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Chapitre 1

Structure du mémoire

J’ai divisé la matiere de mon mémoire en trois chapitres : un chapitre sur les travaux
d’optique quantique, un chapitre sur les gaz dégénérés et un chapitre sur le pompage
optique de I'hélium 3. Dans chaque chapitre il y a un petit paragraphe introductif, suivi
de différents paragraphes correspondant aux différents travaux que je veux décrire. J'ai
essayé de résumer les points importants de chaque travail et de le situer par rapport aux
travaux existants et par rapport a mon parcours scientifique. La otu j’ai voulu donner plus
de détails, j’ai inclus une ou plusieurs publications.



Chapitre 2

Parcours scientifique et personnel

Que ¢a soit pour étudier et manipuler les propriétés quantiques de la lumiere comme
on le fait en optique quantique, ou celles de la matiere a I’aide de gaz dégénérés, ou encore
dans un régime classique a des fins d’applications médicales, j’ai étudié des systemes de
physique atomique simples, constitués d’atomes, éventuellement en interaction entre eux
ou avec de la radiation électromagnétique. Tout en ayant débuté dans un groupe purement
théorique, j’ai souvent travaillé en connextion étroite avec des expériences jusqu’a m'’y
impliquer d’abord pour les atomes froids, puis pour ’hélium polarisé.

J’al débuté mon travail de recherche dans le groupe de Luigi Lugiato a Milan en
étudiant des modeles théoriques pour la production d’états comprimés de la lumiere. Lu-
giato collaborait avec Philippe Grangier de I'Institut d’Optique d’Orsay qui menait a
I’époque des expériences de compression de bruit et de mesures quantiques non destruc-
tives (QND) avec des atomes froids. L’expérience QND d’Orsay m’a tout suite intriguée.
J’ai donc modélisé cette expérience pour pouvoir a la fois comparer les résultats aux
prédictions théoriques et pour pouvoir guider I'expérience vers les conditions de fonction-
nement optimales dans un espace de parametres a prior: vaste. Cette opération a été un
indiscutable succes. Les mesures QND de Grangier étaient alors les meilleures effectuées
sur des variables continues, et ’accord entre théorie et expérience remarquable.

La possibilité de prédire précisément les résultats d’une expérience avec une théorie mi-
croscopique (interaction champ-matiere et équation pilote) m’a passionnée et m’a conver-
tie a la physique atomique. Comme les mesures QND n’avaient pas été traitées auparavant
dans le groupe de Lugiato, j’ai mis au point ma propre méthode (bien qu’il existe d’autres
méthodes équivalentes) pour le calcul des coefficients destinés a caractériser une mesure
QND non idéale. Le reste de ma recherche s’est effectuée au Laboratoire Kastler Brossel.
Je suis rentrée en contact avec I’équipe Atomes Froids du LKB grace a un ancien membre
du groupe de Grangier, Jean-Francois Roch, et j’ai pu travailler dans cette équipe de haut
niveau grace a quelques mois de salaire pris sur un réseau européen de Jean Dalibard, puis
une Bourse Marie Curie Individuelle, puis un poste temporaire de Maitre de Conférence
au College de France attaché a la chaire de Claude Cohen-Tannoudji. En 1997, lors de mon
arrivée, il y avait une grande excitation autour des atomes froids; le premier condensat
réalisé a I'Ecole Normale, puis le Prix Nobel de Claude Cohen-Tannoudji y contribuaient.
J’ai travaillé pendant a peu pres deux ans dans le groupe de théorie d’Yvan Castin qui
devait ensuite devenir mon mari. Les sujets que j’ai attaqués étaient relativement proches
de l'optique quantique. D’abord les effets des pertes de particules sur les résurgences de la
phase relative entre deux condensats (particulierement intéressant pour qui veut créer des
chat de Schrodinger avec des condensats) puis la dynamique de phase (et la dynamique
spatiale) d’'un condensat a deux composantes. Des expériences étaient alors en cours dans
le groupe d’Eric Cornell avec lequel nous avons pu interagir. Bien que nos calcules aient
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pu assez bien reproduire la dynamique spatiale des condensats (séparation des deux com-
posantes et amortissement des oscillations), avec notre théorie a température nulle nous
n’étions pas parvenus a expliquer les relativement courts temps de cohérence de phase
observés par Eric Cornell. Entre temps, j’avais pris gotit aux systemes d’atomes dégénérés
et a la physique plus riche des systemes multimodes. J’ai donc attaqué un nouveau projet
pour décrire la dynamique des condensats a température non nulle. Avec Yvan Castin,
nous avons proposé et montré la viabilité de 1'utilisation de la fonction de Wigner pour
décrire le champ atomique a température non nulle, mais initialement assez faible pour
que le gaz soit bien décrit dans I'approximation de Bogoliubov. L’idée de pouvoir appli-
quer cette méthode aux différentes situations physiques rencontrées dans les expériences
était tres excitante et avait suscité un certain intérét dans la communauté. L’excitation
passée, une analyse approfondie nous a permis d’en quantifier les limites et les avantages
par rapport a d’autres méthodes. A la fin de ma bourse post-doctorale, j'avais décidé
de m’installer en France. Claude Cohen-Tannoudji et Michele Leduc m’ont proposé de
travailler sur leur expérience de refroidissement et piegeage d’atomes d’hélium métastable
en vue de I'obtention d’un condensat de Bose-Einstein. Grace a Christophe Salomon qui
m’avait accueillie en stage dans son équipe “lithium” pendant ma bourse Marie Curie, ce
n’était pas ma “premiere” expérimentale. Je me suis occupée d’informatiser I'expérience
puis, avec les autres doctorants et visiteurs post-doc, du systeme d’imagerie et de 1'opti-
misation du piege magnéto-optique. Il était important de comprendre les facteurs limitant
la densité dans notre piege, dont les collisions autoionisantes de Penning que j'aurai ren-
contrées aussi plus tard dans ma carriere. En 2000, je candidate sur différents postes
permanents de chercheur et d’enseignant chercheur a Paris. J’obtiens un poste de maitre
de conférence a Paris VI pour travailler dans ’équipe de Pierre-Jean Nacher a I’Ecole Nor-
male avec un projet de recherche :“Imagerie médicale par résonance magnétique utilisant
des gaz rares polarisés”. Voila un tournant dans ma vie. Je vais enfin faire quelque chose
de directement utile. L’idée de Pierre-Jean était d’effectuer le pompage optique dans un
champ magnétique fort pour pouvoir supprimer certains canaux de relaxation de la polari-
sation nucléaire et arriver a polariser I’hélium par échange de métastabilité a une plus forte
pression que dans les conditions usuelles (<1 mbar). Ceci simplifierait considérablement
I’étape de compression du gaz, qui doit étre porté a la pression atmosphérique pour pou-
voir étre inhalé, donc la préparation des échantillons pour I'imagerie. Avec Marie Abboud,
dont j’ai co-encadré la these, et Xavier Maitre du Laboratoire U2R2M, nous avons ob-
tenu des résultats qui montrent en effet une substantielle diminution de la relaxation a
fort champ et qui étendent le domaine d’application du pompage optique par échange
de métastabilité jusqu'a des pressions presque 100 fois plus élevées que celles usuelles.
J’espere vivement que ces résultats tres encourageants soient mis a profit pour 'imagerie
avec les gaz polarisés. Xavier a le projet de construire un prototype de polariseur a fort
champ. Je lui ai promis mon soutien quand il se mettra a la tache. Apres quatre ans de
travail sur le pompage a fort champ, j’ai maintenant envie de revenir a la physique quan-
tique et aux condensats, et aux applications des condensats pour I'information quantique
en particulier.



Chapitre 3
Optique quantique

Les numéros entre crochets font référence a la liste de mes publications, disponible en
fin de document.

3.1 Etats comprimés de la lumiére et mesures QND
en optique

Dans ce chapitre, nous nous intéressons a la dynamique de systemes constitués d’atomes
interagissant avec des modes du champ électromagnétique dans une cavité optique. Il
s’agit de systemes ouverts couplés a un réservoir qui introduit dans le systeme des pertes
et des fluctuations. Le régime qui nous intéresse est celui d'un grand nombre de photons
et de couplage faible (ou I’échelle de temps de 1'évolution cohérente du systeme pour un
photon et un atome est beaucoup plus grande que le temps de vie 1/k du photon dans
la cavité). Dans ce régime, ’évolution des valeurs moyennes des observables, essentielle-
ment classique, conduit a un état stationnaire dans lequel s’équilibrent la dissipation et
I'effet d’une excitation en continu du systeme. Le caractere quantique du systeme reste
toutefois dans les petites “fluctuations” autour de la valeur stationnaire et se manifeste
dans les moment d’ordre supérieure des observables : typiquement les variances. Puisque
les fluctuations sont petites par rapport aux valeurs moyennes, un traitement linéarisé en
général suffit.

3.1.1 Rappels : états comprimés du champ électromagnétique

Considérons un mode du champ électromagnétique de pulsation w dans une boite de
volume V. Nous savons que ce mode peut étre décrit comme un oscillateur harmonique
si bien que le champ électrique est donné par

E(t) = E(ae™" +al e, (3.1)

a et a' sont les opérateurs d’annihilation et de création d'un photon dans le mode, & est
I’amplitude du champ électrique dans les fluctuations du vide

hw
E =/ N (3.2)

ou €q est la permittivité diélectrique du vide. On introduit les quadratures du champ

Xy=ae ™ +ale? Yy =i(a'e —ae™) = Xyinp (3.3)
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De la non commutativité de a et af suit

AXy AY, < S|([Xo, Yo)| = 1. (3.4)

DO | —

Il y a donc des fluctuations intrinseques au champ électromagnétique venant de sa na-
ture quantique. L’étude et la manipulation du champ électromagnétique au niveau des
fluctuations quantiques constitue le domaine de 'optique quantique.

Pour I'état vide on a AX, = AY, = 1. Les mémes écarts type AX, = AY, =1 se
retrouvent dans 1'état cohérent |a) état propre de 'opérateur a avec valeur propre «, qui
s’obtient a partir de 1’état vide par I'action de 'opérateur “déplacement” D(«) :

|a) = D(«)|0) D(a) = explaa’ — a*a). (3.5)

Le bruit quantique de I’état cohérent est dit bruit quantique standard.
On dit que le mode est dans un état comprimé si la variance pour 'une des quadratures
est inférieure a celle du vide, par exemple :

AX¢ <1 (et AY¢ > 1) . (36)

A partir du vide on crée un état de vide comprimé par I'action de I'opérateur unitaire de
compression S(&) :

€) = S(©)|0) avec  S(§) = exp[(€'a® —&a')/2], et E=re. (3.7)
Les opérateurs quadratures Xy et Yy sont transformés en
ST(€)XpS() = Xpe™” ST(€)YaS(€) = Yoe' . (3.8)

Ils ont donc une moyenne nulle et des écarts type AXy =e™" < 1et AY, =¢" > 1. Tout
comme le vide peut étre déplacé, ce qui donne lieu & un état cohérent avec (a) # 0, on
peut déplacer le vide comprimé pour donner lieu a un état comprimé

|, §) = D(a)S5(£)[0) - (3.9)

Un état comprimé est non classique dans le sens ou ses fluctuations ne peuvent pas
étre reproduites par une distribution de probabilité classique positive. Plus techniquement
la distribution de Glauber-Sudarshan P(«) n’est pas positive pour un état comprimé.

D’apres les équations (3.7) et (3.8), il est clair que des Hamiltoniens du type H =
ka? + k*a'?, qui décrivent la formation de photons par paires, ou des processus d’amplifi-
cation dépendant de la phase peuvent donner lieu a des états comprimés. En général, des
processus non linéaires sont nécessaires. Pour ce qui concerne ce mémoire, la non linéarité
viendra des atomes situés dans une cavité optique dans laquelle on injecte des champs
dans un état cohérent.

3.1.2 Rappels : mesures quantiques non destructives

Comme nous l'avons dit au début du chapitre, nous nous intéressons aux “petites”
fluctuations quantiques des quadratures du champ électromagnétique. La variance dans
la quadrature amplitude X,—o du champ peut étre mesurée directement en envoyant le
faisceau sur un photodétecteur (figure 3.1). Toutefois cette détection est destructive, non
seulement pour notre observable mais pour le systeme tout entier puisque le faisceau est
absorbé. En général pour effectuer une mesure non destructive, on se sert d’'un deuxieme
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=

F1G. 3.1 — Une mesure directe et destructive des fluctuation d’intensité d’un faisceau
lumineux.

systeme (dit le metre) couplé au systeme sur lequel nous voulons effectuer la mesure (dit
le signal) et sur lequel on effectue une mesure destructive dont on déduit de I'information
sur le signal. Pour étre dans le domaine quantique, on veut mesurer a mieux que le bruit
quantique standard. En outre, pour que la mesure soit QND, il faut que le bruit de rétro-
action introduit par la mesure dans le systeme ne retombe pas, dans la suite de ’évolution
hamiltonienne, sur la variable mesurée.

Pour nous, le métre et le signal seront deux faisceaux laser. Imaginons vouloir mesurer
les fluctuations de la quadrature X, du signal en effectuant une mesure sur la quadrature
Y, du faisceau metre. Pour caractériser les mesures QND réelles sur des faisceaux propa-
geants, trois coefficients ont été introduits relativement & trois propriétés de la mesure :

e Un coefficient (', qui nous renseigne sur la quantité d’information sur X, extraite
de la mesure de Y,,.

Signal IN Signal OUT

ND
e [ NP s >
Metre IN Metre OUT

FiG. 3.2 — Information sur X, que nous avons acquise par la mesure de Y,,.

En terme des fonctions de corrélation entre X, et Y,,,

(XY

O = XY v 10
o (AB) = / dt e”™" (§A(t)6B + 6 BSA(t)) /2 (3.11)

ou 0 A représente ’écart de 1'observable A a sa valeur moyenne stationnaire.

e Un coefficient C qui nous donne le degré de non destructivité de la mesure de Xj.

Signal IN Signal OUT
L |QND T,
Meétre IN Metre OUT

F1G. 3.3 — Non-destructivité de la mesure.

(XX

Cs = 7
(XX (X X

(3.12)
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e La variance conditionnelle V'[s|m] nous donne la variance résiduelle dans la quadra-
ture X, connaissant le résultat de la mesure sur Y, : c’est la variance qui reste dans
le signal apres avoir utilisé aux mieux l'information acquise par mesure QND pour
reduire ses fluctuations.

_ out yout | <X§UtY1$LUt> |2
V[S‘TTL] o <X3 Xs > (1 o <X0uthut><YoutYout> <313)
Signal IN Signal OUT
S OND
Métre IN

Signalsqueezed
F1c. 3.4 — Variance conditionnelle.

Pour une mesure QND idéale : C,, =1, Cs =1 et V[s|m] = 0.

3.1.3 Notre étude

Les modeles que j’ai étudiés décrivent des atomes a trois niveaux en “cascade” = ou en
“lambda” A, en interaction avec deux modes du champ dans une cavité optique. Comme
je I'ai montré, ces systemes constituent un schéma favorable pour la production d’états
comprimés de la lumiere et pour la réalisation de mesures quantiques non destructives.

Au contraire des traitements antérieurs a notre travail, nous avons choisi, pour étudier
ces systemes, de développer des modeles théoriques aussi complets et généraux que pos-
sible, sans faire d’hypothese a priori sur les parametres du systeme. Cette approche a
permis d’effectuer des comparaisons quantitatives avec les expériences. Nous avons décrit
de fagon entierement quantique les degrés de liberté internes des atomes et la dynamique
du champ en cavité, en utilisant une équation pilote qui prend en compte 1’émission
spontanée des atomes et les pertes du champ dans la cavité.

Une grande partie de mon travail de these a été effectuée en collaboration avec 1’équipe
de Philippe Grangier a I'Institut d’Optique, ou des expériences sur les états comprimés
de la lumiere et sur les mesures QND le 'intensité lumineuse, a partir d’un jet d’atomes
de Na et d’atomes piégés de Rb, étaient en cours.

3.2 Le schéma a “transition fantome” et ’expérience
de I'Institut d’Optique.

3.2.1 Mesure QND par effet Kerr croisé

On injecte dans la cavité un faisceau intense, le faisceau “signal”, dont on souhaite
mesurer les fluctuations d’intensité, et un faisceau peu intense, le faisceau “metre”.

Le faisceau signal est a résonance avec la transition |2) —|3) du schéma en A, (Fig. 3.5).
Sa présence a principalement deux effets : (1) habiller la transition atomique [2) — |3),
ce qui produit un clivage de Rabi de I'état excité c’est-a-dire ce qui donne naissance a
deux états habillés |[+) dont la séparation en énergie est proportionnelle a 'amplitude
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Fic. 3.5 — Systeme en A dans la configuration transition fantome. Trait plain : niveaux
d’énergie de ’atome seul. Trait pointillé : niveaux d’énergie de ’atome habillé.

du champ signal, et (2) transférer la population atomique dans I'autre état fondamental
|1) par pompage optique. Comme la population de |2) est tres faible, le faisceau signal
n’est pratiquement pas absorbé, ce qui sera essentiel pour le caractere non destructif de
la mesure.

Le faisceau metre travaille sur la transition |1) — |3). Son déphasage et son absorption
dépendent alors de son désaccord en fréquence avec les transitions |1) — |£), donc de
I'intensité du faisceau signal. Ceci permet de réaliser une mesure quantique non destruc-
tive des fluctuations d’intensité du faisceau signal, en effectuant une mesure directe (et
destructive) sur le faisceau metre.

Dans la proposition initiale de ce schéma par K. Gheri et al. en 1992, les champs
étaient résonnants avec la cavité contenant les atomes. Nous avons généralisé cette idée
en dehors de ce point de fonctionnement tres particulier. Nos calculs ont permis de fournir
a l’équipe de Philippe Grangier a I'Institut d’Optique des indications précises pour une
réalisation expérimentale optimale du schéma décrit. Ils ont aussi permis d’interpréter
quantitativement et en grand détail les résultats obtenus, qui représentent les meilleures
performances QND obtenues a ce jour [5,7].

3.2.2 Etats comprimés du champ obtenus par “rétroaction” op-
tique

L’étude de la configuration a transition fantome dans le cas ou les champs sont hors
de résonance avec la cavité optique nous a permis de mettre en évidence un nouveau
mécanisme de réduction du bruit quantique par “rétroaction”. Dans le cas non résonnant,
en effet, les fluctuations du faisceau metre, pilotées par les fluctuations d’intensité du
faisceau signal, sont ramenées sur le faisceau signal d’une fagon qui peut en réduire le
bruit d’intensité. Cet effet a aussi été observé a I'Institut d’Optique, en utilisant deux
transitions en cascade de I'atome de sodium [1].
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3.2.3 Publications jointes

VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

Quantum Nondemolition Measurementsusing Cold Trapped Atoms

J.-F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra,* J.-Ph. Poizat, and Ph. Grangier

Institut d’Optique, B.P. 147, F-91403 Orsay Cedex, France
(Received 3 September 1996

We have investigated possible implementations of optical quantum nondemolition measurements,
using rubidium atoms in a magneto-optical trap as a nonlinear medium. Usihgype three-level
system in theD1 line of ’Rb, the observed performances are quantitatively the best obtained so far
for a single back action evading measurement. Moreover, the magneto-optical trap and the quantum
nondemolition effect are both running continuously at the same time and mutual perturbations have
been avoided by using a “dark spot” technique. This experiment demonstrates clearly the interest of
using cold atoms for controlling the quantum fluctuations of light.  [S0031-9007(96)02247-8]

PACS numbers: 42.50.Lc, 32.80.Pj, 42.65.Pc

Significant effort was made during recent years for im-previous ones [11-13], uses second-orte?) optical
plementing the idea of “quantum nondemolition” (QND) nonlinearities, which have the important advantages of be-
measurements, which was initially introduced theoreticallying well understood, and of adding very small excess noise
by Braginsky [1] and Thorne [2]. The principle of QND to the output light beams. On the other hand, third-order
measurements is to overcome the measurement noisg®) optical nonlinearities are usually accompanied by
which is introduced in a physical system when a quansignificant excess noise from the nonlinear medium [6—
tum measurement is performed, by repeatedly “hiding” thisL0]. Third-order nonlinearities in atomic media have, nev-
noise in an observable which is not of interest. A schemertheless, the advantage of having extremely large values,
where the measurement noise is entirely kept in an oband can operate with very small optical power. Moreover,
servable which is conjugated with the measured quantity itheoretical analysis done for motionless atoms predicts that
usually said to be “back-action evading” (BAE). Thoughit should be possible to achieve very good QND efficiency
proposed and initially studied for mechanical oscillatorsprovided that appropriate laser powers and detunings are
[3,4], QND ideas were first implemented in quantum op-used [20]. However, such calculations do not include the
tics [5—14]. In the standard situation encountered withatomic motion, which causes Doppler effect and excess
propagating laser beams, where the quantum fluctuatiorfBictuations in the refractive index, even in an atomic beam
are small compared to the mean intensities, quantitativfl0], and therefore degrades quantum noise reduction ef-
criteria have been developed for evaluating the QND ofects. An open way for reducing motion-induced fluctua-
BAE efficiency of a given experimental setup [15,16]. Antions is clearly to use a medium of cold trapped atoms; an
important quantity to look at is the quantum correlation be-encouraging result was the recent observation of transient
tween the two outputs of the measurement system (signabjueezing from a cloud of falling atoms released from a
and meter), which can be measured through the conditionahagneto-optical trap (MOT) [21].
varianceVg)y, of the signal outpu§ given the measure-  In this Letter we present the implementation of a BAE
mentM [15,16]. Itis also necessary to consider the transdevice using trapped rubidium atoms to provide a nonlinear
fer coefficientsT's and Ty, which quantify the transfer of coupling between two light beams: The intensity of a “sig-
the signal to (quantum) noise ratio of the input signal bearmal” beam is thus read out on the phase of a “meter” beam.
towards, respectively, the output signal and meter [16,17By tuning the two lasers close to the resonances 4&f a
These quantities have boundaries which define necessampe three-level system, the measured performances are
conditions for QND operation of the device [16]: Giving Vi = 0.45, Ts = 0.90, and Ty, = 0.65, which are the
the conventional value 1 to the signal shot-noise levebest obtained so far in a single BAE device. The optical
(SNL), Vs < 1 indicates nonclassical operation, in the powers used in the experiment are in the microwatt range,
same sense as used for squeezed states of light [18]. Foeaphasizing the very high values of the effective nonlin-
coherent input signal [16], a value ©f + T, larger than earities. Special care has been taken to minimize the mu-
1, up to the maximum of 2, can only be obtained by usingual perturbations of the trapping and QND effect, by using
a phase-sensitive device, and is therefore related to noistwo different optical transitions and a “dark spot” configu-
less amplification methods [19]. ration for the trap [22]. As a consequence, both the MOT

Many experiments have been devoted to the demorand the QND effect are running continuously at the same
stration of BAE measurements [6—14]. These works cultime.
minated in the recent demonstration of repeated BAE The MOT is built in a large ultrahigh vacuum (UHV)
measurements, which constitutes a full demonstration ofhamber, designed in order to set up the sensitive parts of
the QND original idea [14]. This experiment, like severalthe experiment directly around the cold atom cloud. The

634 0031-900797/78(4)/634(4)$10.00 © 1997 The American Physical Society
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present setup usédRb, with nuclear spif = 3/2. The  upper mirror has a low transmissivitf < 10~4), which
trap is loaded by slowing down an atomic beam usings used to monitor the intracavity intensities using two pho-
the standard chirped-frequency technique [23]. The atom®multipliers and another polarization beam splitter. The
are trapped using a standard six-beam/oc— MOT  cavity finesse is 125, and typical mode-matching efficiency
configuration [24]. The trapping lasers are two 100 mWin the cavity fundamental mode is above 99%. The out-
laser diodes, injection locked to a master laser and detungalit signal beam is directly detected, while the meter beam
by four natural linewidth$I'/(277) = 6 MHZz] to the red is detected after interfering with a “local oscillator” beam
of the F = 2-F’ = 3 transition (see Fig. 1). The total (phase-sensitive homodyne detection [18]). The maxi-
power on the trap is typicallp X 30 mW, with a beam mum fringe visibility of this interferometer (or homodyne
diameter of 20 mm. A repumping beam locked on theefficiency) is 96%. The quantum efficiency of all photodi-
F =1to F' =2 line pumps back the atoms from the odes is 92%. The transmission of the optical system (not
F =1 ground state. This beam is superimposed withincluding the photodiodes) is 90%, and the on-resonance
the trapping beams along two axes, and its central part isses of the cavity are negligibly small.
screened by a dark spot imaged at the trap location [22]. The level scheme which is used for the QND effect is
This allows one to have about 90% of the population of theshown in Fig. 1. While the trapping and repumping lasers
cloud in theF = 1 ground state, and will be essential for are tuned on the D2 line at 780 nm, the signal and me-
the continuous operation of the QND effect. The diameteter beams are tuned on the D1 line at 795 nm. The lin-
of the trap, measured either in fluorescerife= 2) or  early polarized signal is tuned close to the, F = 2
in absorption(F = 1), is close to 3.5 mm FWHM. The to5p;/, F’ = 2 transition, with a typical input power of
estimated population in the = 1 dark state i40° atoms, 15 uW. The signal acts therefore as a “depumper” with
corresponding to a density 6fx 10'© atomgcm®. For  respect to the trap, increasing the population of the ground
the following experiments, the Doppler width of the atomic F = 1 level. The meter beam, ontlie= 1 andF’ =
medium has to be smaller than the natural linewidtithis  transition, is linearly polarized orthogonally to the signal,
is easily fulfilled by the techniques that are used here. and is detuned negatively (to the red) with respect to the

A schematic overview of the optics of the QND experi- dressed levels due to the signal-atom coupling. The typ-
ment is shown in Fig. 2. The signal and meter beams arigal meter input power i9.25 uW. The contributions
emitted by two independent frequency-stabilized titanium-of the different Zeeman sublevels to the two-beam cou-
sapphire lasers, which are shot-noise limited in both intenpling is shown in the inset of Fig. 1. Note that, if this
sity and phase for noise analysis frequencies above 2 MHBystem was considered alone, all the population should be
The two beams are carried onto the optical table by oppumped in theF = 2, m = 0 ground state. However,
tical fibers, which ensure very good spatial mode quality,
and then mode matched to the vertical optical cavity which
is set up inside the UHV chamber around the cold atom
cloud. The signal and meter beams have orthogonal lin- EM
ear polarization inside the cavity, and the input and output
beams are separated using polarization beam splitters and v
Faraday rotators (see Fig. 2). The cavity mirrors have a Ir UHV . A
60 mm radius of curvature, and their distance is adjustable | w | 4 : s
from 64 to 68 mm, using screws and piezo-electric trans- ! .ﬁw I ¥
ducers which are outside the UHV chamber. The lower, } !
input/output cavity mirror has a 5% transmissivity. The l !

2

Polarizer

F' =3 e cube
F'=2 p=o Signal and }E‘:[]m?:
‘1:: = (1) meter beams I OF? '
= _ s pLica
Trapping an F=1 (D1, 795 nm) i M Fibers
repumping m=-2m=-1m=0 m=1 m=2 it Faraday 7 i Signal
F=2 signal 4\ 1\ONY1 X4 Signal
EASEA Output
F=1 Meter \J) 4 3
VAV A FIG. 2. Simplified view of the experimental setup. The input

signal and meter beams are mode matched to an optical cavity
FIG. 1. Level scheme used in the experiment. The insesurrounding the trapped atoms. Output beams are separated
shows the relevant relative oscillator strengths for couplingfrom the input ones using Faraday rotators. The signal beam
the signal and meter beams, which have orthogonal lineais directly detected, while the meter beam undergoes a phase-
polarizations. sensitive homodyne detection.
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the MOT laser recycles very efficiently the atoms which . ! .
could be lost in this level, and most of the coupling comes (t
from the two A level schemes with the largest Clebsch-
Gordan coefficients. This system is therefore very close
to the “ghost transition” scheme, which was studied theo-
retically in Ref. [20] and predicted to have good QND
performances. In this scheme, the strong signal beam opti-
cally pumps the atoms into a ground level (here,fhe 1 (@) wiohi
level), from which the weak meter beam can probe the light 46 48 50 52 54
shift induced by the signal on the upper level. The signal ’ f ) MH- ’
acts therefore on a nearly transparent transition, and its in- requency (MHz)
tensity fluctuations are almost unperturbed. Using experiFIG. 3. Measurement of the transfer coefficigh. Curve
mental values [25] in the model described in Ref. [20], and@), normalized to the SNL, corresponds to the output signal,
correcting for losses in the optics, the calculated values ar@odeled by a Gaussian peak (dash-dotted line). Two curves
are actually displayed, and show no observable difference: one

within a few percent of the results obtained in the experii pan off resonance without atoms (line), and one taken on

ment. This analysis, ingluding the bEh'aViQr of the mearyperating conditions (dots). Curve (b) is the outcoming meter,
fields, will be presented in another publication. also taken on operating conditions, and modulated by scanning
We note that the frequency difference between the signdhe phase of the homodyne detection. The upper envelope is

and meter beam has to be close to the ground state hypegitled.by a tG.aUSSia” gtef"‘k gf same "(‘j’i.?fth as in (E".‘)- dg‘ebsignal_
) o 87 o ) 0-noise ratios are obtained as the differences (in etween
fine splitting of ®’Rb, which is 6.83 GHz._ Smg:e both_ the fitted peaks and the flat backgrounds.

beams also have to be resonant in the cavity, this detuning

has to be close to an integer number of free spectral range
(FSR) of the cavity. This is indeed the case when the cawsignal-to-noise ratio, which is 23.8 dB. The upper trace (b)
ity length is 66 mm, corresponding to a FSR of 2.27 GHz:is the phase-dependent noise and modulation of the out-
The two frequencies are then approximately 3 FSR aparput meter beam, taken in operating conditions while scan-
We note also that the two standing wave patterns from thaing the phase of the homodyne detection. The SNL of
signal and meter beams have to be in phase at the atom Ithe meter beam has been electronically set at the same
cation, so that the atoms see the appropriate Rabi frequelevel as the one for the signal beam. The upper enve-
cies [25] from each beam. This is achieved by placing théope of the fringes gives the meter phase information, and
trapped atoms’ cloud at one-third of the cavity length.  yields the output meter signal-to-noise ratio, which is equal
The experimental procedure for measuring the QND crito 21.9 dB. The measurement transfer coefficient is thus
teria is the following. A weak intensity modulation at —1.9 dB, orTy,, = 0.65. Finally, it can be shown that the
5 MHz, about 20 dB above the SNL, is applied on the sig-conditional variance of the signal, given the measurement,
nal beam. Then the detunings of the two beams are itis also the minimum noise which can be obtained when re-
eratively adjusted while scanning both the cavity and theombining the output signal and meter photocurrents, the
homodyne detection, in order to maximize the transfer ofatter being appropriately attenuated [14,16]. This recom-
the modulation from the signal onto the meter beam, whiléined photocurrent is shown in Fig. 4, while scanning the
minimizing the degradation of the signal. This adjustmeniphase of the homodyne detection. For optimum attenu-
can be completed at a cavity position where both fieldstion (12 dB) of the meter photocurrent, the recombined
resonate together inside the cavity [10]. When the optinoise reaches a minimum value 3.5 dB below the SNL,
mum detunings are found, the cavity scan is stopped at thehich gives a conditional varianc®s,, = 0.45. Esti-
resonance peak, and the noise levels are measured by scamated uncertainties dfis, 7y, and Vs, are+=0.05. The
ning the spectrum analyzer (SA) around 5 MHz. Typicalvalues quoted here, which are corrected for the amplifier
results are shown in Fig. 3. The lower trace (a) shows theoise but not for the detector quantum efficiencies, are typi-
SNL and the modulation of the output signal beam, takertal of many experiments which were done for different val-
off cavity resonance without the atoms; the width of theues of the input beam powers and detunings.
modulation peak is the 100 kHz rf resolution bandwidth We also tried several other level schemes, using either
of the SA. Over this trace are also shown as dots the SNLA” or “V” configurations, which, however, did not
and modulation of the output signal beam, taken while theyive as good results. Generally speaking, the experiment
cavity is stopped at resonance in the presence of the atomsquires one to get control both on optical pumping
(operating conditions). There is clearly neither attenuatioreffects, in order to avoid that the atoms be pumped outside
nor change in the noise of the signal beam. The nondemdhe three-level scheme of interest, and on light-induced
lition coefficientTs is therefore limited only by the passive forces, so that the signal and meter beams do not expel the
optical transmission of the system, which relates the outatoms from the interaction region or even from the trap.
put signal without atoms to the input one, i.€, = 0.90  Further improvements, now under theoretical analysis,
(—=0.5 dB). FromTs and Fig. 3, one gets the input beam could be obtained if the atoms were attracted and trapped
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Quantum-nondemolition measur ements using cold trapped atoms:
Comparison between theory and experiment

A. Sinatraf J. F. Roch, K. Vigneron, Ph. Grelu, J.-Ph. Poizat, Kaige Waagd P. Grangier
Institut d’Optique, Bate Postale 147, F-91403 Orsay Cedex, France
(Received 15 July 1997

In this paper we present a detailed theoretical analysis of a recent quantum-nondemolition experiment in
optics using cold atoms in a magneto-optical trap as a nonlinear medium. A signal beam and a meter beam
from two independent lasers are coupled withif-type three-level scheme in tiel line of ’Rb atoms. The
experimental results for the relevant quantum correlations of the fields, that represent up to now the best
achievements for a single back-action evading measurement, are found in a remarkably good agreement with
the theoretical predictions from a fully quantum model for three-level atoms in a doubly resonant cavity.
[S1050-294{@8)05203-2

PACS numbs(s): 42.50.Lc, 32.80.Pj, 42.50.Dv, 42.65.Pc

I. INTRODUCTION spontaneous emission noise in quasiresonant nddi|.
Nevertheless the last word about the exploitation @)
nonlinearities for quantum nondemolition experiments has
As summed up by the Heisenberg uncertainty relationnot yet been pronounced.
noise is introduced into a physical system when a quantum A theoretical analysis done for motionless atdrh2] pre-
measurement is performed on a given observable. The prirdicted that it should be possible to obtain almost full control
ciple of quantum nondemolitionlQND) measurements, of absorption and spontaneous emission processes, provided
which was first introduced theoretically by Braginsky andthat appropriate laser powers and detunings are used. On the
co-workers[1] and Thorneet al. [2], is to overcome this Other hand, the atomic media _us_ed so far, which are at_omic
measurement noise by repeate(_'“y “hiding” it in another Ob_beam.s or Vap_OI’ Ce||§,_ also exhibit Othe.r types of ﬂUCtU.auOnS,
servable which is not of interest. In the case where the noisgssociated with collisions and/or atomic moti@j. Atomic
is entirely kept into an observable which is conjugate withmotion causes fluctuations in the refractive index due to the
the measured quantity, the measurement is said to be bac‘%mt”at'“g number of atoms in the interaction region, and
Action evading(BAE). Though initially proposed for me- thus degrades quantum noise reduction effects. An open way
chanical oscillators, these ideas were greatly developed, bofﬂ improve atomic med'la_ is then cIearI_y t(.’ use a medlym of
theoretically and experimentally, in the field of quantum op—COId trapped atom$1_3], in these media, in fact, th(_a time
scale of the fluctuations in the number of interacting par-

tics. > ; S
ilcles, characterized by the transit time of the atoms across

In particular, quantum measurements performed o he interaction region. is about thr rders of magnitud
propagating laser beams are very good candidates for impl ne interaction region, 1S abou ee orders or magniude

menting QND or BAE schemes. The basic idea of theséltower thag In ;—.Iltorplct_beams ?r vap(r)]r ceIIs.hIn otther \t/_vorfds,
schemes is to couple two light beams, usually called “sig—a om number Tuctuations In traps have characlenistic re-

nal” and “meter” beams, via an optically nonlinear medium quencies that are typically in the kHz range, and do no affect

(see Ref[3] for theoretical proposalsThen, for an appro- the noise analysis that is performed_ln the MHz rafmi,_
priately designed coupling, direct or homodyne detection O]for example,' Sec.')l Moreoyer, despite the Iowgr densities
the meter beam will perform a BAE measurement on theusually obtained n _traps with respect to atomic _beams or
signal beanf4—10]. The nonlinear medium may display ei- vapor ce_IIs, the elimination of the Doppler broad_enlng of the
ther second-ordeny(?)) or third-order &) optical nonlin- atomic lines allows one to control small atomic detunings
earities. The former have the important advantages of bein ccurellt_ﬁly, ahndhconsequently tohachlevel large rllpnl_lnearhef-
well understood, and of adding very small excess noise to the its' it thJIgb t ﬁse aLgulmer:;st avr? only a quaolit?tlvet char-
interacting light beams; they were used in several successf@lC er, it wil be s ?v(\;ng fow NEIiD’ when ‘com[t)are fo a or(;uc
experiments(see, e.g., Refl9] and references therginOn eam experimentse, - 4, Q experments periorme

the other hand, the latter{®) nonlinearities are usually Wlth cold atoms do achlevg both an |_mproved efficiency and

. e - .7 _an improved agreement with theoretical models.

accompanied by significant excess noise from the nonlinear
medium, which has been attributed to thermally excited Bril-

louin scattering in optical fibeig}, 7], or to absorption and/or

A. General features

B. Motivations of the work

In this article we give a detailed theoretical analysis of a

recent experimenitl0], where QND measurements are per-

*Permanent address: Istituto Nazionale Fisica della Materia, Diformed using rubidium atoms in a magneto-optical trap
partimento di Fisica dell’'Universita/ia Celoria 16, 20133 Milano, (MOT) as a nonlinear medium. Using &type three-level

Italy. system in theD1 line of 8Rb, the observed performances
TPermanent address: Department of Physics, Beijing Normal Uniare quantitatively the best obtained so far for a single back-
versity, Beijing 100875, China. action-evading measurement. Moreover, the MOT and the
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QND effect are both running continuously at the same timeregarding the QND device as a black box with two input
and mutual perturbations have been avoided by using differehannels and two output channels represented by the incom-
ent optical transitions and a “dark-spot” techniqyi25]. ing and outcoming signal and meter fields, we are interested
From the theoretical viewpoint, we extend the analysis donén describing how the incoming signal amplitude fluctuations
in [12] on QND measurements using three-level atoms in a&X{'(t) or modulationsX;"(t) are transferred to the two
ghost transition scheme, by including the case in which theutput channels of the device represented by the signal and
fields are not resonant in the cavity. How this scheme can bghe meter outputs. In an ideal QND device, the incoming
realized and optimized in a real experiment will be analyzediuctuations or modulations of the signal amplitude are left
in detail, by taking explicitly into account the constraints unchanged at the signal output, and they are at the same time
imposed by the optical cavity and by the atomic energy-leveperfectly reproduced by the meter output, allowing us to per-
configuration. form an ideally accurate and nondestructive measurement.
For real experiments three criteria were developed to quan-
C. Overview of the paper tify the efficiency of a system as a QND device, by taking

In Sec. Il we briefly introduce the criteria that were de- Inspiration from the possmk_a applications of the nondestruc-
tive measurements as detailed below.

veloped to evaluate the efficiency of a real quantum non-
demolition device. The model is presented in Sec. Ill. In Sec. . .

IV we illustrate the configuration used to perform the QND  B- Input-output transfer coefficients and correlations
measurement, and show how we can choose the adjustable A first important application of the QND measurement,
parameters of our system in order to optimize the QND perfor example in the field of telecommunications, is related to
formances. In Sec. V we present the setup of our experimenthe possibility of reading an amount of information encoded
Finally, in Sec. VI we compare the results of the model within a beam without adding noise. Let us assume, for example,

the experimental results. that the experimenter gives a classical modulation to the sig-
nal amplitude at a certain frequency. We would like to
II. CHARACTERIZATION OF A REAL QND “read” the modulation, which represents the information
MEASUREMENT carried by the signal field, without degrading it, thus leaving

the information available for other users along the same
transmission line.

Appropriate criteria for evaluating the efficiency of sys- By restricting ourselves to the linearized regime for quan-
tem as a “real”(i.e., nonidedl QND device were discussed tum fluctuations and coherent modulations, we can consider
in several paper§l6,17. It is now generally admitted that the QND device as a linear amplifier, and study how the
three necessary criteria for BAE operation of a device arenodulation and the noise are transferred from the signal in-
given by looking, on the one hand, at its input-output prop-put channel to the signal output and the meter output chan-
erties, and on the other hand at the quantum correlationsels. In the frequency space, by introducing the Fourier
established between the signal and meter outputs. transform (denoted with the tilde of the time dependent

More precisely, we are interested in the small time-quantities defined above, one has
dependent quantum fluctuatiodg{(t) of the signal field - -
amplitude quadraturebout its steady-state value, defined by X' w)=gX' N w), ®
the relation:

A. Introduction

XM ) = g X () + B w) ®)
XS(1) = (Xs)s= Xs(1), @ ° T )
for the signal h I

and we are willing to “read out” those fluctuations in the or the signal output channel, and
meter fieldphase quadraturdluctuationssY¢(t) about the Jrou —g.X'n 7
steady-state value which are defined in the same fashion: m (@) =gnX'5(w), @

YD)~ (Y)si= YD), @ OV () = gmdX () + B 0) ®)

With a larger generality, the signal field amplitude may carryfor the meter output channel, whegg andgp, represent the
out a smallcoherent modulation Xt), the amplitude and 9ains of the amplifier in the S|gr_1a| output and in the meter
the frequency of the modulation being much smaller than th@U{PUt channel, respectively, which are thd% sameaggr the sig-
mean amplitude and the optical frequency of the field, renal input noise and the modulation, whigé® and B rep-
spectively. The steady state of the system is thus “modulesent the extra noises added by the amplifier in the two

lated” about the stable time independent solutipgy)s, channels, which could come for example from the atomic
(Ym)s, and one has noise or from the input meter noise and the signal phase
noise[ 8Y ¢(w)] processed by the system. By assuming that
Xo(t) = (Xg)s= X (1) + X4(1), (3)  the fields injected in the QND device are in a coherent state,
we suppose thaB2™ and B3 are not correlated with
Y1) ={Ymst= Yia(t) + 8Y (1), (4) &X is"(w); a more general treatment was given in Réf7].

The signal-to-noise rati6SNR) for the input channel of the
where, as in Eqg1) and(2), the terms which are kept on the signal field is then defined as the ratio between the intensity
right-hand side are small and will be treated linearly. Byof the small classical modulation given to the signal field
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amplitude quadrature at a certain frequency and the quantum ® it )
noise power in the same quadrature at the same frequency: (AB),= J:x e " YA(1)B)gyn@dt  with
X w))?
in_ | X s ) 9) A1)B) o= (A(t)B+BA(1))/2. 14
S <5X15n(w)2> ( < (t) >sym < (t) ( )) ( )

and the same quantity can be defined for the two outpu@ontrary to the previous ones, these quantities cannot be
channels: measured directly in a single BAE experiment, because the

input fluctuations are not known in advance. However, it can
be shown that in the linearized regime for fluctuations and
small modulations, and for coherent input states of the fields
into the QND device, one simply has

<?/ %UI((D»Z
(o¥mi()?)

<’)z;gul(w)>2
(8X()?)

out__
S

out__

m

One can then define two quantitifg and T,,, which Cs=Ts and Cy=Tn, a9

describe how the incoming SNB®) is transmitted to two

output channels of the QND device: and the correlation coefficients can be therefore calculated

and used as the transfer coefficients; we emphasize, however,

R RO that this is not generally true when the input beam has phase-
Ts= R7 and Tm:W. (11 dependent excess noise, in which case some precautions are
s s required[17].

From Eqgs.(5)—(8), one has
C. Conditional variance

_ (8X$(w)?) and A second application of the QND measurement concerns

* (X D(0)2)+([ 9B w)/gs]?) the situation where we are interested directly in the quantum
fluctuations of the fields. If the intensity fluctuations of an

<5’)“(isn(w)z> incoming_beam are measured in a nondestructive way, the

m= Ty = > (12 acquired information can be used, at the output of the QND
(X ()3 +([ BT w)/gm]?) device, to correct the signal beam by reducing its fluctua-

. tions. The third QND criterion, relative to this application, is
The coefficientT; evaluates to what extent the measure-giyen py the output conditional variance of the signal field,

ment is nondestructive, i.e., how the signal-to-noise ratio igjiven the result of a measurement on the meter field:
degraded after the measuremehi=1 for an ideal nonde-

structive measurement, whilg;=0 if the measurement is Vem={ X6X™ ,(1— Cqp), (16)
totally destructive. SimilarlyT,, evaluates the efficiency of

the measurement: a perfectly accurate measurement woulghereC,, is a normalized correlation between the meter and
correspond toT,,=1, while T,,=0 if no information is he signal outputs,

gained. For achieving QND performances, one requires that

Ts+T>1, which can be obtained only by using a phase- [ sXCUgyou |2
sensitive device. On the other harid,+ T,,=1 is the per- Cam™ BT e (17)
formance of a simple beam splittEt7). These transfer co- (OXoX) W (BY YR o

efficients are very useful because they are directly accessible

in an experiment. The SNR values can indeed be visualizednd wherg{AB),, is defined as in Eq(14).

very easily on a spectrum analyzer, and it is then straightfor- For an ideal QND devic&C =1 andVg,=0, while in a

ward to measure the various SNR and to work out the transreal device one requires that the information gained by the

fer coefficients. measurement is sufficient to reduce the intensity fluctuation
From a formal point of view, it is also possible to consider of the initial beam under the shot-noise level, corresponding

the normalized correlations between the meter or signal outo V¢ ,<1.

put and the signal input quantum fluctuations, which were In a QND experiment, the signal noise reduction is usu-

first introduced by Hollanet al. in Ref.[16], and which we  ally not implemented, and the conditional variandgy, is

will calculate theoretically. Precisely one defines measured electronically by subtracting the photocurrent of
i ewouh 12 the meter readolt " from the photocurrent of the outgoing
_ ] |<5_Xs X"l signal X2, with an appropriate gain or attenuation. More
ST{EXIEXDY (HXAUEXM precisely, the quantum fluctuations of these recombined cur-
_ rents will be given by the spectral variance oK3{"
[(SXDEYOM |2 —gY%, whereg is an electronic gain or attenuation. In the
c 13 ideal case, the meter beam will reproduce the actual noise of

" (SXTOXD) (Y Y . duce t .
the output signal beam up to a multiplicative factor, and it

where(AB),, denotes the Fourier transform of the symme-Will be possible to correct exactly the signal noise by bring-
trized correlation function between the two operators ining the variance ofX3"—gYq" to zero. In the general case,

brackets: the variance of X3"'—gY%") is
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is the decay rate constant of the atomic polarizations 1-2 and
3-2 in the radiative limit. We defind; andA, the normal-
ized atomic detunings:

W, — ws— w3
A= . A= : 24)
3 Y 2 Y (

please note that with definition®4) positive detunings are
FIG. 1. Energy-level scheme of thiethree-level atoms. red detunings dom<wiase). The operators describing the
atoms are the polarization operatotsi,, 013, and o3
V(S?FL=(5X§“[5X§“‘)“,+|9|2< SYOUtsYou, obeying the commutation rules
—2 Re(g( EX2UEYY ); (18 Loij,ou]l= djkoi— dioy, 1,ij=123, (29

where thes;; are Kronecker deltas, and the population inver-

sions:r3=1/2(0p— 011) andsz=1/2(o,,— 033). The reso-

19 nant cavity modes are described by the usual boson creation
and annihilation operatows{r anda; (i=1 and 2, with

the minimum value of this quantity is obtained by choosing
g=(OXIBYR LI OV ISV,
for which choice one has in fact [a,a1=1, i,j=1.2. (26)
Véﬂ%: Veim, (200 The evolution of the system is governed by a master equa-
tion for the system density operatorwhich, in the interac-

with Vg, given by Eq.(16). In a real experimental situation, tion picture, has the form
the amplitude and phase of tgefactor are adjusted using an

attenuator and a delay line in order to minimize the photo- ap .
current difference. The minimum noise level obtained using E_[_'(LaJr Li+LeatLa)+AatAdp, @7
this procedure gives the value f), .
where
11 MODEL Lap=3{(20,— 09)[Rs,p]+ (205~ w,)[Ss,p1},
A. Equations

. . ) . Lip= - T + - !
We consider a three-level atomic medium at rest, inside iP= (@ 0)[21a1,p]+ (0~ @2)[3232,p],

an optical ring cavity, is the roundtrip length of the cavity,
occupied by the medium for a length Two laser fields of
carrier frequencies, and w, are injected in the cavity; the
fields are supposed to be close to resonance with two atomi
transitions frequencies, and wg, and with two cavity N
eigenfrequencies.; andw,. The cavity is single ended for Ap= N "o o140l poh
each field,T; (i=1 and 2 being the transmissivity of the ab 21 2 (Lowpoaltlonpoal)
coupling mirror. We introduce the decay constants of the

: . L L Yo

fields amplitudes inside the emptipssless cavity: i = ([0, 0L+ [ 0%, po L)),

Lexp=i{ry[(e1a]—eFa1),p]+ k[ (e85~ e3ay),p1},

cLap=i{oil(alR™ —aR"),p]+ g2 (23S —2,S").p1},

cT, cT,

=2 T 1)

1 Nip=rxi{[aip,all+[as,pall}+ xof[azp,al]+[ay, pall}.

wherec is the speed of light in vacuum, and the normalized!n this master equation we introduced the collective atomic
. . ’ + -t @ Tt T

empty cavity detunings: operatorR™, R™, S, S, T", T, Ry, andS; constructed

from the single-atom operatoks),, o7,, 03,, 0%, 03y,

e~ w1 Wer— Wy a5, 13, andsj, respectively, as described in REE8], and

O=—— o= —. (220 obeying the same commutation rules. The tegp de-
! 2 scribes the free evolution of the atoms according to the

ingle-atom Schidinger Hamiltonian

The atoms are described as sets of three energy levels d
posed in a lambda configuratidfig. 1). By y, and y, we
denote the decay rate constants of the atomic population
from the excited leve]2) towards leveld1) and|3), respec-  \here we have conveniently defined the energy of Ié2el
tively, while v,,, defined as half of the total population de- asEjy=1i(ws+w,)/3 in order to get rid of constant factors.
cay rate from the upper level, Similarly, L¢p describes the free evolution of the two cavity
modes and_,p accounts for the driving fields,; and e,
injected in the cavity. The interaction terlry;p describes
the coupling between fields and atoms, which is written in

Ha= %ﬁ[rS(zwr_ws)J"SS(zws_wr)]v (28)

Y1t 72
Yw= 2 , (23
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the dipole and rotating-wave approximatiogs,andg, be- ) 1

ing the coupling constants for the transitions 1-2 and 3-2, n=-y) 3 (1+2n)(m+n—-1)

respectively. The non-Hamiltonian term,p accounts for

the decay of the atomic polarizations and population inver- Yo . Y ek

sions(N is the number of atomswhile Ap accounts for the + 29 (Xu* +xjv)+ " (XW* +x3w) |, (37)

decay of the intracavity fields due to the escape of photons
from the semireflecting cavity mirrors. For simplicity, here

we neglect the contributions due to collisions to the decay OINhere we have introduced the ratio=y,/7; and the coop-

the atomic polarization, restricting ourselves to the radiative_ . -
limit. erativity parameters

By introducing the normalized classical variables, repre-
senting mean values of the atomic operators,

giN g5N

) V2 1 1= o Co= (39
== (R, w=— 5 (S), z=— (T, 21 Y 212 Yw

2 2 proportional to the number of atoms that characterize the
m=-g3 (Rg), n=-— N (S3), (29)  strength of the coupling between atoms and the two fields.

and the normalized Rabi frequencies proportional to the int-

racavity and input field&; and E:” (i=1and 2, B. Steady sate

A Due to the high degree of symmetry of the equations for
_ gi E with E=(a) (i=1,2, the lambda system, it is possible to calculate analytically the

Xi YW steady-state solution for the mean values of the atomic op-
erators(29) and the intracavity fields; andx,, as a function
Vig 2 T of the input fields intensities and the remaining system pa-
yi=— —E" with E"=¢;— (i=172, (30 'ameters. = _ , ,
Yw \/f 2 In the following we give the exact analytical solution for

the intracavity fields in the general case for the system pa-
the semiclassical equations for the normalized variables rea@meters. The steady-state mean values are calculated by
solving the system of nonlinear equations obtained by setting
X1=—kq[(L+i67)x,—y;+2Cv], (31 the right-hand sides of Eq§31)—(37) to zero.
By suitable redefinition of the phases of the polarization
. variables and of the input fields, it is possible have the int-

Xo= = ko[ (14167)x2 =y, +2C,w], (32 racavity fieldsx, and x, real numbers at steady state. In
. 1A . 23 particular we introduce the new variables=ve 41, W
v= =Yl (1A v —x;m+X,7], (33 =We7i¢§' Ezze—i(¢§—¢§)’ yizyie—iqsf’ and¥;=|x;| (i=1

) ) and 2, whered¢; (i=1 and 2 is the phase of thith field at
w=—y[(1+iA)W—Xn+Xx,2"], (34  steady state. We shall use these variables in the following,
although we omit the “tildes” for typing convenience.

. 1
z=—yw{i(Al—A2)z—§(xlw*+x’2‘v) , (35

1. Solution in the general case

1 As we said, it is possible to solve exactly the Bloch equa-
i Yw tions (33)—(37) at steady state, finding the analytical depen-
=—yi|3 (p+2)(M+n—=1)+ — (X0* +x} '
71[3 (7+2)( ) Y1 (qv™ +x30) dence of the atomic variables on the fields variablesx»)
and system parameters. By substituting the solutions of the
+ w (XZW*+X§W)} (36) Bloc_h equations_in Eqs31) a_nd (32 a_t steady state, one
2y obtains the solutions for the fields, which read

e lysl? (39)
17 [1+2C,b2I,IT1%+[6;,+2Cbly( 7l +1,—bA)TT]?’
X2= |y2‘2 (40)
2714 2C,b% 7l I112+[ 6,— 2C, bl (7l 1+ 1, + b A IT]?’
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where we have defined It should be noted that, in practice, it will not be trivial to
realize the double-resonance condition for a given cavity and
y for a given atomic system. On the one hand, the choice of the
y=22 1;=x3, 1,=x4 b=2(A;—A,), (41) laser frequencies fixes the cavity and atomic detunings, and,
71 on the other hand, for the fields to be resonant, these quan-
tities have to linked by relation§48) and (49). This con-

and where straint will be discussed below.

H:{ 3+ 13+ 2p+ D151 ,+ (7+2)1 115+ 2bA 51 2 C. Constraint on the detunings

3 We think it is worth considering in some detail how the
—2bANZ4D] 2 yb+ (14 2 (As—A) 1115+ b2n( A2 double-resonance conditiof®8)—(51) can be achieved in an
12 {2 Yh+(1+7)(A, 1)} 1 (A2 experiment; to this aim, we introduce the normalized detun-
1 ings
DI +b2(A2+ 1)1, . 42
M (A7 ) 2} 42 Wy~ Wg We1™ We2
Ap=——, Ac=——"—7, (52
Yw K1
2. Phases of the input and output fields
Let us consider Eqs(31) and (32) at the steady state;
from Eq. (30), one has

representing the distance in frequency between the two lower
atomic levels and between the two cavity eigenfrequencies
nearly resonant with the input fields, respectively. We point

EN=M[(1+i6:)x;,+2C0], (43  outthat, due to its normalizatiod,c does not depend on the
cavity length. By construction, a relation holds between the
ES=M,[(1+i6,)x+2C,w], (4g)  cavity and the atomic detunings introduced so far:
— . . K
where M;=(y,WT))(2v2g;) ' are proportionality - con- glz(i) 0= (A —Ay—Ay) ﬂ*'Ac- (53
stants. The phase®] and ®} of the input fields are then K1 K1

calculated a® "= arctafim(E")/Re€&")] for (i=1 and 2.
By using Egs(30), (43), and(44), and the boundary condi-
tion for our single-port cavity,

Equation (53) tells us that once the distance in frequency
between the two lasers is fixed, for example, by our choice of
the atomic detunings, the difference between the cavity de-

out, min_ e (i— tunings is automatically fixed by the properties of the cavity
EMHEN=\TIE (=12, (45) throughA¢, «;, andk,. On the other hand, if we need both
one has fields at resonance in the cavity, the cavity detunings should
compensate for the phase shifts introduced by the atoms,
Ef"'= —My[(—1+i6y)x;+2Cv], (46  Which impose that:
. K
ES"'=—My[(—1+i6,)x,+2Cw], (47) 017(’(—2 0,=F(C1,C,11,12,A1,4,), (54)
1

from which the phases the phag@$" and® 5" of the output

fields are calculated in the same way. whereF is a function of the indicated parameters which is

obtained easily from Eq48) and (49). Equations(53) and
(54) represent thus two independent requirements on the
. . quantity 6;— («»/«4) 6, which should be fulfilled at the
By using the steady-state solutio{®) and(40), we may  same time. In particular, the right-hand sides of E§8) and
easily find the condition in which both fields are resonant in54) should be equal, which constraints, for a given cavity
the cavity at the same time._ This situatior_1 is particularlyzng a given medium, the possible values of the atomic de-
favorable for the QND experimerftL2], and it can be ex-  tynings and intracavity fields for which the double-resonance
pressed as a precise requirement on the cavity detunings aggndition can be achieved.
input fields amplitudes, given certain values of the intracav- e will return to this constraint on parameters in Sec. IV
ity fields intensitied ,, andl,, and atomic detuningd, and B by considering in particular the case of our experimental
A,. Such requirements read setup and the mean fields configuration that we use to per-
form the QND measurements. Before this, however, we

3. Double-resonance condition

01=—2C,bla(7l1+15=bAIL, 48 \would like to go back to Eq(53) and make some further
remarks. Equatiori53) is a relation between the cavity and
02=2Cobly (7l +1,+bnA)IL, (49 the atomic detunings that is automatically fulfilled in a real
experiment, suggesting that the four parameters of our model
lya|=VI1(1+2Cb?I,11), (50 should not be considered as independent. In order to evaluate

the significance of this relation in the different experimental
Y2l = V12(1+2C,b2 5l 1I0). (51)  situations, we rewrite Eq53) as
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Kz)a _477(1 1 ria 5 5E¢="sae'¢+5alel?, with sa=a,—(a) (i=1,2.
T TR e 9 (58

where we used Eq€21), (24), and(52). Now several situa- BY using the the input-output relatiofis9)]

tions are possible. Suppose first that the frequeneieand )

w, of the input fields are well separated on the optical- a™+al'=\2xa (i=1 and 2, (59
frequency scaldgas, for example, in the experiments de-

scribed in Refs[6, 8]). Equation(55) shows that extremely whose classical counterpart is represented by (&§), and
small adjustments of the cavity lengi, on the order of assuming that the input fields are in a coherent state, one
11 (2N 1) — (2I\5)]~N, are in this case sufficient to adjust at obtains

will the difference 0, — (x,/k4) 6> once the two laser fre-
quencies have already been fixed. In such conditions, atomic

in ou N t (%@
and cavity detunings can in fact be considered as indepen-<5x5(t)5Ymt>sym Wz OM[ea(t) azl)e™ =52

dent parameters; and in particular the double-resonance con- 7<[af(t) aTDei(@guzmiln)
ditions (48) and (49) can be realized without any restriction w2

on the atomic detunings, andA,. Let us now consider the —([as(t) a2]>efi(®‘£m+®i2n>

opposite case in which the two frequencies and w, are '

very close one another. This could be, for example, the case +([al(t),a}])e’”@im’("’izn)], (60)
when the two ground levels of the lambda scheme are de-

generate Zeeman sublevels. #f and w, are only a few ) ot ain
MHz apart, adjustments of the cavity length on the order of (SXE(t) SX2)gym= k2@ (D[ — ([ aa(t), p])e™'(O2 +02)
the meter (that is of course out of reach in an experiment ot in

would be necessary in order to change the differefice +([ab(t),ab])e!®2 02

—(k2/k4) 6, by some units when the laser frequencies have t e% ol

already been fixed. In this case E§3) represents a serious +([aa(t),ap])e™"%2 %2
constraint that cannot be overcome by adjustments of the 1 (O @)

cavity length. In between the two limiting cases considered —(Laa(t),az])e"®2 ~P2]

above, there are situations in which, if on the one hand Eqg. — 5(t)cog O O, 61)

(53) represents a real constraint, still some room is left for
small adjustments of the cavity detunings by significant
changes of£. A similar situation is encountered in the ex- (SXM(1) SY R sym= — 2i kg ko[ — (tas (D) ez )
periment with cold atoms that we consider in detail in this Cout. out
paper(Sec. V), where the two ground levels of the lambda xe 1O +020 ¢ (ral(t) 1)
scheme are hyperfine sublevels 6.83 GHz apart. Cout out
xel 1 =920 —(q (t)ad:)
D. Quantum noise analysis % e—i((e)g“‘—@g“‘)+<:al(t)*ra‘£ )
In order to calculate the QND coefficients defined in Sec.
II, we are interested in the time-dependent correlation func-
tions of the fields whose amplitude and phase fluctuate
around a steady-state mean value. We consider the casehere the dots in Eq62) mean time and normal ordering:
which the the fluctuations are small with respect to the mean
values and a linearized treatment of the fluctuations is pos- - toy— (T
sible. LetE? be a certain quadrature of thth field (i=1 Gailbay ) =(aja (V).
and 2, relative to the reference phage

@out, oout
Xe'(ol +0, )]' (62)

Cai(t)a; )y =(ai(t) ),
Ef=ae ?+ale'?, (56)
(:ai(t)aj :):@(*I)(ajai(t)>+®(t)(ai(t)aj),
In the notations of Sec. Il, and referring to the phases of the
il?lpElet andhoutput fields at steady state introduced in Sec. (:ai(t)faf:)=G)(—t)(ai(tT)aD+®(t)<a}ai(t)*>,
, one has

' o oot where®(t) is the step-function taking the values lpr 0,
SX{'= 5522 5xg“t= 6522 whent is larger than, equal to, or smaller than zero, respec-
tively, and where for brevity we have introduced the notation

:@iln(‘n'/Z) = 0" (w/2)
=

OYm=05, Y= 0%, 57 aj=d6a=a;—(a;) (i=1 and 2. (63

where bysE we denote the time-dependent fluctuation of By taking the Fourier transforms of the symmetrized corre-
the operatot‘Ei“’ around a steady-state point in the Heisen-lations(60)—(62), we are eventually concerned with the cal-
berg picture: culation of response functions
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Rjk(w)=Jl O(TN[B(7).Bxlye " dr  (j,k=1,2,34. S,-k(w)=j7 (Bi()Bxe ' dr,  (j,k=1,234,
(64 (65
where we have introduced the vectgy (j=1 and 12 of

and normally ordered correlation functions system operator fluctuations:
|

B=[ay,al,ay,a},6R™,6R",657,65,6T,6T",6R;3,8S5,]". (66)

In the linearized regime Eq<$64) and (65) can be easily SXOUSXOU 14D + St 7iz@g“‘+s eiz(—)g“‘
calculated by using the master equation. We carefully< 20X K2l Soat Suat Sy a4 (7%’)
checked that our method, relying on the master equation for-
malism and the quantum regression theof@®l, gives re- out syoul _ _i20% i o@out
sults identical to the method based on linear-response them‘fYm Y u=1+2k1[Siot Sp1— S0~ Sy (171“)
in the frequency domain developed by Courty and Grangier
[21], and with the method using the input-output formalism

of Collett and Gardiner in the time domajit9,12. The re- IV. WORKING POINT FOR QND:
sult for the response functions is THEORETICAL ANALYSIS
L In this section we analyze, from a theoretical viewpoint,
Ri(@)=[(A+iwl) 1C;, (67)

the configuration necessary to perform the QND measure-
ment which was used in the experiment with cold atoms
described in Sec. V. Rather then repeating a general analysis
of the scheme, which was done in REf2], we shall give
' some details on how the scheme can be realized and opti-
mized in a real experiment by taking explicitly into account
the constraints imposed by the optical cavity and by the
Cﬂ =([Bi.BilD)- ©8  atomic energy-level configuration.

where A is the (12 12) drift matrix obtained linearizing
Egs. (31)—(37) [and the complex conjugates of Eq81)—
(35)], and C® is the matrix of the equal-time commutators
ie.,

For the normally ordered correlation functions, one has, in- o
stead A. Ghost transition scheme
We consider a configuration proposed by Ghetial.
Si(w)=[(A+iwl) 'Dy(AT—iwl) 'K, (69 [12], using a very intense signal field and a much weaker
meter field driving the transitions 3-2 and 2-1 of the three-
whereDy is the normally ordered diffusion matrix that we level atoms respectively. The strong signal has the double
report for completeness in the Appendix. The results for theeffect of (1) dressing the atomic transition 3-2 to which it is
interesting correlations between input and output fields areapplied, and2) transferring most of the atomic population to
the “bare” ground level|1). The coupling between the two
fields is achieved by tuning the meter in proximity of one of
) ) the two Rabi-split levels, originating from the bare excited
_ ngefi((%‘{“‘w?)_;_ Rl4efi((~>$“‘f®§')]’ state|2), whose separation depends upon the intensity of the
strong field. In particular, under the proper conditions, a very
(70 efficient coupling between the signal intensity and the meter
) ) ot phase can be exploited for the QND measurement. More-
(8XIEXM = —cog OO + ko[ —Ryge (92 792 over, due to the large difference in strength between the
_ n Cout in meter and the signal field, nearly all the atomic population
+R44el(®20m+®2)+ R34e"(®2 —02 remains in the ground levél) with the consequent advan-
ot in tage of keeping signal-absorptidand spontaneous emis-
—Rye'(®2 ~92)], (72)  sion) low. To a first approximation the signal is applied to an
empty transition. This is why this configuration was called
The useful correlations involving only the output fields are“ghost transition scheme” in Ref12].

in

(DY =i iR 0D R0

instead In Figs. 2 and 83), we report two examples of the QND
performances of thé\ scheme in the ghost transition con-
(SXUSYOU — i Vol — S~ (01705 figuration with parameters which are typical of our experi-
ment. The QND criteria are calculated, at a fixed frequency
: ®oulieout)7 7i(®0u17®ou\) . . . . .
+5,£(%1 92 —g e 10 -0; of analysis, as a function of the meter atomic detuning which

) is scanned across the two Rabi-split levels, the meter being

(0% @91 =
+S,,e'%1 T2 ], (72) exactly tuned on one of the two dressed levels Agr



CHAPITRE 3. OPTIQUE QUANTIQUE 25

2988 A. SINATRA et al. 57

40

—40
—60 —40 —20 0 20 40 A 60
[ ) FIG. 4. Curve Q) [double-resonance conditidB4)] and curve
(B) [constraint relatior(53) on the detunings as functions of the
08 v meter atomic detuning\,. Parametersl,;=8, |,=2450, A,=0,
06l " C;=135, C,=90, k;=k,=3.05y,,, A,=2276.6667, Ac
ot =753.9822, andj=7.49.
02 V keepi . .
- eeping, however, a certain detuning from the resonance
oL e with the Rabi levels in order to avoid strong meter absorp-
1] 1 2 3 4 5 6 7 8 9 10 . . oy
Yo tion and consequent degradation of the ghost transition
o ) schemd12].
FIG. 2. (a) QND coefficients forw= 0 as a function of the meter In Figs. 2 and &), we show the frequency dependence of

atomic detuningd; . (b) QND coefficients forA;=40.5 as a func-  he QND criteria forA,=40.5 in both cases. The frequency
tion of the frequency of analysie/vy,,. Other parameterd;=2, is normalized toy,,, which in our case is abouf,/2m
'_2:2450’ A2=0, A;=405, C;=135, C,=90, and xa=k2  _3\Hz. The case represented in FighB corresponding
= to1,=8,1,=2450,A,=40.5, andA,=0, seems more con-
venient from the experimental point of view, displaying the
+35 in both figures. Since the signal is taken at resonancbest QND performanceC¢=0.9, Cr,=0.7, andVgm,=0.2)
with the atoms, the curves are symmetric with respect taround 3 MHz, which is above low-frequency technical
A,;=0. In these pictures, following the treatment in Ref. noise.
[12], we supposed both fields to be at resonance with the
cavity, and we arbitrarily fixed the intracavity fields intensi- B. Choice of the input fields and cavity parameters
tiesl, andl, in a convenient range inspired from the experi-
ment. The two figures differ in the value bf which is four
times larger in Fig. 3 than in Fig. 2. In both cade® 1, as
required by the ghost transition scheme. A convenient choic
for the meter tuning is in proximity of the Rabi-split levels,

By using our model, we wish to calculate the proper am-
plitudes and cavity detunings of the input fields, such that the
Bavorable case represented in Figb)3is actually recovered
In a realistic system.

We already know from Sec. Ill C that there is no com-
plete freedom in choosing the cavity and the atomic detun-
G ‘ () ings, and that Eqs(53) and (54) should be fulfilled at the
same time in order to have both fields at resonance in the
cavity. We have represented these two conditions graphically
in Fig. 4 as a function of the meter atomic detuning.
Curve (A) represents Eq54) whenlq, |,, andA, are the
same as in Fig. ®) (note that in the limit of strong signal
and weak meter this curve represents as well the meter dis-
T R persion or phase shjftCurve B) represents E¢53), with

the parameters of our experiment and for a given value of the
cavity length. At the intersection points between the two
() curves, both relations are satisfied, and £E48)—(51) can be
used to calculate the exact values of the cavity detunings and
input field amplitudes in order that the fields are set simulta-
neously at resonance in the cavity, with given values$,of
l,, and A, and with a value ofA; corresponding to the
intersection point we have chosen. In particular, for the in-
tersection point? corresponding ta\;=40.5, one recovers
9 10 exactly the situation of Fig.(8).
The curves in Fig. 4 make it clear that, due to the con-

FIG. 3. (a) QND coefficients foro=0.9y,, as a function of the  Straint relation(53), the simultaneous resonance of the fields
meter atomic detuning ;. (b) QND coefficients forA;=40.5 as a  in the cavity can be achieveahly for some particular sets of
function of the frequency of analysis/y,,. Other parameterd;  Vvalues of the atomic and cavity detunings. On the other hand,
=8, 1,=2450,A,=0, A;=405,C,=135,C,=90, andk;=x, We have already pointed out that in many cases of interest
=3yu- the constraint coming from Eq53) can be overcome by

o 1 2 3 4 5 6 7

3
&fYu



CHAPITRE 3. OPTIQUE QUANTIQUE 26

57 QUANTUM-NONDEMOLITION MEASUREMENTS USING . .. 2989

1
= 08l =%
08t P fvf?
0.6 0.6

04 04

0
-0 -5 -0 -5 0 5 0 -2 -15 -1 -5 0 5 g9, 10

o op
038 0.8
~0.8 l -08 J
L | |

16 I b 1
-20 ~15 -10 -5 0 5 gg 10 —20 -15 ~10 -5 0 Sgp 10

FIG. 5. Steady-state intensitié®p) and phasegbottom) for the meter(left) and signalright) fields as functions of the cavity detuning.
The intensities; and |, are normalized to the input intensitig¢g,;|> and |y,|?, respectively. Parameterg; =8.6526y,=49.7193,A,
=40.5,A,=0, C;=135,C,=90, k1= k»=3.05y,,, 0p;=20.9095,6,=0.1360, andj=7.49.

adjusting the cavity length. In Fig. 4 these adjustments would’; are the mirror transmission coefficiefttsVe plot an ex-
correspond roughly to translate curvB)(thus “choosing”  ample in Fig. 5, where the input parameters are chosen as
within some range the intersection point with curn (Ina  described in Sec. IV B. On the left we show the meter field
real experiment, in fact, what can be set precisely is nontensity (upper curve and phaselower curve across the

directly the cavity length but thé€-dependent quantity cavity scan, and the same is shown on the right for the signal
field. While the signal intensity curve displays the usual
G=—Ap ﬂJrAC’ (75)  Lorenzian shape centered about the cavity resonance, the
K1 meter intensity curve displays two peaks: the “proper” reso-
nance peak, shifted from its empty-cavity positioW,=
accurately measured as the distafinec; units) between the  — o1 by the linear and nonlinear dispersive responses of the

empty-cavity resonances of the two fields when those ar@toms to the meter field alone; and a second peak, of neces-
tuned exactly on the atomic resonances. This can be easiggrily nonlinear origin, induced in the meter at the signal
seen by setting\;=A,=0 in Eg. (53), which gives 6, resonance position fo6#,=0. Intuitively, the extra reso-
—(kylK1) 0= —Ax(yw!k1) +Ac. In Fig. 4 (for A,=0) nance in the meter field appears if the phase shift induced in
the quantityg is just the height of curveR) atA;=0, equal the meter by the resonant signal equals the initial difference
in this case taj=7.5. between the empty-cavity resonances of the two fields. In
this very point of the cavity scan, where both fields are at
resonance in the caviti.e., §6,= 56,=0), the configura-
tion in Fig. 3b) is in fact realized.

In order to understand more clearly how the double- In Fig. 6 we show the corresponding QND coefficients
resonance condition of the fields is achieved in the cavitycalculated, at a fixed frequency of analysiso/Zm
and to compare the theory with the experimental results, it iss2.7 MHz), along the cavity scan in the region of the in-
useful to plot the mean-field intensities of the signal and theduced peak where the fields are favorably coupled for QND.
meter when the cavity is scanned across the field resonancghe best point of the scan is achieved at ab®t=0, prov-
In the experiment, this is done by sweeping in time the caving that the double-resonance condition of the two fields is
ity length by a small amount- 6£ around the valueC, for ~ actually the most favorable for the QND measurement. With
which both fields are resonant in the cavity. To simulate thehis result in mind, parameters optimization, at least in prin-
experimental procedure in our model, we decompose theiple, looks simpler: as a first step one adjusts the cavity
cavity detunings#; (i=1 and 2 in Egs. (31) and (32) as
sums of two term®),= 6y, + 56; , wheredy, is a fixed initial
cavity c_iet_uning, and%?i_is a change' in the detuni_ng due 0 when the cavity length is varied by a small amoudt £,
the variation of the cavity length. It is easy to verify that the | 5, trom the definitions(22) and (21), and we;=n,2rc/ £ with

C. Mean fields across the cavity scan

o6, must satisfy (i=1,2) andn; an integer, one hag= 6+ 86; , with
T s _471' 1 o s _477 1 e
S0,=3 1 502 (76 TR P v

from which Eq.(76) follows. In the case of our experiment, with
[(A\;—A1)/A1]=10"% and T,;=T,, along the cavity scan we can
where); (i=1 and 2 are the wavelengths of the modes, andapproximatesg, = 56, .
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FIG. 6. QND coefficients forw=0.9y,, as a function of the
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coils spaced by about 50 mm, with a current of 20 A. The
trapping lasers are two 100-mW laser diod&DL-5411-

H2), injection locked to a master laser, which is a grating-
extended laser diode locked to an appropriate saturated ab-
sorption line. An acousto-optical frequency shifter ensures
an adjustable detuning. During the experiment, the trapping
beams were detuned four natural linewidths to the red of the
F=2 to F’'=3 transition of theD2 line of rubidium atoms.
The total power on the trap is typically three times 30 mW,
with a beam diameter of 20 mm. As it is for the slowing

process, a repumping laser diotMitsubishi ML 64110N-

01) is locked on theF=1 to F'=2 transition, and pumps

length as described in Sec. IV B. Then one adjusts the fielg@@ck into the trapping cycles the atoms which were lost in

input powers, the laser frequencies, and the cavity detunin
in order to recover the favorable double-resonance config

he F=1 ground state. This beam is superimposed on the

rapping beams along two of the three axes. Its central part is

ration. If the result is not satisfactory, the whole process carfcreened thus forming a “dark spot” in the fields transverse

be iteratively repeated for another cavity length.

V. EXPERIMENTAL SETUP

A. Magneto-optical trap
The MOT is built in a large ultrahigh vacuurfUHV)

chamber, designed in order to set up the optical cavity di-
rectly around the cold atom cloud. The present setup use&

8Rb atoms, with nuclear spih=3, whose ground state
5S,/, and excited statesP;, (D2 line) and 3P, (D1 line)
are shown in Fig. 7 with their hyperfine sublevel structures
The trap is loaded by slowing down an atomic beam usin
the standard chirped-frequency technid@@]. The atomic
beam part is separated from the UHV chamber containin

the trap by a differential pumping aperture, which allows us

to obtain a UHV pressure of a few 18 mbar in operating

conditions. The central part of the chamber is about 80 cm
far from the oven; at this point the atomic beam has a diam-

profile [15], which is imaged at the trap location. In this way,
the atoms in the trap cannot be repumped in the trapping
cycle and, on average, about 90% of the population of the
cloud is in theF =1 ground state. This point will be essential
to allow simultaneous and continuous operation of the trap
and QND experiments. The trap’s absorption in the 1
level is monitored using a weak probe beam. The trap fluo-
scence, mostly induced by the residual percentage of atoms
In the F=2 state that are excited by the trapping beams, is
measured by imaging it on a photodiode. The diameter of the
trap is measured with a CCD camera, either in fluorescence
(F=2) or in absorption £=1); both measurements yield a
alue close to 3.5-mm full width at half maximum. The es-
imated values of the numb#r of atoms and density in the

=1 dark state arél=10° andn=>5x 10'° atoms/crm.

B. Doubly resonant cavity

In order to obtain large effects at the quantum noise level,

eter of about 7 mm, and it is offset from the trap center by 15 vertical optical cavity is, set up inside the UHV chamber

cm. The “slowing” diode is swept on the quasiclosé&d
=2 to F'=3 transition on theD2 line at 780 nm(see Fig.
7), and a “repumping” diode is swept simultaneously on the
F=1 to F'=2 transition. Both of them are free-running
single-mode laser diodéslitachi HL 7851G and Mitsubishi

around the cold-atom cloud. The cavity mirrors have a 60
mm radius of curvature. Thanks to screws and piezoelectric
transducers that can be handled from outside the UHV cham-
ber, the cavity length is adjustable from 64 to 68 mm. The
input-output cavity mirror has a 5% transmissivity. The up-

ML 64110N-01. The powers sent onto the atoms are 30per mirror has a very low transmissivity ¥3L0~°), and it is

(slowing and 15 mW(repumping, with a 15-mm-diameter

used to monitor the intracavity intensities while the cavity is

light beam whose part which could hit the trapped atomicscanned, thanks to two photomultipligsee Fig. 8.

cloud is carefully screened.

The atoms are trapped using a standard six-besfe ~
MOT configuration 23]. A quadrupole magnetic field with a
8-G/cm gradient on axis is provided by two anti-Helmholtz

F=3
F'=2 p=p Signal and
F=1 meter beams
F'=0

Trapping and F=1 (DL,795 nm)

repumping
(D2, 780 nm)
F=2

m=-2m=-1 m=0 m=1 m=2

F=2 RN T
Signat &2 1 \' A,/ 1 2@
F=2 )

F=1

FIG. 7. Energy-level scheme 8fRb. The inset shows the rela-

The level scheme used for the QND effect is shown in
Fig. 7. The signal and the meter beams are tuned oiDthe
line at 795 nm(whereas, as we already stated, the trapping
and repumping beams are tuned on B line at 780 nm
The signal is linearly polarized and tuned close to the
5S,,F=2 to 5P.,F'=2 transition with a typical input
power of 15uW. The meter beam, on tHe=1 to F'=2
transition, is linearly polarized but orthogonally to the signal,
and is tuned to the red with respect to the dressed levels due
to the signal-atom coupling. Its typical input power is 250
nW. Both beams are emitted by two independent frequency-
stabilized titanium-sapphire lasers. We carefully checked
that they are shot noise limited both in intensity and phase in
the frequency range of intere€—-20 MH2, which corre-
sponds to our noise analysis frequency band since the line-

tive strength for coupling the signal and meter beams which havavidth of our cavity is Z/27=18 MHz. The two beams are

linear orthogonal polarization.

carried onto the optical table by optical fibers which ensure
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atomic resonance, while the weak meter it is tuned to the red
with respect to the lower of the two dressed levels originat-
ing from the excited stat¢2) due to the atom-signal cou-
Homodyne Detection pling. In the experimental situation and in the notations of
our model, the typical input powers of BN for the signal
and of 250 nW for the meter correspond to normalized am-
plitudes of the injected fields equal ¥,=56 andy,;=7,
| respectively, while the initial choice of the cavity length for
~ o=~ which the two atomic frequencies are almost exactly three
FSR’s apart correspondisee Eq(75)] to G=0.
After the cavity and input powers have been fixed, the

PM

Polarizer

bx
e Meter

I Input atomic detunings are iteratively adjusted in order to optimize
z %li:lt)iecrzl the QND coupling between the fields as follows. A weak
2 w2 intensity modulation at 5 MHz, about 20 dB above shot-

%ri;l noise level(SNL), is applied on the signal beam. When the
Signal two fields are coupled in the cavity, it is possible to read the
Output . . .

same modulation in the phase of the meter beam by using a
FIG. 8. Schematic view of the experimental setup. The input_ph""se'sens_Itlve homOdy'_"e detection te_Chn'que' The detun-
signal and meter beams are mode matched to an optical cavitf!9S are_adjusted by Io_oklng for the maximum transfer qf the
surrounding the trapped atoms. Output beams are separated fromodulation from the signal onto the meter field and, simul-
the input ones using Faraday rotators. The signal beam is directlig2neously, for the minimum degradation of the signal. This is
detected, while the meter beam undergoes a phase-sensitive honfone while always scanning the cavity about the signal reso-
dyne detection. nance, until a situation similar to the one depicted in Fig. 6 is
achieved, where the maximum transfer along the cavity scan

. . . ... occurs in correspondence to the signal resonance. This situ-
very good spatial mode quality anq best m.echanlcal .Stab'“tyation is recovered in fact when both fields resonate at the
They are mode T“.atChed to the optical cavity whose finesse Same time in the cavity at the signal resonance position, as in
125 with an efficiency above 99%. We also measured thpFig 5
optical transmission of the whole system, which is equal to |'n I.:ig 9 we show an example of the mean-field configu-

90% whereas the on-resonance losses of the cavity are negi o o -ross the cavity scan when the parameters were op-

ligibly small. S . ;
. . timized for the QND experiment. The experimental curves
Note that the frequency difference between the signal an ere taken, for the signal and meter intensities, both with

meter beam has to be close to the ground-state hyperfir‘Lijnd without the trapping beams. thus “switching on” and
splitting of #/Rb, which is 6.83 GHz. Since both beams alsOugyitching off” the %%nl?nearity. The solid line, guperim-

have to be resonant on the cavity, this detuning has to bﬁosed on the “noisy” experimental curves, shows theo-
close to an integer number of the free spectral raf@R of | .=\« v es obtained fo,=42.120,y —8.768 A,=2
the cavity. This is indeed the case when the cavity length IS “4173 o (169 ¢ _121 207.C ’_335 c _’95 .

1= 2 V1™ Y- » Vo1 . 127 » 1T s Rl

66 mm, corresponding to a FSR of 2.27 GHz: the two beams:_ x,=9.034, andg=—2.01. The signal curves are shown

ﬂg;{'g{‘tﬁz'fég%b\yafﬂge;gi?”& ()Aszif)tlztsviﬁg?ﬁ’:&nzrﬁﬂgﬁgpside down, and each curved is normalized to the corre-
is running. We note also that thFia two standin -wavep attern ponding intensity at resonance in the empty cavity. In Fig.
9- 9 P 10 we again show the meter field in the presence of the

from the signal and meter beams have to be in phase at t%‘ioms(intensity and phase across the cavity canpoint

atom location, so that the atoms see the appropriate Ral Ut that the “nonlinear” meter peak at the signal resonance

quuzgczzggnglsﬁgha??;rg' ;wj Ic?f ?ﬁzli\z/:/(ijt b)ller::atcr:ngi ;hSOSition 860,=0 is actually an extra resonance for the meter
c|022 to0 22 mm from one mirror and 44 mm fr)c/)m tr?e (’)tr']e'rﬁeld. This very point is the working point for the experiment.
Here the cavity scan is stopped and the QND coefficients are

one.
Finally, the output signal is directly detected by a high measured.

efficiency photodiode(Centronix BPX-65, quantum effi-

ciency 92%, whereas the meter beam is detected by a phase- B. QND coefficients

sensitive homodyne detection. The fringe visibilityomo- Typical experimental results for the QND coupling be-
dyne efficiency obtained by mode matching the local tween the fields in the case of the mean-field configuration in
oscillator onto the meter beam output is 96%. Fig. 9 are shown in Fig. 11. The lower traca) (shows the
SNL, and the modulation of the output signal beam, taken
VI. EXPERIMENTAL RESULTS off cavity resonance without the atoms; the width of the
AND COMPARISON WITH THEORY modulation peak is 100 kHz. Over this trace are also shown

as dots the SNL and modulation of the output signal beam,
taken while the cavity is stopped at resonance in the presence
The configuration we use to perform the QND measureof the atoms(operating conditions There is clearly neither
ment closely retraces what we have illustrated so far imttenuation nor a change in the noise of the signal beam. The
theory. The strong signal is tuned slightly to the red of itsmeasured nondemolition coefficieft is therefore limited

A. Mean-field configuration
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2
0
04 signal . @ . . .
4.6 4.8 5.0 52 5.4
frequency (MHz)
0
- 56, FIG. 11. Measurement of the transfer coefficidn. Curve

(a), normalized to the SNL, corresponds to the output signal, mod-
eled by a Gaussian pe#éttash-dotted ling Two curves are actually
displayed, and show no observable difference: one taken off reso-
nance without the atom@dine) and one taken on operating condi-
tions (dots. Curve () is the outcoming meter, also taken on oper-
ating conditions, and modulated by scanning the phase of the
homodyne detection. The upper envelope is fitted by a Gaussian
peak of same width as in curva). The signal-to-noise ratios are
obtained as the differencéim dB) between the fitted peaks and the
flat backgrounds.

without, atoms

meter |

FIG. 9. Normalized intensities of the meter and sighad side pho_tocurrents while scanning the_ phase of the homodyne de-
down) as functions of the cavity detuning. The curves were takeri€Ction. We show the results in Fig. 12. In correspondence to
both in presence and in absence of the atomic medium. The thif’@ right phase of the local oscillator picking up thkase
continuous line is the theoretical curve, while the noisy lines areuadratureof the meter field, the recombined noise reaches
experimental curves. The little bump which appears on the mete® Minimum value 3.5 dB below the SNL, which gives a
curve without the atoms at the signal position is due to a smalconditional varianceV{***=0.45. Estimated uncertainties
imperfection in the optics separating the two beams in the monitorgn T{Meas) T(Meas) gndy/(Meas) gre + 0,05,

! ° {m X
ing channel. The parameters for the theoretical curves yare In order to compare the experimentally measured values
=8.768, y,=42.120, A;=41.3, A,=2, C,=135, C,=90 (C,

of the QND coefficients with the theory, it is necessary to
=C,=0 for the curves without atomisx;=x,=3.0y, fo1  take into account some small corrections due to optical
=11.207,00,=0.169, andg=—2.01. losses and nonunity efficiencies. The quantum efficiencies on
the two channels are
only by the passive optical transmission of the system, which

relates the output signal without atoms to the input one, i.e., 7s=ag B " (77)
T(meas. 9 90(- 0.5 dB). FromT, and from the lower trace

in Fig. 11, one obtains the input beam signal to noise ratiofor the signal beam, and

which is 23.8 dB. The upper track) is the phase-dependent

noise and modulation of the output meter beam, taken in Nm= a[SSBRIOP 2 det (79

operating conditions while scanning the phase of the homo-
dyne detection. The SNL of the meter beam was electroni: .

cglly set at the same level as the one of the signal beam. Tr{ r the meter beam, Whemrses andar*are the cavity losses
upper envelope of the fringes gives the meter phase im‘ormef’,lt resonarrgce for thg signal beam‘ and the meter beam, respec-
tion, and yields the output meter signal-to-noise ratio, whictiVe!Y: 32 P and B are the optical losses on propagation

is equal to 21.9 dB. The measurement transfer coefficient it the signal beam and the meter beam, respectivelis
thus— 1.9 dB, orT{Ma=0.65. Finally, the conditional vari-

ance is obtained by recombining the output signal and meter P O

@
3
5 21
08| 2 S T O I B 1
8 o -
oaf B \f EIS ka1 ¥
0.2 \ S ey i
0 4] { e 1
=15 =10 =5 0 5 +
L6 )e 0.0 05 1.0 1.5 2,0
08 ! /A F sweep time (s)
0
08 // 50 FIG. 12. Measurement of the conditional variance. The dotted
71‘6,1—5/_10 5 0 5 line is the signal beam shot noise level at a noise analysis frequency

FIG. 10. Meter intensitytop) and phasébottom as a function

of 4.6 MHz. The full line is the noise from the recombined signal
and meter photocurrents, recorded as the phase of the homodyne

of the cavity detuning, in presence of the atoms. The parameters adetection is scanned. The conditional variance appears as the mini-

as in Fig. 9.

mum noise level of this curve.
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FIG. 13. QND coefficients fotn=1.533y,, as a function of the FIG. 14. QND coefficients in the best point of the scatt{
cavity detuning in the region of the double-resonance position=0.11) as a function of the frequency of analysis. The parameters
(86,=0). The parameters are as in Fig. 9. are as in Fig. 9.

the fringe visibility of the homodyne detection, asﬁf‘is the
meter detector quantum efficiency.
With our setup(Sec. \}, we have

point of the scan. As confirmed by the experiment, the quan-
tum correlations display a significant frequency dependence
within the frequency band selected by the cavity. The best
values are reached around 5 MHz, once more corresponding

res_ res . .
to the experimental observations.

a®=a/=1, BPP=pgPP=090, V=096, = o(.92),
79

which impliess= 0.9 and»,,,=0.76. The QND coefficients, C. Remarks
dueonly to the interaction with the nonlinear medium which
are used in the theoretical modelhere experimental imper-

fections are not taken into accolnare then related to the

measured ones throughs and 7,,. For the coefficientl

one has simply

As we have shown, the agreement found between the ex-
perimental results and the theoretical analysis performed
with a three-level model for the atoms is remarkable. The
model is able to reproduce and interpret the main experimen-
tal results which concern, on the one hand, the steady-state
7eTe. (80) curves of the field intensities across the cavity scan, and_, on

the other hand, the quantum correlations between the fields

To evaluateT,,,, one has to take into account the fact that,in the best configuration for QND identified as the point of

after the interaction, the meter has a strong phase noidbe cavity scan where the two fields resonate simultaneously.
<5§%u:(w)z>_ In the limit of high gains, one can show that Nevertheless it is needless to remark that the distance be-

[14] tween the three-level model presented in this p&fec. IlI)
and the complex situation of a real experiment remains very

Tgmeasz

(5\~(°“‘(w)2) large. At least two major omissions in the model can be
TMes_p T where Bpy=—a n . identified. _ -
7l YN @)% +1— 7y The first of these is that the restriction to a purely three-

(8D

For (8Y%(w)2)>1 [like in our case in which 8Y%"{w)?2)
=7.9], one obtains

1-9m
By=1-——=——. (82
77m< 5Y(r)nm( w)2>
For the conditional variance, one can deduce
1_V(s\nr]r$a$: Bm’?s(l_vslm)- (83

level system does not take into account the actual multilevel
structure of the transitions used for the two-beam coupling.
A schematic view of the involved Zeeman sublevels is rep-
resented in the inset of Fig. 7, where we also show the rela-
tive importance of the Clebsch-Gordan coefficients for the
different transitions. The chance to represent this compli-
cated situation successfully as a simple lambda scheme
comes from the fact that most of the contribution to the
coupling is given by the lambda schem@se outermost in
the figure¢ which have the largest Clebsch-Gordon coeffi-
cients, and it is indeed by considering these most contribut-

ing transitions that we have chosen to set the r@dC,

By using Eqs(80)—(83), where we substitute the numerical =1.5 in our model to fit the experimental curves.
values(79) for our setup and the measured values for the The second major fault of the model is that, by describing
QND coefficients, we can work out the experimental valueghe fields in the cavity as plane waves, it neglects the Gauss-
for the QND coefficients, corrected for the optical losses.ian transverse shape of the beams as well as their standing-
One obtainsl,=0.67,Ts=1, andVg,=0.37, again with an  wave longitudinal structure in the cavity. These spatial gra-
uncertainty estimated to be abati0.05 on each coefficient. dients in the intensity profile of the waves, and especially the

We can directly compare these results with the theoreticadtanding-wave structure in the cavity, give rise to optical
prediction, in Fig. 13, for the QND coefficients calculated atpotentials whose depth can easily be of the same order of
w/27m=4.6 MHz along the cavity scan in the region of the magnitude of the small kinetic energy of the cold atoms, thus
double-resonant point. At the best point of the scan one hasizably affecting their external degrees of freedom. Prelimi-
Tn=0.60,Ts=0.97, andV,=0.36, which is in good agree- nary experiments performed with our setup on one-photon
ment with the experiment. In Fig. 14 we finally show the optical bistability showed with some evidence that optical
frequency dependence of the QND coefficients at the bedbrces due to a strong standing wave in the cavity can have
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macroscopic effects on the nonlinearity of the cold atoms, Yu
changing the effective cooperativeness of the system in a (Dn)eg=— 1y (a@” +x20%),
detuning and intensity-dependent way. The major practical
conclusion of this preliminary study was that it is preferable
to use red(positive) detuning for the fields, a condition in (Dn)610= — Yw X, 2",
which the effective cooperatively of the system can be in- ' N
creased sizably with respect to the opposite case of blue
(negative detuning. An attempt at an explanation for this 29w "
was made on the basis of a very simple model based on the (Dn)gg=— VR
dipole force that would attract cold atoms in the high-
intensity regions of the field for red detuning, and repulse y
them for blue detuning24]. A more complex situation in- (DN)&lO:—W [Xoz* +x1(n—m)],
volving two different light fields was analyzed theoretically N
very recently[25].
In this view, a too-strict correspondence between the pa-

rameters introduced in the modelspecially the cooperativ-
ity parameters and the input fields amplitudesd their ex-
perimental counterparts loses sense. Instead we are naturally Yw
led to consider the parameters of our theoretical model as (Dn)gao=— N X1Z,
“averages” over more complex phenomena that take place
in the real experiment. The very fact that such effective pa-
rameters can be defined, and used to obtain a very good :”L/Z * Rl Cm—

- ; (D)oo [x1(v+v*)]+ = [13n(1—m—n)],
description of the results, is actually a good proof of the N N
robustness of the three-level model in our experimental con-
figuration.

Y
(DN)8,11:WW X1Z,

Ywl2 .
(DnN)101= — N 7(XW+Xo0™ ),
VII. CONCLUSIONS

We presented the results of a recent QND experiment
performed with cold trapped rubidium atorfis0], and their
interpretation on the basis of a theoretical model for three-
level atoms in a cavity. By studying in detail the steady-state 2Yw
configurations allowed by the system and the quantum be- (DN)11,11:W
havior of the fields, we showed by theory and experiment,
how a ghost transition configuration for performing QND
measurements with atomjg® nonlinearity can be success-
fully implemented and optimized using cold atoms. The ex-

perimental results are the best obtained so far for a single i Y1

Y
(DN)1027= — WW (XW+x0%),

X1 (v+v*)

+é(w+w*)
4

g(1+ nl4)(1—m—n)

back-action-evading measurement, and the agreement be- N ’
tween theory and experiment is remarkable.
Y
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APPENDIX
*
Here we report the elements of the diffusion matfbiy, Xp(wWrw?)
expressed in terms of the normalized variables:
Y1
DX XE X, X3 v,0% W, wW* 2,2, m,n, : N [5 (Z+ 7)(L=m=m|.
(Dp)se= — Yw — plus the ones obtained by conjugation and index permutation
N/6,6 N T from the terms abovéwe recall thatDy, is symmetrica.
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3.3 Au voisinage des conditions de piégeage cohérent
de population

Dans mon mémoire de these, j’ai aussi considéré une autre configuration des champs
qui utilise la partie dispersive de la réponse atomique au voisinage des conditions de
piégeage cohérent de population (Fig. 3.6).

On injecte dans la cavité deux faisceaux cohérents de méme intensité légerement
désacordés de facon symétrique par rapport a la résonance.

F1G. 3.6 — Systeme en A au voisinage du piégeage cohérent de population.

Dans ces conditions, nous avons montré l'existence d’un courbe de bistabilité op-
tique “universelle” (pour lintensité intracavité des champs en fonction de 'intensité des
champs injectés) qui partage l'espace des parametre en deux parties. Pour des intensités
supérieures a une intensité de seuil Y, les champs dans la cavité ont la méme intensité.
Pour un désaccord de cavité nul et pres de Y =Y, les deux faisceaux sortants sont alors
indépendants et comprimés. Pour des intensités des champs injectés inférieures a Y, les
deux champs en cavité n’ont jamais la méme intensité. Les valeurs moyennes des 'in-
tensités intracavité ont alors un comportement de “switching” entre une courbe a forte
intensité et une courbe a faible intensité en fonction du désaccord de cavité supposé étre
le méme pour les deux modes. Pour ce qui concerne les fluctuations quantiques, les deux
champs présentent des corrélations permettant une mesure QND de I'intensité de I'un des
deux faisceaux.

Nous avons obtenu des expressions analytiques simples pour ces effets de réduction du
bruit et de QND, permettant de les comprendre et de les optimiser.

Je n’avais pas eu l'occasions de publier ce travail. A Toccasion de la rédaction de
ce mémoire, j’ai écrit un article et je I’ai soumis tout récemment [25]. Un article récent
considere l'intérét de cette méme configuration pour la production d’états comprimés de
spin mais en se limitant aux cas d’égale intensité des champs en cavité. Il serait intéressant
d’étudier les corrélations atomiques dans le régime Y < Y.
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Quantum correlations of two optical fields close to electromagnetically induced
transparency

A. Sinatra
Laboratoire Kastler Brossel, ENS, 2/ Rue Lhomond, 75231 Paris Cedex 05, France

We show that three-level atoms excited by two cavity modes in a A configuration close to elec-
tromagnetically induced transparency can produce strongly squeezed bright beams or correlated

beams which can be used for quantum non demolition measurements.

The input intensity is the

experimental “knob” for tuning the system into a squeezer or a quantum non demolition device.
The quantum correlations become ideal at a critical point characterized by the appearance of a
switching behavior in the mean fields intensities. Our predictions, based on a realistic fully quan-
tum 3-level model including cavity losses and spontaneous emission, allow direct comparison with

future experiments.

PACS numbers: 42.50.Dv,42.50.Gy,42.65.Pc

Using optical nonlinearities it is possible to manipulate
optical beams to the level of quantum fluctuations, pro-
ducing squeezed states [1] that are important resources
for quantum information with continuous variables [2].
Related to the field of squeezing is that of quantum
non demolition (QND) measurements on an optical field,
where quantum correlations between two different modes
of the electromagnetic field are exploited to overcome the
back-action noise of a quantum measurement [3]. Besides
the fundamental interest in the theory of measurement, it
was shown that QND correlations of propagating beams
have direct application in quantum communication pro-
tocols as teleportation [4]. The best single back-action-
evading measurement on optical beams was performed
using cold atoms inside a doubly resonant cavity [5]. We
suggest that these performances could be significantly
improved by tuning the system close to the electromag-
netically induced transparency (EIT) conditions [6].

Already in the nineties, theoretical studies showed that
a lambda three-level medium close to EIT conditions in
a cavity can be used to obtain squeezing [7]. Contrarily
to previous proposals, here we assume that two different
modes are resonant in the cavity. For small and sym-
metrical detunings from the upper level of A three-level
atoms (see Fig.1), absorption is suppressed and the dis-
persive non linear response gives rise to a rich scenario
where either self correlations (squeezing) or cross QND
correlations can be established in the output beams. The
correlations become ideal at a critical point that we char-
acterize analytically. The technique we propose is exper-
imentally accessible, and first experimental steps in this
directions were done in atomic vapors without a cavity
[8]. Here we show that the presence of the cavity is a cru-
cial advantage especially if one can reach the good cavity
limit.

We consider IV atoms in a cavity excited by two modes
symmetrically detuned from the upper level of a A three-
level scheme as in Fig.1. For j = 1,2 let w; be the fre-
quency of field j and hw,; the energy of the corresponding

2

FIG. 1: Two cavity modes interact with the atoms in a A
configuration close to EIT conditions.

atomic transition. We define Aj = =2=7/ the atomic de-

tunings normalized to the decay rate of the optical coher-

ences Yy = (71 +72)/2 where 41 + 2 is the total popula-

tion decay rate of the upper level; 0; = w” i the cavity

detunings normalized to the cavity decay ‘rates K, and
2

Ci = 5ur

constants for the two considered transitions. We use nor-

malized variables proportional to the intracavity and in-
\/_9] \/_9] 2 Ezn
Y Yo /T, 0

tively, where T is the (input-output) mirror transmissiv—
ity for the field j. We name v and w the normalized polar-
izations between levels 1-3 and 2-3 v = —(v/2/N)(R™),
—(v/2/N)(S™) where R and S are collective oper-
ators constructed from the single atom operators |1)(3|
and |2)(3] as in [9]. The master equation and the semi-
classical equations describing the A system with two cav-
ity fields, with the same notations introduced here, are
given and discussed in detail in [10] where this model was
successful to reproduce the experimental results of [5].

the cooperativities where g; are the coupling

put fields z; = (a;) and y; = respec-

Let us consider a set of parameters symmetric for the
two transitions: |y;| = |y|, C; = C, v = v, k; = K,
§; = 0 (empty cavity resonance for both fields), and let
A1 = —Ay = € be small and positive. In Fig. 2 we show
in rescaled units the stationary intensities of the intra-
cavity fields I; = |z;]?/4Ce as a function of the common
intensity of the input fields Y = |y|?/4Ce. With a solid
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FIG. 2: Stationary intensities of the intracavity fields I1, and
I as a function of the common intensity of the input fields
Y = Y5 =Y. In solid line the solution I = Is. The thick
(red thin) line correspond to stable (unstable) solutions. In
dashed-dotted line one of the two stable solutions with I; #
I>. Parameters: 2¢ = 0.125 and C'1 = C = 250, y1 = 2 =
1OI'<L17 R2 = K1, 91 = 92 =0.

line we have plotted an S-shaped solution with I = I5.
A stable branch of this solution appears for Y > 1. The
negative slope branch and the lower branch very close to
zero intensity are both instable and play no role in the
following. For Y < 1, apart from the solution I; = I,
we get two other solutions with Iy # I5. In the figure
we show one of them with I; > Is. The second one is
obtained by exchanging I; and I. Both solutions are
stable in the considered case 61 = 65 = 0.

We choose now two values of the input intensity, in
turn above and below the turning point ¥ = 1, and
show the stationary solutions for intracavity fields inten-
sities as the cavity detunings vary in Fig. 3. The sta-
ble branches of these curves (thick lines) can be easily
obtained experimentally by sweeping the cavity length
[10]. We vary 07 and 62 keeping them always equal which
would imply the use of two driving fields of close optical
frequencies AA/\ < 1 (and for example different polar-
izations). For Y = 1.05 i.e. 5% above the turning point
(upper half of Fig. 3) the stable solutions for the intra-
cavity intensities are Lorentzian-looking curves symmet-
rically shifted by a small amount from their empty-cavity
positions for both fields. Only for §; = 6, = 0 the two
fields have the same stationary amplitude in the cavity
corresponding to the stable high-transmission branch of
the S-shaped curve in Fig.2. For Y = 0.95 i.e. 5% below
the turning point (lower half of Fig. 3) the situation is
rather different: the stable solution for the two fields
switches between a high-intensity and a low-intensity
curve being always I; # I3 although |y1| = |y2|. In con-
trast with the previous case this situation is very far from
the independent-fields EIT solution and the fields are in
fact strongly coupled.

Let us now introduce the usefull correlations to carac-
terize the quantum fluctuation properties of the system.
For a given quadrature of the jt* field: X;-b = aje_i¢ +
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1.2 1.2

FIG. 3: Intracavity field intensities I1 (left half), I» (right
half) across the cavity scan. Upper half: Y = 1.05. Lower
half: Y = 0.95. The thick (red thin) lines correspond to stable
(unstable) solutions. The other parameters are as in Fig. 2.

ia;(ei‘z’, the squeezing spectrum is defined as
[oe]
Sw) =1+ 2@/ e (X T()6X0(0) ) dt (1)
— 00

where 0X f denotes the time dependent fluctuation of

the operator Xf around a steady state point. The col-
umn indicates normal and time ordering for the product
inside the mean. S}b = 1 is the shot noise and Sf =0
means total suppression of fluctuations in the quadrature
Xf. The crossed correlations between the two fields are
described by the coefficients C, Cy, and V), [11] char-
acterizing a QND measure of the amplitude quadrature
X' of one field, the signal, performing a direct measure-
ment on the phase quadrature Y°“ of the other field,
the meter. Among the tree coefficients Cs quantifies the
non-destructive character of the measurement, C,, its
accuracy and V), refers to the to the “quantum state
preparation” capabilities of the system.

Cs — C(Xin,XOUt) , Cm _ C(X’L’(L’ Yout) , (2)

V;|m — <Xout’ Xout> (1 o C(XOUt, Yout)) (3)
where for two operators A and B we define
(4, B)|? :
AB)= —"7""— h 4
AP =naes ™ W

oo —iwtl
<A,B>:/ TS AWB + BAD)dt.  (5)

—00

The superscripts in and out refer to the input and out-
put fields from the cavity. By calling ¢ and ¢ the
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phases of the input and output fields in steady state, and
choosing field 1 as the meter and field 2 as the signal, we
out(in)

define X0ut(in) = X% " and your = yPU T2 por
an ideal QND measurement C',, = Cs = 1, and V), = 0.

The quantum fluctuations counterpart of Fig. 3 (top) is
shown in Fig. 4 (top) where squeezing of the output fields
optimized with respect to the quadrature 52 (w = 0) is
plotted as a function of the cavity detuning. A large
amount of squeezing is present in both fields close to
61 = 0. As one can see from Fig. 3 (top) the two fields
are well transmitted by the cavity for §; = 0, and the
system efficiently converts the input coherent beams into
bright squeezed beams.
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FIG. 4: Top: Best squeezing of the fields across the cavity
scan for Y = 1.05 and w = 0. Squeezing of field 1 (2) is
plotted with a solid (dashed) line. Bottom: QND coefficients
across the cavity scan for Y = 0.95 and w = 0. C,, (red
dashed-dotted line), Cs (solid line), V;j,, (blue dashed line).
Parameters as in Fig.3.

Correspondingly to Fig. 3 (bottom) for Y = 0.95, in
Fig.4 (bottom) we plot the coefficients C, C, and Vj,,
across the cavity scan. The useful quantum correlations
are calculated by a linearized treatment of quantum fluc-
tuations around the stable stationary solution as in [10].
Despite the fact that the two fields have different intra-
cavity intensities at 1 = 0, they play here symmetrical
roles for the QND scheme; the figure corresponding to
the reversed scheme 1 «+» 2 being obtained by reflection
of the plots 6; <« —#;.

We show in Fig. 5 the frequency dependence of the
quantum correlations both below and above the turning
point Y = 1, for a fixed value of the cavity detuning close
to zero. For values of the cooperativity parameters cur-
rently obtained in experiments, QND coefficients such as
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FIG. 5: Top: Squeezing spectra of field 1, for Y = 1.05 in
the center of the cavity scan (61 = 0.0013). Best squeezing in

out

solid line and amplitude squeezing S‘f ! in purple dashed line.
Bottom: QND spectra for Y = 0.95 and 6; = 0.0018. Cp, (red
dashed-dotted line), Cs (solid line), Vi, (blue dashed line).
The other parameters are as in Fig.2.

Cs = 098, Cp = 0.95, Vg, = 0.05 can be acheived
in this regime, representing a significant improvement
with respect to previously obtained results [5] based on
the so called “ghost transition” scheme [12], [10]. Al-
though we concentrate here on the good cavity limit, in
which as we will show the quantum correlations become
ideal approaching the turining point Y = 1, some QND
correlations between the two modes persist also in the
bad cavity limit. For example for ¢ = 0.25, C = 25,
k=370 =6x1072 Y = 0.9 and w = 0.1y we get
Cs = Cp =0.72, V), = 0.26.

In the limit of weak atomic detunings, useful analytical
results can be obtained. The analytical solution of the
semiclassical equations of the system at steady state is
given in [10]. By expanding the steady state polarizations
v and w to the first order in € we obtain

o i 4e 1| T2)? o de xo|x1|? (©)
(lz1]? + [a2[*)? (lz2]? + [2*)?

By inserting (6) in the equations for the intracavity fields
amplitudes, with |y;| = |y|, §; = 0 and C; = C, we
obtain at steady state a “universal solution” for rescaled
field intensities. For Y < 1 there are two stable solutions

L = -(1%n); L=+ (1Fn) (7)

2| =
2o | =
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where n =11 —Y?2. For Y > 1, out of two solutions

Y 1
L=lh=1; =2 (141-—
1 2 ) 2( Y2> (8)

the one with the plus sign is stable and the other one
unstable. Solutions (7)-(8) are indistinguishable from
those of the full three-level model in Fig. 2. The
phases of the input fields with respect to intracavity
fields (which are taken real at steady state) are ¢i" =

atan [\/Ig/ll:|, ¢ = —atan [«/11/12} for Y < 1, and
" = atan[1/2I] = —¢%* for Y > 1. For the output
fields 9%t = —@i", p3** = —@&" in both cases.

In order to study the quantum properties of the system
analytically we further assume that (i) v > & so that the
atomic fluctuations follow adiabatically the field fluctu-
ations, and (ii) the noise from spontaneous emission is
negligible, which we found true when the cooperativity
is large enough. In this limit, using the steady state po-
larizations (6), we can solve analytically the equations
for the field fluctuations and obtain the correlation func-
tions.

For Y >1and I, = I, = I and taking ~~! as the unit
of time, we obtain

(D7 5 e i=1,2. (9

These equations describe two independent two-photon
processes for which instabilities and squeezing have been
studied extensively [13]. The best squeezing spectrum
for each field is

4 1
a a=—, (10)

SbEStw :1——, s
i) 1+ a)? + w/rK? 21

yielding perfect squeezing at zero frequency at the turn-
ing point where Y =1, I = 0.5 and a = 1.

For Y < 1 and I; # I5 the fluctuations of the two fields
are coupled. For I} > I, we get

5Xy = —6X1 — iy, (11)
1
5V = —6Yi 41 ;” 56Xy — 2insXs.  (12)

The equations for field 2 are obtained from (11) and (12)
by changing the sign in front of  and of i. Simple ana-
lytical expressions can be obtained for the squeezing and
the conditional variance V), of the fields at w =0

. 4
S;nt = S?eSt =1 ) S‘]phase =-3+ 7]_2 (13)

772
V. = — 14
slm 4_ 3772 ( )

showing that the fields have diverging phase noise and
become perfectly correlated at the turning point. We
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checked that the spectra in Fig. 5 are well reproduced
by the analytical results.

In conclusion, in a symmetrically detuned EIT scheme,
and for equal input intensities Y of the two fields we have
shown the existence of a universal S-shaped steady state
curve (Fig.2) which divides the parameter space into two
parts: for input intensities higher than the upper turn-
ing point of the curve, the quantum fluctuations of the
fields become quadrature dependent and can be reduced
in a quadrature, while for input intensities lower than
the turning point, crossed phase-intensity quantum cor-
relations build up between the two fields. The system
becomes a perfect “squeezer” or an ideal QND device at
the turning point. The “universal” point ¥ = 1, can
be identified experimentally by the appearance of the
switching behavior described in Fig.3, and can be used
as a reference in the parameter space to choose either the
squeezing or the QND effect and to optimize it. An im-
plementation using either a vapor [8], or a trapped cold
atoms in an optical cavity [5],[14],[15] seems within the
reach of present technology.
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3.4 Mémoire quantique avec les spins nucléaires de
’’He

Les tres longs temps de cohérence des spins nucléaires de I’hélium 3 dans son état fon-
damental (spin 1/2 purement nucléaire) en font un systeme potentiellement intéressant
pour l'information quantique et en particulier pour le stockage de I'information. La dif-
ficulté pour l'application a I'hélium des schémas proposés dans la littérature pour des
alcalins, est due au fait que le fondamental, isolé de 20 eV des autres états excités, n’est
pas accessible par laser directement.

Avec Gaél Reinaudi en stage de DEA en 2004, nous avons décidé de voir si les collisions
d’échange de métastabilité, couramment utilisées pour transférer de I'orientation de I’état
métastable a 'état fondamental (voir le chapitre 5 de ce mémoire), pouvaient étre utilisées
aussi pour transférer des corrélations quantiques. En collaboration avec Franck Laloé et
le groupe d’optique quantique du LKB Jussieu spécialiste des mémoires quantiques, nous
avons proposé un schéma original qui permet de stocker un état comprimé de la lumiere
dans le spin nucléaire de I’hélium 3 dans son état fondamental, tout en pouvant le re-
transférer ensuite au champ électromagnétique. Pour cela, on utilise le couplage dipolaire
électrique entre la lumiere et les atomes dans I’état métastable 23S, puis le couplage entre
I’état métastable et I’état fondamental via les collisions d’échange de métastabilité.

Le schéma utilise un champ de pompage dans un états cohérent et un champ dans un
état vide comprimé, en configuration Raman. Selon le rapport entre le taux de pompage
(ajustable en variant I'intensité du champ cohérent) et le taux d’échange de métastabilité
pour un atome métastable, les fluctuations du vide comprimé sont transférées soit aux
spin métastables soit aux spins de 1'état fondamental [23].

La mise en ceuvre dans le cas de I'hélium dans des conditions réalistes demande
quelques astuces mais semble faisable [23]-[24]. Le schéma se généralise a la production
d’ensembles intriqués de longue durée de vie.

Pour continuer sur cette voie, le premier pas serait une mise en cevre expérimentale
ou 'on pourrait par exemple transférer du bruit dépendant de la phase du champ aux
spins nucléaires et inversement. Un autre volet serait la recherche d’un schéma de mesure
(par exemple par résonance magnétique nucléaire) des fluctuations quantiques des spins
directement dans I’état fondamental.



3.4.1

CHAPITRE 3. OPTIQUE QUANTIQUE

Publications jointes

PRL 95, 123002 (2005)

PHYSICAL REVIEW LETTERS

week ending
16 SEPTEMBER 2005
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We propose to store nonclassical states of light into the macroscopic collective nuclear spin
(10'8 atoms) of a *He vapor, using metastability exchange collisions. These collisions, commonly used
to transfer orientation from the metastable state 23S | to the ground state of 3He, can also transfer quantum
correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a
nuclear spin state with very long storage times (hours).

DOI: 10.1103/PhysRevLett.95.123002

If great progress has been made in the generation of
nonclassical states of light, a major challenge of quantum
information and communication lies in the ability to ma-
nipulate and reversibly store such quantum states [1,2].
Several proposals have been made to achieve storage of
nonclassical light states either in trapped cold atoms or
atomic vapors [3,4]. The first successful experiments of
quantum memories for coherent states and squeezed states
were achieved using atoms as a storage medium [5,6]. In
all the proposed schemes, as well as in the experiments
realized so far, the information is encoded in the ground
state of alkali atoms; the obtained storage times are at most
several milliseconds, limited by collisions, magnetic field
inhomogeneities, transit time, etc. Nuclear spins have also
been proposed as quantum memories for mesoscopic sys-
tems, due to their long relaxation time [7]. In this Letter we
show how to reversibly map a nonclassical state of light
into a squeezed state, encoded in the purely nuclear spin of
the ground state of 3He, which interacts very little with the
environment. The quantum state can then survive for times
as long as hours. To access the ground state of *He, which
is 20 eV apart from the nearest excited state, we propose to
use metastability exchange (ME) collisions, during which
an atom in the ground state and an atom in the metastable
triplet state 23S, exchange their electronic variables. ME
collisions are used in optical pumping of *He to create
nuclear polarization in gas samples for nuclear physics
experiments as well as in nuclear magnetic resonance
imaging applications [8]. When the helium vapor is in a
sealed cell, a weak radio-frequency discharge excited by a
pair of external electrodes maintains a tiny fraction of the
atoms in the metastable state, which has a finite lifetime
due to its interactions with the cell walls. A transition is
accessible from the metastable state to couple the meta-
stable atoms with light. This, together with ME collisions,
provides an effective coupling between the ground state
atoms and light. We show that, with such a mechanism,
quantum fluctuations can be reversibly transferred from the
field to the atoms. Interacting with squeezed light in ap-
propriate conditions, the macroscopic nuclear spin (1.6 X
10'8 atoms of 3He at 1 torr in a 50 cm? cell, at 300 K) of

0031-9007/ 05 /95(12)/123002(4)$23.00
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the polarized ground state gas becomes squeezed. The
nuclear coherence relaxation time in absence of discharge
and in an homogeneous field can be several hours. By
switching on the discharge and repopulating the metastable
state, the squeezing can be transferred back to the electro-
magnetic field and measured. In addition to its interest for
quantum information, the scheme offers the exciting pos-
sibility to create a long-lived nonclassical state for spins.

We consider a system composed by N atoms in the
ground state, and n atoms in the metastable state. These
atoms interact with a coherent driving field with Rabi
frequency () and frequency w, that we treat classically,
and a cavity field described by creation and annihilation
operators A and At [Fig. 1(a)]. The field injected into the
ring cavity, A;, with frequency w,, is in an amplitude-
squeezed vacuum state: (A;) =0 and AXZ =e %,
AY? = ¢¥, where X = A + At and Y = i(At — A) are
the standard field amplitude and phase quadrature opera-
tors, satisfying [X, Y] = 2i. The Hamiltonian of the atom-
field system is:

H = Hy + n{QSye " + gASy, + Hel, (1)

where H, describes the free evolution of the atoms and the
field, g = d(27w,/hV)"/? is the coupling constant be-
tween the atoms and the cavity field, V being the volume

a) e b)
3
Q \A
1 2 s
! —
ME
collisions | ME i
! collisions
g oo M g pO— v
FIG. 1. (a) Sublevels 1 and 2 are metastable, level 3 is the

excited state, 9 and O are the ground state sublevels. (b) Relevant
energy levels in *He.

© 2005 The American Physical Society

40



CHAPITRE 3. OPTIQUE QUANTIQUE

PRL 95, 123002 (2005)

PHYSICAL REVIEW LETTERS

week ending
16 SEPTEMBER 2005

of the cavity mode, d the atomic dipole. S;; = 3/, [k)(ll;
for k,1=1,2,3 are collective atomic operators in the
metastable and excited state [9]. The coupling to the
ground state collective spin I, = =¥ [k)(ll; for k, 1 =
9, 0 is provided by ME collisions.

We start with a simplified picture, in which both the
metastable and ground state atoms have a spin 1/2, which
are simply exchanged during each ME collision. The ex-
change collisions rate for a metastable and a ground state
atom are denoted by v,, and vy, respectively. Their ratio
Ym/ ¥y is equal to the ratio N/n. We assume that the
system is initially prepared using optical pumping in the
fully polarized state (Ipo) = N and (Sy) = n. Both the
metastable and ground state collective spins are polarized
along the z axis of the Bloch sphere. The transverse spin
components S, = (S,; + SL)/2, S, = i(S;r1 - 8)/2
then play a similar role to field quadratures and, for such
a coherent spin state, have equal variances: AS? = AS? =
n/4 and AI? = AI? = N/4. By definition [10] the meta-
stable (ground state) spin is squeezed if one of the trans-
verse spin variance AS2 or AS% (A2 or AI%) is smaller than
its coherent spin state value. As usual in quantum optics,
we study the quantum fluctuations of operators around a
“classical steady state” of the system (the fully polarized
state). We then linearize the equations, and obtain in the
rotating frame the following closed set of equations:

So1 = ~(Ym = i8)So1 + yslog — iQSy + f21 (2

Soy = —(y +iA)Sy — iQSy —ignA+ fry  (3)

Too = —(yy — i8I + ¥YSa1 + foo 4
A= —(k+iA)A — igSy + V2kA,,. )

We have introduced the detunings 6 = wg — 84, 0; =
w; — 845, A = (E3 — E;)/h — w, with E; the energy of
level i, w; = (Ey = Eg)/h, wsg=(Ey = E)/h, 84 =
®| — w,, and the cavity detuning A, = w, — w,. O is
assumed to be real. The stochastic part of the evolution
(quantum noise) of each operator is described by a time-
dependent Langevin operator. If « and B denote two
system operators, (fo(1)fg(t")) = Dogd(t — t') where
D, g is the corresponding coefficient of the diffusion ma-
trix. Contributions to D come from polarization decay with
a rate y, ME collisions for metastable and ground state
atoms, and cavity losses with a rate « for the cavity field.
The nonzero coefficients of the atomic part of the diffusion
matrix are Dy 1o = Dogog = 20y, Dajg9 = Dog12 =
—2n%y,,, Dy3, = 2ny, calculated using the generalized
Einstein relation [11] for an ensemble of uncorrelated
atoms. The Langevin forces for ME collisions are neces-
sary for the model to be consistent. Otherwise the non-
Hamiltonian character of the exchange terms leads to
violation of the Heisenberg uncertainty relations.
Physically these forces originate from the fluctuating char-

acter of the ME collisions. Their correlation time is the
collision time, much shorter than all the time scales we are
interested in.

By adiabatic elimination of the polarization S,; and the
cavity field assuming 7y, k >> v,,, v, one obtains

. - Q
So+ (Y + T —i6)Sy = Yilog + fo1 — Zfz}

Qgn [2
+ ZA,
A \ﬁA’"’ ©®

where we introduced the optical pumping parameter ' =
yQ2(1 + C)/A?, and the cooperativity C = g?n/(ky),
and we redefined the two-photon detuning & =
&+ Q2/A to account for the light-shift of level 1. In
deriving (6) we assumed a Raman configuration A > vy,
(Cy/A) < 1 and that the cavity detuning exactly compen-
sates the cavity field dephasing due to the atoms: A- =
Cky/A. Optimal coupling between the squeezed field and
the metastable coherence is achieved under resonant con-
ditions & = 0, or

ws(B) + O*/A = w; — w,, @)

where the Larmor frequency wg can be adjusted using a
magnetic field. A second resonance condition is §; = 0, or

w;(B) = 0w, — w,, ®)

meaning that the natural evolution frequency of the ground
state coherence Iy should match that of the metastable-
state coherence. The Larmor frequency in the metastable
and ground states are very different due to the difference
between the nucleon and the electron mass. In low field,
hw, = weB (o =1,8) with u;/h =3.24 kHz/G and
us/h = 1.87 MHz/G. However, the light shift in the
metastable state allows us to simultaneously fulfill (7)
and (8) for a nonzero magnetic field. Physically, these
conditions ensure that both spin coherences are resonantly
excited with the same tunable frequency w;(B), thus ensur-
ing the efficiency of the squeezing transfer from the field to
ground state. From Eq. (6) and the corresponding equation
for Ipy with § = 8; = 0, we can calculate the variances of
the metastable and ground state spins. In the limit y, < T,
Y,, one obtains:

N ¥, C _
2 — _ m _ 2r
Al 4{1 Ty, Cril ¢ )} @
r c
As2 =21 - 1—e )l 1
5 4{ ey, o1t ¢ )} (10)

In the limit C >> 1, the squeezing can be completely trans-
ferred to the atoms. If I' > 1v,,, correlations are established
among the metastable-state spins, the leakage of correla-
tion towards the ground state being negligible. The meta-
stable collective spin is squeezed while the ground state
spin remains unsqueezed. In the opposite limit I' < vy,
spin exchange is the dominant process for metastable

123002-2
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atoms; they transfer their correlations to the ground state
which then becomes squeezed. In all regimes the meta-
stable and the fundamental state share the amount of noise
reduction in the field.

In usual optical pumping experiments, the relevant
atomic observables are the level orientations, i.e., one-
body observables. ME collisions constantly tend to equal
the degree of polarization of the two levels. By contrast,
squeezing a spin component amounts to giving a negative
value to the two-spin correlation function (s, (1)s,(2)). ME
collisions constantly tend to equal the spin correlation
functions in the two levels but not the degree of squeezing.
This is because, to create maximum squeezing, a much
smaller (absolute) value of the correlation function is
needed in the fundamental than in the metastable state,
due to the large population difference in the two levels
[12]. Somehow paradoxically, the squeezed field then
maintains a strong squeezing in the ground state via a
weakly squeezed metastable state.

If one switches on the discharge and the coherent field in
the same configuration as for the “writing”” phase [4], the
nuclear spin memory can be “read,” the squeezing being
transferred back to the electromagnetic field where it can
be measured. During this process, the metastable level
acquires only a weak degree of squeezing under the effect
of ME collisions. But, because of the optical coupling, this
squeezing progressively transits back to the quantum field
stored in the cavity, so that, in the end, a strong squeezing is
accumulated in the field without ever being large in the
metastable state.

One important issue is the writing (or “‘reading’’) time of
the quantum memory, which is the ground state effective
response time. The adiabatic elimination of the metastable

state in Eq. (4) shows that this time is the inverse of I'y =

Y/F
Yt

the ground state.

We now apply our scheme to *He atoms in realistic
conditions [Fig. 1(b)]. The coherent field (7 polarized)
and the squeezed vacuum (o~ polarized) are tuned to the
blue side of the so-called Cy transition (A = 1.08 wm)
from the F = 3/2 level of the 23S, metastable state to
the 3P, state, the highest in energy of the 2 3P multiplicity
[13]. The system is initially prepared in the fully polarized
state, (Ioo) = N and (S,4) = n, by preliminary optical
pumping. The metastable state now has two sublevels F =
3/2 and the F = 1/2. The effect of ME collisions on the
metastable and ground state density matrices p,, and py
can be written as [14]:

which is also the width of the squeezing spectrum in

pr=vi(=ps +Tr.p,)

p‘m = 'Ym(_pm + pf ® Trnpm)’
where Tr, and Tr, represent trace operations over the
electronic and nuclear variables. After elimination of hy-

perfine coherences and linearization around the initially
prepared state, we obtain a set of 11 closed equations

involving the ground state coherence, the cavity field, 4
optical coherences, the excited state coherence, and 4
Amp = 1 coherences in the metastable state. To account
for the fact that metastable atoms are destroyed as they
reach the cell walls, we introduce a damping rate 7y of the
metastable-state coherences. Despite the more complicated
level structure, in the fully polarized limit considered here,
the squeezing transfer to the ground state comes exclu-
sively from the coherence S3; which should be excited
resonantly. By adiabatic elimination of the field and optical
coherences, for optimal squeezing transfer conditions and
in the limit y, < I', ,, we worked out the same analytical
expressions (9) and (10) for the ground state and meta-
stable spin variances, within a scaling factor in the optical
pumping parameter

T = y3Q%(1 + C)/A?, (11

with now A = (E; — E4)/h — w,. In Fig. 2 we show the
analytical predictions (9) and (10) and a full numerical
calculation for realistic experimental parameters: a 1 torr
vapor at 300 K, with v, =5X10°s"!, and y=
2X 107 s7!, and a metastable atom density of 3.2 X
10'° atoms/cm® corresponding to a ratio n/N = 107°.
The relaxation rate 7 is inversely proportional to the gas
pressure (at 1 torr y, = 10° s~!). Deviations from the
analytical formulas are due to nonadiabaticity of the opti-
cal coherence with respect to metastable variables, which
affects the squeezing of metastable spin, and to a finite
relaxation rate in the metastable state 7y, which affects the
ground state spin squeezing in the region I' < 7,,. In this
figure the one-photon detuning A is kept fixed while the
magnetic field and 6,,; are chosen to satisfy simulta-
neously (7) and (8) with now wg = (E4; — E3)/h. The
energy positions of atomic levels in the metastable and

2
104 o8 S-Beg.g AS
.

0.9+

0.8+

0.7

0.6+

0.5+

FIG. 2. Analytical predictions (lines) and numerical calcula-
tions for spin variances in ground state (full symbols) and
metastable state (open symbols), as a function of the ratio
I'/y,,. Numerical values of parameters are e 2" = 0.5, C =
500, =100y, A= —2000y, y=2X10"s"", vy, =
5X10%s7!, yo=10% s
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FIG. 3. Ground state spin quadrature optimized (best) variance
as a function of the ratio I'/y,, (lower x axis), for two relative
changes of the magnetic field with respect to its optimal value
(upper x axis). AB/B = 0 for the dashed curve. y, = 0 and
other parameters are as in Fig. 2.

excited state depending on the field were computed includ-
ing the effect of hyperfine interactions [15].

We calculated by simulation the effect of a frequency
mismatch in (7) or (8), on spin squeezing in the ground
state. A frequency mismatch of the order of I'/3 in the
metastable state or of the order of I'y in the ground state
affects the efficiency of the squeezing transfer. The condi-
tion for the ground state frequency matching (8) imposes
stringent requirements on the homogeneity of the magnetic
field [16]. Physically, if a significant dephasing between
the squeezed field and the ground state coherence builds up
during the squeezing transfer time, the atoms will see an
average between the squeezed and the antisqueezed quad-
rature of the field, always above the standard quantum
noise limit. Let AB be the maximum field difference
with respect to the optimal value in the cell volume. For
low field, the condition on AB to preserve the transfer
efficiency reads w;AB <hIj. Since Q2/A = Fzs%c =

Ks I 1 A AB : :
BB we get ¢ L1 50- 52 <1 or, in the regime I'< vy,

600% A—BB < 1. In Fig. 3 we show the effect of a relative
change of the magnetic field with respect to the optimal
calculated value. An homogeneity of 100 ppm is sufficient
for the chosen parameters to guarantee that all atoms are
squeezed. The optimal calculated value for the field is
shown as a second x axis in the figure. In realistic con-
ditions, choosing I' = 0.1v,,, the required field is about
B = 57 mG, corresponding to w; = 184 Hz. Squeezed
vacuum states that can be generated for analysis frequen-
cies as low as 200 Hz [17] could thus be efficiently trans-
ferred to the nuclear spins. The readout time is as long as
the writing time: 'z = 2 s for ' = 0.1v,),, limited by the
metastable atoms density in the sample.

The possibility to manipulate the spins using nuclear
magnetic resonance techniques, and to optically readout
the spin state after a long storage time makes this system
particularly promising for quantum information [18].
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We present a realistic model for transferring the squeezing or the entanglement of optical field
modes to the collective ground state nuclear spin of *He using metastability exchange collisions. We
discuss in detail the requirements for obtaining good quantum state transfer efficiency and study
the possibility to readout the nuclear spin state optically.

PACS numbers: 03.67.-a, 03.67.Hk, 42.50.Dv, 67.65.+z

I. INTRODUCTION

Helium 3 atoms in their ground state possess a purely nuclear spin I = 1/2. Such spins are well-isolated from the
environment and show extremely long coherence times. Longitudinal coherence times T} of several days are measured
in room temperature samples [1]. The transverse coherence time T, which would be as long as T in zero magnetic
field, is usually limited by magnetic field inhomogeneity if no special precaution is taken. Transverse coherence times
of several hours are observed in a very low field [2]. These very long coherence times originate from the weakness
of magnetic coupling on the one hand, and from the absence of electrical coupling on the other hand, as there is no
electric quadrupole coupling within the ground state for spins 1/2. It is tempting to exploit such long-lived coherence
for quantum information purposes. In a previous letter [3] we studied the possibility to transfer the squeezing of a
cavity mode to 3He nuclear spins. We showed that the squeezeing could be stored and retrieved from the atoms, thus
realizing a quantum memory [4-9]. For the sake of simplicity we presented in our letter a simplified model involving
only two sublevels in the metastable state and gave numerical results for the more complicated case of 3He. In this
paper we concentrate on >He and treat in detail this more realistic case.

Section II is devoted to metastability exchange collisions. We derive linearized Heisenberg-Langevin equations
describing the exchange collisions from the standpoint of quantum fluctuations. In section III we describe the model
for squeezing transfer from a squeezed vacuum mode of the electromagnetic field to the atoms. Numerical results are
shown and discussed in section IV. In section V we obtain analytical results in the adiabatic elimination limit for
the optical coherences and the cavity field. Section VI is devoted to the readout scheme of the quantum memory. In
section VII, as a straightforward application of our scheme, we consider the possibility of creating long-lived quantum
correlations between two macroscopic spins, in the move of the successful experiment in Copenhagen [10], in which
two macroscopic spins were entangled for 0.5 ms, but on a completely different timescale. Finally, in section VIII,
we use a toy model to explore the consequences of an imperfect polarization of the atoms on our squeezing transfer
scheme.

II. METASTABILITY EXCHANGE COLLISIONS IN HELIUM 3

Over forty years ago, Colegrove, Schearer and Walters [11] demonstrated a technique to polarize *He relying on
() an optical interaction on an infrared transition from the metastable 23S triplet state to the 23P triplet state, and
(13) metastability exchange collisions between atoms in the ground state and in the metastable state. During such
a collision, two atoms exchange their electronic degrees of freedom so that the metastable atom, oriented by optical
pumping and with a nuclear polarization due to hyperfine coupling in the metastable state, becomes a polarized
ground state atom [12]. This technique called metastability exchange optical pumping is currently used to prepare
polarized samples for nuclear physics experiments as well as in nuclear magnetic resonance imaging applications [13].

In what follows we suggest that metastability exchange collisions can also be used to transfer quantum correlations
to the ground state nuclear spin of *He.

A. Equations for the one-body density matrix elements

Partridge and Series [12] describe a metastability exchange (ME) collision in terms of the one-body density matrices
representing the internal states of two colliding atoms that we name pgt and p2! for the ground and metastable state,
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2
respectively. The density matrices after the collision, pg“ and pf;f/, are given by
at’/ P
{5, = el 1)
P = Pt ® T Py

where Tr. and Tr, are trace operators over the electronic and nuclear variables.

Let us consider n metastable and N ground state independent atoms. We introduce p, = N pgt, pm = np and
the same for p, and py,.

To represent the state of the system, we will use the density matrix p defined by:

=% o) 2

Note that Trp = n + N and that we neglect all coherences between the ground and the metastable states. The
matrices pg and py, evolve according to

d
{g% = —rPs+ VP 3)
ZiPm = —YmPm + Tm P;n

where v¢ and 7, are the metastability exchange collision rates in the ground and metastable states respectively

TYm = Nf}/ezc Yf = NWexc (4)

with ver. & rate depending on the metastability exchange cross section, the relative velocity of the atoms and the
volume explored by the atoms.

The calculation of dp/dt is performed by expressing p in the decoupled spin basis of the nuclear spin I = % and the
total electronic spin J = S = 1 in the metastable state, followed by a projection onto the hyperfine states (eigenstates
of the total momentum operator F' and F,) which we name from 1 to 6 as in figure 1. The explicit evolution equations
for the density matrix elements are given in the Appendix. The fully polarized state in which all the atoms are in the
sublevel with highest angular momentum projection along z is stationary for equations (3).

2331{ 3] 6
1 2 3 4

1
1 9 0O
mp:—% M :_% mF:% mF:%

FIG. 1: Sublevels 1 to 6 are metastable; 9 and 0 are the ground state sublevels. The fully polarized stationary state is shown.

Starting from equations (3) we proceed in two steps which will be detailed in the following:

1. We linearize these equations around the fully polarized steady state in which the only non-zero elements of p
are pgq = n and pgo = V.

2. From the linearized classical equations, interpreted as semiclassical equations for the mean values of the collective
operators, we derive the corresponding Heisenberg-Langevin equations.

B. Linearized Heisenberg-Langevin equations

By linearization around the fully polarized solution we obtain equations for the “fluctuations” or deviations of the
pi;j from their steady-state values. Such linear equations coincide with the linearized semiclassical equations for the
collective atomic operators operators mean values:

pri = (Sk) kl=1,...,6 (5)
pri = (L) k,1=9,0 (6)
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3

where Sy = > iy |k)i(l|; for k,l =1,...,6 and Iy = Zfil |k)i(l]; for k,1 = 9,0 are the collective atomic operators
in the metastable and ground state, respectively. The corresponding linearized Heisenberg-Langevin equation for the
operators are obtained by adding zero-mean valued fluctuating terms which are the Langevin forces. Denoting by f,
the Langevin force for the operator o we get a closed set of equations:

So1 = —YmSa1 + far (7
Sy = %Vm <—;5'32 + V3821 + Ss5> + fa2 (8)
Ses = —g%n <565 - %\/5521 - 5532) + fos 9)
Si5 = m (;)543 + %3(532 + 565)> + ?wffog + fas (10)
Ing = % [—:mfog + 2%, (532 —~ %s% - */75543 - §521> + foo (11)

If o and 3 denote two system operators, (fo(t)f3(t")) = Dagd(t—1t') where D, g is the corresponding coefficient of the
diffusion matrix which can be calculated using the generalized Einstein relations [14] for an ensemble of uncorrelated
atoms. The non-zero coefficients are

Dys 34 = 39mn, Dogss = Daz o0 = —%gvmn, Dog 90 = 27ymn. (12)

Langevin forces are necessary to the consistency of the model. Otherwise, the non-Hamiltonian character of the
exchange terms leads to a violation of the Heisenberg uncertainty relations. Physically, these forces originate from
the fluctuating character of the ME collisions and their correlation time is the collision time, much shorter (~ 10713
s) than all the times scales we are interested in.

C. Consequences of the Heisenberg-Langevin equations for ME collisions

We notice that Eqs. (7)-(9) for Sa1, Ss2, Sgs form a closed subset of equations. This means that in the frequency
domain each of these variables can be expressed as a linear combination of the Langevin forces fa1, f32, fo5. However,
in the fully polarized limit we consider here, these Langevin forces do not contribute to the diffusion matrix. It follows
that these variables do not contribute to the spin noise and can be neglected. One is then left with only two equations

: . V3
Saz = —L;S43 + ?’YfIOQ + fa3 (13)
: V3

Iog = —7yylog + 7m?843 + foo - (14)

Let us introduce the transverse spin quadratures S,, Sy
Sz = (S34 + Sa3)/2, Sy = i(S34 — Sa3)/2 (15)

(and similarly for the ground state spin transverse components I, I,) and let us assume that the ground state is
initially squeezed, while the metastable atoms are in a coherent spin state. Integrating (13)-(14) with the initial
conditions AI2(0) = AIZ(0)/(N/4) = e™?" and AS2(0) = AS;(0)/(n/4) = 1 one finds the normalized steady state
variances to be

3nN

A—S’s = 1- [1 - 672T]m (16)
ANT2 _ _ e—2r N2
AIZ = 11 ]7(3n+N)2 (17)

Since n < N (typically n/N ~ 107%), the ground state spin is still squeezed by approximately the same factor e =2,

whereas the metastable atoms squeezing is negligible (in n/N). By introducing the correlation functions Cs and Cy
of two individual spins in the metastable and ground state respectively:
ASZ -1

A2 —1
Cg=—% — and Cr=—1Y

4n © 4N (18)
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this simple calculation shows that ME collisions tend to equalize the correlation function (up to some numerical
constant): Cs = 3Cy. If the ground state spin is squeezed, C; has a negative value of order 1/N, corresponding
to significant collective correlations for the N-particle ensemble. However, as n < N, this negative value of the
correlation function in the metastable state is by far too small to induce squeezing into the m-particle metastable
state, which would require Cs ~ —1/n. For e~2" = 1 we recover the coherent spin state with no correlation between
the ground state and the metastable spins.

Noise spectra can also be derived in a similar fashion. By defining the noise spectrum as

Spra () = / dr e~ (2, (0); (7)) (19)

where 2, z; are fluctuations of system operators and for the same initial conditions AI2(0) = AIZ(0)/(N/4) = e~

and AS2(0) = ASZ(0)/(n/4) = 1 we get:

7(Ne ™ + 3n)N26(w) 9Vexcn N
Si,.1, (W) = 2 2 22 (20)
2(N + 3n) 18w? + 2(N + 3n)2~2,.
3m(Ne 2" 4 3n)n?6(w) 3Vexen N
Ss,.8,(W) = 2 2 2~2 (21)
2(N + 3n) 18w? + 2(N + 3n)2~2..
The equal time correlations (16) and (17) can be recovered from these formulas by integration:
1
(xizj) = o dw Sp,a; (W) . (22)
T
For an initial coherent spin state (e~2" = 1), the ME collision process does not change the collective spin variances,

but it affects the noise spectra. The J-shaped atomic spectra of the two spins in absence of ME collisions acquire a
width of order vYexc(IN 4 3n), that is, of order v,,. The contribution to the total variance of the “broad” part of the
spectrum which is not sensitive to initial squeezing in the system, is large for the metastable state and small for the
ground state.

III. THE MODEL FOR SQUEEZING TRANSFER

In figure 2 are represented the *He energy levels which are relevant for our squeezing transfer scheme. The atoms
interact with a coherent control field of Rabi frequency €2 and frequency w; that we treat classically, and a cavity field
described by operators A and Af. The field injected into the cavity, A;, with frequency ws, is in an amplitude-squeezed
vacuum state: (4;,) =0 and Aan =e 2", AYzi = €27, where we have introduced the field quadratures

X=A+A Y =i(AT - A). (23)

The coherent field (w-polarized) and the squeezed vacuum (o~ -polarized) are tuned to the blue side of the so-called
Cy transition (A = 1.08 um) from the F = 3/2 level of the 235 metastable state to the 23 P, state, the highest in
energy of the 23 P multiplicity [15]. The atom-field Hamiltonian of the system is:

H=Hy+h {Qe_iwlt(573 + Sgg) + A(gAS74 + 93383) + hC} (24)

where Hg describes the atom-field free evolution, g4 (p)y = da () \/2mwa/RV are the coupling constants between the
atoms and the cavity field, V' being the volume of the cavity mode and d,4 (p) the atomic dipoles of the transitions
7 < 4, (8 < 3). The system is initially prepared in the fully polarized state (Ipo) = N and (Ss4) = n by preliminary
optical pumping.

Non-Hamiltonian contributions to the evolution of the system operators describe damping of the cavity mode, spon-
taneous emission from the excited state and the ME collisions described in detail in the previous section. Linearizing
the equations in the rotating frame around the fully polarized state solution we obtain the following closed set of
equations:

So1 = —(ym — i012)S21 + iQSs1 + fon (25)
Ss1 = —(v —i(A1g — 20145))Ss1 + Q521 + fs1 (26)

. 2 7 . .
S32 = gm (—5532 + V3891 + SG5> + 023532 — 182(S38 — S72) + f32 (27)
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FIG. 2: a) Metastable and excited sublevels of *He. Three coupling constants to the light are introduced. b) Squeezing transfer
scheme using a control field €2, a squeezed vacuum field A and metastability exchange collisions. 9 and 0 are the ground state
sublevels.

Sra = —(y —i(Agz — 20145))S72 — iQ(S7s — Sz2) + fro (28)
: 1 2V/3 V3 . .
S43 = Ym (5543 + 7(532 + SGS)) + ?'YfIOQ + 9034543 — 102547 + faz (29)
. 7 2 2 .
Ses = —gm Ses — ?\/5521 - ?532 + 405695 + fo5 (30)
Sz = —(y+iAu7)Sar — iganA — iQSuz + far (31)
Szg = —(7+iA38)S38 — i§2(S32 — S78) + fas (32)
Srs = —(2y — ids7)S7s — iQUS72 — S38) + frs (33)
: 1 1 V3 V3 .
Ipg = 3 {—371109 + 29, <532 - 5365 + 7543 + 7521> + i690do9 + foo (34)
A = —(k+iAc)A —igpSss — igaSir + V2K Ain (35)
where
Ay = (Bj— Ei) —ws (36)
bij = (Ej = Ei) = dtas (37)
5las = W1 — w2, (38)
v is the coherence decay rate due to spontaneous emission from the excited state and collisions and we supposed €2
to be real. The non-zero atomic diffusion coefficients are
2 2¢/3
D3 34 = 5vmn, Daz o0 = Dogsa = ———Ymn, Daz74=27n, Dog o9 = 2vmn (39)

3 3

We notice that metastable variables So1, Sg1, S32, S72, Sg5, S3s and Sryg form a closed subset of equations involving
Langevin forces which do not give rise to non-zero diffusion coefficients in the fully polarized limit we consider here.
Using the same argument as in section II, we deduce that these variables do not contribute to the spin noise and can
be neglected. One is then left with only four relevant equations

Syz = *%543 + gvﬂog + 9034543 — 12547 + faz (40)
Syr = —(y+1iA)Syr —iganA — iQSys + fur (41)
Iog = % (—3’Yf109 + 'Vm\/§S43) + 01109 + foo (42)

A = —(k+iAc)A —igaSe + V2 Ai, (43)

with A = Ay7 and 67 = dgg.



CHAPITRE 3. OPTIQUE QUANTIQUE 49

IV. NUMERICAL RESULTS

Equations (40)-(43) can be used to find the variances of the metastable and ground state spin numerically. A typical
result is displayed in figure 3, for which we assume that a squeezed vacuum field with AX?2 = 0.5 is injected into the

cavity with the coherent control field in the squeezing-transfer configuration. In this figure AS2 and AI2 represent

B [Tesla]

7 -6 -5 -4 -3 2

10 10 10 10 10 10

LR UELLRLLL | LELELRALLL | LR LELELRALLL | LR
10° 10* 10 10° 10* 10° 10°
F/ym

FIG. 3: Symbols: numerical calculations for spin variances in ground state (squares) and metastable state (circles), as a function
of the ratio I'/vm (lower z-axis). The corresponding magnetic field needed to satisfy the resonance conditions (46) and (47)
is shown in the upper z-axis. Numerical values of parameters are e 2" = 0.5, C' = 500, x = 100y, A = —20007, v = 2 x 10”
s7!, Ym =5 x 10 s71. The crossed squares correspond to a calculation including an extra relaxation rate o = 10® s™* for the
metastable variables. The lines correspond to the analytical predictions (50) and (51).

the variances of Sy and I, both normalized to their coherent spin state values. They are plotted as a function of the
ratio I'/7,, where I" is the pumping parameter

I =+3Q%(1 4 0)/A?, (44)

and C = ¢g?n/(x7) the cooperativity. It is precisely this ratio I'/«y,, which acts as a control parameter to decide
how the available squeezing of the field is shared between the metastable and the ground state spin. If I' > ~,,,
correlations are established among the metastable-state spins, the leakage of correlation towards the ground state
being negligible. The metastable collective spin is squeezed while the ground state spin remains unsqueezed. In the
opposite limit I' < v,,, spin exchange is the dominant process for metastable atoms; they transfer their correlations
to the ground state which then becomes squeezed, while the metastable state remains unsqueezed.

In this plot we have chosen the best conditions for squeezing transfer:

1. The metastable coherence Sy43 is resonantly excited by the two fields in a Raman configuration. By introducing
the effective two-photon detuning for this coherence

0 = 834+ Q%/A (45)
accounting for the light-shift of level 3, this condition reads 6 = 0, or

(E4—E3)/h+92/A=wl—WQ. (46)

2. The ground state coherence Iy should be resonantly excited by the metastable coherence (67 = 0), i.e.

(EO*EQ)/TL:W17W2 . (47)

In practice a magnetic field (shown as the upper z-axis) can be used to simultaneously fulfill (46) and (47). When
the resonance conditions are fulfilled the difference in the Larmor frequencies in the metastable and in the ground
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state is exactly compensated by the light-shift induced by the coherent control field. Choosing I' = 0.1, as a working
point, the required field is about B = 57 mG, corresponding to w; = 184 Hz.

The vapor parameters in the figure correspond to a 1 torr sample at 300 K, with v,, =5 x 106 s~ and v = 2 x 107
s~!, and a metastable atom density of 3.2 x 10'* atoms/cm® which gives n/N = 107¢. The symbols with a cross are
a second calculation in which we added a finite relaxation rate in the metastable state g, to account for the fact that
metastable atoms are destroyed as they reach the cell walls. We notice that only the ground state spin squeezing in
the region I' < 7, is affected.

V. ANALYTICAL RESULTS

In order to have a better physical insight it is possible to find simple analytical results within some reasonable
approximation. By adiabatic elimination of the polarization S47 and the cavity field assuming v,x > vp,7f, one
obtains

: Ym I ol Q Qgn |2
. — 4+ — —10)Sys = —=1I, - — ——/ —Ain 4
S43+(3 +3 i0)S43 \/309+f43 :f47+l ; - (48)
Iog + (v —i61) o9 = dm Saz + foo (49)

V3

In deriving (48) we assumed a Raman configuration A > ~, % < 1 and that the cavity detuning exactly compensates
the cavity field dephasing due to the atoms: A¢ = Cky/A. From equation (48) we see that (v, +1")/3 is the inverse
of the characteristic time constant for the metastable coherence evolution.

A. Resonant case

If the resonance conditions (46) and (47) are satisfied (6 = §; = 0) and in the limit v; < T, y,,, we can calculate
the variances of the metastable and ground state spins

N 5 C _

2 _ ' _ m _ _ 2r
A2 = < {1 e (U )} (50)

9 n r C _op
=i = a- 1
AS)y 4{ Frymor1t ¢ )} (51)

which are plotted as full lines in figure 3.

B. Non-perfectly resonant case

In order to test the robustness of our scheme, let us now concentrate on what happens if the resonance conditions
(46) and (47) are only approximatively satisfied. We will focus on the variance of the ground state spin coherence Igg.
By adiabatically eliminating the metastable coherence S43 one obtains

Ym V3

Ioo + [Cr +ib] Log = foo + m

Q Qgn /2
<f43 - Zf47 + ZT ;Am> (52)
The real part in the brackets
D(ym +T) + (36)?
T m +T)2 + (362

is the inverse of the effective time constant for the ground state coherence evolution which would also be the “writing”
(or “reading”) time of the quantum memory. T'z' = 2s in the example of figure 3 for T' = 0.17,,. It would be
proportionally shortened by increasing the metastable atoms density although Penning collisions prevent in practice
metastable atoms densities exceeding 1019-10'! at/cm?. The imaginary part in the brackets

35'ym
b=— — +4 54
(’Yf T £ (33 1) (54)

(53)
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is a light-shift “brought back” to the ground state, which is zero in the resonant case. Equation (52) can be used to
calculate the best squeezing (optimized with respect to the transverse spin quadrature) of the ground state coherence:
AIZ,., = ming AIZ with Iy = I, cos 0 + I, sin 0. We obtain

N . C
AIQGS :—{1— m_ 1 — (e~ 2" + msinh(2r } 55
e ST @ ot ) "
where
1 ! (56)
m =
1+ (0/TFr)?
1.2+ 1.04
1.1 @ /'—- 0.8 (®)
10 0.6
0.9] 0.41
. golsf = 0.2
| 3 0.7] 0.0
0.2 \__-
0.6
0.41
B I T I T T 02 & e e
% / re 5 / r
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FIG. 4: Normalized ground state spin variance corresponding quantum transfer efficiency n; as a function of é;/T'r (while
0 = 0) (plots (a) and (b)), or 6/(I'/3) (while §; = 0) (plots (c) and (d). Symbols: numerical integration of equations (25)-(35).
Lines: analytical expression (55). Parameters are the same as in figure 3 and T' = 0.17,,,.

We show in figure 4 the effect of a frequency mismatch in on the normalized spin variance, AT y2 and the corresponding
squeezing transfer efficiency n;

1-ATZ

=1 o2 (57)

nr
In this example, a frequency mismatch of the order of I'/3 in the metastable state or of the order of 'y in the ground
state affects the efficiency of the squeezing transfer. The condition for the ground state frequency matching (47)
imposes stringent requirements on the homogeneity of the magnetic field. Because of the sinh(2r) in equation (55),
the larger the squeezing the worse are the consequences of a mismatch in the condition on §; = 0 on the ground
state atoms. Physically, if a significant dephasing between the squeezed field and the ground state coherence builds
up during the squeezing transfer time, the atoms will see an average between the squeezed and the anti-squeezed
quadrature of the field noise. We can easily estimate the required magnetic field homogeneity as follows. Let us
introduce the Larmor evolution frequencies in the metastable and ground states: in low field, hiw, = paB (a=I,S)
with pr/h = 3.24kHz/G and ps/h = 1.87TMHz/G, and let AB be the maximum field difference with respect to
the optimal value in the cell volume. For low field, the condition on AB to preserve the transfer efficiency reads

urAB < hI'p. Since Q2/A ~ PMAC ~ L5 B we get %ﬁ—;%%% < 1 or, in the regime I' < 7y, 600%% < 1.
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With the parameters of figure 3 this gives a condition on the magnetic field inhomogeneity: AB/B < 4 x 1074, In
figure 5 we calculated the variance of the ground state spin as a function of '/, for an increasing inhomogeneity
AB/B from zero (thick line) to 6 x 10~%. In practice a homogeneity of 100 ppm should be sufficient for the chosen
parameters to guarantee that all atoms will be squeezed.
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FIG. 5: Normalized “best” variance of the ground state spin as a function of I' /7, (lower z-axis) for an increasing inhomogeneity
AB/B from zero to 6 x 10~* by steps of 1 x 10~*. On the upper z-axis we show the corresponding homogeneous magnetic
field needed to satisfy resonance conditions (46) and (47). Numerical values of parameters are e™?" = 0.5, C' = 500, £ = 1007,
A=—-2000y, y=2%x10" s, v =5 x 105571, 40 = 0.

VI. OPTICAL READOUT
A. Outgoing field squeezing

As briefly stressed in [3] the squeezed fluctuations which are stored into the nuclear spins can be retrieved optically
in the field exiting the cavity by using the reverse transfer process. Indeed, once the write sequence of the quan-
tum memory has been completed, both the fields and the discharge can be switched off, leaving the atoms in the
fundamental state in a spin-squeezed state. After a variable storage time, switching back on the discharge and only
the control field in the same configuration as for the writing phase (I' < 7;,), will rapidly put a small fraction of
atoms in the metastable state and start the reverse transfer process from the fundamental atoms to the field. The
correlations in the ground state will slowly transfer via the metastable state to the intracavity field. This will then
result in squeezed fluctuations for the field exiting the cavity, which can be measured by homodyne detection.

More quantitatively, if we still assume that the metastable spin observables and the intra-cavity field adiabatically
follow the ground state spin observables and the evolution equations for the fluctuations of the squeezed component
are in the resonant situation, we have

Iy(t) = =TrI,(t) + BXin(t) + fy (1) (58)
Xout(t) = \/ﬁX(t) - X’m. (t) (59)

with

Tm gAnQ\/§ 2

=051 28 V=
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10

i = Tm V3 fas — fsa Q fra — far +fog—fgo
Y 4T 2i A2 2i

(61)

Denoting by ¢ = 0 the start of the readout sequence and by e=*" = AIZ(0)/(N/4) the initial squeezing of the ground
state nuclear spin, the two-time correlation function of the outgoing field amplitude quadrature can be obtained via
(59) after integration of (58)

C(tt') = (X" ()X () = 6(t — ') — 20y [1 — e~ 2] TP (H1) (62)

The d-correlated term corresponds to the vacuum fluctuations contribution, whereas the second term corresponds to a
transient squeezing for the outgoing field which is proportional to the initial atomic squeezing. In (62), n; designates
the optimal quantum transfer efficiency in the ground state

__m _C
 m+IDCO+1

nr (63)
The ground state squeezing can be adequately measured by homodyne detection using a temporally matched local
oscillator as shown in Refs. [6, 16]. Using a local oscillator with envelope £(¢) the normalized power measured by a
Fourier-limited spectrum analyzer integrating over a time 7T is given by

1 T g [T t+T —
_ it ! —iw(T—T / ’
Pit) = —E(t)2 /77T/T o /. dT/t dr'e EMETC(r, ") (64)

In order to measure the atomic squeezing one has to maximize the temporal overlap between the local oscillator and
the field radiated by the atoms: £(t) oc e"T'¥*. For such a local oscillator and for an integration time longer than the
readout time F;l the measured power can be written as the sum of a shot-noise term N and a time-dependent signal
term S proportional to the initial squeezing:

P(t) =N —S[1 — e 2]e2Trt (65)

with § ~ n; V. The ground state nuclear spin fluctuations can therefore be measured optically with the same efficiency
nr as in the write sequence. However, because of the slow character of the correlation transfer process in the ground
state the readout time is as long as the write time. As expected it is not possible to access the quantum memory
faster during the readout than during the write phase. One could think of a faster readout method by transferring
the fundamental atoms fluctuations to the metastable atoms and perform the optical readout in the regime I" > ~,,.
However, as we showed in section II, starting with a squeezed fundamental spin and first switching on the discharge
(without the fields) will transfer very few correlations from the fundamental to the metastable atoms and almost no
squeezing will be retrieved in the field.

VII. ENTANGLING TWO SEPARATE SAMPLES

A direct and important extension of the previous results is that it is possible to transfer quantum correlations
between different light beams to two spatially separated nuclear spins. If one disposes of EPR fields this allows to
entangle two separate ensembles [18]. Such EPR atomic states are very useful for quantum information protocols
involving the manipulation of continuous variable entanglement, such as atomic teleportation for instance [19].

Let us consider two identical ensembles 1 and 2 illuminated by EPR-correlated vacuum fields AE;) and coherent
control fields ©; (i = 1,2). Without loss of generality we assume symmetrical field correlations of the form

A2Xi(’rl;,) — AQYZ.S) =cosh(2r) (i=1,2) (66)
(KXY = —(0YD) =simb(2r) (i # ) (67

i.e. that the amplitude quadratures are correlated and the phase quadratures anti-correlated: AZ(XZ%) - Xi(s)) =

A? (YZS) + Ylg)) = 2¢~?". For perfect entanglement (r = co) these EPR variances vanish. Both spins are initially
prepared in a coherent spin state and we assume an equal incident power on both samples (1 = €2). Under the
same adiabatic approximations as before, the fluctuations of the transverse spin components satisfy equation of the
form (58)

Iy? = —I'ply,; + 5Xi(:b) + fyi, (69)
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(i = 1,2). Because of the linearity of the coupling in this regime, the EPR atomic nuclear spin operators, I;1 + I;2
and I,; — I2, are clearly coupled to the EPR field operators

d - .
o+ Lo) = Tl + Loa) = B +YiD) + for + fua (70)
d (1) (2) f f
E(Iyl - Iy?) = _FF(Iyl - Iy2) + 5(Xm - Xin ) + fyl - fy? (71)

The amount of EPR-type correlations between the incident fields is given by the half-sum of the EPR variances
1 1 2 1 2 _or
& =5 [M(x) - X0+ 220+ YD) = 2072 (72

In the Gaussian approximation the entanglement between the nuclear spins can be evaluated using the same quantity
(also normalized to 2)

2
SI = N [AQ(Izl + I.T2) + AQ(Iyl - IyZ)} (73)
It follows from (70-71) that the last two quantities are simply related by
Er :’I’]]cgf-l—Q(l —’171). (74)

Like squeezing entanglement can also be in principle perfectly mapped onto the nuclear spins with an efficiency 7y

(63), close to unity in the regime I' > 7, and C > 1. Let us introduce the correlation functions C}i’i) of individual
spins inside the ensemble ¢ (i=1,2):

ATZ 1

1 AN

(i=1,2) (75)

and the correlation function C}i’j ) of two individual spins belonging to the different ensembles i and j:

where the overline indicates the normalization of the correlation functions to N/4. In our case for n; ~ 1 we get:

1,1 2,2 cosh(2r) — 1
(12) _ o)  sinh(2r)
o = o = e (78)

It is interesting to note that the two correlation functions C}l’l) and 651’2) become approximately equal for a large
entanglement e2” >> 1 so that an individual spin is about as much correlated with the other spins in its own ensemble
as with the spins of the other ensemble.

VIII. THE IMPERFECT POLARIZATION CASE

The nuclear polarization of the sample is defined as

~ (loo) — (Iog)
F= (Too) + (Iog) (79)

In practice polarization between 80% and 85% are currently achieved by optical pumping in dilute 3He samples [20]. Tf
the atoms are prepared in a state which is not fully polarized - P # 1 - the situation is clearly more complicated than we
described in [3] and in the present paper. In particular, equations (25)-(35) and (39) obtained by linearization around
the fully polarized state are no longer valid. We did not perform a complete analysis in the P # 1 case. However, one
can have a good idea of the result by using the simplified model of [3] which involves only two metastable sublevels
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FIG. 6: Sublevels 1 and 2 are metastable, level 3 is the excited state, 9 and 0 are the ground state sublevels. We include a
relaxation process in the ground state so that P # 1 in steady state.

(see figure 6). As in section III, a Raman transition is driven by a coherent control field of Rabi frequency Q and a
squeezed vacuum cavity field:

H=Hy+h {Q Sare= 1t 4 g A Sao + h.c.} : (80)

In this toy-model the control field Q also acts as an optical pumping beam (able to transfer the atoms from sublevel
9 to sublevel 0) and we introduce explicitly a relaxation in the ground state, so that P # 1 in steady state. Let us
introduce for this model the rescaled coupling constant g, the atomic one-photon detunings A; and A, the two-photon
detunings § and d;, and two pumping parameters I'), and I'":

Al == (Eg—El)/h—wl, A:(Eg—Eg)/h—wg, (81)
~ 02
o = Al—A—‘rK, 5I:(E0—Eg)/h—(UJ1—W2), (82)
QQ
Tr = 775 I'=T,(1+0), (83)

where « is the optical coherence decay rate and C' is the cooperativity parameter defined by equation (44). For the
atomic operators we introduce Sy = Sa1, S— = S12

Se=(5-+54)/2, Sy =i(S-—54)/2, 5. = (S22 — 511)/2, (84)

and similarly for the ground state operators. In the limit of large one photon detunings the excited state and the
optical coherences can be adiabatically eliminated, yielding a set of equations similar to those of Ref. [17] with the
addition of metastability exchange. By adiabatically eliminating the field (assumed to be resonant in the cavity) and

for & = 0, 65 = 0, we obtain:

Sy = —(Tp+7m)Ss + 7Ly +2iGAS. + +f3, (85)
L ~ T ~ ~

S. = —(Tp+7m)S: + L + % +iglATS, — AS_] + f5. (86)
A = —(k+iAc)A+i§Ss + V2hAm (87)
j+ = *(7f+F1)]+ +’Ym§++fl+ (88)
L = —(y +T)L +9mS. + 1. (89)

The semiclassical version of equations (85)-(89) has a stationary solution (Sy) = (I) = (As,) = 0 and with

: v+ T !

S,) = —(I, P= 90

S = T AT, + 30/ Cg) o

We will have in practice 'y < 75, meaning that the nuclear polarization in the metastable state P* = (S,)/(n/2)
and the nuclear polarization in the ground state P = (I,)/(IN/2) are almost equal. In this toy-model the stationary
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P is determined by the balance between the decay I'y and the pumping I',. In reality, the atoms will be previously
pumped more efficiently with resonant light. When we linearize the equations around the steady state we obtain

igQn

Sy = —(F+9m)8 + = P2k A + 7714 + f3, o)
It = —(yp +T) 4 +vmSy + fr, (92)

with
[ =T,(1+CP) (93)

Starting from equations (91)-(92) one can proceed as in section V to obtain

— A 1 ny P*—1
A= —Y% = —_ (P — 1))+ L—— 94
i=Npa-p e Vit S6 TP &4
where
s . r
¢ = cp and Iy=_= (95)
L'+ vm
C m r
A (96)
C+1T 4y, I'y+14
For P* zPandé>>17 we have finally
AIZ = nre™ + (1 —np)/P (97)

Equation (97) shows that the main consequence of having P # 1 is a rescaling of the cooperativity and the pumping
parameter I' and the quantum transfer efficiency 1}, which are reduced by a factor P. Let us note that, for P # 1,
when no squeezing enters the cavity, the atoms are no longer in a coherent spin state. This shows, however, that
strong squeezing transfer is still possible with a non-ideal polarization.
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IX. APPENDIX

Evolution equations of the density matrix elements under ME collisions are:

d 1
Epu = Yexc <—NP11 + §P99 (p22 + 3p11 + 2P55))

d 2 V3

P12 = Vexe (Nplz + P99 ((p23 + ps6) V3 + 3012) + g Poo (p2z2 + 3p11 + 2055))
d 1 2

5013 = Yexc | —Np13z+ §p99 (p13 + p2a) + 5090 ((023 + ps6) V3+ 3,012)

d V3

—P14 = Yexc | —Npia + ——poo (p13 + pa2a)

dt 3

d 2 2

P22 = Vexe —Npaa + P9 (2p22 + ps5 + pes + 2p33) + P90 (\/§p21 + pes + p32)

2 1
+§p09 (\/§p12 + pa23 + Pse) + §Poo (p22 + 3p11 + 2ps5)
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Chapitre 4
Gaz dégénérés

Les numéros entre crochets font référence a la liste de mes publications, disponible en
fin de document.

4.1 Condensats de Bose-Einstein atomiques gazeux

L’obtention de condensats de Bose-Einstein atomiques gazeux a réellement secoué
la communauté de la physique atomique et dans une certaine mesure celle de 1'optique
quantique, ouvrant des nouvelles voies de recherche fascinantes. Le condensat est po-
tentiellement un outil en optique atomique, en optique non linéaire, en métrologie, en
information quantique, ainsi qu'un “mini-laboratoire” ou ’on voit en ceuvre la physique
quantique. En exploitant I'extréme souplesse et le haut degré de controle des systemes
d’atomes piégés, on peut non seulement porter les atomes (fermions ou bosons) a la
dégénérescence quantique, mais aussi réaliser des modeles de la physique statistiques ou
de la matiere condensée. L’exemple le plus marquant est la possibilité de changer a loisir
la force des interactions, en passant d'un régime de gaz parfait au régime d’interaction
forte caractéristique des systemes fortement corrélés.

Dans notre travail, souvent motivé par des expériences ou par des projets d’expérience,
nous nous sommes essentiellement intéressé a deux aspects. Le premier lié a la cohérence
de phase du condensat qui dérive du fait que, comme pour les photons issus d’un la-
ser, presque toutes les particules occupent un seul mode décrit par la fonction d’onde
du condensat. Le deuxieme lié aux caractere multimode du champ atomique lorsque la
température du systeme est non nulle.

4.1.1 Rappels : équation de Gross-Pitaevskii et approches de
champ classique

Considérons un gaz de N atomes bosoniques en interaction faible et a tres basse
température (7" < T, ou T, est la température critique) dans un potentiel externe de
piégeage U. Comme le systeme forme alors un condensat de Bose-Einstein presque pur,
on utilise un Ansatz de Hartree pour 'état & N corps : [¢0) = |N : ¢). En modélisant les
interactions entre atomes par un potentiel de contact

dmh’
V(7 =) = Vs = g5~ ) 9=

——a (4.1)

ou la constante g est liée a la longueur de diffusion a du vrai potentiel d’interaction,
qui caractérise les collisions a tres basse énergie, on déduit, par le principe variationnel,

59
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I'équation de Gross-Pitaevskii *

2

B 1) = | —a A+ () + NI D | 6(7,1). (4.2)

Dans ce contexte, ’équation (4.2) décrit I’évolution de la fonction d’onde ¢ du condensat
pur.

Il existe néanmois différentes lectures de cette équation. On remarque que I'équation
de Heisenberg pour I'opérateur champ 1 (7), obtenue a partir du Hamiltonien en deuxieme
quantification :

= [ Erd @) + 5 [ @ [ @F 3 @OPEWVE- @), @)
ou hy est la partie a 1 corps du Hamiltonien, suivie du remplacement
b — 1 =VNg, (4.4)

redonne ’équation (4.2). Dans ce contexte, la solution de (4.2) donne la solution exacte
d’un modele de champ classique. Cette fois, 1) représente tout le champ atomique, partie
non condensée incluse. Il est intéressant de remarquer que si, pendant son évolution, le
systeme passe par une phase turbulente suite a une instabilité dynamique, le point de vue
“condensat pur” ne peut plus étre maintenu. On peut en effet commencer I’évolution avec
un condensat pur a température nulle, et se retrouver avec un champ thermalisé a une
température non nulle.

Une troisieme clé de lecture de I'équation (4.2) est donnée par la représentation de
Wigner de l'opérateur densité du systeme. Comme nous 'expliquerons plus tard dans
le manuscrit, si 'on choisit un ensemble de champs {¢(7,¢ = 0)} qui échantillonnent
la distribution de Wigner W du gaz a t = 0, faire évoluer chaque ¥ avec 1’équation
(4.2) correspond a négliger les dérivés d’ordre trois dans I’équation d’évolution de W
(approximation dite de “Wigner tronquée”) 2. Les valeurs moyennes quantiques sont alors
remplacées par des moyennes sur les réalisations {t¢}, et les fluctuations thermiques et
quantiques seront prises en compte bien que de fagon approximée.

4.2 Brouillage et résurgence de phase : influence des
pertes de particules

La phase relative de deux condensats évolue d’une fagon non triviale a cause des
interactions entre les atomes. Il a été prédit théoriquement que cette phase, lors qu’elle
est bien définie initialement, subit une alternance de brouillages complets et de résurgences
dues au caractere discret du nombre d’atomes. Un probleme important qui restait a étudier

1La méthode variationnelle ici brievement décrite, qui néglige les corrélations & courte distance entre
les atomes, est valable pour un systeme dilué (nrd < 1, n étant la densité et ro étant la portée du
potentiel), ol les atomes sont la plupart du temps loin les uns des autres. Dans ce régime, c’est alors le
comportement asymptotique des fonctions d’onde qui est important pour décrire leurs interactions et on
peut remplacer le vrai potentiel d’interaction par un potentiel d’interaction modele. De plus, on impose
la condition n|a|* < 1, ce qui permet de traiter le potentiel d’interaction modele dans I’approximation
de Born.

2Pour un seul mode avec une non linéarité de type Kerr et un nombre d’occupation N, les termes
négligés sont 1/N? plus petits que les termes de champ classique.
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en vue d'une observation expérimentale de ces phénomenes était I'influence des pertes de
particules. Ces pertes, inévitables dans une expérience réelle, sont dues par exemple a des
collisions avec le gaz résiduel dans I’enceinte a vide, ou a des collisions entre trois atomes
du condensat formant une molécule et un atome rapide éjecté du piege.

Nous avons développé un modele pour décrire la dynamique de phase en présence de
pertes de particules. Nous avons obtenu une solution analytique approchée de ce modele
a l'aide du formalisme des fonctions d’onde Monte-Carlo. Nous avons démontré que I’am-
plitude des résurgences de phase est amortie exponentiellement avec un taux donné par le
nombre d’événements de perte par unité de temps. Ainsi, 'occurrence d’un seul événement
de perte en moyenne entre I'instant initial et la premiere résurgence réduit I’amplitude
de cette résurgence d'un facteur 1/e. Cette sensibilité extréme aux phénomenes de pertes
est la marque d’un état quantique fortement intriqué. En effet, entre deux résurgences de
phase, le systeme se trouve dans un état de type chat de Schrodinger superposition de
deux état mésoscopiques avec une phase relative bien définie entre les deux condensats.
Nous avons cependant identifié des régimes a faible nombre d’atomes dans lesquels les
résurgences seraient observables [8].

Si notre étude paraissait un peu académique en 1997, elle est d’extréeme d’actualité
aujourd’hui ol un projet de réalisation d'un chat de Schrédinger par cette méthode est
en cours dans I’équipe de Fabrice Gerbier et Jean Dalibard.
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Abstract. In the absence of losses the phase of a Bose-Einstein condensate undergoes collapses and revivals
in time due to elastic atomic interactions. As experiments necessarily involve inelastic collisions, we develop
a model to describe the phase dynamics of the condensates in presence of collisional losses. We find that a
few inelastic processes are sufficient to damp the revivals of the phase. For this reason the observability of
phase revivals for present experimental conditions is limited to condensates with a few hundreds of atoms.

PACS. 03.75.Fi Phase coherent atomic ensemble (Bose condensation) — 05.30.Jp Boson systems

1 Introduction

Since the recent experimental observations of Bose-
Einstein condensation in dilute atomic gases [1-5], much
interest has been raised about the characteristic features
of the condensate [6-8], and about its coherence properties
in particular. Considerable attention has been devoted to
the matter of the relative phase between two Bose-Einstein
Condensates (BECs): how the phase manifests itself in an
interference experiment (such as the one performed re-
cently at MIT [9]), how the phase can be established by
measurement, and how it evolves in presence of the elastic
atomic interactions (see e.g. [10] and references therein).
In this paper, in view of a possible experimental investiga-
tion of these problems, we complete the theoretical work
already done on this subject by studying the dynamics of
the relative phase in presence of loss processes occurring in
the two condensates. Such loss processes, unavoidable in a
real experiment, are due for example to collisions of con-
densed atoms with the background gas, or to three-body
collisions between condensed atoms followed by recombi-
nation of two atoms to form a molecule [11,12].

We consider two mutually non interacting and spa-
tially non overlapping BECs in two trapping potentials.
We suppose that the experimentalist has at hand a de-
vice, such as the one depicted in Figure 1, allowing both
the measurement of the relative phase between the con-
densates and the preparation of a state with a well-defined
relative phase [13]. Starting from an initial state with
a well-defined relative phase, we imagine that the two
condensates evolve independently, under the influence of
the atomic interactions, during a given time interval ¢ at

? e-mail: alice.sinatra@physique.ens.fr

> Unité de recherche de I'Ecole Normale Supérieure et de
P'université Pierre et Marie Curie, associée au CNRS.
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Fig. 1. Two BECs A and B in two non overlapping trap-
ping potentials. Some atoms can be let out of the condensates
towards a 50-50 atomic beam splitter. The detection of the
atoms in the output channels of the beam-splitter realizes a
measurement of the relative phase between the condensates.

the end of which a measurement of the relative phase is
performed. By repeating this procedure many times, one
accesses the probability distribution of the relative
phase [13].

In the lossless case, the relative phase shows collapses
and revivals periodically in time due to the presence of
elastic atomic interactions. In presence of losses, we find
that a few inelastic processes are sufficient to dramatically
damp the revivals of the phase. In practice, for typical ex-
perimental configurations, the observability of the revivals
is limited to condensates with a small number of atoms,
of the order of a few hundreds, for which the revival time
is of the order of 0.1 to 1 second.

In Section 2 we present the theoretical model describ-
ing the evolution of the system in presence of losses.
An interesting feature of the model is that it can be solved
almost exactly analytically within the Monte-Carlo wave
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function approach recently put forward by several authors
[14-17]. We take advantage of this circumstance in the fol-
lowing sections, to deduce analytical expressions for the
interesting phase-dependent measurable quantities, and to
a give a simple picture of the phase dynamics in presence
of losses.

In Section 3 we find an approximate analytical expres-
sion for the evolution of a single stochastic wave function,
and we give a simple physical interpretation of the result
pointing out separately the role of the elastic atomic in-
teractions and of the losses in the dynamics of the relative
phase of the condensates. In Sections 4 and 5 we concen-
trate on the case in which the two condensates are placed
in two identical traps and have initially the same average
number of atoms, and we use the analytical results of Sec-
tion 3 to calculate the time dependence of some relative
phase dependent quantities. In particular in Section 4 we
consider an interference experiment where one counts the
atoms detected in the two output channels of the beam-
splitter of Figure 1, and we analyze the two different phys-
ical situations in which the condensates’ relative phase is
initially sharply defined or is described by a “broad” rel-
ative phase distribution with a width > 1/ V/N. In Sec-
tion 5 we imagine instead an experiment in which the time
evolution of the whole relative phase probability distribu-
tion is measured. Sections 6 and 7 are dedicated to the
analysis of additional features that would appear in an
experiment; the effect of asymmetries in the parameters
of the two condensates and in the initial average number
of atoms is considered in Section 6, and the effect of fluc-
tuations in the initial total number of atoms is considered
in Section 7. Some concluding remarks are presented in
Section 8.

2 Model
2.1 Master equation

Let us consider two mutually non-interacting and spatially
non-overlapping BECs A and B in two harmonic poten-
tials. Our starting point to describe the evolution of this
system in presence of m-body losses is a master equation
for the density matrix p describing the atoms in the traps:

= Gl [ e ol @)
~ S @B, o), 1)

where {X,Y} denotes the anticommutator, and [¢(r)]™ is
the field operator raised to the power m which suppresses
m particles in r. In second quantized form the Hamiltonian
H reads:

1= [ @ [§ i) + 55 0P 0], @

where Hj is the one-particle Hamiltonian including
the trapping potential and the kinetic energy, and
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g = 4rwh%a/M where M is the mass of the atoms and
a is the s-wave scattering length.

The loss terms in equation (1) are parameterized by
the number m of particles lost per collisional event and
by the collisional constant k. Physically the case m = 1
corresponds to collisions of atoms in the condensate with
atoms of background gas in the cell; the case m = 2 cor-
responds to spin-flip collisions between condensed atoms
in magnetic traps, as only specific spin components are
trapped; the case m = 3 corresponds to three-body colli-
sions between condensed atoms, leading to the formation
of an excited molecule and a hot atom supposed to leave
the condensate. The collisional constant x for the pro-
cesses m = 1 and m = 3 has been measured for 8"Rb
atoms at JILA [11] and for 23Na atoms at MIT [12]. The
collisional constant for the m = 2 process has not been
accurately measured for these atoms yet, as the two-body
losses seem to give a smaller contribution to the total de-
cay rate.

We assume that at any time the state of the con-
densate A (resp. B) can be described in terms of a sin-
gle occupied mode, neglecting the excitations out of this
mode due to a non-zero temperature or to the loss pro-
cesses. We assume furthermore that these modes are the
single particle ground state wave functions ¢g, ¢» given
self-consistently as functions of the number of particles by
the Gross-Pitaevskii equation:

[HO + gNe| e (r; Ne)|2} Be(r; Ne) = pe(Ne)@e(r; Ne), (3)

where the pe(N,)’s are the chemical potentials for the con-
densates with N, particles, and where the wave functions
¢ are normalized to unity. In more mathematical words
we approximate the atomic field operator by:

b = 3 el ) (4)

e=a,b

where the operators cf (CZ) and ¢, (cp) create and annihi-
late a particle in the condensate A (B) respectively, and
where Ne = clce are the operators giving the number of
particles in each condensate. Note that we keep in equa-
tion (4) the dependence of the mode on the number of
particles in the condensate.

By substituting equation (4) into equation (2) we get

H = E,(N,) + Ey (V) (5)
with
E.(N.) =N { [ @616t N,

Lo N ()

+

(we have used Ne — 1 ~ N).

By assuming that in the considered time interval the
atom number distributions in the two condensates remain
peaked around the initial average values:

N, = Trlp(0)cled, (7)
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we expand the condensates’ Hamiltonian around N,, N,
keeping up to the quadratic terms:

H(Ny, Ny) ~ HY(N,, Ny) =

X pe(Ne) +

In our model we will use this quadratic version of the
Hamiltonian, where the chemical potentials i, and up and
their derivatives can be calculated by solving numerically
the Gross-Pitaevskii equation (3).

We now substitute our ansatz equation (4) in the loss
part of the master equation; since the condensates do not
overlap this amounts to the substitution

D)™ = Y lectelrs )™ 9)

e=a,b

in equation (1). In contrast to the Hamiltonian part which
required a careful quadratization in N, — N, to get the cor-
rect phase dynamics, the dissipative part will be treated
to lowest order by replacing N. by N, in equation (9).
This allows us finally to obtain a master equation of the
form:

dp 1 q (N \ m fim

o0 = T H W, Ny, ] + ) eled ™ plel]

e=a,b

= S {lel) e ™ o}, (10)

where (for e = a,b) we have introduced the rates for the
m-body collisions:

Ye = %/d3r|¢e(r; Ne)‘Qm' (11)

2.2 Stochastic formulation

To study the evolution of the system we adopt the Monte-
Carlo wave function point of view [14] which provides us
with a stochastic formulation of the master equation (10).
To this aim we introduce the jump operators:

Se = Veled™

and an effective Hamiltonian:

e=a,b

(12)

H.pp=H— % > sis.. (13)

e=a,b

The Monte-Carlo wave function [¢(t)) undergoes a non
hermitian Hamiltonian evolution ruled by Hcss (plus a
continuous renormalization) interrupted by random quan-
tum jumps occurring at a rate (¢(t)| 3 _, ,(SI1S)[¢(1)),
where [1(t)) is normalized to unity. The effect of a quan-
tum jump is to replace [¢p) by Se|¢) up to a normalization
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factor. Physically this corresponds to the loss of m par-
ticles in the condensate € via the m-body collisional pro-
cesses described above. The two kinds of jumps € = a,b
occur with relative probabilities:

Fa _ ((0ISLSalv(®) (14)

Py (y(t)[S] Sples (1))

Starting with a state with a fixed total number of particles
N, we can expand at each time the state vector on the
Fock basis

()= Y dn,|NaN—N,),

No=0,N

(15)

where N is the total number of atoms at time ¢ in the
two condensates, and we can carry out the evolution nu-
merically. The mean value of an observable O is obtained
by averaging the expectation value (1h(£)|O4(t)) over all
possible stochastic realizations for the evolution of [¢(t)).

Usually the Monte-Carlo wave function technique is
carried out purely numerically. It turns out that for the
present problem it is possible to treat analytically the evo-
lution of a Monte-Carlo wave function and, after a minor
approximation, average analytically over all the possible
stochastic realizations. This leads to a simple interpreta-
tion of the dynamics and allows the derivation of analyti-
cal formulas for observables’ mean values. As it will appear
in the figures the analytical results are in good agreement
with the numerical results.

3 Evolution of a single wave function

In this section we derive an approximate formula for the
evolution of a single stochastic wave function, and we dis-
cuss its physical interpretation. We first consider the sim-
ple case in which the condensates are initially in a phase
state, introduced in the beginning of the section, and sub-
sequently the general case in which the initial state is char-
acterized by a given relative phase distribution.

For the following it will be useful to introduce the op-
erators

NINb+Na, ﬁZNbea (16)

corresponding to the sum and difference of the number of
atoms in A and in B.

3.1 Phase states

A very useful class of states of two condensates is repre-
sented by the phase states [18]:

1
V2N NI

o) N = (cte 4 cle™ )N |0) (17)



CHAPITRE 4. GAZ DEGENERES

250

having a fixed total number of particles NV and leading to
a well-defined relative phase 2¢ between the condensates
A and B. These states have the remarkable properties:

N,
celo)n = Eew(&m_ae'b) |o)n-1 e=a,b

e = o+ )y Va,

where the d. o for €, = a,b are Kronecker deltas. The
first property reflects the fact that in a phase state, all
the particles are in the same state (see Eq. (17)), and
the second one shows that n and ¢ are to some extent
conjugate variables like the momentum and position of a
particle. Note that the phase states are not orthogonal:

N(@'|6)n = [cos(¢ — ¢")]", (20)

though the function [cos(¢ — ¢')]V in equation (20) be-
comes very peaked around zero when N — oo with a
width scaling as 1/v/N. Any state with a total number N
of particles can be expanded on the overcomplete set of
phase states:

(18)
(19)

/2 d¢

— C
—m/2 ™

lY) =A (@) [P}, (21)
where ¢(¢) can be obtained from the expansion of the state
vector on the Fock state basis:

c(g) = At Z gN/2 (w)l/z

N!
No=0,N

x /(NI (N, N — Noly). (22)
The quantity |c(¢)|? can be interpreted as the relative
phase probability distribution [13]. This distribution, flat
for a Fock state and very peaked for a phase state, is
normalized in such a way that:

/2
[ 2ok =1

—7/2 ™

(23)

The factor A in equation (21) ensures that |¢) is normal-
ized to unity. For N > 1 and for a ¢(¢) varying slowly
at the scale 1/ V/N, we can replace the scalar product

~N{(¢'|¢)n by the delta distribution y/27/Né(¢p — ¢') to
obtain A = (7N /2)'/4.

3.2 Approximate expression for |1 (t))

Consider the evolution of the state vector |¢(t)), from a
time tg = 0 to a time ¢, for a particular stochastic realiza-
tion. We imagine that k£ quantum jumps, each correspond-
ing to the loss of m particles, occur at times ¢4, ..., t; sepa-
rated by time intervals 7; = t; —t;_1 with j =1, ..., k; the
kth jump takes place in the condensate € with e, = a,b.
We have:

(1)) = Ne~wlflerst=t g o=wHerrmeg,

x e wHessTeor G e~ wHers Ty (0)) (24)
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where N is a normalization factor. By using the identity:

[Ce}mf(Nm Nb) = f(Na + mée,a»Nb + mée,a) [Ce}m

€=a,b, (25)

we shift all the jump operators in equation (24) to the right
by letting them “pass through” the exponentials and we
obtain:

() = N exp[—iHep s ({N})(t - t) /)
x exp[—iHes s ({Ne +mde.e, }) i /]
x exp[—iHe s {({NcAm(bc,c, +0c.er 1 })Th1/H]...
< ] Se; [ (0). (26)
=Lk
We introduce now the major approximation in our calcula-
tions by replacing [c[]™[c]™ by N.™ in the expression for
the effective Hamiltonian equation (13), supposing that

the fraction of lost particles is small. The resulting effec-
tive Hamiltonian then takes the form:

i

Hepp=H?— 5

A, (27)

quadratic in Na and N », where )\ is a constant representing
the mean total number of collisional events per unit of
time:

A=+ N

with Ao = 7N, X =mwN". (28)

In this approximation the statistics of the quantum jumps
is simply Poissonian with a parameter A\ and d ., = 1 —
Oa,e . takes the values 1 and 0 with probabilities A, /X and
Ao/ respectively, according to equation (14).

We then expand the effective Hamiltonians in each ex-
ponential in equation (26) around N,, N; in powers of
Me,ers M(Oe,e, + Ocrer,)s €lc. Due to the quadratic de-
pendence of equation (27) on N, and N, we limit the
expansion at the first order, the subsequent terms being
constants or zero. By using equation (27) we then obtain
the following result for the state vector at time ¢:

W) = Ne MU (0)UL (1) T] Se; [4(0)).

j=1k

(29)

In equation (29) we have introduced the unitary operators

Uo(t) =exp[—iHI({N:})t/] (30)
06) =exp | (G (1) 2+ S (9,113 ) 1]
(31)
where for € = a, b:
Ac=m Z Z desTj =M Z Oc,e bt (32)

J=Lkl=j5k =1,k

are random quantities that depend on the particular real-
ization.

We sketch out briefly the physical interpretation of the
result equation (29), considering the action of the succes-
sive factors in equation (29) on a phase state defined in
equation (17).
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e The factor Uy(t) in equation (29) accounts for the evo-
lution in absence of losses. Expressed in terms of the
operators N and 7 of equation (16) it involves:

HU({ND) = fo(N) + (V) + 2%, + 1) /8. (33)
We have used equation (8) and we have defined

. 1 R
V(W) = s — pa + H (N - N)
! !
_ %( Ny — No)},

where N = N, + N, and where p, stands for ,ue(]\_fe).
From the properties of the phase state we find that
the terms in 7 and A2 in equation (33), when ex-
ponentiated in Uy, (i) shift the relative phase at the
N-dependent constant speed v(N) and (i) spread the
relative phase (in a way analogous to the spreading of
a wave packet of a massive particle under free evolu-
tion), respectively. The term fo(NN) in equation (33) is
a function of the total number of atoms N only and
plays no role, since it amounts in Uy(t) to adding a
global phase factor to the wave function. The phase-
spreading will eventually lead to a collapse of the rela-
tive phase [6]. On the other hand due to the discrete-
ness of the spectrum of the operator 7 (the spectrum
of n consists of even integers for an even N, and of
odd integers for an odd N), there are special times at
which the exponential operator equation (33) reduces
to a mere translation of the relative phase, yielding
the well-known result that revivals should follow the
collapses of the relative phase. More precisely if one
uses the expansion equation (15) for the phase state
defined in equation (17), one realizes that a relative
phase distribution initially peaked around ¢ displays
revivals at the times:

(34)

tr =qm/x, qinteger (35)
where we have introduced:
x=tatth, (36)
At these times, for N even:
TN g) x = |6+ /2N (37)
and for N odd:
e R/ g) = eI/ g) . (38)

The initial relative phase distribution is then recon-
structed around (¢ + v(N)tg + gm/2) for N even and
around (¢o + v(N)tg) for N odd.

e The factor Uy (t) in equation (29) accounts for the pres-
ence of losses. Expressed in terms of the operators n
and N , it involves:

ome ome o
TM({NG}) Ay /h+ TM({NE}) Ay/h = f1(N) +:D)
39
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where global phase factors are included in f;(N). The
translation operator 7 appears in equation (39) multi-
plied by a random quantity D defined as:

Dsztl g—%:|

=1,k

Equations (19, 39) show that the relative phase in a
single stochastic realization is shifted by the random
amount D due to the loss processes. This effect will
turn out to have a dramatic influence on the coherence
properties of the condensates.

e Finally in equation (29) the action of the jump opera-
tors on a phase state is simply:

{Xéb,q - (40)

NN-1 N-mk+1]"?
H SEM)N_{? 2 2
j=1k
X €% ) Nk (41)
where we have introduced the quantity
a=m Yy [20—1]. (42)

j=Lk

Apart from numerical factors that will be absorbed
in the normalization and the phase factor involving
«, equation (41) amounts to reducing by a random
amount the total number of particles.

In the general case, an initial state with IV particles
can be expanded on the phase states set (see Eq. (21)).
By using equations (33, 39, 41), and getting rid of the
global phase factors we then obtain the wave function:

/2 o
W) =B [ Le(o.0pe

—m/2 m

X €7 p 4+ D+ v(N — mE)t) N mk, (43)

where B(t) is a normalization factor.

4 Mean beating intensity of the condensates

To monitor the evolution of the relative phase between the
condensates, a possible choice is to determine the relative
phase dependent quantity (cfc) after some time during
which the two condensates, initially prepared in a state
with a defined relative phase, evolve independently. As the
relative phase between the condensates is affected by the
elastic atomic interactions, the average (clc;) undergoes
collapses and revivals in time.

In the situation described in Figure 1 the measure
of {clcy) would correspond to the following measurement
scheme: Prepare a state in which A and B have a well-
defined relative phase [13]; let the condensates evolve dur-
ing a time interval ¢; then let p < N atoms escape from
the condensates and beat them on the beam-splitter. The

66
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counts registered in the two output channels of the beam-
splitter will be fluctuating variables whose averages over
many realizations of the whole procedure are [13]:

ch+el)(eate
o2 s,
~ %% ((clc(Z) + (clcb) + 2Re<clcb>> , (44)

the difference between I and I_ gives then the real part
of {clcy).

We shall now use the approximated formulas (29, 43)
to calculate the time dependence of (cfc,). The main re-
sult of this section is that the revivals in this quantity are
damped in time with a simple exponential law e~ where
the constant A, defined in equation (28), is the mean num-
ber of loss processes per unit of time.

In the present and in the following section we restrict
for simplicity to the perfectly symmetric case where the
two trapping potentials are identical and the two conden-
sates have initially the same mean number of particles:

Na = Nln (45)
Ya = Yo, (46)
Ha = Hb- (47)

Moreover we consider an initial state having a fized total
number of particles equal to N; and as a reminder of this
choice (when it is the case) we will attach a superscript
(..)7% to the averages. The non symmetric case for the
condensates will be considered in Section 6; while the ef-
fect of fluctuations in the initial total number of atoms
(requiring a further averaging over N) will be analyzed in
Section 7.

We calculate (cfc;)7% in two different physical situa-
tions. The first one refers to a sharply defined initial rel-
ative phase (A¢ ~ 1/v/N) for which we choose a phase
state as the initial state; the second one, probably more
realistic from the experimental point of view, makes use
of an initial phase distribution much broader than 1/v/N.
In each case we first calculate the expectation value of the
operator O = chep for a single stochastic realization using
the results of Section 3, and then take the average over the
stochastic realizations. In the whole paper we will denote
with (1(£)|O](t)) the single realization expectation value

and with (O) the quantum mechanical average.

4.1 Case of an initial phase state

Let us assume [¢(0)) = |¢) v; by using equations (29) and
(33, 39, 41), for a single realization, we find:

(W(@)lches|(t) = Nomr(d+ D|e’%ﬁ2‘c];cb

X e NG 4 Dyn_pr (48)
where x and D are defined in equation (36) and equa-
tion (40) respectively. Note that the contribution involv-
ing the drift velocity of equation (34) vanishes as we are
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considering here the symmetric case. The quadratic depen-
dence on 7 in equation (48) can be eliminated by shifting

cl ey through the exponential e~ using equation (25):

ei%»fﬁtclcbe—i%ﬁ?t _ e—ix(ﬁ+1)tc:rlcb (49)
so that
(W (®)lches]tp(t) = N—mr (¢ + D]e”XFV!
X C:(chw) + D)mekQ (50)
by using the properties (18, 19, 20) we then have:
N —mk ; ;
Olelelp)) = T oo
x [cos(xt)| N mk-1, (51)

The next step is to take the average of the result equa-
tion (51) over the stochastic realizations which amounts
to averaging over the random variables k, 7; and dp ; (the
last two variables appearing in the random quantity D).
We show the calculation of the average in detail in the
Appendix A. The result for (cfc;)** reads:

N —mk 1
> 2kl

k=0,N/m—1

<clcb>fiz _ 672i¢67)\t

x M u()] feos(e)] T, (52)
where the function u(t) is given by:
. sin(myt) ‘
u(t) = ot (53)

By identifying the factor N — mk with N under the as-
sumption of a small fraction of lost particles, and by ex-
tending the sum over k up to oo, we are able to express
the result in a compact way!:

<Clcb>fzz _ 67214)67)\“17”(1&)/ cos™ (xt)] g[COS(Xt)]Nil.

(54)
The factor [cos(xt)]¥ ~! in equation (54), already obtained
in [19] in the absence of losses, is responsible for the col-
lapses of the average value (c/c;)/* and for revivals at
times tg = g /x with ¢ integer. The collapses and revivals
of {cf cp)¥%* are shown in Figure 2 both (a) in absence and
(b) in presence of three-body losses. We see immediately
that the losses have a dramatic effect reducing exponen-
tially in time the average with the rate A given by equa-
tion (28). In fact at a revival times ¢ = tg, u(t) vanishes
so that the average value of {cf c;)/* is simply attenuated
with respect to the lossless case:

fiz

(chen)fss,, = ()" (clep){S e e, (55)

! Tt should be noted however that the compact formula (54)
diverges for xt = 7/2+qm, where the explicit sum equation (52)
should be used instead. At such points (cfcy)/*® = 0 anyway.
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Fig. 2. Collapses and revivals of (cf¢;)/™ for an initial phase
state (a) without losses and (b) in presence of 3-body losses.
The calculation is performed for ®"Rb atoms in the F =
1,mr = —1 state and for isotropic harmonic traps. The 3-
body loss rate is inferred from the experimental data of JILA.
The initial total number of atoms is N = 301, and the har-
monic frequencies are (2,/27 = §2,/2n = 500 Hz. Diamonds:
numerical result with 2.5 x 10* Monte-Carlo wave functions.
Solid line: analytical result.

by an exponential factor which is exactly the probability
that no particles are lost up to time t. The effect of losses
on the revivals, already significative when Atg ~ 1 (that
is one loss process has occurred on average at the revival
time), can be understood by the fact that in each single
Monte-Carlo realization experiencing a quantum jump at
a time t ~ tg the relative phase is shifted by an amount
D 2z 7. This point will be further exemplified in Section 5.

4.2 Case of an initial relative phase distribution
broader than that of a phase state

Since it may be difficult to prepare experimentally the
condensates in a phase state we now consider the more
realistic case in which the initial relative phase distribu-
tion |c(¢, 0)|2 for the condensates is broad as compared to
1/ V/N. To be specific we assume that the initial relative
phase distribution is a Gaussian centered at ¢ = 0:

VN

where ¢ ranges between —7/2 and /2. This choice corre-
sponds to a Gaussian distribution for the number of par-

¢(6,0) = Goexp (—~¢*/(44¢°)) <Ay <1, (56)
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ticles in the condensates:

(Nay N = Nof(0)) = Ge= (V2N /san - (57)
with An A¢ =1/2.

For a single realization, we use equation (43) and we
proceed along the lines of the previous calculation to get:

TN Yz /2 de d¢'
<Mmi%¢ﬁﬁ{3ﬁ ,K/{;77

x e(6,0)c" (¢, 0) 5 =)

% e_i(¢+¢,+2D)N71<¢/ _ Xt‘¢>N71
(58)

where N = N—mk with & equal to the number of quantum
jumps experienced by the Monte-Carlo wave function up
to time t. Now by using the fact that the scalar product
between the phase states for N > 1 is a very peaked
function of ¢ — ¢’ with respect to the other functions in
the integral, we perform the substitution:

G 2
qo1(0 = xtld) gy — cos™ " (gom) 7

x 8(¢" + gom —xt — ) (59)
where the integer g is chosen such that —7/2 < (xt+ ¢ —
gom) < m/2. As the factor ¢(¢,0) defined in equation (56)
is peaked around ¢ = 0, we neglect the dependence of
qo on ¢ so that the integer qo is finally chosen such that
—7/2 < (xt — gow) < /2. In this way we obtain

W)lehenly(t)) = (18O T eiae-20)

w/2 d ¢ )
<[ 000 (64 xt - qum,0) i
—m/2 ™
(60)
The next step is to average the factor e!X**=2D)gyer the
stochastic realizations. The procedure closely follows the
one in the Appendix A. By identifying NV with N, as in the
previous case, and by extending the boundaries of integra-
tion in equation (60) to +oo we can express the result in
the compact form?:

. N +oo
<Clcb>fzx _ ?e—/\f,[l—u(t)] Z
q=0

x e~ l(xt=am)/2)/246% (_1)a(N~1) (62)

2 To obtain equation (62) we use the condition A¢ < 1 to

set:
N ([ de , aig) U N
2</W/MC (@0 ) =5

fiz _
fx

<0uc£> =0 =
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Fig. 3. Collapses and revivals of <c);cb>f” for an initial phase
distribution broader than that of the phase state. The initial
total number of atoms is N = 301. The initial distribution for
the difference in the number of particles in the two condensates
is Gaussian with a standard deviation An = 6 and a vanishing
mean (so that N, = N;). The other parameters are as in Fig-
ure 2b. Diamonds: numerical result with 2.5 x 10* Monte-Carlo
wave functions. Solid line: analytical result.

where u(t) is defined in equation (53). The factor involving
the sum over ¢ in equation (62) plays the role of the factor
[cos(xt)]N ™! in equation (54) which was obtained for an
initial phase state. At each time tg = gm/x there is a
revival of the quantity (cf.cy)/** and equation (62) reduces
to the very simple expression:

(henf®, = (~1)IND(cle)f eNr. (63)
This formula does not depend on the initial width A¢ and
coincides with the one equation (55) obtained for a phase
state. There is therefore no possible way of reducing the
damping of the revivals by adjusting the initial width of
the phase distribution. Only the temporal width of the
revivals is larger for a distribution broader than that for
a phase state, as it clearly appears from a comparison
between Figure 3 and the previous Figure 2b.

Remark: Formula (62) can also be used to study the col-
lapse of the phase around ¢ = 0. For short times (¢ < tg)
we expand u(t) to second order in ¢ obtaining:

N o[
2 PP 84¢2

(chey

a

Vi {1 + %mZAqﬁz)\t} } . (64)

In the absence of losses we recover the collapse time
te = 2A¢/x [10] as the half temporal width at the relative
height e=1/2 of the mean signal (c{cy)7%*. Losses start ac-
celerating the collapse significantly when At > 1/m2A¢?.
As this last quantity is much larger than 1 the subsequent
revivals cannot then be observed.

5 Evolution of the relative phase distribution

We turn now our attention to the phase distribution
le(¢)|* which could be reconstructed in an experiment for
example via a series of multichannel measurements. We
show an example of the procedure in Figure 4 [13,20].
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Fig. 4. Monte-Carlo simulation of a multichannel detection
experiment using the device in Figure 1 to sample the relative
phase distribution corresponding to the initial state of Figure 3.
(a) Single realization of the multichannel detection: For each
dephasing 3; = in/10,i = 0...9 added to one of the input
channels of the beam splitter, p4(8;) (resp. p—(8:)) particles
are detected in the + (resp. —) output channel of the beam
splitter with py (8:) + p—(8:) = p = 20. The obtained integers
p+(B8:) (diamonds) are fitted with the function pcos®(¢o — 3)
(solid line) where —7/2 < ¢o < 7/2 is the adjustable param-
eter, varying from one realization to the other. (b) After 100
realizations of the multichannel detection (each starting with
new condensates): histogram for the obtained values of ¢o.

In the frame of our model, the evolution of ¢(¢) can
be obtained numerically from the evolution of the state
vector |1(t)) expanded on the Fock state basis by using
equation (22); however, as we show in the following, the
approximated analytical treatment allows us also in this
case to find some simple results at the revival times.

Let the initial state of the condensate, with a total
number N of atoms, be characterized by a given relative
phase distribution amplitude ¢(¢,0); the state vector at
time ¢ is then given by our approximated formula equa-
tion (43). One can easily check that the integrand in equa-
tion (43) is periodic of period 7 so that we can shift the
interval of integration to obtain®:

o, /2 ~
(1)) = B(t)e™ "/t / D 56— D~ o(M)1,0)6)

—m/2 m
(65)

where &(¢) = e %¢(¢) and N = N — mk. This result
has a very suggestive interpretation: the loss processes in
a single realization shift the relative phase distribution by
a random amount D, and the overall evolution can be sep-
arated in a random shift plus the Hamiltonian evolution.
To make clearer this interpretation, we have plotted in
Figure 5 the phase distribution at the second revival time
(given by Eq. (35) with ¢ = 2) for different realizations.
For Mp ~ 1, as in the figure, there is an important frac-
tion of realizations in which the relative phase is shifted
considerably. This is the reason why the relative phase
distribution at the revival time will be smeared out by
the losses when we take the average over the stochastic
realization, which we do now.

3 When ¢ — ¢+, c(¢,0) is multiplied by (1), exp(—iae)
is multiplied by (—1)™*, and the phase state |¢ + D + vt) 5 is
multiplied by (—1)V~™*.
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Fig. 5. Single realization relative phase probability distribu-
tion at ¢t = 0 and at the 2nd revival time ¢ = 2m/x for three
different Monte-Carlo wave functions. The parameters are as
in Figure 3. From upper left to lower right the wave functions
have experienced 0, 3, 1 and 0 quantum jumps respectively.

As in Section 4 we consider the symmetric case defined
by the equations (45, 46, 47). Furthermore we restrict our-
selves to the revival times t = tg = qm/x, ¢ integer (see
Eq. (35)). In this case the Hamiltonian evolution opera-
tor in equation (65) takes a simple numerical form (see
Egs. (37, 38)) and by comparing equation (65) to equa-
tion (21) we can simply read out the phase distribution
amplitude ¢(¢,t):

C(()bv tR) = E(¢]\7 - D7 0)’ (66)

where:
b5 =¢—qn/2 for N even (67)
by =0 for N odd. (68)

From equation (66) we see again that a single loss event
(which can lead to D 2 w) has a dramatic effect on the
phase distribution.

As shown in the Appendix B the phase distribution at
the revival times averaged over the stochastic realizations
takes the very simple form:

([e(@,tr))T™ = (1= M) + e A" c(on, 0).  (69)

At the revival time the relative phase distribution is
“damped” by the factor e *~® while a flat background
component appears. This effect is clearly shown in
Figure 6, where we have plot the averaged relative phase
distribution at ¢ = 0 and at the second revival time.
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Fig. 6. Relative phase probability distribution at ¢ = 0 and
at the 2nd revival time. The parameters are as in Figure 3.
Solid line: analytical prediction. Diamonds: average of 2.5 x 10*
Monte-Carlo wave functions.

6 Effect of an asymmetry
between the two condensates

In the previous sections we have investigated the relative
phase dynamics in the symmetric case for the two conden-
sates. In this section we extend the analysis to account
for a small imbalance in the initial average number of
particles

[Ny — No| < N, (70)
where N is the average of the total initial number of par-
ticles, and for arbitrary values of the parameters pg, tp,
Ya, Vb We restrict the calculation to the contrast of the
interference fringes between the two condensates averaged
over many experimental realizations, assuming an initial
phase distribution broader than the phase state.

Our initial Monte-Carlo wave function has a fixed total
number of particles equal to N, and a Gaussian distribu-
tion for number of particles in each condensate. The cal-
culation of (cfcp)f®® is now slightly more involved than in
the symmetric case, as the phase distribution amplitude
¢(¢,0) acquires a phase factor varying rapidly with ¢ at
the scale 1/v/N. All the calculations are therefore put in
the Appendix C, and we give here the result only at the
revival time t = t:

(chen)

N .
N—-1 —2iv(N)tr —Atr[1-U(t
n = (,1)q( ) 5 e (N)trg—Atr ( R)J7

(71)

where v(NN) is defined by equation (34) and U (t) is a func-
tion of time (see Eq. (C.11) in Appendix C). In Figure 7
we show an example of the time evolution of (c}c;)* in
the case of a 10% asymmetry in the initial number of par-
ticles N, and Ny. As far as the damping of the revivals is
concerned, no significant difference appears with respect
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Fig. 7. Collapses and revivals of {(c},cy) *® for a 10% asymme-
try in the initial number of particles N, and N in the conden-
sates N, = 135.5 and Np = 165.5, leading to Yo # 7b, fta 7 [t
The initial total number of atoms is N = 301. The initial dis-
tribution for the difference in the numbers of particles n in the
condensates is Gaussian with a standard deviation An = 6,
and a non-vanishing mean value equal to 30. The other pa-
rameters are as in Figure 2b. Diamonds: numerical result with
2.5 x 10* Monte-Carlo wave functions. Solid line: analytical
result.

to the symmetric case. The damping of the revivals is in
this case ruled by the exponent:

—AtR[l - ReU(tR)] (72)

where:
1

ReU(tR) = by

(Ao sinc(mpuytr/k) + A sinc(myltr/h)),
(73)

where sinc(z) = sin(z)/z. Obviously |[ReU(tg)| < 1,
meaning that an asymmetry between the condensates
cannot amplify the revivals with respect to the lossless
case. From equation (73) we notice, just as a curiosity,
that a complete suppression of the effect of the losses
(ReU(tg) = 1) would occur only in the case in which
there are no losses in the condensate A (A, = 0) and no
elastic interactions in the condensate B (uj, = 0) (or vice
versa).

A trivial effect of the asymmetry, evident in
Figure 7, is the appearance of oscillations of the mean
value {cicy)/™ due to the non zero drift velocity of the
relative phase of the condensates. We will see in the next
section that this effect, harmless at first sight, can have
dramatic consequences when we consider the effect of the
dispersion in the initial total number of particles N.
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7 Effect of fluctuations in the total number
of particles

Through all the previous sections in this paper we have
chosen an initial state, represented by our initial Monte-
Carlo wave function, with a fixed total number of parti-
cles in the condensates. The averages that we calculated
{...)7% then correspond to the real quantum mechanical
averages supposing that the initial total number of atoms
is fixed to a value N for any realization of the experiment.
In practice it is probably difficult to produce a Fock state
for the condensates and the total number of atoms should
be governed by some probability distribution P(N). Since
we have analytical formulas for the quantities of interest
(such as the average {(c!c,)/™), it is very simple to add a
further averaging over N for a given P(N). Suppose for
example that the distribution for the initial total num-
ber of atoms is a Poissonian distribution of parameter N.
By averaging the result equation (71), valid at the revival
times tg for slightly asymmetric condensates, we get:

- Ee*)\iR[lfReU(tR)]

2

xXe

[(chen)y |

7N{sin2(u;tR/2ﬁ)+sin2(,uLtR/Zh)}. (74)
The result equation (74) shows that a slight asymmetry
between the condensates kills the revivals of (cfcp): the
quantity in curly brackets, multiplied by the large number
N, does not vanish in general when i/, # ;. This is due to
the fact that the drift velocity of the relative phase v(N)
in equation (71) depends on the initial total number of
fiz

particles, giving to <C£Cb>t:t3 a phase factor of the form:

’_
exp|[—2iv(N)tg] x exp [z (N —N) % tR]

R P Ny e 1

= exp [z (N—-N) P qﬂ}. (75)

To be able to observe the revivals it is then necessary to be
as close as possible to the symmetric conditions in order
to satisfy:

r_
B Fa gy <1, (76)

1y, + Ha

where AN is the width of the distribution P(N).

If the symmetry between the condensates is perfectly
realized, the atom number fluctuations have the simple
effect of doubling the revival time. We show an example
in Figure 8 where we averaged the result for (cfc,)/* for
an initial phase state (Fig. 2) using a Poissonian distri-
bution for P(N). The main effect is the disappearance of
the “odd” revivals; this is due to the fact that the ampli-
tude of these odd revivals for N particles is proportional
to [cos(gm)]| VD = (=1)¥=1 which alternates its sign
depending on the parity of N.

In fact it is possible to show that a Poissonian ensemble
of phase states is equivalent to a coherent state for the two
condensates, as long as one calculates the mean values of
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Fig. 8. Collapses and revivals of <c);cb)f” for an initial phase
state with N = 301 particles (solid line) and after an average
over N with a Poisson distribution of parameter N = 301
(diamonds). The effect of the average is mainly to suppress
the odd revivals. The parameters are as in Figure 2b and the

results are obtained from the analytical predictions.

operators commuting with the total number of particles
in the condensates. For the perfectly symmetric case in
Figure 8 we then recover the result obtained in [19] (in the
absence of losses) i.e. the doubling of the revival period
for a coherent state of the condensates as compared to the
phase state.

Within the coherent states pictures we can also rein-
terpret the result equation (74) for the asymmetric case in
the following way: in order to observe a revival of the rel-
ative phase between two condensates it is necessary that
both condensates display a phase revival at the same time
i.e. p,/2htr = qm and py /2htg = ¢'m, with ¢, ¢’ integers.

8 Conclusion

We have studied the dynamics of the relative phase be-
tween two Bose-Einstein condensates in presence of m-
body loss processes in order to question the observability
of the collapses and revivals of the phase predicted by
purely Hamiltonian models.

We have shown that the losses damp exponentially in
time the phase dependent quantity (cf,c;) (see Eq. (55) for
an initial phase state and Eq. (63) for an initially broader
phase distribution). The decay rate A of (cfc;) coincides
(up to the factor m) with the mean total number of parti-
cles lost per unit of time, and it is therefore approximately
N times larger than the inverse lifetime of a particle in the
condensates, where N is the total number of particles ini-
tially in the condensates.

The dramatic effect of the losses on the relative phase
has been suggestively interpreted within the Monte-Carlo
wave function approach. In a single realization each single
loss event occurring at a time of the order of the revival
time shifts the relative phase by a random amount of the
order of . A few loss processes are then sufficient to smear
out the relative phase completely at the revival time when
the average over the stochastic realizations is taken. For
this reason the experimental observation of the revivals
is limited to condensates with a small number of atoms
where the condition Atg < 1 (where tg is the revival time
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Fig. 9. Collision fluxes A} (stars) and A® (diamonds), due to
one-body and three-body collisions respectively, calculated as
in Figure 2, and inverse of the first revival time 1/t = x/7
(solid line) as a function of the total number of atoms. The
trap frequency is 2 = 27 x 500 Hz in (a) and 2 = 27 x 200 Hz
in (b). The vertical dashed line for N = 301 in (a) represents
the conditions of Figure 2b. A(!) corresponds to a lifetime due
to background gas collisions of 350 seconds.

Eq. (35)) can be satisfied for all the relevant loss processes
in the system.

In order to give an idea of the possible scenarios and
of the order of magnitudes in different experimental con-
ditions, we have shown in Figure 9 the loss rates due to
one-body and three-body collisions and the inverse revival
time as functions of the total number of atoms, for two
different values of the trap frequencies. For higher trap
frequencies (Fig. 9a) the revivals occur on a shorter time
scale and one is confronted mainly to three-body losses,
while for less confining traps (Fig. 9b) collisions with the
residual gas should be taken into account due to longer
revival times. Figure 9 shows that phase revivals in pres-
ence of losses are in principle observable in condensates
with some hundreds of atoms.

By studying the general case of two asymmetric con-
densates, and the effects of fluctuations in the initial to-
tal number of atoms in the condensates, we have finally
pointed out a practical difficulty which should be over-
come in order to observe phase revivals. The difficulty
comes from the fact that in the case of two non perfectly
symmetric condensates their relative phase drifts with a
velocity depending on the initial total number of atoms.
For this reason random fluctuations in the initial number
of atoms turn out to destroy the relative phase revivals
when the asymmetry is too large. A possible way to over-
come this problem is of course to use two almost sym-
metric condensates. Another possibility, which we have
not examined in detail, would be to use a condensate A
which has a collapse time longer than the duration of the
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experiment (N(u/tr/h)? < 1) as a phase reference to
measure the evolving phase of the other condensate B.
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Appendix A: Average of the phase factor e~%P
In this appendix we derive the average over the stochastic
realizations of the quantity e=2*P S (k) where D is defined
in equation (40) and where S(k) is an arbitrary function
of the number of jumps k. We perform the average over
the variables dy ., first, using their probability distribution
given after equation (28); we have:
o 1 iy Ll b

(e 21D>5b,5j = H X()\be Rt ) e nHatd)

j=1k

IT £

j=L1k

(A1)

In order to perform the average over the variables k and
7j, we need the probability distribution P;(k, 1,2, ...tx)
of having in the time interval (0,t) exactly k jumps sep-
arated by time intervals 7; = t; — t;_;. Since we as-
sume that the loss processes occur randomly with a con-
stant rate A, corresponding to a waiting-time distribution
of the form w(7) = Ae™7, the probability distribution
Pi(k,t1,t2,...t;) is simply [17]:

Py(k, t1,ta, ....tg) = e >t (A.2)

Using this result we are led to the calculation of a multiple
integral of the form:

1:/ FEDF(t2)o f(t0) dtrdts..dty (A.3)
0<t1<tg...<tp<t

where f(t) is the argument of the product in equa-
tion (A.1). Since I is equal to I, calculated for any per-
mutation t4(1), ...ts(x) of the integration variables, we can
write it as:

1
I= H{EU:/MW“QG(M<tf(t1)f(t2)...f(tk)dtldt,..dtk}

—%Votf(t)dtr.

‘We then obtain

k t k
e TP S T AU

k>0

(A.4)

(A.5)
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In this last equation we may have to introduce by hand a
cut-off N/m — 1 over the index k if S(k) has divergences
for k > N/m (i.e. when no particles are left in the con-
densates).

Appendix B: Phase distribution at revival
times

We are interested in calculating the phase distribution
at the revival time averaged over the realizations that is
(|e(o, tR)‘2>k,-rj,5b,e]. . We restrict to the symmetric case be-

tween the condensates and we start from equation (66).
By using equation (22) for t = 0 we have:

(e(d,tr))kry 0, = FAO)T2 Y Y fac(Na)

No=0,N N, =0,N

x fac® (N, ) (e (Na=Ne)Ox =Dy, 5
(B.1)
where we have introduced the notation

N,!(N = N,)!

_ oN/2
fac(N,) = 2 ( i

1/2
) (Noy N — N J4(0)).
(B.2)

The calculation of the average over the stochastic real-
izations closely resembles the previous one equation (A.1)
that we have explained in the Appendix A; we have:

k
<e2i(N<;7Na)(¢N7D)>k7‘rj,5b,E] = Z e MR —(/\i;j)
k>0 ’
. k
sinf(No — Na)mxtr]|" 2in,-Noos (B.3)
(N! — No)mxtgr

We note that the terms in the sum in equation (B.3) for
k # 0 are equal to zero unless (N, — N,) = 0 in which
case the average in equation (B.3) is equal to one. We can
then rewrite the result (B.1) as:

(@, tr) Y= =1AO)2] Y. Y dny . lfac(Va)[?

No=0,NN’=0,N

(1= v ,) (TN N2 Ve
(B.4)

Now by using the property:

Y [fac(No)PlAO) =1

No=0,N

(B.5)

coming from the normalization condition equation (23)
and from equation (22), we find the suggestive result equa-
tion (69).
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Appendix C: Asymmetric condensates

In this appendix we show the explicit calculation of the
mean contrast of the interference fringes (cfcy)/*® for
asymmetric condensates. We consider an initial Monte-
Carlo wave function for which the total number of parti-
cles N is fixed and the number of particles in condensate
A has a Gaussian probability distribution:

(Nay N — No(0)) = G~ WamzaM¥/an™ (1)

where G is a normalization factor and An is the standard
deviation for the difference n in the number of particles
in the two condensates. The quantities 4, = No/(N, +
Ny) and zp = Ny /(N, + N) are the average fractions of
particles initially in the condensate A and B respectively,
which are supposed to be fixed from one realization to the
other even in presence of fluctuations of the initial total
number of atoms.
We suppose in what follows that

1<« An< VN, (C.2)

and

|z N — 2, N| < N. (C.3)

We first derive the phase distribution amplitude corre-
sponding to the initial state equation (C.1) by using equa-
tion (22). We evaluate the factorials in equation (22) using
the Stirling’s formula, and we use a local approximation
valid for |N, — z,N| < V/N:

Nd!(N — Na)! ~ (maN)!(be)!e(NafzaN) In(zq/xp)
N! B N! )
(C.4)

By approximating the discrete sum in equation (22) with
an integral over N, ranging from —oo to +o0o we obtain:

o($,0) = Ne~#*an* gino (C.5)
where:

k= (xp —xq)N — %ATLQ In(zq/xp) (C.6)
and where AV is a normalization factor obtained from equa-
tion (23). We note that in the symmetric case N, = Ny, we
recover the Gaussian dependence for ¢(¢) of equation (56)
with AnA¢ =1/2.

We are now ready to calculate (cfcp)% starting from
equation (43). The calculation closely follows the one in
Section 4. In particular we use the key property equa-
tion (49) to obtain:

w/ /2
d¢’

—m/2

2
WOlclalv(®) = SBOPWE[ o

—m/2
) ; NN

« e~ @+ ) An? Ji(k—a)(p—¢ )3

x e~ ilo+é +2(D+U(N)t)]1\"z_1<¢/—Xt|¢>1§r_1~

(€.7)
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The phase factor e*(9=9) in the integrand varies rapidly
with ¢ — ¢’ at the scale 1/\/N when N, — N, is larger than
V/N. For this reason we approximate the scalar product
between the phase states |¢) 5 and |¢') 5 by a Gaussian
exp(—N(¢ — ¢/)?/2) rather than by the § distribution of
Section 4. This leads to the approximation

o1 (8 —xt|B) 5y = (—1) N =D e=(N=1)(¢' ~9—xt+aom)?*/2
(C.8)

where the integer g is chosen such that —7/2 < (xt —
gom) < /2. By extending the limits of integration over
¢,¢' to £oo in equation (C.7) we are then left with a
double Gaussian integral that can be calculated exactly.
The result is quite involved but it can be simplified by
using the condition (C.3) and equation (C.2). We take
the average over the stochastic realizations and we use
again equation (C.2) to simplify the result. We calculate
the normalization factor B(¢):

/2 1/2
~ Livesee (o) (2
1~ ||| (t)(4An) oA

3(v—a)?/(N+4n?) (C.9)

X e
We finally obtain for the mean contrast of the interference

fringes between A and B as:

+oo
(chep)fi® ~ e Mt 2iv(N)t Ze*%A'rf[(thqﬂ)]?(71)q(N—1)
q=0
N/m—1 ~ .
N —in(xt—qm) 5=+ 1 k
X kz::o e AN S MU (1)

(C.10)

where the function U(t) is given by:

1 eimugt/h -1 efimu;t/h 1
U(t) = - Aa - . (C11
®) A ( b imupt/h —imult/h ( )
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4.3 Etude des expériences du JILA sur les mélanges
de deux condensats

4.3.1 Dynamique turbulente d’un mélange

Par transfert cohérent d’une partie des atomes du condensat de I’état atomique interne
|a) vers un autre état interne |b), le groupe du JILA a réussi en 1998 & préparer deux
condensats avec une phase relative initialement bien définie. Le dispositif du JILA a ouvert
ainsi des perspectives passionnantes, puisqu’il permet aussi de mesurer 1’évolution de la
phase relative en fonction du temps. Il a été ainsi mesuré une durée de cohérence de phase
de 150 ms.

Cependant, les deux condensats dans ’expérience du JILA se recouvrent spatialement
et interagissent entre eux de fagon répulsive, ce qui doit étre pris en compte dans 1’étude
de la dynamique de phase. Effectivement, les premiers résultats obtenus au JILA sur les
mélanges portaient sur leur dynamique de séparation spatiale. Il a été observé qu’un petit
déplacement du piege pour I'un des deux états internes met les condensats en oscillation
I'un par rapport a l'autre, et que ces oscillations sont rapidement amorties. L’origine de
I’amortissement était inexpliquée.

Nous avons donc attaqué ce probleme en résolvant deux équations de Schrédinger non
linéaires couplées (équations de Gross-Pitaevskii) qui décrivent bien les condensats en
I’absence de nuage thermique. Ceci nous a permis de prouver l'origine hamiltonienne de
I’amortissement observé au JILA. En effet, méme pour des déplacements du piege petits
par rapport a la taille des condensats, la dynamique du systeme peut devenir turbulente.
De cette facon, I’énergie initialement localisée dans un mode d’oscillation relative des
centres de masse des condensats est rapidement dissipée vers des modes tres excités par
couplage entre les modes du & la non linéarité [9].

4.3.2 Dynamique de phase

Nous avons ensuite poursuivi notre travail sur la cohérence de phase en étudiant la
dynamique de phase dans un mélange de condensats en interaction mutuelle, ce qui nous
a conduit a généraliser les traitements existants qui se limitaient a des condensats spa-
tialement séparés et dans un état stationnaire. Notre traitement permet également de
prendre en compte simplement 'effet des fluctuations du nombre total de particules d'une
réalisation expérimentale a l'autre [11].

Nous avons obtenu des solutions analytiques au probleme dans (1) le cas ou il existe une
solution approchée par changement d’échelle des équations de Gross-Pitaevskii couplées,
et (2) le cas ou une linéarisation des équations de Gross-Pitaevskii autour de 1'état initial
peut étre effectuée. Dans les deux cas nous prédisons une augmentation notable du temps
de cohérence de la phase lorsque les longueurs de diffusion a9, a1; et asy décrivant les
collisions élastiques entre atomes des condensats 1 ou 2 ont des valeurs proches les unes
des autres.

Les interactions mutuelles entre condensats peuvent donc aider a préserver la cohérence
de phase! Il est possible de comprendre ce résultat surprenant assez simplement. La
différence de phase entre le condensat 1 avec N; particules et le condensat 2 avec N,
particules évolue a la fréquence w = p1 (N1, No) — o (N7, Na) ol i1 et ps sont les potentiels
chimiques des deux condensats. Initialement les deux condensats sont dans un état de
phase relative bien défini, il y a donc une dispersion sur la variable conjuguée n = N1 — N,
avec un écart type An ~ /N ot N = N; + N,. Ceci entraine une dispersion sur les
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fréquences d’oscillation de la phase relative, Aw ~ yAn avec x = 0,1 — p2], ce qui
conduit & un brouillage de la phase au bout d'un temps ¢, ~ 1/Aw. Physiquement x
représente le changement de différence de potentiel chimique lorsqu’on transfere un atome
du condensat 2 au condensat 1. L’on concoit alors que y puisse étre tres faible lorsque
a1l ™~ ajp ™~ ag pour des condensats voyant le méme potentiel de piégeage, ’atome
transféré dans 2 interagissant presque de la méme facon avec les N — 1 autres atomes que
lorsqu’il était dans 1.

Pour les parametres du JILA les trois longueurs de diffusion different de quelques
pour cent seulement. On s’attend donc a un allongement de la durée de vie de la phase
par rapport au cas de condensats séparés. En fait la situation du JILA ne rentre pas
exactement dans le domaine de validité des cas limites traitables analytiquement, nous
avons donc eu recours a un traitement numérique. Le résultat clé auquel nous sommes
parvenus est que le temps de cohérence observé (de 150 ms) n’était certainement pas limité
par le phénomene de brouillage de phase di aux interactions, et qu’il pouvait seulement en
partie étre expliqué par des fluctuations du nombre total de particules dans I'expérience.
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4.3.3 Publications jointes

VOLUME 82, NUMBER 2 PHYSICAL REVIEW LETTERS 11 ANUARY 1999

Dynamics of Two I nteracting Bose-Einstein Condensates

A. Sinatral P.O. Fedichev; Y. Castin! J. Dalibard! and G. V. Shlyapniko\?3
'Laboratoire Kastler Brossel, 24 Rue Lhomond, F-75231 Paris Cedex 05, France
2FOM—Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
3Russian Research Center, Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia
(Received 2 September 1998
We analyze the dynamics of two trapped interacting Bose-Einstein condensates in the absence of
thermal cloud and identify two regimes for the evolution: a regime of slow periodic oscillations and a
regime of strong nonlinear mixing leading to the damping of the relative motion of the condensates. We
compare our predictions with an experiment recently performed at JILA. [S0031-9007(98)08104-6]

PACS numbers: 03.75.Fi, 05.30.Jp

The experimental evidence for Bose-Einstein condenappearance of statistical properties requires a sufficiently
sation in trapped atomic gases [1] has attracted a lot adtrong nonlinearity leading to stochastization of motion
attention, as the presence of a macroscopically occupigd?2], whereas for small nonlinearity the motion remains
guantum state makes the behavior of these gases dragjuasiperiodic (see, e.g., [13]).
cally different from that of ordinary gas samples. Trapped We consider a situation in which the two condensates
Bose-Einstein condensates are well isolated from the en: and b see harmonic trapping potentials of exactly the
vironment and, at the same time, can be excited by desame shape, and the interparticle interactions character-
forming the trap or changing the interparticle interaction.ized by the scattering lengths,,, a.», anda,, are close
The question of how the gas sample, being initially a pur¢o each other. The control parameter, determining the
condensate, subsequently reaches a new equilibrium stagtessibilities of nonlinear mixing and stochastization, is the
is directly related to the fundamental problem of the ap+elative displacemeny, of the trap centers. We identify
pearance of irreversibility in a quantum system with atwo regimes for the evolution. In the first one the rela-
large number of particles. Thus far the time dependentive motion of the condensates exhibits oscillations at a
dynamics of trapped condensates has mainly been anfiequency much lower than the trap frequeney In the
lyzed for a single condensate [2—6] on the basis of thether regime there is a strong nonlinear mixing leading to
Gross-Pitaevskii equation for the condensate wave funaghe damping of the relative motion, and the system has a
tion. Remarkably, already in this mean-field approach théendency to approach a new equilibrium state. We com-
stochastization in the condensate evolution has been fourmhre our predictions with the results of the Joint Institute
[3], and the damping of the condensate oscillations hafor Laboratory Astrophysics (JILA) experiments [14,15]
been observed numerically [5]. However, the question obn a two-component condensaté’tiRb atoms in thew =

the formation of a thermal component, addressed in [3]l,m = —1 and F = 2,m = 1 states. In these experi-
has not been investigated. ments the double condensate was prepared from a single
In this paper we study the evolution of a richer systemcondensate in the stafe = 1,m = —1 (a) by driving a

a mixture of two interacting condensatesandb), in the  two-photon transition which coherently transfers half of
situation where initially the thermal cloud is absent. Thethe atoms to the state = 2,m = 1 (b).

properties of a static two-component trapped condensate, We mostly perform our analysis in the mean-field
including the issue of spatial separation of theand»  approach relying on the Gross-Pitaevskii equations for the
components due to interparticle interaction [7,8], werewave functions¢, and ¢, of the a and b condensates.
investigated in [9]. The response of the system to smallhis approach corresponds to the classical limit of the
modulations of the trap frequency has also been studieevolution of a quantum field, the subsequent corrections
numerically [10]. In our case the and b condensates being proportional to a small parametet:2,.)'/2 (n is the
have initially the same density profile and are set intogas density) and, hence, manifesting themselves only on a
motion mostly by an abrupt displacement of the traprather large time scale. The two coupled Gross-Pitaevskii
centers. The main goal of our work is to study theequations forb, and ¢, normalized to unity read

dynamics of spatial separation of the two condensates and )
analyze how the system can acquire statistical properties iho, ¢, = [ A + U, —
and reach a new equilibrium state. From a general point 2m
of view, we are facing the problem raised by Fermi, Pasta n 2
! . . . ! ! /Ngi / . 1
and Ulam [11]. They considered classical vibrations of S,ZZ,,’,, geeNeldol” | . @)

a chain of coupled nonlinear oscillators to analyze the
emergence of statistical properties in a system with a largelere g.., = 47 h%a../m are the coupling constants for
number of degrees of freedom. As was revealed later, thelastic interaction between atoms in the statende’, m

0031-900799/82(2)/251(4)$15.00 © 1999 The American Physical Society 251
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is the atom mass, and., U, are the number of atoms and placementz, is sufficiently small, we linearize Eq. (1)
trapping potential for the condensate. As in the JILA with respect to small quantities¢,, = (¢d.» — ¢o) and
experiment, we choose the initial conditign , (0) = ¢o, zo. Then, for the quantitnpp_ = 5¢, — 8 ¢, describ-
where the (real) wave functio, corresponds to the ing the relative motion of the condensates, we obtain the
ground state of Eq. (1) with all atoms in thestate and no equation

trap displacement. The chemical potential of this ground A 5
state is denoted gs. ih9:6¢- = | =7 =+ Up = u+ Nedg |6 + 5,
We consider the: and b condensates in the Thomas-

Fermi regime ko < u) and assume the number of con- @)
densate atom@/, = N, = N/2 [16]. The first set of with the source tern§_ = mw?z0zo. FoOr the quantity
our calculations is performed for the evolution of thes¢, = 5¢, + 8¢, we find an equation decoupled from
condensates in a spherically symmetric trapping potentia$ ¢y and without source terms. Hence, the initial con-
Uo(r) = mw?r?/2 which at: = 0 is displaced along the dition 8. (r,0) = 0 allows us to puts ¢ (r,7) = 0 for
z axis by a distancey/2 for thea atoms and by-zo/2 for s = 0.
the b atoms. We present the results for the time depen- ForS_ = 0 Eq. (3) is the equation for the wave function
dence of the mean separation between the condensates,of a particle moving in the potentiaV = Uy — u +
u(t) = f &rz(lpar, OIF = 1y, D). ) Ng¢§. Stgtionary solutions pf t_his equation provide us
with the eigenmodes of oscillations of the condensates
For the curves in Fig. 1 the coupling constants @grg=  with respect to each other. In the Thomas-Fermi limit
8ab = &b, @nd forzy = 0 our initial state is an equilib- the potentialV, originating from the kinetic energy of the
rium state atr = 0. In this state the Thomas-Fermi ra- condensate, is a smooth functionrdgfiside the condensate
dius of the condensat®, = (2u/mw?)!/? serves as unit spatial region: < Ry: V = h2(A¢)/2mey < hiw. For
of length, and the shape @f, is determined byu/fw. r > Ry this potential is close td/y, — w« and is much
Hence, forzg # 0 the dependence of the quantityR, on  steeper. Replaciny by an infinite square well of radius
wt is governed by the parameteug iw andzo/Ry. Ry we obtain the energy spectrum of eigenmodes with
Our results reveal two key features of the evolutionlarge quantum numbers E,; = (7ho)?*(2n + 1)*/16u,
dynamics. The first one, for a tiny displacemept is  where!l is the orbital angular momentum. This explains
a periodic motion with slow frequencies which turn outthe appearance of oscillations at a frequency much smaller
to be sensitive to small variations in the values of thethan w in our numerical calculations (see Fig. 1a), since
coupling constants. The other feature, for much largethe energy scale in the spectrun{fav)?/u < hw. For
20, but still zo << Ry, is a strong damping in the relative the latter reason we call these eigenmodes soft modes.
motion of the two condensates, as observed at JILA [14].Note that the soft modes for the relative motion of the two
In order to understand the physics behind the evolueondensates also exist in the spatially homogeneous case
tion pattern, we first perform a linear analysis of Eq. (1).where they have a free-particle spectrum [7].
For the case wherg,, = gu» = gp» = g, and the dis- As in our linear approach we havéd¢.(r,t) = 0,
Eqg. (2) for the mean separation between the condensates
reduces tou(t) = 2 [d3r zpoRe{S¢_}, and the contri-
bution tou(r) comes from the components 6f)_ with
[ = 1,m; = 0. Solving Eq. (3) with the initial condition
8¢_(r,0) = 0, we obtainu(z) as a superposition of com-
ponents, each of them oscillating at an eigenfrequency of
a soft mode:

2mw?
u(t) = zo Z ‘ fd3r Pn1z2¢o

0.6 a=i B

0.4 ’ X |:1 - CO{E:;I>:|, (4)

0.24

(b)

0.354 (C)] I

0.30

0.25

2
0.20

u(t)R,

015+

0.10

0.05+

whereg,, is the wave function of the soft mode with=
1,m; = 0 and main quantum number. Damping of
oscillations of u(z) could, in principle, originate from
the interference between the components with different
FIG. 1. Mean separation between the condensates versus timiein Eq. (4). However, the sourcg_ basically popu-
in_isotropic traps forga, = ga = gmy_and u/hio =292.  |a1e5 only the lowest soft mode, irrespective of the

Relative displacementz, = 6.66 X 107R, (a), and zo = . - A
717 X 10’2R‘1 (b). Soli(a curves: Numeoric(al) integrat(i)on of value of zo: the amplitude of oscillations at the lowest

Eq. (1). Dotted curves: Analytical prediction for (a) (see text), eigenfrequency in Eq. (4) (the term with= 1) greatly
and the linear model relying on Eq. (6) for (b). exceeds the sum of the amplitudes of other terms. Hence,
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these oscillations remain undamped. For the same reasanresult, the evolution of the condensate wave functions
their frequency and amplitude can be found with, ¢, and ¢, becomes chaotic. This can be seen from
replaced by the function¢o normalized to unity. Using Fig. 2 where we compare the spectral dengifyr) =

the Thomas-Fermi approximation for the condensatér ! fg dt n(0, 1) exp(ivt)|* of the density at the origin
wave function [17]: ¢4(r) = 15(1 — r2/R3)/87 Ry for  n(0, ) with an identically defined spectral densRy(») of

r < Ry, and¢y = 0for r > Ry, we obtainE;; = 7 =  u(t) for the parameters in Fig. 1b afd= 110/w. The
(7/4) (hw)?/u which is very close t&; = 1.62(hiw)?/  function R,(») has a smooth envelope at large with
u calculated numerically. Then, retaining only the peaks corresponding to the islands of regular motion. On
leading term £ =1) in Eq. (4), we find u(t) = the contraryR,(v) exhibits pronounced peaks=abf order

z0(4p/Th)’[1 — cogQt)] shown in the dotted line w,without any smooth background. This picture provides
in Fig. 1a. As one can see, the condition of the lineara clear signature of stochastization in the system [13] and
regimeu < R requires a very small displacement prompts us to represent each of the condensate wave func-

20 < (iw/w)*Ro, (5) tions in Eq. (_1) as a superposition of two constituents: (i)

- ) - a slowly oscillating regular part conserving the phase co-

and already a moderatg as in Fig. 1b is sufficient 10 Lorence properties and (i) a composition of high-energy
drive the system out of the linear regime. ) excitations characterized by stochastic motion. Only the
We have performed a similar linear analysis for thego,y constituent contributes to such macroscopic quantities

case Wherea, # ga» # gop, but the relative difference asu(t), since the contribution of the fast stochastic part is
between the coupling constants is small. Also in this

h | ilati £ th averaged out.
case the sourc§ mostly generates oscillations of the 5, analysis is consistent with the general statement
condensates relative to each other at a single frequen

/ . A CNGYat for a large population of various oscillation modes
V' < w. Forarelative difference between the couplingye nonlinear interaction between them leads to stochasti-
constants much smaller thafii /)", the frequency  ;44on in the motion of excitations with sufficiently high
Q" coincides with the soft-mode frequend® found  gnergy [13]. This allows us to employ the mechanism of
above. Otherwise the sign @f- = gu + g0» ~ 28av  gtochastic heating [13] for explaining the damping of os-
becomes important. In particular, for positive- > Gjjations of u(r): The mean-field interaction between the
|gaa — g»»| already a moderate difference between thepag; siochastic and the slowly oscillating parts leads to en-
coupling constants stro_ngly increases thg frequeQdy ergy transfer from the slow to the fast part.

compared to{). In this case we obtain undamped T eyolution of the occupation numbers of the modes

illati I~ 1/2 . . . . .
oscillations a)’ = (g-/gqa)/*@. Forg— <0, already e fast stochastic part is governed by kinetic equations
in the zo = 0 case, a breathing mode in which the twoa%

. 13] and eventually slows down. The rate of energy
condensates oscillate out of phase becomes unstable, d particle exchange between the two constituents then

the system evolves far from the initial state. Note thateq,ces  After a sufficiently long time only small linear
for a small difference between the coupling constants thggijiations of the condensates survive, mostly at the
conditiong- < 0 is equivalent to the criterion of spatial |, est eigenfrequency and the gas sample as a whole
separation 2of the condensates in the homogeneous cag®, 4 pe thought of as being close to a steady state.
8aa8bb < &ap [7.8] . ) However, the damping of the remaining oscillations and
We now turn to the large, regime (Fig. 1b) where ¢ jtimate evolution of the fast stochastic part towards

we find a strong damping of the oscillations of the meanye thermal equilibrium require an analysis beyond the
separation between the condensates, Inordertoprove ean field approach. For the parameters in Fig. 1b, using
the key role of nonlinearity in this regime, we first attempt

alinear model assuming that the densitigs|” inside the
square brackets of Eqg. (1) are not evolving: R @l [R (b)

ZNs’gss’ld’s’lz_'Ngld’Ole (6)

In contrast to the analysis which led to Eq. (4), the dis-
placement; is now explicitly included in the Hamiltonian
through the termstmw?zz0/2 in U,», and the number of
populated oscillation modes dependszgn However, for
the parameters in Fig. 1b we find that only a few modes
are populated, and the interference between them cannot
account for the damping found numerically (dotted versus
solid curve in Fig. 1b).

We argue that the damping in our calculations mostly 200 100 0 100 2004 -2 0 2 4
originates from nonlinearity of the system, which in- vie vie
creases the number and amplitude of populated oscillgz|G. 2. Spectral densitie®,(v) (@) and R.(») (b) for the
tion modes and provides an interaction between them. Aparameters in Fig. 1b arll = 110/w (see text).

arbitrary units
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the semiclassical Bogolyubov approach [18] and relyingand » components with increasing the trap displacement
on the conservation of energy and number of particlesand, hence, decreasing the final Bose-condensed fraction.
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condensed fractioty,, = 0.9, for N = 5 X 10°. ERB FMRX-CT96-0002), by the Stichting voor Funda-
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JILA experiment [14] where the evolution of a two- Foundation for Basic Studies, by INTAS, and by NSF un-
component®’Rb condensate has been investigated. Irder Grant No. PHY94-07194. Laboratoire Kastler Brossel
the conditions of this experiment we solved numericallyis a unié de recherche de I'Ecole Normale Supérieure et
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Abstract. We investigate the relative phase coherence properties and the occurrence of demixing insta-
bilities for two mutually interacting and time evolving Bose-Einstein condensates in traps. Our treatment
naturally includes the additional decoherence effect due to fluctuations in the total number of particles.
Analytical results are presented for the breathe-together solution, an extension of previously known scaling
solution to the case of a binary mixture of condensates. When the three coupling constants describing the
elastic interactions among the atoms in the two states are close to each other, a dramatic increase of the
phase coherence time is predicted. Numerical results are presented for the parameters of the recent JILA

experiments.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena —

05.30.Jp Boson systems

1 Introduction

Since the recent experimental observation of Bose-Einstein
condensation in dilute atomic gases [1], much interest has
been raised about the coherence properties of the con-
densates. Considerable attention has been devoted to the
matter of the relative phase between two condensates: how
this phase manifests itself in an interference experiment
[2,3], how it can be established by measurement [4,5], and
how it evolves in presence of atomic interactions [5-7] and
in presence of particle losses [8].

As it was proved in recent experiments performed at
JILA, binary mixtures of condensates represent an ideal
system to study the phase coherence properties of Bose-
Einstein condensates [9]. In these experiments two con-
densates in two different internal atomic states are created
with a well-defined relative phase. After a time 7 during
which the condensates evolve in the trapping potentials,
one mixes coherently the two internal atomic states which
makes the two condensates interfere; from the spatial in-
terference pattern one gets the relative phase of the two
condensates. By repeating the whole experimental pro-
cess, one has access to the distribution of the relative phase
after an evolution time 7, so that one can investigate phase
decoherence as function of time.

The interaction between the two condensates in the
JILA experiment gives rise to a rich spatial separa-
tion dynamics between the two condensates [10], which
complicates the theoretical study of the relative phase
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dynamics. As a consequence previous theoretical treat-
ments of the phase decoherence processes, dealing essen-
tially with steady state condensates, as in [11], cannot
a priori be applied to the experimental situation.

A treatment of the phase coherence of two interacting,
non stationary, condensates can be found in [12], with two
important differences as compared to the present situation
of interest: (1) in [12] the condensates are subject to a
continuous coherent coupling of amplitude A; results are
obtained from a perturbative expansion in powers of 1/4
and cannot be simply extended to the present A = 0 case;
(2) in [12] all the coupling constants gaa, gab, gbb between
the two internal atomic states a and b are assumed to be
equal.

In this paper we propose a formalism to study the
relative phase dynamics of interacting and dynamically
evolving Bose-Einstein condensates initially at zero tem-
perature.

We present the general method in Section 2. It con-
sists in expanding the initial state on Fock states, and
in evolving each Fock state in the Hartree-Fock approxi-
mation. We determine the time dependence of the phase
collapse for a binary mixture of condensates, due to (1)
fluctuations in the relative number of particles between
the condensates, intrinsic to the initial state with well-
defined relative phase, and (2) fluctuations in the total
number of particles. In the next two sections we apply
this general formalism to two limiting cases that can be
treated analytically.

The first case, in Section 3, considers a partic-
ular solution of the non-linear Schrédinger equations
for the condensates wavefunctions; in this solution the
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two condensates remain spatially superimposed as they
breathe in phase, provided that dynamical stability condi-
tions (that we determine) are satisfied. We find that phase
decoherence can be highly reduced with respect to non
mutually interacting condensates when the three coupling
constants gaa, gab, gbb between atoms in the two internal
states a, b are close to each other.

In Section 4, we therefore study in a more general case
(not restricted to the breathe-together solution) the dy-
namics of the relative phase for a mixture of condensates
for close coupling constants. Our treatment requires also
in this case the absence of demixing instability, a point
that we discuss in detail.

Finally we discuss the case of the JILA experiment in
Section 5. This case, that corresponds to close coupling
constants in a regime of demixing instability, is more diffi-
cult to analyze. The predicted phase collapse time depends
on the fluctuations of the total number of particles; it is
on the order of 0.4 s for Gaussian fluctuations of 8%.

2 General method

In this section, we introduce a gedanken experiment
to characterize phase coherence between two conden-
sates: the relevant quantity is the interference term

<1Z)AbT (r,t)1)a(r, t)) between the atomic fields of the two con-
densates a and b. Subsequently we express this interference
term in the Hartree-Fock approximation, assuming an ini-
tially well-defined relative phase between the condensates.
After a further approximation on the modulus and the
phase of the condensate wavefunctions, we determine the
decay with time of the interference term due to atomic
interactions; we arrive at the simple results equation (18)
for a fixed total number of particles and equation (22) for
Gaussian fluctuations in the total number of particles.

2.1 Considered gedanken experiment

The experimental procedure we consider to measure the
phase coherence is inspired by recent experiments at
JILA [9]. A condensate is first created in a trap in some in-
ternal atomic state a; the corresponding condensate wave-
function in the zero temperature mean-field approxima-
tion is ¢g, a stationary solution of the Gross-Pitaevskii
equation:

hQ

Ho = *%A% + [Ua(r) + Ngaaldo[*] 0. 1)
In this equation N is the number of particles, g.. is
the coupling constant between the atoms in the inter-
nal state a, related to the scattering length aaa by gaa =
Amh2a,,/m; U, is the trapping potential seen by the atoms
in @ and g is the chemical potential. Note that we have
normalized ¢g to unity.

At time t = 0 a resonant electromagnetic pulse trans-
fers in a coherent way part of the atoms to a second in-
ternal state b. The state of the system is then given in the

The European Physical Journal D

Hartree-Fock approximation by

[#(0)) = [cala, do) + cb|b, o)} 2)
with |ca|? + |cb|? = 1. As we assume a Rabi coupling be-
tween a and b much more intense than p/f the atomic
interactions have a negligible effect during the transfer so
that the amplitudes c, 1, depend only on the pulse param-
eters, not on the number N of particles. In the N-particle
state equation (2) the condensate in state a and the con-
densate in state b have a well-defined relative phase; we
therefore call this state a phase state, in analogy with [13].

The two condensates evolve freely in their trapping
potentials during the time 7. During this evolution we
assume that there is no coherent coupling between a and b
to lock the relative phase of the condensates; in particular
the only considered interactions between the particles are
elastic, of the type a+a — a+a (coupling constant g,, >
0), a+b — a+ b (coupling constant g, > 0), b +b —
b+ b (coupling constant gy, > 0). We therefore expect a
collapse of the relative phase for sufficiently long times,
due to atomic interactions.

To test the phase coherence at time 7, a second elec-
tromagnetic pulse is applied to mix the internal states a
and b. We assume that this second pulse is a 7/2 pulse, so
that the atomic field operators in the Heisenberg picture
are transformed according to

R L

Ya(rh) = Wwa(T )+ Ewb(T ), (3)
omid oid

P (rT) = _Wwa(T_) + El/’b(T_)v (4)

6 being an adjustable phase. One then measures the mean
spatial density p, in the internal state a, averaging over
many realizations of the whole experiment:

Pa = <"[};(T+)1[)a(7+)>- 5)

The signature of a phase coherence between the two con-
densates at time 7 is the dependence of the mean density
pa on the adjustable phase §. More precisely we define the
contrast

2(d (77 )da (7))

O — MaXspa — minspa
maxspa +mingpa Y (YL (1) (7))

(6)

The contrast involves the interference term
(1&,1(7—*)1&6(7")) which carries the information about
the relative phase between the two condensates.

2.2 Approximate evolution of an initial phase state

The time evolution in the phase state representation is not
simple, as an initial phase state is mapped onto a super-
position of phase states. It is more convenient to introduce
Fock states, that is states with a well-defined number of
particles in a and in b, these numbers being preserved by
the time evolution.
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We therefore expand the initial phase state over the
Fock states:

5 (o

| !
o N,INy!
where we set N, = N — N,.

By calculating the evolution of each Fock state in
the simplest Hartree-Fock approximation, we get the
following mapping;:

\Naidmbei%) -
o AWM N, : g (Na, Noi ), No : (N, Nos))

17(0))

1/2
) Noc [N, : do, Ny do) (7)

®)

where the condensates wavefunctions evolve according to
the coupled Gross-Pitaevskii equations:

h2
ihat¢5 = | — %A + US(I')
+ngss‘¢s|2 +Ne’gss"¢6"2]¢e (9)
(where €’ # ¢) with the initial conditions
$a(0) = #1(0) = ¢o (10)

and where the time dependent phase factor A solves:

d 1
L AN, N t) = — = N2g,a "
dt ( 5 b7t) 2 aJa /dr ‘¢ |

) |
— 5820 [ defoul! = Mg [ ar [Pl (11)

Equation (11) is derived in Appendix A. Physically dA/d¢
is simply the opposite of the mean interaction energy be-
tween the particles in the Fock state. In the case where the
Fock state is a steady state, the need for the phase factor
A additional to the Gross-Pitaevskii equation is obvious;
the exact phase factor is indeed e 'F*/" where E is the en-
ergy of the Fock state, whereas the phase factor obtained
from the Gross-Pitaevskii evolution is e~ :(NatatNopn)t/h
where fi, 1, is the chemical potential in a, b.

Using the evolution of the Fock states, and other
approximations valid in the limit of large numbers of
particles (as detailed in the Appendix B) we obtain for
the interference term between the condensates with a
well-defined total number N of pdrticles:

i
{Upva)n = cacy Z _ 1 (AN

X ¢a(Na7 Nb)¢b(

where N, = N — N,. The exact computation of this sum
remains a formidable task, since it involves in principle the
solution of N different sets of two coupled Gross-Pitaevskii
equations. We introduce some simplifying approximations
in the next subsection.

|ca\2(Na*1)|cb|2N"

aflva‘i'l) (12)

2.3 Phase collapse for a mixture

In the present experiments the total number of particles
fluctuates from one realization to the other, so that equa-
tion (12) has to be averaged over N. We assume that
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the fluctuations of the total number of particles have a
standard deviation AN much smaller than the mean to-
tal particle number N. As the distributions of the number
of particles in @ and b in a phase state have also a width
much smaller than N (typically on the order of N'/2) we
can assume than the number of partlcles in a and in b are
very close to their average values N, = |c.|>N. We now
take advantage of this property to simplify equation (12).

We split the condensate wavefunctions in a modulus
and a phase 0.; we assume that the variation of the mod-
ulus can be neglected over the distribution of N,},, and
that the variation of the phase can be approximated by a
linear expansion around V.. We thus get the approximate
form for the condensate wavefunctions:

¢<(Na, No)~ e exp |1 > (Nor — )(Na, Ny)

eg’=a,b

NE’ ) (GNE/ 0.

(13)

where an = ¢£(Na = N&an = Nb)
To this level of approximation the mean densities in
the internal states a, b are simply given by

(le) v ~ Ne|ge|?
whereas the interference term between the condensates is:
(Dl ha) v = Neachdad” exp {i[(N — N)xs

—N(leal® = [en[*)xal } €X°

% [|Ca|2eixd + ‘Cb‘ze_iXd]N71 )

(14)

(15)

In this last expression we have introduced the time and
position dependent quantities
[(3N1 +0n,) (0a — 0)] (Na, Np)

Xs = (16)

NSRRI

[(ON, — Ony,) (B — Ob)] (Na, V).
The phase xo (1/2)(On, — On,)(0a + Op)(Na, Np) in
equation (15) is less important as contrarily to xsq it is
not multiplied by N. At time ¢ = 0 all the x’s vanish. In
the large IV limit, the x’s are expected to be on the order
of ut/hN.

The factor responsible for the collapse of the contrast
at a fixed value of N is the last line of equation (15), the
exponential factors in the first two lines being of modulus
one. As N is large a small variation of xq from its initial
value xq(t = 0) = 0 is sufficient to destroy the interfer-
ence term. Over the range of the collapse we can therefore
expand the exponential of +ixq to second order in xq,
obtaining:

()N = Neachdadh,” exp {i(N = N)
><[Xs + (|Ca‘2 -

The second exponential factor in this expression allows
to determine the collapse time 8% for a fixed number of
particles, through the condition

AN|cal*|ep| NG (85) > 1

Xd = a7)

leo*)xal} exp [~2Nx3|cal*en[?] . (18)

(19)
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such that the modulus of the interference term is reduced
by a factor e~'/2 from its initial value. The first expo-
nential factor in equation (18) accounts for the phase dif-
ference of the interference term for N particles and N
particles, as shown by the identity:

Xs + (Jcal* = len*)xa =
d

aN [(ga - 9b)(N‘Ca‘27 N|cb|2)]N: N

v (20)
This phase factor can also be understood as a consequence
of a drift of the relative phase between two condensates
at a velocity v(N) depending on the total number of par-
ticles:

O(N) = 0¢(0a = ) + (N = N)O¢ [xs + (eal® — len]*)xa] -
(21)

As we shall see in the next subsection fluctuations in the
total number of particles N result in fluctuations of this
phase factor, providing an additional source of smearing
of the phase, as already emphasized in [8].

2.4 Effect of fluctuations in the total number
of particles

The effect on the phase collapse of fluctuations in the total
number of particles is obtained by averaging equation (18)
over the probability distribution of N. To be specific we
assume a Gaussian distribution for N. The average can
be calculated by replacing the discrete sum over N by
an integral; we neglect a term proportional to (ANx3)?
scaling as (AN/N)? at the collapse time t5*; the resulting
modulus of the interference term reads:

(AN)?

otah auss N * % 1
B0 = Nl oxo { -

X {%(Ga - Hb)} ’ i

} exp [—2Nxﬁ\ca|2\cb\2} . (22)
N=N

The first exponential factor in this expression represents
the damping of the interference term due to fluctuations
in the total number of particles; the second exponential
factor, already present in equation (18), gives the damp-
ing due to fluctuations in the relative number of particles
between a and b, as can be seen in equation (17).

2.5 The steady state case and comparison
with previous treatments

Our treatment can be easily adapted to the case of two
initially different condensate wavefunctions ¢,(t = 0) and
o1 (t = 0). In the particular case of condensates in station-

ary states, the formulas for the interference term (d;de;a)
remain the same, and one has 0. = —u.(N,, Ny,)t/h. We
can give in this case the explicit expression for the collapse
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time ¢f% defined in equation (19), assuming a fixed total
number of atoms N = N:

_ —1
t = B | N'2|cacy||(On, — On,) (1a — 1))

(23)
For the particular case of non mutually interacting steady
state condensates . depends on N. only, so that the par-
tial derivatives in the denominator of equation (23) re-
duce to dpa /AN, +dpun /ANy, and we recover the results of
[5,8].

From equation (23) we see that what matters physi-
cally is the change in the difference between the chemical
potentials of the two condensates when one transfers one
particle from one condensate to the other. For this reason
the case of mutually interacting condensates with close
coupling constants can lead to much larger t.’s as com-
pared to the case of non-mutually interacting condensates.
For example, in the case of the JILA experiment [9], as-
suming that the condensates are in steady state, one finds
t@x ~ 3.1 s; by ignoring the interaction between the con-
densates (setting by hand ga, = 0) one obtains the much
shorter time ~ 0.25 s. The JILA case is analyzed in more
detail in our section 5.

A similar prediction on the reduction of decoherence
due to mutual interactions between the two condensates,
in trapping potentials with different curvatures, was ob-
tained numerically in [11].

The treatment in [7] considers the absolute phase dy-
namics of a single condensate (in our formalism ¢,
0) in a coherent state. When the condensate wavefunc-
tion is stationary one has simply 6, = —pu.t/h. From
equation (22) with AN = N2 (as the coherent state
has a Poisson distribution for N) we then find that the
phase of the condensate order parameter is damped as
exp[— N (dpa/dN)?t2 /257 as in [7].

3 Application to the breathe-together
solution

In this section we consider a particular solution of the
coupled Gross-Pitaevskii equations for which an approx-
imate scaling solution is available when the chemical po-
tential is much larger than the energy spacing between
trap levels, the so-called Thomas-Fermi regime. We first
give the set of parameters for which this solution, that
we call the breathe-together solution, exists. We then lin-
earize the Gross-Pitaevskii equations around this solution
to determine its stability with respect to demixing and to
obtain the phase coherence dynamics.

3.1 Description of the breathe-together solution

We now determine the set of parameters such that the
coupled Gross-Pitaevskii equations (Eq. (9)) for

N. = N. = Nlc.|? (24)
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have a solution with ¢.(r,t) = ¢p(r,1) o(r,t). The
general condition is that the effective potential, that is the
trapping potential plus the mean field potential, seen by
the atoms in @ and in b should be the same. This condition
is satisfied when:

Ua(r) =Up(r) =U(r)
Nagaa + Nbgab = Nbgbb + Nagab = Ng

(25)
(26)

The resulting Gross-Pitaevskii equation for the conden-
sate wavefunction ¢ common to a and b is then:

2
06 = |5 A+ UG+ Nglof| 6 (1)

with the initial condition ¢(r,0) = ¢o[N = N](r) = ¢o,
where ¢ is defined in equation (1).

By rewriting equation (26) as N,/Ny (gob —
Jab)/(Gaa — gab) We see that this equality can be satis-
fied by choosing properly the mixing angle between a and
b provided that

gab < Gaa;gbb  OT  Jab > Jaa, gbb- (28)

As we shall see below, only the first case is relevant here,
since the second case corresponds to an unstable solution
with respect to demixing between a and b.

3.2 Linearization around the breathe-together solution

The strategy to obtain the quantities xs 4 relevant for the
phase dynamics is to calculate in the linear approximation
the deviations d¢. between the breathe-together solution
¢ and neighboring solutions ¢. for N, slightly different
from Ng:

5¢€ E¢£(Na+§NaaNb+5Nb)_¢5(Na7Nb)~ (29)
From the definitions equations (16, 17) one indeed realizes
that in the limit of small I Ny:

00, — 59b}
o = | Lo (30)
{ 20Na | 5n,=sN,
00, — (59b}
Xd = [7 (31)
20Na [ 5n,=—sN,

where 060, 1, are the deviations of the phase of the neigh-

boring solutions ¢, from the phase of the breathe-together
solution:

00, — 66, = Im [%—&&} .

¢ ¢

It turns out that homogeneous rather than inhomogeneous
linear equations can be obtained for the deviations d¢, by
introducing the quantities:

(32)

_ O[V/Neope] N .
dipe = W = 2_]\75¢ +6¢e. (33)
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Furthermore a partial decoupling occurs for the linear
combinations

(34)
(35)

The sum dps obeys a linear equation involving dpq as a
source term:

Ops = 0pa + dipp,
dpa = pa — .

B2 .
110,50, 7%A+U+2Ng|¢|2 s

+ Ngd?50% + (NaGaa — Nogob)(|#|20pa + ¢250%).  (36)

The part of this equation involving d¢ps is identical to the
one obtained for a single condensate with N particles and
a coupling constant g. The corresponding modes have min-
imal frequencies on the order of the trap frequency w for
an isotropic harmonic trap [14].

The difference dpq4 obeys the closed equation:

R? -
ih0,0pg = |—=—A+U + Ng|o|?| dpa
2m
Nﬂ _b y 25 726 *
N (aa + gbb — 29ab) (|]*00a + ¢*003)  (37)
where we have used the identity:
Nb(gbb - gdb) = Nd(gdd - gab)
N.N
= (gt b~ 20m)- (38)

As shown in [15] minimal eigenfrequencies of this equation
can be much smaller than w; e.g. when all the coupling
constants are equal, the minimal eigenfrequencies in a har-
monic isotropic trap of frequency w scale as hw?/pu < w
in the Thomas-Fermi limit.

For the derivation of the x’s it is sufficient to calculate
0pq. The relative phase between the two condensates for
the considered neighboring solution with N = N, + § N,
particles in the state € is in fact given by:

1 [dpa dp
50, 561)721{& il

as can be checked from the definition equation (32).

(39)

3.3 Approximate equations of evolution
in the Thomas-Fermi limit

In the remaining part of this section we assume an
isotropic harmonic trapping potential U(r) = mw?r?/2
and we restrict to the Thomas-Fermi limit p > hw.

In the Thomas-Fermi limit it is known [16,17] that
most of the time dependence of the wavefunction ¢ can
be absorbed by a time dependent gauge and scaling trans-
form; here we apply this transform to both ¢ and depq:

_ e—in(®) P .
(b(l‘, t) = )\S/Q(t) € )\(t)/Zr)\(t>¢(r/)‘(t)7 t) (40)

e n® imr2A()/2RA(E) 5
0pd(r,t) = ——¢ dpa(r/A(t),t). (41)

A3/2(t)
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The scaling factor A(t) solves the second order Newton-
type differential equation

g w?

T Gaa M

with the initial condition A(0) = 1, A(0) = 0. The “force”
seen by A in equation (42) derives from the sum of an
expelling 1/ potential due to repulsive interactions be-
tween atoms and an attractive A\* potential due to the
harmonic confinement of the atoms. It leads to periodic
oscillations of A, that is to a periodic breathing of the con-
densates. We have also introduced a phase factor involving
the time dependent function 1 such that 9 = fig/(gaa\*R).

In the Appendix C we derive approximate evolution

WA (42)

equations for ¢ and dpg; we give here only the result. To

lowest order in the Thomas-Fermi approximation ¢ does
not evolve and can be approximated by the Thomas-Fermi
approximation for ¢g:

15

e~ () -]

with a Thomas-Fermi radius Ry = /2f/mw?. The ap-

proximate evolution for §p4 is conveniently expressed in
terms of the real function « and the purely imaginary
function :

a=d g+ 667 (44)
1 {604 6&::;]

B=5|—=——-="|- (45)
2 { o ¢

These functions have a clear physical meaning. The first
one «a corresponds to the deviation §p, /N, —dpn/Np, writ-
ten in the rescaled frame, dp. being the deviation of spatial
density in the condensate € from the breathe-together so-
lution. Apart from a factor i the second function 3 is the
deviation of the relative phase equation (39) written in
the rescaled frame:

(602 — 66n)(r, t) = —iB(r/A,1). (46)

The equations of evolution for «, 3 are:
ino, [ | =Ly [ @ a7
10 (ﬁ) (t) <ﬁ) ( )

where the operator L(t) in the Thomas-Fermi approxima-
tion reads:

L(t) =
< 0 —% div [4502 grad(-)] >
& Mol (gaa + gob — 29ab) 0
(48)

The initial conditions for «, 8 at time ¢ = 0 obtained from
equations (33, 10) are:

_ (N 0N,
- Na Nb

(49)
(50)
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3.4 Solution of the Thomas-Fermi evolution equations:
stability against demixing

The strategy to determine the time evolution of «, ( is
(1) to expand the vector («(0),3(0)) on eigenmodes of
the operator L(0), and (2) to calculate the time evolution
of each eigenmode.

3.4.1 Expansion on modes of L(0)

Consider an eigenvector (a, 3) of the operator L(0) with
the eigenvalue hf2. For {2 # 0 one can express the compo-
nent [ as function of a:
(e} N Nb
ﬁ = _a*(gaa + gbb — 2gab)

h2 N (51)

and obtain the eigenvalue problem for a:

Pa= (N%]jb (ee o 29"“”)) Sla]  (52)

where we have introduced the Stringari operator:

Ng.. _
Sla] = — 9% qiv[4e” grad al. (53)
m
This operator has been studied in [14]. It is an Hermitian
and positive operator, with a spectrum qw?, ¢ non negative
integer; ¢ is given by
q=2n>+2nl+3n+1 (54)
as function of the radial quantum number n and the an-
gular momentum [. This allows the determination of the

eigenfrequencies (2:

- 1/2
N, N -2
Qq:i( E2b(gaa+g;b gab)) M0, (55)

with ¢ > 0 as we have assumed {2 # 0. The case of a
vanishing (2 corresponds to the zero energy mode oy =
0, 8o = 1 of the operator L(0), as it can be checked from
a direct calculation.

All the eigenmodes of L(0) have been identified. They
do not form a complete family of vectors however. The
vector (a = 1,3 = 0) cannot be expanded on the eigen-
modes of L(0). Its first component « is indeed in the ker-
nel of the operator S (as S[a] = 0) whereas none of the
ag is in the kernel of S (Sla,] = qw?ay is not identi-
cally zero) except when «, is identically zero (for ¢ = 0).
The family of eigenvectors of L(0) completed by the ad-
ditional vector (o = 1,8 = 0) forms a basis. The ad-
ditional vector is called an anomalous mode, and we set
Qanom = 1, Banom = 0; the action of L(0) on the anoma-
lous mode gives the zero energy mode times the constant
factor Na(gaa — gab) [18].

The mode functions g of the operator S are given
in [14]. It turns out that in the expansion of the initial
conditions for a, 8 equations (49, 50), only the isotropic
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eigenmodes of L(0) with ¢ = 5 and the anomalous mode

are involved:
_ 1
Qa=s ) + Canom .
ﬁq:S
(56)

Qg—5

*ﬁqzs

o)) _
(ﬁ(0)> - 0

The isotropic eigenmode of S with ¢ = 5, the so-called
breathing mode, reads

- ﬂ (57)

ot = [

By equation (51) we have Bi—5 = agq=5NalVp(Gaa +
gbb — 2gab)/ Nh§2q=5. For the coefficients of the modal
expansion of (a(0), 3(0)), we obtain

3 (6N, 6N,
Cs = *gcanotrv (59)

3.4.2 Evolution of the modes and stability against demixing

As a second step we determine the time evolution of
the modes of the operator L(0). If we consider an
eigenstate (agq(0),54(0)) of L(0) with the eigenenergy
h$2, and evolve it according to equation (47), we find
that the evolution reduces to multiplication by purely
time dependent factors Aq(t), By(t):

aq(r,t) = Aq(t)a(r,0) (60)
ﬁq (I‘, t) = Bq(t)ﬁ(r? 0) (61)
where the factors satisfy the differential equations:
s 0
iA, = A—;?Bq (62)
- 0
iB, = /\—gAq (63)

with the initial conditions A4(0) = B,(0) = 1. Note that
the zero energy eigenmode does not evolve, as 2, = 0
The anomalous mode has to be integrated separately,
leading to

aanom(r7t) =1 (64)

_ NaNb (gaa + 9bb — 2gab) t
ﬁanom(ry t) = N ih )

d¢
A3(t)

(65)

We are now able to address the problem of dynamical
stability of the breathe-together solution. Dynamical sta-
bility requires that any small deviation of the ¢.’s from
the breathe-together solution ¢ should not grow exponen-
tially with time. Here an exponential growth of o may
correspond to a demixing of the two condensates a and b.

A first case of instability occurs when g.p > Gaas gbb-
In this case the eigenfrequencies {2, are purely imaginary
and Ay, B, diverge exponentially with time [19]. We have
checked by a numerical integration of the Gross-Pitaevskii
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Fig. 1. Modulus squared of the condensate wavefunctions
|62 ,|(Na, Ni) as function of the distance r to the trap center
at a time wt ~ 29.5, from a numerical solution of the coupled
Gross-Pitaevskii equations in the case of a dynamically un-
stable breathe-together solution. We have taken gp,/gaa = 1.2
and gab/gaa = 1.5. We have applied a deviation d N, = —0 N}, =
—0.05N, from the exact breathe-together condition. The chem-
ical potential is 1 = 28.9Aw. The curve in solid line corresponds
to ¢a, the dotted curve corresponds to ¢r,.

equations with spherical symmetry that the spatial distri-
bution then acquires a structure of alternating shells of
a atoms and b atoms (see Fig. 1).

We suppose from now on that gab < gaa,gbb- Insta-
bility may still occur in this case due to the periodic
time dependence of the coefficients in the system (63),
as shown in [20]. We have studied in more detail the sta-
bility of the mode ¢ = 5, which is the one populated ini-
tially (see Eq. (56)); we have found non-zero instability
exponents o (Cs(t) ~ e°) in a very limited region of
the plane (gab/gaa, gbb/gaa), With very small exponents
(0 < 3 x107%w). A direct numerical integration of the
Gross-Pitaevskii equations did not show any demixing of
a and b even at times > o~1 [21]. This suggests that the
finite instability exponent is an artifact of the Thomas-
Fermi approximation.

We assume in what follows the dynamical stability of
the breathe-together solution.

3.5 Phase dynamics

In order to calculate the functions yq, xs relevant for the
relative phase dynamics, we calculate the evolution of the
deviation §pq due to a small change in N,, Ny, with respect
to Na, Ny, that is we evolve the initial state (56) according
to the results of the previous subsection.

As we assume dynamical stability of the breathe-
together solution, the modes with ¢ = 5 perform only
oscillations in time [22]. The relevant contribution for
the phase dynamics therefore comes from the anoma-
lous mode, which from equation (65) has a [ diverg-
ing linearly with time. Assuming 3(r,t) ~ CanomBanom (t)
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and using equations (58, 46) we obtain:

20 NaNb (Gaa + gbb — 29ab)

~ ——
Jaa

5 N2

(AT AR
Nao Ny J Jo X3(¥)

We specialize this formula with 6 N, = £0N, and we get
from equations (30, 31):

(60, — 660,)(r, 1)

dt’

(66)

1 d# ) GJaa + gbb — 2gab /t dt/

Xa~ ~57 | 3% (67)
2h (dN N=N Gaa 0 >\3(tl)

Xs ~ (len]* = leal®)xa- (68)

We have introduced the derivative of the chemical po-
tential with respect to the total number of particles
((dp/dN)(N = N) ~ 2ji/5N in the Thomas-Fermi limit)
in order to recover the characteristic time scale for the
phase collapse of steady state non mutually interacting
condensates. Our formula reveals the interest of close cou-
pling constants, such that gaa + gbb — 2gab <K gaa. In this
case X4 is strongly reduced with respect to non mutu-
ally interacting condensates; A performs small oscillations
around the value A = 1 so that the integral over ¢’ can be
replaced by ¢. The more general case of close g’s not neces-
sarily satisfying the breathe together condition is analyzed
in the next section.

‘We note that the value of x5 as function of x4 could be
expected a priori from equation (20): when equation (26)
is satisfied, the condensate wavefunctions form a breathe-
together solution and have therefore a vanishing relative
phase for N, = Nlca|?, Nb = Nlcp|?, whatever the value
of N is. An important consequence is that there is no extra
damping of the phase coherence due to the fluctuations of
the total number of particles (see Eq. (22)).

4 Case of close coupling constants

We consider in this section the case of close coupling con-
stants which leads to a dramatic reduction of the relative
phase decoherence with respect to the case of non mutu-
ally interacting condensates.

The strategy is to solve approximately the Gross-
Pitaevskii equations (Eq. (9)) for ¢a(Na,Np) and
&b (Na, N) and apply the formulas (16, 17) directly. For
all equal ¢’s the initial state is indeed a steady state for the
equation (9) and xs = x4 = 0. For close g’s we linearize
the Gross-Pitaevskii equations around the initial value in
the hydrodynamic point of view.

4.1 Linearization in the classical hydrodynamics
approximation

We first rewrite the Gross-Pitaevskii equations (Eq. (9))
in terms of the hydrodynamic variables:

Pe = N€|¢E(N37Nb)|2
h

ve = — grad 6.(N,, Ny,)
m

(69)
(70)
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that is densities and velocity fields of the two condensates.
We further assume the Thomas-Fermi limit ;4 > hw and
neglect the quantum pressure terms as in [14] in the time
evolution of the velocity fields:

O¢pe + div(peve) =0 (71)
1 1
OV + 3 grad v? = - grad [U(r) + pegee + per Gee']-

(72)

At this point we introduce the deviations of the densities
and velocity fields from their initial values:

pe(t) = pe(0) + 6pe(t) (73)
ve(t) = ve(0) + dve(t) (74)
where the initial values are given by:
ps(tZO):NEWO‘Z(N) (75)
ve(t=10)=0. (76)

By expanding equations (71, 72) to first order in the small
quantities dpe, v, we obtain:

0:6pe + div[N.|¢o|26v.] = 0 (77)

1
Opdve + - grad [0pcgce + 0pergeer] =
1
m grad [‘¢0|2](N€gis + NerGeer = Ngaa).  (78)

By taking the first time derivative of equation (77) we
eliminate the velocity field and we get:

020pe + Y MoosS[oper] + 0= = 0. (79)
=

The source terms of these inhomogeneous equations are:

N, .
O = *Ele“(bO‘Z grad |¢70|2}(ng55 + Nergeer — Ngaa)-
(80)

The homogeneous part of equation (79) involves the 2 x 2

matrix M:
_ 1 Nagaa Nagab
Ngaa \ Nugab Nogob

and the Stringari operator defined in equation (53). In or-
der to solve equation (79) we introduce the eigenvectors e+
of the matrix M with corresponding eigenvalues g.. Con-
sistently with our previous approximations, we calculate,
to leading order in the differences between the coupling
constants, the eigenvalues:

M

(81)

9+ = Gaa (82)
N,Nj
g- ~ N2b (gaa + gbb — 29ab) (83)
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and the components of (6pa, dpp) on the eigenvectors of M:

dpy = 0pa+ 6pp (84)
Na

—0pb-
N
For those linear combinations we get the decoupled equa-

tions:

Ny,
0p_ =2 —0p, —
p— = <5 0p (85)

9+

335pi +
Gaa

[0ps] + 04 =0. (86)
To study the dynamics of the system we expand p+ and
the source terms o4 on the eigenmodes of the Stringari
operator. It turns out that the source terms are simply
proportional to the breathing mode a4—5 already intro-
duced in equation (57). The solution of equation (86) with
the initial conditions dp1 = 0;dp+ = 0 is then:

Spi(r,t) = N\¢0(0)|2Ai%‘[1 — cos 2stag_s(r) (87)

with eigenfrequencies and amplitudes given by:

1/2
0. = (5"*) w (88)
Gaa
N2gaa + Nggbb + 2N3Nbgab

—a -1
A+ N2g.a (89)

_ NalNp [ Nagaa + Nbgab — Nogbb — Nagab
A=\ { Ngaa (50)

We note that when the numbers of atoms N, 1, satisfy the
breathe-together condition (Eq. (26)) the amplitude A_
vanishes as expected, since dp_ = 0 in this case.

4.2 Validity of the linear approximation

In order for our linearized treatment to be valid the devi-
ations Jp4 should remain small as compared to the initial
densities. A first necessary condition to be satisfied is that
the eigenfrequencies (21 should be real. This imposes the
positivity of the matrix M, ensured by the positivity of
its determinant:

ggb < Jaadbb- (91)

This condition is known in the case of homogeneous
mixtures of condensates as a stability condition against
demixing [23]. To the leading order in the difference be-
tween the coupling constants, the condition (91) is equiv-
alent to Gaa + gob — 2gab > 0.

We note at this point that the amplitude A_ /g_ in the
expression for dp_ is a ratio of two small numbers. When
this ratio is large the system can evolve far from its initial
state even in the stable case g— > 0: numerical solutions
of the Gross-Pitaevskii equations confirm this expectation,
showing the formation of a crater at the center of one of
the condensates. We therefore have to impose a second
condition:
<1 (92)

‘Ai@
9+
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Finally the present treatment is based on the classical
hydrodynamic approximation; by including the quantum
pressure terms in the hydrodynamic equation for the ve-
locity field one can show that this imposes on the eigen-
frequencies (2_:

f2
X<

; (93)

(see also Appendix C). This condition can be violated even
in the Thomas-Fermi limit, when the g_ eigenvalue almost
vanishes. In this case one has to include the quantum pres-
sure terms; the decoupling property of dp+ is unaffected;
for the evolution of dp_ similar results as in equation (87)
are obtained; we find e.g. £2_ ~ 63hw? /8.

4.3 Phase dynamics

We assume that all the conditions for the validity of the
linearized treatment are satisfied so that we can proceed
to the analysis of the relative phase dynamics. To this
aim we write the equation of evolution for the phases 6.
of the condensate wavefunctions ¢. in the classical hydro-
dynamic approximation:

00, + -

5, (grad 0.)° = —[U + geepe + geerper] [he (94)

The equations for the velocity fields previously given are
simply the gradient of equation (94). By linearizing equa-
tion (94) around the initial state . = 0 we obtain for the
relative phase:

R0y (0 — O1)

~

7‘¢0|2(Nagaa + Nbgab - Nbgbb - Nagab)

+ (gab — gaa)0pa + (gbb — Gab)dpb-  (95)
The right hand side of this equation is a sum of terms
constant in time and of oscillatory functions of time. The
function 6, — 6, then has two components: an oscillat-
ing component and a component diverging linearly with
time which will dominate for long times. By using the re-
sult equation (87) and the Thomas-Fermi approximation
for |¢(0)|? (Eq. (43)) we can calculate the time diverg-
ing component and we obtain to leading order in the ¢’s
difference:

L
O — O ~ — Nagaa — N Ny, — Na)gab] t/h.
b 5Ngaa[ g bbb + (N )Gan] t/

(96)

We now use equations (17, 20) to obtain:

1 (dp Jaa + gbb — 2gab

~—= |- —t/h

s (i), B o

2 du
o2 ()
el =l rxa~ =g (38)

X (|Ca|29aa + |Cb|2gab - |Cb|2gbb - ‘Ca‘zgab) t/h (98)
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where we introduced the derivative of the chemical po-
tential with respect to the total number of particle
(du/dN)(N = N) (2/5)fi/N in the Thomas-Fermi
limit. As we already found in the particular case of the
breathe-together solution the constants x4 and x5 govern-
ing the relative phase collapse are highly reduced for close
¢’s with respect to the case of non mutually interacting
condensates.

~

4.4 Physical interpretation of the results

We now show that all the previous results of this section
can be interpreted in terms of small oscillations of the
condensates around the steady state.

Let us introduce the steady state densities pS* for the
condensates with IV, particles in ¢ and Ny, particles in b.
As we are in the case of quasi complete spatial overlap be-
tween the two condensates we can use the Thomas-Fermi
approximation to determine these densities:

(99)
(100)

o — U = 03 Gaa + P}y gab
o — U = pigan + piy gon

where ji. are the chemical potentials in steady state. We
rewrite these equations in terms of the deviations §pS* of
the steady-state densities from the initial state densities
N¢|¢o|? and in terms of the deviations Su. of the chemical
potentials from p defined in equation (1):

6/‘& = (Nagaa + Npgab — N!]aa)|¢0‘2 + 5/’?!]% + 6pit(gab )
101

Spb = (Nogbb + Nagab — Ngaa)|do|? + 505 gab + 5P?f(’9bb-)
102

Using the fact that the spatial integral of dp. vanishes,
we get from integration of equations (101, 102) over the
volume of |¢g|? the approximate relations:

2p
Oa = Nagaa + Nogab — Ngaa 103
% 5Ngaa( Gaa + Nbgab Gaa) (103)
Sy = =2 (Nogon + N, Ngaa) (104)
by = 5Ngun bbb aJab Jaa)-

We can therefore check that the relative phase of the con-
densates in steady state, given by 65° — 65 = —i(0pa —
dpw)t/h, evolves as in equation (96). The phase decoher-
ence properties of the evolving mixture are then essentially
the same as in steady state.

Moreover we now show that the average (dp.) of dp.
over the oscillations at frequencies 21 coincide with Jp2t.
First, by averaging equation (77) over time we find that
the velocity fields have a vanishing time average [24]. Sec-
ond, we average equation (78) over time; we find equa-
tions for the spatial gradient of (Jp.), which coincide
with the spatial gradient of equations (101, 102), so that
(6p:) = 6p2" [25].
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5 Discussion of the JILA case

In the JILA experiment the values of the three coupling
constants between the atoms are known with good preci-
sion; they are in the ratio [10]:

Gaa: Gab :gbb = 1.03:1:0.97. (105)
No breathe-together solution exists in this case, as gay, lies
within ga. and gpp. Experimentally half of the particles
are in the state a so that |c,|> = |cp|? = 1/2, and the
mean total number of particles is N = 5 x 10°. Although
the coupling constants are close, the linearized treatment
presented in Section 4 does not apply either, because con-
dition (92) is violated. It is actually found experimentally
that the two condensates evolve far from the initial state,
with formation of a crater in the a condensate while the
b condensate becomes more confined at the center of the
trap; eventually the condensates separate in some random
direction [10].

To avoid the crater formation and trigger the spatial
separation of the two condensates in a reproducible direc-
tion a small spatial shift is applied to the trapping poten-
tial of one of the two states. The two condensates separate,
with a relative motion exhibiting strongly damped oscil-
lations [10]. The system then reaches a steady state that
still exhibits phase coherence, up to times on the order of
150 ms after the phase state preparation [9].

5.1 Time dependent calculations

We have already studied in [15] the damping of the relative
motion between the condensates, by numerical integration
of the coupled Gross-Pitaevskii equations (Eq. (9)). The
agreement with the experimental results of [10] is qualita-
tively good, although the damping in the theory is weaker
and incomplete, small oscillations of the condensate wave-
functions remaining undamped even at long times.

We have applied the formalism of Section 2 by nu-
merically integrating the Gross-Pitaevskii equations for
the parameters of the JILA experiment. The coefficients
Xs; Xd, now complicated functions of time and space, are
obtained by evolving wavefunctions with slightly different
numbers of atoms in a and b. In order to facilitate the com-
parison with the experiments, in which the z-integrated
atomic density pa(y, z) in the internal state a is measured
after the m/2 pulse applied at time 7, we calculated the
following contrast:

maxsp, — Mingp,

maxsp, + mingp,

_ 20 de @ ) (r)) |
ZE:a,b f da N5‘¢8|2(T_)

where the interference term (15) is averaged over a Gaus-
sian distribution of the total number of particles with a
standard deviation AN. A direct comparison with the ex-
periment would require the inclusion of the 22 ms ballistic

CJILA(ya Z) =

(106)
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Fig. 2. For the parameters of the JILA experiment (not in-
cluding the 22 ms ballistic expansion), phase contrasts Cyyp,a
(lower curve) and Cgpg (upper curve) defined in the text, at
y = z = 0, as function of time in seconds, for the evolving
binary mixture, with AN = 0.08N.

expansion, not included in the present numerical calcula-
tions.

Our numerical result for Cy,a at the center of the
trap for the species a, y = z = 0, is presented in Figure 2,
for Gaussian fluctuations in the total number of particles
AN/N = 8% corresponding to the JILA experiment [26],
together with the pure Gross-Pitaevskii prediction Copg
obtained by setting all the x’s to 0. The Gross-Pitaevskii
prediction oscillates around (Cgpg) = 0.63. On the con-
trary the result of the more complete calculation including
fluctuations in the relative and total number of particles
exhibits a damping of the contrast, that we have fitted by
convenience with the formula Cy.a = Coe™*; we obtain
Co ~ (Cgpg) and y~1 = 0.42 s.

Note the oscillatory aspect of the curves in Figure 2.
More understanding of the structure of the condensate
wavefunctions given by equation (9) is required as this
point: as detailed in [15] ¢, is a sum of a smooth part, per-
forming oscillations with frequencies expected to be close
to eigenfrequencies of the steady state condensates [27],
and of a noisy quasi-stochastic part. The slow oscillatory
structure evident on Cgpg comes from this smooth oscil-
lating part of the wavefunctions.

We have also considered the ideal case of a well-defined
total number of particles. The numerical prediction for the
contrast Cyy,4 in this case corresponds to a very long lived
phase coherence: after a time of 1 s, the contrast is still
very close to the pure Gross-Pitaevskii prediction.

5.2 Steady state calculations and effect of particle
losses

As the wavefunctions at long times perform mainly os-
cillations around the steady state we have also tried a
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Fig. 3. For the parameters of the JILA experiment (except
the 22 ms ballistic expansion), collapse time t. for Cypa at
y =2z =0 as a function of AN/N for zero temperature steady
state condensates in the shifted traps.

much simpler steady state calculation (see Sect. 2.5). Dur-
ing the collapse time the contrast Cya is a Gaussian
in time (Eq. (22)), with an initial value 0.958 and with
a half-width t. at the relative height e='/2. We plot in
Figure 3 the variation of t. as function of the standard
deviation AN. As we find xs/t = —7.7 x 1075 s71 and
Xa/t = —4.5 x 107% 571, one has |xs| =~ |xa|/6, so that
relatively high values of AN are required to observe a
significant effect of the fluctuations of the total number
of particles on phase decoherence. For AN = 0.08N the
phase decoherence time is t. = 0.32 s, close to the result of
the time-dependent calculation of Figure 2. Note that for
such a high value of AN/ N the decay of the phase contrast
in equation (22) is essentially due to the first exponential
factor accounting for the smearing of the phase by fluctu-
ations of the total number of particles, the spreading of
the phase for a fixed number of particles being very small
(Nx3(te)/2 ~0.005).

We now briefly consider the issue of losses of parti-
cles. An intrinsic source of losses in the JILA experiment
are the inelastic collisions between a atoms and b atoms,
resulting in the simultaneous loss of two particles. We es-
timate the mean number (§N) of lost particles from the
rate constant Ky for binary inelastic collisions between
the states |[FF = 1,m = —1) and |F = 2,m = 2) [2§]
and from a numerical calculation of the overlap inte-
gral [d®r|¢a|?|éu|?. For the JILA parameters we find
(6N)/N = 0.04 at time t. = 0.32 5. One could then naively
expect the effect of losses on phase coherence to be com-
parable with the effect of fluctuations of N.

To test this naive expectation we use the following
simple model, inspired by the two-mode model developed
in [8], and focusing on the effect of the losses on the drift
velocity v(IN) of the relative phase of the two conden-
sates given in equation (21). Imagine that the system has
initially N condensate atoms and that k binary inelastic
collisions have taken place at times t; < ... <ty between
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time 0 and time ¢. The shift of the relative phase during ¢
is then given by:

6= / dr o(N(r)) = o(N)t + o(N — 2)(t2 — t1)
0

+. 4 v(N = 2k)(t —tg). (107)

As we do in [8] we assume a constant mean number of
collisions A per unit of time and we average the phase

factor €'® multiplying the interference term <@Z§bT1/;a> over

the probability distribution of the times t1, ... ,¢; and of
the number of loss events k,
Pi(ty, ... ti; k) = Ae (108)
to obtain:
{e')] = exp {—{k)[1 - sin(2xs)/(2xs)]} (109)
~ exp {*%(@Xf} for |xs| < 1 (110)

where 2(k) = 2\t = (0N) is the mean number of lost par-
ticles during ¢. At time t = ¢t. = 0.32 s the corresponding
modulus of the averaged phase factor is on the order of
[1—4x 1076], very close to one: particle losses have a negli-
gible effect on the phase coherence at the considered time
tc, even if (§N) and AN have the same order of magni-
tude.

Actually an inspection of the xs dependent factor in
equation (22) and of equation (110) reveals that these
equations have the same structure; replacing in equa-
tion (22) the variance AN? of the total number of par-
ticles by the variance Ak? of the number of loss events
(Ak? = (k) as k obeys a Poisson law) one recovers equa-
tion (110) up to a numerical factor inside the exponential.
For equally large values of AN and (k) the effect of losses
on phase coherence is less important than that of fluctu-
ations of N because Ak? = (k) < AN2.

‘We have also investigated another source of losses, the
collisions of condensate atoms with the background gas of
the cell. Assuming a lifetime of the particles in the cell of
250 s as in [29] we find as well that this loss mechanism
has a negligible effect on the phase coherence for a time
te =0.32 s.

6 Conclusion and perspectives

We have extended previous treatments of the phase dy-
namics of Bose-Einstein condensates at zero temperature
to the case of mutually interacting and dynamically evolv-
ing binary mixtures of condensates, for a measurement
scheme of the phase coherence inspired by the JILA ex-
periment.

We have first applied this extended formalism to
the interesting breathe-together solution of the Gross-
Pitaevskii equations, in which the two condensates oscil-
late in phase, remaining always exactly spatially superim-
posed. The analytical results for the phase show that a
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dramatic increase of the phase coherence time can be ob-
tained for close coupling constants gaa, gab, gbb describing
the elastic interactions between a atoms and b atoms.

We have also treated analytically the case of close g’s,
in the absence of demixing instability. Basically the phase
collapse is identical to the steady state case for the two
mutually interacting condensates.

Finally, we have investigated numerically the more dif-
ficult case of JILA. We find a collapse time of the phase on
the order of 0.4 s, both by a dynamical and a steady state
calculation, in the case of Gaussian fluctuations of the
total number of particles, corresponding to AN/N = 8%.
This result for the collapse time is significantly larger than
the experimental results (no phase coherence measured af-
ter 150 ms). We have also estimated in a simple way the
effect of collisional losses on phase coherence in the JILA
experiment.

A possible extension of this work could include the
effect of the presence of a thermal component in the ex-
periment.

Part of this work (the breathe-together solution) would have
not been possible without the contribution of G. Shlyapnikov,
J. Dalibard and P. Fedichev. We thank A. Leggett, Y.
Kagan for very useful discussions on the role of fluctuations
in the total number of particles. We thank Ralph Dum for
help in the numerical calculations. A.S. acknowledges finan-
cial support from the European Community (TMR individual
research grant).

Appendix A: Phase correction
to the Gross-Pitaevskii prediction

We consider the evolution of the Fock state
|Na:$a(0), Ny : ¢,(0)) (with N, particles in the in-
ternal state a,b). The model Hamiltonian we consider
contains the one-body Hamiltonians H. and elastic
interactions terms:

H = /d3r Z d;gTHg?l;s + %gaad;a]\d;afd;a'&a

e=a,b
gt ot + g Gy (A1)

where 1/;5 is the atomic field operator in the internal

state e.
We use the Hartree-Fock type ansatz for the N-body
state vector:
) =

e THAD/RIN, : 6 (£), Nyt 6 (1)) (A-2)

A variational formulation of the Hamiltonian equation

d
ih—|¥) = Hl¥ A3
ih- ) = HIP) (4.3)
leads to the Gross-Pitaevskii equations for ¢.(t), given
in equation (9), up to the undetermined phase factor
A corresponding formally to a time dependent Lagrange
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multiplier ensuring the conservation of the norm of |¥).
To determine this phase factor A, we multiply equa-
tion (A.3) on the left by the bra (¥|; we obtain:

A+ RN, : ¢a(t)7Nb:¢b(t)\%|Nd ¢a(t), Ny : du(t)) =
(W|H|W). (A.4)

The scalar products are calculated in second quantized
formalism, e.g. we find:

<M¢NM®%W%M¢$MM%WZ

ZN% m

We finally arrive at equation (11).

(A.5)

Appendix B: Derivation of the interference
term

When the N-body state vector is initial a phase state (2)
and if one assumes that the Fock states evolve according
to equation (8) one gets the following expression for the
interference term between the two condensates:

(d]bwd)N = CaCf, Z %‘Cap(%—l”cbﬁNb

X qﬁa(Na,Nb)qﬁb(Na —1,Np+1)

« @l ANa=1,Ni+1)— A(Na, N3] /B

% [(¢a(Na = 1, No + 1)l éa(Na, Np))JV

X [(¢n(Na = 1, Niy + 1) | (Na, Ny )™
(B.1)

where Ny, = N — N,. In the large N limit, we expand to
first order the effect of shifts of N, by unity in the last
three lines of the previous equation:

Qﬁa(Na*l,Nb‘i’l) ¢)1( -1 Nl))+aNb¢1( -1 Nb)
(B-2)
¢a(Na7Nb) ¢a( 71 Nb)+8N ¢a( 71 Nb)
(B.3)
A(Na—1, Np+1) ~ A(Na—1, Np)+0n, A(Na—1, Ny)
(B.4)
A(Na,Nb) ~ A(N -1 N]))+8N ( —1 Nb)
(B.5)
‘We then get:
(d’bd}a = cacf, Z 1) 'N ,‘Ca|2<Na71)‘Cb‘2Nh

X d’a(Nav Nyp)op(
% ei(‘)(Nd—LNb)

a_lvaJ'_l)
(B.6)

331
where we have introduced the real quantity:
1
@(N?H Nb) = ﬁ(aNb - aNﬂ)A(Nm Nb)
1Y Ne(e(Nay Ny)|(O;, — On,)|6(Nas Np)). - (B.7)

€
We calculate the time derivative of
Gross-Pitaevskii equations (Eq. (9)).
lations we find

O(Na, Ny,) using the
After lengthy calcu-

O(N., Ny) = 0. (B.8)

In the Gedanken experiment considered in this paper, the
initial wavefunctions ¢.(t = 0) depend only on N, + N},
so that they have a vanishing derivative dn, — On,, and
we take initially A = 0; this leads to © = 0. The same
conclusion holds if the initial wavefunctions are real.

Appendix C: Approximate evolution
in the Thomas-Fermi limit

After the gauge and scale transforms equations (40, 41),

the equations of evolution for (?5 and §pq read:

016 = 515 46 + L [00) + Vw7 ~ ] &
(C.1)
. ~ K2
ih0s0pq = ey —— Adpq
g N
o [U(r)+Ngaa|¢| u] 5¢a
1 T
+ ﬁNb(gbb — gap)(|81%60a + ¢ 60%). (C.2)

In the Thomas-Fermi limit the terms involving the Lapla-
cian are small; if we neglect them we get for the time
derivatives of the « and (3 variables defined in equa-
tions (44, 45):

ihdya =0 (C.3)

1ﬁ8tﬂ = i (gaa gab)a' (C4)

The variable a has actually been defined in a way to obtain
zero on the right hand side of equation (C.3).

The first equation (C.3) is not an acceptable approxi-
mation for the evolution of «, we therefore include in d;a
the contribution of the Laplacian terms:

_ h? div da grad Q:B _ grad q?ﬁ*
2mA? 3 5*
+2|6]? grad ﬁ} . (C5)

ih@ta =

Furthermore, along the lines of reference [17], one can
show that ¢ has a negligible time evolution in the Thomas-

Fermi limit; we can then replace ; by its initial value ¢y
and we recover the first line of equation (47).
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The second equation (C.4) is an acceptable approxi-
mation for the evolution of 3 if the neglected terms, all

involving spatial derivatives of a, 3 or ¢, are small as com-
pared to the right hand side of equation (C.4), as they
are expected to be in the Thomas-Fermi limit. Neglecting
these terms, we recover the second line of equation (47).

In order to estimate the order of magnitude of the
neglected terms in the time derivative of (3, we calculate
the exact derivative:

. 1
lhatﬁ = FNa(gaa - gab)

h? gradgb gradg*
—mgradﬁ~ |:T_~—*
2 = ~ %
" an- Lgrada. |E242 Erade
2mA2|g|? 2 ¢ ¢
1,40, 40 } . (C6)
2 19

We replace <Z by ¢o. We consider an eigenmode with fre-
quency §2,; from equation (52) we estimate Aa/a ~ g/ R2.
Assuming A on the order of 1 we get the condition

MZ
0
which we can rewrite as
Q4r
1< g . C.8
<Vi<ok (©8)
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4.4 Description d’un condensat a température non
nulle

Aux températures expérimentales usuelles (kT de 'ordre du potentiel chimique p) le
nuage d’atomes non condensé contient en fait une fraction significative (~ 10%) des atomes
du gaz. Lorsqu’on perturbe le gaz (en modifiant par exemple le potentiel de piégeage) la
dynamique du condensat peut étre modifiée par interaction avec le nuage non condensé,
effet négligé dans I’équation de Gross-Pitaevskii. On s’attend a que cet effet soit important
pour décrire par exemple 'amortissement d’oscillations collectives du condensat, le temps
de vie d’un vortex ou d’un soliton, la cohérence de phase a température non nulle, ou
encore pour déterminer la statistique du nombre de particules dans le condensat.

Le formalisme que nous avons développé est inspiré des méthodes d’optique quantique
(distribution de Wigner) : les atomes sont décrits par un champ classique dont la partie
lisse spatialement est donnée par la solution de Gross-Pitaevskii et la partie bruitée cor-
respond aux fluctuations thermiques (atomes non condensés) et quantiques. Nous avons
démarré ce projet dans le cadre d'une collaboration CNRS-University of Illinois, mettant
en jeu du coté d’Urbana le groupe du professeur Anthony Leggett dont Carlos Lobo faisait
partie a I’époque en tant que doctorant.

4.4.1 Distribution de Wigner pour un condensat a I’équilibre
thermique

Une méthode bien établie pour la description d’un condensat a basse température T' <
T, est la méthode de Bogoliubov. Néanmoins, la mise en ceuvre de cette méthode est tres
lourde lors qu’il s’agit de systemes a trois dimensions en ’absence de symétrie particuliere
(comme dans le cas d'un condensat avec vortex). En outre, dans I’approximation de
Bogoliubov, on traite linéairement la dynamique des modes non condensés ce qui en limite
la validité aux faibles fractions non condensés et aux temps courts. Nous avons proposé
et mis en ceuvre une méthode stochastique pour échantillonner la distribution de Wigner
d’équilibre d'un condensat de Bose-Einstein a une température kg1 > hw (situation
habituellement rencontrée dans les expériences) qui, contrairement a I’application directe
de la méthode de Bogoliubov, ne nécessite pas la diagonalisation de grosses matrices, et
qui peut servir de point de départ pour une évolution dynamique de type champ classique.
Nous avons montré analytiquement et numériquement que notre méthode est équivalente
a 'approche “Number conserving Bogoliubov” développée en 1997 par Y. Castin et R.
Dum, et nous avons été les premiers a calculer la distribution du nombre de particules
dans le condensat a 1D et 2D en présence d’interactions.

4.4.2 Meéthode de Wigner tronquée pour les condensats de Bose-
Einstein

Quitte a introduire des éléments stochastiques dans son évolution, on peut remplacer
le champ quantique 1/;(7“) par un champ classique ¥ (r) ou de fagon équivalente 'opérateur
densité ¢ du systeme par une distribution de quasi probabilité classique P, de telle sorte
que les moyennes quantiques sont reproduites par des moyennes classiques sur ¢ ou sur
P. Déterminer I'évolution exacte de la fonction de quasi-probabilité P comporte des diffi-
cultés intrinseques car elle revient a la solution exacte du probleme quantique a N corps.
Les approches approximées les plus courantes sont celles des distributions de Glauber P,
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de la fonction @ et de la fonction de Wigner W. On s’attend en général a que ces ap-
proches dites de champ classique soient valables pour décrire des modes dont le nombre
d’occupation est élevé (condition nécessaire mais pas toujours suffisante). Il se trouve que
dans 'approche de Wigner cette contrainte est moins forte et 'approche est méme exacte
pour un Hamiltonien quadratique.

Dans I'approche de Wigner tronquée, la composante stochastique venant des fluc-
tuations thermiques et des fluctuations quantiques est contenue dans 1’état initial, et
I’évolution du champ classique se fait avec une équation formellement identique a I’équation
de Gross-Pitaevskii utilisé pour décrire un condensat pur. Dans [17] nous avons montré
la supériorité de I'approche de Wigner tronquée sur celle de Bogoliubov pour décrire le
brouillage des oscillations d’un condensat a 1D suite a un changement brusque de son po-
tentiel de confinement. Suite a une augmentation importante de la fraction non condensée,
I’approche linéarisée de Bogoliubov sort de son domaine de validité. Toutefois un travail
de fond nous a permis de mettre en évidence des limites de validité de ’approche de
Wigner tronquée pour les condensats dans les systemes a 3D. Le probleme réside dans la
relaxation du champ vers I’état d’équilibre thermique d’un champ classique ou les nombres
d’occupation des modes sont donnés par le théoreme d’équipartition. La température a
laquelle se thermalise le champ dépend du nombre de modes dans la simulation. Dans le
cas de 'approche de Wigner tronquée ot chaque mode est initialement “rempli” par le
bruit quantique ceci entraine un “réchauffement” non physique du systeme ce qui donne
une contrainte que nous avons pu quantifier sur le nombre de modes que I'on doit inclure
dans sa simulation.
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Abstract

We study the truncated Wigner method applied to a weakly interacting spinless Bose condensed
gas which is perturbed away from thermal equilibrium by a time-dependent external potential. The
principle of the method is to generate an ensemble of classical fields ¢ (r) which samples the Wigner
quasi-distribution function of the initial thermal equilibrium density operator of the gas, and then
to evolve each classical field with the Gross-Pitaevskii equation. In the first part of the paper we
improve the sampling technique over our previous work [Jour. of Mod. Opt. 47, 2629-2644 (2000)]
and we test its accuracy against the exactly solvable model of the ideal Bose gas. In the second part
of the paper we investigate the conditions of validity of the truncated Wigner method. For short
evolution times it is known that the time-dependent Bogoliubov approximation is valid for almost
pure condensates. The requirement that the truncated Wigner method reproduces the Bogoliubov
prediction leads to the constraint that the number of field modes in the Wigner simulation must be
smaller than the number of particles in the gas. For longer evolution times the nonlinear dynamics
of the noncondensed modes of the field plays an important role. To demonstrate this we analyse
the case of a three dimensional spatially homogeneous Bose condensed gas and we test the ability of
the truncated Wigner method to correctly reproduce the Beliaev-Landau damping of an excitation
of the condensate. We have identified the mechanism which limits the validity of the truncated
Wigner method: the initial ensemble of classical fields, driven by the time-dependent Gross-Pitaevskii
equation, thermalises to a classical field distribution at a temperature Teass Which is larger than the
initial temperature 7' of the quantum gas. When T¢ass significantly exceeds T' a spurious damping
is observed in the Wigner simulation. This leads to the second validity condition for the truncated
Wigner method, Tilass — T < T', which requires that the maximum energy €max of the Bogoliubov
modes in the simulation does not exceed a few kT

PACS: 03.75.Fi, 05.10.Gg, 42.50.-p

1 Introduction

In Ref. [1] the formalism of the Wigner representation of the density operator, widely used in quantum
optics, was proposed as a possible way to study the time evolution of Bose-Einstein condensates in
the truncated Wigner approximation [2]. Like other existing approximate methods, such as the time-
dependent Bogoliubov approach, it allows us to go beyond the commonly used Gross-Pitaevskii equation,
in which the interactions between the condensate and the noncondensed atoms are neglected. Our aim
in this paper is to illustrate the advantages and the limits of the truncated Wigner approach.

For reasons of clarity we will address two different situations in two separate parts of the paper: (i)
the case of a stationary Bose condensed gas in thermal equilibrium and (ii) a time-dependent case when
the gas is brought out of equilibrium by a known external perturbation. Even if the stationary gas is the
starting point for both situations, the problems raised by the application of the Wigner method are of a
different nature in the two cases.

(1) In the case of a Bose condensed gas in thermal equilibrium, the first step is to calculate the Wigner
quasi-distribution function associated with the N-body density operator &, which is a functional of a
complex classical field ¢(r). We showed in [3] that this is possible in the Bogoliubov approximation
when the noncondensed fraction of atoms is small. With such an approximation, the Hamiltonian of the
system is quadratic in the noncondensed field and its Wigner functional is a Gaussian. After that, we went
through some more technical work to calculate the Wigner functional of the whole matter field including
the condensate mode. In our derivation we made further approximations in addition to the Bogoliubov
approximation. This introduces some artifacts in the Wigner functional as far as the condensate mode
is concerned [3]. These artifacts are, however, insignificant when the number of thermally populated
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modes is much larger than one, or kg7 > hw in an isotropic trap of harmonic frequency w, so that
the fluctuations in the number of condensate particles, due to finite temperature, are much larger than
one. Once the Wigner functional for the Bose condensed gas in thermal equilibrium is calculated, the
goal is to be able to sample it numerically in order to compute averages of observables and probability
distributions. In practice, this step consists in generating a set of random atomic fields {¢(r)} according
to a probability distribution dictated by the Wigner functional. We have now developed a more efficient
algorithm to sample the Wigner functional in the case of spatially inhomogeneous condensates in a
trapping potential than the one that we had presented in a previous paper [4], which we will explain here
in detail. As far as the equilibrium Bose condensed gases are concerned, our method in its regime of
validity, is equivalent to the U(1) symmetry-preserving Bogoliubov approach of [5, 6], up to second order
in the small parameter of the theory, which is the square root of the noncondensed fraction. Compared
with the traditional Bogoliubov approach, our method presents, however, the practical advantage of
avoiding the direct diagonalisation of the Bogoliubov matrix, which is a heavy numerical task in 2D and
3D in the absence of rotational symmetry. Moreover, due to the stochastic formulation we adopt, our
method gives us access to single realisations and to the probability distribution of some observables such
as the number of condensate particles, not easily accessible by the traditional Bogoliubov method. We
show some examples where we compare the probability distribution of the number of condensate particles
obtained with our method with an exact calculation in case of the ideal Bose gas.

(ii) Let us now consider the situation of a Bose condensed gas at thermal equilibrium which is brought
out of equilibrium by a perturbation. The initial Wigner functional then evolves in time according to a
kind of Fokker-Planck equation containing first and third order derivatives with respect to the atomic field.
Numerical simulation of the exact evolution equation for the Wigner functional has intrinsic difficulties,
as one would expect, since it represents the exact solution of the quantum many-body problem [7]. We
are less ambitious here, and we rely on an approximation that consists in neglecting the third order
derivatives in the evolution equation. This is known as the truncated Wigner approximation [1]. For a
delta interaction potential between a finite number of low energy modes of the atomic field, the third order
derivatives are expected to give a contribution which is smaller than that of the first order derivatives when
the occupation numbers of the modes are much larger than unity. If we reason in terms of the stochastic
fields 9 (r,t) which sample the Wigner distribution at time ¢, then the truncated Wigner approximation
corresponds to evolving the initial set of stochastic fields according to the Gross-Pitaevskii equation [8]:

2
0 = |~ A+ Ulr,0) + gyl v, (1)

where r is the set of single particle spatial coordinates, m is the atom mass, U is the trapping potential
and g is the coupling constant originating from the effective low energy interaction potential V (rq —
re) = gd(r1 — r2) and proportional to the s-wave scattering length a of the true interaction potential,
g= Arh3a /m. Here, the crucial difference with respect to the usual Gross-Pitaevskii equation is that the
field is now the whole matter field rather than the condensate field.

This procedure of evolving a set of random fields with the Gross-Pitaevskii equation is known as the
classical field approximation, since equation (1) can be formally obtained from the Heisenberg equation of
motion for the atomic field operator 1[) by replacing the field operator by a c-number field. The classical
field approximation has already been used in the Glauber-P representation to study the formation of
the condensate [9, 10, 11, 12, 13]. We face here a different situation: we assume an initially existing
condensate and we use the Wigner representation, rather than the Glauber-P representation. The Wigner
representation is in fact known in quantum optics to make the classical field approximation more accurate
than in the Glauber-P representation because the “right amount” of quantum noise is contained in the
initial state [14]. For a single mode system with a Kerr type nonlinearity and an occupation number
n, the term neglected in the Wigner evolution equation is a third order derivative which is 1/n? times
smaller than the classical field term, whereas the term neglected in the Glauber-P evolution equation is
a second order derivative, which is only 1/n times smaller than the classical field term. In the case of
Bose-Einstein condensates however, we face a highly multimode problem and, therefore, the accuracy of
the truncated Wigner approach needs to be revisited. We approach this problem in the second part of
the paper. The strategy we adopt is to compare the predictions of the truncated Wigner method with
existing well-established results: first with the time-dependent Bogoliubov approach and then with the
Landau-Beliaev damping of a collective excitation in a spatially homogeneous condensate.
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2 Basic notations and assumptions

2.1 Model Hamiltonian on a discrete grid

Let us express a simple quantity like the mean atomic density using the Wigner representation:

W) = W (1) (r)w — %(W(T)ﬂ/;*(r)]% (2)

where (...)w represents the average over the Wigner quasi-distribution function. This shows that the
discretisation of the problem on a finite grid is necessary to avoid infinities: in the continuous version
of the problem, [{)(r), %' (r)] = 6(0) = +o0. Physically this divergence comes from the fact that, in the
Wigner point of view, some noise is included in each mode of the classical field ¥ to mimic quantum noise;
this extra noise adds up to infinity for a system with an infinite number of modes. Therefore we use,
from the beginning, a discrete formulation of our problem which will make it also suitable for numerical
simulations.

We consider a discrete spatial grid forming a box of length L, along the direction v = z,y, z with
an even number n, of equally spaced points. We denote A" = [], n, the number of points on the grid,
V =TI, L, the volume of the grid and dV = V/N the volume of the unit cell of the grid. We take
periodic boundary conditions in the box [15]. We can then expand the field operator over plane waves

. 1 .
o) =) ap—=e*r, (3)
2T

where Gy, annihilates a particle of momentum & and where the components of k are k, = 27j, /L, with
the integers j, running from —n, /2 to n, /2 — 1. We then have the inverse formula:

1 R
ar =dV Y —=e " TP(r). 4
For each node r; on the spatial grid, we find the commutation relations for the field operator:
- - 1
[W(rs), T ()] = W‘Si,j (5)
and the discretised model Hamiltonian that we use is:
A R2E? s N VNV
=3 s afa +av S U (i) + Sav 36 )i () (r)dr) (6)
k T r

The first term in (6) is the kinetic energy, which is easy to calculate in the momentum representation. In
the position representation, the kinetic energy is a matrix that couples the A/ points of the grid. In the
following we will write it as p?/2m. The second term is the trapping potential. The last term represents
the atomic interactions modeled by a discrete Kronecker ¢ potential

V(s =ra) = 150, (7)

with a coupling constant g = 471'712@/ m, where a is the s-wave scattering length of the true interaction
potential.

We indicate briefly some requirements for the discrete Hamiltonian to be a good representation of
reality. First, the spatial step of the grid should be smaller than the macroscopic physical scales of the
problem:

dz, < ¢ and dz, < A, (8)

where &€ = 1/+/87plal is the healing length for the maximal atomic density p and A = 1/27h?/mkpT is
the thermal de Broglie wavelength at temperature 7. Secondly, the spatial step of the grid should be
larger than the absolute value of the scattering length a:

dz, > |al, 9)

so that the scattering amplitude of the model potential (7) is indeed very close to a. Another way of
saying this is that the model potential (7) can be treated in the Born approximation for the low energy
waves. A more precise treatment, detailed in the appendix A, is to replace in (7) the coupling constant
g by its bare value gg adjusted so that the scattering length of the model potential on the grid is exactly
equal to a.
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2.2 'Wigner representation

The Wigner quasi-distribution function associated with the N-body density operator & is defined as the
Fourier transform of the characteristic function y:

dRey(r) dIm~(r)dV ()b () —y ()™ (-
W(w) = /H ’Y( )ﬂ—Q 7( ) X(’Y) edvzr“r (Mv(r)=y(r)=(r) (10)
) = Tr [&edv Zr’Y(T)IZJT(T)—'y*(r)iﬁ(T)} . (11)

where ~(r) is a complex field on the spatial grid and & is the density operator of the system. With this
definition the Wigner function is normalised to unity:

/Hdﬁew(r)dlmw(r)dv W) = 1. (12)

We recall that the moments of the Wigner function correspond to totally symmetrised quantum expec-
tation values, i.e.,

1 . S
(O1...0)w = =3 Tr [opm —.Opm) ], (13)
P

where the sum is taken over all the permutations P of n objects, Oy stands for 4 or ¢ in some point of
the grid and Oy, is the corresponding field operator.
The equation of motion for the density operator &

d . 1~
prie %[H, ] (14)

can be written exactly as the following equation of motion for the Wigner distribution:

L OW 0 g 0
zhﬁ = 2 300 (= fuW) + 1AV 529(r) 00 () ((r)W) —c.c., (15)
with a drift term )

The truncated Wigner approximation consists in neglecting the cubic derivatives in the equation for W.
The resulting equation reduces to the drift term whose effect amounts to evolving the field ¢ according
to an equation which resembles the Gross-Pitaevskii equation (1). The constant term —g/dV inside the
brackets of the above equation can be eliminated by a redefinition of the global phase of ¢, which has no
physical consequence for observables conserving the number of particles.

3 Sampling the Wigner functional for a Bose condensed gas in
thermal equilibrium

In [3] we derive an expression of the Wigner functional for a Bose condensed gas in thermal equilibrium
in the frame of the U(1) symmetry-preserving Bogoliubov approach [5, 6], in which the gas has a fixed

total number of particles equal to N. We first introduce the approximate condensate wavefunction ¢(r),
which is a solution of the time-independent Gross-Pitaevskii equation:

2
Hip = |2+ UGt =0) + Nalol? ~ ] 0 = (a7)

We then split the classical field ¥(r) into components orthogonal and parallel to the condensate wave-
function ¢(r):

G(r) = agd(r) +¢u(r) (18)
AV Y " ¢* ()i (r). (19)

g
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The Wigner functional provides us with the joint probability distributions of the transverse classical
field 4, (r), that we call the noncondensed field, and of the complex amplitude as. Due to the U(1)
symmetry-preserving character of the theory, the final Wigner functional is of the form [3]

do

o

W(y) = Wo(e™"9). (20)
This means that one can sample the distribution W () by (i) choosing a random field ¢ according to
the distribution Wy (v), (ii) choosing a random global phase 6 uniformly distributed between 0 and 27,
and (iii) forming the total atomic field as ¥t (r) = e?3(r). In practice, the global phase factor e
is unimportant to calculate the expectation value of observables that conserve the number of particles.
Since the other observables have a vanishing mean value, we can limit ourselves to the sampling of the
6 = 0 component of the Wigner functional, Wo(¢)).

3.1 Sampling the distribution of the noncondensed field

The first step of the sampling procedure consists in generating a set of noncondensed fields {+ | } according
to the probability distribution

P(u.) ox exp Pv (W1 00) - M ( o )} , (21)
1
where we have collected all the components of ¢, and ¢7 in a single vector with 2\ components, M is
the 2N x 2N matrix:

c
M = ntanh ——— 22
ntanh oo (22)

i=(o 1) (23)

and where £ is a 2N x 2N matrix, which is the discretised version of the Bogoliubov operator of [5]:

r— ( Heo +NgQloI’Q NgQ¢*Q*
- —NgQ*¢*2Q _ng —NgQ*|¢\2Q*

with

(24)
In this expression the A/ x A matrix Q projects orthogonally to the condensate wavefunction ¢ in the
discrete spatial grid {r;} representation,

Qij = bij — AV P(ri) 9™ (r5). (25)

Note that the matrix M can be shown to be Hermitian from the fact that £t = nin.

3.1.1 Direct diagonalisation of £

If the eigenvectors of £ are known, we can use the following modal expansion:

()= )en( ) o

where the sum is to be taken over all eigenmodes (uy,v) of £ normalisable as (up|ug) — (velvr) = 1,
with corresponding eigenvalues €. Since the condensate is assumed to be in a thermodynamically stable
or metastable state, all the €, are positive [16]. The probability distribution (21) is then a simple product
of Gaussian distributions for the complex amplitudes by:

Py (by) = %tanh (2]:%) exp {—2|bk|2tanh (%)} . (27)

Each Gaussian distribution is easily sampled numerically [17]. Note that, even at zero temperature, the
Gaussian distribution has a nonzero width: this is a signature of the extra noise introduced in the Wigner
representation to mimic quantum noise.
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3.1.2 Brownian motion simulation

The sampling of the distribution (21) can actually be performed without diagonalisation of £ (an advan-
tage for spatially inhomogeneous Bose condensates in the absence of rotational symmetry [4]) by means
of a Brownian motion simulation for the noncondensed field:

o\ p
d(wi)‘ “‘“(wi)”(dé*)’ @)

where the field d¢ is the noise term. The time t here is a purely fictitious time with no physical meaning
and will be taken to be dimensionless. On our discrete grid, 1, is a vector with A/ components, d¢ is
a Gaussian random vector of N components with zero mean and a covariance matrix (d€:d€;) equal to
(2dt/dV')d; j, while o, Y are 2\ x 2N matrices. To ensure that the Brownian motion relaxes towards
the correct probability distribution (21) we require that the drift matrix « and the diffusion matrix
D =Y (Y1) satisty a generalised Einstein’s relation [4]:

D la=a'D™t =2M, (29)

where M is the matrix (22). There is, of course, no unique choice for o and Y. With respect to our
previous work [4], we have largely improved the efficiency of our simulation by a different choice of o, Y
and by the use of a second order integration scheme of the stochastic differential equation (28), more
efficient than the usual first order Euler’s scheme. In the appendix B we give a detailed description of
these improvements, useful to the reader who is interested in implementing the numerical algorithm.

3.2 Sampling the condensate amplitude

We now have to sample the condensate amplitude aq from the Wigner functional Wy. This amplitude
turns out to be real, and can be written as

ay = /Ny where No = agay . (30)

Since we already know how to generate the noncondensed part of the field ¢, , we have to sample the
conditional distribution P(No|t ).

Due to a first approximation that we have performed in [3], which consists in treating “classically”
the condensate mode and neglecting its quantum fluctuations in the limit of a large number of conden-
sate particles, the probability distribution P(Ny), that we will obtain by averaging P(Ny|¢1) over the
stochastic realisations of the noncondensed field 1 , actually coincides with the probability distribution
of the number of condensed particles &2&45 so that within this approximation we have:

(No) = (alay), (31)
Var(No) = Var(a}ag), .. (32)

Note that this should not be the case for the exact Wigner distribution as, e.g., the average (No) should
be equal to (d;&@ + 1/2 and the variance of Ny should exceed the variance of &Ld¢ by 1/4.

We show in [3] that, when the number of thermally populated modes is much larger than one, the
width in Ny of the conditional distribution P(Np|t ) ) is much narrower than the width of the distribution
P(Np), so that we can replace the distribution P(Ny|¢1 ) by a delta function centered on its mean value.
With this second, more severe, approximation we get for the sampling;:

Ny ~ Mean(No|tb,) = C — %dej, $1) - [1d - M?] (:ﬁi) , (33)

where the constant C is finite only in the discretised version and is given by

C:N—iTrM—i-%TrQ. (34)

Here, the trace of the projector Q is simply the number of modes in the simulation minus one.

The second approximation (33) does not introduce errors in the average (Ng). We are able to verify a
posteriori that the error introduced in the variance (NZ)—(No)? is small in the following way: on one hand
we calculate the variance of Ny (Var(INy)), by using (33). On the other hand we calculate the variance
Var(éN ) of the number of noncondensed particles by using directly the ensemble of noncondensed fields
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{11 }. Since the total number of particles is fixed one should have Var(Ny) = Var(&(;dd,) = Var(q/;TﬂZu),
and deviation from this identity gives us the error of Var(No).
We are now ready to form the total field:

@),
(r) = v/No (¢(r> + ‘“T“) + (). (35)

The function d)(f) is a correction to the condensate wavefunction including the condensate depletion
neglected in the Gross-Pitaevskii equation (17) and the mean field effect of the noncondensed particles.
This correction can be calculated from the ensemble of noncondensed fields {¢ } as explained in [4]. As
we will see in section 4.1 its contribution to the one-body density matrix is of the same order as that of
11 and therefore has to be included.

3.3 Tests and applications: Distribution of the number of condensate parti-
cles

We can use the sampling procedure described above to calculate some equilibrium properties of the Bose
condensed gas. Recently, the variance of the number of particles in the condensate has drawn increasing
attention [18, 19, 20]. In our case we have access to the whole probability distribution for Ny by applying
equation (33) to the ensemble of stochastic noncondensed fields {¢ }.

3.3.1 Ideal Bose gas

As a test we check our probability distribution for the number of condensate particles against the exact
one for the ideal Bose gas (¢ = 0) in one and two dimensions. The results are in figure 1.
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Figure 1: Probability distribution in the canonical ensemble of the number of condensate particles for
the ideal Bose gas in thermal equilibrium in an isotropic harmonic potential U(r) = gmw?r?. (a) In
a 1D model for kT = 30Aw, and N = 10000. For the Wigner simulation 2000 realisations have been
performed on a grid with 128 points. For the exact Bogoliubov rejection method described in the end
of this subsection on the ideal gas, 400 000 realisations have been performed so that the statistical error
is less than one per cent for the most populated channels of the histogram. (b) In a 2D model for
kpT = 30hw, and N = 8000. For the Wigner simulation 500 realisations have been performed on a grid
with 128 x 128 points. For the exact sampling 100 000 realisations have been performed.

The distributions of the number of condensed particles Ny are clearly not Gaussian. To characterise
them, besides the mean and the variance of Ny one can introduce the skewness defined as:

((No — (No))*)

skew(Np) = —(<N3) TN

(36)

For the parameters of figure 1 we give the mean, the standard deviation and the skewness of Ny obtained
from the simulation, together with their exact values:
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1D simulation | 1D exact || 2D simulation | 2D exact
(No) 9882. 9880. 6403. 6415.
ANy 37.5 38.3 75.9 77.1
skew (No) —1.20 —1.16 —0.40 —0.334

In what follows we explain in some detail how the exact probability distribution for the ideal Bose
gas is obtained. Let 6 be the density operator for the ideal Bose gas in the canonical ensemble:

T py. (37)

The operator py projects onto the subspace with N particles, and H = >k ekdzdk is written in the
eigenbasis of the trapping potential. In the spirit of the number conserving Bogoliubov method, we
eliminate the condensate mode by writing

abao =N = afa. (38)

Since the total number of particles is fixed we can replace the operator N by the c-number N in (38).
Furthermore we establish a one to one correspondence between (i) each configuration of excited modes
{ng, k > 0} having a number of excited particles N’ = >, n; lower than N and (ii) each configuration
of the whole system with nj particles in excited mode k and N — N’ particles in the condensate. We
then obviously have to reject the configurations of excited modes for which the number of particles in
the excited states N’ is larger than N. This amounts to reformulating the effect of the projector py in
terms of an Heaviside function Y. We then rewrite ¢ as:

1 - —eo0)al
6= 7 e~ PN ¢ ﬁZk#D(Ek iy | dedk- . (39)
k#0

For the sampling procedure we use a rejection method i.e. we sample the probability distribution of the
number of particles ny in each mode k # 0 without the constraint imposed by the Heaviside function
and we reject configurations with N’ > N. In this scheme we have to generate the ng, k = 1,..., N,
according to the probability distribution

pr(ng) = AP (1= \g)  with Ay, = e7Alev=<0), (40)

For each k we proceed as follows: in a loop over nj starting from 0 we generate a random number €
uniformly distributed in the interval [0,1] and we compare it with Ag: if € < A;, we proceed with the
next step of the loop, otherwise we exit from the loop and the current value of ny is returned.

The calculation can also be done in the Bogoliubov approximation, that is by neglecting the Heaviside
function in (39). For the parameters of figure 1 this is actually an excellent approximation, as the mean
population of the condensate mode is much larger than its standard deviation, and the corresponding
approximate results are in practice indistinguishable from the exact ones. The predictions of this Bogoli-
ubov approximation for the first three moments of Ny involve a sum over all the excited modes of the
trapping potential:

(No) = N=> m

k#0
Var(No) = Y (1 + )
k#£0
(No = (No))*) = 2nf +3nf + e (41)
k#£0

where 71, = 1/(exp(B(ex —€o)) —1) is the mean occupation number of the mode k. In the limit kT > hiw
for an isotropic harmonic trap an analytical calculation, detailed in the appendix C, shows that the
skewness tends to a constant in 1D, tends to zero logarithmically in 2D and tends to zero polynomially
in 3D [21]:

2€E) _

SkeW1D(N(]) 7«27)3/2 = —1.139547...
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N 2(¢(2) +¢(3))
skewop (Ng) =~ — (log(kpT/hiw) + 1+~ + C(2))3/2
o log(kpT/hw) +~ + 3 + 3¢(2) + 2((3)
skewsn(N) =~ T R C(2) + (Bhw) 2k T loglhT fh) + 7 + 1= cyapr )

where ( is the Riemann Zeta function and v = 0.57721 . .. is Euler’s constant.

3.3.2 Interacting case

As an example we show in figure 2 the probability distribution for the number of condensate particles
in the interacting case to demonstrate that the large skewness of Ny in 1D can even be enhanced in
presence of interaction: the skewness of Ny in figure 2 is equal to —2.3. We have been able [22] to
calculate P(Np) in the Bogoliubov approximation in the interacting case starting from the sampling of
the Wigner distribution of the noncondensed field (21). We compare the results with the Wigner approach
in the same figure. As expected the agreement is excellent in the regime kpT = 30hw > hw.
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Figure 2: Probability distribution of the number of condensate particles in the canonical ensemble for a
1D interacting Bose gas in thermal equilibrium in a harmonic trap U(z) = %mwaQ, with kT = 30hw,
p = 14.17w and N = 10000, corresponding to a coupling constant g = 0.01%w(f/mw)/?. The results
have been obtained with the Wigner method using 2000 realisations on a grid with 128 points. The dashed
line is the histogram of the probability distribution of Ny in the Bogoliubov approximation generated
using the same 2000 realisations, obtained with a method described in [22].

4 The truncated Wigner method for a time-dependent Bose
condensed gas

In this section we investigate the conditions of validity of the truncated Wigner approach for time-
dependent Bose-Einstein condensates. The strategy that we adopt is to compare the predictions of
the truncated Wigner approach to well-established theories: the time-dependent Bogoliubov approach
in section 4.1 and the Landau-Beliaev damping of a collective excitation in a spatially homogeneous
condensate, in section 4.2.

4.1 The truncated Wigner method vs the time-dependent Bogoliubov method

In this section we investigate analytically the equivalence between the time-dependent Bogoliubov ap-
proach of [5] and the truncated Wigner method in the limit in which the noncondensed fraction is small.

We begin by sketching the number conserving Bogoliubov method of Ref. [5]. We split the atomic field
operator into components parallel and orthogonal to the exact time-dependent condensate wavefunction
Gex [23] (omitting for simplicity the time label for the field operators and for the condensate wavefunction):

V(1) = gy, ex(r) + 1 (r) (43)
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and we consider the limit

N — 0 N g = constant T = constant N = constant. (44)
In [5] one performs a formal systematic expansion in powers of 1/v/N of the exact condensate wavefunction
Pex
oW () ¢ (r)
x(r) = —+... 45
bux(r) = 0r) + S 4 ST (45)
and of the noncondensed field
. 1 < 1 .
Aex(r) = —a! r)=Ar) + —AD )+ ... 46
e() \/N(pexwl() () \/N () ()

Note that in the lowest order approximation to Aex the exact condensate wavefunction Pex is replaced by
the solution ¢ of the time-dependent Gross-Pitaevskii equation

ihdhp = [p?/2m + U(r,1) + Ngl[’] ¢ (47)
and a4/V/N is replaced by the phase operator A, = d¢(&l’5&¢,)71/2 so that
) I .
Ar) = ——a, [9(r) - o] (48)
alag
and fx(r) satisfies bosonic commutation relations
N ~ 1
A(r),AT(s)] = =0, 4
(i), s = 0, (19)

where the matrix Q, ; = 0, s — dV¢(r)¢*(s) projects orthogonally to ¢. To the first two leading orders
in 1/v/N one obtains an approximate form of the one-body density matrix:

(rlpls) = @1 ()d(r)) = (N = (5N))o(r)d" (s)

+ (A(s)A(r))

+ 0" ()87 (r) + o(r)e V" (s)
1
+ 0(;53). (50)

We call the first term “parallel-parallel” because it originates from the product of two parts of the
field both parallel to the condensate wavefunction; it describes the physics of a pure condensate with
N — ((5N ) particles. The second term, which we call “orthogonal-orthogonal” because A s orthogonal
to ¢, describes the noncondensed particles in the Bogoliubov approximation. The third term, called
“orthogonal-parallel”, describes corrections to the Gross-Pitaevskii condensate wavefunction due to the
presence of noncondensed particles [5]. In (50) (6N) is the average number of noncondensed particles in
the Bogoliubov approximation:

(6N) =" dV (AT(r)A(r)). (51)

The evolution equations for A and <;5(f> are given in appendix D.
Having described the Bogoliubov method, let us now consider the truncated Wigner approach in the
limit (44). We expand the classical field in powers of 1/v/N:

wzwﬁww+ww+j%wm+“. (52)

where the 1) are of the order of unity. We immediately note that the leading term of this expansion
corresponds to a pure condensate with N particles so that 1(9) is simply the solution of the time-dependent

10
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Gross-Pitaevskii equation (47), 9(®) = ¢. This physically clear fact will be checked explicitly in what
follows. In the initial thermal equilibrium state at time ¢t = 0 we expand (35) in powers of 1/v/N:

\/FOE\/N—(SN:\/N—%%Jr... (53)

so that we can identify explicitly:

vO(t=0) = ¢ (54)
vO(=0) = ¢, (55)
p20=0) = Vo4, (56)

Following the same procedure as in the quantum case, we split each term of the expansion into a compo-
nent along ¢ and a component orthogonal to ¢:

9 (1) = €D g(r) + 7. (57)

We calculate now the one-body density matrix p. Since we are using the Wigner representation for the
atomic field on a finite spatial grid we have:

1
b = * - _67' s
(rlols) = (0 (5)0(r)) — 570 (5)
where dV' is the unit cell volume of the spatial grid and 6,  is a Kronecker 6. Note that to simplify the
notation we have omitted the subscript W on the right hand side of the equation since the quantum and
Wigner averages can be readily distinguished by the hats on the operators. We insert the expansions
(52) and (57) into (58) and we use the fact that ¢(©) = ¢ to obtain:

& (s)(r) {N L VRIED + €M% 4 (W) 1 (6@ 4 6@~ L

(rlplsyrw 5

1
2dV

+

WO (s (1) Q..

+ " (VN ) + €D P ) + @D )] + {r o s}

1
°(7%) %)
where we have collected the terms “parallel-parallel” in the first line, the terms “orthogonal-orthogonal”
in the second line and the terms “orthogonal-parallel” in the third line, and where the matrix Q, s/dV =
0r.5/dV — ¢(r)d*(s) is the discrete version of the projector @ =1 — |¢)(¢p|. As we show in appendix E,
by using the evolution equation of the field (1) and the initial conditions (54), (55) and(56) the following
identities hold at all times:

+

PO = ¢ (60)

VNED + €0 4 (D) + (€D + @) = —(6N) (61)
WO @0 ~ 510 = (AHAE) (62)
VN@E @) + €O P ) + @) = 6P, (63)

As we have already mentioned the first identity (60) reflects the fact that at zero order in the expansion
we have a pure condensate with IV particles evolving according to the time-dependent Gross-Pitaevskii
equation. At time t = 0 the three other identities are easily established since we have simply (w(j)) =0,
€M) =0and €3 = —§N/2. At later times the mean value (1/15_”) remains equal to zero while £ develops
a nonzero imaginary part corresponding to phase change of 9 in the mode ¢ due to the interaction with
the noncondensed particles

V=VNp+EWp+.. . = VNE/ VNG (64)

After averaging over all stochastic realisations, this random phase change contributes to the condensate
depletion in (61) and to the correction ¢(® to the condensate wavefunction in (63) [24]. As a consequence

11
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of the purely imaginary character of £ the quantity proportional to v/N in (61) vanishes. The identity
(62) reflects the fact that in the linearised regime quantum fluctuations (here A) and classical fluctuations

(here wil)) around the Gross-Pitaevskii condensate field vV N¢, evolve according to the same equations.

We find interestingly that the average (1/)5_2)> in (63) evolves under the influence of the mean field of
the noncondensed particles, i.e. the Hartree-Fock term and the anomalous average contribution. In the
Wigner representation the Hartree-Fock mean field term 2g(wf)*¢f)) differs from the physical mean
field 2g(ATA) by the term g(1 — |¢|2dV)/dV ~ g/dV. We note however that this brings in a global
phase change of the condensate wavefunction having no effect on the one-body density matrix, and which
is compensated anyway by the —g/dV term in the Wigner drift term (16). In our calculations this is
reflected by the fact that this term does not contribute to (j)f).

With the identities (60-63) we identify line by line the quantum expression (50) and the truncated
Wigner expression (59) for the one-body density matrix of the system up to terms of O(1): these two
expressions coincide apart from the term 1/2 in the occupation number of the mode ¢. This slight
difference (1/2 < N) comes from the fact that in the initial sampling of the Wigner function in thermal
equilibrium we have treated classically the condensate mode. These results establish the equivalence
between the truncated Wigner method and the time-dependent Bogoliubov approach of [5] up to neglected
terms O(1/+v/N) in the limit (44).

Let us however come back to the expansions performed in the limit (44). We have mentioned that
the small formal parameter is 1/ VN but we now wish to identify the small physical parameter of the
expansion. In the quantum theory of [5] one gets the small parameter

o\ 1/2
_ [ $8N) .
€quant = ( N > (60)

where (5]\7 ) is the Bogoliubov prediction for the number of noncondensed particles. In the expansion (52)
of the evolving classical field we compare the norm of the first two terms, ignoring the field phase change

Wg:

OrNSE S 1/2
6wig<<dvzgv|wl|>) <<6N>+<]Cf1>/z> . (66)

The validity condition of the expansion (52) in the truncated Wigner approach is then:
N> (0N), N'/2 (67)

which is more restrictive than in the quantum case. What indeed happens in the regime (§N) < N <
N/2?7 We expect the truncated Wigner approach not to recover the predictions of the Bogoliubov
approach of [5] which are correct in this limit. We therefore set a necessary condition for the validity of
the truncated Wigner approach:

N> N/2. (68)

We interpret this condition as follows: the extra noise introduced in the Wigner representation (see
discussion after (27)) contributes to the nonlinear term g|¢|? in the evolution equation for the field; (68)
means that this fluctuating additional mean field potential of order ¢g/(2dV’) should be much smaller than
the condensate mean field of order gN/V where V = N'dV is the volume of the system. Condition (68)
is also equivalent to pdV > 1, where p is the atomic density, i.e. there should be on average more than
one particle per grid site. We note that it is compatible with the conditions (8) on the spatial steps of
the grid in the regime of a degenerate (pA% > 1) and a weakly interacting (p&3 > 1) Bose gas. Condition
(68) is therefore generically not restrictive.

A last important point for this subsection is that the time-dependent Bogoliubov approach, relying
on a linearisation of the field equations around a pure condensate solution, is usually restricted to short
times in the case of an excited condensate, so it cannot be used to test the condition of validity of the
truncated Wigner approach in the long time limit. It was found indeed in [25] that nonlinearity effects
in the condensate motion can lead to a polynomial or even exponential increase in time of (6]\7 ) which
eventually invalidates the time-dependent Bogoliubov approach. The truncated Wigner approach in its
full nonlinear version does not have this limitation however, as we have checked with a time-dependent
1D model in [3].

4.2 Beliaev-Landau damping in the truncated Wigner approach

In this section we consider a spatially homogeneous Bose condensed gas in a cubic box in three dimen-
sions with periodic boundary conditions. We imagine that with a Bragg scattering technique we excite

12
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coherently a Bogoliubov mode of the stationary Bose gas, as was done experimentally at MIT [26, 27],
and we study how the excitation decays in the Wigner approach due to Landau and Beliaev damping.

4.2.1 Excitation procedure and numerical results

We wish to excite coherently the Bogoliubov mode of wavevector kg # 0. With a Bragg scattering
technique using two laser beams with wave vector difference ¢ and frequency difference w we induce a

perturbation potential
Wo .
W = / d3r (70 eilar—wt) 4 c.c.) (69)

We match the wavevector and frequency of the perturbation to the wavevector kg and the eigenfrequency
wo = €9/h of the Bogoliubov mode we wish to excite:

q=ko w = eg/h = wp. (70)

During the excitation phase, we expect that two Bogoliubov modes are excited from the condensate, the
modes with wavevectors kg and —ko. We anticipate the perturbative approach of next subsection which
predicts that the mode of wavevector ko, being excited resonantly, has an amplitude growing linearly
with time, while the mode with wavevector —kg, being excited off-resonance, has an oscillating amplitude
vanishing periodically when ¢ is a multiple integer of 7/wg. In the truncated Wigner simulation we

therefore stop the excitation phase at
T
texe = — - 71
exc o ( )

We introduce the amplitudes of the classical field 1) of the Bogoliubov modes. We first define the field
1 *
Astatic(r) = \/—N%ﬂ/a (r) (72)

where a4 and 9 are the components of ¢ orthogonal and parallel to the static condensate wavefunction
#(r) = 1/L3? (see (18)). The component along the Bogoliubov mode with wavevector k is then

bk =dV Z u}t (T)Astatic (T) - UZ (T)A:tatic (T‘) . (73)

The functions uy and vy are plane waves with wavevector k& # 0

1

— ik-r _ ik
ug(r) = \/ﬁUke vg(r) = \/ﬁVke (74)
and the real coefficients U, and Vj, are normalised to UZ — V2 = 1:
1 m2k22m M
Up + Vi = = 75
PR T U= <h2k2/2m+2u> (75)

where the chemical potential is y = gN/L3.

We denote by by the amplitude of the field Agatic along the Bogoliubov mode of wavevector kg, and b_g
the amplitude along the mode with opposite wavevector. We show the mean values of these amplitudes
as function of time obtained from the truncated Wigner simulation in figure 3. In the initial thermal
state these mean values vanish, and they become nonzero during the excitation phase due to the coherent
excitation procedure. At later times they decay to zero again [28].

4.2.2 Perturbative analysis of the truncated Wigner approach: Beliaev-Landau damping

In the appendix F we report the exact equations of motion of the classical field Agtatic defined by (72) in
the truncated Wigner approach. We now make the assumption that Aggatic is small compared with v N,
implying that

N

N > (6N) , ) (76)

where <6N ) represents here the mean number of particles in the excited modes of the cubic box. In this
regime we neglect terms which are at least cubic in Aggatic in (163) and we replace the number of particles
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BRAGG
PHASE

FREE EVOLUTION

[<bs>I(t) and |<b_s>|(t)

Figure 3: Bragg excitation of a Bogoliubov mode of wavevector ko and frequency wy for a finite tempera-
ture Bose condensed gas in a cubic box. The vertical dashed line at time ¢ = 7/wq indicates the time after
which the perturbation W is discontinued. Solid lines: evolution of the field amplitudes of the Bogoliubov
modes with wavevectors kg = (127/L,0,0) (upper curve) and —kqo (lower curve) in the Wigner simula-
tion after averaging over 100 realizations. Only the mode kg is excited resonantly by Bragg scattering.
After the coherent excitation Bragg phase, the amplitudes of the two modes are damped. Dashed line:
perturbative approach of subsection 4.2.2. The truncated Wigner approach and the perturbation theory
give comparable results. N = 5 x 10%, kpT = 3u, fwg = 2.2u, Wy = 0.175u, p = 500h2/mL2. In the
Wigner simulation a grid with 22 points per dimension is used, so that N = 223 = 10648 < N. In the
perturbative approach a grid of 48 points per dimension is used to avoid truncation effects. The initial
mean number of noncondensed particles is N — (Ng) ~ 5000.

in the ground state of the box by the total number of particles N, except in the zeroth order term in
Astatic where we replace it by its initial mean value (Ny). We then find:

od ST Ng o\«
ZhaAstatic = <N0> QhOQ5 + QhOAstatic + L_Egg(Astatic + 2Astatic)

VN . 1
g\/ﬁ O(AstaticAstatic + 2A%5 i Astatic) — \/ﬁ

where W is non zero only during the excitation phase. In this equation hg = p?/2m + Wy cos(q - 7 — wt)
is the one-body part of the Hamiltonian including the kinetic energy and the Bragg excitation potential,
and Q projects orthogonally to the static condensate mode ¢. The term of zeroth order in Aggatic is a
source term which causes Aggatic t0 acquire a nonzero mean value during the evolution. The terms of first
order in Agatic in (77) describe the evolution in the static Bogoliubov approximation. Terms of second
order provide the damping we are looking for. We project equation (77) over the static Bogoliubov modes
(74) by using:

+

Astatie(r)dV > Wy cos(q - s — wt)Aauic(7)

Astatic(r) = 3 brug () + boi (r) (78)
k£0
with the mode functions uk(r) and vg(r) defined in (74). Terms nonlinear in Agatic in (77) then correspond
to an interaction between the Bogoliubov modes.

We assume that the excitation phase is much shorter than the damping time of the coherently excited
mode. As a consequence we can neglect in this phase the processes involving interaction among the
Bogoliubov modes. Also in the action of the perturbation W we keep only the term acting on the
condensate mode, that is the first term on the right hand side of (77), which is /(Np) larger than the
terms acting on the noncondensed modes. For the choice of parameters (70) only the two modes with
wavevectors kg and —kg are excited from the condensate by the perturbation W; the amplitudes of the
field in these modes evolve according to

d W, A

ih—-bo Tiwobo + \/<N0>70(U0 + V) et (79)
_d W, .

ih=b o hwob_o + M(No)TO(UO + Vo) e’ (80)
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By integrating these equations we realise that the mean amplitude (bg) grows linearly in time, since the
mode is excited resonantly, while the mean amplitude (b_o) oscillates and vanishes at t = 7/wo.
After the excitation phase we include the second order terms that provide damping:

iﬁ%bo = e+ ;A?‘jbibj + (AZ-O + A )bib; + %:(B 4.0+ DBoi,j + Bio, g)b*b* (81)

with 7
e = gLLC"N[U"'(UJ’ + Vi) Uk + (Ui + Vi) V;Uk + V;(Uk + Vi) Vil0i jr (82)
Bijk = %?%(Uj + Vi) Uk0—i jik - (83)

and where 4, j, k denote momenta. The last terms with the B’s in (81) do not conserve the Bogoliubov
energy and we can neglect them here for the calculation of the damping rate since we are going to use
second order perturbation theory; we would have to keep them in order to calculate frequency shifts. In
the terms with the A’s we recognise two contributions: the term with A - describes a Beliaev process

where the excited mode can decay into two different modes while the term with A?,o + AO,i describes a
Landau process where the excited mode by interacting with another mode is scattered into a third mode
[29]. We introduce the coefficients b in the interaction picture

Bj = b]‘ eiej t/h (84)

where €; is the Bogoliubov eigenenergy of the mode with wavevector j, and we solve (81) to second order
of time-dependent perturbation thcory to obtain:

<b~0(t) —b~0(0)> ~ ZA AO +A )It(EO—Q'—Ej)(lﬁ-ﬁi—}—ﬁj)(b})(o»

- QZ 1o+ AY ) Ii(eo + € — €)(7; — 77) (bo (0))
—%2<A8,+0°>2 Li(eo + €0 — €o0) (B3 (0)bo(0)bo (0)) (85)

where 0 + 0 represents the mode of wavevector 2ky and where

t
W) = [ dreri ) (36)
Or A
L) = / dge=ivo/n. (87)
0
The n;’s are the occupation numbers of the Bogoliubov modes in thermal equilibrium given by the Bose
formula 1
nj = o (88)

where €; is the energy of the Bogoliubov mode. In the language of nonlinear optics the last line in (85)
describes a xa effect or a second harmonic generation which can be important if the conservation of
energy condition ea, = 2¢, is satisfied and if the initial amplitude (bo(0)) = 3 is large since one has

(15(0)b0(0)b0(0)) = 81> + ne283. (89)

We have checked that the yo effect is negligible for the low amplitude coherent excitations considered
in the numerical examples of this paper: ¢g is larger than p so that kg is not in the linear part of the
Bogoliubov spectrum and therefore the second harmonic generation process is not resonant. By using

the fact that: )
1 2r° . L, UT
Re I;(v) = 5‘]”,5(1/)\2 =5 sin? o = whtd: (v) (90)

where §;(v) converges to a Dirac delta distribution in the large ¢ limit, we calculate the evolution of the
modulus of the Bogoliubov mode amplitude

‘<b0(t|)<>l|)07(0‘)<>b‘0(0)>| ~ ZA AO 4 AO )5t(50 — € — 6]')(1 +7; + ﬁj)
7rt

(Al + A} )% 6u(eo + € — €5) (R — 7g). (91)

¥
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This formula can be applied to a finite size box as it contains finite width §’s. By plotting equation (91)
as a function of time we can identify a time interval over which it is approximately linear in time, and
we determine the slope —7Yperturb With a linear fit [30]. Heuristically we then compare exp(—7perturbt)
to the result of the truncated Wigner simulation, see figure 3 and we obtain a good agreement for this
particular example [31].

In the thermodynamic limit, when the Bogoliubov spectrum becomes continuous, the discrete sums in
(91) can be replaced by integrals and the finite width §; is replaced by a Dirac § distribution. In this case
an analytical expression for the damping rate can be worked out and we recover exactly the expression
for the Beliaev and Landau damping rate obtained in the quantum field theory [32, 33, 34].

4.2.3 Validity condition of the truncated Wigner approach

We now investigate numerically the influence of the grid size on the predictions of the truncated Wigner
simulation. The line with squares in figure 4 shows the damping rate obtained from the Wigner simulation,
defined as the inverse of the 1/e half-width of [(by(t))|, as a function of the inverse grid size 1/N. For
small grids the results of the simulations reach a plateau close to the perturbative prediction Yperturb-
For large grids the damping rate in the simulation becomes significantly larger than yperturb. Since the
perturbative prediction reproduces the known result for Beliaev-Landau damping, we conclude that the
results of the truncated Wigner simulation become incorrect for large grid sizes. The reason of such a
spurious damping appearing in the Wigner simulation for large A/ will become clear below.

25
4—& Glauber P
— 2 r Wigner 7
£
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10° / number of modes

Figure 4: Damping rate of the coherent excitation in the Bogoliubov mode of wavevector ko =
(127/L,0,0) and of frequency wy as a function of the inverse number of modes in the grid 1/N for
the Glauber-P and the Wigner distributions. Each disk represents the average over 100 realisations of
the simulation and the lines are a guide to the eye. N = 10°, kpT = 3u, u = E)()O?'LQ/mIP7 so that
hwo = 2.2p, ’y;elrturb = 0.061mL2/h, Wo = 0.0874p. The damping rate is expressed in units of Yperturb-
Arrows indicate some values of €yax/kpT Wwhere €y is the maximal Bogoliubov energy on the grid.

It is tempting to conclude from the perturbative calculation of subsection 4.2.2 that the validity
condition of the truncated Wigner approach is dictated only by the condition N < N. To check this
statement we have performed a second set of simulations (not shown) for a particle number N reduced
by a factor of two keeping the size of the box L, the chemical potential u = Ng/L? and the temperature
fixed. If the condition of validity of the truncated Wigner approach involves only the ratio N/A the
plateaux in the damping time should start at the same value of N/N for the two sets of simulations.
However this is not the case, and we have checked that on the contrary, the two curves seem to depend
on the number of modes only.

Another way to put it is that the condition to have agreement between the truncated Wigner simula-
tion and the perturbation theory of section 4.2.2 is not (or not only) that the number of particles should
be larger than the number of modes. There is in fact another “hidden” condition in the perturbative
calculation which is the hypothesis that the occupation numbers of the Bogoliubov modes are constant
during the evolution. In reality, even in absence of the Bragg perturbation, our initial state which repro-
duces the correct thermal distribution for the quantum Bose gas, is not stationary for the classical field
evolution (1). The perturbative expression (91) holds indeed in the limit N/N > 1, but the occupation
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numbers of the Bogoliubov modes, initially equal to the Bose formula 72, change in the course of the time
evolution in the simulation and this affects the damping rate. This effect is neglected in the perturbative
formula (91) and it is found numerically to take place on a time interval comparable to the damping time
of the Bogoliubov coherent excitation as we show in figure 5.
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Figure 5: Evolution of the squared amplitudes (b} bs) of the classical field Bogoliubov modes multiplied by
the corresponding Bogoliubov energy ¢ in the truncated Wigner simulation in the absence of the Bragg
perturbation. We have collected the Bogoliubov modes in energy channels of width 2u, so that the plotted
quantity is the average among each channel of € (bj;by), with increasing energy from top to bottom at
initial time ¢ = 0. The thick horizontal line is the expected temperature T¢as5 0of the equilibrium classical
field distribution as given by (94). Parameters are: N = 5-10%, kgT = 3p, = 500h%/mL? and the
vertical axis of the figure is in units of A?/mL?, where L is the cubic box size. The number of modes is
22 per spatial dimension so that the maximum Bogoliubov energy allowed on the grid is €pmax = 15.3u.
The averaging in the simulation is performed over 500 realisations.

What it is expected to happen in the absence of external perturbation is that the classical field
equation (1), in the three-dimensional cubic box geometry considered here, displays an ergodic behaviour
leading to thermalisation of the classical field 1 towards its equilibrium distribution [11, 12]. In the
regime where the noncondensed fraction is small and the number of modes is smaller than N, we can
approximately view the classical field as a sum of Bogoliubov oscillators by weakly coupled by terms
leading to the nonlinearities in (163). In the equilibrium state for the classical field dynamics we then
expect the occupation numbers of the Bogoliubov modes to be given by the equipartition formula:

kT
<b;:bk>class = M (92)

€k
attributing a mean energy of kgTciass to each of the Bogoliubov mode. The classical field equilibrium
temperature Tglass can then be deduced from the approximate conservation of the Bogoliubov energy [35]:

1
kBTcla,ss Nfl kzyéoﬁk<b2bk>(t = 0)
1 €k 1
= = 93
Nl;@{exp(ﬂek)lJrQEk (93)
o 1 €L
- Nflg;mem%u%' (94)

The thermalisation of the Bogoliubov modes to the new temperature T¢jass is nicely demonstrated in
figure 5. One sees that € (b} bx) indeed converges to a constant value almost independent of k. From the
fact that tanhz < z for any x > 0 we deduce that the classical equilibrium temperature Tejass is always
larger than the real physical temperature 1" of the gas. In the regime kgT > pu this ‘heating’ increases
the squared amplitudes (bjbi) of the modes of energy ~ p by a factor ~ Teiass/T. Since the Landau
damping rate is approximately proportional to the populations of these modes [32, 33, 34] the damping
rate is increased roughly by a factor Tyass/T, an artifact of the truncated Wigner approximation.

17



CHAPITRE 4. GAZ DEGENERES 115

It is clear that T¢j.ss Will remain very close to T' as long as the maximum Bogoliubov energy allowed
in the simulation remains smaller than k7. One can indeed in this case expand (94) in powers of Sej.
One has to expand the hyperbolic tangent up to cubic order to get a nonzero correction:

Tclass 1 (6@6)2
~1 .
T + N -1 kZ;éO 12 (95)

The absence of terms of order fej in (95) is a fortunate consequence of the noise added to the field in
the Wigner representation. This added noise shifts the average (bj:bx)(t = 0) by 1/2 with respect to the
Bose formula.

When the maximum Bogoliubov energy becomes much larger than kT we expect T¢ass to become
significantly larger than 7T'. This is illustrated in figure 6 obtained by a numerical calculation of the sum
in (94) for increasing grid sizes. We have also plotted in this figure the value that one would obtain for
Telass in the absence of the added Wigner noise (i.e. in a Glauber-P approach), that is by removing the
terms €x/2 in (93). The Glauber-P distribution for the field 9 in the sense of [36] is given by

= Nop+ > bruk + bjvy (96)
k#£0

where the by, are chosen from a Gaussian distribution such that (b}bx) = 1/(exp(Bex) — 1) and the value
of Ny is dictated by the normalisation condition ||)||2 = N. In this case Tilass is always smaller than T,
and deviates from T for smaller grid sizes, since the fortunate cancellation of the order ey obtained in
(95) does not occur anymore. We expect in this case a spurious reduction of the damping rate. We have
checked it by evolving an ensemble of fields of the form (96) with the Gross-Pitaevskii equation and we
found that the damping rate is always smaller than half of the correct result even for the smallest grids
that we tested, see the line with diamonds in figure 4.
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Figure 6: Equilibrium temperature Tejass of the classical gas as function of the maximum energy €pax
of the Bogoliubov modes on the momentum grid with the assumption of equipartition of the energy in
the Bogoliubov modes. Circles: the initial field distribution is the Wigner distribution for the quantum
gas at temperature T'. Crosses: Glauber-P distribution defined in [36], amounting to the removal of the
added Wigner noise from the initial field distribution. The dashed lines are a guide to the eye. The
number of momentum components along each dimension of space goes from 2 to 30 in steps of 2. The
chemical potential is py = 5007 /mL? and the temperature is kgT = 3.

5 Conclusion

We have considered a possible way of implementing the truncated Wigner approximation to study the time
evolution of trapped Bose-Einstein condensates perturbed from an initial finite temperature equilibrium
state. First a set of random classical fields ¢ is generated to approximately sample the initial quantum
thermal equilibrium state of the gas, in the Bogoliubov approximation assuming a weakly interacting and
almost pure Bose-Einstein condensate. Then each field 1) is evolved in the classical field approximation,
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that is according to the time-dependent Gross-Pitaevskii equation, with the crucial difference with respect
to the more traditional use of the Gross-Pitaevskii equation that the field 1 is now the whole matter field
rather than the field in the mode of the condensate.

The central part of this paper is the investigation of the validity conditions of this formulation of the
truncated Wigner approximation.

For short evolution times of the fields 1 the dynamics of the noncondensed modes, i.e. the components
of the field orthogonal to the condensate mode, is approximately linear; we can then use the time-
dependent Bogoliubov approximation, both for the exact quantum problem and for the truncated Wigner
approach. A necessary condition for the truncated Wigner approach to correctly reproduce the quantum
results is then

N> N/2 (97)

where A is the number of modes in the Wigner approach and N is the total number of particles in the
gas. This condition can in general be satisfied in the degenerate and weakly interacting regime without
introducing truncation effects due to a too small number of modes.

For longer evolution times the nonlinear dynamics of the noncondensed modes comes into play. When
the classical field dynamics generated by the Gross-Pitaevskii equation is ergodic, e.g. in the example of a
three dimensional gas in a cubic box considered in this paper, the set of Wigner fields v evolves from the
initial distribution mimicking the thermal state of the quantum gas at temperature T to a classical field
equilibrium distribution at temperature Tcjass. Since noise is added in the Wigner representation in all
modes of the classical field to mimic quantum fluctuations it turns out that T¢jass is always larger than 7'
If Tiass deviates too much from T the truncated Wigner approximation can give incorrect predictions.
For example we have found that the Beliaev-Landau damping of a Bogoliubov mode in the box, taking
place with a time scale comparable to that of the ‘thermalisation’ of the classical field, is accelerated in
a spurious way as the classical field ‘warms up’. A validity condition for the truncated Wigner approach
in this long time regime is therefore

|Telass — T < T. (98)

This condition sets a constraint on the maximum energy of the Bogoliubov modes €pmax in the Wigner
simulation: €max should not exceed a few kgT. More precisely one can use the following inequality to
estimate the error [37]:

2
‘Tclass - T‘ i <6ﬁ> < i €max (99)
T 12 (kpT? = 12 \kpT

where (€7) is the arithmetic mean of the squares of all the Bogoliubov energies in the Wigner simulation.

The fact that the initial set of Wigner fields is nonstationary under the classical field evolution could
be a problem: the time-dependence of the observables could be affected in an unphysical way during the
thermalisation to a classical distribution of the ensemble. To avoid this, we could start directly from the
thermal equilibrium classical distribution [11, 13], restricting to the regime €yax < kpT.

A remarkable feature of the Wigner simulation is that T¢jass deviates from T at low values of €5 only
quadratically in €yax/kpT. This very fortunate feature originates from the added noise in the Wigner
representation. It explains why for enax as high as 3.5 kT the truncated Wigner approach can still
give very good results for the Beliaev-Landau damping time (see Fig. 4). In contrast, if we remove
the Wigner added noise, in the so-called Glauber-P representation, or if we add more noise, in the so-
called Q representation, Telass deviates from T linearly in €max/kpT. In this case we expect that the
condition of validity of the classical Gross-Pitaevskii equation will be that all modes in the problem must
be highly occupied, resulting in the stringent condition €. < k7. We therefore conclude that the
Wigner representation is the most favorable representation of the quantum density operator with which
to perform the classical field approximation. This fact, known in quantum optics for few mode systems,
was not obvious for the highly multimode systems that are the finite temperature Bose gases.

Still, condition (98) is a serious limitation of the truncated Wigner method for simulating general
ergodic three dimensional systems. One possibility to overcome this limitation is to proceed as in [38, 39|
i.e. to treat the high energy modes as a reservoir, which leads to the inclusion of a stochastic term in the
Gross-Pitaevskii equation. The advantage of this treatment is that the additional term has dissipative
effects and thermalises the system to the correct quantum field thermal distribution in the stationary
state as opposed to the classical one. However, one of the conceptual advantages of the truncated Wigner
method and of classical field methods in general [9, 10, 11, 12] which we would like to keep is that apparent
damping and irreversibility arise from the dynamics of a conservative equation (the Gross-Pitaevskii or
nonlinear Schrédinger equation) as is the case in the original Hamiltonian equations for the quantum

field.
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A Bare vs effective coupling constant

In this appendix we describe how to adjust the potential V(r) defined on the grid in the simulation in
order to reproduce correctly the low energy scattering properties of the true interatomic potential.

We start with the Schrodinger equation for a scattering state ¢(r) of the discrete delta potential
V(r) = (go/dV)éy,0 on the spatial grid of size L, and volume V:

2
ed(r) = (%¢) (r) + j—“’/ (r)dr0 (100)

where m is twice the reduced mass and where ¢(0) is different from zero. We project this equation on
plane waves of momentum k:

ot 9o $(0

(k) )

TV e 1%k m

(101)

where ¢(k) is the component of ¢ on the plane wave e®*”//V. Fourier transforming back gives ¢(0);
dividing the resulting equation by ¢(0) leads to the quantization condition

1 9o
1=— E _— 102
V4 e—h%k2/m (102)

We define the effective coupling constant geg in such a way that the energy of the lowest scattering
state of the pseudopotential gegd(r)d:(r ) in the box is the same as the energy of the lowest scattering
state solution of (102).

We now restrict ourselves to the case where the size of the box is much larger than the scattering
length associated with geg. In this case the energy of the lowest scattering state for the continuous
theory with the pseudopotential is very close to ger/V, so that we can calculate geg from the equation
€ = ger/V. In this large box case, one can then check that the energy e is negligible as compared to
h?k2 /m except if k = 0. This gives

90
Jeft = g (103)
]. + % Ek#o h2k20/m

which allows us to adjust gg in order to have geg = g = 47Th2a/ m where a is the scattering length of the
true interatomic potential.

The sum over k in the denominator can be estimated by replacing the sum by an integral over k and
is found to be on the order of kya.xap where go = 47rh2a0 /m and kmax is the maximum momentum on
the grid. go is therefore very close to gegr when condition (9) is satisfied, so that we can set go ~ gt = g.
In the opposite limit of a grid step size tending to zero one gets gegg — 0, and we recover the known fact
that a delta potential does not scatter in the continuous limit. We would have to increase g¢ continuously
up to infinity as the grid step size tended to zero, if we wanted to get a finite geg in this limit.

B An improved Brownian motion simulation

A better choice for o and Y — In our previous work [4] the drift matrix @ and the noise matrix Y were
the hyperbolic sine and cosine of £/(2kpT), which imposed a time step d¢ in the simulation which was
exponentially small in the parameter €max/(kgT), where €mayx is the largest eigenvalue of £ allowed on
the spatial grid of the simulation. We have now identified a choice that does not have this disadvantage:

o = 2M (104)

y - (% QO) (105)

where the projector Q is defined in (25). With this new choice for @ and Y both the friction matrix and
the noise matrix are bounded from above by unity, which allows a much larger dt in the case €. > kpT'.
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To calculate the action of matrix o on the vector (¢ 1,7 ) we write the hyperbolic tangent as:

tanh x

tanhz =z = zF(z?). (106)
The function F(u) is then expanded on Chebyshev polynomials in the interval u € [0, (€max/(2k5T))?]
and approximated by a polynomial of a given degree, typically 15 for emax/(2kpT) = 3 and 25 for
€max/(2kpT) = 6, obtained by truncating a Chebyshev expansion of degree 50 [40].

An improved integration scheme — Initially we set ), = 0. Since the noise d¢ is Gaussian, and because
the stochastic differential equation (28) is linear, the probability distribution of ¢, is guaranteed to be
Gaussian at any step of the integration so that the issue of the convergence of the distribution to the
correct steady state distribution (21) can be discussed in terms of the convergence of the covariance matrix
of the distribution to its right steady state value. Two issues in particular should be addressed: the error
introduced by the discretisation in time (finite time step dt of integration), and the error introduced by
the integration over a finite time interval (approach to the steady state distribution).

We now explain how to face the first problem with an efficient integration scheme yielding an error on
the steady state covariance matrix of the distribution scaling as dt2, rather than dt for the simple Euler
scheme. In the numerical scheme the vector X = (1,9?%) that stores the values of the field ¥ and of
its complex conjugate ¥ on the discrete grid obeys the recursion relation:

> 2 d =n
X[t:(n+1)dt] = (1 - anumdt)X[t:n dt) + Youm ( dg%7 Zi ) (107)

with the initial condition X [t=0] = 0. In this recursion relation the friction matrix ayum and the noise
matrix Yyum may differ from « and Y of the continuous stochastic differential equation (28) by terms
linear in dt that remain to be determined in order to achieve an error scaling as dt2.

As we have already mentioned X [t=nd¢] 15 @ Gaussian vector for any step n of the iteration so that

its probability distribution is characterised by the covariance matrix CZ(]" ) = (XiX 5 ), with indices 4, j
ranging from 1 to 2. From (107) the covariance matrices are shown to obey the recursion relation:

2dt
C(n+l> = (1 — Oénumdt)c(n)(l - (’YT dt) + 7YnumYT

. 108
num dV num ( )

For a small enough time step dt this matrix sequence converges to a finite covariance matrix solving

2t
C) = (1 = agumd?)C) (1 = afyndt) + = Youm Y

. 109
dV num ( )

We now try to choose the friction matrix and the noise matrix in order to minimise the deviation of
C(>) from the desired value, which is the covariance matrix of the exact distribution (21), equal to
(2M dV)~L1. We look for ayym and Yy, differing from the theoretical values (104,105) by terms linear
in dt, and leading to a covariance matrix different from the theoretical one by terms quadratic in dt:

Qpum = 2M + aidt (110)
_ Q 0
Youm = ( 0 o >+Y1dt (111)
1
(c0)  _— 2
C G + O(dt?). (112)

Equation (109) is satisfied up to order dt irrespectively of the choice of a1, ¥7. Requiring that equation
(109) is satisfied up to order dt? leads to the condition

1 1 Q 0 Q 0 +
—ap— — —— Y] Y/ +M=0. 11
o T et 1( 0 o >+( 0 o ) T+ 0 (113)
A particular solution of this equation is provided by a; = 0 and Y; = YlT = —M/2. Our improved
integration scheme is therefore
Qnum - ZAI (114)
9 0 1
Youm = . | — =Mdt. 115
( 0 Q ) 2 (115)
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The analysis of the recursion relation (108) is easily performed for our improved integration scheme
(114,115) since apum, afmm, Youm and hence C™ are polynomials of M and commute with M. As a
consequence C(*) also commutes with M.

Let us first estimate the deviation of C'(>) from the exact covariance matrix (2M dV)~':

1244
) — [1_(1— 2]t 2dt -
c |:1 (1 anumdt) ] av Y;ulenum (116)
1 dt? | 3
oM AV [1 oMo )] : (117)

Because M is bounded from above by unity we take in practice dt = 1/8 so that the error is less than
0.5 percent.

Let us finally estimate the convergence time of the covariance matrices. The recursion relation (108)
can be rewritten as

O — 019 = (1 = ay)? [C) — )] (118)

so that the relative deviation of C(™ from its asymptotic value evolves as (1 — QJVImindt)Q” where My,
is the smallest eigenvalue of M, that can be evaluated along the lines of [4]. We choose the number of
time steps n so that the relative deviation of C™ from C(*) is less than 0.5 percent.

C Moments of Ny of a harmonically trapped ideal Bose con-
densed gas

We explain how to calculate the approximate expressions (42) for the moments of the number of condensed
particles for an ideal Bose gas in an isotropic harmonic potential of frequency w in the temperature regime
kpT > hw and in the Bogoliubov approximation. The calculation of the moments involves sums over the
excited harmonic levels, see (41). By using the known degeneracy of the harmonic eigenstate manifold of
energy nhw above the ground state energy the calculation reduces to the evaluation of sums of the form

Sp.qle) = nz::l opme T (119)

where € = hw/kgT is tending to zero, and the exponents p and ¢ are positive integers.
First case: ¢ —p > 1: In the limit € — 0 the sum is dominated by the contribution of small values of n.
Replacing exp(en) — 1 by its first order expression we obtain:

oo
1 1
Sp,ql€) = — Z i é_qC(q =) (120)
n=1

where ((a) =3, +;1/n® is the Riemann Zeta function.

Second case: ¢ —p < 1: In the limit € — 0 the contribution to the sum is dominated by large values of
n. We then replace the discrete sum by an integral over n from 1 to +o00. Taking as integration variable
u = en we arrive at

1 oo uP
Sp.ql€) = e,m/ du O (121)
We can take the limit € — 0 in the lower bound of the integral since ¢ — p < 1:
Sp,q(€) = : Ly q. (122)
ept+1

To calculate the resulting integral I, , we expand the integrand in series of exp(—u) and integrate term

by term over wu:
oo

A pl (k+g—1)
Ipq = /0 d (exp(u) — 1)2 B I;J (k+q)P*1 k(g —1)! (123)

which can be expressed in terms of the Riemann Zeta function, e.g. I 2 = 2({(2) — ((3)).

Third case: ¢ —p = 1: In the limit € — 0 both the small values of n and the large values of n contribute
to the sum. We introduce a small parameter ¥ < 1 that will be put to zero at the end of the calculation.
For the summation indices n < v/e we keep a discrete sum and we approximate each term of the sum
by its first order expression in €, which is correct as ne < v < 1. For the summation indices n > v/e we
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replace the sum by an integral, which is correct in the limit € — 0 for a fixed v, since we then recognise
a Riemann sum of a function with a converging integral. This leads to
v/e
1 <1 e u?
S, ~— E — dy ———— | . 124
PPELT pid —n Jr/l, “ (exp(u) — 1P (124)

In the limit € — 0 the discrete sum is approximated by

v/e
Z % ~ log(v/e) + (125)

n=1

where v is Euler’s constant. In the integral we remove and add 1/(exp(u) — 1) to the integrand in
order to get a convergent integrand which facilitates the calculation of the v — 0 limit. The integral of
1/(exp(u) — 1) can be calculated explicitly from the primitive log(1 — exp(—u)) so that in the small v
limit

too d uP ) 1 Feo i u? 1
/,, “ (exp(u) — 1)p+1 BT exp(—v) +/,, " |:(exp(u) — 1)+t exp(u) — 1 (126)
~ —logv+J, (127)
where N
o uP 1
2= [ e~ 1) 12

The —logv term coming from the integral compensates the logv term coming from the sum in (125) so
that in the limit v — 0 we get the v-independent estimate

1
Spp1 prny [~loge+y+Jy]. (129)

The quantity J, for p > 0 can be calculated from a recursion relation obtained in the following way: we
use the identity
uP uP exp(u
=- P plw) (130)
(exp(u) — 1)PH! (exp(u) — 1) (exp(u) — 1)P*!

The first term of the above expression leads to an integral already calculated in (123) and called I,, ,. We
then integrate the second term of the above expression by parts, taking the derivate of uP with respect
to uw. This finally leads to

1
Jp = oo+ o = (131)

We get in particular J; =1 — ((2) and Jo = 3/2 — 3¢(2) + 2{(3).
Finally we collect the approximations for the .S, ; relevant for the calculation of the skewness of the
number of condensed particles Ny in 1D, 2D, 3D:

— 1 + 2 3
50,1 =~ 70g: 2 30,2 = %2) 50,3 =~ %3)
2 —lo +v+1-¢(2 2
Sl,l ~ % 51)2 ~ g(e) 2/2 C( ) 51’3 ~ % (132)
2¢(3 2C(2) — 2¢(3 -1 +v+J
Soq = <(3 ) Sp.p = M So.3 = %
€ € €

D Equations of the number conserving Bogoliubov approach

In this appendix we give the equations of motion for the operator A and for ¢<f> (r) from [5]. The evolution

ino, AAT(’"”&) —L(1) fA\T("’t) (133)
Af(r,t) At(r, )

equation for Ais:

with £ given by (24). The evolution equation for f) (r) is:

. d KON Q()S(t)
(”‘E““))< f)*@))‘(g*(tw*(t)) 1
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where
S(r) = —gN[é(r) Po(r)(1+ Y _dV Al(s)A(s))

+ 2gNe(r)(AT(r)A(r)) + gN¢* (r)(A(r)A(r))
— gN> dV|e(s) |2<[A*(s>¢>(s) +A(s)67 ()| Ar)) . (135)

E Truncated Wigner approach in the Bogoliubov regime

In this appendix we demonstrate the equivalences (60-63). For convenience we change in this appendix
the phase reference of the field ¢ which now evolves according to

ihop = [p*/2m + U(r,t) + gl — ] ¥ (136)

where p is the chemical potential in the time-independent Gross-Pitaevskii equation for the condensate
wavefunction (17).

1. Identification of the pure condensate wavefunction

At t = 0 equation (60) is satisfied. By keeping only terms of order v/N in (136), in the limit (44),
we obtain

ihd© = (ho + glp @ — p)y (137)
where hg is the one-body part of the Hamiltonian. This shows that (60) holds at all times.

2. “Orthogonal-orthogonal” contribution

We wish to prove (62). To this aim we expand A and 1/15_1) over the Bogoliubov modes:

A= "byug + by (138)
k

0 = Z brur + byvy, (139)
k

At t = 0 the same mode functions u; and v}, appear in the expansions of A and wﬂ_l). We wish to

show that (138-139) hold at any time, or equivalently that A and 1/111) have the same equations of
motion. If we keep only terms of order O(1) in (136) we get

(1) (1)
a0 ) = e (60 o

where Lgp is the usual Bogoliubov operator obtained from (24) by eliminating all the projectors.

By using the fact that
i Q 0 v

) P 0 8

and

with the matrices

Pr,s =dV ¢(T)¢* (3) Qr,s = (Sns - dV¢(T)¢* (5) (143)
we get
. v\ _ X a(Q 0 gN|g[2¢
Mt(wf”) } 'C(wf)* e (§ g ) (S )
d
in €V = dv29N|¢<r)l2[¢*(r>w<l>(r>+w<1>*(r)¢(r>1. (145)
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The fact that the derivative of £() is purely imaginary and the initial condition £() = 0 guarantee
that (€M) +£M*) = 0 for all times, which proves that A and 1/111) have the same equations of motion.
At all times we then have

(R A@) = 3 un(ryui(s) Bbe) + vi(r)on(s) (bib}) (146)
k
and 1
@9 () = AT @A) + 5 D ur(r)ui(s) = vi(r)oe(s) (147)
k

where the amplitudes by are time-independent and the wug, vy are time-dependent modes evolving

according to
mat<“’“):£(“’“ ) (148)
Vi Vi

By using the decomposition of unity, equation (61) of reference [5]:

S wr(r)ui(s) — v (r)on(s) = - (149)
k

we prove (62).

3. “Parallel-parallel” contribution

We wish to prove (61). We use the fact that (dV Y, |[¢(r)|?) is a constant of motion order by order

in 1/v/N. To order v'N we get

d
“N= 1
ZN=0 (150)

To order N° we get

%@(n + ey — g (151)

which we verified directly in (145). To order 1/v'N we get

d

D€ + e 1 1Py + @v X PP =o. (152)
Using (62) we then obtain
@) 4 ¢@)e WPy 4 5y 4 N1
&2+ 9 + (|(EV]F) + (ON) + —5— = constant. (153)
At ¢t =0 from (55), (56) we deduce
-1
constant = NT (154)
so that at any time R
(€@ + @) + (EV?) = —(6N). (155)
Note that without the approximation in [3] we would have at ¢ = 0 constant = %/ and as a
consequence (£ + £@*) 4 (|(€W2) = —(§N) + 1. The contribution of the 1/2 compensates

exactly the term —2¢*(s)¢(r) in (59). We neglect here this contribution.

4. Term “parallel-orthogonal”

The last step consists in proving (63). We first remark that at ¢ = 0 W(j)) = 0, and for linearity

reasons ( 5_1)) =0 at all times. At ¢t =0 (63) is satisfied by construction. We then have to deduce
the equation of motion for

() = (DM ) (156)

and show that it coincides with the equation of motion for qzﬁ(f). By keeping only terms of order

1/+/N in (136) we get
) e IS gN[¢* M2 4 26|y D)2 .
iho ( MER ) = ch< p@) ) + ( —g?V[qb[q/;(l)*Q +2¢*;¢<1>i2} ) : (157)
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With a calculation analogous to the one we performed to obtain the derivative of (¢}
(153) to eliminate £® and replacing ™) by €M ¢ + wil), we obtain:

, p{? ) . gNQ|¢|%
1hoy ( (f)* ) L < (f)* - <5N> ( _';]NQJ‘|¢|)|2¢* )

In particular, we find that the terms involving |£(M)|? disappear because (£(1)% = —|¢()
(144) and (145) we can calculate the derivative of (x):

mo ()= ()4 (8% )

R(r) = —(5N)gN|o(r)[*é(r) + 2gNo(r)[(ATA) — \(T)H

—gNO*2[¢{" 120 + 26W g2 (V" 4 ¢ (1 (V)2]*

( gN QI Po +26Wg2u ()" + o (v )

1)‘2

Wy

), using

(158)

(159)

. By using

(160)

+ gN¢*(A?) 9N{;¢(T)¢(T)I2 +dV Y [$(s)P (AT (5)d(s) + " ()A(s)IA(r ))}161)

which is identical to (135), except for the contribution of the term 1/2 neglected in [3] as discussed
after (155). In order to obtain (161) we used the identity (62) and the fact that all terms proportional

to ¢(r) are killed by the projector Q in (160). Summarising, (160) and (161) together with (1/}5_”) =0

prove (63).

F Equation for the noncondensed field in the Wigner approach

In the truncated Wigner approach, we define the field Aex(r) = a3y (r)/v N where ¢ is at this stage an
arbitrary wave function normalised to unity, ¢, is the component of 1) orthogonal to ¢, and ay is the
coefficient of ¢ along ¢. When 1) solves the time-dependent Gross-Pitaevskii equation, the equation of

motion for Aex is given by:

. dAcx 1 Rk(T’ S)
ih a \/_ dt (apr(T) - dvzz NGk-1)/2

where we have collected the terms of the same power in Agy:

Ro(rs) = 22SE[-iha, + ho + 9N, o(s) 76(5)
Ralrs) = T2 by 4+ 2gN,] 9(5) ] Aexls) — 0r) (100" (5)) Aex(s)
b NG (SN — Aexlr)6 ()0 + Do + 9Nl 6(5) ) (s)
Rofrs) = = ALSAe(r) (<100, + Do+ 29No] 6(5) *)o()
Qs

NZE2 (A2 (5)6" (5) + 2A5() Aex(5)6(5)]

- 9N¢*( )| ¢(s) ‘QASX(S)ABX(T)

Rs(r,s) = gN— |:%;/s (s )Acx(s) A*2(s) (r)¢2(s)

- 29NF¢‘ () [Ale(5)Aex(5)Aex(r)

Rurs) = —gN (N%) AZ2 () hex(5) Aex (1) ()

(162)

(163)

where Ny = ajae, ho = p?/2m + U(r,t) is the one-body part of the Hamiltonian and Qs = 6,5 —

dV é(r)¢* (s) projects orthogonally to ¢. In the case of a uniform wavefunction ¢(r) = 1/L3/? we have
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the following simplifications: (i) 9;¢ is equal to zero, (ii) the constant terms like |¢(s)|?¢(s) are killed by

the projectors, (iii) for terms having a vanishing spatial sum, % can be replaced by 6,5, (iv) the sum
over s of ¢ (s) and therefore of Acx(s) is zero. For this value of ¢, Agx coincides with Agtatic defined in
(72) and Ny is equal to Ny of equation (77).
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4.4.4 Cristallisation d’un réseaux de vortex

Dans les expériences effectuées a 'ENS, le condensat est piégé dans un potentiel ci-
gare légerement anisotrope et tournant autour de son axe. Dans la seconde vérsion de ces
expériences, la fréquence de rotation est augmentée adiabatiquement de zéro a une valeur
finale €2,. Pour des valeurs de (), supérieures a un seuil ~ 0.7w ou w est la fréquence
d’oscillation dans le plan transverse, la formation et successivement la cristallisation d’un
réseau de vortex a été observée. Notre simulation 3D de champ classique a permis de mon-
trer que : (i) Contrairement a ce qui état affirmé dans toutes les publications sur ce sujet,
et méme pour une température initialement nulle du condensat, il n’est pas nécessaire
d’introduire a la main des termes dissipatifs dans I’équation de Gross-Pitaevskii pour ob-
server la cristallisation du réseau de vortex. C’est en effet le régime turbulent qui suit une
instabilité dynamique du systeme qui peuple des modes du champ initialement vides qui
peuvent soustraire de ’énergie au réseaux de vortex. (ii) L’instabilité dynamique prédite
analytiquement dans un précédent travail de S. Sinha et Y. Castin donne effectivement
naissance a un réseau de vortex. (iii) Pour des fréquences de rotation €2, > 0.7w le scénario
dépend peu de la température initiale du condensat. Enfin, nous avons mis en évidence un
nouveau régime, pas encore observé expérimentalement, o, pour un condensat initiale-
ment a température non nulle, des vortex peuvent apparaitre a une fréquence de rotation
plus basse que 0.7w mais supérieure a la fréquence de Landau pour laquelle le condensat
sans vortex cesse d’étre un minimum local d’énergie a 1’équilibre thermodynamique.
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We show that the formation of a vortex lattice in a weakly interacting Bose condensed gas can be
modeled with the nonlinear Schrodinger equation for both 7' = 0 and finite temperatures without the
need for an explicit damping term. Applying a weak rotating anisotropic harmonic potential, we find
numerically that the turbulent dynamics of the field produces an effective dissipation of the vortex
motion and leads to the formation of a lattice. For T = 0, this turbulent dynamics is triggered by a
rotational dynamic instability of the condensate. For finite temperatures, noise is present at the start of
the simulation and allows the formation of a vortex lattice at a lower rotation frequency, the Landau
frequency. These two regimes have different vortex dynamics. We show that the multimode interpre-

tation of the classical field is essential.

DOI: 10.1103/PhysRevLett.92.020403

Vortex lattices exist in many domains of physics, from
neutron stars to superconductors or liquid helium. In none
of these systems has the formation of the lattice been
understood at the level of a microscopic theory. Several
groups have recently observed the formation of a vortex
lattice in weakly interacting Bose gases [1-4] and are
able to monitor this formation in real time. This gives us
the chance to understand the problem of lattice formation
in a relatively simple system. Indeed there have been
theoretical attempts to understand the formation process
[5-8] with simulations of the Gross-Pitaevskii equation
for the condensate wave function. All of them stress the
need for explicitly including a damping term representing
the noncondensed modes to which the vortices have to
give away energy to relax to a lattice configuration. In this
Letter, we consider this problem in the framework of the
classical theory of a complex field [9] whose exact equa-
tion of motion is the nonlinear Schrodinger equation
(NLSE). First, we show that lattice formation is predicted
within this framework without the addition of damping
terms. Second, we provide two distinct scenarios of vor-
tex lattice formation (dynamics, temperature dependence
of the formation time, and critical rotation frequency)
that can be directly compared with the experiments. We
study the formation of the lattice in 3D from an initially
nonrotating Bose condensed gas both at 7 =0 and at
finite temperature. Contrary to the common belief, we
find that the dynamic instability, which was predicted in
[10] to occur above a certain threshold value of the trap
rotation frequency, leads to the formation of a vortex
lattice. The formation time is in this case only weakly
dependent of the temperature and the observed scenario
and time scales are comparable to those seen in present
experiments. For a lower trap rotation frequency corre-
sponding to the Landau frequency, but only at finite
temperature, we identify a new scenario not yet observed
experimentally in which the vortices enter a few at a time
and gradually spiral towards the center.

020403-1 0031-9007/04/92(2)/020403(4)$22.50

PACS numbers: 03.75.Lm

We start our simulations with the nonrotating classical
field in thermal equilibrium. For 7' = 0, the system ini-
tially is a pure condensate and the field is proportional to
the condensate wave function ¢ given by the Gross-
Pitaevskii equation in the absence of rotation, ¢ =
Ny, where N, is the condensate atom number. For
finite temperatures, we sample the initial thermal equi-
librium in the Bogoliubov approximation at a given tem-
perature T for a fixed number N, of condensate particles.
In this approximation, the classical field is given by
Y(r, 0) = \/Nyp(r) + ¢ (r). The random field # (r) or-
thogonal to ¢ [11] representing the thermal noise is given
by

Yu(r) =D b,u,(r) + bjv(r), M

where u, and v, are the Bogoliubov mode functions
associated with ¢ and b, are independent random c
numbers taken from a Gaussian distribution that obeys
the classical equipartition formula, (b;b,) = kzT/€,, €,
being the Bogoliubov energy of mode n. In practice, to
sample this distribution we use the Brownian motion
method described in [11]. In our work, the field ¢ is to
be interpreted not as the condensate wave function but as
the whole matter field. We present here results from single
realizations of the field s which experimentally corre-
spond to single runs. We have checked that different
realizations lead to similar results.

In our simulations, we consider a Bose condensed gas
initially trapped in a cigar-shaped harmonic potential
with oscillation frequencies whose ratio is 1:1:0.25, with
10° atoms of mass m and a coupling constant g = 0.0343
in units of fiwaj, where w is the radial frequency and
ag = /li/mw is the oscillator length. The corresponding
chemical potential is u = 8/iw. We start each simulation
with the gas in thermal equilibrium. We abruptly turn on
the trap anisotropy which leads to a change in the radial
frequencies: w?, = w?*(1 ¥ €), where e = 0.025. Then
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the rotation frequency ((¢) of this anisotropy is slowly
increased from zero to a final value () £ over 500w, to
follow Procedure I in [10]. After that, we let the gas
evolve in the presence of the rotating anisotropy until
the angular momentum of the gas reached a steady state.

The calculation is performed in the rotating frame so
that the NLSE takes the form

ﬁ2
i, — [—ﬁA U + glyl — mr)Lz}w, @

where L, is the angular momentum operator along z, and
U is the anisotropic harmonic potential. The field ¢ is
subject to periodic boundary conditions in the rotating
frame [12]. Our grid size is 32 X 32 X 128 corresponding
to an energy cutoff of 32Ziw per spatial direction,
although we have also run simulations on a 64 X 64 X
256 grid (see below).

Zero initial temperature.—This set of simulations can
be divided into two groups: those for which the final
rotation frequency is Qf/@ =0.7 and those with
Q;/w = 0.75. Between these two values lies the thresh-
old for the dynamic instability of the condensate which
changes the subsequent dynamics dramatically [10,13]. In
the first group, as the rotation frequency gradually in-
creases with time, the condensate adiabatically follows a
steady state, apart from excitations of the surface modes
leading to a very small oscillation of the angular momen-
tum [see curve for () = 0.7w in Fig. 2(a) (below)]. With
increasing () £ the condensate’s final state becomes more
and more elliptically deformed, surrounded by a ring of
vortices which, however, never enter it. The second group
shows a completely different behavior when Q(f)/w =~
0.75 (see left column of Fig. 1): The instability sets in;
the condensate becomes slightly S-shaped at t ~ 4500 ™!
before being highly deformed and undergoing very tur-
bulent motion [5]. This is accompanied by a large increase
in angular momentum of the gas from almost zero
when Q(7) <0.75w to between 5A-7h per particle [see
Fig. 2(a)]. At this point (=~ 670w ") several vortices
enter the high density region and, in less than 200w !,
settle down to form a well-defined lattice. After this, a
period of relaxation of around 800w~! begins with
the initially rotating lattice finally stopping in the
rotating frame. There remains a small random motion
of the vortices around their equilibrium positions in the
lattice together with density fluctuations in and around
the condensate.

At the end of the simulation, damping of the vortex
motion has occurred and the initial energy of the vortex
motion has been transferred in an effectively irreversible
way to other degrees of freedom of the field. A similar
phenomenon has been observed for the relative motion of
two condensates [15]. If we assume that the field has
reached a thermal distribution, we can calculate the
temperature of the system by taking the final state of
the simulation and evolving it with the conjugate gradient
method in a trap rotating at {),. This reduces its energy
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FIG. 1 (color online). Cut along the radial plane (z = 0) of
the system spatial density at different times. Crosses (circles)
indicate the position of vortices of positive (negative) charge
[14]. Left column: 7 =0, Q; = 0.8w. Top to bottom: initial
state; near instability; turbulent behavior; end of simulation.
Right column: k3T = 8hw, (), = 0.6w. Top to bottom: initial
state; entry of first vortex; entry of second vortex; end of
simulation with a three-vortex lattice.

and takes it to the local minimum associated with the
vortex lattice. We then calculate the energy difference AE
between the final state of the simulation and the one at the
minimum. Assuming that Bogoliubov theory is valid, AE
must correspond to the energy of a classical thermal
distribution of weakly coupled harmonic oscillators of
amplitude b, which obeys the equipartition formula
(b;b,)e, = kT, with n being the Bogoliubov mode num-
ber. So, if N is the number of modes in the system (and
keeping in mind that we have to subtract the one corre-
sponding to the condensate), then we have

AE =Y (bib,)e, = (N — DkgT. 3)

The final temperature is 0.616/iw for (; = 0.750 and
0.754hiw for Q) ¢ = 0.8w, in other words it is extremely
small, less than a tenth of the chemical potential.
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FIG. 2. Total angular momentum of the system in units of 7
per atom as a function of wt. The arrows marked E and C
indicate the entry of the vortices into the condensate and the
crystallization of the lattice for Qf =0.8w. (a) T =0, solid
lines from bottom to top: Q;/w = 0.7(0), 0.75(7), 0.8(10);
dashed line: Q;/w = 0.8(10) with a grid size of 64 X 64 X
256. All other curves were done on a 32 X 32 X 128 grid. In
parenthesis is the number of vortices in the lattice at the end of
the simulation. (b) kT = 4fiw, Q ¢/ = 0.4(0), 0.45(0), 0.5(0),
0.55(1), 0.6(1), 0.65(2), 0.7(6), 0.75(7), 0.8(10). (c) k3T = 8/w,
Q/w = 0.4(0), 0.5(1), 0.55(1), 0.6(3), 0.7(7), 0.75(7), 0.8(10).
The arrows correspond to the approximate entry time of the
vortices for ), = 0.6w as shown in Fig. 1. Note that the total
angular momentum shows no signature of the entries.

We have also carried out a simulation on a larger grid
(64 X 64 X 256) to check the dependence on size. We
chose )y = 0.8w and compared it with the one on the
32 X 32 X 128 grid. The vortex nucleation and crystalli-
zation phases are very similar and occur at roughly the
same times. At longer times, two differences arise: First,
there are large underdamped oscillations of the angular
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momentum [see Fig. 2(a)]. An analysis of the simulation
suggests that these oscillations are those of the scissors
mode. Second, the final temperature (0.094/1w) differs by
the ratio of the number of modes as expected: At time t =
500w~ when Q(¢) = Qy, ¢ had not yet reached the
boundary in the smaller grid case and so the evolution
of ¢ on both grids was identical up to this time with the
same total energy which was conserved at later times
resulting in the same value of AE. This exemplifies the
fact that, in classical field theories, the relationship be-
tween energy and temperature depends on the energy
cutoff.

Since the thermal occupation of the modes is directly
proportional to the temperature, we expect that all re-
laxation processes which involve scattering from or into
those modes (such as Landau-Beliaev damping) will be
reduced. We are thus led to the conclusion that, for our
simulations starting at 7 = 0, relaxation rates in the
period after the formation of the lattice could depend
on the size of the grid. However, with the present numeri-
cal results, we were not able to demonstrate this.

Finite initial temperature.—We performed simulations
starting with kg7 = 4hw and kzT = 8/iw. Now not only
the condensate but also other modes are occupied in the
initial state, with a thermal distribution. For a final rota-
tion frequency below that of the dynamic instability, the
situation is quite different from that of the zero tempera-
ture case: The condensate is never deformed and the
vortices do enter the condensate if Q;=0.55w for
kgT = 4liw and if Q; = 0.5w for kyT = 8hw. In con-
trast to the 7 = 0 case at a frequency below that of the
dynamic instability, all the noncondensed modes are now
thermally occupied allowing the condensate to exchange
particles, energy, and angular momentum with the non-
condensed cloud. Therefore, as soon as () is greater than
the Landau frequency (at which the vortex-free conden-
sate is no longer a minimum of the energy [6]), the
condensate moves gradually toward an energy minimum
with one or more vortices. We have found numerically by
imaginary time evolution that the Landau frequency is
0.51w. During the real time evolution corresponding to
Q; = 0.6w (right column of Fig. 1), we find that the
vortices enter only one at a time. That is, as the angular
momentum of the cloud increases, one vortex out of the
group of vortices that surrounds the condensate will enter
it and spiral slowly clockwise towards the center on a
time scale of hundreds of w~!. After that vortex has
reached the center, a second one enters slowly, repeating
the trajectory of the first until it starts to interact with it,
and the two orbit around each other for a while after
which a third will enter. At the end of the simulation,
coinciding with the achievement of the plateau in angular
momentum, the lattice becomes stationary in the rotating
frame and no further vortex enters the condensate. For
Q 5 = 070w, we find that the condensate deforms itself
elliptically after which three vortices enter at the same
time and form a rotating lattice. After that, and spaced by
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several hundred ™!, a fourth and then a fifth vortex
enter. Finally, two further vortices enter simultaneously
to form the final seven vortex lattice. At each intermedi-
ate stage there is always a well-defined lattice present
although it is not stationary in the rotating frame.
We should contrast this with the scenario of [6,7], where
a large number of vortices enter all at once into the
condensate in a ring configuration and then some of
them form a lattice while others are shed and leave the
condensate.

For {); above the dynamic instability frequency, the
situation is quite similar to the corresponding one at
T = 0. Once the instability has set in the lattice is formed
for both temperatures in about 200w~ as in the 7 =0
case [see Figs. 2(b) and 2(c)]. This weak temperature
dependence was also found experimentally [16]. We find
a time for the lattice to stop rotating on the order of
100w !, much shorter than at T = 0.

It is important to emphasize the multimode interpre-
tation of the field. Transposing Penrose and Onsager’s
definition to the classical field theory, the condensate
wave function is defined as the eigenvector corresponding
to the largest eigenvalue of the one-body density matrix
(*(r")f(r)) where the average is over an ensemble of
initial states. If the system becomes turbulent because it
encounters an instability, the trajectories of the neighbor-
ing realizations will diverge exponentially. However,
after averaging, we believe that the condensate wave
function will not be a turbulent function. For T = 0, there
is only one initial state and so we replace ensemble
averaging by one over time in the steady state regime
[17]. In our simulations with (), = 0.8 ®, the system must
therefore be understood as becoming intrinsically multi-
mode even though we started at 7 = 0 with a pure con-
densate. This shows that any theoretical model which
singles out the condensate mode for separate treatment
with a Gross-Pitaevskii—type equation could run into
trouble in turbulent situations since the separation be-
tween condensed and noncondensed modes would be
hard to keep.

Conclusions.—We have identified two very different
scenarios for the crystallization of the vortex lattice in
the classical field model. In the first one, the vortex and
the subsequent lattice formation are triggered by a dy-
namic instability which sets in for a threshold value of
the rotation frequency of the trap. Many vortices enter the
condensate at the same time and settle into a lattice in
about 200w ~!. In this scenario, the lattice formation time
is essentially the same for both 7 = 0 and finite tempera-
tures in agreement with experimental observation [16]. In
the second scenario, observed only at finite temperatures,
vortices appear for a lower value of the rotation fre-
quency corresponding to the Landau frequency, and so
no dynamic instability occurs. The vortices enter one by
one into the condensate and settle into a lattice before the
entry of the following one. Thus far, there has been no
experimental check of this second scenario.
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Note added.—We have been informed that crystalliza-
tion of the vortex lattice has also been observed in a
simulation without a damping term by the group of
Bigelow [18].
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4.5 Activité expérimentale sur le piégeage et le re-
froidissement d’atomes

Pendant ma deuxieme année de séjour post doctoral a I'ENS, j’ai été initiée a la phy-
sique expérimentale des atomes froids. J’ai participé pendant quatre mois a une expérience
sur le piégeage et le refroidissement des isotopes 6 et 7 (fermion et boson respectivement)
du lithium, dans le groupe de Christophe Salomon, et j’ai travaillé pendant un an sur
I’expérience de condensation de I'hélium métastable de Michele Leduc.

4.5.1 Piégeage simultané Li‘+Li’

En 1999 I'expérience de gaz de Fermi dégénéré dans 'équipe de Christophe Salomon
démarrait. A cause de la difficulté de réaliser le refroidissement par évaporation sur des
fermions polarisés (les collisions dans 'onde s sont supprimées pour des fermions dans
le méme état interne), le projet était de le refroidir le SLi (fermion) par thermalisation
avec un nuage de “Li bosonique. J'ai “atterri” dans une équipe trés performante formée
de Mark Oliver-Mewes, Florien Schrek et Gabriele Ferrari. Fabrice Gerbier (maintenant
permanent du Laboratoire) était en stage de DEA dans 'équipe a ce moment-la.

Selon un montage maintenant “standard” dans les expériences d’atomes froids, les
deux isotopes du lithium sortant d’un four sont ralentis par la pression de radiation d’une
onde laser dans un champ magnétique inhomogene (ralentisseur Zeeman), avant d’étre
capturés et refroidis par un piege magnéto-optique dans une cellule en verre. Pour ralentir
et piéger chacun des deux isotopes, nous avions besoin de quatre fréquences : un faisceau
principal et un repompeur pour le piege, et un faisceau principal et un repompeur pour
le ralentisseur. En tout, il nous fallait huit fréquences autour de la longueur d’onde 671
nm dans un intervalle de fréquence d’environ 10 GHz. Le systeme laser fournissant les
fréquences et la puissance nécessaires était constitué de dix diodes laser dont deux lasers
maitres stabilisés en fréquence et huit lasers esclaves, et un amplificateur a semiconducteur
(MOPA). Injecté par quatre lasers esclaves, le MOPA délivre 140 mW de puissance dans le
méme mode spatial (gaussien) et de polarisation, avec un spectre de fréquence contenant
les quatre composantes nécessaires au piégeage des deux isotopes [12].

J’ai donc participé a la mise en ceuvre de 'optique pour le ralentissement et le piégeage
simultané des deux isotopes du systeme d’imagerie pour les deux isotopes.

Je me souviendrai longtemps de ’émotion éprouvée en voyant le double piege °Li +
"Li pour la premiere fois (les transitions utilisées sont dans le visible pour le lithium et ’'on
voit la fluorescence du piege magnéto-optique trés bien a 1’ceil nu). Le double piege une
fois obtenu, nous 'avons optimisé pour augmenter la densité en vue du refroidissement
évaporatif.

A la fin de la phase de compression, nous avions typiquement : 3 x 10® atomes de %Li
fermionique avec 6 x 10? atomes de "Li bosonique a des températures de I'ordre de 0.6
mK, et des densités de 4 x 10 atomes/cm? pour le “Li et 6.5 x 10*° atomes/cm?® pour le
6Li. Plus de détails sur le montage expérimental et sur les résultats sont donnés dans la
référence [12].

4.5.2 Vers un condensat d’hélium métastable

Au cours de 'année 1999-2000, j’ai travaillé sur une expérience dont le but était d’ob-
tenir un condensat de Bose-Einstein d’hélium métastable He* (23S;). L’intérét d’un tel
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condensat est que ses atomes peuvent étre détectés avec une tres bonne résolution spatiale
et temporelle (MCP, channeltron, ...) et une grande efficacité puisque ’énergie interne
de He* (23S;) est de 20 eV. L’équipe était dirigée par Michele Leduc et Claude Cohen-
Tannoudji et je bénéficiais a ’époque d’un poste temporaire de maitre de conférence au
College de France attaché a la chaire du professeur Cohen-Tannoudji.

Pour cette expérience, on utilise I’état métastable triplet 235, de longue durée de vie
comme ’état “fondamental” d’une transition dans l'infrarouge (235 — 2°P,) permettant
de manipuler les atomes par laser et de les détecter. Apres avoir informatisé I’expérience,
et mis au point un systeme d’imagerie compliqué par la faible efficacité quantique de
notre caméra infrarouge et la faible masse de I’He, nous avons mené une série de mesures
systématiques destinées a caractériser le taux de pertes a deux corps dans notre piege
magnéto-optique, essentiellement dues aux collisions de Penning autoionisantes.

2351 + 2351 — 130 + H6+ + e .
235, +2°P, — 1Sy +Het + e (4.6)

Ce sont ces collisions en effet qui limitent la densité maximale d’atomes métastables
dans le piege magnéto-optique & quelques 10'° at/cm®. Comme la section efficace de
collision de Penning impliquant un atome excité (4.6) est environ 100 fois plus élevée
que celle impliquant deux atomes métastables, le taux de pertes a deux corps dépend des
conditions d’accord et d’intensité des faisceaux de piégeage. Nous avons donc mesuré le
taux de pertes en fonction de 'intensité et du désaccord tout en étendant le domaine des
mesures préexistantes a des désaccord plus importants. En utilisant un modele simple et
en mesurant la fraction d’atomes excités pour chaque expérience, nous avons pu déduire
de nos mesures la constante de taux (section efficace x vitesse moyenne) pour les collisions
de Penning dominantes (4.6) avec une précision significativement accrue par rapport aux
résultats disponibles [15]. Les détails expérimentaux sur notre piege magnéto-optique pour
I'hélium métastable sont donnés dans [16].

Du point de vue de l'obtention d'un gaz dégénéré, on veut obtenir idéalement un
nuage avec beaucoup d’atomes et tres dense a fin d’augmenter la densité et le taux de
collisions pour démarrer le refroidissement par évaporation. La suppression des collisions
de Penning pour un gaz polarisé dans le piege magnétique permettra d’atteindre au but.
L’équipe de Michele Leduc et Claude Cohen-Tannouji a été la deuxieme (a distance de
quelques semaines de I’équipe d’Alain Aspect a Orsay) a condenser I’hélium métastable
en 2001.



Chapitre 5

Pompage optique de 1”’He pour
I’imagerie médicale

Les numéros entre crochets font référence a la liste de mes publications, disponible en
fin de document.

5.1 Imagerie avec des gaz (hyper)polarisés

Il y a quelques années sont apparues les premieres images de poumons obtenues avec de
I’hélium 3 polarisé par pompage optique. Les spins nucléaires de 1'hélium, préalablement
orientés par laser, et précessant dans un champ magnétique typiquement de 1.5 Tesla,
sont utilisés a la place des protons présents dans les tissus pour faire les images par
résonance magnétique. Une fois inhalé, 'hélium reste confiné dans les cavités pulmonaires.
On obtient alors des images complémentaires aux images “en proton” (voir figure 1).

aANg

AiseAiun

Proton MRI Helium MRI

F1G. 5.1 — Image du torse humain “en proton” et “en hélium polarisé”.

5.2 Rappel : Structure atomique de I’hélium 3

En champ nul

L’état fondamental 1'Sy de 'hélium 3 est un état singlet (S = 0) avec moment angu-
laire orbital nul J = 0. Le noyau a un moment angulaire I = 1/2, ce qui donne naissance
a deux sous-niveaux magnétiques dans le fondamental m; = +1/2. L’état triplet 235 est
métastable. Il comporte deux niveaux hyperfins F' = 3/2 et F' = 1/2, séparés de 6.74
GHz, et six sous-niveaux Zeeman. L’autre état qui nous intéresse est I’état triplet 23 P. 11
comporte 5 niveaux et 18 sous-niveaux Zeeman. De la structure des niveaux 235 et 23P
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FI1G. 5.2 — Structure de la raie atomique 235-23P de I’hélium 3 en champ nul et spectre
correspondant.

résultent 9 raies appelées C1-Cy par ordre d’énergie croissante. Les raies isolées Cy et Cy
sont celles habituellement utilisées pour le pompage optique de 'hélium a bas champ. La
largeur Doppler est de 1.2 GHz a température ambiante.

A 1.5 Tesla

A 1.5 Tesla les niveaux de I'état métastable 235 et de I'état 23 P s'étalent sur plusieurs
dizaines de GHz (Fig.5.3). Les sous-niveaux A; — Ag du métastable sont proches des
états de la base découplée |my, +), ou my; = —1,0, 1 est le nombre quantique magnétique
du moment angulaire électronique et £+ dénote le nombre quantique magnétique du spin
nucléaire m; = £1/2. En introduisant les angles de mélange 01 on a :

Ar = |-1,-)

Ay = cosf_|—-1,+)+sinb_|0,—)

As = cos6, |0,+) +sinby |1, —)

Ay = cosf_|0,—) —sinf_|—1,+)

As = |1 +)

Ag = cosf,|1,—) —sinf,|0,+) (5.1)

avec, a 1.5 Tesla,
sinf, =0.07128 and sinf_ = 0.07697. (5.2)
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F1G. 5.3 — Structure de la raie atomique 235-23P de I'hélium 3 a 1.5 T.

5.3 Pompage optique dans un champ de 1.5 Tesla

La technique de pompage optique par échange de métastabilité repose sur des collisions
aux cours desquelles un atome métastable et un atome fondamental échangent leurs va-
riables électroniques. Ces collisions unies au couplage hyperfin dans le niveau métastable
sont chargées de transférer 'orientation créée par le laser dans le niveau métastable, au
niveau fondamental. Cette technique permet d’obtenir des polarisations nucléaires allant
jusqu’a 80%. Toutefois, la méthode marche seulement pour une faible pression d’hélium de
I'ordre du millibar. Une compression du gaz sans perte de polarisation est alors nécessaire
pour que le gaz puisse étre inhalé. Bien que des méthodes de compression efficaces aient
été développées dans quelques laboratoire dans le monde, la préparation du gaz polarisé
a la pression atmosphérique reste pour 'instant un obstacle a la diffusion a grande échelle
de cette nouvelle technique d’imagerie. Polariser le gaz a une plus forte pression simplifie-
rait considérablement 1’étape de compression et donc la préparation des échantillons pour
I'imagerie. En particulier, I'idée de Pierre-Jean Nacher était de travailler en fort champ
magnétique ou le partiel découplage hyperfin dans les différents états excités atomiques
et moléculaires entrant en jeu, supprime les canaux importants de relaxation pour la po-
larisation nucléaire qui rendent habituellement le pompage par échange de métastabilité
inefficace a forte pression. Mon projet démarré au sein du groupe en 2001 était donc
d’explorer expérimentalement et de modéliser le pompage optique dans des conditions
nouvelles, de champ magnétique intense et de forte pression. Pendant quatre ans, j’ai
travaillé avec Marie Abboud que j’ai (co)encadrée (avec Pierre-Jean Nacher), pour son
stage de DEA et ensuite sa these dans le groupe, et en collaboration avec Xavier Maitre
du laboratoire U2R2M a Orsay.

5.3.1 Dispositif expérimental

Pour mener cette expérience nous avons construit un dispositif compact, portable
et amagnétique pour polariser le gaz que nous venions placer lors des créneaux libres
(souvent les week-ends) a lintérieur d’un imageur IRM hospitalier qui nous fournissait
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un champ magnétique homogene de 1.5 Tesla. Un schéma du dispositif expérimental est
montré en Fig.5.4. Un premier laser, le laser pompe polarisé ¢~ ou o™, parallele au champ

B=15Teda

R.F. cécharge
C.P
N2
N4
Fibre Optique
Laser
(m) Sonde

F1G. 5.4 — Schéma du montage expérimental. C.P., \/2 et A\/4 sont respectivement des
cubes polariseurs et des lames retardatrices demi-onde et quart d’onde. Mi est un miroir ;
D est un diaphragme circulaire de diametre 1.5 cm P.D. sont des photo diodes pour
I'infra-rouge.

magnétique, est utilisé pour polariser I’hélium. Il s’agit d'une diode laser amplifiée dans
une fibre dopée Yb qui delivre un demi Watt. Un deuxieme laser, le laser sonde (dans
une superposition de polarisations o~ et o), est utilisé pour mesurer les populations des
sous-niveaux métastables et déduire ainsi la polarisation nucléaire. Le gaz est contenu
dans une cellule en Pyrex (Fig.5.5). Des électrodes en cuivre fixées aux parois externes
de la cellule et reliées a un circuit oscillant a 3 MHz, entretiennent un plasma dans le
gaz qui maintient une petite fraction d’atomes ~ 107% dans 1’état métastable. Une vue
d’ensemble est montrée en Fig.5.6.

cellule

F1G. 5.5 — Photo de la cellule cylindrique (de dimensions internes 4.6 cmx4.6 cm) avec
deux paires d’électrodes circulaires ; deux petites électrodes sont posées contre les fenétres
optiques de la cellule, les deux autres de diametre 5 cm sont enroulées sur la cellule. Les
électrodes sont connectées deux a deux au méme potentiel, de sorte que deux électrodes
successives ont des potentiels de polarité opposée.

5.3.2 Résultats

Nous avons mené une étude expérimentale systématique sur différentes cellules entre
1 et 67 mbar et nous avons déterminé les meilleures conditions de fonctionnement du
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F1G. 5.6 — Vue d’ensemble. Les lasers (dont la diode sonde au premier plan), les appareils
électroniques et le systeme d’acquisition informatique restent dans une région de faible
champ magnétique.

pompage a fort champ et forte pression (parametres de décharge, intensité et désaccord
du laser pompe, choix de la raie de pompage).

Nos meilleurs résultats a haut champ pour la polarisation nucléaire stationnaire sont
montrés sur la Fig.5.7. Les polarisations obtenues a bas champ pour les mémes pressions
sont montrées sur la méme figure pour comparaison. A Dasse pression d’hélium (1.33
mbar) nous retrouvons une polarisation tres elevée (82%). Il y a pourtant des différences
importantes par rapport aux pompage a bas champ. (i) La dynamique de pompage est
intrinsequement ralentie par le découplage hyperfin dans le niveau métastable, ce qui rend
le taux de production de gaz polarisé a fort champ et basse pression non compétif : on
perd environ un facteur 10 par rapport aux meilleurs taux de pompage a bas champ. En
augmentant la pression, la polarisation stationnaire obtenue par le pompage traditionnel
s’effondre. Par contre, le pompage a haut champ donne des polarisations élevées (~ 40%)
jusqu’a la pression la plus importante que nous avons étudiée systematiquement, 67 mbar.
Bien que la dynamique soit ralentie, le gain en pression fait remonter les taux de produc-
tion de 'aimantation a des valeurs compétitives [21,22] avec seulement 0.5 W de puissance
laser utilisée.

Les polarisations nucléaires et les taux de pompage obtenus montrent la possibilité
d’étendre le domaine d’applicabilité du pompage optique par échange de métastabilité aux
fortes pressions. Etant donné que 1.5 Tesla est la valeur du champ la plus courante dans les
imageurs médicaux, ce nouveau schéma de pompage ouvre la voie, pour les applications
médicales, au développement d’un polariseur de gaz a haut champ, avec une simplification
considérable de la procédure de compression (1 : 30 ou 1 : 15 au lieu de 1 : 1000). Un
deuxieme avantage du pompage a haut champ par rapport au pompage optique standard
est du aux fait que la sélection de la raie de pompage se fait en fréquence et polarisation
(plutot qu’en polarisation seulement), ce qui allege énormément les contraintes sur la
qualité de la polarisation du faisceau pompe.

5.3.3 Modélisation et comparaison théorie-expérience

Un travail de fond de modélisation théorique du pompage optique et du processus de
collision d’échange a haut champ nous a permis de comprendre en détail la physique, les
potentialités et les limites de ce nouveau schéma de pompage a 1.5 Tesla. Les principales
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Fi1G. 5.7 — Polarisation nucléaire a 'état stationnaire Mg, en fonction de la pression
du gaz. Etoiles et triangles : pompage habituel a bas champ, mesures données dans la
littérature (étoiles) ou effectuées dans les mémes cellules utilisées a haut champ (triangles).
Cercles : pompage a 1.5 Tesla. La puissance du faisceau pompe utilisé est de 2W et 5W
pour les triangles et les étoiles respectivement a bas champ, et de 0.5W pour les cercles
a haut champ.

différences par rapport au pompage a bas champ viennent du découplage hyperfin im-
portant qui change radicalement la structure des niveaux de I’état métastable et affecte
les collisions d’échange de métastabilité. A15 Tesla, l'effet Zemann étant dominant, les
6 sous-niveaux de I’état métastable 23S se groupent en trois paires de niveaux quasi-
dégénérés correspondant (dans la limite B — oo) a m; =1, m; = 0 et m; = —1). Une
intensité de laser pompe relativement faible peut transférer efficacement les atome d’une
paire a l'autre par pompage optique car le couplage entre paires donné par les collisions
d’échange est faible. Par contre, le couplage a I'intérieur d’une paire est tres fort et, méme
en présence du laser pompe, les populations relatives a 'intérieur d’une paire donnée sont
en premiere approximation données par la température de spin imposée par les collisions
d’échange. Cette vision simple permet de quantifier le ralentissement de la dynamique de
pompage et d’estimer le “rendement quantique” (nombre d’atomes polarisés sur nombre
de photons absorbés) pour les différentes raies de pompage a fort champ. La bonne sur-
prise confirmée par l'expérience est que, en dépit du découplage hyperfin important a 1.5
Tesla, le pompage optique conserve les propriétés de haut rendement quantique qui le
caractérisent a bas champ.

Avec 'aide du modele théorique que nous avons développé, nous avons montré que
I’application d’un champ magnétique réduit sensiblement la relaxation de la polarisation
nucléaire, et en particulier la relaxation en présence du laser de pompage, qui limite la
polarisation obtenue a forte pression et bas champ. Un taux de relaxation résiduel, qui
augmente avec la densité d’atomes dans le niveau excité 2°P et avec la pression, a aussi
été mis en évidence.
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Abstract. — Metastability exchange optical pumping of helium-3 is performed in a strong
magnetic field of 1.5 T. The achieved nuclear polarizations, between 80% at 1.33 mbar and 25%
at 67 mbar, show a substantial improvement at high pressures with respect to standard low-
field optical pumping. The specific mechanisms of metastability exchange optical pumping at
high field are investigated, advantages and intrinsic limitations are discussed. From a practical
point of view, these results open the way to alternative technological solutions for polarized
helium-3 applications and in particular for magnetic-resonance imaging of human lungs.

Introduction. — A gas of ground-state *He atoms in which a high degree of nuclear po-
larization is achieved offers an incredibly rich playground in various fields of science, from
statistical or nuclear physics to biophysics and medicine [1]. Depending on the targeted ap-
plication, the degree of nuclear polarization, the sample density, or the production rate of
polarized atoms should be optimized. A recent application, which may have an important im-
pact on the diagnosis of pulmonary diseases, is the polarized-gas magnetic-resonance imaging
(MRI) [2]. Clinical studies to demonstrate the relevance of this new tool are under way in
Europe and in the United States. Yet, if a wide expertise exists in MRI to adapt the existing
imaging techniques to the case of polarized gases, the gas preparation remains a critical stage
to be transferred from physics laboratories to hospitals. Two methods are presently used to
polarize 3He: spin-exchange with optically pumped alkali atoms [3] and pure-He metastabil-
ity exchange optical pumping (MEOP) [4]. In standard conditions, MEOP is performed at
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B =1.5Tesla

-
~—R.F.
P.C. i i
B.E. Optical Fiber Probe
M
laser

Fig. 1 — Experimental setup. The nuclear polarization is measured by the absorption of a transverse
probe beam. B: static magnetic field, P.D.: photodiode, P.C.: polarizing beam-splitter, B.E: beam
expander, \/4: quarter wave plate, M: mirror, R.F.: radio-frequency to excite the discharge.

low pressures (1 mbar) in a guiding magnetic field of the order of 1 mT. Circularly polarized
light at 1083 nm, corresponding to the 235-23P transition of 3He, is used to transfer angu-
lar momentum to the atoms and nuclear polarization is created by hyperfine coupling in the
metastable 23S state. Through metastability exchange collisions, nuclear polarization builds
up in the ground state. The steady-state nuclear polarization obtained by MEOP in standard
conditions rapidly decreases if the pressure of the sample exceeds a few mbar (see below,
fig. 5a) [5—7]. Therefore, a delicate polarization-preserving compression stage is necessary for
MRI where the gas should be at atmospheric pressure for inhalation, and for all applications
needing a dense sample. In this letter, the MEOP scheme is shown to withstand large hyperfine
decoupling. A strong magnetic field of 1.5T actually improves its performances with respect
to standard low-field optical pumping. At 1.33 mbar, high nuclear polarizations of the order of
80% are routinely obtained with much lighter experimental constraints. At higher pressures,
the achieved nuclear polarizations are dramatically increased compared to published low-field
results. An elementary model with simple rate equations is used to account for these results.

Ezxperimental setup and methods. — Experiments are performed in the bore of the 1.5T
superconducting magnet of a clinical MRI system. The experimental apparatus is sketched
in fig. 1. The helium gas is enclosed in a sealed cylindrical Pyrex cell (diameter 5cm, length
5cm). Four cells filled with 1.33 mbar, 8 mbar, 32 mbar and 67 mbar of pure 3He are used. A
radio-frequency discharge at 3 MHz is sustained in the gas by external electrodes, leading to
metastable atom densities n,, in the 0.3-3 x 10'° atoms/cm? range, depending on the applied
voltage and on the gas pressure. The optical pumping laser is either a 50 mW single-mode
laser diode amplified to 0.5 W [8], or a broad-band fiber laser (1.63 GHz FWHM) delivering
2W [9]. The pump beam is back-reflected to enhance its absorption, which is monitored on
the transmitted beam with a photodiode. At the entrance of the cell, the Gaussian transverse
intensity profile of the pump beam has a FWHM of the order of 2cm. A weak probe beam from
a single-mode laser diode is used to measure the nuclear polarization. It is linearly polarized
perpendicularly to the magnetic field (o polarization). The discharge intensity is modulated
at 133 Hz, and the probe absorption is measured with a lock-in amplifier. Laser sources and
electronics remain several meters away from the magnet bore, in a low-field region.

At 1.5 T, due to Zeeman splitting, the energy levels of the 235 and 23 P states are spread
over 80 and 160 GHz, respectively (fig. 2a). Hyperfine decoupling in the 23S state is significant,
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Fig. 2 - (a) Energies of the *He sublevels at 1.5 T for the metastable 2°S state (Es) and the 2° P state
(Ep). The transitions induced by the o~ -polarized pump (solid lines) and probe (dotted lines) are
displayed. Each pump transition has a matrix element T;; close to 1 [10]. (b) Absorption spectrum at
low magnetic field. (¢) Absorption spectrum for o~ light at 1.5T. Vertical and horizontal scales are

identical in (b) and (c). Level names A; to Ag, energy zeros and spectral line positions are defined
as in ref. [10].

so that the eigenstates of the Hamiltonian show only little mixing between different eigenstates
|m.,my) of the decoupled spin system, where m, mr, and mp denote the magnetic quantum
numbers for the electronic, nuclear, and total angular momentum, respectively. As shown in
fig. 2a, the 235 sublevels are arranged into three pairs of quasi-degenerate levels of increasing
energies (A1, As), (4s, Ay), and (As, Ag) that correspond, respectively, to m; = —1, 0, and 1
in the completely decoupled limit B — oo. For more details about the 23S level structure
and the analytical expressions of eigenstates and energies, we refer the reader to ref. [10].
The absorption spectra at low magnetic field and at 1.5T are displayed in figs. 2b and c,
respectively. In standard MEOP, very high nuclear polarizations are obtained using Cg or
Cy lines [6,11]. Comparable polarizations are achieved at 1.5T using the o~ -strong pump
line displayed in fig. 2c. All the results presented in this work are obtained with this pump
transition. The performances and efficiencies of other optical-pumping transitions at 1.5T
will be reported elsewhere. The pump simultaneously addresses the four 23S sublevels A; to
Ay. Population transfer into the pair (As, Ag) is achieved by the following sequence: laser
excitation, collisional redistribution in the 23P state and spontaneous emission. The ground-
state nuclear polarization M is defined as M = (ny —n_)/(ny + n_), where ny and n_
denote populations of the m; = 1/2 and m; = —1/2 nuclear spin states, respectively. In
the absence of optical pumping, metastability exchange collisions impose a spin temperature
distribution for the 23S sublevel populations, proportionally to e®™#, where ¢® = n, /n_ =
(1+M)/(1— M) [10]. The populations of sublevels A5 and Ag, not addressed by the pump,
are probed to measure M. Examples of probe absorption spectra for an unpolarized and an
optically pumped steady-state situation are shown in fig. 3a. M is inferred from the relative
heights of the absorption peaks. The build-up of the polarization, as well as its decay when the
pump is turned off, are monitored by tuning the probe laser frequency on the probe transition
starting from the As (mp = 3/2) sublevel (fig. 3b). These measurement procedures operate
at arbitrary magnetic field and pressure [10].
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Fig. 3 — Examples of recorded signals in the 1.33 mbar cell: (a) absorption measurements on transitions
from sublevels A5 (E/h = —27.36 GHz) and Ag (E/h = —31.04 GHz) at thermal equilibrium (M ~ 0)
and at steady-state nuclear polarization (M = Mcq) in an optically pumped gas. (b) Polarization
build-up and discharge-induced decay deduced from changes of light absorption in sublevel As. Pump
laser is applied at time ¢t = 0, and turned off after 2000 s.

Results. — The steady-state polarization M., and the polarization build-up time constant
ty, in the 1.33 mbar cell are shown in figs. 4a and b as a function of the discharge-induced decay
time T7. Over a wide range of moderate-to-weak discharges (77 ranging from 300s to 1500s),
ty, (ranging from 60 to 350s) is proportional to 77 and the polarization achieved with the
broad-band 2W laser is high, about 80%, independently of T;. This behavior is specific to
the high-field optical pumping, and contrasts with the standard low-field situation where a
very weak discharge is required to obtain such large nuclear polarizations. For the strongest
discharges, build-up times decrease (¢, ranging from 15 to 55s) and steady-state polarizations

100 100
a ° C
80 ° ®e o 80 °
$ 60 L] < 604 @
S ° *ﬁ.* * S
<% 40- s® 40
20 20
0 . . 0 . . . . .
100 1000 00 04 08 12 16 20
120 o
b L] d
| )
« ®
oq 80 o
= 100 * e 5 ° o o .
N * S = Y
A 401
°
°
10 . . 0 . . . . .
100 1000 00 04 08 12 16 20
T, (s) P (W)

Fig. 4 — Results obtained at 1.5T in the 1.33 mbar cell. (a) Steady-state polarization, and (b) polar-
ization build-up time constant, as a function of the discharge-induced decay time of the polarization
T1. Circles and stars: broad-band (2 W) and single-mode (0.5 W) pump lasers, both running at full
power. (c) Steady-state polarization, and (d) polarization build-up time constant, as a function of
incident laser power Pr,. Data are obtained with the broad-band pump laser and for 77 = 300s.
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Fig. 5 — (a) Steady-state polarization, and (b) polarization build-up time constant, as a function of
3He pressure P, at high and low magnetic fields. Circles and stars are 1.5T data obtained with
a broad-band (2W) and single-mode (0.5 W) pump lasers, respectively. Filled (open) symbols are
for weak (strong) discharge: 71 = 300 (60), 2600, 1600 (325), and 1300 (700)s for 1.33, 8, 32, and
67 mbar, respectively. Triangles, squares, and diamonds are low-field data published in [5,6], and [7],
respectively (all for weak discharges).

are lower. Figures 4c and d show the influence of the pump laser power for a given discharge
(T1 = 300s). A laser power as low as 0.5 W is sufficient for the polarization and the build-up
time to almost reach their asymptotic values. Similar studies of MEOP have been performed
at higher pressures, where 77 between 300 and 2600s are measured. Selected results for a
weak and a strong discharge at full laser power are shown in fig. 5 together with published
low-field results. The polarizations obtained at high pressures are, to our knowledge, record
MEOP values. The polarization build-up times weakly depend on *He pressure, in contrast
with low-field MEOP [6,12].

Discussion. — An extension of the detailed model for standard MEOP [11] to high-
field conditions [10] is required to compute the populations of all atomic sublevels. Here, for
simplicity, an elementary model is used to account for the main observed features. We assume
that i) atoms are fully pumped into the (As, Ag) pair, and ii) the populations of sublevels not
addressed by the pump laser are imposed by the ground-state spin temperature which only
depends on M: as = (1 4+ M)/2 and ag = (1 — M)/2. The sublevel Aj; is totally oriented
(my =1, m;y = 1/2) and carries a nuclear angular momentum (I,) = h/2, while Ag has a
small component on (m; = 0, m; = 1/2) and a large component on (my = 1, m; = —1/2)
and thus carries a nuclear angular momentum (I,) = fi(e—1)/2 with e = 1x 1072 at 1.5T [13].
The rate equation for M, resulting from relaxation and metastability exchange, is then

dM 21,/ h—M M h 1-M
_ ALY/ with(IZ>:—<M+€ )

dt T, T

2 2

where 1/T, is the metastability exchange collision rate for a *He atom in the ground state
(1/T, = ny x 1.53 x 10719 cm?3/s), and 2(I.)/h is the nuclear polarization in the 23S state.
One infers a steady-state polarization Meq = (1 + 2T%/(¢T1))~! and a build-up time , =
2T Meq/e. Using values of n,, and 77 measured in the absence of pumping beam, the predicted
polarization is M.q ~ 1, at all pressures. The build-up times are in the range 20-300s for
the low-pressure cell, and in the range 15-40s for the three high-pressure cells. Although
this elementary model is clearly not sufficient to predict M, it accounts reasonably well for
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TABLE I — Steady-state polarizations Meqy, build-up times ty, and production rates R, (see text) vs. gas
pressure P and laser power P1, for the data in fig. 5 and other published data. Results in parenthesis
correspond to strong discharges.

Ref. P (mbar) Pr (W) Meq (%) ty (s) T (s) R, (mbar/s)
this work 1.33 2.0 80 (60) 67 (20) 300 (60) 0.016 (0.039)
this work 8 0.5 67 70 2600 0.076
this work 32 0.5 44 (32) 88 (26) 1600 (325)  0.159 (0.401)
this work 67 0.5 24 (20) 84 (33) 1300 (700)  0.191 (0.405)

12] | 0.05 50 (40) 40 (9) 270 (40) 0.013 (0.047)

[14] 1.33 1.1 56 (39) 11 (2) 400 (10) 0.066 (0.266)

[6] 1.33 45 78 (45) 6.5 (0.3) 900 (15) 0.160 (2)

the observed dynamics. Its domain of validity and accuracy are estimated from detailed rate
equations for the six 23S-sublevel populations. We find that in our experimental conditions
and for the observed range of nuclear polarization, 2(I.)/h given by the simple model differs
from the exact value by a factor not exceeding 2, depending on M and on the gas pressure. This
difference results from incomplete population transfer into (As, Ag) as well as from deviations
of the order of € of the populations a5 and ag from their assumed spin-temperature values. In
spite of its simplicity, the model sheds light on two key features: i) The dynamics of optical
pumping at 1.5 T is intrinsically limited by hyperfine decoupling. ii) The build-up time, at
least in the explored range of parameters, weakly depends on pressure and is affected only
through changes of n,, and T}.

For application purposes, production rates of polarized atoms per unit volume R, =
PM.q/t, are compared to published results for standard MEOP conditions and similar sealed
cells in table I. At low pressure, production rates at high field are lower than those obtained
with low-field optical pumping. Nevertheless, one can take advantage of the weak-pressure
dependence of Mqq and t, at 1.5T to efficiently perform MEOP at higher pressure. By in-
creasing the pressure from 1.33 to 32 mbar, a factor of 10 in R, is gained and good production
rates are recovered. For instance, gas in a 250 cc cell at 32 mbar can be polarized at 40% within
3 minutes. This amount of gas is suitable for small-animal lung imaging after compression to
atmospheric pressure. For human lung MRI, considerable scaling-up or accumulation of po-
larized gas remains necessary. However, optical pumping around 50 mbar would considerably
simplify the compression stage by reducing the compression ratio from 1 : 1000 down to 1 : 20.

An intrinsic advantage of the high-field MEOP scheme is that, due to the large Zeeman
splittings in the 235-23P transition, the magnetic sublevels involved in optical pumping are
selected by the frequency of the light, and not only by its polarization. High-field MEOP
is therefore extremely robust against polarization impurity of the pumping light. This is a
crucial issue for massive production of polarized *He using high laser power, since imperfect
light polarization can severely limit achieved polarizations at low field [14].

Perspectives. — The nuclear polarization improvement observed at 1.5T for high pres-
sures is plausibly due to the inhibition by hyperfine decoupling of relaxation channels in atomic
and/or molecular states in the plasma, as suggested by preliminary results at 0.1 T [7]. Fur-
ther experiments at different magnetic-field intensities are planned to confirm this hypothesis.
In this perspective, the present study provides a first set of data showing that, in spite of the
large hyperfine decoupling in the 23S state, MEOP at high field i) still yields high nuclear po-
larizations at low pressures and ii) extends the domain of its applicability to higher pressures,
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providing fair polarizations and high production rates. From a practical point of view, and
in the perspective of a large-scale medical use of polarized gases, the development of a 3He
polarizer operating at 1.5T (a widely used magnetic field in MRI), and at tens of mbar (for
simplified compression) could be an attractive choice.
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Metastability exchange optical pumping in the pressure range 8-67 mbar is performed in the 1.5 T
magnetic field of a full-body scanner. Stationary polarizations, production rates, photon efficiency
of this new optical pumping scheme are investigated experimentally. Results are interpreted and
nicely reproduced using a theoretical model for optical pumping adapted to our high field and high
pressure conditions. Despite the important hyperfine decoupling in the 2°S metastable state at 1.5 T,
metastability exchange optical pumping retains its high photon efficiency (one or two according to
the pumping line). High nuclear polarizations and production rates are obtained at high pressure

making this scheme promising for applications.

PACS numbers: 03.75.Be - 32.60.+i - 32.80.Bx - 67.65.+z - 87.61.-cg

I. INTRODUCTION

Highly polarized helium-3 is used in various fields
of science, spanning from magnetic resonance imaging
(MRI) of air spaces in human lungs [I, 2|, to nu-
clear physics to prepare spin filters for neutrons [3]
and polarized targets [4]. The most successful meth-
ods presently used to polarize helium-3 are spin-exchange
optical pumping using alkali atoms [5], and pure-helium
metastability exchange optical pumping [6]. The applica-
tions have driven research towards improvement in terms
of photon efficiency, stationary polarization, and produc-
tion rate, both for spin exchange optical pumping [7],
and metastability exchange optical pumping [8, 9]. The
metastability exchange technique was demonstrated by
Colegrove, Schearer, and Walters over forty years ago [6].
In standard conditions, metastability exchange optical
pumping is performed at low pressure (1 mbar) in a guid-
ing magnetic field up to a few mT. Metastable 23S-state
atoms are produced using a radiofrequency discharge.
They are optically pumped using the 23S-23P transition
at 1083 nm. The electronic polarization is transferred to
the nuclei by hyperfine interaction. Through metastabil-
ity exchange collisions, nuclear polarization is transferred
to ground-state helium-3 atoms. Metastability exchange
optical pumping in standard conditions provides, in a few
seconds, high nuclear polarizations (up to 0.9 at 0.7 mbar
(10]). Unfortunately, the achieved nuclear polarization
rapidly drops down when the helium-3 pressure exceeds
a few mbar [9, 11]. Therefore, a delicate polarization-
preserving compression stage is necessary for all applica-
tions needing a dense sample. Recently, we demonstrated
that the applicability domain of metastability exchange
optical pumping can be extended to higher pressure pro-
vided the optical pumping (OP) is performed in a high
magnetic field [12-14].

In this paper, we present the experimental results of a

systematic study of OP at 1.5 T and we compare them
with a theoretical model.

In section II, we describe our setup, the OP schemes
we have explored at 1.5 T, and we explain in detail the
experimental methods, in particular the measurement of
the nuclear polarization in stationary and non stationary
conditions.

In section III, we present our results obtained at 1.5 T
in various experimental conditions including the dis-
charge intensity, the pump laser power, the atomic line
chosen for OP, and the gas pressure. We also compare in
this section the high field OP performances with results
obtained in standard conditions.

In section IV, we do a quantitative comparison be-
tween our results and the predictions of an optical pump-
ing model in the spirit of [18], adapted to our high
field and high pressure conditions [14]. We show that
the metastable atom density within the pump beam
is strongly affected by the electronic orientation of the
metastable atoms. The measured pumping rates and
photon efficiencies are nicely reproduced by the theory.
Results for the stationary polarizations obtained at high
pressure indicate the existence of a relaxation process for
nuclear polarization whose rate is enhanced by the pop-
ulation of excited state. A clear reduction of this effect is
nevertheless observed at 1.5 T with respect to low field
conditions.

II. EXPERIMENTAL
A. Experimental Setup

Experiments are performed in the homogeneous 1.5 T
field of the superconducting magnet of a clinical full-
body scanner. The experimental apparatus is sketched



in Fig.1. The helium-3 gas is enclosed in a sealed cylin-

B=15Tesa

Pump
L aser

Optical Fiber
Probe
SO aser

FIG. 1: Experimental setup scheme. P.C.=polarizing cube,
P.D.=photodiode, Mi=mirror, R.F.D.=radiofrequency dis-
charge, D.=diaphragm, \/2=half wave plate, \/4=quarter
wave plate.

drical Pyrex cell, 5 cm in external diameter and 5 cm
in external length. Cells are filled after a cleaning pro-
cedure: baking at 700 K under high vacuum for many
days, followed by microwave discharges with several gas
changes until only helium atomic lines are detected. In
our study, we use cells filled with pressure P=1.33 mbar
(low pressure regime), 8 mbar, 32 mbar, and 67 mbar
(high pressure regime) of pure helium-3.

An electrical discharge generated by radiofrequency high
voltage applied to external electrodes is used to populate
the 23S state and maintain a metastable atom density
n?, in the range 1019101 atoms/cm?, depending on the
applied voltage and the gas pressure. Experimentally,
aligning the radiofrequency electric field with the static
magnetic field provides a higher metastable density and
better OP results.

The OP laser is a DBR single mode laser diode (50 mW)
amplified using an ytterbium doped fiber amplifier (0.5
W) in the so-called MOPFA configuration (master oscil-
lator power fiber amplifier) allowing fine frequency tuning
and spectral width control [15]. The laser diode beam is
coupled into the single mode fiber using a combination of
two collimating lenses. The operational wavelength of the
laser diode can be tuned by temperature over the entire
structure of the lines of the metastable helium atoms. At
the entrance of the OP cell, the Gaussian transverse in-
tensity profile of the pump beam reaches a waist of 1.3 cm
(1.53 cm FWHM). Some experiments are performed us-
ing a circular diaphragm (1.5 cm diameter) to select the
central fraction of the beam. Others are performed with
the entire divergent pump beam (0.5 W) which matches
the spatial plasma distribution in the cell. The polariza-
tion of the pump beam is adjusted using combination of
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polarizing cube and quarter-wave retarding plate. The
pump beam is back-reflected to enhance its absorption
and collected by a photodiode to monitor its tuning to
atomic resonance.

The probe beam is provided by another single mode laser
diode. It is expanded, attenuated to provide a laser in-
tensity on the order of 1 W /cm?, and linearly polarized
perpendicularly to the magnetic field.

The absorption of the probe and the pump lasers are
measured using a modulation technique. The discharge
intensity is modulated at 133 Hz and the absorptions
are measured with lock-in amplifiers. The average values
of the transmitted probe and pump intensities are also
recorded. Laser sources and all the electronics remain
several meters away from the magnet bore in a low-field
region.

B. OP scheme at high field

The spectrum of helium-3 at 1.5 T over the infrared
transition 23S-23P is shown in Fig.2 for circularly polar-
ized light. The first four peaks on the left are observed

—AiO —2I0 0 20 40 ~60 80 100
E/h (GHz)

FIG. 2: Helium-3 spectrum over the 23S-23P transition at
1.5 T for circularly polarized light. The o— (top curve) and
o4+ (bottom curve) spectra are completely resolved. Efficient
OP is obtained on the fim, fap, fom or fop peaks. Doublets
of atomic lines D,, or D, are used for the measurement of the
nuclear polarization.

with o_ light and the others with oy light. At this
magnetic field value, the o4 and o_ spectra are com-
pletely resolved; this is very advantageous for OP as all
the stringent requirements on polarization purity of the
pumping light (encountered in low field [10, 16]) are elim-
inated. The most efficient transitions for pumping, in the
pressure and laser power domains that we have experi-
mentally explored (1-67 mbar and up to 125 mW/cm?),
are the four intense lines that we label fam, fom, fap
and fa,. The doublets labelled D,, or D, are used for



detection and measurement of the nuclear polarization,
when pumping on fi,, and fa, or fa,, and f4, respec-
tively as we explain in detail in the subsection IIC. In
Fig.3, we show the energetic positions of the 23S and 23P
sublevels, and transitions we use when pumping with o_
light on the f4,, or on the fa,, line. The six 233 sublevels
are grouped into three quasi-degenerate pairs (A 1,4 3),
(A3,A4), (A5,A6) corresponding respectively to elec-
tronic angular momentum projections my; = —1,0,1 in
the completely decoupled limit B — oco. The fam (fom)
line addresses four (two) transitions (full arrows in Fig.3)
which are not resolved due to room temperature Doppler
broadening in the vapor. Two other transitions (dashed
arrows in Fig.3) are addressed by the probe lasers and
are used to measure the nuclear polarization.
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40 40 :
§ :
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FIG. 3: Optical pumping schemes: fun, (left) and fon, (right).
Solid (dashed) arrows correspond to transitions addressed by
the pump (probe) laser. When we pump with o_ light on
four lines (fam), we probe with o_ light the pair of sublevels
(A5,A6). When we pump with o_ light on two lines (fom),
we probe with o light the pair of sublevels (A 1,4 2).

C. Stationary polarization measurements

In our experiments, we use an optical detection method
based on absorption measurements to determine quanti-
tatively the nuclear polarization. This absorption tech-
nique does not need any calibration and is reliable for
arbitrary magnetic field and pressure [13, 14, 17]. It re-
lies on the fact that in fast spin exchange conditions, and
in the absence of OP and important relaxation processes,
the relative populations of metastable sublevels a,, fol-
low a Boltzmann-like distribution in angular momentum:

e’ —1

Amp X efmr with M = Y

(1)
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where M is the nuclear polarization in the ground-state
and 1/0 is the spin temperature. The spin temperature
distribution for metastable helium sublevels populations
was explicitly verified in previous works [13, 17, 18]. An
example for our data is given in Fig.4; in the lower panel,
we show deviations of a measured absorption spectrum
from a calculation assuming spin temperature distribu-
tion, for Mgt ~ 0.5. In practice, to measure the nu-
clear polarization in stationary conditions we record the
probe absorption signal while sweeping the probe fre-
quency along two neighboring detection peaks. Peaks
amplitudes are precisely measured by a fit to a Gaus-
sian or Voigt absorption profile (according to the sample
pressure) and normalized to their M = 0 values in or-
der to eliminate constant factors. From the ratio of the
two amplitudes and using the field-dependent computed
transition probabilities, we deduce the population ratio
of the two probed hyperfine sublevels. We finally use
Eq.(1) to calculate the spin temperature and M.

In our OP configurations fy,, or fo,,, we probe the pop-
ulations of the two sublevels A5 and Ag, or A; and As
respectively (see Fig.3), so that in both configurations we
probe sublevels that (i) are not addressed by the pump
and (i) belong to the same quasi-degenerate pair of sub-
levels. An example of the influence of the pump laser on
the absorption spectrum is shown in the upper panel of
Fig.4.

0.5

0.4

Absorption
o o
N w

o
=
|

o
o
N

35 -30 -25 -20 -15 -10 -5 0 5
E/h (GHz)
1 L 1 L 1

Diff x 1000

~ O b
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FIG. 4: Top panel: Probe absorption signals recorded with
pump laser ON (dashed line) and OFF (solid line). The first
two peaks on the left are the D,, detection doublet used to
deduce nuclear polarization. Measurements are performed in
the 8 mbar cell with 0.25 W pump laser for fs4,, pumping
after reaching Mgtq: = 0.51. Bottom panel: residual plot
showing the difference between the solid line (top panel) and
a computed spin temperature distribution spectrum.

Although the absorption profile is considerably modified
(compare solid and thin lines in Fig.4), we verified that



the ratio of the probed populations remains unaffected;
it can thus be used to infer the polarization M even in
the presence of the pump laser. This experimental obser-
vations confirm the arguments detailed in [14]; metasta-
bility exchange collisions remain the dominant process
within each pair of quasi-degenerate metastable sublevels
with respect to other physical processes so that the ratio
of the intra-pair populations is still correctly described
by the spin temperature distribution.

D. Dynamic measurements

Due to OP, nuclear polarization builds-up in our sam-
ples in tens or hundreds of seconds. In the absence of the
pumping beam and in presence of the discharge, nuclear
polarization decays typically in thousands of seconds.

1. Build-up of the polarization

To monitor the build-up time of polarization we record
probe absorption as we scan back and forth the frequency
of the probe beam along a detection doublet (1 GHz/s).
The detection doublets D,,, or D, and the corresponding
transitions are illustrated in Figs.2 and 3. An example
of raw data is shown in Fig.5. The amplitudes of the

Absorption

250 500 750
time (s)

FIG. 5: Probe absorption signal when the laser frequency is
swept back and forth along the detection doublet D,, during
a polarization build-up. The envelope lines show the time-
evolution of the populations of the probed sublevels As and
As .

two detection peaks for the same time value are obtained
by linear interpolation, and the nuclear polarization at
that time is inferred as described in subsection IIC. An
example of result including the errors coming from the
interpolation procedure is shown in Fig.6. The obtained
function M(t) is non exponential. To extract a build-
up time and the polarization derivative at M = 0, we
fit the first part of the curve by an exponential of time
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FIG. 6: Top panel: Polarization build-up in the 8 mbar cell;
the pump laser is tuned on f4,, OP line and released at
t=100 s. Bottom panel: Errors coming from the interpola-
tion procedure in time described in the text.

constant t,, fixing the asymptote to the correct value
Miat, deduced from the tail of the curve or measured in
stationary conditions (see Fig.7). We have in this case
by construction:

dM Miar
() oy = @)
(M=0) b

0.14

stat

0.01 4

1E-3 4 T T
0 250 500 750

time (s)

FIG. 7: Non exponential build-up of the polarization. Squares
correspond to experimental data, the line corresponds to an
exponential fit to obtain t;, as explained in the text.
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Tk TABLE I: Stationary polarization Ms¢q+ and build-up time ¢,
e for the two OP lines and in the different discharge conditions
‘? 6 ‘,,,*' illustrated in Fig.8.
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X *
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vﬁ 4 B & fam fom
S 2 o é P |Th deen o, Mstat| to |Mstat| t
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c ® 8 428 7.2 0.41 | 31 [-0.62 | 84
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0 500 1000 1500 2000 2092 3.6 0.60 | 85 |-0.71 |118
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1490 2.5 0.35 |101|-0.49 |214
FIG. 8: Product n?n X Tigisch, as a function of the polariza- 1828 2.2 0.37 |218) -047 243
tion decay constant in the absence of pumping beam Tigisch - 67 | 1190 1.3 0.26 1195 -0.28 | 301
Triangles: 8 mbar, stars: 32 mbar, circles: 67 mbar. 1775 1.0 0.30 [277]-0.36 |364

2. Discharged induced decay

With the same technique, and in the absence of the
pumping beam, we monitor the decay of polarization in
the presence of the discharge. The observed decay is
exponential and we call Thgischn = 1/T1discn the corre-
sponding time constant.

III. EXPERIMENTAL RESULTS

We investigated systematically OP performances in the
fam and the f5,, schemes for different configurations of
radiofrequency discharge and pumping laser power.

A. Influence of the discharge intensity

Two global parameters are used to characterize the
discharge: the metastable atom density n¥, in the pump
beam measured at weak pump power and when the sam-
ple is not polarized (M = 0), and the nuclear polariza-
tion decay constant Tig4iscn. Ideally, we would like to
maximize the product n?nTldisch in order to have high
polarization production rate (proportional to n?,) and a
long relaxation time. We present the discharge parame-
ters that we typically obtain in the three pressure cells
in Fig.8. The weak discharge regime (that corresponds
to the longest T1gisch) maximizes the product n,(T),LTMiSCh
at all pressures. We were not able to obtain such long
Tidisch, in low magnetic field in the same cells. We re-
port the OP results (stationary polarization and build-
up time) in these discharges and for the two OP schemes
(fam and fo,,) in Table L

As the T14iscn increases for weak discharges, the sta-
tionary polarization increases and the build-up time gets

longer. Highest polarizations are obtained for the longest
Tdisch, we could obtain (on the order of 2000 s) and can
be as high as —0.7 at 8 mbar (fa,, OP) with a build-
up time on the order of 300 s. The polarization can
be further increased and the build-up time reduced by
increasing the pump laser power. The fa,, line gives sys-
tematically higher polarization results at these pressures,
contrarily to what we have observed at 1.33 mbar where
fam gives the best results.

B. Influence of the pump laser power

An example of the laser power dependence of results
is shown in Fig.9 for the fs,, OP line. We notice a clear
saturation in the shrinkage of the build-up times as the
power increases only for the 8 mbar cell. The satura-
tion of the build-up times is accompanied by a satura-
tion of the stationary polarization. A numerical calcula-
tion shows that this saturation is due to the fact that the
pumping light can effectively transfer population from
the pumped quasi-degenerate pairs to the other pairs of
sublevels [14]. A higher laser power would be necessary
to observe saturation, both in build-up times and sta-
tionary polarization, in higher pressure cells. For the
two higher pressure cells, we observed a different behav-
ior when pumping on the atomic line f4,,: a saturation of
the stationary polarization is observed while the build-up
times continue to shrink as the pumping laser power is
increased. This behavior is mainly related to additional
relaxation processes in the presence of the pump laser as
we discuss later on in the paper.
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FIG. 9: Stationary polarization (top panel) and polarization
build-up time (bottom panel) as a function of the incident
pump laser power when pumping on the fa,, line. Triangles:
8 mbar (Th4isch = 2092 s and nd, = 3.49 x 10'¢ at/mS), stars:
32 mbar (Thgisen = 1490 s and n'), = 2.47 x 10*® at/m®), cir-
cles: 67 mbar (Thgisch = 1090 s and nf, = 1.31 x 10 at/m?).

C. High field versus low field OP performances

We summarize the best results obtained in high field
and we compare them to standard low field OP results
in Fig.10. High field data are obtained with 0.5 W of
pumping laser power on the fo,, transition and low field
include results in the literature [9] and data that we ob-
tained in the same cells used for the experiments at 1.5 T
with a 2 W pump laser power [14]. A dramatic improve-
ment is obtained at high field for high pressure samples.
A more complete compilation of the results on the two
lines fo,, and fy,, is reported in Table II where results
in the literature of metastability exchange optical pump-
ing in standard low-field and low-pressure conditions are
listed for comparison. An important parameter for ap-
plications is the polarization production rate:

]\/[stat

R,=P . (3)
tp
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FIG. 10: Best results for stationary polarization versus the
gas pressure. Circles: 1.5 T data obtained with a fa,, OP,
stars: low field results of [9], triangles: low field data obtained
pumping on Cy line with 2 W in the same cells as for the 1.5 T
study.

As shown in Table II, interesting production rates can be
obtained with relatively small laser power.

IV. THEORY AND EXPERIMENT

In this section, we use the OP model developed in [14]
in the complete collisional redistribution limit in the 23P
state in order to interpret our results. Most of the input
parameters of the model namely the gas pressure, the
pump laser frequency and intensity, and the polarization
relaxation rate in the absence of pumping beam 1/T%4;sch
are experimentally measured. However, there are two
crucial parameters which we cannot measure directly
and which we deduce with the help of our theoretical
model. The first one is the metastable atom density
within the pump beam in OP conditions n,,. In order
to calculate n,, from an absorption measurement, one
has to know the population of the probed sublevel. In
the presence of the OP beam, the sublevels populations
differ from the spin temperature distribution but can be
calculated theoretically in each given OP condition. The
second parameter is the total polarization relaxation rate
during OP, in the presence of both the discharge and
the pumping beam. This rate is in general larger than
T'1 giseh by & quantity that we name I't jaser = 1/T11aser-

Our strategy consists in several steps. First, we deduce
Ny, using our model in order to reproduce the measured
pump laser absorption at M = 0, and M = Mga:. Sec-
ond, we compare the experimental and theoretical values
of the pumping rates at M = 0 and the photon efficiency
of our OP schemes. Finally, we compare the predicted
stationary polarization values to the experimentally mea-



TABLE II: Stationary polarization Mg¢a¢, build-up time tp
and production rate R, as a function of the gas pressure and
pumping power in cylindrical cells 5 cm x 5 cm. The results
refer to data in Fig.10.

line P |T1 dech | Piaser | Mstat| to | | Ra |
mbar| s W s |mbar/s

fam 8 2100 | 0.5 | 0.62 | 70 | 0.072
0.25 | 0.59 | 85 | 0.056

fam 32 1490 | 0.5 | 0.40 | 96 | 0.134

0.25 | 0.35 |100| 0.113
fam 67 | 1190 | 0.5 | 0.29 |117| 0.165
0.25 | 0.26 |203| 0.085
fom 8 2100 | 0.5 |-0.75|120| 0.051
0.25 |-0.71|118] 0.048
fom 32 | 1490 | 0.5 |-0.56|138| 0.131
0.25 |-0.49 |214| 0.074
fam 67 | 1190 | 0.5 |-0.37|180| 0.137
0.25 |-0.28 |300| 0.062

Co8]| 1 | 270 |0.05|050]40] 0.013
Co [16]] 1.33 | 400 | 1.1 | 056 |11 0.068
Co [9]] 1.33 ] 900 | 45 | 078 [6.5] 0.160
Co 8 | 448 | 2 Jo32]21]0.123

0.25 | 0.21 | 79 | 0.021
Co | 67 | 280 | 2 [o0.07|32] 0146

0.25 | 0.04 |130] 0.021

sured ones and we deduce the 1/T4s¢r values.

A. Determination of the metastable atom density

In Fig.11, we illustrate as a function of the incident
laser power, the values of n,, (bottom panel) deduced
with the help of our model from the measured pump
absorptions (top panel) in the 8 mbar cell. Compati-
ble values of n,, are obtained from the absorption of the
pump in the two OP schemes (fa, or fam). Notice that
n., increases with the pump laser power and is always
above the value n¥, measured at M = 0 using a weak
pump intensity (dashed line in Fig.11). A consistent in-
terpretation of such variation is obtained by plotting the
relative variation of n,, as a function of the electronic
orientation of the metastable atoms in the beam as illus-
trated in Fig.12. In this figure, results corresponding to
the three pressures are presented both for M = 0 and
M = Mjtqt and for the two OP lines fy,,, and fa,,. The
mean electronic orientation in the metastable state is cal-
culated from the metastable sublevel populations a;. In
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FIG. 11: 8 mbar cell, fam (squares) and fa,, (circles) OP.
Pump laser absorption in OP conditions (top panel) as a func-
tion of the incident pump laser power, and metastable atoms
density n,, deduced from our model in order to reproduce the
measured absorptions (bottom panel).

a high magnetic field:
(JZ) ~ —(a1 + a2) + (a5 + as) (4)

Note that even for M = 0 the metastable atoms within
the OP beam can have an important electronic orienta-
tion. The increase in metastable atom density with the
electronic polarization of the atoms can be interpreted as
a consequence of a partial inhibition of Penning ionizing
collisions in the sample [19, 20].

In a complementary experiment using another setup
where the pump and the probe beams are collinear and
spatially overlap in the cell, we verified directly the de-
pendence of n,, with respect to (J7) in the 8 mbar cell. In
Fig.13, we plot the relative variation of n,, for three dif-
ferent experimental situations. The first one is during a
discharge induced decay in the absence of pump laser (the
populations of the metastable sublevels are then given
by the spin temperature distribution and n,, is deduced
from the weak probe absorption). The second and third
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FIG. 12: Relative variation of n,, as a function of the elec-
tronic orientation of the metastable atoms in the beam. Data
correspond to 8 mbar (triangles), 32 mbar (stars) and 67 mbar
(circles) cells.
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FIG. 13: Relative variation of n,, with respect to the value
n?, measured for a weak pump and at M = 0, for three
experimental situations: during a discharge induced decay
(squares), and during polarization builds-up with Pigser =
3 mW (stars) and with Pgser = 250 mW (circles).

ones are during polarization builds-up for two different
pump laser intensities (here, we use the model to evaluate
the populations in the metastable sublevels and we infer
N, from the probe absorptions). The observed variation
in n,, is compatible with the one we have deduced from
pump laser absorptions. Thus, these measurements vali-
date the approach we used to determine the metastable
atom density.
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FIG. 14: Polarization pumping rate dM/dt at M = 0 as a
function of the pumping incident laser power for the two OP
lines fam or fom in the 8 mbar cell.

B. Pumping rate and photon efficiency

Using the metastable atom density deduced from pump

absorption measurements, we compare theoretical and
experimental results for the polarization pumping rates
at M = 0 and the photon efficiency of our pumping
schemes.
In Fig.14, we present for the 8 mbar cell the polarization
pumping rate (derivative) dM/dt at M = 0 as a function
of the pumping incident laser power for the two OP lines
fam or fom. Good agreement is obtained between theory
and experiment with no adjustable parameters. From
those data and from pump absorption results of Fig.11,
we can deduce the photon efficiency 1 defined as:

number of polarized atoms/s

~ number of absorbed photons/s

(®)

The photon efficiency can be estimated in a very sim-
ple way assuming a complete collisional redistribution in
the 23P state and that the relative population within
each quasi-degenerate pair (A4 1,4 2), (A3,44), (A5,456)
obey the spin temperature distribution. Let us consider
a fo, pumping. During one cycle of absorption followed
by spontaneous emission, one atom is transferred from
sublevel Ag or As, with equal probabilities if M = 0,



16
f ES
121 2m Py
g Héé
s 8 ft‘*
553 .
e 4 AT
] &
ol | |

R, (10" ph/s)

FIG. 15: Experimental and theoretical results for the photon
efficiency on the fa,, OP line. Data correspond to 8 mbar
(triangles), 32 mbar (stars) and 67 mbar (circles) cells.

towards any of the 6 sublevels of the metastable state
(again with equal probabilities). The net change in an-
gular momentum is (AF,) = —1. This angular momen-
tum is transferred to the vapor and it finally ends-up
in the ground-state polarizing two F = 1/2 atoms. We
then expect a photon efficiency approximately equals 2
for fo, pumping and 1 for f4,, pumping (using a similar
reasoning). Theoretical and experimental results for the
photon efficiency on the fa,, line are illustrated in Fig.15.
Full triangles are experimental data for the 8 mbar cell.
As we did not measure systematically pump absorption
at M = 0 for the other pressures, R, is experimentally
measured while R, is calculated using the OP model
under corresponding experimental conditions. The re-
sults for the photon efficiency for the two lines in the
8 mbar cell are summarized in Table III. These results

TABLE III: Experimental and theoretical values of photon
efficiency for the two OP lines in the 8 mbar cell.

exp th

n n
fom|1.96 £ 0.06(2.00 £ 0.03

f1m|0.74 £ 0.05[0.82 + 0.04

show that despite the important hyperfine decoupling at
1.5 T, and although many metastability exchange colli-
sions are required to transfer the angular momentum to
the ground-state, metastability exchange optical pump-
ing retains its high photon efficiency characteristics with
respect to standard low field results.
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FIG. 16: Experimental (full symbols) and theoretical (empty
symbols) values of Msq: in the 32 mbar cell as a function of
the incident laser power.

C. Stationary polarization and relaxation processes

The nuclear polarization achieved in stationary con-
ditions results from a balance between a source term
coming form metastability exchange collisions with po-
larized metastable atoms and relaxation [14]. In Fig.16
we compare, for the 32 mbar cell, the measured values
of Miqt to theoretical predictions. The relaxation taken
into account in the model is the one measured in the
absence of the pumping beam (Tygiscn). Experimental
values of stationary polarizations |Ms.t| are systemat-
ically lower than theoretical values for higher pressures
especially for f4,, OP meaning that additional relaxation
processes should be taken into account during the pump-
ing, i.e. in the presence of the OP beam. Similar results
are obtained for the 67 mbar cell while the disagreement
is less important in the 8 mbar cell. For the three pres-
sures, we computed the additional relaxation rate that
we should put in our model in order to recover the ex-
perimental results for the stationary polarizations. We
call I'yjqser this additional relaxation of polarization in
the presence of the OP beam. For all pressures, I'1jqser
increases as a function of the population in the 23P state
np. By forcing a linear dependence, we obtain the slopes
in the table IV which depend in general on the pumping
line fym or fo . In Fig.17, we plot I'ijgaser as a func-
tion of the population in the 23P state in the 32 mbar
pressure cell in which the most important relaxation was
measured. For comparison we show I'1j4s¢ in low field in
the same cell, where we used the low-field optical pump-
ing model [18] to infer I'yj4ser from the measured steady
state polarization. Both I'1jgser and I'igisen are largely
reduced (by approximately one order of magnitude) in
high magnetic field. It is precisely this reduction in re-
laxation which explains the spectacular improvement in
OP performances at high pressure shown in Fig.10.



TABLE IV: Slopes obtained from the linear fits of the relax-
ation rate I'1 j4ser as a function of the excited state population
npe.

f4 m f2 m
1077 571 /(at/m®)[10717 571 /(at/m?)
8 mbar 0.5 1.8
32 mbar 2.4 2.2
67 mbar 1.3
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FIG. 17: Additional relaxation rate I'ijqser as a function of
the population in the 2°P state np in the 32 mbar cell at high
(circles) low (stars) magnetic field. For high field we plotted
together results from the fs », and fo », lines. The horizontal
lines represent the discharge contribution to the polarization
relaxation rate I'igiscn. We assume in this figure that the
relaxation mechanism responsible for I'1j4se is active in the
entire volume of the cell.

In what follows we consider a possible interpretation
of the observed relaxation in terms of metastable helium
molecules. Three body processes involving two ground-
state atoms and an excited atom in the 23S or in the 23P
state can give rise to homonuclear metastable helium-
3 molecules in the a®%] or in the b’II} state respec-
tively [21, 22]. We argue that such molecules could per-
form metastability exchange collisions with ground-state
atoms and dissipate angular momentum in their external
degrees of freedom. The cross-section of the creation pro-
cess is almost 100 times higher from the 23P state [21, 22],
which could explain an increase of the population of
molecules, and of relaxation, in the presence of the pump-
ing laser. The angular momentum dissipation rate for
molecules T7°! and the metastability exchange collision
time with molecules 77%°! are not known for metastable

e
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helium. There are however two possible regimes to be
considered: a strong dissipation regime I'7*l70l > 1
and a weak dissipation where I'[*/77%! < 1. Assuming
that metastable molecules density is proportional to the
creation rate of molecules and inversely proportional to
the gas pressure (the lifetime of the molecules being lim-
ited by diffusion towards the cell walls), on gets for the
density of molecules n,,,; &< P? where P is the gas pres-
sure. In the strong dissipation case, where M*™°l ~ 0,
one then expects a relaxation rate proportional to P3. In
the weak dissipation case on the contrary M*™° ~ M
and the relaxation rate “brought back” to the ground-
state is proportional to F}”’”lnmol/ ng which shows a lin-
ear dependence on pressure (if we assume I'[*! o 1/P
[23]). The fact that we observed a reduction of relax-
ation at high field (figure 17) together with the rather
weak pressure dependence of our relaxation rates I'yjqser
(table IV), seems to exclude the strong dissipation regime
and indicate that TP is modified in high field. Al-
though this scenario is suggestive, a direct measurement
of metastable molecules and the determination of their
density in each case would be necessary to validate all the
hypothesis. Measurements in different magnetic fields
would then possibly allow an experimental determination
of I'"°! and quantify the effect of hyperfine decoupling in
molecular states in high field.

V. CONCLUSIONS

We have presented a systematical investigation of a
new scheme for metastability exchange optical pumping
in a high magnetic field which allows to obtain impor-
tant nuclear polarization at pressures which are almost
two orders of magnitude higher than those usually em-
ployed in traditional low-field metastability exchange op-
tical pumping. For three pressure cell: 8, 32 and 67
mbar, stationary polarization and pumping rates were
measured for different parameters of the discharge and
pumping field intensity on fy,, and fo,,,: the two lines
of the o~ spectrum which were identified to be the most
efficient at high field. A quantum efficiency of approx-
imately 1 for f;,, and of approximately 2 for f,,, was
demonstrated in good agreement with the predictions of
our high-field optical pumping model. Using the model
we could also prove that the large improvement in the
obtained polarization at high pressure with respect to
low field is due to a substantial reduction in the relax-
ation rates both in the absence and in the presence of
the optical pumping laser. An interpretation of this fact
based on the formation of metastable helium molecules
is sketched.
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Chapitre 6

Perspectives et projets

Dans ce dernier chapitre je décris brievement des suites possibles aux travaux exposés
dans ce mémoire et j’expose quelques orientations futures de mes recherches, spécialement
dans la section sur les gaz dégénérés.

Les numéros entre crochets font référence a la liste de mes publications, disponible en
fin de document.

6.1 Optique quantique : de la compression de la lumiere
a celle des spins

L’intrication entre atomes et photons et la possibilité de transférer des corrélations
quantiques d’un champ a I’autre sont au cceur de plusieurs idées centrales du traitement
quantique de l'information comme par exemple celle de “mémoire quantique”.

Il serait intéressant dans cette optique de revisiter certains schémas de génération
d’états comprimés et de mesures QND du champ électromagnétique, dans le but cette
fois de controler les fluctuations quantiques du champ atomique ainsi que les corrélations
entre le champ atomique et champ électromagnétique. Pour donner un exemple, le schéma
de deux champs pres des conditions de piégeage cohérent de population décrit dans ce
mémoire [25], a été trés récemment proposé indépendamment par le groupe d’optique
quantique de Michel Pinard et Elisabeth Giacobino, dans le cas particulier de deux champs
d’intensité égale en cavité, pour produire des états comprimés de spin'.

En ce qui concerne l'utilisation des spins nucléaires de I’hélium 3 comme mémoire
quantique a longue durée de vie, je vois deux voies possibles de développement.

Nous avons analysé assez en détail la possibilité de se servir de I’état métastable 235
et de transférer les corrélations quantiques de la lumiere aux spins nucléaires grace a
I’effet conjoint de l'interaction laser-atomes et des collisions d’échange de métastabilité.
Si 'on voulait continuer dans cette direction, une vérification expérimentale s’imposerait
notamment pour valider notre description des collisions d’échange de métastabilité, dont
la validité (bien qu’elle paraisse raisonnable et cohérente) n’a pas été démontrée par
un traitement rigoureux de la physique a plusieurs corps des collisions d’échange. Dans
ce but on pourrait par exemple mesurer le spectre de bruit des atomes métastables, par
I'intermédiaire de mesures de bruit sur un champ laser comme dans ’expérience de Polzik?
pour différentes concentrations d’atomes fondamentaux et comparer a nos prédictions
(équations (20) et (21) dans [24]).

LA. Dantan, J. Cviklinski, E. Giacobino, M. Pinard, Phys. Rev. Lett. 97 (2006) 023605.
2B. Julsgaard, A. Kozhekin, E.S. Polzik, Nature 413, 400 (2001).
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La mise en ceuvre d'une expérience de mémoire quantique sur une vapeur d’hélium
selon le schéma que nous avons proposé parait faisable et avait été en effet considérée par
le groupe d’optique quantique du LKB Jussieu. Pour les premiers essais de transfert de
corrélations quantiques de la lumiere aux atomes et inversement, on pourrait initialement
utiliser de la lumiere ayant du bruit dépendant de la quadrature, ce qui ne nécessite pas
le développement d’une source de lumiere comprimée.

Un autre volet intéressant a explorer, consiste en la manipulation des spins nucléaires
au niveau quantique par RMN (Résonance Magnétique Nucléaire). Cette vois offrirait
l’avantage de ne pas nécessiter une décharge (potentielle source de bruit) ni un plasma
pour peupler I’état métastable. Un spin macroscopique polarisé devrait avoir une com-
posante transverse de nature quantique susceptible de donner un signal RMN. Si I'on
arrivait & avoir la sensibilité pour détecter un tel signal (qui croit en /N avec le nombre
d’atomes), ce qui constituerait la toute premiere étape d’un tel projet, on pourrait imagi-
ner différents schémas pour mettre en ceuvre une rétroaction® pour manipuler et réduire le
bruit quantique du spin. On peut aussi se demander si, au moyen de courants électriques
et bobines (en utilisant le signal de détection provenant d’un échantillon comme input
pour créer un champ magnétique vu par le deuxieme échantillon) on ne pourrait pas créer
des corrélations quantiques entre deux spins macroscopiques séparés.

6.2 (Gaz dégénerés : production d’états non classiques
du champ atomique

Onze ans apres leur obtention en laboratoire, les condensats de Bose-Einstein gazeux
sont devenus un “outil” précieux pour de nombreuses expériences bénéficiant d’une source
d’atomes ultrafroids et denses. L’utilisation des condensats en métrologie, en physique non
linéaire, ou encore pour réaliser des modeles de la matiere condensée est a présent 1'objet
d’un travail de recherche tres actif.

Ce qui m’intéresse particulierement est d’utiliser des condensats de Bose-Einstein pour
la production d’états quantiques non triviaux; pour l'investigation des frontieres entre le
monde quantique et le monde classique ainsi que pour le traitement quantique de l'in-
formation. C’est bien dans cette direction que je vais orienter mes recherches futures.
J’entends mener une activité théorique et j’espere entamer au méme temps une collabo-
ration fructueuse avec le groupe expérimental “Microcircuits a atomes” dirigé par Jakob
Reichel.

6.2.1 Compression de spin avec les condensats de Bose-Einstein

Un premier theme sur lequel je vais travailler est la dynamique de spin des condensats
de Bose-Einstein a 2 composantes dans le but de produire des états fortement comprimés

3Voir par exemple J.M. Geremia, J.K. Stockton, H. Mabuchi Science 304, 270 (2004).
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de spin*. Il a été montré théoriquement® et expérimentalement® que la sensibilité des
horloges atomiques est fondamentalement limitée par le bruit quantique de I’état atomique
utilisé, qui a son origine dans la non commutativité des trois composantes du spin S selon
trois directions orthogonales m;, ns, ng. Pour définir les états comprimés de spin’ on
introduit un parametre de squeezing

- NAS,%1
N AN (6:3)

qui est directement lié a la sensibilité maximale que I'on peut obtenir dans une mesure
de “spectroscopie de population” (franges de Ramsey pour les horloges atomiques) d'une
part®, et a l'intrication dans le systéme d’autre part?. Pour les états comprimés de spin
€2 < 1. En 2001 il a été proposé d’utiliser la non linéarité intrinseque du champ atomique
pour produire des état intriqués et fortement comprimés de spin (£2 ~ 1073 avec N = 10°
atomes) avec des condensats de Bose-Einstein!®. Dans cet article les auteurs proposent
d’utiliser I’atome de sodium.

Avec Jakob Reichel et Li Yun, qui démarre sa these sur ce sujet, nous nous proposons
d’analyser la faisabilité d’une expérience de compression de spin avec un condensat de
rubidium. Le rubidium est 1’élément le plus courant dans les expérience de condensats et
aussi un bon candidat pour les horloges atomiques.

Si I'on veut limiter la sensibilité aux fluctuations de champ magnétique, il y a deux
choix possibles d’états internes. Le premier choix est celui des états |FF=1,mp = —1) et
|F' = 2,mp = 1) piegeables magnétiquement. Ce choix impose la contrainte (ou l’avan-
tage) de devoir séparer les deux composantes de spin pendant un temps d’interaction
bien choisi car la symétrie particuliere des interactions entre atomes dans ces états fait
que la dynamique de spin est quasiment “gelée” lorsque les deux composantes sont super-
posées. Le deuxieme choix, plus compliqué a mettre en ceuvre, consiste a utiliser les états
|F=1,mp=1)et |F =2 mp=—1), qu'il faut piéger optiquement, et pour lesquels il y
a une résonance de Feshbach a bas champ qui permet de changer la force de I'interaction
entre especes.

En 1999 j’ai déja étudié la dynamique de phase (c’est-a-dire la dynamique du spin
moyen (S,)) en tenant compte de (i) la dynamique spatiale des condensats dans le régime
de gros condensats ou le mode du condensat dépend du nombre d’atomes via le potentiel
de champ moyen, (i7) les fluctuations du nombre total de particules et (iii) V'effet des
pertes de particules. Avec Yvan Castin, suite a des expérience faites au JILA, nous avons

411 s’agit du spin collectif (observable & 1 corps) obtenu en faisant la somme des spins 1/2 de chaque
atome. Par exemple pour S, en premiere quantification

Se = _(la)(bli + [b){al;)/2 (6.1)

K2

ou |a) et |b) sont deux états orthogonaux & une particule, par exemple 2 états internes différents. En
deuxieme quantification

S, = (a'b+bla)/2. (6.2)

°D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A, 50, 67 (1994).

6G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A.G. Mann, S. Chang, A.N. Luiten, C. Salomon,
Phys. Rev. Lett. 82, 4619 (1 999).

M. Kitagawa, M. Ueda Phys. Rev. A 47, 5138 (1993).

8D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A, 50, 67 (1994).

9A. Sorensen, K. Molmer, Phys. Rev. Lett. 86, 4431 (2001).

1A, Sorensen, L.-M. Duan, J.I.Cirac, P.Zoller, Nature, 404, 63 (2001).
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développé une méthode pour étudier ce systeme numériquement et, dans certains cas,
analytiquement [11]. Tl parait donc naturel d’étendre ces études aux fluctuations du spin
c’est-a-dire a la compression de spin, avec une attention particuliere a ce qui peut étre
réalisé expérimentalement dans I’équipe Microcircuits a atomes.

6.2.2 Décohérence a température non nulle

Un effet que nous avions négligé a I’époque dans notre étude sur la cohérence de
phase, et qui pourrait expliquer le désaccord entre la prédiction théorique du temps de
cohérence et I'expérience du JILA, est la présence d’une fraction d’atomes non condensés.
Le probleme de la cohérence d'un condensat de Bose-Einstein a température non nulle
est par ailleurs un probleme fondamental et intéressant en soi, qui n’a pas encore été bien
exploré expérimentalement.

Effet de la température sur la cohérence de phase d’un condensat

Avec Emilia Witkowska que j’ai eu la possibilité d’accueillir & Paris pendant 5 mois,
avec un contrat européen QuFAR, nous avons commencé le programme d’étude de la
dynamique de phase a température non nulle.

Notre premier objectif simple est de déterminer le temps au bout duquel la phase accu-
mulée par un condensat a I’équilibre thermique est brouillée, en fonction de la température
du gaz. Nous voulons aussi savoir si la phase du condensat “diffuse” (variance qui croit
linéairement en temps), comme prédit dans la littérature avec des modeles inspirés par
I'optique quantique!!, ou si elle présente une autre dépendance temporelle'?. La stratégie
que nous utilisons est d’une part un calcul analytique basé sur la théorie “Number conser-
ving” de Castin et Dum, d’autre part des simulations de champ classique [17], [18], [20].

A terme, apres une premiere étude fondamentale et “théorique” pour un condensat
homogene a 'équilibre, nous voulons analyser des situation plus réalistes sur des conden-
sats a deux composantes, mélant donc les effet de la température aux effet de brouillage
de phase, ou dynamique de spin, et éventuellement de dynamique spatiale.

Limites ultimes de la compression de spin

Une analyse a température nulle suggere qu’avec les condensats on peut réduire le
parametre de squeezing d’un facteur proportionnel & N=2/% ott N est le nombre d’atomes.
Toutefois, d’un point de vue fondamental mais aussi pratique, il est important d’établir les
limitations ultimes du spin squeezing que 1’on peut obtenir avec les condensats découlant
du fait que le gaz n’est pas a température nulle.

Un premier travail a été fait par Sorensen!® dans I'approximation de Bogoliubov. IIs
serait a mon avis intéressant de vérifier numériquement ses résultats et d’essayer d’aller
au dela de Bogoliubov en incluant les interactions entres modes de Bogoliubov (comme
les processus de Beliaev-Landau) pour avoir une prédiction fiable aux temps longs.

Petits condensats et chats de Schrodinger

Un régime différent mais non moins intéressant, concerne des petits condensats dans
lesquels le nombre de particules perdues pendant la durée de 'expérience est inférieur

1D, Jaksch, C. W. Gardiner, K. M. Gheri, P. Zoller, Phys. Rev. A 58, 1450 (1998) ; R. Graham Phys.
Rev. Lett. 81, 5262 (2001); R. Graham, Phys. Rev. A 62, 023609 (2000).

12A B. Kuklov, J.L. Birman, Phys. Rev. A 63, 013609 (2001).

13A. Sorensen, Phys. Rev. A, 65, 043610 (2002).
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a un. Comme nous ’avons vu dans ce mémoire, deux condensats qui sont initialement
préparés dans un état de phase relative bien définie, voient aux cours du temps leur phase
relative s’étaler a cause des interactions entre atomes qui constituent une non linéarité
pour le champ atomique. L’effet de la non linéarité uni a la nature discrete de I’observable
“nombre d’atomes” donne lieu comme nous I’avons vu a des brouillages et résurgences de la
phase relative. On peut facilement montrer qu’a 'instant médian entre deux résurgences
de phase, le systeme se trouve dans une superposition de deux états de phase relative
opposée, donc dans un état de type chat de Schrédinger'®. Nous avons montré la grande
sensibilité de ces états aux pertes de particules [8] et on s’attend a ce quune température
de lordre de hw/kp ot w/27 est la fréquence d’oscillation des atomes dans leur piege,
soit suffisante pour les détruire.

6.3 Suite des expérience de pompage optique en champ
fort

Le projet de pompage optique a fort champ se poursuit a Cracovie dans le groupe de
Tomasz Dohnalik en collaboration avec Pierre-Jean Nacher et Genevieve Tastevin. Les
attrait de cette “suite” sont la possibilité de varier la valeur du champ de zéro a 2 Tesla
et de tester des nouvelles cellules de diametre plus faible, ce qui devrait mieux localiser le
plasma dans le centre du faisceau pompe. Avec Marie Abboud pendant deux séjours de
quelques semaines a Cracovie en 2004 et 2005, nous avons aidé a démarrer ce projet qui,
nous l'espérons, donnera des résultats bientot.

Si je devais continuer dans ce projet dont pour moi I'intérét est avant tout pratique, je
serais tentée, a des fins de démonstration, d’explorer les limites ultimes de la méthode sur
des cellules de pression plus élevée. Il faudrait alors prévoir un laser pompe plus puissant
que celui de 0.5 W avec lequel tous nos résultats a forte pression ont été obtenus (et qui
est maintenant & Cracovie). Par exemple un laser de 5 W comme celui que notre groupe
emploie habituellement pour du pompage optique “traditionnel” a faible pression. En
effet, nos résultats expérimentaux et théoriques montrent que pour la cellule a 50 torr (67
mbar) nous sommes déja limités en puissance pour le taux de production d’aimantation
et pour la polarisation stationnaire. Toujours dans la méme lignée, Xavier Maitre du
Laboratoire U2R2M, a le projet de construire un prototype de polariseur a fort champ.

14Voir par exemple Y. Castin, Lecture Notes of Les Houches Summer School 1999, cond-mat/0105058.
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