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The understanding of electron transport in metals has improved continu-
ously since Drude's model was established in 1900. The advent of quantum
mechanics has clari�ed the microscopic model of charge transport, and amaz-
ing e�ects were predicted and observed experimentally. Characteristic length
scales for a conductor were determined to draw a zoology of the behavior of
electrons in metals, among them the phase coherence length Lϕ, which sets
the maximal distance on which electrons may be considered as quantum coher-
ent particles [1, 2]. This length has been probed in experiments in which the
conductance of a metallic conductor depends on electron interference e�ects.

In this work, we address three modern questions on electron transport
in mesoscopic conductors and present conclusive experiments for each one of
them.

What is the rate of energy exchange between electrons in a
metal ?

The understanding of the mechanisms which limit the extension of phase
coherence is a central issue in mesoscopic physics. The largest part of this
work deals with the quantitative investigation of the processes limiting the
phase coherence length Lϕ. In particular, we investigate Coulomb electron-
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electron interactions in weakly disordered metallic wires, and the complex
interplay between electrons and magnetic impurities at a small concentra-
tion, in the Kondo regime.

In conductors of length shorter than Lϕ, it was proposed by Landauer as
early as 1957 that electrons could be described as waves propagating through
the conductor [3, 4]. Due to the quantization of the electronic wave vector, the
number M of modes participating to the transport is given by the product
M = k2

F S where kF is the Fermi wave vector and S is the cross-section
area. Transport through short conductors is therefore determined by an M ×
M matrix, whose eigenvalues squared τi are called the transmissions of the
independent conducting channels. The celebrated Landauer-Büttiker relation
expresses the conductance G in terms of the sum of all transmissions τi:

G = 2GK

M∑

i=1

τi (1.1)

where GK = e2/h is the quantum of conductance, and the factor 2 takes
into account spin degeneracy. The full power of Landauer formalism has been
widely exploited in systems with a few channels, mostly in two dimensional
electron gases where it predicts the transport properties of the edge states
in the Quantum Hall e�ect, or of electrons through quantum point contacts
as proven by beautiful experiments on conductance and noise [5, 6, 7, 8]. In
metals, this formalism was used to predict current noise properties in wires
and atomic contacts[9, 10, 11], and more recently to predict Josephson e�ects
in weak links between superconductors systems. While the current noise has
been measured in wires and atomic contacts [12, 13, 14], the predictions on
Josephson e�ects based on Landauer formalism have never been thoroughly
investigated.

What is the current-phase relation for a weak link between two
superconductors ?

In 1962, Josephson predicted that if the phase di�erence δ between the
two superconductors connected through a weak link is �xed, a dissipationless
supercurrent �ows [15, 16]. In the 1990's, the amplitude of this supercurrent
was expressed in terms of the set of transmissions, or Personal Identifying
Number (PIN), of the short weak link [17, 18, 19, 20]. Despite its central
importance for mesoscopic superconductivity, this relation was never thor-
oughly investigated. We present in the second part of this paper experiments
started in collaboration with Martin Chauvin [21] which test this prediction
quantitatively.

Is the non-Gaussian part of the current noise in mesoscopic
conductors detectable with a Josephson junction ?

In 1993, Levitov et al. showed that the generating function of the mo-
ments of the current �uctuations through a mesoscopic conductor can be
calculated [22]. One of the particular outcome of this calculation is the non-



1.1 Interactions between electrons in metals 3

Gaussian part of the current noise. On the experimental side, only very few
measurements of this non-Gaussian characteristics have been performed,
and most of them focus on the third moment of the current noise only
[23, 24, 25, 26]. In the third part of this work, we investigate the possibility
to measure properties of the non-Gaussian part of the current noise using a
Josephson junction acting as a threshold detector, as proposed by Tobiska
and Nazarov [27].

1.1 Interactions between electrons in metals
1.1.1 Theoretical and experimental status before this work

Weakly disordered metals with weak interactions

The simplest picture of electrons in metals is the independent electron gas
in a periodic lattice, in which electrons are described by Bloch states. How-
ever, interactions make the independent electron picture inadequate. Indeed,
as all electrons interact strongly, the dynamics of a single electron is a many
body problem. Landau proposed the following elegant solution to that ques-
tion in the middle of the 20th century [28]. By branching adiabatically the
interactions between electrons in a Gedanken experiment, each Bloch elec-
tronic eigenstate evolves continuously into a new eigenstate of the interacting
many body system. Thus, electrons are mapped onto new particles which are
nearly independent and form a Fermi liquid. Each of these quasi-particles can
be seen as an electron dressed by a screening cloud of other electrons, which
screens the Coulomb interaction1 over a very small distance, of the order of
the Fermi wavelength λF . In the following of this article, "electron" always
means quasi-particle.

Actually, in real conductors, electrons do not solely interact one with an-
other but also feel the disorder introduced by �nite size and defects in the
periodic lattice like grain boundaries or vacancies. The Fermi liquid theory
can be extended to the case of disordered metals. In a three dimensional
metal, disorder is characterized by the average distance traveled by an elec-
tron between two elastic scattering events. This length, called the mean free
path le, is related to the di�usion constant D of the electrons by the Einstein
relation D = vF le/3 where vF is the velocity of the electrons at the Fermi
level.

Of course, this picture has some limits. If le becomes as small as λF , the
conductor enters in the Anderson localization regime and becomes an insulator
1 The Coulomb interaction between two electrons at a distance R in vacuum is

U(R) = e2

4πε0R
. In a metal, the approximation of Thomas-Fermi [29] gives U(R) =

e2

4πε0R
e−κsR where the inverse screening length κs is given by κ2

s = e2νF /ε0 with
νF the density of states per volume for both spin directions. In copper, for exam-
ple, κs ≈ 1.5kF .
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[30]. In this work, we consider the case of good conductors (kF le À 1), which
is valid for most thin �lms and bulk metals. Besides, the Fermi liquid picture
is valid for a particular range of interactions. For interactions much stronger
than the kinetic energy, quasi-particles do not form a Fermi liquid but more
complex states like the Wigner crystal [31]. However, such strong interactions
are not observed in three dimensional metals, and the experiments presented
in this paper can be understood within the Fermi liquid theory.

Phase coherence time and interactions between electrons

The intensity of the interactions between electrons and their environment
is characterized by the average distance Lϕ traveled by an electron at the
Fermi level before changing its quantum state, all other electrons being at
equilibrium. In a given state, the quantum phase of the electron increases
linearly in time. A change in quantum state can be seen as an abrupt change
in the phase. For this reason, Lϕ is called the phase coherence length and
τϕ = L2

ϕ/D the phase coherence time. In 1982, Altshuler and Aronov, using
a diagrammatic theory, predicted the in�uence on τϕ of electron-electron and
electron-phonon interactions [1, 2]. According to this theory, in disordered
metallic wires, electron-phonon coupling prevails at temperature T & 1 K,
whereas at T . 1 K, electron-electron interaction is the main dephasing pro-
cess. Besides, τϕ diverges at T = 0 as does the electron lifetime in the Fermi
liquid theory. Each process contributes to a di�erent temperature dependence
of τϕ, and this behavior has been con�rmed experimentally for the �rst time
in 1986 by Prober et al. [32] through Weak Localization experiments (WL).

However, in 1997, Mohanty et al. reported WL experiments performed at
lower temperatures (down to tens of mK), in which an apparent saturation of
τϕ was observed [33] in contradiction with the theory of Altshuler and Aronov.
This saturation caused a strong controversy as the question was raised wether
the existing theory was properly describing electron-electron interactions at
low energies.

In parallel, a new type of experiments based on tunneling spectroscopy
(called in the following Relax experiments because they probe the energy
relaxation of electrons) was developed and used in the Quantronics group for
the measurement of the energy distribution function of electrons in voltage-
biased di�usive wires [34]. The higher the voltage bias, the more energetic
the electrons. The redistribution of the energy between electrons, probed at
di�erent bias voltages, contains then information on the inter-electron energy
exchange rates [35, 36]. Only in the samples obtained from sources of the
purest metals did this experiment con�rm the predicted dependence of the
intensity of Coulomb interaction on the exchanged energy. In all other cases,
the intensity depends on the exchanged energy in a di�erent way.
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Magnetic impurities modify the interactions between electrons
A few years later, Kaminski and Glazman proposed [37] an explanation for
this behavior based on the presence of a tiny concentration of magnetic im-
purities. At �rst order, the interactions between an electron and an impurity
spin cannot exchange any energy (at zero magnetic �eld). Yet, the second or-
der process by which two electrons interact with the same impurity spin can
redistribute energy between electrons and lead qualitatively to the observed
behavior. Yet, the rate of such a process would be much too small without
the Kondo e�ect. Kondo discovered that the coupling between a local mag-
netic moment and the Fermi liquid is resonant at an energy kBTK , where the
Kondo temperature TK depends on material properties only [38]. Kaminski
and Glazman suggested that the presence of a tiny concentration of mag-
netic impurities with the appropriate Kondo temperature could explain the
Relax experiments [37]. Later on, Göppert et al. have derived a quantitative
expression for the intensity of electron-electron interactions mediated by mag-
netic impurities in a �nite magnetic �eld [39]. In 2003, experiments in which
the magnetic �eld dependence of the anomalous interaction was investigated
con�rmed that magnetic impurities were playing a major role [40, 41].

WL experiments [42, 43] showed also that the presence of magnetic impu-
rities, at a very small concentration, could result in an apparent saturation of
τϕ similar to that observed by Mohanty et al.. Such a situation occurs when
the Kondo temperature of the magnetic impurities in the host metal lies in
the investigated sub-Kelvin temperature range.

At the beginning of this work, two issues on electron-electron interactions
had yet to be clari�ed. The �rst one was a discrepancy between the predicted
and the measured values of the intensity of Coulomb interaction in di�usive
wires. The second one was the quantitative understanding of the in�uence of
magnetic impurities on the energy exchange between electrons.

1.1.2 Intensity of Coulomb interaction
In the Altshuler-Aronov theory, the rate of energy exchange between electrons
due to Coulomb interaction in di�usive metallic wires is entirely described by
a parameter κ that depends on material and geometric properties only

κ =
(
π
√

2D~3/2νF Se

)−1

(1.2)

where νF is the density of states for both spin directions and Se is the cross-
section of the wire. Relax experiments give an indirect measurement of κ.
Besides, the temperature dependence of τϕ can also be predicted from the
knowledge of κ only. Therefore, both Relax and WL experiments give access
to κ.

It is noticeable that the parameters κ deduced from WL experiments are
much closer to the theoretical values than those deduced from Relax experi-
ments (see Fig. 1.1). Possible explanations for this discrepancy are investigated
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Fig. 1.1. Comparison of the measured value of κ with the theoretical prediction,
for several WL experiments (¥) and Relax experiments (◦) on di�erent wires (all
but one were already discussed in [36, 41]). If one assumes that a small amount of
magnetic impurities can be present in the metal, this extra �t parameter can allow
to lower the �t values of κ down to the bottom of the lines below the symbols.

in this work (section 3.4.3). In particular, we performed a new experiment
to explore the hypothesis that the theory of Altshuler and Aronov may not
apply to an out-of-thermodynamic-equilibrium Fermi liquid. This experiment
allows measurements of energy exchange between electrons in a situation close
to thermodynamic equilibrium. We show that the measured interaction pa-
rameter κ is the same as in the standard setup with a larger departure from
equilibrium. At this point, no satisfactory answer exists about the disagree-
ment on the actual intensity of Coulomb interactions between electrons.

1.1.3 E�ect of magnetic impurities on energy exchange between
electrons

As stated above, work by Anthore et al. showed in 2003 that the unexpected
energy exchange rates observed in dirtier metals could be explained by as-
suming the presence of magnetic impurities [40, 41]. However, a quantitative
measurement of the rates of energy exchange between electrons induced by
magnetic impurities had not been performed.

In order to perform such a test, two pure Ag wires were fabricated alto-
gether on the same wafer. Then, only one of them was implanted with Mn
atoms (which are magnetic) at a concentration of 0.65 ppm (parts per million).
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Fig. 1.2. Di�erential conductance dI/dV (V ) of the tunnel junction for the bare
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Finally a tunnel junction in series with a long resistive Al wire was fabricated
on both wires to perform the spectroscopy of the distribution function in the
Ag wire.

First, the tunnel junction was not used and WL measurements were per-
formed. The temperature dependence of τϕ(T ) exhibited a di�erent behavior
in both wires. Both behaviors were in good agreement with a theory using
the amount of added Mn atoms in one of the wires. Then, in order to access
the energy exchange rates, we performed Relax experiments at �nite mag-
netic �eld. The tunneling conductance measurements are plotted on Fig. 1.2
for various magnetic �elds and bias voltages U across each wire. In order to
compare the measurements with the predictions using the inelastic processes
involving magnetic impurities, three steps were followed.
• We start from the distribution function f in the wire computed using

Coulomb interaction between electrons only.
• From the theory by Göppert et al. [39] we calculated the energy exchange

rates between electrons in presence of magnetic impurities at a �nite mag-
netic �eld using f . For each sample, we used the magnetic impurity concen-
tration deduced from the WL experiments. We then used the Boltzmann
equation [34] to recalculate the distribution function f in the wire from the
theoretical rates of the di�erent energy exchange mechanisms. We iterated
this self-consistent calculation until f converges.

• The tunnel conductance was then calculated using the theory of dynamical
Coulomb blockade as in Ref. [40].

Using the intensity of Coulomb interaction κ as the only �t parameter, we
obtain the curves shown on Fig. 1.2. These experiments show that the rate
of energy exchange between electrons in presence of magnetic impurities is
quantitatively understood. However, as in all Relax experiments shown in
Fig. 1.1, the theory underestimates the value of κ, in this case by a factor 3.

1.2 Josephson e�ect through a short coherent conductor

Superconductivity arises when an attractive interaction between electrons
leads to the formation of bosons (the Cooper pairs) falling all in the same
ground state. This ground state is de�ned by a complex parameter ∆eiϕ

where ϕ is the phase of the superconductor. The Josephson e�ect develops
when two superconductors are coupled through a weak link: in 1962, Joseph-
son predicted that if the phase di�erence δ between the two superconductors
is �xed, a dissipationless supercurrent �ows [15, 16]. Besides, he predicted
that when a constant bias voltage V is applied between two superconductors,
an oscillating supercurrent develops at a frequency ν = V/φ0, where φ0 = h

2e
is the �ux quantum. This e�ect was �rst observed in a tunnel junction by
Shapiro in 1963 [44].
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In the 1990's, a new theoretical approach was built to tackle the Josephson
e�ect in two superconductors coupled through coherent conductors shorter
than the extension of the Cooper pairs ξ =

√
~D/∆ [17, 18, 19, 20]. This

approach is based both on the Landauer formalism and on the fundamental
mechanism of Andreev re�ection, a process by which electrons get re�ected
as holes (and vice versa) in superconductors. Within this picture, the super-
current is carried through two states per channel, localized in the conductor.
These so-called Andreev bound states have an energy lying inside the super-
conducting gap, and given by

E±(δ) = ±∆
√

1− τ sin2(δ/2) (1.3)
where τ is the transmission of the channel. At zero temperature, the system
is in the ground state |τ−〉 and the supercurrent �owing through the channel
is proportional to the derivative of E−(δ) at the phase di�erence δ between
the superconductors:

IT=0(δ) =
2π

φ0

∂E−
∂δ

=
e∆
2~

τ sin δ√
1− τ sin2(δ/2)

. (1.4)

Starting from this expression for the supercurrent in one channel, the super-
current can be predicted analytically in any short coherent conductor whose
PIN is known, by summing the currents in each channel independently.

In order to test this central prediction of the modern theory of the Joseph-
son e�ect, we have performed experiments using atomic contacts. Atomic
contacts are perfect devices for that purpose, since they carry a few channels
whose transmissions can be altered and measured in situ [45, 46]. More im-
portantly, their highly non linear I-V characteristics2 allows to measure their
PIN [47].

Before the beginning of this work, several experiments that take advantage
of these model systems had been performed in the Quantronics group. In
particular, the existence of multiple charge transfer processes was evidenced
through shot noise measurements [14, 48]. There have been also experiments
on the supercurrent peaks which can be explained by the Andreev bound
states dynamics [49, 48]. Furthermore, the fractional Shapiro steps predicted
by the theory for highly transmitted channels could be observed [50, 21].

The experiment discussed in this work, and initiated by M. Chauvin, was
designed to directly measure the current-phase relation I(δ) of an atomic
contact, for which the PIN {τi} is known [21]. This requires also to measure
the I-V characteristics. However, measuring both I(δ) and I(V ) on the same
contact without changing it at the atomic level is challenging. Phase biasing
an atomic contact requires to enclose it in a superconducting loop threaded by
a magnetic �eld, while such a loop forbids voltage biasing because the contact
is then shunted. In the experiment, an electrically controllable switch was
implemented with a big tunnel junction in the loop (Fig. 1.3). This Josephson
2 In case of superconducting electrodes only, due to multiple Andreev re�ections.
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Fig. 1.3. Scheme of the atomic contact experiment. A superconducting loop encloses
the atomic contact and a Josephson junction. The junction is biased by a current
source Ib and the voltage V across is monitored.

junction can sustain a dissipationless current at zero voltage as long as the
current is smaller than a so-called critical current I0 (at zero temperature),
allowing hence for a phase bias of the atomic contact. Ideally, as soon as
the current increases beyond I0, the junction "switches" and a �nite voltage
develops. By measuring the switching current Isw

b as a function of the magnetic
�eld in the loop, one directly measures the I(δ) relation, only shifted by a
constant current. Moreover, at �nite voltages V below twice the gap ∆ of the
superconductor, the tunnel junction acts ideally as an open circuit, thus the
current is just that of the atomic contact alone.
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Fig. 1.4. Dots: Measured switching current Isw
b depending on the reduced �ux

ϕ = φ/φ0 in the loop for two atomic contacts denoted by AC1 and AC2. Data
have been shifted from their average value 〈Isw

b 〉 which corresponds to the switching
current of the Josephson junction alone. Grayed bands: Theoretical prediction for
the same current at �nite temperature using current-phase relation Eq. (1.4) with
the PIN {τi} deduced from the I-V characteristics (see Fig. 5.23). The width of the
band comes from the uncertainty in the measurement of the PIN. The PIN of AC1
is {τi} = {0.62 ± 0.01; 0.12 ± 0.015; 0.115 ± 0.01; 0.11 ± 0.01; 0.11 ± 0.01} and for
AC2, {τi} = {0.957± 0.01; 0.185± 0.05}.
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In the experiment, various contacts were measured with as few as one sin-
gle channel with transmission as high as 0.992. A good agreement with the
theoretical prediction for I(δ) was obtained (see Fig. 1.4). Yet, a �nite dis-
crepancy between theory and experiment remains. We discuss the possibility
to explain this discrepancy by an excitation of the Andreev bound states. In
a complementary experiment, we performed a measurement of the Josephson
inductance as a function of δ, which could be compared quantitatively to the
second derivative of the ground state spectrum Eq. (1.3). This whole set of
data strongly supports the general theory of the Josephson e�ect [51].

1.3 Asymmetric current �uctuations

In another set of experiments, we focused on the detection of the non-Gaussian
character of the electrical noise in mesoscopic conductors. The most common
type of noise in electrical devices, called Johnson-Nyquist noise, is due to
thermal �uctuations. Its characteristic properties are its frequency spectrum3

and a Gaussian distribution of the current values. When a current �ows in
a conductor, the granularity of electrical current provides a source for an-
other type of noise, called shot noise4, with an intensity and a behavior in
frequency that depend on the speci�c conductor. For decades, experiments
and theory concentrated on the second moment of current �uctuations only
(see [52] for a review on the �urry of theoretical and experimental works).
In 1993, a seminal theory paper by Levitov and Lesovik [22] demonstrated
the possibility to calculate all moments of current �uctuations analytically.
In mesoscopic conductors, cumulants of higher order than 2 are �nite and
current �uctuations are not Gaussian. This theory also proved e�cient in the
calculation of the second moment of the current �uctuations in some systems
where a standard perturbative approach fails (e.g. [53]). In 2001, Nazarov and
Belzig, using Keldysh techniques, derived a general formula for the full count-
ing statistics of any coherent conductor [54] based on Landauer formalism. In
the mean time, Nagaev et al. developed a semiclassical method to calculate
the frequency dependence of all moments of current noise even in the case
where coherence is lost due to electron-electron interactions [55, 56].

Although the body of theoretical works on Full Counting Statistics is large,
experiments in which signatures of non-Gaussian current �uctuations are evi-
denced are still extremely rare, and they have only focused on the existence of
a third cumulant [23, 24], except in circuits where current is due to sequential

3 The spectrum depends on the frequency ω as

S(ω) =
4

R
~ω(1− e−~ω/kBT )−1.

4 Proportional to the electrical current.
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tunneling [25, 26]. Theoretically, a few set-ups have been proposed and ana-
lyzed. One of them considered the use of a Josephson junction as a current
threshold detector. Using threshold detectors could let one have access to sta-
tistical quantities for the current �uctuations which have never been observed,
like the statistics of the extreme values of the �uctuations, or even the full
distribution of the current �uctuations [27, 57]. Though in a regime di�er-
ent to that discussed in [27], we performed a preliminary experiment with a
Josephson junction as a threshold detector (see Fig. 1.5). Our experiment was
designed to test the feasibility of such noise measurements with a Josephson
junction. Therefore, a tunnel junction was chosen as the noisy mesoscopic de-
vice. The noise through a tunnel junction is well known, and can be used to
calibrate this detector.

The Josephson junction acts, in a sense, as a fuse similarly to what it does
in the experiment on atomic contacts. Indeed, if the current in the junction
exceeds a given threshold of the order of the critical current I0, a �nite voltage
develops across the junction and remains till the junction is reset by lowering
again the current down to zero. During a pulse in the bias current Ib, large
enough current �uctuations δIm have the current in the junction exceed that
threshold, and a �nite voltage V develops. Doing the statistics of the switching
events depending on the height of the pulses sI0, one measures the statistics
of the amplitude of the �uctuations δIm.

It is well known that the presence of a resistive environment at su�ciently
high temperature changes the switching rate because of Johnson-Nyquist noise
(see Ref. [58] for a review). In presence of an arbitrary noise, one can de�ne
the escape temperature Tesc as the temperature that an ohmic environment
with the same resistance Renv should have in an ideal experiment to reproduce
the actual switching rate at best. In our experiment, the �rst order e�ect of
the current �uctuations is then to increase the escape temperature Tesc when
the voltage V increases. This increase can be understood by considering only
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the shot noise through the tunnel junction. Neglecting the Johnson-Nyquist
noise due to thermal �uctuations of the current, one has by de�nition of Tesc:

4kBTesc

Renv
≈ 2e〈Im〉. (1.5)

We observe clearly such a behavior in our experiment, thus proving that
Josephson junctions can probe current noise, as was also found by Pekola
et al. in another regime [59].

Besides, as the current �uctuations are produced by a tunnel junction,
the statistics of δIm is not Gaussian5 and has a �nite third order moment
〈δI3

m〉. Therefore, the current distribution is asymmetric. In case of a tunnel
junction, large positive (in the same direction as 〈Im〉) current �uctuations
occur more often than large negative ones6. This asymmetry in the current
�uctuations should yield in an asymmetry in the switching probabilities of
the Josephson junction for opposite values of Ib. More precisely, the switching
rates Γ+ during positive pulses of Ib should be higher than the switching rates
Γ− during negative pulses of the same amplitude.

Such an asymmetry in the switching rates is observed in the experiment.
In order to be quantitative, we measured the relative di�erence RΓ between
the switching rates Γ+ and Γ− for various values of the average current 〈Im〉,
of the pulse height and of the temperature. Our experiment shows that, as
the current 〈Im〉 departs from zero, the asymmetry RΓ in the rates increases
monotonously starting from zero.

In this work, we present these results in great details. We also discuss
preliminary comparison to a theory developed by Joachim Ankerhold [60] and
to numerical simulations performed by one of our colleagues, Xavier Waintal.

In the near future, other mesoscopic devices could be probed with this
method, in order to get more physical insight on the correlations between
charge carriers.

5 It is exactly a Poisson distribution.
6 On the opposite, small positive �uctuations occur more rarely than small negative
ones.
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In a typical metal, electrons scatter elastically on defects, performing a
di�usive motion. An external voltage gradient induces an average drift of the
electrons on top of this di�usive motion. Within a classical scheme, where
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electrons are just particles whose speed and position are well de�ned, the av-
erage conductance of a metallic conductor is given by the Drude value. Yet,
quantum physics attributes to the electrons also a wave-like behavior, so that
a single electron, which has a specially extended wave function, can interfere
with itself after multiple scattering events. Such interferences modify slightly
the Drude result for the average conductance. In the simplest case, we will see
that interferences decrease the conductance from its classical value, so that
this e�ect is called the weak localization e�ect. As quantum interferences are
essential to this phenomenon, weak localization depends strongly on the time
τϕ after which electrons lose some information needed to interfere: their phase
coherence. The loss of coherence, as any information exchange in quantum
physics, results from a coupling to dynamic degrees of freedom. In particular,
τϕ is limited by the interactions between electrons and phonons, magnetic im-
purities, or more simply among electrons. Each of these interaction processes
limits τϕ in a manner which depends di�erently on temperature T , so that it
is possible to identify the interaction rate of each process from the dependence
of τϕ on temperature. Knowing what determines the rates of those interaction
is the key to controlling the extent of coherence in nanostructures.

In a �rst part, we introduce the tools needed to describe the e�ect of weak
localization. Along the way, fundamental quantities are de�ned to characterize
quantum coherence in a metal. For a more formal and comprehensive review,
the reader should refer to Ref. [61]. In a second part, we present a set of
experiments which illustrate the role of each dynamic degree of freedom on
phase coherence. In the experiment, samples were designed to investigate both
their role on phase coherence and energy exchange between electrons (Relax
experiments, see § 3).

2.1 Weak Localization

2.1.1 Di�uson and Cooperon

The general formalism used to deal with phase-coherence in disordered metals
was introduced in the 1980's by Al'tshuler, Aronov and Khmelnitsky [2, 1].
In this formalism, electrons are Fermi quasi-particles and scatter elastically
on defects, grain boundaries or metal edges. It applies to metals verifying two
conditions: weak disorder (Fermi wavelength λF much smaller than the mean
free path le [30]) and not too strong interactions (interactions between quasi-
particles much weaker than the kinetic energy). Weak localization comes from
a quantum correction to the probability1 Z(t) for an electron to return to its

1 The normalization of this probability is not obvious. Using the probability
P (r, r′, t) to go from r to r′ in a time t, whose normalization is given byR

P (r, r′, t)dr′ = 1, Z(t) is de�ned by ΩZ(t) =
R

P (r, r, t)dr where Ω is the
volume of the system.
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original position at time t. This return probability is the sum of the contri-
butions of all possible loops followed by electrons in a time t. If the electron
were a classical particle, Z(t) would just be the sum of the probabilities for
each loop C to be traveled in a time t. Because electrons are quantum objects,
this is not true, and instead the probability amplitudes2 AC of each path C
must be summed before taking the square. Finally,

Z(t) = |∑C AC |2 =
∑
C′,C ACA∗C′ =

∑

C
ACA∗C

︸ ︷︷ ︸
+

∑

C′ 6=C
ACA∗C′

︸ ︷︷ ︸
Zd(t) Zc(t)

(2.1)

where the sum extends over all possible paths starting and ending at the same
point after time t. Obviously, Z(t) is the sum of two terms of very di�erent
nature. The �rst one Zd(t), called the Di�uson, corresponds to the classical
contribution to Z(t), which is just the sum of the probabilities ACA∗C of each
path C. The second one Zc(t), called the Cooperon, corresponds to interfer-
ences between di�erent paths. Each particular interference term ACA∗C′ has a
phase given by the product of the Fermi wavevector kF by the length di�er-
ence between both paths C and C′. There are various strategies to take into
account disorder when calculating Z(t). One of these considers that scattering
events are possible on a �nite set of points {r1, . . . , rN} with no particular
symmetry, each path C being identi�ed by the ordered list of its q scattering
events, its starting, and its ending points C =

(
r, rp1 , . . . , rpq , r′). Since Z(t)

is the probability for going back to the same position after a time t averaged
on all starting points r = r′, most of the terms in Zc(t) die out by disorder
averaging, that is by taking the average value on all r. Indeed, depending on r,
the length `C of a path C =

(
r, rp1 , . . . , rpq , r

)
varies on a much bigger scale

than the Fermi wave length λF . And since, for any paths C and C′, ACA∗C′ is
proportional to a phase term eikF (`C−`C′ ), the only terms in Z(t) which do not
average out to zero are those for which `C = `C′ whatever the value of r. Given
a path C, only two paths C′ satisfy this condition: the path C itself, which en-
ters in the Di�uson, and its time-reversal symmetric, meaning the path C gone
along in reverse order, which enters in the Cooperon. In the following, we will
denote a generic closed path C by ª and its time-reversed symmetric by © (see
Fig. 2.1). In absence of magnetic �eld, spin-orbit scattering and interactions
between electrons, the Cooperon is equal to the Di�uson:

Zc(t) =
∑
ª
AªA∗© =

∑
ª
AªA∗ª = Zd(t) (2.2)

In a di�usive metal of dimensionality3 d and di�usion constant D, assum-
ing that the volume Ω of the system is big enough so that side e�ects are
negligible, one gets
2 Formal de�nitions for these quantities exist through Green functions,see [61].
3 The e�ective dimensionality depends on the energies ε (times t) considered. For
a di�usive metal with di�usive constant D, dimensions of length L are called
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r

rp1

ª
r

rp1

©

rpq rpq

Fig. 2.1. Interfering paths followed by an electron. Each elastic scattering event
is represented as a cross and results in a change of momentum. Formally, ª=�
r, rp1 , . . . , rpq , r

�
and ©=

�
r, rpq , . . . , rp1 , r

�
.

Zd(t) =
1

(4πDt)d/2
. (2.3)

In the d = 1 case,
LZd(t) =

( τD

4πt

)1/2

(2.4)

where τD = L2/D is the time needed to di�use across the whole conductor.
In our experiments on 40 µm-long silver wires, τD ≈ 80 ns.

2.1.2 Basic weak localization e�ect

The conductance is proportional to the probability to go from one end of a
conductor to the other [2, 61]. This probability reads P = |∑C AC |2 where
C can be any path across the conductor. Similarly to the calculation of Z(t),
terms ACA∗C′ vanish by disorder averaging as soon as paths C and C′ di�er
by more than λF . Since, for most paths C, no other path C′ exists with the
same length whatever the position of the starting point is, terms AC

∑
C′ A∗C′

reduce to the classical probabilities ACA∗C . This is why, the total probability
is approximately the sum of classical terms

P ≈
∑

C
ACA∗C . (2.5)

Through the Kubo formula, the Drude formula for conductivity σ0 = e2νF D
can be derived within this approximation, where νF is the density of states
per volume unit for both spin directions at the Fermi level.

e�ective only if ε > ETh (~/t > ETh), where ETh = ~D/L2 is the Thouless
energy relative to this dimension (see section 3.4.1 for more details). Thus, d = 1
does not mean real one-dimensional systems of section λ2

F , for which Luttinger
liquids theory must be used instead.
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©

C ′

ª

C

Fig. 2.2. Path C is said to contain a quantum crossing when two non successive
scattering events are much closer than the mean free path le. Thus, for any con�g-
uration of disorder, C has about the same length than another path in which the
loop ª is traveled in reverse order ©.

In order to go further, and calculate quantum corrections to Drude for-
mula, the so-called weak4 localization corrections, one needs to identify which
terms have been neglected in the sum. It turns out that all paths containing
quantum crossings (see Fig. 2.2) have a non-classical contribution to P. Con-
sidering the path C of Fig. 2.2, the sum AC

∑
C′′ A∗C′′ does not reduce to the

Drude contribution ACA∗C alone, because the term ACA∗C′ does not vanish by
disorder averaging. One gets

〈
AC

∑

C′′
A∗C′′

〉
= 〈ACA∗C〉+ 〈ACA∗C′〉 . (2.6)

For any path C containing a quantum crossing one can de�ne a loop ª such
as in Fig. 2.2. If this loop takes a time t to be traveled, all paths obtained by
replacing ª by another loop taking the same time t interfere with C. Therefore,
the total probability P can be calculated through the return probability Z(t).
One shows that in a non interacting metal without spin-orbit coupling, this
weak localization correction, given by the probability for a path to contain a
quantum crossing, reads

σ − σ0

σ0
= − 1

π~νF

∫ +∞

τe

Zc(t)dt (2.7)

with τe = le/vF the characteristic time interval between two elastic collisions.
The cuto� at small times is due to the fact that the di�usion approximation
is meaningless in the ballistic regime where t < τe, as the probability for an
electron to be re�ected back to its departure point in a time shorter than τe

is zero.

4 as opposed to the strong localization regime where the metal is insulating (see
1.1.1)
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Till now, we have only considered the simplest case where the terms ACA∗C′
depend only on the phase di�erence kF (`C − `C′). In fact, this assumption
requires that no external process can modify the phase of AC during trans-
port. The next section will show how, in real metals, such processes limit the
Cooperon drastically.

2.1.3 Coupling to dynamic degrees of freedom: phase coherence
time

Along their trajectory, electrons can interact with phonons, electrons or other
dynamic degrees of freedom. The Cooperon Zc(t) gets modi�ed by those pro-
cesses. Indeed, an electron undergoing such a process on a path ª almost
never su�ers it in the exact same conditions on the reverse path ©. Thus,
both trajectories ª and © do not interfere anymore. Assuming that these
events are uncorrelated, Zc(t) decreases exponentially with time5.

Zc(t) ¾ Zc(t)e−t/τϕ (2.8)

where the time τϕ is called the phase coherence time. Hence, assuming τϕ À
τe, the weak localization correction becomes

σ − σ0

σ0
= − 1

π~νF

∫ +∞

τe

Zc(t)e−t/τϕdt (2.9)

In a �nite length system, the return probability Zc(t) can be calculated by
assuming that electrons coming into the leads never come back, and that those
hitting an edge are re�ected. In a quasi-one dimensional wire of length L, one
can show that this results in a correction to the conductance G = σSe/L [62]

G−G0 = −2
Lϕ

LRK

(
coth

(
L

Lϕ

)
− Lϕ

L

)
(2.10)

where Lϕ =
√

Dτϕ is the phase coherence length and RK = h/e2 is the
resistance quantum. In the case where L À Lϕ, this reduces to G − G0 ∼
−2Lϕ/LRK .

As emphasized in section 1.1, the determination of Lϕ is crucial. Mea-
suring the quantum correction to the average conductance presents several
advantaged to probe this length: it is sensible to any value of the phase coher-
ence length, does not require any particular geometry for the conductor and
depends on a few �t parameters. In the following, we will �rst present impor-
tant corrections to the simple expression of the conductance (2.10), and then
show how the magnetoresistance exhibits in a very simple way this quantum
correction.
5 We will see later that this assumption is too strong, but the resulting exponential
law remains a good approximation in our experiments.
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2.1.4 Spin-orbit coupling

As electrons move with a velocity v in the static potential U(r) due to the
ion lattice, they feel an e�ective electrostatic �eld E = −∇U(r)/e, to which is
also associated a magnetic �eld B = −v×E/c2 (where c is the light velocity),
that acts on their spin. Therefore, the Hamiltonian contains a term −µBB.σ
which depends on the position and velocity operators, where µB = e~/2me

is the Bohr magneton and σ is the vector formed by the Pauli matrices. This
term rotates the electron spin and results, for a trajectory ª, in a rotation
matrix Rª

t at time t which depends only on the path ª. Hence, terms in Z(t)

s0

st

ª st

s0

©

Fig. 2.3. Interfering paths followed by an electron starting in spin state s0 at time
0 and ending in spin state st at time t.

become spin-dependent. As Di�uson terms are interferences AªA∗ª between
two identical paths, spin-orbit has the same e�ect on both paths and the
Di�uson is not a�ected by spin-orbit coupling. However, the time-reversed
trajectories of the Cooperon are a�ected by di�erent spin factors. Given initial
spin s0 and �nal spin st for the electrons (see Fig. 2.3), each amplitude Aª
is multiplied by a factor 〈s0|Rª

t |st〉. Eventually, Zc(t) is modi�ed by a global
factor

Zc(t) ¾ Zc(t)Qso(t) (2.11)
where

Qso(t) =
∑
st∈±

〈s0|R©
t |st〉∗〈s0|Rª

t |st〉 =
∑
st∈±

〈st|Rª
t |s0〉〈s0|Rª

t |st〉 (2.12)

and where · · · denotes the average on all paths ª. One can show [63, 64] that
the average on all possible rotation axes of Rt reads Rt = e−

t
6τso

σ2
where τso is

the so-called spin-orbit time and σ the spin operator. In the tensorial product
of the spin state spaces, any spin state |sª〉 ⊗ |s©〉 can be written in terms of
the singlet |T0〉 and triplet states |T1〉,|T2〉 and |T3〉 (which are eigenstates of
the spin operator σª + σ©)using the closure relation
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3∑

i=0

|Ti〉〈Ti| = 1

Hence,

Qso(t) =
∑
st∈±

3∑

i=0

〈st| ⊗ 〈s0|Ti〉〈Ti|e−
t

6τso
(σª+σ©)2 |Ti〉〈Ti|s0〉 ⊗ |st〉 (2.13)

Finally, using Eqs. (A.1-A.4) (see Appendix), di�erent contributions to the
factor Qso(t) exist depending if it is in the singlet state or in the triplet state,
and one gets

Qso(t) =
3
2
e−4t/3τso

︸ ︷︷ ︸
−1

2︸︷︷︸
Triplet Singlet

(2.14)

Is spin-orbit really important for weak-localization experiments ?

As expressed by Eq. (2.9), the phase coherence time τϕ acts as a cuto� in the
integral on the Cooperon (2.7) expressing in the weak localization correction.
If τso À τϕ, the spin-orbit correction Qso(t) is of order 1 and has no e�ect. In
the opposite limit, spin-orbit has a strong e�ect on weak localization as soon
as τso - τϕ, and in the limit where τso ¿ τϕ, Qso(t) ≈ −1/2. In the later case,
one talks about weak anti-localization as the sign of the correction is reversed.
It has long been argued that spin-orbit e�ects can always be neglected in light

Material Z number τso τe/Z
4α4

(ps) (ps)
silver (Ag) 47 10− 50 3
copper (Cu) 29 20− 40 20
gold (Au) 79 0.5 0.3

Table 2.1. Spin orbit times τso extracted from weak localization measurements
in [43, 65]. Simple theory [66] for evaluating τso gives almost the right order of
magnitude.

metals. Indeed, spin-orbit rate 1/τso increases roughly as

1/τso = Z4α4/τe (2.15)

with the atomic number Z, where α = e2

4πε0c~ ≈ 1/137 is the �ne structure
constant[66, 67]. But, even for light metals, τso eventually becomes smaller
than τϕ, because τϕ diverges at low temperatures. In our experiments τso is
always smaller than τϕ, and we observe weak anti-localization.
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2.1.5 Magnetoresistance: a direct way of measuring the weak
localization e�ect.

The Cooperon is strongly a�ected by an external uniform magnetic �eld B.
The Hamiltonian takes into account this �eld through a shift of the electron
momentum p ¾ p−eA where A is the vector potential. Therefore, the phase
acquired6 on a loop ª is φ(B, ª) = −e/~

∫
ª Adr = −eB.Sª/~, where Sª is

the oriented surface enclosed by the loop ª. Thus, in the Cooperon, terms
in A∗©Aª are a�ected by a factor e2iφ(B,ª). Finally, the only terms in the
Cooperon Zc(t) which do not average out to zero are those for which φ(B, ª)
is small compared to 1. This dephasing introduces a new length in the system:
the characteristic length of the longest loops contributing to the Cooperon,
LB =

√
~/eB.

It turns out that this dephasing process can be taken into account in the
same way as the coupling to dynamic degrees of freedom, and one just has
to replace Lϕ by a new length that combines Lϕ and LB . For example, in
quasi-one dimensional wires of section Se,

1
L2

ϕ

¾ 1
L2

ϕ

+
Se

3L4
B

. (2.16)
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Fig. 2.4. Theoretical magnetoresistance curves using Eq. (2.17) for a 40 µm long
wire with section Se = 230 × 40 nm2 and di�usion constant D = 200 cm2s−1. Left
panel: Assuming a spin-orbit time τso = 8 ps, each curve corresponds to a di�erent
Lϕ going from 1 to 4 µm from light to dark. Right panel: Assuming Lϕ = 3 µm,
each curve corresponds to a di�erent spin-orbit time τso going through 0.5, 8 and
25 ps from light to dark.

Finally, using Eqs. (2.10),(2.14), and (2.16), the magnetoresistance of a
di�usive wire of length L reads

6 We neglect the curvature of electronic paths due to the Lorentz force. This is
equivalent to assume that the cyclotron frequency ωc = eB/m is such that le ¿
vF /ωc. In metallic thin �lms, the mean free path le is about 50 nm, and this
condition, equivalent to B ¿ 100 T, is always ful�lled in practice.
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∆R

R
≡ R(B)−R(B = ∞)

R(B = ∞)
=

R

RK

(
3ξ(Λ(T)(B))− ξ(Λ(S)(B))

)
(2.17)

with ξ(x) = x coth(1/x)−x2, Λ(T) and Λ(S) the triplet and singlet normalized
lengths describing weak localization given by

Λ(T)(B) = 1
L

(
1�

L
(T)
ϕ

�2 + 4
3L2

so
+ Se

3L4
B

)−1/2

Λ(S)(B) = 1
L

(
1�

L
(S)
ϕ

�2 + Se

3L4
B

)−1/2 (2.18)

where L
(T,S)
ϕ =

√
Dτ

(T,S)
ϕ are the phase coherence lengths in the triplet (T)

and singlet (S) channels, and Lso =
√

Dτso the spin-orbit length.
In the noble metal we investigate in this work, τso ∼ 10 ps is always much

smaller than τ
(T)
ϕ by orders of magnitude (as will be proven in section 2.2.1).

Therefore, only the singlet term τ
(S)
ϕ can be accessed in the magnetoresistance

and we will call it τϕ in the following, except for particular notices. The
objective is now to measure this phase coherence times τϕ.

2.1.6 Magnetoresistance measurements

In this section, we illustrate the above general picture on magnetoresistance
measurements we have performed on two silver wires, and show how to extract
the phase coherence time from them. These experiments will be described in

Wire Length L Width w Thickness t Resistance R Di�. const. D
(µm) (nm) (nm) (Ω) (cm2s−1)

bare 40.3 237 42 53.4 287
implanted 38.9 230 42 55.9 273

Table 2.2. Geometrical and electrical characteristics of the wires investigated in
[43, 65].

more details in section 3.4.6 where Ref. [65] is reproduced. The two silver
wires di�er only by the addition of a known amount (0.65 ppm) of Mn atoms
(see section 8.4 for technical details) in one of them, called implanted in the
following, the other one being called bare. These wires were designed in such a
way that both the phase coherence time and the rate of energy exchange be-
tween electrons can be measured (see chapter 3). For this reason, the length of
the wires was not chosen very long compared to the maximal phase coherence
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length expected at low temperature, as is usually the case for weak localiza-
tion experiments. In the following, we �rst describe the di�culties inherent to
the measurement of τϕ in such short wires.

Measuring weak localization in short wires

The biggest trouble coming from the short length of the wires (L . Lϕ)
comes from another mesoscopic e�ect than weak localization: conductance
�uctuations. As seen on the experimental curves on Fig. 2.7 and 2.8, the
measured magnetoresistance shows strong �uctuations. Only part of those
�uctuations is noise: most features are reproducible and even in magnetic
�eld. They are due to interferences of electronic paths which are modi�ed by
magnetic �eld [68] and are a unique signature of the disorder potential. In the
limit L À LT =

√
~D/kBT , the variance of the conductance �uctuations is

given by [61]

(δG)2 ≡ G2 −G
2

= 2π
3R2

K
(LT /L)2 [2ξ(L(S)

ϕ /L)︸ ︷︷ ︸ + 3ξ(Λ(T)(B))− ξ(Λ(S)(B))︸ ︷︷ ︸]
Diffuson Cooperon

.

(2.19)
Therefore, the signal to �uctuations ratio ∆R/R2δG of the weak localization
dip grows like L2 and for short wires like in our experiment, this ratio can be
of order 1 (see Fig. 2.5). Besides, the magnetic �eld scale of the correlations
of these �uctuations is about the width of the weak localization dip, and
both phenomena cannot be treated separately. Therefore, the precision of the
determination of τϕ in short wires is not as good as in experiments on longer
wires.

Another modi�cation to the standard picture of magnetoresistance in long
wires is described by the �nite length formula Eq. (2.17), which had to be used
instead of the approximation ξ(x) ≈ x. In fact, in Ref. [65], we had taken for
�nite length correction the following expression:

∆RRef. [65]

R
=

R

RK

(
L

(S)
ϕ

L
ξ(L(S)

ϕ /L)

)(
3Λ(T)(B)− Λ(S)(B)

)
(2.20)

instead of Eq. (2.17). This led to a slight underestimation (compare Fig. 3.26
with Fig. 2.9)of both τso and the phase coherence time. In the following, we
use the correct formula (2.17).

Determination of the spin-orbit time

In the analysis of the magnetoresistance measurements, we �rst determine
the spin-orbit time τso, since it is expected to be identical for both wires. We
proceed as follows: for various values of τso, we calculate the best �t of all the
magnetoresistance curves taken at 1 K < T < 6 K, in order to be insensitive
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Fig. 2.5. Prediction for the characteristic window for the conductance �uctuations
(width 2δR = R2δG), using the geometrical parameters of the two wires (bare and
implanted) and assuming that τϕ sticks to its theoretical prediction given later in
Eq. (2.48) with the parameters given in Ref. [65].

to conductance �uctuations (Fig. 2.5). The �t parameters are the resistance
R and the coherence length Lϕ. For each magnetoresistance curve, we then
calculate the sum of the squared di�erence between experiment and theory.
A global estimation is obtained by calculating an average V ar(τso) on all the
resulting curves, each one normalized to its minimum value (see Fig. 2.6). We
take for τso the value that minimizes7 this global variance: τso ≈ 10 ± 1 ps.
The value given in Ref. [65], τso ≈ 8 ps, slightly di�ers from that one because
a slightly di�erent procedure was followed.

7 The error bar is estimated from the distribution of the variance curves.
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Fig. 2.6. Variance of the di�erence between experimental and theoretical magne-
toresistance curves depending on the spin-orbit time τso. The best �t is around
τso = 10 ps for both wires.

Extraction of the phase coherence time

The best �t curves obtained with τso = 10 ps are shown on Fig. 2.7 and
2.8. The corresponding values of τϕ(T ) are plotted on Fig. 2.9. The highest
phase coherence time τϕ is approximatively 10 ns. It means that at the lowest
temperatures, electrons travel on a typical length of 15 µm without phase
decoherence. This clari�es the order of magnitude one might expect for the
maximal length of a coherent metallic conductor. The signal to noise ratio
(due to a longer acquisition time) is worse for the implanted wire than for the
bare wire, so that the symmetry of the conductance �uctuations by magnetic
�eld reversal is clear for the bare wire only.

Furthermore, Fig. 2.9 shows that the two wires have di�erent phase co-
herence times at low temperature. Since the only di�erence between them
is the presence of 0.65 ppm of Mn atoms in the implanted wire, this curve
proves that magnetic impurities can lead to a dramatic increase of phase de-
coherence. It is noteworthy that less than 1 ppm of magnetic impurities can
have such an e�ect, especially knowing that the highest guaranteed purity
of commercial metal sources is 1 ppm of impurities (altogether magnetic or
not). In the next section, we will show how the coupling between electrons
and dynamical degrees of freedom a�ects the phase coherence time τϕ. Us-
ing Coulomb interactions between electrons, electron-phonon interactions and
electron-magnetic impurity interaction, we will see how we can account for the
data shown on Fig. 2.9.
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Fig. 2.7. Magnetoresistance (thin lines) of the bare wire (left column) and im-
planted wire (right column) for 20 mK < T < 0.5 K. Thick grayed lines are plotted
using theory of weak localization Eq. (2.17) with τso = 10 ps and using τϕ as a �t
parameter.
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Fig. 2.8.Magnetoresistance (thin lines) of the bare wire (left column) and implanted
wire (right column) for 0.5 K < T < 7 K. Thick grayed lines are plotted using theory
of weak localization Eq. (2.17) with τso = 10 ps and using τϕ as a �t parameter.
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Fig. 2.9. Phase coherence times measured in each wire as a function of temperature.
Black dots correspond to the bare wire and Grey dots to the implanted one. The
addition of manganese impurities has signi�cantly reduced the phase coherence time.

2.2 Phase coherence time limitations due to interactions
In this section, we review the limitations of τϕ due to interactions between
electrons and their environment. To each channel (singlet or triplet) and to
each dephasing process "dp" can be attributed a rate 1/τ

(dp)
ϕ contributing to

the Cooperon Zc(t) along Eq. (2.8), so that all processes together modify the
Cooperon by8

Zc(t) ¾ Zc(t)
∏

dp

e−t/τ (dp)
ϕ = Zc(t)e−t(

P
dp 1/τ(dp)

ϕ ) ≡ Zc(t)e−t(1/τϕ) (2.21)

Phase coherence time abides by a Matthiessen rule: the inverse phase coher-
ence time 1/τϕ is the sum of the decoherence rates attributed to each process.
In the following, we derive the expression of dephasing rates for electron-
electron Coulomb interaction, electron-phonon interaction and electron-magnetic
impurity interaction.

2.2.1 Coulomb interaction

Let us �rst consider only the dephasing by Coulomb interaction between elec-
trons. We will not enter into great details here, but instead outline the main
steps of the calculation of the Coulomb dephasing. For further references, see
[2, 36, 41, 61].

Charge term

First, we will consider the spin independent part of the interaction between
electrons, which we denote by �charge� term. It can be calculated in a mean
8 As already stated in section 2.1.3, this is a good approximation of the actual non
exponential behavior of the corrections to the Cooperon.
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�eld approach, by considering that the phase of an electron is a�ected by
the �uctuating electric potential V (t, r) due to all the other electrons. As a
consequence, terms AªA∗© in the Cooperon are modi�ed by a phase factor
eiΦª where

Φª =
e

~

∫

ª
dτV [τ, rª(τ)]− e

~

∫

©
dτV [τ, r©(τ)] (2.22)

The time averaged9 dephasing factor for the particular path ª is eiΦª =
e−Φ2

ª/2. This quantity can be calculated from the time and space correlator
〈V (t, r)V (t′, r′)〉, which can be related to the dielectric constant through the
�uctuation-dissipation theorem. In a di�usive wire (quasi-one dimensional) of
length L at temperature T , one gets

Φ2
ª =

4πkBT

~
R

RK

∫ t

0

dτ
|rª(τ)− r©(τ)|

L
(2.23)

In the end, one needs to average this dephasing factor e−Φ2
ª/2 over all possible

paths ª in order to calculate the total dephasing. This can be done through
a path integral approach [2], and one �nds10

Zc(t) ¾ Zc(t)〈eiΦª〉ª ≈ Zc(t)e−t/τ (ee,charge)
ϕ (2.24)

with a phase coherence time

τ (ee,charge)
ϕ = ~

(
4νF LSe

πk2
B

RK

R

)1/3

T−2/3 ≡ A−1T−2/3 (2.25)

with νF the density of states at the Fermi level (both spin directions), Se the
wire cross-section, and R its resistance [1, 61].

As this dephasing process does not change the spins of the two interacting
electrons, the charge term contributes both to the singlet and triplet part of
the total dephasing rate due to electron-electron interactions.

9 Up to a very good approximation, the modes of the electromagnetic �eld are
quadratic, hence having gaussian �uctuations.

10 Actually, this result is only a good approximation to the real phase relaxation,
which is not exponentially decreasing. In fact, Φ2

ª is proportional to the integral
over time t of the �uctuations of the electric potential V on the length explored
during t. Therefore Φ2

ª ∝ R t

0
dt′〈δV 2〉Rt′ where Rt is the resistance of the explored

part of the wire in a time t. As this distance grows like
√

t in the di�usive case,
and as the �uctuation-dissipation theorem states that 〈δV 2〉R ∝ 4kBTR, one
obtains Φ2

ª ∝ kBTt3/2. More precisely, it is shown in [61] that in the general case,
〈eiΦª〉ª ∼ e−

√
π/2(t/τ

(ee,charge)
ϕ )3/2 .
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Spin term

The screened interaction between two electrons contains actually two terms.
The �rst one, the charge term was analyzed in the previous section, and
corresponds to a spin-independent interaction. The second one is proportional
to the scalar product of the spin matrices of the two interacting electrons [28].
This does not mean that the Coulomb interaction is spin-dependent, but that
the summation of the perturbation theory depends on the spin [69]. In the
Landau theory of Fermi liquids, this interaction is characterized at �rst order
by a real parameter F σ

0 . In particular the spin susceptibility is modi�ed by
this interaction so that, in metals with almost spherical Fermi surface11, the
Landé g-factor becomes

g =
2

1 + F σ
0

. (2.26)

In the limit where F σ
0 goes to −1, which corresponds to the ferromagnetic

(Stoner) instability, the Fermi liquid theory does not apply anymore. The
Fermi liquid constant F σ

0 can be accessed by conduction electron spin reso-
nance in noble metals, and was found to be in the range F σ

0 ∈ [−0.21, 0.05]
in silver [70]. In aluminum, assuming that the relation (2.26) holds (although
the Fermi surface is not spherical), it was reported that F σ

0 ≈ +0.1 [71]. As

s0

st

ª
s1 s2

Fig. 2.10. Many spins enter in the calculation of the dephasing time τ
(ee)
ϕ . In this

work, the indices S or T refer to the singlet or triplet states of the spins s0 and st.
The interaction between the two electrons of spin s1 and s2 may depend on these
spins, and one distinguishes the case where they form a singlet and the case where
they form a triplet state. In this work, we denote the whole spin dependent part (s1

and s2) of the interaction as the spin term, and triplet or singlet always refer to the
spins s0 and st.

this interaction is spin-dependent it has di�erent e�ects on the singlet and
triplet dephasing rates. Its contribution to τ

(ee,T)
ϕ has never been calculated

in a proper way to our knowledge. Still, it is expected that the total triplet

11 This is the case for Ag, Au and Cu (see Table. A.3 in the appendix).
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dephasing time τ
(ee,T)
ϕ is of the same order of magnitude as the total singlet

dephasing time τ
(ee,S)
ϕ . In our experiments, this time will be shown to be much

larger than τso at all relevant temperatures, and therefore its contribution to
the e�ective length Λ(T)(B) of Eq. (2.18) is negligible. In the following, we
focus on the singlet dephasing time, which has a direct e�ect on the magne-
toresistance.

Negligible spin-orbit interaction

Let us �rst present an expression of τ
(ee,S,spin−term)
ϕ in the approximation

of negligible spin-orbit interaction. It turns out that τ
(ee,S,spin−term)
ϕ reads

exactly as the charge dephasing time Eq. (2.25) except for a global prefactor
λd, which depends on dimensionality d. Therefore, in case of negligible spin-
orbit coupling (which is not the case in our experiments), the singlet term
reads

τ (ee,S,spin−term)
ϕ = λ1τ

(ee,S)
ϕ = λ1A

−1T−2/3 (2.27)
The prefactor λ1 depends only on the Fermi liquid constant Fσ

0 . Aleiner et
al. have developed a formalism to derive it, and in the one-dimensional case
[72]:12

λ1 =
3(F σ

0 )2

1 + F σ
0 +

√
1 + F σ

0

. (2.29)

General case

In the general case where the spin-orbit scattering is dominant (~/τso À kBT ),
one can calculate τ

(ee,S,spin−term)
ϕ using the semiclassical theory (see section

3.4.1). As proven13 in section 3.4.1,

τ (ee,S,spin−term)
ϕ =

π2/3

2

∫ kBT

~/τ
(ee,T)
ϕ

dεKHartree(ε)kBT (2.30)

where KHartree(ε) is the Hartree term of the kernel of Coulomb interaction
and is given by Eq. (3.51). In the end,

τ (ee,S,spin−term)
ϕ =

π1/3~
λ1kB(Aτso)3/2

T−2. (2.31)

12 The only published result is for the bi-dimensional case [69, 73]:

λ2 =
3(F σ

0 )2

(1 + F σ
0 )(2 + F σ

0 )
. (2.28)

13 The prefactor of this expression comes from the fact that τϕ and τ ee
E (E = 0, T ) are

distinct. The prefactor allows one to �nd the actual value for τϕ using Eqs. (3.61,
3.62).
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Therefore, the �nal expression for τ
(ee,S)
ϕ is just

τ (ee)
ϕ =

((
τ (ee,charge)
ϕ

)−1

+
(
τ (ee,S,spin−term)
ϕ

)−1
)−1

≈ A−1T−2/3 (2.32)

In our experiment, the spin-dependent dephasing rate is negligible compared
to the charge rate by 4 orders of magnitude (at 20 mK, τ

(ee,charge)
ϕ ≈ 10 ns

whereas τ
(ee,spin−term)
ϕ ≈ 0.3 ms). Therefore, in practice the spin-dependent

term has no e�ect on weak localization, and cannot be detected.

2.2.2 Electron-phonon coupling
Another type of dephasing occurs because of crystal vibrations. Indeed, col-
lective modes of vibration of the ion lattice can both be excited by electrons
or can excite electrons by transferring a wave vector q. As electrons get kicked
by phonons, they lose phase coherence and thus, the more often this exchange
occurs, the smaller τϕ gets. The typical wave vector of phonons at tempera-
ture T is of the order of qT = kBT

~s where s is the sound velocity in the metal
(≈ 2.7 km.s−1 in silver). In 1955, Pippard showed [74] that for small enough
qT , the change in momentum is so small that electrons do not lose phase
coherence. More precisely, a phonon can a�ect an electron only if the latter
stays in the same momentum state over a distance larger than one phonon
wavelength, which means that le À 1/qT . Thus, for le ≈ 40 nm as in our ex-
periments, dephasing at temperatures below 0.5 K is much less e�ective than
what is predicted for clean metals. Besides, one should distinguish between
longitudinal and transversal phonons as they have di�erent contributions to
dephasing. However, applying results of Reizer et al. [75] to noble metals, one
shows that, above 0.5 K, the e�ect of longitudinal phonons is larger than that
of transversal ones.

Therefore, using the general results of [76, 77, 78] in the limit of qT le À 1
and no transversal phonons, the dephasing rate due to phonons is14

1

τ
(e−ph)
ϕ

=
7πζ(3)

9
E2

F νF k3
B

~3ρs4k2
F

T 3 ≡ BT 3 (2.33)

where ρ is the mass density (10.5×103 kg.m−3 for silver), EF the Fermi energy
(5.6 eV for silver) and ζ(z) =

∑
k k−z is the zeta function (ζ(3) ≈ 1.2). For

silver one �nds Bthy ≈ 2× 106 K−3s−1. As temperature is lowered, the clean
metal approximation qT le À 1 does not apply any longer and one has to
consider the full formula for τ

(e−ph)
ϕ given in [76, 77, 78]. In this formula,

depending on T , the temperature dependence is between T 2 and T 4 instead
of T 3. The �t value for B in our experiments are larger than the theoretical
value of B from Eq. (2.33) by one order of magnitude, which could be a sign
that the experiments take place in such a cross-over regime rather than in the
pure BT 3 regime.
14 as it is independent on spin, no triplet or singlet index is used
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Fig. 2.11. Theoretical phase coherence times due to Coulomb interaction be-
tween electrons (dashed line) Eq. (2.25) and electron-phonon coupling (dotted line)
Eq. (2.33). Coulomb term is set to its theoretical value A = 0.19 ns−1K−2/3 from
Eq. (2.25), while B = 3.×10−2 ns−1K−3 is a �t parameter. The resulting dephasing
time Eq. (2.48) is represented as a thick line. Dots (light for implanted wire and
dark for bare wire) represent the experimental data of Fig. 2.9.

At this point, we can try to interpret the measurements of τϕ(T ). As shown
in Fig. 2.11, even for the bare wire, the e�ects of Coulomb interaction between
electrons and electron-phonon coupling are not su�cient. We will see that the
presence of a very small amount of magnetic impurities contributes drastically
to decrease τϕ, as expected from the data (see Fig. 2.9). The sensitivity of τϕ

to magnetic impurities can already be inferred from the comparison of τϕ(T )
on both wires which di�er only by the presence of 0.65 ppm of Mn atoms.

2.2.3 Magnetic impurities

In a metal, some foreign atoms or molecules such as Cr, Mn, Fe, Co, Ni or
CuO2, can present magnetic properties. An electron can interact with such
local moments by �ipping its spin with the one of the magnetic impurity.
This interaction is described in the Hamiltonian by a term JS.s where J is
a coupling constant, S is the impurity spin and s is the local spin density of
itinerant electrons15. Such a scattering contributes to lowering the di�usion
constant as more defects are present. But in contrast with static defects,
local moments modify the electron spin and thus destroy interferences in the
Cooperon channel. Therefore, this interaction contributes to dephasing. In
order to calculate the corresponding dephasing rate, a �rst approach would
use Fermi's golden rule, so that 1/τ

(e−l)
ϕ = πνF cMIJ

2S(S +1)/~ with cMI the
concentration of magnetic impurities in the metal (the number of impurities

15 In second quanti�cation formalism, s =
P

k,k′,σ,σ′ c
†
kσσσσ′ck′σ′
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per unit volume). Yet, two complex e�ects can change drastically this simple
result: the Kondo e�ect and the interaction between magnetic impurities.

Kondo e�ect

If one considers the interaction between a local spin S and a single electron
with spin s1, the ground state of Jδ(r)S.s1 is a singlet written | ↑↓〉− | ↓↑〉 in
the basis (S, s1). The �rst excited state is a triplet whose energy lies J above
the singlet.

The interaction of a local spin S with the sea of electrons is more com-
plicated. Counter-intuitively, even if conduction electrons move freely, a weak
exchange constant J is enough to form a singlet between a cloud of electrons
and the local spin. However, the characteristic energy of this singlet is not J ,
but the so-called Kondo temperature TK times kB given by

kBTK ≈ De−1/νF J (2.34)

where D ≈ EF is a cuto� at large energies16. Electrons participate in this
singlet di�erently depending on their energy. Kondo showed in particular that
scattering of an electron by a local moment is logarithmically divergent for
energies near kBTK , thus Fermi's golden rule is a very bad approximation in
this regime [38]. Kondo e�ect is a cross-over phenomenon from T ¿ TK where
the electron cloud participating in the Kondo singlet screens the magnetic
impurity spin e�ciently, hence preventing spin-�ip processes, to T À TK

where most electrons contributing to electrical transport are too energetic to
stay in the Kondo singlet, hence strongly suppressing spin-�ip. Both limits
T ¿ TK and T À TK have been investigated decades ago [42, 80, 81, 82, 83]
and the spin �ip rate for the electrons 1/τsf was calculated. Very recently,
the full dependence of the spin-�ip rate on T was derived using numerical
renormalization group (NRG) theory [84, 79]. These calculations con�rm the
high temperature behavior but predict a di�erent result at low T , therefore
we give the NRG results and corresponding references when available for each
limit:

1
τsf

=
cMI

π~νF
×





αlowT
π4

6

(
T

TK

)2

if T ¿ TK and S = 1/2 [79]

16π2 S2 − 1/4
ln2(T/TK)

if T ¿ TK and S > 1 [82]

αhighT
π2S(S + 1)

π2S(S + 1) + ln2(T/TK)
if T & TK [79]

(2.35)

16 The Kondo temperature is also related to the zero temperature susceptibility by
χ = (gµB)2/4TK . At T = 0.94TK , the resistance of a di�usive wire has half of its
maximal value due to Kondo e�ect [79].



2.2 Phase coherence time limitations due to interactions 39

where αhighT ≈ 0.92 has been deduced from Fig. 3 in Ref. [79] and αlowT ≈
0.927 is explicitly given in the same reference. Notice that this is only valid
if interactions between magnetic impurities can be neglected. We will now
investigate when this assumption holds.

Interactions between magnetic impurities

The leading interaction between magnetic impurities in a metal is due to their
coupling to the Fermi sea. The interaction between electrons and magnetic im-
purities tends to deplete the local density of electrons whose spin is aligned
with the impurity spin. Therefore, if the distance between magnetic impurities
is shorter than the extent of this local ordering of electron spins, an e�ective
interaction takes place between them. This process, called the RKKY inter-
action, was named after its discoverers [85, 86, 87]. It can lead to a spin-glass
transition for the ensemble of magnetic impurities, at a temperature Tsg that
was calculated in Ref. [83]:

Tsg =
4cMI

πkBνF ln2(vF c
1/3
MI /kBTK)

(2.36)

In silver, 1 part per million (ppm) of magnetic impurities with a Kondo
temperature TK ≈ 40 mK gives Tsg ≈ 0.6 mK. As pointed out in Ref. [83],
as long as the probed temperatures are much above Tsg, RKKY interaction
between impurities is negligible and Eq. (2.35) is valid. Our experiments, in
which the lowest temperature was 20 mK and cMI < 1 ppm, were there-
fore not sensitive to interactions between magnetic impurities. An experiment
probing the interplay of RKKY interactions and phase coherence was recently
performed [88].

Phase decoherence rate

The spin-�ip rate τ−1
sf of an electron with magnetic impurities does not enter

directly in the expression of τϕ through a Matthiessen rule because the change
in phase on reciprocal paths in the Cooperon can be correlated, depending
on the spin con�guration. In the beginning of this chapter (section 2.1.1),
it is shown that decoherence corresponds to the suppression of interferences
between the time-reversal symmetric paths ª and © of the Cooperon. If an
electron undergoes a spin-�ip on path ª, it might also do it on path ©. But
those two events are separated in time, and interferences between both paths
depend if the impurity spins have changed between those two events or not.
Changes of the spin of impurities occur through spin-�ip scattering with all
the electrons having an energy within kBT of the Fermi energy. Consequently,
an impurity spin �uctuates with a characteristic time [89], called the Korringa
time, which reads17 τKor = 1

πS(S+1) (JνF )−2~/kBT . Depending on the ratio
17 This is just a Fermi's golden rule,
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between the Korringa time and the spin-�ip time, the related weak localization
correction changes.

Fast impurity dynamics (τKor ¿ τsf)

The magnetic �eld created by the magnetic impurities on conjugated paths of
the Cooperon is random. Therefore, there is no correlation between the �nal
spins of electrons in each path. Hence, in this case, the spin-�ip rate is exactly
the dephasing rate τ

(e−l)
ϕ :

τ (e−l,S)
ϕ = τ (e−l,T)

ϕ = τsf (2.38)

Slow impurity dynamics (τKor À τsf)

The magnetic �eld created by the magnetic impurities on conjugated paths of
the Cooperon is the same on both paths. In the singlet channel, it turns out
that, as both electrons participating in the Cooperon travel the �eld B(r) in
opposite directions, the rate of destruction of the interferences is doubled com-
pared to the case where the magnetic �eld is random. In the triplet channel,
the contribution turns our to be three times larger [89, 61]:

τ (e−l,S)
ϕ = τsf/2 (2.39)

τ (e−l,T)
ϕ = 3τsf/2 (2.40)

Intermediate regime

For the same reason as with Coulomb interaction, the triplet term in the
dephasing time cannot a�ect the magnetoresistance since τso ¿ τ

(e−l,T)
ϕ for

all relevant temperatures. Therefore, we focus on the singlet term only in the
following analysis.

As both τsf and τKor depend on temperature, we need to investigate not
only the two limiting regimes above, but also the whole dependence of this
factor η = τsf/τ

(e−l,S)
ϕ on the ratio18

τKor/τsf =
cMIαlowT

νF kBT
. (2.41)

2~τ−1
Kor = 2π

Z
dEJ2ν2

F S(S + 1)f(E)(1− f(E)) (2.37)

where f(E) is the Fermi function at temperature T [90, 91]. Taking into account
the Kondo e�ect, one can renormalize the coupling constant J in this expression.

18 The Kondo e�ect renormalizes the divergence of the ratio τKor/τsf at low tem-
peratures. At temperatures T . TK [92],

τKor/τsf =
cMIαhighT

νF kBTK
.
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In Ref. [89], it is assumed that the magnetic �eld created by the magnetic
impurities has a correlation time τKor:

〈B(r, t = 0)B(r, t)〉 ∝ e−|t|/τKor . (2.42)

Replacing 1/τsf by (1+e−|t|/τKor)/τsf in the di�usive equation for the Cooperon,
one gets that the Cooperon has just to be replaced by [89]

Zc(t) ¾ Zc(t) exp
(
− t

τsf
− 2τKor

τsf

(
1− e−|t|/2τKor

))
. (2.43)

Plugging this formula in Eq. (2.7), one gets19 a universal behavior for the
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Fig. 2.12. Calculation of the ratio η = τsf/τ
(e−l,S)
ϕ depending on the ratio τKor/τsf .

weak localization correction depending on τKor/τsf . This behavior can be re-
lated to an equivalent formulation of the dephasing associated with magnetic
impurities by a simple phase decoherence rate τ

(e−l,S)
ϕ given by

τ (e−l,S)
ϕ = τsf/η. (2.44)

The dependence of η on the ratio τKor/τsf is plotted on Fig. 2.12. Numerically,
this dependence is well approximated by

η ≈ 1 +

(
1 + 0.22

(
τsf

τKor

)1.1
)−1

. (2.45)

It can be checked on Fig. 2.12 that both limits described above (η = 1 and
η = 2) are recovered. Interestingly, the cross-over is not sharp: it extends on
nearly two decades of τKor/τsf .

In our experiments, as shown on Fig. 2.13, one has to use the full expres-
sion for η as none of the limit regimes applies. Notice that this conclusion
contradicts the statements of Refs. [41, 43, 65].
19 Only in the limit where τe is much smaller than τsf and τKor. In our experi-

ment, τe ≈ 0.1 ps, whereas τsf > 1 ns, and τKor ≈ 0.4 ns at the highest probed
temperatures.
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Fig. 2.13. Graph showing the crossover in temperature between the regimes where
η = τsf/τ

(e−l,S)
ϕ is equal to 1 or 2. The phase coherence times are calculated using

Eq. (2.48) with an electron-electron interaction term A = 0.45 ns−1K−2/3 and a
phonon-electron term B = 0.02 ns−1K−3, similar to the situation in our experiments.
The dephasing time τ

(e−l,S)
ϕ represented as a thin black line is calculated using the

numerical approximation Eq. (2.45) together with the high temperature limit of
Eq. (2.35) for magnetic impurities concentrations cMI = 0.02, 0.2 and 1 ppm (whose
properties are those of Mn in Ag, see later for details). For each value of c, two thick
grey curves corresponding to η = 1 of η = 2 are also plotted.

2.2.4 Summary of the results on phase coherence used in the
interpretation of our experiments

Phase coherence manifests itself through a change in resistance around zero
magnetic �eld given by Eq. (2.17)

∆R

R
≡ R(B)−R(B = ∞)

R(B = ∞)
=

R

RK

(
3ξ

(
Λ(T)(B)

)
− ξ

(
Λ(S)(B)

))
(2.46)

with ξ(x) = x coth(1/x)−x2, Λ(T) and Λ(S) the triplet and singlet normalized
length describing weak localization given by

Λ(T)(B) =
1
L

(
1

L2
ϕ

+
4

3L2
so

+
Se

3L4
B

)−1/2

Λ(S)(B) =
1
L

(
1

L2
ϕ

+
Se

3L4
B

)−1/2 (2.47)

where Lϕ =
√

Dτϕ, and τϕ is determined by three di�erent processes
Eq. (2.21)
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1
τϕ

=
1

τ
(ee)
ϕ

+
1

τ
(e−ph)
ϕ

+
1

τ
(e−l)
ϕ

(2.48)

with

1/τ
(ee)
ϕ =

1
~

(
πk2

B

4νF LSe

R

RK

)1/3

T 2/3 ≡ AT 2/3

1/τ
(e−ph)
ϕ = BT 3

1/τ
(e−l)
ϕ =

ηcMIαhighT

π~νF

π2S(S + 1)
π2S(S + 1) + ln2(T/TK)

(2.49)

where

η ≈ 1 +

(
1 + 0.22

(
νF kBT

cMI

)1.1
)−1

,

and αhighT ≈ 0.92 was estimated using NRG theory [79]. The prefactor η takes
into account the dynamics of impurity spins, and was omitted in Refs. [41,
43, 65] (see above).
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2.3 Experimental results and open questions

2.3.1 Quantitative analysis of the magnetic impurity concentration

0.10.02 1 10
T HKL

0.1

1

10

Τ
j
Hn

sL

Fig. 2.14. Theoretical phase coherence times due to Coulomb interaction between
electrons (dashed line) Eq. (2.25), electron-phonon coupling (dotted line) Eq. (2.33)
and spin-�ip processes with magnetic impurities (thin line) Eq. (2.49). Dark lines
correspond to the bare wire and are �t with a concentration cMI = 0.03 ppm of
Mn atoms and light lines correspond to the implanted wire and are �t with cMI =
0.65 ppm. Coulomb term A = 0.25 ns−1K−2/3 was adjusted to �t with the bare
wire τϕ(T ) measurement and is 30% larger than the theoretical expectation from
Eq. (2.25). Phonon term B = 3.5 × 10−2 ns−1K−3 was �t with the part above
1 K for both wires. Besides, the magnetic impurities are assumed to have a Kondo
temperature TK = 40 mK and spin S = 5/2. Total dephasing time Eq. (2.48) is
represented as a thick line.

Using the measured phase coherence times τϕ(T ) on both wires bare and
implanted (Fig. 2.9), we �nd a good overall agreement with the preceding
description, as shown on Fig. 2.14.

The Coulomb term A was adjusted to �t with the experimental τϕ(T ) curve
corresponding to the bare wire. The �t value, A = 0.25 ns−1K−2/3, is 30%
larger than the theoretical expectation from Eq. (2.25). This disagreement is
analyzed in great details in section 3.4.3.

We also can draw a conclusion on the role of magnetic impurities on de-
phasing. Not only have we analyzed the data of the bare and implanted wires of
Fig. 2.9, but we have also reanalyzed on the same footing all the experiments
by the collaboration between the Birge group and the Quantronics group
that address the e�ect of magnetic impurities on dephasing (two implanted
wires called Ag(5N)cMn0.3 and Ag(5N)dMn1, see Table. 2.3) [43, 36, 41]. First,
we have better evaluated the concentration of magnetic impurities expected
from the implantation procedure (as explained in section 8.4.2). Second, we
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have again �tted the experimental data taking into account the e�ect of the
Korringa dynamics for the magnetic impurities (see section 2.2.3). The quan-
titative conclusions are shown on Table 2.3.

Wire name Ref c
(imp)
MI c

(fit)
MI

(ppm) (ppm)
Ag(5N)b [43] 0 0.13

Ag(5N)cMn0.3 [43] 0.14 0.25± 0.01
Ag(5N)dMn1 [43] 0.46 0.54± 0.03

bare [65] 0 0.03
implanted [65] 0.65 0.65± 0.07
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Table 2.3. For each wire, this table shows the �t value of the concentration c(fit) of
Mn atoms and the concentration of implanted Mn atoms c

(imp)
MI . Adding the �t value

on the non implanted metals to the implanted concentration, one gets an uncertainty
on the expected concentration c

(expected)
MI in Mn atoms which is reported on the graph

as the width of the corresponding box in the horizontal direction. Uncertainties on
the �t values for cMI are reported as the height of the rectangles.

As seen from this table, the theoretical framework described in this chapter
accounts quantitatively for the in�uence of dilute magnetic impurities on the
phase coherence. The experiment on the bare and implanted wires alone has
a much larger uncertainty on the �tted concentration of magnetic impurities
than for the wires discussed in Ref. [43] As explained in section 2.1.6, this
is due to the fact that the wires were not very long compared to the phase
coherence length.

2.3.2 Which value for the spin S does enter in the spin-�ip rate ?

Manganese has a spin S = 5/2 in vacuum. However, once located within a
bulk metal, its magnetic moment is modi�ed. In silver, the energy levels of the
Mn atom lie within the 5s band, and electrons participating in the moment
of the impurity are delocalized [93]. The Anderson model gives a �rst order
estimate of the number of electrons e�ectively contributing to the magnetic
moment [94]. Recently, this problem has been revisited in presence of spin-
orbit interaction, �nite size of the sample and disorder [95].

On the experimental side, the Landé g-factor has been measured for Mn
in Ag by electron-paramagnetic-resonance [96], and it was found that g =
2.010±0.005. Using this value, measurements of the susceptibility as a function
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Spin Ag(5N)cMn0.3 Ag(5N)dMn1

(ppm) (ppm)
1/2 0.33 0.71
3/2 0.26 0.57
5/2 0.25 0.54

Fig. 2.15. Dots: phase coherence time extracted from magnetoresistance mea-
surements on two silver wires implanted with a known amount of Mn impurities
(0.14 ppm for Ag(5N)cMn0.3 and 0.46 ppm for Ag(5N)dMn1). Lines: the continuous
lines are calculated using Eq. (2.48) for two samples and 3 possible values of the
spin S with the best �tting parameters reproduced in the table on the right. Notice
that in the wire Ag(5N)dMn1, the phase coherence time decreases when tempera-
ture decreases between 1 and 20 mK. Of course, if the Kondo temperature were not
so low (40 mK) this decreasing would occur at higher temperatures and would be
hidden by Coulomb processes between electrons.

of the temperature in bulk samples of Ag hosting Mn impurities gave, using
a �t with a Curie-Weiss law, an estimate of the magnetic moment of those
impurities: S = 2.02 in Ref. [97] and S = 2.4 in Ref. [93].

In our experiments, one may wonder which value of S entering in the
theoretical expression for τ

(e−l)
ϕ best accounts for our results20. Fits using

S = 3/2 are actually slightly better than those using S = 5/2 as shown on
Fig. 2.15. In contrast, S = 1/2 is clearly not acceptable. We therefore had no
strong indication that another spin value would be more adequate, and kept
S = 5/2 for the �nal �ts of Fig. 2.14.

2.3.3 Conclusions

We have shown that the standard framework of Al'tshuler, Aronov [1, 2] for the
phase coherence time describes quantitatively how the coupling between elec-
trons and dynamic degrees of freedom limits phase coherence. In particular,
the role of magnetic impurities with low Kondo temperature is quantitatively
understood, as already demonstrated in Ref. [43]. Given the small amount
of magnetic impurities needed for getting sizeable e�ects on phase coherence
20 In the two samples Ag(5N)cMn0.3 and Ag(5N)dMn1, theoretical predictions for

τϕ(T ) using di�erent values for the spin S are more easily discriminated by the
experiment than for the implanted wire. Here, we use those data rather than the
ones for bare and implanted wires, where the error bars on the phase coherence
time are bigger, due to the short length of the wires.
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(no commercial metal is guaranteed with so few impurities), it is in practice
extremely di�cult to emancipate a τϕ measurement from the possibility that
the observed dephasing is due to such impurities.

The main results of this chapter are the following
• Successful measurement of τϕ(T ) on metallic wires as short as 40 µm,

despite the di�culties discussed in 2.1.6.
• Quantitative support to the theory of dephasing by Kondo impurities

Eq. (2.49), see Fig. 2.14 and Table. 2.3.
• A formalism taking into account the dynamics of the magnetic impurity

spins in the calculation of τϕ (see Fig. 2.13).
• Support to the expression of Ref. [66, 67] for the atomic number depen-

dence of the spin-orbit time (2.15) as shown in Table. 2.1.

Questions remain on the dephasing rate by magnetic impurities at tem-
peratures lower than TK . It would be interesting to probe a metal in which
a small concentration (no spin glass) of magnetic impurities with a higher
Kondo temperature are present21. In particular, it would be interesting to see
how the dephasing time increases at lower temperatures. More is to be done
also on the interplay between RKKY interactions between magnetic impurities
and dephasing.

In the next chapter, we probe the interactions between electrons and their
environment in a di�erent way. In particular, the interactions are probed at
much higher energies than in the phase coherence time measurements.

21 Such an experiment is currently being performed by two groups: Birge et al. and
Saminadayar et al. [98, 99]
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We have seen in the last section how the interactions between electrons and

dynamic degrees of freedom (other electrons, phonons or magnetic impurities)
limit the phase coherence time τϕ. We now tackle the problem of interactions
between electrons from another point of view, by introducing the lifetime
of a quasiparticle1 state τE , which is the average decay time of a state at
1 In the following, Laudau quasi-particles are just called electrons as explained in
section 1.1
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energy E, all other quasi-particles being at equilibrium [2, 100]. Of course,
creating a situation with only one excited electron is impossible, and one
has to �nd an indirect way of accessing the information described by τE .
In 1997, the Quantronics group developed a tunneling spectroscopy method
to access the processes allowing the exchange of energy between electrons in
di�usive metallic wires [34]. Using this method, one can identify quantitatively
the contributions to the lifetime τE of each particular interaction between
electrons and their environment. In this chapter, we present this tunneling
spectroscopy technique and show quantitative measurements of the energy
exchange between electrons through three kinds of interaction.

3.1 Semiclassical approach to transport

The phase coherence time τϕ characterizes a deeply quantum mechanical prop-
erty of electrons dynamics. By contrast, the electronic lifetime τE can be de-
scribed in a semi-classical way through the Boltzmann equation [101, 1, 9, 102].
Using this picture with a di�usive wire, the population of electrons at energy
E and at position x is characterized by the occupation function fx(E), which
results from the balance of three processes. The �rst one is space di�usion and
is described by a standard di�usion term. The second one decreases fx(E) and
corresponds to the decay of an electron at energy E to any other energy state
with a rate γe. The third one increases fx(E) and corresponds to the decay
of a hole at energy E to any other energy state, with a rate γh. For a di�u-
sive wire of length L, and in the reduced length unit x (normalized to L, see
Fig 3.1)

∂f

∂t
=

1
τD

∂2f

∂x2
− fγe + (1− f)γh (3.1)

where τD = L2/D is the di�usion time, as de�ned in section 2.1.1.Explicit
dependence on energy E, position x and function f has not been speci�ed in
Eq. (3.1) for clarity.

The rates γe and γh are determined by all the inelastic processes involving
electrons. The Boltzmann equation (3.1) can be related to the lifetime τE of
an electron at energy E. Indeed, assuming that f(E) is a permanent solution
of the Boltzmann equation, let us add a single electron at energy E above
the Fermi sea. Therefore, f(E) is modi�ed by a small peak function f(E) ¾
f(E) + pδ(E). Plugging this into Eq. (3.1), one gets

∂p

∂t
= −pγe − pγh (3.2)

This relates the lifetime τE to the rates γe and γh

τE = (γe + γh)−1 (3.3)
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3.2 Link between the distribution function and
interactions between electrons

To reveal the rates γ entering the lifetime τE , a constant voltage U is applied
across a metallic wire in order to drive the electrons out of equilibrium. In
this case, f is not trivial, and the Boltzmann equation (3.1) allows to relate
f to the rates γ. Besides, f can be measured by tunneling spectroscopy, as
described in the next section.

U

0 1

x

Fig. 3.1. Scheme of a biased metallic di�usive wire.

Since a bias voltage U is applied across the pads, the distribution functions
at the edges of the wire are Fermi functions shifted by an energy eU :

fx=0(E) = (1 + e(E−eU)/kBT ) ; fx=1(E) = (1 + eE/kBT ) (3.4)

In case the voltage U is constant, we consider the stationary solution of the
Boltzmann equation (∂f/∂t = 0).

1
τD

∂2f

∂x2
= fγe − (1− f)γh (3.5)

We now solve the Boltzmann equation with the boundary conditions (3.4) in
two opposite limits, depending on the ratio τE/τD.

3.2.1 Weak interaction regime

In the case where τE À τD, the right term of Eq. (3.5) is negligible and f
reads

fx(E) = xf1(E) + (1− x)f0(E) (3.6)
This can be interpreted in the following way. If τE À τD, electrons do not
change energy during their traversal of the wire, and fx(E) is given by the
average of the Fermi distributions of the two populations of electrons coming
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Fig. 3.2. Distribution function fx(E) without inelastic processes between electrons
(�cold electrons� limit) for eU = 50kBT .

from the left or right pad weighted by the probability to �nd an electron from
each population2. Hence,

fx(E) =
x

1 + eE/kBT
+

1− x

1 + e(E−eU)/kBT
(3.7)

3.2.2 Strong interaction regime

In the case where τE ¿ τD, the electrons spend so much time in the wire, that
they are involved in multiple inelastic collisions. Therefore, at any position x,
a local equilibrium is reached and fx obeys the statistics of Fermions. This
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Fig. 3.3. Distribution function fx(E) with very frequent inelastic processes between
electrons (�hot electrons� limit) for eU = 50kBT .

can be found rigorously from the Boltzmann equation, when the rates γ tend

2 Just as does the temperature pro�le of a metallic rod whose edges are at �xed
temperatures.
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to in�nity, the distribution function f converges to a given function fhot.
Therefore, the left side of Eq. (3.5) tends to 1

τD

∂2fhot
∂x2 while the second term

has a prefactor which diverges with γ. The only possibility for this is that
the right hand side gets close to zero for strong interactions. Besides, a trivial
zero of this term at any position x is3 a Fermi function, whatever the value of
γ. Therefore, fhot is close to a Fermi function. As expected from Ohm's law,
the electrochemical potential decreases linearly with position from µ = eU at
x = 0 to µ = 0 at x = 1. The temperature pro�le Teff(x) can be found using
energy conservation [103]: for each position x, the total exchanged energy∫

[fγe − (1− f)γh]EdE is zero, hence
∫

(E∂2fx(E)/∂x2)dE = 0. Replacing f
with a Fermi function whose electrochemical potential is µ(x) leads to (see
B.1.1 in the appendix)

d2

dx2

(
π2

6
k2

BTeff(x)2 +
(1− x)2

2
e2U2

)
= 0 (3.8)

which, associated with the boundary conditions (3.4), gives

Teff(x) =
[
T 2 + (U2/L)x(1− x)

]1/2 (3.9)

where L = 1
3

(
πkB

e

)2 ≈ 2.4× 10−8 V2.K−2 is the Lorentz number.

3.2.3 Intermediate regime

In order to probe the rates γ quantitatively, the geometry of the wire must
be chosen so that τD ∼ τE . Only then does the distribution function fx(E)
depend on the inelastic processes between electrons in a non trivial way. We
will see in the following how to calculate the rates of the various kinds of
interaction between electrons and their environment. But �rst, we present the
numerical tool developed to solve the Boltzmann equation (3.5).

Calculation of the distribution function

We have used and further developed a C++ code written by F. Pierre [36] to
solve the Boltzmann equation iteratively, using the steepest descent method.
At each step, a trial function fx(E) is used to calculate the rate

ḟx ≡ 1
τD

∂2fx

∂x2
− fxγe + (1− fx)γh. (3.10)

Using this rate, the trial function fx(E) is modi�ed using Eq. (3.1)

fx ¾ fx + ∆τ ḟx (3.11)
3 The right hand side of Eq. (3.5) is exactly zero at equilibrium when U = 0,
because, in this case, the left term is zero.
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where ∆τ is a tunable time step. The process starts with the solution for cold
electrons (3.7) and ends when fx does not evolve noticeably from step to step
at any position x. This code has been improved, in order to include the many
e�ects described in what follows. Lately, we embedded it into a �t algorithm
using the simplex method [104] in order to �t experimental data.

3.3 Measurement of the distribution function by
tunneling spectroscopy

In order to probe the distribution function, a tunnel junction is fabricated at
a position x of the wire, in series with an aluminum wire (called the probe
in the following) of impedance Z(ω) in its non-superconducting state. In the
following, we show that the probe has a singular tunneling density of states
both in the superconducting regime (due to superconducting gap) and in the
normal regime (due to the dynamical Coulomb blockade of tunneling). The
sharpness of this singularity sets the resolution of the spectroscopy on f(E).

U

0 1
x

Z
(
ω)

V

x

Fig. 3.4. Scheme of the biased metallic wire. A tunnel junction in series with an
impedance Z(ω) sits at position x of the wire. See Fig. 9.4 to see an SEM picture
of such a device.

3.3.1 Tunneling rate in case of a superconducting probe

The tunneling rate can be calculated through the Fermi's golden rule, assum-
ing that the tunneling matrix elements are nearly constant on all energy states
that matter for conductance measurement4.
4 The tunneling matrix elements vary on the same energy scale as the band struc-
ture at the interface between the electrode and the dielectric, therefore at the
scale of the work function W . However, states participating to transport have
an energy centered on EF and sit in a bandwidth max(kBT, eV ) where V is the
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In case the probe is superconducting, tunneling is elastic5 because no en-
ergy can be dissipated in the electromagnetic environment. The total tunneling
rate from the wire (x) to the probe (p) at energy6 E, calculated by a golden
rule, then reads

Γx→p(E) =
1

e2Rt
nx(E)fx(E)np(E + eV )(1− fp(E + eV )) (3.12)

where ni is the density of states of the electrode i normalized to its bulk
metallic value, and Rt ends up to just be the tunnel resistance. Similarly,

Γp→x(E) =
1

e2Rt
np(E + eV )fp(E + eV )nx(E)(1− fx(E)) (3.13)

Therefore, the total current across the tunnel junction reads

I(V ) = e

∫
(Γx→p(E)− Γp→x(E))dE

=
1

eRt

∫
nx(E)np(E + eV )(fx(E)− fp(E + eV ))dE

(3.14)

If f is a Fermi function, and if electrodes have constant density of states, one
recovers the de�nition of the tunnel resistance Rt as stated above: I(V ) =
V/Rt.

Simplifying the current-voltage expression using the BCS density of states
nBCS(E) = Re

(
|E|√

E2−∆2

)
with ∆ the superconductor's gap, the tunneling

current reads

I(V ) =
1

eRt

∫
nBCS(E + eV )(fx(E)− fp(E + eV ))dE. (3.15)

Changing of variables E ¾ E − eV and derivating I(V ) with respect to V ,
the conductance reads7

dI

dV
= − 1

Rt

∫
nBCS(E)f ′x(E − eV )dE (3.16)

and using both integration by part and the fact that nBCS is even,

Rt
dI

dV
= 1−

∫
n′BCS(eV − E)fx(E)dE ≡ 1− n′BCS ∗ fx(eV ) (3.17)

where ∗ denotes the convolution product. We thus use the following procedure
(see Figs. 3.5, 3.6) to measure fx(E):

voltage across the tunnel junction. As max(kBT, eV ) ¿ W ≈ EF , the coupling
between electrodes on those states is nearly constant.

5 Elastic tunneling means tunneling at constant energy
6 The origin of energies being the Fermi energy in the wire at position 0
7 In practice, fp depends sometimes on the voltage V , and this simpli�cation is
not valid. Thus, this assumption has to be checked for each particular case. On
the experiment discussed later in this chapter, this assumption is wrong, and it
is more di�cult to extract fx(E) from the tunneling conductance measurements.
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Fig. 3.5. Dots: di�erential conductance of a tunnel junction located at position
x = 0.25 of the wire denoted by AgXII40 at a bias voltage U = 0 (see details of
fabrication on page 87). Line: theoretical prediction for the same quantity using
Eq. (3.17) with a gap ∆ = 188 µeV , a tunnel conductance Gt = 1/Rt = 66.7 µS
and a temperature T = 45 mK (the energy was multiplied by a factor (1+ iγ) where
γ = 5 × 10−5 to have the calculation converge). The line is well approximated by
the exact BCS density of states times Gt.
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Fig. 3.6. Left panel�dots: di�erential conductance of the same tunnel junction as in
Fig. 3.5, with a bias voltage U = 71 µV applied to the wire. Left panel�line: best �t
using Eq. (3.17) where the BCS density of states nBCS and the tunnel conductance
Gt are deduced from the �t of Fig. 3.5. The corresponding distribution function in
the wire fx=0.25(E) is plotted on the right panel.
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• applying zero bias voltage U = 0 across the wire, we know that for all
position x, fx is a Fermi function at temperature T . Therefore, we can �t
the gap ∆, the tunneling resistance Rt and the electron temperature T
using Eq. (3.17).

• applying a �nite voltage U across the wire, we can use the previous �t of ∆
and Rt to calculate the function fx(E) through a numerical deconvolution
of the conductance (3.17).

3.3.2 Tunneling rate in case of a resistive probe

Dynamical Coulomb blockade of tunneling

When a magnetic �eld larger than the critical �eld of the superconductor is
applied, the impedance Z(ω) of the probe becomes non zero even at low en-
ergy, and inelastic electron tunneling cannot be neglected. In a semiclassical
picture, after the tunneling of an electron, a positive charge is left behind on
the starting electrode and a negative charge is created on the ending elec-
trode. These charges disturb the electrons in the leads, and induce charge
propagation. Dynamics of the propagation is controlled by the electromag-
netic impedance Z(ω). The standard theory of dynamical Coulomb blockade
[105, 106] deals with this problem. Within this picture, a tunneling electron
can loose an energy ~ω when tunneling by emitting a photon which is ab-
sorbed by the impedance Z(ω). The frequency dependence of the impedance

Probe

E

-eV

0

Wire at

position x

f
x
(E) f(E)

elastic

ε
inelastic

Fig. 3.7. Tunneling in semiconductor representation. The dark areas represent the
occupied electron states. Depending on the energy ε dissipated in the impedance
Z(ω), electrons tunneling from the wire with energy E end in the probe in a state
of energy E − ε. The tunneling events are blocked by Pauli principle if the energy ε
is too big (dashed line).

determines the selection in energy of the emitted photons. The corresponding
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modi�cation of the tunneling current is then entirely described by the proba-
bility P (ε) for the environment to absorb a photon at energy ε. The tunneling
current at energy E is then given, in case of non-superconducting electrodes,
by

IE(V ) =
1

eRt

∫
dεP (ε)

× [fx(E)(1− fp(E + eV − ε))− (1− fx(E))fp(E + eV + ε)]
(3.18)

and the derivative of the total current reads8

dI

dV
(V ) =

1
Rt

+
1
Rt

∫
dE

∫
dεP (ε)fx(E)

[
f ′p(E + eV + ε)− f ′p(E + eV − ε)

]
.

(3.19)
Hence,

Rt
dI

dV
(V ) = 1−

∫
fx(E)qT (−eV − E)dE = 1− qT ∗ fx(−eV ) (3.20)

with qT (E) a function depending on the environment at temperature T

qT (E) =
∫

dεP (ε)
[
f ′p(−ε− E)− f ′p(ε− E)

]
. (3.21)

Derivation of P (ε): a perturbative approach

In the simple case of zero temperature, we present here a perturbative deriva-
tion of P (ε). Tunneling events are delta-correlated in time and thus, the cur-
rent is approximately

I(t) = e
∑

i

δ(t− ti) (3.22)

and the energy dissipated in the impedance E =
∫

dtV (t)I(t) when one elec-
tron tunnels at time t = 0 (the corresponding current being I(t) = eδ(t)) is
just

E = eV (t = 0) =
∫

dω
e

2π
Ṽ (ω) (3.23)

Using the Ohm's law U(ω) = Z(ω)I(ω) and the fact that Ĩ(ω) = e,

E =
e2

π

∫ +∞

0

dωRe[Z(ω)] (3.24)

By identi�cation of terms at identical energies ε = ~ω with the expression

E =
∫ +∞

0

P (ε)εdε, (3.25)

the probability P (ε) = δE/ε to emit a photon of energy ε is just
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Z
(
ω)

V VR
p

C

Fig. 3.8. Model for the environment of the tunnel junction in the experiment. The
equivalent impedance is Z(ω) = Rp/(1 + iRpCω), neglecting the wire resistance
compared to Rp.

P (ε) =
2
ε

Re[Z(ω = ε/~)]
RK

(3.26)

In order to apply this theory to our experiment, the environment of the
junction is modeled by an R-C circuit as schemed on Fig. 3.8. We neglect
the contribution of the wire resistance compared to Rp since Rp ≈ 1 kΩ and
R ≈ 55 Ω. Approximately,

P (ε) =
{

2Rp/εRK if ε < ~/RpC
0 if ε > ~/RpC

(3.27)

Using Eq. (3.19) in the case where the distribution functions fx and fp are
Fermi functions shifted by the voltage bias eV at zero temperature, one gets
the following expression for the conductance:

Rt
dI

dV
(V ) = 1−

∫ +∞

eV

P (ε)dε ≈ 1 + 2Rp/RK ln (V/V0) (3.28)

where V0 = ~(eRpC)−1.

Full calculation of P (ε)

The non-perturbative calculation of P (ε) at �nite temperature T is given in
Ref. [107] and reads

P (ε) =
∫

dt

h
eJ(t)+iεt/~ (3.29)

where
J(t) =

∫
dω

ω

2Re[Z(ω)]
RK

e−iωt − 1
1− e−~ω/kBT

(3.30)

8 using
R

f ′(E)dE = −1 and
R

P (ε)dε = 1
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In the R-C model depicted above and assuming Rp ¿ RK , the non-
perturbative result reads

Rt
dI

dV
(V ) ∝ V 2Rp/RK (3.31)

for kBT < eV < ~/RpC (for more details, see Ref. [41]). In our experiment,
this behavior is found when U = 0. Fig. 3.9 is a plot of the tunnel conduc-
tance for the sample bare wire, compared to the theoretical prediction using
Eq. (3.20) with C = 4.4 fF, Rp = 0.96 kΩ and T = 50 mK.

1E-4 1E-3 0.01 0.1 1
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0.9

1.0
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V
)/G
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Fig. 3.9. Dots: dynamical conductance of the NIN junction formed between the bare
wire and the probe in the normal state. Using Eq. (3.19, 3.29), the best parameters
for the junction and its environment are a tunnel resistance Rt = 16.45 kΩ, a probe
resistance Rp = 0.96 kΩ, a capacitance C = 4.4 fF and a temperature T = 50 mK.
The corresponding theoretical curve is plotted as a line.

Application to the spectroscopy of f(E)

Fig. 3.10 shows the dynamical conductance measured with a �nite bias voltage
U . One might want to deconvolve this curve using Eq. (3.20) to access the
distribution function f(E) just as in the superconducting case. In practice,
this procedure is hard to implement here as the conductance peak is far less
sharp than the BCS anomalies at the gap. Moreover, the conductance of the
tunnel junction in case of a resistive probe depends on more parameters than
in the superconducting case (where only the gap and the tunneling resistance
were free). In particular, the electrons in the probe can heat up. Therefore,
we use the following strategy, in order to analyze the conductance at any bias
U :
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Fig. 3.10. Dynamical conductance of the NIN junction formed between the bare
wire and the probe in the normal state at U = 0 (gray dots) and at U = 200 µV
(black dots) for a magnetic �eld B = 0.9 T.

• At U = 0, the distribution function in the wire is a Fermi function fx(E) =
(1 + eE/kBT0)−1. Using Eq. (3.20), one deduces the function qTp(E) from
the measurement of the conductance at Tp = T0, with a slight smearing
on the scale of kBT0:

qT0(eV ) ≈ RT

e

d2I

dV 2
(V ) (3.32)

• In order to analyze the conductance dI/dV measured at U 6= 0, the pre-
viously determined function qT0(eV ) is used in Eq. (3.20). Comparison
between theory and experiment are made directly on the conductance
curves.

Some important deviations to this simple picture must also be taken into
account, and are listed in the following sections.

Parasitic e�ects

Heating of the pads

When a �nite bias voltage U is applied across the wire, some energetic elec-
trons �ow through the pads and heat them. The boundary condition of the
Boltzmann equation are thus modi�ed. Besides, the thinner the pads, the
more e�cient this heating. In our experiments, the pads are as thin as the
wire, and this e�ect is important. In a simple model, the pads are assumed
to be in�nite semi-planes. When applying a bias voltage U across the wire,
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a power U2/R is dissipated in the pads. The excited electrons spread on a
given distance RM from the wire, which is given by the cooling process due
to phonons or by incoming cold electrons from the bonding wires. Solving the
heat equation in the pads, in a radial geometry, one �nds the temperature
pro�le [36]

Te(r) =
√

T 2
0 + (αU)2 ln(RM/r) (3.33)

where α = R¤
R

3e2

π3k2
B

is a coupling constant, with R¤ the resistance per square
of the pads (typically around 0.5 Ω), and r the distance measured from the
end of the wire. The temperature entering in the boundary conditions for the
Boltzmann equation in the wire can be obtained by setting r to the width w
of the wire. In practice, α2 ln(RM/w) is determined experimentally as a �t
parameter, as neither RM nor R¤ are actually measured [13].

Heating of the probe

When the wire or the probe are biased, the electrons of the probe are driven
out of equilibrium. In this case, the function qT entering in the calculation of
the conductance is not the function qT0 measured at equilibrium. The non-
perturbative calculation of P (ε) at �nite temperature presented above can be
used to determine a more appropriate q function. However, this calculation is
so cumbersome that we used a numerical approximation. It turns out that, in
our range of temperatures, the function qTp is well approximated by

qTp(E) ≈ −
∫

qT0(E + ε)f ′Tp
(ε)dε (3.34)

where fTp(ε) = (1 + eε/kBTp)−1 is the Fermi function of temperature Tp.
The temperature Tp still needs to be calculated for each bias voltages U

and V . Actually there is no reason why the electrons in the probe should have
a Fermi distribution function, since hot electrons are injected directly from the
wire to the probe. However, an e�ective temperature Tp can still be de�ned
out of equilibrium. Considering a distribution function fp(E) for the electrons
at the probe/tunnel junction interface, Tp is de�ned by the temperature of
the Fermi function for which the total electronic energy is the same:

(πkBTp)2/6 =
∫ ∞

eV

(E − eV )fp(E)dE +
∫ eV

−∞
(eV − E)(1− fp(E))dE.

Besides fp(E) can be deduced from the conservation of the current density
i(E) at energy E. Across the tunnel junction,

i(E) = (fp(E)− f(E))/eRT

and across the whole aluminum probe resistor,

i(E) = {(1 + exp[(E − eV )/kBT0])−1 − fp(E)}/eRN .
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Those two quantities are identical so fp(E) is directly linked to f(E) in the
middle of the wire9.
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Fig. 3.11. Calculated probe temperature Tp as a function of V for both wires and
various bias voltages U . Whereas both wires were fabricated altogether, the probe
wire and junction were di�erent because obtained in a separate step (see section
3.4.6) leading to di�erent values of Tp for both wires.

We have compared the value of Tp obtained for the two limiting cases:
• assuming that there are no interaction between electrons in the wire

(Fig. 3.2), the distribution function in the wire reads

fx=1/2(E) = fT0(E − eU/2)/2 + fT0(E + eU/2)/2.

• assuming that the hot electron regime takes place (Fig. 3.3),

f(E) = fTeff (E)

where T 2
eff = T 2

0 + 3
4π2 (eU/kB)2.

For each value of the bias voltage U and for all V , the calculation in both
limits leads to values of Tp di�ering by less than 1 mK. Therefore, the �nal
value of Tp does not depend on the precise shape of the function f(E) in the
wire. The results of this calculation are reported on Fig 3.11 for the bare and
implanted wires.
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Fig. 3.12. Left panel: Dynamical conductance of the tunnel junction in the im-
planted wire sample as a function of the bias voltage V , for various magnetic �elds
B. Right panel: di�erence between the curves on the left panel and the conductance
at B = 2.1 T.

Unexpected dependence on magnetic �eld of the equilibrium tunnel
conductance

In the implanted wire, an unexpected e�ect was observed: at voltages V below
200 µV, the conductance at equilibrium (U = 0) increases with magnetic �eld.
On Fig. 3.12, the conductance is shown for several values of magnetic �eld.

We did not �nd any satisfactory explanation for this behavior, in particu-
lar, none of the possible explanations account for the magnetic �eld constant
threshold in voltage at 0.2 mV.

3.4 Inelastic processes limiting the lifetime of electrons

In this section, we present the theoretical framework used to derive the rates
of all identi�ed inelastic processes between electrons and their environment.

3.4.1 Coulomb interaction between electrons

Screened interaction

As already stated in section 1.1.1, electrons rearrange dynamically in metals so
that the Coulomb interaction is partially screened. Therefore, one can change
from the basis of Bloch states to a basis of weakly interacting quasi-particles.

9 The last equation is valid when electron-electron interactions are negligible in the
probe, which might not be the case. Yet, the �nal answer depends on the total
heat �ux only, and thus any assumption on the precise distribution of the currents
i(E) leads to the same result.
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If this rearrangement is assumed instantaneous, the Coulomb interaction be-
tween quasi-particles can be evaluated using the approximation of Thomas-
Fermi [29] leading to a potential U(r−r′) = e2

4πε0|r−r′|e
−κs|r−r′| where the in-

verse screening length κs is given by κ2
s = e2νF /ε0, and whose spatial Fourier

transform reads U(q) = e2

4πε0(q2+κ2
s) . In a di�usive metal, the response of

electrons to a change in potential is not instantaneous so that the Coulomb
potential becomes time dependent and reads U(q, ~ω) = e2

4πε0q2
−iω+Dq2

−iω+Dq2+Dκ2
s

which simpli�es, for qle ¿ 1, into [1, 61]

U(q, ~ω) ≈ 1
νF

−iω + Dq2

Dq2
. (3.35)

Notice that this is the dynamic potential that was used in Eq. (2.22) in order
to calculate the dephasing time due to Coulomb interaction between electrons.

Kernel of Coulomb interaction

The rates γ
(ee)
e (E) and γ

(ee)
h (E) associated with Coulomb interaction between

electrons are obtained at �rst order using Fermi's golden rule:

γ(ee)
e (E) = 2

2π

~ΩνF

∑
α

δ(Eα − E)
∑

βγρ

|〈αβ|U |γρ〉|2δ(Eα + Eβ −Eγ − Eρ)

(3.36)
where α, β cover all the occupied electronic states, and γ, ρ cover all the un-
occupied electronic states, Ω is the volume of the metal and x represents the
average value of a quantity x on all disorder con�gurations (see section 2.1.1).
A factor 2 accounts for spin degeneracy so that we omit spin indices in the fol-
lowing. Using the distribution function of the occupied electronic states f(E),
the rate simpli�es into

γ
(ee)
e (E) = 4π

~ΩνF

∑
α δ(Eα − E)×∑

βγρ f(Eβ)(1− f(Eγ))(1− f(Eρ))|〈αβ|U |γρ〉|2δ(Eα + Eβ − Eγ − Eρ)
(3.37)

where, from now on, the sums extend on all states, occupied or not. Using the
fact that f(Eµ) =

∫
dE′f(E′)δ(E′ − Eµ) for all energy Eµ and function f ,

γ
(ee)
e (E) =

∫ +∞
−∞ dE′ ∫ +∞

−∞ dεKtot(ε,E,E′)
× f(E′)(1− f(E − ε))(1− f(E′ + ε))

(3.38)

where Ktot(ε,E, E′) is the interaction Kernel and is given by

Ktot (ε, E, E′) = 4π
~ΩνF

×∑
αβγρ δ(Eα − E)δ(Eβ − E′)δ(Eγ − E + ε)δ(Eρ − E′ − ε)|〈αβ|U |γρ〉|2

(3.39)
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Similarly for hole particles,

γ
(ee)
h (E) =

∫ +∞

−∞
dE′

∫ +∞

−∞
dεf(E′)f(E + ε)(1− f(E′ + ε))Ktot(ε,E, E′)

(3.40)

Calculation of the kernel of Coulomb interaction between electrons

Taking into account the selection on energy of the states α, β, γ and ρ, and
introducing the basis of position states |r〉 in 〈αβ|U |γρ〉, one gets two terms

〈αβ|U |γρ〉 =
∫

drdr′〈α|r〉〈β|r′〉U(r − r′, ε)〈r|γ〉〈r′|ρ〉 (3.41)

At this point, it is convenient to introduce the non-local density of states
ρr1,r2(E) =

∑
α〈α|r1〉〈r2|α〉δ(E − Eα) to simplify the kernel into [61]

Ktot(ε,E, E′) = 4π
~ΩνF

∫
dr1 dr′

1dr2dr′
2U(r1 − r′

1, ε)U(r′
2 − r2, ε)

×ρr1,r2(E)ρr′
1,r′

2
(E′)ρr2,r1(E − ε)ρr′

2,r′
1
(E′ + ε)

(3.42)
And expanding the correlator by the Wick theorem,

Ktot(ε,E, E′) = Kcharge
Fock (ε,E,E′) +Kcharge

Hartree(ε,E,E′) (3.43)

where

Kcharge
Fock (ε, E, E′) = 4π

~ΩνF

∫
dr1dr′

1dr2dr′
2ρr1,r2(E)ρr2,r1(E − ε)

×U(r1 − r′
1, ε)U(r′

2 − r2, ε)ρr′
1,r′

2
(E′)ρr′

2,r′
1
(E′ + ε)

Kcharge
Hartree(ε,E,E′) = 4π

~ΩνF

∫
dr1dr′

1dr2dr′
2ρr1,r2(E)ρr′

2,r′
1
(E′ + ε)

×U(r1 − r′
1, ε)U(r′

2 − r2, ε)ρr′
1,r′

2
(E′)ρr2,r1(E − ε)

(3.44)

Fock term

The correlator ρra,rb(E)ρrb,ra(E′) can be expressed for |ra − rb| À le in the
di�usion approximation as [61]

ρra,rb(E)ρrb,ra(E′) =
νF

h

∫
dq

(2π)3
eiq.(ra−rb) ~2Dq2

(E′ − E)2 + ~2D2q4
(3.45)

Fourier transforming Eq. (3.44),

Kcharge
Fock (ε,E, E′) = K(ε) (3.46)

with
K(ε) =

2νF

π~3Ω

∑

q 6=0

|U(q, ε)|2
(

~2Dq2

ε2 + ~2D2q4

)2

(3.47)
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Fig. 3.13. Feynman diagrams for the Fock term (top) and Hartree term (bottom)
in Eq. (3.44). Each wiggle represents a Coulomb factor U(r, r′, ε) and each couple of
lines represent a product of density correlators. The grey areas represent coupling
of the trajectories by disorder. With this representation [61], we see easily that the
Fock term is short range and the Hartree term is long range. Indeed, only in the
second, the lines of the correlators get spatially separated.

where the sum extends on all vectors q whose coordinates are qi = πni/Li in
the Li-long direction i, with ni an integer. Replacing U(q, ε) with its expres-
sion (3.35), one obtains

K(ε) =
2

π~3νF Ω

∑

q 6=0

1
(ε/~)2 + D2q4

(3.48)

Hartree term

In the Fock term of Eq. (3.44) derived in the last section, the product of the
density correlators is such that even long range terms U(r, ε), where r À le,
contribute. This is not the same for the Hartree term, in which the density
correlators go to zero for long range interaction terms. Therefore, the Hartree
term of Eq. (3.44) is negligible compared to the Fock term ([61]).

Kernel of interactions between electrons including spin
Up to now, the spin of the quasi-particles was only taken into account by a
factor 2. However, similarly to the dephasing time calculation 2.2.1, a spin-
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dependent term exists. The Fock term has only contributions from interacting
particles with identical spin, therefore, it is not modi�ed when the spin is taken
into account. However, the correction to the Hartree term is non zero.

Ktot = KFock + KHartree

KFock = Kcharge
Fock

KHartree = Kcharge
Hartree︸ ︷︷ ︸ + Kspin

Hartree

≈ 0

(3.49)

Neglecting the e�ect of magnetic impurities and spin-orbit scattering, the
Hartree term can be approximated by the Fock charge term reduced by the
prefactor λ1 of Eq. (2.29) [72, 1, 108, 69]:

Kspin
Hartree(ε) ≈ λ1K(ε) (3.50)

In case of strong spin-orbit interaction, like in our experiments (where
τso ≈ 10 ps, see Fig. 2.6), this Hartree term gets modi�ed. Indeed, if the spin of
an electron has enough time to change during the interaction (meaning during
~/ε) the Hartree term goes to zero. This introduces a cuto� at small energies
in Kspin

Hartree(ε) which can be dealt with by replacing ε by
(
ε2 + ~2/τ2

so

)1/2 [72]

Kspin
Hartree(ε) ≈ λ1K

(√
ε2 + ~2/τ2

so

)
. (3.51)

The �nal expression for the Kernel reads then

Ktot(ε) = K(ε) +
3(Fσ

0 )2

1 + F σ
0 +

√
1 + Fσ

0

K
(√

ε2 + ~2/τ2
so

)
. (3.52)

In all what follows, we �rst neglect the Hartree term, and assume

Ktot(ε) ≈ K(ε).

E�ective dimensionality

The last expression Eq. (3.48) for the kernel of Coulomb interaction between
electrons allows to be more speci�c than in note 3 of section 2 about the
e�ective dimensionality d of a di�usive metal. Depending on the energy probed
ε, some terms in the sum become negligible. As soon as ε ¿ ~Dπ2/L2

i , all
terms of qi 6= 0 are negligible for each direction i. In our experiments on
metallic wires, the probed energies ε are such that only one direction of length
L matters10, and we can talk of quasi-one dimensional metals (see Fig. 3.19).
In this particular case,
10 The transversal lengths of the wire, typically of w ≈ 100 nm correspond to ener-

gies ~Dπ2/w2 ≈ 10 meV.
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K(ε) =
2

π~νF LSe

+∞∑
n=1

1
ε2 + (π2~D/L2)2n4

(3.53)

with Se the section of the wire. This can be calculated exactly11

K(ε ≡ α~D/2L2) =
2L3

π~3D2νF Se

(
sinh(

√
α) + sin(

√
α)

cosh(
√

α)− cos(
√

α)
− 2α−1/2

)
α−3/2

(3.54)
At very low energies ε, the Kernel goes to K(0) =

(
45π(~D/L2)2~νF SeL

)−1

100.1 1 100
L2Ε�ÑD

1

0.01

100
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H
Ε
L
�
K
H
0
L µΕ

-3�2

Fig. 3.14. Transition of the Coulomb interaction kernel from zero to one dimension.
The thin line represents the d = 1 approximation Eq. (3.55).

and at intermediate energies ~D/L2 ¿ ε ¿ ~D/Se, the kernel scales like

K(ε) = κeeε
−3/2 (3.55)

with12
κee =

(
π
√

2D~3/2νF Se

)−1

. (3.56)

In the experiment, the probed energies are always in the range where this last
expression is valid. Therefore, this is the equation we will use in practice in all
further calculations. It is noteworthy that the Coulomb interaction between
electrons in a di�usive wire is entirely described by one single real parameter
κee. The experiments we present here are able to quantify this parameter.

11 Using the decomposition 1
α2+n4 = i

2α

�
1

iα+n2 − 1
−iα+n2

�
and the identityP

n≥1
1

n2−α
= 1−π

√
αcoth(π

√
α)

2α
12 This prefactor has been con�rmed by another derivation using �uctuation-

dissipation theorem in [41].
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Life time limitation due to Coulomb interaction between electrons
Using the de�nition of the lifetime

τE = (γe + γh)−1 (3.57)
we get in the di�usive wire case,

1

τ
(ee)
E (E)

=
∫ +∞

−∞
dE′

∫ +∞

−∞
dεf(E′)(1− f(E − ε))(1− f(E′ + ε))K(ε)

+
∫ +∞

−∞
dE′

∫ +∞

−∞
dεf(E′)f(E + ε)(1− f(E′ + ε))K(ε)

(3.58)

Link between the lifetime and the phase coherence time
During a magnetoresistance measurement, f is just a Fermi function f(E) =(
1 + eE/kBT

)−1, as at every position, the electrons are at equilibrium. In this
case, the lifetime at energy E = 0 simpli�es into (see Eq. (A.5) in the ap-
pendix)

1

τ
(ee)
E (E = 0, T )

=
∫ +∞

0

dεK(ε)
2ε

sinh(ε/kBT )
. (3.59)

This integral diverges at ε = 0 in the quasi-one dimensional case. This diver-
gence comes from the fact that we considered arbitrarily small energy transfer
ε, whereas the Heisenberg inequality prevents us from considering ε < ~/τ

(ee)
E

in the integral13. We thus introduce a cut-o� at small energies at ~/τ
(ee)
E , and

as most of the integral is dominated by the divergence at ε = 0, sinh(ε/kBT )
can be replaced by ε/kBT , hence

1

τ
(ee)
E (E = 0, T )

= 2kBT

∫ +∞

~/τ
(ee)
E (E=0,T )

dεK(ε) (3.60)

Now, using Eq. (3.55), this self-consistent equation leads to

τ
(ee)
E (E = 0, T ) =

(
4κeekB√

~

)−2/3

T−2/3 (3.61)

The phase coherence time τϕ associated with Coulomb interaction between
electrons, which we have de�ned through the weak localization e�ect, is the
average rate at which electrons interact [61]. Therefore, it is proportional to
τ

(ee)
E (E = 0, T ), and the prefactor can be identi�ed from Eqs. (3.56, 2.25):

τ (ee)
ϕ =

(
πκeekB

2
√
~

)−2/3

T−2/3 (3.62)

13 This cut-o� at small energies has been derived in a more complete scheme in
Ref. [109]. In particular, the self-consistent equation on τ

(ee)
E (E = 0, T ) is in fact

obtained by approximating the decay of the electrons as exponential in time.
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3.4.2 Electron-phonon interaction

As seen in section 2.2.2, longitudinal phonons can exchange energy with elec-
trons. Neglecting edge e�ects, the rates γ

(e−ph)
e (E) and γ

(e−ph)
h (E) can be

calculated in the Keldysh formalism [110]. A good approximation consists in
replacing the electron occupation terms depending on E′ in Eqs. (3.38, 3.40),
and K(ε) by an appropriate function of ε. Processes where the exchanged en-
ergy ε is negative (respectively positive) correspond to the annihilation (resp.
creation) of a phonon in the mode ε, and as phonons are bosons, the oc-
cupation factor reads n−ε = (e−ε/kBT − 1)−1 (resp. 1 + nε), where T is the
temperature of the phonons. Hence, using the fact that the phonon occupation
factor reads −sign(ε)n−ε,

γ(e−ph)
e (E) = −

∫ +∞

−∞
dε(1− f(E − ε))sign(ε)n−εK

(ph)(ε) (3.63)

and
γ

(e−ph)
h (E) = −

∫ +∞

−∞
dεf(E + ε)sign(ε)n−εK

(ph)(ε) (3.64)

We then can calculate the lifetime τ
(e−ph)
E (E, T ) using Eq. (3.57),

1

τ
(e−ph)
E (E, T )

= 2
∫ +∞

0

dε
cosh(E/2kBT )2 coth(ε/2kBT )
cosh(E/kBT ) + cosh(ε/kBT )

K(ph)(ε) (3.65)

The phase coherence time limitation due to electron-phonon interaction can
then be evaluated from the E = 0 value of the lifetime,

1

τ
(e−ph)
ϕ

=
∫ +∞

0

dε
2

sinh(ε/kBT )
K(ph)(ε) (3.66)

Making now the big assumption that K(ph)(ε) can be approximated by κe-phεp

where p is a real number, which is justi�ed in Ref. [111, 102, 36], we get if
p > 0 (if not, it diverges),

1

τ
(e−ph)
ϕ

= κe-ph(4− 21−p)Γ (1 + p)ζ(1 + p)(kBT )p+1 (3.67)

Therefore, if we want to recover the result Eq. (2.33), and in particular the
temperature dependence τ

(e−ph)
ϕ ∝ T−3, we must have

K(ph)(ε) = κe-phε
2 (3.68)

with
κe-ph =

14π

5× 33

E2
F νF

~3ρs4k2
F

(3.69)
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However, as explained in section 2.2.2, this theory does not agree quantita-
tively with experiments. And in practice, κe-ph is a free parameter related to
the prefactor B of section 2.2.2. The good news comes from the fact that at low
enough energies, such as those at which our experiments were performed, the
electron-phonon interactions have a weak e�ect on the distribution functions.
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3.4.3 Paper on the Intensity of Coulomb interaction between
quasiparticles in di�usive metallic wires

We reproduce here our article Ref. [112] published in Solid State Communica-
tions in 2004. The main result of this paper is that Coulomb electron-electron
interaction in di�usive wires is in good agreement with the picture dressed in
section 3.4.1, but its intensity is underestimated at high energies. This paper
shows that this is neither due to a change in e�ective dimensionality while
energies get higher (see section 3.4.1), nor to the fact that distribution func-
tion measurement are performed out of thermodynamic equilibrium, nor to
extrinsic processes.
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Intensity of Coulomb interaction between
quasiparticles in di�usive metallic wires

B. Huard, A. Anthore, F. Pierre, H. Pothier, Norman O. Birge, D. Esteve

Published in Solid State Communications, 131, 599 (2004)

Abstract

The energy dependence and intensity of Coulomb interaction between quasi-
particles in metallic wires is obtained from two di�erent methods : determi-
nation of the temperature dependence of the phase coherence time from the
magnetoresistance, and measurements of the energy distribution function in
out-of-equilibrium situations. In both types of experiment, the energy depen-
dence of the Coulomb interaction is found to be in excellent agreement with
theoretical predictions. In contrast, the intensity of the interaction agrees
closely with theory only with the �rst method, whereas an important dis-
crepancy is found using the second one. Di�erent explanations are proposed,
and results of a test experiment are presented.

Introduction

The description of electrical transport in metals is based on the existence of
long-lived quasiparticles. The �nite quasiparticle lifetime appears in meso-
scopic physics as a limitation of their phase coherence time, which determines
the amplitude of quantum interference e�ects. The three kinds of processes
that limit the quasiparticle lifetime in metals are electron-phonon scattering,
electron-electron scattering, and spin-�ip scattering of electrons from magnetic
impurities14. At temperatures below about 1 K, the rate of electron-phonon
scattering is weak, and in metallic samples without magnetic impurities the
dominant inelastic scattering process should be the Coulomb interaction be-
tween electrons [1].

In this paper, we focus on experiments performed on very clean (99.9999%)
silver wires, in which the e�ect of magnetic impurities is expected to be small
[43, 40]. We review the results obtained from weak localization measurements,
in which the phase coherence time τϕ(T ) is extracted, and from energy relax-
ation experiments, in which the energy exchange rate between quasiparticles

14 Electrons lose phase coherence in the presence of magnetic impurities via a �rst-
order scattering process [113]. They also exchange energy in the presence of mag-
netic impurities via a second-order process [37].
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is derived from their energy distribution function f(E). In the former experi-
ments, we �nd that both the temperature dependence and overall magnitude
of τϕ(T ) agree with the theoretical predictions. In the latter experiments, the
energy dependence of the inelastic rate agrees with theoretical predictions,
but the overall magnitude �uctuates signi�cantly from sample to sample.

Two experiments for measuring Coulomb interaction between QPs

In metallic thin �lms, quasiparticles (QPs) experience frequent elastic scatter-
ing from grain boundaries, �lm edges and impurities. In this di�usive regime,
characterized by a di�usion constant D, the screening of the Coulomb inter-
action is retarded, and the corresponding (squared) matrix element between
two QPs, derived by Altshuler and Aronov in the early 80s [1], depends on
the energy ε exchanged during the interaction process: |M(ε)|2 ∝ ε−3/2 in
quasi-one-dimensional wires. This energy dependence results in a temperature
dependence of the phase coherence time τϕ(T ) ∝ T−2/3 [2], which has been
observed in silver wires by Wind et al. [32] down to 1K, and by Echternach et
al. [114] in gold wires down to 100mK. The most convenient method to access
τϕ is the measurement of the magnetoresistance of wires with a length L long
compared to the phase coherence length Lϕ =

√
Dτϕ, which exhibits a small

peak or dip at zero magnetic �eld due to weak localization [115, 116]. When
the rate of spin precession due to spin-orbit coupling exceeds the dephasing
rate, as is usually the case at low temperature, the relative amplitude of the
zero-�eld dip in the resistance gives direct access to Lϕ :

δR

R
≈ − R

RK

Lϕ

L

with RK = h/e2 ≈ 26 kΩ the resistance quantum. The width in �eld of this
dip corresponds to a �ux quantum in the area Lϕw, with w the wire width. In
practice, magnetoresistance curves measured at di�erent temperatures are �t
with a theoretical expression for δR

R (B) in which the only �t parameters are
the phase coherence length Lϕ, the spin-orbit length Lso, and the width of
the wire w. The two last parameters, Lso and w are �xed at a constant value
independent of temperature for each sample15. Then, τϕ is obtained as L2

ϕ/D,

with D obtained from the resistance R = 1
νF e2D

L
wt where νF is the density

of states at the Fermi energy (2 spin directions) and t the wire thickness. In
order to compare with theory, the resulting curve τϕ(T ) is �t with

τϕ(T ) = (AT 2/3 + BT 3)−1. (3.70)

15 The widths w of Ag wires determined from the best �ts of magnetoresistance data
to weak localization theory are often 10-15% smaller than the widths determined
from electron microscope pictures. This is probably due to the granularity of the
Ag wires.
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where AT 2/3 is the Coulomb interaction rate and BT 3 the approximate
electron-phonon scattering rate16.

In theory, the exchange part of the Coulomb interaction leads to [117]

A =
1
~

(
πk2

B

4νF Lwt

R

RK

)1/3

. (3.71)

The contribution due to the Hartree term has not been evaluated for wires17.
Another experimental method to access the interaction processes consists

in driving the QPs out-of-equilibrium by a �nite voltage U between two con-
tacts at the ends of the wire [34]. At energies between 0 and eU, the di�usion
of QPs from the occupied states at one end to empty states at the other
end results, in absence of inelastic processes, in a two-step distribution func-
tion fx(E) inside the wire as pictured in Fig. 3.15. (The shorthand fx(E)
stands for f(x, E), where we measure distance in units of the wire length L,
so that 0 < x < 1.) This distribution function can be understood as a lin-
ear interpolation between the distribution functions at the boundaries of the
wire. Electron-electron interactions lead to a redistribution of energy between

1

x

0

wire

reservoir

E

0

eU

0

1

f
x
(E)n

x
(E)

reservoir

Fig. 3.15. Schematic diagram showing the spatial and energy dependences of the
distribution function fx(E) of QPs driven out-of-equilibrium by the voltage U using
the geometry of Fig. 3.20 with the switch in position 1. The surrounding box shows
the uniform density of states in the metal and the gray volume shows the occupied
states whose normalized density is fx(E)nx(E). The thick line shows a typical double
step distribution function at x = 1/4 as in Fig. 3.21.

QPs at each position, hence to a rounding of fx(E). In experiments, fx(E)
at a given position in the wire is deduced from the di�erential conductance
16 The purported T 3 power law for the electron-phonon scattering rate is not ex-

pected to be obeyed in disordered metals over any appreciable temperature range.
Its observation over a limited range may be due to a crossover between T 4 and
T 2 behaviors, or even between two T 2 regimes with di�erent prefactors [76].

17 In 2D �lms, both the singlet and triplet contributions to τϕ have been calculated
[73].
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dI/dV (V ) of a tunnel junction between a superconducting probe electrode
and the wire. In order to relate fx(E) to the matrix element of the interac-
tion, the data are �t with the solution of the stationary Boltzmann equation
in the di�usive regime [9, 118]:

1
τD

∂2fx (E)
∂x2

+ I in
coll (x,E, {f})− Iout

coll (x,E, {f}) = 0 (3.72)

where I in
coll (x,E, {f}) and Iout

coll (x,E, {f}) are the rates at which quasiparticles
are scattered in and out of a state at energy E by inelastic processes. The
di�usion time τD = L2/D is the typical time spent by a QP in the wire.
Assuming that the dominant inelastic process is Coulomb interaction between
QPs and phonon emission or absorption, the inelastic scattering integrals read

Iout
coll (x,E, {f}) =

∫
dε fx(E) (1− fx(E − ε)) W (ε) (3.73)

I in
coll (x,E, {f}) =

∫
dε fx(E + ε) (1− fx(E)) W (ε) (3.74)

with

W (ε) = We−e(ε) + We−ph(ε) (3.75)

We−e(ε) = K (ε)
∫

dE′fx(E′)
(
1− fx(E

′
+ ε)

)
(3.76)

We−ph(ε) = κphε2(nph(|ε|) + θ(ε)). (3.77)

The kernel function K (ε) = κeeε
−3/2 is proportional to the averaged

squared interaction matrix element |M(ε)|2 between two quasiparticles ex-
changing an energy ε [1]. Its intensity κee, which can be derived either from
the expression of the microscopic interaction potential [61, 41], or from the
�uctuation-dissipation theorem [41], is18

κee =
(√

2Dπ~3/2νF wt
)−1

. (3.78)

This derivation takes into account the exchange term only. The Hartree contri-
bution to K (ε) is expected to be smaller [1, 61]. The electron-phonon coupling
has an intensity κph and is proportional to the sum of the Bose energy dis-
tribution of phonons nph(|ε|) representing stimulated absorption or emission
of phonons and the Heaviside function θ(ε) representing spontaneous emis-
sion. A more accurate description of electron-phonon coupling was developed
in [76]. However, we restrict here to the simplistic form for We−ph because
the e�ect of phonons is very small. Thus, for all the �ts to the experiments,
we �x the value of κph at 4 ns−1meV−3, which is compatible with the weak
localization measurements19.
18 This expression for κee is half as large as the one used in refs. [41, 43, 40, 36, 35].
19 In previous publications, we used κph = 8 ns−1meV−3 due to a factor of 2 error

in extracting B in Eq. (3.70) from the Boltzmann equation (Eq. (3.72)).
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The boundary conditions for Eq. (3.72) are Fermi-Dirac distributions at
the ends of the wire, with a temperature higher than the cryostat temperature
due to electron heating in the reservoirs20 [119, 36].

The link between the two parameters determining the e�ect of Coulomb
interaction, A and κee, can be made explicit by noting that the dephasing
rate is the average of the inverse of the lifetime of QPs at energies within kBT
of the Fermi energy [120] :

1
τϕ

≈ 2
∫ kBT

~/τϕ

dε
κee

ε3/2
kBT (3.79)

≈ 4κee√
~/τϕ

kBT (3.80)

so that
1
τϕ

≈
(

4κeekB√
~

)2/3

T 2/3. (3.81)

While this derivation reproduces the correct dependence on sample parameters
of the more rigorous theory [2, 117], the prefactor depends on the exact value
of the cuto�, whose order of magnitude is ~/τϕ. The choice of the cuto�
can be made so that our derivation stays consistent with the expressions
Eq. (3.71),(3.78) of A and κee. Thus it is possible to express A as an intensity
κA for Coulomb interaction, using

A ≡
(

πκAkB

2
√
~

)2/3

. (3.82)

Comparison between experimental and theoretical results for both
methods

We present here data taken on wires deposited from 6N-purity (99.9999%)
silver sources. The fabrication procedure for weak localization type (WL)
samples is described in Ref. [43]. The sample parameters are given in Ta-
ble 3.1 (weak localization measurements) and Table 3.3 (energy relaxation
measurements). The names of the samples used in energy relaxation (Relax)
experiments contain Roman numerals, which indicate the index of the experi-
ment, and a number, which is the (approximate) wire length in microns. Most
Relax samples were obtained in a single step, using two-angle evaporations
through a suspended mask [36]. Samples AgII5 and AgII10, on the one hand,
and AgIV20α and AgIV20β, on the other hand, were fabricated at the same
time, on the same chip. Samples AgXI10, AgXII40 and AgXIII40 were fab-
ricated in two steps of e-beam lithography: in a �rst step, the wire pattern
20 Surprisingly, the values of the reservoir heating parameters that produce the best

�ts to the data are somewhat smaller than the values calculated from the reservoir
heating model discussed in [119].
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was de�ned, then silver was evaporated and followed by a lift-o�, and a new
deposition of resist. In a second step, the pattern for the aluminum electrodes
was exposed to the electron beam. In the vacuum chamber of the deposition
machine, the silver layer was cleaned by argon ion milling. A thin (3 nm)
layer of aluminum was then deposited, followed by an oxidation in 1.3 mbar
of oxygen-argon (20%-80%) during 8 minutes, in order to form the tunnel
barrier. Finally, a layer of aluminum was deposited.

Sample L w t R τD D
• (µm) (nm) (nm) (kΩ) (µs) (cm2/s)

Ag(6N)a 136 65 47 1.44 1.58 117
Ag(6N)b 271 100 45 3.30 10.6 69.2
Ag(6N)c 400 105 53.5 1.44 8.54 187
Ag(6N)d 285 90 36 2.00 4.86 167

Table 3.1. Geometrical and electrical characteristics of samples for weak localiza-
tion measurements. The di�usion coe�cient D is obtained using Einstein's relation
1/ρ = νF e2D with the density of states in silver νF = 1.03× 1047 J−1m−3, and the
resistivity ρ extracted from the resistance R, thickness t, length L and width w of
the wire.

Sample Athy A B

• (ns−1K−2/3) (ns−1K−3)
Ag(6N)a 0.55 0.73 0.045
Ag(6N)b 0.51 0.59 0.05
Ag(6N)c 0.31 0.37 0.047
Ag(6N)d 0.47 0.56 0.044

Table 3.2. Theoretical predictions of Eq. (3.71) (Athy) and �t parameters (A and
B) for τϕ(T ) in the silver samples using the functional form given by Eq. (3.70).
Comparison of Athy and A is shown graphically in Fig. 3.18.

In Fig. 3.16, we present τϕ(T ) for the �rst three WL samples (the data
points of the last one, which are presented in Ref. [43], are so close to those
of the third one that they confuse the �gure), as well as the best �ts with
Eq. (3.70). The �t parameters are given in Table 3.2. The �t value of A
is very close to the theoretical value for the exchange contribution of the
Coulomb interaction, as can be seen in Fig. 3.18 where the X-coordinate of
the solid squares is the theoretical value of κA using Eqs. (3.71) and (3.82),
and the Y-coordinate is the value from experiment.

The situation is quite di�erent in energy relaxation experiments. We show
in Fig. 3.17 distribution functions f(E) measured in the middle of sample
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Sample L w t R τD D
◦ (µm) (nm) (nm) (Ω) (ns) (cm2/s)

AgI5 5.05 90 43 41 2.1 121
AgII5 5.2 66 39 44 1.6 173
AgII10 10.3 65 39 81 5.6 191
AgIII20 19.6 160 43 45 16 241
AgIV20α 19.7 95 44 86 19 208
AgIV20β 19.9 100 44 91 21 188
AgX20 21.7 100 48 80 22 214
AgXI10 9.55 124 45 31 43 211
AgXII40 38 180 45 108(21) 87 165
AgXV40 38 145 45 134 87 165

Table 3.3. Geometrical and electrical characteristics of samples for energy relax-
ation measurements.

Sample κthyee κee

◦ (ns−1meV−1/2)
AgI5 0.060 0.95
AgII5 0.076 0.5
AgII10 0.073 0.54
AgIII20 0.024 0.5
AgIV20α 0.043 0.40
AgIV20β 0.043 0.37
AgX20 0.037 0.11
AgXI10 0.032 < 0.18
AgXII40 0.025 0.18
AgXV40 0.031 0.32

Table 3.4. Theoretical predictions of Eq. (3.78) (κthyee ) and �t parameters (κee) for
fx(E) in the silver samples using the solution of the Boltzmann equation Eq. (3.72).
The distribution functions measured on sample AgXI10 were so close to the nonin-
teracting regime that it was only possible to give an upper bound to the value of
κee. Comparison of κthyee and κee is shown graphically in Fig. 3.18.

AgIV20α, for U ranging from 0.1 to 0.5 mV, plotted as a function of the
reduced energy E/eU. Solid lines are �ts resulting from the numerical solution
of the Boltzmann equation, obtained with κee = 0.40 ns−1meV−1/2. The
increase in slope of the middle step of f(E) when U increases, characteristic of
the e�ect of Coulomb interaction, is well reproduced. However, the �t value for
κee is nearly an order of magnitude larger than the value given by Eq. (3.78).
Similar discrepancies exist for the other Relax samples. It could be argued that
the numerical prefactor in Eq. (3.78) is incorrect. Fig. 3.18 seems to rule out
this explanation: the circles corresponding to the theoretical and �t values,
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Fig. 3.16. Phase coherence time vs temperature in samples Ag(6N)a (¥), Ag(6N)b
(H), and Ag(6N)c (•), all made of 6N sources. Continuous lines are �ts of the data
to Eq. (3.70). The quantitative prediction of Eq. (3.71) for electron-electron inter-
actions in sample Ag(6N)c is shown as a dashed line.

given also in Table 3.4, present a large scatter, and so the ratio between
experiment and theory does not appear to be constant.

Discussion of the discrepancy between the two experiments

Figure 3.18 reveals a very puzzling di�erence between weak localization (WL)
and energy relaxation (Relax) experiments. Whereas the results of both types
of experiments are precisely accounted for by the theory of Coulomb interac-
tions in disordered wires as far as the energy dependence is concerned, the
prefactor is well understood for the �rst, but not at all for the second. In order
to resolve this puzzle, we now list the di�erences between the two types of
experiments:

Possibility of extrinsic energy exchange processes in Relax samples

WL experiments are extremely sensitive to very small quantities of magnetic
impurities. It was shown in [43] that even in our cleanest Ag(6N) wires, there
was evidence for magnetic impurities at concentrations of about 0.01 ppm,
i.e. 1 impurity atom for every 108 Ag atoms. Their contribution to τϕ was
visible only at the lowest experimental temperatures. In Fig. 3.18, we have
indicated with the vertical dashed lines how far the �t values of κA can be
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Fig. 3.17. Experimental measurements (◦) and �ts (solid curves) of the quasiparticle
energy distribution function f 1

2
(E) for �ve di�erent values of the applied voltage

across the wire AgIV20α. The data have been shifted vertically for clarity.

reduced if one includes a small concentration of magnetic impurities as an
extra �t parameter.

It is known that magnetic impurities also mediate energy exchange between
electrons22. Could the presence of magnetic impurities explain the anoma-
lously large values of κee observed in many Relax experiments? Since most
of the Ag samples used in the WL experiments were fabricated in the same
deposition system used for the Relax samples, we expect that Relax sam-
ples should be equally clean. This hypothesis must be checked, however. The
presence of magnetic impurities in Relax samples can be detected directly
by performing the experiment as a function of magnetic �eld [40]. In sam-
ples AgX20 and AgXI10, the magnetic �eld dependence of the measurements
set an upper bound to the concentrations of magnetic impurities at 0.1 and
0.6 ppm respectively. For sample AgX20, if we include the e�ect of 0.1 ppm
of magnetic impurities into the analysis of the Relax data, the value of κee is
reduced by only 15%. In sample AgXI10, the distribution functions were so
close to the noninteracting regime that it was only possible to place an upper
bound on κee, hence this sample does not appear in Fig. 3.18.

For the Ag Relax samples that were not measured in a magnetic �eld, we
have estimated the systematic uncertainty in κee by the following analysis.
Assume that another process, other than electron-electron interactions, con-
tributes to energy exchange in the Relax experiments. In particular, for the

22 Electrons lose phase coherence in the presence of magnetic impurities via a �rst-
order scattering process [113]. They also exchange energy in the presence of mag-
netic impurities via a second-order process [37].
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Fig. 3.18. Comparison of the experimental prefactor with the theoretical prediction,
for weak localization experiments (¥) and energy relaxation experiments (◦). If we
assume a small amount of magnetic impurities to be present in the WL samples,
the �t values of κA can be reduced down to the bottom of the dashed lines below
the squares. Similarly for the Relax experiments, if we assume an extrinsic process
of the type K(ε) ∝ ε−2 in addition to the Coulomb interaction, we obtain a range
of values of κee compatible with the data, represented as a dashed line below the
◦. The behavior of sample AgX20 was measured in a magnetic �eld, allowing us to
place an upper bound on the concentration of magnetic impurities, and hence to
rule out the possibility of reducing the value of κee more than 15%. Thus, this data
point is represented as a bold circle without any dashed line.

case of electron-electron interactions mediated by magnetic impurities, the
interaction kernel is approximately of the form K(ε) = κ2ε

−2. If we �t the
data using the value of κ2 as an additional �t parameter, we can ask how
small the value of κee can become before the �ts become clearly incompatible
with the data. The results are shown by the dashed lines descending below the
points for the Relax samples in Fig. 3.18. As can be seen, for some samples
the �ts are somewhat insensitive to the relative weights of κee and κ2, and
the discrepancy between theory and experiment gets smaller. Nevertheless,
the discrepancy still remains. We conclude for the time being that extrinsic
energy exchange processes with K(ε) ∝ ε−2 are unlikely to explain completely
the discrepancy between experiment and theory. This issue will be discussed
further in section 3.4.3.
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Sample dimensionality

In order to reduce the amplitude of conductance �uctuations, which spoil the
analysis of the magnetoresistance in terms of the WL theory, we fabricate
WL samples with lengths L À Lϕ (Tmin), where Tmin is the lowest exper-
imental temperature. Typically, in the WL experiments, Lϕ varies between
1 µm to 20 µm and the wire remains in the one-dimensional regime given
by w, t ¿ Lϕ ¿ L. In Relax experiments, on the other hand, the distri-
bution function f(E) only contains information on the interaction process
if it is far from a Fermi function and far from a perfect double-step, i.e. if
L ≈ few Lϕ (eUmax/kB). Thus the wire length is smaller than for the WL ex-
periments. The dimensionality criterion for Relax is illustrated in Fig. 3.19,
where we plot the function K(ε) calculated using the discrete sum over the
longitudinal and transverse wave vectors [61, 121]

K(ε) ∝
∑

qx 6=0
qy,qz

1
D2q4 + (ε/~)2

(3.83)

where qx = πnx

L , qy = πny

w and qz = πnz

t are the wave vector components with
nx ∈ N∗ and ny, nz ∈ N.
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Fig. 3.19. Energy dependence of the kernel K(ε) of Coulomb interaction in a wire
with L = 10 µm, w = 130 nm, t = 45 nm and D = 200 cm2/s. The asymptotic zero-,
one- and three-dimensional regimes (0D, 1D, 3D) are characterized by K(ε) = K(0),
K(ε) ∝ ε−3/2 and K(ε) ∝ ε−1/2, respectively (straight lines). The two-dimensional
regime is not clearly visible because w ≈ t. The range of relevant ε's for the Relax
experiments is determined by kBTmin and eUmax. The normalization factor on the
y-axis is K(0) =

�
45π(~D/L2)2~νF wtL

�−1
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Typical sample dimensions were chosen: L = 10 µm, w = 130 nm, t =
45 nm and D = 200 cm2/s. The �gure 3.19 shows that for all relevant energies
in the experiments, K(ε) is far from the 1D-3D transition. For small energies
near kBTmin, the behavior of K(ε) di�ers slightly from the ε−3/2 power law,
but this deviation goes in the wrong direction to explain the discrepancy
between theory and experiment.

Di�usive approximation in narrow wires

The energy scales probed by WL and Relax experiments are rather di�erent.
In wires, the value of τϕ is essentially determined by the low energy cut-o� of
the interaction, at ~/τϕ. In the samples presented here, τϕ ranges (in the rele-
vant temperature range: 1 K down to 40 mK) from 1 to 20 ns, corresponding to
energies ~/τϕ between 0.03 and 0.6 µeV. In the Relax experiments, the shape
of f(E) is entirely determined by energy exchanges of an amount between
kBT and eU , in practice between 4 and 500 µeV. According to Eq. (3.83),
the characteristic lengthscale 1/q =

√
~D/ε for the interaction is therefore

a few micrometers for WL, several hundreds of nanometers for Relax. The
discrepancy between the results of the two types of experiment could point
out a failure of the di�usive model, in which the QP dynamics is described by
a single di�usion constant D. This argument is reinforced by the fact that the
elastic mean free path deduced from D is of the order of the wire thickness
t, indicating that surface and grain boundary scattering dominate the elastic
processes. If surface scattering alone were dominant, the elastic mean free path
of QPs with an instantaneous wavevector along the axis of the wire would be
very di�erent from that of QPs travelling in a perpendicular direction, and
the di�usive approximation would break down. To our knowledge, Coulomb
interaction has never been investigated in this regime. However it is not clear
why this situation could be described by the same energy dependence and
why the intensity could be larger.

Departure from equilibrium

WL experiments are performed very close to equilibrium. In Relax experi-
ments, a voltage U À kBT/e is applied to the wires in order to establish an
out-of-equilibrium situation. Near the Fermi level, the distribution function is
very di�erent from a Fermi function, and it could be argued that the deriva-
tion leading to the expression (3.78) of the prefactor κee is no longer valid.
In order to test this hypothesis, we have performed a complementary exper-
iment, described below, in which the e�ect of the distance to equilibrium is
investigated.

A new Relax experiment close to equilibrium

Fig. 3.20 shows a schematic of sample AgXII40, which was designed to investi-
gate the e�ect of the deviation of f(E) from an equilibrium Fermi distribution.
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Fig. 3.20. Schematic diagram of an experiment to measure fx(E) in a wire close to
equilibrium. Quasiparticles are injected into the wire from a superconducting wire
(labelled injector) through a tunnel junction biased at potential U (switch position
2). The distribution function fx(E) at position x = 0.25 is then determined from
the dI/dV characteristic of the probe junction. Alternatively, the wire can be driven
far from equilibrium by applying the voltage bias U across the wire (switch position
1). The resistance RB is chosen so that the potential of the right reservoir remains
close to zero when the switch is in position 2.
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Fig. 3.21. Measured (◦) distribution function f 1
4
(E) in the �conventional� Relax

experiment using sample AgXII40 with the switch of Fig. 3.20 in position 1, and for
U = 0.2 mV. The solid line is a numerical solution to the Boltzmann equation using
the prefactor κee = 0.18 ns−1meV−1/2 for the Coulomb interaction between elec-
trons. As shown by the three dot-dashed lines, other values of κee produce markedly
worse �ts to the data. In particular, the theoretical value κee = 0.025 ns−1meV−1/2

does not come close to reproducing the experimental results.
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As in other Relax experiments, a wire (38 µm long, 180 nm wide, 45 nm thick)
is placed between large contact pads. A superconducting probe electrode is
placed at x = 1/4, with a tunnel resistance to the wire of 15 kΩ. The size
of the tunnel junction was 0.18×0.23 µm2. When the switch on Fig. 3.20 is
placed in position 1, the �conventional� Relax experiment can be performed.
A measured distribution function is shown in Fig. 3.21. The intensity of the
Coulomb interaction deduced from the �ts of f(E) is κee = 0.18 ns−1meV−1/2,
as indicated in Table 3.4. Eq. (3.78) has been used 23 to calculate the the-
oretical value κthyee = 0.025 ns−1meV−1/2. This discrepancy is of the same
type as the one observed in the other samples of Table 3.4. A second su-
perconducting electrode, denoted injector in Fig. 3.20, forms a tunnel junc-
tion with the wire around its center, but with a much larger area than the
probe junction: 0.57×0.8 µm2. The junction was obtained at the overlap be-
tween the winj = 0.8 µm-wide superconducting electrode and the wire, which
presents an intentional at this position. The corresponding tunnel resistance
was Rinj = 1.1 kΩ. When the switch of Fig. 3.20 is placed in position 2,
quasiparticles are injected through the tunnel junction into the wire when
U > ∆/e, with ∆ the gap in the QP density of states of the injector. On the
normal side of the tunnel junction, the QP distribution function is therefore
expected to display a step, the shape of which re�ects the BCS density of
states nS(E) = Re

(|E| /√E2 −∆2
)
. The height of the step away from the

BCS peak is given by the ratio of the injection rate of QPs to the di�usion
rate towards the two normal reservoirs: f 1

2
(E) ∼ (

R
4

)
/Rinj ≡ r (the factor

1/4 results from the parallel combination of the two halves of the normal wire
as will be shown below). A quantitative description follows from the intro-
duction of new boundary conditions in the Boltzmann Eq. (3.72): fx(E) is
a Fermi function with a zero electrochemical potential at x = 0 and eUr at
x = 1, whereas at x = 1

2 current conservation at each energy implies

νF wteD

(
∂fx(E)
L∂x

|x= 1
2
+ − ∂fx(E)

L∂x
|x= 1

2
−

)
= iinj(E)

with
iinj(E) =

1
eRinj

nS(E + eU)
(
fS(E + eU)− f 1

2
(E)

)

where fS(E) is the distribution function in the superconducting injector. We
neglect here the slight modi�cation of the DOS in the wire due to proximity
e�ect, because of the small transparency of the tunnel barrier. Finally,

23 The resistivity of the wire could not be accessed in this experiment. It has thus
been estimated from the measured parameters of AgXIII40 in order to calculate
κthyee . Indeed, this sample AgXII40 and the sample AgXIII40 have been fabricated
together.
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∂fx(E)
∂x

|x= 1
2
+ − ∂fx(E)

∂x
|x= 1

2
−

=
R

Rinj
nS(E + eU)

(
fS(E + eU)− f 1

2
(E)

)
. (3.84)

The electrochemical potential eUr in the right reservoir, which is connected to
ground by a bias resistance RB = 12 Ω, is given by Ur = 1

2
RRB

R+RB

∫
iinj(E)dE <

RB

2Rinj
U. Since RB

2Rinj
' 0.005, we make the approximation Ur = 0, so that the

situation is symmetric: fx(E) = f1−x(E) and Eq. (3.84) becomes
∂fx(E)

∂x
|x= 1

2
+ = −∂fx(E)

∂x
|x= 1

2
−

= 2rnS(E + eU)
(
fS(E + eU)− f 1

2
(E)

)
. (3.85)

In the absence of interactions, at T = 0, one obtains directly for x < 1
2 :

fx(E) =





1 for E < 0
2xf 1

2
(E) for E ∈ [0, eU −∆]

0 for E > eU −∆

and
f 1

2
(E) =

r nS (E − eU)
1 + rnS (E − eU)

. (3.86)

The spatial dependence of fx(E) is plotted in Fig. 3.22 for x < 1
2 , assuming

r = 0.1 for visibility. It is seen that fx(E) is much closer to a Fermi function
than when the voltage is applied across the wire.

An experimental curve, obtained for U = 0.29 mV, is shown in Fig. 3.23.
As predicted, it presents a very small step extending from E = 0 to
E = eU − ∆, with ∆ = 0.18 mV the gap for the injector deduced from
its I-V characteristic, measured separately. The blow-up (×10, right scale)
shows a small peak near E = eU − ∆. We also show f(E) calculated using
the same parameters as those deduced from the �conventional� measurement,
using Eq. (3.72) and (3.85). Except for a slight rounding of the small peak,
the agreement is within experimental accuracy for all the values of U for which
data were taken (0.22 to 0.31 mV). We show in particular that other values
of κee would produce curves which signi�cantly di�er from the measured one.
Hence the value of κee deduced from energy exchange experiments does not
seem to depend on whether the distribution is far from equilibrium, as in
the original experiment (Fig. 3.21), or close to equilibrium, as in the newer
experiment described here. Our conclusion is that Coulomb interaction is not
modi�ed by the fact that f(E) is not exactly a Fermi function.

Conclusions

Section 3.4.3, we discussed the possibility that the anomalously high rates
of energy exchange observed in many Relax experiments could be caused by
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Fig. 3.22. Schematic diagram showing the spatial and energy dependences of the
distribution function f 1

4
(E) of QPs driven out-of-equilibrium by the voltage U using

the geometry with the switch of Fig. 3.20 in position 2. The surrounding box shows
the density of states along the circuit and the gray volume shows the occupied states
whose normalized density is fx(E)nx(E). The inelastic processes involving QPs are
assumed to be very weak for clarity. The thick line shows the distribution function
at x = 1/4.

extrinsic sources, such as magnetic impurities. Two arguments against this
hypothesis were: 1) it seems implausible that all samples used in Relax exper-
iments contain impurities that are not present in any sample used for local-
ization experiments, since both kinds of samples were fabricated in the same
apparatus; and 2) we checked whether adding a term of the form K(ε) ∝ ε−2

to the interaction kernel could signi�cantly decrease the value of κee obtained
from �tting the data to the solution of Eq. (3.72). But those two arguments
do not rule out another possibility, namely that both kinds of samples contain
magnetic impurities with integer spin and with a magnetic anisotropy of the
form KS2

z in the impurity Hamiltonian [122]. Such a term is predicted in the
presence of spin-orbit scattering, for magnetic impurities located close to the
sample surface [95]. If the characteristic energy K satis�es kBT ¿ K < eU ,
then such impurities would contribute to energy exchange but not to dephas-
ing. The contribution to K(ε) from such impurities depends on both K and
B, but is not expected to be of the form K(ε) ∝ ε−2. In principle, the pres-
ence of such impurities should be detectable in experiments in the presence
of a magnetic �eld. Indeed once gµB À eU , their contribution vanishes. And
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Fig. 3.23. Measured (◦) distribution function f 1
4
(E) in the new Relax experiment

using sample AgXII40 of Fig. 3.20 with the switch in position 2, and for U =
0.27 mV. The data for positive E are also shown magni�ed by a factor 10. The solid
line is a numerical solution to the Boltzmann equation with boundary condition
given by Eq. (3.86), using as prefactor for the Coulomb interaction the value κee =
0.18ns−1meV−1/2. The two dot-dashed lines show that other values of κee produce
markedly worse �ts to the data.

as the samples that were measured in presence of magnetic �eld showed no
visible dependence on B, this possibility seems unlikely.

In conclusion, the energy dependence of Coulomb interaction in disordered
wires is well explained by theory. The intensity of the interaction, as deduced
from phase coherence time measurements, is quantitatively in agreement with
theory, whereas for energy relaxation, an unexplained discrepancy remains. A
new version of the Relax experiment has demonstrated that this discrepancy
is not due to the out-of-equilibrium situation.
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3.4.4 Comments on the paper

Another possible explanation

In this article, it is mentioned that the Hartree term of the kernel of the
interaction between electrons is much smaller than the Fock term. This might
in fact be a wrong statement. Indeed, if the charge Hartree term is indeed
negligible, the spin term may not be so small (see Eq. (3.51)). What actually
remains to be solved is the value of the factor Fσ

0 in silver wires.
In the paper above, we have shown that a big discrepancy between theory

and experiment exists on the rate of Coulomb interaction between electrons
for the Relax experiment, although there is an agreement for the WL experi-
ments (Fig. 3.18). One might wonder wether the neglected Hartree term could
explain this.

The WL experiments probe the dephasing time, and, as proven in 2.2.1,
the Hartree contribution to τϕ is negligible, since the probed energies are much
smaller than the spin-orbit characteristic energy ~/τso. This could be the rea-
son why a prediction which neglects the Hartree term correctly describes the
Coulomb interaction contribution to τϕ(T ) measurements. On the opposite,
the Relax experiments probe energy exchange between electrons which are
larger than ~/τso. In this case, the Hartree term might be not negligible.

However, in order to explain a factor 3 between the �tted κFock
ee from

the experiment and the theoretical prediction κthy
ee using the Fock term, it

seems that one needs extremely low values for 1 + F σ
0 . An estimate for the

experiments on the bare wire (see 3.4.7) gives F σ
0 ≈ −0.9. Still, it contradicts

conduction electron spin resonance measurements where F σ
0 ∈ [−0.21, 0.05] in

silver [70], therefore this explanation for the discrepancy discussed in the last
paper is most certainly insu�cient.
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3.4.5 Interactions mediated by magnetic impurities

In section 3.4.3, we have seen the great achievements of the semi-classical
approach to describe the dynamics of electrons in presence of Coulomb inter-
action between electrons and electron-phonon interactions. However, it turns
out that this theory alone is not able to properly describe the transport in
the big majority of metallic wires. In Ref. [36, 41], it has been demonstrated
experimentally that as soon as the purity of a metal is not extremely high (the
best available purity, called 6N, meaning less than 1 ppm of foreign atoms are
not always enough), electrons exchange much more energy than predicted24
[36]. At �rst sight, imputing this strong energy exchange to magnetic impu-

Electron-electron interaction mediated by a magnetic impurity (second order process) 
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Fig. 3.24. Scheme of the processes involving magnetic impurities and allowing
exchange of energy between electrons [37]. On each panel, the left ladder represents
the electronic states and the right part schemes the two states of the magnetic
impurity lifted by the Zeeman energy. In case the �eld is zero, both states are
degenerate and only the second order process (top) can lead to energy exchange
between electrons (�gure taken from Ref. [41]).

24 The mean free path laliene before encountering an impurity can be estimated by
saying that the volume Ωalien associated to a single impurity is just the volume
covered by an electron on a distance laliene :

λ2
F laliene = Ωalien = 1/cMI (3.87)

In the case of silver, the density is 59 nm−3 (see Table A.2), therefore, for 1 ppm
of impurities, we get laliene ≈ 3 mm. It is clear that at this level, a modi�cation in
the metal purity does not a�ect the total mean free path le which is of the order
of 40 nm in our thin �lms.
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rities seemed wrong. Indeed, when an electron undergoes a spin-�ip process
with a magnetic impurity, it cannot exchange energy with it, as the magnetic
impurity does not have any dynamical degree of freedom to stock this energy.
In 2001, Kaminski and Glazman showed that this exchange is made possible
through higher order processes [37]. Indeed, if two electrons undergo a spin-
�ip process with a magnetic impurity, they can exchange an energy ε with
each other, because quantum mechanics states that energy conservation can
be violated by an energy ε for a time ∆t = ~/ε. Still, one might argue that
such correlated spin-�ip events are so rare that this exchange process is far
less e�cient than electron-electron interactions. Kaminski and Glazman real-
ized that the Kondo e�ect (see section 2.2.3) increases dramatically the rate
of those correlated events so that, for energies ε near the Kondo energy kBTK

and magnetic impurity concentrations high enough, electrons exchange more
energy through Kondo impurities than through the Coulomb interaction. In
this section, we present the formalism developed in Ref. [39] to take into ac-
count this new interaction as rates γ

(e−l−e)
e and γ

(e−l−e)
h in the Boltzmann

equation (3.5) with a �nite magnetic �eld.

Zero magnetic �eld

At zero magnetic �eld, as already mentioned, only processes involving at least
two electrons contribute to the rates. Therefore, the amplitude of probability
entering in the rate is in J2 where J is the coupling constant between electrons
and magnetic impurities (see 2.2.3). Hence, the rate is in J4. In Ref. [37],
the rates are derived in the case where the interactions between magnetic
impurities is negligible (Tsg ¿ TK , where Tsg is de�ned by (2.36)). In this
regime,

γ(e−l−e)
e (E) =

∫ +∞

−∞
dE′

∫ +∞

−∞
dεf(E′)(1− f(E − ε))(1− f(E′ + ε))

×K(e−l−e)(ε,E, E′, f)
(3.88)

for electron-like quasi-particles and

γ
(e−l−e)
h (E) =

∫ +∞

−∞
dE′

∫ +∞

−∞
dεf(E′)f(E + ε)(1− f(E′ + ε))

×K(e−l−e)(ε,E,E′, f)
(3.89)

for hole-like quasi-particles, where K(e−l−e)(ε,E, E′, f) is the interaction Ker-
nel for the electron-electron interaction mediated by Kondo impurities. For
impurities of spin S = 1/2, the kernel reads

K(e−l−e)(ε,E, E′, f) ≈ ε−2 3π2

4h
cMIν

3
F J4 (3.90)
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This expression gets modi�ed by Kondo e�ect and, when E, E′ À ε À kBTK ,
the coupling constant J has to be replaced by

8
1
4

νF
[ln(E/kBTK)+ln([E−ε]/kBTK)]−2[ln(E′/kBTK)+ln([E′+ε]/kBTK)]−1/2

(3.91)
Note that the case of strong interactions between magnetic impurities has

also been derived in Ref. [83].

Finite magnetic �eld

In order to investigate quantitatively this second order process, one may apply
an external magnetic �eld Bez (with ez a unitary vector) in order to lift the
degeneracy between the impurity spin states in a controlled way.

k

0

E

E
F

gµ
B
B

k-δkk+δkk

Fig. 3.25. Density of occupied electronic states in a metal under a magnetic �eld.
Depending on the spin of the electrons, the densities of states di�er (see Fig. 3 p. 842
from Ref. [123]).

If the electrons were independent, the e�ect of a magnetic �eld would only
be to shift the densities of states of the electrons depending on their spin.
Hence, the density of occupied states of the electrons whose spin is aligned
with the magnetic �eld is n(E)f(E)↑ = 1

2n(E − gµBB/2)f(E) and for the
opposite spins, n(E)f(E)↓ = 1

2n(E + gµBB/2)f(E), where n(E) is just the
metal density of states (see Fig. 3.25).

Interactions do not alter this global change in the populations of elec-
trons, but the interaction rates γ(e−l−e)(E) get more di�cult to work out.
In Ref. [39], this calculation was performed in a regime where the electrons
are excited well above kBTK (eU À kBTK), and for concentrations of spin
1/2 magnetic impurities cMI low enough so that RKKY interactions are neg-
ligible (as de�ned by Eq. (2.36), T ¿ Tsg). Details of the calculation may
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be found also in Ref. [41]. Below, we will only present the main steps of the
self-consistent calculation of the rates.
• One starts from a trial function fx(E). In the following, explicit reference

to the position index x will not be speci�ed.
• The populations of impurity spin ↑ or ↓ are calculated from the distribution

function f(E) and the magnetic �eld B.
• Using the single magnetic impurity spin operator basis Sz, S±, and the

two z electron spin states | ↑〉 and | ↓〉 one calculates the four renormalized
coupling constants Jz,±

l (E) entering in the Hamiltonian

H = H0 + Hc

H0 =
∑

k,lEklc
†
klckl − gµBBSz

Hc =
∑

k,k′(J
z
↑ c
†
k↑ck′↑ − Jz

↓ c
†
k↓ck′↓)Sz + J+c†k↓ck′↑S+ + J−c†k↑ck′↓S−

(3.92)
where c†k↑ denotes the creation operator of an electron with wavevector k
and spin ↑. The renormalization factor depends on the function f(E) for
each spin population.

• Using the renormalized coupling constants and the populations of elec-
tronic spin states, one can calculate the impurity spin correlator

C(t) = [ S+(t)S−(0)︸ ︷︷ ︸ + S−(t)S+(0)︸ ︷︷ ︸ ]/2+ Sz(t)Sz(0)︸ ︷︷ ︸
C+(t) C−(t) Cz(t)

(3.93)

whose Fourier transform is denoted by C̃(ω), and where ·̄ denotes the
average value on the occupied electron spin states.

• A new trial function f(E) can be calculated using the Boltzmann equation
and the following rates

γ(e−l−e)
e (E) =

cMIνF

8~

∫ +∞

−∞
dε(1− f(E − ε))[J−(E)J+(E − ε)C̃+(ε/~)

+J+(E)J−(E − ε)C̃−(ε/~)

+(Jz
↑ (E)Jz

↑ (E − ε) + Jz
↓ (E)Jz

↓ (E − ε))C̃z(ε/~)]
(3.94)

and

γ
(e−l−e)
h (E) =

cMIνF

8~

∫ +∞

−∞
dεf(E + ε)[J−(E)J+(E − ε)C̃+(ε/~)

+J+(E)J−(E − ε)C̃−(ε/~)

+(Jz
↑ (E)Jz

↑ (E − ε) + Jz
↓ (E)Jz

↓ (E − ε))C̃z(ε/~)]

(3.95)

Recently, Glazman et al. have extended this calculation to all temperatures
and energy regimes [124].
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3.4.6 Paper on the E�ect of magnetic impurities on energy
exchange between electrons

We reproduce here our article published in Ref. [65]. The main result of this
paper is a detailed quantitative comparison of measurement of energy relax-
ation in presence of a well controlled amount of magnetic impurities, with the
theory of Ref. [39].



3.4 Inelastic processes limiting the lifetime of electrons 97

E�ect of magnetic impurities on energy
exchange between electrons

B. Huard, A. Anthore, Norman O. Birge, H. Pothier, D. Esteve

Published in Physical Review Letters, 95, 036802 (2005)

Abstract

In order to probe quantitatively the e�ect of Kondo impurities on energy ex-
change between electrons in metals, we have compared measurements on two
silver wires, with dilute magnetic impurities (manganese) introduced in one
of them. The measurement of the temperature dependence of the electron
phase coherence time on the wires provides an independent determination of
the impurity concentration. Quantitative agreement on the energy exchange
rate is found with a theory by Göppert et al. that accounts for Kondo scat-
tering of electrons on spin-1/2 impurities.

Core of the paper
In di�usive metals, it is expected that the dominant inelastic electron scat-
tering process at low temperature is the Coulomb interaction [2, 61], leading
to a power law increase of the electron phase coherence time τϕ with de-
creasing temperature T . However, in the presence of a small concentration of
magnetic impurities with low Kondo temperature, τϕ can be limited by spin-
�ip scattering, resulting in a nearly temperature independent phase coherence
time over a broad temperature range [43]. As shown in Ref. [43], this mecha-
nism could explain the apparent low-temperature saturation of τϕ observed in
many experiments, which caused a controversy in recent years [33, 78]. It was
recently proposed that magnetic impurities also a�ect the energy exchange
rate between electrons [37], which could explain the anomalous interaction
rate observed in a series of experiments [34, 35]. A �rst hint that this pro-
posal is relevant was the observation of a magnetic �eld dependence of the
rate [40, 41], in a manner consistent with a theory taking into account the
Kondo e�ect [39]. In those experiments, however, the nature and amount of
magnetic impurities were not controlled. Assuming that the impurities were
Mn, the concentrations needed to explain energy exchange experiments in sil-
ver wires were up to two orders of magnitude larger than the concentrations
deduced from τϕ measurements on similar samples [40, 41]. It was proposed
that the samples for energy exchange rate measurements could have been
contaminated during fabrication [40, 41]. Another hypothesis is that impuri-
ties other than Mn, which a�ect energy exchange rates more drastically then
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phase coherence, were present [125, 95]. Comparison of these proposals with
existing experimental results is di�cult because it requires dealing with more
involved theories (large spin, surface anisotropy, large Kondo temperature),
and pointless because it requires uncontrolled extra parameters. In order to
overcome these di�culties and investigate quantitatively the mechanism pro-
posed by Ref. [37], we have performed a comparative experiment described in
this Letter, in which we probe the speci�c e�ect of the addition of 0.7 ppm
(parts per million) of Mn atoms on energy exchange rate between electrons.
We measured the temperature dependence of τϕ on the same samples, access-
ing interactions in a complementary manner.

The scattering of electrons by magnetic impurities in metals is a many-
body problem known as the Kondo e�ect: electrons tend to screen the spin
of the impurity, leading to a renormalization of the scattering rate. The char-
acteristic energy scale for this process is the Kondo temperature TK . At
T & TK , screening is incomplete, and spin-�ip scattering takes place, whereas,
at T ¿ TK , the impurity and the electrons form a singlet state, leading to
potential scattering only. As far as electron dephasing is concerned, Kondo ef-
fect results in a maximal dephasing rate at TK [84]. Kondo e�ect also provides
a channel for e�cient energy exchange between electrons scattering from the
same magnetic impurity [37, 126, 127]. The rate of such a process depends on
the energy of the states of the magnetic impurity, and is therefore sensitive
to magnetic �eld because of the Zeeman e�ect [39]. The spin states of the
magnetic impurities can furthermore be split in presence of spin-orbit scatter-
ing near an interface [128], which also modi�es the rate. Further complication
arises when the concentration of magnetic impurities is so high that the RKKY
interaction between magnetic impurities constrains the spin dynamics [83, 88].

In order to test quantitatively the impact of magnetic impurities on energy
exchange between electrons, we have compared the energy exchange rate and
τϕ(T ) in two wires that di�er only by the intentional addition of manganese
impurities in one of them, with concentration low enough so that interactions
between Mn impurities can be neglected [83]. To observe speci�cally the in-
�uence of the Mn impurities, the two samples were fabricated simultaneously
on the same wafer. In a �rst step, a set of wires and their contact pads were
patterned by e-beam lithography and evaporation of silver from a nominally
6N-purity source (99.9999% Ag from Alfa Aesarr). Mn+ ions were implanted
at 70 kV in half of them, using the ion implanter IRMA at CSNSM Orsay.
The neutralization current from the sample holder to ground was monitored
during the implantation, leading to a direct measurement of the number of
implanted atoms. Monte Carlo simulations25 yield the concentration of Mn
atoms that stop inside the silver wire c = 0.7± 0.1 ppm. In order to measure
the energy exchange between electrons [34], a long and thin electrode forming
a tunnel junction with the middle of the wire is used as a probe. This electrode

25 Due to the �nite thickness and width of the wire, out of four Mn ions impinging
on the wire, only three stop inside it [129].
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was patterned on individual chips in a second lithography step followed by
evaporation of 3.5 nm of aluminum, oxidation, and evaporation of 16 nm of
aluminum. We focus here on the results obtained on two wires, one without
manganese added (labeled �bare� in the following), one with manganese added
(�implanted�). For both samples, the wire length and cross-section area are
L = 40 µm and Se = 230 nm× 42 nm. The samples were measured in a dilu-
tion refrigerator with base temperature of 20 mK. The low temperature wire
resistance (R = 55 Ω) was identical for both wires, which yields the di�usion
constant of electrons D = 0.029 m2/s.

For each wire, we have �rst measured the magnetoresistance at tempera-
tures ranging from 20 mK to 7 K. Following Ref. [117, 43], magnetoresistance
curves are �t using the theory of weak localization, resulting in evaluations
of the phase coherence time τϕ. In the bare wire, it was important to take
into account �nite length corrections because τϕ is comparable to the di�u-
sion time τD = L2/D ≈ 56 ns below 1 K [130], leading to a reduction of the
predicted magnetoresistance by ≈ 30% below 1 K. Reproducible conductance
�uctuations were visible, so that the uncertainty in the determination of τϕ

becomes large below 60 mK in the bare sample. The spin-orbit time τso ≈ 8 ps
was extracted from the data above 1 K. The temperature dependence of τϕ

is shown in Fig. 3.26 for both wires. Below 1 K, τϕ is smaller by nearly one
order of magnitude in the implanted wire than in the bare one. In none of the
samples does τϕ increase as T−2/3 when temperature is lowered, as would be
expected if the electron-electron interaction was the dominant dephasing pro-
cess (solid line labeled �pure� in Fig. 3.26). The apparent saturation of τϕ is
attributed to the presence of magnetic impurities [43]. This e�ect is quanti�ed
by a �t of the data with a sum of three terms:

1
τϕ

= AT 2/3 + BT 3 + γsf(T ), (3.96)

with A = 1
~

(
πk2

B

4νF LSe

R
RK

)1/3

describing Coulomb interaction [117], B electron-
phonon interaction [78] and

γsf(T ) =
c

π~νF

π2S(S + 1)
π2S(S + 1) + ln(T/TK)2

(3.97)

the spin-�ip scattering rate, according to Nagaoka-Suhl formula26 [43]. The
density of states in silver is νF ≈ 1.03 × 1047 J−1m−3 (2 spin states), the
resistance quantum RK = h/e2, and the spin of the magnetic impurities
S. Assuming that the only magnetic impurities present are Mn atoms, with
S = 5/2 and TK = 40 mK [131, 81] and that A is �xed at its theoretical
value A = 0.19 ns−1K−2/3, the best �ts are obtained for cb = 0.10±0.01 ppm
and Bb ≈ 3.7 × 10−2 ns−1K−3 for the bare wire, and ci = 0.95 ± 0.1 ppm,
26 The width of the weak localization dip in the magnetoresistance, ≈ 10 mT, was

small enough to neglect the variation of the spin-�ip rate with magnetic �eld.
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Bi ≈ 5.5 × 10−2 ns−1K−3 for the implanted one 27. The di�erence between
the implanted and bare samples, ci − cb = 0.85 ± 0.1 ppm, is in reasonable
agreement with the estimated amount of implanted ions. The value of cb is
signi�cantly larger than found in previous experiments [43], indicating a lesser
quality of the source material or a slight contamination during fabrication.
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Fig. 3.26. (Color online) Symbols: measured phase coherence time in the two wires.
Solid lines: best �ts with Eq. (3.96), obtained with cb = 0.10±0.01 ppm (bare wire)
and ci = 0.95± 0.1 ppm (implanted wire). The upper line is the prediction without
spin-�ip scattering (c = 0). Inset: layout of the circuit. The switch is open for
magnetoresistance measurements, closed for energy exchange measurements.

We have then measured the energy exchange rate between electrons and
its dependence on magnetic �eld B on the same two wires. The principle of
the experiment is to drive electrons out-of-equilibrium with a bias voltage
U À kBT/e. The distribution function f(E) of the electrons in the middle
of the wire depends crucially on energy exchange between electrons [34]. The
di�erential conductance dI/dV (V ) of the tunnel junction between the wire
and the probe electrode (inset of Fig. 3.26, switch closed; see also Ref. [40])
is a convolution product of f(E) with a function q(E) describing inelastic
tunneling [40]:

Rt
dI

dV
(V ) = 1−

∫
f(E)q(eV − E)dE (3.98)

where Rt is the resistance of the tunnel junction. The information on f(E)
is therefore contained in dI/dV (V ) via the q function. The experiment is

27 The di�erence between the B parameters is not understood, but it only a�ects
the dependence of τϕ(T ) above 2 K, whereas the impurity concentrations ci and
cb are determined by low-T behavior.



3.4 Inelastic processes limiting the lifetime of electrons 101

performed at B ≥ 0.3 T , and the aluminum probe electrode is in its nor-
mal state. The q function is obtained from dI/dV (V ) at U = 0, where f(E)
is a Fermi function. In this situation, dI/dV (V ) displays a sharp minimum
at zero voltage (sometimes called �zero bias anomaly�), due to dynamical
Coulomb blockade of tunneling [105]. The environmental impedance respon-
sible for Coulomb blockade is the resistance Rp of the probe electrode. The
conductance is reduced at V = 0 by a factor 0.78 in the bare sample and
0.62 in the implanted one. A slight (3% at most), unexpected dependence
on B of dI/dV (V ) was observed on the implanted sample. In practice, we
therefore derived a q function at each value of B from dI/dV (V ) taken at
U = 0. Fits of dI/dV (V ) [132, 133] give the resistance of the environment
Rp = 0.95 kΩ (respectively, 1.3 kΩ), the capacitance of the tunnel junction
C = 4.4 fF (≈ 0.7 fF), the tunnel resistance Rt = 16.5 kΩ (96.9 kΩ) and the
temperature T0 = 45 mK for the bare (implanted) sample. The di�erences in
those parameters are essentially due to geometry, and do not interfere with
the measurement of energy exchange between electrons in the wires. When
electrons are driven out-of equilibrium (U 6= 0), f(E) is not a Fermi function
any longer. In the absence of energy exchange, f(E) presents two steps at
E = −eU and E = 0, resulting in a splitting of the dip in dI/dV (V ) into two
dips. In the opposite limit of very high energy exchange rate, f(E) approaches
a Fermi function at a temperature T ≈

√
3

2π
eU
kB

, and dI/dV (V ) presents a broad
dip [40].

In Fig. 3.27, we show the measured dI/dV (V ) characteristics of the tunnel
junctions on the bare and implanted wires, for U = 0.1, 0.2 and 0.3 mV, and
for B ranging from 0.3 T to 2.1 T by steps of 0.3 T. At B = 0.3 T, the
measurements on the bare sample show two clear dips at V = 0 and V = U ,
whereas the measurements on the implanted sample show a single, broad dip
around V = U/2. The addition of 0.7 ppm of Mn has therefore signi�cantly
increased the energy exchange rate between electrons, resulting in a strong
energy redistribution during the di�usion time τD = 56 ns. At B = 2.1 T, the
broad dip found in the implanted sample has split into two dips for U = 0.1
and 0.2 mV, indicating that the energy exchange rate due to the Mn impurities
is now smaller than 1/τD.

The coupling between electrons and magnetic impurities can be described
by an exchange Hamiltonian, characterized by a coupling constant J . At zero
magnetic �eld, this description leads to energy exchange in second order per-
turbation theory, as described in Ref. [37]. At �nite magnetic �eld, the spin
states of the impurities are split by the Zeeman energy EZ = gµBB. The
energy EZ can then be exchanged at the lowest order in perturbation the-
ory between electrons and impurities. This approach is su�cient to under-
stand qualitatively the magnetic �eld behavior: the rate of interaction decays
rapidly when EZ > eU , because very few electrons can excite the impurities.
The magnetic �elds eU/gµB (using g = 2 for Mn) are 0.86, 1.7 and 2.6 T for
U = 0.1, 0.2 and 0.3 mV, which correspond in the implanted wire to the �elds
at which the curvature of dI/dV (V ) near V = U/2 changes sign. In the bare
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Fig. 3.27. (Color online) Di�erential conductance dI/dV (V ) of the tunnel junction
(see inset of Fig. 3.26) for the bare (left) and implanted (right) wires, for U = 0.1 mV,
0.2 mV and 0.3 mV (top to bottom panels), and for B = 0.3 to 2.1 T by steps of
0.3 T (bottom to top in each panel). The curves were shifted vertically for clarity.
Symbols: experiment. Solid lines: calculations using cb = 0.1 ppm, ci = 0.95 ppm
and κee = 0.05 ns−1meV−1/2.

sample, the double dip also gets sharper when B is increased. This is an indi-
cation that, as inferred from τϕ(T ) measurements, this sample also contained
some magnetic impurities. However, the corresponding energy exchange rate
is always smaller than 1/τD, and dI/dV (V ) displays a double dip.

In order to compare quantitatively the measurements with theory, the
renormalization of the coupling constant J by Kondo e�ect needs to be
considered. Very roughly, this renormalization amounts to [37] Jeff/J ≈
[νF J ln(eU/kBTK)]−1 ≈ 3. More precisely, Jeff depends on the distribution
function f(E), and only the full theory of Ref. [39] is able to quantify this
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e�ect and to treat the exchange Hamiltonian at all orders on the same footing.
We have therefore solved the Boltzmann equation for f(E) self-consistently,
taking into account Coulomb interaction, electron-phonon interaction [36] and
the e�ect of magnetic impurities in a magnetic �eld following the full theory of
Ref. [39]. The concentration of magnetic impurities and the electron-phonon
coupling were �xed at the values determined from the �t of τϕ(T ) [36]. We used
TK = 40 mK [131, 81] and g = 2.0 [134]. Note that theory assumes S = 1/2
whereas S = 5/2 for Mn atoms, but it is not expected that this di�erence has a
large in�uence on energy exchange [125]. The intensity of Coulomb interaction
alone could not be determined accurately from τϕ(T ), and since it was found
that theory underestimates the intensity κee of Coulomb interaction [112], κee

was used as a free parameter, common to both samples. A slight increase in
temperature of the contact pads of the wire with U (0.76 K/mV) was taken
into account [36]. We also included in the calculation a slight heating of the
electrons in the probe electrode at the junction interface, due to the fact that
Rp is not negligible compared to Rt. The corresponding temperature Tp(U, V )
of the electrons in the probe electrode is Tp ≈ 0.34 K in the bare and 0.16 K
in the implanted sample at the dips (V = 0 or U), at U = 0.3 mV where
Tp is expected to be the largest. The di�erential conductance dI/dV (V ) was
then computed using Eq. (3.98). The resulting curves are displayed as solid
lines in Fig. 3.27. The best agreement between theory and all the data was
found for κee = 0.05 ns−1meV−1/2. This value is larger than the prediction
κAAK

ee = 0.016 ns−1meV−1/2 [2], as was repeatedly found in previous experi-
ments [112]. A good overall agreement is found for both data sets, but some
discrepancy appears for the implanted sample at U = 0.3 mV. We evaluated
the sensitivity of the �ts of the data on the implanted wire to the concentra-
tion ci of the impurities, and found that the best agreement is obtained at
ci = 0.9± 0.3 ppm, in good agreement with the value 0.95 ppm deduced from
the data of Fig. 3.26.

In conclusion, in this comparative experiment, the observed e�ect of well-
identi�ed magnetic impurities on energy exchange is found to be in good
quantitative agreement with the theory of Ref. [39], the concentration of im-
purities being �xed to the value deduced from the temperature dependence of
the phase coherence time, which is also compatible with the expected value
from implantation. This well-controlled experiment shows that the interaction
mediated by dilute, low Kondo temperature magnetic impurities is well un-
derstood. However it remains that, in this experiment as in all previous ones,
Coulomb interaction seems to be more e�cient for energy exchange than pre-
dicted [112]. Open questions remain also on the contribution of Kondo e�ect
to dephasing and energy exchange at energies below TK [84], on the e�ect of
the interactions between impurities at larger concentrations [83, 88] and on
�nite size e�ects [95].

This work was supported in part by EU Network DIENOW. We acknowl-
edge the assistance of S. Gautrot, O. Kaitasov and J. Chaumont at the CSNSM
in Orsay University, who performed the ion implantation. We gratefully ac-
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3.4.7 Comments on the paper

Since the writing of this paper, we have reconsidered the analysis of the weak
localization measurements as summarized in Table 2.3. The calculations of
the di�erential conductances of Fig. 3.27 with the newly determined con-
centrations of magnetic impurities are shown on Fig. 3.29. The agreement
between theory and experiment does not change dramatically as compared
to Fig. 3.27 where the concentrations which had been used were inconsistent
with Table 2.3. In order to see the sensitivity of our measurement to the con-
centration in magnetic impurities cMI in the implanted wire (which was found
to be 0.65 ± 0.7 ppm in magnetoresistance measurements), the theoretical
prediction for the conductance dI/dV (V ) at B = 0.9 T and U = 0.2 mV is
plotted for various values of cMI on Fig. 3.28. The sensitivity to the param-
eter κee is investigated in the appendix (Figs. B.2,B.3). Finally, in order to
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Fig. 3.28. Left panel�dots: di�erential conductance dI/dV (V ) of the tunnel junc-
tion for the implanted wire for U = 0.2 mV and B = 0.9 T. Left panel�lines:
calculations using various values of cMI and for κee = 0.05 ns−1meV−1/2. Right
panel: sum of all the standard deviations to the experimental curves corresponding
to the implanted wire (gray dots of the right panels of Fig. 3.29) as a function of the
used concentration cMI. The result from weak localization experiments Table 2.3 is
shown as a gray band.

emphasize the qualitative result of adding 0.65 ppm of Mn atoms to the bare
wire, we show the raw experimental data taken at U ≈ 0.1 mV for both wires
at the extrema magnetic �elds on Fig. 3.30. One surprising result is the slight
modi�cation in the conductance of the bare wire between low and high mag-
netic �eld. As shown on Fig. 3.31, this modi�cation would have better been
explained by the presence of a much larger amount of magnetic impurities
than what was used on the actual comparison Fig. 3.29.

In fact, this discrepancy between theory and experiment might be a signa-
ture of the decrease of the intensity of Coulomb interaction between electrons
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Fig. 3.29. Di�erential conductance dI/dV (V ) of the tunnel junction for the bare
(left) and implanted (right) wires, for U = 0.1 mV, 0.2 mV and 0.3 mV (top to
bottom panels), and for B = 0.3 to 2.1 T by steps of 0.3 T (bottom to top in each
panel). The curves were shifted vertically for clarity. Symbols: experiment. Solid
lines: calculations using cb = 0.02 ppm, ci = 0.65 ppm and κee = 0.05 ns−1meV−1/2.
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Fig. 3.31. Left panel: measured di�erential conductance dI/dV (V ) of the tunnel
junction for U = 0.1 mV at extrema magnetic �elds for the bare wire. Right panel:
prediction for the same curves taken from Fig. 3.29. It is clear that a low concen-
tration cMI ≈ 0.02 ppm in the bare wire cannot explain the drastic change seen in
the experiment between B = 0.3 T and B = 2.1 T.

when magnetic �eld increases. It is predicted that the Hartree term (3.51)
diminishes when the magnetic �eld increases. The modi�cation between the
two curves of the left panel in Fig. 3.30 may thus be a measurement of the
Hartree term. We calculated the prediction for the two experimental curves
for the bare sample from Fig. 3.30 using the full kernel (3.52) for the interac-
tions between electrons, using various values for Fσ

0 . The result is shown on
Fig. 3.32, and seems to indicate that, at the lowest magnetic �eld,

F σ
0 ≈ −0.9. (3.99)

If this is correct, that would mean that the silver is close to the ferromagnetic
instability (F σ

0 ≈ −1) which is in disagreement with previous measurements
by conduction electron spin resonance leading to F σ

0 ∈ [−0.21, 0.05] in silver
[70].
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Fig. 3.32. Top panels�dots: experimental curves already shown on Figs. 3.31 for the
bare wire at low and high magnetic �elds. Top panels�lines: theoretical predictions
for the di�erential conductance assuming that the Coulomb parameter is κee =
0.04 ns−1meV−1/2 for three values of F σ

0 . For these predictions, the full expression
(3.52) for the rate of Coulomb interaction was used. Bottom panels: enlargement of
the boxed region of the top panels.

3.5 Conclusions

We have performed a quantitative experiment probing the energy exchange
rates between electrons in a metal. The process proposed by Kaminski and
Glazman [37] for the exchange of energy between electrons mediated by mag-
netic impurities in the Kondo regime is quantitatively understood. A tiny
concentration of magnetic impurities (less than 1 ppm) can lead to a dra-
matic decrease of the quasi-particle lifetime τE .

The main results of this chapter are the following:
• successful measurement of the distribution function of the electrons in

a di�usive wire by tunneling spectroscopy using a superconductive or a
normal probe electrode.

• the theory of Ref. [39] taking into account the role of magnetic impurities
on the energy exchange between electrons as a function of the magnetic
�eld has been quantitatively checked (see section 3.4.6).

• the intensity of the energy exchange between electrons is systematically
higher than expected (Fig. 3.18). We have ruled out a possible explana-
tion stating that the theory could not apply in out-of-equilibrium situa-
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tions by performing a control experiment very close to equilibrium (see
Fig. 3.20).

• observation of an unexplained dependence of the tunneling density of
states at low voltages on the magnetic �eld (Fig. 3.12).

• the in�uence of the Hartree term to the energy exchange rate has been
clari�ed (see section 3.4.1) and may be responsible for an observed e�ect
Fig. 3.32.

In the future, the quantitative in�uence of the Hartree term on energy
exchange could be investigated more thoroughly through the magnetic �eld
dependence of inelastic processes involving electrons in a magnetic-impurity-
free sample. Besides, it might be interesting to explore the role of the Hartree
term on the zero bias anomaly in the tunneling.

Moreover, one misses an experiment probing the exchange of energies lower
than kBTK through the magnetic impurity mediated interaction between elec-
trons. This could complete our picture on this interaction and test the results
of Ref. [124].
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Mesoscopic Josephson e�ects





Chapter 4
Landauer formalism
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This chapter presents the Landauer formalism and applies it to various
conductors.

4.1 Scattering approach

We follow here closely a discussion by Blanter and Büttiker ([52]) and refer
the reader to this work for further information. Let us consider a fully phase-
coherent conductor connected to two leads (left L and right R) only. Near
the conductor, the transversal width of the leads is much smaller than the
longitudinal one, so that quantization of electrons is mainly transverse. Elec-
trons energy is still considered continuous as the longitudinal length is much
longer than the Fermi wavelength. Thus, electrons of energy E are associated
to fermionic operators1 â†i (E), with i varying from 1 to M = k2

F Se

4π , where Se

is the section of the leads and kF the Fermi wave vector. As the energy is the
same for electrons moving in opposite directions at the same speed, two fami-
lies of operators can be identi�ed. By convention, â† creates electrons moving
towards the conductor and b̂† outwards the conductor. Thus, in the leads near
the conductor, electrons are described by the fermionic operators â†iα and b̂†iα,
where α is the lead index (L or R here). For convenience, we denote by a†α
the vector (â†1α, . . . , â†Mα) and the same for b.
1 In all what follows, spin dependence is neglected, so that spin degeneracy just
adds a factor 2 in the charge corresponding to each operator â†i (E).



114 4 Landauer formalism

The conductor couples the incoming (â) and outgoing (b̂) operators by a
unitary and symmetric2 matrix S called the scattering matrix,

(
b†L(E)
b†R(E)

)
= S

(
a†L(E)
a†R(E)

)
;
(

bL(E)
bR(E)

)
= S†

(
aL(E)
aR(E)

)
. (4.1)

The scattering matrix has a clearly interpretable block structure and reads(
r(E) t(E)
t(E) r(E)

)
. The diagonal matrix r(E) couples states of the same lead,

thus it is called the re�ection matrix, whereas t(E), coupling states of dif-
ferent leads, is called transmission matrix. As t(E)†t(E) is hermitian, it can
be diagonalized in a new basis of fermionic operators as a diagonal, real, and
positive transmission matrix T(E). This new basis de�nes M independent
"channels", each one being associated with a transmission coe�cient τi, where
T(E)ij = δijτi(E). This description is amazingly powerful, as all transport
properties of the conductor depend on those M diagonal terms only. More-
over, the energy variation of the τi's is on the scale of EF (a few thousands
of Kelvins) which is always far bigger than other energy scales. Therefore, in
the following, τi(E) will be denoted τi with no explicit reference to the en-
ergy E, and the set of transmission channels {τi} will be called the Personal
Identi�cation Number (PIN) of the conductor.

One of the most direct outcomes of this picture is the calculation of the
average current from L to R. It is shown that

I =
2e

h

∫
Tr(T(E))(fL(E)− fR(E))dE (4.2)

where fα(E) is the occupation function of the states of energy E in the lead
α and the factor 2 takes into account spin degeneracy. For big leads, fα(E)
is just a Fermi function, and one gets the conductance G of the coherent
conductor,

G = 2GK

M∑

i=1

τi. (4.3)

4.2 PIN of various conductors

In this section, we give the list of transmissions for various conductors. Some
are the result of Random Matrix Theory (RMT) [135]. The principle of this
calculation is to assume some probability distribution for the scattering ma-
trices S of particular conductors from symmetry considerations, and to derive
the probability distribution for the value of a transmission coe�cient τi.

2 The �ux conservation in the scattering process implies that the matrix S is uni-
tary.
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Tunnel barrier
In a tunnel barrier, all channels see the same barrier width, and thus all the
τi's are extremely small.

∀i; τi ¿ 1 (4.4)
For common tunnel junctions formed by oxidizing an aluminum thin �lm

before being recovered by an aluminum counter electrode, τi is typically of
the order of 10−6 as calculated from the typical values of the conductance of
sub-micron junctions used in our experiments.

Di�usive wire
In the case of a fully phase-coherent di�usive wire of length L, the distribution3
P (τ) of the channels transmissions can be calculated by RMT [136].

P (τ) =

{
0 if τ > 4e−3L/2le

2le
3L

1
τ
√

1−τ
otherwise (4.5)

where le is the mean free path of the electrons in the wire (see appendix
Eq. (B.18) for the prefactor in the appendix). This distribution is named
after Dorokhov [137].

Chaotic cavities
A chaotic cavity models situations where the conductor is a ballistic metal
(very large mean free path) whose edges do not exhibit any particular sym-
metry. Quantum dots in 2 dimensional electron gas are such cavities. Such a
conductor has a universal distribution of transmissions given by

P (τ) =
8
π

√
τ(1− τ) (4.6)

Point and Atomic contacts
In the case where the conductor is realized as a constriction in a metal with
transverse dimensions of the order of the Fermi wavelength, the number of
channels is small. In bulk metals, atomic contacts can be fabricated, where
the number of channels is the number of valence orbitals of the speci�c atom
([138]). Such systems are studied in chapter 5. In 2-dimensional metals, a
constriction might be realized by varying a gate voltage and as few as one
channel can describe such a Quantum Point Contact ([139, 140]).
3 Recall that for transport to occur, L must be much smaller than the localization
length (a coherent quasi 1-dimensional conductor of section Se and length L is
an Anderson insulator if L is smaller than the localization length ξ = 4Mle/3,
where M =

k2
F Se

4π
is the number of channels), so the number of channel M is

much larger than L/le and the distribution of the transmissions P (τ) is relevant.
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4.3 Limitations of Landauer formalism

The Landauer formalism requires two key assumptions to be valid.
First, the leads need to be �good�. Here �good� means that the operators

â†L(E) and â†R(E) describing incoming left and right electrons need to be
orthogonal. This is achieved if there is no link shorter than the phase coherence
length Lϕ between the left and right lead apart from the conductor. If there
is one, this link can be included in the conductor to calculate the transport
properties from left to right.

Second, the conductor must be phase coherent. That means that most of
the electrons contributing to transport have to stay less than a time τϕ in
the conductor. This is the case for tunnel junctions or atomic point contacts.
However, di�usive wires of length L ¿ Lϕ might exhibit some deviation to the
Landauer picture. For example, in the case of a normal (non-superconducting)
wire between two superconducting leads, an electron can be re�ected many
times at the interfaces separating the wire and the leads. In this case, the
actual time spent in the wire by this electron is much more than τϕ and
phase-coherence is broken.

This discussion shows the major role played by the phase coherence time
τϕ in understanding the limits of the Landauer formalism.
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The word �coherence� is hazardous in physics as it covers a few parallel

but distinct concepts. In particular, one distinguishes a fully coherent system,
whose state can be described by one single complex order parameter |∆|eiϕ,
from a (phase) coherent system, where each particle is in a di�erent state, but
remains phase coherent in the sense developed in chapter 2. At low tempera-
tures, a large collection of bosons form a fully coherent system, as illustrated
by the beautiful experiments on atomic Bose-Einstein condensates in the last
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decade. Superconductors and super�uids belong to the same class of fully co-
herent systems. In this part, we investigate the Josephson problem in which
two fully coherent systems are connected by a small phase coherent link. In
the kingdom of metals, this situation is obtained when one couples two super-
conductors of quantum phase ϕL and ϕR through a coherent conductor such
as a tunnel junction.

The experiment we performed uses the smallest conductor: an atom be-
tween two leads. We focused in particular on the measurement of the current
phase relation in these systems. This work was started in collaboration with
Martin Chauvin, who did his PhD on this subject [21], and Maria Luisa Della
Rocca, post-doc in the group.

5.1 Mesoscopic superconductivity
5.1.1 Bogoliubov-de Gennes theory for superconductivity

The adequate formalism to treat inhomogeneities in the phase ϕ of a super-
conductor is the so-called Bogoliubov-de Gennes theory of superconductivity.
The Hamiltonian of this system contains a �normal� term

HN = EF

(
p̂2

~2k2
F

− 1
)

+ U(x̂),

where U is the static potential experienced by the electrons, and a supercon-
ducting term HS describing the attractive interaction between electrons lead-
ing to superconductivity. This last term is assumed to only couple counter-
propagating electrons of opposite spin, with exactly opposite wavevectors.
Choosing an arbitrary direction to quantize the spin, electrons with spin up
are called electron particles and holes with spin down are called hole particles.
The eigenvectors of the Hamiltonian are superpositions of electron and hole
particles which can be denoted by

(
uk

vk

)
⇔ electron amplitude k • ³ ; spin ↑

hole amplitude k ´ ◦ ; spin ↓ (5.1)

In this basis, HS couples electron and hole amplitudes. The coupling potential
is nothing but the parameter order |∆|eiϕ(x̂) of the superconductor. Therefore,
the Schrödinger equation reads [141]

( HN |∆|eiϕ(x̂)

|∆|e−iϕ(x̂) −H∗N

)(
uk

vk

)
= E

(
uk

vk

)
(5.2)

and determines the electron and hole amplitudes uk and vk as a function of
the energy E. In case the phase ϕ(x) is constant and the potential U(x) = 0,
this equation can be solved analytically. In the one-dimensional case, a basis
of solutions is made of the vectors
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(

uk(x)
vk(x)

)
=

(
u0

v0

)
eikx (5.3)

where |k| can take the two following values1

|k| = kF

(
1± |∆|

EF
sign(E)

√
|E/∆|2 − 1

)1/2

≈ kF . (5.6)

where the square root of a negative number is by convention
√
−|α| ≡ i

√
|α|.

The corresponding dispersion relation reads

E = ±
√

E2
F

(
k2

k2
F

− 1
)2

+ |∆|2. (5.7)

The normalized associated eigenvectors verify then




u2
0 = e2iϕ

2

(
1± sign(E)

√
1− |∆/E|2

)

v2
0 = 1

2

(
1∓ sign(E)

√
1− |∆/E|2

) (5.8)

The normal state can be recovered by letting ∆ go to zero. In this case,
depending on the sign of ±, the eigenvector is a pure electron (± = 1 ⇒ v0 =
0) or a pure hole (± = −1 ⇒ u0 = 0).

5.1.2 Andreev re�ection

Wondering how heat could �ow from a normal metal to a superconductor,
Andreev realized that electrons incoming on the superconductor have a �nite
probability to be re�ected as holes [142, 143]. The Bogoliubov-de Gennes
formalism gives a simple way to calculate the amplitude of this event.
1 Denoting ∆ = |∆|eiϕ, one gets8<: ∆v =

�
E + EF

�
1 + 1

k2
F

d2

dx2

��
u

∆∗u =
�
E − EF

�
1 + 1

k2
F

d2

dx2

��
v

(5.4)

and looking for solutions of the type (5.3),�
∆v0 = (E + EF [1− (k/kF )2])u0

∆∗u0 =
�
E − EF [1− (k/kF )2]

�
v0

(5.5)

Multiplying both equations, one �nds two solutions for k2 depending on energy,
and dividing both equations, one �nds an expression for u2

0/v2
0 . The system being

invariant by time reversal symmetry, wavevectors k and −k are associated to the
same energy E.
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The NS interface can be modeled as a discontinuity in the parameter ∆
from 0 in the normal metal (x < 0) to ∆ 6= 0 in the superconductor (x > 0).
In the normal metal, the nullity of the gap leads to simple forms for the
eigenstates of the Hamiltonian:

electrons:
(

e±ikF x

0

)
holes:

(
0

e∓ikF x

)
(5.9)

where ± states for right going or left going particles. Let us denote a general
state of energy E on the left side by

(
L

(e)
½ eikF x + L

(e)
¾ e−ikF x

L
(h)
¾ eikF x + L

(h)
½ e−ikF x

)
(5.10)

with L
(e)
½ , L

(e)
¾ , L

(h)
¾ , L

(h)
½ complex numbers. On the superconductor side (right),

the states of energy E read

R
(�e�)
½

(
u

(e)
0

v
(e)
0

)
eik(e)x + R

(�e�)
¾

(
u

(e)
0

v
(e)
0

)
e−ik(e)x

+R
(�h�)
¾

(
u

(h)
0

v
(h)
0

)
eik(h)x + R

(�h�)
½

(
u

(h)
0

v
(h)
0

)
e−ik(h)x

(5.11)
with R

(�e�)
½ , R

(�e�)
¾ , R

(�h�)
½ , R

(“h′′)
¾ complex numbers.

The Andreev re�ection of an electron is the process by which an electron-
like particle is transferred into the superconductor. This condition reads for-
mally R

(�e�)
¾ = R

(�h�)
½ = R

(�h�)
¾ = 0, and sets strong constraints on the state in

the normal metal. Indeed, the continuity of the wave function and of its �rst
derivative at the NS interface provides2 a single solution for the quasi-particle
state in the normal electrode. The outgoing electronic part L

(e)
¾ and the in-

coming hole part L
(h)
¾ are negligible, and only two components remain: an

2 We use the fact that amplitudes and their derivatives are equal at the interface
x = 0, which gives four equations8>>><>>>:

R
(�e�)
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(5.12)

where the Andreev approximation k(e) ≈ k(h) ≈ kF has been used. Hence,8>>><>>>:
L

(e)
¾ /L

(e)
½ = −sign(E) |∆|

4EF

p
|E/∆|2 − 1 ¿ 1
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4EF
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|E/∆|2 − 1 ¿ 1

L
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(�e�)
½ ≈ v

(e)
0

(5.13)
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incoming electron and an outgoing hole. The ratio between the hole and elec-
tron amplitude can be interpreted as a re�ection coe�cient: the probability
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Fig. 5.1. Andreev re�ection

amplitude for the Andreev re�ection of an electron into a hole3:

a(E, ϕ) =
v
(e)
0

u
(e)
0

=
1

|∆|eiϕ

(
E − sign(E)

√
E2 − |∆|2

)
(5.15)

In order to calculate the probability amplitude of re�ection of a hole into
an electron, one considers the case of an outgoing hole-like particle in the
superconductor (R(“e′′)

¾ = R
(“e′′)
½ = R

(“h′′)
¾ = 0). The amplitude is then found

to be u
(h)
0

v
(h)
0

= a(E,−ϕ).

5.1.3 Andreev bound states

Let us now consider two superconducting leads with a phase di�erence δ linked
through a very short4 coherent conductor. The conductor is fully character-
ized by the set of its transmission channels {τ1, τ2, . . .} (see chapter 4). The
Landauer formalism allows to determine the properties of the conductor from
the properties of a conductor with a single channel with transmission τ , which
we propose to determine now.
3 For energies E below the gap |∆|, the amplitude a(E, ϕ) simpli�es into

a(E, ϕ) = i exp (−i[ϕ + arcsin(E/|∆|)]) (5.14)

4 Smaller than the superconducting coherence length ξ, which provides a scale for
the extension of Cooper pairs. In a di�usive link, ξ =

p
~D/∆, and ξ = ~vF /∆

in a ballistic one. For longer conductors, the decoupling of Andreev re�ection and
normal re�ection parts that we will use is not valid.
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The supercurrent through the conductor is carried by a discrete set of
localized states called the Andreev bound states. In order to determine them,
one uses the scattering matrix approach in the conductor and the Andreev
re�ections in the superconductor. Using the same notations for the coe�cients
as before, and assuming that k ≈ kF , whatever the state of the particle is, one
can develop the Andreev bound states on the pure electron and hole states5.

|ψL〉 = L
(e)
½ eikF x

(
1
0

)
→ → R

(e)
½ eikF x

(
1
0

)
= |ψR〉

+L
(e)
¾ e−ikF x

(
1
0

)
← ← +R

(e)
¾ e−ikF x

(
1
0

)

+L
(h)
½ e−ikF x

(
0
1

)
99K 99K +R

(h)
½ e−ikF x

(
0
1

)

+L
(h)
¾ eikF x

(
0
1

)
L99 L99 +R

(h)
¾ eikF x

(
0
1

)

(5.16)

The scattering matrix S of the conductor relates the pure electron parts
and the pure hole parts of the left and right states in the following way6:

(
L

(e)
¾

R
(e)
½

)
= S

(
L

(e)
½

R
(e)
¾

)
and

(
L

(h)
¾

R
(h)
½

)
= S†

(
L

(h)
½

R
(h)
¾

)
(5.17)

Besides, for the states to be localized at the interface, all the departing compo-
nents of the states must be Andreev re�ected back into arriving components.
Hence, (

L
(h)
½

R
(h)
¾

)
=

(
a(E, ϕL) 0

0 a(E, ϕR)

) (
L

(e)
¾

R
(e)
½

)
(5.18)

where ϕL and ϕR = δ + ϕL are the superconductor phases of the left and
right leads respectively. And reciprocally,

(
L

(e)
½

R
(e)
¾

)
=

(
a(E,−ϕL) 0

0 a(E,−ϕR)

) (
L

(h)
¾

R
(h)
½

)
(5.19)

Combining all these equations, one �nds a circular relation:
(

L
(h)
½

R
(h)
¾

)
=

(
a(E,ϕL) 0

0 a(E,ϕR)

)
S

(
a(E,−ϕL) 0

0 a(E,−ϕR)

)
S†

(
L

(h)
½

R
(h)
¾

)
.

(5.20)
Introducing the notation
5 The pure electrons and holes are excited states of the superconductor. However,
they form a basis for the particle states in the superconductor.

6 Here, an essential assumption is that the length is small compared to ξ, so that
one can neglect the Andreev processes within the channel.
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M = a(E, 0)2S
(

1 0
0 e−iδ

)
S†

(
1 0
0 eiδ

)
(5.21)

the later equation reads
(

L
(h)
½

R
(h)
¾

)
= M−1

(
L

(h)
½

R
(h)
¾

)
. (5.22)

Therefore, the Andreev bound states are entirely determined by the eigen-
vectors of M associated to an eigenvalue 1. Since M has 2 dimensions, at most
two vectors are enough to generate all the Andreev bound states.

For a transmission τ , the scattering matrix reads S =
(−ir t

t −ir

)
with r

and t real numbers such that t2 = τ and r2 = 1− τ . Hence,

M = a(E, 0)2
(

r2 + e−iδt2 irt(eiδ − 1)
irt(e−iδ − 1) r2 + eiδt2

)
. (5.23)

From Eq. (5.22), for an Andreev bound state of energy E to be non-zero, 1
has to be an eigenvalue of M. Therefore,

det(M− I) = 0 (5.24)

which leads to

1− 2a(E, 0)2(1− 2τ sin2(δ/2)) + a(E, 0)4 = 0 (5.25)

Using Eq. (5.15), one gets only two possible values for the energy E:

E|τ±〉 = ±|∆|
√

1− τ sin2(δ/2) (5.26)

The two orthonormal generating states of the set of Andreev bound states
are associated with these energies and are denoted |τ±〉. The energy spectrum
E|τ±〉(δ) is shown on Fig. 5.2 for three values of τ . The spectrum of the An-
dreev states is the central prediction of the general theory of the Josephson
e�ects in short conductors, from which all the transport properties can be de-
rived [17, 18, 19, 20]. In the following, we discuss an experiment in which three
transport properties are measured: the current-phase relation, the inductance-
phase relation and the current-voltage characteristics.

5.1.4 Measurable quantities deduced from the Andreev spectrum

Current-phase relation

The phase di�erence δ between the two superconductive electrodes is the
conjugated operator of the number N̂ of Cooper pairs having passed through
the coherent conductor:
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Fig. 5.3. Phase driven supercurrent through a single channel for three transmissions
τ = 1, 0.85 or 0.4.

[δ, N̂ ] = i. (5.27)
As a consequence, each one of the two Andreev bound states of a channel
carries a supercurrent given by

Iτ (δ) =
1
ϕ0

∂E|τ±〉
∂δ

(5.28)

where ϕ0 = ~/2e, and Iτ and E|τ〉 are the quantum average of the current
and energy. If the temperature is such that kBT ¿ 2∆

√
1− τ which is the

splitting of the Andreev bound states (Fig. 5.2), the system is in the Andreev
ground state |τ−〉 and the supercurrent reads (see Fig. 5.3)
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Iτ (δ) =
e∆
2~

τ sin(δ)√
1− τ sin2(δ/2)

(5.29)

Case of a tunnel junction

The consistency of this result can be checked on the tunnel junction. According
to Eq. (4.4), all channels are very weakly transmitted, so that the total current
is approximated by

I(δ) =
∑

i

e∆
2~

τi sin(δ) =
RK

Rt

e∆
4~

sin(δ) (5.30)

with Rt the resistance of the junction in the normal state (high enough tem-
perature, voltage or magnetic �eld). Using Eq. (4.3), one gets the Josephson
relation

I(δ) = I0 sin(δ) (5.31)
where the critical current I0 is given by

I0 =
π

2
∆

eRt
(5.32)

which is the Ambegaokar-Barato� relation at zero temperature [144].

Di�usive conductor

If the length L of a di�usive constriction is much smaller than the phase coher-
ent length Lϕ the distribution of the transmissions is given by the Dorokhov
distribution (4.5). If the length is also much smaller than the superconducting
coherence length ξ, so that the Andreev re�ections within the conductor can
be neglected, the current-phase relation is:

I(δ) = M

∫ 1

0

Iτ (δ)P (τ)dτ =
2Mle
3L

∫ 1

0

dτ

τ
√

1− τ
Iτ (δ) (5.33)

where M is the number of channels, and where the contribution of Iτ at
phases δ < 4e−3L/2le has been neglected. Using Eq. (4.3), one can link M to
the conductance in the wire, and �nd M

2le
3L

=
Gh

4e2
. Hence,

I(δ) =
Gh

4e2

e∆
2~

sin(δ)
∫ 1

0

dτ
√

1− τ
√

1− τ sin2(δ/2)
(5.34)

which simpli�es into
I(δ) =

π∆
2e

Gf(δ) (5.35)
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where
f(δ) =

1
2

sin(δ)
∫ 1

0

dτ
√

1− τ
√

1− τ sin2(δ/2)
. (5.36)

Using the same technique, one can predict the current-phase relation of any
short coherent conductor (see Fig. 5.4).

Inductance-phase relation
Let us now consider the case where the phase δ is not �xed, but is oscillating
with a small amplitude and frequency so that, again, only the ground state is
occupied. The voltage is linked to the phase by de�nition:

V ≡ ϕ0
∂δ

∂t
. (5.37)

One can write
V = ϕ0

1
∂Iτ/∂δ

∂Iτ

∂t
= Lτ (δ)

∂Iτ

∂t
(5.38)

which shows that the conductor can be seen as an non-linear inductor of
inductance (see Fig. 5.5)

Lτ (δ) = ϕ2
0

(
∂2E|τ−〉

∂δ2

)−1

. (5.39)

Note that Lτ (δ) is not always positive and diverges at the phase δ where Iτ (δ)
is extremal (δmax and 2π − δmax with the notations of section B.4.1).
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Fig. 5.5. Inverse of the non-linear Josephson inductance as a function of the phase
di�erence δ of a single channel plotted for three values of the transmission τ =
0.999, 0.85 and 0.4.

Tunnel junction

Similarly to the current phase relation, one can predict the inductance phase
relation for a tunnel junction. In this case,

Lτ (δ) =
ϕ0

I0 cos(δ)
. (5.40)

Current-voltage characteristic

When the conductor is biased at a constant voltage, the phase increases in
average at a speed set by Eq. (5.37). As the phase evolves in the potentials
E|τ±〉(δ), Landau-Zener transitions from the ground to the excited Andreev
bound state can occur [18, 20]. The complex dynamics of the phase leads
to an average current which can be calculated without actually solving the
full phase dynamics. At voltages lower than twice the superconducting gap,
only multiple charges can be transferred through the conductor through mul-
tiple Andreev re�ections (MAR) processes. Conjugating MAR processes and
standard scattering, one can derive the I-V characteristic of a single chan-
nel [145, 146, 18, 17, 20, 21]. We reproduce on Fig. 5.6 the (numerical) re-
sult for several values of the transmission. Non-linearities are observable at
eV = 2∆/n where n is an integer. Indeed, when the voltage exceeds 2∆/en, a
new charge carrying process becomes available: the MAR of order n. A MAR
process of order n transfers n charge quanta from one lead to the other. At
order n, the gap 2∆ can thus be crossed only if ne|V | > 2∆. Besides, the prob-
ability of charge transfers of order n is proportional to τn and thus rapidly
decreases for increasing n.

The high non-linearity of the I(V ) curves allows to access the transmis-
sions of a conductor with a few channels by �tting its I(V ) curve with the
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sum of the I(V ) curves of several channels. Current-voltage characteristics
measured on atomic contacts by several groups were found to be in agree-
ment with this theory (see Ref. [46] for a review). In particular, quantitative
independent experiments (for example on the noise [14]) agree on the values
of the transmissions measured by this technique.

0 1 2 3 4
0

1

2

3

4

 

 

= 1 0.9 0.8

0.7

0.1

I 
/ 

(2
e

/h
 )

eV / 

Fig. 5.6. Calculated normalized current-voltage characteristics of single channel
conductors between two superconducting leads. Values of the transmission τ are
plotted from 0.1 to 1.

5.2 Current-phase relation measurement

We have carried out experiments designed to probe the Josephson e�ect
through short conductors with a few channels. As already mentioned, the con-
ductors we used are aluminum atomic contacts whose transmissions can be
modi�ed in situ by changing the stress on the aluminum constriction (see sec-
tion 9.1.3). It has been established that the number of channels in a one-atom
contact corresponds to the number of valence orbitals of the atom [147]. There-
fore, conductors with a few channels are genuinely fabricated using atomic
contacts.

Measuring the current phase relation between two superconductors con-
nected through a weak link has been the topic of a long standing research
activity. The �rst measurement of Anderson and Rowell in 1963 demonstrated
the current phase relation of a tunnel junction [16] and observed what Joseph-
son had just predicted one year before [15]. More recently, the current-phase
relation has been measured for a ferromagnetic weak link and a dephasing by
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Fig. 5.7. Scheme of the atomic contact experiment. A superconducting loop encloses
the atomic contact and a Josephson junction. The loop is biased by a current source
Ib and the voltage V across the junction can be measured.

π of the relation for a normal tunnel junction was observed [148]. Measuring
the current-phase relation in atomic contacts or quantum point contact has
been performed by Koops et al. in 1996 [149]. In their experiment, they ob-
served non-sinusoidal current-phase relation similar to what is predicted on
Fig. 5.4. However, since they did not measure the I-V characteristics of the
atomic contacts, they were not able to determine the PIN of the contacts, and
thus to perform a quantitative test of the theory.

The aim of the experiments we have performed is to measure the current-
phase relation in well characterized contacts, by measuring both the transmis-
sion of the channels from the current-voltage characteristics and the current-
phase relation. The �rst measurement requires to voltage or current bias the
atomic contact, whereas the second requires to phase bias the contact. Placing
a big superconducting Josephson junction in parallel with the atomic contact,
one can conjugate these apparently exclusive biasing schemes. In the setup of
Fig. 5.7, a superconducting loop is formed by the parallel combination of the
atomic contact and of a large7 tunnel junction. Ideally, in the �zero-voltage
state� of the junction, the atomic contact is phase biased by the �ux threading
the loop, whereas at �nite voltage, when the junction is in its �voltage state�
it is voltage biased.

In order to understand the phase biasing better, we �rst present the dy-
namics of Josephson junctions.

5.2.1 Josephson junction dynamics

The dynamics of Josephson junctions has been studied extensively both ex-
perimentally and theoretically in the last decades, and more recently in the
context of superconducting q-bits [150, 151]. The only degree of freedom for

7 Here, large means that the supercurrent I0 of Eq. (5.32) is much larger than the
current I(δ) through the atomic contact. We will see later how it simpli�es the
interpretation of the data.
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the state of a junction is the phase di�erence γ across it8. We already calcu-
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R

Fig. 5.8. Model for the Josephson junction alone in presence of an RC environment.

lated the supercurrent I(γ) through a tunnel junction (5.31). Assuming that
the junction is current biased by a current sI0 where the critical current I0 is
given by (5.32), and 0 < s < 1 is a real parameter, the energy U of the system
made of the Josephson junction and the current source (see Fig. 5.8) reads

U(γ) = −ϕ0I0 cos(γ)− ϕ0I0sγ. (5.41)

where ϕ0I0sγ is the integrated work of the current source. Notice that derivat-
ing this expression with respect to γ leads to the Josephson relation Eq. (5.31).
This potential is shown on Fig. 5.9.
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Fig. 5.9. Left panel: Energy potentials of a Josephson junction for three values of
the bias current. Right panel: enlargement of the area enclosed by the box on the
left plot. The phase oscillates at the plasma frequency ωp around the minimum at
γmin.

8 This is true in the case where the charging energy EC = e2/2C is much smaller
than the Josephson energy EJ = ϕ0I0. In our case, EC ≈ 10−6EJ .
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Classical analogy

In a classical picture, the phase can be mapped onto the position of a marble
evolving on a one dimensional playground whose vertical pro�le is given by
the potential U(γ). When the marble gets trapped into a well (local minimum
of the potential), it oscillates at a characteristic frequency called the plasma
frequency ωp. Friction tends to stop the marble in the bottom of the well.
A real kid's marble indeed stops in the bottom of wells. This is due to the
fact that the thermal �uctuations of the playground are several orders of
magnitude smaller than what is needed to have the marble go over the barrier
of the well. For the phase γ of the junction, the thermal energy kBT is not
negligible compared to the barrier height ∆U so that the oscillations of the
phase never stop.

Not only are the �uctuations in phase sizeable on the scale of the barrier
height, but also is there a �nite probability Pt(s) for the marble to go over
the barrier and escape the well in a time t. This probability is set by a rate
Γ (s) according to

Pt(s) = 1− e−Γ (s)t (5.42)
where the rate Γ is given by an Arrhenius-like activation law [152]:

Γ (s) = λ(Q)
ωp(s)
2π︸ ︷︷ ︸

e−∆U(s)/kBTesc︸ ︷︷ ︸
A e−B

(5.43)

where λ(Q) takes into account the friction and is given below and where Tesc is
called the escape temperature. In the thermal regime, Tesc is the temperature
of the electromagnetic environment of the Josephson junction. The barrier
height is approximately9

∆U(s) =
4
√

2
3

ϕ0I0(1− s)3/2 + O
(
(1− s)5/2

)
(5.45)

and the plasma frequency ωp is given by the curvature of the potential at the
bottom of the well:

ωp(s) = ω0(1− s2)1/4 (5.46)

with ω0 =
√

I0
ϕ0C , where C is the parallel capacitance (see Fig. 5.8).

After having escaped, the marble starts to fall o� the well. Then, two dy-
namic regimes can occur. In absence of friction, like when the marble evolves

9 The Taylor series of
√

2∆U(s)(1− s)−1/2 in powers of (1− s) is given by

∆U(s) =
4
√

2

3
(1− s)3/2 +

√
2

15
(1− s)5/2 + O

�
(1− s)7/2

�
(5.44)
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in vacuum, the marble will gain enough kinetic energy to go over the next bar-
rier, and will run away inde�nitely. In the opposite limit, with strong friction,
like when the marble evolves in water, the marble may lose enough kinetic en-
ergy by friction so that it cannot go over the next barrier, and it gets trapped
in the next well. The transition between those two dynamic regimes is pa-
rameterized by a real parameter: the quality factor Q which, for the model of
Fig. 5.8, is just Q = RCωp. In this classical picture, the two regimes are:
• Underdamped regime (Q À 1): the marble runs away inde�nitely as soon

as it escapes a well. The junction is said to switch, since a permanent
voltage suddenly develops according to Eq. (5.37).

• Overdamped regime (Q . 1): the marble can get trapped in a new min-
imum soon after having escaped from one well. In some cases, the phase
can run away in a di�usive motion, stopping in wells for some time before
starting to fall continuously.
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HQ
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QpBQ�1
any Q

Fig. 5.10. Dark line: theoretical correction λ(Q) to the prefactor A in the rate (5.43)
using B = ∆U/kBTesc = 10. Gray lines: limit behaviors as derived by Kramers in
1940.

Friction introduces a correction in the prefactor of the rate, which was already
derived by Kramers in 1940 in the limit regimes [153, 154]

λ(Q) = κ(Q) exp
(

1
π

∫∞
−∞

dy
1+y2 ln(1− e−∆E(1+y2)/4kBTesc)

)

=

{
κ(Q) if Q . 1
36
5Q

∆U(s)
kBTesc

if Q À ∆U(s)
kBTesc

(5.47)

with
κ(Q) =

1
2Q

(√
1 + 4Q2 − 1

)
(5.48)
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where ∆E is the average reduction of energy due to friction during the tra-
jectory of the particle starting from the barrier top, traversing the potential
well once and returning in the vicinity of the barrier top10.

Classical to quantum escape
We have described how thermal �uctuations can cause the junction to switch.
Of course, quantum physics states that the phase might also tunnel across the
potential barrier without going over it. The corresponding tunneling rate can
be calculated for the particular potential U(γ) and is well approximated, in
the underdamped regime, by [155]

Γtunnel(s) = 63/2π−1/2ωp(s)
(

∆U(s)
~ωp(s)

)1/2

exp
(
−36

5
∆U(s)
~ωp(s)

)
. (5.50)

From Eqs. (5.43, 5.50), the cross-over temperature between thermal acti-
vation and quantum tunneling occurs at

Tco =
1
2π

~ωp

kB
. (5.51)

Switching regime in our experiments
As the environment of the junction plays an essential part in the junction
dynamics, the biasing scheme must be clari�ed at this point. In the experi-
ment, the junction is neither perfectly current or voltage biased. The biasing
circuit was designed in order to control the environment parameters at best
(Fig. 5.11).

In our experiments, the quality factor Q is set11 by the environment12
shown on Fig. 5.11. The electromagnetic parameters of the various samples
10 A derivation of ∆E is proposed in [154]

∆E = 36
5

∆U(s) κ
Q

(1 + 1
4Q2 )2

×
�

1 + 60 1
Q

h
1 + 1

4Q2

i1/2

κ−8
�
ψ1(κ

−2)− κ2 − κ4/2− κ6/6
�� (5.49)

with ψ1 the trigamma function.
11 The calculation of Q is done by solving Y (ω) = 0 where Y is the admittance of

the circuit seen by the bias line. If ω is a solution, Q = Re(ω)
2Im(ω)

. For our circuit,
one �nds

Q(s) =
1

2

�
4−

�
Q−1

Rb
−Q−1

r

�2
�1/2

Q−1
Rb

+ Q−1
r

(5.52)

where QRb = RbCωp(s) and Qr = (rCωp(s))−1.
12 In our experiments, the intrinsic capacitance of the junction (between 10 and

500 fF as estimated from the area of the junction and compared to the �t of
Fig. 3.9) had always a negligible admittance as compared to the capacitance C
in series with r.
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Fig. 5.11. Model of the circuit used to bias the superconducting loop of Fig. 5.7.
The characteristic impedance of the transmission lines is Z0 = 50 Ω. The capacitance
C depends on the actual geometry and typically C ≈ 30 pF. The resistance r is the
sheet resistance of the electrodes that form the external capacitor r ≈ 0.1− 1 Ω.

Fig. 5.12. Scanning Electron Microscope picture of the loop schemed on Fig. 5.7.
The sample was covered with a thin layer of gold in order to improve the contrast.
The picture is taken at an angle of 45◦ so that it is clear that the polyimide layer has
been etched underneath the bridges. The fact that two bridges are present instead
of one is a result of the double-angle evaporation technique used for fabricating the
Josephson junction, and is of no importance as only one of them forms an atomic
contact just before breakage.



5.2 Current-phase relation measurement 135

measured are given in Table. 5.1. The cross-over temperature Tco is always
much smaller than the minimal refrigerator temperature and the quality factor
larger than 1. Therefore, the junction switches at a rate given by the thermal
activation expression (5.43).

Sample C R r Rt I0 ωp/2π Q I0/Area
(pF) (Ω) (Ω) (Ω) (nA) (GHz) (µA.µm−2)

CP1 [21] 33.7 (�t) 50 0.57 (�t) 357 750 [785] 1.34 (µ-wave) 4.3 0.25
CP2 20 50 0.6 893 304 [306] 1.08 4.3 0.38
CP3 15 50 0.6 ? 961 [?] 2.22 4.5 0.32
CP4 20 50 0 324 ? [870] 1.83 15 0.48
CP5 20 50 0.6 628 448 [450] 1.31 4.4 0.28
CP6 21.2 (�t) 50 0.6 390 720 [730] 1.62 (µ-wave) 4.6 0.36
CP7 20 50 0.6 2160 ? [130] 0.7 3.3 0.30

Table 5.1. Electrical characteristics of the measurement circuit for 6 samples de-
noted by CP1 to CP6 (as in �Current-Phase�). When a microwave measurement
has been performed (CP1 and CP6), the capacitance is deduced from the measured
value of ωp and from I0. If not, it is estimated from the geometry. The resistance r
in series is either exactly 0 because the electrodes were superconductive or approxi-
mately 0.6 Ω (either from a �t of the microwave signal re�ection or from geometrical
considerations). The tunnel resistance Rt was measured in the normal state and I0

was deduced from the �tting procedure used in Fig. 5.13. For each sample, we also
give (in brackets) the prediction for I0 using Eq. (5.32) and ∆ = 180 µeV. Finally,
except for CP1 and CP6, the plasma frequency was calculated from the estimation
of C and I0, and the quality factor was calculated using Eq. (5.52). All measure-
ments on the atomic contacts AC1, AC2 and AC3 presented in this work have been
performed with the sample CP6.

Measurement of the electronic temperature

The escape rate Γ (s) gives access to the electronic temperature of the com-
ponents of the circuit responsible for dissipation. In the experiment, a cur-
rent pulse is applied with an amplitude sI0 during a time τp. If the junction
switches, a DC voltage develops and is detected by a counter. The junction
can then be �reset� by setting the bias current to zero (to trap the phase in
a potential well). This experiment is repeated typically ten thousands times
and the switching probability Pτp(s) is estimated by the number (which is
acquired using a frequency counter) of times the voltage across the junction
exceeds a small threshold13 divided by 10000.

13 In order to get rid of o�sets in the current bias, associated with thermoelectric
voltages, the DC current o�set of the source is adjusted so that the same pulses
with the opposite amplitude lead to the same switching probabilities.
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Using Eqs. (5.45, 5.43), one may de�ne the parameter b as

b ≡ kB

ϕ0I0

3
4
√

2
B (5.53)

The escape temperature is then simply related to b by

b2/3 = (1− s)T−2/3
esc . (5.54)

Therefore, the quantity b2/3 as a function of s is a straight line extrapolating
to zero at s = 1. This property, which is valid at any temperature Tesc gives a
unique determination of the critical current I0. Besides, its slope −T

−2/3
esc gives

access to the escape temperature. The escape temperature may di�er from the
environment temperature, either because of current noise (see section 7.3.1),
or because the quantum tunneling is not negligible (see Eq. (5.51)).
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Fig. 5.13. Left panel�dots: Function b2/3 plotted as a function of s for di�erent
temperatures from the measurements of the switching probability on sample CP3
(see Table. 5.1). The critical current I0 = 961 nA was chosen so that all the curves
extrapolate to 0 at s = 1. Left panel�lines: best straight lines passing through
the experimental points and through 0 at s = 1. The slope of these curves gives
the escape temperature Tesc through Eq. (5.54). Right panel: escape temperature
Tesc extracted from the left plot as a function of the refrigerator temperature. The
minimal escape temperature in this experiment was 70 mK at a base refrigerator
temperature of 18 mK.

At the temperatures where Eq. (5.54) is valid, the escape temperature
measured on the sample CP3 saturates to a minimum value of 70 mK. As
the cross-over temperature Tco is much smaller14, the saturation at low tem-
perature is not the signature of a change from classical to quantum escape,
but supplies a measurement of the electrical noise which prevents the elec-
trons in the environment to cool down to the temperature Trefrigerator of the
refrigerator.
14 For 2πωp = 1 GHz, the cross-over temperature is Tco ≈ 7 mK.
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Phase di�usion

For some combinations of the critical current I0, and quality factor Q, the
escape dynamics does not verify Eq. (5.54) at temperatures higher than a
given threshold. In these situations, the phase escapes a well according to
Eq. (5.54) but has a �nite probability of being trapped in one of the following
wells. For a voltage to develop, this trapping must be overcome, so that the
phase runs down the potential without being stopped and a sizeable voltage
develops [156]. As a result, the increase of the rate with the s parameter is
much sharper than expected in the underdamped case (see Fig. 5.14).
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Fig. 5.14. Function b2/3 plotted as a function of s for di�erent temperatures from
the measurements of the switching probability on sample CP2 (see Table. 5.1). The
critical current I0 = 304 nA was chosen so that the three lines cross at 0 for s = 1.

5.2.2 Current-phase relation measurement

The actual experiment consists in measuring the current-phase relation I(δ) of
a one-atom contact placed in parallel with the tunnel junction. As in the case
where the atomic contact is fully open (tunnel junction alone), a switching
experiment can be performed. In this setup, the potential in which the phase
γ evolves is not just given by (5.41) because the energy of the Andreev bound
states also contributes:

U (−)(γ) = −ϕ0I0 cos(γ)− ϕ0Ibγ − |∆|
∑

i

√
1− τi sin2(δ/2) (5.55)
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where Ib is the bias current. Here, U (−)(γ) denotes the potential corresponding
to the case in which only the Andreev ground state |τ−〉 is occupied. Using
the setup of Fig. 5.7, an external magnetic �ux φ is applied through the
superconducting loop enclosing the contact and the Josephson junction. The
phase di�erences γ and δ are thus linked by the �ux15, and

δ = γ + φ/ϕ0 ≡ γ + ϕ (5.56)

where ϕ ≡ φ/ϕ0 is the reduced �ux.
For a few channels, the contribution of the Andreev energy term to the to-

tal potential U (−) can be treated pertubatively if |∆| . ϕ0I0. Using Eq. (5.32),
this condition is equivalent to Rt . RK/8 ≈ 3 kΩ, where Rt is the resistance
of the Josephson junction in the normal state. In this case, switching occurs
when the value of the phase γ at the minimum of the potential is nearly iden-
tical to the one γ0 in case the tunnel junction is alone (see Appendix B.5).
Therefore, the so-called switching current IΓ

b for which switching occurs at
a rate Γ is the current going through the parallel combination of the tunnel
junction and the atomic contact when γ = γ0. That is

IΓ
b (ϕ) = I0 sin(γ0) +

∑

i

I|τi−〉(γ0 + ϕ). (5.57)

where I|τi−〉 is given by (5.29).
In the experiment described here, the resistance of the tunnel junction in

the normal state was Rt = 385 Ω. Thus, Rt ¿ RK/8 and the atomic contact
term in the potential can indeed be treated perturbatively. We present on
Fig. 5.15 the measured switching current I

Γexp
b (ϕ) as a function of the �ux ϕ

in the loop, for a constant switching rate16 Γexp = 23.3 ± 0.6 kHz for three
atomic contacts.

5.2.3 I-V characteristics

In order to measure the transmissions of the atomic contact independently, we
have measured the current-voltage characteristics of the parallel combination
of the contact and the Josephson junction. Ideally, the Josephson junction

15 The geometrical inductance of the loop is negligible (in the experiment, L ≈
0.5µ0× length ≈ 10 pH [157]), compared to the inductance of the tunnel junction
(ϕ0/I0 ≈ 1 nH) and of the atomic contact (≈ 10 nH).

16 In the preliminary experiments presented in Ref. [21], the technique used was to
ramp the bias current Ib and to record the average switching time as a function
of the �ux. However, the amplitude of the ramp was so large that many quasi-
particles were created because the voltage after switching exceeded 2∆/e by far.
This procedure heats the electrons noticeably and we present here data for which
this heating e�ect was circumvented using a smaller bias resistance and pulses of
current instead of ramps.



5.2 Current-phase relation measurement 139

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40

I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

AC1

AC3
AC2

Fig. 5.15. Switching current I
Γexp
b (ϕ) at constant rate Γexp = 23.3 ± 0.6 kHz as a

function of the reduced �ux ϕ in the loop for three atomic contacts (AC). The data
are shifted vertically so that the mean current is zero (the average value 〈IΓexp

b (ϕ)〉
of the current is of the order of 0.85I0) and horizontally so that the origin is a point
of symmetry. The highest the transmissions of the contact, the sharper the curve.

alone should act as an open circuit at voltages V smaller than 2∆/e. The cur-
rent measured below the gap should then be due to the atomic contact only.
However, in the experiment, the junction alone did present some sub-gap cur-
rent at the scale of 10 nA, which is of the order of the current �owing through
a one-channel conductor (e∆/~ ≈ 44 nA for aluminum). It was therefore
necessary to perform a subtraction, as described below.

Current-voltage characteristics of the Josephson junction

The I(V ) curve of the Josephson junction alone in sample CP6 (when the
atomic contact is fully open) is plotted on Fig. 5.16. A current is visible below
the gap, at |eV | < 2∆ ≈ 0.4 meV. Besides, the current-voltage curve presents
a back-bending at eV ≈ 2∆. Both e�ects are unexpected for Josephson junc-
tions.

Sub-gap currents are sometimes attributed to pin-holes in the tunnel junc-
tion. This is not the case here: such shorts could be described as channels with
a transmission larger than the average one, and lead to MAR structures [158].
But what we observe cannot be only attributed to MAR processes, at least
because the current has a non-monotonous dependence on voltage (Fig. 5.16).

Another possibility would be that the electromagnetic environment presents
some resonances at frequencies which are of the order of eV/~ where V is the
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Fig. 5.16. Top: current-voltage characteristics of the Josephson junction of the
sample CP6 on which all measurements on atomic contacts presented in this work
were performed. Bottom: a close-up of the gray area of the plot of the top panel.

voltage at one of the peaks in the sub-gap structure. In that case, inelastic
tunneling of Cooper pairs can produce a sizeable current [159] of the order of
I2
0 .

The reentrant behavior at eV ≈ 2∆ is more common for junctions of that
size with critical current I0 of the order of the µA. Qualitatively, it can be
attributed to a heating e�ect of the electrodes when the current starts �owing,
which leads to a reduction of ∆ at the junction.

Similar sub-gap currents were observed in several samples of Table. 5.1
which had various environments and geometries (see Fig. 5.17). The sub-gap
structure seems to rapidly decrease with the critical current of the junction
regardless of the critical current density. In particular, on all the junctions
we fabricated presenting a critical current below nearly 350 nA, the sub-gap
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Sample I0 I0/Area
(nA) (µA.µm−2)

CP3 961 0.32
CP4 [870] 0.48
CP1 750 0.25
CP6 720 0.36
CP5 448 0.28
CP2 304 0.38
CP7 [130] 0.30

Fig. 5.17. Sub-gap structure of the measured current-voltage characteristics IJJ(V )
for the Josephson junction of the seven samples CP1 to CP7. The table recalls some
parameters shown in Table. 5.1 (Color online)

structure is greatly diminished. We have not found a satisfactory explanation
for this behavior.

Current voltage characteristics of an atomic contact

In order to go further, we make the assumption that the total current I going
through the circuit at a given voltage V is just the sum of the current in the
tunnel junction alone and of the current in the atomic contact alone at the
same voltage. In other words, we assume that the I(V ) curve of each junction
is not a�ected by the presence of the other. In the experiment, we therefore
subtracted from the Itot(V ) curve measured in presence of an atomic contact
the IJJ(V ) curve measured with the contact open(see Fig. 5.18). The obtained
curve I(V ) was �t with the MAR theory (see Fig. 5.19).

Technical di�culties in the I − V measurement

The measurement of I(V ) presented some di�culties. The current above the
gap (of the order of 1 µA) is much larger than the sub-gap current. We took
two sets of measurements: one below the gap, with ampli�ers adapted to the
range of tens of nA, and one above the gap, in the range of a few µA (see
Fig. 5.16). The resolution is thus barely good enough above the gap. The low-
frequency cut-o� of the lines used to measure the current caused retardation
e�ects that led to uncertainties in the I(V ), in particular around |eV | = 2∆.
Finally, the subtraction of the I(V ) curves is impossible at eV ≈ 2∆ because
of the reentrance e�ect discussed above, and at very low voltages because
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Fig. 5.18. Measured current-voltage characteristics Itot(V ) for the atomic contact
AC3 and IJJ(V ) for the Josephson junction alone. The subtraction of those two
curves gives the I(V ) curve of the atomic contact alone, labeled AC3. The uncer-
tainty of this determination is the width of the line.

of the retrapping on the supercurrent branch. The plotted I(V ) curves were
measured using the following procedure:
• a di�erential measurement was performed using homodyne detection at

136.49 Hz. The resulting dI/dV (V ) curve was integrated to get low noise
current measurement. However, the absolute values of I and V are not
known with this method. Besides, hysteretic parts of the I(V ) character-
istics cannot be accessed.

• a set of one thousand I(V ) curves were acquired with a digital oscilloscope.
In order to minimize errors due to the delays in the measurement lines,
each curve took as long as 10 s to be measured. The drawback of this
long-time measurement is that 1/f noise gives some uncertainty on the
measurement of I and V . Each of the 1000 curves were �rst centered in
voltage using the supercurrent branch, then the whole set of curves was
averaged. The resulting curve was centered in current using the oddness
of I(V ).

• this I(V ) was used as a reference to determine the absolute o�sets in
current and voltage for the curve obtained by integration of dI/dV (V ) at
step 1.

In the end, an uncertainty of 0.9 µV in voltage and 0.3 nA in current re-
mains below the gap. Only a few points were measured above the gap for the
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Fig. 5.19. Gray thick lines: I(V ) curves for atomic contacts AC1, AC2 and AC3
as deduced from the subtraction of the measured curves Itot(V ) and IJJ(V ). The
thickness gives the uncertainty on the measurement. Black thin lines: best �t with
the Multiple Andreev Re�ection current (see Fig. 5.6) obtained for the PIN reported
on Table 5.2.

Josephson junction alone with the homodyne detection. Therefore, the uncer-
tainty on the slope of the I(V ) characteristics at eV > 2∆ was larger than
the required precision for determining the conductance of the contact at high
voltages17.

On Fig.5.19, the I(V ) characteristics for three contacts are plotted with
gray lines. The PIN {τi} of the atomic contact are �tted using the formalism
of section 5.1.4. The corresponding theoretical curves are plotted on the same
�gure as black lines.

5.2.4 Current-phase relation, theory versus experiment

The zero temperature current-phase relation for AC1, AC2 and AC3, com-
puted using (5.57), is compared on Fig. 5.20 with the measured I

Γexp
b (ϕ). The

maximal and minimal values of the PIN given explicitly for each channel on
Table 5.2 lead to a determination of the uncertainty on the prediction, which
is represented by the width of the theoretical line. There is an overall good
agreement between the experimental curve and the theoretical prediction, sup-
porting the picture of the Andreev bound states in short conductors. Still, the
17 The conductance of the atomic contact at high voltage is of the order of 4×10−5 S

at best whereas the uncertainty on the dI/dV curve was of the order of 10−4 S.
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Atomic contact PIN

AC1 {0.62± 0.01;0.12± 0.015;0.115± 0.01;0.11± 0.01;0.11± 0.01}
AC2 {0.957± 0.01;0.185± 0.05}
AC3 {0.992± 0.003;0.089± 0.06;0.088± 0.06}

Table 5.2. Transmissions of the channels for three atomic contacts. The measured
values correspond to the best �t obtained using the theory of MAR (see § 5.1.4). The
uncertainty on the transmissions is calculated from the uncertainty on the measured
I(V ) curves.
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Fig. 5.20. Dots: measured switching current I
Γexp
b as a function of the reduced �ux

ϕ for the three atomic contacts described in Table 5.2. Grayed bands: theoretical
current-phase relation at T = 0 (5.57) using the PIN of Table 5.2. The width of the
gray area corresponds to the uncertainty on the PIN.
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amplitude of the experimental oscillations in I
Γexp
b − 〈IΓexp

b 〉 is always smaller
than expected from the zero temperature theory (5.57). As a �rst correction
to (5.57), the thermal excitations of the phase in the potential well U (−) can
be included.

E�ect of temperature on the switching current: a qualitative
approach

At �nite temperature, switching occurs before the current actually reaches
the critical current I0. As a consequence, the switching current is not only
determined by the amount of current deviated to the atomic contact at the
value γ0 of the phase γ for which the large Josephson junction alone would
switch, but by the total potential U (−)(γ). Using Eq. (5.55), the barrier height
reads

∆U (−) = U(γmax)− U(γmin)
+

∑
i

[
E|τi−〉(δ = γmax + ϕ)− E|τi−〉(δ = γmin + ϕ)

]

= U(γmax)− U(γmin) +
∑

i

∫ γmax

γmin

∂E|τi−〉
∂δ

(δ = γ + ϕ)dγ

= U(γmax)− U(γmin) + ϕ0

∑

i

∫ γmax

γmin

I|τi−〉(γ + ϕ)dγ

(5.58)

where the phase γmin (γmax respectively) is the phase at which the potential
presents a local minimum (maximum, see Fig. 5.9). Besides, if the potential
U (−) is only slightly changed by the atomic contact (Rt . RK/8), the phases
γmin and γmax are nearly identical to those obtained for the Josephson junction
alone, and

γmin ≈ arcsin(Ib/I0) = arcsin(s)
γmax ≈ π − arcsin(Ib/I0) = π − arcsin(s) (5.59)

In our experiment, the switching current I
Γexp
b = sI0 is measured at a constant

rate Γ for various �uxes ϕ. Therefore, ∆U (−) is kept nearly constant when the
�ux is varied. Let us introduce the averaged current function for the atomic
contact

Iav(ϕ, s) =
1

π − 2 arcsin(s)

∑

i

∫ π−arcsin(s)

arcsin(s)

I|τi−〉(γ + ϕ)dγ. (5.60)

Then, the switching current s(ϕ) is just a solution of

∆U (−)(ϕ, s[ϕ]) = ∆U (−)(ϕO, sO) (5.61)

where ϕO and sO are such that18 Iav(ϕO, sO = s[ϕO]) = 0 (in practice, the
�ux ϕO is the �ux for which I

Γexp
b is at its average value). The later equation

(5.61) can be developed as
18 The �ux ϕO exists since the function I(δ) is continuous, periodic and has a zero

average value.
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4
√

2
3

I0ϕ0(1−s)3/2+ϕ0(π−2 arcsin[s])Iav(ϕ, s) =
4
√

2
3

I0ϕ0(1−sO)3/2. (5.62)

Denoting s = sO + ε, this equation can be expanded19 in powers of ε:

4
√

2
3

I0(1− sO)3/2

(
1−

[
1 +

ε

1− sO

]3/2
)

+ o(ε2)

=
∑

i

∫ π−arcsin(sO+ε)

arcsin(sO+ε)

I|τi−〉(γ + ϕ)dγ.

(5.64)

hence,

2
√

2I0 (1− sO)1/2ε + o(ε2) =
∑

i

∫ π−arcsin(sO)−ε(1−s2
O)−1/2

arcsin(sO)+ε(1−s2O)−1/2
I|τi−〉(γ + ϕ)dγ

=
∑

i

(∫ π−arcsin(sO)

arcsin(sO)

I|τi−〉(γ + ϕ)dγ

+
ε√

1− s2O

[
I|τi−〉(π − arcsin(sO) + ϕ) + I|τi−〉(arcsin(sO) + ϕ)

]
)

(5.65)

εI0

[
2
√

2(1− sO)1/2 + o(1)
]

+ o(ε2) =
∑

i

∫ π−arcsin(sO)

arcsin(sO)

I|τi−〉(γ + ϕ)dγ

(5.66)
The last equation comes from the fact that we assumed that the potential of
the atomic contact is negligible compared to the potential of the Josephson
junction:

∑
i I|τi−〉 ¿ I0. We thus get an equation relating the switching

current I
Γexp
b = (sO + ε)I0 to the �ux ϕ.

I
Γexp
b (ϕ) ≈ sOI0 + Iav(ϕ, sO)α(sO) (5.67)

where
α(sO) =

π − 2 arcsin(sO)
2
√

2(1− sO)1/2
. (5.68)

As α(sO) is of order 1 (see Fig. 5.21), the measured switching current I
Γexp
b (ϕ)

is given by a constant 〈IΓexp
b (ϕ)〉 plus the averaged current-phase relation

Iav(ϕ, sO), weighted by α(sO).

19 The notation f [x] = o(g[x]) for any continuous functions f and g of the complex
parameter x is de�ned by:

f [x] = o(g[x]) ⇔ lim
x→0

f [x]

g[x]
= 0 (5.63)
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Fig. 5.21. Plot of the function α(sO).

Notice that, in this model, the e�ect of temperature enters only through
the mean value of the switching current 〈IΓexp

b (ϕ)〉 = sOI0. In the experiment,
the constant rate at which the I

Γexp
b (ϕ) curve was measured is Γexp ≈ 23.3 kHz,

which corresponds to sO ≈ 0.9. Therefore, the experiment measures for each
value of the �ux the current-phase relation, averaged on γmax− γmin ≈ 1 rad.
Thus, in a �rst approximation, the e�ect of temperature on the phase dy-
namics consists in smoothing the zero temperature I

Γexp
b (ϕ) curve on about

1 rad.
Using Eq. (5.43), one can estimate the temperature of the environment of

the Josephson junction from the average value sOI0 of I
Γexp
b (ϕ). Indeed,

kBTenv =
4
√

2
3

ϕ0I0(1− sO)3/2 (ln[ωp(sO)/(2πΓexp)])−1
. (5.69)

The temperature for each I
Γexp
b (ϕ) measurement is given on Table. 5.3. It is

sO = 〈IΓexp
b (ϕ)〉/I0 α Tenv. (in mK)

AC1 0.872 1.01 137
AC2 0.883 1.01 120
AC3 0.876 1.01 131

Table 5.3. Environment temperature corresponding to each experimental curve of
Fig. 5.15 as deduced from the average value of the switching current at Γexp =
23.3 kHz.

always of the order of 130 mK. This is quite a high temperature compared
to the base refrigerator temperature T0 = 20 mK and one could think that
improving the �ltering of the measurement lines would lead to a signi�cant
increase of the resolution of the measurement of I(δ). A quick estimate of this
resolution is obtained using the approximative expression (5.45) for the barrier
height. Indeed, if the noise was perfectly �ltered in our experiment, so that
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the escape temperature entering in (5.45) would be just T0, an experiment
performed at the same rate Γexp would verify

(1− sO)3/2

T0
≈ (1− 0.9)3/2

135 mK
(5.70)

Thus, the bias current needed to switch at rate Γ would be I
Γexp
b ≈ 0.97I0.

0.01 0.1 1

T HKL

2

1

Γ
m

a
x
-
Γ

m
in Trefrigerator

Tesc

Fig. 5.22. Resolution of the measurement of the current phase relation in the switch-
ing experiment as a function of temperature. The base refrigerator temperature is
T0 = 20 mK and the actual environment temperature as measured in a switching
experiment (see Table. 5.3) is Tesc ≈ 135 mK.

This value corresponds to a resolution on δ in the current phase relation of
π − 2 arcsin(0.97) ≈ 0.5 rad. We see that by lowering the noise temperature
by a factor 6, the resolution only improves by a factor 2.

E�ect of temperature on the switching current: a quantitative
approach

With only the ground Andreev state occupied

In the previous section, we have seen how the temperature of the environment
can smooth the measurement of the current-phase relation. In order to com-
pare experiment and theory quantitatively, we have calculated numerically
the barrier height ∆U (−) as function of the �ux φ using the measured PIN
of the contact (see Table 5.2). Then, using the measured environment tem-
perature Tesc, we calculated explicitly the switching current I

Γexp
b (ϕ) using

Eqs. (5.43, 5.55). The results are plotted on Fig. 5.23. The comparison with
Fig. 5.20 shows that a large fraction of the discrepancy between experiment
and theory in Fig. 5.20 could be attributed to a �rst e�ect of temperature:
switching is determined by the shape of the potential on a �nite phase region
so that the switching current behaves essentially as a sliding average on this



5.2 Current-phase relation measurement 149

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40
I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

AC3

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40
I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40

I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

AC1

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40

I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40

I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

AC2

0 Π 2Π-2Π -Π

j+Γ0

-40

-20

0

20

40

I b
G

ex
p
-
XI

b
G

ex
p
\
Hn

A
L

Fig. 5.23. Dots: measured switching current I
Γexp
b shifted by their average value as

a function of the reduced �ux ϕ for the three atomic contacts described in Table 5.2.
Grayed bands: theoretical switching current taking into account the dynamics of the
phase in an environment at �nite temperature Tesc given on Table. 5.3. The width
of the gray area corresponds to the uncertainty on the PIN.

region of the actual current phase relation. The results of this calculation for
the three atomic contacts are reported on Fig. 5.23. This theory clearly bet-
ter describes the experimental curves than the theory at zero temperature of
Fig. 5.20. Yet, some discrepancy remains, and in fact, a �nite temperature
does not only have an e�ect on the phase dynamics in the potential U (−), but
also possibly on the populations of the excited Andreev bound states. Since
the splitting between the Andreev bound states is at least 2∆

√
1− τ , an e�ect

is mostly expected for the contact AC3 for which this splitting is 0.4 K for
the most transmitted channel at δ = π. In the following, we explore this e�ect
in order to �nd out whether it can explain the remaining discrepancy between
experiment and theory in Fig. 5.23.

Populating the Andreev states

As each Andreev bound state can be either occupied or empty, four con�gu-
rations are possible per channel. Thermal �uctuations of the phase can couple
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the Andreev states to photons20 so that the four con�gurations are occupied
with a probability obeying the Boltzmann distribution at the same tempera-
ture Tesc, the statistical occupation of the four con�gurations at a �xed phase
δ are given on Table 5.4. We can calculate the switching current in two limits.

|τ+〉
|τ−〉 occupied (•−) unoccupied (•0)

unoccupied (0•) P τ
0−(δ) = e

E|τ+>(δ)/kBTesc/Σ P τ
00(δ) = 1/Σ

occupied (+•) P τ
+−(δ) = 1/Σ P τ

+0(δ) = e
−E|τ+>(δ)/kBTesc/Σ

Table 5.4. Occupation probability of the four possible con�gurations of the Andreev
states in a channel with transmission τ . Each probability is given by the Boltzmann
distribution and Σ = 4 cosh2

�
E|τ−>(δ)/2kBTesc

�
is a normalization factor.

Fast excitation rates for the Andreev bound states

0 Π 2 Π

∆

-D

0

D

E
±
H∆
L

Fig. 5.24. Case of fast transitions between Andreev states. While the phase per-
forms one oscillation in the potential well U(γ), the system jumps many times be-
tween Andreev states.

In case the occupation of the states changes at a rate much larger than the
escape attempt time (≈ ω−1

p ≈ 1 ns in our experiment), the potential U(δ) in
which the phase δ evolves changes many times before a switching event occurs.

20 It has been shown that the coupling to acoustic phonons is very weak in this
system due to the fermionic nature of the Andreev states [160].
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Therefore, as a �rst approximation, at any phase δ, the mean occupation of
the Andreev state con�gurations is set by the probabilities Pj(δ). We will
see that this statement is invalid for slow dynamics of the states. The phase
dynamics is the same as the one in the average potential Ū :

Ū(δ) =
∑

j1∈{+0,+−,00,0−}
· · ·

∑

jM∈{+0,+−,00,0−}
P τ1

j1
(δ) · · ·P τ1

jM
(δ)

M∑

i=1

U (τi,ji)(δ)

(5.71)
where M is the total number of channel. Now using the expression of the
Andreev bound state energy (5.26), the average potential reads21

Ū(δ) = U(δ) +
M∑

i=1

[
P τi

0−(δ)− P τi
+0(δ)

]
E|τi−〉(δ) (5.74)

where the sums over j are always on all four con�gurations {+0, +−, 00, 0−}.
On Fig. 5.25, the theoretical prediction for the switching current I

Γexp
b (ϕ)

is plotted for a temperature Tesc given by Table. 5.3. The prediction for all
contacts has been barely modi�ed from the crude calculation of Fig. 5.23.
In order to get the data inside of the theoretical band, it seems that the
temperature should be higher than the measured escape temperature. It might
be that a non thermal radiation excite the Andreev bound states, or that the
assumption of fast excitation rates is wrong.

Slow excitation rates for the Andreev bound states.

During a switching attempt (an oscillation of the phase in the potential well),
the phase explores a �nite phase space which can be estimated by the width
∆γ of the potential well at its summit (see Fig. 5.26) for a bias current sI0

such as Γ (s) = Γexp. The assumption that the populations of the Andreev
bound states change slower than the escape attempt time (≈ ω−1

p ≈ 1 ns
in our experiment) implies that each switching attempt is performed in
a potential determined by one out of 4M con�gurations j1, · · · , jM where

21

Ū(δ) = U(δ) +
P

j1
· · ·PjM

P τ1
j1

(δ) · · ·P τ1
jM

(δ)
PM

i=1 E|τi,ji〉(δ)

= U(δ) +
PM

i=1 E|τi,+〉(δ)P
τi
+0(δ)

Q
k 6=i

�P
jk

P τk
jk

(δ)
�

+
PM

i=1 E|τi,−〉(δ)P
τi
−0(δ)

Q
k 6=i

�P
jk

P
τk
jk

(δ)
� (5.72)

and as,
�P

jk
P τk

jk
(δ)
�

= 1, one gets

Ū(δ) = U(δ) +
PM

i=1 E|τi,+〉(δ)P
τi
+0(δ)

+
PM

i=1 E|τi,−〉(δ)P
τi
−0(δ)

= U(δ) +
PM

i=1(P
τi
0−(δ)− P τi

+0(δ))E|τi−〉(δ)
(5.73)
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Fig. 5.25. Dots: measured switching current I
Γexp
b shifted by their average value as a

function of the reduced �ux ϕ for the three atomic contacts described in Table 5.2.
Bands: theoretical switching current using the approximation of fast excitation
rates and assuming a Boltzmann distribution for the con�gurations of the Andreev
bound states with a temperature given in Table. 5.3. The width of the gray area
corresponds to the uncertainty on the PIN given in Table. 5.2.

-DΓ + Γmax Γmax

Γ

U
HΓ
L

Ωp DU

DΓ

Fig. 5.26. Potential as a function of the phase γ. The width of the well opening is
called ∆γ.
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ji ∈ {+0, +−, 00, 0−}. Therefore, the average switching rate is the sum of the
rates obtained for each con�guration weighted by their respective probabili-
ties

∏
i P̄τi

ji
(δ). Notice that these probabilities P̄τ

j (δ) are not the same as the

0 Π 2 Π

∆

-D

0

D

E
±
H∆
L

Fig. 5.27. Case of slow transitions between Andreev states. While the phase moves
in the potential well U(γ), the occupied Andreev states change slowly.

ones used for the fast excitation rates assumption. In case of slow dynamics
(Fig. 5.27), the phase oscillates many times before the Andreev state changes.
Therefore, the probability P̄τ

j (δ) is the average value of P τ
j (δ) for δ varying

between ϕ + γmax −∆γ and ϕ + γmax (see Fig. 5.26):

P̄τ
j (δ) =

1
∆γ

∫ γmax

γmax−∆γ

P τ
j (ϕ + γ)dγ. (5.75)

Given the exponential form of P τ
j (δ), and the fact that ∆γ is of order 1,

P̄τ
j (δ) is approximately given by the standard probability P τ

j (δ∗j ) evaluated
on a phase δ∗j which maximizes P τ

j (δ) on the region where the phase varies
(see Fig. 5.26). Then δ∗ does not depend on j or τ , and:

P̄τ
j (δ) ≈ P τ

j (δ∗) ≡ max
γmax−∆γ<γ<γmax

P τ
j (ϕ + γ). (5.76)

The calculation of the switching current I
Γexp
b (ϕ) can thus be performed as

follows. First one calculates the switching rate Γ (j1,··· ,jM )(IΓexp
b , ϕ) in each of

the 4M possible con�gurations for the Andreev states. Then one solves the
following equation in I

Γexp
b (ϕ) for all values of ϕ.

∑

j1

· · ·
∑

jM

P τ1
j1

(δ∗) · · ·P τM
jM

(δ∗)Γ (j1,··· ,jM )(IΓexp
b (ϕ), ϕ) = Γexp (5.77)

The result of this calculation is shown on Fig. 5.28. Once again, the theo-
retical curves do not change dramatically for most contacts from the curves of
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Fig. 5.28. Dots: measured switching current I
Γexp
b shifted by their average value as

a function of the reduced �ux ϕ for the three atomic contacts described in Table 5.2.
Bands: theoretical switching current using the approximation of slow excitation
rates and assuming a Boltzmann distribution for the con�gurations of the Andreev
bound states with a temperature given in Table. 5.3. The width of the gray area
corresponds to the uncertainty on the PIN given in Table. 5.2.

Fig. 5.23, supporting the idea that a non thermal radiation excite the Andreev
bound states. Besides, this calculation gives an absurd result for the highest
transmissions. Indeed, when the transmission is high, the gap between the
ground and excited states is small and the assumption of slow excitation dy-
namics is wrong.

5.2.5 Origin of the asymmetry in I
Γexp

b (ϕ)

On Fig. 5.15, a clear asymmetry appears for the contact AC3. The actual
current-phase relation I(δ) is an odd function of δ, therefore, this asymme-
try should be based on the measurement technique. In order to understand
this phenomena better, the potentials of the system can be plotted when the
Josephson junction and the Andreev bound states are in the ground state
and when only the highly transmitting channel is in the excited state (see
Fig. 5.29):



5.2 Current-phase relation measurement 155

U (−)(γ) = −ϕ0I0 cos(γ) −ϕ0Ibγ − |∆|
√

1− τ1 sin2(δ/2)

−|∆|∑i≥2

√
1− τi sin2(δ/2)

U (+)(γ) = −ϕ0I0 cos(γ) −ϕ0Ibγ + |∆|
√

1− τ1 sin2(δ/2)

−|∆|∑i≥2

√
1− τi sin2(δ/2).

(5.78)

It appears clearly on this �gure that the sharp feature in the curve I
Γexp
b
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Fig. 5.29. Top-left panel: measured switching current I
Γexp
b shifted by their average

value as a function of the reduced �ux ϕ for the atomic contact AC3. Three points
are denoted by a), b) and c) and correspond to one of the three other panels. a,b,c):
On each panel are plotted both potentials U (−) and U (+) as a function of γ, using
δ = ϕ+γ where ϕ is estimated from the phase of the �rst panel by ϕ = (ϕ+γ0)−π/2,
and using Ib from the �rst panel.

occurs at a �ux ϕ such that the gap between U (−) and U (+) is minimum at
the minimum of the potential U (−) (panel a). Therefore, we suspect transitions
from the states (−) to (+) to occur and be responsible of the strong change in
the current I

Γexp
b , but were unable to �nd a satisfactory explanation. For some

unknown reason, the situation where the minima of U (−) and U (+) coincide
may be singular.

5.2.6 Another method to measure the current-phase relation

In the last sections, it was shown that the measurement of the switching
current I

Γexp
b as a function of the �ux is a way to access the current-phase

relation. Yet, the dynamics of the phase of the measuring Josephson junction
leads to the smoothing of the actual current-phase relation. Another possibil-
ity consists in measuring the switching current IΓ

b for several values of Γ . This
measurement allows to plot the parameter η = [− ln(2πΓ/ω0)]2/3 as a func-
tion of the current I in the Josephson junction. Eventually, this measurement



156 5 Josephson e�ect through a coherent conductor

0 Π 2 Π 3 Π

j+Π�2

-40

-20

0

20

40

I 0
Hf

it
L -

1
.0

0
6

I 0
Hb

a
re
L
Hn

A
L

a

b

c

d

e

0.6 0.625 0.65 0.675 0.7 0.725 0.75

I HµAL

0

1

2

3

4

5

6

Η

I0
HbareL

abc d e

Fig. 5.30. Top panel�dots: measurement of the parameter η for several values of
the current I in the Josephson junction and of the �ux (identi�ed by both a color
and a letter). Top panel�lines: linear interpolation of the dots for each value of the
�ux. The current I

(fit)
0 is de�ned by the current at the crossing of the line and of the

axes b = 0. Bottom panel�dots: each dot represents the value of I
(fit)
0 as a function

of ϕ shifted vertically by 1.006I0 where I0 is the critical current of the Josephson
junction (720 nA). The black dots are associated with one sign of the current in the
Josephson junction and the gray dots to the opposite sign. The �ve dots which are
colored and denoted by a letter correspond to the curves of the top panel.

gives access to the current I
(fit)
0 at which the extrapolated line going through

the curve η(I) crosses 0 (see top panel of Fig. 5.30).
We calculated the expected value of I

(fit)
0 as a function of ϕ in the case of

the contact AC2 by determining the curve η(I) using the rate formula (5.43)
with the potential (5.55). It turns out, for the contact AC2, that this recipe
leads to

I
(fit)
0 (ϕ) ≈ I(ϕ) + 1.006I0 (5.79)

to a very good approximation (see Fig. 5.31). This shows that the above recipe
gives a direct measurement of the current-phase relation of the contact AC2.
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Fig. 5.31. Gray line: theoretical current-phase relation (5.29) as a function of δ =
ϕ + π/2 for the transmissions τ = {0.957; 0.185} of the contact AC2. Black line:
theoretical calculation of I

(fit)
0 − 1.006I0 as a function of ϕ + π/2 for the same

transmissions(see text).

On Fig. 5.32 one can compare the theoretical current-phase relation to the
experimental I

(fit)
0 as a function of the �ux. The agreement between both

curves is good except on its extrema around δ = ϕ + π/2 ≈ π. At this phase,
the gap between the two Andreev bound states is the smallest (see Fig. 5.26)
and Zener transitions or thermal excitation are more likely.
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Fig. 5.32. Grayed bands: theoretical current-phase relation at T = 0 (5.57) using
the PIN of Table 5.2 for the contact AC2 (same curve as on Fig. 5.20). The width of
the gray area corresponds to the uncertainty on the PIN. Dots: experimental value
of I

(fit)
0 − 1.006I0 (same curve as on Fig. 5.30).

5.3 Measurement of the phase-inductance relation
We have shown that the spectrum of the Andreev bound states can be accessed
experimentally through the measurement of its �rst derivative with respect to
the phase di�erence δ: the current-phase relation. The second derivative can
also be accessed experimentally, by measuring the e�ective inductance of an
atomic contact (see Eq. (5.39)). In this section, we discuss measurements of
this inductance performed on the very same contacts on which we measured
the current-phase relation.

5.3.1 Principle of the measurement

The actual setup of the experiment was slightly more complex than what was
shown on Figs. 5.7, 5.11: a transmission line was installed in parallel with the
bias line in order to perform microwave measurements (see Figs. 5.33 and 9.5).
The capacitance C ≈ 30 pF represented on Fig. 5.11, and the parallel combi-
nation of the two Josephson inductances, form an L-C resonator. Therefore,
neglecting the electrodes resistance r, the resonant frequency of the circuit is
ωres = (L‖C)−1/2, where L‖ is the e�ective inductance of the parallel com-
bination of the two non-linear Josephson inductors. Using Eq. (5.39), and
assuming that both the Josephson junction and the atomic contact are on the
superconducting branch22:
22 Recall that the geometrical inductance of the loop is negligible (about 10 pH)
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Fig. 5.33. Schematic of the electrical circuit involved in the measurement of the
Josephson inductance. A bias tee made of a large capacitance CRF and a large
inductance LRF decouples the DC from the AC signal. A network analyzer sends a
radiofrequency (RF) signal Vin onto the superconducting loop which partially re�ects
it. The re�ected signal RVin is forced into the return line by a circulator. The signal
is ampli�ed and then measured by the network analyzer. For further details, see
Fig. 9.5.

L‖ =
(
L−1

AC(Ib, ϕ) + L−1
JJ (Ib, ϕ)

)−1 (5.80)

where, at zero temperature,

LAC(Ib, ϕ) = ϕ2
0

(∑

i

∂2E|τi−〉
∂δ2

[γ(Ib, ϕ) + ϕ]

)−1

LJJ(Ib, ϕ) =
ϕ0

I0 cos(γ[Ib, ϕ])
.

(5.81)

The phase γ(Ib, ϕ) corresponds to the minimum of the total potential:

∂U (−)(Ib, ϕ, γ)
∂γ

(γ[Ib, ϕ]) = 0 (5.82)

which is equivalent to

Ib = I0 sin(γ[Ib, ϕ]) +
∑

i

I|τi−〉(γ[Ib, ϕ] + ϕ). (5.83)

Re�ectometry

In the experiment, a voltage Vin at microwave frequency ω/2π is sent through
a transmission line terminated by the superconducting loop. Since the load
impedance Z of the circuit di�ers from the impedance Z0 = 50 Ω of the line,
the microwave signal is partly re�ected and the complex amplitude of the
re�ected signal reads RVin where
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R =
Z − Z0

Z + Z0
. (5.84)

The impedance Z has the following expression:

Z =
(

1
iL‖ω

+
iCω

1 + irCω

)−1

(5.85)

In the experiment, we measured both the modulus and the phase of R. On
Fig. 5.34 we show the measured |R(ω)| as a function of the �ux ϕ at Ib = 0.
We call ωmin the frequency at which the modulus of the re�ection coe�cient
is minimum. One can show (see Appendix Eq. (B.32)) that

ωmin =
1√
L‖C

(√
1− L‖

2CZ2
0

− r2C

2L‖

)−1

(5.86)

To give an order of magnitude of the correction to the situation without
dissipation, we estimate L−1

JJ ≈ ϕ0/I0 ≈ 2×109 H−1 and L−1
AC(Ib, ϕ) < 108 H−1

so that the parallel inductance is just L‖ ≈ LJJ ≈ 0.4 nH. The capacitance is
C ≈ 21 pF (from the measurement of the plasma frequency of the Josephson
junction alone), and with Z0 = 50 Ω and r ≈ 0.5 Ω:

ωmin ≈ 1√
L‖C

+ 0.5% (5.87)

Similarly, one can calculate the characteristic frequency ωc at which the phase
arg(R) transits (see Fig. 5.35):

ωc =
1√
L‖C

(√
1− r2C

L‖

)−1

≈ 1√
L‖C

+ 0.6%. (5.88)

These results show that the frequency at which the density plots Figs. 5.34,
5.35 exhibit a transition is very close to 1√

L‖C
. Using the PIN of the atomic

contact from Table. 5.2, one can calculate the value of L‖ at Ib = 0. Then,
one compares directly the resulting 1√

L‖(ϕ)C
curve with the position of the

minimum of the measured re�ection coe�cient |R| or with the position of the
abrupt phase change arg(R).



5.3 Measurement of the phase-inductance relation 161

-Π Π0
j

1.3

1.4

1.3

1.6

1.8

1.7

Ω
�2
Π
HG

H
zL

AC3

1.3 1.5 1.7
Ω�2Π HGHzL

-60

-50

-40

ÈR
È
Hd

B
L

AC3

-
Π
�����
2

-
Π
�����
4

0

j

1.3

1.4

1.5

1.6

1.7

1.8

Ω
�2
Π
HG

H
zL

AC2 H270 mKL

1.4 1.5 1.6 1.7 1.8
Ω�2Π HGHzL

-60

-50

-40

ÈR
È
Hd

B
L

AC2 H270 mKL

Π 2 Π0-Π

j

1.4

1.5

1.6

1.7

1.8

Ω
�2
Π
HG

H
zL

AC1

1.5 1.6 1.7 1.8
Ω�2Π HGHzL

-60

-50

-40

ÈR
È
Hd

B
L

AC1

Fig. 5.34. Left panel: measured re�ection coe�cient amplitude |R| as a function
of the excitation frequency ω/2π and reduced magnetic �ux ϕ for the three atomic
contacts AC1, AC2 and AC3. The darker the bin, the smaller the re�ection ampli-
tude. The pro�les along the thick vertical line are plotted on the right panel. The
actual level is lowered by approximately 40 dB due to the losses and ampli�cations
in the measurement lines. All measurements were performed at the base refrigerator
temperature (20 mK) except those corresponding to the contact AC2, which were
taken at 270 mK. Two resonances (dark areas) can be observed as a function of
the �ux on the left panels near 1.6 and 1.75 GHz. The biggest one is due to the
LC resonator to which the atomic contact belongs. The smallest one occurs at the
same frequency for all values of the �ux, and is attributed to the impedance of the
circulators.
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Fig. 5.35. Same plot as on Fig. 5.34 but for the phase of the re�ection coe�cient R.
The �nite length of the transmission lines leads to a constant increase of arg(R) as
a function of the frequency. Therefore, a linear background was subtracted from the
raw data (on the plot, the zero of phase is arbitrary). The same parasitic resonance
as on Fig. 5.34 occurs at a �xed frequency near 1.75 GHz. All measurements were
performed at the base refrigerator temperature (20 mK) except those corresponding
to the contact AC2, which were taken at 272 mK.
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5.3.2 Comparison with theory at zero temperature

Using the expressions of the parallel inductance L‖ at zero temperature
Eqs. (5.80, 5.81), one easily calculate the zero temperature estimation of the
transition frequencies ωmin and ωc. The comparison with this crude model is
shown for |R| in Fig. 5.36. Similar curves are obtained for the phase arg(R).
The comparison with the theory at zero temperature shows a qualitative agree-

-Π Π0
j

1.3

1.4

1.3

1.6

1.7

Ω
�2
Π
HG

H
zL

AC3

Π 2 Π0-Π

j

1.4

1.5

1.6

1.7

1.8

Ω
�2
Π
HG

H
zL

AC1

-
Π
�����
2

-
Π
�����
4

0

j

1.3

1.4

1.5

1.6

1.7

Ω
�2
Π
HG

H
zL

AC2 H270 mKL

Fig. 5.36. Each density plot corresponds to a measurement of |R| as a function of
the �ux ϕ and the frequency ω, with the same colors as those used on Fig. 5.34. The
lines correspond to the calculation of the frequency ωres = (L‖C)−1/2 as a function
of the �ux using Eqs. (5.80, 5.81) together with the PIN given on Table. 5.2 for each
contact.

ment. Yet, some �nite temperature calculation still have to be done in order
to perform a quantitative comparison [21].
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5.4 Conclusions

The experiments discussed in this chapter support strongly the theory that de-
scribes Josephson supercurrents as proceeding through Andreev bound states.
In particular, we have shown that quantities closely related to the current-
phase relation and the inductance-phase relation can be measured and are in
close to a perfect agreement with the theoretical predictions. Further work
needs to be done to carefully take into account the e�ect of the environment
and of the noise on those quantities.

The main points of this chapter are the following
• the current-phase relationship of an atomic contact was successfully mea-

sured in a SQUID made of an atomic contact and a tunnel junction
(Fig. 5.15)

• the inductance-phase relation was successfully measured in the same sys-
tem (Figs. 5.34, 5.35)

• Josephson junctions may exhibit sub-gap structures whose amplitude
seems to depend strongly on the value of the critical current I0 (Fig. 5.17)

• the main in�uence of temperature on the switching current in the exper-
iment comes from the dynamics of the phase of the Josephson junction
in a �xed potential well. We have shown explicitly that the measured
switching current as a function of the �ux can be obtained by locally
averaging the current-phase relation on a width increasing with temper-
ature (see Eq. (5.67))

• the in�uence of the excitations of the Andreev bound states on the
switching current was investigated in two limit behaviors: fast and slow
excitation rates compared to the plasma frequency. At the temperatures
used in our experiment, the e�ect of these processes was found to be
negligible (see Figs. 5.25 and 5.28)

• the remaining discrepancy between experiment and theory could be due
to non-thermal noise sources that excite the Andreev states

This experiment still remains to be improved in order to reduce the uncon-
trolled noise which leads to an excitation of the Andreev states. Furthermore,
following a proposal by Shumeiko et al., one may think of using Andreev
bound states as the states of a q-bit [161]. An experiment trying to perform
quantum manipulation of the state of atomic contacts could be performed in
the near future. We already tried to shine microwave signals at frequencies
of the order of the Andreev gap while looking at a possible change in the
current-phase relationship, but were unsuccessfull in discriminating the re-
spective roles of pure heating and of direct excitation by photonic absorbtion.
At least measuring the life time of an Andreev state would be both challenging
and rewarding, from a fundamental point of view.



Part III

Asymmetric current �uctuations





Chapter 6
Full Counting Statistics
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Let us consider a conductor biased by a voltage source. The full counting
statistics addresses the question of determining how many charge carriers have
passed through an arbitrary cross-section of the conductor during a time t.
To answer that question, we consider an ideal measurement device for the
number N̂ of charges having passed from one side (left) of the cross-section
to the other (right). Quantum mechanics gives a probabilistic answer to that
problem, P (n, t) being the probability that n charges have passed during a
time t

Calculating directly P (n, t) is a di�cult task and it turns out that working
on its Fourier transform in the n domain is more convenient. This chapter is a
short introduction to the �eld of full counting statistics with electrons, which
was pioneered in the 1990's by Levitov et al. [162, 22]. In particular, we show
the results of the full counting statistics theory on coherent conductors, which
is entirely determined by its PIN (see § 4).
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6.1 Generating function formalism

This section shows how the calculation of P (n, t) can be reduced to a problem
in the Keldysh formalism. Here, we follow closely the treatment of Kinder-
mann [163]. It can be shown that, in the case of coherent conductors in the
long time t limit, the only property of quantum mechanics needed to calculate
P (n, t) correctly is the Pauli exclusion principle. Interference e�ects between
electrons and the phase of electrons does not modify the �nal results [164].

6.1.1 General de�nitions

For any operator B̂, we use the time-dependent operator representation

B̂(t) = eiĤt/~B̂e−iĤt/~ (6.1)

where Ĥ is the Hamiltonian of the whole system. The moment generating
function of N̂ at time t and �eld ξ is de�ned as

Fm(ξ, t) =
〈
exp(−iξN̂)(t)

〉
(6.2)

where the average 〈· · · 〉 is taken over the initial density matrix ρ0 of the
electrons. This function is said generating because the moments of N̂ are
obtained by simply derivating it.

〈
N̂(t)k

〉
= ik

∂kFm(ξ = 0, t)
∂ξk

. (6.3)

Another quantity in probability theory is the cumulant
〈〈

N̂(t)k
〉〉

of N̂(t).
The cumulants1 and their generating function Fc(ξ, t) are de�ned by

Fc(ξ, t) ≡
∞∑

k=0

〈〈
N̂(t)k

〉〉 (ξ/i)k

k!
≡ ln

〈
e−iξN̂ (t)

〉
= ln (Fm(ξ, t)) . (6.4)

1 A recipe allows one to link the cumulants to the moments [165]. Let p be a integer
between 0 and k − 1. Let us write down k times the character N̂ . Then let us
divide this writing in p + 1 subsets with brackets:D

N̂N̂
ED

N̂
E
· · ·
D
N̂N̂N̂

E
.

Let us call Cp the sum of all those kind of terms. Then, the cumulant of order k
is given by the sum DD

N̂k
EE

=

k−1X
p=0

(−1)pp!Cp.
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Similarly to the function Fm(ξ, t), the cumulants are obtained by simple
derivation of the function Fc(ξ, t). Finally, the probability P (n, t) that n elec-
trons are measured at time t, which is just P (n, t) ≡ 〈|n〉〈n|(t)〉, is the Fourier
transform of Fm(ξ, t):

eFc(ξ,t) =
〈
e−iξN̂ (t)

〉
=

+∞∑
m=−∞

P (m, t)e−iξm.

which yields:
P (n, t) =

1
2π

∫ +π

−π

eFc(ξ,t)+inξdξ. (6.5)

The cumulants have no particular meaning. Two possibilities occur for the
cumulants. Either only the two �rst cumulants are non-zero and Eq. (6.5)
proves that P (n, t) is a Gaussian, or one cumulant of order above 2 is non-
zero and then an in�nite number of cumulants are non-zero (otherwise, P (n, t)
would not be positive). This is the Marcienkiewicz theorem [166, 167].

6.1.2 Derivation of the generating function in the Keldysh
formalism

We have seen that the calculation of P (n, t) reduces to the calculation of
the generating function Fc(ξ, t). In this section, we present the derivation
of Fc(ξ, t) as done by Nazarov et al. [168, 163]. Using the de�nition of the
generating function

Fc(ξ, t) ≡ ln
〈
e−iξN̂ (t)

〉
(6.6)

one may write

Fc(ξ, t) = ln
〈
eiĤt/~e−iξN̂e−iĤt/~

〉

= ln
〈
e−iξN̂/2

[
eiξN̂/2eiĤt/~e−iξN̂/2

] [
e−iξN̂/2e−iĤt/~eiξN̂/2

]
e−iξN̂/2

〉

= ln
〈
e−iξN̂/2 exp

[
it
~ eiξN̂/2Ĥe−iξN̂/2

]
exp

[
− it
~ e−iξN̂/2ĤeiξN̂/2

]
e−iξN̂/2

〉

(6.7)
where we have used the fact that for any observable B̂,

eiξN̂/2eB̂e−iξN̂/2 = exp
(
eiξN̂/2B̂e−iξN̂/2

)
. (6.8)

This last expression simpli�es if one introduces the Hamiltonian Ĥξ of the
same system in presence of a (counting) vector potential Â(ξ) = ξϕ0δ(x̂)ux

(ux being a vector unit pointing towards the right lead)2.
2 This Hamiltonian Ĥξ is obtained from Ĥ by replacing the momentum p̂ by

p̂ξ = e−iξN̂/2p̂eiξN̂/2 = p̂− eÂ(ξ). (6.9)
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Fc(ξ, t) = ln
〈
e−iξN̂/2eiĤ−ξt/~e−iĤξt/~e−iξN̂/2

〉
. (6.10)

Then, assuming also that at time t = 0 the number of electrons having passed
is set to zero, the generating function reads

Fc(ξ, t) = ln
〈
eiĤ−ξt/~e−iĤξt/~

〉
. (6.11)

Furthermore, in the semiclassical approximation3, one can replace Ĥξ by its
Taylor series at �rst order:

Fc(ξ, t) = ln
〈
ei(Ĥ−ξϕ0Î)t/~e−i(Ĥ+ξϕ0Î)t/~

〉
. (6.17)

The remaining of the calculation uses the identity

e−i(Ĥ+ξϕ0Î)t/~ = e−iĤt/~−→T e−iξϕ0
R t
0 Î(t)dt (6.18)

where −→T denotes the normal time ordering. Finally,

Fc(ξ, t) = ln
〈←−

T e−iξ/2e
R t
0 Î(τ)dτ−→T e−iξ/2e

R t
0 Î(τ)dτ

〉
(6.19)

The Taylor series4 of this expression makes clear the link between the mo-
ments of the number N̂(t) and the integrated current operators

∫ t

0
Î(τ)dτ .

The complex time-ordering in the current operators, which was badly taken
3 If we assume that Ĥ =

P
i

p̂i
2

2m
+ V (r̂i), then

Ĥξ =
X p̂2

ξ

2m
+ V (r̂) (6.12)

and

p̂2
ξ = e−iξN̂/2p̂2eiξN̂/2 (6.13)

= (1− iξN̂/2)p̂2(1 + iξN̂/2) + O(ξ2) (6.14)
= p̂2 + iξ/2

h
p̂2, N̂

i
+ O(ξ2) (6.15)

and �nally

Ĥξ = Ĥ + iξ/2
h
Ĥ, N̂

i
+ O(ξ2) = Ĥ + ϕ0ξÎ + O(ξ2), (6.16)

The expansion in power of ξ is valid as the generating function is used only near
ξ = 0 in the calculation of the cumulants.

4 The term of order n in ξ readsDD
N̂(t)n

EE
(−iξ)n =

(−iξ/2e)n

n!

Z
CK

dt1 · · ·
Z
CK

dtn〈T CKI(t1) · · · I(tn)〉

where CK is the Keldysh contour [169].
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into account in the �rst trials to derive high moments of electrical noise [162],
appears in this formula in a compact way. In 1993, Levitov et al. calculated
the generating function at �rst order in the development of the exponent for
a tunnel junction, and found that N̂ obeys a Poisson law similarly to what
happens in vacuum diodes [22]. One may recognize in the expression (6.19) an
integral on a Keldysh contour CK [169]. Nazarov and Belzig showed [168, 54]
that using the standard Keldysh formalism with boundary conditions contain-
ing a term depending on the counting �eld ξ, one can calculate (6.19) directly.
It is remarkable that the Full Counting Statistics of the number N̂ can be cal-
culated using the same mathematical apparatus as for the calculation of other
transport properties.

In section 6.2, we will only give the results of this calculation for coherent
conductors, as derived by Nazarov et al. Recently, two other formalisms have
been developed to calculate the cumulants of N̂ , especially at �nite times
[170, 171]. Here, in the case of coherent conductors at long times, we focus on
the Keldysh derivation only because it allows to calculate cumulants at any
order from a single function.

6.1.3 Link with the spectral density of noise

Di�erentiating (6.19) twice with respect to (−iξ), one �nds an expression for
the second cumulant of the number N̂ according to (6.4)

〈〈
N̂(t)2

〉〉
=

1
e2

∫ t

0

∫ t

0

dτdτ ′
〈
δÎ(τ)δÎ(τ ′)

〉
(6.20)

where δÎ(t) = Î(t) −
〈
Î(t)

〉
. Assuming that the noise is invariant by time

translation, and using the change of variable (η = τ − τ ′ and α = (τ + τ ′)/2)
this equation reads

〈〈
N̂(t)2

〉〉
=

1
e2

∫ t

0

dα

∫ µ(α)

−µ(α)

dη
〈
δÎ(η)δÎ(0)

〉
. (6.21)

where
µ(α) =

{
α if α < t/2
t− α if α ≥ t/2 .

We will assume5 that the time correlation tc of the current is much smaller
than the time t. Hence,
5 In fact, we can go further without this assumption. Indeed, the spectral density
of states is just the Fourier transform of the current correlatorD

δÎ(η)δÎ(0)
E

=
1

4π

Z +∞

−∞
e−iωηSI(ω)dω (6.22)

and the second cumulant reads
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〈〈

N̂(t)2
〉〉

=
t

e2

∫ ∞

−∞

〈
δÎ(η)δÎ(0)

〉
dη.

t À tc

(6.24)

Introducing the current noise spectral density6

SI(ω) = 2
∫ +∞

−∞
eiωτ

〈
δÎ(τ)δÎ(0)

〉
dτ, (6.25)

we see that the second cumulant of N̂ has a very simple interpretation in
terms of the zero frequency noise spectrum

〈〈
N̂(t)2

〉〉
=

t

2e2
SI(0).

t À tc
(6.26)

Finally, using the fact that the �rst order cumulant of N̂ is just given by the
average current 〈〈

N̂(t)
〉〉

= 〈I〉 t/e, (6.27)

the link between the �rst and second cumulants of N̂ is just:
〈〈

N̂(t)2
〉〉

=
SI(0)
2e 〈I〉

〈〈
N̂(t)

〉〉
. (6.28)

In the so-called shot-noise limit, where SI(0) = 2e 〈I〉, we �nd the standard

result that the width of the distribution P (n, t) grows like
√〈〈

N̂(t)
〉〉

.

6.2 Application of the Full Counting Statistics theory to
coherent conductors

The cumulant generating function Fc(ξ, t) can be calculated at long time t
compared to the correlation time tc of the current correlator for a coherent
conductor biased by a voltage V . Depending on the type of reservoirs, Belzig
and Nazarov predicted di�erent generating functions [172].DD

N̂(t)2
EE

=
1

4πe2

Z t

0

dα

Z µ(α)

−µ(α)

dη

Z +∞

−∞
e−iωηSI(ω)dω. (6.23)

6 This de�nition corresponds to the asymmetric current noise. Indeed, as current
operators at di�erent times do not commute, multiple de�nitions exist for the
spectral density SI(ω). In our de�nition, for positive (negative) frequency ω,
the spectrum SI(ω) is the absorption (emission) rate of photons of energy |~ω|
by the conductor. The classical de�nition of the noise spectral density is then
(SI(ω) + SI(−ω))/2
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6.2.1 General case

For long time t À tc, Fc(ξ, t) = tFc(ξ) where Fc(ξ) does not depend on time.
The biggest simpli�cation in the calculation of Fc(ξ) for a coherent conductor
is the fact that the contributions of each transmission channel just add up
directly. For a coherent conductor whose PIN is {τi},

Fc(ξ) =
∑

i

Fτi
c (ξ). (6.29)

Depending on the type of electrodes, di�erent expressions for Fτi
c (ξ) are ob-

tained.

Normal electrodes (NXN)

Let us call fL and fR the energy distribution function of the electrons in the
left and right electrodes. We will assume that they are Fermi functions with
di�erent chemical potentials: fL(E + eV ) = fR(E) = (eE/kBT + 1)−1. The
result of Nazarov et al. is:

Fτ
c (ξ) =

1
h

∫ +∞

−∞
dE ln[1 + τfL(E)(1− fR(E))(e−iξ − 1)+

τfR(E)(1− fL(E))(eiξ − 1))]
(6.30)

Zero temperature limit

For temperatures such that kBT ¿ eV , the expression Eq. (6.30) simpli�es
into

Fτ
c (ξ) =

e|V |
h

ln[1 + τ(e−sgn(V )iξ − 1)] (6.31)

where sgn(V ) is the sign of V . The corresponding probability distribution of
the number N̂ of electrons going through a single channel of transmission τ
can be calculated using Eq. (6.5). It is binomial and reads for positive V

P (n, t) =
(〈

N̂(t)
〉

/τ

n

)
τn(1− τ)〈N̂(t)〉/τ−n (6.32)

It is noteworthy that current �uctuations in coherent conductors do not
obey to a pure Gaussian law in general.
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Superconducting electrode on one side and normal electrode on
the other (NXS)

If one electrode is normal while the other is superconducting, the general
expression for the generating function reads

Fτ
c (ξ) =

1
h

∫ +∞

−∞
dE ln

[
1 +

2∑
q=−2

Aτ,q(E)(e−iqξ − 1)

]
(6.33)

where the coe�cients Aτ,q(E) are related to the transfer of q charges in the
channel of transmission τ and can be found in [173]. In particular, for one
single channel of transmission τ , at zero temperature, and for voltages below
∆/e, the generating function reads[174]

Fτ
c (ξ) =

e|V |
h

ln
[
1 +

τ2

(2− τ)2
(e−2iξ − 1)

]
(6.34)

Hence, for eV < ∆, the probability distribution is zero for odd charges and
binomial for even charges

P (2n, t) =
(〈N̂(t)〉/τ

2n

) (
τ

2−τ

)2n
(

1−
(

τ
2−τ

)2
)〈N̂(t)〉/(2τ)−n

P (2n + 1, t) = 0
(6.35)

Finally, for eV À ∆, single tunneling can occur and dominate the noise signal.
Therefore, the generating function is the same as in the case of normal metal
electrodes Eq. (6.30).

Superconducting electrodes on both sides (SXS)

In the case where superconducting electrodes are on each side of the conductor,
like in our experiments (see section 5.1.4), the statistics if much more di�cult
to calculate. In fact, multiple charge transfers (Multiple Andreev Re�ection
processes) contribute to Fτ

c (ξ) at all charge multiples. The zero temperature
cumulant generating function has been calculated in Ref. [175] and reads

Fτ
c (ξ) =

1
h

∫ eV

0

dE ln

[
1 +

∞∑
n=−∞

Pn(E, V )(e−inξ − 1)

]
(6.36)

We refer the reader to the work of Cuevas and Belzig for the calculation of the
probability Pn(E, V ) that n charge quanta of energy E have passed through
the contact [175].
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6.2.2 Tunnel junction

Case of an NIN tunnel junction

In the case of a tunnel junction (∀i; τi ¿ 1, see (4.4)), we have, using (A.5)
(see Appendix),

Fc(ξ, t) ≈ t

h

∑

i

τi

∫ +∞

−∞
dE[fL(E)(1− fR(E))(e−iξ − 1)

+fR(E)(1− fL(E))(eiξ − 1)] (6.37)

≈ eV t

h

h

e2R

[
1

1− e−
eV

kBT

(e−iξ − 1) +
1

e
eV

kBT − 1
(eiξ − 1)

]
(6.38)

≈ −V t

eR

[
2 coth

(
eV

2kBT

)
sin2(ξ/2) + i sin ξ

]
(6.39)

which coincides with the expression derived, in a �rst order approach, by
Levitov and coworkers [22]. Thus, using Eq. (6.4), the cumulants are given by

〈〈
N̂(t)k

〉〉
=

{
tV
eR coth

(
eV

2kBT

)
if k is even

tV
eR if k is odd

(6.40)

In order to check the consistency of this expression with existing theory of the
noise spectral density, we use Eq. (6.26) for k = 2 and get

SI(0) =
2e2

t

〈〈
N̂(t)2

〉〉
= 2eI coth

(
eV

2kBT

)
(6.41)

This is in agreement with the standard formula for the zero frequency noise
[52].

At zero temperature, all cumulants are equal to the mean value
〈
N̂(t)

〉

of N̂ . Therefore, P (n, t) is a Poisson distribution:

P (n, t) ∼

〈
N̂(t)

〉n

n!
e−〈N̂(t)〉 (6.42)

At high temperatures, the even cumulants are all equal to RK

R
2tkBT

h which
is proportional to the variance of a classical conductor as is proven below in
Eq. (6.48).

Case of an NIS tunnel junction

If one of the electrodes is superconducting, at zero temperature and for volt-
ages V ≥ ∆/e, the result of the calculation of the probability P (n, t) using
Eq. (6.33) is exactly the same as for an NIN junction Eq. (6.42). The only
di�erence is the fact that

〈
N̂(t)

〉
= tI/e 6= tV/eR (see Fig. 7.4).
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6.3 Full counting statistics for incoherent conductors

When the charge carriers are not independent, the theory of Full Counting
Statistics is much harder to deal with. Some works have investigated this
regime, among them Refs. [176, 177, 178, 179, 180, 181, 182, 183]. First, we
discuss the case of the most common type of incoherent conductors: classical
ones.

6.3.1 Thermalized conductor

The current �uctuations through a thermalized conductor of resistance R
are due to thermal noise only. Therefore, P (n, t) is purely Gaussian and the
generating function of the cumulants reads

Fc(ξ, t) = 1− iξ
〈〈

N̂(t)
〉〉

− ξ2

2

〈〈
N̂(t)2

〉〉
. (6.43)

where
〈〈

N̂(t)
〉〉

= V t/eR. In order to calculate the second cumulant of N̂ ,
we use Eq. (6.21):

〈〈
N̂(t)2

〉〉
=

1
e2

∫ t

0

dα

∫ µ(α)

−µ(α)

dη
〈
δÎ(η)δÎ(0)

〉
. (6.44)

Besides, the spectral density is then given by the Johnson-Nyquist formula

SI(ω) =
4
R

~ω

1− e−
~ω

kBT

(6.45)

Hence, by Fourier transforming (according to (6.22)), we have7,

〈
δÎ(η)δÎ(0)

〉
=

~
πη2R

[
1−

(
ηω1/2

sinh(ηω1/2)

)2
]

(6.47)

where ω1 = 2πkBT/~ is the �rst Matsubara frequency. Going through the
calculation, we get8
7 One can use the identity

2

Z +∞

0

cos(xη)
x

1− exβ
dx = η−2

 �
πη

β

�2

/ sinh2

�
πη

β

�
− 1

!
. (6.46)

8 Notice that for long time t À 1/ω1, the cumulant
DD

N̂(t)2
EE

is just proportional
to the time t: DD

N̂2
EE

∼ RK

R

2kBT

h
t. (6.48)

This is a direct consequence of the fact that for long times Fc(ξ, t) ∝ t.
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〈〈

N̂2
〉〉

=
4~

πe2R
ln

(
sinh(ω1t/4)

ω1t/4

)
. (6.49)

Finally, the probability P (n, t) is a Gaussian

P (n, t) =
e−(n−n̄(t))2/σ2(t)

σ(t)
√

π
(6.50)

centered on n̄(t) = V t/eR and whose variance is given by

σ(t) =
√

2
〈〈

N̂(t)2
〉〉

. (6.51)

6.3.2 Di�usive wire

In a di�usive wire, one can calculate the statistics of the current by using
the results on coherent conductors only if the length L of the wire is much
smaller than the coherence length Lϕ and if the time t at which the cumulant
generating function Fc(ξ, t) is calculated is much longer than the di�usion time
and eV/~. See section B.9 for a full calculation of the generating function, and
of the �rst cumulants.
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Fig. 6.1. Second and third noise densities at zero frequency as a function of the
wire length in the limit of small temperatures (see text).

The general case with strong interactions has been also investigated in
three di�erent formalisms [184, 185]. On the experimental side, measuring the
spectral density of the noise has proven to be an elegant way to measure the
intensity of interactions between electrons in a wire [12, 13]. The second and
third cumulants of the current �uctuations have been calculated in the zero
frequency limit and their value is closely related to the length of the wire. At
low temperatures, where eV À kBT and where L

(ee)
ϕ ¿ L

(e−ph)
ϕ (see section

2.2), the spectral density of the noise SI(ω = 0) is multiplied by a factor
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1.3 when the length increases above L
(ee)
ϕ whereas the third order density9

S
(3)
I (0, 0) is multiplied by a factor 3.7 (see Fig. 6.1) [186].

9 The third order density of the current �uctuations is de�ned by

S
(3)
I (ω1, ω2) =

Z +∞

−∞
dτ1e

iω1τ1

Z +∞

−∞
dτ2e

iω2(τ2−τ1)T CK
D
δÎ(τ2)δÎ(τ1)δÎ(0)

E
.

(6.52)
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The previous chapter describes how the Full Counting Statistics theory can
predict the probability P (n, t) for n charges to pass through a conductor in a
time t. In this chapter, we discuss a preliminary experiment using a Josephson
junction as a threshold detector for the current, which probes properties of
the charge transfer statistics.
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7.1 Josephson junction in a noisy environment
7.1.1 Setup of the measurement device

In section 5.2.1, it was shown that Josephson junctions can go from a �zero
voltage� state to a dissipative state if the current slightly increases from a
value just below the so-called critical current I0. Hence, Josephson junctions
can be seen as current threshold detectors. In 2004, Tobiska and Nazarov pro-
posed to use such threshold detectors to probe the Full Counting Statistics
of charge transfer [27]. The idea is to bias a Josephson junction just below I0

so that large enough, positive �uctuations of the current lead to a switching
event. Ideally, the switching probabilities are then directly linked to the dis-
tribution of the current �uctuations. Yet, a realistic Josephson junction is not
an ideal current threshold detector and a rough estimate [27] shows that an
overdamped Josephson junction should not be sensitive to large enough cur-
rent �uctuations to detect anything else than the few �rst cumulants of the
current. Tobiska and Nazarov suggested to add in parallel with the Josephson
junction a device with negative inductance, because it should be sensitive to
much larger current �uctuations than the Josephson junction alone, thus the-
oretically allowing the access to cumulants of any order [27]. Our experiment
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Fig. 7.1. Scheme of the experiment. The �uctuations δIm of a mesoscopic conductor
(an NIS tunnel junction in our experiment) are forced to pass through a Josephson
junction. A bias line sends current pulses Ib(t) on top of the �uctuations δIm in the
junction. The switching probability of the junction during one pulse can be related
to the current �uctuations.

was conceived as a preliminary test of the noise detecting skills of Josephson
junctions. Therefore, we used a single junction only and tried to understand
up to which order of the cumulants of current �uctuations it is sensitive. In
the experiment, a mesoscopic device (an NIS tunnel junction) is biased at a
constant voltage. The current going through it is the sum of a constant part
and of a �uctuating part: Im(t) = 〈Im〉+ δIm(t) (see Fig. 7.1). The constant
part 〈Im〉 of the current is forced to �ow into an impedant return line while
the �uctuating part �ows directly through the Josephson junction. Meanwhile,
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current pulses Ib(t) are forced through the junction through a bias line simi-
larly to the atomic contact experiment. The switching rate of the junction is
then measured for various amplitudes of the current pulse.

7.1.2 Ideal case
In order to understand the principle of the experiment, let us �rst consider the
ideal case of a perfect threshold detector instead of the Josephson junction.
This means that the �Josephson junction� switches only when the current
exceeds the critical current I0 (see §5.2.1 in the zero temperature limit). Of
course, there is no sense in speaking of instantaneous values of the current.
We need to introduce a �counting time� τ0 during which the junction measures
the current before �deciding� to switch or not. In the picture of classical phase
dynamics (see § 5.2.1), current �uctuations correspond to �uctuations in the
tilt of the potential well. It is known that the resonant activation of a junction
using an oscillating bias signal at a �xed frequency presents a sharp cut-o�
near the plasma frequency [187] (see Fig. 7.6), indicating that �uctuations
of the tilt which last shorter than (2π/ωp) do not contribute to the escape
dynamics. However, tilting the potential during more than 2π/ωp a�ects the
switching rate. The counting time of this detector can thus be de�ned as
τ0 = 2π/ωp.

During a current pulse1 of length τpls and of height sI0, the probability
Psw for the junction to switch can be easily derived. The time window τpls

can be cut into intervals of length τ0, and Psw is just the probability for the
junction to switch in at least one of these intervals. Therefore, assuming the
noise in the junction is correlated on a timescale2 smaller than τ0,

Psw = 1− [1− P (n ≥ N(s), τ0)]
τpls/τ0 (7.1)

where P (n ≥ N(s), τ0) is the probability that the number n of charges having
passed through the noisy mesoscopic conductor during τ0 exceeds a threshold
N(s) = τ0I0

e (1− s).

P (n ≥ N(s), τ0) =
+∞∑

n=N(s)

P (n, τ0). (7.2)

Thus, in an ideal experiment, the switching probability is linked to the
counting probability P (n, t) straightforwardly by a simple derivative. How-
ever, with a real Josephson junction at �nite temperatures, the switching
probability cannot be expressed in such a direct way in terms of the count-
ing probability and one has to use a more elaborated theoretical approach to
predict it.
1 Meaning that Ib(t) is always zero except during a time window τpls where it reads

sI0.
2 In a perfect voltage bias situation, the correlation time between two tunneling
events is of the order of ~/eV . In our experiment, τ0 ≈ 1 ns and ~/eV ≈ 0.1−1 ps.
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7.1.3 Simple signature of non-Gaussian noise

We have seen in chapter 6 that the current passing through a voltage-biased
coherent conductor has non-Gaussian statistics in general. In our experiment,
the conductor is just a tunnel junction and the statistics of the charge trans-
fers is a Poisson distribution. Therefore, large positive �uctuations (positive
meaning in the same direction as the average current) are more likely than
large negative �uctuations (see Fig. 7.2). This asymmetry can be tested di-
rectly within our experimental setup. Indeed, for the same pulse height sI0,
the switching probabilities in the case of a positive or a negative average
current 〈Im〉 should di�er.
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Fig. 7.2. Predicted distribution function P (n, 2π/ωp) in case of a tunnel junction
(Poisson distribution see Eq. (6.42)). The black curve corresponds to a positive
average number of particles passing through the junction and the gray curve to the
opposite situation. Here, the average current was set to 0.1 µA and ωp/2π was set to
1 GHz. The right panel shows the same function as in the left panel in log scale. A
clear asymmetry can be seen in log scale between the two directions of the current.

7.2 Characterization of the circuit
In this section, we describe more thoroughly the characteristics of the electrical
circuit. The electrical properties of the discrete elements were measured and
are given in appendix C.1.

7.2.1 NIS junction properties

The conductor which produces the noise under study is a tunnel junction
between a copper electrode and an aluminum electrode in its superconduc-
tive state. The normal state resistance of the junction was Rt ≈ 1.57 kΩ. A
measurement of its current-voltage characteristics is shown on Fig. 7.4. The
theoretical prediction for this curve can be calculated by integrating Eq. (3.17)
in the zero temperature limit:



7.2 Characterization of the circuit 183

V
b

C

C
m

R
t

R
1

R
big

R
big

C
2

R
2

C
1

R
cal

Z
0

I
m

I

α
att

V
m
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superconducting gap ∆ = 185.5 µeV.
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Im(V ′
m) = sgn(V ′

m)Re
(√

V ′2
m −∆2/e2

)
/Rt. (7.3)

As for the current noise, the two following limits can be derived.

Low voltage eV ′
m < ∆:

At voltages below the gap, charges are transferred by units of 2e only (using
the Andreev re�ection § 5.1.2). In this case, the statistics of charge transfers
is described by Eq. (6.35). This case was not accessed experimentally because
the corresponding current and noise were very small3.

High voltage eV ′
m À ∆:

For temperatures small compared to eV , P (n, t) is a Poisson distribution and
the cumulants of the number of transferred charges are given by Eq. (6.40):

〈〈
N̂(t)k

〉〉
=

{
t〈Im〉

e coth
(

eRt〈Im〉
2kBT

)
if k is even

t〈Im〉
e if k is odd

(7.4)

7.2.2 Josephson junction properties

Current-voltage characteristics

The current-voltage characteristics exhibits two unusual features shown on
Fig. 7.5. First, the reentrant behavior at eV ≈ 2∆ is very similar to what is
observed on the Josephson junctions investigated in the experiments on atomic
contacts in section 5.2.3. Second, a clear structure appears at about the third
of the gap. Moreover, this structure seems insensitive to external noise as the
gray and black dots do not di�er on Fig. 7.5. This could be attributed to
resonances in the electromagnetic environment of the Josephson junction (as
in section 5.2.3), but no clear understanding of this feature was obtained.

Determination of the plasma frequency by resonant activation

Applying a high frequency AC bias voltage to the Josephson junction can
modify the switching rate Γ . The corresponding increase in the switching
rate depends strongly on the quality factor Q and the plasma frequency ωp

of the circuit. We performed such a resonant activation experiment of the
switching on our circuit in order to determine these quantities experimentally.
The NIS junction was biased with a constant and tiny voltage Vm = 0.23 mV
3 The conductance of an NIS junction below the gap is given by R(Lϕ)/R2

t where
R(Lϕ) is the resistance of a part of length Lϕ of the normal part [188]. A simple
explanation for this behavior in R(Lϕ) is that the more an electron or a hole
di�uses inside of the normal metal, the more attempts he will have to cross
the tunnel barrier and be Andreev re�ected into the superconducting side. The
behavior in R−2

t comes from the co-tunneling of an electron and its Andreev
re�ected hole (see section 5.1.2).
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Fig. 7.5. Measured current-voltage characteristics of the Josephson junction at dif-
ferent values of the current Im in the NIS junction and at a refrigerator temperature
of Trefrigerator = 20 mK. The black dots were measured with 〈Im〉 = 5.3 nA and the
gray dots with 〈Im〉 = 0.64 µA.
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calculated using the mea-

sured value of the RF power PRF when Γ (IRF) ≈ 2Γ (0), for an escape temperature
of 120 mK (as measured by the switching experiment). Each curve correspond to
a di�erent value of the pulse height sI0. Thin lines: the best �ts of the experiment
obtained assuming a capacitance C = 36 pF and a global attenuation of the bias
line of αatt = 58.5 dB. Thick lines: Position of the plasma frequency.
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so that its dynamical resistance is �xed to 0.93 kΩ (see Fig. 7.4). The switching
probability of the Josephson junction was measured with current pulses on
the bias line. Their height is denoted by sI0 and their length was always τpls =
49 µs. The switching rate Γ was measured for two values of the parameter s:
Γ ≈ 1.3 kHz for s = 0.826 and Γ ≈ 7.3 kHz for s = 0.844. Then, in order
to observe resonant activation of the switching, a tiny additional microwave
signal was send through the bias line at a frequency ΩRF,

Ib(t) = Ipulse(t) + IRF cos(ΩRFt). (7.5)

In the limit where the amplitude IRF is small enough for the rate to double at
most (Γ (IRF) < 2Γ (0)), the rate increase is predicted by the theory developed
in Ref. [187]:

ln
[
Γ (IRF)
Γ (0)

]
= cfitQI2

RF

∆U(s)
Cωp(s)2(kBTesc)2

f(Q, ΩRF/ωp(s)) (7.6)

where ∆U , ωp , Q and Tesc are de�ned in section 5.2.1, f(Q, x) is given in
appendix Eq. (B.33)and cfit is of order 5 and its dependence on Q is given ex-
plicitly in Fig. 19 of Ref. [187]. In the experiment, we measure the amplitude
IRF needed to double the switching rate as a function of the frequency ΩRF.
Both curves taken at s = 0.826 and s = 0.844 are then �t using Eq. (7.6)
with the capacitance C and the attenuation of the bias line αatt left as free
parameters. The best �t shown on Fig. 7.6 is obtained for C = 36 pF and
for an attenuation of αatt = 58.5 dB for the whole bias line (the measured
attenuation at DC was 50.0 dB). Actually, the quantity measured in the ex-
periment is the power of the RF microwave and not the current IRF. The
relation between those two quantities can be derived straightforwardly (see
Eq. (B.38) in the appendix). Finally,

C ≈ 36 pF ; ωp(s = 0) ≈ 1.0 GHz ; Q(s = 0) ≈ 22 (7.7)

Switching dynamics

Quality of the pulse

In order to perform a sensitive switching experiment, one needs to control the
current pulses at best. It would be naive to believe that the pulses propagate
perfectly from the voltage source to the Josephson junction. Indeed, �lters,
attenuators and losses in the transmission line modify the pulse because their
impedance varies slightly with frequency. And as these components vary with
temperature, it is of no use to calibrate the pulse sequence at room temper-
ature. Therefore, our experiment needed a control of the pulse shape using
only the experimental measurement lines. We chose to use the information
contained in the histogram of the switching events as a function of the time.
If the bias current is low enough so that the switching rate Γ is much less
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Fig. 7.7. Left panel: Shape of the pulses we used in order to optimize the histogram
of Fig. 7.8. Positive and negative pulses with the same nominal shape were used in
series. All the switching events occur during the part denoted as pulse. The sustain
part is small enough (κ = 85% of the pulse height) not to lead to any switching
and allows the voltage which develops after a switching event to hold for a longer
time, therefore facilitating the measurement. On this pulse sequence, tpulse = 50 µs,
tsustain = 22.5 µs and tdelay = 27.5 µs. Right panel: zoom on the pulse and sustain
regions of the left panel. The precise shape of the pulse sent by the source is chosen
so that once it arrives on the Josephson junction, it looks as rectangular as possible.

than τ−1
pls , the probability to switch at a time t < τpls is nearly constant. In

this case, the switching histogram in time should be constant on the pulse
length. By varying slightly the shape of the pulses, the histogram could be
made reasonably �at (see Figs. 7.7 and 7.8).

Critical current

In a set of measurements, the tunnel junction was biased at a constant current4
〈Im〉 ≈ 0.22 µA while a standard switching experiment similar to the one
presented on Fig. 5.13 is performed on the Josephson junction. On Fig. 7.9, the
function b2/3 of Eq. (5.54) is shown as a function of s for various refrigerator
temperatures. The critical current I0 = 479 nA was �t in order to get most
extrapolating lines to cross 0 at s = 1. The escape temperature for each curve
is plotted as a function of the refrigerator temperature on the same �gure. The
shot noise contribution to the temperature shifts all temperatures by about
90 mK.

4 As shown on Fig. 9.7, switching events are detected by the appearance of a �-
nite voltage across the capacitor Cm. Once a �nite voltage develops across the
Josephson junction, it takes at least a characteristic time RmCm to develop across
Cm, where Rm is the di�erential resistance dV ′m/dIm of the tunnel junction (see
Fig. 7.4). When the voltage Vm is zero, Rm goes to in�nity. Thus, it is prefer-
able to set Vm at a �nite value in order to avoid large time constants in the
measurement of switching events.
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Fig. 7.8. Screen capture (color online) of an oscilloscope in histogram mode. The
bias line is gone through by a series of current pulses as shown on Fig. 7.1 such that
the switching probability is much less than 1 (here around 5%, which also means that
Γτpls ≈ 0.05). Sometimes, when a switching occurs, a voltage (light line) develops
across the Josephson junction. When the voltage crosses a given threshold shown
by the bottom of empty rectangle, the bin corresponding to the time at which this
crossing happens increases by one unit (notice that the histogram points down).
The dark gray histogram shows the amplitude of the bins after 1.5×106 pulses. The
e�ective width of the pulse seen by the Josephson junction is given by the width of
the histogram: τpls ≈ 49.1 µs.

7.2.3 Summary of the electrical quantities
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Fig. 7.9. Left panel�dots: Function b2/3 plotted as a function of s for di�erent
temperatures from the measurements of the switching probability. The critical cur-
rent used to get most curves to extrapolate to 0 at s = 1 is I0 = 479 nA. The
point color codes the refrigerator temperature and can be decoded using the right
panel. Left panel�lines: best straight lines passing through the experimental points
and through 0 at s = 1. The slope of these curves gives the escape temperature
Tesc through Eq. (5.54). The points at the lowest temperature do not follow the
line closely as a result of heating e�ects that are described in the following. Right
panel: escape temperature Tesc extracted from the left panel as a function of the
refrigerator temperature.

Quantity Value Reference
C1 0.13 nF C.1
R1 202 Ω (at DC) C.1

Rbig 10573 Ω C.1
Rt 1.57 kΩ Fig. 7.4
Cm 0.85 nF C.1
C 36 pF Fig. 7.6
I0 479 µA Fig. 7.9
C2 0.13 nF C.1
R2 202.1 Ω (at DC) C.1
Rcal 10.18 Ω C.1
Z0 50 Ω C.1
αatt 50.0 dB (at DC) C.1
αatt 58.5 dB (at 1 GHz) Fig. 7.6

Table 7.1. Electrical properties of the circuit shown on Fig. 7.3.

7.3 In�uence of the current noise in the tunnel junction
on the switching dynamics
7.3.1 Gaussian noise
How to measure the spectral density of the noise ?
As described in section 5.2.1, the escape dynamics of a Josephson junction in
the thermal regime5 is approximately given by the escape rate
5 At T > Tco, see Eq. (5.51).
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Γ (s) = λ(Q)
ωp(s)
2π︸ ︷︷ ︸

e−∆U(s)/kBTesc︸ ︷︷ ︸
A e−B

(7.8)

where Tesc re�ects the current �uctuations through the Josephson junction.
In order to be more concrete about the link between the current �uctuations
and the escape temperature Tesc, we introduce the equation that describes the
dynamics of the phase γ across the Josephson junction. Using the Kircho�'s
laws for the circuit shown on Fig. 7.3 and Eq. (5.37),

d2γ

dt2
+

1
ReqC

dγ

dt
+

I0

ϕ0C
sin γ − sI0

ϕ0C
=

1
ϕ0C

δI(t) (7.9)

where Req is the total resistance seen by the Josephson junction and δI(t) is
the di�erence between the instantaneous current and the average one in the
Josephson junction. In our case, where the current noise is due to thermal
�uctuations in the various resistors and to shot noise in a tunnel junction,
and assuming that the Josephson junction is insensitive to high frequency
components of the noise6, the correlation time of the noise is negligible and
one gets

〈δI(t)〉 = 0

〈δI(t)δI(t′)〉 =
1
2
SI(ωp)δ(t− t′)

(7.10)

where SI(ω) is the spectral density of the noise, which is constant in this
approximation. If noise would be due to thermal �uctuations in the resistor
Req at temperature Tenv, the spectral density of the noise would be given by
the Johnson-Nyquist expression (6.45), and one would get

〈δI(t)δI(t′)〉 =
2kBTenv

Req
δ(t− t′). (7.11)

The results of section 5.2.1 show that, in this case, the escape temperature
would just be the real temperature Tesc = Tenv. Therefore, in the general
case, as long as noise is frequency independent, the escape temperature is the
temperature of the environment that leads to the same spectral density in the
thermal �uctuation regime alone. In case the spectral density of the noise is
not �at, one has to be careful. Given the resonant activation measurements,
the frequency at which the Josephson junction is the most sensitive is the
plasma frequency. Therefore, at �rst order,

Tesc ≈ Req

4kB
SI(ωp) (7.12)

6 Here, high means higher than kBT/~. Indeed, the Johnson-Nyquist spectral den-
sity is �at for frequencies lower than this threshold as proven by Eq. (6.45). In
the experiment, T > 0.1 K (see discussion about Fig. 7.12), so that the spectrum
is �at up to 2 GHz which is way too high for exciting the Josephson junction as
proven by resonant activation (Fig. 7.6).
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Application to our experiment

In our experiment, one can �nd the spectral density of the current produced by
the environment of the Josephson junction by applying the following theorem
of circuit theory [189].

Theorem: Let us consider a one port network made of branches of admit-
tances Yj(ω), and let us denote by Y (ω) the total admittance as seen from the
port. Then, the spectral density of the current going through a short at the
port is given by

SI(ω) =
∑

j

∣∣∣∣
∂Y

∂Yj

∣∣∣∣ S
(j)
I (ω) (7.13)

where S
(j)
I (ω) is the spectral density of the current in the branch j.
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Fig. 7.10. Copies of the scheme of the circuit 7.3 where the thick parts show the
various branches where the current �uctuations δI in the Josephson junction �ow
(see text).
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In our setup, in the limit where kBTj À ~ωp, the three main dissipative
elements in the Josephson junction environment are three parallel branches
denoted by m for the branch passing by the mesoscopic noisy conductor (NIS
tunnel junction), 1 and 2 for the biasing impedances (see Fig. 7.10). Their
admittances and noise spectral densities are given by

Y1(ω) =
(
R1 + [iCbω]−1

)−1 ; S
(1)
I (ωp) ≈ 4kBT1/R1

Y2(ω) =
(
R2 + [iCbω]−1

)−1 ; S
(2)
I (ωp) ≈ 4kBT2/R2

Ym(ω) =
(
Rt + [iCmω]−1

)−1 ; S
(m)
I (ωp) ≈ 2e〈Im〉 coth

(
eRt〈Im〉
2kBTm

)

(7.14)
where the expression for the noise S

(m)
I (ωp) comes from Eq. (6.41), and where

Tj is the temperature of the dissipative element in the branch j. Since the
three branches are in parallel, the theorem above applies easily to give the
total spectral density of the current

SI(ωp) =
4kBT1

R1
+

4kBT2

R2
+ 2e〈Im〉 coth

(
eRt〈Im〉
2kBTm

)
(7.15)

and �nally, using Eq. (7.12),

Tesc =
(

1
R1

+
1

R2
+

1
Rt

)−1 [
T1

R1
+

T2

R2
+

e〈Im〉
2kB

coth
(

eRt〈Im〉
2kBTm

)]
. (7.16)

Besides, the limit behavior when eRt〈Im〉 À 2kBTm (which is valid in all our
measurements but a few7) is given by

Tesc =
(

1
R1

+
1

R2
+

1
Rt

)−1 [
T1

R1
+

T2

R2
+

e〈Im〉
2kB

]
(7.17)

Temperature of the bias resistors
In order to test experimentally the last equation (7.17), one needs to deter-
mine the values of the temperatures T1, T2 and Tm. The case of Tm can be
treated easily because the electrons tunneling from the electrode with the
higher electrochemical potential into the other do not stay in the vicinity of
the tunnel barrier, but di�use away rapidly. Therefore, the temperature of
the electrons which tunnel through the insulating barrier is the one of the
Fermi sea in the leads, which is cooled down by phonons at the temperature
Trefrigerator.

In the SMC resistors used in the branches 1 and 2, the value of the tem-
perature is not so trivial. It turns out that Joule power can heat signi�cantly
the electrons in the resistors, and the values of T1 and T2 vary with the pulse
shape and with the value of the current 〈Im〉. We evaluate this e�ect in what
follows.
7 At worst, that is at Tm = 530 mK for our data, this approximation is valid as
soon as 〈Im〉 > 1 µA.
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Resistor R1

The temperature T1 depends on the current passing through the branch 1, and
therefore, should only depend on the current in the tunnel junction 〈Im〉. As-
suming that Joule power is mostly dissipated by phonons8, and using Eq. (B.6)
from the appendix, one gets an upper estimate of the temperature as a func-
tion of the current 〈Im〉:

ΩΣ(T 5
1 − T 5

refrigerator) = R1〈I2
m〉 (7.19)

with Ω the volume of the metallic �lm and Σ is a material dependent factor.
The constructor of the SMC, Vishay, does not communicate the exact dimen-
sions of the resistive NiCr �lm used in their resistors. Yet, as the value of T1

depends on the volume Ω at the power 1/5, a rough estimate of the volume
is su�cient. Vishay provided us with typical values for the length L, width w
and thickness t of the thin �lms: L ≈ 0.9 mm, w ≈ 0.6 mm and t ≈ 0.1 µm.
Given the resistivity of a Cu/Ni alloy ρ ≈ 110 µΩ.cm, these dimensions corre-
spond to a 20 Ω resistance. As in our case, the resistance was R1 ≈ 200 Ω, the
thickness t or width w should be actually reduced by a factor 10. The total
volume is then Ω ≈ 5× 103 µm3. Besides, the value of the prefactor Σ of the
order of a few 109 W.m−3K−5 in metals [190], is not known for NiCr. Using
Σ = 109 W.m−3K−5, we obtained the estimates of Fig. 7.11. The temperature
of resistor R1 is found to vary signi�cantly with 〈Im〉 only in the set of data
taken at the lowest temperature (20 mK).

Resistor R2

The case of resistor R2 is more tricky than the case of R1 because the current
in R2 is not constant. The Joule energy E2 dissipated in the resistor R2 during
one pulse sequence can be estimated by

E2 =
∫ tpulse+tsustain

0

R2I(t)2dt (7.20)

For a given switching rate Γ , the probability for the current I to keep a value
sI0 during a time t < tpulse is Γ e−Γt. When the Josephson junction switches,
8 Neglecting the role of cooling by electronic heat conduction compared to cooling
by electron-phonons interaction leads at worst to an overestimate of the tem-
perature. Moreover, the SMC resistor is connected to a thin �lm (10 nm of Au
topping 54 nm of Cu) on one side and to the same �lm in parallel with an alu-
minum wire on the other side. The aluminum being superconducting, no heat can
�ow through it, and the thin �lm is so thin that phonons thermalize it badly on
short distances. In the end, the additional term in Eq. (7.19) that would describe
conduction heat �ow, is negligible:

wt

ρ
LT∇T ¿ ΩΣ(T 5

1 − T 5
refrigerator) (7.18)

because ∇T is small.
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Fig. 7.11. Predicted temperatures of the SMC resistors R1 as a function of the cur-
rent in the tunnel junction 〈Im〉, using Eq. (7.19) for �ve refrigerator temperatures
(corresponding to the experiment, and given by the temperature of the lines at zero
current on the left plot).

the working point of the circuit follows the load line towards a point where
V ≈ 0.1 mV and I ¿ I0 (see Fig. 7.5). The current stays at this low value
until the next pulse is applied. If the switching does not occur before tpulse,
the current is sustained for an additional time tsustain at the value sI0κ, where
κ = 0.85 (see Fig. 7.7). Therefore, the average Joule energy is given by

E2 =
∫ tpulse

0

[tR2s
2I2

0 ]Γ e−Γtdt + R2s
2I2

0 (tpulse + tsustainκ2)e−Γtpulse (7.21)

hence,

E2(s, Γ ) = R2s
2I2

0

[
Γ−1

(
1− e−Γtpulse

)
+ tsustainκ2e−Γtpulse

]
. (7.22)

Assuming that this energy is mostly dissipated by phonons, one gets an upper
estimate of the temperature T2 as a function of the current 〈Im〉 using a similar
equation to Eq. (7.19)

ΩΣ(T 5
2 − T 5

refrigerator)(tpulse + tsustain + tdelay) = E2. (7.23)

One gets an estimate of T2 as a function of s, Γ and tdelay. At the lowest
temperature of Fig. 7.9, it seems that the experimental dots of the left panel
do not follow the theoretical line as well as for higher temperatures. Our inter-
pretation is that it is a signature of the heating of R2 we have just discussed.
In order to test this description more thoroughly, we measured the switching
rates Γ for several values of s and of tdelay while the current in the tunnel junc-
tion 〈Im〉 was zero. The corresponding escape temperatures, calculated using
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Eq. (7.8) for each value of s and tdelay, are reported on Fig. 7.12. The two
top panels of this �gure show that the escape temperature depends on s, and
that it decreases when the delay between pulses increases. In order to com-
pare the experiment with the predictions of Eq. (7.23), we use Eq. (7.16) with
T1 = Tm = Trefrigerator = 20 mK, and Rt = +∞ (see Fig. 7.4 at 〈Im〉 = 0).
The corresponding predictions for the escape temperature are reported on the
bottom panel of Fig. 7.12. The qualitative agreement between the data and
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Fig. 7.12. Left-top panel: Escape temperature as a function of the bias pulse height
sI0 estimated from Eq. (7.8) using the switching rates measured for several delay
times (see Fig. 7.7) at the base refrigerator temperature Trefrigerator = 20 mK. In
the estimation, the critical current was �xed to I0 = 479 nA according to Fig. 7.9.
Right-top panel: same data plotted as a function of the delay time for several values
of s. Left-bottom panel: Prediction for the escape temperature as a function of s
and of the delay time tdelay using Eqs. (7.23,7.16) with the parameters given in the
text.
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the predictions are good up to a prefactor of order 1 which might be due
to an error on the actual value of ΩΣ, thus supporting our interpretation of
the heating e�ects. This complicates the analysis of our experiment at low
temperatures. Yet, as soon as the refrigerator temperature gets as high as
200 mK, this heating e�ect becomes negligible, as proven by the good �t of
the b2/3 plots on Fig. 7.9.

Measurement of the escape temperature

In the experiment, we performed switching rate measurements as a function of
the pulse amplitude sI0 for several values of the average current 〈Im〉 through
the tunnel junction and at several temperatures Trefrigerator (see Fig. 7.1).
For each measurement, we extracted the escape temperature using Eq. (7.8).
On Fig. 7.13, the escape temperatures corresponding to several values of the
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Fig. 7.13. Escape temperatures extracted from the measurement of the rate as a
function of s using Eq. 7.8 for several values of the current in the tunnel junction
Im and of the refrigerator temperature Trefrigerator. The parameters used in the
extraction are I0 = 479 nA, C = 36 pF and Req ≡ (R−1

1 + R−1
2 + R−1

t )−1 = 95 Ω.
The line shows the expected escape temperature at Trefrigerator = 0 using the same
parameters and Eq. (7.12).

current through the tunnel junction and of the refrigerator temperature are
reported. These measurements were taken using the pulse sequence plotted
on Fig. 7.7 whose delay time tdelay was short (see Fig. 7.12). In order to check



7.3 In�uence of the current noise in the tunnel junction on the switching dynamics 197

the consistency of our derivation above (Eq. (7.17)), we have subtracted in
Fig. 7.14 the expected contribution of Johnson-Nyquist noise

(
1

R1
+

1
R2

+
1
Rt

)−1 [
T1

R1
+

T2

R2

]
(7.24)

in resistors R1 and R2 from the escape temperature Tesc. We have used here
T1 = T2 = Trefrigerator which, according to the preceding section, should be
valid at least for the data sets taken at Trefrigerator ≥ 200 mK.
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Fig. 7.14. Left panel: same escape temperatures as on Fig. 7.13 but shifted ver-

tically by αTrefrigerator where α =

�
1
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1
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1

Rt

�−1 �
1
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+

1

R2

�
≈ 0.95. The

thin line shows the expected escape temperature at Trefrigerator = 0 using Eq. (7.17)
with Req ≡ (R−1

1 + R−1
2 + R−1

t )−1 = 95 Ω as measured, whereas the thick line
represents the prediction for Req = 83 Ω. Right panel: same escape temperatures as
on Fig. 7.13 but shifted vertically by T83 = 83 Ω × e〈Im〉/2kB (which is the thick
line of the left panel). According to Eq. (7.17), this should be a measurement of�

1
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+

1

Rt

�−1 �
T1

R1
+

T2

R2

�
. Notice the resemblance with Fig. 7.11.

All curves, except the one at base temperature, nearly merge on a sin-
gle line. Yet, this line is not exactly the line that could be predicted from
Eq. (7.17) using the parameters I0 = 479 nA, C = 36 pF and Req = 95 Ω.
Since both I0 = 479 nA and C = 36 pF have been measured using the phase
dynamics near the plasma frequency9, only Req is suspicious. Indeed, this
value of Req comes from DC measurements of the resistivity of the three dis-
sipative elements constituting the environment of the Josephson junction. It
9 I0 was measured from a switching experiment, and C was measured by resonant
activation, which depends only slightly on Req.
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might well be that this value di�ers from the impedance seen at frequencies
as high as the bare (s = 0) plasma frequency ωp0/2π = 1 GHz. On Fig. 7.14,
it seems that Req = 83 Ω accounts better for the data.
Discrepancy at T = 20 mK
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Fig. 7.15. Comparison between the experimental dots of the right panel of Fig. 7.14
and the expression (7.19) using Σ = 109 W.m−3K−5 and Ω = 5× 103 µm3.

From Fig. 7.14, it is clear that some heating occurs at the lowest refrig-
erator temperature. In order to understand the origin of this heating, we
compare the data at 20 mK with the predictions on T1 from Eq. (7.19), us-
ing Σ = 109 W.m−3K−5 and Ω = 5 × 103 µm3. The good overall agreement
supports our description.

7.3.2 Beyond Gaussian noise
In this section, we are interested in possible signatures of the current noise on
the switching, which are not entirely contained in the in�uence of the spectral
density of the noise on the escape temperature. In particular, as explained
in the beginning of this chapter, the switching rate should di�er with the
direction of the current through the tunnel junction. Several experimental
e�ects could produce such an asymmetry, and one needs to be particularly
careful with the way the bias is performed.

Complete description of the biasing circuit
Using the following voltage sources, we tried to minimize current leakage in
parasitic lines.
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Fig. 7.16. Scheme of the two voltage sources involved in the biasing of the circuit
Fig. 7.3. Concerning Vb, the arbitrary signal generator is the Agilent 33250A, the
Bu�er is a voltage ampli�er SR560 with gain 1 from Stanford Research Systems.
Concerning Vm, the real source are two 1.5 V AA batteries in series. A switch can
be turned in position 1 or 2 depending on the current in a coil next to it so that
the voltage Vm can be set to opposite values quickly and automatically. Finally, a
potentiometer allows to adjust manually the output voltage Vm continuously. Rp ≈
50 kΩ and Rhuge ≈ 475 kΩ.

Voltage source Vb

The voltage source Vb shown on Fig. 7.3 was actually realized with a series of
three elements:
• an arbitrary signal generator (Agilent 33250A)
• a bu�er which decoupled the ground of the bias line from the ground of

the signal generator (voltage ampli�er SR560 with gain 1 from Stanford
Research Systems)

• a large series capacitor (220 µF) so that the average value of Vb is exactly
zero (the average voltage is set by the attenuators of the transmission
line). This capacitor prevents unwanted o�sets that would be introduced
by thermoelectric voltages on the bias line between the circuitry at room
temperature and the �rst 50 Ω attenuator in the dilution refrigerator at
1 K.

Voltage source Vm

The �oating voltage source Vm shown on Fig. 7.3 was actually implemented
in a way that maximizes the electrical insulation from the remaining of the
circuit. The reason is that a leakage current to ground from either of the
conductors would give rise to a current in the Josephson junction . The quality
of this isolation is veri�ed by the observation of the correct symmetry in the
measured signals (see below). Besides, a controllable switch allows to rapidly
and automatically change the sign of the voltage.
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Measurement of the switching rate with opposite biasing voltages

The experimental procedure consists in repeating measurements of the switch-
ing probability for all four possible combinations of the signs of voltages Vm

and Vb. The aim is to make sure that no uncontrolled o�set current contributes
to the measured asymmetry in the switching probabilities. In absence of any
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Fig. 7.17. Left panel�dots: switching probabilities Psw measured using the tech-
nique discussed in the text as a function of the pulse height sI0 for Vm = ±25.00 mV
(〈Im〉 ≈ 1.1 µA at a temperature Trefrigerator ≈ 197 mK. The probabilities are cal-
culated by doing a statistics on 2× 105 to 5× 105 pulse sequences depending on the
desired accuracy. Left panel�lines: straight lines through the dots. Four groups of
dots and lines are shown depending on the signs of the bias voltages (the width codes
the sign of Vm while the color codes the sign of Vb). The groups coincide almost per-
fectly and are therefore hardly distinguishable in agreement with Eq. (7.25). Right
panel: switching rates corresponding to the probabilities shown on the left panel.
The error bars on the rates are at most 5× 10−8ωp0 and are thus less than the size
of the dots.

o�set, one expects the following pairs of equivalent measurements.

(Vm > 0;Vb > 0) ⇐⇒ (Vm < 0; Vb < 0)
(Vm > 0;Vb < 0) ⇐⇒ (Vm < 0; Vb > 0) (7.25)

The measurement procedure goes as follows. The pulse sequence plotted on
Fig. 7.7 is applied 10,000 times on Vb while a constant voltage Vm is applied on
the tunnel junction bias line, then the switch of Fig. 7.16 is changed position so
that −Vm is applied and 10,000 other pulse sequences are applied on Vb. This
procedure is repeated often enough so that a good precision on the switching
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rate is achieved10. In the end, the switching events are packed into four groups
corresponding to the four combinations of the signs of Vm and Vb. An example
of the result is shown on Fig. 7.17, showing good consistency with Eq. (7.25).
In order to verify these conditions, the current leakage between the wires
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Fig. 7.18. For several refrigerator temperatures, the average di�erence between the
o�sets RΓ calculated using both methods Vm > 0 and ±Vb or Vm < 0 and ∓Vb

is plotted as a function of the current 〈Im〉. The data were shifted for clarity and
the zero corresponding to each temperature is indicated by a line. The error bar is
calculated using Eq. (7.27).

10 For each pulse we recorded the answer to the question Has the voltage across
the Josephson junction crossed the threshold ? (1 means yes and 0 means no).
The answers are independent random variables Xi with binomial distribution,
P being the expectation for Xi = 1. Therefore, the standard deviation of the
average N−1PN

i=1 Xi is
p

P (1− P )/N . And using

P = 1− e−Γτpls , (7.26)

one gets the standard deviation of the switching rate

∆Γ =

s
P

N(1− P )
τ−1
pls . (7.27)

After each set of ten thousands measurements, ∆Γ is compared to a maximum
value set by the operator. If it is too large, another set of ten thousands measure-
ments is repeated with the same parameters, and so on.
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connected to the batteries in the voltage source Vm and the ground should be
extremely small (in our setup, the resistance leakage is estimated by a lower
bound of 100 GΩ). The signal, which is a di�erence between the two groups of
curves, is characterized by the relative di�erence in the rates RΓ (s) between
pairs of curves of Fig. 7.17:

RΓ ≡ Γ+(s)/Γ−(s)− 1 , (7.28)

where Γ+(s) (respectively Γ−(s)) is the switching rate in case Vb and Vm are
of the same sign (respectively opposite sign). Then, the condition (7.25) is
equivalent to having RΓ unchanged whether it is calculated using Vm > 0 and
the two rates at ±Vb or using Vm < 0 and the two rates at ∓Vb. The di�erence
of these two o�sets RVm>0

Γ − RVm<0
Γ should thus be zero. On Fig. 7.18, the

di�erence between these two determinations is plotted for di�erent values of
the current 〈Im〉 and for several temperatures. The distance from zero is much
smaller than the signal RΓ itself (see Fig. 7.18), thus strongly supporting the
validity of our measurements. Notice that the uncertainty on the measurement
of RΓ is given by (see Eq. (7.27)):

∆RΓ = 2
∆Γ

Γ
= −2

√
P

N(1− P )
1

ln(1− P )
(7.29)

Measuring the asymmetry in the switching rates

On Fig. 7.17, it is clear that for opposite signs of Vb×Vm, the switching rates
take di�erent values. Curves like the ones shown on Fig. 7.17 were measured as
a function of s for several values of 〈Im〉 and of the refrigerator temperature.
From those curves, the asymmetry factor RΓ was calculated as a function of
s. Choosing the range of s on which these measurements are performed was
done by maximizing the uncertainty on RΓ , and by limiting the acquisition of
a set of 6 points to 10 minutes (as the uncertainty depends strongly on s near
s = 0 or s = 1, the acquisition time can grow very fast in those regions). In
the experiment, we chose the range of s so that Pmin = 0.25 and Pmax = 0.987
where ∆RΓ ≈ 4/

√
N .
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Fig. 7.19. On each panel, the dots represent the measured RΓ = Γ+(s)/Γ−(s)− 1
as a function of s for several values of the current 〈Im〉 indicated by the color of the
dot. To each dot corresponds an error bar calculated using Eq. (7.27). Each panel
corresponds to a single temperature of the refrigerator indicated on the top right
corner. To each single dot of Figs. 7.13 corresponds a set of 6 dots with di�erent
values for s.
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7.4 Classical escape dynamics of a Josephson junction in
presence of non-Gaussian noise

7.4.1 Numerical simulations

In order to get some insight on the e�ect of noise on the switching of a Joseph-
son junction, Xavier Waintal, a theorist from our physics department (SPEC,
CEA Saclay), performed numerical simulations of the classical dynamics of
the phase in a potential well in presence of non-Gaussian noise. Similar sim-
ulations were performed long ago [187, 191, 154] in the case of thermal noise
and con�rmed the predictions of the escape dynamics theory in the classical
regime discussed in 5.2.1. In the simulations performed by Xavier Waintal,
the total noise was taken as the sum of a thermal noise and of a noise with
a Poisson distribution of the currents. In the following, we use the reduced
units of Table. 7.2. With these notations, Eq. (7.9) reads

Reduced unit Translation

t̃ ωp0t

χ 〈Im〉/(eωp0)

α eωp0/I0

T̃ kBT/(ϕ0I0)

s Ib/I0

Table 7.2. Table of the reduced notations used in the numerical simulations.

d2γ

dt̃2
+

1
Q0

dγ

dt̃
+ sin γ − s = δs(t̃) (7.30)

The noise term δs(t̃) contains two parts:

• a Gaussian noise due to the Johnson-Nyquist noise of the circuit at tem-
perature Tth. The correlator of this noise is (7.11)

〈δs(t̃)δs(0)〉 =
2T̃th

Q0
δ(t̃) (7.31)

where T̃th is be related in our experiment to the temperatures T̃1 and T̃2

by Eq. (7.17):

T̃th =
T̃1/R1 + T̃2/R2

1/R1 + 1/R2 + 1/Rt
(7.32)
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• The second part is due to the mesoscopic current 〈Im〉 �owing through the
tunneling junction.

δs(t̃) = sgn(χ)
∑

i

αδ(t̃− τi) (7.33)

where the random variables τi are given by τi+1 = τi +w with the Poisson
distribution law p(w) = χe−χw.

The simulations are straightforward step by step numerical resolutions of
Eq. (7.30), with time steps of 10−3ω−1

p0 . At each step, the current �uctuation
δs is calculated according to the above conditions. When the phase reaches a
position beyond 1 rad past the top of the barrier potential γmax, the time is
acquired and appended to the switching histogram. This procedure is repeated
Ndata = 105 times so that the histogram has enough points to extract the
switching rate Γ .

At the time of this writing, no calculations were performed using the same
parameters as in the experiment.

7.4.2 Perturbative calculation

In order to predict the outcome of our experiments, Joachim Ankerhold, the-
orist from Freiburg University (Germany), developed a theory for the escape
rate of a Josephson junction in the classical regime in presence of non-Gaussian
noise [60]. In this section, we present the main results of his derivation and
compare them to our experimental data.

The derivation is based on an e�ective Fokker Planck equation, valid in
the following conditions:
• the cumulants of the current �uctuations are rapidly decreasing with their

order
• the current autocorrelation time is much smaller than ω−1

p0

• the exponent B is much higher11 than the quality factor Q

Solving this Fokker-Plank equation for the population of the phase as a
function of the time, position and velocity, one �nds the rate at which the
population inside the well decreases.

Main results

The switching rate calculated with this method reads (up to an approximate
value of the prefactor)
11 This is not true in our experiment where B ≈ 10 and Q ≈ 15 at its minimum

(when s ≈ 0.9). This condition must be ful�lled for a correct calculation of the
prefactor in the switching rate formula. But this might have implications on RΓ

too.
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Γ (s, Im) =
ωp(s)
2π

λ(Q(s)) exp

[
4
√

2
3

ϕ0I0
(1− s)2/3

kBTesc
(1− g(s, 〈Im〉)

]
= Ae−B(1−g)

(7.34)
where A and B correspond to the de�nitions of section 5.2.1 and where

g(s, 〈Im〉) =
1
4

Q(s)2

5 + Q(s)2

(
~ωp0

kBTesc

)2 〈Im〉
I0

(1− |s|)11/6. (7.35)

Therefore, at �rst order, RΓ = 2B × g which gives

RΓ =
2
√

2
3

Q(|s|)2
5 + Q(|s|)2

ϕ0~2ωp(|s|)2〈Im〉
(kBTesc)3

(1− |s|)2(1 + |s|)−1/2 (7.36)

Finite temperature case

At �nite temperatures, we plotted the theoretical expression for RΓ (7.36) at
constant exponent B as a function of 〈Im〉 for several refrigerator temperatures
(and using the measured escape temperatures Tesc from Fig. 7.13), it is clear
that RΓ B−5/3 is independent on B. Therefore, at �nite or at zero temperature,
one has

RΓ ∝ B5/3. (7.37)
Actually, there is another scaling law:

RΓ ∝ B5/3〈Im〉T−4/3
esc . (7.38)

This scaling is consistent with preliminary zero temperature results of numer-
ical simulations in the exponent of B, as in this case Tesc ∝ 〈Im〉.
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Fig. 7.20. Left panel: theoretical curves for various values of the temperatures
of the environment (T1 = T2) using Eqs. (7.36,7.17) for a value of s leading to a
constant switching rate corresponding to the lowest experimentally accessed rate
Γ = 5.7 kHz. Right panel: calculated average current 〈Im〉 at which the asymmetry
RΓ is maximal with our experimental parameters as a function of the temperature
of the environment.

7.5 Comparison between theory and experiment

Using the de�nition of the exponent B in (7.8):

B ≡ − ln(2πΓ+(s)/[ωp(s)λ(Q(s))]), (7.39)

RΓ is plotted on Fig. 7.21 as a function of 〈Im〉 for several values of B. For
all temperatures and values of B, RΓ increases with 〈Im〉.

Our data do not verify the scaling law (7.37) as shown on Fig. 7.22 where
the curves do not fall on a single one.
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Fig. 7.21. The dots are the measured o�set RΓ = Γ+(s)/Γ−(s) − 1 as a function
of the current 〈Im〉 obtained for a value of the bias current pulse sI0 leading to a
value of B(s) indicated by the color of the dot. The error bars are plotted as lines.
Each panel corresponds to a single temperature of the refrigerator indicated on the
top left corner.
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Fig. 7.22. Each panel corresponds to a single temperature of the refrigerator indi-
cated on the top left corner. The dots are the measured o�set RΓ times B−5/3 as a
function of the current 〈Im〉 obtained for a bias current sI0 such that B(s) is given
by the value indicated by the color of the dot.
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An empirical scaling law can still be found, and it seems from Fig. 7.23
that

RΓ ∝ B2/3 (7.40)
since all the curves at a given temperature are superimposed.

It is clear that the theory does not reproduce our data. On the contrary,
for low temperatures, it seems that the experimental o�set RΓ scales along
the empirical expression (see Fig. 7.24-b):

RΓ ≈ 1.43× 10−42

( 〈Im〉
1 µA

)
B2/3

(
Tesc

1 K

)−3/4

+ 10−3 (7.41)

where Tesc is the measured escape temperature of Fig. 7.13. It seems that the
theoretical prediction has the good dependences on B and on the current 〈Im〉
but a wrong exponent in Tesc (see Eq. (7.38)).
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Fig. 7.23. Each panel corresponds to a single temperature of the refrigerator indi-
cated on the top left corner. The dots are the measured o�set RΓ times B−2/3 as a
function of the current 〈Im〉 obtained for a bias current sI0 such that B(s) is given
by the value indicated by the color of the dot.
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Fig. 7.24. Fig a): Average value of RΓ B−2/3 as a function of 〈Im〉 for several refrig-
erator temperatures. Fig b): Average value of RΓ B−2/3 as a function of 〈Im〉T−3/4

esc

for several refrigerator temperatures. The line is an empirical linear �t (7.41) for the
dots at low refrigerator temperatures.

7.6 Conclusions

In this chapter, we have discussed an experiment in which a Josephson junc-
tion was used as a detector of current �uctuations. In particular, we showed
how this detector can be sensitive to the non-Gaussian �uctuations of the
noise.
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The main results of this chapter are the following
• an experiment probing the e�ect of current noise through a tunnel junc-

tion on the switching dynamics of a Josephson junction was performed.
• the sensitivity of a Josephson junction to the current �uctuations was de-

scribed theoretically at the �rst order (see Eq. (7.16)). It was found that
the escape temperature depends linearly on the variance of the current
�uctuations.

• the escape temperature was measured, and a quantitative comparison
was made with Eq. (7.16) (see Fig. 7.14).

• when reversing the sign of the current through the noisy junction, it
was found that the switching rates get slightly modi�ed (see Fig. 7.19).
Several tests were performed to rule out possible sources of asymmetry
other than the asymmetry in the current noise in the tunnel junction
itself (see Fig. 7.18).

• preliminary comparisons with numerical simulations and with a pertur-
bative theory were discussed.

The discussion of the experimental data is still preliminary, and further
work is currently in progress. From the experimental point of view, more
experiments are needed to get rid of parasitic e�ects like heating of the dis-
sipative environment of the junction, and other values of the quality factor
should be scanned to test our understanding of the role of this parameter.
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This chapter shows the various techniques used in the fabrication of the
samples described in this thesis work.

8.1 Optical lithography
Optical lithography was used for designing patterns at a resolution above
1 µm. Several samples can easily be patterned in the same time on a single
wafer.

8.1.1 Mask fabrication

Depending on the application, two techniques were used to fabricate the
masks. For coarse patterns, like coplanar wave guides on the tenth of mm
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scale, an AutoCad drawing is printed on a transparency using a standard
inkjet printer (HP Business inkjet 2250tn). The mask has the resolution of
the printer (300 ppp) and is full of defects on the µm scale, but this does not
a�ect macroscopic wave guides and it is fast and cheap. For more accurate
patterns, a professional printer (high resolution printing with 8000 lines on A4
paper, MKM Electronique) was used. The resolution is better than 1 µm and
the minimal width of the lines is about 10 µm. After printing, the drawing is
transferred on a Cr coated mask using the following standard process:
• sandwiching the transparency between a clean glass and a glass coated

with Cr and positive optical resist. The printed side of the transparency
must be in contact with the Cr coated side for best resolution

• UV exposure of the resist during 12 s in a SUSS aligner (5 mW.cm−2)
• development of the resist in two successive baths of MF-319 for a total

duration of 50 s at room temperature followed by water rinsing
• Cr etching during 110 s
• resist removal in acetone bath followed by isopropanol.

8.1.2 Metallic layers

Resist spinning

Prior to lithography, the substrate is cleaned in an ultrasonic acetone bath
followed by isopropanol. Then, a primer is deposited on the wafer and is spun
at 5000 rpm 30 s later. A resist (AZ5206 or AZ5214E) is spun on the substrate
at 5000 rpm for 60 s then baked at 90◦C on a hot plate for 3 min.

Exposure and development

The substrate is then exposed in a SUSS aligner through a Cr mask for 50 s. In
order to strengthen the surface of the resist, so that the undercuts are more
pronounced once developed, the substrate is dipped in 1,2-dichlorobenzene
for 1 h, then dried under a nitrogen gas �ow. Development follows in AZ351B
diluted to 1:5 in water during about 10 min, then the wafer is water rinsed.

Metal deposition

Metals like Au, Ag, Cu, Ti or Al were evaporated in the same electron gun
evaporator.

Lift-o�

The remaining resist is removed in an acetone bath at 65◦C, thus removing
all the undesired metallic parts.
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8.1.3 Dielectric layers

Three methods were used to fabricate patterned dielectric layers. The �rst
one used a UV sensitive resist which once baked is a very good dielectric.
The second one used oxidized aluminum. The third one used etching of a
polyimide.

BCB resist

The �rst dielectric method used to fabricate capacitors uses the BCB (Cy-
clotene 4000, XU35 133.00) resist by DOW c©. It can be very conveniently
patterned because it is sensitive to UVs: it can be exposed and developed as a
standard optical resist. The deposit of this resist is very similar to the AZ5206
(see 8.1.2) except that the primer is the AP3000, and that we used a spinning
velocity of 3700 rpm. The wafer is baked for 2 min at 60◦C on a hot plate
before and after UV exposure during about 10 s. The resist which has not
been exposed is removed in a development bath of DS3000 at 32◦C for 50 s,
followed by a stoping bath in the same solvent but at room temperature, for
60 s. Finally, the wafer is annealed at 350◦C in vacuum (turbo pump) for 80
min.

At the end, the remaining BCB resist forms a dielectric with εr = 2.65 and
about 600 nm thick (approximately 40 pF.mm−2). After hot bake, it cannot
be altered by acetone or any other chemical used in lithography. The pro�le
of the edges of this resist is smooth at the scale of a few µm.

Polyimide

In experiments on atomic contacts, we used Polyimide as a dielectric. A
solution of PI2611 (30 g (HD Microsystems PI2611)+30 mL N-methyl-2-
pyrrolidone) is spun at 2000 rpm on a metallic wafer (polished brass) after an
adhesion promoter (Ultradel A600). It is then baked for one hour in an oven
at 180◦C, and annealed for one hour at 350◦C in a vacuum chamber under
a residual pressure of 10−6 mbar. The �nal thickness of the layer is 1.6 µm
and its permittivity is εr = 2.9 (approximately 16 pF.mm−2). This dielec-
tric can be dry etched isotropically. While being kept at 200◦C the sample is
exposed to a plasma formed in a �ow1 of 50 sccm O2 and 2 sccm SF6 at a
total pressure of 0.3 mbar and an auto-polarization voltage of 25 V. The etch-
ing depth, monitored by laser interferometry, grows approximately linearly at
about 200 nm/min.

1 One standard cubic centimeter per minute (sccm) is a measure of the �ow of gas
at a pressure of 1 atm.
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Alumina

The process based on dielectrics of alumina was developed in our group by
François Nguyen. It involves strong oxidizing of patterned aluminum elec-
trodes. In a subsequent fabrication step, other pairs of electrodes are de-
posited so that they overlap the aluminum electrode covered with alumina,
thus forming two capacitors in series. The main asset of this method is that
the capacitances obtained have very large values because the dielectric is very
thin (a few nm). However, it is di�cult to have a good control of the thickness
and quality of the alumina layer.

In a �rst step, an aluminum electrode is fabricated by lithography. Then,
the wafer is heated at 150◦C during 4 min in presence of O2 at a pressure of
1.2× 10−2 mbar. An oxygen plasma at 0.2 mbar just follows for 10 s.

The dielectric coated electrodes are covered in a following step by a metallic
Cu or Al electrode (it was observed that Ti or Au electrodes di�use in the
alumina and create short circuits). The obtained capacitances have values of
about 15 nF.mm−2.

Technology Present fabrication Dispersion of the Direct Capacitance per
success ratio capacitances values patterning area (pF.mm−2)

BCB resist 90% up to 5% Yes (with UV) 40
Polyimide 90% up to 5% No 16
Alumina 40% up to 300% No 15000

Table 8.1. Properties of the various techniques to fabricate capacitors.

8.2 E-beam lithography

E-beam lithography allows to design patterns with a resolution better than
100 nm.

8.2.1 Principle

Using electro-sensitive resists, one can use a scanning electron microscope to
insolate the desired parts of a future mask. We used positive resists for which,
exposed regions are dissolved during development. Multiple layers are used in
case one needs to deposit metal in di�erent spots in a single evaporation (see
below and on Fig. 8.1).
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Fig. 8.1. Typical fabrication scheme. Left panel: monolayer resist (UVIII). Right
panel: bilayer resist (PMMA/MAA).

8.2.2 Resists

UVIIITM

This resist is extremely sensitive to electronic exposure (12 µC.cm−2), thus
being a good choice for large area patterning. In our case, its main drawback
was that we were never able to completely get rid of the resist in the exposed
area after development. The process used starts with a primer spinning fol-
lowed by a spinning of UVIIITM at 2000 rpm and heating on a hot plate at
135◦C for 1 min. The resulting layer is about 500 nm thick. Once exposed,
it is developed in MEGAPOSIT MF CD-26 for 60 s and rinsed in water.
The lift-o� is performed with acetone at 65◦C and followed by a rinse with
isopropanol.
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PMMA

The most standard electro-sensitive (about 200 µC.cm−2) resist is the poly-
methyl-meta-acrylate (PMMA). We used a PMMA of molecular mass 950K
diluted at 3% in anisole. It is either used as a monolayer or on top of a more
sensitive resist. After spinning, it is baked on a hot plate at 140◦C for 15 min2.
Once exposed, it is developed in methyl-isobutyl ketone (MIBK) diluted 1:3
in volume with isopropanol for 35 s and rinsed in isopropanol. The lift-o� is
performed with acetone at 65◦C and followed by a rinse in isopropanol.

PMMA/MAA

A resist often used as the bottom of bilayers is the electro-sensitive (about
100 µC.cm−2) polymethyl-meta-acrylate/meta-acrylate acid (PMMA/MAA).
The one we used is diluted in mass at 10% in ethyl-lactate and the molecular
mass of the MAA is 8.5 K. This resist is spun directly on the silicon substrate
and baked on a hot plate at 140◦C for 7 min. Once exposed, it is developed
at the same time as the top layer of PMMA.

LOR

The Lift-O� Resist 30B (LOR30B) by Microchem allows to obtain very thick
bottom layers of bilayers for fabricating very wide undercuts. It is insensitive
to electrons and is not altered by MIBK nor by acetone, which makes it
particularly convenient to work with as a bottom layer under a PMMA mask.
All areas of LOR30B which are not protected by PMMA get dissolved in MF-
319, the undercut being determined by the time the sample stays in MF-319.
For example, for the sample used in the experiment probing �uctuations of the
current (chapter 7), the last step in the fabrication used a bilayer of LOR30B
(spun at 3000 rpm and baked at 150◦C for 4 minutes - 3 µm thick) covered by
a PMMA layer. Once the top PMMA layer has been exposed and developed,
it takes 13 s in MF-319 to get an undercut of 1.7 µm. LOR resists are removed
with AZ400K at 80◦C for 3 min (MF-319 also etches aluminum, so its use is
not always an option).

8.2.3 Exposure

The exposure to electron beam was performed either at 35 kV in a JEOL 840A
scanning electron microscope using Proxy Writer from Raith or at 25 kV in a
Philips XL30 SFEG using Elphy Quantum from Raith. In both microscopes,
the electron beam is steered on the areas of the resist one wants to expose.
The time spent on each zone is calculated depending on the resist and on the
current (see appropriate doses above). Large areas of the pattern in which the
2 at temperatures higher than 150◦C, we found that a 4 min bake was su�cient
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Fig. 8.2. Scanning electron microscope image at 45◦ of a sample coated by a bilayer
LOR30B/PMMA covered with metal, after development, metal deposit and before
lift-o�. One clearly sees the wide undercut in the LOR30B resist, creating wide
hanging PMMA structure, and allowing metallic evaporation at large angles.

resolution is not essential were patterned using a larger current, in order to
gain exposure time. Typically, 15 pA for details and 10 nA for large areas.
The �nest wires we got were 80 nm wide.
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8.3 Metal deposition

All metals used in our experiments (Au, Ag, Cu, Ti or Al) were evaporated
in the same electron gun evaporator, which is free of magnetic materials, thus
limiting pollution hazards. In the loadlock, where the sample sits, the pressure
is as low as 10−6 mbar. The material sources are located in the lower chamber
about 50 cm below the sample and in a 10−7 mbar vacuum. The rate of
deposition is measured in real time from the resonance frequency of a crystal,
and is tuned between 0.2 and 1 nm/s depending on the material.

Fig. 8.3. Picture of the evaporator. The sample can be tilted along two rotation
axes.

The sample holder is carried by a rotating arm, so that its angle with the
direction of evaporation can be adjusted continuously between −90◦ and +90◦

around the X axis (see Fig. 8.3). We have additionally installed a mechanism
that allows to rotate the sample holder on the arm by +90◦ around the Z
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axis. We used this possibility for the samples of chapter 7, for which the three
deposition directions needed not to be in the same plane.

8.3.1 Cleaning

When a metal has been in contact with air or some resist, its surface can be
covered with a water layer, oxidized or polluted. It is then essential to clean it
before depositing another metal on top if one wants reproducible contacts. We
used ion milling with an argon plasma (about 10−4 mbar of Ar, V = 500 V
and I = 5 mA during 5 − 7 s) in the evaporator chamber. Resists are not
altered signi�cantly by this treatment.

8.3.2 Tunnel junctions

Fabrication of tunnel junctions requires 3 to 4 steps not necessarily done in
the same vacuum:
• Deposition of the bottom electrode
• Deposition of a few nm Al layer (this step is skipped if the bottom electrode

is in Al)
• Oxidation of the Al (in the evaporator loadlock)
• Deposition of the top electrode

Depending on the material and on the oxidizing parameters, the tunnel
junctions of 100 nm× 200 nm exhibit resistances ranging from 100 Ω to hun-
dreds of kΩ. The gas used for the 10 min oxidation is a mixture of 80% Ar
and 20%O2 at typical pressures ranging from 1 to 40 mbar.

8.4 Ion implantation

In experiments of chapters 2 and 3, Mn atoms were implanted in silver thin
�lms. This section describes the implantation procedure.

8.4.1 Apparatus

The system used is the one described in [192] and was operated by S. Gautrot,
O. Kaitasov and J. Chaumont at the CSNSM in Orsay University. Manganese
atoms get ionized with a hot cathode into Mn+ ions, the ions are �rst accel-
erated at 30 keV, then are selected in mass by a magnet, then re-accelerated
up to 70 keV, and the resulting beam is focused and scanned on the sample
holder. The sample holder is connected to ground through a current integra-
tor. Hence, the number of Mn+ ions that have reached the sample holder can
be accessed. Besides, an �electron repeller� prevents electrons to scatter to the
ground through other pathes (see Fig. 8.4).
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Fig. 8.4. Scheme of the ion implantation in the sample. Each Mn+ ion has a �nite
probability of escaping the Ag wire as described in the text.

8.4.2 Calculation of the concentration

The part of Mn atoms which actually ends inside of the sample is not necessar-
ily the one measured by the current integrator. In the following, we describe
the calculation of the actual concentration of Mn in the particular example of
the sample for the experiment on magnetic impurities in Ag wires. For this
calculation, the path followed by an Mn+ ion in the sample is numerically
simulated using the SRIM software [129].

Total number of Mn+ ions impinging on the sample

At the end of the implantation, the current integrator measures the total
charge having reached the target Q = Ntote. However, the number of charges
Ntot can be di�erent from the number of Mn+ ions impinging on the target
because as a fraction αback of the ions can be backscattered, then hit the
electron repeller and emit secondary electrons that reach the sample holder.
In order to evaluate this number of �fake events�, we calculate the fraction
αback of ions backscattered by the sample holder made of Dural (the surface
covered by the sample itself is negligible. The SRIM software gives a few
permils for αdural

back , therefore, we can �nally safely neglect false events and
consider that the total number of Mn+ ions impinging on the target is just
Ntot.

Finally, the density of Mn atoms impinging on the sample is obtained from
the total charge Q = 1.952 µC measured by the current integrator and the
total area S = 56.5 cm2 scanned by the ion beam:

σtot =
Q

eS
≈ 2.16× 1015m−2. (8.1)
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Total number of Mn+ ions deposited in the silver wire

Once a Mn+ ion has hit the top side of the wire designed for our experiments
(42 nm thick, 230 nm wide layer of Ag on top of silicon), it does not necessarily
stop within the wire:

• it can be backscattered with a probability αback = 0.045, much higher
than in Dural

• it can be transmitted through the Ag layer to the SiO2 with a probability
αtran = 0.164

• it can escape through the edges of the wire and �nally end in the Substrate
around the wire with a probability αside = 0.061

• it can stay in the wire.

The probabilities of the four possibilities are calculated using the SRIM
software (see Fig. 8.4).
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Fig. 8.5. Concentration pro�le of Mn atoms in Ag, according to the SRIM simula-
tion of the implantation of Mn+ ions at 70 kV in a 42 nm thick and 230 nm wide Ag
wire on top of silicon. The dots show the concentration in parts per million (ppm)
of Mn atoms in the wire, as a function of the depth (0 being the surface on which
the Mn+ ions hit the wire).

As a result, the density of Mn atoms in the wire after the implantation is

σwire = σtot(1− αback − αtran − αside) ≈ 1.60× 1015m−2 (8.2)

Given the density of the Ag wire ρ = 5.86 × 1028 m−3, the average con-
centration of Mn impurities can be estimated as c = 0.65 ppm (parts per
million).

These calculations introduce corrections in the reported values of the con-
centration of Mn impurities in [43]. The actual concentration of implanted
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Mn atoms in the so-called Ag(5N)cMn0.3 is 0.14 ppm and in the so-called
Ag(5N)dMn1 is 0.46 ppm.
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9.1 Sample holder

9.1.1 Electron-electron interactions experiments

In the experiments of chapter 2 and 3, the sample were glued with silver paint
on a copper plate �xed on a DILTM connector. The sample was grounded to
the copper plate with a gold ribbon glued with silver paint, and the other
pads are bonded to the pins of the DIL connector with 50 µm gold wires.

9.1.2 Full counting statistics (FCS) experiments

In addition to the techniques used in the electron-electron interactions experi-
ments, we designed (see Fig. 9.1) sample holders for microwave measurements
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Fig. 9.1. Picture of the sample holder for the FCS experiment.

up to a few GHz. For the experiments of chapter 7, we connected SMC re-
sistors (Vishay) directly on the chip with a conductive epoxy (CircuitWorks),
without any bake.

9.1.3 Atomic contact experiments

To obtain contacts through a single atom, nanofabricated mechanically con-
trolled break junctions [45] were used. The setup is the same as the one de-
scribed in [21], except that in the latest version of this setup, the whole bending
stage is made of copper, and the magnetic �eld generating coil is �xed inside
the Cu pushing rod, so that electromagnetic noise from the coil is screened.
The sample sits in an Al inner chamber to avoid magnetic noise.
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Fig. 9.2. Picture of the mechanical bending setup which allows one to break the
nanopatterned metallic bridges in order to form atomic contacts. The screw is ro-
tated by an electrically powered rotor. It then moves the mobile parts vertically
and the sample is bent or unfolded. All the measurement lines go through the 50 Ω
transmission line.

9.2 Noise �ltering

In our experiments, electrical noise is a big issue. Indeed, the resolution in
energy of the experiments is eventually limited by the temperature of the
electrons in the electromagnetic environment of our sample. For phenomena
occuring on a few tens of µV, the e�ective temperature of the electrons needs
to be of the order of dilution refrigerator temperatures (around 20 mK). In
order to perform experiments with such cold electromagnetic environments,
the sample must be in good thermal contact with the lowest stage of a di-
lution refrigerator (a Kelvinox300 from Oxford Instruments or a home-made
refrigerator depending on the experiment), and the Johnson-Nyquist noise
must be correctly �ltered. Here, we describe the �ltering techniques used in
our experiments.
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9.2.1 Attenuating and amplifying a signal

Attenuating

Using strong signals at room temperature allows to have a good signal to
noise ratio. Therefore, it is always preferable to attenuate strong signals than
just propagating small signals. Yet, discrete attenuators are made of resistors,
which themselves cause some Johnson-Nyquist current noise. In order to re-
duce this noise, one needs to cool the attenuators. However, if too much energy
gets dissipated in the attenuators, the cooling power of the dilution refrigera-
tor could become insu�cient. As a consequence, a subtle balance needs to be
found by placing a series of attenuators at various temperatures, each atten-
uating as much as allowed by the cooling power of the stage of the dilution
refrigerator at which it is attached.

Amplifying

The voltages one needs to measure in the experiments are so low that one needs
to amplify them before having them processed in various measurement appli-
ances. We performed di�erential voltage measurements using lossy twisted
pairs connected to a room temperature low noise voltage ampli�er NF LI75A
( 1.2 nV/

√
Hz in 1 MHz bandwidth). Besides, the twisted pairs, which can be

seen as RC distributed �lters, have the advantage of also �ltering the noise.

9.2.2 Band selection

Various �lters were used in our experiments. Among them:
• MiniCircuits LC �lters [193]
• Powder �lters [194]
• RC distributed micro-engineered �lters [195]
• Coiled �lters. Those are made of a long manganin wire covered with an

insulating resist which are coiled inside a tight screw threading. The capac-
itance between the wire and the threading can be very big thus producing
a nice RC �lter.

For further details, the reader should refer to Ref. [193].

9.3 Technical schemes and pictures of the circuits
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Fig. 9.4. Scanning Electron Microscope pictures of the bare wire and its environ-
ment. The scheme is the one of Fig. 3.4.
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Fig. 9.6. Scanning Electron Microscope picture of the sample CP6. The sample
was covered with a thin layer of gold in order to improve the contrast. The picture
is taken at an angle of 45◦ so that one can distinguish that the polyimide layer has
been etched underneath the bridges. The fact that two bridges are present instead
of one is a result of the double-angle evaporation technique, and is of no importance
as only one of them forms an atomic contact just before breakage.
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Fig. 9.8. Scanning Electron Microscope pictures of the sample used in the experi-
ments discussed in chapter 7. The scheme is the one of Fig. 7.3.
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9.4 Fabrication of each particular sample
9.4.1 Experiments of chapters 2 and 3

Here, we describe the fabrication procedure used for the bare and the im-
planted samples.

e-beam lithography

Ag
(99.9999%)

Deposition

�
Ag wire

Cut the wafer

0.9 ppm
Mn2+

implantation

PMMA deposition

+ +

+ +         +

junction fabrication

Al

3mm

10µm

Al

junction

Ag

Fig. 9.9. Principle of the fabrication of the samples denoted as bare and implanted.

1. An oxidized silicon wafer is covered with UVIII resist and patterned by
electronic lithography. A �lm of 45 nm of silver is then deposited on the
developed surface using an electron gun evaporator with a 99.9999 % pure
silver source. At the end of this step an array of di�usive wires and their
pads is obtained.

2. The wafer is cut into two parts, containing the same amount of samples.
One of the parts is implanted following the process described in section
8.4.2 with cMI = 0.65 ppm of Mn atoms.

3. Both parts are covered with a single layer of PMMA resist (spun at
5,000 rpm). Then the wafer is cut into individual samples containing only
one silver wire each.
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4. For each of the two samples used, a line crossing the wire at its middle
position is then patterned by electronic lithography and the resist is de-
veloped. An ion milling is performed just before evaporating a �ash of Al
on the sample and oxidizing in order to fabricate a tunnel junction (see
8.3.2). This layer is then topped by 15.5 nm of Al.

5. Immediately after lift-o�, the sample is mounted on its sample holder and
cooled down.

9.4.2 Experiments of chapter 5

The sample CP6 were fabricated using the so-called Mechanically Controllable
Break Junction (MCBJ) [45]. For details, please refer to Ref. [21].
1. A polished 0.3 mm-thick bronze wafer (about 1 µm roughness) is coated

with a Polyimide layer, and annealed for 3 hours at 350◦C in vacuum.
2. A PMMA layer is coated on top of a PMMA/MAA layer. Then an elec-

tronic lithography is performed to pattern the big connecting pads. A
layer of 100 nm of Au on top of 1 nm of Ti is evaporated perpendicularly
to the sample and the sample is lifted o�..

3. A new PMMA layer is coated on top of a PMMA/MAA layer. Then an
electronic lithography is performed to pattern the loop and the bridge
shown on Fig. 9.6.

4. The sample is ion milled just before a layer of 70 nm of Al is evaporated
with an angle θX = 20◦, oxidized to form a tunnel barrier and covered
with a layer of 85 nm of Al with an angle of θX = −20◦.

5. After lift-o�, the polyimide layer is dry-etched in a reactive ion etcher so
as to suspend the breakable bridge.

6. The external pad of the sample is then scratched in order to contact the
layer of bronze and the actual contact is performed using silver lake.

9.4.3 Experiments of chapters 7

The sample used in the experiment of chapter 7 was made using the following
steps.
1. On a clear oxidized silicon wafer, a 25 nm-thin �lm of Al was patterned

using optical lithography with the mask in the middle of Fig. 9.10. Then
using the recipe described in 8.1.3, a thin alumina layer was formed on
top of this �lm.

2. Still using optical lithography a bilayer of 54 nm of Cu topped by 10 nm
of Au was patterned on top of the wafer with the left mask of Fig. 9.10.

3. Using a bilayer of LOR30B and PMMA, an electron-beam lithography
was used to pattern the junctions and the counter electrodes of the ca-
pacitances whose dielectric is the alumina of the �rst step.



9.4 Fabrication of each particular sample 241

Fig. 9.10. Masks used for the optical lithography steps.

4. An ion milling was realized to clean the surface, then 40 nm of Al were
evaporated at an angle θX = 0◦. After oxidizing the Al, a �lm of 60 nm
was deposited at θX = −44◦, and after having rotated the sample by
θZ = 90◦, a layer of 75 nm of Cu is evaporated at θX = 44◦.

5. Two SMC resistors are then surface mounted with conductive epoxy before
cooling down the sample.





Appendix A
Fundamental constants and
formula

A.1 Fundamental constants and material parameters

Constant name Value
speed of light in vacuum c ≈ 2.9979× 108 m.s−1

electron mass me ≈ 9.109× 10−31 kg
reduced Planck constant ~ = h

2π
≈ 1.0546× 10−34 J.s

elementary charge e ≈ 1.602× 10−19 C
Boltzmann constant kB ≈ 1.381× 10−23 J.K−1

Avogadro number NA ≈ 6.022× 1023 mol−1

electric constant ε0 ≈ 8.854× 10−12 F.m−1

magnetic constant µ0 = 4π × 10−7 N.A−2

Bohr magneton µB ≈ 9.274× 10−24 J.T−1

Table A.1. Fundamental constants of nature [196]
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Material Z number Con�guration Density νF vF EF

(nm−3) (J−1m−3) (m.s−1) (eV)
silver (Ag) 47 [Kr]4d105s1 59 1.03× 1047 1.39× 106 5.6
copper (Cu) 29 [Ar]3d104s1 147 1.56× 1047 1.57× 106 7.0
gold (Au) 79 [Xe]4f145d106s1 59 1.14× 1047 1.39× 106 5.53

aluminum (Al) 13 [Ne]3s23p1 60 2.15× 1047 2.03× 106 11.7

Table A.2. Material parameters used in this paper [197, 198].

silver copper

gold aluminum

Table A.3. Fermi surfaces of some metals. [199].

A.2 Useful formula

A.2.1 Spin calculations

With the notations of section 2.1.4, we have

〈T0|(σª + σ©)2|T0〉 = 0 (A.1)
∀i ∈ {1, 2, 3}; 〈Ti|(σª + σ©)2|Ti〉 = 8 (A.2)

∑
st∈±

3∑

i=1

〈st| ⊗ 〈s0|Ti〉〈Ti|s0〉 ⊗ |st〉 =
3
2

(A.3)

∑
st∈±

〈st| ⊗ 〈s0|T0〉〈T0|s0〉 ⊗ |st〉 = −1
2

(A.4)
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A.2.2 Fermi functions

If f(x) =
(
1 + eβx

)−1, then
∫ +∞

−∞
f(x)(1− f(x + y))dx =

y

1− e−βy
(A.5)

∫ +∞

−∞
f(x)(1− f(x))dx = 1/β (A.6)

∫ +∞

−∞
x2f(x)(1− f(x))dx =

π2

3β3
(A.7)





Appendix B
Speci�c calculations

B.1 Heat equation

B.1.1 Electrons temperature in a hot wire

Knowing that fx(E) is a Fermi function [1 + exp
(

E−eU(1−x)
kBTeff (x)

)
]−1,

∫
∂fx(E)

∂x
EdE =

∫
∂fx(E)

∂x
(E − eU [1− x])dE +

∫
∂fx(E)

∂x
eU(1− x)dE

(B.1)

Using now the fact that

∂fx(E)
∂x = [E − eU(1− x)] kBT ′eff (x)

(kBTeff (x))2 fx(E)[1− fx(E)]
− eU

kBTeff(x)fx(E)[1− fx(E)]
(B.2)

Then, for parity reasons, we have
∫

∂fx(E)
∂x

EdE =
∫

kBT ′eff(x)fx(E)(1− fx(E))
k2

BT 2
eff(x)

(E − eU(1− x))2dE

−
∫

fx(E)(1− fx(E))
kBTeff(x)

(eU)2(1− x)dE

(B.3)

hence, using Eq. (A.6, A.7),
∫

∂fx(E)
∂x

EdE =
π2

6
k2

B

dT 2
eff

dx
+

(eU)2

2
d(1− x)2

dx
(B.4)
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B.1.2 Heating of the pads

The energy conservation states that the radial heat �ow jT = κ∇T veri�es
the heat equation:

∇.jT + ρT = 0 (B.5)
with ρT the local incoming power density. If only the electron-phonon inter-
action was present [111, 36, 190],

ρT = −Σ(T 5 − T 5
ph) (B.6)

with Tph the phonon temperature and Σ = 24ζ(5)νF κe−phk5
B ≈ 109 W.m−3K−5

is expressed here using the parameter κe−ph entering in Eq. (3.69). The
Wiedemann-Franz law states that the thermal conductivity reads κ = σLT ,
with σ the electric conductivity and L = 1

3

(
πkB

e

)2 ≈ 2.4 × 10−8 V2.K−2 the
Lorentz number. Introducing the notation:

Se

w

b

r
T(r)

Fig. B.1.

v(r) =
(

kBT (r)
eU

)2

(B.7)

the heat equation reads, where r is in units of w/2,

∇.∇v(r) =
d

rdr

(
r
dv(r)
dr

)
=

w2

22
Σ

(
e

kB

)5
U3

σ

6
π2

(
v(r)5/2 − v

5/2
ph

)
(B.8)

where vph corresponds to the phonon temperature Tph (base refrigerator tem-
perature). In order to �nd the appropriate boundary conditions, we consider
the heat �ux on a circular ribbon, whose width is the thickness t of the pad
and radius is r. We have:
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∫

jT.dS = Q̇ (B.9)

Close to the wire, at r = 1, this �ux is just half the power dissipated in the
R resistive wire, hence the last equation reads

π
w

2
tσLT (r)

∇T (r)
w/2

=
∫

jT.dS = Q̇ = −U2

2R
(B.10)

Hence,
∇v(r = 1) = −3π3w

L
(B.11)

Then, two cases might occur:

Non-superconducting bonding wire

Then, the temperature at bonding wire (r = 2b/w) is the phonon temperature.
The boundary conditions then read

∇v(r = 1) = −3π3w

L
and v(r = 2b/w) = vph (B.12)

Superconducting bonding wire

Then, no "hot" quasiparticle can escape through the bonding wire (assuming
kBT ¿ ∆) and the derivative of T at the edges of the pads (r ≈ 6b/w) is
zero. The boundary conditions then read

∇v(r = 1) = −3π3w

L
and ∇v(r = 6b/w) = 0 (B.13)

B.2 Sensitivity of the Relax experiments

In section 3.4.7, it was claimed that the best �tting value of κee was
κee = 0.05 ns−1meV−1/2 for the whole set of data shown on Fig. 3.29. In
this section we show the results of the same calculation using κee = 0.02 and
0.08 ns−1meV−1/2. Recall that using the theoretical expression (3.56), one
gets κAAK

ee = 0.016 ns−1meV−1/2. The bad agreement between theory and
experiment on both �gures B.2 and B.3 clearly demonstrate that there are
more interactions than just κAAK

ee , as was already claimed in section 3.4.3.
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Fig. B.2. Same plot as Fig. 3.29 but for κee = 0.02 ns−1meV−1/2.



B.2 Sensitivity of the Relax experiments 251

0 0.60.3

V HmVL

0.9

1

1.1

R
tH
d
I�

d
V
L

bare
U=0.3 mV

0 0.60.3

V HmVL

0.8

0.9

1

1.1

R
tH
d
I�

d
V
L

implanted
U=0.3 mV

0 0.40.2

V HmVL

0.9

1

1.1

R
tH
d
I�

d
V
L

bare
U=0.2 mV

0 0.40.2

V HmVL

0.8

0.9

1

1.1

R
tH
d
I�

d
V
L

implanted
U=0.2 mV

0 0.20.1

V HmVL

0.9

1

1.1

R
tH
d
I�

d
V
L

bare
U=0.1 mV

0 0.20.1

V HmVL

0.8

0.9

1

1.1

R
tH
d
I�

d
V
L

implanted
U=0.1 mV

Fig. B.3. Same plot as Fig. 3.29 but for κee = 0.08 ns−1meV−1/2.
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B.3 Di�usive conductor transmissions
Random matrix theory leads to the distribution of the transmissions in a
di�usive conductor

P (τ) ∝ 1
τ
√

1− τ

with a cuto� at low τ . To �nd the exact prefactor, one has to calculate the
value of the conductance using this distribution and compare it to the Drude
value. But �rst, let us �nd the link between the cuto� at small τ and the
prefactor.

1 =
∫ 1

0
P (τ)dτ

=
∫ 1

τcutoff
α dτ

τ
√

1−τ

= α ln
(

(1+
√

1−τcutoff )
2

τcutoff

)

≈ α ln
(

4
τcutoff

)
(B.14)

Hence,
τcutoff = 4e−1/α (B.15)

Therefore, the conductance reads

G = M
2e2

h

∫ 1

0

P (τ)τdτ

= M
2e2

h

∫ 1

4e−1/α

α
dτ√
1− τ

= M
2e2

h
α2

√
1− 4e−1/α

≈ M
4e2

h
α

(B.16)

Besides, the number of transverse channels M is just the ratio between the
occupied area in k space (πk2

F ) and the elementary space occupied by a state
((2π)2/Se) where Se is the cross-section area of the wire. Thus, using

D = vF le/3 ; σ = e2DνF ; G = Seσ/L ; vF νF =
k2

F

π2~
(B.17)

one gets
α =

2le
3L

. (B.18)

We thus recover Eq. (4.5).

B.4 Critical current through a short conductor
B.4.1 Single channel
In a single channel conductor of transmission τ , the maximal value of the
current I(δ) is found for
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δ = δmax = arccos(−[1−√1− τ ]2/τ)

and reads

Imax(τ) = I(δmax) =
e∆
2~

√
τ2 − (1−√1− τ)4√

1− τ
(B.19)

0 Π 2 Π
∆
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eD�Ñ

IH
∆
L

Τ=1

Τ=0.85

Τ=0.4

Fig. B.4. The thick line shows the position of the maximal current using Eq. (B.19).

B.4.2 Di�usive conductor

The maximum value of I(δ), obtained by Eq. (5.35), is nearly Imax ≈ 2.08G∆
e

which agrees with Ref. [200]. One shows [201] that the sample to sample
�uctuations of the critical current Imax can be obtained using the Universal
Conductance Fluctuation [202, 203]. And since the rms (root mean square)
value of the conductance is [61]

G2 −G
2

=
2
√

2√
15

e∆
h

,

the �uctuations of the critical current reads

I2
max − Imax

2
=

4π
√

2
3
√

15
e∆
h

. (B.20)

In a recent work, the length dependence of Imax was calculated [204]. The
maximal current Imax is predicted to decay very rapidly with the ratio of the
length of the constriction to the superconducting coherence length ξ.
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B.5 Switching current at �rst order
This section is a proof of the �rst order relation between the switching current
of the SQUID and the current-phase relation of the atomic contact.

Starting from Eq. (5.55),

U (−)(γ) = −ϕ0I0 cos(γ)− ϕ0Ibγ − |∆|
∑

i

√
1− τi sin2

(
γ + φ

2

)
(B.21)

The switching rate is given by the classical expression (5.43)

Γ (Ib) =
ω

(−)
p (Ib)
2π

e−∆U(−)(Ib)/kBT (B.22)

where the barrier height can be obtained from the potential U (−)(γ) and the
plasma frequency is given by ω

(−)
p (Ib) = 1/

√
L(−)(Ib)C, where L(−)(Ib) is the

e�ective Josephson inductance

L(−)(Ib) = ϕ2
0

(
∂2U (−)(γ)

∂γ2

∣∣∣∣
γ=γmin

)−1

. (B.23)

The phase γmin (γmax respectively) is the phase at which the potential well
is locally minimal (maximal, see Fig. 5.9). The larger the switching rate, the
smaller the barrier height ∆U (−) = U (−)(γmax)− U (−)(γmin). As the barrier
height goes to zero, the phase di�erence δγ = γmax − γmin goes to zero.
Therefore for large enough values of Ib, the barrier height entering in the
switching rate reads

∆U (−) ≈ ∂U

∂γ
(γ0)δγ +

∑

i

∂E|τi−〉
∂δ

(δ = γ0 + ϕ)δγ

∆U (−)

ϕ0δγ
≈ I0 sin(γ0)− Ib +

∑

i

I|τi−〉(γ0 + ϕ)
(B.24)

where γ0 = (γmax + γmin)/2. In the experiment, we measure the bias current
I

Γexp
b (ϕ) for which the switching rate is a constant Γexp when varying the �ux.
Given the exponential dependence of the rate on the barrier height, we can
make the good approximation that a constant rate means a constant barrier
height. Now, if the contribution of the atomic contact to the potential U (−) is
negligible1, the phase di�erence δγ is nearly identical to the one corresponding
to the tunnel junction alone. Therefore, if ∆U (−) remains constant, δγ also
does, and therefore at constant switching rate,
1 For a few channels, the contribution of the Andreev energy term to the total
potential U (−) can be treated pertubatively if |∆| . ϕ0I0. Using Eq. (5.32),
this condition is equivalent to RN . RK/8, where RN is the resistance of the
Josephson junction in the normal state.
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I0 sin(γ0)− I
Γexp
b +

∑

i

I|τi−〉(γ0 + ϕ) = cste′. (B.25)

Hence, the bias current at constant switching rate reads

I
Γexp
b (ϕ) = cste +

∑

i

I|τi−〉(γ0 + ϕ). (B.26)

Therefore, measuring the SQUID switching current I
Γexp
b (ϕ) is a good mea-

surement of the current-phase relation of the atomic contact (at least for large
rates Γexp).

B.6 Re�ectometry transition

Starting from Eqs. (5.84, 5.85), one can write

Z =
iL‖ω − rL‖Cω2

1− L‖Cω2 + irCω
(B.27)

then

Z ± Z0 =
iL‖ω − rL‖Cω2 ± Z0 ∓ L‖CZ0ω

2 ± irZ0Cω

denom.
(B.28)

hence,

R =
L‖Cω2(Z0 − r)− Z0 + iω(L‖ − rZ0C)
−L‖Cω2(Z0 + r) + Z0 + iω(L‖ + rZ0C)

. (B.29)

Taking the modulus squared of this expression,

|R|2 =
[L‖Cω2(Z0 − r)− Z0]2 + ω2(L‖ − rZ0C)2

[L‖Cω2(Z0 + r)− Z0]2 + ω2(L‖ + rZ0C)2
. (B.30)

Taking the derivative with respect to ω2:

d|R|2
dω2

=
ω2(ω2 − [L‖C − L2

‖/(
√

2Z0)2 − r2C2/2]−1)

denom.
(B.31)

The minimum of |R| is obtained for

ω =
1√
L‖C

(√
1− L‖

2CZ2
0

− r2C

2L‖

)−1

(B.32)
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Fig. B.5. Function f(x, Q).

B.7 Resonant activation

B.7.1 Function f(Q,x)

In this section, we report the resonant activation formula from Ref. [187] useful
for our experiment.

f(x,Q) ≈





8Q(81− 4Q2)−2[(5.5−Q)(4.5 + Q)2e2Q(x−1)

+0.01Qe9x(x[1− 0.049Q2] + 0.074Q2 − 1.72)] if x ≤ 1

e−2Q(x−1)Q(11 + 2Q)(9 + 2Q)−2 if x > 1

(B.33)

B.8 Amplitude of the micro-wave current as a function
of the power

The RF source is connected to the bias line at room temperature. Therefore,
the RF signal goes through a series of attenuators before actually getting to
the circuit which can be schemed as Fig. B.6. The link between current and
voltage representations is

IRF =
VRF

Z0 + Rb
; Req =

(Z0 + Rb)Rd

Z0 + Rb + Rd
. (B.34)

As the impedance seen from the source is that of the attenuators (Z0 = 50 Ω),
the voltage V

(source)
RF delivered by the source on the �rst attenuator is given

by
V

(source)
RF =

√
Z010PRF/10 × 1mW (B.35)

where PRF is expressed in dBm. The voltage VRF delivered on our circuit by
the last attenuator is given by
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Fig. B.6. Thevenin-Norton transformation.

VRF = V
(source)
RF

2× 10αatt/20

|1 + Z0/Z| (B.36)

where αatt is the total attenuation in dB on Z0 = 50 Ω, and Z is the impedance
to the ground seen by the last attenuator:

Z = Rb +
(

1
Rd

+
1

jLJJΩRF
+ jCΩRF

)−1

(B.37)

where LJJ = (1− s2)−1/2ϕ0/I0 is the Josephson inductance. Eventually,

I2
RF =

Z010PRF/10 × 1mW
(Z0 + Rb)2

4× 10αatt/10

|1 + Z0/Z|2 (B.38)

Then, to get the RF current, one just has to plug in the measured parameters
of the experiment: Rb ≈ 0.212 kΩ, Rd ≈ 0.20 kΩ and I0 = 0.49 µA.

B.9 Full Counting Statistics for a coherent metallic wire
B.9.1 Normal leads (N-wire-N)

We consider a normal metal di�usive wire of length L connected to normal
leads at both ends. The notations are those of chapter 2. If the counting time
t is bigger than the di�usion time τD = L2/D, one can use Eq. (6.30) to get
the generating function of the di�usive wire at any temperature. We will make
use of the formula

∫ 1

0

dτ
1

τ
√

1− τ
ln(1 + τx) = 2asinh2(

√
x) =

1
2
acosh2(2x + 1) (B.39)

Thus, one �nds

FNN
c (ξ, t) =

tRK

4hR

∫ +∞

−∞
dEacosh2

[
2fT (E)(1− fT (E + eV ))(e−iξ − 1)+

2fT (E + eV )(1− fT (E))(eiξ − 1) + 1
]

(B.40)

where fT (E) is the Fermi function at temperature T : fT (E) = (1+eE/kBT )−1
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Zero temperature, N-wire-N

In case T = 0, f0 = 1−θ with θ(E) the Heavyside function. Hence, if E > |eV |,
the term inside the integral is zero and

FNN
c (ξ, t) =

tRKe|V |
4hR

acosh2(2e−isgn(V )ξ−1) =
|〈N̂(t)〉|

4
acosh2(2e−isgn(V )ξ−1)

(B.41)
Now, we can calculate the cumulants of N̂ in this non interacting, low

temperature, long counting times limit by the same method used for tunnel
junctions.

FNN
c (ξ, t) = |〈N̂(t)〉| ξ/i+ 1

3 |〈N̂(t)〉| (ξ/i)2

2! + 1
15 |〈N̂(t)〉| (ξ/i)3

3! + O(ξ4)
↓ ↓ ↓

|〈〈N̂(t)〉〉| |〈〈N̂2(t)〉〉| |〈〈N̂3(t)〉〉|
(B.42)

B.9.2 One superconducting lead (N-wire-S)

Now, we consider the same normal di�usive wire with a superconducting metal
in perfect contact at one end. In such a case, one has to solve the Usadel
equation to take into account proximity e�ect in the wire. The techniques
engineered by Nazarov to calculate the generating function are particularly
convenient to directly use the solution of the Usadel equation. The drawback
of this method is that it can only calculate the generating function at long
times.

The result of the calculation is exactly the same as in the normal lead
case when one replaces everywhere ξ by 2ξ (because 2 charges are transferred
instead of one) and τ by ρ = τ2

(2−τ)2 (probability of Andreev re�exion). Besides,
one can easily check that

1
2τ
√

1− τ
dτ =

1
4ρ
√

1− ρ
dρ

hence, the generating function in the SN case is related to the one in the NN
case by

FNS
c (ξ, t) =

1
2
FNN

c (2ξ, t) (B.43)

Zero temperature, N-wire-S

At T = 0,

FNS
c (ξ, t) =

|〈N̂(t)〉|
6

acosh2(2e−2isgn(V )ξ − 1) =
|〈N̂(t)〉|

2
acosh2(e−isgn(V )ξ)

(B.44)
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And the cumulants are

FNS
c (ξ, t) = |〈N̂(t)〉| ξ/i+ 2

3 |〈N̂(t)〉| (ξ/i)2

2! + 4
15 |〈N̂(t)〉| (ξ/i)3

3! + O(ξ4)
↓ ↓ ↓

|〈〈N̂(t)〉〉| |〈〈N̂2(t)〉〉| |〈〈N̂3(t)〉〉|
(B.45)





Appendix C
Experimental stu�

C.1 Electrical properties of the discrete elements in the
counting experiment

V
b

C

C
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R
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R
1

R
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Z
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Fig. C.1. Scheme of the electromagnetic environment of the Josephson junction.
Apart from the tiny drawings and letters, all the circuit is made on the silicon
chip. Besides, all the gray parts are made of aluminum, which is superconducting
at the temperatures of the experiment. The transmission line on the right has a
characteristic impedance Z0 = 50 Ω and is interrupted by attenuators whose total
attenuation is denoted by αatt.

The four capacitors represented on Fig. 7.3 are made using alumina as a
dielectric (see 8.1.3). Three of them could be measured at room temperature
before fabricating the remaining of the circuit:

Cm ≈ 0.85 nF ; C1 ≈ 0.13 nF ; C2 ≈ 0.13 nF. (C.1)

When the refrigerator was running at its base temperature (20 mK), the
resistances R2, Rcal and Rbig could be measured by a standard four probe
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measurement which gave

R2 ≈ 202.1 Ω ; Rcal ≈ 10.18 Ω ; Rbig ≈ 10573 Ω. (C.2)

Moreover, the resistors R1 and R2 are nominally exactly identical. They are
Surface Mounted Components (SMC) made by Vishay (series number P 0603
Y 2000 DB). They consist of thin �lms of Cu/Ni enclosed in a cage with two
connectors made in SnPb. Finally, the attenuation of the transmission line
could be measured at low frequency (330 Hz).

αatt ≈ 50.0 dB. (C.3)

C.2 Plasma frequency of a Josephson junction as a
function of s
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 (GHz)

Fig. C.2. Colored lines (color online): re�ection coe�cient |R| as a function of the
frequency ν (see section 5.3.1 for measurement details) for various values of the
current I in the Josephson junction alone. Black lines: Lorentzian �t of the dips in
order to determine the minimal frequency for each value of the current.

Using the measurements of Fig. C.2 and others, one may determine the
plasma frequency of the Josephson junction alone as a function of s. The
results are reported on Fig. C.3
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Fig. C.3. Dots: minimum of the re�ection curves of Fig. C.2 as a function of
s = I/I0. Line: best �t using Eq. (5.46). The plasma frequency is thus 1.62 GHz, as
reported on Table. 5.1.

C.3 Small �eld e�ect on the conductance of an NIS
junction
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Fig. C.4. Lines: measured di�erential conductance of a tunnel junction located at
position x = 1/2 of the implanted wire at a bias voltage U = 0 for various magnetic
�eld B.





Appendix D
Translation between the
notations of this work and
previous ones

Sample in this work Sample in the notebook

CP1 MAS5
CP2 MAS11
CP3 MAS4re
CP4 MAS17
CP5 MAS22
CP6 MAS26
CP7 JonctionTest
bare DB38

implanted DB4le retour
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