N
N

N

HAL

open science

Enforcing Service-Specific Replica Consistency Models
and Response Time Requirements for Heterogeneous
Replicated Services

Corina Ferdean

» To cite this version:

Corina Ferdean. Enforcing Service-Specific Replica Consistency Models and Response Time Require-
ments for Heterogeneous Replicated Services. Networking and Internet Architecture [cs.NI]. Université

Pierre et Marie Curie - Paris VI, 2006. English. NNT: . tel-00119595

HAL Id: tel-00119595
https://theses.hal.science/tel-00119595
Submitted on 11 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00119595
https://hal.archives-ouvertes.fr

Numéro d’identification:

Thése

présentée a
L’Université Pierre et Marie Curie
en vue de 'obtention du titre de
Docteur de I’Université Pierre et Marie Curie
Spécialité :
Systémes Informatiques
par

CORINA FERDEAN
Sujet de la thése :

Enforcing Service-Specific Replica
Consistency Models and Response Time
Requirements for Heterogeneous Replicated
Services

soutenue le 8 décembre 2006, devant le jury composé de:

Messieurs Guy BERNARD Rapporteurs
Patrick VALDURIEZ

Florian Mircea BOIAN Examinateurs
Stéphane GANCARSKI

Mesaac MAKPANGOU (Directeur de thése)

Pierre SENS

Marc SHAPIRO

Abstract

Replication is largely accepted as a technique to improve the perfor-
mance of popular Internet services, especially when they are accessed
simultaneously by many wide-area dispersed clients. In the context of
Replicated Service Hosting Systems, we address the problem of selecting
the replica, that provides satisfactory response time, to the final clients
and the problem of providing the appropriate consistency constraints for
all replicas. Existing work recognizes the response time, as the metric
that correlates directly with the user perceived performance. However,
they don’t take into account the real resource demands of the services and
the current resource utilization. This is not appropriate when we consider
that each service has its specific needs with respect to the system and the
network resources that it uses. Also, the resources are heterogeneous, with
respect to their capacities and load. We propose a response time estima-
tion approach, where the response time is decomposed into independent
components (service times and waiting times), and each component is ap-
proximated separately, by taking into account the capacity and the current
utilization of the resources, needed by the service workload. The service
supplier expresses the performance he/she wishes to be observed by the
clients, by specifying a bound or by requiring the best possible response
time. The response time requirement is enforced by a replica selection pro-
tocol, configured with the criterion, defining what is the suitable replica
which should perform the clients’ requests. We implemented this solution
and the results, obtained experimentally, showed satisfactory fulfillment
of the response time requirements, at a reasonable cost.

Existing work on replica consistency management offers a limited set
of guarantees, for all the replicated services. However, different consis-
tency constraints are pertinent from a service to another. We identify
three consistency dimensions: quality of observable state, scheduling and
dependency control. We propose a consistency meta-model, which reifies
existing consistency guarantees, by identifying the parameters character-
izing each dimension. The meta-model is attached a consistency protocol,
which enforces service-specific consistency models, specified statically by
the service suppliers. A service-specific consistency model contains the
safety constraints, needed for the service to function correctly, when it is
replicated, and the liveness constraints needed for bounding the discrep-
ancy between the state of a particular replica and the ideal replica state.
The protocol is built up of three independent building bricks, correspond-
ing to the three orthogonal consistency dimensions. The main thesis mes-
sage is that our replication approach was able to manage the heterogeneity
of the services, with respect to their operation semantics and resource de-

—1ii -

Abstract

mands, when providing the appropriate replica consistency guarantees and
performance requirements.

v —

Résumé

Le probléme que je traite dans la thése est comment offrir de maniére
efficace les contraintes de cohérence et les requis de temps de réponse, de-
mandés par des services repliqués hétérogénes, accédés & large échelle. La
réplication est une technique classique utilisée pour améliorer la perfor-
mance des applications Internet populaires, surtout quand elles sont ac-
cédées concurremment par un grand nombre de clients, dispersés & travers
le monde. Les travaux existants ne prennent pas en compte la diversité des
demandes des services pour différentes ressources systéme et réseau. Cette
hypothése reléve une difficulté importante du probléme de I’estimation du
temps de réponse. Une autre difficulté est déterminée par la hétérogénéité
des capacités des ressources et par la variabilité des disponibilités des
ressources. Nous proposons une approche d’estimation, ot le temps de
réponse est décomposé dans des composants indépendants (temps de ser-
vice et temps d’attente), et chaque composante est approximée séparé-
ment, en prenant en compte les capacités et les utilisations courantes des
ressources demandées par le service. Le requis sur le temps de réponse
est spécifié par le fournisseur du service, par un seuil qui correspond & la
moyenne de temps de service des requétes, ou comme critére d’optimisation,
demandant le meilleur temps de réponse. Le requis est realisé par un
protocole générique qui détermine quel est le réplicat approprié a choisir
pour répondre aux requétes de chaque client, parmi tous les réplicats exis-
tants. Nous avons implementé cette solution et les résultats expérimentaux
obtenus ont montrés la satisfaction du requis sur le temps de réponse, a
un codt raisonnable.

Les approches existantes pour la gestion de la cohérence des réplicats,
offre un ensemble limité des garanties pour tous les services. Tout de
méme, la variété des sémantiques des services, demande des combinaisons
des garanties différentes d’un service a ’autre. Nous proposons un meta-
modéle de cohérence, qui réifie les garanties de cohérence existantes, en
identifiant les paramétres qui caractérisent chaqu’une des trois dimensions
de la cohérence: controéle de divergence, controle de concurrence et controle
de dépendances. Le meta-modéle est attaché un protocole de cohérence
générique, qui réalise des modéles de cohérence spécifiques aux services.
Un modéle de cohérence, spécifié par le fournisseur du service, contient
des contraintes de stireté, nécessaires pour que le service fonctionne cor-
rectement lorsqu’il est répliqué, et des contraintes de vivacité, nécessaires
pour limiter la discrépance entre ’état d’un réplicat particulier et 1’état
du réplicat idéal. Le protocole de cohérence assemble trois briques de base
indépendantes, qui correspondent aux trois dimensions orthogonales de la
cohérence.

Le message de la thése c’est que notre approche de réplication gére la
hétérogénéité des services en terme de sémantiques des opérations et de

Résumé

demandes de ressources, en satisfaisant les contraintes appropriées concer-
nant la cohérence des réplicats et la performance observé par les requetes
des clients.

—vi-—

Acknowledgements

Firstly, I want to thank to my PhD supervisor Mesaac Makpangou for
receiving me in his team and for teaching me many valuable principles
about doing research during almost five years. I appreciate especially
that he understood that my abilities in doing research evolve slowly, and
that sometimes I need more time for a given task than scheduled. He
never accepted an intuitive solution without asking me to motivate it with
solid reasons. This has been a useful lesson, which helped me to become
convincing not only when I speak computer science. I think I was lucky to
have severe supervisor, because in this way I could accept the “no mercy
reviews” for my papers submitted in the first two years of my PhD thesis.
Not in the last place, I am grateful to him for understanding my extra-
professional problems and for giving me advices about how to handle them.

I am very grateful to the project experts: Marc Shapiro, Pierre Sens
et Bertil Folliot, for their advices that saved my life in conference presen-
tations and for their ability to help me find my way in research when I
was lost.

I thanks all my colleagues at Inria and LIP6 for being there profession-
ally et humanely, always so “gentils”. A special thanks to Ikram Chabbouh,
Nguyen Thi Le Chau, Nicolas Gibelin, Ahmed Jebali, Fabrice Le Fessant,
Simon Patarin, Nicolas Richer, Ahmed Mokhtar, Pierre Sutra, Jean-Michel
Busca and to our secretary Thi Thanh van Tran. You are a great team!

I address a sincere “thank you” to the anonymous reviewers of my
papers submitted to WIAPP’03, CIPC’03, DOA’04, Medianet’04, ICD-
CIT’04, DOA’05, CDUR’05, SAINT’06. Their tecnhical remarks helped

me improve the quality and the precision of my research work.

— vil —

Contents

Abstract

Résumé

Acknowledgements

I

1

11

Introduction

Introduction
1.1 Comtext
1.2 Problem definition oo L.
1.3 Summary of existing approaches
1.3.1 Summary of replica consistency approaches
1.3.2 Summary of response time-driven replica selection ap-
proaches
1.4 Summary of the solution L oL
1.4.1 Support for specifying the consistency and performance
requirementso Lo oo
1.4.2 Replication model 0oL
1.4.3 Enforcing the service-specific consistency guarantees
1.4.4 Enforcing the performance requirements
1.4.5 Contributions o oo o o
1.5 Outline of the document

Providing Service-Specific Replica Consistency Models

Survey of Replica Consistency Management Systems
2.1 Imtroductiono
2.2 Systems providing strong consistency
2.3 Systems providing divergence control
2.4 Systems performing relaxed concurrency control
2.4.1 Systems performing pessimistic scheduling
2.4.2 Systems performing optimistic scheduling
2.5 Systems providing hybrid modelso,
2.6 Conclusion.

—ix —

iii

vii

Contents

2.6.1 The quality of observable state dimension
2.6.2 The concurrency control dimension
2.6.3 The dependency control dimension

3 Representing Service-Specific Consistency Models
3.1 Introduction
3.2 The consistency meta-model L oL
3.2.1 Abstracting the consistency constraints
3.2.2 Fine-grained consistency L.
3.2.3 Specifying a service-specific consistency contract
3.2.4 Validity of option combinations
3.3 The relative divergence metric
34 Conclusion.

4 A Generic and Customizable Replica Consistency Protocol
4.1 Introduction
4.2 The consistency building blocks overview
4.3 The Consistency Contract

4.3.1 The representation of an access

37

38

4.3.2 The representation of a service-specific consistency contract 39

4.4 The propagation protocol
4.5 The scheduling protocol
4.5.1 The pessimistic concurrency control protocol
4.5.2 The optimistic concurrency control protocol
4.6 Resolving the dependencies
4.7 The overall consistency protocol 0oL
4.7.1 The replicated access execution
4.7.2 Proving the correctness of the consistency protocol
4.7.3 Experimental evaluation of the consistency protocol over-
head
48 Conclusion Lo

IIT Response-Driven Replica Selection

5 Survey of Response-Driven Replica Selection Systems
5.1 Introduction
5.2 Server load-based selection systems
5.3 Network proximity-based selection systems
5.4 Response time estimation-based selection systems
5.5 Systems providing flexible selection criteria
56 Conclusion.

6 A Workload-Aware Response Time Estimator
6.1 Introduction
6.2 Decomposition of response time
6.3 Estimating the CPU waiting time

42

Contents

6.3.1 Empirical study o000
6.3.2 Configuration data,
6.3.3 Algorithms for CPU waiting time estimation
6.4 Estimating the disk I/O waiting time
6.4.1 Configuration data
6.4.2 Algorithms for disk I/O waiting time estimation
6.5 Estimating the service times
6.6 Estimating the network transfer time
6.6.1 The definition of the response time estimator metric
6.7 Experimental validation
6.7.1 The accuracy of the response time estimator
6.7.2 Choosing the reference points
6.8 The Metrology System L.
6.8.1 Metrology Server
6.8.2 Host Monitor oo,
6.8.3 Calibrating the measures dissemination
6.9 The Response Time Estimator component
6.10 Conclusion L

A Generic and Customizable Replica Selection Protocol
7.1 Introduction
7.2 Expressing the performance requirements
7.3 Genericity supporto
7.4 Replica selection criterion
7.4.1 Inferring the replica selection criterion
7.4.2 The selection policy objects
7.5 The rebinding criterion 0oL
7.5.1 Inferring the rebinding criterion
7.5.2 The rebinding policy objects
7.6 The replica selection and rebinding system
7.6.1 The Replica Manager component
7.6.2 The replica selection algorithm
7.6.3 The rebinding algorithm
7.7 Experimental evaluation,
7.7.1 The replica selection accuracy
7.7.2 The replica selection scalability
7.7.3 The benefits of rebindingo
7.8 Conclusion.

The Overall Replicated Service Hosting System

8.1 Introduction

8.2 The Information Repository component
8.2.1 Maintaining the locations of the component instances
8.2.2 Maintaining the service-related descriptions

8.3 The system-specific components 0oL

8.4 The representation of a replicated service
8.4.1 The Server-Side Replica Wrapper

_xi—

Contents

8.4.2 The Client-Side Replica Wrapper 123

8.4.3 The generationtools 124

8.5 The service-specific components 127
8.6 The utilization of the Replicated Service Hosting System 128
8.6.1 The service supplier module 128

8.6.2 The client module 129

87 Conclusion. 130
IV Conclusion and Perspectives 131
9 Summary of our Replication Approach 133
9.1 Specifying and enforcing the service-specific consistency contract 133
9.2 Specifying and enforcing the performance contract 133
9.3 Summary of the Replicated Service Hosting System features . . . 134
9.4 Discussiono 135

10 Perspectives 137
10.1 Consistency management under replica disconnections 137
10.1.1 The organization of replicas 137

10.1.2 Extensions of the consistency protocol 138

10.1.3 Deciding primary vs. secondary-level replicas 139

10.1.4 The protocol correctness under disconnections 139

10.2 Resolving the other replication decisions 140
10.2.1 The placement scope 140

10.2.2 The replication primitives 141

10.2.3 Predefined policies for replica creation decision 142
References 143

— xil —

Part 1

Introduction

Chapter 1

Introduction

1.1 Context

The target of our work is a service, which encapsulates data, kept in memory
or stored on disk. It provides to clients a well-defined interface, consisting
of operations that manipulate the data. In this interface, each operation is
characterized by its signature and by its access type (read or update). Each
service belongs to a service supplier.

The evolution of the service usage is characterized by a growing need for
service suppliers to deliver their services to clients in a scalable manner. The
suppliers expect that the service delivery respects some performance goals, in
terms of the service availability, of the response time or the data throughput,
that will be perceived by the clients. The performance goals must be fulfilled,
despite a variable number and distribution of clients.

Under this usage context, a centralized approach, where a single server per-
forms all the clients’ requests, is unsuitable. The limitations of the centralized
approach arise, for example, in the following two cases: a large number of re-
quests received simultaneously by the central server, and large network distances
between the server and the clients. In the former case, the server overload causes
clients to suffer delays. This is the case, for example, of an e-commerce site of-
fering a popular product, demanded by many clients spread through Internet.
The latter case concerns the clients, localized far away from the server. These
clients experience large delays, especially when they perform network-intensive
requests, while the network is congested by concurrent traffic.

A traditional solution to the scalability issue is to replicate the service code
and data (that the code manipulates) at several well-chosen hosts. This solution
is currently employed in Replicated Service Hosting Systems [65], that represent
the context of our work. The Replicated Service System relies on a hosting
infrastructure, consisting of machines dispersed all over the world. Machines
have various capacities, with respect to processor speed, disk I/O bandwidth,
disk storage capacity, memory size and network connection quality. Service
suppliers confide their services to a Replicated Service Hosting System, in order
to make them accessible to clients, while guaranteeing good performance, in

-3 -

Chapter 1 Introduction

terms of response time that will be perceived by the clients. In order to fulfill the
performance goal, the Replicated Service Hosting System replicate the service
on several machines. A replicated service becomes a group of replica servers. A
replica server (or simply replica) denotes a service instance, containing the data
and the program, that the clients use in order to access the data. The number
and the distribution of the clients accessing the replicas are unpredictable and
vary dynamically. The Replicated Service Hosting System must also preserve
the data correctness for each replicated service.

A Replicated Service Hosting System offers benefits both to the final clients
and to the service suppliers. Replicating the service helps improve the clients’
experience, with respect to the service availability, the response time perceived
for their requests or the data throughput. The service remains accessible, even if
some of the replicas become unreachable (e.g. because their network connection
goes down). Response time is reduced, by selecting for the clients a proximal
replica, a replica that is underloaded or a replica that is well-connected, in
terms of network bandwidth. The benefits offered to the service suppliers include
improved service throughput (in terms of the number of requests served per unit
of time). By distributing client requests among the replicas and by reducing
the traffic on WAN links, replication also helps reduce the host and network
resources that are needed in order to serve the requests.

However, replicating services in a large-scale environment, raises a number of
difficult issues, which need to be addressed, in order to improve client-perceived
performance and replica consistency. We place these issues on two levels. The
first level include the following issues:

e What is replicated? (only the service code or also its data?) and what
is the granularity of replication? (are the data fully replicated or only
partially?)

e What is the appropriate policy guiding the replica placement and how is
it enforced? (on what hosts new replicas must be placed?) How is the
minimum and the maximum number of replicas that could be created?

e What consistency constraints are needed, so as to preserve the service data
correctness and the quality of replica state observed by the clients? How
are these constraints enforced?

e What is the policy that defines the suitable replica that must be selected
for each client? How is this policy enforced?

The second level contains the adaptability issues, which demand to take the
right replica creation and replica selection decisions at run-time, according to
the current status of the resources, which vary dynamically. This issues include:

e When a new replica is needed?
e When an existing replica cease to be useful?

e When another replica must be selected for a given client, because the
current replica becomes inappropriate?

_4 -

1.2 Problem definition

These are difficult issues, mainly because of the large-scale envisaged, where
both replica hosts and clients are dispersed all over the world. Another source
of difficulty is that the number, the distribution and the frequency of the clients
requests vary unpredictably.

The issues, we are interested in, include replica selection and replica con-
sistency management. Precisely, we enforce the criterion defining the suitable
replica that should perform each clients’ request and the service-specific criterion
defining the required replica consistency.

1.2 Problem definition

In the context of Replicated Service Hosting Systems, the problem we address
in this thesis is how to efficiently enforce the requirements, needed on response
time and on replica consistency, by services, with various resource demands,
while being accessed by many (concurrent) clients, spread all over the world.
This is a difficult problem to be addressed, because of the following reasons:

e The services are heterogenous. The operation types, the commutativity
and the conflicting relationships, vary between operations of the same ser-
vice. The quality of the replica state needed to be observed by a given
operation is different from the needs of other operations of the service.
The heterogeneity of services determine a large variety of consistency con-
straints, which could be required by different services.

e The resource demands vary from a service to another and for different op-
erations offered by the same service. Some operations are CPU-intensive.
Other operations are disk I/O-intensive or network bandwidth-intensive.
The demands of other operations include arbitrary combinations of CPU,
disk I/O or network bandwidth resources.

e The resources of the replica hosts have various processing capacities.
e The load of the resources varies dynamically.

e The service suppliers have different preferences with respect to the re-
sponse time, that has to be provided to the clients.

Under these assumptions, the main challenge is to develop a Replicated Ser-
vice Hosting System capable to accommodate efficiently the diversity of con-
sistency constraints and performance requirements, needed by heterogenous
services. The other challenges are particular to the replica consistency issue,
respectively to the performance issue. The challenges, concerning the replica
consistency issue, include: representing uniformly the possible consistency con-
straints and developing a consistency protocol, customized with service-specific
models, enforced at a reasonable overhead. The challenges, concerning the per-
formance issue, include: determining the impact of various system and network
resources on the response time expected from the available replicas and deter-
mining how the metrics, that characterize the resources utilization, interfere
with each other.

Chapter 1 Introduction

1.3 Summary of existing approaches

1.3.1 Summary of replica consistency approaches

By analyzing the state of art on the replica consistency management, we iden-
tified three consistency dimensions: quality of observable state, concurrency
control and dependency control. With respect to the quality of observable state
dimension, existing approaches (such as Tact |76], Refresco [45], PDBREP [1])
define the discrepancy between the current replica state and the ideal replica
state, by bounding the total weights of unpropagated updates and the delay of
updates propagation, at each replica. With respect to the scheduling of concur-
rent updates, existing approaches (such as Bayou [69], IceCube [30], Leganet
[22]) take into account the ordering relationships between non-commutative ac-
cesses and the conflict resolution policies, to be applied for exclusive accesses.
With respect to the dependency control, existing approaches (such as Bayou,
IceCube) specify for each access, the set of previously accepted updates, on
which it depends.

We identify two main limitations of existing approaches. The former limi-
tation consists in accommodating the diversity of service semantics, requiring
various hybrid models, which combine constraints available in existing models.
Although existing systems already propose hybrid replica consistency models,
there are some services for which neither of the existing consistency models is
suitable. The services may require other combinations of constraints, such as
Bayou’s session guarantees and IceCube scheduling relationships or Tact nu-
merical error/staleness and IceCube scheduling relationships. At the best of
our knowledge, such combinations are not provided by existing systems. An
example of a service, that needs the latter combination, is the digital library,
such that a search on a given topic could not miss more than 10 articles and
the modifications to the same article are conflicting. The latter limitation con-
cerns the extensibility of existing approaches with new constraints, which could
be pertinent for particular services. For example, as far as we know, existing
approaches don’t take into account the current replica state (e.g. the weights of
the stabilized updates), when bounding the discrepancy between the state of a
given replica and the ideal replica state. Also, they don’t define asynchronous
propagation conditions, based on the current replica state or on the transfer
instant of related updates (i.e. so as to propagate several updates at the same
time).

1.3.2 Summary of response time-driven replica selection ap-
proaches

By analyzing the state of art on response time-driven replica selection (including
Carter et al. [7], RaDar [53], Web++ [74]), we identified several metrics defining
the suitable replica, selected according to the expected response time. These
metrics include system load, round-trip time, and/or network bandwidth. Each
of these metrics is good for specific cases. For instance, the round-trip time
metric is appropriate for Web documents of small sizes. The available bandwidth
is relevant when the replies, returned to the clients, contain data of large size.

-6 —

1.4 Summary of the solution

The main limitation of existing replica selection approaches is that they
limit the environment conditions considered (i.e. they ignore the resource uti-
lization). They also ignore the request characteristics, in terms of resource
demands. Existing approaches usually configure statically the parameters that
guide the decision that the system takes, in order to fulfill the objective of im-
proving response time. However, in practice, the requests of different services
(and even the requests of the same service) make use of arbitrary combinations
of several resources, among CPU, disk I/O and network bandwidth. We argue
that an accurate response time estimation approach should take into account
the resource demands of the client requests and the processing capacity and the
current utilization of those resources. Our approach takes into account these
parameters, as we showed that they have a significant impact on the response
time.

1.4 Summary of the solution

1.4.1 Support for specifying the consistency and performance
requirements

The Replicated Service Hosting System doesn’t know in advance the exact con-
sistency constraints and the performance requirements, that are needed by all
the services, simply because those demands vary from a service to another. That
is why, we propose a customizable Replicated Service Hosting System that pro-
vides the right degree of replica consistency and the response time requirements,
needed by each service. We assign to the service suppliers the responsibility to
specify them, as he/she is the one who knows the needs of his/her service.
Precisely, for each service that has to be replicated, its supplier provides the
centralized version of the service (including the service logic and data), the ser-
vice description, the policies needed for resolving conflicts and for ordering non-
commutative operations and the discrepancy tolerated between the state of any
replica and the ideal replica state and the requirements on the response time ex-
pected for each operation. The service description contains for each operation:
the signature, the workload defining the demands for CPU, disk I/O and/or
network bandwidth, the access type (read or write) and the impact of each op-
eration on the data it modifies. The requirements on response are also specified
per operation. Each requirement imposes a threshold or claims for the best
possible response time. The threshold corresponds to the average response time
of the clients’ invocations to that operation. The Replicated Service Hosting
System has the responsibility to implement the consistency management, en-
forcing the consistency criteria specified by the service supplier, and the replica
selection criteria, that match the response time requirements, also specified by
the service supplier. In this way, we minimize the effort of the service supplier.
However, we assume that the service supplier specifies compatible consistency
constraints and performance requirements. Such compatibilities concern mainly
the type of concurrency control: pessimistic or optimistic. For example, strin-
gent response time requirements claims for an optimistic concurrency control
(because a pessimistic concurrency control could induce significant delays).

7

Chapter 1 Introduction

1.4.2 Replication model

We note, r;, ¢ = 1, n, the available replicas of a service. We consider that the
replication degree n varies dynamically. The replicas are spread all over the
world. We use the active replication model: a client initiates an invocation at
any replica, called the initiator. If the operation is an update, then the initiator
propagates the invocation to its peers, where it is re-executed. We define the
ideal replica as the service instance, whose state is obtained by applying in
the right order the non-conflicting updates issued at all the individual replicas.
Conversely, the state of any individual replica is a view of the ideal replica state.

We use the active replication scheme for two main reasons. The former rea-
son is to avoid that the primary becomes a bottleneck, when there many clients
which access the replicated service concurrently. In such cases, the primary
overload would conduct to long delays experienced by the clients. The latter
reason is to allow replicas to be accessed in isolation. This makes our approach
suitable also for dynamic environments, where replicas may disconnect from the
system, as it is the case with the P2P systems. In the replicated databases,
the scheme equivalent to active replication, is called multi-master or update
everywhere replication [47].

We use update propagation in order handle updates uniformly for all ser-
vices, independently of the underlying data type and content (which are infor-
mation needed by a data propagation scheme).

Each client interacts with the replica server, that he/she has been assigned,
within a session of requests. We use the term “request” as the synonym of “oper-
ation invocation”. We use interchangeably the terms of “replica selection” for a
client and “binding” of a client to a replica. However, there is a slight difference
between the two terms, that regards the support needed, so that the client could
interact with the replicated service. In this respect, the binding comprises the
actions needed by the client so as to obtain the stubs and the selection of the
initial replica with which the client will interact. The suitable replica may be
re-selected during the client’s session.

We define the abstraction of host class as a group of hosts, that provide
similar response times when executing the same service, under 0 utilization (i.e.
without contention). A host class may encapsulate the physical characteristics
of the processor (e.g. speed, number), of the disk (e.g. storage capacity, I/O
bandwidth), the software characteristics concerning the operating system (e.g.
the scheduling policy) and the communication protocol stack. We assume a
static decomposition of the hosting infrastructure into domains. A domain is
a set of proximal hosting machines, where the distance is computed according
to some metrics. Such metrics quantify, for example, the topological or the
geographical proximity between the hosts.

1.4.3 Enforcing the service-specific consistency guarantees

In order to satisfy the service-specific replica consistency guarantees, we propose
a flexible fine-grained replica consistency management approach, consisting of

-8 -

1.4 Summary of the solution

three building bricks: a consistency meta-model, a replica consistency proto-
col enforcing any service-specific consistency model and the replica wrappers.
In order to define the meta-model, we abstracted existing replica consistency
constraints, by identifying the parameters, characterizing each one of the three
consistency dimensions: divergence control, scheduling and dependency control.

The meta-model is instantiated into a service-specific consistency model, by
choosing appropriate parameters values, attached to sets of operations. The pa-
rameters values include the divergence metric, the functions for conflicts detec-
tion and resolution, the functions for ordering non-commutative operations, and
the dependency types. The meta-model can be easily extended, in order to in-
clude other divergence metrics. We propose a new divergence metric, that takes
into account also the accepted updates (besides the unpropagated updates),
when quantifying the discrepancy between the state of a given replica and the
ideal replica state. The service-specific consistency models are realized by a
common replica consistency protocol, that relies on independent components,
called resolvers. Each resolver enforces the constraints defined on a particular
consistency dimension. The replica wrapper represents the replicated version of
the service, by integrating the consistency management code, transparently for
the final clients (i.e. they access the service using the same interface, as in the
centralized case).

1.4.4 Enforcing the performance requirements

The main building brick of our approach for enforcing the performance require-
ments consists in a response time estimator, which provides the approximative
response time expected by running requests with a given workload, on a given
host, for which the availability of its resources varies dynamically. The response
time estimator is parameterized by the workload of the request, and by the
capacity and by the utilization of the resources that the service needs. The esti-
mator decomposes the response time, observed for a given request, into indepen-
dent components: the processing times, during which each resource is used by
the request and the times, during which the request is waiting for each resource.
We model the waiting time, using the regression-based statistical method. This
method determines automatically the resources with the most significant im-
pact on the response time observed for the request and the weights, denoting
the degrees of their significance. In particular, the CPU waiting time becomes
an exponential function, whose exponent depends mainly on the CPU capacity
and on the CPU utilization. Using the measures of CPU waiting times obtained
for some workloads, under some CPU utilization values, we were able to com-
pute the CPU waiting time for any workload, under arbitrary CPU utilization
value. This statement also remains true for the disk I/O waiting time and for
the network transfer time. The client remains bound to his replica, until the
percentage of requests, that violated the response time requirement, exceeds a
given bound (e.g. 20%). When this bound is exceeded, the protocol selects
another replica for the client.

The response time estimator represents the basis for our replica selection cri-
terion, inferred automatically from the performance requirements, formulated

-9 -

Chapter 1 Introduction

by the service supplier. The replica selection criterion uses the response time
estimator, when the resources are shared among several applications running
concurrently. Otherwise, when the resources are underloaded, the selection cri-
terion uses only the resource capacity, which is a static metric. The replica
selection criterion, customizes a generic replica selection protocol, that we de-
veloped independently of particular response time requirements, of the service
workload or of the current resources status. The protocol checks during the
client session, if the current replica provides the needed response time. If a
given percentage of the client requests doesn’t verify the response time require-
ments, another replica is selected for the clients. The usage of domains helps
performing scalable replica selection, with respect to the number and to the
distribution of replicas.

1.4.5 Contributions

The contributions of our work are the following:

e A consistency meta-model, that aggregates abstract constraint types, at-
tached to groups of operations; this meta-model can be instantiated into
service-specific consistency models, containing arbitrary combinations of
existing consistency guarantees.

e A replica consistency protocol, capable to enforce service-specific consis-
tency models.

e A replica consistency framework, which integrates the service logic with
the replica consistency management, transparently for the service suppli-
ers and for the clients.

e A response time estimator, that takes into account the workload of the
requests, so as to infer what are the relevant resources for each request to
the service and the degree with which they impact the response time. The
estimator exploits the processing capacity and the current utilization of
those resources; we showed that our estimation algorithms can afford to
use obsolete measures, as long as the discrepancy between those measures
and the most recent ones doesn'’t exceed a given threshold (i.e. 20%).

e A request redirection protocol, that adapts the replica selection criterion
and the rebinding criterion to the performance requirements. The redi-
rection protocol exploits mainly the response time estimator.

The results obtained made the object of the papers published in the Pro-
ceedings of ICDCIT’04 [18], of DOA’05 [19], of CDUR’05 [20] and of SAINT’06
[21].

1.5 Outline of the document

This document is structured in four parts. The first part, entitled Introduc-
tion, contains one chapter with the same title. This chapter presents the context

~10 -

1.5 QOutline of the document

of our work, presents the problem that we address in this thesis and a summary
of our solution.

The second part is entitled Providing Service-Specific Replica Consis-
tency Models and contains three chapters. Chapter 2, entitled Survey of
Replica Consistency Management Systems, describes systems providing
replica consistency management. Chapter 3, entitled Representing Service-
Specific Consistency Models, contains the definition and the object-oriented
representation of the consistency meta-model, that we propose in order to ex-
press arbitrary combinations of guarantees attached to groups of operations.
At the end of the chapter, we show how the meta-model is instantiated for
each service, from an XML description of the service interface and of the con-
sistency constraints, required by the service supplier. Chapter 4, entitled A
Generic and Customizable Replica Consistency Protocol, shows how
various service-specific consistency models are realized by the same generic pro-
tocol. In the beginning of the chapter, we depicts the building blocks compos-
ing the replica consistency framework. Then, we describe each of the building
block in turn: the Contract object, the resolvers enforcing the constraints on the
quality of observable state, on the scheduling and on the dependency control
dimensions, the Consistency Manager and the Server-Side Replica Wrapper. We
show how the three protocols are assembled into the consistency protocol, pro-
viding the replicated execution of each access. We prove that the protocol works
correctly (i.e. it satisfies the liveness and the safety properties), by representing
it by a distributed state machine, wherein the transitions are configured by the
consistency constraints contained in the model.

The third part is entitled Response-Driven Replica Selection and con-
tains four chapters. Chapter 5, entitled Survey of Replica Selection Sys-
tems, describes the replica selection strategies adopted by various systems, so
as to improve the response time perceived by the clients. Chapter 6, entitled A
Workload-Aware Response Time Estimator, presents an innovative ap-
proach for estimating the response time expected from the available replicas.
This approach exploits the capacity and the utilization of the resources, that
are relevant for the service’s workload. Then we decompose the response time
into independent components, including: CPU service time, disk I/O service
time, CPU waiting time, disk I/O waiting time and network transfer time. We
propose a formula, for computing each of these components. We present exper-
imental validation of our approach, showing satisfactory estimation accuracy,
especially for the workloads containing one bottleneck resource. Chapter 7, en-
titled A Generic and Customizable Replica Selection Protocol, presents
our approach for enforcing the replica selection criterion, determined so as to
satisfy the performance requirements. In the beginning of the chapter, we show
the general specification of the performance requirement, including the charac-
terization of the workload generated by the service. Then we abstract the replica
selection and the rebinding criteria and we show how they are specialized so as
to satisfy particular performance requirements. Then we describe the replica
selection and the rebinding protocols, relying on domains as the support for
scalable replica management. We present the protocol implementation and the

- 11 —

Chapter 1 Introduction

experimental results, proving the benefits of rebinding the client dynamically
to another replica, when the current one provides bad performance. Chapter 8§,
entitled The Overall Replicated Service Hosting System, begins by intro-
ducing the Information Repository component. Then, we present the distribution
and the interaction between the system-specific components of the Replicated
Service Hosting System, including: Information Repository, Response Time Esti-
mator, Host Monitor and Metrology Server. We show how the framework inte-
grates the service logic with the replica consistency management, transparently
for the service suppliers and for the clients. This feature relies on a Server-Side
Replica Wrapper, that is automatically generated for each service, from the XML
specification of the service-specific consistency contract. Then, we present the
distribution and the interaction between the service-specific components, in-
cluding: Consistency Manager, Replica Manager, Server-Side Replica Wrapper and
Client-Side Replica Wrapper. In the last section, we show the interface by which
the Replicated Service Hosting System is made accessible to the service suppli-
ers and to the clients.

The fourth part, entitled Conclusion and Perspectives, contains two
chapters. Chapter 9 summarizes the replication approach that we propose, in
order to enforce the consistency constraints and the performance requirements,
that are needed by a given service. Chapter 10 depicts the key ideas for other
complementary issues, which are not completely addressed in our work. The
document ends with the enumeration of the perspectives that our work opens.

~12 -

Part 11

Providing Service-Specific
Replica Consistency Models

- 13—

Chapter 2

Survey of Replica Consistency
Management Systems

2.1 Introduction

There are a lot of existing replication systems, that target various performance
objectives (such as improved response time, service availability, servers load-
balancing), while enforcing the suitable replica consistency constraints. The
consistency constraints allow to obtain various consistency models, belonging
to the range delimited by the two standard criteria: strong consistency and
eventual consistency. The strong consistency guarantees that any read sees the
result of the most recent write. The eventual consistency guarantees that all
replica states become equivalent at some point in time, when all updates arrive
at all replicas, and no more update is issued.

We surveyed the database and the service replication systems, which provide
the standard strong consistency (one-copy serializability) correctness criterion
and the systems which relax this criterion, in order to improve the performance
of queries and of update transactions. We classify these systems in four classes:
systems providing strong consistency, systems providing divergence control, sys-
tems performing relaxed concurrency control and systems providing hybrid mod-
els. The former class includes the atomic broadcast primitive used in Isis, or the
Ricart & Agrawala’s mutual exclusion protocol [57]. The second class include
the systems like S2LDDC [52], Tact [76], PDBREP protocol [1], Refresco [45],
Leganet [22] which control the quality of data observed by reads, by bounding
the discrepancy tolerated between the local replica and the ideal replica. The
third class is divided in two subclasses, containing the systems, which perform
pessimistic, respectively, optimistic scheduling. The former subclass include sys-
tems, such as Refresco [45] and Leganet [22]), which relax the serializability, by
considering the commutativity between updates accessing different tuples. The
second subclass include systems such as Bayou [69], IceCube [30], optimistic
atomic broadcast [17], which avoid the overhead induced by the total order
provided pessimistically, by allowing replicas to be accessed independently, and
reconciliating a-posteriori the updates which are conflicting or wrongly ordered.
The fourth class include systems like Khazana, which combines the features of

—15 —

Chapter 2 Survey of Replica Consistency Management Systems

the former classes.

This rest of this chapter is structured in five sections. Sections 2.2, 2.3, 2.4
and 2.5 present, respectively, the systems providing strong consistency, the sys-
tems providing divergence control, the systems performing relaxed concurrency
control and the systems providing hybrid models. Section 2.6 concludes the
chapter.

2.2 Systems providing strong consistency

Strong consistency is enforced by the atomic broadcast primitive defined by
Birman [60] or by the Ricart & Agrawala’s mutual exclusion protocol.

The atomic broadcast primitive (ABCAST), defined by Birman in 1987 [60],
and implemented in group communication systems (e.g. Isis, Horus) guarantees
that all accesses are delivered in the same order at all replicas. Each replica
maintains locally a logical clock. When an access is issued, its initiator replica
decides the access ordering by obtaining the largest logical clock, within a two-
phase commit protocol.

The Ricart & Agrawala’s mutual exclusion protocol allows each access to
proceed, only after receiving the permissions from all the replicas, participating
to the scheduling of the accesses. This protocol guarantees that for any two
conflicting updates only one is executed. It also guarantees that every access
sees all the accesses issued before it (and which aren’t conflicting with it).

One copy serializability The equivalent of strong consistency for replicated
databases is one-copy serializability (used in Ingres [47]). This criterion states
that the effects of update transactions submitted independently at different
replicas are the same as if all the updates had been applied on a single copy
[47]. It contains two sub-properties: mutual consistency (requiring that all
replicas have the same values) and serializability.

Both mono-master and multi-master database replication systems enforces
one copy serializability by using the eager replication technique, where the re-
fresh transactions are propagated to secondaries within the boundaries of the
initial transaction [47]. The acceptance or the rejection of the transaction is
decided by a two-phase commit protocol.

The strong consistency criterion isn’t appropriate in a large scale environ-
ment, with potentially many accesses issued concurrently and many replicas. In
such a context, reads may experience significant delays, because they must wait
for all previously issued updates to be applied locally. This is the reason why
various existing systems relaxed the strong consistency. In this respect, they
allow accesses to be applied concurrently at various replicas and/or they bound
the discrepancy between the local replica state and the ideal replica state.

2.3 Systems providing divergence control

This category of systems control the quality of replica state observed by reads
and updates. In this respect, they characterize the quality of the replica state

—16 —

2.8 Systems providing divergence control

by the difference between the local replica state and the ideal replica state. The
right quality of the replica state is obtained by bounding this difference.

The consistency protocol called strict 2-phase locking distributed divergence
control (S2LDDC) [52] enforces the epsilon-serializability criterion. This crite-
rion imposes bounds on two divergence metrics: imported inconsistency, associ-
ated to queries, and ezported inconsistency, associated to update transactions.
The imported inconsistency defines the total amount of modifications not ob-
served by the query, although these modifications have been integrated on other
replicas. The exported inconsistency quantifies the effects of the update trans-
action on the data that it modifies. The protocol works by decomposing the
imported/exported inconsistency into local conditions, which bound the amount
of inconsistency read from/introduced to the local database maintained by each
replica.

Tact [76] proposes an innovative approach for bounding the divergence be-
tween the state of a particular replica and the state of the ideal replica, that
would have been obtained if all issued updates have been correctly executed.
The divergence between a particular replica state and the ideal replica state is
expressed using the three metrics: staleness, numerical error and order error.
The numerical error counts the total weights of updates applied at peers, but
not seen by the local replica. The staleness of a replica is defined as the dif-
ference between the current time and the issuance time of the oldest update
unseen locally. The order error metric is defined as the number of tentative
updates applied at the local replica and not yet scheduled. They satisfy the
divergence metrics bounds, by decomposing them into local conditions, which
become the invariants maintained by each replica (by pushing the local updates
to the peers).

Refresco (Routing Enhancer through FREShness COntrol) [45] proposes a
fine-grained flexible replica consistency model, which is instantiated into specific
models, imposing thresholds on the metrics: age (equivalent to staleness), order
(equivalent to numerical error when the weights are 1) and card. The card metric
counts for the number of stale tuples. The freshness requirements are associated
to the database, to relations or to attributes. A finer granularity increases the
concurrency among non-conflicting transactions.

A significant contribution of the systems Refresco [45] and Leganet [22] is
to minimize the number of refresh transactions to be applied before the query,
so that the freshness requirements are satisfied. In this respect, they compute
a sequence wherein they include successively the remaining refresh transactions
(committed at the master, but not yet propagated locally). Each time a refresh
transaction is included in the sequence, the values of the divergence metrics
are updated. This iteration ends when thresholds, imposed on the divergence
metrics, are satisfied.

The PDBREP protocol [1] provides fine-grained freshness management of
queries, under configurations, where each database may be partitioned over sev-

17 -

Chapter 2 Survey of Replica Consistency Management Systems

eral sites. In this context, the distributed queries access objects (i.e. relations
or partitions of relations) located at various sites. Each object has associated a
master replica, to which all updates are redirected. The objects represent the
granules for freshness requirements. Precisely, the users may specify the fresh-
ness requirements, in terms of the version numbers of the objects that their
queries access. Before a query starts, all objects, that it accesses, are brought
to the same version, which is at least the version number required by the query.
A version is maintained during the query execution by locking the accessed ob-
jects, by using freshness locks. Their approach combines the two propagation
modes: pushing updates from the master at the secondaries, and pulling refresh
update transactions at the secondaries from the master. The former mode is
used when the secondary nodes are idle (i.e. there is no on-going query or refresh
transaction running at that nodes). The latter mode occurs when the requested
object doesn’t respect the freshness level required by the query.

Pacitti et al. [43, 44] measure the freshness as the ratio between the number
of refresh transactions committed at the secondaries and the number of trans-
actions committed at the master. Their consistency policy also bounds the
percentage of tuples accessed concurrently by refresh transactions and queries.
They distinguish between the propagation strategy where each refresh transac-
tion is encapsulated within a single message (deferred-immediate strategy) and
the strategy where each operation of a refresh transaction is encapsulated within
a different message (immediate-immediate strategy). In each case, each message
related to a refresh transaction is executed as soon as it arrives at secondaries.
They proved experimentally that the immediate-immediate strategy improves
the freshness of secondary copies (even when the network delay augments or
when the available bandwidth decreases). This gain is due to the concurrency
between the propagation of updates from the master and the delivery of refresh
updates at the secondaries. Pacitti et al. [44] introduce another propagation
strategy, called immediate-wait, where each operation of a refresh transaction is
carried in a separate message, but the refresh transaction is executed after all
the messages of the same refresh transaction are received. They showed, that
this strategy improves freshness compared to immediate-immediate, when the
updates arrive at the master at a high rate.

2.4 Systems performing relaxed concurrency control

This category of systems relax the total ordering, by taking into account the
commutativity and the conflicting relationships between updates. We distin-
guish between systems performing pessimistic concurrency control and systems
performing optimistic concurrency control. They perform the concurrency con-
trol before the access execution (preventing conflicts or wrong ordering), respec-
tively, after the access execution (reconciliating a-posteriori conflicts or wrong
ordering). The following two subsections detail the two categories of systems.

~ 18 —

2.4 Systems performing relazed concurrency control

2.4.1 Systems performing pessimistic scheduling

Pacitti et al. [42] and Leganet enforce the total order only among the conflicting
transactions. Two transactions are conflicting if the intersection, of the sets of
tuples which they access, isn’t empty. They rely the conflict detection policy on
the transactions parameters.

Pacitti et al. [42] provide global FIFO ordering by an asynchronous ap-
proach, called preventive replication, where the master associates to each trans-
action a chronologically increasing timestamp. At a secondary, the execution
of each refresh transaction is delayed by the time period corresponding to the
maximum multicast delay. This delay can be eliminated if the FIFO guarantee
is already provided by the underlying network. In this way, the secondaries
apply the transactions in the same chronological order, in which they have been
applied at the masters.

Leganet determines the sets of relations read and modified by a transaction,
by parsing the corresponding transaction code.

2.4.2 Systems performing optimistic scheduling

Bayou [69, 70] is an optimistic replication system, that provide to users, mono-
tonically increasing versions of the data that they access. They introduce the
concept of session guarantee, with the following options: Read Your Writes,
Monotonic Reads, Monotonic Writes and Writes Follow Reads. Read Your
Writes and Monotonic Writes guarantees that the user sees all his previously
issued updates, when he initiates a read, respectively an update. The Mono-
tonic Reads and Writes Follow Read guarantees that the user sees the updates
previously observed by his last read, respectively his last update.

Bayou controls the resolution of conflicting invocations, by means of two
user-defined procedures, detect and merge, plugged into the system. The func-
tion detect returns true if the two accesses are conflicting or non-commutative.
If this is the case, the function resolve is used, in order to determine what access
to exclude (in the case of conflicts) or what access should precede the other (in
the case of non-commutativity). In contrast to Bayou, in our approach both
functions are generated from the service supplier’s specification, which exploits
the attributes and/or the arguments of the two accesses.

The optimistic replication protocol [17] extends the Atomic Broadcast to the
optimistic replication scenario, in order to improve the response time of updates.
Their optimistic assumption is that the sequencer, that determines the total or-
der of updates, doesn’t fail. If this isn’t the case, the newly selected sequencer
may determine an ordering which is different from the ordering already seen
by the client. The algorithm solves such external inconsistencies client-side, by
selecting the ordering already applied at a majority of replicas.

IceCube [30] is a generic scheduling framework, wherein the reconciliation
of tentatively executed updates is customized by a large variety of ordering,

~19 —

Chapter 2 Survey of Replica Consistency Management Systems

dependency and exclusiveness relationships relating actions, that are initiated at
the same replica or at different replicas. The reconciliation approach of IceCube
is centralized and relies on grouping actions related by some constraints into
clusters. The actions in a particular cluster are ordered independently from the
actions in another cluster in iterative steps. At each step, the action with the
highest weight is selected from the cluster and introduced in the schedule, and
all actions conflicting with the selected one are deleted from the cluster. Also
the parcel constraints are respected by introducing the corresponding actions in
the cluster. The resulted schedule is applied at all replicas.

The applications built on IceCube [40, 51] take into account the arguments
given to the operation calls, when defining the conflict resolution policies. Ex-
amples of such applications are the cooperative editor and the shared agenda.
In the former application, a conflict occurs, for example, between two actions,
creating a directory and a file, with the same name. In the latter application, a
conflict occurs between two actions, which try to reserve the same room, at the
same date and time.

In the context of multi-master replication, Martins et al. [35] propose a
decentralized reconciliation algorithm, which extends the IceCube approach to
dynamic large-scale systems, like P2Ps. This algorithm uses a set of reconciliers,
each of them performing the reconciliation algorithm of IceCube, wherein the
conflict resolution relies on application semantics. The resulted schedule is per-
formed at each replica. An innovation of their work is to store the updates
submitted by the clients at various replicas in the underlying DHT, maintained
by the P2P system. In this way, if a replica disconnects, its updates are trans-
ferred automatically to its neighbors, by the P2P data management system.
Another innovation of their work is to determine the number and the set of
reconciliers needed, so as to minimize the reconciliation response time. They
use a polynomial regression method, wherein the coefficients take into account
the number of actions, the number of replicas, the bandwidth capacity and the
number of nodes.

Daudjee et al. [14] introduce a new correctness criterion, called strong ses-
ston snapshot isolation. It guarantees the strong snapshot isolation at the level of
client sessions (defined as the sequence of transactions issued by a given client).
Within a given client session, each transaction sees all previously committed
transactions. Transactions which belong to different sessions may be executed
in any order at different replicas. They proved experimentally that strong ses-
sion snapshot isolation improves significantly the response time of queries and
the transaction throughput.

DECAF (Distributed Extensible Collaborative Application Framework) [66]
is a framework based on Model View Controller paradigm and which aims to
improve the responsiveness of collaborative editors. This framework contains
generic collaborative objects, whose replicas are updated optimistically. They
express the trade-off between consistency and responsiveness by means of opti-
mistic vs. pessimistic views. The former integrate all updates, while the latter

~90 —

2.5 Systems providing hybrid models

system

quality of observable state

concurrency control

dependency control

quasi-copies [2]

arithmetic condition, delay condition

Lazy replication [34]

client specified order

Tsae [25]

version number

total order, causal order

RYW, MR, MW, WFR

Bayou [69] - total order, check() and merge()
S-DSO [75] service-specific semantic functions - -
Globe [29] - FIFO order RYW, MR, MW, WFR
IceCube [30] - best order parcel
- mutual exclusiveness, alternative predecessorSuccessor
Cascade [10] total order, causal order

RYW, MR, MW, WFR

Tact [76]

numerical error, staleness, order error

total order

Fluid replication [12]

periodical propagation

optimistic/pessimistic mode
last writer policy

Khazana [67] time-bounded option total order, causal order
modification option, consistency option | availability option, rejection policy

Refresco [45] age, order, card FIFO order

Leganet [22] card total order

Table 2.1: Options provided by existing replica consistency systems

only the committed updates. Each update is executed optimistically at the
replica where it has been submitted, where the optimism regards three types
of assumptions: the objects read by the update are stable (they integrate only
committed transactions), no committed update has been missed locally, no up-
date is modifying the same objects concurrently. If the primary copy confirms
the three assumptions, the corresponding update is committed, otherwise it is
aborted.

2.5 Systems providing hybrid models

This category of systems combine the features of the systems providing diver-
gence control and the features of the systems performing relaxed concurrency
control.

Khazana [67] is a flexible replica consistency management system, that com-
bines several types of constraints. The constraints on the quality of observable
state, define the time when remote updates must be made visible locally, the
time when local modifications should be visible at peers and the degree of tol-
erated staleness. The constraints on the scheduling define the execution mode
of accesses (i.e. pessimistic vs. optimistic) and the rejection policy, in the case
of conflicting updates.

2.6 Conclusion

Existing replica consistency management approaches enforce constraints on three
dimensions. We name them quality of observable state, concurrency control and
dependency control. In the following three subsections, we characterize these
dimensions and enumerate the constraints provided by existing systems on each
dimension (as summarized in Table 2.1).

2.6.1 The quality of observable state dimension

The quality of observable state dimension limits the discrepancy between the
current replica state (observed by the accesses performed on the replica), and

- 21 —

Chapter 2 Survey of Replica Consistency Management Systems

the ideal replica state. Transient discrepancies are quantified by means of di-
vergence metrics, that exploit various operation attributes. We classify existing
divergence metrics in four classes: delay metrics, staleness metrics, weight met-
rics and order metrics. The former two classes exploit the issuance time of
accesses, the third class exploits the weights of accesses and the latter class ex-
ploits the number of accesses executed tentatively. These metrics are associated
threshold values, that must be satisfied before an access could proceed.

Delay divergence metrics The oldest and widest means to characterize the
divergence between a current replica and the ideal replica relies on the prop-
agation delay of updates. The propagation delay metric defines the maximal
time period that elapses between the update’s issuance and its propagation
to the peers. It is used in quasi-copies [2|, under the name delay condition
particularized for each update, in Khazana [67], under the name time-bounded
consistency option, in Fluid replication [39], where the propagation is performed
periodically. In S-DSO [75], the propagation delay of updates is computed by
using user-supplied semantic functions.

Staleness divergence metrics A widely-used condition on the quality of
observable state, limits the time period during which each replica may remain
stale, with respect to its peers. The staleness divergence metric is used within:
Tact [76], timed-consistency [71], epsilon-serializability [52], delta consistency in
Beehive [63], consistency dimension in Khazana, staleness threshold in [33], as
the age metric in Refresco [45].

Weight divergence metrics The weights, (as defined in Tact and in Sab-
barus [28]), quantify the severity of read operations with respect to the quality
of the local data that they will observe, respectively the impact of update op-
erations on the data that they will modify. Weight-based divergence metrics
include: the arithmetic condition used in quasi-copies, the imported inconsis-
tency and the exported inconsistency, both used in epsilon-serializability [4], the
numerical error used in Tact and in Sabbarus, the modification bound option
used in Khazana, the version number used in Tsae [25], in PDBREP protocol
[1] and in Refresco, under the name of order, the card metric used in Refresco
[45] and in Leganet [22].

The arithmetic condition was defined in the case of numerical data. It
bounds the arithmetical difference between the value of the local replica and
the value of the ideal replica.

The wversion number counts the number of updates issued at peers and that
are unseen locally yet. In this case, the weight of any update has the value 1.

A weight-based divergence metric is assigned a numerical threshold, that
must be satisfied by the state of a given replica, before an access could proceed.

Order-based divergence metrics The order-based divergence metrics im-
prove the correctness of the replica transient state, with respect to the number

- 22 —

2.6 Conclusion

of tolerated conflicts and to the number of updates wrongly ordered. They in-
clude: the order error used in Tact and the bounded ignorance [32]. Bounded
ignorance relies on the abstraction of a N-ignorant transaction. This is a trans-
action that could proceed even if it has not seen yet the effects of at most N
transactions, that should precede it in the serialization order.

2.6.2 The concurrency control dimension

The goal of concurrency control is to ensure the correctness of the replicated
state and to apply the same set of updates, in the right order, at all replicas
(i.e. non-commutative accesses are totally ordered). The scheduling of an access
decides its execution order within the global history, with respect to concurrent
accesses that do not commute or that are exclusive with it. The service sup-
plier adapts the concurrency control, by means of scheduling relations defined
between pairs of operations. A scheduling relation, applied to two accesses, de-
fines what is their execution order, if the two accesses aren’t commutative or
what access to eliminate, if the two accesses conflict.

Ordering of non-commutative updates We distinguish between tradi-
tional ordering types and service-specific ordering relationships. With respect to
the traditional consistency models, in this case, the ordering is applied only to
non-commutative updates. The traditional ordering types include: total order-
ing, causal ordering, FIFO ordering, server-specified order and global order. The
total ordering is used in the sequential consistency model [37], in the lineariz-
ability model [78], in Bayou [70], in Cascade [10], in Tsae, in Tact, in Khazana,
in multi-master database replication scheme, as showed in [42].

Lamport’s causal ordering and FIFO ordering relax total ordering. The
causal ordering considers implicitly that operations, that are not causally re-
lated, are commutative. It is used in the causal consistency model [37], in
Cascade, in Tsae, in Khazana. FIFO ordering considers that all operations are
commutative, and it is intended merely to preserve the user-intended action
sequence. It is used in the FIFO consistency model [37] and in Globe [29].

The global FIFO order is used in the mono-master database replication
scheme [42], so as to enforce the commitment of refresh transactions in the
order of their associated transactions at the masters.

Server-specified order and global order are used in [34]. Server-specified or-
der requires that all invocations to a given operation are totally ordered. Global
order requires that all invocations to all operations are totally ordered.

Service-specific ordering relationships define a partial ordering among all
accesses based on user-specified operation semantics, such as commutativity or
a favorite order. The commutativity of operations is explored in the conflict
matrix model [3], in the generic broadcast [46], in IceCube [30]. The favorite
order is explored in IceCube by means of a constraint, called best order. It is
defined between pairs of actions issued at the same replica or at different replicas.
IceCube also defines a constraint, called predecessorSuccessor, that relates two

~ 93—

Chapter 2 Survey of Replica Consistency Management Systems

actions, issued at the same replica, so that the latter should be applied only if
the former executed successfully.

Conflict resolutions Correct update scheduling also includes a mechanism
for dealing with conflicts, if they can appear. Dealing with conflicts involves
two types of constraints. The former specifies if potentially conflicting accesses
could execute simultaneously. It makes the distinction between optimistic and
pessimistic accesses. Examples of systems supporting this constraint type are:
Khazana, within the awvailability consistency dimension, and Fluid replication
[12]. The latter contains options for detecting and resolving conflicts. Bayou
proposes user-specified procedures for detecting if two invocations are conflict-
ing, called dependency check procedures. Conflicts resolution is based on client-
provided custom procedures in Coda [31], Ficus [56] on merge procedures in
Bayou, last writer policy in WebF'S [73] and Fluid replication, update rejection
policy in Khazana, an object scheduling constraint called mutually ezclusiveness
in IceCube. In the case of rejected actions, IceCube also proposes a constraint,
called alternative relationship, that makes a non-deterministic choice between
a given set of actions.

Snapshot isolation Snapshot isolation was introduced by Berenson et al.
[4], so as to improve the transaction response time by relaxing serializability. It
distinguishes between queries and updates. The queries read the latest snap-
shot of the database. The update transactions accessing different data items
(i.e. non-conflicting transactions) are allowed to proceed concurrently (while
the conflicting updates are totally ordered). Snapshot isolation is provided in
Oracle, Microsoft SQL Server, InterBase, PostreSQL [4].

2.6.3 The dependency control dimension

Providing dependency-based guarantees is necessary for the correct execution of
operations, that depend on already stabilized operations. If an access depends
on a set of updates that have been already executed at peers, then those updates
must be integrated into the local copy, before the access.

The dependency-based guarantees include the Bayou’s session guarantees
used in [69], in Globe, in GlobeCBC [58] and in Cascade, the client-specified
order used in [34] and the parcel relation defined in IceCube. The user uses the
client-specified order, in order to specify dynamically during the service execu-
tion, the dependency between the current read and previously issued updates,
that must be applied before the read. The parcel relation requires that all ac-
tions within a given set are executed.

With respect to the state of art, we envisage that there are services that
may need other hybrid models, obtained by combining existing consistency con-
straints and possibly new consistency constraints (that could be inserted dy-
namically in our framework). Such hybrid models must be enforced efficiently,

— 924 —

2.6 Conclusion

even if the availability of the resources varies dynamically, in a large-scale envi-
ronment.

— 95

Chapter 3

Representing Service-Specific
Consistency Models

3.1 Introduction

Different services require different consistency models (each model containing a
set of constraints). The issue that we address in this chapter is how to represent
uniformly all existing replica consistency constraints into a single unified meta-
model. We argue that fine-grained consistency management is needed (e.g. at
the level of a set of operations), because different constraints types suit different
operations and different execution environments. For example, the Bayou’s
Read Your Writes option is pertinent for reads and the propagation delay for
updates. Also, only the optimistic concurrency control mode can be used when
the network conditions vary unpredictably. In order to accommodate various
service needs and execution environment characteristics, we abstract the existing
consistency constraints on each of the three orthogonal consistency dimensions:
quality of observable state, concurrency control and dependency control. We
encapsulate the abstract constraint types, associated to sets of operations, into
a meta-model. The meta-model can be instantiated for each service by the
service supplier with a minimal effort, by choosing the appropriate constraints.
The appropriate consistency model is specified using XML.

The rest of this chapter is structured in three sections. Section 3.2 presents
the consistency meta-model. Section 3.3 describes the new divergence metric
that we introduce. Finally, section 3.4 concludes the chapter.

3.2 The consistency meta-model

Definition A consistency model consists of a set of constraints. FEach consis-
tency constraint addresses one of the three independent issues that any con-
sistency management system is concerned with. These issues are: what is the
quality of the replica state that each invocation needs to observe, what are the
scheduling guarantees that have to be provided for non-commutative or con-
flicting concurrent invocations, what are the dependencies to be preserved for
new invocations with respect to the updates that have been already applied at

_97 -

Chapter 3 Representing Service-Specific Consistency Models

consistency dimension=quality of observable state | concurrency control | dependency control
quality of observable state constraint=(divergence metric, predicate())

divergence metric=predefined metric | (user-defined metric, conit())

predefined metric="numerical error” | “order error” | “staleness” | “propagation delay’
delay” | “relative divergence”

” | “stabilization

concurrency control constraint=concurrency control mode | conflict semantics
conflict semantics = (scheduling relation type, detect(ai, az2), resolve(ai, az))
concurrency control mode =“pessimistic” | “optimistic”

scheduling relation type = “conflicting non-commutativity”
dependency control constraint=predefined dependency | (user-defined dependency, predicate(ai, az))
predefined dependency=RYW | MW | MR | WFR | Lamport happens-before

L] ‘“

Figure 3.1: The formalization of existing consistency constraints

all replicas. We consider three consistency dimensions, corresponding to these
issues. We call them: quality of observable state, concurrency control and de-
pendency control. A constraint on the gquality of observable state dimension
enforces the progression of replicas towards an equivalent state. One enforces
such a constraint, by spreading the locally issued updates to the peers, and by
bringing the relevant remote updates from the peers to the current replica. A
constraint on the concurrency control dimension enforces replicas convergence,
by deciding the acceptance/rejection and the execution order of conflicting or
non-commutative updates, which have been executed tentatively. A constraint
on the dependency control dimension determines the set of updates, that have
been already stabilized, and that must precede a given access at all the replicas,
because the access must see the impact of those updates on the local data.

We define a consistency meta-model, in order to represent existing and pos-
sibly new consistency models. The meta-model enables each service supplier to
instantiate the consistency model that offers the suitable consistency guarantees
to its clients, according to the semantics of the replicated service. In order to
define the meta-model, we identify the parameters that characterize the con-
straints on each consistency dimension, together with the options available on
these parameters.

3.2.1 Abstracting the consistency constraints

3.2.1.1 Constraints on the quality of observable state dimension

A constraint on the quality of observable state dimension bounds the discrepancy
tolerated between the current replica state and the ideal replica state, by means
of two parameters: a divergence metric and a predicate, stating what values of
that metric are valid. The divergence metric parameter is specialized into one
of the following two parameters: predefined metric and user-defined metric.

_ 928 —

3.2 The consistency meta-model

The options, available for the parameter predefined metric, include the met-
rics defined in TACT [76]: numerical error, order error, staleness (defined in
section 2.6) and the metrics propagation delay, stabilization delay and relative
divergence. The predicate on the predefined metric usually requires that the
metric values should be inferior to a given bound. The predicate on order error
isn’t a sufficient condition for performing the reconciliation. Precisely, if the
number of updates performed tentatively at each replica is small, they never get
scheduled, if only order error is used. That is why, we introduced the metric
called stabilization delay. This metric defines the maximum time period dur-
ing which an update may remain tentative, before being reconciliated with its
concurrent updates (which have also been applied tentatively).

The service suppliers use the user-defined metric parameter, in order to
define a new divergence metric, by means of a function that provides the conit
value (associating a numerical value to the current replica state). The value
of the conit is updated when one of the following events occur: reconciliation
of tentative updates, propagation of updates to peers or reception of updates
from peers. The computation of the conit exploits the access weights or the
timestamps of the previously mentioned events.

3.2.1.2 Constraints on the concurrency control dimension

A constraint on the concurrency control dimension has two parameters: con-
currency control mode and conflict semantics. The concurrency control mode
parameter specifies if the concurrent execution of potentially conflicting or non-
commutative updates is admitted or not. It provides two alternative options:
pessimistic and optimistic. The former option defers the execution of updates,
until their acceptance (together with their execution order) or rejection is de-
cided. With the latter option, the updates are applied tentatively before being
scheduled.

The conflict semantics parameter specifies how to handle conflicts and non-
commutativity. It contains the scheduling relation type (conflicting or non-
commutativity) and the Bayou’s functions detect and resolve, parameterized by
a pair of accesses.

3.2.1.3 Constraints on the dependency control dimension

A constraint on the dependency control dimension specifies the causal depen-
dencies between new updates and updates, that have already been stabilized.
It contains one of the following two parameters: predefined dependency and
user-defined dependency.

The options available for the predefined dependency parameter include the
session guarantees of Bayou [69]: RYW (Read Your Writes), MW (Monotonic
Writes), WFR (Writes Follow Reads), MR (Monotonic Reads) and Lamport
happens-before [78].

The user-defined dependency parameter specifies service-specific dependen-
cies, by means of a predicate, that takes as arguments two accesses and returns
true if the former access depends on the latter.

— 929 _

Chapter 3 Representing Service-Specific Consistency Models

<!ELEMENT service (interface, consistency constraints)>

<!ATTLIST service name CDATA>

<!ELEMENT interface (operation+)>

<!ATTLIST interface name CDATA>

<!ATTLIST operation id CDATA>

<!ATTLIST operation signature CDATA >

<!ATTLIST operation weight CDATA >

<!ATTLIST operation type CDATA>

<!ELEMENT consistency constraints(quality of observable state*, concurrency _control*,
dependency _control*)>

<!ATTLIST quality of observable state operations CDATA >
<!ATTLIST quality of observable state numerical error CDATA>
<!ATTLIST quality _of observable state order_error CDATA>
<!ATTLIST quality of observable state propagation delay CDATA>
<!ATTLIST quality of observable state relative divergence CDATA>
<!ATTLIST quality of observable state user-defined divergence CDATA >
<!ATTLIST concurrency control type CDATA>

<!ATTLIST concurrency_ control stabilization _delay CDATA>
<!ATTLIST concurrency control pair operations CDATA>
<!ATTLIST concurrency control condition CDATA >

<!ATTLIST concurrency control resolution CDATA>

<!ATTLIST dependency control dependency type CDATA>
<!ATTLIST dependency control pair operations CDATA>
<!ATTLIST dependency control user dependency CDATA>

Figure 3.2: The DTD of a contract specification

Figure 3.1 summarizes the existing constraints on each of the three consis-
tency dimensions.

3.2.2 Fine-grained consistency

Different consistency constraints may be relevant for different sets of operations.
For example, RYW concerns the invocations issued by the same caller. Prop-
agation delay is defined for updates. We argue that fine-grained consistency
management, at the operation level, is needed, in order to provide to each ac-
cess, the mandatory constraints that it needs. In this respect, the consistency
meta-model associates each consistency parameter to an operation or to a pair
of operations.

3.2.3 Specifying a service-specific consistency contract

A particularity of our approach is that the functions contained in the constraints
exploit the arguments passed to invocations. This feature claims for the service
interface to be known. We call service-specific consistency contract, the speci-
fication of the service supplier, that includes both the service interface and the
consistency constraints. We use XML, as the language support for specifying a
service-specific consistency contract.

3.2.3.1 A DTD for service-specific consistency contracts

Figure 3.2 shows the DTD for service-specific consistency contracts, specified
in XML. It contains the interface declaration and the definition of the consis-
tency constraints. An operation is specified using the tag operation, that has

- 30 —

3.2 The consistency meta-model

four attributes: operation identifier, operation signature, weight and type (read
or update). The weight is an arithmetic expression, that uses the operation
arguments.

A consistency constraint is represented by one of the following three tags:
quality _of observable state, concurrency control and dependency control, cor-
responding to the previously identified dimensions. The quality of observable_ state
tag has one attribute for each predefined divergence metric and the attribute
user-defined metric, that extends the system with new metrics. In the case of
a predefined divergence metric, the attribute value contains the bound imposed
on the metric. It is defined by a number, in the case of numerical_error and
order _error, and by a time period (e.g. “15 min”), in the case of staleness,
propagation_delay and stabilization delay. If the attribute used is propaga-
tion_ delay, the user should also specify within the attribute operations, the
identifiers of the operations, to which the constraint is attached. The value of
the attribute user-defined metric contains the name of the class, that encapsu-
lates the logic for computing the conit associated to the replica and the predicate
imposed on the conit, so as to bound the divergence between the local replica
state and the ideal replica state. This class is provided by the service supplier
in a separate source file.

The concurrency control tag specify the concurrency control mode (opti-
mistic or pessimistic), that is common to all the operations. It has the attribute
stabilization_ delay, that defines how long each access could wait for its accep-
tance decision.

The concurrency_control tag has four attributes: pair_operations, type,
condition and resolution. These attributes are used for specifying the poli-
cies needed for conflicts detection and resolution. The pair operations at-
tribute contains the identifiers of the two operations, to which one policy is
attached. The type attribute contains the scheduling relation: conflicting or
non-commutativity, that could occur between pairs of accesses to those oper-
ations. The condition attribute contains the boolean expression for detecting
conflicts or non-commutativity, between a pair of accesses. The resolution at-
tribute contains the expression for deciding what access to exclude, if the two
accesses are conflicting or what access is the predecessor, if the two accesses are
not commutative. The expressions for condition and resolution define implicitly
the pair of access groups, to which the resolution policy applies.

The dependency control tag has the dependency type attribute, for specify-
ing one or several predefined dependencies, and the user_dependency attribute,
containing the service-specific condition for two accesses to be causally related.
This condition is attached to a pair of operations, whose identifiers are specified
in the pair_operations attribute.

3.2.3.2 Examples of consistency contracts

As an example, we consider an e-learning application, containing two services
that provide access, respectively, to two types of data: courses and articles. The
courses are manipulated by five operations: addCourse, modifyCourse, delete-
Course, readCourse and searchCourse. The articles are manipulated by five op-

- 31 -

Chapter 3 Representing Service-Specific Consistency Models

< service name="Courses” >
<interface name="ICourses”>
<operation id="addCourse” signature="short addCourse(char* name, char* text)”
type="update”/>
<operation id="modifyCourse” signature="short modifyCourse(char* name, char* text)”
type="update”/>
<operation id="deleteCourse” signature="short deleteCourse(char* name)” type="update”/>
<operation id="readCourse” signature="char* readCourse(char* name)” type="read”/>
<operation id="searchCourse” signature="char* searchCourse(char* topic)” type="read”/>
< /interface>
<consistency_ constraints>
<quality _of observable_state operations="addCourse modifyCourse deleteCourse”
propagation delay="0 sec”/>
<concurrency_ control type="pessimistic”/>
<concurrency _control pair operations="(modifyCourse, modifyCourse) (modifyCourse, delete-
Course) (deleteCourse, deleteCourse)” type="non-commutativity” condi-
tion="id _opl.name==id _op2.name” resolution=
“id_opl”/>
<concurrency _control pair operations—"(addCourse, addCourse)”
type="conflicting” condition="id_opl.name==id_op2.name” resolution="(id_opl.weight >
id_op2.weight) ? id_opl : id_op27/>
< /consistency constraints>
< /service>

< service name="Articles”>
<interface name="TArticles” >
<operation id="addArticle” signature="short addArticle(char* name, char* url)” type="update”/>
<operation id="modifyArticle” signature="short modifyArticle(char* name, char* url)”
type="update”/>
<operation id="deleteArticle” signature="short deleteArticle(char* name)” type="update”/>
<operation id="readArticle” signature="char* readArticle(char* name)” type="read”/>
<operation id="searchArticle” signature="char* searchArticle(char* topic)” type="read”/>
< /interface>
< consistency_ constraints>
<quality _of observable state numerical_error="100" order_error="10" staleness="1 day”/>
<concurrency _control type="optimistic’/>
<concurrency_ control pair_operations="(modify Article, modify Article) (modifyArticle, deleteArti-
cle) (deleteArticle, deleteArticle)” type="non-commutativity” condi-
tion="id _opl.name==id _op2.name” resolution="id_op1”/>
<concurrency _control pair operations="(addArticle, addArticle)” type="conflicting” condi-
tion="id _opl.name==id op2.name” resolution="(id _opl.weight > id op2.weight) ? id_opl :
id op2’/>
<dependency control dependency type="RYW”/>
< /consistency_ constraints>
< /service>

Figure 3.3: Examples of consistency contracts for e-learning services

- 32—

3.8 The relative divergence metric

erations: addArticle, modifyArticle, deleteArticle, readArticle and searchArticle.

Figure 3.3 shows two examples of consistency contracts, specified in XML,
for the two services. The contracts respect the following semantics: the stu-
dents see the same list of courses, with the same content, at any replica they
access. However, the list of available articles or their content may diverge from
a replica to another. Consequently, the operations manipulating courses have a
pessimistic concurrency control mode, while the operations manipulating arti-
cles have an optimistic concurrency control mode. We impose that local updates
to courses should become visible immediately at all the peers, while in the case
of local updates to articles, we admit a propagation delay of “1 day”.

Two modifications or two deletions to the same course or to the same article
should be totally ordered. Two insertions of a course with the same name, or of
an article with the same name, are mutually exclusive. If a conflict occurs, then
the item accepted is the one with the biggest weight. We limit the number of
articles that are missed, when searching for articles on a given topic (the missed
articles haven’t been transmitted yet to the current replica). We also impose
a RYW constraint on searchArticle, so that an author will see his own articles
when he/she performs searches.

3.2.4 Validity of option combinations

Not all combinations of options make sense. For example, Lamport happens-
before can’t be used when the concurrency control mode is optimistic. Precisely,
in the optimistic scenario, commutative updates can’t be causally ordered with
respect to updates applied locally tentatively. This happens because commu-
tative updates are accepted immediately and any accepted update is applied
before all tentative updates. Also, the order error divergence metric can be
used, only when the concurrency control mode is optimistic. In our work, we
assign to the service supplier the responsibility of specifying valid combinations
of options.

3.3 The relative divergence metric

A drawback of the existing divergence metrics is that they ignore the updates
that are already in the stable history of a given replica. For example, if we
consider the bank account service, individual replicas can afford a discrepancy
of 100$ if the current account contains 10000$. However, 100$ isn’t a tolerable
discrepancy if the current account is 500$. We introduce a divergence metric,
called relative divergence, that takes into account the current state of a given
replica. A predicate on this metric bounds the range of values accepted for the
local replica state, by means of an inferior and a superior threshold, defined
relative to the ideal replica state.

We approximate the state of a replica by its conit (notion introduced in
TACT [76], in order to assign a numerical value to the current replica state).
We note conit(r;), the conit associated to the replica r;. We note conit(r), the
conit associated to the ideal replica r. The guarantee on the relative divergence,
to be satisfied by conit(r;), is expressed as follows:

— 33 —

Chapter 3 Representing Service-Specific Consistency Models

(1 = p) * conit(r) < conit(r;) < (1 + p) * conit(r), where p € [0, 1] is a system-
defined parameter.

This guarantee is equivalent with:
—p < (conit(r;) — conit(r))/conit(r

) <p
< |conit(r;) — conit(r)|/conit(r) < p,

Vi=1,n

An issue is the decomposition of the above guarantee, into local conditions,
to be satisfied at each replica. Therefore, we define conit as the sum of the
weights of the local unpropagated updates, the weights of the local propagated
updates and the weights of the updates received from the peers. We associate
to each replica r;, i = 1, n, the following three sets: UU*, PU* and RU®, where
UU"® contains the updates issued at r; and that are still unpropagated PU?
contains the updates issued at r;, already propagated and RU’ contains the
updates received at r; from its peers. We obtain the following formula for the
conit associated to the replica r;:
conit(r;) = Y, cyp: w-weight + Y- prri waweight + 3 - pri wweight, where
u.weight is the weight of the update u

Theorem: We consider n replicas r; and r the ideal replica. If each replica

enforces that: (3, cppi wweight)/(3°,,c py: w-weight) < p/(1 —p) (a)
then |conit(rj) — conit(r)|/conit(r) < p,V j =1, n (b)

Proof: This theorem shows the invariant which must be maintained by each
replica, so that to realize, at any moment, the global bound on the relative
divergence metric.
We associate the following variables, associated to replica r;:
Ipstate’ =", pyyi wweight
lustate’ =3, i w-weight
rstate’ =) c pyi wweight
Istate’ = Ipstate® + lustate®
conit(r;) = lstate® + rstate’
We define conit(r) = Y1, Istate’

From the assumption that V v € PU' = u € RU7, where j # i and
Vve RU = Fistve PU"
we obtain Y, ;. Ipstate’ = rstate’

With these elements, the condition (a) becomes:

lustate’ /lpstate’ < p/(1 — p)

<= (1 — p) * lustate’ < p * Ipstate;

<= p* lustate’ + (1 — p) lustate’ < p * lustate’ + p * Ipstate’
<= lustate’ < p * Istate’

We evaluate the condition (b) for the replica 7;
= iz lustate’ <px 3T, Istate’ <px YL Istate’

—34 -

3.4 Conclusion

= iy iz lustate’ <px 3L Istate’

But, 370" iz lustate’ = conit(r) — Dt Ipstate® — Istate! = conit(r) —
(rstate’ + lstate’) = conit(r) — conit(r;)

= conit(r) — conit(r;) < p* conit(r)

= (conit(r) — conit(r;))/conit(r) < p

But conit(r) > conit(r;)
= |conit(r;j) — conit(r)|/conit(r) < p

Exploiting the relative divergence metric provides two main benefits with
respect to the approach of TACT. Firstly, it takes into account the current state
of the local replica and the state of the ideal replica, besides the total weights
of the unpropagated updates. Secondly, the local conditions (a), inferred from
the global guarantee (b), don’t depend on the number of replicas. In practice,
we need to bound the total weights of the propagated updates. One solution to
this issue is to limit the size of PU?, by considering only the updates propagated
within a given time period.

Inferring the constraints from the weights Choosing the right consis-
tency options and assembling them correctly within a consistency model is diffi-
cult. In order to reduce the burden on the service-suppliers, we envisage lighter
specifications. We keep the granularity at the operation-level, distinguishing
between reads and writes. The service suppliers assign per-operation weights.
The weights are defined statically or computed dynamically by means of a user-
defined function.

We translate the weight of a read, into the right degree of relative diver-
gence that it can tolerate, and the weight of an update, into the transfer in-
stant when it has to become visible at all the peers. We consider that the
operation weights have the values range between 1 and max _weight, where
max_weight is a system-defined parameter. We associate with the read a one
constraint on the relative divergence metric, where the parameter p has the value
1 — a.weight/max_weight. In particular, if the weight of the read a has the
maximum value, then a requires to see an up-to-date replica. We associate with
the update a one constraint on the propagation delay metric. This constraint
imposes that ¢ must be propagated to the peers, before the time period given by
(1 — a.weight/max_weight) x max_delay, where max_delay is the maximum
propagation delay, pre-configured within the system.

3.4 Conclusion

We proposed a consistency meta-model, which aggregates existing and possi-
bly new consistency constraints, by means of parameters attached to each of
the three dimensions: quality of observable state, concurrency control and de-
pendency control. A significant contribution of our work is the extensibility of

— 35 —

Chapter 3 Representing Service-Specific Consistency Models

the meta-model, which allow the service suppliers to introduce new divergence
metrics (if they are needed). Another relevant result is the definition of a new
divergence metric that takes into account also the stable state (i.e. the rec-
onciliated updates) besides the unpropagated updates, when quantifying the
discrepancy between the current replica and the ideal one.

— 36 —

Chapter 4

A Generic and Customizable
Replica Consistency Protocol

4.1 Introduction

The issue that we address in this chapter is how to enforce any consistency
model, that could be instantiated from the meta-model, by a single protocol. In
this respect, we follow the decomposition of the consistency aspect among the
three dimensions, that we have identified in the previous chapter: quality of ob-
servable state, concurrency control and dependency control. The constraints on
each consistency dimension are resolved separately by a generic protocol, that
they customize. The overall consistency protocol is composed of the protocol
enforcing the quality of the observable state, the protocol enforcing the schedul-
ing of concurrent invocations and the protocol enforcing the dependencies. The
consistency protocol is encapsulated within a primitive, called for each access,
transparently for the final clients, so as to provide the replicated execution of
that access at all the replicas. We consider the case where the replicas are fully
connected. We assume that the communication is reliable (i.e. the messages are
received in the right order and no message is lost).

The rest of this chapter is structured in seven sections. Section 4.2 de-
picts the building blocks of the replica consistency framework, together with
the functionality that they provide. Section 4.3 shows the reification of the
abstract constraints by the Contract object. Sections 4.4, 4.5 and 4.6 show the
algorithms needed for resolving the constraints, respectively, on the three con-
sistency dimensions. Section 4.7 assembles the building blocks into the overall
consistency protocol. Finally, section 4.8 concludes the chapter.

4.2 The consistency building blocks overview

The replica consistency framework contains the following building blocks: the
Contract object, three resolvers attached to the consistency dimensions, the Con-
sistency Manager and the Server-Side Replica Wrapper (as shown in Figure 4.1).
This architecture has been originally proposed in BOAR system [5].

_ 37—

Chapter J A Generic and Customizable Replica Consistency Protocol

/Server—side Replica Wrappeﬂ

\(Client-Side Replica Wrapper}

Figure 4.1: The replica consistency framework

The Contract encapsulates the objects representing the constraints contained
in the service-specific consistency model.

We call consistency constraint resolver the entity responsible for enforcing
the constraints on a particular consistency dimension. We distinguish between
three different consistency constraint resolvers: Propagator, Scheduler and De-
pendency Resolver. The Propagator enforces the constraints on the quality of
observable state dimension. It queries the StateMonitor contained in the Con-
tract, in order to determine when the propagation of local updates should be
performed. The Scheduler enforces the constraints on the concurrency control
dimension, scheduling concurrent accesses. It is specialized into a Pessimistic-
Scheduler and a Reconciliator, according to the concurrency control mode: pes-
simistic, respectively, optimistic. The Reconciliator queries the StateMonitor in
order to determine when the reconciliation of the tentative updates is needed.
The Dependency Resolver enforces the precedence among causally dependent ac-
cesses. The three resolvers use five common data (Figure 4.5): the Server-Side
Replica Wrapper, the identifier of the current replica, the Contract object, the
LocalHistory object (containing the identifiers of all accesses applied on the cur-
rent replica) and the list incoming of the updates received from peers, for which
at least one predecessor is missing from the LocalHistory. The execution of the
updates in incoming is deferred, until all their predecessors are applied.

The Consistency Manager enforces the consistency constraints required by
the service supplier and which are encapsulated within the Contract object.

The Server-Side Replica Wrapper provides the interaction between the service
and the Consistency Manager, transparently for the service suppliers and for the
clients. In this respect, the Server-Side Replica Wrapper encapsulates the local
service instance, on which it applies the accesses received from the peers. When a
Consistency Manager is instantiated, it is configured with a Contract object, with
the Server-Side Replica Wrapper and three resolvers: a Propagator, a Scheduler
and a DependencyResolver.

The following five sections present each building block in turn.

4.3 The Consistency Contract

4.3.1 The representation of an access

We abstract an operation invocation, in order to apply the replica consistency
protocol uniformly, for all the operations of any service. In this respect, we use

— 38 —

4.8 The Consistency Contract

class Param { /* ... */ };

template class<ParamType>

class ParamWrapper<ParamType> : public Param {
ParamType arg;

b

template class<ParamType b>

class ArrayWrapper<ParamType b> : public Param {
short nb;

ParamType b* arg;

b

class Accessld {Operationld op, int call count};
typedef vector<Accessld> Accesslds;
typedef map<Replicald, Accesslds> Predecessors;

class Invocation {
vector<Param*> arguments;
Param™ result;
Accessld id;
Callerld caller;

b

class Access : public Invocation {
int tmst;
Replicald initiator;
int weight;
Predecessors preds;

b

Figure 4.2: Access representation

two C++ classes: Invocation and Access (Figure 4.2). An Invocation encapsu-
lates: the actual arguments of the called operation, the result of the invocation,
the invocation identifier and the caller identifier.

An object Access enriches an Invocation with the attributes needed so as to
compute the conit. These attributes include: the timestamp of the invocation
issuance, the identifier of the initiator replica, the weight, the list of the pre-
decessors (i.e. the updates on which the current access depends), classified by
their replica of issuance.

4.3.2 The representation of a service-specific consistency con-
tract

We reify the consistency constraints in order to make them exploitable by the
replica consistency management system. The reified constraints are encapsu-
lated within a Contract object. This object provides the constraints needed for
an access or for a pair of accesses. Figure 4.3 shows the C++ classes used for
the representation of a service-specific consistency contract.

Reification of the replica state The LocalState object contains the identi-
fiers of all accesses applied on the current replica, the locally issued updates not
yet propagated to peers, the timestamp of the most recent update propagation
and the timestamps of the most recent update receptions from the peers. The
identifiers of the accesses already executed, are encapsulated within the Local-
History object. Within this object, the accesses are classified by their replica of

-39 —

Chapter J A Generic and Customizable Replica Consistency Protocol

typedef vector<Operationld> Operationlds;
enum ReplicationEvent {access issuance, access propagation, access reception, access scheduling,
access_scheduled};
typedef vector<Access> GroupAccesses;
typedef map<Operationld, AccessIlds> PeerHistory
class LocalState {
LocalHistory* history;
QueuedAccesses* outgoing;
int tmst_send;
map<Replicald, int> tmst_rcved;
b
class LocalHistory {
map<Replicald, PeerHistory> history;
int getCallCount(Operationld& id);

b

class StateMonitor {
LocalState* replica_ state;
TimePeriod stabilization_delay_bound;

public:

virtual void notify(ReplicationEvent event, Access& a) {}
virtual bool isObservable(Access& a) { return true; }
virtual bool isReconciliationNeeded() { return false; }

virtual int getConit();
int getStabilizationDelay() { return stabilization delay bound; }
TimePeriod* getPropagationDelay(Access& a) { return NULL; }

};

enum dependency type {RYW, MW, MR, WFR, Lamport_happens-before};
class PairAccesses {

enum RelationType { non-commutativity, conflicting, none };

Access* al, * a2;

s

class PairOperations {Operationld opl, op2;};

typedef PairAccesses* (*ResolutionFct)(Access&, Access&)
typedef int (*WeightFct)(Access&)

typedef bool (*DependencyFct)(Access&, Access&)

class Contract {
Operationlds updates_ids;
map< Operationld, WeightFct> weights;
StateMonitor* state quality;
enum ConcMode {pessimistic, optimistic} conc_mode;
map<PairOperations, ResolutionFct> relations;
vector<dependency type> pred dependencies;
map<PairOperations, DependencyFct> user dependencies;

public:

PairAccesses™ detectAndResolve(Access& al, Access& a2) { if (fct = relations|(al.id.op, a2.id.op)])
return (*fct)(al, a2); else return NULL; }

bool isUpdate(Operationld& op) { return (op € updates ids); }

bool needsScheduling(Access& a);

int getWeight(Access& a) { return (*weights[a.id])(a); }

TimePeriod* getPropagationDelay(Access& a);

}

Figure 4.3: Service-specific consistency contract representation

— 40 —

4.8 The Consistency Contract

issuance. The accesses issued at a given replica are also classified by the target
operation.

Reification of a constraint on a divergence metric The StateMonitor
object contains the bound on the stabilization delay (defining how long each
access could wait for its scheduling decision) and a pointer to the LocalState
object. The StateMonitor defines the divergence metric by means of the conit
(i.e. the numerical measure of the replica state). The computation of the conit,
provided by the method getConit, relies on the LocalState object, and possibly on
other service-specific data. These data are updated by the method notify, when
one of the following events occur: the issuance of an access, the propagation of
an update, the reception of an update, the initiation of an access scheduling or
the decision of accepting/rejecting an access.

The predicate on the divergence metric is checked by the boolean method
isObservable. This method takes as argument an access and checks the predicate
on the current value of the conit. If the predicate isn’t satisfied, this indicates
that local updates should be pushed to peers or that the reconciliation of ten-
tative updates is needed.

Representing constraints on predefined divergence metrics In order
to represent constraints on existing divergence metrics, we specialize the State-
Monitor into two subclasses: TactConditionMonitor and PropagationDelayMonitor
(Figure 4.4). Both classes provide the method getPropagationDelay, that returns
the bound on the propagation delay, associated to the access given as argument.
A TactConditionMonitor object encapsulates bounds on the divergence metrics
of TACT: numerical error, order error and staleness. In this case, the conit is
computed as the total weights of the updates in outgoing. The method notify
handles the event of an access issuance, by adding the weight of the access to
the conit value and by incrementing the number of the local accesses in the
tentative state. The propagation of local updates to the peers is needed, if the
current value of the conit exceeds the local bound on the numerical error. The
reconciliation is needed, if the number of the local tentative updates exceeds the
bound on the order error.

A PropagationDelayMonitor object associates the maximum propagation de-
lay to each operation of type update. The propagation delay is defined statically
as a time period or it is computed dynamically, by using a function, automat-
ically generated from the user-supplied specification of mappings (condition,
time period).

The Contract object We define the type ResolutionFct, representing the func-
tions used for the scheduling of concurrent accesses, that are potentially con-
flicting or non-commutative. A resolution function is invoked for two accesses,
and it works as follows. If the accesses are non-conflicting and commutative,
the function returns NULL. Otherwise, the function returns as result a PairAc-
cesses object, containing the scheduling relationship between the two accesses
(i.e. conflicting or non-commutativity) and how they are scheduled. If the two

— 41 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

class TactConditionMonitor : public StateMonitor {
int numerical _error_bound, order error_bound; TimePeriod staleness_bound;
int conit, nb_local tentative;
public:
TimePeriod* getPropagationDelay(Access& a) { return new TimePeriod(staleness bound); }
void notify(ReplicationEvent event, Access& a) {
switch (event) {
case access _issuance: conit+= a.weight;
if (a.state == PENDING) nb_local tentative++; break;
case access_scheduled: nb_local tentative - -; break;
}
}

int getConit() { return conit; }
bool isObservable(Access& a) { return (conit < numerical _error _bound); }

bool isReconciliationNeeded() { return (order error bound > nb_local tentative); }

b

typedef TimePeriod* (*TransferInstantFct _sync)(Access&);
class TransferInstant {
TimePeriod* period;
TransferInstantFct sync fct;
b
class PropagationDelayMonitor : public StateMonitor {
map<Operationld, TransferInstant> propag delay;
public:
TimePeriod* getPropagationDelay(Access& a);
b

Figure 4.4: Representing the predefined divergence metrics

accesses are related by a conflicting relationship, we consider two resolution
policies. In the first policy, the PairAccesses object doesn’t contain any access
and the choice, of the access to reject, is left to the system. In the second
policy, the PairAccesses object contains the access to be accepted (while the
other is implicitly rejected) or the access that should replace the two conflicting
accesses. If the two accesses are related by a non-commutativity relationship,
the PairAccesses object contains the access that should precede the other, in the
case of a user-favorite order. It doesn’t contain any access, if the choice of the
predecessor is left to the system.

With these elements, we define the Contract object (Figure 4.3) as a con-
tainer containing the identifiers of the update operations, the mappings of weight
functions to operation identifiers, a StateMonitor object, the concurrency control
mode (optimistic or pessimistic), the mappings of resolution functions to pairs
of operations, the set of predefined dependencies (i.e. RYW, MW, MR, WFR,
Lamport _happens-before) and the mappings of user-dependency predicates to
pairs of operations.

4.4 The propagation protocol

The Propagator guarantees the right degree of divergence between the local
replica state and the ideal replica state, as defined by the propagation delays
associated to operations and/or by the predicate encapsulated within the State-
Monitor (primitive makeObservable in Figure 4.5). This predicate is checked at

— 492 —

4.4 The propagation protocol

ServerSideReplicaWrapper* wrapper;
Replicald crt_replica;

LocalHistory history;

Contract* contract;

GroupAccesses incoming;

class QueuedAccess { Access* a; TimePeriod delay; };
typedef vector<QueuedAccess> QueuedAccesses;
class Propagator {

QueuedAccesses outgoing;

}

void makeObservable(Access& a) {
state _quality->notify(access_issuance, a)
if (!state_quality->isObservable(a))
send(outgoing)

void fctPropagationThread(Access& a) {
TimePeriod* propag delay = state quality->getPropagationDelay(a)
if (*propag delay == 0) {
A ={a} U {e.a/e € outgoing, e.a € a.preds}
send(A)
} else {
get position i, such that Z§:1 ej.delay < *propag_delay < Z;illej.delay
e ={a, *propag_ delay - 22.:1 ej.delay}; e;y1.delay = Zzill ej.delay - *propag_ delay
insert e in outgoing between e; and e; {1
}
}

void propagate() {
while (outgoing != 0) {
sleep(e; .delay)

A = {ej.a}

i=2; while (e;.delay == O) {A = A U {e;.a}; i++}
A = A U {e.a/e € outgoing, e.a € a’.preds, V a’ € A}
send(A)

}
}

void onReceiveUpdates(GroupAccesses& A) {
for each a € A {
if (a € history) continue;
if (a.preds C history) {
wrapper->execute(a)
history = history U {(a.initiator, a.id)}
} else incoming = incoming U {a}
}

execute ready updates from incoming

}

Figure 4.5: The Propagator

43 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

the time of an access issuance. If it evaluates to true (e.g. the bounds on the
conit values are exceeded), then the Propagator pushes to the peers the unprop-
agated updates.

Figure 4.5 shows the propagation protocol run by Propagator, for any up-
date (primitive propagate). The protocol exploits the list outgoing of the locally
issued updates, not yet propagated. In this list, the updates are ranked as-
cendingly by their propagation delays. The propagation delay of an update in
outgoing is defined relatively to the delays of the updates that precede it. Pre-
cisely, the propagation delay of an update is given by the sum of the propagation
delays of the updates ranked before it and its own propagation delay.

The Propagator runs a thread, in order to send to the peers the updates in
outgoing when their propagation delays expire. This thread sleeps during the
time period given by the propagation delay of the first-ranked update in out-
going. When the sleeping period elapses, it sends to the peers all the updates
whose propagation delay is equal to that time period, together with their un-
propagated predecessors.

The propagation protocol for an update a is called after the successful execu-
tion of a at its initiator and it works in two steps. Firstly, the Propagator obtains
the propagation delay associated to a by querying the StateMonitor. Secondly,
if the delay is zero, then the update a is sent immediately to the peers, together
with the local unpropagated updates that precede it. Otherwise, the Propagator
inserts a on the right position in outgoing, respecting the ranking of the un-
propagated updates in ascending order, by their propagation delays.

The Propagator provides the handler for executing on the local replica, a
group of updates received from the peers (primitive onReceivedUpdates in Fig-
ure 4.5). The Propagator treats individually each received update a, as follows:
if a already belongs to LocalHistory, it is ignored. If all the predecessors of a
have already been applied locally, then q is executed and its identifier is inserted
in LocalHistory. Otherwise the execution of a is deferred, by inserting it in in-
coming. Finally, the Propagator executes the updates in incoming, for which all
the predecessors have been executed on the local replica.

The update propagation protocol can be easily extended so as to consider
asynchronous conditions, that state if, at a given time instant, an update should
be propagated to peers or not, according to the state of the current replica. Such
conditions should be satisfied each time when the replica state changes (i.e. after
the execution of a newly issued update), for each unpropagated update.

4.5 The scheduling protocol

Before being integrated into the Local History of each replica, an access passes
through two main states: PENDING and ACCEPTED/REJECTED. An access
is in the state PENDING while waiting for its scheduling decision. This decision
is the result of a distributed scheduling protocol, to which cooperate a subset of

_44 —

4.5 The scheduling protocol

replicas, called schedulers. An acceptance decision leads the access to the state
ACCEPTED, and also contains its execution order with respect to the non-
commutative accesses, issued concurrently. A rejection decision leads the access
to the state REJECTED. We design a Scheduler object, whose interface (Figure
4.6) contains the handler for processing a scheduling request, the handler for
processing a scheduling reply, and the primitives resolveBefore and resolveAfter,
performing the scheduling before, respectively, after the access execution at
its initiator. The primitive resolveBefore is used when the concurrency control
mode is pessimistic. The primitive resolveAfter is used when the concurrency
control mode is optimistic. The following two sections describe the protocols
corresponding to the two concurrency control modes.

enum AccessState {PENDING, ACCEPTED, REJECTED}

class SchedulingRequest { };

class SchedulingReply { };

class Scheduler {
Replicalds schedulers;

public:
virtual short onSchedulingRequest(SchedulingRequest* request)=0;
virtual short onSchedulingReply(SchedulingReply* reply)=0;
virtual short scheduleBefore(Access& a) { return OK; }
virtual short scheduleAfter(Access& a) { return OK; }

}h

Figure 4.6: The interface of the Scheduler

4.5.1 The pessimistic concurrency control protocol

In the case of the pessimistic concurrency control mode, an access remains
in the state PENDING while waiting for the execution permissions from the
schedulers. If all schedulers replied favorably, then the access reaches the state
ACCEPTED. If at least one scheduler rejects the access execution, then the
access reaches the state REJECTED.

The pessimistic scheduling protocol, performed by an object Pessimistic-
Scheduler, specialized from Scheduler (Figure 4.7), provides two main guaran-
tees: if two updates are exclusive, then at most one of them is accepted and
an access is accepted only if all its predecessors are already accepted. The
protocol relies on a modified version of the Ricart-Agrawala mutual exclusion
algorithm [57]. We enrich the original algorithm with the resolution policies
between two conflicting or non-commutative accesses, as contained within the
Contract.

The protocol uses the following data: the list pending of the locally initiated
accesses, that are in the state PENDING, the list accepted of the locally initi-
ated accesses, that are in the state ACCEPTED and a list of scheduling requests
deferredReplies, to which the replies have been deferred. The PessimisticSched-
uler defers a reply, when it determines (at least) one predecessor in pending, for
the access for which the execution permission has been required.

The PessimisticScheduler encapsulates the scheduling of an access a within
the primitive resolveBefore, which works in two main steps. Firstly, the initiator
of a sends to each scheduler a scheduling request for a (including to itself, if

45 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

class SchedulingRequest p : public SchedulingRequest {Replicald initiator, Access a};
class SchedulingReply p : public SchedulingReply {Replicald r, Accessld a, AccessState state, Ac-
cesslds preds};
class PessimisticScheduler : public Scheduler {
GroupAccesses pending, accepted;
vector<SchedulingRequest p> deferredReplies;

s

short scheduleBefore(Access& a) {
SchedulingRequest p request = {a.initiator, a}
a.state = PENDING; a.nb_replies=0
pending = pending U {a}
send(schedulers, request)
wait (a.state # PENDING)
pending = pending \ {a}
for each e € deferredReplies
if (a € e.reply.preds) {
if (a.state == REJECTED) e.reply.preds = e.reply.preds \ {a.id}
send e.reply for e.request if (V a’ € e.reply.preds, a’.state == ACCEPTED)

¥

if ((a.state == REJECTED) or (a.state == TIMEOUT))
return ERROR

return OK

}

short onSchedulingReply(SchedulingReply p* reply) {
a = reply->a
switch (reply->state) {
case REJECTED: a.state = REJECTED; notify(a.state # PENDING);
case ACCEPTED: a.preds = a.preds U {(reply->r, reply->preds)}
a.nb_replies++
if (a.nb_replies == |schedulers|) {
a.state = ACCEPTED; accepted = accepted U {a}; notify(a.state # PENDING)
I3
}

short onSchedulingRequest(SchedulingRequest p* request) {
r = request->r; a = request->a;
reply REJECTED to request if:
3 a’ € pending, so that (contract->detectAndResolve(a, a’) == <conflicting, a’>) or
3 a’ € accepted, so that (contract->detectAndResolve(a, a’) € {<conflicting, a or a’>, <non-
commutativity, a>})

preds = {a’ € pending U accepted, where contract->detectAndResolve(a, a’) == <non-
commutativity, a’>}
reply = {ACCEPTED, preds}

defer reply, i.e. deferredReplies = deferredReplies U {request, reply} if:
3 a’ C pending, so that (contract->detectAndResolve(a, a’) == <non-commutativity, a’>)

otherwise, send reply

}

Figure 4.7: The PessimisticScheduler

46 —

4.5 The scheduling protocol

it is a scheduler). The primitive blocks until the PessimisticScheduler is able to
take the scheduling decision for a. The decision combines the scheduling replies
received from the schedulers. Each received reply is processed by the handler
onSchedulingReply. If this is the first negative reply, then the state of a becomes
REJECTED. Otherwise, if all replies are positive, then the state of a becomes
ACCEPTED. Secondly, the PessimisticScheduler sends the reply for each request
in deferredReplies, for which a has been the last predecessor in the PENDING
state.

Any scheduling request is processed at a scheduler, by using the primitive
onSchedulingRequest, which works as follows. The peer rejects the access a
contained in the request, if one of the following three situations occur:

1. There are local pending updates with which a is exclusive, and the reso-
lution policy requires to exclude a;

2. There are local accepted updates with which a is exclusive;
3. There are local accepted updates for which a is detected as predecessor;

If neither of the above three situations occur, then a is locally accepted. The
scheduling reply for a also contains the predecessors of a. These are determined
from the lists pending and accepted, according to the resolution policies for
ordering two non-commutative accesses. If at least one predecessor of a is in
the state PENDING, then the reply is deferred. Otherwise, the reply is returned
immediately to the requestor.

The complexity of this algorithm, in number of messages exchanged among
the participants, is 2*n, where n is the number of schedulers.

4.5.2 The optimistic concurrency control protocol

In the case of the optimistic concurrency control mode, the reconciliation proto-
col, performed by the Reconciliator object, specialized from the Scheduler (Figure
4.8), decides the acceptance or the rejection of an update, a-posteriori with its
tentative execution. An acceptance decision also includes the execution order
of that update (i.e. the set of updates that must precede it).

The protocol uses the following data: the set global tentative containing
the tentative updates (issued locally or received from peers), the list tenta-
tive_ history containing the identifiers of the tentative updates, executed on the
current replica.

The reconciliation protocol is encapsulated within the primitive resolveAfter,
that is called for an access a, after its tentative execution. It works as follows.
Firstly, the Reconciliator inserts the identifier of a, in the LocalHistory object.
Secondly, it queries the StateMonitor object, in order to determine if there are
local tentative updates that need the scheduling decision immediately. The
answer depends on the frequency of reconciliations (as given by the stabilization
delay) or on the bound on the order error. If the reconciliation of tentative
updates is needed, the Reconciliator asks its peers for the permission to compute
the next schedule, by using the Ricart-Agrawala mutual exclusion algorithm. In

— 47 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

class SchedulingRequest o : public SchedulingRequest { Replicald& r, LocalHistory& received};
class SchedulingReply o : public SchedulingReply { Replicald& r, bool decision, GroupAccesses&
Al
class Reconciliator : public Scheduler {

GroupAccesses global tentative;

LocalHistory tentative history;

bool coordinator;

public:

Reconciliator() {run reconciliate() with the frequency given by state quality-

>getStabilizationDelay();}
J&

short scheduleAfter(Access& a) {
if a is executed locally, tentative history—tentative history U {(a.initiator, a.id)}
global tentative = global tentative U {a}
if (state_quality->isReconciliationNeeded())
reconciliate();

void reconciliate() {
nb_replies = 1
send scheduling request, piggyback identifiers of updates in global tentative
wait (coordinator==true) or (nb_replies == 0)
if (coordinator) {
decided = getSchedule(); send(decided); coordinator = false
}
}

short onSchedulingRequest(SchedulingRequest _0* request) {

reply REJECTED, if (coordinator) or ((nb_replies > 0) and (crt replica < request->r))

else reply ACCEPTED with A={a € global tentative, a.initiator == crt_replica, a.id ¢ request-
>received }

}

short onSchedulingReply(SchedulingReply o* reply) {
if (reply->decision==ACCEPTED) {
global tentative = global tentative U reply->A
nb_replies+-+
if (all replies received) notify(coordinator==true)
} else {
coordinator = false; nb_replies = 0; notify(nb_replies == 0);
}
}

Figure 4.8: The reconciliation protocol

48 —

4.5 The scheduling protocol

void onReceiveDecided(GroupAccesses& A, GroupAccesses& R) {
for each a € R {
if (a € tentative history) undo(a);
global _tentative=global tentative \ {a}
if (a.initiator == crt_replica) { state_ quality->notify(access scheduled, a); send result of a to
a.caller
1}
for each a € global tentative, from the last to the first
if (a € tentative history) undo(a);
for each a € A {
if (a.preds) {
if (a € tentative history) undo(a)
if (a.preds C history) {
wrapper->execute(a); history=history U {(a.initiator, a.id)}
} else incoming = incoming U {a}
} else {
if (a ¢ tentative history) wrapper->execute(a);
history=history U {(a.initiator, a.id)}

global tentative=global tentative \ {a}
if (a.initiator == crt_replica) {
contract->notify(access scheduled, a); send result of a to a.caller
1}
for each a € global tentative, from the first to the last
if (a; € tentative history)
if (wrapper->execute(a) != OK) tentative history—tentative history \ {(a.initiator, a.id)}

}

void onReceiveTentative(GroupAccesses& U) {
for each a € U {
if (wrapper->execute(a)==0K) {tentative history—tentative history U {(a.initiator, a.id)}};
global _tentative=global tentative U {a}
}
}

Figure 4.9: Processing updates

PairGroups* getSchedule() {
refused = ()
fori=2ton
forj=1toi-1{
result = contract->detectAndResolve(a;, a;)
if (‘result) continue;
switch (result) {
case <non-commutativity, a;>: a;.preds=a;.preds U a;
case <non-commutativty, a;>: a;.preds=a;.preds U a;
case <conflicting>: a;.exclusive=a;.exclusive U a;; a;.exclusive=a;.exclusive U a;;
case <conflicting, a;>: refused=refused U a;; global tentative=global tentative \ {a;};
case <conflicting, a;>: refused=refused U a;; global _tentative=global _tentative \ {a;}; j=i;
case <conflicting, a’>: refused=refused U {a;, a;}; any4=a’;
global _tentative=global _tentative \ {a;, a;}; j=i
}
}

get a’ € global tentative, s.t. |a’.exclusive|=max{|a;.exclusive|, i=1, n
while (|a’.exclusive|) {

refused=refused U {a’}; global tentative—global tentative \ {a’}

V a” € global _tentative, a”.exclusive=a”.exclusive \ {a’}

get a’ € global tentative, s.t. |a’.exclusive|=max{]a;.exclusive|, i=1,n

check and break cycles in the precedence graph
return (global _tentative, refused)

}

Figure 4.10: Computing a schedule

— 49 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

this respect, it sends to its peers a request, wherein it includes the identifiers of
the updates in global tentative. Then, it blocks until a negative reply is received
or until all needed replies are received.

A reply is processed by the primitive onSchedulingReply, as follows. If it
is a rejection reply, the Reconciliator cancels the scheduling initiative. If it
is an acceptance reply, the Reconciliator inserts the newly received updates in
global_tentative and increments the number of replies. If all replies are positive,
the Reconciliator computes the schedule, by reconciliating all the updates in
global _tentative.

The Reconciliator doesn’t initiate a reconciliation, if it has replied favorably
to the coordination request coming from a peer. Also, the Reconciliator post-
pones any update initiated while there is a reconciliation in progress.

A request, for coordinating the next schedule, is processed by the primitive
onSchedulingRequest, as follows. The request is rejected if the current replica has
already became coordinator or it wishes to become coordinator and its priority
is larger than that of the requester replica. Otherwise, it sends an acceptance
reply, wherein it includes the local updates not yet received by the requester
replica.

The computation of the schedule, performed by the primitive getSchedule
(Figure 4.10), has three main steps. Firstly, for each access a in global _tentative,
the Reconciliator applies the conflict resolution policy from the Contract. If these
policies don’t require explicitly to reject a, then the Reconciliator computes the
list of the predecessors of a (noted a.preds) and the list of accesses with which it
is exclusive and the choice of the victim is left to the system (noted a.ezclusive).
Secondly, it tries to minimize the number of rejected accesses, by excluding iter-
atively from global tentative, the access a with the biggest number of exclusive
relations (similar to B-IceCube algorithm [62]). Finally, it breaks the cycles in
the precedence graph containing all accepted updates, if they occurred. The
complexity of the reconciliation algorithm, in number of messages exchanged, is
3 % n, where n is the number of replicas.

The Reconciliator provides the handler for processing a schedule, received
from the coordinator (primitive onReceiveDecided in Figure 4.9). The schedule
contains two groups, containing the updates accepted, respectively the updates
rejected. Each rejected update, that belongs to tentative history, is undone.
As in Bayou, each accepted update, that has at least one predecessor, is redone
before all the tentative updates. Its execution occurs immediately, if all its
predecessors belong to the LocalHistory. Otherwise, its execution is deferred. If
the initiator of the scheduled update is the current replica, then the Reconciliator
sends the invocation result to the caller.

The Reconciliator also provides the handler for processing the reception of
a group of updates in the state PENDING. The Reconciliator tries to execute
each update in the group, and includes its identifier in tentative history, if the
tentative execution has been successful.

— 50 —

4.6 Resolving the dependencies

4.6 Resolving the dependencies

Obtaining the dependency set The dependency relationships between ac-
cesses newly issued and updates already accepted, include existing guarantees
(e.g. Bayou’s session guarantees) or they are expressed by means of predicates
on the access attributes. We define the DependencyMonitor object, that man-
ages the sets of accepted updates, called dependency sets, on which new accesses
depend. It provides two main methods, that include a new access in the current
dependency set and to obtain the identifiers of the updates contained in the
dependency set.

We specialize the DependencyMonitor in order to represent the session guar-
antees of Bayou and Lamport happens-before. Precisely, in the case of the
session guarantees of Bayou, the dependency set is common to all accesses with
a given caller, and it is defined for each guarantee, as follows. If RYW is re-
quired, the dependency set contains the updates initiated by a given caller, at
any replica. If MW is required, the dependency set contains the updates seen by
the caller’s last update. If MR or WFR is required, the dependency set contains
the updates observed by the caller’s last read. In each case, the dependency set
is maintained client-side, replica-side or in a central repository. In the case of
Lamport happens-before, the dependency set contains all the updates “known”
by the current replica. The “known” updates include the updates issued lo-
cally and the updates received from the peers, and the dependency sets of those
updates [48].

Obtaining the predecessors We define the resolver DependencyResolver that
guarantees that the predecessors of each access are executed before that access
(within the primitive resolve in Figure 4.11). The predecessors include the set
of predecessors updates required by the caller and the dependency set obtained
from the DependencyMonitor object. In this respect, the DependencyResolver
pulls the predecessors that don’t belong to the LocalHistory, from their initiators.

4.7 The overall consistency protocol

4.7.1 The replicated access execution

The overall consistency protocol for an access a is encapsulated within the
method replicatedAccess of the ConsistencyManager (Figure 4.12). The method
works similarly, both in the cases when the concurrency control mode is pes-
simistic and when it is optimistic. The method has seven main steps. In the
first step, the ConsistencyManager creates an Access object a from the object
Invocation, passed as argument. The identifier of a contains the initiator identi-
fier and the current number of invocations to the called operation. The second
step depends on the concurrency control mode. If this is optimistic, then sched-
uleBefore returns OK. If the concurrency control mode is pessimistic, then the
Scheduler determines if a is accepted and what is its execution order. In the
third step, the object DependencyResolver is invoked in order to guarantee that

~ 51—

Chapter 4 A Generic and Customizable Replica Consistency Protocol

class DependencyMonitor {
virtual Predecessors getDependencySet(Access& a)=0;
virtual void updateDependencySet(Access& a)=0;

}

class DependencyResolver {
DependencyMonitor* resolver;
public:

short resolve(Access& a);

short waitPreds(Access& a);

b

short resolve(Access& a) {
dep set = resolver->getDependencySet(a)
if (dep_set) a.preds = a.preds U dep_set
for each peer r with an entry € a.preds {
absent_ids = ()
for each id € a.preds|r|
if (id ¢ history[r]) absent ids = absent ids U {id}
if (absent _accs # 0)
if ((code = getUpdates(r, absent ids)) == ERROR)
return ERROR
}

return OK

}

Figure 4.11: The DependencyResolver

the predecessors of a have already been integrated into the current replica state.
In the fourth step, the Propagator is invoked in order to guarantee that the lo-
cal state that will be observed by a satisfies the predicates maintained by the
StateMonitor. In the fifth step, the access a is executed locally, by calling the
Server-Side Replica Wrapper. In the sixth step, if the access a is an update, then
the Propagator is invoked, so as to enforce the visibility of a at all peers. The
seventh step also depends on the concurrency control mode. In the pessimistic
case, it returns OK. In the optimistic case, the Scheduler is invoked in order to
resolve the potential conflicts or wrong ordering induced by a.

4.7.2 Proving the correctness of the consistency protocol

In this section, we prove that the consistency management protocol provides
the constraints required for each access.

4.7.2.1 Notations and assumptions

We note a the access for which the protocol is performed and a.tmst the times-
tamp of the issuance of a. For simplicity reasons, we neglect the scheduling de-
lays and the invocation delays. We consider the communication delays bounded,
but the underlying bound, noted comm_ delay, is unknown.

We specify the scheduling relations between accesses, using the formalism
ACF (Actions-Constraints Framework) [62]. In this formalism, the relation o’
precedes a is represented by ¢’ — a. The mutual exclusiveness between two
actions a and a’ is represented by a cycle: a — a’ — a. If the victim is a, this

~ 52—

4.7 The overall consistency protocol

class ConsistencyManager {
DependencyResolver* acceptor;
Scheduler* scheduler;
Propagator* propagator;
ServerSideReplicaWrapper* wrapper;
b

short replicated Access(Invocation& call) {
Access* a = createAccess(call, history->getCallCount(call.id.op), contract->getWeight(call))
short code = OK;
if (contract->needsScheduling(*a)) {
code = scheduler->scheduleBefore(*a);
if (code == OK) scheduling needed = true;
} else a.state = ACCEPTED;

if (code == OK) {
code = acceptor->resolve(*a);
if (code == OK) {
propagator->makeObservable(*a);
code = execute(*a);
if ((code == OK) and (contract->isUpdate(*a))) propagator->propagate(*a);
if (scheduling needed) code = scheduler->scheduleAfter(*a);
}
}

return code;

}

short execute(Access& a) {
short code = wrapper->execute(a);
if (code == OK) {
history = history U {(crt_replica, a.id)}
acceptor->updateDependencySet(a);

}

return code

}

Figure 4.12: The replicated access execution

— 53 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

is represented by a — a. The execution of a’ before a on the current replica is
represented by a’ <; a.

4.7.2.2 The protocol’s properties

The correctness of the protocol contains a liveness and a safety property, that
have to be proved for each access. The liveness property is defined as follows:
each access is applied all over (i.e. at all replicas, if it is an update, and only at
its initiator, if it is a read) or rejected in a finite amount of time.
The safety property is defined as follows: for each access, the protocol satisfies
at all the replicas, the consistency constraints associated to that access.

We note the consistency constraints attached to the access a by C(a). This
is a structure formalized as follows:
{numerical _error, order _error, propagation _delay,
stabilization _delay, C(a,a’), precedence condition}. All elements in this
structure are optional.

C(a,a’) defines the scheduling relation between a and the concurrent access
a’, among the following possible options:

e a and a' are commutative and non-conflicting: al|a’;

e a and a’ are conflicting, where the access to exclude is a or a’: ' — a —
a A(a—aVad —d);

e a and d’ are not commutative, where the predecessor is a or a’: a —
a Va — a;

In summary:

alla’

ad—a—dA(a—a)
Cla,d')=¢ d —a—d A(d —d)

a—a

ad—a

The precedence _condition requires that the predecessors of a, noted a.preds,
are executed before a at all replicas. Some of these predecessors are known at
the issuance time of a, the others are determined during the scheduling of a.
More formally, the precedence_condition guarantees that:

Va' € a.preds : d’ <, a.

The proof is built in three steps. The first step identifies the states through
which an access passes during its lifetime, together with the transitions. The
second step decomposes C'(a) into local conditions, that trigger the transitions
(at the initiator or at a peer) or that are used by the transitions. The third
step proves the liveness and safety properties for each intermediate state. The
liveness property guarantees that the access reaches the intermediate state in
a finite amount of time. The safety property guarantees that the transition
towards that state satisfies the local conditions from C(a), that it is concerned
with.

~ 54 —

4.7 The overall consistency protocol

4.7.2.3 The consistency state machine

Access states We call the states through which an access passes during its
lifetime: issued, pending locally, accepted, rejected, deferred locally, ready, applied
locally, outgoing, sent, received, deferred remotely, applied remotely, waiting acks,
terminated.

An access is in the state issued, after being submitted by its caller at its
initiator. The states pending, accepted and rejected have been defined within
the concurrency control, described in section 4.5. “Locally” means that the state
is met at the initiator of the access, and “remotely” means that the state is met at
a peer. An access is deferred for execution, when at least one of its predecessors
hasn’t been applied on the current replica. After all its predecessors have been
applied on the current replica, the access reaches the state ready. An access
reaches the state applied, after being executed definitively on the current replica
(i.e. its execution will never be undone). An access reaches the state outgoing,
while it is waiting for its propagation delay to elapse. An access reaches the
state sent at its initiator, after being propagated to the peers. When a remotely
issued access arrives locally, it is in the state received. An access is in the state
waiting acks at its initiator, while it is waiting for acknowledgements that the
access has been successfully applied at each peer. If the acknowledgements are
not needed, then the access reaches directly the final state terminated.

The local history of the replica r; is formalized, as follows:

LH' = {a/(a.state = appliedlocally)or(a.state = appliedremotely)}.

For each access, the consistency protocol is represented by a distributed state
machine, representing the access execution at its initiator and, in the case of
updates, at each peer.

State transitions The transitions between successive states invoke one of the
three resolvers or read the Contract. The transition from the state deferred (lo-
cally or remotely) is provided by the DependencyResolver. The transition from
the state pending locally is provided by the PessimisticScheduler or by the Rec-
onciliator (according to the concurrency control mode pessimistic or optimistic),
the transition from the state outgoing is provided by the Propagator. The tran-
sitions from the states issued and outgoing consult the consistency constraints
attached to the access (i.e. C(a)), the transitions from accepted, applied locally
and received consult the attributes of the access. The transition from waiting
acks is immediate, if all the acknowledgements were received. The transition
from the state ready to the state applied (locally or remotely) executes the access
on the current replica.

Figure 4.13 shows the sequence of states within the state machine repre-
senting the consistency protocol for an access. In order to shorten the transi-
tion names, we replaced ServerSideReplicaWrapper::execute by execute, Depen-
dencyResolver::resolve by getExecPreds, DependencyResolver::waitPreds by wait-
ExecPreds, Propagator::send by send, PessimisticScheduler::resolveBefore and Rec-
onciliator::resolveAfter by schedule.

The liveness property is refined as follows: each access reaches its final state:

— 55 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

if a.type==read

if a doesn't have if a type==update

fsstied) Schedul ing rel ations areonted (Teady) applied) (outgoing)

locally
send(a) if acks not required {
if a. preds!=null get ExecPr eds(a) sent terminated)
if acks Tequi a
deferred _
states occurring at the initiator locally

states occurring at each peer

if a.preds!=nul Wai t ExecPr eds(a)

deferred
remotely

Figure 4.13: The consistency state machine

terminated or rejected, at the initiator, and applied remotely, at the peers, in a
finite amount of time. This is equivalent to:
Ya, 3 period, s.t. at the time instant ¢, = a.tmst + period, a € LH*, i = 1,n
or a.state=rejected.

The safety property is formalized as follows: V a, C'(a) is satisfied at all the
replicas.

Local conditions inferred from the Contract The consistency constraints
C(a), associated to the access a, are decomposed into two categories of local
conditions. The former category includes the local events, that trigger the tran-
sitions between successive states, met at the initiator or at a peer. The latter
category includes the scheduling relationships and the precedence to be satisfied
for each access. The two categories are detailed in the next two sections.

Transition events A transition event prevents an access from being blocked
forever in a particular state. For the access a, the transition events include:
the propagation delay of a has elapsed, the local bound on numerical error has
been exceeded, the bound on the number of local pending accesses has been
exceeded, the stabilization delay of a has elapsed, all the predecessors of a
have been executed. We associate to these events five conditions, formalized as
follows:

e a.state == outgoing during period < C(a).propagation_delay (C1);

® ¥ /0 state=—outgoing @ -weight < C(a).numerical _error/(n — 1), where
n is the number of replicas, n > 1 (C2);

o |d'/d .state == pending locally < C(a).order _error (C3);

e a.state == pending locally during period < C(a).stabilization _delay
(C4);

e 1d' €a.ppreds, d .state # applied remotely (C5);

The condition (C1) states that the access a remains in the state outgoing at
most during the period given by C(a).propagation __delay. The condition (C2)

— 56 —

4.7 The overall consistency protocol

states that, at each replica, the total weight of the updates in the state outgoing
is bounded by C'(a).numerical _error/(n — 1). The condition (C3) states that,
at each replica, the number of the updates in the state pending is bounded by
C(a).order_error. The condition (C4) states that the access a remains in the
state pending locally at most during the period C/(a).stabilization _delay. The
condition (C5) states that at least one predecessor of the access a is missing
from the current history. A transition event occurs when the corresponding
condition isn’t respected.

We note by max_propagation _delay the maximum propagation delay com-
puted over all updates. More formally:
mazx__propagation_delay = max{C(a).propagation _delay/ ¥ a}.

Scheduling relationships The scheduling concerns only the concurrent ac-
cesses. We consider two accesses a and a’ as concurrent, if 3 the time instant ¢,
s.t. at t, both a and o’ have already been issued, but a.state! = appliedremotely
at a’.initiator and a’.state! = appliedremotely at a.initiator.

The scheduling mechanism should respect the following condition, noted
(C6): Va and o’ two concurrent accesses, a is compared with o’ at the initiator of
a and at the initiator of @’ or at the coordinator replica. The comparison respects
C(a,a), if a and o' are both in the state pending at the comparison time.
Otherwise, if a is in the state pending, while @’ is in the state accepted, then
a will be rejected, in the case of conflicts or in the case of non-commutativity,
where it is the predecessor. The case where d’ is in the state pending and a is
in the state accepted is similar.

Access classes According to the possible consistency constraints within C'(a),
we identified five main access classes. These include:

1) reads that don’t need concurrency control

2) reads that need pessimistic concurrency control

3) updates that don’t need concurrency control (as they don’t have any schedul-
ing relationship)

4) updates that need pessimistic concurrency control

5) updates that need optimistic concurrency control

Each class contains a second classification level, representing: i) the accesses
without any predecessors and ii) the accesses that have predecessors. Each class
has attached its particular chaining of pertinent states.

For the access a, we prove that the liveness and the safety properties are
satisfied, when reaching each intermediate state. We prove the liveness property
by showing the transition event(s) and by bounding the transition delay. The
safety property is defined only if the underlying transition is triggered by any
of the local conditions, identified above. If this is the case, we show that these
conditions are satisfied.

— 57 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

4.7.2.4 Reaching pending locally

The pending locally state is met for any access that belongs to the classes 2),
4) or 5). The transition to pending locally is triggered immediately, its delay is
zero, and it doesn’t have to fulfill any consistency constraints. If the concurrency
control mode is optimistic, the pending locally state is preceded by the tentative
execution of a.

4.7.2.5 Reaching deferred locally

The deferred locally state is met for any access with predecessors. The transition
to this state is triggered immediately, its delay is zero, and it doesn’t have to
fulfill any consistency constraints.

4.7.2.6 Reaching accepted or rejected

The accepted state is provided by the transition schedule for any access in the
classes 2), 4) or 5) and is implicit in the other cases. We have to prove that the
transition schedule satisfy the liveness and the safety properties. The liveness
property requires that any access is accepted or rejected in a finite amount of
time. The safety property contains the scheduling condition (C6).

The case of the pessimistic concurrency control If the access a belongs
to the classes 2) or 4), then the transition schedule is called immediately after the
issuance of a, by its initiator, noted r. It relies on the processing of scheduling
requests and the associated replies at the schedulers, as shown in section 4.5.1.

We have to prove that a becomes accepted or rejected at r, in a finite amount
of time and that it is compared with all its concurrent accesses, so as to fulfill
C(a,a’). We construct the proof in three incremental steps. In the first step,
we consider only one scheduler r’ and at most one access a’ concurrent with
a, where a’ has been issued at the replica 7. In the second step, we consider
several accesses concurrent with a at the only scheduler r’. In the third step,
we consider several schedulers, each one containing several accesses concurrent
with a. In each step, we study the processing of the scheduling request (noted
Q.) by ', and the processing of the corresponding reply (noted A,), as shown
in the following.

1. One scheduler, one concurrent access

In the first step, we distinguish between the following cases, that could occur
when @, arrives at r':

1) @’ is in the state pending

1.1) Q. has been sent to r

1.1.1) Ay has been received from r

1.1.2) A, hasn’t been received yet

1.1.2.1) Ay has been sent by r before @,

1.1.2.2) A, has been sent by r after Q,

1.1.2.3) Ay, hasn’t been sent yet

— h8 —

4.7 The overall consistency protocol

r r r r
} Qa’; a’ pending } Qa’, a’ pending
><A’/”\ - |
1 Aa |
! H H
' Qa ! decide a
i " defer i
I i if a’.state==accepted the processing of Qa
} , process Qaasin 2 }
! " else Aa=accepted ! process Qa
A Y
a.state=Aa.state :u//i Aa i i asin 1_1%
1 1 1 1
111 1121
r r r r
} Qa’ a’ pending } Qa’, a’ pending
MQ///\ - |
| a | | |
:\’3 ifI a->a then Atafjrejected 3 0a 3
else Aa=accepte
: Aa i if not a’—>a, send Aa i\"i process Oa
astate=Aa.state | ! else defer Aa ‘ yasinl.122
I | | |
} " decide a’ } }
| Aa | d A | |
astate=Aa.state |«—— S€N0Aa | |
1122 1.1.23
r r r ’
} Qa | @’ pending 1 Qa ra’ accepted
_~— = ifa’->a’ ora->aora->a’
| | process Qa ! 1 then Aa=rejected
[rasinl1.122 } else Aa=accepted
! ! , send Aa
‘ 12 a.state=Aa.state ! ‘
r r
Qa !
\'7 Aa=accepted
«—— send Aa

a.state=Aa.state

Figure 4.14: Scheduling with 1 scheduler and 1 concurrent access

— 59 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

1.2) @ hasn’t been sent to r
2) d’ is accepted (but r hasn’t received it yet)
3) fa’ at ', a’ concurrent with a

Figure 4.14 shows how the acceptance decision for a is taken in each case.
In the cases 1.1.1 and 2. r’ handles @, after deciding the acceptance of a’. if
a’ is accepted, and a and @’ are not conflicting and «a isn’t the predecessor of
a’, then 1’ accepts a’. Otherwise, r’ rejects a. In both cases, the corresponding
reply A, created by 7’ is sent to r.

In the case 1.1.2.1, v’ defers the processing of Q, until the reception of A, .
At this point, r’ decides a’ and then it processes), as above.

In the cases 1.1.2.2, 1.1.2.3 and 1.2, d’ is still pending, when 7’ processes
Qq. If d’ is not the predecessor of a, then r’ sends immediately the accep-
tance/rejection reply A, to r. Otherwise, it defers the dissemination of the
acceptance reply to 7, until a’ becomes decided.

In the case 2, r’ accepts a and sends immediately A, to r.

r takes the scheduling decision for a immediately after receiving A,. If A,
rejects a, then a reaches the final state rejected and it isn’t propagated to the
peers. Otherwise, a reaches the state accepted and a.preds are extracted from
Ay. As A, could be deferred at 1/, its scheduling decision is bounded by the
parameter timeout, which is system-defined or equal to C'(a).stabilizationdelay.
If A, isn’t received before timeout, then a is rejected.

A timeout could occur when the scheduling produces a deadlock. This dead-
lock is due to a cycle in the graph with the precedence relations between the
pending accesses. Without the timeout parameter, none of these accesses could
be decided (as accepted or rejected). In fact, any of these accesses is waiting
for at least a scheduling reply that it is never delivered (as it has been deferred
because of a pending access, that is never decided, as it is also waiting for a
scheduling reply and so on). The timeout parameter could have different values
for different replicas, so as to reflect their priorities. A bigger value for the time-
out increases the chance for the accesses issued at that replica to be accepted,
in the case of the cycle in the precedence graph.

In conclusion, a becomes accepted or rejected at its initiator in a finite
amount of time, bounded by the timeout value associated to 7.

1I. Several concurrent accesses

In the second step, we consider at r’ a set C, containing the accesses issued at 77,
and that are concurrent with a. Any access in C' is either in the state pending
or in the state accepted, but not yet received by r.

When Q, arrives at 7', it is processed according to the algorithm, depicted
in Figure 4.15, so as to produce the output A,. We define the union A, of two
replies A/, and A! (A, = A, U AY) as follows:
if Al ==rejected or A//==rejected then A,=rejected
else A,=accepted and A,.preds = Al,.preds U Al .preds

— 60 —

4.7 The overall consistency protocol

Aa:(b
for each o’ € C{
if o’ is pending, then A/, is computed by applying the case I.1)
if o’ is accepted, then A/ is computed by applying the case 1.2)
Aqg=Aq U A,
if A/ .state == rejected, then send Aq to 7
}
if a has pending predecessors, then defer A, until those predecessors are accepted or rejected
else send A, to r

Figure 4.15: Processing a scheduling request

After receiving A,, r takes the scheduling decision for a, as shown in the
previous step. The maximum delay before a reaches the state accepted or re-
jected has the same timeout value, as in the previous step.

I11. Several schedulers

In the third step, we consider several schedulers r;, ¢ = 1, m. Each r; determines
the reply A’ by processing QQ,, as shown in the previous step. After receiving
all the replies, r takes the scheduling decision A,, by computing their union.
More formally, A, = Al U...U A%, where j < m, if A}==rejected else j is m

r determines the state and the predecessors of a from A, as in the first step.
The maximum delay for a to reach the state accepted or rejected has the same
timeout value, as in the first step.

The case of the optimistic concurrency control In the case of an access
that belongs to the class 5), the transition schedule is called, when one of the
conditions (C3) or (C4) is violated. In both cases, the delay for triggering the
transition schedule is given by the time period C(a).stabilization _delay.

We show that the optimistic scheduling satisfies the liveness and the safety
properties. The liveness property is satisfied, because a is accepted or rejected
by the coordinator before the time period defined by:

C(a).stabilization _delay + timeout (where the value of timeout bounds the
time period during which the replica waits for the permissions to become coor-
dinator).

If a has been accepted, then it is applied immediately at r, as it is contained
within the schedule which includes also all its predecessors, and the reconcilia-
tion mechanism makes sure that there are no cycles among the accesses accepted.

With respect to the safety property, we have to prove that a is compared
with any concurrent access a’ and the scheduling relation is applied at all repli-
cas. We consider that a has been issued between two successive coordination
requests, issued at the time instants ¢ sched; and ¢t _scheds, conducting respec-
tively to the schedules S; and Ss. We consider that a’ has been issued between
two successive coordination requests ¢ _sched) and t_sched),, conducting to the
schedules S7 and S5.

More formally: t _sched; < a.tmst <t_scheds and a € S

—61 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

t_sched] < a'.tmst <t_sched) and a' € S}

We distinguish between three cases:
1) if t_schedy == t_sched), = a, a’ € S; == S}, and a and &' are compared
by the coordinator respecting C'(a,a’)
2) if tschedy < t_sched, = S is applied before S at all replicas = a <, d’
3) if t_scheds >t_sched, = S} is applied before Sy at all replicas = a’ <5 a

4.7.2.7 Reaching ready

The transition to the state ready should also satisfy the liveness and the safety
properties. The liveness property requires that the predecessors of a are applied
at any replica in a finite amount of time. This property is decomposed into two
sub-properties. The former sub-property requires that all the predecessors of a
should arrive sooner or later at that replica. The latter sub-property requires
that all the predecessors should be applied in a finite amount of time (i.e. there
is no cycle in the precedence graph containing the accepted accesses). The
safety property contains the precedence _condition from C(a). The proof of
these properties relies on the guarantee of our protocol, stating that when a is
accepted, all its predecessors have already been accepted.

Predecessors reception The access a has a limited number of predeces-
sors, because at any time there is a limited number of accepted accesses, to be
propagated at all replicas. We distinguish between the direct and indirect pre-
decessors of a, where the direct predecessors are determined by the scheduling
of a, and the indirect predecessors are the predecessors of the direct or indirect
predecessors of a.

The predecessors of a are obtained immediately, when they are requested
by the initiator of a, by calling the transition getExecPreds. If the transition
waitExecPreds is used, the delay to obtain the predecessors is bounded by:
|a.preds| * (max_propagation_delay + comm_delay)

Predecessors execution Once all the predecessors are received, they can be
executed if there is no cycle in the graph containing the precedence relationships
among the accepted accesses. We have to prove that this graph doesn’t contain
any cycle. In order to prove this property, we suppose that there are n accepted
accesses, so that their precedences produce a cycle. We note the accesses by aq,
as, -.., ay and their acceptance times, respectively, by t1, 9, ..., t,,. The cycle
as expressed as follows: a; — a9 — ... — a, — a;.

From a1 — a9 = t1 < t9 (1)

From as — a3z = to < t3 (2)

From (1) and (2) = t; < t3

... We assume t1 < ¢;

From a; — air1 = t; < tip1 (i), 1= 2, n—1

From ¢; < t; and (1) =11 <tiy1,t = 2,n—1

leti=n=1t <t,

~62 —

4.7 The overall consistency protocol

From a,, < a1 = t,, < t1 that contradicts ¢t; < t,,

Another way to prove that a has a limited number of predecessors relies
on the property that there are indirect predecessors of a that have no direct
predecessors. In order to prove this property, we assume that any accepted ac-
cess has at least one direct or indirect predecessor. We consider the set of all
accepted accesses, noted a, and the set containing the successors of a, noted a’,
ie.Vae A CA a— a;

Let o’ be one predecessor of a (¢’ — a). We distinguish between the follow-
ing three cases: 1) {d'}Ud == a,2) a’ €ad’ and 3) o’ € A\ A" and |A\ 4’| > 1

In the case 1), 3a” € a’ s.t a”” — @’ — a — a”. In other words, the prece-
dence graph contains a cycle, that is impossible according to the previous result.
In the case 2), the precedence graph also contains a cycle, because a’ — a — a/.
In the case 3), we include a” in o’ (ie. @/ = o' U{d"}), we set a = a’’, and
check again if the case 1), 2) or 3) occurred. This algorithm always stops by
detecting the case 1) or 2), i.e. it detects a cycle in the precedence graph, that
is impossible.

In conclusion, all the predecessors of a are applied within the time period
given by:
la.preds| * (max_propagation_delay + comm _delay)
Providing precedence _condition from C(a) is an intrinsic feature of the method
resolve of the DependencyResolver.

4.7.2.8 Reaching applied locally

The state applied locally is met for any access. The transition to this state
is triggered immediately, its delay is zero, and it doesn’t have to fulfill any
consistency constraints.

If the concurrency control is optimistic, the transition to applied locally may
be absent. Precisely, if a has already been applied tentatively and it doesn’t
have new predecessors, it reaches the state applied locally directly from the state
ready. If a has new predecessors, the action execute is preceded by undo.

4.7.2.9 Reaching outgoing

The outgoing state is met for any access in the classes 3), 4) or 5). The transition
to this state is triggered immediately, its delay is zero, and it doesn’t have to
fulfill any consistency constraints.

4.7.2.10 Reaching sent

The sent state is met for any access in the classes 3), 4) or 5). The transition to
this state is triggered when one of the two conditions (C1) or (C2) is violated.
Its delay is bounded by the time period given by C(a).propagation _delay.

— 63 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

4.7.2.11 Reaching waiting acks

The waiting acks state is met for any access, when the needed acknowledgements
have been correctly received from the peers. The transition to this state is
triggered immediately and its delay is zero.

4.7.2.12 Reaching received

The initial state received is met at a peer (concurrently with the state sent)
within the period defined by:
C(a).propagation__delay + comm_delay.

4.7.2.13 Reaching deferred remotely

The properties of the transition to the deferred remotely state are treated simi-
larly to the case of the deferred locally state.

4.7.2.14 Reaching ready

The properties of the transition to this state are treated similarly to the case of
the ready state, met at the initiator.

4.7.2.15 Reaching terminated

The terminated state is met immediately from the sent state, or after receiving
the acknowledgements from all the peers. The delay of reaching this state from
the sent state is bounded by (n — 1) * comm_ delay.

In conclusion, the maximum delay for a to reach the final state terminated,
from the moment when it has been issued, is:
C(a).stabilization_delay + timeout + |a.preds| x (max_propagation _delay
+ comm_delay) + (n — 1) x comm_delay,
where timeout is the timeout value associated to r.

4.7.2.16 Reaching applied remotely

The properties of the transition to the applied remotely state are treated simi-
larly to the case of the applied locally state.

The access a reaches the final state applied remotely within the time period
given by:
C(a).stabilization _delay + timeout + 2 * |a.preds| x (max_propagation__delay
+ comm__delay) + C(a).propagation _delay + comm _delay,
where timeout is the timeout value associated to 7.

64 —

4.7 The overall consistency protocol

4.7.3 Experimental evaluation of the consistency protocol over-
head

We evaluated experimentally the overhead of the generic replica consistency
protocol, integrated within the Replica Wrapper associated to the e-learning
service. We compared the response time obtained for the invocations to the
operation addCourse in the centralized case, with the response time obtained
when the e-learning service is replicated. This comparison gives the cost of
the calls to the method replicatedAccess of the Consistency Manager. This cost
includes the time needed in order to reify the access and the time needed in order
to invoke successively the three resolvers, composing the consistency protocol.

100

" centralized —‘}— K
90 pessimistic, no dependencies —<—4
pessimistic with dependencies
80 optimistic A——
70
@
E w0
(]
E 0
8
15
g 3
30 -
20
10
O RO N N

()

1 2 3 4 5 6 7 8 9 10
number of replicas

Figure 4.16: The replica consistency protocol overhead

We considered three consistency contracts. In the former contract, the con-
currency control is pessimistic and updates have no dependencies. In the second
contract, the concurrency control is also pessimistic, but updates have depen-
dencies, among the updates of each peer. In the latter contract, the concurrency
control is optimistic. We varied the number of replicas between 1 and 10, and
we measured in each case the response time obtained by 22 invocations to add-
Course, and we computed the average response time. We plot on the graph in
Figure 4.16 the curves representing the average response time obtained by the
invocations to addCourse, in the case of the three consistency contracts and in
the centralized case. The curve corresponding to the optimistic contract is very
close to the line (parallel with x-axis) corresponding to the centralized case. The
curves corresponding to the pessimistic contracts show that the response time of
the addCourse invocations increases linearly with the number of replicas. These
experiments reveal two positive results. The former result shows that the over-
head of the generic replica consistency management is insignificant when the
concurrency control is optimistic. The latter result shows that the protocol’s
overhead increases linearly with the number of replicas when the concurrency
control is pessimistic. This result leads us to the conclusion that the pessimistic
concurrency control is pertinent when the number of replicas is small, and the
replicas are fully-connected.

— 65 —

Chapter 4 A Generic and Customizable Replica Consistency Protocol

4.8 Conclusion

We developed a consistency protocol, capable to realize any consistency model,
which could be instantiated from the meta-model. We prove formally that the
protocol works correctly for each access, by means of the two properties liveness
and safety. With respect to liveness, we show that each access is either applied
at all replicas or rejected in a finite amount of time. With respect to safety, we
show that the consistency constraints, associated to that access, are respected
at all replicas. We also showed experimentally that the consistency protocol
has a reasonable overhead, which includes the delay for creating the access, the
delay of calling the client-side and server-side replica wrappers and the delay of
executing the access at the replica that has been assigned to the client.

— 66 —

Part 111

Response-Driven Replica
Selection

- 07 —

Chapter 5

Survey of Response-Driven
Replica Selection Systems

5.1 Introduction

We surveyed existing replication systems that select the suitable replica for
each client, so as to improve the response time that will be experienced by the
client. We classify the replica selection systems, according to the metric(s) that
they use, in order to ameliorate the response time. We identified four classes:
server load-based selection systems, network proximity-based selection systems,
response time estimation-based selection systems and systems providing flexible
selection criteria. The former class include systems like Akamai [15], Radar [53],
[42] and Refresco [45], which find the suitable replica, at the beginning of the
session or for each transaction, by optimizing the server load. The second class
include systems like Radar [53], aCDN [54], Globule [49] which optimize the
network proximity, quantified by means of network router hops or round-trip
time. The third class include systems like Web++ [74], Leganet [22], AQuA
[33], which optimize the estimated response time or impose a threshold on the
estimated response time. The latter class include systems like anycast service
[77], which use flexible replica selection policies combining several performance
metrics.

The rest of this chapter is structured in five sections. Sections 5.2, 5.3, 5.4
present the systems selecting the suitable replica using, respectively, the replicas
load, the network proximity and a response time estimator. Section 5.5 presents
the systems providing flexible criteria for replica selection. Section 5.6 concludes
the chapter.

5.2 Server load-based selection systems

RaDar (Replicator and Distributor and Redirector) [53] is a decentralized repli-
cation system that provides scalable access to replicated Internet services, while
adding and deleting replicas dynamically. The replication decisions, such as
request redirection and replica placement are resolved locally by each replica
without the need of global knowledge about the system. It selects the suitable

- 69 —

Chapter 5 Survey of Response-Driven Replica Selection Systems

replica for each request, by optimizing the network proximity, while avoiding
an overloaded replica. The network proximity is quantified in number of router
hops. The replica load is quantified by the number of connections performed
during a given time period. Their request distribution approach provides load
balancing, by maintaining the ratio between the load of the most loaded replica
and the load of the less loaded replica below a given threshold. Their approach
improves response time by 13% compared to the centralized case. Their replica
placement policy favor the hosts belonging to the network paths, by where most
clients requests passed, when they were submitted to the client-assigned replica.
Their replication approach provided 52% savings in bandwidth, compared to the
centralized case.

aCDN (Application Content Delivery Network) [54] continues the authors’
work performed within RaDar. One improvement, that they propose, concerns
the request distribution strategy, wherein they avoid selecting a distant replica,
when there are nearby overloaded replicas. They consider that the client hosts
belong to (geographical or network) regions. They compute for each replica the
probability of being selected for the clients which belong to a given region. The
probability, assigned to a given replica, with respect to a given region, takes
into account the current replica load, compared to an inferior and a superior
threshold, and the distance between the replica and that region.

In Refresco [45], the secondary replica, chosen so as to execute a given query,
is the one with the minimal cost. The system contains a query routing compo-
nent, which evaluates the cost of executing the query, at each secondary replica,
by taking into account the current load of the node and the execution times
of the refresh transactions which must be applied before the query (in order to
reach to freshness level required by the query). The load of a node is estimated
by summing the remaining execution times of the currently running transac-
tions (including the refresh transactions). The execution time of a transaction
is estimated by using the response times previously obtained by executing the
same transaction. The query execution is delayed so as to apply the sequence
of refresh transactions, needed so as to satisfy the freshness requirements. They
showed experimentally that relaxing the data freshness and the requirements
granularity improve both query response times and throughput.

5.3 Network proximity-based selection systems

Globule [49, 50] is a user-centered CDN, which replicate transparently Web sites
on world-wide spreaded hosts, in order to improve the sites’ responsiveness and
availability, as perceived by the clients. Globule exploits the distribution of
client requests recorded in a given time period, in order to place new replicas
dynamically on hosts located in regions from where most requests came from.
In this respect, they place the clients in a M-dimensional geometric space, that
they divide in regions of identical sizes. They rank the regions according to the
number of clients that they contain, and place a new replica in the region with

- 70 -

5.4 Response time estimation-based selection systems

the position k in the rank [50].

The system contains a redirector component, which chooses automatically
the suitable replica to which the clients requests are redirected, using a HT'TP-
based mechanism or a DNS-based mechanism. The former is applied for each
requested page, while the latter is applied at the site-level. Both mechanisms
are customized by a redirection policy, which by default optimizes the proximity
between the client and the available replicas, where the proximity is defined
in terms of network latency. The latency between the client and the replica
is estimated as the Eucledian distance, computed using the positions of the
corresponding nodes in a M-dimensional geometric space [50, 64]. Each binding
of the client to a replica is associated a TTL (usually 10 minutes). This allows
choosing the suitable replica dynamically. When using “Versatile anycast”, it is
possible to choose the suitable replica for each request.

5.4 Response time estimation-based selection systems

Carter et al. [7] were among the first to develop a response time-driven replica
selection approach by optimizing dynamic metrics, like: round-trip time, avail-
able bandwidth, or the metric, called PredictedTT, which is derived from the
previous two. They showed experimentally the benefits of dynamic metrics
over the random policy or the static metrics, like the number of hops, in order
to improve the client-perceived response time. Precisely, they found that the
correlation between the round-trip time and the response time is 0.51. The
PredictedTT metric estimates the transfer time of Web documents. It has a
formula that sums the round-trip time and the transmission time, weighted, re-
spectively, by two factors. The transmission time is the document size divided
by the available bandwidth.

Chen et al. 9] also perform response time-driven replica selection approach,
for Internet services (e.g. WWW, FTP). Their approach is integrated transpar-
ently within DNS and relies on estimating the response time of requests, by the
metric called Weighted Total Response Time. This metric has a formula equal
to Predicted Transfer Time multiplied by a weighting factor aimed to prioritize
the local traffic. They choose the replica with the smallest value of this metric.

Web-++ [74] is a middleware, that replicates dynamically and transparently
Web applications on hosts located all over the world, in order to improve the
applications’ responsiveness and availability. Their replica selection approach
also minimizes the response time expected to be perceived by the client. The
response time is estimated by the metric called S-percentile. The formula of
S-percentile combines the average and the variance of previously observed re-
sponse time values. When computing the average, recent measures are weighted
more heavily than old ones. The response time measures, observed passively,
are stored within a latency table, maintained by the clients. In this table, the
measures are associated a TTL parameter (in the order of minutes). When the
response time measure for a given replica becomes obsolete, the client updates

—71 -

Chapter 5 Survey of Response-Driven Replica Selection Systems

it by sending to that replica an asynchronous HEAD request. Their approach
proved to improve the response time of Web applications by 36% on average,
compared to the centralized case.

Leganet [22] is a lazy multi-master replication system aimed to improve the
response time of transactions executed on a database cluster, while guaranteeing
the required freshness constraints. They redirect the queries to secondary nodes
by using a cost function, which takes into account the current load of the nodes
and the freshness requirements of that query. A first approach to compute this
cost function uses the value 1 as the cost of executing a transaction. The cost
function becomes the sum between the load of a replica (measured as the number
of transactions executing concurrently) and the number of refresh transactions
which need to be propagated from the master before executing the query, so as
to satisfy its freshness requirements.

A second approach, consider the cost function as an approximation of the
transaction response time. In order to estimate transaction response time, they
decompose the response time into the service time (obtained by running the
transaction when the resources aren’t shared) and the waiting time (due to
resource contention). The waiting time is estimated by assuming that the re-
sources (CPU and I/O) are equally utilized by transactions processed concur-
rently. The load of a node, monitored by a Unix tool, approximates the number
of concurrent transactions. The waiting time increases proportionally with the
number of concurrent transactions and to the service times of those transactions
(compared to the service time of the transaction for which the response time is
estimated).

A replica is considered as appropriate for a query transaction if it has the
smallest cost function value. A replica is appropriate for an update transaction
if its cost function value is inferior to a pre-defined threshold.

5.5 Systems providing flexible selection criteria

The anycast service |77] is a scalable replication middleware for Web services.
The main innovation of this work consists in providing flexible replica selection
policies. In this respect, they allow the users to specify within filters, the policies
and/or the performance objective, stating what is a suitable replica. Examples
of metrics which can be used within the filters include: server load, round-
trip time, response time, as approximated by the transfer time of a small-sized
probe file. The replica selection is performed by resolvers, organized in a DNS
hierarchy. They apply the criteria contained in the filter, in descending order by
their priorities and return a subset of replicas to the clients. The same criteria
of the filter are applied client-side, in order to select one replica to which the
client requests will be redirected.

They also proposed a response time estimator, for Web servers. This es-
timator is defined by a formula which multiplies two factors, counting for the
server load, respectively for the network path characteristics. The two factors
are obtained by measuring passively the service times of Web requests and by

—79 -

5.5 Systems providing flexible selection criteria

system | system load | network proximity | response time estimator ‘
PredictedTT [13] - - X
Web++ [74] -
Radar [53] X
Weighted Total Response Time [9]
Globule [50]
anycast service [77]
Akamai [15]
AQuA [33]
Refresco [45] - -
Leganet [22] - -

]

M 1

| Mol 1
1] 1

!
el el R R B el

Table 5.1: Metrics used for replica selection

collecting the transfer time of a well-known file (which contains the service times
and dummy data). The service times are also pushed pro-actively by the Web
servers to the redirectors. Their approach improves response time by 4 times,
compared to a random selection and 2 times, compared to the number of hops
metric.

AQuA [33] is a primary-backup replication system for distributed services,
represented as CORBA objects. AQuA allows the users to define the QoS
guarantees they need, with respect to the response time and to the replica con-
sistency. The QoS specification, attached to a read-only transaction, contains
the maximal threshold on response time, the minimal probability with which
this threshold should be satisfied, and the maximal tolerated staleness. In order
to satisfy the response time requirement, AQuA uses a probabilistic approach,
wherein they predict that the response time, expected from a subset of replicas,
satisfies the given threshold. The prediction approach is based on previously
performed measurements of service times, measurements of response times of
replies and on the current state of replicas with respect to the staleness thresh-
old. The service time measures, observed passively by the replicas, are sent to all
clients. They approximate the backup replicas staleness (defined as the number
of missed updates), based on the time elapsed since the last propagation and
the request inter-arrival frequency. Their probabilistic model determines the
minimum number of replicas that are needed in order to guarantee the response
time threshold, with the required probability. They guarantee the response time
requirement, despite the failure of a member of the replica set.

Akamai [15] is a CDN, that targets improved availability of the replicated
data and load-balancing of replica servers (so as to avoid flash crowds). They
use a DNS-based content server selection mechanism, that optimizes one of the
following metrics: CPU utilization, disk I/O utilization, network utilization.
Their technique proved to be efficient when handling flash crowds.

Table 5.1 summarizes the approaches used by existing replica selection sys-
tems so as to find the suitable replica.

- 73 —

Chapter 5 Survey of Response-Driven Replica Selection Systems

5.6 Conclusion

Existing approaches for response time optimization rely on static or dynamic
metrics, that correlate with the response time. Static metrics include the geo-
graphical distance [27], the number of router hops [11, 16, 26, 59, 74| and the
number of AS hops [49].

We classify the dynamic metrics into basic and composite metrics. The
former are obtained by direct measurements, while the latter are computed by
combinations of basic metrics. The basic dynamic metrics include the network
latency (given by round trip time, for example), as used in [13, 11, 26, 59, 74],
the available bandwidth, as used in [7], in Web Server Director [55], in [9, 15, 16],
the HTTP request latency [59, 74], the transfer time of a given (probe) file [77]
or server load [6, 15, 77]. Web++ [74] found the correlation between HTTP
request latency and response time equal to 0.73.

The composite dynamic metrics include the metric used in anycast service
[77], the metric used in Radar [53], S-percentile [74], PredictedTT [13], Weighted
Total Response Time [9] and the metric defined in Leganet [22].

With respect to the state of art, we investigate more deeply the impact of the

request workload and of the resource utilization on the response time expected
to be obtained for that request.

— 74 —

Chapter 6

A Workload-Aware Response
Time Estimator

6.1 Introduction

The response time, perceived by a client for its request to a given service, has
been already accepted as the most relevant metric that correlates with the Qual-
ity of Service expected by the client from his/her replica. However, the response
time is a composite metric, obtained after the execution of that request. In or-
der to redirect the client requests to the appropriate replicas, replication man-
agement systems need to determine before executing the requests, which replica
could deliver the best response time or a response time satisfying a given bound.
The issue that we address in this chapter is how to estimate both accurately
and efficiently the response time expected by the client for the requests he/she
submits to his/her replica.

Existing replication systems rely on metrics, such as: the number of router
hops, the round-trip time, the transfer time of a probe file or the bandwidth.
Each of these metrics correlates with the response time for particular resource
demands. For example, the round-trip time metric is appropriate for requests
with small-sized replies. The bandwidth becomes the prevalent resource, in the
case when the replies contain data of large size. We propose a response time
estimator which takes into account the real resource demands of each request
to the service. The estimator assigns weights to the processing capacity and to
the current utilization of those resources available on a particular replica host.

The rest of this chapter is structured in nine sections. Section 6.2 depicts
the independent components of the response time, and some notions used within
estimations. Sections 6.3, 6.4, 6.5 and 6.6 detail the estimation of each individual
component. Section 6.7 evaluates experimentally the accuracy of our estimation
algorithm. Section 6.8 presents the metrology building brick, which provides the
resource utilization measures, needed to perform the response time estimation.
Section 6.9 presents the Response Time Estimator component, which implements
the response time estimation algorithms. Finally, section 6.10 concludes the
chapter.

- 75—

Chapter 6 A Workload-Aware Response Time Estimator

6.2 Decomposition of response time

We derive our approach for response time estimation in two steps. Firstly, we
decompose the response time, expected to be obtained by executing a service
request, into independent components: the CPU service time, the disk I/0
service time, the network transfer time, the CPU waiting time and the disk I/O
waiting time. The service times correspond to the times intervals during which
the CPU and/or the disk I/O resources are used by the request. The network
transfer time counts for the time needed to transmit the request and the reply
through the network. The CPU waiting time counts for the time period that the
request spends in the ready queue (waiting for the CPU to become available).
The disk I/O waiting time counts for the time period that the request spends
in the disk I/O queue. We ignored from the decomposition, other components
of response time, including: the client-side processing delay and the TCP/IP
overhead. We assume that they are insignificant, with respect to the overall
delay induced by the processing of the workloads. Overall, the estimation of the
response time is obtained by estimating individual components, and summing
these estimations.

Secondly, we estimate separately each component of the response time,
thanks to a function that takes into account both the workload generated by
the request and the processing capacity and the current status of the resources
required to serve the request. Within this function, the resources that dominate
the response time are weighted more heavily than the resources that the service
uses lightly. The main benefit of our estimation approach is that it works for
requests with heterogenous demands for various resources.

We denote the capacity and the utilization of the host of a particular replica
by ¢, respectively, by u. The host capacity ¢ has three components, representing
the CPU capacity, the disk I/O capacity and the network connection capacity.
These components are noted respectively by c.cpu, c.io and c.net. The capacity
is a static metric, that compares the processing performance expected from
resources with the same utilization degree.

The host utilization w has three components, representing the CPU utiliza-
tion, the disk I/O utilization and the network bandwidth utilization. These
components are noted by w.cpu, u.i0 and u.net.

The workload of a request quantifies the demands of that request for the
three resources: CPU, disk I/O and network bandwidth. A request workload,
noted wk, has three components, representing the demands of that request for
the CPU, for the disk I/O and for the network bandwidth. They are noted
respectively by wk.cpu, wk.io and wk.net.

The response time estimator, applied for a given workload, is the sum of
the service times, the network transfer time and the waiting times. Each of
these components is parameterized by the workload of the request, and by the
capacity and the current utilization of the resources of a particular host.

— 76 —

6.3 Estimating the CPU waiting time

6.3 Estimating the CPU waiting time

We perform a regression-based analysis of the waiting time, where we study
the dependency between the waiting times and the current utilization of the
resources needed by the workload. Basically, each workload has its waiting
time fitting curve, with the baseline points determined by measurements, or by
estimations obtained from the measurements of other workloads.

Our experiments show that the contribution of the waiting time within the
global response time becomes significant, especially under the conditions of
medium to high resource utilization, where it increases exponentially. Com-
puting the CPU waiting time is very challenging. The main difficulty arises
from the fact that the waiting time depends on several parameters, such as: the
request workload, the CPU processing capacity, the CPU utilization and the
scheduling policies of the operating system. The big issue is to determine the
contributions of each parameter to the overall CPU waiting time, and how the
parameters interfere with each other. Another issue is to capture the dynamic
values of the CPU utilization. In the following, we will define a function, noted
by cpuWit(wk,u), that estimates the CPU waiting time for the workload wk,
under the host utilization wu.

6.3.1 Empirical study

In order to gain some insights on the variation of the CPU waiting time, we per-
formed two series of empirical studies, where we measured the real CPU waiting
time. In both studies, we fixed the host capacity. In the former study, we fixed
the workload and we varied successively the CPU and the disk I/O utilization.
We represented graphically the evolution of the CPU waiting time according to
the CPU utilization (and fixed disk I/O utilization values). In the latter study,
we fixed both CPU and disk I/O utilization, and we varied successively the CPU
workload and then the disk I/O workload. We represented graphically the evo-
lution of the CPU waiting time, according to the CPU workload, respectively
to the disk I/O workload. The experiments have been performed on machines
with a Pentium 4 processor with 3GHz, 900MB RAM and running Linux.

6.3.1.1 Varying utilization

We measured the CPU waiting time for different workloads, while varying the
CPU and the disk I/O utilization on the replica host.

Figure 6.1 shows six graphics for six workloads, where we neglected the
network workload and we varied the ratio between the CPU and the disk I/O
workload. We fixed the disk I/O utilization value to 0. We plotted on x-axis 20
values of the CPU utilization, and on y-axis the corresponding values measured
for the CPU waiting time. All the six curves, obtained by unifying the points,
follows an exponential evolution, growing more rapidly in the case of large CPU
workloads. This result is valid for any value of the disk I/O utilization. Our

- 77 —

Chapter 6 A Workload-Aware Response Time Estimator

400 T T 400

red wanng tlmefor wk. (400, 200 0) —¢ red wanng tlmefor Wk, (400, 200 0) ——

real waiting time for wk. (2000, 200, 0) estimated waiting time for wk. (400, 200, 0)

350 real waiting time for wk. (2000, 400, 0) 4 350 real waiting time for wk. (2000, 200, 0)
real waiting time for wk. (2000, 800, 0) estimated waiting time for wk. (2000, 200, 0) —=

rea wanng time for wk. (400 800 0) real waiting time for wk. (2000, 400, 0)

(

{
300 real waiting time for wk. (1200, , 0) 4 300 estimated waiting time for wk. (2000, 400, 0) —
real waiting time for wk. (2000, 800, 0) x
estimated waiting time for wk. (2000, 800, 0) 17
250 250 red waiting time for wk. (400, 800, 0)
estimated waiting time for wk. (400, 800, 0) — 7]
real waiting time for wk. (1200 800, 0) Tk
200 / ! estimated waiting time for wk.

cpu waiting time (sec)
cpu waiting time (sec)

150 / 150
100 / 100
50 50 T~ —
-
0 | 0 it
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
cpu utilization cpu utilization

Figure 6.1: Measured CPU waiting Figure 6.2: Estimated vs. measured
time CPU waiting time

experiments lead us to the conclusion that, generally, the CPU waiting time,
measured for a given CPU workload, grows exponentially, as the CPU utiliza-
tion increases.

With these elements, the function cpulWt becomes an exponential function
with the exponent expressed as a linear function. This function is parameter-
ized by u.cpu and has the form y = axu.cpu + b, where the coefficients a and b
depend both on the workload wk and on the utilization value u. We obtain the
following formula for the waiting time:
cpuWit(wk,u) = exp(a * u.cpu + b), where a = f(wk,u) and b = g(wk,u) (1)

In order to compute the coefficients a and b, we need the values of the CPU
waiting time under at least two utilization values w; with the same disk I/0O
utilization, i.e. u;.10 = uj.i0 and u;.cpu # uj.cpu, i, j =1,n, i # j, n > 2. We
note by m; the CPU waiting times measured under wu;, i = 1, n, for wk, i.e.
m; = measured__cpuWit(wk,u;), i =1, n.

At this point, we compute the coefficients a and b by applying the Least
Squares Line Fitting method [36]. Basically, this method determines a and b by
minimizing the square error, that is Y., (m; —a*u;.cpu—>b)?. We implemented
this method within the function getCoef() in Figure 6.5. This is parameterized
by n pairs (x;,y;), i = 1, n, that serve as the baseline points for the regression-
based approximation. With m; representing the waiting time obtained under
the CPU utilization value z;, we have y; = log(m;).

We define in Figure 6.5 the base primitive cpuWt_base of our estimation
approach. It contains the core of the regression-based waiting time approxima-
tion. It determines the waiting time for the workload wk under utilization u,
by applying formula (1), where the coefficients a and b are computed using the
function getCoef ().

In order to validate our approach, we took the same workloads from Figure
6.1, for which we compared the CPU waiting time computed by the function
cpuWt _base with the real CPU waiting time, obtained by executing the work-
loads. Figure 6.2 shows these results, where the estimation curves are very close

— 78 -

6.3 Estimating the CPU waiting time

60 T T T T 50 T T -
= = =0 —— cpu wk.=400, cpu ut.=40, disk I/O ut.=0 —+—
disk 1/0 wk.=200, cpu ut.=40, disk 1/0 u{l_. 0 5 WK 2400, 6pu Ut 20, sk VO Ut =40
O ut.=0 cpu wk.=800, cpu ut.=40, disk 1/0 ut.=
50 b = 4 cpu wk.=800, cpu ut.=40, disk I/Q.8r=:
= - 40 cpu wk.=2000, cpu ut.=40, di £
= cpu wk.=2000, cpu ut.=40, i .
-
g “ /E,A/ 8 /
& 2 2 g
2 o~ P P o
é’ 30 /y/ ? 25 e /
5 S e P
: e T e
o e pl 8 —]
% e ° —
o — 10 //k//
10 %
e 5
T
0 0
0 500 1000 1500 2000 2500 3000 o 200 400 600 800 1000
cpu workload disk /0 workload

Figure 6.3: CPU waiting time variation Figure 6.4: CPU waiting time variation
with CPU workload with disk I/O workload

to the real measurements curves. Also, the estimated CPU waiting time corre-
lates with the real CPU waiting time.

6.3.1.2 Varying CPU workload or disk I/O workload

We performed a second type of measurements, where we studied the evolution
of the waiting time when the CPU workload, respectively, the disk I/O workload
varies, while both CPU utilization and disk I/O utilization are fixed.

The graphs in Figure 6.3 show that the CPU waiting time varies linearly
with the CPU workload. Precisely it increases linearly, as the values of the
CPU workload increase. In all the graphs, we fixed the disk I/O workload, the
CPU utilization and the disk I/O utilization.

The experiments we performed leads us to the conclusion that, under a given
utilization value and fixed disk I/O workload, the CPU waiting time increases
linearly with the CPU workload. Similarly, under a given utilization value and
fixed CPU workload, the CPU waiting time also increases linearly with the disk
I/O workload. This result is shown in Figure 6.4.

With variable CPU workload, respectively, disk I/O workload, we obtain the
following formulas for the CPU waiting time:
cpuWit(wk,u) = o' * wk.cpu + 3 (2) and
cpuWit(wk,u) = " x wk.io + 5" (3)

In order to compute o/ and (', we need the CPU waiting times under u, for
several (at least two) workloads with the same disk I/O component as wk. We
note them by wk;, such that wk;.io = wk.io, wk; # wk; and the corresponding
waiting times by m;, i, j =1, k, i #j, k > 2.

We apply the Least Squares Line Fitting method. Precisely, we compute
o/ and ' using the function getCoef(), parameterized by = = {wk;.cpu} and
y={m;},i=1, k.

Similarly, in order to compute o’ and /3", we need the CPU waiting times

- 79 —

Chapter 6 A Workload-Aware Response Time Estimator

under u, for several (at least two) workloads with the same CPU component as
wk. We note them by wk;, such that wk;.cpu = wk.cpu, wk; # wk;, and the
corresponding waiting times by m;, i, j =1, k, i # j, k > 2. We compute
o and (" by applying the function getCoef (), parameterized by z = {wk;.io}
and y = {m;},i=1, k.

6.3.2 Configuration data

The formulas (1), (2) and (3) serve as basis for estimating the CPU waiting
time, for any workload, under any utilization value. In order to apply these
formulas (possibly in various combinations), we need the measurements of the
CPU waiting times for some workloads; under some utilization values. Basically,
we need to define the configuration data for the formulas (1), (2) and (3), so
as to perform the estimation of CPU waiting time for any workload, under any
utilization value. These configuration data contain reference utilization points
and reference workloads, that are defined in the next two paragraphs.

Reference points Formula (1) needs to be configured with the values of the
CPU waiting time, measured under several utilization values (for a particular
workload). We call these utilization values reference points. In the case of the
CPU waiting time, there are at least two reference points with the same value
for the disk I/O utilization. We formalize the set of reference points, noted P,
as follows: P/ = {u}}, i =1, n’;n’ > 2, where 34, j, 1 < i, j < n/,such
that u}.io = u/.io and uj.cpu # u.cpu

Reference workloads Formulas (2) and (3) need to be configured with the
values of the CPU waiting time, measured for several workloads, under a given
utilization value. We call reference workloads, the workloads for which the CPU
waiting time has been measured under any reference point. The set of reference
workloads, noted W, satisfies the following property. There are four differ-
ent reference workloads, wherein two couples of workloads have the same CPU
workload, and there are other four different workloads, wherein two couples of
workloads have the same disk I/O workload. The rationale behind this prop-
erty will be explained later, when describing the estimation algorithms. More
formally:

W = {wk;},i = 1, mym > 4, where 34, j, kandl, 1 < i, j, k, | < m,
such that

wk;.cpu = wky.cpu, wkj.cpu = wkj.cpu, wk; # wk; and
Ju, v, wand z, 1 < u, v, w, z < m, such that
Wky .10 = wWky .10, wky.io0 = wk,.i0, wk, # wk,.

We associate to each wk € W, the set of the CPU waiting time measures,
obtained under each reference point from P’. More formally:
M/, = {(u},m})}, where m, = measured_cpuWt(wk,u}), u; € P', i =1, n'.
We aggregate all the measures into the set M’, where M' = Uypew M, ,. The
sets P', W and M’ are defined for every host class (i.e. machines with the same
resource capacity, as defined in section 1.4).

— 80 —

6.3 Estimating the CPU waiting time

6.3.3 Algorithms for CPU waiting time estimation

In this section, we show how to estimate the CPU waiting time, for any workload
wk, under any utilization value u of the host. If wk isn’t a reference workload,
we distinguish two cases (1) wk has at least the CPU or the disk I/O component
in common with a reference workload and (2) neither the CPU component, nor
the disk I/O component of wk is contained by the reference workloads. In
the former case, we name wk a semi-known workload, otherwise we name it
an unknown workload. The following three sections show how the estimation
proceeds if wk is a reference workload, a semi-known workload or an unknown
workload. For each type of workload, we distinguish between the cases where u
is a reference point or not.

6.3.3.1 The case of reference workloads

The function cpuWt_known(wk,u) (shown in Figure 6.5) estimates the re-
sponse time for wk, considered as a reference workload. If u is a reference point
from P’, we obtain directly from M, the CPU waiting time measured under
U.

If u is not a reference point, in order to compute the coefficients a and b
under the utilization value u, we choose from the set My, n pairs (u;, m;),
such that w;.i0 = u;.i0, with their common value u;.i0 being the closest to u.io,
among all the reference points. With these elements, we compute cpuWt(wk, u),
by applying the function cpuWt _base(), parameterized by the baseline points

({ui.cpu}, {m;}), i =1, n.

6.3.3.2 The case of semi-known workloads

The function cpuWt_semiknown(wk,u) (shown in Figure 6.5) estimates the
response time for wk, considered as a semi-known workload. We consider that
wk has the same disk I/O component as some reference workloads.

We consider k reference workloads wk;,7 = 1,k, that have the same disk
I/O workload as wk. 1) If u is a reference point, we get from the sets My,
the CPU waiting time values m;, measured under u for each workload wk;. We
compute cpuWt(wk,u) by applying the formula (2).

If u isn’t a reference point, we get from P’, n reference points u;, with
the same disk I/O component, and compute m; = cpuWt(wk,u;), using the
previous case 1). Finally, we compute cpulWt(wk,u) by applying the function
cpuW't_base, parameterized by the baseline points ({u;.cpu}, {m;}), i =1, n.

6.3.3.3 The case of unknown workloads

The function cpuWt_unknown(wk,u) (shown in Figure 6.5) estimates the re-
sponse time for wk, considered as an unknown workload wk. We consider [sets,
each one containing k reference workloads wk?, such that: wk!.cpu = wk!.cpu,
i=1, l; u,v =1, k. Let wk'.cpu = wk’.cpu, wk! = (wk'.cpu, wk.io), i =1, L.

_ 81—

Chapter 6 A Workload-Aware Response Time Estimator

1) If w is a reference point, the algorithm proceeds in two steps. In the first
step, we estimate the CPU waiting time m; for the semi-known workload wk,
by applying the previous primitive cpuWt_semiknown().

In the second step it estimates the CPU waiting time, noted d, for the
workload wk, by applying the regression formula (2), with the baseline points
({wk].cpu}, {m;}), i =1, L

2) If u is not a reference point, we get n reference points u; € P, with
the same disk I/O component, ie. u; # uj, uj.io = uj.io. We compute
m; = cpuWt(wk,u;), i = 1, n using the previous case 1). Finally, we esti-
mate the CPU waiting time d for wk, by applying the function cpuWt_base(),
parameterized by the baseline points x = {u;.cpu} and y = {m;}, i =1, n.

6.4 Estimating the disk I/O waiting time

We note diskIoWt(wk,u), the function estimating the disk I/O waiting time
for the workload wk under u. We followed a similar approach, as in the case
of the CPU waiting time. We performed the same two series of measurements.
Firstly, we measured the disk I/O waiting time, while varying the value of the
disk I/O utilization. The curves obtained follow this time a linear evolution,
that we considered when deriving the formula transposing (1) to disk I/O wait-
ing time. We obtain the following formula for the disk I/O waiting time:
diskIoWt(wk,u) = a *u.io+ b (4)

In order to compute the coefficients a and b, we need the measures of the
disk I/O waiting time, under utilization values, with the same CPU component.
We consider n points u;, ¢ = 1, n such that u;.cpu = u;.cpu and u;.i0 # u;.70
and m; is the measure of the disk I/O waiting time under w;, i = 1, n. In
this case, a and b are computed using the function getCoef(), parameterized
by © = {u;.i0o} and y = {m;}, where m; = measured_diskIoWt(u;).

The second type of measurements showed that the disk I/O waiting time
varies linearly with the workload. We obtain the following formulas similar to
(2) and (3):
diskIoWt(wk,
diskIoWt(wk,

u) = o xwk.io+ (' (5) and
u) = o’ x wk.cpu + 3" (6)

The coefficients o’ and /3’ are computed using reference workloads with the
same CPU component. We consider k reference workloads wk; € W with the
same CPU component, and m,; the value of the disk I/O waiting time measured
for wk; under u;, i = 1, k. The coefficients o/ and /' are computed by applying
the function getCoef(), parameterized by = = {wk;.io} and y = {m;}.

The coefficients o and 3" are computed, similarly, using reference workloads
with the same disk I/O component.

The configuration data, needed in order to compute the coefficients, con-
sist in the reference points P”, the reference workloads W and the associated

_ 82—

6.4 Estimating the disk I/0 waiting time

getCoef(n, x, y) {
st = Y0y @iy sy = D0y i st = D00y o sy = D0y Tk i
c=(n*ssx— sx®);a = (nx*szy — sx*sy)/c;b= (sy * ssx — sx * szy)/c;
return < a,b >

cpuWt_base(wk, u, n, x, y){
< a,b>= getCoef(n,z,y)
d = exp(a * u.cpu + b)
return d

cpuWt_known(wk, u){
if (u € P)
m = measured__cpuWt(wk,u)
else {
a) get n pairs (u;, m;) from M/, , such that u; # uj, u;.i0 = u;.i0 and |u;.i0 — w.io| is minimal, i,
G=1, ni#j
b) let « = {u;.cpu} and y = {log(m;)}; d = cpuWt_base(wk,u,n,z,y)

return d

cpuWt_semiknown(wk, u){
//wk has the same disk I/O workload as some reference workloads
get wk; € W, wk.io = wk;.i0, 1 =1, k
if (w e P'){
m; = measured cpuWit(wk;,u),
a) let z = {w;.cpu} and y = {m;}; < a, B >= getCoef(n,z,y)
b) d = a*x wk.cpu+ 3
} else {
a) get n points u; € P’, s.t. u; # uj,u;.%0 = uj.i0 and |u;.i0 — u.io| is minimal, ¢ = 1,n
b) m; = cpuWt_semiknown(wk,u;)
let = {u;.cpu} and y = {log(m;)}; d = cpuWt_base(wk,u,nx,y)

return d
}
cpuWt__unknown(wk, u){

get [sets, each one containing k workloads wk?, € W, wki.cpu = wki.cpu, i = 1,1; u,v = 1,k

if (ue P’) {

let wk®.cpu = wki,.cpu, wk! = (wk'.cpu,wk.io), i =1, 1

a) m; = cpuWt_semiknown(wk}, u)

b) let = {wk].cputandy = {m;}; < a, 8 >= getCoef(n,z,y)
d=axwk.cpou+ 3

} else {

a) get n points u; € P’, s.t. u; # uj,ui.%0 = uj.i0 and |u;.i0 — u.io| is minimal, 4, j =1, n, i # j
b) m; = cpuWt_unknown(wk,u;)
let z = {u;.cpu} and y = {log(m;)}; i, j =1, n, d = cpuWt_base(wk,u,n,z,y)

return d

}
cpuWt(wk, u) {
if (wk is a reference workload)
d = cpuWt_known(wk,u)
else
if (wk is a semi-known workload)
d = cpuWt_semiknown(wk,u)
else
d = cpuWt_unknown(wk,u)
return d

}

Figure 6.5: The estimation of the CPU waiting time

— 83 —

Chapter 6 A Workload-Aware Response Time Estimator

measures M", defined in the next subsection.

6.4.1 Configuration data

In the case of the disk I/O waiting time, the set with the reference points con-
tains two different reference points with the same value for the CPU utilization.
More formally:

P" = {u'}, 1 = 1, n'; 0" > 2, where 3 4,5, 1 < 4,57 < n”, such that
uj.cpu = uj.cpu, uj.io # uj.io.

We consider the same set of reference workloads, as defined in section 6.3.2.
We measured the disk I/O waiting time, under each workload wk € W and each
reference point v € P”.

We obtain M/, = (u],m}), where m; = measured_diskIoWt(wk,ul),
v e P’ i=1, n". We note M" = UypewM,,. The sets P” and M" are
defined for every host class.

6.4.2 Algorithms for disk I/O waiting time estimation

Similarly to CPU waiting time, we defined the base function diskIoWt_base(wk,u).
We performed the estimation of the disk I/O waiting time, by distinguishing
between reference workloads, semi-known workloads and unknown workloads,
within the functions diskIoWt_known(wk,u), diskIoWt_semiknown(wk,),
respectively diskloWt_unknown(wk,u), presented in Figure 6.6.

6.5 Estimating the service times

The CPU service time is estimated by dividing the CPU workload by the CPU
capacity (expressed as the number of MFLOPS per second). The disk I/0
service time is estimated by dividing the disk I/O workload by the disk I/O
capacity (expressed in MB/s).

6.6 Estimating the network transfer time

The network transfer time is also estimated by means of a regression based
technique. We distinguish between bandwidth-intensive vs. non-bandwidth in-
tensive network workloads. The former workloads have the transfer time dom-
inated by the bandwidth, while the latter workloads have the transfer time
dominated by the round-trip-time. We discuss here only the transfer time for
the bandwidth-intensive workloads. A workload is considered as bandwidth in-
tensive if its value is greater than the maximal bandwidth between a host and
a client. We approximate the bandwidth between a host and a client by the
bandwidth of the link connecting the host to the closest network router. The
rationale behind this chaise is two-fold. On one hand, it is very difficult to
have accurate measures of the available bandwidth between any replica host
and any client, without a considerable overhead with respect to the network
traffic generated by such measurements. On the other hand, if the network

84 —

6.6 Estimating the network transfer time

diskloWt_base(wk, u, n, x, y){
< a,b>= getCoef(n,z,y)
d=ax*xu.i0+b
return d

diskloWt__known(wk, u){
if (u € P”)
d = measured_diskIoWt(wk,u)
else {
get n pairs (u;, m;) fromM,! , such that u; # uju;.cpu = uj.cpu, and |u;.cpu — u.cpu| is minimal,
j=1ni#]
let z = {u;.i0},y = {m;}, d = diskIoWt_base(wk,u,n,z,y)

return d

}
diskloWt semiknown(wk, u) {
//wk has the same disk I /O workload as two reference workloads
get wk; € W, wk.io = wk;.i0,71 = 1,k
if (we P") {
m; = measured_diskIoWt(wk;, u)
let © = {wk.cpu},y = {m;}; < o, B >= getCoef(n,x,y)
d=axwk.cpou+ 3
} else {
get n reference points u; € P, s.t. u; # uj, uj.cpu = uj.cpu and |u;.cpu — u.cpu| is minimal;
i, j=1,n
m; = diskIoWt _semiknown(wk,u;)
let = {u;.i0},y = {m;}; d = diskIoWt_base(wk,u,n,z,y)

return d

diskloWt__unknown(wk, u){
get [sets, each one containing k workloads wk?, € W, wk!.cpu = wk.cpu, u;v = 1, k;u # v;i = 1,1
if (wue P”) {
let wk! = (wki,.cpu, wk.io)
m; = diskIoWt_semiknown(wk;, u)
let z = {wkl.cpih,y = {mi}; < o § >= getCoe f(n,)
d=axwk.cpou+ 3
} else {
get n reference points u; € P, s.t. u; # uj,u;.cpu = uj.cpu and |u;.cpu — u.cpu| is minimal;
i, j=1,n
m; = diskIoWt_unknown(wk,u)
let z = {u;.i0}, y = {m;}, d = diskIoWt_base(wk,u,n,z,y)

return d

}
diskloWt(wk, u) {
if (wk is a reference workload)
d = diskIoWt_known(wk,u)
else
if (wk is a semi-known workload)
d = diskIoWt_semiknown(wk,u)
else
d = diskIoWt_unknown(wk,u)
return d

}

Figure 6.6: The estimation of the disk I/O waiting time

— 85 —

Chapter 6 A Workload-Aware Response Time Estimator

congestion occurs on a link close to the client host, and the network bandwidth
is the prevalent resource, no server-side selection algorithm could help, because
all replicas will perform similarly bad.

In this case, the transfer time is given by the formula:
nt(wk, host) = wk.net/(a * host.c.net + b),
where host.c.net is the network bandwidth of host. We compute a and b, for
some known workloads, for which there are available some measures of transfer
time, under some bandwidth utilization values. These measures are used as
the baseline points within the Least Squares Line Fitting method, that gives a
and b. For the other unknown workloads, the transfer time is computed using
the transfer time of reference workloads under the same utilization value. This
computation relies on the observation that the transfer time increases linearly
with the network workload, under a given bandwidth utilization value.

6.6.1 The definition of the response time estimator metric

The response time estimator metric, noted RT estimator, approximating the
response time, expected to be obtained by running the workload wk on host,
becomes the sum of the CPU service time, the disk I/0 service time, the CPU
waiting time, the disk I/0 waiting time and the network transfer time. Figure
6.7 shows the mathematical formulas for RT _estimator and for its components.

RT _estimator(wk, host) = cpuSt(wk, host.c) + diskIoSt(wk,host.c) + cpuWt(wk,host.u) +
diskIoWt(wk, host.u) + nt(wk, host)

cpuSt(wk,c) = wk.cpu/c.cpu

t0St(wk, ¢) = wk.io/c.io

Figure 6.7: Formalizing the estimation function

6.7 Experimental validation

6.7.1 The accuracy of the response time estimator

In order to evaluate the accuracy of the response time estimator, we performed
experiments for various concrete workloads. We used a Workload Simulator, that
simulates the execution of requests. For each request, it generates a test appli-
cation with the same workload as the request. The test application makes use
of matrix multiplication, generating the number of MFLOPS specified in the
CPU workload, plus basic read/write disk I/O accesses equivalent to the total
data size, specified in the disk I/O workload, plus read/write socket accesses
equivalent to the total data size, specified in the network workload.

We used the reference points set P’ = P" = {u;}, u;.cpu, u;.io € {0, 20,40, 80},
i =1, 3. As the baseline measures, we took the CPU waiting time, under three
CPU utilization values {20,40,80} and the disk I/O waiting time under the
same values considered for disk I/O utilization.

— 86 —

6.7 Ezperimental validation

For a given workload wk, to be executed on a given host, the experimenta-
tion follows the following scenario. We vary the values of the CPU, disk I/0O
and network bandwidth utilization, available on that host. Under a given uti-
lization value, i.e. the triple (CPU utilization, disk I/O utilization, network
bandwidth utilization), we determine the couple containing the response time
estimated with our approach and the real response time measured by executing
the workload. For n utilization values, we obtain the set D with n measures of
response time. Each sample i is defined as the couple (estimated response time,
real response time), noted by ert;, respectively rrt;. More formally:

D = {(ert;,rrt;)}, i = 1, n and ert; < ertiy1, Vi, i = 1, n— 1. We draw
the graph associated to D, plotting on x-axis the values ert; and on y-axis the
corresponding values rrt;.

We define the value estimation error for each sample in D. We note it by
val Er;, where i = 1, n, val Er; = min(100 * |ert; — rrt;|/rrt;, 100)

We define the wariation estimation error for each two successive samples
in D. We note it by varEr;, where i = 2, n, varEr; = min(100 * (rrt; —
rrt;—1)/rrt;—1,100), if rrt; > rrt;_1, and 0 otherwise.

6.7.1.1 Experimenting workloads without network bandwidth de-
mands

We begin the validation of our response time estimation approach, by con-
sidering only workloads, where the network component is 0. Specifically, we
experimented our approach for three workloads (2000, 800, 0), (2000, 400, 0)
and (400, 800, 0), varying the ratio between the computation demands vs. the
disk I/O demands. For each workload, we considered both the cases where it
was a reference workload (in which case the estimation uses its measures under
the reference points), respectively unknown (in which case the estimation relies
on four reference workloads). The reference workloads used were: (400, 200, 0),
(400, 2000, 0), (3000, 200, 0) and (3000, 2000, 0).

The Figure 6.8 shows the results in the case of the workload (2000, 800, 0),
Figure 6.9 for the workload (2000, 400, 0) and Figure 6.10 for the workload (400,
800, 0). We represented 44 points on each graph. Each point on a graph, cor-
responds to a particular CPU and disk I/O utilization value, and is represented
by plotting on the x-axis the estimated response time and on y-axis the real
measured response time (both of them obtained under that utilization value).

In each case, we compared the response time estimated by our approach
with the real response time. One can see that in each graph, the curves cor-
responding to the estimated response time vs. the real response time are close
to each other (being closer in the case of the reference workloads). Another
important observation is that the variation of the real response time matches
with good accuracy the variation of the estimated response time (i.e. the curve
correlating the estimated response time with the real response time is mostly
monotone increasing). The large variations at the end of the graphs are due
to large values of the resource utilization (between 90%-100%), where the esti-
mation isn’t satisfactory. In fact, the accuracy of estimation decreases, as the

— 87 —

Chapter 6 A Workload-Aware Response Time Estimator

350 220

0 200 P
180
250 160 T1 A
. = o i
V 120 L

150 i
W/

100 M
50

real response time (sec)
real response time (sec)

el

our estimator, when known workload —+—
our estimator, when unknown workload —<—
jidedl estimator ———

our estimator, when known workload —+— |
our estimator, when unknown workload —<—
| ideal estimator —x—

L L L 20 L L
60 90 120 150 180 210 240 270 300 330 60 90 120 150 180 210

estimated response time estimated response time

Figure 6.8: Estimation for wk. (2000, Figure 6.9: Estimation for wk. (2000,

800, 0) 400, 0)

220
20 N T
II /

g f,z ks

P o)

. | 1V

B, RE gl 7Am vim—
60 T + \VJ l/
o L U] e smion wron —— |
20 idgd eslimau‘r+

. .
30 60 90 120 150 180 210 240
estimated response time

Figure 6.10: Estimation for wk.
(400, 800, 0)

resource utilization increases.

6.7.1.2 Experimenting workloads with demands for all resources

In this section, we show the results obtained in the case of workloads with
demands for all resources. The experimentation follows a scenario similar to
the case of workloads without network bandwidth demands. However, in this
case, we also vary the network bandwidth utilization, when determining the
graph points. We represented 64 points on each graph.

The graphs in Figures 6.11 and 6.12 show the response time estimation
for the workloads (2000, 800, 20) and (2000, 800, 80), considered successively
reference workloads and unknown workloads. One can see that the monotony
of the real response time matches, in most cases, that of the estimated response
time (i.e. in most cases, a bigger estimated response time corresponds to a
bigger real response time). Comparing the results of our estimator with an
ideal estimator, one can see that there is an over-estimation of the response
time, but this still remains under reasonable limits. We also have noticed that
the unsatisfactory estimation occurs for large values of the utilization. This
explains the large variations at the end of the graphs. When the values of

— 88 —

6.7 Ezperimental validation

Workload coef. a and b, when reference wk. | coef. a and b, when unknown wk.
(2000, 800, 0) 0.91 12.08 0.99 -8.45
(2000, 400, 0) 1.01 3.94 1.15 -13.77
(400, 800, 0) 0.94 2.46 0.87 -4.71
(2000, 800, 20) 1.00 10.74 1.12 -17.40
(2000, 800, 80) 0.56 55.44 0.61 39.90

Table 6.1: Coefficients a and b for various reference and unknown workloads

utilization are small or even reasonably high, the estimation works fine. As in
the previous type of workloads, the accuracy of estimation decreases, as the
resource utilization increases.

We adopted two means to validate our model: by performing a regression
based analysis of the estimation results and by studying the cumulative distribu-
tion of the estimation errors. In the former evaluation scenario, we studied the
linear relationship between the estimated response time and the real response
time, using as the baseline a set of 44 points resulted from measurements. Pre-
cisely, we determined the coefficients a and b of the line y = a * x + b, where x
represents the estimated response time and y is the real response time. We repre-
sented the results in Table 6.1. Each row corresponds to a workload, considered
a reference workload vs. an unknown workload. The ideal values, correspond-
ing to the perfect estimation, are « = 1 and b = 0. The values, obtained for
the coefficients, are close to the ideal values, except for the last case, when the
network workload is equally important as the CPU and disk I/O workload.

With respect to the second evaluation scenario, Figures 6.13 and 6.14 shows
the cumulative distribution for the value estimation errors, considering the case
of reference workloads, respectively unknown workloads. A point on the graph
is defined by plotting on x-axis the value estimation error, and on y-axis the per-
centage of estimations whose error is inferior to the x-axis value. These results
show that the estimation accuracy is satisfactory. Figures 6.15 and 6.16 shows
the cumulative distribution for the variation estimation errors. A point on the
graph is defined by plotting on x-axis the variation estimation error, and on
y-axis the percentage of estimations whose error is inferior to the x-axis value.
These results show a good correlation between the estimated response time and
the real response time.

The main benefit of the proposed solution is its accuracy, for workloads with
a single or two bottleneck resources (as showed by the correlation coefficients in
Table 6.1). Furthermore, the experiments showed that the estimation function
orders correctly the replicas compared to real response time measures.

6.7.2 Choosing the reference points

An important question is how to choose the reference points. We conducted
some experiments in order to answer to this question. We varied the set of
utilization reference points, both in terms of number and distribution over the
range [0, 100]. For each reference points set, we estimated the response time
for seven different workloads. For each workload, we computed the value es-

— 89 —

Chapter 6 A Workload-Aware Response Time Estimator

220 200

- f . }\/W\ /
S amry Y e

120 1 1 i i)

10) 100)
A i

=
_—

real response time (sec)
real response time (sec)

60 our estimator, when known workload —+— our estimator, when known workload —+—
= our estimator, when unknown workload —<— our estimator, when unknown workload —<—
0 . . ideal estimator —x— 0 . _ idedl estimator —x—
60 90 120 150 180 210 240 20 120 150 180 210 240
estimated response time estimated response time

Figure 6.11: Estimation for wk. (2000, Figure 6.12: Estimation for wk. (2000,
800, 20) 800, 80)

100 7 100 WM
% s

NENY /sl
c c 70 Fr
5 5
E E f’ﬂf‘ e
2 2 60
]] HE <
S S
H g ® ~
£ | -
2 workload (2000, 200 —— 2 workload (2000, 200 ——
3 workload (2000 800 40) —— 3 / workload (2000 800 40) ——
workload (2000, 800, 60) —*— | 30 workload (2000, 800, 60) —*— |
workload (2000, 800, 80) —=— #.I workload (2000, 800, 80) —=—
workload (0, 800, 20) —=— 20 workload (0, 800, 20) —=—
workload (0, 800, 40) —e— workload (0, 800, 40) —e—
workload (0, 800, 60) —e— | 10 workload (0, 800, 60) —e— |
workload (0, 800, 80) —=— workload (0, 800, 80) —=—
_ workload (2000, 800, 100) —+— o _ workload (2000, 800, 100) —+—
40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
value estimation error value estimation error

Figure 6.13: Value estimation error for Figure 6.14: Value estimation error for

reference workloads unknown workloads
100
7 il et el
95 f
pd
20
Rl AREE :
5 5
A
3 A :
T ol £
0 ﬁm workioad (2000, 800, 20) —— E workioad (2000, 800, 20) ——
3 65 workload (2000 800 40) —— | 3 workload (2000 800 40) —— |
workload (2000, 800, 60) —+— workload (2000, 800, 60) —+—
workload (2000, 800, 80) —=— workload (2000, 800, 80) —=—
g S S
55 workload (0, 800, 60) —e— | workload (0, 800, 60) —e— |
workload (0, 800, 80) —=— workload (0, 800, 80) —=—
50) work‘load(ZqOO. 800, 100) -) work‘load(ZqOO. 800, 100) -

0 10 20 30 40 50 60 70 80 90 100 40 50 60 70 80 90 100
variation estimation error variation estimation error

Figure 6.15: Variation estimation error Figure 6.16: Variation estimation error
for reference workloads for unknown workloads

- 90 —

6.8 The Metrology System

Reference Error for wk | Error for wk | Error for wk | Error for wk | Error for wk | Error for wk | Error for wk
utiliz. points (400, 200, 0) | (2000, 200, 0) | (2000, 400, 0) | (2000, 600, 0) | (2000, 800, 0) | (400, 800, 0) | (1200, 800, 0)
10 20 241798.20 9078.83 2882.08 7205.66 12688.70 4694.38 10323.13
20 30 23.51 100.77 195.83 130.55 167.97 363.20 128.94
80 90 19.49 90.46 102.91 123.30 134.59 81.01 99.71

20 60 40.49 116.10 120.43 156.56 174.76 76.57 136.80

10 20 30 3482.33 941.28 854.83 1307.19 1306.20 1323.72 1033.57
30 50 70 36.15 101.70 133.55 144.66 148.14 103.53 118.01

20 40 60 38.13 112.93 114.00 149.02 165.76 73.64 131.06

10 40 80 17.50 71.97 85.61 93.93 105.83 61.38 75.25

10 15 20 25 30 2014.77 824.78 818.11 1097.96 1103.53 977.14 876.76
20 40 60 70 80 36.73 105.52 118.32 138.10 157.01 85.16 117.79
20 20 40 60 80 36.41 104.94 112.33 135.12 155.92 80.15 114.91

10 20 40 60 70 22.55 73.54 90.97 100.95 106.92 61.21 83.10

10 20 40 60 80 18.02 79.16 91.71 104.79 117.22 63.44 85.11

Table 6.2: Estimation errors when varying the set of reference points

timation error over a testing set with 20 CPU waiting time values. We show
the results in Table 6.2. The main conclusion is that increasing the number of
reference points doesn’t improve the accuracy, unless the points are well chosen,
i.e. uniformly distributed around “the middle’ (i.e. the value 50%).

6.8 The Metrology System

In order to approximate accurately the response time expected from a set of
replicas for a given request, the response time estimator needs the measures
of the utilization of the resources, that are relevant for that request. In this
respect, we developed a Metrology System, composed of Host Monitors and
Metrology Servers. A Host Monitor is responsible for collecting the measures of
CPU utilization, disk I/O utilization and system load. It sends the measures to
a Metrology Server.

6.8.1 Metrology Server

The distribution of the Metrology Servers follows the grouping of hosts in do-
mains. A Metrology Server instance is attached to one domain. It maintains for
the hosts located in this domain, the history with the measures of the resource
utilization metrics. Each measure is registered into the repository together with
the timestamp of the instant when it was received. A Metrology Server stores and
provides access to the measures and to derived samples, computed by applying
various statistics over those measures. The statistics, that we consider, provide
the following derived samples: the mean measure, the most recent measure, the
most frequent measure, the median measure.

6.8.2 Host Monitor

There is a single Host Monitor instance on each replica host. Its role is to collect
for the current machine, the dynamic measures of three main metrics: CPU
utilization, disk I/O utilization and system load. The CPU utilization counts
for the degree of the processor utilization (expressed in percents). The disk /0

—91 —

Chapter 6 A Workload-Aware Response Time Estimator

utilization counts for the degree of the disk I/O utilization. Under Linux, we
collect the measures of the CPU utilization metric by using the tool sar and the
measures of the disk I/O utilization by using the tool iostat. We quantify the
system load by the number of active processes in the system, at a given instant.

The Host Monitor object maintains a map associating to each of the three
supported metrics an object, which defines how to aggregate a history of mea-
sures into a derived sample. This object contains the statistical computation, to
be performed over the measures, and the time period, delimiting the measures
to be considered within the computation. The Host Monitor collects periodically
the measures for each metric, and use them in order to compute the value of
the corresponding derived sample. The Host Monitor sends the derived sample
values pro-actively to the Metrology Server, attached to the domain to which the
current host belongs.

In our prototype implementation, we use the statistical computation type
claiming for the most recent measure, for all the three metrics. We address two
main issues: how often the metric measures should be collected (i.e. what is the
optimal frequency of measurements)? and how often the Host Monitor should
send the values of the derived samples to the Metrology Server (i.e. what is the
dissemination criterion)? In the following three paragraphs, we firstly present
the algorithm performed by the Host Monitor and then we answer to these issues.

The Host Monitor algorithm Our monitoring approach aims to achieve
scalability, by localizing the traffic induced by the measures dissemination, at the
scope of domains and avoiding to generate traffic on distant expensive network
links.

The algorithm, performed by the Host Monitor, reiterates through the fol-
lowing three steps. Firstly, the Host Monitor sleeps the time period, common to
all the derived samples. When the time period elapses, it wakes up and collects
the metric measures. Finally, it decides if the measures should be sent to the
Metrology Server or not, and proceeds to dissemination, if this is needed.

The measurement frequency We use the water-marking technique, by asso-
ciating to each metric two thresholds, noted underLoad Threshold and overLoad-
Threshold. A metric measure inferior to underLoad Threshold indicates that the
resource utilization is very low, so the resource can accept new services while still
providing good performance. A metric measure superior to overloadThreshold
indicates that the resource contention is already high. Consequently, allocating
new services to that host should be prohibited, as it would conduct to dramat-
ically decreased performance. A metric measure between underLoadThreshold
and overLoadThreshold indicates that the resource is reasonably loaded. Con-
sequently, it can still be used by new services.

We consider two monitoring time periods, noted longPeriod and shortPe-
riod. The measurement interval has the value longPeriod, when the measures

are inferior to underLoad Threshold or superior to overLoadThreshold. In the for-

~ 92—

6.8 The Metrology System

mer case, we use the observations of our experiments described in section 6.3.1,
according to which when the resource is lightly used, small changes in its values
have little impact on the response time that will be perceived by the client re-
quests (as the waiting time curve hasn’t begin to grow exponentially yet [19]).
When the resource is overloaded by concurrent services, we also use longPeriod
as the measurement interval, because the resource is unusable anyway and we
don’t want to increase the system load by the monitoring. When the measures
are between underLoadThreshold and overLoadThreshold, we use the measure-
ment interval shortPeriod, as in this case, any change in the measures could
have a considerable impact on the response time.

The dissemination criterion The criterion for measures dissemination is
defined so as to meet two complementary goals: maximizing the measures ac-
curacy and minimizing the network traffic induced by the measures.

Precisely, our dissemination technique aims to capture significant variations
between the measure, that has been previously sent to the Metrology Server and
a newly collected measure. In other words, we ignore new measures, when they
are close to the most recent disseminated measure.

We define the relation of closeness between two measures, by means of two
configuration parameters: a function f and a threshold 5. We say that two
measures m; and mgy are close if [m; - my | < b (1).

If my is the previous disseminated measure, and ms is the most recent col-
lected measure and m; and my are not close, (i.e. they don’t satisfy the relation
(1)), we switch to shortPeriod, as the time period preceding the next measure-
ment. We note this new measure by ms. If m; and ms are not close, the Host
Monitor sends the measure mg to the Metrology Server. The monitoring interval
is set according to the state denoted by ms. We call dissemination interval,
the time period to wait until the next dissemination, determined by the close-
ness relation. This period is bounded by the sum between shortPeriod and
longPeriod.

6.8.3 Calibrating the measures dissemination

In our experiments, we consider a set of hosts running replicas of a service, with
a given workload. We approximate the response time expected to be provided
by each replica, by using the response time estimator, presented in chapter 6.
We select the host, whose replica is expected to provide the best response time.

We studied experimentally the tradeoff between two metrics: the selection
error, when looking for the host with the best estimated response time, and the
overhead of collecting the measures used by the response time estimator. The
selection error captures the impact of obsolete metric values on the response
time estimation.

We consider all hosts ranked by their response times, estimated with real
metric values. The selection error is defined as the position of the selected host
in this ordered sequence, divided by the number of all hosts. The values of

- 03 —

Chapter 6 A Workload-Aware Response Time Estimator

the selection error belongs to the interval (0, 1]. The value 1/n is obtained
when the ideal host is selected. The value 1 is obtained when the worst host is
selected. The selection error depends directly on the accuracy of the measures
that the estimator uses. Precisely, it requires that the difference between the
measures used and the real measures to be as little as possible. However, in
order to limit this difference, the monitors should increase the frequency of the
measurements and the frequency of the measures dissemination to the Metrol-
ogy Servers, attached to their domains. Consequently, the system load, induced
by measurements, and the network traffic, induced by the disseminations, in-
creases. We define the metrology overhead, as the number of bytes exchanged
between the Host Monitors and the Metrology Server, during a given time period.

We call measure discrepancy, the difference between the measure used by the
response time estimator and the real measure. In our experiments, we looked
for the optimal threshold on the measure discrepancy, defined for two metrics:
CPU utilization and disk I/O utilization, so that to minimize selection error.

We simulated 289 replicas on the same machine, which is a Pentium 4 with
3GHz, 900MB RAM, running Linux. On this machine, we varied the CPU uti-
lization, by running a background process, able to generate any CPU utilization
value, given as parameter.

We considered several workloads, with the CPU workload varying between 0
and 2000 MFLOPS and the disk I/O workload varying between 0 and 800 MB.
We varied the measure discrepancy between 10% and 60%.

We run the selection process for each configuration, including a given mea-
sure discrepancy and a given workload, and we computed the corresponding
selection error. In this respect, the hosts were ranked according to their re-
sponse time values estimated using the correct CPU and disk I/O utilization
values.

For each measure discrepancy value, we computed the average selection er-
ror of all the workloads considered. The results, represented in Figure 6.17,
show that the values of the selection error increase linearly with the measure
discrepancy values. Also, the results in Table 6.3 show that even with a measure
discrepancy value of 40%, our strategy selects a host among the first 50% of all
ranked hosts (according to their estimated response time values).

In order to obtain the metrology overhead, for each value of the measure
discrepancy, we computed the value of the network bandwidth consumed by the
Host Monitors, in order to disseminate the measures. In each case, the Host
Monitors collected 60000 measures of the resource utilization. The results, rep-
resented in Figure 6.18, show that the traffic generated increases exponentially
with the measure discrepancy value.

In order to determine the appropriate measure discrepancy, we define an
optimization function, parameterized with two successive discrepancy values #;
and . This function quantifies the degradation of the selection strategy when
increasing the discrepancy value, in terms of decreased accuracy with respect the
reduced bandwidth. We note the selection error corresponding to t; and y by
a1, respectively by ao. We also note the bandwidth consumed in #; and in ¢, by

— 094 —

6.9 The Response Time Estimator component

Measure Selection Traffic Optimization fct.
discrepancy error generated value
10% 0.0959421 | 1185.33 KB not def.
15% 0.141868 | 1054.99 KB 0.50348
20% 0.190311 | 863.951 KB 0.407918
25% 0.321799 | 700.503 KB 0.752804
30% 0.376848 | 552.971 KB 0.528213
35% 0.434099 | 442.198 KB 0.851602
40% 0.492293 | 355.458 KB 0.851131
45% 0.553004 | 286.455 KB 1.36711
50% 0.609626 | 232.254 KB 1.36208
55% 0.673168 | 175.255 KB 1.65502
60% 0.731362 | 146.557 KB 2.57255

Table 6.3: The tradeoff between the selection error vs. the metrology overhead

1200

08

selection error curve —’— | \ traffic generated curve —’—
0.7
/ 1000
0.6
5
< 80
= 05 B
5
& L] £
5 o4 § 60
3 - 5 N
03 2
_§ 400
0.2 \
L1]
200
0. -
0 0
10 15 20 25 30 35 40 45 50 55 60 10 15 20 25 30 35 40 45 50 55 60
discrepancy threshold(in %) discrepancy threshold(in %)

Figure 6.17: The selection error Figure 6.18: The metrology overhead

b1, respectively by be. The minimization function, noted f(t1, t2), is defined as
(az - a1)/((b1 - b2)/mawBw), where mazBw is the bandwidth consumed for the
minimum discrepancy value, which is equal to 10% in our experiments. We use
the division by mazBw, so as to have the same value interval equal to (0, 1], for
the two terms, which are divided in the formula of the function. Intuitively, we
are looking for ¢z, which do not decreases too much the selection error compared
to the selection error in t;, while reducing the metrology overhead, as much as
possible.

We represented the minimization function in Table 6.3 and Figure 6.19. We
choose the measure discrepancy, by setting a superior bound on the selection
error and looking for the minimum function value, computed under the selection
errors which satisfy that bound. For example, with the selection error set to
0.3, the measure discrepancy equal to 20% seems to be a good choice.

6.9 The Response Time Estimator component

We developed a component called Response Time Estimator, that implements
the algorithms described in Figures 6.5, 6.6 and 6.7, in order to estimate the

— 95 —

Chapter 6 A Workload-Aware Response Time Estimator

optmization function +

optimization function value

.
15 20 25 30 35 40 45 50 55 60
discrepancy threshold(in %)

Figure 6.19: The optimization function

response time expected to be observed by executing a given workload, on a given
host.

Each Response Time Estimator instance is configured with the CPU waiting
time measures and the disk I/O waiting time measures, collected by running the
reference workloads, on a set of representative hosts within the domain, under
all the reference points of resource utilization. The measures are maintained as
a map, indexed by the hosts (as shown in Figure 6.20). The data corresponding
to a host contains the resource capacities and a map, indexed by the reference
workloads. The data corresponding to a reference workload contains the CPU
waiting time measures and the disk I/O waiting time measures obtained by
running that reference workload on that host, under each reference point. We
bound, by a predefined parameter, the number of hosts for which the measures
are maintained in the memory. For all the hosts within the domain, the measures
are stored on the disk, within configuration files. We configure each Metrology
Server instance, attached to a given domain, with a Response Time Estimator
instance.

ref. pointl: CPU wt., disk I/O wt.
ref point2: CPU wt., disk 1/0O wt.

WKL " e, point3: cpu wt., disk 1/0 wt.

wk2 ref. point4: CPU wt., disk 1/0O wt.
hostl

wk3
host2 wk4

CPU capacity, disk I/O capacity, net. bw. capacity
host3

Figure 6.20: The configuration data of Response Time Estimator

6.10 Conclusion

We developed a response time estimator, capable to approximate the execution
time expected to be obtained by running a given request on a given host. We
showed experimentally that the estimated response time values correlate with
the effective response time measured by executing the requests. Also, for re-
quests with a given predominant resource, the estimated values are close to the

— 96 —

6.10 Conclusion

measured ones. We also showed experimentally that the response time estima-
tor remains reasonably accurate even if it uses measures that diverge from the
most recent ones, provided that the discrepancy respects a given bound.

— 97—

Chapter 6 A Workload-Aware Response Time Estimator

— 08 —

Chapter 7

A Generic and Customizable
Replica Selection Protocol

7.1 Introduction

The replication decisions, already identified in existing replication systems [53],
include: replica selection at the client connection-time, rebinding during client
- replica interaction, replica creation, replica placement, replica deletion and
replica migration. The replica selection decision selects the pertinent replica for
a given client, among (a subset of) all available replicas. The rebinding deci-
sion determines when the replica, to which a given client is currently bound,
becomes unsuitable and must be replaced by another replica. The creation de-
cision determines when a new replica is needed. The placement decision selects
the appropriate host, where the newly created replica should be placed. The
migration decision decides when an existing replica must be moved on another
host, because the host, where it is currently running, becomes overloaded. The
deletion decision decides when an existing replica becomes unuseful and, con-
sequently, it must be eliminated. Our work targets mainly the replica selection
and the rebinding decisions.

The replication efficiency depends on the ability of the system to redirect
the client requests to the appropriate replicas. The issue that we address in this
chapter is how to find the appropriate replica for each client requiring access to
a given replicated service. A subsequent issue, determined by our base hypoth-
esis, is how to provide the various response time requirements of services with
various resource demands by a single replica selection protocol. We developed a
protocol performing the selection of the suitable replica, at the beginning of the
session and, dynamically, when the current replica provides bad performance.
The replica selection protocol aims to satisfy the performance requirements for
a given percentage of requests. The protocol is configured with the replica se-
lection and the rebinding criteria, both of them inferred from the response time
requirements, specified by the service supplier. The replica selection criterion
contains the conditions that must be fulfilled by a given replica, in order to be
assigned to a given client. The rebinding criterion specifies how many times
the violation of the performance requirements is tolerated, for a given replica

— 99 —

Chapter 7 A Generic and Customizable Replica Selection Protocol

accessed by a client, before selecting another replica for that client.

The protocol respects two main objectives: genericity and customizability to
service-specific requirements. The need of providing these features is motivated
by the heterogeneity of the services, with respect to their demands for various
resources, such as the CPU, the disk I/O or the network bandwidth. The replica
selection and the rebinding criteria vary from a service to another, according
to their resources demands. However, we wish to support all possible criteria
by a single protocol. Hence, the need to make the protocol generic. Also, the
protocol should provide the performance requirements for a particular service,
for which it is instantiated. Hence, the need to make the protocol customizable
to service-specific criterion.

The rest of this chapter is structured in seven sections. Section 7.2 presents
the specification of the performance requirements, as expected from the ser-
vice supplier. Section 7.3 presents the concepts needed in order to provide the
genericity feature of the replica selection protocol. The concepts include the de-
rived metrics, the metric-based predicates and the abstract replica selection and
rebinding criteria. Section 7.4 presents how the replica selection criterion is in-
ferred, for each service, from its performance requirements. Section 7.5 presents
how the rebinding criterion is inferred, for each service, from its performance
requirements. Section 7.6 presents the Replica Manager component that imple-
ments the replica selection and the rebinding algorithms. Section 7.7 shows
experimentally the accuracy and the scalability of the replica selection protocol
and the benefits of re-selecting the pertinent replica at run-time. Finally, section
7.8 concludes the chapter.

7.2 Expressing the performance requirements

We use XML as the language support for specifying the requirements on the re-
sponse time by the service-supplier. Figure 7.1 shows the DTD of a performance
contract, which contains one or several performance requirements. Each require-
ment is associated to one or several operations of the service and is defined as
a best-effort or as a relative predicate on the response time. The best-effort
requirement claims for the best response time value, expected to be provided
by the selected replica. The relative requirement contains a threshold, which
defines what are the valid values of the response time. In both cases, the re-
quirement also contains the average workload generated by the operations to
which the requirement is attached.

<!ELEMENT performance contract (requirement+)>
<!ATTLIST requirement operations CDATA >
<!ATTLIST requirement workload CDATA>
<!ATTLIST requirement workload_ class CDATA>
<!ATTLIST bound CDATA >

Figure 7.1: The DTD of a performance contract

The definition of the workloads, attached to operations, is a challenging

- 100 —

7.2 Ezpressing the performance requirements

task for the service suppliers. Ideally, the workload characteristics should be
computed automatically for each operation of the service, by a profiling tool.

In our work, if the service supplier doesn’t know the exact workload gen-
erated by operations, he/she has the option to specify, for each operation, the
workload class for each of the three resources (CPU, disk I/O and network
bandwidth). A workload class aggregates workloads with similar demands for
a particular resource. The workload class represents the usage intensity level
for that resource. The usage intensity levels are identified by monotonically
increasing numbers, up to a given superior bound. We associate to each level,
a quantitative workload value. This mapping translates a workload class into a
quantitative workload.

We also consider an enriched workload specification, that exploits the op-
eration parameters. Such an approach claims for workload functions, to be
generated for the service operations. A workload function, associated to a given
operation, takes as parameter an Access object and returns a Workload object,
containing three integers that represent, respectively, the CPU workload, the
disk I/O workload and the network workload that the operation requires for its
processing.

<performance__ contract>
<requirement operations="" workload="(2000, 800, 0)" bound="80 sec"/>
< /performance_ contract>

<performance_ contract>
<requirement operations="" workload class="(2, 2, 0)" />
< /performance_ contract>

<interface>
<operation 1d="01" signature="void f(int n)">
< /interface>
<performance_ contract>
<requirement operations="01" workload="((2*n*n*n)/10000, 0, 0)"/>
< /performance_ contract>

Figure 7.2: Examples of performance contracts

Figure 7.2 shows three examples of performance contracts. The former per-
formance contract is attached to a service, whose operations generate a workload
equal to 2000 MFLOPS and 800 MB transferred to/from the disk. This contract
contains a single requirement, which claims for a replica expected to provide a
response time inferior or equal to 80 seconds.

In the second performance contract, the operations workload is specified by
means of a workload class, containing the degree of the CPU usage and the
degree of the disk I/O usage. This contract also contains a single requirement,
which claims for a replica expected to provide the best possible response time.

The latter performance contract is attached to a service, containing an op-
eration, parameterized by an integer. The operation workload is specified by
means of an arithmetical expression, which takes into account the operation
parameter. This contract contains the same requirement, as the previous one.

- 101 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

7.3 Genericity support

The Metric object We abstract a given metric by the object Metric, in
order to treat all supported metrics uniformly within the predicates composing
the replica selection criterion. These predicates are checked for a list of hosts,
independently of the metrics that they encapsulate. We define a set of abstract
performance levels, to be particularized for each metric. These levels are: bad,
reasonable, good, very good, excellent. Each performance level has associated a
range of values. For a particular metric, the performance levels are specified by
means of five thresholds, which divide the domain of values into five successive
ranges. The Metric object contains: the metric name, the domain values, the
measurement unit, the comparison operator (“<”, “>” or “=”) and the thresholds
defining the performance levels.

The DerivedMetric object We perform statistical computations, in order
to predict the measures expected for a given metric in the near future (defined
by a given time period), from the measures collected previously for that metric.
Such predictions have already been proposed in Network Weather System [68].
They detect the resources that have been intensively used recently, so as to
avoid using them for other requests, as the performance of those requests would
decrease dramatically. We use standard statistics, such as: the mean value, the
median value [24] (as in Network Weather System), the most frequent measure
and the most recent measure.

A statistical computation is reified by the DerivedMetric object, containing:
the history of measures to be taken into account, the computation type, the
(optional) parameters needed by the computation and the comparison operator
between the metric values. For example, if the computation counts for the per-
centage of requests that perceived unsatisfactory response time, the parameters
encapsulate the threshold on the valid response time values. The measures his-
tory is defined as a time period or as the number of measures to be considered.
The computation type indicates how to aggregate the measures in the history,
by using standard statistics. In these cases, parameters is null.

Examples of derived metrics include: the average value over the CPU utiliza-
tion measures collected in the last hour; the percentage of response time values
above 7 seconds observed in the last 20 minutes, among all Web accesses.

For all the statistics, the computation of the derived metric value relies on
two main methods: addMeasure() and getSample(). The former method includes
a new measure within the computation of the derived metric value. The latter
method returns the derived metric value, at the end of the computation.

The DerivedMetric object is specialized for each computation type (most re-
cent measure, mean measure, most frequent measure, median measure), with
the data members needed by the computation. In particular, the object spe-
cialized for computing the mean, contains as data members the number and the
sum of all measures considered. At the end of the computation, the method get-
Sample divides the sum by the number of measures considered (if this number
is positive).

-102 -

7.4 Replica selection criterion

The object, corresponding to the most frequent measure and to the me-
dian measure, contains as data members an array with the measures considered
together with the frequency of their occurrence. If the computation requires
the most frequent measure, the method getSample returns the measure with
the maximum frequency. If the computation requires the median measure, the
method getSample ranks the measures and returns the measure, whose frequency
satisfies the 50% percentage, with respect to the number of all measures, that
precede it in the rank.

In the next paragraph, we define the metric-based predicate, that represents
the building brick for defining replica selection and rebinding criterion.

Metric-based predicates We define two types of metric-based predicates:
best-effort predicates and relative predicates. We further classify the best-effort
metric-based predicates in two types: best value and best level. The former type
claims for the best value, determined among a set of measures. The latter type
claims for the metric values within a particular performance level. A best-effort
metric-based predicate is defined as a vector with three elements: the metric
name, the derived metric and the performance level. The latter parameter is
absent, in the case of a predicate of type best value. A relative metric-based
predicate defines the valid values, as those below a given threshold. A relative
metric-based predicate is a vector with three elements: the metric name, the
derived metric and the bound.

Abstract replication criterion A replication criterion is expressed as a
boolean expression, which consists of conjunctions of metric-based predicates.
The criterion is associated to a pair (replica, client) or to a pair (replica group,
client). In the former case, the predicates are checked for the replica and the
client. In the latter case, the predicates are checked for each replica, within the
group, and the client. Examples of replica groups include: all available replicas,
all available replicas within a given domain and the replicas proximal to a given
client, where the proximity metric counts for the number of AS hops.

In our work, we study the criteria guiding the replica selection and the
rebinding decisions. An example of replica selection criterion is:
RT _estimator < 120ms,
where the metric RT _estimator, approximating the response time, has been
defined in chapter 6. An example of rebinding criterion is:
the percentage of unsatisfactory requests > 80%,
where a request is considered as unsatisfactory, if its perceived response time
exceeds b0ms and the percentage is computed over all the requests submitted
by the client to the current replica, during the current session.

7.4 Replica selection criterion

7.4.1 Inferring the replica selection criterion

The algorithm for inferring the replica selection criterion is depicted in Figure
7.3. We apply it for every requirement, attached to a particular operation,

- 103 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

get res;, s.t. st;/(st1 + st2 + st3) > 1/3,1 <3

if the requirement is response time < b
then {
RT estimator-based criterion = RT estimator < b
resource capacity-based criterion = /\;'.:1 (res;.capacity is “good”)
} else {
RT _estimator-based criterion = best RT _estimator
resource capacity-based criterion = best res;.capacity, where st;=max{st1, st2, st3}

}

Figure 7.3: Inferring the replica selection criterion

within the performance contract. We distinguish between the case of a relative
performance requirement and the case of a best-effort performance requirement.
For each operation, we generate two replica selection criteria: an estimation-
based criterion and a relevant resources-based criterion from the performance
requirement attached to that operation. The former relies on the response
time estimator, presented in chapter 6. The latter relies on the capacity of the
resources, needed for processing the operation calls. We obtain a table, wherein
each operation is attached a replica selection criterion.

7.4.1.1 Response time estimator-based criterion

The case of a relative requirement A relative performance requirement
is formalized by: response time < b, where b is the bound delimiting the
valid values (as specified by the service supplier in the performance contract).
A request is unsatisfied, if the value of the response time, perceived for this
request, exceeds the bound b. This relative requirement is translated into the
selection criterion, containing one relative predicate, that imposes the bound
b on RT _estimator. The response time estimator-based selection criterion is
formalized, as follows: RT _estimator < b.

The case of a best-effort requirement A best-effort requirement on re-
sponse time is translated into the selection criterion, containing one best-effort
predicate on RT _estimator.

7.4.1.2 Resource capacity-based criterion

We associate to the response time one or several base metrics, representing the
capacity of the resources that impact the response time. These base metrics are
inferred from the service workload, as shown in the following.

We consider two types of workload specifications: quantitative and quali-
tative. Let (cpu_wk,io_wk,bw_wk) be a quantitative workload specification.
We convert the individual components of the workload in the service times, that
are expected from a given reference host. We obtain the services time, noted
cpu__st, i0_st, bw__st. We say that res; is a highly-used resource, if:
sti/(st1 + sty + st3) > 1/3, i =1, 3. If the workload is specified qualitatively,
by means of a workload class attached to each resource, we convert the three
workload classes into a quantitative workload and proceed as above.

-104 -

7.4 Replica selection criterion

The case of a relative requirement A relative requirement on the response
time is translated into best level predicates, imposing the performance level good
on the capacity of each highly-used resource. In this case, the selection criterion
becomes a logical expression, relating by the boolean operator “and”, the best
level conditions on resource capacities.

The case of a best-effort requirement A best-effort requirement on re-
sponse time is translated into the selection criterion, containing one best-effort
predicate on the capacity of the most intensively used-resource. In this respect,
we compute the maximum between sti, sty and st3 and we consider the corre-
sponding resource, as the one that is the most intensively used.

7.4.1.3 The choice of the appropriate criterion at run-time

The choice of the right criterion is performed at run-time. The choice depends
on the current degree of the resource utilization, on the utilization variation and
on the requests response time, compared to the estimation cost. The selection
criterion must exploit a response time estimator, when the resources are shared
by several users. However, when the resources are under-utilized, the resource
capacity-based criterion is the appropriate one. This criterion has minimal cost,
as the capacities are configured statically. This criterion should also be used,
when the resource utilization varies too rapidly. In this context, it is not possible
to obtain sufficiently accurate utilization measures, needed by the response time
estimator. Also, the selection criterion containing a best-effort requirement on
CPU capacity is appropriate in the case when the response time of the requests
is close to the delay induced by the response time estimation.

7.4.2 The selection policy objects

In order to manipulate the replica selection criteria, we introduce two objects,
called ReplicaFilter and Ranker. They correspond to relative, respectively, best-
effort performance requirements. The two objects are presented in the next two
paragraphs.

ReplicaFilter A ReplicaFilter object encapsulates a table, wherein each oper-
ation, of the replicated service, is attached its workload and a replica selection
criterion. This criterion is inferred from the relative performance requirement,
specified for that operation within the performance contract.

Each criterion is expressed by one of the following two data members. The
former data member contains a relative predicate on the RT estimator met-
ric, associated to the response time. The predicate contains the response time
threshold, that is required by the calls to that operation. The latter data mem-
ber is a vector, containing a list of relative metric-based predicates, related by
the boolean operator “and”. These predicates are defined on the capacities of
the resources on which the response time of the operation depends.

The ReplicaFilter provides the method filter, that takes as parameters: the
service name, a list with the replicas IP addresses and the client identifier. The

- 1056 —

Chapter 7 A Generic and Customizable Replica Selection Protocol

array parameter may be replaced by a map, wherein the replicas are grouped by
the domains, to which their hosts belong. The result returned by the method
is an array with integers. The first element in this array represents the number
of satisfactory replicas. It is followed by the indexes of satisfactory replicas,
matching their positions within the array parameter. The list of satisfactory
replicas may be ranked, by the values of the RT _estimator metric. A variant of
the filter method filters the replicas relatively to a reference replica, such as only
the replicas better than this reference replica are checked against the replica
selection criterion.

Ranker A Ranker object encapsulates for each operation, the replica selection
criterion, inferred from the best-effort performance requirement, attached to
that operation. The criterion is expressed by one of the following two data
members: a best-effort predicate on RT estimator or a best-effort predicate on
the capacity of the resource, that is the most intensively-used by that operation.

The Ranker provides the method rank, that has the same list of parameters
as the method filter of the Replica Filter. The method ranks the replicas by the
metric values and returns the index of the best replica. A variant of the rank
method takes a supplementary parameter that is a reference replica. It ranks
only the replicas better than that reference replica (i.e. their metric values are
better than the metric value determined for the reference replica).

7.5 The rebinding criterion

7.5.1 Inferring the rebinding criterion

The algorithm for inferring the rebinding criterion is depicted in Figure 7.4.
Definition We define a metric, called degradated RT, that counts the percent-
age of requests that didn’t satisfy the response time requirement (i.e. expressed
as a threshold imposed on the response time), from the beginning of the client
connection to his/her replica. The value of degradated RT is updated each time
the response time of a request violates the requirement. We define the rebinding
criterion by bounding the value of degradated RT.

We formalize a relative requirement as follows response time < b. In the case
of a best-effort requirement, the threshold b is defined as equal to 1.5 x avg _rt,
where avg rt represents the average value, computed over the response time
measures, observed by all the client requests.

Both in the case of a relative requirement and of a best-effort requirement,
we formalize the rebinding criterion by:
degradated _RT > percentage,
where percentage = 100% — percentage requests ok and
percentage requests ok is a parameter pre-defined in our system. It denotes
the percentage of requests that satisfied the threshold b, from the beginning of
the session. We set the value of percentage requests ok to 80%. We also set
a threshold on the minimal number of requests, that should be considered when
checking the performance contract. This threshold helps dealing with transient

- 106 —

7.6 The replica selection and rebinding system

if the requirement is response time < b
then

degradated_ RT = 100x(nb of requests with response time > b)/(nb of all requests)
else {

avg rt = compute average value over all the response time measures

degradated_ RT = 100+(nb of requests with response time > 1.5xavg_rt)

}

rebinding criterion = degradated RT > 20%

Figure 7.4: Inferring the rebinding criterion

overload conditions, at the beginning of the interaction between the client and
the selected replica.

7.5.1.1 Predefined rebinding criteria

We consider one predefined rebinding criterion, needed in order to limit the
effects of erroneous replica selections on the clients’ experience. This criterion
is defined as follows:

if during the client session, the first a consecutive requests

have unsatis factory response time, then rebind the client to another replica.
The criterion is configured by a bound a on the number of consecutive requests,
for which the performance contract has been violated.

7.5.2 The rebinding policy objects

We encapsulate the rebinding criterion inferred from the performance contract
within a Checker object. The rebinding criterion is expressed as a relative pred-
icate on the degradated_ RT metric. The Checker provides the method check
with the same list of parameters as the method filter of the ReplicaFilter object.
The method checks if the predicate is verified for each pair (replica in the list,
client). A variant of this method checks the predicate only for the replicas better
than a reference replica, given as parameter.

7.6 The replica selection and rebinding system

7.6.1 The Replica Manager component

FEach replicated service is attached a Replica Manager component. This compo-
nent has three main roles. The former is to control the evolution of the replica
group (by adding, migrating and deleting replicas). The second is to bind the
clients to the appropriate replicas, that could satisfy the performance contract.
The latter is to monitor the performance perceived by the clients from the repli-
cas that they have been assigned, and to rebind them to another replicas, when
the current ones become unsatisfactory. Our work target only the latter two
functionalities.

Data members A Replica Manager instance contains two categories of data
members. The data members, in the former category, characterize the service,

-107 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

including: its name, the suffix and the prefix that should be added around the
host address so as to construct the replica reference (that is returned to the
requesting client).

The data members, in the latter category, include the policy objects needed
to resolve the replica selection and the rebinding decisions and the ReplicaRepos-
itory. The policy objects include: a ReplicaFilter or exclusively a Ranker object,
responsible for the replica selection decision and a Checker object, responsible
for the rebinding decision.

The ReplicaRepository object maintains for each service: the list of domains
containing replicas, the list of replicas grouped by domains and the distances
between all domains and the domains with replicas. Each available replica is
described by the timestamp of its creation time instant, its IP address, the refer-
ence by which the clients interact with the replica and the timestamp indicating
the last time instant when this replica has been selected for a client.

The Replica Manager implements the replica selection algorithm (described
in section 7.6.2), in order to provide to each client the suitable replica. The
Replica Manager performs the replica selection, before the first access of the
client to the replicated service and during the interaction of the client with the
replica to which he/she has been bound, when a given percentage of the client
requests perceived unsatisfactory response time values. If this is the case, then
the client sends a rebinding request to the Replica Manager. In order to process
rebinding requests, the Replica Manager implements the rebinding algorithm,
described in section 7.6.3.

7.6.2 The replica selection algorithm

The replica selection algorithm is described within the primitive select, that
takes three mandatory arguments: the service name, the identifier of the op-
eration invoked by the client and the client identifier (as shown in Figure 7.5).
There is a fourth optional argument, that specifies the reference of the replica
to which the client has been previously bound. The presence of this argument
makes the difference between a selection and a re-selection request.

We designed a scalable greedy selection algorithm, where the suitable replica
is determined only among a subset of replicas, which are proximal to the client
host. We call this subset of replicas selection scope. The algorithm has two
main stages. The former performs the coarse-grained selection, by determining
the selection scope associated to the client. The latter performs the fine-grained
selection, by applying the replica selection criterion for each replica determined
in the previous stage. The following two sections detail these two stages.

7.6.2.1 Coarse-grained selection

A selection scope contains the subset of replicas, susceptible to satisfy the per-
formance contract for a given client. This subset contains replicas that are
proximal to the client, where the proximity distance is defined in number of AS
hops.

- 108 —

7.6 The replica selection and rebinding system

The coarse-grained selection stage is depicted in Figure 7.5, within the prim-
itive getSelectionScope. This primitive determines the selection scope for a
service and a client requiring access to that service. Its parameter perc speci-
fies the percentage of replicas to be included within the selection scope, among
all available replicas of the service. The underlying algorithm works as follows.
Firstly, it determines the domain C'D to which the client belongs. If the number
of the replicas in C'D already satisfies the required percentage, the algorithm
returns C'D. Otherwise, the selection scope, noted SD, is initialized with C'D
and is augmented incrementally in successive steps. Each step determines the
domains that are closest to C'D and that haven’t been considered yet in the
selection scope. The domains are ranked, in descending order, by the number of
replicas. The domains are included successively in SD, until the required per-
centage, on the number of replicas contained in SD with respect to the number
of all replicas, is reached. The complexity of this algorithm is n®, where n is the
number of available domains.

Using selection scopes has two main benefits. Firstly, the traffic, generated
by requests and replies, is localized within proximal ASes. Secondly, the replica
selection delay is reduced, as the selection criterion is checked only for a subset
of replicas. The algorithm for computing the selection scopes can be customized
with the pertinent proximity metric. By default, this metric is the number of AS
hops. However, other metrics such as the maximal bandwidth may be useful,
according to the underlying selection criterion. In these cases, the distance
between two domains is computed as the average over the maximal bandwidth
between (all) pairs of hosts, that belong to the two domains.

7.6.2.2 Fine-grained selection

The fine-grained selection stage contains three steps. In the first step, if this
is a re-selection request, the algorithm checks if the current replica satisfies the
replica selection criterion. If this is the case, the algorithm stops and returns
null. Otherwise, it proceeds to the second step, where it determines the list
of replicas contained in the selection scope. In the third step, it applies the
replica selection criterion for each replica determined in the previous step. In
the case of a relative criterion, the algorithm filters the list of replicas, that
satisfy the criterion with respect to the client. Among the satisfactory replicas,
it chooses the one, for which the most recent binding has the smallest timestamp
value. This heuristic aims to avoid that replicas remain unused, when there are
incoming selection requests, for which those replicas revealed to be appropriate.
In the case of a best-effort criterion, the algorithm ranks the replicas by their
values, determined for the metric contained within the criterion. It returns the
first-ranked replica to the client. If the client is already bound to a replica, then
the algorithm takes into account only the replicas better than that replica, when
performing the filtering/ranking of replicas.

- 109 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

getSelectionScope(service, client, perc) {

let D;, i = 1, n the list of available domains

nb = nb_replicas(service)

CD = domain(client)

crt_nb = nb_replicas(service, CD) //crt nb=the current number of replicas contained in the
selection scope SD

if (crt_nb > (nb*perc)/100)

return CD

SD = {CD}; k=1
do {
get D, s.t. distance(CD, D)=min{distance(CD, D;)/(distance(CD, D;) > k)A(D; ¢ SD), i =1, n}
SD=SDuUD
crt_nb = crt_nb + nb_ replicas(service, D)
k = distance(CD, D)
} while (crt_nb < (nb*perc)/100)

return SD

}

enum CriterionType { relative, best-effort }
select(service, operation, client [, prev_replica]) {
(type, criterion) = getSelectionCriterion(service)
if (prev_replica != NULL) {
ok = Checker->check(service, operation, prev_replica, client, criterion)
if (ok) return NULL

scope = getSelectionScope(service, client)
replicas = getReplicas(service, scope)
switch (type) {
case relative:
replicas = ReplicaFilter->filter(service, operation, [prev_replica,| replicas, client, criterion)
if (replicas) {
selected = getUnused(replicas)
if (selected == prev_replica) selected = NULL
}
break
case best-effort:
selected = Ranker->rank(service, operation, [prev_replica,| replicas, client, criterion)

return selected

}

Figure 7.5: The replica selection algorithm

- 110 —

7.7 Ezperimental evaluation

7.6.3 The rebinding algorithm

A rebinding request is handled by the primitive rebind (Figure 7.6), that takes
five parameters: the number of requests for which the threshold on the response
time has been respected, the number of unsatisfied requests, the identifier of
the previously called operation, the client identifier and the reference of the
current replica to which the client is bound. The main role of this primitive is
to determine if the rebinding criterion is satisfied, and to select another replica,
better than the current one, in the affirmative case. The primitive consists of
three main steps.

The first step determines if the current binding is a false positive, by checking
that no request has been satisfied and that the request number exceeds the given
threshold. If the current binding isn’t a false-positive, the second step checks
the rebinding criterion, inferred previously from the performance contract. The
third step performs the rebinding, if it is needed. This step invokes the primitive
select, that looks for another replica that could potentially satisfy the selection
criterion, and that is better than the current replica. If such a replica has been
found, its reference is returned to the client.

rebind(nb ok, nb_nok, operation, client, replica) {
if (Inb_ nok) return NULL
need rebind = ((nb_ok == 0) and (nb_nok > a))
if ('need _rebind)
need rebind = Checker->check(service, replica, client)
if (need _rebind) {
ref = select(service, operation, client, replica)
return ref

return NULL

Figure 7.6: The rebinding algorithm

7.7 Experimental evaluation

In this section, we present the experimental results proving the accuracy and
the scalability of our replica selection approach and the benefits of re-selecting
the pertinent replica at run-time. We performed emulation-based experiments,
where we run a Replica Manager instance, a Consistency Manager instance on
each replica, a Host Monitor instance on each replica host and a Metrology
Server in each domain. This realistic experiments helped us show the feasibility
of our replication approach within a concrete Replicated Service Hosting System.

7.7.1 The replica selection accuracy

We studied experimentally the accuracy of our replica selection approach, in the
case of a best-effort performance contract. We considered different frequencies
with which the replica selection requests arrive at the Replica Manager. We set
the threshold on measure discrepancy (concept introduced in section 6.8.3) to
20%.

- 111 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

100 X *
7N ¥ ol <X
% %
20
e
%) 85 %)
§ ™ §
g ® g
5 ™ 2
Iy g
g B
B B
long interval —’—
60 T
medium interval %
55\ lum nterv: B long interval +
i > < mediumintervl X
-) s‘ronlr‘vte(vad ; | shortinterval >k
0 0.1 02 03 04 05 06 07 0.8 20 30 40 50 60
selection error response time estimation error

Figure 7.7: Cdf of the selection errors Figure 7.8: Cdf of the estimation errors

7.7.1.1 Experimental setup

We consider that on every replica, there is a Workload Simulator, which em-
ulates a real service, as described in section 6.7.1. For each service request,
the Workload Simulator generates an equivalent workload (by means of matrix
multiplications, disk I/O operations, socket I/O operations). It executes this
equivalent workload and logs the service times and the waiting times obtained.
These logs are analyzed by the Replica Manager in order to evaluate the perti-
nence of its replica choices, when the requests finish. In our experimentation
scenario, we consider a set of 4 replicas, which we emulate by running a Work-
load Simulator instance on 4 different machines. Two of them are Pentium 4
with 3GHz, 900MB RAM, running Linux and the other two are Pentium 3 with
1GHz, 256MB RAM, running Linux.

7.7.1.2 Experiments description

We simulated the arrival of successive clients at the Replica Manager and the
execution of their requests by the replicas to which they have been bound.
Precisely, we implemented a virtual client who generates series of 100 replica
selection requests, with various workloads. Each replica selection request with
the workload wk arrives at the Replica Manager, which processes it by selecting
the appropriate replica r among the 4 available replicas. This replica is returned
to the client. The virtual client invokes the service operations at the selected
replica r, by generating requests with the workload wk. The Workload Simulator,
running at r, simulates each request, by executing a workload equal to wk.

We maintain 3 types of logs: one log at the Replica Manager, one log at
each Workload Simulator and one log at each Host Monitor. The Replica Manager
writes an entry in its log, after each replica selection request, that it processes,
by selecting the suitable replica. This entry contains the timestamp indicating
to the selection instant, the selected replica, the response time estimated for this
replica and the identifier of the session (corresponding to the current binding of
the client to his/her replica).

The Workload Simulator writes an entry in its log, for each workload that
it executes. This entry contains the identifier of the session to which the re-
quest belongs and the response time measured by executing the workload of

- 112 —

7.7 Ezperimental evaluation

the request. Simultaneously, each Host Monitor writes in its log, the utilization
measures that it collects.

When the execution of the requests ends, the Replica Manager analysis the
content of its log and the content of the logs maintained by the Workload Sim-
ulators and by the Host Monitors. Precisely, for each request executed by the
replica r, the Replica Manager performs the following two actions. Firstly, it
obtains from the Workload Simulator running at the host of r, the response time
measured by executing the workload generated by the request. Secondly, from
the logs maintained by the Host Monitors, it obtains the utilization values mea-
sured at the time instant, which is closest to the replica selection instant. Then
it ranks in ascending order the replicas according to their response time val-
ues, estimated using those utilization measures. The Replica Manager computes
for each request: the selection error and the estimation error. It computes the
selection error, by dividing the position of r in this ordered sequence, by the
number of replicas. It computes the estimation error of r as the difference be-
tween the measured response time and the estimated response time, divided by
the measured response time. We aggregate these data for all the requests, in
order to compute the cumulative distributions of the selection error values and
of the estimation error values.

We represent the results in two graphs. In Figure 7.7, we plot on x-axis the
selection error values and on y-axis the percentage of requests, for which the
selection error was smaller than the corresponding x-axis value. In Figure 7.8,
we plot on x-axis the estimation error and on y-axis the percentage of requests,
for which the estimation error was smaller than the corresponding x-axis value.

We considered 3 time intervals, delimiting the requests arrivals at the Replica
Manager: a long interval (varying from 15 to 20 seconds), a medium interval
(varying from 5 to 10 seconds) and a short interval (varying from 1 to 5 seconds).
These intervals were chosen according to the dissemination interval (defining the
frequency of measures dissemination). Precisely, the long interval is larger than
the dissemination interval, the medium interval is close to the dissemination
interval, and the short interval is smaller than the dissemination interval. These
experiments show two main positive results. The former result confirms that
the accuracy of response time estimation and, as a consequence, the accuracy
of the replica selection is satisfactory. In all the 3 experiments, 50% of requests,
have the estimation error inferior to 0.6. Also, for 50% of the requests, the
replica selected was the best one, which could have been determined if the real
measures have been known.

The latter result shows, as expected, that the selection error is much higher
when the requests frequency follows the short interval. Precisely, in this case,
50% of requests have an estimation error inferior to 0.2 and 65% of requests
have been allocated the best replica. This result indicates that it is advisable
to adapt the dissemination interval to the requests frequency, for example, by
measuring the CPU utilization and the disk I/O utilization, after each replica
selection performed for a client.

- 113 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

7.7.2 The replica selection scalability

We studied experimentally the scalability of our replica selection system, with
respect to the number of the domains containing replicas and with respect to
the number of replicas within a given domain. In this respect, we evaluated sep-
arately the two main stages of the replica selection: the coarse-grained selection,
corresponding to the computation of the selection scope, and the fine-grained
selection, corresponding to the evaluation of the replica selection criterion for
each replica within the selection scope. We run a Replica Manager instance on
a machine Pentium 4 with 3GHz, 900MB RAM.

The coarse-grained selection delay In order to evaluate the scalability
of the coarse-grained selection, we varied between 1 and 100 the number of
domains containing replicas. For a given number of domains, we performed 22
replica selection requests, for which we measured the delay of computing the
selection scope. We computed the average delay (by ignoring the minimum and
the maximum delays). We show the results in Figure 7.9. One can see that the
delay increases linearly with the number of domains, and the maximum delay,
perceived for 100 domains, is insignificant (below 0.5ms).

05 T T T T
scope computation delay —7’

0.45

/

0.4

0.35

0.3

scope computation delay (ms)

0.25

0.2

0 20 30 40 50 60 70 80 20 100
number of domains

Figure 7.9: The delay of coarse-grained replica selection

The fine-grained selection delay In order to evaluate the scalability of
the fine-grained selection, we considered that the selection scope contains a
single domain. The rationale behind this simplified assumption is that the
Replica Manager estimates the response time expected from replicas belonging
to different domains in parallel. Precisely, the number of threads is equal to
the number of domains containing replicas. We varied between 1 and 100,
the number of replicas contained in the single domain of the selection scope.
For a given number of replicas, we performed 22 replica selection requests. We
measured the selection delay for each request and we computed the average delay
(by ignoring the minimum and the maximum delays). We show the results in
Figure 7.10. One can see that the replica selection delay increases linearly with
the number of replicas. However, the maximum delay, that is obtained for 100
replicas, remains reasonable small (below 160ms).

-114 -

7.7 Ezperimental evaluation

160

response time estimator-based criterion 7/

140

120

100

80

selection delay (ms)

60

40

20
0 /
0 10 20 30 40 50 60 70 80 90 100
number of replicas

Figure 7.10: The delay of fine-grained replica selection

These experiments confirm that the selection delay is almost insignificant
with respect to the average response time of the requests to the services, that
we expect to replicate.

We also measured the delay of handling a rebinding request, when rebinding
to a new replica is not necessary. We obtained an insignificant delay of 0.13ms.

7.7.3 The benefits of rebinding

We study experimentally the benefits of re-selecting the pertinent replica for
a client at run-time, when the current replica provides unsatisfactory response
time. In this respect, we run TPC-W [72] with the two profiles: browsing-mix
and shopping mix. In both cases, the performance contract requires a response
time threshold equal to 50ms.

We used four machines named canardo, haplin, pataclop and profi. canardo
and pataclop are Pentium 3 with 1GHz, 256MB RAM. haplin and profi are
Pentium 4 with 3GHz, 900MB RAM. The replica is selected initially and at
run-time, among the four replicas available on the machines enumerated above.
We varied the load of each replica host, by running in background a shell script,
developed in our team by N. Gibelin. This script launches an arbitrary number
of processes for an arbitrary period of time.

We used a client-side proxy developed in our team by I. Chabbouh [8], in
order to send the requests to the Web server and to collect the measures of
response time, experienced by the clients. This proxy performs the average of
response time perceived by five successive requests, and it sends the computed
value to the Replica Manager.

When performing these tests, we used an optimistic concurrency control,
where the replicas have been accessed in isolation. We didn’t use the replica
consistency management available in Mysql [38], because of the absence of a
mechanism for resolving the conflicts between the updates accessing concur-
rently the same item.

The replica selection criterion, that we used, contains a best-effort condition
on the CPU utilization. The rebinding is performed at run-time when of the
two situations occur:

e The first 3 requests of the session perceived response time values larger

- 115 —

Chapter 7 A Generic and Customizable Replica Selection Protocol

than 210ms.

e 20% of the client requests observed response times values larger than
210ms. At least 6 requests are taken into account, so as to deal with
transient loads.

Each graph shows the results obtained by running all the requests within a
complete TPC-W session. Precisely, we plotted the cumulative distribution of
the average response time values. On x-axis we plotted the average response time
values, and on y-axis we plotted the percentage of requests, with the response
time value smaller than the corresponding x-axis value. On each graph, we
plotted two curves, one curve representing the static binding, and one curve
representing the dynamic rebinding.

Figures 7.11 and 7.12 show the results of experiments for the scenario browsing-
mix. In the case of the static binding, the replica selected is canardo in Fig-
ure 7.11 and pataclop in Figure 7.12. When rebinding is used, there is an
increasing of 40% of the requests which satisfied the response time threshold of
50ms. However, when the replica selected statically is haplin or profi, there is
no benefit of using rebinding, as these machines are the most powerful ones.

We repeated the same experiments in the case of shopping-mix. Figures 7.13
and 7.14 show the corresponding results, when the replica selected initially is
canardo, respectively pataclop. In both cases, when rebinding used, there is an
increasing of 50% of the requests which satisfied the response time threshold of
50ms.

o [L TR i pinding” "+

o dynamicrebinding x

percentage of requests

0 Luocs i
0 50 100 150 200 250 300 350 400 450 500

response time (ms)

Figure 7.11: Browsing-mix, where the replica selected statically is canardo

7.8 Conclusion

We developed a protocol, aimed to select the suitable replica for each client,
at the beginning of his session and dynamically. This protocol makes use of
the response time estimator presented in the previous chapter. We obtained
experimentally three main results. The former result shows the accuracy of the
replica selection, if the accuracy of resource utilization measures respect a given
staleness threshold (satisfied by selecting the appropriate monitoring interval
and dissemination criteria). The second result confirms the scalability of our

- 116 —

7.8 Conclusion

%
% X X x "sdichinding "~
%0 fm’ dynamicrebinding x
X
70 i
T
i ol A
g a
z 0
°
8 40 b
g ¥
g 30 -
X
x
20
x
10
x
0 Less
0 50 100 150 200 250 300 350 400 450 500

response time (ms)

Figure 7.12: Browsing-mix, where the replica selected statically is pataclop

100 T T
inding .+

pres v o S
oS X X XX Sl WY ic%indinq x

N Ve

80

70 £

60

X xix x

50

percentage of requests

30

XX x %

20

L E
kg

10

S

0 50 100 150 200 250 300 350 400 450 500
response time (ms)

Figure 7.13: Shopping-mix, where the replica selected statically is canardo

100 T T atic bindi T
icbinding , +
xxoc o g kaicebinding | x X

20

80 §

70

R

X %

60

R

50

percentage of requests
&

30

20

10 i

0 50 100 150 200 250 300 350 400 450 500
response time (ms)

Figure 7.14: Shopping-mix, where the replica selected statically is pataclop

- 117 -

Chapter 7 A Generic and Customizable Replica Selection Protocol

replica selection approach, by showing that increasing the number of replicas and
the number of domains has a minimal impact on the selection delay (compared
to the average response time expected for the replicated services). The latter
result shows the benefit of re-selecting the appropriate replica dynamically when
the current replica becomes unsatisfactory. However, we obtained this gain only
when the newly selected replica has a better processing performance compared
to the previous one.

- 118 —

Chapter 8

The Overall Replicated Service
Hosting System

8.1 Introduction

In order to prove the feasibility of our approach, we need to provide the pro-
totype for the Replicated Service Hosting System, which integrates the inde-
pendent building bricks implementing both the consistency guarantees and the
performance improvement. The prototype has been implemented and tested on
Linux 2.4 and 2.6 mandrake. This chapter assembles the components provid-
ing the service-specific consistency contract and the components providing the
response time requirements within a single Replicated Service Hosting System.
These components are laid out on two layers: the system layer and the service
layer. The Replicated Service Hosting System is made accessible to the service
suppliers and to the clients, by means of a well-defined interface, that registers
a new service, deploys a new replica of a service and binds the clients to the
replicas.

The rest of this chapter is structured in six sections. Section 8.2 intro-
duces a new component called Information Repository, that maintains various
data related to the services, to the replica hosts and to the components lo-
cations. Section 8.3 shows the distribution and the interaction between the
system-specific components, including: Information Repository, Response Time
Estimator, Host Monitor and Metrology Server. Section 8.4 presents the repre-
sentation of replicated service, by means of a Server-Side Replica Wrapper and
a Client-Side Replica Wrapper, automatically generated from the contract spec-
ification. Section 8.5 shows the distribution and the interaction between the
service-specific components, including: Consistency Manager, Replica Manager,
Server-Side Replica Wrapper and Client-Side Replica Wrapper. Section 8.6 shows
how the Replicated Service Hosting System is made accessible to the service
suppliers and to the clients. Finally, section 8.7 concludes the chapter.

- 119 -

Chapter 8 The Owverall Replicated Service Hosting System

8.2 The Information Repository component

We introduce a new system-specific component, called Information Repository.
This component stores and provides access to data that characterize the repli-
cated services (including their attached contracts) and the locations of the com-
ponent instances.

Each data is associated a key, that identifies uniquely that data in the reposi-
tory. The key is a string, obtained by concatenating three strings of fixed length.
They represent, respectively, the name of a service, a domain identifier and an
IP address. For simplicity of the Information Repository implementation, we
consider as domains, the Autonomous Systems existing in the Internet. The
Information Repository is constructed as a Distributed Hash Table, containing
the mappings of keys to data. We implemented it, using the Chord P2P sys-
tem [41]. In this respect, we consider the P2P overlay, containing the potential
replica hosts.

The interface of the Information Repository contains two main methods: pub-

lish and lookup, that stores data into the repository, respectively, retrieves data
from the repository. The method publish takes as parameters the string contain-
ing the service name, the integer containing the domain identifier, the string
containing the IP address and the string containing the data. The method
lookup takes as parameters the service name, the domain identifier and the IP
address. The two methods rely respectively on the primitives store() and fetch(),
available in the Chord distribution.
A benefit of using Chord is that it resolves the issues, such as the selection of
the host, where the data will be stored and the rooting of the queries to the host
that has the data assigned to the given key. Consequently, the utilization of the
Information Repository becomes very easy: it claims only for the specification of
the three strings composing the key and of the string containing the data, as
arguments of the invocations to the publish and to the lookup methods.

8.2.1 Maintaining the locations of the component instances

In this subsection, we show how the Information Repository is used so as maintain
the locations of the instances of the following components: Replica Manager,
Metrology Server and Consistency Manager. The location, of each instance of
the three components, contains the IP address of the host, where the instance is
running, and the number of the port, on which the instance is waiting for clients’
connections. We assign a key to the location of a given component instance.
The key is a string, defined by concatenating three strings, as follows.

In the case of a Replica Manager instance, the former substring identifies
the service that is replicated, the second substring contains the identifier of
the domain, to which this instance is attached and the latter substring has
the predefined value "0.0.0.2". The Information Repository provides the method
lookupRMRef, which takes as parameters the service name and the domain iden-
tifier. The method returns the reference of the Replica Manager, instantiated for
that service in that domain.

In the case of a Metrology Server instance, the former substring is “Metrology-

- 120 -

8.8 The system-specific components

Server”, the second substring contains the identifier of the domain to which this
instance is attached and the latter substring has the predefined value "0.0.0.1".
The Information Repository provides the method lookupMSRef, which takes as pa-
rameter the domain identifier. The method returns the reference of the Metrol-
ogy Server, instantiated in that domain.

In the case of a Consistency Manager instance, the former substring identifies
the replicated service, the second substring has the predefined value ”-1" and the
latter substring contains the IP address of the replica host, where this instance
has been created. The Information Repository provides the method lookupCMRef,
which takes as parameters the service name and the replica IP address. The
method returns the reference of the Consistency Manager, instantiated for that
service, on that replica host.

The mappings of keys to locations are distributed across the replica hosts,
that compose the P2P overlay. The usage of high-level identifiers determines
dynamically, the port to be used by a particular component instance, according
to the network configuration available on its replica host. In particular, different
instances of the Consistency Manager component may use different ports, as
available on their replicas hosts.

8.2.2 Maintaining the service-related descriptions

As we have already mentioned, in order to be replicated, each service needs the
specification of the consistency contract and of the performance contract. The
two specifications are given by the service supplier within an XML file. The
service supplier also provides the service deployment description, in a separate
file. This description contains the informations needed by the Service Deployment
component, such as the location of the archive containing the sources and the
configuration files of the service [23]. We concatenate the locations of the two
files in a string, that is assigned the service name, as the key. The corresponding
mapping is stored within the Information Repository.

We enrich the Information Repository with two methods, called lookupDeploy-
ment and lookupContracts. Both methods takes as argument the service name,
and obtain the content of the deployment description, respectively, the content
of the consistency contract and of the performance contract, associated to that
service.

8.3 The system-specific components

The system-specific components include: the Host Monitor, the Metrology Server
(presented in section 6.8), the Response Time Estimator (presented in section
6.9), the Service Deployment and the Information Repository (as shown in Fig-
ure 8.1). There is a Host Monitor instance running on each machine that is
hosting a replica or that could host a replica of any service. The Host Monitor
captures the measures for dynamic metrics, including: the CPU utilization, the
disk I/O utilization and the number of active processes. In each domain, there
is a Metrology Server. The Metrology Server stores and provides access to the

- 121 -

Chapter 8 The Owverall Replicated Service Hosting System

Replica Hosting Infrastructure

Sclient1™, ,’)CIiEntZ\\‘ ('ClientS\\‘ i i sclientd [/ clients \\‘
MS: M91T0|OQY_ Server SD: Service Deployment
HM: Host Monitor IR: Information Repository

RTE: Response Time Estimator

Figure 8.1: The system-specific components

measures collected on the hosts, belonging to that domain, by the Host Mon-
itors. The Metrology Server contains a Response Time Estimator instance, that
approximates the response time expected to be obtained from a given host in
the domain, by executing a given workload on that host. Also, each replica
host contains a Service Deployment instance (realized by N. Gibelin [23]), that
deploys and instantiates on that host, a replica of any service. The Information
Repository is instantiated on every replica host and on every client host.

8.4 The representation of a replicated service

Each replicated service is represented thanks to three main classes: the service
implementation class, the Server-Side Replica Wrapper and the Client-Side Replica
Wrapper. The service implementation class is provided by the service supplier,
within the archive, containing all the sources needed, in order to instantiate the
service. The Server-Side Replica Wrapper and the Client-Side Replica Wrapper
provide the replicated version of any service, by enriching the service logic with
the consistency management, required so as to apply correctly each operation
call at all the replicas and to enforce the replicas convergence. The feature of
replica consistency management is provided transparently, both for the service
suppliers and for the clients. Both Server-Side Replica Wrapper and Client-Side
Replica Wrapper classes are generated statically, from the XML specification of
the service-specific consistency contract and of the performance contract. The
following two subsections present the two classes.

8.4.1 The Server-Side Replica Wrapper

The server-side replica wrapper encapsulates the local instance of the service. It
provides for each operation of the replicated service, the method <O;> apply.
O; represents a numerical identifier generated for the current operation, accord-
ing to the order of the operations declaration within the XML specification
of the consistency contract. The method <O;> apply takes as parameter an
Access object, representing an invocation to that operation and performs as fol-
lows. Firstly, the wrapper desencapsulates the invocation’s arguments from the

- 122 -

8.4 The representation of a replicated service

Access object. Then, the wrapper invokes the operation on the local service
instance. Finally, the wrapper reifies the result of the operation call and inserts
it into the Access object.

The appropriate <O;> apply method is determined from a dispatcher method
apply, by extracting the identifier <O; > of the called operation from the Access
object, given as argument.

8.4.2 The Client-Side Replica Wrapper

The base class The client-side replica wrapper class, associated to a given
replicated service, is derived from a base class, implemented independently of
the requirements of a particular service. This class contains a map, associating
to each operation, its workload and the threshold on response time required
to be observed by the invocations to that operation. The constructor of the
base class obtains the reference of the Replica Manager instance, attached to the
domain to which the client’s host belongs. In this respect, the wrapper queries
the local Information Repository instance, passing to it as parameters the name
of the service and the number of the AS to which the client host belongs. The
Information Repository returns to the client the reference of the Replica Manager,
responsible for the client’s AS.

The wrapper contacts the Replica Manager instance, in order to find the
suitable replica for the client, before the first call issued by the client and,
dynamically, when the workload class of the operation calls changes and when
the threshold on the response time has been violated, for a given percentage of
requests.

The base class provides the method apply, parameterized by an Access ob-
ject. This method is called for each operation invocation, issued by the client
and contains three actions. The first action is performed if the workload class of
the current operation call changes from the workload of the previous one. If this
is the case, then the wrapper contacts the Replica Manager in order to reevaluate
the suitability of the current replica. The second action consists in the distant
call to the replicatedAccess method of the Consistency Manager instance, associ-
ated to the replica selected for the client. The third action consists in collecting
the measure of the response time observed for the operation call. The response
time is approximated by the time interval elapsed between the beginning and
the end of the replicatedAccess call. The perceived response time is compared
against the required threshold, and the number of satisfied or unsatisfied re-
quests is incremented, according to the comparison result. If the percentage of
unsatisfied operation calls reaches a given threshold, then the client-side replica
wrapper sends to the Replica Manager, a rebinding request containing the num-
ber of satisfied requests and the number of unsatisfied requests. If, by processing
the rebinding request, the Replica Manager reselects another replica, then the
client-side replica wrapper will redirect the client to that replica.

The Client-Side Replica Wrapper generated for a given service The
client-side replica wrapper, associated to a given service, has the same public
interface as the underlying service. For each operation of the service, the replica

- 123 -

Chapter 8 The Owverall Replicated Service Hosting System

wrapper provides its replicated version, which calls the replicatedAccess method
of the Consistency Manager instance, running on the replica, to which the client
has been bound.

The replicated operation version has the same signature as the correspond-
ing service operation and contains three main actions. The first action reifies
the current invocation into an Access object. The second action consists in the
call to the apply method of the base class, with the reified access, passed as
parameter. The latter action desencapsulates the result of the invocation from
the Access object, and returns it to the client.

The client-side replica wrapper is useful especially when there is some state
to be maintained at the client-side. Examples of such state include the sessions,
as defined in Bayou, or the response time observed by the operation invocations.
The client-side replica wrapper also defines the access attributes (e.g. the caller
attribute), that are known only by the access caller.

8.4.3 The generation tools
8.4.3.1 The generation tool for the Replica Wrappers

We consider two tools, called Sever-Side Generator and Client-Side Generator,
used in order to generate the replicated version of each service. Both generators
takes as input the XML file containing the service-specific consistency contract
and the performance contract.

The Server-Side Generator generates as output two classes: the ParamFac-
tory class (which reifies the invocations to each operation) and the Server-Side
Replica Wrapper class (which applies the reified operation invocations, on the
local service instance). In order to generate the two classes, the Server-Side Gen-
erator exploits the specification of the operations signatures. Precisely, in order
to abstract the invocations to a given operation, the generator needs the types
and the names of the parameters of that operation. The generator reifies each
parameter, by a ParamWrapper object, wherein it encapsulates the parameter
value. The reified parameters are inserted in the Access object, that represents
the current invocation.

Also, in order to apply a refied invocation to a given operation, the generator
needs the operation name, the types of the parameters and of the type of the data
returned. With these informations, the generator desencapsulates the arguments
from the Access object, invokes the operation, reifies the result and inserts it
into the Access object.

This generator also determines the replica selection criterion and the rebind-
ing criterion, from the specification of the workloads and of the response time
bounds, assigned per operation. In this respect, it uses the algorithms that we
described in sections 7.4.1 and 7.5.1.

The Client-Side Generator also generates as output two classes: the Param-
Factory class (generated as in the case of the previous generator) and the Client-
Side Replica Wrapper (that provides transparent access to the remote replica

- 124 -

8.4 The representation of a replicated service

instance). The generator includes in the body of the Client-Side Replica Wrap-
per’s constructor, a map that associates to each operation, its workload and
the required response time threshold. The methods of the generated wrapper
correspond to the service operations. In order to generate a method, associated
to a given operation, the generator exploits the parameters names and the type
of the returned data. The generator uses these informations, in order to reify
the current invocation into an Access object (by using the ParamFactory class)
and to desencapsulate the result of the distant operation call (in order to return
it to the client).

Contract® contract = new Contract();

The tag operation is processed as follows:
name_ fct="weight getValue(id)”
generate the function name_ fct of type WeightFct using getValue(weight)
contract->weights[get Value(id)|=&name_ fct
if (getValue(type)=="update”)
contract->updates ids.push back(get Value(id))

The tag quality of observable state is processed as follows:
if (getValue(operations) {
contract->state_ quality=new PropagationDelayMonitor()
for each op € getValue(operations)
contract->state_quality->propag_delay|op]|=getValue(propagation_delay)
} else {
if (umetric=getValue(user-defined metric))
contract->state _quality= new umetric();
else
contract->state _quality = new TactConditionMonitor(getValue(numerical_error), get-
Value(order error), getValue(staleness))

}

The tag concurrency control is processed as follows:
if (getValue(type) == “pessimistic”)
contract->conc_mode = pessimistic;
else contract->conc_ mode = optimistic;
contract->state _quality->setStabilizationDelay(get Value(stabilization delay))

The tag concurrency control is processed as follows:
for each pair € getValue(pair_operations) {
name_ fct="resolve ” + pair.opl +” ” 4+ pair.op2
generate the function name_fct of type ResolutionFct, using getValue(condition) and get-
Value(resolution)
contract->relations|pair|=&name_ fct

}

The tag dependency control is processed as follows:
if (getValue(dependency type))
contract->pred _dependencies=getValue(dependency_ type)

if (getValue(user dependency))
for each pair € getValue(pair_operations) {
name_ fct="dependency ” + pair.opl +” ” + pair.op2
generate the function name_fct of type DependencyFct, using getValue(user_dependency)
contract->user _dependencies|pair|=&name_ fct

}

Figure 8.2: Parsing an XML service-specific consistency contract

- 125 —

Chapter 8 The Overall Replicated Service Hosting System

8.4.3.2 The generation tool for the Contract object

Figure 8.2 shows how an object Contract is generated from the XML specification
of the service-specific consistency contract by the ContractFactory. We show
briefly the code for processing each tag, met during the parsing of the XML
specification. The value of an attribute is obtained using the primitive getValue,
with the attribute name, given as argument.

Parsing the tag operation generates the weight function (of type WeightFct),
from the arithmetical expression, specified within the attribute weight. The
arithmetical expression exploits the numerical arguments and/or the numerical
attributes of the access, in order to provide the integer weight. The association
of the operation identifier to the function name is inserted in the Contract.
Furthermore, if the operation is of type update, then its identifier is included in
the Contract.

Parsing the quality of observable_state tag instantiates the StateMonitor
object. This object could be the PropagationDelayMonitor with the propagation
delay attached per group of operations, the TactConditionMonitor instantiated
with the values of the metrics bounds, obtained from the tag’s attributes, or
a user-defined StateMonitor. Parsing the concurrency control tag conducts to
the generation of a resolution function (of type ResolutionFct) for each pair of
operations potentially conflicting or non-commutative. The association of the
pair of operations to the function name is inserted in the Contract.

Parsing the concurrency control tag determines the concurrency control
mode and the stabilization delay.

Parsing the dependency_ control tag inserts in the Contract, the required pre-
defined dependencies or user-defined dependencies. A user-defined dependency,
attached to a group of operations, is represented by a boolean function, automat-
ically generated from the boolean expression contained in the user dependency
attribute.

int weight O1(Access& a) {
return (a.getParam(1)->toInt())/2;

PairAccesses* resolve addCourse addCourse(Access& al, Access& a2) {
if (*al.getParam(1) == *a2.getParam(1))
if (al.getAttrib(weight) >= a2.getAttrib(weight))
return new PairAccesses(new Access(al));
else
return new PairAccesses(new Access(a2));
return NULL;

}

Figure 8.3: Examples of a weight function and a conflicts resolution function

Figure 8.3 shows an example of the weight function weight O1, that com-
putes the integer weight, by an arithmetical expression, wherein the value of first
argument of the access is divided by 2. This figure also shows the conflicts res-
olution function resolve_addCourse_addCourse, generated from the XML speci-
fication in Figure 3.3, for the pairs of invocations to the operation addCourse of

- 126 —

8.5 The service-specific components

the e-learning service. Firstly, the function checks if the two accesses have equal
values for their first argument. If true, then the function accepts the access with
the biggest weight value.

8.4.3.3 The generation of the program assembling the building blocks

An important issue is how to realize the interaction between the replica consis-
tency management code, common to all services, and the service-specific objects,
such as the Contract and the Server-Side Replica Wrapper. In order to solve this
issue, we instantiate the system components from a program, automatically
generated for each service, by the Contract Factory component.

The function main of the program creates successively the following objects:
the Contract (generated as described in section 8.4.3.2), the Consistency Manager
object, the service instance and the Server-Side Replica Wrapper. The service
instance is created by using the class name specified in the attribute name,
of the tag service. The Consistency Manager instance is activated as a server,
configured with the Contract and the three resolvers: Propagator, Scheduler and
DependencyResolver.

8.5 The service-specific components

The service-specific system components include the Consistency Manager (pre-
sented in chapter 4), the Server-Side Replica Wrapper, the Client-Side Replica
Wrapper (presented in section 8.4) and the Replica Manager (presented in sec-
tion 7.6). The Server-Side Replica Wrapper and the Client-Side Replica Wrapper
components are specialized for each replicated service, into specific classes. The
underlying Consistency Manager and Replica Manager classes are general to all
services, only the parameters with which they are instantiated differ from a
service to another.

Figure 8.4 shows the distribution of the service-specific components. In or-
der to represent the replica wrappers, we used the notations proposed in [61].
On each machine that is hosting a replica of a given service, there is a Consis-
tency Manager instance and a Server-Side Replica Wrapper instance. The Con-
sistency Manager enforces the constraints contained within the service-specific
consistency contract. The Replica Manager provides access for the clients to
the service, by selecting the suitable replica, at the client-connection time and
dynamically, when the current replica provides unsatisfactory performance. In
order to achieve scalable replica management, we instantiate, for each replicated
service, one Replica Manager instance per domain.

Figure 8.4 also shows the interactions between the service-specific compo-
nents, that are needed so as to reply to the client’s requests and to enforce repli-
cas convergence. The Client-Side Replica Wrapper obtains the suitable replica
from the Replica Manager, responsible for the client’s domain. The Consistency
Manager, running on the replica, selected for the client, intercepts the client
requests sent by a Client-Side Replica Wrapper, and apply them on the colocal-
ized Server-Side Replica Wrapper. The Server-Side Replica Wrapper invokes the

- 127 -

Chapter 8 The Overall Replicated Service Hosting System

Replica Hosting Infrastructure

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

domainl —eeoee domain2
K replical N
e O
replica(ed;\%%‘(\CM
| select
' rebind
(RMm)
[> Client-Side Replica Wrapper [51] () service instance
[< Server-Side Replica Wrapper [51] RM: Replica Manager

CM: Consistency Manager

Figure 8.4: The service-specific components

requests on the local service instance. Each Consistency Manager instance coop-
erates with its peers Consistency Manager, in order to guarantee that the client
requests are applied correctly at all the replicas, according to the service-specific
consistency contract. The Client-Side Replica Wrapper also sends to the Replica
Manager rebinding requests, containing the number of requests that satisfied
the performance contract, and the number of requests that violated it. The
Replica Manager instances also collaborate between them, in order to enforce
the convergence of the replicated Replica Repository.

For simplicity of the components representation, we omitted from 8.4, the
interactions between the service-specific components and the system-specific
components. In fact, the Replica Manager is the only service-specific component,
that uses the functionalities of the system-specific components. Precisely, it uses
the Metrology Server, in order to obtain the values of the response time estimated
from the available replicas and the capacities of the highly used resources.

8.6 The utilization of the Replicated Service Hosting
System

The Replicated Service Hosting System is made accessible to the users by means
of two modules: the service-supplier module and the clients module. Their C++
interface is showed in Figure 8.5.

8.6.1 The service supplier module

The service-supplier module contains primitives, that register a service within
the Replicated Service Hosting System and start/stop the service on/from a
given set of hosts. When the service-supplier wishes to register his service within
the Replicated Service Hosting System, he provides the deployment description,
and the description of the consistency contract and of the performance contract.
The service registration contains three main actions. The first action writes the

- 128 —

8.6 The utilization of the Replicated Service Hosting System

//the service-supplier module

short registerService(char* service, char* deployment descr, char* contract descr);
short startService(char* service, short nb _hosts, char** hosts);

short stopService(char* service, short nb_hosts, char** hosts);

//the client module
short bind(char* service);

Figure 8.5: The interface of the Replicated Service Hosting System

short bind(char* service) {
lookup consistency contract
generate the class representing the client-side replica wrapper
compile the class

}

Figure 8.6: The algorithm of bind

two descriptions in two separate files. The string concatenating the locations of
the two files is attached to the service name, as the key. This mapping is stored
within the Information Repository. The second actions consists in the genera-
tion of the Server-Side Replica Wrapper, attached to the service, the scheduling
functions, the weights functions and the program instantiating the Consistency
Manager and the Server-Side Replica Wrapper. The third action consists in the
generation of the executable needed for instantiating the Consistency Manager
and the Server-Side Replica Wrapper.

The primitive for starting a service, on a given set of hosts, relies on the Ser-
vice Deployment’s primitives, that deploy and activate a service on a given host
[23]. These primitives make use of the service deployment description, which is
obtained from the Information Repository, by calling its method lookupDeploy-
ment.

8.6.2 The client module

The client module contains the primitive bind, that provides the Client-Side
Replica Wrapper in three main steps, depicted in Figure 8.6. Firstly, the primitive
obtains the XML description of the consistency contract and of the performance
contract, by calling the method lookupContracts of the Information Repository.
This description is stored locally within a temporary file. Secondly, the primitive
generates the class representing the Client-Side Replica Wrapper, by calling the
Client-Side Replica Wrappers Generator, with the name of that file, as argument.
Finally, the primitive compile the class in order to obtain the object file with
which the client application will be linked.

Each client is identified by a string, that concatenates two strings, contain-
ing, respectively, the IP address of the client host and the user name with which
the client is logged. This identifier is included within the operation calls, that
the client initiates.

- 129 -

Chapter 8 The Overall Replicated Service Hosting System

8.7 Conclusion

In this chapter, we showed the global Replicated Service Hosting System, in-
tegrating all the components needed for satisfying the consistency constraints
and the response time requirements. An important contribution of our work,
that we show in this chapter, is providing the consistency and the performance
guarantees transparently for the clients and semi-transparently for the service
providers (which need to specify only the consistency and the response time
requirements). We provide this feature by integrating the service logic with the
replica consistency management, transparently for the service suppliers and for
the clients by using client-side and server-side replica wrappers. Each service
has associated two replica wrappers: a client-side replica wrapper and a server-
side replica wrapper. Both of them automatically are generated by our system
from the service supplier’s specification.

- 130 -

Part IV

Conclusion and Perspectives

- 131 -

Chapter 9

Summary of our Replication
Approach

We proposed a Replicated Service Hosting System, customizable by service-
specific guarantees, with respect to the response time expected from the replica
assigned to the client, and with respect to the replica consistency. A service
encapsulates data, made accessible to the clients by a well-defined interface,
containing a set of operations.

9.1 Specifying and enforcing the service-specific con-
sistency contract

The consistency contract is needed so as to preserve the service correctness
and to bound the discrepancy between the state of a given replica and the
ideal replica state. The service-specific guarantees are specified statically by
the service supplier. The consistency contract configures a generic consistency
protocol, that treats the operation calls uniformly, independently of the un-
derlying service semantics. The constraints, contained within the consistency
contract, are enforced for each operation call, transparently for the final clients.
We proved that this protocol works correctly and it has a reasonable overhead.

9.2 Specifying and enforcing the performance con-
tract

The performance contract containing requirements on response time, attached
to each operation, is also specified statically by the service supplier. The en-
forcement of the response time requirements relies on the replica selection cri-
terion and on the rebinding criterion, that are inferred automatically from the
performance contract.

The replica selection criterion makes use of a response time estimator, or of
the processing capacities of the resources needed by the service. The response
time estimator is defined by means of a function, wherein each resource has
associated a weight, matching the degree with which that resource impacts the

- 133 -

Chapter 9 Summary of our Replication Approach

response time, perceived for each request. In order to obtain this function,
we used the regression-based statistical method. The replica selection criterion
customizes a generic replica selection protocol, which is invoked when a client
wishes to access the service.

The rebinding criterion specifies the percentage of operation calls for which
the non-satisfaction of the performance contract is tolerated. This criterion
customizes a generic rebinding protocol, invoked when clients send rebinding
requests, notifying unsatisfactory performance.

We implemented the replica selection and the rebinding protocols, and we
validated them experimentally. We obtained four main positive results. Firstly,
our approach for response estimation is reasonably accurate, the values of the
estimated response time are close to the real response time measure in the case of
workloads, containing one or two bottleneck resources. Also, the variation of the
estimated response time matches the variation of the measured response time.
Secondly, our estimation approach works well even if it relies on measures with
a bounded degree of inaccuracy, with respect to the actual measures. Precisely,
we were able to set experimentally a threshold on the measures inaccuracy, so
that the response time estimation (and consequently the replica selection) re-
mains satisfactory. Thirdly, we showed the benefit of using dynamic rebinding
over a static binding of clients to replicas. Precisely, when using rebinding, the
percentage of requests that satisfied the performance contract increases signif-
icantly. Finally, we showed that the overhead of the replica selection protocol
increases linearly with the number of replicas considered within the selection
scope. However, the replica selection overhead, obtained when there are 100
available replicas, remains insignificant with the response time expected for the
service requests.

9.3 Summary of the Replicated Service Hosting Sys-
tem features

The features, that our Replicated Service Hosting System provides, include:

o the flexibility of the performance contract, which matches the service work-
load and the flexibility of the consistency contract, which matches the
service semantics;

e the customizability of the replica selection criterion and of the rebinding
criterion, so as to satisfy the performance contract;

e the scalability, with respect to the domains count, replicas count and
clients distribution;

e the replication transparency, so that the clients access the service using
the same interface;

e the accommodation of the replicas hosts heterogeneity;

e the extensibility feature, so as to add new estimators for the response time
or for other service-specific metrics (e.g. data throughput);

- 134 -

9.4 Discussion

e semi-decentralized management of replicas, at domain level; the Replica
Manager instances share only the list of available replicas;

e location-transparency of system components;

e our replication approach works for several types of services, including Data
Objects and Web applications;

9.4 Discussion

Other service-specific metrics Our approach can be easily extended to
support other service-specific metrics, besides the response time. Examples of
other service-specific metrics include: the data throughput and the availability.
The service supplier specifies its requirement, within the contract similarly to
the case of the response time. Also, the system should provide at least one
estimator for each service-specific metric. The throughput can be estimated
based on the mazimal_bandwidth and the workload of active requests (i.e. by
allocating the maximal bandwidth equally among the requests that need this
resource). The availability can be estimated as the minimum between the host
availability and the network availability.

Open questions The replication approach that we proposed, raises several
open questions, including:

1. could a response-time estimator be used as a base metric for other service-
metrics, like the data throughput?

2. could the threshold on the divergence metrics be inferred automatically
from the semantics of the service data?

3. when using the optimistic replication, how to provide to users, some prob-
abilistic guarantees about the success of their tentative updates?

4. how to formalize the tradeoff between the replication accuracy (i.e. the
degree of satisfaction of the performance requirement) and its cost (i.e.
the measure of the resources consumed so as to satisfy the contract)?

- 135 -

Chapter 9 Summary of our Replication Approach

- 136 —

Chapter 10

Perspectives

10.1 Consistency management under replica discon-
nections

10.1.1 The organization of replicas

Until now, we considered that the replicas are fully connected. Unfortunately,
this is not always the case. A subject to consider as future work is the case when
replicas have intermittent connections to the group, due to voluntary or involun-
tary disconnections. We sketch the solution we envisage, under this assumption.

We divide the replicas into two categories, called primary-level replicas and
secondary-level replicas, as shown in Figure 10.1.

O\ /O
O— T
@ primary-level replica
<~—0

O secondary-level replica

Figure 10.1: Replicas organization

The replicas in the former category are strongly connected with each other,
while the others are only weakly connected. A secondary-level replica is attached
to a single primary-level replica. This assignment can change dynamically. A
primary-level replica has references of all other primary-level replicas and the
references of the secondary-level replicas that are attached to it. A secondary-
level replica has one main reference to the primary-level replica to which it is
attached. It also maintains the references of the other primary-level replicas,
in case when it will be attached another primary-level replica. To deal with
disconnections, the consistency protocol needs several extensions, that will be
presented in the next section.

- 137 -

Chapter 10 Perspectives

10.1.2 Extensions of the consistency protocol

We distinguish between the consistency protocol performed by a primary-level
replica, noted pr, from that of a secondary-level replica, noted sr.

The protocol performed by a primary-level replica pr maintains a log
containing the scheduled updates issued by itself or by the group of secondary-
level replicas attached to it. For reasons of query efficiency, we choose to divide
the log into several logs, each one maintaining the accesses to a given operation,
issued at a given replica.

The primary-level replicas represent the set of schedulers that perform the
pessimistic concurrency control. Also, only replicas from this group compute
schedules, by reconciliating updates, in the case of the optimistic concurrency
control mode.

pr sends its locally-issued updates, as well as the scheduled updates, that it
reconciliated (as a coordinator), to the other primary-level replicas and to its
secondary-level replicas.

pr handles the updates received from a peer (in particular from the coordi-
nator in the case of updates scheduled optimistically), as described in Section
4.4. In addition, pr performs a supplementary step which depends on the peer
type. If the peer is a primary-level replica, then pr forwards the newly-received
updates to the secondary-level replicas attached to it. If the peer is a secondary-
level replica, then pr forwards the updates to the other secondary-level replicas,
attached to it, and to the primary-level replicas.

pr answers a request for updates, by forwarding the request to all primary-
level replicas (i.e. including itself). Each primary-level replica replies with its
accepted accesses, that are absent from the received history. Then, pr aggregates
the partial replies into a group of accesses, which it returns to the requester.

When pr receives a scheduling request from a secondary-level replica, it
treats the update, contained within the request, as it has been issued locally.
Precisely, it determines the acceptance execution order of that update, by com-
bining the local scheduling decisions of all primary-level replicas. This schedul-
ing decision is transmitted back to the issuer of the request.

The protocol performed by a secondary-level replica sr sends its up-
dates (tentative or commutative) only to the primary-level replica, to which it is
attached. The Propagator of sr sets a rejection flag, if the bound on the numer-
ical error is exceeded, but sr can’t send its updates because it is disconnected.

In the case of the pessimistic concurrency control, the group of schedulers,
known by sr, contains only its primary-level replica. After a reconnection,
sr resends to its primary-level replica the updates, whose propagation delay
elapsed, but that are still in the outgoing state. At this time, it also gets the
missed updates from the primary-level replicas.

- 138 -

10.1 Consistency management under replica disconnections

10.1.3 Deciding primary vs. secondary-level replicas

The first replica created is a primary-level replica. The group of primary-level
replicas changes dynamically, after the creation of a new replica or after the
failure or the disconnection of a primary-level replica.

Each replica is characterized by two parameters, called host availability and
network availability. These two parameters indicate respectively the probabil-
ity with which the replica host is permanently available and the probability
with which the replica host is permanently connected to the network. If the
values of these two parameters are superior to predefined thresholds, and the
host can communicate with all the primary-level replicas, then the new replica
is a primary-level replica. Otherwise, it is a secondary-level replica and it is
attached the closest primary-level replica, in terms of ASes hops number.

When a primary-level replica isn’t able to communicate with another primary-
level replica, it runs an algorithm for selecting the group of primary-level repli-
cas. This algorithm works by maximizing the number of primary-level replicas,
that are fully connected. In the worst case, the replicas organization is reduced
to the classical primary-backup replication model [47].

When a secondary-level replica sr finds out that its primary-level became un-
available, it runs an algorithm that assigns to it another primary-level replica. If
no primary-level replica can be contacted, this indicates that sr is disconnected
from the replicas group.

10.1.4 The protocol correctness under disconnections

In the case of disconnections, the safety properties are provided in the same
way, but the maximum delays, to reach various access states, change.

In particular, obtaining the predecessors at the initiator (i.e. the transition
getExecPreds) may timeout, leading to the state rejected. Consequently, the de-
lay to reach the state ready becomes:
min{timeout, |a.preds| * maz__propagation_delay},
where timeout is a system-defined parameter, stating how long the replica may
wait for the predecessors of an access.

The maximum delay needed to reach the state received is also bounded. We
have to guarantee that an update, sent by the replica r; to the primary-level
replica r;, will arrive sooner or later at all replicas. We distinguish between
the cases when r; is a primary-level replica or a secondary-level replica, and
between the cases when r; and r; has the same view or different views of the
primary-level replicas group. We note the view of r; by V; and the view of r;
by Vj.

1) Let r; be a primary replica, that calls send(a)

1.1) if V; ==V}, then r; forwards a to its secondary-level replicas. The maxi-
mum delay for a, to be received by all the secondary-level replicas, is:
C(a).propagation__delay + resend_ frequency + down _interval,

- 139 -

Chapter 10 Perspectives

getPlacementScope(service [, domains_out]) {
determine the bindings distribution (D;, nb_bindings;), nb_ bindings; > 0,1 = 1, n.
fori=1ton {
access_frequency; = nb_bindings; / (14 nb_ replicas(service, D;))
determine the percentage bad perf; of unsatisfied requests in D;, since the last replica creation
load domain; = access frequency; * bad perc;

}

get Dy, such that load domain; = max{load domain;/D; ¢ domains_ out}, i=1, n

return Dy,

}

Figure 10.2: The algorithm for creating the placement scope

where resend_ frequency defines the frequency with which a primary-level
replica resends the unacknowledged updates to its secondary-level replicas and
down_interval defines the maximum time period during which a secondary-
level replica may remain disconnected, before being excluded from the replica
group.

1.2) if V; <V}, then the primitive send returns ERROR, and r; sends to r; the
current primary-level replicas group. r; will re-send the update a to r;. The
maximum delay for the reception of a is computed as above.

1.3) if V; > V}, proceeds as in the case 1.1)

2) Let r; be a secondary-level replica, which calls send(a).

2.1) if V; == Vj, then r; forwards a to all primary-level peers and to the
other secondary-level replicas. The maximum delay for a to be received by the
primary-level replicas is null. The maximum delay for a to be received by the
secondary-level replicas is computed as in the case 1.1).

2.2) if V; < Vj, proceeds as in the case 1.2)

2.3) if V; > Vj, proceeds as in the case 2.1)

10.2 Resolving the other replication decisions

Another subject for future work concerns the resolution of the other replication
decisions, including: replica creation, replica placement, replica migration and
replica deletion. We sketch the approach, which we envisage, for integrating
these decisions within our Replicated Service Hosting System.

10.2.1 The placement scope

We define the placement scope as the group of machines, which candidate for
hosting the replicas, that will be created.

The algorithm for creating the placement scope (Figure 10.2) combines the
distribution of client bindings with the performance contract, as follows. Firstly,
it obtains from the local Replica Repository, the distribution of client bindings
per domains. Secondly, for each domain D;, originating client requests, it com-
putes the access frequency, as the ratio between the number of client bindings
to replicas in that domain and the number of replicas available in that domain.

- 140 -

10.2 Resolving the other replication decisions

create(service[, scope]) {

if (scope is null)
scope = getPlacementScope(service);

hosts = getHosts(scope);

while (hosts is null) and (scope is not null) {
new_scope = getPlacementScope(service, scope);
if (new_scope)
hosts = getHosts(new _scope);
SCOpe = new _ scope;

if (hosts is null) return null;
criterion—=getPlacementCriterion(service);
selected = rank(hosts, criterion);
if (selected)

place(service, selected);
return selected;

}

place(service, host) {
instantiate service on host
replica = createReference(host);
add(service, replica);
return replica;

}

delete(service, replica) {
stops service instance from the replica’s host
delete(service, replica);

}

migrate(service, replica|, outside]) {
if (outside)
create(service);
else
create(service, crt domain);
delete(service, replica)

}

Figure 10.3: The other replication base primitives

Next, it computes for each domain, the product, noted load_ domain, between
the access frequency and the percentage of unsatisfied requests, which occurred
since the last replica creation (also obtained by querying the local Replica Repos-
itory). The placement scope is chosen as the domain for which load_ domain has
the largest value. An optional parameter contains a list of domains that must
be ignored when looking for the domain with the largest value of load_ domain.

10.2.2 The replication primitives

The protocols resolving the creation, the placement, the deletion and the mi-
gration decisions are encapsulated within the primitives create, place, delete and
migrate (showed in Figure 10.3).

The primitive create resolves the creation decision. It takes a mandatory
argument, which is the service name and an optional argument which specifies
the list of domains, where the new replica should be created. If this is empty,
then the new replica will be created in the placement scope (computed by the
algorithm in Figure 10.2). If the placement scope doesn’t contain any available
hosts, then it is augmented incrementally with new domains, until at least an

- 141 -

Chapter 10 Perspectives

available host is found. The new replica host is determined, by ranking the
available hosts by their values obtained for the metric contained in the place-
ment criterion. If a suitable host has been found, then the primitive place is
invoked, in order to resolve the placement decision.

The primitive place creates a new service instance on the chosen host, and
inserts its reference into the replica repository.

The primitive delete resolves the deletion decision, by stopping the local ser-
vice instance and by deleting its reference from the replica repository.

The primitive migrate resolves the migration decision. This primitive has
two mandatory parameters, which are the service name and the replica that
should be moved. Optionally, the primitive takes a third parameter, which has
two possible options: inside the domain, outside the domain. The former option
requires that the replica should be moved in the current domain. This option is
pertinent when the number of the replicas in the current domain is below the
admitted replication degree. In this case, the host of the new replica is chosen
among the hosts available in the current domain. The latter option is pertinent
when the maximum replication degree within the current domain has been ex-
ceeded. In this case, the replica should be moved in a different domain within
the placement scope. In both cases, the primitive migrate invokes the primitive
create, followed by the primitive delete.

Each Replica Manager instance controls the evolution of the replicas which
belong to the domain, to which it is attached. Precisely, it places replicas only
in its domain, it migrates overloaded replicas and deletes unuseful replicas only
from its domain. In other words, the methods place, migrate and delete can be
invoked only by the Replica Manager instance attached to the replica’s domain.

The creation and migration decisions claims for the consistency of the bind-
ings repositories, maintained by the Replica Managers, located in different do-
mains. As the eventual consistency of the bindings repositories suffices, each
Replica Manager should propagate periodically to its peers, the updates that
it performed to its local repository. Also, no concurrency control is needed,
because the updates are commutative and non-conflicting.

10.2.3 Predefined policies for replica creation decision

We configure the replica creation decision by two main policies, defined as fol-
lows: 1) if y false positive reactions occur during a given time period, then check
the creation criterion, in order to determine if a new replica is needed;

2) if z no adaptation reactions occur during a given time period, then check the
creation criterion, in order to determine if a new replica is needed;

These policies aim to limit the number of reactions of type false positive,
respectively, of type no adaptation. The conditions formulated within these

- 142 -

References

policies indicate that there is a global problem, that should be further investi-
gated by checking the creation criterion, in order to determine if the addition
of a new replica could improve the clients’ perceived performance.

Other perspectives for continuing this work include:
1. inferring automatically the service workload;

2. detailing what are the valid combinations of consistency options (with
respect to the service semantics and to the execution environments);

3. checking automatically if a particular consistency contract is valid (and
rejecting it, if this is not the case);

4. providing the adaptation feature, so as to adapt the consistency options
according to the environment conditions;

5. comparing experimentally various response time estimators, by varying
the actual system and network conditions;

6. providing estimators for other service-specific metrics, like the data through-
put and the availability;

7. studying experimentally when replica creations and deletions should be
performed, at run-time;

8. formalize the performance guarantees that the system is able to provide
(with a given probability);

- 143 -

References

- 144 -

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

18]

[9]

F. Akal, C. Turker, H.S. Schek, Y. Breitbart, T. Grabs, and L. Veen. Fine-
Grained Replication and Scheduling with Freshness and Correctness Guar-

antees. In Proceedings of the 31nd International Conference on Very Large
Data Bases (VLDB), Trondheim, Norway, 2005.

R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caching Issues in an
Information Retrieval System. ACM Transactions on Database Systems,
15(3):359— 384, 1990.

B. Badrinath and K. Ramamritham. Semantics-Based Concurrency Con-
trol: Beyond Commutativity. ACM Transactions on Database Systems,
17(1):163-199, 1992.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’'Neil. A
Critique of ANSI SQL Isolation Levels. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, San Jose, Cali-
fornia, USA, 1995.

G. Brun-Cottan and M. Makpangou. Adaptable Replicated Objects in
Distributed Environments. Technical Report RR-2593, Inria, May 1995.

V. Cardellini, M. Colajanni, and P. S. Yu. Geographic Load Balancing
for Scalable Distributed Web Systems. In Proceedings of the 8th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2000.

R. Carter. Performance Measurement and Prediction in Packet-Switched
Networks: Techniques and Applications. PhD thesis, Boston University,
Boston, MA, 1997.

I. Chabbouh and M. Makpangou. Caching Dynamic Content with Auto-
matic Fragmentation. In Proceedings of the 7th International Conference on
Information Integration and Web Based Applications & Services (11 WAS),
Kuala Lumpur, Malaysia, October 2005.

M. Chen and W. Mao. Anycast By DNS Over Pure IPv6 Network. De-

partment of Electrical Engineering and Computer Science, University of
California, Berkeley, 2001.

— 145 -

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Implementing a
Caching Service for Distributed CORBA Objects. In Proceedings of the
IFIP/ACM Middleware’00, 2000.

Cisco. Cisco Content Routing Protocols. In white paper, March 2001.

L. Cox and B. Noble. Fast Reconciliations in Fluid Replication. In Proceed-
ings of the 21th IEEFE International Conference on Distributed Computing
Systems (ICDCS), Phoenix, Arizona, USA, April 2001.

M. Crovella and R. Carter. Dynamic Server Selection Using Bandwidth
Probing in Wide-Area Networks. In Proceedings of the Conference on Com-
puter Communications (INFOCOM), 1997.

K. Daudjee and K. Salem. Lazy Database Replication with Snapshot Iso-
lation. In Proceedings of the 32nd International Conference on Very Large
Data Bases (VLDB), Seoul, Korea, 2006.

Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Glob-
ally Distributed Content Delivery. IEEE Internet Computing, 6(5):50-58,
2002.

7. Fei, M. Ammar, and E. Zegura. Multicast Server Selection: Problems,
Complexity and Solutions. IEEE Journal on Selected Areas in Communi-
cation, 20(7):1399-1413, 2002.

P. Felber and A. Schiper. Optimistic Active Replication. In Proceedings
of the 21st International Conference on Distributed Computing Systems
(ICDCS), Mesa, AZ, USA, 2001.

C. Ferdean and M. Makpangou. A Generic and Flexible Model for Replica
Consistency Management. In Proceedings of the International Conference
on Distributed Computing & Internet Technology (ICDCIT), Bhubaneswar,
India, 2004.

C. Ferdean and M. Makpangou. Exploiting Application Workload Char-
acteristics to Accurately Estimate Replica Server Response Time. In Pro-
ceedings of the Distributed Objects and Applications (DOA), Agia Napa,
Cyprus, October 2005.

C. Ferdean and M. Makpangou. A Fine-Grained Customizable Consis-
tency Protocol for Replicated Data Objects. In Proceedings of the Journées
Francophones sur la Coherénce en Univers Réparti (CDUR), Paris, France,
November 2005. CNAM.

C. Ferdean and M. Makpangou. A Response Time-Driven Server Selec-
tion Substrate for Application Replica Hosting Systems. In Proceedings of
the Symposium on Applications and Internet (SAINT), Phoenix, Arizona,
USA, January 2006.

— 146 -

References

[22] S. Gancarski, H. Naacke, E. Pacitti, and P. Valduriez. The Leganet System:
Freshness-Aware Transaction Routing in a Database Cluster. Information
Systems Journal, Elsevier, 2006.

[23] N. Gibelin and M. Makpangou. Efficient and Transparent Web-Services Se-
lection. In Proceedings of the International Conference on Service-Oriented
Computing (ICSOC), Amsterdam, Netherlands, 2005.

[24] Statistics Glossary. http://www.stats.gla.ac.uk/steps/glossary /presenting data.html.

[25] R. A. Golding and D. E. Long. The Performance of Weak-Consistency
Replication Protocols. Technical Report UCSCCRL-92-30, University of
California at Santa Cruz, July. 1992.

[26] J. Guyton and M. Schwartz. Locating Nearby Copies of Replicated Internet
Servers. In Proceedings of the Special Interest Group on Data Communica-
tion (SIGCOMM), Cambridge, MA, August 1995.

[27] J. Gwertzman and M. Seltzer. The Case for Geographical Push-Cashing.
In Proceedings of the 5th Workshop on Hot Topics in Operating Systems
(HotOS), Orcas Island, WA, USA, May 1995.

[28] A. Jebali and M. Makpangou. Replica Divergence Control Protocol in
Weakly Connected Environment. In Proceedings of the IEEE Interna-
tional Symposium on Network Computing and Applications, Cambridge,
MA, USA, 2001.

[29] A.M. Kermarrec, I. Kuz, M. Van Steen, and A. S. Tanenbaum. A Frame-
work for Consistent, Replicated Web Objects. In Proceedings of the
18th IEEE International Conference on Distributed Computing Systems
(ICDCS), Amsterdam, Netherlands, May 1998.

[30] A.M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube
Approach to the Reconciliation of Divergent Replicas. In Proceedings of the
20th ACM Symposium on Principles of Distributed Computing (PODC),
Newport, RI, USA, August 2001.

[31] J.J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda
File System. ACM Transactions on Computer Systems, 10(1), 1992.

[32] N. Krishnakumar and A.J. Bernstein. Bounded Ignorance in Replicated
Systems. In Proceedings of the 10th ACM Symposium on Principles of
Database Systems, Denver, Colorado, May 1991.

[33] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An Adaptive Framework
for Tunable Consistency and Timeliness Using Replication. In Proceed-

ings of the International Conference on Dependable Systems and Networks
(DSN), Bethesda, Maryland, 2002.

[34] R. Ladin, B. Liskov, and L. Shrira. Lazy Replication: Exploiting the Se-
mantics of Distributed Services. In Proceedings of the 9th ACM Symposium
on Principles of Distributed Computing, Quebec City, CA, August 1990.

— 147 -

References

[35]

[36]
[37]

[38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

V. Martins, E. Pacitti, and P. Valduriez. A Dynamic Distributed Algorithm
for Semantic Reconciliation. In Records of the 7th International Meeting
Distributed Data & Structures 6 (WDAS), Santa Clara, California, 2006.

Mathworld. http://mathworld.wolfram.com /leastsquaresfitting.html.

D. Mosberger. Memory Consistency Models. Technical report, University
of Arizona, November 1993.

Mysql. www.mysql.org.

B. Noble, B. Fleis, and M. Kim. A Case for Fluid Replication. In Pro-
ceedings of the Network Storage Symposium (NetStore), Seattle, WA, USA,
October 1999.

J. O’Brien and M. Shapiro. An Application Framework for Collaborative,
Nomadic Applications. In Proceedings of the International Conference on
Distributed Applications and Interoperable Systems (DAIS), Bologna Italy,
June 2006.

Chord P2P Overlay. http://pdos.csail.mit.edu/chord.

E. Pacitti, C. Coulon, P. Valduriez, and M.T. Ozsu. Preventive Replication
in a Database Cluster. Distributed and Parallel Databases, 18(3):223-251,
2005.

E. Pacitti, P. Minet, and E. Simon. Fast Algorithms for Maintaining Replica
Consistency in Lazy Master Replicated Databases. In Proceedings of the
25nd International Conference on Very Large Data Bases (VLDB), Edin-
burgh, Scotland, 1999.

E. Pacitti, E. Simon, and R. Melo. Improving Data Freshness in Lazy
Master Schemes. In Proceedings of the 18nd International Conference on
Distributed Computing Systems (ICDCS), Amsterdam, Netherlands, 1998.

C. Le Pape, S. Gancarski, and P. Valduriez. REFRESCO: Improving Query
Performance through Freshness Control in a Database Cluster. In Proceed-

ings of the International Conference on Cooperative Information Systems
(CooplS), Agia Napa, Cyprus, 2004.

F. Pedone and A. Schiper. Generic Broadcast. In Proceedings of the 13th
International Symposium on Distributed Computing (DISC), Bratislava,
Slavak Republic, September 1999.

F. Pedone, M. Wiesmann, B. Kemme A. Schiper, and G. Alonso. Under-
standing Replication in Databases and Distributed Systems. In Proceedings
of the 20th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), Taipei, Taiwan, 2000.

K. Peterson, M.J. Spreitzer, D.B. Terry, M.M. Theimer, and A.J. Demers.
Flexible Update Propagation for Weakly Consistent Replication. In Pro-
ceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP), Saint Malo, France, October 1997.

— 148 -

References

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

G. Pierre, M. Van Steen, and A.S. Tannenbaum. Dynamically Selecting
Optimal Distribution Strategies for Web Documents. IEEE Transactions
on Computers, 51(6):637-651, 2002.

G. Pierre and M. van Steen. Globule: a Collaborative Content Delivery
Network. IEEE Communications Magazine, 44(8), 2006.

N. Prequica, M. Shapiro, and J. Legatheaux Martins. Automating
semantic-based reconciliation for mobile transactions. In Proceedings of the
Conférence Francaise sur les Systémes d’Ezploitation (CFSE), La-Colle-
sur-Loup, France, October 2003.

C. Pu, W. Hseush, G. E. Kaiser, K.-L.. Wu, and P. S. Yu. Distributed Diver-
gence Control for Epsilon Serializability. In Proceedings of the 13th Interna-
tional Conference on Distributed Computing Systems (ICDCS), Pittsburgh,
USA, 1993.

M. Rabinovich and A. Aggarwal. Radar: A Scalable Architecture for a
Global Web Hosting Service. In Proceedings of the 8th World Wide Web
Conference (WWW8/Computer Networks), Toronto, Canada, May 1999.

M. Rabinovich, Z. Xiao, and A. Agrawal. Computing on the Edge: A
Platform for Replicating Internet Applications. In Proceedings of the 8th
International Workshop on Web Content Caching and Distribution, NY,
USA, September 2003.

Radware. Web Server Director. In white paper, 2002.

P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving
File Conflicts in the Ficus File System. In Proceedings of the USENIX
Summer Conference, Boston, MA, USA, June 1994.

G. Ricart and A K. Agrawala. An optimal algorithm for mutual exclusion
in computer networks. Communications of the ACM, 24(1):9-17, 1981.

L. Rilling, S. Sivasubramanian, and G. Pierre. High Availability and Scal-
ability Support for Web Applications. In Proceedings of the IEEFE Interna-
tional Symposium on Applications and the Internet, January 2007.

M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Selection Al-
gorithms for Replicated Web Servers. In Proceedings of the Workshop on
Internet Server Performance (WISP/SIGMETRICS), Madison, WI, June
1998.

F. B. Schneider. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. Department of Computer Science, Cornell
University, Ithaca, New York 14853.

M. Shapiro. La gestion des objets dans les systémes répartis de large échelle,
Habilitation o diriger les recherches. PhD thesis, Université Paris VI - Pierre
et Marie Curie, Paris, France, 2002.

- 149 -

References

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

M. Shapiro and N. Krishna. The three dimensions of consistency. In Pro-
ceedings of the Journées Francophones sur la Coherénce en Univers Réparti

(CDUR), Paris, France, November 2005. CNAM.

A. Singla, U. Ramachandran, and J. Hodgins. Temporal Notions of Syn-
chronization and Consistency in Beehive. In Proceedings of the 19th Annual
ACM Symposium on Parallel Algorithms and Architectures, Newport, RI,
June 1997.

S. Sivasubramanian, G. Alonso, G. Piere, and M. van Steen. GlobeDB:
Autonomic Data Replication for Web Applications. In Proceedings of the
14th International World-Wide Web Conference, Chiba, Japan, May 2005.

S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. Replica-
tion for Web Hosting Systems. ACM Computing Surveys, 36(3):291-334,
2004.

R. Strom, G. Banavar, K. Miller, A. Prakash, and M. Ward. Concurrency
Control and View Notification Algorithms for Collaborative Replicated Ob-
jects. IEEE Transactions on Computers, 47(4):458-471, 1998.

S. Susarla and J. Carter. Khazana: A Flexible Wide Area Data Store.
Technical Report UUCS-03-020, School of Computing, University of Utah,
Salt Lake City, October 2003.

Network Weather System. http://nws.cs.ucsb.edu/.

D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and
B. B. Welch. Session Guarantees for Weakly Consistent Replicated Data.
In Proceedings of the third IEEE International Conference on Parallel and
Distributed Information Systems (PDIS), Austin, Texas, USA, September
1994.

D. B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In Proceedings of the 15th
ACM Symposium on the Operating Systems Principles (SOSP), Copper
Mountain Resort, Colorado, December 1995.

F. Torres-Rojas, M. Ahamad, and M. Raynal. Timed Consistency for
Shared Distributed Objects. In Proceedings of the 18th ACM Symposium
on Principles of Distributed Computing (PODC), Atlanta, May 1999.

TPC-W. www.tpc.org/tpcw.

A. Vahdat, P. Eastham, and T. Anderson. WebFS: A Global Cache Co-
herent File System. University of California, Berkeley, 1996. Department
of Computer Science.

R. Vingralek, Y. Breitbart, M. Sayal, and P. Scheuermann. Web++: A
System For Fast and Reliable Web Service. In Proceedings of the USENIX
Annual Technical Conference, Sydney, Australia, June 1999.

- 150 —

References

[75]

[76]

[77]

[78]

R. West, K. Schwan, I. Tacic, and M. Ahamad. Exploiting Temporal and
Spatial Constraints on Distributed Shared Objects. In Proceedings of the

17th IEEE International Conference on Distributed Computing Systems
(ICDCS), 1997.

H. Yu and A. Vahdat. Design and Evaluation of a Continuous Consistency
Model for Replicated Services. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation (OSDI), San Diego, CA,
USA, October 2000.

E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee. Application-Layer
Anycasting: A Server Selection Architecture and Use in a Replicated Web
Service. IEEE/ACM Transactions on Networking, 8(4):455-466, August.

C. Zhang. Consistency and Replication. Miami, FL, 2005. School of Com-
puting and Information Sciences.

- 151 —

