Gets a spike from the member array of impulses of 
class DetectionImpulseArray. 
 
Parameters:  
const int channel – channel number 
int  spikeNumber – number of the spike in the array 
int* nrn – pointer to the class number value 
double* spikeX – pointer to the array of X coordinates 
of the spike graph in time domain 
double* spikeY – pointer to the array of Y coordinates 
of the spike graph in time domain 
double* portretX – pointer to the array of X 
coordinates of the spike graph in phase space 
double* portretY – pointer to the array of Y 
coordinates of the spike graph in phase space 
int* match  
int* time – pointer to the value of  the spike occurrence 
time  

int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetDetectionAmplitude(const int 
channel, double* ampl, int* error) 
 
Description: 
Gets maximal amplitude value for graphical output of 
sorted spikes. 
 
Parameters:  
const int channel – channel number 
double* ampl – pointer to the amplitude value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetDetectionFiringRate(const int 
channel, int neuron, double* firingRate, int* error) 
 
Description: 
Gets firing rate of a sorted spike. 
 
Parameters:  
const int channel – channel number 
int neuron – class number  
double* firingRate – pointer to the firing rate value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_GetDetectionSpikeCount(const int 
channel, int*  spikeCount, int* error) 
 
Description: 
Gets number of spikes detected from the current buffer 
of signal. 
 
Parameters:  
const int channel – channel number 
double* spikeCount – pointer to the count value 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_AddTemplates(const int channel, 
int templLength, float Radius, short* spike, int* der1, 
int* der2, int ext1, int ext2, int* error)  
 
Description: 
Adds a class template to the member array of type 
Neuron in NeuronArray class. 
 
Parameters:  
const int channel – channel number 
int templLength – size of the arrays Spike, der1, der2 
float Radius – radius of  the class, represented by the 
template  
short* spike – pointer to the array of the spike from raw 
signal  
int* der1 - pointer to the array containing the first 
derivative of the spike 
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int* der2 - pointer to the array containing the second 
derivative of the spike 
int* ext1 – pointer to the value of the normalization 
coefficient for the first derivative 
int* ext2 - pointer to the value of the normalization 
coefficient for the second derivative 
 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void 
chl_ArrangeEverythingForDetection(const int channel, 
int* error)  
 
Description: 
Creates and initializes all necessary objects for spike 
sorting. This function should be used if the templates 
are exported and the learning stage is skipped. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_UpdateTemplates(const int 
channel, int* error)  
 
Description: 
Should update templates according to the changes in 
the activity. This function is not used in USS. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void all_updateChi(int* error) 
 
Description: 
Should update histograms after the update of the 
templates. This function is not used in USS. 
 
Parameters:  
const int channel – channel number 
int * error – set to 1 if error, set to 0 if successful. 
 
 
EXPORT void chl_AccumulationDone(const int 
channel, int* done, int* error)  
 
Description: 
Verifies if the accumulation of the learning set is 
over. 
Parameters:  
const int channel – channel number 
int* done - set to 0 if the accumulation of the 
learning set is finished, non 0 value if not 
int * error – set to 1 if error, set to 0 if successful. 
 

 
EXPORT int all_Ready(int* error)  
 
Description: 
Returns number of channels ready for on-line 
processing, i.e. they are not on the off-line stage of 
learning. 
Parameters:  
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USS LabView modules documentation 
 

USS data reading and manipulation, as well as user interface is realized on National 
Instruments LabView. The realization contains about 50 operating modules which called 
Visual Instruments. They permit interaction with user by means of windows menu and 
LabView controls, data file reading, data and analysis visualization, operating which includes 
switching between application modes (simple visualization, learning set collection, spike 
sorting, running of the learning procedure) and library function calls.  All these modules can 
be grouped into User Interface Modules, File Manipulation Modules, Data Format Checking 
Modules, Operating Modules. The schema below represents hierarchical view of modules, 
user defined data types and global variables which is followed by descriptions of each of 
them.USS can be lunched directly from LabView environment by starting the main window 
module SpikeDetection.vi. The spike sorting window module should have been opened 
previously to avoid blinking during spike sorting,  
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User Interface Modules 
 
 

 

File name: SpikeDetection.vi 
Functions: 
- menu handling 
- signal visualisation 
- parameters fitting 
- switcheing between Visualisation, Learning and 
Spike Sorting modes 
 

 
 

 
 
File name: Training.vi 
Functions: 
- visualissation of the results of the learning 
proocedure; 
- user template selection feed back; 
Input 
- error handling structure; 
Output 
- error handling structure; 

 
 
 

 
 
File name: Detection.vi 
Functions:  
- spike sorting visualisation; 
Input: 
- number of already readed data buffers fron the 
current signal; 
- current signal file reference; 
- eof (0-no, 1-yes) 
- error handling structure; 
Output:  
- closed (boolean) 
- error handling structure; 

 
 
 

 
 
File name: SelectChannel.vi 
Functions: 
- channel selection for multy chanel recordings 
Input 

- number of channels in the recording; 
Output 
- selected channel number; 

 

 

 
File name: DialogUpdateParams.vi 
Functions: 
- parameters fitting; 
Input 
- global parameters structure; 
Output 
- global parameters structure; 
 

 
 
 
File Handling Modules  
 
 

 
 
File name: AbelesOpen.vi 
Functions: 
- opens and prepares output file; 
- writes heading information; 
Outputs: 
- LabView file reference; 
- file path; 
 

 
 
 

 
 
File name:  TryRead.vi 
Functions: 
- reads next portion of data of specified length from 
the file to a data buffer; 
- checks eof; 
Inputs: 
- LabVieew file reference; 
- length of data to read; 
- error handling structure; 
Outputs; 
- a buffer containing read data; 
- eof (bool) 
- new offset; 
- error handling structure; 
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File name: Superposition.vi 
Functions: 
- superimposes by addition a specified file data and a 
data buffer; 
Inputs: 
- data buffer; 
- LabView file reference; 
Outputs; 
- resulting buffer; 

 

 
 
File name: SaveTemplates.vi 
Functions: 
- creats a new template file; 
- saves templates and templates info resulted from the 
last training procedure; 
Inputs: 
- folder path to save the file; 

 
 

 
 
File name: LoadTemplates.vi 
Functions: 
- loads templates and template info from a template 
file; 
- modifies spike sorting parameters according to the 
loaded info. 
Inputs: 
- LabView template file reference; 
Outputs; 
- parameters structure containing old parameters; 
- parameters structure containing newly loaded 
parameters; 

 
 
 

 
 
File name: File Set Offset.vi 
Functions: 
- allows moving along the current record by means of 
main window slide control; 
Inputs: 
- current offset; 
- error handling structure; 
Outputs; 
- new offset; 
- error handling structure; 

 

 
File name: ResultsWrite.vi 
Functions: 
- writes detected spike record to the output time 
series file during spike sorting; 
Inputs: 
- current data buffer number; 
- LabView file reference; 
- current channel number; 
- template neuron number; 
- time in sample points in current data buffer; 

 
 

 
 
File name: Data Read.vi 
Functions: 
- Manages moving along the file and reading of 
data corresponding to the selected channel; 
Inputs: 
- error handling structure; 
Outputs; 
- eof (bool); 
- filled buffer; 
- new offset (current position) 
- new offset; 
- error handling structure; 
 

 
Format Checking Modules 
 
 
 

 
 
File name: CheckFormatWAV.vi 
Functions: 
- fills the data read control structure from headings 
of wav file; 
Inputs: 
- file path; 
- data buffer length in ms; 
- file read controls structure; 
Outputs; 
- file read controls structure; 
- error handling structure; 
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File name: CheckFormatSMR.vi 
Functions: 
- fills the data read control structure from headings of 
smr file; 
Inputs: 
- file path; 
- data buffer length in ms; 
- file read controls structure; 
Outputs; 
- file read controls structure; 
- error handling structure; 

 
 

 
 
File name: CheckFormatMAP.vi 
Functions: 
- fills the data read control structure from headings of 
map file; 
Inputs: 
- file path; 
- data buffer length in ms; 
- file read controls structure; 
Outputs; 
- file read controls structure; 
- error handling structure; 

 
 

 
 
File name: CheckFormatBin.vi 
Functions: 
- fills the data read control structure from headings of 
binary file; 
Inputs: 
- file path; 
- data buffer length in ms; 
- file read controls structure; 
Outputs; 
- file read controls structure; 
- error handling structure; 

 
 

 
 
File name: CheckFormatAIF.vi 
Functions: 
- fills the data read control structure from headings of 
aif file; 
Inputs: 

- file path; 
- data buffer length in ms; 
- file read controls structure; 
Outputs; 
- file read controls structure; 
- error handling structure; 

 
 

 
 
File name: CheckFormatAbl.vi 
Functions: 
- fills the data read control structure from headings 
of abeles file; 
Inputs: 
- file path; 
- data buffer length in ms; 
- file read controls structure; 
Outputs; 
- file read controls structure; 
- error handling structure; 

 
 
 

 
 
File name: LoadTemplates.vi 
Functions: 
- loads templates and template info from a template 
file; 
- modifies spike sorting parameters according to the 
loaded info. 
Inputs: 
- LabView template file reference; 
Outputs; 
- parameters structure containing old parameters; 
- parameters structure containing newly loaded 
parameters; 
FindChunkAIF.vi 
Functions: 
- finds a specified chunk of aiff file; 
Inputs: 
- aiff file reference; 
- current offset; 
- chunk specification; 
- error handling structure; 
Outputs; 
- read data length; 
- new offset; 
- error handling structure; 
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Operating Modules 
 
 

 
 
File name: UpdateAllParameters.vi 
Functions: 
- updates all the algorithm parameters; 
Input: 
- mode (get/set); 
- current channel number; 
- parameters structure; 
- error handling structure; 
Outputs; 
- parameters structure; 
- error handling structure; 

 
 

 
 
File name: TrainingGetNuron.vi 
Functions: 
- Get a specified template after leaning and draws all 
graphs to show on the training window; 
Inputs: 
- current channel number; 
- maximal amplitude in learning set; 
- minimal amplitude in learning set; 
- number of templates; 
- number of template to show; 
- spike duration in sample points; 
- error handling structure; 
Outputs: 
- graphs structure; // contains time domain graph, 
space phase graph, and the histogram of distances 
from the template to all other learning set spikes. 
- error handling structure; 

 
 

 
 
File name: Training Start.vi 
Functions: 
- starts learning procedure; 
Inputs: 
- error handling structure; 
Outputs; 
- error handling structure; 

 
 

 
 
File name: Training Get Neuron Count.vi 
Functions: 
- gets number of templates; 
Inputs: 
- error handling structure; 
Outputs; 
- number of templats; 
- error handling structure; 

 
 

 
 
 
File name: Training Delay.vi 
Functions: 
- starts learning at the specified time (if time is not 
specified starts spike sorting immediately); 
Input: 
- current buffer number; 
- current execution mode; //0-visualisation only; 1-
learning; 2-spike sorting; 
Outputs; 
- new execution mode; 
- learning started (bool); 

 
 

 
 
File name: Training Accept.vi 
Functions: 
- terminates learning procedure; 
- initialises templates; 
Inputs: 
- error handling structure; 
Outputs; 
- error handling structure; 

 
 

 
 
File name: Detection Get Spike.vi 
Functions: 
- gets next detected spike and sends it to the 
appropriate plotter on the spike sorting; 
Inputs: 
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- current channel number; 
- time domain plotter parameters structure; 
- phase space plotter parameters structure; 
- spike number; 
- spike duration in sample points; 
- error handling structure; 
Outputs: 
- data to plot in time domain plotter; 
- data to plot in phase space plotter; 
- template number; //0 - if the spike were not classified 
- spike occurrence time in ms; 
- error handling structure; 

 
 

 
 
File name: Detection Delay.vi 
Functions: 
- starts spike sorting at the specified time (if time is not 
specified starts spike sorting immidiately); 
Input: 
- current buffer number; 
- current execution mode; //0-visualisation only; 1-
learning; 2-spike sorting; 
Outputs; 
- new execution mode; 
- spike sorting started (bool); 

 
 

 
 
File name: Client Init.vi 
Functions: 
- initialises session; 
Inputs: 
- error handling structure; 
Outputs; 
- error handling structure; 

 
 

 

 
 
Client Done.vi 
Functions: 
- terminates session; 
Inputs: 
- error handling structure; 
Outputs; 
- error handling structure; 

 
 

 

 
 
File name: A Start.vi 
Functions: 
- starts learning set collection; 
Inputs: 
- current channel number; 
- error handling structure; 
Outputs: 
- error handling structure; 

 
 

 

 
 
 
File name: A Main.vi 
Functions: 
- controls data flow; 
- controls switches between execution modes; 
- calls the derivative calculations; 
Inputs: 
- current channel number; 
- current data buffer 
- error handling structure; 
Outputs: 
- accumulation done (bool); 
- buffer containing derivative of current data buffer; 
- error handling structure; 
 

 
 

 
 
File name: A Init Parameters.vi 
Functions: 
- initializes algorithm parameters; 
Outputs; 
- string array for the first derivative smoothing 
parameter choice; 
- string array for the second derivative smoothing 
parameter choice; 
- parameters structure; 

 
 

 
 
File name: UpdateChangedParameters.vi 
Functions: 
- updates all the algorithm parameters; 
Input: 
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- current channel number; 
- new parameters structure; 
- old parameters structure; 
- error handling structure; 
Outputs; 
- parameters structure; 
- error handling structure; 
 
 
 
Additional Modules 
 
 

 
 
File name: Error Merge.vi 
Functions; 
- takes two possible errors and passes through either 
the "error in 1" if the error boolean is true or "error 2 
in". 

 
 

 
 
Draw Multiple Lines.vi 
Draws multiple connected lines into a picture. 

 
 

 
 
File name: Training Plot Conv.vi 
Functions; 
- constructs scaled data structures ready to draw in 
plotters for spikes and their phase portrets. 
Input: 
- plot area parameters structure; 
- data array X; 
- data array Y; 
- portret (bool) 
Output: 
- data structure for input to the LabView drawing 
moduls. 

 

 

 
 
File name: TrainingDraw.vi 
Functions; 
- constructs scaled data structures ready to draw in 
plotters for spikes and their phase portrets. 
Input: 
- plot area parameters structure; 
- data array X; 
- data array Y; 
- portret (bool); 
- maximum X on the learning set; 
- minimum X on the learning set; 
- maximum Y on the learning set; 
- minimum X on the learning set; 
Output: 
- data structure for input to the LabView drawing 
moduls. 
 

 
 
 
User Defined Types 
 
 

 
 
File name: Controls.ctl 
File reading controls structure 
-Occurence 
-ScanRate //Sampling rate 
-BufferSize //Size of the buffer to read data from 
file 
-FileRefNum //LabView file rreference 
-DataOffset //Offset from begining of the file to 
read data 
-DataPeriod // 
-DataLength //Total amount of data in bytes 
-BlockLength //Length of block for data formats 
organized by blocks 
-BlockMarker //Marker of blocks to read for data 
formats organized by blocks 
-BlockFirstRead //Offset fron the beginning of 
block 
-channel //Channel number 
-swap (bool) //Swap bytes while reading 
- byBlocks (bool) //Data organized by blocks 
-Ext //file extension  
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File name: Params.ctl 
Algorithm parameters structure: 
- Alpha //first derivative smoothing parameter 
- Beta //second derivative smoothing parameter 
- SpikeDuration // Duration of extracted spikes in 
sample points 
- SpikeAmount //Amount of spikes to collect for 
learning 
- Training StartTime //Time in ms from the record 
beginning to start training 
- DetectionStartTime //Time in ms from the record 
beginning to start training 
- DetectionRadiusCoeff //Coefficient to fit spike 
sorting classes radiuses  
 

 
 
Global Variables 
 
 

 
 
File name: BuffStartDet.vi 
int: BuffStartDet //first buffer for spike sorting, 
variable for current time estimation 

 

 
 
File name: Controles.vi 
Controls: controls //file reading parameters 

 
 

 
 
File name: PrevBuff.vi 
int: PrevBuf //Previous buffer number, variable for 
current time estimation 

 
 

 
 
File name: PrevTime.vi 
int: PrevTime //Previous spike time, variable for 
current time estimation 
 

 
 

File name: Params.vi 
Params: params //algorithm parameters 
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Appendix B 

MAP file format 
 

Each Alpha-Map file with extension 'map' contains a set of consistent blocks. There 
are two types of blocks, Definition blocks and Data blocks. Both block types comprise  
header and a data part.  

The data part of the definition blocks describes the workspace at the time the data is 
saved. The data part of the data blocks contains digitized signals or information 
was receiving in the time of acquisition. The file structure uses standard 
'C' programming terms. All fields in the blocks are aligned to 2 bytes. 

Each 'map' file starts with a number of definition blocks. The first block of the file is a 
special type "h" - header block. All other block types are specified using numeric symbols 
from 0 to 7 (ASCII characters); figures 0, 1, 2, 3, 4, 6 indicate definition blocks, while figures 
5 and 7 specify data blocks.  

The structure of each type of block is shown here below. All block types are written 
using standard 'C' terms (for 16-byte applications, using 2-byte-alignment). The data parts of 
the various blocks are shown in frames. If the meaning of a variable is not self evident from 
the name, it will be clarified in the comments under the frame.  

Each block starts with a header. The header of any block consists of two 
items:  
 
- int m_length    // length of the block (in bytes) 
- char m_TypeBlock   // lock's identifier 
 
For Definition blocks: 
 
Type h - Header (m_TypeBlock='h'): 
Data part: 
short m_version;   // the program version number 
_dostime_t m_time;  // the start time of data saving 
_dosdate_t m_date;  // the date of data saving 
 
Type 0 - Set boards (m_TypeBlock='0'): 
Data part: 
long m_nextBlock;  // the distance (in bytes) from the beginning of the file      
     // to the next block 
int m_BoardCount;  // the number of boards 
int m_GroupCount;  // the number of channel groups 
WINDOWPLACEMENT m_placeMainWindow; 
 
Type 1 - Boards (m_TypeBlock='1'): 
 

The Data part of the board definition block contains information concerning three 
topics: Channels specification for this board (from the "HardWare" dialog box),Default values 
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(common for all channels of the same mode) and Auto scaling parameters generated in RMS-
mode,  
where: 
m_TrgMode = 0 - Down, 1 - Up, 2 - Up and Down. 
m_nameBoard = the model of the board (like DAP3200); 

 
This is the last part of the block. For more details see the corresponding dialog boxes in the 
Alpha-MAPsoftware. 
 
Note: The "Board" block is usually followed by the number of definition 
blocks for channels and triggers concerning the corresponding board. 
 
Type 2 - Definition blocks for channels (m_TypeBlock='2'). 
This block type contains the common data part for all types of channels:  
Comment: m_isAnalog = 1 for Analog channels or 0 for Digital channels  
m_isInput = 1 for Input channels or 0 for Output channel  
 
This information should also include the following contents. Each type of channel has 
different contents, as shown below: 
 
- For Continuous channels: 
float m_Amplitude;   //scale 
float m_SampleRate; 
int m_ContBlkSize;  //not used up to ver. 1.9 
UINT m_ModeSpike   // shape 
float m_Duration; 
BOOL m_bAutoScale; 
char m_Name;    //channel name 
 
Comment: m_ModeSpike - uses different values for different drawing modes: 
Normal bars, Colored bars (see Initialize dialog box). 
 
- For Level channels: 
float m_SampleRate; 
int m_nSpikeCount; 
UINT m_ModeSpike ; 
float m_nPreTrigmSec; 
float m_nPostTrigmSec; 
int m_LevelValue; 
BOOL m_TrgMode;   //positive,negative 
BOOL m_YesRms; 
BOOL m_bAutoScale; 
char m_Name; 
 
Comment: m_YesRms = 1 if automatic level calculation, based on RMS, is used 
m_bAutoScale = 1 if scale for this channel drawing is also adjusted automatically from 
RMS calculation (vice versa it is zero (0)). 
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- For External Trigger channels: 
float m_Amplitude; 
float m_SampleRate; 
int m_nSpikeCount; 
UINT m_ModeSpike ; 
float m_nPreTrigmSec; 
float m_nPostTrigmSec; 
UINT m_TriggerNumber; 
char m_Name; 
 
 
- For Digital channels: 
float m_SampleRate; 
BOOL m_SaveTrigger; 
float m_Duration; 
char m_Name; 
 
Comment: m_SaveTrigger = 1 if saving trigger is used for this Digital channel (this 
option is not available in the current Alpha-MAP version, but has been included as a reserve 
options). 
 
 
Type 6 - Definition block for a trigger (m_TypeBlock='6'): 
 
Comment: Variable m_StateChannels saves the Trigger Mode for all eight (8) channels of this 
trigger using bit couples (from right to left).Each pair of bits defines for each channel its 
Trigger Mode: 0 - Down, 1 - Up, 2 -Up and Down.  
 
Note: After completing the definition blocks for all boards (including their  channels and 
triggers) a set of definition blocks for signals displaying windows (groups and subgroups of 
channels) should follow.  
 
 
Type 3 - Definition block for a group (m_TypeBlock='3');  
Data part: 
long m_nextBlock; 
short m_Number; 
short m_Z_Order; 
int m_countSubGroups; 
WINDOWPLACEMENT m_placeGroupWindow; 
18 bytes;        //reserve field 
char m_nameGroup; 
 
Comment: short m_Z_Order defines the order of appearance of the Windows on the screen. 
(18 bytes form a reserve field -not for user). 
The Definition block "Group" is followed by definition blocks for the subgroups that are 
included in this group 
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Type 4 - Definition block for a subgroup (m_TypeBlock='4'): 
Data blocks appear after all definition blocks have passed. Each file may obtain data blocks of 
two types: type 5 and type 7. Type 5 block contains data of a single signal (channel) only. A 
type 7 block contains data of several channels as well as some additional service information 
from the DAP. 
 
Comment: m_TypeOverlap =1 if the channels of this subgroup are non-overlapped or Zero if 
they are overlapped – m_bisMaximized =1 if this subgroup window is in Maximized mode or 
Zero (0) if it is in Normal mode. 
 
 
Type 5 - Data block for one channel (m_TypeBlock='5'): 
 
The data part of this block starts with field -UINT m_Number; which is the identifier of the 
channel, after which actual data of this signal will be in he "short" format type. 
 
 
Type 7 - Data block for number of channels (m_TypeBlock='7'); 
The data part of this block starts with field - UINT m_Number_Board, which is the identifier 
of the board, after which the actual data from the DAP is entered. This data has a specific 
structure and in addition to digitized signal values it also contains special service items. 
 
The first integer (2 bytes) specifies the data that follows next. In decimal notation it has four 
digits. We will mark it as FINT for possible use as a  whole or parts thereof, as separate 
numbers. The FINT can be used for: 
 
 
1. Channel specification. Then F=0 for analog input, F=1 for digital input. The rest of the 
FINT is used for the channel's pin number; NT={channel's pin number}+1. 
 
2. Information about DAP buffers filling: FINT= -111.The length of his data - 2 bytes (for 
Replay is not used). 
 
3. DAP returns RMS-value: FINT= -222. The length of the RMS (Root Mean Sauare) data is 
2 bytes. 
 
4. Restart of the DAP: FINT= -444.The length of the following data (channel number) - 2 
bytes. 
 
5. Information about data loss: FINT= -333. The following data consist of 10 bytes: 2 bytes 
for channel number, 4 bytes for the first lost Sample and 4 bytes for the last lost Sample.  
 
Now we should return to the Item 1 to watch the main data flow. The channel number 
identifier FINT is followed by a set of Sample data. For each Sample data 2 bytes (integer) 
are used. The length of this set (in Samples) depends on the channel type (continuous, level, 
external trigger and digital).   
 
The block size for the continuous channels is: m_ContBlkSize, which the user can take from 
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Type 2 - "Definition blocks for channels" for continuous channels  
 
For software versions up to 1.9, the user should calculate the block size as follows: 
 
For a continuous channel the amount of Samples in that set is approximately 
equal to the product of Sampling Rate and Window Duration (with restriction: 
not more then 800 and not less than 3). To receive the precise value of the 
Samples set length the appropriate part of the 'C' program is presented. 
 
Text Box:  
long Samples =m_SampleRate*m_Duration;     // Samples in Window  
if(Samples < 3) 
Samples = 3; 
 
// to get the biggest Block as possible 
m_BlockSize = 800; 
if(Samples <= m_BlockSize) 
{ 
m_NumBlocks = 1; 
m_BlockSize = Samples; 
} 
else 
{ 
m_NumBlocks = Samples/m_BlockSize + 1;  
 
// if less then 4 block, then a bad screen view 
if(m_NumBlocks < 4) 
{ 
m_NumBlocks = 4; 
} 
m_BlockSize = Samples/m_NumBlocks+1; 
} 
Comment: The value of variable m_BlockSize is a Samples set length.   
Samples= (int)((Pre-trigger time) x (S.Rate)) + (int)((Posttriggeer time) x (S.Rate))  
For the level and external trigger channels to receive the length of Samples  set (in Samples) it 
is necessary to use the next procedure.  
Comment: 2 integers are added to cancel losses because of integer multiplication and 2 
integers (4 byte) for timestamp; this means that we have 2 at the end of the formula.  
 
For digital channels, after FINT only 3 integers follow, the first 4 bytes for time of event (in 
Samples) and the last 2 bytes for presence of event (1 - Yes, 0 - No) 
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List of external library functions 
 
EXPORT FILE* Open( const char* fn); 
 
Description: 
Opens the specified file and returns  the files handle. 
 
Parameters:  
const char* fn  - file name. 
 
//////////////////////////////////////////////////////////////////////////////////// 
 
 
EXPORT void Close (); 
 
Description: 
Closes the opened file. 
 
//////////////////////////////////////////////////////////////////////////////////// 
 
EXPORT int ReadMAP( int BufferSize, short Marker, short* Buffer); 
 
Description: 
Creates channelCount objects of class SpikeChannel and initializes their parameters. Sets the global variable 
corresponding to the number of channels to analyze simultaneously to channelCount.   
 
Parameters:  
int BufferSize - size of the buffer to fill with read data 
short Marker - channel marker (10002 - 1st channel, 10003 - 2d channel etc.) 
short* Buffer - data buffer handle. 
 
//////////////////////////////////////////////////////////////////////////////////// 
 
EXPORT float GetSamplingRate(short Marker); 
 
Description: 
Returns recording sampling rate of the specified channel. 
 
Parameters:  
short Marker - channel marker (10002 - 1st channel, 10003 - 2d channel etc.) 
 
//////////////////////////////////////////////////////////////////////////////////// 
 
EXPORT float GetAmplitude(short Marker); 
 
Description: 
Returns maximal signal amplitude of the specified channel. 
 
Parameters:  
short Marker - channel marker (10002 - 1st channel, 10003 - 2d channel etc.) 
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Appendix C 

Hypothesis of parallelism of regression lines  
Lets denote  the probability, that neuron activity registered under condition I 

corresponds to type 

1θ

A  and   – the same probability for the activity of a neuron registered 

under condition II. The zero hypothesis is: . For neuronal activity type 

2θ
210 : θθ =H A  we 

have a set of random values{ }1
ix , observed under condition I and a set of random values { }2

ix  

observed under condition II. Sets { }1
ix  and { }2

ix  are binomial distribution: 

, i=1,2; n))1(,()( j
i

jjjj
i nBxp θθθ −= i – sets lengths.  

Lets consider random value 
j

i

j
ij

i
n

x
z = ;  The distribution of random value is binomial 

of the following type: ))1(,()( jjj
i

jj
i nBzp θθθ −= , i.e we obtained a mathematical 

expectation depending on j
in , but the variance is equal for the both sets { }1

iz  and { }2
iz , 

which is equal .  )1( jj θθ −

Представим  в виде: j
iz ξθ += j

i
jj

i nz , где ξ – случайная величина с 

распределением . Таким образом,  может быть представлена в 

виде линейной регрессии относительно 

))1(,0()( jjBp θθξ −= j
iz

j
in  с коэффициентом .  Тогда гипотеза 

 является гипотезой о параллельности линий регрессии. The hypothesis may 

be verified with the Fisher test (Ivchenko et Medvedev, press).  

jθ

210 : θθ =H

To apply the Fisher test for the comparison of two datasets { }1
iz  and { }2

iz  each of them 

must contain at least 5 samples. More over, Fisher test supposes some the assumption of 

normality of analyzed distributions. Binomial distributions  ))1(,()( jjj
i
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converge to normal distribution and may be considered as normal if    
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