
HAL Id: tel-00124998
https://theses.hal.science/tel-00124998v1

Submitted on 17 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Résultats de complexité et programmation par
contraintes pour l’ordonnancement

Philippe Baptiste

To cite this version:
Philippe Baptiste. Résultats de complexité et programmation par contraintes pour l’ordonnancement.
Other [cs.OH]. Université de Technologie de Compiègne, 2002. �tel-00124998�

https://theses.hal.science/tel-00124998v1
https://hal.archives-ouvertes.fr

Université de Technologie de Compiègne
Laboratoire Heudiasyc, UMR CNRS 6599

Résultats de complexité

et programmation par contraintes

pour l’ordonnancement

Habilitation à diriger des recherches présentée le 1er juillet 2002 par
Philippe Baptiste

devant le jury composé de

Jacques Carlier Prof. de l’Université de Tech. de Compiègne
Philippe Chrétienne Prof. de l’Université Paris VI (Rapporteur)
Bernard Dubuisson Prof. de l’Université de Tech. de Compiègne
Pascal van Hentenryck Prof. de l’Université de Brown (Rapporteur)
Jan-Karel Lenstra Prof. de l’Université d’Eindhoven (Rapporteur)
Claude Le Pape Directeur R&D – Coopération de solveurs, Ilog
Baruch Schieber Senior Manager Optimization Center, IBM

2

Acknowledgments

I wish to thank all the people who have contributed to the completion of this work. It gives me
great pleasure to mention them here.

First of all, I would like to thank Jacques Carlier and Claude Le Pape, not only for their help
and their numerous advices but also for their friendship over the last eight years.

I’m especially grateful to Philippe Chrétienne, Pascal van Hentenryck and Jan–Karel Lenstra
who have accepted to review this habilitation thesis.

I’m also indebted to Bernard Dubuisson and Rogelio Lozano, the directors of the CNRS-HeuDiaSyC
Laboratory, for their continuous support over the years. Brenda Dietrich, Baruch Schieber and Jon-
hattan Lee deserve special thanks for the great time I’m having at IBM Watson’s Mathematical
Sciences Department.

I also wish to thank all my colleagues at CNRS, at the University of Technology of Compiègne
and at IBM as well as my former colleagues at Bouygues and Ilog who have discussed with me
different topics of this habilitation thesis.

I’m also indebted to the many people who have helped in previous work and in preparing this
manuscript. I’m especially grateful to Claude Le Pape and Wim Nuĳten, the coauthors of our
book Constraint-Based Scheduling (Kluwer, 2001). This book is the basis of the second part of this
manuscript. Special thanks to the other coauthors of papers that have served as raw material for
this manuscript: Jacques Carlier, Jeet Gupta, Antoine Jouglet, Emmanuel Néron, Laurent Péridy,
Eric Pinson, Baruch Schieber and Vadim Timkovsky. I also wish to thank Peter Brucker and Sigrid
Knust for the many enlightening discussions we have had on scheduling theory.

4

Foreword

Baker [9] defines scheduling as the problem of allocating scarce resources to activities over time1. In
this manuscript, we consider several scheduling problems with a variety of different environments.
The two parts of this manuscript provide an overview of two of our major research interests. The first
part (Chapters 2 to 5) is dedicated to polynomial time solutions of equal–processing–time scheduling
problems. The second one (Chapters 7 to 15) deals with the application of Constraint Programming
to scheduling. These two parts reflect the balance we have tried to keep between theoretical and
more applied research.

Although all the topics covered in this manuscript are related to scheduling, Parts 1 and 2 are
dedicated to very different aspects of scheduling. Some few results discussed in Part 1 are occasionally
used in Part 2 but they are independent one from another. In the following, we briefly review the
content Parts 1 and 2. More detailed introductions are provided in Sections 1 and 7 respectively.

Scheduling Equal Length Jobs

Looking through the listing of complexity results for scheduling problems [47] one can observe that
the vast majority of problems whose complexity status is unknown involve equal–processing–time
jobs. Hence, the state–of–the–art in studying the complexity of scheduling problems has reached the
level at which approaches and techniques successfully working for equal–processing–time scheduling
become especially important. The first part of this manuscript is dedicated to such problems. We
have tried to present, within a common framework, our recent results in this area.

• In Chapter 1, after having recalled the Graham, Lawler, Lenstra and Rinnooy Kan Classifica-
tion Scheme [113], we provide a brief description of equal–processing–time scheduling problems.
We discuss the difference between unit and equal–processing–time scheduling problems.

• In Chapter 2, we restrict our study to the single machine case with release dates (1|ri, pi =
p|F). We first show that when preemption is allowed and when processing times are equal,
we can minimize the weighted number of late jobs in polynomial time. We have a slightly
more general result for the non-preemptive case since our dynamic program can handle any
“ordered” objective function. Hence we show that

∑
wiUi,

∑
wiCi and

∑
Ti can be minimized

in polynomial time.

• In Chapter 3, we consider the situation where m identical parallel machines are available. In
the preemptive case we show that, under the hypothesis that all jobs are released at time 0, the
total tardiness problem can be solved in polynomial time thanks to a simple LP formulation
of the problem. We also present a dynamic program to minimize the weighted number of late
jobs. In the non-preemptive case, we generalize the results obtained on a single machine and
we show that, with arbitrary release dates,

∑
wiUi,

∑
wiCi and

∑
Ti can be minimized in

polynomial time for any fixed value of m. Finally, we study the weighted number of late jobs

1We have used the following terminology: For theoretical scheduling problems, we have “Jobs” and “Machines”, and
we follow the Classification Scheme of Graham, Lawler, Lenstra and Rinnooy Kan [113]. For multiprocessor problems,
we follow the widely used “Tasks/Processors” terminology. Finally, to present our Constraint Programming model, we
use the “Activity” and “Resource” terms and we will see how they can be used to model many theoretical scheduling
problems (e.g., job-shop, Resource-Constrained Project Scheduling, etc.).

6

criteria in a Unit Execution Time open-shop environment Om|pij = 1, ri|
∑
wiUi. We use a

result from Brucker, Jurisch and Jurisch to transform the UET open-shop into a preemptive
parallel machine problem and we show that it can be solved in polynomial time with a complex
Dynamic Program.

• In Chapter 4, we study the situation where a set of n tasks, subjected to release dates, have
to be scheduled on m parallel processors. We consider a particular multiprocessor scheduling
environment where, for each task i, a fixed number sizei of processors is required to execute
the task. Yet, the processors required are not specified. We first show that Pm|ri, sizei, pi =
p|
∑
Ci can be solved in polynomial time by dynamic programming. Then we study the unit

execution time problem (pi = 1) and we show that the minimum maximal tardiness can be
computed in polynomial time when sizei ∈ {1,m}. In this problem, there are no more than
two possible sizes, either 1 (small tasks) or m (tall tasks), and we refer to it as the “tall/small”
problem.

• In Chapter 5, we study the situation where n jobs {J1, . . . , Jn} have to be scheduled on
a batching machine. Jobs cannot start before their release dates and all jobs of the same
batch start and are completed simultaneously, i.e., at the starting time (respectively at the
completion time) of the batch. Several types of batching machines are studied and for each of
them, we provide some new complexity results for the case where jobs have identical processing
times.

Table 1 summarizes the new polynomial time algorithms, for equal-length jobs, that we have obtained
in the last few years. As discussed in the introduction of Part 1, a subset only of these algorithms
is presented in this manuscript.

Single Machine
1|pmtn, pi = p, ri|

∑
wiUi §2.1 (Dyn. Prog.)

1|pi = p, ri|
∑
wiUi §2.2 (Dyn. Prog.)

1|prec, pmtn, pi = p, ri|
∑
Ci [27]
Parallel Machines

Pm|pmtn, pi = p|
∑
wiUi §3.1 (Dyn. Prog.)

P |pi = p, pmtn|
∑
Ti §3.1 (LP Form.)

Pm|pi = p, ri|{
∑
wiCi,

∑
Ti,
∑
wiUi} §3.2 (Dyn. Prog.)

Pm|pi = 1, intree|
∑
Ci [27]

Q|pi = 1, pmtn|
∑
Ui [27]

P2|pmtn, outtree, rj , pj = 1|
∑
Cj [26] (ext. for any m by

Brucker et al. [42])
P |pi = 1, chains, ri|Lmax [27] (LP Form.)

Multiprocessor Scheduling
P |ri, pi = 1, sizei ∈ {1,m}|Lmax §4.2 (LP Form.

and Combinatorial Alg.)
Pm|ri, pi = p, sizei|

∑
Ci §4.1 (Dyn. Prog.)

Open-shop
Om|pij = 1, ri|

∑
wiUi §3.3 (Dyn. Prog.)

Batching
for F ∈ {

∑
wiCi,

∑
Ti,
∑
wiUi}

1|p-batch, b < n, ri, pi = p|F §5.2 (Dyn. Prog.)
1|s-batch, ri, pi = p|F §5.2 (Dyn. Prog.)
1|p-batch, ri|regular function §5.1 (Dyn. Prog., Pseudo-Poly.)
1|s-batch|

∑
Ti [18] (Dyn. Prog., Pseudo-Poly.)

Table 1: “Closed” pi = p Problems

7

Constraint-Based Scheduling 2

Constraint Programming is a problem-solving paradigm which establishes a neat distinction between,
on the one hand, a precise definition of the constraints that define the problem to be solved and, on
the other hand, the algorithms and heuristics enabling the selection and cancellation of decisions to
solve the problem. The main principles of Constraint Programming are:

• the separation between deductive “constraint propagation” methods, generating additional
constraints from existing constraints, and search algorithms, used to systematically explore
the solution space [206];

• the “locality principle”, which states that each constraint must propagate as locally as possible,
independently of the existence or the non-existence of other constraints [207];

• the distinction between the logical representation of constraints and the control of their use, in
accordance with the equation stated by Kowalski for logic programming: Algorithm = Logic
+ Control [132].

These principles have been widely applied in the area of scheduling, enabling the implementation
of flexible and extensible scheduling systems. Indeed, with Constraint Programming all the specific
constraints of a given problem can be represented and actually used as a guide toward a solution.

As the number of applications grew, the need emerged to reconcile the flexibility offered by
Constraint Programming with the efficiency of specialized Operations Research algorithms. The
first step consisted in adapting well-known Operations Research algorithms to the Constraint Pro-
gramming framework. As a second step, the success of the resulting tools opened a new area of
research aimed at the design and implementation of efficient algorithms embeddable in Constraint
Programming tools.

In this thesis, we provide a non-exhaustive overview of the most widely used Constraint-Based
Scheduling techniques. Following the principles of Constraint Programming, we have three distinct
sections:

• Chapter 7 introduces the basic principles of Constraint Programming and provides a model of
the constraints that are the most often encountered in scheduling problems.

• Chapters 8, 9, 10 and 11 are focused on the propagation of resource constraints which usually
are responsible for the “hardness” of the scheduling problem. In accordance with the locality
principle, Chapters 8 and 9 focus on the propagation of one resource constraint considered
independently of any other constraint. Chapter 8 deals with a resource of capacity one (which
can execute one activity at a time). Chapter 9 considers the more general case in which a
resource can execute several activities in parallel. Chapter 10 provides a theoretical comparison
of most of the constraint propagation techniques presented earlier. Chapter 11 considers a more
recent line of research, allowing to efficiently handle optimization objectives within resource
constraints.

• Chapters 12, 13 and 14 are dedicated to the resolution of several academic scheduling prob-
lems. These examples illustrate the use and the practical efficiency of the constraint propaga-
tion methods of the previous chapters. They also show that besides constraint propagation,
the exploration of the search space must be carefully designed, taking into account specific
properties of the considered problem (e.g., dominance relations, symmetries, possible use of
decomposition rules).

In conclusion, Chapter 15 mentions various extensions of the model and presents promising research
directions.

2Most of the material presented in this part comes from Constraint-Based Scheduling (Kluwer, 2001) by Ph.
Baptiste, C. Le Pape and W. Nuĳten

8

Contents

I Scheduling Equal Length Jobs 13

1 Introduction 15
1.1 Classification Scheme . 15
1.2 Unit vs. Identical Processing Times . 17
1.3 Dynamic Programming . 18
1.4 Covered Problems . 18

2 Scheduling Equal Length Jobs on a Single Machine 19
2.1 Preemptive Problem, 1|ri, pmtn, pi = p|

∑
wiUi . 19

2.1.1 Problem Reformulation . 19
2.1.2 Dominance Property . 20

2.2 Non-Preemptive Problems, 1|ri, pi = p|
∑
fi(Ci) . 22

2.2.1 Dominance Property . 23
2.2.2 Variables Definition and Decomposition Scheme 23
2.2.3 A Dynamic Programming Algorithm . 24

3 Scheduling Equal Length Jobs on Parallel Machines 27
3.1 Preemptive Problems . 27

3.1.1 Maximal Lateness, P |pmtn|Lmax . 27
3.1.2 Total Tardiness, P |pmtn, pi = p|

∑
Ti . 29

3.1.3 Weighted Number of Late Jobs, Pm|pmtn, pi = p|
∑
wiUi 29

3.2 A Non-Preemptive Problem, Pm|ri, pi = p|
∑
wiUi 34

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi . 38

3.3.1 Problem Definition . 39
3.3.2 Transformation . 39
3.3.3 Dominance Properties . 40
3.3.4 Variables Definitions and Fundamental Recursion Formula 41
3.3.5 A Dynamic Programming Algorithm . 47
3.3.6 Open Problems . 48

4 Scheduling Equal Length Multiprocessor Tasks 51
4.1 Minimizing Total Completion Time, Pm|ri, pi = p, sizei|

∑
Ci 52

4.1.1 Dominance Property . 52
4.1.2 Variables Definition . 52
4.1.3 Dynamic Programming . 53
4.1.4 Open Questions . 55

4.2 Scheduling Tall/Small Tasks, P |ri, pi = 1, sizei ∈ {1,m}|Lmax 55
4.2.1 An LP Formulation . 57
4.2.2 Necessary Conditions . 57
4.2.3 Preemptive Schedule of Tall Tasks . 58
4.2.4 From Preemptive to Non-Preemptive Schedules 59

4.3 A Combinatorial Algorithm . 60
4.3.1 Open Questions . 62

10 CONTENTS

5 Batching Equal Length Jobs 65
5.1 Parallel Unbounded Batching, 1|p-batch, ri|F . 65
5.2 Batching to Minimize an Ordered Objective Function 67

5.2.1 Dominance Properties . 67
5.2.2 Dynamic Programming for the Serial Problem 68
5.2.3 Dynamic Programming for the Parallel Problem 72
5.2.4 Open Questions . 74

6 Conclusion 77

II Constraint-Based Scheduling 79

7 Introduction 81
7.1 Constraint Programming . 81
7.2 A Constraint-Based Scheduling Model . 86

7.2.1 Activities . 87
7.2.2 Temporal Relations . 88
7.2.3 Resource Constraints . 88
7.2.4 Extensions of the Model . 89
7.2.5 Objective Function . 90

8 Propagation of the One-Machine Constraint 93
8.1 Non-Preemptive Problems . 93

8.1.1 Time-Table Constraint . 93
8.1.2 Disjunctive Constraint Propagation . 94
8.1.3 Edge-Finding . 95
8.1.4 Not-First, Not-Last . 98
8.1.5 More Propagation . 100

8.2 Preemptive Problems . 102
8.2.1 Time-Table Constraint . 102
8.2.2 Disjunctive Constraint Propagation . 103
8.2.3 Network-Flow Based Constraints . 103
8.2.4 Preemptive Edge-Finding . 106

9 Propagation of Cumulative Constraints 109
9.1 Fully Elastic Problems . 109
9.2 Preemptive Problems . 111

9.2.1 Time-Table Constraint . 111
9.2.2 Disjunctive Constraint . 111
9.2.3 Partially Elastic Relaxation . 111

9.3 Non-Preemptive Problems . 120
9.3.1 Time-Table Constraint . 120
9.3.2 Disjunctive Constraint . 120
9.3.3 Edge-Finding . 120
9.3.4 Extended Edge-Finding . 124
9.3.5 Not-First, Not-Last . 125
9.3.6 Energetic Reasoning . 126

10 Comparison of Propagation Techniques 133
10.1 Constraint Propagation Rules . 133

10.1.1 Time-Table Constraints . 135
10.1.2 Disjunctive Constraints . 135
10.1.3 Edge-Finding . 136
10.1.4 Not-First, Not-Last . 137

CONTENTS 11

10.1.5 Energetic Reasoning . 137

10.2 Dominance Relations . 138

10.2.1 The Fully Elastic Case . 139

10.2.2 The Cumulative Preemptive Case . 139

10.2.3 The One-Machine Preemptive Case . 140

10.2.4 The Cumulative Non-Preemptive Case . 140

10.2.5 The One-Machine Non-Preemptive Case . 142

10.3 Non-Dominance Relations . 143

10.3.1 General Counterexamples . 143

10.3.2 A One-Machine Preemptive Counterexample 146

10.3.3 Cumulative Counterexamples . 146

10.4 Summary . 148

10.4.1 The Fully Elastic Case . 148

10.4.2 The Cumulative Preemptive Case . 148

10.4.3 The One-Machine Preemptive Case . 149

10.4.4 The Cumulative Non-Preemptive Case . 149

10.4.5 The One-Machine Non-Preemptive Case . 149

11 Propagation of Objective Functions 153

11.1 Total Weighted Number of Late Activities . 153

11.1.1 Complexity Results . 153

11.1.2 A Lower Bound of the Number of Late Activities 154

11.1.3 Constraint Propagation . 161

11.2 Total Tardiness . 164

11.2.1 Lower Bounds . 164

11.2.2 Improving Lower Bounds With Dominance Properties 165

11.2.3 Constraint Propagation . 170

11.3 Sum of Transition Times and Sum of Transition Costs 171

11.3.1 Route Optimization Constraint . 172

11.3.2 Precedence Graph Constraint . 173

11.4 Conclusion . 174

12 Resolution of Disjunctive Problems 175

12.1 Job-Shop Scheduling . 175

12.1.1 Branching Scheme . 175

12.1.2 Computational Results . 176

12.2 Open-Shop Scheduling . 177

12.2.1 Branching Scheme . 177

12.2.2 More and More Propagation: Shaving . 177

12.2.3 Computational Results . 178

12.2.4 Conclusion . 179

12.3 Preemptive Job-Shop Scheduling . 179

12.3.1 Dominance Relation . 180

12.3.2 Branching Scheme . 181

12.3.3 Heuristic Algorithms . 182

12.3.4 Limited Discrepancy Search . 184

13 Cumulative Scheduling Problems 189

13.1 General Framework . 190

13.2 Hybrid Flow-Shop Scheduling . 192

13.3 Resource-Constrained Project Scheduling . 192

13.4 Conclusion . 193

12 CONTENTS

14 Min-Sum Scheduling Problems 197
14.1 Minimizing the Weighted Number of Late Jobs . 197

14.1.1 Dominance Relations . 198
14.1.2 Branching Scheme . 199
14.1.3 Computational Results . 200

14.2 Minimizing Total Tardiness . 201
14.2.1 Overall Scheme . 202
14.2.2 Dominance on Equal Length Jobs . 203
14.2.3 Removing Dominated Sequences . 203
14.2.4 Intelligent Backtracking . 204
14.2.5 Experimental Results . 205

14.3 Minimizing Makespan and Sum of Transition Times 206
14.3.1 Problem Definition . 206
14.3.2 Problem Solving . 208
14.3.3 Computational Results . 209

15 Conclusion 215

16 Summary of notation 219

Part I

Scheduling Equal Length Jobs

Chapter 1

Introduction

Looking through the listing of complexity results for scheduling problems [47] one can observe that
the vast majority of problems whose complexity status is unknown involve equal–processing–time
jobs. Hence, the state–of–the–art in studying the complexity of scheduling problems has reached the
level at which approaches and techniques successfully working for equal–processing–time scheduling
become especially important. The first part of this manuscript is dedicated to such problems. We
have tried to present, within a common framework, our recent results in this area.

In this introduction we briefly recall (Section 1.1) the Classification Scheme of Graham, Lawler,
Lenstra and Rinnooy Kan [113]. We then focus on scheduling problems with identical processing
times and we recall some basic results on the special case where processing times equal 1 (Section
1.2). Since many algorithms presented in the following chapters rely on Dynamic Programming, we
introduce this technique in Section 1.3. Finally, we provide in Section 1.4 a list of the problems
covered in this thesis and we also briefly mention some other results that we have obtained but that
are not described in this manuscript.

1.1 Classification Scheme

We use the classification scheme of Graham, Lawler, Lenstra and Rinnooy Kan [113, 38]. It is
widely used in scheduling theory and has been extended several times. It allows to represent a large
number of scheduling problems under the notation α|β|γ. These parameters describe respectively
the machine environment, the job characteristics, and the optimality criterion. Here, we only present
the subset of the classification used in this manuscript.

Machine Environment (α) α consists of 2 parameters α1 and α2.

• α1 = 1 when a single machine is considered.

• α1 = P when the machines in the problem are identical.

• α1 = Q when the machines are uniform, i.e., each machine has a speed that linearly affects
the processing times.

• α1 = R when the machines are unrelated, i.e., the processing times on each machine have to
be specified.

• More complex machine environments like Flow-Shop (α1 = F), Job-Shop (α1 = J) or Open-
Shop (α1 = O) are also considered.

In the shop problems mentioned, the concept of a job is used. The term “job” is used when some
operations can be rearranged into a strongly related subset. Typically a job is a set of operations
linked by a set of precedence constraints. In the shop problems mentioned, each job Ji consists of
a set of operations {Oi,1, . . . , Oi,ni

}, and the machine µi,j on which each operation Oi,j is to be

16 Introduction

executed is known in advance. In the Job-Shop Problem, we have chain-like precedence constraints
between operations of the same job, i.e., Oi,1 → Oi,2 → . . . → Oi,ni

. The Flow-Shop Problem
is a special case of the Job-Shop Problem where each job has the same machine ordering for its
operations, i.e., ∀i, j µi,j = j. In the Open-Shop Problem, there are no precedence constraints but
operations of the same job cannot be processed simultaneously.

The second parameter α2 denotes the number of machines in the problem. If this parameter is
omitted, the number of machines is arbitrary, i.e., it is provided in the data of each instance of the
problem. For example, α = P5 means that there are 5 identical machines while α = R means that
there are an unspecified number of unrelated machines.

Job Characteristics (β) As said, the term job is used when some operations can be rearranged
into a strongly related subset. Jobs can themselves be related by precedence constraints. The
nature of the precedence graph induced by these constraints, if any, is indicated by one of the
strings “chain”, “tree”, “prec”, meaning that the precedence graph is a chain, a tree, or any graph.

When jobs are subjected to release dates before which they cannot start, the string “ri” is added
to β. When jobs are subjected to deadlines before which they must be completed, the string “d̄i”
is added. “pi = p” and “pi = 1” denote that jobs have identical and unitary processing times,
respectively. When preemption is allowed, “pmtn” is added to β.

In most of the classical scheduling models, it is assumed that each operation is processed on one
machine at a time. However, the relatively recent development of multiprocessor computer systems
and of complex manufacturing environments has led researchers to study more complex situations
where each operation requires simultaneously several machines (see for instance [35, 88]). We follow
the multiprocessor scheduling terminology where “operations” are called “tasks” and “machines”
are called “processors”.

• The notation sizei is used when for each operation i, a fixed number sizei of processors is
required to execute the task (yet, the processors required are not specified).

• The notation fixi is used when, for each operation i, the set of processors to be used is known
in advance.

We also study some batching problems and we follow Brucker and Knust terminology [47]. In
a batching problem, jobs start and are completed simultaneously. On a serial batching machine
(“s-batch”), the length of a batch equals the sum of the processing times of its jobs. On a parallel
batching machine (“p-batch”), there are at most b jobs per batch and the length of a batch is the
largest processing time of its jobs. These environments are detailed in Chapter 5.

Optimality Criterion (γ) In the following, Ci denotes the completion time of the job Ji. Most
of the classical scheduling criteria take into account a due date di that one would like to meet for
each job. In contrast to a deadline d̄i which is mandatory, a due date di can be seen as a preference.
The tardiness Ti of Ji is defined as Ti = max(0, Ci − di). The notation Ui is used to denote a unit
penalty per late job, i.e., Ui equals 0 when Ci ≤ di and equals 1 otherwise.

Scheduling criteria F are either formulated as a sum or as a maximum. A weight per job wi may
be used to give more importance to some jobs. We mention the following well-known optimality
criteria:

• Makespan: F = Cmax = maxCi

• Total weighted flow time: F =
∑
wiCi

• Maximum tardiness: F = Tmax = maxTi

• Total weighted tardiness: F =
∑
wiTi

• Total weighted number of late jobs: F =
∑
wiUi

See also Figure 1.1 for some scheduling related objective functions.

1.2 Unit vs. Identical Processing Times 17

 Ci

cost

Lateness

Ci

cost

Completion time

Ci

cost

Tardiness

Ci

cost

Earliness

Ci

cost

Late jobs

Figure 1.1: Objective functions

1.2 Unit vs. Identical Processing Times

When there there is no-precedence constraints, and when the machines are identical, the problem
of scheduling unit-processing time jobs, for any regular function F reduces to a simple flow (or
assignment) problem.

In the following we assume that F =
∑
fi is a sum function. Consider an optimal active schedule

for P |ri, pi = 1|F . A schedule is said to be active if no job can start earlier without delaying another
one or violating its release date. It is easy to see that active schedules are dominant for any regular
functions. There are only O(n) relevant time points. This can be seen by considering the two
smallest release dates r and r′ (r < r′). Suppose x jobs have r as release date. If x ≤ r′− r then we
have at most x relevant time points from r until r+x as it is not useful to schedule any of the x jobs
after r+ x. We can then continue our reasoning with r′ and the smallest release date larger than r′

(r′′). If x > r′ − r then we have at most r′ − r relevant time points between r and r′, and we can
continue our reasoning with r′ and r′′ and by temporarily assigning a release date r′ to x− (r′ − r)
jobs that have an original release date r. By recursively following this reasoning we can see that we
will not have more relevant time points than jobs. The cost of scheduling a job Ji at a time point t

J2

J1

.
Jn

t2

t3

.
tn

t1

jobs time

Cost of scheduling J1 at t1

flow ≤ m flow ≤ 1

Figure 1.2: Min cost flow for unit execution time schedules.

(ri ≤ t) is fi(t). Moreover, at each time point t, less than m jobs can execute. Given the network
of Figure 1.2, a maximal flow whose cost is minimal corresponds to an optimal schedule. It can be
computed in polynomial time. We refer to [86] for a detailed study of this problem and extensions
to uniform parallel machines.

When processing times are equal, the problem cannot, a priori, be reduced to a flow problem.
However, if there are no release dates, then on active schedules, start times equal 0 modulo p and
so, the problem P |pi = p|

∑
fi can be reduced to P |pi = 1|

∑
f ′

i where f ′
i(t) = f ′

i(pt). Hence, the
flow-based approach also applies.

Although the network flow model does not work in general, many problems with identical process-
ing times are still solvable in polynomial time. We have introduced a set of dynamic programming
algorithms for this special case.

18 Introduction

1.3 Dynamic Programming

Dynamic Programming [32] is “an algorithmic technique in which an optimization problem is solved
by caching subproblem solutions (memoization) rather than recomputing them” [172]. There are
two common characteristics to problems that can be solved by dynamic programming.

• An optimal solution can be decomposed into a set of optimal solutions of sub-problems.

• There are “few” relevant sub-problems to consider; where few means polynomially bounded.

The art of Dynamic Programming lies in the definition of the sub-problems to consider. This can
be very easy like in the knapsack problem (given items of different values and volumes, find the
most valuable set of items that fit in a knapsack of fixed volume) where each sub-problem is defined
by two integer values, the first one identifies the subset of items to consider and the second one is
the remaining volume of the knapsack. Unfortunately, sub-problems are not always easy to identify
and in most of the cases described in the following chapters, we need some more or less complex
dominance rules on optimal schedules to identify them.

1.4 Covered Problems

In the following sections, we present a subset of the complexity results that we have recently obtained.
Although we study several scheduling environment (single machine, parallel machine, open-shop,
etc.), almost all the problems discussed in the following chapters have two common characteristics:

• Jobs have identical processing times,

• machines are identical,

• and there are no precedence constraints.

We have also studied several other theoretical scheduling problems (1|prec, pmtn, pi = p, ri|
∑
Ci,

Pm|pi = 1, intree|
∑
Ci, Q|pi = 1, pmtn|

∑
Ui, P |pi = 1, chains, ri|Lmax [27]; P2|pmtn, outtree, rj , pj =

1|
∑
Cj [26] and 1|s-batch|

∑
Ti [18]) that do not have this three major characteristics. The results

obtained on these problems are not reported in this manuscript.
For several of the problems studied in the following sections, we present a solution procedure

based on dynamic programming. Such algorithms rely on dominance properties that identify a
special job, which, once it is scheduled, allows us to split the problem into two independant sub-
problems. The existence of this key job comes from the fact that we can extensively exchange jobs
(the absence of precedence consraints and the equal length of jobs play a key role at this point).

Another key observation we use to obtain polynomial–time solutions to non-preemptive problems
with equal execution times is that there are very few possible starting times. Indeed, since an optimal
non-preemptive schedule is active, i.e., no operation can be shifted to the left without the violation
of a constraint, we will see that starting times equal release dates modulo the processing time. In
the following, although its definition varies with the exact scheduling environment, Θ always denotes
the set of all possible starting and completion times.

Chapter 2

Scheduling Equal Length Jobs on a
Single Machine

In this Chapter, we restrict our study to the single machine case (1|ri, pi = p|F). We first show
(Section 2.1) that when preemption is allowed and when processing times are equal, we can mini-
mize the weighted number of late jobs in polynomial time. The corresponding algorithm has been
published in [12]. We have a slightly more general result (Section 2.2) for the non-preemptive case
since our dynamic program can handle any ordered objective function (see Definition 2). Hence we
show that

∑
wiUi,

∑
wiCi and

∑
Ti can be minimized in polynomial time. These results have been

published in [13].

2.1 Preemptive Problem, 1|ri, pmtn, pi = p|
∑

wiUi

1|pmtn, rj ,
∑
wjUj is NP-hard but can be solved in pseudo-polynomial time by Lawler’s algorithm

[142] whose time and space complexities are respectively O(nk2W 2) and O(k2W), where k is the
number of distinct release dates and where W is the sum of the weights of the jobs. If weights
are equal 1|pmtn, rj |

∑
Uj , the problem obviously becomes strongly polynomial; the time and space

bounds of Lawler’s algorithm reducing to O(n3k2) and O(nk2). So, O(n5) and O(n3) if all release
dates are distinct. In [14], we describe an algorithm for this special case that improves the bounds
to respectively O(n4) and O(n2).

When processing times are equal, the status of the weighted problem was still open. In the
following, we describe a dynamic programming from [12] that solves this special case.

2.1.1 Problem Reformulation

Let O be a subset of jobs and let JPS be the preemptive schedule of these jobs associated to the
EDD dispatching rule: whenever the machine is free and one job is available, schedule the job Ji

for which d̄i is the smallest. If a job Jj becomes available while Ji is in process, stop Ji and start
Jj if d̄j is strictly smaller than d̄i; otherwise continue Ji. Jackson Preemptive Schedule has several
interesting properties (e.g., [55]). In particular, if a job is scheduled on JPS after its due date, there
is no preemptive schedule of O where all jobs are on-time. In the following, O is said to be feasible
if and only if all jobs are on-time in its JPS. Given this definition, searching for a schedule on which
the weighted number of late jobs is minimal, reduces to finding a set of jobs whose weight is maximal
and whose JPS is feasible.

20 Scheduling Equal Length Jobs on a Single Machine

2.1.2 Dominance Property

Proposition 1. For any subset of jobs Z, the start and end times of the jobs on the JPS of Z belong
to the set Θ.

Θ = {t|∃ri, ∃l ∈ {0, . . . , n}, t = ri + lp}.

Proof. We first prove that the end time of a job on the JPS of Z belongs to Θ. Let Jk be any job
and let s and e be respectively its start and end times on JPS. Let t be the minimal time point such
that between t and s JPS is never idle. Because of the structure of JPS, t is a release date, say rx.
The jobs that execute (even partially) between s and e do not execute before s nor after e (because
Jackson Preemptive schedule is based upon the EDD rule). Thus e− s is a multiple of p. Two cases
can occur:

• Either Jk causes an interruption and hence s = rk.

• Or Jk does not cause any interruption and hence the jobs that execute between rx and s, are
fully scheduled in this interval. Consequently, s− t is a multiple of p.

In both cases, there is a release date ry (either rk or rx) such that between ry and e, JPS is never
idle and such that e is equal to ry modulo p. On top of that, the distance between ry and e is not
greater than np (because JPS is not idle). Hence, e ∈ Θ.

Now consider the start time of any job on JPS. This time point is either the release date of the
job or is equal to the end time of the "previous" one. Thus, start times also belong to Θ.

Definition 1. For any time points tu, tv in Θ with u < v and for any integer value k such that
1 ≤ k ≤ n,

• let Uk(tu, tv) = {Ji|i ≤ k, tu ≤ ri < tv}

• and for any m ≤ n, let Wk(tu, tv,m) be the maximal weight of a subset Z ⊆ Uk(tu, tv) of m jobs
such that, the JPS of Z is feasible and ends before tv. If there is no such subset, Wk(tu, tv,m)
is set to −∞.

In the following, we note Θ = {t1, t2, ..., tq} the ordered set of distinct time-points in Θ. Recall
that q ≤ n2.

�

tu tv tx ty�

�
Jk

time�

Schedule�
corresponding�to�
Wk-1(tu,�tx,�m1)�

Schedule�
corresponding�to�
Wk-1(ty,�tv,�m3)�

Schedule�
corresponding�to�
Wk-1(tx,�ty,�m2)�

Figure 2.1: Preemptive Schedule of Jk

Proposition 2. For any time points tu, tv ∈ Θ with u < v and any integer values k and m such
that 1 < k ≤ n and 1 ≤ m ≤ n, Wk(tu, tv,m) can be computed as follows:
If rk /∈ [tu, tv), Wk(tu, tv,m) = Wk−1(tu, tv,m). Otherwise, Wk(tu, tv,m) = max(Wk−1(tu, tv,m),W ′)
where W ′ is the maximum of

Wk−1(tu, tx,m1) +Wk−1(tx, ty,m2) +Wk−1(ty, tv,m3) + wk

2.1 Preemptive Problem, 1|ri, pmtn, pi = p|
∑
wiUi 21

under the constraints

tx, ty ∈ Θ
max(rk , tu) ≤ tx < ty ≤ min(dk , tv)
m1 +m2 +m3 = m− 1
p(m2 + 1) = ty − tx

Proof. It is obvious that if rk /∈ [tu, tv), Wk(tu, tv,m) is equal to Wk−1(tu, tv ,m). In the following,
we suppose that rk ∈ [tu, tv).

We first prove that max(Wk−1(tu, tv ,m),W ′) ≤Wk(tu, tv,m).

• Case 1: Wk−1(tu, tv,m) > W ′. Since Uk−1(tu, tv) ⊆ Uk(tu, tv), we have

max(Wk−1(tu, tv ,m),W ′) ≤Wk(tu, tv,m).

• Case 2: W ′ > Wk−1(tu, tv ,m). There exist tx ∈ Θ, ty ∈ Θ and 3 integers m1,m2,m3 such that

max(rk, tu) ≤ tx < ty ≤ min(dk, tv)
m1 +m2 +m3 = m− 1
p(m2 + 1) = ty − tx
W ′ = Wk−1(tu, tx,m1) +Wk−1(tx, ty,m2) +Wk−1(ty , tv,m3)) + wk

Obviously, the subsets Uk−1(tu, tx), Uk−1(tx, ty) and Uk−1(ty , tv) do not intersect. Thus, the
JPS schedules of the subsets that realizeWk−1(tu, tx,m1), Wk−1(tx, ty,m2) andWk−1(ty, tv,m3),
put one after another define a valid overall schedule of a set of m−1 jobs taken in Uk−1(tu, tv).
Moreover, between tx and ty there is enough space to schedule Jk since m2 jobs in Uk−1(tx, ty)
are scheduled and since p(m2 + 1) = ty − tx (see Figure 2.1). As a consequence, W ′ ≤
Wk(tu, tv ,m).

Now, we prove that Wk(tu, tv ,m) ≤ max(Wk−1(tu, tv,m),W ′). We only consider the case where
Wk(tu, tv,m) is finite otherwise the claim holds. Consider a set Z that realizes Wk(tu, tv,m). If Jk

does not belong to Z then Wk(tu, tv,m) = Wk−1(tu, tv,m) ≤ max(Wk−1(tu, tv,m),W ′). Suppose
now that Jk ∈ Z. Let tx and ty be the start and end times of Jk on the JPS of Z. Thanks to
Proposition 1, we know that tx ∈ Θ and ty ∈ Θ. We also have max(rk, tu) ≤ tx < ty ≤ min(dk, tv).
Let Z1, Z2, Z3 be the partition of Z −{Jk} into the jobs that have a release date between tu and tx,
between tx and ty and between ty and tv . Because of the structure of JPS(Jk is the job whose due
date is maximal), all jobs in Z1 are completed before tx. Moreover, all jobs in Z2 start after tx and are
completed before ty, and all jobs in Z3 are completed before tv. On top of that, p(|Z2|+1) = ty− tx
because Jk is also scheduled between tx and ty. Moreover, we have |Z1| + |Z2| + |Z3| + 1 = m.
Finally the weight of Z1 is not greater than Wk−1(tu, tx, |Z1|), the weight of Z2 is not greater
than Wk−1(tx, ty, |Z2|) and the weight of Z3 is not greater than Wk−1(ty, tv , |Z3|). This leads to
Wk(tu, tv,m) ≤ max(Wk−1(tu, tv,m),W ′).

Our dynamic programming algorithm relies on the above proposition. The values of Wk(tu, tv,m)
are stored in a multi-dimensional array of size O(n6) (n possible values for k, n2 possible values for
tu, n2 possible values for tu, and n possible values for m).

• In the initialization phase the value of W1(tu, tv,m) is set to w1 if m = 1 and if p is not greater
than min(d1, tv)−max(r1, tu) and to −∞ otherwise.

• We then iterate from k = 2 to k = n. Each time, Wk is computed for all the possible values
of the parameters thanks to the formula of Proposition 2 and to the values of Wk−1 computed
at the previous step.

The maximum weighted number of on-time jobs is equal to

max(Wn(t0, tq, 1),Wn(t0, tq , 2), . . . ,Wn(t0, tq , n)).

The overall complexity of the algorithm is O(n5) for the initialization phase. For each value of k,
O(n5) values of Wk have to be computed. For each of them, a maximum among O(n4) terms has

22 Scheduling Equal Length Jobs on a Single Machine

to be computed (for given values of tx,m1 and m2, there is only one possible value for both ty and
m3). This leads to an overall time complexity of O(n10). A rough analysis of the space complexity
leads to an O(n6) bound but since, at each step of the outer loop on k, one only needs the values of
W computed at the previous step (k− 1), the algorithm can be implemented with 2 arrays of O(n5)
size (one for the current values of W and one for the previous value of W).

2.2 Non-Preemptive Problems, 1|ri, pi = p|
∑

fi(Ci)

In this section, we consider the scheduling situation where n jobs J1, . . . , Jn have to be scheduled on
a single machine. Each job is described by a release date ri, a processing time pi and a cost function
fi(t). This function represents the cost induced by Ji when it is completed at time t. The problem
of minimizing the sum of the fi functions consists of finding a set of completion times Ci for each
job Ji such that (1) jobs start after their release date, i.e., ∀i, Ci − pi ≥ ri, (2) jobs do not overlap,
and (3) the objective function

∑

i fi(Ci) is minimal. In the following, a schedule meeting (1) and
(2) is said to be feasible.

It is shown in [53, 55, 109] that the problem of minimizing the number of late jobs (fi = Ui)
is polynomial as soon as processing times are equal, while the general problem is NP-hard [108].
Simons ([201]) describes a polynomial algorithm to minimize the sum of the completion times when
processing times are equal. Note that Simon’s algorithm with parallel machines too and that in the
single machine case, arbitrary precedence constraints can be taken into account.

These results leave open the status of 1|ri, pi = p|
∑
wiUi 1|ri, pi = p|

∑
wiCi, 1|ri, pi = p|

∑
Ti

and 1|ri, pi = p|
∑
wiTi. In the following, we show that single machine problems with identical pro-

cessing times can be solved polynomially for a large class of so called ordered objective functions.
All these results are extend to parallel machines problems in Chapter 3.

Definition 2. F is an ordered objective function if and only if :

1. F is a sum function, i.e., F =
∑
fi(Ci),

2. F is regular, i.e., ∀i, fi is non-decreasing,

3. fi is constant after a time point δi, i.e., ∀t > δi, fi(t) = ωi,

4. ∀i < j, δi ≤ δj and t 7→ (fi − fj)(t) is non-decreasing over [0, δi].

The last condition of the definition ensures that the function has a “Monge”-like property. For
such functions, it is known (e.g. [38]) that many unit execution time scheduling problems are poly-
nomially solvable.

It is easy to verify that the weighted number of late jobs,
∑
wiUi, is an ordered objective function.

On the contrary,
∑
wiCi and

∑
Ti are not ordered objective functions. However, conditions 1 and

2 of Definition 2 hold for these functions and jobs can be renumbered to meet condition 4.

We show how a function like
∑
wiCi or

∑
Ti can be modified, without changing the optimum

value, to become an ordered objective function: Consider a large time point T and alter the functions
fi after T so that ∀t ≥ T, fi(t) = M , where M is another large value. If T and M are large enough,
the optimum of the modified problem is also the optimum of the original one. Moreover, the modified
functions are ordered objective functions.

From now on, we restrict our study to ordered objective functions and we have δ1 ≤ · · · ≤ δn.
By analogy with due date scheduling, we say that a job is late when it is completed after δi and
that it is on-time otherwise. The “late” cost is ωi and the early cost is time-dependant. Notice that
a late job can be scheduled arbitrary late.

We first introduce a dominance property (Section 2.2.1) on starting times and we describe the
variables of the dynamic programming algorithm and the Theorem that links them together (Sec-
tion 2.2.2). The dynamic programming algorithm itself is described in Section 2.2.3.

2.2 Non-Preemptive Problems, 1|ri, pi = p|
∑
fi(Ci) 23

2.2.1 Dominance Property

Proposition 3 provides a characterization of the time points at which jobs start and end on active
schedules.

Proposition 3. In active schedules, start and completion times belong to

Θ = {t|∃ri, ∃l ∈ {0, . . . , n}, t = ri + lp}.

Proof. Consider an active schedule and a job Jk. Let t be the largest time point, before the start
time of Jk, at which the machine is idle immediately before t. If t is not a release date, the job
scheduled immediately after t could be scheduled earlier and thus the schedule would not be active.
t is then a release date, say ri. Between ri and the starting time of Jk, l jobs execute (0 ≤ l ≤ n−1).
Hence the starting time and the ending time of Jk belong to Θ.

Since active schedules are dominant for regular objective functions, we will restrict our search to
schedules where starting times belong to Θ.

2.2.2 Variables Definition and Decomposition Scheme

Recall that late jobs can be scheduled arbitrary late. Hence, there is no point to assign a starting
time to late jobs. In the following, when we refer to a schedule H of some subset of jobs O, it does
not mean that all jobs in O are in the schedule (the on-time jobs only are in the schedule). So the
“cost” of H with respect to O is

• the sum, over all jobs Ji ∈ O scheduled in H, of fi(Ci)

• plus the sum, over all other jobs Ji ∈ O not scheduled in H, of ωi.

For any integer k ≤ n, let Uk(s, e) be the set of jobs whose index is lower than or equal to k and
whose release date is in the interval [s, e) (same definition as in the preemptive case). Let Fk(s, e)
be the minimal cost over all feasible schedules H of the jobs in Uk(s− p, e) such that

1. no machine is used before s on H,

2. no machine is used after e on H,

3. starting times of jobs on H belong to Θ.

Fk(s, e) is always defined since an empty schedule (i.e., a schedule where all jobs of Uk(s − p, e)
are late) is a feasible schedule and meets Constraints 1, 2 and 3. Notice that given our definition,
F0(s, e) is equal to 0.

��

��

��

��

������������������������������

������������������������������

��
��
��

������
���
	�		�	
	�	

�

�

�

�

�

������
������
���

���������������
������

���������������
���������������

s et k Jk

Figure 2.2: Relative positions of Jk (starting at tk), s and e.

Proposition 4. Let k ∈ [1, n] and let [s, e) be any time interval. If rk /∈ [s − p, e), Fk(s, e) =
Fk−1(s, e). If rk ∈ [s− p, e), then Fk(s, e) is equal to min(ωk + Fk−1(s, e), F

′); where

F ′ = min
max(s, rk) ≤ tk

tk + p ≤ min(e, δk)
tk ∈ Θ

Fk−1(s, tk) + Fk−1(tk + p, e) + fk(tk + p).

(If F ′ is undefined, assume that F ′ =∞.)

24 Scheduling Equal Length Jobs on a Single Machine

Proof. If rk /∈ [s − p, e) the proposition holds because Uk(s − p, e) = Uk−1(s − p, e). Now, assume
that rk ∈ [s− p, e).
We first prove that ωk + Fk−1(s, e) ≥ Fk(s, e) and that F ′ ≥ Fk(s, e).

• The schedule that realizes Fk−1(s, e) and where Jk is late is feasible for the set of jobs Uk(s−
p, e). The cost of this schedule is ωk + Fk−1(s, e). So, we have ωk + Fk−1(s, e) ≥ Fk(s, e)

• Assume that F ′ is finite. According to the definition of F ′, there exists a time point tk such that
(1) tk ≥ max(s, rk), (2) tk ≤ min(e, δk)− p and (3) F ′ = Fk−1(s, tk) +Fk−1(tk, e) + fk(tk + p).
Let H1 and H2 be two schedules that realizes respectively Fk−1(s, tk) and Fk−1(tk + p, e).
Notice that any job in Uk−1(s− p, e) is either late or scheduled in H1 or in H2. Consider the
schedule H built as follows: schedule Jk at time tk and “add” H1 and H2. Given the definition
of Fk−1, H is a feasible schedule of Uk(s − p, e), i.e., jobs do not overlap in time and start
(after their release dates) at time points that obviously belong to Θ. On top of that, H is idle
before s and after e. Since tk + p ≤ δk, Jk is on-time and thus, the cost of H is exactly F ′.
Hence, F ′ ≥ Fk(s, e).

We now prove that min(ωk +Fk−1(s, e), F
′) ≤ Fk(s, e). Consider a schedule that realizes Fk(s, e)

and let O be the set of jobs scheduled in this schedule (jobs in O−Uk(s− p, e) are late). Among all
schedules (1) that realize Fk(s, e) and (2) in which the same set of jobs O are scheduled, consider
the schedule H that lexicographically minimizes the vector made of completion times of jobs in O.
(The completion time of the job in O, with the smallest index, is minimum, then the completion
time of the job in O, with the second smallest index, etc.). The job Jk is either late or on-time on
H.

• If Jk is late thenH is also a feasible schedule for Uk−1(s−p, e) and its cost is exactly Fk(s, e)−ωk

(the late cost ωk is removed since Jk is not considered any longer). Thus, Fk(s, e) − ωk ≥
Fk−1(s, e) and our claim holds.

• Now assume that Jk is on-time and let tk ∈ Θ be the starting time of Jk in H. Note that
tk + p ≤ min(e, δk) and max(s, rk) ≤ tk. In the following, we show that this starting time
allows us to “partition” all jobs.
Suppose that there is a job Ji with ri ≤ tk that is executed on-time after Jk, at time ti in H
(tk ≤ ti). Let H′ be the schedule obtained from H by exchanging the jobs Ji and Jk. The
exchange is valid because ri ≤ tk and moreover, both jobs remain on-time because δi ≤ δk.
The relative cost ∆ of the exchange is

∆ = fi(tk + p) + fk(ti + p)− (fi(ti + p) + fk(tk + p))
= (fi − fk)(tk + p)− (fi − fk)(ti + p).

Note that ti + p ≤ δi because Ji is on-time. Moreover, i < k and thus t 7→ (fi − fk)(t) is
non-decreasing over [0, δi]. Hence ∆ ≤ 0. Given the definition of Fk(s, e), ∆ cannot be strictly
negative (this would contradict the fact that H realizes the minimum). Hence H and H′ have
the same cost. However, H′ is better than H for the lexicographical order. This contradicts
our hypothesis on H. Hence, all jobs with a release date lower than or equal to tk are late or
are scheduled before tk.
Now, let us decompose H. Let H1 and H2 denote the left and the right parts of H (before tk
and after tk + p). The cost of H is the sum of the costs of H1 and H2 plus fk(tk + p). Since all
jobs with a release date lower than or equal to tk are late or are scheduled before tk, the cost
of H1 is greater than Fk−1(s, tk) and the cost of H2 is greater than Fk−1(tk + p, e). Hence,
Fk(s, e) ≥ Fk−1(s, tk) + Fk−1(tk + p, e) + fk(tk + p).

2.2.3 A Dynamic Programming Algorithm

Active schedules are dominant so, the optimum is exactly Fn(mint∈Θ t,maxt∈Θ t). Thanks to The-
orem 4, we have a straight dynamic programming algorithm to reach the optimum. The relevant

2.2 Non-Preemptive Problems, 1|ri, pi = p|
∑
fi(Ci) 25

values for s and e are exactly those in Θ. The values of Fk(s, e) are stored in a multi-dimensional
array of size O(n5) (n possible values for k, n2 possible values both for s and e). Our algorithm
works as follows:

• In the initialization phase, F0(s, e) is set to 0 for any values s, e in Θ (s ≤ e).

• We then iterate from k = 1 to k = n. Each time, Fk is computed for all the possible values of
the parameters thanks to the formula of Theorem 4, and to the values of Fk−1 computed at
the previous step.

The initialization phase runs in O(n4) because the size of Θ is upper bounded by n2. Afterwards,
for each value of k, O(n4) values of Fk(s, e) have to be computed. For each of them, a maximum
among O(n2) terms is computed (because there are O(n2) possible values for tk ∈ Θ). This leads
to an overall time complexity of O(n7). A rough analysis of the space complexity leads to an O(n5)
bound but since, at each step of the outer loop on k, one only needs the values of F computed at
the previous step (k− 1), the algorithm can be implemented with 2 arrays of O(n4) size: one for the
current values of F and one for the previous values of F . (To build the optimal schedule, all values
of Fk(s, e) have to be kept; hence the initial O(n5) bound applies.)

26 Scheduling Equal Length Jobs on a Single Machine

Chapter 3

Scheduling Equal Length Jobs on
Parallel Machines

In this Chapter, we consider the situation where m identical parallel machines are available. In
the preemptive case (Section 3.1), we show that, if all jobs are released at time 0, the total
tardiness problem can be solved in polynomial time thanks to a simple LP formulation of the
problem. We also present a dynamic program to minimize the weighted number of late jobs. In the
non-preemptive case (Section 3.2), we generalize the results obtained on a single machine and
we show that

∑
wiUi,

∑
wiCi and

∑
Ti can be minimized in polynomial time for any fixed value

of m. These results have been published in [13]. Finally, we study the weighted number of late
jobs criteria in a Unit Execution Time open-shop environment Om|pij = 1, ri|

∑
wiUi (Section

3.3). We use a result from Brucker, Jurisch and Jurisch to transform the UET open-shop into a
preemptive parallel machine problem and we show that it can be solved in polynomial time with a
rather complex Dynamic Program.

3.1 Preemptive Problems

3.1.1 Maximal Lateness, P |pmtn|Lmax

We study the scheduling situation where n jobs J1, · · · , Jn with processing times p1, · · · , pn have to
be preemptively scheduled on m parallel identical machines. Preemption means that jobs can be
interrupted at any time and resumed later on either machine. A Deadline d̄i is associated to each job
Ji and the question is whether there is a schedule meeting all constraints or not (P |pmtn, d̄i| − −).

Deadline Scheduling. Horn [122] has shown that there is a feasible schedule if and only if
∀i, pi ≤ d̄i and ∀i,

∑

j max(0, pj −max(0, d̄j − d̄i)) ≤ md̄i. Sahni’s algorithm builds a schedule [197]
in O(n logmn) steps. Sahni and Cho [198] have shown that the same problem on uniform machines
(where each machine execute jobs at its own speed) could be solved in O(n log n+mn).

Due-Date Scheduling. The Lmax problem is known to be solvable in O(n logm+mn) thanks
to an Algorithm of Labetoulle, Lawler, Lenstra and Rinnoy Kan [136]. Actually this algorithm also
works for Q|pmtn|Lmax the problem where machines are uniform.

In the following, we describe an O(n logn) algorithm for P |pmtn|Lmax. This improves on the
previous ones for large values of m. To build the optimal schedule, our algorithm works as follows:

1. The optimum Lmax value is computed,

2. deadlines are set to the due-dates value plus Lmax and the corresponding schedule is built
thanks to Sahni’s algorithm

The crucial step is the computation of Lmax (Sahni’s algorithm runs in O(n logmn) steps so, step 2
runs in O(n log n)).

28 Scheduling Equal Length Jobs on Parallel Machines

When the maximal lateness Lmax is fixed, one can simply increase due-dates of Lmax and use
the Horn’s [122] conditions to test whether there is a solution with such a maximal lateness. Hence,
to reach the minimum maximal lateness, one has to compute the minimal value Lmax such that:

∀i, pi ≤ di + Lmax (3.1)

∀i,
∑

j

max(0, pj −max(0, dj − di)) ≤ m(di + Lmax) (3.2)

Actually, this minimum value Lmax is exactly equal to

max

(

max
i
pi − di,max

i

⌈∑

j max(0, pj −max(0, dj − di))

m

⌉

− di

)

(3.3)

Algorithm 1 computes the values
∑

j max(0, pj−max(0, d̄j−d̄i)) for all i in O(n log n). We introduce
the function W (t)

W (t) =
∑

j

max(0, pj −max(0, d̄j − t)) (3.4)

Note that the function W (t) is piecewise linear, continuous and non-decreasing. Moreover, the time
points at which the slope changes are either deadlines or d̄i − pi values. We first build two ordered
lists D and DP of integer values that contain respectively the deadlines and the d̄i− pi values. Two
indices iD and iDP are used to iterate over these lists. D and DP are merged in a list T that contains
all relevant time points. The algorithm starts at time 0 and iterate over relevant time points in T .
Between two of them, the slope of the function W (t) does not change and when we encounter a
deadline, it is easy to see that the slope decreases of 1 while when a d̄i − pi value is encountered
and that the slope increases of 1 when a deadline is met (cf., the “while” loops of Algorithm 1 lines
11–14 and 15–18). Once the new slope is computed one has simply to increase W of slope(t− told),
told being the previous value taken by t.

Algorithm 1 Computation of W (t) for t ∈ T

1: D := ∅,DP := ∅
2: for i = 1 to n do
3: Add d̄i to D, add d̄i − pi to DP
4: end for
5: Sort D and DP in non-decreasing order
6: Merge D and DP into T and remove duplicated values
7: W := 0, told := 0, slope := 0
8: iD := 1, iDP := 1
9: for t ∈ T do

10: W := W + slope(t− told) at this point, W (t) equals W

11: while DP [iDP] = t do
12: slope := slope + 1
13: iDP := iDP + 1
14: end while
15: while D[iD] = t do
16: slope := slope− 1
17: iD := iD + 1
18: end while
19: told := t
20: end for

The time complexity of Algorithm 1 is O(n log n) since (1) the initial sorting requires O(n log n)
steps, (2) merging two lists can be done in linear time and (3) the total number of iterations
performed inside the “while” loops equals the size of the lists, i.e., O(n). This algorithm is closely
related to the algorithm designed in Section 9.2.3 for computing the “Required Energy Consumption”
of a set of jobs over time.

3.1 Preemptive Problems 29

3.1.2 Total Tardiness, P |pmtn, pi = p|
∑

Ti

Brucker, Heitmann and Hurink [40] have shown that preemption is redundant for P |pmtn, pj =
1|
∑
Tj . Hence the problem can be reduced to a simple assignment problem. We introduce a more

general technique applicable to a wider range of problems. Let us consider the class of problems
P |pmtn, pj = p|

∑
fj , where fj are convex nondecreasing functions such that differences fi − fj are

all monotone functions. Since tardiness Tj = max{0, Cj − dj} meet these conditions, P |pmtn, pj =
p|
∑
Tj is in the class. Note that

∑
Tj is a piecewise linear function. We assume that the jobs are in

a linear order where for each pair of jobs Ji and Jj the functions fi−fj are either strictly increasing
or constant if i < j. As it is shown in [15], such an order always exists.

It can be trivially shown by the exchange argument that for any problem in the class there
exists an optimal schedule where i ≤ j ⇒ Ci ≤ Cj . Let us consider completion times Cj for all
j = 1, 2, . . . , n as deadlines. It is known [122] that a feasible schedule for the decision problem
P |pmtn with deadlines Cj exits if and only if (see Equation 3.3)

∀j :
∑n

i=1 max{0, pi −max{0, Ci − Cj}} ≤ Cjm and Cj ≥ pj .

Under the conditions pj = p and i ≤ j ⇒ Ci ≤ Cj this predicate is

∀j :
∑n

i=j+1 max{0, p− Ci + Cj} ≤ mCj − jp and Cj ≥ p.

Introducing additional variables Xij = max{0, p− Ci + Cj} for all i = 2, 3 . . . , n and j = 1, 2, . . . , n
we finally obtain the convex program of minimizing

∑n
j=1 fj(Cj) under the linear constraints

∀j :
∑n

i=j+1 Xij ≤ mCj − jp and Cj ≥ p,
∀i : ∀j : Xij ≥ p− Ci + Cj and Xij ≥ 0.

For any convex piecewise linear objective function it can be solved in polynomial time. Once the
optimal completion times are known, the optimal schedule can be produced by Sahni’s algorithm
[197].

3.1.3 Weighted Number of Late Jobs, Pm|pmtn, pi = p|
∑

wiUi

In Section 3.1.3 we propose a variant of Sahni’s Algorithm for Pm|pmtn, d̄i|−. The particular
structure of the algorithm allows us to derive a pseudopolynomial Algorithm for Pm|pmtn|

∑
wiUi

(Section 3.1.3). We will see (Section 3.1.3) that when processing times are equal, the Algorithm
runs in polynomial time.

An Algorithm to Build a Feasible Schedule

Given a set of deadlines, we describe an algorithm that builds a feasible schedule (if one exists).
Informally speaking, the algorithm iterates over jobs and at each step, the current job is scheduled.
The first machine is loaded as much as possible, then the second, etc. It is very similar to the
algorithm of Sahni [197] but the structure of the schedule is slightly different and will be of prime
interest for further developments in this chapter.

For each machine u and each job Ji, let pu
i be the number of time units of Ji scheduled on

machine u and let Cu
i denote the completion time of the piece of Ji scheduled on machine u. By

convention, Cu
i is set to Cu

i−1 if Ji is not being processed on machine u. Throughout one iteration,
pu

i and Cu
i are computed and the processing time as well as the deadline of the job are decreased by

pu
i (cf., Algorithm 2).

It is easy to understand that if the algorithm terminates, all jobs are fully scheduled and the
schedule is feasible (decreasing the deadline of Ji at each step ensures that there is no overlap in
time of the same job). Notice that structure of the algorithm implies that C1

i ≥ C
2
i ≥ · · · ≥ C

m
i and

that machines are never idle. Such schedules are said to have a “staircase” structure.

30 Scheduling Equal Length Jobs on Parallel Machines

Algorithm 2 Scheduling on-time {J1, · · · , Jn}

1: for u = 1 to m do
2: Cu

0 := 0 initialization with a fake job

3: end for
4: for i = 1 to n do
5: for u = 1 to m do
6: pu

i := max(0,min(pi, d̄i − Cu
i−1))

7: Schedule pu
i units of Ji between Cu

i−1 and Cu
i−1 + pu

i on machine u
8: pi := pi − pu

i

9: d̄i := d̄i − pu
i

10: Cu
i := Cu

i−1 + pu
i

11: end for
12: if pi > 0 then
13: All jobs cannot be on-time, exit
14: end if
15: end for

Now, we prove that if the algorithm does not terminate, there is no feasible schedule. In the
following, Si denotes the schedule built by the algorithm at iteration i and for any schedule S, S(t)
denotes the set of jobs that are being processed at t on S. We say that a schedule Q of a subset of
jobs can be extended if and only if there is a feasible schedule S of J1, · · · , Jn on which all jobs of
Q are scheduled at the same time-points as in S.

Proposition 5. If Si−1 can be extended to a feasible schedule, Si can also be extended to a feasible
schedule.

Proof. Let S be a schedule that extends Si−1 on which the starting time of job Ji is maximal. We
claim that in S, job Ji is scheduled continuously from its starting time to its deadline. Suppose this
is not true, and consider a time point t < d̄i such that Ji is not being processed in [t, t + 1) but is
being processed somewhere before. Let t′ < t be the first time slot at which Ji is processed.

If |S(t)| < m then we can obviously remove Ji from S(t′) and add it to S(t). This would
contradict our hypothesis on the starting time of Ji. Hence, S is full at time t.

We are going to show that the unit of Ji of S(t′) can be exchanged with one unit of some job of
S(t). To do that we evaluate |S(t)−Si−1(t)|. It is equal to |S(t)|− |Si−1(t)| because Si−1(t) ⊆ S(t).
Hence it equals m − |Si−1(t)|. Recall that Si−1 has a staircase structure so, |Si−1(t

′)| ≥ |Si−1(t)|.
Hence we have

|S(t) − Si−1(t)| ≥ m− |Si−1(t
′)| (3.5)

≥ |S(t′)− Si−1(t
′)| (3.6)

The sets S(t)−Si−1(t) and S(t′)−Si−1(t
′) are not identical since Ji belongs to the first one and not

the second one. Hence there is a job Jj ∈ S(t)−Si−1(t) that does not belong to S(t′)−Si−1(t
′). We

can perform the exchange between Ji and Jj because the deadlines are not lower than d̄i (because
jobs are scheduled one after the other in non-decreasing order of deadlines). This exchange improves
the starting time of Ji; which contradicts our hypothesis.

Let u be the smallest index such that Cu+1
i−1 +pi ≤ d̄i. Algorithm 2 schedules exactly Cu

i−1−(d̄i−pi)

units of Ji between Cu+1
i−1 and Cu

i−1 (after this date, Ji is scheduled continuously until its deadline).
Exactly the same amount of Ji is scheduled over this interval in S. So over each staircase, the same
number of units of Ji are scheduled in both S and Si−1. To transform S into an extension of Si,
we keep the jobs J1, · · · , Ji−1 fixed, we keep the schedule as it is after time d̄i and we reschedule
over each time interval defined by a staircase the pieces of jobs that execute there. The rescheduling
is achieved thanks to Mc Naughton’rule by scheduling first job Ji on the machine whose index is
minimal.

3.1 Preemptive Problems 31
�
�

0� 5� 10� 15�

J1�(d1�=�5,�p1�=�4)�

J2�(d2�=�7,�p2�=�5)�
�

J3�(d3�=�8,�p3�=�7)�
�

J4�(d4�=�10,�p4�=�3)�
�

J5�(d5�=�10,�p5�=�9)�
�

J6�(d5�=�14,�p5�=�11)�
�

Figure 3.1: Scheduling 6 jobs on 4 machines with Algorithm 2

The time complexity of Algorithm 2 is O(nm). This algorithm is not as efficient as Sahni’s
algorithm that can be implemented in O(n logmn) steps. However, the fact that machine 1 is
always loaded as much as possible, then machine 2, etc., is of prime interest for us. This structure of
the schedule will be used later on to precompute the set of possible completion times for the

∑
wiUi

problem with identical processing times.

Recursion Formula for
∑
wiUi

The main interest of Algorithm 2 is that throughout its execution we have a staircase profile, i.e.,
machines are never idle and the first machine is always more loaded than the second one, etc. The
weighted number of late jobs problem can be solved by dynamic programming. Informally speaking,
the current state is defined by an index i that determines the jobs that remain to be scheduled and
by the time points C1 ≥ C2 ≥ · · · ≥ Cm at which machines 1, · · · ,m become idle. The current job
Ji is either late or on-time. In the latter case it is scheduled according to Algorithm 2.

Definition 3. For any C1 ≥ · · · ≥ Cm and any i ≤ n, let Wi(C
1, · · · , Cm) be the minimum weighted

number of late jobs among schedules of {Ji, · · · , Jn} on which machines 1, · · · ,m are not available
before time C1, · · · , Cm.

A shown in Proposition 6 We have a simple recursion formula between variablesWi(C
1, · · · , Cm).

Proposition 6. If Cm + pi > di then

Wi(C
1, · · · , Cm) = Wi+1(C

1, · · · , Cm) + wi (3.7)

otherwise,
Wi(C

1, · · · , Cm) = min(Wi+1(C
1, · · · , Cm) + wi,Wi+1(C

1
i , · · · , C

m
i)) (3.8)

where Cu
i is completion time of Ji when scheduled according to lines 5–11 of Algorithm 2 where

C1, · · · , Cm play the role of C1
i−1, · · · , Ci− 1m.

Proof. If Cm + pi > di, Ji cannot be on-time and thus, we have to take into account the “late” cost
wi and the remaining jobs are scheduled by induction. If Cm + pi ≤ di, then Ji can be either late
or on-time. If job Ji is on-time, it is valid to schedule it according to Algorithm 2 because it is the
unscheduled job with minimum due-date and because we have a staircase profile (C1 ≥ · · · ≥ Cm).
The remaining jobs are scheduled by induction. If the job Ji is late, we have to again take into
account the “late” cost wi.

32 Scheduling Equal Length Jobs on Parallel Machines

A Pseudopolynomial Algorithm

Proposition 6 leads to a straight pseudo-polynomial algorithm. First of all, Wn+1(C
1, · · · , Cm) is

set to 0 for all possible values of (C1, · · · , Cm) such that ∀j, Cj ≤ dn (initialization). Jobs Ji are
then taken in decreasing order and the recursion formula is applied on each combination of the
Cu values with C1 ≥ · · · ≥ Cm. This leads to a time complexity of O(nmDm), where D = dn

is the maximal due-date, since (1) the initialization runs in O(Dm) and (2) for each job Ji, there
are O(Dm) combination of parameters that have to be tested and each time the cost of scheduling
Ji according to Algorithm 2 is O(m). A rough analysis of the space complexity required for this
dynamic programming algorithm is O(nDm). However, at each step of the outer loop on i, one only
needs the values of W computed at the previous step (i − 1), the algorithm can be implemented
with 2 arrays of O(Dm) size: one for the current values of W and one for the previous values of W .

Identical Processing Times

Now consider the case where jobs have identical processing times. Our idea is to use the Dynamic
Programming algorithm of Section 3.1.3 to schedule these jobs. However, we will see that the
completion times of jobs take only a small number (i.e., polynomially bounded for any fixed value
of m) of possible values. Let us come back to the deadline scheduling problem and let us analyze
what happens when applying Algorithm 2 on n jobs with identical processing times. Proposition 7
exhibit the structure of the completion time on the first machine while Propositions 8 and 9 provide
a recursive formula to compute the structure of the completion times on machine u when it is known
on 1, · · · , u−1. To simplify presentation, we assume that the first job is a fake job with p1 = d̄1 = 0.

Proposition 7. Throughout Algorithm 2, C1
i equals a due-date modulo p.

Proof. (By induction on the iteration i of Algorithm 2). If Ji is fully scheduled on machine 1 then
C1

i is increased of p and the proposition holds. Otherwise the due-date d̄i has been met, i.e., C1
i = d̄i

and the proposition also holds.

Proposition 8. If Ji is not completed on machine u ≥ 2 (i.e., if it is also scheduled on u+ 1, etc.)
then Cu

i , the completion time of Ji on u, is equal to Cu−1
i−1 .

Proof. Immediately comes from the structure of Algorithm 2 (cf., Figure 3.2).

�
�

Ciu�

mac.�u�

1
1
−

−
u
iC

Ciu�

1
1
−

−
u
iC

Ji�is�not�completed�on�machine�u� Ji�is�completed�on�machine�u�

Figure 3.2: Illustration of Proposition 8

Proposition 9. If Ji is completed on machine u (i.e., if it is not scheduled on u + 1, etc.) then
there is a job Jj that is not completed on machine u such that (cf., Figure 3.3)

Cu
i = (i− j)p+ Cu

j −
u−1∑

v=1

(Cv
i − C

v
j) (3.9)

3.1 Preemptive Problems 33

Proof. Let Jj (j < i) be the job with maximal index that is not completed on machine u but on a
later machine. As shown on Figure 3.3, the i− j jobs {Jj+1, · · · , Ji} are scheduled between C1

j and

C1
i on the first machine, between C2

j and C2
i on the second machine, etc. They are all completed

before the u-th machine. Since machines are never idle and since the total processing time of jobs
is (i− j)p, we have

u∑

v=1

(Cv
i − C

v
j) = (i− j)p (3.10)

Hence, (3.9) holds. Now assume that there is no such job Jj then all jobs are completed on u or
on a previous machine. So between time 0 and the completion time of Ji on each machine, we had
enough space to schedule all jobs, i.e.,

u∑

v=1

Cv
i = ip (3.11)

With the convention p1 = d̄1 = 0, (3.9) holds.

Note that in the previous proposition, Cu
j is also equal to the completion time of some other job

on machine u− 1 (cf., Proposition 8).

Job Jj Job Ji Jobs Jj+1, ..., Ji-1

mac. u

Figure 3.3: Jobs between Jj and Ji

Now let us come back to the
∑
wiUi problem and let us compute machine per machine some

sets of time points T1, · · · , Tm that include all possible completion times. Due to Proposition 7, we
have

T1 = {di + λp, 1 ≤ i ≤ n, 1 ≤ λ ≤ n} (3.12)

Thanks to Proposition 9, we can compute recursively T2, T3, etc.. Indeed, a value t ∈ Tu is obtained
by picking

• u − 1 values (α1, · · · , αu−1) respectively in T1, · · · , Tu−1 (these values play the role of the
completion times of Jj on the u− 1 first machines in Proposition 9),

• 1 value in Tu−1 that corresponds to the completion time of Jj on the machine u (as we have
noted, this value is also equal to the completion time of some other job on machine u− 1),

• u − 1 values (β1, · · · , βu−1) respectively in T1, · · · , Tu−1 that play the role of the completion
times of Ji on the u− 1 first machines,

• an integer λ ∈ {1, · · · , n} that would equal j − i in Proposition 9

34 Scheduling Equal Length Jobs on Parallel Machines

and by computing

t = α+ λp−
u−1∑

v=1

(βv − αv) (3.13)

It is easy to get a rough upper bound of |Tu|:

|Tu| ≤ n|Tu−1|
u−1∏

v=1

|Tv|
2 ≤ n|Tu−1|

2u−1 (3.14)

The key point is that there are O(nf(m)) values in Tm where f is some function that depends
only of m (e.g., f(m) = 2mm! is a valid upper bound). So, for any fixed value of m, we have
a polynomial number of possible completion times. Once they are computed, we can restrict the
dynamic programming search to those values of the completion times and we obtain a strongly
polynomial algorithm for Pm|pmtn, pi = p|

∑
wiUi.

3.2 A Non-Preemptive Problem, Pm|ri, pi = p|
∑

wiUi

In this section, we show that, in the non-preemptive case, most of the results described in Chapter
2 can be extended to the situation where m parallel identical machines are available.

P |ri|
∑
fi(Ci) consists of finding a set of completion times Ci for each job Ji such that (1) jobs

start after their release date, i.e., ∀i, Ci − pi ≥ ri, (2) no more than m machines are used at any
time t, i.e., ∀t, |{Ji : Ci − pi ≤ t < Ci}| ≤ m, and (3) the objective function

∑

i fi(Ci) is minimal.
In the following, a schedule meeting (1) and (2) is said to be feasible.

We study the special case where processing times are equal. As shown in the literature, this
assumption sometimes allows to exhibit polynomial time algorithms for problems that are NP-hard
in the general case:

• Scheduling identical jobs on uniform parallel machines (i.e., on machines that do not run at
the same speed), is polynomial when release dates are equal and when the scheduling criteria
is non-decreasing in the job completion times (see for instance [86]). In the case of distinct
release dates, Dessouky, Lageweg, Lenstra and van de Velde show ([86]) that both the problem
of minimizing makespan and the problem of minimizing the sum of the completion times (for
a fixed number m of uniform machines) are polynomial.

• Simons ([201]) provides a polynomial algorithm to minimize the sum of the completion times
when processing times are equal (P |pi = p, ri|

∑
Ci) while the simple problem (1|ri|

∑
Ci) is

NP-Hard [147].

We show that, for any ordered objective function F (Definition 2), Pm|ri, pi = p|F can be solved
in polynomial time. Hence, Pm|pj = p, rj |

∑

j wjCj , Pm|pj = p, rj |
∑

j Tj and Pm|pj = p, rj |
∑

j Tj

are in P .
We extend a dominance property (Section 3.2) initially introduced for the single machine case

and we describe the variables of the dynamic programming algorithm and the Proposition that links
them together (Section 3.2). The dynamic programming algorithm itself is described in Section 3.2.

Dominance Property

As for the one-machine case, we can restrict our search to active schedules. Proposition 10 provides
a characterization of the time points at which jobs start and end on active schedules.

Proposition 10. In active schedules, start and completion times belong to

Θ = {t|∃ri, ∃l ∈ {0, . . . , n}, t = ri + lp}.

Proof. Same proof as Proposition 3.

3.2 A Non-Preemptive Problem, Pm|ri, pi = p|
∑
wiUi 35

Variables Definition and Decomposition Scheme

Recall that late jobs can be scheduled arbitrary late. Hence, there is no point to assign a starting
time to late jobs. In the following, when we refer to a schedule H of some subset of jobs O, it does
not mean that all jobs in O are in the schedule (the on-time jobs only are in the schedule). So the
“cost” of H with respect to O is

• the sum, over all jobs Ji ∈ O scheduled in H, of fi(Ci)

• plus the sum, over all other jobs Ji ∈ O not scheduled in H, of ωi.

Roughly speaking, the decomposition scheme for the single machine case (Proposition 4) relies on
a particular time point tk ∈ [s, e) that allows us to split the problem into two sub-problems (between
s and tk and between tk and e). The same scheme is kept here, however s and e are replaced by two
vectors σ and ε that represent some resource profiles. We introduce more formally this notion.

Definition 4. A resource profile ξ is a vector (ξ1, ξ2, . . . , ξm) such that ξ1 ≤ ξ2 ≤ . . . ≤ ξm and
ξm − ξ1 ≤ p. In the following, Ξ denotes the set of resource profiles ξ such that ∀i, ξi ∈ Θ.

Intuitive meaning of resource profiles. A resource profile ξ = (ξ1, ξ2, . . . , ξm) represents the
state of the resource at some time point ξ1 (in practice this time point always matches the starting
time or the completion time of a job). If q machines are idle at time ξ1 then the q first components
of the resource profile equal ξ1. The other components are the completion times of the m − q jobs
that are being processed at time ξ1. Since the processing time of jobs is p, we have ∀i, ξi − ξ1 ≤ p.
The state of the resource is considered from a global point of view and thus, the ith component of
the resource profile is not systematically related to the ith machine. In the following, some “left”
resource profiles σ are used to state that no machine is available before σ1, one machine is available
between σ1 and σ2; two machines are available between σ2 and σ3, etc. Conversely, some “right”
resource profiles ε are used to state that no machine is available after εm, one machine is available
between εm−1 and εm; two machines are available between εm−2 and εm−1, etc. The resource profiles
σ and ε allow us to determine the exact amount of resource that is available at each time point in
[σ1, εm].

Definition 5. Given two resource profiles ξ and µ, ξ � µ if and only if for any index i in
{1, . . . ,m}, ξi ≤ µi.

Notice that � defines a partial order on resource profiles. We introduce a technical proposition
that will be used later on.

Proposition 11. Given two resource profiles ξ and µ, ξ � µ if and only if for any time point t,
|{i : t < ξi}|+ |{i : µi ≤ t}| ≤ m.

Proof. Sufficient condition. (By contradiction.) Let k be the first index such that µk < ξk. Let
us compute |{i : t < ξi}|+ |{i : µi ≤ t}| for t = µk. It is equal to |{i : µk < ξi}| plus |{i : µi ≤ µk}|;
which is greater than or equal to (m− k + 1) + k > m. This contradicts our hypothesis.
Necessary condition. Let t be any time point. In the following, δ(P) denotes the binary variable
that equals 1 if the condition P holds, 0 otherwise. Notice that for any value of i, δ(t < ξi)+ δ(µi ≤
t) ≤ 1 because ξi ≤ µi. Hence,

|{i : t < ξi}|+ |{i : µi ≤ t}| =
m∑

i=1

(δ(t < ξi) + δ(µi ≤ t)) ≤ m.

We now define the variables of the dynamic programming algorithm. For any integer k ≤ n, for
any resource profiles σ and ε (σ � ε), let Fk(σ, ε) be the minimal cost over all feasible schedules of
the jobs in Uk(σm − p, ε1) such that

• starting times belong to Θ,

36 Scheduling Equal Length Jobs on Parallel Machines

• the number of machines available at time t to schedule the jobs in the set Uk(σm − p, ε1) is
m− |{i : t < σi}| − |{i : εi ≤ t}|.

Notice that given our definition, F0(σ, ε) is equal to 0.

ε

���

���

���
���
���
���

���
���
���
���
���
���
���
���
���
���

���

���

���
���
���
���
���
���

���

���

σ J

θ

k

Figure 3.4: Resource profiles

Proposition 12. Let k ∈ [1, n] and let σ � ε be two resource profiles. If rk /∈ [σm − p, ε1),
Fk(σ, ε) = Fk−1(σ, ε). If rk ∈ [σm − p, ε1), Fk(σ, ε) is equal to min(ωk + Fk−1(σ, ε), F

′); where

F ′ = min
θ ∈ Ξ
rk ≤ θ1
σ � θ

θ′ = (θ2, . . . , θm, θ1 + p)
θ′ � ε

Fk−1(σ, θ) + Fk−1(θ
′, ε) + fk(θ1 + p)

(If F ′ is undefined, assume that F ′ =∞.)

Notice that in the above formula the value θ′ is derived from θ. Figure 3.4 provides an illustration
of this proposition. Proposition 12 basically states that the optimum schedule for k, σ, ε can be
computed by trying all possible resource profiles θ of Ξ that are “between” the resource profiles σ
and ε. For each candidate resource profile θ, the job Jk starts at θ1.

Proof. First notice that, θ′ is a resource profile because θ ∈ Ξ. Hence the use of Fk−1(θ
′, ε) is correct.

If rk /∈ [σm − p, ε1) the proposition obviously holds because Uk(σm − p, ε1) = Uk−1(σm − p, ε1). We
now consider the case where rk ∈ [σm − p, ε1).
We first prove that ωk + Fk−1(σ, ε) ≥ Fk(σ, ε) and that F ′ ≥ Fk(σ, ε). The first claim is obvious
(consider the schedule that realizes Fk−1(σ, ε), “add” Jk and put it late). Now, let θ ∈ Ξ be the
resource profile that realizes F ′. There is a schedule H1 that realizes Fk−1(σ, θ) and a schedule H2

that realizes Fk−1(θ
′, ε). Notice that any job in Uk−1(σm − p, ε1) is either late or scheduled in H1

or in H2. Consider the schedule H build as follows: schedule Jk at time θ1 and all other jobs in
Uk(σm − p, ε1) at the time they were scheduled on H1 or on H2. Let us prove that H is a feasible
schedule of Uk(σm − p, ε1). Since rk ≤ θ1 and since H1 and H2 are feasible, all jobs are scheduled
after their release date. Moreover, we claim that the m-machine constraint holds.
Let t be any time point. The number of machines used by the jobs scheduled on H1 is upper bounded
by m− |{i : t < σi}| − |{i : θi ≤ t}|. The number of machines used by the jobs scheduled on H2 is
upper bounded by m− |{i : t < θ′i}| − |{i : εi ≤ t}|. Finally, Jk uses a machine at time t if and only
if t ∈ [θ1, θ1 + p). The resource constraint is satisfied at time t if the sum of the upper bounds is
lower than or equal to m− |{i : t < σi}| − |{i : εi ≤ t}|, i.e., if the following expression is lower than

3.2 A Non-Preemptive Problem, Pm|ri, pi = p|
∑
wiUi 37

or equal to 0.

m− |{i : t < θ′i}| − |{i : θi ≤ t}|+ δ(θ1 ≤ t < θ1 + p)

= m−
m∑

i=1

δ(t < θ′i)−
m∑

i=1

δ(θi ≤ t) + δ(θ1 ≤ t < θ1 + p)

= m−

(
m∑

i=2

δ(t < θi) + δ(t < θ1 + p)

)

−
m∑

i=1

δ(θi ≤ t) + δ(θ1 ≤ t < θ1 + p)

= m−
m∑

i=2

(δ(t < θi) + δ(θi ≤ t))− δ(t < θ1 + p)− δ(θ1 ≤ t) + δ(θ1 ≤ t < θ1 + p)

= 1− δ(t < θ1 + p)− δ(θ1 ≤ t) + δ(θ1 ≤ t < θ1 + p) ≤ 0

We have proven that H is a feasible schedule of Uk−1(σm − p, ε1). On top of that, starting times
obviously belong to Θ. The cost of H is exactly F ′ and hence, F ′ ≥ Fk(σ, ε).
We now prove that min(ωk +Fk−1(σ, ε), F

′) ≤ Fk(σ, ε). Consider a schedule that realizes Fk(σ, ε)
and let O be the set of jobs scheduled in this schedule (jobs in O−Uk(s− p, e) are late). Among all
schedules (1) that realize Fk(σ, ε) and (2) in which the same set of jobs O are scheduled, consider
the schedule H that lexicographically minimizes the vector made of completion times of jobs in O.
(The completion time of the job in O, with the smallest index, is minimum, then the completion
time of the job in O, with the second smallest index, etc.). The job Jk is either late or on-time on
H.
If Jk is late then H is it is also a schedule of Uk−1(σm − p, ε1) that could fit between σ and ε. Its
cost cost is exactly Fk(σ, ε)−ωk (the late cost ωk is removed since Jk is not considered any longer).
Hence Fk−1(σ, ε) ≤ Fk(σ, ε).
Now assume that Jk is on-time and let tk be its starting time on H. The proof works as follows.
We first show that on H, jobs with a release date lower than or equal to tk are either late or
start before or at tk. We then exhibit a resource profile θ ∈ Ξ such that (1) θ1 = tk, (2) σ � θ,
(3) θ′ = (θ2, . . . , θm, θ1 + p)� ε. We then conclude the proof.
In H, jobs Ji with ri ≤ tk are late or start before or at tk. Suppose that there is an on-time job Ji

with ri ≤ tk that is executed at time ti > tk on H. Let H′ be the schedule obtained from H by
exchanging the jobs Ji and Jk. H′ is better than H (cf. proof of the second part of Proposition 4).
This contradicts our hypothesis on H.
Definition of θ. Let τ the vector build component per component as follows: The first component
of τ is tk, the time at which Jk starts. The following components of τ are the end times on H of
the jobs (except Jk) that start before or at tk and end strictly after tk. The following components
are the values σi that are strictly greater than tk. Since the resource constraint holds at time t for
H, it is easy to prove that the dimension of τ is lower than or equal to m. The vector τ is extended
to a vector τ ′ of dimension m by adding a sufficient number of times a component tk. Let θ be the
vector obtained from τ ′ by sorting its components in increasing order.
θ belongs to Ξ. Consider a component θj of θ. Either it is the end time of a job and then tk < θj ≤
tk + p) or it is a σi > tk value (and then tk < θj ≤ tk + p otherwise tk would be strictly lower than
σ1 and hence no machine would be available at time tk) or it is equal to tk. Hence, all components
belong to the interval [tk, tk + p], as a consequence θm− θ1 ≤ p. We have proven that θ is a resource
profile. It is also easy to verify that all components of θ belong to Θ and hence θ ∈ Ξ. On top of
that, it is obvious that θ1 = tk. The proof that σ � θ is also immediate given the definition of θ.
θ′ = (θ2, . . . , θm, θ1 + p)� ε. The fact that θ′ is a resource profile comes immediately from θ ∈ Ξ.

Suppose that the relation θ′ � ε does not hold. Then, according to Proposition 11, there is a time
point t such that |{i : t < θ′i}|+ |{i : εi ≤ t}| > m. Recall that ε1 ≥ tk otherwise no machine would
be available at the time point where Jk ends. Hence, if t < tk, |{i : εi ≤ t}| = 0 and consequently,
|{i : t < θ′i}| > m; which contradicts the fact that θ′ is a vector of dimension m. As a consequence,
we have tk ≤ t. Let O be the set of jobs that start before or at tk and end strictly after tk. The
components of θ′, are either the completion times of the jobs in O or the σi values that are strictly
greater than tk or are equal to tk. Hence, the number of components of θ′ that are strictly greater
than t is equal to the sum of (1) the number of jobs in O that end strictly after time t and of (2) the

38 Scheduling Equal Length Jobs on Parallel Machines

number of components of σi that are strictly greater than t. Since tk ≤ t, the jobs in O all start
before t. Hence, the total number of jobs Nt that start before or at t and end strictly after t plus the
number of components of σi that are strictly greater than t, is greater than or equal to |{i : t < θ′i}|.
Hence, |{i : t < θ′i}| + |{i : εi ≤ t}| > m leads to, Nt + |{i : t < σi}| + |{i : εi ≤ t}| > m. This
contradicts the fact that the resource constraint is met at time t on H.
Conclusion. The cost of H, restricted to the jobs with a release date lower than or equal to tk (except
Jk) is not lower than Fk−1(σ, θ). Similarly, the cost of H restricted to the jobs with a release date
greater tk is not lower than Fk−1(θ

′, ε). Hence the total cost of H (Fk(σ, ε)), is greater than or equal
to Fk−1(σ, θ) + Fk−1(θ

′, ε) + fk(θ1 + p).

A Dynamic Programming Algorithm

The optimum is exactly Fn((mint∈Θ t, . . . ,mint∈Θ t), (maxt∈Θ t, . . . ,maxt∈Θ t)). Thanks to Propo-
sition 12, we have a straight dynamic programming algorithm to compute this value. The relevant
values for σ and ε are exactly the vectors in Ξ. We claim that there are O(n2nm−1) = O(nm+1)
relevant resource profiles. Indeed, there are n2 possible values for the first component and once it
is fixed there are only n possible choices for the m − 1 remaining ones (because of the structure of
Θ and because the difference between the m-th component and the first one is upper bounded by
p). This means that there are O(n2m+2) relevant pairs (σ, ε). The values of Fk(σ, ε) are stored in a
multi-dimensional array of size O(n2m+3) (n possible values for k, nm+1 possible values for σ and
nm+1 possible values for ε). Our algorithm then works as follows.

• In the initialization phase, F0(σ, ε) is set to 0 for any values σ, ε in Ξ such that σ � ε.

• We then iterate from k = 1 to k = n. Each time, Fk is computed for all the possible values of
the parameters thanks to the formula of Proposition 12, and to the values of Fk−1 computed
at the previous step.

Before analyzing the complexity of the overall algorithm, remark that one can generate easily all
possible resource profiles θ between σ and ε (i.e., σ � θ � ε) in O(nm+1) steps. Indeed, there are
O(n2) possible values θ1 ∈ Θ ∩ [σ1, ε1]. The other components of θ belong to Θ∩ [θ1, θ1 + p]. There
are only O(n) values in this set. Components θi are generated, one after another; each time a test
verifying that σi ≤ θi ≤ εi being performed in constant time.
In the initialization phase, O(n2m+2) pairs (σ � ε) are generated. Afterwards, for each value of
k, O(n2m+2) values of Fk have to be computed. For each of them, O(nm+1) resource profiles θ
are generated with σ � θ � ε. A minimum among O(nm+1) terms is computed. This leads to an
overall time complexity of O(n3m+4). A rough analysis of the space complexity leads to an O(n2m+3)
bound but since, at each step of the outer loop on k, one only needs the values of F computed at
the previous step (k− 1), the algorithm can be implemented with 2 arrays of O(n2m+2) size: one for
the current values of F and one for the previous values of F .
Notice that we can perform a backward computation on the values Fk(σ, ε) to recover the optimum
schedule. Indeed, for all relevant values of k, σ and ε, it is easy to identify which resource profile θ is
the best (according to the fundamental recursion formula of Proposition 8). Since the starting time
of Jk is the first component θ1 of θ, we can recover the starting times of all jobs at once.

Open Problems

We have shown that scheduling equal length jobs on a fixed number of parallel identical machines is a
polynomial problem for some objective functions. We have established that several open scheduling
problems such as Pm|pj = p, rj |

∑

j wjUj , Pm|pj = p, rj |
∑

j wjCj or Pm|pj = p, rj |
∑

j Tj are
polynomial. The weighted total tardiness problem is still an open problem (even for m = 1).

3.3 UET Open-Shops, Om|pij = 1, ri|
∑

wiUi

We study unit execution time open-shops with integer release dates. As shown below, this problem is
strongly related to the problem of scheduling identical jobs on parallel machines. We show that the

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi 39

minimum weighted number of late jobs can be computed in polynomial time by dynamic program-
ming. The complexity status of the corresponding problem Om|pij = 1, ri|

∑
wiUi was unknown

before.

3.3.1 Problem Definition

We have n jobs {J1, . . . , Jn} to be scheduled on m machines {M1, . . . ,Mm}. Each job Ji consists
of m operations {Oi1, . . . , Oim} that cannot overlap in time. Operation Oij has to be processed on
machineMj during pij time units. A release date ri, a due date di and a weight wi are associated with
each job Ji. In the following, all data are integer. This environment defines an open-shop scheduling
problem. We focus on the problem of minimizing, in the non-preemptive case, the weighted number
of late jobs; a job Ji is late if and only if it is completed after its due date di.

This problem, denoted as O|ri|
∑
wiUi in the standard scheduling terminology (U stands for

Unit penalty per late job), is NP-hard, even if release dates are equal. We study the special case
O|pij = 1, ri|

∑
wiUi where jobs have Unit Execution Time (UET). In this situation, operations of

the same job can be exchanged and the constraint “Operation Oij has to be processed on machine
Mj” can be replaced by “Operations of the same job have to be processed on distinct machines”.
We refer to [38, 47, 112, 135, 209, 210] for extended and up-to-date complexity results on UET shop
scheduling problems.

• Liu and Bulfin have shown that when both release dates and weights are equal, the problem
O|pij = 1|

∑
Ui is polynomial. An O(mn2) algorithm is described in [156].

• Brucker, Jurisch, Tautenhahn and Werner have studied the special case where release dates
are equal and where the number of machines is fixed Om|pij = 1|

∑
wiUi. It is shown in [45]

that the problem can be solved in O(n2mm+1), which is O(n2) for any fixed value of m.

• Different release dates make the problem harder. Gladky [110] has shown that O|ri, pij =
1|
∑
wiUi is NP-hard and Kravchenko [133] has extended the NP-hardness proof to O|ri, pij =

1|
∑
Ui.

• Galambos and Woeginger [107] have shown that for two machines the problem with release
dates O2|pij = 1, ri|

∑
wiUi can be solved in O(n4 logn).

These results leave open the status of the problem Om|pij = 1, ri|
∑
wiUi, for each value of

m greater than or equal to 3. We show that for any fixed value of m, the problem can be solved
in O(n4m2−m+10). In §3.3.2, we recall a well-known transformation of the UET open shop into a
preemptive scheduling problem on identical parallel machines. We introduce in §3.3.3 some domi-
nance properties on this problem. In §3.3.4, we define the variables of the dynamic programming
algorithm and we present the fundamental recursion formula. The algorithm is described in §3.3.5.
Finally, we draw some conclusions in §3.3.6.

3.3.2 Transformation

For the sake of completeness, we briefly recall the main result of [43] concerning the transformation
of UET open-shops into a identical parallel machine scheduling problem. We refer to [210] for recent
developments on the strong links that exist between shop problems and parallel machine scheduling
problems. In the following, F denotes a regular function of the completion times of the jobs.

We can assume that m < n, because when n ≤ m, the optimum schedule can be computed
as follows: Schedule each operation Oij at time tij = ri + j − 1 on the machine Mu+1 with u ∼=
i+ tij [mod m]. It is easy to verify that operations of the same job are processed on distinct machines
at consecutive (and distinct) time points. Now consider two operations Oij and Oi′j′ and suppose
that they are processed at the same time (i.e., tij = ti′j′) on the same machine, then i ∼= i′ [mod m].
Since i and i′ are at most equal to n ≤ m, we have i = i′ and j = j′, which contradicts our
hypothesis. Since each job is completed at its earliest possible completion time, and since F is
regular, the schedule is optimal.

40 Scheduling Equal Length Jobs on Parallel Machines

An instance of the UET open-shop problem is transformed into an instance of a preemptive
parallel machine problem Pm|pmtn, pi = m, ri|F as follows. The number of machines m remains
the same, and each job Ji of the open-shop is transformed into a job of the parallel machine problem
with the same release date and with a processing time pi = m. We keep the term “operation”
for the parallel machine problem. It then denotes a unitary piece of a job. It is obvious that
a feasible schedule of the open-shop is also a feasible schedule of the parallel machine problem.
Brucker, Jurisch and Jurisch [43] have shown that the converse proposition holds. They introduce
an algorithm running in O(mn log2(mn)) that allocates a proper machine to each operation.

Since n release dates have to be coded and because m is fixed, the size of the problem is at least
n (and does not depend of m). Therefore the transformation of Brucker, Jurisch and Jurisch [43]
is polynomial in the size of the problem. Hence, UET open-shop problems are polynomial if one
can preemptively schedule jobs of length m on m identical parallel machines in polynomial time.
Unfortunately the complexity of Pm|pmtn, pi = m, ri|F is still unknown, even for simple criteria
such as the total completion time or the total number of late jobs. We have described (Chapter 2)
an O(n10) dynamic programming algorithm for minimizing, in the preemptive case, the weighted
number of late jobs (with integer release dates) on a single machine when processing times are equal
1|pmtn, pi = p, ri|

∑
wiUi. However, it does not seem that this algorithm can be adapted to parallel

machines. When preemption is not allowed, the problem of scheduling equal length jobs (with integer
release dates) on identical parallel machines is studied and solved in Section 3.2. It is shown that for
several criteria F , including the weighted sum of the completion times and the sum of the tardiness,
the corresponding non-preemptive problem Pm|pi = p, ri|F can be solved in O(n3m+4). Again, a
generalization to the preemptive case of these algorithms, or of other algorithms, initially designed
for the non-preemptive scheduling of equal length jobs [53, 55, 86, 109, 201], seems unlikely.

From now on, we consider the parallel machine scheduling problem Pm|pmtn, pi = m, ri|
∑
wiUi.

This problem is “easier” than the original open-shop because it’s not necessary to precisely allocate
machines to operations. In the search for a solution, we only have to check that no more than m
operations are processed simultaneously. This is the key of the decomposition procedure presented
in §3.3.4.

3.3.3 Dominance Properties

Since when a job is late it can be arbitrarily late, we look for schedules in which a maximum weighted
number of jobs are scheduled between their release date and their due date and we do not schedule
the late jobs. So, in the following, jobs that are scheduled at some time point, are early jobs.

From now on, we suppose that jobs are sorted in non-decreasing order of due-dates, i.e., d1 ≤
d2 ≤ . . . ≤ dn. We first define a set of time points Θ at which jobs start and are completed in some
dominant schedules (cf., Proposition 13).

Definition 6. Θ is the set of time points t for which there exists a release date ri such that ri ≤
t ≤ ri + n+m.

Notice that there are at most n(n+m+ 1) = O(n2) values in Θ.

Proposition 13. Start times and completion times of operations in active schedules belong to Θ.

Proof. A schedule is said to be active if no operation can start earlier without delaying another
operation or violating its release date. Let S be such a schedule, let Ojk be an operation starting at
tjk in S and let ri be the largest release date earlier than or equal to tjk .

If there are at most m time points in [ri, tjk) where at least a machine is idle then, because at
most m − 1 operations of Jj are processed in [ri, tjk), there is a time point x in [ri, tjk) where a
machine is idle and where no operation of Jj is processed. Since rj ≤ ri, the first operation of Jj

that is processed after x can be shifted to time x. This contradicts the fact that S is active.
Hence, between ri and tjk , there are at most m− 1 time points where a machine is idle. Since

there are at most mn operations to schedule (n jobs of length m) and since at most m machines are
available to process these operations, the distance between ri and tjk − (m − 1) is upper bounded
by (mn)/m = n. Hence, tjk ≤ ri + n+m− 1.

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi 41

Since for any regular criteria, any schedule can be changed into an active one, Proposition 13
induces a simple dominance criterion: There is an optimal schedule in which starting times and
completion times belong to Θ. We refine this dominance property.

Definition 7. A schedule is well-ordered in a time interval [s, e] if and only if

• starting times and completion times of operations belong to Θ and,

• for any operation Oip, processed at tip ∈ [s, e), at most (m − 1)m + 1 jobs Jj , with rj ≤ tip
and j ≤ i, are completed after time tip.

A schedule is well-ordered if and only if it is well-ordered in any interval.

Proposition 14. There is an optimal well-ordered schedule.

Proof. Let O be an optimum set of jobs, i.e., a set of early jobs in an optimal schedule and let S be
the schedule of the jobs in O, that lexicographically minimizes the vector U defined as follows. In
(3.15), tij is the starting time of Oij if Ji ∈ O and tij = 0 otherwise (late jobs are not considered).

U = (t1 1, . . . , t1m, t2 1, . . . , t2m, . . . , tn1, . . . , tnm) (3.15)

U is lexicographically minimum, hence, S is active. As a consequence, operations start and are
completed at time points in Θ (cf., Proposition 13). Let Ji be any job in O and let Oip be any
operation of this job. Let V be the set of jobs that are processed at time tip, (i.e., one of their
operations is processed at time tip). For each job Jj ∈ V , there are at most m − 1 time points t
greater than tip at which Jj is processed. Hence, there are (m − 1)m time points t greater than
tip such that a job processed at tip is also processed at time t. Suppose that more than (m − 1)m
jobs Jj ∈ O, such that rj ≤ tip and j < i, are completed after time tip. At least one operation of
one of these jobs, say Ojv , is processed after tip when no job of V is. Let us modify the schedule
S by exchanging Oip and Ojv (the exchange is possible because j < i ⇒ dj ≤ di). The resulting
schedule, after a renumbering of operations, is still optimal. Moreover, the schedule is better for the
lexicographical order than S; which contradicts our hypothesis on S. We have proven that at most
(m − 1)m jobs Jj with rj ≤ tip and j < i, are completed strictly after time tip. Consequently, at
most (m− 1)m+ 1 jobs Jj with rj ≤ tip and j ≤ i, are completed strictly after time tip.

3.3.4 Variables Definitions and Fundamental Recursion Formula

We first introduce the remaining processing time (rpt for short) functions that describe the “state” of
a schedule at some time point (§3.3.4). They allow us to define the dynamic programming variables
(§3.3.4) that are used in the decomposition scheme (§3.3.4 and §3.3.4).

RPT-Functions

Definition 8. The rpt-function of a schedule S at time t is the function that associates to each job
Ji with ri < t, the number of operations of Ji processed after or at t.

Of course, for any rpt-function τ of a schedule at time t, we have 0 ≤ τ(Ji) ≤ m and if di ≤ t
then τ(Ji) = 0 (because late jobs do not appear in the schedule).

Dynamic Variables

We consider some sub-problems defined by five parameters k, s, e, σ, ε, where σ and ε are some
functions respectively defined over {Ji, i ≤ k, ri < s} and {Ji, i ≤ k, ri < e} that take their values
in [0,m]. The sub-problem consists of finding a “feasible” (Definition 9) sub-schedule of the k-first
jobs whose “weight” (Definition 10) in the time-interval [s, e) is maximum.

Definition 9. A schedule S of the k first jobs is feasible for k, s, e, σ, ε if and only if (1) it is well-
ordered and feasible in [s, e) (at most m operations are processed in parallel) and (2) its rpt-functions
at s and e restricted to the k first jobs are σ and ε.

42 Scheduling Equal Length Jobs on Parallel Machines

Definition 10. Let J(S, s, e) be the set of the jobs available after or at s (s ≤ ri) that are fully
processed (i.e., m of their operations are processed) in the interval [s, e) in S. The weight of a
schedule S in [s, e) is

∑

Ji∈J(S,s,e) wi.

Proposition 15 allows us to decompose the computation of the weight of S according to the
characteristics of each job. In the following, we use the notation δ(P) that equals 1 if proposition P
holds, and 0 otherwise.

Proposition 15. Let S be a feasible schedule for k, s, e, σ, ε, let t ∈ [s, e), let τ ′ be the rpt-function
of S at t+ 1 and let V be the set of jobs that are processed at time t. J(S, s, e) is the direct sum of
J(S, s, t), of J(S, t+ 1, e) and of I:

I = {Ji| i ≤ k, s ≤ ri < t+ 1, ε(Ji) = 0, τ ′(Ji) + δ(Ji ∈ V) > 0} (3.16)

Proof. We show that J(S, s, e) ⊆ J(S, s, t) ∪ J(S, t + 1, e) ∪ I . Let Ji ∈ J(S, s, e). We have i ≤ k,
s ≤ ri and ε(Ji) = 0 (otherwise less than m operations would be processed in [s, e)). If Ji is
completed before t then Ji ∈ J(S, s, t). If Ji is such that t+ 1 ≤ ri then Ji ∈ J(S, t + 1, e). Hence,
if Ji is completed after or at t + 1 and if ri < t then the rpt-function of S at t is strictly positive.
Thus, τ ′(Ji) + δ(Ji ∈ V) > 0 hence, Ji ∈ I .
It is obvious that J(S, s, t) ⊆ J(S, s, e) and that J(S, t + 1, e) ⊆ J(S, s, e). Now consider a job
Ji ∈ I . Since τ ′(Ji) + δ(Ji ∈ V) > 0, we know that at least one operation of Ji is processed. Hence,
the whole job Ji is processed somewhere. Since ε(Ji) = 0 and since s ≤ ri, Ji ∈ J(S, s, e).
Finally, we show that the three sets do not intersect. First, it is obvious that J(S, s, t)∩J(S, t+1, e) =
∅. Second, suppose that there exists a job Ji ∈ J(S, s, t) ∩ I . Ji is completed before or at t hence
Ji is neither processed at t (i.e., δ(Ji ∈ V) = 0) nor after t (i.e., τ ′(Ji) = 0); which contradicts
τ ′(Ji) + δ(Ji ∈ V) > 0. Third, suppose that ∃Ji ∈ J(S, t + 1, e) then t + 1 ≤ ri and therefore the
job does not belong to I .

Recall that for each sub-problem we look for a feasible schedule whose weight in [s, e) is maximum.
We introduce some variables that represent this maximal weight.

Definition 11. Wk(s, e, σ, ε) is the weight in [s, e) of the heaviest feasible schedules for k, s, e, σ, ε.
If there is no such schedule, Wk(s, e, σ, ε) = −∞.

According to Proposition 14, there is an optimal well-ordered schedule. The rpt-function of this
schedule after the completion of all jobs is a function ε0 that equals 0 for each job. The rpt-function
of this schedule before or at the minimal release date is defined over ∅. In the following, ∅ will denote
this function. The maximum weighted number of early jobs is then Wn(min(Θ),max(Θ), ∅, ε0).

Informal Description

It now remains to show how the decomposition works. In this section, we describe it in an informal
way. A formal presentation is provided in §3.3.4. Let now k be any value in {0, . . . , n} and let [s, e]
be any time interval. Let σ and ε be two functions and assume that there is a schedule S with
weight Wk(s, e, σ, ε).

• If Jk is not processed in S then, Wk(s, e, σ, ε) = Wk−1(s, e, σ, ε).

• If at least one operation of Jk is processed in [s, e], let t be the earliest time where Jk is
processed after s, let τ and τ ′ be the rpt-functions at time t and t + 1 of S, finally, let
V be the set of jobs that are processed at time t (cf., Figure 3.5). The basic idea is to
decompose the problem into a left sub-problem (with k − 1, s, t, σ, τ) and a right sub-problem
(with k, t + 1, e, τ ′, ε). There is a feasible schedule, as heavy as S, that can be obtained as
follows: Before t, follow a schedule that realizes Wk−1(s, t, σ, τ), at t process the jobs in V
and finally, follow a schedule that realizes Wk(t + 1, e, τ ′, ε) after t + 1. The weight of this
schedule is then equal to Wk−1(s, t, σ, τ) +Wk(t + 1, e, τ ′, ε) plus the weights of “some” jobs
that are neither counted in Wk−1(s, t, σ, τ) nor in Wk(t + 1, e, τ ′, ε) but that are processed in
[s, e). Actually these jobs are those of the set I as defined in Proposition 15.

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi 43

��

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

t+1s t e

Vsub-schedule K sub-schedule L

τσ τ ε’

Figure 3.5: Decomposition scheme

This decomposition leads to a dynamic programming algorithm where we compute all the possible
values of Wk(s, e, σ, ε) are computed. Operations are processed at time points in Θ because feasible
schedules are well-ordered. Hence, there are few time points to consider (|Θ| = O(n2)). However
there are, a priori, (m + 1)n different rpt-functions for each time point. Fortunately, well-ordered
schedules are dominant and allow us to polynomially bound the number of relevant rpt-functions.

Decomposition

We define sets of functions that contain all rpt-functions at time t and t+1 of well-ordered schedules
in which an operation of Jk is processed at t (cf., Proposition 16).

Definition 12. Ψl
k(t) is the set of functions ψ : {Ji|i ≤ k, ri < t} → [0,m] such that (1) ψ(Ji) > 0

for at most l jobs, (2) ψ(Ji) either equals 0 or is greater than or equal to ri +m− t, and (3) ψ(Ji) ≤
max(0, di − t).

Proposition 16. Let S be any feasible schedule for k, s, e, σ, ε and let t be any time point at which

an operation of Jk is processed. The rpt-functions of S at t and t+1 respectively belong to Ψm2+1
k (t)

and to Ψm2−m+1
k (t+ 1).

Proof. For any rpt-function τ at time t of a schedule, the conditions (2) and (3) of Definition 12
always hold: First, consider any job Ji such that τ(Ji) > 0. Since τ(Ji) > 0, the job is early and it
cannot be completed before ri +m. Hence, at most ri +m−t operations of Ji remain to be processed
after t. Hence, τ(Ji) ≥ ri+m−t. Second, notice that for any job Ji, at least max(0, di−t) operations
can be processed after t, and hence, τ(Ji) ≤ max(0, di − (t+ 1)).
Let τ and τ ′ be the rpt-functions of S at time t and t + 1. S is well-ordered in [s, e) and Jk is
processed at t hence, at most m2−m+1 jobs Jj , with rj ≤ t and j ≤ k, are completed strictly after
time t. Thus, τ ′ takes a non-null value for less than m2−m+1 jobs. Between t and t+1, at most m
operations are processed. Therefore, τ takes a non-null value for less than m2−m+1+m = m2 +1
jobs.

Notice that there are at most klml functions in each set Ψl
k(t) (at most l jobs have to be picked

among k and a value in [1,m] has to be chosen for each of these jobs). The number of functions in

the sets Ψm2+1
k (t) and Ψm2−m+1

k (t + 1) is therefore polynomially bounded by nm2+1. This is very
important because we will be able to enumerate all relevant rpt-functions at some time point in
polynomial time.

From now on, k denotes any value in {0, . . . , n}, [s, e] is a time interval, σ and ε are two rpt-
functions. We now introduce the notion of separators. A separator is a set of parameters V, τ ′

related to a time point t ∈ [s, e). As shown in Proposition 17, it summarizes the “state” of the
schedule at t: jobs in V are processed at t and the rpt-function of the schedule at t+ 1 is τ ′.

44 Scheduling Equal Length Jobs on Parallel Machines

Example. Consider the following well-ordered schedule of 8 jobs (r1 = 6, d1 = 9), (r2 = 5, d2 = 8),
(r3 = 5, d3 = 9), (r4 = 5, d4 = 9), (r5 = 3, d5 = 10), (r6 = 1, d6 = 10), (r7 = 1, d7 = 10), (r8 = 2,
d8 = 15). All the jobs are on-time in this schedule.

Time 1 2 3 4 5 6 7 8 9 10

M1 | 7 | 7 | 7 | . | 3 | 3 | 3 | 4 | 4 |

M2 | 6 | 6 | 6 | 8 | 4 | 1 | 1 | 1 | . |

M3 | . | 8 | 5 | 5 | 2 | 2 | 2 | 5 | 8 |

Let us illustrate the notion of separators on this example.

• If τ ′ denotes the rpt-function of the schedule at time 3 (τ ′(J6) = 1, τ ′(J7) = 1, τ ′(J8) = 2) then
(2, {6, 7, 8}, τ ′) is a separator for k = 9, s = 1, e = 17, σ = ∅, ε = ε0. The rpt-functions ∅ and ε0,
as defined in the end of Section 3.3.4, are the rpt-functions of the schedule at time min(Θ) = 1
and max(Θ) = 17. In the following, we will see that the schedule can be decomposed into two
sub-schedules, “before” and “after” the separator (2, {6, 7, 8}, τ ′).

• If τ ′′ denotes the rpt-function of the schedule at time 5 (τ ′′(J5) = 1, τ ′′(J6) = 0, τ ′′(J7) =
0, τ ′′(J8) = 1) then (4, {8, 5}, τ ′′) is a separator for k = 9, s = 3, e = 17, σ = τ ′, ε = ε0.

Definition 13. The triplet (t, V, τ ′) is a separator for k, s, e, σ, ε if and only if

1. t and t+ 1 are time points of Θ and t ∈ [max(s, rk),min(e, dk)),

2. V 3 Jk is a subset of at most m jobs in {Ji|i ≤ k, ri ≤ t < di},

3. if s ≤ rk, τ ′(Jk) = m− 1 otherwise, τ ′(Jk) = σ(Jk)− 1,

4. ∀i ≤ k, if ri < s then σ(Ji) ≥ τ ′(Ji) + δ(Ji ∈ V); if ri < t+ 1, τ ′(Ji) ≥ ε(Ji).

Proposition 17. Let S be any feasible schedule for k, s, e, σ, ε and assume that t ∈ [s, e) is the first
time-point at which an operation of Jk is processed. Let V be the set of jobs that are processed at
time t and let τ ′ be the rpt-function of S at t+ 1. The triplet (t, V, τ ′) is a separator for k, s, e, σ, ε.

Proof. We first prove that the first and the second conditions of Definition 13 hold. t and t + 1
are time points of Θ because S is well-ordered in [s, e). On top of that, t ∈ [max(s, rk),min(e, dk))
because operations of Jk are processed in [rk, dk). Jk obviously belongs to V and at most m jobs
are processed at t. The jobs Ji that are processed at t are such that i ≤ k and ri ≤ t < di (recall
that S is a feasible schedule for k, s, e, σ, ε).
We now prove that the third condition of Definition 13 holds. If rk ≥ s, then no operation of Jk is
processed before s and since no operation of Jk is processed in [s, t) (cf., definition of t), Jk is not
processed before t. On top of that, Jk is early because it is processed at t hence, m− 1 operations
remain to be processed after t + 1, i.e., τ ′(Jk) = m − 1. Now assume that rk < s, then because
no operation of Jk is processed in [s, t), it follows that the number of operations that remain to be
processed at s and at t are the same, and hence σ(Jk) = τ ′(Jk) + 1.
We now prove that the last condition of Definition 13 holds. It holds because the functions
σ(Ji), τ

′(Ji) + δ(Ji ∈ V), τ ′(Ji) and ε(Ji) are the rpt-functions of the same schedule at successive
time points s ≤ t < t+ 1 ≤ e.

Proposition 23 introduces a simple relation between the variables W . We need several technical
propositions (Propositions 18, 19, 20, 22, 21) to achieve the proof. In the following, we define

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi 45

τ(Ji) = τ ′(Ji) + δ(Ji ∈ V), and we denote W ′ the maximum of (3.17) over all separators (t, V, τ ′) of

k, s, e, σ, ε under the constraint τ ′ ∈ Ψm2−m+1
k (t+ 1) (if no such separator exists, W ′ = −∞).

Wk−1(s, t, σ, τ) +Wk(t+ 1, e, τ ′, ε) +
∑

i ≤ k
s ≤ ri ≤ t
ε(Ji) = 0

τ ′(Ji) + δ(Ji ∈ V) > 0

wi (3.17)

Proposition 18. If W ′ takes a finite value, then there is a feasible schedule for k, s, e, σ, ε in which
Jk is processed between s and e.

Proof. Let (t, V, τ ′) be the separator that realizes W ′. Wk−1(s, t, σ, τ) and Wk(t+1, e, τ ′, ε) also take
finite values; hence, there are two schedules K and L that realize, respectively, Wk−1(s, t, σ, τ) and
Wk(t+ 1, e, τ ′, ε). We build a schedule S as follows: (1) strictly before time t, follow K, (2) at time
t, process jobs in V , (3) strictly after t, follow the schedule L. This schedule has to be completed
because some operations of Jk may have to execute before s due to the value of σ(Jk). So we have a
fourth step: (4) if rk < s, schedule consecutivelym−σ(Jk) operations of Jk during [s−(m−σ(Jk)), s)
(recall that there is no machine constraint before s). In this last step, we claim that operations are
not processed before their release dates. Indeed, σ is a rpt-function thus, because σ(Jk) > 0, we
have σ(Jk) ≥ rk +m− s.
We claim that S is feasible for k, s, e, σ. It is obvious that no more than m operations are processed
at the same time in [s, e) and that jobs Jk+1, . . . , Jn are not processed. The rpt-function of S at
time e is the one of L and hence, it is equal to ε. Similarly, the restrictions to the k − 1 first jobs
of the rpt-function of S at time s and of σ, are equal. We have to check that these functions are
equal for Jk (if they are defined over these jobs). Jk is early and by construction of S, m − σ(Jk)
operations of Jk are processed before s hence, the remaining processing time of Jk at s is exactly
σ(Jk).
Finally, we have to show that S is “well-ordered” over [s, e). Given the definition of separators, and
since the sub-schedules K and L are well-ordered, operations start and are completed at time points
in Θ. We now examine the second condition of the definition of well-ordered schedules. Let Ji be
any job and let x be any time point in [s, e) at which one operation of Ji is processed. If t < x, then
any job Jj that is processed strictly after time x in S is processed at the same time in L. Hence,
the constraint holds for S because it holds for L. If x < t, then remark that (1) any job Jj (with
j 6= k) which is processed strictly after x and strictly before t is processed at the same time in K and
(2) that any job Jj with rj ≤ x which is processed after t is such that τ(Jj) > 0; hence, it is also
processed after t in K. Consequently, the constraint holds for S because it holds for K and because
no operation of Jk is processed in [s, x). The case x = t remains. We prove that the constraint holds

for Ji = Jk (it will consequently hold for all values of i ≤ k): Since τ ′ ∈ Ψm2−m+1
k (t + 1), at most

m2−m+ 1 of the jobs Jj with j ≤ k, rj < t+ 1 are such that τ ′(Jj) > 0. Thus at most m2−m+ 1
of the same jobs are processed after t.

Proposition 19. Let feasible schedules for k, s, e, σ, ε, where Jk is processed in [s, e), exist. Then
W ′ is the weight of the heaviest schedule among them.

Proof. Let S be the heaviest schedule in which some operations of Jk are processed in [s, e) (such a
schedule exists because of our hypothesis). Let then t, V, τ, τ ′ be, respectively, the first time-point
at which Jk is processed, the set of jobs that are processed at t and the rpt-functions of S at t and

46 Scheduling Equal Length Jobs on Parallel Machines

t+ 1. Let us now compute the weight
∑

J(S,s,e) wi of S. According to Proposition 15 it equals

X

J(S,s,t)

wi +
X

J(S,t+1,e)

wi +
X

i ≤ k

s ≤ ri ≤ t

ε(Ji) = 0
τ ′(Ji) + δ(Ji ∈ V) > 0

wi

≤ Wk−1(s, t, σ, τ) + Wk(t + 1, e, τ
′
, ε) +

X

i ≤ k

s ≤ ri ≤ t

ε(Ji) = 0
τ ′(Ji) + δ(Ji ∈ V) > 0

wi

(3.18)

Notice that (t, V, τ ′) is a separator (Proposition 17) and that τ and τ ′ belong to Ψm2+1
k (t) and of

Ψm2−m+1
k (t+1) (Proposition 16). Thus, according to the definition of W ′, the above equation leads

to: ∑

Ji∈J(S,s,e)

wi ≤W
′ (3.19)

Proposition 20. If Wk−1(s, e, σ, ε) takes a finite value and if either (1) rk < s and σ(Jk) = ε(Jk)
or (2) s ≤ rk < e and ε(Jk) = 0 or (3) s ≤ rk < e and ε(Jk) = m or (4) e ≤ rk then there is a
feasible schedule for k, s, e, σ where Jk is not processed in [s, e).

Proof. Let S be a schedule that realizes Wk−1(s, e, σ, ε). We modify the schedule S by adding
eventually some operations before s and after e. Since an unlimited number of operations can be
processed in parallel before s and after e, such additions are valid. The proof follows the cases
introduced in Proposition 20.

1. rk < s and σ(Jk) = ε(Jk). First notice that if σ(Jk) = 0 then S is feasible for k, s, e, σ, ε. If
σ(Jk) > 0 then, because σ is a rpt-function, we know that σ(Jk) ≥ rk +m− s. Hence, we can
schedule m − σ(Jk) operations before s. Similarly, we can schedule ε(Jk) operations after e.
The overall schedule is then feasible for k, s, e, σ, ε.

2. s ≤ rk < e and ε(Jk) = 0. S is feasible for k, s, e, σ, ε (Jk is late in this schedule)

3. s ≤ rk < e and ε(Jk) = m. m operations are added after e (this is possible because ε(Jk) ≤
max(0, dk − t) leads to m ≤ dk − t). The overall schedule is then feasible for k, s, e, σ, ε.

4. e ≤ rk. S is feasible for k, s, e, σ, ε.

Proposition 21. Let feasible schedules for k, s, e, σ, ε where Jk is not processed in [s, e) exist. Then
either (1) rk < s and σ(Jk) = ε(Jk) or (2) s ≤ rk < e and ε(Jk) = 0 or (3) s ≤ rk < e and
ε(Jk) = m or (4) e ≤ rk.

Proof. We distinguish three cases depending on the relative positions of rk and [s, e).

• rk < s. The remaining processing times of Jk at s and e are, respectively, σ(Jk) and ε(Jk).
Therefore, σ(Jk) − ε(Jk) operations of Jk are processed in [s, e). Given our hypothesis, this
leads to σ(Jk) = ε(Jk).

• s ≤ rk < e. Either Jk is not processed in the schedule (it is late) and thus ε(Jk) = 0 or it is
fully processed after e and thus ε(Jk) = m.

• e ≤ rk.

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi 47

All together, this leads to the four conditions of the proposition.

Proposition 22. Let feasible schedules for k, s, e, σ where Jk is not processed in [s, e) exist. Then
Wk−1(s, e, σ, ε) is the weight of the heaviest among them.

Proof. Let S be any feasible schedule for k, s, e, σ in which Jk is not processed in [s, e) and whose
weight

∑

Ji∈J(S,s,e) wi is maximal. The weight of Jk is not taken into account (cf., definition of

J(S, s, e)). Hence,
∑

Ji∈J(S,s,e) wi equals the weight of the same schedule in which Jk has been

removed. This weight is lower than or equal to Wk−1(s, e, σ, ε). Hence, there exists a schedule that
realizes Wk−1(s, e, σ, ε). We could add some operations of Jk before s and after e to transform this
schedule into a feasible schedule for k, s, e, σ, ε (similar as in the proof of Proposition 20). Therefore,
we could prove that Wk−1(s, e, σ, ε) is the weight of a schedule in which Jk is not processed in
[s, e).

Proposition 23. If either (1) rk < s and σ(Jk) = ε(Jk) or (2) s ≤ rk < e and ε(Jk) = 0 or (3)
s ≤ rk < e and ε(Jk) = m or (4) e ≤ rk, then Wk(s, e, σ, ε) = max(W ′,Wk−1(s, e, σ, ε)). If none of
the four conditions holds, Wk(s, e, σ, ε) equals W ′.

Proof. We first prove that, Wk(s, e, σ, ε) ≥ W ′. This is obvious if W ′ does not take a finite value.
Now assume that it does. Hence, there is a feasible schedule for k, s, e, σ in which Jk is processed
in [s, e) (Proposition 18) and W ′ is the weight of the heaviest of these schedules (Proposition 19).
Thus, Wk(s, e, σ, ε) ≥W ′.
We now prove that, if one of the four conditions holds then Wk(s, e, σ, ε) ≥Wk−1(s, e, σ, ε). Accord-
ing to Proposition 20, there is a feasible schedule for k, s, e, σ in which Jk is not processed in [s, e).
Note that Wk−1(s, e, σ, ε) is the weight of the heaviest of these schedules. Hence, Wk(s, e, σ, ε) ≥
Wk−1(s, e, σ, ε).
We now prove that Wk(s, e, σ, ε) ≤ max(W ′,Wk−1(s, e, σ, ε)). Consider a schedule that realizes
Wk(s, e, σ, ε). Either Jk is processed in [s, e) and thus Wk(s, e, σ, ε) = W ′ or it is not and thus
Wk(s, e, σ, ε) = Wk−1(s, e, σ, ε) (cf., Proposition 19 and 22). Hence, Wk(s, e, σ, ε) is lower than or
equal to max(W ′,Wk−1(s, e, σ, ε)).
Finally, notice that if none of the four conditions holds then Jk is processed in [s, e) in any feasible
schedule for k, s, e, σ (Proposition 21). Thus, Wk(s, e, σ, ε) = W ′.

3.3.5 A Dynamic Programming Algorithm

As shown in § 3.3.4, the maximum weighted number of early jobs is exactlyWn(min(Θ),max(Θ), ∅, ε0).
It can be dynamically computed thanks to the decomposition scheme (Theorem 23). Algorithm 3
is a straight implementation of this scheme: Given a combination of the parameters k, s, e, σ, ε, the
value of Wk(s, e, σ, ε) is recursively computed (lines 6–27). Note that Algorithm 3 relies on Defini-
tion 9 for the initialization part: W0(s, e, σ, ε) = 0. This is omitted in the pseudo-code. To simplify
the presentation, we use σ and ε in the expressions Wk−1(s, t, σ, τ) (line 12) and Wk−1(s, e, σ, ε)
(line 26) while it would be more appropriate to refer to the restriction of σ and ε to the k − 1 first
jobs. Note that the algorithm does not try to reach a value of W (lines 12, 26) that has not been
previously computed.

We do not have to consider all possible combinations of the parameters (lines 1–6) and we only fo-

cus on “non-dominated” combinations k, s, e, σ, ε, i.e., combinations where s, e ∈ Θ, σ ∈ Ψm2−m+1
k (s)

and ε ∈ Ψm2+1
k (e). Note that according to Definition 12, Ψm2−m+1

n (min(θ)) contains the func-
tion “∅” so, n,min(θ),max(θ), ∅, ε0 is a non-dominated combination and thus the algorithm com-
putes Wn(min(Θ),max(Θ), ∅, ε0). It is correct to restrict the search to non-dominated combinations
because, in the recursion formula of Theorem 23, all combinations that are examined are non-
dominated: Given the definition of W ′ (Equation 3.17), it is easy to check that k − 1, s, t, σ, τ and
k, t+ 1, e, τ ′, ε are non-dominated combinations.

Each function ψ ∈ Ψl
k(t) can be encoded as an array of size n that provides the value taken by

the function over each job. It can also be encoded as an array of size 2l that provides the indices
of the jobs for which ψ(Ji) > 0 and the corresponding values ψ(Ji) (this encoding relies on the fact

48 Scheduling Equal Length Jobs on Parallel Machines

that less than l jobs are such that ψ(Ji) > 0). We will rely on the second implementation because
the relevant values of l (l = m2 − m + 1 and l = m2 + 1) do not depend of n and therefore the
overall encoding of a function requires a constant amount of space. Recall that in each set there
are O(nm2+1) functions. Since |Θ| = O(n2), the space required to store all functions is O(nm2+3).
We will also store the values Wk(s, e, σ, ε) in a multi-dimensional array. Actually, for each value

of s and e, the functions of Ψm2−m+1
k (s) and of Ψm2+1

k (e) can be indexed (there are, respectively,

O(nm2−m+1) and O(nm2+1) such functions). The index can then be used to store Wk(s, e, σ, ε) in
an array W [k][is][ie][iσ][iε]:

• where is is the index of s in Θ,

• where ie is the index of e in Θ,

• where iσ is the index of σ in Ψm2−m+1
k (s),

• where iε is the index of ε in Ψm2+1
k (e).

The size of the array W is therefore O(nn2n2nm2+1nm2−m+1) = O(n2m2−m+7).
It is now easy to compute the time-complexity of the algorithm:

• there are n possible values for k (line 1),

• there are O(n2) possible values for s (line 2),

• there are O(n2) possible values for e (line 3),

• there are O(nm2−m+1) functions σ (line 4),

• there are O(nm2+1) functions ε (line 5),

• there are O(n2) possible values for t distinct values (line 7),

• there are O(nm2−m+1) functions τ ′ (line 8),

• there are at most nm−1 subsets V (line 9),

• finding the function τ (i.e., the index of the function) may require to browse the whole set

Ψm2+1
k (t); which may requires O(nm2+1) steps (line 11).

This leads to an overall complexity of O(n4m2−m+10). Note that the algorithm is still valid when
weights take non-integer values.

3.3.6 Open Problems

For any fixed value of m, the parallel machine problem can be solved in O(n4m2−m+10). The optimal
solution is transformed into the optimum solution of the open-shop problem in O(mn log2(mn)) (cf.,
§ 3.3.2). Hence, the problem Om|pij = 1, ri|

∑
wiUi is solvable in polynomial time. The very high

time and space complexity of the algorithm that we have presented, make it hardly usable in practice.
We think that the complexity could be slightly decreased by using some additional data structures.
However, this would not make the algorithm more usable in practice and it would make the algorithm
much more complex.

An interesting open question concerns the status of the same UET open-shop problems with
other criteria, such as the weighted flow time or the weighted tardiness. A straight generalization
of our algorithm is not possible because the dominance property of Proposition 14, based upon an
exchange argument, would not hold.

3.3 UET Open-Shops, Om|pij = 1, ri|
∑
wiUi 49

Algorithm 3 Computation of the values Wk(s, e, σ, ε)

1: for k = 1 to n do
2: for s ∈ Θ (values taken in decreasing order) do
3: for e ∈ Θ, e ≥ s (values taken in increasing order) do

4: for σ ∈ Ψm2−m+1
k (s) do

5: for ε ∈ Ψm2+1
k (e) do

6: Wk(s, e, σ, ε)← −∞
7: for t ∈ Θ ∩ [s, e) do

8: for τ ′ ∈ Ψm2−m+1
k (t+ 1) do

9: for all V subset of at most m jobs including Jk do
10: if (t, V, τ ′) is a separator for k, s, e, σ, ε then

11: Find in Ψm2+1
k (t) the fct. τ s.t. ∀Ji|ri < t, τ(Ji) = τ ′(Ji) + δ(Ji ∈ V)

12: S ←Wk−1(s, t, σ, τ) +Wk(t+ 1, e, τ ′, ε)
13: for i = 1 to k do
14: if Ji belongs to I as defined in Lemma 15 then
15: S ← S + wi

16: end if
17: end for
18: if Wk(s, e, σ, ε) < S then
19: Wk(s, e, σ, ε)← S
20: end if
21: end if
22: end for
23: end for
24: end for
25: if (1) rk < s and σ(Jk) = ε(Jk) or (2) s ≤ rk < e and ε(Jk) = 0 or (3) s ≤ rk < e

and ε(Jk) = m or (4) e ≤ rk then
26: Wk(s, e, σ, ε)← max(Wk(s, e, σ, ε),Wk−1(s, e, σ, ε))
27: end if
28: end for
29: end for
30: end for
31: end for
32: end for

50 Scheduling Equal Length Jobs on Parallel Machines

Chapter 4

Scheduling Equal Length
Multiprocessor Tasks

We study the situation where a set of n tasks has to be scheduled on m parallel processors. In most
of the classical scheduling models, it is assumed that each task is processed on one processor (also
called a machine) at a time. However, the relatively recent development of multiprocessor computer
systems and of complex manufacturing environments has led researchers to study more complex
situations where each task requires simultaneously several processors (see for instance [35, 88]).

In this chapter we consider a particular multiprocessor scheduling environment where, for each
task i, a fixed number sizei of processors is required to execute the task. Yet, the processors
required are not specified. Following the classical scheduling notation (see for instance [35, 38]), the
corresponding scheduling problems are referred to as P |sizei|F . See Figure 4.1 for an instance of
P |ri, sizei|Cmax.

1Proc. 1

Proc. 2

Proc. 3

Proc. 4
1
2
3
4
5
6

0 1 2 3 4 5 6 7 8

2 3

4

5

6

size p r
4
3
3
1
1
2

1
2
1
5
3
2

0
0
4
0
4
4

task

Figure 4.1: An Optimal Schedule of a P4|sizei|Cmax Instance

When tasks have identical processing times, the multiprocessor problem Pm|sizei, pi = p|F is
solvable in polynomial time for F ∈ {

∑
wiCi,

∑
wiUi,

∑
Ti} (see [48] for a review). When the

number of processors is not fixed (i.e., m is a data), the Cmax and
∑
Ci problems are binary

NP-Hard ([160] and [89]). So, Pm|sizei, pi = p|
∑
wiTi is the only remaining open question.

With identical processing times and arbitrary release dates, the situation is more complex. Of
course, Pm|ri, sizei, pi = p|Cmax, as the counterpart of Pm|sizei, pi = p|Lmax, is solvable in polyno-
mial time. Moreover, a linear time algorithm is proposed in [48] for P2|ri, sizei, pi = p|

∑
Ci and it

is conjectured that the 3-machine problem is polynomial.

In this Chapter, we first show (Section 4.1) that Brucker, Knust, Roper and Zinder’s conjecture
holds for any number of machines: Pm|ri, sizei, pi = p|

∑
Ci can be solved in polynomial time by

dynamic programming. Then we study the unit execution time problem (pi = 1) and we show
that the minimum maximal tardiness can be computed in polynomial time when sizei ∈ {1,m}
(Section 4.2). In this problem, there are no more than two possible sizes, either 1 (small tasks) or
m (tall tasks), and we will refer to it as the “tall/small” problem.

52 Scheduling Equal Length Multiprocessor Tasks

4.1 Minimizing Total Completion Time, Pm|ri, pi = p, sizei|
∑

Ci

We introduce an algorithm for Pm|ri, pi = p, sizei|
∑
Ci and Pm|ri, pi = p, sizei|Cmax. A dominance

property is introduced in Section 4.1.1. In Section 4.1.2, we define the variables of the dynamic
programming algorithm. The algorithm itself is described in Section 4.1.3.

4.1.1 Dominance Property

From now on let F be the objective function (either Cmax or
∑
Ci) and assume that tasks are sorted

in non-decreasing order of release dates, i.e., r1 ≤ r2 . . . ≤ rn. Proposition 24 is a strong dominance
property for optimal schedules.

Proposition 24. There is an optimal schedule in which, for any pair of tasks i, j with identical
size, i < j ⇒ Ci ≤ Cj .

Proof. Consider an optimal solution for F that lexicographically minimizes the vector of completion
times (C1, . . . , Cn). Assume that there are two tasks i, j with sizei = sizej , i < j and Ci > Cj . Let
us exchange i and j. Since i < j ⇒ ri ≤ rj , the exchange does not violate the release dates. It
is easy to see that this exchange does not modify the objective function F (because F = Cmax or
F =

∑
Ci). So we have an optimal schedule with a lexicographically smaller vector of completion

times. This contradicts our hypothesis.

4.1.2 Variables Definition

We use dynamic programming to compute the optimal schedule. Each sub-problem is defined by
two tuples of m variables: processors variables (t1, . . . , tm) and tasks variables (i1, . . . , im).

• Processors variables (t1, . . . , tm) represent the availability of the processors: No processor
is available before t1, 1 processor is available between t1 and t2, 2 processors are available
between t2 and t3, . . . , m processors are available after tm (see Figure 4.2).

• Tasks variables (i1, . . . , im) define the subset of the tasks that are considered in the sub-
problem (the other ones have already been scheduled): For a given size s, we only consider
tasks of this size with i ≥ is. In other words, the tasks of the sub-problem are exactly

m⋃

s=1

{i|i ≥ is, sizei = s}.

Processors

0 t1 t2 t4

Figure 4.2: Processors Variables

To simplify the presentation of the algorithm, we assume that the processors variables are such
that t1 ≤ t2 ≤ . . . ≤ tm and tm − t1 ≤ p. In the following we will see that this assumption always
holds at any step of the algorithm.

Processors variables together with tasks variables define a sub-problem. Five sub-problems are
depicted in Figure 4.3. For each of them we have a partial schedule made of tasks that have already
been scheduled. The tasks of the sub-problem are those that are not scheduled yet. They have to
be scheduled after the “thick border line” defined by the processors variables.

4.1 Minimizing Total Completion Time, Pm|ri, pi = p, sizei|
∑
Ci 53

In the following, F (t1, . . . , tm, i1, . . . , im) denotes the optimal value of the objective function for
the corresponding sub-problem. Note that the optimum of our initial problem is exactly

F (min
i
ri, . . . ,min

i
ri, 0, . . . , 0).

4.1.3 Dynamic Programming

Consider an optimal non-dominated active schedule of the sub-problem and assume that s is the size
of one of the tasks of the sub-problem with minimal completion time (in the schedule of Figure 4.1,
s = 4). Since the tasks of size s are exactly {i|i ≥ is, sizei = s} and since completion times of the
tasks of the same size are non-decreasing (Proposition 24), we know that the task x = min{i|i ≥
is, sizei = s} is a task with minimum completion time.

We distinguish two cases to recursively compute F (t1, . . . , tm, i1, . . . , im). First, if t1 < rx then
at least one processor is available before rx. Since no task starts before rx (otherwise the completion
time of x would not be minimal), the processors variables can be “increased” so that no processor
is available before rx. Second, if t1 ≥ rx then x starts exactly at time ts and we will see how tasks
and processors variables can be computed.
CASE 1: t1 < rx.

Since no task starts before rx (otherwise the completion time of x would not be minimal), the
objective function F (t1, . . . , tm, i1, . . . , im) equals

F (max(t1, rx), . . . ,max(tm, rx), i1, . . . , im). (4.1)

Note that we have max(t1, rx) ≤ max(t2, rx) ≤ . . . ≤ max(tm, rx) and that max(tm, rx)−max(t1, rx) ≤
p. Hence, the two initial assumptions on the processors variables still hold.
CASE 2: rx ≤ t1.

Task x starts exactly at time ts and is completed at ts+p. The new tasks variables are (i1, . . . , is−1, x+
1, is+1, . . . , im). Let us compute the new processors variables. Task x is completed at ts + p and the
s processors that were used to execute the tasks are available again. The s processors that used to
be available at ts are now available at ts + p and nothing changes for the m − s other processors.
Since tm − t1 ≤ p, the new processors variables are exactly

(ts+1, . . . , tm
︸ ︷︷ ︸

m−s elements

, ts + p, . . . , ts + p
︸ ︷︷ ︸

s elements

).

It is easy to see that (ts + p)− ts+1 ≤ p and consequently, the difference between the last and the
first processor variable is still lower than or equal to p. Hence, the two initial assumptions on the
processors variables still hold.
For the Cmax criterion, F (t1, . . . , tm, i1, . . . , im) equals

F (ts+1, . . . , tm, ts + p, . . . , ts + p, i1, . . . , is−1, x+ 1, is+1, . . . , im). (4.2)

For the
∑
Ci criterion, F (t1, . . . , tm, i1, . . . , im) equals

F (ts+1, . . . , tm, ts + p, . . . , ts + p, i1, . . . , is−1, x + 1, is+1, . . . , im) + ts + p. (4.3)

So, if we know the size s of the task of the sub-problem with minimal completion time, then,
thanks to (4.1), (4.2) and (4.3), we can recursively compute the optimum value of F (t1, . . . , tm, i1, . . . , im).
Since s is not known in advance, all possible values are tried and the one leading to the best solution
is chosen. On the example of Figure 4.3, we can see that the left sub-problem leads to 4 sub-problems
(one for each possible size). The last one only corresponds to CASE 1.

Note that the variables ti can take any integer value. Hence, there is not a polynomial number of
states and thus our dynamic programming scheme is not likely to run in polynomial time. However,
it’s easy to see that on an active schedule, start times equal a release date modulo p. More precisely,
tasks start and are completed in

Θ = {t | ∃ri, ∃l ∈ {0, . . . , n}, t = ri + lp}.

54 Scheduling Equal Length Multiprocessor Tasks

0 1 2 3 4

M1

M2

M3

M4

1

5

border line between scheduled
and unscheduled tasks

processors variables (1, 2, 3, 3)
tasks variables (2, 6, 0, 0)

0 1 2 3 4

M1

M2

M3

M4

5

1

5

0 1 2 3 4

M1

M2

M3

M4

5

1

5

4

processors variables (2, 3, 3, 3)
tasks variables (5, 6, 0, 0)

processors variables (2, 2, 3, 3)
tasks variables (2, 6, 0, 0)

processors variables (3, 3, 4, 4)
tasks variables (2, 7, 0, 0)

0 1 2 3 4

M1

M2

M3

M4

5

1

5

6

processors variables (3, 5, 5, 5)
tasks variables (2, 6, 3, 0)

0 1 2 3 4

M1

M2

M3

M4

5

1

5 2

s = 1 (thus, x = 4) CASE 2 of the recursion

s = 2 (thus, x = 6) CASE 2 of the recursion

s = 3 (thus, x = 2) CASE 2 of the recursion

s = 4 (thus, x = 7) CASE 1 of the recursion

1 2 3 4 5 6 7 8 9 10
0 0 0 1 1 1 2 2 3 3
1 3 3 1 2 2 4 4 2 1

INITIAL INSTANCE (p = 2)

Task
Release date
Size

Figure 4.3: The Dynamic Scheme

4.2 Scheduling Tall/Small Tasks, P |ri, pi = 1, sizei ∈ {1,m}|Lmax 55

Since there is an optimal active schedule and since there are O(n2) time points in Θ, we have no
more than O(n2m) relevant tuples of processors variables to consider.

Algorithm 4 is a straight implementation of the decomposition rules for Cmax (for
∑
Ci, lines 6

and 16 have to be changed respectively into F (t1, . . . , i1, . . . , im) = 0 and F ∗
s → F (ts+1, . . . , tm, ts +

p, . . . , ts + p, i1, . . . , is−1, x + 1, is+1, . . . , im) + ts + p). Before describing Algorithm 4, we need
to introduce the notation N(u, z), the smallest index greater than u among tasks of size z (i.e.,
N(u, z) = min{i|i ≥ u, sizei = z}). If such a task does not exist, N(u, z) is set to a special negative
value. Note that N(u, z) can be pre-computed in linear time. Now, let us examine Algorithm 4.

• We iterate over all tasks and processors variables sorted in decreasing lexicographical order
(lines 1–4). This ordering ensures that the optima of all sub-problems of the current sub-
problem have already been computed.

• If the set of tasks of the sub-problem
⋃m

s=1{i|i ≥ is, sizei = s} is empty (line 5) then
F (t1, . . . , i1, . . . , im) equals tm.

• If the set of tasks of the sub-problem is not empty, we iterate over all possible sizes s of
the tasks of the sub-problem (lines 9–10). For each s, F ∗

s , the optimum of the sub-problem,
under the hypothesis that first task to execute has size s, is computed (lines 12–13 and 14–20
respectively correspond to CASE 1 and CASE 2).

• If ts + p /∈ Θ (line 18) then we are building a non-active schedule so, F ∗
s can be set to ∞.

• If ts+p ∈ Θ (line 15) then (ts+1, . . . , tm, ts+p, . . . , ts+p) is a relevant combination of processors
variables and we can apply the recursion.

• F (t1, . . . , tm, i1, . . . , im) equals the minimum of F ∗
s over all possible sizes s of the tasks of the

sub-problem (line 21).

There are O(n2m) possible tuples of processors variables and O(nm) tuples of tasks variables to
consider. So we have O(n3m) combinations of variables for which F has to be computed. Since m
is fixed, for each combination (lines 5–24), F is computed in constant time. Hence, the algorithm
runs in O(n3m).

4.1.4 Open Questions

We have shown that Pm|ri, pi = p, sizei|
∑
Ci can be solved in polynomial time. The same algorithm

can be used to minimize Cmax. We do not think that our algorithm is likely to be generalized to
handle other criteria and so, the complexity status of the weighted completion time problem is still
an open question.

4.2 Scheduling Tall/Small Tasks, P |ri, pi = 1, sizei ∈ {1, m}|Lmax

We study the scheduling situation where n tasks, subjected to release dates and due dates, have to
be scheduled on m parallel processors. We show that, when tasks have unit processing times and
either require 1 or m processors simultaneously, the minimum maximal lateness can be computed
in polynomial time. Two algorithms are described. The first one is based on a linear programming
formulation of the problem while the second one is a combinatorial algorithm. The complexity status
of this “tall/small” task scheduling problem P |ri, pi = 1, sizei ∈ {1,m}|Lmax was unknown before,
even for 2 processors.

When all release dates are equal, the arbitrary size problem for any fixed number of processors,
denoted Pm|pi = 1, sizei|Tmax, can be solved in polynomial time [50]. Similarly, the problem for
any fixed number of sizes, denoted P |pi = 1, |{sizei}| = c|Tmax, can be solved in polynomial time.
Both problem can be solved using dynamic programming. However, the arbitrary size problem is
NP-Hard in the strong sense [160].

56 Scheduling Equal Length Multiprocessor Tasks

Algorithm 4 Computation of the values F (t1, . . . , tm, i1, . . . , im) (F = Cmax)

1: IVARS→ list of tasks variables sorted in dec. lexicographical order
2: TVARS→ list of processors variables sorted in dec. lexicographical order
3: for (i1, . . . , im) in IVARS do
4: for (t1, . . . , tm) in TVARS do
5: if ∀s ∈ {1, . . . ,m}, N(is, s) < 0 then
6: F (t1, . . . , i1, . . . , im) = tm
7: else
8: F (t1, . . . , i1, . . . , im) =∞
9: for s ∈ {1, . . . ,m} do

10: if N(is, s) ≥ 0 then
11: x→ N(is, s)
12: if t1 < rx then
13: F ∗

s → F (max(t1, rx), . . . ,max(tm, rx), i1, . . . , im)
14: else
15: if ts + p ∈ Θ then
16: F ∗

s → F (ts+1, . . . , tm, ts + p, . . . , ts + p, i1, . . . , is−1, x+ 1, is+1, . . . , im)
17: else
18: F ∗

s →∞
19: end if
20: end if
21: F (t1, . . . , i1, . . . , im)→ min(F ∗

s , F (t1, . . . , i1, . . . , im))
22: end if
23: end for
24: end if
25: end for
26: end for

4.2 Scheduling Tall/Small Tasks, P |ri, pi = 1, sizei ∈ {1,m}|Lmax 57

When preemption is allowed, even with arbitrary processing times and release dates, the very
general problem Pm|ri, sizei, pmtn|Tmax problem problem is easy to solve. Existing algorithms are
based on a Linear Programming formulation where a variable is associated to each subset of tasks
whose total resource requirement is less than m (see for instance [35]). Unfortunately, there are
some instances of P |ri, pi = 1, sizei ∈ {1,m}|Lmax for which the non-preemptive maximum lateness
is strictly larger than the preemptive maximum lateness. In the preemptive schedule of Figure 4.4,
Lmax = 0, while the value of Lmax is at least 1 for any non-preemptive schedule.

B D EA

CB FE
X

0 1 2 3 4

A, B, C: r= 0, d = 2

X: r = 1, d = 3

D, E, F: r = 2, d = 4

Processor 1

Processor 2

Figure 4.4: An optimal preemptive schedule.

In the following, we focus on the decision variant of the maximal lateness problem. For a fixed
value of Lmax, it is easy to compute a deadline d̄i = di + Lmax for each task i and a schedule is
said to be feasible if tasks are completed before their deadlines. To compute the minimal maximal
lateness, one can find the smallest value of Lmax for which there is a feasible schedule. Since one
can easily build a feasible schedule with Lmax = n, there are no more than n values to test. A
dichotomic search could be used to reduce the number of iterations. So, the Lmax problem can be
solved in polynomial time provided that the deadline scheduling problem is solvable in polynomial
time.

In Section 4.2.1, we introduce a linear programming formulation of the problem and in Section 4.3
we describe a combinatorial algorithm to solve the problem. Finally we draw some conclusions in
Section 4.3.1.

4.2.1 An LP Formulation

In Section 4.2.2 we describe some linear constraints that must be met by any feasible schedule. In
Section 4.2.3 we show that if these constraints hold, we can build a preemptive schedule of tall tasks
that “implicitly” takes into account the small tasks. This schedule is transformed in Section 4.2.4
into a non-preemptive schedule of both small and tall tasks.

4.2.2 Necessary Conditions

To simplify the presentation of the algorithm we will introduce some time indexed variables. There
are few relevant time points so the total number of variables remains polynomial in n. Indeed,
we can assume that the distance between two consecutive release dates rx, ry is not larger than n
(otherwise, the tasks could be split in two subsets {i : ri ≤ rx} and {i : ri ≥ ry} that could be
scheduled independently). On top of that, we can also assume that the largest deadline is not larger
than the largest release date plus n. Due to these assumptions, we have a polynomial number of
relevant integer time points t to consider. In the following, unless precisely stated, time points and
time slots are integral.

Consider a feasible schedule and, for each tall task i and for each integer time point, let t,
xt

i ∈ [0, 1] be the total time during which i executes in the time-slot [t, t+ 1). Each tall task has to
be scheduled somewhere between its release date and its deadline so,

∀i ∈ Tm,

d̄i−1∑

t=ri

xt
i = 1. (4.4)

58 Scheduling Equal Length Multiprocessor Tasks

On top of that, the total time during which tall tasks are processed in a single time slot does not
exceed the size of the time slot, i.e.,

∀t,
∑

i∈Tm

xt
i ≤ 1. (4.5)

Now let us focus on small tasks. For any time interval [t1, t2), let T1(t1, t2) be the set of small tasks
that have to execute in the time interval [t1, t2), i.e.,

T1(t1, t2) = {i ∈ T1 : t1 ≤ ri < d̄i ≤ t2}.

Note that in a non-preemptive schedule, q small tasks cannot be scheduled in less than d q
me time

units. Since in a time interval [t1, t2) there are only t2 − t1 −
∑

i∈Tm

∑t2−1
t=t1

xt
i time units available

to schedule tall tasks, we get

∀[t1, t2),
∑

i∈Tm

t2−1∑

t=t1

xt
i +

⌈
|T1(t1, t2)|

m

⌉

≤ t2 − t1. (4.6)

Hence, if there is feasible schedule, there is a feasible solution of the Linear Program (4.7).

∀i ∈ Tm,

d̄i−1∑

t=ri

xt
i = 1

∀t,
∑

i∈Tm

xt
i ≤ 1

∀[t1, t2),
∑

i∈Tm

t2−1∑

t=t1

xt
i +

⌈
|T1(t1, t2)|

m

⌉

≤ t2 − t1

∀i ∈ Tm, ∀t, xt
i ≥ 0

(4.7)

In the following, we show that a feasible schedule exists if there is a feasible solution of (4.7).

4.2.3 Preemptive Schedule of Tall Tasks

From now on, we assume that tasks 1, . . . , |Tm| are the tall ones and that they are sorted in non-
decreasing order of due dates, i.e., d1 ≤ . . . ≤ d|Tm|.

A solution x of (4.7), specifies the duration xt
i a tall task i is scheduled in [t, t+ 1). To precisely

build a preemptive schedule of tall tasks, it remains to decide how pieces of tall tasks are scheduled
inside each time slot [t, t+ 1). Let S(x) be the schedule where, in each time slot, pieces of tall tasks
are scheduled from left to right according to their initial numbering (i.e., in non-decreasing order of
deadlines). Now let us consider the solution x̄ that lexicographically minimizes the vector of average

completion times (C1, . . . , C|Tm|), where Ci =
∑d̄i−1

t=ri
t · xt

i . The next proposition shows that in any
such solution xt

i is either 0 or 1.

Proposition 25. In S(x̄) tall tasks are not preempted and they start at integer time points.

Proof. Let k be the first task for which the proposition does not hold (all tasks with smaller indices
are not preempted and start at integer time points). Let [t, t+ 1) and [t′, t′ + 1) be the time slots in
which k respectively starts and is completed in S(x̄).
First, we show that in [t, t+ 1), k is the only tall task to execute. Indeed, if there was another tall
task l that executes there, we would have l > k (because of our assumption on k). Therefore, we
could exchange a small piece of l that executes in [t, t+ 1) with a small piece of k that executes in
[t′, t′ + 1). In other terms, we could build a vector x̂ that equals x̄ except for the following values:

x̂t
k = x̄t

k + ε

x̂t′

k = x̄t′

k − ε

x̂t′

l = x̄t′

l + ε
x̂t

l = x̄t
l − ε

,

4.2 Scheduling Tall/Small Tasks, P |ri, pi = 1, sizei ∈ {1,m}|Lmax 59

where ε = min{x̄t′

k , x̄
t
l} > 0. In the resulting schedule S(x̂) the average completion time of k

is smaller than its average completion time in S(x̄) and task l is completed before its deadline
(because d̄l ≥ d̄k). Moreover, the “load” of each time slot [τ, τ + 1) is the same in both schedule,
i.e.,

∀τ,
∑

i∈Tm

x̄τ
i =

∑

i∈Tm

x̂τ
i .

It follows that x̂ is a feasible solution of (4.7) and it is smaller lexicographically than x̄. This
contradicts our hypothesis on x̄.
Second, note that some constraints of (4.7) must be tight for x̄ and prevent us from increasing x̄t

k

by ε and decrease x̄t′

k by ε. Indeed, if we could perform this exchange, we would obtain a “lower”
feasible solution in the lexicographical order we defined. Constraints (4.4) do not prevent us from
making this exchange. Neither do Constraints (4.5) since k is the only tall task to execute in time
slot t. Now, let us examine Constraints (4.6). We are going to show that a slightly more complex
exchange is possible. In the following, the notation I(t1, t2) refers to the constraint (4.6) over the
interval [t1, t2). Let Ω be the set of constraints (4.6) with t1 ≤ t and t < t2 ≤ t′ that are tight for x̄.
It is easy to see that Constraints (4.6) that do not belong to Ω do not prevent us from increasing
x̄t

k. Among the constraints of Ω let us pick one with maximum t1. Since the constraint is tight, we
have

∑

i∈Tm

t2−1∑

t=t1

x̄t
i = t2 − t1 −

⌈
|T1(t1, t2)|

m

⌉

.

Hence,
∑

i∈Tm

∑t2−1
t=t1

x̄t
i takes an integer value and consequently, there is another tall task u that is

partially executed between t1 and t2. If u were partially executed between t and t2 then we could
exchange a piece of it with the last piece of k that executes in [t′, t′ + 1) (we have d̄u ≥ d̄k because
u is preempted and so the exchange is feasible). We would have decreased the average completion
time of k; which would contradict our initial hypothesis. So u is partially executed in a time slot
[τ, τ + 1) between t1 and t. Let x̃ be the vector that equals x̄ except of the following values:

x̃τ
u = x̄τ

u − ε

x̃t′

u = x̄t′

u + ε

x̃t′

k = x̄t′

k − ε
x̃t

k = x̄t
k + ε

,

for a small positive value ε. Note that a piece of u can be scheduled at t′ because d̄u ≥ d̄k. Moreover,
the only constraints that could be violated by the exchange are those in the set Ω (the value of x̃t

k

is consistent with (4.5) because k is the only tall task that executes in [t, t+ 1)). Let I(t′1, t
′
2) be a

violated constraint of Ω. Because of our hypothesis on t1, we have t′1 ≤ t1. Hence, it is easy to verify
that the load induced by the tall tasks between t′1 and t′2 does not increase. Therefore, the resulting
schedule S(x̃) is lower than S(x̄) in the lexicographical order. This contradicts our hypothesis.

4.2.4 From Preemptive to Non-Preemptive Schedules

In Section 4.2.3, we have shown that there is a solution x̄ of (4.7) such that in S(x̄), tall tasks are
not preempted and start at integer time points. In Proposition 26 we show that small tasks can be
scheduled in S(x̄) too.

Proposition 26. Small tasks can be scheduled in S(x̄).

Proof. Let us sort small tasks in non-decreasing order of deadlines and let us add them one after
the other into S(x̄). Each time, the current task starts at the first time point after its release date
where one processor is available. Note that because tall tasks are not preempted and start at integer
time points, small tasks are not preempted either and also start at integer time points.
Let k be the first small task that is completed after its deadline and let t be the earliest time point
such that all processors are full between t and d̄k. Note that since k is not completed by its deadline
t ≤ rk. Let Ψ be the set of small tasks that are scheduled in [t, d̄k). Tasks in Ψ have a release

60 Scheduling Equal Length Multiprocessor Tasks

date greater than or equal to t (otherwise they would be scheduled in [t − 1, t)) and a deadline
smaller than or equal to d̄k (because tasks are sorted in non-decreasing order of deadlines). Since

all processors are full, there are exactly m(d̄k − t −
∑

i∈Tm

∑d̄k−1
t′=t x̄t

i) tasks in Ψ. On top of that,

Ψ ⊂ T1(t, d̄k) and k /∈ Ψ but k ∈ T1(t, d̄k). Hence,

T1(t, d̄k) > m(d̄k − t−
∑

i∈Tm

d̄k−1∑

t′=t

x̄t
i).

This contradicts (4.6).

4.3 A Combinatorial Algorithm

For each time interval [t1, t2), we define recursively the slack of the interval, denoted ∆(t1, t2). The
slacks can be computed in polynomial time and we show later that there exists a feasible schedule if
and only if all the intervals have non-negative slack. Intuitively, ∆(t1, t2) is an upper bound on the
number of free time slots in [t1, t2) in any schedule of the tasks in T (t1, t2). (For a given schedule
a free time slot is a time unit in which all the m processors are idle.) To define the slack we define
static slack and dynamic slack.

Definition 14. For any interval [t1, t2), with t2 > t1 + 1, the slack ∆(t1, t2) is the minimum
of the static slack ∆s(t1, t2) and of the dynamic slack ∆d(t1, t2). For any interval [t1, t2), with
t1 ≤ t2 ≤ t1 + 1, ∆(t1, t2) = ∆s(t1, t2).

Definition 15. The static slack over [t1, t2), ∆s(t1, t2), equals

t2 − t1 −

(

|Tm(t1, t2)|+

⌈
|T1(t1, t2)|

m

⌉)

Definition 16. The dynamic slack over [t1, t2), with t2 > t1 + 1, ∆d(t1, t2), is the minimum of

∆(t1, t
′
2) + ∆(t′1, t2)− |Tm(t1, t2) \ (Tm(t1, t

′
2) ∪ Tm(t′1, t2))|

over t′1, t
′
2 with t1 < t′1 ≤ t

′
2 < t2.

The next proposition shows that if there is a feasible schedule, then all intervals have non-negative
slack.

Proposition 27. There are at most ∆(t1, t2) idle time slots between t1 and t2 in any feasible schedule
of T (t1, t2).

Proof. Consider an interval [t1, t2) such that there is a feasible schedule of T (t1, t2) with more
than ∆(t1, t2) idle time slots and assume that t2 − t1 is minimal among such intervals. There are

|Tm(t1, t2)| tall tasks and |T1(t1, t2)| small tasks and at least
(

|Tm(t1, t2)|+
⌈
|T1(t1,t2)|

m

⌉)

time units

are required to schedule these tasks. It follows that the number of idle time slots in a feasible
schedule is no more than the static slack ∆s(t1, t2). Hence the slack equals the dynamic slack; that
is, ∆(t1, t2) = ∆d(t1, t2). Suppose that ∆d(t1, t2) is determined by the two time points t′1 and t′2;
that is, ∆(t1, t2) = ∆(t1, t

′
2)+∆(t′1, t2) − |Tm(t1, t2) \ (Tm(t1, t

′
2) ∪ Tm(t′1, t2))|. Consider the feasible

schedule S of T (t1, t2) and let Sr and Sl be the restriction of S to the tasks of T (t1, t
′
2) and to the

tasks of T (t′1, t2). The number of idle time slots in S is less than or equal to the number of those
in Sr plus the number of those in Sl. Given our hypothesis on t2 − t1 this is lower than or equal
to ∆(t1, t

′
2) + ∆(t′1, t2). On top of that, large tasks in Tm(t1, t2) \ (Tm(t1, t

′
2) ∪ Tm(t′1, t2)) are not

scheduled in Sl nor in Sr so the number of idle time slots in S is less than or equal to

∆(t1, t
′
2) + ∆(t′1, t2)− |Tm(t1, t2) \ (Tm(t1, t

′
2) ∪ Tm(t′1, t2))| ,

which equals ∆(t1, t2). This contradicts our initial hypothesis.

4.3 A Combinatorial Algorithm 61

The more complicated part is to show that if there is no feasible schedule then there must be at
least one interval with negative slack. In order to prove this we first prove two propositions. In the
proofs we consider several instances simultaneously. Given an instance I , ∆(I, t1, t2), T (I, t1, t2),
T1(I, t1, t2) and Tm(I, t1, t2) denote the slack and the sets associated to I for a given interval [t1, t2).
From now on, to simplify notation we also assume that the smallest release time is 0.

Proposition 28. Consider an instance I, and let J be and instance given by removing a tall
task i, with ri = 0, if such exists. For all t < d̄i, ∆(J, 0, t) = ∆(I, 0, t), and for all t ≥ d̄i,
∆(J, 0, t) = ∆(I, 0, t) + 1.

Proof. The first part follows directly from the definition of slack. Consider the second part and to
obtain a contradiction assume that the equality does not hold. Let t be the minimum time such
that that ∆(J, 0, t) 6= ∆(I, 0, t) + 1. We first show that ∆(J, 0, t) ≤ ∆(I, 0, t) + 1. We consider two
cases.
Case 1: ∆(I, 0, t) = ∆s(I, 0, t). Since ∆s(J, 0, t) = ∆s(I, 0, t)+1, we have ∆(J, 0, t) ≤ ∆(I, 0, t)+1.
Case 2: ∆(I, 0, t) = ∆d(I, 0, t). Let t1, t2 be two time points that determine ∆d(I, 0, t). Note
that ∆(I, t1, t) = ∆(J, t1, t) (because 0 < t1). If d̄i ≤ t2 then i does not belong to Tm(I, 0, t) \
(Tm(I, 0, t2) ∪ Tm(I, t1, t)). Hence, the slack of J is not larger than

∆(J, 0, t2) + ∆(I, t1, t)− |Tm(I, 0, t) \ (Tm(I, 0, t2) ∪ Tm(I, t1, t))| .

Since t2 < t, by our assumption ∆(J, 0, t2) = ∆(I, 0, t2) + 1. Hence, ∆(J, 0, t) ≤ ∆(I, 0, t) + 1. If
d̄i > t2 then

∆(J, 0, t) ≤ ∆(I, 0, t2) + ∆(I, t1, t)− (|Tm(I, 0, t) \ (Tm(I, 0, t2) ∪ Tm(I, t1, t))| − 1)

= ∆(I, 0, t) + 1.

Similarly, it can be shown that ∆(I, 0, t) ≤ ∆(J, 0, t) − 1, by considering the two cases ∆(J, 0, t) =
∆s(J, 0, t) and ∆(J, 0, t) = ∆d(J, 0, t).

Proposition 29. Consider an instance I. Let k be the number of small tasks in I with release
date 0. Let J be the instance derived from I by removing min{k,m} small tasks with the smallest
deadline among tasks with release date 0, and by changing the release date of the rest of the tasks
with release date 0 (if any) to 1. Let x be a tall task in I with the earliest deadline among tall tasks
with release date 0 (if such exists), and let t be d̄x if x is exists and ∞ otherwise. For all 1 < t2 < t,

min {∆(I, 0, t2),∆(I, 1, t2)} ≤ ∆(J, 1, t2).

Proof. To obtain a contradiction assume that t2 is the minimum time for which the inequality does
not hold. If k ≤ m then since there are no tall tasks with release date 0 and deadline at most t2
in I , we have ∆(I, 1, t2) = ∆(J, 1, t2); a contradiction. Suppose that k > m. Let d̄ be the earliest
deadline of a task in I with release date 0 that was not removed. If t2 < d̄ then again T (J, 1, t2) does
not contain any task with release time 0 in I , and thus, ∆(I, 1, t2) = ∆(J, 1, t2); a contradiction.
The only remaining case is t2 ≥ d̄. We consider two cases.
Case 1: ∆(J, 1, t2) = ∆s(J, 1, t2). Since t2 ≥ d̄ |T1(J, 1, t2)| = |T1(I, 0, t2)| −m and thus

⌈
|T1(J, 1, t2)|

m

⌉

=

⌈
|T1(I, 0, t2)|

m

⌉

− 1.

Recall also that since no tall task in I has release date 0 and deadline at most t2 we have for all
1 < s ≤ t2, Tm(I, 0, s) = Tm(J, 1, s). We get

∆(J, 1, t2) = t2 − 1− (|Tm(J, 1, t2)|+

⌈
|T1(J, 1, t2)|

m

⌉

)

= t2 − (|Tm(I, 0, t2)|+

⌈
|T1(I, 0, t2)|

m

⌉

)

= ∆s(I, 0, t2) ≥ ∆(I, 0, t2).

62 Scheduling Equal Length Multiprocessor Tasks

Case 2: ∆(J, 1, t2) = ∆d(J, 1, t2). Let t′1, t
′
2 with 1 < t′1 ≤ t′2 < t2 be time points that determine

the dynamic slack. Recall that by our assumption min {∆(I, 0, t′2),∆(I, 1, t′2)} ≤ ∆(J, 1, t′2). Since
t′1 > 1, ∆(I, t′1, t2) = ∆(J, t′1, t2). We get

∆(J, 1, t2) = ∆(J, 1, t′2) + ∆(J, t′1, t2)

− |Tm(J, 1, t2) \ (Tm(J, 1, t′2) ∪ Tm(J, t′1, t2))|

≥ min {∆(I, 0, t′2),∆(I, 1, t′2)}+ ∆(I, t′1, t2)

− |Tm(I, 0, t2) \ (Tm(I, 0, t′2) ∪ Tm(I, t′1, t2))|

≥ min {∆(I, 0, t2),∆(I, 1, t2)} .

Proposition 30. If all time intervals have non-negative slack then there is a feasible schedule.

Proof. We prove that if there is no feasible schedule then there must be an interval with a negative
slack. Define the size of an instance I as

∑

T d̄i − ri. We prove it by induction on the size of the
instance. The proposition clearly holds for instances of size 1 since such instances consist of one
task. Suppose that the proposition holds for all instances of size at most s. We prove it for instances
of size s+ 1. Consider an instance I of size s+ 1 with no feasible schedule. If I has both a tall task
and a small task with release date 0 and deadline 1 or more than m small tasks with release time 0
and deadline 1 then ∆(I, 0, 1) < 0. Suppose that this is not the case. Let k be the number of small
tasks in I with release date 0. Consider two instances JS and JT defined as follows. The instance
JS is derived from I by removing min{k,m} small tasks with the smallest deadline among tasks
with release date 0, and by changing the release date of the rest of the tasks with release date 0 (if
any) to 1. The instance JT is derived from I by removing a tall task x with the smallest deadline
among tall tasks with release date 0, and by changing the release date of the rest of the tasks with
release date 0 (if any) to 1. We assume that the task x exists. Note that if any of JT and JS has a
feasible schedule then this schedule can be extended to a feasible schedule for I . We conclude that
both JS and JT have no feasible schedule. Since the size of both JS and JT is at most s, there is
an interval with negative slack in both JS and JT . If for J ∈ {JS, JT }, there exists 1 < t1 < t2
such that ∆(J, t1, t2) < 0 then since ∆(I, t1, t2) = ∆(J, t1, t2) we are done. Suppose that this is not
the case. Hence, there are tS , tT > 1 such that ∆(JS , 1, tS) < 0 and ∆(JT , 1, tT) < 0. We consider
several cases.
Case 1: tT ≥ d̄x. Let I ′ be the instance given by removing task x from I . Since the sets of tasks in
JT and I ′ are the same ∆(I ′, 0, tT) ≤ ∆(JT , 1, tT)+1. By Proposition 28 ∆(I, 0, tT) = ∆(I ′, 0, tT)−1.
Hence, ∆(I, 0, tT) ≤ ∆(JT , 1, tT) < 0.
Case 2: tS < d̄x. By Proposition 29 min {∆(I, 0, tS),∆(I, 1, tS)} ≤ ∆(JS , 1, tS) < 0.
Case 3: The remaining case is tS ≥ d̄x and tT < d̄x. Let l be the number of large tasks
in I with release date 0 and deadline at most tS . Let J ′

S be the instance given by removing
these l tasks from JS . By proposition 28 ∆(J ′

S , 1, tS) = ∆(JS , 1, tS) + l < l. Let I ′ be the in-
stance given by removing these l tasks from I . Note that ∆(I, 1, tS) = ∆(I ′, 1, tS). By Proposi-
tion 29 min {∆(I ′, 0, tS),∆(I ′, 1, tS)} ≤ ∆(J ′

S , 1, tS) < l. If ∆(I ′, 0, tS) < l then by Proposition 28
∆(I, 0, tS) = ∆(I ′, 0, tS)− l < 0. Otherwise, ∆(I, 1, tS) < l. We get that

∆(I, 0, tS) ≤ ∆(I, 0, tT) + ∆(I, 1, tS)− |Tm(I, 0, tS) \ (Tm(I, 0, tT) ∪ Tm(I, 1, tS))|

< 0 + l − l = 0

To conclude the proof, we just have to consider the situation where the task x does not exist (i.e.,
there is no tall task with release date 0). In such a case, the same reasoning as for Case 2 applies.

4.3.1 Open Questions

We have presented two algorithms for scheduling tall/small multiprocessor tasks with unit processing
time to minimize maximum tardiness. The first one relies on linear programming and the second

4.3 A Combinatorial Algorithm 63

one is purely combinatorial. An interesting open question is whether one of them could be extended
to solve a larger class of problem such as Pm|ri, pi = 1, sizei|Tmax.

64 Scheduling Equal Length Multiprocessor Tasks

Chapter 5

Batching Equal Length Jobs

We study the situation where n jobs {J1, . . . , Jn} have to be scheduled on a batching machine.
Jobs cannot start before their release dates and all jobs of the same batch start and are completed
simultaneously, i.e., at the starting time (respectively at the completion time) of the batch. Two
types of batching machines are studied.

• On a serial batching machine, the length of a batch equals the sum of the processing times of
its jobs. When a new batch starts, a constant setup time s occurs.

• On a parallel batching machine, there are at most b jobs per batch and the length of a batch
is the largest processing time of its jobs. Two situations are often distinguished. The bounded
case with b < n and the unbounded case with b = n. In this environment, no setup is assumed.
However, a constant setup time s could be easily taken into account by increasing of s the
processing time of each job.

Following the notation of [47], these problems are denoted respectively by 1|s-batch, ri|F , 1|p-
batch, b < n, ri|F (bounded case) and 1|p-batch, ri|F (unbounded case). We refer to [6], [39], [47],
[93], [168], [187], [217] for extended reviews on pure batch scheduling problems and on extensions
(e.g. scheduling group of jobs with group-dependent setup times, jobs requiring several machines
throughout their execution, etc.). Complexity results for problems with identical release dates
are summarized in Table 5. The problems 1|ri|F are NP-Hard for Lmax,

∑
Ci,
∑
Ti, hence the

corresponding batching problems 1|s-batch, ri|F and 1|p-batch, ri|F are also NP-Hard.
These results leave open the status of most of the problems with arbitrary release dates and

equal processing times. In this chapter, we first study (Section 5.1) the parallel unbounded prob-
lem and we show that, for arbitrary processing times, an optimum schedule can be computed in
pseudopolynomial time for any regular objective function. When processing times are equal, the
algorithm runs in polynomial time. We then show (Section 5.2) that serial and (bounded) parallel
batching problems can be solved in polynomial time for the class of ordered objective functions
(see Definition 2).

5.1 Parallel Unbounded Batching, 1|p-batch, ri|F

We study the parallel unbounded problem 1|p-batch, ri|F . From now on, we assume that F =
∑
fi

is regular and that jobs are ordered in non-decreasing order of processing times.

Proposition 31. There is an optimal schedule such that, for any batch, the jobs that are smaller
than the length of the batch and that are released before or at the starting time of the batch are either
executed in the batch or in a previous batch.

Proof. Consider a job i and a batch B for which the proposition does not hold. The job i can be
moved to B and since F is regular, this does not increase the value of objective function.

66 Batching Equal Length Jobs

Problem Complexity References
1|p-batch, b < n|Cmax O(n log n) [39]

1|s-batch|Lmax O(n2) [217]
1|p-batch|Lmax O(n2) [39]

1|p-batch, b < n|Lmax Unary NP-Hard [39]
1|s-batch|

∑
Ui O(n3) [49]

1|s-batch|
∑
wiUi binary NP-Hard [49]

1|s-batch, pi = p|
∑
wiUi O(n4) [120]

1|p-batch|
∑
Ui O(n3) [39]

1|p-batch|
∑
wiUi binary NP-Hard [39]

1|p-batch, b < n|
∑
Ui Unary NP-Hard [39]

1|s-batch|
∑
Ci O(n log n) [76]

1|s-batch, pi = p|
∑
Ci polynomial in log p, log s, logn [199]

1|s-batch|
∑
wiCi unary NP-Hard [6]

1|s-batch, pi = p|
∑
wiCi O(n log n) [6]

1|p-batch|
∑
wiCi O(n log n) [39]

1|p-batch, b < n|
∑
Ci O(nb(b−1)) [39]

1|s-batch|
∑
Ti binary NP-Hard [91]

1|s-batch|
∑
Ti O(n11 max(maxi pi, s)

7) [18]
1|p-batch|

∑
wiTi binary NP-Hard [39]

1|p-batch, b < n|
∑
Ti unary NP-Hard [39]

Table 5.1: Overview of the complexity results

Proposition 31 suggests that once the starting time of the largest batch (the one that contains
the largest job n) is known, we can decompose the problem into two sub-problems that occur before
and after this batch.

More formally, a state of the dynamic program is defined by (1) the index k of the largest job
considered in the problem, (2) a right fictive batch starting at s with length πs and (3) a left fictive
batch starting at e with length πe ≥ pk. In the recursion we try to schedule the jobs i with i ≤ k
and s < ri ≤ e between s+ πs and e+ πe (jobs can be scheduled either in the right fictive batch or
between the fictive batches). Let F (k, s, πs, e, πe) be the minimal cost of such a schedule.

Proposition 32. If rk > e or if rk ≤ s then F (k, s, πs, e, πe) = F (k − 1, s, πs, e, πe) otherwise,
F (k, s, πs, e, πe) is the minimum of F (k − 1, s, πs, e, πe) + fk(e+ πe) and of

min
t∈[max(s+πs,rk),e−pk]

F (k, s, πs, t, pk) + F (k, t, pk, e, πe).

Proof. If rk > e or if rk ≤ s then k is not considered in the sub-problem and hence, F (k, s, πs, e, πe) =
F (k − 1, s, πs, e, πe). Now assume that s < ri ≤ e and consider the non-dominated schedule that
realizes F (k, s, πs, e, πe). The job k is either scheduled in the right fictive batch or it is scheduled in
a batch that starts after or at s and that is completed before or at e.

• If k is scheduled in the fictive batch, then the cost of scheduling k is fk(e+ πe) and all other
jobs have to be scheduled between s+ πs and e or in the fictive batch. So, F (k, s, πs, e, πe) ≥
F (k − 1, s, πs, e, πe) + fk(e+ πe).

• If k is scheduled in a batch B starting at t between s and e then, we know that the batch
length is pk (since k is the largest job). Moreover, it has to be completed before e and it cannot
start in the left fictive batch so, t ∈ [max(s + πs, rk), e − pk]. According to our dominance
property, all other jobs are either executed in batch B or in a previous batch or are released
after t. Jobs released after t cannot start before the end t + pk of the batch containing k so,
we are exactly in the state (k, t, pk, e, πe) of the recursion. The other jobs must be completed
before or in the batch containing Jk so, we are exactly in the state (k, s, πs, t, pk). Hence, we
have F (k, s, πs, e, πe) ≥ F (k, s, πs, t, pk) + F (k, t, pk, e, πe).

5.2 Batching to Minimize an Ordered Objective Function 67

We have proven that F (k, s, πs, e, πe) is greater than or equal to the minimum of F (k−1, s, πs, e, πe)+
fk(e+πe) and of mint∈[s+πs,e−pk] F (k, s, πs, t, pk)+F (k, t, pk, e, πe). Now we prove that F (k, s, πs, e, πe)
is lower than or equal to the minimum of the two expressions above.

• First consider a schedule that realizes F (k − 1, s, πs, e, πe). We can add k in the right fic-
tive batch (the additional cost is fk(e + πe)) and we obtain a feasible schedule for the state
(k, s, πs, e, πe). So, F (k, s, πs, e, πe) ≤ F (k − 1, s, πs, e, πe) + fk(e+ πe).

• Now let t be the value that realizes mint∈[max(s+πs,rk),e−pk] F (k, s, πs, t, pk) + F (k, t, pk, e, πe)
and let us merge the schedules that respectively realize F (k, s, πs, t, pk) and F (k, t, pk, e, πe).
The merging is possible because the right fictive batch of the first one coincides with the left
fictive batch of the second one. This schedule is feasible for the state (k, s, πs, e, πe). So,
F (k, s, πs, e, πe) ≤ F (k, s, πs, t, pk) + F (k, t, pk, e, πe).

If P =
∑
pi denotes the time horizon, the time complexity of the dynamic programming algo-

rithm is O(nP 5) since there are O(nP 4) states and each time the parameter t can take at most P
values.

Now consider the special case with identical processing times ∀i, pi = p. First, note that the
parameters πs and πe become un-useful. Moreover, it is easy to see that there are few relevant
starting times since in active schedules, starting times are equal to a release date modulo p. Hence
the set of relevant starting times is O(n2) and consequently, the complexity of the algorithm reduces
to O(n11).

5.2 Batching to Minimize an Ordered Objective Function

From now on, we restrict our study to ordered objective functions
∑
fi (see Definition 2, Chapter 2).

Hence, a kind of due-date δi is attached to each function fi and we have δ1 ≤ · · · ≤ δn. By analogy
with due date scheduling, we say that a job is late when it is completed after δi and that it is on-time
otherwise. The “late” cost is ωi and the early cost is time-dependant. Notice that a late job can be
scheduled arbitrary late.

Several dominance properties are stated in §5.2.1. The dynamic programming algorithms for
serial and parallel problems are described in §5.2.2 and §5.2.3. Finally in §5.2.4 we show that our
approach can be extended to handle Tmax and we draw some conclusions.

5.2.1 Dominance Properties

We first define two sets of time points at which batches start on active schedules. We then study a
dominance related to ordered objective functions and finally we show that both dominances can be
combined.

Starting Times

One of the reasons why it is easy to schedule equal length jobs is that there are few possible starting
times. Indeed, active schedules are dominant and thus starting times are equal to a release date
modulo p. This idea can be extended to batching problems.

Serial Batching

Ordered objective functions are regular, hence active schedules are dominant. Consequently, each
batch starts either at the release date of one of its jobs or immediately after the completion time of
another batch plus the setup time s. Hence we can assume that batches start and end in Θ′, where

Θ′ = {rλ + µp+ νs, λ ∈ {1, · · · , n}, µ ∈ {0, · · · , n}, ν ∈ {0, · · · , n}}

68 Batching Equal Length Jobs

Parallel Batching

Because jobs have the same processing time p we can assume that the length of a batch is p. On
top of that, active schedules are dominant so, batches start and end in Θ as defined in Proposition 3
(Θ = {t|∃ri, ∃l ∈ {0, . . . , n}, t = ri + lp}).

Notice that |Θ′| = O(n3) and |Θ| = O(n2).

Ordered Objective Functions

The following proposition holds both for serial and parallel problems.

Proposition 33. Any feasible schedule can be transformed in a “better” one where for any pair of
on-time jobs Ju, Jv(u < v), being executed in batches starting respectively at tu and tv, either tu ≤ tv
or tv < ru.

Proof. Sketch. Let (u, v) be the smallest vector, according to the lexicographical order, such that
tu > tv and tv ≥ ru. The jobs Ju and Jv may be exchanged and the value of the objective function
is not increased since it is an ordered objective function. Moreover, it is easy to see that the smallest
vector (u′, v′) that does not satisfy the condition on the new schedule is such that (u′, v′) > (u, v).
Repeated exchanges can be used to replace any schedule by a schedule which satisfies the condition
for all u, v (the vector (u, v) increases at each step, hence the number of exchanges is finite).

Combining All Dominance Properties

Now consider an optimal and active schedule and apply the exchanges of Proposition 33. The
resulting schedule is still optimal and the set of starting times is kept the same. Hence we can
combine both dominance criteria, i.e., schedules such that

• batches start and are completed either in Θ′ for serial problems, or in Θ for parallel problems

• and such that for any pair of jobs Ju, Jv(u < v), being executed in batches starting respectively
at tu and tv, either tu ≤ tv or tv < ru,

are dominant. In the following such schedules will be referred to as Serial-Dominant or Parallel-
Dominant schedules.

5.2.2 Dynamic Programming for the Serial Problem

The dynamic program relies on the notion of partial batch. Usually, once the starting time t and
the completion time t + pν of a batch is known, it is easy to compute that (t + pν − t)/p = ν jobs
are in the batch (because the batch is full). In a partial batch, there may be some hole and we only
know that at most (t+ pν − t)/p jobs are in the batch. The batch is therefore “partial” since some
additional jobs could be a priori added. In the following, the maximal number of jobs in a partial
batch is denoted by the symbol ν, while µ denotes the number of jobs actually scheduled.

Before defining the variables of the Dynamic Program, let us introduce the set of jobs Vk(tl, tr).
For any integer k ≤ n and for any time points tl ≤ tr, Vk(tl, tr) is the set of jobs whose index is
lower than or equal to k and whose release date is in the interval (tl, tr].

Vk(tl, tr) = {Ji|i ≤ k, ri ∈ (tl, tr]}

Variables of the Dynamic Program

The dynamic search is controlled by 5 parameters k, tl, tr, νl, νr and µr. Each combination of these
parameters defines a sub-problem involving the jobs in Vk(tl, tr). As explained below, the objective
of the sub-problem is to minimize

∑

Ji∈Vk(tl,tr) fi(Ci) under some constraints.

Definition 17. A schedule K is Serial-Dominant for (k, tl, tr, νl, νr, µr) iff

5.2 Batching to Minimize an Ordered Objective Function 69

• K is Serial-Dominant,

• jobs in Vk(tl, tr) are either late or are completed before or at tr + pνr,

• a partial batch, containing 0 job of Vk(tl, tr), starts at tl and is completed at tl + pνl,

• a partial batch, containing µr jobs of Vk(tl, tr), starts at tr and is completed at tr + pνr.

Now we can define the variables of the dynamic program.

Definition 18. Sk(tl, tr, νl, νr, µr) is the minimal value taken by the function

∑

Ji∈Vk(tl,tr)

fi(Ci) (5.1)

over the Serial-Dominant schedules for (tl, tr, νl, νr, µr). If there is no such schedule,

Sk(tl, tr, νl, νr, µr) = +∞.

Given this definition S0(tl, tr, νl, νr, µr) equals 0 if tl + pνl + s ≤ tr and +∞ otherwise.
To get an intuitive picture of the decomposition scheme, assume that Jk ∈ Vk(tl, tr) is on-time

(if it is not, take into account the “late” cost fk(δk) and set k to k− 1) and consider the time point
t at which the batch containing Jk starts on K (cf. Figure 5.1).

• If t = tr, i.e., if Jk is put in the right partial batch, then we take into account the cost
fk(tr +pνr) associated to Jk and we solve the sub-problem defined by (k−1, tl, tr, νl, νr, µr−1).

• If t < tr, then Jk is scheduled in an in-between batch starting at t and containing ν jobs.
Thanks to Proposition 33, on-time jobs of Uk−1(tl, t) are all completed before or at the com-
pletion time of this batch. On-time jobs of Uk−1(t, tr) are completed after this batch. Hence,
we have a left sub-problem defined by (k − 1, tl, t, νl, ν, ν − 1) and a right one defined by
(k − 1, t, tr, ν, νr, µr)

-��QQ��QQ��QQ

Left batch
︷ ︸︸ ︷

tl tl + pνl

Jk ��QQ��QQ��QQ

Right batch
︷ ︸︸ ︷

tr tr + pµr tr + pνr

-��QQ��QQ��QQ

Left batch
︷ ︸︸ ︷

tl tl + pνl

Jk

In-between batch
︷ ︸︸ ︷

t t+ pν
��QQ��QQ��QQ

Right batch
︷ ︸︸ ︷

tr tr + pµr tr + pνr

Figure 5.1: Two ways to schedule Jk: Either in the right partial batch or in an in-between batch
(Jk can also be late). Ticked boxes in a batch indicate that it is only partially available for the jobs
of Vk(tl, tr).

Fundamental Recursion Formula

We define three values L,R, I . We will see that they are the costs of optimal schedules where Jk is
in the Left, in the Right or in the In-between batch.

Definition 19. L equals Sk−1(tl, tr, νl, νr, µr) + fk(δk)

Definition 20. R equals fk(tr + pνr) + Sk−1(tl, tr, νl, νr, µr − 1) if µr > 0 and +∞ otherwise.

70 Batching Equal Length Jobs

Definition 21. I is the minimum of

Sk−1(tl, t, νl, ν, ν − 1) + fk(t+ pν) + Sk−1(t, tr, ν, νr, µr) (5.2)

under the constraints

ν ∈ {1, · · · , n}
t ∈ Θ′

rk ≤ t ≤ δk − pν
tl + pνl + s ≤ t ≤ tr − pν − s

(5.3)

If there are no such t and ν, I = +∞.

The following propositions lead to Proposition 38 that provides the fundamental recursion for-
mula of the dynamic program.

Proposition 34. If Jk ∈ Vk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≤ L.

Proof. Assume that L takes a finite value and let R be the schedule that realizes it. R is Serial-
Dominant for (k− 1, tl, tr, νl, νr, µr) and also for (k, tl, tr, νl, νr, µr) (Jk is late). The additional cost
is exactly fk(δk).

Proposition 35. If Jk ∈ Vk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≤ R.

Proof. Assume thatR takes a finite value and letQ be the schedule that realizes Sk−1(tl, tr, νl, νr, µr−
1). Let Q′ be the schedule obtained by adding the job Jk in the right batch (it can be added because
it is released before the starting time of the batch since Jk ∈ Vk(tl, tr) ⇒ rk ≤ tr). On the new
schedule, at most µr−1+1 = µr jobs of Vk(tl, tr) are scheduled in the right batch. It is easy to verify
that Q′ is a Serial-Dominant schedule for (k, tl, tr, νl, νr, µr). The additional cost is fk(tr + pνr).
Hence Sk(tl, tr, νl, νr, µr) ≤ R

Proposition 36. If Jk ∈ Vk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≤ I.

Proof. Assume that I takes a finite value and let t and ν be the values that realize 5.2 and meet
the constraints 5.3. Let Kl and Kr be the schedules that realize respectively Sk−1(tl, t, νl, ν, ν − 1)
and Sk−1(t, tr, ν, νr, µr). We build a schedule K′ by adding the schedules Kl and Kr and by adding
Jk in the right batch of Kl. Since the set Jk(tr, tl) is the direct sum of Jk−1(tr, t) plus Jk−1(t, tl)
plus {Jk}, all jobs of Jk(tr, tl) are scheduled exactly once on K′. Jk can be added to the right batch
because no more than ν − 1 jobs are scheduled in this batch on Kl. At least s time units elapse
between batches (because tl + pνl + s ≤ t ≤ tr − pν − s) and it is easy to verify that the in-between
batch starts after the release dates of its jobs and before their due dates. We have proven that K′

is feasible.
We claim that K′ is a Serial-Dominant schedule for (k, tl, tr, νl, νr, µr). We only prove that “for any
pair of jobs Ju, Jv(u < v), being executed in batches starting respectively at tu and tv, either tu ≤ tv
or tv < ru”. The verification of all other conditions is easy and is left to the reader. If v = k and if
tv < tu then Ju belongs to the sub-schedule Kr and thus, Ju ∈ Uk−1(t, tr), which leads to t = tv < ru
and the condition holds. Now assume that v < k. If both jobs belong to the same sub-schedule
either Kr or Kl, the condition holds because they are Serial-Dominant. Now assume that it is not
the case and that tv < tu. We know that t ∈ [tv, tu) and since Ju ∈ Uk−1(t, tr), tv ≤ t < ru.
On K′, the batch of Jk is completed at t+ pν, hence the total cost of K′ is Sk−1(tl, t, νl, ν, ν − 1) +
fk(t+ pν) + Sk−1(t, tr, ν, νr, µr) = I . As a consequence, Sk(tl, tr, νl, νr, µr) ≤ I .

Proposition 37. If Jk ∈ Vk(tl, tr) then Sk(tl, tr, νl, νr, µr) ≥ min(I, R, L).

Proof. We can assume that Sk(tl, tr, νl, νr, µr) takes a finite value otherwise the proposition obviously
holds. Let W be the schedule that realizes Sk(tl, tr, νl, νr, µr). If Jk is not scheduled on W , i.e.,
it is late, then W is also Serial-Dominant for (k − 1, tl, tr, νl, νr, µr) and the cost is decreased of
fk(δk) (because Jk is not taken into account). Hence, Sk(tl, tr, νl, νr, µr) ≥ L. Now assume that Jk

is scheduled on-time on W and let t be the time point at which the batch containing Jk starts and
let ν be the size of this batch.

5.2 Batching to Minimize an Ordered Objective Function 71

• If Jk is scheduled in the last batch, i.e., if t = tl, then remove it. It is easy to verify
that the resulting schedule is Serial-Dominant for (k − 1, tl, tr, νl, νr, µr − 1) and its cost is
Sk(tl, tr, νl, νr, µr) − fk(tr + pνr). Hence, Sk−1(tl, tr, νl, νr, µr − 1) ≤ Sk(tl, tr, νl, νr, µr) −
fk(tr + pνr). Consequently, Sk(tl, tr, νl, νr, µr) ≥ R.

• If Jk is not scheduled in the last batch then, because of the setup time constraint, it must
start after or at tl + pνl + s and it must be completed before or at tr − s. Hence, t ∈
[tl + pνl + s, tr − pν − s]. Moreover, the batch starts before the release date of Jk and is
completed before its due date. Finally, the batch starts at a time point of Θ′ because W is
Serial-Dominant. Hence, constraints 5.3 are met. Let now Wl be the sub-schedule obtained
from W by removing the jobs that are scheduled in batches starting strictly after t and by
removing Jk. This sub-schedule is Serial-Dominant for (k−1, tl, t, νl, ν, ν−1) and thus its cost
is greater than or equal to Sk−1(tl, t, νl, ν, 1). Similarly, let Wr be the sub-schedule obtained
fromW by removing the jobs that are scheduled in a batch starting before or at t. Wr is Serial-
Dominant for (k− 1, t, tr, ν, νr, µr) and its cost is greater than or equal to Sk−1(t, tr, ν, νr, µr).
Finally, notice that the cost of W , Sk(tl, tr, νl, νr, µr), is the sum of the costs of Wl and Wr

plus the cost of scheduling Jk in the batch starting at t, i.e., fk(t+ pν). Altogether, this leads
to Sk(tl, tr, νl, νr, µr) ≥ I .

Hence, Sk(tl, tr, νl, νr, µr) is greater than or equal to either I, R or L.

Proposition 38. If Jk ∈ Vk(tl, tr) then Sk(tl, tr, νl, νr, µr) = min(I, R, L). Otherwise,

Sk(tl, tr, νl, νr, µr) = Sk−1(tl, tr, νl, νr, µr).

Proof. If Jk /∈ Vk(tl, tr) then Vk(tl, tr) = Uk−1(tl, tr) and thus the proposition obviously holds. If
Jk ∈ Vk(tl, tr) then the result comes immediately from Propositions 35, 36, 34 and 37.

An O(n14) Algorithm

There is an optimal schedule that is serial-dominant and it comes directly from the definition of
Sk(tl, tr, νl, νr, µr) that the optimum is met for

k := n
tl := min(Θ′)− s− 1
νl := 0
tr := max(Θ′) + s
νr := 0
µr := 0

(5.4)

Notice that if s > 0 then tl can be set to min(Θ′)−s instead of min(Θ′)−s−1 because Un(min(Θ′)−
s,max(Θ′) + s) = {J1, · · · , Jn}; which is not the case when s = 0.

Thanks to Proposition 38, we have a straight dynamic programming algorithm to reach the
optimum. The relevant values for tl and tr are those in Θ′ plus the special values min(Θ′) − s− 1
and max(Θ′)+s that are useful to start the dynamic search (to simplify the pseudo-code, these special
values have been omitted in Algorithm 5). The relevant values for k, νl, νr and µr are {0, · · · , n}.
Finally, the values of Sk(tl, tr, νl, νr, µr) are stored in a multi-dimensional array of size O(n10) (n
possible values for k, νl, νr, µr, and n3 possible values both for tl and tr).

In the initialization phase, S0(tl, tr, νl, νr, µr) is set to 0 if tl + pνl + s ≤ tr and to a very large
value otherwise. The initialization phase runs in O(n9) (n possible values for νl, νr, µr, n3 possible
values both for tl and tr).

We then iterate on all possible values of the parameters to reach the optimum (cf. Algorithm 5).
Each time, a minimum over O(n4) terms (O(n3) for t and O(n) for ν) is computed. This leads to
an overall time complexity of O(n14). A rough analysis of the space complexity leads to an O(n10)
bound but since, at each step of the outer loop on k, one only needs the values of S computed at
the previous step (k− 1), the algorithm can be implemented with 2 arrays of O(n9) size: one for the
current values of S and one for the previous values of S. (To build the optimal schedule, all values
of S have to be kept; hence the initial O(n10) bound holds.)

72 Batching Equal Length Jobs

Algorithm 5 Computation of the values Sk(tl, tr, νl, νr, µr)

1: for k := 1 to n do
2: for νr := 0 to n do
3: for νl := 0 to n do
4: for µr := 0 to νr do
5: for tr ∈ Θ′ taken in increasing order do
6: for tl ∈ Θ′ (tl ≤ tr) taken in increasing order do
7: R := +∞, I := +∞, L := +∞
8: if µr > 0 then
9: R := fk(tr + pνr) + Sk−1(tl, tr, νl, νr, µr − 1)

10: end if
11: for ν := 1 to n do
12: for t ∈ Θ′ ∩ [tl + pνl + s, tr − pν − s] ∩ [rk , δk − pν] do
13: I := min(I, Sk−1(tl, t, νl, ν, ν − 1) + fk(t+ pν) + Sk−1(t, tr, ν, νr, µr))
14: end for
15: end for
16: L := Sk−1(tl, tr, νl, νr, µr) + fk(δk)
17: Sk(tl, tr, νl, νr, µr) := min(I, R, L)
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for

5.2.3 Dynamic Programming for the Parallel Problem

Variables of the Dynamic Program

The dynamic search is controlled by 4 parameters k, tl, tr and µr. Each combination of these
parameters defines a sub-problem involving the jobs in Vk(tl, tr). The objective is to minimize
∑

Ji∈Vk(tl,tr) fi(Ci) under some constraints.

Definition 22. A schedule K is Parallel-Dominant for (k, tl, tr, µr) iff

• K is Parallel-Dominant,

• jobs in Vk(tl, tr) do not start before tl + p,

• jobs in Vk(tl, tr) are either late or are completed before or at tr + p,

• a partial batch, containing µr jobs of Vk(tl, tr), starts at tr.

Now we can define the variables of the dynamic program.

Definition 23. Pk(tl, tr, µr) is the minimal value taken by the function
∑

Ji∈Vk(tl,tr)

fi(Ci) (5.5)

over the Parallel-Dominant schedules of Vk(tl, tr). If there is no such schedule,

Pk(tl, tr, µr) = +∞.

Given this definition P0(tl, tr, µr) equals 0 if tl + p ≤ tr and +∞ otherwise.
To get an intuitive picture of the decomposition scheme, assume that Jk ∈ Vk(tl, tr) is on-time

(if it is late, k can be decreased of 1 and we only have to take into account the cost of scheduling
Jk late, i.e., fk(δk)) and consider the time point t at which the batch containing Jk starts on K
(cf. Figure 5.2).

5.2 Batching to Minimize an Ordered Objective Function 73

• If t = tr, i.e., if Jk is put in the right batch, we have to solve the same problem with k := k−
1, tl := tl, tr := tr and µr := µr − 1.

• If t < tr, then an in-between batch is created. Thanks to Proposition 33 jobs of Uk−1(tl, t)
are either late or are completed before or at the completion time of this batch. Jobs in
Uk−1(t, tr) are completed after this batch. Hence, we have two sub-problems. A left one with
(k − 1, tl, t, b− 1) and a right one with (k − 1, t, tr, µr).

-1 !!!
aaa

2 !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

b !!!
aaa

Left Batch
︷ ︸︸ ︷

tl tl + p
!!!

aaa 1
!!!

aaa · · ·
!!!

aaa b − µr

Jk b − µr + 1
· · ·
b

Right batch
︷ ︸︸ ︷

tr tr + p

-1 !!!
aaa

2 !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

· · · !!!
aaa

b !!!
aaa

Left Batch
︷ ︸︸ ︷

tl tl + p

Jk

In-between batch
︷ ︸︸ ︷

t t+ p
!!!

aaa 1
!!!

aaa · · ·
!!!

aaa b − µr

b − µr + 1
· · ·
b

Right batch
︷ ︸︸ ︷

tr tr + p

Figure 5.2: Two ways to schedule Jk: Either in the right batch or in an in-between batch (Jk can
also be late). Ticked boxes in a batch indicate that it is only partially available for the jobs of
Vk(tl, tr).

Fundamental Recursion Formula

Let us redefine the values of R, I, L.

Definition 24. L equals Pk−1(tl, tr, µr) + fk(δk)

Definition 25. R equals fk(tr + p) + Pk−1(tl, tr, µr − 1) if µr > 0 and +∞ otherwise.

Definition 26. I is the minimum of

Pk−1(tl, t, b− 1) + fk(t+ p) + Pk−1(t, tr, µr) (5.6)

under the constraints

t ∈ Θ
rk ≤ t ≤ δk − p
tl + p ≤ t ≤ tr − p

(5.7)

If there is no such t, I = +∞.

We are ready to formulate the fundamental proposition.

Proposition 39. If Jk ∈ Vk(tl, tr) then Pk(tl, tr, µr) = min(I, R, L). Otherwise,

Pk(tl, tr, µr) = Pk−1(tl, tr, µr).

Proof. See proof of Proposition 38.

74 Batching Equal Length Jobs

Algorithm 6 Computation of the values Pk(tl, tr, µr)

1: for k := 1 to n do
2: for µr := 0 to b do
3: for tr ∈ Θ taken in increasing order do
4: for tl ∈ Θ (tl ≤ tr) taken in increasing order do
5: R := +∞, I := +∞, L := +∞
6: if µr > 0 then
7: R := fk(tr + p) + Pk−1(tl, tr, µr − 1)
8: end if
9: for t ∈ Θ ∩ [tl + p, tr − p] ∩ [rk , δk − p] do

10: I := min(I, Pk−1(tl, t, b− 1) + fk(t+ p) + Pk−1(t, tr, µr))
11: end for
12: L := Pk−1(tl, tr, µr) + fk(δk)
13: Pk(tl, tr, µr) := min(I, R, L)
14: end for
15: end for
16: end for
17: end for

An O(n8) Algorithm

There is an optimal Parallel-Dominant schedule and it comes directly from the definition of Pk(tl, tr, µr)
that the optimum is met for

k := n
tl := min(Θ)− p
tr := max(Θ) + p
µr := 0

(5.8)

Thanks to Proposition 39, we have a straight dynamic programming algorithm to reach the optimum.
The relevant values for tl and tr are those in Θ plus the special values min(Θ)− p and max(Θ) + p.
The relevant values for k and µr are in {0, · · · , n}. The values of Pk(tl, tr, µr) are stored in a
multi-dimensional array of size O(n6).

In the initialization phase, P0(tl, tr, µr) is set to 0 if tl+p ≤ tr and to a very large value otherwise.
It runs in O(n5). We then iterate on all possible values of the parameters to reach the optimum
(cf. Algorithm 6). For each value of the parameters, a minimum over t (O(n2) terms) is computed.
This leads to an overall time complexity of O(n8). A rough analysis of the space complexity leads
to an O(n6) bound but, as for the serial problem, the algorithm can be implemented with 2 arrays
of O(n5) size.

Bar-Noy, Guha, Katz, Naor, Schieber and Shachnai [28] have proposed an O(nF 2+3F+2 logn)
dynamic programming algorithm for the more general case where F families of jobs, all jobs in the
same familiy having identical processing times, have to be batched on a parallel batching machine.
This improves on the result presented above.

5.2.4 Open Questions

We have shown that with arbitrary release dates and identical processing times, (1) the unbounded
parallel problem is solvable in polynomial time for any regular objective function, (2) the parallel
and the serial problems are also solvable in polynomial time for any ordered objective function. As
shown in Chapter 2,

∑
wiUi,

∑
wiCi or

∑
Ti are ordered objective functions or can be transformed

into ordered objective functions. Hence, we have shown that the problems

• 1|s-batch, ri, pi = p|
∑
wiUi,

• 1|s-batch, ri, pi = p|
∑
wiCi,

5.2 Batching to Minimize an Ordered Objective Function 75

• 1|s-batch, ri, pi = p|
∑
Ti,

• 1|p-batch, b < n, ri, pi = p|
∑
wiUi,

• 1|p-batch, b < n, ri, pi = p|
∑
wiCi,

• 1|p-batch, b < n, ri, pi = p|
∑
Ti,

• 1|p-batch, ri, pi = p|
∑
wiTi,

are solvable in polynomial time by dynamic programming. To conclude we would like to point out
that, for the criteria

∑
wiTi, the complexity of batching identical jobs on a serial or on a parallel

bounded machine is still an open question.

76 Batching Equal Length Jobs

Chapter 6

Conclusion

In this first part, we have provided a set of techniques to solve a large variety of equal–processing–
time scheduling problems. Most of the problems studied were open before and we believe that our
algorithms contribute to a better understanding, as far as scheduling is concerned, of the borderline
between NP-Hard and polynomial problems. Although we have tried to be very exhaustive, there
are still many “simple” open equal–execution time scheduling problems.

When there are no precedence constraints, a very challenging problem is 1|pi = p, ri|
∑
wiTi.

It seems that our dynamic programming techniques cannot be extended to this case. Indeed, to
decompose the problem, we always try to find the “less urgent” job in the instance. It is easy to
see that for

∑
wiCi, the less urgent job is the one with minimal weight and for

∑
Ti, it is the one

with largest due-date. The main issue with the weighted tardiness criteria is that a job with a very
large due-date can also have a very large weight. Hence, it seems difficult to generalize this notion
of “less urgent” job.

Many preemptive equal–execution–time problems are also open according to the Brucker and
Knust complexity list [47]. Although the corresponding results are not described in this manuscript,
we have shown recently that, for several problems, preemption is redundant. This allows us to close a
preemptive problem when there is a polynomial solution of its non-preemptive counterpart. Together
with Timkovsky [26] we have shown that preemption is redundant for P2|pmtn, outtree, rj , pj =
1|
∑
Cj (and thus the problem can be solved in polynomial time with Hu’s algorithm). Brucker,

Hurink and Knust have extended this result to an arbitrary number of machines [42]. At the same
time, we have shown with Timkovsky that preemption is also redundant for an arbitrary precedence
graph on a single machine (1|pmtn, prec, rj , pj = p|

∑
Cj). More recently, Brucker, Heitmann and

Hurink [40] have shown that preemption is redundant for P |pmtn, pj = 1|
∑
Tj . We believe that

all these existing results (and more) can be presented in a common generic framework. Preemption
redundancy is, we think, a very promising research direction.

Finally, we would like to mention some negative results on the parallel unit execution time
problems with precedence constraints. P3|prec|Cmax, one of the most challenging problem in the
history of scheduling, is still open. Despite our efforts, it seems that none of the techniques described
in this manuscript can be, a priori generalized to handle arbitrary precedence constraints.

78 Conclusion

Part II

Constraint-Based Scheduling

Chapter 7

Introduction

Constraint-Based Scheduling can be defined as the discipline that studies how to solve scheduling
problems by using Constraint Programming (CP). In this introduction we first pay attention to the
basics of CP, after which we introduce the scheduling problems that are considered.

7.1 Constraint Programming

Constraint Programming is a paradigm aimed at solving combinatorial optimization problems. Often
these combinatorial optimization problems are solved by defining them as one or several instances of
the Constraint Satisfaction Problem (CSP). Informally speaking, an instance of the CSP is described
by a set of variables, a set of possible values for each variable, and a set of constraints between the
variables. The set of possible values of a variable is called the variable’s domain. A constraint
between variables expresses which combinations of values for the variables are allowed. Constraints
can be stated either implicitly (also called intentionally), e.g., an arithmetic formula, or explicitly
(also called extensionally), where each constraint is expressed as a set of tuples of values that satisfy
the constraint. An example of an implicitly stated constraint on the integer variables x and y is
x < y. An example of an explicitly stated constraint on the integer variables x and y with domains
{1, 2, 3} and {1, 2, 3, 4} is the tuple set {(1, 1), (2, 3), (3, 4)}. The question to be answered for an
instance of the CSP is whether there exists an assignment of values to variables, such that all
constraints are satisfied. Such an assignment is called a solution of the CSP.

One of the key ideas of CP is that constraints can be used “actively” to reduce the computational
effort needed to solve combinatorial problems. Constraints are thus not only used to test the validity
of a solution, as in conventional programming languages, but also in an active mode to remove values
from the domains, deduce new constraints, and detect inconsistencies. This process of actively using
constraints to come to certain deductions is called constraint propagation. The specific deductions
that result in the removal of values from the domains are called domain reductions. The set of
values in the domain of a variable that are not invalidated by constraint propagation is called the
current domain of that variable. As an example of the benefit of the active use of constraints,
let us look at the combination of the three constraints y > x, x > 8, and y ≤ 9 on the integer
variables x and y. Looking at the first two constraints, we can deduce that the value of y is greater
than 9. This is administered in the current domain of y. Then by using the constraint y ≤ 9,
obviously a contradiction can be detected. Without constraint propagation, the “y ≤ 9” test could
not be performed before the instantiation of y and thus no contradiction would be detected. The
current domains of the variables play a central role in constraint propagation as a basic means of
communication between constraints. In this small example the fact the current domain of y only
includes values greater than 9 makes it trivial for the constraint y ≤ 9 to detect a contradiction.

As the general CSP is NP-complete [108], constraint propagation is usually incomplete. This
means that some but not all the consequences of the set of constraints are deduced. In particular,
constraint propagation cannot detect all inconsistencies. Consequently, one needs to perform some
kind of search to determine if the CSP instance at hand has a solution or not. Most commonly,

82 Introduction

search is performed by means of a tree search algorithm. The two main components of a tree search
algorithm are (i) the way to go “forward”, i.e., the definition of which decisions are taken at which
point in the search, and (ii) the way to go “backward”, i.e., the definition of the backtracking strategy
which states how the algorithm shall behave when a contradiction is detected. The description of
which decisions to take at which point in the search is often referred to as the search heuristic. In
general, the decisions that are taken correspond to adding additional constraints. As such during
search the constraint propagation reasons on the combination of the original constraints and the
constraints coming from the decisions taken. When a contradiction is detected it thus means it is
proven that there is no feasible assignment of values to variables given the original data of the CSP
and the heuristic decisions that have been made. The most commonly used backtracking strategy is
depth first chronological backtracking, i.e., the last decision is undone and an alternative constraint
is imposed. More complex backtracking strategies can be found for example in [140, 52, 188]. In
Section 12.3.4 we present an application where depth first chronological backtracking is compared
to alternatives such as limited discrepancy search [116].

�
Search�heuristics�and��
backtracking�strategy�

Problem�specification�or��
partial�solution�in�terms�of��
variables�and�constraints�

Constraint�propagation�

Problem�definition�
Initial�constraints�

New�constraints��
(decision)�

New�constraints��
(propagation)�

Figure 7.1: The behavior of a Constraint Programming system.

The overall behavior of a CP system is depicted in Figure 7.1. This figure underlines the fact
that problem definition, constraint propagation, and the search heuristic and backtracking strategy
are clearly separated. This separation is based upon the following fundamental principles of CP
that became precise in the late 1970’s and early 1980’s. In [206] the separation between deductive
methods generating additional constraints from existing constraints, and search algorithms used to
systematically explore the solution space is advocated. For CP the deductive method is constraint
propagation. The distinction between the logical representation of constraints and the control of their
use is in accordance with the equation stated by Kowalski for logic programming: Algorithm = Logic
+ Control [132]. Another important principle used in CP is the so-called “locality principle”, which
states that each constraint must propagate as locally as possible, independently of the existence or
the non-existence of other constraints [207].

When defining the problem in terms of variables and constraints, in practice the user of a CP
tool is offered an array of pre-defined constraints (e.g., constraints on integers, constraints on sets,
scheduling constraints) with corresponding propagation algorithms. The locality principle is of
crucial importance for the practical use of the pre-defined constraints as it implies that the constraint
propagation algorithms can be reused in all applications where similar constraints apply. On top of
this many CP tools offer ways to define new constraints with corresponding propagation algorithms
that then seamlessly can be used in cooperation with the pre-defined constraints. CP tools also offer
support to specify the search heuristic and the backtracking strategy. Again pre-defined heuristics

7.1 Constraint Programming 83

are offered (e.g., instantiate all variables by choosing the variable with the smallest current domain
and assigning it the minimal value in that domain, order all activities on all resources) as well as
ways to define one’s own heuristics. The same goes for backtracking strategies: some pre-defined
strategies are offered (e.g., depth first chronological backtracking, limited discrepancy search) as well
as ways to define one’s own backtracking strategy.

All these properties together contributed to the success of commercial and public domain CP tools
such as ILOG Solver [189, 190], Chip [117, 4, 31], Prolog III, IV [77], Eclipse [215], Claire [69]
and Choco [139]. For a comparison between several CP languages we refer to [101]. For an overview
of CP, its principles, and its applications, we refer to [141, 124, 125, 134, 212, 99, 66, 165, 162, 36, 118].

To give an example of several of the aspects of solving a CSP mentioned above, we turn to one of
the most popular examples in CP literature, namely the n-queens problem. The n-queens problem
involves placing n queens on a chess board in such a way that none of them can capture any other
using the conventional moves allowed to a queen. In other words, the problem is to select n squares
on a n× n chess board so that any pair of selected squares is never aligned vertically, horizontally,
nor diagonally. The problem is of limited practical importance, but it does allow to discuss subjects
like modeling, constraint propagation, search, and backtracking in more detail.

Let’s first look at the modeling of the problem. The n-queens problem can be modeled by
introducing n integer variables xi, each representing the position of the queen in the i-th row, that
is, the column number where the i-th queen is located. As such the domain for each variable is
the set of integers 1 to n. The constraints of the problem can be stated in the following way. For
every pair (i, j), where i is different from j, xi 6= xj guarantees that the columns are distinct and
xi + i 6= xj + j and xi − i 6= xj − j together guarantee that the diagonals are distinct.

In Figure 7.2 we pay attention to solving the 6-queens problem. Each row in the larger squares
correspond to a variable, the first row corresponding to x1, etc. The columns of the squares corre-
spond to the possible values for the variables, the first column corresponding to the value 1, etc. To
keep the example simple, the search heuristic is defined to consider the variables x1 to x6 in that
order and to assign them the minimal value in their current domain. Following the definition of the
search algorithm, x1 is assigned value 1 in Step 1, which is reflected by coloring the corresponding
small square black. The values that were removed from the domains of the variables by constraint
propagation due to this decision are colored gray. The current domain of a variable is thus repre-
sented by the white squares in its row. The constraint propagation prevents for instance that x2

is assigned the value 1 or 2, only to find that this violates the constraints. This is an example of
constraint propagation reducing the search effort.

Step 2 and 3 simply assign the smallest values in the current domain of x2 and x3 to these
variables. In Step 3 (cont.) two effects take place. The constraint propagation leaves only one
value for x4, which for the propagation is equivalent to assigning this value to that variable. The
propagation thus continues and finds that the current domain of x6 gets empty and as such deduces
that the original constraints plus the decisions are inconsistent. This deduction is made before
all variables are assigned a value, again an example how search effort is reduced by constraint
propagation.

In this example we simply employ depth first chronological backtracking. We thus go back to
the last decision taken, in Step 3, and try an alternative choice, in Step 3’. Constraint propagation
again deduces a contradiction, and as no alternatives for Step 3 exists, we backtrack to Step 2, where
an alternative is tried, etc., until we find a solution.

Although this problem is of little practical importance it does show that the combination of the
model, the search heuristic, the constraint propagation, and the backtracking strategy defines the
performance of a CP algorithm. As such if one wants to improve the performance of a CP approach,
one needs to work on at least one of these components. We remark that in CP improving the
model often is aimed at being able to define a better search heuristic or to have better (pre-defined)
constraint propagation.

As already mentioned a crucial component in a CP approach is the constraint propagation.
Several techniques have been developed to do constraint propagation. Among these techniques, let

84 Introduction

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�1�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�2�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�(cont.)�Fail�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�'�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�'�(cont.)�Fail�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�2�'�
�
�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�''�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�''�(cont.)�Fail�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�2''�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�2�''�(cont.)�Fail�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�2�'''�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�'''�Fail�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�''''�Fail�
�
�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�1�'�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�2�''''�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�'''''�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�'''''�(cont.)�Fail�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�3�''''''�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�4�
�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
Step�4�(cont.)�

Figure 7.2: Solving the 6-queens problem.

7.1 Constraint Programming 85

us mention arc-consistency.

Definition 27. Given a constraint c over n variables x1, . . . , xn and a domain d(xi) for each variable
xi, c is said to be “arc-consistent” if and only if for any variable xi and any value vi in d(xi), there
exist values v1, . . . , vi−1, vi+1, . . . , vn in d(x1), . . . , d(xi−1), d(xi+1), . . . , d(xn) such that c(v1, . . . , vn)
holds.

A huge amount of work has been carried out on constraint propagation algorithms that maintain
arc-consistency on the constraints of a binary CSP, i.e., of a CSP whose constraints link at most two
variables [169, 161, 167, 119, 33]. Numeric CSPs are special cases of the CSP where the variables are
constrained to take numeric values. For numeric CSPs the domain of a variable x often is represented
by only its smallest value lb(x) and its largest value ub(x), i.e., by the interval [lb(x), ub(x)]. This
compact representation is especially useful to tackle real-life problems for which explicitly main-
taining the set of values that can be taken by each variable throughout the search tree may not be
reasonable. A usual way to propagate constraints on such variables is to achieve arc-B-consistency
[155], i.e., arc-consistency restricted to the bounds of the domains. Arc-B-consistency can be easily
achieved on some arithmetic constraints such as linear constraints [155].

Definition 28. Given a constraint c over n variables x1, . . . , xn and a domain d(xi) = [lb(xi), ub(xi)]
for each variable xi, c is said to be “arc-B-consistent” if and only if for any variable xi and each
of the bound values vi = lb(xi) and vi = ub(xi), there exist values v1, . . . , vi−1, vi+1, . . . , vn in
d(x1), . . . , d(xi−1), d(xi+1), . . . , d(xn) such that c(v1, . . . , vn) holds.

In the following, maintaining arc-consistency (or arc-B-consistency) on a constraint means that
the domains (respectively the bounds) of the variables involved in the constraint are maintained to
ensure that the constraint is arc-consistent (resp. arc-B-consistent).

Example 1. Maintaining arc-consistency or arc-B-consistency on

n∑

i=1

λixi ≤ Λ (7.1)

where λ1, . . . , λn and Λ are non negative values. It is easy to see that (7.1) leads to:

∀i, xi ≤
Λ−

∑

j 6=i λjxj

λi

Consequently, the upper bound of xi can be adjusted to

Λ−
∑

j 6=i λj lb(xj)

λi

This upper bound needs to be recomputed only when the lower bound of one of the variables x1, . . . , xi−1,
xi+1 . . . , xn is modified.

Example 2. Maintaining arc-consistency or arc-B-consistency on the disjunctive constraint [x1 =
0]∨ [x2 = 0]. As soon as the value 0 is removed from the domain of x1 (resp. of x2) then the second
(resp. first) disjunct is imposed, i.e., x2 = 0 (resp. x1 = 0).

Example 3. Maintainig arc-consistency on x1 6= x2. When x1 is bound to v1, this value is removed
from the domain of x2 (and conversely). Notice that in this example, arc-B-consistency and arc-
consistency differ. Indeed, when only arc-B-consistency is maintained, v1 is removed from d(x2)
only if it is equal to either lb(x2) or ub(x2).

In the past few years much evidence was gathered that the use of “global” constraint propagation
algorithms can drastically enhance the efficiency of CP systems. Such algorithms are able to take
into account a set of constraints from a global point of view, and can propagate them very efficiently.

Let us consider for instance the so-called “all-different” constraint. It constrains a set of n vari-
ables to take pairwise distinct values. Such a constraint can obviously be propagated by maintaining

86 Introduction

arc-consistency on n(n − 1)/2 “local” constraints that state for any pair of variables x and y that
x 6= y. An algorithm to achieve the consistency of the global “all-different” constraint is described
in [191]. The constraint is modeled by a bi-partite graph. One of the sets of vertices is the set of
the variables while the other one is the union of the domains. An edge between a variable and a
value states that the given value is in the domain of the given variable. The constraint is consistent
if and only if there is a matching whose cardinality is n. An algorithm is devised to ensure the
arc-consistency of the global constraint. The domains of the variables are filtered to remove all the
values that would make the constraint inconsistent. Another famous global constraint is the resource
constraint that states that a set of activities cannot overlap in time (this constraint will be presented
in detail in Chapter 8).

One of the key factors of the recent successes of Constraint-Based Scheduling lies in the fact
that a combination was found of the best of two fields of research that pay attention to scheduling,
namely Operations Research (OR) and Artificial Intelligence (AI).

Traditionally, a lot of the attention in OR has been paid to rather “pure” scheduling problems
that are based on relatively simple mathematical models (cf., First Part of this manuscript). For
solving the problem at hand, the combinatorial structure of the problem is heavily exploited, leading
to improved performance characteristics. We could say that an OR approach often aims at achieving
a high level of efficiency in its algorithms. However, when modeling a practical scheduling problem
using these classical models, one is often forced to discard degrees of freedom and side constraints
that exist in the practical scheduling situation. Discarding degrees of freedom may result in the elim-
ination of interesting solutions, regardless of the solution method used. Discarding side constraints
gives a simplified problem and solving this simplified problem may result in impractical solutions for
the original problem. In contrast, AI research tends to investigate more general scheduling models
and tries to solve the problems by using general problem-solving paradigms. We could say an AI
approach tends to focus more on the generality of application of its algorithms. This, however,
implies that AI algorithms may perform poorly on specific cases, compared to OR algorithms.

So, on the one hand we have OR which offers us efficient algorithms to solve problems that
in comparison have a more limited application area. On the other hand we have AI that offers us
algorithms that are more generally applicable, but that might suffer from somewhat poor performance
in the specific cases an efficient OR algorithm exists. An important way to combine the two was
found by incorporating OR algorithms inside global constraints. Examples thereof are the already
mentioned all-different constraint and the resource constraint on a single machine. The basics of
many of the algorithms inside global constraints, certainly in the early stages of the field, can be
found in OR. By applying the locality principle, such specialized algorithms can work side by side
with general propagation algorithms that take care of the rest of the constraints, the side constraints,
etc. In this way one can preserve the general modeling and problem-solving paradigm of CP while
the integration of efficient propagation algorithms improves the overall performance of the approach.
Stated in another way, efficient OR algorithms integrated in a CP tool allow the user to benefit from
the efficiency of OR techniques in a flexible framework. All this said, we want to remark that over
the years the distinction between AI and OR is often becoming less and less clear and is also deemed
less and less important.

7.2 A Constraint-Based Scheduling Model

When looking at the type of resources found in a problem, we distinguish disjunctive scheduling and
cumulative scheduling. In a disjunctive scheduling problem, all resources are machines and thus can
execute at most one activity at a time. In a cumulative scheduling problem, resources exist that can
execute several activities in parallel, of course provided that the resource capacity is not exceeded.

When looking at the type of activities in a problem, we distinguish non-preemptive scheduling,
preemptive scheduling, and elastic scheduling. In non-preemptive scheduling, activities cannot be
interrupted. Each activity must execute without interruption from its start time to its end time. In
preemptive scheduling, activities can be interrupted at any time, e.g., to let some other activities
execute. In elastic scheduling the amount of resource assigned to an activity Ai can, at any time

7.2 A Constraint-Based Scheduling Model 87

t, assume any value between 0 and the resource capacity, provided that the sum over time of the
assigned capacity equals a given value called energy. The equivalent notion of energy in the case of
a non-preemptive activity is the product of its processing time and the capacity required

We furthermore distinguish decision problems and optimization problems. In decision problems,
one has only to determine whether a schedule exists that meets all constraints. In optimization
problems, an objective function has to be minimized. Although the minimization of the makespan,
i.e., the end time of the schedule, is commonly used, other criteria are sometimes of great practical
interest (e.g., the number of activities performed with given delays, the maximal or average tardiness
or earliness, the peak or average resource utilization, the sum of setup times or costs).

7.2.1 Activities

A non-preemptive scheduling problem can be efficiently encoded as a CSP in the following way. For
each activity three variables are introduced, start(Ai), end(Ai), and proc(Ai). They represent the
start time, the end time, and the processing time of Ai, respectively.

With ri the release date and d̄i the deadline of activity Ai as defined in the initial data of the
scheduling problem, [ri, d̄i] is the time window in which Ai has to execute. Based on that the initial
domains of start(Ai) and end(Ai) are [ri, lsti] and [eeti, d̄i], respectively. Here lsti and eeti stand for
the latest start time and the earliest end time of Ai. For convenience, we also use this notation to
denote the current domains of start(Ai) and end(Ai), i.e., the domains when we are in the process
of propagating constraints. Of course in that case instead of the initial release date and deadline, ri

and d̄i denote the current earliest start time and latest end time
The processing time of the activity is defined as the difference between the end time and the start

time of the activity: proc(Ai) = end(Ai)− start(Ai). pi denotes the smallest value in the domain of
proc(Ai). All data related to an activity are summarized in Figure 7.3. Light gray is used to depict
the time-window [ri, d̄i] of an activity and dark gray is used to represent the processing time of the
activity.

�
�
�
�
�
�
�
�
�
�

lsti�eeti�

pi�

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
�

ri� ! i�

Figure 7.3: Data related to an activity

Preemptive scheduling problems are more difficult to represent since a schedule is more complex
than a simple set of starting times of activities. We discuss two possibilities. One can either
associate a set variable (i.e., a variable the value of which will be a set) set(Ai) with each activity
Ai, or alternatively define a 0-1 variable X(Ai, t) for each activity Ai and time t. set(Ai) represents
the set of times at which Ai executes, while X(Ai, t) takes value 1 if and only if Ai executes at time
t. The processing time proc(Ai) of Ai is defined as the number of time points t at which Ai executes,
i.e., as |set(Ai)|. In practice, the X(Ai, t) variables are not represented explicitly as the value of
X(Ai, t) is 1 if and only if t belongs to set(Ai).

Assuming time is discretized, start(Ai) and end(Ai) can be defined by start(Ai) = mint∈set(Ai) t
and end(Ai) = maxt∈set(Ai) t+1. Notice that in the non-preemptive case, set(Ai) = [start(Ai), end(Ai)),
with the interval [start(Ai), end(Ai)) closed on the left and open on the right so that |set(Ai)| =
end(Ai)− start(Ai) = proc(Ai).

88 Introduction

These constraints are easily propagated by maintaining a lower bound and an upper bound for
the set variable set(Ai). The lower bound lb(set(Ai)) is a series of disjoint intervals ILBu

i such that
each ILBu

i is constrained to be included in set(Ai). The upper bound ub(set(Ai)) is a series of disjoint
intervals IUBv

i such that set(Ai) is constrained to be included in the union of the IUB v
i . If the size

of the lower bound (i.e., the sum of the sizes of the ILBu
i) becomes larger than the upper bound of

proc(Ai) or if the size of the upper bound (i.e., the sum of the sizes of the IUBv
i) becomes smaller

than lower bound of proc(Ai), a contradiction is detected. If the size of the lower bound (or of the
upper bound) becomes equal to the upper bound (respectively, lower bound) of proc(Ai), set(Ai)
receives the lower bound (respectively, the upper bound) as its final value. Minimal and maximal
values of start(Ai) and end(Ai), i.e., earliest and latest start and end times, are also maintained.
Each of the following rules, considered independently one from another, is used to update the bounds
of set(Ai), start(Ai) and end(Ai). Let t be any point in time, then

t < ri ⇒ t /∈ set(Ai)

t ∈ lb(set(Ai))⇒ start(Ai) ≤ t

d̄i ≤ t⇒ t /∈ set(Ai)

t ∈ lb(set(Ai))⇒ t < end(Ai)

[∀u < t, u /∈ ub(set(Ai))]⇒ t ≤ start(Ai)

[∀u ≥ t, u /∈ ub(set(Ai))]⇒ end(Ai) ≤ t

start(Ai) ≤ max{u :∃S ⊆ ub(set(Ai)), |S| = pi ∧min(S) = u}

end(Ai) ≥ min{u :∃S ⊆ ub(set(Ai)), |S| = pi ∧max(S) = u− 1}

Needless to say, whenever any of these rules leads to a situation where the lower bound of a variable
is larger than its upper bound, a contradiction is detected.

In the following, we may occasionally use the notations X(Ai, t) and set(Ai) for an activity Ai

that cannot be interrupted. In such a case, the following rules are also applied:

X(Ai, t) = 0 ∧ t < eeti ⇒ start(Ai) > t

X(Ai, t) = 0 ∧ lsti ≤ t⇒ end(Ai) ≤ t

7.2.2 Temporal Relations

Temporal relations between activities can be expressed by linear constraints between the start and
end variables of activities. For instance, a precedence between two activities Ai and Aj is modeled
by the linear constraint end(Ai) ≤ start(Aj). Such constraints can be easily propagated using
a standard arc-B-consistency algorithm [155]. In addition, a variant of Ford’s algorithm (see for
instance [111]) proposed by Cesta and Oddi [72] can be used to detect any inconsistency between
such constraints, in time polynomial in the number of constraints (and independent of the domain
sizes).

7.2.3 Resource Constraints

Resource constraints represent the fact that activities require some amount of resource throughout
their execution. Given an activity Ai and a resource R whose capacity is cap(R), let cap(Ai, R)
be the variable that represents the amount of resource R required by activity Ai. For fully elastic
activities, the cap(Ai, R) variable is not meaningful and we need to introduce a variable E(Ai, R)
that represents the energy required by the activity on the resource R. Note that for non-elastic
activities, we have E(Ai, R) = cap(Ai, R)proc(Ai). To represent a schedule, we need a variable
E(Ai, t, R) that denotes the number of units of the resource R used by activity Ai at time t. In all
cases, we have the constraint stating that enough resource must be allocated to activities to cover
the energy requirement:

E(Ai, R) =
∑

t

E(Ai, t, R)

7.2 A Constraint-Based Scheduling Model 89

If Ai is not an elastic activity, there are some strong relations between E(Ai, t, R) and X(Ai, t):

E(Ai, t, R) = X(Ai, t)cap(Ai, R)

For elastic activities, we have a weaker relation between the variables:

[E(Ai, t, R) > 0]⇔ [X(Ai, t) > 0]

Generally speaking, the resource constraint can be written as follows. For each point in time t

n∑

i=1

E(Ai, t, R) ≤ cap(R) (7.2)

Depending on the scheduling situation, (7.2) can be rewritten. In the non-preemptive case, (7.2)
leads for all times t to ∑

Ai:start(Ai)≤t<end(Ai)

cap(Ai, R) ≤ cap(R) (7.3)

In the preemptive case, (7.2) leads for all times t to
∑

Ai:start(Ai)≤t<end(Ai)

X(Ai, t)cap(Ai, R) ≤ cap(R) (7.4)

In the following, ci,R and ei,R denote the minimal capacity and energy required by the activity Ai

from resource R. Finally, CR denotes the maximal value in the domain of the resource capacity
variable. Sometimes, if no confusion is possible “R” is omitted, leading to ci, ei, and C, respectively.

7.2.4 Extensions of the Model

Although the model presented until now covers quite a number of real-life problems, we want to
include two extensions that are frequently found in industrial applications, namely alternative re-
sources and transition times and transition costs. We refer to Chapter 15 for a discussion on other
extensions found in industry.

Alternative Resources

In some scheduling situations an activity Ai can be scheduled on any one resource from a set S
of resources. We say that S is the set of alternative resources for Ai. For each set of alternative
resources a variable altern(Ai) is introduced. To simplify notation, we assume that resources are
numbered from 1 to m and that altern(Ai) denotes the variable whose value represents the index
of the resource on which Ai is executed. We remark that quite commonly the processing time of
the activity depends on the resource on which the given activity is executed, i.e., the resources are
unrelated. Another commonly found type of constraints reasons on interdependencies of resource
allocations, e.g., a constraint like “if A1 is scheduled on resource R1 then A3 has to be scheduled on
resource R2”.

Alternative resource constraints are propagated as if Ai were split into |domain(altern(Ai))| fictive
activities Au

i where each activity Au
i requires resource Ru [153]. Following this notation ru

i denotes
the earliest start time of Au

i , etc. The alternative resource constraint maintains the constructive
disjunction between the alternative activities Au

i for u ∈ domain(altern(Ai)), i.e., it ensures that:

ri = min{ru
i : u ∈ domain(altern(Ai))}

lsti = max{lstui : u ∈ domain(altern(Ai))}

eeti = min{eetui : u ∈ domain(altern(Ai))}

d̄i = max{d̄u
i : u ∈ domain(altern(Ai))}

lb(proc(Ai)) = min{lb(proc(Au
i)) : u ∈ domain(altern(Ai))}

ub(proc(Ai)) = max{ub(proc(Au
i)) : u ∈ domain(altern(Ai))}

90 Introduction

Constraint propagation will deduce new bounds for alternative activities Au
i on the alternative

resource Ru. Whenever the bounds of an activity Au
i turn out to be incoherent, the resource Ru is

simply removed from the set of possible alternative resources for activity Ai, i.e., domain(altern(Ai))
becomes domain(altern(Ai))− {u}.

Transition Times and Transition Costs

Allahverdi, Gupta, and Aldowaisan, in reviewing the research on scheduling involving setup con-
siderations [7], discuss the importance of scheduling with sequence dependent setups in real-life
applications, and encourage researchers to work on the subject. Our experience with industrial ap-
plications also formed the basis for the motivation for considering setup times and setup costs with
attention.

The setup time (transition time) between two activities A1 and A2 is defined as the amount of
time setup(A1, A2) that must elapse between the end of A1 and the start of A2, when A1 precedes
A2. A setup cost setupCost(A1, A2) can also be associated to the transition between A1 and A2.
The objective of the scheduling problem can be to find a schedule that minimizes the sum of the
setup costs.

Throughout the manuscript, we consider that activities subjected to setups are to be scheduled
on the same machine (the semantics of setups is much more complex on resources of capacity
greater than 1). However, setup considerations can be combined with alternative resources. In
such a case, we have to consider that two parameters are associated to each tuple (Ai, Aj ,Mu): the
setup time setup(Ai, Aj ,Mu) and the setup cost setupCost(Ai, Aj ,Mu) between activities Ai and
Aj if Ai and Aj are scheduled sequentially on the same machine Mu. In such a case, start(Au

j) ≥
end(Au

i) + setup(Ai, Aj ,Mu). There may furthermore exist a setup time setup(−, Ai,Mu) (with
corresponding cost setupCost(−, Ai,Mu)) that has to elapse before the start of Ai when Ai is the
first activity on Mu and, similarly, a teardown time setup(Ai,−,Mu) (with corresponding cost
setupCost(Ai,−,Mu)) that has to elapse after the end of Ai when Ai is the last activity on Mu.

7.2.5 Objective Function

To model the objective function, we add a variable criterion to the model. It is constrained to equal
the value of the objective function. For most problems the objective function is a function of the
end variables of the activities.

criterion = F (end(A1), . . . , end(An)) (7.5)

Once all constraints of the problem are added, a common technique to look for an optimal solution is
to solve successive decision variants of the problem. Several strategies can be considered to minimize
the value of criterion. One way is to iterate on the possible values, either from the lower bound of
its domain up to the upper bound until one solution is found, or from the upper bound down to
the lower bound determining each time whether there still is a solution. Another way is to use a
dichotomizing algorithm, where one starts by computing an initial upper bound ub(criterion) and
an initial lower bound lb(criterion) for criterion. Then

1. Set D =

⌊
lb(criterion) + ub(criterion)

2

⌋

2. Constrain criterion to be at most D. Then solve the resulting CSP, i.e., determine a solution
with criterion ≤ D or prove that no such solution exists. If a solution is found, set ub(criterion)
to the value of criterion in the solution; otherwise, set lb(criterion) to D + 1.

3. Iterate steps 1 and 2 until ub(criterion) = lb(criterion).

Specific propagation techniques are used to propagate resource constraints (7.2), (7.3) or (7.4).
Several sections of this manuscript are dedicated to these techniques. The objective constraint (7.5)
is most often a simple arithmetic expression on which arc-B-consistency can be easily achieved.

7.2 A Constraint-Based Scheduling Model 91

Considering the objective constraint and the resource constraints independently is not a problem
when F is a “maximum” such as Cmax or Tmax. Indeed, the upper bound on criterion is directly
propagated on the completion time of each activity, i.e., latest end times are tightened efficiently.
The situation is much more complex for sum functions such as

∑
wiCi,

∑
wiTi, or

∑
wiUi. For these

functions, efficient constraint propagation techniques must take into account the resource constraints
and the objective constraint simultaneously. We pay attention to this in Chapters 11 and 14.

92 Introduction

Chapter 8

Propagation of the One-Machine
Resource Constraint

In this chapter we study several methods to propagate a One-Machine resource constraint: A set
of n activities {A1, . . . , An} require the same resource of capacity 1. The propagation of resource
constraints is a purely deductive process that allows to deduce inconsistencies and to tighten the
temporal characteristics of activities and resources. In the non-preemptive case (Section 8.1), the
earliest start times and the latest end times of activities are updated. When preemption is allowed
(Section 8.2), modifications of earliest end times and latest start times also apply.

8.1 Non-Preemptive Problems

First we consider the simple Time-Table mechanism, widely used in Constraint-Based Scheduling
tools, that allows to propagate the resource constraint in an incremental fashion. We then con-
sider a disjunctive formulation of the One-Machine resource constraint that compares the temporal
characteristics of pairs of activities. In Section 8.1.3, we describe the Edge-Finding propagation
technique, which is extremely efficient for solving disjunctive scheduling problems like the Job-Shop.
In Section 8.1.4, we present a mechanism, known as “Not-First, Not-Last”, that extends the ba-
sic Edge-Finding mechanism and allows additional deductions. Finally, some extensions of these
mechanisms are presented in Section 8.1.5.

8.1.1 Time-Table Constraint

A simple mechanism to propagate resource constraints in the non-preemptive case relies on an
explicit data structure called “Time-Table” to maintain information about resource utilization and
resource availability over time. Resource constraints are propagated in two directions: from resources
to activities, to update the time bounds of activities (earliest start times and latest end times)
according to the availability of resources; and from activities to resources, to update the Time-Tables
according to the time bounds of activities. Although several variants exist [148, 106, 149, 202, 157]
the propagation mainly consists of maintaining for any time t arc-B-consistency on the formula:

n∑

i=1

E(Ai, t) ≤ 1

Since E(Ai, t) = X(Ai, t) and since X(Ai, t) equals 1 if and only if start(Ai) ≤ t < end(Ai), this
leads in turn to some adjustments of ri, eeti, lsti and d̄i:

94 Propagation of the One-Machine Constraint

start(Ai) ≥ min{t : ub(X(Ai, t)) = 1}

end(Ai) ≤ max{t : ub(X(Ai, t)) = 1}+ 1

[X(Ai, t) = 0] ∧ [t < eeti]⇒ [start(Ai) > t]

[X(Ai, t) = 0] ∧ [lsti ≤ t]⇒ [end(Ai) ≤ t]

Before�Propagation� ri� " i� pi� � �0�� 1���2���3�� 4�� 5��
A1� 0�3�2� � � � � � � � � � � � � � �
A2� 0�4�2� � � � � � � � � � � � � � �

Propagation�1� ri� " i� pi� � � � � � � � � � � � � � �
A1� 0�3�2� � � � � � � � � � � � � � �
A2� 2�4�2� � � � � � � � � � � � � � �

Propagation�2� ri� " i� pi� � � � � � � � � � � � � � �
A1� 0�2�2� � � � � � � � � � � � � � �
A2� 2�4�2� � � � � � � � � � � � � � �

�
Figure 8.1: Propagation of the Time-Table constraint.

Figure 8.1 displays two activities A1 and A2 which require the same resource of capacity 1. The
latest start time (lst1 = d̄1 − p1 = 1) of A1 is smaller than its earliest end time (eet1 = r1 + p1 = 2).
Hence, it is guaranteed that A1 will execute between 1 and 2. Over this period, X(A1, t) is set
to 1 and the corresponding resource amount is no longer available for A2. Since A2 cannot be
interrupted and cannot be finished before 1, the earliest start and end times of A2 are updated to
2 and 4 (propagation 1). Then, X(A2, t) is set to 1 over the interval [2, 4), which results in a new
propagation step, where the latest end time of A1 is set to 2 (propagation 2).

8.1.2 Disjunctive Constraint Propagation

In non-preemptive scheduling, two activities Ai and Aj requiring the same machine cannot overlap
in time: either Ai precedes Aj or Aj precedes Ai. If n activities require the resource, the constraint
can be implemented as n(n − 1)/2 (explicit or implicit) disjunctive constraints. As for Time-Table
constraints, variants exist in the literature [96, 55, 98, 148, 203, 214, 20], but in most cases the
propagation consists of maintaining arc-B-consistency on the formula:

[end(Ai) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai)]

Enforcing arc-B-consistency on this formula is done as follows: Whenever the earliest end time
of Ai exceeds the latest start time of Aj , Ai cannot precede Aj ; hence Aj must precede Ai. The
time bounds of Ai and Aj are consequently updated with respect to the new temporal constraint
end(Aj) ≤ start(Ai). Similarly, when the earliest possible end time of Aj exceeds the latest possible
start time of Ai, Aj cannot precede Ai. When neither of the two activities can precede the other,
a contradiction is detected. Disjunctive constraints provide more precise time bounds than the
corresponding Time-Table constraints. Indeed, if an activity Aj is known to execute at some time t
between the earliest start time ri and the earliest end time eeti of Ai, then the first disjunct of the
above formula is false. Thus, Aj must precede Ai and the propagation of the disjunctive constraint
implies start(Ai) ≥ eetj > t.

8.1 Non-Preemptive Problems 95

Before�Propagation� ri� # i� pi� � �0�� 1���2���3�� 4�� 5�� 6�
A1� 0�4�2� � � � � � � � � � � � � � �
A2� 1�5�2� � � � � � � � � � � � � � �

Propagation� ri� # i� pi� � � � � � � � � � � � � � �
A1� 0�3�2� � � � � � � � � � � � � � �
A2� 2�5�2� � � � � � � � � � � � � � �

�

�
Figure 8.2: Propagation of the disjunctive constraint.

Figure 8.2 shows that disjunctive constraints may propagate more than Time-Table constraints.
The earliest end time of each activity does not exceed its latest start time, so the Time-Table
constraint cannot deduce anything. On the contrary, the propagation of the disjunctive constraint
imposes end(A1) ≤ start(A2) which, in turn, results in updating both d̄1 and r2.

8.1.3 Edge-Finding

The term “Edge-Finding” denotes both a “branching” and a “bounding” technique [8]. The branch-
ing technique consists of ordering activities that require the same resource. At each node, a set of
activities Ω is selected and, for each activity Ai ∈ Ω, a new branch is created where Ai is constrained
to execute first (or last) among the activities in Ω. The bounding technique consists of deducing
that some activities from a given set Ω must, can, or cannot, execute first (or last) in Ω. Such
deductions lead to new ordering relations (“edges” in the graph representing the possible orderings
of activities) and new time bounds, i.e., strengthened earliest start times and latest end times of
activities.

In the following, rΩ and eetminΩ denote respectively the smallest of the earliest start times
and the smallest of the earliest end times of the activities in Ω. Similarly, d̄Ω and lstmaxΩ denote
respectively the largest of the latest end times and the largest of the latest start times of the activities
in Ω. Finally, let pΩ be the sum of the minimal processing times of the activities in Ω. Let Ai � Aj

(Ai � Aj) mean that Ai executes before (after) Aj and Ai � Ω (Ai � Ω) mean that Ai executes
before (after) all the activities in Ω. Once again, variants exist [185, 61, 62, 63, 67, 173, 51, 163, 180]
but the following rules capture the “essence” of the Edge-Finding bounding technique:

∀Ω, ∀Ai /∈ Ω, [d̄Ω∪{Ai} − rΩ < pΩ + pi]⇒ [Ai � Ω] (8.1)

∀Ω, ∀Ai /∈ Ω, [d̄Ω − rΩ∪{Ai} < pΩ + pi]⇒ [Ai � Ω] (8.2)

∀Ω, ∀Ai /∈ Ω, [Ai � Ω]⇒ [end(Ai) ≤ min
∅6=Ω′⊆Ω

(d̄Ω′ − pΩ′)] (8.3)

∀Ω, ∀Ai /∈ Ω, [Ai � Ω]⇒ [start(Ai) ≥ max
∅6=Ω′⊆Ω

(rΩ′ + pΩ′)] (8.4)

If n activities require the resource, there are a priori O(n ∗ 2n) pairs (Ai,Ω) to consider. An
algorithm that performs all the time-bound adjustments in O(n2) is presented in [62]. It consists
of a “primal” algorithm to update earliest start times and a “dual” algorithm to update latest end
times. The primal algorithm runs as follows:

• Compute Jackson’s Preemptive Schedule (JPS) for the resource under consideration. JPS is the
preemptive schedule obtained by applying the following priority rule: whenever the resource
is free and one activity is available, schedule the activity Ai for which d̄i is the smallest. If
an activity Aj becomes available while Ai is in process, stop Ai and start Aj if d̄j is strictly
smaller than d̄i; otherwise continue Ai.

• For each activity Ai, compute the set Ψ of the activities which are not finished at t = ri on
JPS. Let p∗j be the residual processing time on the JPS of the activity Aj at time t. Let

Ψk = {Aj ∈ Ψ − {Ai} : d̄j ≤ d̄k}. Take the activities of Ψ in decreasing order of latest end

96 Propagation of the One-Machine Constraint

times and select the first activity Ak such that:

ri + pi +
∑

Aj∈Ψk

p∗j > d̄k

If such an activity Ak exists, then post the following constraints:

{
Ai � Ψk

start(Ai) ≥ maxAj∈Ψk
JPS(Aj)

where JPS(Aj) is the completion time of activity Aj in JPS.

Figure 8.3 presents the JPS of 3 activities. On this example, the Edge-Finding propagation
algorithm deduces start(A1) ≥ 8 (A1 must execute after {A2, A3}), when the Time-Table and the
disjunctive constraint propagation algorithms deduce nothing.

� ri� $ i� pi��0� 2� 4� 6� 8� 10� 12� 14� 16�
A1� 0�17�6��� � � � � � � � � � � � � � � � � �
A2� 1�11�4��� � � � � � � � � � � � � � � � � �
A3� 1�11�3��� � � � � � � � � � � � � � � � � �

� � ��� � � � � � � � � � � � � � � � � �Schedule� �A1�A2�A2�A2�A2�A3�A3�A3�A1�A1�A1�A1�A1� � � � � �
�

Figure 8.3: The JPS of 3 activities.

An alternative algorithm is presented in [177, 173], also having time complexity O(n2). This
algorithm is in practice easy to implement and adapt to other problems discussed later in this
manuscript. The details of the algorithm are presented in Algorithm 7.

For the algorithm we assume that the set of activities {A1, . . . , An} is ordered by ascending
release dates. As such ri is the release date of the i–th activity according to this ordering; r′i is the
adjusted value of the release date. Thanks to the introduction of the variables r′i, one does not need
to reorder activities inside the loops.

The outer iteration of the algorithm iterates over the deadlines of the activities. In the k–th
iteration we consider the k-th activity in the ordering by ascending release dates and we refer to
its deadline by d̄k. The idea then is to split the set of activities in two sets, Ω≤ consisting of those
activities having a deadline at most d̄k, and Ω> consisting of those activities having a deadlines
greater than d̄k. We will study finding updates of release dates for activities in this latter set.

After the first inner loop, i.e., after line 15, the following values are calculated.

• The program variable P equals the sum of processing times in Ω≤, i.e., P = pΩ≤
.

• The program variable C equals the maximal minimal end time of any subset of the set Ω≤,
i.e., C = max∅6=Ω′⊆Ω≤

rΩ′ + pΩ′

Also the program variables Ci are calculated. They are close to the program variable C, but
instead of being defined on the complete set Ω≤, they are defined on the subset Ω≤,i containing the
activities Aj in Ω≤ that come after Ai in the ordering by ascending release dates. Ω≤,i thus is defined
as {Aj ∈ Ω≤ : j ≥ i} = {Aj ∈ Ω : d̄j ≤ d̄k ∧ j ≥ i}, and Ci is defined as max∅6=Ω′⊆Ω≤,i

rΩ′ + pΩ′ .
Lines 21-23 describe the deductions corresponding to rules 8.2 and 8.4 for the activity Ai at hand

and all subsets of Ω≤,i. Through line 19 the program variable P equals pΩ≤,i
. So if ri + pi + P

exceeds d̄k, then Ai � Ω≤,i, and thus ri can be updated to max(ri, Ci).
Lines 24-26 describe the deductions corresponding to rules 8.2 and 8.4 for the activity Ai at hand

and all subsets of Ω≤ that include at least one activity Aj that comes before Ai in the ordering by

8.1 Non-Preemptive Problems 97

Algorithm 7 Edge-Finding

1: for i = 1 to n do
2: r′i := ri
3: end for
4: for k := 1 to n do
5: P := 0, C := −∞, H := −∞
6: for i := n down to 1 do
7: if d̄i ≤ d̄k then
8: P := P + pi

9: C := max(C, ri + P)
10: if C > d̄k then
11: there is no feasible schedule, exit
12: end if
13: end if
14: Ci := C
15: end for
16: for i := 1 to n do
17: if d̄i ≤ d̄k then
18: H := max(H, ri + P)
19: P := P − pi

20: else
21: if ri + P + pi > d̄k then
22: r′i := max(r′i, Ci)
23: end if
24: if H + pi > d̄k then
25: r′i := max(r′i, C)
26: end if
27: end if
28: end for
29: end for
30: for i = 1 to n do
31: ri := r′i
32: end for

98 Propagation of the One-Machine Constraint

ascending release dates, i.e., for which j < i. Through line 18 the program variable H equals the
maximal minimal end time of these subsets, i.e., H = maxj<i rj + pΩ≤,j

. Let jmax < i be the index

for which rjmax
+ pΩ≤,jmax

is maximal. So if H + pi exceeds d̄k, then Ai � Ω≤,jmax
, and thus ri can

be updated to max(ri, Cjmax
). By definition of C and the Ci’s, Cjmax

= C.
Another variant of the Edge-Finding technique is presented in [63]. It runs in O(n log n) but

requires much more complex data structures. [67] presents another variant, based on the explicit def-
inition of “task intervals.” This variant runs in O(n3) in the worst case, but works in an incremental
fashion. Finally, [51] and [105] propose several extensions to take setup times into account.

An interesting property of the Edge-Finding technique is established in [10] and in [163]:

Proposition 40. Considering only the resource constraint and the current time bounds of activities,
the Edge-Finding algorithm computes the smallest earliest start time at which each activity Ai could
start if all the other activities were interruptible.

As shown in [154], the Edge-Finding algorithms above may perform different deductions than the
more standard disjunctive constraint propagation algorithms. Each of the two techniques performs
some deductions that the other technique does not perform. In practice, an Edge-Finding algorithm
is often coupled with a disjunctive constraint propagation algorithm to allow a maximal amount of
constraint propagation to take place. More details on this topic can be found in Chapter 4.

8.1.4 Not-First, Not-Last

The algorithms presented in the preceding sections focus on determining whether an activity Ai

must execute first (or last) in a set of activities Ω ∪ {Ai} requiring the same resource. A natural
complement consists of determining whether Ai can execute first (or last) in Ω ∪ {Ai}. If not, Ai is
“Not-First” and cannot start before at least one activity in Ω is finished.

In the non-preemptive case, this leads to the following rules [185, 62, 67, 21, 154, 211, 87]:

∀Ω, ∀Ai /∈ Ω, [d̄Ω − ri < pΩ + pi]⇒ ¬(Ai � Ω)

∀Ω, ∀Ai /∈ Ω, [d̄i − rΩ < pΩ + pi]⇒ ¬(Ai � Ω)

∀Ω, ∀Ai /∈ Ω,¬(Ai � Ω)⇒ start(Ai) ≥ eetminΩ

∀Ω, ∀Ai /∈ Ω,¬(Ai � Ω)⇒ end(Ai) ≤ lstmaxΩ

Before�Prop.�ri� % i� pi�����0����1�����2�����3����4����5����6����7����8����9�� 10�
A1� 1�10�2���� � �� � � � � � � � � � � � � � � � �
A2� 0�5�2���� � � � � � � � � � � � � � � � � � � �
A3� 2�5�1���� � � � � � � � � � � � � � � � � � � �

After�Prop.� ri� % i� pi���� � � � � � � � � � � � � � � � � � � �
A1� 2�10�2���� � � � � � � � � � � � � � � � � � � �
A2� 0�5�2���� � � � � � � � � � � � � � � � � � � �
A3� 2�5�1���� � � � � � � � � � � � � � � � � � � �

�
Figure 8.4: Propagation of the Not-First Not-Last rule.

In the example of Figure 8.4, the Not-First rule deduces that A1 cannot start before 2 while the
other deductive rules seen up to now deduce nothing.

The problem which consists of performing all the time-bound adjustments corresponding to the
first and third rules can be called the “Not-First” problem, since it consists of updating the earliest
start time of every activity Ai which cannot be first to execute in a set Ω ∪ {Ai}. Similarly, the
problem which consists of performing all the time-bound adjustments corresponding to the second
and fourth rules can be called the “Not-Last” problem. It consists of updating the latest end time
of every activity Ai which cannot be last to execute in a set Ω∪{Ai}. In this section, we present the

8.1 Non-Preemptive Problems 99

O(n2) time and O(n) space algorithm of [21] for the “Not-First” problem. The “Not-Last” problem
is solved in a symmetric fashion. Alternative approaches can be found in [211, 87].

Let us first introduce some assumptions and notations. We assume that the relation ri + pi ≤ d̄i

holds for every activity Ai. Otherwise, the scheduling problem clearly allows no solution and the
constraint propagation process can stop. We also assume that the activities A1, . . . , An which require
the resource under consideration are sorted in non-decreasing order of latest end times (this
can be done in O(n log n) time). Hence, i ≤ j implies d̄i ≤ d̄j . For a given j and a given k,
Ω(j, k) denotes the set of indices m ∈ {1, . . . , k} such that rj + pj ≤ rm + pm and Ω(i, j, k) denotes
Ω(j, k) − {i}. Hence, if i does not belong to Ω(j, k), Ω(i, j, k) is equal to Ω(j, k). Let Sj,k = pΩ(j,k)

if j ≤ k and Sj,k = −∞ otherwise. Let dj,k = minl≤k(d̄l − Sj,l).

Proposition 41. For a given j, the values dj,1, . . . , dj,n can be computed in O(n) time.

Proof. The values of Sj,k and dj,k can be computed in constant time from the values of Sj,k−1 and
dj,k−1. One just has to test whether k verifies rj + pj ≤ rk + pk or not.

Proposition 42. If the “Not-First” rules applied to activity Ai and set Ω allow to update the earliest
start time of Ai to rj + pj then there exists an index k ≥ j such that the “Not-First” rules applied
to activity Ai and set Ω(i, j, k) allow to update the earliest start time date of Ai to rj + pj.

Proof. Let k be the maximal index of the activities in Ω. Ω is included in Ω(i, j, k) and d̄Ω is equal
to d̄Ω(i,j,k). Hence the rules can be applied to Ai and Ω(i, j, k) and provide the conclusion that Ai

cannot start before rj + pj since every m in Ω(i, j, k) satisfies rj + pj ≤ rm + pm.

Proposition 43. Let i and j be such that ri +pi < rj +pj . In this case, the “Not-First” rules allow
to update the earliest start time of Ai to rj + pj if and only if ri + pi > dj,n.

Proof. Necessary condition. Let us assume that the rules allow to update the earliest start time of
Ai to rj + pj . According to Proposition 42, there exists k ≥ j such that Ω(i, j, k) is not empty and
d̄k − ri < pΩ(i,j,k) + pi. Since ri + pi < rj + pj implies that i does not belong to Ω(j, k), this implies
ri + pi > d̄k − Sj,k ≥ dj,n.

Proof. Sufficient condition. Let us assume that ri + pi > dj,n. dj,n is finite, so there exists an index
k ≥ j such that dj,n = d̄k − Sj,k. Since i does not belong to Ω(j, k), we have d̄k − ri < pΩ(i,j,k) + pi.
So, the rules allow to update the earliest start time of Ai to the value rj + pj .

Proposition 44. Let i and j be such that ri +pi ≥ rj +pj . In this case, the “Not-First” rules allow
to update the earliest start time of Ai to rj + pj if and only if either ri + pi > dj,i−1 or ri > dj,n.

Proof. Necessary condition. Let us assume that the rules allow to update the earliest start time of
Ai to rj + pj . According to Proposition 42, there exists k ≥ j such that Ω(i, j, k) is not empty and
d̄k − ri < pΩ(i,j,k) + pi. Two cases, k < i and i < k, can be distinguished. If k < i, i does not belong
to Ω(j, k). This implies that ri + pi > d̄k − Sj,k ≥ dj,i−1. On the contrary, if i < k, i belongs to
Ω(j, k). Then pΩ(j,k) = pΩ(i,j,k) + pi and ri > d̄k − Sj,k ≥ dj,n.

Proof. Sufficient condition. If ri + pi > dj,i−1, dj,i−1 is finite, so there exists an index k, not greater
than i, such that dj,i−1 = d̄k−Sj,k. Since i does not belong to Ω(j, k), we have d̄k−ri < pΩ(i,j,k)+pi.
So, the rules allow to update the earliest start time of Ai to rj + pj . Let us now assume that
ri +pi ≤ dj,i−1 and ri > dj,n. Then there exists an index k ≥ j such that dj,n = d̄k−Sj,k. Note that
k ≥ i (otherwise, dj,n = dj,i−1 < ri contradicts ri + pi ≤ dj,i−1). Consequently, i belongs to Ω(j, k).
In addition, Ω(j, k) is not reduced to {i}, otherwise we would have ri > dj,n = d̄k−Sj,k = d̄k− pi ≥
d̄i−pi which contradicts the initial assumption that ri+pi ≤ d̄i for all i. Hence, Ω(i, j, k) 6= ∅ satisfies
d̄k − ri < pΩ(i,j,k) + pi. So, the rules allow to update the earliest start time of Ai to rj + pj .

Algorithm 8 performs the time-bound adjustments corresponding to the “Not-First” rules.

Proposition 45. Algorithm 8 performs the time-bound adjustments corresponding to the “Not-
First” rules. It runs in O(n2) time and O(n) space.

100 Propagation of the One-Machine Constraint

Algorithm 8 The Not-First Algorithm

1: for i = 1 to n do
2: r′i := ri
3: end for
4: for j = 1 to n do
5: Compute dj,1, . . . , dj,n

6: for i = 1 to n do
7: if ri + pi < rj + pj then
8: if ri + pi > dj,n then
9: r′i := max(r′i, rj + pj)

10: end if
11: else
12: if ri + pi > dj,i−1 or ri > dj,n then
13: r′i := max(r′i, rj + p− j)
14: end if
15: end if
16: end for
17: end for
18: for i = 1 to n do
19: ri := r′i
20: end for

Proof. Propositions 43 and 44 imply that the algorithm performs exactly the deductions implied by
the rules. Thanks to the introduction of the variables r′i, one does not need to reorder activities
inside the loops. The algorithm runs in O(n2) steps since for each j in the outer loop, O(n) steps are
required to compute dj,1 . . . dj,n and for each i in the inner loop, O(1) steps are required to perform
the relevant tests. In addition, the algorithm requires a linear amount of memory space since only
the values dj,1 . . . dj,n for a given j are required.

Let us note that when the processing times of activities are fixed, the “Not-First” and “Not-Last”
rules subsume the disjunctive constraint propagation technique mentioned in Section 8.1.2. Hence,
no disjunctive constraint propagation algorithm is needed when the “Not-First” algorithm above
and its dual “Not-Last” algorithm are applied.

8.1.5 More Propagation

In [178] some supplementary ways of updating the earliest start times and latest end times are given.
We illustrate these methods by way of an example. In Figure 8.5 we can observe that activity A1

cannot be started at time 6. This can be seen by observing that if A1 is started at time 6, at
most one activity can be scheduled before A1 and at most one activity can be scheduled after A1.
This means that one activity from the three activities A2, A3, and A4 cannot be scheduled. In this
example we can deduce that r1 can be set to 8, being the earliest end time of any combination of
two out of the three activities A2, A3, and A4.

� 0� 1�2��3�4�5��6�7�8�9�10�11�12�13�14�15�16�17�18�19�20�21�22�23�24�25�
A1� � � �� � � � � � � �� � � � � � � � � � � � � � �

� �

A2�� �
� �

A3�� �
� �

A4�� �
�

Figure 8.5: Four activities on the same machine.

8.1 Non-Preemptive Problems 101

More generally speaking, an activity Ai cannot start at a certain time t if there is a set Ω ⊆
{A1, . . . , An} of activities Ai /∈ Ω and a u, 1 ≤ u ≤ |Ω| such that at most u − 1 activities can be
scheduled before t and at most |Ω| − u activities after t+ pi. Let us define eet(Ω, u) as the earliest
end time of any subset Ω′ ⊆ Ω such that |Ω′| = u and lst(Ω, u) as the latest start time of any subset
Ω′ ⊆ Ω such that |Ω′| = u. Now, if for a start time t of Ai, t < eet(Ω, u), then at most u−1 activities
in Ω can be scheduled before t. If also lst(Ω, |Ω| − u + 1) < t + pi, then at most |Ω| − u activities
in Ω can be scheduled after t+ pi. In conclusion, only |Ω| − u+ u− 1 = |Ω| − 1 activities in Ω can
be scheduled and thus t is an inconsistent start time for Ai. As usual we seek only to update the
earliest and latest start and end times of activities, which leads to the following proposition.

Proposition 46. [178] Let Ai be an activity and let Ω ⊆ {A1, . . . , An} with Ai /∈ Ω. If there exists
a u, 1 ≤ u ≤ |Ω| such that

ri < eet(Ω, u) ∧ lst(Ω, |Ω| − u+ 1) < eet(Ai),

then ri can be set to eet(Ω, u).

Proof. It is clear that at most u− 1 activities in Ω can be scheduled before ri and at most |Ω| − u
activities in Ω can be scheduled after eet(Ai), and thus at most |Ω|−1 activities in Ω can be scheduled
in total when Ai is scheduled at ri. Furthermore, if ri is set to something less than eet(Ω, u) the
same situation occurs.

Now any lower bound for eet(Ω, u) and any upper bound for lst(Ω, |Ω| −u+ 1) can be used here.
Using eet(Ω, u) = rΩ + minΩ′⊆Ω:|Ω′|=u pΩ′ , and lst(Ω, u) = d̄Ω − minΩ′⊆Ω:|Ω′|=u pΩ′ , leads to an
algorithm the time complexity of which is O(n2 logn).

The following improvements on this propagation method can be implemented. Suppose that in
the situation of Figure 8.5 the earliest start time of activity A4 is updated to become 6 through
propagation of some other constraint, see Figure 8.6. If we simply apply the definitions given above
for eet(Ω, u) and lst(Ω, u) we do not find an update of r1. However, we can see that A4 cannot be
scheduled before A1 if A1 is scheduled at r1. With this observation we can sharpen the calculations
of eet(Ω, 2) and lst(Ω, 2). As a result we can deduce that the earliest start time of A1 can be set to
9, being the earliest end time of A2 and A3.

� 0� 1�2��3�4�5��6�7�8�9�10�11�12�13�14�15�16�17�18�19�20�21�22�23�24�25�
A1� � � �� � � � � � � �� � � � � � � � � � � � � � �

� �

A2�� �
� �

A3�� �
� �

A4�� �
�
�

Figure 8.6: Four activities on the same machine.

Yet another way to improve the propagation can be observed in Figure 8.7 where it can be seen
that with the rules given so far no update of the earliest start time of A1 is found. However, we
can observe that activity A2 cannot be scheduled alone after A1 when A1 is scheduled at r1, as the
earliest end time of A3, A4, and A5 is 12. Activity A2 can, furthermore, not be scheduled after A1

together with any other activity as the time between eet1 and d̄{A2,A3,A4,A5} is 7 and the sum of p2

and the smallest processing time of the other activities is 8. Thus, with 12 as an upper bound on
the update of r1, we can say that A2 is to be scheduled before A1. As the same holds for A3, we
find that we can update r1 to become 12.

Incorporating these improvements results in an algorithm the time complexity of which is O(n3).

102 Propagation of the One-Machine Constraint

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A1

A2

A3

A4

A5

Figure 8.7: Five activities on the same machine.

8.2 Preemptive Problems

In the following sections, we study several methods to propagate the preemptive One-Machine
resource constraint: A set of n interruptible activities {A1, ..., An} require the same machine. First,
we show that both the Time-Table mechanism and the disjunctive constraint can be extended. We
then describe a resource constraint based on network flows. In the last section, a mechanism that
extends the Edge-Finding mechanism to the mixed case, i.e., the case in which both interruptible
and non-interruptible activities are mixed, is presented.

8.2.1 Time-Table Constraint

At the first glance, it seems that the main principle of the Time-Table mechanism directly applies to
both the preemptive and the mixed case. However, an important difference appears in the relation
between the variables X(Ai, t) = E(Ai, t), set(Ai), start(Ai), end(Ai), and proc(Ai). The earliest
start time ri can easily be set to “the first time t at which X(Ai, t) can be 1.” Similarly, the latest end
time d̄i can easily be set to 1 + “the last time t at which X(Ai, t) can be 1.” However, the earliest end
time eeti is computed so that there possibly exist proc(Ai) time points in set(Ai)∩ [ri, eeti), and the
latest start time lsti is computed so that there possibly exist proc(Ai) time points in set(Ai)∩[lsti, d̄i).
These additional propagation steps make the overall propagation process far more costly. Also, it is
important to notice that X(Ai, t) cannot be set to 1 as soon as lsti ≤ t < eeti. The only situation
in which X(Ai, t) can be deduced to be 1 is when no more than proc(Ai) time points can possibly
belong to set(Ai). This is unlikely to occur before decisions (choices in a search tree) are made to
instantiate set(Ai). Therefore, constraint propagation based on Time-Tables cannot prune much.

�
Before�Prop.� ri� eeti� lsti� & i� pi��0�� 1���2���3�� 4�� 5�
A1�(non-int.)�0� 2� 1� 3�2��� � � � � � � � � �
A2�(int.)� 0� 2� 2� 4�2��� � � � � � � � � �

Prop.�1� ri� eeti� lsti� & i� pi��� � � � � � � � � �
A1�(non-int.)�0� 2� 1� 3�2��� � � � � � � � � �
A2�(int.)� 0� 3� 2� 4�2��� � � � � � � � � �

�

�
Figure 8.8: Propagation of the Time-Table constraint (mixed case). The earliest end time of A2 is
modified.

Given the data of Figure 8.1, the Time-Table mechanism cannot deduce anything if both activities
can be interrupted. Figure 8.8 shows what happens when A1 is not interruptible (non-int.) and A2

is interruptible (int.). As in Figure 8.1, it is guaranteed that A1 will execute between lst1 = 1 and
eet1 = 2. Over this period, the corresponding resource amount is no longer available for A2. The
earliest end time of A2 is then set to 3. Then the propagation process stops since there is no time
point at which A2 is guaranteed to execute.

8.2 Preemptive Problems 103

8.2.2 Disjunctive Constraint Propagation

In the preemptive One-Machine case, the non-preemptive disjunctive constraint can be rewritten as
follows:

[start(Ai) + proc(Ai) ≤ end(Aj)− proc(Aj)]
∨ [start(Aj) + proc(Aj) ≤ end(Ai)− proc(Ai)]

This suggests the following preemptive disjunctive constraint:

[start(Ai) + proc(Ai) + proc(Aj) ≤ end(Ai)]
∨ [start(Ai) + proc(Ai) + proc(Aj) ≤ end(Aj)]
∨ [start(Aj) + proc(Ai) + proc(Aj) ≤ end(Ai)]
∨ [start(Aj) + proc(Ai) + proc(Aj) ≤ end(Aj)]

which can serve as a complement to the Time-Table constraint. Arc-B-consistency is achieved on
this additional constraint. Note that in the mixed case, the first (fourth) disjunct can be removed
from the disjunction if Ai (respectively, Aj) cannot be interrupted.

�
Before�Prop.� ri� eeti� lsti� ' i� pi��1�0� 1�1� 1�2� 1�3� 1�4� 1�5� 1�6�
A1�(int.)� 0� 4� 2� 6�4��� � � � � � � � � � � � � �
A2�(int.)� 2� 3� 3� 4�1��� � � � � � � � � � � � � �

Prop.�1� ri� eeti� lsti� ' i� pi��� � � � � � � � � � � � � �
A1�(int.)� 0� 5� 1� 6�4��� � � � � � � � � � � � � �
A2�(int.)� 2� 3� 3� 4�1��� � � � � � � � � � � � � �

�

�
Figure 8.9: Propagation of the disjunctive constraint (preemptive case).

In the example of Figure 8.9, where both activities are interruptible, A2 necessarily interrupts A1.
The propagation of the disjunctive constraint provides start(A1) ≤ 1 and end(A1) ≥ 5.

8.2.3 Network-Flow Based Constraints

Régin [191] describes an algorithm, based on matching theory, to achieve the global consistency of
the “all-different” constraint. This constraint is defined on a set of variables and constrains these
variables to assume pairwise distinct values. Régin’s algorithm maintains arc-consistency on the
n–ary “all-different” constraint, which is shown to be more powerful than achieving arc-consistency
for the n(n−1)/2 corresponding binary “different” constraints. Basically, Régin’s algorithm consists
of building a bipartite graph G(X,Y,E) where X is a set of vertices corresponding to the variables
of the “all-different” constraint, Y is a set of vertices corresponding to the possible values of these
variables, and E is a set of edges (x, y), x ∈ X , y ∈ Y , such that (x, y) ∈ E if and only if y is a
possible value for x. As a result, the “all-different” constraint is satisfiable if and only if there exists
a 0-1 function f on E such that:

∀x ∈ X,
∑

y:(x,y)∈E

f(x, y) = 1

∀y ∈ Y,
∑

x:(x,y)∈E

f(x, y) ≤ 1

In addition, a given value yj is a possible value for a given variable xi if and only if there exists a
0-1 function fi,j such that:

∀x ∈ X,
∑

y:(x,y)∈E

fi,j(x, y) = 1

∀y ∈ Y,
∑

x:(x,y)∈E

fi,j(x, y) ≤ 1

fi,j(xi, yj) = 1

104 Propagation of the One-Machine Constraint

The problem of finding such a function (flow) f or fi,j can be solved in time polynomial in the number
of variables and values. In addition, the current value of f can be used to efficiently generate fi,j ,
and to compute the new value of f when the domain of a variable changes. See [191, 192, 193]
for details and extensions. Notice that when all activities have unitary processing times, Régin’s
algorithm can be directly applied. In the preemptive case, this can be generalized to activities of
arbitrary processing times by seeing each activity Ai as pi sub-activities of unitary processing times
1. Then, each sub-activity has to pick a value (the time at which the sub-activity executes) and
the values of the sub-activities that require a given resource have to be pairwise distinct. However,
under this naive formulation, both the number of variables and the number of values would be
too high for practical use. This led us to another formulation where the nodes x in X correspond
to activities, and the nodes y in Y correspond to a partition of the time horizon in q disjoint
intervals I1 = [s1, e1), . . . , Iq = [sq , eq) such that [s1, eq) represents the complete time horizon,
ei = si+1, (1 ≤ i < q), and {s1, . . . , sq , eq} includes all the time points at which the information
available about X(Ai, t) changes (Figure 8.10 illustrates this formulation on a small example). In
particular, {s1, . . . , sq, eq} includes all the earliest start times and latest end times of activities, but
it can also include bounds of intervals over which X(Ai, t) is constrained to be 1 or 0 (in this sense,
the flow model is more general than preemptive Edge-Finding described in Section 8.2.4 but it does
not generalize to the mixed case). E is defined as the set of pairs (x, y) such that activity x can
execute during interval y. The maximal capacity cmax(x, y) of edge (x, y) is set to length(y), and
the minimal capacity cmin(x, y) of edge (x, y) is set to length(y) if x is constrained to execute over y
and to 0 otherwise. As a result, the preemptive resource constraint is satisfiable if and only if there
exists a function f on E such that:

∀x ∈ X,
∑

y:(x,y)∈E

f(x, y) = px

∀y ∈ Y,
∑

x:(x,y)∈E

f(x, y) ≤ length(y)

∀e ∈ E, cmin(e) ≤ f(e) ≤ cmax(e)

�

� ri� (i� pi��0��1���2���3��4��5��6��7��8��9��10�
A1� 0�10�5��� � � � � � � �� ��� �� �� �� �� �
A2� 2� 4� 1��� � � � � � � � � � ���� ������ �
A3� 4� 6� 1��� � � � � � � �� ����� ������ �
A4� 6� 8� 1��� � � � � � � � � � ���� ������ �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

[0�2)�

[4�6)�

[8�10)�

[6�8)�

[2�4)�
A1�
�

A3�
�

A4�
�

A2�
�

≤�2�

≤�2�

�

=�5�

=�1�

=�1�

=�1�

≤�2�

≤�2�

≤�2�

Y�
X�

Figure 8.10: The network flow model.

8.2 Preemptive Problems 105

Similar models are commonly used in Operations Research. For example, Federgruen and Groenevelt
[100] use a more general model to solve particular polynomial scheduling problems with multiple
parallel resources operating at different speeds. Following [191], what we propose below is to use
network flow techniques, not only to find solutions to polynomial subproblems, but also to update
the domains of the variables.

To search for compatible flow f (SCF), one can use a well-known algorithm such as Herz’s
algorithm, as described in [111, 5]. It runs in O(|X | ∗ |Y | ∗

∑

x∈X px). Alternatively, one can build
a variant of Jackson’s Preemptive Schedule which respects the intervals during which activities are
required to execute. As shown in [10], this can be done in O(|Y | ∗ log(|Y |)). This schedule is then
used as an initial (possibly incompatible) flow, repaired by Herz’s algorithm in O(|X | ∗ |Y | ∗ F),
where F denotes the sum, over the activities, of the sizes of the intervals included in [ri, d̄i) during
which the activity Ai is not allowed to execute (for reasons that are not directly related to the use
of the resource by other activities).

To reduce variable domains, the most natural generalization of Régin’s algorithm consists of
varying cmin(e) and cmax(e) for each edge e in turn. Algorithm 9 updates the minimal flow cmin(x, y)
that can pass through an edge (x, y). The maximal flow cmax(x, y) is obtained in a similar fashion.
It is proven in [10] that this adjustment of edge capacities (AEC) can be done for all edges (x, y)

Algorithm 9 Adjustment of Edge Capacities (AEC)

1: u := cmin(x, y) and v = cmax(x, y).
2: while u 6= v do
3: w := b(u+ v)/2c
4: Search for a compatible flow with f(x, y) ≤ w
5: if f exists then
6: v := f(x, y)
7: else
8: u := w + 1
9: end if

10: end while
11: cmin(x, y) := u

in O(|X |2|Y |H), where H denotes the overall time horizon eq − s1. This complexity is reached by
systematically reusing the previous flow as a start point when computing the flow f with the new
constraint f(x, y) ≤ w. Then the following rules can be applied:

[cmax(x, y) = 0]⇒ [∀t ∈ y,X(x, t) = 0]

[cmin(x, y) = length(y)]⇒ [∀t ∈ y,X(x, t) = 1]

[cmin(x, [si, ei)) 6= 0]⇒ [start(x) ≤ ei − cmin(x, [si, ei))]

[cmin(x, [si, ei)) 6= 0]⇒ [end(x) ≥ si + cmin(x, [si, ei))]

However, SCF and AEC are not sufficient to determine the best possible time bounds for activities.
Let us consider, for example, the four activities A1, A2, A3, A4 defined on Figure 8.10. In this case,
cmin(A1, I) remains equal to 0 for all I ; yet A1 cannot start after 3 and cannot end before 7. However,
the flow model can be used to compute the best possible earliest end times. First, given x and the
intervals y1, . . . , yq (sorted in reverse chronological order) to which x is connected, one can find the
maximal integer k such that there exists a compatible flow f with f(x, yi) = 0 for 1 ≤ i < k. Then,
one can compute the minimal flow fmin(x, yk) through (x, yk), under the constraints f(x, yi) = 0 for
1 ≤ i < k. Under these conditions, end(x) ≥ sk + fmin(x, [sk , ek)) provides the best possible earliest
end time for x. It is shown in [10] that this global update of time bounds (GUTB) can be done for
all activities x in O(|X |2|Y |H). As for AEC, this complexity is reached by systematically reusing
the previous flow as a start point for computing the new flow when an additional capacity constraint
is added.

Let us remark that the incrementality of Herz’s algorithm is a key factor for both the worst-case
and the practical complexity of SCF, AEC and GUTB. Of course, strongly polynomial algorithms

106 Propagation of the One-Machine Constraint

(with complexity independent of the schedule duration) could also be used for the search of a
compatible flow [111].

8.2.4 Preemptive Edge-Finding

The Edge-Finding algorithm detailed in Section 8.1.3 can be extended to take into account the
preemptive case and also the mixed case (i.e., the case where interruptible and non-interruptible
activities are mixed). As mentioned in Section 8.1.3, Baptiste and Martin and Shmoys [10, 163] have
established an interesting property of the non-preemptive Edge-Finding technique. Considering only
the resource constraint and the current time bounds of activities, the algorithm computes the earliest
start time at which each activity Ai could start if all the other activities were interruptible. This
suggests a logical extension of the technique to preemptive and mixed cases: for each activity Ai

requiring the resource, if Ai is not interruptible, the non-preemptive Edge-Finding bound applies;
if Ai is interruptible then, considering only the resource constraint and the current time bounds, it
would be nice to determine the earliest start and end times between which Ai could execute if all
the activities were interruptible.

Let us define � so that Ai � Ω means “Ai ends after all activities in Ω” and substitute � for �
in the rules of the primal algorithm.

∀Ω, ∀Ai /∈ Ω, [d̄Ω − rΩ∪{Ai} < pΩ + pi]⇒ Ai � Ω

∀Ω, ∀Ai /∈ Ω, Ai � Ω⇒ [start(Ai) ≥ max
∅6=Ω′⊆Ω

(rΩ′ + pΩ′)]

When Ai cannot be interrupted, these two rules remain valid (even if other activities can be in-
terrupted) and the adjustment of ri is the same as in the non-preemptive case. When Ai can be
interrupted, the first rule is still valid but the second is not. However, the second rule can be replaced
by a weaker one:

∀Ω, ∀Ai /∈ Ω, Ai � Ω⇒ [end(Ai) ≥ max
Ω′⊆Ω

(rΩ′∪{Ai} + pΩ′∪{Ai})]

This leads to a more general primal Edge-Finding algorithm:

• Compute Jackson’s Preemptive Schedule (JPS) for the resource under consideration (cf., Sec-
tion 8.1.3).

• For each activity Ai, compute the set Ψ of the activities which are not finished at t = ri on
JPS. Let p∗j be the residual processing time on the JPS of the activity Aj at time t. Let

Ψk = {Aj ∈ Ψ − {Ai} : d̄j ≤ d̄k}. Take the activities of Ψ in decreasing order of latest end
times and select the first activity Ak such that:

ri + pi +
∑

Aj∈Ψk

p∗j > d̄k

If such an activity Ak exists, then post the following constraints:

Ak � Ψk

start(Ai) ≥ maxAj∈Ψk
JPS(Aj) if Ai cannot be interrupted

end(Ai) ≥ ri + pi +
∑

Aj∈Ψk
pj∗ if Ai can be interrupted

where JPS(Aj) is the completion time of activity Aj in JPS.

In the example of Figure 8.3, the algorithm above deduces start(A1) ≥ 8 if A1 cannot be inter-
rupted. It deduces end(A1) ≥ 13 if A1 can be interrupted. It is proven in [10] that considering only
the resource constraint and the current time bounds of activities, this algorithm computes:

• when Ai is not interruptible: the earliest time at which Ai could start if all the other activities
were interruptible;

8.2 Preemptive Problems 107

Algorithm 10 Preemptive Edge-Finding

1: for i = 1 to n do
2: r′i := ri, eet′i := eeti
3: end for
4: for k := 1 to k := n do
5: P := 0, C := −∞, H := −∞
6: for i := n down to i := 1 do
7: if d̄i ≤ d̄k then
8: P := P + pi

9: C := max(C, ri + P)
10: if C > d̄k then
11: there is no feasible schedule, exit
12: end if
13: end if
14: Ci := C
15: end for
16: for i := 1 to i := n do
17: if d̄i ≤ d̄k then
18: H := max(H, ri + P)
19: P := P − pi

20: else
21: if ri + P + pi > d̄k then
22: if Ai can be interrupted then
23: eet′i := max(eet′i, ri + P + pi)
24: else
25: r′i := max(r′i, Ci)
26: end if
27: end if
28: if H + pi > d̄k then
29: if Ai can be interrupted then
30: eet′i := max(eet′i, H + pi)
31: else
32: r′i := max(r′i, C)
33: end if
34: end if
35: end if
36: end for
37: end for
38: for i = 1 to n do
39: ri := r′i, eeti := eet′i
40: end for

108 Propagation of the One-Machine Constraint

• when Ai is interruptible: the earliest time at which Ai could end if all the other activities were
interruptible.

Algorithm 7 can be modified in a similar fashion. In Algorithm 10, we assume that activities
are sorted in increasing order of earliest start times. Earliest start times and earliest end times are
adjusted inside the inner loop (lines 25, 32 and 23, 30). The proof that this algorithm is equivalent to
the JPS-based algorithm follows the proof of Algorithm 7 (cf., Section 8.1.3). First, if Ai cannot be
interrupted, the new algorithm makes the same conclusions as Algorithm 7, so the proof in Section
8.1.3 applies to the new algorithm. Let us now assume that Ai can be interrupted. It is proven in
[10] that the earliest time at which Ai could end if all the other activities could be interrupted is
equal to the maximal value of rΩ∪{Ai}+pΩ∪{Ai} for Ω triggering the Edge-Finding rules. The earliest
end times computed by the new algorithm are, when they are used, equal to rΩ∪{Ai} + pΩ∪{Ai} for
such Ω. To prove that the best possible bound is reached, consider the two cases distinguished for
Algorithm 7: if all activities Au ∈ Ω are such that i < u then either Ω or a superset of Ω is detected
by the first test (ri + P + pi > d̄k); if some activity Au of Ω is such that u < i then either Ω or a
superset of Ω is detected by the second test (H + pi > d̄k). In both cases, a bound greater than or
equal to rΩ∪{Ai} + pΩ∪{Ai} is found.

This algorithm can be further improved:

• WhenAi can be interrupted and set(Ai) is known to contain a series of intervals ILB 1
i , . . . , ILBm

i ,
Ai can be replaced by m + 1 activities A1

i , . . . , A
m
i , A

′
i, with each Al

i forced to execute over
ILB l

i and A′
i with the same earliest start time and latest end time as Ai and a processing time

equal to

pi −
m∑

l=1

length(ILB l
i)

where length(ILB l
i) denotes the length of the interval ILB l

i.

• When Ai can be interrupted and either ri + P = d̄k or H = d̄k in the course of the algorithm,
it is certain that Ai cannot start before d̄k. Hence, the algorithm can also be used to update
earliest start times of interruptible activities.

Remark. When Ai has a fixed processing time and cannot be interrupted, the computation and
the use of Ci and C to compute

max
∅6=Ω′⊆Ω

(rΩ′ + pΩ′)

serves only to avoid repeated iterations of the algorithm. Indeed, suppose a purely preemptive Edge-
Finding algorithm is used and suppose Ai is not interruptible. The purely preemptive Edge-Finding
algorithm uses the following rules:

∀Ω, ∀Ai /∈ Ω, [d̄Ω − rΩ∪{Ai} < pΩ + pi]⇒ [Ai � Ω]

∀Ω, ∀Ai /∈ Ω, [Ai � Ω]⇒ [end(Ai) ≥ max
Ω′⊆Ω

(rΩ′∪{Ai} + pΩ′∪{Ai})]

When constraint propagation stops, the earliest end time of Ai is set to a value eeti such that if all
activities were interruptible, there would be a schedule S of the resource such that Ai does not start
before ri and ends at eeti. If the processing time of Ai is fixed, the propagation of the constraint
start(Ai) + proc(Ai) = end(Ai) guarantees that when constraint propagation stops ri + pi = eeti.
Consequently, Ai is not interrupted in S, which implies that the non-preemptive Edge-Finding
algorithm cannot find a better bound for ri.

Chapter 9

Propagation of Cumulative
Constraints

Cumulative resource constraints represent the fact that activities Ai use some amount cap(Ai) of
resource throughout their execution. For a fully elastic activity Ai, the cap(Ai) variable is not
meaningful and we use a variable E(Ai) that represents the global “energy” required by the activity
on the resource. Of course, for a non-elastic activity, we have E(Ai) = cap(Ai)proc(Ai). In all case,
enough resource must be allocated to activities, i.e., E(Ai) =

∑

tE(Ai, t), where E(Ai, t) is the
amount of resource used at t by Ai. Recall that if Ai is not an elastic activity, there are some strong
relations between E(Ai, t) and X(Ai, t): E(Ai, t) = X(Ai, t)cap(Ai) For elastic activities, we have
a weaker relation between the variables: [E(Ai, t) 6= 0] ⇔ [X(Ai, t) 6= 0]. Generally speaking, the
cumulative resource constraint can be stated as follows:

∀t
∑

i

E(Ai, t) ≤ cap

In the non-preemptive case, it can be rewritten as,

∀t
∑

start(Ai)≤t<end(Ai)

cap(Ai) ≤ cap

and in the preemptive case as,

∀t
∑

start(Ai)≤t<end(Ai)

X(Ai, t)cap(Ai) ≤ cap

In the following, we note ci and ei the minimal amount of the capacity (resp. of the energy) of
the resource required by Ai. Finally we note C the maximum value in the domain of the resource
capacity. In this chapter, we recall the most well-known techniques used to propagate the cumulative
resource constraint. We focus on the fully elastic case in Section 9.1, on the preemptive case in
Section 9.2 and, finally, on the non-preemptive case in Section 9.3.

To simplify the presentation of the theory, we sometimes refer to the “Fully Elastic Problem”, to
the “Preemptive Problem” and to the “Non-Preemptive Problem”. They are the decision problems
respectively induced by the fully elastic resource constraint, by the preemptive resource constraint
and by the non-preemptive resource constraint, i.e., the problems of determining whether there
exists a fully elastic, preemptive and non-preemptive schedule of the given activities on a resource
of given capacity.

9.1 Fully Elastic Problems

The Fully Elastic Problem is closely related to the Preemptive One-Machine Problem. Actually,
Proposition 47 shows that they are identical modulo a simple transformation.

110 Propagation of Cumulative Constraints

Transformation 1. For any instance I of the Fully Elastic Problem, let F (I) be the instance of the
Preemptive One-Machine Problem defined by n activities A′

1, . . . , A
′
n with ∀i, r′i = Cri, d̄

′
i = Cd̄i, p

′
i =

cipi.

Proposition 47. For any instance I of the Fully Elastic Problem, there exists a feasible fully elastic
schedule of I if and only if there exists a feasible preemptive schedule of F (I).

Proof. As usual, let C be the capacity of the resource R of the instance I . Let R′ be the resource
of the instance F (I). We first prove that if there is a feasible fully elastic schedule of I , then there
is a feasible preemptive schedule of F (I). We build a schedule of A′

1, . . . , A
′
n on R′ as follows. For

each time t and each activity Ai, schedule E(Ai, t) units of A′
i on R′ as early as possible after time

Ct. It is obvious that at any time t, for any activity Ai, the number of units of Ai executed at
t on R is equal to the number of units of A′

i executed between Ct and C(t + 1) on R′ since this
algorithm consists of cutting the schedule of A1, . . . , An into slices of one time unit and rescheduling
these slices on R′. Consequently, for any activity A′

i, exactly cipi units of A′
i are scheduled between

Cri and Cd̄i and thus the earliest start times as well as latest end times are met. A symmetric
demonstration would prove that if there is a feasible preemptive schedule of F (I) then there is a
feasible fully elastic schedule of I .

Consider now Jackson’s Preemptive Schedule. JPS is feasible if and only if there exists a fea-
sible preemptive schedule. Moreover, JPS can be built in O(n log n) steps (see [55] for details).
Consequently, thanks to Proposition 47 we have an O(n log n) algorithm to solve the Fully Elastic
Problem. In the following, Jackson’s Fully Elastic Schedule (JFES) denotes the fully elastic schedule
obtained by applying JPS on the transformed instance and rescheduling slices as described in the
proof of Proposition 47.

Thanks to Proposition 47 we can also adapt all the constraint propagation mechanisms described
in Section 8.2 for the preemptive case to the fully elastic case. The general adjustment framework
is:

1. Build the Preemptive One-Machine Problem instance F (I) corresponding to the fully elastic
instance I .

2. Apply a One-Machine preemptive constraint propagation algorithm (e.g., an algorithm relying
on Time-Table, network flow, disjunctive constraint, or Edge-Finding) on activities A′

1, . . . , A
′
n

of the instance F (I). As explained in Section 8.2, for each activity A′
i, four time bounds can

be sharpened: the earliest start time r′i, the latest possible start time lst′i, the earliest possible
end time eet′i, and the latest end time d̄′i.

3. Update the four time bounds of each Ai.

ri :=

⌊
r′i
C

⌋

, lsti :=

⌊
lst′i
C

⌋

, eeti :=

⌈
eet′i
C

⌉

, d̄i :=

⌈
d̄′i
C

⌉

Note that as far as Edge-Finding is concerned, the above algorithm runs in a quadratic number
of steps since steps (1) and (3) are linear and step (2) can be done in O(n2) as detailed in Section
8.2. Note that again the Edge-Finding technique provides the best possible bounds.

Proposition 48. The time-bound adjustments made by the Edge-Finding algorithm are the best
possible ones, i.e., the lower and upper bounds for the start and end time of activities can be reached
by some feasible fully elastic schedules.

Proof. The same proof applies for each of the four time bounds. We focus on the earliest end time.
The basic idea is to prove that for any Ai, (i) there is a fully elastic schedule on which Ai can end
at the earliest end time computed by the fully elastic time-bound adjustment algorithm and (ii)
there is no fully elastic schedule on which Ai can end before the earliest end time computed by the
algorithm. Both steps can be proven thanks to Transformation 1 and to the fact that the preemptive
Edge-Finding algorithm computes the best possible time bounds for the Preemptive One-Machine
Problem (cf., Section 8.2.4).

9.2 Preemptive Problems 111

9.2 Preemptive Problems

Several techniques can be used to propagate cumulative preemptive resource constraints. The most
simple idea is to apply the constraint propagation algorithms developed for the fully elastic case.
This is of course valid since the Fully Elastic Problem can be seen as a relaxation of the Preemptive
Problem. However, it might not be very efficient. The following sections are dedicated to three
specific constraint propagation schemes. The first one is based on Time-Tables, the second one is an
adaptation of the disjunctive constraint and finally we introduce an adjustment scheme based upon
“partially elastic” schedules.

9.2.1 Time-Table Constraint

The Time-Table constraint in the preemptive cumulative case is a simple adaptation of the One-
Machine preemptive case. The propagation mainly consists of maintaining arc-B-consistency on the
formula:

∀t
∑

start(Ai)≤t<end(Ai)

X(Ai, t)cap(Ai) ≤ C

As for the One-Machine preemptive case, the relations between the variables X(Ai, t), set(Ai),
start(Ai), end(Ai), and proc(Ai) have to be carefully handled (cf., Section 8.2.1).

9.2.2 Disjunctive Constraint

Again the disjunctive formulation of the preemptive One-Machine resource constraint can be gen-
eralized. Consider a pair of activities (Ai, Aj) that cannot overlap in time due, for instance,
to resource constraints, i.e., ci + cj > C. So we have set(Ai) ∩ set(Aj) = ∅ or equivalently,
∀t,X(Ai, t) = 0 ∨X(Aj , t) = 0.
This suggests the following preemptive disjunctive constraint:

[cap(Ai) + cap(Aj) ≤ cap]
∨ [start(Ai) + proc(Ai) + proc(Aj) ≤ end(Ai)]
∨ [start(Ai) + proc(Ai) + proc(Aj) ≤ end(Aj)]
∨ [start(Aj) + proc(Ai) + proc(Aj) ≤ end(Ai)]
∨ [start(Aj) + proc(Ai) + proc(Aj) ≤ end(Aj)]

which can serve as a complement to the Time-Table constraint. Arc-B-consistency is achieved on
this additional constraint.

9.2.3 Partially Elastic Relaxation

The Fully Elastic Problem is a weak relaxation of the Preemptive Problem. To try to improve the
relaxation, i.e., to get better bounds, we define partially elastic schedules as fully elastic schedules
to which we have added two additional constraints:

∀i, ∀t ∈ [ri, d̄i),
∑

x<t

E(Ai, x) ≤ ci(t− ri)

∀i, ∀t ∈ [ri, d̄i),
∑

t≤x

E(Ai, x) ≤ ci(d̄i − t)

Consider a resource of capacity 3 and an activity with earliest start time 0, latest end time 10,
processing time 8 and resource requirement 2. Both Gantt charts of Figure 9.1 correspond to
feasible fully elastic schedules. The first one is not a feasible partially elastic schedule. Indeed, 9
units of the resource are used in [0, 4), which is more than 2(4 − 0). The second one is a feasible
partially elastic schedule.

112 Propagation of Cumulative Constraints

�

� ri�) i� pi�ci��0��1���2���3��4��5��6��7��8��9�� 10�
A1� 0�10�8�2���������������������� �
�
� � � � ���������������������� �
� � � � ���������������������� �
� � � � ���������������������� �
�
� � � � ���������������������� �
� � � � ���������������������� �
� � � � ���������������������� �
�
� Figure 9.1: Fully and partially elastic schedules.

The main interest of the partially elastic relaxation is that it is stronger than the fully elastic
relaxation and efficient constraint propagation algorithms can still be designed. First, we describe
a pseudo-polynomial algorithm to test if there exists a partially elastic schedule. We then present
the concept of required energy consumption, which enables us to show that the Partially Elastic
Problem is equivalent to another problem for which we can provide a quadratic algorithm. In the
following, “I” denotes an instance of the Partially Elastic Problem. Let us first introduce a new
transformation.

Transformation 2. Consider the instance G(I) of the Fully Elastic Problem defined by replacing
each activity Ai by pi activities A1

i , . . . , A
pi

i , each having a resource requirement cji = ci, an earliest

start time rj
i = ri + j − 1, a latest end time d̄j

i = d̄i − (pi − j) and a processing time pj
i = 1 (the

resource capacity of G(I) is C as for I).

Jackson’s Partially Elastic Schedule

Jackson’s Partially Elastic Schedule (JPES) is the schedule built by scheduling each activity Ai at
the time points at which the activities Aj

i are scheduled on JFES of G(I). Given the definition of
G, it is easy to verify that if JFES is a feasible fully elastic schedule of G(I) then JPES is a feasible
partially elastic schedule of I .

Proposition 49. There exists a feasible partially elastic schedule if and only if JPES is a feasible
partially elastic schedule.

Proof. Consider a feasible partially elastic schedule S of an instance I . It is then possible to build a
feasible fully elastic schedule of G(I) obtained from S by a similar transformation as Transformation
2 (i.e., for any activity Ai, schedule A1

i at the same place as the “first ci units” of Ai on S, iterate
. . .). Since there is a feasible fully elastic schedule of G(I), JFES is also a feasible fully elastic
schedule of G(I) (Proposition 47). Thus, JPES is a feasible partially elastic schedule of I.

Since Transformation 2 is done in O(
∑

i pi) and since the Fully Elastic Problem G(I) can be
solved in O(

∑

i pi log(
∑

i pi)), Proposition 49 leads to an O(
∑

i pi log(
∑

i pi)) algorithm to test the
existence of a feasible partially elastic schedule.

Energetic Reasoning

We adapt the notion of “Required Energy Consumption” defined in [158] and [159] to partially
elastic activities. The required energy consumption WPE(Ai, t1, t2) of an activity over an interval
[t1, t2) is defined as follows.

WPE(Ai, t1, t2) = ci max(0, pi −max(0, t1 − ri)−max(0, d̄i − t2))

9.2 Preemptive Problems 113

We now define the overall required energy consumption WPE(t1, t2) over [t1, t2) as the sum over
all activities Ai of WPE(Ai, t1, t2). Note that for t1 = t2,WPE(t1, t2) is defined and, under the
assumption ri + pi ≤ d̄i, is equal to 0.

0 1 2 3 4 5 6 7 8 9 10

Figure 9.2: Required energy consumption for partially elastic schedules.

As shown on Figure 9.2, the required energy consumption of the activity A1 (r1 = 0, d̄1 = 10, p1 =
7, c1 = 2) over [2, 7) is WPE(A1, 2, 7) = 2(7− (2− 0)− (10− 7)) = 4.

Proposition 50. There is a feasible partially elastic schedule of I if and only if for any non-empty
interval [t1, t2), WPE(t1, t2) ≤ C(t2 − t1).

Proof. The fact that WPE(t1, t2) ≤ C(t2− t1) is a necessary condition is obvious. Suppose now that
there is no feasible partially elastic schedule of I . Then there is no feasible preemptive schedule of
F (G(I)). Consequently, there is a set of activities S of F (G(I)) such that between the minimum
earliest start time of activities in S and the maximum latest end time of activities in S there is not
enough “space” to schedule all activities in S [55]:

min
Aj

i
∈S
rj
i +

∑

Aj

i
∈S

rj
i > max

Aj

i
∈S
d̄j

i

This leads to ∑

8

<

:

rj
i ≥ Ct1
d̄j

i ≤ Ct2

pj
i > C(t2 − t1) (9.1)

where Ct1 is the minimum earliest start time in S and Ct2 the maximum latest end time in S (recall
that earliest start times and latest end times of activities in S are multiple of C). Then equation
9.1 becomes: ∑

i

∑

8

>

>

<

>

>

:

j ∈ [1, pi]
C(ri + j − 1) ≥ Ct1
C(d̄i − pi + j) ≤ Ct2

ci > C(t2 − t1) (9.2)

For each i, let us count the values of j in [1, pi] such that C(ri +j−1) ≥ Ct1 and C(d̄i−pi+j) ≤ Ct2,
i.e., the number of integers in [max(1, t1 + 1− ri),min(pi, t2 + pi − d̄i)]. This number is equal to:

max(0, 1 + min(pi, t2 + pi − d̄i)−max(1, t1 + 1− ri))

= max(0, pi + min(0, t2 − d̄i)−max(0, t1 − ri))

= max(0, pi −max(0, d̄i − t2)−max(0, t1 − ri))

Therefore, equation 9.2 becomes
∑

i WPE(Ai, t1, t2) > C(t2 − t1)

A Quadratic Algorithm

We propose a quadratic algorithm to determine whether there exists a feasible partially elastic
schedule. This algorithm is derived from the algorithm used in [182] to compute the subset bound
of the m–Machine Problem, i.e., of P |ri|Tmax. It consists of computing the overall required energy
consumption over each interval [rj , d̄k) and to test whether this energy exceeds the energy provided

114 Propagation of Cumulative Constraints

by the resource over this interval. We prove that such tests guarantee the existence of a feasible
partially elastic schedule. To achieve this proof, we study the slack function SPE(t1, t2) = C(t2 −
t1)−WPE(t1, t2).

Proposition 51. Let t1, t2 be two integer values such that t1 < t2.

• If t1 is not an earliest start time, then either SPE(t1 + 1, t2) < SPE(t1, t2) or SPE(t1− 1, t2) ≤
SPE(t1, t2).

• If t2 is not a latest end time, then either SPE(t1, t2 − 1) < SPE(t1, t2) or SPE(t1, t2 + 1) ≤
SPE(t1, t2).

Proof. Since the two items of the proposition are symmetric, we only prove the first item. Suppose
that SPE(t1, t2) ≤ SPE(t1 + 1, t2) and SPE(t1, t2) < SPE(t1 − 1, t2). Let us then define the sets

Ψ = {i : pi −max(0, t1 − ri)−max(0, d̄i − t2) > 0}

Φ = {i : ri ≤ t1}

The equation SPE(t1, t2) ≤ SPE(t1 + 1, t2) can be rewritten

−C +
∑

i∈Ψ

ci(−max(0, t1 − ri) + max(0, t1 + 1− ri)) ≥ 0

Since ∀i /∈ Φ,max(0, t1 − ri) = 0 and max(0, t1 + 1− ri) = 0, it leads to:

∑

i∈Ψ∩Φ

ci(−max(0, t1 − ri) + max(0, t1 + 1− ri)) ≥ C

which leads to
∑

i∈Ψ∩Φ

ci ≥ C

The equation SPE(t1, t2) < SPE(t1 − 1, t2) can be rewritten

∑

i

ci max(0, pi −max(0, t1 − 1− ri)−max(0, d̄i − t2))

−
∑

i

ci max(0, pi −max(0, t1 − ri)−max(0, d̄i − t2)) < C

which leads to

∑

i∈Ψ

ci(−max(0, t1 − 1− ri) + max(0, t1 − ri))

+
∑

i/∈Ψ

ci max(0, pi −max(0, t1 − 1− ri)−max(0, d̄i − t2)) < C

Hence,
∑

i∈Ψ

ci(−max(0, t1 − 1− ri) + max(0, t1 − ri)) < C (9.3)

Consider now two cases.

• If i ∈ Φ then t1 − ri ≥ 0. Moreover, t1 − ri − 1 ≥ 0 since t1 is not an earliest start time.

• If i /∈ Φ then t1 − ri < 0 and t1 − ri − 1 < 0.

(9.3) leads to
∑

Ψ∩Φ ci < C, which contradicts
∑

Ψ∩Φ ci ≥ C.

9.2 Preemptive Problems 115

Proposition 52.

[∀rj , ∀d̄k > rj , SPE(rj , d̄k) ≥ 0]
⇔ [∀t1, ∀t2 > t1, SPE(t1, t2) ≥ 0]
⇔ [There exists a feasible partially elastic schedule]

Proof. Note that if t1 < mini ri, the slack strictly increases when t1 decreases, and if t2 > maxi d̄i,
the slack strictly increases when t2 increases. Hence, the slack function assumes a minimal value
over an interval [t1, t2) with mini ri ≤ t1 ≤ t2 ≤ maxi d̄i. We can assume that both t1 and t2
are integers (if t1 is not, the function t → SPE(t, t2) is linear between bt1c and dt1e ; thus either
SPE(bt1c, t2) ≤ SPE(t1, t2) or SPE(dt1e, t2) ≤ SPE(t1, t2). Among the pairs of integer values (t1, t2)
which realize the minimum of the slack, let (u1, u2) be the pair such that u1 is minimal and u2

is maximal (given u1). We can suppose that SPE(u1, u2) < 0 (otherwise the proposition holds).
Consequently, u1 < u2 and thus, according to Proposition 51, either u1 is a earliest start time or
SPE(u1 + 1, u2) < SPE(u1, u2) or SPE(u1 − 1, u2) ≤ SPE(u1, u2). Since SPE(u1, u2) is minimal, the
previous inequalities lead to SPE(u1− 1, u2) = SPE(u1, u2); which contradicts our hypothesis on u1.
Consequently, u1 is an earliest start time. A symmetric demonstration proves that u2 is a latest end
time.

This proposition is of great interest since it allows us to restrict the computation of WPE to
intervals [t1, t2) where t1 is an earliest start time and t2 is a latest end time. Before describing the
algorithm, we introduce the notation p+

i (t1) and p−i (t2) which denote the minimal number of time
units during which Ai must execute respectively after t1 and before t2, i.e.,

p−i (t2) = max(0, pi −max(0, d̄i − t2))

p+
i (t1) = max(0, pi −max(0, t1 − ri))

Algorithm 12 computes WPE(t1, t2) over all relevant intervals. The basic underlying idea is that,
for a given t1, the values of t2 at which the slope of the t → WPE(t1, t) function changes are either
of the form d̄i or of the form d̄i − p

+
i (t1). The procedure iterates on the relevant values of t1 and

t2. Each time t2 is modified, WPE(t1, t2) is computed, as well as the new slope (just after t2) of the
t → WPE(t1, t) function. Each time t1 is modified, the set of activities with relevant d̄i − p

+
i (t1) is

incrementally recomputed and resorted.

Algorithm 11 Incremental updating. Procedure update(Lst, told
1 , t1)

1: move = ∅, no move = ∅ (initialize two empty lists)
2: for Ai ∈ Lst do
3: if p+

i (t1) > 0 then
4: if p+

i (t1) = p+
i (told

1) then
5: add Ai to no move
6: else
7: add Ai to the list move
8: end if
9: end if

10: end for
11: Lst = merge(move, no move)

Let us detail Algorithm 12.

• Lines 1 and 2 initialize D and Lst. D is the array of activities sorted in increasing order of
latest end times and Lst is the array of activities sorted in increasing order of latest start time
(d̄i − pi).

• The main loop (line 4) consists in an iteration over all earliest start times t1. Notice that told
1

allows to keep the previous value of t1.

116 Propagation of Cumulative Constraints

Algorithm 12 Computation of WPE(t1, t2)

1: D := activities sorted in increasing order of d̄i

2: Lst := activities sorted in increasing order of d̄i − pi

3: told
1 := mini(ri)

4: for t1 in the set of earliest start times (sorted in inc. order) do
5: update(Lst, told

1 , t1)
6: told

1 := t1, i
D := 0, iLst := 0

7: W := 0, told
2 := t1, slope :=

∑

i WPE(i, t1, t1 + 1)
8: while iLst < length(Lst) or iD < n do
9: if iD < n then

10: tD2 := d̄D[iD+1]

11: else
12: tD2 :=∞
13: end if
14: if iLst < length(Lst) then
15: tLst

2 := d̄Lst[iLst+1] − p
+
Lst[iLst+1](t1)

16: else
17: tLst

2 :=∞
18: end if
19: t2 := min(tD2 , t

Lst
2)

20: if t2 = tLst
2 then

21: iLst := iLst + 1, i := Lst[iLst]
22: else
23: iD := iD + 1, i := D[iD]
24: end if
25: if t1 < t2 then
26: W := W + slope(t2 − told

2)
27: WPE(t1, t2) := W (energy over [t1, t2))
28: told

2 := t2
29: ∆ := WPE(i, t1, t2 + 1)− 2WPE(i, t1, t2) +WPE(i, t1, t2 − 1)
30: slope := slope+ ∆
31: end if
32: end while
33: end for

9.2 Preemptive Problems 117

• Algorithm 11 describes the procedure update(Lst, told
1 , t1) that reorders the array Lst in in-

creasing order of d̄i − p
+
i (t1). This procedure will be described later on.

• Before starting the inner loop, a variable slope is initialized (line 7). It corresponds to the
slope of the function t → WPE(t1, t) immediately after the time point told

2 . told
2 and slope are

initialized line 7 and updated lines 28 and 30.

• The inner loop on t2 (lines 8–32) consists in iterating on both arrays D and Lst at the same
time. Because both arrays are sorted, some simple operations (lines 9–19) determine the next
value of t2. Notice that t2 can take at most 2n values and that t2 takes all the values which
correspond to a latest end time. The indices iD and iLst correspond to the current position in
arrays D and Lst respectively.

• Lines 20 to 24 enable to increase one of the indices and to determine the activity i which has
induced the current iteration.

• To understand lines 25 to 31, consider the following rewriting of WPE(Ai, t1, t2).

WPE(Ai, t1, t2) =

0 If t2 ≤ d̄i − p
+
i (t1)

ci(t2 − d̄i + p+
i (t1)) If d̄i − p

+
i (t1) < t2 ≤ d̄i

cip
+
i (t1) If d̄i < t2

Between two consecutive values of t2 in the inner loop, the function WPE is linear. The required
energy consumption between t1 and told

2 is W , as computed at the end of the previous iteration.
In addition, the slope of t → WPE(t1, t) between told

2 and t2 is slope. So, the required energy
consumption between t1 and t2 is W + slope(t2 − t

old
2). Then, slope is updated to take into

account the non-linearity of the required energy consumption of activity i at time t2. Notice
that the algorithm may execute several times lines 25–31 for the same values of t1 and t2 (e.g.,
if d̄i = d̄j for some i and j). In such a case, the slope is modified several times, with respect
to all the activities inducing a non-linearity at time t2.

Let us now detail the procedure update. This procedure reorders the array Lst in increasing order
of d̄i − p

+
i (t1). This is done in linear time. We rely on the fact that when we move from told

1 to t1,
three cases can occur.

• Either p+
i (t1) is null and then the required energy consumption of Ai in [t1, t2) is null; and Ai

can be removed;

• Or p+
i (t1) = p+

i (told
1) (line 4);

• Or p+
i (t1) = p+

i (told
1)− (t1 − told

1) (line 6).

Activities are taken in the initial order of Lst and are stored in either the list no move (second item)
or in the list move (third item). Notice that no move is sorted in increasing order of d̄i− p

+
i (told

1) =
d̄i − p

+
i (t1). Moreover, move is sorted in increasing order of d̄i − p

+
i (told

1) but move is also sorted
in increasing order of d̄i − p

+
i (t1) since the difference between p+

i (t1) and p+
i (told

1) is constant for
all activities in move. This means that we only have to merge move and no move to obtain the
reordered array.

The overall algorithm runs in O(n2) since (i) the initial sort can be done in O(n log n), (ii) the
procedure update is basically a merging procedure which runs in O(n), (iii) the initial value of slope
for a given t1 is computed in O(n), and (iv) the inner and outer loops of the algorithm both consist
in O(n) iterations.

Time-Bound Adjustments

In this section, we provide an adjustment scheme which relies on the required energy consumptions
computed in the partially elastic case. From now on, we assume that ∀rj , ∀d̄k,WPE(rj , d̄k) ≤
C(d̄k − rj). If not, we know that there is no feasible partially elastic schedule. As for other
adjustments techniques, our basic idea is to try to order activities. More precisely, given an activity
Ai and an activity Ak , we examine whether Ai can end before d̄k.

118 Propagation of Cumulative Constraints

Proposition 53. For any activity Aj such that rj < d̄k and

WPE(rj , d̄k)−WPE(Ai, rj , d̄k) + cip
+
i (rj) > C(d̄k − rj)

a valid lower bound of the end time of Ai is:

d̄k +
1

ci
(WPE(rj , d̄k)−WPE(Ai, rj , d̄k) + cip

+
i (rj)− C(d̄k − rj))

Proof. Notice that WPE(rj , d̄k)−WPE(Ai, rj , d̄k)+ cip
+
i (rj) is the overall required energy consump-

tion over [rj , d̄k) when d̄i is set to d̄k. If this quantity is greater than C(d̄k − rj) then Ai must end
after d̄k. To understand the lower bound of the end time of Ai, simply notice that the numerator of
the expression is the number of energy units of Ai which have to be shifted after time d̄k. We can
divide this number of units by the amount of resource required by Ai to obtain a lower bound of
the processing time required to execute these units.

As all values WPE(rj , d̄k) can be computed in O(n2), this mechanism leads to a simple O(n3)
algorithm. For any tuple (Ai, Aj , Ak), check whether Ai can end before d̄k and in such a case
compute the corresponding time-bound adjustment. This mechanism is described in Algorithm 13.
The value W = WPE(rj , d̄k) is computed in O(n3) at lines 4–6. This is an alternative to Algorithm
12 that computes the values WPE in a quadratic amount of steps. In [11], an algorithm that performs
all time-bound adjustments in O(n2 log(|{ci}|)) is described, where |{ci}| is the number of distinct
resource requirements. This complexity becomes quadratic when the algorithm is applied to an
instance of the m–Machine Problem (for which ∀i, ci = 1). However, this algorithm requires the use
of complex data structures and is out of the scope of this chapter.

Algorithm 13 An O(n3) algorithm for partially elastic adjustments

1: for j ∈ {1, . . . , n} do
2: for k ∈ {1, . . . , n} with rj < d̄k do
3: W := 0
4: for i ∈ {1, . . . , n} do
5: W := W +WPE(Ai, rj , d̄k)
6: end for
7: if W > C(d̄k − rj) then
8: there is no feasible schedule, exit
9: else

10: for i ∈ {1, . . . , n} do
11: SL := C(d̄k − rj)−W +WPE(Ai, rj , d̄k)
12: if SL− ci max(0, pi −max(0, rj − ri)) < 0 then
13: eeti := max(eeti, d̄k + d 1

ci
(cip

+
i (rj)− SL)e)

14: lsti := min(lsti, rj − d
1
ci

(cip
−
i (d̄k)− SL)e)

15: end if
16: end for
17: end if
18: end for
19: end for

The m–Machine case

In the m–Machine case, i.e., when activities require exactly one unit of the resource, the partially
elastic necessary condition can be compared to several results of the literature (these results are
discussed in [182]). First, notice that the decision variant of the Preemptive m–Machine Problem is
polynomial and can be formulated as a maximum flow problem (similar techniques as those depicted
in Section 8.2 for the One-Machine Problem are used), see for instance [100] or [182]. As shown in

9.2 Preemptive Problems 119

[182], solving this maximum flow problem leads to a worst case complexity of O(n3). The preemptive
relaxation is strictly stronger than the fully and the partially elastic relaxations.

A comparison can also be made between the subset bound, a lower bound for the optimization
variant of the m–Machine Problem (see for example [55, 64, 182]) and the partially elastic relaxation.
An instance of the optimization variant of the m–Machine Problem consists of a set of activities
characterized by an earliest start time ri, a tail qi and a processing time pi, and a resource of capacity
C = m. The objective is to find a start time assignment si for each activity Ai such that temporal
and resource constraints are met and maxi(si + pi + qi) is minimal.

The subset bound is the maximum among all subsets J of at least C activities of the following
expression, in which R(J) and Q(J) denote the sets of activities in J having respectively the C
smallest earliest start times and the C smallest tails.

1

C

∑

Aj∈R(J)

rj +
∑

Aj

pj +
∑

Aj∈Q(J)

qj

[182] presents an algorithm to compute the subset bound in a quadratic number of steps. Carlier
and Pinson describe an O(n log n+ nC logC) algorithm [64] which relies on a “pseudo-preemptive”
relaxation of the m–Machine Problem. Notice that the subset bound can apply, thanks to a simple
transformation, as a necessary condition of existence for the decision variant of the m–Machine
Problem:

∀J ⊆ {A1, . . . , An} s.t., |J | > C,
∑

Aj∈R(J)

rj +
∑

Aj∈J

pj ≤
∑

Aj∈D(J)

d̄j

where D(J) denotes the set of activities in J having the C largest latest end times.

Proposition 54. In the m–Machine case, there exists a feasible partially elastic schedule if and
only if the subset bound necessary condition holds.

Proof. First, assume that there exists a feasible partially elastic schedule. Let J be any subset of
at least C activities. Let r1, r2, . . . , rC be the C smallest earliest start times of activities in J , and
d̄1, d̄2, . . . , d̄C be the C largest latest end times of activities in J . Since before rC , at most C activities
execute, and since for each of these activities Ai at most rC − ri units are executed before rC , the
schedule of these activities can be reorganized so that E(Ai, t) is at most 1 for every t ≤ rC . Let us
now replace each activity Ai in R(J) with a new activity of earliest start time r1, latest end time d̄i,
and processing time pi + (ri − r1). A feasible partially elastic schedule of the new set of activities is
obtained as a simple modification of the previous schedule, by setting E(Ai, t) = 1 for every Ai in
R(J) and t in [r1ri). The same operation can be done between d̄C and d̄1 for activities in D(J). We
have a partially elastic schedule requiring

∑

Ai∈J pi +
∑

Ai∈R(J)(ri−r1)+
∑

Ai∈D(J)(d̄1− d̄i) units of

energy between r1 and d̄1. Hence,
∑

Ai∈J pi +
∑

Ai∈R(J)(ri− r1)+
∑

Ai∈D(J)(d̄1− d̄i) ≤ C(d̄1− r1).
This is equivalent to the subset bound condition for J .
We now demonstrate the other implication. Assume that the slack SPE is strictly negative for some
interval. Let then [t1, t2) be the interval over which the slack is minimal and let us define J as the
set of activities Ai such that WPE(Ai, t1, t2) > 0. Notice that there are at least C activities in J
because ri + pi ≤ d̄i implies that WPE(Ai, t1, t2) ≤ t2 − t1. In addition, at most C activities Ai in
J are such that ri < t1. Otherwise, when t1 is replaced by t1 − 1, the slack decreases. Similarly,
at most C activities Ai in J are such that t2 < d̄i. Let us define X = {Ai ∈ J : ri < t1} and
Y = {Ai ∈ J : t2 < d̄i}. According to the previous remark, we have |X | ≤ C and |Y | ≤ C. Now
notice that for any activity Ai in J , WPE(Ai, t1, t2) > 0. Thus, we have:

WPE(Ai, t1, t2) =
∑

Ai∈J

(pi −max(0, t1 − ri)−max(0, d̄i − t2))

This can be rewritten:

WPE(Ai, t1, t2) =
∑

Ai∈J

pi +
∑

Ai∈X

ri − |X |t1 −
∑

Ai∈Y

d̄i + |Y |t2

120 Propagation of Cumulative Constraints

Since SPE(t1, t2) is strictly negative, we have,

∑

Ai∈X

ri + (C − |X |)t1 +
∑

Ai∈J

pi >
∑

Ai∈Y

d̄i + (C − |Y |)t2

Moreover, because of the definition of R(J) (resp. D(J)), and because |X | ≤ C and |Y | ≤ C, we
have

∑

Ai∈R(J) rj ≥
∑

Ai∈X rj + (C − |X |)t1 and
∑

Ai∈D(J) d̄j ≤
∑

Ai∈Y d̄j + (C − |Y |)t2. As a

consequence,
∑

Ai∈R(J) rj +
∑

Ai∈J pi >
∑

Ai∈D(J) d̄j , which is exactly the subset bound necessary
condition for the set J .

9.3 Non-Preemptive Problems

Many algorithms have been proposed for the propagation of the non-preemptive cumulative con-
straint. A representative subset of these algorithms is presented in this chapter. First, note that
constraint propagation methods initially developed for the preemptive or fully elastic case can, of
course, be used on non-preemptive problems. However, specific propagation methods often provide
better time bounds.

9.3.1 Time-Table Constraint

In the non-preemptive cumulative case, Time-Table constraint propagation mainly consists of main-
taining arc-B-consistency on the formula:

∀t
∑

start(Ai)≤t<end(Ai)

cap(Ai) ≤ C

Propagation between the constraints linking X(Ai, t), set(Ai), start(Ai), end(Ai), and proc(Ai) is
performed in the same way as in the One-Machine non-preemptive case (cf., 8.1.1).

9.3.2 Disjunctive Constraint

Two activities Ai and Aj such that ci + cj > C cannot overlap in time. Hence either Ai precedes Aj

or Aj precedes Ai, i.e., the disjunctive constraint holds between these activities. Arc-B-consistency
is then achieved on the formula

[cap(Ai) + cap(Aj) ≤ cap]

∨ [end(Ai) ≤ start(Aj)]

∨ [end(Aj) ≤ start(Ai)]

9.3.3 Edge-Finding

In [175, 173, 176] the Edge-Finding techniques for the One-Machine case as discussed in Section 8.1.3
are generalized to cumulative resources. The Edge-Finding techniques for the One-Machine case
identify conditions for which it can be proven that an activity must be scheduled before or after a
specific subset of activities on the same machine. The techniques in [175, 173, 176] extend this to
cumulative resources by considering the energy ei = cipi an activity uses. Before continuing, we
recall the following notations, for each subset of activities Ω, eΩ =

∑

Ai∈Ω ei, rΩ = minAi∈Ω ri,

eetminΩ = minAi∈Ω eeti, d̄Ω = maxAi∈Ω d̄i and lstmaxΩ = maxAi∈Ω lsti.
Figure 9.3 shows four activities each requiring a capacity of 1, that must be scheduled on a

resource with capacity 2. Observe that the sum of the energy of the activities is 27, whereas the
available energy between times 0 and 10 is 20. This implies that A1 cannot be started at time 0. The
same holds for times 1 to 5. What can actually be deduced is that all activities in Ω = {A2, A3, A4}
end before the end of A1.

The following proposition provides conditions such that it can be deduced that all activities of a
set Ω end before the end or start after the start of an activity Ai.

9.3 Non-Preemptive Problems 121

� 0� 1�2��3�4�5��6�7�8�9�10�11�12�13�14�15�16�17�18�19�20�21�22�23�24�25�
A1� � � �� � � � � � � �� � � � � � � � � � � � � � �

� �

A2�� �
� �

A3�� �
� �

A4�� �
�

Figure 9.3: Four activities on the same resource with capacity 2.

Proposition 55. [173] Let Ω be a set of activities and let Ai 6∈ Ω. Then, (i) if

eΩ∪{Ai} > C(d̄Ω − rΩ∪{Ai}), (9.4)

then all activities in Ω end before the end of Ai, and (ii) if

eΩ∪{Ai} > C(d̄Ω∪{Ai} − rΩ),

then all activities in Ω start after the start of Ai.

Proof. (i) Suppose all activities are scheduled and an activity in Ω does not end before the end of
Ai. Then the energy that is needed between rΩ∪{Ai} and d̄Ω is at least eΩ∪{Ai} which, according to
(9.4), is larger than the available energy C(d̄Ω− rΩ∪{Ai}), which leads to a contradiction. The proof
of (ii) is similar to the proof of (i)

If all activities in a set Ω end before the end of an activity Ai the earliest start time of Ai can
be adjusted as follows. With S a schedule (and S(Ai) the starting time of Ai on S) we define

ct(Ω,S, cp) = min{t ≥ rΩ : ∀t′ ≥ t,
∑

Aj∈Ω∧S(Aj)≤t′<S(Aj)+pj

cj ≤ C − cp}

as the earliest time after which, in schedule S, at least a capacity of cp is available on resource µ.
The minimum of ct(Ω,S, ci) over all schedules is a lower bound on ri. The problem of calculating
this lower bound is NP-hard, which can easily be seen by observing that the optimization variant
of the Sequencing Problem with Release Times and Deadlines [108] is a special case of this problem
by defining ci = C and cj = C, for all Aj ∈ Ω.

In [173] the following lower bound which can be computed efficiently is presented. Let Ω be a
given subset of activities, then the total energy to be scheduled in [rΩ, d̄Ω) is eΩ. At best an energy
of (C − ci)(d̄Ω − rΩ) can be scheduled, without disabling any start time of Ai. With

rest(Ω, ci) = eΩ − (C − ci)(d̄Ω − rΩ),

it is derived that if rest(Ω, ci) > 0, a lower bound on ri equals

rΩ + drest(Ω, ci)/cie.

The condition rest(Ω, ci) > 0 states that the total energy eΩ that needs to be scheduled in [rΩ, d̄Ω) is
strictly larger than the energy (C − ci)(d̄Ω− rΩ), which is the energy that can be scheduled without
disabling any start time of Ai.

Evidently, if all activities in a set Ω end before the end of an activity Ai then also all activities
in any subset Ω′ ⊆ Ω end before the end of Ai. This leads to the observation that all start times
smaller than

max
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

rΩ′ + drest(Ω′, ci)/cie,

are inconsistent for Ai. If we do this for all possible subsets Ω, we obtain

max
Ω⊆{A1,...,An}:α

max
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

rΩ′ + drest(Ω′, ci)/cie, (9.5)

with
α⇔ Ai 6∈ Ω ∧ C(d̄Ω − rΩ∪{Ai}) < eΩ∪{Ai},

122 Propagation of Cumulative Constraints

as a lower bound on the earliest start time of activity Ai.

Similarly, if all activities in a set Ω start after the start of an activity Ai then all end times larger
than

min
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

d̄Ω′ − drest(Ω′, ci)/cie,

are inconsistent for Ai. If we do this for all subsets Ω, we obtain

min
Ω⊆{A1,...,An}:α

min
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

d̄Ω′ − drest(Ω′, ci)/cie,

with
α⇔ Ai 6∈ Ω ∧ C(d̄Ω∪{Ai} − rΩ) < eΩ∪{Ai}

as an upper bound on the latest end time of activity Ai. We remark that the lower bounds on
earliest start times and upper bounds on latest end times given in by [62] for the One-Machine case
(see Section 8.1.3) are special cases of the bounds given in [173].

[173] presents an algorithm for calculating these bounds with a time complexity equal to O(n2|{ci}|),
where |{ci}| is the number of distinct resource requirements. Algorithm 14 performs the same
adjustments in O(n2).

As for Algorithm 7 for this algorithm we also assume that the set of activities {A1, . . . An} is
ordered by ascending earliest start times. As such ri is the earliest start time of the i-th activity
according to this ordering. Also as in other algorithms we assume that the earliest start times ri

that serve as input remain unchanged during the execution of the algorithm, i.e., changes of earliest
start times ri as calculated by the algorithm are effectuated afterwards.

The outer iteration of the algorithm iterates over the latest end times of the activities. In the
k-th iteration we consider the k-th activity in the ordering by ascending earliest start times and
we refer to its latest end time by d̄k. The idea then is to split the set of activities in two sets,
Ω≤ consisting of those activities having a latest end time at most d̄k, and Ω> consisting of those
activities having a latest end time greater than d̄k. We will study finding updates of earliest start
times for activities in this latter set.

Also as for the Algorithm 7 we define the set Ω≤,i as containing the activities Aj in Ω≤ that come
after Ai in the ordering by ascending earliest start times. Ω≤,i thus is defined as {Aj ∈ Ω≤ : j ≥ i}
(= {Aj ∈ Ω : d̄j ≤ d̄k ∧ j ≥ i}).

After the first inner loop, i.e., after line 20, the program variable W equals the sum of energies
in Ω≤, i.e., W = eΩ≤

. The program variables Ci equal

max
Ω′⊆Ω≤,i:Ω′ 6=∅∧rest(Ω′,ci)>0

rΩ′ + drest(Ω′, ci)/cie.

To see this is true let Ajmax
∈ Ω≤,i be the activity for which eΩ≤,jmax

+ C rjmax
is maximal. In

the first inner loop, maxW equals eΩ≤,jmax
and maxEst equals rjmax

. Through lines 13-18, one can

see that if eΩ≤,jmax
− (C − ci)(d̄k − rjmax

) > 0 then

Ci = rjmax
+ d(eΩ≤,jmax

− (C − ci)(d̄k − rjmax
)/ci)e.

Now, as
eΩ≤,jmax

+ Crjmax
≥ max

Aj′∈Ω≤,i

eΩ≤,j′
+ Crj′ ,

it is also trivially seen that

rjmax
+ d(eΩ≤,jmax

− (C − ci)(d̄k − rjmax
)/ci)e ≥

max
Aj′∈Ω≤,i

rj′ + d(eΩ≤,j′
− (C − ci)(d̄k − rj′)/ci)e.

>From this follows the above given definition of Ci.

9.3 Non-Preemptive Problems 123

Algorithm 14 Edge-Finding for cumulative resources

1: for k := 1 to n do
2: W := 0, H := −∞,maxW := −∞,maxEst := d̄k

3: for i := n down to 1 do
4: if d̄i ≤ d̄k then
5: W := W + ei

6: if W/C > d̄k − ri then
7: there is no feasible schedule, exit
8: end if
9: if W + C ri > maxW + C maxEst then

10: maxW := W,maxEst := ri

11: end if
12: else
13: restW := maxW − (C − ci)(d̄k −maxEst)
14: if restW > 0 then
15: Ci := maxEst + drestW/cie
16: else
17: Ci := −∞
18: end if
19: end if
20: end for
21: for i := 1 to n do
22: if d̄i ≤ d̄k then
23: H := min(H,C(d̄k − ri)−W)
24: W := W − ei

25: else
26: if C(d̄k − ri) < W + ei then
27: ri := max(ri, Ci)
28: end if
29: if H < ei then
30: restW := maxW − (C − ci)(d̄k −maxEst)
31: if restW > 0 then
32: ri := max(ri,maxEst + drestW/cie)
33: end if
34: end if
35: end if
36: end for
37: end for

124 Propagation of Cumulative Constraints

Lines 26-28 describe the deductions corresponding to (9.5) for the activity Ai at hand and all
subsets of Ω≤,i. Through line 24 the program variable W equals eΩ≤,i

. So if C(d̄k − ri) is smaller
than W + ei, then all activities in Ω≤,i end before the end of Ai, and thus ri can be updated to
max(ri, Ci).

Lines 29-34 describe the deductions corresponding to (9.5) for the activity Ai at hand and all
subsets of Ω≤ that include at least one activity Aj that comes before Ai in the ordering by ascending
earliest start times, i.e., for which j < i.

Through line 23 the program variable H equals the minimal slack of these subsets, i.e., H =
minj<i C(d̄k−rj)−eΩ≤,j

. Let jmin < i be the index for which C(d̄k−rjmin
)−eΩ≤,jmin

is minimal. So

if H < ei and maxW − (C− ci)(d̄k−maxEst) > 0 then all activities in Ω≤,jmin
end before the end of

Ai, and thus ri can be updated to max(ri, rjmin
+d(eΩ≤,jmin

−(C−ci)(d̄k−rjmin
))/cie). By definition

this means that ri can be updated to max(ri,maxEst + d(maxW − (C − ci)(d̄k −maxEst))/cie).

9.3.4 Extended Edge-Finding

The following example introduces another lower bound on the earliest start time of an activity.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A1

A2

A3

A4

Figure 9.4: Four activities on the same resource with capacity 2.

Figure 9.4 shows four activities requiring capacity 1 which must be scheduled on a resource with
capacity 2. Observe that condition (9.4) of Proposition 55 does not hold forA1 and Ω = {A2, A3, A4},
as the sum of the energy of the activities between times 0 and 11 is 22, whereas the available energy
between times 0 and 11 is also 22. Therefore, eΩ∪{A1} = C(d̄Ω − rΩ∪{A1}), and no deduction can be
made by using condition (9.4). However, if we focus on the interval [rΩ, d̄Ω), we observe that when
A1 is scheduled as early as possible, the sum of the energy of the activities between 1 and 11 is 21,
whereas the available energy is 20. Again this implies that all activities in Ω = {A2, A3, A4} end
before the end of A1.

The following proposition provides conditions such that it can be deduced that all activities of a set
Ω end before the end or start after the start of an activity Ai.

Proposition 56. [173] Let Ω be a set of activities and let Ai 6∈ Ω. Then (i) if

ri ≤ rΩ < eeti, and

eΩ + ci(eeti − rΩ) > C(d̄Ω − rΩ), (9.6)

then all activities in Ω end before the end of Ai, and (ii) if

lsti < d̄Ω ≤ d̄i, and

eΩ + ci(d̄Ω − lsti) > C(d̄Ω − rΩ),

then all activities in Ω start after the start of Ai.

Proof. (i) Suppose all activities are scheduled and an activity in Ω does not end before the end of Ai.
Then the energy that is occupied between rΩ and d̄Ω is at least eΩ + ci(eeti − rΩ) which, according
to (9.6), is larger than the available energy C(d̄Ω − rΩ), which leads to a contradiction. The proof
of (ii) is similar to the proof of (i)

9.3 Non-Preemptive Problems 125

If all activities in a set Ω end before the end of an activity Ai then all start times smaller than

max
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

rΩ′ + drest(Ω′, ci)/cie,

are inconsistent for Ai. If we do this for all subsets Ω, we obtain

max
Ω⊆{A1,...,An}:α

max
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

rΩ′ + drest(Ω′, ci)/cie,

with

α ⇔ Ai 6∈ Ω ∧ ri ≤ rΩ < eeti ∧

eΩ + ci(eeti − rΩ) > C(d̄Ω − rΩ),

as a lower bound on the earliest start time of activity Ai.

Similarly, if all activities in a set Ω start after the start of an activity Ai, then all end times larger
than

min
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

d̄Ω′ − drest(Ω′, ci)/cie,

are inconsistent for Ai. If we do this for all subsets Ω, we obtain

min
Ω⊆{A1,...,An}:α

min
Ω′⊆Ω:Ω′ 6=∅∧rest(Ω′,ci)>0

d̄Ω′ − drest(Ω′, ci)/cie,

with

α ⇔ Ai 6∈ Ω ∧ lsti < d̄Ω ≤ d̄i ∧

eΩ + ci(d̄Ω − lsti) > C(d̄Ω − rΩ),

as an upper bound on the latest end time of activity Ai.

[174] presents an algorithm for calculating these bounds with a time complexity equal to O(n3).

9.3.5 Not-First, Not-Last

Also in [175, 173, 176] the following proposition is given that provides conditions for which an activity
Ai must be scheduled either after at least one activity or before at least one activity of a set Ω of
activities that are all to be scheduled on the same cumulative resource.

Proposition 57. [173] Let Ω be a set of activities and let Ai 6∈ Ω. Then, (i) if

rΩ ≤ ri < eetminΩ, and

eΩ + ci(min(eeti, d̄Ω)− rΩ) > C(d̄Ω − rΩ), (9.7)

then all start times smaller than eetminΩ, are inconsistent, and (ii) if

lstmaxΩ < d̄i ≤ d̄Ω, and

eΩ + ci(d̄Ω −max(lsti, rΩ)) > C(d̄Ω − rΩ),

then all end times larger than lstmaxΩ, are inconsistent.

Proof. (i) If Ai is started at time ri, then no activity of Ω can be scheduled to be completed before
Ai as ri < eetminΩ. Thus an energy ci(ri − rΩ) is occupied by no activity. Then the energy the
activities in Ω ∪ {Ai} occupy in [rΩ, d̄Ω) is

eΩ + ci(min(eeti, d̄Ω)− rΩ),

which, with (9.7) is larger than the available energy C(d̄Ω− rΩ). Thus, ri is inconsistent for Ai, and
the same holds for all start times smaller than eetminΩ. The proof of (ii) is similar to the proof of
(i)

126 Propagation of Cumulative Constraints

From Proposition 57 it is derived that

max
Ω⊆{A1,...,An}:α

eetminΩ,

with

α ⇔ Ai 6∈ Ω ∧ rΩ ≤ ri < eetminΩ ∧

eΩ + ci(min(eeti, d̄Ω)− rΩ) > C(d̄Ω − rΩ),

is a lower bound on the earliest start time of activity Ai. Similarly, it is derived that

min
Ω⊆{A1,...,An}:α

lstmaxΩ,

with

α ⇔ Ai 6∈ Ω ∧ lstmaxΩ < d̄i ≤ d̄Ω ∧

eΩ + ci(d̄Ω −max(lsti, rΩ)) > C(d̄Ω − rΩ),

is an upper bound on the latest end time of activity Ai.

[174] presents an algorithm for calculating these bounds with a time complexity equal to O(n3).

9.3.6 Energetic Reasoning

Necessary Condition of Existence

The required energy consumption as defined in Section 9.2.3 is valid whether activities can be
interrupted or not. In fact, [97] and [159] propose a sharper definition of the required energy
consumption that takes into account the fact that activities cannot be interrupted. This leads to a
new necessary condition, called the “Left-Shift / Right-Shift” necessary condition, based on energetic
reasoning as defined in [97, 159]. Given an activity Ai and a time interval [t1, t2),WSh(Ai, t1, t2), the
“Left-Shift / Right-Shift” required energy consumption of Ai over [t1, t2) is ci times the minimum
of the three following durations.

• t2 − t1, the length of the interval;

• p+
i (t1) = max(0, pi−max(0, t1− ri)), the number of time units during which Ai executes after

time t1 if Ai is left-shifted, i.e., scheduled as soon as possible;

• p−i (t2) = max(0, pi − max(0, d̄i − t2)), the number of time units during which Ai executes
before time t2 if Ai is right-shifted, i.e., scheduled as late as possible.

This leads to WSh(Ai, t1, t2) = ci min(t2 − t1, p
+
i (t1), p

−
i (t2)). The required energy consumption of

A1 over [2, 7) on Figure 9.5 is 8. Indeed, at least 4 time units of A1 have to be executed in [2, 7);
i.e., WSh(A, 2, 7) = 2 min(5, 5, 4) = 8.

We can now define the Left-Shift / Right-Shift overall required energy consumption WSh(t1, t2)
over an interval [t1, t2) as the sum over all activities Ai of WSh(Ai, t1, t2). We can also define the
Left-Shift / Right-Shift slack over [t1, t2): SSh(t1, t2) = C(t2 − t1) −WSh(t1, t2). It is obvious that
if there is a feasible schedule then ∀t1, ∀t2 ≥ t1, SSh(t1, t2) ≥ 0.

In Section 9.2.3, we showed that for the partially elastic relaxation, it was sufficient to calculate
the slack only for those intervals [t1, t2) that are in the Cartesian product of the set of earliest start
times and of the set of latest end times. In this section we show that in the Left-Shift / Right-
Shift case, a larger number of intervals must be considered. On top of that, we provide a precise

9.3 Non-Preemptive Problems 127

�

� ri� * i� pi�ci��0��1���2���3��4��5��6��7��8��9��10�
A1� 0�10�7�2���������������������� �

� �

Left�Shift� ��������������������� �
� �

Right�Shift� ��������������������� �
� �

WSh(A1,�2,�7)� ��������������������� �
�
� Figure 9.5: Left-Shift / Right-Shift.

characterization of the set of intervals for which the slack needs to be calculated to guarantee that
no interval with negative slack exists.

Let us define the sets O1, O2 and O(t).

O1 = {ri, 1 ≤ i ≤ n} ∪ {d̄i − pi, 1 ≤ i ≤ n} ∪ {ri + pi, 1 ≤ i ≤ n}

O2 = {d̄i, 1 ≤ i ≤ n} ∪ {ri + pi, 1 ≤ i ≤ n} ∪ {d̄i − pi, 1 ≤ i ≤ n}

O(t) = {ri + d̄i − t, 1 ≤ i ≤ n}

Proposition 58.
[∀t1, ∀t2 ≥ t1, SSh(t1, t2) ≥ 0]

⇔

∀s ∈ O1, ∀e ∈ O2, e ≥ s, SSh(s, e) ≥ 0
∀s ∈ O1, ∀e ∈ O(s), e ≥ s, SSh(s, e) ≥ 0
∀e ∈ O2, ∀s ∈ O(e), e ≥ s, SSh(s, e) ≥ 0

To prove Proposition 58, we first need to prove some technical properties of WSh (Propositions
59, 60, 61). In the following, we consider that WSh is defined on R and equals 0 when t2 ≤ t1.
We also assume ri + pi ≤ d̄i for all i (otherwise a contradiction is obviously detected by constraint
propagation).

Proposition 59. Let Ai be an activity and (t1, t2) ∈ R2 with t1 < t2. If t1 /∈ {ri, d̄i − pi, ri + pi}
and if t2 /∈ {d̄i, d̄i − pi, ri + pi}, then Φ(h) = WSh(Ai, t1 + h, t2 − h) is linear around 0.

Proof. Φ(h) can be rewritten

Φ(h) = ci max(0,min(t2 − t1 − 2h, pi, ri + pi − t1 − h, t2 − d̄i + pi − h)).

Each of the terms 0, t2 − t1 − 2h, pi, ri + pi − t1 − h, t2 − d̄i + pi − h is linear in h and if for h = 0,
one term only realizes Φ(0), we can be sure that a small perturbation of h will have a linear effect.
Assume two terms are equal and realize Φ(0). Since there are five terms, this leads us to distinguish
ten cases.

1. Φ(0)/ci = 0 = t2 − t1,

2. Φ(0)/ci = 0 = pi,

3. Φ(0)/ci = 0 = ri + pi − t1,

4. Φ(0)/ci = 0 = t2 − d̄i + pi,

5. Φ(0)/ci = t2 − t1 = pi,

6. Φ(0)/ci = t2 − t1 = ri + pi − t1,

7. Φ(0)/ci = t2 − t1 = t2 − d̄i + pi,

8. Φ(0)/ci = pi = ri + pi − t1,

128 Propagation of Cumulative Constraints

9. Φ(0)/ci = pi = t2 − d̄i + pi,

10. Φ(0)/ci = ri + pi − t1 = t2 − d̄i + pi.

According to our hypotheses, all cases are impossible except (5) and (10).

• We claim that case (5) cannot occur. Since t2− t1 = pi and since this value is equal to Φ(0)/ci,
we have pi < ri+pi−t1 and pi < t2− d̄i+pi (equality cannot occur because of our hypotheses).
Thus, t2 − t1 = pi > d̄i − ri; which contradicts ri + pi ≤ d̄i.

• If (10) holds, then ri + pi − t1 − h = t2 − d̄i + pi − h. We can moreover suppose that these
two terms are the only ones to realize Φ(0) (otherwise one of the previous cases would occur).
Around 0, Φ(h) can be rewritten ci(ri + pi − t1 − h); which is linear.

Proposition 60. Let Ai be an activity and (t1, t2) ∈ R2 with t1 < t2 and t2 /∈ {d̄i, d̄i − pi, ri +
pi, ri + d̄i − t1}, then Θ(h) = WSh(Ai, t1, t2 − h) is linear around 0.

Proof. Θ(h) can be rewritten

Θ(h) = ci max(0,min(t2 − t1 − h, pi, ri + pi − t1, t2 − d̄i + pi − h))

Each of the terms is linear in h and if for h = 0, one term only realizes Θ(h), we can be sure that a
small perturbation of h will have a linear effect. If two terms are equal and realize Θ(0) then either

1. Θ(0)/ci = 0 = t2 − t1 or

2. Θ(0)/ci = 0 = pi or

3. Θ(0)/ci = 0 = ri + pi − t1 or

4. Θ(0)/ci = 0 = t2 − d̄i + pi or

5. Θ(0)/ci = t2 − t1 = pi or

6. Θ(0)/ci = t2 − t1 = ri + pi − t1 or

7. Θ(0)/ci = t2 − t1 = t2 − d̄i + pi or

8. Θ(0)/ci = pi = ri + pi − t1 or

9. Θ(0)/ci = pi = t2 − d̄i + pi or

10. Θ(0)/ci = ri + pi − t1 = t2 − d̄i + pi.

According to our hypotheses, all cases are impossible except (3), (5), (7), (8).

• If t1 = ri + pi (3) then ∀h,Θ(h) = 0.

• Case (5) cannot occur otherwise we would have pi ≤ ri + pi − t1 and pi < t2 − d̄i + pi; which
contradicts ri + pi ≤ d̄i.

• If t2− t1 = t2− d̄i +pi = Θ(0)/ci (7) then ∀h,Θ(h) = ci max(0,min(t2− t1−h, pi, ri +pi− t1)).
We can moreover suppose that t2 − t1 is the only term in the new expression to realize Θ(0)
(otherwise case (1), (5) or (6) would occur) and thus Θ(h) = ci(t2 − t1 − h) around 0.

• If pi = ri + pi − t1 = Θ(0)/ci (8) then Θ(h) = ci max(0,min(t2 − ri − h, pi, t2 − d̄i + pi − h)).
Since Θ(0) = cipi > 0, around 0 we must have Θ(h) = ci min(t2 − ri − h, pi, t2 − d̄i + pi − h).
Moreover, since ri ≤ d̄i − pi, around 0 we have Θ(h) = ci min(pi, t2 − d̄i + pi − h). Finally, we
know that t2 6= d̄i thus pi < t2 − d̄i + pi. Consequently, around 0, Θ(h) = cipi.

9.3 Non-Preemptive Problems 129

Proposition 61. Let (t1, t2) ∈ R2 such that t1 < t2.

• If t1 /∈ O1 and t2 /∈ O2, h→ SSh(t1 + h, t2 − h) is linear around 0.

• If t2 /∈ O2 ∪ O(t1), h→ SSh(t1, t2 − h) is linear around 0.

• If t1 /∈ O1 ∪ O(t2), h→ SSh(t1 + h, t2) is linear around 0.

Proof. We prove the first item. Since t1 /∈ O1 and t2 /∈ O2, ∀i, h→ WSh(Ai, t1 + h, t2 − h) is linear
around 0 (Proposition 59). Thus, h→ SSh(t1 +h, t2−h) is linear around 0. The same proof applies
for other items (Proposition 60 and its symmetric counterpart are used).

Proof of Proposition 58. The implication from left to right is obvious. Suppose now that the
right hand side of the equivalence holds and that there exists an interval [t1, t2) for which the
slack is strictly negative. As in the partially elastic case, we remark that when t1 is smaller than
rmin = min(ri), the slack strictly increases when t1 decreases. Similarly, when t2 is greater than
d̄max = max(d̄i), the slack strictly increases when t2 increases. Since the slack function is also
continuous, it assumes a minimal value over an interval [t1, t2) with rmin ≤ t1 ≤ t2 ≤ d̄max. Let
us consequently select a pair (t1, t2) at which the slack is minimal. In case several pairs (t1, t2)
minimize the slack, an interval with maximal length is chosen. Since this slack is strictly negative,
we must have t1 < t2.

• Case 1: If t1 /∈ O1 and t2 /∈ O2, then according to Proposition 61, the function q(h) =
SSh(t1 + h, t2 − h) is linear around 0. Since (t1, t2) is a global minimum of the slack, q(h) is
constant around 0, which contradicts the fact that the length of [t1, t2) is maximal.

• Case 2: If t1 ∈ O1 then t2 /∈ O2 ∪ O(t1), otherwise the slack is non-negative. According to
Proposition 61, q(h) = SSh(t1, t2 − h) is linear around 0. Since (t1, t2) is a global minimum
of the slack, q(h) is constant around 0, which contradicts the fact that the length of [t1, t2) is
maximal.

• Case 3: If t2 ∈ O2 then t1 /∈ O1 ∪ O(t2), otherwise the slack is non-negative. According to
Proposition 61, q(h) = SSh(t1 + h, t2) is linear around 0. Since (t1, t2) is a global minimum
of the slack, q(h) is constant around 0, which contradicts the fact that the length of [t1, t2) is
maximal.

The combination of cases 1, 2 and 3 leads to a contradiction.

Proposition 58 provides a characterization of interesting intervals over which the slack must be
computed to ensure it is always non-negative over any interval. This characterization is weaker
than the one proposed for the partially elastic case where the interesting time intervals [t1, t2) are
in the Cartesian product of the set of the earliest start times and of the set of latest end times.
However, there are still only O(n2) relevant pairs (t1, t2) to consider. Some of these pairs belong to
the Cartesian product O1 ∗ O2. The example of Figure 9.6 proves that some pairs do not. In this
example, (resource of capacity 2 and 5 activities A1, A2, A3, A4, A5), the pair (1, 9) corresponds to
the minimal slack and does not belong to {0, 1, 4, 5, 6} ∗ {4, 5, 6, 8, 10}. In this interval, the slack is
negative, which proves that there is no feasible schedule. Notice that neither the fully elastic nor
the partially elastic relaxation can trigger a contradiction.

Computing Energy in Quadratic time

We propose an O(n2) algorithm to compute the required energy consumptionWSh over all interesting
pairs of time points. Actually, the algorithm first computes all the relevant values taken by WSh over
time intervals [t1, t2) with t1 ∈ O1, and then computes all the relevant values taken by WSh over
time intervals [t1, t2) with t2 ∈ O2. The characterization obtained in the previous section ensures

130 Propagation of Cumulative Constraints

�
� i� + i� Pi� ci��0��1���2���3��4��5��6��7��8��9�� 10�
A1�1�8�4�1��� � � � � � � � � ��� ���� � ��� �
A2�1�8�4�1��� � � � � � � � � ��� ���� � ��� �
A3�0�10�4�1��� � � � � � � � � ��� ������ �� �
A4�0�10�4�1��� � � � � � � � � ��� ������ �� �
A5�0�10�4�1��� � � � � � � � � ��� ������ �� �
�
t2�\��t1� 0� 1� 2�
8� 16�–�4�*�2�-�2�*�3�=�2� 14�-�4�*�2�-�2�*�3�=�0� 12�-�3�*�2�-�2�*�3�=�0�
9� 18�–�4�*�2�-�3�*�3�=�1� �16�-�4�*�2�-�3�*�3�=�-1� 14�-�3�*�2�-�2�*�3�=�2�
10� 20�–�4�*�2�-�4�*�3�=�0� 18�-�4�*�2�-�3�*�3�=�1� 16�-�3�*�2�-�2�*�3�=�4�

�
� Figure 9.6: Some relevant time intervals are outside O1 ∗O2

that all the interesting time intervals are examined in at least one of these steps. For symmetry
reasons, we will only describe the first computation. It is achieved by the same type of technique
than in the partially elastic case. An outer loop iterates on all values t1 ∈ O1 sorted in increasing
order. Then, we consider the function t → WSh(Ai, t1, t). This function is linear on the intervals
delimited by the values d̄i, ri + pi, d̄i− pi and ri + d̄i− t1. We rely on this property to incrementally
maintain the slope of the function t→WSh(Ai, t1, t).

There are some few differences with the partially elastic case.

• The computation of t2 is slightly more complex since there are more interesting values to
consider.

• One does not need to reorder any list: when t1 increases, none of the values d̄i, ri + pi, d̄i − pi

and ri + d̄i− t1 changes except the last one; which corresponds to the list Middle. Since Middle
is initially sorted in increasing order of ri + d̄i, it is also sorted in increasing order of ri + d̄i−t1.

• In line 43, one shall in fact be careful not to update the slope more than once for the same
tuple (t1, t2, i). This can be done easily by marking the activity Ai with t2. We have not
included this marking in the pseudo-code to keep it simple.

Time-Bound Adjustments

As for partially elastic adjustments, the values of WSh can be used to adjust time bounds. Given an
activity Ai and a time interval [t1, t2) with t2 < d̄i, we examine whether Ai can end before t2.

Proposition 62. If there is a time interval [t1, t2) such that

WSh(t1, t2)−WSh(Ai, t1, t2) + cip
+
i (t1) > C(t2 − t1)

then a valid lower bound of the end time of Ai is:

t2 +
1

ci
(WSh(t1, t2)−WSh(Ai, t1, t2) + cip

+
i (t1)− C(t2 − t1))

Proof. Similar to proof of Proposition 53: Ai cannot be finished before t2 and at least

WSh(t1, t2)−WSh(Ai, t1, t2) + cip
+
i (t1)− C(t2 − t1)

units of energy must come after t2.

9.3 Non-Preemptive Problems 131

Algorithm 15 Computation of WSh(t1, t2)

1: D := activities sorted in increasing order of d̄i

2: Eet := activities sorted in increasing order of ri + pi

3: Lst := activities sorted in increasing order of d̄i − pi

4: Middle := activities sorted in increasing order of ri + d̄i

5: for t1 in the set O1 (sorted in increasing order) do

6: iD := 0, iEet := 0, iLst := 0, iMiddle := 0
7: W := 0, told

2 := t1, slope :=
P

i
WSh(i, t1, t1 + 1)

8: while iD < n or iEet < n or iLst < n or iMiddle < n do

9: if iD < n then

10: tD
2 := d̄D[iD+1]

11: else

12: tD
2 := ∞

13: end if

14: if iEet < n then

15: tEet
2 := rEet[iEet+1] + pEet[iEet+1]

16: else

17: tEet
2 := ∞

18: end if

19: if iLst < n then

20: tLst
2 := d̄Lst[iLst+1] − pLst[iLst+1]

21: else

22: tLst
2 := ∞

23: end if

24: if iMiddle < n then

25: tMiddle
2 := rMiddle[iMiddle+1] + d̄Middle[iMiddle+1] − t1

26: else

27: tMiddle
2 := ∞

28: end if

29: t2 := min(tD
2 , tEet

2 , tLst
2 , tMiddle

2)
30: if t2 = tD

2 then

31: iD := iD + 1, i := D[iD]
32: else if t2 = tEet

2 then

33: iEet := iEet + 1, i := Eet[iEet]
34: else if t2 = tLst

2 then

35: iLst := iLst + 1, i := Lst[iLst]
36: else if t2 = tMiddle

2 then

37: iMiddle := iMiddle + 1, i := Middle[iMiddle]
38: end if

39: if t1 < t2 then

40: W := W + slope(t2 − told

2)
41: WSh(t1, t2) := W (energy over [t1, t2))
42: told

2 := t2
43: slope := slope + WSh(i, t1, t2 + 1) − 2WSh(i, t1, t2) + WSh(i, t1, t2 − 1)
44: end if

45: end while

46: end for

132 Propagation of Cumulative Constraints

Similarly, when

WSh(t1, t2)−WSh(Ai, t1, t2) + ci min(t2 − t1, p
+
i (t1)) > C(t2 − t1),

Ai cannot start before t1 and a valid lower bound of the start time of Ai is

t2 −
1

ci
(C(t2 − t1)−WSh(t1, t2) +WSh(Ai, t1, t2)).

There is an obviousO(n3) algorithm to compute all the adjustments corresponding to Proposition
62 which can be obtained on the intervals [t1, t2) which correspond to potential local minima of the
slack function. There are O(n2) intervals of interest and n activities which can be adjusted. Given
an interval and an activity, the adjustment procedure runs in O(1). The overall complexity of the
algorithm is then O(n3). An interesting open question is whether there is a quadratic algorithm to
compute all the adjustments on the O(n2) intervals under consideration.

Algorithm 16 An algorithm for Left-Shift / Right-Shift adjustments

1: for all relevant time-intervals [t1, t2) (cf., Proposition 58) do
2: W := 0
3: for i ∈ {1, . . . , n} do
4: W := W + ci min(t2 − t1, p

+
i (t1), p

−
i (t2))

5: end for
6: if W > C(t2 − t1) then
7: there is no feasible schedule, exit
8: else
9: for i ∈ {1, . . . , n} do

10: SL := C(t2 − t1)−W + ci min(t2 − t1, p
+
i (t1), p

−
i (t2))

11: if SL < cip
+
i (t1) then

12: eeti := max(eeti, t2 + d(cip
+
i (t1)− SL)/cie)

13: end if
14: if SL < cip

−
i (t2) then

15: lsti := min(lsti, t1 − d(cip
−
i (t2)− SL)/cie)

16: end if
17: end for
18: end if
19: end for

Note that these Left-Shift / Right-Shift adjustments are more powerful than the adjustments
based on partially elastic schedules but they are also more expensive and they only apply to “non-
elastic non-preemptive problems.” Note also that the satisfiability tests are such that they provide
the same answers when an activity Ai, which requires ci units of the resource, is replaced by ci
activities Aij , each of which requires one unit of the resource. This is not true for the time-bound
adjustments. Several questions are still open at this point.

• First, for the Left-Shift / Right-Shift technique, we have shown that the energetic tests can
be limited to O(n2) time intervals. We have also provided a precise characterization of these
intervals. However, it could be that this characterization can be sharpened in order to eliminate
some intervals and reduce the practical complexity of the corresponding algorithm.

• Second, it seems reasonable to think that our time-bound adjustments could be sharpened.
Even though the energetic tests can be limited (without any loss) to a given set of intervals,
it could be that the corresponding adjustment rules cannot.

Chapter 10

Comparison of Propagation
Techniques

Many deductive rules and algorithms have been presented. The aim of this chapter is to compare
the deductive power of these rules and algorithms, thereby providing a much clearer overview of the
state of the art in the field.

10.1 Constraint Propagation Rules

The first step to allow a comparison of different constraint propagation techniques is to describe
these techniques under a common, precise and unambiguous formalism. Here, most of the resource
constraint propagation techniques from the preceding chapters are recalled as rules to be applied
until quiescence is reached. Some rules state that arc-consistency or arc-B-consistency must be
maintained on a particular mathematical formula. Others are stated as a “condition ⇒ conclusion”
pair, meaning that the conclusion must be deduced whenever the condition is verified.

Each rule is identified with a two-part name XX-*, where the first part XX identifies the most
general case in which the rule applies. Five cases are distinguished: FE for Fully Elastic, CP for
Cumulative Preemptive, CNP for Cumulative Non-Preemptive, 1P for One-Machine Preemptive,
and 1NP for One-Machine Non-Preemptive.

In the fully elastic case (FE), the amount of resource R assigned to an activity Ai can, at any
time t, pick any value E(Ai, t, R) between 0 and the resource capacity cap(R), provided that the
sum over time of the assigned capacity E(Ai, t, R) equals a given amount of energy E(Ai, R). For
each activity Ai, the following constraints apply:

start(Ai) = min
t∈set(Ai)

(t)

end(Ai) = max
t∈set(Ai)

(t+ 1)

proc(Ai) = |set(Ai)|

[X(Ai, t) = 1]⇔ [t ∈ set(Ai)]

[E(Ai, t, R) 6= 0]⇔ [X(Ai, t) 6= 0]
∑

t

E(Ai, t, R) = E(Ai, R)

∑

i

E(Ai, t, R) ≤ cap(R)

The fully elastic case is interesting because the constraint propagation techniques that are de-
veloped for this case can be applied to any fully elastic, partially elastic, or non-elastic scheduling
problem (because it is the less constrained).

134 Comparison of Propagation Techniques

In the cumulative preemptive case (CP), an additional constraint specifies that, for each
activity Ai, the amount of resource cap(Ai, R) assigned to Ai whenever Ai executes does not vary
and :

E(Ai, t, R) = cap(Ai, R)X(Ai, t)

The One-Machine preemptive case (1P) is the restriction of the CP case to a resource of
capacity 1, i.e., cap(Ai, R) = cap(R) = 1.

Finally, the cumulative non-preemptive case (CNP) and the One-Machine non-preemptive
case (1NP) are obtained from CP and 1P by adding, for each activity Ai, a constraint which spec-
ifies that Ai cannot be interrupted:

set(Ai) = [start(Ai), end(Ai))

As already mentioned, constraint propagation rules developed for the FE case can be applied
in the CP, 1P, CNP and 1NP cases. Similarly, constraint propagation rules developed for the CP
case can be applied in the 1P, CNP and 1NP cases. In the 1NP cases, all the rules, including those
developed for the 1P and CNP cases, can be applied.

To keep things simple, it is in all cases assumed that, for every activity Ai, the processing time
proc(Ai) and the energy requirement E(Ai, R) are constrained to be strictly positive. We recall some
notations:

• pi is the processing time of activity Ai, i.e., the value of proc(Ai) when proc(Ai) is bound.
When proc(Ai) is not bound, constraint propagation rules can usually be applied with pi equal
to the minimal value in the domain of proc(Ai).

• ci,R is the capacity (of the resource R under consideration) required by activity Ai, i.e., the
value of cap(Ai, R) when cap(Ai, R) is bound. When cap(Ai, R) is not bound, constraint
propagation rules can usually be applied with ci,R equal to the minimal value in the domain
of cap(Ai, R).

• ei,R is the energy (of the resource R under consideration) required by activity Ai, i.e., the value
of E(Ai, R) when E(Ai, R) is bound. When E(Ai, R) is not bound, constraint propagation
rules can usually be applied with ei,R equal to the minimal value in the domain of E(Ai, R).

• rΩ is the release date of the set of activities Ω. rΩ = minAi∈Ω ri.

• d̄Ω is the deadline of the set of activities Ω. d̄Ω = maxAi∈Ω d̄i.

• eetminΩ is the smallest value in {eeti : Ai ∈ Ω}.

• lstmaxΩ is the largest value in {lsti : Ai ∈ Ω}.

• pΩ is the processing time of the set of activities Ω. pΩ =
∑

Ai∈Ω pi.

• eΩ is the energy required by the set of activities Ω. eΩ =
∑

Ai∈Ω ei.

A constraint propagation rule R is said to be “dominated” by another constraint propagation
rule R′ (or by a set of constraint propagation rules S) if and only if all the deductions made by R
are also made by R′ (respectively, S). Let us note that a dominated constraint propagation rule R
can still prove useful in practice, for example when the rule R′ that dominates R is too costly to
be applied in a systematic fashion. Yet, knowing that R is dominated by R′ can be very useful,
especially when developing a search algorithm based on constraint propagation results. Indeed, we
know in this case that the search tree obtained when R and R′ are both applied, and the search
tree obtained when R′ alone is applied, are identical. In other terms, applying R when R′ is already
applied will not save any search when R is dominated by R′. Conversely, knowing that two rules R
and R′ do not dominate each other suggests that the (R +R′) combination might perform better
than each of the two rules considered separately.

Let us note that, in some scheduling problems, resource capacity varies over time (e.g., when less
people work at night than during the day). When only c < cap(R) resource units are available over an

10.1 Constraint Propagation Rules 135

interval [t1, t2), a “fake” activity can be introduced and said to require capacity cap(R)− c between
t1 and t2. This transformation will have an impact on the deductive power of some constraint
propagation techniques (but not all). However, the dominance relations remain the same.

In the following, we do not consider the possible interactions between resources R so, to simplify
notation, the index R will be omitted. C, ci, ei, pi denote the capacity of the resource, the capacity
required by activity Ai, the energy required by activity Ai and the processing time of activity Ai.
To keep the presentation simple, we assume that the variables cap(R), cap(Ai, R), E(Ai, R) and
proc(Ai) are bound to these values. Depending on the context, it shall be obvious whether C, ci, ei

and pi can be replaced by the lower or the upper bound of the corresponding variables.

10.1.1 Time-Table Constraints

FE-TT, CP-TT and CNP-TT: Time-Tables in the fully elastic, preemptive and non-preemptive
cases

This constraint propagation technique consists of maintaining arc-B-consistency on the constraint
∑

iE(Ai, t) ≤ C and using the maximal values ub(E(Ai, t)) of E(Ai, t) to compute the earliest and
latest start and end times of activities:

start(Ai) ≥ min{t : ub(E(Ai, t)) > 0}

end(Ai) ≥ min{t :
∑

u<t

ub(E(Ai, u)) ≥ ei}

start(Ai) ≤ max{t :
∑

u≥t

ub(E(Ai, u)) ≥ ei}

end(Ai) ≤ max{t : ub(E(Ai, t)) > 0}+ 1

The FE, CP and CNP cases must be distinguished because the relations between E(Ai, t) and the
start and end time variables differ. In the non-preemptive case, E(Ai, t) is equal to ci for every t
in [lsti, eeti). In the preemptive case, either the user or a search procedure must explicitly decide
at which time points each activity executes. However, when start(Ai), proc(Ai) and end(Ai) are
bound to values such that start(Ai) + proc(Ai) = end(Ai), E(Ai, t) is equal to ci for every t in
[start(Ai), end(Ai)). In the fully elastic case, the relation is even weaker because, even when t is
known to belong to set(Ai), E(Ai, t) can take any value between 1 and C.

10.1.2 Disjunctive Constraints

Disjunctive constraints deal with cases in which two activities cannot overlap in time. Such a
situation is of course common in One-Machine scheduling, but also occurs in cumulative scheduling,
when the sum of the capacities required by two activities exceeds the capacity of the resource. Let
us note that the following rule, CNP-DISJ, can a priori be generalized to triples, quadruples, etc., of
activities, but with a significant increase in the number of constraints and in the number of disjuncts
per constraint. In practice, disjunctive constraints are used only for pairs of activities.
CNP-DISJ: Disjunctive constraints in the non-preemptive case

Let Ai and Aj be two activities with ci + cj > C. In the non-preemptive case, the disjunctive
constraint propagation technique consists of maintaining arc-B-consistency on the formula:

[end(Ai) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai)]

In the 1NP case, all the pairs of activities that require the same resource are related by such a
disjunction. This is the origin of the term “disjunctive scheduling.”
CP-DISJ: Disjunctive constraints in the preemptive case

Let Ai and Aj be two activities with ci + cj > C. In the preemptive case, the disjunctive
constraint propagation technique consists of maintaining arc-B-consistency on the formula:

[start(Ai) + proc(Ai) + proc(Aj) ≤ end(Ai)]
∨ [start(Ai) + proc(Ai) + proc(Aj) ≤ end(Aj)]
∨ [start(Aj) + proc(Ai) + proc(Aj) ≤ end(Ai)]
∨ [start(Aj) + proc(Ai) + proc(Aj) ≤ end(Aj)]

136 Comparison of Propagation Techniques

10.1.3 Edge-Finding

“Edge-Finding” constraint propagation techniques reason about the order in which activities execute
on a given resource. In the 1NP case, Edge-Finding consists of determining whether a given activity
Ai must execute before (or after) a given set of activities Ω. Cumulative and preemptive cases are
more complex since several activities can overlap (on a cumulative resource) or preempt one another.
Then Edge-Finding consists of determining whether an activity Ai must start or end before (or after)
a set of activities Ω.

1NP-EF: Edge-Finding in the One-Machine non-preemptive case
Let Ai � Aj (Ai � Aj) mean that Ai is before (after) Aj and Ai � Ω (Ai � Ω) mean that Ai

is before (after) all the activities in Ω. In the One-Machine non-preemptive case, the Edge-Finding
technique consists in applying the following rules, and their symmetric counterparts:

[Ai /∈ Ω] ∧
[
d̄Ω − rΩ∪{Ai} < pΩ∪{Ai}

]
⇒ [Ai � Ω]

[Ai � Ω]⇒

[

start(Ai) ≥ max
∅6=Ω′⊆Ω

(rΩ′ + pΩ′)

]

1P-EF: Edge-Finding in the One-Machine preemptive case
In the preemptive case, the Edge-Finding rules no longer order activities but start and end times

of activities. If Ai � Ω means “Ai ends after all activities in Ω”, then the following rules (and their
symmetric counterparts) are obtained:

[Ai /∈ Ω] ∧
[
d̄Ω − rΩ∪{Ai} < pΩ∪{Ai}

]
⇒ [Ai � Ω]

[Ai � Ω]⇒

[

end(Ai) ≥ max
Ω′⊆Ω

(rΩ′∪{Ai} + pΩ′∪{Ai})

]

[Ai � Ω] ∧
[
d̄Ω − rΩ = pΩ

]
∧ [rΩ ≤ ri]⇒

[
start(Ai) ≥ d̄Ω

]

In the “mixed” case with both interruptible and non-interruptible activities, the 1NP-EF rules can
be applied whenever Ai is not interruptible, even if the activities in Ω are interruptible (cf., Section
8.2). On the other hand, if Ai is interruptible, the 1NP-EF rules are not valid and the (weaker)
1P-EF rules must be applied.
FE-EF: Edge-Finding in the fully elastic case

The following rules (and their symmetric counterparts) can be used in the fully elastic case:

[Ai /∈ Ω] ∧
[
C(d̄Ω − rΩ∪{Ai}) < eΩ∪{Ai}

]
⇒ [Ai � Ω]

[Ai � Ω]⇒

[

end(Ai) ≥ max
Ω′⊆Ω

CrΩ′∪{Ai} + eΩ′∪{Ai}

C

]

[Ai � Ω] ∧
[
C(d̄Ω − rΩ) = eΩ

]
∧ [rΩ ≤ ri]⇒

[
start(Ai) ≥ d̄Ω

]

Note that when applied in the CP and in the CNP cases, these rules are sensitive to the use of fake
activities to represent intervals during which the resource capacity is c with 0 < c < C (because the
fake activities are considered as fully elastic).

CNP-EF1: Edge-Finding in the cumulative non-preemptive case
Let rest(Ω, ci) = eΩ− (C− ci)(d̄Ω− rΩ). The following rules (and their symmetric counterparts)

summarize Section 9.3.3.

[Ai /∈ Ω] ∧
[
C(d̄Ω − rΩ∪{Ai}) < eΩ∪{Ai}

]
⇒ [Ai � Ω]

[Ai � Ω] ∧ [∅ 6= Ω′ ⊆ Ω] ∧ [rest(Ω′, ci) > 0]

⇒

[

start(Ai) ≥ rΩ′ +
rest(Ω′, ci)

ci

]

CNP-EF2: Edge-Finding in the cumulative non-preemptive case

10.1 Constraint Propagation Rules 137

The following rules (and their symmetric counterparts) summarize Section 9.3.4.

[Ai /∈ Ω] ∧ [ri ≤ rΩ < eeti] ∧
[
C(d̄Ω − rΩ) < eΩ + ci(eeti − rΩ)

]

⇒ [Ai � Ω]

[Ai � Ω] ∧ [∅ 6= Ω′ ⊆ Ω] ∧ [rest(Ω′, ci) > 0]

⇒

[

start(Ai) ≥ rΩ′ +
rest(Ω′, ci)

ci

]

10.1.4 Not-First, Not-Last

“Not-First” and “Not-Last” rules are counterparts to Edge-Finding rules. They deduce that an
activity Ai cannot be the first (or the last) to execute in Ω ∪ {Ai}.

1NP-NFNL: One-Machine “Not-First” and “Not-Last” rules

The following rule (and its symmetric counterpart) can be applied in the One-Machine non-
preemptive case:

[Ai /∈ Ω] ∧
[
d̄Ω − ri < pΩ∪{Ai}

]
⇒ [start(Ai) ≥ eetminΩ]

CNP-NFNL: Cumulative “Not-First” and “Not-Last” rules

The following rule (and its symmetric counterparts) summarize Section 9.3.5.

[Ai /∈ Ω] ∧ [rΩ ≤ ri < eetminΩ] ∧
[
C(d̄Ω − rΩ) < eΩ + ci(min(eeti, d̄Ω)− rΩ)

]

⇒ [start(Ai) ≥ eetminΩ)]

10.1.5 Energetic Reasoning

The Edge-Finding and the “Not-First” and “Not-Last” rules are such that the activities that do not
belong to Ω do not contribute to the analysis of the resource usage between rΩ∪{Ai} and d̄Ω∪{Ai}.
On the contrary, energetic reasoning rules compute the minimal contribution W (Aj , t1, t2) of each
activity Aj to a given interval [t1, t2).

In the preemptive case, the required energy consumption of Aj over [t1, t2) is evaluated as follows:

WPE(Aj , t1, t2) = cj max(0, pj −max(0, t1 − rj)−max(0, d̄j − t2))

The notation WPE introduced in Section 9.2.3 refers to the fact that this value corresponds to
a particular relaxation of the cumulative resource constraint, identified as the “Partially Elastic”
relaxation. In the non-preemptive case, a stronger value can be used:

WSh(Aj , t1, t2) = cj min(t2 − t1, p
+
j (t1), p

−
j (t2))

with p+
j (t1) = max(0, pj −max(0, t1− rj)) and p−j (t2) = max(0, pj −max(0, d̄j − t2)). The notation

WSh refers to the fact that the best value is obtained by shifting the activity either to the left (i.e.,
to its earliest possible execution interval) or to the right (to its latest possible execution interval).

Many rules have been developed based on energetic reasoning (see, for example [19, 23, 29, 97,
159]). Only the most significant rules are recalled below. These rules are in practice applied only to
some intervals [t1, t2) (cf., Section 9.3.6). For the theoretical comparison with other rules, it will be
assumed that all intervals [t1, t2) are considered.

CP-ER: Energetic reasoning in the preemptive case

Let d+(Ai, t1, t2) =
∑

Aj 6=Ai
WPE(Aj , t1, t2) + cip

+
i (t1)− C(t2 − t1) and

138 Comparison of Propagation Techniques

d−(Ai, t1, t2) =
∑

Aj 6=Ai
WPE(Aj , t1, t2) + cip

−
i (t2)−C(t2 − t1). The following rules can be applied:

∑

Aj

WPE(Aj , t1, t2)− C(t2 − t1) > 0

⇒ contradiction

[
d+(Ai, t1, t2) > 0

]
⇒

[

end(Ai) ≥ t2 +
d+(Ai, t1, t2)

ci

]

[t1 ≤ ri] ∧

∑

Aj 6=Ai

WPE(Aj , t1, t2) = C(t2 − t1)

⇒ [start(Ai) ≥ t2]

[
d−(Ai, t1, t2) > 0

]
⇒

[

start(Ai) ≤ t1 −
d−(Ai, t1, t2)

ci

]

[
d̄i ≤ t2

]
∧

∑

Aj 6=Ai

WPE(Aj , t1, t2) = C(t2 − t1)

⇒ [end(Ai) ≤ t1]

CNP-ER: Energetic reasoning in the non-preemptive case
Let d+(Ai, t1, t2) =

∑

Aj 6=Ai
WSh(Aj , t1, t2) + cip

+
i (t1)− C(t2 − t1) and

d−(Ai, t1, t2) =
∑

Aj 6=Ai
WSh(Aj , t1, t2) + cip

−
i (t2)−C(t2 − t1). The following rules can be applied:

∑

Aj

WSh(Aj , t1, t2)− C(t2 − t1) > 0

⇒ contradiction

[
d+(Ai, t1, t2) > 0

]
⇒

[

end(Ai) ≥ t2 +
d+(Ai, t1, t2)

ci

]

[t1 ≤ ri] ∧

∑

Aj 6=Ai

WSh(Aj , t1, t2) = C(t2 − t1)

⇒ [start(Ai) ≥ t2]

[
d−(Ai, t1, t2) > 0

]
⇒

[

start(Ai) ≤ t1 −
d−(Ai, t1, t2)

ci

]

[
d̄i ≤ t2

]
∧

∑

Aj 6=Ai

WSh(Aj , t1, t2) = C(t2 − t1)

⇒ [end(Ai) ≤ t1]

CNP-ER-DISJ: Energetic reasoning in the non-preemptive case

[t1 = ri] ∧
[
t2 = d̄j

]
∧ [t1 < t2] ∧ [ci + cj > C]

∧

∑

Ak /∈{Ai,Aj}

WSh(Ak , t1, t2) + cipi + cjpj > C(t2 − t1)

⇒ [end(Aj) ≤ start(Ai)]

10.2 Dominance Relations

This section summarizes the dominance relations under the following assumptions:

• The study considers only the deduction of new time-bounds (i.e., earliest and latest start and
end times) from given time-bounds. When Time-Tables are used, other deductions are in fact
performed, since the E(Ai, t) variables are updated. When several constraints refer to the
same E(Ai, t) variables, this may lead to extra constraint propagation.

10.2 Dominance Relations 139

• In the CP, 1P, CNP and 1NP cases, we consider only the case in which the processing time
and the resource capacity requirement of each activity are fixed. In the non-preemptive case,
this assumption is particularly important because it implies that start(Ai) + pi = end(Ai);
hence any deduction concerning start(Ai) is equivalent to a deduction concerning end(Ai),
and conversely.

• In the preemptive case, a peculiar “special effect” occurs when the start(Ai) variable is bound.
Indeed, the value of this variable is then known to belong to set(Ai), an information which
could theoretically be used in some constraint propagation rules (i.e., those based on Time-
Tables). A similar effect occurs when the end(Ai) variable is bound. However, it appears
that the use of this additional information would greatly impact the CPU time and memory
space needed to update and exploit the Time-Tables. So, in practice, these “special effects”
are ignored. To remain consistent with the actual practice, we also ignore these effects in the
following comparisons.

• Extensions of the rules (e.g., to consider also setup times between activities [51, 103]) are
ignored. Hence, some dominance relations may no longer hold when such extensions are
considered.

Let us remark that the conditions of the CNP-EF2, CNP-NFNL and CNP-ER-DISJ rules are
not monotonic (while FE-TT, CP-TT, CNP-TT, CP-DISJ, CNP-DISJ, FE-EF, 1P-EF, 1NP-EF,
CNP-EF1, 1NP-NFNL, CP-ER and CNP-ER have monotonic conditions). This means that better
time-bounds for some activities may prevent the application of the rule (and hence the drawing of
the corresponding conclusion). For example, consider two non-interruptible activities Ai and Aj

with ri = X , d̄i = 7, rj = 1, d̄j = 5, pi = 3, pj = 3, ci = 1, cj = 1 and C = 1. This example shows
that CNP-EF2 is non-monotonic. Indeed, for X = 3, nothing is deduced, while for X = 0 or X = 1,
the rule fires and finds start(Ai) ≥ 4.

Dominance relations between non-monotonic rules are difficult to establish because the fact that
a non-monotonic rule does not apply in a given state does not prove that it could not have been
applied in a previous state. However, dominance relations between a monotonic rule R and a
non-monotonic rule R′ can be established without such worry.

Each of the FE, CP, 1P, CNP and 1NP cases is considered in turn. We note R ≤ R1 + R2+
. . . +Rn when the rule R is dominated by the conjunction of R1, R2, . . . , Rn and R = R1 +R2+
. . . +Rn when R and the conjunction of R1, R2, . . . , Rn are equivalent. Similarly, we will use the
notation R � R1 +R2+ . . . +Rn when R is not dominated by the conjunction of R1, R2, . . . , Rn.

10.2.1 The Fully Elastic Case

Proposition 63. FE-TT ≤ FE-EF

Proof. It is shown in Proposition 48 (Section 9.1) that FE-EF deduces the best possible bounds in
the fully elastic case. Hence, FE-TT can never provide better bounds than FE-EF.

10.2.2 The Cumulative Preemptive Case

Proposition 64. FE-TT ≤ CP-TT

Proof. Obvious.

Proposition 65. FE-TT ≤ FE-EF ≤ CP-ER

Proof. FE-TT ≤ FE-EF is proven in Section 10.2.1. Let us now prove FE-EF ≤ CP-ER.
FE-EF provides two types of conclusions. Let us first consider a conclusion of the first type, i.e.,

a new lower bound for end(Ai). It is shown in Section 9.1 that there exists a simple transformation
of an instance of the Fully Elastic Problem into an instance of the One-Machine Preemptive Problem
such that this conclusion corresponds to a conclusion of the 1P-EF rule on the transformed instance
(Transformation 1). In addition, it is shown in [10] that if a set Ω′ provides the conclusion, then this

140 Comparison of Propagation Techniques

rule can be applied with Ω = Ω′ (to provide the same conclusion). This implies d+(Ai, t1, t2) > 0
for t1 = rΩ′ and t2 = d̄Ω′ . Then the CP-ER energetic rule deduces end(Ai) ≥ t2 + d+(Ai, t1, t2)/ci.
Assuming ci ≤ C, this cannot be smaller than t1 + (eΩ′ + cip

+
i (t1))/C, which in turn cannot be

smaller than rΩ′∪{Ai} + eΩ′∪{Ai}/C. So the conclusion made by CP-ER is not weaker than the
conclusion made by FE-EF.

Let us now consider a conclusion of the second type, i.e., a new lower bound for start(Ai). The
CP-ER rule obtains the same conclusion with t1 = rΩ and t2 = d̄Ω. Hence FE-EF ≤ CP-ER.

10.2.3 The One-Machine Preemptive Case

Proposition 66.
FE-TT = CP-TT ≤ FE-EF = 1P-EF = CP-ER
CP-DISJ ≤ FE-EF = 1P-EF = CP-ER

Proof. When C = 1, any fully elastic schedule is a valid preemptive schedule, and conversely. This
implies that FE-TT and CP-TT are equivalent and that FE-EF and 1P-EF are equivalent. In
addition, 1P-EF is known to compute the best possible bounds. Hence 1P-EF dominates all the
other rules. Since CP-ER dominates FE-EF (= 1P-EF), this implies that CP-ER, FE-EF and 1P-EF
are equivalent and dominate all the other rules.

10.2.4 The Cumulative Non-Preemptive Case

Proposition 67. FE-TT ≤ FE-EF ≤ CP-ER

Proof. See Sections 10.2.1 and 10.2.2.

Proposition 68.
FE-TT ≤ CP-TT ≤ CNP-TT
CP-DISJ ≤ CNP-DISJ
CP-ER ≤ CNP-ER

Proof. Each of these relations is obvious when we assume that the activities have fixed processing
times.

Proposition 69. FE-EF ≤ CNP-EF1

Proof. FE-EF provides two types of conclusions. Let us first consider a conclusion of the first type,
i.e., a new lower bound for end(Ai). The new lower bound is greater than ri + pi and d̄Ω. It is
shown in Transformation 1 that there exists a simple transformation of an instance of the Fully
Elastic Problem into an instance of the One-Machine Preemptive Problem such that this conclusion
corresponds to a conclusion of the 1P-EF rule on the transformed instance. In addition, it is shown
in [10] that if a set Ω′ provides the conclusion, then this rule can be applied with Ω = Ω′ (to provide
the same conclusion). Then rest(Ω, ci) > 0, otherwise ci∗(d̄Ω−rΩ) units of energy could be allocated
to Ai between rΩ and d̄Ω, which would not allow FE-EF to update the earliest end time of Ai. This
implies that the condition of CNP-EF1 is satisfied for Ω = Ω′. Finally, the earliest end time of Ai

is updated to

rΩ +
eΩ − (C − ci)(d̄Ω − rΩ)

ci
+ pi

Let us show that this conclusion is at least as good as the conclusion raised by FE-EF (provided
that ci does not exceed C). We have:

C(d̄Ω − rΩ) ≤ C(d̄Ω − rΩ∪{Ai}) < eΩ∪{Ai}

C(C − ci)(d̄Ω − rΩ) ≤ (C − ci)eΩ∪{Ai}

cieΩ∪{Ai} ≤ CeΩ∪{Ai} − C(C − ci)(d̄Ω − rΩ)

10.2 Dominance Relations 141

eΩ∪{Ai}

C
≤
eΩ∪{Ai} − (C − ci)(d̄Ω − rΩ)

ci
CrΩ∪{Ai} + eΩ∪{Ai}

C
≤ rΩ +

eΩ − (C − ci)(d̄Ω − rΩ)

ci
+ pi

Let us now consider a conclusion of the second type, i.e., a new lower bound for start(Ai). Then
CNP-EF1 clearly obtains the same result for Ω = Ω′.

Proposition 70. CNP-EF1 ≤ CP-ER

Proof. Assume CNP-EF1 applies to the pair (Ai,Ω). CP-ER can be applied to Ai, t1 = rΩ∪{Ai}

and t2 = d̄Ω. The result of this step is end(Ai) ≥ t2 + d+(Ai, t1, t2)/ci. This implies that, when
CP-ER is applied, eeti becomes strictly greater than t2.

LetX denote the earliest start time provided by CNP-EF1 for a given subset Ω′. Let us now apply
CP-ER to t3 = rΩ′ and t4 = d̄Ω′ as well as the processing time constraint start(Ai) + pi = end(Ai),
until we reach quiescence. Since CP-ER is monotonic, a unique fixpoint can be reached in this
manner. At this fixpoint, either d+(Ai, t3, t4) ≤ 0 or eeti ≥ t4 + d+(Ai, t3, t4)/ci.

This implies d+(Ai, t3, t4) ≤ max(0, ci(eeti − t4)). Then, since t4 ≤ t2 < eeti, this implies
d+(Ai, t3, t4) ≤ ci(eeti − t4).

However, d+(Ai, t3, t4) ≥ eΩ′ + cip
+
i (t3)− C(t4 − t3), which implies d+(Ai, t3, t4) > ci(X − t4 −

1 + p+
i (t3)). This implies that at the fixpoint we have (X − t4 − 1 + p+

i (t3)) < eeti − t4. Hence at
the fixpoint X + p+

i (t3) ≤ eeti. Since eeti is strictly greater than t3, p+
i (t3) = pi −max(0, t3 − ri).

Hence at the fixpoint we have X −max(0, t3− ri) ≤ ri, which implies either X ≤ ri or X ≤ t3. But
rest(Ω′, ci) > 0 implies X > t3. Consequently, when the fixpoint of CP-ER is reached, the obtained
earliest start time ri is at least as strong as X .

Proposition 71. CNP-EF2 ≤ CP-ER

Proof. Assume CNP-EF2 applies to the pair (Ai,Ω). Let t1 = rΩ and t2 = d̄Ω. We have d+(Ai, t1, t2) ≥
eΩ + cip

+
i (t1) − C(t2 − t1). Under the conditions of rule CNP-EF2, p+

i (t1) = eeti − t1. Hence,
d+(Ai, t1, t2) > 0 and CP-ER gives end(Ai) ≥ t2 + d+(Ai, t1, t2)/ci. This implies that, when CP-ER
is applied, eeti becomes strictly greater than t2.

LetX denote the earliest start time provided by CNP-EF2 for a given subset Ω′. Let us now apply
CP-ER to t3 = rΩ′ and t4 = d̄Ω′ as well as the processing time constraint start(Ai) + pi = end(Ai),
until we reach quiescence. Since CP-ER is monotonic, a unique fixpoint can be reached in this
manner. At this fixpoint, either d+(Ai, t3, t4) ≤ 0 or eeti ≥ t4 + d+(Ai, t3, t4)/ci.

This implies d+(Ai, t3, t4) ≤ max(0, ci(eeti − t4)). Then, since t4 ≤ t2 < eeti, this implies
d+(Ai, t3, t4) ≤ ci(eeti − t4).

However, d+(Ai, t3, t4) ≥ eΩ′ + cip
+
i (t3)− C(t4 − t3), which implies d+(Ai, t3, t4) > ci(X − t4 −

1 + p+
i (t3)). This implies that at the fixpoint we have (X − t4 − 1 + p+

i (t3)) < eeti − t4. Hence at
the fixpoint X + p+

i (t3) ≤ eeti. Since eeti is strictly greater than t3, p+
i (t3) = pi −max(0, t3 − ri).

Hence at the fixpoint we have X −max(0, t3− ri) ≤ ri, which implies either X ≤ ri or X ≤ t3. But
rest(Ω′, ci) > 0 implies X > t3. Consequently, when the fixpoint of CP-ER is reached, the obtained
earliest start time ri is at least as strong as X .

Proposition 72. CNP-TT ≤ CNP-ER

Proof. Assume the application of CNP-TT results in an update of the earliest start and end times
of Ai. Let ri and eeti denote the initial earliest start and end times of Ai. Since CNP-TT updates
ri and eeti, there exists a time point t in [ri, eeti) such that

∑

Aj 6=Ai
E(Aj , t) exceeds C − ci.

For each Aj with a non-null contribution in this sum, lstj ≤ t < eetj . This implies WSh(Aj , t, t+
1) = cj . Hence, d+(Ai, t, t+ 1) is equal to

∑

Aj 6=Ai
E(Aj , t) + ci(eeti − t)− C > 0. Hence CNP-ER

deduces end(Ai) ≥ t+ 1 + (eeti − t) + (
∑

Aj 6=Ai
E(Aj , t)−C)/ci, which strictly exceeds the current

value of eeti. Consequently, when the applications of CNP-ER reach quiescence, the obtained earliest
start and end times of Ai are at least as good as those that are given by CNP-TT.

142 Comparison of Propagation Techniques

Remark: In this proof, we have applied CNP-ER to intervals of the form [t, t + 1). In fact, since
E(Aj , t) is constant between lstj and eetj and since p+

i (t1) = eeti− t1 for any t1 in [ri, eeti), one can
limit the application of CNP-ER to intervals [t1, t2) of the form [lstj , eetk) or [ri, eetk) with Aj 6= Ai

(and no constraint on Ak).

Proposition 73. CP-TT ≤ CP-ER

Proof. Similar to the above, using the fact that an interruptible activity Aj contributes to the
Time-Table if and only if start(Aj), proc(Aj) and end(Aj) are bound to values such that the relation
start(Aj) + proc(Aj) = end(Aj) holds.

10.2.5 The One-Machine Non-Preemptive Case

Proposition 74.
FE-TT = CP-TT ≤ FE-EF = 1P-EF = CP-ER
CP-DISJ ≤ FE-EF = 1P-EF = CP-ER
CNP-EF1 ≤ CP-ER ≤ CNP-ER
CNP-EF2 ≤ CP-ER ≤ CNP-ER
CNP-TT ≤ CNP-ER

Proof. See Sections 10.2.3 and 10.2.4.

Proposition 75. CNP-TT ≤ CNP-DISJ

Proof. See Section 8.1.2

Proposition 76.
FE-TT = CP-TT ≤ CNP-TT
CP-DISJ ≤ CNP-DISJ ≤ CNP-ER-DISJ
FE-EF = 1P-EF ≤ 1NP-EF = CNP-EF1
CNP-DISJ ≤ 1NP-NFNL
CNP-NFNL ≤ 1NP-NFNL

Proof. Each of these relations is obvious when we assume that the activities have fixed processing
times.

Proposition 77. FE-EF = 1P-EF = 1NP-EF = CNP-EF1 = CP-ER

Proof. This follows from the previous dominance relations. An alternative proof of 1P-EF = 1NP-
EF (under the assumption that activities have fixed processing times) appears in Section 8.2.4. This
proof shows that the difference between the two rules serves only to avoid repeated iterations of the
algorithm.

Proposition 78. CNP-DISJ ≤ CNP-ER

Proof. Let’s assume that ri + pi + pj > d̄j and that the adjustment has some impact on ri for
instance, i.e., ri < rj + pj . Let us compute the value WSh(Aj , t1, t2) with t1 = ri and t2 = ri + pi.

WSh(Aj , t1, t2) = min(t2 − t1, p
+
j (t1), p

−
j (t2))

p+
j (t1) = max(0, pj −max(0, t1 − rj))

p−j (t2) = max(0, pj −max(0, d̄j − t2))

It is clear that each of the three terms t2 − t1, p+
j (t1) and p−j (t2) is positive. Hence WSh(Aj , ri, ri +

pi) > 0. So d+(Ai, t1, t2) > 0 and, therefore, end(Ai) > ri+pi, which in turn leads to an improvement
of at least 1 for ri. Since the same reasoning can be applied while ri < rj +pj , we are sure that after
some application of the rule, we have ri ≥ rj + pj which corresponds to the adjustment computed
by CNP-DISJ.

10.3 Non-Dominance Relations 143

Proposition 79. CP-TT ≤ CP-DISJ

Proof. When CP-TT is used (rather than CNP-TT), an activity Aj contributes to the Time-Table
if and only if start(Aj), proc(Aj) and end(Aj) are bound to values such that the relation start(Aj)+
proc(Aj) = end(Aj) holds. If the earliest start time or end time of an activity Ai is modified by CP-
TT, then there exists such an activity Aj and a time t with ri ≤ t < ri +pi and rj ≤ t < d̄j = rj +pj .
Then the second and the fourth disjuncts of the disjunctive constraint

[start(Ai) + pi + pj ≤ end(Ai)]
∨ [start(Ai) + pi + pj ≤ end(Aj)]
∨ [start(Aj) + pi + pj ≤ end(Ai)]
∨ [start(Aj) + pi + pj ≤ end(Aj)]

are discarded and eeti is updated to the minimum of ri + pi + pj and rj + pi + pj . Since Ai is
not interruptible, ri is updated to the minimum of ri + pj and rj + pj . In both cases, this new
value is greater than the initial value of ri. Since CP-TT and CP-DISJ are both monotonic and
since whenever CP-TT updates ri or eeti, CP-DISJ also does, it can be concluded that CP-TT ≤
CP-DISJ.

10.3 Non-Dominance Relations

Section 10.2 states a number of dominance relations between constraint propagation rules. In this
section, we provide examples that show that some rules are not dominated by others. Each example
is defined by the list of the cases (FE, CP, 1P, CNP, 1NP) being studied, the resource capacity C,
and a set of activities {Ai, Aj , . . .} with given earliest and latest start and end times, processing
times, and capacity requirements.

For each example, each rule that performs some deduction is not dominated by the conjunction
of those rules that perform no deduction. In particular, each rule that detects a contradiction (e.g.,
when the domain of some variable becomes empty) is not dominated by the conjunction of the rules
that perform no deduction.

10.3.1 General Counterexamples

This section provides a series of counterexamples with one machine and ∀i, ri + pi = eeti ∧ lsti +
pi = d̄i. These counterexamples are fairly general as they apply in all the considered cases FE,
CP, 1P, CNP and 1NP. The non-dominance relations that are established by the first and the
second counterexamples are actually of interest in the five cases, while the non-dominance relations
established by the following counterexamples are of interest in the non-preemptive cases CNP and
1NP.

Counterexample A for FE, CP, 1P, CNP, 1NP

C = 1

pi = pj = pk = pl = 1

ri = rj = rk = rl = 0

eeti = eetj = eetk = eetl = 1

lsti = 100, lstj = lstk = lstl = 2

d̄i = 101, d̄j = d̄k = d̄l = 3

Time-Table constraints and disjunctive constraints deduce nothing. All the Edge-Finding rules,
the CP-ER rule and the CNP-ER rule deduce either that Ai cannot start before 3 or that Ai cannot
end before 4. CNP-NFNL, 1NP-NFNL and CNP-ER-DISJ deduce only that Ai cannot start before
1. When ri and eeti are set to respectively 1 and 2, Time-Table constraints, disjunctive constraints,

144 Comparison of Propagation Techniques

CNP-NFNL, 1NP-NFNL and CNP-ER-DISJ make no additional deduction and CNP-EF2 no longer
applies. Hence this counterexample shows:

• that Time-Tables and disjunctive constraints do not dominate any other technique;

• that CNP-NFNL, 1NP-NFNL and CNP-ER-DISJ (even with the help of Time-Tables and
disjunctive constraints) do not dominate any of FE-EF, 1P-EF, 1NP-EF, CNP-EF1, CNP-
EF2, CP-ER and CNP-ER;

• that the non-monotonic CNP-EF2 rule (even with the help of CNP-NFNL, 1NP-NFNL, CNP-
ER-DISJ, Time-Tables and disjunctive constraints) does not dominate any of FE-EF, 1P-EF,
1NP-EF, CNP-EF1, CP-ER and CNP-ER.

Counterexample B for FE, CP, 1P, CNP, 1NP

C = 1

pi = 10, pj = 1

ri = rj = 0

eeti = 10, eetj = 1

lsti = 10, lstj = 9

d̄i = 20, d̄j = 10

The Time-Table propagation rules FE-TT, CP-TT and CNP-TT deduce nothing. All the other
rules deduce either that Ai cannot start before 1 or that Ai cannot end before 11. Hence, the
Time-Table propagation rules never dominate any other rule.

Counterexample C for CNP, 1NP

C = 1

pi = pj = 5

ri = 1, rj = 0

eeti = 6, eetj = 5

lsti = 95, lstj = 0

d̄i = 100, d̄j = 5

All propagation rules deduce start(Ai) ≥ 5 or end(Ai) ≥ 10 except CNP-EF2 which is blocked
by the condition ri ≤ rΩ. This proves that CNP-EF2 dominates no other rule.

Counterexample D for CNP, 1NP

C = 1

pi = 11, pj = 10

ri = 0, rj = 10

eeti = 11, eetj = 20

lsti = 30, lstj = 10

d̄i = 41, d̄j = 20

The CNP-NFNL rule deduces nothing while all the other rules deduce either that Ai cannot
start before 20 or that Ai cannot end before 21. Let us remark that CNP-NFNL does not apply
only because the condition rΩ ≤ ri is not satisfied.

10.3 Non-Dominance Relations 145

Counterexample E for CNP, 1NP

C = 1

pi = pj = 2, pk = 1

ri = rj = 0, rk = 1

eeti = eetj = 2, eetk = 2

lsti = lstj = 3, lstk = 99

d̄i = d̄j = 5, d̄k = 100

This example shows that the “Not-First” and “Not-Last” rules are not dominated by the con-
junction of all other rules. Indeed, 1NP-NFNL and CNP-NFNL deduce that Ak cannot start before
2 while all the other rules deduce nothing.

Counterexample F for CNP, 1NP

C = 1

pi = 3, pj = 2

ri = 0, rj = 2

eeti = 3, eetj = 4

lsti = 2, lstj = 98

d̄i = 5, d̄j = 100

The rules CNP-TT, CNP-ER, CNP-ER-DISJ, CNP-DISJ, 1NP-NFNL and CNP-NFNL deduce
that Aj cannot start before 3 while all other rules deduce nothing.

Counterexample G for CNP, 1NP

C = 1

pi = 3, pj = 1, pk = 3, pl = 3

ri = 2, rj = 2, rk = 0, rl = 1

eeti = 5, eetj = 3, eetk = 3, eetl = 4

lsti = 97, lstj = 8, lstk = 8, lstl = 6

d̄i = 100, d̄j = 9, d̄k = 11, d̄l = 9

The CNP-ER-DISJ rule deduces start(Ai) ≥ 4. The 1NP-NFNL and CNP-NFNL rules deduce
start(Ai) ≥ 3. The other rules deduce nothing. The reader can verify than when ri is set to 3,
none of the fifteen rules apply. Even CNP-ER-DISJ cannot deduce start(Ai) ≥ 4 when ri = 3. This
illustrates the non-monotonic behavior of CNP-ER-DISJ.

146 Comparison of Propagation Techniques

10.3.2 A One-Machine Preemptive Counterexample

Counterexample H for CP, 1P

C = 1

pi = pj = 1, pk = 6

ri = 2, rj = 5, rk = 0

eeti = 3, eetj = 6, eetk = 7

lsti = 2, lstj = 5, lstk = 1

d̄i = 3, d̄j = 6, d̄k = 8

This example applies only in the preemptive case since eetk is not equal to rk + pk. All the
preemptive rules deduce that Ak cannot end before 8, except CP-DISJ, which deduces nothing.

10.3.3 Cumulative Counterexamples

Counterexample I for CP, CNP

C = 2

ci = cj = ck = 1

pi = pj = pk = 1

ri = rj = rk = 0

eeti = eetj = eetk = 1

lsti = lstj = lstk = 0

d̄i = d̄j = d̄k = 1

This example shows that, in the cumulative case, the disjunctive constraints CP-DISJ, CNP-DISJ
and CNP-ER-DISJ cannot be used alone. Indeed, all the variables are instantiated, the resource
constraint is violated, and these rules do not apply. All the other cumulative constraint propagation
rules detect the contradiction.

Remark: The generalization of CNP-DISJ to triples of activities with ci + cj + ck > C (cf.,
Section 10.1.2) also enables the detection of the contradiction.

Counterexample J for CP, CNP

C = 5

ci = cj = ck = 2

pi = pj = 2, pk = 8

ri = rj = 3, rk = 0

eeti = eetj = 5, eetk = 8

lsti = lstj = 3, lstk = 0

d̄i = d̄j = 5, d̄k = 8

This example shows that, in the cumulative case, the disjunctive constraints CP-DISJ, CNP-DISJ
and CNP-ER-DISJ, the Edge-Finding rules FE-EF and CNP-EF1, and the “Not-First, Not-Last”
rules CNP-NFNL cannot be used alone. Indeed, all the variables are instantiated, the resource

10.3 Non-Dominance Relations 147

constraint is violated, and these rules do not apply. All the other cumulative constraint propagation
rules, except FE-TT, detect the contradiction.

Remark: The generalization of CNP-DISJ to triples of activities with ci + cj + ck > C (cf.,
Section 10.1.2) also enables the detection of the contradiction.

Counterexample K for CP, CNP

C = 6

ci = 2, cj = 5

pi = 6, pj = 4

ri = 2, rj = 0

eeti = 8, eetj = 4

lsti = 94, lstj = 5

d̄i = 100, d̄j = 9

The CP-DISJ and the CNP-DISJ rules deduce either that start(Ai) ≥ 4 or that end(Ai) ≥ 10 while
all the other rules deduce nothing. This shows that in the cumulative case, the disjunctive rules are
not dominated by any of the other rules. This results from the fact that the disjunctive rules apply
even when ci + cj is just a little greater than C.

Counterexample L for FE, CP, CNP

C = 5

ci = cj = ck = 2

pi = 22, pj = pk = 24

ri = rj = rk = 0

eeti = 22, eetj = eetk = 24

lsti = 78, lstj = lstk = 2

d̄i = 100, d̄j = d̄k = 26

FE-TT, CP-TT, CP-DISJ, CNP-DISJ, CNP-ER-DISJ deduce nothing. CNP-TT and CNP-
NFNL both deduce that Ai cannot start before 24. CNP-EF1 and CNP-EF2 deduce only that Ai

cannot start before 9.
FE-EF deduces that Ai cannot end before 28. In the FE and CP cases, this does not relaunch

any propagation, even if FE-TT, CP-TT and CP-DISJ are active. In the non-preemptive case, this
implies that Ai cannot start before 6. Then FE-EF stops.

CP-ER with t1 = 0 and t2 = 26 provides end(Ai) ≥ 26 + (96 + 44 − 130)/2 = 31. In the
non-preemptive case, this implies start(Ai) ≥ 9. Then CP-ER enters in a series of iterations:

• CP-ER with t1 = 9 and t2 = 26 provides end(Ai) ≥ 26+(60+44−85)/2, hence end(Ai) ≥ 36,
which in the non-preemptive case implies start(Ai) ≥ 14.

• Then CP-ER with t1 = 14 and t2 = 26 provides end(Ai) ≥ 26 + (40 + 44− 60)/2 = 38, which
in the non-preemptive case implies start(Ai) ≥ 16.

• Then CP-ER with t1 = 16 and t2 = 26 provides end(Ai) ≥ 26 + (32 + 44− 50)/2 = 39, which
in the non-preemptive case implies start(Ai) ≥ 17.

• Then CP-ER with t1 = 17 and t2 = 26 provides end(Ai) ≥ 26 + (28 + 44 − 45)/2, hence
end(Ai) ≥ 40, which in the non-preemptive case implies start(Ai) ≥ 18.

• Then CP-ER stops with this result. It can be seen that there exists a partially elastic schedule
of Aj and Ak that enables Ai to execute between 18 and 40.

148 Comparison of Propagation Techniques

Similarly, CNP-ER enters in a series of iterations:

• CNP-ER with t1 = 2 and t2 = 24 provides end(Ai) ≥ 24 + (88 + 40 − 110)/2 = 33, which
implies start(Ai) ≥ 11.

• Then CNP-ER with t1 = 11 and t2 = 24 provides end(Ai) ≥ 24 + (52 + 44 − 65)/2, hence
end(Ai) ≥ 40, which implies start(Ai) ≥ 18.

• Then CNP-ER with t1 = 18 and t2 = 24 provides end(Ai) ≥ 24+(24+44−30)/2 = 43, which
implies start(Ai) ≥ 21.

• Then CNP-ER with t1 = 21 and t2 = 24 provides end(Ai) ≥ 24 + (12 + 44 − 15)/2, hence
end(Ai) ≥ 45, which implies start(Ai) ≥ 23.

• Then CNP-ER with t1 = 23 and t2 = 24 provides end(Ai) ≥ 24 + (4 + 44 − 5)/2, hence
end(Ai) ≥ 46, which implies start(Ai) ≥ 24.

Hence, in the preemptive case, FE-EF is not dominated by CP-TT + CP-DISJ and CP-ER is
not dominated by FE-EF + CP-TT + CP-DISJ.

In the non-preemptive case, only CNP-TT, CNP-NFNL and CNP-ER deduce start(Ai) ≥ 24.
CP-ER deduces start(Ai) ≥ 18. CNP-EF1 and CNP-EF2 deduce start(Ai) ≥ 9 and FE-EF deduces
start(Ai) ≥ 6.

Counterexample M for CP

C = 3

ci = 2, cj = ck = 1

pi = 2, pj = pk = 4

ri = 0, rj = rk = 1

eeti = 3, eetj = eetk = 5

lsti = 3, lstj = lstk = 1

d̄i = 6, d̄j = d̄k = 5

CP-TT deduces that Ai must start at time 0 and end at time 6, while FE-TT, FE-EF, CP-ER
and CP-DISJ deduce nothing.

10.4 Summary

This section summarizes the results of the previous sections. Each of the FE, CP, 1P, CNP and 1NP
cases is considered in turn.

10.4.1 The Fully Elastic Case

The FE-EF rule strictly dominates the FE-TT rule (cf., section 10.2.1 and counterexamples A, B
and L).

Let us remark, however, that the FE-TT rule is not really dominated if the same E(Ai, t) variables
appear in several constraints.

10.4.2 The Cumulative Preemptive Case

In the cumulative preemptive case, we have the following results:

• FE-TT ≤ FE-EF ≤ CP-ER

• FE-TT ≤ CP-TT

10.4 Summary 149

• CP-ER � FE-EF + CP-TT + CP-DISJ (counterexample L)

• CP-TT � CP-ER + CP-DISJ (counterexample M)

• CP-DISJ � CP-ER + CP-TT (counterexample K)

• FE-EF � CP-TT + CP-DISJ (counterexample A)

• FE-TT � CP-DISJ (counterexample H)

10.4.3 The One-Machine Preemptive Case

In the One-Machine preemptive case, we have the following results:

• FE-TT = CP-TT

• FE-EF = CP-ER = 1P-EF

• CP-TT ≤ 1P-EF

• CP-DISJ ≤ 1P-EF

• 1P-EF � CP-TT + CP-DISJ (counterexample A)

• CP-DISJ � CP-TT (counterexample B)

• CP-TT � CP-DISJ (counterexample H)

10.4.4 The Cumulative Non-Preemptive Case

The following results hold:

• FE-TT ≤ CP-TT ≤ CNP-TT ≤ CNP-ER

• FE-TT ≤ FE-EF ≤ CNP-EF1 ≤ CP-ER ≤ CNP-ER

• CNP-EF2 ≤ CP-ER ≤ CNP-ER

• CP-DISJ ≤ CNP-DISJ

• CP-TT ≤ CP-ER

Many non-dominance relations have been proven in Section 10.3. In particular no other binary
relation, comparing one rule with another, holds.

10.4.5 The One-Machine Non-Preemptive Case

The following results hold:

• FE-TT = CP-TT

• FE-EF = 1NP-EF = 1P-EF = CNP-EF1 = CP-ER

• CP-TT ≤ CNP-TT ≤ CNP-DISJ ≤ 1NP-NFNL

• CP-TT ≤ CP-ER ≤ CNP-ER

• CP-TT ≤ CP-DISJ ≤ CP-ER ≤ CNP-ER

• CNP-EF2 ≤ CP-ER ≤ CNP-ER

• CNP-TT ≤ CNP-DISJ ≤ CNP-ER

150 Comparison of Propagation Techniques

• CP-DISJ ≤ CNP-DISJ ≤ CNP-ER-DISJ

• CNP-NFNL ≤ 1NP-NFNL

As in the cumulative non-preemptive case, many non-dominance relations have been proven in
Section 10.3. In particular no other binary relation, comparing one rule with another, holds.

The following tables summarize the results. For each couple of rules R1 and R2, the entry at row
R1 and column R2 indicates whether R1 dominates R2. If R1 dominates R2, the entry is “Yes”;
otherwise, a list of counterexamples showing that R2 is not dominated by R1 is provided.

R1\R2 FE-TT FE-EF
FE-TT Yes ABL
FE-EF Yes Yes

Table 10.1: Comparison in the FE case. Does R1 dominate R2 ?

R1\R2 FE-TT CP-TT CP-DISJ FE-EF CP-ER
FE-TT Yes JM BK ABL ABJL
CP-TT Yes Yes BK ABL ABL

CP-DISJ HI HĲM Yes AHIL AHĲL
FE-EF Yes JM K Yes JL
CP-ER Yes M K Yes Yes

Table 10.2: Comparison in the CP case. Does R1 dominate R2 ?

R1\R2 FE-TT CP-DISJ FE-EF
FE-TT CP-TT Yes B AB

CP-DISJ H Yes AH
FE-EF 1P-EF CP-ER Yes Yes Yes

Table 10.3: Comparison in the 1P case. Does R1 dominate R2 ?

1
0

.4
S

u
m

m
a
ry

1
5

1

R1\R2 F
E

-T
T

C
P

-T
T

C
N

P
-T

T

C
P

-D
IS

J

C
N

P
-D

IS
J

F
E

-E
F

C
N

P
-E

F
1

C
N

P
-E

F
2

C
N

P
-N

F
N

L

C
P

-E
R

C
N

P
-E

R

C
N

P
-E

R
-D

IS
J

FE-TT Yes J FJL BK BFK ABL ABL ABJL ABEFGL ABJL ABFJL ABFG
CP-TT Yes Yes FL BK BFK ABL ABL ABL ABEFGL ABL ABFL ABFG

CNP-TT Yes Yes Yes BK BK AB AB AB ABEG AB AB ABG
CP-DISJ I Ĳ FĲL Yes F AIL AIL AĲL AEFGIL AĲL AFĲL AFG

CNP-DISJ I Ĳ ĲL Yes Yes AIL AIL AĲL AEGIL AĲL AĲL AG
FE-EF Yes J FJL K FK Yes L JL EFGL JL FJL FG

CNP-EF1 Yes J FJL K FK Yes Yes J EFGL JL FJL FG
CNP-EF2 C C CFL CK CF AC AC Yes CEFGL ACL ACFL CFG

CNP-NFNL D DJ DJ DK DK AD AD ADJ Yes ADJ ADJ DG
CP-ER Yes Yes FL K FK Yes Yes Yes EFGL Yes FL FG

CNP-ER Yes Yes Yes K K Yes Yes Yes EG Yes Yes G
CNP-ER-DISJ I Ĳ ĲL K K AIL AIL AĲL EIL AĲL AĲL Yes

Table 10.4: Comparison in the CNP case. Does R1 dominate R2 ?

1
5

2
C

o
m

p
a
ri

so
n

o
f

P
ro

p
a
g

a
ti

o
n

T
e
ch

n
iq

u
e
s

R1 \ R2 F
E

-T
T

C
N

P
-T

T

C
P

-D
IS

J

C
N

P
-D

IS
J

F
E

-E
F

C
N

P
-E

F
1

C
N

P
-E

F
2

C
N

P
-N

F
N

L

1N
P

-N
F

N
L

C
N

P
-E

R

C
N

P
-E

R
-D

IS
J

FE-TT CP-TT Yes F B BF AB AB AB ABEFG ABEFG ABF ABFG
CNP-TT Yes Yes B B AB AB AB ABEG ABEG AB ABG
CP-DISJ Yes F Yes F A A A AEFG AEFG AF AFG

CNP-DISJ Yes Yes Yes Yes A A A AEG AEG A AG
FE-EF 1P-EF CP-ER Yes F Yes F Yes Yes Yes EFG EFG F FG

CNP-EF1 1NP-EF Yes F Yes F Yes Yes Yes EFG EFG F FG
CNP-EF2 C CF C CF AC AC Yes CEFG CEFG ACF CFG

CNP-NFNL D D D D AD AD AD Yes D AD DG
1NP-NFNL Yes Yes Yes Yes A A A Yes Yes A G

CNP-ER Yes Yes Yes Yes Yes Yes Yes EG EG Yes G
CNP-ER-DISJ Yes Yes Yes Yes A A A E E A Yes

Table 10.5: Comparison in the 1NP case. Does R1 dominate R2 ?

Chapter 11

Propagation of Objective
Functions

In our model, a variable criterion represents the value taken by the objective function.

criterion = F (end(A1), . . . , end(An)) (11.1)

Considering the objective constraint and the resource constraints independently is not a problem
when F is a “maximum” such as Cmax or Tmax. Indeed, the upper bound on criterion is directly
propagated on the completion time of each activity, i.e., deadlines are efficiently tightened. The
situation is much more complex for sum functions such as

∑
wiCi,

∑
wiTi or

∑
wiUi. For these

functions, the constraint (11.1) has to be taken into account at each step of the search tree. An
efficient constraint propagation technique must consider the resource constraints and the objective
constraint simultaneously. In the following sections, we study three objective functions:

∑
wiUi,∑

Ti and the minimization of setup times.

In all cases, we restrict our study to the situation where each activity requires one machine among
a set of m parallel identical machines. So we assume that the resource capacity is cap(R) = C = m.
For total tardiness, we are even more restrictive since we only consider the situation where m = 1.

11.1 Total Weighted Number of Late Activities

As far as the
∑
wiUi objective function is concerned, our resource constraint is strongly related to

the classical problem P |ri|
∑
wiUi. However, in the classical problem, a late job can be scheduled

arbitrary late, while in our model a late activity still has to execute before its deadline.

Many researchers have worked on special cases of P |ri|
∑
wiUi. We first review the known com-

plexity results under several assumptions, (e.g., one machine vs. m machines, preemption vs. non-
preemption, equal processing times vs. arbitrary processing times, equal release dates vs. arbitrary
release dates, equal weights vs. arbitrary weights). There are few results for the problem where
the number of machines is unknown and most results apply for Pm|ri|

∑
wiUi. Without loss of

generality, we can suppose in P |ri|
∑
wiUi that ri + pi ≤ di, for all i, since otherwise Ji cannot be

done on time.

11.1.1 Complexity Results

Unit or Equal Processing Times

When ∀i, pi = p, most of the problems become polynomially solvable. We refer to Chapters 2 and 3
for a detailed study of these problems.

154 Propagation of Objective Functions

Unweighted Case

1|ri|
∑
Ui is NP-hard in the strong sense and is therefore unlikely to be solvable in polynomial time

[108]. However, some special cases are solvable in polynomial time. Moore’s well-known algorithm
[170] solves in O(n log n) steps the special case where release dates are equal 1||

∑
Ui. Moreover,

when release and due dates of jobs are ordered similarly (ri < rj ⇒ di ≤ dj), the problem is solvable
in a quadratic amount of steps [129]. This result of Kise, Ibaraki and Mine has been extended by
Dauzère-Péres and Sevaux [81] to the more general case where [ri < rj]⇒ [di ≤ dj]∨[rj+pj+pi > di].

Weighted Case

The simple problem 1||
∑
wiUi is already NP-hard. However, it can be solved in pseudo-polynomial

time by dynamic programming [145]. The same result also applies for any fixed number of machines
Pm||

∑
wiUi [144].

Preemption

On a single machine, relaxing non-preemption is only of interest if release dates are distinct (oth-
erwise preemptive schedules can be transformed into non-preemptive ones by rescheduling jobs in
non-increasing order of their completion times). Lawler [142] has proposed a pseudo-polynomial al-
gorithm for the Preemptive One-Machine Problem with weights 1|ri, pmtn|

∑
wiUi. Time and space

bounds of this algorithm are respectively O(n3W 2) and O(n2W), where W is the sum of the weights
of the jobs. The time and space bounds of Lawler’s algorithm have been improved in [14] for the
unweighted case, to respectively O(n4) and O(n2). Allowing preemption on parallel machines does
not make the problem easier since Du and others have shown that P2|pmtn, rj |

∑
Uj is NP-hard

[92].

Machines Pmtn. Release Proc. Weights Complexity Status
Dates Times

1 yes/no no any no O(n log n) [170]
1 no yes any no NP-hard [108]
1 yes yes any yes O(n3W 2) [142]
1 yes yes any no O(n5) [142], O(n4) [14]
1 no yes pi = p no O(n3 log n) [53, 109]
1 no yes pi = p yes O(n7) Chapter 2
m no yes pi = p yes O(n3m+4) Chapter 3
1 yes yes pi = p yes O(n10) Chapter 2
m yes yes pi = p no open

m yes no pi = p yes O(n2mm!) Chapter 3
m no no pi = p yes Assignment Pb. e.g., [86]
m no yes pi = 1 yes Assignment Pb. e.g., [86]
2 yes yes any no NP-hard [92]
m yes/no no any yes pseudo-polynomial [144]

Table 11.1: Complexity results

11.1.2 A Lower Bound of the Number of Late Activities

Obtaining a good lower bound of the weighted number of late activities is the first step of the
constraint propagation process. This lower bound is also a lower bound for the domain of the
variable criterion. Relaxing non-preemption is a well-known technique to obtain good lower bounds.
Unfortunately, the preemptive problems remain difficult (cf., Table 11.1) except for m = 1 and equal
weights. In such a case, the best available algorithm still runs in O(n4) and it is hardly usable in
practice (cf., the computational tests performed in [14]). A “relaxed preemptive lower bound”, i.e.,
a slightly stronger relaxation than the preemptive relaxation, can be used. As shown below, it can

11.1 Total Weighted Number of Late Activities 155

be computed in O(n2 logn) and is valid for all type of resource constraints (either with one or several
machines).

First, recall that the fully elastic relaxation (Section 9.1) transforms a cumulative resource con-
straint into a preemptive One-Machine constraint. From now on, we study the Preemptive
One-Machine Problem with weights. The lower bounds and the deductions made on this latter
resource constraint will be immediately applied on the initial problem (e.g., if there are 3 late activ-
ities on the preemptive One-Machine schedule, there are at least 3 late activities on the cumulative
problem; if the earliest start time of the activity Ai is adjusted to x on the preemptive problem, the
corresponding adjustment will be d x

me).
Let us recall some well-known results on the One-Machine Problem. Its preemptive relaxation

is polynomial and has some very interesting properties:

• There exists a feasible preemptive schedule if and only if over any interval [t1, t2), the sum of
the processing times of the activities in {Ai : [t1 ≤ ri] ∧ [d̄i ≤ t2]} is lower than or equal to
t2 − t1. It is well known that relevant values for t1 and t2 are respectively the release dates
and the deadlines [55].

• Jackson’s Preemptive Schedule (JPS) is feasible (i.e., each activity ends before its deadline) if
and only if there exists a feasible preemptive schedule.

Now assume that JPS is feasible. Proposition 80 highlights the structure of the time intervals [t1, t2)
that are full on JPS, i.e., such that

∑

Ai:

8

<

:

t1 ≤ ri
d̄i ≤ t2

pi = t2 − t1

Proposition 80. If two overlapping intervals are full, their intersection is full.

Proof. Let [τ1, τ2) and[θ1, θ2) be such intervals and let us assume, without any loss of generality that
θ1 ≤ τ1 (cf., Figure 11.1). If τ2 < θ2, the lemma obviously holds. Assume then that τ2 ≥ θ2. Notice
that

{Ai : θ1 ≤ ri ∧ d̄i ≤ θ2} ⊆ {Ai : θ1 ≤ ri ∧ d̄i ≤ τ2}

{Ai : τ1 ≤ ri ∧ d̄i ≤ τ2} ⊆ {Ai : θ1 ≤ ri ∧ d̄i ≤ τ2}

Hence, the load of the machine over [θ1, τ2) is

∑

8

<

:

θ1 ≤ ri
d̄i ≤ τ2

pi ≥
∑

8

<

:

θ1 ≤ ri
d̄i ≤ θ2

pi +
∑

8

<

:

τ1 ≤ ri
d̄i ≤ τ2

pi −
∑

8

<

:

τ1 ≤ ri
d̄i ≤ θ2

pi

Since the load of the machine over [θ1, τ2) is not greater than τ2− θ1 and since the loads over [τ1, τ2)
and [θ1, θ2) are respectively τ2 − τ1 and θ2 − θ1,

∑

8

<

:

τ1 ≤ ri
d̄i ≤ θ2

pi ≥ θ2 − θ1 + τ2 − τ1 − (τ2 − θ1) ≥ θ2 − τ1

Consequently, the intersection is also full.

We introduce a decision variable xi per activity that equals 1 when the activity is on-time and 0
otherwise. Notice that if d̄i ≤ di, Ai is on-time in any solution, i.e., xi = 1. In such a case we adjust
the value of di to d̄i (this has no impact on solutions) so that due dates are always smaller than or

156 Propagation of Objective Functions

θ1 θ2

τ1 τ2

full

t

Figure 11.1: Full intervals.

equal to deadlines. We also assume that there is a preemptive schedule that meets all deadlines (if
not, the resource constraint does not hold and a backtrack occurs). The following Mixed Integer
Program (MIP) computes the minimum weighted number of late activities in the preemptive case:

min

n∑

1

wi(1− xi)

u.c.

∀t1, ∀t2 > t1,
∑

S(t1,t2)

pi +
∑

P (t1,t2)

pixi ≤ t2 − t1

∀i ∈ {1, . . . , n}, xi ∈ {0, 1}

(11.2)

where S(t1, t2) is the set of activities that are sure to execute between t1 and t2 and where P (t1, t2)
is the set of activities that are preferred to execute between t1 and t2.

S(t1, t2) = {Ai : ri ≥ t1 ∧ d̄i ≤ t2}

P (t1, t2) = {Ai : ri ≥ t1 ∧ d̄i > t2 ∧ di ≤ t2}

Actually, it easy to see that the relevant values of t1 and t2 correspond respectively to

• the release dates,

• the due dates and the deadlines.

Hence, there are O(n2) constraints in the MIP. In the following, the notation (t1, t2) refers to the
resource constraint over the interval [t1, t2). We now focus on the continuous relaxation of (11.2)
in which the following constraints are added : For any activity Ai such that ri + pi > di, i.e., for
any late activity, xi = 0.

min

n∑

1

wi(1− xi)

u.c.

∀t1 ∈ {ri}, ∀t2 ∈ {d̄i} ∪ {di} (t2 > t1)∑

S(t1,t2)

pi +
∑

P (t1,t2)

pixi ≤ t2 − t1

∀i, ri + pi > di ⇒ xi = 0
∀i ∈ {1, . . . , n}, xi ∈ [0, 1]

(11.3)

(11.3) can be solved in O(n2 logn) steps. To achieve this result, we first provide a characterization of
a vector that realizes the optimum. From now on, suppose that activities are sorted in non-increasing
order of wi/pi (this value corresponds to a cost per unit). We introduce the notion of well-structured
instances. As we will see later on, (11.3) can be solved very efficiently for well-structured instances.
Instances that are not well-structured are modified to become well-structured.

Definition 29. An instance is well-structured if and only if for any pair of activities Ai and Aj

with i < j,

{
di < d̄j

dj < d̄i
⇒ d̄i ≤ d̄j

11.1 Total Weighted Number of Late Activities 157

Proposition 81. For any well-structured instance, the largest vector (according to the lexicographical
order) satisfying all the constraints of (11.3) realizes the optimum of (11.3).

Proof. Let Y = (Y1, . . . , Yn) be the largest vector (according to the lexicographical order) satisfying
all the constraints of (11.3), i.e., Y1 is maximal, Y2 is maximal (given Y1), Y3 is maximal (given Y1

and Y2), . . ., Yn is maximal (given Y1, . . . , Yn−1). Moreover, let X = (X1, . . . , Xn) be the largest
(according to the lexicographical order) optimal vector of (11.3). Suppose that X 6= Y ; let then u
be the first index such that Xu < Yu. Consider the set K of constraints that are saturated at X .

K = {(t1, t2) : Au ∈ P (t1, t2) ∧
∑

S(t1,t2)

pi +
∑

P (t1,t2)

piXi = t2 − t1}

If K is empty, then none of the constraints containing the variable xu is saturated at the point X .
Xu < Yu ensures that Xu < 1 and that xu is not constrained to be equal to 0 due to the second set
of constraints; thus, X is not an optimum of (11.3). Hence K is not empty. Let then (τ1, τ2) ∈ K
be the pair such that τ1 is maximum and τ2 is minimum (given τ1). Let (θ1, θ2) ∈ K be the pair
such that θ2 is minimum and θ1 is maximum (given θ2).

Suppose that θ1 < τ1. Since Au ∈ P (τ1, τ2) and Au ∈ P (θ1, θ2), we have θ1 < τ1 ≤ ru ≤ d̄u ≤
θ2 < τ2. We claim that the constraint (τ1, θ2) is also saturated. To prove our claim, we introduce
for each activity Ai two fictive activities A′

i and A′
n+i. They have the same earliest start time

r′i = r′n+i = ri, their processing times are respectively p′i = piXi and p′n+i = pi(1−Xi), their latest
end times are respectively d̄′i = di and d̄′n+i = d̄i. If Ai is on-time, it corresponds to the fictive
activity A′

i and otherwise to A′
n+i. The constraints of (11.3) hold, hence there is a preemptive

schedule of these activities. On top of that, the time intervals [τ1, τ2) and [θ1, θ2) are full. These
intervals overlap in time thus, according to Proposition 80, the interval [τ1, θ2) is full; which leads
(τ1, θ2) ∈ K for the initial problem. This, together with θ1 < τ1 contradicts our hypothesis on the
choice of θ2.

Now suppose that θ1 = τ1 = t1 and θ2 = τ2 = t2. The pair (t1, t2) is the unique minimal
saturated constraint containing the variable xu. We claim that among activities in P (t1, t2), there
is one, say Av , such that v > u and Xv > 0 (otherwise we could prove, because Xu < Yu, that Xu

can be increased; which contradicts the fact that X is optimal). Consider now X ′ the vector defined
as follows: ∀i /∈ {u, v}, X ′

i = Xi and X ′
u = Xu + ε/pu and X ′

v = Xv − ε/pv, where ε > 0 is a small
value such that ε ≤ pu(1−Xu), ε ≤ pvXv and such that for any non-saturated constraint (t′1, t

′
2),

ε+
∑

S(t′
1
,t′

2
)

pi +
∑

P (t′
1
,t′

2
)

piXi ≤ t
′
2 − t

′
1

First recall that activities are sorted, hence εwu/pu − εwv/pv ≥ 0. Thus,
∑
wi(1−X ′

i) ≤
∑
wi(1−

Xi). Moreover, X ′ is “better” for the lexicographical order than X . Second, because of the definition
of ε, the constraints that were not saturated for X are not violated for X ′. Third we claim that the
saturated constraints in K (for the vector X) that contain the variables xu also contain xv . Indeed,
because Au and Av both belong to P (t1, t2), we have du < d̄v and dv < d̄u. On top of that, u < v
thus, because the instance is well-structured, we have d̄u ≤ d̄v . Hence, a saturated constraint that
contains xu (and hence include the interval [t1, t2)) also contains xv . As a consequence X ′ meets all
constraints. This contradicts our hypothesis on X .

Proposition 81 induces a simple algorithm (Algorithm 17) to compute the optimum X of (11.3).
Each time, we compute the maximum resource constraint violation if the activity is fully on-time
(lines 6–18). Given this violation, the maximum value Xi that the variable xi can take is computed.
This algorithm runs in O(n4) since there are n activities Ai and since for each of them O(n2)
violations are computed, each of them in linear time.

Algorithm 18 makes the same computation as Algorithm 17 but uses JPS to compute the vio-
lation. The procedure “ComputeJPS” of Algorithm 18 is called for several values of i. It computes
the JPS of the fictive activities A′

1, . . . , A
′
n, A

′
n+1, . . . , A

′
2n as defined in the proof of Proposition 81.

EndTimeJPS[k] is the end time of A′
k on JPS. If the processing time of one of these activities is

158 Propagation of Objective Functions

Algorithm 17 An O(n4) algorithm to compute the violations

1: for i := 1 to n do
2: Xi := 0.0
3: end for
4: for i := 1 to n do
5: if ri + pi ≤ di (otherwise Ai is late, i.e., Xi := 0.0) then
6: Xi := 1.0,Violation := 0.0
7: for all constraint (t1, t2) s.t. t1 ∈ {rx}, t2 ∈ {d̄x} ∪ {dx} do
8: total := 0.0
9: for u := 1 to n do

10: if t1 ≤ ru and d̄u ≤ t2 (i.e., Ai ∈ S(t1, t2)) then
11: total := total + pu

12: end if
13: if t1 ≤ ru and du ≤ t2 < d̄u (i.e., Ai ∈ P (t1, t2)) then
14: total := total + puXu

15: end if
16: end for
17: Violation := max(Violation, total− (t2 − t1))
18: end for
19: Xi := (pi −Violation)/pi

20: end if
21: end for

null then its end time is arbitrarily defined as its release date. JPS can be built in O(n logn) [54].
Algorithm 18 then runs in O(n2 logn).

Proof of the correctness of Algorithm 18. By induction. Suppose that at the beginning of
iteration i (line 4), the first coordinates X1, ..., Xi−1 are exactly equal to those of Y , the maximal
vector (according to the lexicographical order) satisfying the constraints of (11.3). Consider the case
Yi = 1. Then, because of the structure of (11.3), there exists a feasible preemptive schedule of the
fictive activities where the processing time of A′

i is pi. Thus, the JPS computed line 7 is also feasible;
which means that no violation occurs. Hence, Xi = 1 (line 12). Now assume that Yi < 1.

• We first prove that Xi ≤ Yi. Since Yi < 1, the violation computed by Algorithm 17 at step i
is positive. Let then (t1, t2) be the constraint that realizes this violation. We then have

Yi =
1

pi

t2 − t1 −
∑

Au∈S(t1,t2)

pu −
∑

Au∈P (t1,t2)∧u<i

puXu

Consider the subset of the fictive activities A′
1, ..., A

′
n, A

′
n+1, ..., A

′
2n that have a release date

greater than or equal to t1 and a deadline lower than or equal to t2. They cannot be completed
before t1 plus the sum of the processing times of these activities, i.e., before

t1 +
∑

A′
u:

8

<

:

t1 ≤ ru
d̄u ≤ t2

pu

= t1 +
∑

Au∈S(t1,t2)

pu +
∑

8

<

:

Au ∈ P (t1, t2)
u < i

puXu + pi

11.1 Total Weighted Number of Late Activities 159

Algorithm 18 An O(n2 logn) algorithm to compute the violations

1: for i := 1 to n do
2: Xi := 0.0
3: end for
4: for i := 1 to n do
5: if ri + pi ≤ di then
6: Xi := 1.0,ViolationJPS := 0.0
7: ComputeJPS
8: for all fictive activities A′

k (1 ≤ k ≤ 2n) do
9: ViolationJPS := max(ViolationJPS,EndTimeJPS[k]− d̄′k)

10: end for
11: Xi := (pi −ViolationJPS)/pi

12: end if
13: end for

Hence, the violation on JPS is at least

t1 +
∑

Au∈S(t1,t2)

pu +
∑

8

<

:

Au ∈ P (t1, t2)
u < i

puXu + pi − t2

Hence Xi ≤ Yi.

• We now prove that Yi ≤ Xi. We have proven that Xi ≤ Yi < 1 and thus, ViolationJPS is
strictly positive. Assume that the maximum violation on JPS is realized by A′

k, 1 ≤ k ≤ 2n.
The violation is EndTimeJPS[k]− d̄′k. Let t1 be the largest time point lower than or equal to
the end time of this activity such that immediately before t1, JPS is either idle or executing
an activity with a larger deadline than d̄′k. According to the particular structure of JPS, t1
is an earliest start time. Notice that between t1 and d̄′k, JPS is never idle and the pieces of
activities that are processed are exactly those whose release date are greater than or equal
to t1 and whose deadlines are lower than or equal to d̄′k. Since the values of X1, . . . , Xi−1,
resulting from the previous iterations, are such that they cannot alone lead to a violation, this
necessarily includes A′

i. As a consequence, EndTimeJPS[k] is equal to:

t1 +
∑

Au∈S(t1,d̄′
k
)

pu +
∑

8

<

:

Au ∈ P (t1, d̄
′
k)

u < i

puXu + pi

We have presented an efficient algorithm to compute the optimum of (11.3) for well-structured
instances. Figure 11.2 illustrates the use of this algorithm for a well-structured instance with 4
activities.

If an instance is not well-structured, it is easy to relax the deadlines so that it becomes well-
structured. To do so, an iteration is performed over all pairs of activities Ai, Aj . If i < j, di <
d̄j , dj < d̄i and d̄i > d̄j then d̄j is momentary set to d̄i. After this modification, the instance is
well-structured and we can use Algorithm 18 to obtain a lower bound.

Notice that the algorithm does not work for non-well-structured instances. Consider the counter-
example of Table 11.2. The optimum of (11.3) is 3 (A1 , A2 and A3 are respectively scheduled over
[2, 3), [0, 1) and [1, 2)). Unfortunately, the algorithms both find that X1 = 1, X2 = 0, and X3 = 0,
i.e., A1, A2 and A3 are respectively scheduled over [0, 1), [1, 2) and [2, 3).

160 Propagation of Objective Functions

Act�r�p�, �d�w�w/p��� � � � � � � � � � � � � � � � � �
A1�7�2�12�10�10�5.0���Initial�instance.�In�the�following,�we�focus�on�the�fictive�activities.�
A2�3�7�12�10�30�4.3���� � � � � � � � � � � � � � � � �
A3�0�5�14�6�20�4.0���� � � � � � � � � � � � � � � � �
A4�4�3�18�9� 5�1.7���� � � � � � � � � � � � � � � � �
� � � � � � ��� � � � � � � � � � � � � � � � � �Act�r�p�, � � � ��0� 1� 2� 3� 4� 5� 6� 7� 8� 9�10�11�12�13�14�15�16�17�
A'1�7�0�10� �X1� 0.0���A'7�A'7�A'7�A'6�A'6�A'6�A'6�A'6�A'6�A'6�A'5�A'5�A'7�A'7�A'8�A'8�A'8�
A'2�3�0�10� �X2� 0.0��� � � � � � � � � � � � � � � � � �
A'3�0�0�6� �X3� 0.0���
A'4�4�0�9� �X4� 0.0���
A'5�7�2�12� � � ���
A'6�3�7�12� � � ���
A'7�0�5�14� � � ���
A'8�4�3�18� � � ���

violation�=�0�
�
Step�1:�Is�there�a�schedule�where�A1,�A2,�A3,�A4�end�before�their�latest�
end�time�?�Yes.�

� � � � � � ���� � � � � � � � � � � � � � � � �Act�r�p�, � � � ��0� 1� 2� 3� 4� 5� 6� 7� 8� 9�10�11�12�13�14�15�16�17�
A'1�7�2�10� �X1� 1.0���A'7�A'7�A'7�A'6�A'6�A'6�A'6�A'1�A'1�A'6�A'6�A'6�A'7�A'7�A'8�A'8�A'8�
A'2�3�0�10� �X2� 0.0��� � � � � � � � � � � � � � � � � �
A'3�0�0�6� �X3� 0.0���
A'4�4�0�9� �X4� 0.0���
A'5�7�0�12� � � ���
A'6�3�7�12� � � ���
A'7�0�5�14� � � ���
A'8�4�3�18� � � ���

violation�=�0�
�
Step�2:�Try�to�put�A1�on�time�(i.e.,�the�processing�time�of�the�fictive�
activities�A'1�and�A'5�are�set�to�2�and�0)�and�compute�JPS.�The�maximal�
violation�is�0�hence,�X1�=�1.0.��

�� � � � � ��� � � � � � � � � � � � � � � � � �Act�r�p�, � � � ��0� 1� 2� 3� 4� 5� 6� 7� 8� 9�10�11�12�13�14�15�16�17�
A'1�7�2�10� �X1� 1.0���A'7�A'7�A'7�A'2�A'2�A'2�A'2�A'2�A'2�A'2�A'1�A'1�A'7�A'7�A'8�A'8�A'8�
A'2�3�7�10� �X2� 0.7��� � � � � � � � � � � � � � � � � �
A'3�0�0�6� �X3� 0.0���
A'4�4�0�9� �X4� 0.0���
A'5�7�0�12� � � ���
A'6�3�0�12� � � ���
A'7�0�5�14� � � ���
A'8�4�3�18� � � ���

violation�=�2�
�
Step�3:�Try�to�put�A2�on�time�(i.e.,�the�processing�time�of�the�fictive�
activities�A'2�and�A'6�are�set�to�7�and�0)�and�compute�JPS.�The�maximal�
violation�is�2�hence,�at�most�5�units�of�A2�can�be�on�time,�i.e.,�X2�=�5/7.��

�� � � � � ��� � � � � � � � � � � � � � � � � �Act�r�p�, � � � ��0� 1� 2� 3� 4� 5� 6� 7� 8� 9�10�11�12�13�14�15�16�17�
A'1�7�2�10� �X1� 1.0���A'3�A'3�A'3�A'3�A'3�A'2�A'2�A'2�A'2�A'2�A'1�A'1�A'6�A'6�A'8�A'8�A'8�
A'2�3�5�10� �X2� 0.7��� � � � � � � � � � � � � � � � � �
A'3�0�5�6� �X3� 0.6���
A'4�4�0�9� �X4� 0.0���
A'5�7�0�12� � � ���
A'6�3�2�12� � � ���
A'7�0�0�14� � � ���
A'8�4�3�18� � � ���

violation�=�2�
�
Step�4:�Try�to�put�A3�on�time�(i.e.,�the�processing�time�of�the�fictive�
activities�A'3�and�A'7�are�set�to�5�and�0)�and�compute�JPS.�The�maximal�
violation�is�2�hence,�at�most�3�units�of�A3�can�be�on�time,�i.e.,�X3�=�3/5.��

�� � � � � ��� � � � � � � � � � � � � � � � � �Act�r�p�, � � � ��0� 1� 2� 3� 4� 5� 6� 7� 8� 9�10�11�12�13�14�15�16�17�
A'1�7�2�10� �X1� 1.0���A'3�A'3�A'3�A'2�A'4�A'4�A'4�A'2�A'2�A'2�A'2�A'1�A'1�A'6�A'6�A'7�A'7�
A'2�3�5�10� �X2� 0.7��� � � � � � � � � � � � � � � � � �
A'3�0�3�6� �X3� 0.6���
A'4�4�3�9� �X4� 0.0���
A'5�7�0�12� � � ���
A'6�3�2�12� � � ���
A'7�0�2�14� � � ���
A'8�4�0�18� � � ���

violation�=�3�
�
Step�5:�Try�to�put�A4�on�time�(i.e.,�the�processing�time�of�the�fictive�
activities�A'4�and�A'8�are�set�to�3�and�0)�and�compute�JPS.�The�maximal�
violation�is�3�hence,�A4�is�late,�i.e.,�X4�=�0.�

�

Figure 11.2: Illustration of Algorithm 18

11.1 Total Weighted Number of Late Activities 161

ri d̄i di pi wi

A1 0 10 1 1 3
A2 0 2 1 1 2
A3 0 3 2 1 2

Table 11.2: A counter-example for non-well-structured instances

11.1.3 Constraint Propagation

In this section, some deduction rules are presented. They determine that some activities can, must
or cannot end before their due date. Consider an activity Au such that eetu ≤ du < d̄u; it can be
either late or on-time. Our objective is to compute efficiently a lower bound of the weighted number
of late activities if Au is on-time (conversely if Au is late). If this lower bound is greater than the
maximal value in the domain of criterion then Au must be late (conversely on-time). Algorithm 18
could be used to compute such a lower bound. However, it would be called n times, leading to a
high overall complexity of O(n3 logn). We propose to use a slightly weaker lower bound that can
be computed, after some preprocessing, in linear time, for each activity. We will see that the overall
domain reduction scheme runs in O(n2).

First, deadlines are relaxed to a very large value (except for the activities that have to be on-time),
i.e., late activities can be scheduled arbitrarily late. Once this is done, we compute the optimum X
of the linear program obtained with the relaxed deadlines (the instance is well-structured and so we
can use Algorithm 18). It is easy to see that this program can be rewritten as follows:

min

n∑

1

wi(1− xi)

u.c.

∀rj , ∀dk > rj ,
∑

Ai∈P (rj ,dk)

pixi ≤ dk − rj

∀i, ri + pi > di ⇒ xi = 0
∀i, d̄i ≤ di ⇒ xi = 1
∀i ∈ {1, . . . , n}, xi ∈ [0, 1]

(11.4)

The second and the third constraint simply take into account the fact that some activities are
known to be late (or on-time). Of course, the lower bound provided by (11.4) is weaker than the
one provided by (11.3) (because deadlines have been relaxed). However, the computation of X is
the basis of our domain reduction scheme.

Late Activity Detection

Let (11.5) be the linear program (11.4) to which the constraint xu = 1 has been added.

min

n∑

1

wi(1− xi)

u.c.

∀rj , ∀dk > rj ,
∑

Ai∈P (rj ,dk)

pixi ≤ dk − rj

∀i, ri + pi > di ⇒ xi = 0
∀i, d̄i ≤ di ⇒ xi = 1
∀i ∈ {1, . . . , n}, xi ∈ [0, 1]
xu = 1

(11.5)

Assume that there is a feasible solution of (11.5) and let Xo be the optimal vector of (11.5) obtained
by Algorithm 17. Propositions 82 and 83 exhibit two relations that X and Xo satisfy. These relations
are used to compute a lower bound of the weighted number of late activities.

Proposition 82.
∑
piXoi ≤

∑
piXi

162 Propagation of Objective Functions

Proof. Let G(I, T, E) be a bipartite graph, where I = {1, ..., n} is a set of vertices corresponding
to the activities, where T = {t : mini ri ≤ t < maxi di} is a set of vertices corresponding to all the
“relevant” time-intervals [t, t+1) and where an edge (i, t) belongs to E if and only if Ai can execute
on time in [t, t+ 1) (i.e., ri ≤ t < di). Consider the network flow (cf., Figure 11.3) built from G by
adding:

• two vertices S, P and an edge (P, S),

• for each node i an edge (S, i) whose capacity is (i) upper bounded by pi and (ii) lower bounded
by pi if d̄i ≤ di and by 0 otherwise,

• for each node t an edge (t, P) whose capacity is upper bounded by 1.

A flow f on G corresponds to a preemptive schedule of the activities where f(S, i) units of each
activity are on-time and where the remaining units are late; f(x, y) being the value of the flow
through the edge (x, y). Hence, to any feasible flow f we can associate the vector X that meets all
the constraints of (11.4):

Xi =
f(S, i)

pi

Conversely, a feasible flow can be derived from any vector X meeting all the constraints of (11.4)
such that piXi is integer: Compute the JPS of the activities with a processing time of piXi and set
f(i, t) = 1 if and only if one unit of Ji executes at time t on JPS.

Suppose that
∑
piXoi >

∑
piXi then the flow corresponding to X is not maximal in G and

thus there is an augmenting path from S to P . Let then X+ be the vector corresponding to the
augmented flow. Because of the structure of G, ∀i,X+

i ≥ Xi. On top of that there exists l such that
X+

l > Xl. This contradicts proposition 81.

�

�
�
�
�
�
�
�
�
�
�
�
�
�

P�
S�

A2�

A1�

An�

T2�
T1�

T...�

Figure 11.3: Network flow associated to the graph G

Proposition 83. ∀i 6= u,Xoi ≤ Xi

Proof. Suppose the proposition does not hold. Let i be the first index such that i 6= u and Xoi > Xi.
We modify the instance of the problem by removing the activities Av with v > i that do not have
to be on-time (i.e., v 6= u and d̄v > dv). The activities that have been removed do not influence
Algorithm 17 when computing the i first coordinates of X and of Xo (i.e., for the modified instance,
the i first coordinates of the optimum vector are exactly those of X). Now, consider the modified
instance. We still have i 6= u and Xoi > Xi. Moreover, the activities that have a greater index
than i are on-time. Consider the modified network (Figure 11.4) built from the bipartite graph G
by adding:

11.1 Total Weighted Number of Late Activities 163

• three vertices S, S ′, P and two edges, (S, S′) and (P, S),

• for each node v (v 6= i) an edge (S ′, v) whose capacity is (i) upper bounded by 0 if Av has to
be late and by pv otherwise and (ii) lower bounded by pv if Av has to be on-time and by 0
otherwise,

• an edge (S, i) whose capacity is upper bounded by pi and lower bounded by 0,

• for each node t an edge (t, P) whose capacity is upper bounded by 1.

For any feasible flow, a vector satisfying all constraints of (11.4) can be built. Conversely, for any
vector satisfying all constraints of (11.4), a feasible flow can be built. The flow corresponding to
Xo is obviously feasible. Moreover the flow on (P, S) for vector X is greater than or equal to the
one for Xo (see Proposition 82). Moreover, the flow on (S, i) for Xo is greater than the one for
X . Hence, because of the conservation law at S, the flow that goes over (S, S ′) is not maximal for
Xo. As a consequence, there is an augmenting path from S ′ to S for the flow corresponding to Xo.
Let then Xo+ be the vector corresponding to the augmented flow. Because of the structure of G,
∀v 6= i,Xo+

v ≥ Xov. Hence, for any activity that has to be on-time, Xo+
v = 1 and then Xo+ satisfies

all the constraints of (11.5). Moreover it is better than Xo because:

• If the edge (P, S) is in the augmenting path then
∑
piXo+

i >
∑
piXoi.

• If the edge (i, S) is in the augmenting path then we claim that Xo+ is greater, for the lex-
icographical order, than Xo. Indeed, there is an edge from S ′ to an activity, say v, in the
augmenting path. Hence, Av does not have to be on-time (otherwise, the edge would be satu-
rated for Xo and it could not belong to the augmenting path). Consequently, v < i and then
Xo+

v > Xov.

This contradicts the fact that Xo is optimal.

Thanks to Propositions 82 and 83, we can add constraints
∑
piXoi ≤

∑
piXi and ∀i 6= u, xi ≤ Xi

to the linear program (11.5). Since we are interested in a lower bound of (11.5), we can also relax
the resource constraints. As a consequence, we seek to solve the following program (11.6) that is
solved in linear time by Algorithm 19.

min

n∑

1

wi(1− xi)

u.c.

∑
pixi ≤

∑
piXi

∀i 6= u, xi ≤ Xi

xu = 1
∀i ∈ {1, . . . , n}, xi ∈ [0, 1]

(11.6)

Algorithm 19 A linear time algorithm for late activity detection

1: for i := 1 to n do
2: Xoi := 0.0
3: end for
4: Xou := 1
5: MaxVal :=

∑
piXi − pu

6: for i := 1 to n and i 6= u do
7: Xoi := min(Xi,MaxVal/pi)
8: MaxVal = MaxVal− pi ∗Xoi

9: end for

164 Propagation of Objective Functions
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�

S� P�

Ai-1�

A1�

An�

T2�

T1�

T...�

S’�

Ai�

Ai+1�

Figure 11.4: Modified network flow associated to the graph G

On-Time Activity Detection

Let Au be an activity such that eetu ≤ du < d̄u. Au can be either late or on-time. We want
to compute a lower bound of the number of late activities if it is late. Let Xl be the optimal
vector of the linear program (11.4) to which the constraint xu = 0 has been added. We claim that
∑
piXli ≤

∑
piXi and that ∀i 6= u,Xli ≥ Xi (proofs are similar to the proofs of Propositions 82 and

83). The same mechanism than for the late activity detection then applies: The new constraints
are entered in the linear program while the resource constraints are removed. The resulting linear
program can be also solved in linear time.

Example

Consider the instance of Figure 11.2. Deadlines are relaxed. The optimal vector of (11.4) is X1 =
1, X2 = 5/7, X3 = 3/5, X4 = 0. The lower bound is then (0 ∗ 10)/2 + (2 ∗ 30)/7 + (2 ∗ 20)/5 +
(3 ∗ 5)/3 = 21.57 Assume that the domain of criterion is [22, 26]. Let us try to put A4 on-time.
The optimum of (11.6) is Xo1 = 1,Xo2 = 5/7,Xo3 = 0,Xo4 = 1. Thus, the new lower bound is
(0 ∗ 10)/2 + (2 ∗ 30)/7 + (5 ∗ 20)/5 + (0 ∗ 5)/3 = 28.57. Given the domain of criterion, we deduce
that A4 must be late.

11.2 Total Tardiness

We propose a set of techniques1, to propagate the
∑
Ti criterion. We restrict our study to the single

machine case and unfortunately, extensions to cumulative problems are not straightforward. We
also assume that there are no initial deadlines (i.e., those that appear in the following algorihms
have been deduced by some domiance rules).

The single machine total tardiness scheduling problem has been widely studied in the literature
(see Section 14.2 for a brief review). Many dominance properties have been proposed in the case
where ∀i, ri = 0. In comparison, less efficient lower-bounds have been introduced. In this section,
we focus on constraint propagation, a purely deductive process in which dominance rules cannot
a priori be incorporated. However, we will see that some new dominance rules can be used as a
preprocessing step to compute a very efficient lower bound.

11.2.1 Lower Bounds

Relaxing non-preemption is a standard technique to obtain lower bounds for non-preemptive schedul-
ing problems. Unfortunately, the total tardiness problem with no release dates (for which the pre-
emption is not useful) is already NP-Hard, so some additional constraints have to be relaxed to

1All the results presented in this section come from [16]

11.2 Total Tardiness 165

obtain a lower bound in polynomial time. From now on, assume that activities are sorted in non-
decreasing order of due dates. We first recall Chu’s lower bound. Latter we will show how some
new dominance properties can be used to improve this lower bound.

Chu [75] has introduced an O(n log n) lower bound, lbChu , that can be computed as follows.
Preemption is relaxed and activities are scheduled according to the SRPT (Shortest Remaining
Processing Time) rule. Each time an activity becomes available or is completed, an activity with
the shortest remaining processing time among the available and uncompleted activities is scheduled
(see Table 11.3 and Figure 11.5). The computation of the lower bound is based on Proposition 84
([75]).

Ai ri pi di

A1 0 5 5
A2 1 4 6
A3 3 1 8

Table 11.3: An Instance of 1|ri|
∑
Ti.

�
�

d2��d1��

A1�A2� A3� A2�

d3��

C[1]�� C[2]�� C[3]��

A1�

0��

Figure 11.5: An SRPT Schedule of the Instance of Table 11.3.

Proposition 84. Let [i] denote the index of the activity which is completed in the ith position in
the SRPT schedule. The total tardiness is at least

n∑

i=1

max(C[i] − di, 0).

11.2.2 Improving Lower Bounds With Dominance Properties

A dominance rule is a constraint that can be added to the initial problem without changing the value
of the optimum, i.e., there is at least one optimal solution of the problem for which the dominance
holds. Dominance rules can be of prime interest since they can be used to reduce the search space.
However they have to be used with care since the optimum can be missed if conflicting dominance
rules are combined.

Emmons Rules

We recall Emmons Rules and generalize them to take into account release dates. Unfortunately, these
rules are valid if preemption is allowed (or, for some of them, if activities have identical processing
times). Nevertheless, we will see in Section 11.2.2 that these rules can be used in a pre-processing
phase before computing a preemptive lower-bound of the problem.
Initial Emmons Rules

Emmons [95] has proposed a set of dominance rules for the special case where release dates
are equal (1||

∑
Ti). These rules allow us to deduce some precedence relations between activities.

Following Emmons notation, Ai and Bi are the sets of activities that have to be scheduled, according
to the dominance rules, respectively after and before Ai. In the following, we say that Ai precedes Ak

when there is an optimal schedule in which Ai precedes Ak and for which all previously mentioned
dominance properties hold.

166 Propagation of Objective Functions

Emmons Rule 1. ∀i, k(i 6= k), if pi ≤ pk and di ≤ max(
∑

Aj∈Bk
pj + pk, dk) then Ai precedes Ak

(Ai ∈ Bk and Ak ∈ Ai).

Emmons Rule 2. ∀i, k(i 6= k), if pi ≤ pk and di > max(
∑

Aj∈Bk
pj + pk, dk) and di + pi ≥

∑

Aj /∈Ak
pj , then Ak precedes Ai.

Emmons Rule 3. ∀i, k(i 6= k), if pi ≤ pk and dk ≥
∑

Aj /∈Ai
pj , then Ai precedes Ak.

Generalized Emmons Rules (1|ri, pmtn,
∑
Ti)

Our aim is to generalize Emmons rules to the situation where we have arbitrary release dates.
Such a generalization is relatively easy to do if we relax the non-preemption constraint. We will
see that the resulting rules can be used to tighten the lower bound of the non preemptive problem
(Section 11.2.2).

In the preemptive case, Ai is said to precede Ak if and only if Ak starts after the end of Ai. As
for the initial Emmons rules, Ai and Bi respectively denote the set of activities that are known to
execute after and before Ai.

Note that active schedules are dominant, i.e., we only consider schedules in which activities or
pieces of activities cannot be scheduled earlier without delaying another activity. It is easy to see
that all active schedules have exactly the same completion time Cmax. To compute this value, we
can build the schedule where activities are scheduled in non decreasing order of release dates. Now
we can tighten the deadlines since Ai since it cannot be completed after Cmax −

∑

Aj∈Ai
pj . These

deadlines are only valid in the preemtive case.
In the following, we note Cmax(E) the completion time of active schedules of a subset E of

activities (other activities are not considered). As mentioned previously, all active schedules have
the same completion time and it can be computed in polynomial time. Cmax(E) is a lower bound
of the maximal completion time of the activities of E in any schedule of {A1, . . . , An}. If Bi is a
set of activities that have to be processed before Ai then Ai cannot start before Cmax(Bi), i.e., the
release date ri can be adjusted to max(ri, Cmax(Bi)).

First, we make the following remark which allows us to compare the values of the tardiness of
an activity Ai in two schedules S and S′: Let Ci and C ′

i be the completion times of Ai on two
preemptive schedules S and S ′ and let Ti and T ′

i be respectively the tardiness of Ai in S and S′.

• If C ′
i < Ci and di ≤ Ci then T ′

i − Ti = max(C ′
i , di)− Ci ≤ 0.

• If di ≥ max(Ci, C
′
i) then Ai is on time in S and in S′ and T ′

i − Ti = 0.

Generalized Emmons Rule 1. Let Ai and Ak be two activities such that ri ≤ rk, pi ≤ pk and
di ≤ max(rk + pk, dk), then Ai precedes Ak (Ai ∈ Bk and Ak ∈ Ai).

Proof. Consider a schedule S in which activity Ai and activity Ak satisfy the assumptions. First,

�

Ak�Ak�Ak� Ai�Ai�

Ci�Ck�
di

dk

Ak�Ai� Ai� Ak� Ak�

C’i�

S�

S’�

Figure 11.6: Generalized Emmons Rule 1.

assume that activity Ak is completed before activity Ai (Ck < Ci). Let us reschedule the pieces of
Ai and Ak such that all pieces of Ai are completed before the pieces of Ak (see Figure 11.6). Note
that the exchange is valid since ri is lower than or equal to rk . We show that this exchange does

11.2 Total Tardiness 167

not increase total tardiness. Let S ′ be this new schedule and let C ′
i be the completion time of Ai in

S′. In S′, Ak is completed at time Ci. If Ci ≤ di, the activities Ai and Ak are on time in the two
schedules S and S′ and the exchange has no effect. From now, we suppose that di < Ci.
Since the completion times of all other activities remain the same, the difference between the total
tardiness of S′ and of S is exactly ∆ = T ′

i − Ti + T ′
k − Tk. Following our initial remark, T ′

i − Ti =
max(C ′

i, di) − Ci and T ′
k − Tk = C ′

k − max(Ck , dk) = Ci − max(Ck, dk). So, ∆ = max(C ′
i , di) −

max(Ck, dk). Note that all pieces of Ai are completed before Ck in S′ and since pi ≤ pk, we have
C ′

i ≤ Ck and ∆ ≤ max(Ck, di)−max(Ck , dk).
Now consider two cases:

• If max(rk + pk, dk) = dk then di ≤ dk. Together with C ′
i ≤ Ck, this leads to ∆ ≤ 0.

• If max(rk + pk, dk) = rk + pk then di ≤ rk + pk ≤ Ck and dk ≤ rk + pk ≤ Ck. This leads to
∆ ≤ Ck − Ck = 0.

Now assume, that activity Ai is completed before activity Ak. Rescheduling the pieces of the two
activities, such that all pieces of Ai are completed before the pieces of Ak, can only decrease the
tardiness of Ai, and leave unchanged the tardiness of Ak.
In all cases, the exchange does not increase total tardiness.

As shown in Figure 11.7, the Generalized Emmons Rule 1, does not hold in the non-preemptive
case. Indeed, A1 would have to be completed before A2, which is not true in the non-preemptive
case.

�
�

d1��d2=d4�

r1=r2=0�

d3��

A2� A4�A1�A3�

A1�A2�A3�A2� A4�

6�r3��r4��

Figure 11.7: An Optimal Non-Preemptive Schedule and an Optimal Preemptive Schedule.

The proof for the two following rules follow the same scheme as above (see [16]).

Generalized Emmons Rule 2. Let Ai and Ak be two activities such that ri ≤ rk, di ≤ dk and
d̄i ≤ dk + pk, then Ai precedes Ak

Generalized Emmons Rule 3. Let Ai and Ak be two activities such that ri ≤ rk and d̄i ≤ dk,
then Ai precedes Ak.

Combining Generalized Emmons Rules
As mentioned previously, dominance properties cannot always be combined. Fortunately, in our

case, the Generalized Emmons Rules are compatible, which was already the case for 1||
∑
Ti as

noticed by Emmons [95].
We can use these dominance rules one after the other to adjust the data of an instance: if a set

Bi of activities is proved to precede Ai according to the Generalized Emmons Rules, it is possible
to adjust ri to ri = max(ri, Cmax(Bi)). By using iteratively these rules, we are sure, that at the
end of each iteration, the adjusted instance has the same optimal total tardiness than the original
instance, and that we have not introduce any inconsistencies.

We consider activities one after the other and each time we perform adjustments. Now, we can
prove that we do not introduce any inconsistencies. Indeed, suppose that at the current iteration,
we have for each activity Ai, a set Bi of activities which are proven to precede Ai, and a set Ai of
activities which are proven to follow Ai. Suppose too that there is no contradiction at this time
and that all adjustments are made considering these sets. It means that we have rj < ri, for any
Aj ∈ Bi and ri < rj , for any Aj ∈ Ai. Suppose now, we want to refine the adjustments for an

168 Propagation of Objective Functions

activity Ak. Let Ai /∈ Bk be an activity which has not yet been proved to precede Ak, but for
which, one of the Generalized Emmons Rule has proven that Ai precedes Ak. This implies that
ri ≤ rk. According to this rule, we can introduce a contradiction only if there exists an activity Am

such that: Ak precedes Am and Am precedes Ai. Because we have made all adjustments implied by
the precedence relations already established, we have: Ak precedes Am implies rk < rm, and Am

precedes Ai implies rm < ri, then rk < rm < ri, which contradicts the initial assumption ri ≤ rk.
Consequently, we will not introduce any inconsistency according to the precedence relations already
established.

Each rule can be implemented in O(n2). The activities are sorted in non-decreasing order of
release dates in a heap structure, which runs in O(n log n). For each activity Ai, we consider
the set of activities which are completed before Ai according to the Generalized Emmons Rules.
Computing the earliest completion time of this set and adjusting ri runs in O(n), since the activities
are already sorted in non-decreasing order of release dates. The heap structure is maintained in
0(logn). Therefore, we have an overall time complexity of O(n) for each activity. New precedence
dominances can be found and the rules might have to be applied again. Each activity can be adjusted
at most n− 1 times. Hence, in the worst case the whole propagation is in O(n3).

A New Lower Bound

We introduce two propositions, that are valid in the preemptive case only. Proposition 85 is a weak
version of the Generalized Emmons Rule 1. Proposition 86 shows that under some conditions, due
dates can be exchanged without increasing the objective function.

Proposition 85. Let Ai and Ak be two activities such that ri ≤ rk, pi ≤ pk and di ≤ dk, then there
exists an optimal schedule in which Ak starts after the end of Ai.

Proof. See proof of Generalized Emmons Rule 1.

Proposition 86. Let Ai and Ak be two activities such that ri ≤ rk, pi ≤ pk and di > dk. Exchanging
di and dk does not increase the optimal total tardiness.

Proof. Consider an optimal schedule S of the original instance and let Ci and Ck be the completion
times of Ai and Ak in S. Let ∆ be the difference between the tardiness of S before and after the
exchange.

∆ = max(0, Ci − dk) + max(0, Ck − di)−max(0, Ci − di)−max(0, Ck − dk).

First, assume that Ci < Ck and consider the following cases.
If dk < di ≤ Ci then

∆ = (Ci − dk) + (Ck − di)− (Ci − di)− (Ck − dk) = 0.

If dk ≤ Ci ≤ di ≤ Ck then

∆ = (Ci − dk) + (Ck − di)− 0− (Ck − dk) = Ci − di ≤ 0.

If Ci ≤ dk < di ≤ Ck then ∆ = 0 + (Ck − di)− 0− (Ck − dk) = di − dk ≤ 0.
If Ci ≤ dk ≤ Ck ≤ di then ∆ = 0 + 0− 0− (Ck − dk) ≤ 0.
If Ci < Ck ≤ dk < di then ∆ = 0.
If dk ≤ Ci < Ck ≤ di then

∆ = (Ci − dk) + 0− 0− (Ck − dk) = (Ci − Ck) + (dk − di) < 0.

Now assume that Ck < Ci. After the exchange of due dates, we exchange the pieces of the activities,
such that all pieces of Ai are scheduled before those of Ak . This exchange is valid since ri ≤ rk . In
this new schedule, Ai is completed before or at Ck because pi ≤ pk, thus the tardiness of Ai is lower
than or equal to max(0, Ck − dk). Moreover, Ak is completed at Ci and its tardiness is equal to
max(0, Ci− di). Thus ∆ ≤ max(0, Ci− di) + max(0, Ck − dk)−max(0, Ci− di)−max(0, Ck − dk) ≤
0.

11.2 Total Tardiness 169

These propositions allow us to compute a lower bound lb1 thanks to the following algorithm.

At each time t, we consider D = {Aj/rj ≤ t ∧ p′j > 0} the set of activities available but not
completed at t (p′j denotes the remaining processing time of Aj at time t). Let Au be the activity
with the shortest remaining processing time, and let Av be the activity with the smallest due date.
If du = dv , i.e., Au has the smallest due date, according to Proposition 85, it is optimal to schedule
one unit of this activity. If it is not the case, according to Proposition 86, we exchange its due date
with the one of Av , the activity with the smallest due date. This new instance has an optimal total
tardiness lower than or equal to the optimal tardiness of the original problem. In this new problem,
Au has now the smallest due date and the smallest remaining processing time, then it is optimal to
schedule one unit of this activity according to Proposition 85. We increase t and we iterate until all
activities are completed.

At each time t, we build a new problem by exchanging two due dates. This new problem has
an optimal total tardiness lower than or equal to the problem before. Hence, at the end of the
algorithm, we obtain an optimal schedule of a problem which has a total tardiness lower than or
equal to the optimal tardiness of the original problem. Therefore, it is a lower bound of the original
problem. Actually, the only relevant time points are when an activity becomes available or when an
activity is completed. And so there are at most 2n times t to consider.

We maintain two heaps heapp and heapd which contain respectively, the uncompleted activities
which are available at time t sorted in non-decreasing order of remaining processing times, and
these activities sorted in non-decreasing order of due dates. The insertion, the extraction and the
modification of an activity of one heap costs O(log n). Getting the minimum element of one heap
costs O(1). We have at most n insertions (each time an activity becomes available), and at most n
extractions (each time an activity is completed). At each time t, we have at most two modifications
in heapp and in heapd when we must exchange the due dates of two activities. Hence, our algorithm
runs in O(n log n).

Comparison with Chu’s Lower Bound

The schedule built by our algorithm is the same as the one built by Chu. The algorithms differ from
the assignment of the due dates to the activities. Indeed, in the algorithm of Chu, the assignment of
the due dates is performed at a “global” level, whereas in our algorithm, the assignment is performed
at a “local” level. We show that lb1 is strictly better than lbChu .

Proposition 87. The lower bound lb1 obtained by our algorithm is stronger than Chu’s lower bound
lbChu .

Proof. The sets of completion times in the schedules built by our algorithm and by Chu’s are the
same. The difference lies in the assignment of due dates to the activities. Let (d1, . . . , dn) be the
sequence of due dates sorted in non-decreasing order. This is the sequence obtained by the algorithm
of Chu. Let (dσ(1), . . . , dσ(n)) be the sequence of due dates obtained by our algorithm. Let j be the
first index such that j 6= σ(j) and let t be the starting time of the piece of activity which is completed
at C[j]. This piece is a piece of the activity with the shortest remaining processing time at t. We
have dj ∈ (dσ(j+1), . . . , dσ(n)) and dj ≤ d′j . Let T ′ be the tardiness associated with the sequence
(dσ(j+1), . . . , dσ(n)). Let k be the integer such that σ(k) = j. Suppose we exchange the due dates
dσ(j) and dσ(k) in the sequence (dσ(j), . . . , dσ(n)). As a result, the decrease of the total tardiness is
equal to max(0, Ci − dσ(j)) + max(0, Ck − dσ(k))−max(0, Ci − dσ(k))−max(0, Ck − dσ(j)) which is
non-negative as shown in the first part of the Proposition 86 because Ci < Ck and dσ(k) ≤ dσ(j).
Now the two sequences are identical up to index j + 1. We iterate until the sequences are the same.
Hence lbChu ≤ lb1.

We provide an example for an instance with 3 activities, for which lb1 is equal to 1 whereas lbChu

is equal to 0 (see Table 11.4 and Figure 11.8). For this instance, lb1 is the optimal total tardiness.

170 Propagation of Objective Functions

Ai ri pi di

A1 0 1 3
A2 1 1 2
A3 1 1 2

Table 11.4: Example with lb1 > lbChu .
�

dσ(3)=3�dσ(1)=dσ(2)=2�

d2=d3=2�

t=0� 2�1�

A1� A2� A3�

d1=3�

3�

Figure 11.8: Assignment of Due Dates Obtained by the Algorithm Computing lb1 (d1, d2, d3) and
by Chu’s Algorithm (dσ(1), dσ(2), dσ(3)).

Improving the Lower Bound

To improve our lower bound, we extensively use the Generalized Emmons Rules as a pre-processing
step before the computation of the lower bound. The lower bound is valid in the preemptive case
hence, we can apply the Generalized Emmons Rules. They allow us to tighten the release dates,
which has a dramatic impact on the value of the lower bound.

Recall that, to compute our lower bound, we chronologically build a preemptive schedule (see
Section 11.2.2). We still follow the same algorithm but, at each time point where a piece of activity
to schedule next has to be chosen, we apply the Generalized Emmons Rules on the activities that
are not scheduled yet.

Since there are O(n) relevant time points and since the propagation of the Generalized Emmons
Rules runs in O(n3), the improved lower bound can be computed in O(n4). In practice, the propa-
gation of the Generalized Emmons Rules is much “faster” than O(n3) and the bound is computed
in a reasonable amount of time. In the following we use the notation lb2 to refer to this bound.

11.2.3 Constraint Propagation

Focacci [102] has recently proposed an original approach based on Constraint Programming to
compute a lower bound of 1|ri|

∑
Ti. In this approach, each activity is associated with a constrained

variable identifying all possible positions (first, second, third, etc.) that the activity can assume in a
schedule. Following this idea, we present some rules that deduce that an activity cannot be executed
in some positions. This information allows us to adjust the release dates.

From now on, we assume that activities are sorted in non-decreasing order of due dates.

As in Section 11.2.1, [i] denotes the index of the activity which is completed in the ith position
in the SRPT schedule. We know that C[i] is a lower bound of the completion time of the activity

scheduled in ith position and according to Proposition 84,
∑n

i=1 max(C[i] − di, 0) is a lower bound
of the total tardiness (each activity Ai is assigned to the completion time C[i]).

Suppose now that we want to compute a lower bound of the total tardiness under the hypothesis
that Ai is scheduled in the kth position. We first assign the completion time C[k] to Ai and we
reassign all other completion times to all other activities as follows.

• If k < i the activities Ak, Ak+1, . . . , Ai−1 are assigned to C[k+1], C[k+2], . . . , C[i] and the other
assignments do not change.

11.3 Sum of Transition Times and Sum of Transition Costs 171

• If k > i the activities Ai+1, Ai+2, . . . , Ak are assigned to C[i], C[i+1], . . . , C[k−1] and the other
assignments do not change.

Following these new assignments, we have a new lower bound. If it is greater than criterion (the
value of the objective function), then Ai cannot be in the kth position.

Now assume that we have shown that positions 1, . . . , k are not possible for an activity Ai then
Ai cannot be completed before C[k+1] and cannot start before C[k]. Hence, the release date ri can
be adjusted to max(ri, C[k+1] − pi, C[k]). Moreover, if k > 1 then i cannot be scheduled first. Of
course, symmetric rules hold when it is known that the last k positions are not possible for Ai.

To implement this constraint propagation rule, we just have to use the O(n logn) algorithm of
Chu [75], to compute the values C[1], C[2] . . . , C[n]. Then, for each activity Ai and for each position k,
the lower-bound can be recomputed in linear time thanks to the reassignment rules provided above.
This leads to an overall time complexity of O(n3).

Actually, this algorithm can be improved as follows. Assume that we have computed the lower
bound under the assumption that Ai is scheduled in position k. To compute the lower bound under
the assumption that Ai is scheduled in position k − 1, we just have to exchange the assignments of
activity i and activity [k − 1]. The modification of the lower bound is then max(0, C[k−1] − di) −
max(0, C[k] − di) + max(0, C[k] − d[k−1])−max(0, C[k−1] − d[k−1]). Hence, we can “try” all possible
positions for Ai in linear time. All impossible positions can thus be computed in O(n2).

11.3 Sum of Transition Times and Sum of Transition Costs

In this section we pay attention to constraint propagation of transition time and transition cost
constraints. To simplify the presentation, we only consider the case where there are no cumulative
resources. We do include the possible presence of alternative resources (see Section 7.2.4). We
remark that much of the material in this section is based upon material in [103].

A comprehensive review of the research on scheduling involving setup considerations is given in
[7]. The authors review the literature on scheduling problems with sequence-dependent and sequence-
independent setup times, on a single machine and parallel machines. They finally suggest directions
for future research in the field. Some of these directions receive attention in this section, e.g.,
emphasis on multi-machine scheduling problems, on multi-criteria objectives, and on a generalized
shop environment. An important reference for this section is the paper of Brucker and Thiele [51]
where the authors propose a branch and bound algorithm for a scheduling problem with sequence-
dependent setup times. We also mention [105, 102] that extend on this work in the context of CP.
For more general considerations on cost-based constraint propagation we refer to [102].

The basis for the constraint propagation of transition times and transition costs described in
this section is formed by using a routing problem as a relaxation of the scheduling problem. In this
problem, one has a set of start nodes, a set of internal nodes, and a set of end nodes. Each
internal node i represents an activity Ai. When having m alternative machines, one is looking for
m disjoint routes or paths in the graph defined by these three sets. Each route corresponds to a
different machine, starting in the start node of the machine, traversing a sequence of internal nodes,
and ending in the end node of the machine. More precisely, let I = {1, . . . , n} be a set of n nodes,
and E = {n+ 1, . . . , n+m} and S = {n+m+ 1, . . . , n + 2 ∗m} two sets of m nodes. Nodes in I
represent internal nodes, nodes in S represent start nodes, and nodes in E represent end nodes. A
global constraint is defined ensuring that m different routes ρ1, . . . , ρm exist such that all internal
nodes are visited exactly once by a route starting from a node in S and ending in a node in E. Start
nodes n+m+1, . . . , n+2 ∗m belong to routes ρ1, . . . , ρm, respectively. End nodes n+1, . . . , n+m
belong to routes ρ1, . . . , ρm, respectively. Moreover, sets of possible routes can be associated to each
internal node.

In the CP model three variables per node are defined. Variables nexti and previ identify the nodes
visited directly after and directly before node i. Variables routei identify the route node i belongs to.
Variables nexti and previ take their values in {1, . . . , n+ 2m}. Variables routei take their values in
{1, . . . ,m}. Each start and end node has its route variable bound, i.e., routen+1 = 1, . . . , routen+m =
m, routen+m+1 = 1, . . . , routen+2m = m. In order to have a uniform treatment of all nodes inside

172 Propagation of Objective Functions

the constraint, each start node n + m + u has its prevn+m+u variable bound to the corresponding
end node (prevn+m+u = n + u), and each end node n + u has its nextn+u variable bound to the
corresponding start node (nextn+u = n+m+u). There furthermore exists a transition cost cu

ij that
expresses that if node j is visited directly after node i on a route u (nexti = j, routei = routej = u),
a cost cuij is induced. A feasible solution is defined as an assignment of distinct values to each
next variable, while avoiding sub-tours (tours containing only internal nodes), and respecting the
constraints

nexti = j ⇔ prevj = i

nexti = j ⇒ routei = routej

The problem is then to find an optimal feasible solution, i.e., a feasible solution that minimizes

n∑

i=1

cui nexti
(11.7)

As said, the routing problem described constitutes a relaxation of the global scheduling problem.
If an internal node i has its next variable assigned to another internal node j, activity Ai directly
precedes activity Aj . If an internal node i has its next variable assigned to an ending node n + u,
activity Ai is the last activity scheduled on machine Mu. The transition costs cuij of the routing
problem correspond to the setup times (setup(Ai, Aj ,Mu)) or setup costs (setupCost(Ai, Aj ,Mu))
between activities; therefore the minimization of the total transition cost (11.7) in the routing
problem corresponds to the minimization of the sum of setup times or setup costs in the scheduling
problem.

11.3.1 Route Optimization Constraint

In this section, we describe the constraint propagation given in [103]. One of the basic ideas is to
create a global constraint having a propagation algorithm aimed at removing those assignments from
variable domains which do not improve the best solution found so far. Domain reduction is achieved
by optimally solving a problem which is a relaxation of the original problem.

We consider the Assignment Problem [82] as a relaxation of the routing problem described and
thus also of the global scheduling problem. The Assignment Problem is the graph theory problem
of finding a set of disjoint sub-tours such that all the vertices in a graph are visited and the overall
cost is minimized.

In the routing problem we look for a set of m disjoint routes each of them starting from a start
node and ending in the corresponding end node covering all nodes in a graph, i.e., considering that
each end node is connected to the corresponding start node, we look for a set of m disjoint tours
each of them containing a start node. This problem can be formulated as an Assignment Problem
on the graph defined by the set of nodes in the routing problem and the set of arcs (i, j) such that
j ∈ domain(nexti). The cost on arc (i, j) is the minimal setup cost (or time), i.e.,

min
u∈domain(routei)∩domain(routej)

setupCost(Ai, Aj ,Mu).

The value of the optimal solution of the Assignment Problem is obviously a lower bound on the value
of the optimal solution of the routing problem. The primal-dual algorithm described in [65] provides
an optimal integer solution for the Assignment Problem with a O(n3) time complexity. Besides this
optimal assignment with the corresponding lower bound LB on the original problem, a reduced cost
matrix c̄ is obtained. Each c̄ij estimates the additional cost to be added to LB if variable nexti
takes the value j. These results can be used both in constraint propagation as in the definition of
search heuristics. The lower bound LB is trivially linked to the criterion variable representing the
objective function through the constraint LB ≤ criterion. More interesting is the propagation based
on reduced costs. Given the reduced cost matrix c̄, it is known that LBnexti=j = LB+ c̄ij is a valid
lower bound for the problem where nexti takes the value j. Therefore we can impose

LBnexti=j > ub(criterion)⇒ nexti 6= j

11.3 Sum of Transition Times and Sum of Transition Costs 173

As said, solving the Assignment Problem at the root can be done in O(n3). Each following assignment
recomputation due to domain reduction can be done in O(n2) time though (see [65] for details). The
reduced cost matrix is obtained without extra computational effort. Thus, the total time complexity
of the constraint propagation algorithm is O(n2).

The following improvement of the use of the reduced costs is also exploited. We want to evaluate
if value j could be removed from the domain of variable nexti on the basis of its estimated cost. Let
nexti = k and nextl = j in the optimal assignment. In order to assign nexti = j, l and k must be
re-assigned. The exact cost of this re-assignment can be calculated in O(n2), thus increasing the
global complexity of the constraint propagation algorithm. In [104], two bounds on this cost have
been proposed, the calculation of which does not increase the total time complexity of the constraint
propagation algorithm, which therefore remains O(n2). The events triggering this propagation are
changes in the upper bound of the objective function variable criterion and each change in the
domains of the next, prev, and route variables. Note that the assignment is recomputed only when
the cost of an arc (i, j) that is part of the current solution increases its value over a certain threshold.
The threshold T can be calculated as the minimum between the minimal reduced cost on row i and
the minimal reduced cost on column j (excluding the zero reduced cost c̄ij).

T = min(min
h6=j

(c̄ih),min
k 6=i

(c̄kj))

Recomputing the assignment is needed every time the removed value j from nexti belongs to the
solution of the Assignment Problem (cost cij is set to infinite), and it may be needed when the
reduction of the domain of routei or routej increases the minimal cost that is to be paid to go from
i to j in any of the remaining possible routes. In all other cases no recomputation is needed since
an increase in the cost of an arc that does not belong to the optimal solution does not change the
optimal solution itself.

We remark that reduced cost fixing appears to be particularly suited for CP. In fact, while
reduced cost fixing is extensively used in OR, it is usually not exploited to trigger other constraints,
but only in the following lower bound computation, i.e., the following node in the search tree. When
embedded in a CP framework, the reduced cost fixing produces domain reductions which usually
trigger propagation from other constraints in the problem through shared variables.

11.3.2 Precedence Graph Constraint

Linking the routing model and the scheduling model is done thanks to a precedence graph constraint.
This constraint maintains for each machine Mu an extended precedence graph Gu that allows to
represent and propagate temporal relations between pairs of activities on the machine as well as to
dynamically compute the transitive closure of those relations. More precisely, Gu is a graph whose
vertices are the alternative activities Au

i that may execute on machine Mu (see Section 7.2.4). A
node Au

i is said to surely contribute if machine Mu is the only possible machine on which Ai can
be processed. Otherwise, if activity Ai can also be processed on other machines, the node Au

i is said
to possibly contribute. Two kinds of edges are represented on Gu:

• A precedence edge between two alternative activities Au
i → Au

j means that if machine Mu

is chosen for both activities Ai and Aj , then Aj will have to be processed after Ai on Mu.

• A next edge between two alternative activities Au
i ; Au

j means that if machine Mu is chosen
for both activities Ai and Aj then Aj will have to be processed directly after Ai on Mu. No
activity may be processed on Mu between Ai and Aj .

The first role of the precedence graph is to incrementally maintain the closure of this graph when
new edges or vertices are inserted, i.e., to deduce new edges given the ones already present in the
graph. The following five rules [137] are used by the precedence graph:

1. If Au
i → Au

j , Au
j → Au

i , and Au
i surely contributes then Au

j does not contribute (Incompatibility
rule).

174 Propagation of Objective Functions

2. If Au
i → Au

l , Au
l → Au

j , and Au
l surely contributes then Au

i → Au
j (Transitive closure through

contributor).

3. If Au
l ; Au

i , Au
l → Au

j , and Au
l surely contributes then Au

i → Au
j (Next-edge closure on the

left).

4. If Au
j ; Au

l , Au
i → Au

l , and Au
l surely contributes then Au

i → Au
j (Next-edge closure on the

right).

5. If for all Au
l either Au

l → Au
i or Au

j → Au
l then Au

i ; Au
j (Next-edge finding).

New edges are added on the precedence graph Gu by the scheduling constraints (precedence and
resource constraints) and by the route optimization constraint (whenever a variable nexti is bound
a new next-edge is added). Besides computing the incremental closure, the precedence graph also
incrementally maintains the set of activities that are possibly next to a given activity Au

i given the
current topology of Gu. As such it allows to effectively reduce the domain of the variables nexti
and previ. Furthermore, the precedence graph constraint propagates the current set of precedence
relations expressed on Gu on the start and end variables of activities.

11.4 Conclusion

In this chapter constraint propagation methods related to the minimization of the number of late
jobs and to the minimization of setup times and setup costs have been presented. They drastically
improve the behavior of Constraint-Based Scheduling systems on problems involving these criteria.
However, there are several other criteria. In particular, the total weighted tardiness is widely used
in the industry but until now poor results are obtained on this problem. This constitutes a very
interesting research area.

Finally, users of Constraint-Based Scheduling tools often have to define their own criteria. A
research challenge is to design generic lower-bounding techniques and constraint propagation algo-
rithms that could work for any criterion.

Chapter 12

Resolution of Disjunctive
Problems

Disjunctive problems are scheduling problems where all resources are machines (hence activities
on the same machine cannot overlap in time, i.e., they are in disjunction). These problems have
been widely studied in the literature. In this chapter we address three problems: (1) the Job-Shop
Problem where operations of jobs have to be processed in a given order by some specified machines,
(2) the Open-Shop Problem where operations of the same job cannot overlap in time but can be
executed in any order and (3) the Preemptive Job-Shop Problem.

12.1 Job-Shop Scheduling

The Job-Shop Scheduling Problem (JSSP) consists of n jobs that are to be executed using m ma-
chines. The benchmark problems used in our computational study are such that each job consists
of m activities of given processing times to be executed in a specified order. Each activity requires
a specified machine and each machine is required by a unique activity of each job. The JSSP is an
NP-hard problem [108], known to be among the most difficult in this class. Many different methods
have been tested. Most of them are branch and bound methods based upon a disjunctive graph
[56], but other approaches have been used with some success as well: Mixed Integer Programming
(MIP), genetic algorithms, simulated annealing, tabu search, etc.

First, the JSSP is an optimization problem. The goal is to determine a solution with minimal
makespan and prove the optimality of the solution. The makespan is represented as an integer
variable criterion constrained to be greater than or equal to the end of any activity. Several strategies
can be considered to minimize the value of that variable, e.g., iterate on the possible values, either
from the lower bound of its domain up to the upper bound (until one solution is found), or from the
upper bound down to the lower bound (determining each time whether there still is a solution). In
our experiments, the dichotomizing algorithm of Section 7.2.5 is used.

12.1.1 Branching Scheme

A branching procedure with constraint propagation at each node of the search tree (including dis-
junctive constraint propagation and Edge-Finding as described in Section 8.1.2 and Section 8.1.3)
is used to determine whether the problem with makespan at most D has a solution. We rely on the
fact that in order to obtain a solution it is sufficient to order the jobs on the machines. So the basic
structure of this algorithm is as follows:

1. Select a resource among the resources on which the activities are not fully ordered.

2. Select an activity to execute first among the unordered activities that require the chosen re-
source. Post the corresponding precedence constraints. Keep the other activities as alternatives

176 Resolution of Disjunctive Problems

to be tried upon backtracking.

3. Iterate step 2 until all the activities that require the chosen resource are ordered.

4. Iterate steps 1 to 3 until all the activities on all resource are ordered.

Scheduling problems are generally such that resources are not equally loaded. Some resources
are, over some periods of time, more relied upon than others. These resources are often called
“critical”. Their limited availability is a factor which prevents the reduction of a project cost or
duration. It is, in general, very important to schedule critical resources first, in order to optimize
the use of these resources without being bound by the schedule of other resources. A standard
way to measure the criticality of a resource consists of comparing the “demand” for the resource to
its availability (“supply”) over a specific period of time. Here, for example, the time period under
consideration may run from the earliest release date of the activities to order, to the largest deadline.
As the capacity of the resource is 1 at all times, the supply over this time interval is the length of
the interval. The demand over the interval is the sum of the processing times of the activities to
execute. Criticality is then defined as the difference between demand and supply. The main interest
of ordering all the activities of the critical resource first is that when all these activities are ordered,
there is very little work left to do because constraint propagation has automatically ordered activities
on the other resources.

The next step requires the selection of the activity to schedule first. We choose the activity with
the earliest release date; in addition, the activity with the smallest latest start time is chosen when
two or several activities share the same release date.

Variants of this branch and bound procedure have been widely used in the literature [19, 37, 35,
44, 62, 63, 67, 78, 163, 177, 173, 180, 185] and have shown to be very efficient. Instances of the JSSP
with up to 10 jobs and 10 machines can be solved within a few minutes of CPU time.

12.1.2 Computational Results

Table 12.1 gives the results obtained with the simple algorithm described above on the ten 10*10
JSSP instances used in the computational study of [8]. The columns “BT” and “CPU” give the total
number of backtracks and CPU time needed to find an optimal solution and prove its optimality.
Columns “BT(pr)” and “CPU(pr)” give the number of backtracks and CPU time needed for the
proof of optimality. All CPU times are given in seconds on a 200 MHz PC.

Instance BT CPU BT(pr) CPU(pr)

FT10 50908 297.9 7745 28.1
ABZ5 18463 43.2 6964 16.0
ABZ6 857 3.1 270 0.9
LA19 24154 57.8 5655 13.7
LA20 115114 228.3 24704 50.2
ORB1 14769 50.3 5357 18.5
ORB2 99665 298.6 30447 89.1
ORB3 273597 906.6 25556 92.5
ORB4 97509 367.7 22422 86.3
ORB5 9163 27.3 3316 9.6

Table 12.1: Results on ten 10*10 instances of the JSSP

This simple algorithm can easily be improved, as shown in the above references. In particular, re-
cent algorithms incorporate “Shaving” techniques [63, 163, 180, 194] as described in the next section.
Moreover, complex constraint propagation methods that take (partially) into account precedence re-
lations between activities have shown to be extremely powerful. The best techniques available so far
[179, 204, 205] allow to prove the optimality of all 10*10 instances in less than 30 seconds of CPU
time.

12.2 Open-Shop Scheduling 177

12.2 Open-Shop Scheduling

The Open-Shop Scheduling Problem (OSSP) consists of a set of n jobs {J1, . . . , Jn} that have to be
scheduled on m parallel identical machines M1, . . . ,Mm. A job consists of a set of operations with
a given machine and processing time. Operations of the same job cannot overlap in time. The goal
is to find a schedule with minimal makespan. The OSSP is NP-hard and has been shown to be very
hard to solve in practice.

In our Constraint-Based Scheduling model, the Open-Shop Problem is modeled as a set of activ-
ities Aij with given processing times pij . Each activity Aij requires two resources representing the
machine on which the activity is executed and the job Ji (since activities of the same job cannot
overlap).

As for the JSSP, a minimal makespan solution can be found by a dichotomizing search. At each
iteration, we solve the resulting decision problem, i.e., determine a solution with makespan lower
than or equal to some value D or prove that no such solution exists.

12.2.1 Branching Scheme

The same branching scheme as for the JSSP is used to solve each decision variant of the OSSP. On
top of this, we use a simple dominance relation to reduce the search space. Consider a solution
of the OSSP and let us define the symmetric counterpart of this schedule (start each activity Aij at
time t′ij = makespan− (tij +pij), where tij is the starting time of activity Aij on the initial schedule.
It is easy to prove that the symmetric schedule is still valid. So we can arbitrary pick any activity
Aij and impose, a priori, that it executes mostly in the first half of the schedule:

start(Aij) ≤

⌊
makespan − pij

2

⌋

An interesting question is how to determine the activity on which this domain reduction is to be
achieved. To estimate the impact of this domain reduction, it is “tried”. For each activity Aij , we
compute the sum of the domain sizes of the variables of the problem when Aij is constrained to
execute mostly in the first half of the schedule. This is, we hope, a rough estimation of the remaining
hardness of the problem. The activity that minimizes this sum is picked.

12.2.2 More and More Propagation: Shaving

Global operations also called “Shaving” have been used by Carlier and Pinson [63] and by Martin
and Shmoys [163] to reduce the search space for the JSSP. This mechanism is also valid for any
disjunctive problem (e.g., Dorndorf, Pesch and Phan-Huy [87] show in their computational study of
the OSSP that it can be of great practical interest). The basic idea is very simple. At each node of
the search tree and for each activity Ai, the earliest date xi at which the activity can be scheduled
without triggering a contradiction is computed. This basically consists of

1. iteratively trying a start time for the activity Ai,

2. propagating the consequence of this decision thanks to the edge-finding bounding technique,
and

3. verifying that no contradiction has been detected.

The earliest date xi is of great interest since it can serve to adjust the release date of the activity.
A dichotomizing procedure can be used to determine the date xi. It decreases both the theoretical
and the practical complexities of the algorithm.

Several extensions of this mechanism are proposed by Péridy [180]. The underlying idea is to
impose a decision (e.g., a starting time for a given activity) and to exploit the consequences of this
decision in more or less complex algorithms to obtain global information on the instance.

178 Resolution of Disjunctive Problems

12.2.3 Computational Results

On top of the dominance relation and of the classical disjunctive branching scheme, we also apply
two propagation features used by Dorndorf, Pesch and Phan-Huy [87] in their computational study
of the Open-Shop :

• Not-First, Not-Last propagation (cf., Section 8.1.4) and

• Shaving, as defined in Section 12.2.2.

To evaluate the efficiency of these propagation techniques, the branch and bound procedure has
been run on 132 instances of the OSSP (52 instances from [41] and 80 instances from [114]). These
instances contain up to 100 jobs. Four variants of the algorithm have been tested:

• STD. Propagation includes the disjunctive constraint, Edge-Finding and the Not-First and
Not-Last rules applied only to the maximal set of unordered activities.

• SH. Earliest start times and latest end times are shaved using the STD propagation.

• NFNL. Similar to STD but the Not-First and Not-Last rules are applied to all possible subsets.

• SH+NFNL. Both Shaving and Not-First Not-Last propagation are used.

Within a one hour time-limit, 122 instances can be solved by any of the procedures that use Shaving.
These results compare well to more complex procedures such as [41]. Dorndorf, Pesch and Phan-Huy
[87] report better computational results thanks to an improved version of the dichotomic search.

With STD and NFNL, 108 and 107 instances only are solved respectively. Figure 12.1 reports
the number of instances solved (Nb Solved) within a given time limit (CPU) for the four different
versions of the search procedure.

0
20
40
60
80
100
120
140

0.01 0.1 1 10 100 1000 1000
CPU

Nb
 S

ol
ve

d

STD SH NFNL SH+NFNL

Figure 12.1: Number of OSSP instances solved in a given amount of CPU time

As noticed in [87], Shaving seems to be a key feature for solving the OSSP. However, it appears that
the cost of applying systematically the NFNL rules is not balanced by the corresponding reduction
of the search space. Applying the NFNL rules to the maximal subset can be done in linear time and
seems to capture most of the propagation information.

12.3 Preemptive Job-Shop Scheduling 179

12.2.4 Conclusion

As noticed by several researchers, the OSSP is harder to solve in practice than the JSSP. While all
10*10 instances of the JSSP are solved within a few second of CPU time, a 7*7 OSSP instance from
[41] is still open!

Several techniques have been recently designed for the Open-Shop. In particular, we have not
used, until now, any “intelligent backtracking” rule such as the one proposed by Guéret, Jussien
and Prins [115]. We are quite confident that, together with powerful propagation techniques such
as Shaving, this could lead to a drastic improvement for the resolution of the OSSP.

12.3 Preemptive Job-Shop Scheduling

The Preemptive Job-Shop Scheduling Problem (PJSSP) is the variant of the Job-Shop Scheduling
Problem (JSSP) in which all activities are interruptible. Given are a set of jobs and a set of machines.
Each job consists of a set of activities to be processed in a given order. Each activity is given an
integer processing time and a machine on which it has to be processed. A machine can process at
most one activity at a time. Activities may be interrupted at any time, an unlimited number of
times. The problem is to find a schedule, i.e., a set of integer execution times for each activity, that
minimizes the makespan, i.e., the time at which all activities are finished. We remark that the total
number of interruptions of a given activity is bounded by its processing time minus 1. The PJSSP
is NP-hard in the strong sense [108].

Formally, a start time variable start(Ai), an end time variable end(Ai), an integer processing
time pi and a set variable set(Ai) are associated with each activity Ai. The set variable set(Ai)
represents the set of times at which Ai executes, start(Ai) represents the time at which Ai starts,
end(Ai) the time at which Ai ends, and pi the number of time units required for Ai. An additional
variable, makespan, represents the makespan of the schedule. The following constraints apply:

• For every activity Ai, pi = |set(Ai)|.

• For every activity Ai, start(Ai) = mint∈set(Ai)(t) and end(Ai) = maxt∈set(Ai)(t + 1). This
implies end(Ai) ≥ start(Ai) + pi. We remark that in a given solution we have end(Ai) =
start(Ai) + pi if and only if Ai is not interrupted.

• For every job J = (A1, A2, . . . , Am) and every i in {1, 2, . . . ,m− 1}, end(Ai) ≤ start(Ai+1).

• For every machine M , if ΩM denotes the set of activities to be processed on M , then, for every
pair of activities (Ai, Aj) in ΩM , set(Ai) and set(Aj) are disjoint.

• For every activity Ai, 0 ≤ start(Ai).

• For every activity Ai, end(Ai) ≤ makespan.

Constraint propagation techniques for all these types of constraints have been presented in Chapters
1 and 2.

As seen in Section 12.1, the most successful branch and bound approaches for the non-preemptive
JSSP consist of ordering the set of activities ΩM which require the same machine M . At each
node, a machine M and a set Ω ⊆ ΩM are selected. For each activity Ai in Ω, a new branch is
created where Ai is constrained to execute first (or last) among the activities in Ω. This decision
is then propagated, through some variant or extension of the Edge-Finding constraint propagation
technique. For the PJSSP, this branching scheme is not valid since activities are interruptible, and
thus cannot just be ordered. This has a dramatic impact on the size of the search space. Let us
consider, for example, 4 activities, each of processing time 10, to be executed on the same machine:
there are 40!/(10!)4 = 4705360871073570227520 possible orders of the 40 activity time units in the
PJSSP, to be compared with 4! = 24 orders of the 4 activities in the JSSP. Considering only one of
these activities Ai with earliest start time 0 and latest end time 40, the number of possible values
for set(Ai) is 40!/(10! ∗ 30!) = 847660528 in the PJSSP, to be compared with 40− 10 = 30 possible

180 Resolution of Disjunctive Problems

values for start(Ai) in the JSSP. As often in CP, the first and foremost thing to do (besides constraint
propagation) to solve the PJSSP is to establish a dominance relation allowing the elimination of
dominated solutions.

Section 12.3.1 presents such a dominance relation. Section 12.3.2 shows how it enables the
definition of a simple depth first search algorithm for the Preemptive Job-Shop Scheduling Problem.
Section 12.3.3 presents and compares different heuristic variants of this algorithm (still based on
depth first search) and Section 12.3.4 examines the replacement of depth first search with various
forms of limited discrepancy search [116].

12.3.1 Dominance Relation

The dominance relation introduced in this section allows the design of branching schemes which in
a sense “order” the activities that require the same machine. The basic idea is that it does not
make sense to let an activity Ai interrupt an activity Aj by which it was previously interrupted. In
addition, Ai shall not interrupt Aj if the successor of Ai (in its job) starts after the successor of Aj .
The following definitions and theorem provide a formal characterization of the dominance relation.

Definition 30. For any schedule S and any activity Ai, we define the “due date of Ai in S” dS(Ai)
as:

• the makespan of S if Ai is the last activity of its job;

• the start time of the successor of Ai (in its job) otherwise.

Definition 31. For any schedule S, an activity Ak has priority over an activity Al in S (Ak <S Al)
if and only if either dS(Ak) < dS(Al) or dS(Ak) = dS(Al) and k ≤ l. Note that <S is a total order.

Proposition 88. For any schedule S, there exists a schedule J(S) such that:

1. J(S) meets the due dates: ∀Ai, the end time of Ai in J(S) is at most dS(Ai).

2. J(S) is “active”: For any machine M and any time point t, if some activity Ai ∈ ΩM is
available at time t, M is not idle at time t (where “available” means that the predecessor of
Ai is finished and Ai is not finished).

3. J(S) follows the <S priority order: ∀M , ∀t, ∀Ak ∈ ΩM , ∀Al ∈ ΩM , Al 6= Ak, if Ak executes
at time t, either Al is not available at time t or Ak <S Al.

Proof. We construct J(S) chronologically. At any time t and on any machine M , the available
activity that is the smallest (according to the <S order) is scheduled. J(S) satisfies properties 2
and 3 by construction. Let us suppose J(S) does not satisfy property 1. Let Ai denote the smallest
activity (according to <S) such that the end time of Ai in J(S) exceeds dS(Ai). We claim that:

• the schedule of Ai is not influenced by the activities Ak with Ai <S Ak (by construction);

• for every activity Ak <S Ai, the time at which Ak becomes available in J(S) does not exceed
the time at which Ak starts in S (because the predecessor of Ak is smaller than Ai).

Let M be the machine on which Ai executes. The activities Ak ∈ ΩM such that Ak <S Ai are, in
J(S), scheduled in accordance with Jackson’s rule (cf., [62]) applied to the due dates dS(Ak). Since
dS(Ai) is not met, and since Jackson’s rule is guaranteed to meet due dates whenever it is possible
to do so, we deduce that it is impossible to schedule the activities Ak ∈ ΩM such that Ak <S Ai

between their start times in S and their due dates in S. This leads to a contradiction, since in S
these activities are scheduled between their start times and their due dates.

We call J(S) the “Jackson derivation” of S. Since the makespan of J(S) does not exceed the
makespan of S, at least one optimal schedule is the Jackson derivation of another schedule. Thus, in
the search for an optimal schedule, we can impose the characteristics of a Jackson derivation to the
schedule under construction. This results in a significant reduction of the size of the search space.

12.3 Preemptive Job-Shop Scheduling 181

Job 3: executes on M2 (duration= 5), on M1 (duration= 2) and finally on M3 (duration= 1)

Job 2: executes on M1 (duration= 2), on M3 (duration= 1) and finally on M2 (duration= 2)

Job 1: executes on M1 (duration= 3), on M2 (duration= 3) and finally on M3 (duration= 5)

M1
M2
M3

Schedule S

M1
M2
M3

Schedule J(S)

Figure 12.2: A preemptive schedule and its Jackson derivation

12.3.2 Branching Scheme

The dominance relation of the previous section led us to develop the following branching scheme
(which heavily exploits the dominance relation):

1. Let t be the earliest date such that there is an activity Ai available (and not scheduled yet) at
t.

2. Compute K, the set of activities available at t on the same machine than Ai.

3. Compute NDK, the set of activities which are not “dominated” in K (as explained below).

4. Select an activity Ak in NDK (e.g., the one with the smallest latest end time). Schedule
Ak to execute at t. Propagate the decision and its consequences according to the dominance
relation (as explained below). Keep the other activities of NDK as alternatives to be tried
upon backtracking.

5. Iterate until all the activities are scheduled or until all alternatives have been tried.

Needless to say, the power of this branching scheme highly depends on the rules that are used
to eliminate “dominated” activities in step 3 and propagate “consequences” of the choice of Ak in
step 4. The dominance relation is exploited as follows:

• Whenever Ak ∈ ΩM is chosen to execute at time t, it is set to execute either up to its earliest
possible end time or up to the earliest possible start time of another activity Al ∈ ΩM which
is not available at t.

• Whenever Ak ∈ K is chosen to execute at time t, any other activity Al ∈ K can be constrained
not to execute between t and the end of Ak. At times t′ > t, this reduces the set of candidates
for execution (Al is “dominated” by Ak, hence not included in NDK). In step 4, “redundant”
constraints can also be added: end(Ak) + rpt(Al) ≤ end(Al), where rpt(Al) is the remaining
processing time of Al at time t; end(Ak) ≤ start(Al) if Al is not started at time t.

• Let Ak ∈ ΩM be the last activity of its job. Let Al ∈ ΩM be another activity such that either
l < k or Al is not the last activity of its job. Then, if Al is available at time t, Ak is not
candidate for execution at time t (Ak is dominated by Al).

The proof that these reductions of the search space do not eliminate all optimal schedules follows
from the fact that J(S) schedules are dominant. Indeed, in a J(S) schedule, (i) an activity cannot
be interrupted unless a new activity becomes available on the same resource, (ii) an activity Ak

182 Resolution of Disjunctive Problems

cannot execute when another activity Al is available, unless Ak <S Al, and (iii) we cannot have
Ak <S Al if Ak is the last activity of its job and either Al is not the last activity of its job or l < k.

This branching scheme is integrated in the dichotomizing algorithm of Section 7.2.5. The re-
sulting algorithm has been tested using different constraint propagation techniques for the resource
constraints: Time-Tables (TT), Edge-Finding (EF) and network flows (SCF, AEC and GUTB).
Computational results presented in [150] show that both Edge-Finding and the GUTB algorithm
allow the resolution of difficult problems with 100 activities. In particular, five of the ten 10 ∗ 10
(i.e., 10 machines ∗ 10 jobs = 100 activities) instances used by Applegate and Cook [8] in their
computational study of the (non-preemptive) Job-Shop Problem have been solved to optimality in
a few hours of CPU time using GUTB. The Edge-Finding algorithm enabled the exact resolution of
all of these ten instances with CPU time varying from 1 minute to 27 hours (3.4 hours on average)
on a 200 MHz PC.

12.3.3 Heuristic Algorithms

Several variants of the previous algorithm can be designed to search for “good” rather than optimal
solutions. Different algorithms shall then be compared not with respect to the time needed to solve
the optimization problem (i.e., find an optimal solution and prove it is optimal), but with respect
to the value of the best solution found after a given amount of time. Several changes to the previous
algorithm have been explored from this point of view.

Let us first consider the course of action to follow when a new solution has been found by the
branch and bound algorithm. The alternative is either to “continue” the search for a better solution
in the current search tree (with a new constraint stating that the makespan must be smaller than
the current one) or to “restart” a brand new branch and bound search (with the same additional
constraint). The main advantage of restarting the search is that the heuristic choices can rely on
the result of the new propagation (based on the new upper bound), which shall lead to a better
exploration of the search tree. The drawback is that parts of the new search tree may have been
explored in a previous iteration, which results in redoing the same unfruitful work.

As far as the PJSSP is concerned, the restart strategy brings another point of flexibility, con-
cerning the selection of an activity Ak in NDK. A basic strategy consists of selecting Ak according
to a specific heuristic rule. Selecting the activity with the earliest deadline seems reasonable since
it corresponds to the rule which optimally solves the Preemptive One-Machine Problem (see, for
instance, [62]). However, one can also rely on the best schedule S computed so far: selecting the
activity Ak with minimal dS(Ak) should help to find a better schedule when there exists one that is
“close” to the previous one.

In addition, the Jackson derivation operator J and its symmetric counterpart K can be used
to improve the current schedule. Whenever a new schedule S is found, derivations J and K can
be applied to improve the current schedule prior to restarting the search. Several strategies can
be considered, e.g., apply only J , apply only K, apply a sequence of J ’s and K’s. The following
strategy appears to work well on average:

• compute J(S) and K(S);

• replace S with the best schedule among J(S) and K(S), if this schedule is strictly better than
S (J(S) is chosen if J(S) and K(S) have the same makespan);

• if S has been replaced by either J(S) or K(S), iterate.

Globally, this leads to five strategies based on the previous depth first search algorithm: DFS-
C-E, DFS-R-E, DFS-R-E-JK, DFS-R-B and DFS-R-B-JK, where C, R, E, B, JK stand respectively
for “Continue search in the same tree”, “Restart search in a new tree”, “select activities according
to the Earliest deadline rule”, “select activities according to their position on the Best schedule met
so far” and “apply JK derivation operators”.

Table 12.2 provides the results obtained on the preemptive variant of the ten 10 ∗10 instances
used in [8]. Two constraint propagation techniques are considered: Time-Table as a fast algorithm
that does not prune much, and Edge-Finding as a constraint propagation algorithm that requires

12.3 Preemptive Job-Shop Scheduling 183

more time but enables better pruning of the search tree. Each line of the table corresponds to
a “constraint propagation + search” combination, and provides the mean relative error (MRE, in
percentage) obtained after 1, 2, 3, 4, 5, and 10 min of CPU time. For each instance, the relative
error is computed as the difference between the obtained makespan and the optimal value, divided
by the optimal value. The MRE is the average relative error over the ten instances.

Table 12.3 provides the results obtained on the thirteen instances used by Vaessens, Aarts, and
Lenstra [213] to compare local search algorithms for the non-preemptive Job-Shop Problem. As
these instances differ in size, we allocated to each instance an amount of time proportional to the
square of the number of activities in the instance. This means that column 1 corresponds to the
allocation of 1 min to a 10 ∗10 problem, 15 sec for a 10 ∗5 problem, 4 min for a 20 ∗10 problem,
etc. We used the square of the number of activities, because the time spent per node appeared to
be approximately linear in the number of activities [151], and the number of decisions necessary
to construct a schedule (i.e., the depth of the search tree) is also proportional to the number of
activities (hence the time necessary to reach the first solution tends to increase as the square of the
number of activities). To our knowledge, five of the thirteen instances are, in the preemptive case,
open (and we have been unable to solve them with the exact algorithm). For these instances, we
applied a variant of Edge-Finding and Shaving (cf., Section 12.2.2) to obtain a lower bound, and
thus estimate the relative error.

Prop. algo. Search strategy 1 2 3 4 5 10

Time-Table DFS-C-E 16.74 16.37 16.25 16.25 16.25 16.18
DFS-R-E 16.74 16.42 16.40 16.37 16.37 16.18
DFS-R-E-JK 8.95 8.95 8.95 8.95 8.95 8.33
DFS-R-B 14.67 14.48 14.48 14.48 14.13 13.72
DFS-R-B-JK 8.32 8.16 7.74 7.73 7.73 7.34

Edge-Finding DFS-C-E 5.23 4.64 3.80 3.09 2.94 1.55
DFS-R-E 5.70 5.26 4.99 4.47 4.09 2.73
DFS-R-E-JK 4.29 3.67 3.17 2.55 2.42 1.62
DFS-R-B 4.23 3.68 3.41 2.82 2.80 1.41
DFS-R-B-JK 1.69 1.32 0.86 0.80 0.79 0.65

Table 12.2: DFS results on the ten instances used in [8]

Prop. algo. Search strategy 1 2 3 4 5 10

Time-Table DFS-C-E 16.28 16.04 16.03 15.96 15.96 15.96
DFS-R-E 16.34 16.08 16.06 16.05 16.04 16.02
DFS-R-E-JK 9.22 9.22 9.22 9.22 9.22 9.04
DFS-R-B 14.55 14.36 14.28 14.28 14.28 14.25
DFS-R-B-JK 8.82 8.70 8.60 8.59 8.59 7.84

Edge-Finding DFS-C-E 4.33 3.98 3.62 3.52 3.47 3.15
DFS-R-E 4.99 4.80 4.49 4.25 3.96 3.72
DFS-R-E-JK 4.02 3.74 3.32 3.26 3.22 3.03
DFS-R-B 3.96 3.64 3.42 3.42 3.42 3.04
DFS-R-B-JK 2.26 2.12 1.94 1.77 1.77 1.72

Table 12.3: DFS results on the thirteen instances used in [213]

These tables show that the use of the Edge-Finding technique enables the generation of good
solutions in a limited amount of time and that the DFS-R-B-JK variant clearly outperforms the
other algorithms, especially when the Edge-Finding technique is used.

184 Resolution of Disjunctive Problems

12.3.4 Limited Discrepancy Search

Limited Discrepancy Search (LDS) [116] is an alternative to the classical depth first search algorithm.
This technique relies on the intuition that heuristics make few mistakes through the search tree.
Thus, considering the path from the root node of the tree to the first solution found by a DFS
algorithm, there should be few “wrong turns” (i.e., few nodes which were not immediately selected
by the heuristic). The basic idea is to restrict the search to paths which do not diverge more than
w times from the choices recommended by the heuristic. When w = 0, only the leftmost branch of
the search tree is explored. When w = 1, the number of paths explored is linear in the depth of the
search tree, since only one alternative turn is allowed for each path. Each time this limited search
fails, w is incremented and the process is iterated, until either a solution is found or it is proven that
there is no solution. It is easy to prove that when w gets large enough, LDS is complete. At each
iteration, the branches where the discrepancies occur close to the root of the tree are explored first
(which makes sense when the heuristics are more likely to make mistakes early in the search).

Several variants of the basic LDS algorithm can be considered:

• When the search tree is not binary, it can be considered that the ith best choice according to
the heuristic corresponds either to 1 or to (i− 1) discrepancies. In the following, we consider
it represents (i − 1) discrepancies because the second best choice is often much better than
the third, etc. In practice, this makes the search tree equivalent to a binary tree where each
decision consists of either retaining or eliminating the best activity according to the heuristic.

• The first iteration may correspond either to w = 0 or to w = 1. In the latter case, one can
also modify the order in which nodes are explored during the first iteration (i.e., start with
discrepancies far from the root of the tree). The results reported below are based on a LDS
algorithm which starts with w = 0.

• Korf proposed an improvement based on an upper bound on the depth of the search tree [131].
In our case, the depth of the search tree can vary a lot from a branch to another (even though
it remains linear in the size of the problem), so we decided not to use Korf’s variant. This
implies that, to explore a complete tree, our implementation of LDS has a very high overhead
over DFS.

• Walsh proposed another variant called “Depth-bounded Discrepancy Search” (DDS), in which
any number of discrepancies is allowed, provided that all the discrepancies occur up to a given
depth [216]. This variant is recommended when the heuristic is very unlikely to make mistakes
in the middle and at the bottom of the search tree (i.e., when almost all mistakes occur at low
depth). We tried both LDS and DDS, and decided to focus on LDS, which appears to perform
better. Some computational results with DDS are provided below.

Table 12.4 provides the results obtained by the five LDS variants, LDS-C-E, LDS-R-E, LDS-R-
E-JK, LDS-R-B and LDS-R-B-JK, on the ten instances used by Applegate and Cook. Table 12.5
provides the results for the thirteen instances used by Vaessens, Aarts, and Lenstra. Figures 12.3 and
12.4 present the evolution of the mean relative error for the eight “constraint propagation + search”
combinations in which the J and K operators are used. The combination of the Edge-Finding
constraint propagation algorithm with LDS-R-B-JK appears to be the clear winner.

Tables 12.6 and 12.7 provide the results obtained using DFS and variants of LDS with the Edge-
Finding constraint propagation algorithm and the R-E-JK and R-B-JK heuristic search strategies.
In these tables, LDSN and DDSN refer to the application of the LDS and DDS principles on the
N -ary tree, where each son of a node corresponds to scheduling one candidate activity on the
corresponding machine. LDS and DDS (without the N) correspond to the application of LDS and

12.3 Preemptive Job-Shop Scheduling 185

Prop. algo. Search strategy 1 2 3 4 5 10

Time-Table LDS-C-E 9.55 9.43 9.16 9.08 8.95 8.52
LDS-R-E 10.46 9.87 9.22 8.98 8.98 8.52
LDS-R-E-JK 7.68 6.75 6.75 6.75 6.75 5.98
LDS-R-B 5.75 4.95 4.42 4.16 4.16 3.61
LDS-R-B-JK 6.14 5.67 5.59 5.14 5.07 4.20

Edge-Finding LDS-C-E 3.20 2.70 2.42 2.08 1.77 1.41
LDS-R-E 3.52 2.90 2.67 2.39 2.25 1.66
LDS-R-E-JK 2.17 2.03 1.86 1.71 1.38 1.24
LDS-R-B 1.10 0.95 0.75 0.74 0.60 0.39
LDS-R-B-JK 0.64 0.64 0.55 0.36 0.32 0.23

Table 12.4: LDS results on the ten instances used in [8]

Prop. algo. Search strategy 1 2 3 4 5 10

Time-Table LDS-C-E 11.43 11.12 11.08 10.89 10.53 10.43
LDS-R-E 11.53 11.24 11.12 10.95 10.59 10.40
LDS-R-E-JK 7.98 7.97 7.95 7.89 7.87 7.40
LDS-R-B 6.58 5.92 5.64 5.44 5.26 4.68
LDS-R-B-JK 5.93 5.82 5.78 5.66 5.66 4.60

Edge-Finding LDS-C-E 3.57 3.02 2.85 2.77 2.57 2.27
LDS-R-E 4.33 3.37 3.14 2.91 2.78 2.39
LDS-R-E-JK 2.43 2.20 2.03 1.82 1.73 1.61
LDS-R-B 2.25 1.80 1.76 1.74 1.58 1.13
LDS-R-B-JK 1.75 1.28 1.03 0.92 0.92 0.79

Table 12.5: LDS results on the thirteen instances used in [213]

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

1 2 3 4 5 6 7 8 9 10

TT + DFS-R-E-JK
TT + DFS-R-B-JK
TT + LDS-R-E-JK
TT + LDS-R-B-JK
EF + DFS-R-E-JK
EF + DFS-R-B-JK
EF + LDS-R-E-JK
EF + LDS-R-B-JK

Time factor

MRE

Figure 12.3: Evolution of the mean relative error on the ten instances used in [8]

186 Resolution of Disjunctive Problems

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

1 2 3 4 5 6 7 8 9 10

TT + DFS-R-E-JK
TT + DFS-R-B-JK
TT + LDS-R-E-JK
TT + LDS-R-B-JK
EF + DFS-R-E-JK
EF + DFS-R-B-JK
EF + LDS-R-E-JK
EF + LDS-R-B-JK

Time factor

MRE

Figure 12.4: Evolution of the mean relative error on the thirteen instances used in [213]

DDS to the binary tree in which each decision consists of either scheduling or postponing the best
candidate. Figure 12.5 illustrates the difference between the five algorithms, DFS, LDS, LDSN ,
DDS, and DDSN , on a ternary tree of depth three. “ITE” shows at which iteration each leaf of the
tree is attained (starting with iteration number 0) and “ORD” shows in which order the leaves are
visited. It shall be noted that, to explore a complete tree, LDS and DDS have a high overhead over
DFS. Hence, LDS and DDS must quickly repair the bad decisions to beat DFS. LDSN and DDSN

have a much smaller overhead on a complete tree. Hence, their performance is less dependent on the
quick repair of the “worst” decisions. However, in LDSN and DDSN , the 2nd, 3rd, . . . and Nth sons
of a node are considered equal, which can lead to the early exploration of unpromising branches.

Prop. algo. Search strategy 1 2 3 4 5 10

Edge-Finding DFS-R-E-JK 4.29 3.67 3.17 2.55 2.42 1.62
LDS-R-E-JK 2.17 2.03 1.86 1.71 1.38 1.24
LDSN -R-E-JK 2.66 2.13 1.93 1.74 1.62 1.27
DDS-R-E-JK 2.81 2.20 1.93 1.71 1.67 1.34
DDSN -R-E-JK 3.17 2.50 2.33 2.25 1.63 1.51
DFS-R-B-JK 1.69 1.32 0.86 0.80 0.79 0.65
LDS-R-B-JK 0.64 0.64 0.55 0.36 0.32 0.23
LDSN -R-B-JK 1.10 0.91 0.70 0.64 0.53 0.47
DDS-R-B-JK 2.01 1.68 1.29 1.11 0.89 0.72
DDSN -R-B-JK 1.98 1.63 1.34 1.21 1.03 0.81

Table 12.6: LDS variants on the ten instances used in [8]

LDS on the binary tree appears to be the best overall alternative. LDSN -R-B-JK also performs
well, in particular in Table 12.7. By contrast, DDS and DDSN do not perform well. In particular,
DDS-R-B-JK and DDSN -R-B-JK do not perform better than DFS-R-B-JK in Table 12.6 and for
the first values of the time factor in Table 12.7.

Edge-Finding appears as the most crucial of the techniques we used to provide good solutions
to the PJSSP. On the 13 instances used in [213], all the algorithms that use Edge-Finding perform
better than all the algorithms that do not. Tables 12.8 and 12.9 provide the average gains in MRE
over the 8 DFS-R-∗-∗ and LDS-R-∗-∗ scenarios, when each of the other techniques is added. When
Edge-Finding is not used, LDS appears as the second most important technique. When Edge-Finding
is used, the contributions of the different techniques are closer one to the other. This confirms the
observation in [30] that LDS appears to help the weaker algorithms to a greater extent than the

12.3 Preemptive Job-Shop Scheduling 187

Prop. algo. Search strategy 1 2 3 4 5 10

Edge-Finding DFS-R-E-JK 4.02 3.74 3.32 3.26 3.22 3.03
LDS-R-E-JK 2.43 2.20 2.03 1.82 1.73 1.61
LDSN -R-E-JK 2.61 2.32 2.21 1.93 1.86 1.81
DDS-R-E-JK 3.46 3.10 2.98 2.30 2.29 2.16

DDSN -R-E-JK 3.69 2.96 2.90 2.79 2.61 2.39
DFS-R-B-JK 2.26 2.12 1.94 1.77 1.77 1.72
LDS-R-B-JK 1.75 1.28 1.03 0.92 0.92 0.79
LDSN -R-B-JK 1.50 0.99 0.87 0.86 0.86 0.78
DDS-R-B-JK 2.68 2.47 2.20 1.56 1.51 1.26
DDSN -R-B-JK 2.68 2.40 1.87 1.59 1.56 1.32

Table 12.7: LDS variants on the thirteen instances used in [213]

stronger algorithms.

Prop. algo. Search strategy 1 2 3 4 5 10

Time-Table LDS 4.66 5.19 5.40 5.62 5.56 5.82
B 2.24 2.18 2.27 2.38 2.49 2.53
JK 4.13 4.05 3.87 3.85 3.79 4.04

Edge-Finding LDS 2.12 1.85 1.65 1.36 1.39 0.72
B 2.00 1.82 1.78 1.60 1.41 1.14
JK 1.44 1.29 1.35 1.25 1.21 0.61

Table 12.8: Average gains on the ten instances used in [8]

Prop. algo. Search strategy 1 2 3 4 5 10

Time-Table LDS 4.23 4.35 4.41 4.55 4.69 5.01
B 2.30 2.43 2.51 2.53 2.48 2.87
JK 4.26 3.97 3.89 3.84 3.71 4.12

Edge-Finding LDS 1.12 1.41 1.31 1.33 1.34 1.40
B 1.39 1.32 1.20 1.10 1.00 1.02
JK 1.26 1.07 1.12 1.13 1.03 0.78

Table 12.9: Average gains on the thirteen instances used in [213]

Globally, the best algorithm relies on LDS and on Edge-Finding, and provides excellent solutions
to the Preemptive Job-Shop Scheduling Problem, in a reasonable amount of time.

188 Resolution of Disjunctive Problems

ITE
DFS 0
LDS 0 1 2 1 2 3 2 3 4 1 2 3 2 3 4 3 4 5 2 3 4 3 4 5 4 5 6
LDSN 0 1 1 1 2 2 1 2 2 1 2 2 2 3 3 2 3 3 1 2 2 2 3 3 2 3 3
DDS 0 3 4 2 4 5 3 4 5 1 4 5 3 5 6 4 5 6 2 4 5 3 5 6 4 5 6
DDSN 0 3 3 2 3 3 2 3 3 1 3 3 2 3 3 2 3 3 1 3 3 2 3 3 2 3 3
ORD
DFS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z &
LDS A D J C I Q H P W B G O F N V M U Z E L T K S Y R X &
LDSN A F G D P Q E R S B J K H T U I V W C N O L X Y M Z &
DDS A E I C J P F K Q B L R G S X M T Y D N U H V Z O W &
DDSN A J K D L M E N O B P Q F R S G T U C V W H X Y I Z &

Figure 12.5: The behavior of the five algorithms on a balanced ternary tree

Chapter 13

Cumulative Scheduling Problems

Many industrial scheduling problems are variants, extensions or restrictions of the “Resource-
Constrained Project Scheduling Problem”. Given (i) a set of resources with given capacities, (ii) a
set of non-interruptible activities of given processing times, (iii) a network of precedence constraints
between the activities, and (iv) for each activity and each resource the amount of the resource re-
quired by the activity over its execution, the goal of the RCPSP is to find a schedule meeting all
the constraints whose makespan (i.e., the time at which all activities are finished) is minimal. The
decision variant of the RCPSP, i.e., the problem of determining whether there exists a schedule of
makespan smaller than a given deadline, is NP-hard in the strong sense [108].

In particular, the Hybrid Flow-Shop Scheduling Problem (HFSSP) is a special case of the RCPSP.
To precisely define the Hybrid Flow-Shop Scheduling Problem, assume that a set {J1, . . . , Jn} of n
simultaneously available jobs must be sequentially processed on a set of s stages S = {1, 2, . . . , s}.
Each job is processed first at stage 1, then at stage 2, . . ., and finally at stage s. At stage j, mj

identical parallel machines are available. Each job Ji can only be processed on one machine at a
time and consists of s operations Oi1, Oi2, . . . , Ois. An operation Oij has a processing time pij and
has to be processed without preemption on only one of the machines at stage j. The objective is,
again, to find a schedule which minimizes the maximum completion time.

It is obvious that the HFSSP can be seen as a RCPSP where each operation is modeled by an
activity and where each stage j is modeled by a resource of capacity mj . Resource requirements
are unitary, and the precedence network is made of n chains representing the jobs. Notice that if
there are only two stages and if there is a single machine at each of the two stages, then the above
Hybrid Flow-Shop Problem is solvable in O(n log n) time by the well-known algorithm developed by
Johnson [127]. Other than this case, the Hybrid Flow-Shop Scheduling Problem is NP-hard in the
strong sense even if there are only two available machines at one of the stages [121].

The aim of this computational study is to test the efficiency of the constraint propagation schemes
described in the previous chapters and also to investigate one particular dimension along which
problems differ. Within the cumulative scheduling class, we distinguish between highly disjunctive
and highly cumulative problems: a scheduling problem is highly disjunctive when many pairs of
activities cannot execute in parallel on the same resource; conversely, a scheduling problem is highly
cumulative when many activities can execute in parallel on the same resource. To formalize this
notion, we introduce the disjunction ratio, i.e., the ratio between a lower bound of the number
of pairs of activities which cannot execute in parallel and the overall number of pairs of distinct
activities. A simple lower bound of the number of pairs of activities which cannot execute in
parallel can be obtained by considering pairs {Ai, Aj} such that either there is a chain of precedence
constraints between Ai and Aj , or there is a resource constraint which is violated if Ai and Aj

overlap in time. The disjunction ratio can be defined either globally (considering all the activities
of a given problem instance) or for each resource R by limiting the pairs of activities to those that
require at least one unit of R. The disjunction ratio of a resource of capacity 1 is equal to 1. The
disjunction ratio of a cumulative resource varies between 0 and 1, depending on the precedence
constraints and on the amounts of capacity that are required to execute the activities. In particular,

190 Cumulative Scheduling Problems

the ratio is equal to 0 when there is no precedence constraint and no activity requires more than
half of the resource capacity. When each stage is made of several machines, the disjunction ratio of
the HFSSP is low due to the unitary resource requirements.

Needless to say, the disjunction ratio is only one of a variety of indicators that could be associated
with scheduling problem instances. For example, the precedence ratio (also known as order strength
[164] flexibility ratio, and density [85]), i.e., the ratio between the number of pairs of activities
which are ordered by precedence constraints and the overall number of pairs of distinct activities,
is also important (a high precedence ratio makes the problem easier). Although some researchers,
e.g., [130], have worked on such indicators, we believe much more work is necessary to discover
which ones are appropriate for designing, selecting, or adapting CP techniques with respect to the
characteristics of a given problem.

In the following, we explore the hypothesis that the disjunction ratio is an important indicator
of which techniques shall be applied to a cumulative scheduling problem. With this distinction in
mind, we introduce several new techniques to solve the RCPSP. They will be also applied to the
HFSSP.

Section 13.1 presents our general approach to the resolution of the RCPSP. Sections 13.2 and 13.3
respectively present some computational results on the HFSSP and on the RCPSP. They confirm
that the techniques we use exhibit different behaviors on problems with different disjunction ratios.

13.1 General Framework

The aim of this section is to present a list (by no means exhaustive) of possible “ingredients” that
can be incorporated in a CP approach to the RCPSP. We limit the discussion to the standard
RCPSP. However, some of the techniques we propose also apply to extensions of the RCPSP, such
as problems with interruptible activities.

First, the RCPSP is an optimization problem. The goal is to determine a solution with minimal
makespan and prove the optimality of the solution. As for the Job-Shop, we represent the makespan
as an integer variable constrained to be greater than or equal to the end of any activity. Again we
use the dichotomizing algorithm of Section 7.2.5.

A branching procedure with constraint propagation at each node of the search tree is used to
determine whether the problem with makespan at most D accepts a solution. As shown in the
literature, there are many possible choices regarding the amount of constraint propagation that can
be made at each node. [57, 83, 84] use simple bounding techniques compared to the more complex
constraint propagation algorithms described in the previous chapters. Performing more constraint
propagation serves two purposes: first, detect that a partial solution at a given node cannot be
extended into a complete solution with makespan lower than or equal to D; second, reduce the
domains of the start and end variables, thereby providing useful information on which variables are
the most constrained. However, complex constraint propagation algorithms take time to execute, so
the cost of these algorithms may not always be balanced by the subsequent reduction of search.

The deductive techniques for cumulative resources have been tested on the RCPSP and on the
HFSSP. Computational results show that it is worth using such techniques when the disjunction
ratio is low. Artificially adding “redundant” constraints, i.e., constraints that do not change the
set of solutions, but propagate in a different way, is another method for improving the effectiveness
of constraint propagation. For example, [57, 58, 59] present branch and bound algorithms for the
RCPSP which rely on the generation of redundant resource constraints. If S is a set of activities
and m an integer value, and if for any subset s of S such that |s| > m, the activities of s cannot all
overlap, then the following resource constraint can be added: “Each activity of S requires exactly
one unit of a new (artificial) resource of capacity m”.

Besides constraint propagation, a branching solution search procedure is also characterized by:

• The types of decisions that are made at each node. Most search procedures for the
RCPSP chronologically build a schedule, from time 0 to time v. At a given time t, Demeule-
meester and Herroelen [83] schedule a subset of the available activities; other subsets are tried

13.1 General Framework 191

upon backtracking. The main interest of this strategy is that some resource can be maximally
used at time t, prior to proceed to a time t′ > t. However, there may be many subsets to
try upon backtracking, especially if the problem is highly cumulative. An example of non-
chronological scheduling strategy is given by Carlier and Latapie [57]. Their strategy is based
on dichotomizing the domains of the start variables: at each node, the lower or the upper half
of the domain of a chosen variable V is removed and the decision is propagated. This strat-
egy may work well if there are good reasons for selecting the variable V , rather than another
variable (e.g., when there is a clear resource bottleneck at a given time).

• The heuristics that are used to select which possibilities to explore first. When a
chronological strategy is used, one can either try to “fill” the resources at time t (to avoid the
insertion of resource idle time in the schedule) or select the most urgent activities among those
that are available at time t. When a non-chronological strategy is used, the best is to focus
first on identified bottlenecks.

• The dominance relations that are applied to eliminate unpromising branches. Sev-
eral dominance rules have been developed for the RCPSP (see, for example [83, 22, 23]). These
rules enable the reduction of the search to a limited number of nodes which “dominate” the
others, i.e., are guaranteed to include better schedules than the nodes that are eliminated. As
for constraint propagation, dynamically applying complex dominance rules at each node of the
search tree may prove more costly than beneficial.

• The backtracking strategy that is applied upon failure. Most CP tools rely on depth
first chronological backtracking. However, “intelligent” backtracking strategies can also be
applied to the RCPSP. For example, the cut-set dominance rule of Demeulemeester and Her-
roelen [83, 84] can be seen as an intelligent backtracking strategy, which consists of memorizing
search states to avoid redoing the same work twice. When backtracking, the remaining sub-
problem is saved. In the remainder of the search tree, the algorithm checks if the remaining
subproblem is not already proved unfeasible. The advantage of such techniques is that the
identified impossible problem-solving situations are not encountered twice (or are immediately
recognized as impossible). However, such techniques may require large amounts of memory to
store the intermediate search results and, in some cases, significant time for their application.

We refer to [22] for a detailed study of all these aspects of the problem-solving strategy. Our
aim is to evaluate the efficiency of the constraint propatation techniques described in the previous
chapters. For this reason, we do not generate redundant resources, we do not apply the complex
dominance rules of [83, 22, 23] and we do not use the cut-set rule. Hence the computational results
could be improved.

Our solution search procedure is based upon [152]:

1. Initialize the set of selectable activities to the complete set of activities to schedule.

2. If all the activities have fixed start and end times, a solution is found, exit. Otherwise, remove
from the set of selectable activities those activities which have fixed start and end times.

3. If the set of selectable activities is not empty, select an activity from the set (e.g., one with
smallest deadline), create a choice point for the selected activity (to allow backtracking) and
schedule the selected activity from its earliest start time to its earliest end time. Then go to
step 2.

4. If the set of selectable activities is empty, backtrack to the most recent choice point. (If there
is no such choice point, report that there is no problem solution and exit.)

5. Upon backtracking, mark the activity that was scheduled at the considered choice point as not
selectable as long as its earliest start and end times have not changed. Then go to step 2.

192 Cumulative Scheduling Problems

The correctness of this algorithm is easy to demonstrate. Indeed, the activity Ai chosen at step
3 must either start at its earliest start time (and consequently end at its earliest end time) or must
be postponed to start later. But starting Ai later makes sense only if other activities prevent Ai

from starting at its earliest start time, in which case the scheduling of these other activities must
eventually result (thanks to constraint propagation!) in the update of the earliest start and end
times of Ai. Hence a backtrack from step 4 signifies that all the activities which do not have fixed
start and end times have been postponed. This is absurd as in any solution the activity which will
start the earliest among those which have been postponed could be set to start at its earliest start
time. This is why it is correct to backtrack from step 4 up to the most recent choice point.

Several constraint propagation algorithms can be associated with each resource. Among these
algorithms, the Time-Table mechanism, is systematically applied. It guarantees that, at the end of
the propagation, the earliest start time of each unscheduled activity is consistent with the start and
end times of all the scheduled activities (i.e., activities with bound start and end times).

13.2 Hybrid Flow-Shop Scheduling

The branch and bound procedure has been tested on 92 HFSSP instances generated by Carlier
and Néron [59]. Problem size varies from 10 jobs and 5 stages, to 15 jobs and 5 stages. The
machine configurations are equilibrated, i.e., all stages have the same number of available machines
(3 machines at all the stages), or are almost equilibrated (3 machines at all stages, excepted the
third stage in which only 2 machines are available). As reported in [59] this makes the problem
extremly hard to solve in practice.

The maximum CPU time allowed to solve a given problem instance was set at 3,600 seconds.
Figure 13.1 reports the number of instances solved (Nb Solved) within a given time limit (CPU) for
three different versions of our search procedure:

• with EnerGetic (EG) reasoning (Left-Shift / Right-Shift),

• with Edge-Finging (EF),

• with No (N) additional propagation.

On “easy” instances (those solved in a few seconds by all methods), the cost of the more com-
plex time-bound adjustment algorithms is not balanced by the subsequent reduction of search, and
the CPU time increases. On the contrary, when instances become hard, the energetic reasoning
outperform all other techniques. Within a one hour time-limit, 76 instances are solved with ener-
getic reasoning while 74 and 66 instances only are respectively solved with Edge-Finding and with
Time-Tables only.

Over the 66 instances that have been solved by all three versions of the branch and bound (EG,
EF and N), the reduction of the number of backtracks is very impressive. An average of 14917
backtracks was required by the EG version of the algorithm while EF and N required respectively
150853 and 1285595 backtracks! Following these results an improved version of these algorithms,
incorporatig Shaving (see Section 12.2.2) and dominance rules, has been developped in [171].

13.3 Resource-Constrained Project Scheduling

The three versions of the algorithm were tested on two sets of data.

• The “KSD” set of Kolisch, Sprecher and Drexel [130], which includes 480 instances with 30
activities and 4 resources. These instances are interesting because they are classified according
to various indicators, including the “resource strength,” i.e., the resource capacity, normalized
so that the “strength” is 0 when for each resource R, cap(R) = maxi(cap(Ai, R)), and the
“strength” is 1 when scheduling each activity at its earliest start time (ignoring resource
constraints) results in a schedule that satisfies resource constraints as well.

13.4 Conclusion 193

0
10
20
30
40
50
60
70
80
90

0,01 0,1 1 10 100 1000 1000
CPU

Nb
 S

ol
ve

d

EG EF N

Figure 13.1: Number of HFSSP instances solved in a given amount of CPU time

• The “BL” set of Baptiste and Le Pape [22] which includes 40 instances with either 20 or 25
activities, and 3 resources. Each activity requires the 3 resources, with a required capacity
randomly chosen between 0 and 60% of the resource capacity. 15 precedence constraints were
randomly generated for problems with 20 activities; 45 precedence constraints were generated
for problems with 25 activities.

The average disjunction ratios for the two sets of instances are respectively 0.56 for the KSD set
and 0.33 for the BL set. As a matter of fact, the BL instances have been generated because it
appeared that most of the classical instances from the literature are highly disjunctive (which is not
representative of the real-life RCPSP instances that we observed).

Figures 13.2 and 13.3 provide the results obtained on the KSD and the BL sets of benchmarks
with three different versions of our search procedure: with EnerGetic (EG) reasoning, with Edge-
Finding (EF), with No (N) additional propagation. Each curve shows the number of instances solved
in a given amount of CPU time.

The effect of the different satisfiability tests and time-bound adjustment algorithms clearly de-
pends on the set of instances. Considering only the instances solved by all versions of the branch
and bound (39 over 40 for the BL set and 353 over 480 for the KSD set), the reduction in the
average number of backtracks between N and EG is equal to 97% and 24% on the BL and KSD sets
respectively. On the KSD sets, the cost of the more complex time-bound adjustment algorithms is
not balanced by the subsequent reduction of search, and the CPU time increases. On the contrary,
EG performs much better than N on the BL set.

13.4 Conclusion

We have empirically evaluated several propagation techniques for cumulative resources. These tech-
niques can be used not only for standard scheduling problems; some of them can also be used for
preemptive scheduling problems (e.g., partially elastic relaxation as defined in Section 9.2.3 or for
fully elastic problems (e.g., fully elastic relaxation as defined in Section 9.1). Propagation proves
to be effective on some, but not all problem instances in the cumulative scheduling class. Com-
putational results have shown that, on “highly disjunctive” project scheduling instances, the more
complex constraint propagation algorithms induce an overhead that is not balanced by the resulting
reduction of search. On the other hand, the most expensive techniques prove to be highly useful for
the resolution of less highly disjunctive problems.

194 Cumulative Scheduling Problems

0
50
100
150
200
250
300
350
400

0,01 0,1 1 10 100 1000 1000
CPU

Nb
 S

ol
ve

d

EG EF N

Figure 13.2: Number of KSD instances solved in a given amount of CPU time

0
5
10
15
20
25
30
35
40
45

0,01 0,1 1 10 100 1000
CPU

Nb
 S

ol
ve

d
EG EF N

Figure 13.3: Number of BL instances solved in a given amount of CPU time

Let us remark that the branch and bound procedure does not incorporate all the results ob-
tained by other researchers for the Resource-Constrained Project Scheduling Problem (RCPSP). In
particular, we have not used, until now, any “intelligent backtracking” rule such as the cut-set rule
of Demeulemeester and Herroelen [83]. This may seem a little “strange” given the excellent results
reported in [84], in particular on the KSD instances, even with a limited use of the cut-set rule. It
appears that many industrial scheduling problems include several additional features (including, for
example, elastic activities) which seem to require the use of other techniques. Yet in the case of the
pure RCPSP, it would be interesting to determine how subsequent improvements of the procedure
would influence computational results, and hence our conclusions on the usefulness of the various
propagation techniques.

Recently, several new lower bounds based on Linear Programming (LP) formulations of a relaxed
RCPSP have shown to be very accurate [46, 166]. However, the size of the models used is so large

13.4 Conclusion 195

that, even with complex column generation techniques, hours of CPU time are sometimes required
to get a lower bound. Recently, Carlier and Néron [60] have shown that for each resource, an efficient
LP-based lower bound can be tabulated, for each fixed value of the resource capacity. Thus, the
computation of the bounds is not time consuming! This is, we think, one of the most promising
research direction for the next few years.

196 Cumulative Scheduling Problems

Chapter 14

Min-Sum Scheduling Problems

We illustrate and compare the efficiency of the constraint propagation algorithms described in pre-
vious chapters on two well-known scheduling problems. In Sections 14.1 and 14.2 we respectively
study the problems of minimizing the weighted number of late jobs on m parallel identical machines
and the total tardiness on 1 machine. In Section 14.3 we consider a general-shop scheduling problem
with sequence-dependent setup times and alternative machines where the optimization criteria are
both makespan and sum of setup times.

14.1 Minimizing the Weighted Number of Late Jobs

The problem P |ri|
∑
wiUi is very close to the resource constraint of Section 11.1. An instance of

the decision-variant of this problem consists of a set of jobs {J1, . . . , Jn}, a set of m identical parallel
machines, and an integer W . Each job Ji is described by a release date ri, a due date di, a processing
time pi, and a weight wi. The problem is to find an assignment of start times to jobs such that:

• less than m jobs are scheduled at each time point,

• each job starts after its release date,

• the weighted number of jobs that end after their due date is lower than or equal to W .

A job scheduled between its release date and its due date is “on-time”. Conversely, a job that ends
after its due date is “late”. Even for the simple unweighted version of the problem (1|ri|

∑
Ui), few

exact approaches have been proposed.

• An efficient heuristic and a branch and bound procedure have been proposed in [79]. It is
shown that the problem can be modeled by a Mixed Integer Program (MIP). Unfortunately,
instances with more than 10 jobs could not be considered because of the size of the MIP.

• A branch and bound scheme based upon a “master sequence”, i.e., a sequence containing at
least an optimal sequence, is proposed in [80]. Lower bounds are obtained by relaxing the
release and the due dates according to the Kise, Ibaraki and Mine conditions [129].

• Another branch and bound procedure is presented in [181] where a lower bound is obtained
by a Lagrangian relaxation of a MIP formulation.

The last three methods are in the same range of efficiency (95% of instances with 80 jobs can be
optimally solved in a reasonable amount of time). Obviously, this problem fits our Constraint-Based
Scheduling model. The m parallel machines are modeled by a resource of capacity m and each job
Ji is modeled by an activity Ai that requires one unit of the resource. The initial domain of the start
and end variables are set respectively to [ri, ub− pi] and to [ri + pi, ub], ub being an upper bound of
the completion time of the jobs (e.g., ub can be set as the maximum release date plus the sum of all

198 Min-Sum Scheduling Problems

processing times). The domain of the criterion variable criterion is set to [0,W]. Finally, the cost
function is the sum of n functions fi(end(Ai)) that equal 0 if end(Ai) ≤ di and wi otherwise.

Let us remark that, with this model, d̄i remains arbitrarily large (equal to ub) as long as it is
not decided that Ji must be on-time.

14.1.1 Dominance Relations

Dominance relations allow to reduce the search space to schedules that have a particular structure.
The most important dominance relation relies on the idea that it is better to schedule small and
heavy jobs with large time windows than large and light jobs with small time windows. We also use
two other dominance rules that respectively fix the start times of some jobs and split the problem
into distinct subproblems.

Dominance of Small Jobs with Large Time-Windows

We rely on the observation that on any solution, if a large job Jj is on-time and is scheduled inside
the time window [ri, di] of a smaller job Ji that is late, and if Ji is heavier than Jj , the jobs Ji and
Jj can be “exchanged”, i.e., Ji becomes on-time and Jj becomes late. More formally our dominance
rule is based upon the binary relation “≺”.

Definition 32. For any pair of jobs Ji, Jj , Ji ≺ Jj if and only if

(pi < pj) ∨ (pi = pj ∧ i < j)
wi ≥ wj

ri + pi ≤ rj + pj

dj − pj ≤ di − pi

The relation “≺” is transitive and ∀Ji, ∀Jj , Ji ≺ Jj ⇒ Ji 6= Jj . Thus, it defines a strict partial
order on jobs. Proposition 89 is the theoretical basis of our dominance rule.

Proposition 89. There is an optimal schedule such that for any pair of jobs {Ji, Jj}, if Ji ≺ Jj

and Jj is on-time, then Ji is also on-time, i.e.,

∀Ji, ∀Jj ,¬[(Ji ≺ Jj) ∧ (end(Jj) ≤ dj) ∧ (end(Ji) > di)] (14.1)

Proof. Consider an optimal schedule Q such that the first index i for which there exists a job Jj

that violates (14.1) is maximum. We have (Ji ≺ Jj) ∧ (end(Jj) ≤ dj) ∧ (end(Ji) > di). We build a
new schedule obtained by “exchanging” Ji and Jj . More precisely, Ji is scheduled at the maximum
of ri and of the start time of Jj in Q. Jj is scheduled after all other jobs (it then becomes late). It
is obvious to verify that the new schedule is still feasible and optimal. Moreover, Ji is now on-time.
Now, suppose that there exists a late job Jk such that Jk ≺ Ji. We then have Jk ≺ Ji ≺ Jj .
Moreover, Jk was also late on the initial schedule. Consequently, k > i because of the choice of i.
This contradicts our hypothesis on the choice of the initial schedule.

Remark that the constraint in Proposition 89 still holds if rj + pj is replaced by end(Jj) and if
dj − pj is replaced by start(Jj). Arc-consistency is achieved on this new constraint. It allows to
prove that some jobs must be late or on-time and it tightens the domains of the start variables.

Decomposition Rule

The basic idea of the decomposition is to detect some cases in which the problem can be split into
two subproblems. Each of them being solved independently.

Proposition 90. Let t1 be a time point such that for any non-late job (i.e., eeti ≤ di), either
min(d̄i, di) ≤ t1 or t1 ≤ ri. Any optimal schedule, is the “sum” of an optimal schedule of {Ji : eeti ≤
di ∧min(d̄i, di) ≤ t1} and of an optimal schedule of {Ji : eeti ≤ di ∧ t1 ≤ ri}.

14.1 Minimizing the Weighted Number of Late Jobs 199

Proof. Recall that late jobs can be scheduled arbitrarily late and we only consider on-time jobs.
On-time jobs are either in {Ji : eeti ≤ di ∧min(d̄i, di) ≤ t1} or in {Ji : eeti ≤ di ∧ t1 ≤ ri} and they
do not compete for the machine.

We only consider the values of t1 that are earliest start times (if the problem can be decomposed
at time t1, it is easy to verify that it can also be decomposed at the first ri after t1). There are
O(n) distinct earliest start times and the decomposition test (at a given time point) obviously runs
in linear time. Consequently, the overall decomposition test runs in O(n2). Once the problem has
been decomposed, the optimum of each subproblem is computed and we simply have to verify that
the sum of these optima is lower than or equal to W .

Straight Scheduling Rule

We use a simple dominance rule which schedules automatically a set of jobs if they “fit” in a
particular interval.

Proposition 91. Let [t1, t2), be any time interval. Let J(t1, t2) be the jobs, among those that are
not late yet (i.e., eeti ≤ di), that may execute (even partially) in [t1, t2) if they are on-time (i.e.,
t1 < min(d̄i, di)∧ t2 > ri). Moreover, suppose that there exists a feasible schedule Q of J(t1, t2) that
is idle before t1 and after t2 on which all jobs are on-time. Then there exists an optimal overall
schedule R of {J1, . . . , Jn} such that between t1 and t2 the schedules Q and R are identical.

Proof. Obvious.

Consider now any time point t1 and let J(t1) be the set of jobs Ji that do not have to be late
and that can end after t1 (t1 < min(d̄i, di)). We build a schedule of J(t1) as follows: Each time a
job is completed, the available job with the smallest due date min(d̄i, di) is scheduled. Let t2 be the
current time point throughout the construction of the schedule:

1. if a job is completed after its due date then t1 is not a valid candidate for straight scheduling

2. if J(t2) becomes empty then we have built a valid schedule of J(t1, t2) where all jobs are
on-time.

Now remark that if t1 is not in {min(d̄1, d1),min(d̄2, d2), . . . ,min(d̄n, dn)} then J(t1−1, t2) = J(t1, t2)
and a schedule that can fit in [t1, t2) can also fit in [t1− 1, t2). Hence, the “straight scheduling rule”
is applied for t1 = mini(ri) and for t1 ∈ {min(d̄1, d1),min(d̄2, d2), . . . ,min(d̄n, dn)}. In the following
experiments, this rule is active only if the machine capacity is 1.

14.1.2 Branching Scheme

We use the dichotomizing algorithm of Section 7.2.5. The critical part is the resolution of the decision
problem. The search tree is built as follows: While there are some jobs that can be late or on-time
(i.e., eeti ≤ di < d̄i),

1. select a job Ji such that eeti ≤ di < d̄i

2. constrain Ji to be on-time, i.e., end(Ji) ≤ di (if a backtrack occurs, Ji must be late)

3. apply dominance rules and propagate constraints

4. check that there exists a feasible schedule of the jobs, i.e., a schedule where all jobs are
scheduled in their time-window, (if not, the problem is inconsistent and a backtrack occurs).

When the branch and bound succeeds, it has been decided for each job whether it is on-time or
not. On top of that the weighted number of late jobs equals criterion (because arc-B-consistency is
enforced on the criterion constraint). Moreover there is a feasible schedule of the jobs (step 4). Let
us detail the heuristic used for the job selection and the procedure that checks whether there is a
feasible schedule of the jobs that must be on-time.

200 Min-Sum Scheduling Problems

Job Selection Heuristic

Let U be the set of jobs Ji that can be late or on-time (i.e., eeti ≤ di < d̄i). Let maxi(wi/pi) be
the maximum value of wi/pi among jobs in U and finally, let S be the subset of the jobs Jj in U
such that wj/pj > 0.9 ∗ maxi(wi/pi). Among jobs in S, we select a job whose time window, if it
becomes on-time, i.e., [ri, di], is the largest. This heuristic “bets” that it is better to schedule small
and heavy jobs with large time windows rather than large and light jobs with tight time windows.

Feasibility Check

The aim of this step is to determine if there is a feasible schedule of the jobs that meets all time-
windows. Even on a single machine, this problem is NP-hard in the strong sense. A large amount
of work has been carried on this problem because it serves as the basis for the resolution of several
disjunctive scheduling problems. The branch and bound algorithm of Carlier [54] has shown to
be extremely efficient for this problem. Very large instances can be solved in a few amount of
time. Hence, it is used as soon as the number of machines equals 1. Unfortunately, there is
no such efficient algorithm in the cumulative case. Hence we use a procedure similar to the one
described in Section 13.1 for the Resource-Constrained Project Scheduling Problem (in our case,
there is no precedence constraint and resource requirements are unitary). The Left-Shift / Right-
Shift propagation technique is used at this point (cf., Section 9.3.6).

14.1.3 Computational Results

In this section we compare the efficiency of the constraint propagation algorithms described in
previous chapters on the problem of minimizing the weighted number of late jobs. Several instances
of P |rj |

∑
wjUj have been generated following the generation scheme of [24, 17]. We pay attention

to four important characteristics:

• The distribution of the processing times.

• The distribution of the weights.

• The overall “load” of the machines; where the load is the ratio between the sum of the pro-
cessing times of the jobs and m ∗ (maxi di −mini ri).

• The margin mi = di − ri − pi of each job.

Our generation scheme is based on 6 parameters: the number of jobs n, the number of machines m,
and the four statistical laws followed by the processing times, the weights, the release dates, and the
margins (given ri, pi and mi, the due date can be immediately computed di = mi + ri + pi).

• Processing times are generated from the uniform distribution over [pmin, pmax].

• Weights are generated from the uniform distribution [1, wmax].

• Release dates are generated from the normal distribution (0, σ).

• Margins are generated from the uniform distribution [0,mmax].

Given these parameters and relying on the fact that most of the release dates are in [−2σ, 2σ], the
load is approximately equal to:

load = n
pmin + pmax

2m(4σ + pmax +mmax)

Given n, pmin, pmax,mmax and load, this allows us to determine a correct value of σ. One instance has
been generated for each of the combinations of the parameters (n,m, (pmin, pmax),mmax, load, wmax).
See Table 14.1. Tables 14.2, 14.3, and 14.4 report the results obtained for the three different values
of m. Each line summarizes the results obtained on a set of 90 instances of the same size n. The

14.2 Minimizing Total Tardiness 201

Parameter Range
n {10, 20, 30, 40, 50}
m {1, 3, 6}
(pmin, pmax) {(0, 100), (25, 75)}
mmax {50, 200, 350, 500, 650}
load {1.0, 1.6, 2.2}
wmax {1, 10, 100}

Table 14.1: Instances generation parameters

column “% solved” provides the ratio of instances that have been solved within 600 seconds of CPU
time on a PC HP Vectra 350 MHz running Windows 95. The columns “Avg. CPU” and “Avg.
BCK” report respectively the average CPU time in seconds and the average number of backtracks
required to solve the instances. The column “Max CPU” reports the maximum CPU time. Instances
that could not be solved within the time limit are not taken into account in these computations.

n % solved Avg. CPU Max CPU Avg. BCK
10 100.0 0.2 0.7 2.8
20 100.0 5.3 35.2 17.7
30 99.6 84.4 567.0 48.4
40 94.8 217.6 589.9 73.4
50 80.0 419.9 585.2 39.5

Table 14.2: Computational results for m = 1

n % solved Avg. CPU Max CPU Avg. BCK
10 100.0 0.2 0.7 4.9
20 100.0 6.8 44.8 60.4
30 96.7 94.9 554.5 601.7
40 87.0 203.0 570.8 3252.5
50 74.4 475.8 597.0 947.0

Table 14.3: Computational results for m = 3

The algorithm behaves well since, on the average, 79.3 % of the 50 jobs instances can be solved in
less than 10 minutes of CPU time. However, it appears that instances with parallel machines are
much more difficult to solve than those with a single machine. This is due, we think, to the fact
that our branching scheme is very efficient when we can use the algorithm of [54] for the feasibility
check. A careful examination of the computational results shows that for m > 1 more than 90 % of
the CPU time is spent in the feasibility check. Excellent results have been reported recently in [25]
for the special case where m = 1 and ∀i, wi = 1. Lower bounds based on Lagrangian relaxation and
on relaxations of the problem to polynomially solvable cases are proposed. New elimination rules
together with strong dominance relations are also used to reduce the search space. A branch and
bound procedure exploiting all these techniques solves to optimality problems with up to 200 jobs.

14.2 Minimizing Total Tardiness

Consider the scheduling situation where n jobs J1, . . . , Jn have to be processed by a single machine
and where the objective is to minimize total tardiness. Associated with each job Ji, are a processing
time pi, a due date di, and a release date ri. A job cannot start before its release date, preemption

202 Min-Sum Scheduling Problems

n % solved Avg. CPU Max CPU Avg. BCK
10 100.0 0.1 0.2 0.2
20 100.0 9.9 67.0 238.3
30 98.2 70.5 551.6 1361.6
40 91.1 128.6 530.5 6676.6
50 84.8 336.4 539.4 6937.7

Table 14.4: Computational results for m = 6

is not allowed, and only one job at a time can be scheduled on the machine. The tardiness of a
job Ji is defined as Ti = max (0, Ci − di), where Ci is the completion time of Ji. The problem is to
find a feasible schedule with minimum total tardiness

∑
Ti. The problem, denoted as 1|ri|

∑
Ti, is

known to be NP-hard in the strong sense.
A lot of research has been carried on the problem with equal release dates 1||

∑
Ti. Powerful

dominance rules have been introduced by Emmons (see Section 11.2.2). Lawler [143] has proposed
a dynamic programming algorithm that solves the problem in pseudo-polynomial time.

Most of the exact methods for solving 1||
∑
Ti strongly rely on Emmons’ dominance rules. Potts

and Van Wassenhove [186], Chang et al. [73] and Szwarc et al. [208], have developed Branch-and-
Bound methods using the Emmons rules coupled with the decomposition rule of Lawler [143] together
with some other elimination rules. The best results have been obtained by Szwarc, Della Croce and
Grosso [208] with a Branch-and-Bound method that efficiently handles instances with up to 500
jobs!

There are less results on the problem with arbitrary release dates. Chu and Portmann [74] have
introduced a sufficient condition for local optimality which allows to build a dominant subset of
schedules. Chu [75] has also proposed a Branch-and-Bound method using some efficient dominance
rules. This method handles instances with up to 30 jobs for the hardest instances and with up to
230 jobs for the easiest ones.

In Section 14.2.1, we describe the overall branching scheme. In Sections 14.2.3 and 14.2.2, we
introduce some dominance properties and we finally report our experimental results in Section 14.2.5.
We will see that our procedure handles instances as large as 500 jobs although some 60 jobs instances
remain open.

14.2.1 Overall Scheme

All propagation rules described in Section 11.2 are used. On top of this, we rely on the edge-finding
branching scheme. Rather than searching for the starting times of jobs, we look for a sequence of
jobs. This sequence is built both from the beginning and from the end of the schedule. Throughout
the search tree, we dynamically maintain several sets of jobs that represent the current state of the
schedule (see Figure 14.1).

• P is the sequence of the jobs scheduled at the beginning,

• Q is the sequence of the jobs scheduled at the end,

• NS is the set of unscheduled jobs that have to be sequenced between P and Q,

• PF ⊆ NS (Possible First) is the set of jobs which can be scheduled immediately after P

• and PL ⊆ NS (Possible Last) is the set of jobs which can be scheduled immediately before Q.

At each node of the search tree, a job Ji is chosen among those in PF and it is scheduled immediately
after P . Upon backtracking, this job is removed from PF . The heuristic used to select Ji comes
from [74, 75]: Among jobs of PF with minimal release date, select the job that minimizes the function
max(ri + pi, di). Of course, if NS is empty then a solution has been found and we can iterate to
the next decision problem. If NS 6= ∅ while PF or PL is empty then a backtrack occurs. Several

14.2 Minimizing Total Tardiness 203

propagation rules relying on jobs time-windows, are used to update and adjust these sets. These
rules, known as edge-finding (see Chapter 8) are also able to adjust the time-windows according to
the machine constraint.

Due to our branching scheme, jobs are sequenced from left to right so it may happen that at
some node of the search tree, all jobs of NS have the same release date (the completion time of the
last job in P). In such a case, to improve the behavior of the Branch-and-Bound method, we apply
the dynamic programming algorithm of Lawler [143] to optimally complete the schedule.�

P� Q�

NS�

PF�

PL�

Figure 14.1: A Node of the Search Tree.

14.2.2 Dominance on Equal Length Jobs

We prove that, considering two jobs which have the same processing time, the first Emmons Rule
(Section 11.2.2) is valid. Note that, contrary to the Generalized Emmons Rules, this dominance
property is valid even in the non-preemptive case.

Proposition 92. Let Ji and Jk be two jobs such that pi = pk. If ri ≤ rk and di ≤ max(rk +pk, dk),
then there exists an optimal schedule in which Ji precedes Jk.

Proof. Consider a schedule S in which job Ji and job Jk satisfy the assumptions and in which job Jk

is completed before job Ji. Let us exchange Ji and Jk in S. Note that the exchange is valid since ri is
lower than or equal to the earliest start time of Jk. We have pi = pk, then the completion time of the
other jobs do not change. This exchange does not increase total tardiness (see Section 11.2.2).

14.2.3 Removing Dominated Sequences

Several dominance properties have been introduced in [74, 75]. These rules focus on the jobs in
NS plus the last job of P . They determine that some precedence constraints can be added. Such
constraints allow us to adjust release dates and to filter PF . All these rules are used in our Branch-
and-Bound procedure. On top of this, we also consider dominance properties that take into account
the complete sequence P . Informally speaking, our most basic rule states that if the current
sequence P can be “improved”, then it is dominated and we can backtrack.

In the following, let Cmax(P) and T (P) denote the completion time and the total tardiness
associated with the current sequence P . Now consider a permutation P ′ of P of and let us examine
under which condition P ′ is “as good as” than P .

• If Cmax(P
′) ≤ Cmax(P) and T (P ′) ≤ T (P), then we can replace P by P ′ in any feasible

schedule so P ′ is at least as good as P .

• If Cmax(P
′) > Cmax(P), then if we replace P by P ′ in a feasible schedule, all jobs in NS ∪Q

have to be shifted of at most Cmax(P
′)−Cmax(P) time units. So, the additional cost for jobs

in NS ∪Q is at most (|NS |+ |Q|)(Cmax(P
′)−Cmax(P)). Hence, P ′ is at least as good as P if

T (P ′) + (|NS |+ |Q|)(Cmax(P
′)− Cmax(P)) ≤ T (P).

P ′ is better than P if P ′ is at least as good as P and if either (1) P is not at least as good as P ′

(2) or if P ′ is lexicographically smaller than P . When P ′ is better than P , the current sequence is
dominated and we can backtrack. To compare two sequences, we just have to build the schedules
associated with them and this can be done in linear time.

204 Min-Sum Scheduling Problems

Enumeration of the k Last Jobs

We can enumerate all permutations P ′ of P and test if it is better than P . Since the number of
alternative sequences is exponential, we only consider the permutations P ′ that are identical to P
except for the k last jobs (where k is an arbitrary value). When k is large, we have a great reduction
of the search space but this takes a lot of time. Experimentally, k = 6 seems to be a good trade-off
between the reduction of the search tree and the time spent in the enumeration.

Removing Possible Firsts

We propose a simple technique to detect that a job Ji ∈ PF cannot be actually scheduled just after
P and thus can be removed from PF . We note P |Ji the sequence where Ji is scheduled immediately
after P . If there is a permutation π of P |Ji that is “better” than P |Ji then scheduling Ji first
after P leads to a dominated schedule and thus we can remove Ji from PF . This time we only
enumerate the permutations π that are obtained from P |Ji either by inserting Ji somewhere inside
P or by exchanging Ji with another job of P |Ji. Since there are O(n) such permutations and since
comparing two sequences can be done in linear time, the algorithm runs in O(n2) for a given job Ji.

Adjusting Deadlines

Consider a job Ji ∈ NS and assume that the current node of the search tree can be extended to
a feasible optimal schedule where Ji is completed at some time point Ci. Let P |λ|Ji|µ|Q be the
sequence of the jobs in the feasible optimal schedule and let us modify this sequence by removing
Ji and inserting it somewhere in P . The new sequence is P ′|Ji|P ′′|λ|µ|Q, where P ′|Ji|P ′′ is the
sequence derived from P after the insertion of Ji.

In the following, we assume that ri ≤ Cmax(P
′). Under this hypothesis, it is easy to see

that Cmax(P
′|Ji|P ′′|λ) ≤ Cmax(P |λ|Ji) and thus the tardiness of the jobs in µ|Q has not

been increased. On top of that, the jobs in λ have been shifted of at most Cmax(P
′|Ji|P ′′) −

Cmax(P) time units. Thus, the total tardiness of the jobs in λ has been increased of at most
|λ|(Cmax(P

′|Ji|P ′′) − Cmax(P)) ≤ (|NS | − 1)(Cmax(P
′|Ji|P ′′) − Cmax(P)). Finally, the total tar-

diness of the jobs in P ∪ {Ji} has been increased of T (P ′|Ji|P ′′) − (T (P) + max(0, Ci − di)).
Consequently, the total tardiness has been increased of at most

(|NS | − 1)(Cmax(P
′|Ji|P

′′)− Cmax(P)) + T (P ′|Ji|P
′′)− T (P)−max(0, Ci − di).

Since the initial schedule is optimal, the above expression is positive and thus,

Ci < di + (|NS | − 1)(Cmax(P
′|Ji|P

′′)− Cmax(P)) + T (P ′|Ji|P
′′)− T (P).

In other words, the deadline d̄i of Ji can be adjusted to

min(d̄i, di − 1 + (|NS | − 1)(Cmax(P
′|Ji|P

′′)− Cmax(P)) + T (P ′|Ji|P
′′)− T (P)).

Since there are O(n) sequences P ′|Ji|P
′′ (with ri ≤ Cmax(P

′)) that can be derived from P and
since the completion time and the total tardiness of a sequence can be computed in linear time, all
adjustments of related to Ji can be computed in O(n2).

14.2.4 Intelligent Backtracking

Intelligent Backtracking techniques “record”, throughout the search tree, some situations that do
not lead to a feasible solution. Each time such a situation is encountered again then a backtrack is
immediately triggered.

In practice, when a backtrack occurs, the set of “scheduled” jobs, i.e., those in P , the tardiness
associated to the sequence (T (P)) and and its completion time (Cmax(P)) are stored. Using a hash
table for storing the set of schedule jobs, the total memory requirement is kept relatively low. If
latter in the search tree, we are in a situation where a sequence P ′ of the same jobs as in P jobs has
been built and if T (P ′) ≥ T (P) and Cmax(P

′) ≥ Cmax(P) then the current node of the search tree
cannot lead to an optimal solution (otherwise, P could also be extended to an optimal sequence).

14.2 Minimizing Total Tardiness 205

14.2.5 Experimental Results

All techniques presented below have been incorporated into a Branch-and-Bound method imple-
mented on top of Ilog Solver and Ilog Scheduler. All experimental results have been computed
on a PC Dell Latitude 650 MHz running Windows 98.

The instances have been generated with the scheme of Chu [75]. Each instance is generated
randomly from three uniform distributions of ri, pi and di. The distribution of pi is always between
1 and 10. The distributions of ri and di depend on 2 parameters: α and β. For each job Ji, ri
is generated from the distribution [0, α

∑
pi] and di − (ri + pi) is generated from the distribution

[0, β
∑
pi]. Four values for α and three values for β were combined to produce 12 instances sets,

each containing 10 instances of n jobs with n ∈ {10, 20, 30, 40, 50, . . . , 500} jobs.

Chu’s Lower Bound lb2

Opt. lbChu Gap Bck. CPU lb2 Gap Bck. CPU
34 28 0.21 501340 773.9 34 0.00 1 0.1

111 46 1.41 *** *** 111 0.00 0 0.1
115 35 2.29 *** *** 93 0.24 535 2.1
95 47 1.02 603171 1313.3 81 0.17 10300 59.1
32 19 0.68 24913 56.6 31 0.03 221 1.0
12 9 0.33 1 0.1 12 0.00 0 0.0
79 40 0.97 *** *** 73 0.08 284 1.6

192 167 0.15 10118 28.2 180 0.07 462 2.4
84 54 0.56 52922 79.8 79 0.06 6 0.1
24 16 0.50 69754 89.4 24 0.00 2 0.1

Table 14.5: Comparison Between lbChu and lb2. n = 20 Jobs, α = 0.5, β = 0.5, no Dominance
Property, no Intelligent Backtracking.

In Table 14.5, Chu’s lower bound is compared with the new lower bound lb2 (see Section 11.2.1).
Most times, lb1 = lbChu so, lb1 has been skipped from the tables to simplify the presentation.
To have a fair comparison of the bounds, the Branch-and-Bound procedure has been run without
dominance property nor Intelligent Backtracking on instances with 20 jobs that are known to be
hard (α = 0.5, β = 0.5) [75]. Each line corresponds to a single instance and we report the optimal
tardiness (Opt.), the value of the lower bound computed at the root of search tree (lbChu , lb2),
the relative gap (Gap) between the optimum and the two lower bounds, the number of backtracks
(Bck.) and the amount of CPU time in seconds required to solve the instance. A "***" in the table
indicates that the search was interrupted after 1800 seconds. On the average, lbChu is at 81% of the
optimum value while our lower bound is much closer (6%). The average number of backtracks over
the instances solved by both methods has been divided by almost 12 and the CPU time by 37.

In Table 14.6, we show the efficiency of dominance properties, propagation rules and intelligent
backtracking technique presented above. For that, the Branch-and-Bound procedure has been run
with lb2 on instances with 30 jobs with various combinations of α and β. On each line of Table 14.6,
the average results obtained over the 10 generated instances are reported. In columns 3 and 4
(“Chu”), we report the results obtained when the dominance properties of Chu are used [74, 75].
We then add (columns 5 and 6) the dominance and propagation rules presented in Section 14.2.2
(EQual Processing, EQP), Section 14.2.3 (Remove Dominated Sequences, RDS), and Section 14.2.3
(optimization on the 6 last jobs). Intelligent Backtracking (IB) is then added and results are reported
in columns 7 and 8. All “ingredients” are useful to reduce the search space.

The results obtained with the version of the algorithm that incorporates all ingredients are
presented in Table 14.7. For each combination of parameters and for each value of n, we provide the
average number of fails and the average computation time in seconds. A time limit of 3600 seconds
has been fixed. All instances are solved within the time limit for up to 50 jobs. For n = 60, and for
(α = 0.5, β = 0.5), most of the instances cannot be solved. As noticed earlier by Chu [75], instances
generated according to this particular combination seem to be “hard” to solve in practice.

206 Min-Sum Scheduling Problems

Chu Chu, EQP, RDS Chu, EQP, RDS

6-last, PIP 6-last, PIP, IB

α β Bck. CPU Bck. CPU Bck. CPU
0 0.05 0 0.1 0 0.0 0 0.0
0 0.25 7 0.1 7 0.1 7 0.1
0 0.5 80 0.6 80 0.6 80 0.6

0.5 0.05 91 0.7 26 0.3 24 0.3
0.5 0.25 5420 32.8 215 3.2 156 2.5
0.5 0.5 11505 70.1 424 6.2 296 4.6

1 0.05 239 1.4 31 0.3 24 0.3
1 0.25 1724 7.1 46 0.5 39 0.5
1 0.5 2 0.0 2 0.0 2 0.0

1.5 0.05 24 0.2 7 0.1 6 0.1
1.5 0.25 560 2.3 11 0.2 8 0.2
1.5 0.5 2 0.1 1 0.1 1 0.0

Table 14.6: Efficiency of Dominance Properties, Propagation Rules and Intelligent Backtracking.

From this table, we can remark that the “hardness” increases very quickly with n, especially
for (α = 0.5, β = 0.5). For Each combination of parameters, we report the largest size of instance
(column “Largest”) for which 80% of instances are solved within one hour of CPU time. In practice
most of the instances are solved within 30 seconds and our results compare well to those of [75]. For
instance, the average number of fails for the combination (α = 0.5, β = 0.5) was greater than 36000
in [75], whereas this number is now lower than 300.

14.3 Minimizing Makespan and Sum of Transition Times

In this section we consider a General-Shop Problem with sequence-dependent setup times and al-
ternative machines. The optimization criteria are both makespan and sum of setup times. The
solution method and the computational study presented here are mostly taken from [103]. The
solution method is based on a two phase algorithm where during the first phase we try to find a
solution having as good a makespan as possible, and in the second phase the attention is turned to
improving the sum of setup times while at least maintaining the quality of the makespan found in
the first phase. It is shown that the constraint propagation as described in Section 11.3 considerably
improves the performance of the approach.

14.3.1 Problem Definition

We are given a set of n jobs {J1, . . . , Jn} and a set of m machines {M1, . . . ,Mm}. Each job Ji has
to be processed for pi time units on a machine Mu that can be chosen from a given subset of the m
machines. Between jobs, sequence-dependent setup times exist that also depend on which machine is
used to process the jobs. Jobs may furthermore be linked by precedence relations Ji → Jj , denoting
that job Jj cannot start before the end of job Ji.

This problem obviously fits our Constraint-Based Scheduling model (see Section 7.2). Jobs are
simply modeled by activities (to stay in the terminology of the problem we will continue to talk
about jobs instead of activities in this section) and we have alternative machines for the jobs. The
setup time between jobs Ji and Jj on machine Mu is represented by setup(Ji, Jj ,Mu), the setup time
before Ji by setup(−, Ji,Mu), and the teardown time after Ji by setup(Ji,−,Mu) (see Section 7.2.4
for details).

The objective is first to find a schedule with minimal makespan, after which the sum of setup
times is to be minimized. The constraint propagation on the sum of setup times that is used is

1
4

.3
M

in
im

iz
in

g
M

a
k

e
sp

a
n

a
n

d
S

u
m

o
f

T
ra

n
sitio

n
T

im
e
s

2
0

7

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 Largest
α β Bck. CPU Bck. CPU Bck. CPU Bck. CPU Bck. CPU Bck. CPU
0 0.05 0.0 0.01 0 0.02 0 0.0 1 0.1 1 0.2 0 0.1 300
0 0.25 0.3 0.01 3 0.03 7 0.1 22 0.5 17 1.2 55 3.2 120
0 0.5 1.1 0.01 7 0.07 80 0.6 57 1.7 304 7.7 1591 91.3 80

0.5 0.05 2.9 0.02 16 0.08 24 0.3 73 1.8 96 3.9 238 19.7 90
0.5 0.25 3.6 0.02 26 0.18 156 2.5 484 21.4 1530 175.3 5253 1083.0 60
0.5 0.5 3.7 0.01 43 0.30 296 4.6 2366 131.7 9438 931.0 *** *** 50

1 0.05 1.3 0.02 13 0.07 24 0.3 52 1.4 93 4.5 128 25.7 90
1 0.25 2.0 0.02 14 0.08 39 0.5 86 2.2 90 4.4 237 28.1 500
1 0.5 0.6 0.01 22 0.15 2 0.0 11 0.2 14 0.3 5 0.5 500

1.5 0.05 1.3 0.02 5 0.02 6 0.1 30 1.1 37 2.2 40 6.7 190
1.5 0.25 0.1 0.02 2 0.02 8 0.2 2 0.1 37 0.8 6 1.6 500
1.5 0.5 0.0 0.02 0 0.01 1 0.0 0 0.1 0 0.2 0 0.5 500

Table 14.7: Results Obtained with up to 60 Jobs.

208 Min-Sum Scheduling Problems

described in Section 11.3.

14.3.2 Problem Solving

The problem is solved in two phases. During the first phase a good but not necessarily optimal
solution with respect to makespan is searched for. With C∗ the best makespan found in this phase,
in the second phase a constraint is added imposing that any further solution will have a makespan
smaller or equal to C∗. Constraint-based local improvement methods are then used to minimize the
sum of setup times.

First Phase Heuristic

We use a time-limited, incomplete branch and bound method to try to find a solution that minimizes
the makespan. At each node of the search tree we administer for each machine which job has been
scheduled last. The set B contains all these jobs. By analyzing the precedence graph, we choose a
job Ji among the set of jobs that are still unscheduled and can be next to one of the jobs in B. We
branch on the relative position of Ji forcing Ji to be either next or successor but not next of one
job in B. Among all jobs that can be chosen we select the one having the smallest earliest start time
and, in case of ties, the one having the smallest latest end time. In the branch of the tree imposing
Ji next to one job in B, we also need to choose the machine assignment for Ji. If several machine
assignments are feasible we heuristically choose the machine assignment that allows to schedule the
job as early as possible, and in case of ties, the one which generates the smallest setup time.

Setup Optimization

In the setup optimization phase, given a solution having a makespan equal to C∗, we search for
solutions that have a makespan less or equal to C∗ and that minimize the sum of setup times.
For this the following local improvement procedure based on time windows is used. A time window
[TW k

L, TW
k
U] defines a subproblem PTW k in the following way. On every machine, all jobs on the left

of the window have their start times and machine assignments fixed; all jobs on the right of the time
window have their machine assignment and their sequence on the machines fixed (the variable next
is fixed); all jobs within the current window are completely free. On each subproblem a time-limited
branch and bound search is performed to try to find the optimal solution for PTW k .

Two different methods have been used to select the current window. The first one is a simple
“gliding window” method. The second one (LB-based Window Selection) relies on the computation
of a lower bound of the sum of setup times to select the most promising window.

Gliding Window
Given a fixed size of the window Wsize and a window offset Wd, the Gliding Window method starts
the setup optimization at PTW 0 defined by window [0,Wsize], optimizes the problem, and then moves
the window by Wd to the right, i.e.,

PTW k+1 := [TW k
L +Wd, TW

k
U +Wd]

This is repeated until the end of the schedule is reached. At the end of each loop, the window size
and offset can eventually be modified and another loop can be performed.

LB-based Window Selection
This method is based on the idea to first work on the parts of the schedule where we can hope to
obtain the highest improvement. For a given subproblem PTW k , defined by window [TW k

L, TW
k
U] we

can calculate the expected improvement on the objective function ETW k as the difference between
the current sum of setup times in that window, and the lower bound calculated in that window.
After subproblem PTW k is defined, variable Z identifying the sum of setup times contains the
information of the lower bound calculated by the constraint propagation. Crucial components of the
constraint propagation are the route optimization constraint and the precedence graph constraint of

14.3 Minimizing Makespan and Sum of Transition Times 209

Section 11.3. So, if s∗ is the total setup value of the current best solution found, ETW k is equal to
s∗ − lb(Z). In the LB-based Window Selection, first ETW k is calculated for each subproblem PTW k

as defined in the Gliding Window procedure. Then the subproblems are sorted in descending order
of ETW k . All subproblems that may lead to an improvement of the objective function are labeled
as improvable. We run the branch and bound algorithm on the first ranked subproblem that can
lead to an improvement, and change the label of the window. If a better solution is found, the
current solution is updated, and the values ETW k of all windows on the right of the modified one are
recalculated since they may have been changed by the new solution. Also, the labels of the windows
on the right are updated. The windows are then re-sorted and the procedure is repeated until no
window exists that is labeled to be improvable.

14.3.3 Computational Results

The computational results in [103] that we present here show that the constraint propagation as
described in Section 11.3 improves performance of the approach both in terms of computation
time and quality of solutions. Other constraint propagation used for this problems includes the
basic propagation on temporal relations and alternative machines as described in Section 7.2, the
disjunctive constraint propagation of Section 8.1.2, and Edge-Finding as described in Section 8.1.3.
It is shown that the large neighborhood defined by a time window containing between 30 and 60
jobs can be very efficiently explored thanks to this constraint propagation.

Instance generation

Following the computational studies in [51], experiments are run on Open-Shop, General-Shop, and
Job-Shop Problems. The instances of [51] are used to test the approach on problems with setup
times but without machine alternatives. These instances were duplicated and triplicated in [103] to
generate scheduling problems with setup times and alternative machines. In order to generate an
instance with the alternative choice of k machines, for each job and each machine in the original
instance, k jobs and k machines are created. If in the original instance job Ji requires machine Mj ,
in the k–multiplied instance each one of the k identical jobs Jih requires one out of the k identical
machines Mjh. The temporal constraints among jobs are also duplicated, so that if a temporal
constraint Ji → Jj exists in the original instance, the set of temporal constraints Jih → Jjh exist
in the new instance. For all instances without alternative machines the results of the approach
described here can be compared to the results published in [51]. Nevertheless, a real comparison
cannot be done since in [51] the objective is the minimization of the makespan, while here the aim
is to minimize the sum of setup times in a problem constrained by a maximal makespan.

The Open-Shop instances with no alternative machines contain 8 machines and 8 jobs (16 machine
and 16 jobs for the 2-alternative instances etc.). The General-Shop instances with no alternative
machines also contain 8 machines and 8 jobs, and derive from the Open-Shop instances with the
addition of temporal constraints (see [51]). The Job-Shop instances with no alternative machines
contain 5 machines and 20 jobs.

Results

Tables 14.8, . . ., 14.16 report results on Open-Shop, General-Shop, and Job-Shop instances. Tables
14.8, 14.9, and 14.10 report results for the instances in [51]. The following tables report results for
the duplicated and triplicated instances generated as described above. For each instance the results
obtained by the first solution phase and the setup optimization phase are reported in terms of sum
of setup times (

∑
tt) and makespan (C∗). We also report in column B&T the results published in

[51] in terms of makespan for all the instances with no alternative machine. The numbers in the
tables that are in boldface indicate the best value found for the instance at hand. All tests were run
on a Pentium II 300 MHz. The results published in [51] were obtained on a Sun 4/20 workstation,
with a time limit of 5 hours for Open-Shop and General-Shop instances, and a time limit of 2 hours
for Job-Shop instances.

210 Min-Sum Scheduling Problems

Column “FirstSol” reports results in terms of makespan and sum of setup times of the best
solutions obtained by the first solution phase. The time limit given was 60 seconds, and limited
discrepancy search was used (see [116] and Section 12.3.4). The solution obtained after this first
phase turns out to be a good solution with respect to makespan minimization. In half of the instances
considered, the makespan found in the first solution phase improves the best known makespan
published in [51].

As explained, the results of the first solution phase were used as a starting point for the setup
optimization. In the setup optimization phase we fixed an initial window size of 30 jobs (i.e., each
subproblem has 30 completely free jobs), and we used a time limit of 5 seconds for the branch and
bound algorithm to minimize the sum of setup times in each subproblem. In order to compare the
results obtained with and without the constraint propagation described in Section 11.3, we used the
same, very simple, branching strategy: we choose the variable next with the smallest domain and
we branch on its possible values starting from the one generating the smallest setup time. Given an
initial window size, the setup optimization methods (columns “GW”, “GW+”, “LBWS”) are called
until a local minimum is reached, then the window size is increased 20% (e.g., from 30 free jobs to
36 free jobs), and the procedures are repeated until a global time limit is reached.

FirstSol GW GW+ LBWS B&T
∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗ C∗

TAIBS81 2680 942 1740 928 1620 919 1480 936 914
TAIBS85 3480 1113 2180 985 1280 1108 1280 1108 899
TAIS81 1460 699 980 693 890 690 980 693 713
TAIS85 1850 755 1260 748 790 748 850 754 747

Table 14.8: Open-Shop instances from [51]
FirstSol GW GW+ LBWS B&T
∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗ C∗

TAIBGS81 1680 763 1410 763 1410 763 1470 759 837
TAIBGS85 2010 869 1150 862 870 867 870 867 762
TAIGS81 1510 734 1190 734 1150 734 1190 734 858
TAIGS85 1540 749 1210 745 1010 747 1160 747 783

Table 14.9: General-Shop instances from [51]
FirstSol GW GW+ LBWS B&T

∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗ C∗

T2-PS12 1710 1450 1640 1450 1640 1450 1530 1448 1528
T2-PS13 1930 1669 1640 1667 1640 1667 1430 1658 1549
T2-PSS12 1480 1367 1300 1367 1300 1367 1220 1362 1384
T2-PSS12 1290 1522 1220 1522 1140 1522 1220 1518 1463

Table 14.10: Job-Shop instances from [51]

Column “GW” and column “GW+” report the results obtained by the Gliding Window method
described in Section 14.3.2. The algorithm used for column “GW” does not use the constraint
propagation of Section 11.3, while the algorithm used for column “GW+” does. Column “LBWS”
reports the results obtained by the LB-based Window Selection method (also described in Section
14.3.2). For the Open-Shop and General-Shop instances of Tables 14.8 and 14.9 (containing 64
jobs each), the global time limit used is 30 seconds. For the Job-Shop instances of Table 14.10
(containing 100 jobs each), and for the Open-Shop and General-Shop instances of Tables 14.11 and
14.12 (containing 128 jobs each), the global time limit used is 60 seconds. For the Job-Shop instances
of Table 14.13 (containing 200 jobs each), and for the Open-Shop and General-Shop instances of
Tables 14.14 and 14.15 (containing 192 jobs each), the global time limit used was 120 seconds. For
the Job-Shop instances of Table 14.16 (containing 300 jobs each), the global time limit used is 240
seconds.

When the propagation algorithms of Section 11.3 are used (“GW+”), the solutions obtained

14.3 Minimizing Makespan and Sum of Transition Times 211

FirstSol GW GW+ LBWS
∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗

TAIBS81 3920 908 3760 903 2760 904 2840 905
TAIBS85 4520 942 4260 940 2580 939 2380 942
TAIS81 2220 723 2060 723 1540 723 1590 723
TAIS85 2280 690 2110 689 1730 690 1950 689

Table 14.11: Open-Shop instances with two alternative machines
FirstSol GW GW+ LBWS

∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗

TAIBGS81 2220 1023 2140 1023 1270 1008 1490 1017
TAIBGS85 2640 1031 2350 1019 1300 1020 1150 1026
TAIGS81 2510 766 2430 764 1900 766 1720 756
TAIGS85 2490 748 2450 748 1810 743 1710 748

Table 14.12: General-Shop instances with two alternative machines
FirstSol GW GW+ LBWS

∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗

T2-PS12 3410 1562 2980 1537 2330 1552 2510 1551
T2-PS13 2890 1593 2670 1593 2270 1584 2240 1593
T2-PSS12 2090 1515 1820 1479 1610 1505 1540 1515
T2-PSS12 2120 1578 1720 1576 1520 1574 1590 1545

Table 14.13: Job-Shop instances with two alternative machines

FirstSol GW GW+ LBWS
∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗

TAIBS81 4780 1002 4380 999 3320 999 3520 986
TAIBS85 5320 875 5280 875 4180 870 4160 865
TAIS81 2910 802 2440 802 2190 800 2090 802
TAIS85 2660 758 2540 758 2020 755 1690 757

Table 14.14: Open-Shop instances with three alternative machines
FirstSol GW GW+ LBWS

∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗

TAIBGS81 2230 1083 2140 1067 1380 1079 1540 1083
TAIBGS85 2240 1280 2080 1280 1550 1268 1410 1268
TAIGS81 2470 887 2430 887 1740 887 1670 885
TAIGS85 2900 789 2710 789 1760 789 1850 787

Table 14.15: General-Shop instances with three alternative machines
FirstSol GW GW+ LBWS

∑
tt C∗

∑
tt C∗

∑
tt C∗

∑
tt C∗

T2-PS12 2870 1593 2740 1593 2640 1587 2210 1585
T2-PS13 2600 1585 2600 1585 2400 1585 2500 1585
T2-PSS12 2500 1455 2360 1455 2240 1455 2290 1455
T2-PSS12 2100 1562 1850 1562 1770 1562 1730 1562

Table 14.16: Job-Shop instances with three alternative machines

212 Min-Sum Scheduling Problems

consistently have at least the quality obtained when this propagation is not used (“GW”), and very
often the quality is significantly better. The improvement in the solution quality is particularly
important for problems with two and three alternative machines. Problems with no alternative
machines are easier and even without the extra propagation, in each window the local optimal
solution can often be found. However, even in these cases, when the extra constraint propagation is
used the subproblems are solved up to optimality in a shorter time.

A comparison between the LBWS and GW+ shows that the best solutions are equally distributed
between the two. Thus neither of the two methods clearly dominates the other. What one could
remark is that if the scheduling problem is small enough to allow one or several complete gliding
window loops, the LB-based method may lose some interest: if all windows are considered, the
order in which they are solved may not be too important. On the other hand, for larger problems a
complete gliding window loop may not be possible within the CPU time available. In such cases, a
fast evaluation of the most promising area for improvement may play an important role. For more
details on the performance improvements in these tests due to using the constraint propagation of
Section 11.3, we refer to [103].

Although the aim of the methods proposed is to study the problem including alternative ma-
chines, some additional tests were run on small instances with no alternative machines taken from
[51]. Open-Shop and General-Shop instances contain 4 machines and 4 jobs, while Job-Shop in-
stances contain 5 machines and 10 jobs. For each instance two results are reported in Table 14.17.
Column “C∗ before

∑
tt” reports the results obtained by first optimizing the makespan, and then

given this makespan optimizing the sum of setup times. Column “
∑
tt before C∗” reports the re-

sults obtained by first optimizing the sum of setup times, and then given this sum of setup times
optimizing the makespan.

C∗ before
∑
tt

∑
tt before C∗

∑
tt C∗ time

∑
tt C∗ time

Open-Shop
TAIBS01 380 306 0.38 320 384 2.58
TAIBS05 440 395 0.22 320 563 0.72
TAIS01 190 249 0.28 160 344 1.93
TAIS05 220 348 0.27 160 523 0.33

General-Shop
TAIBGS01 280 322 0.16 160 527 0.06
TAIBGS05 280 491 0.33 160 747 0.06
TAIGS01 230 285 0.44 160 362 0.39
TAIGS05 300 384 0.22 160 546 0.16

Job-Shop
T2-PS01 710 798 - 250 2368 -
T2-PS02 630 784 88.42 250 2221 -
T2-PS03 550 749 144.20 250 1932 -
T2-PS04 670 730 388.31 250 1665 -
T2-PS05 710 691 30.43 250 1899 -

Table 14.17: Results on “small” instances

In all cases where a computation time is reported, the optimal solution could be proven for both
criteria. For example, the optimal makespan of TAIBS01 is 306, and given such a makespan the
optimal sum of setup times is 380; on the other hand, the optimal sum of setup times of TAIBS01 is
320, and given this sum of setup times the optimal makespan is 384. Where the time is not reported,
optimality could not be proven within 30 minutes.

Two conclusions can be drawn from these results. First, the minimization of only one objective
may generate poor quality solutions for the other objective. This indicates the usefulness of con-
sidering multi-criteria objectives in future research. Second, it appears that for small problems it
is possible to fix any limit for one objective and find the optimal solution for the other objective.

14.3 Minimizing Makespan and Sum of Transition Times 213

Therefore the method described here might be usable to optimize any combination of makespan and
sum of setup times and find a set of Pareto-optimal solutions.

214 Min-Sum Scheduling Problems

Chapter 15

Conclusion

The various examples provided in Chapters 6, 7, and 8 have shown how a general Constraint-Based
Scheduling model and the associated constraint propagation algorithms can be used to enable the
resolution of complex scheduling problems.

On disjunctive scheduling problems (e.g., Job-Shop, Open-Shop), the CP approach is com-
petitive with classical OR techniques. Indeed, the most crucial “ingredients” from the successful
OR algorithms (e.g., Edge-Finding) have been adapted to the CP framework and are now rou-
tinely used as part of industrial constraint-based applications. The CP framework also enables the
resolution of NP-hard preemptive problems (e.g., Preemptive Job-Shop). We are not aware of
any other practical attempt to solve such problems. In this latter case, the generalization of non-
preemptive techniques to a less constrained situation has enabled the implementation of the first
efficient problem-solving algorithm for Preemptive Job-Shop Scheduling.

On cumulative problems, computational studies have shown that good results can be obtained
for most problem instances. Yet it appears that dedicated OR algorithms are still more efficient
than CP on some problem instances (for example, on “highly disjunctive” instances of Section 13.3).
Understanding the “structure” of the instances that resist to current CP tools and designing new
techniques (e.g., new lower-bounding and new constraint propagation algorithms) to handle these
instances constitute a major research direction for the next few years.

Chapters 5 and 8 focused on the importance of objective functions and showed how they can be
integrated in a constraint-based framework. Very good results have been obtained on some particular
problems (e.g., total weighted number of late jobs, sum of transition times) but of course many
other objective functions (e.g., total tardiness, total flow-time) still have to be studied. Designers
of scheduling applications often have to define their own criteria. A research challenge is to design
generic lower-bounding techniques and constraint propagation algorithms that could work for many
criteria.

Similarly, designers of scheduling applications often have to define and add their own constraints
to the basic Constraint-Based Scheduling model. The strength of the CP framework in this situa-
tion is that the results of propagating the additional constraints are automatically combined with
the results of the deductive rules and algorithms presented in this manuscript, thereby creating a
“snowball” effect: As long as one constraint can contribute to the reduction of the domain of one
variable, the constraint propagation process continues and the domains are reduced. In this sense,
additional constraints do not prevent the use of predefined constraint propagation algorithms (avail-
able in libraries) and contribute to making these algorithms more effective. In practice, three issues
must however be taken into account:

• For complex additional constraints, the design and the implementation of efficient constraint
propagation algorithms is not an easy task. In practice, if more than one scheduling application
includes a given type of constraint, it might be worth developing once an efficient version of
the corresponding constraint propagation algorithms. Examples of scheduling constraints that
do not appear in the model of Chapter 1, but appear in libraries, include energy resource
constraints, stating that the energy available from a resource over intervals of a given length is

216 Conclusion

limited (e.g., an employee works no more than 40 hours a week); energy temporal constraints,
stating that at least some amount of energy must be spent by a given resource on a given
activity before or after the beginning or the end of another activity; state resource constraints,
enabling two activities to overlap only if they require a given resource in the same state (e.g.,
two products can be cooked in the same oven at the same time only if they require the same
oven temperature); reservoir constraints, stating that the level of a given reservoir, filled and
unfilled by given activities, must remain over a given limit; etc.

• Constraint propagation, especially when complex algorithms are used, takes time. In general,
the more complex constraint propagation algorithms prune more values from the domains
of the variables but take more time to execute. When search is performed, this results in a
smaller search tree but with more time spent at each node. The best combination of constraint
propagation algorithms depends on the application and, for the same application, can vary
from a problem instance to another. When several constraint propagation algorithms exist for
the same constraint, the designer of the application must therefore decide which combination
of algorithms is going to be used. This can usually be done by intuition (if the designer
knows which constraints will be the most difficult to satisfy) and experimentation (assuming a
representative set of problem instances is available). Theoretical “domination” results (e.g., the
results presented in Chapter 4) and experimental results from the literature can also be useful.
Although necessarily incomplete, the theoretical and experimental comparisons provided in
this manuscript hopefully provide a clear overview of the state of the art in the field and
clarify a rather complex research situation.

• In some cases, it can be worth developing a global propagation algorithm for a collection of
constraints. This is typically what is done in Chapter 5, where the resource constraint and
the constraint defining the objective function are mixed to make constraint propagation more
effective. Another interesting case is the combination of temporal and resource constraints
(cf., for example, [179, 204, 138]). As previously, if more than one scheduling application
includes a given combination of constraints, it might be worth developing an efficient constraint
propagation algorithm for this combination.

This manuscript dealt with combining OR and AI techniques in a way that preserves the best
of both, i.e., the efficiency provided by OR and the generality of approach offered by AI. Some
readers might wonder why little has been said about various forms of local search, such as simulated
annealing, tabu search, genetic algorithms, etc., which provide excellent results when one can define
a compact representation of the solution space that is consistent with the objective function. In real
life, problems often incorporate side constraints that tend to disable the local search approach. This
led several researchers to integrate CP and local search techniques (cf., for example, [68, 71] in the
scheduling domain and [183, 200, 128, 70, 71] in the vehicle routing domain for which this approach
has been the most successful).

Similarly, little has been said about Linear Programming (LP) and Mixed Integer Programming
(MIP). As a matter of fact, several constraint propagation algorithms in the manuscript do solve
linear programs, but usually these programs have enough structure to allow the design of specific
algorithms with low complexity. Obviously, this does not mean that LP is useless in the context of
Constraint-Based Scheduling.

• For cumulative problems, the complexity of specific constraint propagation algorithms tends
to raise (e.g., to O(n3)), which suggests that lower-bounding and constraint propagation algo-
rithms based on LP might be competitive. However, most of the existing lower bounds based
on LP are still very time consuming and cannot be computed at each node of a search tree.

• LP can also be a strong “ingredient” when the objective function is a sum or a weighted sum of
scheduling variables like the end times of activities. A key research issue here is the design of
techniques combining the power of efficient constraint propagation algorithms for the resource
constraints and the power of LP for bounding the objective function.

217

• In real-life applications, scheduling issues are often mixed with resource allocation, capacity
planning, or inventory management issues for which MIP is a method of choice. Several ex-
amples have been reported where a hybrid combination of CP and MIP was shown to be
more efficient than pure CP or MIP models (cf., for example, [195, 196, 94]). The generaliza-
tion of these examples into a principled approach is another important research issue for the
forthcoming years.

218 Conclusion

Chapter 16

Summary of notation

We summarize all notation used in Part 2 and some of those used in Part 1.

Symbol Definition

ri Release date of job Ji

d̄i Deadline of Ji

di Due-date of Ji

pi Processing time of Ji

wi Weight associated to Ji

Ci Completion time of Ji

Ti Tardiness of Ji, Ti = max(0, Ci − d̄i)
Ei Earliness of Ji, Ei = max(0, d̄i − Ci)
Li Lateness of Ji, Li = Ci − d̄i

Table 16.1: Some standard scheduling notations

Symbol Definition

Ai Activity
n Total number of activities
R Resource

Table 16.2: Activities and resources

220 Summary of notation

Symbol Definition

criterion Variable representing the criterion to be minimized
cap(R), cap Variable representing the capacity of the resource (R)
cap(Ai, R), cap(Ai) Variable representing the number of units of the

resource (R) required by Ai throughout its execution
E(Ai, R), E(Ai) Variable representing the energy of the resource (R)

required by Ai

start(Ai) Variable representing the starting time of Ai

end(Ai) Variable representing the ending time of Ai

proc(Ai) Variable representing the processing time of Ai

altern(Ai) Variable representing the alternative resource on
which Ai will be executed
(used only when there are alternative resources)

setup(Ai, Aj) Amount of time that must elapse between the end of
Ai and the start of Aj

setupCost(Ai, Aj) Cost associated to the transition between Ai and Aj

set(Ai) Variable representing the set of points at which Ai

executes
X(Ai, t) Binary variable that equals 1 if and only if Ai is in

process at time t

E(Ai, t, R), E(Ai, t) Variable representing the number of units of the
resource (R) used by activity Ai at time t

Table 16.3: Variables of the Constraint-Based Scheduling model

Symbol Definition

CR, C Maximum value in the domain of cap(R)
ci,R, ci Minimum value in the domain of cap(Ai, R)
ei,R, ei Minimum value in the domain of E(Ai, R)
pi Minimum value in the domain of proc(Ai)
ri Release date (or earliest start time) of Ai

lsti Latest start time of Ai

eeti Earliest end time of Ai

d̄i Deadline (or latest end time) of Ai

Table 16.4: Bounds of the variables used in the Constraint-Based Scheduling model

Symbol Definition

pΩ Sum of the processing times pi of activities in Ω
eΩ Sum of the energies ei of activities in Ω
rΩ Smallest release date among those of activities of Ω
eetminΩ Smallest value in {eeti : Ai ∈ Ω}
d̄Ω Largest deadline among those of activities of Ω
lstmaxΩ Largest value in {lsti : Ai ∈ Ω}

Table 16.5: Values related to a set Ω of activities

Symbol Definition

domain(X) Domain of the variable X

lb(X) Smallest value in the domain of the variable X

ub(X) Largest value in the domain of the variable X

min(S) Minimal value in the set S

max(S) Maximal value in the set S

length(I) Length of the interval I

Table 16.6: Basic notations

221

Symbol Definition

WPE(Ai, t1, t2) Energy consumption of Ai over [t1, t2) (preemptive case)
= ci max(0, pi − max(0, t1 − ri) − max(0, d̄i − t2))

WPE(t1, t2) Overall required energy consumption over [t1, t2)
=

P

i
WPE(Ai, t1, t2)

SPE(t1, t2) Slack over [t1, t2) (preemptive case)
= C(t2 − t1) − WPE(t1, t2)

p+
i (t1) Minimal number of time units during which Ai must

execute after t1
= max(0, pi − max(0, t1 − ri))

p−

i (t2) Minimal number of time units during which Ai must
execute before t2
= max(0, pi − max(0, d̄i − t2))

WSh(Ai, t1, t2) Energy consumption of Ai over [t1, t2) (non-preemptive case)
= ci min(t2 − t1, p

+
i (t1), p

−

i (t2))
WSh(t1, t2) Overall required energy consumption over [t1, t2)

=
P

i WSh(Ai, t1, t2)
SSh(t1, t2) Slack over [t1, t2) (non-preemptive case)

= C(t2 − t1) − WSh(t1, t2)

Table 16.7: Notations related to energetic reasoning

222 Summary of notation

Bibliography

[1] E. H. L. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. John Wiley
and Sons, 1994.

[2] T.S. Abdul-Razacq, C.N. Potts and L.N. van Wassenhove. A survey of algorithms for the
single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics,
26:235–253, 1990.

[3] J. Adams, E. Balas and D. Zawack. The Shifting Bottleneck Procedure for Job-Shop Schedul-
ing. Management Science, 34(3):391–401, 1988.

[4] A. Aggoun and N. Beldiceanu. Extending CHIP in Order to Solve Complex Scheduling and
Placement Problems. Mathematical and Computer Modelling, 17(7):57–73, 1993.

[5] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network Flows. Prentice Hall, 1993.

[6] S. Albers and P. Brucker. The Complexity of One-Machine Batching Problems. Discrete Ap-
plieded Mathematics 47:87–107, 1993.

[7] A. Allahverdi, J. Gupta and T. Aldowaisan. A review of scheduling research involving setup
consideration. Omega, 27(2):219-239, 1999.

[8] D. Applegate and W. Cook. A Computational Study of the Job-Shop Scheduling Problem.
ORSA Journal on Computing, 3(2):149–156, 1991.

[9] K. R. Baker. Introduction to Sequencing and Scheduling. John Wiley and Sons, 1974.

[10] Ph. Baptiste. Resource Constraints for Preemptive and Non-Preemptive Scheduling. MSc The-
sis, University of Paris VI, 1995.

[11] Ph. Baptiste. A Theoretical and Experimental Study of Resource Constraint Propagation. PhD
Thesis, University of Technology of Compiègne, 1998.

[12] Ph. Baptiste. Polynomial Time Algorithms for Minimizing the Weighted Number of Late Jobs
on a Single Machine when Processing Times are Equal. Journal of Scheduling, 2:245–252, 1999.

[13] Ph. Baptiste. Scheduling Equal-Length Jobs on Identical Parallel Machines. Discrete Applied
Mathematics, 103:21–32, 2000.

[14] Ph. Baptiste. An O(n4) Algorithm for Preemptive Scheduling of a Single Machine to Minimize
the Number of Late Jobs. Operations Research Letters, 24:175–180, 1999.

[15] Ph. Baptiste. Preemptive Scheduling of Identical Machines. Research Report 314, University
of Technology of Compiègne, 2000.

[16] Ph. Baptiste, J. Carlier and A. Jouglet. A Branch-and-Bound Procedure to Minimize Total
Tardiness on One Machine with Arbitrary Release Dates. Submitted to European Journal of
Operational Research, 2002.

224 BIBLIOGRAPHY

[17] Ph. Baptiste, A. Jouglet, C. Le Pape and W. Nuĳten. A Constraint-Based Approach to Mini-
mize the Weighted Number of Late Jobs on Parallel Machines. Research Report 288, University
of Technology of Compiègne, 2000.

[18] Ph. Baptiste and A. Jouglet. On minimizing total tardiness in a serial batching problem.
RAIRO Operations Research 35:107–115, 2001.

[19] Ph. Baptiste and C. Le Pape. A Theoretical and Experimental Comparison of Constraint
Propagation Techniques for Disjunctive Scheduling. Proc. 14th International Joint Conference
on Artificial Intelligence, 1995.

[20] Ph. Baptiste and C. Le Pape. Disjunctive Constraints for Manufacturing Scheduling: Principles
and Extensions. International Journal of Computer Integrated Manufacturing, 9(4):306–310,
1996.

[21] Ph. Baptiste and C. Le Pape. Edge-Finding Constraint Propagation Algorithms for Disjunctive
and Cumulative Scheduling. Proc. 15th Workshop of the UK Planning Special Interest Group,
1996.

[22] Ph. Baptiste and C. Le Pape. Constraint Propagation and Decomposition Techniques for
Highly Disjunctive and Highly Cumulative Project Scheduling Problems. Proc. 3rd. Interna-
tional Conference on Principles and Practice of Constraint Programming, 1997.

[23] Ph. Baptiste, C. Le Pape and W. Nuĳten. Satisfiability Tests and Time Bound Adjustments
for Cumulative Scheduling Problems. Annals of Operations Research, 92:305–333, 1999.

[24] Ph. Baptiste, C. Le Pape and L. Péridy. Global Constraints for Partial CSPs: A Case Study
of Resource and Due-Date Constraints. Proc. 4th International Conference on Principles and
Practice of Constraint Programming, 1998.

[25] Ph. Baptiste, L. Peridy and E. Pinson. A Branch and Bound to Mininimze the Number of
Late Jobs on a Single Machine with Release Time Constraints. Research Report, University of
Technology of Compiègne, 2000.

[26] Ph. Baptiste and V. Timkovsky. On Preemption Redundancy in Scheduling Unit Processing
Time Jobs on Two Parallel Machines. Operations Research Letters, 28:205–212, 2001.

[27] Ph. Baptiste and V. Timkovsky. Thirteen Notes on Equal–Execution–Time Scheduling. Sub-
mitted to 4OR, 2002.

[28] A. Bar-Noy, S. Guha, Y. Katz, J. S. Naor B. Schieber and H. Shachnai. Throughput Maximiza-
tion of Real-Time Scheduling with Batching. ACM-SIAM Symposium on Discrete Algorithms,
2002.

[29] H. Beck. Constraint Monitoring in TOSCA. Working Papers of the AAAI Spring Symposium
on Practical Approaches to Planning and Scheduling, 1992.

[30] J. C. Beck, A. J. Davenport, E. M. Sitarski and M. S. Fox. Texture-Based Heuristics for
Scheduling Revisited. Proc. 14th National Conference on Artificial Intelligence, 1997.

[31] N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Mathematical and
Computer Modelling, 20(12):97–123, 1994.

[32] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[33] C. Bessière, E. Freuder and J.-C. Régin. Using Inference to Reduce Arc Consistency Compu-
tation. Proc. 14th International Joint Conference on Artificial Intelligence, 1995.

[34] J. Blazewicz, W. Domschke and E. Pesch. The Job-Shop Scheduling Problem: Conventional
and New Solution Techniques. European Journal of Operational Research, 93(1):1–33, 1996.

BIBLIOGRAPHY 225

[35] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz. Scheduling Computer and
Manufacturing Processes. 2nd ed., Springer, 2001.

[36] S. C. Brailsford, C. N. Potts and B. M. Smith. Constraint Satisfaction Problems: Algorithms
and Applications. European Journal of Operational Research, 119:557-581, 1999.

[37] W. Brinkkötter and P. Brucker. Solving Open Benchmark Problems for the Job Shop Problem.
Journal of Scheduling, 4:53–64, 2001.

[38] P. Brucker. Scheduling Algorithms. Springer Lehrbuch, 2001.

[39] P. Brucker, A. Gladky, H. Hoogeveen, M. Kovalyov, C. Potts, T. Tautenhahn and S. van de
Velde. Scheduling a Batching Machine. Journal of Scheduling 1:31–54, 1998.

[40] P. Brucker, S. Heitmann and J. Hurink, How Useful are Preemptive Schedules? Osnabrücker
Schriften zur Mathematik, Reihe P, No. 240 (2001).

[41] P. Brucker, J. Hurink, B. Jurisch and B. Wostmann. A branch and bound algorithm for the
open shop problem. Discrete Applied Mathematics, 76:43–59, 1997.

[42] P. Brucker, J. Hurink and S. Knust. A polynomial algorithm for P |pj = 1, rj , outtree|
∑
Cj .

Technical Report, University of Osnabrueck, Germany, 2001.

[43] P. Brucker, B. Jurisch, M. Jurisch. Open Shop Problems With Unit Time Operations.
Zeitschrift für Operations Research 37:59–73, 1993.

[44] P. Brucker, B. Jurisch and B. Sievers. A Branch & Bound Algorithm for the Job-Shop Schedul-
ing Problem. Discrete Applied Mathematics, 49:107–127, 1992.

[45] P. Brucker, B. Jurisch, T. Tautenhahn and F. Werner. Scheduling unit time open shops to
minimize the weighted number of late jobs. Operations Research Letters 14:245–250, 1993.

[46] P. Brucker and S. Knust. A Linear Programming and Constraint Propagation-Based Lower
Bound for the RCPSP. European Journal of Operational Research, 127:355–362, 2000.

[47] P. Brucker and S. Knust, Complexity Results of Scheduling Problems, mathematik.uni-
osnabrueck.de/research/OR/class.

[48] P. Brucker, S. Knust, D. Roper and Y. Zinder. Scheduling UET task systems with concurrency
on two parallel identical processors. Mathematical Methods of Operations Research 53:369–387,
2000.

[49] P. Brucker and M.Y. Kovalyov. Single machine batch scheduling to minimize the weighted
number of late jobs. Mathematical Methods of Operations Research 43:1–8, 1996.

[50] P. Brucker and A. Krämer. Polynomial algorithms for resource-constrained and multiprocessor
task scheduling problems. European Journal of Operational Research, 90:214–226, 1996.

[51] P. Brucker and O. Thiele. A Branch and Bound Method for the General-Shop Problem with
Sequence-Dependent Setup Times. OR Spektrum, 18:145–161, 1996.

[52] M. Bruynooghe. Solving Combinatorial Search Problems by Intelligent Backtracking. Infor-
mation Processing Letters, 12(1):36–39, 1981.

[53] J. Carlier. Problème à une machine et algorithmes polynômiaux. QUESTIO, 5(4):219–228,
1981.

[54] J. Carlier. The One-Machine Sequencing Problem. European Journal of Operational Research,
11:42–47, 1982.

[55] J. Carlier. Problèmes d’Ordonnancement à Contraintes de Ressources : Algorithmes et Com-
plexité. Thèse de Doctorat d’Etat, Université Paris VI, 1984.

226 BIBLIOGRAPHY

[56] J. Carlier and Ph. Chrétienne. Problèmes d’ordonnancement : Modélisation / Complexité /
Algorithmes. Masson, 1988.

[57] J. Carlier and B. Latapie. Une méthode arborescente pour résoudre les problèmes cumulatifs.
RAIRO Recherche Opérationnelle, 25(3):311–340, 1991.

[58] J. Carlier and E. Néron. A New Branch and Bound Method for Solving the Resource-
Constrained Project Scheduling Problem. Proc. International Workshop on Production Plan-
ning and Control, 1996.

[59] J. Carlier and E. Néron. An Exact Method for Solving the Multi-Processor Flow-Shop. RAIRO
Recherche Opérationnelle, 34:1–25, 2000.

[60] J. Carlier and E. Néron. A New LP Based Lower Bound for the Cumulative Scheduling Prob-
lem. Research Report, University of Technology of Compiègne, 2001.

[61] J. Carlier and E. Pinson. An Algorithm for Solving the Job-Shop Problem. Management Sci-
ence, 35(2):164–176, 1989.

[62] J. Carlier and E. Pinson. A Practical Use of Jackson’s Preemptive Schedule for Solving the
Job-Shop Problem. Annals of Operations Research, 26:269–287, 1990.

[63] J. Carlier and E. Pinson. Adjustment of Heads and Tails for the Job-Shop Problem. European
Journal of Operational Research, 78:146–161, 1994.

[64] J. Carlier and E. Pinson. Jackson’s Pseudo-Preemptive Schedule for the Pm|ri, qi|Cmax

Scheduling Problem. Annals of Operations Research, 83:41–58, 1998.

[65] G. Carpaneto, S. Martello and P. Toth. Algorithms and code for the assignment problem.
Annals of Operations Research, 13:193–223, 1988.

[66] Y. Caseau. Contraintes et algorithmes, petit précis d’optimisation combinatoire pratique. Notes
de cours du Magistère de Mathématiques Fondamentales et Appliquées et d’Informatique, Ecole
Normale Supérieure, 1996.

[67] Y. Caseau and F. Laburthe. Improved CLP Scheduling with Task Intervals. Proc. 11th Inter-
national Conference on Logic Programming, 1994.

[68] Y. Caseau and F. Laburthe. Disjunctive Scheduling with Task Intervals. Technical Report,
Ecole Normale Supérieure, 1995.

[69] Y. Caseau and F. Laburthe. CLAIRE: A Parametric Tool to Generate C++ Code for Problem
Solving. Working Paper, Bouygues, Direction Scientifique, 1996.

[70] Y. Caseau and F. Laburthe. Heuristics for Large Constrained Vehicle Routing Problems. Jour-
nal of Heuristics, 5:281-303, 1999.

[71] Y. Caseau, F. Laburthe, C. Le Pape and B. Rottembourg. Combining Local and Global Search
in a Constraint Programming Environment. Knowledge Engineering Review, to appear.

[72] A. Cesta and A. Oddi. Gaining Efficiency and Flexibility in the Simple Temporal Problem.
Proc. 3rd International Workshop on Temporal Representation and Reasoning, 1996.

[73] S. Chang, Q. Lu, G. Tang and W. Yu. On decomposition of the total tardiness problem.
Operations Research, 17:221–229., 1995.

[74] C. Chu and M.-C. Portmann. Some new efficient methods to solve the n|1|ri|
∑
Ti scheduling

problem. European Journal of Operational Research 58:404–413, 1991.

[75] C. Chu. A Branch-and-Bound algorithm to minimize total tardiness with different release
dates. Naval Research Logistics, 39:265–283, 1992.

BIBLIOGRAPHY 227

[76] E.G. Coffman, M. Yannakakis, M.J. Magazine and C. Santos. Batch sizing and sequencing on
a single machine. Annals of Operations Research 26:135–147, 1990.

[77] A. Colmerauer. An Introduction to PROLOG III. Communications of the ACM, 33(7):69–90,
1990.

[78] Y. Colombani. Constraint Programming: An Efficient and Practical Approach to Solving the
Job-Shop Problem. Proc. 2nd International Conference on Principles and Practice of Con-
straint Programming, 1996.

[79] S. Dauzère-Pérès. Minimizing Late Jobs in the General One-Machine Scheduling Problem.
European Journal of Operational Research, 81:134–142, 1995.

[80] S. Dauzère-Pérès and M. Sevaux. A Branch and Bound Method to Minimize the Number of
Late Jobs on a Single Machine. Research report 98/5/AUTO, Ecole des Mines de Nantes, 1998.

[81] S. Dauzère-Pérès and M. Sevaux. An Efficient Formulation for Minimizing the Number of Late
Jobs in Single-Machine Scheduling. Research Report 98/9/AUTO, Ecole des Mines de Nantes,
1998.

[82] M. Dell’Amico and S. Martello. Linear Assignment. Annotated Bibliographies in Combinatorial
Optimization, John Wiley and Sons, 1997.

[83] E. Demeulemeester and W. Herroelen A Branch and Bound Procedure for the Multiple
Resource-Constrained Project Scheduling Problem. Management Science, 38(12):1803–1818,
1992.

[84] E. Demeulemeester and W. Herroelen. New Benchmark Results for the Resource-Constrained
Project Scheduling Problem. Management Science, 43:1485–1492, 1997.

[85] B. De Reyck and W. Herroelen. Assembly Line Balancing by Resource-Constrained Project
Scheduling Techniques: A Critical Appraisal. Technical Report, Katholieke Universiteit Leuven,
1995.

[86] M. I. Dessouky, B. J. Lageweg, J. K. Lenstra and S. L. van de Velde. Scheduling identical jobs
on uniform parallel machines. Statistica Neerlandica, 44:115–123, 1990.

[87] U. Dorndorf, E. Pesch and T. Phan-Huy. Solving the Open Shop Scheduling Problem. Journal
of Scheduling, to appear.

[88] M. Drozdowski. Selected Problems of Scheduling Tasks in Multiprocessor Computer Systems.
Instytut Informatyki Politechnika Poznań, 1997.

[89] M. Drozdowski and P. Dell’Olmo. Scheduling multiprocessor tasks for mean flow time criterion.
Computers and Operations Research 27(6):571–585, 2000.

[90] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM Journal of
Discrete Mathematics 2:473–487, 1989.

[91] J. Du and J. Y-T. Leung. Minimizing Total Tardiness on One Machine is NP-Hard. Mathe-
matics of Operations Research 15:483–495, 1990.

[92] J. Du J. Y.-T. Leung and C. S. Wong. Minimizing the number of late jobs with release time
constraints. Journal of Combinatorial Mathematics, 11:97–107, 1992.

[93] L. Dupont. Ordonnancements sur machines à traitement par batch. Research report GILCO
Institu, fourn. National Polytechnique de Grenoble, 1999.

[94] H. El Sakkout and M. Wallace. Probe Backtrack Search for Minimal Perturbation in Dynamic
Scheduling. Constraints, 5(4):359–388, 2000.

228 BIBLIOGRAPHY

[95] H. Emmons. One-machine sequencing to minimize certain functions of job tardiness. Operations
Research, 17:701–715, 1969.

[96] J. Erschler. Analyse sous contraintes et aide à la décision pour certains problèmes
d’ordonnancement. Thèse de Doctorat d’Etat, Université Paul Sabatier, 1976.

[97] J. Erschler, P. Lopez and C. Thuriot. Raisonnement temporel sous contraintes de ressource et
problèmes d’ordonnancement. Revue d’Intelligence Artificielle, 5(3):7–32, 1991.

[98] P. Esquirol. Règles et processus d’inférence pour l’aide à l’ordonnancement de tâches en
présence de contraintes. Thèse de l’Université Paul Sabatier, 1987.

[99] P. Esquirol, P. Lopez, H. Fargier and T. Schiex. Constraint Programming. Belgian Journal of
Operations Research, 35(2):5–36, 1995.

[100] A. Federgruen and H. Groenevelt. Preemptive Scheduling of Uniform Machines by Ordinary
Network Flow Techniques. Management Science, 32(3):341–349, 1986.

[101] A. J. Fernandez and P. M. Hill. A Comparative Study of Eight Constraint Programming
Languages Over the Boolean and Finite Domains. Constraints, 5(3): 275-301, 2000.

[102] F. Focacci. Solving Combinatorial Optimization Problems in Constraint Programming. PhD
Thesis, Università di Ferrara, 2001.

[103] F. Focacci, Ph. Laborie and W. Nuĳten. Solving Scheduling Problems with Setup Times and
Alternative Resources. Proc. 5th International Conference on Artificial Intelligence Planning
and Scheduling, 2000.

[104] F. Focacci, A. Lodi, M. Milano and D. Vigo. Solving TSP through the integration of OR and
CP techniques. Proc. 4th International Conference on Principles and Practice of Constraint
Programming, 1998.

[105] F. Focacci and W. Nuĳten. A Constraint Propagation Algorithm for Scheduling with Sequence
Dependent Setup Times. Proc. 2nd International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, 2000.

[106] B. Fox. Chronological and Non-Chronological Scheduling. Proc. 1st Annual Conference on
Artificial Intelligence, Simulation and Planning in High Autonomy Systems, 1990.

[107] G. Galambos and G. J. Woeginger. Minimizing the weighted number of late jobs in UET
open shops. Zeitschrift für Operations Research ZOR - Mathematical Methods of Operations
Research, 41:109–114, 1995.

[108] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

[109] M. R. Garey, D. S. Johnson, B. B. Simons and R. E. Tarjan. Scheduling unit-time tasks with
arbitrary release times and deadlines. SIAM Journal of Computing, 10:256–269, 1981.

[110] A. A. Gladky. On the complexity of minimizing weighted number of late jobs in unit time
open shops. Discrete Applied Mathematics, 74:197–201, 1997.

[111] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley and Sons, 1984.

[112] T. Gonzalez. Unit Execution Time Shop Problems. Mathematics of Operations Research, 7:57–
66, 1982.

[113] R. E. Graham, E. L. Lawler, J. K. Lenstra and A. H. G Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Math-
ematics, 4:287–326, 1979.

BIBLIOGRAPHY 229

[114] C. Guéret. Problèmes d’ordonnancement sans contrainte de précédence. Thèse de l’Université
de Technologie de Compiègne, 1997.

[115] C. Guéret, N. Jussien and C. Prins. Using intelligent backtracking to improve branch and
bound methods: An application to open shop problems. European Journal of Operational
Research, 127:344–354, 2000.

[116] W. D. Harvey and M. L. Ginsberg. Limited Discrepancy Search. Proc. 14th International Joint
Conference on Artificial Intelligence, 1995.

[117] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[118] P. van Hentenryck. The OPL Optimization Programming Language. MIT Press, 1999.

[119] P. van Hentenryck, Y. Deville and C. M. Teng. A General Arc-Consistency Algorithm and its
Specializations. Artificial Intelligence, 57(3):291–321, 1992.

[120] D.S. Hochbaum and D. Landy. Scheduling with batching: minimizing the weighted number of
tardy jobs. Operations Research Letters 16:79–86, 1994.

[121] J. A. Hoogeveen, J. K. Lenstra and B. Veltman. Preemptive scheduling in a two-stage multi-
processor flow shop is NP-hard. European Journal of Operational Research, 89:172–175, 1997.

[122] W. Horn. Some simple scheduling problem. Naval Research Logistics Quarterly, 21:177–185,
1974.

[123] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9:841–848,
1961.

[124] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Proc. 14th Annual ACM Symposium
on Principles of Programming Languages, 1987.

[125] J. Jaffar, S. Michaylov, P. J. Stuckey and R. H. C. Yap. The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

[126] K. Jansen and L. Porkolab. Preemptive parallel task scheduling in O(n) + poly(m) time.
International Symposium on Algorithms and Computation, Taipeh, 2000.

[127] S. M. Johnson. Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quaterly, 1:61–68, 1954.

[128] P. Kilby, P. Prosser and P. Shaw. A Comparison of Traditional and Constraint-based Heuristic
Methods on Vehicle Routing Problems with Side Constraints. Constraints, 5(4):389–414, 2000.

[129] H. Kise, T. Ibaraki and H. Mine. A Solvable Case of the One-Machine Scheduling Problem
with Ready and Due Times. Operations Research, 26(1):121–126, 1978.

[130] R. Kolisch, A. Sprecher and A. Drexel. Characterization and Generation of a General Class of
Resource-Constrained Project Scheduling Problems. Management Science, 41(10):1693–1703,
1995.

[131] R. E. Korf. Improved Limited Discrepancy Search. Proc. 13th National Conference on Artificial
Intelligence, 1996.

[132] R. Kowalski. Algorithm = Logic + Control. Communications of the ACM, 22(7):424–436, 1979.

[133] S. Kravchenko. On the complexity of minimizing the number of late jobs in unit time open
shop. Submitted to Discrete Applied Mathematics.

[134] V. Kumar. Algorithms for Constraint Satisfaction Problems: A Survey. AI Magazine, 13(1):32–
44, 1992.

230 BIBLIOGRAPHY

[135] W. Kubiak, C. Sriskandarajah and K. Zaras. A Note on the Complexity of Openshop Schedul-
ing Problems. Information Systems and Operational Research, 29:284–294, 1991.

[136] J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan. Preemptive scheduling of
uniform machines subject to release dates. Progress in combinatorial optimization, Academic
Press, pp. 245–261, 1984.

[137] Ph. Laborie. Modal Precedence Graphs and their Usage in ILOG Scheduler. ILOG Opti-
mization Internal Report OIR-1999-1, 1999.

[138] Ph. Laborie. New Algorithms for Propagating Resource Constraints in AI Planning and
Scheduling. ĲCAI-2001 Workshop on Planning with Resources (submitted).

[139] F. Laburthe. Choco: implementing a CP kernel. Proc. Workshop on Techniques for Imple-
menting Constraint Systems (TRICS), 6th International Conference on Principles and Prac-
tice of Constraint Programming, 2000.

[140] J.-C. Latombe. Failure Processing in a System for Designing Complex Assemblies. Proc. 6th
International Joint Conference on Artificial Intelligence, 1979.

[141] J.-L. Laurière. A Language and a Program for Stating and Solving Combinatorial Problems.
Artificial Intelligence, 10(1):29–127, 1978.

[142] E. L. Lawler. A Dynamic Programming Algorithm for Preemptive Scheduling of a Single
Machine to Minimize the Number of Late Jobs. Annals of Operations Research, 26:125–133,
1990.

[143] E.L. Lawler. A pseudo-polynomial algorithm for sequencing jobs to minimize total tardiness.
Annals of Discrete Mathematics, 1:331–342, 1977.

[144] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys. Sequencing and
Scheduling: Algorithms and Complexity. Operations Research and Management Science, 4,
1989.

[145] E. L. Lawler and J. M. Moore. A functional equation and its application to resource allocation
and sequencing problems. Management Science, 16:77–84, 1969.

[146] C.-Y. Lee and X. Cai. Scheduling one and two-processor tasks on two parallel processors. IIE
Transactions on Scheduling and Logistics, 31:445–455, 1999.

[147] J. K. Lenstra, Alexander H.G. Rinnooy Kan and Peter Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[148] C. Le Pape. Des systèmes d’ordonnancement flexibles et opportunistes. Thèse de l’Université
Paris XI, 1988.

[149] C. Le Pape. Implementation of Resource Constraints in ILOG Schedule: A Library for
the Development of Constraint-Based Scheduling Systems. Intelligent Systems Engineering,
3(2):55–66, 1994.

[150] C. Le Pape and Ph. Baptiste. Resource constraints for preemptive job-shop scheduling. Con-
straints, 3:263–287, 1998.

[151] C. Le Pape and Ph. Baptiste. Heuristic Control of a Constraint-Based Algorithm for the
Preemptive Job-Shop Scheduling Problem. Journal of Heuristics, 5:305–332, 1999.

[152] C. Le Pape, Ph. Couronné, D. Vergamini and V. Gosselin. Time-versus-Capacity Compromises
in Project Scheduling. Proc. 13th Workshop of the UK Planning Special Interest Group, 1994.

BIBLIOGRAPHY 231

[153] C. Le Pape and S. F. Smith. Management of Temporal Constraints for Factory Scheduling. In:
C. Roland, F. Bodart and M. Léonard (editors), Temporal Aspects in Information Systems,
North-Holland, 1988.

[154] M.-L. Lévy. Méthodes par décomposition temporelle et problèmes d’ordonnan-cement. Thèse de
l’Institut National Polytechnique de Toulouse, 1996.

[155] O. Lhomme. Consistency Techniques for Numeric CSPs. Proc. 13th International Joint Con-
ference on Artificial Intelligence, 1993.

[156] C.Y. Liu and R. L. Bulfin. Scheduling open shops with unit execution times to minimize
functions of due dates. Operations Research, 36:553–559, 1998.

[157] H. C. R. Lock. An Implementation of the Cumulative Constraint. Working Paper, University
of Karlsruhe, 1996.

[158] P. Lopez. Approche énergétique pour l’ordonnancement de tâches sous contraintes de temps et
de ressources. Thèse de l’Université Paul Sabatier, 1991.

[159] P. Lopez, J. Erschler and P. Esquirol. Ordonnancement de tâches sous contraintes : une ap-
proche énergétique. RAIRO Automatique, Productique, Informatique Industrielle, 26(6):453–
481, 1992.

[160] E. L. Lloyd. Concurrent task systems. Operations Research 29:189–201.

[161] A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99–118, 1977.

[162] K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. MIT Press, 1998.

[163] P. D. Martin and D. B. Shmoys. A New Approach to Computing Optimal Schedules for the Job-
Shop Scheduling Problem. Proc. 5th Conference on Integer Programming and Combinatorial
Optimization, 1996.

[164] A. A. Mastor. An Experimental Investigation and Comparative Evaluation of Production Line
Balancing Techniques. Management Science, 16(11):728–746, 1970.

[165] K. McAloon and C. Tretkoff. Optimization and Computational Logic. John Wiley and Sons,
1996.

[166] A. Mingozzi, V. Maniezzo, S. Ricciardelli and L. Bianco. An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Management
Science, 44:714–729, 1998.

[167] R. Mohr and T. C. Henderson. Arc and Path Consistency Revisited. Artificial Intelligence,
28:225–233, 1986.

[168] C. L. Monma and C. N. Potts. On the Complexity of Scheduling with Batch Setup Times.
Operations Research 37:798–804, 1989.

[169] U. Montanari. Network of Constraints: Fundamental Properties and Applications to Picture
Processing. Information Sciences, 7:95–132, 1974.

[170] J. M. Moore. An n Job, One Machine Sequencing Algorithm for Minimizing the Number of
Late Jobs. Management Science, 15(1):102–109, 1968.

[171] E. Néron, Ph. Baptiste and J. N. D. Gupta. Solving Hybrid Flow Shop Problem Using Energetic
Reasoning and Global Operations. Research Report, University of Technology of Compiègne,
2000.

[172] Dictionary of Algorithms and Data Structures. National Institute of standards and Technology,
www.nist.gov/dads.

232 BIBLIOGRAPHY

[173] W. P. M. Nuĳten. Time and Resource Constrained Scheduling: A Constraint Satisfaction
Approach. PhD Thesis, Eindhoven University of Technology, 1994.

[174] W. P. M. Nuĳten. Private communication, 1995.

[175] W. P. M. Nuĳten and E. H. L. Aarts. Constraint Satisfaction for Multiple Capacitated Job
Shop Scheduling. Proc. 11th European Conference on Artificial Intelligence, 1994.

[176] W. P. M. Nuĳten and E. H. L. Aarts. A Computational Study of Constraint Satisfaction
for Multiple Capacitated Job-Shop Scheduling. European Journal of Operational Research,
90(2):269–284, 1996.

[177] W. P. M. Nuĳten, E. H. L. Aarts, D. A. A. van Erp Taalman Kip and K. M. van Hee. Ran-
domized Constraint Satisfaction for Job-Shop Scheduling. Proc. AAAI-SIGMAN Workshop on
Knowledge-Based Production Planning, Scheduling and Control, 1993.

[178] W. P. M. Nuĳten and C. Le Pape. Constraint-Based Job Shop Scheduling with ILOG Sched-
uler. Journal of Heuristics, 3:271–286, 1998.

[179] W. Nuĳten and F. Sourd. New Time-Bound Adjustment Techniques for Shop Scheduling. Proc.
7th International Workshop on Project Management and Scheduling, 2000.

[180] L. Péridy. Le problème de job-shop : arbitrages et ajustements. Thèse de l’Université de
Technologie de Compiègne, 1996.

[181] L. Péridy, Ph. Baptiste and E. Pinson. Branch and Bound Method for the Problem 1|ri|
∑
Ui.

Proc. 6th International Workshop on Project Management and Scheduling, 1998.

[182] M. Perregaard. Branch and Bound Methods for the Multi-Processor Job-Shop and Flow-Shop
Scheduling Problems. MSc Thesis, University of Copenhagen, 1995.

[183] G. Pesant and M. Gendreau. A View of Local Search in Constraint Programming. Proc. 2nd
International Conference on Principles and Practice of Constraint Programming, 1996.

[184] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.

[185] E. Pinson. Le problème de job-shop. Thèse de l’Université Paris VI, 1988.

[186] C.N. Potts, L.N. van Wassenhove. A decomposition algorithm for the single machine total
tardiness problem. Operations Research Letters, 26:177–182, 1982.

[187] C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European Journal of
Operational Research 120:228–249, 2000.

[188] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intel-
ligence, 9(3):268–299, 1993.

[189] J.-F. Puget. A C++ Implementation of CLP. Technical Report, ILOG, 1994.

[190] J.-F. Puget and M. Leconte. Beyond the Glass Box: Constraints as Objects. Proc. 12th Inter-
national Symposium on Logic Programming, 1995.

[191] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. Proc. 12th National
Conference on Artificial Intelligence, 1994.

[192] J.-C. Régin. Développement d’outils algorithmiques pour l’intelligence artificielle. Application
à la chimie organique. Thèse de l’Université Montpellier II, 1995.

[193] J.-C. Régin. Generalized Arc-Consistency for Global Cardinality Constraint. Proc. 13th Na-
tional Conference on Artificial Intelligence, 1996.

BIBLIOGRAPHY 233

[194] D. Rivreau. Problèmes d’ordonnancement disjonctifs : règles d’élimination et bornes in-
férieures. Thèse de l’Université de Technologie de Compiègne, 1999.

[195] R. Rodosek and M. Wallace. A Generic Model and Hybrid Algorithm for Hoist Scheduling
Problems. Proc. 4th International Conference on Principles and Practice of Constraint Pro-
gramming, 1998.

[196] R. Rodosek, M. Wallace and M. Hajian. A New Approach to Integrating Mixed Integer Pro-
gramming and Constraint Logic Programming. Annals of Operations Research, 86:63–87, 1999.

[197] S. Sahni. Preemptive Scheduling with Due Dates. Operations Research 27:925–934, 1979.

[198] S. Sahni and Y. Cho. Scheduling Indepensant Tasks with Due Times on a Uniform Processor
System. Journal of the Association for Computing Machinery, 27:550–563, 1980

[199] D. F. Shallcross. A polynomial algorithm for a one machine batching problem. OR Letters
11:213–218, 1992.

[200] P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Rout-
ing Problems. Proc. 4th International Conference on Principles and Practice of Constraint
Programming, 1998.

[201] B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times and dead-
lines. SIAM Journal of Computing, 12:294–299, 1983.

[202] S. F. Smith. OPIS: A Methodology and Architecture for Reactive Scheduling. In: M. Zweben
and M. Fox (editors), Intelligent Scheduling, Morgan Kaufmann, 1994.

[203] S. F. Smith and C.-C. Cheng. Slack-Based Heuristics for Constraint Satisfaction Scheduling.
Proc. 11th National Conference on Artificial Intelligence, 1993.

[204] F. Sourd. Contribution à l’étude et à la résolution de problèmes d’ordonnan-cement disjonctif.
Thèse de l’Université Paris VI, 2000.

[205] F. Sourd and W. Nuĳten. Multiple-Machine Lower Bounds for Shop Scheduling Problems.
INFORMS Journal on Computing, 12(4):341–352, 2000.

[206] R. M. Stallman and G. J. Sussman. Forward Reasoning and Dependency-Directed Backtrack-
ing in a System for Computer-Aided Circuit Analysis. Artificial Intelligence, 9(2):135–196,
1977.

[207] G. L. Steele Jr. The Definition and Implementation of a Computer Programming Language
Based on Constraints. PhD Thesis, Massachusetts Institute of Technology, 1980.

[208] W. Szwarc, F. Della Croce and A. Grosso. Solution of the single machine total tardiness
problem. Journal of Scheduling, 2:55–71, 1999.

[209] V. G. Timkovsky. Is a unit-time job shop not easier than identical parallel machines ? Discrete
Applied Mathematics 85:149-162, 1998.

[210] V. G. Timkovsky. Identical parallel machines vs. unit-time Shops, preemptions vs. chains, and
other offsets in scheduling complexity. Technical report, Star Data Systems Inc., 1998.

[211] Ph. Torres and P. Lopez. On Not-First/Not-Last conditions in disjunctive scheduling. European
Journal of Operational Research, 127:332–343, 2000.

[212] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[213] R. J. M. Vaessens, E. H. L. Aaarts and J. K. Lenstra. Job-Shop Scheduling by Local Search.
INFORMS Journal on Computing, 8:302–317, 1996.

234 BIBLIOGRAPHY

[214] C. Varnier, P. Baptiste and B. Legeard. Le traitement des contraintes disjonctives dans un
problème d’ordonnancement : exemple du Hoist Scheduling Problem. Actes 2èmes journées
francophones de programmation logique, 1993.

[215] M. Wallace, S. Novello and J. Schimpf. ECLiPSe: A Platform for Constraint Logic Program-
ming. IC-Parc, Imperial College, London, 1997.

[216] T. Walsh. Depth-bounded Discrepancy Search. Proc. 15th International Joint Conference on
Artificial Intelligence, 1997.

[217] S. Webster and K.R. Baker. Scheduling Groups of Jobs on a Single Machine. Operations
Research 43:692–703, 1995.

Index

Active Schedule, 17
Activities, 87
Alternative Resources, 89
Arc-B-Consistency, 85
Arc-Consistency, 85
Artificial Intelligence, 86

Batch, 16
Batching, 16
Binary CSP, 85

Chronological Backtracking, 82
Chu’s Lower Bound, 164
Classification Scheme, 15
Constraint, 81
Constraint Programming, 81
Constraint Propagation, 81
Constraint Satisfaction Problem, 81
Constructive Disjunction, 89
CP, 81
Critical Resources, 176
CSP, 81
Cumulative Constraint, 109
Cumulative Problem, 109, 189
Cumulative Scheduling, 86, 189

DDS, 184
Deadline, 16, 87
Density of Precedence Graph, 190
Depth-bounded Discrepancy Search, 184
Dichotomizing Algorithm, 90
Disjunction Ratio, 190
Disjunctive Constraint, 94, 103, 111, 120
Disjunctive Graph, 175
Disjunctive Problem, 175
Disjunctive Scheduling, 86, 175
Domain, 81
Domain Reduction, 81
Dominance Relations (between Rules), 134, 138
Dominance Relations (between Schedules), 177,

180, 191, 198
Due Date, 16

Earliest End Time, 87
Earliest Start Time, 87
EDD, 19

Edge-Finding, 95, 106, 120
Elastic Activity, 88
Elastic Scheduling, 86
Emmons Rule, 165
End Time, 87
Energetic Reasoning, 28, 112, 126
Energy, 87, 88, 126

Flexibility Ratio, 190
Flow Time, 16
Flow-Shop Problem, 15, 192
Fully Elastic Problems, 109

General-Shop Problem, 209
Generalized Emmons Rule, 166, 167
Gliding Window, 208

HFSSP, 189
Hybrid Flow-Shop Problem, 189, 192

Jackson Derivation, 180
Jackson’s Fully Elastic Schedule, 110
Jackson’s Partially Elastic Schedule, 112
Jackson’s Preemptive Schedule, 19, 95, 180
Jackson’s Rule, 180
JFES, 110
Job, 15
Job Characteristics, 16
Job-Shop Problem, 15, 175, 209
JPES, 112
JPS, 19, 95
JSSP, 175

Late Jobs, 16, 153, 197
Latest End Time, 87
Latest Start Time, 87
LDS, 184
Left-Shift / Right-Shift, 126
Limited Discrepancy Search, 184

Machine Environment, 15
Makespan, 16
Min-Sum Problem, 197
Multiprocessor, 16, 51
Multiprocessor Scheduling, 51

Network-Flow Based Constraints, 103

236 INDEX

Non-Dominance Relations (between Rules), 143
Non-Preemptive Scheduling, 86
Not-First Not-Last, 98, 125
Numeric CSP, 85

Objective Function, 90, 153
Open-Shop Problem, 15, 177, 209
Operations Research, 86
Optimality Criterion, 16
Order Strength, 190
Ordered Objective Function, 22
OSSP, 177

Parallel Batch, 16
Parallel Batching Machine, 65
Parallel Bounded Batching, 65
Parallel Machines, 118
Parallel Unbounded Batching, 65
Parallel-Dominant Schedule, 72
Partially Elastic Schedules, 111
PJSSP, 179
Precedence Ratio, 190
Preemption, 111
Preemptive Edge-Finding, 106
Preemptive Job-Shop Problem, 179
Preemptive Scheduling, 86
Problem Decomposition, 198
Problem Solving, 90
Processing Time, 87
Processor, 51
Propagation Rules, 133

RCPSP, 189, 192
Release Date, 16, 87
Required Energy Consumption, 112
Resource, 86
Resource Constraints, 88
Resource Profile, 35
Resource Strength, 192
Resource-Constrained Project Scheduling Prob-

lem, 189, 192
Route Optimization Constraint, 172
Rpt–Function, 41

Sahni’s Algorithm, 27
Search Heuristic, 81
separator, 43
Serial Batch, 16
Serial Batching Machine, 65
Serial-Dominant Schedule, 68
Setup, 90, 206, 208
Shaving, 176, 177
Size of Tasks, 16
Solution of the CSP, 81
Staircase Schedule, 29

Start Time, 87

Tall/Small, 51
Tall/Small Problem, 55
Tardiness, 16
Task, 16, 51
Temporal Relations, 88
Time-Table, 93, 102, 111, 120
Total Flow Time, 16
Transition Cost, 90, 171, 206
Transition Time, 90, 171, 206

Unit Processing Time, 17

Variable, 81

Well-Ordered Schedule, 41

