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Introduction

L’existence de trois états d’agrégation de la matière, qui se transforment l’un dans
l’autre, est un phénomène commun dans l’expérience quotidienne : l’eau se transforme
en vapeur et la vapeur en glace. Ces changements d’états d’agrégation s’appellent
transitions de phase. Les mouvements incessants de l’eau d’une phase à l’autre sont
une condition ”sine qua non” pour la vie sur Terre. Les transitions de phase ont
toujours eu la plus grande importance technologique, et donc politique et culturelle
: la fusion des métaux pour faire des épées, l’évaporation de l’eau dans un moteur à
vapeur, la condensation de l’essence dans une raffinerie de pétrole ... La liste pourrait
être facilement plus longue que cette thèse.

La première tentative de décrire les diverses phases de la matière et de leurs transi-
tions a été entreprise par le philosophe grec Aristote [1]. Selon cette illustre personne
tout dans le monde se compose de la combinaison de quatre éléments : terre, eau, feu
et air. Le but final de chaque élément est d’arriver à rejoindre son ”endroit naturel”.
Par exemple la mer est l’endroit normal pour l’eau. Par conséquent la pluie, qui est
”un peu d’eau dans le ciel”, chute vers le bas et, par les fleuves, entre dans la mer.

Figure 1: Panneau à gauche: un liquide en équilibre avec sa vapeur. Panneau à droite:
le même liquide après avoir été chauffé au-dessus de la température critique.

Si nous regardons la photo à gauche sur la figure 1 nous pouvons voir une situation
très courante. Un liquide (dans le fond) est en équilibre avec sa vapeur (dessus), les
deux phases sont clairement séparées. Aristote expliquerait cette situation de la façon
suivante : le liquide est principalement fait d’eau et cette eau tend à aller vers le bas
pour arriver à la mer, tandis que la vapeur est fait principalement d’air et tend à aller
au ciel, son ”endroit naturel”.
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Introduction

La vision aristotélicienne du monde a été conservée pendant 20 siècles. Peut-être
que sa vision du monde aurait été révisée plus tôt, si Aristote avait eu la possibilité
de chauffer l’eau au-dessus de 647 K et d’appliquer une pression plus grande que 221
bar. Dans ce cas lá il aurait observé la situation rapportée dans l’image à droite de la
figure 1, cas dans laquel le système est homogène, les deux ”éléments” sont remplacés
par un seul. D’une part le nouvel élément est ”similaire à l’air”, puisqu’il est volatile si
on casse le gobelet. D’autre part le nouvel élément est ”similaire à l’eau”, puisqu’il est
visqueux et ne transmet pas la lumière sans la perturber. En outre, si on le refroidit
en augmentant ou diminuant la pression, on peut obtenir soit seulement de la vapeur
soit seulement de l’eau. Comment Aristote aurait-il expliqué ceci ?

Aujourd’hui nous savons que chaque matériau peut exister dans trois états différents
d’agrégation : solide, liquide et vapeur. Chacune de ces phases a ses caractéristiques :
un solide a toujours un volume et une forme bien définis ; un liquide n’a pas de forme
définie, mais il a un volume précis ; une vapeur n’a ni forme ni volume bien définis.

Par certaines valeurs de température et de pression, le système peut changer son
état d’agrégation, c’est-à-dire il peut subir une transition de phase de premier ordre.
Par exemple lors du refroidissement, une quantité de chaleur différente de zéro, la
chaleur latente, est échangée avec l’environnement dans un intervalle de température
infinitésimal autour de la température de transition. Dans le cas de l’eau une chaleur
latente de 334 KJ est libérée par les molécules pour s’organiser elles-mêmes dans un
réseau cristallin de glace.

Si nous voulons expliquer la phénoménologie montrée sur la figure 1, nous devrions
souligner la première faute que j’ai faite dans cette thèse : la déclaration que la transi-
tion de phase liquide-vapeur est de premiér ordre. Ce n’est pas toujours vrai, puisque
dans certaines circonstances le liquide peut se transformer en vapeur (et vice versa)
sans changer aucune chaleur latente avec l’environnement. Ceci est possible quand
on contourne le point critique. C’est un unique point singulier dans le diagramme de
phases, au-delà duquel la distinction entre liquide et vapeur n’est plus significative.

Pourquoi est-ce que ceci se produit ? Imaginons que l’on chauffe un liquide dans un
récipient fermé. Quand la température augmente la quantité de liquide qui se convertit
en vapeur augmente, la pression et la densité de vapeur sont donc plus grandes. En
même temps le liquide se dilate ; par conséquent la différence entre la densité du liquide
et de la vapeur diminue jusqu’à une certaine température, la température critique (Tc),
où cette différence disparâıt. Au-dessus de Tc le liquide et la vapeur cessent d’être des
entités différentes et le système devient homogène : c’est la phase supercritique.

Récemment les propriétés particulières des fluides supercritiques ont trouvé de nom-
breuses applications pratiques, qui s’étendent de la nanotechnologie [2] au traitement
des déchets dangereux [3, 4]. Par exemple, un réacteur chimique utilisant l’oxydation
de l’eau supercritique (SCWO) a été développé récemment, et est employé pour traiter
un large éventail de déchets dangereu. Dans la plupart des cas une efficacité de 99.99
% à été obtenue. D’ailleurs, pour une concentration de déchets plus haute que 1 %,
le processus est autoentretenu et l’excès de chaleur de la réaction peut être récupéré
pour d’autres usages. Il y a aussi le potentiel pour développer des usines de production
d’électricité, alimentées par déchets dangereux, basées sur SCWO. C’est, peut-être,
l’application finale de SCWO : nettoyer l’environnement et, en même temps, produire
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Introduction

de l’énergie.

D’un point de vue scientifique, de nombreuses études expérimentales et théoriques
sur les fluides critiques et supercritiques ont été réalisées depuis la découverte de l’état
critique en 1822 par Charles baron Cagniard de la Tour. Aujourd’hui les propriétés
macroscopiques (thermodynamiques) des liquides, vapeurs et fluides supercritiques,
ainsi que leur structure microscopique, sont bien comprises.

En revanche la connaissance de la dynamique microscopique de ces systèmes est tout
à fait insuffisante. Pour cette raison nous avons décidé d’étudier de façon expérimentale
la dynamique microscopique des fluides supercritiques. Afin de réaliser une étude
générale et systématique nous avons choisi de sonder quatre systèmes différents, dans
la phase liquide et supercritique. Les systèmes étudiés sont deux liquides qui présentent
des liaisons hydrogènes (l’eau et l’ammoniaque), un liquide moléculaire (l’azote) et un
liquide simple (le néon).

Ces systèmes ont été choisis aussi parce qu’ils peuvent être considérés comme des
représentants de classes de matériaux. En effet ils possèdent des intéractions et struc-
tures intermoléculaires très différentes : la molécule d’eau possède deux liaisons hy-
drogènes par molécule, avec un rapport donneur/accepteur égal à 1. En autre l’eau
présente une structure intermoléculaire presque parfaitement tétraédrique. Ces pro-
priétés fait de l’eau un liquide très structuré et coordonné, même sur des distances
plus grandes que la distance typique entre deux molécules. Même l’ammoniaque a des
liaisons hydrogènes mais avec un rapport donneur/accepteur déséquilibré (1/3). En
conséquence les molécules d’ammoniaque ne peuvent former qu’une seule liaison entre
elles. Pour cette raison la structure et le degré de coordination sont beaucoup plus
petits que dans l’eau. Le néon comme l’azote ne possèdent pas de liaisons hydrogènes,
mais de plus faibles liaisons de van der Waals. En outre le néon présente la structure
intramoléculaire la plus simple possible (monoatomique).

Pour enquêter sur la dynamique microscopique d’un système nous avons besoin
d’une sonde microscopique et d’une technique sensible à la dynamique. Jusqu’à il y
a 10 ans la seule technique expérimentale qui pouvait satisfaire les deux conditions
était la Diffusion Inélastique de Neutron (INS). Biènque la technique INS soit un in-
strument formidable pour ce type d’études, elle a une limite intrinsèque très forte :
une gamme dynamique limitée. Cette limitation empêche les neutrons de mesurer la
dynamique à hautes valeurs d’énergie échangée (c’est-à-dire à hautes fréquences : ω)
et à petites valeurs de moment transféré : Q. De nos jours le développement de la Dif-
fusion Inélastique de Rayons-X (IXS) a fourni une puissante technique complémentaire
pour enquêter sur la dynamique microscopique de matériaux. En particulier dans les
systèmes désordonnés, l’IXS dépasse certaines des restrictions présentes intrinsèquement
dans les expériences d’INS, plus précisément la technique IXS n’a aucune limita-
tion de gamme dynamique. La quantité expérimentelement observable, tant dans les
expériences IXS que d’INS, est la transformée de Fourier de la fonction de corrélation
de couple de la densité atomique. Cette quantité est communément appelée le facteur
de structure dynamique, S(Q,ω). Il contient toutes les informations pertinentes sur la
structure et la dynamique. Ces informations contenues dans S(Q,ω) concernent des
échelles de longueur, λ, et de temps, τ , du même ordre que 1/Q et 1/ω. Dans le cas
d’un système désordonné il est possible de calculer formellement S(Q, ω) seulement
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Introduction

dans deux cas limites :

• ” aux petites valeurs du moment transféré, appelé la limite hydrodynamique. Ici
le système est décrit, d’une façon macroscopique, par la théorie hydrodynamique
classique [5].

• aux valeurs très élevées du moment transféré, appelé la limite de particule unique.
Ici il n’est pas possible d’obtenir des informations sur la dynamique collective [6].

Dans ce travail de thèse nous exploitons principalement la région intermédiaire
du moment transféré, c’est-à-dire la région habituellement appelée ” mésoscopique ”.
Cette région est caractérisée par des valeurs de moment transféré près de l’inverse des
distances intermoléculaires moyennes (typiquement quelques Å) et, par conséquent, un
développement de la théorie microscopique de la dynamique des liquides est nécessaire.
De nos jours il y a de nombreuses façons de décrire ces dynamiques microscopiques.
Parmi ces théories, pour décrire nos données expérimentales, nous avons choisi la
théorie de l’hydrodynamique moléculaire [7, 8]. Elle est basée sur le formalisme de
la fonction mémoire et sur le concept des processus de relaxation. Cette théorie peut
très bien décrire la phénoménologie observée expérimentalement. Notre but est de
comprendre comment la phénoménologie caractéristique de la phase liquide évolue
tandis que le système approche et entre dans la phase supercritique. En particulier
notre attention est concentrée sur les excitations collectives, et en particulier sur les
modes acoustiques longitudinaux. Les processus de relaxation utilisés pour décrire la
dynamique microscopique sont examinés en fonction de l’état thermodynamique des
systèmes étudiés, ainsi que leur évolution avec l’augmentation de degré de connectivité
du système. Ceci a été rendu possible par une comparaison complète des résultats
obtenus pour différents échantillons.

Ce travail de thèse est organisé comme suit:

• Le chapitre 1 est consacré à un bref examen des concepts fondamentaux de la
transition de phase liquide-vapeur, avec l’exemple de l’équation d’état de van der
Waals.

• Dans le chapitre 2 est développé le formalisme nécessaire pour décrire la dy-
namique des fluides. Les résultats concernant la limite hydrodynamique et de
particule unique sont discutés. En outre, la théorie hydrodynamique moléculaire
est présentée avec quelques exemples didactiques.

• Le chapitre 3 discute la technique de la Diffusion Inélastique des Rayon-X comme
outil pour étudier la dynamique à hautes fréquences des systèmes désordonnés.
L’installation expérimentale est décrite, ainsi que les équipements à haute pres-
sion utilisés.

• Le chapitre 4 présente les expériences effectuées, l’analyse de données et les
résultats expérimentaux obtenus pour chaque système étudié.

• Le chapitre 5 est focalisé sur la comparaison quantitative entre les résultats
obtenus pour différents échantillons. Enfin, une image globale de la phénoménologie
observée expérimentalement est fournie.
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Introduction

The existence of three aggregate states of matter, that turn one into the other, is a
common phenomenon in everyday experience: water transforms into steam and steam
into ice. These changes in the nature of the aggregate are called phase transitions.
The endless movements of water from one phase to the other is a condition ”sine qua
non” for life on Earth. Since the earliest time phase transitions were of the greatest
technological (and therefore political and cultural) importance: the melting of metals to
make swords, the evaporation of water in a steam engine, the condensation of gasoline
in an oil refinery ... The list could easily be longer than this thesis itself.

The first attempt to describe the various phases of matter and their transitions
was undertaken by the Greek philosopher Aristotle [1]. According to this distinguished
personality everything in the world is composed of a weighted combination of four
elements: rock, water, fire and air. The ultimate aim of each element is to join its
”natural place”. For instance the sea is the natural place for water. Therefore the rain,
that is ”some water in the air”, falls down and, through the rivers, goes into the sea.

Figure 2: Left panel: a liquid in equilibrium with its vapor. Right panel: the same
liquid after being heated above the critical temperature.

If we look at the left photo in figure 1 we can see a very common situation. A liquid
(on the bottom) is in equilibrium with its vapor (on the top), and the two phases are
clearly separated. This situation was explained by Aristotle in the following way: the
liquid, whatever it is, is mainly made out of water and it tends to flow down and join
the sea while the vapor is made out of air and it tends to join the sky, its ”natural
place”.
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The Aristotelian vision of the world held for nearly 20 centuries. Perhaps his vision
would have been revisited earlier, if Aristotle had had the possibility to heat water
above 647 K and to apply a pressure greater than 221 bar. In this case he would have
observed the situation reported in the right picture of figure 1: the system becomes
homogeneous, and the two ”elements” are replaced by only one. On one hand the
new element is ”air-like”, since it is volatile if one breaks the ampulla. On the other
hand it is ”water-like”, since it is viscous and does not transmit light unperturbed.
Furthermore, on cooling down with either an increase or a decrease in pressure, one
obtains water or air, respectively. How would have Aristotle explained this?

Today we know that each material can exist in three different aggregation states:
solid, liquid and vapor. Each of these phases has its characteristic features: a solid
always has a well defined volume and shape; a liquid does not have a defined shape,
but it has a precise volume; a vapor does not have a proper shape or volume.

In specific conditions of temperature and pressure the system can change its state of
aggregation, undergoing a so-called first-order phase transition. For example by cooling
a non-zero quantity of heat, i.e. the latent heat, is exchanged with the environment
in an infinitesimally small range of temperature around the transition temperature.
For instance a latent heat of 334 J/g is released by water molecules in order to pack
themselves together in a crystalline ice lattice.

If we want to explain the phenomenology shown in figure 1, we should underline
the first mistake I did in writing this thesis: the statement that the liquid-vapor phase
transition is a first order transition. This is not always true, since under certain cir-
cumstances the liquid can transform into vapor (and vice-versa) without involving any
latent heat. This is possible by circumventing the critical point, a unique singular point
in the thermodynamic plane, above which the distinction between the liquid and vapor
is no longer meaningful.

Why does this happen? Imagine heating a closed vessel. When the temperature
increases, the quantity of liquid that converts into vapor increases, and so do the
vapor pressure and density. Meanwhile the liquid expands thereby decreasing the
difference between the liquid and the vapor density; finally, at a certain temperature,
i.e. the critical temperature (Tc), this difference vanishes. Above Tc the liquid and the
vapor cease to be different entities and the system becomes homogeneous: this is the
supercritical phase.

Recently the unique properties of supercritical fluids have found a host of practi-
cal applications, ranging from nanotechnology [2] to the treatment of hazardous wastes
[3, 4]. For example, a chemical reactor employing supercritical water oxidation (SCWO)
has been recently developed, and is used to treat a wide range of hazardous wastes.
In most of the cases a 99.99 % destruction and removal efficiency is obtained. More-
over, for waste concentrations higher than 1 %, the process is self-sustaining and the
excess heat of reaction can be recovered for use within the process or for external pur-
poses. There is also potential for developing SCWO power generation plants fuelled by
raw biomass slurries. This could be the ultimate application of SCWO: cleaning the
environment while producing energy.

On the scientific side, experimental and theoretical studies on critical and super-
critical fluids have been performed since the discovery of the critical state in 1822 by
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Charles Baron Cagniard de la Tour. Today the macroscopic (thermodynamic) prop-
erties of liquids, vapors and supercritical fluids, as well as their microscopic structure,
are well understood.

The knowledge, however, of their microscopic dynamics is quite poor. For this
reason we decided to experimentally investigate the microscopic dynamics of supercrit-
ical fluids. In order to achieve a general and systematic study we chose to probe four
different systems, in their respective liquid and supercritical phases. The investigated
systems are two common hydrogen bonded liquids: water (H2O) and ammonia (NH3),
a molecular liquid, nitrogen (N2), and a simple liquid, neon (Ne). They possess very
different intermolecular interactions, ranging from strong hydrogen bonds (water) to
weak van der Waals bonds (neon).

In order to investigate the microscopic dynamics of a bulk system we need a mi-
croscopic probe and a technique sensitive to the dynamics. Up to 10 years ago the
only experimental technique that could satisfy both conditions was Inelastic Neutron
Scattering (INS). Nowadays Inelastic X-ray Scattering (IXS) has become a powerful
complementary technique to investigate the microscopic dynamics of bulk materials. In
particular, in disordered systems, IXS overcomes some of the limitations intrinsically
present in INS experiments. The experimental observable, in both IXS and INS exper-
iments, is the power spectrum of the atomic density-density pair correlation function,
the so-called dynamical structure factor, S(Q,ω). It contains all the relevant informa-
tion on the structure and the dynamics. The S(Q, ω) of a disordered system is formally
well known only in two limiting and restrictive cases:

• At small momentum transfer, in the hydrodynamic limit. Here the S(Q,ω) is
described, in a macroscopic fashion, by the classical hydrodynamic theory [5].

• At very high momentum transfer, in the single particle limit [6].

In this thesis work we mainly exploit the intermediate momentum transfer region,
usually called ”mesoscopic” region. Here the momentum transfer values are close to
the inverse of the average intermolecular distances (usually a few Å), and consequently
a microscopic picture of the liquid dynamics is needed. The molecular hydrodynamic
theory, based on the memory function formalism and on the concept of relaxation
processes, is able to describe the common phenomenology experimentally observed
[7, 8]. Therefore this is the formalism employed to describe our data. The aim is to
understand how the phenomenology characteristic of the liquid phase evolves while
the system approaches and enters the supercritical phase. In particular, our attention
is focused on the influence of the local, microscopic dynamics on the collective one.
The relevant relaxation processes used in describing the microscopic dynamics are
examined as a function of the thermodynamic state of the investigated systems. Their
evolution with increasing degree of connectivity of the system is investigated. Finally,
a comprehensive comparison of the results obtained for different samples is given.

The work is set out according to the following scheme:

• Chapter 1 is dedicated to a brief review of the fundamental concepts of the liquid-
vapor phase transition.
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• Chapter 2 is devoted to the description of fluid dynamics. The exact results
concerning the hydrodynamic and single particle limit are discussed. Finally,
the molecular hydrodynamic theory is presented together with some didactic
examples.

• Chapter 3 discusses the Inelastic X-ray Scattering technique as a tool to study
the dynamics of disordered systems. The experimental set-up is described, as
well as the high-pressure equipments utilized.

• Chapter 4 presents the experimental data and the data analysis. The main results
for the investigated systems are given.

• Chapter 5 is dedicated to the results concerning the comparison between the
different samples. A global picture of the observed phenomenology is provided.

14



Résumé du chapitre 1

Résumé du chapitre 1

Le but du chapitre 1 est de discuter de la transition de phase liquide-
vapeur et de l’état supercritique d’un point de vue thermodynamique.
Une brève introduction aux concepts thermodynamiques est fournie. De
plus, l’équation d’état de van der Waals est discutée comme un exemple
didactique. L’accent est donné à l’universalité de cette équation d’état,
soulignée par l’introduction de la loi d’états correspondants.
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Chapter 1

The liquid-vapor phase transition

In the first section of this chapter the fundamental concepts of the liquid-vapor phase
transition will be introduced, together with the concept of the critical point. In section
1.2 the van der Waals equation of state is briefly discussed as the didactic example.

1.1 Liquid-vapor phase transition and critical point

The liquid-vapor phase transition is a very common physical phenomenon in everyday
life. Together with the solid-liquid transition it is the most didactic example of phase
transitions. It takes place at specific values of the thermodynamic parameters pressure
(Pt) and temperature (Tt). The whole set of (Pt, Tt)-values is called the liquid-vapor
coexistence line. Liquids can be transformed into vapor, and vice-versa, by slightly
varying pressure or temperature across the respective coexistence values (Pt and Tt).
These transitions involve the exchange of a certain amount of heat -the latent heat-
with the environment1. For instance a latent heat of 2270 J/g (at 100 0C and 1 bar)
is released by water molecules in the vapor phase in order to form a hydrogen bond
network in the liquid phase.

In general, liquid and vapor systems can be described by thermodynamic state
variables. These can be cast into two classes: extensive and intensive. The extensive
variables are the ones that are proportional to the number of particles in the system.
Conversely, an intensive variable indicates a property of the system regardless of its
size. An extensive variable can always be reduced to an intensive one dividing it by
the number of particles in the system. For example, the volume and the entropy (V
and S) can be divided by the number of particles (N) to obtain the specific volume
and entropy (v = V/N and s = S/N).

Standard equilibrium thermodynamic theory tells us that the knowledge of one
thermodynamic potential as a function of the respective natural variables fully specifies
the thermodynamics of the system. The most common thermodynamic potential is the
internal energy, U = TS−PV , whose natural variables are S and V . If these are chosen
as independent variables, dU(S, V ) = TdS − PdV , heat (TdS) and work (PdV ) are

1The presence of latent heat can be taken as a definition of a first order phase transition. It
fingerprints an abrupt change in the intermolecular structure.
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Chapter 1. The liquid-vapor phase transition

separated. Moreover the partial derivatives of U are physical significant quantities, i.e.
pressure and temperature. Assuming that U(S, V ) is known, pressure and temperature
are easily found:

T = (
∂U

∂S
)V and P = −(

∂U

∂V
)S (1.1)

The first of the two previous equations can be used to eliminate S in favor of V and
T . The second one can therefore be considered as the Equation of State (EoS) of the
system, expressing P as a function of T and V . By manipulating the partial derivatives
it is possible to find an expression for any thermodynamic quantity (specific heat,
compressibility, sound velocity, etc...), moreover, the other thermodynamic potentials
can be formally obtained from U by Legendre transformations.

The most appropriate thermodynamic potential to describe the liquid-vapor phase
transition is the (specific) Gibbs free entalpy, g(P, T ) = vP − sT , with natural vari-
ables P and T . The thermodynamic stable phase is the one that presents the minimum
value of g(P, T ). If this value is the same in the two phases there is equilibrium (i.e.
coexistence) between the phases. If g(P, T ) is plotted as a surface above the (P, T )-
plane, no discontinuities are observed, in contrast to other thermodynamic potentials.
For instance the Helmhotz free energy, df(v, T ) = dg(P, T ) − d(Pv), dramatically de-
creases across the liquid-vapor phase boundary, because vv � vl. On the other hand,
if the transition is not of first order, v will not change abruptly but continuously, and
therefore f will not present such discontinuity. In other words, these discontinuities in
the thermodynamic potentials are characteristic for first order transitions. Moreover,
across this kind of transition, the derivatives of the thermodynamic potentials, includ-
ing g(P, T ), are also discontinuous2. These discontinuities can be related to the latent
heat, QL [10]:

QL = T (Sv − Sl) = T [(
∂gv

∂T
)P − (

∂gl

∂T
)P ] (1.2)

Where the suffixes ”l” and ”v” indicate respectively the liquid (T < Tt) and the
vapor (T > Tt) side of the transition. The liquid vapor coexistence line ends at a certain
point. This can be understood by looking at the physical meaning of the liquid-vapor
equilibrium. In liquids the particles are strongly bound and confined in a well-defined
volume, but some of them are fast enough to escape from the volume that spatially
delimits the liquid phase: they evaporate. The particles that are now in the vapor
phase are free to move. Some of them can fall again into the volume delimiting the
liquid phase: they condensate. The whole system (liquid + vapor) is in equilibrium
when the number of particles that evaporate and condensate are equal.

This equilibrium can be perturbed in different ways, for example by heating the
liquid. In this case the particles in the liquid will gain energy and consequently are (in
average) faster. More and more particles are then fast enough to escape from the liquid
(i.e. to evaporate). In order to compensate this enhanced evaporation the number of

2According to Herenfest classification, a generic thermodynamic transition is called of the nth-order
if the nth-derivative is the lowest one that presents a discontinuity across the transition [9].
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1.1. Liquid-vapor phase transition and critical point

particles that condensate must increase and, if this is not possible, all the liquid will
turn into vapor after a certain time.

Figure 1.1: Schematic picture of a liquid-vapor phase diagram expressed in reduced
unities, where T/Tc and P/Pc. Tc and Pc denote the critical temperature and pressure,
respectively. A liquid can be converted into vapor by decreasing the pressure at constant
temperature, A → D. This implies the absorption of latent heat (first order transition)
when the system crosses the coexistence line (E). The same transition can be obtained,
without involving latent heat, by following the path A → B → C → D

If the liquid is heated in a closed vessel, the evaporated particles increase the vapor
density. This provides an increase of the vapor pressure and a higher condensation,
enough to restore the equilibrium. Heating up a closed vessel actually means driving
the system in successive equilibrium states along the coexistence line. Meanwhile
the liquid density decreases because the liquid expands. The difference between the
liquid and the vapor densities therefore decreases with increasing temperature and
finally vanishes at Tc, the critical temperature. The associated values of density and
pressure are called critical density and pressure, ρc and Pc. Above these values of
temperature and pressure the liquid and the vapor cease to be different entities. The
system becomes homogeneous and this new phase is called supercritical phase. Crossing
the supercritical phase an arbitrary quantity of liquid can be converted into vapor (or
vice-versa) without involving latent heat. First the liquid is heated up at T > Tc at
a pressure higher than Pc. Then, the pressure is reduced by an isothermal expansion.
Finally, the system is cooled down to the desired temperature, below Tc. This path is
illustrated in fig.1.1.
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Chapter 1. The liquid-vapor phase transition

1.2 van der Waals equation of state

The first successful description of the liquid-vapor phase transition, including the crit-
ical point and the supercritical phase, was provided by J. D. van der Waals. He pre-
sented his theory in 1873, in his PhD thesis entitled On the Continuity of the Gaseous
and Liquid States. The fundamental ideas of this theory represent a decisive step
forward with respect to the ideal gas theory. The ingredients of the van der Waals
equation of state are twofold:

• The particles can interact with each other through an attractive interaction po-
tential.

• The particles have finite dimensions and the volume they occupy is not negligible
with respect to the total volume of the system.

The first hypothesis is that the interaction potential of a system made out of N
particles can be written as follows:

H =
∑
i,j

h(|~ri − ~rj|) =
∑
i,j

h(ri,j) (1.3)

where h(ri,j) is a two-body potential, depending on the relative distances, ri,j,
between the ith and the jth particles. A potential of this kind is sketched in figure
1.2. There is an attractive part with a negative energy minimum at distance rm and
a hard-core repulsion at distance d. This can therefore be interpreted as the diameter
of a particle, considered as an hard sphere. Owing to the presence of interactions
the spatial pair distribution function of particles, g(r), is no longer uniform. This
function in fact indicates the probability of finding two different particles separated
by a distance r. As a consequence of intermolecular interactions, distances ∼ rm are
preferred. Furthermore the finite dimension of particles leads to a zero-probability for
d < rm (see fig.1.2).

The average value of the energy, 〈H〉, in the canonical ensemble is given by:

〈H〉 =

∫
eβU ∑h(ri,j)dr1...drN∫

eβUdr1...drN

(1.4)

where β = (kBT )−1, and kB is the Boltzmann constant. After some straightforward
algebra, neglecting the density dependence of both interaction potential and radial
distribution function, and considering the thermodynamic limit (i.e. N →∞, V →∞
but N/V = ρ, where ρ is the density) the following equation is obtained [11]:

〈H〉 =
a

v
(1.5)

wherea is a positive constant. Despite its simplicity this equation implies the exis-
tence of a volume-dependent contribution to the internal energy, U . Therefore we can
derive equation 1.5 and obtain a pressure:

Pi = −∂〈H〉
∂V

=
a

v2
(1.6)

20



1.2. van der Waals equation of state

Figure 1.2: Left panel: Sketch of the pairwise interaction potential, h(r). Right panel:
Sketch of the spatial pair distribution function.

This pressure is called ”internal pressure”, as it accounts for the pressure exercised
by the molecules on each other. It is also referred to as ”intermolecular cohesion”,
because it is responsible for the spatially limited extension of liquids. The total pressure
is then the sum of this ”internal pressure” and the one exerted by the ideal gas, RT/v,
where R is the gas constant. Moreover we have to replace the volume, v, with an
”effective” volume, v− b, where b is the volume per molecule into which the molecules
cannot be further compressed. With these two simple modifications the ideal gas
equation of state, P = RT/v, becomes the van der Waals one:

P =
RT

v − b
− a

v2
(1.7)

This equation reduces to the ideal gas equation of state, if v is large enough (rarefied
gas3). In this case the term ∝ v−2 can be neglected with respect to the one ∝ v−1, as
well as b with respect to v.

A graphical representation of eq.1.7 is given in fig.1.3, in which we plot the isotherms
in the (P, v)-plane (Maxwell construction).

The green and yellow areas correspond to the liquid and vapor phase, respectively.
Looking at the isotherm T1 we notice that on applying pressure the volume can be
brought up to vA, where the condensation occurs: i.e. the volume can be varies from
vA to vB � vA without changing temperature and pressure. The value of isothermal
compressibility:

χT =
1

v
(
∂v

∂P
)T (1.8)

changes smoothly for v > vA, but grows rapidly for v < vB. Despite the fact that
the points a and b have the same pressure and temperature, the respective values of

3For instance in real gases b ∼ 10−5 m3/mole while v � 10−3 m3/mole.
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Chapter 1. The liquid-vapor phase transition

the compressibility (i.e. the inverse of the slope of the blue lines, tangent in a and b in
fig.1.3) are very different. This fingerprints the transition from the vapor to the liquid
phase. The area delimited by the concave blue dotted curve therefore represents the
liquid-vapor coexistence. In the liquid phase the ”internal pressure”, ∝ v−2, is much
bigger than the one exerted by the vapor (ideal gas). This provides the cohesion that
keeps the liquid system spatially limited, even without an external constraint. In a
closed thermodynamic loop such as a → a‘ → d → b‘ → b → d → a, the relation∮

dg(P, T ) = 0 must hold. Along an isotherm this relation reduces to
∮
(∂g(P,T )

∂P
)T dP =∮

vdP = 0. Thus, the hatched areas a-a‘-d and d-b‘-b are equal (Maxwell rule).
From this condition the concave blue dotted curve in fig.1.3, which corresponds to
condensation (or boiling), can be obtained. Moreover, the area P · (va− vb) is equal to
the specific heat of the transition.

Figure 1.3: van der Waals equation of state for ammonia: b = 0.037 ∗ 10−3 m3/mole
and a = 4.17 ∗ 10−6 bar ∗m6/mole2. See text for further details.

Even if the main features of the two phases and the liquid-vapor transition are
reproduced, the real isotherms are different with respect to the ones calculated from
eq.1.7. In particular, in the two-phases region the S-shape feature is replaced by straight
lines (thick horizontal lines in fig.1.3). The reason for this discrepancy is simple: the
van der Waals theory does not take into account the presence of two different phases
or any mechanism for the liquid-vapor transition. The relevant result of this theory is
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1.2. van der Waals equation of state

in fact that the liquid-vapor transition arises as a natural consequence of interactions
among finite size particles. The liquid state is then a direct consequence of a non
negligible interaction between particles. This is an universal statement, valid for any
kind of material with (attractive) interactions.

Figure 1.4: Gibbs free enthalpy for ammonia at the temperature T1 of fig.1.3, the a-a‘
and b-b‘ states are metastable, since they have values of g(P, T = T1) higher than the
respective stable states, the liquid and the gas ones.

The Gibbs free enthalpy4, g(P, T ), for the isotherm T1 (referring to fig.1.3) is shown
in fig.1.4. From this figure it can be seen that the S-shape feature (from a to b in
fig.1.3) predicted by the van der Waals EoS corresponds to two metastable phases:
the supercooled liquid (from b to b‘) and the overheated vapor (from a to a‘). These
are two out-of-equilibrium phases, that can be experimentally observed in very pure
materials. The difference between the left and right derivatives of g(Pa = Pb, T1)
corresponds to the latent heat. The section of the curve between a‘ and b‘, instead,
does not have a physical meaning, since it implies increasing volumes with increasing
pressures (see fig.1.3).

The two points, a‘ and b‘, are singular points at which the compressibility, defined
in eq.1.8, diverges. The coordinates of these points (concave red dotted curve in fig.1.3)
can been obtained by putting the first derivative of van der Waals EoS equal to zero:

(
∂P

∂v
)T = 0 = − RT

(v − b)2
+

2a

v3
(1.9)

The other remarkable result of this equation is the prediction of a unique special
point, the critical point. In fig.1.3 it can be seen that the volume difference, vA − vB,
between the liquid and the vapor phase decreases with increasing temperature, and

4The analytical form of this thermodynamic potential is g = −RTln(1−b/v)+RTb/(v−b)−2a/v2
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Chapter 1. The liquid-vapor phase transition

consequently the latent heat. At the same time the two singular points come closer,
and finally coincide at the critical point. At temperatures higher than Tc, the isotherms
never enter the two-phases region. This means that there is no liquid-vapor coexistence
and no latent heat has to be given in order to further decrease the volume of the system.
This is the so called supercritical phase. Here the derivative of the Gibbs potential, as
well as the isothermal compressibility, does not present discontinuities for any P and
T . The system is therefore always homogeneous and the difference between liquid and
vapor ceases to be meaningful. Once again this result is a universal feature, valid for
all existent material. The presence of the critical point and the supercritical phase is
a direct consequence of the existence of the liquid and the vapor phase.

Figure 1.5: Graphical representation of the law of corresponding states. The inset
reports the same curves on a larger scale.

Excluding the ”theoretical” singular points a‘ and b‘, the critical point is the only
one that presents a singularity. Moreover, it is a horizontal tangent flex, that means
that not only the first derivative is equal to zero, but also the second one:

(
∂2P

∂v2
)T = 0 =

2RT

(v − b)3
− 6a

v4
(1.10)

From eqs.1.9, 1.10 and 1.7, the thermodynamic coordinates of the critical point can
be derived:
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1.2. van der Waals equation of state

vc = 3b Pc =
a

27b2
Tc =

8a

27Rb
(1.11)

Writing the van der Waals equation of state in reduced units (v∗ = v/vc, P ∗ = P/Pc

and T ∗ = T/Tc), the system-dependent quantity, a and b, can be eliminated:

(P ∗ − 3

v∗2
)(v∗ − 1

3
) =

8

3
T ∗ (1.12)

where 8/3 = RTc/Pcvc is the critical coefficient, that is independent of the specific
material. Equation 1.12 is called the law of corresponding states. An example of this
universal law is given in fig.1.5, where the boundary of the two phases region is reported
in reduced units for a selection of different materials.

The qualitative agreement of this theory with the real behavior of liquids and vapors
is remarkable in many respects:

• The occurrence of the liquid-vapor phase transition can be quantitatively pre-
dicted.

• The existence of two unfavorable thermodynamic states (metastability).

• All materials must have a critical point and a supercritical phase.

• The liquid-vapor transition can always be considered as a continuous transition
instead of a first-order one.

• In the supercritical phase the liquid-vapor transition as well as the concept of
liquid and vapor as two different thermodynamic states no longer exist.

• If the equation of state is expressed in reduced units (law of corresponding states),
the liquid-vapor phase transition is not only phenomenologically similar in all
materials, but it is strictly the same.

Nevertheless the quantitative discrepancies are quite large. The measured critical
coefficient is usually 20÷30 % different from the predicted value (for instance in water
the measured one is 2.29 instead of 2.67=8/3). These discrepancies are mostly due
to the crude approximations made in order to describe the interactions and the finite
size of the molecules. Although the interpretation of intermolecular attractive forces
in terms of only one parameter, a, is quite good and not very different from the more
modern mean field approach, the repulsive hard-spheres potential can be treated in a
much better way.
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Résumé du chapitre 2

Le chapitre 2 est consacré au développement du formalisme théorique
capable de décrire les réponses statiques et dynamiques d’un fluide. Le
formalisme fondamental des fonctions de corrélation de temps, ainsi que
leur relation avec la quantité expérimentalement observable, c’est-à-dire
le facteur de structure dynamique, S(Q,ω), est présenté. Une expression
explicite pour le facteur de structure dynamique est dérivée dans le cadre
de l’hydrodynamique classique: c’est-à-dire quand le moment transféré
(Q) et la fréquence (ω) sont beaucoup plus petits que l’inverse des dis-
tances intermoléculaires caractéristiques (λ0) et des temps d’intéraction
(τ0). Dans la deuxième partie du chapitre, une expression plus générale
pour S(Q, ω), qui est valide aussi quand Q ∼ 1/λ0 et ω ∼ 1/τ0, est in-
troduite. Par le concept de processus de relaxation, cette expression peut
tenir compte de la dynamique microscopique du système.
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Chapter 2

Fluctuations and Hydrodynamics

The basic concepts of hydrodynamics, as well as the theoretical formalism used to
describe its rich phenomenology, are discussed in this chapter. It is divided as follows:
in section 2.1 basic insights on the relevant quantities used to describe the response of
a fluid to an applied perturbation are given. In section 2.2 the hydrodynamic limit is
discussed, while in sections 2.3-2.5 the memory function formalism and its application
to hydrodynamics are presented. Finally, in section 2.6, the single particle regime is
briefly discussed.

2.1 Introduction

When a perturbation acts on a fluid, the disturbance is damped by dissipation phe-
nomena: diffusions, viscous flows and thermal exchanges. Even without an external
perturbation, spontaneous microscopic fluctuations are present in the fluid. These nat-
urally occur in a broad band of wavelengths and frequencies. Spontaneous fluctuations,
according to the dissipation-fluctuation theorem [12], are dissipated in the same way
as the applied perturbation. For this reason, studying the response of the system as a
function of frequency and momentum of the induced perturbation, gives basic informa-
tion on the structure and the dynamics of the unperturbed system at different length-
and timescales. Formally, the response of a fluid to an applied perturbation is known
only in two limiting cases:

• At low momentum and frequency: the hydrodynamic limit. Here information
on the macroscopic properties of the system are recovered, while microscopic
information can be obtained only indirectly.

• At very high momentum: the single particle limit. Here the system behaves
as a non-interactive ensemble of particles; therefore information on collective
dynamics cannot be retrieved.

At wavelengths comparable to intermolecular distances (mesoscopic region) both
local structures and dynamics become important. This is the most interesting region
because information on the local arrangement of molecules and the interactions among
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Chapter 2. Fluctuations and Hydrodynamics

Figure 2.1: Static structure factor, S(Q), of a generic fluid. The insets show the
shape of the dynamic structure factor, S(Q,ω), in the hydrodynamic (left panel), the
mesoscopic (center panel) and the single particle regime (right panel).

them can be obtained. Unfortunately neither the hydrodynamic nor the single particle
limit can describe the response of the system in this range. To date, a formally exact
description of the fluid dynamics in the mesoscopic region does not exist. Nevertheless
there are some approaches, as the one based on the memory function, able to sufficiently
well describe the observed phenomenology.

The three ranges described above (hydrodynamic, mesoscopic and single-particle)
are sketched in fig.2.1, in which the static structure factor, S(Q), of a generic liq-
uid system is shown. The insets of this figure schematically depict the aspect of the
corresponding dynamic structure factors, S(Q,ω).

2.2 Fluid dynamics: time correlation functions

The main role in the description of fluid dynamics is played by the time correlation
functions. A time correlation function is defined as the thermodynamic average of
the product of two dynamical, i.e. time-dependent, variables. Each one represents an
instantaneous deviation (fluctuation) of the physical quantity, A(~r, t), with respect to
its equilibrium value, 〈A〉:
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2.2. Fluid dynamics: time correlation functions

δA(~r, t) = A(~r, t)− 〈A〉 (2.1)

The average, 〈...〉, is carried out over the phase coordinates of all molecules in the
fluid with an equilibrium ensemble as weighting function. Considering the spatial and
temporal invariance of the liquid1, the time correlation function, CA,B(~r1, ~r2, t1, t2), of
the dynamical variables A(~r1, t1) and B(~r2, t2) is therefore:

CA,B(~r1, ~r2, t1, t2) = V 〈δA(~r1, t1)δB(~r2, t2)〉 = V 〈δA(~r, t)δB(0, 0)〉 = CA,B(~r, t) (2.2)

where ~r = ~r2 − ~r1, t = t2 − t1 and V is the volume. For t = 0 CA,B(~r, t) assumes
its maximum value, while for t → ∞ it tends to zero [10], indicating the loss of any
correlation between the two variables when they are evaluated at very different times.

Among all possible fluctuating variables describing the dynamics of fluids, a crucial
role is played by density fluctuations since they are directly probed by a large number
of spectroscopic techniques. The density function can be expressed as follows:

n(~r, t) =
1√
N

N∑
i=1

δ(~r − ~Ri(t)) (2.3)

where N is the number of particles and ~Ri(t) is their position; moreover 〈n(r, t)〉 =√
N/V . The density-density correlation function can then be written as:

G(~r, t) = V 〈δn(~r1, t1)δn(~r2, t2)〉 =
V

N
〈

N∑
i,j=1

δ(~r1 − ~Ri(t1))δ(~r2 − ~Rj(t2))〉+ n (2.4)

where n = N/V . G(~r, t) is also called the Van Hove pair correlation function
[13]. In inelastic spectroscopic measurements the experimental observable is the time
and space fourier transform of G(~r, t), which is usually called the dynamical structure

factor, S( ~Q, ω):

S( ~Q, ω) =
∫

V
d~r
∫ +∞

−∞
G(~r, t)ei( ~Q·~r−ωt)dt (2.5)

Where ~Q is the momentum and ω is the angular frequency. They are the Fourier
conjugates of the position ~r and the time t, respectively. It is convenient to introduce
the intermediate scattering function, F ( ~Q, t), which is the spatial Fourier transform of

G(~r, t) or, equivalently, the inverse time Fourier transform of the S( ~Q, ω):

F ( ~Q, t) = 〈n∗( ~Q, 0)n( ~Q, t)〉+ n(2π)3δ( ~Q) =
∫ +∞

−∞
eiωtS( ~Q, ω)dω (2.6)

where:

1The temporal invariance holds as far as the thermodynamic average is defined in a time indepen-
dent ensemble.
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n( ~Q, t) =
1√
N

N∑
i=1

ei ~Q·~Ri(t) (2.7)

Another important time correlation function is the current-current pair correlation
function:

Jαβ(~r, t) = V 〈jα(~r1, t1)jβ(~r2, t2)〉 (2.8)

where α and β are the cartesian indexes and ~j(~r, t) is the current density:

~j(~r, t) =
1√
N

N∑
i=1

~vi(t)δ(~r −Ri(t)) (2.9)

where ~vi(t) is the velocity of the ith particle. For spherical symmetrical systems, such
as fluids, only the purely longitudinal and transverse components, Jl(~r, t) and Jt(~r, t),

are meaningful [5, 7, 8]. Moreover, only the modulus of the momentum, | ~Q| = Q, needs
to be considered.

Employing the continuity equation and straightforward algebra the following rela-
tion can be derived [7]:

Jl(Q,ω) =
ω2

Q2
S(Q, ω) (2.10)

where Jl(Q,ω) is the time and space Fourier transform of Jl(~r, t).

In order to interpret the experimental observations, a general expression for S(Q,ω)
or, alternatively, for Jl(Q,ω) is needed. In both cases an N-body dynamical problem
has to be solved. Except the cases of an ideal Bravais lattice or an ideal gas, the
formal solution of this N-body dynamical problem is in practice impossible. Neverthe-
less, in the case of dense and interactive fluids, it is possible to obtain some excellent
approximations for S(Q,ω), as will be shown in the following.

We conclude this section with a remark. In quantum mechanics the dynamical
variables evaluated at different times do not necessarily commute. The order in which
they appear in the thermal average is therefore important. In this case the spectrum of
a general correlation function at thermodynamic equilibrium, CA,B(r, t), must satisfy
the following relation, usually called the detailed balance [14]:

CA,B(Q, ω) = eh̄ω/kBT CA,B(−Q,−ω) (2.11)

where kB is the Boltzmann constant and T is the temperature. This means that
the spectrum CA,B(Q, ω) is not symmetric in ω. The energy gain side (Stokes) is higher
than the energy loss one (Anti-Stokes). For isotropic systems it the Q-dependence of
CA,B(Q,ω) is expected to be ∝ Q2, therefore the change Q → −Q is irrelevant. For
this reason the spectra are symmetrical in the classical limit, i.e. h̄ → 0.
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2.2.1 Static correlation functions

Before explicitly calculating S(Q,ω) in the various approximations, it is convenient to
learn more about the general properties of time correlation functions.

If we evaluate A and B in eq.2.2 at the same time (t1 = t2) the following static
correlation function is obtained2:

CA,B(r, 0) = V 〈δA(r1, 0)δB(r2, 0)〉 (2.12)

This correlation function does not depend on time, but contains precious informa-
tion on the equilibrium properties of the system. In particular, the static correlation
function associated with density fluctuations is of the greatest importance. Using the
definitions given in eqs.2.6 and 2.7, and defining the equilibrium pair distribution func-
tion, g(r), as follows:

g(r) =
∑
i6=j

〈δ(r −Ri)δ(Rj)〉 (2.13)

F (Q, 0) can be derived:

F (Q, 0) = 1 + n
∫

V
d3reiQ·r[g(r)− 1] ≡ S(Q) (2.14)

The quantity S(Q) is called static structure factor. It can be directly measured in
an X-ray or neutron diffraction experiment and it contains all the relevant information
on the equilibrium structure of the system. As will be shown in the following sections
this quantity is extremely useful in order to analyze and interpret our data. Using
the definition of F (Q, t) and S(Q) given in eqs.2.6 and 2.14, the following relation is
readily found:

S(Q) = F (Q, 0) = [
∫ +∞

−∞
eiωtS(Q,ω)dω]t=0 =

∫ +∞

−∞
S(Q,ω)dω (2.15)

An important property of S(Q) is its limiting values for Q → 0, and for Q →
∞. The latter is equal to unity, indicating the vanishing of correlation at very short
distances, while the former limit is the important compressibility relation [7, 8]:

S(Q → 0) = 1 + n
∫

V
d3r[g(r)− 1] =

nχT

kBT
(2.16)

where χT is the isothermal compressibility.
Moreover, the static structure factor of a fluid shows a clear maximum, called

the first sharp diffraction peak, at Q-values, Qm, in the range 15 ÷ 25 nm−1. It is
related to the average intermolecular distances, rm, represented by the maximum of
the pair distribution function, g(r) (Qm ∼ 2π/rm). For completeness, we recall that
other important static correlation functions are the ones that define the high-frequency
shear and bulk moduli and the viscous flow (see chapter 2.3 of [7]).

2Exploiting the temporal invariance and stationarity of the time correlation function, we can con-
sider t1 = t2 = 0
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Chapter 2. Fluctuations and Hydrodynamics

2.2.2 Frequency sum rules

In the previous chapter it was shown that S(Q) =
∫+∞
−∞ S(Q, ω)dω. This relation is

an example of frequency sum rules. These rules characterise the short-time behavior
of F (Q, t). In fact, starting from eq.2.6, we can write a Taylor series expansion for
F (Q, t):

F (Q, t) = ω0(Q) + iω1(Q)t− ω2(Q)
t2

2!
− iω3(Q)

t3

3!
+ ... (2.17)

where:

ωn(Q) = (i)n[
∂n

∂tn
F (Q, t)]t=0 =

∫ +∞

−∞
ωnS(Q,ω)dω (2.18)

are called nth frequency sum rules or nth spectral moment [7, 8]. From the knowledge
of the coefficients, ωn(Q), the time dependence of F (Q, t) can be obtained, and through
a Fourier transform, the S(Q, ω). This procedure seems appealing, but, unfortunately,
the expressions of the high order spectral momenta are very complicated, thus unusable
in practice.

In table 2.1 the classical results concerning the lower frequency sum rules, for the
relevant correlation functions usually employed in the description of fluid dynamics,
are reported 3. The coefficients Ω0 (Einstein frequency), Γl and Γt can be calculated
from the pairwise interaction potential, h(r), and the pair distribution function, g(r),

through the relations: Ω0 = Nm
V

∫
V d~rg(r)∂2h(r)

∂x2
l

, Γl = Nm
V

∫
V d~rg(r)(1 − cos(Qr))∂2h(r)

∂x2
l

and Γt = Nm
V

∫
V d~rg(r)(1− cos(Qr))∂2h(r)

∂x2
t

, where xl and xt are, respectively, the com-

ponents of ~r parallel and perpendicular to ~Q. The 4th spectral momenta of current
correlation functions have a very complicated analytical form [7], while the calculation
of higher order momenta can be found in [15, 16, 17, 18].

Dynamical 0th spectral 2nd spectral 4th spectral
variable momentum momentum momentum

G(r, t) S(Q) kBTQ2

m
3(kBTQ2

m
)2 + kBTQ2

m
Γl

Gs(r, t) 1 kBTQ2

m
kBTQ2

m
[kBTQ2

m
+ Ω2

0]

Jl(r, t)
kBT
m

3(kBTQ
m

)2 + kBT
m

Γl −
Jt(r, t)

kBT
m

(kBTQ
m

)2 + kBT
m

Γt −
Js(r, t) 1 Ω2

0 −

Table 2.1: Lower order sum rules in the classical limit.

3All the odd moments vanish since the power spectra of classical dynamical variables are even
functions of ω. This is no longer true in quantum mechanics due to the detailed balance factor.
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2.3. Classical approach: hydrodynamic limit

2.3 Classical approach: hydrodynamic limit

Within the framework of classical hydrodynamics an exact expression for S(Q,ω) in
the long-time and long-wavelength limit, i.e. in the low frequency and momentum
region, can be obtained. The adjective ”long” in the previous sentence must be read
as: wavelengths ”much longer than” the intermolecular distance (r0) and times ”much
longer than” the typical relaxation time (τ). Classical hydrodynamics then probe
dynamics involving a large number of particles, in a characteristic ”time-window” much
longer than any microscopic time-scale. The corresponding S(Q, ω) is characterized by
long-living collective modes, which are related to purely macroscopic quantities. These
can provide only time-averaged information and any direct insights into microscopic
structures and dynamics are lost.

This classical description is based on the study of conserved variables, which are
ruled by mass, momentum and energy conservation laws. These express the balance
between the rate of change of the density of a certain variable, inside a considered
volume, and the flux of the corresponding current through the surface delimiting the
volume itself.

2.3.1 Mass conservation

The conservation of matter requires the fulfilment of the so-called continuity equation:

∂

∂t
ρ(~r, t) +∇ · ~J(~r, t) = 0 (2.19)

where ~J(~r, t) = ρ(~r, t)~v(~r, t) is the mass current field given by the product between
the mass density, ρ(~r, t), and the particles velocity field, ~v(~r, t).

2.3.2 Momentum conservation

Cauchy’s law of motion for isotropic media can be written as [7]:

ρ(~r, t)
dvi(~r, t)

dt
=

∂

∂t

∑
j

[−P (~r, t)δi,j + πi,j(~r, t)] (2.20)

where P (~r, t) is the hydrostatic pressure, the subscripts i and j denote the cartesian
indexes, and δi,j is the Kronecker delta function. Finally πi,j(~r, t) is the stress tensor
assumed to be linear in the two viscosity coefficients, namely the shear (ηs) and the
dilatational (ηd) one:

πi,j(~r, t) = (2ηs + ηdδi,j)∆i,j(~r, t) (2.21)

Here ∆i,j(~r, t) is the rate of deformation tensor that, in a Newtonian fluid, has the
following form:

∆i,j = (
∂vi(~r, t)

∂rj

+
∂vj(~r, t)

∂ri

) (2.22)
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Chapter 2. Fluctuations and Hydrodynamics

If ηs and ηd are considered to be constant eqs. 2.20-2.22 can be used to obtain the
Navier-Stokes equation for a Newtonian fluid:

ρ(~r, t)
∂

∂t
~J(~r, t)+( ~J(~r, t) ·∇) ~J(~r, t)+∇P (~r, t)−ηs∇2 ~J(~r, t)−(ηs +ηd)∇(∇· ~J(~r, t)) = 0

(2.23)

2.3.3 Energy conservation

If u denotes the internal energy per unit mass, energy conservation implies that the
rate of change of u must be compensated by both thermal exchange and mechanical
dissipations:

ρ(~r, t)
du

dt
=
∑
j,k

−P (~r, t)
∂vj(~r, t)

∂rj

+ Φj,k(~r, t)−
∂Ju

j (~r, t)

∂rj

(2.24)

where Ju(~r, t) is the heat flux and Φj,k(~r, t) = πj,k(~r, t)∆j,k(~r, t) are the viscous
dissipations. With the general assumption that the thermodynamic state of the system
can be fully described by three state variables, related by the equation of state (EoS),
the energy conservation equation reads [5]:

CV [ρ(~r, t)
∂T (~r, t)

∂t
+ ~J(~r, t) · ∇T (~r, t)] = k∇2T (~r, t)

−T (~r, t)

ρ
(
∂P (~r, t)

∂T
)ρ(~r,t)∇ · ~J(~r, t) + Φη(~r, t) (2.25)

where T (~r, t) is the temperature, CV is the specific heat at constant volume and k is
the thermal conduction. All the ingredients needed to solve the classical hydrodynamic
equations are contained in eqs.2.19, 2.23 and 2.25. These equations are expressed in
terms of four unknown quantities: ρ(~r, t), T (~r, t), P (~r, t) and ~J(~r, t). Furthermore the
EoS can be used to eliminate one of the three thermodynamic variables. The problem
is then in principle solved, since we are dealing with a closed set of three equations in
three variables (5 scalar equations in 5 scalar variables).

In summary, in order to solve the hydrodynamic equations, the following assump-
tions have been made:

• The fluid is a continuous and homogeneous medium. It is isotropic, viscous and
thermally conducting.

• The local thermodynamic equilibrium is assumed to be fully determined by three
state variables, related to each other through the EoS.

• The fluid obeys the Newtonian equation of motion.

• Thermal and viscous dissipations are assumed to be described by linear laws, and
the transport coefficients (i.e. thermal conduction and viscosity) are assumed to
be constant parameters.
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2.3. Classical approach: hydrodynamic limit

Within these assumptions the hydrodynamic equations are formally correct, as well
as the analytical form of S(Q, ω) that will be derived in the next section.

2.3.4 Linearized hydrodynamics and Rayleigh-Brillouin spec-
trum

As already pointed out the goal is to calculate S(Q, ω), the quantity describing the
dynamics of the system. The first step is to rewrite eqs.2.19, 2.20 and 2.25 in terms of
fluctuating quantities:

δX(~r, t) = X(~r, t)− 〈X〉 (2.26)

where X(~r, t) is the local value of any physical quantity and 〈X〉 its average value,
calculated over the whole system. δX(~r, t) is thus a quantity that fluctuates around
zero, both in time and space.

As ”local value” of the variable X one considers the value that it assumes in a
small volume, ξ. Within this volume, characterized by the spatial coordinate ~r, X is
considered not to change significantly. Moreover ξ cannot be arbitrarily small, because
it must contain enough particles in order to carry out a meaningful ensemble average,
otherwise the value of a (classical) physical quantity is not well defined. Therefore
X(~r, t) is not a microscopic quantity, but a ”local” macroscopic value.

Using eq. 2.26 one can rewrite eqs.2.19, 2.20 and 2.25 in terms of the respective
fluctuations4. For small enough fluctuations, the terms of orders higher than one
in δX(~r, t) can be neglected. The three hydrodynamic equations can therefore be
linearized and, using some general thermodynamic relations, the following solutions
can be obtained in the Fourier-Laplace space:

sδρ(Q, s) + i ~Q · ~J(Q, s) = δρ(Q, 0) (2.27)

i
c2
s

γ
~Qδρ(Q, s) + (s + νLQ2) ~J(Q, s) + iα〈ρ〉c

2
s

γ
δT (Q, s) = ~J(Q, 0) (2.28)

i
γ − 1

α
~Q · ~J(Q, s) + (s + γDT Q2)〈ρ〉δT (Q, s) = 〈ρ〉δT (Q, 0) (2.29)

Where DT = k(ρCP )−1 is the thermal diffusivity, cs = (∂P/∂ρ)s is the adiabatic
sound velocity5, α = ρ(∂V/∂T )P is the thermal expansion, γ = CP /CV is the specific
heat ratio and νL is the longitudinal kinematic viscosity, whose explicit expression will
be given later. This set of 3 equations (eqs.2.27, 2.28 and 2.29) in 3 variables can be
cast into a 3× 3 matrix and solved with respect to δρ(Q, s):

4Since the whole system does not flow, the mean value of the current, 〈J〉, is equal to zero; therefore
δJ(~r, t) = J(~r, t).

5The index ”s” in the partial derivative stands for constant entropy
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δρ(Q, s) =

det


δρ(Q, 0) i ~Q 0
~J(Q, 0) (s + νLQ2) iα〈ρ〉 c2s

γ

〈ρ〉δT (Q, 0) iγ−1
α

~Q (s + γDT Q2)〈ρ〉



det


s i ~Q 0

i c2s
γ

~Q (s + νLQ2) iα〈ρ〉 c2s
γ

0 iγ−1
α

~Q (s + γDT Q2)〈ρ〉


(2.30)

The denominator of equation 2.30 (the coefficients determinant) can be expressed
in terms of a dispersion relation:

∏5
i=1(s − si), where si are the matrix eigenvalues.

These range from 1 to 5 because they are scalar numbers, while eq.2.28 is vectorial.
Moreover, they are independent of the base, i.e. the eigenvalues are independent of the
chosen set of variables.

The EoS can thus be used to pass from ρ and T to P and s, where s = S/N is the

entropy per unity molecule. Moreover, passing from the vectorial current field, ~J(r, t),

to the longitudinal current, w = ∇ · ~J , and the two components of the transverse
current, µ1,2 = (∇× ~J)1,2, the following set of equations is obtained:

[
∂

∂t
− (γ − 1)DT∇2]δP (r, t) + c2

sw(r, t)− 〈ρ〉α−1(γ − 1)DT∇2δs(r, t) = 0 (2.31)

[
∂

∂t
− νL]w(r, t) +∇2δP (r, t) = 0 (2.32)

(
∂

∂t
−DT∇2)δs(r, t)− α〈ρ〉−1DT∇2δP (r, t) = 0 (2.33)

(
∂

∂t
− νs∇2)µ1(r, t) = 0 (2.34)

(
∂

∂t
− νs∇2)µ2(r, t) = 0 (2.35)

Where νs = ηsρ
−1 and νB = (ηs + 2

3
ηd)ρ

−1 are called kinematic shear and bulk
viscosity, respectively; νL = 4

3
νs + νB then denote the longitudinal kinematic viscosity.

With this choice of variables the hydrodynamic dispersion equation is straightforwardly
obtained by a double Laplace-Fourier transform of eqs.2.31-2.35, and by constructing
its coefficient determinant [5, 7]:


[s + (γ − 1)DT Q2] c2

s 〈ρ〉α−1(γ − 1)DT Q2 0 0
−Q2 [s + (νL)] 0 0 0

〈ρ〉−1αDT Q2 0 [s + DT Q2] 0 0
0 0 0 [s + νQ2] 0
0 0 0 0 [s + νQ2]


(2.36)
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The 2× 2 minor on the bottom right yields two degenerate solutions:

s = −νsQ
2 (2.37)

They correspond to non propagating shear modes. These are decoupled from the
rest of the matrix and, in particular, from the experimentally observable density fluc-
tuations. For this reason their existence is not experimentally detectable, at least not
in the hydrodynamic limit. Mathematically, they factorize in equation 2.30, and the
hydrodynamic matrix is simplified to the 3 × 3 top-left minor, which produces the
following 3rd order dispersion equation:

s3 + s2(γDT Q2 + νLQ2) + s(c2Q2 + γDT νLQ4) + DT c2Q4 = 0 (2.38)

Neglecting the Q4 terms, with respect to the Q2 ones, the following solutions are
obtained:

s0 = −DT Q2 (2.39)

and

s± = ±icsQ− ΓQ2 (2.40)

where

Γ =
1

2
[νL + (γ − 1)DT ] (2.41)

The first solution is related to the coupling between entropy and density fluctu-
ations. It corresponds to a thermal diffusive mode, accounting for non-propagating
entropy fluctuations at constant pressure. The two imaginary (oscillatory) solutions
arise from the coupling between the longitudinal velocity field and density fluctuations.
They fingerprint the existence of propagating modes, corresponding to isentropic pres-
sure fluctuations, also referred to as longitudinal acoustic (LA) modes. They propagate
with the adiabatic sound velocity, cs, and have a lifetime (damping) given by (ΓQ2)−1.
The LA and thermal diffusive modes are coupled together through the (1, 3) and (3, 1)
matrix elements. This coupling is weak for ordinary fluids in the hydrodynamic limit.
In summary, the 5 hydrodynamic modes are:

a) Two shear modes, decoupled from all the other modes and decoupled from density
fluctuations.

b) Three longitudinal modes, coupled to density fluctuations. They consist of one
non-propagating entropy mode, associated to thermal diffusion process, and two prop-
agating (acoustic) modes.

These five hydrodynamic modes are summarized in fig.2.2:
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Acoustic
Modes

Entropy
Modes

Shear
Modes

Figure 2.2: Schematic sketch of the five hydrodynamics modes.

The formal correlation function for density fluctuations in the Fourier-Laplace space
is then derived from equation 2.30, considering only the 3× 3 minor6:

〈δρ(Q, 0)∗δρ(Q, s)〉 =
(s + νLQ2)(s + γDT Q2) + (1− γ−1)c2

sQ
2

(s− s0)(s− s+)(s− s−)
〈δρ∗(Q, 0)δρ(Q, 0)〉

(2.42)
where s0 and s± are the solutions of the dispersion relation, given in eqs.2.39

and 2.40, while 〈δρ∗(Q, 0)δρ(Q, 0)〉 is the static structure factor, S(Q). Passing from
Laplace to Fourier space and neglecting the terms ∝ Q4 with respect to the ones
∝ Q2, after some straightforward algebra, the so-called Rayleigh-Brillouin spectrum is
obtained:

S(Q,ω)

S(Q)
=

γ − 1

γ

2DT Q2

ω2 + (DT Q2)
+

1

γ
[

ΓQ2

(ω + csQ)2 + (ΓQ2)2
+

ΓQ2

(ω − csQ)2 + (ΓQ2)2
] +

+
Q

γcs

[Γ + (γ − 1)DT ][
(ω + csQ)

(ω + csQ)2 + (ΓQ2)2
− (ω − csQ)

(ω + csQ)2 + (ΓQ2)2
] (2.43)

This spectrum is composed of a sum of three Lorentian functions (see fig.2.3).
The peak centered at ω = 0, whose width is given by DT Q2, is usually called the
Rayleigh peak. It accounts for the non-propagating density fluctuations (thermal dif-
fusive mode). The other two Lorentians are symmetrically centered at ±csQ and have
a width given by ΓQ2. These two side peaks are usually referred to as the Stokes and
anti-Stokes component of the Brillouin doublet. They represent the constant entropy
density fluctuations (longitudinal acoustic modes), that propagate with the adiabatic
sound velocity, and are damped by both thermal diffusion and viscous dissipations (see
eq.2.41). There is also a small asymmetric term that ensures the fulfilment of the 1th

sum rule for a classical fluid. On the other hand this asymmetric term vanishes by
integration over ω, so that the correct value of S(Q) (0th sum rule) is preserved. More-
over, the ratio between the integrated intensities of Brillouin (2IB) and Rayleigh (IR)

6It can be demonstrated that 〈ρ∗(Q, 0)J(Q, 0)〉 = 〈ρ∗(Q, 0)δT (Q, 0)〉 = 0.
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peaks is related to the specific heat ratio: γ = (IR/2IB) − 1. This relation is usually
called the Landau-Placzek ratio.

Despite the fact that the Rayleigh-Brillouin spectrum describes the experimentally
measured spectral density of simple fluids in their hydrodynamic limit extremely well,
the measured spectra have high-frequency tails that decrease faster than a Lorentian
function. Furthermore, the spectrum represented in eq.2.43 does not obey the 2nd sum
rule; in fact the integral over ω of ω2S(Q,ω) diverges.

Figure 2.3: Example of a Rayleigh-Brillouin spectrum for a generic liquid with the
following parameters: γ = 1.2, DT = 200 nm2/ps, cs = 1500 m/s, ΓL = 900 nm2/ps
and Q = 0.03 nm−1. The inset reports the total spectrum, including the Anti-Stokes
side.

An alternative description consists of replacing the two symmetric side Lorentians
and the asymmetric term by a damped harmonic oscillator (DHO) function:

S(Q,ω)

S(Q)
=

1

π

Ω0Γ
2
0

[ω2 − Ω2
0]

2 + ω2Γ2
0

(2.44)

This function is the (Q,ω)-expression of the equation of motion of a harmonic
oscillator that oscillates with frequency Ω0 and is damped by a factor e−Γ0t. Inspecting
the two conjugate roots of eq.2.40, it is straightforward to associate Ω0 with csQ and
Γ0 with Γ. Equation 2.44 can be derived directly from eq.2.30, if the terms ∝ Q4 are
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not neglected. It is then natural to use this function to describe the Brillouin peaks.
Furthermore, if we limit our consideration only to the acoustic part of the spectra, the
DHO expression preserves the sum rules up to the 3rd order.

2.4 The memory function approach

The main idea of this theoretical approach is to describe the complex dynamics of
a strongly interacting system, such as a liquid, using a limited number of dynamical
variables. The first step is thus to rewrite the equations of the N-body dynamics in
terms of these variables in a formally exact fashion.

2.4.1 Rephrasing of the many body dynamical problem

The Hamiltonian, H, of a system made of N interacting particles depends on the co-
ordinates, ri, and momenta, pi, of each particle. Considering a set of ν < N dynamical
variables, Aν(t), and neglecting an explicit temporal dependence of H, the equation of
motion of Aν(t) is ruled by the Liouville operator, iL [7, 8]:

dAν(t)

dt
= [dAν(t), H] = iLAν(t) (2.45)

Where [..., ...] are the Poisson brackets. In the case that the particles i and j
interact with each other through a pairwise central potential, h(ri,j), the Liouville
operator assumes the following form:

iL =
1

m

N∑
i=1

pi ·
∂

∂ri

−
∑
i6=j

∂h(ri,j)

∂ri

∂

∂pi

(2.46)

Equation 2.45 can be formally solved yielding:

Aν(t) = eiLtAν(0) (2.47)

The solution is thus given in terms of the propagator eiLt. Eq.2.47 is too complicated
to be applied in practice. Nevertheless, the problem can be rephrased in a different
way. First, one defines a projector operator, ℘, as follows:

℘ ≡ ( ~A(0), ...) · ( ~A(0), ~A(0))−1 ~A(0) (2.48)

where ~A is an n-dimensional vector whose components are the Aν , and (..., ...)
denotes the scalar product. If ℘ is applied to an arbitrary dynamical variable, the
”portion” of such variable that lies in the subspace defined by the set (Aν) can be
extracted. After some straightforward algebra, the equation of motion can be reformu-
lated as follows [7, 8]:

d ~A(t)

dt
= iΩ · ~A(t)−

∫ t

0
K(τ) · ~A(t− τ)dτ + ~f(t) (2.49)

The quantities appearing in eq.2.49 have the following meaning:
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2.4. The memory function approach

• iΩ = ( ~A(0), iL ~A(0)) · ( ~A(0), ~A(0))−1 is an n × n antisymmetrical matrix, called
proper frequency matrix. It can be valuated in terms of equilibrium (statical)
properties of the system7.

• ~f(t) = ei(1−℘)Lti(1−℘)L ~A(0) is called fluctuating force. The presence of the term

(1 − ℘) has the important consequence that ( ~A(0), ~f(t)) = 0. The fluctuating

force is always orthogonal to ~A(0).

• K(t) = (~f, ~f(t)) · ( ~A(0), ~A(0))−1 is a n × n matrix, called memory matrix or
memory function if the set Aν reduces to only one variable.

From eq.2.49 it is easy to construct the equation of motion for the correlation matrix
C(t) = 〈 ~A(t) ~A(0)〉. Exploiting the orthogonality of ~A(0) and ~f(t) one obtains:

dC(t)

dt
= iΩ · C(t)−

∫ t

0
K(τ) · C(t− τ)dτ (2.50)

Equations 2.49 and 2.50 are the so-called memory equations or generalized Langevin
equations. Since Ω can be calculated from statical properties of the system, the dy-
namical problem is now transposed from C(t) to K(t).

2.4.2 Time dependence of the memory function

The static, t = 0, behavior of K(t) is related to the normalized frequency momenta,
〈ωn〉, of C(ω), the Fourier transform of C(t) [7, 8]:

〈ωn〉 = in[
dnC(t)

dtn
]t=0 · [C(0)]−1 =

∫ +∞

−∞
ωnC(ω)dω · [C(0)]−1 (2.51)

The following relations can be obtained:

Ω = 〈ω〉 (2.52)

K(0) = 〈ω2〉 − 〈ω〉 · 〈ω〉 (2.53)

K̇(0) = i[〈ω3〉 − 2〈ω2〉 · 〈ω〉+ 〈ω〉 · 〈ω〉 · 〈ω〉] (2.54)

K̈(0) = −〈ω4〉+ 2〈ω3〉 · 〈ω〉+ 〈ω2〉 · 〈ω2〉+ 〈ω〉 · 〈ω〉 · 〈ω〉 · 〈ω〉 (2.55)

The above relations can be simplified if the vector of dynamical variables, ~A, con-
sists of only one component (single-variable case). In this case all the odd frequency
moments of C(ω) vanish. In the following only this case will be considered. The initial
behavior of K(t) can be therefore obtained by a Taylor series expansion:

K(t) = K(0) + K̈(0)
t2

2
+ ... = K(0)[1− (

t

τ0

)2 + ...] (2.56)

7note that from eq.2.45 iL ~A(0) = [d ~A(t)
dt ]t=0
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Where K(0) = 〈ω2〉 and K̈(0) = 〈ω2〉2 − 〈ω4〉 and thus:

τ0 = [
−K̈(0)

2K(0)
]−1/2 = [

〈ω4〉 − 〈ω2〉2

2〈ω2〉
]−1/2 (2.57)

Within this very crude approximation the short time behavior of the memory func-
tion is simply governed by a characteristic time-decay, τ0. A more accurate description
of the time dependence of the memory function implies the exploitation of higher order
spectral momenta, which are very difficult to handle in practice.

Nevertheless, the mathematical structure of eq.2.50 allows the obtention of a recur-
sive formula, called the continued fraction expansion [7, 8]. In fact, eq.2.50 reads in
the Laplace space:

C(s) =
C(0)

s + K(s)
(2.58)

The memory function K(t) is the correlation function of the fluctuating force, f(t).
Therefore another projector operator can be defined:

℘1 ≡
(f(0), ...)

(f(0), f(0))
f(0) (2.59)

where ℘1 projects on the functional sub-space of f . Using this operator a generalized
Liouville equation for f(t) can be written:

df(t)

dt
= −

∫ t

0
K1(τ)f(t− τ)dτ + f1(t) (2.60)

where f1(t) is a new fluctuating force, orthogonal both to A(t) and f(t), while
K1(t) = (f1(0), f1(t))/(f(0), f(0)) is called the 2nd order memory function. This name
is rather clear because, in analogy to eq.2.50, one obtains an exact memory equation
for the memory function itself:

dK(t)

dt
= −

∫ t

0
K1(τ) ·K(t− τ)dτ (2.61)

eq.2.61, in Laplace space, reads:

K(s) =
K(0)

[s + K1(s)]
(2.62)

Iterating the procedure, an infinite set of equations such as 2.58 and 2.62 can be
obtained. Combining all of them, the so-called continued fraction expansion can be
derived:

C(s)

C(0)
= [s +

∆1

s + ∆2

s+
∆3

s+...

]−1 (2.63)

where the terms ∆i are the t = 0 values of the ith order memory function. They
are static quantities and can be expressed in terms of spectral momenta:
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∆1 ≡ K(0) = 〈ω2〉 (2.64)

∆2 ≡ K1(0) = −
¨K(0)

2K(0)
=
〈ω4〉
〈ω2〉

− 〈ω2〉 (2.65)

∆3 ≡ K2(0) = −
¨K1(0)

2K1(0)
=

1

∆2

[
〈ω6〉
〈ω2〉

− (
〈ω4〉
〈ω2〉

)2] (2.66)

2.4.3 The case of density fluctuations

An expression for the intermediate scattering function in the Laplace space can be
easily obtained using equation 2.63 for the space Fourier transform of the Van-Hove
pair correlation function:

F (Q, s)

F (Q, 0)
= [s +

∆1

s + ∆2

s+
∆3

s+...

]−1 (2.67)

where F (Q, 0) = S(Q) and the ∆i are now expressed in terms of spectral momenta
of density fluctuations, i.e. the sum rules of S(Q,ω), tabulated in table 2.1. If the
expansion is limited to the second order, one obtains:

F (Q, s)

S(Q)
= [s +

〈ω2〉
s + mL(Q, s)

]−1 (2.68)

where mL(Q, s) is the second order memory function for density fluctuations and
〈ω2〉 is the second spectral moment of the S(Q, ω). It can be related to the finite-Q
generalization of the isothermal sound velocity, cT (Q), through the relation [7, 8]:

〈ω2〉 = KBTQ2/MS(Q) = c2
T (Q)Q2 (2.69)

Exploiting the relation between the Laplace and Fourier transform, the dynamical
structure factor can be directly obtained from eq.2.68:

S(Q,ω)

S(Q)
=

1

π
<[

F (Q, s = iω)

S(Q)
] =

1

π
<[iω +

c2
T (Q)Q2

iω + mL(Q, s = iω)
]−1 (2.70)

This can be cast into the more common expression:

S(Q,ω)

S(Q)
=

1

π

(cT (Q)Q)2m′
L(Q,ω)

[ω2 − (cT (Q)Q)2 − ωm′′
L(Q,ω)]2 + ω2[m′

L(Q,ω)]2
(2.71)

where m′
L(Q,ω) and m′′

L(Q,ω) are, respectively, the real and imaginary part of the
memory function in Fourier space.

Since the t = 0 value of the memory function is known from eq.2.65, S(Q, ω) can
be fully determined once the time dependence of the memory function is known. The
starting point to calculate this time dependence is to compare the result of the in-
termediate scattering function, both obtained through the memory function formalism
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(eq.2.68) and from the classical hydrodynamics theory (eq.2.42). The latter, after some
algebra, reads:

[
F (Q, s)

S(Q)
]hydro = [s +

(cT Q)2

s + 2ΓQ2 + (γ−1)(cT Q)2

s+DT Q2

]−1 (2.72)

Comparing eqs.2.68 and 2.72, the following expression for the memory function can
be derived in the time domain:

mL,RB(Q, t) = (γ − 1)(cT Q)2e−γDT Q2t + 2ΓQ2δ(t) (2.73)

The subscript ”RB” emphasizes the fact that this memory function has been di-
rectly derived from the comparison with the Rayleigh-Brillouin spectrum.

This memory function contains two terms which account for its time decay from
the initial (t = 0) value down to zero. The second term on the right hand side of
eq.2.73 describes an instantaneous (i.e. ∝ δ(t)) time decay. The first term, instead,
has a finite decay time: τT = 1/γDT Q2. In the following, this will be referred to as
thermal relaxation time. The Fourier transform of eq.2.73 yields:

m′
L,RB(Q, ω) = (γ − 1)(cT Q)2 τT

1 + (ωτT )2
+ ΓQ2 (2.74)

ωm′′
L,RB(Q, ω) = (γ − 1)(cT Q)2 (ωτT )2

1 + (ωτT )2
(2.75)

In order to compare the results of the Raleigh-Brillouin spectrum (eq.2.43) with
the spectra derived from eqs.2.71, 2.74 and 2.75, the hydrodynamic (i.e. the low-Q
and low-ω) limit of the latter equations must be considered. In this limit τT is much
longer than the period of inelastic excitations, Ω−1

L (Q), since the latter is ∝ Q−1 while
the former is ∝ Q−2. As a consequence, the condition ωτT � 1 is always satisfied, and
eqs.2.74 and 2.75 reduce to:

m′
L,RB(Q,ω) ' ΓQ2 (2.76)

ωm′′
L,RB(Q,ω) ' [(csQ)2 − (cT Q)2] (2.77)

where the general thermodynamic relation: cs(Q) = γ1/2cT (Q) has been exploited.
The comparison between the Raleigh-Brillouin spectrum and the spectrum obtained
using the memory function formalism is shown in fig.2.4. The memory function ex-
pressed in eq.2.73 is thus able to reproduce the Rayleigh-Brillouin spectrum very well.
Moreover, at frequencies much higher than the Brillouin peak position, the spectral
tails decay as ∝ ω−4, and the 2nd sum rule is always preserved, contrary to the classi-
cal hydrodynamic description.

The agreement between the memory function and the classical hydrodynamic de-
scription is a direct consequence of the assumption: ωτT � 1. Experimentally this
assumption is always satisfied if ultrasonic (US) or light-scattering (LS) inelastic spec-
troscopies are employed. The only exception is the case of liquid metals [19]. Here,
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Figure 2.4: Comparison between the Rayleigh-Brillouin spectrum (eq.2.43), black solid
line, and the spectrum obtained from eqs.2.71 and 2.73, red dashed line.

the thermal diffusivity is so high -and consequently τT so short-, that the condition
ωτT ∼ 1 can be fulfilled in the LS region.

2.4.4 Relaxation processes

In the previous section the results of classical hydrodynamics were derived with a
particular choice for the time decay (i.e. the relaxation) of the memory function. It
is then worthwhile to point out the effects of the relaxation processes of the memory
function on S(Q,ω).

A simple sketch of a generic relaxation process is reported in fig.2.5. A perturbation
of magnitude P1 is applied to the system at time t1. The effect of such a perturbation is
to bring the system from its unperturbed equilibrium position, R0, to a new equilibrium
one, R1. At the time t2 the perturbation is removed, and the system returns to R0

8.
The transition between these equilibrium positions is the relaxation process, which
occurs on a characteristic time scale, τ (relaxation time).

An acoustic wave travelling with momentum (Q) and frequency (ΩL) is an example
of a time-dependent perturbation. This wave creates compression-rarefaction zones
(CRZ), which are periodic in time (T = 1/ΩL) and space (Λ = 1/Q). The wave locally
compresses the system, and the energy associated to such compression locally brings the

8After the removing of the perturbation the final equilibrium position (i.e. for t � t2) could be
different from the initial one (i.e. for t � t1)
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Figure 2.5: Relaxation process: a time dependent perturbation, P (t) (left panel), is
applied to the system. Its response, R(t) is reported in the right panel.

Figure 2.6: Resonant (left panel) and dissipative (right panel) term of eq.2.71. These
quantities represent, respectively, the (squared) characteristic frequency and damping
of LA modes.
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system out of the equilibrium. Then the system relaxes into a new equilibrium position
after a characteristic time (τ), dissipating the excess of energy. If T � τ the system has
enough time to relax into its equilibrium position before the successive perturbation.
This situation is also referred to as fully relaxed limit. On the other hand, when T � τ
the successive perturbation occurs before the system can relax. This situation is also
referred to as fully unrelaxed limit. The intermediate situation, τ ∼ T , defines the
crossover between the two regimes. Dissipation phenomena that can be associated
with a relaxation process are numerous in fluids: e.g. thermal diffusivity, viscous flows,
inter-particles collisions, intramolecular vibrations or rotations [20, 21, 22, 23].

Beside the characteristic timescale, also a characteristic strength, ∆2, can be asso-
ciated with a relaxation process. In the memory function formalism, ∆2 represents the
t = 0 value of the considered relaxation in the memory function. Within the assump-
tion of a single exponential relaxation of the memory function (i.e. mL(Q, t) = ∆2e−t/τ )
the resonant, (cT Q)2 + ωm′′

L(Q,ω), and dissipative, m′
L(Q,ω), part of the spectra of

eq.2.71 behaves as shown in fig.2.6.
The information one can obtain from the analysis of the spectral density, S(Q, ω),

depends on the considered regime:

• Fully relaxed regime (ωτ � 1): the time-decay of mL(Q, t) is so short compared
to the frequency window that it can be approximated by a δ(t)-function: i.e.
m(Q, t) → 2A(Q)δ(t), with A(Q) =

∫+∞
0 mL(Q, t)dt. The only information which

can be derived from the S(Q,ω) is the integral of mL(Q, t) and the value of cT .

• Fully unrelaxed regime (ωτ � 1): the physical process responsible for the relax-
ation occurs on such a long time-scale that the energy carried by acoustic waves
cannot be dissipated in this channel. The only information one can derive from
S(Q, ω), once the value of cT is known, is the relaxation strength, ∆2, which is

responsible for the sound wave velocity increase from cT to
√

c2
T + ∆2.

• The crossover regime (ωτ ∼ 1) is the most interesting one, since it is sensitive to
both relaxation time (τ) and strength (∆2).

In the following, the three relaxation processes, relevant in the present context, are
discussed in details.

Thermal Relaxation

The excess of energy stored in the compressed zones can be dissipated via the thermal
diffusion process (thermal relaxation). This process is not instantaneous, the time
needed to transfer a quantity of heat through the surface surrounding the compressed
volume in order to equalize the temperature of CRZ (that are spatially limited ∼ Q−3)
is given by the characteristic time for thermal relaxation: τT = (γDT Q2)−1. CRZ
are not stable in time, but they appear and disappear according to the period of the
acoustic wave: T = 1/ΩL(Q) ∝ Q−1. In the low-Q limit thermal diffusion is much
slower than the interval between two successive compressions, i.e. τT � T . As a
consequence, successive compressions occur before energy can flow from compressed
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to rarefied zones through thermal diffusion. This situation corresponds to the fully
unrelaxed limit for the thermal relaxation and characterizes the hydrodynamic regime.
As Q increases, the temporal periodicity (∝ Q−1) and the spatial extension of the CRZ
decrease, leading to a decrease of τT ∝ Q−2. At a certain point the time needed for heat
to flow out of the volume will become so short that a non negligible quantity of energy
can be exchanged in between two successive compressions. On further increase of Q
the mechanism of energy dissipation through thermal diffusion becomes very efficient,
since thermal diffusion becomes rapidly much faster than the acoustic wave.

Figure 2.7: Left panels: S(Q,ω) as a function of Q. The numerical values used to
compute these spectra are: cs = 1500 m/s, DT = 700 nm2/ns, Γ = 100 nm2/ns and
γ = 2.25. Right panels: corresponding longitudinal current spectra. The vertical lines
indicate the expected frequencies of the longitudinal modes in the adiabatic (dashed)
and isothermal (dotted) regimes.

In this fully relaxed limit, ωτT � 1, the energy can be dissipated through thermal
diffusion in order to equalize the temperature of compressed and rarefied zones. The
set of CRZ is therefore in isothermal equilibrium rather than in an adiabatic one. In
this limit eqs.2.74 and 2.75 can be approximated as follows:
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m′
L,RB(Q,ω) ' (γ − 1)τT (cT Q)2 + ΓQ2 (2.78)

ωm′′
L,RB(Q,ω) ' 0 (2.79)

The corresponding S(Q, ω) consists of a DHO function (without the Rayleigh peak)
whose maxima are ±cT (Q)Q, and a damping given by eq.2.78. In the crossover region
between the fully relaxed and unrelaxed regimes the three hydrodynamic modes are
no longer well separated. The entropy (Rayleigh) mode becomes broader (∝ Q2) and
overlaps with the acoustic (Brillouin) ones. The characteristic frequency of the latter,
ΩL(Q), is no longer equal to csQ, but lies somewhere in between csQ and cT Q. The
whole phenomenology is schematically depicted in fig.2.7, where the S(Q,ω) and the
corresponding longitudinal current spectra are reported as a function of Q. The max-
ima of these spectra correspond to the characteristic frequency of longitudinal modes,
ΩL. In conclusion, a transition from the adiabatic to the isothermal regime of sound
propagation is expected to be observed with increasing Q [24, 25]. An estimation of
the crossover Q can be obtained by comparing the period of acoustic waves, 1/csQ,
with the inverse of the thermal relaxation time, (γDT Q2)−1. This comparison yields a
characteristic crossover Q in the order of cs/γDT .

Structural Relaxation

The phenomenology of structural relaxation -or viscoelasticiy- has been used since a
long time [26, 27, 28] in order to interpret the experimental results concerning the
frequency dependence of the sound velocity in the US and LS regimes [21, 22, 23,
29, 30, 31]. In particular this approach is able to correctly explain the very strong
frequency and temperature dependence of the sound velocity in glass forming systems
near their glass transition temperature [32, 33, 34, 35, 36].

More recently this approach has been successfully employed to interpret the disper-
sive behavior of longitudinal modes in the Thz range [19, 37, 38, 39, 40, 41, 42, 43].
The starting point is to identify a characteristic time, τα, for intermolecular interac-
tions, such as the characteristic life-time of intermolecular bonds or the time between
intermolecular collisions. In most liquids, such a characteristic time scale is in the
order of ps. When the system is probed on a timescale much shorter than τα it ap-
pears as ”frozen”, since the particles have neither the time to move significantly nor
to make/break bonds. The response of the system is then expected to be similar to
the one of an amorphous solid. In particular, at high-frequencies the characteristic
frequency/damping of longitudinal modes is expected to be higher/lower than at low
frequencies. This is due to the fact that part of the energy used by the acoustic wave
to establish CRZ cannot be dissipated into intermolecular interactions, because of the
very short time periodicity of these CRZ, and it contributes to an increase of the sound
velocity.

The structural relaxation phenomenology can be easily introduced into the mem-
ory function formalism replacing the instantaneous term (2ΓQ2δ(t)) in eq.2.73 by an
exponential time decay with time constant τα:
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mL(Q, t) = (γ − 1)(cT Q)2e−γDT Q2t + ∆2
αe−t/τα (2.80)

where ∆2
α is the strength of the structural relaxation. This substitution does not

affect the fulfilment of the correct hydrodynamic limit, since the exponential decay
reduces to a delta function for long time scales9. In order to quantitatively obtain the
hydrodynamic limit, the following assumption has to be made:

∆2
ατα = ΓQ2 (2.81)

it can be noted that both ∆2
ατα and ΓQ2 represent the time integral (i.e. the area)

of the ”viscous” part of the respective memory functions. Neglecting for simplicity the
thermal relaxation in eq.2.80 (e.g. by setting γ=1), the real and imaginary part of the
memory function read:

m′
L(Q,ω) = ∆2

α

τα

1 + (ωτα)2
(2.82)

ωm′′
L(Q,ω) = ∆2

α

(ωτα)2

1 + (ωτα)2
(2.83)

The effect of the structural relaxation on the dispersive behavior of longitudinal
modes can be predicted by inspecting fig.2.8. For frequencies much lower than τ−1

α (i.e.
� THz) the fully relaxed limit is reached. In this region the sound velocity, ΩL(Q)/Q,
is the adiabatic one10, and the mode damping is given by eq.2.81. This fully relaxed
limit is also called viscous regime, because the system behaves like a viscous fluid that
obeys the hydrodynamic laws.

On increasing Q, ΩL(Q) linearly increases, up to become comparable to τ−1
α . In

this region the sound velocity increases and the damping decreases (see fig.2.6). If Q is
increased further, ΩL(Q) becomes much larger than τ−1

α . In this fully unrelaxed limit,
also called elastic regime, the sound velocity does not increase further, but remains
constant. This high frequency sound velocity is usually called c∞. The relation between
c∞, cs and ∆2

α is:

c2
∞ − c2

s = ∆2
α/Q2 (2.84)

In conclusion, a dispersion of the sound velocity, from a low frequency limit (cs)
to an high frequency one (c∞), is observed as a function of ΩL(Q)τα (positive sound
dispersion). The crossover condition can be estimated by comparing τα with the period
of an acoustic wave, 1/csQ. This comparison yields a crossover Q in the order of 1/csτα.
The evolution of the S(Q, ω) within the viscoelastic scenario is reported in fig.2.8. In
the left panels the spectra of a generic viscoelastic liquid (calculated from eqs.2.71 and
2.80) are shown as a function of Q. The fact that there is no Raleigh peak in the
low-Q (hydrodynamic limit) is due to the assumption that γ = 1. Once the unrelaxed
limit is approached, a central component becomes visible in the spectra. The width

9This is the case of experimental techniques, such as LS or US, that probe an ω-range up to GHz,
i.e. ∼ three orders of magnitude ”slower” than τα.

10For γ = 1 there is no difference between adiabatic and isothermal sound velocity.
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of this central peak is given by the inverse of the so-called compliance relaxation time
τC = ταc2

∞/c2
s. In the right panels the corresponding longitudinal current spectra are

reported. The vertical lines represent the adiabatic (dashed line) and infinite (dotted
line) dispersions. It can be noticed that the sound velocity, ΩL(Q)/Q, passes from cs

to c∞ across the transition between the viscous (ωτα � 1) and the elastic (ωτα � 1)
regime.

Figure 2.8: Left panels: S(Q, ω) of a viscoelastic liquid at the indicated Q values. The
numerical values used to compute these spectra are: cs = 2000 m/s, c∞ = 3000 m/s
and τα = 1 ps. Right panels: corresponding longitudinal current spectra. The vertical
lines indicate the adiabatic (dash) and infinite (dot) dispersion.

Instantaneous relaxation

On a general ground other dynamical phenomena can take place in fluids. These
phenomena can give rise to extra relaxation processes, usually called ”microscopic”
relaxations. In molecular fluids some of the energy carried by acoustic waves can
be dissipated, exciting intramolecular degrees of freedom. In the present context the
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only intramolecular degree of freedom is represented by fast intramolecular vibrations.
The timescales, τµ, of these dynamics are extremely fast. For instance, the period of
vibration of N atoms in a N2 molecule is ∼ 12 fs. Moreover, also the topological
disorder could give rise to a relaxation process. In fact, when a fluid is probed in
its elastic regime, the system appears as ”frozen” and its response is similar to the
one of the corresponding disordered solid (i.e. the corresponding glass). In this case
the eigenstates of the system, in the investigated Q-range, cannot be identified with
plane waves [44]. As a consequence, an experimentally excited plane wave results in
a projection into different eigenstates with different eigenvalues (frequencies). These
eigenstates, after a certain characteristic time, τd, dephase each other. This mechanism
leads to a relaxation process taking place over a characteristic timescale, τd, accounting
for energy exchanges between the excited wave and the eigenstates of the system. In
principle, several additional terms can be added in the memory function to describe
such relaxations [19, 45, 46].

In the present context, these fast dynamics have been taken into account by adding
the following term in the memory function:

2Γµδ(t) (2.85)

This ”instantaneous” time decay of the memory function describes very well the
fully relaxed, i.e. ωτµ � 1, region for microscopic relaxations. This condition is likely
fulfilled both because τµ is quite short11, and because the very low sound velocity of
supercritical samples reduces the ω-region where one is most sensitive to these fast
relaxation processes.

2.4.5 The proposed memory function

In the previous section the relevant relaxation processes (thermal, structural and in-
stantaneous) have been discussed. In this section the simultaneous presence of all
these effects is briefly illustrated. The memory function we propose to interpret the
experimental S(Q,ω) is derived from eq.2.80, with inclusion of the term in eq.2.85:

mL(Q, t) = (γ(Q)− 1)(cT (Q)Q)2eτT (Q)Q2t + ∆2
α(Q)et/τα(Q) + 2Γµ(Q)δ(t) (2.86)

Furthermore, all parameters in eq.2.86 are considered as Q-dependent quantities.
This memory function presents two finite time scales, τT (Q) and τα(Q). As one can see
from fig.2.7 and 2.8, these relaxations have a competing dispersive effect. The thermal
(structural) one is fully unrelaxed (relaxed) at low Q while it is relaxed (unrelaxed) at
high Q. In fact, the thermal (structural) relaxation brings the sound velocity to values
lower (higher) than the adiabatic one, with increasing Q. The two competing disper-
sive effects are sketched in fig.2.9, where the arrows indicate the crossover conditions.
Nevertheless the crossover condition for the isothermal and the viscoelastic transition
can be varied independently, by changing the thermodynamic state of the sample.

11With τµ we refer to the characteristic timescale of all these fast relaxation processes.
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Figure 2.9: Schematic representation of the dispersive effect of structural relaxation,
left panel, and thermal relaxation, right panel. The dispersion of longitudinal modes,
ΩL(Q), is represented by the thick blue line. The expected adiabatic dispersion is rep-
resented by the full black line, while the infinite and isothermal ones are the light-green
dashed line and the dark-green dotted one, respectively. The values of τT and τα are
the red dash-dotted line and the magenta dash-double-dotted one, respectively. The
crossover between the various regimes is highlighted by the two vertical arrows.

These two relaxations also influence the damping of longitudinal modes. Moreover,
this damping is also affected by the instantaneous relaxation, which leads to an increase
of viscous dissipation. On the other hand, the instantaneous relaxation cannot influence
the dispersion of longitudinal modes.

The relation between the hydrodynamic viscosity and the relaxations can be ob-
tained by comparing the time integrals of the respective viscous parts of the hydrody-
namic (eq.2.73) memory function and the one proposed in eq.2.86. The result is the
following:

[∆2
α(Q)τα(Q) + Γµ(Q)]Q→0 = νL (2.87)

2.5 The single particle limit

In this section we briefly introduce the main features of the single particle limit, which
is reached at very high Q-values. The correlation function that plays the crucial role in
the description of the single particle behavior is the (self) density correlation function:

Gs(~r, t) = 〈
N∑

i=1

δ(~r − (~ri(t)− ~ri(0)))〉 (2.88)

The associated intermediate scattering function is:
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Fs( ~Q, t) = 〈
N∑

i=1

ei ~Q·(~ri(t)−~ri(0))〉 (2.89)

whose time Fourier transform is the (self) dynamical structure factor: Ss(Q, ω). Fol-
lowing the same procedure as in section 2.2.2, Fs(Q, t) can be expanded into a Fourier
series, whose coefficients are the spectral momenta of Ss(Q, ω). The first observation
is that for Q → ∞ the spectral momenta of S(Q,ω) reduce to that of Ss(Q, ω) (see
table 2.1). Therefore the Taylor expansion of F (Q, t) and Fs(Q, t) coincide at high-Q.
As a consequence the corresponding spectra are related to each other by the following
relation, also referred to as incoherent approximation:

S(Q →∞, ω) = Ss(Q →∞, ω) (2.90)

Ss(Q, ω) can be easily calculated in the case of an ideal gas, in which the interactions
are mutual collisions, instantaneous and localized in space. The calculation of Gs(r, t)
is not particularly challenging in this case, since the probability for a particle to move
over a distance r is simply proportional to its velocity, v = r/t. This is given by
the Maxwell-Boltzmann distribution. Thus Gs(r, t) ∝ e−mv2/2kBT , where m is the
mass of the gas particle. Employing the normalization of Gs(r, t) and, double Fourier
transforming it, one obtains:

Ss(Q, ω) = (
m

2πkBTQ2
)1/2e

− m
2kBTQ2 ω2

(2.91)

This is a Gaussian function centered at ω = 0 with variance kBTQ2/m. Employing
quantum mechanical corrections, the Gaussian function shifts and is centered at the
recoil energy, Ωr = h̄2Q2/2m [6, 47].

In order to have a feeling for the Q-region in which this kind of approach is valid,
a characteristic length scale for the system has to be defined. One suitable choice is
the Enskog mean free path, LE = 2/πnd2g(d), where d is the diameter of the particles,
here considered as hard spheres. This description is valid when Q � 2π/LE, and it
can be extended to lower values of Q, if final states effect are taken into account.

From the 2nd sum rule of the (self) velocity correlation function, a quantity that
plays an important role in the description of fluid dynamics, the Einstein frequency
(Ω0), can be derived. It can be expressed in terms of the second derivative of the
pairwise interaction potential, h(~r):

Ω0 =
Nm

V

∫
V

d~rg(r)
∂2h(r)

∂x2
(2.92)

where x is the component of ~r parallel to ~Q. Ω0 corresponds to the vibration
frequency of a molecule inside the cage formed by the nearest neighborhoods potential.
These cages are not stable in time, and therefore a real oscillatory motion cannot be
rigorously defined. Nevertheless, in dense fluids on short timescales, the motion of a
particle can be better described in terms of these time-localized vibrations, rather than
pure diffusive motions due to random intermolecular collisions. In this case the inverse
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2.5. The single particle limit

of the Einstein frequency is a more suited parameter to characterize the timescale of
microscopic dynamics.
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Résumé du chapitre 3

Résumé du chapitre 3

Ce chapitre se concentre sur les aspects expérimentaux de la présente
étude. La section efficace pour la Diffusion Inélastique de Rayons-X
(IXS) et sa relation avec le facteur de structure dynamique, S(Q,ω),
sont calculées formellement. Une comparaison entre IXS et la Diffusion
Inlastique de Neutron (INS), c’est-à-dire la technique expérimentale al-
ternative à IXS, est donnée. A la fin de ce chapitre les principes de fonc-
tionnement d’un spectromètre IXS, ainsi que les appareils expérimentaux
employés, sont présentés.
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Chapter 3

Inelastic X-Ray Scattering from
fluids

In the first sections of this chapter the theory of Inelastic X-ray Scattering (IXS)
is presented. Moreover, the basic working principles of an IXS spectrometer, with
reference to beamline ID-28 at the European Synchrotron Radiation Facility (ESRF),
are illustrated. The use of large volume pressure cells (LVC) is discussed in the final
section of this chapter.

3.1 IXS cross-section

The IXS spectrum provides a direct determination of the coherent dynamical structure
factor, S(Q,ω), whenever the listed hypotheses hold [48, 49]:

• The scattering process is dominated by the Thomson term and both the resonant
and the spin-dependent contributions to the electron-photon interaction can be
neglected.

• The center of mass of the electron cloud follows without delay the nuclear motion,
i.e. the adiabatic approximation is valid.

• There are no electronic excitations in the considered energy transfer range.

The IXS scattering schematics are illustrated in fig.1. Here, and in the following,
the suffixes ”i” and ”f” refer to the incident and scattered photon, respectively. The
incoming photon is characterized by its energy, h̄ωi, wave-vector, ~ki, and polarization,
ε̂i. It is scattered by the sample into an angle 2θ within a solid angle dΩ. The
scattered photon energy, wave-vector and polarization are denoted by h̄ωf , ~kf and ε̂f ,
respectively. According to energy and momentum conservation laws the momentum
and energy transfer to the sample are:

h̄ω ≡ h̄(ωf − ωi) and h̄ ~Q ≡ h̄
(
~kf − ~ki

)
(3.1)
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Chapter 3. Inelastic X-Ray Scattering from fluids

In the limit ω � ωi -which is the case of IXS-, the modulus of ~ki and ~kf are basically
the same, and the modulus of the exchanged momentum is entirely determined by the
scattering angle 2θ:

| ~Q| = 2|~ki|sin(2θ/2) (3.2)

Figure 3.1: Kinematics of a scattering experiment.

The double differential cross section, ∂2σ/∂Ω∂ωf , represents the fraction of photons,
having frequency ωf±dωf , scattered into a solid angle dΩ around the direction defined

by ~kf . It can be calculated within the frame of linear response theory assuming a
weak coupling between the probe and the system. In this approximation the double
differential cross section can be regarded as an intrinsic property of the unperturbed
sample, being independent of the incident photon flux. Neglecting the interaction of
the photon electromagnetic field with the nuclei, the probe-system interaction, in the
weak relativistic limit, is described by the photon-electron interaction Hamiltonian,
Hint. It consists of four different terms [50]:

Hint =
e2

2mc2

∑
j

~A(~rj, t) · ~A∗(~rj, t) +
e

2mc

∑
j

~A(~rj, t) · ~pj(~rj, t)

− e

mc

∑
j

~sj · ∇ × ~A(~rj, t)−
e2

2m4c4

∑
j

~sj · (
d ~A

dt
(~rj, t)× ~A(~rj, t)) (3.3)

The sum extends over all the electrons in the system, while electron positions,
momenta and spins are indicated as ~rj, ~pj and ~sj, respectively. m and e are the

electron mass and charge, while c is the speed of light. Finally ~A(~rj, t) is the vector
potential of the photon electromagnetic field, which, in the quantum electrodynamic
representation with the gauge ∇ · ~A(~rj, t) = 0, can be written as [51]:

~A(~rj, t) = (
4πc2

V
)1/2

∑
λ

[aλε̂λe
i( ~Qλ·~rj) + a∗λε̂λe

−i( ~Qλ·~rj)] (3.4)

where aλ and a∗λ are the λ-th component of the photon annihilation and creation
operator, and ε̂λ is the polarization of the electromagnetic field.

The first term in equation 3.3 describes the diamagnetic coupling between electron
current and photon electric field (Thomson scattering). The second term accounts for
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3.1. IXS cross-section

the paramagnetic coupling responsible for the absorption/emission of a photon by the
electron system. The last two terms describe the coupling of the electron spins to the
photon magnetic field and the spin-orbit interaction.

For photon energies of the order of 20 keV (i.e. � mc2, the rest mass of the electron)
the magnetic terms are by a factor 10−2 smaller than the first two terms, and will
therefore be neglected in the following. Furthermore, the paramagnetic contribution
can be neglected if we consider photons with energies that are far from any absorption
resonance. The interaction Hamiltonian therefore simplifies to:

Hint =
e2

2mc2

∑
j

~A(~rj, t) · ~A∗(~rj, t) (3.5)

The double-differential cross-section can be determined in the framework of first
order perturbation theory, according to Fermi’s golden rule [52]. Considering the initial
and final photon states, |I〉 and |F 〉, as plane waves the double-differential cross-section
can be written as:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)
(ε̂f · ε̂i)

2
∑
I,F

PI

∣∣∣∣∣∣
〈

F

∣∣∣∣∣∣
∑
j

ei
~Q · ~rj

∣∣∣∣∣∣ I
〉∣∣∣∣∣∣

2

δ(h̄(ω − ωF + ωI)) (3.6)

where r0 = e2/mc2 is the classical electron radius and PI is the statistical weight,
i.e. the equilibrium population of the initial states.

Within the validity of the adiabatic approximation, the atomic quantum state, |S〉,
can be factorized into its electronic, |Se〉, and nuclear, |Sn〉, part. This approximation
is particularly good for exchanged energies that are small with respect to the electron
excitation energies. In this case the contribution to the total scattering coming from
the valence electrons close to the Fermi level is small compared to the contribution
coming from the core electrons. Consequently, the difference between the initial and
final state is substantially due to excitations of the ion system. The double differential
cross section, under these hypotheses, can be written as:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)
(ε̂f · ε̂i)

2
∑

In,Fn

PIn

∣∣∣∣∣∣
〈

Fn

∣∣∣∣∣∣
∑
j

fj(Q) ei
~Q · ~Rj

∣∣∣∣∣∣ In

〉∣∣∣∣∣∣
2

δ(h̄(ω − ωF + ωI))

(3.7)

where fj(Q) is the atomic form factor of the jth atom with position vector ~Rj,
while the suffix ”n” refers to the nuclear states. Now the sum extends over all the
atoms of the system. Assuming that all the scattering units in the system are equal,
this expression can be further simplified by the factorization of the form factor. In the
limit Q → 0, f(Q) is equal to the number of electrons in the atom. For increasing values
of Q the form factor decays almost exponentially, with a decay constant determined
by the radial distribution of the electrons in the atomic shells of the considered atom.
Using the Van Hove pair correlation function defined in eq.2.4, S(Q,ω) can be formally
written as [53]:
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Chapter 3. Inelastic X-Ray Scattering from fluids

S( ~Q, ω) =
1

2πN

∫ +∞

−∞
eiωt〈

∑
jk

ei ~Q·~Rj(t)e−i ~Q·~Rk(0)〉dt (3.8)

where N is the number of particles in the system. Combining eqs.3.8 and 3.7 one
obtains:

∂2σ

∂Ω∂ωf

= r2
0(

kf

ki

)(ε̂f · ε̂i)
2|f(Q)|2S( ~Q, ω) (3.9)

This derivation is strictly valid for monatomic systems, but it can be easily gener-
alized to molecular systems with several atomic species by replacing the atomic form
factor with the molecular one. In the case of non-crystalline samples with different
atoms the procedure to determine the scattering cross section is more complicated.
Nevertheless the factorization of the form factor is still possible. The formalism intro-
duced here is still valid if we assume that the cross section splits into two components:
a coherent and an incoherent term. The latter is associated with fluctuations of the
form factor while the former is proportional, through the mean value of the form factor,
to S( ~Q, ω):

∂2σ

∂Ω∂ωf

= r2
0(

kf

ki

)(ε̂f · ε̂i)
2[〈f(Q)〉2S( ~Q, ω) + 〈δf(Q)2〉Ss( ~Q, ω)] (3.10)

Here 〈f(Q)〉2 is the average value of the form factor over the whole system, while
〈δf(Q)2〉 is the average of its fluctuation. The incoherent part of the cross section is
related to Ss(Q,ω) which (see section 2.4) describes the single particle dynamics rather
than the collective one.

Besides the cross-section, the realization of an IXS experiment requires also the
knowledge of the scattering signal. In order to derive the actual count rate, absorption
processes have to be considered. The number of photons (N) that are scattered into
the solid angle (dΩ) and in the frequency interval (dω) per unit time is given by [54]:

N = N0
∂2σ

∂Ω∂ω
dΩdωρLe−µL (3.11)

where N0 is the number of incident photons per seconds, ρ is the density of the
scattering sample, L is its length along the scattering path and µ is the total absorp-
tion coefficient. The maximum IXS signal is achieved for L = 1/µ, and consequently
N ∝ 1/µ. Considering X-ray energies of ≈ 20 KeV and Z > 3, µ is almost completely
determined by the photoelectric absorption process. In this process µ ∝ Z4, with im-
portant modifications at energies close to the photon absorption edges. Consequently,
the scattering volume of high Z materials is very much reduced, while, on the other
hand, the cross section increases as Z2. Fig.2 reports the effective scattering intensity
for an IXS experiment as a function of Z for a sample with optimum thickness and an
incident photon energy of 17.8 KeV .
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3.2. Dynamic structure factor and phonons

Figure 3.2: Relative IXS signal as a function of the atomic number Z at the photon
energy of 17.8 KeV, in the small Q-limit (i.e. f(Q) = Z), for an optimum sample
thickness (L = 1/µ). The large discontinuity between Z = 39 and Z = 40 is due to the
K absorption edge of Zirconium.

3.2 Dynamic structure factor and phonons

In this paragraph it is shown how the dynamic structure factor is directly linked to the
quanta of the vibrational field: the phonons [53]. The simplest case is represented by an
ideal Bravais lattice with only one atom per unit cell. Being ~uj(t) the atomic displace-

ment of atom j with respect to its lattice equilibrium position, ~Rj, its instantaneous

position, ~Rj(t), can be expressed as follows:

~Rj(t) = ~Rj + ~uj(t) (3.12)

The dynamic structure factor (eq.3.8) reads:

S(Q, ω) =
1

2πN

∑
j,k

ei ~Q·(~Rj−~Rk)
∫ +∞

−∞
eiωt〈e−i ~Q·~uk(0)ei ~Q·~uj(t)〉dt (3.13)

In the framework of the second quantization the displacement is given by [53]:

~uj(t) =

√
1

2MN

∑
s,~q

ε̂s,~q√
ωs(~q)

[aei(~q·~Rj−ωs(~q)t) + a+e−i(~q·~Rj−ωs(~q)t)] (3.14)

here the suffix ”s” indicates the cartesian indexes and a and a∗ are the annihilation
and creation phonon operators, respectively. ~q and ωs(~q) represent the phonon momen-
tum and frequency, while ε̂s,~q is the phonon polarization. Exploiting the commutation
rules of a and a+, and some general relations, eq. 3.13 becomes [53]:
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S( ~Q, ω) =
1

2πN

∑
j

ei ~Q·~Rj−2W (Q)
∫ +∞

−∞
e−iωte〈(

~Q·~u0(0))( ~Q·~uj(t))〉dt (3.15)

Where the quantity e−2W (Q) = e−〈(Q·ui(0))2〉 is usually called the Debye-Waller factor.
Since we are dealing with small displacements, the argument of the integral can be
expanded as [53]:

e〈(
~Q·~u0(0))( ~Q·~uj(t))〉 = 1 + 〈( ~Q · ~u0(0))( ~Q · ~uj(t))〉+ ... (3.16)

The first term leads to elastic Bragg scattering, while the second one represents
the inelastic scattering with the creation or annihilation of one phonon. Higher order
terms can be omitted since only small momentum transfers, compared to the inverse
of the typical atomic displacements, are considered. Within this approximation the
dynamic structure factor can be expressed as:

S(Q,ω) =
1

4πMN
e−W (Q)

∑
j

ei ~Q·~Rj
( ~Q · ε̂s,~q)

2

ωs(~q)

∫ +∞

−∞
eiωt[e−i(~q·Rj−ωs(~q)t)〈nq + 1〉

+ e−i(~q·Rj+ωs(~q)t)〈nq〉]dt (3.17)

where 〈nq〉 represents the Bose occupation number of the excited phonon mode.
For crystals with more than one atom per unit cell, the unit cell form factor has to be
taken into account in the calculation of the one phonon process scattering cross section.
For disordered systems the lack of translational periodicity makes the treatment more
complicated, because the eigenvectors depend also on the equilibrium positions of the
atoms [55, 56, 57]. As a consequence it is impossible to factorize the term ei ~Q·(~Rj−~Rk),
as in eq.3.13.

3.3 X-rays or Neutrons?

The other experimental technique able to measure the S(Q, ω) at wavelengths com-
parable to intermolecular distances and energies comparable to the ones of collective
excitations is Inelastic Neutron Scattering (INS). Neutrons directly couple to the nuclei
through the Fermi pseudo-potential. Moreover, they have a spin of 1/2, and therefore
the magnetic interaction with matter is non negligible. The double differential cross
section for neutrons reads [53]:

∂2σ

∂Ω∂ωf

= (
kf

ki

)[|〈b〉|2S( ~Q, ω) + (|〈b〉|2 − 〈|b|2〉)Ss( ~Q, ω)] (3.18)

where b is the neutron scattering length. Comparing this equation with the equiv-
alent for IXS (eq.3.10), it can be noticed that they are identical, once f(Q) is replaced
by b. The difference between these two quantities arises from the fact that f(Q) is
the expression of a (photon-electron) electromagnetic interaction, while b results from
a purely (neutron-nuclei) nuclear interaction. For this reason X-rays are scattered
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by different materials according to the number of electrons (Z) of the atomic species

(f(Q) ∝ Z). On the other hand, b depends on Z, A (the atomic number) and ~J , the
total (electron + nuclear) magnetic moment. The resulting scattering strength can
therefore be very different for different isotopes of the same material, but also for the
same isotope with a different orientation of its total magnetic moment. This ”sensi-
tivity” can produce very strong deviations of the actual scattering length with respect
to its average value, thus leading to a significant contribution of the incoherent term
(∝ |〈b〉|2 − 〈|b|2〉) in the neutron cross section.

On the other hand, neutrons present an enormous advantage. Neutrons with a De
Broglie wavelength of ∼ Å have energies of ∼ 10 ÷ 100 meV , the same order of mag-
nitude as typical inelastic excitations. A moderate (∼ 10−2) instrumental resolution
in energy (∆E/E) and momentum (∆Q/Q) is therefore sufficient to determine the
S(Q, ω) in the Å−1 and meV range. In contrast to this, X-rays with wavelengths of
a few Å have energies of some KeV . A much higher instrumental energy resolution
(∆E/E ∼ 10−7) is then needed in order to resolve the same excitations. This leads to
an important reduction of the photon flux.

Another important difference between IXS and INS concerns the accessible dynam-
ical range. The dynamical range consists of the set of (Q,E) values for which the
scattering process is allowed. For neutrons it can be derived by using the general
conservation laws (eq.3.1) and the quantum mechanical relation between energy and
momentum:

E =
h̄2|~k|2

2Mn

(3.19)

where Mn is the neutron mass. The equation that defines the dynamical range for
neutrons is then:

| ~Q|2

|~ki|2
= 2− 2MnE

h̄2|~ki|2
+ 2cos(2θ)

√√√√1− 2MnE

h̄2|~ki|2
(3.20)

This equation can be considered as the equivalent of eq.3.2 for X-rays. It is evident
that the momentum transfer, ~Q, is not only determined by the scattering angle, but
also by the energy transfer. Plotting eq.3.20 in the (Q,E)-plane, a set of curves,
corresponding to different 2θ values, can be derived. The points lying on these curves
are the only ones that can satisfy the energy and momentum conservation laws. In the
left panel of fig.3.3 the typical dynamical range for thermal (300 K) neutrons (ki = 35
nm−1 and Ei = 25.8 meV ) is reported. In the right panel of the same figure the
equivalent quantity for X-rays employed in the present study (ki = 110 nm−1 and
Ei = 21.747 KeV ) is depicted. In both panels typical values for sound-like excitations
are reported as straight lines. Inspecting fig.3.3 it is clear that X-rays can measure high
energy excitations even at low-Q (notice the factor 20 between the two energy scales).
The limitations imposed by the dynamical range are of primary importance in the
study of amorphous systems, such as glasses or fluids, where the lack of translational
periodicity does not allow the definition of Brillouin zones. As a consequence, the
experiment has to be performed at small momentum transfer, at Q-values below the
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Chapter 3. Inelastic X-Ray Scattering from fluids

first diffraction peak. In these cases, the energy of neutrons has to be increased in
order to enlarge the dynamical range, at the expense of the energy resolution.

Figure 3.3: Dynamical range for neutrons (left panel) and photons (right panel). Typical
values for sound-like excitations, propagating with the velocity indicated in the respective
panels, are plotted as straight lines.

Finally, another important difference between the two techniques regards the shape
of the instrumental energy resolution function. For INS this shape is Gaussian, while
for IXS it is close to a Lorentian. The high tails of the Lorentian shape represent a big
disadvantage for resolving the fine details of the S(Q,ω), in particular, for low energy
features the contrast is much reduced with respect to the most favorable Gaussian
shape of the INS resolution function. Other differences between IXS and INS are listed
in table 3.1.

In conclusion the main advantages/disadvantages in using IXS rather than INS to
study liquid systems are the following:

• In some cases, using INS, it is impossible to separate the coherent and incoherent
contributions.

• X-rays are not limited by kinematic constraints (dynamical range). They can
probe high values of energy transfer even at small momentum transfer.

• IXS presents a Q-resolution higher than INS.

• The Gaussian shape of the INS resolution function considerably enhances the
contrast for low energy excitations.

In the last decade, the complementarity of IXS was successfully employed in the
study of the collective dynamics in those cases where INS is difficult to apply (kine-
matic limitations, large incoherent scattering, multiple scattering, very high momentum
resolution, or small samples).
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3.4. IXS spectrometer: beamline ID-28 at ESRF

IXS INS

no correlation between strong correlation between
momentum and energy transfer momentum and energy transfer

∆E/E ∼ 10−7 ÷ 10−8 ∆E/E ∼ 10−1 ÷ 10−2

∂2σ/∂Ω∂Ef ∼ r2
0Z

2 (for small Q) ∂2σ/∂Ω∂Ef ∼ b2

strong photoelectric absorption weak absorption
⇒ no multiple scattering ⇒ multiple scattering

negligible incoherent scattering incoherent scattering
insensitive to magnetic excitations study of magnetic excitations
small beam size: 100 µm or smaller large beam size: ∼ cm

small beam divergence: ∼ mrad large beam divergence: ∼ rad
Lorentian shape of resolution Gaussian shape of resolution

function (1 ÷ 8 meV , FWHM) function (0.5 ÷ 5 meV , FWHM)
Q resolution ∼ 0.1 nm−1 Q resolution ∼ 1 nm−1

”infinite” dynamical range limited dynamical range

Table 3.1: Main characteristic of IXS and INS instruments.

3.4 IXS spectrometer: beamline ID-28 at ESRF

In this section the IXS beamline ID-28 at the European Synchrotron Radiation Facility
(ESRF) in Grenoble [58] is briefly described. The instrument layout is reported in
fig.3.4.

The instrumental concept is based on a triple axis spectrometer [53]. The first
axis is the one of the monochromator crystal. Its role is to determine the energy,
h̄ωi, of the incident photons. The second axis is located at the sample position, and
determines the momentum transfer. The third axis is the analyzer crystal, its role is the
determination of the scattered photon energy, h̄ωf . The ID28 beamline is equipped with
5 analyzer systems which allow the collection of 5 different IXS spectra, corresponding
to 5 different transfer momenta, at the same time.

The X-ray source consists of three undulators of 32 mm magnetic period, placed
in a straight high-β section of the electron storage ring. The utilized X-ray radiation
energies correspond to the undulator emission of the 3rd or 5th harmonics. The X-ray
beam from the undulator’s odd-harmonics has an angular divergence of approximately
40 × 15 µRad (FWHM, horizontal × vertical), a spectral bandwidth ∆E/E ∼ 10−2,
and an integrated power within this divergence in the order of 200 W.

The X-ray beam from the undulators is pre-monochromatized to ∆E/E ∼ 2 ·
10−4 using a silicon, Si(1, 1, 1), channel-cut crystal kept in vacuum and cooled by
liquid nitrogen. The main role of the pre-monochromator is to reduce the heat load
impinging on the main monochromator. This is mandatory in order to keep the thermal
deformation of the silicon crystal below the limits for which the energy resolution is
deteriorated.
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Chapter 3. Inelastic X-Ray Scattering from fluids

Figure 3.4: Layout of the IXS beamline ID-28 at the European Synchrotron Radiation
Facility.

The X-ray photons from the pre-monochromator impinge onto the high energy
resolution backscattering monochromator, consisting of an asymmetrically cut silicon
crystal oriented along the [111] direction, operating at a Bragg angle of 89.98o. This
extreme backscattering geometry insures the minimization of geometrical contributions
to the total energy resolution. The spectral angular acceptance, the so-called Darwin
width, is larger than the X-ray beam divergence, and, therefore, all the photons within
the desired energy bandwidth are transmitted. High order Bragg reflections and perfect
crystals are required in order to obtain the necessary energy resolution of ∆E/E ∼
10−7 ÷ 10−8; these reflections are the silicon (h, h, h), with h = 7, 8, 9, 11, 12, 13 [59].

The monochromatic beam is focused in the horizontal and vertical plane by a plat-
inum coated toroidal mirror, located at 25 m from the sample. This scheme provides
a focus at the sample position of 250 × 80 µm2 FWHM. More performing optics are
available at ID28 to focus the beam down to 30× 40 µm2.

The scattered radiation is subsequently analyzed in energy. Although the problems
connected to the energy resolution are conceptually the same for the monochromator
and for the analyzer, the required angular acceptance is very different. The monochro-
mator can be realized using a flat perfect crystal. For the analyzer crystal the optimal
angular acceptance is dictated by the desired momentum resolution. Considering val-
ues of ∆Q in the range of 0.1÷ 0.5 nm−1, the corresponding angular acceptance of the
analyzer crystal must be ∼ 10 mrad or higher, a value much larger than the Darwin
width. The only way to obtain such a large angular acceptance is the use of a focus-
ing system, which, nevertheless, has to preserve the single crystal perfection necessary
to obtain the desired energy resolution. This constraint automatically excludes the
possibility to consider elastically bent crystals. A solution consists of laying a large
number of undistorted perfect flat crystals on a spherical surface, with the aim to use
a 1:1 pseudo-Rowland circle geometry with aberrations kept such that the desired en-
ergy resolution is not degraded. These analyzers consist of 12000 perfect silicon single
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3.4. IXS spectrometer: beamline ID-28 at ESRF

crystals of surface size 0.6 × 0.6 mm2 and a thickness of 3 mm, glued on a spherical
substrate of a radius equal to the length of the spectrometer arm [60, 61].

The spectrometer furthermore consists of an entrance pinhole, motorized slits in
front of the analyzer crystal to set the desired momentum resolution, and a detector
with its corresponding pinhole. The detectors are Peltier cooled silicon diodes of 1.5
mm thickness with an active area of 2× 12 mm2, inclined at 20o in order to enhance
the X-ray absorption. They have a very low dark count (∼ 1 count in 30 minutes). On
ID-28 there are five independent analyzer systems with a fixed angular offset among
themselves of ∼ 1.5o, mounted on a 7 m long arm that can rotate around a vertical
axis passing through the scattering sample from 0o to 55o. This allows the recording
of 5 IXS spectra at the same time, with a nearly constant Q-offset, corresponding to a
momentum transfer range between 1 and 100 nm−1 in the Si(11, 11, 11) configuration.

Differently from traditional triple axis spectrometers, and as a consequence of the
extreme backscattering geometry, the energy difference between analyzer and monochro-
mator cannot be varied modifying the Bragg angle of one of the two crystals. The
energy scans are therefore performed by changing the relative temperature, ∆T , of the
monochromator. This induces a relative variation of the lattice parameters, ∆d/d =
α(T )∆T , and therefore a relative variation of the diffracted energy, ∆E/E = −∆d/d,
is induced as well. Considering for the thermal expansion coefficient, α, a value of
∼ 2.58 · 10−6K−1 at room temperature, the required energy resolution of 10−7 ∼ 10−8

implies an accuracy in temperature control of the monochromator crystal in the mK-
range. This task is achieved by a carefully designed temperature bath, controlled by
an active feedback system [59], which assures a temperature control with a precision of
0.2 mK in the temperature region around 295 K. In order to convert the temperature
scale into the energy scale, the most recent result for α(T ) has been considered [62]:

α(T ) = α0 + β∆T (3.21)

where α0 = 2.581 ± 0.002 · 10−6 K−1, β = 0.016 ± 0.004 · 10−6 K−2, ∆T = T −
T0, where T0 = 22.5 oC. From eq.3.21 one can precisely calculate the temperature
variations of lattice constants:

∆d/d0 =
∫ T

T0

α0 + β(T ′ − T0)dT ′ = (α0 − βT0)∆T +
1

2
β(T 2 − T 2

0 ) (3.22)

Finally, the variation of the diffracted energy, ∆E/E = −∆d/d, is easily found.

Figure 3.5 shows the instrumental response function of one of the five analyzers,
corresponding to an energy resolution of 1.6 meV , when operating at the Si(11, 11, 11)
reflection . It has been recorded by measuring the scattering from a disordered sample
(Plexiglas) at a temperature of 10 K and at a Q-transfer corresponding to the first
maximum of its static structure factor (10 nm−1). In this way the elastic contribution
to the scattering is maximized. Table 3.2 summarizes the main characteristics of the
spectrometer.
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Figure 3.5: Measured instrumental resolution function, corresponding to the
Si(11, 11, 11) configuration of the spectrometer, plotted both in linear (left panel) and
logarithmic (right panel) scale

h Energy ∆E Qmax Qmin ∆Q Flux
[keV ] [meV ] [nm−1] [nm−1] [nm−1] [photons/s/200mA]

7 13.840 7.6± 0.2 64 1 1.89 1.5 · 1011

8 15.817 5.5± 0.2 74 1 2.16 9.0 · 1010

9 17.794 3.0± 0.2 83 1 2.43 2.7 · 1010

11 21.747 1.5± 0.1 101 1 3.00 6.6 · 109

12 23.725 1.3± 0.1 111 1 3.24 5.9 · 109

13 25.704 1.0± 0.1 120 1 3.50 1.5 · 109

Table 3.2: Main characteristics of the ID-28 spectrometer, for the different Si(h, h, h)
reflections. Energy indicates the incident photon energy, ∆E is the total energy reso-
lution, Qmin and Qmax indicate the minimum and maximum momentum transfers and
∆Q indicates the Q-spacing between adjacent analyzers. The photon flux values are
measured at the sample position.
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3.5 Experimental apparatus

In this section the large volume pressure cells (LVC) utilized in the present thesis are
described. The choice of these cells was motivated by two main reasons:

• LVC’s are very versatile since, even if they cannot reach very high pressures, they
can work at low and high temperature. LVC’s are well suited for the present study
since the critical temperature of the investigated samples is very different, while
the critical pressure is always quite low.

• LVC’s allow the optimization of the sample volume (or more precisely the sample
length) in order to maximize the IXS signal1.

It has to be noticed that the effective sample length is in any case limited by the
depth of field of the spectrometer. This is given by d/sin(2θ), where d is the size of
the detector pinhole (∼ 2 mm in this case). As a consequence, even if a longer cell is
employed, for θ > 6 degree the effective sample length does not exceed ∼ 10 mm. The
employed cells are depicted in fig.3.6.

Figure 3.6: Cunsolo cell (left panel) and the HP cell used for the study of supercritical
water and ammonia (right panel).

3.5.1 The Cunsolo cell

This LVC cell, also referred to as ”Cunsolo cell”, was used both in the low temperature
cryogenic set-up (study of neon and nitrogen) and, with slight modifications, at high
temperature (study of liquid water). The technical drawing of this cell is reported in
fig.3.7. Its main characteristics are the long sample length (10 mm) and the angular
acceptance of 30 degrees, which allows reaching exchanged momenta up to 50 nm−1

in the Si(11, 11, 11) configuration. The cell can be connected to the external HP
apparatus through a standard Nova Swiss HP connection [63].

1The ideal sample length for the investigated samples is ∼ 10 ÷ 30 mm.
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Figure 3.7: Schematic drawing of the Cunsolo cell.

The HP sealing of this cell is reported in fig.3.8. The two diamond windows, through
which pass both the incident and the scattered beam, are single crystal diamond disks of
6 mm diameter and 1mm thickness. Besides their resistance to mechanical solicitations,
a decisive advantage in using diamond windows is their negligible contribution to the
scattered intensity. Diamonds are glued on the flat internal face of the two conical
supports. The choice of the appropriate glue and the gluing procedure itself must
be done with care. For the low temperature studies an epoxy resin (Epotech 301
[64]) was used as glue. Both the window and the glued surface have been previously
mirror-polished, < 5 µm roughness (rms), with diamond powder. The diameter of
the hole (2.3 mm) at the flat surface of the support, which allows the beam to pass
through the chamber, was chosen as the best compromise between the angular opening
and the unsupported area of the windows. The supports are screwed and tightened
against the cell body by special circular nuts. Two brass or copper ring gaskets with
triangular section are pushed, by the pressure medium itself, as an anvil into the inner
space between the conical surface of the supports and the inner wall of the internal
chamber. The HP tightness is accomplished by this double metal to metal contact
(conical supports and internal chamber). The two gaskets were coated with indium in
order to improve the tightness. A couple of viton O-rings were used together to seal
the cell at low pressure. In fact, while at high pressures the compression medium itself
pushed the metallic gasket ensuring the tightness, the O-rings are used as a spring,
which pushes the gaskets from the back, allowing the tightness also at low pressure.

The utilized HP generator was a Nova-Swiss (550.0400-2) hand pump, whose max-
imum output pressure is 7 Kbar [63]. This hand pump was located outside the ex-
perimental hutch and connected to the HP cell trough a long capillary. In this way
the pressure could be changed without entering the experimental hutch. Moreover,
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Figure 3.8: Schematic draw of HP sealing.

pressure valves to eventually decouple the HP generator from the HP cell were used.
The pressure was controlled by two pressure gauges with a precision of ±20 bar at 3
Kbar [63]. Prior to use, the whole system was carefully cleaned by compressed air
flushing. The HP line was then closed and evacuated by a vacuum pump. Finally,
the sample was loaded into the HP apparatus. The whole system was located in a
vacuum chamber. Two windows, made out of 50 µm thickness mylar foils, allowed the
passage of incident and scattered X-ray beams. Finally, all the assembly was mounted
on the goniometry of the sample stage of the ID-28 spectrometer, in order to precisely
position the cell in the beam.

3.5.2 Low temperature assembly for neon and nitrogen

For the study of Neon and Nitrogen, whose critical temperatures are well below room
temperature, the pressure cell was mounted in thermal contact with a cold finger of an
AL125 close-cycle helium cryostat [65]. This system allows exploring a wide region of
the P − T plane: from ∼ 20 K up to room temperature, and from a few bar up to ∼
5 Kbar.

Thin indium foils were used for all thermal interfaces in order to maximize the
thermal contact. The temperature of the cell was changed by using a heating resistor
placed between the pressure cell and the cryostat cold finger. The temperature is
monitored by two silicon diodes mounted on the cell, with a precision of ± 0.5 K. The
pressure cell and the cryostat cold finger are kept under high vacuum (∼ 10−8 mbar).
The weight of the assembly, schematically reported in fig.3.9, was roughly 25 Kg.

3.5.3 High temperature assembly for water

The previously described experimental set-up is not suited for high temperatures. In
particular all the tested glues deteriorate at temperatures higher than 500 K leading
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Figure 3.9: Low temperature HP apparatus employed in the study of Neon and Nitrogen.
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to a leak of the HP sealing after some hours. Moreover, neither indium coated gaskets
nor viton O-rings can be used because of their low melting point.

In order to circumvent these difficulties, the glue was replaced by a dry contact
between diamonds and conical supports, after a very careful polishing of the contact
surfaces. The sealing was ensured by the higher pressure at the edge of the cone’s holes
with respect to the pressure exserted on the supported part of the diamond windows.
This produces a pressure gradient between the central (unsupported area) and the
side (supported area) part of the diamond window. Three screws were used to hold
the diamonds in the correct place before applying pressure. Furthermore, the indium
coated gaskets and viton O-rings were replaced by equivalent elements entirely made
out of copper. These improvements permitted to increase the maximum achievable
temperature up to ∼ 700 K.

The cell is heated up by means of a resistive heating wire inserted between two steel
plates, kept in thermal contact with the external surfaces of the cell. The whole set-up
is maintained in vacuum (∼ 10−2 mbar) in order to avoid both temperature gradients
and air scattering. The temperature is measured by a type-K thermocouple in thermal
contact with the main body of the cell. The pressure and temperature stability were
better than 10 bar and 1 K.

3.5.4 Set-up for ammonia and supercritical water

In the case of supercritical water, a strong oxidation of gaskets, cone surfaces and main
body of the cell was observed. This phenomenon is most likely due to the extremely
high oxidation ability of supercritical water. In order to study water in its supercritical
phase, a custom-made commercial HP cell (Ref.: 1670.0000, N o 1192) was employed
[66]. This cell has been especially designed to resist oxidation and corrosion. Its HP
sealing consists of a Bridgman metal-to-metal contact, involving a gold wire of 0.125
mm thickness. The sample length was 10 mm, while the maximum accessible angle
was 20o (corresponding to a maximum momentum transfer of 35 nm−1). The cell’s
working temperatures and pressures are: 270 ÷ 800 K and 0 ÷ 1.2 Kbar. This cell
does not need a vacuum chamber because two vacuum paths (∼ 10−2 mbar) are placed
in front and behind the entrance and exit optical windows. The cell can be connected
to an external HP apparatus by standard Top-Industry connectors [66]. Outside the
main body of the cell there are both a resistive heater and a cooling system based on
a compressed air circulation. The temperature can be measured by a thermocouple
placed near the sample in the main body of the HP cell. The whole set-up is embedded
in an insulating envelope.

This cell was as well used in the study of liquid and supercritical ammonia. Since
ammonia is a highly corrosive, flammable and toxic material, a phase separator was
needed in order to decouple the pressure cell and the external HP apparatus. This
phase separator is a custom-made commercial equipment (Ref.: 1720.000, N o 1210)
[66]. It consists of two rigidly coupled pistons which can slide inside a cylinder. The
area of one piston (HP side) is smaller than the other (LP side), the ratio between
these areas (∼ 3) provides an enhancement of the pressure in the HP side, with respect
to the LP one, by the same factor.
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The HP side of the phase separator is specially designed to be compatible with
ammonia, and, moreover, it can be cooled down to 220 K by a closed alcohol circulation.

The loading of ammonia in the cell was performed as follows: after air flushing
and evacuation of the whole HP line (cell, HP side of phase separator, valves and
fittings), the cell was isolated from the phase separator by a valve. The HP side of
the phase separator was then cooled down to 220 K, and the gaseous ammonia was
loaded inside. At 220 K ammonia liquifies at very low pressures, consequently the HP
side of the phase separator was completely filled with liquid ammonia. Finally, after
removing the ammonia bottle, the valve between the cell and the phase separator was
opened and the liquid ammonia filled the whole HP line. At this stage the pressure
in the HP side could be changed by controlling the pressure on the LP side. This was
done by simply connecting a N2 bottle with a pressure regulator directly to the input
of the LP side.

The general performances of the described set-ups are reported in table 3.3.

Cunsolo Cell Cunsolo Cell Commercial cell
low-T set-up high-T set-up (Top-Industry)

ΘM (degree) 30 30 20
Pm (bar) 1 50 0
PM (bar) 5000 3000 1200
Tm (K) 10 290 270
TM (K) 300 700 800

Table 3.3: Main characteristics of the utilized experimental apparatuses: angular ac-
ceptance, ΘM , minimum/maximum pressure, Pm/M , and minimum/maximum temper-
ature, Tm/M .
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Résumé du chapitre 4

Ce chapitre est consacré à la description des expériences effectuées.
Dans la première section la planification des expériences est discutée,
l’accent est donné au choix des échantillons et des états thermodynamiques.
En outre, le traitement de données et la stratégie d’analyse des données,
en particulier concernant la procédure de ”fit”, sont présentés. Les
résultats expérimentaux obtenus par l’analyse de facteur de structure
dynamique et statique sont discutés. Ces résultats concernent les re-
lations de dispersion des modes acoustiques longitudinaux, ainsi que les
processus de relaxation utilisés pour décrire la dynamique du système.
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Experimental results

In this chapter the performed experiments, the data analysis strategy and the obtained
results are discussed. The main characteristic of the present study is its systematic
nature. As a consequence, the choice of the samples, the thermodynamic path and the
data analysis strategy were oriented in this direction.

4.1 Choice of the samples and thermodynamic path

A first consideration concerns the temperature difference between the triple and the
critical point. In fact, the liquid phase roughly ranges between these two points, and,
if they are separated by only a few K, a reliable study as a function of temperature
becomes impracticable. Furthermore, the critical point has to be located in a range
accessible to the employed sample environment. Some examples of critical parameters
for different substances are shown in table 4.1; the studied ones are indicated in bold.

ρc (Kg/m3) Pc (bar) Tc (K) Tt (K) Z ρl (mole/m3)

H2 30 13.15 33.2 13.8 2 38000
He 70 2.27 5.2 2.18 2 36500
Ne 480 26.8 44.5 24.6 10 62000
Ar 540 48.6 151 83.8 18 35500
N2 313 34 126.2 63.2 14 31000
CO2 468 73.8 304 216.6 22 27000
NH3 225 113.3 405 195.6 10 43000
H2O 322 221 647 273.16 10 55500
Rb 345 160 2090 319 37 17500
Hg 5700 1520 1750 234 80 68000

Table 4.1: Critical densities (ρc), pressures (Pc) and temperatures (Tc) of various sub-
stances. The respective triple point temperature (Tt), atomic number (Z) and ”typical”
molar densities of the liquid phase (ρl), are also reported.
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Another consideration for the choice of the samples is the availability of their Equa-
tion of State (EoS). The EoS is essential for the following analysis, since it provides
the values of the thermal diffusivity and the specific heat ratio, which are kept as fixed
values in the model function. Moreover, the EoS allows the comparison of the sound
velocity and viscosity, obtained from the analysis of the IXS spectra, with their ther-
modynamic counterparts. Finally, samples with simple molecular structures and high
scientific and interdisciplinary relevance were preferred. In view of the above consider-
ations neon (Ne), nitrogen (N2), ammonia (NH3) and water (H2O) were chosen.

These systems have similar molecular dimensions and masses; conversely, their
intermolecular interactions are very different. Neon can be considered as the prototype
of a simple and weakly interacting monatomic liquid. The nitrogen molecules are as
well weakly interacting, but the molecular structure (diatomic) is more complex than
the one of neon. Water is the classic example of an H-bonded liquid. Ammonia is as
well an H-bonded liquid, but it does not show the well known thermodynamic anomalies
of water [67].

In order to investigate both the liquid and the supercritical phase, the temperature
must be varied above and below the critical one. Experimentally, this can be achieved
in several ways. The most common ones are the following:

• At constant density: pressure is increased on heating the sample, in order to keep
the density constant.

• Along the coexistence line: the liquid sample is confined in a closed vessel in
equilibrium with its vapor. If the initial amount of material in the vessel is
correct, on heating, the sample moves along the coexistence line up to the critical
point.

• At constant pressure: the density is decreased such that the pressure is kept
constant on heating.

Owing to technical constraints the first option is not allowed with the employed
HP apparatus. The second option presents another problem: the thermodynamic
states along the coexistence line, close to the critical point, have an extremely low
sound velocity. As a consequence, the characteristic energies of inelastic excitations
are very small and impossible to resolve with the available instrument. Furthermore,
the divergence of thermodynamic parameters close to the critical point makes IXS
spectra impossible to analyze1. In conclusion, the third option was chosen. In this
way, one can study both the density and temperature dependence of IXS spectra.

In order to perform a more significant comparison between the various investigated
systems, the natural choice is to employ the law of corresponding states, enounced
in chapter 1. In other words, the thermodynamic states of different samples should
overlap in the (T/Tc,ρ/ρc)-plane. Unfortunately, in several cases, the pressures needed
to obtain the same ρ/ρc, at the same T/Tc, for different samples were too high (or too

1For instance the specific heat ratio, γ, diverges and therefore the intensity of Brillouin peaks
-which is ∝ γ−1- tends to zero.
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low) for the experimental apparatus. Therefore the explored thermodynamic states are
only partially overlapped in the (T/Tc,ρ/ρc)-plane (see fig.4.1).

The investigated thermodynamic states, together with the values of some relevant
thermodynamic quantities are reported in tables 4.1 to 4.4. In the case of neon, the last
two thermodynamic points have been chosen because they are corresponding states of
the other investigated systems.

Figure 4.1: Investigated thermodynamic states in reduced units of temperature and
density: Water (black circles), Ammonia (red triangles), Nitrogen (blue diamonds)
and Neon (green stars). The shaded area highlights the common corresponding state.
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P (bar) T (K) ρ (Kg/m3) cs (m/s) γ DT (cm2/s) νs (cm2/s)

200 (7.46) 32 (0.72) 1232 (2.57) 688.8 1.96 7.74×104 9.5×104

200 (7.46) 42 (0.94) 1097 (2.29) 571.2 2.22 6.04×104 6.2×104

200 (7.46) 61 (1.37) 819.4 (1.71) 421.6 2.67 4.4×104 4.27×104

200 (7.46) 71.5 (1.61) 681.7 (1.42) 378.3 2.62 4.5×104 4×104

200 (7.46) 81.5 (1.83) 578.6 (1.21) 359.9 2.47 5×104 4.16×104

230 (8.58) 103 (2.31) 483.1 (1.01) 375 2.17 5.6×104 4.8×104

280 (10.4) 38 (0.85) 1192 (2.49) 671 1.98 8.1×104 9.8×104

150 (5.6) 43 (0.97) 1043 (2.17) 514.1 2.41 5.3×104 5.6×104

Table 4.2: Relevant properties of the investigated thermodynamic states of neon: pres-
sure, temperature and density (the corresponding values in reduced units are reported
in brackets), adiabatic sound velocity, cs, specific heat ratio, γ, thermal diffusivity, DT ,
and kinematic shear viscosity, νs.

P (bar) T (K) ρ (Kg/m3) cs (m/s) γ DT (cm2/s) νs (cm2/s)

400 (11.8) 87 (0.72) 852.4 (2.7) 1043 1.62 10.9×104 23.2×104

400 (11.8) 96 (0.94) 827.9 (2.6) 1000 1.67 10.5×104 19.2×104

400 (11.8) 107 (1.37) 792.7 (2.5) 934 1.72 9.9×104 15.6×104

400 (11.8) 128 (1.61) 734.2 (2.3) 843 1.78 9.2×104 12.1×104

400 (11.8) 148 (1.83) 667.3 (2.1) 740.5 1.86 8.3×104 10×104

400 (11.8) 171 (2.31) 609.9 (1.9) 677.2 1.88 8×104 8.8×104

400 (11.8) 190 (0.74) 555.3 (1.8) 623.8 1.89 7.8×104 8.2×104

Table 4.3: Relevant properties of the investigated thermodynamic states of nitrogen.

P (bar) T (K) ρ (Kg/m3) cs (m/s) γ DT (cm2/s) νs cm2/s

220 (1.94) 293 (0.72) 627.3 (2.79) 1508 1.63 18.7×104 24.7×104

220 (1.94) 308 (0.76) 601.3 (2.67) 1414 1.67 17.6×104 22.4×104

220 (1.94) 344 (0.85) 554.7 (2.47) 1178 1.79 15×104 17.8×104

220 (1.94) 373 (0.92) 504.6 (2.24) 977 1.96 12.7×104 15.3×104

210 (1.85) 414 (1.02) 401.9 (1.79) 646.3 2.59 8.7×104 12.8×104

200 (1.77) 444 (1.09) 246.5 (1.1) 417.6 4.1 5.5×104 12.5×104

Table 4.4: Relevant properties of the investigated thermodynamic states of ammonia.
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P (bar) T (K) ρ (Kg/m3) cs (m/s) γ DT (cm2/s) νs cm2/s

400 (1.81) 293 (0.45) 1016 (3.15) 1548 1.01 14.9×104 98×104

400 (1.81) 337 (0.52) 998 (3.1) 1625 1.06 16.5×104 45×104

400 (1.81) 367 (0.57) 980 (3.04) 1628 1.1 17.2×104 31.8×104

400 (1.81) 398 (0.62) 958 (2.98) 1602 1.15 17.7×104 24.3×104

400 (1.81) 423 (0.65) 938 (2.91) 1565 1.2 18×104 20.5×104

400 (1.81) 447 (0.69) 917 (2.85) 1519 1.25 18.1×104 18×104

400 (1.81) 494 (0.76) 869 (2.7) 1400 1.36 17.9×104 15×104

400 (1.81) 549 (0.84) 800 (2.49) 1220 1.53 16.9×104 13.1×104

400 (1.81) 598 (0.93) 719 (2.23) 1013 1.77 14.9×104 12.1×104

400 (1.81) 660 (1.02) 573 (1.79) 707 2.55 10.5×104 11.7×104

400 (1.81) 706 (1.09) 348 (1.08) 495 4.32 6.32×104 12.8×104

Table 4.5: Relevant properties of the investigated thermodynamic states of water.

4.2 Data analysis

Experimental artifacts able to affect the IXS spectra mainly come from the windows
of the vacuum chamber in which the cell is located. In order to avoid scattering from
these windows, the following precautions have been taken (see fig.4.2):

i) The entrance window has been positioned as far as possible from the scattering
center (i.e. from the sample), outside the depth of field of the spectrometer.

ii) Close to the exit window, an absorbing material (beam stop) was placed, in order
to block the scattering from this window.

Figure 4.2: Schematic illustration of the sample environment and the suppression of
parasitic scattering.

In order to quantify the scattering from the HP cell windows, empty cell measure-
ments were performed. Some of them are reported in fig.4.3. This contribution is
negligible compared to the signal from the sample (figs.4.4, 4.5, 4.6 and 4.7). Further-
more it has to be noticed that the intensity reported in fig.4.3 is overestimated, since
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these spectra are not corrected for the absorption of the sample.

Figure 4.3: Empty cell spectra at the Q-values indicated in the panels.

4.2.1 Data treatment

The raw data, I(Q,ω), are related to the S(Q,ω) through the relation:

I(Q,ω) = A[n(ω, T )S(Q,ω)⊗R(ω)] + B (4.1)

where R(ω) is the experimental resolution function. The symbol ⊗ stands for
numerical convolution, A is an overall intensity factor and B is a background term
which takes into account both the electronic background of the detectors and the
environmental one. Finally, n(ω, T ) is the adimensional detailed balance factor:

n(ω, T ) =
h̄ω/kBT

1− e−(h̄ω/kBT )
(4.2)

The data analysis consists of a fitting procedure based on a standard minimization
of the χ2, which is defined as follows:

χ2 =
N∑

i=1

(I(Q,ωi)− yi)
2

σ2
i

(4.3)

where N is the number of data points in the IXS spectra, yi are the measured counts
corresponding to the channel having energy transfer h̄∆ωi centered around h̄ωi, and σi
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is the corresponding standard deviation. A Poisson statistics was assumed, and then
σi =

√
yi. The minimization was performed by the software MINUIT [68], employing

two routines: a SIMPLEX minimization, and, if the correlation among the parameters
was not too high, a successive refined search of the χ2 minima using a gradient method
(MIGRAD). The errors were calculated through the calculation of the Hessian and
covariance matrixes (HESSE).

4.2.2 Model function

The theoretical model for the S(Q,ω) was derived in the framework of the memory
function formalism, as discussed in chapter 2. In this framework the S(Q, ω) can be
written as:

S(Q,ω) =
S(Q)

π

(cT (Q)Q)2m′
L(Q,ω)

[ω2 − (cT (Q)Q)2 − ωm′′
L(Q,ω)]2 + ω2[m′

L(Q,ω)]2
(4.4)

where cT (Q) is the Q-dependent isothermal sound velocity, which can be expressed
in terms of the static structure factor, S(Q), through the equation:

cT (Q) =
√

KBT/MS(Q) (4.5)

and finally, m′
L(Q, ω) and m′′

L(Q,ω) are, respectively, the real and imaginary part
of the time Fourier transform of the memory function, m(Q, t). The chosen expression
for the memory function is (see section 2.4.5):

mL(Q, t) = ∆2
T (Q)e−t/τT (Q) + ∆2

α(Q)e−t/τα(Q) + 2Γµ(Q)δ(t) (4.6)

where τT (Q) = (γ(Q)DT (Q)Q2)−1, ∆2
T (Q) = (γ(Q) − 1)(cT (Q)Q)2 and ∆2

α(Q) =
(c2
∞(Q)− γ(Q)c2

T (Q))Q2. DT (Q), γ(Q), τα(Q), Γµ(Q) and c∞(Q) are the finite-Q gen-
eralizations of the thermal diffusivity, the specific heat ratio, the structural relaxation
time, the intensity of the instantaneous relaxation and the infinite-frequency sound
velocity, respectively. The Fourier transform of eq.4.6 yields:

m′
L(Q,ω) = ∆2

T (Q)
τT (Q)

1 + (ωτT (Q))2
+ ∆2

α(Q)
τα(Q)

1 + (ωτα(Q))2
+ Γµ(Q) (4.7)

ωm′′
L(Q,ω) = ∆2

T (Q)
(ωτT (Q))2

1 + (ωτT (Q))2
+ ∆2

α(Q)
(ωτα(Q))2

1 + (ωτα(Q))2
(4.8)

We conclude this section with two remarks. The first concerns the recent finding
that a stretched exponential decay better describes the structural relaxation [69, 70]. In
view of the fact that the quality of our data is not sufficient to distinguish which kind of
time decay is more adapted to describe the structural relaxation, a simple exponential
decay (that presents less free parameters) was preferred. The second remark concerns
the presence of a second inelastic excitation in the S(Q,ω). This feature was noticed
in liquid water in the THz-nm−1 dynamical range, and its nature is still debated
[41, 71, 72, 73, 74]. The intensity of this excitation is very small in the IXS spectra,
and becomes negligible at high temperatures. For a few test cases, the inclusion of
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this weak second excitation did not significantly alter the behavior of the other fitting
parameters. The eventual presence of a second excitation was therefore ignored.

4.2.3 Fitting procedure

In order to reduce the correlation between the fitting parameters in eqs. 4.1, 4.4 and
4.6, some of them were kept fixed:

• the background, B, was fixed to the measured value. It was checked that small
deviations around this value do not influence the other parameters.

• the temperature, T , was fixed to the measured value.

• the specific heat ratio, γ(Q), and the thermal relaxation time, τT (Q), were fixed
to the values obtained from the EoS. Their Q-dependence was neglected.

Neglecting the Q-dependence of γ(Q) and τT (Q) could influence the results con-
cerning the other parameters. However, this assumption was motivated by the lack
of experimental or theoretical results for all the investigated systems in the explored
thermodynamic range.

The parameters that have been kept free to vary in the fitting routines are therefore:

• the overall intensity factor, A.

• the Q-dependent generalization of the isothermal sound frequency, ΩT (Q) =
cT (Q)Q.

• the infinite-frequency sound frequency, Ω∞(Q) = c∞(Q)Q, which, together with
ΩT (Q), determines the amplitude of the structural relaxation: ∆2

α(Q).

• the timescale of the structural relaxation, τα(Q).

• the intensity of the instantaneous relaxation, Γµ(Q).

For τα(Q)ΩL(Q) � 1, the fits return values of ∆2
α(Q) and/or τα(Q) consistent with

zero. This means that the fully relaxed limit of the structural relaxation is reached
(viscous regime), and the exponential decay related to the structural relaxation can
be reasonably approximated by a δ(t)-function. In these cases the exponential term in
eq.4.6 was removed from the fitting routine, and the multiplicative factor of the δ(t)
was redefined as follows:

2Γµ(Q) + τα(Q)∆2
α(Q) → 2ΓL(Q) (4.9)

where ΓL(Q) includes both the instantaneous and the structural contribution. As a
consequence the number of free parameters decreases from 5 to 3, since Γµ(Q), ∆2

α(Q)
and τα(Q) are replaced by ΓL(Q).

Inspecting figs.4.4, 4.5, 4.6 and 4.7, one can notice the excellent agreement between
the model function (red lines) and the experimental spectra (full circles) for all the
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investigated systems in the whole explored range of pressure, temperature and Q. These
representative IXS spectra show inelastic shoulders that produce a broadening of the
lineshape with respect to the resolution function (blue lines). This broadening increases
with Q, as can be seen from the spectra at fixed temperature2. In the bottom panels
of these figures the temperature evolution of the IXS spectra at fixed Q is reported.
The logarithmic scale emphasizes the excellent agreement between the fits and the
experimental data, even in the high frequency spectral tails. It can be clearly seen that
the spectra become more symmetric, intense and narrow with increasing temperature.
These features are due to the detailed balance, the higher value of the S(Q) at high
temperatures and the lower sound velocity of supercritical samples, respectively. In
the case of Neon, the resolution functions corresponding to the spectra at Q = 8, 12
and 13 nm−1 present a ”bump” around 8 meV . This also reflects in the shape of the
measured S(Q,ω); nevertheless the convolution process can very well take into account
this feature (see the high-T spectra of fig.4.4).

4.2.4 Longitudinal current spectra

The other fundamental information that can be derived from the analysis of IXS spectra
is the value of ΩL(Q), the characteristic frequency of longitudinal modes. This quantity
corresponds to the maximum of the longitudinal current spectrum, Jl(Q,ω). This
spectrum cannot be directly measured, however, it can be derived from the S(Q, ω),
using the following relation:

Jl(Q,ω) =
ω2

Q2
S(Q, ω) (4.10)

This equation is a direct consequence of the principle of mass conservation for a
non relativistic fluid; it is strictly valid, since particles are not created and/or annihi-
lated. Unfortunately, a direct calculation of Jl(Q,ω) from the raw data is impossible
because of the Lorentian shape of the instrumental energy resolution function. There-
fore Jl(Q, ω) was calculated numerically, using the model function described above and
the parameters obtained from the fit. The maxima of these spectra were found to
be weakly dependent on the numerical value of the fitting parameters, provided that
the high frequency tails of the S(Q, ω) are well described. Representative longitudinal
current spectra (corresponding to the S(Q,ω) reported in figs.4.4 - 4.7) are depicted
in figs.4.8, 4.9, 4.10 and 4.11.

2Only the central part of these spectra has been shown in order to better underline the Q-evolution
of the lineshape.
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Figure 4.4: Representative IXS spectra of neon (full circles) with their error bars at the
indicated T , P , Q values. The corresponding best fit and the instrumental resolution
function are represented by red and blue lines, respectively. Top panel: IXS spectra at
T = 32 K and P = 200 bar as a function of Q, on a linear scale. Bottom panel: IXS
spectra at Q = 8 nm−1 at the indicated P -T values, on a logarithmic scale.
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Figure 4.5: Representative IXS spectra of nitrogen (full circles) with their error bars
at the indicated T , P , Q values. The corresponding best fits and the instrumental
resolution function are represented, respectively, by red and blue lines. Top panel: IXS
spectra at T = 87 K and P = 400 bar as a function of Q, on a linear scale. Bottom
panel: IXS spectra at Q = 8 nm−1 and P = 400 bar at the indicated temperatures, on
a logarithmic scale.
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Figure 4.6: Representative IXS spectra of ammonia (full circles) with their error bars
at the indicated T , P , Q values. The corresponding best fits and the instrumental
resolution function are represented, respectively, by red and blue lines. Top panel: IXS
spectra at T = 293 K and P = 220 bar as a function of Q, on a linear scale. Bottom
panel: IXS spectra at Q = 8 nm−1 at the indicated P -T values, on a logarithmic scale.
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Figure 4.7: Representative IXS spectra of water (full circles) with their error bars at the
indicated T , P , Q values. The corresponding best fits and the instrumental resolution
function are represented, respectively, by red and blue lines. Top panel: IXS spectra at
T = 367 K and P = 400 bar as a function of Q, on a linear scale. Bottom panel: IXS
spectra at Q = 8 nm−1 and P = 400 bar at the indicated temperatures, on a logarithmic
scale. 89
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Figure 4.8: Longitudinal current spectra corresponding to the IXS spectra of fig.4.4.

Figure 4.9: Longitudinal current spectra corresponding to the IXS spectra of fig.4.5.
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Figure 4.10: Longitudinal current spectra corresponding to the IXS spectra of fig.4.6.

Figure 4.11: Longitudinal current spectra corresponding to the IXS spectra of Fig.4.7.
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4.2.5 Viscosity

Once the fitting parameters are obtained, the Q-dependent values of the longitudinal
viscosity, ηL(Q), can be calculated, since they are proportional to the time integral of
the ”viscous” part of the memory function (see eq.2.87):

ηL(Q) =
ρ

Q2
[∆2

α(Q)τα(Q) + Γµ(Q)] (4.11)

4.2.6 Comparison with structural data

For all the investigated thermodynamic states of each sample, the energy integrated
scattering intensity was collected as well. From these measurements it is possible to
obtain the value of S(Q), once the measured signal is corrected for the molecular form
factor [75], the polarization factor, the effective scattering volume and the detector
background. This corrected signal was then scaled by an arbitrary factor in order
to match the known Q = 0 limit of the S(Q) (compressibility limit), which can be
calculated from the EoS. From this, the values of cT (Q) can be calculated using eq.4.5.

Figure 4.12: Examples of low-Q critical scattering in water. The dashed horizontal
lines indicate the values of S(Q = 0).

The comparison between cT (Q) calculated from the S(Q) (full lines in figs.4.13,
4.14, 4.15 and 4.16) and the best fit results (black squares) is a check of consistency
of the overall fitting procedure. Inspecting these figures it can be noticed that the
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quantitative agreement between the two procedures is very good, except in the case of
neon. Here, the fits systematically underestimate the structural data by about 10 %.

Furthermore, in the supercritical state, the insurgence of critical fluctuations reflects
in a strong increase of the S(Q) at low Q. In this case the scaling to the known Q = 0
limit presents severe difficulties, as can be seen in fig.4.12 by inspecting the data at 660
and 706 K. In the cases of water at 706 K and ammonia at 444 K the normalization
to the compressibility limit was performed by adjusting the values of 1/

√
S(Q) to the

ones of ΩT (Q) obtained from the fits.

4.3 Experimental results

In this section the results of the data analysis of the four samples are reported. The
obtained results can be logically divided into four classes: the ones concerning the
sound dispersion relations (section 4.3.1), the structural relaxation (section 4.3.2), the
instantaneous relaxation (section 4.3.3) and the viscosity (section 4.3.4).

4.3.1 Dispersion relations

Figs.4.13, 4.14, 4.15 and 4.16 report the various dispersion relations for some selected
thermodynamic states. In particular, the dispersion of longitudinal modes, ΩL(Q) vs.
Q (blue diamonds), as obtained from the longitudinal current spectra, are compared
with:

i) The isothermal dispersion, cT (Q)Q, either obtained from the fit (black squares),
or independently calculated from the measured S(Q) (full lines).

ii) The adiabatic dispersions, γ1/2cT (Q)Q (red circles).

iii) The infinite dispersions, Ω∞(Q) (green triangles), as obtained from the fit.

iv) The inverse of the structural relaxation time, τ−1
α (Q) (dashed lines), obtained

by interpolating the experimental data (see section 4.3.2 further below).

In all these figures it is evident that ΩL(Q) departs from the expected adiabatic
dispersion at the lower temperatures, and bends up to join the infinite one (positive
sound dispersion). The crossover between the two regimes of sound propagation cor-
responds to the crossover condition τα(Q)ΩL(Q) ∼ 1 (vertical arrows in the figures).
In some cases the crossover condition is met again at higher Q, due to both the de-
crease of ΩL(Q) in the proximity of the FSDP and the decrease of τα(Q). This leads
to a ”back-transition” of the longitudinal dispersion from the infinite to the adiabatic
one. In all cases τ−1

α (Q) shifts to higher frequencies with increasing temperature, and,
at the same time, the sound velocity (and therefore ΩL(Q)) becomes smaller. As a
consequence the fully relaxed condition, ΩL(Q)τα(Q) � 1, is satisfied over the whole
Q-range (i.e. the elastic regime is never reached). For temperatures higher than the
critical one ΩL(Q) and Ωs(Q) merge together, at least in the low and intermediate
Q-range.

Finally, it can be observed that the longitudinal dispersion lies systematically below
the adiabatic one, at the higher Q-T values. This is particularly evident in the case
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of Nitrogen and Ammonia, where ΩL(Q) departs from the adiabatic value and bends
downwards to join the isothermal dispersion.

Figure 4.13: neon: comparison between isothermal (black squares), adiabatic (red cir-
cles), infinite (green triangles) and longitudinal dispersion (blue diamonds) at the ther-
modynamic states indicated in the figure. The isothermal dispersion derived from the
experimental S(Q) (solid line) is reported as well. The dashed line indicates the values
of 1/τα(Q), as obtained from a linear interpolation (see fig.4.19). The vertical arrows
indicate the crossover condition: 1/τα(Q) ∼ ΩL(Q).
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Figure 4.14: As in fig.4.13 for nitrogen.
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Figure 4.15: As in fig.4.13 for ammonia.
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Figure 4.16: As in fig.4.13 for water.
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Figure 4.17: Temperature dependence of the infinite-frequency sound velocity (dots)
compared with the respective value of cs (line).

Inspecting figs.4.13 - 4.16, it can be noticed that the infinite-frequency sound dis-
persion, Ω∞(Q) vs. Q, always shows an almost linear behavior in the lower (< 6.5÷ 8
nm−1) Q-range. Therefore, interpolating these dispersions with a linear function:

Ω∞(Q) = c∞Q (4.12)

one obtains the values of the infinite frequency sound velocity, c∞. These values
can be considered as a macroscopic (Q = 0) property of the system, since they are
no longer affected by Q-dependencies. The results of these linear interpolations are
reported in fig.4.17 as a function of the temperature. In the case of water at 706 K
and ammonia at 444 K, data for Ω∞(Q) at Q < 8 nm−1 were impossible to extract
from the spectra. Therefore, c∞ were not extracted in these cases. The lines in this
picture represent the temperature dependence of the adiabatic sound velocity, cs, along
the explored isobaric path3. The data of cs have been derived from the respective EoS.

3We recall that, in the case on Neon, the c∞ data at T = 38 and 43 K correspond to another
pressure.
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Figure 4.18: Values of ∆2
α as a function of temperature. The red vertical arrows indicate

the respective critical temperature.

4.3.2 Structural relaxation

The structural relaxation strength can be related to the adiabatic and infinite-frequency
sound velocities through the finite-Q generalization of eq.2.84:

∆2
α(Q) = [c2

∞(Q)− c2
s(Q)]Q2 (4.13)

Once the Q = 0 value of c∞ and cs is known, it is possible to calculate the macro-
scopic (Q = 0) limit of the structural relaxation strength:

∆2
α = limQ→0[∆

2
α(Q)/Q2] = [c2

∞ − c2
s] (4.14)

Using the values of the sound velocities reported in fig.4.17, it is possible to calculate
∆2

α. The temperature dependence of this parameter is reported in fig.4.18. Owing to
the lack of values for c∞, in the case of water at 706 K and ammonia at 444 K, ∆2

α was
calculated as the average of ∆2

α(Q)/Q2. For all samples ∆2
α decreases with temperature

and it does not seem to be affected by the transition from the liquid to the supercritical
phase.
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Figure 4.19: Q-dependence of the structural relaxation times for the indicated thermo-
dynamic states. The lines through the data are linear interpolations.

The Q-dependence of τα(Q) is reported in fig.4.19 for some selected thermodynamic
states. As already observed in other experiments [19, 37, 38, 41, 76, 77, 78], τα(Q)
decreases with increasing Q. Furthermore, an exponential decay of τα(Q) vs. Q has
been found to describe very well the experimental data. The Q-dependence of this
parameter, in the reported Q-range, can therefore be empirically described by the
following equation:

τα(Q) = ταe−AQ (4.15)

Interpolating τα(Q) with the formula expressed in eq.4.15, the values of the relax-
ation time at Q = 0 (τα) and of the ”logarithmic slope” (A) can be therefore obtained.
In the case of ammonia at 444 K, only four values of τα(Q), in the Q-range 8 ÷ 12.5
nm−1, were obtained; moreover, their relative errors were very large. Consequently,
the parameter A in eq.4.15 has been considered as fixed to a value (0.09) estimated
from the trend of A at the lower temperatures (see insets of fig.4.20), in order to reduce
the uncertain in the value of τα. This assumption strongly affects the absolute value
of τα, as can be observed in fig.4.20, where, for ammonia at 444 K, the value of τα

obtained by imposing A = 0.05 is reported as well.
Fig.4.20 reports the values of τα as a function of temperature. It can be noticed

that τα first decreases with increasing temperature, and then remains almost flat for
temperatures higher than the critical one (indicated by red vertical arrows).
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Figure 4.20: Temperature dependence of τα, the vertical arrows indicate the critical
temperature. The respective values of the parameter A are reported in the insets. The
two data points at the highest temperature of ammonia correspond to A = 0.09 (upper
one) and A = 0.05 (lower one). See text for further details.
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4.3.3 Instantaneous relaxation

Another parameter which is provided by the analysis of the IXS spectra is Γµ(Q), the
integrated intensity of the instantaneous relaxation. These values have been found to
be imprecisely determined, since the associated error bars are quite large. Moreover,
in the case of Neon, this instantaneous term in the memory function gives a negligible
contribution to the spectra, and the resulting values of Γµ(Q) are always consistent
with zero4.

The values of Γµ(Q) are reported in the left panels of figs.4.21, 4.22 and 4.23, for
some selected temperatures. The parabolas in these pictures are guides to the eye and
suggest that the Q-dependence of Γµ(Q) is consistent with a Q2 behavior at low-Q.
For larger Q values, this parameter departs from the quadratic behavior and becomes
increasingly smaller. At the higher Q values it gives a negligible contribution to the
spectra.

The temperature dependence of Γµ(Q) is reported in the right panels of figs.4.21,
4.22 and 4.23 for different Q-values. Γµ(Q) tends to become smaller at high tempera-
ture, but this decease is not particularly pronounced.

Figure 4.21: Nitrogen: values of Γµ(Q) vs. Q at the temperatures indicated in the figure
(left panel). The parabola is a guide for the eye. Values of Γµ(Q) vs. temperature at
the Q-values indicated in the figure (right panel).

4Also for some high-Q data of the other samples, especially for Nitrogen, values of Γµ(Q) consistent
with zero have been found. They are not reported in the following pictures.
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Figure 4.22: Ammonia: as in fig.4.21.

Figure 4.23: Water: as in fig.4.21.
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4.3.4 Viscosity

The value of ηL(Q) can be derived from the fit results, using eq.4.11. Fig.4.24 reports
ηL(Q) for some selected temperatures. The lines through the data are the interpolations
performed with an exponential decay function:

ηL(Q) = ηLe−BQ (4.16)

The values of ηL obtained from these interpolations are reported in fig.4.25 as a
function of temperature. They are compared to the respective values of the shear
viscosity, ηS, obtained from the EoS. The insets report the ratio between these two
viscosities. This ratio remains almost constant over the whole explored thermodynamic
range, and it is higher for H-bonded liquids. This behavior for ηL/ηS has been already
observed in simple liquids [23, 37, 79, 80, 81]. This finding can be therefore considered
as a further consistency test of the performed data analysis. The numerical values
of these ratios -i.e. 2.34 ± 0.16 (Neon), 2.64 ± 0.12 (Nitrogen), 3.9 ± 0.2 (Ammonia)
and 4.3± 0.2 (Water)- are in rather good agreement with previous experimental data
[37, 82, 83, 84, 85].

Figure 4.24: Q-dependence of the longitudinal viscosity, ηL(Q), for some selected tem-
peratures. The lines through the points are linear interpolations.
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Figure 4.25: Q = 0 extrapolated values of the longitudinal viscosity, ηL (circles), and
thermodynamic values of the shear viscosity, ηs (lines), as a function of temperature.
The ratio of the two viscosities is reported in the inset. The vertical arrows indicate
the critical temperature.
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4.4 Conclusions

Inspecting the dispersion relations of the various systems, some common phenomenolo-
gies can be observed, namely:

i) The infinite frequency dispersion shows an almost linear behavior up to rather
high Q-values. Furthermore, it becomes softer on approaching the first sharp diffraction
peak. Nevertheless, the Q-dependence of this dispersion is less pronounced than the
Q-dependencies of the isothermal and adiabatic dispersions.

ii) The adiabatic and infinite-frequency dispersions do not coincide in any case.
This leads to a non-vanishing contribution from the structural relaxation.

iii) The isothermal dispersion calculated from the S(Q) and the one obtained from
the fit are in good agreement.

iv) The phenomenon of positive sound dispersion is observed in all the samples, but
it disappears close to and above the critical temperature.

v) A new dispersive effect, which brings the longitudinal dispersion below the adi-
abatic one, was observed in the supercritical phase.

Some other common phenomenologies can be evinced comparing the results con-
cerning the structural and instantaneous relaxation processes:

i) The Q dependence of τα(Q) can be very well described by an exponential decay.
ii) In the liquid phase the value of τα decreases with increasing temperature.
iii) In the supercritical phase the value of τα is almost temperature-independent.
iv) In the liquid and supercritical phase the value of ∆2

α decreases with increasing
temperature, and, moreover, it does not change its behavior on crossing the critical
temperature.

v) The values of Γµ(Q) are twice as big in Water and Ammonia than in Nitrogen.
In Neon the contribution of Γµ(Q) is negligible.

A more exhaustive quantitative analysis of these results will be given in the next
chapter.
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Résumé du chapitre 5

Le dernier chapitre résume les résultats expérimentaux dans une vision
commune, avec le but de fournir une description générale de la dy-
namique à haute fréquence de fluides, tant dans la phase liquide que dans
la phase supercritique. Une corrélation systématique entre le comporte-
ment dispersive de modes longitudinaux et les processus de relaxation
a été observée en particulier. De plus, on a observé que les paramètres
caractéristiques des processus de relaxation dépendent spécifiquement des
quantités thermodynamiques, comme la densité et la température. En-
fin, les coefficients qui quantifient ces dépendances ont été corrélés aux
propriétés spécifiques du système étudié.
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Chapter 5

The high-frequency dynamics of
liquids and supercritical fluids

In this chapter the previously presented experimental results are cast into a common
frame, with the aim to provide a general picture of the high-frequency dynamics of a
fluid across the transition between the liquid and the supercritical phase.

5.1 Sound dispersion

In this section the dispersive behavior of longitudinal acoustic modes in different sam-
ples is compared. The relationship between this behavior and the relaxation processes
of the memory function are discussed.

5.1.1 Positive sound dispersion

Positive sound dispersion has been already observed in many experimental and theoret-
ical works, and was interpreted as a manifestation of the structural relaxation process
[19, 37, 38, 39, 40, 41]. In order to highlight the relationship between structural relax-
ation and positive sound dispersion, it is advisable to define the reduced longitudinal
modulus:

M(Q) = [Ω2
L(Q)− Ω2

s(Q)]/[Ω2
∞(Q)− Ω2

s(Q)] (5.1)

The function M(Q) is particularly suited for a comparative investigation, since it
does not depend on the specific values of the limiting sound velocities. M(Q) always
ranges between zero and one; in particular it vanishes when ΩL(Q) = Ωs(Q), while
it assumes the value of one when ΩL(Q) = Ω∞(Q). Moreover, within the hypoth-
esis that positive dispersion is induced by structural relaxation, M(Q) = 0.5 when
ΩL(Q)τα(Q) = 1.

M(Q) is reported as a function of ΩL(Q)τα(Q) in fig.5.1. The data at higher
temperatures1 are not reported because the dispersion relation, in these cases, is dom-

1Namely: Neon at 71.5 and 81.5 K, Nitrogen at 171 and 191 K, Ammonia at 414 and 444 K and
Water at 660 and 706 K
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inated by the negative sound dispersion. On the other hand, the eventual competing
effect of the negative sound dispersion, associated with the thermal relaxation, can
be ignored for the temperatures reported in fig.5.1, since the strength of the thermal
relaxation, ∆2

T (Q) = (γ − 1)c2
T (Q), is roughly one order of magnitude lower than the

strength of the structural one, ∆2
α(Q) = c2

∞(Q) − c2
s(Q), especially at high Q-values.

This estimation can be done considering that it was experimentally observed that
c∞ ∼ 2cs. Therefore, even for relatively high values of γ (∼ 2 ÷ 4), one can estimate
that ∆2

T /[∆2
T + ∆2

α] ∼ 0.15. Moreover, at high Q-values ∆2
T (Q) decreases as S(Q)−1,

because it is proportional to c2
T (Q). On the other hand, ∆2

α(Q) increases with Q, since
the decrease of c∞(Q) is less pronounced than the one of cs(Q) (see figs.4.13 - 4.16). In
view of these considerations it can be concluded that the structural relaxation process
leads to the stronger dispersive effect. Therefore, as long as the structural relaxation
time is inside the probed frequency window, the thermal relaxation can be regarded as
a secondary effect that does not substantially affect the dispersion of sound modes, but
only leads to small distortions (roughly a few %) with respect to the ideal behavior.

Figure 5.1: Reduced longitudinal moduli, M(Q), as a function of ΩL(Q)τα(Q). Most
of the data corresponds to the liquid phase of the respective sample.

Inspecting fig.5.1, it can be clearly appreciated that M(Q) tends to zero/one when
ΩL(Q) is shorter/longer than τ−1

α (Q). Furthermore, all the data are around M(Q) = 0.5
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when ΩL(Q)τα(Q) = 1. This result demonstrates a clear correlation between positive
sound dispersion and structural relaxation.

5.1.2 ”Negative” sound dispersion

In all investigated samples a bending down of the longitudinal dispersion with respect
to the expected adiabatic value was observed in the supercritical phase (see figs.4.13
- 4.16). To the best of our knowledge, the phenomenon of negative sound dispersion
in liquids has never been observed before, despite being predicted by hydrodynamic
theories. There are many reasons for that: i) The crossover occurs typically at large Q,
often around the position of the first sharp diffraction peak (FSDP) of the S(Q). Here,
the finite-Q generalization of the isothermal sound speed cT (Q) -which is proportional
to S(Q)−1/2- becomes too small to be reliably extracted from the measured S(Q,ω)
spectra. ii) In liquids the structural relaxation, which leads to the competing effect
of positive dispersion, is always inside or close to the (Q,ω)-range where negative
dispersion is expected. As a consequence, this stronger dispersive effect completely
masks the eventual presence of a negative dispersion.

One interpretation of this dispersive feature can be found in an adiabatic to isother-
mal transition of sound propagation induced by the thermal diffusion process [25]. This
process can be associated with a thermal relaxation, whose characteristic timescale and
strength are, respectively, τT (Q) = 1/γDT Q2 and (γ − 1)c2

T (Q) [20, 21, 22, 23, 24, 25].
Contrary to other relaxation processes, its fully unrelaxed limit is always reached at
low-Q, owing to the Q−2 dependence of τT (Q). As a consequence, the higher sound
velocity (i.e. cs) characterizes the low-(Q,ω) region of the dispersion relation. On the
other hand, on increasing Q, τT (Q) decreases much faster than the period of longitu-
dinal modes; the fully unrelaxed limit is therefore reached above a certain Q. In this
limit the sound velocity is lower and corresponds to the isothermal one, cT .

In order to better investigate the nature of this negative sound dispersion a pa-
rameter, like M(Q), that is independent of the specific values of the limiting sound
velocities, is needed. One possible choice is:

MT (Q) = [Ω
′2
L (Q)− Ω2

T (Q)]/[Ω2
s(Q)− Ω2

T (Q)] (5.2)

where Ω′
L(Q) is the value of the longitudinal sound frequency without the contri-

bution arising from the structural relaxation:

Ω′
L(Q)2 = Ω2

L(Q)− [Ω2
∞(Q)− Ω2

s(Q)]
(ΩL(Q)τα(Q))2

1 + (ΩL(Q)τα(Q))2
(5.3)

The function MT (Q) has the same properties as M(Q), namely: MT (Q) = 0 or 1
if Ω′

L(Q) = ΩT (Q) or Ωs(Q). Moreover, in analogy to the function M(Q), it should be
equal to 0.5 when Ω′

L(Q)τT (Q) = 1.
The necessity to explicitly subtract the dispersive effect of the structural relax-

ation arises from the fact that, as pointed out in the previous section, the structural
relaxation is the dominant dispersive effect. Moreover, its strength increases at high
Q-values, where the negative sound dispersion is observed. In the supercritical phase,
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τα(Q) moves outside (but not too far) the probed frequency window, and consequently
the dispersive effect of the structural relaxation is strongly reduced. This effect is nev-
ertheless comparable to the one associated with thermal relaxation. Finally, as shown
in figs.4.18 and 4.20, the structural relaxation strength and timescale strongly depend
on the system and the thermodynamic state. The competing effect of positive sound
dispersion has therefore different weights for the four investigated systems. This is re-
flected in relevant systematic discrepancies, that occlude the direct comparison among
different samples in different thermodynamic states.

Figure 5.2: MT (Q), as a function of Ω′
L(Q)τT (Q). The data correspond to the super-

critical phase of the respective samples.

The function MT (Q) is plotted as a function of Ω′
L(Q)τT (Q) in fig.5.2, where one

can observe a clear transition with increasing values of Ω′
L(Q)τT (Q). A clear correlation

between the negative sound dispersion and τT (Q) is therefore observed. This evidence
strongly supports the interpretation of the negative sound dispersion as an adiabatic to
isothermal transition of sound propagation associated to the thermal diffusion process.
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5.2 Structural relaxation

In the presented framework, the structural relaxation process has been described as
an exponential time decay of the memory function. Consequently, this process is
characterized by only two parameters: τα(Q) and ∆2

α(Q). The latter represents the
strength of the relaxation, and coincides with the t = 0 value of the respective term in
the memory function, while the former is the characteristic timescale of the relaxation.
Both of them can be obtained from the lineshape analysis of IXS spectra. Moreover,
by means of interpolations with empiric functions, it is possible to extract the relative
Q = 0 values of these parameters: τα and ∆2

α (see section 4.3.2).

5.2.1 Strength of structural relaxation

Figure 5.3: Structural relaxation strength at Q = 0 as a function of temperature.
The red lines are functions linearly proportional to the density along the corresponding
isobaric path.

Fig.5.3 displays the behavior of ∆2
α as a function of temperature (full circles). The

red lines are functions which are linearly proportional to the density along the respective
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isobaric path2. A correlation between the temperature dependence of ∆2
α and that of

the density can therefore be assessed and, consequently, one can also exclude an explicit
temperature dependence of ∆2

α. This result is not completely unexpected, since it has
been shown in chapter 2 that ∆2

α(Q)/Q2 can be expressed as:

∆2
α(Q)/Q2 =

ω4(Q)

ω2(Q)
− γω2(Q)

ω0(Q)
(5.4)

where ωn(Q) are the spectral momenta of S(Q,ω). The second term on the right
hand side of eq.5.4 corresponds to the (squared) adiabatic sound velocity, while the first
one is equal to 3c2

T + ΓL (see table 2.1). In a first approximation, all these quantities
can be assumed proportional to the density. Consequently, the fact that ∆2

α ∝ ρ can
be considered as a further experimental check of consistency.

The proportionality constant between the density and the strength of the structural
relaxation can be estimated by averaging the values of ∆2

α/ρ = C. In table 5.1 the
obtained values of C are listed and compared to the respective values of the van der
Waals parameter a. A qualitative correlation between the two parameters can be
observed: the higher the value of C the higher that of a.

C (Pa ∗m6/mole2) a (Pa ∗m6/mole2) C/a

Ne 0.158± 0.003 0.021 7.52± 0.14
N2 0.95± 0.02 0.136 6.99± 0.15

NH3 1.71± 0.02 0.423 4.04± 0.05
H2O 1.90± 0.03 0.551 3.45± 0.05

Table 5.1: Comparison between the van der Waals parameter a and the constant C:
the experimentally determined proportionality coefficient between ∆2

α and ρ.

The van der Waals parameter a is related to intermolecular attractive interactions,
and quantifies the ability of the system to develop an ”internal pressure” which enables
it to remain within a well defined volume (see chapter 1). A correlation between
C and a therefore suggests a correlation between the physical processes responsible
for the ”internal pressure” (i.e. the attractive intermolecular interactions) and those
responsible for structural relaxation. In the next section, the quantitative analysis of
the temperature dependence of τα further supports this interpretation.

5.2.2 Timescale of structural relaxation

The temperature dependence of τα is reported in Arrhenius plots in fig.5.4. In the
liquid phase the temperature dependence of τα can be very well described (lines in
fig.5.4) with an activation behavior:

τα = τ0e
Ea/kBT (5.5)

2In the case of Neon the data corresponding to 150 and 280 bar have been scaled to the respective
density at 200 bar: i.e. ∆2

α = ∆2
α ∗ ρ(T, 200 bar)/ρ(T, 150 or 280 bar)
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where Ea is the activation energy of the relaxation process. Using eq.5.5 to describe
the experimental data corresponding to the liquid phase, the values of Ea and τ0 can
be derived (see table 5.2).

Figure 5.4: Arrhenius plots of τα. The red lines are the best fit results of eq.5.5. The
open symbols in the case of neon and water are the results of previous IXS experiments
(water: ref.[37]; neon: ref.[38]).

The obtained activation energies are of the same order as the intermolecular bonding
energies. In fact the energy of H-bonds in water, that presents two H-bonds/molecule,
is 23 KJ/mole [67]. Considering that ammonia has one H-bond/molecule and that
nitrogen is less electronegative than oxygen, one can expect for ammonia an activation
energy slightly less than half that one of water (∼ 10 KJ/mole). Finally, the van der
Waals bonds usually have energies between 0.1 and a few KJ/mole, and, moreover,
one can suppose that these characteristic energies roughly scale with the critical tem-
perature. One can therefore expect for nitrogen an activation energy a factor 2.5 higher
with respect to that of neon. All these estimations are in rather good agreement with
the obtained results, listed in table 5.2. This finding fingerprints a correlation between
the structural relaxation process and the attractive interactions responsible for inter-
molecular bonds. In the case of water and neon our data are also compared with the
results of previous IXS experiments [37, 38], that were performed at constant density.
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Despite the different thermodynamic conditions, the data are in excellent agreement.
This evidence strongly suggests that the parameter τα does not explicitly depend on
density and pressure, at least in the probed portion of the liquid phase. In the case
of neon we also report for comparison the data corresponding to the thermodynamic
state (32 K and 200 bar) investigated in both experiments.

Ea (KJ/mole) τ0 (10−15 s)

Ne 0.27 ± 0.12 130 ± 20
N2 0.55 ± 0.16 200 ± 20

NH3 9.3 ± 1.3 4.0 ± 0.8
H2O 12.0 ± 0.8 4.7 ± 0.3

Table 5.2: Values of Ea and τ0 for the investigated samples.

In the supercritical phase the activation behavior observed in the liquid phase is
lost. Here τα becomes almost independent of temperature within the accuracy of the
presented data.

Concerning structural relaxation, it can be concluded that the relaxation strength
is proportional to the density, and it does not explicitly depend on temperature. More-
over, the values of the proportionality constant can be correlated with the van der
Waals parameter a, that quantifies the strength of attractive interactions. On the
other hand, the comparison between the data of the present work and the ones of pre-
vious IXS experiments suggests that, in the liquid phase, the structural relaxation time
does not explicitly depend on density and pressure. Moreover, as long as the system is
in the liquid phase, the temperature dependence of the relaxation time is characterized
by an activation behavior. The associated activation energies have been found to be
roughly proportional to the energy of the respective intermolecular bonds.

These observations suggest a close relationship between the structural relaxation
process and the intermolecular interactions responsible for the rearrangements of the
local structure that, in the liquid phase, can be associated with the continuous making
and breaking of intermolecular bonds (attractive interactions). In the supercritical
phase, the observed activation behavior of the relaxation time is lost. This can be
interpreted as a change in the microscopic mechanisms responsible for the relaxation
process. In the next section, some arguments in favor of intermolecular collisions as
the main microscopic mechanism ruling the microscopic dynamics in the supercritical
phase are provided.

5.2.3 Compliance relaxation time

From the values of the parameters τα, cs and c∞ the compliance relaxation time,
τC = ταc2

∞/c2
s, can be calculated. The difference between τα and τC is well known.

τα is the characteristic relaxation time of the memory function, corresponding to the
characteristic time with which the longitudinal viscosity relaxes. Within the hypoth-
esis of an exponential decay of the memory function, τα can be also assumed as the
characteristic relaxation time for the longitudinal modulus (ML). On the other hand,
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τC represents the relaxation time for the longitudinal compliance: M−1
L [86]. τC is also

the characteristic timescale associated with the relaxation region located below the
Brillouin peak frequency of the S(Q,ω), i.e. the broad central peak in fig.2.8.

Furthermore, in order to quantitatively compare data sets of different systems, a
scaling parameter which allows to account for the different thermodynamic conditions
and the different molecules under consideration is needed. One suitable choice is rep-
resented by < τ >: the mean free time between intermolecular collisions. In fact, this
characteristic time depends on molecular dimensions, masses and shape, as well as on
the interaction potential and thermodynamic state of the system. Without involving
sophisticated calculations, one can obtain a reasonable value of < τ > by considering a
hard sphere gas obeying the Maxwell-Boltzmann statistics. The first step for this calcu-
lation is to assess the average relative velocity of the molecules3, < vrel >=

√
2 < v >,

rather than the average velocity of a given molecule4, < v >=
√

8kBT/πM , where
M is the molecular mass. With the molecular diameter, d, the effective cross-section
for collision can be regarded as a circle of diameter 2d. Within a time interval, t,
this circle therefore covers an effective volume: V = π

√
2d2 < v > t. The average

number of collisions is then equal to the number of molecules present in that volume:
NV = nV , where n is the number density. Finally, the mean free path, < λ >, can be
assumed as the distance travelled by the molecule, L =< v > t, divided by the number
of collisions:

< λ >=
L

NV

=
1

π
√

2d2n
(5.6)

Finally, since the mean free path and the average velocity is known, < τ > can be
easily calculated:

< τ >=
< λ >

< v >
=

1

n

√
M

16πd4kBT
(5.7)

< τ > can be considered as the characteristic time scale for intermolecular in-
teractions in the ideal case of a system made out of particles without an attractive
interaction potential. The comparison between this ”free-particle” time scale and the
experimental values of τC is proposed in fig.5.5, where the dimensionless quantity,
τC/ < τ >5, is reported as a function of Tc/T . Inspecting this figure one can observe
that: i) Close to and above Tc, the absolute value of τC/ < τ > is similar for all
four systems. ii) Over the whole temperature range, the data of ammonia and water
coincide, as well as those of neon and nitrogen. iii) The temperature dependence of hy-
drogen bonded (HB) systems can be phenomenologically described by an exponential
law: τC/ < τ >= Aτe

Bτ Tc/T , whose values for Aτ and Bτ are, respectively, 0.49± 0.03

3< vrel > can be calculated from the identity vrel =
√

~vrel · ~vrel, where ~vrel = ~v2−~v1 is the vectorial
difference between the velocities of two colliding particles. Considering that the orientations of ~v1,2

are random and uncorrelated, while < v1 >=< v2 >=< v >, one easily obtains < vrel >=
√

2 < v >.
4In calculating < v > a Maxwell-Boltzmann distribution function has been considered.
5In the case of nitrogen a value of 3.2 nm for d has been used in the calculation of < τ >. This is

probably underestimated, nevertheless it does not influence the temperature and density dependence
of < τ >.
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and 2.07± 0.09 (full line in fig.5.5). iv) Also in the case of neon and nitrogen the tem-
perature dependence of τC/ < τ > can be sufficiently well described by an exponential
law, with Aτ = 3.47± 0.1 and Bτ = 0.34± 0.05. However, within the accuracy of the
present data, a constant function (τC/ < τ >= 5.1± 0.5) is also capable of describing
the observed temperature dependence (dashed lines in fig.5.5).

Figure 5.5: τC/ < τ > as a function of Tc/T . The full line corresponds to best fit result
with an exponential law, for the data of water and ammonia. The dashed lines are two
possible temperature dependencies (exponential and constant) for the neon and nitrogen
data. See text for further details.

The conclusions one can draw from these observations are:
i) < τ > can be considered as a reasonable estimation for the relaxation time

in the high temperature region of the liquid domain as well as in the supercritical
phase. Lowering the temperature τC becomes much longer than < τ > in the case
of HB systems. If one associates the values of τC (or τα) with the typical time scale
of intermolecular interactions, the observed temperature dependence of τC/ < τ >
can be interpreted in the following way6: a) At high temperature (i.e. above Tc) the
relaxation time is proportional to < τ >. This suggests that the microscopic dynamics
of the system is dominated by intermolecular collisions in this temperature range. b)

6The temperature dependencies of τα and τC = (c∞/cs)2τα are roughly the same since, in a first
approximation, both cs and c∞ are proportional to the density.
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Lowering the temperature, the thermal energy of the molecules is progressively reduced
and the molecules can establish a larger number of intermolecular bonds with a longer
lifetime, through their attractive interaction potential: i.e. the system is able to develop
a more stable network of bonds. Below Tc, this network can provide cohesion among
the particles (liquid phase). On the other hand, the larger the number and the lifetime
of the bonds, the smaller the probability that two particles can freely collide. In this
case the typical time for intermolecular interactions becomes longer, according to the
number and the lifetime of these bonds. For sufficiently low temperatures the number
and the lifetime of intermolecular bonds can become so large that the particles cannot
move at all, and the system falls into a dynamically ”frozen” state.

ii) Belove Tc, the data sets of HB and non-HB systems fall into two different curves.
This quantitative difference can be ascribed to the different nature of the interaction
potential. A stronger attractive interaction potential (like the one of ammonia and
water with respect to that of nitrogen and neon) leads to intermolecular bonds with a
longer lifetime. As a consequence, the temperature dependence of τC in HB systems is
expected to be stronger than that of nitrogen and neon. In HB systems, this is reflected
in a more pronounced slowing down of the dynamics, with respect to the ”free-particle”
limit given by < τ >. This quantitative difference disappears above Tc, where the role
of the attractive interaction potential on the dynamics is strongly reduced. At these
temperatures, the average thermal energy of the molecules is sufficiently high to break
intermolecular bonds. The system cannot therefore develop an efficient bond network
able to provide the cohesion. From a macroscopic point of view, this is reflected in the
fact that a supercritical fluid does not present a specific volume. Unfortunately, the
data for HB systems do not extend to very low values of Tc/T . As a consequence, it is
difficult to assess whereas τC/ < τ > follows the same behavior for very low values of
Tc/T in the case of HB and non-HB systems.

iii) The data of HB systems coincide once the temperature is scaled for the critical
one. It is then possible to associate an activation energy, Ẽa = BτkBTc, to the pa-
rameter Bτ . Since Ẽa can be considered as a contribution to the total internal energy,
it correctly scales as the critical parameters, in the spirit of the law of correspond-
ing states (see chapter 1). Since the temperature dependence of τC/ < τ > could be
described with an exponential law, the same arguments should also hold for non-HB
systems.

To summarize, the behavior of the compliance relaxation time with respect to that
of the mean collision time suggests a change in the mechanism responsible for inter-
molecular interactions. More specifically, at temperatures lower than the critical one,
the interactions between molecules are mainly due to bonding. This hypothesis is also
supported by the quantitative analysis of the temperature dependence of τα shown in
the previous section. The lifetime of these bonds decreases with increasing tempera-
ture up to become, close to Tc, faster than the average time between two molecular
collisions7. Above Tc, the characteristic lifetime of the bonds becomes shorter than the
average time needed for a given molecule to get close to another one and, eventually,

7This characteristic time is calculated for an ideal system, made out of molecules with the same
mass, dimension and in the same thermodynamic condition as the real one, but without an attractive
interaction potential.
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establish an intermolecular bond. In this case the particles cannot develop the network
of bonds that is characteristic of the liquid phase. From a microscopic point of view,
this is reflected in the fact that the interactions among molecules mainly concern of
intermolecular collisions. From the temperature dependence of τC/ < τ > it is also
possible to extract an activation energy, Ẽa, which, if the systems present the same
kind of interaction potential, scales with the critical temperature of the system. In
order to confirm these conclusions, the analysis should be extended to other systems
in a larger range of Tc/T ; in particular to lower values of Tc/T for HB systems.

5.3 Instantaneous relaxation

The ”instantaneous” relaxation takes into account the dynamical phenomena whose
characteristic time scales, τµ, are much shorter than the probed frequency window.
Owing to its instantaneous nature, any information about the time dependence of the
relaxation process are lost. However, it is possible to derive the ”integrated” intensity
of the process: Γµ(Q). Contrary to ∆2

α(Q), Γµ(Q) does not represent the t = 0 value
of the respective part of the memory function, but its time-integrated area.

Figure 5.6: Temperature dependence of Γµ(Q) in ammonia (left panel) and water (right
panel), for some selected Q-values. The lines are functions linearly proportional to the
density.

Inspecting figs.4.21, 4.22 and 4.23, it can be noticed that Water and Ammonia have
values of Γµ(Q) higher than Nitrogen, whereas negligible values have been obtained for
Neon. This first crude observation suggests that this instantaneous relaxation of the
memory function is associated with the intramolecular degrees of freedom. In fact
Neon (monatomic system) does not possess this kind of degree of freedom. Within the
hypothesis that, on shorter time scales, this relaxation process can be described by an
exponential decay, its associated strength can be expressed as: ∆2

µ(Q) = Γµ(Q)/τµ(Q).
Considering that the characteristic timescales of internal motions, τµ(Q), are typically
unaffected by the thermodynamic conditions, it can be assumed that ∆2

µ(Q) presents
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the same behavior as Γµ(Q) as a function of the thermodynamic parameters. The
temperature dependence of Γµ(Q) is reported in fig.5.6 for Ammonia and Water8. The
solid lines are functions linearly proportional to the density. This figure suggests a
linear correlation between the temperature dependence of Γµ(Q) and that of density.
Since it is expected9 that ∆2

µ(Q) ∝ ρ, the fact that Γµ(Q) ∝ ρ confirms the hypothesis
that the characteristic timescale, τµ(Q), associated to this instantaneous relaxation is
almost independent to the thermodynamic parameters, as expected for internal motion
in the considered range of temperature and pressure.

Within the hypothesis that Γµ(Q) ∝ ρ, this quantity can be factorized as follows:
Γµ(Q) = g(Q)ρ. Therefore, the function g(Q) accounts for the Q-dependence of Γµ(Q).
g(Q) can be obtained by averaging all the values of Γµ(Q)/ρ for different temperatures
at a given Q. The results of this procedure are reported in fig.5.7. It can be appreciated
that the Q-dependence of g(Q) agrees quite well with a Q2 behavior at low Q-values.

Figure 5.7: Function g(Q) for ammonia (left panel) and water (right panel). The
parabolas are best fit results in the range 0 ÷ 6.5 nm−1.

8The data of Nitrogen are not discussed since they are extremely poorly determined (see fig.4.21),
and consequently no Q− T dependencies can be reliably extracted.

9In analogy to the considerations made in the previous section for ∆2
α.
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In conclusion, the high frequency dynamics of four prototype systems (Neon, Nitro-
gen, Ammonia and Water) have been systematic investigated in both the liquid and
supercritical phase by means of Inelastic X-ray Scattering (IXS).

The data have been interpreted in the frame of generalized hydrodynamics; in
particular, a model based on the memory function has been used.

The obtained results allow the establishment of a common scenario concerning
the high-frequency collective dynamics in the liquid and supercritical phase, and the
relationship between these dynamics and the most common relaxation processes. Our
findings can be summarized as follows:

• The dispersive behavior of longitudinal modes is affected by two competing dis-
persive effects, namely the positive and negative sound dispersion. These effects
can be associated with the structural and the thermal relaxation processes, re-
spectively.

• The temperature and density dependence of the structural relaxation process is
the same for all the investigated systems. Specifically: the structural relaxation
strength is linearly proportional to the density, while the structural relaxation
time -at least in the liquid phase- follows an activation behavior. The associated
activation energy is similar to the energy of intermolecular bonds.

• The structural relaxation time systematic becomes shorter than the period of all
the allowed longitudinal modes, once the system approaches the critical tempera-
ture. At the same time, the structural relaxation strength decreases, according to
the decrease of the density. As a consequence of these two combined effects, the
influence of the structural relaxation process on the dynamics becomes increas-
ingly smaller. In the supercritical phase, structural relaxation no longer leads to
the phenomenon of positive sound dispersion. One can therefore conclude that
the phenomenology of positive sound dispersion is a peculiarity of only the liquid
phase.

• In the supercritical phase the dispersive behavior of longitudinal modes is mainly
ruled by thermal relaxation, owing to the strongly reduced influence of structural
relaxation.

• In the supercritical phase the temperature dependence of the structural relax-
ation time stems from the activation behavior typical of the liquid phase. This
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behavior can be interpreted as a change in the nature of the microscopic mecha-
nism responsible for the rearrangements of the local structure: i.e. for structural
relaxation. Owing to the fact that the many body dynamics based on intermolec-
ular bonds is expected to be less effective in the supercritical phase, it can be
supposed that the intermolecular interactions are mainly based on intermolecular
collisions. Therefore, in the supercritical phase, a more suited relaxation time for
the characterization of the microscopic rearrangements of the local structure is
represented by the mean free time between two intermolecular collisions, rather
than the activation behavior related to the bonding energy. This supposition is
also supported by the observed behavior of the compliance relaxation time.

• The instantaneous relaxation can mainly be associated with an early stage time
decay of the memory function induced by fast intramolecular dynamics such as
intramolecular vibrations. This can be evinced from the fact that Neon, which is
a monatomic liquid and does not possess this kind of dynamics, presents a negli-
gible instantaneous contribution. Moreover, this contribution does not explicitly
depend on temperature, since it has been found to be directly proportional to
the density.

• Finally, the main result of this thesis work is represented by the generality of the
scenario depicted above. In fact, these results can be considered as valid for a
large class of simple systems, ranging from monatomic to molecular H-bonded
liquids.
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En conclusion, par la Diffusion Inélastique de Rayons-X (IXS), nous avons effectué une
étude systématique de la dynamique aux hautes fréquences de quatre systèmes : le
Néon, l’Azote, l’Ammoniaque et l’Eau, dans les phases liquide et supercritique. Ces
systèmes ont été choisis parce qu’ils peuvent être considérés comme caractéristiques de
classes de fluides, en ayant des intéractions intermoléculaires différentes.

Les données expérimentales ont été interprétées dans le cadre de l’hydrodynamique
généralisée, en particulier un modèle basé sur la fonction de mmoire a été utilisé.
La fonction mémoire proposée contient trois différents modes d’atténuation temporelle
(c’est-à-dire les relaxations). Ces processus de relaxation sont : i) la diffusion thermique
qui, par le flux de chaleur, tend à homogénéiser la température des zones comprimées et
raréfiées. Ce mécanisme engendre le processus de relaxation thermique de la fonction
mémoire. ii) Les dissipations visqueuses survenant sur un temps fini, par rapport à
la fenêtre expérimentale employée. Ce mécanisme a été interprété comme un échange
d’énergie entre l’excitation acoustique et les degrés de liberté intermoléculaires. Ces
derniers décrivent les actions réciproques intermoléculaires qui, dans la phase liquide,
ont une nature collective : le processus de relaxation associé à ces dynamiques est com-
munément appelé relaxation structurelle. iii) Les dissipations visqueuses instantanées.
Ce mécanisme peut représenter des phénomènes dynamiques survenant avec des temps
caractéristiques beaucoup plus brefs que la fenêtre expérimentale utilisée (par ex., dans
notre cas, les vibrations intramoléculaires rapides); ce mécanisme peut aussi représenter
des échanges d’énergie causés par le désordre topologique. Le processus de relaxation
relatif à ces mécanismes est usuellement appelé relaxation instantanée.

Les résultats obtenus permettent l’établissement d’un scénario commun concernant
la dynamique collective à haute fréquence dans la phase liquide et supercritique, les
relations entre cette dynamique et les processus de relaxation les plus communs, et
aussi la dépendance des processus de relaxation aux variables thermodynamiques.

Nos conclusions peuvent être résumées comme suit :

• Le comportement dispersive des modes longitudinaux est affectée par deux effets
concurrents, c’est-à-dire la dispersion positive et négative. La dispersion positive,
lorsque Q augmente, fait augmenter la valeur de la vitesse du son, de la valeur
adiabatique jusqu’à sa valeur à haute fréquence (c∞). Au contraire, la dispersion
négative, lorsque Q crôıt, fait diminuer la vitesse du son de la valeur adiabatique
jusqu’à sa valeur isothermique. Ces effets dispersifs peuvent être associés, respec-
tivement, aux processus de relaxation structurelle et thermique. Dans la phase
liquide, l’effet dispersif principal est représenté par la dispersion positive, associée
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à la relaxation structurelle. Cet effet devient plus faible dès que le système ap-
proche les conditions supercritiques. Dans la phase supercritique l’effet de la
dispersion négative devient comparable à celle de la dispersion positive.

• La dépendance de la densité et de la température du processus de relaxation
structurelle est la même pour tous les systèmes examinés. En particulier : la
force de la relaxation structurelle est proportionnelle à la densité, tandis que les
temps de relaxation structurelle, au moins dans la phase liquide, suivent une loi
d’activation. L’énergie d’activation associée est semblable à l’énergie des liens
intramoléculaires.

• Une fois que le système approche la température critique, le temps de relax-
ation structurelle devient systématiquement plus court que la période de tous les
modes longitudinaux permis. En même temps la force de la relaxation struc-
turelle diminue avec la densité. Comme conséquence de ces deux effets combinés,
l’influence du processus de relaxation structurelle sur la dynamique devient de
plus en plus petite. Dans la phase supercritique, elle ne cause plus le phénomène
de la dispersion positive. On peut donc conclure que la phénoménologie de la
dispersion positive est une particularité de la phase liquide uniquement.

• Du fait de l’influence fortement réduite de la relaxation structurelle, dans la
phase supercritique le comportement dispersif des modes longitudinaux peut être
gouverné par la relaxation thermique.

• Dans la phase supercritique la dépendance en température des temps de relax-
ation structurelle ne suit plus la loi d’activation typique de la phase liquide. Plus
spécialement, sa dépendance en température devient plus faible. Ce comporte-
ment peut être interprété comme un changement dans la nature du mécanisme
microscopique responsable des réarrangements de la structure locale : c’est-à-
dire la relaxation structurelle. Du fait que l’on s’attend à ce que la dynamique
à nombreux corps, basée sur les liens intermoléculaires, devienne moins efficace
dans la phase supercritique, on peut penser que les intéractions intermoléculaires
sont fondées surtout sur les collisions. Donc, un temps de relaxation plus con-
venable pour décrire ce processus est représenté par les temps moyens entre deux
collisions intermoléculaires, plutôt que la conduite d’activation caractérisée par
l’énergie des liens. Cette supposition est confortée par les valeurs obtenues du
temps de relaxation de la compliance.

• La relaxation instantanée peut être principalement associée à une première atténuation
temporelle de la fonction mémoire, induite par la dynamique intramoléculaire
rapide, comme les vibrations intramoléculaires. Cela peut être montré du fait
que le Néon, qui est un liquide monoatomique et donc peut avoir cette sorte de
dynamique, présente une contribution instantanée négligeable. De plus, cette
contribution ne dépend pas explicitement de la température, mais est propor-
tionnelle à la densité.
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• Enfin, le résultat principal de ce travail de thèse est représenté par la généralité du
scénario expliqué ci-dessus. En fait, ces résultats peuvent être considérés comme
valides pour une grande classe de systèmes simples, qui embrassent les systèmes
monoatomiques jusqu’aux liquides moléculaires simples avec liaisons hydrogènes,
dans toute la phase fluide thermodynamiquement stable.
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Résumé
Cette thèse concerne une étude expérimentale sur la dynamique microscopique dans

quatre systèmes prototypes (c’est-à-dire : le Néon, l’Azote, l’Ammoniaque et l’Eau)
dans leurs phases liquide et supercritique. La technique expérimentale utilisée a été la
diffusion inlastique des rayons-X (IXS). Le facteur de structure dynamique cohérent,
S(Q, ω), a été déterminé dans une gamme de moment transférés, Q (2 - 15 nm−1),
et de fréquences, ω (1 - 60 THz), correspondant à les longueurs et à des temps car-
actéristiques de la dynamique microscopique dans le régime des nanomètres et des
picosecondes. Les données expérimentales ont été interprétées dans le cadre de la
théorie hydrodynamique généralisée. Ce formalisme permet d’identifier les processus
de relaxation qui décrivent la dynamique microscopique du système et de fournir des
valeurs quantitatives pour les temps et les forces des processus de relaxation. Il est
aussi possible de déterminer des quantités macroscopiques comme la vitesse du son et
la viscosité. En allant de la phase liquide à la phase supercritique, une phénoménologie
commune a été qualitativement observée. Les conclusions principales sont les suivantes
: (i) Un affaiblissement de la dispersion positive associée à la relaxation structurelle.
(ii) Un changement dans les mécanismes principaux responsables des interactions in-
termoléculaires à un niveau microscopique. Dans la phase liquide les interactions in-
termoléculaires sont surtout des liens intermoléculaires, d’autre part, dans la phase
supercritique, ces interactions sont dominées par les collisions intermoléculaires.

Mots clés: processus de relaxation, diffusion inélastique de rayons X, phase supercri-
tique, dynamique microscopique.

Summary
The thesis reports an experimental investigation of the microscopic dynamics in

four prototype systems (i.e. Neon, Nitrogen, Ammonia and Water) in their respective
liquid and supercritical phase, utilising inelastic X-ray scattering (IXS). The coherent
dynamic structure factor, S(Q, ) was determined in the momentum transfer, Q (2 -
15 nm−1), and a frequency, ω (1 - 60 THz), range corresponding to characteristic
length and time scales of the microscopic dynamics in the nanometers and picoseconds
regime. The experimental data have been interpreted in the framework of the general-
ized hydrodynamic theory. This formalism allows identifying the relaxation processes
describing the intermolecular interactions, and provides quantitative values for the re-
laxation times and strengths, as well as related macroscopic quantities (sound speed
and viscosity). On going from the liquid into the supercritical phase, a qualitative
common phenomenology has been observed. The main findings are the following: (i)
A weakening of the positive sound dispersion associated to the structural relaxation.
(ii) A change in the dominant microscopic mechanism responsible for intermolecular
interactions that, in the liquid phase, are mainly represented by bonds while, in the
supercritical phase, are dominated by intermolecular collisions.

Key words: Relaxation processes, inelastic X-ray scattering, supercritical phase, mi-
croscopic dynamics.
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