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Soutenue le 9 Décembre 2006 devant le jury compos�e de
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Introduction

The �eld known as Statistical Learning Theory was born from the meeting of two commu-
nities: computer scientists involved in Machine Learning and mathematicians interested
mainly in Non-Parametric Statistics.

The pioneering work of Vapnik and Chervonenkis [115, 116], and the books by Vapnik
[112, 113, 114] later on, highly contributed to this event by establishing the connection
between the generalization property of learning algorithms and empirical processes tech-
niques. The so-called Structural Risk Minimization principle [112, 113] was also question-
ing nonparametric statistics from the viewpoint of model selection ([31], [24]). Indeed, a

ow of new questions, connections, formulations was generated from the new approach.
At the same time, an impressive amount of technical results such as concentration inequal-
ities and empirical processes tools became available after the works of Talagrand [106],
Van der Vaart and Wellner [110], Massart [87], and van de Geer [109].

Ten years (or so) after the milestones of Statistical Learning Theory were published
(see the books by Vapnik [113, 114] and Devroye, Gy�or�, and Lugosi [52]) and the revo-
lutionary algorithms known as Boosting and Support Vector Machines were introduced,
an astonishing amount of theoretical breakthroughs has been reported (see [34] for a sur-
vey). Connections and di�erences between nonparametric statistics and learning theory
are now clari�ed to a large extent and a new generation of researchers combining sensitiv-
ity to real-world applications and high-level education in theoretical statistics is growing.
More recently, new developments are also attracting mathematicians involved in Infor-
mation Theory, Approximation Theory and Game Theory. The evident bridge between
Statistics and Optimization Theory is also being revisited.

In the present document, I will summarize a part of this evolution by describing some
speci�c aspects of research in Statistical Learning Theory. My main concern will be to
emphasize the statistical modelling part and the results of statistical nature in order to
grasp the behavior of a learning algorithm (boosting) or to understand the main features
of a learning problem (ranking).

The reference problem along the following pages and the starting point of this research
is the simple binary classi�cation problem. As a matter of fact, classical statistics have
been considering this problem many years ago by the means of Discriminant Analysis.
However, this setup presented a major drawback: it was unable to take into account com-
plex and/or high-dimensional data. I brie
y recall the statistical model and the learning
paradigm for classi�cation.



viii Introduction

Let (X ,A) be a measurable space. The statistical model for classi�cation considers a
random pair (X, Y) with unknown distribution P, where X 2 X is an observation vector
(being thought of high dimensionality) and Y 2 {−1,+1} is a binary label. The distribution
P can be described by the pair (µ, η) where µ is the marginal distribution of X and η is the
conditional distribution of Y given X that is to say η(x) = P{Y = 1 | X = x}, 8x 2 X . The
setup is nonparametric and thus, no further assumptions on P are made. A classi�er is a
measurable function g : X → {−1,+1} which makes a prediction g(X) for each observation
vector X. A "good" classi�er should mostly predict the correct label Y of the observation X

and thus, present a low classi�cation error L(g) = P {g(X) 6= Y}. The best of all classi�ers
is known to be the Bayes rule de�ned by g�(x) = 2I{η(x)>1/2} − 1, 8x 2 X , the Bayes
error being denoted by L� = L(g�). However, this ideal classi�er g� cannot be found in
practice because it depends on the distribution P which is known only through a sample
(X1, Y1), . . . , (Xn, Yn) of i.i.d. copies of (X, Y). The problem is then to build, on the basis
of these data, a classi�er ĝn providing predictions as close as possible to those of g�. We
point out that, for any classi�er g, we have the following expression of the excess risk
L(g) − L� = E�

|2η(X) − 1| I[g(X)6=g�(X)]

�
. This expression reveals that the behavior of the

function η around 1/2 determines the di�culty of the classi�cation problem.

The learning paradigm for classi�cation which was formalized by Aizerman, Braverman
and Rozonoer [19, 20] and further developed by Vapnik [112, 113] is based on the idea of
Empirical Risk Minimization (ERM) which goes back to Le Cam [77]. Indeed, the simplest
strategy to minimize L(g) over a class G of candidate classi�ers, given an i.i.d. sample
(X1, Y1), . . . , (Xn, Yn), is to minimize its empirical version, i.e. the empirical classi�cation
error Ln(g) = 1

n

∑n
i=1 I{g(Xi)6=Yi}. This strategy actually de�nes the ERM principle and

delivers a classi�er ĝn = argming2G Ln(g) which will hopefully mimic the target classi�er
g�. The main contribution of Vapnik and Chervonenkis ([115, 116, 113, 114] was to
provide a combinatorial characterization of the size of G that guarantees the success of
the ERM principle. He also proposed a model selection principle known as the Structural
Risk Minimization which extended the ERM and is based on the complexity concept
of Vapnik-Chervonenkis (VC) dimension. Then, intensive e�orts were made to improve
upper bounds on the performance of classi�ers based on ERM or SRM principles.

Despite these advances, Vapnik's programme had to face a major criticism: the prac-
tical implementation of the ERM principle is usually not feasible even for simple classes
of classi�ers. While classi�cation theory was developing, new and highly performing clas-
si�cation algorithms known as Boosting ([98], [56], [58]) and Support Vector Machines
(SVM, [33], [113], [45]) were proposed. At this point, the question was whether it was
possible to discover underlying optimization principles accounting for these algorithms
and to extend the classi�cation theory developed so far in order to encompass them. This
remark provided the �rst motivation of the work presented in the following pages, with a
particular focus on boosting.

Another limitation in the standard classi�cation setup is the focus on a particular per-
formance/error measure which is the classi�cation error. Such a criterion is not necessarily
relevant in applications. For instance, in information retrieval applications, for a given
query, the instances (documents) can be labelled as "relevant" or "not relevant" for this
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query. If we want to "learn" the relation between the descriptors of any document and
the corresponding label in order to make predictions, we are facing a binary classi�cation
problem as before. But there is an important di�erence when visualizing the results: the
query appeals to a list of relevant documents where the order in this list matters. In-
deed, one expects to �nd the most relevant documents at the top of the list. Rather than
learning the labels, the problem here is to learn the preferences between documents. This
observation can be made formal and a speci�c error measure can be proposed for this
ranking problem.

In these two situations, the goal is to study principles (or algorithms) which perform
optimization of special criteria. Once identi�ed, these new optimization principles should
be submitted to the same questions as in the standard setup of the ERM principle: �nd
the optimal elements, explore universally consistent strategies, state nonasymptotic excess
risk bounds, explore the conditions for having fast rates of convergence, prove oracle
inequalities, and so on.

The present manuscript reports some contributions along these lines in the two con-
texts previously mentioned: (1) Convex Risk Minimization for classi�cation using boost-
ing methods (Chapters 1 and 2), (2) Empirical and Convex Risk Minimization for the
ranking problem (Chapter 3).
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Chapter 1

Boosting Methods - Theory and
Algorithms

In the nineties, boosting algorithms became popular because of their simple heuristics,
their tremendous e�ciency on high dimensional data, but also because of the mystery
surrounding their dynamics.

On the one hand, Vapnik-Chervonenkis theory was there to explain why learning
algorithms could generalize properly on new data, on the other hand, boosting came out
of a di�erent approach and did not �t with the existing theoretical framework.

The one thing to avoid when using learning algorithms is over�tting but the question
remained open for some time as far as boosting was concerned. Indeed, in most simulation
studies, boosting was exhibiting high performance on test data but in some cases over�t-
ting was observed [63]. The issue of consistency of boosting became of major interest in
the learning community, the "most important question in Machine Learning" according
to Leo Breiman.

Important steps in understanding why boosting worked so well were taken by Breiman
[37] and Friedman, Hastie and Tibshirani [60]. Breiman showed the �rst consistency result
but in the idealistic setup of an in�nite data sample. Friedman, Hastie, and Tibshirani re-
marked that some boosting algorithms could be interpreted as stagewise �tting of additive
logistic regression. At the same time, Mason, Bartlett, Baxter and Frean [84, 86, 85] con-
sidered optimization procedures similar to boosting with various cost functions and their
work also has been in
uential in developing the theory for Convex Risk Minimization . We
also refer to the work of Koltchinskii and Panchenko [76] in which they established margin
bounds for combinations of classi�ers. They improved on [99] and their use of empirical
processes techniques in this problem triggered many of the further developments.

This chapter will focus on the basic framework allowing to understand boosting meth-
ods as statistical procedures. We provide simple theory for e�cient algorithms and show
how the subsequent reformulations can lead to new algorithms presenting interesting fea-
tures.

First, we recall the fundamentals of boosting algorithms starting from the AdaBoost
algorithm. Then, we describe the setup of convex risk minimization and provide the �rst
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consistency results. The ideas introduced at this point turn out to be fruitful and made
possible to develop a mirror descent algorithm for online classi�cation.

1.1 Plain boosting algorithms

Boosting algorithms were introduced as iterative procedures of a deterministic nature
which, given a set of data, would at each step t: (i) select a classi�er gt from a given class
G of base classi�ers, (ii) evaluate a real-valued weight wt for this classi�er, (iii) output
the weighted majority vote ft =

∑t
i=1 wigi of the selected classi�ers up to this step.

Along with this simple aggregation principle, boosting is also characterized by the
use of a probability distribution on the sample points. The idea is to start with the
uniform distribution and to update it at each step according to some rule reinforcing the
probability associated to misclassi�ed points during the iterations.

We recall at this point the prototype boosting algorithms called AdaBoost introduced
by Freund and Schapire ([56], [98], [58]) but �rst we need to introduce some notations.
We denote by πt the vector representing the discrete distribution on the sample points at
step t and by

ǫt(g) =

n∑

i=1

πt(i)I[g(Xi)6=Yi]

the weighted empirical error of a base classi�er g.

Algorithm 1 (adaboost)

� Initialization: take π1 = (1/n, . . . , 1/n).

For t = 1, . . . , T , execute the following procedure:

� choose a base classi�er gt approximately minimizing ǫt over all g 2 G
� set ǫ�t = ǫt(gt) and adjust the weight of the classi�er gt

wt =
1

2
ln
�

1 − ǫ�t
ǫ�t

�
� update the distribution on the data (Xi, Yi)

πt+1(i) / πt(i) exp(−wtyigt(xi))

The �nal output of AdaBoost is fT =
∑T

t=1 wtgt.

Numerous variants of AdaBoost have been proposed. We refer to the paper by Mason,
Bartlett, Baxter and Frean [86] and the survey by Meir and R�atsch [91] for a sample of
such algorithms. Particularly, one could wonder about the choices of the update rules for
the distribution πt and for the evaluation of the weights wt, and whether these choices
are optimal or not. In AdaBoost, they are intimately related to the exponential function
but we will see shortly that there are other options.



1.2 Convex Risk Minimization 3

Now that the algorithm is given, the pending issues in order to actually perform its
implementation lie in the choice of a base class G of classi�ers, an algorithm performing
the extraction of a single base classi�er at each step by minimizing the weighted empirical
classi�cation error, a stopping rule (number T of iterations). Relatively simple choices
at this stage (e.g. take G as the class of decision trees and run AdaBoost for T ' 100

steps) already provide high performance on most of the benchmark classi�cation data
sets ([95]). However, it has been argued that resistance to over�tting is due to the fact
that AdaBoost converges slowly and therefore, over�tting could occur if T was taken large
enough, as con�rmed by simulation experiments [63]. Indeed, it is easy to show that
boosting over�ts even for the simplest base class of decision stumps by considering noisy
arti�cial data sets (see Figure 1.2 in Section 1.5). Machine Learning people have developed
rules-of-thumb from their longtime experience on the subject in order to deal with these
issues. We claim that applications-oriented statistical theory can provide a valuable guide
in order to make the relevant choices and substantially improve existing algorithms.

One of the most interesting attempts to explain the success of boosting methods points
out that they tend to maximize the margin of the correctly classi�ed points. The margin
of a real-valued function f on a training example (X, Y) 2 X � {−1,+1} is de�ned by Yf(X).
The margin can be interpreted as an indicator of con�dence of the prediction based on
f. The arguments developed in this direction were based on margin-based bounds for the
probability of misclassi�cation, see Schapire, Freund, Bartlett, and Lee [99], Koltchinskii
and Panchenko [76]. However, as pointed out by Breiman [36], these bounds alone do not
completely explain the e�ciency of these methods (see also Freund and Schapire [59]).
Boosting algorithms have also been found explicitly related to additive logistic regression
by Friedman, Hastie, and Tibshirani [60] and B�uhlmann and Yu [38]. This connection
points out that boosting methods e�ectively minimize an empirical loss functional (di�er-
ent from the probability of misclassi�cation). This property has also been pointed out in
slightly di�erent contexts by Breiman [36], Mason, Baxter, Bartlett, and Frean [86], and
Collins, Schapire, and Singer [43]. Our approach builds on the interpretation by Friedman,
Hastie and Tibshirani [60] according to which some boosting algorithms, like AdaBoost,
are implementations of a gradient descent method to minimize a special risk criterion:

An(f) =
1

n

n∑

i=1

exp(−Yif(Xi)) ,

where f belongs to the linear span of the base class G.
Soon after this observation was made, Breiman [37] proved the consistency of an algo-

rithm minimizing the ideal convex risk A(f) = E exp(−Yf(X)). However, the consistency
of a minimizer of An over the linear span of a class G of classi�ers with respect to the
classi�cation error L(f) = P {Y � f(X) < 0} was still an open problem at this stage.

1.2 Convex Risk Minimization

For practical optimization, convexity is a blessing. But, beyond computational consid-
erations, studying statistical aspects cannot be avoided in order to assess the e�ciency
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of boosting methods based on the minimization of the functional An. In this section,
we brie
y explain why it makes sense to replace the classi�cation error by a convex risk
functional in the optimization procedure. We point out that there is nothing special about
using the exponential as a cost function and we will replace it by a general cost function
ϕ in the sequel.

We will make the following assumption on the cost function:

Assumption 2 ϕ : R → R+ is strictly convex, di�erentiable, strictly increasing with
ϕ(0) = 1, limx→−∞ ϕ(x) = 0.

We introduce the following notation for the convex risk functional which will be called
the ϕ-risk:

A(f) = Eϕ(−Y � f(X)) .

In this section, we study a population version of the results which amounts to knowing
the distribution P. We recall that the goal in classi�cation is to minimize the classi�cation
error L(g) = P {Y 6= g(X)} over a class G of classi�ers. Boosting actually outputs a real-
valued decision function f over a class F by minimizing a di�erent criterion, the ϕ-risk.
Denote by gf the classi�er based on the decision function f de�ned by gf(x) = +1 if
f(x) > 0 and −1 otherwise. We observe that L(gf) = P {Y � f(X) < 0} � A(f) as soon as
ϕ(x) � I[x>0] but we need to show why minimizing A(f) implies minimizing L(gf).

1.2.1 Optimal elements

It is well known ([52]) that the optimal elements in classi�cation are the Bayes classi�er
g�(x) = 2I{η(x)>1/2} − 1 and the Bayes rule L� = L(g�). The �rst thing to do is to relate
the optimal elements for the ϕ-risk A(f) = Eϕ(−Y � f(X)) to g� and L�.

We introduce the function

f�(x) = argmin
α2R

{η(x)ϕ(−α) + (1 − η(x))ϕ(α)} .

The next proposition shows that f� is well-de�ned for all x with η(x) 2 (0, 1) but it
can take in�nite values when η(X) 2 {0, 1}.

Proposition 3 (Lugosi and Vayatis [12]) Consider either one of the following two
cases:

� If η(X) /2 {0, 1} almost surely then, there exists a unique measurable function f�
such that

A(f�) � A(f) for all functions f.

Then the classi�er 2I{f�(x)>0} − 1 is just the Bayes classi�er g�.

� If η(X) 2 {0, 1} almost surely then, we have

inf
f

A(f) = 0 .
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Thus by extending the range of f� with its in�nite limits and by taking the sign of f�,
we obtain the Bayes classi�er g�. A wishful thinking is that near optimization of A yields
nearly optimal classi�ers and, indeed, this is true.

Lemma 4 (Lugosi and Vayatis [12]) Let ϕ be a cost function satisfying Assumption
2. Let fn be an arbitrary sequence of functions such that

lim
n→∞

A(fn) = A� ,

where A� = inff A(f). Then the classi�er gfn (x) = 2I{fn(x)>0} − 1 has a probability of
error converging to L�.

For usual choices of ϕ, the optimal elements of the ϕ-risk minimization problem are
obtained through straightforward computations:

� exponential cost ϕ(x) = exp(x): optimal function f�(x) =
1

2
ln
�

η(x)

1 − η(x)

�
, optimal

risk A� = 2Epη(X)(1 − η(X))

� logit cost ϕ(x) = log2(1 + exp(x)): optimal function f�(x) = ln
�

η(x)

1 − η(x)

�
, optimal

risk A� = E (−η(X) log2 η(X) − (1 − η(X)) log2(1 − η(X))).

However, the hinge loss ϕ(x) = (1 + x)+ used in Support Vector Machines does not
satisfy the assumption because it is not di�erentiable. Though a direct treatment of this
case is simple, it is a challenging issue to �nd conditions which will cover as many costs
as possible.

1.2.2 Zhang’s lemma

While exploring the properties of convex risk minimization methods, we realized that
there was a function playing a key role in characterizing the pointwise minimum of the
ϕ-risk as a function of the posterior probability η. For a given cost function ϕ, de�ne this
function by

8η 2 [0, 1] , H(η) = inf
α2R (ηϕ(−α) + (1 − η)ϕ(α)) .

For our purpose, we established some simple properties of H under our Assumption 2.

Lemma 5 (Lugosi and Vayatis [12]) Let ϕ be a cost function satisfying Assumption
2. Then the function H(η) de�ned for η 2 [0, 1], is concave, symmetric around 1/2,
and H(0) = H(1) = 0, H(1/2) = 1.

About the same time, Zhang [119] formulated an alternative assumption on the cost
function ϕ which directly involved this function H and allowed to remove the prerequisite
of di�erentiability.

Assumption 6 (Zhang [119]) Let ϕ be a convex, nonnegative, increasing cost func-
tion with ϕ(x) � I[x>0] for all x 2 R, ϕ(0) = 1, limx→−∞ ϕ(x) = 0, and such that there
exist constants c > 0 and s � 1 satisfying, for any η 2 [0, 1],����12 − η

����s � cs(1 − H(η)) .
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Under this assumption, Zhang obtained a stronger result than our Proposition 4 which
will turn out to be important when deriving statistical results as rates of convergence of
boosting methods.

Lemma 7 (Zhang [119], Lugosi and Vayatis [12]) Under Assumption 6, for any
estimator f,

L(gf) − L� � 2c(A(f) − A�)1/s .

In the examples we mentioned above, we have

� exponential cost ϕ(x) = exp(x): c = 1/
p

2 and s = 2

� logit cost ϕ(x) = log2(1 + exp(x)): c = 1/
p

2 and s = 2

� hinge loss ϕ(x) = (1 + x)+: c = 1/2 and s = 1.

Eventually, a complete and �nal description of minimal assumptions on the cost func-
tion in order to guarantee "classi�cation-calibration" was achieved by Bartlett, Jordan,
and MacAuli�e [27]. In the case of convex cost functions, a necessary and su�cient con-
dition for classi�cation-calibration is di�erentiability at 0 with ϕ 0(0) > 0.

Now that we have justi�ed the use of convex risk functionals for classi�cation purposes,
we can turn to the statistical aspects of ϕ-risk minimization.

1.3 Consistency of Boosting with Regularization

In our view of boosting, we do not take into account the iterative nature of AdaBoost but
we rather focus on what this algorithm actually does. Following the interpretation of [60],
we will call a boosting method an estimation method constructing an estimator f̂n by the
the minimization of the empirical risk functional

An(f) =
1

n

n∑

i=1

ϕ(−Yif(Xi)) .

over a class F expressed as the linear span of a base class G of classi�ers:

F =





f =

N∑

j=1

wjgj : N 2 N, w1, . . . , wN � 0, g1, . . . , gN 2 G




.

By standard VC theory, it is well known that such a strategy might be vain if the class
F is too large. We will assume that the base class G is a VC class, but still its convex hull
might not be a VC class. Consider, for instance, the base class G including indicators of
lower left orthants in R2. Its VC dimension is 2 but taking the sign of convex combinations
∑

k�1 ICk
/2k with Ck 2 G and reindexing the Ck's, one can shatter any set of points of

the line x + y = 1 (this example can be found in [54]). Therefore, there is no guarantee
that the linear span F might be of reasonable size. This observation indicates that (1) VC
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dimension might not be the right concept to capture the complexity of boosting methods,
(2) the class F may be truly large and some regularization has to be introduced.

In this section, we provide a possible setup for designing universally consistent boosting
methods in which the complexity issue can be taken care of.

1.3.1 Setup

In order to state the consistency results, we need some more notations.

Denote by kwk1 the ℓ1-norm of vector w = (w1, . . . , wN) 2 RN. We introduce Fλ the
symmetric convex hull of the base class G:

Fλ =





f =

N∑

j=1

wjgj : N 2 N, g1, . . . , gN 2 G , kwk1 � λ





.

We note that the linear span of G may be represented as:

F =
[
λ>0

Fλ .

The scale parameter λ will play the role of a smoothing parameter. Although scaling
the estimator f has no e�ect on the corresponding decision function (performance is un-
changed since L(f) = L(λf) for all λ > 0), the introduction of the parameter λ is indeed
a decisive step to design consistent strategies in boosting. The complexity parameter λ

re
ects here the total variation of the candidate estimators in Fλ. As the target estimator
f� can be wildly oscillating and even have unbounded total variation, large values of λ

o�er more 
exibility of approximation at the price of making the estimation problem more
di�cult.

Now, introduce, for all λ > 0,

ϕλ(x) = ϕ(λx) .

Denote the empirical and expected loss functional associated with the cost function ϕλ

by Aλ
n and Aλ, that is,

Aλ
n(f) =

1

n

n∑

i=1

ϕλ(−Yi � f(Xi)) and Aλ(f) = Eϕλ(−Y � f(X)) .

Note that on [−1, 1] the function ϕλ is Lipschitz with constant λϕ 0(λ). If λ = 1, we
simply write An(f) and A(f) instead of Aλ

n(f) and Aλ
n(f). Observe that

Aλ
n(f) = An(λf) Aλ(f) = A(λf) .

Hence, minimizing Aλ(f) over F1 is equivalent to minimizing A(f) over the scaled class
Fλ. It is worth noticing at this point that the original AdaBoost algorithm attempts to
minimize the functional A in the linear span of G. In contrast to this, here we consider a
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family of optimization problems (minimizing various functionals Aλ) over the convex hull
F1 of G.

Now let f̂λ
n denote a function in F1 which minimizes the empirical loss

Aλ
n(f) =

1

n

n∑

i=1

ϕλ(−Yi � f(Xi))

over f 2 F1.

1.3.2 Complexity control

In the present subsection, we brie
y discuss the complexity issue in the case λ is �xed.
First, applying the standard bias-variance decomposition to our problem, we have, for the
empirical ϕ-risk estimator f̂λ

n over the class Fλ:

A(f̂λ
n) − A� � 2 sup

f2Fλ

|An(f) − A(f)| + inf
f2Fλ

A(f) − A�

The complexity issue concerns the trade-o� between these two terms, estimation error
and approximation error. The key here is to use λ as a smoothing parameter letting it
grow to in�nity in order to make the approximation error term small but in a controlled
fashion not too spoil the estimation error. This being said, we still have to explain how
to deal with the supremum over Fλ which can be a massive class of functions.

It turns out that it can be controlled in terms of the VC dimension V of the base class
G according to the following lemma.

Lemma 8 (Koltchinskii and Panchenko [76], Lugosi and Vayatis [12]) For any
n and λ > 0,

E sup
f2F

���Aλ(f) − Aλ
n(f)

��� � 4λϕ 0(λ)

s
2V ln(4n + 2)

n
.

The key to this result lies in standard techniques from empirical processes such as
symmetrization and a contraction principle from [78], but also the control of a now cele-
brated quantity known as the Rademacher average over the class F of functions. Indeed,
it is now common knowledge in machine learning that the learning complexity is better
captured by the Rademacher average of a class of functions rather than combinatorial or
metric capacities (see [73], [25]). In our case, we can bene�t of the linearity of the class F
which reduces its complexity to that of G.

An additional comment after this lemma concerns the choice of the cost function ϕ.
The previous result provides a theoretical argument in favor of the logit function compared
to the exponential function. In [12], we introduced the following function

ψ(x) =






exp(x) , if x < 0

x + 1 , if x � 0

which also satis�es ψ 0(λ) = 1 as the logit function but mimics the exponential on correctly
classi�ed examples. We shall provide more insights on the choice of a cost function in
Section 1.5.
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1.3.3 Main consistency results

We are now in a position to formulate the main consistency results on regularized boosting
methods. We �rst state a theorem on consistency of an idealized boosting procedure where
the parameter λ is turned into a divergent deterministic sequence for which the speed of
divergence is speci�ed. Combining Lemma 8 with a simple concentration inequality, we
can derive consistency in terms of the ϕ-risk under the following denseness assumption:

Assumption 9 The distribution of (X, Y) and the class G are such that

(D) lim
λ→∞

inf
f2Fλ

A(f) = A� ,

where A� = inff A(f) over all measurable functions f : X −→ R.

We refer to Section 2.2 for more details on this assumption. Applying Zhang's Lemma,
we eventually derive consistency in terms of convergence of the classi�cation error towards
the Bayes error. Note that we have universal consistency if we can exhibit a base class
G such that for any distribution, Assumption 9 holds. We will see that there are many
examples of such classes in Section 2.2.

Theorem 10 (Lugosi and Vayatis [12]) Assume that Assumptions 6 and 9 hold.
Assume also that G has a �nite vc dimension. Let

�
λn

�
n�1

be a sequence of positive
numbers satisfying

λn → ∞ and λnϕ 0(λn)

s
lnn

n
→ 0 as n → ∞

and de�ne the estimator f̂n = bfλn
n 2 F1. Then gf̂n

is strongly Bayes-risk consistent,
that is,

lim
n→∞

L(gf̂n
) = L� almost surely.

In the previous theorem, the sequence of estimators f̂n = f̂λn
n requires for each n to

minimize the functional Aλn
n over F , for a predetermined sequence

�
λn

�
n
. Of course, it

would be much more practical to handle the choice of λ on the basis of the sample. The
following theorem shows that consistency remains true for a data-dependent regularized
choice of the smoothing parameter λ:

Theorem 11 (Lugosi and Vayatis [12]) Assume that Assumptions 6 and 9 hold.
Assume also that the base class G has a �nite VC dimension V. For any divergent
sequence

�
λn

�
n�1

of positive numbers, let

f̂n = argmin
k�1

~Aλk
n (bfλk

n ) ,

where

~Aλk
n (f) = Aλk

n (f) + 4λkϕ 0(λk)

s
2V ln(4n + 2)

n
+ λkϕ 0(λk)

s
ln(6n2k2/π2)

n
,
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and
f̂λk
n = argmin

f2F
Aλk

n (f) .

Then f̂n is strongly Bayes-risk consistent, that is,

lim
n→∞

L(f̂n) = L� almost surely.

For more recent results on the consistency of related methods, including support vector
machines, we refer to Bartlett, Jordan, and MacAuli�e [27], Mannor, Meir, and Zhang [82],
Steinwart [105].

The take-home message of the consistency results above lies in the following practical
procedure:

1. choose a class G of base elements (classi�ers)

2. solve the optimization problem of minimizing the ϕ-risk over the λ-blown-up convex
hull for various λ's

3. select the "best" value of the regularization parameter λ.

Apparently, the AdaBoost algorithm seems to take care of these issues all at once in
a clever way. However, one may wonder about how suboptimal each of these choices can
be. In the next section, we will focus on the optimization of the convex risk functional for
�xed λ (Point 2).

1.4 Online Version: The Mirror Averaging Algorithm

A major computational limit in boosting is the extraction of each single base classi�er out
of a (weighted) empirical risk minimization step. The trade-o� between representation
capacity of the base class and computational constraints is generally in favor of the latter.
A somewhat di�erent approach is the aggregation framework ([71], [107], [96] and the
references therein). There, it is assumed that we have a �nite pool of base classi�ers
which may have been obtained by various estimation procedures (in particular, they could
be the weak classi�ers collected along one run of a boosting algorithm, or they could be
several outputs of boosting on various subsamples, and so on). Aggregation is concerned
with �nding an optimal linear or convex combination of these base classi�ers.

Another limitation (apart from computational issues) is the data generation process
handled by boosting. Boosting algorithms belong to the family of batch algorithms where
all the data have to be given at once before running them. But building sequential (or
online) procedures is also of major interest when the data are delivered one-by-one (e.g.
real-time applications). We refer to the book by Cesa-Bianchi and Lugosi [40] and the
references therein for an up-to-date account on this topic.

In the sequel, we present a learning algorithm inspired by stochastic approximation
theory. This algorithm is called the mirror averaging algorithm. It achieves e�cient
convex risk minimization over the λ-simplex and copes with the two issues mentioned
above.
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1.4.1 Setup and notations

Consider the setting of classi�cation where the data are modelled by a pair (X, Y) with
X 2 X being an observation vector and Y 2 {−1,+1} a binary label. Boosting and SVM
algorithms are related to the minimization of a functional

A(f) = Eϕ(−Yf(X))

where ϕ is a convex nonnegative cost function (standard choices are exponential, logit or
hinge loss) and f belongs to a given class of combined classi�ers. The aggregation problem
consists in �nding the best linear combination of elements from a �nite set of classi�ers
{h1, . . . , hM} with hj : X → {−1,+1}. Taking compact notations, it means that we search
for f of the form f = θTH with H denoting the vector-valued function whose components
are these base predictors:

H(x) = (h1(x), . . . , hM(x))T ,

and assume θ belongs to a decision set Θ. Following the ideas developed above, we set,
for λ > 0 and an integer M � 2:

ΘM,λ =

{

θ = (θ(1), . . . , θ(M))T 2 RM
+ :

∑M

i=1
θ(i) = λ

}

.

and take in the sequel Θ = ΘM,λ. Hence, the problem boils down to minimize the function

A(θ) = Eϕ(−Y � θTH(X))

over Θ.

We can present our algorithm in a slightly more general setting by taking Z = (X, Y), a
random variable with values in a measurable space (Z,A), and Q(Z, θ) = ϕ(−YθTH(X)).
We can assume the loss function Q : Θ � Z → R+ is such that the random function
Q(� , Z) : Θ → R+ is convex for almost all Z. In what follows, we de�ne the convex risk
function A : Θ → R+ to be minimized as follows:

A(θ) = EQ(θ, Z) .

Assume that a training sample is given in the form of a sequence (Z1, . . . , Zt−1), where
each Zi has the same distribution as Z. We assume for simplicity that the training sequence
is i.i.d. though this assumption can be weakened.

We propose to minimize the convex target function A over the decision set Θ on the
basis of the stochastic subgradients of Q:

ui(θ) = rθQ(θ, Zi) , i = 1, 2, . . . ,

Note that the expectations Eui(�) belong to the subdi�erential of A(�).
In the sequel, we will characterize the accuracy of an estimate bθt of the minimizer of

A by the excess risk:
EA(bθt) − min

θ2Θ
A(θ)
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where the expectation is taken over the sample (Z1, . . . , Zt−1).

The mirror descent algorithm described below requires the choice of a so-called proxy
function V which, for some α > 0, is an α-strongly convex function with respect to the
ℓ1-norm de�ned on Θ, i.e.

V(sx + (1 − s)y) � sV(x) + (1 − s)V(y) −
α

2
s(1 − s)kx − yk2

1

for all x, y 2 Θ and any s 2 [0, 1].

For any β > 0, we call β-conjugate of V the following convex transform:

8 z 2 RM, Wβ(z) = sup
θ2Θ

{
−zTθ − βV(θ)

}
.

Example 1 The entropic proxy function is de�ned by:

8 θ 2 Θ, V(θ) = λ ln (M/λ) +
∑M

j=1
θ(j) lnθ(j) , (1.1)

which has its minimum at θ0 = (λ/M, . . . , λ/M)T. It is easy to check that this function is
α-strongly convex with respect to the norm k � k1 with parameter α = 1/λ. We can easily
derive the corresponding β-conjugate:

Wβ(z) = λβ ln
�

1

M

∑M

k=1
e−z(k)/β

�
, 8 z 2 RM,

which has a Lipschitz-continuous gradient with respect to the ℓ1-norm in the dual space,
namely:

krWβ(z) −rWβ( ~z )k1 � λ

β
kz − ~zk∞ , 8 z, ~z 2 RM. (1.2)

In this presentation, we will focus on the particular algorithm based on the entropic
proxy function but we mention that our results apply for a generic algorithmic scheme
which takes advantage of the general properties of convex transforms (see [10] for details).
The key property in the proof is the inequality (1.2).

1.4.2 Algorithm and main result

The mirror averaging algorithm is a stochastic gradient algorithm in the dual space. The
idea of mirror descent algorithms in optimization theory goes back to Nemirovski and
Yudin [93] and it has been proved to be a powerful idea both from a theoretical and a
practical viewpoint (see e.g. [29], [30]). In particular, mirror descent algorithms should
systematically be favored over direct gradient descent in high-dimensional problems.

The mirror descent procedure goes as follows. At each iteration i, a new data point
(Xi, Yi) is observed and there are two updates: one is the value ζi as the result of the
stochastic gradient descent in the dual space, the other is the update of the parameter θi

which is the "mirror image" of ζi. In order to tune the algorithm properly, we need two
�xed positive sequences (γi)i�1 (stepsize) and (βi)i�1 (temperature) such that βi � βi−1.
The mirror averaging algorithm is as follows:
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Algorithm 12 (Juditsky, Nazin, Tsybakov, and Vayatis [10])

� Fix the initial values θ0 2 Θ and ζ0 = 0 2 RM.

� For i = 1, . . . , t − 1, do

ζi = ζi−1 + γiui(θi−1) ,

θi = −rWβi
(ζi) .

(1.3)

� Output at iteration t the following convex combination:

θ̂t =

∑t
i=1 γiθi−1
∑t

j=1 γj

.

Given the observations of the stochastic subgradient ui(θ), particular choices of the
proxy function V, of the stepsize and temperature parameters, will determine the algo-
rithm completely. We discuss these choices in greater detail in [10]. We focus here on
the entropic proxy function and consider a nearly optimal choice for the stepsize and
temperature parameters which is the following:

γi � 1 , βi = β0

p
i + 1 , 8i , β0 > 0 .

We now provide some heuristics underlying this algorithm. Suppose that we want to
minimize a convex function θ 7→ A(θ) over a convex set Θ. If θ0, . . . , θt−1 are the available
search points at iteration t, we can provide the a�ne approximations ϕi of the function
A de�ned, for θ 2 Θ, by

ϕi(θ) = A(θi−1) + (θ − θi−1)
TrA(θi−1), i = 1, . . . , t .

Here θ 7→ rA(θ) is a vector function belonging to the subdi�erential of A. Taking a
convex combination of the ϕi's, we obtain an averaged approximation of A(θ):

�ϕt(θ) =

t∑

i=1

γi

�
A(θi−1) + (θ − θi−1)

TrA(θi−1)
�

t∑

i=1

γi

.

At �rst glance, it would seem reasonable to choose as the next search point a vector
θt 2 Θ minimizing the approximation �ϕt, i.e.,

θt = argmin
θ2Θ

�φt(θ) = argmin
θ2Θ

θT

0@ t∑

i=1

γirA(θi−1)

1A .

However, this does not make any progress, because our approximations are "good"
only in the vicinity of search points θ0, . . . , θt−1. Therefore, it is necessary to modify the
criterion, for instance, by adding some penalty Bt(θ, θt−1) to the target function in order
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to keep the next search point θt in the vicinity of previous one θt−1. Thus, one chooses
the point

θt = argmin
θ2Θ

24θT

0@ t∑

i=1

γirA(θi−1)

1A+ Bt(θ, θt−1)

35 .

Our algorithm corresponds to a speci�c type of penalty Bt(θ, θt−1) = βtV(θ), where V

is the proxy function. Also note that the vector-function rA is not available. Therefore,
we replace the non-observed gradients rA(θi−1) by the stochastic subgradients ui(θi−1).
This yields a new de�nition of the t-th search point:

θt = argmin
θ2Θ

24θT

0@ t∑

i=1

γiui(θi−1)

1A+ βtV(θ)

35 = argmax
θ2Θ

h
−ζT

tθ − βtV(θ)
i
,

where

ζt =

t∑

i=1

γiui(θi−1) .

By an argument borrowed from convex analysis, we can show that the solution to the
latter problem reads as θt = −rWβt(ζt).

We can now state our rate of convergence result.

Theorem 13 (Juditsky, Nazin, Tsybakov, and Vayatis [10]) Assume that the loss
function Q satis�es the following boundedness condition:

sup
θ2Θ

E krθQ(θ, Z)k2
∞ � L2 < ∞ .

Fix also β0 = L/
p
lnM. Then, for any integer t � 1, the excess risk of the mirror

descent estimate bθt with entropic proxy function satis�es the following bound:

EA(bθt) − min
θ2Θ

A(θ) � 2 Lλ ( lnM)1/2

p
t + 1

t
.

Example 2 In the convex risk minimization setup for classi�cation, we can take for
instance ϕ to be nonincreasing. It is easy to see that L = ϕ 0(λ).

The rate of convergence of order
p
lnM/

p
t is the expected one if no particular as-

sumption is made on the distribution. Batch procedures based on minimization of the
empirical convex risk functional present a similar rate. From the statistical point of view,
there is no remarkable di�erence between batch and our mirror descent procedure. On the
other hand, from the computational point of view, our procedure is quite comparable with
the direct stochastic gradient descent. However, the mirror-descent algorithm presents two
major advantages as compared both to batch and to direct stochastic gradient: (i) its be-
havior with respect to the cardinality of the base class is better than for direct stochastic
gradient descent (of the order of

p
lnM in the Theorem, instead of M or

p
M for direct

stochastic gradient, see [120]); (ii) mirror-descent presents a higher e�ciency especially in
high-dimensional problems as its algorithmic complexity and memory requirements are of
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strictly smaller order than for corresponding batch procedures (see [71] for a comparison).
Moreover, by using the techniques of [71] and [107] it is not hard to prove minimax lower
bound on the excess risk EA(bθt) − minθ2ΘM,λ

A(θ) having the order (lnM)1/2/
p

t for
M � t1/2+δ with some δ > 0. This indicates that the upper bound of the Theorem is rate
optimal for such values of M.

We eventually mention that the mirror averaging algorithm is related to the exponen-
tiated gradient descent algorithm proposed by Kivinen and Warmuth [72]. We also refer
to the work of Cesa-Bianchi, Conconi, and Gentile [39] on the analysis of such algorithms.

1.5 Simulation results

We consider binary classi�cation of arti�cial data and the weak learners are all decision
stumps. We recall that a decision stump is a linear classi�er whose separating hyperplane
is orthogonal to one of the axes. We used synthetic multi-dimensional data from the
"twonorm", "threenorm" and "ringnorm" generators (see Breiman [36]). These problems
are expected to be of increasing di�culty for the class of convex combinations obtained
from decision stumps. We considered relatively small sample sizes for the training set (n
between 100 and 500).

1.5.1 Implementation of regularized boosting

We propose a �rst series of experiments in order to understand how the theoretical analysis
presented in Section 1.3.3 can e�ciently be converted into practical strategies. Indeed,
the results presented above show that there are two elements governing the consistency of
boosting methods: (i) the choice of the cost function ϕ, (ii) the tuning of the smoothing
parameter λ. However, universal consistency (or particular non-consistency) can hardly
be checked empirically. Therefore, we focus here on a rather qualitative analysis aiming
at making clear that the performance of e�cient model selection algorithms is highly
sensitive to the tuning of the smoothing parameter λ depending on the noise level and on
the di�culty of the classi�cation problem.

We have implemented the following algorithms described in [86] (to which we refer for
detailed description and convergence properties):

� MarginBoost - The algorithm MarginBoost implements a gradient descent in the
linear span of the class G to minimize a criterion of the form 1

n

∑n
i=1 ϕ(−Yif(Xi)),

for f =
∑

j wjgj with gj 2 G. In this case, the parameter λ is interpreted as the
sum of the unnormalized weights (their ℓ1-norm). Note that the original AdaBoost
algorithm is a particular case of MarginBoost with exponential cost function.

� MarginBoost.L1 - This algorithm implements a gradient descent in the convex hull
of the class G to minimize 1

n

∑n
i=1 ϕ(−λYif(Xi)), for f =

∑
j wjgj with

∑
j wj = 1.

In the experiments, we track the generalization error and the optimal value of the cost
functional as functions of the smoothing parameter λ, for �xed samples. More precisely,
for each λ, the combined classi�er bfλ

n is constructed by the MarginBoost.L1 algorithm after
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Figure 1.1: Threenorm. η = 0.1. n = 100. m = 500. Plots of the cost Aλ(bfλ
n) (upper

curves) and test error (lower curves) for various cost functions (a) exp, (b) logit, (c) ψ.
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Figure 1.2: Twonorm. Cost ϕ = ψ. n = 100. m = 500. Plots of Aλ(bfλ
n) (dotted lines)

and of the test error (solid lines) for levels of noise η = 0, 0.1, 0.2.

300 iterations, on the basis of training samples of size n. We then estimate the expected
cost Aλ(bfλ

n) and the generalization error L(bfλ
n) on a test set of size m. Moreover, we have

added a uniform label noise (probability of 
ipping the label) denoted by η.

We have focused on the following topics:

� the in
uence of the choice of the cost function (see Figure 1.1)

For a �xed sample, the choice of a particular cost function appears to have a notable
impact on the generalization error performed by the corresponding boosting algo-
rithm. In the long run though, all of these choices lead to a consistent method if
the label noise is small. In the sequel we report only experiments with cost function
ϕ = ψ (see Section 1.3.2) which seems to behave slightly better on this particular
range of sample sizes.

� Sensitivity to the level of label noise (see Figure 1.2)
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Figure 1.3: Threenorm. Cost ϕ = ψ. η = 0.1. n = 100. m = 500. Plot of (a) Aλ(bfλ
n)

with MarginBoost.L1 for various λ's, (b) test error with MarginBoost.L1 for various λ's,
(c) test error with one run of MarginBoost (unnormalized weights) where the test error is
plotted as a function of the sum of the weights of the combined classi�er denoted by λT.

In these experiments, the observations vectors Xi are �xed and the labels Yi are
exposed to a constant level of noise η. The algorithms are run for di�erent levels of
label noise. The over�tting phenomenon can be observed even for small values of λ.
The general e�ect is that the increase of the level of label noise η results in a decrease
of the optimal λ. Moreover, the fact that the minimizer of the cost functional tracks
so well the optimal classi�er needs to be mentioned.

� Comparison with AdaBoost (see Figure 1.3)

We think that these experiments provide some interesting insights on how the orig-
inal AdaBoost algorithm works. Indeed, we can give a comparison by representing
AdaBoost performance as a function of the norm of the weights in the combined
classi�er (instead of the number of iterations). Note that here, in order to make
fair comparisons, we implemented AdaBoost using MarginBoost with cost function
ϕ = ψ. This algorithm constructs iteratively a combined classi�er associated to
the estimator fT =

∑T
t=1 wtgt with gt 2 G (step T) and wt are positive weights

(no normalization). Therefore, at each step T , MarginBoost outputs some element
fT from the class FλT

where λT =
∑T

t=1 wt. In Figure 1.3, we keep track of the
test error of MarginBoost along the iterations with respect to λT. On this simple
example, it turns out that AdaBoost constructs very quickly a classi�er with the
"optimal" complexity but that the intrinsic discretization of the method (at least
in its original version) does not allow it to approximate the optimal generalization
error too well.

1.5.2 The mirror averaging algorithm

The second series of simulation experiments aims at assessing the performance of the
mirror averaging algorithm proposed in Section 1.4. The observation vectors Xi are drawn
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in a high-dimensional space (R200), the sample sizes are n = 100 for the training set and
m = 1000 for the test set. Each experiment is repeated for 200 di�erent training samples
and the various errors are computed by taking the average over these distinct samples.
The cardinality of base classi�ers involved in the aggregation is M = 8000 and the ℓ1-norm
of the coe�cient vector is λ = 25.

The cost function used in these experiments is the logit function and the results are
compared to those of a LogitBoost algorithm [50] with 100 iterations. Given that the
mirror descent algorithm outputs en element of Fλ with λ = 25, the LogitBoost output is
weighted accordingly in order to compare comparable objects.

We present here two types of plots: one is the average of the test error (ϕ-risk or
classi�cation error) as a function of the trials, and the other is the estimated density
(using kernel smoothing) of these test errors.

The results (Figures 1.4 and 1.5) show that the Mirror Averaging Algorithm always
perform better than the LogitBoost Algorithm as a ϕ-risk minimizer, however the com-
parison in terms of classi�cation error is ambivalent. The algorithms are comparable on
the easy problem (twonorm), LogitBoost is more e�cient on the intermediate problem
(threenorm), while Mirror Averaging wins in the di�cult problem (ringnorm). Figure 1.5
also provides some information about the robustness of each method with respect to the
two notions of error.
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Figure 1.4: Averaged errors in terms of the ϕ-risk and the classi�cation error. [Simulations
performed by Philippe Rigollet]
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Figure 1.5: Spread of empirical results for the ϕ-risk (left column) and for the classi�cation
error (right column). [Simulations performed by Philippe Rigollet]



Chapter 2

Refinements for Boosting Theory

In the previous chapter, we saw how boosting can be interpreted as an instance of a pe-
nalized M-estimation procedure. In the �eld of nonparametric statistics, such procedures
have been studied for a long time and they have been a �eld for intensive applications of
empirical processes techniques (see for instance the books by van der Vaart and Wellner
[110] and van de Geer [109] and the references therein). However, it is noteworthy that
the problems emerging from learning theory present some speci�c features:

1. Finite sample. Beyond consistency issues, learning theory is mainly concerned
with formulating non-asymptotic statements on the performance of a learning method,
such as (exact) con�dence intervals.

2. Approximation properties. Learning algorithms are particularly invoked in high-
dimensional problems and thus, computational tractability governs the choise of
base elements. Decision stumps and decision trees are common dictionaries used in
boosting but Approximation Theory in this framework is still at an early stage.

3. Complexity. Another speci�city is the centrality of complexity control in learning
while this is a mere technical assumption in nonparametric statistics. Identifying
adequate (and practical!) complexity measures in learning problems is still a chal-
lenging issue.

This chapter partly explores these topics. We �rst present an oracle inequality for
regularized boosting methods. Then, we provide some preliminary results and comments
about the approximation issue and show which complexity parameter governs the behavior
of boosting with decision stumps.

2.1 Oracle inequalities and fast rates for boosting methods

We now turn to the study of excess risk bounds in order to better understand the properties
of boosting. In the previous chapter, we established the importance of regularization
in designing consistent boosting methods. The idea of converting boosting algorithms
into penalized M-estimators raises the question of the form of the penalty. In order
to derive model selection results for regularized boosting procedures, we have followed
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the methodology described by Massart [88]. We apply a general model selection theorem
from [32] and our challenge was to check the underlying fundamental assumptions: mainly,
variance control and local complexity control.

An essential condition is the one of variance control and we have formulated a su�cient
condition on the cost function to guarantee it. For any twice di�erentiable cost function
ϕ, we de�ne the following quantity:

Lϕ = 0 ∨ max
x2R

 
2(ϕ 0(x) + ϕ 0(−x))

ϕ00
ϕ0 (x) + ϕ00

ϕ0 (−x)
− (ϕ(x) + ϕ(−x))

!
.

Lemma 14 (Blanchard, Lugosi, and Vayatis [3]) Assume ϕ : R → R+ is a twice
di�erentiable, strictly increasing and strictly convex function. If Lϕ < ∞, then for
any function f 2 Fλ, we have

E[(ϕ(−Y � f(X))−ϕ(−Y � f�(X)))2] � (ϕ(λ)+ϕ(−λ)+Lϕ)E[ϕ(−Y � f(X))−ϕ(−Y � f�(X))] .

Another important condition, is the control of the local modulus of continuity of
the empirical process indexed by the loss class. After symmetrization, it is su�cient to
provide an upper bound of the local Rademacher average [26] which can be done using
a result by Mendelson [92] under a polynomial behavior of the metric entropy. This can
be guaranteed by Theorem 2.6.9 from [110]. Solving a �xed point equation for this upper
bound to determine the right scaling in the localization, we �nally derive the right order
for the penalty term in designing a regularized boosting procedure.

Theorem 15 (Blanchard, Lugosi, and Vayatis [3]) Assume that the cost function
ϕ is twice di�erentiable, satis�es Assumption 2 and is such that the constant Lϕ is
�nite. De�ne

R(λ, n) = (V + 2)
V+2
V+1 ((Lϕ + 2)ϕ(λ))

1
V+1 (λϕ 0(λ))

V
V+1 n−1

2
V+2
V+1 ,

b(λ) = (Lϕ + 2)ϕ(λ) ,

and let (λk)k2N be an increasing sequence in (1,+∞) such that
∑

k2N λ−α
k � 1 for

some α > 0. Then there exist positive constants c1, c2 such that if pen : R+ → R+

satis�es

8λ > 0, pen(λ) � c1R(λ, n) +
c2b(λ)(α log(λ) + ξ + log(2))

n

for some positive number ξ, then, with probability at least 1 − exp(−ξ), the penalized
estimator f̂n de�ned by

f̂n = argmin
k�1

{An(f̂λk
n ) + pen(λk)}

satis�es

A(f̂n) − A(f�) � inf
k�1

{

2 inf
f2Fλk

(A(f) − A(f�)) + pen(λk)

}

.
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For a �xed model, the same rate was achieved in the case of a single model in Bartlett,
Jordan, and McAuli�e [27]. The general model selection theorems by Massart have also
led to oracle inequalities for penalized procedures inspired by Support Vector Machines
(see Blanchard, Bousquet, and Massart [32]). This type of result is now better understood
thanks to the impressive paper by Koltchinskii [74] (see also [34] for a detailed account on
model selection techniques in classi�cation).

In the case when the distribution of the (X, Y) happens to be such that the approxi-
mation error inff2Fλk

A(f) − A� vanishes for some value of λ, the above theorem implies
the following immediate corollary for the rate of convergence of A(f̂n) to A�.

Corollary 16 (Blanchard, Lugosi, and Vayatis [3]) Assume that the distribution
of (X, Y) is such that there exists a λ0 > 0 such that inff2Fλ0

A(f) = A(f�). Under the
conditions of Theorem 15, if the penalty is chosen to be

pen(λ) = c1R(λ, n) +
c2b(λ)(α log(λ) + 2 logn + log 2)

n

then for every n, with probability at least 1 − 1/n2,

A(f̂n) − A(f�) � Cn−1
2 (V+2

V+1 )

where the constant C depends on the distribution, on the class F , and on the cost
function ϕ.

Note that the penalty function does not depend on λ0 above, so that the procedure is
truly adaptive. We can then apply Zhang's lemma to derive a bound on the excess risk
in terms of classi�cation error L(f̂n) − L�.

We now turn to improvements beyond the use of Zhang's inequality which can be
obtained under additional assumptions. Indeed, Mammen and Tsybakov [81, 108] pointed
out that under certain low-noise assumptions (also known as margin conditions) on the
distribution much faster rates of convergence for the ERM principle may be achieved.
The original form of these assumptions is the following: for some α 2 [0, 1], there exists a
constant B > 0 such that for any t � 0, we have

P {|2η(X) − 1| � t} � B t
α

1−α .

An equivalent form, with the same α, is the following: there exists a constant β > 0

such that for any real-valued measurable function f,

P {gf(X) 6= g�(X)} � β (L(f) − L�)α
. (2.1)

Notice that all distributions satisfy this condition with α = 0 and β = 1, while larger
values of α place more restriction on the distribution. Intuitively, a large value of α means
that the probability that η(X) is close to 1/2 is small. In the extreme case of α = 1 it
is easy to see that η(X) stays bounded away from 1/2 with probability one. For the
treatment of the extremely-low-noise or zero-noise cases, we refer to the work of Massart
and N�ed�elec [89].

We make use of the next lemma which uses the the margin condition and is adapted
to the convex risk minimization setup .
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Lemma 17 (bartlett, jordan, and mcauliffe [27]) Let ϕ be a cost function sat-
isfying the conditions of Lemma 7 and assume that condition (2.1) holds for some
α 2 [0, 1] and β > 0. Then

L(f) − L� �
�

2sc

β1−s
(A(f) − A(f�))

�1/(s−sα+α)

.

For the exponential and the logit cost functions, we have s = 2 and in that case, as α

moves from zero to one, the exponent 1/(s − sα + α) changes from 1/2 to 1. Thus, large
values of α signi�cantly improve the rates of convergence of L(f) to L�. We formulate a
theorem summarizing our �ndings in terms of excess risk for the classi�cation error.

Corollary 18 (Blanchard, Lugosi, and Vayatis [3]) Let ϕ be either the exponen-
tial or the logit cost function and consider the penalized estimate f̂n of Corollary
16. Assume that the distribution of (X, Y) is such that there exists a λ > 0 such
that inff2Fλ

A(f) = A(f�). Then for every n, with probability at least 1 − 1/n2, the
probability of error L(f̂n) of the associated classi�er satis�es

L(f̂n) − L� � Cn−1
4 (V+2

V+1 )

where the constant C depends on the distribution, on the class F , and on the cost
function ϕ. Also, with probability one,

lim
n→∞

�
L(f̂n) − L�

�
n

1
4 (V+2

V+1 ) = 0 .

If, in addition, condition (2.1) holds for some α 2 [0, 1] and β > 0, then with
probability at least 1 − 1/n2,

L(f̂n) − L� � Cn
− 1

2(2−α) (
V+2
V+1 )

.

The remarkable fact about this corollary is that the obtained rate of convergence is
independent of the dimension of the space in which the observations take their values.
The rates depend on the vc dimension of the base class which may be related to the
dimension of the input space. However, this dependence is mild and even if V is very
large, the rates are always faster than n−1/(2(2−α)). The dependence on the dimension is
mostly re
ected in the value of the constant C. Recall from Theorem 15 that the value of
C is determined by the smallest value of λ for which inff2Fλ

A(f) = A� and its dependence
on λ is determined by the cost function ϕ. For complex distributions, high-dimensional
input spaces, and simple base classes, this constant will be very large. The main message
of Corollary 18 is that, as a function of the sample size n, the probability of error converges
at a fast rate, independently of the dimension. To understand the meaning of this result,
we need to study the main condition on the distribution, that is, that the minimizer f� of
the expected cost falls in the closure of Fλ for some �nite value of λ.

2.2 Approximation Properties of Boosting Decision Rules

An important feature related to the inputs of a boosting method is the choice of the base
class. The underlying trade-o� is not fully understood despite the growing activity from
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the �eld of Approximation Theory in connection with Machine Learning (a special issue
of Constructive Approximation on Mathematical Learning Theory is scheduled for spring
2007, we also refer to the recent work of De Vore, Kerkyacharian, Picard, and Temlyakov
[51], and Cohen, Dahmen, and De Vore [41]). There are two levels in this trade-o�:

� theoretical level: classical bias-variance dilemma. The di�culty comes here from
the fact that standard complexity measures involved in the estimation part, like VC
dimension, do not account for the approximation capacity of the method (see the
note by Koltchinskii, Lugosi, and Mendelson [75]).

� practical level: computational constraints vs. representation capacity. Indeed, the
algorithmic complexity of boosting algorithm is linear in the complexity of extract-
ing a single weak classi�er. There is a hidden Empirical Risk Minimization step
in each boosting method and solving it has to be kept simple. That explains that
practitioners prefer to use simple base classes such as decision stumps or short deci-
sion trees. The question is which distributions can e�ciently be learned with these
simple classes.

In the sequel, we provide some qualitative results to describe consistent base classes
and explore the representation capacity of boosting decision stumps.

2.2.1 Examples of consistent base classes

The question of representation capacity for boosting (or kernel)-type methods is whether
the set C� = {x 2 X : η(x) > 1/2} can arbitrarily be approached by sets of the form
Cf = {x 2 X : f(x) > 0} where possible f's belong to an increasing family of balls in a
Hilbert or Banach space of functions.

The �rst simple result leads to universally consistent boosting methods. We recall
that the assumption on the class G is given by limλ→∞ inff2Fλ

A(f) = A� (see also the
argument of Breiman in [37] using a simpler completeness condition).

Lemma 19 (Lugosi and Vayatis [12]) Let the class G be such that its convex hull
contains all the indicators of elements of B0, a subalgebra of the Borel σ-algebra of
Rd, denoted by B(Rd), with B0 generating B(Rd). Then,

lim
λ→∞

inf
f2Fλ

A(f) = A� ,

where A� = inf A(f) over all measurable functions f : Rd −→ R.

More generally, a straightforward modi�cation of this Lemma shows that whenever
F =

S
λ>0Fλ is dense in L1(µ) with µ being the marginal distribution of the random

variable X, then it is true that inff2F A(f) = A(f�).
A few simple choices of base classes G over X = Rd satisfying this richness property

are: the class of all linear classi�ers (that is, functions of the form g(x) = 2I[a�x�b] − 1,
a 2 Rd, b 2 R), the class of all closed hyperrectangles, the class of all closed balls and
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their complements, the class of binary decision tree classi�ers using axis parallel cuts with
d + 1 terminal nodes.

Clearly, the list of possibilities is endless, and these few examples are just some of
the most natural choices. All �ve examples are such that

S
λ>0Fλ is dense in L1(µ)

for any probability distribution µ. Indeed, in the cases of hyper-rectangles and balls,
this statement is obvious. For the class of linear classi�ers, this follows from denseness
results of neural networks, see [47], [68]. For the case of trees, see [37]. We also refer
to the general statement given as a universal approximation theorem by [119] and which
shows that, for the classical choices of the cost function ϕ, we have, for any distribution,
inff2S

λ>0
Fλ

A(f) = A� as soon as
S

λ>0Fλ is dense in the space of continuous functions
under the supremum norm.

We point out that the rates of convergence established in [3] depend primarily on the
vc dimension of the base class. The vc dimension equals V = d + 1 in the case of linear
classi�ers, V = 2d + 1 for the class of hyperrectangles, V = d + 2 for the class of balls,
and by V = d log2(2d) for the class of binary decision trees [52]. Clearly, the lower the
VC dimension is, the faster the rate (estimation is easier). In order to account for the
di�culty of controlling the approximation error term, we refer to the surprising note by
Koltchinskii, Lugosi and Mendelson [75] which establishes the existence of such a rich
class with VC dimension equal to one.

Now the most interesting problem is to determine the class of distributions for which
we have inff2Fλ

A(f) = A� for some �nite value of λ. In all the above-mentioned special
cases this class is quite large, giving rise to a remarkably rich class of distributions for
which dimension-independent rates of convergence hold. The characterization of these
classes of distributions is far from being well understood. In the case of linear classes
the problem is closely related to the approximation properties of neural networks. We
merely refer to [22], [23], [48], [62], [80], [90], [94], [102] for related results. Most of these
references provide quantitative results relating the approximation error to the smoothness
of the target function. However, there are very few attempts to characterize the functions
that can actually be reconstructed with given dictionaries.

2.2.2 Boosting using decision stumps

We now turn to a special case for which the approximation properties will be fully de-
scribed. We will also provide the particular rates of convergence achieved by boosting
methods. In what follows, we consider the base class G of decision stumps. We recall that
a decision stump is a linear classi�er whose cuts are parallel to the axes.

One-dimensional case

We �rst consider the simple one-dimensional case when X = [0, 1] and when the
base class contains all classi�ers g of the form g(x) = I[x�t] − I[x<t] and of the form
g(x) = I[x<t] − I[x�t] where t 2 [0, 1] can take any value. Clearly, the vc dimension of
G is V = 2. We describe the class of distributions such that there exists a λ such that
inff2Fλ

A(f) = A�. The next lemma states a simple su�cient condition.
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Lemma 20 (Blanchard, Lugosi, and Vayatis [3]) Assume that the cost function
and the distribution of (X, Y) are such that the function f� is of bounded variation.
If | � |BV denotes the total variation norm, de�ne |f�|BV,0,1 = 1

2
(f�(0) + f�(1) + |f�|BV).

Then inff2Fλ
A(f) = A(f�) whenever λ � |f�|BV,0,1.

Thus, the fast rates of convergence can be guaranteed whenever f� is everywhere
�nite and has a bounded variation. Recall that for the exponential cost function f� =

(1/2) log(η/(1 − η)) and for the logit cost function f� = log(η/(1 − η)). In both cases, it
is easy to see that f� has a bounded variation if and only if η is bounded away from zero
and one and has a bounded variation.

The situation when η is bounded away from zero and one may seem to be quite
unnatural at �rst sight. Indeed, values of η close to zero and one mean that the distribution
has little noise and should make the classi�cation problem easier. However, regularized
boosting methods su�er when faced with a low-noise distribution since very large values
of λ are required to drive the approximation error inff2Fλ

A(f) − A� close to zero.

Corrupting the data

If η can be arbitrarily close to 0 and 1, then f� takes arbitrarily large positive or
negative values and thus cannot be in any Fλ (since functions in this set take values in
[−λ, λ]). In order to avoid such a behavior, one may arti�cially add some random noise
to the data. Indeed, if, for example, we de�ne the random variable Y 0 such that it equals
Y with probability 3/4 and −Y with probability 1/4, then the function η 0(x) = P[Y 0 =

1|X = x] = 1/4+η(x)/2 takes its values in the interval [1/4, 3/4] (a similar transformation
was also proposed by Yang [117], [118]). More importantly, the Bayes classi�er g 0 for
the distribution (X, Y 0) coincides with the Bayes classi�er g� of the original problem. We
denote the probability of error of g under the distribution of (X, Y 0) by L 0(g) and the
corresponding Bayes error by L 0�. If we recall from [52] that for any classi�er g,

L(g) − L� = E�
|2η(X) − 1| I[g(X)6=g�(X)]

�
,

then we see that for any classi�er g,

L(g) − L� = 2(L 0(g) − L 0�) . (2.2)

This means that if one can design a classi�er which performs well for the \noisy" problem
(X, Y 0), then the same classi�er will also work well for the original problem (X, Y). Thus,
in order to enlarge the class of distributions for which the fast rates of convergence holds,
one may arti�cially corrupt the data by a random noise, replacing each label Yi by a noisy
version Y 0

i as described above. Then the distribution of the noisy data is such that η 0(x)

is bounded away from zero.

Of course, by corrupting the data deliberately with noise, one looses information, but
it is a curious property of the regularized boosting methods studied here that the rate
of convergence may be speeded up considerably for some distributions. Indeed, this fact
was already pointed out by Yang in establishing general minimax rates of convergence in
various settings (see [117], [118]). We recover here the optimal minimax rate from [117]
with a di�erent method.
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Corollary 21 (Blanchard, Lugosi, and Vayatis [3]) Let X 2 [0, 1]. Let ϕ be either
the exponential or the logit cost function and consider the penalized estimate f̂n based
on decision stumps, calculated based on the noise-corrupted data set described above.
If η(x) has a bounded variation, then for every n, with probability at least 1 − 1/n2,
the probability of error L(f̂n) of the associated classi�er satis�es

L(f̂n) − L� � Cn−1
3

where the constant C depends only on |η|BV. If, in addition, condition (2.1) holds
for some α 2 [0, 1] and β > 0, then

L(f̂n) − L� � Cn
− 2

3(2−α) .

High-dimensional case

Further, we investigate the case when X = [0, 1]d and the base class G contains all
"decision stumps", that is, all classi�ers of the form g+

i,t(x) = I[x(i)�t] − I[x(i)<t] and

g−
i,t(x) = I[x(i)<t] − I[x(i)�t], t 2 [0, 1], i = 1, . . . , d, where x(i) denotes the i-th coordinate

of x.

It is easy to see, as in Lemma 20, that the closure of Fλ with respect to the supremum
norm contains all functions f of the form

f(x) = f1(x
(1)) + � � �+ fd(x(d))

where the functions fi : [0, 1] → R are such that |f1|BV,0,1 + � � �+ |fd|BV,0,1 � λ. Therefore,
if f� has the above form, we have inff2Fλ

A(f) = A(f�).
Recalling the form of the function f� optimizing the cost in the case of the exponential

or logit cost function, we can understand that boosting using decision stumps is especially
well �tted to the so-called additive logistic model in which η is assumed to be such
that log(η/(1 − η)) is an additive function (i.e., it can be written as a sum of univariate
functions of the components of x), see Hastie and Tibshirani [66]. The fact that boosting
is intimately connected with additive logistic models of classi�cation has already been
pointed out by Friedman, Hastie, and Tibshirani [60]. The next result shows that indeed,
when η permits an additive logistic representation then the rate of convergence of the
regularized boosting classi�er is fast and has a very mild dependence on the distribution.

Corollary 22 (Blanchard, Lugosi, and Vayatis [3]) Let X 2 [0, 1]d with d � 2.
Let ϕ be either the exponential or the logit cost function and consider the penalized
estimate f̂n of Corollary 16 based on decision stumps. Let V2 = 3, V3 = 4, V4 = 5, and
for d � 5, Vd = b2 log2(2d)c. If there exist functions f1, . . . , fn : [0, 1] → R of bounded
variation such that log η(x)

1−η(x)
=

∑d
i=1 fi(x

(i)) then for every n, with probability at least
1 − 1/n2, the probability of error L(f̂n) of the associated classi�er satis�es

L(f̂n) − L� � Cn
−1

4

�
Vd+2

Vd+1

�
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where the constant C depends on
∑d

i=1 |fi|BV,0,1. If, in addition, condition (2.1) holds
for some α 2 [0, 1] and β > 0, then

L(f̂n) − L� � Cn
− 1

2(2−α)

�
Vd+2

Vd+1

�
.

Under the assumption of the additive logistic model, the rate of convergence is of the

order of n
− 1

2(2−α)

�
Vd+2

Vd+1

�
where Vd depends on d in a logarithmic fashion. Even for large

values of d, the rate is always faster than n−1/2(2−α). It is also useful to examine the
dependence of the constant C on the dimension. A quick look at Theorem 15 reveals that
C in the �rst inequality of Corollary 22 may be bounded by a universal constant timesq

Vdϕ(λ)1/Vdλϕ 0(λ) where λ is the smallest number such that inff2Fλ
A(f) = A�. Thus,

we may take λ =
∑d

i=1 |fi|BV,0,1. Since Vd = b2 log2(2d)c, the dependence on the dimension
is primarily determined by the growth of the cost function ϕ. Here there is a signi�cant
di�erence between the behavior of the exponential and the logistic cost functions in high
dimensions. For the purpose of comparison, it is reasonable to consider distributions such
that λ =

∑d
i=1 |fi|BV,0,1 is bounded by a linear function of d. In that case the constant C

depends on d as O(
p

ded logd) in the case of the exponential cost function, but only as
O(
p

d logd) in the case of the logistic cost function (using directly Theorem 15 instead of
the upper bound mentioned above). In summary, regularized boosting using the logit cost
function and decision stumps has a remarkably good behavior under the additive logistic
model in high dimensional problems, as stated in the next corollary.

Corollary 23 (Blanchard, Lugosi, and Vayatis [3]) Let X 2 [0, 1]d with d � 2.
Let ϕ be the logit cost function and consider the penalized estimate f̂n of Corollary
16 based on decision stumps. Let B be a positive constant. If there exist functions
f1, . . . , fn : [0, 1] → R with λ =

∑d
i=1 |fi|BV,0,1 � Bd such that log η(x)

1−η(x)
=

∑d
i=1 fi(x

(i))

then for every n, with probability at least 1 − 1/n2, the probability of error L(f̂n) of
the associated classi�er satis�es

L(f̂n) − L� � C
p

d logd n
−1

4

�
Vd+2

Vd+1

�
where C is a universal constant and Vd is as in Corollary 22. If, in addition,
condition (2.1) holds for some α 2 [0, 1] and β > 0, then

L(f̂n) − L� � C(d logd)
1

2−α n
− 1

2(2−α)

�
Vd+2

Vd+1

�
.

Remark 1 Just like in the one-dimensional case, the conditions of Corollary 22 require
that η be bounded away from zero and one. To relax this assumption, one may try to add
a random noise to the data, just like in the one-dimensional case. However, this may not
work in the higher-dimensional problem because even if f� is an additive function, it may
not have this property any longer after the noise is added.
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In [3], we provide further results on approximation properties of sets Cf obtained by
taking the sign of linear combinations of decision stumps. However, for boosting to be
successful it is not enough that the Bayes classi�er g� can be written in such a form. It
may happen that even though g� is in the class of classi�ers induced by functions in Fλ,
the classi�er corresponding to fλ minimizing the cost A(f) in Fλ is very di�erent. We also
propose an example in which for any λ > 0 there exists an f 2 Fλ such that gf = g�.



Chapter 3

The Ranking Problem

Our approach of the ranking problem was mainly motivated by two applications: infor-
mation retrieval and credit risk screening. In both cases, the problem is to provide a
ranked list of a set of instances instead of simply classifying them. The idea is that the
most relevant (or the most reliable) instance should arrive at the top of the list. The
design and the theoretical analysis of ranking methods is considered today as a burning
issue in Machine Learning ([42], [67], [57]). We have used the experience acquired in the
classi�cation setup in order to schedule an in-depth investigation of the statistical aspects
of this ranking problem. From the viewpoint of statistics, rank data and rank statistics
have been thoroughly studied (see e.g. [83], [64]) however the learning view (closer in
spirit to M-estimation) requires di�erent concepts and tools.

In our approach, the important feature of the ranking problem is that natural estimates
of the ranking risk involve U-statistics. Therefore, the methodology is based on the
theory of U-processes, and the key tools involve maximal and concentration inequalities,
symmetrization tricks, and a contraction principle for U-processes. In this chapter, we
formulate the problem and provide consistency results for certain nonparametric ranking
methods. We also formulate a novel tail inequality for degenerate U-processes and, based
on the latter result, show that fast rates of convergence may be achieved for empirical risk
minimizers under suitable noise conditions.

We also point out that under certain conditions, �nding a good ranking rule amounts
to constructing a scoring function s. An important special case is the bipartite ranking
problem in which the available instances are labelled by binary labels ("good" or "bad").
In this case the ranking criterion is closely related to the so-called auc criterion. In the
last part of the chapter, we investigate the question of localizing the ranking problem in
order to focus on the best instances.

3.1 Ranking as classification of pairs of observations

Let (X, Y) be a pair of random variables taking values in X �R where X is a measurable
space. The random object X models some observation and Y its real-valued label.

The purpose of ranking is to rank the instances in X on the basis of the information
provided by their label. A natural way to do this is to �nd a scoring function s : X → R
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which will induce an order on X and re
ect the order of the corresponding labels. We
consider three examples where we describe the optimal scoring function.

Example 3 - Noise-free regression model. In this model Y = m(X) for some (un-
known) function m : X → R. Here obviously there is a perfect ranking and the optimal
scoring function is s� = m, or any strictly increasing transformation of it.

Example 4 - Regression model with noise. Now we turn to the general regression
model with heteroscedastic errors in which Y = m(X) + σ(X)ǫ for some (unknown) func-
tions m : X → R and σ : X → R, where ǫ is a symmetric random variable, independent
of X. We have again s� = m, or any strictly increasing transformation of it.

Example 5 - Classification model. Consider here the standard binary classi�cation
model. In this case, the situation is ambiguous since it is not clear why ranking di�ers
from classifying: how to order a set of binary labels? However, this is a common situation
in applications such as credit scoring. Financial institutions classify their clients in two
categories - "good" or "bad" - but they actually need to rank them according to their
socio-economic attributes (contained in the X vector) by the means of a scoring function.
Since they have a limited amount of money, they want to �nd the debtors who are the
most likely to pay their loan back. Ideally, they would like to recover the function η(x) =

P {Y = 1 | X = x}, 8x 2 X , or any strictly increasing transformation of it.

The scoring problem considered in the previous examples can be stated as follows: �nd
a scoring function ŝn on the basis of empirical data Dn = {(X1, Y1), . . . , (Xn, Yn)} which
will approximate the ranking on the instances of X achieved by the regression function
E(Y | X = x). Hence, the solution to this problem is the equivalence class of increasing
transforms of the regression function. We point out that this problem should be easier than
regression so we seek an appropriate strategy devoted to the ranking/scoring problem.

A simple idea in order to assess the performance of a scoring function s in ranking
the instances is to count how many pairs of data have their order inverted by s compared
to their respective labels. Let (X 0, Y 0) denote a pair of random variables identically dis-
tributed with (X, Y), and independent of it. We think about X being "better" than X 0 if
Y > Y 0. Hence s will commit an error every time we have a pair

�
(X, Y), (X 0, Y 0)� such that

the signs of Y −Y 0 and s(X)− s(X 0) are di�erent. We can then introduce the ranking risk
of a scoring function:

L(s) = P{(Y − Y 0)(s(X) − s(X 0)) < 0} ,

which is to be minimized over a given class of scoring functions.

We point out that this criterion su�ers from a serious drawback since it weights all
pairs uniformly independently of how bad the inversion in the ranking is (inverting, say,
the third instance with the �fth will imply the same loss as inverting the �rst instance
with the last one). In spite of this observation, we have chosen to consider the ranking
risk above in order to initiate our investigations on this topic and we will see it presents
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some interesting features. It is also worth mentioning that, under the classi�cation model,
this criterion can be related to standard performance measures used in applications such
as the Receiving Operator Characteristic (ROC) ([111], [55]) and the Area Under an ROC
Curve (AUC) criterion ([65], [44]).

In order to provide a formal study, we adopt a more general setup. Since the goal is to
rank X and X 0 such that the probability that the better ranked of them has a smaller label
is as small as possible, we consider a function r : X � X → {−1, 1} which will be called a
ranking rule. If r(x, x 0) = 1 then the rule ranks X higher than X 0.Denote by Z = Y−Y0

2

the ranking label of the pair of observations (X, X 0). The performance of a ranking rule is
measured by the ranking risk

L(r) = P{Z � r(X,X 0) < 0} ,

that is, the probability that r ranks two randomly drawn instances incorrectly. In this
formulation, the ranking problem is equivalent to a binary classi�cation problem in which
the sign of the random variable Z is to be guessed based upon the pair of observations
(X,X 0). Introduce the notation

ρ+(X,X 0) = P{Z > 0 | X,X 0}
ρ−(X,X 0) = P{Z < 0 | X,X 0} .

Now it is easy to derive the ranking rule r� with minimal risk over all possible ranking
rules.

Proposition 24 (Cl�emenc�on, Lugosi, and Vayatis [7]) De�ne

r�(x, x 0) = 2I[ρ+(x,x0)�ρ−(x,x0)] − 1

and denote L� = L(r�) = E{min(ρ+(X,X 0), ρ−(X,X 0))}. Then for any ranking rule r,

L� � L(r) .

In the previous examples, the ranking problem formulated here may be reduced to
�nding an appropriate scoring function. These are the cases when the joint distribution
of X and Y is such that there exists a function s� : X → R such that

r�(x, x 0) = 1 if and only if s�(x) � s�(x 0) .

A function s� satisfying the assumption is called an optimal scoring function. Obviously,
any strictly increasing transformation of an optimal scoring function is also an optimal
scoring function. Below we describe the important special case of the bipartite ranking
problem which has been considered in the machine learning literature ([57], [18]).

Example 6 (the bipartite ranking problem.) In the bipartite ranking problem, the
label Y is binary and takes values in {−1, 1}. Writing η(x) = P{Y = 1|X = x}, it is not hard
to see that the Bayes ranking risk equals

L� = Var
�

Y + 1

2

�
−

1

2
E ��η(X) − η(X 0)�� .
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In particular,

L� � Var
�

Y + 1

2

�
� 1/4

where the equality L� = Var
�

Y+1
2

�
holds when X and Y are independent and the maximum

is attained when η � 1/2. Observe that the di�culty of the bipartite ranking problem
depends on the concentration properties of the distribution of η(X) = P(Y = 1 | X) through
the quantity E(|η(X) − η(X0)|) which is a classical measure of concentration, known as
Gini's mean di�erence. It is clear from the form of the Bayes ranking rule that the
optimal ranking rule is given by a scoring function s� where s� is any strictly increasing
transformation of η. Then one may restrict the search to ranking rules de�ned by scoring
functions s, that is, ranking rules of form r(x, x 0) = 2I[s(x)�s(x0)] − 1. Writing L(s)

def
= L(r),

one has
L(s) − L� = E

���η(X 0) − η(X)
�� I[(s(X)−s(X0))(η(X)−η(X0))<0]

�
.

Just like in the standard setting of binary classi�cation of single observations, this
optimal rule r� cannot be known unless the underlying distribution is speci�ed. However
a reasonable goal could be to investigate the construction of ranking rules of low risk
based on training data. We assume that n independent, identically distributed copies of
(X, Y), are available: Dn = {(X1, Y1), . . . , (Xn, Yn)}. Given a ranking rule r, one may use
the training data to estimate its risk L(r) = P{Z � r(X,X 0) < 0}. The perhaps most natural
estimate is the U-statistic

Ln(r) =
1

n(n − 1)

∑

i6=j

I[Zi,j �r(Xi,Xj)<0].

In the sequel, we consider minimizers of the empirical estimate Ln(r) over a class R
of ranking rules and study the performance of such empirically selected ranking rules.

3.2 Representations of U-statistics

Here we recall some basic facts about U-statistics. Consider the i.i.d. random variables
X,X1, ..., Xn and denote by

Un =
1

n(n − 1)

∑

i6=j

q(Xi, Xj)

a U-statistic of order 2 where the kernel q is a symmetric real-valued function. The
U-statistic Un is said degenerate if its kernel q satis�es E (q(x, X)) = 0, 8x.

There are two basic representations of U-statistics which we recall next (see Ser
ing
[101] for more details).

Average of ’sums-of-i.i.d.’ blocks

This representation is the key for obtaining '�rst-order' results for non-degenerate
U-statistics. The U-statistic Un can be expressed as

Un =
1

n!

∑

π

1

bn/2c
bn/2c∑

i=1

q
�
Xπ(i), Xπ(bn/2c+i)

�
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where the sum is taken over all permutations π of {1, . . . , n}. The idea underlying this
representation is to reduce the analysis to the case of sums of i.i.d. random variables.

Hoeffding’s decomposition

Another way to interpret a U-statistics is as an orthogonal expansion known as Ho-
e�ding's decomposition.

Assuming that q(X1, X2) is square integrable, Un−EUn may be decomposed as a sum
Tn of i.i.d. random variables plus a degenerate U-statistic Wn. In order to write this
decomposition, consider the following function of one variable

h(Xi) = E(q(Xi, X) | Xi) − EUn ,

and the function of two variablesbh(Xi, Xj) = q(Xi, Xj) − EUn − h(Xi) − h(Xj).

Then we have the orthogonal expansion

Un = EUn + 2Tn + Wn ,

where

Tn =
1

n

n∑

i=1

h(Xi),

Wn =
1

n(n − 1)

∑

i6=j

bh(Xi, Xj) .

The statistic Wn is a degenerate U-statistic. Its variance is of the order 1/n2. Thus, Tn

is the leading term in this orthogonal decomposition.

3.3 First-order analysis

3.3.1 Empirical risk minimization

Based on the empirical estimate Ln(r) of the risk L(r) of a ranking rule de�ned above, one
may consider choosing a ranking rule by minimizing the empirical risk over a class R of
ranking rules r : X � X → {−1, 1}. De�ne the empirical risk minimizer, over R, by

r̂n = argmin
r2R

Ln(r) .

In a "�rst-order" approach, we may study the performance L(r̂n) = P{Z�r̂n(X,X 0) < 0 | Dn}

of the empirical risk minimizer by the standard bound (see, e.g., [52])

L(r̂n) − inf
r2RL(r) � 2 sup

r2R
|Ln(r) − L(r)| . (3.1)

This inequality points out that bounding the performance of an empirical minimizer of the
ranking risk boils down to investigating the properties of U-processes, that is, suprema
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of U-statistics indexed by a class of ranking rules. For a detailed and modern account
of U-process theory we refer to the book of de la Pe~na and Gin�e [49]. In a �rst-order
approach we basically reduce the problem to the study of ordinary empirical processes.
Indeed, using the �rst representation of a U-statistic, Cherno�'s bounding method, and
the concentration property of Rademacher averages, one can derive the following result.

Proposition 25 (Cl�emenc�on, Lugosi, and Vayatis [7]) Let δ > 0. With probability
at least 1 − δ,

L(r̂n) − inf
r2RL(r) � 4Er̂n + 4

s
ln(1/δ)

n − 1
.

where

r̂n = sup
r2R

1

bn/2c
������bn/2c∑

i=1

ǫiI[Zi,bn/2c+ir(Xi,Xbn/2c+i)<0]

������
where ǫ1, ..., ǫn are i.i.d. Rademacher random variables (i.e., random symmetric sign
variables).

The expected value of the Rademacher average r̂n may now be bounded by standard
methods, see, e.g., Lugosi [79], Boucheron, Bousquet, and Lugosi [34]. For example, if the
class R of indicator functions has �nite vc dimension V , then

Er̂n � c

s
V

n

for a universal constant c.

The proposition above is, in a certain sense, not improvable. However, it is well known
from the theory of statistical learning and empirical risk minimization for classi�cation
that the bound (3.1) is often quite loose. In classi�cation problems the looseness of
such a "�rst-order" approach is due to the fact that the variance of the estimators of
the risk is ignored and bounded uniformly by a constant. Therefore, the main interest
in considering U-statistics precisely consists in the fact that they have minimal variance
among all unbiased estimators. We will take advantage of the reduced-variance property
of U-statistics for the ranking problem in our analysis of fast rates of convergence (Section
3.4).

Observe that the bound of Proposition 25 remains true for an empirical risk minimizer
that, instead of using estimates based on U-statistics, estimates the risk of a ranking rule
by splitting the data set into two halves and estimates L(r) by

L 0
n(r) =

1

bn/2c
bn/2c∑

i=1

I[Zi,bn/2c+i �r(Xi,Xbn/2c+i)<0] .

Hence, in the previous study one loses the advantage of using U-statistics. In Section 3.4
it is shown that under certain, not uncommon, circumstances, signi�cantly smaller risk
bounds are achievable. There it will have an essential importance to use sharp exponential
bounds for U-processes, involving their reduced variance.
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3.3.2 Convex risk minimization

Several successful algorithms for classi�cation, including various versions of boosting and
support vector machines are based on replacing the loss function by a convex function
and minimizing the corresponding empirical convex risk functionals over a certain class
of functions (typically over a ball in an appropriately chosen Hilbert or Banach space of
functions). This approach has important computational advantages, as the minimization
of the empirical convex functional is often computationally feasible by gradient descent
algorithms (see Chapter 1).

The purpose of this section is to extend the principle of convex risk minimization to
the ranking problem. Our analysis also provides a theoretical framework for the analysis
of some successful ranking algorithms such as the RankBoost algorithm of Freund, Iyer,
Schapire, and Singer [57]. In what follows we adapt the arguments of Lugosi and Vayatis
[12] to the ranking problem.

The basic idea is to consider ranking rules induced by real-valued functions, that is,
ranking rules of the form r(x, x 0) = 2I[f(x,x0)>0]−1, where f : X�X → R is some measurable
real-valued function. With a slight abuse of notation, we will denote by

L(f) = P{sgn(Z) � f(X,X 0) < 0} = L(r)

the risk of the ranking rule induced by f. (Here sgn(x) = 1 if x > 0, sgn(x) = −1 if
x < 0, and sgn(x) = 0 if x = 0.) Let ϕ : R → [0,∞) be a convex cost function satisfying
ϕ(0) = 1 and ϕ(x) � I[x�0]. Typical choices of ϕ include the exponential cost function
ϕ(x) = ex, the "logit" function ϕ(x) = log2(1 + ex), or the "hinge loss" ϕ(x) = (1 + x)+.
De�ne the ranking ϕ-risk functional associated to the cost function ϕ by

A(f) = Eϕ(− sgn(Z) � f(X,X 0)) .

Obviously, L(f) � A(f). We denote by A� = inff A(f) the "optimal" value of the cost
functional where the in�mum is taken over all measurable functions f : X � X → R.

The most natural estimate of the cost functional A(f), based on the training data Dn,
is the empirical ranking ϕ-risk functional de�ned by the U-statistic

An(f) =
1

n(n − 1)

∑

i6=j

ϕ(− sgn(Zi,j) � f(Xi, Xj)) .

The ranking rules based on convex risk minimization minimize, over a set F of real-
valued functions f : X � X → R, the empirical ranking ϕ-risk functional An, that is,
we choose f̂n = argminf2F An(f) and assign the corresponding ranking rule r̂n(x, x 0) =

2I[f̂n(x,x0)>0] − 1. Here we assume implicitly that the minimum exists.

By minimizing convex risk functionals, one hopes to make the excess convex risk
A(f̂n) − A� small. This is meaningful for ranking if one can relate the excess convex risk
to the excess ranking risk L(f̂n)−L�. This may be done quite generally thanks to a result
of Bartlett, Jordan, and McAuli�e [27] (see Chapter 2). In short, to analyze the excess
ranking risk L(f) − L� for convex risk minimization, it su�ces to bound the excess convex
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risk. This may be done by decomposing it into "estimation" and "approximation" errors
as follows:

A(f̂n) − A�(f) �
�

A(f̂n) − inf
f2F A(f)

�
+

�
inf
f2F A(f) − A�

�
.

Clearly, we may (loosely) bound the excess convex risk over the class F as

A(f̂n) − inf
f2F A(f) � 2 sup

f2F
|An(f) − A(f)| ,

and we can then state the analogue of Proposition 25 for convex ϕ-risk functionals which
is also based on U-statistics' �rst representation.

Proposition 26 (Cl�emenc�on, Lugosi, and Vayatis [7]) Let f̂n be the ranking rule
minimizing the empirical convex risk functional An(f) over a class F of functions
uniformly bounded by −B and B. Then, with probability at least 1 − δ,

A(f̂n) − inf
f2F A(f) � 8Bϕ 0(B)r̂n(F) +

s
2B2 log(1/δ)

n

where r̂n denotes the Rademacher average

r̂n(F) = E sup
f2F

0@ 1

bn/2c
bn/2c∑

i=1

ǫi � f(Xi, Xbn/2c+i)

1A ,

and ǫ1, ..., ǫn are i.i.d. Rademacher random variables.

It remains to provide examples where the Rademacher average describing the learning
complexity can be controlled. Indeed, many interesting bounds are available for the
Rademacher average of various classes of functions.

Example 7 - Boosting-type ranking.

In analogy to boosting-type classi�cation problems, one may consider a class FB of
functions de�ned by

FB =





f(x, x 0) =

N∑

j=1

wjgj(x, x 0) : N 2 N, ,

N∑

j=1

|wj| = B, gj 2 R





where R is a class of ranking rules as de�ned in Section 3.3.1. In this case it is easy to
see that

r̂n(FB) � Br̂n(R) � cB

s
V

n

where V is the vc dimension of the "base" class R.
Summarizing, we have shown that a ranking rule based on the empirical minimization

An(f) over a class of ranking functions FB of the form de�ned above, the excess ranking
risk satis�es, with probability at least 1 − δ,

A(f̂n) − A� � 8c B2ϕ 0(B)

s
V

n
+

s
2B2 log(1/δ)

n
+

�
inf

f2FB

A(f) − A�
�

.

This inequality may be used to derive the consistency of such ranking rules. For example,
the following corollary is immediate.
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Corollary 27 (Cl�emenc�on, Lugosi, and Vayatis [7]) Let R be a class of ranking
rules of �nite vc dimension V such that the associated class of functions FB is rich
in the sense that

lim
B→∞

inf
f2FB

A(f) = A�

for all distributions of (X, Y). Then if f̂n is de�ned as the empirical minimizer of
An(f) over FBn where the sequence Bn satis�es Bn → ∞ and B2

nϕ 0(Bn)/
p

n → 0, then

lim
n→∞

L(f̂n) = L� almost surely.

Classes R satisfying the conditions of the corollary exist, we refer to Section 2.2 for
more details.

Example 8 - SVM ranking.

Proposition 26 can also be used for establishing performance bounds for kernel methods
such as support vector machines. A prototypical kernel-based ranking method may be
de�ned as follows. To lighten notation, we write W = X � X .

Let k :W �W → R be a symmetric positive de�nite function, that is,

n∑

i,j=1

αiαjk(wi, wj) � 0 ,

for all choices of n, α1, . . . , αn 2 R and w1, . . . , wn 2 W.

A kernel-type ranking algorithm may be de�ned as one that performs minimization of
the empirical convex risk An(f) (typically based on the hinge loss ϕ(x) = (1 + x)+) over
the class FB of functions de�ned by a ball of the associated reproducing kernel Hilbert
space of the form (where w = (x, x 0))

FB =





w 7→

N∑

j=1

cjk(wj, w) : N 2 N,

N∑

i,j=1

cicjk(wi, wj) � B2, w1, . . . , wN 2 W




.

In this case we have

r̂n(FB) � 2B

n
E

vuuutbn/2c∑

i=1

k((Xi, Xbn/2c+i), (Xi, Xbn/2c+i)) ,

see, for example, Boucheron, Bousquet, and Lugosi [34]. Once again, universal consis-
tency of such kernel-based ranking rules may be derived in a straightforward way if the
approximation error inff2FB

A(f)−A� can be guaranteed to go to zero as B → ∞. For the
approximation properties of such kernel classes we refer the reader to Cucker and Smale
[46], Scovel and Steinwart [100], Smale and Zhou [103], Steinwart [104].
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3.4 Fast rates of convergence

The results provided in the previous section do not reveal any particular feature of the
ranking problem except for the complexity measures involved. Indeed, by initially splitting
the sample and considering independent pairs of observations, one would obtain the same
rates of convergence up to constants. The superiority of U-statistics-based estimators
upon averages of i.i.d. random variables can be established when variance is involved in
the analysis. The two following observations will lead to the main outcome of our study:

1. The structure of the U-statistic is better described by Hoe�ding's decomposition
rather than the average of 'sums of i.i.d.' blocks representation. In particular,
Hoe�ding's decomposition makes explicit the variance term of the statistic.

2. The analysis of fast rates of convergence (faster than n−1/2) relies heavily on a
variance control condition which limits the range of possible distributions for which
these rates can be achieved. It is well known (see, e.g., §5.2 in the survey [34] and the
references therein) that tighter bounds for the excess risk in the context of binary
classi�cation may be obtained if one can control the variance of the excess risk by its
expected value. In classi�cation this can be guaranteed under certain "low-noise"
conditions that have already been discussed in Chapter 2.

Next we examine the possibilities of obtaining such improved performance bounds for
empirical ranking risk minimization.

Set �rst
qr((x, y), (x 0, y 0)) = I[(y−y0)�r(x,x0)<0] − I[(y−y0)�r�(x,x0)<0]

and consider the following estimate of the excess risk Λ(r) = L(r)−L� = Eqr((X, Y), (X 0, Y 0)):

Λn(r) =
1

n(n − 1)

∑

i6=j

qr((Xi, Yi), (Xj, Yj)),

which is a U-statistic of degree 2 with symmetric kernel qr. Clearly, the minimizer r̂n of
the empirical ranking risk Ln(r) over R also minimizes the empirical excess risk Λn(r).
To study this minimizer, consider the Hoe�ding decomposition of Λn(r):

Λn(r) − Λ(r) = 2Tn(r) + Wn(r) ,

where

Tn(r) =
1

n

n∑

i=1

hr(Xi, Yi)

is a sum of i.i.d. random variables with

hr(x, y) = Eqr((x, y), (X 0, Y 0)) − Λ(r)

and
Wn(r) =

1

n(n − 1)

∑

i6=j

bhr((Xi, Yi), (Xj, Yj))
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is a degenerate U-statistic with symmetric kernelbhr((x, y), (x 0, y 0)) = qr((x, y), (x 0, y 0)) − Λ(r) − hr(x, y) − hr(x
0, y 0) .

In the analysis we show that the contribution of the degenerate part Wn(r) of the U-
statistic is negligible compared to that of Tn(r). This means that minimization of Λn

is approximately equivalent to minimizing Tn(r). But since Tn(r) is an average of i.i.d.
random variables, this can be studied by known techniques worked out for empirical risk
minimization.

It is well known from the theory of empirical risk minimization (see Tsybakov [108],
Bartlett and Mendelson [28], Koltchinskii [74], Massart [88]), that, in order to improve
the rates of convergence (such as the bound O(

p
V/n) obtained for vc classes in Section

3.3.1), it is necessary to impose some conditions on the joint distribution of (X, Y). In our
case the key assumption takes the following form:

Assumption 28 There exist constants c > 0 and α 2 [0, 1] such that for all r 2 R,

Var(hr(X, Y)) � cΛ(r)α .

The improved rates of convergence will depend on the value of α. Interestingly, this
assumption is satis�ed for a surprisingly large family of distributions (see [7] and the ex-
ample below), guaranteeing improved rates of convergence. For α = 0 the assumption is
always satis�ed and the corresponding performance bound does not yield any improve-
ment over those of Section 3.3.1. However, in many natural examples Assumption 28 is
satis�ed with values of α close to one, providing signi�cant improvements in the rates of
convergence.

The main tool for handling the degenerate part is a new general moment inequality
for U-processes that may be interesting on its own right.

Theorem 29 (cl�emenc�on, lugosi, and vayatis [7]) Let X,X1, ..., Xn be i.i.d. random
variables and let F be a class of kernels. Consider a degenerate U-process Z of order
2 indexed by F ,

Z = sup
f2F

������∑
i,j

f(Xi, Xj)

������
where Ef(X, x) = 0, 8x, f. Assume also f(x, x) = 0, 8x and supf2F kfk∞ = F. Let
ǫ1, ..., ǫn be i.i.d. Rademacher random variables and introduce the random variables

Zǫ = sup
f2F

������∑
i,j

ǫiǫjf(Xi, Xj)

������ ,

Uǫ = sup
f2F

sup
α:kαk2�1

∑

i,j

ǫiαjf(Xi, Xj) ,

M = sup
f2F

max
k=1...n

������ n∑

i=1

ǫif(Xi, Xk)

������ .



42 The Ranking Problem

Then there exists a universal constant C > 0 such that for all n and q � 2,

(EZq)1/q � C
�
EZǫ + q1/2EUǫ + q(EM + Fn) + q3/2Fn1/2 + q2F

�
.

Also, there exists a universal constant C such that for all n and t > 0,

P{Z > CEZǫ + t} � exp
 

−
1

C
min

 �
t

EUǫ

�2

,
t

EM + Fn
,

�
t

F
p

n

�2/3

,

r
t

F

!!
.

Remark 2 This result is based on moment inequalities obtained for empirical processes
and Rademacher chaoses in Bousquet, Boucheron, Lugosi, and Massart [35] and generalizes
an inequality due to Arcones and Gin�e [21]. We also refer to the corresponding results
obtained for U-statistics by Adamczak [17], Gin�e, Latala, and Zinn [61], and Houdr�e and
Reynaud-Bouret [69].

In order to state the main result of this section, we need to introduce some quantities
related to the class R. Let ǫ1, . . . , ǫn be i.i.d. Rademacher random variables independent
of the (Xi, Yi)'s. Let

Zǫ = sup
r2R

������∑
i,j

ǫiǫj
bhr((Xi, Yi), (Xj, Yj))

������ ,

Uǫ = sup
r2R

sup
α:kαk2�1

∑

i,j

ǫiαj
bhr((Xi, Yi), (Xj, Yj)) ,

M = sup
r2R

max
k=1,...,n

������ n∑

i=1

ǫi
bhr((Xi, Yi), (Xk, Yk))

������ .

Introduce the "loss function"

ℓ(r, (x, y)) = 2EI[(y−Y)�r(x,X)<0] − L(r)

and de�ne

νn(r) =
1

n

n∑

i=1

ℓ(r, (Xi, Yi)) − L(r) .

(Observe that νn(r) has zero mean.) Also, de�ne the pseudo-distance

d(r, r 0) =

�
E
�
E[I[r(X,X0)6=r0(X,X0)]|X]

�2
�1/2

.

Let ϕ : [0,∞) → [0,∞) be a nondecreasing function such that ϕ(x)/x is nonincreasing
and ϕ(1) � 1 such that for all r 2 R,

p
nE sup

r02R,d(r,r0)�σ

|νn(r) − νn(r 0)| � ϕ(σ) .
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Theorem 30 (Cl�emenc�on, Lugosi, and Vayatis [7]) Consider a minimizer r̂n of
the empirical ranking risk Ln(r) over a class R of ranking rules and assume Assump-
tion 28. Then there exists a universal constant C such that, with probability at least
1 − δ, the ranking risk of r̂n satis�es

L(r̂n) − L� � 2

�
inf
r2RL(r) − L�

�
+C

 EZǫ

n2
+
EUǫ

p
log(1/δ)

n2
+
EM log(1/δ)

n2
+

log(1/δ)

n
+ ρ2 log(1/δ)

!
where ρ > 0 is the unique solution of the equation

p
nρ2 = ϕ(ρα) .

The proof relies on Hoe�ding's decomposition, on Theorem 29, and applies Theorem
8.3 of Massart [88]. Theorem 30 provides a performance bound in terms of expected values
of certain Rademacher chaoses indexed by R and local properties of an ordinary empirical
process. These quantities have been thoroughly studied and well understood, and may be
easily bounded in many interesting cases. Below we will work out an example when R is
a vc class of indicator functions.

Observe that the only condition for the distribution is that the variance of hr can be
bounded in terms of Λ(r). In the example below, we show that Assumption 28 can be
satis�ed with α > 0 under mild conditions on the distribution.

Example 9 - The bipartite ranking problem. We derive a simple su�cient condition
for achieving fast rates of convergence for the bipartite ranking problem. Recall that here
it su�ces to consider ranking rules of the form r(x, x 0) = 2I[s(x)�s(x0)] − 1 where s is a
scoring function.

Noise assumption. There exist constants c > 0 and α 2 [0, 1] such that for all x 2 X ,

EX0(
��η(x) − η(X0)��−α

) � c . (3.2)

Under this noise assumption, the variance control condition is satis�ed. For α < 1,
there is a wide range of distributions ful�lling this property. For instance, we can consider
that η(x) = P{Y = 1|X = x} is such that the random variable η(X) has an absolutely
continuous distribution on [0, 1] with a density bounded by B. Indeed, it requires that
the distribution of η(X) is su�ciently spread out, for example it cannot have atoms or
in�nite peaks in its density. Under such a condition a rate of convergence of the order of
n−1+ǫ is achievable for any ǫ > 0. Note that we crucially used the reduced variance of
the U-statistic L(r̂n) to derive fast rates from the rather weak condition (3.2). Applying
a similar reasoning for the variance of qs((X, Y), (X 0, Y 0)) (which would be the case if one
considered a risk estimate based on independent pairs by splitting the training data into
two halves, see Section 3.3.1), would have led to the condition:��η(x) − η(x0)�� � c, (3.3)
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for some constant c, and x 6= x0. This condition is clearly too restrictive since it is satis�ed
only when η(X) has a discrete distribution.

In [5], we also derive similar conditions in the case of regression data. We mention that
in the case of a noiseless regression model, the noise assumption is automatically satis�ed
with c = 1 and α = 1.

In order to illustrate Theorem 30 and provide a simpler statement, we now consider
the case when R is a vc class, that is, it has a �nite vc dimension V . We obtain a simple
bound which reveals that the value of α in Assumption 28 determines the magnitude of
the last term which, in turn, dominates the right-hand side (apart from the approximation
error term).

Corollary 31 (Cl�emenc�on, Lugosi, and Vayatis [7]) Consider the minimizer r̂n of
the empirical ranking risk Ln(r) over a class R of ranking rules of �nite vc dimension
V and assume Assumption 28. Then there exists a universal constant C such that,
with probability at least 1 − δ, the ranking risk of r̂n satis�es

L(r̂n) − L� � 2

�
inf
r2RL(r) − L�

�
+ C

�
V log(n/δ)

n

�1/(2−α)

Based on the bounds presented here, one may design penalized empirical minimizers of
the ranking risk that select the class R from a collection of classes achieving this objective.
The techniques presented in Massart [88] and Koltchinskii [74] may be used in a relatively
straightforward manner to derive such "oracle inequalities" for penalized empirical risk
minimization in the present framework.

3.5 Ranking the best instances

We now discuss the choice of risk functionals for the ranking problem in order to in-
clude priors on the desired ranking. We consider the classi�cation model with binary-
valued labels Y 2 {−1,+1} where we search for a real-valued scoring function s as close
as possible to the equivalence class of functions obtained as increasing transforms of
η(x) = P {Y = 1 | X = x}.

Previously, we have been considering a version of the ranking problem where the
ranking risk of a scoring function s is given by:

L(s) = P{(Y − Y 0)(s(X) − s(X 0)) < 0} .

Interestingly, it can be proved that minimizing the ranking risk L(s) is equivalent
to maximizing the well-known AUC criterion. This is trivial once we write down the
probabilistic interpretation of the AUC ([8]):

auc(s) = P{
s(X) > s(X0) | Y = 1, Y0 = −1

}
= 1 −

1

2p(1 − p)
L(s) .
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However, in some applications such as information retrieval or credit risk screening,
the AUC criterion is of limited interest. Such a criterion weights any discordant pair of
observations uniformly while the challenge there lies in ranking the "best" - according to
the optimal scoring function - instances. We point out that this problem is of huge interest
in the applications aforementioned but has not been addressed yet from a theoretical point
of view. Empirical criteria have been proposed in the machine learning community (e.g.
the Discounted Cumulative Gain [70] which can be assimilated to a linear rank statistics,
or the "p-norm push" approach of Rudin [97]) but, as far as we know, optimality issues
have not been explored. Indeed, the following discussion will reveal that the very idea of
a criterion for local ranking derived from the AUC presents some unexpected features.

We state the local ranking problem as follows:

Let u 2 (0, 1) be �xed, the problem is to rank the instances of the input space
X in order to have a proportion u of the best instances ranked as accurately
as possible.

We face here a two-fold problem: �nd the best instances and rank them simultaneously.
Here, there is no natural criterion at hand, so we will rather formulate what kind of scoring
functions would be optimal for such a problem (except the regression function η itself).

First the set of best instances can be described by the following set:

C�
u = {x 2 X | η(x) > Q(η, 1 − u)}

where Q(η, 1 − u) is the (1 − u)-quantile of the random variable η(X) (meaning that
Q(η, u) = F−1

η (1 − u) with F−1
η being the generalized inverse of Fη(z) = P {η(X) � z}). It

is noteworthy that the set C�
u is invariant by strictly increasing transformations of η.

Hence, the optimal elements for the local ranking problem belong to the equivalence
class (functions de�ned up to the composition with a nondecreasing transformation) de-
�ned by the scoring function s�:

s�(x) =






= η(x) if x 2 C�
u

< inf
C�

u

η if x /2 C�
u

In [8], we have formulated the following criterion which extends (and localizes) the
AUC criterion:

AUCu(s) = P{
s(X) > s(X 0) , s(X) � Q(s, 1 − u) | Y = 1, Y 0 = −1

}
,

where Q(s, 1 − u) = F−1
s (1 − u) and Fs(z) = P {s(X) � z}. This criterion obviously boils

down to the standard AUC criterion for u = 1.

The following theorem states that the scoring function s� maximizes this criterion and
that AUCu(s) may be decomposed as a sum of a 'power' term β(s, u) and a local ranking
risk term. Before stating the result, we set the following notations:
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� the candidate set for the set of best instances for each scoring function

Cs,u = {x 2 X | s(x) > Q(s, 1 − u)}

� the false positive rate at level 1 − u

α(s, u) = P {s(X) � Q(s, 1 − u) | Y = −1}

� the true positive rate at level 1 − u

β(s, u) = P {s(X) � Q(s, 1 − u) | Y = +1}

� the local ranking risk on a measurable set C � X
L(s, C) = P

{
(s(X) − s(X 0))(Y − Y 0) < 0 , (X,X 0) 2 C2

}
.

Theorem 32 (Cl�emenc�on and Vayatis [8]) Let u 2 (0, 1). We have

8s, AUCu(s) � AUCu(s�) .

Moreover:

AUCu(s) =

∫α(s,u)

0

β(s, v)dv + β(s, u)(1 − α(s, u))

= β(s, u) −
1

2p(1 − p)
L(s, Cs,u) .

Remark 3 Note that naive strategies (see the partial AUC approach in [53]) which con-
sist in optimizing a truncated AUC criterion as

∫α(s,u)

0
β(s, v)dv do not lead to the desired

result. Indeed, as the scoring function s comes closer to η, the power β(s, α) increases but
the integration domain shrinks and it is not clear whether η is a maximizer.

This result highlights the fact that divide-and-conquer strategies (�rst �nd the best
instances, and then rank them according to the local AUC criterion) will fail in solving
the local ranking problem.

In a joint work with Cl�emen�con [8], we �rst study the problem of �nding the best
instances by reducing it to a special classi�cation problem. We prove consistency of ERM
procedures for the setup of classi�cation with mass-constraints and study fast rates of
convergence. We discuss further the statistical aspects of the local ranking problem which
raises new challenges for statistical learning theory.
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