
HAL Id: tel-00116849
https://theses.hal.science/tel-00116849v1
Submitted on 28 Nov 2006 (v1), last revised 22 Oct 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation and acquisition models for expressive
rendering
Pascal Barla

To cite this version:
Pascal Barla. Representation and acquisition models for expressive rendering. Human-Computer
Interaction [cs.HC]. Institut National Polytechnique de Grenoble - INPG, 2006. English. �NNT : �.
�tel-00116849v1�

https://theses.hal.science/tel-00116849v1
https://hal.archives-ouvertes.fr

Institut National Polytechnique de Grenoble

Representation and acquisition models

for expressive rendering

Pascal BARLA

Thesis presented for the obtention of the title of Doctor of INPG, in computer science.

Prepared in the ARTIS-GRAVIR/IMAG-INRIA laboratory, UMR CNRS C5527.

Defended on November 10th, 2006.

Jury members:

Marie-Paule CANI – president

John F. HUGHES – reviewer

Pascal GUITTON – reviewer

Lee MARKOSIAN – examinator

Joëlle THOLLOT – co-advisor

François X. SILLION – advisor

Acknowledgements

Many people contributed in a direct or indirect way to this thesis. I would first like

to thank my advisers Joëlle Thollot and François Sillion for their availability, advice,

and sympathy. Through the three years of my PhD, they always gave a lot of interest

to my work and have been of a crucial help. I would also like to thank people from the

ARTIS and EVASION teams (INRIA Rhone-Alpes, France) for their opinions, sugges-

tions and theoretical as well as practical help. Other people at the INRIA Rhone-

Alpes were of good advice: Peter Sturm from the PERCEPTION team for discussions

on computer vision and Pierre Bessière from the EMOTION team for discussions on

bayesian theory.

This thesis is also the result of collaborations within the French computer graph-

ics community. I would thus like to thank George Drettakis and the REVES team

(INRIA Sophia Antipolis, France) for the collaboration in the ARCHEOS project (in-

volving expressive rendering and archaeology); Gwenola Thomas and the IPARLA

team (University of Bordeaux I, France) for the collaboration in the MIRO project

(involving expressive rendering and legible representations); And Bernard Peroche

(Universite Lyon I, France) for managing the creation of a French book on computer

graphics (currently in the process of publication) including a chapter on expressive

rendering, authored by Joëlle Thollot, Gwenola Thomas and I.

An important time in my PhD have been my EURODOC internship at the Uni-

versity of Michigan (Ann Arbor, USA). I would like to thank Lee Markosian, who was

my adviser there, for the work we’ve done together during these 7 months; and also

Nathan Lezotte and Simon Breslav for their active collaboration and technical con-

tributions; Igor Guskov for his suggestions; John Hughes for presenting me to Lee

Markosian in the first place; and to both of them, for accepting to come to France and

be part of my thesis jury. Other collaborations have been of a great help during the

course of the PhD. In this respect, I would like to thank Fredo Durand for hosting me

for a month in MIT (Boston, USA), and for the many discussions and bibliographic

help (mostly by email and with a quasi-instantaneous feedback). Sylvain Paris, also

at MIT at this time, have also been of good advice and gave me clever suggestions

both on practical aspects of the PhD and scientific discussions. Both Sylvain and

Fredo introduced me to Edward Adelson, with whom I had recent discussions on vi-

sual perception, and who inspired me consequently for the discussion on the role of

human vision in expressive rendering. Victor Ostromoukhov, from the University of

Montreal (Quebec, Canada), has been an inspiration for topics on synthesis. Valerie

Bonnardel, from the University of Sunderland (England), helped me better under-

stand the links between color categorization and linguistics.

Finally, I’ll be eternally thankful to my family and friends, for their help, support,

care, comprehensiveness, and ability to release my stress in the sometimes tense

episodes of the PhD.

iii

iv

Introduction

Expressive rendering is a field that emerged around the beginning of the 90s as an

alternative to the common trend in computer graphics to produce ever more realis-

tic renderings. By producing “non-photorealistic” imagery, researchers tried to mimic

the way artists create paintings and drawings, in order to capture many of these

qualities that differentiate them from photographs. The field grew consequently and

nowadays it is an inherent part of computer graphics, with expressive rendering pa-

pers published in the most important computer graphics conferences and journals,

and even a dedicated biennial symposium since 2000, the International Symposium

on Non-Photorealistic Animation and Rendering (NPAR).

Besides this sudden growth of interest, expressive rendering is still a young re-

search field and naturally, most of the previous work proposed specific solutions to

specific problems, nearly always imitating traditional techniques. This thesis pro-

poses to investigate expressive rendering from a more principled point of view, through

two main issues which will be presented below: representation, or how to balance user

interaction and computer automation to give an intended style to a representation;

and acquisition, or how to analyse stylistic information input by a user in order to

apply it elsewhere in a representation.

Before going into greater detail about expressive rendering, we should first direct

our attention to the notion of “realism”, from which it tries to depart. To this end,

we briefly consider, in the next section, how the quest of realism evolved in art his-

tory, before relating expressive rendering to this evolution. We also give here a first

glimpse at the connections that tie human vision to any expressive representation,

which will be an underlying theme. Finally, we give an overview of the different parts

that constitute this thesis. A deeper description of traditional techniques and related

work in expressive rendering can be found in each part.

Realism, photorealism and “non”-photorealism

Realism, through the imitation of nature, has been a goal for many artists in paint-

ings and drawings from the Renaissance to the 19th century. With the apparition of

photography, though, traditional image creation shifted towards more abstracted or

expressive representations. The advantages of these alternative depictions compared

to photography are many: by intentionally omitting or abstracting some elements of a

depicted scene, and by placing more emphasis on others, artists are able to efficiently

control the visual communication of information. This is the reason why paintings

and drawings are still used in place of photographs in fields such as medical, technical

or archaeological illustration; but also in other media such as traditional animation

or comics, for their evocative power.

v

vi INTRODUCTION

To give an extremely rough outline of the evolution of art through history, one

can say that the quest of realism (at least in the western culture) has been of main

interest through the Renaissance, and culminated with Impressionism, the ultimate

study of light and color. Interestingly, Impressionism is also often considered as the

first modern movement. Soon after came the “explosion”: abstraction took a more and

more important place in art. As McCloud [McCloud 94] points out, “The main trust

was a return to meaning in art, away from resemblance, back to the realm of ideas.”

There is indeed a very broad distinction between pictorial representations, in which

shape and space can be seen in the picture; and pure pictorial abstractions. In this

thesis we will only consider representations of a possible scene, real or imaginary.

There is no need for a pure abstraction, however, to produce expressive pictures.

Even Photorealism is prone to expressivity. As noted Durand [Durand 02], the pho-

tographer is never passive towards light. The choice of the viewpoint and perspective

plays an important role in photo production. The photographer may use additional

artificial light sources to make the scene "look real", or the lighting from different

viewpoints may be changed to "look unchanged". So the recording is realistic, but the

light configuration may be artificial. Moreover, reflectance of surfaces may be modi-

fied in an analogous way, for example by using makeup for faces. Finally, the printing

process is never a passive reproduction of the negative, and many “post-processing”

operations can be applied at this stage to yield a dramatically different result. If

one considers that chemical photography is only a new photorealistic technique, then

Photorealism itself is only one pictorial style from many.

However, this photorealistic style, like any other, has limitations. A convincing

example is given by scientific illustration [Wood 94]. Photography records a subject

accurately while the illustrator draws only what is necessary (see Figure 1). The

illustrator can omit extraneous detail - clarifying, emphasizing, and selecting the im-

portant parts. The artist can simplify or summarize the essence of a subject and can

reveal what is underneath or inside. He can idealize, ignoring specimen variations. In

other words, while the camera establishes and documents the existence of a subject,

the illustrator illuminates its essence: an illustrator must see not just an individual

specimen but one specimen in relation to many species in the broader context of an

entire field.

Definition of expressive rendering

Computer graphics evolved in a way quite similar to traditional techniques: the quest

for realism has been a main challenge with the simulation of light transport and re-

alistic materials; but now that these goals seem within reach, new rendering tech-

niques are introduced that take inspiration from traditional drawing and painting

techniques [Strothotte 02, Gooch 01]. This domain has received a lot of interest in

the last 15 years under different names such as non-photo-realistic rendering (NPR),

expressive rendering, or more generally computer depiction [Durand 02].

The term “NPR” has been widely adopted by the community. However, as noted

by Schofield in his Thesis [Schofield 93], NPR is any computer graphics rendering

system which gets away from Photorealism. It is defined by an absence of something.

At the same time, Photorealism in Computer Graphics is often departing from real-

ity: the addition of depth of field, lens flares, motion blur and grain are all wanted

vii

(a) (b)

Figure 1: (a) A photograph records a subject without emphasis or omission. (b) A

drawing can selectively interpret, emphasizing and creating perfect background and

lighting [Wood 94].

artifacts that do not belong to reality.

Thus we need a better definition for NPR. As Photorealism is a trace or print

of reality, NPR should be a personal, artistic interpretation of reality. Schofield

[Schofield 93] proposes a criterion of success for a NPR algorithm: the degree of sig-

nificance achieved between the thing represented and the way it is represented. We

build on this definition, and in order to reflect the importance of the role played by

the user in the rendering process, we use the term “expressive rendering” in place of

“NPR”. We then give the following definition: expressive rendering is any rendering

technique that allows the user to be part of the way scene features are represented; its

criterion of success is the degree of significance achieved between the depicted scene

and how close its representation comes to the user’s initial intention.

Expressive rendering has of course many common points with traditional tech-

niques. It shares the same objectives, independent of any medium: what are the

important scene features to emphasize, and what are the features that we will pre-

fer to abstract, maybe even omit? Every new medium must go through a phase of

imitating a predecessor [Schofield 93, McCloud 94, Durand 02]. Therefore expressive

rendering should inspire from paintings and drawings, even photography and cine-

matography, to create images more functional, more aesthetic and more suitable to

our needs.

However, simulation of paintings and drawings in expressive rendering is unnec-

essary, because this is the simulation of something absent (the canvas, the chemi-

cals, etc...) [Schofield 93]. Similarities between expressive rendering and paintings

and drawings should be incidental. So expressive rendering should convey qualities

which transcend any particular medium, or transfer these qualities from paintings

viii INTRODUCTION

and drawings. Schofield takes the example of displaying a sentence with an editing

software: the linguistic content is maintained intact, but no simulation of the writing

process is actually performed.

On the other hand, using a computer offers many new possibilities: expressive

rendering systems can assist an artist in producing more easily and more quickly a

picture or an animation via automatic or semi-automatic tools; it allows to better con-

trol the evolution of a representation throughout an animation (we speak of temporal

coherence); it facilitates the reproduction of a work by storing the various steps of a

composition on a digital device; it allows interactive animations, almost absent from

traditional media; etc. These many advantages make expressive rendering a very

useful tool for many domains such as animation, scientific illustration, archaeology,

architecture, technical drawing, video games, advertisement, etc.

Even more important is the freedom allowed by expressive rendering: any tradi-

tional medium has intrinsic limitations due to its physical implementation (the dif-

fusion of paint, the density of the canvas and the tools used by the artist); but there

is no such a limitation when using a computer. While it virtually offers an infinite

amount of expressive ways to create a representation, it is the responsibility of the

programmer who designs the software to give intuitive, easy-to-use interfaces, unless

the advantages of using a computer become compomised. Thus, in our definition, we

must add as a quality requirement that expressive rendering should offer the user

intuitive and ergonomic interfaces to specify the style of a representation.

Art and illusion

To summarize, in order to produce meaningful expressive renderings, we need to find

a way to describe what is the essence of a representation, be it a painting, a drawing

or a photograph. We previously used the term style to this end, as it is often done in

art history for instance. Gombrich, a famous art historian, has been one of the first

authors to study this abstract notion. The following ideas come from his book, “Art

and Illusion” [Gombrich 61].

An artist looks for some aspects of his environment that he will be able to repro-

duce. However, he does not paint from a pure visual impression, but more from an

idea or concept (as Gombrich says, “the artist is more prone to see what he paints,

rather than painting what he sees”). Thus, he needs a vocabulary before trying to

represent his environment. The particular choice he makes of this vocabulary and

the way he combines various elements constitute the style of a representation.

The human visual system is particularly well suited to build such a vocabulary: we

naturally distinguish peculiarities, we perceive organic ensembles where there was

before only a meaningless ensemble (think for instance of the familiar images one

can see when looking at clouds in the sky). By manipulating this natural tendency,

the artist is able to play with the observer, with his ability to see in a representation

some objects or images that have been captured by his memory. Therefore, a painting,

while it is nothing more than a set of paint layers on a canvas, will inevitably produce

in an observer’s mind the perception of a scene. It is thus a mere illusion.

The body of techniques invented and learnt to produce such illusions are called

schema by Gombrich. Schema evolved greatly through art history, and constitute the

basic building blocks of a style vocabulary. They can thus be considered as low-level

ix

techniques that, when properly combined, lead to a particular style. This is why

the evolution of styles is coherent with time: the addition of new schema and their

various combinations led to various ways to express an idea or concept through the

representation of a scene.

The conditions of illusion thus reside in the knowledge of the language used by

the artist and in the conditions in which it has been used. In order to make his

idea or concept clearer, the artist can avoid any useless detail, because he knows

his public will be able to understand his suggestions. Indeed, we are so efficient in

recognizing familiar objects that we rarely fail at performing this task; And at the

same time, most of us are unaware of the conditions of that illusion. For instance,

Cezanne as well as Picasso made use of very geometric, simple forms to sharpen

their representations and evoke more of the essence of their subject, as illustrated

in Figure 2; However, besides this high degree of abstraction, any observer perceives

with no difficulty a landscape with a mountain and a rooster, respectively.

(a) (b)

Figure 2: (a) “La montagne Sainte Victoire” by P. Cezanne. (b) “Cockerel” by Picasso.

In order to really understand what is the essence of traditional art, we need to

unravel the mechanisms of that illusion, at least at the low levels of its functioning.

This means to understand schema and the reason why they trigger so efficiently the

human visual system in traditional paintings and drawings. It will not only allow

us to analyse existing pieces of artwork in order to acquire some of their important

stylistic properties, but also to create expressive representations possessing similar

qualities.

Overview

This thesis is structured along two research axes: First, in Part I, we investigate the

representation issues raised by the production of expressive images and animations;

Second, in Parts II and III, we study the acquisition of low-level notion of styles from

vector-based and bitmap color images respectively.

In addition, I have been personally motivated by the fascinating field of human

vision and its many links with expressive rendering. Thus, throughout this thesis, I

x INTRODUCTION

tried to build as many connections as possible between the two fields. However, many

more connections are waiting to be discovered, and I hope this work will motivate

others to investigate them.

More precisely, Part I of this thesis focuses on expressive animation metaphors.

Although it mainly treats animations produced from 3D scenes, a theoretical foun-

dation for images as well as animations, greatly inspired from the work of Willats

and Durand [Willats 97, Durand 00, Durand 02, Willats 05], is presented in its intro-

duction. This helps to situate our contributions to expressive rendering. The part

is closed by a discussion on the the importance of visual perception as a significance

measure for expressive animations.

Then Part II addresses an inverse, yet complementary problem: the analysis and

synthesis of line drawings. As opposed to the previous part, the input data here is

composed of 2D vector drawings. We propose two different tools to process line draw-

ings (simplification and synthesis). We finally open the problem to future work by

discussing the perceptual cues potentially revealed by contour lines and line patterns,

and their perceptual segregation in a drawing.

Part III has a rather similar goal to Part II: the analysis of an input representation

in order to acquire some elements of style. However, this time, the focus is on picture

color composition. The input data is thus a bitmap color image, and we propose a

colorimetric analysis that gives a categorical description of color composition. This

part is closed by a discussion on the connections between categories and language,

and the importance of the spatial perception of colors.

Finally, the representation and acquisition issues we presented, and to which we

gave some solutions, are put together in Part IV, where we insist on the role of vi-

sion in expressive rendering techniques. This helps not only to position previous

approaches, but also to motivate new ones, and to design evaluation methods for ex-

pressive rendering.

Contents

Introduction v

I Expressive animation metaphors 1

1 How to create expressive image sequences ? 3

2 An extended toon shader for attribute mapping 21

3 A painterly rendering metaphor 35

4 An alternative metaphor: dynamic 2D patterns 49

5 Remarks on low-level perceptual criteria 59

II Line drawings analysis and synthesis 65

6 What do line drawings represent ? 67

7 Line drawing simplification 77

8 Stroke pattern synthesis 93

9 Remarks on drawing segregation 107

III Picture color composition 111

10 How are colors distributed in a picture ? 113

11 Color palette extraction 119

12 Remarks on color categorisation 137

IV Closing remarks 141

Discussion on the role of vision in expressive rendering 143

Conclusions 153

xi

xii CONTENTS

Part I

Expressive animation metaphors

1

Chapter 1

How to create expressive image

sequences ?

As pointed out in the introduction, there are many potential advantages to using a

computer to produce expressive images, and the first that comes to mind is animation.

The production of image sequences is a tedious and delicate process when done by

hand, as explained in the next section. However, inspiring lessons can be drawn from

existing traditional techniques.

(a) (b)

Figure 1.1: (a) A drawing made with the use of ink on scratch board, where indepen-

dent lines are perceived. (b) Smooth continuous tones obtained with a carbon dust

technique [Wood 94].

1.1 Examples from hand-made representations

Various representations There exists a vast number of painting and drawing

techniques and an exhaustive presentation is, of course, out of the scope of this the-

sis. However, some general observations can be made. Depending on the medium

used, and the way the artist applies it on a canvas, the final representation can be

perceived as an accumulation of independent brush strokes or a continuous variation

of tone (see Figure 1.1). This is only a vast simplification, but at least it helps in the

3

4 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

(a) (b) (c) (d)

Figure 1.2: Various oil-painting techniques: (a) blending, (b) rubbing, (c) glaze and (d)

impasto.

analysis of traditional paintings and drawings. For instance, as prescribed by Wood

in her Scientific Illustration book [Wood 94],

“While the pencil is at its best in rendering detail, the airbrush really

shines in producing smoothed and graded areas of tone. These areas are

stroke-less and brush-less in quality and may be rendered very quickly”.

There are many ways to combine these two extreme strategies, and the choice of

a representation will depend on the intention of the artist. Just to give a rough idea,

Figure 1.2 shows various methods used to apply oil paint on a canvas. The blend-

ing operation (1.2(a)) consists in applying various colored layers of paint and mixing

them on the canvas, giving a continuous variation of colors. The rubbing operation

(1.2(b)) consists in making a thick amount of paint penetrate the canvas with a hard

brush. This technique lets a relief appear on the canvas and spreads colors that fix

to ridges of the canvas, but leaves valleys intact. The glaze operation (1.2(c)) allows,

by applying a thin layer of transparent paint, to create various effects, like giving a

better color harmony, add a subtle relief, etc, without masking underlying colors. The

impasto operation (1.2(d)) allows to reflect the gesture of the artist by using a great

amount of paint.

Some artists even use mixed representations, e.g. to focus on an important re-

gion of the canvas using continuous tone and only suggest unimportant regions with

sparse brush strokes. Again, the ways various painting techniques may be mixed are

numerous. Figure 1.3 shows two very different approaches. On the left, a knife is

used to add relief texture to important regions of the painting, while unimportant

ones are roughly painted with sparse brush strokes. While on the right, many lay-

ers using different techniques are used and then superimposed, with distinct brush

strokes added to represent highlights and fabrics patterns, in order to focus on the

material properties of the depicted objects.

Moreover, strokes can be organised into groups, like hatching and stippling groups

found in some illustrations or comics (see Figure 1.4). Then, the strokes are not only

perceived as independent elements, but also as part of a higher-level distribution.

1.1. EXAMPLES FROM HAND-MADE REPRESENTATIONS 5

(a) (b)

Figure 1.3: Different focus techniques: (a) knife and (b) superimposition of layers.

How the medium evolves in an animation When an animation is made by draw-

ing or painting successive frames, the question of how the medium moves from frame

to frame arises.

In the case of continuous tone, if the chosen medium exhibits a small-scale texture

(like with the pigments of watercolor), then successive frames will produce incontrol-

lable small-scale flickering: the paint being applied for each new frame, the texture

will inevitably be present at different locations in two successive frames. To avoid

this problem, some artists use more homogeneous media and fine grained canvases

(see Figure 1.5(a)).

In the case of brush strokes perceived more or less individually, then one might

want to make strokes of the current frame correspond to strokes of the previous frame.

This is however a tedious process, and a very small deviation will appear as a jittering

in the final animation. Moreover, strokes will appear and disappear from frame to

frame due to occlusions in the depicted scene, introducing poppings in the animation.

For stroke groups, the motion is even more problematic since not only the strokes

have to be coherent over time, but their distribution also need to be controlled.

Flickering, jitterings and poppings are often referred as temporal coherence issues

in the expressive rendering literature. They are sometimes so hard to avoid that

most of the artists in traditional animation exploit the temporal coherence problems

in artistic ways: they add independent jittering motion to the strokes so that any

observer will not even be tempted to look for coherence, and by the way they add vi-

tality to the animation even on a static sequence (i.e. the objects in the depicted scene

are static, but the paint strokes used to represent them move arbitrarily). This is an

example of how the limitations of the medium (in this case, the difficulty of ensuring

temporal coherence by hand) leads to creative solutions, as in the work of Georges

Schwizgebel (see Figure 1.5(b)).

6 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

(a) (b)

Figure 1.4: Two examples of stroke patterns found in comics illustrations. (a) “La

croisière des oubliés” c©by Enki Bilal (b) “Nausicaa” c©by Moebius.

What is depicted in a representation The effectiveness of a hand-made repre-

sentation not only consists in the mastery of a medium; It first resides in the way

specific elements of a depicted scene are represented, i.e. some may be abstracted or

ignored, while others will be emphasized.

There are multiple ways of applying brush strokes. For instance, in order to clearly

emphasize the constituting elements of a scene, their spatial extent as well as their

color should follow the shape and color of an element. Figure 1.6(a) illustrates the

use of brush strokes of multiple size, shape and color to represent adequately a flower

bouquet in its vase: Leaves are painted using one or two large brush strokes in vari-

ous shades of green in order to represent the light reflecting from them; Small paint

stipples are painted to suggest flower pistil; Curved strokes roughly follow the tex-

ture on the vase; A soft wash is applied to add a soft shadow; etc. So the “paint” on

the canvas can represent shape, texture, patterns of small elements or illumination.

Note however that the choice of a medium is quite independent from the choice of

depicted scene elements: The previous example, made using watercolor, could have

been performed using oil paint or pastels. The choice of the medium constraints the

artist though, leading to new creative techniques. For instance, the use of a dry

medium like pastels seems to make it inappropriate to depict translucent objects that

exhibit very smooth variations of tone. However, as shown in Figure 1.6(b), the trans-

parency of objects like the bottle or the glasses can be very efficiently represented

with pastels by taking a particular care in drawing their shadows: a ray of light in

the bottle’s shadow for example suggests its material properties. This is an example

of a schema (see the introduction): a technique learnt by artists in order to better

depict a scene, that gives at the same time some style in the composition.

Other schema aim at representing more global effects in a scene, for example

showing the undulations of a water surface, or increasing the perception of depth

in an outdoor scene via aerial perspective. Figure 1.7(a) shows how stripe-like brush

strokes are used to render the fragmented reflections of an undulating water surface.

1.1. EXAMPLES FROM HAND-MADE REPRESENTATIONS 7

(a) (b)

Figure 1.5: (a) “Feeling from Mountain and Water” c©watercolor animation by Te Wei.

(b) “Man without a shadow” c©painterly animation by Georges Schwizgebel.

Figure 1.7(b) illustrates the effects of aerial perspective on a monochrome painting:

Depth is suggested by variations in tone and contrast. In general, it can also be

suggested by color “temperature” variations or a loss of detail.

Finally, in the context of animations, the motion of the medium on the canvas,

especially for individually perceived brush strokes, reveals some motion in the scene,

and here again the effectiveness of a representation resides in emphasis and/or ab-

straction. There are various possibilities that have been employed by different artists.

In the oil-painted animations of Alexander Petrov, individual brush strokes seem to

approximately follow the motion of objects in the scene. While for the watercolor an-

imations of Te Wei, washes of paint seem to follow self-shadowing effects and thus

slide on the characters. More complex medium motion can be performed though,

like in the work of Georges Schwizgebel, where it is used to morph between different

scenes and contributes to the illusion of a continuous motion, which is an example of

a motion schema often used in traditional animation.

Technical difficulties of hand-made representations Traditional techniques

impose a lot of technical issues: Mainly, the coherence issue is merely ensured in

hand-painted animations. Moreover, it is an extremely time consuming process to

paint successive frames of an animation. Just to give an example, Alexander Petrov

took two and a half years to complete “The old man and the sea”, a 20 minutes

painterly animation. Another issue of painterly animations is that there is little or

no previewing possibilities. Petrov uses a paint on glass technique that allows him

to visualize coarse paintings of a sequence, then he adds fine details on each frame

independently (see Figures 1.8). This is another example where a very constrained

medium forces the artist to find tricks, here to get a preview of the final animation.

Even for a still image, it is hard to master painting with various mediums and to

manage the constraints they impose.

However, these constraints are not present anymore when using a computer to

create expressive rendered images or animations. So there is no need to simulate

them, as advocated by Schofield in his Thesis [Schofield 93]. Rather, expressive ren-

dering should take inspiration from traditional techniques, and extract their essence

in order to provide tools that hold similar expressive qualities. Expressive rendering

8 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

(a) (b)

Figure 1.6: (a) Brush strokes of various sizes are used to depict different elements.

(b) Translucency of objects is suggested by the representation of their shadows.

techniques should thus be able to give the artist what he can only rarely obtain with

traditional techniques: the control of temporal coherence, automated tasks to speed

up the creation process, instant previews of the final rendering, and easy manipula-

tions that do not require a tremendous amount of training.

1.2 A model of representation

In order to “extract the essence” of traditional techniques in creating expressive ren-

derings, we need a way to relate an image created by hand with another created with

a computer. Actually, there exists a theoretical model of pictorial representation, that

aims at describing the systems involved in the creation of a representation regard-

less of the medium employed. The first version of the model has been proposed in

a book by Willats [Willats 97], then refined by Durand [Durand 00, Durand 02] and

Willats & Durand [Willats 05]. It will serve us as a basis for relating traditional and

expressive rendering techniques throughout the remainder of this thesis.

The initial representation model In his book [Willats 97], Willats presents two

systems for describing pictures: the drawing and denotation systems. Together, they

provide a way of classifying a very wide range of pictures and therefore form a basis

for describing at least part of what we mean by pictorial style.

Drawing systems are mainly concerned with projections or topological views: they

map spatial relations in the scene (primary geometry) into spatial relations in the pic-

ture (secondary geometry). Denotation systems, on the other hand, relate the scene

and its representation by mapping scene primitives (volumes, surfaces, etc.) into pic-

ture primitives (points, lines and regions). A primitive is the most elementary unit of

shape information.

1.2. A MODEL OF REPRESENTATION 9

(a) (b)

Figure 1.7: (a) Water reflections are depicted by horizontal brush strokes of alter-

nating color. (b) Aerial perspective uses contrast and tone variations to emphasize

depth.

Picture primitives and scene primitives are abstract concepts. In practice, pic-

ture primitives are represented by physical marks. This distinction is analogous to

that made in language between the smallest units of meaning — phonemes and mor-

phemes — and their realization in physical sounds or letters.

The choice of a given drawing or denotation system depends on the function it will

serve. Different applications lead to different functions: for example, in engineering

the true scale of objects is important, so orthogonal projections are chosen for the

drawing system; whereas in cubist paintings, one of the goals is to flatten the picture

surface, so a combination of object-centered orthogonal projections, together with a

view-centered distorted perspective (naive, inverted or oblique) are employed. In the

same idea, anomalous denotation systems, like anomalous line junctions or reversal

of tone on objects can be employed for expressive purposes.

This first version of the representation model is rather vague and general, but it

has the merits of giving a comprehensible common model to any medium, without

focusing on the final implementation of picture primitives by marks. For instance, a

photo-realistic representation is one that combines a perspective drawing system with

a denotation system that maps continuous visible points in the scene to continuous

points in the picture. Whether picture points are pixels on a screen or ink blobs on

photographic paper or paint stipples on a canvas does not change the very nature of

the representation.

The extended representation model Durand [Durand 02] further extended Willats

model, by refining it into four systems: the drawing system is renamed the spatial

system, the denotation system is split into a primitive system and an attribute sys-

10 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

(a) (b)

Figure 1.8: (a) Alexander Petrov and his paint-on-glass technique. (b) A frame from

“The old man and the sea” c©.

tem, and the mark system is explicitly added to the model.

To summarize:

1. The spatial system maps 3D spatial properties onto 2D spatial properties;

2. The primitive system maps primitives in object space (points, lines, surfaces,

volumes) to primitives in image space (discrete and continuous points, lines,

surfaces);

3. The attribute system assigns visual properties to picture primitives (color, thick-

ness, orientation, etc);

4. The mark system implements the primitives placed at their spatial location with

their corresponding attributes.

Therefore, in the extended model, a picture is made up of marks which repre-

sent picture primitives with their associated picture attributes; picture primitives

and attributes denote corresponding scene primitives and attributes which represent

objects. An artist creates pictures through this flow, even if it is done unconsciously.

To the contrary, expressive renderings perform the inverse process, starting with a

description of a 3D scene and seeking for a specific representation.

Establishing a relation between expressive rendering and traditional techniques is

then possible using this model of pictorial representation. By analyzing paintings and

drawings with respect to each of the four systems, one can factor out essential proper-

ties; Then, by constructing expressive rendering pipelines that explicitly possess the

same properties in each system, we will have conveyed qualities that transcend any

particular medium.

Recall the question we asked in the previous section: “What is depicted in a rep-

resentation ?”. In Willats & Durand model, this is equivalent to characterize what

kind of picture and scene primitives a mark implements: Is it a region corresponding

to a shadow in the scene? Is it a curve corresponding to a silhouette? Is it a point

1.3. PREVIOUS WORK 11

corresponding to a small volume from the current view? It also demands to link the

color and other attributes of, say, a brush stroke to some attributes in the scene: does

color take illumination into account or is it only a crude approximation using a con-

stant color? Finally, what is the spatial layout of the representation: Perspective ?

Curvilinear ? Etc.

Motion and temporal coherence Note that the representation model has only

focused on the creation of still images. The extension to animation holds, but it raises

the important question of temporal coherence that we talked about in the previous

section. More technically, can we trace back a temporal coherence problem from the

mark system to earlier systems? If we can do so, then we are able to identify the

source of temporal incoherence, and hence propose methods to avoid it, or at least

attenuate it.

Let first rule out two naive approaches that do ensure temporal coherence but

cannot be considered as valid solutions. The first one is “texture mapping”: One can

directly apply marks onto surfaces so that they behave as textures and are thus per-

fectly coherent across time. It is straightforward that this method cannot be valid

since a crucial property of marks is that they lie in the picture plane, not on sur-

faces. Indeed, applying this texture mapping leads to a realistic rendering of an object

painted in 3D.

The other naive approach consists in placing marks at fixed locations in the picture

plane and draw them using attributes coming from the scene. The drawback of this

approach is that the corresponding picture primitives are not related to any scene

primitive; Thus marks slide on scene objects with motion, leading to a “shower-door

effect” that is visually very distracting.

An important observation is that the temporal coherence of marks is directly re-

lated to the temporal coherence of corresponding picture primitives. On the other

hand, under general conditions, the motion of scene primitives is coherent across

time. Therefore, if there is an incoherence to occur in motion, it might be due to

the mapping between scene and picture primitives, i.e. the primitive system. The at-

tribute system is usually not prone to temporal incoherence. Indeed, we will see in the

next section that the majority of previous approaches is concerned with establishing

a temporally coherent primitive mapping.

1.3 Previous work

Expressive rendering has received a strong interest from the Computer Graphics

community in the past 15 years, with various metaphors that usually try to mimic

traditional techniques. Producing an exhaustive presentation of the domain would

result in a huge list of expressive rendering methods, making it hard for the reader

to have a coherent and global view of the field. We rather present here what we con-

sider as milestone techniques in each of the four representation systems. However, in

the following chapters, we review additional related approaches and discuss limita-

tions in the context of a specific problem statement, in order to compare them to our

proposed solutions.

Moreover, since the main subject of this part is animation, we will only focus on

systems that render animations. Note that they are in general subject to the same

12 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

constraints than with single image renderers, with the addition of temporal coher-

ence. On the other hand, methods that operate on still images cannot be used directly

for animations precisely because they will suffer from temporal coherence problems.

Previous work can further be classified based on input data; Whether a full ani-

mated 3D scene or simply a video is provided will produce a severe impact on the pos-

sibilities offered by an expressive system. Note however that image-space techniques

can be considered as special cases of the representation model where projection (spa-

tial system) and shading (attribute system) have already been performed. We will

thus in general consider techniques working on video or 3D scenes in a similar way.

(a) (b)

Figure 1.9: (a) An example of multi-perspective projection by [Coleman 04] (b) Auto-

matically generated step-by-step instructions by [Agrawala 03].

Non-linear projections The first step of any renderer is to define how to map from

the 3D space of the scene onto the 2D space of the picture. Most of the time, perspec-

tive projection is used, but other kinds of projection exist and may be used for artistic

or pedagogical reasons in paintings and drawings. The interested reader is referred

to Levene’s Master Thesis on the subject [Levene 98], where he presents a framework

that completely defines a projection by five criteria: The shape of the projection sur-

face; The degree of convergence/divergence of orthogonals to/from a vanishing point;

The behavior of orthogonals; A deformation of the "unit cube" (for oblique projections);

The subset of objects processed (for multiple projections). Multi-projections have also

received a lot of attention in the expressive rendering community. See for instance

[Coleman 04, Yu 04, Agrawala 00] (see Figure 1.9(a)).

Another class of non-linear projections concern topological transformations, that

essentially map relations between objects or parts in 3D to similar relations in 2D.

Agrawala presented interesting applications to the automatic design of route maps

[Agrawala 01] and step-by-step assembly instructions [Agrawala 03] (see Figure 1.9(b)).

Expressive shading As we have seen above, the attribute system is responsible for

the choice of attributes that will be assigned to the marks of the final representation.

Among all the possible attributes, color is the single most important one, obviously. In

1.3. PREVIOUS WORK 13

photo-realistic rendering, the color at a pixel is computed based on the environmental

illumination, and on material properties of the depicted object, possibly involving very

complex and physically accurate simulations. With expressive rendering, though,

such a complexity is usually not necessary, and the need is more towards intuitive

tools to control illumination and material properties.

(a) (b)

Figure 1.10: (a) A toon shading example and its 1D toon texture. (b) Tweakable toon

highlights by [Anjyo 06].

Early shading models, like the empirical Phong shader, are indeed very intuitive,

and this might be why they have been used during so many years. However, the

Phong model is rather “realistic”. A very famous modification of the Phong model is

the toon shader [Lake 00]. The idea is simple: Only consider the diffuse component

of the Phong model and use it to index a 1D texture that describes how the color

evolves from dark to light tones. By introducing discontinuities in the 1D toon texture

(using for instance three stripes of dark, medium and light colors), one can reproduce

an effect similar to those found in comics and cartoons, see Figure 1.10(a). Similar

approaches have been adopted by Gooch et al. [Gooch 99] and Sloan et al. [Sloan 01].

In the former, the diffuse component is modified in order to create a cool-to-warm

gradient, with results similar to those found in technical illustrations; while in the

later, the gradient is replaced with a painted environment map.

On the other hand, very few methods considered the specular component of the

Phong model. Anjyo et al. [Anjyo 03] proposed a model that manipulates the half vec-

tor (used to approximate a reflected light vector) to create plastic or metal materials

with a cartoon look. They recently extended their method [Anjyo 06] to make ma-

nipulations more intuitive and powerful: the system now allows to manipulate and

animate highlights (via key-framing) very easily, see Figure 1.10(b).

Apart from color, other attributes (e.g. orientation, thickness, opacity, etc.) are

either set in an empirical way, or follow a picture primitive property. However, there

are many avenues for abstracting attributes that will be later used in the extraction

or mapping of primitives. For instance, depth could be segmented so that subsequent

processes using depth will exhibit depth planes.

14 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

Image-space primitives extraction In order to go from scene primitives to pic-

ture primitives, two alternate methods can be employed. A first category of tech-

niques works purely in the picture plane by extracting 2D picture primitives from

the information available at each pixel. The other metaphor, object-space primi-

tive mapping, will be discussed in the next paragraph. The simplest image-space

approach is to directly use the pixel as a primitive as done by Hertzmann et al.

[Haeberli 90, Hertzmann 98] where they distribute strokes that take their color from

an underlying video and use randomness for other attributes. Temporal coherence

problems are reduced by using strokes of a previous frame in the current frame. But

as noted by Schofield [Schofield 93], this approach does not rely on any arbitrariness;

And in order to articulate meaning, marks must be different from others. Indeed,

the obtained results are hard to interpret and produce noisy animations that might

disturb observers.

(a) (b) (c) (d)

Figure 1.11: Painterly rendering using a vector field [Hays 04]. (a) Original image

(b) Vector field computed via a local color gradient. For videos, Hays et al. use optic

flow. (c) The vector field after radial basis function interpolation, and corresponding

strokes attributes (e) The final painterly rendering.

Another approach is to use a motion flow [Litwinowicz 97, Hays 04] as the basic

picture primitive. The motion flow itself can either be extracted from a video (it is

then usually called optic flow), or more accurately computed from an animated 3D

scene, but as mentioned above, this will make a small difference in the final rendering

(e.g. some deformations may appear at image borders when the flow is computed from

a video). In these techniques, paint strokes that follow the flow are distributed in the

picture plane. Some of their attributes may be mapped from the flow itself, like length

and orientation; while some others come from the underlying scene, like color. An

inconvenience of this approach is that strokes sometimes seem to “slide” on objects:

Indeed, there is no notion of object boundaries, strokes thus follow the global motion

field, usually changing color when crossing an object or texture boundary. As long as

the motion field is smoothly varying, the resulting strokes are temporally coherent.

Therefore, in order to impose this smoothness constraint, Hays et al. [Hays 04] use

radial basis functions to interpolate between values of the motion field that have a

high “confidence” (see Figure 1.11).

Color regions may also be extracted using various segmentation methods. The

most straightforward method consists of using an existing segmentation. Luft et al.

1.3. PREVIOUS WORK 15

(a) (b)

Figure 1.12: (a) Regions are directly mapped from the output of a toon shader in

[Bousseau 06], while in (b) regions are extracted using a Normalized Cuts segmenta-

tion [Kolliopoulos 06].

[Luft 05, Luft 06] directly use the ID images coming from the 3D scene to create a

perfectly coherent segmentation of the picture plane. Bousseau et al. [Bousseau 06]

use a toon shading instead, which allows them to create fuzzy borders between some

of the color regions (see Figure 1.12(a)). In both approaches, segmented regions are

then filled with a watercolor style (a good example of continuous tone). Another ap-

proach consists in extracting regions from pixel colors like in the work of Wang et

al. [Wang 04c], possibly taking into account other attributes like depth or IDs as in

the work by Kolliopoulos et al. [Kolliopoulos 06] (see Figure 1.12(b)). Both methods

use sophisticated segmentation procedures (Mean-shift segmentation for the former

and Normalized Cuts for the later) and are rather costly in computation times. More-

over, segmentation has to be performed on a sequence of images (sometimes called a

video cube) to ensure temporal coherence. In [Wang 04c], a user interface is proposed

to correct and merge regions, and then to add strokes that move with the regions via

key-framing, while in [Kolliopoulos 06], strokes are attached to objects in the scene as

explained in object-space primitive techniques below. The resulting animated filled

regions emphasize the picture plane, but this approach could be pushed further by

working on an efficient and temporally coherent parametrization of regions.

Finally, lines can be extracted in image space to convey a notion of shape. In-

terestingly, there has not been much work done on this problematic. Collomosse

[Collomosse 04], as well as Wang et al. [Wang 04c], use extracted region borders

to define lines that evolve more or less coherently from frame to frame (represented

as surfaces in the video cube representation). Winnemoller et al. [Winnemöller 06]

recently proposed a contour detection mechanism that evolves coherently over time

based on differences of gaussians. Those methods are limited in the sense that they

do not provide any parametrization of lines; there is thus no trivial method to stylize

the extracted primitives.

Renderings performed from image-space extracted primitives thus give a strong

impression of a canvas painted frame by frame that loosely represents some infor-

mation coming from the scene (at least colors). Therefore, they give little cues about

16 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

shape, hence abstracting the depicted scene and focusing on the picture plane: For

instance, they allow to group objects under a single primitive (think of a forest in

the background, represented with a single color region), resulting in more view-

centered representations. Some methods are also highly dependent on the extrac-

tion of the 2D primitives they follow, which results in the need for manual editing and

creates problems at image borders.

Figure 1.13: Two decal strokes examples of the WYSIWYG NPR system from Kalnins

et al [Kalnins 02].

Object-space primitive mapping Object-based techniques offer another metaphor

that gives more importance to the representation of scene properties. Their main idea

is to distribute scene primitives onto surfaces that will later be projected onto the pic-

ture plane and used to draw paint strokes. One possibility is to lay down paths onto a

surface and use their visible projection from a given viewpoint to draw strokes. This

approach has been investigated in systems such as WYSIWYG NPR [Kalnins 02] or

Deep Canvas [Daniels 99]. The resulting “decal strokes” stick to the depicted shape

and tightly follow its motion, ensuring good temporal coherence (see Figure 1.13).

Their style is usually set by the user in a pre-process, and to deal with density is-

sues, levels-of-detail can also be provided manually. This approach is very efficient

for representing some surface pattern or texture. However, for the dense distribu-

tions of strokes usually found in painterly renderings for instance, it imposes many

constraints on the user side: The specification of paint strokes is a tedious process

if one wants to deal with density issues and style variations, and, due to perspective

projection, there is no way for the user to predict the 2D shape of the paint strokes in

advance.

A specific category of paths are the ones corresponding to contours of an object.

Their main use is in depicting shape with an economy of primitives. There exists a

vast literature dealing with the subject, and various subcategories of contours as well.

For a deep treatment, the interested reader is referred to the survey by Isenberg

et al. [Isenberg 03]. To summarize, three main classes of contours are frequently

used in expressive rendering: silhouettes, suggestive contours and ridges & valleys.

Silhouettes (see for instance [Northrup 00], Figure 1.14(a)) broadly correspond to the

loci of points separating the visible portions of a surface from its invisible portions

(some formulations extend this definition to hidden silhouettes); Thus silhouettes

1.3. PREVIOUS WORK 17

(a) (b)

Figure 1.14: Silhouettes extracted and stylized with (a) the technique of Northrup et

al. [Northrup 00] and (b) the technique of Kalnins et al. [Kalnins 03]

are inherently view-dependent and have to be updated for each frame. Suggestive

contours [DeCarlo 03] extend the notion of silhouettes by considering the points that

would be part of the silhouette in a nearby view, and are thus also view-dependent.

Ridges & Valleys (see for instance [Yoshizawa 05]), on the other hand, correspond to

loci where principal curvatures are local extrema, and are thus independent of the

viewpoint; Note that creases can be considered as extreme cases of ridges & valleys.

The choice of a class of lines to render is not an easy one: they are not mutually

exclusive, and there is no conclusive evidence that one class is better than another.

Another problem is that for view-dependent primitives, there is no trivial way to

assign a temporally coherent parametrization, and thus stylization is not an easy

task either. Kalnins et al. [Kalnins 03] proposed an efficient method to deal with

this problem via an hybrid technique that works both in object and image space (see

Figure 1.14(b)).

Figure 1.15: Two frames from Meier’s painterly animation system.

Another possibility is to use particles on surfaces instead of paths. This time, the

projected particle in the picture plane becomes a point to which a paint stroke, for

example, is anchored. This method, first introduced by the pioneering work of Meier

[Meier 96], has the advantage of giving many more degrees of freedom during stroke

drawing (since only the position of the strokes is constrained), while ensuring tem-

poral coherence because of the coherent motion of the 3D particles (see Figure 1.15).

However, the selection of a viewpoint is limited in Meier’s initial system: no den-

sity management is performed, limiting viewing to a small range of zooms and a

18 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

few rotations. View-dependent methods that deal with stroke density have been in-

vestigated for stippling [Cornish 01, Pastor 03], paper effect [Kaplan 05], watercolor

[Bousseau 06] and painterly rendering [Chi 06]. They use a pre-computed hierarchy

of particles that is pruned depending on the current viewpoint. Between two consec-

utive frames, particles may be added or removed from the hierarchy, thus producing

poppings when the corresponding stroke is introduced or removed from the render-

ing. To reduce these temporal artifacts, the authors make use of transitions that

are usually specific to the type of strokes they consider: In [Cornish 01, Pastor 03],

only black point strokes are considered and they appear and disappear by varying

their thickness; In [Kaplan 05, Bousseau 06], the strokes represent paper fibers or

pigments, have fixed attributes independent of the scene and are simply blended; and

in [Chi 06], strokes are represented by tonal art maps [Praun 01].

(a) (b)

Figure 1.16: (a) Pen and ink rendering of trees [Deussen 00b] exhibit implicit regions

in the foliage (b) Watercolor rendering [Luft 06] where blobby particles are merged to

create regions.

Such particles can also be used to create region primitives. An early method of

Deussen et al. [Deussen 00b] used this technique to create abstracted foliages of trees

in a pen and ink style, by agglomerating particles (leaves) both close in the picture

and in depth (see Figure 1.16(a)). Another method is the one of Luft et al. [Luft 06]

that creates blobby regions at each projected particle; these regions are agglomerated

to create a bigger region that will be later filled with a watercolor rendering technique

(see Figure 1.16(b)). Bousseau et al [Bousseau 06] take a complementary approach,

where each particle holds a spot of low- or high-frequency noise, that mimics the

inhomogeneous diffusion and pigmentation of watercolor respectively.

Renderings performed from object-space mapped primitives tend to emphasize

more properties of the scene than properties of the picture plane. The resulting pic-

ture primitives motion is tightly attached to that of objects in the scene, and depend-

ing on the chosen technique (paths in particular), they can reveal important shape

cues. Hence they produce more object-centered representations.

Mark implementation Once picture primitives have been chosen, there are many

different ways to implement them using what we called marks in the previous section.

1.3. PREVIOUS WORK 19

(a) (b)

Figure 1.17: (a) Simulation of thick paint (impasto) by Baxter et al. [Baxter 04]. (b)

Mimicking of an impasto effect by Hertzmann [Hertzmann 02a]

Most of the previous work concentrated on simulating or mimicking traditional media

like oil paint, acrylic, pen and ink, watercolor, etc. However, the choice of a particular

model is rather independent of the previous stages: Maybe the only requirement is

that it does not introduce any temporal incoherence. Here, we will only scratch the

surface of possible techniques. For a deeper treatment of the subject, the interested

reader might consult the survey by Hertzmann [Hertzmann 03].

Concerning medium simulation, three important papers are the watercolor dis-

persion model of Curtis [Curtis 97], the ink dispersion model on absorbent paper by

Chu et al. [Chu 05], and the impasto techniques of Baxter et al. [Baxter 04] (see

Figure 1.17(a)). A problem with approaches based on simulation is that, if they are

recomputed for every frame of an animation, there is no guarantee that the result

will be temporally coherent. Moreover, the degree of control is more oriented towards

interaction than animation: The final look is governed by the dispersion simulation,

making it hard to control it procedurally; But at the same time, the medium “reacts”

to user interactions in real time for most approaches, making them very efficient as

interactive tools, with all the advantages of computer graphics (e.g. undo/redo).

Recall that simulation is not necessary for producing expressive renderings, and

this is especially true for animation. A more important aspect is the degree to which

the style of a representation can be finely designed, and reproduced in an animation

with temporal coherence. With this idea in mind, previous work concentrated on cre-

ating simple yet efficient models of media. The most widely used is the skeletal stroke

model of Hsu et al. [Hsu 93]. To represent a brush stroke, they simply use a triangle

strip with a texture and a bunch of parameters like thickness, length, and curvature.

This model has an interesting extension described by Hertzmann [Hertzmann 02a],

that re-creates the impasto effect found in oil paintings for instance, via the use of

height fields(see Figure 1.17(b)). It would be interesting to depart from traditional

techniques and invent new “media” with new properties that would not be feasible

with traditional techniques.

20 CHAPTER 1. HOW TO CREATE EXPRESSIVE IMAGE SEQUENCES ?

1.4 Contributions

The use of a model of representation in Section 1.2 both helps to better understand

how to transfer essential qualities of traditional paintings and drawings to expressive

rendering techniques, and to organize previous work in this field based on how an

approach fit in each of the four representation systems. It also allows us to define

new research directions, by pointing out schema present in traditional techniques

that have not yet found their counterpart in expressive rendering. The next three

chapters present such contributions.

In Chapter 2, a new attribute mapping method is presented in the form of an ex-

tended toon shader. Its goal is to give an intuitive control over the color attribute

(expressive shading) based on other attributes such as surface depth, surface orien-

tation, distance to a focus point, material specularity, or even motion flow. This way,

it allows common color effects found in traditional techniques (or schema) to be easily

incorporated in any expressive rendering system by the means of a simple shader.

Examples of schema include aerial perspective to reveal depth, abstraction of colors

found near silhouettes to soften or harden shape, decrease of contrast or opacity away

from a focus point in order to emphasis some surface region, and stylization of high-

lights to suggest material properties.

In Chapter 3, we focus on painterly rendering with individually perceived paint

strokes and address some of the limitations found in previous approaches: Meier’s

work is extended to dynamic lighting and viewing environments, without imposing

any particular constraint on the style of marks to draw. To do that, we perform a

density management coupled with a stroke marching technique: Paint strokes are

drawn at locations defined by the density operator, with the style provided by the

user, as long as the important features of the scene are conserved. This performs

a trade-off between a low-level style to represent and the scene elements to depict.

Temporal coherence is ensured both during density management and stroke drawing,

with a particular care on stroke insertions or deletions. We also designed our system

to be an explicit instance of the representation model.

Finally, in Chapter 4, we present an alternative metaphor that has seldom been

addressed in previous work: the depiction of tone via stroke patterns like hatching,

half-toning and screening. This schema is extremely common in comics and in tradi-

tional illustration, as discussed in the beginning of this chapter. However, its exten-

sion to animation is not straightforward since a stroke pattern is a (large) 2D primi-

tive that is supposed to follow the complex motion of a 3D object. The main difficulty

is thus in the primitive mapping and its temporal coherence during animation. We

show that an optimal pattern mapping can be created and illustrate it with various

pattern styles that depict tone in different ways.

We close this Part on animation by discussing how available techniques might be

enriched in order to allow more and more intuitive control on the user side, which

leads us to consider computer depiction as an optimisation process. In particular, we

consider the role of low-level visual perception in such an optimisation as an objective

to seamlessly fuse user intention and scene features in motion.

Chapter 2

An extended toon shader for

attribute mapping

(a) (b) (c) (d) (e) (f)

Figure 2.1: Some example effects achieved by our extended toon shader: Continuous

levels of abstraction (a); Abstraction of near-silhouette regions: Smoothing (b), and

opacity (c); Back-lighting (d); And highlighting: Plastic (e), and metal (f).

Our first contribution focuses on the single most important attribute of the ex-

pressive rendering pipeline, color, and to this end we extend an existing technique:

cartoon shading.1 Note that the presented approach is able to improve any expressive

rendering system, regardless of the style represented. Indeed, any renderer, even a

photo-realistic one, has to define the color of its final marks. More precisely, we target

an intuitive design tool to control color based on other attributes such as depth or

orientation.

Over the past decade, “toon” shading has proved popular in a variety of 3D render-

ers, video games, and animations. The idea is simple but effective: extend the lam-

bertian shading model by using the computed illumination (a dot product between a

light vector and the surface normal) to index into a 1D texture that describes how the

final shading varies from “dark” to “light” regions. The designer controls the behavior

of the shader by creating a 1D texture, typically composed of two or three regions

of constant color, to mimic the flat regions of constant colors found in comics and

1This work was done during an EURODOC internship at the University of Michigan, in collab-

oration with Professor Lee Markosian, and my co-advisor Joëlle Thollot. It has been published in

the International Symposium on Non-Photo-realistic Animation and Rendering (NPAR) in 2006, see

[Barla 06c].

21

22 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

traditional animation. Toon shading can be implemented efficiently via vertex and

fragment programs on modern GPUs.

Toon shading however suffers from several limitations. First, it does not reflect

the desired level of abstraction (LOA) of a surface. Such LOA behavior plays an im-

portant role in traditional media, however. Often, some objects are considered less

important (e.g., characters in the background) and thus are depicted with greater

abstraction [McCloud 94]. In paintings and drawings, an effect known as aerial per-

spective makes objects in the background appear desaturated and less detailed than

those in the foreground. And in scientific illustration, a technique similar to depth-

of-field is used to focus on a region of a shape by decreasing contrast or opacity in

less-important or “out-of-focus” parts of the surface [Wood 94].

Second, conventional toon shading is view-independent, and so cannot represent

plastic or metallic materials, for which view-dependent highlights are of primary im-

portance. Similarly, it cannot support the view-dependent back-lighting effects, often

used in traditional comics and animation, in which a virtual “back light” illuminates

the surface near the silhouette.

Finally, in conventional toon shading, every surface location is rendered with full

accuracy, so that even small shape features are depicted by the shading (at least for

some light directions). This can be desirable, but often designers working tradition-

ally apply a degree of abstraction so that small shape features are omitted. A similar

ability to depict an abstracted version of the shape is thus desirable in an automatic

toon shader.

To meet these goals, we present X-Toon, a toon shader that supports view-dependent

effects through two independent extensions to conventional toon shading. The first

incorporates a notion of tone detail, so that tone varies with depth or orientation

relative to the camera. For this, we replace the conventional 1D texture used in toon

shading with a 2D texture, where the second dimension corresponds to the desired

“detail” (see below). We describe several ways to define the additional texture coordi-

nate.

Our second extension, presented in Section 2.3, lets us vary the perceived shape

detail of the shading. We achieve this by using a modified normal field defined by in-

terpolating between normals of the original shape and normals of a highly abstracted

shape. This approach has the advantage of abstracting the shading from a shape,

while preserving silhouettes.

Note that “detail” here corresponds to visual abstraction: less detail means greater

abstraction. We use the term LOA instead of LOD to emphasize that our goal is

visual abstraction, not increased rendering speed (the usual motivation for LODs in

computer graphics).

The main contribution of this work is a simple, unified approach that lets a de-

signer intuitively achieve a variety of effects, including those that rely on correlating

desired tone detail with the underlying tone value, as explained in Section 2.2.

2.1 Previous Work limitations

Mip-maps provide one means of taking depth into account as an attribute. Klein

et al. [Klein 00] used specially constructed mip-maps (called “art maps”) to achieve

constant-sized strokes in textures applied to 3D scenes. The “tonal art maps” of Praun

2.2. TONE DETAIL 23

et al. [Praun 01] extended this approach to take lighting into account in hatching

patterns.

We could similarly define specialized art maps for the management of 1D toon

textures with LOAs. Instead, we prefer a more general approach where a 2D texture

represents an ordinary toon texture at a continuous range of abstraction represented

by the added dimension. This way, the LOA selection mechanism can be more general

than the fixed depth-based computations used in mip maps. It also lets designers

create LOA toon textures directly as 2D images, e.g. by painting them in a paint

program. The only requirement is to understand that the 2 dimensions of the texture

correspond to tone and LOA, respectively. This approach retains the simplicity of

the classic toon shader and does not constrain the designer with a set of predefined

behaviors and discrete LOAs.

Anjyo el al. [Anjyo 03, Anjyo 06] described techniques to add stylized highlights to

a classic toon shader, thus taking viewing orientation into account. Their technique,

which acts on top of a toon shader, supports abstraction of highlights through the use

of translation, rotation, splitting and squaring operations. Other methods could be

devised to control the highlights independently of the tone computation (e.g., using a

1D highlight texture). However, once the properties of a highlight (e.g., size, softness,

color) are chosen, they remain the same under any viewing condition. Thus, the

method of Anjyo el al. only considers highlights with hard contours, a single color and

a fixed size. Our approach offers the ability to correlate properties of the highlights

with the tone value, in a way precomputing the response of the highlight to changing

viewing conditions: highlights can change in softness, color and size dynamically.

We now describe our first extension to the classic toon shader: tone detail.

2.2 Tone detail

We extend the classic 1D toon texture by adding

a vertical “detail” axis (corresponding to LOA) to

build a 2D toon texture. The horizontal axis cor-

responds to tone as in a classic toon texture – the

texture coordinate along that axis is derived from

a standard lambertian shading computation: n · ℓ,
where n is the unit surface normal and ℓ is the

unit light direction. The vertical axis corresponds

to tone detail: each value along this axis (labelled

D for detail) corresponds to its own 1D toon tex-

ture. The whole 2D texture can thus be regarded

as a stack of 1D toon textures with increasing “de-

tail.” The designer is free to create this 2D tex-

ture using any image processing or painting tools

available. We generally found it convenient to start with a standard 1D toon tex-

ture at D = 1 and apply image processing transformations down the D axis to account

for detail loss. We provide many example textures that have been created with this

approach, and we demonstrate the resulting behavior of the extended toon shader.

Once the 2D texture is defined, the designer must choose an attribute (e.g., orienta-

tion or depth) that will control the tone detail, and provide functions called attribute

24 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

maps that map the attribute to a detail value D at each location on a surface. This

formulation is general in that any attribute can be chosen, depending on the applica-

tion goals.

In this work, we consider view-dependent attributes. In the next two sections we

describe how to compute depth-based and orientation-based attribute maps to achieve

LOAs, aerial perspective, depth-of-field, back-lighting, and specular highlights.

2.2.1 Depth-based attribute mapping

We consider two ways to define the “depth” of a point in 3D: we can use its euclidean

distance to the viewpoint, or its distance along the focal axis (see Figure 2.2). The

latter assigns the same depth to all the points that lie in a plane parallel to the

image plane. Depending on the intended effect, one computation or the other may be

preferred. For LOAs and aerial perspective effects, we use distance along the focal

axis; for depth-of-field effects, we prefer distance to the eye.

(a) (b)

Figure 2.2: The depth of a point p relative to the eye can be calculated in two ways:

(a) The distance between the eye and p or (b) the distance along the focal axis.

We derive a detail value D∈ [0..1] from the computed depth z via two user-specified

parameters: zmin, the distance at which the detail starts decreasing, and r > 1, the

scale factor that defines the coarsest detail (greatest abstraction) at distance zmax =
rzmin. To account for perspective projection, we use the following formula for detail

mapping 2:

D = 1− log(z/zmin)/ log(zmax/zmin)

D = 1− logr(z/zmin)

For depth-of-field, we use a different formula for the detail computation: Given a

focus point c in 3D, we compute D as follows 3:

D =

{

1− log(z/z−min)/ log(z−max/z−min), z < zc

log(z/z+
max)/ log(z+

min/z+
max), z > zc

2We assume 0 < zmin ≤ z≤ zmax.
3We assume 0 < z−max < z−min < c < z+

min < z+
max.

2.2. TONE DETAIL 25

with z±min = zc± zmin and z±max = zc± rzmin.

In our implementation, we compute D per vertex in a vertex shader. A pixel shader

performs the 2D toon texture lookup using the value of D interpolated at each pixel.

In an interactive session, the designer can thus experiment with the zmin and r pa-

rameters and set the point of focus, and then observe the resulting behavior of the

X-Toon shader in real time.

Figure 2.5 shows depth-based tone LOA effects using 2D textures created in three

different ways: in (b) we progressively blurred an input 1D toon texture, in (c) we

interpolated between three 1D toon textures with smooth transitions, and in (d) we

shifted and lightened a 1D texture to create a “receding shadows” effect. The LOA

attribute map is shown in (a).

Figure 2.6 shows two examples of a focus-based detail map. The depth-of-field

attribute map is shown in (a), along with the focus point depicted by a small blue

sphere. In (b), we used a smooth two-tone texture that converges to a constant color

with detail loss. In (c), we use a texture that decreases opacity and contrast with

detail loss, and only shadows and highlights are fully opaque. We used these effects

to focus attention on a specific depth range of a mechanical model.

Finally, Figure 2.7 shows a landscape rendered with four different aerial perspec-

tive textures. We created these textures using filters such as decreasing contrast (b),

converging to a specific hue (c), and decreasing opacity (d). We did this independently

for the main tone values (dark, intermediate, and highlights) so that we can correlate

the change made by aerial perspective with a specific tone value (e.g., we make the

intermediate colors more transparent with distance). The aerial perspective attribute

map is shown in (a).

2.2.2 Orientation-based attribute mapping

We next consider an attribute map based on the orientation of the surface with respect

to the observer. With the appropriate choice of 2D toon texture and policy for comput-

ing D, we can achieve effects such as fading of near-silhouette regions, or brightening

and coloring of near-silhouette regions to suggest a virtual “back-light.” We define

the near-silhouette attribute mapping as follows: D = |n · v|r, where n and v are the

unit normal and view vector, respectively, and r ≥ 0 is a user-defined parameter that

controls the magnitude of the effect.

Specular highlights are another view-dependent effect: they depend on the angle

between the viewing direction and the light reflection vector, and the specular prop-

erties of the material. Depending on the chosen 2D texture, we can model various

material highlights intuitively (e.g., plastics or metals). This is better than just com-

positing a specular layer over the ordinary 1D toon shader, because the 2D texture

lets us control the profile of the highlight (smoothness, width, alpha) so that it is cor-

related with the underlying tone. In our implementation, we use the Phong highlight

model to map the highlight attribute values to detail: D = |v · r|s, where r is the light

reflection vector at the current surface location and s≥ 1 is the “shininess” coefficient

set by the designer to control the magnitude of the effect.

In practice, it is straightforward to compute these values in a vertex shader. For

accuracy reasons, however, we pass the relevant vectors to a fragment shader where

they are interpolated before being used in the detail computation.

Figure 2.8 illustrates how we can use the orientation detail map (shown in (a)) for

26 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

different purposes. In (b) we use it with a texture similar to the LOA examples in

Figure 2.5 to abstract tonal detail in near-silhouette regions. In (c), we make the sur-

face fade out in near-silhouette regions to yield a “fuzzy” appearance. A different 2D

texture is used in (d) to produce an effect we call “backlighting”. With the appropriate

choice of 2D texture, the thickness and color of backlit regions can be made to depend

on the tone value of the underlying 1D toon texture.

Figure 2.9 shows three types of highlights (with the detail map presented in (a)).

The first depicts a plastic-like shader, where we control the thickness and opacity

of the highlight directly in the texture. The second shows a metallic-like shader,

where the highlight has a quality of “glowing” suddenly when the camera moves to

a favorable orientation. While the first supports dynamic variation in the size of the

highlights, the second controls the smoothness of tone transitions view-dependently.

A third example modifies the colors that appear near transitions to highlights.

2.3 Shape detail

(a)

(b)

(c)

(d)

(e)

Figure 2.3: For each figure, darkest tones correspond to normals that are oriented

away from the camera. (a) The normals of the input mesh. (b) Smoothed normals

(note the shape details that disappeared in the front of the object). (c) Elliptic nor-

mals whose distribution follows the principal direction of elongation of the object. (d)

Cylindric normals, oriented in the direction of principal elongation. (e) Spheric nor-

mals, highly abstracted from the original model. Note that for every geometric map,

the silhouettes are preserved.

We now describe how to further modify the shading to depict an abstracted ver-

sion of the shape. Note that this extension is independent of the tone detail extension

and is done view-independently. We achieve it by modifying the surface normal field

used in shading computations with a geometric map: we map the input mesh to

an abstracted shape that acts as a lower bound for shape detail. We ensure this ab-

stracted shape has a direct correspondence with the input surface. The designer con-

trols the “abstraction” of shape detail by setting a blending parameter that controls

how the shader interpolates between normals of the input mesh and the abstracted

shape. Note that while normal vectors used in shading calculations are modified, ver-

2.4. DISCUSSION AND FUTURE WORK 27

tex locations are not. This has the important property of ensuring consistency when

combined with other rendering passes.

We describe four types of abstracted shape: a smoothed version of the original

mesh, and an enclosing ellipse, cylinder, and sphere. We show examples of these

abstracted shapes in Figure 2.3, rendered using a simple lambertian shader with the

light at the camera to better visualize the abstraction. The dimensions of the ellipse

come from a bounding box of the input mesh. To map normals from the input mesh to

the sphere, cylinder, or ellipse, we use straightforward analytic mapping techniques.

We create the smoothed mesh using a simple normal smoothing technique, and the

1-1 correspondence between mesh vertices defines the mapping. These four types of

abstracted shapes provide a great deal of expressiveness: they let us “flatten” the

shading in a way that resembles some drawings, paintings and comics. Note that

this manipulation of normals to abstract the shading need not be restricted to toon

shading.

In our implementation, we precompute and store abstracted normals at each mesh

vertex. A vertex shader is used to linearly blend between the input and abstracted

normals using a single (global) weight provided by the designer. The resulting vector

is renormalized in the pixel shader where the toon texture lookup is performed. While

simple, this method works reasonably well, is easy to implement, requires just one

extra normal per vertex, and provides interactive feedback when implemented on the

GPU. Of course, for the shading to be coherent, the normals of the highly abstracted

shape should not exhibit any degeneracies.

2.4 Discussion and future work

We have presented two independent extensions to the original toon shader, aimed at

retaining its simplicity while allowing more general behaviors. An important prop-

erty of the original toon shader is that it is fast. To compare our approach in terms

of efficiency, we have made a set of measurements summarized in Table 2.1. The

rendering time of X-Toon for typical scenes is only about 20% slower than the origi-

nal toon shader, and can thus be used in real-time applications as well as for off-line

rendering.

Model Size Resolution Toon X-Toon Ratio

Mech part 10,000 ◦, 640x480 287 241 1.19

20,000 △ 1280x950 268 222 1.21

David 26,051 ◦, 640x480 94 80 1.18

49,998 △ 1280x950 90 76 1.18

Terrain 105,152 ◦, 640x480 33 28 1.18

208,962 △ 1280x950 32 27 1.19

Table 2.1: Run-time performance (in frames per second) and ratio of toon to X-Toon

frame rates for three different models (◦ = vertices, △ = triangles) at two different

resolutions. These measurements were made on a Pentium 4 with ATI Radeon 9800

GPU.

Although we have focused in our approach on view-dependent attributes, our sys-

tem can easily be extended to handle other attributes. For example, we can use optical

28 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

Figure 2.4: We show six frames of a small animation where coarser detail is automat-

ically selected where the magnitude of optical flow is higher. We used the receding

shadow texture from Figure 2.5.

flow to assign less detail to objects as they move faster in image space. To implement

this method, we store the world-to-pixel matrix from the previous frame and use it

to compute a per vertex displacement vector, measured in pixels. We use the length

of this vector to assign a value to D (See Figure 2.4). In future work, we plan to in-

vestigate additional attribute detail maps, e.g. based on haloing, labeled importance,

points of interest, cast shadows or reflections, and find a way to combine them effi-

ciently.

Our geometric mapping is similar to the one developed by Ni el al. [Ni 06], ex-

cept that they interpolate normals and positions using a local detail map, and they

support the use of multiple shapes (not just two) representing distinct levels of detail.

Applying similar ideas in an X-Toon shader is one possibility for future work. Another

possibility is to take inspiration from Anjyo el al. [Anjyo 03, Anjyo 06], and use light

vector fields to control the shape of highlights. We could also consider ways to control

detail parameters over time (via key-framing, e.g.) as was done in the same paper.

We have only considered a single global weight to interpolate between the original

and abstracted normals. A more flexible approach would be to control shape detail

using a locally varying weight. This varying weight could be provided by the designer

via a texture painted on the surface, or through an attribute map similar to those we

have described for controlling tone detail. Controlling shape and tone detail via the

same attribute maps may make sense in terms of providing more consistency in the

resulting shading.

As future work, we plan to implement a layered version of X-Toon, with each layer

controlling a single effect via tone and shape detail. Layers can then be compos-

ited using classic blending operations like in image processing softwares; they can

be kept separate and run through the primitive system, up to the mark system, so

that not only attributes are layered, but also the whole final representation. This

last approach has a strong similarity with traditional painting and drawing layering

methods discussed in Chapter 1, and has also perceptual justifications as discussed

in Chapter 5.

Finally, many similar tools are awaiting to be designed to intuitively control other

attributes. For properties related to illumination (like shadows, highlights, translu-

cency, etc), it seems that a layered version of X-Toon would be appropriate. However,

one might want to design alternative tools more tailored to other attributes such as

depth, where X-Toon might not be adapted. It would then be interesting to combine

various tools into a versatile attribute system.

2.4. DISCUSSION AND FUTURE WORK 29

(a) (b)

(c) (d)

Figure 2.5: Some examples of the venus model rendered at various LOAs, with the

corresponding toon textures on top. (a) shows the LOA detail map. In (b), we use a

blurred texture to smooth out the shading with distance; in (c), we mimic a discrete

LOA behavior using a texture with smooth steps along the detail axis, hence control-

ling the interpolation behavior; in (d), we make a receding shadow effect by sliding

the darker tones to the left of the toon texture along the detail axis.

30 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

(a)

(b)

(c)

Figure 2.6: Some examples of depth-of-field shading, with the depth-of-field detail

map presented in (a) (the blue sphere corresponds to the focus point): In (b), we use

a blurred texture; In (c) we use a texture in which contrast and opacity are decreased

for intermediate tones.

2.4. DISCUSSION AND FUTURE WORK 31

(a) (b)

(c) (d)

Figure 2.7: Aerial perspective effects, with the aerial detail map shown in (a). The

first texture in (b) blends from a green-to-brown color ramp to a more uniform one

consisting of brown tones; The second one, in (c), applies a desaturation and shift

toward pink hue, with darker tones modified prior to lighter ones. While in (d), it

decreases alpha and saturation, keeping only light gray shadows in the background.

32 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

(a) (b)

(c) (d)

Figure 2.8: Near-silhouette abstraction and back-lighting. (a) shows the orientation

detail map. In (b), we use a texture where intermediate tones are blurred prior to

dark or light ones; this has the effect of smoothing out the shading in near-silhouette

regions so that hard boundaries are only visible in regions facing the camera. In (c),

the same approach is applied, this time to decrease opacity of the shading except for

dark tones; this gives a fuzzy rendering of the model. In (d), we apply a simple white

back-light that grows thiner in darker tones; we can thus control the thickness of the

back-lighting by moving the light.

2.4. DISCUSSION AND FUTURE WORK 33

(a) (b)

(c) (d)

Figure 2.9: Plastic and metal highlights. (a) shows the highlight detail map. In (b),

we use a highlight texture that decreases in width, but is static with respect to color

(white) and profile (hard boundaries); this gives a plastic toon highlight that varies

in size depending on the viewing configuration. In (c), we use a texture that creates

a “glowing” highlight, resembling a metallic material; this highlight is only present

when the view direction is close to the reflected light direction, making the highlight

appear suddenly, like a flare. In (d), we modify the color of the highlight, making it

redder near its boundaries when it reaches a given scale.

34 CHAPTER 2. AN EXTENDED TOON SHADER FOR ATTRIBUTE MAPPING

Chapter 3

A painterly rendering metaphor

Figure 3.1: Left: when applied with an arbitrary style (here strokes have a common

global orientation), previous painterly rendering methods fail to preserve scene colors

and silhouettes; Middle: using our approach, we can keep those cues in the rendering;

Right: a main benefit is then to be able to use various styles (here strokes follow

silhouettes) while still correctly representing the scene.

In the previous chapter, we investigated a specific, though crucial, aspect of the

representation model: color design in the attributes system. We now present an ex-

plicit instance of Willats and Durand model that aims at producing what has been

called painterly rendering in the expressive rendering literature, and has first been

introduced by the influential paper of Meier [Meier 96]. The development of the pre-

sented system have been jointly realized by David Vanderhaeghe, PhD student in

ARTIS (my research team) and myself. For the sake of clarity, I will present the sys-

tem as a whole, but will also point out what specific aspects have been developed by

David, myself or both of us. 1

Painterly rendering is a technique that takes inspiration from traditional paint-

ings, usually focusing on effects similar to those achieved with oil or acrylic paint,

where the individual brush strokes are more or less perceived individually (media

such as watercolor introduce other issues such as the diffusion of pigments). The

main idea is to render a scene projected on the image plane by a set of 2D vector

paint strokes holding style attributes (color, texture, etc). This representation has

the effect of abstracting the rendering by using primitives larger than pixels, and em-

phasizing the 2D nature of the resulting image. Its main advantages over traditional

1This work has been published as a technical sketch at the SIGGRAPH conference in 2006, see

[Vanderhaeghe 06]. An extended version of the system is also in the process of submission.

35

36 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

painting reside in the possible creation of painterly animations: the automatic dis-

tribution of strokes makes the approach tractable, and the strokes motion is easily

controlled where it is almost impossible to ensure a coherent motion by hand.

A natural question that arises with painterly rendering for animation is “what

information does the configuration of paint strokes in the plane represent ?” As with

the traditional painting and drawing techniques we described in the previous chapter,

they simultaneously represent information about objects in the scene (such as shape

or reflective properties of a surface from the current point of view) while following

a stroke style provided by the user (straight or curved brush strokes, thick or thin

outline, etc). During the animation they also follow the 2D or 3D motion of some scene

elements. The main issues in painterly rendering comes from these conflicting goals

(as stated by Durand [Durand 02]). Temporal coherence of the strokes motion is

of primary interest: it arises when one wants to link the motion of a 2D primitive (a

stroke) to the motion of a 3D primitive (e.g. a surface). Another important aspect is

the density of strokes: when zooming in or out from an object, the number of strokes

used to represent it must increase or decrease in order to maintain a uniform density

in the picture plane while keeping a constant thickness in image space. Finally, an

ideal painterly renderer would let the user fully specify the strokes style in a way that

is independent of the depicted scene, but at the same time should ensure that some

properties of the scene are well-represented, such as object silhouettes or lighting.

We propose an interactive system that takes inspiration from previous methods

to deal with temporal coherence and density issues, and extends them to lessen the

constraints on strokes style specification. The user is then free to design strokes in

his own way, while the system ensures a consistent scene depiction at each frame,

thus allowing more expressiveness in painterly renderings.

3.1 Previous work limitations

In Chapter 1 we reviewed different metaphors for expressive rendering. Of particu-

lar interest to painterly rendering are the methods that deal with paths or particles,

because these primitives can be directly implemented via paint strokes. However, if

one aims at producing painterly renderings where the whole picture plane is covered

with paint strokes for any arbitrary view, then the use of paths becomes quickly in-

tractable: Indeed, the user then has to draw paths that cover every surface for enough

viewpoints. The use of approaches based on particles then seems a more reasonable

choice for such a class of renderings: The user controls the rendering only at a global

level, by setting strokes attributes and density, and they are then automatically ren-

dered at runtime.

The first work to introduce the idea of using particles for painterly rendering is

Meier’s system [Meier 96]. The key idea is to distribute particles on a 3D model.

Then for each frame of an animation, particles are projected to the screen and embod-

ied by paint strokes that take their attributes from off-screen buffers. No visibility

test is performed, thus strokes are drawn by a painter algorithm, in back to front or-

der. The essential advantage of this approach is to guarantee temporal coherence: All

the particles of a model are always embodied by a stroke, although they may be over-

lapped by closer particles in depth; Thus there is no insertion or deletion of particles,

and the corresponding strokes evolve coherently.

3.2. OVERVIEW 37

However, it imposes a complete coverage of a surface by paint strokes, unless

strokes corresponding to back-facing particles may appear. The choice of the parti-

cles density is then important in order to guarantee coverage, and it is done in a

pre-process. The drawback is that the resulting rendering will ensure a full coverage

only for a small number of viewpoints, for instance nearly forbidding zooming opera-

tions. Note also that the set of attributes have to be carefully chosen so that strokes

do not “stick out” of the silhouette; In practice, Meier defines orientation as a vector

field aligned with surface silhouettes and uses rather short strokes. Finally, in order

to represent illumination, the author creates various color layers that are embodied

by different sets of strokes, which restricts the rendered scenes to static illumination.

Recently, two new approaches extended the work of Meier to deal with the above-

mentioned limitations. Sperl [Sperl 04] first extended the method to work in real-

time. To this end, he used the recent advances made with graphics cards, and pro-

posed a simple behavior for paint strokes in order to keep a full coverage when the

viewpoint moves: Their thickness grows during “zooming in”. This behavior, however,

is in conflict with the idea of paint strokes lying onto the picture plane. We also use

the GPU to create interactive painterly animations, but we propose a more elaborated

scheme to deal with density.

Another approach has been proposed by Chi et al. [Chi 06]. They use a hierarchy

of bounding spheres to distribute their particles, and thus allow for a dynamic density

management at runtime. They treat density events (insertion and deletion of parti-

cles) by proposing smooth transitions made possible by Tonal Art Maps [Praun 01].

Moreover, in order to ensure that the final strokes do not cross any texture or object

boundary, they compute a color segmentation in pre-process that is used to direct

the bounding sphere hierarchy and they use maximum curvature directions to orient

strokes. We take inspiration from their work for density management, but without

restricting attributes to any precomputed values. The resulting system thus offers a

broader range of painterly styles and is fully dynamic: Both viewpoint and illumina-

tion can vary, and the rendering will adapt to those changes.

3.2 Overview

extraction

Attributes

distribution

Particles Anchor points

distribution

Painterly

rendering

attributes
Stroke

User
parameters

Attributes

transfer

 Stroke

positions

3D scene
+

Distribution stage

Attribute stage

G-buffers

3D points

Strokes drawing

 stage

Figure 3.2: Our painterly rendering pipeline. The scene to be rendered is passed

to two parallel stages: one transfers attributes from the scene to strokes attributes;

the other distributes anchor points in the picture by projecting particles from the

3D object. Finally, strokes are drawn at anchor points locations using transfered

attributes, while keeping color and depth cues.

We present an object-space, particle-based system that extends Meier’s approach

38 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

[Meier 96]. Our main contribution is a fully view- and lighting-dependent behav-

ior that explicitly performs a trade-off between a user-specified stroke style and the

faithful representation of the depicted scene. This way, our system offers a broader

expressiveness to the user by removing the constraints usually found in previous ap-

proaches.

In order to draw a stroke, the system needs to set its 2D position and its attributes

(color, orientation, size). Our pipeline therefore consists of three main stages: at-

tributes, distribution and stroke drawing (see Figure 3.2).

The attributes stage (see Section 3.3) takes as input the 3D scene and computes

the scene attributes using G-buffers [Saito 90]. Attributes such as normals or curva-

ture can be used to control stroke attributes, e.g. orientation and thickness. Moreover,

our painterly system works at a specific scale. Indeed, we mimic the use of a paint

brush: since details smaller than the brush thickness cannot be represented, we pro-

pose to remove them and we call this minimum detail size the painting scale.

The distribution stage (see Section 3.4) takes as input the 3D scene, distributes 3D

particles over the scene surfaces and for each frame projects a subset of the particles

to compute the strokes positions while ensuring a complete coverage of the image.

This way our system allows to control stroke density by means of a view-dependent

particle distribution.

Finally the stroke drawing stage (see Section 3.5) takes as input the 2D strokes

positions, attributes and a set of user-defined parameters: length, bending, orienta-

tion, texture, etc. Strokes are drawn starting from their 2D position with attributes

taken at this 2D point in the attributes G-buffers or set globally by the user. As

strokes attributes remain constant over the drawing, we ensure that the important

details of the scene are kept by cutting off the strokes whenever the underlying at-

tributes become too different from the starting ones. To measure this incoherence we

use a user-specified threshold that controls the maximum allowed distance between

starting position attributes and current position attributes.

Compared to Meier’s work, each stage provides improved functionality: A large

freedom for the choice of strokes attributes, a view-dependent density management,

and a faithful representation at a given painting scale. Most of the work is done on

the GPU allowing to obtain a dynamic painting algorithm that bears some similarities

with traditional painting techniques and runs at interactive frame rates.

In the following we present each stage in detail before showing some results and

discussing our method. While I implemented the attributes stage of Section 3.3,

David Vanderhaeghe is responsible for the development of the distribution stage in

Section 3.4, and we combined together the outputs of each stage into the drawing

stage of Section 3.5.

3.3 Attributes stage

How scene attributes are mapped to picture attributes defines what the paint strokes

represent. We thus provide the user with a set of modules, implemented with shaders

on the GPU, to design this pipeline stage. As already mentioned, rendering a scene

with paint strokes has the effect of abstracting the representation: details smaller

than a user-defined painting scale that we denote ε cannot be represented and should

be omitted. This scale is set by the user and represents the maximum thickness of the

3.3. ATTRIBUTES STAGE 39

painting strokes. Color and depth are therefore treated in a specific way: since they

will be used to guide the stroke painting process they must be abstracted to meet the

scale ε. Other attributes can either be chosen by the user or computed from the 3D

scene information. We show how to control strokes orientation and thickness from

normal or curvature properties; but a benefit of our approach is that the attribute

module can be extended to other mappings and the system will still produce faithful

representations of the scene.

3.3.1 Color and depth

Our paint strokes take their color from the underlying scene. Before being used in the

stroke drawing procedure, the color and depth attributes of the scene are abstracted

so that details smaller than ε are filtered out. This ensures a correct depiction of

the shape and reflectance of an object by cutting off the strokes when color or depth

highly vary.

(a) (b) (c) (d)

Figure 3.3: Filtering the color attribute. (a) Color buffer with and without blur. (b)

Painterly rendering without blur. (c) Painterly rendering with blur. (d) A zoom of (b)

and (c).

For color, we use simple materials such as Phong or toon shaders; However, our

method is independent of the chosen material, thus more complex shaders could be

used, like the extended toon shader described in the next Chapter. For depth, we

use depth in eye space: as opposed to Z-Buffer that is perspectively distorted due to

projection, we prefer the depth values to be linearly distributed in eye space. It makes

the control of the depth attribute easier to the user. We render these attributes to G-

buffers that are then filtered using a blur of size ε, computed using a box kernel in a

pixel shader. Figure 3.3 shows the obtained results for the color buffer. Note that the

filtering is only a post-process of the attribute mapping. Therefore other filters could

be added using color processings such as aerial perspective, or depth processings such

as segmentation in depth planes.

3.3.2 Other attributes

Other stroke attributes such as length, orientation, thickness, bending or wiggling

are set by the user as global parameters. These attributes are then optionally jit-

40 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

tered per stroke in order to add randomness to the composition, as proposed by Meier

[Meier 96]. However, instead of being set globally, they can also be mapped from some

scene attributes.

As shown by previous studies [Interrante 97, Girshick 00], strokes orientation can

convey a lot of information about properties of the depicted surface. Following the

previously mentioned work, our system allows the user to set orientations based on

projected maximal principal curvature directions or projected normals. Similarly,

thickness can be modified based on surface attributes such as slant (dot product be-

tween the view vector and the normal vector) or Gaussian curvature (see Figure 3.4).

However, the thickness attribute is constrained to values smaller than ε, unless it

would invalidate color and depth filtering.

The stroke orientation can be assigned either a direction perpendicular to the pro-

jected normal in order to locally align the orientation with the object’s silhouette; or to

the projected principal curvature. Note that when one projects a vector in eye space

(in our case, a normal or principal curvature vector) perpendicular to the picture

plane, the resulting projected vector is null, hence giving no orientation information.

We thus modulate the length attribute so that it is equal to the thickness attribute

when the projected vector is null. Once projected onto the picture plane, the user can

also uniformly rotate the resulting orientation by hand.

(a) (b) (c)

Figure 3.4: Orientation and thickness can be assigned either a global value (a), or

computed from the surface normal (b) or curvature (c). For illustration purposes,

we use on top artificial strokes (dots for thickness and segments for orientation) dis-

tributed along a grid in image space and show the final result with strokes.

The stroke thickness can be assigned either the slant or the curvature magnitude,

normalized between 0 and 1. The thickness is thus reduced along silhouettes or in

areas of high curvature. However, reducing the thickness size will have an impact on

the painting coverage, as discussed in Section 3.4. Like with orientation, the user can

finally alter the weight of this modulation, hence controlling the minimum thickness

values in the rendering. Note that our curvature extraction suffers from the resolu-

tion of our input meshes, and we plan to use radial basis function to smooth it out in

the future.

3.4. DISTRIBUTION STAGE 41

3.4 Distribution stage

From a given viewpoint we want to distribute enough strokes in the image to cover the

represented 3D scene. We also want to ensure a temporal coherence of the strokes,

that limits as much as possible the appearances/disappearances of strokes. In this

stage, our goal is then to distribute particles on a model so that, when projected in the

picture plane and embodied by strokes, the resulting painting ensures the coverage

requirement.

Our method works in two steps: First we compute a spatial hierarchy per object

of the scene that ensures a nearly uniform spatial distribution of the 3D particles.

Second we select the 2D points (projected particles) necessary to cover the image

from a given viewpoint by traversing these hierarchies.

(a) (b) (c)

Figure 3.5: (a) In a preprocess, 3D particles are distributed over the mesh and or-

dered in a hierarchy using an octree. (b,c) At each frame a subset of particles are

selected by cutting the hierarchy so that drawn strokes cover the represented objects.

In (b) one particle is enough whereas in (c) one more level of the tree has to be selected

or added via subdivision to cover the object.

3.4.1 Hierarchy construction

Several methods exist to build a spatial hierarchy of a 3D object. In our case we want

to be able to treat any kind of 3D meshes (without imposing a particular resolution for

example). However, the coverage requirement forbids us to compute a static hierarchy

because we do not know in advance how many particles will be needed. Previous

work [Pastor 03, Cornish 01] already addressed a similar question by simplifying and

subdividing a mesh to compute a hierarchy of particles. However they both built the

hierarchy as a preprocess and thus were not able to treat all the possible viewpoints.

Moreover their mesh simplification procedures did not ensure that the particles of a

given level would uniformly cover the mesh.

Our method overcomes these limitations by using a different simplification proce-

dure and a runtime subdivision mechanism. One particle is created at the center of

each triangle of the mesh, and is slightly jittered. Then an octree is built until each

leaf contains a single particle. A particle is chosen for each internal node among the

particles of its children (see figure 3.5(a)). In practice we choose the particle that is

the closest to the center of the corresponding octree cell. Each cell is then resized to

fit the bounding box of the corresponding subtree leading to a bounding box hierar-

chy. This is done in a preprocess and offers a quasi-uniform spatial distribution of the

particles at each level of the hierarchy. Then at each frame, when a single triangle

42 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

cannot be covered by a single stroke, we add new particles by subdividing this trian-

gle. In this way we obtain a continuous level-of-details of particles and are able to

add as many particles as needed. For a given mesh, the resulting hierarchy is then a

tree where each node and its subtree correspond to a subset of the object that can be

represented by the node’s particle.

3.4.2 Anchor points selection

At each frame, the hierarchy is traversed in level-order to find a cut in the tree that

guarantees that all leaves will be covered by the drawn strokes (see Figure 3.5(b,c)).

No visibility computation is made at this point because it is not required by our draw-

ing algorithm, as explained in the following section.

The traversal is made by means of a queue. The root node is first put into the

queue and then for each child node, if the corresponding particle is needed the node

is added to the queue. The algorithm ends when no more node needs to be added to

the queue. The resulting truncated tree (consisting of the selected nodes) corresponds

then to a view-dependent description of the depicted object.

Deciding when a particle is needed while ensuring enough coherence is not an

easy task. Recall that a node and its subtree correspond to an object part. Ideally,

a node should be selected if the projection of the object part is not already covered.

However, drawing exactly the minimum number of particles such that the strokes

cover the image is very unstable when the viewpoint is moving: a small change in the

viewpoint can reveal many uncovered portions of the surface, and thus trigger the

appearance of new strokes (the inverse problem occurs with disappearances). On the

other hand, drawing too many strokes does not give satisfying visual results due to

exaggerate overlapping: the strokes, then, might not be distinguished.

We thus chose a conservative method that overestimates the number of drawn

strokes but decreases the popping artifacts. A node is selected when the size of the

projection of its subtree is greater than the user selected scale ε (corresponding to the

maximal stroke thickness).

In practice we compute the diameter of the projected bound-

ing box of the subtree and keep the node if this diameter is

greater than kε, with k a factor set by the user that controls

the global coverage of the image. Indeed, in a given bounding

box the particle can theoretically be anywhere, thus a stroke of

thickness ε will surely cover a box of diameter ε/2. Therefore,

k = 0.5 ensures a complete coverage. In practice k≃ 1 is enough

because the particles are in general near the center of the cor-

responding bounding box and k > 1 gives a partial coverage.

Note that when strokes thickness is reduced in the attribute

stage to values smaller than ε, the coverage property cannot

be met anymore; however, the user is still able to manipulate

k to get a satisfying distribution.

Our distribution algorithm allows us to manage the density of strokes in image

space at runtime, as shown in Figure 3.6.

3.5. STROKES DRAWING STAGE 43

Figure 3.6: When we zoom on an object, the density of strokes used to render it should

remain constant; Thus new strokes are introduced. Top row shows the apple model

at the proper scale and we also show the expanded image for illustration purposes.

3.5 Strokes drawing stage

The last stage of our painterly pipeline consists in drawing strokes at locations de-

fined by the anchor points, using the underlying picture attributes and stroke style.

Thickness

Length

Bending

Orientation
x

Figure 3.7: A stroke is modeled by a quad strip that is deformed to meet a set of

attributes.

In our system, a stroke is defined by a set of six attributes: color, orientation,

thickness, length, bending and an alpha texture. The attributes coming from the

scene are taken in the G-buffers at the anchor point position: Color is looked up from

the abstracted colors; Orientation and thickness can come from picture attributes

or be set uniformly by hand like other attributes. Additionally, for each of these

parameters, jittering can be applied per stroke in order to add randomness to the

composition. In practice, a quad strip is passed to a vertex shader that deforms it to

meet the required attributes (see Figure 3.7).

Sorting particles in depth order and drawing them using our procedure results in

paintings similar to that of Meier’s system: if the density of strokes is high enough,

then strokes coming from front facing particles will naturally cover back-facing ones.

However, as shown in Figure 3.8(a), depending on the choice of strokes attributes,

the resulting painting may miss many of the scene details like silhouettes, bumps,

highlights or texture patterns. To overcome this limitation, we introduce a novel

44 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

(a) (b) (c) (d)

Figure 3.8: Drawing the strokes without any cut off (a) hides some important details

of the object. Whereas applying a cut off on depth (b) or color (c) allows to obtain a

faithful depiction of the scene. (d) shows the use of both depth and color cutoffs.

painting behavior that maintains color and depth cues coming from the scene. We

first pick a reference pair of color and depth attributes under the stroke’s anchor

point. Then, growing outward from the stroke center in both directions, we compare

the color and depth found under the stroke’s backbone to the reference color and

depth. If one of the color difference (computed in Lab color space) or depth difference

is greater than a user-defined threshold, we fade out the stroke. This is illustrated

in Figure 3.8(d). The benefit of this technique is to offer a compromise between the

style specified by the user and the scene information to represent. It is performed in

a vertex shader on the GPU, but due to current limitations of the graphics hardware

(vertices can only be modified in a vertex shader, not created), we could not implement

a real stroke marching method. Instead, we evaluate the color and depth differences

for each vertex independently, which might give rise to truncated strokes. But in

practice, we found this approximation to give satisfying results.

Another difference with Meier’s work is that we adapt the distribution of strokes

depending on the viewpoint; this has the effect of making strokes appear or disappear

when an object comes closer or farther from the camera. These density events will

inevitably produce poppings if we do not ensure smooth transitions. We thus add a

new behavior to our dynamic painting algorithm: each stroke is attributed an age

parameter that goes from 0 to 1 after it appears, and inversely from 1 to 0 after it

disappears; then this age is used to temporally fade in or out the stroke.

We illustrate it for a fade in, the fade out being simply the reverse process:

0 Thickness/Length 1

Age

Strokes length is first reduced to their thickness and their alpha is increased from

0 to 1 while age goes from 0 to thickness/length; then, they are grown outward while age

goes up to 1, where they reach their full length. The overall aging process is, again,

done in our vertex shader.

3.6. RESULTS 45

(a) (b) (c)

Figure 3.9: (a) Producing a complete coverage without using visibility gives good re-

sults. (b) However with a partial coverage, back-facing strokes (in purple) appear

if no visibility is computed. (c) We thus add a fuzzy visibility test to discard these

unwanted strokes.

Finally, another property of our strokes distribution is that it does not necessarily

have to fully cover the depicted object; indeed, interesting results can be obtained with

partial coverage, as shown in Figure 3.11. However, in this case, the gaps between

the front-facing strokes will let back-facing ones appear; and they will be even more

noticeable during animations since back-facing particles motion is usually the oppo-

site of front-facing ones. In order to discard these unwanted strokes, we implemented

a fuzzy visibility mechanism: the idea is simply to keep strokes whose depth is within

a fuzzy interval around the z-buffer value found under its anchor point. Such a tech-

nique is more robust than computing an exact visibility because of possible numerical

errors between the particle’s depth and z-buffer values. We recently discovered that

a similar, but more elaborate method has been proposed by Luft and Deussen in their

watercolor rendering system [Luft 06]. However, we found our simple approach to be

efficient enough for the purpose of our painterly renderer, see Figure 3.9. Note that

visibility events produce problems similar to density events; we thus apply the same

aging process in order to smooth them out.

3.6 Results

We show here more results that illustrate some of the styles achievable by the current

version of our system. Depending on the scene complexity, the frame-rate ranges

between 1 and 20 fps; The bottlenecks of the pipeline being the view-dependent anchor

point selection when models are highly subdivided, and the drawing procedure that

slows down when using thin strokes. Some poppings remain during the animation;

They are mainly due to aliasing problems when an attribute is read from a G-Buffer.

Moreover, our drawing procedure is not a real stroke marching algorithm, thus our

solution might lead to unstable behaviors, even if they are lessen by the use of blurred

color and depth buffers.

We first explained in Section 3.4 how our system was able to produce painterly

renderings view-dependently by means of a density management; We now show in

Figure 3.10 how it can adapt to lighting variations over the depicted objects. From

left to right, the Venus model is illuminated from the left, top right and bottom. Note

how the strokes adapt in length to depict big or small scale lighting features.

Figure 3.11 illustrates, on a same model, how various stroke parameters can be

chosen. On the left, the character is rendered with bent strokes that follow silhouette

46 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

lines in order to emphasis the shape. While in the middle, we use short strokes which

thickness vary with Gaussian curvature; And on the right, long strokes are oriented

globally in a diagonal direction in order to abstract the shape.

Finally, different kinds of paint media can be suggested by our system by means

of strokes alpha texture. Figure 3.12 shows three different textures that give very

different painting results. As already noted, strokes parameters should be jittered in

order to be able to perceive them. An important parameter is color, and in order to

stay close to the scene colors, we employ a jittered color in Lab color space. The effect

of jittering is illustrated in Figure 3.13.

Figure 3.10: When the light is dynamically moved by the user, the strokes color and

length adapt to depict features such as highlights or self-shadowing. From left to

right, light is positioned at left, top right and bottom.

Figure 3.11: A same model rendered in three different styles. Left: Strokes orien-

tation is defined from surface normals and strokes are bent along their orientation.

Middle: Short strokes are distributed with a thickness varying with Gaussian curva-

ture. Right: Long diagonal strokes are used to fill in the model.

3.7. DISCUSSION AND FUTURE WORK 47

Figure 3.12: Varying the strokes alpha texture can greatly influence the final look of

the rendering. From left to right, we used scanned textures of pencil, thick paint and

dense watercolor.

Figure 3.13: On this simple scene inspired from Meier’s original paper, we show how

jittering can reinforce the perception of strokes. The right image is rendered with

approximately twice as much jittering as the left one.

3.7 Discussion and future work

Our system could be extended in different ways. First, as shown by Meier, separating

strokes into layers before compositing them greatly augments the creative capabili-

ties of such a pipeline, with different layers for different scales and/or for different

illumination effects. The later requires to be able to incorporate new reflectance cues

like highlights or shadows in the system. Such an extension will be easily added by

means of the extraction of new G-buffers during the attributes stage. In the general

case, it would be ideal to have a generic method to transfer attributes from the scene

to the picture plane, and the extended toon shader presented in Chapter 2 is a first

step towards this generic system.

Another area of future work resides in the distribution of anchor points from a

given point of view. Our current mechanism is similar to splatting techniques (see for

instance [Rusinkiewicz 00]). It does only part of the job though, since ensuring color

and depth cues as we draw strokes is crucial to the quality of the results. A disad-

vantage of our approach is that it tends to place more strokes near the silhouettes

of objects: this is because we do not take surface orientation into account during the

distribution stage. Taking inspiration from the splatting literature would help us to

48 CHAPTER 3. A PAINTERLY RENDERING METAPHOR

better control the strokes density. In the long term, it would be also very interesting

to control non-uniform densities across the picture plane.

Our drawing algorithm could be further extended: In its current version, it only

deals with simple depth and color cues. But it could also have more complex be-

haviors. In particular, we are interested in the painterly rendering of large outdoor

scenes, and with these types of environments, it would be promising to consider ef-

fects such as aerial perspective. Another requirement for the real-time rendering of

large scenes in general is the improvement of the performance of our system: many

optimizations are still possible. Moreover, like in Meier’s approach, we relied on the

alpha texture of each stroke to blend them in the final rendering. It not only hides

the poppings that occur when two adjacent strokes switch their depth order, but also

gives a natural impression of paint matter. This is enough in the context of a simple

paint medium, but would require more attention for other media such as watercolor

[Luft 06] or thicker paint [Hertzmann 02a].

Finally, we would like to point out that our approach is, like Meier’s renderer

[Meier 96] or FreeStyle [Grabli 04b], an instance of the four-representation systems

proposed by Willats and Durand (see Chapter 1). The three stages of our pipeline

correspond to the attributes, primitive and mark stages (for the spatial stage, we

only use perspective). One important aspect of their study is that depiction can be

characterized as an optimization process, between the goals imposed by a style and

the information to carry from the scene, as will be explained in Chapter 5. In our

work, there is no such optimization, but rather a trade-off than can be controlled

by the user. In a future work, we would thus like to study how strokes position,

orientation and shape can be determined from an optimization between some scene

information to represent and a user-supplied style provided, for instance, by means

of a sample painting.

Chapter 4

An alternative metaphor: dynamic

2D patterns

Figure 4.1: The Stanford bunny rendered with a 2D halftone pattern that moves,

scales, and adapts its density as the camera changes.

While Chapter 3 described a particular instance of the representation model, there

are many other possible approaches, as discussed in Chapter 1, that will lead to many

different expressive renderings. Compared to previous work on stroke-based or con-

tinuous tone techniques, very little work has been done on representations using

stroke patterns. The metaphor we consider here is even more seldom encountered

in expressive rendering papers, while at the same time it is widely used in comics

and illustrations. Our objective is to represent the tone and motion of a 3D object via

image space hatching or half-toning patterns. As we will see in the following, this is

an ”extreme” metaphor in the sense that it is over-constrained.

Discussions about this work first started during my EURODOC internship at the

University of Michigan, with Professor Lee Markosian, his student Simon Breslav

and my co-advisor Joëlle Thollot. While we continued discussing about the project

after my internship ended, its practical implementation have been performed by Lee

Markosian and Simon Breslav. I included this work in my thesis because it allows

me to present an alternative metaphor, and to relate it to the previous chapters of

this part on expressive animations. I will thus present the main motivations and

contributions, some details about the current implementation, as well as preliminary

results of the system; but keep in mind that, at the time of writing this thesis, it

is an ongoing project that still needs some development before being submitted for

publication.

Previous work on this type of rendering (e.g., [Freudenberg 01, Hertzmann 00,

Interrante 97, Kalnins 02, Praun 01, Winkenbach 94]) has proposed object space pat-

49

50 CHAPTER 4. AN ALTERNATIVE METAPHOR: DYNAMIC 2D PATTERNS

terns, in which strokes or halftone masks are mapped onto 3D surfaces in the scene.

Consequently, their shape provides visual cues about the shape of the underlying ob-

ject. In contrast, image space patterns are parameterized within the picture plane

and so do not follow the underlying 3D shape. Cues about 3D shape must then come

exclusively from tonal variations in the patterns. An example is parallel hatching

marks that follow a constant image-space direction.

Why prefer image space patterns? An important reason is that they provide

greater visual abstraction, in a sense “flattening” the shape and de-emphasizing small

details. This point is especially clear from a casual glance at traditional drawings,

illustrations, and comics. Artists often perform shading using stroke or halftone pat-

terns that only loosely follow the 3D shape. In many cases even a loose connection is

absent – strokes instead follow an image-space layout with no particular relation to

the shape of the shaded object.

In addition to these aesthetic considerations, in computer graphics another consid-

eration is code complexity, ease of authoring, and run-time overhead. Methods based

on object-space stroke patterns must address several challenging problems: deter-

mining good-quality direction fields for strokes (and hiding the inevitable singulari-

ties that can occur), adapting to anisotropic scaling due to perspective foreshortening,

and dynamically varying the number of rendered strokes to account for camera zoom.

These problems are much simpler to deal with for image-space patterns.

For still images, there is no particular difficulty in shading with image space pat-

terns. The pattern can first be generated so that it completely covers the model in

image space, then strokes can be clipped wherever they lie outside the model, and

their parameters can be adjusted according to the desired tone at each location. For

example, stroke widths, colors, and opacities can easily be adjusted to reflect the

desired tone at each image-space location. This was the approach taken by Ostro-

moukhov [Ostromoukhov 99], for example, who also noted the aesthetic limitations of

purely object-space stroke patterns.

The main difficulty of using image-space stroke patterns arises when image se-

quences are rendered, either for animations or real-time interaction. Then, if the

image-space stroke pattern does not move with the object, the so-called “shower door”

effect is apparent: the viewer experiences a disturbing disconnect between the motion

of the underlying shaded object and the fixed stroke pattern.

Our solution is to compute a 2D “similarity” transform that combines translation,

rotation, and uniform scaling to match (as closely as possible) the motion of the un-

derlying 3D object. Of course, no such 2D transform can perfectly match the apparent

motion of the 3D object, so we use a least-squares technique to compute the similarity

transform that best matches the apparent 3D motion.

At each frame, we apply the computed similarity transform to the image-space

pattern. When the scaling factor falls outside of a specified range, we initiate a tran-

sition from the scaled version of the pattern to an unscaled copy, retaining the current

rotation and translation. This transition is carried out over a short time interval by

blending or morphing between the two copies of the image-space pattern.

This method accommodates apparent motion that is due to animation of either

the camera or the underlying shaded object (or both), and works well for a range

of motions. In particular, it closely matches motions that appear in image space as

translations, 2D rotations, and uniform scaling. These correspond, respectively, to

camera panning (or object motion parallel to the film plane), rotation about the line of

4.1. PREVIOUS WORK LIMITATIONS 51

sight, and camera zoom (or object motion toward the camera). It produces plausible

results for other motions, such as rotation of the 3D object around an axis that is

parallel to the film plane, or for limited motion of animated objects.

We demonstrate our method on several types of image-space patterns, namely

halftoning, parallel hatching, and a simulation of media on rough paper (where the

image-space pattern is the paper texture). The least-squares solution of the similarity

transform is efficient, and the rendering effects are implemented on the GPU. The

result is a new class of dynamic image-space patterns that minimize the shower door

effect for a wide range of motions, are easy to author, and render at real-time rates.

4.1 Previous Work limitations

Cunzi et al. [Cunzi 03] address a closely related problem, and propose a similar so-

lution. They observe that many non-photo-realistic rendering methods for 3D scenes

employ media simulation techniques that make use of a background paper or canvas

texture. When this texture is fixed within the rendering window, object motion over

the static canvas induces a disturbing “shower door” effect. Their solution is to trans-

form the canvas via a “similarity transform” (consisting of 2D translation, rotation

and uniform scaling) to match the image-space motion of certain 3D points in the

scene. They compute the similarity transform in closed form based on known camera

motion, and apply an additional warping step to better match the motion of the 3D

points when the camera rotates. They handle camera zoom via a procedural canvas

model that is self-similar under arbitrary scaling.

This method has two important limitations: first, it works best in the limited case

of a static scene in which objects all lie at roughly the same distance from the camera;

and second, that distance is a parameter that must be supplied by the application. In

contrast, our method is automatic and handles both camera and object motion. It can

be applied independently to each object in the scene, resulting in a different similarity

transform for each object.

The methods of Kaplan and Cohen [Kaplan 05] and Bousseau et al. [Bousseau 06]

also address the problem of computing a dynamic canvas for temporally coherent

media simulations. Like ours, these methods account for camera motion as well as

objects that move independently. Both methods track seed points on 3D surfaces in

the scene and use them to generate on the fly a canvas texture composed of small-scale

structures that follow the seed points. These methods are limited to paper and canvas

textures and do not handle more general types of patterns (e.g., hatching and half-

toning) made up of large-scale structures that are readily perceived by the viewer.

Our method does handle these more general patterns, as well as those representing

paper and canvas textures.

Eissele et al. [Eissele 04] describe a method for rendering 3D scenes with tem-

porally coherent 2D half-toning patterns. They compute per-pixel optical flow, then

break the 2D halftone screen into small pieces that move independently with the flow.

Where excess distortion builds up in the pattern they blend back to an undistorted

piece of the pattern. The resulting animations show significant temporal artifacts as

distorted areas appear and disappear in patches across the surface.

52 CHAPTER 4. AN ALTERNATIVE METAPHOR: DYNAMIC 2D PATTERNS

4.2 Computing the transform

The method works as follows. In a pre-process we distribute sample points over the

3D surfaces in the scene. At run time, we project the seed points to image space and

compare their current positions to those in the previous frame. From these two sets

of image-space points (current and previous) we compute a similarity transform that

best matches the observed motion of the sample points. We then apply this similarity

transform to whatever 2D patterns are being used to render the given object. We

handle multiple objects by considering the sample points of each object independently.

We compute the similarity transform from the samples using the least-squares

method of Horn [Horn 87]. The same method was used by Wood et al. [Wood 97] to

compute a warp between consecutive frames of an image sequence in order to build a

multi-perspective panorama. The least-squares solution is efficient, running in O(n)
time, where n is the number of sample points. In practice, a few dozen points (or

fewer) are sufficient to produce good results.

Wood et al. use just 9 sample points each frame, evenly distributed within the

rendering window. They use a ray test to find the 3D surface location corresponding

to each sample point, then find its previous image-space location using the camera

parameters of the previous frame.

To avoid ray tests, we use a fixed set of 3D sample points distributed over each

surface. Each frame, we consider only those samples that lie on front-facing surfaces

in the view frustum, in both the current and previous frame. To reduce the chance of

finding too few sample points in any frame, we use a moderately dense set of samples

for each object.

4.2.1 Generating samples

We generate sample points using the “stratified point sampling” method of Nehab and

Shilane [Nehab 04]. This method achieves a relatively uniform distribution of points

over each 3D surface, independent of triangulation. Parameters can be tuned to con-

trol the density of the resulting sample points. We use a fixed set of parameters that

results in several dozen to several hundred sample points for each object, depending

on its shape. While this is more samples than needed, the solution still runs at inter-

active rates, and using more samples reduces the likelihood of finding too few usable

samples in any given frame.

Finding too few samples can happen if nearly all samples lie on back-facing sur-

faces or are off-screen. When this does happen, we relax the condition that samples

must be in the view frustum. Instead, we require that they lie in front of the near

clipping plane and project to screen space within an expanded rectangle that contains

the rendering window. If there are still no usable samples, we set the 2D transform

to the identity. We find in practice that when no usable samples are available, the

object is always off-screen, so it doesn’t matter that the pattern is not transformed.

4.2.2 Least-squares solution

Horn’s method computes the 3D similarity transform that best maps one set of 3D

points onto another (given a known 1-1 correspondence between points). He repre-

sents the similarity transform by a combination of translation and quaternion multi-

4.2. COMPUTING THE TRANSFORM 53

plication. Our case is simpler, since the points are all 2D. The transform then becomes

a combination of translation and complex number multiplication. We now briefly de-

scribe the computations.

We consider only samples that lie inside the view frustum and are front-facing in

both the current and previous frames. Let c̄ and p̄ denote the centroids of the image-

space locations of the samples in the current and previous frames, respectively, and

let ci and pi denote the 2D location of sample i in the current and previous frames,

respectively, each expressed as an offset relative to the corresponding centroid (c̄ and

p̄). Treating ci and pi as complex numbers, we want to find the complex number z that

minimizes the error:

E = ∑
i

|zpi − ci|
2

Solving via least squares yields:

z =

(

∑
i

pi · ci, ∑
i

pi× ci)

)

/∑
i

|pi|
2

(Here, “×” denotes the “2D cross product.”)

It turns out that the above formulation is not symmetric, in the sense that the

computed transform from ci to pi is not the inverse of the transform from pi to ci –

in general, the two rotations are inverses, but the two scale factors are not. We thus

adopt the “symmetric” formulation described by Horn by multiplying z as computed

above by the following scale factor s:

s = |z|−1

(

∑i |ci|
2

∑i |pi|2

)

1
2

4.2.3 Mapping to uv-space

Each image-space pattern is defined in a canonical uv-space. For an ordinary 2D tex-

ture map (such as a canvas texture), uv-space is just the space of texture coordinates.

By convention, the pattern fills the unit square [0,1]x[0,1] in uv-space. (We assume

the pattern tiles seamlessly to fill all of uv-space.) To render the pattern, we need to

map image-space locations to uv-space. For each pattern (or set of patterns that move

together) we thus store an image-space point o that maps to the origin in uv-space,

and image-space vectors u and v that map to uv vectors (1,0) and (0,1), respectively. In

each frame we compute p̄, c̄ and z as above, then update o, u and v as follows (treating

them as complex numbers):

o ← c̄+ z(o− p̄)

u ← zu

v ← zv

Given an image-space point q, its uv-coordinates are then simply ((q−o)·u/|u|2,(q−
o) · v/|v|2). This uv-coordinate can be used with any 2D pattern, causing the pattern

to track the apparent motion of the object in image-space.

54 CHAPTER 4. AN ALTERNATIVE METAPHOR: DYNAMIC 2D PATTERNS

4.3 Rendering patterns

We now briefly describe shaders that render dynamic image-space patterns using

uv coordinates computed by our method. We created a dynamic canvas using the

“paper effect” algorithm of Kalnins et al. [Kalnins 02], a half-toning shader based on

the method of Freudenberg et al. [Freudenberg 01], and a simple hatching shader

that renders parallel lines that adapt to the tone of the underlying 3D surface. We

augment the rendering with silhouette strokes that we generate in software using

an approach like that of Kalnins et al., The hatching strokes, halftone patterns, and

paper effect are implemented as GLSL vertex and fragment shaders [Rost 04]. Our

program computes o, u and v each frame and sends them to the shaders. Most of the

computation takes place in the fragment shader, which converts the pixel location to

a uv coordinate and uses that to determine the output color for the fragment.

Each fragment shader can determine the desired tone at the fragment by look-

ing up the value in a tone reference image. This is a simple grey-scale rendering of

the scene produced in an initial rendering pass each frame and read from the back

buffer into texture memory. Typically we use a toon shader to produce a somewhat

abstracted representation of the desired tone.

4.3.1 Half-toning

We use the half-toning method of Freudenberg et al. [Freudenberg 01], including the

anti-aliasing step they recommend. For Figure 1 we used a procedurally generated

halftone screen defined as the average of two sinusoids, one in u and the other in v,

with period 1, amplitude 0.4, and vertical offset 0.5. (Using an amplitude less than

0.5 means that nearly black areas receive full ink, and nearly white regions receive no

ink.) Given halftone screen value h, desired tone t, and anti-aliasing constant e = 0.1,

we compute opacity a = smoothstep(-e,e,h - t) and use it to alpha-blend the

chosen ink color with the underlying fragment color. In this way we can achieve

colored inks, as shown in Figure 4.2(a).

4.3.2 Parallel hatching

The parallel hatching method, like the halftone shader, computes an opacity that is

used to alpha blend the ink color with the underlying fragment color (usually the color

of the background). The shader first maps the fragment’s position to uv-space, includ-

ing a scaling that affects line spacing, and a rotation that affects line direction. Then

it computes the distance to the nearest canonical line, defined as a line of constant

v (for integer values of v). The opacity falls off with increasing distance, and goes

to zero if the fragment lies too far from the line. We also vary the opacity with the

underlying tone somewhat, gradually reducing opacity as tone decreases. We then

apply the paper effect [Kalnins 02] to remap the opacity before blending the ink color

with the underlying fragment color. This greatly reduces the mechanical appearance

of the lines. Note that both the paper effect and hatching pattern are transformed

to the same uv-space (with additional separate, fixed scaling). This makes for a more

temporally coherent rendering. However, the paper effect can also be applied without

hatching.

4.3. RENDERING PATTERNS 55

A useful effect seen in all of our hatching examples is to artificially lighten the tone

near silhouettes via a computed virtual “back light” based on the dot product of the

surface normal and view vector. (We raise the dot product to a power, e.g. 3, to narrow

the range of the back light.) This dot product is computed in the vertex program and

sent to the fragment shader as an attribute variable. The result is that strokes tend

to stop short of silhouettes. Since we draw silhouettes separately (computing them

on the CPU), this helps achieve a more natural look. We achieve highlight strokes by

simply choosing a light-colored ink, a medium or dark background color, and setting

lights to “shine” where we want darkness (see Figure 4.2(b)).

(a) (b)

Figure 4.2: (a) A single halftone pattern is applied to this statue model, with the

size of the dots varying according to tone. (b) A hatching pattern is applied to the

bunny model, with each stroke thickness following the underlying tone, but using a

light-colored ink.

The algorithm described above is implemented as a shader subroutine. To achieve

layers of hatching, we run the subroutine more than once. The subroutine takes

parameters such as line width and spacing, line direction, and stroke color. The frag-

ment shader computes the opacity value for each layer in sequence, compositing the

desired ink color with the underlying fragment color using the opacity computed at

each pass.

4.3.3 Level of detail

When patterns are scaled very large or small they lose their original appearance. We

support a kind of “level of detail” whereby patterns are restored to nearly their orig-

inal size when the cumulative scale factor falls outside of a given range. To achieve

this, we track the cumulative scaling s applied to the pattern in the current frame.

We set two thresholds, s0 and s1. If s < s0 we leave the pattern as it is (scaled by s). If

s > s1 we apply scale factor s/2 to the pattern (instead of s). For s0 < s < s1 we compute

a corresponding interpolation parameter t = (s− s0)/(s1− s0) and use it to combine

two versions of the pattern: one scaled by s and one scaled by s/2. For s outside the

range [1,2) we map it into that range and do equivalent computations.

For paper textures and hatching patterns, we use t to blend between the patterns

(one scaled by s, the other by s/2), see Figure 4.3. For half-toning we implemented a

56 CHAPTER 4. AN ALTERNATIVE METAPHOR: DYNAMIC 2D PATTERNS

different approach, motivated by the observation that half-toning should to avoid the

mid-tones that alpha blending would produce. Instead, we compute the quantity of

ink for each layer using the halftone subroutine (using scale factor s and s/2), but we

divide the tone between the two layers. Initially, the first gets all the tone, but as the

transition unfolds the second layer gets more of the tone, until at the end it gets all of

the tone and the first layer gets none. The result is a kind of morph from one halftone

pattern to the next. The effect can be seen in Figure 4.1. While the intermediate

renderings are less regular than the ordinary halftone screen, the effect appears (to

us) to work well.

Figure 4.3: When zooming on the model, the pattern changes its level of detail so that

stroke thickness stay close to constant in image space.

4.4 Results and discussion

For many motions, especially pure panning and zooming, the patterns appear ex-

tremely stable. The rendering time was over 30 fps for all of the examples shown.

Our test machine has a 3.2 GHz Pentium 4 CPU and 256MB GeForce 7800 GTX

GPU. The total rendering time included separate preparation of two reference images

(a tone image copied to texture memory and an ID image copied to main memory and

used for rendering silhouettes on the CPU). Model sizes were in the range of 30 -

100K triangles.

We don’t claim that 2D patterns should always be used in place of patterns that

are mapped onto surfaces in 3D. Rather, we argue that having the option to use such

patterns will be attractive to designers and animators, because they are easy to cre-

ate, they perform well for many motions, and they provide a greater degree of visual

abstraction. We envision interactive applications and animations that combine dy-

namic 2D patterns with other rendering techniques to adapt the visual and animated

style to the needs of the moment.

The main limitation of our method, though, is that 2D similarity transforms do not

closely match all 3D motions. A particularly bad case is an elongated object rotating

around an axis that lies parallel to the film plane, as in Figure 4.4. The 2D pattern

inevitably “swims” over the 3D surface in that case. A natural extension of our ap-

proach is to use not a single pattern, but a set of patterns to represent the surface.

4.4. RESULTS AND DISCUSSION 57

This way, various coarse scale motions in 2D could be followed by individual patterns.

However, this raises two problems. We first need to choose the number of patterns

to use, which relates to a trade-off between motion abstraction and sliding. From one

side we have the dynamic pattern approach presented in this chapter, that uses a

single pattern per object and may exhibit sliding. On the other side, if one uses one

stroke per pattern and a multiple strokes per object, then the motion is much less

abstracted, but no sliding occur, as seen from the results of Chapter 3. It would be

very interesting to design a system able to range from those two extreme represen-

tations, taking into account the complexity of the motion flow in an animation. With

such a system would occur a second issue: How do we blend various patterns when

they meet at their boundaries? In particular, if two patterns overlap, what will be the

resulting perceived motion? This will be discussed in the next chapter in the context

of motion transparency.

Figure 4.4: For a rotation around an axis parallel to the image plane and an elongated

object, sliding becomes noticeable.

58 CHAPTER 4. AN ALTERNATIVE METAPHOR: DYNAMIC 2D PATTERNS

Chapter 5

Remarks on low-level perceptual

criteria

So far we have presented theoretical as well as practical methods to translate the

qualities of traditional painting and drawing techniques to expressive rendering.

While most of the previous work concentrated on a specific style, we tried as much as

possible to broaden the representations allowed by our approaches, at the same time

referring to the theoretical model of pictorial representation.

In Chapter 2, we showed how to implement various effects found in paintings or

drawings, using a single shader for the processing of attributes. In Chapter 3, we

designed a painterly system where the user is able to explicitly control the trade-

off between the low-level style to use in the representation and the scene features

to depict, thus offering a broader range of possibilities when compared to previous

work. Finally, in Chapter 4, we proposed a technique to map the 3D motion of an

object to the 2D motion of a stroke pattern, with various applications such as half-

toning, screening or hatching.

As noted at the end of the previous chapter, there is still room for generalisation:

We believe that there is a continuum from pixel-based representations, to stroke-

based representations, to pattern-based ones, in the same way one can use a blend

of continuous tone and individual brush stroke techniques in traditional paintings

and drawings (see Figures 1.2 and 1.3). An ideal system would allow us to produce

animations at these various levels of granularity, while keeping an ease of use for the

artist (who is not necessarily a skilled computer scientist). In Section 5.1, we present

how such a system can be formulated as the solution of a rather open optimisation

problem and discuss what requirements it should fulfill. Then, in Section 5.2, we

consider how this ideal system should behave when used for animations, which leads

us to a discussion of motion perception.

5.1 Guiding shape and color

As formulated by Durand in his inspirational work [Durand 00],

“Depiction consists in producing the picture that best satisfies the user

goals: This is an optimization process. It should most of the time be solved

by the user, but the optimization nature of the process requires the design

of specific tools for efficient user interaction.”

59

60 CHAPTER 5. REMARKS ON LOW-LEVEL PERCEPTUAL CRITERIA

Durand gives the example of photorealistic rendering, where the problem is rea-

sonably stated, available methods providing a very close initial estimate; Estimate

that is nevertheless frequently refined via additional techniques such as model touch-

up, photographic lighting or post-processing. In the case of expressive rendering,

there is no such automatic “close estimate”: The representation of a scene has to be

strongly tied to the user’s intention. Hence it is more the result of a compromise be-

tween a style and some important scene features to depict. In other words, the role of

the optimisation process is even more crucial, since it will allow to intuitively balance

between these two a priori conflicting goals.

What is the nature of this optimisation process? Durand presents a series of re-

quirements that it should fulfill. We consider them as belonging to two different

categories: Enabling intuitive user interactions and providing means to define the

“energy function” for the computer to solve the optimization.

Intuitive user interactions The first class of requirements advocates, for instance,

the definition of controls in image space and the development of purely pictorial tech-

niques with fast feedback to the user. It also recommends to linearize any parameter

space involved in the manipulation, and to provide relevant degrees of freedom.

Some simple methods can be designed in this way. Our X-Toon shader, presented

in Chapter 2, is an example: While the 2D toon texture (a linear mapping from param-

eter space to color) is set in preprocess, it is looked up using up to two view-dependent

controls (the relevant degrees of freedom), in real-time (for fast feedback).

Another example is layerization: Many computer graphics production studios ren-

der animations into multiple layers that correspond to various scene features such

as diffuse lighting, shadows and highlights (the number of layers can go up to many

dozens). Then these layers can interactively be edited in image space via a composit-

ing software in order to “touch up the initial estimate”. Note that it also has some

biological plausibility. Indeed, as noted by Durand [Durand 02],

“A very important characteristic of our visual system is the ability to de-

compose the image into different layers, e.g. object reflectance, lighting,

specular highlights, transparency, etc.”

Therefore, as already proposed in Chapter 2, and implemented in the pioneering

work of Meier [Meier 96], we should design expressive rendering techniques in a se-

ries of layers that run through the pipeline and are composited in the end. However,

this might raise some issues in the perception of motion, as discussed in Section 5.2.

More complex methods can also be devised, that take as input a small, localized

example of what the user expects to obtain across a picture or along an animation.

These techniques belong to the class of example-based synthesis methods, or, when

the example is directly put in correspondence with some scene features, analogies.

We do not discuss here the challenges raised by these approaches, since it will be the

subject of Parts II and III of this thesis.

Defining the energy function As discussed by Willats [Willats 97, Willats 05],

another important factor in the use of marks to depict a scene is loose control: The

extent to which marks may be tightly or loosely related to scene features. Recall

that a picture is made up of marks which represent picture primitives and attributes,

5.1. GUIDING SHAPE AND COLOR 61

which denote corresponding scene primitives, which represent objects in the scene.

Willats relaxes this condition:

“This configuration is not rigid. For example, variations observed on marks

should be intended to carry information, but they could also be accidental.

Moreover, we can make use of a given picture primitive to denote another,

and the picture primitive may only be implied by other primitives.”

“The relations between marks and their attributes and the picture primi-

tives they represent can also be very varied. The dimensional extensions

of the marks may not always correspond to those of the primitives they

represent.”

Allowing marks to be more “free” to depart from their underlying primitives seems

to be a rather simple idea, but it hides an issue that has not really been addressed in

the past: How can one guarantee that relaxing the mark-primitive connexion will still

faithfully depict the scene? An answer is that it can be done through an optimisation

process that performs a compromise between depicted scene features and the loosely

controlled, user-defined style. The definition of the energy function that has to be

minimized is then of primary interest. We believe that such an energy can be defined

via perceptual models of low-level vision. In other words, we should be able to give a

computational answer to the question: “How the low-level features of a representation

perceptually match the corresponding low-level features of the scene it depicts?”

This is a vague question that awaits to be further refined in order to find prac-

tical applications in expressive rendering. However, we can give some hints about

what kind of processing it implies. In Chapter 3, we presented a painterly render-

ing method that explicitly performs a trade-off between the depicted scene and its

representation: A paint stroke is drawn from an anchor point of a given color and

depth (in the scene), until the underlying scene color or depth exceeds a threshold, or

a length specified by a user-defined style is reached. This can be seen as the simple

minimisation of a simple energy function, that places a bound on the color and depth

differences along a stroke. The only perceptual flavor here is that we use the Lab

color space for computing color differences.

This energy minimisation formulation also implies that the scene features to rep-

resent are well known and easily attainable in the first place. This is not always the

case, though. For instance, despite great advances made recently in the expressive

rendering community, the body of algorithms intended to draw contour lines from a

geometric model does not yet give satisfactory results in all cases. As presented in

Chapter 1, various techniques allow to get some of the good lines, and they are in

no way mutually exclusive. This lack of unity in contour drawing algorithms reveals

that a part of the energy minimisation question has not been answered yet: What

are the scene features to depict when using contour lines? The intuition is that con-

tours are able to reveal efficiently the shape of objects, but to go further, we might

need to study the literature on shape perception, or at least surface perception. Once

the salient features will be identified, we will be able to minimize the (yet unknown)

energy. We give some hints concerning surface perception in Chapter 9.

62 CHAPTER 5. REMARKS ON LOW-LEVEL PERCEPTUAL CRITERIA

5.2 Guiding motion

Let us now discuss the additional constraints that arise when one considers expres-

sive rendering animations. First, the granularity of marks might considerably in-

fluence the properties they have to obey when put in motion. For example, at a

fine granularity, marks should follow motion information found in the scene, while

keeping two-dimensional texture properties: e.g., watercolor pigments should not be

distorted too much. At a coarser granularity, strokes should in the same way fol-

low motion in the scene, while keeping a satisfactory distribution, which might be a

complex task with the more structured distributions encountered when dealing with

stroke patterns.

These intuitive requirements lead to the definition an energy composed of three

components, and we should minimise each components simultaneously in order to get

a good depiction. The first component relates to color and shape, as discussed in the

previous section, and states that, for any frame, marks should well depict color and

shape features of the scene. The second component relates to the spatial distribution

of marks in the picture plane: they should be held close to a user intended distribu-

tion. This can also be defined in terms of an energy functional to minimise. Finally,

the third and last component correspond to a notion of motion fidelity: Whether marks

motion perceptually matches scene motion. Note that this component includes tempo-

ral coherence. Indeed, poppings and flickerings are usually not features of the scene

motion, so that they are perceived as artifacts of the representation.

Again, in order to illustrate these three energy components, we shall give some

examples. The painterly rendering system in Chapter 3 implements simple behav-

iors for each component. The first one, color and shape, have been discussed in the

previous section. Concerning spatial distribution and motion fidelity, we made a se-

ries of decisions which lead to a simple implicit minimisation. First, we decided that

strokes could in no way “slide” onto the depicted object; They are sticked to it via their

anchor point, so that their motion will be exactly matched with motion in the scene.

Then, in order to ensure a user-defined density of strokes, we use a bounding sphere

hierarchy and a projection test in order to ensure a picture plane coverage. The use of

a hierarchy also allows us to select consistently anchor points from frame-to-frame.

However, due to variations of density and visibility of anchor points arising in a

dynamic environment, strokes appear and disappear suddenly in time. Moreover, due

to quick changes in illumination (highlights for instance), their attributes may also

vary abruptly. If nothing is done, it will result in poppings and flickerings respectively.

To alleviate these problems, we introduced transitions for the insertion and deletion

of strokes (they appear/disappear progressively), and smoothed out the color channel

to reduce the abrupt changes in stroke colors. Such techniques can be seen as simple

approaches to minimize the energy, resulting in the impression of a painting that

“adapts” to give a good depiction of the scene, which is more perceptually acceptable

than the apparition of artifacts.

In contrast, in Chapter 4, we had to relax the “no sliding” condition chosen above,

because the use of a single 2D stroke pattern to depict a 3D object will inherently

abstract its motion. Regarding the energy formulation, the amount of allowed “slid-

ing” should be controlled by some motion fidelity measure: If the strokes motion is

too far from scene motion, then an artefactual motion transparency will be perceived,

with resulting sliding sensations, and in the extreme case of a static pattern on top

5.2. GUIDING MOTION 63

of an animated scene, a shower-door effect (i.e. the perception of two, unrelated,

transparent layers). Therefore, we need a motion transparency model of the human

visual system, that will give us an energy function to minimize, probably in the form

of a near-noticeable threshold. There has been a variety of studies on motion trans-

parency in the field of natural vision [Andersen 89, Stoner 90, Watson 94, Qian 94]

and some computational models seem close to our needs (see, e.g. [Qian 94]). We

plan to investigate the possibilities offered by motion transparency models in a fu-

ture work.

Finally, let us discuss an interesting property of hand-made animations. Because

of the time required to produce each frame of an animation, artists usually do not

draw every frame. If one draws a frame every two frames, it is said to be “on 2”.

Similarly, we have animations “on 1” where every frame is drawn, or “on 4” where

every fourth frame is drawn, etc. Apart from reducing the amount of work, this

stop-motion technique offers artistic qualities. First, it reduces temporal coherence

problems, since poppings are harder to notice at lower frame rates. But also, it gives

more room for imagination in-between frames: The brain seems to fill in the blanks

naturally. Relying on the observer’s perception has this advantage that, in a way, he

will perform the energy minimisation by himself, and thus the artist is more free to

experiment with abrupt transitions.

The fact that stop-motion animation has such interesting qualities motivates its

use in expressive renderings. However, the way it is performed by artists is empirical,

hence there is no robust rule to build on. In other words, before transposing the

qualities of stop-motion to expressive rendering, we shall first answer some vision-

related questions. What makes an animation look more expressive, more lively when

fewer frames are used? The brain seems to fill in the blanks naturally, but also to

perform better inference for fast and brief motion. Why? This is especially true for the

motion of a character, but can we use less frames for camera motion in the same way?

If one uses a frame-to-frame blending technique more sophisticated than classical

stop-motion, how will it influence the final perception of motion?

To my knowledge, none of these questions have been investigated in the vision

community. What is particularly interesting in the case of stop-motion, is that it is

an example where expressive rendering has the potential to motivate research in

vision.

64 CHAPTER 5. REMARKS ON LOW-LEVEL PERCEPTUAL CRITERIA

Part II

Line drawings analysis and

synthesis

65

Chapter 6

What do line drawings represent ?

In Part I of this thesis, we investigated expressive rendering issues related to the

representation of image sequences. Among the various possibilities to design systems

that deal with these issues, we mentioned the advantages for a user to provide a

style directly via an example, either drawn by himself or contained in a reference

picture (say, a drawing or a painting). In Parts II and III, we explore this idea in

the more general context of acquisition: starting with a drawing or a painting, we

aim at extracting information about its style. Then, one can either transform the

input representation based on that additional knowledge, create from scratch another

representation with a similar style, or transfer it to a target representation. In this

part, we focus on line drawings.

(a) (b)

Figure 6.1: (a) A line drawing example. (b) Shadow is suggested by line thickness.

6.1 Examples from traditional drawings

Hand-made line drawings have been widely used in the past for scientific illustration,

as well as artistic purposes. In illustration, it has in particular many advantageous

67

68 CHAPTER 6. WHAT DO LINE DRAWINGS REPRESENT ?

properties with respect to reproduction. A drawing is usually done at a bigger scale

and is reduced when printed, as pointed out by Wood [Wood 94],

“The purpose of black lines and stipples is to give the viewer an impression

of various values of gray.”

“The reduction process improves the drawing by diminishing imperfections

and by crisping up the lines and dots, making them appear as various

values of gray.”

On the other hand, for creative applications, line drawings allow a remarkable

depiction with an economy of means, leaving to the observer the task of “filling in the

blanks”, suggesting more than illustrating.

Regardless of the targeted application, traditional drawings can contain an arbi-

trary number of elements, ranging from long and smooth lines to small figures; They

may exhibit juxtaposed layouts of strokes, regular patterns with a common orienta-

tion, over-sketched lines, junction points, etc. To better analyze drawings, we first

distinguish two categories of elements: contours and patterns. We motivate this

choice by taking inspiration from introductory painting books (e.g. [School 95]) and

present their main properties below.

What contours represent A line is the most elementary form of drawing, but the

strength or softness of a gesture provides with multiple expressive possibilities (see

Figure 6.1(a)). Using heavy or light contours, for instance, permits one to suggest

shadowed or enlightened areas (see Figure 6.1(b)).

Probably the most prominent quality of a line is to guide one’s observation towards

the shape of a subject and, depending on the gesture, to suggest volume and matter.

Observe the drawing of the little girl in Figure 6.1(a): The slightly curved silhouette

lines used to draw her legs reveal that they are bandy; The simple, sketchy silhouettes

of her hands add to the somewhat tense feeling that emanates from the drawing.

Figure 6.1(b) is even more suggestive: The woman’s spine is drawn via very coarse,

thick lines and yet the representation is perfectly clear to any observer.

What patterns represent The most common form of line pattern is hatching.

Hatchings are composed of distinct lines that are roughly parallel. They convey both

shape by their local orientations, illumination when they are used to depict shadows,

and texture via the subtle variations of the gesture. For instance, curved hatchings

evocate a tubular form (see Figure 6.2(a)).

Additional hatching techniques permit to make variations on patterns. One exam-

ple is cross-hatching, where two patterns with nearly perpendicular orientations are

drawn on top of each other, allowing darker values for the depiction of shadows. A

second example is the use of “zebra” which consist in long, regular curved lines, this

time to better suggest the shape of objects.

Another form of pattern is stippling (see Figure 6.2(b)). It is simply a collection of

dots. Like hatchings, they are used to represent shape and tone via subtle variations

of their density and size. Finally, patterns can be composed of more complex elements

than points and lines, like small figures, small or long wavy brush strokes, etc.

6.2. A DIGITAL DRAWING TOOLBOX 69

(a) (b)

Figure 6.2: (a) A hatching example. Slightly curved lines reveal a tubular shape. (b) A

stippling example. Variations in points density suggest both shape and illumination

[Wood 94].

6.2 A digital drawing toolbox

An important challenge facing researchers in expressive rendering is to develop hands-

on tools that give artists direct control over the stylized rendering applied to drawings

or 3D scenes. An additional challenge is to augment direct control with a degree of

automation, to relieve the artist of the burden of stylizing every element of complex

scenes. By complex, we mean scenes that incorporate significant repetition within

the stylized elements, either inside a single view (think of an illustration containing

a pattern composed of thousands of hatching lines), for multiple views at different

scales (e.g. a silhouette viewed at varying depths in different panels of a comics), or

multiple frames of an animation (like a set of zebra which may vary in density based

on viewing and lighting configurations).

While many methods have been developed to achieve such automation algorith-

mically outside of expressive rendering (e.g., procedural textures), these kind of tech-

niques are not appropriate for many renderings where the stylization, directly input

by the artist, is not easily translated into an algorithmic representation. An impor-

tant open problem in expressive rendering research is thus to develop methods to ana-

lyze and synthesize artists’ interactive input. We now propose some (non-exhaustive)

research directions intended to enrich the digital drawing toolbox with smart tools

that fulfill the above-mentioned requirements. As in the previous section, we differ-

entiate between tools manipulating contours and patterns.

Contour line tools A first category of tools in digital drawing is interactive tools.

Their goal is to answer the question: How a user gesture might be transformed into

a contour line? The simplest answer being: Just draw the gesture as it is. But it

can also be done in a context-dependent manner. For instance, in car design, lines

70 CHAPTER 6. WHAT DO LINE DRAWINGS REPRESENT ?

of a primal sketch are intended to be smooth, in order to give a clear, overall idea of

shape; But user gestures, even for a trained drawer, always have some irregularities.

Therefore, it is useful to fit a smooth curve to the input gesture. Of course, outside of

car design, this constraint might be too strong.

An interesting direction of research would then be to create a low-level, multi-

purpose interactive drawing tool. We shall then define how gestures have to be pro-

cessed, probably in a parametrized way to adapt to various applications. Junctions

might be treated as well, since they give important cues about shape. However, they

work at a slightly higher-level of processing since they are determined not by one,

but at least two gestures. Finally, such a generic interactive drawing tool might in-

corporate an over-sketching functionality: By drawing on top of existing lines, the

user should be able to replace them with new ones. Note that each operator cannot

be done independently of the others, using e.g. ad-hoc rules: An interactive anal-

ysis of the drawing being performed should be done such that the proper decisions

(i.e. leading to a possible interpretation of the drawing) are made for each new user

interaction.

Another category is what we call simplification (also called cleaning or beautifi-

cation). Here the idea is to start with a full drawing, and to reduce its complexity.

For example, when reproducing a drawing, it is important to adapt it to the scale at

which it will be viewed, unless too many lines may clutter the picture plane and make

the drawing incomprehensible. The same problem arises when one wants to create

a series of panels of a same drawing at different scales (as in some comics): He or

she cannot simply rescale the drawing, and thus has to re-draw each new panel from

scratch. Finally, it is also efficient for correcting some form of inaccuracy, for instance

to clean up a diagram drawn on a white board and captured for archival, to smooth out

a sketch drawing, or to reduce the often inappropriate density of computer-generated

line drawings from 3D objects.

However, in order to efficiently design tools that perform such useful tasks, one

has to define complexity. To my knowledge, this has not been done in a general way

in the past; In other words, each new method brings its new definition of complexity.

It would be interesting to investigate this question in order to perform a better task-

oriented cleaning of a drawing. Moreover, note that these problematics are in no way

trivial since, as with interactive drawing tools, we need to ensure that the cleaned up

drawing “makes sense”: The original and cleaned drawing should convey essentially

the same shape cues, and this requires an analysis.

Finally, a third category is that of re-drawing. It is in-between the two categories

presented above, and belongs to the class of analogies. The principle is simple: The

user re-draws a contour in an input drawing, and all similar contours are re-drawn

in a same way. This sounds like a very useful tool for a lot of digital drawing applica-

tions: Think for example of applying a style (like some waving) to a contour, and all

the similar contours are interactively updated in a similar style, allowing to design

contours in a very efficient, yet expressive manner. And it does not have to be limited

to contours, junctions could also be re-drawn, for example to create haloing effects.

This time, the key feature to an efficient re-drawing tool is the notion of contour

similarity. It is an interesting question since, again, it requires to analyze the deep

structure of the drawing in order to identify contours or junctions that depict simi-

lar shape cues. However, it is a complex question which, to my knowledge, has not

received any answer yet.

6.2. A DIGITAL DRAWING TOOLBOX 71

Pattern tools At “first sight”, patterns seem to be well structured so that their

analysis is a well stated problem: Hatchings are regularly spaced and have a main

orientation, while stipplings are properly defined via their distribution. However,

more complex arrangements, such as brush stroke patterns, can exhibit significantly

complex structures (see, for instance, the patterns found in Van Gogh paintings). Or

their regularity might impose constraints on structure that are difficult to analyze,

even more to reproduce, like with patterns that resemble tilings (think of a drawn

brick wall). To summarize, a pattern’s structure may vary from very irregular to very

regular, and tools for manipulating them might be adapted correspondingly.

We can distinguish two categories of pattern tools. The first one analyzes and

synthesizes patterns out of context. In practice, the user draws a small sample that is

analyzed and then replicated via synthesis on a user-specified broader area. The main

issue is that the reference and synthesized pattern are perceived as similar patterns.

Patterns are either one-dimensional (like hatchings along a curve to suggest fur or

a doted line to represent hidden features of a 3D object) or two-dimensional (like

the oblique lines used to depict rain drops in comics or the stipples used to depict

shadowed regions in archaeological illustrations). They can either be applied directly

onto the picture plane, or mapped to a surface so that they will also suggest shape

when viewed in perspective. Such tools should provide the user with intuitive controls

to specify the area where a pattern is synthesized (either a curve for 1D patterns or

an oriented region for 2D patterns).

The second category of pattern tools this time analyzes and synthesizes patterns

in context, i.e. in relation to some feature values coming from an underlying picto-

rial or 3D scene (tone, depth, etc). In practice, the user draws a small sample that

is analyzed in relation with an underlying feature, and then automatically replicated

via synthesis onto instances of the same feature. The issue of synthesized and ref-

erence pattern similarity is of course still relevant. But in addition, we have to find

some correlation in-between the reference pattern and features, in order to be able

to automatically synthesize it at proper locations in the scene. This approach is, like

the re-drawing of contour lines presented above, an analogy process. Another in-

teresting functionality would be to define variations of a pattern (a set of reference

patterns) with respect to variations in the scene; This would allow to synthesize dy-

namic, viewing- and lighting-dependent patterns for instance.

We have not defined pattern similarity nor correlation yet. Indeed, these are the

key aspects of the analysis that will permit us to get meaningful results with pattern

synthesis. Similarity is a complex problem, though, since there is no single way to

characterize two patterns as being similar: Some may consider that they have to be

indistinguishable (this is equivalent to establishing a near-noticeable difference be-

tween patterns); Some may consider that they only need to perceptually belong to

a same (fuzzy) category of patterns (hatchings have to be different from stipplings,

regular hatchings different from wavy ones, etc). Previous work on texture discrimi-

nation might help to define such measures.

Concerning correlation, the number of possible measures can be even greater:

when a pattern is drawn on top of a 3D scene, then it can in theory represent many

various features at the same time. However, in practice, as we have seen in the

previous section, patterns give some specific clues about the scene they represent.

Investigating those clues in a more rigorous way will allow to significantly reduce the

difficulties of establishing the correlation. However, as we will see in the next section,

72 CHAPTER 6. WHAT DO LINE DRAWINGS REPRESENT ?

analogies with patterns is still an open avenue for research work.

Restriction to vector-based graphics For the sake of simplicity, we consider that

line drawings (contours and patterns) come in a vector form, and do not mention tech-

niques that extract vectorized versions of, for instance, scanned drawings. The line

geometry is thus represented explicitly as connected vertices with attributes such as

width and color. While this vector representation is typically less efficient to render,

it has the important advantage that lines can be controlled procedurally to adapt to

changes in the depicted regions (they can vary in opacity, thickness and/or density

to depict an underlying tone). This is an important feature discussed in Chapter 5,

related to the notion of “energy minimisation”.

6.3 Previous work

Line drawing synthesis systems have been studied in the past, for example to gen-

erate stipple drawings [Deussen 00a], pen and ink representations [Salisbury 94,

Winkenbach 94], or engravings [Ostromoukhov 99]. Several papers also dealt with

level-of-detail (LOD) rendering for animated scenes. Praun et al. [Praun 01], for in-

stance, present an image-based method to handle LOD in hatching. Their tonal art

maps (TAM) are mip-mapped textures allowing real-time display of hatching styles.

However, all these systems have relied primarily on generative rules, either cho-

sen by the authors or borrowed from traditional drawing techniques. We are more

interested in analysing reference drawings input by the user and synthesizing new

ones with similar perceptual properties.

(a) (b)

Figure 6.3: (a) An input line drawing. (b) A simplified version of the drawing by

Grabli et al. [Grabli 04a]. The idea is to keep a few complex regions at the borders of

visually dense regions to suggest their overall complexity.

6.3. PREVIOUS WORK 73

Manipulation of contour lines Progressive drawing tools [Igarashi 97, Baudel 94]

are being developed in the context of sketch-based modeling, or within vector graphics

packages such as Adobe IllustratorTM. These dedicated tools assist the user in adjust-

ing the shape of a line: they are essentially semi-automatic, work iteratively and are

not designed to edit more than one line at a time. Moreover, they often rely on ad-hoc

rules which are specific to their target application, and are thus not easily adapted to

another one. Even if dedicated strategies will always be preferable in some domains

such as car design, we believe that a more general, free-hand and under-constrained

method would be of particular interest.

Several approaches to simplification have also been proposed in the past. Preim

et al. [Preim 95] and Wilson et al. [Wilson 04] measure density in image space in

order to limit the number of lines drawn for complex objects. Similarly, Grabli et

al. [Grabli 04a] introduce density measures in image space, used to select the most

significant lines. The use of information extracted from the 3D scene (silhouettes,

creases, etc.) allows them to evaluate this “significance” and order the lines by de-

creasing priority. The simplification process is then carried out by deleting the least

significant lines (see Figure 6.3). Here, complexity thus means “number of lines”.

However, it would be interesting to consider other forms of complexity.

Similar approaches have been proposed in the context of resolution-dependent dis-

play and printing, since they are related to half-toning [Salisbury 96, Zander 04].

Here again the authors add a notion of priority to ensure that the most important

lines are drawn first for any tone level and then offer a selection mechanism of some

lines among the original ones. The cleaning of sketched diagrams is another form

of simplification that has received some attention in the User Interfaces community,

see for instance the work by Saund et al. [Saund 94, Saund 03]. A notable quality of

these approaches is that they consider perceptual implications.

(a) (b)

Figure 6.4: (a) An input line drawing. (b) The lines of (a) re-drawn in a different style,

by Freeman et al. [Freeman 03].

Finally, re-drawing methods emerged recently, with very interesting applications.

Kalnins et al. [Kalnins 02] described an algorithm for synthesizing stroke “offsets”

(deviations from an underlying smooth path) to generate new strokes with a similar

appearance to those in a given example set. They applied this technique to the styli-

sation of computer-generated line drawings. One big advantage of using a 3D scene as

74 CHAPTER 6. WHAT DO LINE DRAWINGS REPRESENT ?

input is that the instances of a feature (here, all the silhouettes of a same model) are

readily available without the need of an analysis. Hertzmann et al. [Hertzmann 02b],

as well as Freeman et al. [Freeman 03] address a similar problem (see Figure 6.4),

but this time in drawings without any 3D information, using the notion of analogy.

Figure 6.5: Left: The reference input pattern (or training set) (b) Synthesis results

for three window sizes (10, 6, and 4) by Jodoin et al. [Jodoin 02].

Pattern analysis and synthesis Related work can be found in two different re-

search fields: stroke-based rendering methods that aim at reproducing various artis-

tic styles, and texture synthesis methods that aim at generating a texture from a

given sample image.

Above-mentioned methods on single line synthesis [Kalnins 02, Hertzmann 02b,

Freeman 03] will fail in synthesizing patterns since neither method reproduces the

inter-relation of strokes. Very little work has been done on the subject. A notable

exception is the work of Jodoin et al. [Jodoin 02], that focuses on synthesizing one-

dimensional hatching patterns, which is a relatively simple case in which simple

strokes are arranged in a linear order along a path. Their approach works by an-

alyzing a sample pattern (Training set) with a window of fixed size. Figure 6.5 shows

the importance of selecting a sufficiently large window size.

In a first attempt to extend synthesis to more general stroke patterns, we de-

veloped a statistical approach for the case of hatchings and stipplings in 1D and 2D

[Barla 06a]. No neighborhood comparison was taken into account and the class of pos-

sible elements was reduced to single-colored points or lines. We extend this technique

to a wider range of patterns in Chapter 8. Our new approach bears some similarities

with the graphical search and replace method of Kurlander et al. [Kurlander 88].

While pattern analysis is a relatively young branch of expressive rendering, it is

a domain by its own in computer and human vision (the interested reader is referred

to Journal issues like, for instance, PAMI, which stands for Pattern Analysis and

Machine Intelligence). And the idea of synthesizing textures, both for 2D images and

3D surfaces, has been extensively addressed in recent years. Previous work can be

organized in two categories: parametric and non-parametric methods.

Parametric methods aim at giving a compact description of textures: they make

use of statistical analysis to characterize an input texture by a set of parameters,

and then try to synthesize similar textures in order to validate the parametric model.

They are thus more oriented towards Vision problems. The reader can refer to the pa-

per by Portilla and Simoncelli [Portilla 00] for a good overview of parametric models.

6.4. CONTRIBUTIONS 75

(a) (b)

Figure 6.6: (a) The reference input texture (b) Synthesis results using Efros and Le-

ung’s pioneering work [Efros 99].

On the other hand, non-parametric methods work exclusively from the reference

texture [Efros 99, Wei 00, Wei 01, Turk 01, Ashikhmin 01]. Even if this representa-

tion is less compact, the synthesis results are usually more convincing and the type of

synthesized textures more general (see Figure 6.6). This is the reason of their success

in Computer Graphics applications. These iterative algorithms work with neighbor-

hood comparisons between the reference and target textures. The size and shape of

the neighborhoods vary from one technique to the other. Some methods work in scan-

line order, while others grow the texture from a central starting point; Synthesis is

sometimes hierarchical. Still, one cannot directly apply pixel-based non-parametric

texture synthesis to vector-based patterns, because stroke patterns are composed of

individually perceived elements.

6.4 Contributions

In the following two chapters, we present our contributions in the manipulation of line

contours in drawings, and the analysis and synthesis of stroke patterns, respectively.

Our general approach to both problems is to try to generalize as much as we can the

scope of their applicability.

In Chapter 7, we present a framework that handles both the simplification of line

drawings and their interactive creation through over-sketching. This work presents

for the first time methods that deal with free-hand as well as computer-generated

drawings with very little or even no knowledge on the subject represented. It also

makes use of the Gestalt theory in human vision, also known as perceptual organiza-

tion.

Then, in Chapter 8, we describe a stroke pattern synthesis tool that addresses

many of the previous work limitations, while taking inspiration from classic texture

synthesis. Synthesis is thus extended to more complex pattern elements (not only

points and lines, but also small figures, sketched or overdrawn lines, with color) and

pattern dimensions (i.e. in 1D and, for the first time, in 2D).

76 CHAPTER 6. WHAT DO LINE DRAWINGS REPRESENT ?

Chapter 7

Line drawing simplification

ε

Figure 7.1: The two stages of our method. Lines of the initial drawing (left) are first

automatically clustered into groups that can be merged at a scale ε (each group is as-

signed a unique color). A new line is then generated for each group in an application-

dependent style (at right, line thickness indicates the mean thickness of the underly-

ing cluster).

Artists have since long learned to cleverly tune line density across their drawings.

However, most of the time in computer graphics, lines do not come with an appropri-

ate density. Simply scaling a drawing, for instance for displaying on low-resolution

devices, creates a need for density adjustment; moreover, density reduction in 3d is

not yet mature and most non-photo-realistic rendering (NPR) systems extract far too

many lines. Thus there is a need to adapt the number of lines in a drawing, otherwise

the effectiveness of such a representation may be compromised. In this chapter, we

present a simplification technique that solves this density problem for various classes

of drawings.1

There is not a single way to simplify a set of lines, depending on the envisioned

application. In the context of density reduction, we may want to adjust the line den-

sity of a drawing where too many lines project in a given region of the image. This is

needed when scaling a line drawing, as well as when rendering from a 3D scene. In

this context only the most “significant” lines should be drawn. Level-of-detail (LOD)

representations for line-based rendering (contours and hatching), where the number

of lines must vary with scale, constitute another simplification approach. Finally, in

the context of progressive editing (sometimes called over-sketching), the user refines

a curve by successive sketches. It can be viewed as an iterative simplification of the

set of line sketches provided by the user.

1This work has been done in collaboration with my advisors Joëlle Thollot and François Sillion. It

has been published in the Eurographics Symposium on Rendering (EGSR) in 2005, see [Barla 05].

77

78 CHAPTER 7. LINE DRAWING SIMPLIFICATION

Problem statement

We consider a drawing to be a digital image composed of a number of vectorized 2D

lines. Such images can be obtained in various ways: by scanning and extracting lines

from a hand-made drawing; by direct digital creation using appropriate input devices

(mouse, tablet, etc); by detecting contours in an image [Ziou 98]; by rendering a 3D

scene in a line style [Strothotte 02, Gooch 01, Grabli 04b].

We are focusing on simplification methods for such sets of lines, i.e., the creation

of another set of lines containing fewer lines than the original set. We propose a

generic approach for this type of problem, where simplification is controlled by a sin-

gle distance-based scale parameter ε.

Of course, this rather restricted view (in which spatial proximity is used as the

main discriminating criterion) implicitly assumes that all lines belong to a coherent

set, over which simplification can be carried out using a very low level semantic de-

scription. In particular this approach is not tailored to regular structures or other

higher order arrangements. However, nothing prevents the user from preprocessing

the data to organize lines in different categories and to apply our method to simplify

independently each category.

Previous methods [Igarashi 97, Baudel 94, Deussen 00b, Preim 95, Wilson 04, Grabli 04a]

only delete the less significant lines and do not consider any perceptual aspect of

line simplification. On the other side, perceptual grouping approaches provide ef-

fective ways of consistently grouping lines, even if they do not address the problem

of simplification directly. Most of the work in this area deals with the extraction of

closed paths in drawings [Saund 03, Elder 96], focusing on grouping criteria such as

good continuation and closure. However, other criteria are more relevant for simplifi-

cation purposes, e.g. proximity and parallelism. Unfortunately, even if each criterion

has been studied in isolation [Rosin 94], their relative influence is yet to be deter-

mined.

Contributions

Our main contribution is an attempt to model the common properties of target appli-

cations of line drawing simplification. To do that, contrary to previous methods, we

construct a partition of the original set into consistent groups that can be replaced

by an entirely new line. This approach is new since it combines advantages of

perceptual grouping while allowing many simplification behaviors, not only deletion.

To this end, we decompose the process into two main stages (see Fig. 7.1): a clus-

tering stage in which we group the original lines and a geometric stage where a new

line is created for each group. While the former is entirely automatic and common

to all applications, the latter is oriented toward the specific needs of each of the en-

visioned applications. Our approach is general in the sense that it considers a set of

minimal and low level goals shared by those applications.

We begin by describing our methodology in Section 7.1. The common, automatic

clustering stage is presented in depth in Sections 7.2 and 7.3. Our contribution here

is the definition of a modular algorithm that clusters any kind of line.

Section 7.4 shows how to adapt our clustering algorithm to different needs, giving

simplification results in the contexts of density reduction, LOD and progressive draw-

ing; for lines coming from different sources: scanned drawings or non-photo-realistic

renderings. Finally we discuss limitations of our method in Section 7.5.

7.1. METHODOLOGY 79

7.1 Methodology

We now present the principles of our simplification method, including formal defini-

tions that will help to clarify our approach.

7.1.1 Input lines

We define a line-drawing as a set of 2D lines holding a set of attributes (color, thick-

ness, style parameters, etc.), without any assumption on their nature. Thus a line l is

only defined by two end points and a continuous path between them.

l : [0,1]→ R2×A

where A is the space of attributes.

In the following, we will denote by l|[a,b] the part of l restricted to [a,b] with 0 ≤
a,b≤ 1. We are not interested in an exact parameterization of lines, but only on their

geometric properties. Therefore in the following, we will refer to a line l indiscrimi-

nately to refer to the set of geometric points that constitute it.

7.1.2 Objectives

As already stated, our main goal is to create a set of lines containing fewer lines than

the original one. For that, we first need to control the amount of simplification accom-

plished by our method. Our target applications all have a single common parameter:

the simplification scale. This scale, which we denote by ε, is thus the only parameter

needed by our approach. Intuitively, we only simplify the existing information at a

scale smaller than ε, keeping all the information present at a higher scale.

In the applications we envision, we first need to ensure that the overall configura-

tion of the original drawing is respected in the simplified one. This coverage prop-

erty consists of creating new lines only in regions where initial lines can be found.

Regarding perceptual grouping, it accounts for proximity and continuation effects si-

multaneously.

(a) (b) (c) (d)

Figure 7.2: (a) The simplified line (in pink) has a fold while the initial group (in

black) does not - (b) Two simplified lines are preferred to represent this group - (c)

The simplified line does not reflects the initial orientation and shape of the group -

(d) Using three simplified lines better maintains the shape of the hatching group.

However, we are not only focusing on the line positions, but also on their shape.

We want the new lines to respect the way the initial lines have been created. In

Fig. 7.2-(a), the new line folds onto itself to cover the original lines that form a fork2,

although no such fold was initially present. We prefer a solution such as the one

2Y-shaped configuration

80 CHAPTER 7. LINE DRAWING SIMPLIFICATION

shown in Fig. 7.2-(b), using one more simplified line, but with more fidelity to the

global shape of the original lines. The same problem can be found in other examples,

such as hatching groups used to shade regions (see Fig. 7.2-(c),(d)). In both cases, we

found that imposing a morphological property that prevents new lines from folding

onto themselves preserves the shape of the original drawing. It has the benefit of

ensuring parallelism of the lines clustered at the scale ε.

Finally, still following perceptual grouping, we want to be able to reject the sim-

plification of a pair of lines if their attributes (e.g. colors) are too different.

Following our objectives, we now give formal definitions related to our simplifica-

tion approach.

7.1.3 Definitions

We begin by the definition of an ε-line and use it to define a group that can be simpli-

fied by a single line at the scale ε.

Following our morphological property, an ε-line is a line that does not fold onto

itself at the scale ε. It corresponds to the fact that, for each point of l, there is no point

along the normal at a distance less than ε that also belongs to l (see Figure 7.3). We

assume l to be G1 in order to ensure that its normal is uniquely defined at each point:

Definition. (morphological property) Let l be a line. l is an ε-line if and only if l is G1

and

∀p ∈ l, ∄q ∈ l,

{

q = p+σ~nl(p)
σ = ||p−q|| ≤ ε

where ~nl(p) is the normal vector of l at point p.

This definition is equivalent to saying that l is not intersecting one of its two offset

curves l+ε and l−ε (see Fig. 7.3(a-b)).

p
q

l

l
-ε

+ε
l

l

l
-ε

+ε

l

< ε/2

< ε/2

(a) (b) (c)

Figure 7.3: (a) q is along the normal at p thus the line l has a fold and hence is not an

ε-line - (b) l is an ε-line - (c) An ε-group is a group (in black) that can be covered by an

ε-line (in pink) at the scale ε.

We now define an ε-group as a group of lines that can be simplified by a single

ε-line, as stated in our coverage property (see Fig. 7.3(c)):

Definition. (coverage property) A group of lines G is an ε-group if and only if there

exists an ε-line l such that 3:

dSH(l,G) <
ε

2

3 ε
2

ensures that two lines of the same ε-group are at a distance smaller than ε

7.2. CLUSTERING 81

where dSH is the symmetric Hausdorff distance defined by:

dSH(P,Q) = max(h(P,Q),h(Q,P))

h(P,Q) = max
p∈P

(min
q∈Q
||p−q||)

with P,Q⊂ R2.

7.1.4 Our approach

Following our definitions, our approach states that a simplified line-drawing is a set

of ε-lines that covers the original drawing at a scale ε. We first need to cluster the

original lines in a set of ε-groups before being able to create any new line. Therefore

our simplification method is organized in two stages:

1. A clustering stage first groups the lines of the original drawing in ε-groups. No

line is created at this stage and the process is entirely automatic using a greedy

algorithm to iteratively group the original lines.

2. A geometric stage then creates a single line for each cluster of the original draw-

ing. For each of the three target applications, we use the clusters differently and

apply dedicated strategies.

The clustering stage is our main contribution in this work, thus it is presented in

detail in the next two sections. We then give in Section 7.4 various examples of the

geometric stage and show that our approach can address specific applications without

demanding too much effort on the user side.

7.2 Clustering

We use a greedy algorithm to partition the set of input lines. It is based on the it-

erative clustering of pairs of ε-lines and maintains the ε-group property during the

entire process: clustering a pair of ε-lines that each represent an ε-group results in a

new ε-line that represents the merged group. The first step consists of converting the

original lines into ε-lines by splitting them at their points of intersection with their

offset curves (see Section 7.3.1). Our clustering algorithm then iteratively clusters

the pairs of ε-lines (Section 7.2.1) that have the minimum error (Section 7.2.3) un-

til no more clusters can be created. At each step we store the hull of the clustered

pair in order to take into account the result of previous clusterings in the next steps

(Section 7.2.2).

7.2.1 Clustering pairs of ε-lines

Following our definitions, a pair of ε-lines (l1, l2) can be clustered if and only if (l1, l2)
is an ε-group. This definition is not constructive: it only says that there must exist

an ε-line that covers (l1, l2). We now describe a way of building this new ε-line from l1
and l2.

82 CHAPTER 7. LINE DRAWING SIMPLIFICATION

(a) Fork (b) Two paths: closed curve

(c) Four possible configurations with one path

Figure 7.4: Possible configurations of a pair of ε-lines. Only (b) and (c) can form an

ε-group.

Possible configurations for (l1, l2) to be an ε-group

Observation. The coverage property implies that if (l1, l2) is an ε-group then there

exists a point p1 (resp. p2) of l1 (resp. l2) such that ||p1− p2||< ε. If not, it would not be

possible to find a line l such that dSH(l,(l1, l2)) < ε/2.

We call overlapping zones the portions where l1 and l2 are at a distance less than

ε, formally defined as:

Definition. An overlapping zone, Z, is a pair of line portions (l1|[a1,b1], l2|[a2,b2]) such

that:

dSH(l1|[a1,b1], l2|[a2,b2]) < ε

where {a1,a2} and {b1,b2} are the extremities of Z.

Observation. The morphological property implies that (l1, l2) is an ε-group if it is not

a fork. Indeed, if it were the case, then any line l representing (l1, l2) would have to fold

onto itself.

This implies that the overlapping zones must not fork, thus there must be at least

one of the two lines that ends at each extremity of the zone. A simple forking con-

figuration is shown in Fig. 7.4-(a). Other forking configurations exist, but are not

represented because we mainly direct our attention to valid zones (Fig. 7.4(b) and

(c)).

We call a path such an overlapping zone and define it by:

Definition. A path on a pair of lines (l1, l2) is a maximal overlapping zone, Z, such

that there is at least one extremity of l1 or l2 at each extremity of Z.

Knowing that each line has 2 extremities, there are five combinations for the paths

between two lines, illustrated in Fig 7.4-(b), (c). Thus, if a pair of lines does not

correspond to one of these five combinations, it is not an ε-group.

The only configuration that corresponds to a closed curve is when a pair of lines

(l1, l2) has two paths (see Fig 7.4-(c)). For the sake of brevity, we will not detail this

case in the following, as it is essentially equivalent to the others. However Sec-

tion 7.2.4 shows that our algorithm correctly handles it.

7.2. CLUSTERING 83

Building the new ε-line

Now that we have identified valid configurations (paths), we build the new line l, and

make sure that it is an ε-line, i.e. that it respects the morphological property. We

create an ε-line l that passes from l1 to l2 and lies in the middle of the path.
l is obtained by concatenating the portions of lines out-

side the path (in purple) with a line created inside the path

by interpolating between l1 and l2 from one extremity to

the other (in pink).

l

2l

1

Such a construction insures that l is an ε-line outside the path since l1 an l2 are

themselves ε-lines. However for zones inside the path, some particular cases when l

is not an ε-line exist. Indeed, l may fold onto itself if the curvature of l1 or l2 is too

close to 1/ε. In these cases, (l1, l2) is simply not considered as an ε-group.

7.2.2 Building the hull of an ε-group

The new line l we created only ensures that (l1, l2) is an ε-group; we cannot use it

iteratively since it would not take into account the error made by the clustering of

l1 and l2. Indeed, consider an ε-line l3; determining if (l1, l2, l3) is an ε-group is not

directly equivalent to determining if (l, l3) is an ε-group.

In order to propagate the clustering result of (l1, l2) to l, we define the hull of an ε-

group by assigning a varying thickness to the ε-line that represents it. This thickness

describes the result of the clustering of two or more lines and is used in subsequent

clusterings (see Fig. 7.5).

ε<

Figure 7.5: To decide if the four thin lines are an ε-group we use their two represen-

tatives (in pink and purple) and compute the distances between the farthest lines,

which will be represented by the hull.

For each point l(x), the points of the hull l+(x) and l−(x) are obtained by taking the

extremal intersections along the normal with (l1, l2) (see Fig. 7.6).

l

2l

1

ll
++

ll
--

Figure 7.6: The hull (in orange) of a line l (in purple) representing a pair of lines (l1, l2)
(in black) is defined by the farthest points of (l1, l2) along each normal of l (dashed

line).

All the definitions given in the previous section are easily extended by considering

the two hulls instead of the two ε-lines. Indeed, to decide if a pair of ε-lines (l1, l2) is an

84 CHAPTER 7. LINE DRAWING SIMPLIFICATION

ε-group we only need to compute distances between pairs of points. By considering

l+1 , l−1 , l+2 , l−2 for the distance computation, we can determine the overlapping zones

and then the paths between l1 and l2 while taking into account the two ε-groups

they already represent. Therefore, while computing overlapping zones between two

ε-lines, the distance between l1(x1) and l2(x2) will be taken as:

max{ ||l+1 (x1), l
+
2 (x2)||, ||l

+
1 (x1), l

−
2 (x2)||, ||l

−
1 (x1), l

+
2 (x2)||, ||l

−
1 (x1), l

−
2 (x2)|| }

Note that the hull of an ε-line l is not defined on points p where there is no in-

tersection with l1 and l2 and the normal at p. For those points, we project the closest

points of the two hulls as shown in Fig. 7.7. This will only have an impact on the error

computed on the hull as explained in the next section and our choice favors pairs of

aligned lines (i.e. with good continuation).

l2l1

Figure 7.7: In places where there is no intersection with the normal, we project the

closest points on the pair of lines.

7.2.3 Error measure of an ε-group

In order to use a greedy algorithm we now need to choose which pairs of ε-lines we

want to cluster at each step. To this end we define an error measure.

Intuitively we want to cluster the closest lines first. By closest we mean not only

spatially close but also with similar attributes. We first show how to compute the

spatial error, then we explain how to incorporate an attribute error in order to orient

the simplification toward a given application.

When computing the spatial error of a pair (l1, l2) of lines, we want to favor pairs

of lines that could be clustered with the smallest possible ε. We thus define the spa-

tial error Es(l1, l2) of an ε-group relative to the ε-line l chosen to represent it by the

maximum thickness of the hull associated with l. This heuristic favors the clustering

of the thinest groups first. This error is normalized between 0 and 1 using a division

by ε:

Es(l1, l2) = max
x∈[0,1]

||l+(x)− l−(x)||/ε

The user can also define an attribute error measure ea(p1, p2) (normalized between

0 and 1) for a particular attribute space if he or she wants to take it into account in

the clustering process. For the single attribute we used in our implementation (e.g.

color), we found that a mean was better than a max to give a good estimation of the

total error between two groups. This gives the following attribute error:

Ea(l1, l2) =
∫ 1

0
ea(l

+(x), l−(x))dx

The spatial and attribute error measures are then classically combined in a mul-

tiplicative way to give the error measure E(l1, l2):

7.3. IMPLEMENTATION DETAILS 85

E(l1, l2) = 1− (1−Es(l1, l2))∗ (1−Ea(l1, l2))

The attribute error is only computed for ε-groups, that is groups of lines that can

be spatially clustered. In order to forbid clustering if the attributes of the lines of

the group are too different, we add the constraint that for an ε-group (l1, l2) to be

clustered, it must satisfy E(l1, l2) < 1.

7.2.4 Closed curves

Most of this method holds for closed curves and the algorithm is very similar. How-

ever, we need to implement some additional processes. First, the lines closed at the

scale ε are detected. Those are the lines whose endpoints are at a distance less than

ε. Moreover, when identifying paths, if the path configuration found in Fig. 7.4-(c)

arises, the resulting ε-line becomes closed.

7.3 Implementation details

We have implemented the greedy iterative clustering by an edge collapse algorithm

applied on a graph whose edges represent pairs of ε-lines which are ε-groups.

7.3.1 Preprocessing input lines

The lines we take as input can be of any kind. The only constraints are that we

need to sample them. In our implementation, we use regularly-sampled Catmull-Rom

splines. For all distance computations involving such samples, we use an acceleration

grid of cell size ε, allowing us to quickly find candidate samples.

In order to initialize the algorithm, we need to convert an initial line l into an ε-

line. To do that, we follow l, progressively creating its two offset curves, and we split

l as soon as it crosses one of the already created offset curves. Note that this splitting

process gives different results depending on the extremity at which one starts. We

have not found any remarkable difference in the results, however one may want to

choose a more symmetric way of splitting. After this initialization step, each line is

its own hull.

7.3.2 Building the graph

Once the input lines have been converted into ε-lines, we build a graph with a node

for each input ε-line, and an edge between each pair of nodes whose ε-lines form an

ε-group.

A pair of ε-lines can only be clustered if it corresponds to one of the configurations

shown in Fig 7.4-(b),(c). Thus, for an ε-line pair, if there are more than two extremities

at a distance greater than ε from the other ε-line, we can reject it directly, saving a

lot of computation time.

In practice, we compute a hull for each potential cluster and store it on the corre-

sponding edge along with its error.

86 CHAPTER 7. LINE DRAWING SIMPLIFICATION

7.3.3 Updating the graph

Then, at each step of the algorithm, we collapse the edge with minimum error and

update the graph edges locally. Collapsing an edge is done by creating a new node that

stores the edge’s ε-line and hull. The collapsed edge is deleted and by definition of a

hull, we only have to inspect the edges incident to the collapsed nodes. Those edges

are removed from the graph and new edges are created between the new node and its

neighbors. We also compute the attributes of the new ε-line by linearly interpolating

the attributes of the two original ε-lines.

Finally, the two collapsed nodes are removed from the graph. But instead of delet-

ing these nodes, we keep them in a history of collapse sequences which is stored as a

tree under the newly created node. This gives us access to the underlying input lines

and the collapsing scheme of each cluster.

The algorithm stops when no more clusters can be created.

7.4 Results

In this section, we give some results to illustrate the overall simplification process,

i.e. both clustering and geometric stages for each of the target applications: density

reduction, level-of-detail and progressive drawing. The geometric stage is clearly a

more specialized operation since the choice of the new line to be drawn is left to the

chosen strategy. We implemented two “standard”, pre-defined strategies:

• Average line: the new line interpolates all the original lines in the cluster (with

application-defined weights);

• Most significant line: the new line is one of the original lines, chosen according

to an application-defined priority measure (based on length, nature. . .)

In the worst case, the total process increases quadratically with the number of

input lines at a fixed scale parameter ε. In practice, for our examples, it ranges from

several seconds to a minute. For each example we give the number of input lines and

resulting clusters. The simplification scale is shown by a circle of diameter ε.

Density reduction Fig. 7.8 shows a straightforward illustration of our approach.

Lines have been extracted from a scanned line drawing. The user chooses a simplifica-

tion scale ε and the lines are simplified. We applied an average line strategy without

smoothing the results, so that simplified lines exhibit the ε-line of each group.

Fig. 7.9 shows a similar scenario that takes the color attribute into account. The

attribute error is a L∗a∗b∗ color distance.

Figure 7.10 shows the use of categories to separate lines of different nature: ex-

ternal contour on one side and internal and suggestive contours [DeCarlo 03] on the

other side. In examples coming from 3D renderings like this one, we make use of ob-

ject IDs and line nature to detect categories automatically. This allows for the use of

two different geometric strategies: for the external contour an average line is drawn,

whereas the longest line of each cluster is drawn for the internal and suggestive con-

tours. Moreover, the external contour is simplified at a larger scale than the other

lines. Resulting lines are better organized and keep the most salient features of the

model.

7.5. DISCUSSION 87

(a) (b) (c) (d)

Figure 7.8: Density reduction: (a) The original scanned and vectorized drawing:

357 input lines - (b) The resulting simplification: 87 clusters - (c,d) Zoom on the above

images. The scale ε is indicated by the circle in the upper left corner.

Level-of-detail Fig. 7.11 shows an example of a LOD sequence produced with our

approach. Progressively scaling down a drawing is equivalent to choosing an increas-

ing ε. Thus we apply a series of simplifications with an ε step, each time starting from

the previous, finer level. Here again, two different geometric strategies are used: the

average line for the contour and the longest line for the hatchings. To do that, we

created five categories by hand: one for the contours, and one for each of the four

orientations for hatchings. Note that although no particular treatment was applied

to preserve tone across simplifications, this result is quite convincing. Tone preser-

vation could be explicitly included in the method at the geometric stage, by choosing

appropriate line attributes such as width and/or color.

Progressive drawing Fig. 7.12 shows a drawing sequence using our progressive

drawing tool. Here, the clustering algorithm is applied iteratively: The user chooses

a sensitivity ε and draws a sketched line over an initial drawing; the lines are then

simplified; and finally, the resulting lines constitute the initial drawing for the next

step. This tool requires an additional feature: we only want the simplification to be

done between initial lines and the new sketch. Thus the input lines are organized in

two sets: the initial lines and the new sketched line. During the clustering, only the

edges between pairs of nodes that lie in different sets are built.

Finally we choose a priority-based strategy because we want the last drawn line

to have a greater priority than initial lines. In practice, that consists of using an

average line strategy, giving greater weights to samples belonging to the last drawn

line. This is made possible by the history tree stored at each cluster. We found this

tool to be very intuitive, particularly for modifying lines coming from 3D renderings

or extracted from images.

7.5 Discussion

In this work we opted to remain very general, trying to find the common properties of

some target simplification methods. However, it is clear that such a low-level method

can still be specialized to adapt to other specific applications. In particular, we believe

88 CHAPTER 7. LINE DRAWING SIMPLIFICATION

that the separation of the clustering and geometric stages is crucial for all simplifica-

tion methods: they correspond to analysis and transformation stages.

Other attributes than color could be used in the attribute error definition. How-

ever, we did not consider input lines exhibiting wiggling patterns and implicitly as-

sumed that they come at an appropriate scale. The problem of extracting the so-called

natural scale of a line has been previously addressed (e.g. [Rosin 98]).

Our method is invariant under rotation, scale, and translation, since it operates

only on euclidean distances between pairs of points. However it has two limitations: it

is not transitive and it prevents simplifying forks. The former means that simplifying

a drawing at scale ε1, then simplifying the result at scale ε2 > ε1 is not guaranteed to

provide the same result as a direct simplification at scale ε2. However, this is not a

problem in the applications we envision, for instance generating a discrete set of LOD

representations. The latter assumes that the problem of forks is rather separate from

geometric clustering (appearing at a higher level of processing and depending on the

application) and thus is left as a post process.

The choice of a greedy algorithm for clustering implies that we only reach a local

optimum in general. This turns out to be sufficient in practice for the applications

we have tested. Other optimization techniques could be used if reaching a global

optimum is important.

The evaluation of a simplification method for line drawings is not an easy task.

Indeed, there is no simple and obvious quality measure for a simplified drawing. Vi-

sual evaluation involves a number of high-level interpretation processes, which are

difficult to model and quantify. Our approach offers the convenience of a guaranteed

geometric criterion: the resulting drawing is “within a distance ε” from the original

drawing. The direct evaluation of the result is the number of clusters. However,

in an attempt to provide finer evaluation tools we identified two other measures of

what we termed complexity in Chapter 6. First, the reduction in the number of lines

composing the drawing; Second, the variation of the total arc-length in the drawing.

Both are strongly related to the geometric strategy chosen for an application: keep-

ing a line per cluster clearly decreases the total number of lines, and the arc-length

may strongly vary depending on the new lines created. For instance, in Fig. 7.8 the

number of lines was divided by 4 and the arc-length reduced by 60%.

In the examples shown, we observe that a purely distance-based simplification

should generally not be applied to all lines of the drawing at once, because there are

categories of lines that should not be clustered, or with a lower priority: think for

instance of lines depicting different objects placed near each other. Segmenting the

drawing and applying the simplification algorithm to each category is better for the

scope of an automatic process. Naturally this opens the question of how to segment

or define the categories automatically, which is discussed in Chapter 9.

Finally, we think that our approach could be extended to animation. The idea

would consist of guiding the clustering stage temporally, not only to ensure temporal

coherence, but also to cluster lines that go altogether across time. This could be

accomplished by incorporating another perceptual grouping criterion: common fate,

which states that the visual system tends to group elements with similar velocity.

7.5. DISCUSSION 89

Figure 7.9: Top: input drawing. Middle: simplified drawing without taking color

error into account during the clustering stage. Bottom: taking color error into account

better preserves the original drawing (see the fence and the tree, the trunks and the

leaves...).

90 CHAPTER 7. LINE DRAWING SIMPLIFICATION

(a) (b)

(c) (d)

Figure 7.10: Simplification of a 3D rendering: (a) 3D model and its line render-

ing using silhouettes and suggestive contours (531 input lines) - (b) Simplification

without any category (256 clusters) - (c) Using two categories (external and internal

contours) each with a different scale and geometric strategy (294 clusters) - (d) Same

result in a calligraphic style.

7.5. DISCUSSION 91

376 input lines 269 clusters 134 clusters 81 clusters

Figure 7.11: LOD: A series of LODs made by progressively increasing ε. Using dif-

ferent categories and geometric strategies prevents undesired hatching lines from

merging. Compare the small resized images with (right) and without (left) simplifi-

cation.

Figure 7.12: Over-sketching: A 3D model has been rendered in a line drawing style.

The user adds new lines (in red) which are clustered with the old ones; the scale ε

(gray circle) can be changed at each step.

92 CHAPTER 7. LINE DRAWING SIMPLIFICATION

Chapter 8

Stroke pattern synthesis

(a) (b)

(c)

Figure 8.1: Our method (a) takes as input a reference vectorized stroke pattern, then

(b) analyses it to extract relevant stroke pattern elements and properties in order to

(c) synthesize a similar pattern.

In the previous chapter, we explored the analysis of drawings composed mainly of

silhouette lines, sometimes with the addition of simple hatching patterns to depict

illumination and shape. Another particularly important class of drawings is that of

stroke-based images. Various styles such as etchings, pen-and-ink and oil painting

renderings can be thought of as stroke-based styles as described in Hertzmann’s sur-

vey [Hertzmann 03]. The rendered strokes can be either used to fill in 2D regions, or

to annotate 1D paths. In both cases, the generation of appropriate stroke arrange-

ments for these styles remains a difficult or tedious process to date. We propose a

method that is a compromise between automation and expressiveness to create stroke

patterns from examples.1

Synthesis by example appears to be the best way to address this question. How-

ever, pixel-based texture synthesis is not well suited to strokes, in part because each

stroke is individually perceptible, in contrast to pixels. Organized stroke clusters

such as those found in hatchings are difficult to extract and reproduce at the pixel

level. Moreover, some variation in the synthesized drawing is desirable to avoid too

1This work has been done in collaboration with Professor Lee Markosian and his student Simon

Breslav at the University of Michigan, and my advisors Joëlle Thollot and François Sillion. It has been

published in Computer Graphics Forum (Proceedings of Eurographics) in 2006, see [Barla 06b].

93

94 CHAPTER 8. STROKE PATTERN SYNTHESIS

much regularity, and it would be difficult to achieve such variation with pixel-based

texture synthesis.

We therefore propose to use a vector-based description of an input stroke pattern

supplied by the user. This allows for greater expressiveness and higher-level analysis

than would be afforded by a per-pixel approach. We target any kind of stroke patterns

(stippling, hatching, brush strokes, small figures) with a quasi-uniform distribution

of positions in 1D and 2D (i.e., along a path or inside a region). The stroke attributes

can vary in non-uniform ways and the only parameter required from the user is the

scale of the meaningful elements of the pattern. Then, in a manner analogous to

texture synthesis techniques, we organise our method in two stages (see Figure 8.1).

An analysis stage where we identify the relevant elements in terms of stroke patterns

and their distribution, and a synthesis stage where these elements are placed in the

image so as to reproduce an appearance similar to the reference pattern.

In a first attempt to extend synthesis to more general stroke patterns, we de-

veloped a statistical approach for the case of hatching and stippling in 1D and 2D

[Barla 06a]. No neighborhood comparison was taken into account and the class of

possible elements was reduced to single-colored points or lines. Here we target a

wider range of patterns (including color patterns) and take into account the global

organization of the pattern by means of neighborhood comparisons.

Contributions

To define a stroke pattern we draw upon research in human vision, more specifically

in the field of perceptual organisation. Indeed, there is a common agreement that the

human visual system, in the early stages of perception, structures 2D information

into elements based on a set of criteria such as proximity, parallelism, and continu-

ation [Palmer 99]. In the case of stroke patterns, this means that some sets of input

strokes are perceived as single elements, and at a higher level, the distribution of

elements defines the pattern.

Our first contribution is an analysis method that extracts an intermediate-level

description of vector data, using perceptual organisation criteria applied to input

strokes. In particular, we are able to analyse strokes of different styles: not only stip-

pling and hatching strokes, but also brush strokes and small figures (see Figure 8.6

and Figure 8.7).

Our second contribution is a synthesis method analogous to texture synthesis, but

operating on vector data. We propose a perceptually-based neighborhood matching

algorithm that allows comparisons between neighborhoods even when they have dis-

similar connectivity.

8.1 Analysis

The first step of our method aims at analyzing a reference stroke pattern to extract

the meaningful elements that constitute the pattern, as well as their distribution.

We define an element as a cluster of strokes that is perceived as a single feature by

the user. Previous work [Saund 94] described methods to analyse diagrams where

junctions and closure properties are of primary importance. In our approach, we

target a quasi-uniform distribution of elements that have sensibly the same size; Here

8.1. ANALYSIS 95

parallelism, proximity and continuation are more important properties.

Moreover, there is a characteristic scale of the pattern that gives the size of pattern

elements. We let the user specify it so that there is no ambiguity regarding user

intention in the drawn pattern. Note, however, that the whole analysis process is

interactive, hence providing enough feedback to easily set a convenient scale. This

allows us to target a wide range of patterns as shown in Section 8.3.

Once the scale is chosen the rest of the process is fully automatic and works as

follows. We first fit an element to each input stroke; We then cluster elements itera-

tively using perceptual organisation criteria; Finally, we relate elements to each other

to derive properties about their distribution.

8.1.1 Element fitting

We define an element by its center and its two elongation axis. In order to fit an ele-

ment to a stroke, the user can either choose to only consider the skeleton of the stroke

(i.e. the gesture input by the user) or to also take into account its style (thickness,

fading, tapering, etc). In the first case, we fit an element to the points that define the

skeleton, while in the second case, we fit an element to the points of its contour. The

following fitting method is efficient for the elements we consider.

c

A

B

An element E is constructed by fitting an oriented bounding box to the

chosen set of points (skeleton or contour) that will prove useful for approx-

imating geometric measures between elements. We first fit a Gaussian dis-

tribution to the points to compute the two principal elongation directions

given by the eigenvectors A and B of the points’ covariance matrix. Each

point is then projected onto each axis to compute the size and center c of the

bounding box.

8.1.2 Element clustering

Now that each stroke is represented by its bounding box, we want to cluster them into

elements at the chosen scale. For example, a hatch element can be made of several

overlapping strokes, and a small figure (think of a flower) is often drawn using a small

number of individual strokes.

To decide whether two elements can be clustered, we draw upon the work of

Etemadi et al. [Etemadi 91] on perceptual line segment grouping. Two elements

are clustered if they meet a proximity constraint (e.g., for a flower), or if they meet a

continuation constraint (e.g., for a hatch element). These tests are performed against

the user-defined scale ε, that represents the minimum distance at which two elements

are perceived separately. When two elements are clustered, we merge their respective

strokes and fit a new element using the method explained in the previous section. For

more complex elements, a more general technique like the one we presented in the

previous Chapter should be employed.

Clustering is performed by a greedy algorithm that processes the strokes in the

order they have been drawn. The fitted elements are first placed into a queue. At

each step, an element E∗ is popped and every other element Ei in the queue is tested

for clustering based on an element pair comparison. If the test is successful, we merge

Ei into E∗ and remove Ei from the queue. After all the elements of the queue have been

tested, if any clustering occurred, E∗ is pushed back into the queue. Otherwise, E∗ is

96 CHAPTER 8. STROKE PATTERN SYNTHESIS

added to the output list of clustered elements. The algorithm repeats until the queue

is left empty.

prox(E1,E2)

E1

E2

ε

cont(E1,E2)

E1

E2

(a) (b)

Figure 8.2: Element clustering uses two perceptual measures: (a) Proximity and (b)

Continuation.

Proximity measure

The proximity between two elements E1 and E2 is computed using Hausdorff distances

so that nested, or very close objects are clustered together (see Figure 8.2(a)):

prox(E1,E2) = min(dH(E1,E2),dH(E2,E1))

dH(E1,E2) = max
q1∈E1

(min
q2∈E2

(d(q1,q2)))

where dH(E1,E2) is the directed Hausdorff distance.

In practice, it is computed using point-line distances between the bounding boxes.

If prox(E1,E2) < ε, then E1 and E2 are clustered.

Continuation measure

Continuation has to be checked on all pairs of axes between the two elements E1 and

E2. For each of the four configurations, we first have to ensure that the elements are

near-collinear; then we compute a continuation measure. Without loss of generality,

we only consider the measures of E2 relative to the axis A1 of E1. E2 is near-collinear

to E1 iff:

∀p ∈ E2,d(p,A1) < ε/2

If the above condition is met, then a continuation error is computed as the gap

between the projected points of E1 and E2 on A1 (see Figure 8.2(b)):

cont(E1,E2) = min
p∈E∗1 ,q∈E∗2

(d(p,q))

where E∗i is the set of points of Ei projected on A1, i = 1,2.

In practice, we also use the bounding boxes to speed up this computation. If

cont(E1,E2) < ε for any of the four configurations, then E1 and E2 are clustered.

8.2. SYNTHESIS 97

8.1.3 Element distribution

Having identified the elements of our reference pattern, we can now extract connec-

tivity information among them in order to characterize their distribution (see Fig-

ure 8.1(b)). We use the center position of each element. For 1D patterns, we extract

the neighbors along a chain, while for 2D patterns, we extract a Delaunay triangu-

lation and keep only edges that are part of at least one unskewed triangle (i.e. a

triangle that do not have an angle greater than 2π
3

). The pattern input by the user

is supposed to be uniform, but in practice, the distribution of elements is only close

to uniform. We measure locally this variation by computing a shift vector Sre f that

expresses the displacement between an element’s position and the barycenter of its

neighbors’ positions. We will use those measurements to add variation to a synthe-

sized pattern in Section 8.2.3.

8.2 Synthesis

Thus far, we analysed the reference stroke pattern in order to get a higher-level,

perceptually meaningful description of it. In this section, we show how to take ad-

vantage of this knowledge during synthesis. Since we want to address the synthesis

of texture-like patterns, it makes sense to take inspiration from the texture synthesis

literature. In our approach, we draw comparisons with Efros and Leung’s pioneer-

ing paper [Efros 99]: like them, we use a causal synthesis procedure that starts with

an element at the center of the pattern and expands it outward using neighborhood

comparisons on the previously synthesized elements.

Our method exhibits some important differences though: contrary to the distribu-

tion of pixels on a grid, our element positions are not supposed to be aligned. This

has an impact on the neighborhood comparison procedure that has to match rele-

vant neighbors between the reference and target patterns. Moreover, elements are

easily identifiable and perceived in isolation, thus their comparison should consider

the whole set of their parameters: orientation, length, width and color. To do that,

we draw inspiration from the field of perceptual organisation once again and show

how a trade-off between variation and fidelity can be obtained. The algorithm below

summarizes the synthesis process.

Algorithm 1 Stroke pattern synthesis

Dtar ← InitialiseDistribution(Dre f)

Estart ← GetCenterElement(Dtar)

for each Etar in Dtar growing outward from Estart do

Ere f ← FindBestMatch(Etar, Dtar, Dre f)

Etar ← SynthesizeElement(Ere f , Dtar, Dre f)

end for

We first present our neighborhood comparison in Section 8.2.1, before describing

in Section 8.2.2 how it is applied iteratively to create the target pattern. Finally, in

Section 8.2.3, we explain how the user can add variation to the synthesized pattern

while keeping a strong similarity with the reference.

98 CHAPTER 8. STROKE PATTERN SYNTHESIS

8.2.1 Synthesizing one element

Let E be an element in the synthesized pattern and assume for the moment that all

elements in the pattern except for E are known. Let ω(E) be a neighborhood around

E. To assign properties to E, as in [Efros 99], a set Ω of neighborhoods similar to ω(E)
is extracted from the reference pattern using various perceptual measures described

below. Then one of the neighborhoods in Ω is randomly chosen and the center element

of the picked neighborhood is used for E.

Neighborhood comparisons are more complex for stroke pattern synthesis than

for texture synthesis for two reasons: the number and position of neighbors vary in

our distributions, and elements are more complex entities than pixels. The compu-

tation of the similarity between two neighborhoods ωre f and ωtar is thus performed

in two steps. First, relevant elements of this pair of neighborhoods are found. Sec-

ond, a set of perceptual organisation measures is tested against perceptual similarity

thresholds for the whole candidate reference neighborhood. Comparisons between

vector-based elements has already been studied in the context of graphical search

and replace by Kurlander et al. [Kurlander 88]; However, their method is more tai-

lored to exact matches, and only compares pairs of elements, not neighborhoods.

E

E

ωref ωtar

Figure 8.3: Neighborhood comparison: Pairs of relevant elements are extracted based

on their position.

For the determination of relevant elements, we only consider pairs of closest refer-

ence and target elements by comparing their positions, see Figure 8.3. This heuristic

locally matches the distribution of element positions between the reference and target

patterns. We keep pairs of elements Ere f ∈ ωre f and Etar ∈ ωtar such that

Etar = arg min
E∈ωtar

(d(Ere f ,E))

Ere f = arg min
E∈ωre f

(d(Etar,E))

where d(E1,E2) is the euclidean distance between the centers of E1 and E2.

Once the elements are matched, we compute a set of four different perceptual mea-

sures that can be organized in two categories (see Figure 8.4): a shape-matching mea-

sure that compares two elements as point sets by computing a symmetric Hausdorff

distance; and a set of three measures - parallelism, overlapping and superimposi-

tion - that compares elements using the higher-level description extracted during the

analysis. The shape-matching measure is useful when there is an ambiguity between

8.2. SYNTHESIS 99

shape

Etar

Eref

Eref

Etar

A

B

Parallelism

overlapping

s
u
p
e
ri
m
p
o
s
it
io
n

θ

(a) (b)

Figure 8.4: Element neighborhood matching uses various perceptual measures: (a)

isotropic elements; (b) anisotropic (elongated) elements.

the principal and secondary axis of elongation of an element (e.g., a circle), while the

other measures exploit the perceptual properties of elongated strokes.

Each measure is computed independently on each pair of elements in their respec-

tive frame; i.e., the element centers are first aligned before the following measures

take place:

shape(Ere f ,Etar) = max(dH(Ere f ,Etar),dH(Etar,Ere f))

par(Ere f ,Etar) = |θ(Are f ,Atar)|

ov(Ere f ,Etar) = max

(

|Are f |

|Atar|
,
|Atar|

|Are f |

)

sup(Ere f ,Etar) = ||Bre f |− |Btar||

For the computation of the shape measure, we approximate the directed Hausdorff

distance dH using bounding boxes as previously. The parallelism measure is simply

taken to be the norm of the angle θ between the two elements principal axes. Over-

lapping is the maximum ratio of lengths between the target and reference principal

axes. And superimposition is the difference in thickness (length of the secondary axis)

between the target and the reference.

In addition to these geometric measures, any attribute can also be taken into ac-

count during the synthesis. We illustrate this ability with a simple color distance:

col(Ere f ,Etar) = dRGB(Cre f ,Ctar)

where Cre f and Ctar are the colors of Ere f and Etar in RGB.

All the measures are then averaged over the element pairs of ωre f and ωtar to give

a set of perceptual measures between neighborhoods. They are then tested against a

set of perceptual thresholds. These thresholds control the amount of selected candi-

date neighborhoods: they have to be sufficiently large to provide enough candidates,

but small enough to avoid incoherence. In our experiments, we use σshape = 0.1L where

L is the average length of the reference elements, σpar = π
20

, σov = 1.5, σsup = 0.1L and

σcol = 0.15. We observed that our algorithm is robust to small variations in these

thresholds. Two neighborhoods are then considered similar relative to a given mea-

sure m iff m(ωre f ,ωtar) < σm.

The measures are finally combined to determine the similarity of the candidate

reference neighborhood to the target one. If the colors or any other attribute does

100 CHAPTER 8. STROKE PATTERN SYNTHESIS

not match, we simply discard the matching. Otherwise, we test whether the neigh-

borhoods match by considering them as sets of points or sets of elements. In our

approach, we thus use the following combination

col and (shape or (par and ov and sup))

In Section 8.3, we show and comment examples that exhibit the role of each mea-

sure: hatching strokes are more discriminated by parallelism, overlapping or super-

imposition, while small figures rely mainly on the shape measure; color is indepen-

dent of the shape of elements, but further refines the above measures.

8.2.2 Synthesizing a pattern

As mentioned previously, our synthesis algorithm begins at the center of a uniform

distribution similar to that of the reference one. Hence, we first build a distribution of

element positions that we call seeds, and connect seeds together to get neighborhood

relationships. To this end, as in our previous method [Barla 06a], we use Lloyd’s

method [Lloyd 82] in 1D and in 2D: it is an iterative algorithm that starts with a

random distribution of seeds. Then, at each step, a Voronoi diagram of the seeds is

computed, and each seed is moved to the center of its Voronoi region. It converges to

a centroidal Voronoi tessellation, close to regular. The only parameter of the method

is the number of seeds, that we set to Ntar = Nre f .Atar/Are f , where Are f and Atar are the

areas of the reference and target regions respectively. Finally, when the algorithm

has converged, for 1D patterns, we extract the neighbors along a chain, while for

2D patterns we extract a Delaunay triangulation and keep only the edges which are

part of an unskewed triangle, in order to avoid degenerate edges at the border of the

triangulation.

In the previous section, we have discussed a method of synthesizing an element

when its neighborhood elements are already known. Unfortunately, this method can-

not be used directly for synthesizing the entire pattern since for any element, only

some of its neighbors will be known during the propagation. Like in Efros and Le-

ung’s approach, the element synthesis algorithm must be modified to handle un-

known neighborhood elements. This can be easily done by only matching on the

known values of ω(E) and normalizing the error by the total number of known el-

ements. This heuristic, illustrated in Figure 8.5 appears to provide good results in

practice.

8.2.3 Adding variation

The patterns synthesized with our method exhibit strong similarities with the refer-

ence, since they consist of elements that have been copied from it. One might also

wish to introduce some amount of variation relative to the reference pattern. In or-

der to add such a variation, we developed a post-processing mechanism that slightly

changes the parameters of the synthesized elements and is controllable by the user

via a slider. For each element, and for each of its parameters independently, we select

a set of similar values in the reference pattern. E.g. , we select a set of orientations

close to the synthesized element’s orientation. Then, we pick one value from this set

and use it in place of the parameters of the synthesized element. This mechanism

8.3. RESULTS 101

Figure 8.5: To synthesize a 2D pattern, we first distribute seeds using Lloyd’s

method, then we synthesize elements growing outward from the center using par-

tial neighborhood comparisons.

lets us exchange parameters between similar reference elements without producing

elements that are too different from those of the reference pattern.

Another noticeable difference between our synthesized patterns and their refer-

ence is the distribution of positions: while the distribution of a synthesized pattern

can be considered uniform, this is not the case of the pattern input by the user. The

variation present in the input might be desired by the user, and we thus propose a

heuristic to reintroduce variation in the distribution of element positions as a post-

process. For each synthesized element Etar that has n ≥ k neighbors, we get the ref-

erence shift vector Sre f of the corresponding Ere f , computed during the analysis (see

Section 8.1.3); Then we position all the Etar in parallel at the barycenter of their

neighbors, and translate them by Star = (Sre f AEtar
)/(nAEre f

) where AEre f
and AEtar

are

the areas of the neighborhoods of Ere f an Etar respectively. In practice, we use k = 2 for

1D patterns and k = 4 for 2D patterns.

8.3 Results

We show here some results of our synthesis method using various types of elements

in 1D and 2D. Computation times are of the order of a second for 1D patterns; and

between 5 and 10 seconds for 2D patterns, depending on the neighborhood size.

Figure 8.6 shows 1D synthesis. A simple example is shown in Figure 8.6(a) where

curved hatching strokes are drawn with sketchy gestures and are properly analysed

and synthesized. Our post-process that adds variation to both position and element

parameters is illustrated in Figure 8.6(b) with a simple hatching pattern; Notice how

the vertical positions of elements are reintroduced in the synthesized pattern. We

then show how we can reproduce smooth variations in the parameters of the ele-

ments along the 1D path. In Figure 8.6(c), we use a 5-ring neighborhood synthesis

to reproduce the smooth change in the orientation of elements along the path; Here

the parallelism measure plays a major role in the synthesis. Figure 8.6(d) shows

the influence of the neighborhood size on the quality of the result. Synthesised pat-

terns with 1-ring, 3-ring and 5-ring neighborhoods are shown from top to bottom: the

102 CHAPTER 8. STROKE PATTERN SYNTHESIS

smooth change in stroke length is only well captured with the 5-ring neighborhood.

Here, the overlapping measure is discriminant. Figure 8.6(e) shows a smooth change

in element thickness captured with a 5-ring neighborhood, and made possible by our

superimposition measure. Finally, we show at the bottom an example using brush

strokes of alternating colors: the synthesized pattern exhibits the same alternation,

thanks to our color measure.

Figure 8.7 shows 2D synthesis. Figure 8.7(a) shows an example of bars oriented in

multiple directions. Here, our synthesis method is able to reproduce the complex re-

lations among similar elements. It can also synthesize elements that are less similar,

as in Figure 8.7(b) with water drops, small figures like the flowers of Figure 8.7(c) or

alternating two different kinds of elements as in Figure 8.7(d). Finally, the variation

of element positions is illustrated in Figure 8.7(e), where the distribution obtained

with Lloyd’s method is modified to be more similar to the input pattern.

8.4 Discussion and future work

8.4.1 Analysis

Our analysis method can extract a wide range of elements (stipples, hatches, brush

strokes, small figures), but our element representation (a center and two axes) is too

simple to correctly extract long curved strokes. Moreover, we do not target structured

patterns, such as a brick wall, where the overall organization should be extracted

along with each element. We thus plan to address these two issues in the future

by modifying our element model and adding multiple levels of analysis to be able to

capture more structured patterns. Another issue is the use of additional perceptual

criteria such as closure or junctions in order to perform a deeper interpretation of the

input pattern.

In our approach, the analysis stage is user-assisted in order to determine the scale

of the pattern. Since the clustering of elements is dependent on this scale and is im-

plemented with a greedy algorithm, it can produce flickering on rare occasions when

the user interactively modifies the scale. However, this has no impact on the final

synthesis result. On the other hand, if one wants to consider scanned drawings as

input, it would make sense to extract both the elements and the scale automatically.

The greedy nature of the clustering algorithm might then lead to problematic behav-

iors. Moreover, for elements that significantly overlap, our approach may not work at

high scale values since it uses proximity computations. Some ideas to address these

limitations are given in Chapter 9.

8.4.2 Synthesis

Our synthesis method currently generates quasi-uniform distributions of elements

via the Lloyd algorithm. In the future we will target non-uniform distributions that

can take into account density variations within the pattern. We also plan to use the

whole element shape rather than only its center position in the distribution definition.

The heuristic we used for finding relevant neighbors also suffers from a limitation: it

can happen that no pairing is found between the reference and target neighborhoods.

However, in practice, the even distribution produced by Lloyd’s method prevents this

worst case scenario from happening.

8.4. DISCUSSION AND FUTURE WORK 103

Another interesting point is the ability to take into account attributes of the input

strokes during synthesis. We only investigated color, but other attributes such as

thickness, opacity or texture might give convincing results. Finally, our variation

technique is tailored to stroke pattern synthesis and has thus no equivalent in texture

synthesis. We plan to extend this ability to take into account the shape of the strokes.

8.4.3 Extension to synthesis on surfaces

Our system works in the picture plane and we plan to extend it to synthesis on sur-

faces in the future. However, stroke-based rendering raises several specific questions

in terms of rendering. Indeed, the strokes need to be of roughly constant size in

2D if one wants to maintain the same style for every viewpoint. Therefore an LOD

mechanism has to be defined, and we believe that this can be achieved with a dedi-

cated synthesis algorithm. An automatic generation of mipmaps or Tonal Art Maps

[Praun 01] would be a simple way to address synthesis on surfaces. However, we be-

lieve that direct synthesis on surfaces will open more interesting avenues: for exam-

ple, the rendering could be done by varying the attributes of each synthesized stroke

depending on the viewing and lighting conditions. By keeping the analogy with tex-

ture synthesis, it should be possible to devise such a method in the same way we did

in the present paper.

104 CHAPTER 8. STROKE PATTERN SYNTHESIS

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.6: 1D synthesis results. (a) A simple hatching example that uses sketchy

strokes; (b) another hatching example with a uniform distribution of elements (on

top), and the same pattern after variation have been added (at bottom); (c) a smooth

change of element orientation is analysed and synthesized with a 5-ring neighbor-

hood; (d) a smooth change of element length is analysed and synthesized with increas-

ing neighborhood sizes (from top to bottom: 1-ring, 3-ring and 5-ring neighborhoods);

(e) a smooth change of element thickness is analyzed and synthesized with a 5-ring

neighborhood; (f) the alternation of strokes colors is captured and reproduced in the

synthesized pattern.

8.4. DISCUSSION AND FUTURE WORK 105

(a) (b)

(c) (d)

(e)

Figure 8.7: 2D synthesis results. (a) A pattern of hatching strokes in multiple di-

rections is synthesized using a 3-ring neighborhood; (b) elements of various nature

(water drops, hatches) are analysed and synthesized with a 3-ring neighborhood; (c)

small figures like flowers of different colors can be analyzed and synthesized by our

method using a 2-ring neighborhood; (d) a pattern composed of two different types of

hatching strokes is synthesized with a 2-ring neighborhood; (e) the addition of vari-

ation in the position of elements is able to break the uniform distribution of Lloyd’s

method.

106 CHAPTER 8. STROKE PATTERN SYNTHESIS

Chapter 9

Remarks on drawing segregation

In the previous two chapters, we proposed two specific methods to enrich the digital

drawing toolbox, one for the simplification of a drawing (Chapter 7), the other for

the synthesis of stroke patterns (Chapter 8). More importantly, in order to create

meaningful representations (a simplified drawing or a synthesized pattern), we relied

on the analysis of the input data from a low-level perceptual point of view.

However, besides their contributions, both approaches suffer from a delicate prob-

lem: Their analysis step is only semi-automatic. Indeed, they both ask the user to

set an intrinsic scale ε, and possibly to separate a drawing into categories. While it

seems intersting to provide semi-automatic tools for synthesis, so that the user can

intuitively control the final result, analysis should ideally be fully automatic. To this

end we should answer two questions: How to automatically segregate a drawing into

coherent parts? What does each part represent and how can it be described in a

compact way?

As we have discussed before, there seems to exist at least two categories of lines

in a drawing: contours and patterns. Contours usually depict shape, and to a smaller

extent, shading, and are inherently one-dimensional. Patterns, on the other hand,

either depict texture or shading, and can also provide hints for the perception of shape

by conveying an orientation. They are more two-dimensional and are used to fill

regions with a given density of similar primitives. These observations are qualitative,

and in order to perform a finer analysis, we first need to determine precisely what

information is carried out by contours and patterns.

Recall that in the representation model of Willats and Durand (see Part I), marks

implement picture primitives, that are mapped from scene primitives. Finding which

clues are depicted by a contour or pattern is thus equivalent to traverse the model

in reverse order. When the scene is completely unknown, it corresponds to the ques-

tions found in low-level human vision. In the following, we will thus present some

important low-level perceptual cues revealed by contours and patterns.

Note however that low-level vision is only the first step of human vision, and in

addition, experience and memory play an important part (we will discuss that point

in Part IV). In particular, the knowledge of our environment has a determining in-

fluence on low-level perception. In expressive rendering, this knowledge corresponds

to having access to 3D information in the scene, and is used, for instance, in some

methods that work by analogy.

107

108 CHAPTER 9. REMARKS ON DRAWING SEGREGATION

9.1 Perceptual cues revealed by contours

Previous work in human vision addressed partially the perception of line drawings

by a series of experiments and mathematical analysis. In particular, Koenderink

studied “the shape of smooth objects and the way contours end” [Koenderink 82]

and showed that some drawings actually do not correspond to a possible shape be-

cause of some stylistic variations at the end of their contours. However, he also

demonstrated via experiments how line drawings are efficient in depicting shape

[Koenderink 96, Koenderink 01]. Some authors studied how surface could be in-

ferred from contours via a mathematical analysis of intrinsic geometric properties

[Barrow 81, Koenderink 84, Beusmans 87]. In other words, they concentrated on

view-independent surface features, which goes beyond the scope of low-level percep-

tion, and belongs more to an internal representation of shape.

In contrast, recent studies by Adelson et al. on material perception [Fleming 03]

revealed that the human visual system is very efficient in reconstructing surface fea-

tures from material properties like specular reflections [Fleming 04]. The authors

compare their approach to shape-from-texture and shape-from-shading models. They

relate them by observing that they allow to extract progressive approximations of

surface geometry in the direction of the point of view: Surface slant (the surface ori-

entation in the viewing direction) can be extracted from local distortions of texture

patterns; While surface radial curvature (the surface curvature in the viewing direc-

tion) can be extracted from local specular reflection distortions. Therefore, there is

evidence that the human visual system is able to infer surface from extrinsic geomet-

ric properties, i.e. without the need to build an internal shape representation, which

corresponds better to the processings attributed to low-level vision.

We conjecture that a main reason why line drawings are so efficient to depict

shape is because they represent locii of objects where view-dependent surface features

exhibit a discontinuity in image space. Or to say it in a different way, a thin contour

line will appear in a drawing only if a sharp discontinuity is present in the view-

dependent approximation of the depicted surface. If this appears to be true, then we

will be able to state that contours reveal discontinuity cues corresponding to depth,

slant and radial curvature (i.e., progressive extrinsic surface approximations). Note

that the suggestive contours of DeCarlo et al. [DeCarlo 03] indeed use one of these

cues (radial curvature); However, the resulting line drawings seem satisfying only

for some point of views, thus a deeper study of depicted surface features is of great

interest.

Although each line of a drawing might depict local surface features, their combi-

nation will lead to a global percept of shape, in accordance to the above-mentioned

studies in intrinsic shape properties. Of particular importance are line junctions, and

at a more global level, the dependence on context (i.e. the influence of nearby distinct

lines). See the work by Barrow and Tenenbaum for a deeper treatment [Barrow 81].

Moreover, as discussed for instance by Solso [Solso 94], something must differen-

tiate an object from its context, and a commonly perceived demarcation is achieved

through figure-ground separation, i.e. which region of a picture is in the foreground,

and which is in the background. He argues that, since contours are often used to

demarcate an object from its background, contours are more part of the figure than

they are to the ground. Thus they help to clarify depth ordering in the scene.

Finally, not all the lines of a drawing are intended to give a perceptual cue of some-

9.2. PERCEPTUAL CUES REVEALED BY PATTERNS 109

thing present in the scene. For instance, McCloud, in his book on comics [McCloud 94],

evokes the power of “cartooning” in line drawings:

“When we abstract an image through cartooning, we are not so much elim-

inating details as we are focusing on specific details. By stripping down

an image to its essential meaning, an artist can amplify that meaning in

a way that realistic art can’t. Cartooning can thus be seen as a form of

amplification through simplification.”

For instance, lines can be used to depict motion, their style (wiggling, zig-zagging

or noisy lines) is often employed to portray the world of senses and emotions (e.g.

to represent clearly a character’s surprise), while some other lines are not pictures

anymore; they are more visual metaphors, or symbols (think of the little steam figures

found for instance in manga and used to portray anger or frustration). Thus, the

extraction of perceptual cues from contour lines might not be always justified, but

our belief is that they correspond in most cases to features of a possible view.

9.2 Perceptual cues revealed by patterns

While contour lines seem to essentially convey shape cues, patterns offer a broader

variety of information. First, like contours, they can reveal the shape of a surface, but

in a different, quite complementary way, since they do not represent discontinuities

but rather smooth surface regions. In the vision literature, the study of so-called sur-

face markings bears many similarities with patterns properties. Surface markings

are dense sets of curves that lie on a surface. By progressively testing and eliminat-

ing the constraints required for a marking to reveal the shape of an object, Stevens

[Stevens 81], then Todd et al. [Todd 90] and Knill [Knill 92], refined the perceptual

cues they can reveal. To summarize, the three-dimensional structure of a depicted

surface is determined from the statistical distribution of lines orientations within lo-

cal neighborhoods. In practice, it means that the local curvature of a surface can

be revealed by the local oriented density of the pattern that represents it. This for-

mulation could fit nicely in a low-level perceptual analysis of pattern density, and

motivates future work in that direction.

Patterns are also often used to represent tonal variations, like the self-shadowing

effect of a surface. However, a pattern usually consists in a distribution of individu-

ally perceived elements. How such a distribution can be integrated in order to yield

tonal information? If we consider, again, low-level vision models, it can elegantly be

explained by the use of a multi-scale representation. In their article on image anal-

ysis, Alvarez and Morel [Alvarez 94] give a comprehensible presentation of existing

multi-scale models for human vision, as well as a general model for multi-scale anal-

ysis. The main idea is that there exists, in the first milliseconds of the perception

process, a series of parallel, fast and irreversible operations that integrate local infor-

mation and already yield very rich and useful information to further understanding of

the image. Intuitively, the human visual system builds a visual pyramid by applying

local operators (similar to smoothing) at each stage. Hence, patterns are perceived as

individual elements at the finest level of the pyramid, but also as more homogeneous

regions at a higher level, and these regions might efficiently carry tonal cues. For

110 CHAPTER 9. REMARKS ON DRAWING SEGREGATION

more information on multi-scale analysis, the reader is referred to the book edited by

Romeny [Romeny 94].

Finally, apart from representing some scene features, patterns also possess an

internal structure that relates them to texture analysis, as we have seen in Chapter 8.

We took inspiration from non-parametric texture synthesis models, but it appeared

to us that they are quite limited because the definition of a neighborhood in a stroke

pattern is ambiguous and pose many problems. Instead, in future work, we would

like to investigate parametric models of texture, that analyze a pattern via statistical

measurements and without relying too much on a notion of neighborhood. A successful

parametric texture model has been presented by Portilla et al. [Portilla 00]: They

were able to synthesize many textures with their approach, except for some stroke-

based patterns. Moreover, they proposed an efficient method of evaluation based on

user experiments, where each statistical measure is proved to be essential to the

analysis. We thus envision to take a similar approach to the analysis problem. We

hope that the use of vector input in the form of stroke-based elements instead of pixels

will allow us to avoid the problems encountered in [Portilla 00], suggesting that those

elements are first analyzed independently by the human visual system before being

related to each other.

Part III

Picture color composition

111

Chapter 10

How are colors distributed in a

picture ?

While Part II was devoted to the analysis of line drawings, either input by the user

or extracted from an existing drawing, we now turn our attention to another mean of

expressivity: color composition. Our goal then is to understand the process that leads

to the distribution of colors in a picture, find tools to acquire such distributions (e.g.

from existing paintings) and propose methods to manipulate them and apply them to

other representations. As in the previous parts of this thesis, we begin by describing

some common schema found in traditional techniques.

(a) (b)

Figure 10.1: A reference photograph (a) is reproduced using colors that have been

altered in order to increase contrast and control temperature (b).

10.1 Examples from traditional paintings

Before starting to paint on a canvas, an artist has to choose a set of basic colors that

he will use directly or in combination with other colors; It is usually called a color

113

114 CHAPTER 10. HOW ARE COLORS DISTRIBUTED IN A PICTURE ?

palette. Depending on the chosen medium, the palette might contain more or less

colors. For instance, with pastels, it is recommended to possess a large set of colors,

because they cannot be blended. To the contrary, oil paint is usually blended in later

steps of the painting, thus a minimal set of basic colors is sufficient.

Then, various possibilities are offered to the artist in order to blend the colors of

the palette: A “physical” blending, onto the palette, usually made by progressively

adding to a light color small quantities of a darker color; A “superposition” blending:

The colors are then directly blended on the canvas to give new tones; And an “optical”

blending: The juxtaposition of very small quantities of pure colors that, via an optical

“illusion”, will create another color (e.g., like in pointillist paintings).

(a) (b) (c)

Figure 10.2: (a) Natural colors in illustration show the real colors of a specimen. (b)

Symbolic colors help to differentiate structures. (b) Design colors are used for clarity

and impact.

Of course, the choice of a color palette can be based on many different motivations.

For instance, the original colors of a scene can be altered in order to emphasis some

illumination effects (see Figure 10.1): contrast, diffusion, cold or warm tones can be

manipulated by the artist to direct the observer’s attention. This way, the artist can

also control the color harmony of the final representation, setting a specific mood in

the composition.

Another example is given by the use of color in scientific illustration, which can be

divided in three general categories [Wood 94] (see Figure 10.2): natural colors, which

represent the true colors of the represented specimen; symbolic colors, which utilize

assigned or familiar colors for specific parts of the subject; and design colors, which

are used as an aid to recognition.

Once a color palette has been chosen, the artist is then ready to start painting. He

applies colors from the palette to regions of the canvas. Those regions can overlap to

create new colors absent from the palette, as mentioned above. Their shape may be

arbitrarily close to the shape of depicted elements: Small elements might be ignored,

close elements agglomerated together, etc. These abstraction choices either come from

stylistic decisions from the artist (like ignoring some objects in the background to give

an aerial perspective effect), or result in the constraints set by the medium: Simply

using a brush of medium size makes it impossible to represent small details. Note, in

addition, that many artists exploit the “shape” of the brush stroke in order to create

10.2. A COLOR DISTRIBUTION WORK-FLOW 115

some interesting effects. Finally, details might also be added from the interaction be-

tween the chosen medium and canvas, like the slightly inhomogeneous color densities

found in watercolor paintings.

10.2 A color distribution work-flow

During a real painting, the medium plays an important role through the whole pro-

cess: its density governs how colors are blended, in the image as well as in the palette.

However, its effects are only visible in the texture and high-frequency details present

after the paint have been laid down on canvas. From a computational point of view,

the effects of medium only appear at the very end of the painting process. We can

therefore describe a computational color distribution work-flow independently of the

chosen medium, which is then applied as a post-process.

First create a palette Since the description of a color palette as defined in the

previous section is highly dependent on the chosen medium, we must give it a more

generic definition. Therefore, in the following, we will refer to a color palette not as

the physical tool used by painters, nor as a set of basic colors that can be blended on a

canvas (and thus give colors that are not in the palette); We rather define it as a high-

level descriptor, that characterizes the colorimetric composition of the final painting

by a set of basic colors regardless of their spatial distribution. The reason for

using a set of distinct basic colors is motivated by findings in the perception of colors,

as presented, among others, by Solso [Solso 94] (here basic colors are called foveal

colors):

“Our brain access a color category in response to a limited range of wave-

lengths. Of course, some neighboring colors may be similarly classified, but

the best candidates are restricted to a limited range. Such central colors

are called foveal colors and are prototypical.”

The choice of a palette and its number of prototypes (or basic colors, or foveal

colors) allows the user to perform a colorimetric abstraction of the composition.

Then distribute colors In this second stage, the color prototypes of the palette

and only them are used to represent colors from the depicted scene. At this stage, the

user can perform a spatial abstraction. First, he can selectively remove some small

and meaningless elements, or smooth out high frequency details. He can also simplify

the borders of some regions (note that this is what happens when using a “medium-

sized” brush tool) or group regions of similar color or depth for instance. All these

operations should be intuitive to apply and defined in the picture plane.

An important remark is that the colorimetric and spatial abstractions performed

through this work-flow, even if done in a sequential order, are dependent on each

other: There is no need to have a basic color in the palette if it is not used in the final

distribution (e.g. because it corresponds to a detail that has been removed); While the

agglomeration of two regions might be forced by the fact that their respective colors

are described by a single basic color in the palette.

116 CHAPTER 10. HOW ARE COLORS DISTRIBUTED IN A PICTURE ?

Acquisition issues The main reason to define such a generic work-flow is to allow

to use it indiscriminately with expressive renderings, paintings, drawings or pho-

tographs. This way, the properties can more easily be transfered from one medium to

the other. However, it raises the question of acquisition, which is the main topic of this

part on picture color composition, that is to say: How can we reverse this work-flow

so that color palette and distribution can first be acquired from a reference picture,

and then manipulated or applied to a target representation? We will only address the

issues related to the extraction of a color palette in this thesis. But we will also give

some ideas of how the whole work-flow might be implemented, and inverted.

10.3 Previous work

Many image processing algorithms can fit in the work-flow we described above, e.g.

segmentation, quantization, denoising, equalization, filtering, etc. The list is long,

and giving a complete presentation is out of the scope of this thesis. We prefer to fo-

cus on those techniques that have been used in the context of expressive rendering, or

that have the potential to bring new ideas in the field, especially for the problem of ac-

quisition. In the following, we distinguish between colorimetric and spatial methods,

which correspond to each stage of the work-flow.

Figure 10.3: The colors of an input picture (left) are manipulated to yield a

target picture (right), by matching reference and target color gradients (bottom)

[Grundland 05b].

Colorimetric methods Among the many methods that allow to manipulate the

colors of an image, recent work provided means to acquire some color descriptor that

is then used either to manipulate the image at a more intuitive, higher-level, or to

transfer the colors of a reference image to a target image by matching their respec-

tive descriptors. One interesting approach is the “color search and replace” approach

by Grundland [Grundland 05b]. Their system is semi-interactive and relies on the

matching of color gradients (their color descriptor). The user first picks a set of ref-

erence gradients in an input image, then he defines, for each input gradient, a target

gradient, and the system warps the colors of the input image to match the target de-

scriptors (see Figure 10.3). The target gradients can either be created by modifying

the reference ones, or by picking gradients in another image, in practice performing

a color transfer.

10.3. PREVIOUS WORK 117

However, as already noticed in Chapter 9, while user interactions are often desir-

able during a synthesis process (here the pairing of gradients), any analysis should

ideally be fully automatic. There is thus a need for a more systematic color descrip-

tor acquisition. Previous work have considered mainly two methods to deal with this

problem: Statistical and category-based approaches.

(a) (b) (c)

Figure 10.4: A reference photograph (a) is modified using the colors of a target image

(b), yielding the image in (c) [F. Pitié 05].

Statistical methods extract probability distributions in a chosen color-space and

then allow to match two distributions to perform a manipulation like color trans-

fer. For instance, the method of Reinhard et al. [Reinhard 01] uses color distribu-

tions independently on each axis of the Lαβ color space as color descriptors. This

color space has the advantage of matching the properties of the retina, with loga-

rithmic axes. Unfortunately the method gives satisfying results only for outdoor,

natural images, which is an inconvenient if one wants to use the method in an ex-

pressive rendering context. Other methods perform more complex statistical anal-

ysis [Grundland 05a, F. Pitié 05] and obtain better results (see Figure 10.4). How-

ever, the statistical representation is not easy to manipulate, compared to a small

set of descriptors as in color search and replace; And the matching process is en-

tirely automatic, thus there is no simple way for the user to control it (Grundland et

al. [Grundland 05a] propose a method to manually enhance some colors, but it gives

limited control). In practice, user interaction is an important feature though, as for

example the user might want to match very different descriptors, as in Figure 10.3.

(a) (b) (c)

Figure 10.5: A reference photograph (a) is modified using the colors of a target paint-

ing (b), yielding the image in (c) [Chang 03].

Category-based methods, on the other hand, rely on the property of the human

visual system to focus on so-called foveal colors. The work of Chang et al. [Chang 03]

118 CHAPTER 10. HOW ARE COLORS DISTRIBUTED IN A PICTURE ?

used in particular eleven basic color categories (the perceptual theory behind those

categories is presented in Chapter 11) and built convex hulls in Lab that enclose

the colors belonging to each category in an image. Thus, their color descriptors are

the convex hulls themselves, and they use interpolation methods inside each hull

to match two descriptors. This method gives interesting results (see Figure 10.5).

However, it might give incoherent results for colors at the boundary of two categories.

An important feature of this approach that has not been investigated by its authors

is to manipulate the descriptors by hand, or to create matchings between different

categories. Note that the category-based method has been adapted to the processing

of image sequences by Wang et al. [Wang 04a].

Spatial methods A lot more work has been done on spatial methods, especially in

expressive rendering, some of them have already been presented in Chapter 1. We

now briefly describe the image processing algorithms they use in order to give an

inspiring list of possible spatial abstractions.

A common technique used to simplify the distribution of colors in an image is

segmentation. Two algorithms have proved efficiency in expressive rendering ap-

plications: The mean-shift algorithm [Comaniciu 99] and its anisotropic extension

[Wang 04b] in the work of Wang et al. [Wang 04c]; And the normalized cuts algo-

rithm [Shi 00], used by Kolliopoulos et al. [Kolliopoulos 06]. Both methods handle

multi-valued pixels (e.g., embedding colors, but also depth for instance).

Another technique is anisotropic diffusion [Perona 90, Black 98], which has been

used recently in the work of Winnemöller et al. [Winnemöller 06]. They use a tech-

nique called bilateral filtering [Tomasi 98], which can be considered as a fast approx-

imation of anisotropic diffusion methods [Elad 02]. In particular, both approaches

have the advantage of smoothing an image while keeping its discontinuities, hence

removing the inconveniences of a classic Gaussian blur.

Finally, mathematical morphology has been recently incorporated in expressive

rendering approaches, like the watercolor renderings of Bousseau et al. [Bousseau 06]

and the image abstractions of Bangham et al. [Bangham 03], that use filters by re-

construction. For a pedagogical survey on morphological techniques, the reader is

referred to the survey by Kopen et al. [Köppen. 00].

In the context of the work-flow we defined in the previous section, all those algo-

rithms have interesting qualities. However, it is not straightforward how they can be

used as models for the acquisition of the spatial abstraction of an image. Moreover,

we must also devise a way to incorporate both spatial and colorimetric abstraction in

the same workflow, and it is not clear for now how it could be done.

10.4 Contributions

In this thesis, we mainly concentrated on the acquisition of a color palette from an

image, which is part of the first stage of our work-flow. This is a complex problem,

since it involves the perception of colors, which is not well understood. That might

explain why little work has been done in the direction of category based color transfer.

We present in Chapter 11 a new color palette extraction technique that we plan to

use with color transfer and spatial simplification techniques inspired from previous

work. Moreover, we analyse the color perception issues involved in this process and

propose solutions as future work.

Chapter 11

Color palette extraction

Figure 11.1: Left: a fine painting from “The Castle in the Sky” c©. Right: its associated

palette extracted with a user-defined tolerance.

Our main motivation for this work is to describe an input image by a set of color

prototypes: a color palette (see Figure 11.1). As discussed previously, many applica-

tions in graphics, especially in expressive rendering, work by manipulating the color

distribution of an input image or video. Using an accurately extracted color palette

as an intermediate tool for color processing would allow a higher-level control of color

composition. Our second interest is to study the efficiency of commonly used color

spaces and color difference measures. This way, we gain insights into the color-related

problems raised by a supra-threshold process like the extraction of a color palette, i.e.,

a process using differences above a near-noticeable threshold.

Understanding color is a complex problem, which is reflected by the numerous

available color spaces: RGB, CMYB, HSV, Lab, Luv, Lαβ , etc. They rely on differ-

ent color models: additive colors, subtractive colors, opponent colors, etc. The reason

for this diversity is that they are often used in specific applications. For instance,

RGB is used for television and computer displays, and thus most of the digital im-

age formats describe a pixel using an RGB triplet. RGB colors are additive because

the contribution of each color emitted from a screen (Red, Green and Blue) is com-

bined optically by the human visual system of an observer located at a sufficiently far

distance. CMYB, on the other hand, is tailored to printing, and thus colors are sub-

tractive: the superposition of a layer of Cyan, Magenta, Yellow or Black on a white

119

120 CHAPTER 11. COLOR PALETTE EXTRACTION

paper alters its reflective properties. HSV is usually found in graphics softwares be-

cause it intuitively matches the manipulations artists are used to do: by controlling

the Hue, he or she can select a base color, that is then desaturated and darkened

using Saturation and Value coefficients.

Those color spaces are thus mainly focused on a specific body of applications. On

the other hand, color spaces like Lab, Luv and Lαβ have been designed to reflect

more or less accurately our perception of colors. They are based on an opponent color

model, which have been observed physiologically in low-level vision: yellow-blue and

red-green are mutually exclusive, while achromatic color is determined by relative ac-

tivity of the black and white channels with the provision that black is solely a contrast

color. Lab is nearly always used when an application needs to compute “perceptually

uniform” color differences. However, it is only tailored to small color differences, and

medium and big differences encountered in supra-threshold computations are badly

evaluated using this color space. We will nonetheless use Lab for our color palette

extraction, because there is no better choice; But we will also test its effectiveness,

along with alternative color difference formula.

11.1 Definitions

The goal of our study is to find a color descriptor that we call a palette and that is

able to represent faithfully the distribution of colors in a picture up to a user-defined

tolerance parameter.

In this work, we restrict ourselves to a simple model of color distribution in a

picture: we consider the input picture to be composed of a set of contiguous regions,

each one exhibiting low color variations. This formulation is well adapted to many

drawings and paintings where those regions correspond to brush strokes, wash tints

or pen and ink lines; We also found that it worked well with many photographs, where

regions might correspond to diffuse surfaces. Moreover, due to noise in the capture

process (e.g. with a camera or scanner), we consider only a subset of those picture

regions, that we call regions of interest.

Definition. A region of interest Ri is a connected set of pixels characterised by:

• a minimum, user-specified width σd:

∃Dσd
⊂ Ri

where Dσd
is a disc of diameter σd.

• no visible color discontinuity, w.r.t a color threshold σr:

∀p ∈ Ri, 6 ∃q ∈ Np s.t. |col(q)− col(p)|> σr

where Np is the 8−neighborhood of pixel p

• no overlapping:

∀i 6= j,Ri∩R j = /0

11.2. COLOR DIFFERENCE FORMULA 121

The value of σd thus corresponds to the smallest width of a significant region in

the picture: small isolated clusters of pixels and thin stripes in-between region bound-

aries are not considered as regions of interest and will be ignored during the palette

extraction.

Having defined the set of regions of interest in a picture, we then want to ex-

tract the minimum number of color prototypes necessary to describe them w.r.t a

user-defined tolerance parameter. As the tolerance value increases, each prototype

represents a broader range of colors and the number of prototypes thus decreases.

Therefore, instead of using single colors as prototypes, we use clusters in the chosen

color space in order to represent the range of colors carried under a given prototype.

Definition. A color palette C is a set of color clusters called prototypes in a chosen

color space that describes the color distribution of regions of interest in an image up to

a tolerance parameter t and we note C
t
∼ {Ri}.

Unfortunately, the meaning of the perceptual color similarity
t
∼ is not straight-

forward, because it depends on the chosen color space and color difference formula

employed. As we’ve seen previously, color perception is a delicate problem, and we

discuss possible alternatives in the next Section.

11.2 Color difference formula

The perception of colors is such a complex mechanism that the definition of a color

difference is ambiguous as soon as it operates at a high level. A good example is the

turquoise color, where different observers usually do not agree on whether it is a blue

or a green color. However, for some colors, such as deep red for example, there is not

such an ambiguity. Although each individual has a personal interpretation of color,

there is also a consensus, even if it seems to be only for certain “pure colors”. In our

goal to create a color descriptor, we should integrate this consensus among observers.

To answer partly this demand, we decide to represent colors in the Lab color space.

11.2.1 The Lab color space

This color space has been created by the CIE (Comission Internationale de l’Eclairage

in French) in 1976 in order to fulfill the needs of a perceptually uniform color space.

However, it has been designed to fit only small color difference observations, and thus

only allows to model a low-level consensus among observers’ color perception.

The axis of the Lab color space correspond to a luminance (L), a red-green (a) and

a blue-yellow (b) axis, that are in accordance with the opponent model of color vision.

The luminance axis is also called the achromatic axis, and the distance between a

color and the achromatic axis corresponds to chroma. The hue is related to the angle

around the achromatic axis (see Figure 11.2).

To evaluate the difference between two colors c1 and c2 in Lab, the euclidean dis-

tance given below is used, taking advantage of its locally, perceptually uniform prop-

erty.

∆ELab =
√

∆L2
Lab +∆a2

Lab +∆b2
Lab

122 CHAPTER 11. COLOR PALETTE EXTRACTION

Figure 11.2: The Lab color space

where ∆LLab = Lc1
−Lc2

, ∆aLab = ac1
−ac2

and ∆bLab = bc1
−bc2

.

Since it is the most widely used color space as soon as it comes to perceptual color

uniformity, we use it for our study. However, we propose alternate color differences

in the following section and we will compare the effectiveness of each of them in the

context of our supra-threshold application.

11.2.2 Alternatives to the Lab Color Difference

It has been reported [Luo 00] that using a euclidean distance in Lab to compute color

differences results in small perceptual imprecisions, especially in the blue region.

Recently, the CIE proposed a more accurate color difference formula working in Lab,

called CIEDE2000 [Luo 00], fit from an experiment on an vast number of observers

in different color scnenarii. It not only addresses the blue region imprecision, but

also some other subtle problems of Lab, for instance along the achromatic axis. The

general CIEDE2000 formula is written below.

∆E00 =

√

(
∆L′

kLSL
)2 +(

∆C′

kCSC

)2 +(
∆H ′

kHSH
)2 +RT (

∆C′

kCSC

)(
∆H ′

kHSH
)

The detail for each of the variables can be found in [Luo 00].

While it accounts for all the observed imprecisions of Lab, the formula is quite

complex, and it is not a distance. Another, simpler formula, called DIN99, has been

proposed in [Cui 01]. When compared to CIEDE2000, DIN99 has the advantage of

being a deformation of Lab: equations used to obtain L, a and b coefficients have been

modified to solve Lab imprecisions. DIN99 is thus a real color space, and a color

difference is computed using an euclidean distance.

∆E99 =
1

ke

√

∆L2
99 +∆a2

99 +∆b2
99

The detail for each of the variables can be found in [Cui 01].

Note that there is no need to explicitly convert a color to DIN99 in order to compute

a color difference: since it is a deformation of Lab, the conversion is done implicitly

during the difference computation. The DIN99 formula performs less accurately than

11.2. COLOR DIFFERENCE FORMULA 123

the CIEDE2000 formula, but it is still far better than the Lab formula, and has the

advantage of being a distance computation.

However, even if those formula are supposed to improve Lab for small color differ-

ences, they do not help for supra-threshold ones, as with any euclidean distance in

any color space [S.M. 95].

11.2.3 Color similarity through categorisation

Recall the ambiguity of the turquoise color: depending on the observer, it will be cat-

egorised as a blue or a green. It appears that we have a natural tendency to classify

colors using a restricted number of categories, which can be perceived as high-level

descriptions. There is here a deep link with linguistics, because of the use of specific

terms to describe those categories. Berlin and Kay [Berlin 69] studied this natural

tendency towards categorisation. They performed naming experiments in 98 differ-

ent languages and examined the consensus between different cultures. These exper-

iments were done using color chips coming from the Munsell book of colors, so that

they could analyze the results in the perceptually uniform Munsell color space (simi-

lar to Lab). They found that in languages coming from so-called “developed countries”,

one can distinguish, at maximum, eleven basic color terms: black, white, grey, red,

green, blue, orange, yellow, brown, purple and pink. Moreover, they found that there

were prototypical colors for which a full consensus was reached among observers,

while the consensus decreased away from the prototypes and became unreliable near

category boundaries. Figure 11.3 illustrates those categories, along with their proto-

types, plotted on the outer boundary of Munsell’s color space. Note in particular the

lack of consensus in the gap in-between the blue and green regions that explain how

a color such as turquoise is hard to categorize.

Figure 11.3: The discrete consensus regions corresponding to each one of the eight

chromatic basic color terms plotted on the outer envelope of Munsell’s color space

(black, white and grey are not plotted here).

To our knowledge, very few color applications made use of this experiment, with

the notable exception of the color transfer applications of Chang et al. [Chang 03].

Unfortunately, they relied on categories with sharp boundaries in their work, even

if Berlin and Kay’s experiment reported their poor reliability. Nonetheless, they ob-

tained interesting results that motivate further research.

124 CHAPTER 11. COLOR PALETTE EXTRACTION

Another work who did use color categories is the color image database retrieval

algorithm from Seaborn et al. [Seaborn 99]. But instead of using the discrete cat-

egories of Berlin and Kay, they performed additional experiments in order to get a

fuzzy categorization, where this time each color is given a distribution of membership

values in each of the eleven basic color categories. This fuzzy categorization is illus-

trated in Figure 11.4 in Munsell’s color space again, where the grey level represents

the membership in the closest category.

Figure 11.4: The fuzzy color categorization for chromatic and achromatic colors.

Intuitively, each membership value represents the probability to belong to the

corresponding category for an arbitrary observer. Once this fuzzy categorization is

built, Seaborn et al. define a similarity measure S ∈ [0,1] between two colors c1 and

c2, based on Fuzzy C-means, where the similarity is computed as the intersection of

the fuzzy sets of each category:

S(c1,c2) =
11

∑
i=1

min{µi(c1),µi(c2)}

where µi(c) is the membership value of color c in the i-th category.

When the similarity between two colors is equal to 1, they use the euclidean dis-

tance in the Munsell space (similar to the euclidean distance in Lab) to distinguish

them. Even if it seems to be sufficient for their image database retrieval application,

the question of how high-level category similarity and low-level color difference can

be combined is still unanswered.

11.3 Our approach

For the purpose of our color palette extraction, we organise our approach in four

stages:

1. Identify candidate regions of interest via an image space segmentation;

2. Keep only valid regions of interest by removing candidate regions that do not

fulfill the minimum size requirement;

3. Group regions of interest of similar color via a color space segmentation;

11.3. OUR APPROACH 125

4. Extract color prototypes by means of a principal component analysis (PCA).

11.3.1 Stage 1: Image segmentation

The first stage consists in a segmentation of the input image in a set of regions ex-

hibiting no colour discontinuity. To this end, we use the Mean Shift Segmentation al-

gorithm that takes as input two parameters: a domain threshold σd that corresponds

to a characteristic size in image space, and a range threshold σr that corresponds to

a characteristic size in color space.

The algorithm then works in a five dimensional space (2 dimensions for the picture

and 3 dimensions for color): For each pixel in the image, it finds neighbors in both

picture and color based on σd and σr; It computes a vector (the mean shift) from the

current 5D location and the center of gravity of the selected neighbors and moves the

pixel along it; It then continues this way iteratively until convergence, i.e. when the

mean shift is close to a null vector.

This algorithm is guaranteed to converge to the local mode of the 5D density func-

tion underlying the picture, as illustrated in Figure 11.5 for a 2D case. In order to

perform the segmentation, all the pixels that converged to a same mode are clustered

into a single region (the red spheres in Figure 11.5).

Figure 11.5: Illustration of the mean-shift algorithm in 2D: each pixel converges to a

local mode of the density function.

In our application, we set σd to the desired minimum size of a valid region of

interest, with typical values between 1 and 5 pixels. We set σr = 3 which is known to

be the near-noticeable distance using the euclidean metric in the Lab color space. We

show the result of a segmentation in Figure 11.6.

11.3.2 Stage 2: De-noising

The mean shift segmentation gives us candidate regions of interest in the picture,

along with the mode of each region. We now apply a denoising operation where re-

gions that are “thinner” than the user defined minimum size, i.e. σd, are removed.

126 CHAPTER 11. COLOR PALETTE EXTRACTION

(a) (b)

Figure 11.6: (a) Source image (b) Each pixel is given the color of the mode it converged

to during the mean shift segmentation.

To this end, we directly apply the definition of a region of interest: For each region

of the segmentation, it is considered a valid region of interest if a disc of diameter σd

can be completely contained in the region.

The effect on the segmentation is better visualized in the Lab color space, as shown

in Figure 11.7, where isolated regions due to noise are removed by the process. In

those figures, points correspond to pixels of the input picture and squares to modes

of the segmentation; Notice how modes having a small number of pixels attached to

them tend to be removed by the denoising process.

(a) (b)

Figure 11.7: (a) Lab distribution after segmentation (b) After denoising.

11.3.3 Stage 3: Color segmentation

Stages 1 and 2 together allow us to retrieve the regions of interest in the input picture.

But they also give us a set of modes that represent prototypical colors of the regions.

Unfortunately, modes color cannot be taken directly as prototypes of our palette for an

intuitive reason: two regions might be located away from each other in the picture and

11.4. RESULTS 127

their colors be very similar, so that taking their modes color will result in prototype

redundancy.

We thus have to cluster modes colors regardless of their position; this is equivalent

to consider that regions at various locations in the picture, but with a similar color,

will be represented by a single prototype in the final palette. To perform clustering,

we again apply the mean-shift algorithm, this time on the modes of regions of interest,

and only in Lab in order to ignore regions location.

For this color-space mean-shift, a single threshold has to be chosen, which cor-

respond to the user-specified tolerance parameter t that will control the number of

prototypes in the palette: Indeed, the bigger the tolerance is, the more clustering is

performed, yielding a small number of prototypes, and thus reducing color complex-

ity. We show in Figure 11.8 the result of the mean-shift in Lab with t = 3 and the

corresponding colors of the palette.

(a) (b)

Figure 11.8: (a) The modes obtained with a mean-shift in Lab color space with t = 3

(b) Colors corresponding to each mode.

11.3.4 Stage 4: PCA

In order to better analyze our results, the range of colors represented by a single

prototype should be visualized intuitively. To this end, we first perform a principal

component analysis on the set of points associated to each prototype. The resulting

collection of Gaussian distributions, shown in Figure 11.9(a), is what we call a palette,

and we will also refer to a prototype as one of the Gaussian distributions from now

on.

Then, in order to visualize each prototype, we take its two most elongated axis and

scale them to fit a disc, as shown in Figure 11.9(b). This way, it is easier to grasp the

range of colors represented by a given prototype.

11.4 Results

We show now palette extraction results using four categories of images: color gradi-

ents, paintings & drawings, computer-generated images and photographs. We used

for these images the DIN99b formula for color differences because, as discussed in

Section 11.5, it gave better palette extractions on average, especially for bluish colors.

128 CHAPTER 11. COLOR PALETTE EXTRACTION

(a) (b)

Figure 11.9: (a) The principal component analysis for each prototype (b) A more intu-

itive visualization of the palette, using prototypes elongation.

We set the tolerance parameter to low values, typically t ∈ [3,5], because we found

that increasing tolerance generated prototypes with too broad color ranges. Thus,

using tolerance values t > 5 will perceptually merge different colors into a single pro-

totype; while the small tolerance values we use in the following examples are often

too low to be able to merge similar colors into a single prototype, leading to redundant

prototypes (especially visible with dark colors). It is an important limitation of our

approach, and we discuss avenues for ameliorations in Section 11.5.

Figures 11.10 and 11.11 show results using a blue-to-green gradient, and a more

complex “metallic” gradient. Note how the extracted prototypes correspond to regions

of various width in the gradient, since the palette is only a color descriptor. With

the more complex gradient of Figure 11.11, we get a more complex color palette, as

expected. Setting tolerance to t = 5 however is not sufficient to merge similar colors

into a single prototype, which leads to a set of redundant prototypes in the dark tones

for instance.

Figures 11.1, 11.12, 11.13 and 11.14 show results on paintings & drawings. A

single glance at the palettes allows to recognize the “color ambiance”: a use of pas-

tel colors in Figure 11.13; darker, more profound colors in Figure 11.14. Here, the

complexity of the picture color composition, as well as the use of a lower tolerance,

result in greater numbers of prototypes. Again, this has the disadvantage of creating

redundent prototypes, in dark or desaturated colors especially.

Figures 11.15, 11.16, and 11.17 show results from computer-generated images.

We intentionally selected images with complex gradients of colors that, together with

a low tolerance value, result in a great number of prototypes for Figures 11.15 and

11.16. The later is a particular bad case for our current approach, which creates an

important number of dark tones in the palette. However, the monochromatic nature

of Figure 11.17 gives a very low number of prototypes: indeed, it is very similar to a

gradient image in its color composition.

Finally, Figures 11.18, 11.19 show results from photographs. While Figure 11.18

contains mainly whites, browns and blues, Figure 11.19 is much more complex in its

color composition, which results in a very high number of prototypes.

11.4. RESULTS 129

(a) (b)

Figure 11.10: (a) The input blue-to-green gradient image. (b) Its palette extracted

with t = 5.

(a) (b)

Figure 11.11: (a) The input “metallic” gradient image. (b) Its palette extracted with

t = 5.

130 CHAPTER 11. COLOR PALETTE EXTRACTION

(a) (b)

Figure 11.12: (a) The input image. (b) Its palette extracted with t = 3.

(a) (b)

Figure 11.13: (a) The input image. (b) Its palette extracted with t = 3.

11.4. RESULTS 131

(a) (b)

Figure 11.14: (a) The input image. (b) Its palette extracted with t = 3.

(a) (b)

Figure 11.15: (a) The input image. (b) Its palette extracted with t = 3.

(a) (b)

Figure 11.16: (a) The input image. (b) Its palette extracted with t = 3.

132 CHAPTER 11. COLOR PALETTE EXTRACTION

(a) (b)

Figure 11.17: (a) The input image. (b) Its palette extracted with t = 3.

(a) (b)

Figure 11.18: (a) The input image. (b) Its palette extracted with t = 3.

(a) (b)

Figure 11.19: (a) The input image. (b) Its palette extracted with t = 3.

11.5. DISCUSSION 133

11.5 Discussion

On tolerance control vs number of prototypes

We think that using a tolerance parameter to control the color complexity of a palette

is the most intuitive control: it adapts the complexity of the palette to the complexity

of the picture. Take for instance a tricolored flag; Since it is only composed of three

colors, the color complexity is already so low that varying tolerance will not change

the result.

However, one could prefer to ask for a desired number of prototypes in the palette.

A way to do that would be to run iteratively stage 3 of our algorithm with increas-

ing tolerance values until the number of prototypes is close to the expected number.

However, like with the flag example, this expected number might never be reached;

And asking for a same number of prototypes on different images will yield different

amounts of abstraction.

On Lab, DIN99 and CIEDE2000 color difference measures.

We implemented the DIN99 formula [Cui 01] and used it throughout our algorithm.

We now compare it to the euclidean distance in Lab. We plan to do similar compar-

isons with the CIEDE2000 formula [Luo 00] in a near future.

In Figure 11.20, we show a close-up of the desert image segmented using the colors

of its palette computed, on the left with a Lab euclidean distance, on the right with the

DIN99 formula. Using the later segments better the sky into two different blue colors,

and detects grey colors more finely when compared to Lab that mistakes desaturated

greens and beiges with greys (e.g. on the bluish distant mountain).

(a) (b)

Figure 11.20: (a) Segmentation using Lab color difference formula. (b) Segmentation

using DIN99 color difference formula.

On the need of color categories

Analyzing the palettes we extracted in the last Section, we make two observations:

First, some colors seem to be redundant, especially in the dark and desaturated tones

134 CHAPTER 11. COLOR PALETTE EXTRACTION

(brown colors are particularly problematic); Second, some prototypes hold different

colors, even with the small tolerance values used in our examples (See Figure 11.21).

(a) (b)

Figure 11.21: (a) A prototype’s center color, compared to (b) its full color range, show-

ing that unwanted color variations can be found even using a small tolerance value.

Concerning color redundancy, one explanation would be that dark or desaturated

colors are perceived differently depending on the surrounding color. We chose to use

a neutral grey as the background color for our palette, but this could have a non-

negligible impact on the perception of dark; desaturated colors that might be hard to

differentiate in the palette, but would be easily identified in the picture because of

a different surrounding color. The spatial aspects of color perception are discussed

further in the next Chapter.

Another explanation would be that some perceptual variations depending on sat-

uration and lightness are not taken into account in any color difference formula. In-

deed, those formula are tailored to perceptually uniform, but small color differences.

In particular, it seems that the colors that are hard to differentiate lie in-between

high-level color categories: dark colors are a blend of a color with black, desaturated

colors are a blend of a color with grey; and brown is hard to perceive in general. There

is thus a possibility that color categories play an important role in suppressing this

redundancy.

Concerning color variations inside a single prototype, it seems, again, that catego-

rization plays a major role. When looking at Figure 11.21-right, our first observation

is that the prototype should not contain shades of blue, nor yellow. In fact, our con-

fusion is that we can name different color categories inside a single prototype. Basic

color category similarity measures like the one of Seaborn et al. [Seaborn 99] might

thus be crucial to constrain the clustering of prototypes, in order to ensure that a

“single” category is represented. This will be even more important with bigger toler-

ance values, that did not give satisfying results in the present study because of the

categorization problem.

On the evaluation of results

Apart from the purely suggestive observations that we made above, there is no simple

method to evaluate the quality of a color palette. Our method compares favorably to

previous work, but the goal of previous approaches is not really the extraction of a

color palette.

Actually, even with very naive color palette extractions using, for example, quan-

tization, only visual examination can perform the comparison, since the mechanisms

underlying color perception are not well understood. Therefore, a user study might

be the only way to compare two palette extraction methods.

11.5. DISCUSSION 135

On the use of a palette in color image processing

Once a palette is “properly” extracted, it only gives a description of the input image.

In order to use it to process color images, we first need to associate each prototype

to a region of the picture. Then we need to provide color editing tools, like manual

edition or color transfer techniques, to change the input palette into a new target

one that have its own harmony. Finally, color layers have to be composited, with

an optional spatial simplification step in order for instance to mimic the use of a

brush.

For the purpose of analyzing the extracted palettes, we computed a PCA for each

prototype. The resulting set of Gaussian distributions might be used for all the pro-

cesses described above. Here, we just give some ideas that we had during the course

of this study and that we keep for further investigations.

Association might be done by segmentation, by giving each pixel the color of its

closest prototype. But alternative strategies are possible, like building a fuzzy catego-

rization: in this case, each pixel has a (possibly zero) membership in each prototype,

depending on the distance to its Gaussian distribution. This way, we keep a color

layer per prototype in the picture that we will composite later on, using for example

the technique of Grundland et al. [Grundland 05b].

Color editing is also made simpler with a Gaussian distribution, since its center

can be translated to change the focal color, its axes rotated and scaled to vary satura-

tion or lightness, etc. For color transfer, it opens the question of how to map a source

palette to a reference one, i.e. mapping Gaussian distributions. Again, the work by

Grundland et al. [Grundland 05b] gives interesting ideas.

Finally, once color composition has been extracted by means of a palette, modi-

fied through editing and mapped back to regions in the picture, one might also want

to control the spatial configuration of those regions in the picture before composit-

ing them to give the final image. We plan to build onto previous work, that used a

combination of scale-space filtering and morphological operators [Bangham 03].

136 CHAPTER 11. COLOR PALETTE EXTRACTION

Chapter 12

Remarks on color categorisation

The previous chapter explored a practical approach to perform the first step of our

color composition work-flow, namely the extraction of a color palette. However, it

raised some perception-related issues since color perception is not yet well under-

stood. Our observations oriented us towards the importance of the categorical percep-

tion of colors, and we discuss here the properties of the previously mentioned basic

color terms (see Section 12.1).

However, categories are very high-level descriptors of color, and the human vi-

sual system exhibits other important lower-level behaviors that should be taken into

account prior to any categorization. We discuss these in turn in Section 12.2.

12.1 Color categorization and linguistics

Color categories detailed Let us first more formally define the basic color terms

(BCTs). As specified by Hardin and Maffi [Hardin 00]:

“Basic terms must be those which are general and salient. A term is gen-

eral if it applies to diverse classes of objects and its meaning is not subsum-

able under the meaning of another term. A term is salient if it is readily

elicitable, occurs in the idiolects of many speakers and is used consistently

by individuals and with a high degree of consensus among individuals.”

In their experiments, Berlin & Kay [Berlin 69] found eleven basic color terms that

correspond to categories in the Munsell color space. The category focii reliably tend

to cluster in relatively narrow regions of the Munsell space, whereas category bound-

aries are drawn unreliably, with low consistency and consensus for any language.

Moreover, the BCTs can be organized into progressive divisions of the color space,

yielding three types of basic categories that have strong connexions with Hering’s op-

ponent process theory of color: composite, fundamental and derived. Lightness and

darkness are the most salient visual experiences and thus correspond to the compos-

ite stage (black, grey and white colors). Unique hues correspond to the fundamental

step (red, green, yellow and blue colors). And binary (or blended) hues correspond

to the final derived step (purple, pink, orange and brown colors). This decomposition

seems to have a direct influence on how BCTs are linked to each other (Figure 12.1).

We speak of two colors as being linked or unlinked, depending upon whether or not a

bridge color is necessary to move between them.

137

138 CHAPTER 12. REMARKS ON COLOR CATEGORISATION

Figure 12.1: Links between basic color terms. Dot sizes correspond to the mean lumi-

nance of the category.

Some aspects of the categorization are still ambiguous though. For instance, there

is room for a twelfth BCT, “peach”, that has been named in experiments with varying

terms (like “beige”, or “tan”). It also seems to be the most difficult color to name,

maybe because of this linguistic ambiguity. Also, brown, as well as black, are very

specific colors, since they require a lighter surround for their very existence. Notice

that a categorization based on color naming is not necessarily the best one, since

the role of language related to perception is not clear. We discuss this point in the

following.

Connexions between BCTs and linguistics Categorizing a color without taking

its context into account is equivalent to categorizing a color space. Regardless of the

chosen color space, the results vary with the task assigned to the user: whether the

categorization is free, constrained by a fixed number of categories, or constrained

by a naming task. The more the task is constrained, the more consensus are found

[Bonnardel 06].

Choosing a naming task precisely leads to the eleven consensus regions corre-

sponding to Berlin and Kay ’s BCTs. Determining whether language influences per-

ception (relativistic view) or whether perception guides language (structuralistic view)

is not clear. But there is undoubtedly a significant link in-between the two. Even in

a free categorization task, there is no way to evaluate clearly the role played by lan-

guage in the categorization process.

Apart from maximum consensus, a naming-based categorization has another im-

portant benefit: it does not depend on the set of colors to be categorized, whereas other

categorizations will give different results for different color sets [Bonnardel 06]. Thus

it can be considered as a “context-free” categorization.

However, as already noted, consensus regions found in this categorization are nar-

row and boundaries between regions are not well-defined because their identification

depends on the observer and may even vary for a given observer in two experiments.

Therefore, this categorization can only give, for a color taken out of its context, a

probability distribution in each of the eleven BCTs. These unclear boundaries are no

exceptions in language [Hardin 00]:

12.2. LOWER-LEVEL PROPERTIES OF COLOR PERCEPTION 139

“Typological features are not established in an absolute fashion, but in

term of a sliding scale of cases, from best cases satisfying all criteria to a

grey zone of unclear cases, to cases that do not satisfy any of the criteria.”

“It is in the nature of the dynamics of language, as a mutable system, for

there to be grey zones, and for boundaries to be flexible.”

Finally, it can be demonstrated [Bonnardel 06] that color categorization is not only

spatial, but also temporal, allowing its use in a dynamic context (i.e., videos).

12.2 Lower-level properties of color perception

Unfortunately, a context-free categorization like the BCTs will not be efficient in prac-

tice. Indeed, vision science tells us that color cannot be taken out of context, and that

lower levels of visual perception are expected to have a strong influence on categoriza-

tion. In particular, there are three important properties to take into account before

any categorization can take place: color constancy, transparency and simultaneous

contrast.

Color constancy corresponds to the ability of the human visual system to perceive

the reflectance color of an object and use this knowledge in the perception of its color.

The most striking example is when one reads the pages of a book: independently of

the environmental illumination (an out-door setting or near a bed-side lamp), char-

acters will always be perceived as black ink onto a white page. Note, however, that

this is a conscious perception, so that we are also able to abstract ourselves from this

effect (painters are especially trained for this task).

Moreover, the transparent property of an object can lead to the perception of two

or more nested or overlapping color regions in the image. Perception of transparency

can be linked to color constancy since we are able to infer (again, rather consciously)

the color of an object appearing behind a transparent one.

Finally, simultaneous contrast describes the tendency of the human visual system

to relate colors spatially: we do not perceive colors in an image isolated from each

other. At a low level, the surrounding of a retinal point must be taken into account in

a color opponent way. At a higher level of perception, colors are perceived relatively

to each other. This has an important consequence on discrimination tasks: the only

class of judgements that leads to approximate consensus ratings are categorical ones,

which is in accordance with a fuzzy color categorization of the image. Simultaneous

contrast is also significant in a dynamic context.

Of the three perceptual properties presented above, only latter corresponds to very

low levels of visual perception, since it operates unconsciously. Color constancy and

transparency can be ignored if one is interested only in the distribution of colors in

the picture plane: only the colors reflected by objects is then taken into account, which

is the main concern when trying to extract a color palette for instance. Simultaneous

contrast, however, has to be dealt with because it occurs in the front-end of the hu-

man visual system, before any categorization can occur. It thus should be studied in

connection with multi-scale image analysis theories [Romeny 94, Alvarez 94], which

are considered in the vision community as a biologically-plausible model of front-end

vision. This is in accordance with the spatial analysis stage of our color distribution

workflow, and is thus the main direction we will take in future work.

140 CHAPTER 12. REMARKS ON COLOR CATEGORISATION

Part IV

Closing remarks

141

Discussion on the role of vision in

expressive rendering

Through the chapters of this Thesis, while introducing both representation metaphors

for the production of expressive animations and acquisition methods in line drawings

and color images, I kept referring to the underlying theme of the intricate connections

of expressive rendering with vision. I would like now to discuss in a more principled

way and in more details what I believe is the role of vision science in the young field

of expressive rendering. I hope this modest discussion will further motivate practical

systems that truly enhance the way digital images are built by artists.

The dimensions of representation

Before going into the details of the human visual system (HVS) properties, I’d like

to come back on an implicit consideration we’ve made in the context of animation

(Part I): the dimensions of representation. These dimensions have first been described

by Willats [Willats 97] where he makes a distinction between object-centered and

view-centered representations. He gives a convincing example with projection sys-

tems. Perspective projections, as well as orthogonal and oblique projections, all lead

to view-centered representations: the objects are projected solely based on viewpoint

properties, not object properties. However, fold-out geometry found, for instance, in

cubist paintings, is hard to describe derived from views; but it can be explained as

derived from internal object-centered descriptions. This time, the object is more pro-

jected based on its semantic properties and the view plays a minor role, making the

interpretation of a possible view harder (which was one of the goals of cubist painters).

This object-centered versus view-centered distinction can be found at any stage of

the representation model. In the attributes system, the color of an object can depend

on its material properties uniquely, as with a classic toon shader (object-centered);

or can be affected by a view-dependent criterion such as depth, as with aerial per-

spective (view-centered). We have seen that primitives can either come from the pro-

jection of a 3D primitive onto the picture plane, which usually reinforce the shape

properties of objects in the representation (object-centered); or they can be extracted

in the picture plane, in practice flattening the representation (view-centered). And

the mark system obeys the same classification: stroke properties (length, curvature

or thickness for instance) can either come from some attribute mapping from the

scene (object-centered), or be specified by a style and thus have no correspondence

with any information in the scene (view-centered).

Of course, a representation does not have to be purely object- or view-centered,

and most of them are a blend of the two. An interesting way to visualize this grading

143

144 DISCUSSION ON THE ROLE OF VISION IN EXPRESSIVE RENDERING

has been proposed by McCloud [McCloud 94], who uses a two-dimensional diagram in

order to classify previous work in comics history. His diagram represents a triangle

as in Figure 2, where one vertex corresponds to a realistic representation, another

one to a pure emphasis of the picture plane, and the third one to a pure abstraction

only focused on the communication of meaning. Hence, the Realism→ Picture plane

axis roughly corresponds to the view-centered dimension, and the Realism→Meaning

axis to the object-centered dimension. This visualization gives a way to define the

style of a representation at a very high level, by locating it inside the triangle.

Figure 2: The triangle visualization proposed by McCloud [McCloud 94] to classify

pictorial representations. The high-level style of any representation can be broadly

located inside the triangle.

The role of vision

Now that we have organized a representation into two meaningful dimensions, we

can look forward to describe the role played by human vision in the creation, as well

as the interpretation of a representation. McCloud [McCloud 94] again evokes these

tasks in a pedagogical manner:

“Media convert thoughts into forms that can traverse the physical world

and be reconverted by one or more senses back into thoughts.”

“The mastery of one’s medium is the degree to which a project represents

what the artist truly envisioned to be, the degree to which his ideas survive

the journey.”

The design of expressive rendering techniques should always keep this process in

mind, i.e. new techniques should help the artist in expressing in the most straight-

forward way his idea or concept, through the representation of a scene. But when

his thoughts are converted into form and “traverse the physical world”, back into

thoughts, they pass by a vision process: the artist “makes use” of his visual system to

create the representation on one side; while the observer does the same to interpret it

via his own perception on the other side.

145

If one wants to use computers in order to automate parts of the creative process,

then the role of visual perception, both on the creative and interpretative sides, can-

not be ignored. In the following I give a brief overview of some important properties

of the human visual system, how they can influence the creation and the interpreta-

tion of a pictural representation, and their potential benefits in expressive rendering

applications. For a more complete overview of vision models, the interested reader is

referred to the book by Palmer [Palmer 99].

Marr’s four stages of Vision Vision is a heuristic process in which inferences

are made about the most likely environmental condition that could have produced

a given image. According to Marr, there are four stages of visual perception. They

are named for the kind of information they represent explicitly; they are the image-

based, surface-based, object-based and category-based stages of perception. At each

level, current processing is influenced by prior higher-level interpretations, and this

combination of top-down and bottom-up operations is what allows inferences of the

visual system to be made (see Figure 3).

However, the information captured by the eyes is not processed as a whole by the

visual system. Very quickly, various kinds of information take different paths and are

treated rather in parallel. Indeed, there seems to be four different pathways in the

visual system: color, form, stereo (depth) and motion. The separation is not complete,

and it is only a vast simplification, but it motivates, at least at a computational level,

the parallel processing of these four different kinds of information. Note that the

separations adopted in this Thesis follow this property: Part I deals with motion,

Part II is more about form, and Part III is interested in color. I did not really work on

depth in my Thesis, but it is an interesting area of future work.

Another important property of the visual system is that perception might be con-

scious at some stage, and unconscious at others. In particular, we are able to perceive

consciously two different stimulii: the proximal stimulus, which corresponds to fea-

tures in the picture plane; and the distal stimulus, corresponding to features of objects

in the scene. The proximal stimulus hence is analyzed by the image-based stage, i.e.

the perception of low-level information like the color reflected from an object, a tex-

ture pattern, or the contrast along a silhouette; while the distal stimulus is analyzed

by the subsequent three stages, and gives the properties of surfaces (sharp angles,

orientation, depth, etc), objects (shape, material properties, etc) and their category (is

it a chair, a face ?). This is illustrated in Figure 3 by the dashed boxes.

The distinction between proximal and distal stimulii is very important, since it is

this ability that allows, for instance, an observer to see in a painting a collection of

paint strokes on a canvas, as well as the representation of a possible scene. Proximal

and distal stimulii are directly linked to the previously mentioned notions of view-

and object-centered representations respectively: indeed, a representation can trigger

more or less each of the stimulii in order to orient it towards the picture plane or scene

features. The study of the perception of proximal and distal stimulii is thus of primary

interest to expressive rendering.

Therefore, I will briefly present in the following some of the most important prop-

erties of the proximal and distal stimulii, and discuss the practical benefits of their

incorporation into expressive rendering systems.

146 DISCUSSION ON THE ROLE OF VISION IN EXPRESSIVE RENDERING

Figure 3: The four stages vision model proposed by David Marr.

Perception of the proximal stimulus According to Marr’s theory, the first anal-

ysis the HVS performs is image-based, hence it only deals with information found

in the retinal image. However, objects move rigidly in 3D, illumination varies, the

size of objects in the retina changes with the depth from the eye, view directions may

change, etc. It is thus natural to require early visual operations to be unaffected by

certain primitive transformations (e.g. translations, rotations, and grey-scale trans-

formations). In other words, the visual system should extract properties that are

invariant with respect to these transformations. A common trend, which has been

shown to be biologically plausible, is to represent the visual signal at multiple scales

that hold these invariant properties (see [Romeny 94] and [Alvarez 94] for a deeper

treatment). These scale-space systems deal primarily with the spatial integration of

low-level visual information in the front-end of the HVS.

We already evoked the potential advantages of using multi-scale representations

in Part III. In the first stage of our color composition workflow, i.e. the extraction of a

color palette, a multi-scale analysis would allow us to take into account simultaneous

contrast effects occuring at different scales in the image. It also makes a well-suited

representation to extract color regions in the second step of the workflow, spatial

distribution, since regions of various sizes could be created by the user through a

direct manipulation of the multi-scale representation. This approach has already

been investigated in [Bangham 03]: while they only deal with regions having hard

boundaries, their approach motivates future work in the field.

Another advantage of using a multi-scale representation is in the detection of dis-

continuities. Edge detection is commonly linked to the contrast sensitivity of the

HVS: center-surround inhibitory operations occur at the early stages of vision, and

allow to detect luminance gradients; Then, edges are inferred from contrast infor-

mation, and discriminated between reflectance edges (e.g. made by a hard shadow)

and discontinuity edges (e.g. along a silhouette). Line junctions play an important

role in this discrimination and are usually classified based on a junction catalog (T-,

L-, Y- and end-junctions are the most frequently encountered). Extracting edges and

junctions at multiple scales gives even more information: it allows to recover fine-

to-coarse structures in an image, and would be of practical use, for instance, in the

automatic analysis and manipulation of line drawings as presented in Chapter 7.

To summarize, scale-space theory seems to account for the perception of regions

of various shape and color, as well as the perception of edges at various scales in the

retinal image. These cues constitute the first available information extracted from

the proximal stimulus.

Other properties are extracted at this point, see [Palmer 99] for a detailed presen-

tation. For instance, an important mechanism is the figure/ground separation: when

147

it considers two regions, the HVS has a strong preference to ascribe the contour of

just one of its bordering regions (the figure) and to perceive the other side as part

of a surface extending behind it (the ground). The factors that help the HVS to dis-

criminate figure from ground are many: surroundedness, size, orientation, contrast,

symmetry, convexity and parallelism are the most important. The remaining figure

regions may be related together by the laws of perceptual organization: regions are

grouped based on proximity, similarity of color, size, orientation, similarity of velocity

(also called common fate), symmetry, parallelism, continuity and closure for the most

important criteria. In this process, past experience is also an important factor: if ele-

ments have been previously associated in prior viewings, they will tend to be seen as

grouped in present situations.

The combined effects of figure/ground and perceptual organization are particu-

larly important in the perception of textures, which are sets of figure regions defined

by locality and stationarity properties. Textures have been extensively studied in

the vision community and a lot of models exist to describe the HVS behavior in per-

ceiving textural images. In the context of expressive rendering, the study of texture

perception is of particular interest when analyzing stroke patterns, as presented in

Chapter 8. In particular, figure/ground models would allow us to coherently discrim-

inate between the strokes and the background, while perceptual organization and

statistical texture models could relate strokes together, and thus extract the distri-

bution properties that are essential to reproduce in order to synthesize perceptually

similar patterns.

Finally, optic flow is the dominant proximal motion stimulus for normal everyday

vision, and here again, some interesting properties of the HVS have been observed.

Paradoxical motion, for instance, occurs when there is a clean perception of motion

but no global change in the perceived position of the moving objects. It can partly

be explained by the presence of motion contrast operators that act on the optic flow.

Motion transparency corresponds to the perception of two or more overlapping optic

flows. It occurs not only with transparent objects such as water, but also with fast

moving objects and/or observer, like with a tree foliage in the wind. It is however

limited to a small number of layers (between three and four).

Motion contrast and transparency models are needed when rendering expressive

animations. For instance, the 2D stroke patterns presented in Chapter 4 would bene-

fit from a practical motion transparency model: it would allow to determine whether

the overlapping of two patterns moving in 2D produce a motion transparency per-

cept (i.e. a disturbing sliding effect), and thus whether we should use an additional

pattern to faithfully represent the 3D motion.

Perception of the distal stimulus Once elements of the proximal stimulus have

been extracted, they are further processed by the HVS to progressively give distal

information. However, one should not forget that distal information can influence the

perception of the proximal stimulus via a top-down mechanism, as shown in Figure 3.

The first information that is looked for is surface information (in the surface-based

stage). According to J. J. Gibson, surface perception can be conceived as determined

by its distance and orientation, the latter being defined by the slant and tilt of the

surface with respect to the viewer’s line of sight. In the vision literature, approaches

148 DISCUSSION ON THE ROLE OF VISION IN EXPRESSIVE RENDERING

that try to model how the HVS infers surface are called shape-from-X models, even if

they should be termed surface-from-X because they only retrieve surface information.

Examples of models include shape-from-shading, shape-from-textures and shape-

from-reflections models. These are numerous and I only present some simple ideas of

their functioning here. To retrieve orientation, some models measure a deformation

of the observed proximal property (luminance, texture or reflections) in a preferred

orientation and use it to find the orientation of the underlying surface. While for

depth, many measured proximal properties are gathered (like binocular disparity,

relative size, position relative to the horizon, occlusion and motion parallax) and fused

in sometimes complex ways (modified weak fusion for instance, where some properties

are either “promoted” by others, or independently combined).

Such models are very useful in expressive rendering when the goal is precisely to

depict depth or orientation, i.e. surface cues. For instance, in Chapter 5, we conjec-

tured that surface perception models are in close relation to contour rendering of a

3D object. I.e., studying the way surface depth, orientation and curvature are recon-

structed from shading, textures or reflections might give better insights into how the

same surface information is retrieved from line drawings.

Surface information, while it is part of the distal stimulus (an information about

objects in the scene), corresponds to an extrinsic description: it is only valid from

the current point of view. The next stage for the HVS is to use this information in

object-based processes to infer intrinsic information about the objects, i.e. their view-

independent characteristics. This corresponds to a higher level of vision, as compared

to low-level vision (i.e. the image-based stage) and mid-level vision (i.e. the surface-

based stage). It is thus harder to find models of the HVS at this stage.

Existing approaches describe for instance how the HVS perceives object materials

or transparency (e.g., [Fleming 03]), or how it retrieves the color of an object, i.e. color

and lightness constancy. They also describe how 3D motion can be inferred from op-

tical flow and other informations, see [Palmer 99] for more details. Among all these

properties, the ability of the HVS to perceive the shape of an object and its parts is

maybe the more complex to understand. There are many models of shape percep-

tion (Palmer presents four different models in his book); All of them posess great

advantages in describing this shape perception ability of the HVS, but they all have

drawbacks that make them inapplicable to describe shape perception in its entirety.

The use of such models in expressive rendering might then be a little prematurate,

but they promise to allow even more powerful tools, especially for sketch-based mod-

eling applications.

Finally, moving to the category-based stage, models are even more complex to

find. Color categorization is an exception, and it has been thoroughly presented in

Chapters 11 and 12. Object perception is way more complex, probably because of the

greater number of possible categories. An important remark that I already made in

Chapter 12 is that categorization is tied to language, and it makes it difficult to decide

whether language influence perception, or perception influence language.

Perception and schema Recall that schema, defined by Gombrich [Gombrich 61]

as “mere illusions that lead to different styles”, correspond to artistic techniques that

are invented and then learnt by successive generations of artists. An interesting

149

hypothesis, formulated by Durand [Durand 00], is that these schema are hints about

the way the HVS works.

In Chapter 2 of this Thesis, we proposed an intuitive technique to create aerial

perspective effects. Aerial perspective is an example of a schema used by artists in

order to give perceptual cues of depth, which is absent from a canvas. It uses the

commonly encountered effects of haze in an outdoor environment in an artistic way,

so that the visual system is able to retrieve depth information, a distal property, from

tonal modifications, a proximal property. Another example is the use of silhouette

lines: most of the time they correspond to a contrast perception in the proximal stim-

ulus, but correspond to more complex properties of the distal stimulus, i.e. depth

discontinuities.

These observations suggest that visual perception might be an important factor of

the evolution of schema through art history: those schema that can efficiently con-

vey perceptual cues, invented by inspired artists, are taught to the next generation of

artists that combine them in new ways, or may even improve them. Some of the works

of Magritte (Figure 4(a)) or Escher (Figure 4(b)) are good illustrations of the connec-

tions between schema and perception: they systematically violate schema rules in

order to set ambiguous compositions where a valid perceptual interpretation cannot

be performed (here they play with figure/ground perception).

(a) (b)

Figure 4: (a) “Le blanc-seing” by R. Magritte. (b) “Encounter” by M. C. Escher.

Putting the artist into the loop

From the last section we recall that view-centered representations tend to stimulate

mainly the proximal mode, by emphasizing properties of the picture plane, and the

relations amongst the 2D primitives that are part of it; while object-centered repre-

sentations tend to stimulate mainly the distal mode, by trying to show object parts,

properties and functions.

I thus propose to view expressive rendering techniques as tools that perform syn-

thesis and analysis steps in-between the creation of a representation via the systems

150 DISCUSSION ON THE ROLE OF VISION IN EXPRESSIVE RENDERING

of Willats and Durand, and its inspection via the vision model of Marr (this is illus-

trated in Figure 5). The user can be part of this back-and-forth system in two ways:

he can act as a designer by guiding the synthesis processes, i.e. by taking decisions

concerning the representation systems; and he can refine the analysis processes so

that the final rendering comes the closest to his goals. This definition bears many re-

semblances with the way artists work with traditional media: they alternate creation

and inspection steps that are similar to these synthesis and analysis processes.

Figure 5: Expressive rendering techniques can be designed as alternations between

analysis and synthesis steps.

The extent to which the user interacts with such a system will depend of course

on the application. In the following, I propose three classes of applications, that dif-

fer from each other in the degree of implication of the user, as well as the amount of

analysis that has to be performed by the system to infer a correct representation. I

called these classes refinement-based, example-based and sketch-based applications

and they are detailed below. Note that I do not claim this classification to be com-

plete; it is rather a starting point which, I hope, will help relate various expressive

rendering applications and give them common evaluation methods.

Refinement-based applications In such applications, comprising expressive and

photorealistic renderings, the user has to rely on his own interpretation of the scene

to choose amongst the set of parameters to get the expected result. Then, he can refine

those parameters in order to converge to a better solution. For example, in order to

assign a material to an object in a classic computer graphics system, the artist uses

an a priori on its properties to choose the right set of material parameters, and then

modifies their values until a satisfying result is obtained. With such an approach, as

we already said in Chapter 5, feedback is of course very important, but also the use of

a perceptually uniform parameter space so that a small change in a parameter value

will impart a similarly small change in the visual result.

In some cases, this approach can be tedious, or even intractable, in particular with

expressive renderings. For instance, in Chapter 5, we envisioned the use of multiple

overlap 2D stroke patterns to represent the shading and motion of a 3D object. Let-

ting to the user the task of setting the number of patterns and their overlapping in

order to reduce their apparent sliding, for each frame of an animation, sounds like a

particularly tedious task. Therefore, in future work, we plan to implement an auto-

mated analysis of the representation, through the use of motion transparency models;

151

this way, the system will be able to refine automatically the number of patterns and

their overlap, and hence improve the representation at the same time ensuring a

minimum sliding.

In the case above, “sliding” refers to a perceptual property of the proximal stimu-

lus, i.e. overlapping motion flows. Refining a representation based on the perceptual

properties of the distal stimulus is more complex, since it involves a deeper analysis

of the representation. We already talked about such a task, in Chapter 5, when we

evoked the yet unsatisfying results of current line rendering techniques. Many of the

lines extracted with the available methods at the time of writing this Thesis would

still need manual editing, but this is, again, a tedious task to perform. In order to

create better line renderings, we must first understand more precisely what object

features (distal stimulus) they represent. This way, we will be able to let the com-

puter automatically perform the refinement process, using the lines generated and

what they are supposed to represent.

Example-based applications Example-based applications allow the artist to give

a sample of the style he wants to create (e.g., by drawing it), or maybe only a reference

(e.g., via a reference painting). They can be generalized using analogies: knowing

examples A, A′, and B and a relation A : A′, it consists in creating B′ so that A : A′ :: B : B′.

Two specific analogies are of interest: synthesis, where an example A′ is given and we

want to synthesize more in B′ (/0 : A′ :: /0 : B′); and transfer, where a source image B is

changed into a target image B′ to match the colors of a reference image A′ (/0 : A′ :: A : B′).

For example, with stroke pattern synthesis, the user gives a set of strokes A′ that

are analyzed and used to create a similar set B′ of different size, but with similar prop-

erties. This kind of application typically involves the analysis of a proximal stimulus,

since a pattern can be considered as a specific class of texture. Thus, models of tex-

ture perception might be used in order to synthesize patterns that are perceptually

similar to the provided example. In Chapter 8, we used perceptual organization mod-

els in order to perform the synthesis. In the future, as proposed in Chapter 9, we plan

to investigate more deeply the parametric texture models found in vision science.

Another example is color transfer, which consists in modifying a source image

B into a target one B′ so that it matches the colors of a reference image A′. The

relation between B and A′ is here of primary interest, and to retrieve such a relation,

we proposed in Chapter 11 to match the color palettes of B and A′. While we only

concentrated on the extraction of these palettes, we found that it is a complex problem

since it involves to go from a proximal stimulus (pixel colors) to a high-level distal

stimulus (color categories), without any a priori information on the representation. In

a future work we plan to investigate more intermediate stages of the distal stimulus

perception as discussed in Chapter 12, using for example the scale-space theory to

get a more progressive analysis.

Finally, silhouette annotation is a good example of analogy. Here, the user shows

how to modify a silhouette A to give a new one A′. He can then apply this “style” to

another silhouette B to get a stylized silhouette B′. While this task would be complex

without any information about the scene, as with color transfer, it most of the time

comes with a lot of informations about the distal stimulus. Indeed, in practice, silhou-

ette primitives (the distal stimulus) can be selected from a 3D model and projected

in the picture plane. Then, the user draws on top of that silhouette and the same

stylization is “easily” applied to any other silhouette, since they are readily available

152 DISCUSSION ON THE ROLE OF VISION IN EXPRESSIVE RENDERING

in the scene. However, when such a distal information is not available, or the analogy

is more complex, then a more sophisticated analysis of the relation between A and A′

has to be performed.

Sketch-based applications Sketch-based applications encompass all techniques

where the user gives a sample of the results he expects, and the system tries to infer

the higher-level data that could have given such a sample. Those models thus make

use of distal and proximal analysis to help the user recover data at higher levels of

the representation model. It can happen at any level: from marks to 2D primitives,

from 2D primitives to 3D primitives or from 2D primitives to attributes.

For example, over-sketching tools or segmentation algorithms are 2D sketch tools

where marks (strokes or pixels) are organized into more meaningful 2D primitives

(contours or color regions). We proposed an over-sketching tool in Chapter 7.

Sketch-based modelling applications are 3D sketch tools, since a 3D shape is in-

ferred from simple line drawings. Similarly, relighting applications are attribute

sketch tools, where properties of materials and lights are retrieved from sparse color

samples input by the user. These applications are very complex in nature because

they are typically under-constrained; they thus need additional sets of constraints

that are usually provided via domain-specific problems, but may also be given by the

use of sophisticated vision models (see for instance [Karpenko 06]).

Evaluation methods

Now that we have roughly organized applications into three classes, we can devise

specific evaluation methods that will allow to compare and resituate expressive ren-

dering techniques. We thus turn to some propositions for each class of applications.

Refinement-based applications sometimes have the advantage that they can be

evaluated by comparing the result of a rendering with a ground-truth image. Simi-

lar methods can be used to evaluate both Photorealistic renderings and media sim-

ulations, by comparing their results to real-life measurements. However, for repre-

sentations departing from simulation, the evaluation is much more arbitrary (e.g.

toon-shading): it can only rely on more subjective comparisons with paintings and

drawings. A better way to evaluate such systems is to first give desirable perceptual

properties of the final result (as with the “no-sliding” constraint for stroke patterns

motion), and then evaluate a method’s results on this basis.

Example-based models could be evaluated through the use of rating experiments:

since the goal is to match an analogy, two different methods can be compared based

on perceptual evaluation. A real observer could be prompted to pick a most similar

candidate out of many method results and reaction times could be used to quantify

this rating.

Finally, sketch-based models could be evaluated by model comparison: by drawing

or painting on top of an existing model, and comparing the inferred and existing

model. The closer the sketch depicts the synthesized shape or material, the better

the method is. The problem of defining distance metrics holds, and one could use

perceptual properties to this end.

Conclusions

I presented in this thesis new representation and acquisition models that augment

the possibilities in expressive rendering. Thanks to the work made with my collabo-

rators, new representations have been created that take inspiration from traditional

artistic techniques and generalize them under a common logic, this way giving in-

tuitive tools to the user. The acquisition of low-level stylistic information from vec-

tor line drawings and bitmap color images has also progressed in the direction of a

“hands-on” interface for the user.

Not only do these contributions have potential practical applications, but they

have also been put in a broader context where human visual perception models are

used to predict, refine, extract, compare and evaluate expressive rendering methods.

While we only discussed the potentials of vision knowledge in the creation of expres-

sive representations, we actually made a direct use of perceptual mechanisms in the

acquisition of style from user-provided examples. We only scratched the surface in the

use of human vision models, but we also motivated their potential benefits in future

work by discussing interesting practical couplings between perception and expressive

rendering applications.

Expressive rendering has still many lessons to learn from traditional painting,

drawing, photography and cinematography techniques, and I proposed in this thesis

to do so in a principled way: by carefully studying existing artistic techniques, or

schema, and understanding to what aspects of the visual experience they correspond.

This is especially interesting, not only because it links expressive rendering to the

analysis of existing pieces of artwork, but also because it allows to explore new aspects

of human visual perception that can only be triggered by expressive representations.

153

154 CONCLUSIONS

Bibliography

[Agrawala 00] Maneesh Agrawala, Denis Zorin & Tamara Munzner. Artistic

Multiprojection Rendering. In Proceedings of the Eurographics

Workshop on Rendering Techniques 2000, pages 125–136, Lon-

don, UK, 2000. Springer-Verlag. 12

[Agrawala 01] Maneesh Agrawala & Chris Stolte. Rendering Effective Route

Maps: Improving Usability Through Generalization. In Eugene

Fiume, editeur, SIGGRAPH 2001, Computer Graphics Proceed-

ings, pages 241–250. ACM Press / ACM SIGGRAPH, 2001. 12

[Agrawala 03] Maneesh Agrawala, Doantam Phan, Julie Heiser, John Hay-

maker, Jeff Klingner, Pat Hanrahan & Barbara Tversky. De-

signing effective step-by-step assembly instructions. ACM Trans.

Graph., vol. 22, no. 3, pages 828–837, 2003. 12

[Alvarez 94] L. Alvarez & J-M. Morel. Formalization and computational as-

pects of image analysis. Acta Numerica, vol. 3, pages 1–59, 1994.

109, 139, 146

[Andersen 89] G. J. Andersen. Perception of three-dimensional structure from

optic flow without locally smooth velocity. Journal on Experi-

mental Psychology and Human Perception Performance, vol. 15,

no. 2, pages 363–371, 1989. 63

[Anjyo 03] Ken-ichi Anjyo & Katsuaki Hiramitsu. Stylized Highlights for

Cartoon Rendering and Animation. IEEE Comput. Graph. Appl.,

vol. 23, no. 4, pages 54–61, 2003. 13, 23, 28

[Anjyo 06] Ken-ichi Anjyo, Shuhei Wemler & William Baxter. Tweakable

light and shade for cartoon animation. In NPAR ’06: Proceed-

ings of the 3rd international symposium on Non-photorealistic

animation and rendering, pages 133–139, New York, NY, USA,

2006. ACM Press. 13, 23, 28

[Ashikhmin 01] Michael Ashikhmin. Synthesizing natural textures. In SI3D ’01:

Proceedings of the 2001 symposium on Interactive 3D graphics,

pages 217–226, New York, NY, USA, 2001. ACM Press. 75

[Bangham 03] J.A. Bangham, S.E. Gibson & R.W. Harvey. The Art of Scale-

Space. In British Machine Vision Conference, 2003. 118, 135,

146

155

156 BIBLIOGRAPHY

[Barla 05] Pascal Barla, Joëlle Thollot & François Sillion. Geometric Clus-

tering for Line Drawing Simplification. In Proceedings of the

Eurographics Symposium on Rendering, 2005. 77

[Barla 06a] Pascal Barla, Simon Breslav, Joëlle Thollot & Lee Markosian.

Interactive Hatching and Stippling by Example. In INRIA Tech-

nical report, 2006. 74, 94, 100

[Barla 06b] Pascal Barla, Simon Breslav, Joëlle Thollot, François Sillion &

Lee Markosian. Stroke Pattern Analysis and Synthesis. In Com-

puter Graphics Forum (Proc. of Eurographics 2006), volume 25,

2006. 93

[Barla 06c] Pascal Barla, Lee Markosian & Joëlle Thollot. X-Toon: An

extended toon shader. In International Symposium on Non-

photorealistic Animation and Rendering (NPAR), 2006. 21

[Barrow 81] Harry G. Barrow & Jay M. Tenenbaum. Interpreting Line Draw-

ings as Three-Dimensional Surfaces. Artif. Intell., vol. 17, no. 1-3,

pages 75–116, 1981. 108

[Baudel 94] Thomas Baudel. A mark-based interaction paradigm for free-

hand drawing. In UIST ’94: Proceedings of the 7th annual ACM

symposium on User interface software and technology, pages

185–192, New York, NY, USA, 1994. ACM Press. 73, 78

[Baxter 04] William Baxter, Jeremy Wendt & Ming C. Lin. IMPaSTo -

A Realistic, Interactive Model for Paint. In 3rd International

Symposium on Non-Photorealistic Animation and Rendering

(NPAR’04), pages 45–56, June 2004. 19

[Berlin 69] Brent Berlin & Paul Kay. Basic color terms: Their universality

and evolution. University of California Press, 1969. 123, 137

[Beusmans 87] J. Beusmans, D.D. Hoffman & B.M. Bennett. Description of solid

shape and its inference from occluding contours. journal of the

Optical Society of America, vol. 4, pages 1155–1167, 1987. 108

[Black 98] M. J. Black, G. Sapiro, D. Marimont & D. Heeger. Robust

anisotropic diffusion. IEEE Trans. on Image Processing, vol. 7,

no. 3, pages 421–432, 1998. 118

[Bonnardel 06] V. Bonnardel. Color naming and categorization in inherited color

vision deficiencies. Visual Neuroscience, vol. 23, no. 3, 2006. 138,

139

[Bousseau 06] Adrien Bousseau, Matt Kaplan, Joëlle Thollot & François X.

Sillion. Interactive watercolor rendering with temporal coher-

ence and abstraction. In International Symposium on Non-

Photorealistic Animation and Rendering (NPAR), 2006. 15, 18,

51, 118

BIBLIOGRAPHY 157

[Chang 03] Youngha Chang, Suguru Saito & Masayuki Nakajima. A Frame-

work for Transfer Colors Based on the Basic Color Categories.

In Computer Graphics International, pages 176–183, 2003. 117,

123

[Chi 06] Ming-Te Chi & Tong-Yee Lee. Stylized and Abstract Painterly

Rendering System Using a Multiscale Segmented Sphere Hierar-

chy. IEEE Transactions on Visualization and Computer Graph-

ics, vol. 12, no. 1, pages 61–72, January/February 2006. 18, 37

[Chu 05] Nelson S.-H. Chu & Chiew-Lan Tai. MoXi: real-time ink disper-

sion in absorbent paper. ACM Trans. Graph., vol. 24, no. 3, pages

504–511, 2005. 19

[Coleman 04] Patrick Coleman & Karan Singh. RYAN : Rendering your anima-

tion nonlinearly projected. In 3rd International Symposium on

Non-Photorealistic Animation and Rendering (NPAR’04), 2004.

12

[Collomosse 04] J. P. Collomosse & P. M. Hall. A Mid-level Description of

Video, with Application to Non-photorealistic Animation. In 15th

British Machine Vision Conference (BMVC), 2004. 15

[Comaniciu 99] Dorin Comaniciu & Peter Meer. Mean Shift Analysis and Appli-

cations. In ICCV (2), pages 1197–1203, 1999. 118

[Cornish 01] Derek Cornish, Andrea Rowan & David Luebke. View-dependent

particles for interactive non-photorealistic rendering. In GRIN’01:

No description on Graphics interface 2001, pages 151–158,

Toronto, Ont., Canada, Canada, 2001. Canadian Information

Processing Society. 18, 41

[Cui 01] G. Cui, M. R. Luo, B. Rigg, G. Roesler & K. Witt. Uniform Colour

Spaces Based on the DIN99 Colour-Difference Formula. Colour

and Imaging Inst., Univ. of Derby, 2001. 122, 133

[Cunzi 03] Matthieu Cunzi, Joëlle Thollot, Sylvain Paris, Gilles Debunne,

Jean-Dominique Gascuel & Frédo Durand. Dynamic Canvas for

Immersive Non-Photorealistic Walkthroughs. In Proc. Graphics

Interface. A K Peters, LTD., june 2003. 51

[Curtis 97] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W.

Fleischer & David H. Salesin. Computer-generated watercolor.

In Siggraph 97, Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, pages 421–430.

ACM Press/Addison-Wesley Publishing Co., 1997. 19

[Daniels 99] Eric Daniels. Deep canvas in Disney’s Tarzan. In SIGGRAPH

’99: ACM SIGGRAPH 99 Conference abstracts and applications,

page 200, New York, NY, USA, 1999. ACM Press. 16

158 BIBLIOGRAPHY

[DeCarlo 03] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz & An-

thony Santella. Suggestive Contours for Conveying Shape. ACM

Transactions on Graphics, SIGGRAPH, vol. 22, no. 3, pages 848–

855, July 2003. 17, 86, 108

[Deussen 00a] Oliver Deussen, Stefan Hiller, Cornelius Overveld & Thomas

Strothotte. Floating Points: A Method for Computing Stipple

Drawings. Computer Graphics Forum (EG’00), vol. 19, no. 3,

pages 40–51, 2000. 72

[Deussen 00b] Oliver Deussen & Thomas Strothotte. Computer-Generated Pen-

and-Ink Illustration of Trees. In Proceedings of ACM SIGGRAPH

2000, Computer Graphics Proceedings, Annual Conference Se-

ries, pages 13–18, 2000. 18, 78

[Durand 00] Frédo Durand. The art and science of Depiction. In Unpublished

manuscript, 2000. x, 8, 59, 149

[Durand 02] Frédo Durand. An Invitation to Discuss Computer Depiction. In

2nd International Symposium on Non-Photorealistic Animation

and Rendering (NPAR’02), Annecy, France, June 3-5 2002. vi, vii,

x, 8, 9, 36, 60

[Efros 99] Alexei A. Efros & Thomas K. Leung. Texture Synthesis by Non-

parametric Sampling. In IEEE International Conference on

Computer Vision, pages 1033–1038, 1999. 75, 97, 98

[Eissele 04] Mike Eissele, Daniel Weiskopf & Thomas Ertl. Frame-to-Frame

Coherent Halftoning in Image Space. In Proceedings of Theory

and Practice of Computer Graphics 2004, pages 188–195, 2004.

51

[Elad 02] Michael Elad. On the origin of the bilateral filter and ways to im-

prove it. IEEE Transactions on Image Processing, vol. 11, no. 10,

pages 1141–1151, 2002. 118

[Elder 96] James H. Elder & Steven W. Zucker. Computing Contour Closure.

In ECCV (1), pages 399–412, 1996. 78

[Etemadi 91] A. Etemadi, J.P. Schmidt, G. Matas, J. Illingworth & J.V. Kittler.

Low-Level Grouping of Straight Line Segments. In British Ma-

chine Vision Conf., pages 119–126, 1991. 95

[F. Pitié 05] A. Kokaram F. Pitié & R. Dahyot. Towards Automated Colour

Grading. In 2nd IEE European Conference on Visual Media Pro-

duction, 2005. 117

[Fleming 03] Roland W. Fleming, Ron O. Dror & Edward H. Adelson. Real-

world illumination and the perception of surface reflectance prop-

erties. J. Vis., vol. 3, no. 5, pages 347–368, 7 2003. 108, 148

BIBLIOGRAPHY 159

[Fleming 04] Roland W. Fleming, Antonio Torralba & Edward H. Adelson.

Specular reflections and the perception of shape. J. Vis., vol. 4,

no. 9, pages 798–820, 2004. 108

[Freeman 03] William T. Freeman, Joshua B. Tenenbaum & Egon Pasztor.

Learning Style Translation for the Lines of a Drawing. ACM

Transactions on Graphics, vol. 22, no. 1, pages 1–14, January

2003. 73, 74

[Freudenberg 01] Bert Freudenberg, Maic Masuch & Thomas Strothotte. Walk-

Through Illustrations: Frame-Coherent Pen-and-Ink Style in a

Game Engine. In A. Chalmers & T.-M. Rhyne, editeurs, In Pro-

ceedings of Eurographics 2001, volume 20(3) of Computer Graph-

ics Forum, pages 184–191, 2001. 49, 54

[Girshick 00] Ahna Girshick, Victoria Interrante, Steven Haker & Todd

Lemoine. Line direction matters: an argument for the use of prin-

cipal directions in 3D line drawings. In NPAR 00, Proceedings

of the 1st international symposium on Non-photorealistic anima-

tion and rendering, pages 43–52. ACM Press, 2000. 40

[Gombrich 61] Ernst Hans Gombrich. Art and illusion: A study in the psychol-

ogy of pictorial representation. Princeton University press, 1961.

viii, 148

[Gooch 99] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley &

Richard Riesenfeld. Interactive technical illustration. In Proceed-

ings of the 1999 symposium on Interactive 3D graphics, pages

31–38. ACM Press, 1999. 13

[Gooch 01] Bruce Gooch & Amy Gooch. Non-photorealistic rendering. A. K.

Peters, Ltd., 2001. vi, 78

[Grabli 04a] Stephane Grabli, Frédo Durand & Francois X. Sillion. Density

Measure for Line-Drawing Simplification. In 12th Pacific Con-

ference on Computer Graphics and Applications (PG’04), pages

309–318, Seoul, Korea, October 06 - 08 2004. 72, 73, 78

[Grabli 04b] Stéphane Grabli, Emmanuel Turquin, Frédo Durand & François

Sillion. Programmable Style for NPR Line Drawing. In Render-

ing Techniques 2004 (Eurographics Symposium on Rendering).

ACM Press, June 2004. 48, 78

[Grundland 05a] Mark Grundland & Neil A. Dodgson. Color Histogram Specifi-

cation by Histogram Warping. In Proceedings of SPIE, volume

5667, 2005. 117

[Grundland 05b] Mark Grundland & Neil A. Dodgson. Color Search and Replace.

In Computational Aesthetics, 2005. 116, 135

[Haeberli 90] Paul Haeberli. Paint By Numbers: Abstract Image Representa-

tions. ACM SIGGRAPH Computer Graphics, vol. 24, no. 4, pages

207–214, August 1990. 14

160 BIBLIOGRAPHY

[Hardin 00] C. L. Hardin & Luisa Maffi. Color Categories in Thought and

Language. Minds Mach., vol. 10, no. 3, 2000. 137, 138

[Hays 04] James Hays & Irfan Essa. Image and Video Based Painterly An-

imation. In 3rd International Symposium on Non-Photorealistic

Animation and Rendering (NPAR’04), pages 113–120, Annecy,

France, June 07-09 2004. 14

[Hertzmann 98] Aaron Hertzmann. Painterly rendering with curved brush strokes

of multiple sizes. In Siggraph 98, Proceedings of the 25th annual

conference on Computer graphics and interactive techniques,

pages 453–460. ACM Press, 1998. 14

[Hertzmann 00] Aaron Hertzmann & Denis Zorin. Illustrating smooth surfaces.

In Siggraph 00, Proceedings of the 27th annual conference on

Computer graphics and interactive techniques, pages 517–526.

ACM Press/Addison-Wesley Publishing Co., 2000. 49

[Hertzmann 02a] Aaron Hertzmann. Fast paint texture. In NPAR ’02: Proceedings

of the 2nd international symposium on Non-photorealistic ani-

mation and rendering, pages 91–ff, New York, NY, USA, 2002.

ACM Press. 19, 48

[Hertzmann 02b] Aaron Hertzmann, Nuria Oliver, Brian Curless & Steven M.

Seitz. Curve Analogies. In Rendering Techniques 2002: 13th Eu-

rographics Workshop on Rendering, pages 233–246, June 2002.

74

[Hertzmann 03] Aaron Hertzmann. A Survey of Stroke-Based Rendering. IEEE

Computer Graphics and Applications, vol. 23, no. 4, pages 70–81,

July/August 2003. Special Issue on Non-Photorealistic Render-

ing. 19, 93

[Horn 87] Berthold K. P. Horn. Closed-form solution of absolute orientation

using unit quaternions. Journal of the Optical Society of America,

vol. 4, no. 4, pages 629–642, April 1987. 52

[Hsu 93] S. C. Hsu, I. H. H. Lee & N. E. Wiseman. Skeletal strokes.

In UIST ’93: Proceedings of the 6th annual ACM symposium

on User interface software and technology, pages 197–206, New

York, NY, USA, 1993. ACM Press. 19

[Igarashi 97] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya & Hide-

hiko Tanaka. Interactive Beautification: A Technique for Rapid

Geometric Design. In UIST (ACM Annual Symposium on User

Interface Software and Technology), pages 105–114, 1997. 73, 78

[Interrante 97] Victoria Interrante. Illustrating surface shape in volume data

via principal direction-driven 3D line integral convolution. In

Siggraph 97, Proceedings of the 24th annual conference on Com-

puter graphics and interactive techniques, pages 109–116. ACM

Press/Addison-Wesley Publishing Co., 1997. 40, 49

BIBLIOGRAPHY 161

[Isenberg 03] Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan

Schlechtweg & Thomas Strothotte. A Developer’s Guide to

Silhouette Algorithms for Polygonal Models. IEEE Com-

puter Graphics and Applications, vol. 23, no. 4, pages 28–37,

July/August 2003. 16

[Jodoin 02] Pierre-Marc Jodoin, Emric Epstein, Martin Granger-Piche & Vic-

tor Ostromoukhov. Hatching by Example: a Statistical Approach.

In 2nd International Symposium on Non-Photorealistic Anima-

tion and Rendering (NPAR’02), Annecy, France, June 3-5 2002.

74

[Kalnins 02] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A.

Kowalski, Joseph C. Lee, Philip L. Davidson, Matthew Webb,

John F. Hughes & Adam Finkelstein. WYSIWYG NPR: drawing

strokes directly on 3D models. In SIGGRAPH ’02: Proceedings of

the 29th annual conference on Computer graphics and interac-

tive techniques, pages 755–762, New York, NY, USA, 2002. ACM

Press. 16, 49, 54, 73, 74

[Kalnins 03] Robert D. Kalnins, Philip L. Davidson, Lee Markosian & Adam

Finkelstein. Coherent stylized silhouettes. ACM Transactions on

Graphics, vol. 22, no. 3, pages 856–861, July 2003. 17

[Kaplan 05] Matthew Kaplan & Elaine Cohen. A Generative Model for Dy-

namic Canvas Motion. In Computational Aesthetics, 2005. 18,

51

[Karpenko 06] Olga A. Karpenko & John F. Hughes. SmoothSketch: 3D free-

form shapes from complex sketches. ACM Transactions on Graph-

ics, vol. 25/3, pages 589–598, 2006. 152

[Klein 00] Allison W. Klein, Wilmot W. Li, Michael M. Kazhdan, Wag-

ner T. Correa, Adam Finkelstein & Thomas A. Funkhouser. Non-

Photorealistic Virtual Environments. In Proceedings of ACM

SIGGRAPH 2000, Computer Graphics Proceedings, Annual Con-

ference Series, pages 527–534, July 2000. 22

[Knill 92] D. C. Knill. The perception of surface contours and surface shape:

from computation to psychophysics. Journal of the Optical Society

of America, vol. 9, no. 9, pages 1449–1464, 1992. 109

[Koenderink 82] J.J. Koenderink & A.J. van Doorn. The Shape of Smooth Objects

and the Way Contours End. Perception, vol. 11, pages 129–137,

1982. 108

[Koenderink 84] J.J. Koenderink. What does the occluding contour tell us about

solid shape? Perception, vol. 13(3), pages 321–330, 1984. 108

[Koenderink 96] Jan J. Koenderink, Andrea J. van Doorn, Chris Christou &

Joseph S. Lappin. Shape Constancy in Pictorial Relief. In Ob-

ject Representation in Computer Vision, pages 151–164, 1996.

108

162 BIBLIOGRAPHY

[Koenderink 01] J. J. Koenderink, A. J. van Doorn, A. M. L. Kappers & J. T. Todd.

Ambiguity and the ‘mental eye’ in pictorial relief. Perception,

vol. 30, pages 431–448, 2001. 108

[Kolliopoulos 06] A. Kolliopoulos, J. M. Wang & A. Hertzmann. Segmentation-

Based 3D Artistic Rendering. In Eurographics Symposium on

Rendering 2006, 2006. 15, 118

[Kurlander 88] David Kurlander & Eric A. Bier. Graphical search and replace.

In SIGGRAPH ’88: Proceedings of the 15th annual conference on

Computer graphics and interactive techniques, pages 113–120,

New York, NY, USA, 1988. ACM Press. 74, 98

[Köppen. 00] M. Köppen., K. Franke & O. Unold. A Survey on Fuzzy Morphol-

ogy. In Proc. 5th Intl. Conf. on Pattern Recognition and Image

Analysis, pages 424–427, 2000. 118

[Lake 00] Adam Lake, Carl Marshall, Mark Harris & Marc Blackstein.

Stylized rendering techniques for scalable real-time 3D anima-

tion. In Proceedings of the 1st international symposium on

Non-photorealistic animation and rendering, pages 13–20. ACM

Press, 2000. 13

[Levene 98] J. Levene. A framework for non-realistic projections. Master’s

thesis, MIT, 1998. 12

[Litwinowicz 97] Peter C. Litwinowicz. Processing images and video for an impres-

sionist effect. In SIGGRAPH 97, pages 407–414, 1997. 14

[Lloyd 82] S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. on

Information Theory, vol. 28, no. 2, pages 129–137, 1982. 100

[Luft 05] T. Luft & O. Deussen. Interactive Watercolor Animations. In

Pacific Graphics, 2005. 14

[Luft 06] Thomas Luft & Oliver Deussen. Real-Time Watercolor Illustra-

tions of Plants Using A Blurred Depth Test. In NPAR 2006:

Fourth International Symposium on Non Photorealistic Anima-

tion and Rendering, jun 2006. to appear. 14, 18, 45, 48

[Luo 00] M. R. Luo, G. Cui & B. Rigg. The Development of the CIE 2000

Colour Difference Formula: CIEDE2000. Colour and Imaging

Inst., Univ. of Derby, 2000. 122, 133

[McCloud 94] Scott McCloud. Understanding comics. Harper, 1994. vi, vii, 22,

109, 144

[Meier 96] Barbara J. Meier. Painterly rendering for animation. In Sig-

graph’96, Proceedings of the 23rd annual conference on Com-

puter graphics and interactive techniques, pages 477–484. ACM

Press, 1996. 17, 35, 36, 38, 40, 48, 60

BIBLIOGRAPHY 163

[Nehab 04] Diego Nehab & Philip Shilane. Stratified Point Sampling of 3D

Models. In Eurographics Symposium on Point-Based Graphics,

pages 49–56, June 2004. 52

[Ni 06] Alex Ni, Kyuman Jeong, Seungyong Lee & Lee Markosian. Multi-

scale Line Drawings from 3D Meshes. In 2006 ACM Symposium

on Interactive 3D Graphics and Games, March 2006. 28

[Northrup 00] J. D. Northrup & Lee Markosian. Artistic silhouettes: a hybrid

approach. In Proceedings of the 1st international symposium on

Non-photorealistic animation and rendering, pages 31–37. ACM

Press, 2000. 16, 17

[Ostromoukhov 99] Victor Ostromoukhov. Digital facial engraving. In Siggraph 99,

Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, pages 417–424. ACM Press/Addison-

Wesley Publishing Co., 1999. 50, 72

[Palmer 99] S. Palmer. Vision science : Photons to phenomenology. MIT Press,

1999. 94, 145, 146, 148

[Pastor 03] Oscar E. Meruvia Pastor, Bert Freudenberg & Thomas

Strothotte. Real-Time Animated Stippling. IEEE Computer

Graphics and Applications, vol. 23, no. 4, pages 62–68, 2003. 18,

41

[Perona 90] P. Perona & J. Malik. Scale-space and edge detection using

anisotropic diffusion. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 12, no. 7, pages 629–639, 1990. 118

[Portilla 00] Javier Portilla & Eero P. Simoncelli. A Parametric Texture Model

Based on Joint Statistics of Complex Wavelet Coefficients. Int. J.

Comp. Vision, vol. 40, no. 1, pages 49–70, 2000. 74, 110

[Praun 01] Emil Praun, Hugues Hoppe, Matthew Webb & Adam Finkelstein.

Real-time hatching. In Siggraph 01, Proceedings of the 28th

annual conference on Computer graphics and interactive tech-

niques, page 581. ACM Press, 2001. 18, 23, 37, 49, 72, 103

[Preim 95] Bernhard Preim & Thomas Strothotte. Tuning rendered line-

drawings. In WSCG’95, pages 228–238, February 1995. 73, 78

[Qian 94] Ning Qian, R. C. Anderson & Edward H. Adelson. Transparent

Motion Perception as Detection of Unbalanced Motion Signals III:

Modeling. The Journal of Neuroscience, vol. 14, no. 12, pages

7381–7392, 1994. 63

[Reinhard 01] Erik Reinhard, Michael Ashikhmin, Bruce Gooch & Peter

Shirley. Color Transfer between Images. IEEE Comput. Graph.

Appl., vol. 21, no. 5, pages 34–41, 2001. 117

164 BIBLIOGRAPHY

[Romeny 94] Bart M. Romeny. Geometry-driven diffusion in computer vision.

Kluwer Academic Publishers, Norwell, MA, USA, 1994. 110, 139,

146

[Rosin 94] P.L. Rosin. Grouping curved lines. In 5th British Machine Vision

Conf, pages pp. 265–274, York, 1994. 78

[Rosin 98] Paul L. Rosin. Determining local natural scales of curves. Pattern

Recognition Letters, vol. 19, no. 1, pages 63–75, 1998. 88

[Rost 04] Randi J. Rost. Opengl(r) shading language. Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, USA, 2004. 54

[Rusinkiewicz 00] Szymon Rusinkiewicz & Marc Levoy. QSplat: A Multiresolu-

tion Point Rendering System for Large Meshes. In Proceedings

of ACM SIGGRAPH 2000, pages 343–352, July 2000. 47

[Saito 90] Takafumi Saito & Tokiichiro Takahashi. Comprehensible ren-

dering of 3-D shapes. In Siggraph 90, Proceedings of the 17th

annual conference on Computer graphics and interactive tech-

niques, pages 197–206. ACM Press, 1990. 38

[Salisbury 94] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel &

David H. Salesin. Interactive pen-and-ink illustration. In Sig-

graph 94, Proceedings of the 21st annual conference on Com-

puter graphics and interactive techniques, pages 101–108. ACM

Press, 1994. 72

[Salisbury 96] Mike Salisbury, Corin Anderson, Dani Lischinski & David H.

Salesin. Scale-dependent reproduction of pen-and-ink illustra-

tions. In Siggraph 96, Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pages 461–

468. ACM Press, 1996. 73

[Saund 94] Eric Saund & Thomas P. Moran. A perceptually-supported sketch

editor. In UIST ’94: Proceedings of the 7th annual ACM sympo-

sium on User interface software and technology, pages 175–184,

New York, NY, USA, 1994. ACM Press. 73, 94

[Saund 03] Eric Saund. Finding Perceptually Closed Paths in Sketches and

Drawings. IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 4,

pages 475–491, 2003. 73, 78

[Schofield 93] Simon Schofield. Non-photorealistic Rendering: A critical exam-

ination and proposed system. PhD thesis, School of Art and De-

sign, Middlesex University, 1993. vi, vii, 7, 14

[School 95] DK Art School. An introduction to art techniques. Dorling Kins-

ley limited, 1995. 68

[Seaborn 99] Matthew Seaborn, Lee Hepplewhite & John Stonham. Fuzzy

colour category map for the measurement of colour similarity and

BIBLIOGRAPHY 165

dissimilarity. Pattern Recognition, vol. 38, no. 2, pages 165–177,

February 1999. 124, 134

[Shi 00] Jianbo Shi & Jitendra Malik. Normalized Cuts and Image Seg-

mentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pages 888–905, 2000. 118

[Sloan 01] Peter-Pike Sloan, William Martin, Amy Gooch & Bruce Gooch.

The Lit Sphere: A Model for Capturing NPR Shading from Art.

In Graphics Interface 2001, pages 143–150, 2001. 13

[S.M. 95] Wuerger S.M., Maloney L.T. & Krauskopf J. Proximity Judg-

ments in Color Space: Tests of a Euclidean Color Geometry. Vi-

sion Research, vol. 35, no. 6, pages 827–835, 1995. 123

[Solso 94] Robert L. Solso. Cognition and the visual arts. MIT Press, Cam-

bridge, MA, USA, 1994. 108, 115

[Sperl 04] Daniel Sperl. Realtime Painterly Rendering for Animation, 2004.

37

[Stevens 81] Kent A. Stevens. The Visual Interpretation of Surface Contours.

Artif. Intell., vol. 17, no. 1-3, pages 47–73, 1981. 109

[Stoner 90] G. R. Stoner, T. D. Albright, & V. S. Ramachandran. Transparency

and coherence in human motion perception. Nature, vol. 344,

pages 153–155, 1990. 63

[Strothotte 02] Thomas Strothotte & Stefan Schlechtweg. Non-photorealistic

computer graphics: Modeling, rendering and animation. Morgan

Kaufmann, 2002. vi, 78

[Todd 90] J. T. Todd & F. D. Reichel. Visual perception of smoothly curved

surfaces from double-projected contour patterns. J Exp Psychol

Hum Percept Perform., vol. 16, no. 3, pages 665–674, 1990. 109

[Tomasi 98] C. Tomasi & R. Manduchi. Bilateral Filtering for Gray and Color

Images. In ICCV ’98: Proceedings of the Sixth International Con-

ference on Computer Vision, page 839, Washington, DC, USA,

1998. IEEE Computer Society. 118

[Turk 01] Greg Turk. Texture Synthesis on Surfaces. In Proceedings of

ACM SIGGRAPH 2001, pages 347–354, 2001. 75

[Vanderhaeghe 06] David Vanderhaeghe, Pascal Barla, Joëlle Thollot & François Sil-

lion. A dynamic drawing algorithm for interactive painterly ren-

dering. In Siggraph technical sketch: SIGGRAPH’2006. ACM,

aug 2006. 35

[Wang 04a] Chung-Ming Wang & Yao-Hsien Huang. A Novel Color Transfer

Algorithm for Image Sequences. J. Inf. Sci. Eng., vol. 20, no. 6,

pages 1039–1056, 2004. 118

166 BIBLIOGRAPHY

[Wang 04b] Jue Wang, Bo Thiesson, Yingqing Xu & Michael Cohen. Image

and Video Segmentation by Anisotropic Kernel Mean Shift. In

ECCV. Springer-Verlag, 2004. 118

[Wang 04c] Jue Wang, Yingqing Xu, Heung-Yeung Shum & Michael Cohen.

Video Tooning. In ACM Transactions on Graphics (proc. of SIG-

GRAPH 04), 2004. 15, 118

[Watson 94] A.B. Watson & M. P. Eckert. Motion-Contrast Sensitivity: Visibil-

ity of Motion Gradients of Various Spatial Frequencies. Journal

of the Optical Society of America, vol. 11, no. 2, pages 496–505,

1994. 63

[Wei 00] Li-Yi Wei & Marc Levoy. Fast texture synthesis using tree-

structured vector quantization. In SIGGRAPH ’00: Proceedings

of the 27th annual conference on Computer graphics and interac-

tive techniques, pages 479–488, New York, NY, USA, 2000. ACM

Press/Addison-Wesley Publishing Co. 75

[Wei 01] Li-Yi Wei & Marc Levoy. Texture Synthesis Over Arbitrary Man-

ifold Surfaces. In Proceedings of ACM SIGGRAPH 2001, pages

355–360, 2001. 75

[Willats 97] John Willats. Art and representation: New principles in the anal-

ysis of pictures. Princeton University Press, Princeton, NJ, USA,

1997. 394 pages. x, 8, 60, 143

[Willats 05] John Willats & Frédo Durand. Defining Pictorial Style: Lessons

from Linguistics and Computer Graphics. Axiomathes, vol. 15,

no. 2, 2005. x, 8, 60

[Wilson 04] Brett Wilson & Kwan-Liu Ma. Representing Complexity in

Computer-Generated Pen-and-Ink Illustrations. In NPAR, 2004.

73, 78

[Winkenbach 94] Georges Winkenbach & David H. Salesin. Siggraph 94,

Computer-generated pen-and-ink illustration. In Proceedings of

the 21st annual conference on Computer graphics and interactive

techniques, pages 91–100. ACM Press, 1994. 49, 72

[Winnemöller 06] Holger Winnemöller, Sven Olsen & Bruce Gooch. Real-Time

Video Abstraction. In Proceedings of SIGGRAPH’06, 2006. 15,

118

[Wood 94] Phyllis Wood. Scientific illustration. Wiley, 1994. vi, vii, 3, 4, 22,

68, 69, 114

[Wood 97] Daniel N. Wood, Adam Finkelstein, John F. Hughes, Craig E.

Thayer & David H. Salesin. Multiperspective Panoramas for Cel

Animation. Proceedings of SIGGRAPH 97, pages 243–250, Au-

gust 1997. ISBN 0-89791-896-7. Held in Los Angeles, California.

52

BIBLIOGRAPHY 167

[Yoshizawa 05] Shin Yoshizawa, Alexander Belyaev & Hans-Peter Seidel. Fast

and robust detection of crest lines on meshes. In SPM ’05: Pro-

ceedings of the 2005 ACM symposium on Solid and physical mod-

eling, 2005. 17

[Yu 04] Jingyi Yu & Leonard McMillan. A Framework for Multiperspec-

tive Rendering. In Eurographics Symposium on Rendering, Nor-

rkoping, Sweden, 2004. 12

[Zander 04] Johannes Zander, Tobias Isenberg, Stefan Schlechtweg &

Thomas Strothotte. High Quality Hatching. Computer Graphics

Forum (Proceedings of Eurographics), vol. 23, no. 3, September

2004. 73

[Ziou 98] Djemel Ziou & Salvatore Tabbone. Edge Detection Techniques -

An Overview. International Journal of Pattern Recognition and

Image Analysis, vol. 8, pages 537–559, 1998. 78

	Introduction
	I Expressive animation metaphors
	How to create expressive image sequences ?
	An extended toon shader for attribute mapping
	A painterly rendering metaphor
	An alternative metaphor: dynamic 2D patterns
	Remarks on low-level perceptual criteria

	II Line drawings analysis and synthesis
	What do line drawings represent ?
	Line drawing simplification
	Stroke pattern synthesis
	Remarks on drawing segregation

	III Picture color composition
	How are colors distributed in a picture ?
	Color palette extraction
	Remarks on color categorisation

	IV Closing remarks
	Discussion on the role of vision in expressive rendering
	Conclusions

