Interaction d'atomes et de molécules d'hydrogène avec des glaces d'eau à très basse température:

Formation de H₂ dans le milieu interstellaire

Lionel Amiaud LERMA – Oct.2003- Sept.2006 Université de Cergy-Pontoise, Moniteur

Pourquoi étudier la formation de H₂?

Efficacité de la réaction : mécanismes

Efficacité de la réaction : dépendance au milieu

Diffus		Dense		
	R ~ 0.3	R ~ 0.3		
	Destruction de H ₂ très efficace (UV)	Destruction peu efficace (r. cosmique)		
	H >> H ₂	H << H ₂	12 S.	
Grains de poussière nus silicate/ carbonaceous dust		Manteau de glace H ₂ CO ₂ CH ₃ OH H ₂ O Silicate / CO CN- H ₃ O+ CO		
Si $T_s > 20 \text{ K} \rightarrow$ physisorption trop faible $\rightarrow 1$ atome chimisorbé		T ~ 10 K \rightarrow Physisorption Présence de H ₂ adsorbé		

Énergie fournie par la réaction

→ Importance de la détermination du bilan énergétique

Caractériser la réaction de formation de H₂ sur les manteaux de glace.

Quelles propriétés sont déterminantes ?

- → Efficacité de la réaction
- ➔ Bilan énergétique

L'approche choisie : expérience de laboratoire

1.Principe des expériences

2.Résultats sur l'adsorption de molécules

3.Résultats sur la formation de molécules

Perspectives

Expérience FORMOLISM

FORmation de MOLécules dans le Milieu Interstellaire (ISM)

Dépôt film de glace d'eau

Jets atomiques ou moléculaires

Hydrogène ou Deutérium (isotope)

Expérience TPD (Désorption Programmée en Température)

1 Exposition à l'Hydrogène atomique ou moléculaire

Expérience TPD (Désorption Programmée en Température)

- Exposition à l'Hydrogène atomique ou moléculaire 1
- Approche du QMS 2
- 3 Observer les molécules qui désorbent de la surface

Expérience FORMOLISM

Introduction

1. Principe des expériences

2. Résultats sur l'adsorption de molécules

3.Résultats sur la formation de molécules

Perspectives

Morphologie et propriétés associées des glaces

Guillot et al. 2004

Recuit provoque la transition irréversible entre les morphologies

$D_2 \text{ sur } H_2O$ (poreuse, 10 ML, 10 K)

Caractériser la désorption de D₂

Modéliser la désorption

Impact du type de glace ?

Différentes épaisseurs : conséquences sur la desorption ?

d'adsorption > porosité

Adsorptions de H₂, HD et D₂ sur 10 ML, glace poreuse

Mélange de H₂ et D₂

proportions H₂:HD:D₂ différentes

Modèle : ajustement simultané des 9 paramètres décrivant les 3 distributions d'énergies

Conclusion intermédiaire

Temps de résidence

T =10 K et A=10 ¹³ s ⁻¹				
E _a (meV)	30	40	70	
t _{res}	130 s	160 j	10 ¹⁴ ans	

Ségrégation

d'énergie isotopique Quelle **quantité d'hydrogène moléculaire** sur les **manteaux de glace** ?

Large distribution

Application au régime stationnaire

Hypothèses

Collage identique pour les trois isotopes

Autres sources de desorption négligées (photodésorption ...)

Manteau de glace: 10 ML de glace d'eau poreuse déposée à 10 K

Application au régime stationnaire

Introduction

- 1. Principe des expériences
- 2. Résultats sur l'adsorption de molécules
- 3. Résultats sur la formation de molécules
 - Formation sur la glace non poreuse
 - Formation sur la glace poreuse

Perspectives

Formation sur la glace non poreuse: TPD

Aucune molécule formée au cours du TPD n'est détectée !

Formation pendant l'irradiation

Energie interne des molécules formées

Formation sur glace poreuse

Variation de l'efficacité avec T surface

Conclusion formation d'hydrogène moléculaire

Glaces poreuses

H (D) diffuse à 10 K

•Réactions d'hydrogénation actives à basse température

•Gamme d'efficacité étendue

4,5 eV transférée à la surface

Glaces non poreuses

H (D) diffuse à 10 K

•Réaction « rapide »

•Couverture en D₂ favorable

Molécules excitées

Fx3. 10.—Recombination efficiency of molecular hydrogen at steady state on HDI vs. the temperature T(K), using the parameters obtained from experimental measurements of HD desorption curves. The flux is the same as in Fig. 8.

Vidali et al. J. Phys : Conf Ser. (2005)

Perspective: Détection résolue en niveau de rotation-vibration

Perspective:

Mécanismes réactionnels:

•Evolution de R en fonction de l'épaisseur de la glace

•Quelle épaisseur ? → molécules excitées

→ recapture des molécules

•Variation de R avec T_{jet} (Collage)

Collage D₂ sur glace non poreuse ?

Expériences Adsorption - désorption simple de D₂

Modélisation

 $\frac{\mathrm{d}N_a}{\mathrm{d}t} = N_a^{\ n}Ae^{-E_a/kT}$

