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INTRODUCTION

Introduction

Many technologies provide signals which are modelled by non stationary time-
series. Among different approaches that exist for signal processing, segmentation
methods have focused much attention. Their purpose is to detect abrupt changes
that occur in some characteristics of the signal. This detection can be done on-line
or off-line. In this work we are interested in the off-line detection problem which is
also called the multiple change-point problem. In this setting, a signal {y1,...,y,}
is observed, and modelled by a random process {Y7,...,Y,} whose probability
distribution f(-) depends on a parameter 6. It is assumed that parameter 6 is
affected by K — 1 abrupt changes at unknown instants called breakpoints, and
noted t; < ... < tg_1. These breakpoints define a partition of the data into K
intervals or segments I, ..., I of length n; such that parameter 6 is constant
within an interval, and different from one interval to another. A segmentation
model can be defined as follows:

Vte I, Vi~ f(0).

In the multiple change-point context, the only objective is to partition the
data into locally stationary time-series. However in practical situations, the char-
acteristics of the signal may not only depend on intervals I, ..., Ir. An example is
provided in the Gaussian case in Figure 1. When dealing with segmentation meth-
ods, the objective is to partition the data into segments for which the mean of the
process is constant and equals py in [. In the segmentation/clustering context,
we suppose that the mean of the process belongs to the finite set {my,..., mp}.
More generally, parameters {6y}, may be constraint to take a limited number of
values {0y, ...,0p} with P < K. The fact the signal shows the same characteris-
tics on different segments may indicate that there exists a secondary structure of
the data, which is the belonging of segments to different clusters. In this context,
the set of segments characterized by parameter ¢, may be interpreted using a
knowledge which depends on the application field. Thus the objective of segmen-
tation/clustering is to partition the data into K segments and to cluster the K
segments into P clusters.

Segmentation /clustering problems are traditionally studied using hidden Markov
models. In this thesis, I propose to develop an alternative statistical model com-
bining segmentation models and mixture models. In this context, the density of
data points within segments is supposed to be a mixture density. We note m, the
prior probability of belonging to cluster p for a segment and Y* the set of data
points within segment k, Y* = {Y;, t € I;}. If variables Y; are assumed to be
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Figure 1: Tllustration of segmentation /clustering.

independent, it follows that the density of vector Y* can be written such that:

F*5 ) = Zﬂ'p H f(ye: 0p).

tely

Thus the segmentation/clustering model can be expressed as a mixture model for
which statistical units are vectors of different sizes.

I propose to construct a segmentation/clustering model in three major steps
which are: (1) the determination of the parameters affected by changes and ac-
cording to which the data should be clustered, (2) the choice of an estimation
strategy to estimate the parameters of the model, (3) the selection of the number
of clusters P and of the number of segments K.

We are focused on the development of a segmentation/clustering model in the
Gaussian case where the mean and variance of segments are supposed to depend
on clusters such that:

YHY* e Cp ~ N (Nymy, 52y, ) -

We also present an extension of our model to the case where the data are dis-
crete and modelled by Markov chains. In both cases the model is characterized
by two sets of parameters: the set of breakpoint coordinates T = {t1,...,tx_1}
which are discrete parameters, and the set of mixture parameters. We estimate
these parameters by maximum likelihood, and we construct a hybrid algorithm for
this purpose, which is based on dynamic programming and on the EM algorithm.
Then we address the question of the selection of the number of clusters P and of
the number of segments K. Selecting the dimension of a model has lead to the
development of many statistical criteria largely based on penalized likelihoods.
However our problem is original since both P and K should be selected. In this
work, I propose a model selection heuristic for this choice.
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Application to the analysis of genomic data

Genomics and related fields constitute a vast source of data to analyze. Recent
advances in technology have allowed biologists to quantify molecular phenomena
on a genomic scale, such as gene expression. Microarray technology is the most
widely used technique for this purpose. It has shown its power to study the
expression of thousands of genes, and has been adapted to explore other biolog-
ical questions. Among these questions, gene-dosage effect has recently focused
much attention since altering DNA copy number is one of the many ways that
gene expression and function may be modified. For example many defects in hu-
man development are due to gains and losses of chromosomes and chromosomal
segments, and DNA dosage alterations that occur in somatic cells are frequent
contributors to cancer. Over the past several years array comparative genomic
hybridization (array CGH) has demonstrated its value for analyzing DNA copy
number variations.

While many statistical approaches have been explored for the analysis of gene-
expression microarray data, the analysis of CGH microarray is an emerging field.
The particularity of these data is that gene copy-numbers present a spatial co-
herence on the genome. To this extent, segmentation methods have been used to
analyze this type of data, in order to detect genomic regions which share the same
gene copy numbers on average. Nevertheless, another question which is asked is
to cluster the detected regions into a finite number of clusters with biological in-
terpretation (deleted or amplified regions for instance). This is why we apply our
segmentation /clustering model to the analysis of array CGH data.

Organization

In a first Part, I present the biological context of my work, with a detailed
presentation of the data under study, and I present biological problems which are
currently studied using array CGH. In Part II, I propose a first method to analyse
array CGH data. This method is based on segmentation methods, and has been
published in Picard et al. (2005). Moreover, this method has been cited recently
in Lai et al. (2005) who show its efficiency on simulated and real data sets. In
Part ITI I develop a new statistical model for segmentation/clustering problems in
the Gaussian case. This method is implemented in Part IV, and its performance
is compared with hidden Markov Models which constitute the most widely used
models to assess segmentation/clustering problems. This part also presents the
application of our method to real CGH data. The last part of my work is devoted
to an extension of the segmentation/clustering model to discrete variables, with
an application to the analysis of DNA sequences.
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Chapter 1. Definition of array-based Comparative Genomic Hybridization

Chapter 1

Definition of array-based
Comparative (Genomic
Hybridization

Since chromosomes have been demonstrated to be the physical carrier of genetic
information, the study of their structure, function and evolution has become cen-
tral in human genetics. This is the purpose of cytogenetics, which emerged in
1956 with the determination of the correct number of chromosomes in humans.
The correct identification of each chromosome enabled the visualization and lo-
calization of chromosomal defects, that could be linked to human diseases. One
classical example is the visualization of trisomies by karyotype (Figure 1.1). In
50 years, considerable efforts have been made to detect small chromosomal aber-
rations and the resolution of the varying techniques has evolved from several
megabases with chromosome banding, to 50 kilobases with array-based compara-
tive genomic hybridization. This increase in the resolution has given the molecular
basis of known syndromes, such as Prader-Willy and Angelman syndromes as well
as mental retardation, and has provided molecular portraits of numerous cancer
diseases. The diagnosis of tumors has now shifted from histological analysis to
molecular characterization. More than a medical-oriented approach to human cy-
togenetics, variations in gene copy numbers have become central to the study of
genome dynamics and human evolution.

1.1 Historical perspective of human cytogenetics
techniques

Chromosome banding

Human chromosomes are classically represented as they appear in metaphase
during cell cycle, with 2 chromatids joined by the centromere and ended by telom-
eres. In 1960 Casperson et al. (1968) developed a staining protocol that produced
highly reproducible patterns of dark and light bands along the length of each chro-
mosome. These bands became barcodes that allowed the unique identification of
each chromosome. Chromosome banding has been extensively used and a band-

11
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Figure 1.1: Original karyotype of a trisomy 21 (Down Syndrome) after "solid"
Giemsa staining. Since it is impossible to recognize all individual chromosomes,
they are subdivided into several groups (A-G and sex chromosomes) based on
their total length and location of the centromere. From Smeets et al. (2004).

naming convention was introduced in the seventies. The banding pattern enabled
the detection of various structural aberrations such as translocations, inversions,
deletions and duplications, with a resolution of 500 bands (approximatively 50
genes per band). This was improved by the development of high-resolution band-
ing (Yunis (1976)), which allowed the precise characterization of already known
chromosomal aberrations, but also the detection of unnoticed subtle aberrations
such as microdeletions or amplifications. Thousands of chromosomal abnormal-
ities have been associated with inherited or de novo disorders, generating many
clues for their molecular basis.

Fluoresence In Situ Hybridization

Despite the increase in the resolution of banding techniques, no aberration was
found at the cytogenetic level for numerous patients showing clear clinical signs
of syndromes. A new technique called FISH (Fluorescence In Situ Hybridization)
allowed researchers to fill the gap between chromosome banding and sequence-
level information. This technique is based on the molecular re-association of two
complementary DNA molecules. A DNA molecule is composed of two comple-
mentary strands. Each strand can bind with its template molecule, but not with
templates whose sequences are very different from its own. Hybridization tech-
niques take advantage of this property of DNA molecules. In FISH experiments, a
probe is a perfectly known and mapped sequence (a cloned piece of the genome),
which is hybridized to chromosomes of a patient (see Figure 1.2). This technique
allows the chromosomal and nuclear location of the probe to be seen through the
microscope. As a consequence of the Human Genome Project, more and more

12
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Fluorescence In Situ Hybridization

Labeling with
fluorescent dye

Figure 1.2: Fluorescence In Situ Hybridization (FISH). From Smeets et al. (2004).

probes from cloned and mapped sequences of the human genome, such as BACs
(Bacterial Artificial Chromosomes) became available for diagnosis purposes. In
less than 15 years, the sensitivity of FISH has improved 10,000 fold, and today,
the detection of chromosomal abnormalities that involve sequences of 10kb is fea-
sible. Nevertheless, the use of FISH requires knowledge of the probe to be studied
which hampers a blind search of chromosomal aberrations.

Chromosome Comparative Genomic Hybridization

Comparative Genomic Hybridization has allowed the analysis of DNA copy
number imbalances at a genomic scale in a single experiment. Two samples of ge-
nomic DNA (referred to as the sample DNA and the test DNA) are differentially
labelled with distinct fluorescent dyes and competitively hybridized to a target
DNA which is a normal chromosome (Kallioniemi et al. (1992)). Subsequently,
the ratio of the intensities of the two fluorochromes is computed and its changes
indicate either gain or loss of sequences in the sample DNA compared with the
test DNA. Chromosome CGH is different from FISH since DNA targets come
from the genomic DNA of a normal patient and from a patient to be studied,
both target DNAs being hybridized on a template chromosome. A blind search
of chromosomal aberrations is then feasible.

Chromosome CGH has been a powerful tool to study gene copy number im-
balances in tumor tissues as it was the first technique that allowed the mapping
of gene copy number imbalances at a genomic scale in a single experiment. In
comparison, Southern analysis, PCR, or fluorescence in situ hybridization (FISH)
only examine one specific chromosomal region or gene. Although chromosome

13
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Figure 1.3: Schematic representation of array CGH conception.

CGH has become a standard method for cytogenetic studies, technical limitations
restrict its usefulness as a comprehensive screening tool: the condensed and super-
coiled state of the target DNA in the chromosomes limits the resolution to 10Mb
for loss and 2Mb for amplification (Beheshti et al. (2002)). The resolution of
Comparative Genomic Hybridizations has been greatly improved using microar-
ray technology (Solinas-Toldo et al. (1997)).

1.2 Application of microarray technology to com-
parative genomic hybridization

The difference between chromosome CGH and array-based CGH lies in the sup-
port which is used for hybridization. For chromosome CGH, this support is a
chromosome, whereas in CGH array experiments, the support is a slide. Since
more and more DNA clones have been mapped and sequenced, they are spotted
on a slide (Figure 1.3). In parallel, genomic DNA is extracted from biological
samples, amplified and labelled with fluorescent dyes, called Cy3 and Cy5 (Fig-
ure 1.4). This mixture of targets, is hybridized on the chip, and DNA sequences
can bind their complementary template. Since probes are uniquely localized on
the slide, the quantification of the fluorescence signals on the chip will define a
measurement of the abundance of thousands of genomic sequences in a cell in a
given condition.

Microarray technology is well-known and widely used to study gene expression
profiles. CGH microarrays use reference DNA that do not present any alteration,
allowing an "absolute" quantification of genomic imbalances for the sample DNA.
The application of microarray technology to CGH has improved the resolution
from megabases to 100kb. Pinkel et al. (1998) further refined this technique and
have shown that CGH microarrays can detect chromosomal aberrations of 40kb.

14
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Figure 1.4: Schematic representation of array CGH experimental protocole.

The application of the microarray technology to comparative genomic hybridiza-
tion has allowed three main advances in molecular cytogenetics:

- automatization of large parts of the experimental procedures,

- realization of genome-wide scans for the loss or gain of chromosomal material
without looking at the subject chromosome,

- upgrade of the number of probes, with new-generation arrays consisting in
approximatively 32,000 BACs (Ishkanian et al. (2004)).

1.3 Performance of array CGH

The microarrays we use are described in Snijders et al. (2001) and consist of 2460
human BACs and P1 clones in triplicate, representing approximately 7,500 spots
on the arrays. Each single BAC is mapped on the genome with at least one STS
(Site Tag Sequence) and all clones on the array were identified by FISH confirming
93.4% as single copy numbers. The clones offer a coverage of the 22 autosomal
chromosomes and of the 2 sex chromosomes, with an average of one clone every
1.4Mb. The resolution is then defined either by the distance between targets or
by the length of the cloned DNA segments.

Pinkel et al. (1998) studied the sensitivity of the technique and showed that
fluorescence ratios were proportional to copy numbers. This was achieved by
comparing cell populations containing 1 to 5 copies of the X chromosome with
normal female DNA.

Although the relationship between the number of X chromosomes and the ra-
tio of the intensities is linear, the slope differs from the theoretical expected value
of 0.5, due to non specific hybridizations. Snijders et al. (2001) also describe
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this underestimation of gene copy number imbalances, obtaining a log, fluores-
cence ratio of 0.49 & 0.05 compared to the ideal value of 0.58 for a 3/2 ratio for
trisomic chromosomal region, and a log, ratio of 0.72 4+ 0.08 for the X chromo-
some in a male/female comparison, compared with the expectation of 1.0. This
underestimation problem could be explained using four arguments:

- if deletions concern only part of the BACs, the resulting signals will show less
dramatic differences than expected in the case of a complete BAC deletion,

- the presence of repetitive sequences depends on the individual BAC. Sni-
jders et al. (2001) show that sequence characteristics of individual clones
have a measurable effect on X chromosome ratios, but not on autosomal
chromosome ratios,

- the efficiency to block the probes’ repetitive sequences with Cotl DNA may
not be 100%,

- this underestimation could also reflect the presence of admixed normal DNA.
In the case of tumor DNA extractions, tissues are composed of heterogeneous
cell types resulting in a mix of different types of DNA.

Together these points suggest that even though the Comparative Genomic
Hybridization method aims at studying discrete phenomena such as gene dele-
tions/amplifications, providing a quantitative answer in terms of presence/absence
via microarray technology is not straightforward.

1.4 Diversity of CGH microarrays

Different genomic microarrays have been constructed, each being differentiated
by the type of reference sequences used as target : ¢cDNAs, oligonucleotides, and
BAGCs. Figure 1.5 gives an overview of all possible techniques (from Davies et al.
(2005)). Historically, Solinas-Toldo et al. (1997) were the first to use microar-
ray technology based on cDNA arrays, with approximatively 3000 target clones
throughout the genome. One advantage of this technique is the easy use of the
same platform for gene expression measurements. The link between genomic data
and expression data is then facilitated (see Pollack et al. (1999)). Nervertheless,
this technique offers a low signal-to-noise ratio, due to the small size of cDNA
clones compared with large insert clones.

Another strategy consists in the use of oligonucleoties, e small sequences of 25
to 80 nucleotides. Affymetrix proposes several platforms, such as p501 arrays and
Mapping 10K arrays, which contain 8473 and 11555 target probes respectively
(see Davies et al. (2005) for a complete review). The advantage of oligonucleotide
arrays is the easy link that can be made with SNPs and LOH data (Loss Of
Heterozygocity), which could improve the understanding of complex events that
may be found in cancer genomes. Nevertheless, the small size of oligonucleotides
favors non specific hybridization to multiple genomic loci that increase the noise
in the data and reduces the 30kb theoretical resolution.

The last insert clones that are used are Bacterial Artificial Chromosomes
(BACs) which are large-scale inserts of hundreds of kilobases. This method has
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(5) BAC BCCA www.bccere.cal/cg/ArrayCGH_Group.html
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Figure 1.5: (a) Evolution of CGH arrays technologies.

(b) Examples of cur-

rent array platforms, BAC= bacterial artificial chromosome, EST = expressed
sequence tag, USCF = university of California San Francisco, DKFZ = Deutsches
Krebsforschungszentrum, AFCRI = Abramsom Family Cancer Research Institute,
BCCRC = British Columbia Cancer Research Center, UHN = University Health
Network, UU = Uppsala Universitet. From Davies et al. (2004).
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Figure 1.6: Power of different array CGH platform to detect a chromosomal al-
teration of a given size. From Davies et al. (2004).

been described previously, with BAC arrays introduced by Pinkel et al. (1998),
with an average of 1 BAC every megabase on the genome. Recently Ishkanian
et al. (2004) published the first SubMegabase Resolution Tiling set (SMRT ar-
rays) that continuously covers the human genome. These new arrays offer the
possibility to detect chromosomal aberrations of 40 to 80kb. Davies et al. (2005)
compares the power of different CGH arrays to detect an alteration of varying size.
Figure 1.6 shows that the probability of detecting a small aberration decreases
with its size, but more interestingly, this probability increases if the size of the
clones spotted on the array increases. To this extent, large clones such as BACs
are more powerful in the detection of microalterations, while oligoarrays are not
likely to detect aberrations smaller than 300kb. This figure shows that the SMRT
arrays present the best performance, being robust to the size of the defect to be
detected.

Microarray technology has offered wide possibilities for the diversification of
comparative genomic hybridization techniques. While oligonucleotide and cDNA
arrays offer the possibility to link other types of data to genomic alteration data,
BAC and SMRT arrays constitute the most promising technology for the inves-
tigation of chromosomal alterations throughout the genome. Since SMRT arrays
are recent (2004) compared with BAC arrays (1998), little is known about the
statistical analysis of such data. This is why the following work will be focused
on the analysis of BAC arrays exclusively.
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Chapter 2

Applications of genomic
microarrays in human genetics

2.1 Impact of molecular cytogenetics on human
cancers

The first hypothesis that cancer was linked to chromosomal aberration drawn
by Boveri in 1914 has now been demonstrated by cytogenetics. The nature of
chromosomal abnormalities can concern the number of genes or the structure of
chromosomes (Figure 2.1 from Albertson and Pinkel (2003)). They can be equi-
librated (without quantitative abnormalities) or disequilibrated (gain or loss of
genomic material). In most cases one cell carries an initial acquired genetic de-
fect that is transmitted to the offspring cells, which may acquire new genomic
defects. Since many cells may be concerned by tumor genesis, there exists a selec-
tion process that will choose favorable mutations, based on growth speed, or drug
resistance for instance. Then the resulting tumor will show a diversity of chro-
mosomal defects which are the result of a selection process. In solid tumors for
instance, these alterations include altered ploidy, gain or loss of individual chro-
mosomes or portions of chromosomes, and structural rearrangements (Albertson
et al. (2003)).

Cytogenetics has helped in the discovery of many of those defects, and ex-
tensive catalogues are now publicly available (Mitelman et al. (2003), Huret
et al. (2003)). There exists an important variability in the degree to which tu-
mor genomes are aberrant at the chromosomal level. Some rearrangements are
specific to some pathologies, but there often exists a pattern signature: a set of
abnormalities which have no biological effect when isolated, but which contribute
to a diagnosis when associated.

CGH arrays have greatly improved the understanding of tumor genesis and
progression. Regional arrays have been used to investigate specific genomic hotspots,
like the chromosome 20 arrays from Pinkel et al. (1998). Recently CGH arrays
using overlapping BACs representative of the 1p, 3p and 5p arms of human chro-
mosomes have been developed, for regions which are frequently altered in a variety
of cancers. The different CGH arrays have now provided a molecular portrait of
many cancer diseases. The reader can be referred to Albertson et al. (2003),
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Figure 2.1: Diversity of genomic alterations and detectability of chromosomal
aberrations by different cytogenetic techniques. From Albertson and Pinkel
(2003).

Davies et al. (2005), Bernheim et al. (2004) for a complete review of the progres-
sion in the field of cancer genomics.

2.2 New insights into human genetic variation

The understanding of the evolution and adaptation of an organism is mainly based
on the study of gene diversity between and within species. Genetic variation be-
tween genomes can be introduced by mutation, that is a change in the DNA
sequence of a gene within an organism, or by recombination that produces differ-
ent combinations of alleles as a result of the physical exchange of DNA between
chromosomes in eukaryotes. There also exist other sources of variation, such as
small insertions and deletions, and a variable number of repetitive sequences.

Genetic variation can be studied with a variety of techniques, the simplest
being the measure of an observed phenotype in a given population, and molec-
ular studies are required to understand the fundamental processes that lead to
differences among phenotypes. Considerable efforts have been made for the un-
derstanding of global regulation of gene expression, mainly with the development
of microarray technology. Nevertheless, even if variability in phenotypes can be
directly linked to differences in gene regulation, the understanding of genetic vari-
ation is crucial since a change in gene expression may result from coding sequence
variability rather than difference in gene regulation.

As technical limitations have hampered any exhaustive study of large scale
copy number variations throughout the genome (Armour et al. (2002)), their
prevalence and contribution to human genetic variation have long remained un-
known, or underestimated. Nevertheless, recent studies suggest that many of the
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genetic differences between humans and other primates for instance are the result
of large duplications and deletions Locke et al. (2003), indicating the importance
of large-scale copy number variation in the dynamics of the genome of closely
related species. The systematic search for large scale copy number variations, e
variation in the number of sequences of several kilobases in phenotypically normal
humans, is now feasible, thanks to the use of microarray CGH and its variants.

Sebat et al. (2004) studied 20 unrelated individuals from different geographic
backgrounds. Using a variant of microarray CGH, called ROMA (Representa-
tional Oligonucleotide Microarray Analysis), they found an average of 11 copy
number polymorphisms between 2 individuals, with median length of 222kb, with
half being recurrent in multiple individuals. These polymorphisms are widely
spread throughout the genome, with some being clustered near putative hot-spots
of genomic variation. Their location near other types of chromosomal rearrange-
ments may reflect regions of instability on the genome. An additional study
conducted by Iafrate et al. (2004) explored the genome of 55 individuals, and
found similar results, with an average large-scale copy number variation of 12 per
individual, not limited to intergenic or intronic regions. Overall, the authors have
described more than 200 large scale copy number variations in human genomes,
24 of which are present in more than 10% of the individuals.

Variation in the dosage of individual genes can lead to different phenotypes and
diseases. The biological impact of those copy number variations range from non se-
lective to embryonically lethal if they affect development genes for instance. Sebat
et al. (2004) observed copy number variation in genes involved in neurodevelop-
ment, breast cancer, leukemia, food intake and body weight regulation. lafrate
et al. (2004) show that 142 of 255 polymorphic clones overlap with known coding
regions and that 67 clones encompass one or more genes. 14 large copy number
variations were found near loci associated with human syndromes or with cancer.
Since the individuals under study were phenotypically normal, the presence of
variation close to such susceptibility regions could be a source of chromosomal
rearrangement that could influence the expression of specific genes.

Iafrate et al. (2004) as well as Sebat et al. (2004) indicate that the restricted
number of individuals studied or the limited resolution of the technique used con-
stitute a limitation to their study and results. Nevertheless, the authors suggest
that the impact of large scale copy number variation has been underestimated,
and van Ommen (2004) gives a rough estimate of the emergence of random large
segment copy number polymorphism: 1:8 for deletions and 1:50 for duplications.
The author concludes as follows: "Given the frequency of the emergence of ran-
dom segmental duplications and deletions, they are therefore likely to contribute
substantially to why we are all different."
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Chapter 3

Presentation of array CGH data

Even though microarray technology was developed for the study of gene expres-
sion, it has now been extended to the study of diverse molecular biology issues,
such as protein binding, interference RNAs, chromatine structure, and chromo-
somal aberrations for instance. Since the technology is similar, we will use a
dedicated terminology. A probe will denote a biological "entity" or object, that is
perfectly referenced, and which is spotted on a slide. In the case of array CGH, a
probe is a cloned piece of the genome, whose sequence and location on the genome
are known. It can be a BAC (Bacterial Artificial Chromosome), or a cDNA (com-
plementary DNA) for instance. A target is the complementary "entity" of the
probe, e it is of the same nature, but has been extracted from a biological sam-
ple. One major difference is that the identification of one specific target can only
be done through the hybridization probe/target, which is specific (in theory). In
array CGH experiments, targets are obtained through the digestion of genomic
DNA by restriction enzymes for instance.

The use of the same technology leads to some patterns in the analysis of
microarray data in general. In this chapter, we briefly establish the issues that
are raised by array CGH data analysis, like for all microarray-generated data, and
we will specify the points on which our study focuses.

3.1 On the use of microarray technology

3.1.1 Image Acquisition

After biological experiments and hybridizations are performed, the fluorescence
intensities are measured with a scanner. This image acquisition and data collec-
tion step can be divided into four parts (Leung and Cavalieri (2003)). The first
step is image acquisition by scanners, independently for the two conditions present
on the slide. The second step consists in spot recognition or gridding. Automatic
procedures are used to localize the spots on the image, but a manual adjustment
is often needed for the recognition of low quality spots that are flagged and often
eliminated. Then the image is segmented to differentiate the foreground pixels
in a spot grid from the background pixels. After the spots have been segmented,
the pixel intensities within the foreground and background masks are averaged
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separately to give the foreground and background intensities. After the image
processing is done, the raw intensity data are extracted from the slide, indepen-
dently for the test and the reference, and the data for each gene are typically
reported as intensity ratios that measure the relative abundance of the targets in
the test condition compared to the reference condition.

3.1.2 Experimental design

Once biological experiments are done and images are acquired, the researcher has
At his disposal the measurements of relative amounts of thousands of targets si-
multaneously. The aim is then to extract biological significance from the data,
in order to validate a hypothesis. The need for statistics became striking soon
after the appearance of microarray technology, since the abundance of the data
required rigorous procedures for analysis. It is important to notice that the inter-
vention of statistical concepts occurs long before the analysis of the data stricto
sensu. Looking for an appropriate method to analyze the data, when no experi-
mental design has been planned, or no normalization procedure has been applied,
is unrealistic.

Dedicated experimental designs have been developped for expression profile
microarrays (Yang and Speed (2002), Kerr and Churchill (2001)). Since CGH
microarray experiments are relatively new, no dedicated experimental design has
yet been developped. Nevertheless, the discovery of more and more polymorphic
Copy Number Variations in humans (as explained in Chapter 2) could be a po-
tential issue. Since it has been shown that the frequency of silent deletions is not
negligible in humans, the definition of a "normal" genome will have to be set in
order to correctly quantify chromosomal aberrations in human diseases.

3.2 The variability of microarray data and the need
for normalization

Even if microarray technology provides new potential for the analysis of thousands
of targets, several problems arise in the execution of a microarray experiment that
can make two independent experiments on the same biological material differ com-
pletely, because of the high variability of microarray data. Even if some variability
can be controlled using appropriate experimental designs and procedures, other
sources of errors cannot be controlled, but still need to be corrected. The most
famous of these sources of variability is the intensity-dependent dye bias for cDNA
microarray experiments.

3.2.1 The Loess normalization procedure for gene expres-
sion experiments

To perform a comparison between two conditions labelled with Cy3 and Cyb,
respectively, one needs to state that differential labelling will not corrupt the log-
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ratio values M. Yet, it is well-known that a dye effect exists that can have two
different causes:

- optical: the higher the mean intensity of the gene is, the more the green
label prevails over the red one when the slide is scanned.

- biological: some specific targets are systematically badly labeled by Cy3
or Cy5. For instance, Cy3 can be preferentially incorporated into some
sequences, relative to Cyb.

In expression profile experiments, the dye effect is clearly Intensity-dependent. To
correct this, classical statistical procedures assume that the dye effect depends on
the gene only through its mean intensity A. This assumption allows a convenient
graphical observation of the dye effect, the M-A plot, proposed by Yang et al.
(2002), along with a more robust estimation of the effect. In figure 3.1 (left) we
observe the differential effect of the two dyes: M values increase with A values,
confirming that the Cyb signal prevails for high mean expression genes. Moreover,
it is clear that the shape of the data cloud is neither constant nor linear, meaning
that a constant or linear modelling will not adequately correct the dye effect. In
this case, one needs to perform non linear normalization methods.

The Loess procedure (Cleveland (1979)) was the first non linear method pro-
posed to correct the dye effect (Yang et al. (2002)). The Loess is a robust locally
weighted regression based on the following model:

M=cA)+FE

where ¢ is an unknown function and FE is a symmetric centered random variable
with constant variance. The aim of the Loess procedure is to locally approximate
¢ with a polynomial function of order d, and to estimate the polynomial parame-
ters by weighted least square minimization from the neighboring points (A;, M;).
In figure 3.1 (left) the Loess estimation of the data cloud trend appears in grey.
As for systematic biases, once the trend is estimated it is substracted from the
log-ratio to obtain a centered data cloud.

3.2.2 A Loess normalization procedure for array CGH data?

Since the Loess procedure performs well for gene expression microarrays, a natural
question is its application to array CGH data. The labelling procedure of the DNA
targets being similar to the labelling of cDNAs for gene expression experiments,
the intensity dependent dye bias also exists in CGH experiments. Nevertheless,
Loess normalization can be performed under some hypotheses that are not valid
for array CGH experiments. These hypotheses are:

- Most of the genes that are used to estimate the artifact contribution to
signal are supposed to be unaltered,

- The artifacts that are corrected are not confounded with a biological effect,
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Figure 3.1: Left: M-A graph on raw data for gene expression experiment. The
gray line is the loess estimation of function c, the dotted line represents the abscissa
axis Right: M-A graph after Loess normalization.

Figure 3.2 shows a typical example of MA plots for array CGH data. More
than an intensity-dependent dye bias, it appears that the data cloud is structured
according to log-ratio values, and this structure can be interpreted in terms of
sequence copy numbers. Amplified DNA sequences will show a positive log-ratio,
whereas deleted targets will show a negative log-ratio. The location of such ampli-
fied and deleted sequences on the genome will be the purpose of the next section
(the MA plot representation does not consider the physical order of the targets).

Nevertheless, the first hypothesis for loess normalization requires that targets
used for estimation have a constant log-ratio with respect to the biological prob-
lem, and therefore only reflect bias effects (Ball et al. (2003)). In array CGH
experiments, this hypothesis is clearly not respected, since differences in log-ratio
values reflect biological information in terms of gene copy numbers. To this extent,
none of the hypotheses are true for array CGH experiments, since:

- A cancer genome may present a high degree of variability, leading to an
important proportion of the genome being altered by chromosomal aberra-
tions,

- Log-ratio values are centered around mean log ratios for each biological
class (deleted, normal, amplified). This biological information should not
be corrected by a global loess procedure.

Finally, the departure from crucial hypotheses hampers the application classi-
cal normalization Procedures to array CGH data, and no dedicated method has
yet been proposed. In the following, we will propose some perspectives for this
problem, but in this work, we are focused instead on the identification and local-
ization of altered chromosomal regions, which constitutes the specificity of array
CGH data analysis.
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Figure 3.2: Example of MA-plot for array CGH. Example provided by P. Hupé,
Institut Curie (Paris).

3.3 Specificity of array CGH data

When analyzing array CGH data, we use fluorescence log-ratios that can be or-
dered according to the physical location of each BAC on the genome. Such a
ratio will be denoted ¥, for the log-ratio of the BAC located at position x; on the
genome. The representation of CGH data will be called CGH profiles which are
drawn for each individual chromosome.

Let us focus on Figure 3.3 and Figure 3.4 which present a theoretical and
real CGH profile. In theory, the underlying biological process that is studied is
discrete (counting of relative copy numbers of DNA sequences). Nevertheless,
Figure 3.4 shows that the resulting signal is rather continuous. This is due to
the quantification process, which is based on fluorescence measurements, and also
to the nature of the genomes under study, since the possible values for chromo-
somal copy numbers in the test sample may vary considerably, especially in the
case of clinical tumor samples that present mixtures of tissues of different natures.

Each profile can be viewed as a succession of ’segments’ that represent homo-
geneous regions in the genome whose BACs share the same relative copy number
on average. Array CGH data are normalized with a median set to log,(ratio)= 0
for regions of no change, segments with positive means represent duplicated re-
gions in the test sample genome, and segments with negative means represent
deleted regions. A rough manual annotation can be used to delimit the different
regions, but experimental variability makes statistical procedures essential for a
reliable analysis. The objective of the statistical study is then to determine how
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Figure 3.3: Principle of a CGH experiment. Two genomes are compared through
representative sequences (dot-boxes). Microarray CGH technology aims at count-
ing the relative copy numbers of each representative sequence. An amplification
would show a ratio of 3:2 whereas a deletion would show a ratio of 1:2. Note that
these numbers are theoretical numbers.

many chromosomal aberrations there are in a CGH profile, and to localize them
on the genome. Segmentation methods are natural for this purpose, in order to
determine chromosomal segments on the genome which share the same relative
copy number on average. In a first step, the following statistical study will consist
in the development of an appropriate segmentation method for the analysis of
array CGH data.
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Figure 3.4: Example of a CGH profile. Data are described in Snijders et al.
(2001). Dots on the graph represent the log, ratio of intensities for each BAC
according to their physical position on the genome.
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Process segmentation

Many application fields in Statistics provide signals that are modelled through
time series which are not stationary. Since the interpretation of such signals is
complex, one aim is often to isolate zones in which the signal can be considered
as stationary. In this context, the signal can be studied with parametric models
for which the parameters are supposed to be affected by abrupt changes at un-
known instants. The purpose of the statistical study is then to detect changes
in these parameters. Quality control or monitoring has been one of the earliest
applications of change detection. In this context, a production process is observed
and must be controlled; the quick identification of disorders may be crucial for
safety or quality control reasons. Dedicated statistical methods are based on the
observation of sequential data, for which the detection of the change has to be
done with the past observations as the only available information. The reader is
referred to Basseville and Nikiforov (1993) for a complete review of on-line detec-
tion of abrupt changes, which does not constitute the purpose of our work. We
are focused instead on the case where the analyst studies one global signal. In this
case the change detection is done off-line, and the problem shifts to the global
segmentation of the process.

The multiple change-point problem

In the global segmentation context we aim at delimiting segments for which
the characteristics of the signal are homogeneous within segments and different
from one segment to another. We note {y;}:—1 ., the observed data which are
modelled by a random process {Y;}:—1 . that is supposed to be drawn from a
probability distribution f(-) that depends on a parameter . Then we assume that
this parameter is affected by K — 1 abrupt changes at unknown instants noted
t; < ...<tg_1, with the convention ¢ty = 1 and tx = n. The model is formulated

as follows:

with I}, = {t €]tx_1, tx]} being the interval of size n; for which the parameter 6 is
constant and equals 0;. Many parameters can be affected by abrupt changes, the
simplest ones being the mean and the covariance of the process, but changes can
also affect the spectral distribution, or transition probabilities of Markov chains
for instance.
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From a statistical point of view, the problem of global segmentation gives
rise to three main issues: (1) the determination of the parameter(s) affected by
the change(s), (2) the estimation of the breakpoint instants, and the estimation of
the parameters within segments, (3) the determination of the number of segments.
The problem of determining which characteristics of the signal are affected by the
changes may require a precise knowledge of the phenomenon under study. In the
following, we will restrict the study to the case of changes in the mean only or
in the mean and the variance of an independent Gaussian process. This model is
detailed in section 4.1.

Estimating the breakpoint coordinates

Once the model has been specified, the problem is to estimate the location
of the breakpoints and the parameters within segments. We will focus on two
classical methods for this purpose: the maximum likelihood method and the least-
squares method. For this estimation step, the number of segments has to be fixed.
In the global segmentation setting, the estimation of the breakpoints can be viewed
as a partitioning problem, where the purpose is to find the best partition of the
data into K segments. Since the number of possible partitions of the data into
K segments is C’,ﬁi 7!, the exploration of all possible partitions would be of order
O(n™). This computational problem explains why many segmentation methods
only consider the detection of one change, compared to the multiple change-point
problem. In section 4.2 we will explain how dynamic programming provides a
solution to this problem of partitioning, and how the CART algorithm proposed
by Breiman et al. (1984) can be used for the detection of multiple changes in the
mean for large samples.

Model selection

Once an estimation procedure is available for a fixed number of segments, the
question of choosing this number remains. In practice this number is unknown
and should be estimated. This problem can be viewed as a model selection issue.
To date the number of segments is estimated with a penalized criterion:

crit(K) = Jx — Bupen(K). (4.1)

The first term Jx measures the quality of fit of the model to the data. It can be

the log-likelihood at its maximum noted log Lk, or minus the sum of squares of
the model for instance. The second term is an increasing function of the number
of segments, and is used to penalize the selection of an overly high-dimensional
model. The term (3, is a positive constant. This criterion establishes a trade-off
between a good quality of fit and a reasonable number of segments. The defini-
tion of an appropriate penalty function and constant has focused much attention.
In Section 4.3 we detail existing methods for model selection procedures in the
multiple change-point context.

The multiple change-point problem in the Bayesian setting
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The last section will be devoted to a different approach which has been used
to study multiple change-point problems, the Bayesian approach. In this context,
the number of breakpoints and their location are viewed as random variables.
The objective is to estimate their posterior distribution with MCMC methods.
In this section we will compare two parametrizations which have been proposed
by Green (1995) and Lavielle and Lebarbier (2001). Our objective is to explain
the main differences between the two approaches and to draw analogies with the
frequentist setting, when possible.

4.1 Detection of changes in the mean of a Gaus-
sian process

In this section we consider that the data are independent and drawn from a
Gaussian distribution, such as

vt e {l,...,n}, Y~ N(u(t),ot)?).

Then we assume that the mean and the variance of the process are affected by
K — 1 abrupt changes at unknown instants noted ¢; < ... < tx_;. This model
will be denoted M, in contrast to model M, where the only parameter affected
by the changes is the mean, with a constant variance o2. Then we have:

N(Nk, (7]3) model Ml,
Viel, Y, ~
N (p1x, 0?) model My,

Since the data are independent, the log-likelihood of the model can be written as
a sum of local log-likelihoods calculated on each individual segment, that is:

log £ RN | 1 (y — )
oglix =y Y log povordes S el

k=1 t=t, 141

This additivity property will be central for the downstream estimation procedures
that are based on maximum likelihood.
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4.2 Estimation procedures when the number of
segments is fixed

4.2.1 The maximum likelihood method

If the breakpoints are known, the estimators of the mean and the variance are the
classical maximum likelihood estimators:

t=tp_1+1
1 &
of = — > (y— i) for My,
L ——
1 t’“
6’2 = —Z Z (yt—ﬂk)Q for MQ.
n k t=tp_1+1

For a model with K segments the log-likelihood at its maximum is:

~ 1
logLyx = —glog27r — §an log 67 for My,
k
logEK = —glogQW — glogﬁz for M,.

Nevertheless, the position of the breakpoints is unknown and should be es-
timated. This problem can be formulated as a partitioning problem whose aim
is to find the best partition of the grid {1,...,n} into K segments. If we note
Py the set of all possible partitions of the grid {1,...,n} into K segments, the
breakpoints are estimated as follows:

Ty = {t,,... , tg_1} = Argmax {logEK(TK)} )
Tk €Pk

Dynamic programming is an efficient recursive approach that can be used to reduce
the computational time of the exhaustive search.

4.2.2 Dynamic programming and the shortest path prob-
lem to estimate the breakpoint instants

Dynamic programming has been introduced by Bellman and Dreyfus (1962) and

Auger and Lawrence (1989) were the first to use it in the context of global seg-

mentation. It is a recursive approach based on the Bellman optimality principle

(Bellman and Dreyfus (1962)). Let’s consider model M, with a constant variance.
The quantity to be optimized is then:

Jg = Z Z (ye — fu).

k=1 t=t,_,+1
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The mean squares criterion is Broken down into a sum of minimum mean squares
criteria. This break-down allows us to draw an analogy to the shortest path
problem. Criterion Jx can be seen as the total length of a path connecting point
1 to point n. The problem is then to find the shortest path connecting point 1 to
point n with K — 1 steps, the steps being the breakpoint instants ¢y, ..., tx_1.

Denoting Ji(i,7) the cost (length) of the path connecting point i and j in k
steps, the algorithm is as follows:

j
VO <i<j, Jilig) = D (m—Yy)
t=i+1
ViI<kE<K-1, Jeu(l,j) = 1@,}2j{Jk<17h> + Jith+1,75)}.

In this context, the Bellman optimality principle is formulated as follows:
"subpaths of optimal paths are themselves optimal". This global minimization
property is crucial since it ensures the optimized criterion to be at its global max-
imum (compared with other estimation algorithms such as the EM algorithm that
only ensures a local maximum). Moreover, this algorithm reduces the computa-
tional burden of the exhaustive search from O(n*) to O(n?) for a given K. This
approach has been used by many authors and the reader is referred to Auger and
Lawrence (1989), Braun et al. (2000) and Hawkins (2001) for instance.

4.2.3 A CART-based approach for the multiple change-point
problem

Even if dynamic programming considerably reduces the computational time of
the exhaustive search, it cannot be used for overly large samples. If the data
to be partitioned are DNA sequences for instance, the storage of a cost matrix
that is n x n with n ~ 10? is difficult. For this reason, Gey and Lebarbier
(2002) recently proposed combining dynamic programming with a CART-based
approach for the estimation of the breakpoints, when the size of the data is large.
The role of the CART-based method for segmentation is to restrict the collection
of visited partitions Py to the relevant ones. This leads to a fast algorithm of
order O(nlogn).

The CART algorithm is computed in two steps (Breiman et al. (1984)). The
first one is called the growing procedure and consists in the recursive construction
of a collection of partitions using data-dependent dyadic splitting. The computa-
tional schema of the first step is as follows:

- Compute the change-point Z, such as f. = Argmin {Ji(1,7) + J1(j + 1,n)}.

j
The objective of this step is to find the first best partition of {1,...,n} into
2 segments.

- Apply the same procedure on the new defined segments, and so on until
the number of points within each resulting segment is smaller than a given
threshold.

Other sequential methods have been proposed for the change-point estimation
problem, see Ghorbanzdeh (1995), Picard (1985) and Chong (2001) for instance.
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Nevertheless, those methods aim at finding the relevant breakpoints directly, lead-
ing to sequential tests that require the definition of many tuning parameters. The
use of a CART-based method is different. The first step (growing procedure)
provides a collection of segmentations and the only parameter to be tuned is the
minimum size for a segment to be split. In a second step (the pruning step), a
relevant segmentation is chosen with a model selection procedure.

Once this segmentation has been chosen, it appears that some breakpoints can
be irrelevant. This is due to the sequential nature of the CART algorithm that
does not guarantee the finding of the global optimum. In order to circumvent
this difficulty, Gey and Lebarbier (2002) propose combining the CART algorithm
with a partial exhaustive search. The general idea is to consider that the break-
points that have been proposed by CART (at the end of the growing and pruning
procedures) constitute candidates that can be removed if they correspond to false
alarms. This is done by dynamic programming, which performs a partial exhaus-
tive search on the proposed breakpoints to free the results from the hierarchic
nature of the CART candidates. This leads to a hybrid algorithm that has been
shown to be efficient (see Gey and Lebarbier (2002)).

4.2.4 Statistical properties of the breakpoint estimators

Once the position of the breakpoints has been estimated, a classical question
is the statistical properties of the resulting estimators. Nevertheless, since the
breakpoint parameters are discrete, the likelihood is not continuous with respect
to those parameters. This particularity hampers the use of classical techniques to
show their consistency for instance. Many articles have considered this problem,
see Yao and Au (1989), Siegmund (1988), Lavielle (1999), Braun et al. (2000) for
instance. Yao and Au (1989) have shown that in the case of a jump in the mean of
an independent Gaussian process, the breakpoint estimators were consistent, and
Braun et al. (2000) later show the consistency in the case of processes whose vari-
ance depends on the mean. Lavielle and Moulines (2000), Lavielle (1999) further
extended those results to the case of time series and dependent processes, showing
that the rate of convergence of ¢, does not depend on the covariance structure
of the process. In the case of a jump in the mean Yao and Au (1989) provide a
theorem concerning the limiting distribution of the breakpoint estimators.

As for the confidence set of the change-point estimators, many strategies have
been formulated for the single change-point problem. Siegmund (1988) and Wors-
ley (1986) propose methods based on the likelihood ratio statistic, and Cobb
(1978) provides an approximation of the conditional distribution of the maximum
likelihood estimator of the change-point given the adjacent observations. In the
multiple change-point context, current approaches use tests based on a change in
the parameter of the distribution (see Avery and Henderson (1999) for a nonpara-
metric approach in the case of Bernoulli sequence, Venter and Steel (1996) for
maximum likelihood approaches in the Gaussian case). Those approaches focus
on the change in the parameter with which the data are modelled, and not on the
existence of a change-point .

An interesting question would be to assess a simultaneous confidence region
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of the breakpoint estimators t1, ..., ¢x_1. To our knowledge no confidence set has
yet been proposed for the sequence of the change-point estimators in the case of
multiple breakpoints.

4.3 Model selection procedures to estimate the num-
ber of segments

Once the model has been specified and the location of the breakpoints can be
estimated with an appropriate method, the problem is to determine the number
of segments into which the data should be partitioned. In practice this number
is unknown and can be estimated with a penalized criterion defined in Equation 4.

To date, two approaches have been considered to define the penalty term. The
first one considers that there exists a true number of breakpoints K* that should be
estimated, and a true underlying model from which the data have been generated.
In this context, Yao and Au (1989) showed that the Bayesian Information Cri-
terion (BIC) provides a consistent estimator of the number of breakpoints. This
criterion uses Jx = log L x and pen(K) = 2K for the number of parameters to be
estimated (K means, 1 variance and K —1 breakpoints), and /3, = 0.5 xlog(n) for
the penalty constant. This result is extended to the case of a dependent process,
and Lavielle (1999) shows that if constant (3, goes to 0 at an appropriate rate
depending on the covariance structure of the process, the estimated number of
change points converges to the true number.

Since practical use of penalized criteria is done in a non asymptotic context,
another approach for model selection has been provided by Birgé and Massart
(2001). This model selection procedure has been applied to process segmentation
by Lebarbier (2005) and Lavielle (2005), who propose two strategies that lead to
different penalty functions and constants.

4.3.1 Motivation of model selection

In the context of model selection, we have n independent random variables {Y; },—1,»
whose distribution s is unknown and has to be recovered. In the case of process
segmentation, this function s is recovered using a collection of piecewise constant
functions. For this purpose, Lebarbier (2005) defines model S,,, that is the subset
of piecewise constant functions on partition m = {Ij }r-1 .k, of dimension K,,:

Km
Sy = {U = Zuk]llk, (uk)k:L.“,Km c RKm} .
k=1

Classical estimation procedures consider that distribution s belongs to &,,.
Nevertheless, since s is unknown, it is unlikely that it belongs to any model. The
approach developed by Birgé and Massart (2001) considers that model S, only
constitutes an approximation of s. Since s is unknown, it is approximated by s,
that belongs to model S,,. Nevertheless, s, itself is unknown and is estimated
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by §,,. Then the quality of an estimator §,, is assessed with a quadratic risk,
E||s — 5,,]|%, and the chosen estimator should minimize this risk. The quadratic
risk of §,, can be broken down such that:

Ells — 3nll* = Ells — 5nll* + El|5m — sull*.

The first term E||s — 3,,]|> measures the distance of the unknown s to the approx-
imator s, in S,,. This is a bias term that is small if the approximation is good.
The second term E||5,, — §,,||> measures the quality of the estimation of 5,, by
Sm- This quantity should be small to prevent estimation errors. The purpose of
model selection is then to establish a trade-off between a model that is close to the
unknown distribution and which provides a good approximation of the unknown
distribution, but that is not too big to prevent from estimation errors. This is
called the bias/variance trade-off.

An ideal estimator of s, noted §,, could be defined as the estimator that
achieves the best bias/variance trade-off. The objective of model selection is then
to construct a criterion that will be used to select a partition m which behaves
as well as the best estimator, up to some constant. This criterion is composed
of two terms, a first term that quantifies the closeness of model S,, to the data,
that increases with the dimension of the model, and a penalty term to control the
estimation errors.

In the context of process segmentation, a model is selected through its dimen-
sion, te we aim at selecting m the partition of dimension K,,. This is achieved
with a penalty function defined by Lebarbier (2005), such that:

Bn X pen(K) = %02 X {cl log (KL) + 02} , (4.2)

m

with ¢;, co two positive constants to be calibrated and o2 to be estimated. This
function increases with the dimension of the model K,,, and the log(n/K,,) term
reflects the richness of collection of partitions, since there exists C,If_”fl possible
partitions of the grid {1,...,n} into K, segments.

The performance of this penalty function has been assessed by simulation stud-
ies, and compared to other penalized criteria, such as the Mallows C),, criterion,
and the Bayesian Information Criterion (BIC) in a non asymptotic context. The
main difference between those criteria is that criteria constructed on asymptotic
considerations do not consider the complexity of the different models. Let us recall
that the construction of BIC in the context of process segmentation considers that
the number of parameters to be estimated is K, means, K,, — 1 breakpoints and
1 variance, whereas this new penalty considers that there exists C’fj’fl possible
partitions when K, is fixed. This leads to a penalization that is more stringent,
and to the selection of a lower number of segments. Note that the construction of
a penalty function is based on different objectives that will explain its behavior.
For instance, the use of BIC to select the number of segment is motivated by the
finding of the true number and of the true breakpoint coordinates. On the other
hand, the penalty given by Lebarbier (2005) aims at minimizing a quadratic risk,
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and will tend to ignore some irrelevant breakpoints corresponding to small jumps
in the mean.

To complete the introduction of model selection for segmentation process, the
reader is referred to (Lebarbier 2005) for further information concerning penalty
4.3.1, the calibration of constant c;, c; and the estimation of o2. Model selection
theory has been applied to a wide range of statistical problems. See Birgé and
Massart (2001) for a general presentation of model selection theory, Castellan
(2000) for the application of model selection to the estimation of histograms, and
Gey and Nedelec (2002) for model selection for CART Regression Trees.

4.3.2 An adaptive method to estimate the number of seg-
ments

In contrast to Lebarbier (2005) who aims at finding a universal penalty for select-
ing the number of segments, Lavielle (2005) has developed an adaptive method
that is heuristically based. The motivation of such method is that the penalties
defined for the BIC criterion or by Lebarbier (2005) are adapted to a very partic-
ular context. In the first one, the objective is to recover the true configuration,
and the second one aims at minimizing a very specific criterion (the quadratic
risk of the estimator), but none of these methods holds in the non-Gaussian case
or for dependent variables for instance. The aim of Lavielle (2005) is to propose
a method that can be used in many different situations, with very few hypotheses.

First of all let us notice that when the number of segments is small regarding
the size of the data, penalty 4.3.1 is linear in the number of segments, and Lavielle
(2005) suggests using a penalty in the form:

pen(K) = 2K.

The new objective is to estimate 3 adaptively to the data. This estimation is done
considering the behavior of the quality of fit criterion that is used. If this criterion
is the least-squares criterion noted Jg, it will decrease as the number of segments
increases, and the method consists in the determination of the number of segments
for which the criterion ceases to decrease significantly. The proposition considers
the slope between points (K, Jk,) and (K41, Jk,,,). Looking where Jx ceases
to decrease significantly means looking for a break in the slope of this curve. An
illustration is provided in Figure 4.1.

This method is heuristically based and requires the tuning of a parameter to
assess the "significance" of the slope break. Nevertheless, it appears to be very
flexible and has been shown to be efficient in many situations. Simulation results
comparing this adaptive method to the penalty defined by Lebarbier (2005) show
that it is more robust to the addition of noise (Picard et al. (2005)).
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Figure 4.1: Illustration of the model selection procedure proposed by Lavielle
(2005). Circles represent the convex hull of contrast Jx. The vertical line indicates
the number of segments for which the contrast ceases to decrease significantly.

4.4 Bayesian formulation of the multiple change-
point problem

In order to complete this review on segmentation methods, we present another
modelling strategy that has been considered for this problem, in the Bayesian
framework. See Green (1995), Carlin (1992), Barry and Hartigan (1993), Av-
ery and Henderson (1999), Lavielle and Lebarbier (2001) for instance. Previous
sections were dedicated to strategies whose objective is to provide the best seg-
mentation on the data, based on a specific criterion. The objective is different in
the Bayesian setting, where the number of segments as well as their position is
random. As a consequence, their posterior distribution will be used to choose the
most appropriate number of segments, and will provide local information regard-
ing the position of the breakpoints.

The model can be specified as follows. Let {Y;} be a real process such that
Vie{l,...,n}, Yy =s(t) +ey

where ¢; is a sequence of zero-mean random variables. The function s to be
recovered is supposed piecewise constant. With the conventional notations:

vVt € I, S(t) = Uk.
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4.4.1 The multiple change-point problem and the reversible
jump algorithm

Two approaches have been considered to model the sequence of change-points.
Green (1995) specifies the prior model as follows. Suppose that the number of
segments K is drawn from a Poisson distribution P(\). Given K, the breakpoint
positions tq,...,tx_1 are distributed as the even-numbered order statistics from
2K — 1 points uniformly distributed on [1, n], and the means p;, are independently
drawn from the gamma density I'(«a, 3).

A Monte Carlo Markov Chain algorithm is required to calculate the posterior
probabilities of both breakpoint instants and means. Nevertheless, those proba-
bilities depend on the number of segments which may vary. Many authors have
solved this problem by fixing K at 1. The development of the reversible jump
MCMC sampler has allowed this limitation to be circumvented, and the multi-
ple change-point problem was one of its first applications. The reader is referred
to Green (1995) for further details on the application of the Reversible Jump
algorithm to the multiple change-point problem.

4.4.2 A reparametrization of the multiple change-point prob-
lem

Instead of a parametrization that considers the breakpoint instants {¢; }x, Lavielle
(1998) and Lavielle and Lebarbier (2001) propose introducing a sequence of con-
stant size {R;}, such that:

n 1 if there exists k£ such that ¢t = ¢.
©~ 1 0 otherwise.

The variables are supposed to be independent with prior Bernoulli distribution
B(\). Let us concentrate on the differences between the model specified by Green
(1995) compared to this formulation.

In the formulation proposed by Lavielle and Lebarbier (2001) the variable of
interest is the presence of a breakpoint, which is supposed independent from the
presence of a breakpoint at close instants. In the framework defined by Green
(1995) however the sequence of breakpoint instants {t;} indicates the position of
the breakpoints, and positions are not independent from each other. As a conse-
quence the posterior distribution of the {f;} in the reversible jump context will
directly quantify the uncertainty regarding the breakpoints location. With the
reparametrization of the model, this information will be provided by the quantity
Pr{zi": ., Bt = k|y; 0}, which is the probability of having exactly & change-points
between instants ¢, and ¢,.

Another difference lies in the distribution of the number of segments. In the
first case, this number is assumed to follow a Poisson distribution, and the dis-
tribution of the breakpoint instants only depends on its current value. In the
formulation proposed by Lavielle and Lebarbier (2001), the prior distribution of
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the sequence {R;} defines the prior distribution of the number of segments. Since
Kr=>Y"""R+1,and R, ~ B(\), it follows that K ~ B(n—1,\). The choice of
the number of segments will depend on the choice of \. More than a strict impact
of parameter A on the distribution on the number of segments, the Bernoulli prior
on R; specifies the distribution of the distance between two breakpoint instants
since

Pr{Riy1=0,..., R 1 =0,Reyp = 1R, =1} = A1 = N1

In this formulation, the prior distribution has a double impact: it specifies the
distribution of the number of segments, as well as the distribution of the length
of the segments, which implicitly becomes geometric.

4.4.3 Recovering the Maximum A Posteriori estimator of
the breakpoints sequence

The main advantage of the formulation proposed by Lavielle and Lebarbier (2001)
lies in the computational approach that can be used to recover the posterior
distribution of the sequence {R;}. The authors emphasize the hierarchy of the
model, that is:

p(R, puly; 0) = p(Rly; 0) x p(uly, R;0),

with 6 the set of hyperparameters. The first term p(R|y;0) is used to recover
the sequence of the breakpoint instants, and once this distribution is known, the
signal is reconstructed with a Gibbs sampler to calculate p(uly, R; ), the hyper-
parameters of the model being estimated with a stochastic approximation of the
EM algorithm, SAEM (Delyon et al. (1999)). Since the size of sequence {R;} is
fixed, a Hastings-Metropolis algorithm can be used to sample sequences of 0 and
1 of size n. This parametrization prevents the use of a reversible jump algorithm,
which is known to converge slowly.

Moreover Lavielle and Lebarbier (2001) show that the posterior distribution
of R is in the form

p(Rly;0) = C(y;0) exp{—Uy(y, R)},

where
Kgr tg

Uy, R)=0> > (nr— ) + 7K,

kzl tk_l-f—l

and where (¢,7) depend on the hyperparameters of the model. The Maximum
A Posteriori (MAP) estimator of R that minimizes Uy(y, R) is then a penalized
least-squares estimator. An analogy can be drawn with the breakpoint estimators
defined in the frequentist context:

K t,
A . ) 1 R
{tla--wtKﬂ}:Argmm —Z Z (yt—uk)2—2ﬁK
t1,.. 0t —1 n N1 t—tp 11

The recovery of the MAP estimator of the breakpoint sequence can face local
maxima that should be avoided. To do so, Lavielle and Lebarbier (2001) propose
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a modification of the Hastings-Metropolis algorithm, with the introduction of a
temperature parameter 7' such that:

Up <y7 R)

pr(Rly; 0) = Cr(y; 0) exp{— T

}.

The interest in this temperature parameter is that when 7' tends to 0, pr(-|y;0)
converges to the uniform distribution on the set of global maxima of p(-|y;6).
Simulated annealing algorithms consist in using a sequence of temperatures 7)
that decrease at each iteration. Nevertheless, the use of this sequence would re-
quire a very large number of iterations. In practice, Lavielle and Lebarbier (2001)
suggest running the Hastings-Metropolis algorithm at a fixed low temperature.
The problem is to choose this temperature parameter.

4.5 Conclusion

In this chapter, we presented a brief review of existing statistical methods concern-
ing the multiple change-point problem. Of course this review is not exhaustive,
since the bibliography related to this subject is ample. Our scope was to present
and explain the main tools that will be used in the following, such as dynamic pro-
gramming and model selection, but also to present other existing methods, such
as Bayesian methods that constitute an alternative modelling strategy. Once the
statistical concepts related to process segmentation have been presented, our first
work has been to apply them to real genomic data sets.
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Chapter 5

Application of segmentation
methods to CGH array data
analysis

The reasons for using segmentation methods to the analysis of array CGH data
has been previously motivated in Chapter 3, and Chapter 4 was dedicated to the
review of statistical methods for process segmentation. Nevertheless, some other
approaches have been proposed in the specific context of array CGH data analy-
sis. They mainly concern the estimation method for the breakpoints that can be
based on many different algorithms. We will briefly present the main statistical
approaches based on segmentation methods that are currently used in the field
of array CGH data analysis. We also make a clear distinction between visual-
ization tools and toolboxes that have been proposed (Kim et al. (2005), Chen
et al. (2005) ) compared to statistical methodologies which are the purpose of
our study. The notations introduced in Chapter 4 will be used in this section, in
order to draw analogies between the proposed methods, and to compare them.

The second section of this chapter will be devoted to the presentation of the
segmentation method we proposed in an article published in the journal BMC-
Bioinformatics, Picard et al. (2005). A copy of this article can be found in
the Publications section. The last section will be devoted to the comparison of
segmentation methods, based on real data sets, in order to discuss the behavior
of three existing methods, the method proposed by Lavielle and Lebarbier (2001),
Hupe et al. (2004) and the method we propose.

5.1 Diversity of segmentation methods for array
CGH data

5.1.1 A sequential procedure to segment array CGH pro-
files

Historically, Olshen and Venkatraman (2002) were the first to propose a statistical
method for the detection of breakpoints in array CGH data. Their method is based
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on a statistical test developed by Sen and Srivastava (1975), which is modified
and called binary circular segmentation (CBS). Considering the partial sum S; =
> i1 Vi, 1 <4 <n, the likelihood ratio statistic for testing the null hypothesis of
no change against the alternative that there exists exactly one change at unknown

location ¢ is Z = max |Z;| where Z; equals:
1<i<n

_ Sifi = (Su=8)/(n—i)
V1/i+1/(n—1)

Olshen and Venkatraman (2002) propose a modification of the test statistic that
is based on a test which considers only a single change. The new statistic is

Z = max |Z;], such that:
1<i<j<n

g (5= 5)/G —8) ~ (S, =S+ S)/(n—j +i)
! VG =)+ 1/(n—j+i)

A Monte Carlo method is used to calculate the tail of the distribution under the
null hypothesis. The procedure is applied recursively until all the changes have
been identified, and a permutation approach is considered to relax the normality
assumption under the null hypothesis. This method is sequential and close to
on-line detection methods that do not provide a global optimal segmentation.

5.1.2 A smoothing method to estimate the breakpoints

This approach has been proposed by Hupe et al. (2004) and is based on Polzehl
and Spokoiny (2000). This method consists in the local estimation of a smoothing
function s for each position x;. In this context the log-ratio Y; is supposed to
depend on the position of the BAC at X; via an unknown function s, and a
regression model is considered such that:

}/;5 = S(Xt> + Ety

with &; being i.i.d. random error terms with distribution A/(0,c?). The Adaptive
Weights Smoothing procedure is iterative and finds around every x; the maximal
possible neighborhood in which the function s is constant: a weight wy, is assigned
to every observation Y;. This model leads to the following weighted maximum
likelihood estimator :

$(zy) = min— E wye(Yy — 5)?

s 202
with 02 assumed to be known. Briefly, weights are calculated and up-dated us-
ing kernel functions, one denoted f; that considers the proximity of the x;s in
the neighborhood, and a second one denoted f; which penalizes for too many
breakpoints.

The AWS procedure provides one estimate §(x;) for each position. Since
the data have been smoothed, this procedure requires an ad-hoc definition of
a breakpoint. Hupe et al. (2004) define a breakpoint at position z; if §(z;) ¢
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[8(x¢) + €, 8(x;) — €], with € a tuning parameter fixed at 1072. Note that € is not
the only tuning parameter of the procedure, others being the maximal width of
the neighborhoods that can be considered, and the weight given to the kernel that
penalizes for an overly large number of breakpoints.

As for the choice of the number of breakpoints, the authors indicate that the
kernel function f is not sufficient to prevent false positive breakpoints. This is
why a filtering step is added to remove these undesirable breakpoints. The new
function to be optimized is then :

K K . .
2 |fir — fir+1]
;nk log oy + )\;f (T) log(n),

with n; the size of segment k, fi; and &7 the empirical estimators of the mean
and variance of segments k£ and 62 the estimation of the global variance, f(-) the
tricubic kernel function, and A a penalty constant that has to be fixed. Note that
there exists an ambiguity in the definition of this criterion, since the left part
represents the log-likelihood of a segmentation model where the variance depends
on each segment, whereas the initial definition of the model stipulates a constant
variance.

This method seems to be efficient for array CGH data analysis, but requires
the tuning of many parameters. It has the advantage of considering that BACs
are not evenly spaced on the genome, and the neighborhood that is used to locally
estimate function s considers that the distance x;.; — x; is not constant. Other
smoothing algorithms have been proposed (Eilers and Menezes (2005)), but their
aim is mainly in the representation and visualization of the data.

5.1.3 Finding breakpoints with a genetic algorithm

This method has been proposed by Jong et al. (2003) who consider a segmentation
model in the Gaussian framework with heterogeneous variances. The model is
then model M;. The function to be optimized is the penalized log-likelihood :

K
log L = anlog@% + AKX,
k=1
with A set at 10. The point of the authors is not the correct choice of the penalty
term, but rather the estimation of the breakpoints, which is done with a genetic
algorithm.

The Genetic Local Search algorithm is based on a local update of the break-
points. Random breakpoints are chosen and repeatedly updated in order to max-
imize the penalized log-likelihood function log L. At each iteration, the update
rule chooses a breakpoint which is moved only if this move increases the scoring
function. The iterative process terminates when no move increases the scoring
function. In addition to this local search, a genetic rule is applied using the pe-
nalized likelihood as fitness function. Briefly, mutations randomly decide whether
to add or to remove breakpoints: adding a breakpoint is done if a segment presents
a variance that is too high, and places the breakpoint in the middle of that region.
The removal of a breakpoint consists in the removing of the breakpoint that leads
to the best fitting function.
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5.2 An efficient segmentation method and model
selection procedure for the analysis of array

CGH data

In Chapter 4 we provided guidelines for the use of segmentation methods in sta-
tistical analysis. They were formulated as follows: (1) the determination of the
parameters affected by the changes, (2) the procedure for estimating the break-
points when the number of segments is fixed, (3) the estimation of the number of
segments. It can be seen the from previous section that current approaches for ar-
ray CGH data analysis have focused on point (2). Nevertheless, little information
has been provided concerning the most appropriate modeling strategy for array
CGH data (point (1)). Models M; and M have been used by different authors,
but none has specified the impact and the behavior of such models. In the follow-
ing, we compare the two modeling strategies and show that model M, seems more
appropriate for array CGH data. Interestingly, dynamic programming has not fo-
cused much attention on the case of array CGH data segmentation. The only
reference to this algorithm is Autio et al. (2003), who do not precisely explain its
potential and do not assess its performance. This is why we propose to study the
ability of the maximum likelihood method combined with dynamic programming
to correctly locate the breakpoints with simulation studies. As for the estimation
of the number of breakpoints (point (3)), current methods use ad-hoc procedures.

In February 2005 we proposed an efficient segmentation method and model
selection procedure for the analysis of array CGH data. The purpose of this sec-
tion is to present the main results of our work that has been published in the
journal BMC Bioinformatics (Picard et al. (2005)). We have also developed a
software program dedicated to segmentation methods for independent Gaussian
processes. This software has been implemented with the MATLAB® software and
can be used in a more general context than the analysis of array CGH data.
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1- Determination of the parameter(s) affected by the changes

The determination of the parameter(s) affected by the changes requires some
knowledge about the underlying phenomenon that is modelled. In the case of
array CGH data, it is the log, ratio of fluorescence intensities, which reflects the
relative number of DNA copies throughout the genome. We have chosen to model
this ratio with an independent Gaussian process. The problem is then to deter-
mine whether model M; or M, is more appropriate, 7e if the variance of the
process is homogeneous within segments, or constant between segments.

In this work, we show that a model with constant variance M is more ap-
propriate for two reasons. The first argument is experimental, since it has been
shown that the variability of the signal was the same for unaltered or altered
clones, leading to a constant variability along the genome (Snijders et al. (2001)).
The second argument is based on the behavior of both models. If we consider a
model with heterogeneous variances, the addition of outliers within a segment will
lead to an increase in the variance of the segments, whereas model M, will tend
to add a segment of small size in order to maintain a constant variance along the
profile. The illustration of this behavior is provided in Figure 5.1. Outliers are a
major concern in CGH array data analysis. If only one BAC is altered, whereas
its neighbors are not, the conclusion could be that it is biologically relevant, or
that it is a technical artefact, or that the altered BAC has been misannotated
and is plotted at the wrong position. For these reasons we emphasize the use of
a segmentation model with homogeneous variance for array CGH data.

2- Assessing the performances of dynamic programming

For the case where the number of segments is fixed, we studied the ability of
dynamic programming to correctly locate the breakpoints given different amounts
of noise. To do so, we considered two types of numerical simulations. In the first
case (regular case), segments are of the same size and the jump in the mean d is
constant and equals 1. In this case we show that the breakpoints are correctly
located even if the amount of noise is large (frequency 1 if d/o = 10, frequency
0.65 if d/o = 2, and frequency 0.25 if d/o = 1). Even if this probability decreases,
the breakpoint is still located at positions close to the true ones. In the irregu-
lar case where segments are of different sizes and where jumps in the mean are
heterogeneous, the tendency will be to ignore segments of small size that show a
small jump in the mean. The reader is referred to Picard et al. (2005), pages 5
and 6 for more details.

3- Comparing penalization strategies to select the number of segments

Our scope is to compare different penalization strategies and to assess the
most appropriate in the case of array CGH data segmentation. In Chapter 4 we
presented two new penalized criteria that have been proposed by Lebarbier (2005)
and Lavielle (2005). Our work constitutes the first comparison of the performance
of those criteria, based on a simulation study. Briefly, we consider simulated data
with a fixed number of segments and an increasing amount of noise. We show
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Figure 5.1: Comparison of segmentation results for model M; and M.
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the adaptive behavior of the criterion defined by Lavielle (2005) which estimates
a stable number of segments, whatever the noise. On the contrary, the criterion
defined by Lebarbier (2005) tends to select a small number of segments when the
amount of noise increases. This behavior is directly linked to the construction of
the penalized criterion which tends to ignore small jumps in the mean in order
to maintain a small quadratic risk. Finally we show the good performance of
the adaptive criterion based on real data sets, and we recommend its use in the
context of array CGH data analysis.

5.3 Comparison of segmentation methods

5.3.1 Comparison with Bayesian methods

To complete the application of segmentation methods to array CGH data, we
choose to compare the resulting segmentations provided by the method we pro-
pose (based on dynamic programming and adaptive model selection) with the
results provided by the Bayesian approach proposed by Lavielle and Lebarbier
(2001). Since model Mj (changes in the mean and constant variance) has been
shown to be more appropriate in the case of array CGH data analysis, we restrict
our comparison to this model.

Let us briefly recall the analogies that exist between the two methods. In
the Bayesian setting proposed by Lavielle and Lebarbier (2001), the aim is to
recover the Maximum A Posteriori estimator of the change sequence {R;}, whose
postertor distribution is in the form:

Up(y, R
pr(Rly:0) = Crly:0) expl L2010y,
where
Kgr ti
Usy, R) =6 > (1 — )" +7Kg.
k=11tr_1+1

Uy(y, R) is penalized contrast and the temperature parameter 7" aims at avoiding
local maxima.

In Chapter 4 we compared different strategies to model the sequence of break-
points. We discussed the reparametrization proposed by Lavielle and Lebarbier
(2001), based on a sequence of constant size {R;} that indicates the presence of
a breakpoint at coordinate ¢, compared to the position of a change as proposed
in Green (1995). In this section, we want to discuss the combined effect of the
reparametrization and the use of a Hastings-Metropolis algorithm at a fixed tem-
perature.

Figure 5.2 shows the segmentation given by our method compared to the pos-
terior probability of having one breakpoint at coordinate ¢ on the genome. Results
are similar in this example. Note that the posterior probabilities are close to 1
for all positions, since the jump detected is high compared to the variance of the

49



Chapter 5. Application of segmentation methods to CGH array data analysis

3r S :
g : :
o S 8-3--MBWMo- P -2 PRy y%
o ‘@ .

_3 1 - 1 R 1 1 1
50 100 150 200 250
genomic position

l -
E 08 r
=
8
S 0.6
o
2 04
8
%]
g

0.2F
O Il 1 1 1 1
50 100 150 200 250
genomic position

Figure 5.2: Comparison of segmentation results. Top: segmentation provided by
dynamic programming with an adaptive model selection procedure. Bottom: pos-
terior probability of the change-point sequence, according to the physical location
on the genome. This posterior probability has been estimated with a temper-
ature parameter fixed at 7' = 0.5. Data are described in Nakao et al. (2003),
chromosome 1.

data. Lavielle and Lebarbier (2001) have shown that a jump of 0.4 in the mean
with a variance of 0.1 was detected with posterior probability close to 1.

In the case of array CGH data segmentation, Figure 5.3 shows that the re-
sulting segmentation is sensitive to the temperature parameter (to be compared
with Figure 5.2), and the resulting segmentation presents fewer segments. Inter-
estingly, the effect of a decrease in the temperature parameter is to remove some
breakpoints, whereas it could have been to decrease the posterior probability of
irrelevant changes. It appears that the tuning of the temperature parameter is
important for the determination of the number of segments, rather than for the
position of the breakpoints.

5.3.2 Comparison with smoothing methods

The last comparison that is presented concerns the segmentation method proposed
by Hupe et al. (2004) and presented in Section 5.1. Segmentation of real CGH
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Figure 5.3: Comparison of segmentation results. Top: segmentation provided by
dynamic programming with an adaptive model selection procedure. Bottom: pos-
terior probability of the change-point sequence, according to the physical location
on the genome. This posterior probability has been estimated with a temper-
ature parameter fixed at 7' = 0.1. Data are described in Nakao et al. (2003),
chromosome 1.

51



Chapter 5. Application of segmentation methods to CGH array data analysis

0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 2.2

genomic position X 103

|
w

0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 2.2

genomic position X 103

Figure 5.4: Comparison of segmentation results. Top: segmentation result pro-
vided by the smoothing method proposed by Hupe et al. (2004). Bottom: seg-
mentation provided by dynamic programming with an adaptive model selection
procedure. Circled dots represent outliers. Data are described in Nakao et al.
(2003), chromosome 1, experiment X38.

data shows similar results for the number and the position of the breakpoints
(Figures 5.4 and 5.5). Nevertheless, Hupe et al. (2004) propose an additional
step in the analysis which consists in the identification of outliers, with a median
absolute deviation criterion. The main difference between the two approaches
lies in the definition of outliers, since model M, can detect segments of size 1
that would be defined as outliers by Hupe et al. (2004). In the following, we
will show that an automatic identification of outliers based on pure segmentation
methods may not be appropriate in the case of array CGH data. Interestingly,
the level of outliers in Figure 5.4 is close to the deleted segment at the begin-
ning of the profile, indicating that "outliers" may represent small deleted regions.
The segmentation /clustering model we propose in the following will address this
problem.
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Figure 5.5: Comparison of segmentation results. Top: segmentation result pro-
vided by the smoothing method proposed by Hupe et al. (2004). Bottom: seg-
mentation provided by dynamic programming with an adaptive model selection
procedure. Circled dots represent outliers. Data are described in Nakao et al.
(2003), chromosome 1, experiment X265.
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5.4 Conclusion

In this chapter, we applied existing segmentation methods to the analysis of ar-
ray CGH data. We focused on the comparison of different segmentation methods.
We compared penalized criteria for choosing the number of segments in the profile
(Section 5.2), and we compared different modelling strategies. In a recent paper
Lai et al. (2005) compared 11 segmentation methods for the analysis of array
CGH. This study is performed using simulated data for which the size of seg-
ments and the noise level vary. Using Receiver Operating Characteristic (ROC)
curve, they show that the method we propose performs consistently well. In the
following, we focus on the modification of our method in order to detect genomic
regions on the genome affected by amplification/deletion but also to cluster these
regions into a finite number of groups.
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Introduction

Motivations for a new statistical model

Part II was dedicated to a review of existing segmentation methods. Even if
the application of such methods to array CGH data seems promising, we claim
that they do not answer the specific question that is asked when analyzing such
data. In array CGH data analysis the final objective is to determine which regions
are altered by chromosomal aberrations and then to label each individual BAC
with respect to their biological status. Clustering is the principal motivation of
array CGH data analysis. A first idea could be to apply standard clustering meth-
ods such as mixture models, in order to cluster data points according to their log,
ratios. An example is provided in Figure 5.6. Nevertheless, array CGH data are
characterized by their physical order on the genome and this information is not
considered by the mixture. Consequently the clustering results lead to regions on
the genome that can not be interpreted as homogeneous in terms of gene copy
numbers (Figure 5.6, bottom).

It has been shown that segmentation methods are adapted to array CGH data
since they provide a signal that can be interpreted as a succesion of homogeneous
regions on the genome that share the same relative copy number on average.
In one sense, segmentation methods could be viewed as space-ordered clustering
methods. However they are based on the hypothesis that the signal should be ho-
mogeneous within segments and heterogeneous between segments. Consequently
there is no constraint regarding the mean and variance of the process which can
take any possible values. In the case of array CGH data, the problem is different.
We know that the phenomenon under study is discrete by definition since gene
copy numbers can only take a finite number of values. A first idea would be to
constraint the mean of segments to be in the set {0,1/2,2/2,3/2, ...}, reflecting
possible gene copy number ratios between a diploid reference genome (2 copies)
and a test genome. This model is called the "step-ratio" model, and is illustrated
in Figure 5.7. Nevertheless, array CGH data are characterized by experimental
and biological variability which hamper the use of such a simple model.
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Figure 5.6: Application of a Gaussian mixture model to array CGH data. Top:
estimated densities of a Gaussian mixture model with 3 clusters based on log,
ratios. Bottom: representation of the clustering result according to the physical
order of data points on the genome. Data concern the breast cancer cell line
Bt474, chromosome 1 described in Snijders et al. (2001).
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Figure 5.7: Principle of an array CGH experiment. Chromosome 1 shows a com-
plete duplication, leading to constant copy number ratios of 3/2. Chromosome
2 shows one deletion (ratio 1/2) and one amplification (ratio 3/2), other regions
being unaltered (ratio 2/2).
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Biological variability

The most frequent phenomenon arising in the analysis of primary tumors is
an imperfect dissection leading to normal cell contamination. Generally patholo-
gists make sure that tumor samples do not contain more than 50 or even 30% of
normal cells. The effect of normal cell contamination is a potential "dilution" of
chromosomal defects, leading to ratios which do not necessarily reflect true copy
numbers. Moreover even if the tumor sample is composed of altered cells, tumors
are characterized by genomic instabilities and heterogeneities within a sample,
since not all tumor cells may have acquired a given aberration. All these factors
reduce the expected magnitude of copy number ratios and often make the estima-
tion of a true copy number for a given clone impossible.

Technical variability

The second argument against the step-ratio model is that even if the underly-
ing biological phenomenon is discrete and linear by definition (counting of DNA
sequences), measurements are done using fluorescence measurements with continu-
ous outputs. In addition to pure biological variability, the resulting measurements
are corrupted by experimental noise which should be considered by any statistical
model. Moreover, it appears that gene copy numbers can take any possible value.
Amplifications of more than 10 fold are not rare in cancer genomics. Regarding
this amplification, the technology could be affected by saturation effects which
could modify the proportionality relationship that holds between gene copy num-
bers and fluorescence ratios (Snijders et al. (2001), see Chapter 1).

Introduction to a segmentation/clustering model

Considering all these arguments we propose a model that is more flexible com-
pared with the simple step-ratio model. Since the final objective of array CGH
data analysis is to cluster data points into a finite number of groups with biological
interpretation, we propose to develop a new model that considers both structures:
the organization of the data into segments, and the organization of segments into
clusters of biological interest.

Segmentation methods aim at partitioning the data into a finite number of
segments. Their objective is to facilitate the interpretation of the signal regarding
its spatial coherence along the genome. This principle is illustrated in Figure 5.8,
left. In the context of array CGH data, we claim that the model should consider a
secondary structure of the signal. Our hypothesis is that the level of each segment
belongs to a finite set {m1,...,mp}, with P denoting a number of clusters to be
selected and m,, the mean log-ratio for cluster p (to be estimated). This situation
is illustrated in Figure 5.8, right. In this context, we are still interested in the
detection of changes in the signal, but we also want to assign a label to segments
in order to provide results with biological interpretation. For example, segments
2 and 3 should be clustered into the same group since their average signal is close.
Similarly, segments 1 and 4 should be affected to the same group, even if they are
not connex. The breakpoint that would have been detected between segments 2
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Figure 5.8: Principle of the segmentation /clustering model.

and 3 should be removed in order to cluster the segments into the same group.
Similarly we think that the correct identification of segment 1 into cluster 1 could
help for the detection of segment 4 since they belong to the same group. As a
result the segmentation should change when considering the clustering objective
of the model.

Many strategies exist for clustering. They can be based on heuristic proce-
dures (k-means, hierarchical clustering for instance), or on a statistical model
such as mixture models. We choose to adopt a model-based strategy for two rea-
sons. The first one has been motivated previously: since the signal can take any
possible values, we want to provide some uncertainty regarding the label given
to each segment. This can be achieved with the use of posterior probabilities of
membership calculated in the context of mixture models. The second reason is
that the number of groups is unknown. A sample may contain different levels of
amplifications or deletions and the analyst does not have any prior knowledge
regarding this number. One objective of our methodology will be to estimate this
number and model-based clustering provides theoretical tools for this purpose.
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Mixture models themselves are not sufficient to model the nature of array
CGH data, which are intrinsically structured into segments of homogeneous gene
copy numbers. Nevertheless, they constitute the second basis of the construction
of our model (the first one being segmentation models which have been described
in Part II). This is why the first chapter of this part will be devoted to a review
concerning model-based clustering.

The second chapter focuses on the definition of the segmentation/clustering
model. As mentionned in Part II concerning the development of segmentation
models, we can follow the same guidelines regarding the construction of our model
which are:

1. determining the parameters affected by changes and according to which the
data should be clustered,

2. choosing the estimation method and constructing an appropriate algorithm
to estimate the parameters of the model which are the breakpoint instants
and the mixture model parameters. This estimation is done for a fixed
number of segments and clusters,

3. selecting the number of segments K, and the number of clusters P.

It appears that the model selection problem is unusual in our case, since K
and P should be jointly selected. In Chapter 8 we will discuss possible strategies,
based on existing methods for selecting K and P separately. Then we propose a
heuristic for model selection.

While developing a new methodology for segmentation/clustering problems,
it appears crucial to compare the new approach with existing methods. Hidden
Markov models consitute the most widely used approach regarding this problem,
and they have been applied to array CGH data analysis in Fridlyand et al. (2004).
In order to be complete, we propose to discuss the formulation of our model, and
to compare it with Hidden Markov models in Chapter 2. Our strategy will be
also compared with a new method to analyse array CGH data proposed by Wang
et al. (2005) and based on hierarchical clustering.
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Chapter 6

Mixture models

The purpose of cluster analysis is to determine the inner structure of clustered
data when no information other than the observed values is available. Interest
in clustering has increased due to the emergence of new domains of application,
such as astronomy, biology, physics and social sciences. Most clustering done
in practice is based largely on heuristic or distance-based procedures, such as
hierarchical agglomerative clustering or iterative relocation procedures. These
methods present two major advantages: their construction is intuitive and the
associated computational time is reasonable. Nevertheless their lack of statistical
basis appears to be a limitation for their use, since classical questions in clustering
such as the number of clusters, can hardly be theoretically handled by heuristic
procedures.

Clustering methods based on probability models offer a principal alternative
to heuristic-based algorithms. In this context the data are viewed as coming from
a mixture of probability distributions, each representing a different cluster. In
addition to clustering purposes, finite mixtures of distributions have been applied
to a wide variety of statistical problems such as discriminant analysis, image
analysis and survival analysis. To this extent finite mixture models have continued
to receive increasing attention from both theoretical and practical points of view.

In a mixture model based approach to clustering the data are assumed to have
arisen from a mixture of an initially specified number of populations in different
proportions. Let us note Y = {Y7,...,Y,,} a random sample of size n, where Y; is
a g-dimensional random vector with probability density function f(y;) on R?, and
Yy its realization. We suppose that the density of Y; can be written in the form

flye) = Z T fp (1),

where f,(y:) is a component density of the mixture, and m, the weight of pop-
ulation p (with the constraints 0 < m, < 1 and ) m, = 1). In many applica-
tions the component densities are assumed to belong to some parametric family.
In this case, they are specified as f(y;;6,), where 6, is the unknown vector of
parameters of the postulated form for the p* component of the mixture. Let
Y = (m,...,mp_1,01,...,0p) denote the vector containing all the unknwon pa-
rameters of the mixture. Section 6.1 will be devoted to the formulation of mixture
models in the parametric context.
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Since we are interested in clustering it appears that one information is missing
regarding the observed sample: the assignment of data points to the different
clusters. A new random variable is introduced and noted Z;, that equals 1 if data
point y; belongs to population p, and 0 otherwise. We suppose that variables
{Z1,...,Z,} are independent (with Z, = {Zy1, ..., Z;p}) and that the conditional
density of Y; given {Z,, = 1} is f(y;;0,). Therefore variables Z;, can be viewed
as categorial variables that indicate the labelling of the data points. Thus Z; is
assumed to be distributed according to a multinomial distribution consisting of
one draw on p categories with probabilities 7y, ..., 7p:

{Ztl,...,ZtP} NM(l;?Tl,...,ﬂ'p).

In terms of clustering, the p!* mixing proportion can be viewed as the prior prob-
ability that one data point belongs to population p. The posterior probability of
Zyy, given the observed value of y, will be central for clustering purposes:

7Tpf(ytS ep) .
S ooy mef (yes Oe)

In order to formalize the incomplete data structure of mixture models, let X =
(Y, Z) denote the complete data vector, whose only component being observed
is Y. This reformulation clearly shows that mixture models can be viewed as a
particular example of models with hidden structure such as hidden Markov models
or models with censored data.

If the label of each data point was observed, the estimation of the mixture
parameters would be straightforward since the parameters of each density com-
ponent f(y:;6,) could be estimated only via the data points from population p.
Nevertheless the categorial variables are hidden, and the estimation can only be
based on the observed data Y. The main reason for the important work on estima-
tion methodology for mixtures is that explicit formulas for parameter estimates
are not available in a closed form, leading to the need for iterative estimation
procedures. Fitting mixture distributions can be handled by a wide variety of
techniques, such as graphical methods, the method of moments, maximum likeli-
hood and Bayesian approaches. It has only been since 30 years that considerable
advances have been made in the fitting of mixture models, especially via the max-
imum likelihood method, thanks to the publication of Dempster et al. (1977) and
to the introduction of the EM algorithm.

The purpose of the EM algorithm is the iterative computation of maximum
likelihood estimators when observations can be viewed as incomplete data. The
basic idea of the EM algorithm is to associate a complete data model to the incom-
plete structure that is observed in order to simplify the computation of maximum
likelihood estimates. Similarly, a complete data likelihood is associated to the
complete data model. The EM algorithm exploits the simpler MLE computation
of the complete data likelihood to optimize the observed data likelihood. Section
6.2 is devoted to the general description of the EM algorithm and to its general
properties. Despite a wide range of successful applications and the important
work on its properties, the EM algorithm presents two intrinsic limitations: it
appears to be slow to converge and as many iterative procedures, is sensitive to

Tip = Pr{Zy, = 1|V, = y1} =
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the initialization step. This has lead to the development of modified versions of
the EM algorithm, which will be detailed in section 6.2.

Once the mixture model has been specified and its parameters have been es-
timated, one central question remains: "How many clusters?". Mixture models
present a main advantage compared with heuristic cluster algorithms in which
there is no established method to determine the number of clusters. With the
underlying probability model, the problem of choosing the number of components
can be reformulated as a statistical model choice problem. Testing for the number
of components in a mixture appears to be difficult since the classical likelihood
ratio test does not hold for mixtures. On the contrary, criteria based on penalized
likelihood, such as the Bayesian Information Criterion (BIC) have been success-
fully applied to mixture models. Nevertheless, it appears that those criteria do
not consider the specific objective of mixture models in the clustering context.
This has lead to the construction of classification-based criteria. These criteria
will be discussed in Section 6.3.

6.1 Mixture models in the parametric context

6.1.1 Definition of the model

Let Y = {Yi,...,Y,} denote a random sample of size n where Y; is a vector of
R?, y, its realization and f(y;) its density function. In the mixture model context
the density of Y; is supposed to be a mixture of P parametric densities such that:

yt; Zﬂ-pf yt7 7 (61)

with the constraint 25:1 7, = 1, P being fixed. Coefficients 7, can be viewed

as the weights of the p* component of the mixture, which is characterized by
parameter 6,. ) = (my,...,mp_1,01,...,0p) denotes the vector of parameters of
the model.

Mixture models are reformulated as an incomplete data problem since the
assignment of the observed data is unknown. If we note X; = {Y}, Z;} the complete
data vector whose only component being observed is Y;, its density function is
then:

P
:L‘t7 H ﬂ-pf yta th' (62)
p=1

6.1.2 Clustering via mixture models

When mixture models are used in the clustering context, the aim is to provide
a partition of the data into P groups, with P being fixed. The populations’
weights are interpreted as prior probabilities of belonging to a given population.
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Pr{Z,, = 1} = 7, represents the probability to assign one data point to popula-
tion p when the only available information about the data are the weights of each

group.
In the complete data specification the clustering procedure aims at recovering
the associated label variables z1, ..., z, having observed vy, . .., y,. After the mix-

ture model has been fitted and its parameter v has been estimated, a probabilistic
clustering of the observations is provided in terms of their posterior probabilities
of component membership:

i o f (45 0
= Pr{Zy = 1Y, = ) = — e With)
b > o1 e f (ye; 0r)
Probabilities 741, . . ., 7;p are the estimated probabilities that data point y; belongs
to the first, second, ..., P component of the mixture.

Instead of fuzzy classification results each data point can be assignated to a
particular population with the maximum a posteriori rule (MAP):

1 if p = Argmax {7},
. ¢

Ztp =
0 otherwise.

6.2 Fitting mixture models via the EM algorithm

The estimation of the parameters of a mixture can be handled by a variety of
techniques from graphical to Bayesian methods (see Titterington et al. (1985) for
an exhaustive review of those methods). Nevertheless the maximum likelihood
method has focused many attentions, mainly due to the existence of an associated
statistical theory. Given a sample of n independent observations from a mixture
defined in 6.1.1, the likelihood function is:

Lly;e)=]] {Z T f (Ui 0,,)} -

t=1 p=1

The particularity of mixture models is that the maximization of the likelihood
defined above with respect to ¢ is not straightforward and requires iterative pro-
cedures. The EM algorithm has become the method of choice for estimating
the parameters of a mixture model, since its formulation leads to straighforward
estimators.

6.2.1 General presentation of the EM algorithm

In the incomplete data formulation of mixture models let us note X the complete
data sample space from which x arises, ) the observed sample space and Z the
hidden sample space. It follows that X =) x Z, and x = (y, z). The density of
the observed data X can be written:

g(x; ) = fly; ¥)k(2ly; ),
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where f(y; 1) is the density of the observed data and k(z|y; ) is the conditional
density of the missing observations given the data. This leads to the definition
of different likelihoods: the observed/incomplete-data likelihood L(y; ) and the
unobserved /complete-data likelihood £¢(x;1)). These likelihoods are linked with
the relationship:

log L(x;1)) = log L(y; ¢) + log k(z|y; 1),
with i
log L(w;9) = Y _ log g(4; ¢),
t=1
and -
logk(zly; ) =Y > ziplog BA{ Zyp|Ys = s} .
t=1 p=1

Since the hidden variables are not observed, the EM machinery consists of the indi-
rect optimization of the incomplete-data likelihood wvia the iterative optimization
of the conditional expectation of the complete-data likelihood using the current
fit for ¢. If we note 1)) the value of the parameter at iteration A, it follows that:

log L(y;¥) = Q(1b; ™) — H(1h; ™), (6.3)

with conventions:

Q(v; ™) Eym {log L9(X;¢)|Y},
H; ™) = Eym {logk(Z|Y;9)|Y},

where E, ) {-} denotes the expectation operator, taking the current fit " for

.
The EM algorithm consits of two steps:
- E-step: calculate Q(z; ™),
- M-step: choose 1) = Arginax {Qy;v™)}.

The E- and M- steps are repeated alternatively until the difference |1 —

©)™| changes by an arbitrarily small amount. Note that another stopping rule
could be the difference of log-likelihoods between two steps, |log £(y; " +1)) —
log L(y;¢™)|. However if the log-likelihood is "flat" with respect to v this differ-
ence can be stable whereas parameter 1) keeps changing.

The key property of the EM algorithm established by Dempster et al. (1977)
is that the incomplete data log-likelihood increases after each iteration of the
algorithm. The proof of this theorem is based on the definition of the M-step
that ensures

Q(; DY > Q(ap; ™),
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while the application of the Jensen inequality gives

H ;") < H(1h; ™).

Put together and considering relation 6.2.1, these inequalities ensure the mono-
tonicity of the likelihood sequence:

log L(y; ") > log L(y; v™).
This inequality proves that the EM sequence of likelihoods must converge if the
likelihood is bounded above.

6.2.2 Formulation of the EM algorithm for mixture models

When applied to the special case of mixture models the log-likelihoods are written
in the form:

n n P
log L(y;1) = Zlogf(yt;@z)):Zbg{prf(yt;ep)}
t=1 t=1 p=1

n n P
log £L(x3)) = Y logg(aiy) => > zplog {mf(ye;0,)}

t=1 p=1

Since the complete data log-likelihood is linear in the unobservable data z;, the
E-step only requires the computation of the conditional expectation of the missing
information given the observed data 7,, using the current fit 1)(*) for 1. It gives

Q(y; v ™) Z Z Eym {Zp|Ye = ye} log {mp [ (ys:0,) }

t=1 p=1

with .
Eym {ZplY: = v} = 5}{) Zp =1y =y} = Tt(p)a

and (h—1) (h—1)

) _ T f(yt, Op )

tp T (h—1 (h—1)\ "

Zz:1 7Tz )f(yt% 0, ))

Then

Qv; ™) ZZTtp)log{Wpf (y4:0,)} -

t=1 p=1

The M-step requires the global maximization of Q(v; ") with respect to ¢
to give an updated estimate (" +1),

For finite mixture models, the estimation of the mixing proportions is done
via constrained maximization of the incomplete-data log-likelihood which gives:

A(ht1) _ D i1 Ttp
P n
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This estimator has a natural interpretation: it summarizes the contribution of each
data point g, to the p! component of the mixture via its posterior probability of
membership. As for the updating of 0, it is obtained as an appropriate root of

ZZ 8logf ytv ):O.

t=1 p=1

6.2.3 Information matrix using the EM algorithm

Once the parameters of the mixture have been estimated via maximum likelihood,
a natural question is to assess the standard errors of the estimator ). This can
be done with the evaluation of the expected information matrix

1) ~ By {5z s £y}

with log £(y;¥) being the incomplete-data likelihood calculated on the available
observations, and Ey {-} designating the expectation operator with respect to the
random variable Y.

In practice this quantity is often estimated by the observed information matrix
calculated at v, I(¢,y), with the relationship

I(¢) = Ey {I(4;Y)}.

Efron and Hinkley (1978) have provided a justification for this approximation.
Since the data Y are considered as incomplete within the EM framework, I(¢;Y)
will be denoted as the incomplete-data observed information matrix.

The use of the EM algorithm is often motivated by the analytic form of the
observed-data likelihood, whose gradient or curvature matrices are difficult to
derive analytically (which is typically the case for mixture models). As the es-
timation problem has been solved using the missing-data framework of EM, the
derivation of the information matrix /(1;y) can be simplified using the missing
information principle introduced by Woodbury (1971).

Missing information principle

If we consider the formulation of mixtures as a missing-data problem, we define

the complete-data observed information matrix based on the complete-data log-
likelihood:

2

(i) = 5 B L),

Since the incomplete data and the complete data likelihood are linked by
definition:

log L(y; ¥) = log L(z;v) — log k(z2|y; 1),

on differentiating both sides twice with respect to ¢/, we have

I(Yyy) = I°(Y;x) = I (¥, 2),
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where )

™1, z) = BoouT 8 k(zly; )

is the missing-data observed information matrix. This term can be viewed as the
"missing information", the consequence of having observed only y and not z.

Since the complete-data are not fully observed, we take the conditional expec-
tation of both sides over Y that yields to:

1(¢yy) = Exy {I°(¢; X)} — By {1™ (¥, 2)} (6.4)

Then the problem is to formulate the conditional expectations of /¢(¢;z) and
I (1, z) in directly computable terms within the EM framework.

Extracting the observed information matrix in terms of the complete-
data likelihood

Let us introduce the score notation such that:

0

Sly;v) = %bgﬁ(y;w%
0

S(x;0) = %bgﬁc(w;w}-

Louis (1982) gives a formulation of the missing information matrix, in the form:

Ezy {I™(1, 2)} = Expy {S°(X;9)S(X;9)"} — S(y; ¢)S(y; )7,

meaning that the all the conditional expectations calculated in 6.4 can be com-
puted in the EM algorithm only using the conditional expectation of the gradient
and curvature of the complete-data likelihood.

Since S(y;v) =0 for ¢ = zﬁ, Formula 6.4 is restated as:

I(;y) = Bxpy {1 X} g — Expy {S°(X9) S (X5 9) T}, -

Hence the observed information matrix of the initial incomplete-data problem can
be computed as the conditional moments of the gradient and curvature matrix of
the complete-data likelihood introduced in the EM framework.

6.2.4 Convergence properties of the EM algorithm

It has been seen in previous sections that the EM algorithm generates a sequence
(w(h)) n>o Which increases the incomplete data log-likelihood at each iteration.
The convergence of this EM-generated sequence has been studied by many au-
thors, such as Dempster et al. (1977) and Wu (1983). Under some regularity
conditions of the model, Wu (1983) shows the convergence of the sequence P
to a stationary point of the incomplete-data likelihood. The convergence of the
EM algorithm to a local maximum of the incomplete data likelihood has also
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been established by Wu (1983) under restrictive hypothesis, that have been re-
leased by Delyon et al. (1999). One important theorem is provided by Wu (1983):

Suppose that Q(, P) is continuous in both ¢ and @, then all the limit points
of any instance { ™M} of the EM algorithm are stationary points of L(1)) and
L (M) converges monotonically to some value L* for some stationary point 1*.

Moreover in many practical situations £* will be a local maximum. In general
if the likelihood has several stationary points the convergence of an EM sequence
to a local/global maximum or to a saddle point will depend on the choice of the
starting value 1(?), unless the likelihood is unimodal.

6.2.5 Modified versions of the EM algorithm

Despite appealing features, the EM algorithm presents some well documented
shortcomings: the resulting estimate v can strongly depend on the starting posi-
tion (¥ the rate of convergence can be slow and it can provide a saddle point
of the likelihood function rather than a local maximum. For these reasons sev-
eral authors have proposed modified versions of the EM algorithm: deterministic
improvements (Louis (1982), Meilijson (1989), Green (1990) for instance), and
stochastic modifications (Broniatowski et al. (1983) Celeux and Dielbolt (1985)
Wei and Tanner (1990), Delyon et al. (1999)).

Broniatowski et al. (1983) proposed a Stochastic EM algorithm (SEM) which
provides an attractive alternative to EM. The motivation of the simulation step
(S-step) is based on the Stochastic Imputation Principle, where the purpose of
the S-step is to fill-in for the missing data z with a single draw from k(z|y; ™).
This imputation of z is based on all the available amount of information about
v and provides a pseudo complete sample. More precisely the current posterior

probabilities Tt(;)

Mp(1; Tt(lh ), cee Tt(]];)) is used to assign each observation to one of the component
of the mixture. The deterministic M-Step and the stochastic S-Step generate
a Markov Chain ¥ which converges to a stationary distribution under mild
conditions. In pratice a number of iterations is required as a burn in period to
allow ¢ to approach its stationary regime. In mixture models 100-200 iterations
are often used for burn in.

This stochastic step can be viewed as a random perturbation of the sequence
)" generated by EM. This perturbation prevents the algorithm from staying near
an unstable fixed point of EM, and prevents stable fixed points corresponding to
insignificant local maxima of the likelihood. The Stochastic EM algorithm pro-
vides an interesting alternative to the limitations of EM, concerning local maxima
and starting values.

Other stochastic versions of the EM algorithm have been proposed, among
them, the Stochastic Annealing EM algorithm (SAEM, Celeux and Dielbolt (1992))
which is a modification of SEM, the Monte Carlo EM (Wei and Tanner (1990)),
which replaces analytic computation of the conditional expectation of the complete-
data log-likelihood by a Monte Carlo approximation, and a stochastic approxima-
tion of EM (Delyon et al. (1999)). Nevertheless, empirical studies from Dias and

are used in the S-step wherein a single draw from distribution
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Wedel (2004) and Biernacki et al. (2003) suggest the practical use of SEM in the
context of mixture models, for its simplicity of implementation compared with
Monte Carlo-based improvements, for its quick rate of convergence, and for its
property to avoid spurious local maximizers.

6.3 Choosing the number of clusters via model se-
lection criteria

Choosing the number of clusters is often the first question that is asked by/to
the analyst. Two approaches can be considered to answer this question. The first
one can be to fix this number and to propose different classifications. Since every
clustering method (heuristically or model-based) can be run for a fixed number
of groups, this strategy can be applied to any method. Nevertheless, the question
can be to score different classifications with different numbers of clusters. In the
model-based context, the choice of the number of clusters can be formulated as a
model selection problem, and it can be performed with a penalized criterion, such
as:

log Lp(y; 1)) — Bpen(P),
with log Cp(y;@f)) being the observed data log-likelihood for a mixture with P

clusters, calculated at i) = 1), 3 a positive constant and pen(P) an increasing
function with respect to the number of clusters.

6.3.1 Bayesian approaches for model selection

As previously described in the context of segmentation methods (4), the purpose
of model selection is to select a candidate model m; among a finite collection
of models {my,...,m,}, in order to estimate function f from which the data
Y ={Y1,...,Y,} are drawn. Each model is characterized by a density g¢,,, whose
parameters 1; are of dimension v;.

In the Bayesian context, 1; and m; are viewed as random variables with prior
distributions noted Pr{m;} and Pr{v;|m;} for ¢; when model m; is fixed. This
formulation is flexible since additional information can be modelled through prior
distributions, and if no information is available a non-informative prior can be
used. The Bayesian Information Criterion (BIC) developed by Schwartz (1978)
aims at selecting the model which maximizes the posterior probability Pr{m;|Y}.
Using the Bayes formula:

Pr{Y|m;} Pr{m;}
Pr{Y} ’

Pr{m;|Y} =

and considering the case where the prior distribution Pr{m;} is non informa-
tive, the search for the best model only requires the computation of distribution
Pr{Y|m;} which is the integrated likelihood of the data for model m,. This
distribution can be approximated using the Laplace approximation method (see
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Lebarbier and Mary-Huard (2004) for more details), which yields to the following
penalized criterion:

BIC; = =2Pr{Y|m;} ~ —2log g, (Y, Q/A}Z) + v; x log(n),

where 1/32 is the maximum likelihood estimator of ¢/;. The BIC is used to assess a
score to each model m; and the selected model is such that:

mprc = Argmax BIC;.

Interestingly regularity conditions for BIC do not hold for mixture models, since
the estimates of some mixing proportions can be on the boundary of the param-
eter space. Nevertheless there is considerable practical support for its use in this
context (see Fraley and Raftery (1998) for instance). Other approaches have been
considered for Bayesian model selection (see Kass and Raftery (1995) for a com-
plete review on Bayes Factors for instance). Nevertheless the BIC has focused
much attention, for its simplicity of implementation and for its statistical proper-
ties. Gassiat and Dacunha-Castelle (1997) have shown that the use of BIC leads
to a consistent estimator of the number of clusters.

6.3.2 Strategy-oriented criteria

Other criteria have been defined for the special case of mixture models. They
can be based on Bayesian methods, on the entropy function of the mixture, or
on information theory. The reader is referred to McLachlan and Peel (2000) for
a complete review on the construction of those criteria. Empirical comparisons
of those criteria have been extensively used to determine the "best" criterion. As
noted by Biernacki et al. (2000), the use of the BIC can lead to an overestimation
of the number of clusters regardless the clusters separation. Moreover estimating
the "true" numbers of clusters, which is the objective of the BIC, is not necessarily
suitable in a practical context. For these reasons, Biernacki et al. (2000) propose
a new criterion, the Integrated Classification Criterion (ICL) that considers the
clustering objective of mixture models. In this paragraph we present the main
steps of the construction of ICL.

In a mixture model context, the integrated likelihood is noted f(y|mp) for a
model m with P clusters. It is calculated such that:

fylme) = | flylmp, ©)h(¢[mp)di

Up
with .
y‘mP, Hf yt‘mpa
t=1

Up being the parameter space of model mp, and h(¢|mp) a non-informative
prior distribution on . Instead of considering the incomplete-data integrated
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likelihood for which the BIC approximation is not valid, the authors suggest to
use the complete-data integrated likelihood or integrated classification likelihood:

f(y,z|mp) = f(y,z|mp,1/1)h(@/)|mp)d¢,
Up

with

n P

f(y7 Z|mP7 ’QZ)) - H H {Trpf yt7 th .

t=1 p=1
Then the idea is to isolate the contribution of the missing data z by conditioning
on z, and it follows that:

f(y,zlmp) = f(ylz,mp)f(zlmp),

provided that h(¢|mp) = h(0|mp)h(m|mp).

The authors emphasize that the BIC approximation is valid for the term
f(y|z, mp), such that:

A
log f(ylz,mp) = maxlog f(y|z,mp.0) — =~ log(n),

where Ap is the number of free components in #. Note that the parameter 0
which maximizes log f(y|z, mp, 0) is not the maximum likelihood estimator. Nev-
ertheless, the authors propose to use the maximum likelihood estimator as an
approximation.

As for term f(z|mp) it can be directly calculated using a Dirichlet prior
D(6,...,9) on proportion parameters. It follows that:

P
f(z\mp) = /71'?1,..,71'13 F(<5)P) HE 7Tp_ldﬂ'

with n, being the number of data points belonging to cluster p. Then parameter
J is fixed at 1/2 which corresponds to the Jeffreys non-informative distribution
for proportion parameters.

The last steps of the construction of ICL consists in replacing the missing data
z which are unknown by the recovered label variables Z using a MAP rule. Then
an approximation of f(z|mp) is given when n is large. It follows that:

IC0L(mp) = maxlog f(y. Zmp. ) — 5 log(n),
with vp the number of free parameters for model mp. Therefore the ICL criterion
is an "¢ la BIC" approximation of the completed log-likelihood or classification
log-likelihood. Since this criterion considers the classification results to score each

model it has been shown to lead to a more sensible partitioning of the data, com-
pared with BIC.
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The performance of ICL have been tested based on real and simulated data
sets. Compared with BIC, ICL tends to select a lower number of clusters which
provides good clustering results in real situations, compared with BIC which tends
to select a too overly high number of clusters. When the data are simulated, ICL
tends to select a lower number of clusters if the groups are not well separated,
contrary to BIC which finds the true number of classes. From a theoretical point
of view, no result has yet been demonstrated for the properties of ICL.
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Chapter 7

A new model for
segmentation /clustering problems

As mentionned in the introduction of this part, the construction of our segmen-
tation/clustering model will follow two major steps.

1 - Determination of the parameters affected by changes

The determination of the parameters affected by changes strongly depends on
the phenomenon under study. It is a modelling issue rather than a statistical issue.
In this part we focus on the case where the data are assumed to be drawn from
Gaussian distributions. Nevertheless the segmentation/clustering model could be
applied to other types of data. Part V will be devoted to an extension of our
model in the case of DNA sequences with the segmentation/clustering model ap-
plied to Markov chains.

2 - Estimation strategy

Once the model has been specified, it is crucial to develop an estimation strat-
egy. In our case we choose the maximum likelihood method. The segmenta-
tion/clustering model is a "fusion" of a segmentation model and a mixture model,
and the likelihood is the quantity that links both models. Moreover, existing al-
gorithms have been proposed to optimize the likelihood function in both cases:
dynamic programming for the breakpoints and the EM algorithm for the mixture
parameters.

In this Chapter, we propose a hybrid algorithm to estimate the parameters
of our model that combines a dynamic programming algorithm and an EM algo-
rithm. We focus on the theoretical developments of such algorithm, and on its
convergence properties. The implementation of the algorithm will be developed
in Part IV.

As for the problem of model selection which consists in the selection of the

number of clusters and the number of segments, it will be studied in the next
chapter. Here we focus on the definition of the segmentation/clustering model,
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and on its properties when the number of clusters and segments are fixed.

In this Chapter we also propose to compare our model with other models
dedicated to segmentation/clustering problems. We focus on two different mod-
els for this comparison. A first comparison is made with hidden Markov models
which constitute the most widely used strategy to assess segmentation/clustering
problems. This methodology has already been applied to array CGH data by
Fridlyand et al. (2004). Then we study another model which has been developed
by Wang et al. (2005), and which is called CLAC for "Cluster Along Chromo-
somes". Modelling strategies will be compared and discussed, and the comparison
of their performance will be done using simulation studies in the next Part.

7.1 Definition of a new model

Let Y = {Y;...,Y,} be an independent Gaussian process whose mean and vari-
ance are affected by K'—1 abrupt changes at unknown coordinates 7' = {t1,...,tx_1}
with convention ty = 1 and tx = n. This defines a partition of the data into K
vectors of length ny such that

Y ={Y' .. YE} with Y*={Y,,t € I} and I} = {t,t €]tp_1,t:]}.

Classical segmentation models would consider constant means and variances be-
tween two changes, leading to the model:

Vte I, Y, ~ N(,uk,a,%).

In our case we assume that the mean and variance of Y can only take a limited
number of values with:

M € {mlu---7mP}7 0-13 S {8%7"'78%’}'

This means that there exists a secondary structure of the process into P clusters in
addition to the spatial organization of the data . We assume that the partitioned
data {Y',..., YX} are structured into P populations with weights 7, (with the
constraint Zp 7, = 1). The data Y are viewed as being incomplete since their
belonging to the different populations is unknown. Then we introduce a sequence
of hidden independent random variables, Z* = {Zf,..., Z}} such that Z} =
with probability , if vector Y* is drawn from the p™ component of the mixture.
Thus Z* is distributed according to a multinomial distribution consisting of one
draw on P categories with probabilities 7y, ..., 7p, that is

ZF ~ M1, 7, 7p).

Mixing proportions 7, ..., Tp represent the prior probability for vector Y*
to belong to the p'"* component, while the posterior probability that the vector
belongs to the p* component with y* having been observed is:

r,f = Pr{Zg =1|Y* =y"}.
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Remark that contrary to classical mixture models where indicator variables pro-
vide information about the labelling of individual data points (which would be Y;
in our case), our model focuses on the belonging of vectors Y* to different pop-
ulations. Moreover, the label variables being independent, it means that a small
change in the parmeters of the observed sequence does not systematically lead to
a change in the label of the segment.

The complete-data vector is then X = (Y, Z), with Y being the observed-data
vector and Z the hidden component indicator vector. We focus on the case where
the data are supposed to be drawn from a mixture of Gaussian densities, with
parameters 1, 512,. Given the indicator vectors Z*, the Y* are supposed to be
independent with Gaussian probability distribution:

YHZE =1~ Nyl 52T,
More than a conditional independence of segments, we assume that data are
conditionally independent within a segment:

fly"; 0p) = H f (Y 6p)-

tely
The parameters of this model are: the breakpoint coordinates T' = {¢,...,tx_1}
and the parameters of the mixture model v = {m,...,7p_1,601,...,0p}. The

density of vector Y* can be written as:
P
FOFs) = mf (4" 6,).
p=1

Let us focus on the specific signification of each parameter:

- T, the set of breakpoint parameters: indicates the spatial structure of the
data,

- m, the proportions of segments belonging to each group. These parameters
concern segments which constitute the statistical units to be clustered.

- 0, the level and variability of the signal for each group. These parameters
provide information regarding the individual data points.

Defining statistical units of the model is not straightforward in this formula-
tion. We observe n data points that are segmented into K segments. The seg-
ments being defined, they are clustered into P groups. The statistical units of the
mixture model are segments which constitute random individuals. Nevertheless,
we are also interested in the behavior of individual data points within segments
which provides information regarding the parameters of each group. Therefore
the complete-data vector should be restated as:

XF=Y"2Z" =Y 41, Y5, 2").
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7.2 Estimating model parameters via maximum
likelihood when P and K are fixed

Once the model has been defined, the next step is to estimate the parameters
for a fixed number of segments and clusters. We choose the maximum likelihood
method since the likelihood of the model is the central link between the segmen-
tation model and the mixture model which are combined.

The likelihood of this model is a function of two sets of parameters: the set of
breakpoint coordinates T, and the set of mixture parameters 1. It also depends
on both the number of segments and the number of clusters that are fixed in this
section. Since we assume the independence of the data between segments, the
log-likelihood is written as:

K K P
log Licp(T, ) =Y log f(y¥s1) =D log {prﬂyk; 0p>} ,
k=1 k=1 p=1

and we aim at determining:

~

(T, ) = AI‘%IinlaX {log Lxp(T, )} .

In Chapters 4 and 6 we reviewed existing algorithms for the estimation of the
breakpoint instants in the segmentation context, and for the estimation of mixture
model parameters with the EM algorithm. The principle of our method is to
build a hybrid algorithm based on dynamic programming and EM. Our strategy
is iterative: when the breakpoint coordinates 7" are known, the EM algorithm
is used to estimate the mixture parameters ¢. Once 1 has been estimated, the
breakpoint coordinates are computed using dynamic programming.

7.2.1 Estimating mixture model parameters when break-
point coordinates are known
When breakpoint coordinates are known, we have a partition of the data into K

vectors {Y!,... Y}, The purpose is to maximize the log-likelihood of the model
according to 1, and the maximum likelihood estimator of this parameter is

O(T) = Argflax {log Lxp(T,¥)}.

Since the breakpoints are fixed in this step, the mixture parameters depend on
T'. In the following, this mention will be omitted. Nevertheless, the impact of the
breakpoint instants 7" on parameter estimate ) (7") will be studied later.

The optimization of this log-likelihood can be handled using the EM algorithm
in the complete data framework. The introduction of hidden label variables Z*
leads to the definition of a complete-data log-likelihood such that:

K P
log L p(T, 1) = Y > Klog {m,f(y*:6,)} .
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The principle of the EM algorithm is to iteratively maximize the conditional expec-
tation of the complete-data likelihood in order to maximize the incomplete-data
likelihood, as shown in Chapter 6.

E-step

In the Expectation step, the conditional expectation of the complete-data log-
likelihood is computed, given the observed data y, and using the current fit ()
for v at the (" iteration. This quantity can be written as

K P
Qrp(W[; T) = By {log Licp(v; Ty} = > 7 log {m, f(4*:60,)} |

k=1 p=1
with © ¢ k. g®
R0 m f(y" 5 0p")
p 4 )N
SP ) fyh08)
M-step

The M-step at the (¢ + 1) iteration requires the global maximization of
Qrp(1|9;T) with respect to 1 to give the updated estimate ¢V, In the
Gaussian case, the updated estimators are :

(. (01 k(¢ k(¢
mz()Jr) = ZkTp()Ztelk Ye/ D ”k‘Tp()a
2(0+1 k(¢ (041 k(¢
S = Sen e, =i ) S, (7.1)
N(AS k(¢
. 7Tz(2+) = ZkTp()/K'

7.2.2 Estimating breakpoint coordinates when the mixture
parameters are known

When the number of segments K, the number of clusters P and the parameters of
the mixture are known, the objective is to find the best K-dimensional partition
of the data according to the log-likelihood log L p(T, 1)), with ¢ being fixed. We
aim at finding: R

7(w) = Avgmax {log Licr(T, ¥)}

Since the incomplete-data log-likelihood is still additive according to the num-
ber of segments a dynamic programming approach can be used to compute the
breakpoint instants, as it is the case for classical segmentation models (Chapter
4). The main difference lies in the estimation of the parameters of segments. In
classical segmentation models, the estimation of the breakpoint instants and of
the segments parameters is done simultaneously. In the segmentation/clustering
context, the estimation of ¢ is postponed and is done with the EM algorithm.

Let Cyy1.p(i,7;1) be the log-likelihood obtained by the best partition of the
data Y = {Yi;1,...,Y;} into k + 1 segments when the mixture parameters v are
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known. The algorithm starts as follows: for k¥ = 0 and for (i,j) € [1,n]? with
1 < j, calculate:

P

C1,p(i, j; ) = log {Zﬁpf(yijﬂgp)} = log {Zﬂ'p H f(yt§‘9p)} :

p=1  t=itl

C1.p(i,7;v) represents the local log-likelihood for segment Y. Then the algo-
rithm is run as follows:

\V/k: S [17 Kmaa:] Ck—l—l,P(lvj; ¢) = m}?X {Ck,P(lv h7 ¢) + Cl,P(h + 17]a %U)}

7.2.3 Monotonicity property of the hybrid algorithm

Proposition

For a fized number of clusters and segments the hybrid algorithm generates a
sequence (T(h), w(h)) Lo that increases the incomplete-data log-likelihood such that:

log Lxp (T(h“), w(h+1)) > log Lip (T(h), ?/’(h)) :

Proof

The proof is based on the properties of dynamic programming (Chapter 4)
and of the EM algorithm (Chapter 6). These two convergence properties can be
used since both algorithms are linked through the log-likelihood they alternatively
optimize: the incomplete-data log-likelihood of the mixture of segments.

Thanks to the Bellman optimality principle (Bellman and Dreyfus (1962) and
Chapter 5), dynamic programming globally optimizes the likelihood with respect
to T. At iteration (h) we have:

log L p (T(h+1); w(h)) > log Lxp (T(h), w(h)) )

On the other hand, the key monotonicity property of the EM algorithm is
the increase of the incomplete-data log-likelihood at each step (Dempster et al.
(1977)):

log Lrcp (T™, ") > log Licp (T™, ™) .

Put together, our algorithm generates a sequence (T(’”,w(h)) o that increases
the incomplete-data log-likelihood such that: -
log L p (T(h+1)> ?/J(hﬂ)) > log Lkp (T(h)> ?/’(h)) .

A schematic representation of the hybrid algorithm is given in Figure 7.1. Note
that two levels of indices are required for this algorithm: h describes iterations
between the EM algorithm and dynamic programming, whereas ¢ is used for the
iterations within the EM algorithm.
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Initialization

70 | 3O

Dynamic Programming -

(h+1) \I/(h)

(h+1)

\

Initialization

STOP

Figure 7.1: Diagram of the hybrid algorithm.
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7.3 Assessing variance estimates

The theoretical derivation of the information matrix for mixture model param-
eters has been explained in Chapter 6. In this section, we aim to provide the
estimation of the information matrix for the mixture parameters of the segmen-
tation/clustering model when the number of clusters and the number of segments
are fixed. Briefly, let us recall some important notations. The objective is to
calculate the observed information matrix:

2

(Y
In the following, we will use the score function, noted S, such that:
SWY) = gplogLxp(Y;9,T),

S X) = gplog Lip(X; 9, T).

The differentiation of the incomplete-data log-likelihood being difficult, we use
the complete-data likelihood, with the relationship given by Louis (1982):

[(Q/G;Y) = Exy {[C(¢;X)}‘¢:¢ — Exy {[m(i/f;X)}‘¢:¢
= ]EX|Y {[C<1/1§ X)}‘¢:¢ - (COUX|Y {SC<¢S X>H¢:¢; ) (7-2)

with I™(¢; X) being the missing data information matrix. Since the complete
calculation of this information matrix is long, it is fully detailed in Appendix sec-
tion 7.7. In this section, we focus on the particular structure of the information
matrix in the segmentation/clustering context. For this purpose, we use the com-
plete data information matrix as an example. Similar comments can be made on
the missing information matrix.

In the Appendix section 7.7 we show that the complete-data information ma-
trix 1°(1); X) is block diagonal with terms:

N L
™1 TP mp
Expy {I°(m; X)}|,_, = K x : : ,
1 1 1
1 _ 4+ -
TP Tp_1 TP
& 0
1
Exiy {I°(m; X)},_o=| + . & |,
0 np
5
ﬁ 0
Ex)y {10(52;)()}‘9:@ = T ;
0 .. %
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and n, = >, nkT]’f represents the number of data points within every segment
in cluster p. The information matrix concerning proportion parameters can be
written as:

Exy {I¢(m; X)}’W:fr = K x Ex)y {i(m; X)H

where °(7m; X') would represent the information provided by one statistical unit.
Consequently, the number of data points has no influence on the precision of
the proportion estimators which only depend on the number of segments. On
the contrary, the precision of the external parameters (mean and variance) will
increase with the number of data points, since

Expy {16(m; X)},_; =~ n x Exy {i(m; X)},_;-

This particular behavior of the parameters’ estimators is linked to the definition
of the statistical units of the model: hidden variables {Z!, ..., Z%} only concern
K segments, whereas observed variables {Y7,...,Y,,} concern n data points.

T=r"

7.4 Behavior of the model when K and P are fixed

As previously described the objective of the segmentation/clustering problem is
to define segments and to cluster them into a finite number of groups. In a first
step, we focus on the case where K and P are fixed. In this case the model can be
viewed as a mixture model of segments. The objective is then to cluster vectors
{Y' ..., YE} into P groups. The originality of this model is that the "data"
which are considered by the mixture are segments of different sizes, these sizes
being defined by the breakpoint parameters T when the number of segments is
fixed, since the length of segment k is ny = t; —tx_1. As segments show different
sizes, this heterogeneity is likely to have consequences on the behavior of the
model.

7.4.1 Impact of segments’ size on posterior probabilities

As noted previously, f(y*;0,) is the density of a Gaussian vector of length ny,. In
the case of a homoscedastic model its expression is:

N 1
f(yk§ ep) = exXp {_? <log(27r82) + ? [dip + wlﬂ) } )
with:
dzp = (gk - mp)2 Y = n_lk Ztelk Y,

_ 1
wi = (yi— i) Ui = o Doren Vi

dip represents the distance of the average of vector Y* to the mean of cluster p,
whereas w? quantifies the intra-vector variability. The posterior probability of
belonging to population p is:

s Tpexp{—ghdi,}
T, = —p TR
> =1 T €Xp { 252 M}
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Proposition

Noting po the cluster such that:

dog = 1nf {d; p}
then:
lim 7% = 1 lim 7% = 0
np—oo PO N —00 Ty
lim7F = =« lim7* = =x,.
ng—~0 po bo nE—0 p p
Proof

For the proof, we detail the calculus of the posterior probabilites such that:

o = L
PO ]' + Zf#po Tpg exp { dzf dzo)}
ko mp exp { — 3% (d2 dzo}
Tp =

Tpo + Eé#po e €Xp { dze dzo)}

Together, these equations show that:

lim 7 = 1 lim 7 = 0
njg— 00 Po nj—00 p

lim7* = = lim7% = =«
ni—0 Po po ni—0 p

This means that vector Y* will be assigned (with probability one) to the closest
population as its length increases. On the contrary, if the length of the vector is
small, the observation of its realization y* will provide little information regarding
its membership, and the posterior probability will tend to the prior probability
of membership to one group.

7.4.2 Impact of segments’ size on mixture parameters esti-
mates

The formulation of the mixture parameter estimates is given in Equation (7.1).
Let us focus on the estimation of the groups’ weight:

2k

Fp = % (7.3)

Proportion , will be interpreted as the proportion of segments which belong

to cluster p. Since we have shown that Tz]f tends to one as the size of segment &
increases, the estimator of m, will be also sensitive to the size of the segments.
Equation (7.3) indicates that segments with important size will highly contribute
to the estimation of the groups proportions, and may create a group of their own.
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As for the estimation of internal parameters it can be seen from Equation
(7.1), that vectors of important size will influence the estimation of the mean and
variance of each cluster, since

. >k ”kﬂf Yk
mp = 7k
> ok ETh
This means that the mean m, of the p'* component of the mixture will be repre-
sentative of the longest vectors Y* which are the closest to population p.

7.5 Comparison with other methods for segmen-
tation/clustering problems

Now that we defined our model for segmentation/clustering problems, our pur-
pose is to compare it with existing models which deal with similar issues. Hid-
den Markov models constitute the most widely used method to assess segmenta-
tion/clustering questions. This is why we propose to explore the differences that
exist between our model and HMMs, from a modelling point of view.

Hidden Markov models have been applied to array CGH data analysis by
Fridlyand et al. (2004). However another strategy has been proposed to analyse
these data. This method is called CLAC for Clustering Along Chromosomes
(Wang et al. (2005)). We also compare our model to this new method whose
objectives are similar.

7.5.1 Comparison with hidden Markov models

In this section, we aim at comparing the different modelling strategies between
HMMs and the segmentation/clustering model we propose. Note that we do not
provide an extensive review of hidden Markov models. The reader is referred to
Rabiner (1989) and Ephraim (2002) for this purpose.

Brief presentation of hidden Markov models

In order to draw analogies between HMMs and the segmentation/clustering
model, we will use similar terminologies. When using a hidden Markov model
we consider a sequence of hidden variables Z7" = {7, ..., Z,} taking values in a
state space Z = {1,..., P}, where P is the number of clusters. This sequence
indicates the labelling of each individual data point to P clusters. The emission
of the observed sequence y?" = {yi,...,¥y,} is modelled through the associated
hidden states, meaning that the emission of Y; is modelled conditionally to Z;. In
the Gaussian case, it follows that

Yi|Z=p ~N(m,,s2).

If variables Z;s were independent, we would be in the case of a mixture model
which does not consider any spatial dependency for clustering. In order to intro-
duce this spatial dependency among hidden variables, the sequence Z7 is supposed
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to be drawn from a Markov chain with transition matrix ¢ = {¢(p,¢)}pxp such
that:

o(p,l) =Pr{Z, = 0| Z,_1 = p}.

In the following, we will note m = {m,} p the vector representing the initial distri-
butions, ¢.e. the probability that the initial state is p :

7, = Pr{Z; = p}.
Reconstruction of the hidden sequence

When the parameters of the model are known, we aim at reconstructing the
hidden sequence Z7" which is associated to the observed data. This sequence is
used to give a label to each individual data point Y;. This reconstruction is done
using the Viterbi or the forward-backward algorithm. The Viterbi algorithm aims
at finding the most probable hidden sequence Z} given the observed sequence and
parameters (¢, 7) such that:

Z¢ = Argmax {(qlfl"){Z{l =" = ?/?}} )

n
21

whereas the forward-backward algorithm aims at calculating at every position ¢
the probability of each couple of states {Z; = p, Z;11 = ¢} and of each state
{Z; = p} conditionally to the observed sequence:

(g’r){Zt =p, Zyr =LY = yi'} and (q{’r){Zt =p|Y" =yi'}, (p.0) € 2°

Note that both methods use a Maximum A Posteriori (MAP) rule to reconstruct
the hidden states.

Status of the hidden sequence

Since the segmentation /clustering model and HMMs can be considered as mod-
els with hidden structure, we propose to compare the signification of both hidden
variables. While applied to array CGH data analysis, both hidden structures aim
at describing the non-observed gene copy-number which can be associated to each
clone. In the case of HMMs, this sequence is supposed to follow a Markovian dis-
tribution, meaning that the gene copy-number at one point depends on the gene
copy-number of neighboring clones. This Markovian property allows the sequence
of hidden variables to show homogeneous labels such that:

Pr{Z* o= D D), Zoys1 # P\ Z1p 111 =D, Zp_, # P} = 0(p, )" (1= (p, p)),

with ny = tx —1x_1 being the length of segment % for which the label is p. In order
to draw analogies with the segmentation /clustering model, we will call breakpoint
instant, the position ¢, for which the label changes. This allows us to define I,
the k" segment for which the label variables %, show the same label:

I =lte_1,ts] | VtE L, % =3, (7.4)
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with Z*¥ the label of segment k. One property of hidden Markov models is that
the length of segments follows a geometric distribution with mean 1/(1 — ¢(p, p)).
This means that modelling the spatial dependency with a Markovian property
implicitly models the distribution of the length of segments.

In the case of the segmentation /clustering model we propose, the label vari-
ables concern segments, and not data points. Segments are interpreted as genomic
regions which share the same gene-copy number. In our case, the hidden variables
are supposed to be independent, meaning that we do not model the probability
to pass from one biological state to another. Nevertheless, there exists a spa-
tial dependency among gene copy numbers, since one point whose neighbors are
deleted may be deleted as well. Hidden Markov models use the Markovian prop-
erty to model this biological hypothesis, whereas our model uses the segmented
nature of the observed sequence to do so. This means that in the case of seg-
mentation/clustering, the spatial dependency is modelled through the observed
sequence, with the breakpoints which are parameters to estimate.

One major difference beween both modelling strategies lies in the variables
which are affected by changes. Indeed, the segmentation/clustering model sup-
poses that the observed data are affected by changes (through their distribu-
tion parameters), whereas HMMs model changes that affect the hidden sequence.
Therefore changes and segments have different significations in both models. In
the segmentation /clustering context, a change in the parameters of the distribu-
tion of the observed sequence is not necessarily linked to a change in the label
of the segment, since there exists no constraint for Z* to be different from Z**!.
Moreover breakpoint instants do not have the same status, since they are pa-
rameters which are optimized by maximum-likelihood in the case of our model,
whereas they are recovered in the case of HMMs.

7.5.2 Comparison with the CLAC approach

A different modelling strategy has been considered by Wang et al. (2005), who
propose a new method for calling gains or losses in array CGH data. This method
is called C'LAC for Clustering Along Chromosomes. In the following, we propose
to present briefly this method and to compare it with our model.

The purpose of CLAC is to build a hierarchical cluster tree along each chromo-
some arm, such that gain/loss regions are separated into different branches. Since
the order of the genes is fixed along the chromosome, the order of the leaves of
the tree is fixed as well. Consequently, only adjacent clusters are joined together
when the tree is generated from the bottom-up.

In order to measure the similarity between neighboring clones, the authors
introduce a statistic called relative difference and defined such that:

|?/t - yt+1|
rd (Y, y = .
(91 3e42) Vel + |Yes1| + [Ye1 + yel
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The distance between two contiguous clusters C; = {t1,...,ty}and C; = {1, ..., {;}
is:

rd(C;, C]) = Td(ytka Yer),

where ¢; =t + 1 since C; and C; are neighboring clusters.

Once the tree has been constructed the question is to select interesting clus-
ters. To do so, the authors propose to study three characteristics of each cluster
which are: the relative difference of the node in the tree, the number of clones in
the subtree and the mean value of the leaves of the subtree. Interesting clusters
are chosen using cut-off values from these criteria.

A major difference between the CLAC approach and the segmentation /clustering
model is that the first one is not based on a statistical model. This allows the
authors to define a very simple clustering procedure, based on the classical hierar-
chical clustering method. This is why modelling strategies are difficult to compare
in this case. Nevertheless, it is clear that this approach only considers neighboring
points for clustering, whereas there may be non-contiguous points belonging to
the same cluster. On the contrary, the segmentation /clustering method considers
every data points to estimate the parameters of each group. The other major
difference is that the CLAC approach does not consider any breakpoint in the
observed data. The spatial information is used to cluster neighboring points only.

One major criticism that can be made to the CLAC approach is its lack of
statistical basis for model selection. This procedure is done using empirical charac-
teristics which are supposed to define homogeneous clusters. Therefore the CLAC
method is very dependent on the type of data under study, which is not the case
for HMMs and for our model. In the next chapter, we will construct a model
selection heuristic to select the number of clusters and segments. This procedure
is based on the behavior of the likelihood of the model, and can be applied to
other types of data.
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7.6 Conclusion

In this chapter we constructed a new model for segmentation/clustering purposes.
Compared with other modelling approaches this model is new since it combines a
segmentation model and a mixture model. This combination is thought to han-
dle the specificity of the data, which is a spatial dependency and a structure into
groups. We proposed a hybrid algorithm to estimate the parameters of the model.
The practical implementation of this algorithm will be studied in the next part.
It will require an appropriate initialization step, as every iterative algorithm, and
we will propose a method to stabilize the method when it faces local maxima.

The next step is the selection of the number of segments and clusters, which
is the purpose of the next chapter.
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7.7 Appendix

In this section, our objective is to calculate the empirical Fisher information ma-
trix with the relationship provided by Louis (1982):

I(9;Y) = Exy {IC(WX)}M:@ — Exy {]mW%X)}}w:@
= ]EX|Y {]C(¢7 X)}}wilﬁ - COUX|Y {Sc(,lvbﬁ X)szi, ) (75)

where 1°(¢; X') denotes the complete-data information matrix and /™ (1; X) the
missing data information matrix.

7.7.1 Complete-data information matrix for mixture pa-
rameters

First of all, we show that the complete data information matrix is bloc-diagonal.
In the complete-data framework, we can use the following formula g(Y, Z;v) =
hMZ;m) x f(Y|Z;0), with h being the marginal density of the hidden variables.
Then we have:

0
Se(; X) = %logg(Y,Z;w)

0 0
- %logh(Z;w) + %logf(Y|Z;0).

Since

0
Zlogh(Z:7) =
_logh(Z;m) = 0,

0

It is clear that:

. 1¢(m; X 0
[(¢;X> = |: (O ) [C(Q;X)

In order to derive the calculus of the complete-data information matrix, we
need to caculate the complete-data score S¢(¢; X) such that:

0 Zip  Zrp

87Tp ;(P(Xaqu) = Z T - Tp ) (76)
k
0 .. > er, (Ye —my)
G Cip(X50,T) = 2y ==,
P k P

0 Zip [ —mu Zte[ (ye — mp)2

L (X T) = Y 2 k .

6812) KP( 71/}7 ) ; 2 ( 812) + S;%
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Let us focus on the proportion parameters in a first step. Differentiating twice
the complete-data log-likelihood gives:

R =
1 P P
Exjy {1°(m; X)} >
S
P P—1 P
Since .
A k
we finally obtain:
1 1 1
Exyy {I°(m X)}|__. =K x : :
1 11
Tp ip—1 Tp

For the external parameters 6 = (m, s?), we can write

c . c 2.
[c<97x) _ ‘[ (m7X) ] (m78 7X)

I¢(m,s* X))  I4s%:X) |7

For the mean parameters, [°(m; X) is diagonal since

2
———log LS (X0, T) =
ampamg 0g KP( 7w7 )
It follows that:

k
Exjy {I°(m; X)}|,_, = diag {M M] |

e
1 Sp
Then we have:

Exiy {I°(m,s* X)}|,_y = 0,

Exjy {1°(s% X) },_;

k
NETr1 NnET
51 Sp
If we note n, =

>, 7T, the number of data points within cluster p, the
complete-data information matrix has the following expression

cln. N m np M np
Exiy {I°00; X)},_; = dlag[A2,...,A2,2A4,...,E]
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7.7.2 Missing-data information matrix

In this section, our aim is to calculate:
Exy {1™(¢; X)H¢:¢ = Covx|y {S°(¢; X)H¢:¢ -

For this purpose we need to caculate the complete-data score S¢(¢; X) as in
Equation (7.7). In the following, the calculus is decomposed such as:

I(m X)) I™(m,m; X)  I™(m,s% X)
I"(Y; X) = I"(m; X)) I™(m, s* X)
I"(s* X)

Missing-data information matrix for proportions parameters:

The calculus of I (7; X') can be done separately for diagonal and non-diagonal
terms.

. m Zy _Zp
diag Exy {I"(m X)} = V Z———|Y )

VARA: gk gk
triu Ex)y {I"(m; X)} = Cov {Z_p__P; L eyt

™1 —=7F)  h(1—1k) Thrk
d- ]E Im X — p P P P 9 p'P
iag Exy {I"(m X)} ; 2 + 7 —

k k k-k k. -k k_k
: T 1—7- T, T, T, T TVT
triu Exy {I™(m; X)} = Z p( S P) _pt 2P P

Tp TpTy TpTTp 7Tg7TP.

Missing-data information matrix for means parameters
In order to simplify notations for the calculus of /™ (m; X), we use notation

dkp = (Yp —myp). The missing-data information matrix for the mean parameters
is then:

diag Exy {/™(m; X)} = V{Z%Z(yt—mp)w},

p tely
- m Zy Zk
triu Exy {I™(m; X)} = Cov{ Y — > e —mp); = >y —mY ¢
E P tely, E C tery,
dj,
diag Exjy {I"(m; X)} = > 7i(1—7F) xnj x 3
k p
1 m . _ k_k 2 dk‘pdkz
triu Exy {I™(m; X)} = —ZTPTE X Np X —5—
S-S
k L
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Missing-data information matrix for variances parameters

dlag Exly {[m(827 X)}

triu Exy {I"(s*; X)}

diag Exjy {I™(s* X)} =

triu Exly {[m(82’X)} =

V{Z%( 82 Ztelk(sg mp) ) ‘Y},
L e (9~

p>2> |

Missing-data information matrix for means and proportions parame-

ters

diag Exy {I™(m,m; X)}

triu Exy {I™(7,m; X)}

diag Ex|y {I"(m,m; X)}

triu Exy {I™(m,m; X)}

Z s

k

Cov {Z—

k

Cov {Z 2

F(1— Tg)

ZZ

p tely

Pzzkpz

TTP

p

tely

—m, |Y}
—m, |Y}

k p

Tp

] [Z (s,% m;;)} |

k

[k _k k- k _
o Z TPTp  TpTe Etelk(yt my)
Tp Ty 812) )

Missing-data information matrix for variances and proportions param-

eters

diag Ex|y {]m(ﬂ', s2; X)} =

triu Ex)y {I™(7,s*; X)} =

k
Z
2

Zk
T

2
Sp

p

Ztelk(84 mp)2> |Y},

2
SP

n Ztelk(ii;_ mp)2> \Y} .
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1 Th(1 — 7F Thrk - —my)?
k

Tp mp 812, Sg
i m 1 e —nk Dger, (Y — my)?
triu Exjy {7 (r, %5 X)} = 5Z< o 1 U= T |
k P P

Zk
. m 2, _ .
diag Eyy {I™(m,s*;X)} = Cov {ZS—Q)Z(% —my) ;
kP tely
Z Z;]f ny n Ete]k@t ») v
2 sz s
Zk
triu E I™(m, % X = Cov - —my) ;
iy {17(m, 5% X) } 2.3 Z@/ »)

Zf —Ng Zte[,C (yt - mf)z
Z “Ll =5+ : v 5.
2 57 Sy

k

1 1 Yy — M _ Y —m 2
g By (17530} = Gk oy [Fenl ) | Bl ol
k p p p
1 —m _ —my)2
i By {7 (X)) = =Y gt Bl g el
k p St Sy

7.7.3 Practical calculation of the information matrix

Despite a long calculus, all these terms can be easily calculated within the EM
framework. It requires the calculus of the missing information matrix Exy {I™(v; X)}

at ¢ = 1/3, and the computation of
I(J;Y) = Exy {[c(iﬁ;X)}’w:@ — Ex)y {[m(i/f;X)}’w:U;-

Unfortunatelly there is no simple form of the missing information matrix even for

V=1,
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Chapter 8

Model selection

In practice neither the number of segments nor the number of clusters are known,
and they should be estimated. Nevertheless, the joint estimation of the number
of segments and groups is new and no method has yet been proposed. This is why
we proceed in two steps.

Different methods have been proposed in the context of segmentation methods
to choose the number of segments (see Chapter 4), and in the context of mixture
models to choose the number of clusters (see Chapter 6). These methods are
largely based on penalized likelihood criteria and our primary objective is to
determine if they can be applied to our case. This is why we propose in a first
step to study model selection strategies in two situations: when the number of
clusters is fixed, and when the number of segments is fixed. Then the second step
will be to develop a heuristic to select the number of clusters first and then to
deduce the number of segments.

8.1 Selection of K when P is fixed

Since model selection criteria are mainly based on the likelihood of the model,
we aim at studying the behavior of the likelihood of the segmentation/clustering
model when P is fixed. In a first step we show that this likelihood is not necessarily
increasing, since models with increasing numbers of segments are not nested.

8.1.1 Non-nested models
Proposition

Denoting M(K, P) the set of all segmentation/clustering models with K seg-
ments and P clusters, M(K, P) and M(K + 1, P) are not nested such that:

M(K,P) ¢ M(K +1,P).
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Proof

Let us note 7x the set of possible breakpoints and Wp the set of mixture
parameters:

Tw = {1:t0<t1<t2<...<tK,1<tK:n, tk€{2,...,n—1}}
Up = {m,...,mp;my,...,mp;S1,...,Sp |
P
ngpgl,przl;mpeR,speR}.
p=1

The fact that M(K, P) and M(K + 1, P) are not nested is due to the discrete
nature of breakpoints. Since segments of null size are not allowed in the model,
it follows that:

TK gZ TK+17

meaning that:

M(K,P) ¢ M(K +1,P).

Since the models are not nested it follows that the log-likelihood does not nec-
essarily increase when the number of segments increases. In the following, we
provide an illustrated example to interpret this particular behavior.

8.1.2 A likelihood that can decrease

We study a sequence y = {y,...,y,} with P = 2 clusters and K = 4 segments,
simulated with parameters defined in Equation (8.1). This sequence is shown in
Figure 8.1, top.

m = 0 5],
s? = { 11 J ,
T o= [05 05 ], (8.1)

T = {20 40 60 80 }.

In practice we noticed that the addition of new segments could result in a
decrease in the log-likelihood of the model. In order to illustrate this particular
behavior, the log-likelihood log Lk p(T'; 1) is calculated in the case of example 1,
for a fixed number of clusters (P = 2) and for an increasing number of segments
(K =2,...,20). This curve is represented in Figure 8.1 (bottom), and shows a
decreasing log-likelihood when the number of segments is greater than 4.

When considering a partition with K segments, suppose that segment Y*
belongs to cluster py. This means that:

FO50p) = mpf(Y50,) = 7 f(Y56,).

p=1
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Figure 8.1: Example of simulation with

2 clusters and 4 segments (top). Behavior

of the incomplete-data log-likelihood according to the number of segments for

P=2 clusters (bottom).
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The log-likelihood of this configuration can be approximated such that:

K-1 P
log Lcp(Tx;p) = Zlog{Zfrpf(Y’f;ép)}+log{frpof<yf;ém>}
p=1

P,

This approximation seems realistic in the case of well separated clusters, like in
the simulated example. Then we consider the case where a new segment is added
and where this addition only concerns the cut of segment Y* into (Y1, Y*). Since
they remain conditionally independent we have:

Vp, f(Yé§ 9p) = f(YZIQ 9p) X f(Yb; ep)-

If Y* belongs to py and if the creation of new segments does not affect the labelling
of Y“ and Y*2, the log-likelihood of this new configuration is approximated such
that:

K-1 P
log Lici1.p(Ticsr;bp) = Y log{ZﬁpﬂW;ép)}

k#l1 L2 p=1

+log {frpof(Yel; épo)} + log {ﬁpof(Y&; épo)} .

If we consider that partitions TK and TKH are nested ! it follows that the log-
likelihood can decrease since:

log £K+17P<TK+1; I;P) —log ﬁKP<TK§ Q/A}P) = log(ﬁpo) <0.

The last step would be to show that there exists a number of segments Kp
for which log Lxp(T',1)) decreases. The existence of this number can be shown
using some approximations as above, but it appears that the form of the likeli-
hood hampers every theoretical calculus. In the following, we will suppose that
this number exists.

In order to understand the particular behavior of the likelihood, we represent
the segmentation /clustering results when the data are partitioned into more than
4 segments (Figure 8.2). Since the two clusters are well separated, the true con-
figuration is recovered for K = 4. Then we want to know what the result is when
a new segment is added. Since segments of null size are not allowed in the model,
the addition of new segments leads to segments of minimal size (1 data point)
without any change in clustering results. As shown in Figure 8.2 the creation
of segments of size 1 can affect either cluster 1 or 2. This decrease in the log-
likelihood could be interpreted as follows. Even if a new segment is added this
addition does not necessarily lead to an increase in the quality of fit of the mixture
model to the data. This means that when the number of clusters is fixed, there
exists a number of segments for which the quality of fit of the model is maximal.

INested partitions means that Trkt1 = Tk U{tk+1}. This does not mean that models are
nested.
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Figure 8.2: Segmentation/classification results when the number of segments in-
creases (K=4,5,6,7). The number of clusters is P = 2. Simulation 1.
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8.1.3 Model selection

Once the behavior of the model has been specified when the number of segments
increases, a natural question would be to select the number of segments when the
number of clusters is fixed.

In example 1 (Figure 8.1), it is clear that clusters are well separated. This
is why the introduction of more than 4 segments does not lead to an interest-
ing segmentation /classification result. Consequently the log-likelihood is strongly
decreasing and an intuitive selection method would consist in the selection of
the number of segments for which the log-likelihood decreases. Nevertheless a
question would be to study the behavior of the model when clusters are not well
separated. Figure 8.3 (top) illustrates a simulation which is similar to the first

one, with clusters that are less separated, and Figure 8.3 (bottom) shows the log-
likelihood for P = 2.

We notice that the log-likelihood is still decreasing, but for a number of seg-
ments (K = 8) which is more important than the true one (K = 4). We can distin-
guish 3 steps: in the first step (K = 2,...,4), the addition of new segments leads
to an important increase in the fit of the model, in the second step (K = 5,...,8)
this increase is less important, and in the last step (K = 9,..., K,4.), the log-
likelihood decreases. If we study the segmentation /clustering results (Figure 8.4),
the true configuration is not recovered for K = 4, since a breakpoint is at the
wrong coordinate ({3 = 65 whereas t3 = 61). However this error seems "reason-
able" since the variance of each group is high regarding the means difference. If
the number of segments is 8, new segments are added and affected to the clos-
est group in terms of mean. The "variance" effect could explain the fact that
some points may appear close to the first group with zero mean. Nevertheless,
if clusters were less separated, selecting the number of segments that makes the
log-likelihood decrease would lead to an overly segmented profile whose interpre-
tation would be difficult.

Therefore the natural decrease that occurs when the number of segments in-
creases is not sufficient to select the number of segments. This means that the
log-likelihood should be penalized in addition to the observed penalization.

An empirical method

We propose a first method to select the number of segments when the number
of clusters is fixed, which is derived from procedure proposed by Lavielle (2005)
and discussed in Chapter 4. The purpose of this method is to determine if there
exists a number of segments for which the log-likelihood ceases to increase sig-
nificantly between the minimum number of segments K" = P and the number of
segments for which the log-likelihood decreases K = Kp. This is why we propose
to isolate the part of the curve for which the likelihood increases.

Denoting Jx = —log EKP(T, 1/3), with P being fixed, we calculate the normal-
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Figure 8.3: Simulation 2 with 2 clusters and 4 segments (top). Behavior of the

incomplete-data log-likelihood according to the number of segments for P=2 clus-
ters (bottom).
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ized contrast, such as:

. ~ Jp. — Ik ~

VK € {P,...,Kp} Jx =22 "5k, - P)+P,

Ji, —Jp

such that jf(p — P and Jp = Kp. Then we propose to calculate the empirical
second derivative of Jy, such that:

VK e {P+1,...,Kp—1}, D = Jis1 —2Jx + Ji_1.
Then select the number of clusters, such that:

Kp:mI?X{KE{P+1,...,KP—1}|DKZS},

Of course this method requires Kp > P+ 2. If this condition is not true, we
choose K = Kp.

One major problem with this method is that Kp may be close to P mean-
ing that in some configurations, the second derivative may be calculated on few
points. For instance in example 2, we have Kp = 8 for P = 2. Since this could
lead to some instabilities in the result of the procedure we propose a second strat-

egy.
A second method to choose K

Another possibility could be to consider a penalty term without theoretical
justification. We will consider the following criterion to select the number of
segments:

- PR 1
Kp = Argmax{log Lxp(T, 1) — 3 log(n) x K}.
K

This criterion could be interpreted as a pseudo-BIC criterion, which penalizes
the addition of new segments as if they were continuous parameters. Applied to
example 2, this method would select 4 segments as shown in Figure 8.5. Since
these criteria are empirically motivated, their performance should be addressed
using simulation studies. This is the purpose of the next part.

8.1.4 No application of existing methods for model selec-
tion

We proposed two model selection methods to select the number of segments.
These methods are empirically motivated and we want to explain why existing
methods can not be applied to our case.
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Figure 8.5: Selecting the number of segments with K /2log(n) as a penalty when
P =2, example 2.

Bayesian strategy

Bayesian techniques have been successfuly applied to select the number of seg-
ments in the segmentation context. Then the question is: why can not we derive
a Bayesian criterion in our case? The difficulty lies in the fact that breakpoints
are discrete parameters.

Since these parameters are discrete, the likelihood of a segmentation model is
not continuous with respect to these parameters. Thus the application of Bayesian
techniques requires the breakpoints to be fixed. Consequently the BIC focuses on
the number of continuous parameters of the model. When applied to segmenta-
tion models the resulting penalty term is (K + 1)log(n) where K + 1 does not
mean K + 1 breakpoints but A means and 1 variance, which are the continuous
parameters of the model.

If we wanted to use similar techniques to penalize the likelihood of the segmen-
tation/clustering model, the breakpoints would have to be fixed as well. When
the breakpoints are fixed the number of continous parameters is P means P vari-
ances and P — 1 mixing proportions. This means that the number of continuous
parameters is independent of the number of discrete parameters. Consequently,
when the number of segments increases, the penalty term would be 3P — 1 which
does not penalize the addition of new segments.
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Birgé-Massart strategy

Another stragegy which could have been used is the one developed by Birgé and
Massart (2001). This method has been applied to the case of segmentation models
(Lebarbier (2005)). Contrary to Bayesian techniques, this method exploits the fact
that breakpoint coordinates are discrete parameters, and considers the number of
possible segmentations which is C2*~! for a model with K segments. Nevertheless,
the technique proposed by Birgé and Massart (2001) to derive a penalty term
seems difficult to apply to our case, first because of the unusual behavior of the
likelihood with respect to the number of segments, and also because this technique
has never been developed for models with hidden structure.

8.2 Selection of P when K is fixed

Now that we have proposed selection methods for K, the next question is to select
P when K is fixed. Let us recall that when the number of segments is fixed at K,
the purpose of the segmentation/clustering model is to cluster segments into an
increasing number of groups. In order to illustrate the behavior of the likelihood
in this case, we propose to consider example 2 previously defined. In Table 8.1
are shown the resulting mixture model estimators when the number of segments
is fixed at K = 6, for an increasing number of clusters (P = 1,..., K). We also
provide some segmentation/clustering results in Figure 8.6.

8.2.1 Nested models

Since the number of segments is the number of statistical units of the mixture
model, it is clear that the model is constraint when the number of clusters in-
creases. Consequently, when P increases whereas the number of statistical units
is constant, means’ estimators can be equal for different groups, and proportions’
estimates can be small. As a result, the maximum a posteriori rule which is used
to cluster segments will create empty clusters, as shown in Figure 8.6. Moreover
this figure shows that the resulting segmentation Tk depends on the number of
clusters and should be noted Tk (¢p).

Proposition

Denoting M (K, P) the set of segmentation/clustering model with K segments
and P clusters, M (K, P) and M(K, P + 1) are nested such as:

M(K,P) C M(K,P +1).
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Figure 8.6: Segmentation /clustering results when the number of clusters increases
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~ A ~ A ~ ~

P my Mo ms My ms Mg

1| 1.0284

2 | -0.0258 2.1933

3 |1-0.0258 -0.0258 2.1933

4 1-0.1281 0.8485 2.1193 3.5242

5 | -0.0258 -0.0258 -0.0258 2.1933 2.1933

6 | -0.2083 -0.2039 0.6206 2.1194 2.1194 3.5242
m o 3 Ty s 6

1 | 1.0000

2 | 0.4992 0.5008

3 | 0.4931 0.0061 0.5008

4| 0.3336 0.1664 0.3373 0.1627

5| 0.3444 0.1487 0.0061 0.2969 0.2039

6 | 0.0884 0.2449 0.1667 0.1241 0.2133 0.1626

Table 8.1: Estimated means and proportions for a segmentation /clustering model
with K = 6 segments (fixed) for an increasing number of clusters

Proof

Let us note 7x the set of possible breakpoints and Wp the set of mixture
parameters:

Tw = {1:t0<t1<t2<...<tK,1<tK:n, tk€{2,...,n—1}}

Up = {m,...,mp;my,...,mp;S1,...,Sp |
P
ngpgl,przl;mpeR,speR}.
p=1

If partition T € 7x was fixed and did not depend on the number of clusters, it
is clear that mixture models would be nested since parameter mp,; can be set to
0. This implies that

M(Tx,P) C M(Tk,P+1).

However the dimension of the set Vp does not depend on T meaning that:
VIigk € Tg, Vp C VUpyy.

It follows that
M(K,P) C M(K,P+1),

whatever the breakpoints.
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Lemma

For a segmentation/clustering model with K segments and P clusters, the
model log-likelihood log Lk p(T',1)) is an increasing function with respect to P :

~

log Lic,p(T, ) < log Li,p1(T, )

Proof

The proof of this lemma is straighforward regarding the preceeding proposi-
tion.

8.2.2 Model selection

Contrary to the previous section, the behavior of the model’s log-likelihood is
"conventional" with respect to the number of clusters since the likelihood increases
with the complexity of the model. The sequence of increasing log-likelihoods is
represented in Figure 8.7 for example 2 with K fixed at 6 and with P =1,..., K.
It can be seen that this log-likelihood is constant when P > 2. In order to select
the number of clusters when the number of segments is fixed, we could use a
penalized version of the log-likelihood and select the number of clusters such that:

Py = Arg}l)nax {IOg Lp(T,¥) - 5ern(P)} :

The next step would be to find Sxpen(P) analytically. Nevertheless the selection
of the number of clusters for a given number of segments is of little interest from
a practical point of view. In the context of array CGH data analysis for instance,
fixing the number of segments at some value appears contradictory since the
objective of these studies is to determine how many chromosomal aberrations
there are in a CGH profile. To this extent, we choose to focus on the next section,
which deals with the joint selection of the number of segments and clusters.
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Figure 8.7: Representation of the log-likelihood of the model according to the
number of clusters, for a fixed number of segments K = 6.

8.3 A heuristic to select K and P

We proposed an algorithm to estimate the parameters of the model when the
number of segments and the number of clusters are fixed. In practice these num-
bers are not known and should be estimated, as it is the case in the segmentation
context (Chapter 4) or in the context of model-based clustering (Chapter 6). The
originality of our problem is that these numbers should be jointly estimated in
order to select a model with K segments and P clusters. Existing methods have
been proposed in the context of segmentation or for model-based clustering, based
on a penalization of the model’s log-likelihood. In our case, the log-likelihood de-
pends on both K and P. It is a surface that can be represented like in Figure 8.8.
An ideal result would be to adapt existing results to our problem, and to derive
a penalty to select K and P such that:

(K, P) = Argmax {log Lxp(T,0) — B x pen(K, P)} :
KP

Nevertheless, previous discussions on model selection justify the difficulty to de-
rive such a criterion theoretically. Moreover, we showed that the complexity of
the model only depends on the number of continuous parameters of the mixture,
and not of the number of discrete parameters. This why we choose to adopt a
sequential strategy selecting the number of clusters first. Moreover the construc-
tion of a heuristic for model selection should consider the final objective of the
method. In array CGH data analysis for instance, the primary goal of the method
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is to cluster chromosomal regions into a finite number of clusters. Consequently
choosing the number of clusters first seems reasonable from a practical point of
view.

8.3.1 Selecting the number of clusters

In a first step, we focus on the estimation of the number of clusters. In Section 8.2
we discussed the fact that selecting the number of clusters for a fixed number of
segments had little interest in practice. This is why we need to select the number
of clusters whatever the number of segments. The following proposition aims at
constructing a sequence of increasing log-likelihoods which can be used for this
purpose.

Proposition
Hypothesis (H):

VP e {1,..., Py}, IKp, such that: Kp = Argmax {log EKP(T; ’(Z})} .
K

For a set of segmentation/clustering models with P clusters, P € {1,..., Ppaz}
and K segments, K € {P,...,n}, under hypothesis (H) there ezists a sequence of

increasing log-likelihoods noted log Lp such thatlog Ly ... <logLp < ...logLp ..
with _ o
log Lp = HlIgX {log Lip(Tk; IPP)} .

Proof

The proof of this proposition uses the results that have been shown is Sections
8.1 and 8.2. We note M(K, P) the set of all segmentation/clustering models with
K segments and P clusters. In section 8.2 we showed that

M(K,P) C M(K,P+1),

and that o o
\V/K € {P7 cee 7n} IOg ﬁKP(Ta ’QZ)) S log £K,P+1(T7 ’QZ)) (82)

Using Hypothesis (H) we suppose that there exists a sequence {K,...,Kp, .}
such that: . o
Kp = Argmax {log Lyp(T; @/})} .
K

Considering Equation (8.2) and the number of segments K p which maximizes
the log-likelihood of a model with P clusters it follows that:

lOg ‘C’KP,P<T7 Q/A}) < lOg ‘C’KP,PJrl(Tal;)' (83)

Since ~ A
Kpy1 = Argmax {log L p1(T; w)} )
K
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Figure 8.8: Two possible representations of the log-likelihood according to the

number of clusters and to the number of segments.
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we also have

~ ~

log Lz, pyr(T,0) <log L, poy(T, ) (8.4)

If we note log Lp the maximal log-likelihood for a segmentation /clustering model
with P clusters:

log Lp = max {log EKP(T; 1/;)} ;
= log ﬁkp,P(Ta @Z)),
from Equations (8.3) and (8.4) we have:
logfl o< logZp <.. .1ogZPW.
A first strategy to select the number of clusters

An illustration of this sequence of increasing log-likelihoods is provided in Fig-
ure 8.9. log Lp can be interpreted as the maximal quality of fit that can be reached
by a segmentation/clustering model with P clusters. Consequently the sequence
of increasing log-likelihoods can be viewed as the target to be penalized in order
to select the number of clusters whatever the number of segments.

An intuitive way to penalize this sequence of increasing log-likelihoods would
be to use a ¢ la BIC penalty, such as:

p_ ;. _rr
P= Arg;nax {log Lp 5 log(n)}

with vp being the number of independent parameters of the mixture. This crite-
rion is represented in Figure 8.10. In Chapter 7 we discussed the fact that the BIC
approximation was not valid for classical mixture models, but since this penalty
provides good results in practice, we choose to adapt it to our case. We also dis-
cussed the construction of ICL in the case of mixture models. Since this criterion
has been shown to be adapted when the objective of the study is to cluster the
data, we propose to discuss the adaptation of ICL to our case.

Adapting an ICL criterion to the case of segmentation/clustering

Since the Integrated Classification Likelihood has been shown to be efficient
to select the number of clusters in the context of mixture models, we propose to
adapt this criterion the the case of segmentation/clustering. The purpose of the
ICL criterion is to calculate the posterior probability for each model given the
complete data, f(y,z|mpr), which is the complete-data integrated likelihood of
model mpg with P clusters and K segments. One particularity of our model is
that the likelihood is not differentiable with respect to the breakpoint parameters.
This is why we fix the breakpoints at 7" and we note mpg (7") this particular model.
In this context, the complete-data integrated likelihood is

fly, 2 | mpx(T)) = | f(y,z | mpr(T), ) h(¢ | mpx(T)) dip,

Up
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Figure 8.9: Representation of the sequence of increasing log-likelihoods {log L p}.

Top: representation of the log-likelihoods according to the number of clusters and

segments. Bottom: circles are used to illustrate the sequence of increasing log-
likelihoods.
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to the number of segments, penalized with a & la BIC penalization.
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with
fly, z | mp(T HH{Wpfy 6,)
k=1p=1

U p denotes the parameter space of model mpg (7T), v = (6, 7) denotes the mixture
parameters and h(y|mpg (7)) a non-informative prior distribution on ¢ for the
same model. Since we can make the assumption that

(¢ | mpr(T)) = WO | mpg (T)) (7 | mpr(T)),

we can apply the lemma proposed by Biernacki et al. (2003) to isolate the con-
tribution of the missing data, such that:

fly, 2| mpr(T)) = f(y | 2,mpx(T))f(z | mpr(T)).

When the breakpoint coordinates are fixed at T the BIC approximation is valid
for f(y | z,mpr(T)) which is approximated such that:

l0g (3 | 2, mpx(T)) ~ maxlog f(y | 2, mpx(T), 0) ~ % log(n),

with Ap the number of free parameters in 6.
As for the missing information, a direct calculus can be derived using a Dirich-
let prior distribution for mixing proportions, noted D(J,...,0). Parameter ¢ is

set to 1/2 to have a Jeffreys non informative distribution for mixing proportions.
Then we introduce notation

ky=card{k, 1<k<K|Zi=1} (1<p<P),

which corresponds to the number of segments belonging to cluster p. The missing-
information integrated likelihood can be calculated such that:

f(z|mpr(T)) = /W]fl Tp F((lf;/;l Iy 7,=1dm

[(P/2) T(ky +1/2)...T(kp + 1/2)
T(1/2)P F(K+P/2)

A first remark is that the missing integrated likelihood does not depend on n,
the number of data points. While calculating f(z | mpx(T)), it appears that
the objects to be clustered are segments, and not data points. This is why we
introduced notation k£, instead of n, which represents the number of data points
within a cluster for the traditional ICL criterion. In the case of mixture models,
the expression of f(z | mp) is simplified using an approximation of the Gamma
function with the Stirling formula when 7, is large. This leads to a simplification
such that:

P —
f(Z| mp) ~ anlog—— log( ).

Combining this missing-data 1ntegrated likelihood with the BIC approximation of
f(ylz,mp) leads to the penalization of the complete-data likelihood with a term
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vplog(n)/2, with vp the total number of free parameters in the mixture (these
calculus have been detailed in the previous chapter on mixture models).

Nevertheless, it appears that the simplification of the missing-data integrated
likelihood is not possible in our case, since f(Z | mpx (7)) does not depend on n,
but only on K. It follows that term £* log(n) does not appear in the penalization
of the complete-data integrated likelihood, and this leads to a criterion which is
not efficient in practice (it over-estimates the number of clusters systematically).
This is why we choose to focus on a second alternative strategy to select the num-

ber of clusters.

A second strategy to select the number of clusters

A second strategy to select the number of clusters could be to apply the adap-
tive method proposed by Lavielle (1999). Applied to our problem, this method
aims at finding the number of clusters for which the log-likelihood ceases to in-
crease significantly. It is based on the calculus of the empirical second-derivative
of the log-likelihood. Thus we propose a second strategy to select the number of
clusters. Denoting Jp = —log Lp, the first step consists the calculus of Jp such

that:
> Ippe. —Jp

-
r JPmax—Jlx

This normalization step ensures that Ji = Ppas and that jpmx = 1. Then in a
second step, calculate:

VP e{2,...,Pne — 1}, Dp= Jp_1 —2jP+jP+1-

(Prae — 1) + 1.

Then select the number of clusters, such that:

P:mgX{PE {2,...,Ppax — 1} | Dp > s},
with s a threshold to be determined in practice.

Adaptive strategies have been shown to be efficient in the segmentation con-
text (Picard et al. (2005)) since they tend to ignore segments if their size is small
of if the jump in the mean between two segments is small. If we transpose this
behavior to the case of mixture models, we hope that the adaptive strategy will
tend to ignore clusters if their distance is small in terms of parameters.

8.3.2 The problem of the null case

In any model selection procedure, it is crucial to determine what is the behavior of
the criterion when there is nothing to detect. In our case, this means when there
is no group and no segment. In previous sections we showed that the incomplete-
data likelihood can decrease when the addition of new segments does not lead
to an interesting clustering result. Consequently we could think that the log-
likelihood is always decreasing in the null case. Interestingly this is not true.
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In Figure 8.11 is showed the incomplete-data log-likelihood calculated for a
sample of 100 data points with no group and no segment. It can be seen that
this likelihood shows a similar behavior compared with other cases, meaning that
it can show a maximum when P is fixed. In the case where there exists groups
and segments, we showed that the likelihood was decreasing when two consecutive
segments belong to the same cluster. In the null case, since the minimum size of
segments is one point, the hybrid algorithm can lead to configurations where 2
consecutive points consitute 2 segments belonging to distinc clusters. This is why
the likelihood increases even in the null case.

Since the likelihood is constant when P = 1, considering the sequence of max-
imum likelihoods log Lp will necessarily lead to an increasing sequence with an
important jump between log £, and log L, as shown in Figure 8.11. The problem
is that this situation can not be distinguished from the case where there exists
clusters.

Since we need to find a way to select 1 cluster when there is no group, we
need to find a way to circumvent this pitfall. To do so, we consider that when
there is no segment there is no group. To this extent, we propose to check that
there is no segment in the data first. In this case, the number of clusters will be
1, and otherwise, the heuristic to choose the number of clusters is applied. This
step can easily be done with the segmentation method we developped in Chapter
5. Moreover, if this preliminary segmentation provides no segment, the hybrid
algorithm does not need to be run, leading to a gain in computational time.

8.3.3 Selecting the number of segments

Once the number of clusters P has been selected, the objective is to select the
number of segments K. In Section 8.1, we discussed two possibilities for this
choice. When P has been selected we propose to apply one of those methods to
select K. One is based on the choice of the number of segments for which the
log-likelihood of the model ceases to increase significantly, and the other one is
based on a BIC penalty. Once more, the adaptive strategy depends on a threshold
that should be set in practice. This will be the purpose of the next part.

8.4 Interpretation and conclusion

In this chapter we discussed different model selection strategies to select the
number of clusters and the number of segments in the context of segmenta-
tion/clustering. We proposed to adapt existing methods to the sequential se-
lection of P and K in our case. Unfortunatelly we can not derive theoretical
criteria for model selection as our model presents an unusual structure. This is
why we propose a heuristic method for model selection.

The heuristic we propose for the selection of the number of clusters and seg-

ments can be interpreted as follows. Since the objective of our model is to cluster
segments into a finite number of groups, we choose to select the number of groups
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Figure 8.11: Top: Representation of the log-likelihoods according to the number of
segments for varying numbers of clusters when there is no cluster and no segment.
Bottom sequence of log-likelihoods log Lp.
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first and then to select the number of segments for a given number of groups.
The advantage of the sequential procedure is that the first selection step appears
to be "classical" since we penalize increasing log-likelihoods in order to select a
model which is parcimonious regarding the number of parameters to be estimated.
As for the second step, we propose two different methods which are empirically
motivated.

As a consequence this method depends on some parameters that should be
tuned in practice. This shows the difficulty to develop an automatic method
when no theoretical result is available. In the following, a crucial question will be
to choose among different methods, and to assess the performance of our heuristic.
This is why the behavior of our procedure will be studied with simulation studies.
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Introduction - Part IV

Introduction

The previous part was dedicated to the definition of a new segmentation /clustering
model. Since our objective is to apply this method to real data, the purpose of
this part is to implement the method in order to provide a software program that
can be used by biologists to analyze their data. We proceed in 4 steps.

Implementing the hybrid algorithm

We proposed a hybrid algorithm to estimate the parameters of the model when
the number of clusters and segments are fixed. Since this algorithm is based on
the EM algorithm, it faces usual pitfalls which are: the problem of the initializa-
tion step, and the problem of local maxima. In the first chapter we propose to
explore different strategies to assess these problems. The problem of initializa-
tion is double in our case, since both breakpoints and mixture model parameters
should be initialized. In the following, we propose to compare different initializa-
tion strategies, based on segmentation methods and on modified versions of the
EM algorithm. We also propose a new method to initialize the EM algorithm
based on a hierarchical clustering step. This method is used in the context of our
algorithm, but it could be used in the more general setting of mixture models.
The choice of initialization strategies is done using real CGH data sets in order
to assess the performance of each method on average.

As we will see the hybrid algorithm faces many local maxima whatever the
initialization step. This is why we propose a re-estimation step in order to avoid
these local maxima. This method is based on the finding of parameter candidates
which can be used to improve the likelihood of the model.

Model selection

Once the hybrid algorithm has been implemented, our objective is to assess the
performance of the model selection heuristic we proposed. In the previous part
we discussed different strategies that could be used. The purpose of the second
chapter will be to choose among them. We propose to do so using a simulated
data set which will be used in chapters 10 and 11. The principle of this simulation
study is to consider factors of variation which can have an impact on the perfor-
mance of the procedure. We choose to study the influence of two factors which
are the separability of the mixture and the size of segments. We show that our
model selection procedure is adaptive in the sense that it leads to the selection of
parcimonious models when the separability of the mixture is low.
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Assessing performance

In the previous part we compared our model with hidden Markov models which
are widely used for segmentation/clustering problems. In Chapter 11 we propose
to compare the performance of both methods. This is done using the simulated
data set, in order to assess the ability of both method to correctly cluster the
data, and to correctly locate the breakpoints. To do so, we propose to compare
quality criteria which are the empirical error rate, the specificity and sensitivity
of both methods. In this chapter we show that both methods are efficient, with a
slight advantage for the segmentation/clustering model we propose.

Analysis of real data sets

The last chapter of this part will be dedicated to the application of our method
to real CGH data sets. In a first step we propose to assess whether the segmenta-
tion/clustering model should consider homogeneous or heterogeneous variances,
and we show that a homoscedastic model is suitable for real data sets. Unfor-
tunatelly there does not exist public data sets for which the biological status of
the clones have been confirmed by other methods. This is why we can not assess
the ability of our method to find biologically relevant events. In chapter 12, we
propose to compare the results of existing methods for array CGH data analysis,
which are segmentation methods, and HMMs. We propose guidelines to interpret
CGH results and give some perspectives regarding the analysis of such data.
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Chapter 9

Initialization strategies for the
hybrid algorithm

9.1 Initialization strategies, who is first?

The hybrid algorithm requires an appropriate initialization step. This step con-
sists in the initialization of both breakpoint parameters 7 and of mixture model
parameters 19 for a fixed number of segments and groups. Two strategies can
be considered:

- Strategy 1 : initialize the breakpoint coordinates first based on a segmenta-
tion model, and deduce the parameters of the mixture model.

- Strategy 2 : initialize the mixture parameters first based on a mixture model
on individual data points, and deduce the breakpoint coordinates.

However, it appears that Strategy 2 is not well adapted to real CGH data.
Figure 9.1 illustrates the result of a mixture model based on individual data
points for a real data set (the number of clusters is fixed and equals 3). The
application of a classical mixture model leads to the creation of one cluster with
high variance. Consequently putative deleted and amplified segments are clustered
within the same group. The result of the downstream segmentation procedure is
illustrated in Figure 9.2 (top). On the contrary, an initialization based on strategy
1 directly provides segments which are clustered in different groups which are
highly separable (Figure 9.2, bottom). These examples show that Strategy 1
helps to recover the clustered structure of segments. This is why we choose this
strategy.

9.2 Initializing breakpoint coordinates

The proposal of breakpoint coordinates 7(°) can be done using standard segmen-
tation techniques as described in Part II. In this chapter we consider a mixture
model with heterogeneous variances. Therefore the natural model that is consid-
ered for the initialization of the breakpoints is a segmentation model in the Gaus-
sian framework, where the parameters that are affected by the changes are the
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Figure 9.1: histogram of log, ratios for Bt474 chromosome 1, and estimated den-
sities of a mixture model with P = 3 groups. The estimated parameters are
m = {-0.18,-0.02,0.28}, § = {0.07,0.02,0.50} and 7 = {0.58,0.08,0.34}.
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Figure 9.2: Comparison of two initialization strategies for data Bt474, chromo-
some 1, for P = 3 and K = 8. In the first case (top) the mixture model pa-
rameters have been estimated first, and then a segmentation was used to esti-
mate the breakpoint coordinates. The estimated parameters of the mixture are
m = {—0.18,—-0.02,0.28}, § = {0.07,0.02,0.50} and & = {0.58,0.08,0.34}. In the
second case (bottom), breakpoint coordinates have been estimated first using a
segmentation method, and the resulting segments have been clustered into three
groups using hierarchical clustering. The estimated parameters of the mixture are
m = {-0.72,—-0.16,0.55} and § = {0.42,0.12,0.43} and 7 = {0.12,0.50, 0.38}.
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mean and the variance (model M;). Nevertheless Picard et al. (2005) have shown
that a model with homogeneous variance (model M) was more appropriate for
array CGH data. This is why we choose to try both preliminary segmentations.

9.3 Initializing mixture model parameters

The proposal of a mixture model parameter candidate /(¥ is done once the break-
points have been initialized. We propose three strategies for this step.

9.3.1 Hierarchical clustering

The first strategy is to cluster the previously defined segments using a hierarchical
clustering method. Agglomerative hierarchical clustering is a stepwise procedure
in which pairs of clusters are successively merged. In any hierarchical clustering,
one needs to define an objective criterion to optimize, a distance between groups,
and a rule to merge clusters within the same group. The most popular methods
are based on geometric considerations, where the objective criterion to optimize
can be the within-class variability for instance (Ward (1963)). Nevertheless our
objective is to provide a good candidate for mixture model parameters. This is
why we choose to develop a hierarchical clustering algorithm in the context of
model-based clustering, using the classification likelihood as a criterion.

Let us present the classical algorithm of a hierachical clustering when having
n objects to cluster into P groups.

- Initialization:

-V(k,0) € {1,...,n}?* compute dinq(k, () the distance between individuals
k and (.

- Set h = n the wnitial number of clusters.

- Repeat:
- merge clusters C; and C; if deusi(i,7) = Hllﬁlen {derust(k, 0)},
-h=h-1,
-V(k,0) € {1,...,h}* update distances d(k, ().

- Stopping rule: h = P.

In our context, the data to be clustered are K segments {Y! ... Y&} which
have been defined by the first segmentation step. We note 7© the initial break-
point coordinates. Let us consider a Gaussian mixture model with P clusters such
that:

Y* e Cp~ N(up,02), with 6, = (bp: 02).

p
We define the classification log-likelihood of this model:
P
CLp(Y;0) =Y Y log f(y":06,). (9.1)
p=1YkeC,
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At iteration (h) of the hierarchical clustering, the segments are clustered into
h groups denoted C’{h), ey C,gh), with parameters 0y, ...,0,. Replacing 0, by its
maximum likelihood estimator, the classification log-likelihood at this step is:

CLh Y; 9 an log & ap,

with n, being the number of segments in cluster p At iteration (h + 1), suppose
that clusters C’Z-(h) and Cj(» are merged, noting cr the variance of cluster {C

C](.h)}. The classification log-likelihood at its maximum is:
CLy_ 1(Y; 9|C’(h UCh) anloga nz+nj)loga

It follows that:
C/'Ih_l(C'i(h) U C'J(-h)) — C/'Ih(Ci(h), C’](.h ) = —(n; +n;)log6;; + n;log 67 + n;log 67,

Our objective being the maximization of the classification log-likelihood at each
step, we define the distance between two clusters, such that

d(i,j) = (n; + nj) log &?j — n;log (}iz —n;log &j?_

Two clusters will be merged if their distance is the smallest among all possible
pairwise distances.

Proposition

Let us denote C;, C; two clusters such that #C; = n;, #C; = n; and n;, n; > 2.
Consider d(i, j) the distance between clusters such that:

d(i,j) = (n; +n;)log 67, — n;log 67 — njlog 7.

Then the classification log-likelihood defined in Equation (9.1) is locally maxi-
mized at each iteration of the hiearchical clustering algorithm.

Proof

The proof of this proposition is straighforward since we chose the distance
such that: . .
CLiA(CP U ) = CLy(C, ) = —d(i, 7).

To this extent, merging two clusters with minimal distance d(i,j) ensures that
CLy_1(CM U C](»h)) is maximal at iteration (h + 1).

Comments
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- First of all, it is important to notice that the optimization is local, meaning
that this algorithm does not provide an optimal solution.

- The algorithm is repeated until a fixed number of groups, and the resulting
mean, variance and proportion of each group constitute the parameters ()
used to initialize the hybrid algorithm. This strategy is thought to provide
a reasonnable candidate regarding the downstream mixture model.

- This step requires the ability to calculate a variance at the first step (when
each segment is in its own group). In our case, we constraint our segmenta-
tion procedure to provide segments with a minimum size of 2.

9.3.2 Stochastic strategies

Stochastic version of EM

A second strategy that can be considered to initialize the mixture model pa-
rameters is motivated by the discussion concerning the EM algorithm given in
Part III. There is a strong link between the initialization step of the EM algo-
rithm and its tendency to converge to local maxima. This is why we propose to
use the stochastic version of the EM algorithm (SEM) to initialize the mixture
model parameters 1(©) once the breakpoint coordinates T® have been proposed.
This algorithm is known to avoid spurious maximizers, compared with the hier-
archical clustering step which locally maximizes the likelihood.

Short EM

The last strategy which is considered has been suggested by Biernacki et al.
(2003). Instead of running the stochastic version of the EM algorithm which may
require many iterations and may be slow to converge, the authors suggest to use
short runs of the EM algorithm with random starts, and to choose among the best
proposed candidates. By short runs of the EM algorithm the authors mean that
the algorithm is stopped before its convergence. This strategy can be viewed as
a modified version of the SEM algorithm for which the most important iterations
are the first ones.

9.4 Choice of an initialization strategy based on
real data sets

We have proposed six initialization strategies for the hybrid algorithm: two for
the breakpoint coordinates, and three for the mixture models parameters. The
question is to choose among them.

Definition of quality criteria to choose among strageties

Five different criteria are defined for this purpose. The purpose of the ini-
tialization step is to provide good candidates (7@ () to start the hybrid al-
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Figure 9.3: Example of CGH profile for real data sets described in Nakao et al.
(2004). These profiles correspond to chromosome 8 for two different patients.

gorithm. The first natural criterion that is used to score the different strategies
is the incomplete-data log-likelihood of the model (Linc0) calculated at 7" = T(©
and ¢ = (9. The second criterion is the incomplete-data log-likelihood of the
model (Linc) after convergence of the hybrid algorithm. The best initialization
method should provide the best likelihood. Other criteria are used to assess the
stability of the algorithm for a given initialization method as shown in Table 9.4.

LincO best candidate

Linc best fit (final)

time computational time

empty_clust | create empty clusters

conv_max converge in more that 5000 iterations

Table 9.1: Criteria used to assess the best initialization strategy.

Presentation of the data set

The data we use to choose among different initialization strategies have been
described in Nakao et al. (2004). We have CGH profiles for 125 patients, and
for each patient we consider chromosomes 1, 8 and 20. Finally we have 375 pro-
files, each being of size 100 points. Figure 9.4 gives an example of such profiles.
The hybrid algorithm is run for each profile, with different numbers of groups
(P=1,...,6) and segments (K = P,...,20).

Analyzing the results with a linear model
We have 5 different criteria, each being the result of the optimization procedure

based on the 6 initialization strategies. Let us consider the incomplete-data log-
likelihood (Linc) for instance. For each K and P the hybrid algorithm is run
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using 6 different initialization strategies. In order to determine if one strategy
systematically provides the best fit, we rank these log-likelihoods for each P and
K. Then the purpose is to determine which initialization strategy affects this rank.
To do so we use a linear model as follows. We note «; the effect of the initialization
strategy for the breakpoints (i = 1, 2) and 3; for the mixture (j = 1,3). Denoting
R;; the rank of the incomplete-data log-likelihood for a mixture model which has
been initializee with strategy ¢, j the model is written as follows:

Rijk = U + a; + ﬁj + (aﬁ)ij + Eijk with Eijk ~ N(O, 0'2)1.

Table 9.4 gives the results of the linear model performed on the ranks of the
final log-likelihood. The highest rank indicates that an initialization method pro-
vides the best fit of the model to the data after convergence of the algorithm. We
note that the first factor of variation is the method of initialization of the break-
points (F-value=8316.47), meaning that the initialization of the segmentation is
crucial to reach the best fit of the model to the data. When adjusted to other ef-
fects the results suggest that the best initialization procedure for the breakpoints
is model M which considers heterogeneous means and variances. This result is
in accordance with the downstream mixture model which considers heterogeneous
variances.

The method of initialization for the mixture parameters is the second fac-
tor of variation in terms of F-value (3652.61), and testing LSMEANS to compare
the adjusted effects indicates that the strategy based on short random EM (rEM)
provides the best log-likelihood. Results are similar if the criterion is the initial
log-likelihood (Linc0), meaning that rEM provides the best mixture model candi-
date on average.

Other effects have been added to check that the performance of one initializa-
tion procedure did not depend on the complexity of the CGH profiles under study
(Table 9.4). Over 125 patients, some may have deletions or amplifications on one
chromosome, but not on the others (3 chromosomes total), leading to more or less
complex CGH profiles. Since SEM is known to avoid local maximizers, its perfor-
mance could be better in more complex situations, compared with the hierarchical
method. Nevertheless the results suggest that these effects have only a limited
impact on the performances of the initialization procedures (small F-values).

Stability and computational time

In addition to the performance of each initialization procedure, we check their
stability ¢.e. the tendency of each method to generate empty clusters. Table 9.4
shows that 80% of the empty clusters were created by the rEM strategy, meaning
that this initialization method leads to a very unstable algorithm, whereas the
hierarchical method is very stable. This tendency can be explained by the ran-
dom starts of the short EM algorithms, compared with the reasonable candidate
proposed by the hierarchical clustering strategy. As for the tendency to converge

INote that the Gaussian and the independence assumptions for residuals are not valid in
this case. Nevertheless, we are focused on the estimation of the average effects. This is why we
consider that these hypothesis are not crucial in this context.
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in more than 5000 iterations (criterion conv_max), the impact of the different
strategies is similar between initialization methods (data not shown).

The last criterion that has been studied is the computational time required
by each initialization method. A linear model is considered, with the rank of the
cpu-time as the variable to be explained and the different methods of initialization
as factors of variation. Table 9.4 clearly shows that the method of initialization of
the mixture parameters is the greatest factor of variation. This can be explained
be the fact that estimating mixture model paramaters requires iterative methods,
and the Hierarchical method is the fastest.

Results suggest that there is no best initialization method according to the
different criteria we have studied. The method based on rEM provides best can-
didates, but often leads to the creation of empty clusters. Since our ojective is to
automatically apply our algorithm to real data sets, it is of crucial importance to
propose a stable estimation algorithm. Combined with the fact that the hierar-
chical method is faster, we decide to use this initialization method for the mixture
parameters with a segmentation based on model M, for the initialization of the
breakpoints.

Source | DF Mean Square F Value Pr > F
_________________________ | oo oo oo el
mixt | 2 5294.71823 3652.61 <.0001
break | 1 12055.30286 8316.47 <.0001
mixt*break | 2 1124.57859 775.80 <.0001
patient (chromosome) | 374 1.16670 0.80 0.9977
mixt*patien(chromos) | 748 5.38304 3.71 <.0001
break*patien(chromo) | 374 60.84263 41.97 <.0001
mixt*brea*pati(chro) | 748 2.65889 1.83 <.0001
mixt rLinc LSMEAN break rLinc LSMEAN
CAH 3.12452951 M1 3.31719347
SEM 3.01368774 M2 3.02017864

TrEM 3.36784091

Table 9.2: Results of the linear model on the ranks of the incomplete-data like-
lihood. Main effects concern different strategies of initialization (for breakpoints
and for mixture parameters). The comparisons of LSMEANS are all significantly
different from zero (tests not shown)
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Percent CAH SEM rEM | Total
|

M1 3.68 5.50 40.04 | 49.21

M2 4.39 6.20 40.19 | 50.79

__________________________________ [J—

Total 8.07 11.70 80.24 1100.00

Table 9.3: Cross table to study the number of times that an initialization proce-
dure creates empty clusters.

Source | DF Mean Square F Value Pr > F
_________________________ | oo
mixt | 2 20435.07855 6661.91 <.0001
break | 1 188.63001 61.49 <.0001
mixt*break | 2 151.17714 49,28 <.0001
patient (chromosome) | 374 70.08549 22.85 <.0001
mixt*patien(chromos) | 748 42.36919 13.81 <.0001
break*patien(chromo) | 374 24.13899 7.87 <.0001
mixt*brea*pati(chro) | 748 4.36250 1.42 <.0001
mixt time LSMEAN break time LSMEAN
CAH 0.98443656 M1 1.35779388
SEM 1.37154979 M2 1.32064060

rEM 1.66166537

Table 9.4: Result of the linear model to study the impact of initialization proce-
dures on the computational time of the algorithm.

9.5 Avoiding local maxima

Despite an appropriate choice of starting values for the hybrid algorithm it ap-
pears that the resulting log-likelihood can present a chaotic behavior when the
number of segments increases, as presented in Figure 9.4 (dot lines). Considering
the two examples, it is clear that the hybrid algorithm faces many local maxima.
A first reason for this would be that the initialization strategy is inappropriate,
despite the previous study. For instance, SEM could be thought to prevent those
instabilities. Nevertheless, this unstable behavior is observed whatever the ini-
tialization method. Consequently, we need to find a method in order to stabilize
the estimation results.

Our hypothesis is that the log-likelihood should be smooth when the number
of segments increases. Let us consider the case for which the algorithm faces a
local maximum when the number of clusters is P and the number of segments
is K. Our aim is to find a way to increase the log-likelihood log Lxp(T',1)) us-
ing new starting values. Then we consider neighboring configurations with say
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K; and K, segments (K; < K < K;y) for which the likelihoods are greater
than log Lxp(T,1). Corresponding mixture parameters estimators ¢ (Tk,) and
(T, .,) could be used to initialize the hybrid algorithm for K segments. If the
new likelihood is greater, then we keep it as well as the resulting parameters Tr
and ¢)(Tk), and it is not changed otherwise. Then the problem is to determine the
neighboring configurations that will be used to re-initialize the hybrid algorithm.
Our strategy is to consider the "best" neighboring log-likelihoods to provide new
starting values. Consequently, these configurations are determined calculating the
convex hull of the log-likelihood. In the following we present the re-estimation
procedure denoting L p for log EKp.

- Repeat
- Find {(L%)P, Ki(h)),i > 1} the convex hull of the set

{(Licp. ). K > P}.
- VK €]k, Kz(ﬂ[ calculate

LY, using ¢© = (T, Tyew),

Ligp using v = (Tym).

z+1

- Update the log-likelihood such that:

LYY = max {Ly{‘};, L, L[’+”} .

- Update parameters ") and T[((h ) consequently.

- Stopping rule : when ng;l) = L(IQD.
Figure 9.4 shows two examples of the re-estimation results for real data sets
(described in Nakao et al. (2004)) and for P = 2 and P = 3 clusters. The log-
likelihood before and after re-estimation are represented according to the number
of segments (dot and plain lines respectively). It can be seen that the result is
spectacular since the log-likelihood can be reconstructed completely. This stabi-
lization step appears crucial to have better parameter estimates, but also for the
downstream model selection heuristic which is based on the geometrical behav-
ior of the likelihood. Nevertheless, one major draw-back is that the associated
computational time is increased due to the re-estimation procedure.
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Figure 9.4: Example of re-estimation and reconstruction of the log-likelihood.
Data are described in Nakao et al. (2004) and correspond to experiment X411
chromosome 1 for P = 2 (top) and P = 3 clusters (bottom). Log-likelihoods are
represented in dot lines before re-estimation and plain lines after re-estimation.
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Chapter 10

Behavior of the model selection
heuristic

Now that the hybrid algorithm has been implemented when the number of seg-
ments and the number of clusters are fixed, the next step consists in the selection
of P and K. In Chapter 8 we proposed a heuristic to select the number of segments
and the number of clusters. Nevertheless the heuristic we propose is empirically
motivated and its performance should be addressed. To do so we propose to study
the performance of our method based on a simulation study.

10.1 Design and objectives of the simulation study

In order to study our selection procedure, we list the possible factors of variation
that can have an impact on its performance. These factors can be listed as follows:

- the size of the data set.

- The number of segments, and the number of groups, which reflect the com-
plexity of the configurations.

- The size of segments: segments of large size are easier to detect.

- The "detectability" of breakpoints, which depends on the normalized mean
difference between two segments, and on the size of segments.

- The "separability" of the mixture, which is defined as the closeness of two
groups in terms of parameters.

It is clear that many factors of variation are linked when the size of the data
is fixed. For instance, the "separability" of the mixture is linked to the num-
ber of clusters, and the "detectability" of breakpoints is linked to the number
of segments. Moreover the detectability of the breakpoints is also linked to the
jump in the mean between two segments. Therefore it is linked to the separability
of the mixture. Since all factors can not be crossed, we choose to fix some of them.

A typical CGH profile for one chromosome is constituted of 100 data points
approximatively, and we choose to fix the size of our simulations at 100 points.
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Then we decide to fix the number of clusters at 3 and the number of segments at
5. We focus on two major factors of variation, which are the "separability" of the
mixture and the "detectability" of breakpoints.

Separability of the mixture model

In the previous part, we proposed two methods to select the number of clusters
with penalized criteria. One is based on a ¢ la BIC penalization of the log-
likelihood and the other one is based on an adaptive strategy. Selecting the
number of clusters depends on the separability of the groups, meaning that if two
clusters are close with respect to their parameters, a parcimonious method would
choose one cluster instead of two. In the simulation study, we propose to fix the
parameters of two clusters, and to vary the parameters of the third one. The
distance between clusters p and ¢ is calculated such that:

[my, — my|

71 2
\/Sp T 55
In the simulation study, we propose to fix the means of clusters 1 and 2 and to
decrease the mean of the third one in order to decrease the distance between clus-
ters. The variances of the three groups are different but constant. Parameters are

chosen as shown in Table 10.1. An illustration of two configurations is given in
Figure 10.1 when d = 2 (top) and d = 0 (bottom).

dpq =

‘ cluster 1 cluster 2 cluster 3

m 0 -5 varying m3‘4 3 2 1 0
52 1 2 3 d |2 15 1 05 0
™| 2/5 1/5 2/5

Table 10.1: Varying distances between clusters for the simulation study.
Detectability of breakpoints

As for the selection of the number of segments, we also proposed two methods.
One is based on a a la BIC penalization and the other one is based on an adaptive
strategy. As it is the case for the selection of the number of clusters, some segments
may not be detected if their size is small. This is why we choose to fix the
size of two segments at 20 points, and to vary the size of the other segments as
detailed in Table 10.2. The interest lies in cluster 3, which is composed of two
segments, one being of constant size (n; = 20) and the other being of increasing
size (ny = 2,...,20). An illustration of two configurations is given in Figure 10.1
when ny = 20 (left) and ny = 2 (right).

Objectives of the simulation study

The design of the simulation study is a factorial design, with factors being d
the distance between clusters 1 and 3 (5 levels) and the size of segments (5 levels).
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Size ny Mg N3 N4 MNs
clusterlabel | 1 3 1 2 3
30 2 28 20 20
28 5 27 20 20
25 10 25 20 20
23 15 22 20 20
20 20 20 20 20

Table 10.2: Varying sizes of segments for the simulation study.

When the distance between clusters 1 and 3 is small (Figure 10.1 (bottom)), the
question will be to determine if our selection procedure tends to select 2 clusters
rather than 3. For the selection of the number of segments, the question will be
to determine if the selection procedure will tend to ignore segments of small size,
as shown in the segmentation context (Chapter 5).

Illustrations

Four examples of simulations are provided in Figure 10.1. The first case (top
left) is supposed to be the "easy" configuration, where clusters are well separated
and where segments have large size. In this configuration, we hope that the selec-
tion procedure will select the correct number of clusters and segments. A second
situation is illustrated (top right), where clusters are well separated, but one clus-
ter has a segment of small size. In this situation, the question will be to assess
the ability of the selection procedure to detect segments of small size when the
separability of the mixture is high. The two other situations are illustrated in
Figure 10.1, bottom. In these cases, clusters 1 and 3 have the same mean, but
different variances. Since clusters are not well separated, the question will be the
selection of the number of clusters.

Each configuration has been simulated 100 times and the estimation algorithm
has been run using the initialization method chosen in the previous chapter as well
as the re-estimation procedure. Note that in this chapter we are focused on the
estimation of the number of clusters and segments. This means that even if the
"correct" numbers are estimated, it does not imply that the breakpoints have
been correctly located neither that the mixture parameters have been correctly
estimated.
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- - - - L s - - - L s
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Figure 10.1: Four examples of simulations, with ny = 20 (left) and ny = 2 (right),
d = 2 (top) and d = 0 (bottom). Cluster 1 is represented with circles, cluster 2
with triangles and cluster3 with crosses.
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10.2 Selecting the number of clusters

In Chapter 8 we proposed to select the number of clusters first, using a BIC
penalty or an adaptive method. Let us recall the principle of these methods.
In a first step we construct the sequence of increasing likelihoods: log Ly...<
log Lp<.. .log meaz, such that:

logLp = m}?X{logEKP(TﬂZ})}

Kp = Argmax{logﬁKP(Tﬂ/;)}
K

log Lp represents the maximal fit that a segmentation /clustering model can reach
when the number of clusters is P. This quantity is used to select the number of
clusters whatever the number of segments. Then we propose to penalize these
likelihoods as follows.

A BIC penalty

The first strategy is to use the traditional BIC criterion applied to log L p such
that: X _ y
P = Argmax {log Lp— ?P log(n)} ,
P

with vp the number of independent parameters of a mixutre with P groups. In our
case vp = 3P —1 since we consider a mixture model with heterogeneous variances.

Adaptive method

Using the adaptive method, P is estimated like in Lavielle (2005) such that:

- calculate

7 _ IPna — JIp

Jp = X (Ppaz — 1)+ 1, with Jp = —log Lp,
IPrae — 1

- calculate the empirical second derivative of J, p such that:

VP €{2,...,Pnas — 1}, Dp=Jp_1—2Jp+ Jpi1,

- then select the number of clusters, such that:

p:mgx{PE{Q,...,Pmax—l}\Dpzs}.

This method requires the determination of parameter s. In Figure 10.2 is plotted
the second derivative Dp according to the number of clusters for a configuration
where d = 1. If threshold s = 0.75 the estimated number of cluster is P = 2,
whereas it is P = 4 if s = 0.5. Consequently selecting the number of clusters with
the adaptive strategy appears to be sensitive to this threshold. The simulation

139



Chapter 10. Behavior of the model selection heuristic

Figure 10.2: Representation of the second derivative of the normalized contrast
Jp according to the number of clusters and sensitivity to threshold s. If s = 0.5,
P =4 (square) and if s = 0.75, P = 2 (circle).
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Figure 10.3: Estimated number of clusters according to the distance between
clusters.

141



Chapter 10. Behavior of the model selection heuristic

study will be used to choose this parameter.
Results analysis

Figure 10.3 presents the estimated number of clusters with the two methods,
according to the distance between clusters 1 and 3. A first result is that the BIC
penalty systematically leads to the selection of an overly high number of clusters,
even in easy configurations. This is why we focus on the adaptive method.

It can be seen that the adaptive method tends to select a lower number of
groups as the distance between clusters 1 and 3 decreases. As a result, if we
consider the examples presented in Figure 10.1 (bottom), the adaptive method
will "prefer" to select 2 clusters rather than 3, which leads to a partition which
is more parcimonious. Moreover, this behavior seems to be stable according to
the size of segment 2 (data not shown). This result seems reasonable, since the
ability to detect a cluster is linked to the "separability" of clusters rather than to
the size of segments.

As for parameter s, its values change the results when the separability of the
mixture is intermediate. A higher value will tend to select 2 clusters rather than
3 when d = 0.5 and d = 1. Consequently, the adaptive method is sensitive to
threshold s. The choice of this parameter should be done based on the objective
of our method. Preventing false positives would lead to the choice of s = 0.75
in order to prevent the addition of two many clusters, but this could lead to a
decrease in the power of the method to detect clusters. Nevertheless when the
distance bewteen clusters is lower than one, it means that the jump in the mean is
close to the variance. We recall that in array CGH data analysis, we are interested
in the detection of jumps in the mean of the signal that reflect changes in gene
copy-numbers. Consequently it appears reasonable to neglect small jumps and
then to prevent false positive errors. This is why we choose s = 0.75.

10.3 Selecting the number of segments

Now that the number of clusters has been selected with the adaptive method, we
discuss the choice of the selection of the number of segments. In Chapter 7 we
proposed two methods for this choice.

When P is fixed we note Jx = —log EKP(T, lﬂ), and we note Kp the number
of segments for which the log-likelihood decreases. Then we calculate:

~ Jg, — Ik, ~
Jg=———(Kp—P)+ P,
5 s N
such that jf(P = P and jp = K p- Then we calculate the empirical second

derivative of Jy, such that:

VKG{P+1,...,KP—1}, DKZJK+1—2jK+jK_1.
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The number of segments is chosen such that:
[A(:mI?X{KE {(P+1,...,Kp—1}| DKZS},

with conditions:
1. if Kp = P then K = P,
2. if Kp=P+1then K =P +1,
3. if D < s then K:Kp.

Condition 3 means that if there is no break in the slope of the curve between
K = P and K = Kp we consider that the interesting number of segments is the
one for which the log-likelihood decreases. Figure 10.4 illustrates the influence
of threshold s on this procedure. If s is small, the procedure will select K = 10
segments, whereas if s = 0.75 the procedure will select K = Kp segments. Setting
s to a higher value will tend to ignore small breaks in the curve between K = P
and K = Kp. Consequently, the selection procedure will be more conservative if
the threshold is small, i.e. it will tend to select a lower number of segments.

The second method is based on a BIC penalty such that:

log(n) x K} .

N | —

f(ﬁ = Argmax {logﬁKP(T, @/3) —
K b
Results analysis

Figures 10.5 and 10.8 present the estimated number of segments according to
the distance between clusters and to the size of segments respectively. The first
result is that the adaptive method produces outliers, meaning that for some con-
figurations, the estimated number of segments can explose whatever the threshold
5. On the contrary, the BIC penalty seems to be very stable. We recall that box-
plots were constructed on 500 points (there are 5 different sizes of segments for
each d).

It appears that the unstable behavior of the adaptive method is linked to the
estimation of the number of clusters. To explain why, we consider an example
where the number of clusters is over-estimated. In figure 10.7 is presented the
log-likelihood for a configuration with d = 0 and ny = 2. In this case the esti-
mation of the number of clusters gives 4 clusters whereas 2 clusters would have
been suitable. Consequently the log-likelihood is increasing until Kp = 19, and
the adaptive method selects K = 10 with a threshold s = 0.5. This example
has already been used to show the effect of threshold s on the estimation of K.
The fact that Kp is high can be explained by the estimated number of clusters.
Indeed when P = 4 there exists more possibilities to segment data with alternate
labels, as shown in Figure 10.6. On the contrary the BIC penalty seems to be
robust to the bad estimation of P. The penalized likelihood is presented in Fig-
ure 10.7. This stability is due to the fact that the BIC penalty is less sensitive
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Figure 10.4: Illustration of the effect of threshold s on the selection of K. Top:
log-likelihood when P = 4 for a configuration with d = 0 and ny = 2. Bottom:
empirical second derivative Dp.
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Figure 10.5: Estimated number of segments according to the distance between
clusters.
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Figure 10.6: Result of the selection procedure when P is overestimated. Bottom:
P =4 and K = 10 with the adaptive method (s = 0.5).
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Figure 10.7: Penalizing the log-likelihood with a BIC penalty to select the number
of segments, and comparison with the adaptive method.

to the geometrical behavior of the likelihood. Interestingly, the BIC penalty does
not over-estimate the number of segments, as it is the case in segmentation models.

Since the estimated number of segments depends on the estimated number of
clusters, we consider 2-way frequency tables for P and K in Table 10.3. These
tables are calculated according to the distance between clusters. From Table 10.3
we have:

- when clusters are not separated (d = 0.0) both methods select exclusively
P=2and K =3,

- for intermediate configurations (d = 0.5,1) two configurations are selected
(P=2,K=3)and (P=3,K =5)

- when clusters are well separated (d = 1.5,2), both methods select almost
systematically P = 3 and K = 5.

From this table, we can see that the BIC penalty is more conservative compared
with the adaptive method. When the distance between clusters is intermediate
(d = 0.5,1) the estimated number of segments is higher than 5 in 10% and 30%
of cases for the adaptive method, whereas the BIC penalty gives 2% and 10% of
outliers. This is why we choose the BIC penalty in the following.

147



Chapter 10. Behavior of the model selection heuristic

Interestingly, the main factor affecting the estimated number of segments
seems to be the distance between clusters, ¢.e. the relative jump in the mean
between two segments, and not the size of segments (Figure 10.8). This means
that even if segments are of small size, they are detected by the method, as well
as segments of big size. This could be interpreted as an advantage of the segmen-
tation/clustering compared with a pure segmentation model. With our method,
even if a segment is of small size, the fact that it belongs to a cluster being com-
posed of other segments helps in its recovering. This particular behavior will be
studied in the next chapter.

10.4 Conclusion

In Chapter 8 we proposed a heuristic to select the number of clusters and the
number of segments. Since this method is empirically motivated, it was crucial
to assess its performance on simulated data, to determine the average behavior
of the method. Interestingly our model selection heuristic appears to be "doubly
adaptive". Indeed, since the selection of K s strongly depends on the choice of
15, a parcimonious method to select P leads to a parcimonious method to select
K, as shown in Table 10.3. When the number of clusters is underestimated
the resulting number of segments is underestimated as well. This illustrates the
interest to have an adaptive method to select the number of clusters, as discussed
before. As for the choice of the selection method for the number of segments, the
BIC penalty seems more appropriate since it is more robust to a bad estimation
of the number of clusters.
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————————————————— d=0.0
Kh hatP
Percent 2 3
3 96.80 0.00
4 0.40 0.00
5 1.20 0.00
5+ 0.00 1.40
Total 98.40 1.40
————————————————— d=0.5
Kh hatP
Percent 2
3 85.80 0
4 0.00 0
5 0.00 3.
5+ 0.00 10.
Total 85.80 14.
————————————————— d=1.0
Kh hatP
Percent 2
3 36.00 0
4 0.00 0
5 0.00 33
5+ 0.00 29.
Total 36.00 64.
————————————————— d=1.5
Kh hatP
Percent 1 2
3- 0.20 0.00
3 0.00 1.80
4 0.00 0.00
5 0.00 0.00
5+ 0.00 0.00
Total 0.20 1.80
————————————————— d=2.0
Kh hatP
Percent 3
3 0.60
5 96.40
5+ 3.00
Total 100.00

Total

[100.00

————————————————— d=0.0
Kh hatP
Percent 2 3
3 93.00 0.80
4 1.20 0.40
5 3.80 0.20
5+ 0.40 0.00
________________________________ |
Total 98.40 1.40
————————————————— d=0.5
Kh hatP
Percent 2
3 85.20 2.
4 0.40 0
5 0.20 9.
5+ 0.00 1.
Total 85.80 14.
————————————————— d=1.0
Kh hatP
Percent 2
3 36.00 8
4 0.00 1
5 0.00 45
5+ 0.00 9
Total 36.00 64.
————————————————— d=1.5
Kh hatP
Percent 1 2
3- 0.20 0.00
3 0.00 1.80
4 0.00 0.00
5 0.00 0.00
5+ 0.00 0.00
________________________________ |
Total 0.20 1.80
————————————————— d=2.0
Kh hatP
Percent 3
3 3.20
5 93.60
5+ 3.20
Total 100.00

3 | Total
| 87.60
.60 | 1.00
| 9.60
| 1.80

3 | Total
| 44.00
.20 | 1.20
| 45.00

.80 | 9.80

Total

| Total
| 3.20
| 93.60
| 3.20
| ————-
[100.00

Adaptive method s = 0.5

BIC penalty

Table 10.3: Two-way frequency tabled4dr P and K according to the distance

between clusters.
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Figure 10.8: Estimated number of segments according to the size of segment 2.
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Chapter 11

Performance

In this chapter we propose to compare the performance of our method with the
performance of hidden Markov models. In chapter 7 we explained the differences
between both methods, from a modelling point of view. In this chapter we pro-
pose to compare the methods using simulated data. For this purpose we use the
simulated data which have been described in the previous chapter.

Let us briefly recall the construction of the simulated data set. One simula-
tion is constituted on 100 data points which are segments into 5 segments, the
segments being clustered into 3 groups. The design of the simulation study is
a factorial design with two factors of variations: the distance between cluster 1
and 3 noted d, and the size of segment 2. Five levels are considered for each fac-
tor, as shown in Table 11.1. A representation of 4 situations is given in Figure 11.1.

Since the objective of the segmentation/clustering model is to cluster data
points into a finite number of groups, we will use criteria such as the empirical
error rate, and the specificity /sensitivity to compare our model with HMMs in
terms of clustering. The second objective of these methods being to provide a
segmentation of the data, we will also assess the ability of both method to correctly
locate the breakpoints. A comparison will also be made with pure segmentation
methods.
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‘ cluster 1 cluster 2 cluster 3

m 0 -5 varying m3‘4 3 2 1 0
s 1 2 3 |2 15 1 05 0
s 2/5 1/5 2/5

Size ny Mg N3 N4 Ns

clusterlabel | 1 3 1 2 3

30 2 28 20 20

285 27 20 20

25 10 25 20 20

23 15 22 20 20

20 20 20 20 20

Table 11.1:

Factors of variation for the simulation study.

10

Figure 11.1: Four examples of simulations,

d =2 (top) and d = 0 (bottom).
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11.1 Clustering results

Running HMMs

The Gaussian hidden Markov model is run using a freely available toolbox cre-
ated by Kevin Murphy !, University of British Columbia, Vancouver. When the
number of hidden states is fixed, the EM algorithm is used to estimate the param-
eters of the HMM, using 10 random starts. Since the number of hidden states of
the HMM is linked to the number of clusters in the segmentation /clustering model
we choose to select the number of hidden states using the same adaptive proce-
dure we use for the selection of the number of clusters. The adaptive method
will tend to select two hidden states rather than 3 when the distance between
clusters is small. Once this number has been estimated, the hidden sequence is
recovered using the Viterbi algorithm which provides the recovered sequence of
hidden variables, noted z in the following.

In order to compare the performance of our method with HMMs, we choose
to define some quality criteria to compare. Let us recall that we know the true
label of the data, which are noted z; for the label of data point ;.

11.1.1 Quality criteria

The aim of both methods is to cluster data points into a finite number of groups.
In the HMM context, this clustering is done via the reconstruction of the hidden
sequence of variables, previously noted Z". In the segmentation/clustering con-
text, the recovered label variables are obtained with the MAP rule, and noted 2¥,
k=1,...,K. Since 2* indicates the label of segment k, we introduce a secondary
sequence of label variables noted 2z} which indicates the label of data points within
segments such that:

Vt € [k, ét - ék

Then we define the following quality criteria to compare:

- the empirical error rate noted EF R, and defined such that:
I~
EERpuv = " Z Wz # =},
t=1
L.
EERseg/clust = ﬁ Z H{Zt 7£ Zt}-
t=1

- the sensitivity which is defined as the proportion of true positives detected
compared with the total number of positives. Using terminology: T'P =true
positives, F'N =false negatives, it follows that:

TP
TP+ FN’

http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html

Sensitivity =
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- the specificity which is defined as the proportion of true negatives detected
compared with the total number of negatives. Using terminology: T'N =true
negatives, I'P =false positives, it follows that:

TN

Speci ficity — —
pect ficity TN+ 7P
Since cluster 2 is well separated from the other clusters, we will focus on the
specificity and sensitivity for clusters 1 and 3 only. The following table gives the
definitions required to calculate these criteria for cluster 1 for instance.

TP | S 1{E =12 =1}
TN, | S {5 #1,2 #1}
FP | S0 W5 =1,2#1}
FNy | S0 M5 #1,2 =1}

11.1.2 Results

Figure 11.2 represents the empirical error rate calculated for the segmentation /clustering
model and for HMMs, according to the distance between clusters. It can be seen
that the segmentation/clustering method has a slight advantage since its average
and median EER are lower. As expected, the EER decreases as the distance be-
tween clusters 1 and 3 increases and it is close to zero in easy configurations. It
can be seen that when the distance between clusters is null (d = 0) the HMM
can lead to a high empirical error rate. Figure 11.3 gives an example of such
situation. Let us recall that when d = 0 it means that the difference of means is
null between clusters 1 and 3, but their variance is different s7 = 1, s3 = 3. This
is why three hidden states are selected, whereas 2 clusters are selected for the seg-
mentation /clustering in this case (data not shown). Nevertheless, the selection of
3 hidden states does not lead to the recovering of segment 2 which is not detected
and affected to cluster 1. On the contrary, the segmentation/clustering method
selects 2 clusters and 3 segments, leading to more conservative results.

In this study we choose to consider the sensitivity and specificity for each in-
dividual clusters. However it is clear that false positives and false negatives are
linked in this case. When a point is affected to cluster 1 whereas it belongs to
cluster 3, it is considered as a false negative for cluster 1 and as a false positive
for cluster 3. This is why the specificity associated to cluster 1 shows a symetrical
behavior compared with the sensitivity associated to cluster 3. From Figure 11.4
it is clear that when the distance is small, points will be clustered to group 1 lead-
ing to an increase in false positives for group 1 and a deacrease in the associated
specificity. It is the contrary for group 3 which presents many false negatives when
d is small and the sensitivity for this group increases with d. The results suggest
that both specificity and sensisitivity are greater for the segmentation/clustering
model.
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Figure 11.2: Comparison of empirical error rates between segmentation /clustering
and HMMs.
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Figure 11.4: Specificity /Sensitivity of HMMs and segmentation/clustering for
clusters 1 and 3, according to the distance between clusters 1 and 3.
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11.2 Segmentation results

11.2.1 Quality criteria for segmentation results

Since the objective of HMMs is also to provide a segmentation of the data, we
compare both methods with respect to the number of estimated segments, and
to their ability to correctly locate the breakpoints. As discussed in Chapter 7 we
define segments in the case of HMMs as a region for which the recovered label
variables Z, are homogeneous, and we call breakpoint the position #; for which the
label changes. This allows us to define a segment [, such that:

Vtel,, 5z =3~
In order to assess the ability of the methods to locate the breakpoints, we use a
secondary sequence {r:};, such that:

| 1 if there exists k such that ¢ = ;.
"= 0 otherwise.

This new sequence allows us to define the specificity and sensitivity of the
method regarding the detection of breakpoints. A false positive will be defined as
a position for which the method detects a breakpoint whereas there is no break-
point. The following table gives the definition of such criteria. Consequently, a

TP | > o Wr=1r =1}
TN | > Mr #1,r #1}
FP | > Wi =11 #1}
FN | > M{r#1,r, =1}

segmentation method with a high specificity does not add false positive break-
points. On the contrary a method with a low sensitivity will tend to ignore some
breakpoints and will be conservative.

11.2.2 Results for segmentation

First of all, Figure 11.5 presents the recovered number of segments compared with
segmentation /clustering. A first result is that these numbers are comparable but
the average number of segments in the case of HMMs is greater in easy configura-
tions (d = 1.5,2). This illustrates the fact that in the case of HMMs, the number
of segments is not selected but recovered once the number of hidden states have
been estimated. On the contrary the segmentation/clustering model provides a
way to control the number of segments to be put in the profile, whereas in the case
of HMMs, this number only depends on the choice of the number of hidden states.

Since the size of the data set is fixed, adding segments leads to an increase
in the number of false positives, and then to a decrease in the specificity of the
method. Figure 11.6 shows the evolution of the specificity/sensitivity of both
methods with respect to the size of segment 2 and the distance between clusters.
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It can be seen that even if the number of segments is "over-estimated" in the case
of HMMs, the associated decrease in the specificity is negligible. Consequently
both methods are very specific, meaning that they do not create breakpoints when
there is no breakpoint to detect.

From Figure 11.6 we can see that the sensitivity is constant according to the
size of segment 2 and that it increases with the distance between clusters. Let
us recall that the sensitivity is low when the number of false negatives is high.
This behavior can be linked to the associated number of segments. Indeed, when
the distance between clusters is small, the associated number of segments is 3
rather than 5 (the true number). The behavior can be interpreted as a tendency
to ignore segments when the jump in the mean between segments is small regard-
ing the variance. Consequently, ignoring segments leads to an increase in false
negatives and then to a decrease in the sensitivity. Moreover the results suggest
that the segmentation/clustering model is more sensitive compared with HMM
for the positioning of breakpoints.

The last comparison we make is between segmentation /clustering and pure seg-
mentation methods. Since segmentation/clustering aims at finding breakpoints as
well as clustering the data, our hypothesis is that the mixture model can help in
the recovering of breakpoints. Let us consider the examples shown in Figure 11.1.
Since segments 2 and 5 belong to the same cluster, our question is to assess if a
segment can help to recover segments being in the same group. To answer this
question we consider a segmentation model and we compare the sensitivity and
specificity of segmentation/clustering and segmentation for the breakpoints. We
consider a segmentation model with heterogeneous variances, since the mixture
model which has been used to simulate the data considers heterogeneous vari-
ances. The number of segments has been estimated using the adaptive method.

Figure 11.6 shows the sensitivity for breakpoint positioning, has it was done
to compare HMM and segmentation/clustering. The same conclusions can be
drawn, meaning that the specificity is high for both methods (not shown). Since
the number of segments is not over-estimated when d is high, there is no de-
crease in the specificity of the segmentation method, as it was the case of HMMs.
As for the sensitivity, it increases with the distance between clusters, since the
number of false negative decreases. In the case of segmentation, the sensitivity
decreases when the size of segment 2 decreases, meaning that the method ignores
segments with small size. Interestingly the effect of the size of segment 2 is lower
for segmentation/classification. This behavior illustrates the ability of segmenta-
tion/clustering to recover segments of small size if they belong to a cluster with
other segments. Consequently, the mixture model in the segmentation/clustering
method helps to recover some breakpoints.

11.3 Conclusion

In this chapter we proposed to compare the performance of the segmentation /clustering
model with hidden Markov models based on simulation studies. We proposed to
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Figure 11.5: Number of "segments" in the case of HMM compared with the
selected number of segments in the case of segmentation/clustering.

do so by comparing the ability to cluster the data into a finite number of groups,
and the ability of both methods to correctly locate breakpoints. This compari-
son has been done using quality criteria for clustering and for segmentation, and
we showed that the performance of the segmentation/clustering model were bet-
ter with respect to every quality criteria compared with hidden Markov models.
Nevertheless, we should recall that the data have been simulated using a segmen-
tation/clustering model. To this extent, the fact that our model shows better
performance on these data may be due to the simulation model which favours
the segmentation/clustering model. This remark can also be made when com-
paring the segmentation /clustering model with the segmentation model, since the
clustered nature of the simulated data favours the segmentation/clustering model
which considers an additional information.

Nevertheless, the fact that our model shows (slightly) better performance
compared with two different methods indicates that the segmentation/clustering
model combines the advantages of both methods. Indeed the segmentation /clustering
model is as sensitive and specific as HMMs in the clustering context, and as sen-
sitive and specific as segmentation methods in the segmentation context. To this
extent the method we propose is efficient for both clustering and segmentation.
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Chapter 12

Analysis of CGH array data

Now that our method for segmentation/clustering has been extensively studied
and compared with other methods based on simulation studies, the last chapter
of this part is devoted to its application on real array CGH data. For this purpose
we use publicly available data sets, which have been described in Nakao et al.
(2004) and Snijders et al. (2001).

12.1 Homogeneous or heterogeneous variances 7

In the segmentation context we discussed the choice of modelling that should be
done to determine which parameters of the model were affected by changes. Two
choices are possible: a segmentation model with a homogeneous variance or with
heterogeneous variances. Based on real data sets, we emphasize the choice for a
model with homogeneous variance (see Picard et al. (2005) for a complete dis-
cussion). More than a pure choice of modelling this question can be biologically
interpreted, since a model with homogeneous variance means that the variability
presented by gene copy numbers does not depend on the position of the gene on
the genome.

In the case of a segmentation /clustering model, mixture model parameters are
used to characterize clusters which are supposed to have a biological interpreta-
tion. A comparison can be made between the two models such that:

segmentation segmentation /clustering
2 2
o s
variability on segment k£ | variability in cluster p

The problem of determining if parameter 512) is constant could be interpreted
as follows: is the variability of gene copy-numbers specific to one biological group?
We propose to assess this question using a statistical criterion.

We consider the data set described in Nakao et al. (2004), which has been
already used in Chapter 9 to choose an initialization strategy for the hybrid algo-
rithm. This data set consists in 125 CGH profiles corresponding to 125 patients
affected by colorectal cancer. Among these profiles, we focus on chromosomes
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Source DF Type III SS Mean Square F Value Pr > F

var 1 2034 .355465 2034 .355465 15421.9 <.0001

patient (chromosome) 374 0.435337 0.001164 0.01 1.0000

var*patient (chromos) 374 3694.354877 9.877954 74.88 <.0001
var rLpen LSMEAN t Value Pr > |t]
heterogeneous 1.33759033 -124.18 <.0001
homogeneous 1.66086557

Table 12.1: Determining the best modelling strategy using a linear model.

1, 8 and 20. Then the hybrid algorithm is run for P = 1,...,6 clusters and
K = P,...,20 segments in the case of a mixture model with homogeneous and
heterogeneous variances. The resulting optimized log-likelihoods are used to score
each modelling strategy. However, it is clear that when the mixture considers het-
erogeneous variances, the log-likelihood is greater since the number of parameters
is higher than in the case of and homogeneous variance (3P — 1 parameters vs.
2P). Since we aim at assessing the quality of fit of a model whatever its number
of parameters, we choose to penalize each log-likelihood according to the number
of parameters of the corresponding model. We compare two criteria, which are:

Ckp(sy) = log Lyp(T, 1) — %log(n) x (3P —1),
Crrls”) = log Lxp(T, ) — 5 log(n) x (2P).

Then our purpose is to assess if one choice of modelling systematically leads to
the best penalized criterion. For this purpose the penalized criteria are ranked for
each CGH profile and for each K and P and we use a linear model to determine the
average rank given by one method. This strategy has already been used in Chap-
ter 9, and the results are shown in Table 12.1. It can be seen that the mean rank
of the penalized criterion is greater when the variance is homogeneous compared
with a heteroscedastic model. This indicates that the segmentation/clustering
model with a homogeneous variance fits better to real CGH data when adjusted
to the number of parameters. Even if this result has a clear modelling interpre-
tation, it appears difficult to discuss its biological relevance since we do not have
experimental results for validation. Indeed we could have thought that amplified
regions would have shown a greater variability in gene copy numbers compared
with non-affected regions. On the contrary, our results suggest that the variabil-
ity of gene copy numbers seem to be constant whatever the biological status of
genomic regions.

12.2 Application to real data sets
In this section we propose to discuss the results of the segmentation/clustering
model on real data sets. Unfortunatelly there is no data set for which the bio-

logical status of the clones has been determined and validated with a different
technique than array CGH. Since the true gene copy number is unknwon, we can
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not assess the performance of our method regarding its ability to detect true bio-
logical events. This is why we choose to compare the results of our method with
other methods such as segmentation methods and HMMs.

12.2.1 Segmentation/clustering vs. segmentation

A first comparison is made between segmentation results and segmentation /clustering.
In Figure 12.1 are shown two CGH profiles described in Nakao et al. (2004). This
first situation is used to illustrate the case where the separability of the clusters

is high. In this case, the jump in the mean between clusters is high regarding the
variability of the signal. Consequently no breakpoint is removed/added between
segmentation and segmentation/clustering results. The interest in the clustering
model is that it provides labels to segments. In this case, the interpretation of
the biological status of genomic regions is straightforward in terms of deletion and
amplification.

The problem of outliers

In Figure 12.2 we show how the segmentation /clustering model can change the
segmentation results. In the first example (X38, top) we can see that considering
the clustered structure of segments leads to the addition of breakpoints. Let us
consider the point located at ¢ = 33 for instance. This point is not detected in
the segmentation context. Nevertheless, since its value is close to the mean of the
deleted cluster (m ~ —0.7), a new breakpoint is added and this point is declared
as a deleted clone. This leads to the segmentation of the profile into K = 10
segments, whereas the segmentation model only considers K = 6 segments. In
the segmentation context, we discussed the difficulty to identify outliers in the
context of array CGH data analysis. Indeed the point located at ¢ = 33 and
affected to the "deleted" cluster may be interpreted as a real deleted clone, or
as an outlier. Nevertheless, the definition of outliers appears to be ambiguous in
this case. A first possibility would be that this clone is deleted whereas its close
neighbors are not. In this case, the segmentation/clustering model results can
be directly interpreted. Another case could be that this clone has been misan-
notated, meaning that its coordinate on the genome is wrong. In this case, its
"true" position could be between t = 1 and ¢t = 17 for instance. Nevertheless, the
analyst is dependent on the informations which are stored in public data bases.
To this extent we can not choose between three situations which are: the clone is
a real deleted clone at the correct coordinate, the clone is a real deleted clone at
the wrong coordinate, the clone is a false positive and the value of the signal is
due to technical artefacts. Nevertheless, we can consider that segments of size 1
should be carefully interpreted.
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The problem of amplified regions

The second example (X480, Figure 12.2 bottom) illustrates a situation where
the variance of the signal is high regarding the jump of means between clusters.
The segmentation/clustering method selects P = 3 clusters. Once more, consid-
ering the clustered structure of segments leads to the addition of many segments
compared with pure segmentation methods (K = 15 vs K = 3). When looking
at the results, two clusters have an easy interpretation. The first one (triangles)
has a null log-ratio on average, and the third one (+) presents a mean log-ratio
close to 0.8, which corresponds to an amplification. As for the second cluster,
its interpretation appears difficult. Its mean log-ratio is lower than log,(3/2),
but different from 0. Nakao et al. (2004) propose to make a distinction between
gained and amplified regions. To do so, they propose some thresholds such that
if 0.225 < logsratio < 0.9 the region is considered as gaines, and amplified if
logaratio > 0.9. Using these thresholds, we could interpret cluster 2 as the cluster
of gained regions, and cluster 3 as the cluster of amplified regions.

Many groups, many segments

One last example that is provided is illustrated in Figure 12.3. In this case,
5 clusters are selected with 13 segments (11 segments for segmentation). This
example presents the advantages of the segmentation/clustering method which
are the addition of breakpoints when data points are close to one cluster in terms
of mean (at position ¢ = 12) the labelling of data points which are isolated but
which clearly belong to one cluster (¢ = 46,68), and the distinction between
deletion and three types of amplification. This example shows that our method
performs well even if the number of clusters is high.

12.2.2 Comparison with hidden Markov models

In the previous part we proposed to compare the performance of our model with
HMMs using simulated data. We propose here to discuss the results provided by
both methods on real data sets. A first comment is that when the data can be
easily interpreted, both methods give similar results. This is why we focus on
cases where results are different.

Viterbi vs. Forward/Backward

When using HMMs for segmentation, two methods can be used to reconstruct
the sequence of hidden states. The first one is to use the forward/backward al-
gorithm to calculate the posterior probability of each state given the observed
data, and the second one is the Viterbi algorithm, which computes the most
probable path for the hidden states. Consequently, the forward/backward algo-
rithm gives local results, whereas the Viterbi algorithm provides a global solution.
While applied to array CGH data, Fridlyand et al. (2004) suggest to use the for-
ward /backward algorithm. In Figure 12.4 is shown the segmentation/clustering
results provided by our method and by HMMs with the forward /backward and
the Viterbi algorithm. The number of clusters/hidden states is 5 in both cases,
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and the results are globally similar. Nevertheless, it can be seen that the for-
ward /backward and the Viterbi algorithm do not provide the same clustering
results. In the case of the Viterbi algorithm, single points (t = 46,57,68) are
clustered into the "normal" group (triangles) whereas they are affected to dis-
tinct clusters with forward/backward. This illustrates the difference between a
local and a global strategy to recover the hidden sequence. In practice the local
strategy is prefered to cluster data points into groups (see Fridlyand et al. (2004)).

As already mentioned in simulation studies, for an identical number of hidden
states, the number of segments is higher for HMMs compared with our model.
In Figure 12.4 we can see that breakpoints are added at positions ¢ = 58 and
t = 79, and the label of the associated regions are changed. Nevertheless, since
we do not have any criterion to determine which method is right, we can not
conclude on those differences. However, one remark could be that HMMs may be
more powerful than our model, leading to more detailed profiles. On the contrary
our method seems to be more conservative. This is illustrated in the next example.

Type I errors vs. type II errors

The last examples that are considered to compare HMMs and our model is
presented in Figures 12.5 and 12.6. In Figure 12.5 it can be seen that the number
of clusters is similar, but the number of segments is higher when using HMMs.
One characteristics of HMMs is that many small jumps in the signal are associated
with a change in the label of the region. Consequently HMMs appear to focus on
label changes rather than on the spatial structure of the signal. On the contrary
our method considers that local variability within segments is not necessarily asso-
ciated to a change in the label. This behavior is striking in Figure 12.5 but is also
illustrated in Figure 12.6 where the number of hidden states is 4 for HMMs and
2 in our case. This ability to detect local changes in the label of individual data
points indicates that HMMs show a high statistical power, whereas our method
is more conservative.

From a biological point of view, it would be crucial to determine if changes in
gene copy numbers affect isolated clones, or if the process of deletion /amplification
concerns chromosomal regions. Moreover it should be recalled that increasing the
power of a method may lead to an increase in false positives, which may not be
suitable. False positive errors can be viewed as the "curse" of microarrays studies.
Indeed when studying gene copy-numbers for thousands of clones, each positive
result should be verified with another technique, which may be expensive. In
microarray studies technical artifacts constitute one major source of false positives.
Among those is the well known dye-effect which can be corrected by statistical
methods in the case of expression profile microarrays. Since this normalization
procedure has never been adapted to the case of array CGH, a question could
be to determine if the local variations detected by HMMs are due to technical
artifacts or not.
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12.3 Future prospects for array CGH data analy-
sis

In this last section we would like to provide guidelines for future developments
concerning array CGH data analysis. As previously mentioned finding chromo-
somal alterations in CGH profiles strongly depends on the quality of the data,
since small changes in the signal may be due to technical variability and may not
reflect biological events. To this extent it appears crucial to develop normalization
procedures for array CGH data.

In Part I we discussed the specificity of array CGH data, and we explained
why normalization procedures could not be directly applied to these data. Let
us recall that gene copy numbers are measured through fluorescence intensities
between two conditions. One condition is labelled in green and the other in red.
A dot on a CGH profile corresponds to the log-ratio M = log,(R/G). A common
problem in microarray experiments is that the log-ratio often depends on the
mean intensity noted A = log,(R X GG). Then the Loess method is used to correct
this intensity-dependent dye bias (see Part I for further details). Nevertheless it
appears that this normalization step can not be performed for array CGH data
for two major reasons:

- an important proportion of the genome is altered by chromosomal aberra-
tions,

- log-ratio values are centered around mean log ratios for each biological class
(deleted, normal, amplified).

Since our segmentation/clustering procedure provides labels for each chromoso-
mal region, we can isolate the regions of the genome which show amplifications
or deletions, and we can estimate the mean log-ratio for each biological group. In
Figure 12.7 is shown a MA plot with data points being labelled according to the
segmentation /clustering results.

As a perspective of the analysis of array CGH data, it would be interest-
ing to perform a loess normalization on each group detected by the segmenta-
tion/clustering model. A question will be to assess whether this normalization
step changes the segmentation/results or not. An idea could be to run iteratively
the normalization step and the analysis step in order to provide results which
should be less corrupted by technical artifacts.
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Conclusion

In this part, we proposed to implement the segmentation /clustering method and
to assess its performance on simulated and real data sets, and to compare it with
existing methods whose objectives are similar. The originality of our method is
that it requires the selection of both the number of clusters and segments. We
proposed a heuristic for this new double-selection problem, and we showed that
this procedure was efficient. An interesting perspective would be to develop the-
oretical criteria for this problem, and to assess the statistical properties of the
estimators we proposed.

From a modelling point of view, an interesting development would be to con-
sider a segmentation/clustering model for which the variability is independent of
the group but depends on segments. In other words, we could develop a model
such that:

Vt € I, Y|Zy =1~ N(myl,,,o1l,,).

the advantage of such model would be to consider that the level of segments
depends on the clusters whereas the variability depends on the position of the seg-
ments. This model could be more flexible compared with the segmentation /clustering
model we propose.

While compared with HMMs, our method shows slightly better performance
on simulated data. However when applied to real CGH data, it appears that
our method is more conservative, and less sensitive to small changes in the signal
that may be due to technical artifact. Consequently the segmentation/clustering
model appears to be an interesting alternative to HMMs.

From a practical point of view, we are currently developing a software program
for the analysis of array CGH data. Even if our method is applied to this particular
data, we claim that it can be applied in a the more general setting of signal
processing. In the following, we propose an extension of our model to discrete
variables, with an application to the analysis of DNA sequences.
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Introduction

In Parts IIT and IV we proposed a new statistical model for segmentation /clustering
problems in the Gaussian case. These developments where oriented towards the
analysis of array CGH data. In this last part we propose another application of
our segmentation/clustering model devoted to the analysis of a different type of
biological data which are biological sequences, and especially DNA sequences.

Nature of biological sequences

The basics of molecular biology has been summarized in a concept called the
Central Dogma of Molecular Biology (Figure 12.8). This dogma aims at describing
existing relationships between biological macromolecules, which are DNA, RNA
and proteins. DNA ! molecules are the basic carriers of genetic information and
are found in all living cells. A DNA sequence is made up of a string of bases
which are Adenosine (A), Thymine (T), Cytosine (C), and Guanine (G). These
bases are attached to a sugar-phosphate backbone. The succession of these letters
constitutes the complete genetic information defining the structure and function
of an organism. Proteins can be viewed as effectors of the genetic information
contained in DNA coding sequences. They are made up of a string of 20 different
amino acids which is formed using the genetic code to convert the information
contained in the 4 letter alphabet of the DNA sequence into a new alphabet of
20 amino acids. This translation procedure requires an intermediate step in eu-
kariotyc cells called transcription. During transcription a DNA segment is read
and transcribed into a single stranded molecule of RNA? whose chemical compo-
sition is similar (the 4 letter alphabet remains with the replacement of Thymine
molecules by Uracyle molecules). RNAs which contain information to be trans-
lated into proteins are called messenger RNAs (mRNAs), but other types of RNAs
are created during transcription, such as ribosomal RNAs (rRNAs) and transfert
RNAs (tRNAs). The last step consists in the translation of mRNAs into pro-
teins. A shematic representation of these relationships is given in Figure 12.8.
Even if they are characterized by different functions, biological macromolecules
share one commun feature: they are constituted of oriented sequences of letters
(in different alphabets) whose succession constitutes a biological information, and
whose variations generate biological diversity. Consequently the local composition
of macromolecules (in base pairs for nucleic acids or in amino acids for proteins)
consitutes an information itself.

IDNA: Desoxyribo Nucleic Acid
2DNA: Ribo Nucleic Acid
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The Central Dogma of Molecular Biology
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Figure 12.8: The central dogma of molecular biology

Considerable effort has been made in the collection and in the dissemination
of DNA sequence informations, through initiatives such as the Human Genome
Project 3. The explosion of sequence-based informations is illustrated by the se-
quencing of the genome of more than 800 organisms, which represents more than
3.5 million genetic sequences deposited in international repositories (Butte and
Atul (2002)). The aim of this first phase of the genomic area consisted in the
elucidation of the exact sequence of the nucleotides in DNA molecules, which has
allowed the search for functional sequences diluted all along the genomes.

Statistical analysis of biological sequences

One efficient way for identifying and screening for structure in biological se-
quences is to use statistical techniques. Of particular interest are techniques which
capture the evolution of the sequence composition along the molecule. Variations
in the base-pair composition may constitute a biological signal, such as a richness
is Guanine and Cytosine nucleotides in DNA sequences, which can be linked to
banding patterns in mammalian chromosomes (Ikemura et al. (1990)), or the
succession of three letters (or codons in DNA sequences) which can indicate the
termination of transcription (STOP codons). To this extent, segmenting DNA
sequences into regions which are compositionally different from the rest of the
sequence appears of primary interest.

The problem of segmenting DNA sequences is far from new and has focused

3http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
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Segmentation of the sequence Segmentation/Clustering

Figure 12.9: Principle of the segmentation/clustering model for DNA sequences.

much attention in the last four decades. Many statistical techniques have been
considered, such as Hidden Markov Models, Scan statistics, Bayesian techniques
and change-point methods. A complete review of these methods can be found in
Braun and Muller (1998). In this work we consider the DNA segmentation prob-
lem in the framework of the multiple change-point problem for categorial data. In
this context the data are assumed to be drawn from binomial or multinomial dis-
tributions (Braun and Muller (1998), Braun et al. (2000)), and Lebarbier (2002)
recently developed the case of multiple changes in Markov chains which will be
presented in Chapter 13. Figure 12.9 (left) presents an illustration of this model,
where the data are assumed to be drawn from a Markov chain whose transition
matrix is supposed to be affected by abrupt changes at unknown coordinates.
Modelling DNA sequences by Markov chains is thought to describe the depen-
dency that exists between nucleotides within a sequence. A complete discussion
on DNA sequence modelling can be found in Nicolas (2003), Robin et al. (2003),
and Schbath (2000).

A Segmentation/clustering problem

In addition to the hypothesis that DNA segments should be of homogeneous
composition within segments and of heterogeneous composition between segments,
another hypothesis can be made. Functional patterns are likely to be repeated
along the DNA molecules in terms of function and composition. For instance there
exists an alternance between G+-C rich regions and G+C poor regions, and also an
alternance between coding and non-coding regions. Since base-pair composition
can be linked to biological function, it is likely that segments are structured into
a finite number of clusters which could be interpreted as clusters of functional in-
terest. This recalls the formulation of the segmentation /clustering problem which
has been studied in the Gaussian case previous parts.
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In Chapter 13 we propose to apply our method for the analysis of DNA se-
quences, with the development of a segmentation/clustering model for Markov
Chains. Since the methodology has been extensively detailed in the Gaussian
case, we choose to give the main steps of the construction of the model only. This
part is devoted to the application of our method to real DNA sequences. One main
advantage when working on DNA sequences is that some biological information is
already available through genome annotations, which provide the positioning of
functional elements along the sequence. These annotations will be used to assess
the performance of our method. In this Chapter, we will also compare our method
to Hidden Markov Models which constitute a method of choice for DNA sequence
analysis (Muri (1997), Nicolas (2003)).
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Chapter 13

Application of the
segmentation /clustering model to
Markov chains

13.1 Multiple changes in Markov chains

The construction of the segmentation /clustering model is linked to the underlying
segmentation model. In this section we aim at presenting the main results devel-
oped in Lebarbier (2002) which will be used to construct a segmentation/clustering
model for categorial data.

13.1.1 Presentation of the model

Let {Y7,...,Y,} denote a sequence of dependent categorial variables with Y; tak-
ing values in a finite set of integers ) = {1,...,r}, with » > 2. The dependency
between variables is modelled through a Markov chain of order m, m being fixed.
In the multiple change-point context, we suppose that there exists a sequence of
breakpoints 7' = {¢i,...,tx_1} which defines a partition of the data into K inter-
vals noted Iy, ..., Ik in which the transition matrix and the initial distribution of
the Markov chain are such that:

vt S [k Pr {}/;f = b|}/;571 =ay, ... 7}/;€fm = a/m} = ¢k(a17 .. '7am;b)7

for (ay,...,am,b) € Y™ and with the condition

d Pr{Vi=bYii=an,... . Yim =an} =1 (13.1)
bey

As for initial distributions, we suppose that:
Pr{V},_ 1 =a} = ak(az’)-

Lebarbier (2002) emphasizes the fact that initial distributions constitute nuisance
parameters, and this is why they are not considered in the following, using a
partial likelihood, which will be abusively called likelihood for simplicity. Denoting
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Mi)x)([0,1]) the set of matrices of dimension ¢ x j taking values in [0, 1], we
note

d={¢' ¢% ..., 0" o€ Mm@ ([0,1]) verifying condition (13.1)},
the set of transition matrices of the model, the likelihood of the model is:

Lx(Y;T,®) H 11 S (ar, ., ay; bYN (@ msam )

k=1lay,...,am,beym+!

where N*(ai, ..., an,,b) is the counting of the word {a; ...a,,b} in sequence Y*
defined by
tkfm
N¥ay,. . amb) = Y WYi=ar,...,Yiemo1 = G, Yerm = b}
t=tp_1+1

13.1.2 Estimation

Parameters 7" and ¢ are jointly estimated by maximum likelihood, and the log-
likelihood is optimized using a dynamic programming algorithm. Denoting ¢(, 7)
the local log-likelihood calculated on segment Y with 4, j as starting and ending
points, we have:

(i, j) = Z Nij(al,...,am,b) logg/gij(al,...,am;b), (13.2)

ai,...,am,beym+1

with
.. j
N(ay, ..., amb) = > WYi=a1,...,YVigmo1 = tm, Yegm = b},
t=i+1
N9(ay, ... am,+) = ZNij(al,...,am,b),
bey
.y N(ay,...,am,Db)
Gy, amh) = o OmiD)
¢ (a,l, @ ) Nzy(ah“.’am’+)
g/gij(al, .+, @p; ) is the transition probability on segment Y/, and N*(ay, . . ., Gy, +)

is the counting of word a; ... a,, of size m in segment Y.

Then the dynamic programming algorithm is used to estimate the breakpoints
as shown in Chapter 4. Unfortunately dynamic programming can not be run if
the size of the sample is overly high since it requires the storage of a cost matrix
which is n x n dimensional. In DNA sequence analysis, the size of the data set is
huge, with n > 10,000 in most cases. For instance the genome of Bacteriophage
lambda, which is a "small" genome is constituted of 48,502 base-pairs. In the
Gaussian case Gey and Lebarbier (2002) proposed to adapt the CART algorithm
to detect jumps in the mean for large samples, and Lebarbier (2002) proposes to
adapt this algorithm to the case of categorial variables.
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13.2 Segmentation/Clustering in the case of Markov
Chains

In the context of segmentation/clustering, we suppose that there exists a sec-
ondary structure of the data, which is the belonging of segments into a finite
number of clusters. Then the segmentation/clustering model which has been
studied in the Gaussian case can be adapted to the case of categorial variables as
follows. Let us note {Z',..., Z5}, with Z%F = {ZF ... Z&}, a sequence of inde-
pendent categorial variables indicating the belonging of segments {Y1!, ... Y&}
to P possible clusters. Then we model the dependency between letters within
segment Y* with a Markov chain of order m such that:

Vel Pr{Y,=bYio1i =ar,....Yiem = am, Z) =1} = ¢plas, ..., am;b),
with ¢,(a1, ..., an;b) being the transition probability characterizing cluster p.
Then we define prior and posterior probabilities of membership of segment k
to cluster p such that:
T, = Pr{Z;f =1},
T Pr{Y’“|Z}’; =1}
PSS m YN ZE = 1)

with notation:

Pz == [T Gl ah) ),

Segment Y* will be affected to a cluster with the Maximum A Posteriori rule
(MAP). The parameters of this model are the breakpoint coordinates 7" and the
parameters of the mixture noted v such that:

@Z):{Wl,...,ﬂp;gbl,...,gbp}.

13.2.1 Running the hybrid algorithm in the case of Markov
Chains

This algorithm is run for a fixed number of clusters and segments. Here we

show how mixture model parameters are estimated when breakpoints are fixed,

and how the breakpoints are estimated when the mixture parameters are fixed.
The structure of the hybrid algorithm is similar to the one presented in Chapter 7.

Estimating mixture model parameters

In the incomplete-data framework we define the incomplete and complete-data,
likelihoods of the model such that:

K P
log ,CKP<Y; T, 1/}) = Z log Zﬂ-p H ¢p<a17 e O b)Nk(al ..... am,b)
k=1 p=1

Aly--ey amvbemed
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K P
log L p(Y, Z: T,0p) = Y > ZF dlogm, + > N¥(ay, ..., G, b)log ¢y(ay, . . ., am;b)

k=1 p=1 ai,...,am,beymt+i

Then an EM algorithm can be run to estimate mixture parameters when the
breakpoints are fixed. The resulting estimators are:

k(h
7%_(h-i-l) — Ek 17
p K )
K k(h) g1k
~ a A1y ey Qb
¢§;h+1)<a17---,@m;b) — Zk 1'p ( 1 )

k() pr :
Ekl (h) NE(ay, ..., am,+)

Note that Zszl Tg(h)Nk(al, ..., y; b) represents the weighted counting of word
aj ...anyb in cluster p.

Estimating breakpoints

As for the estimation of the breakpoint coordinates, the dynamic programming
method still holds using

P
—10g{>"m [ logeplar,...,ams)N eemt b (13.3)

ai,...,am,beymtl

as a local log-likelihood when the parameters of the mixture are fixed. Never-
theless, the size of the data being overly high, we propose to use a preliminary
segmentation based on the CART algorithm, in order to reduce the computational
load of the method.

13.2.2 Initializing the hybrid algorithm

Need for a preliminary segmentation

Since the size of the data is large when analyzing DNA sequences, we propose
to use the growing step of the CART algorithm to provide a preliminary segmen-
tation that will be used by the downstream hybrid algorithm. The principle of
this method is to reduce the size of the initial data set, using a segmentation
method which provides K.,.; segments with K,,; << n. Consequently the role
of the CART algorithm is to restrict the collection of visited partitions, as shown
in Figure 13.1.

The computational schema of this step is as follows:
- Compute the change-point ¢, such as . = Argmax {£(1,7) + £(j +1,n)}.

J
with ¢(1,7) and ¢(j + 1,n) defined as in Equation (13.2). The objective of
this step is to find the first best partition of {1,...,n} into 2 segments.
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Organism gene size (kb)
Yeast 1.4
Nematods 2.7
Drosophila 3
A. Thaliana 2.1
Human 28

Table 13.1: Average gene size for different organisms.

- Apply the same procedure on the new defined segments, and so on until
the number of points within each resulting segment is smaller than a given
threshold Imin.

At the end of the growing step of the CART algorithm the data have been pre-
liminary segmented, and the hybrid algorithm is run on {Y}} ,,..., Y.l Note
that no pruning step is necessary in this context since irrelevant breakpoints will
be removed by the downstream dynamic programming during the hybrid algo-
rithm. Consequently CART gives the finest segmentation that can be reached by
segmentation/clustering.

One major draw-back of this method is that the segments found by the CART
method will not be split by the hybrid algorithm. This is why parameter Imin is
important since it determines the minimum size of segments to be split during the
CART algorithm. This parameter should be fixed at a low value (Imin = 500, 1000
for instance) in order to obtain a reasonnably fine segmentation to start the hy-
brid algorithm. Interestingly this parameter can be set using some prior biological
knowledge. If we are interested in the screening of genes for instance, their average
length could be used to set this parameter. An example is given in Table ! 13.1
which presents the average size of genes for different organisms.

Initializing breakpoint parameters

Once the preliminary segmentation has been provided by the CART algorithm,
breakpoints still need to be initialized for a given number of segments. To do so
we use the segmentation method developed be Lebarbier (2002) to provide can-
didates for 7).

Initializing mixture model parameters

In the previous part (Chapter 9), we chose to use a hierarchical clustering
method to initialize mixture parameters in the Gaussian case. This method is
based on the local optimization of a classification likelihood at each step. The
same method can be applied to the case of Markov chains to provide parameter
candidates 7(® and #(*. In the following, we will note N*(w) the counting of
word w € Y™ in segment Y*, and N¥(w) the summation of this counting with

from http://www.genoscope.cns.fr/externe/Francais/Sequencage/
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Figure 13.1: Principle of the presegmentation using CART.

184



Chapter 13. Application of the segmentation/clustering model to Markov chains

respect to the last letter of word w. Then we define the following distance to
compare clusters 7 and j:

Z
E

N'(w)
N (w)

i)
[Ni(w) + Nj(w)] |

d(C;,Cp) = > Ni(w)log{

weym+l

] + N (w) log

= X N+ M) xlog | 1

weymtl

13.2.3 Model Selection

Once the parameters have been estimated, the last step is the selection of P and
K. We propose to apply the same model selection procedure defined in the Gaus-
sian case. The log-likelihood of the model still shows the same behavior. It can
decrease when P is fixed and K increases, whereas it increases with P, as shown
in Figure 13.2. In this case the size of the data set is large meaning that the
number of segments for which the log-likelihood decreases can be large.

For the estimation of P we propose to use the sequence of increasing log-
likelihoods {log Cp} which is shown is Figure 13.2 (bottom). The choice of P
P

is done using an adaptive strategy.

The the purpose is to choose K when P has been chosen. In the Gaussian
case (Part IV) we proposed to use a penalty such that:

. P K
Kz = Argmax {log Lgp(T,v) — 5 log(n)} : (13.4)
K

with n the size of the data set. This choice was done in comparison with an
adaptive method which has been shown to be unstable when the size of the data
set is small and when the number of segments is small regarding the number of
clusters. However, in the context of DNA sequences, the size of the data set is
large and the behavior of the likelihood is smooth according to the number of
segments. Moreover, if n is large, penalty 13.4 can not be used, since it is overly
high compared with the log-likelihood to penalize. This is why we propose to use
the adaptive strategy to select the number of segments defined in Chapter 8.
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Figure 13.2: Incomplete-data log-likelihood for categorial data and associated
sequence of increasing log-likelihoods {log Lp}.
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13.3 Analyzing the genome of Bacteriophage lambda

In this section we propose to apply our segmentation/clustering method to the
analysis of Bacteriophage lambda. The complete genome of this virus is com-
posed of 48, 502 base-pairs and the sequence is publicly available (NCBI web site,
GeneBank, accession number NC_001416) as well as its annotation (Tables ? 13.6
and 13.7). We propose to compare our results with HMMs (Muri (1997)) and seg-
mentation (Lebarbier (2002)).

We consider model M0 where variables {Y3,...,Y,} are supposed to be inde-
pendent. Table 13.2 gives the estimation of the proportion of each letter when
the number of groups is P = 2 and P = 3. Estimation results are compared with
HMMs. Table 13.3 provides the position of the breakpoints, and these positions
are compared with those provided by the segmentation model. Figure 13.3 illus-
trates the posterior probabilities of membership to clusters for P = 2 and P = 3.

A first result is that the estimation of the frequency of letters gives the same
results compared with HMMSs, and posterior probabilities delimitate the same ge-
nomic regions (data not shown for HMMs). According to Table 13.2, clusters are
characterized by a strong composition in G for cluster 1 and a richness in A and
T for cluster 2. When adding a third group, the first region seems to be conserved
and concerns cluster 1 exclusively (Figure 13.3). The second half of the genome
concerns clusters 2 and 3. These results suggest that the heterogeneity which
is observed in the genome of lambda is strongly linked to the existence of this
first region which shows a richness in G. On the contrary, clusters 2 and 3 are
characterized by a richness in A and T respectively.

Interestingly the breakpoints estimated by the segmentation/clustering are dif-
ferent from breakpoints estimated by the segmentation model (Table 13.3). Even
if some position are common between both methods (¢ = 22546, 46528), most of
them are different. As it has been shown in the Gaussian context, considering
the clustered nature on segments changes the position of the breakpoints. Conse-
quently, the segmentation/clustering model delimitates regions which are charac-
terized by a global richness in some letters, whereas the segmentation model only
considers local composition. If we compare the delimited regions to the annotation
of the genome (Tables 13.6 and 13.7) it appears that the segmentation/clustering
model and HMMs do not delimitate regions of particular biological function.

2from http://www.ncbi.nlm.nih.gov/genomes/
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A G C T
1| 0.2467 0.2977 0.2476 0.2080
210.2697 0.1969 0.2073 0.3261

A G C T

1] 0.2297 0.3160 0.2455 0.2000
0.2840 0.2584 0.2336 0.2240
31 0.2655 0.1972 0.2069 0.3304

\)

Segmentation /clustering

A
11]0.2464
21 0.2697

1 0.2290
0.2825
3 1 0.2660

\)

G
0.2982
0.1983

G
0.3167
0.2593
0.1968

HMM

C
0.2475
0.2083

C
0.2542
0.2340
0.2070

T
0.2078
0.3235

0.1998
0.2241
0.3299

Table 13.2: Estimation results for Lambda, with M0, P = 2 and P = 3 clusters.

P=2| P=3 seg.
176 176 X
X X 20010
X X 20919
X 21425 X
22546 | 22546 | 22546
X X 24117
X X 27829
31224 | 31224 X
X X 33082
33194 | 33194 X
X 35940 X
X 36219 X
X 38004 X
X X 38082
38361 X X
45085 X X
45174 X X
46528 | 46528 | 46528
48502 | 48502 | 48502
K=9|K=10| K=9

Table 13.3: Breakpoint positions for segmentation/clustering and segmentation

(Lambda), model MO.
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Figure 13.3: Clustering results for Lambda, M0. Posterior probabilities are plot-
ted according to the position on the genome.
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A G C T A G C T

A G C T A G C T

Segmentation /clustering HMM

1| 0.2615 0.3044 0.2260 0.2082 110.1829 0.2197 0.2118 0.3854
210.3035 0.2349 0.1918 0.2699 2 10.5263 0.2685 0.1602 0.0448

1] 0.2476 0.2306 0.2063 0.3155 1] 0.0480 0.4754 0.3699 0.1065
2] 0.2615 0.3041 0.2260 0.2084 210.2409 0.0064 0.0442 0.7083
3103118 0.2355 0.1896 0.2632 3 10.9469 0.0350 0.0166 0.0013

Table 13.4: Estimation results for B. Subtilis, with M0, P = 2 and P = 3 clusters.

13.4 Analyzing the genome of Bacillus Subtilis

In this section we apply our method to the analysis of B. subtilis 3. We choose to
restrict our study to the first 200,000 bases of the genome. An annotation of this
part is provided in Tables * 13.8, 13.9, 13.10 and 13.11.

Interestingly it appears that HMMs do not detect any homogeneous region
when models are M0 and M1. When considering P = 2 hidden states, Muri
(1997) shows that HMMs delimitate 14397 regions whose average size is 4bp and
Tbp respectively. In the previous example, we showed that our results were close
to HMMs and different from segmentation. Nevertheless, in this example, it is the
contrary: our results are very different from HMMs, and close to segmentation
results.

In Table 13.4 is provided the estimation of the frequency of letters in each
cluster. When P = 2, clusters are characterized by a strong composition in G
and A, and the addition of a third group results in the creation of a cluster with
a strong composition in 7. When compared with HMMs, it can be seen that the
estimation results are very different.

When studying the position of the breakpoints (Table 13.5 and Figure 13.4)
we can see that the majority of breakpoints are conserved between segmenta-
tion and segmentation/clustering. When P = 2 some breakpoints are removed
t = 14833, 158486, 194694, and when comparing the regions with the annotation,
it can be seen that our method delimitates coding (cluster 2) and non-coding
regions (cluster 1). When a third cluster is added, coding and non-coding re-
gions remain, with the distinction of coding regions with a "positive" sens of
transcription (cluster 3, strand +), and coding regions with a "negative" sens of
transcription (cluster 1, strand -). Consequently the addition of a cluster leads to
the detection of regions which are biologically different.

3Sequence available at http://www.ncbi.nlm.nih.gov/ , accession number Z99104
“from http://genolist.pasteur.fr/Subtilist/
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Figure 13.4: Clustering results for B. Subtilis, M0. Posterior probabilities are
plotted according to the position on the genome.
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P=2| P=3 seg.
9712 9712 9712
14607 X X

X 14833 14833
30294 | 30294 | 30294
35365 | 35365 | 35365
90537 | 90537 | 90537
101233 | 101233 | 101233

X 158486 | 158486
160859 | 160859 | 160859
176132 | 176132 | 176132

X 194694 | 194694
200000 | 200000 | 200000

~ ~ ~

K=9 |  K=11 | K=11

Table 13.5: Breakpoint positions for segmentation/clustering and segmentation
(B. subtilis), model MO.

13.5 Conclusion

In this last part we proposed an extension of our segmentation/clustering model
to the case of categorial variables, with an application to DNA segmentation. The
construction of this model is similar to the Gaussian case, but its implementation
requires the use of a preliminary segmentation using CART since the size of the
data is large. When applied to the analysis of genomes, we showed that our
method detects regions with homogeneous composition, and that it provides a
tradeoff between pure segmentation models and HMMs. Indeed, when HMMs
fail to identify genomic regions, the underlying segmentation model helps in the
recovering of regions with particular composition. In this chapter we studied two
examples of sequences, and the analysis of other sequences with Markov models
of higher order will have to be explored.
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13.6 Annexes

begin end Strand | Synonym Product

191 736 DNA packaging protein
711 2636 DNA packaging protein
2633 2839 head-tail joining protein
2836 4437 capsid component

4418 5737 capsid component

5132 5737 capsid assembly

5747 6079 head-DNA stabilization
6135 7160 capsid component

7202 7600 DNA packaging

7612 7965 head-tail joining

7977 8555 tail component

8552 8947 tail component

8955 9695 tail component

9711 10133 tail component

10115 10549
10542 13103
13100 13429
13429 14127
14276 14875
14773 15444
15505 18903
18965 19585
19650 20855
20147 20767
21029 21973
21973 22557

tail component

tail component

tail component

tail component

tail component

tail component
tail:host specificity
outer host membrane
Tail fiber protein
Hypothetical protein
Tail fiber

Putative fiber assembly protein

e A e i s T A e o o i o at e S

22686 23918 - ead7

24509 25399 - ealdl

25396 26973 - eab9

27812 28882 - integration protein
28860 29078 - Excisionase

29118 29285 - Hypothetical protein
29374 29655 - ea8.5

29847 30395 - ea22

30839 31024 - Hypothetical protein
31005 31196 - Hypothetical protein

Table 13.6: Bacteriophage lambda - annotation 1.
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begin end Strand | Synonym Product

43224 43889
43886 44509
44621 44815
45186 45509
45493 45969
45966 46427

Nin protein

late gene regulator
Hypothetical protein

cell lysis protein

cell lysis protein

cell lysis protein

46459 46752 Bor protein precursor
47042 47575 putative envelope protein
47738 47944 + Hypothetical protein

31169 31351 - Hypothetical protein
31348 32028 - exonuclease
32025 32810 - bet
32816 33232 - host-nuclease inhib. protein
33187 33330 - host-killing
33299 33463 - antitermination
33536 33904 - Putative s-s DNA binding protein
34087 34287 - restriction alleviation
34271 34357 - Hypothetical protein
34482 35036 + Superinfection exclusion protein B
35037 35438 - early gene regulator
35825 36259 - exclusion
36275 37114 - exclusion
37227 37940 - repressor
38041 38241 + antirepressor
38360 38653 + antitermination
38686 39585 + DNA replication
39582 40283 + DNA replication
40280 40570 + ren exclusion protein
40644 41084 + Nin
41081 41953 + Nin protein
41950 42123 + Nin protein
42090 42272 + Nin
42269 42439 + Nin
42429 43043 + Nin
43040 43246 + Nin

+

+

+

+

+

+

Table 13.7: Bacteriophage lambda - annotation 2.
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begin end Strand | Synonym Product

410 1750 + replication initiation protein

1939 3075 + DNA polymerase III (beta subunit)
3206 3421 + hypothetical protein

3437 4549 + DNA repair and genetic recombination protein F
4567 4725 + hypothetical protein

4866 6782 + DNA gyrase (subunit B)

6993 9458 + DNA gyrase (subunit A)

14845 15792 - hypothetical protein

15913 17379 + inosine-monophosphate dehydrogenase
17532 18863 + D-alanyl-D-alanine carboxypeptidase
19060 19944 + hypothetical protein

19966 20556 + hypothetical protein

20878 22155 + seryl-tRNA synthetase

22494 23147
23144 23767
23866 25149
25219 25764
25850 26335
26812 28503
28527 28850
28865 29461
29479 29703
29770 30033
35529 35723
35843 36457
36476 37636
37718 39160
39157 39795
39869 40198
40211 40651
40663 41652
41655 42482
42497 42856
42915 43658
43645 43944
43919 44797
44846 45136
45631 47625
47704 48471
48627 49940
50085 50645
50638 51516
51678 52550
52761 53021
53181 53366

deoxyadenosine/deoxycytidine kinase
deoxyguanosine kinase

hypothetical protein

hypothetical protein

hypothetical protein

DNA polymerase III (gamma and tau subunits)
hypothetical protein

DNA repair and genetic recombination protein R
hypothetical protein

inhibition of the pro-sigma-K processing machinery
hypothetical protein

hydrolysis of 5-bromo 4-chloroindolyl phosphate
hypothetical protein

hypothetical protein

thymidylate kinase

hypothetical protein

hypothetical protein

DNA polymerase IIT (delta’ subunit)
hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

transcriptional regulator

methionyl-tRNA synthetase

hypothetical protein

hypothetical protein

ribonuclease M5

dimethyladenosine transferase

hypothetical protein

hypothetical protein

small acid-soluble spore protein

s T S e S R e o T T ok o o S S S A S

Table 13.8: B. Subtilis - annotation 1.
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begin end Strand | Synonym Product

53514 54383 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase
54439 55296 transcriptional regulator

55293 55670 hypothetical protein

55864 56157 required for spore cortex synthesis

56350 57720 UDP-N-acetylglucosamine pyrophosphorylase
57743 58696 phosphoribosylpyrophosphate synthetase
58781 59395 general stress protein

59502 60068 peptidyl-tRNA hydrolase

60128 60358 hypothetical protein

60428 63961 transcription-repair coupling factor

64097 64633 transcriptional regulator

64815 66413 hypothetical protein

66403 67872 hypothetical protein

67875 68135 hypothetical protein

68214 68516 hypothetical protein

68513 69148 hypothetical protein

69166 69543 cell-division initiation protein

69624 70010 hypothetical protein

70536 73019 serine phosphatase

73104 73841 hypothetical protein

73807 74823 hypothetical protein

74927 76345 hypothetical protein

76342 76884 hypoxanthine-guanine phosphoribosyltransferase
76982 78895 cell-division protein and general stress protein
79090 79791 hypothetical protein

79877 80752 hypothetical protein

80799 81692 hypothetical protein

81768 82694 cysteine synthetase A

82861 84273 para-aminobenzoate synthase (subunit A)
84287 84871 anthranilate synthase (subunit IT)

84871 85752 aminodeoxychorismate lyase

85734 86591 dihydropteroate synthase

86584 86946 dihydroneopterin aldolase

86943 87446 7,8-dihydro-6-hydroxymethylpterin pyrophosphokinase
87398 87607 hypothetical protein

87631 88632 hypothetical protein

88724 90223 lysyl-tRNA synthetase

101446 101910 transcriptional regulator

101924 102481 modulation of CtsR repression

102481 103572 modulation of CtsR repression

103569 106001 class III stress response-related ATPase
106093 107469 DNA repair protein homolog

107473 108555 hypothetical protein

108671 109771 hypothetical protein

109786 110484 hypothetical protein

110477 110953 hypothetical protein

111044 112495 glutamyl-tRNA synthetase

T el i el i e ol S S e st ol i S S

Table 13.9: B. Subtilis - annotation 2.
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begin end Strand | Synonym Product

112797 113450 serine acetyltransferase
113447 114847 cysteinyl-tRNA synthetase
114851 115282 hypothetical protein

115266 116015 hypothetical protein

116022 116534 hypothetical protein

116597 117253 RNA polymerase sigma-30 factor (sigma-H)
117346 117495 ribosomal protein L33

117529 117708 preprotein translocase subunit
117887 118420 transcription antitermination factor
118588 119013 ribosomal protein L11 (BL11)
119107 119805 ribosomal protein L1 (BL1)
120057 120557 ribosomal protein L10 (BL5)
120604 120975 ribosomal protein L12 (BL9)
121065 121670 hypothetical protein

121916 125497 RNA polymerase (beta subunit)
125559 129158 RNA polymerase (beta’ subunit)
129339 129587 hypothetical protein

129701 130117 ribosomal protein S12 (BS12)
130159 130629 ribosomal protein S7 (BS7)
130683 132761 elongation factor G

132881 134071 elongation factor Tu

134170 135126 hypothetical protein

135362 135670 ribosomal protein S10 (BS13)
135710 136339 ribosomal protein L3 (BL3)
136367 136990 ribosomal protein L4

136990 137277 ribosomal protein L23

137309 138142 ribosomal protein L2 (BL2)
138200 138478 ribosomal protein S19 (BS19)
138495 138836 ribosomal protein L22 (BL17)
138840 139496 ribosomal protein S3 (BS3)
139498 139932 ribosomal protein L16

139922 140122 ribosomal protein L29

140145 140408 ribosomal protein S17 (BS16)
140449 140817 ribosomal protein L14

140855 141166 ribosomal protein L24 (BL23)
141193 141732 ribosomal protein L5 (BL6)
141755 141940 ribosomal protein S14

141972 142370 ribosomal protein S8 (BS8)
142400 142939 ribosomal protein L6 (BL8)
142972 143334 ribosomal protein L18

143359 143859 ribosomal protein S5

143873 144052 ribosomal protein L30 (BL27)
144083 144523 ribosomal protein L15

144525 145820 preprotein translocase subunit

e e i el L i el S et sl el ol S e e

Table 13.10: B. Subtilis - annotation 3.
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begin end Strand | Synonym Product

145875 146528 adenylate kinase

146525 147271 methionine aminopeptidase
147583 147801 initiation factor IF-I

147835 147948 ribosomal protein L36

147971 148336 ribosomal protein S13

148357 148752 ribosomal protein S11 (BS11)
148929 149873 RNA polymerase (alpha subunit)
149951 150313 ribosomal protein L17 (BL15)
150441 151286 hypothetical protein

151301 152131 hypothetical protein

152128 152925 hypothetical protein

152935 153678 pseudouridylate synthase I
153841 154278 ribosomal protein L13

154299 154691 ribosomal protein S9

155155 155922 hypothetical protein

156108 156551 hypothetical protein

156611 157324 N-acetylmuramoyl-L-alanine amidase
157420 158478 hypothetical protein

158514 159071 germination response to L-alanine
159181 159777 activation of the KinB signaling pathway to sporulation
159778 160542 hypothetical protein

177082 178518 hypothetical protein

178733 179584 hypothetical protein

179594 180163 hypothetical protein

I T T ol ol e s

180168 181352 - integral membrane protein
181345 182349 - integral membrane protein
182368 183321 - iron-binding protein
183412 185001 - hypothetical protein
185192 186436 - hypothetical protein
186450 188378 - hypothetical protein
188406 189731 - hypothetical protein
189788 191155 - hypothetical protein
191181 192032 - hypothetical protein
192049 192963 - hypothetical protein
193134 193553 - hypothetical protein

193566 194021 - hypothetical protein
194838 195401 + RNA polymerase ECF
195415 196041 + hypothetical protein
196202 197023 + hypothetical protein
197016 198467 + hypothetical protein
+

198486 199832 hypothetical protein

Table 13.11: B. Subtilis - annotation 4.
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Abstract

Background: Microarray-CGH experiments are used to detect and map chromosomal
imbalances, by hybridizing targets of genomic DNA from a test and a reference sample to
sequences immobilized on a slide. These probes are genomic DNA sequences (BACs) that are
mapped on the genome. The signal has a spatial coherence that can be handled by specific statistical
tools. Segmentation methods seem to be a natural framework for this purpose. A CGH profile can
be viewed as a succession of segments that represent homogeneous regions in the genome whose
BACs share the same relative copy number on average. We model a CGH profile by a random
Gaussian process whose distribution parameters are affected by abrupt changes at unknown
coordinates. Two major problems arise : to determine which parameters are affected by the abrupt
changes (the mean and the variance, or the mean only), and the selection of the number of
segments in the profile.

Results: We demonstrate that existing methods for estimating the number of segments are not
well adapted in the case of array CGH data, and we propose an adaptive criterion that detects
previously mapped chromosomal aberrations. The performances of this method are discussed
based on simulations and publicly available data sets. Then we discuss the choice of modeling for
array CGH data and show that the model with a homogeneous variance is adapted to this context.

Conclusions: Array CGH data analysis is an emerging field that needs appropriate statistical tools.
Process segmentation and model selection provide a theoretical framework that allows precise
biological interpretations. Adaptive methods for model selection give promising results concerning
the estimation of the number of altered regions on the genome.

Background genesis and progression, and has also been associated
Chromosomal aberrations often occur in solid tumors:  with other diseases such as mental retardation [1,2].
tumor suppressor genes may be inactivated by physical =~ Chromosomal aberrations can be studied using many dif-
deletion, and oncogenes activated via duplication in the  ferent techniques, such as Comparative Genomic Hybrid-
genome. Gene dosage effect has become particularly  ization (CGH), Fluorescence in Situ Hybridization
important in the understanding of human solid tumor  (FISH), and Representational Difference Analysis (RDA).
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Although chromosome CGH has become a standard
method for cytogenetic studies, technical limitations
restrict its usefulness as a comprehensive screening tool
[3]. Recently, the resolution of Comparative Genomic
Hybridizations has been greatly improved using microar-
ray technology [4,5].

The purpose of array-based Comparative Genomic
Hybridization (array CGH) is to detect and map chromo-
somal aberrations, on a genomic scale, in a single experi-
ment. Since chromosomal copy numbers can not be
measured directly, two samples of genomic DNA (referred
to as the reference and test DNAs) are differentially
labelled with fluorescent dyes and competitively hybrid-
ized to known mapped sequences (referred to as BACs)
that are immobilized on a slide. Subsequently, the ratio of
the intensities of the two fluorochromes is computed and
a CGH profile is constituted for each chromosome when
the log, of fluorescence ratios are ranked and plotted
according to the physical position of their corresponding
BACs on the genome [6]. Different methods and packages
have been proposed for the visualization of array CGH
data [7,8].

Each profile can be viewed as a succession of "segments"
that represent homogeneous regions in the genome
whose BACs share the same relative copy number on aver-
age. Array CGH data are normalized with a median set to
log,(ratio) = O for regions of no change, segments with
positive means represent duplicated regions in the test
sample genome, and segments with negative means repre-
sent deleted regions. Even if the underlying biological
process is discrete (counting of relative copy numbers of
DNA sequences), the signal under study is viewed as being
continuous, because the quantification is based on fluo-
rescence measurements, and because the possible values
for chromosomal copy numbers in the test sample may
vary considerably, especially in the case of clinical tumor
samples that present mixtures of tissues of different
natures.

Two main statistical approches have been considered for
the analysis of array CGH data. The first has focused many
attentions, and is based on segmentation methods where
the purpose is to locate segments of biological interest
[7,9-11]. A second approach is based on Hidden Markov
Models (aCGH R-package [12]), where the purpose is to
cluster individual data points into a finite number of hid-
den groups. Our approach can be put into the first cate-
gory. Segmentation methods seem to be a natural
framework to handle the spatial coherence of the data on
the genome that is specific to array CGH. In this context
the signal provided by array CGH data is supposed to be
a realization of a Gaussian process whose parameters are
affected by an unknown number of abrupt changes at
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unknown locations on the genome. Two models can be
considered, according to the characteristics of the signal
that is affected by the changes: it can be either the mean of
the signal [7,10,11] or the mean and the variance [9].
Since the choice of modeling is crucial in any interpreta-
tion of a segmented CGH profile, we provide guidelines
for this choice in the discussion. Two major issues arise in
break-points detection studies: the localization of the seg-
ments on the genome, and the estimation of the number
of segments. The first point has lead to the definition of
many algorithms and packages: segmentation algorithms
[9,10] and smoothing algorithms [11] where the break-
points are defined with a posterior empirical criterion.
These methods are defined by a criterion to optimize and
an algorithm of optimization. Different criteria have been
proposed: the likelihood criterion [9,11], the least-
squares criterion [7], partial sums [10], and algorithms of
optimization are based on genetic algorithms [9],
dynamic programing [7], binary segmentation (DNAcopy
R-package [10]) and adaptive weigths smoothing (GLAD
R-package [11]). Since many criteria and algorithms have
been proposed, one important question is the resulting
statistical properties of the break-point estimators they
provide. Note that smoothing techniques do not provide
estimators of the break-point coordinates, since the pri-
mary goal of the underlying model is to smooth the data,
and break-points are not parameters of the model (in this
case, they are defined after the optimization of the crite-
rion [11]). Here we consider the likelihood criterion and
we use dynamic programming that provides a global opti-
mum solution, contrary to genetic algorithms [9], in a rea-
sonable computational time.

As for the estimation of the number of segments, the exist-
ing articles have not defined any statistical criterion
adapted to the case of process segmentation. This problem
is theoretically complex, and has lead to ad hoc procedures
[9-11]. Since the purpose of array CGH experiments is to
discover biological events, the estimation of the number
of segments remains central. This problem can be handled
in the more general context of model selection. In the dis-
cussion we explain why classical criteria based on penal-
ized likelihoods are not valid for break-points detection.
Criteria such as the Akaike Information Criterion (AIC)
and the Bayes Information Criterion (BIC) lead to an
overestimation of the number of segments. For this rea-
son, an arbitrary penalty constant can be chosen in order
to select a lower number of segments in the profile [9]. We
propose a new procedure to estimate the number of seg-
ments, choosing the penalty constant adaptively to the
data. We explain the construction of such penalty, and its
performances are compared to other criteria in the Results
Section, based on simulation studies and on publicly
available data sets. Put together, we propose a methodol-
ogy that considers a simple modeling, a fast and effective
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Results of the segmentation procedure when using the Bayesian Information Criterion (BIC) and the proposed
criterion. Data shown corresponds to Coriell cell lines GM03563, chromosome 3. Red lines represent the estimated mean of
each segments, and green lines, the estimated mean plus one standard deviation.

algorithm of optimization and that takes advantages of
the statistical properties of the maximum likelihood. Our
procedure has been implemented on MATLAB Software
and is freely available http://www.inapg.fr/ens rech/
mathinfo/recherche/mathematique/outil.html.

Results

Comparison of model selection criteria

To show the importance of the choice of the model selec-
tion criterion on simple data, we use the results of a single
experiment performed on fibroblast cell lines (see the
Materials Section), with one known chromosomal aberra-
tion. Figure 1 shows the resulting segmentations when
using the Bayesian Information Criterion, and our crite-
rion. BIC leads to an oversegmented profile that is not
interpretable in terms of relative copy numbers. Our pro-

203

cedure estimates the correct number of segments K =2.
This example shows the practical consequences of the use
of theoretically unappropriated criteria. This point consti-
tutes the main purpose of the discussion (see the Discus-
sion Section).

Numerical simulations are performed to study the sensi-
tivity of different criteria to varying amounts of noise. The
simulation design is described in the Methods Section. We
compare four different criteria: the Bayesian Information
Criterion, two previously described criteria [9,13], and the
criterion we propose, in their ability to estimate the cor-
rect number of segments. Two configurations were tested,
for a true number of segments K* = 5. In the first situation,
the segments are regularly spaced with a jump of the mean
of 1 (Figure 3), whereas in the second case, the segments
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Average estimated number of segments in the regular case
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Figure 2

Estimated number of segments for 4 different penalized criteria in the regular case (top) and the irregular
case (bottom). Top : Results of the simulations for 5 regularly spaced segments with n = 100 data points. The graph repre-
sents the average estimated number of segments for each criterion according to the standard deviation of the noise (S). Bot-
tom: Results of the simulations for 5 unregularly spaced segments with n = 100 data points. The adaptive criterion is robust to
the additional noise since it maintains an estimate close to 5 segments whatever the noise and the configuration.
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Example of simulation in the regular case
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Figure 3

break—point position

Example of a simulation in the regular case, and result of the dynamic programming algorithm for the estima-
tion of the break-point coordinates. Top: Example of simulation for 100 data points and 5 segments in the regular case.
The true break-points are designated by vertical lines, and the red lines correspond to the mean of each segment. The differ-
ence of means d is constant and equals |. Bottom: Estimated frequency for a break-point to be located at coordinate t for t = |
to 100. Different levels of noise are considered with s = 0.1, s =0.5, s = |.
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Example of simulation in the irregular case
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Figure 4

Example of a simulation in the irregular case, and result of the dynamic programming algorithm for the esti-
mation of the break-point coordinates. Top: Example of simulation for 100 data points and 5 segments in the irregular
case. The true break-points are designated by vertical lines, and the red lines correspond to the mean of each segment. The dif-
ference of means varies between d = 2 to d = 0.5. Bottom: Estimated probability for a break-point to be located at coordinate
tfor t = | to 100. Different levels of noise are considered with s =0.1, s =05, s = 1.
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are not regularly spaced and the differences of means vary
between d =2 and d = 0.5 (Figure 4). The first result is that
BIC overestimates the number of segments, whatever the
noise and the configuration (Figure 2). On the contrary,
previously described criteria [9,13] tend to underestimate
the number of segments when the noise increases, what-
ever the configuration. These results suggest that those
two criteria "prefer" to detect no break-point as the noise
increases, leading to possible false negative results.

The behavior of the criterion we propose is different. It
seems to be more robust to the noise, as it will give a
number of segments that is close to the true number. In
particular, the irregular configuration presents a segment
of small size (5 points at ¢ = 80) that could be interesting
to detect in the case of array CGH profile (a putative
gained region for instance). Since the previously described
criteria [9,13] tend to underestimate the number of seg-
ments, this particular region would not be detected. On
the contrary, the adaptive criterion will be able to detect it,
even if the noise is important, since it selects a constant
number of segments close to the true number whatever
the noise. These simulation examples perfectly illustrate
the capacity of an adaptive criterion to find a reasonable
number of segments even in configurations where the
profile is not very separated.

We also compare the performance of our criterion and of
the arbitrary criterion [9] on breast cancer cell lines. Figure
5 shows the resulting segmentations on chromosomes 9
and 10 of the Bt474 cell line (see the Materials Section for
further description). As previously mentioned, the arbi-
trary criterion [9] selects a lower number of segments
compared to the adaptive criterion, and we note that
interesting regions are not detected (a putative outlier on
chromosome 9 at 1.58 Mb and a putative deleted region
on chromosome 10 at 1.76 Mb). Since the aim of array
CGH experiments is to discover unknown chromosomal
aberrations, the use of an adaptive criterion seems more
appropriate in this context since it allows the identifica-
tion of regions that seem biologically relevent.

The second simulation-based result concerns the ability of
dynamic programming to locate the break-points at the
correct coordinate, given different amounts of noise (Fig-
ures 3 and 4). In the regular configuration (Figure 3), sim-
ulation results show that dynamic programming perfectly
localizes the break-points when the variability of the noise
52is low regarding the jump d of the mean. If d/s = 10 the
estimated probability to localize the break-points at the
correct coordinate is 1, and this probability deacreases
with the noise (probability close to 0.65 for d/s = 2 and
0.25 for d/s = 1). The effect of additional noise is to wid-
den the zone of estimation, but the estimated break-
points remain close to the true break-points. If the true
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break-point is located at t*, the estimated break-point
stays in the interval t* + 3. In the irregular configuration,
additional noise has similar effects on the break-point's
positioning, but the probability to correctly estimate a
break-point depends on the jump of the mean between
two segments. In the irregular case, Figure 4, at position ¢
= 40 the difference of mean is d = 2, and the probability to
locate the break-point at the true coordinate is higher than
0.65 for any additional noise. On the contrary, at position
t = 85 where the different of mean equals d = 0.5 the prob-
ability to correctly locate the break-point decreases dra-
matically with the noise (probability 1 for s = 0.1 and
probability 0.25 for s = 0.5). This means that dynamic
programming is sensitive to small segments that present
little differences in the mean regarding the noise. Never-
theless, the example on the real data set presented in Fig-
ure 5 shows that using an adaptive criterion with dynamic
programming allows for the identification of small
regions of putative biological interest as mentioned
above. Put together, these simulation results show that the
adaptive method selects the good number of segments
even in the presence of important noise, and that when
this number is selected, dynamic programming is able to
correctly localize the break-point. In addition to its ability
to locate precisely the break-points, it is important to
notice that dynamic programming provides a global opti-
mum of the likelihood that is required for any model
selection procedure to select the number of segments,
compared to genetic algorithms [9].

Segmentation models in the Gaussian framework

The CGH profile is supposed to be a Gaussian signal. In a
segmentation framework, two types of changes can be
considered: changes in the mean and the variance of the
signal, or changes in the mean only. Let us define model

Q ; where each segment has a specific mean and variance

[9], and model Q ,, where the variance is common
between segments [7].

Since both models can be used, it is important to explore
their behavior in order to know which model is the best
adapted to the special case of array CGH data. We use clin-
ical data obtained from primary dissected tumors of color-
ectal cancers (see the Materials Section for further details).
Figure 6 presents the results of segmentations for three
experiments obtained with the two models Q ; and Q ,
when our criterion is used to estimate the number of seg-
ments. The main result of this comparison is that the
number of segments is higher using model Q , com-
pared to model Q ;. This behavior of model Q , could
be interpreted as a trend to divide large segments into
smaller parts, in order to maintain the variance
homogeneous between segments. This leads to a more
segmented profile, maybe more precise, but that may be
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Comparison of segmentation results based on Breast Cancer Cell lines using the adaptive criterion and Jong
criterion. Results of the segmentation procedure for Breast cancer cell lines Bt474, chromosomes 9 and 10. Fluoresence log,-
ratios are plotted according to their location on the genome in megabases. Left profiles are segmented using the adaptive crite-
rion and right profiles using Jong's criterion. The adaptive method detects a break-point at .58 MB on chromosome 9 that
seems to be an outlier, and detects a putative deleted region on chromosome 10 at .76 MB.

more difficult to interpret in terms of relative copy num-
bers. Nevertheless, as model Q , allows the exploration
of segments with one observation, it will be more efficient
for the identification of outliers, as shown in Figure 6
(experiment X411, model Q ,, point at 100 Mb).

Discussion

The definition of an appropriate penalized criterion has
been an issue for previous works using segmentation
methods for array CGH data analysis [8,9,11]. In this sec-
tion, we explain the specificity of model selection in the
case of process segmentation, in order to give further jus-
tification to the inefficiency of classical criteria to select
the number of segments, as shown in the Results Section.
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Estimating the number of segments via penalized
likelihood
When the number of segments is known, the maximiza-

tion of the log-likelihood P i gives the best segmentation
with K segments (see the Methods Section). In real situa-

tions this number is unknown, and one has to choose
among many possible segmentations. The maximum of

the log-likelihood FA’K can be viewed as a quality meas-
urement of the fit to the data of the model with K seg-
ments, and will be maximal when each data point is in its
own segment. Therefore selecting the number of segments
only based on the likelihood criterion would lead to over-
fitting. Furthermore, the number of parameters to esti-
mate is proportional to the number of segments, and a
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Comparison of segmentation results based on colorectal cancer data, using model Q ; and Q , . Results of the

segmentation procedure for colorectal cancer data, chromosome | and chromosome 8. Fluoresence log,-ratios are plotted

according to their location on the genome in megabases. Left profiles are segmented using model Q |, and right profiles using

model Q , . Our criterion is used to estimate the number of segments.
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Table I: Constants and penalty funtions for different penalized criteria, in a heteroscedastic model with K segments.

criterion pen(K)
AlC 2K
BIG 1 2K
—log(n
5 log(n)
Jong (2003) 3K- 1
Lebarbier (2003) adaptive 0 On o0
n
2K ¥ t ¢y log 0
] Hx B
Lavielle (2003) adaptive 2K

too large number of segments would lead to a large esti-
mation error. A penalized version of the likelihood is used
as a trade-off between a good adjustement and a reasona-
ble number of parameters to estimate. It is noted

IiK :PAK_bpen(K),

where pen(K) is a penalty function that increases with the
number of segments, and b is a constant of penalization.
The estimated number of segments is such as :

K= ArgmaxK(Ii’K).

It is crucial to notice that the criterion which is penalized
should provide the best partition of K-dimensional, ie for
a fixed K the criterion has to be globally maximized to
ensure convergence of the break-point estimators to the
true break-points [14]. This optimum is provided by
dynamic programming, but not by other algorithms
[9,10].

Choice of the penalty function and constant

Classical penalized likelihoods use the number of inde-
pendent continuous parameters to be estimated as a pen-
alty function. Even though those criteria are widely used
in the context of model selection, theoretical considera-
tions suggest that they are not appropriate in the context
of an exhaustive search for abrupt changes.

Let us focus on the penalty function in a first step. Table 1
provides a summary of different penalties. For classical
information criteria, such as the Akaike Information Cri-
terion and the Bayes Information Criterion, the penalty
function equals to 2K (K means and K variances) for a het-
eroscedastic model with K segments. Penalized criteria
have already been used in the context of array CGH data
analysis to estimate the number of segments [9]. In addi-
tion to the 2K parameters, they implicitly consider that
the break-points are also continuous parameters, leading
to a new penalty function pen(K) = 3K - 1, which considers

210

K - 1 break-points. Nevertheless, the characteristic of
break-point detection models lies in the mixture of con-
tinuous parameters and discrete parameters that can not
be counted as continuous parameters, since the number
of possible configurations for K segments is finite and

equals GKZ' (with n the total number of points) [13].

This leads to the definition of a new penalty function
adapted to the special context of the exhaustive search of
abrupt changes. This function (table 1) is proportional to
the number of continuous parameters, but is also propor-

tional to a new term in log EI% ﬁthat takes the complexity

of the visited configurations into account. It is written
K) = 2K log A% B, wh d
pen(K) = 2K(¢; + ¢, OgBE E), where ¢, and ¢, are constant

coefficients that have to be calibrated using numerical
simulations. Since AIC and BIC and the criterion pro-
posed in [9] do not consider the complexity of the visited
models, they select a too high number of segments. The
second term of the penalty is the penalty constant . This
term is constant in the case of AIC and BIC (b=1, b=

1
Elog(n), respectively), and contributes to the overseg-

mentation as mentioned above. This can lead to an empir-
ical choice for the constant, in order to obtain expected
results based on a priori knowledge. For this reason, an
arbitrary penalty constant can be chosen for the procedure
to select a reasonable number of segments (b = 10/3 in
[9]). Instead of an arbitrary choice for this constant, & can
be adaptively chosen to the data [13,14]. Furthermore,
when the number of segments is small with respect to the
number of data points (which is the case in CGH data
analysis), the log-term can be considered as a constant
[14]. The author rather suggests to use the penalty
function pen(K) = 2K and to define an automatic proce-
dure to choose the constant of penalization b adaptively.
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We explain the estimation procedure for the penalty con-
stant in the Methods Section.

The power of adaptive methods for model selection lies in
the definition of a penalty that is not universal (such as in
the case of AIC and BIC). This means that the dimension
of the model is estimated adaptively to the data. The effi-
ciency of such method has been shown on simulated data
as well as on experimental results (Results Section), and
adaptive model selection criteria seem to be very appro-
priate for array CGH data analysis.

Choice of modelling for array CGH data

Since the choice of modeling affects the resulting segmen-
tation, it is crucial to provide guidelines for their use. This
can be done with the interpretation of the statistical mod-
els in terms of their biological meaning. The difference

between model Q ; and Q , concerns the modeling of

the variance: model Q ; assumes that the variability of
the signal is organized along the chromosome, whereas

model Q , specifies that the variance is constant. Since it

has been shown that the vast majority of clones all had the
same response to copy number changes in the aneuploid

cell lines [6], the use of model Q , would be justified
regarding this experimental argument.

Outliers seem to be a major concern in microarray CGH
data analysis. For instance, if only one BAC is altered
whereas its neighbors are not, the conclusion could be
either that it is biologically relevant, or that the signal is
due to technical artefacts. Replications are crucial in this
situation, as well as secondary validations. An other pos-
sibility could be that the BAC is misannotated: if the ratio
is plotted at the wrong coordinate on the genome, it will
appear as an outlier, when it is not. The importance of
outlier identification is another argument in favor of

model Q ,, that can detect changes for one data point,

whereas with model Q ; outliers would belong to seg-
ments with higher variance.

It has to be noted that classical models used in segmenta-
tion methods assume the independence of the data. This
may be a reasonnable assumption for BAC arrays whose
genome representation is approximately 1 BAC every 1.4
Mb [6]. Nevertheless, a new generation of arrays now pro-
vides a tiling resolution of the genome [15]. The overlap-
ping of successive BACs could lead to statistical
correlations that will require developments of new seg-
mentation models for correlated processes.

Conclusions
Microarray CGH currently constitutes the most powerful
method to detect gain or loss of genetic material on a
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genomic scale. To date, applications have been mainly
restricted to cancer research, but the emerging potentiali-
ties of this technique have also been applied to the study
of congenital and acquired diseases. As expression profile
experiments require careful statistical analysis before any
biological expertise, CGH microarray experiments will
require specific statistical tools to handle experimental
variability, and to consider the specificity of the the stud-
ied biological phenomena. We introduced a statistical
method for the analysis of CGH microarray data that
models the abrupt changes in the relative copy number
ratio between a test DNA and a reference DNA. We discuss
the effects of different modelings that can be used in seg-
mentation methods, and suggest the use of a model that
considers the homogeneity of the signal variability based
on experimental arguments and regarding the specificity
of array CGH data.

The main theoretical issue of array CGH data analysis lies
in the estimation of the number of segments that requires
the definition of appropriate penalty function and con-
stant. We define a new procedure that estimates the
number of segments adaptively to the data. This method
selects the number of segments with high accuracy com-
pared to previously mapped aberrations, and seems to be
more efficient compared to others proposed to date. The
use of dynamic programming remains central to localiz-
ing the break-points, and the simulation results show that
when the good number of segments are selected, the algo-
rithm localizes the break-points very close to the truth.
Assessing the number of segments in a model is theoreti-
cally complex, and requires the definition of a precise
model of inference. To that extent, microarray CGH anal-
ysis not only requires computational approaches, but also
a careful statistical methodology.

Methods

Materials

We briefly present the data we used in this article. The first
data we use in the Results Section consist of a single exper-
iment on fibroblast cell lines (Coriell Cell lines) whose
chromosomal aberrations have been previously mapped.
Those defaults concern partial or whole chromosome ane-
uploidy. This data have been previously used by other
authors [10]. The second group of data used in the Results
section is described in [6]. A test genome of Bt474 cell
lines is compared to a normal reference male genome. The
last data set used is described in [16] and consists of 125
primary colorectal tumors that were surgically dissected
and frozen. The arrays used for these analysis are BAC
arrays described in [6].

Models and Likelihoods

In this section, we define the models Q ; and Q , . Letus
consider a CGH profile, and note y, the log,-ratio of the
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intensities for the " BAC on the genome. Precisely y, rep-
resents the average signal obtained from the replicated
spots on the slide. BACs are the basic units in our model,
and are ordered according to their physical position. We
suppose that the y, are the realizations of independent ran-
dom variables {Y,}, _ ; , with Gaussian distributions

R (np,sf ) We assume that K - 1 changes affect the

parameters of the distribution of the Ys, at unknown coor-
dinates (ty, ty, ty....tx_ 1, tx) with convention ¢, =1 and ¢ =
n, and that the parameters of the Ys distributions are con-
stant between two changes:

e ~R (0,5%),

e ~R (0,52).

where ris the mean of the k" segment. Model Q ; spec-

Qu 0 ge-1.t], g

Qo DOt ¥

m &,
m t+e,

ifies that the variance is segment-specific (s ;3 ), whereas

Q , considers that the variance is common between seg-

ments (52). Since BACs are supposed to be independent,
the log-likelihood can be decomposed into a sum of
"local" likelihoods, calculated on each segments:

K .
= A
Px ZkZI 5 - with

tk ﬁ
Q, : Akz_* %08(2px5k)+MD%
ttkl”@ Sk O E

Iy
er et § Bzl
t=,,+18 S|

Estimation of the segment’'s mean and variance

Given the number of segments K and the segments' coor-
dinates (ty, t;, ty....tg.1, tg), we estimate the mean and the
variance for each segment using maximum likelihood :

. 1 L <2 1 Ly .9
m=——-— z Vie Sk =T——— Z [y: -]
U = Th-1 y=(, +1 O = The-1 (=( +1

If the variance of the segments is homogeneous, its esti-
mator is given by:

Notice that when the segment coordinates are known, the
estimation of the mean and variance for each segment is
straightforward. Then, the key problem is to estimate K
and (ty, ty, ty...tg 1. tg). We will proceed in two steps: in
the first step, we will consider that the number of seg-
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ments is known, and the problem will be to estimate the
t;s, that is, to find the best partition of a set of n individu-
als into K segments. In the second step, we will estimate
the number of segments, using a penalized version of the
likelihood.

A segmentation algorithm when the number of segments is
known

When the number of segments K is known, the problem
is to find the best partition of {1,...,n} into K segments,
according to the likelihood, where n is the size of the sam-
ple. An exhaustive search becomes impossible for large K
since the number of partitions of a set with n elements

into K segments is GK_|
load, we use a dynamic programming approach
(programs are coded in MATLAB language and are availa-

. To reduce the computational

ble upon request). Let |5k+1 (i,j) be the maximum log-
likelihood obtained by the best partition of the data {Y(i),

Y(i +1),...,.Y(j)} into k + 1 segments, with k break-points,
and let note jkﬂ (i,j) =-2p R+l (i,j) . The algorithm is
as follows:

k=0 00k g0 h(i)= 3 Dospxspye 2oE

t= +1§ 0 St Of

0 [1, Ky = min{ /(L h) +J1 (1 +1, )}

Jr+1 (1 j
Dynamic programming takes advantage of the additivity
of the log-likelihood described above, considering that a
partition of the data into k + 1 segments is a union of a
partition into k segments and a set containing 1 segment.
This approach presents two main advantages: it provides
an exact solution for the global optimum of the likelihood

[17], and reduces the computational load from S (nX) to
S (n2) for a given K (the algorithm only requires the stor-
age of an upper n x n triangular matrix). At the end of the
. (1, n) are

stored and will be used in the next step. Notice that this
problem of partitioning is analogous to the search for the
shortest path to travel from one point to another, where

procedure, the quantities fl(l,n),.,.,ij

jkﬂ (l,n) represents the total length of a (k + 1)-step-

path connecting the point with coordinate 1 to the point
with coordinate n.

An adaptive method to estimate the penalty constant

The purpose of this section is to explain an adaptive
method to estimate the number of segments. Further the-
oretical developments can be found in [14]. If we consider

that the likelihood ISK measures the adjustment of a
model with K segments to the data, we aim at selecting the

Page 12 of 14

(page number not for citation purposes)



Publications

BMC Bioinformatics 2005, 6:27

dimension for which P  ceases to increase significantly.

For this purpose, let us define a decreasing sequence ()
such as f,= " and

b Py
Oe 1 bi: M
2K+ ~2K;

If we represent the curve (pen(K), p x ), the sequence of b,
represents the slopes between points (pen(K;, ;) P Kisy )
and (pen(K;), P k; ). where the subset {(pen(K)), P K, )i °

1}) is the convex hull of the set {(pen(K), P K)}

Since we aim at selecting the dimension for which P K
ceases to increase significantly, we look for breaks in the
slope of the curve. We define I, the variation of the slope,
that exactly corresponds to the length of the interval |5, b,
1] : ;= b - b. The length of these intervals is directly
related to the second derivative of the likelihood. The
automatic procedure to estimate the number of segments

is then to calculate the second derivative (finite differ-
ence) of the likelihood:

OKD {1,.... Kpax} D =P g-1=2P g +P k41,

and we select the highest number of segments K such that
the second derivative is lower than a given threshold :

K = max{ K O{1,..., Ky} | D <sxn}

Other procedures have been developed to automatically
locate the break in the slope of the likelihood. Neverthe-
less, the criterion we use can be interpreted geometrically
and is easy to implement. The choice of the constant s is
arbitrary. According to our experience, a threshold s =-0.5
seems appropriate for our purpose. A criticism that can be
made to this procedure is its dependency on the threshold
which is chosen. Nevertheless, it is important to point out
that despite this thresholding the procedure remains
adaptive, since the penalty constant is estimated accord-
ing to the data.

Simulation studies

We performe numerical simulations to assess the sensitiv-
ity of our procedure to the addition of noise. In the first
case, we simulate 100 points with K* = 5 segments. In the
first case Figure 3, the segments are regularly spaced and
the difference of the means between two segments is d =
1. In the second case (Figure 4) the segments are irregu-
larly spaced and the difference of the means varies
between d = 2 and d = 0.5. The standard deviation of the
Gaussian errors varies from s = 0.1 to s = 2. Each config-
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uration is simulated 500 times, and we calculate the aver-
age selected number of segments over 500 simulations. In
order to assess the performance of the dynamic program-
ming algorithm, we calculate the empirical probability
over 500 simulations for a break-point to be located at
coordinate ¢t (for t = 1 to 100).
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A Segmentation-Clustering problem
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Abstract Microarray-CGH experiments are used to detect and map chromosomal
imbalances, by hybridizing targets of genomic DNA from a test and a reference
sample to sequences immobilized on a slide. A CGH profile can be viewed as a
succession of segments that represent homogeneous regions in the genome whose
representative sequences (or BACs) share the same relative copy number on average.
Segmentation methods constitute a natural framework for the analysis, but they do
not assess a biological status to the detected segments. We propose a new model
for this segmentation-clustering problem, combining a segmentation model with a
mixture model. We present an hybrid algorithm to estimate the parameters of the
model by maximum likelihood. This algorithm is based on dynamic programming
and on the EM algorithm. We also propose to adaptively estimate the number of
segments when the number of clusters is fixed. An example of our procedure is
presented, based on publicly available data sets.

Keywords: Segmentation methods, Mixture Models, Dynamic Programming, EM
algorithm, Model Selection.

Introduction

Chromosomal aberrations often occur in solid tumors: tumor suppressor
genes may be inactivated by physical deletion, and oncogenes activated via
duplication in the genome. The purpose of array-based Comparative Ge-
nomic Hybridization (array CGH) is to detect and map chromosomal aber-
rations, on a genomic scale, in a single experiment. Since chromosomal copy
numbers can not be measured directly, two samples of genomic DNA (re-
ferred as the reference and the test DNA) are differentially labelled with
fluorescent dyes and competitively hybridized to known mapped sequences
(referred as BACs) that are immobilized on a slide. Subsequently, the ratio
of the intensities of the two fluorochromes is computed and a CGH profile
is constituted for each chromosome when the log, of fluorescence ratios are
ranked and plotted according to the physical position of their corresponding
BACs on the genome.

* This article has been published in the proceedings of the Conference
”International Symposium on Applied Stochastic Models and Data Analysis”,
Brest 2005.
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Each profile can be viewed as a succession of 'segments’ that represent
homogeneous regions in the genome whose BACs share the same relative
copy number on average. Array CGH data are normalized with a median
set to log,(ratio)= 0 for regions of no change, segments with positive means
represent duplicated regions in the test sample genome, and segments with
negative means represent deleted regions. It has to be noted that even if the
underlying biological process is discrete (counting of relative copy numbers
of DNA sequences), the signal under study is viewed as being continuous,
because the quantification is based on fluorescence measurements, and be-
cause the possible values for chromosomal copy numbers in the test sample
may vary considerably, especially in the case of clinical tumor samples that
present mixtures of tissues of different natures.

Segmentation methods seem to be a natural framework to handle the
spatial coherence on the genome that is a specificity of array CGH data
[Autio et al., 2003,Jong et al., 2003]. These methods provide a partition of
the data into segments, each segment being characterized by its mean and
variance py and o2 in the Gaussian case. Nevertheless, even if the data are
instrinsically segmented, they are also structured into clusters which have a
biological interpretation: we can define a group of deleted segments, a group
of unaltered segments, and many groups of amplified segments for instance.
This refinement means that the mean and variance of each segment should be
restricted to a finite set such that ug € {my,...,mp} and o7 € {s%,...,5%}
if the segments are structured into P clusters.

We propose to handle this segmentation-clustering problem combining a
segmentation model and a mixture model to assign a biological status to seg-
ments. Section 1 is devoted to the precise definition of such model. In Section
2 we propose an hybrid algorithm combining dynamic programming and the
EM algorithm to alternatively estimate the break-point coordinates and the
parameters of the mixture. The convergence properties of this algorithm are
presented.

Once the parameters of the model have been estimated, a key issue is
the estimation of the number of segments and of the number of clusters. We
propose to estimate the number of segments when the number of groups is
fixed, using a penalized version of the likelihood. We propose to apply the
procedure defined by [Lavielle, 2005], that has been successfully applied to
array CGH data [Picard et al., 2005]. An example of our method is provided
in Section 3, using publicly available data sets.

1 A new model for the segmentation-clustering
problem

Let y; represent the log, ratio of the #*» BAC on the genome and y =

{y1...,yn} the entire CGH profile constituted by n data points. We suppose
that y is the realization of a Gaussian process Y whose mean and variance are
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affected by K +1 abrupt changes at unknown coordinates T' = {to,t1,...,tx }
with the convention tg = 1 and tx = n. This defines a partition of the
data into K segments of length ngy. We write Y as {Y!,... Y&}, where
Y* = {V;,t € I}, with I}, = {t,t €]ty_1,t1]}. We suppose that the mean
and the variance of the process are constant between two break-points and
they are noted py and o7.

More than classical segmentation models, we assume that the mean and
variance of the segment Y'* can only take a limited number of values with p, €
{mi,...,mp}, and o} € {s%,...,s%}. In addition to the spatial organization
of the data, via the partition T, there exists a secondary structure of the
process into P clusters, and we adopt a mixture model approach to handle
this problem.

We assume that the partitionned data {Y1,..., Y} are structured into
P clusters with weights m, (-, mp = 1). We introduce a sequence of inde-
pendent hidden random variables, Z*¥ = {ZF,... Zk} such that Z* is dis-
tributed according to a multinomial distribution consisting of one draw on P
categories with probabilities 71,...,7p. The mixing proportions my,...,7p
then represent the prior probability for segment Y* to belong to the p** com-
ponent, while the posterior probability of membership to the p!* component
with y* having been observed is: Tz’f = Pr {Zz’f =1|yk = yk} Contrary to
classical mixture models, where the indicator variables provide informations
about the labelling of individual data points (which would be Y; in our case),
our model focuses on the belonging of the segments Y* to different clusters.

We focus on the case where the data are supposed to be drawn from a
mixture of Gaussian densities, with parameters 6, = (m,, s2). If we suppose
the indepence of individual data points Y; within a segment, the model can
be formulated as follows:

YF|ZE =1~ N(mplly,, s21,,).

We note ¢ = {m1,...,mp—1,01,...,0p} the vector of unknown independent
parameters of the mixture, and the log-likelihood of the model is:

K P
log Lxcp(T, %) = Y _log {Z o f (y"; ﬁp)} :
k=1 p=1

f(y*; 6,) represents the conditional density of a vector of size nj. Our purpose
is to optimize this likelihood to estimate the parameters of the model using
an hybrid algorithm.

2 An hybrid algorithm combining the EM algorithm
and Dynamic Programming

The principle of our algorithm is simple: when the break-point coordinates
T are known, the EM algorithm is used to estimate the mixture parameters
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1, and once 9 has been estimated, the break-point coordinates are computed
using dynamic programming. This algorithm requires the prior knowledge
of both the number of segments K and the number of populations P. The
choice for these components of the model will be discussed in a later section.

2.1 Estimating the break-point coordinates when the mixture
parameters are known

When the number of segments K and the parameters of the mixture are
known, the problem is to find the best K-dimensional partition of the data
according to the log-likelihood log Lk p(T, ). Since the number of of par-
titions of a set with n elements into K segments is CX 7', and because of
the additivity in K of the log-likelihood, we use a dynamic programming ap-
proach to reduce the computational load from O(n) to O(n?), as suggested
by [Auger and Lawrence, 1989].

Let Cry1.p(i, ;) be the maximum log-likelihood obtained by the best
partition of the data Y = {V;,Yi41,...,Y;} into k + 1 segments, when the
mixture parameters ¢ are known. The algorithm starts as follows: for k£ =0
and for (i,7) € [1,n]?, with i < j, calculate:

P
Ci,p(i,j;¢) = log {Zﬂpf(yij; Gp)} = log{
p=1 p

P

™ 11 f(ytaﬁp)}-

=1 t=it1
C1(i, j; 1) represents the local log-likelihood for segment Y. Then the al-
gorithm is run as follows:

k€ [1 Kmae]  Crovnp(Li9) = maw { Cup (1, hi) + Crp(h+1,3:v) }

Dynamic programming considers that a partition of the data into k + 1 seg-
ments is a union of a partition into k segments and a set containing 1 segment.
More than a reduction in the computational load, this approach provides an
exact solution for the global optimum of the likelihood, that will be central
for downstream model selection procedures.

2.2 Estimate the mixture model parameters when the
break-point coordinates are known

When the break-point coordinates are known, we dispose of a partition of
the data into K segments {Y'!,..., Y }. This partition defines the statisti-
cal units of a mixture model whose parameters have to be estimated. The
purpose is then to maximize the log-likelihood of the model log Lxp (T, )
according to ¥. As it is the case in classical mixture models, the direct op-
timization of the likelihood is impossible, but can be handled using the EM
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algorithm in the complete-data framework [Dempster et al., 1977]. Let us
define the complete-data log-likelihood:

log LS p(T ZZZ log{wpfy 0p) }

k=1p=1
The EM algorithm is as follows:

- E-step: compute the conditional expectation of the complete-data log-
likelihood, given the observed data Y, using the current fit ¢»(® for .

Qrp(W[p™;T ZZT Vog {mpf(y":6,)}

k=1p=1
with ) )
k(h+1) T f(y b 9 )
Zﬁ 17T(h)f( k. g(h))

- M-step: The M-step on the (h + 1) iteration requires the global max-
imization of Qx p(1[1p™); T) with respect to v to give the updated esti-
mate ¢ t1);

D = Argmax { Qv T)}
»

2.3 Convergence properties of the hybrid algorithm

The proof of the convergence of our algorithm is based on the properties
of both dynamic programming and EM. It can be seen that both algorithms
are linked through the likelihood they alternatively optimize: the incomplete-
data likelihood of the mixture of segments.

Dynamic programming globally optimizes the likelihood with respect to
T. At iteration (¢) we have:

log Licp (TUHD;:90) = log Licp (T, 9)).

On the other hand, the key convergence property of the EM algorithm is the
increase of the incomplete-data log-likelihood at each step [Dempster et al., 1977]:

log Lxp (T(Z), 1/}(“1)) > log Lk p (T(Z)Mﬁ(z)) .

Put together, our algorithm generates a sequence (T(Z),w(z)) 4> that in-

creases the incomplete-data log-likelihood such as:

log Lxp (T(Hl), 1/}(”1)) > log Lk p (T(z)ﬂﬁ([)) .
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3 Estimating the number of segments K when the
number of clusters P is fixed.

Once the parameters of the model have been estimated (for a fixed K and a
fixed P), the next question is the estimation of the number of segments and
of the number of clusters. Since the principal objective of biologists is rather
the detection of biological events on the genome rather than the clustering of
those events into groups, we choose to focus on the estimation of the number
of segments when the number of groups is fixed.

The maximum of the log-likelihood log Lxp = log EKP(T, 1&) can be
viewed as a quality measurement of the fit to the data of the model with K
segments. In classical segmentation models, this quantity is maximal when
the number of segments equals the number of data points. Nevertheless, as
our model also considers the clustered nature of segments, it appears that
the quality of fit of the model is not always increasing with the number of
segments, as shown in Figure 1. For P = 2 the incomplete-data log-likelihood
is decreasing for a number of segments K > 12 for instance. This behavior
of the model can be interpreted as follows: since the segmentation-clustering
model is under the constraint P < K, the addition of new segments can
lead to contiguous segments affected to the same cluster. This configuration
leads to an increase in the number of parameters (one additional break-point)
without any gain for the fit of the mixture model. These considerations imply
that there will be a number of segments above which the addition of a new
segment will not increase the log-likelihood.
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Figurel. Evolution of the incomplete-data log-likelihood log Lk p with the number
of segments K for different number of clusters (P = 2,3,4).
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A penalized version of the likelihood is used as a trade-off between a
good adjustement and a reasonnable number of break-points. The estimated
number of segments is such as:

Kp= Argmazx (ﬁKp — ﬁppen(K)) ,
K

with pen(K) a penalty function that increases with the number of segments,
and [p a penalty constant. The definition of an appropriate penalty function
and constant has lead to theoretical developments in the context of break-
point detection models. Recently, [Lavielle, 2005] proposed to use an adap-
tive procedure to estimate the penalty constant, that has been successfully
applied to array CGH data [Picard et al., 2005]. The principle of this proce-
dure is to find the number of segments for which the log-likelihood ceases to
increase significantly. It is geometrically linked to the finding of the number
of segments for which the second derivative of the log-likelihood function is
maximal (see [Lavielle, 2005] for further details). A result of our procedure
is shown in Figure 2. For a number of clusters P = 3, the adpative proce-
dure estimates a number of segments K5 =10. This leads to a profile which
presents three types of segments that can be interpreted in terms of biological
groups, as shown in Figure 2.
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Figure2. Result of the segmentation-clustering procedure for a fixed number of
clusters P = 3 and an estimated number of segments K3 = 10. These data concern
chromosome 1 of breast cancer cell lines Bt474.

221



Publications

8 Picard et al.

4 Discussion

Microarray CGH currently constitutes the most powerful method to detect
gain or loss of genetic material on a genomic scale. We introduced a statis-
tical methodology for the analysis of CGH microarray data, that combines
segmentation methods and clustering techniques. It terms of modeling, the
discovery of homogeneous regions clustered into groups could have been han-
dled using Hidden Markov Models, as in [Fridlyand et al., 2004]. In those
models, the segmented structure of the data is recovered using the posterior
probability of membership of individual data points into a fixed number of
hidden groups, whereas our method focuses on the labelling of segments to
hidden groups. Moreover, a property of Hidden Markov Models is that the
distance between two ’break-points’ is dependent on the probability distri-
bution of the hidden sequence: the within-class sojourn time is geometrically
distributed. Our approach is free from those constraints, since break-point
coordinates are 'real’ parameters of the model that are not randomly dis-
tributed.

The definition of this new model leads to unusual statistical considera-
tions: it appears that the statistical units of the mixture model (when the
segmentation is known) are segments of different size. Since the partition
of the data is random, the individuals of the mixture model themselves are
random. This explains the difficulty of the joint estimation of K the number
of segments, and P the number of clusters, since classical model selection
procedures are based on a compromize between a reasonnable number of
parameters to estimate given a fixed number of statistical units. To these
extents, this problem of model selection for two components remains an open
question.
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Résumeé :

Dans cette thése nous proposons un nouveau modéle statistique pour
I’analyse des problémes de segmentation/classification dont ’objectif
est de partitionner des données en zones homogenes, et de regrouper
ces zones en un nombre fini de classes. Les problémes de segmenta-
tion/classification sont traditionnellement étudiés a 1’aide des modéles
de chaines de Markov cachées. Nous proposons un modéle alternatif
qui combine un modeéle de segmentation et un modele de mélange.

Nous construisons notre modeéle dans le cas gaussien et nous pro-
posons une généralisation & des variables discrétes dépendantes. Les
parameétres de ce modéle sont estimés par maximum de vraisemblance
al’aide d’un algorithme hybride fondé sur la programmation dynamique
et sur I'algorithme EM. Nous abordons un nouveau probléme de sélec-
tion de modéle qui est la sélection simultanée du nombre de groupes
et du nombre de segments et proposons une heuristique pour ce choix.

Notre modéle est appliqué a I’analyse de données issues d’une nouvelle
technologie, les microarrays CGH (Comparative Genomic Hybridiza-
tion). Cette technique permet de compter le nombre de milliers de
genes le long du génome en une seule expérience. L’application de
notre méthode & ces données permet de localiser des zones délétées ou
amplifiées le long des chromosomes. Nous proposons également une
application & ’analyse des séquences d’ADN pour I'identification de
régions homogeénes en terme de composition en nucléotides.

Mots clés: DETECTION DE RUPTURES — MODELES DE MELANGE — SELECTION
DE MODELES — PROGRAMMATION DYNAMIQUE — ALGORITHME EM — MICROAR-
RAY CGH — SEQUENCES D’ADN

Classification AMS: 62P10, 6207, 6299, 62H30.



Abstract :

This thesis is devoted to the development of a new statistical model
for segmentation /clustering problems. The objective is to partition the
data into homogeneous regions and to cluster these regions into a finite
number of groups. Segmentation/clustering problems are traditionally
studied with hidden Markov models. We propose an alternative model
which combines segmentation models and mixture models.

We construct our model in the Gaussian case and we propose a gen-
eralization to discrete dependent variables. The parameters of the
model are estimated by maximum likelihood with a hybrid algorithm
based on dynamic programming and on the EM algorithm. We study
a new model selection problem which is the simultaneous selection of
the number of clusters and of the number of segments. We propose a
heuristic for this choice.

Our model is applied to the analysis of CGH microarray data (Com-
parative Genomic Hybridization). This technique is used to measure
the number of thousands of genes on the genome in one experiment.
Our method allows us to localize deleted or amplified regions along
chromosomes. We also propose an application to the analysis of DNA
sequences for the identification of homogeneous regions in terms of
nucleotide composition.

Keywords: MULTIPLE CHANGE-POINTS — MIXTURE MODELS — MODEL SELEC-
TION — DYNAMIC PROGRAMMING — EM ALGORITHM — MICROARRAY CGH -
DNA SEQUENCES
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