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Résumé de la thèse

L’un des buts majeurs de l’astrophysique moderne est de comprendre la formation du Système

Solaire. Puisque les protoétoiles de faible masse sont des soleils en formation, l’étude de ces

objets est un des meilleurs moyens d’étudier le processus de formation du Soleil et de son système

planétaire. Dans ma thèse, je me suis concentrée sur la chimie des premières phases d’évolution

des protoétoiles de faible masse en étudiant les molécules organiques complexes dans des sources

de Classe 0, qui représentent les phases les plus jeunes connues. De telles molécules ont été

découvertes dans IRAS16293–2422, le prototype des sources de Classe 0, démontrant l’existence

des “hot corinos”, des régions où les manteaux des grains subliment. Certaines de ces molécules

ont aussi été observées dans des comètes de notre Système Solaire, soulevant la question de savoir

si (et auquel cas, comment) la chimie des Classes 0 affecte la composition chimique de la matière

du disque protoplanétaire incorporée dans les comètes et autres corps planétaires. Cependant,

il est d’abord nécessaire de déterminer si les hot corinos sont omniprésents dans les protoétoiles

de faible masse, ou si IRAS16293–2422 est une exception. Ceci était le premier but de ma thèse.

L’approche consistait principalement à observer trois sources de Classe 0 pour chercher des

molécules organiques complexes. J’ai ainsi découvert et/ou confirmé trois hot corinos de plus.

Le second but était de contraindre la taille de la région d’́emission des molécules complexes au

moyen d’observations interférométriques des deux hot corinos les plus brillants: cette émission est

compacte (∼<150 AU), avec, dans l’un des cas, une composante étendue provenant de l’enveloppe

externe. Le troisième but avait pour lieu de confronter les voies de formation possibles des

molécules complexes avec les résultats de mes observations pour essayer de distinguer si ces

molécules se forment en phase gazeuse ou à la surface des grains. Bien que mes données ne

puissent éliminer aucun des deux cas, elles semblent favoriser le second type de formation. De

plus, la comparaison entre hot corinos et leurs homologues massifs, les hot cores (qui montre

que les molécules complexes sont relativement plus abondantes dans les hot corinos), soutient

également la formation à la surface des grains.
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Abstract

One of the major goals of modern astrophysics is to understand the formation of our Solar

System. Since low-mass protostars are suns in the making, the study of these objects and their

environment provides one of the best ways to investigate the Sun’s formation process and to

peek in the past history of our Solar System. In my thesis, I focused on the chemistry occuring in

Class 0 sources (the earliest known phases in the evolutionary scenario of low-mass protostars)

by studying complex organic molecules in their envelopes. Such molecules have been discovered

in IRAS16293–2422, the prototype of Class 0 sources, proving the existence of hot corinos,

the inner regions of the protostellar envelope where the icy grain mantles sublimate. Some of

these molecules have also been observed in comets in our Solar System, raising the question of

whether (and if so, how) the chemistry of Class 0 objects affects the chemical composition of

the protoplanetary disk material from which comets and other planetary bodies form. However,

it is first necessary to determine whether hot corinos are ubiquitous in low-mass protostars or if

IRAS16293–2422 is an exception. This was the first goal of my thesis. The approach consisted

mainly in observing three Class 0 sources to search for complex organic molecules. I thereby

discovered and/or confirmed three more hot corinos. The second goal was then to constrain

the size of emission of complex molecules. For this, I carried out interferometric observations of

the two brightest hot corinos: this emission is compact (∼<150 AU) with, in one of the sources,

an extended component originating from the cooler, less dense outer envelope. The third goal

consisted in confronting the possible formation pathways with the results of my observations

to try and discriminate whether complex organic molecules form via gas-phase or grain-surface

reactions. Although it was not possible to arrive at a definite answer, my data seem to favor the

later formation route. Moreover, the comparison of hot corinos and their high-mass analogs, the

hot cores (showing that complex molecules are relatively more abundant in hot corinos), also

support grain-surface synthesis of these molecules.
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que j’en suis là et j’apprécie toujours autant nos longues conversations téléphoniques puisque
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deux directeurs de thèse, Cecilia et Jonathan. Leur passion pour l’astronomie et leur enthou-

siasme ont été contagieux, et ils ont toujours trouvé les mots pour effacer mes moments de
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l’aéroport.

J’aimerais remercier Nancy pour avoir ouvert sa maison pendant quelques semaines à une
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Chapitre 1

Introduction

Résumé

L’un des moyens de nous aider dans notre quête de la compréhension du passé de notre Système

Solaire, est d’étudier la formation d’étoiles de type solaire, c’est-à-dire de faible masse. Bien que

les étapes principales de la séquence de formation des protoétoiles de faible masse soient main-

tenant largement acquises, il reste encore beaucoup à découvrir, en particulier la composition et

l’évolution chimique de ces sources.

Pour ma thèse, j’ai observé des objets de Classe 0, qui correspondent au premier stade suivant

la naissance d’une protoétoile de faible masse, et dont on a remarqué que la riche composition

chimique présentait des ressemblances avec celle des comètes de notre Système Solaire. Cela

suggère que la chimie des premières phases de formation d’étoiles de type solaire pourrait avoir

un impact sur la composition chimique des matériaux à partir desquels les corps planétaires

(planètes, comètes, asteröıdes) se formeront éventuellement. Cependant, avant le début de

ma thèse, seulement quelques études s’étaient concentrées sur ce problème, et on avait peu

d’informations sur la complexité chimique des protoétoiles de Classe 0. Mon travail a donc

consisté à pallier les connaissances manquantes en cherchant des molécules complexes autour

des protoétoiles de Classe 0 et en étudiant leur origine.

1.1 Des hot corinos aux comètes (ou: pourquoi s’intéresser aux

hot corinos?)

1.1.1 Scénario de formation stellaire et classification des protoétoiles de faible

masse: qu’est-ce qu’une Classe 0?

La formation de protoétoiles de faible masse (∼< 2M⊙) commence dans des nuages moléculaires

denses, des régions du milieu interstellaire caractérisées par des densités et des températures de

l’ordre de 104 cm−3 et 10 K respectivement. Ces nuages moléculaires se fragmentent en plusieurs

objets denses (n ∼> 106cm−3) et froids (T ∼< 10 K), appelés cœurs pré-stellaires (Figure 1.1-

a). On pense qu’un tel cœur pré-stellaire se contracte lentement jusqu’à ce qu’il atteigne un

1
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état de quasi-équilibre instable, dans lequel seule la pression thermique contre-balance l’auto-

gravité du cœur. Pendant cette phase pré-stellaire, les surfaces des grains de poussière sont

progressivement enrobées de manteaux de glace. Les molécules telles que le CO se collent

facilement à ces manteaux, où elles peuvent mener à la formation de formaldehyde (H2CO) et

méthanol (CH3OH), par additions successives d’hydrogène atomique.

Lorsque la gravité surpasse la pression thermique, magnétique et de turbulence, le cœur devient

gravitationnellement instable, et il subit une phase d’effondrement en “chute libre”. Une fois

que cette phase dynamique d’effondrement a commencé, un embryon stellaire hydrostatique

se forme au centre (une protoétoile) et augmente sa masse en accrétant le gaz de l’envelope

en effondrement (e.g. Di Francesco et al. 2006; Ward-Thompson et al. 2006). A partir de là,

plusieurs étapes d’évolution d’un objet proto-stellaire de faible masse vers la séquence principale

ont été identifiés, basées principalement sur l’étude en continuum de poussière des régions de

formation de protoétoiles de faible masse:

• protoétoiles en accrétion (objets de Classe 0, ∼< 104 ans): on pense que la phase d’effondrement

dynamique décrite ci-dessus est représentée par des sources profondément enfouies, ap-

pelées Classe 0 (Figure 1.1-b). Ces objets possèdent une émission dans le continuum

submillimétrique étendue mais piquée au centre, traçant la présence d’une large enveloppe

de poussière circumstellaire dont la masse, Menv, est plus large que celle de la protoétoile,

M⋆. Cette émission est caractéristique d’un corps noir de température ∼ 10−30 K (Figure

1.1-b’). Ils peuvent également être identifiés par la détection d’une source compacte dans

le continuum radio centimétrique et/ou par la présence d’un flot collimaté;

• protoétoiles en accrétion évoluée (objets de Classe I, ∼ 104 − 105 ans): ces objets sont

entourés d’un disque massif et d’une enveloppe résiduelle (Menv < M⋆) en effondrement,

et ils possèdent des flots faiblement collimatés (Figure 1.1-c). Leur distribution spectrale

d’énergie indique que ce sont des environnements plus chauds et ils sont donc observables

dans l’infrarouge moyen et lointain. Leur émission correspond à un corps noir avec un

excès infrarouge dû à la présence du disque (Figure 1.1-c’);

• étoiles T Tauri classiques (objets de Classe II, ∼ 105 − 3 × 106 ans): ces objets ont peu

ou pas d’enveloppe mais possèdent un disque circumstellaire développé (Figure 1.1-d) et

donc un fort excès infrarouge (Figure 1.1-d’). La transition entre Classe I et Classe II est

caractérisée par le début des réactions de fusion du deutérium;

• étoiles T Tauri “weak-lined” (objets de Classe III, ∼ 3 × 106 − 5 × 107 ans): le disque

circumstellaire s’est dissipé (par accrétion et formation de planétésimaux; Figure 1.1-e)

et ces objets possèdent donc peu d’excès infrarouge (Figure 1.1-e’). Les objets de Classe

III diffèrent des étoiles de la séquence principale par leur émission en rayons X et par la

présence résiduelle de lithium (d’où le nom “weak-lined”, littéralement “à faible raie”).

Alors que le disque se transforme en système planétaire, l’étoile pré-séquence principale continue

de se contracter jusqu’à ce que sa température centrale soit suffisamment élevée pour permettre
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la fusion d’hydrogène, moment à partir duquel l’étoile appartient à la séquence principale (Figure

1.1-f).

La séquence décrite ci-dessus correspond à l’image “standard”, c’est-à-dire le scénario qui

obtient actuellement le plus large consensus. Cependant, les paramètres observationnels utilisés

pour déterminer la Classe d’une protoétoile ne correspondent pas toujours univoquement à

une Classe donnée. En effet, la détermination est souvent faite en évaluant la température

bolométrique Tbol (c’est-à-dire la température d’un corps noir ayant la même fréquence moyenne

pondérée par le flux que celle observée) ou le rapport luminosité submillimétrique sur luminosité

bolométrique. Dans les deux cas, il peut y avoir une mauvaise identification de la Classe d’une

source: par exemple, la quantité d’émission dans l’infrarouge proche et moyen (influencée par la

géométrie) peut faire fortement varier Tbol (Evans 1999). Il est donc nécessaire de déterminer

plus précisément la structure d’une source, par exemple avec des observations interférométriques.

La chimie peut également aider à clarifier la confusion. Par exemple, on peut placer des con-

traintes sur les profils de densité grâce à l’émission de raies moléculaires (voir Section 2.2), et sur

l’âge des protoétoiles de Classe 0 et I en utilisant les espèces soufrées comme horloges chimiques

(Buckle & Fuller 2003; Wakelam et al. 2004).

1.1.2 Definition of hot corinos

En analogie avec les hot cores des protoétoiles massives1, les hot corinos représentent les phases

les plus précoces de l’évolution protostellaire, mais pour les étoiles de faible masse au lieu de

celles de haute masse.

Les hot corinos sont situés dans les parties internes des enveloppes des protoétoiles de Classe 0

et sont caractérisés d’une manière semblable à celle des hot cores massifs:

• tailles relativement compactes, cependant avec des rayons rhc environ deux ordres de

grandeur plus petits que ceux des hot cores (∼<150 AU et ∼<0.1 pc pour les hot corinos et

hot cores respectivement).

• fortes densités: n ∼> 107 cm−3. La détermination des profils de densité de plusieurs

protoétoiles de Classe 0 (e.g. Ceccarelli et al. 2000a; Maret et al. 2002; Jørgensen et al.

2002) a montré que les densités des régions centrales de l’enveloppe peuvent atteindre

∼ 107 cm−3 à des rayons de l’ordre de rhc et jusqu’à 108 − 109 cm−3 dans les parties les

plus au centre (voir bas de la Figure 1.2).

• hautes températures: T∼> 100 K. Comme je l’ai mentionné dans la section précédente, la

distribution spectrale d’énergie d’une protoétoile de Classe 0 est dominée par une enveloppe

froide (T∼<30 K). Cependant, la présence de la protoétoile au centre provoque un gradient

de température tel que celui montré dans le haut de la Figure 1.2, avec de plus hautes

températures à plus petit rayon et plus fortes densités. Eventuellement, la température

1Les protoétoiles massives ont des masses ∼> 8M⊙



4 Chapitre 1: Introduction

� ✁ ✂ ✄ ☎ ✆ ✝ ✞ ✆ ✟ ✟ ✠

� ✁ ✂ ✄ ☎ ✆ ✝ ✞ ✆ ✟ ✟ ✡

� ✁ ✂ ✄ ☎ ✆ ✝ ✞ ✆ ✟ ✟ ✡ ✡
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Figure 1.1 Étapes de la formation d’une protoétoile de faible masse (schémas a-f), ainsi que
les distributions spectrales d’énergie (SED; schémas b’-e’) représentatives des étapes b-e, qui
correspondent aux Classes 0, I, II, et III du scénario d’évolution protostellaire. (Adapté de
Green 2001; Burton et al. 2005).
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peut atteindre une valeur de ∼100 K, à partir de laquelle les manteaux de glace subliment,

relâchant dans la phase gazeuse les molécules (H2CO, CH3OH, NH3) qui se sont formées

et/ou se sont collées sur la surface des grains pendant la phase pré-stellaire. Les abondances

de ces molécules augmentent brusquement à r < r100K, où r100K est le rayon où T=100 K2.

Ceci peut être représenté schématiquement par un saut survenant à r100K avec de faibles

abondances à plus large distance (enveloppe externe froide) et des abondances élevées à

plus petit rayon (enveloppe interne chaude), comme le montre le trait plein de la Figure

1.3.

• spectres riches en raies émises par des molécules organiques complexes telles que HCOOH,

HCOOCH3, CH3OCH3, CH3CN, C2H5CN, etc. Ces molécules sont typiques des hot cori-

nos (et des hot cores massifs) car elles reflètent les conditions de haute température de ces

objets. En effet, on pense qu’elles se forment soit dans la phase gazeuse à partir d’espèces

sublimées (CH3OH, H2CO, NH3) par des réactions nécessitant de hautes températures,

soit sur les manteaux de glace des grains d’où elles sont libérées dans la phase gazeuse

quand les manteaux subliment.

1.1.3 Hot corinos et molécules pré-biotiques

Pendant plus de deux décennies, les molécules organiques complexes3 ont été observées vers

les plus jeunes protoétoiles massives (les analogues de haute masse des objets de Classe 0). Si

ces molécules pouvaient également se former dans les protoétoiles de faible masse et survivre

jusqu’à la phase de disque proto-planétaire, elles pourraient être incorporées dans les corps

planétaires et amenées sur les planètes telles que la Terre. Une fois là, elles pourraient jouer

un rôle dans l’apparition de la vie, par exemple en fournissant les molécules biologiquement

actives qui mènent à la formation des premières proto-cellules (Sandford et al. 1998). En effet,

les molécules polaires (ou “hydrophiles”) telles que H2CO, HCOOH, la plupart des ketones (e.g.

CH3COCH3), des ethers (e.g. CH3OCH3) et des sucres (e.g. CH2OHCHO) sont chimiquement

réactives et constituent souvent les briques de construction des molécules biologiques, ou bien

sont des réactifs menant à ces briques (Pohorille 2002). De plus, beaucoup de ces espèces ont

une importance biologique sur Terre: la formaldehyde, les nitriles (c’est-à-dire les molécules

organiques azotées telles que CH3CN et C2H5CN, pour lesquelles C et N sont attachés par

une liaison triple) et l’éthanol ont toutes été identifiées comme précurseurs indispensables à la

production des protéines, des phospholipides, de l’ARN et de l’ADN.

2Dans la théorie de formation planétaire, r100K est équivalent à la “limite des neiges” (“snowline” en anglais),
le rayon au-delà duquel les glaces d’eau peuvent se former dans le disque proto-planétaire.

3Voir Table A.1 pour une liste non-exhaustive.
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Figure 1.2 Profils de température et densité d’IRAS16293–2422 (Source: Ceccarelli et al. 2000a).
— Haut: Température du gaz (trait plein) et différence entre la température du gaz et celle de
la poussière (trait pointillé) en fonction du rayon. Cette différence montre que les profils de
température du gaz et de la poussière sont semblables. Les deux quantités dépassents 100 K
à petits rayons (∼< 150 AU). — Bas: Densité en fonction du rayon sur une échelle log-log. La
densité suit une loi de puissance et dépasse 107 cm−3 pour R∼< 150 AU.
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☛ ☞ ☞ ✌

Figure 1.3 Profils de température (trait tirets/rouge) et d’abondances des molécules “parentes”
(trait plein/vert) dans un hot corino. r100K est le rayon où la température atteind 100 K,
provoquant la sublimation des manteaux de glaces et la libération dans la phase gazeuse des
molécules parentes (H2CO, CH3OH, NH3) qui se sont formées sur les grains pendant la phase
pŕ-stellaire.



8 Chapitre 1: Introduction

1.2 Précédentes études qui ont motivé cette thèse

1.2.1 Profils d’abondances de H2O, H2CO et CH3OH

H2O, H2CO et CH3OH sont des composants majeurs des manteaux des grains, donc déterminer

la présence d’un saut dans leur profil d’abondance fournirait une preuve directe de l’existence

d’une région interne chaude où les manteaux de glace subliment. La première étude de la sorte sur

une étoile de faible masse a été faite par Ceccarelli et al. (2000a), qui ont modelisé les transitions

de l’eau observées avec l’Infrared Space Observatory vers IRAS16293–2422, et ont trouvé une

augmentation de l’abondance pour des rayons inférieurs à ∼150 AU. Des modélisations similaires

de l’émission des raies de H2CO dans la même source par Ceccarelli et al. (2000c) et de l’eau

dans NGC1333-IRAS4A par Maret et al. (2002) ont montré que les observations pouvaient être

reproduites par un saut dans les profils d’abondance de H2CO et H2O dans IRAS16293–2422

et NGC1333-IRAS4A respectivement. A la suite de ces travaux pionniers, d’autres études de

l’émission des raies de CH3OH et H2CO dans un échantillon d’une douzaine de sources de faible

masse (Classe 0) par Maret et al. (2004, 2005), ont prédit l’existence d’un saut de H2CO dans

toutes les sources recensées et d’un saut de CH3OH dans tous les objets sauf un. Cependant,

alors que les sauts de CH3OH ont été confirmés par les modélisations indépendantes de Jørgensen

et al. (2005b) et Schöier et al. (2002), et semblent plutôt bien établis, l’existence des sauts de

H2CO est controversée car Jørgensen et al. (2005b) et Schöier et al. (2002) trouvent que, le cas

de IRAS16293–2422 mis à part, ces sauts ne sont pas nécessaires pour expliquer l’émission de

H2CO dans les autres objets de Classe 0.

1.2.2 Molécules organiques complexes dans IRAS16293

Dans le passé, les recherches de molécules organiques complexes vers les protoétoiles de faible

masse ont été rares et malheureusement sans succès, qu’elles aient été sous forme de recensements

(van Dishoeck et al. 1995), ou sous forme de recherche d’une molécule donnée (par exemple la

glycine, Ceccarelli et al. 2000b). Néanmoins, il y avait de fortes présomptions de l’existence d’un

hot corino dans la Classe 0 IRAS16293–2422, basées sur deux études. D’abord, la modélisation

de l’émission des raies de H2CO dans cette source a montré que les observations ne pouvaient

être expliquées par une abondance constante de cette molécule, et qu’un saut était nécessaire,

avec une faible abondance dans l’enveloppe externe et élevée dans l’enveloppe interne (Ceccarelli

et al. 2000c; Schöier et al. 2002). Ensuite, si la recherche de la glycine dans IRAS16293–2422

par Ceccarelli et al. (2000b) a été infructueuse, les longues intégrations ont toutefois révélé

de nombreuses raies d’émission dont les fréquences cöıncidaient avec celles de plusieurs grosses

molécules. Pris ensemble, l’augmentation de l’abondance de H2CO et la possible détection de

grosses molécules dans IRAS16293–2422 soutiennent la théorie de la sublimation des manteaux

de glace des grains là où la température de la poussière dépasse ∼ 100 K, justifiant ainsi une

recherche plus poussée des molécules organiques complexes. Et en effet, en 2003, Cazaux et al.

ont détecté des espèces complexes telles que HCOOH, CH3COOH, HCOOCH3, CH3OCH3,

CH3CN et C2H5CN dans IRAS16293–2422, confirmant l’existence d’un hot corino tel qu’il est
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défini dans la Section 1.1.2. Simultanément, une étude de l’émission des raies de H2CO dans

un échantillon de protoétoiles de faible masse par Maret et al. (2004) a prétendu que, comme

pour IRAS16293–2422, les observations nécessitaient un saut dans l’abondance de H2CO pour

toutes les sources de l’échantillon. Ces sources représentaient donc des cibles adéquates où les

molécules complexes avaient des chances d’être trouvées.

Les découvertes de Cazaux et al. (2003), avec l’étude de Maret et al. (2004), ont vraiment

stimulé le commencement de ma thèse en Octobre 2003. Des motivations supplémentaires ont

été amenées par deux débats, l’un concernant l’origine des molécules organiques complexes dans

les hot corinos (e.g. Schöier et al. 2002), et l’autre portant sur l’existence d’un saut dans

l’abondance de H2CO dans les sources de Classe 0 (Section 1.2.1).

1.3 Les quêtes

A partir des éléments présentés dans la section précédente, mon travail de thèse se voulait de

répondre aux questions suivantes, qui constituent également le plan de ce manuscript:

• Y a-t-il un saut dans l’abondance de H2CO dans les protoétoiles de Classe 0? (Chapitre

2)

Puisque H2CO est un composant principal des manteaux des grains, confirmer l’existence

d’un saut dans le profil d’abondance de cette molécule soutiendrait l’existence d’une région

chaude où les manteaux de glace subliment, et on trouverait probablement des molécules

organiques complexes dans les sources où de tels sauts sont observés. De plus, la quantité

de H2CO dans les régions de sublimation des glaces est un paramètre clé pour comprendre

la présence de molécules organiques complexes qui se formeraient à partir de H2CO.

• Les hot corinos sont-ils communs parmi les protoétoiles de faible masse? (Chapitre 3)

L’existence de molécules organiques complexes dans les enveloppes internes des protoétoiles

de Classe 0 pose un défi à la théorie car l’échelle de temps chimique de formation de ces

molécules est plus longue que celle de chute libre du gaz (Schöier et al. 2002). Le molécules

complexes ne devraient donc pas avoir le temps de se former. Cependant, comme je l’ai dit

dans la Section 1.2.2, ces molécules ont néanmoins été observées dans un objet de Classe

0, IRAS16293–2422, et donc la question se pose de savoir si cette source est unique en son

genre ou si ce n’est qu’une parmi tant d’autres.

• Où sont situées les molécules complexes? (Chapitre 4)

Le chapitre 3 montrera que les hot corinos semblent omniprésents dans les sources de

Classe 0. Il s’ensuit un besoin de caractériser ce nouveau type d’objet, plus précisément

de comprendre la présence des molécules organiques complexes qui n’est pas évidente,

comme je l’ai mentionné dans l’item précédent. Un paramètre clé est l’origine spatiale

de l’émission des molécules complexes que je traiterai dans ce chapitre en présentant des

observations à haute résolution de deux hot corinos.
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• Les hot corinos sont-ils semblables aux hot cores? (Chapitre 5)

Puisque les hot corinos ont été définis en analogie aux hot cores massifs, il est normal de

se demander si ces deux types d’objets sont semblables du point de vue de la chimie: les

hot corinos sont-ils des modèles réduits des hot cores ou bien y a-t-il des différences dans

les compositions chimiques?

• Quelle est la voie de formation de ces molécules? (Chapitre 6)

Les mécanismes de formation censés intervenir dans les hot cores massifs sont probablement

incapables d’expliquer la présence des molécules organiques complexes, puisque l’existence

de ces dernières est théoriquement difficile (voir second point). D’autres manières de former

ces molécules doivent donc être explorées.

En résumé

Les hot corinos des protoétoiles de Classe 0 sont le point de départ de l’évolution protostellaire,

donc la chimie de ces objets affectera ou peut-être même déterminera la composition chimique

du futur disque protoplanétaire à partir duquel les comètes, météorites et planètes se forment

éventuellement. En trouvant et en caractérisant les hot corinos, cette recherche vise à déterminer

les conditions chimiques initiales de la formation planétaire, et ainsi à avancer d’un pas dans

notre compréhension de la formation du Système Solaire et plus généralement des protoétoiles

de type solaire.



Chapter 1

Introduction

Abstract

One way to help us in the quest of understanding the past of our Solar System, is to study the

formation of low-mass, Sun-like stars. Although the main steps in the formation sequence of

low-mass protostars are now widely accepted, there is still much to learn, in particular regarding

their chemical evolution and complexity.

For my thesis, I looked at Class 0 objects, which correspond to the first stage following the

birth of a low-mass protostar and whose rich chemical composition has been noted to present

some similarities with that of comets in our Solar System. This suggests that the chemistry of

the first phases of solar-type star formation may have an impact on the chemical composition

of the material from which planetary bodies (planets, comets, asteroids) will eventually form.

However, before the start of my thesis, only a handful of studies had focused on this issue,

and little was known about the chemical complexity of Class 0 protostars. My work therefore

consisted in beginning to complete this missing information by searching for complex molecules

towards Class 0 protostars and studying their origin.

1.1 From hot corinos to comets (or: why do we care about hot

corinos?)

1.1.1 Star formation scenario and classification of low-mass protostars: what

is a Class 0?

The formation of low-mass (∼< 2M⊙) protostars starts in dense molecular clouds, which are

regions of the interstellar medium (ISM) characterized by densities and temperatures of order

104 cm−3 and 10 K respectively. These molecular clouds fragment into dense (∼> 106 cm−3) and

cold (∼< 10 K) objects called pre-stellar cores (Figure 1.1-a). It is believed that such a pre-stellar

core slowly condenses until it reaches an unstable quasi-equilibrium state in which the thermal

pressure alone supports the core against its self-gravity. During this pre-stellar phase, the surface

of dust grains are gradually coated by a water-ice mantles. Molecules such as CO easily stick

to these grain-mantles, where they can lead to the formation of formaldehyde (H2CO) and

11
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methanol (CH3OH) via successive additions of an hydrogen atom.

When gravity overcomes thermal, magnetic and turbulent pressure support, the core becomes

gravitationally unstable and undergoes a phase of free-fall collapse. Once this dynamical collapse

phase has started, a central hydrostatic stellar embryo (or protostar) begins to build up its mass

through the addition of material from the infalling envelope (e.g. Di Francesco et al. 2006;

Ward-Thompson et al. 2006). From this point, several stages of the evolution of a low-mass

protostellar object to the main sequence have been identified, based mostly on the study of

low-mass star forming regions in the dust continuum:

• accreting protostar (Class 0 objects, ∼< 104 yr): the dynamic infall phase described above is

believed to be represented by the deeply embedded Class 0 sources (Figure 1.1-b). These

objects are characterized by possessing an extended submm continuum emission that is

centrally condensed, tracing the presence of a large circumstellar dust envelope, whose

mass Menv is larger than that of the protostar, M⋆. This emission is characteristic of a

black-body of temperature ∼ 10 − 30 K (Figure 1.1-b’). They can also be identified by

the detection of a compact centimeter radio continuum source and/or the presence of a

collimated outflow;

• evolved accreting protostars (Class I objects, ∼ 104−105 yr): these objects are surrounded

by a massive disk and a residual infalling envelope (Menv < M⋆), and they possess poorly-

collimated outflows (Figure 1.1-c). Their energy distribution indicates warmer environ-

ments and they are therefore observable in the mid- and far-infrared. The emission cor-

responds to a black-body with infra-red excess due to the presence of the disk (Figure

1.1-c’);

• classical T Tauri stars (Class II objects, ∼ 105 − 3 × 106 yr): these objects have weak, if

any, remnants of the envelope, but possess well developed circumstellar disks (Figure 1.1-

d) and therefore have strong near-infrared excesses (Figure 1.1-d’). The transition from

Class I to Class II is characterized by the onset of deuterium fusion reactions;

• weak-lined T Tauri stars (Class III objects, ∼ 3 × 106 − 5 × 107 yr): the circumstellar

disk has dissipated (by accretion and feeding of planetesimals; Figure 1.1-e) and so these

objects show little near-infrared (NIR) excess (Figure 1.1-e’). Class III objects differ from

main sequence stars by their X-ray emission and the presence of residual lithium.

While the disk evolves into a planetary system, the pre-main sequence star continues to contract

until its temperature is high enough for hydrogen nuclear fusion, at which point it becomes a

main sequence star (Figure 1.1-f).

The above sequence corresponds to the “standard” picture, that is, the scenario that cur-

rently obtains the largest consensus. However, the observational parameters used to determine

the Class of a protostar do not always uniquely corresponds to a given Class. Indeed, this de-

termination is often done by evaluating the bolometric temperature Tbol (i.e. the temperature

of a black body with the same flux-weighted mean frequency as observed) or the submillimeter-

to-bolometric luminosity ratio. In both cases, there can be a misidentification of the Class of a
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✍ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✓ ✖ ✖ ✗

✍ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✓ ✖ ✖ ✘

✍ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✓ ✖ ✖ ✘ ✘

✍ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✓ ✖ ✖ ✘ ✘ ✘

Figure 1.1 Stages of the formation of a low-mass star (panels a-f) along with the spectral energy
distributions (SED; panels b’-e’) characterizing stages b-e, which correspond to the Class 0, I,
II, and III of the protostellar evolutionnary scheme. (From Green 2001; Burton et al. 2005).
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source: for example, Tbol can be strongly affected by the amount of near- and mid-infrared emis-

sion, i.e. by the geometry (Evans 1999). It is therefore necessary to determine more accurately

the structure of a source, for example by performing interferometric observations. Chemistry

can also help to solve the confusion. For example, constraints can be put on the density profiles

from molecular line emission (see Section 2.2), and on the ages of Class 0 and Class I protostars

by using sulfur-bearing species as chemical clocks (Buckle & Fuller 2003; Wakelam et al. 2004).

1.1.2 Definition of hot corinos

In analogy with the hot cores of high-mass protostars1, hot corinos represent the earliest phases

of protostellar evolution but for low-mass instead of high-mass stars. They are located in the

inner parts of the envelopes of Class 0 protostars and are characterized in a similar way to

massive hot cores:

• relatively compact sizes, albeit with absolute radii rhc about two orders of magnitudes

smaller than that of hot cores (∼<150 AU and ∼<0.1 pc for hot corino and hot cores respec-

tively).

• large densities: n ∼> 107 cm−3. The determination of density profiles of several Class 0

protostars (e.g. Ceccarelli et al. 2000a; Maret et al. 2002; Jørgensen et al. 2002) showed

that the densities in the central regions of the envelope reach ∼ 107 cm−3at radii of order

rhc and up to 108 − 109 cm−3 in the most inner parts (see bottom of Figure 1.2).

• high temperatures: T∼> 100 K. As mentioned in the previous section, the SED of a Class 0

protostar is dominated by a cold (T∼<30 K) envelope. However, the presence of the central

protostar will induce a temperature gradient such as the one shown in the top part of

Figure 1.2, with larger temperatures at smaller radii and higher densities. Eventually, the

temperature can reach ∼100 K, at which point the icy mantles sublimate, releasing in the

gas-phase the molecules (H2CO, CH3OH, NH3) that formed and/or sticked on the grain

surfaces during the pre-stellar phase. The abundances of these molecules increase sharply

for r < r100K, where r100K is the radius at which T=100 K2. This can be represented

schematically by a jump occurring at r100K with low abundances at larger radii (cold

outer envelope) and high abundances at smaller radii (warm inner envelope) as shown by

the solid line in Figure 1.3.

• spectra rich in lines emitted by complex organic molecules such as HCOOH, HCOOCH3,

CH3OCH3, CH3CN, C2H5CN, etc. These molecules are characteristic of hot corinos (and

of massive hot cores) as they reflect the high-temperature conditions of these objects.

Indeed, they are thought to form either in the gas-phase from evaporated species (CH3OH,

1High-mass protostars have masses ∼> 8 M⊙

2In the planet formation theory, r100K is analogous to the snowline, the radius beyond which water-ice can
form in the protoplanetary disk.
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Figure 1.2 Temperature and density profiles of IRAS16293–2422 (from Ceccarelli et al. 2000a).
— Top: Gas temperature (solid line) and difference between gas and dust temperatures (dotted
line) as a function of radius. The later shows that gas and dust temperature profiles are similar.
Both quantities exceed 100 K at small radii (∼< 150 AU). — Bottom: Density as a function of
radius on a log-log scale. The density follows a power law and exceeds 107 cm−3 for R∼< 150 AU.

H2CO, NH3) via reactions requiring large temperatures, or on the icy grain-mantles from

which they are released into the gas-phase when the mantles sublimate.

1.1.3 Hot corinos and pre-biotic molecules

For over two decades, complex organic molecules3 have been observed towards the youngest

massive protostars (the high-mass analogs to Class 0 objects). If these molecules could also

form in low-mass protostars and survive until the proto-planetary disk phase, they could be

incorporated into planetary bodies and delivered to planets such as the Earth. Once there,

they could play a role in the formation of life, for example by providing the biologically active

molecules that lead to the formation of the first protocells (Sandford et al. 1998). Indeed, polar

(or “hydrophilic”) molecules such as H2CO, HCOOH, most ketones (e.g. CH3COCH3), ethers

3See Table A.1 for a non-exhaustive list.
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✙ ✚ ✚ ✛

Figure 1.3 Temperature (red/broken line) and parent molecules’ abundance (green/solide line)
profiles in a hot corino. r100K is the radius at which the temperature reaches 100 K, leading
to the sublimation of ice mantles and the release in the gas-phase of parent molecules (H2CO,
CH3OH, NH3) that formed on the grains during the pre-stellar phase.
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(e.g. CH3OCH3) and sugars (e.g. CH2OHCHO) are chemically reactive and often constitute

building blocks of biological molecules, or are reactants leading to these building blocks (Pohorille

2002). Moreover, many of these species are biologically important on Earth, with formaldehyde,

nitriles (i.e. N-bearing organic molecules such as CH3CN and C2H5CN, for which C and N are

linked by a triple bond) and ethanol all identified as necessary precursors in the production of

proteins, phospholipids, and RNA and DNA.

1.2 Previous studies that drove the start of this thesis work

1.2.1 Abundance profiles of H2O, H2CO and CH3OH

H2O, H2CO and CH3OH are major grain mantle constituents, so that determining the presence

of a jump in their abundance profiles would provide direct evidence of the existence of a warm

inner region where ices sublimate. The first study of this kind on a low-mass protostar was carried

out by Ceccarelli et al. (2000a), who modeled H2O transitions observed with the Infrared Space

Observatory towards IRAS16293–2422, and found an abundance enhancement for radii smaller

than ∼150 K. A similar modeling of H2CO line emission in the same source by Ceccarelli et al.

(2000c) and of H2O in NGC1333-IRAS4A by Maret et al. (2002) showed that the observations

could be reproduced by a jump in the abundance profiles of H2CO and H2O in IRAS16293–2422

and NGC1333-IRAS4A respectively. Following these key works, successive studies of CH3OH

and H2CO line emission in a sample of about a dozen low-mass, Class 0 sources by Maret et al.

(2004, 2005) led to the prediction of the existence of a H2CO jump in all surveyed sources and

of a CH3OH jump in all but one objects. However, while CH3OH jumps have been confirmed

by the independent modelling of Jørgensen et al. (2005b) and Schöier et al. (2002), and seem

therefore fairly well established, the existence of H2CO jumps is debated as Jørgensen et al.

(2005b) and Schöier et al. (2002) find that, except in the case of IRAS16293–2422, they are not

necessary to explain H2CO line emission in other Class 0 objects.

1.2.2 Complex organic molecules in IRAS16293

In the past, searches for complex organic molecules towards low-mass protostars have been

sparse and unfortunately unsuccessful, whether they be in the form of surveys (van Dishoeck

et al. 1995), or searches for specific molecules (e.g. glycine, Ceccarelli et al. 2000b). Nonetheless,

there were strong indications of the existence of a hot corino in the Class 0 IRAS16293–2422,

based on two studies. First, the modelling of H2CO line emission in this source showed that

the observations could not be explained by a constant abundance of this molecule, and that a

jump was required, with low and high abundances in the outer and inner envelopes respectively

(Ceccarelli et al. 2000c; Schöier et al. 2002). Second, if the search for glycine in IRAS16293–2422

by Ceccarelli et al. (2000b) was unfruitful, the deep integrations nonetheless revealed numerous

emission lines whose frequencies coincided with that of several large molecules. Altogether, the

H2CO abundance enhancement and the tentative detections of large molecules in IRAS16293–

2422 supported the theory of evaporation of the icy grain mantles where the dust temperature
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exceeds ∼ 100 K, thereby giving grounds for the presence of a hot corino and for searching further

for complex organic molecules. And indeed, in 2003, Cazaux et al. detected complex species

such as HCOOH, CH3COOH, HCOOCH3, CH3OCH3, CH3CN and C2H5CN in IRAS16293–

2422, confirming the existence of the hot corino as defined in Section 1.1.2. Simultaneously,

a study of the H2CO line emission in a sample of low-mass protostars by Maret et al. (2004)

claimed that, as for IRAS16293–2422, the observations required a jump in the H2CO abundances

in all the sources of the sample. Therefore, in view of the Maret et al. (2004) work, these sources

constituted targets in which complex molecules were likely to be found.

The findings of Cazaux et al. (2003), along with the Maret et al. (2004) study, really spurred

the beginning of this thesis in October 2003. Additional motivations were triggered by the

debate concerning the origin of complex organic molecules in hot corinos (e.g. Schöier et al.

2002) and the one regarding the existence of the H2CO abundance jumps in Class 0 sources

(Section 1.2.1).

1.3 The quests

Based on the elements presented in the previous section, my thesis work aimed at answering the

following questions, which constitute as well the outline of this manuscript:

• Is there a H2CO abundance jump in Class 0 protostars? (Chapter 2)

Since H2CO is a major constituent of grain mantles, confirming the existence of a jump

in the abundance profile of this molecule would support the existence of a warm region

where icy mantles sublimate, and complex organic molecules would more likely be found

in sources where such a jump is observed. In addition, the amount of H2CO in the ice-

sublimation regions is a key parameter for understanding the presence of more complex

organic molecules that may form from H2CO.

• Are hot corinos common among low-mass protostars? (Chapter 3)

The existence of complex organic molecules in the inner envelopes of Class 0 protostars

presents a theoretical challenge because the chemical timescale for the formation of these

molecules is longer than the gas free-fall time (Schöier et al. 2002). Therefore, the com-

plex molecules should not have time to form. However, as seen in Section 1.2.2, these

molecules have nonetheless been observed in one Class 0 object, IRAS16293–2422, so that

the question arises as to whether this source is one of a kind or one of many.

• Where are the complex molecules located? (Chapter 4)

Chapter 3 will show that hot corinos seem ubiquitous among Class 0 sources. It follows

that there is a need to characterize this new kind of objects, in particular to understand

the presence of complex organic molecules which, as mentioned in the previous item, is

non-trivial. A key parameter is the spatial origin of the complex molecules’ emission which
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will be investigated in this chapter by presenting high spatial resolution observations of

two hot corinos.

• Are hot corinos similar to hot cores? (Chapter 5)

Since hot corinos have been defined in analogy to massive hot cores, it is only natural

to wonder whether the two types of objects are similar on a chemical standpoint: are

hot corinos scaled-down versions of hot cores or are there differences in the chemical

compositions?

• What is the formation path of these molecules? (Chapter 6)

The formation mechanisms thought to be at play in massive hot cores are unlikely to be

able to explain the presence of complex organic molecules, since the existence of the later is

theoretically challenging (cf. second item). Therefore, other ways to form these molecules

should be explored.

In a nutshell...

The hot corinos of Class 0 protostars are the starting point of the protostellar evolution, so

that the chemistry of these objects will affect or maybe even define the chemical composition

of the future protoplanetary disk from which comets, meteorites and planets eventually form.

By finding and characterizing hot corinos, this research aims at determining the initial chemical

conditions of planet formation and hence bringing one step further our understanding of the

formation of the Solar System and more generally of solar-type protostars.





Résumé du Chapitre 2

De la sublimation des manteaux de glace

Une des caractéristiques des hot corinos est que ce sont les régions internes de l’enveloppe

protostellaire où les manteaux de glace sont sublimés. Ainsi, les protoétoiles pour lesquelles ces

régions de sublimation existent sont de bonnes canditates pour être des hot corinos. Une des

signatures de la présence de ces régions est l’abondance accrue dans le gaz des composants des

manteaux des grains, tels que la formaldehyde (H2CO) ou le méthanol (CH3OH). La présence

de sauts dans les abondances de H2CO et CH3OH a été revendiquée pour plusieurs protoétoiles

de Classe 0, mais, alors que les sauts pour le CH3OH ont été généralement confirmés, les sauts

pour le H2CO sont sujets à discussion. Des observations de transitions à hautes energies de

H2CO telles que J = 7− 6 à 491.9 GHz (Eup = 74 cm−1), aideraient à résoudre le différent. En

utilisant le James Clerke Maxwell Telescope, j’ai observé et detecté cette transition pour cinq

objets de Classe 0. Les données apportents un peu plus de soutien pour la présence d’un saut

dans l’abondance de H2CO pour trois des cinq sources, mais pas nécessairement pour les deux

restantes. Dans l’ensemble, les données ne sont pas suffisantes pour distinguer avec certitude

entre un saut d’abondance et une abondance constante. Des observations de transitions à

toujours plus haute energie, ou bien à haute résolution spatiale, seraient nécessaires pour régler

la question.
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Chapter 2

On the sublimation of ice mantles

Abstract

One of the characteristics of hot corinos, as defined in Section 1.1.2, is that they are inner regions

of the protostellar envelope where grain mantles sublimate. Hence, protostars in which these

evaporation regions exist would be good hot corino candidates. One signature of the presence

of evaporation regions is the enhanced gas-phase abundance of grain mantle constituents such

as H2CO or CH3OH. The presence of H2CO and CH3OH abundance jumps has been claimed in

a number of Class 0 protostars, but while the CH3OH jumps have been mostly confirmed, the

H2CO jumps are debated. Observations of high-energy transitions of H2CO such as J = 7 − 6

at 491.9 GHz (Eup = 74 cm−1), would help solving the debate. Using the JCMT, I observed and

detected this transition in five Class 0 objects. The data bring further support for the presence

of a H2CO abundance jump in three of the five sources, but not necessarily in the remaining two.

Overall, the data are not sufficient to firmly discriminate between the jump or constant H2CO

abundances and observations of even higher energy transitions, or with high spatial resolution,

would be required to settle the matter.

2.1 Introduction

The claim for the presence or not of a jump in the abundance of the grain mantle constituents

relies in part upon the determination of the physical (density and temperature) structure of

the envelope surrounding a Class 0 protostar. Therefore, I describe in Section 2.2 how this

determination is done in practice. I then move on to the more specific case of constraining the

abundance profile of H2CO, the grain mantle constituent for which the presence of a jump is

debated (Section 2.3). Finally in Sections 2.4 and 2.5, I present the JCMT observations and

compare the results with the predictions.

2.2 Physical structure of Class 0 protostars

The physical structure of the envelope of a Class 0 protostar is coupled to its chemical structure,

both of which are affected by the heat emitted by the central object. Indeed, this heating source
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produces gradients in temperature and density. The varying physical conditions will induce

modifications in the chemical composition across the envelope, which in turn can affect the

physics of the envelope (due to the cooling effect of some molecules). This spatially varying

chemistry can be used to constrain the physical structure of Class 0 envelopes. Indeed, for a

given molecule, each line will be excited at different temperature and density, so that each line

will probe a specific region of the envelope corresponding to these temperature and density. This

can be seen by statistical equilibrium considerations. For a given molecule, the densities of an

upper and a lower level, nu and nl, depend on the balance between the collisional and radiative

processes and can be related in the following way:

nu

nl
=

gu

gl
exp

(

−hνul

kBT

) (

1 +
ncrit

n(H2)

)−1

(2.1)

where gu and gl are the statistical weights of the upper and lower levels, νul is the frequency of the

transition between these levels, kB is Boltzmann’s constant, T is the temperature, n(H2) is the

molecular hydrogen density and ncrit is the critical density, at which collisional and radiative

processes are of equal importance. For transitions in the (sub)millimeter domain, where the

Rayleigh-Jeans approximation applies (hν << kT ), this simplifies to:

nu

nl
=

gu

gl

(

1 − hνul

kBT

) (

1 +
ncrit

n(H2)

)−1

(2.2)

Mathematically, for a two-level system, ncrit = Aul/Cul, where Aul and Cul are the rate coeffi-

cients for radiative and collisional processes respectively. In general, since Aul ∝ ν3, transitions

occurring at a higher frequency ν will have a higher critical density, and therefore will probe

regions of higher density.

Ideally, using several lines from several molecules (due to the fact that some molecules may

be depleted or enhanced in some parts of the envelope) would allow an accurate reconstruction

of the temperature and density profiles of the gas in the envelope. However, this method requires

a large amount of observations and cannot be applied to all sources. Therefore in practice, an

assumption is made about the shape of the density profile and the modeling of some observables

allows a determination of the free parameters. Mostly two types of modeling are used:

• Modelling of line emission using the collapsing Singular Isothermal Sphere (SIS), or “inside-

out” hypothesis

The SIS model, originally proposed by Shu (1977), assumes that the initial state of the

envelope is described by an isothermal sphere in hydrostatic equilibrium with a density

n ∝ r−2. The equilibrium is then perturbed at r = 0 where isothermal collapse starts

and propagates from the inside to the outside at the speed of sound. In the collapse re-

gion, the gas is free-falling, yielding n ∝ r−3/2, while in the static outer envelope, the

density still follows an r−2 law (see Figure 2.1). This dynamical model is combined with

a radiative transfer code, taking into account heating and cooling of the gas and dust, to

predict the line emission, which is then compared with the observations in order to derive
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the scaling factors and the radius of the collapse front (Ceccarelli et al. 1996; Maret et al.

2002). Unlike in other models which assume equal gas and dust temperatues, these two

parameters are derived independently in the present approach. The model also constrains

other parameters such as the mass of the central object and the infall rate.

• Modelling of the dust continuum emission with a single power-law

This method uses spectral energy distributions coupled with maps of the dust continuum

emission to trace the H2 and (dust) temperature distributions. Assuming a single power-

law density between an inner and an outer radius (to avoid the central singularity), the

fluxes and brightness profiles of the sources are modeled with a radiative transfer code.

The modeled parameters are compared to those measured from the observed maps in order

to find the best fit. The power-law index for most Class 0 objects is in the range ∼ 1.3−2.0

(Chandler & Richer 2000; Shirley et al. 2000, 2002; Jørgensen et al. 2002).

The structures derived from both methods are similar and the difference is not significant

enough to be distinguished from observations (e.g. Hogerheijde & Sandell 2000). Note however

that the inside-out model is supported by evidence of infall observed in a number Class 0

protostars (e.g. Di Francesco et al. 2001; Terebey & Padgett 1997; Ward-Thompson et al. 1996),

although non-static initial conditions are more likely than the static initial conditions proposed

by Shu (1977), as noted by Whitworth et al. (1996).

For the sources of interest in my thesis, I list in Table B.2 the parameters of the density profile

recently published in the literature from one or both methods.

2.3 Constraints on the structure from formaldehyde line emis-

sion: the sublimation region.

As mentioned in Sections 1.1.2 and 1.2, determining the presence of a jump in the abundance

profile of H2CO (a major grain mantle constituent) would prove the existence of a warm inner

region where icy mantles sublimate. I explained in Section 2.2 that different transitions of a

given molecule are emitted in different parts of the envelope, reflecting the local temperature

and density. Figure 2.2 illustrates this idea. On the right-hand side, it shows the line intensity

predicted by Ceccarelli et al. (2003) for several H2CO transitions as a function of radius. For

low-energy transitions such as the one outlined in blue, the contribution to the line emission

mainly comes from the cold outer envelope, whereas for high-energy transitions (e.g. in red), it

originates from the warm inner envelope.

Using such modeling of H2CO line emission, Ceccarelli et al. (2000c) and Maret et al. (2004)

claimed the existence of a jump in the H2CO abundance in IRAS16293 and in seven other

Class 0 protostars. Other authors have also carried out analyses of methanol and formaldehyde

in low-mass protostars (e.g. Schöier et al. 2002, 2004; Jørgensen et al. 2005b). On the one

hand, in contrast with Maret et al. (2004), Jørgensen et al. (2005b) claimed that no jump of

formaldehyde abundance is required to model the line intensities in any of the sources except
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Figure 2.1 Schematic representation of the “inside-out” model.
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Figure 2.2 Left: Schematic view of the envelope of a Class 0 protostar with the temperature and
parent molecules’ abundance profiles (as in Figure 1.3). The red and blue areas are examples of
regions where most of the emission of respectively high and low energy transitions (shown in the
right-hand side diagram) originates. — Right: Modeled line intensities as a function of distance
from the central object for six H2CO transitions, whose frequencies (in GHz) and energy of the
upper level (in cm−1) are indicated next to each line (form Ceccarelli et al. 2003). — r100K is
the radius at which T = 100 K.
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Table 2.1 Formaldehyde and methanol abundances in hot corinos and hot corino candidates.

Source Lbol
a Xhc(H2CO) Xhc(CH3OH)

(L⊙) M04b J05d M05c J05d,e

NGC1333-IRAS4A 6 2×10−8 3×10−9 < 1 × 10−8 ≤ 3.5 × 10−9

NGC1333-IRAS4B 6 3×10−6 1×10−8 7×10−7 9.5×10−8

NGC1333-IRAS2A 16 2×10−7 8×10−10 3×10−7 1.5×10−7

L1448-MM 5 6×10−7 1×10−8f 5×10−7 1×10−9

L1448-N 6 1×10−6 – < 4 × 10−7 –
L1157-MM 11 1×10−8 1×10−10 < 3 × 10−8 < 3 × 10−10

L1527 2 6×10−6 2×10−9 – < 6 × 10−10

IRAS16293–2422 27 1×10−7 6×10−8f 1×10−7 1×10−7

Note — A dash indicates that the source was not observed.
a From Jørgensen et al. (2002).
b Maret et al. (2004).
c Maret et al. (2005).
d Jørgensen et al. (2005b).
e Methanol abundances averaged over A- and E-types.
f From Schöier et al. (2002).

IRAS162931 (Schöier et al. 2002). On the other hand, like Maret et al. (2005), Jørgensen et al.

(2005b) and Schöier et al. (2002) found a methanol abundance jump in IRAS4B, IRAS2A and

IRAS16293, but not necessarily in IRAS4A. The hot corino abundances of formaldehyde and

methanol found by the two groups are summarized in Table 2.1.

The difference in the determination of the H2CO abundance profiles could be due to the

different assumptions used by the authors:

• velocity structure: Maret et al. (2004) assume a non-turbulent, infalling envelope to match

the accretion process occuring in Class 0 protostars, whereas Jørgensen et al. (2005b) use

a constant turbulent broadening over the whole envelope based on the assumption that

most of the mass of the envelop is not infalling.

• ortho-para ratio (o/p): considering that the o/p is badly defined in IRAS16293, the source

which has the highest number of observed transitions, Maret et al. (2004) adopted the

canonical value of 3; Jørgensen et al. (2005b) on the other hand attempted to derive the

o/p by determining independently the abundances of the ortho and para forms of H2CO

from the few number of lines, which yielded o/p = 1.6. In fact, it is possible that the o/p

varies across the envelope.

Figure 2.3 shows the ratios of modeled to observed H2CO line fluxes as a function of the

upper energy of the lines, in the Class 0 IRAS2 (Maret et al. 2004), in the cases of a jump and a

1Schöier et al. (2004) obtained a better fit to the H2CO data with a depletion region for radii between R1

(where T is equal to the sublimation temperature) and R2 (where n(H2) = 105 cm−3), instead of a jump at R1.
However, since the value for R2 that these authors obtained from modeling is larger than the outer envelope
radius, the model effectively corresponds to a jump model.
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Figure 2.3 Ratios of modeled to observed H2CO line fluxes as a function of the upper energy
of the lines, in the Class 0 NGC1333-IRAS2 (Maret et al. 2004). The left panel shows the
results when the model is run assuming a jump in the H2CO abundance profile whereas in the
right panel, a constant abundance was used. Circles and squares represent H12

2 CO and H13
2 CO

respectively, and arrows indicate lower limits.

constant abundance profiles. While the predictions do not differ much for the low-energy tran-

sitions (Eup ∼< 50cm−1), there are substantial differences for high-energy transitions. Therefore,

observations of the later are critical to discriminate for the presence of a H2CO abundance jump.

Three such transitions, which have not been observed so far and which have the best possible

atmospheric transmission in the frequency ranges currently attainable with ground-based facil-

ities, are: J = 7− 6 at 491.9 GHz (Eup = 74 cm−1), J = 9− 8 at 656.4 GHz (Eup = 173 cm−1)

and J = 11− 10 at 823.0 GHz (Eup = 183 cm−1). I chose to start with the J = 7− 6 transition,

which had the best atmospheric transmission of the three and therefore would be the easiest to

target, and I describe the observations in the next section.

2.4 Observations with the JCMT

The 7 − 6 transition of H2CO at 491.9 GHz was observed in NGC1333-IRAS4A, NGC1333-

IRAS4B, NGC1333-IRAS2A, L1448-MM, L1448-N and IRAS16293–2422. These sources, de-

scribed in Appendix B, are the brightest ones for which predictions of the line intensity have

been made by Maret et al. (2004) and Ceccarelli et al. (2000c). Positions and physical param-

eters are given in Tables B.1 and B.2. The first three sources and the last one are thereafter

referred to IRAS4A, IRAS4B, IRAS2A and IRAS16293 respectively.

The observations were performed with the JCMT in December 2004 and March 2005 in

beam-switching mode, with the C-band of receiver W (RxWC) operating in single-side band

and with the Digital Autocorrelation Spectrometer (DAS). The spectral resolution and typical

system temperatures were 0.2 km s−1 and 900-2800 K respectively. The antenna temperatures

T ∗

A were converted into main beam temperatures Tmb using Tmb = T ∗

A/ηmb, where ηmb is the
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main beam efficiency and is equal to 52%2.

2.5 Results

H2CO 7 − 6 was detected towards all sources but IRAS2A, for which the data were not use-

able and therefore nothing can be said about the transition in this source. Figure 2.4 shows

the observed spectra and measured integrated intensities are given in Table 2.2 The last three

columns of that table also give the ratios (R1, R2 and R3) of the measured fluxes to those

predicted by the models found in the literature. In R1 and R2, the modeled fluxes are taken

from (Maret et al. 2004), assuming, respectively, a jump and a constant profile for the H2CO

abundance. In R3, the modeled fluxes were kindly provided by J. K. Jørgensen (priv. comm.),

and were obtained using a constant H2CO abundance and the model presented in Jørgensen

et al. (2005b)3.

For L1448-MM, L1448-N and IRAS16293, the abundance jump model predicts values that

are within a factor two of the observed values. On the other hand, for IRAS4A, the constant

abundance models provide slightly better fits (by a factor 2 to 3). Finally, regarding IRAS4B, R3

is the closest to one, but still a factor three away. However, single-dish observations of IRAS4A

and IRAS4B (Chapter 3), as well as interferometric observations in the case of IRAS4A, require

the presence of a sublimation region to explain the presence of the detected complex organic

molecules.

Overall, the constant abundance model of Maret et al. (2004) overestimates (and in one case

underestimates) the observed abundances by at least a factor three and can therefore probably

be excluded to represent most sources (in particular IRAS4B), but the difference produced by

the two other models (at most a factor three) is not significant enough to discriminate between

them.

Conclusion

Considering that H2CO is an important grain-mantle constituent and that its gas-phase abun-

dance in the sublimation regions is a critical parameter to understand the formation of complex

organic molecules, I tried in this Chapter to determine whether the abundance profile of this

so-called parent molecule possesses a jump or if it is constant. To do this, I presented obser-

vations of the high-energy H2CO (7-6) transition obtained with the JCMT toward five Class 0

protostars. Comparison of measured and modeled fluxes favors the jump model in three sources,

IRAS16293, L1448-MM and L1448-N, but does not allow to exclude the constant abundance

model, and observations of still higher energy transitions (J = 9−8 and J = 11−10 which have

2From http://docs.jach.hawaii.edu/JCMT/HET/GUIDE/het guide/.
3The two constant abundance models yield different results due to the different assumptions mentioned in §2.3.
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Figure 2.4 Observed spectra towards NGC1333-IRAS4A, NGC1333-IRAS4B, L1448-MM, L1448-
N and IRAS16293–2422. rms and spectral resolution are given in Table 2.2.
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Table 2.2 Observed parameters and ratios to predicted line fluxes for H2CO 7 − 6

Source rms δV a
∫

TmbdVb Fobs/Fm04,j Fobs/Fm04,c Fobs/Fj05

(K) (km s−1) (K km s−1) (R1)c (R2)c (R3)d

IRAS4A 0.2 0.2 3.2±0.2 0.4 0.7 1.2
IRAS4B 0.3 0.2 8.8±0.3 6.0 18.9 3.0
L1448-MM 0.1 0.4 1.4±0.1 1.1 3.1 2.3
L1448-N 0.2 0.2 1.9±0.2 1.7 4.9 –
IRAS16293 0.3 0.4 46.5±0.7 1.2 3.6 2.6

a Spectral resolution.
b Measured integrated intensity in K km s−1.
c R1 and R2 are the ratios of observed to modeled flux where Fm04,j and Fm04,c are the fluxes
predicted by the jump and constant models respectively of Maret et al. (2004) (except for
IRAS16293 for which the predicted values are taken from Ceccarelli et al. 2000c).
d R3 is th ratio of observed to modeled flux where Fj05 is the flux predicted by the model of
Jørgensen et al. (2005b) (J. K. Jørgensen, priv. comm.). A dash indicates that the source was
not modeled.

Eup=173 and 183 cm−1 respectively) would be required. Alternatively, high-resolution interfer-

ometric observations would yield the determination of the H2CO abundances in the inner ∼ 1′′

and hence would allow to discriminate between the two models.



Résumé du Chapitre 3

La chasse aux hot corinos

La découverte de molécules organiques complexes autour de la protoétoile IRAS16293–2422

a démontré l’existence des hot corinos. La seconde question (mais en fait un des buts majeurs

de ma thèse) que je traite dans ce travail, est de savoir si d’autres sources de Classe 0 abritent

des hot corinos. La chasse aux hot corinos a commencé avec une sélection de sources pour

former un échantillon de Classes 0 qui sont devenues les cibles d’une étude menée à l’aide

d’un télescope à antenne unique (l’IRAM-30m1). Cette étude visait à chercher des molécules

organiques complexes, que j’ai effectivement détectées vers trois autres protoétoiles de type

solaire. J’ai utilisé la méthode dite du diagramme rotationnel pour analyser les données de

l’IRAM-30m et pour calculer les densités de colonnes et les abondances. Je trouve que les

rapports des abondances des molécules complexes aux abondances de CH3OH ou H2CO sont

proches de l’unité et ne dépendent pas des abondances de CH3OH ou de H2CO dans les hot

corinos, ce qui indique que les molécules complexes sont formées efficacement. Les résultats de

ce chapitre ont été publiés dans Bottinelli et al. (2004a) et Bottinelli et al. (2006).

1IRAM = Institut de RadioAstronomie Millimétrique. L’IRAM est financé par l’INSU/CNRS (France), le
MPG (Allemagne) et l’IGN (Espagne).
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Chapter 3

Hunting for hot corinos

Abstract

The discovery of complex organic molecules towards IRAS16293–2422 proved the existence of

hot corinos. The second question I address in this work (but in fact one of the major goals

of my thesis) is whether other Class 0 sources harbored hot corinos. The hunt for hot corinos

started with selecting sources to constitute a sample of Class 0 that would be the targets of

a single-dish survey (carried out with the IRAM-30m1) aiming at looking for complex organic

molecules, which I indeed detected in three more solar-type protostars (Sections 3.1 and 3.2).

I used the so-called rotational diagram method to analyze the single-dish data and calculate

column abundances (Section 3.3). I found that the ratios of complex molecule abundances to

CH3OH or H2CO abundances are close to unity and do not depend on the CH3OH nor the H2CO

abundances in the hot corinos, which indicates that the complex molecules form efficiently. These

results are presented in Sections 3.4 and discussed in Section 3.5. Results from this chapter have

been published in Bottinelli et al. (2004a) and Bottinelli et al. (2006).

3.1 Source selection

The building of my source sample is based on two criteria:

1. due to their distance and luminosity, they are expected to have brighter lines compared

to other Class 0 sources (e.g. from the André et al. 2000 sample);

2. the presence, claimed by Maret et al. (2004, 2005), of a warm (∼>100 K) inner region where

grain mantles sublimate.

The second criterion is based on the modeling of multi-transition observations of H2CO and

CH3OH which required jumps in the abundance profiles of these molecules across the envelope:

low abundances in the outer, cold envelope where formaldehyde and methanol are still frozen

onto grain surfaces, and high abundances in the inner, warm envelope where the heat from the

1IRAM = Institut de RadioAstronomie Millimétrique. IRAM is supported by INSU/CNRS (France), MPG
(Germany) and IGN (Spain).
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central object causes the desorption of formaldehyde and methanol into the gas-phase. The

choice of this criterion is justified by the fact that such jumps are indicators of grain mantles

sublimation, the sine qua non condition for the presence of complex molecules in the gas-phase.

Moreover, these jumps were also found for IRAS16293–2422 (Maret et al. 2005; Ceccarelli et al.

2000c), the first Class 0 source towards which complex organic molecules were detected, so that

sources having H2CO and/or CH3OH abundance jumps are the best candidates where to search

for complex molecules.

These criteria yielded a sample of seven Class 0 protostars, described in Appendix B: NGC1333-

IRAS4A, NGC1333-IRAS4B, NGC1333-IRAS2A, L1448-MM, L1448-N, L1157-MM, and L1527.

The first three sources will be thereafter referred to as IRAS4A, IRAS4B and IRAS2A respec-

tively.

It should be noted that other authors have carried out analyses of methanol and formalde-

hyde in low-mass protostars (e.g. Schöier et al. 2002, 2004; Jørgensen et al. 2005b). These works

have been presented in Chapter 2 and I refer the reader to this chapter for a more detailed dis-

cussion of the differences between the Maret et al. and other studies. Jørgensen et al. (2005b)

and Schöier et al. (2002) The hot corino abundances of formaldehyde and methanol found by

the two groups are summarized in Table 2.1. In the following we will adopt the Maret et al.

(2004, 2005) framework, but we will also discuss the results in the light of the Jørgensen et al.

(2005b) analysis.

3.2 Observations and data reduction

The observations were carried out in June 2003 with the 30-meter telescope of the Institut

de RadioAstronomie Millimétrique (IRAM). With four receivers, this telescope provided the

largest bandwidth and the highest flexibility of setups that we needed in order to look for as

many complex molecules’ transitions as possible. The positions used for pointing were those

given in Table B.1.

Based on the observations of IRAS16293 by Cazaux et al. (2003), we targeted the following

complex molecules: methyl formate (HCOOCH3-A and -E), formic acid (HCOOH), dimethyl

ether (CH3OCH3), methyl cyanide (CH3CN), and ethyl cyanide (C2H5CN). Different telescope

settings were used in order to include as many transitions as possible for each molecule. Table

3.1 shows the observed frequency ranges, the molecules that have transition(s) in these ranges,

and for each source, the rms reached in the low resolution spectra. Spectroscopic parameters for

the targeted transitions (such as frequency and energy of the upper level)can be found in Table

C.1.

All lines were observed with a low resolution, 1 MHz filter bank of 4 × 256 channels split

between different receivers, providing a velocity resolution of ∼ 3, 2, and 1 km s−1 at 3, 2, and

1 mm, respectively. Each receiver was simultaneously connected to a unit of the autocorrelator,

with spectral resolutions of 20, 80 or 320 kHz and bandwidths between 40 and 240 MHz, equiv-
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Table 3.1 Frequency ranges covered during the observations of the sample of solar-type proto-
stars.

Frequency range Moleculesa rmsb (mK)
(GHz) I4A I4B I2A L1448 L1157 L1527

90.07 – 90.32 HCOOCH3-A/E, HCOOH (C2H5OH) 2 2 2 2 2 2
98.50 – 98.75 HCOOCH3-A/E, C2H5CN (C2H5OH) 1 2 3 2 2 7

110.29 – 110.43 CH3CN (C2H5OH) 5 5 – – 7 10
135.62 – 135.86 HCOOH (CH3CHO-A, C2H5OH) 2 – – – – –
146.56 – 146.92 CH3OCH3, C2H5CN (C2H5OH) 8 – – – – –
223.17 – 223.42 CH3OCH3, C2H5CN 9 13 34 9 18 32
226.50 – 227.00 HCOOCH3-A/E (CH3CHO-A, C2H5OH) 11 11 15 10 13 10
240.95 – 241.40 HCOOH, CH3OCH3 15 – – – – –
257.35 – 257.55 CH3CN 6 22 28 14 10 82

Note. – Abbreviations for the sources are: I4A = IRAS4A, I4B =IRAS4B, I2A = IRAS2A, L1448 = L1448-MM, L1157 =

L1157-MM. Due to time constraints, L1448-N was not observed.

a Species in parenthesis were not the primary targeted molecules but were of interest since they were also detected by

Cazaux et al. (2003).

b rms reached in the low resolution spectra. A dash indicates that no data were taken in the corresponding frequency

range.

alent to a (unsmoothed) velocity resolution of 0.1–0.4 km s−1. At 3, 2 and 1 mm, the angular

resolution is 24, 16 and 10′′ and typical system temperatures were 100–200 K, 180–250 K and

500–1500 K, respectively.

Two observation modes were used: position switching with the OFF position at an offset of

∆α = –100′′, ∆δ = +300′′, and wobbler switching with a 110′′ throw in azimuth. Pointing and

focus were regularly checked using planets or strong quasars, providing a pointing accuracy of 3′′.

For a set of spectra with the same settings (frequency range and resolution), the data reduc-

tion consisted in the following steps:

• Examine the individual spectra in order to eliminate the bad ones (e.g. those containing

standing waves).

• Determine the continuum from line-free frequency windows and substract it.

• Convert the antenna temperature TA to main-beam temperature Tmb by Tmb = TA
Feff

Beff
,

where Feff is the forward efficiency (95, 93, and 88% at 3, 2 and 1 mm respectively), and

Beff the main beam efficiency (76, 69 and 50% at 3, 2 and 1 mm respectively).

• Sum the spectra to obtain the final spectrum.

Figures 3.1, 3.2 and 3.3 show the spectra obtained towards sources where complex organic

molecules have been detected: IRAS4A, IRAS4B and IRAS2A respectively.
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Figure 3.1 Observed spectra towards NGC1333-IRAS4A. From left to right, top to bottom, the
rms are 2, 5, 2, 4, 6, 3 (insert 5), 31, 28, 19, 26, 19, 26, 12 mK, and spectral resolutions are 3.3,
0.5, 1.9, 0.9, 0.8, 2.2 (insert: 0.7), 0.2, 0.4, 1.3, 0.4, 0.8, 1.2 and 1.2 km s−1. — Note: Known
transitions are indicated but not all of them are detections, e.g., HCOOCH3 at 90.145 GHz for
IRAS4A is not considered as such, but the upper limit derived from it is consistent with the
rotational diagram of Fig. 3.5(a). Unlabeled lines are unidentified.
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Figure 3.1 (Continued)
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Figure 3.2 Observed spectra towards NGC1333-IRAS4B. The rms are 7, 7 and 5 mK, and the
spectral resolutions are 0.2, 0.3, 0.8 km s−1, at 90, 98 and 110 GHz respectively.

Figure 3.3 Observed spectrum towards NGC1333-IRAS2A. The rms and spectral resolution are
28 mK and 1.2 km s−1.
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3.3 Rotational diagram method

Rotational diagrams allow us to calculate the rotational temperature T and the column density

N of a molecule, from the observed integrated intensities
∫

Tmbdv. Section 3.3.1 details the

general method while Section 3.3.2 explains how multiplets were dealt with.

3.3.1 Singlets

In the approximation of an optically thin line-emission of a transition from an upper (u) to a

lower (l) state, the column density in the upper state is given by:

Nu =
8πkν2

∫
Tmbdv

hc3Aul

where k = Botzmann constant = 1.38×10−16 erg K−1,

ν = frequency of the transition (Hz),
∫

Tmbdv is the integrated intensity,

h = Planck constant = 6.27×10−27 erg s,

c = speed of light = 3×1010 cm s−1,

Aul = Einstein A-coefficient for the transition (or probability of emission, s−1).

The rotational diagram method I describe here will allow me to derive column densities

in a single beamsize. However, the observations were made at different frequencies, so that

the measured integrated intensities (see Tables 3.2, 3.3 and 3.4 in Section 3.4) refer to the

beamsizes corresponding to the frequencies at which the transitions were detected. For the

sources I observed, the size of emission region (θs) is smaller than the beamsize (θb). Indeed,

interferometric observations of IRAS16293 (Section 4.3.1, Kuan et al. 2004; Bottinelli et al.

2004b; Chandler et al. 2005), IRAS4A (Section 4.3.2) and NGC1333-IRAS2A (Jørgensen et al.

2005a) show that the bulk of the emission is ∼< 1′′, which is much smaller than the smallest

beamsize achievable with the IRAM-30m. Therefore, for a given molecule, I can correct the

integrated intensities observed at lower frequencies (i.e. in a larger beam) for beam dilution

with respect to θb,min, the smallest beamsize in which a transition of that molecule was detected.

Hence:

Nu =
8πkν2

∫
Tmbdv

(
θb

θb,min

)2

hc3Aul

=
8πk

hc3
× ν2 I

Aul
(3.1)

where I is the integrated intensity corrected for beam dilution.

Dividing both sides by the degeneracy of the upper level, gu, and plugging in numbers yields:

Nu

gu
= C

(ν[GHz])2 I[K km s−1]

Aulgu
(3.2)
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where C = constant = 1937.5.

Assuming local thermal equilibrium (LTE, which occurs when the density is larger than the

critical density), the level populations follow the Boltzmann distribution:

Nu =
N

Z(T )
gu e−Eu/kT (3.3)

where:

Z(T ) (also called Q(T )) is the partition function of the molecule at temperature T and is given

by:
∑

i

gi e−Ei/kT (3.4)

Eu = energy of the upper level2.

Taking the natural logarithm, we have:

ln

(
Nu

gu

)

= ln

(
N

Z(T )

)

− Eu

kT
= − 1

T

Eu[erg]

k
+ ln

(
N

Z(T )

)

(3.5)

ln

(
Nu

gu

)

︸ ︷︷ ︸

=− 1

T
︸︷︷︸

Eu[K]
︸ ︷︷ ︸

+ln

(
N

Z(T )

)

︸ ︷︷ ︸

y = a x + b

(3.6)

From observations, we know I, hence using equation 3.2, we can plot y = ln
(

Nu

gu

)

vs x = Eu

(in K), as shown schematically on Figure 3.4.

The best line fit to the data points yields:

1. the slope a = − 1
T , i.e. T=−1/a

2. the intercept b = ln
(

N
Z(T )

)

, i.e. N = Z(T )eb

In principle, the partition function can be computed from Equation 3.4 since the Ei’s and gi’s

are known and tabulated in molecular databases such as the one from the JPL3. In practice

however, it was obtained by interpolating from the values given by the JPL molecular database

at a number of temperatures.

Hence we can calculate N, the column density averaged over θb,min. We can then obtain the

column density of the molecule in a hot corino of size θhc < θb,min:

Nhc = N ×
(

θhc

θb,min

)2

(3.7)

2A note on units for Eu: in equation 3.3, Eu is in erg, but in the JPL molecular database, Eu is given in cm−1.
However, as can be seen from what follows equation 3.6, the most useful unit for Eu is K (1 K = 1.44 cm−1).

3http://spec.jpl.nasa.gov/
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Figure 3.4 Schematic view of a rotational diagram.

and finally the abundance of the molecule in the hot corino:

xhc =
Nhc

NH2

(3.8)

where NH2
is the hydrogen column density in the hot corino.

3.3.2 Multiplets

Unresolved multiplets require a specific treatment in the rotational diagram method. Indeed

in this case, only one line is observed, but it consists in several individual transitions i with

the same (or very close) frequency ν and the same upper energy Eu, but different Einstein

coefficients Aul(i) and degeneracies gu(i).

The general method described in Section 3.3.1 can be applied to each transition i, i.e. I want

to plot ln(Nu(i)/gu(i)) vs Eu. However, since the transitions are unresolved, the individual

I(i) cannot be measured, so Equation 3.2 cannot be used directly to determine ln(Nu(i)/gu(i).

Instead, the latter needs to be related to the observable, I, in order to draw the rotational

diagram.

On the one hand, I, the observed integrated intensity (corrected for beam dilution), is the sum
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of the integrated intensity for each transition i:

I =
∑

i

I(i) (3.9)

On the other hand, Equation 3.2 becomes:

Nu(i) = C
ν2I(i)

Aul(i)
(3.10)

⇒ I(i) =
Aul(i)

Cν2
Nu(i) (3.11)

Therefore:

I =
∑

i

(
Aul(i)

Cν2
Nu(i)

)

=
1

Cν2

∑

i

(

Aul(i) gu(i)
Nu(i)

gu(i)

)

(3.12)

Now, from Equation 3.2, we have:

Nu(i)

gu(i)
=

N

Z(T )
exp

(

−Eu

kT

)

(3.13)

i.e. Nu(i)/gu(i) is a constant since, as mentioned above, the multiplets have the same Eu. Hence:

I =
1

Cν2

Nu(i)

gu(i)

∑

i

(Aul(i) gu(i))

⇒ Nu(i)

gu(i)
= C

ν2 I
∑

i

(Aul(i) gu(i))
(3.14)

Using Equation 3.14, I can plot ln(Nu(i)/gu(i)) vs Eu; the rotational temperature and column

density can then be determined in the same way as for the singlets (Equations 3.6, 3.7 and 3.8).

3.4 Results

3.4.1 Detections

Most of the complex molecules I searched for in IRAS4A were detected (transitions are listed in

Table 3.2). In IRAS4B and IRAS2A, only HCOOCH3 and/or CH3CNwere detected (Tables 3.3

and 3.4 respectively), but overall, my observations confirm the presence of complex molecules

and hence of hot corinos in these three sources.

I considered as good identifications only lines with a 3-σ detection and a VLSR=7.0±0.4

km s−1. For each molecule, I also list in the aforementionned tables, the transition lines, their

corresponding frequencies and energies of the upper levels, as well as the parameters (peak

temperature, full-width at half-maximum, and integrated intensity) determined from a gaussian

fit. Other parameters necessary to apply the rotational diagram method, namely the Einstein
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A-coefficients Aul and degeneracy of the upper level gu, can be found in Table C. Auls are

derived from the parameter log(I) listed in that table by:

Aul =
2.7964 × 10−10 I ν2 Q300

gu (e−El/300 − e−Eu/300)
(3.15)

where ν is the frequency in GHz, Q300 is the partition function at 300 K, and El and Eu are the

energies of the lower and upper levels, respectively, of the transition.

Remarks

• There were a couple of tentative detection of C2H5OH: 41,4 − 30,3 at 90.118 GHz in

IRAS4A and 102,9 − 91,8 at 226.661 GHz in IRAS4B. Although the 102,9 − 91,8 transition

has a greater probability of occuring than the 41,4 − 30,3 transition (log(I)=-3.9 vs -4.8),

it was not seen in IRAS4A, which could be due to the fact that it also has a higher energy

(28 vs 3.5 cm−1).

• No observations were made at 110 GHz for IRAS2A (see Table 3.1).

• The rms reached at 257 GHz for IRAS4B is too high to detect the CH3CN transitions at

this frequency, if the line ratios are similar to those in IRAS4A.

3.4.2 Rotational diagrams, column densities and abundances

Following the method described in Section 3.3, I plotted rotational diagrams for the molecules

with at least 2 detected transitions:

• in IRAS4A: HCOOCH3-A and HCOOCH3-E (Figure 3.5(a)), and HCOOH and CH3CN

(Figure 3.5(b));

• in IRAS4B: HCOOCH3-A and CH3CN (Figure 3.5(c));

• in IRAS4B: CH3CN (Figure 3.5(d)).

The derived rotational temperatures and beam-averaged column densities are listed in Tables

3.5. This table also gives the hot corino abundances which were calculated using Equations 3.7

and 3.8 and the hot corino sizes and H2 column densities derived from Maret et al. (2004).

Upper limits

No transitions were detected for the following molecules:

• HCOOH in IRAS4B and IRAS2A;

• HCOOCH3 in IRAS2A;
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Table 3.2 Molecular lines detected toward NGC1333-IRAS4A.

Molecule Transition line Frequency Eu
a Tmb ± rms ∆V b ± δV c

∫
TmbdV

(MHz) (cm−1) (mK) (km s−1) (K km s−1)
HCOOCH3-A 72,5 − 62,4 90156.5 13.7 22 ± 5 1.5 ± 0.5 0.036 ± 0.008

80,8 − 70,7 90229.7 13.9 16 ± 5 2.5 ± 0.5 0.041 ± 0.009
83,6 − 73,5 98611.1 18.9 28 ± 7 1.2 ± 0.2 0.036 ± 0.006
84,5 − 74,4 98682.8 22.2 95 ± 2 4.2 ± 1.9 0.042 ± 0.015

HCOOCH3-E 72,5 − 62,4 90145.7 13.7 14 ± 5 1.3 ± 0.5 0.019 ± 0.007
80,8 − 70,7 90227.8 14.0 16 ± 5 3.1 ± 0.5 0.055 ± 0.008
83,6 − 73,5 98607.8 18.9 13 ± 4 3.8 ± 0.9 0.054 ± 0.017
84,5 − 74,4 98711.7 22.2 22 ± 7 1.4 ± 0.2 0.034 ± 0.009

202,18 − 192,18 226713.1 83.6 61 ± 26 1.6 ± 0.8 0.099 ± 0.038
203,18 − 193,17 226773.3 83.6 54 ± 19 2.1 ± 0.8 0.121 ± 0.040

HCOOH 42,2 − 32,1 90164.5 16.4 16 ± 5 0.8 ± 0.5 0.015 ± 0.008
62,4 − 52,3 135737.7 24.6 15 ± 5 1.8 ± 1.4 0.029 ± 0.008

CH3CNd 63,0 − 53,0 110364.6 57.6 24 ± 6 4.8 ± 0.8 0.110 ± 0.055
62,0 − 52,0 110375.1 32.8 46 ± 6 2.3 ± 0.8 0.112 ± 0.012
61,0 − 51,0 110381.5 17.9 67 ± 6 3.1 ± 0.8 0.241 ± 0.033
60,0 − 50,0 110383.6 12.9 83 ± 6 4.0 ± 0.8 0.347 ± 0.008

144,0 − 134,0 257448.9 143.9 40 ± 12 3.3 ± 1.2 0.141 ± 0.008
143,0 − 133,0 257482.7 109.1 53 ± 19 2.6 ± 0.4 0.150 ± 0.008
142,0 − 132,0 257507.9 84.3 59 ± 19 3.1 ± 0.4 0.195 ± 0.008
141,0 − 131,0 257522.5 69.4 74 ± 19 2.2 ± 0.4 0.172 ± 0.008
140,0 − 130,0 257527.4 64.4 68 ± 12 3.8 ± 1.2 0.274 ± 0.008

a Energy of the upper level of the transition.
b Width of the observed line (full-width at half-maximum of the fitted gaussian).
c Spectral resolution of the observation (when possible, the integrated intensity was derived from the
high resolution data).
d All the CH3CN lines are (unresolved) triplets. The quoted signal is the integral over each triplet. Larger
linewidths could be due to the larger spacing between the components of the triplets.
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Table 3.3 Molecular lines detected toward NGC1333-IRAS4B.

Molecule Transition line Frequency Eu Tmb ± rms ∆V a ± δV b
∫

TmbdV
(MHz) (cm−1) (mK) (km s−1) (K km s−1)

HCOOCH3-A 72,5 − 62,4 90156.5 13.7 26 ± 7 0.6 ± 0.3 0.017 ± 0.004
80,8 − 70,7 90229.7 13.9 23 ± 7 0.5 ± 0.3 0.013 ± 0.004
83,6 − 73,5 98611.1 18.9 21 ± 7 0.7 ± 0.2 0.016 ± 0.004

HCOOCH3-E 80,8 − 70,7 90227.8 14.0 18 ± 6 1.8 ± 0.5 0.035 ± 0.005
CH3CNd 64,0 − 54,0 110349.7 92.3 18 ± 5 2.3 ± 0.8 0.045 ± 0.009

63,0 − 53,0 110364.6 57.6 17 ± 5 2.8 ± 0.8 0.049 ± 0.011
62,0 − 52,0 110375.1 32.8 24 ± 5 2.5 ± 0.8 0.062 ± 0.013
61,0 − 51,0 110381.5 17.9 33 ± 5 3.4 ± 0.8 0.119 ± 0.014
60,0 − 50,0 110383.6 12.9 42 ± 5 3.8 ± 0.8 0.171 ± 0.015

a Energy of the upper level of the transition.
b Width of the observed line (full-width at half-maximum of the fitted gaussian).
c Spectral resolution of the observation (when possible, the integrated intensity was derived from the
high resolution data).
d All the CH3CN lines are unresolved triplets, except at 110349.7 MHz which is an unresolved doublet.
The quoted signal is the integral over each triplet or doublet.

Table 3.4 Molecular lines detected toward NGC1333-IRAS2A.

Molecule Transition line Frequency Eu
a Tmb ± rms ∆V b ± δV c

∫
TmbdV

(MHz) (cm−1) (mK) (km s−1) (K km s−1)
CH3CNc 145,0 − 135,0 257403.6 188.5 169 ± 28 3.8 ± 1.2 0.692 ± 0.091

144,0 − 134,0 257448.9 143.9 111 ± 43 1.6 ± 0.4 0.190 ± 0.046
143,0 − 133,0 257482.7 109.1 113 ± 28 3.4 ± 1.2 0.413 ± 0.044
142,0 − 132,0 257507.9 84.3 145 ± 32 2.7 ± 0.7 0.411 ± 0.055
141,0 − 131,0 257522.5 69.4 198 ± 28 3.1 ± 1.2 0.662 ± 0.087
140,0 − 130,0 257527.4 64.4 115 ± 28 3.8 ± 1.2 0.470 ± 0.068

a Energy of the upper level of the transition.
b Width of the observed line (full-width at half-maximum of the fitted gaussian).
c Spectral resolution of the observation (when possible, the integrated intensity was derived from the
high resolution data).
d All the CH3CN lines are unresolved triplets. The quoted signal is the integral over each triplet.
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(a) Rotational diagram for HCOOCH3-A and
HCOOCH3-E in IRAS4A.

(b) Rotational diagram for HCOOH and CH3CN in
IRAS4A.

(c) Rotational diagram for HCOOCH3-A and
CH3CN in IRAS4B. The excess of emission of the
CH3CN transition at 135 K is probably due to con-
tamination from unknown line(s) and this point is
not included in the fit.

(d) Rotational diagram for CH3CN in IRAS2A. The
excess of emission of the transition at 270 K is proba-
bly due to contamination from CH3OH 183,16−182,17

and this point is not included in the fit.

Figure 3.5 Rotational diagrams of the detected complex molecules in NGC1333-IRAS4A,
NGC1333-IRAS4B and NGC1333-IRAS2A, corrected for beam dilution at lower frequencies.
The arrows show the upper limits for undetected transitions. Lines represent the best fit to the
data. Error bars are derived assuming a calibration uncertainty of 10% on top of the statistical
error.
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• CH3OCH3 and C2H5CN in all sources

For these molecules, I calculated the upper limits on the integrated intensities as:

2σ (1 + α) δV
√

Nc = 2σ (1 + α)
√

∆V δV (3.16)

where σ is the rms per channel, α is the calibration uncertainty (10%), Nc = ∆V/δV is the

number of channels, ∆V is the line width estimated from detected lines and δV is the channel

width. Regarding the rotational temperatures, I assumed the same values as what found for

detected molecules of the same type (i.e. either O-bearing or N-bearing) and in the same source,

whenever possible. More specifically, I took:

• In IRAS4A, Trot(CH3OCH3) = Trot(HCOOCH3-A) = Trot(HCOOCH3-E)

• In IRAS4B, Trot(CH3OCH3) = Trot(HCOOH) = Trot(HCOOCH3-A)

• In IRAS2A, Trot(CH3OCH3) = Trot(HCOOH) = Trot(HCOOCH3-A) = Trot(HCOOCH3-A,

IRAS4B)

• In each source, Trot(C2H5CN) = Trot(CH3CN)

I then used equations 3.1 and 3.3 to obtain upper limits for the beam-averaged column

densities.

Remarks to Table 3.5

• The rotational temperature of HCOOCH3-A in IRAS4B is poorly constrained due to the

absence of points at higher energies.

• The derived CH3CN abundance is consistent with the value obtained by Jørgensen et al.

(2005b) for an inner (T > 90 K) region.

• The upper limit derived for the CH3OCH3 abundance in IRAS2A (x < 4.2 × 10−7) is

consistent with the value quoted in Jørgensen et al. (2005a) (3×10−8 in an inner, T > 90 K

region).

• Jørgensen et al. (2005a) also report a tentative detection of HCOOCH3 but do not give

an estimate of the abundance of this molecule.

3.5 Discussion

Since low-mass protostars were thought to have insufficient luminosities to develop a hot core-

type region, I start by investigating the potential dependence of the complex molecules’ abun-

dances on the luminosity. I then look at how these abundances relate to those of major grain

mantle constituents, namely CH3OH and H2CO.
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Table 3.5 Results from the rotational diagrams and upper limits for NGC1333-IRAS4A, -IRAS4B
and -IRAS2A.

Molecule Trot θmin Nbeam
b Xhc

c

(K) (′′) (cm−2)

IRAS4A — N(H2) = 1.6 × 1024 cm−2, θhc = 106 AU = 0.48′′d

HCOOCH3-A 36 11 (1.1 ± 0.6)×1014 (3.4 ± 1.7)×10−8

HCOOCH3-E 36 ± 5 11 (1.2 ± 0.2)×1014 (3.6 ± 0.7)×10−8

HCOOH 10 ± 2 10 (1.8 ± 0.7)×1013 (4.6 ± 1.9)×10−9

CH3OCH3 36 11 < 5.0×1013 < 1.5×10−8

CH3CN 27 ± 1 10 (7.4 ± 1.0)×1012 (1.6 ± 0.2)×10−9

C2H5CN 27 11 < 3.8×1012 < 1.2×10−9

IRAS4B — N(H2) = 8.1 × 1022 cm−2, θhc = 54 AU = 0.25′′d

HCOOCH3-A 38 ± 49 10 (4.7 ± 3.6)×1013 (1.1 ± 0.8)×10−6

HCOOH 38 22 < 1.0×1013 < 1.0×10−6

CH3OCH3 38 10 < 6.8×1013 < 1.2×10−6

CH3CN 39 ± 3 22 (9.7 ± 1.0)×1011 (9.5 ± 0.2)×10−8

C2H5CN 39 10 < 4.2×1013 < 7.5×10−7

IRAS2A — N(H2) = 2.1 × 1023 cm−2, θhc = 94 AU = 0.43′′d

HCOOCH3-A 38 10 < 2.9×1014 < 6.7×10−7

HCOOH 38 25 < 7.4×1012 < 1.2×10−7

CH3OCH3 38 10 < 1.8×1014 < 4.2×10−7

CH3CN 87 ± 17 10 (3.7 ± 1.0)×1012 (8.7 ± 2.4)×10−9

C2H5CN 87 10 < 4.3×1013 < 1.0×10−7

a Smallest beam size for which a transition was detected (see text for details).
b Column density averaged over θmin.
c Abundances in the hot corino using the H2 column densities, N(H2), and hot corino sizes, θhc,
taken from Maret et al. (2004) and given in the header of each source.
d At 220 pc.
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3.5.1 Luminosity dependence

Before the discovery of a hot corino around IRAS16293, it was believed impossible to have chem-

ically rich regions following mantle evaporation around low-mass protostars. The argument was

that, given the low luminosity of these objects, the regions where the ices sublimate would be

so small that the gas crossing-time would be shorter than the time required to form complex

organic molecules in the gas-phase (e.g. Schöier et al. 2002). This is in fact not the case since

several hot corinos have now been discovered (Cazaux et al. 2003; Jørgensen et al. 2005a, this

work). But the question remains regarding the impact of the luminosity on the abundances of

complex organic molecules in hot corinos.

Table 3.6 summarizes the measured abundances and upper limits for the four hot corinos.

In order to remove the uncertainty on the sizes of the hot corinos, I choose to look at abundance

ratios, in particular with respect to formaldehyde and methanol since these molecules have been

proposed to be the parent molecules for complex oxygen-bearing species, if they are formed in

the gas-phase. These abundance ratios are plotted on Figure 3.6 as a function of the bolometric

luminosity of the low-mass protostars. For information, the abundance ratio for CH3CN is also

plotted (C2H5CN was not included due to the number of upper limits), although formaldehyde

and methanol are not thought to be the parent molecules of nitrogen-bearing species (see Section

6.3.4).

Note that the abundance ratios of CH3OCH3 with respect to both H2CO and CH3OH in IRAS2A

seem to be “outliers” compared to the other protostars and to other O-bearing molecules. How-

ever, recall that the CH3OCH3 abundance was taken from Jørgensen et al. (2005a) where it was

derived from only one detected transition. Apart from the CH3OCH3 points and taking into

account the uncertainties pertaining to abundance determination, one can see from Figure 3.6

that the abundance ratios of complex molecules with respect to H2CO or CH3OH do not depend

on the luminosity, in the range ∼ 5− 30 L⊙. Since the abundances of H2CO or CH3OH are not

themselves a function of luminosity (see Maret et al. 2004, 2005), then the absolute abundances

of the complex species do not depend on the luminosity of the protostar. Whatever the formation

mechanism, either in the gas phase or on the grain surfaces, the efficiency in forming complex

organic molecules is largely constant in the range of studied luminosities. Since the luminosity,

together with the density, defines the radius at which ices sublimate, this also implies that this

efficiency is rather constant in the inner 200 AUs or so of the studied sources, despite the dif-

ferent involved densities (from 106 to 109 cm−3, Maret et al. 2004).

I also investigated the possible dependence of the abundance ratios on the ratio of sub-

millimeter to bolometric luminosity, Lsmm/Lbol, since it has been suggested as an indicator of

evolutionary stage. I find that the abundance ratios do not depend on this parameter either.

Maret et al. (2004) found an apparent anti-correlation between the inner abundance of H2CO

and Lsmm/Lbol and proposed that this could be explained if Lsmm/Lbol depends on the initial

conditions of the protostars rather than their evolutionary stage. Indeed, more atomic hydro-
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Table 3.6 Abundances of parent and daughter molecules in my sample of four low-mass proto-
stars.

Molecule IRAS16293 IRAS4A IRAS4B IRAS2A Ref.

H2CO 1×10−7 2×10−8 3×10−6 2×10−7 1,2,3
CH3OH 1×10−7 <1×10−8 7×10−7 3×10−7 4
HCOOCH3-A 1.7×10−7 3.4×10−8 1.1×10−6 <6.7×10−7 5,2,6
HCOOH 6.2×10−8 4.6×10−9 <1.0×10−6 <1.2×10−7 5,2,6
CH3OCH3 2.4×10−7 <2.8×10−8 <1.2×10−6 3.0×10−8 5,2,6,7
CH3CN 1.0×10−8 1.6×10−9 9.5×10−8 8.7×10−9 5,2,6
C2H5CN 1.2×10−8 <1.2×10−9 <7.5×10−7 <1.0×10−7 5,2,6

References – (1) Ceccarelli et al. (2000c). (2) Bottinelli et al. (2004a). (3) Maret et al. (2004).
(4) Maret et al. (2005). (5) Cazaux et al. (2003). (6) This work. (7) Jørgensen et al. (2005a).

gen is available in less dense (i.e. with a higher Lsmm/Lbol) environments, which leads to the

formation of more H2CO and CH3OH. If I plot the inner CH3OH abundance as a function of

Lsmm/Lbol, I also notice an apparent anti-correlation. Since the abundance ratios are roughly

constant with different Lsmm/Lbol, then the absolute abundances of complex molecules should

also be anti-correlated with this parameter. Following a similar line of thought as Maret et al.

(2004) and assuming that complex O-bearing molecules form on grain surfaces via H, O, OH

and/or CH3 additions, this anti-correlation could be indicative of these species being more read-

ily available in less dense environments.

3.5.2 Dependence on methanol and formaldehyde hot corino abundances

Since CH3OH and H2CO are major grain-mantle constituents, they appear as key molecules. It

is therefore interesting to investigate the abundance ratios of complex molecules to CH3OH and

H2CO as a function of CH3OH and H2CO abundances themselves. I plot these quantities for

hot corinos in Figures 3.7 and 3.8 respectively. From these figures, one can see that:

(i) The complex molecules in hot corinos have comparable abundance ratios, apparently in-

dependent of the CH3OH and H2CO abundances.

(ii) These abundance ratios are close to unity.

This implies that, whatever the formation mechanism (which will be investigated in chapter 6),

complex molecules are produced efficiently.

Note that, using the methanol abundances derived by Jørgensen et al. (2005b) does not

change the shape of Figure 3.7 since their values are comparable to the ones derived by Maret

et al. (2005). However, if I take formaldehyde abundances from Jørgensen et al. (2005b), I obtain

abundance ratios that are larger than those plotted in Figure 3.8 (as expected since Jørgensen

et al. do not model any H2CO abundance jump), and that the abundance ratios are scattered
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Figure 3.6 The abundances of the observed species normalized to the formaldehyde (left) and
methanol (right) abundances, plotted as a function of bolometric luminosity. Square, triangles,
diamonds and plus signs represent HCOOH, HCOOCH3, CH3OCH3 and CH3CNrespectively.
The abundance for CH3OCH3 in IRAS2A was taken from Jørgensen et al. (2005a) and is likely
underestimated (see text). Note that I only have an upper limit on the CH3OH abundance in
the hot corino of IRAS4A, therefore, I did not plot the point corresponding to CH3OCH3 for
which only an upper limit is available in that source. Also, I do not show C2H5CN since only
upper limits are available in three of the four sources.
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Figure 3.7 Abundance ratios of complex O-bearing molecules to methanol in hot corinos, plotted
as a function of the methanol abundance in hot corinos. The point corresponding to CH3OCH3

in IRAS4A is not represented due to both CH3OCH3 and CH3OH abundances being upper
limits in this source. The question mark refers to the ratio in IRAS2A and indicates that the
CH3OCH3 abundance is likely underestimated in this source (see Section3.5.1).

by up to two orders of magnitude.

Conclusion

In this chapter, I presented the detections of formic acid, methyl formate and/or methyl cyanide

in the low-mass protostars IRAS4A, IRAS4B and IRAS2A, confirming the presence of a hot

corino in their inner envelope. Note that the detections were obtained in all the sources where

the complex organic molecules were searched for. It is unlikely that this is an observational

bias because the selected sources are representative of Class 0 objects as they sample a range of

values for a number of physical parameters (see Table B.1 and B.2).

The conclusions arising from the analysis of these observations combined with data on

IRAS16293 (the first and only other hot corino discovered so far) are:

• Hot corinos are a common phase in the formation of solar-type protostars and complex

organic molecules are ubiquitous in Class 0 protostars.

• The absolute abundances of complex molecules in hot corinos do not depend on the bolo-

metric luminosity.

• Absolute abundances are apparently anti-correlated with Lsmm/Lbol, which, in the case of

grain-surface formation, could be indicative of H, O, OH and/or CH3 being more readily

available in less dense environments.
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Figure 3.8 Abundance ratios of complex O-bearing molecules to formaldehyde in hot corinos,
plotted as a function of the formaldehyde abundance in hot corinos.

• Abundance ratios with respect to CH3OH and H2CO are of order unity and do not de-

pend on CH3OH nor H2CO abundances, indicating that complex molecules are formed

efficiently.





Résumé du Chapitre 4

“Pister” la taille des hot corinos

Les observations décrites dans le Chapitre 3, faites avec l’IRAM-30m, un télescope à antenne

unique, ont permis la détection de molécules complexes dans plusieurs protoétoiles de Classe 0,

montrant ainsi que les hot corinos sont communs dans ces objets. Un paramètre clé pour la

compréhension de la présence de ces molécules complexes est leur distribution spatiale. Puisque

leur émission a été prédite de provenir des ∼ 1−1, 5 secondes d’arc internes (de diamètre, corre-

spondant à ∼ 50−200 AU, suivant la distance de la source), des observations interférométriques

sont nécessaires pour atteindre cette résolution spatiale et vérifier les prédictions. J’ai donc

utilisé l’interféromètre du Plateau de Bure (PdB) de l’IRAM pour observer le HCOOCH3 et/ou

le CH3CN vers IRAS16293–2422 (IRAS16293) et NGC1333-IRAS4A (IRAS4A), les deux hot

corinos les plus brillants. En comparant les flux mesurés avec le PdB et le 30m, je montre que

l’émission des molécules complexes dans IRAS16293 provient uniquement de deux régions de

taille ∼< 0.8 − 1′′, centrées sur les deux composantes de ce système binaire. Une composante

compacte est aussi présente dans IRAS4A, mais en plus, une partie de l’émission est étendue.

Les résultats des observations interférométriques de IRAS16293 ont été publiés dans Bottinelli

et al. (2004b), et un article comportant les observations de IRAS4A est en préparation.
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Chapter 4

“Tracking” the size of hot corinos

Abstract

The single-dish observations described in chapter 3 showed that hot corinos are common in

Class 0 protostars, as revealed by the detection of several complex molecules. A key parameter

in understanding the presence of these complex molecules is their spatial distribution. Since the

emission has been predicted to originate from the inner ∼ 1−1.5′′ (in diameter, corresponding to

∼ 50− 200 AU depending on the source’s distance), interferometric observations are required to

reach this spatial resolution and verify the prediction. I therefore used the IRAM Plateau de Bure

(PdB) Interferometer to observe HCOOCH3 and/or CH3CN in IRAS16293–2422 (IRAS16293)

and NGC1333-IRAS4A (IRAS4A), the two brightest hot corinos. By comparing the fluxes

measured with the PdB and the 30m, I show that the complex molecules’ emission in IRAS16293

solely originates from two ∼< 0.8−1′′ regions centered on the two components of this proto-binary

system. A compact component is also present in IRAS4A, but additionnally, some of the emission

is extended.

The results of the interferometric observations of IRAS16293 have been reported in Bottinelli

et al. (2004b) and an article dealing with the observations of IRAS4A is in preparation.

4.1 Introduction

Ever since the first survey of IRAS16293 by van Dishoeck et al. (1995), there has been a debate,

not only about the existence of hot corinos, but also regarding the location and origin of complex

organic molecules. The first debate was solved with the discovery of complex molecules in several

Class 0 objects (Cazaux et al. 2003; Bottinelli et al. 2004a, 2006; Chapter 3), but the second

one is still ongoing. In the hot corino definition (section 1.1.2) and in the previous chapters,

I had implicitly assumed that the presence of complex organic molecules was due to thermal

evaporation of the icy grain mantles across the hot corino. However, several authors have

challenged this theory and other mechanisms have been suggested for the nature of complex

molecule emission:

• the emission could be due to an interaction between an outflow and the inner envelope:

discussing the case of IRAS16293, van Dishoeck et al. (1995) proposed that, in turbulent
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shear zones where the outflow interacts with the envelope, grain-grain collisions could be

effective at removing icy mantles. For the same source, Chandler et al. (2005) also invoke

the passage of a jet and its shock interaction with the dense gas to account for their

observed abundance enhancement.

• the complex organic molecules could be located in a circumstellar disk: for example, from

their analysis of the continuum emission in IRAS2A, Jørgensen et al. (2005a) claim the

presence of a disk in this source and raise the possibility that (at least some of) the complex

organic molecule emission comes from this disk, whose gas would have been heated by

accretion shocks (Schöier et al. 2004).

• alternatively, the interaction of UV or X-rays with the cavities excavated by the outflow

would be the cause of the presence of the complex molecules (Schöier et al. 2002, 2004).

The combination of interferometric and single-dish observations can help solve the issue, as

both the small and large scales of the envelopes of low-mass protostars can be sampled. The

high sensitivity and high spatial resolution achievable by the PdB made it a particularly well

suited instrument to investigate the small scales. I describe in section 4.2 the PdB observations

of some of the transitions that had been dectected with the IRAM-30m towards IRAS16293 and

IRAS4A. Discussions of the interferometric data presented in section 4.3 can be found in section

4.4.

4.2 Observations

4.2.1 IRAS16293

Observations of IRAS16293 (see Appendix B.1) were carried out at the PdB on February 1st and

March 25th 2004 in the B and C configurations of the array. Five CH3CN transitions at 110.4

GHz and 4 HCOOCH3 transitions at 226.4 GHz were obtained simultaneously, along with the

continuum emission at 3 mm and 1.3 mm. The receivers were tuned single side band at 3 mm

and double side band at 1.3 mm. CH3CN and HCOOCH3 transitions were covered with two

correlator units, each of 40 and 80 MHz bandwidth respectively. Typical system temperatures

were 250 K (USB) at 3 mm and 500 K (DSB) at 1.3 mm. Phase and amplitude calibrations

were obtained by observing the nearby point sources 1514-241 and NRAO 530 every 20 minutes.

Bandpass calibration was carried out on 3C273 and 0851+202 and the absolute flux density

scale was derived from MWC349, 3C345 and 0923+392. Data calibration was performed in

the antenna based manner and uncertainties are less than 10% at 3 mm and less than 20% at

1.3 mm.

4.2.2 IRAS4A

This source, described in B.2, was observed on January 29th 2005 with the PdB in the A

configuration, which is the most extended, giving the highest spatial resolution. 3 and 1.3 mm
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continuum emission and five CH3CN transitions at 110.4 GHz were obtained simultaneously. At

3 and 1.3 mm respectively, the receivers were tuned single side band and double side band, and

typical system temperatures were ∼400 K (USB) and ∼300 K (DSB). CH3CN transitions were

covered with two correlator units of 40 MHz bandwidth each. Bandpass, phase and amplitude

calibrations were obtained by observing the nearby point sources 3C84 and 0234+285 every 20

minutes. Data calibration was performed in the baseline based manner and uncertainties are

less than 10%.

4.2.3 Data reduction

Flux densities were obtained from visibilities using standard IRAM procedures. Continuum

images were produced by averaging line-free channels. Line maps were obtained by cleaning line

images after subtraction of the continuum directly from the visibilities.

4.3 Results

4.3.1 IRAS16293

Figures 4.1-a and 4.1-c show the integrated line emission of CH3CN and HCOOCH3, averaged

over all the transitions listed in Table 4.1 for each molecule. Continuum emission at 3 and

1.3 mm is displayed in Figures 4.1-b and 4.1-d respectively . These maps show two components

which are spatially coincident with the centimeter wavelength emission regions A and B mapped

by Wootten (1989) and with the millimeter wavelength emission regions MM1 and MM2 mapped

by Mundy et al. (1990, 1992). As already noted in the previously mentioned works (see also

Looney et al. 2000; Schöier et al. 2004), the south-east region (“source A” or “MM1”) is the

weakest in the continuum but brightest in line emission. On the contrary, the north-west region

(“source B” or “MM2”) is the brightest in the continuum and weakest in line emission. Table

4.1 gives the intensities and sizes of the line and continuum emissions. Note that the energy of

the upper level of the CH3CN transitions decreases with frequency, but that maps which were

averaged over each individual transition do not show any significant difference. This means

that the emitting region does not depend on the energy of the transition, i.e. on the excitation

conditions (but rather on a jump of the molecular abundances). Within the errors, we recover

all the line emission measured by the IRAM 30m (Cazaux et al. 2003).

Finally, the spectra at 1.3 and 3 mm of emission regions A and B are shown in Figures 4.2 and

4.3, assuming a VLSR=3.9 (panels a) and 2.7 km s−1 (panels b) respectively (see discussion in

Section 4.4.1). Again, note that the sums of A and B (panels c of Figure 4.2 and 4.3) reproduce

very well the features in the spectra obtained for the same transitions at the IRAM 30m (Cazaux

et al. 2003).
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Figure 4.1 Line and continuum Plateau de Bure maps of IRAS16293–2422 — (a) Line map
of CH3CN, averaged over the five transitions listed in Table 1; the rms is 3 mJy beam−1and
contours range from 15 to 150 mJy beam−1 in steps of 15 mJy beam−1. (b) Continuum emission
at 3 mm, with an rms of 3 mJy beam−1; contour levels range from 20 to 220 mJy beam−1 in steps
of 20 mJy beam−1. (c) Line map of HCOOCH3-A and -E, averaged over the four transitions
listed in Table 1; the rms is 8 mJy beam−1and contour levels range from 20 to 200 mJy beam−1

in steps of 20 mJy beam−1. (d) Continuum emission at 1.3 mm, with an rms of 15 mJy beam−1;
contour levels range from 50 to 600 mJy beam−1 in steps of 50 mJy beam−1. Beam sizes are
4.′′7 × 1.′′6 and 2.′′2 × 0.′′9 at 3 and 1.3 mm respectively.
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Table 4.1 Line and continuum emission measured with the Plateau de Bure in IRAS16293–2422

Molecule Transition Eup
a Frequency (GHz) (Integrated) intensity Size (′′)b

(cm−1) or Wavelength A B A B

CH3CN 65,0 − 55,0 137.1 110.330 1.39(0.09) 0.51(0.06) 0.8(0.2) < 0.8
64,0 − 54,0 92.4 110.350 1.70(0.08) 0.38(0.06) 0.8(0.2) < 0.8
63,0 − 53,0 57.6 110.364 2.75(0.08) 0.67(0.05) 0.9(0.1) < 0.8
62,0 − 52,0 32.8 110.375 2.56(0.08) 0.51(0.05) 1.2(0.1) < 0.8
61,0 − 51,0 17.9 110.381

5.26(0.10) 1.05(0.07) 0.9(0.1) < 0.8
60,0 − 50,0 12.9 110.383

HCOOCH3-E/A 202,19 − 192,18 83.5 226.713/226.718 6.44(0.41) 3.36(0.36) 1.4(0.2)×0.7(0.1) 0.8(0.2)
201,19 − 191,18 83.5 226.773/226.778 11.13(0.49) 4.05(0.39) 1.6(0.1)×0.8(0.1) 0.8(0.1)

continuum 3 mm 0.17 0.26 3.4×1.4 1.5×0.8
continuum 1.3 mm 0.77 1.02 3.7×1.2 1.5×0.8

Notes — The line intensity is in units of Jy km s−1, while the continuum is in Jy. Errors are given in parentheses.
a Energy of the upper level of the transition.
b FWHM of gaussian fit.
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Figure 4.2 1 mm spectra of IRAS16293–2422 — (a) Spectra at 1 mm averaged
over the emission regions of sources A (dotted line) and B (solid line), and
displayed for VLSR=2.7 km s−1. The velocity resolution is 0.4 km s−1 and
rms are 0.08 and 0.06 Jy for A and B respectively. (b) Same as (a) but
with VLSR=3.9 km s−1. (c) The solid line represents the spectrum obtained
at the IRAM 30m (Cazaux et al. 2003) with a velocity resolution of 1.3
km s−1and rms of 0.11 Jy. Overlayed in dotted line is the sum of the Plateau
de Bure spectra of sources A and B (rms=0.10 Jy). Vertical lines indicate the
frequencies of HCOOCH3-A, HCOOCH3-E and CH3OD lines (emission) and
CN lines (absorption). Right to left are CN 23
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Figure 4.3 3mm spectra of IRAS16293–2422 — (a) Spectra at 3 mm averaged
over the emission regions of sources A (dotted line) and B (solid line), and
displayed for VLSR=2.7 km s−1. The velocity resolution is 0.2 km s−1 and
rms are 0.05 and 0.04 Jy for A and B respectively. (b) Same as (a) but
with VLSR=3.9 km s−1. (c) The solid line represents the spectrum obtained
at the IRAM 30m (Cazaux et al. 2003) with a velocity resolution of 2.7
km s−1and rms of 0.03 Jy. Overlayed in dotted line is the sum of the Plateau
de Bure spectra of sources A and B (rms=0.06 Jy). Vertical lines indicate
the frequencies of CH3CN 6 − 5, K = 0 − 4 (left to right); these transitions
are triplets which are partly resolved for K=3 and 4.
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Figure 4.4 Line and continuum Plateau de
Bure maps of NGC1333-IRAS4A — (a) Line
map of CH3CN, averaged over the transitions
listed in Table 4.2; the rms and contour lev-
els are 2 and 5 mJy beam−1 respectively. —
(b) Continuum emission at 3 mm; the rms
and contour levels are 1 and 10 mJy beam−1

respectively. — (c) Continuum emission at
1.3 mm; the rms and contour levels are 6 and
25 mJy beam−1 respectively. — Beam sizes
are 1.′′1 × 0.′′8 in (a) and (b) and 0.′′7 × 0.′′5 in
(c).
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Table 4.2 Line and continuum emission measured with the Plateau de Bure in NGC1333-
IRAS4A.

Molecule Transition Eup
a Frequency (GHz) (Integrated) intensity Size (′′)b

(cm−1) or Wavelength A1 A2 A1 A2
CH3CN 63,0 − 53,0 57.6 110.364 – 0.58(0.07) < 0.6 0.9(0.1)

62,0 − 52,0 32.8 110.375 – 0.17(0.02) < 0.6 < 0.6
61,0 − 51,0 17.9 110.381 – 0.32(0.05) < 0.6 0.6(0.2)
60,0 − 50,0 12.9 110.383 – 0.40(0.06) < 0.6 0.7(0.1)

continuum 3 mm 0.35 0.18 1.2×0.9 2.0×1.1
continuum 1.3 mm 2.07 0.92 1.3 1.2

Notes — The line intensity is in units of Jy km s−1, while the continuum is in Jy. Errors are given in
parentheses.
a Energy of the upper level of the transition.
b FWHM of gaussian fit.

4.3.2 IRAS4A

Figure 4.4-a shows the integrated line emission of CH3CN averaged over all the transitions listed

in Table 4.2, while the 3 mm continuum is displayed in Figure 4.4-b. The continuum maps show

two components whose peak positions and separation (1.′′8 ∼ 390 AU at 220 pc) are consistent

with that found in other (sub)millimeter works (Lay et al. 1995; Looney et al. 2000), as well as

in the centimeter regime (Reipurth et al. 2002). The line emission map is, however, new and

shows that the component that is the weakest in the continuum (the north-west region, A2)

possesses CH3CN emission, whereas the brightest continuum region (A1 in the south-east) does

not have any counterpart in the line map, down to 2 mJy beam−1. This line-continuum contrast

is reminiscent of what was found for IRAS16293 in section 4.3.1.

Table 4.2 gives the intensities and sizes of the line and continuum emission, and Figure 4.5

shows the CH3CN spectrum averaged over the emission region around A2 overlaid with the

spectrum obtained at the IRAM-30m by Bottinelli et al. (2004a). For the K=3, all the emission

measured by the IRAM-30m is recovered by the PdB (within the errors), whereas only ∼25%

of the single-dish emission is recovered for the lower-energy transitions (K=0–2).

4.4 Discussion

4.4.1 IRAS16293

The most important result of the presented observations is that the complex molecules observed

by Cazaux et al. (2003) originate in two compact regions, whose diameters are about 1.5′′ (A) or

less (B), as shown in Figure 4.1 (and Table 4.1). This goes along with the fact that the images

do not show any evidence of emission associated with the molecular outflows seen at larger scales

(see below for the discussion on the line profiles). Also, following the remark in section 4.1, the
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Figure 4.5 CH3CN spectra towards NGC1333-IRAS4A. — The solid blue line represents the
spectrum obtained at the IRAM 30m (Bottinelli et al. 2004a) with a velocity resolution of 0.8
km s−1and rms of 0.03 Jy. Overlayed in dotted red line is the Plateau de Bure spectrum averaged
over the emission region of IRAS4A2 (velocity resolution=0.2 km s−1, rms=0.03 Jy). Vertical
dashed lines indicate the frequencies of the CH3CN transitions.

Plateau de Bure images do not reveal any evidence of emission from cavities excavated from the

outflows either. Indeed, the cavities are typically ∼ 20” in size, located ∼ 30” away from the

source along the 12CO outflow (see e.g. Arce & Sargent 2004), which would have been easily

detected by the Plateau de Bure. The two regions where the molecular emission comes from,

are compact, and while source A is barely resolved in the 1mm images, source B is unresolved.

The measured sizes (1.5′′ at 160 pc correspond to a radius of about 120 AU) are remarkably

consistent with the emission coming from a region where the dust temperature exceeds 100 K

in source A (150-200 AU: based on multi-frequency single dish observations: Ceccarelli et al.

2000a,c; Schöier et al. 2002), and therefore, where the grain mantles sublimate. Thus, these

observations support the basic prediction (from the modeling of the single dish observations;

Ceccarelli et al. 2000a,c; Cazaux et al. 2003) that a hot corino with a radius of about 150 AU

exists inside the cold envelope of IRAS16293, and that in that region, complex molecules are

formed because of grain mantle evaporation.

In addition to that, the Plateau de Bure observations confirm that the two sources A and

B are different, as noted by previous authors (Wootten 1989; Mundy et al. 1990, 1992). They

differ in line intensities and extent (Fig. 4.1), and this may correspond to a difference in their

chemical composition. But, before discussing this point, it is necessary to address the second

most striking difference in the two sources: their line profiles (Figures 4.2 and 4.3). Source A

has clearly broadened spectra (FWHM ∼ 8 km s−1), while source B shows apparently much
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narrower profiles (FWHM ∼ 2 km s−1). Furthermore, the lines of source B seem to peak at

VLSR=2.7 km s−1, whereas the parent cloud velocity is at VLSR=3.9 km s−1 (compatible with

the spectra of source A, although given the broad profiles it is difficult to precisely determine the

VLSR of source A). Note that the cloud’s VLSR (3.9 km s−1) is very nicely measured by the three

CN absorption lines 1 in the observed band of Figure 4.2. As said, no evidence of outflowing

gas is seen in the images, and also the broad line profiles of source A are consistent with gas

infalling towards a ∼1 M⊙ object (Ceccarelli et al. 2000a,c; Schöier et al. 2002). Therefore, both

the images and line profiles of source A are fully consistent with the hot corino hypothesis.

The case of source B is less obvious: why does this source have narrower lines and why do

they peak at 2.7 km s−1? But is this true? A very careful look at the B spectra raises doubts.

Indeed, all the B lines have a second small peak —more visible in Figure 4.2, but even there,

sometimes at the limit of the noise— on the red-shifted side of the spectrum. This second

peak could indeed be part of the line itself, which would be strongly self-absorbed at VLSR=3.9

km s−1. If this is the case, the linewidths of source B would be ∼ 4-6 km s−1 (Fig. 4.2), similar

to the linewidths measured towards source A. Note that the blue peak is expected to be brighter

than the red peak in the case of optically thick lines from infalling gas (Leung & Brown 1977;

Zhou 1992, 1995; Choi et al. 1995), so it would be consistent with the ∼ 1 M⊙ hot corino hypoth-

esis of source B too. This alternative explanation, optically thick lines in source B, is therefore

very appealing and worth exploring in some detail. Using the LTE approximation, the required

column densities for the CH3CN and HCOOCH3 lines to be optically thick are N ∼ 1016 cm−2

and N ∼ 1017 cm−2 respectively. These values are about one order of magnitude larger than

the column density derived in B from the emission lines, assuming that the lines are optically

thin, LTE populated and that the emission region fills up the Plateau de Bure synthesized beam

(see below). Considering that the three adopted assumptions all underestimate the true column

density, it is indeed possible, but not firmly established, that the lines in source B are optically

thick. Unfortunately, “physical” considerations do not help either to distinguish between the

two possible interpretations, optically thin or thick lines in source B. In the first case (B has

VLSR=2.7 km s−1 and FWHM ∼ 2 km s−1), source B would be less massive than A and would

revolve around it at 1.2 km s−1 (multiplied by the inclination of the orbit), at a distance of 800

AU, which is fully consistent with MA ∼ 1M⊙ (unless the orbit is in the sky plane). In the

second case (B also has VLSR=3.9 km s−1 and FWHM ∼ 4-6 km s−1), A and B have compara-

ble masses (similar FWHM), but B is more compact. Note that the possible identification of

CH3OD in the spectrum of source B would support the case of VLSR(B)=2.7 km s−1, but future

high resolution observations of optically thin lines are required to definitely settle the question.

As said, the nature of source B affects the determination of the molecular abundances in

this source, and hence, how much the chemical composition of the A and B hot corinos differ.

1The absorption originates in the foreground (envelope + cloud) cold gas, which absorbs the photons emitted
in the hot corino regions (the CN emission component, being extended, is filtered out by the interferometric
observations).
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Using the relation between column density and observed continuum flux density, and using a

dust opacity κν of 0.8 cm2 g−1 at 1.3 mm and a dust temperature Td of 40 K (e.g. Walker et al.

1986), we derive molecular hydrogen column densities from the 1.3 mm continuum emission

equal to N(H2,A) = 3.5×1024 cm−2 in A and N(H2,B) = 1.7×1025 cm−2 in B (consistent with

the values of Mundy et al. 1992). Using these values and the CH3CN total column densities

derived from the rotational diagram method (NA = 1.7 × 1015 cm−2 and NB = 3.9 × 1014

cm−2), we get CH3CN abundances of 4.8 × 10−10 and 2.3 × 10−11 for A and B respectively,

i.e. CH3CN is ∼ 20 times more abundant in A than in B. A rotational diagram could not be

drawn for the HCOOCH3 transitions as they have similar upper energy levels, but assuming

Trot ∼60 K (Cazaux et al. 2003) we get HCOOCH3 column densities of NA = 2.6 × 1016 cm−2

and NB = 8.4 × 1015 cm−2, i.e HCOOCH3 abundances of 7.5 × 10−9 and 4.9 × 10−10 for A

and B respectively, a factor 15 difference2. Note, however, that since B is unresolved in the line

emission, and the lines could be optically thick (see above discussion), the molecular abundances

quoted for B may be underestimated by about an order of magnitude (note also that the region

of molecular emission could be more compact than the continuum emission region). Therefore,

resolving the problem of the nature of the observed line emission in source B is crucial, not only

to determine the dynamical state of this source, but also to correctly assess the difference in the

chemical composition of sources A and B.

4.4.2 IRAS4A

There are two important outcomes from the PdB observations of this source:

1. the CH3CN emission is concentrated in a compact region of size ∼<0.′′8 (∼200 AU assuming

a distance of 220 pc for IRAS4A) centered on the north-west component, IRASA2.

2. the comparison with the IRAM-30m observations shows that there is some extended emis-

sion arising in the low-energy transitions, whereas the high-energy ones are solely emitted

in the compact region.

The modelling of H2CO single-dish observations (Maret et al. 2004) predicted that, in

IRAS4A, the dust reaches ∼100 K (the sublimation temperature of icy mantles) at a radius

of about 50 AU (∼0.′′23). Since the measured size is consistent with this prediction, the first re-

sult supports the theory of the presence of complex organic molecules being due to grain mantle

sublimation, as in the case of IRAS16293.

In the second point, the fact that not all the flux is recovered is due to the way interferometers

work. Because the observations are made with a finite number of antennas over a finite amount

of time, only a portion of the paramater space (the uv plane) corresponding to the physical

field of view can be covered. The further apart the antennas are, the less coverage there is

at small uv distances (see Figure 4.6), which corresponds to large physical scales. Therefore,

2Note that the abundances quoted in Cazaux et al. differ from those derived here because of the different
estimate of the H2 column density.
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extended emission is not properly sampled and does not appear on interferometric maps, i.e.

interferometers are insensitive to (or resolve out) extended emission. In principle, it is possible to

overcome this problem by combining interferometric and single-dish observations the later being

used to “fill the central hole”. However, in the case of IRAS4A, the PdB array was used in a

very extended configuration so that even medium scales are poorly sampled as shown on Figure

4.6. In fact, for these observations, the array was insensitive to structures on scales larger than

about 4′′ (e.g. Wilner & Welch 1994) whereas the beamsize of the IRAM-30m observations at

110 GHz was 22′′, and the missing information at intermediate scales prevents from combining

the interferometric and single-dish data. Therefore, it is not possible at this stage to conclude on

the spatial distribution of the extended emission. Nonetheless, the molecule’s abundance profile

can be determined by modeling the single-dish emission in a similar way as has been done for

H2CO and CH3OH, i.e. with a jump from a low abundance in the cold, outer envelope to a high

value in the hot corino. Assuming that about half of the single-dish emission originates from

the outer envelope and an excitation temperature of ∼ 10 − 20 K, the CH3CN column density

in an 18′′ beam is 2×1012 cm−2. Using the density profile derived by Jørgensen et al. (2002)

yields a corresponding H2 column density of 8×1022 cm−2 such that the abundance in the cold

envelope is 2×10−11, two orders of magnitude lower than the hot corino abundance (Table 3.5,

Bottinelli et al. 2004a). This abundance is somewhat lower than what has been found in the dark

molecular cloud TMC-1 (3 − 5 × 10−10, Matthews & Sears 1983; Minh et al. 1993), a situation

similar to that of H2CO and CH3OH for which the abundances in dark molecular clouds such

as TMC-1 and L134N (e.g. Brown 1981; Pratap et al. 1997; Wootten et al. 1978; Dickens et al.

2000) are about an order of magnitude higher than the abundances in the outer envelopes of

Class 0 protostars (Maret et al. 2005, 2004; Jørgensen et al. 2004). This difference is likely due

to the fact that these molecules suffer depletion onto the grain mantles during the collapse phase

that marks the transition between dark molecular cloud and Class 0 (e.g. Ceccarelli et al. 2006).

4.4.3 Continuum emission, complex molecules and outflows

The similarity among the features of IRAS16293 and IRAS4A are striking as demonstrated by

the schemcatic view of these two source in Figure 4.7:

1. the strong continuum sources (IRAS16293B and IRAS4A1) have little or no emission from

complex molecules whereas the weakest continuum sources (IRAS16293A and IRAS4A2)

are the strongest in line emission from these molecules;

2. strong, highly-collimated outflows are driven by the weak continuum sources;

3. poorly collimated outflows aligned with the strong continuum sources, which are either

weak (IRAS4A1) or show no indication of high-velocity gas in the vincinity of the source

(IRAS16293B).

In IRAS16293, the complex morphology of outflows and the difference with the continuum

have been noted for many years (e.g. Wootten 1989; Walker et al. 1993; Stark et al. 2004) but it
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Figure 4.6 Coverage of the uv plane for the Plateau de Bure observations of NGC1333-IRAS4A.
The coverage is poor for uv distances ∼<150 m, so that emission on scales ∼> 4′′ is resolved out.

is only recently that more information on the driving sources of the outflows in IRAS4A has been

available (Choi 2005). The interferometric observations of this thesis are the first to show the

stronger emission from complex organic molecules in the sources driving the collimated outflows

(see also Kuan et al. 2004 for similar results obtained simultaneously in IRAS16293 with respect

to Bottinelli et al. 2004b).

Initially, it was thought that there was no outflow associated with IRAS16293B, which was

attributed to the fact that this source may be in an earlier evolutionary phase than IRAS16293A

(e.g. Wootten 1989). This was supported by the higher H2 column density in IRAS16293B, as

traced by the stronger dust emission (i.e. the protostar has not yet accreted/blown away most

of its envelope; e.g. Walker et al. 1993). But Walker et al. (1993) also suggested that the

morphology of the outflow could be dual, i.e. a collimated one driven by A and a larger one

that would have been driven in the past by B (hence the lack of activity in the vincinity of

B). Higher-resolution observation confirmed the quadrupolar nature of the outflows with source

A actively driving the NE-SW outflow, whereas the E-W outflow was driven by source B in

the past and is now “fossilized”, as noted by Stark et al. (2004). In this case, source B would

be interpreted as being “older”. Choi (2005) also suggested the interpretation of a different

evolutionary stage between IRAS4A1 and 4A2, but proposed the strong continuum source,

IRAS4A1, to be “younger”, thereby driving a shorter, weaker outflow.

Note that the adjectives “older” and “younger” are not to be taken in their absolute mean-

ing, which does not make sense for a binary system in which the formation of the components is
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coeval by definition (consistent with the fact that, in the case of IRAS16239, similar dynamical

times have been derived for the two outflows). I use them here to indicate that some of the

observed features are representative of a more/less advanced evolutionary phase, i.e. one of the

protostellar components would have reached a certain phase of evolution faster/slower than the

other one, due to physical and/or dynamical differences.

Another interesting interpretation for the difference in outflow morphology is that of Walker

et al. (1993) who proposed the presence of time variable outflows generated by FU Orionis-type

outbursts in source B to explain the fossil state of the E-W outflow associated with this source.

However, it is not clear what would trigger these outbursts and why they would occur in one

of the components only. Nonetheless, a possible implication is that the two components have a

different mass.

Regarding the difference in emission from complex molecules, two factors can increase the

size of the region where the dust temperature, Td, is larger than ∼100 K (and hence increase

the emission’s strength):

• the luminosity of the central object: the higher it is, the further away the sublimation

front is located.

• the density of the inner regions: when these regions are optically thick to the dust, Td

becomes higher than in the case of optically thin dust, so that at a given radius, Td is

larger than in the optically thin case, or equivalently, the radius where Td reaches 100 K

is larger.

Let us consider the case of IRAS16293. The hot corino in source A is (barely) resolved and

larger than the hot corino in source B, which is unresolved. In principle, from the above points,

this implies either that protostar A3 is more luminous than protostar B, or that the inner regions

in source A are denser than in source B (or both). Since the continuum in source A is weaker

than in source B, then the envelope around source A is less massive and less dense than that

surrounding source B, so that we are left with the first possibility, that is the central object in

source A being more luminous. This could be due to protostar A being either more massive

or subject to a higher accretion rate (or both). This could mean that the pre-stellar core that

gave birth to the IRAS16293 system fragmented in an inhomogeneous way with the clump prior

to source A being more massive but undergoing a larger accretion rate, hence leading to the

smaller present envelope mass and larger protostellar luminosity. Note that the possibility of the

central object in source A being more massive than the one in source B was already evoked in

Section 4.4.1 and in Bottinelli et al. (2004b) as one of the potential explanation for the apparent

difference in the systemic velocities of the complex organic molecular lines.

In IRAS4A, a similar reasoning could hold with the only difference that the protostar sur-

rounded by the more massive envelope, A1, would have such a low luminosity that either the

3In this discussion, I ignore the multiple components of source A evidenced by Wootten (1989) and Chandler
et al. (2005), and I use the terms “protostar” and “central object” interchangeably.
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Figure 4.7 Schematic views of IRAS16293–2422 (left) and NGC1333-IRAS4A (right). The con-
tinuum emission is represented by grey blobs (dark and light grey indicate strong and weak
continuum respectively). The green dashed contours represent the emission from complex or-
ganic molecules with the number of contours increasing with the emission’s strength. The blue
and red cones show the outflows with the labels indicating the direction and velocity range, e.g.
NE-R = northeast red (sources: Stark et al. 2004; Walker et al. 1993, 1988 for IRAS16293, Choi
2005 for IRAS4A). Note that the blue counterpart of the S-R outflow from IRAS4A1 is not
observed in Choi (2005). Features’ strengths and extent are not to scale.

hot corino is too small to be detected, or complex molecules are not present in the gas phase.

Conclusion

The interferometric observations of IRAS16293 and IRAS4A with the Plateau de Bure show

unambiguously that at least some, if not all, of the emission from the observed complex organic

molecules originates from compact (∼< 1.5′′) regions, which is consistent with grain mantle evap-

oration hypothesis. No indication was found in support of other formation mechanisms for these

molecules.

Two scenarii have been proposed to explain the observed differences in line profile and

systemic velocities in IRAS16293A and IRAS16293B. I also tried to draw conclusions from the
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striking similarities in the line and continuum emissions of IRAS16293 and IRAS4A. However,

the available data are insufficient to fully understand how and why the two components in each

object differ in their dynamical and chemical state. More interferometric observations of the

present sources (e.g. of optically thin lines) and of other (somewhat close, i.e. with separation

∼< 1000 AU) binary systems are needed in order to solve the issues raised in the discussion.





Résumé du Chapitre 5

Hot cores: les grands frères des hot corinos?

A chaque fois que des découvertes sont faites concernant un aspect de la formation d’étoiles

de faible masse, nous essayons de rechercher des propriétés similaires pour la formation d’étoiles

massives, et vice versa. Les hot cores des étoiles massives n’ont pas échappé à la règle puisque

des analogues de faible masse ont été cherchés et trouvés: les hot corinos. Mais quel est le

degré de similitude de ces analogues? Les hot corinos sont-ils simplement de petits hot cores,

ou bien y a-t-il une différence dans la chimie de ces objets? Dû aux différences physiques

entre les hot corinos et les hot cores (telles que masse et luminosité), la comparaison de ces

deux types d’objets pourrait permettre d’identifier les paramètres influençant la formation et

l’évolution des molécules complexes. Puisque les hot cores massifs ont été étudiés depuis plus de

25 ans, une large quantité de données a été publiée. J’ai donc fait une recherche bibliographique

pour rassembler des informations sur les molécules qui m’intéressent (HCOOH, HCOOCH3,

CH3OCH3, CH3CN and C2H5CN), et sur le CH3OH et H2CO. Dans ce chapitre, je présente les

résultats de cette recherche, ainsi que des observations complémentaires obtenues avec le JCMT.

J’utilise les densités de colonne des molécules complexes pour montrer que les hot corinos sont

à la hauteur des hot cores puisque les molécules organiques complexes sont relativement plus

abondantes dans les hot corinos.
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Chapter 5

Hot cores: hot corinos’ bigger brothers?

Abstract

Whenever findings are made about some features of low-mass star formation, we try to search

for the similar properties for massive star formation, and vice versa. Hot cores did not escape

the rule since analogs were searched for and found in hot corinos. But how similar are these

analogs? Are hot corinos simply small hot cores, or is there a difference in the chemistry of

these objects? Due to the physical differences between hot corinos and hot cores (such as mass

and luminosity), comparing these two types of objects could help to pinpoint the parameters

influencing the formation and evolution of complex molecules. Since massive hot cores have been

studied for over 25 years, a large amount of data has been published. I therefore reviewed the

literature to gather information on the complex organic molecules I am interested in (HCOOH,

HCOOCH3, CH3OCH3, CH3CN and C2H5CN), and on CH3OH and H2CO. In this chapter, I

present the results of this search, as well as some complementary observations taken with the

JCMT. I use the complex molecules’ column densities to show that hot corinos are living up to

hot cores since complex organic molecules are relatively more abundant in hot corinos.

5.1 Introduction

Hot cores associated with massive protostars have been defined as regions with diameters

∼<0.1 pc, densities ∼> 107 cm−3, temperatures ∼>100 K, large molecular line optical depths, high

line brightness temperatures and the presence of complex organic species (see e.g. Kurtz et al.

2000). The term “hot core” was originally coined in 1979. The first hot core was discovered in

the Orion Kleinmann-Low nebula (Orion KL or OMC-1) and was named so because observa-

tions and analysis of ammonia lines with high energies above the ground state (“hot ammonia”)

revealed the presence of a hot (∼>220K) and dense (∼> 5 × 107 cm−3) component (e.g. Morris

et al. 1980). Since such warm and dense regions were believed to be the cradles for very young

massive protostars, the use of molecular line emission to derive the physical parameters of these

cradles quickly spread. Hence, following the discovery of the Orion hot core, many more were

detected from observation of hot ammonia or CH3CN. A list of known hot cores (to the best of

my knowledge) is given in Table 5.1. At the time, motivations for the hot core search included
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finding information on the efficiency and mechanics of star formation and on the composition of

icy mantles (Walmsley & Schilke 1993). These incentives are still very topical, but others were

added along the way.

For example, there has been some debate about the nature of their heating source (Kurtz

et al. 2000). The current consensus is that hot cores are heated internally by massive (O or B)

protostars. Indeed, observationally, hot cores are usually near (but not associated with — see

e.g. Minier et al. 2003; Walsh et al. 1998) ultra-compact H II regions (UCHIIs) (Kurtz et al.

2000; Churchwell 2002). Moreover, some of them could be short-lived (∼< 105yr) precursors to

UCHIIs (Churchwell 2002), in which case they would represent the earliest phase of massive

star formation. Cesaroni et al. (1994) found that some hot cores were coincident with groups of

water masers, which are known signposts of massive star formation. Finally, there is evidence

for rotation and collapse in a number of hot cores (Kurtz et al. 2000), providing further support

for star formation at the center of these cores.

But more relevant to this work, early observations of the Orion hot core (e.g. Sutton et al.

1985; Blake et al. 1987) also revealed a wealth of more or less complex molecules, whether C-,

N-, O- and/or S-bearing (see Table A.1), and with them came the questions of how complex

molecules could get and of how they formed. To answer the first question, more and more

sensitive observations have been carried out, including deep searches for the amino acid glycine

(CH2NH2COOH; Combes et al. 1996; Hollis et al. 2003). Regarding the second question, the

presence of deuterated molecules, for example, was puzzling since these species were known to

form rather in cold dark clouds via mechanisms that are inefficient at the high temperatures of

hot cores, and surface reactions and/or freeze-out processes were already invoked (Gerin et al.

1992; Walmsley & Schilke 1993 and Millar 1993, and references therein).

The presence of complex organic molecules in massive hot cores has been imputed to gas-

phase reactions, triggered by the high temperatures of these regions, among evaporated grain

mantle components such as H2CO, CH3OH and NH3. This gas-phase chemistry was thought to

occur rapidly as it could reproduce some of the observed abundances in ∼ 104 yr (e.g. Charnley

et al. 1992; Nomura & Millar 2004). As mentioned in Section 1.3, this timescale is longer than

the gas free-fall time in the inner envelopes of low-mass protostars (several hundred years –

Schöier et al. 2002). The question is therefore whether the same chemistry occurs in both types

of objects, and whether comparing them could tell us about the parameters influencing the

formation and evolution of complex molecules.

To do this comparison, I describe in Section 5.2 the literature review that I did in search of

measurements of complex molecules’ abundances in known massive hot cores. In Section 5.3, I

present some observations I carried out with the JCMT on a couple of sources. In Section 5.5,

I assess the relevance of the gathered data for the comparison with hot corinos. Finally, the

comparison itself is presented in Section 5.4.
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5.2 Literature review

I performed this literature review on the massive hot cores listed by Kurtz et al. (2000), as well

as three additional sources, all of which are reported in Table 5.1. I searched for the abundances

of the complex molecules I detected in hot corinos (HCOOH, HCOOCH3, CH3OCH3, CH3CN

and C2H5CN), as well as that of H2CO and CH3OH, since these are needed to calculate abun-

dance ratios. I report the results of this search in Table 5.2, for sources for which I found column

densities (or a limit) for at least two complex molecules. For a given source, the different rows

correspond to the values taken from different authors, which are listed in column (11). These

column densities are beam-averaged over the beam size given in column (10).

For the comparison, my main focus was on the O-bearing molecules, but I consider the N-

bearing ones here as well for completeness. From Table 5.2, there are only five hot cores (Sgr

B2(N), Orion hot core, Orion compact ridge, G327.30−0.60 and W3(H2O)) for which data on all

five O-bearing molecules studied here (H2CO, CH3OH, HCOOH, HCOOCH3 and CH3OCH3)

are available1. However, there are another six sources (Sgr B2(M), G10.47+0.03, G31.41+0.31,

G34.26+0.15, W51 e1/e2 and NGC6334) for which CH3OH and at least two of the complex

molecules molecules (HCOOH, HCOOCH3 and CH3OCH3) have measured abundances. These

detections are summarized in Table 5.3.

As can be seen from Table 5.2, the dataset is very inhomogeneous. However, in most cases,

column densities derived by different authors are consistent within a factor three, taking into

account the (usually small) different beamsizes. Nonetheless, there are some discrepancies that

I could not understand. For example, in the case of G34.26+0.15, Ikeda et al. (2001) find a

HCOOCH3 column density roughly one order of magnitude lower than MacDonald et al. (1996),

whereas the two authors have similar column densities for C2H5CN. Similarly for W3(H2O),

Ikeda et al. find a HCOOCH3 column density significantly lower than Helmich & van Dishoeck

(1997) did. To try and check whether there might be an observational bias, I carried out

observations of a couple of sources to search for the same complex molecules (Section 5.3). A

more important issue in my opinion is the differences in the CH3OH abundances, which can

reach up to almost two orders of magnitude. I look in Section 5.5 how this difference may

impact the comparison with hot corinos.

1The reported HCOOH abundance in W3(H2O) is an upper limit (Liu et al. 2001), and H2CO abundances in
Sgr B2 (N) and G327.30−0.60 are lower limits (Gibb et al. 2000a; Nummelin et al. 2000)



82 Chapter 5. Hot cores: hot corinos’ bigger brothers?

Table 5.1 Massive hot cores reported in the literature (adapted from Kurtz et al. 2000).

Source Other name RA (2000) Dec (2000) LIR
h m s ◦ ′ ′′ L⊙

W3(H2O) 02 27 04.6 +61 52 25 1.0×105

Orion-KL HCa OMC-1 HCa 05 35 14.5 −05 22 30 1.5×105

Orion-KL CRb OMC-1 CRb 05 35 13.4 −05 23 07 1.5×105

Sgr B2 (N) 17 47 20.0 −28 22 17 6.5×106

Sgr B2 (M) 17 47 20.5 −28 23 06 6.5×106

G5.89−0.39 IRAS 17574−2403, W 28A2 18 00 30.4 −24 04 00 7.1×105

G9.62+0.19 IRAS 18032−2032 18 06 13.9 −20 31 44 4.4×105

G10.47+0.03 18 08 38.4 −19 51 52 5.0×105

G10.62−0.38 18 10 28.8 −19 55 41 1.1×106

G19.62−0.23 18 27 38.1 −11 56 36 1.6×105

G29.96−0.02 18 46 03.9 −02 39 22 1.4×106

G31.41+0.31 IRAS 18449−0115 18 47 34.6 −01 12 43 2.1×105

G34.26+0.15 IRAS 18507+0110 18 53 18.5 +01 14 58 6.3×105

G45.07+0.13 IRAS 19110+1045 19 13 22.1 +10 50 53 1.1×106

G45.12+0.13 IRAS 19111+1048 19 13 27.9 +10 53 37 1.3×106

G45.47+0.05 IRAS 19120+1103 19 14 20.8 +11 09 04 1.1×106

W51 e1 19 23 43.8 +14 30 26 1.5×106

W51 e2 19 23 43.9 +14 30 35 1.5×106

W51 e8 19 23 44.2 +14 30 28 1.5×106

W51 d 19 23 39.9 +14 31 06 1.5×106

IRAS 20126+4104 20 14 25.1 +41 13 32 1.3×104

DR 21(OH) MM 1 20 39 01.1 +42 22 49 5.0×104

G327.30−0.60 15 53 05.0 −54 35 24 1.0×105

NGC 6334(I) NGC 6334(F) 17 20 53.4 −35 47 01 2.6×105

NGC 7538 IRS1 23 13 45.3 +61 28 10 8.7×104

Note — This is a non-exhaustive list. The last three sources were not lised in Kurtz et al.
(2000).
a Hot core component, vLSR = 5 km s−1.
b Compact ridge component, vLSR = 7.5 km s−1.
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Table 5.2 Column densities for selected species and hot cores.

Source H2 H2CO CH3OH HCOOH HCOOCH3 CH3OCH3 CH3CN C2H5CN θb
a Ref.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
W3(H2O) 9.6(22) 4.0(14) 8.8(15) – 6.7(14) 2.0(15) 2.7(13) – 15 h97

9.6(22) – 3.9(15) – <9.3(13) – – <1.9(13) 17 i01
– – – <4.1(15) – – – 2.1(15) 7×6 l01
– 5.0(14) 7.5 (15) – – – – – 15 v00
– – – – 8.8(14) 3.0(15) 4.0(13) – 14,20 This work

Orion-KL HCb 8.0(23) 5.5(15) 1.1(17) 6.0(14) 1.1(16) 6.0(15) 3.1(15) 2.4(15) 14 s95
1.0(23) – 1.4(17) – 9.4(15) – – 1.5(15) 17 i01

Orion-KL CRb 8.0(23) 2.9(16) 3.0(17) 1.1(15) 2.5(15) 1.5(16) 3.8(15) 4.0(15) 14 s95
3.0(23) – 4.9(16) – 1.7(15) – – 9.1(14) 17 i01

Sgr B2 (N) 3.0(24) >1.5(15) 1.0(16)c 4.2(14) 5.6(15) 7.9(15) 6.3(17)e 1.6(15) 23 n00
5.0(24) – 8.3(16) 7.1(13) 2.6(15) 3.5(15) – 5.2(15) 17 i01

Sgr B2 (M) 2.0(24) >1.5(15) 1.0(16)d – 1.6(15) 3.4(15) 3.1(17)e 2.2(14) 23 n00
G10.47+0.03 – – 2.7(16) 1.5(14) – 4.4(15) – – 20 i01
G31.41+0.31 – – 1.4(16) 1.6(14) – 3.7(15) – – 20 i01
G34.26+0.15 5.3(23) >1.7(14) 1.8(16) <9.1(14) 1.6(16) – 2.4(14) <4.7(14) 14 m96

3.0(23) – 2.6(14) – 1.4(15) 3.7(15) – 4.1(14) 20 i01
– – – <7.7(15) 2.6(16) – – 2.1(15) 9×5 l01

W51 e1/e2 3.6(23) – 1.0(17) – 1.2(16) – – 7.0(14) 17 i01
– – – 9.2(14) 1.4(16) 1.1(16) 3.9(14) – 14,20 This work

W51 e1 – – – 1.8(16) 1.0(17) – – 4.7(15) 7×6 l01
W51 e2 – – – 1.8(16) 1.9(17) – – 4.1(15) 7×6 l01
W51 d – – – 1.3(16) 1.8(15) – – 4.6(16) 7×6 l01

– – – – 1.6(15) – 3.4(14) – 20 This work
G327.3 3.2(23) >2.2(15) 1.7(16) 8.5(13) 1.6(16) 1.2(16) 1.0(16) – 23 g00

2.0(23) – 2.1(16) 1.7(14) – 6.4(15) – – 17 i01
NGC6334 2.0(23) – 3.4(16) 1.9(14) – 7.5(15) – – 20 i01

– 1.6(15) 3.8(16) – – – – – 15 v00
NGC7538-IRS1 7.2(22) – <2.6(14) – <6.3(13) – – <1.3(13) 17 i01

– – – <4.5(15) – – – – 11×7 l01
– 1.9(14) 2.2(15) – – – – – 15 v00

Note — a(b) = a × 10b; column densities are in cm−2; bold-faced values are derived from my observations (Section 5.3).
References: g00 = Gibb et al. (2000a) h97 = Helmich & van Dishoeck (1997); i01 = Ikeda et al. (2001); l01 = Liu et al. (2001); m96 = MacDonald
et al. (1996); n00 = Nummelin et al. (2000); s95 = Sutton et al. (1995); t99 = Thompson & MacDonald (1999); v00 = van der Tak et al. (2000b).
a Beam size in arcsec over which listed column densities are averaged, except where noted.
b HC = hot core, CR = compact ridge (see Table 5.1).
c CH3OH column density in a 2′′ hot core is 5.0×1018 cm−2 (Nummelin et al. 2000).
d CH3OH column density in a 1′′ hot core is 7.9×1018 cm−2 (Nummelin et al. 2000).
e CH3CN column density is given for a 2.′′7 and 1.′′6 source in Sgr B2 (N) and (M) respectively (Nummelin et al. 2000).
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Table 5.3 Summary of detected complex and mantle molecules for selected species and hot cores.

Source Mantle Complex O-bearing Complex N-bearing
H2CO CH3OH HCOOH HCOOCH3 CH3OCH3 CH3CN C2H5CN

W3(H2O) X X < X X X X

Orion-KL HCb X X X X X X X

Orion-KL CRb X X X X X X X

Sgr B2 (N) > X X X X X X

G327.3 > X X X X X

Sgr B2 (M) > X X X X X

G10.47+0.03 X X X

G31.41+0.31 X X X

G34.26+0.15 > X < X X X X

W51 e1/e2 X X X X

W51 d X X X

NGC6334 X X X X

NGC7538-IRS1 X X < < <

Note — A checkmark indicates that a “firm” column density (i.e. not an upper or a lower
limit, represented as < and > signs respectively) has been found in the literature (see Table
5.2 for values and references; lower limits were obtained in cases when the column densities
were underestimated due to optically thick transitions). I gathered in the top part of the table
the sources for which column densities or limits are available on all the O-bearing and mantle
species. The bottom part lists the other sources used in Section 5.4.
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5.3 New observations with the JCMT and their results

The JCMT observations of W3(H2O), W51 e1/e2 and W51 d (see Table 5.1 for positions) were

performed in March, April, June and August 2005 in beam-switching mode, with receivers A

(RxA) and B (RxB), operating in double-side and single-side band respectively, associated to

Digital Autocorrelation Spectrometer (DAS). Beamsizes, spectral resolutions, bandwidths and

system temperatures for each receiver are listed in Table 5.4. This table also gives the main-

beam efficiencies, ηmb, which were used to convert the antenna temperatures T ∗

A into main beam

temperatures Tmb, the two quantities being related by Tmb = T ∗

A/ηmb.

Table 5.5 shows the central frequencies of the 500 MHz bands over which the sources were ob-

served, and the rms reached in each band.

The detected transitions are shown in Table 5.6. I built rotational diagram following, as in

Chapter 3, the method outlined in Section 3.3. Figure 5.1 shows the diagrams for which the

rotational temperature, Trot, could be derived. I summarize in Table 5.7 the obtained rotational

temperatures and beam-averaged column densities. When Trot could not be derived, I assumed

a value based on the literature and reported it in square brackets in Table 5.7.

I also reported in Table 5.2 the column densities I derived. For W3(H2O), the values I ob-

tained are consistent with those of Helmich & van Dishoeck (1997), who also used the JCMT.

Unfortunately, my observations were not sensitive enough to detect HCOOH and C2H5CN and

compare them with other published values. Regarding W51 e1/e2, the values I derive for

HCOOH and HCOOCH3 are consistent with those of Liu et al. (2001), taking into account

the beam dilution. Ikeda et al. (2001) had found a HCOOCH3 column density similar to the

one I obtained.

My observations are certainly too scarse to determine whether the column densities of com-

plex molecules found in the literature are consistent. Attempts to measure the column densities

that are missing in Table 5.2 would, in any case, probably also yield column densities for the

complex molecules that were already observed, thereby providing means to check the consis-

tency of the results. However, such attempts would require a methodical study which is beyond

the scope of my thesis. The upside is that other researchers are aware of this issue as can be

seen by the recent work of Bisschop et al. (2006). These authors performed a partial survey of

seven massive hot cores (five of which are not included in Table 5.3), and detected HCOOH,

HCOOCH3 and CH3OCH3 in most of them. It will therefore be very interesting to include their

more uniform dataset in a future comparison.
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Table 5.4 Observing parameters for the JCMT data of the W51 e1/e2, W51d and W3(OH/H2O)
hot cores.

RxA RxB

Beamsize θb (′′) 20 14
Spectral resolution δf (MHz) 0.3 0.6
Spectral resolution δv (km s−1) ∼0.4 ∼0.6
Bandwidth (MHz) 500 500
System temperature Tsys (K) ∼600-700a ∼600b,∼700c

Main-beam efficiencyd ηmb (%) 69 63

a Apart for W51 e1/e2 for which Tsys ∼ 900 K due to a larger sky opacity during the RxA
observation of this source (τ ∼ 0.3 vs ∼ 0.2 for the other sources).
b Tsys for W3(OHH2O) for which sky opacity was low (τ ∼< 0.1).
c Tsys for W51 e1/e2 for which τ ∼ 0.1.
d From http://docs.jach.hawaii.edu/JCMT/HET/GUIDE/het guide/.

Table 5.5 Tuning frequencies and rms reached during the JCMT observations of W51 e1/e2,
W51d and W3(OH/H2O).

Source RxAa RxBb

c 220.6 225.6 232.0 332.6 338.3 339.1 344.5

W51 e1/e2 0.11 0.11 0.15 0.18 0.35 0.11 0.13
W51 d 0.10 0.10 0.12 – – – –
W3(OH/H2O) 0.12 0.12 0.11 0.10 0.09 0.07 0.07

Note — A dash indicates that the source was not observed at that frequency.
a Rms in K in 0.4 km s−1channels.
b Rms in K in 0.6 km s−1channels.
c This line gives the frequencies in GHz on which the 500 MHz bandwith was centered.
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Table 5.6 Transitions detected with the JCMT in W51 e1/e2, W51d and W3(OH/H2O).

Molecule Transition line Frequency Eu
a Tmb ± rms ∆V b ± δV c

∫
TmbdV

(MHz) (cm−1) (mK) (km s−1) (K km s−1)
W51 e1/e2

HCOOH 153,13 − 143,12 338201.8 98.8 0.581 ± 0.354 7.5 ± 0.6 4.631 ± 14.42
154,11 − 144,10 338248.7 114.2 0.547 ± 0.354 8.4 ± 0.6 4.891 ± 9.278

HCOOCH3-A 193,17 − 183,16 225618.7 73.6 0.598 ± 0.113 7.7 ± 0.4 4.895 ± 1.013
184,14 − 174,13 233777.5 71.7 0.684 ± 0.113 6.4 ± 0.4 4.642 ± 1.025
1911,9 − 1811,8 233854.2 125.9 0.867 ± 0.083 8.6 ± 0.8 7.897 ± 5.291
137,7 − 126,6 339186.0 48.6 0.314 ± 0.108 3.5 ± 0.6 1.180 ± 0.519
137,6 − 126,7 339196.4 48.6 0.867 ± 0.108 7.3 ± 0.6 6.701 ± 1.631

HCOOCH3-E 193,16 − 183,15 225608.8 73.6 0.596 ± 0.113 6.5 ± 0.4 4.134 ± 0.867
185,13 − 175,12 228628.8 74.9 0.893 ± 0.113 8.3 ± 0.4 7.861 ± 4.819
1913,7 − 1813,6 233524.6 148.0 0.513 ± 0.083 9.6 ± 0.8 5.256 ± 1.356
1911,8 − 1811,7 233845.3 125.9 0.704 ± 0.083 6.5 ± 0.8 4.902 ± 4.117

2715,13 − 2615,12 332352.6 247.6 0.435 ± 0.134 4.9 ± 1.1 2.272 ± 1.745
2714,14 − 2614,13 332626.0 234.3 0.665 ± 0.134 8.4 ± 1.1 5.953 ± 1.509

137,7 − 126,7 339129.3 48.6 0.711 ± 0.082 10.9 ± 1.1 8.289 ± 1.876
137,6 − 126,6 339152.7 48.6 0.443 ± 0.082 4.9 ± 1.1 2.299 ± 0.913

2817,12 − 2717,11 344347.8 288.1 0.278 ± 0.131 3.3 ± 0.5 0.964 ± 1.194
CH3OCH3 121,12 − 110,11 225599.1 41.0 1.623 ± 0.113 7.4 ± 0.4 12.763 ± 0.891

191,19 − 180,18 344358.1 104.7 1.435 ± 0.131 7.4 ± 0.5 11.357 ± 1.720
CH3CNd 127,0 − 117,0 220539.1 283.6 0.291 ± 0.078 6.4 ± 0.8 1.971 ± 1.142

126,0 − 116,0 220594.3 219.2 0.790 ± 0.113 8.3 ± 0.4 7.092 ± 3.957
125,0 − 115,0 220641.1 164.6 0.918 ± 0.113 10.6 ± 0.4 10.339 ± 1.187
124,0 − 114,0 220679.3 119.9 1.017 ± 0.113 7.7 ± 0.4 8.355 ± 5.037
123,0 − 113,0 220709.1 85.2 1.599 ± 0.113 9.8 ± 0.4 16.659 ± 1.575
122,0 − 112,0 220730.3 60.4 1.518 ± 0.113 9.3 ± 0.4 15.030 ± 1.477
121,0 − 111,0

e 220743.0 45.5
2.090

±
0.113 13.7

±
0.4 30.497

±
1.825

120,0 − 110,0
e 220747.2 40.5 ± ± ±
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Table 5.6 — Continued.
W51 d

HCOOH 103,7 − 93,6 225512.6 53.7 0.571 ± 0.104 10.2 ± 0.4 6.192 ± 3.020
HCOOCH3-A 193,17 − 183,16 225618.7 73.6 0.254 ± 0.072 8.0 ± 0.8 2.162 ± 3.380
HCOOCH3-E 193,16 − 183,15 225608.8 73.6 0.255 ± 0.072 5.3 ± 0.8 1.433 ± 2.081
CH3OCH3 121,12 − 110,11 225599.1 41.0 0.455 ± 0.072 7.5 ± 0.8 3.634 ± 2.565

130,13 − 121,12 231987.8 48.5 0.484 ± 0.115 4.5 ± 0.4 2.316 ± 0.694
CH3CNd 127,0 − 117,0 220539.1 283.6 0.275 ± 0.100 6.2 ± 0.3 1.831 ±

126,0 − 116,0 220594.3 219.2 0.508 ± 0.100 10.7 ± 0.3 5.767 ± 1.188
125,0 − 115,0 220641.1 164.6 0.591 ± 0.100 13.3 ± 0.3 8.331 ± 1.639
124,0 − 114,0 220679.3 119.9 1.082 ± 0.100 8.0 ± 0.3 9.269 ± 6.769
123,0 − 113,0 220709.1 85.2 1.148 ± 0.100 8.4 ± 0.3 10.282 ± 6.905
122,0 − 112,0 220730.3 60.4 1.056 ± 0.100 8.4 ± 0.3 9.424 ± 7.014
121,0 − 111,0

e 220743.0 45.5
1.429

±
0.100 12.8

±
0.3 19.472

±
8.600

120,0 − 110,0
e 220747.2 40.5 ± ± ±

W3(H2O)
HCOOCH3-A 193,17 − 183,16 225618.7 73.6 0.286 ± 0.077 2.2 ± 0.8 0.675 ± 1.326

184,14 − 174,13 233777.5 71.7 0.199 ± 0.077 2.7 ± 0.8 0.579 ± 0.245
HCOOCH3-E 182,16 − 172,15 233753.9 71.7 0.258 ± 0.077 2.2 ± 0.8 0.614 ± 0.218
CH3OCH3 121,12 − 110,11 225599.1 41.0 0.615 ± 0.117 3.9 ± 0.4 2.540 ± 1.249

130,13 − 121,12 231987.8 48.5 0.613 ± 0.111 4.6 ± 0.4 2.969 ± 0.508
162,15 − 151,14 330406.5 78.3 0.712 ± 0.062 6.4 ± 0.1 4.842 ± 2.933
191,19 − 180,18 344358.1 104.7 0.675 ± 0.074 4.3 ± 0.5 3.063 ± 3.007

CH3CNd 124,0 − 114,0 220679.3 119.9 0.244 ± 0.073 5.4 ± 0.8 1.403 ± 0.253
123,0 − 113,0 220709.1 85.2 0.512 ± 0.073 6.3 ± 0.8 3.452 ± 0.274
122,0 − 112,0 220730.3 60.4 0.442 ± 0.073 7.6 ± 0.8 3.589 ± 0.295
121,0 − 111,0 220743.0 45.5 0.521 ± 0.073 4.3 ± 0.8 2.401 ± 0.563
120,0 − 110,0 220747.2 40.5 0.729 ± 0.073 7.1 ± 0.8 5.521 ± 0.640

a Energy of the upper level of the transition.
b Width of the observed line (full-width at half-maximum of the fitted gaussian).
c Spectral resolution of the observation.
d All the CH3CN lines are unresolved triplets.
e The K = 0 and K = 1 CH3CN triplets are blended.
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Figure 5.1 Rotational diagrams of some complex molecules towards the massive hot cores W51
e1/e2, W51 d and W3 (OH/H2O).
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Table 5.7 Results from the rotational diagrams for the massive hot cores W51 e1/e2, W51d and
W3(OH/H2O).

Molecule Trot θbeam
a Nbeam

(K) (′′) (cm−2)

W51 e1/e2

HCOOH [200]b 14 9.2±6.5×1014

HCOOCH3 123±6 14 1.4±0.1×1016

CH3OCH3 53±6 14 1.1±0.3×1016

CH3CN 169±10 20 3.9±0.3×1014

W51 d

HCOOCH3 [200]b 20 1.6±1.1×1015

CH3CN 212±16 20 3.4±0.3×1014

W3 (H2O)

HCOOCH3 [140]c 14 8.8±5.1×1014

CH3OCH3 65±6 14 3.0±0.6×1015

CH3CN 96±15 20 4.0±0.7×1013

a Beam size over which the column density was averaged.
b From Liu et al. (2001).
c From Ikeda et al. (2001).
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Figure 5.2 Abundance ratios of complex O-bearing molecules to methanol, plotted as a function
of the methanol abundance in hot cores, plotted over the hot corino data (from Figure 3.7).
Open diamonds represent hot corinos. Filled squares represent abundances ratios of hot cores,
derived from beam-averaged column density analysis. Squares linked by a solid line represent
abundance determinations from different authors. Stars represent the hot cores of SgrB2 (N)
and (M), where an analysis of the methanol emission similar to what done in the hot corinos has
been carried out (Nummelin et al. 2000). The dotted lines connect the SgrB2 (N) and (M) hot
cores (stars) to the squares corresponding to the cold envelopes of these sources. See the text for
further details. The point corresponding to CH3OCH3 in IRAS4A is not represented due to both
CH3OCH3 and CH3OH abundances being upper limits in this source. The question mark refers
to the ratio in IRAS2A and indicates that the CH3OCH3 abundance is likely underestimated in
this source (see Section3.5.1).

5.4 Comparison with hot corinos

Figures 5.2 and 5.3 plot the abundance ratios of complex O-bearing molecules to CH3OH and

H2CO respectively, for massive hot cores and as derived from the literature (Section 5.2). For a

given complex molecule, if a given source had two column densities reported by different authors,

then two abundance ratios were derived and reported in in Figure 5.2, linked with a solid line.

In Figure 5.2, I also report the results obtained from the hot core + outer envelope analysis of

CH3OH emission in SgrB2 (N) and (M), to show the uncertainty associated with the different

methods of abundance ratios’ determinations (see Section 5.5).

The abundance ratios with respect to CH3OH and H2CO were noticed to be roughly constant

for hot corinos. Regarding hot cores, the ratios seem to decrease with increasing CH3OH or

H2CO abundance, but the data are also consistent with a constant ratio with a larger scatter.

In any case, it is clear from these figures that the abundance ratios with respect to methanol in

hot cores are lower than in hot corinos by 1–2 orders of magnitude, whereas abundance ratios

with respect to formaldehyde are comparable in hot corinos and hot cores. One also notices that

the HCOOH abundance ratios in hot cores are about one order of magnitude lower than the

HCOOCH3 and CH3OCH3 abundance ratios, whereas they are lower by only about a factor four
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Figure 5.3 Abundance ratios of complex O-bearing molecules to formaldehyde, plotted as a
function of the formaldehyde abundance in hot cores, plotted over the hot corino data (from
Figure 3.8). Open diamonds represent hot corinos. Filled squares represent abundances ratios
of hot cores, derived by beam-averaged column density analysis.

in hot corinos. For completeness, I considered how Figures 5.2 and 5.3 would change if I were

to use beam-averaged abundances ratios in hot corinos, as in hot cores. In this case, abundance

ratios in hot corinos would be smaller by a factor ∼< 10: ratios for HCOOCH3 and CH3OCH3

would become comparable in the two types of objects, while HCOOH ratios would still be larger

in hot corinos than in hot cores. This is very likely due to the relative larger contribution of

methanol and formaldehyde emission in the cold envelope in low mass with respect to high

mass protostars. Indeed, high energy transitions are more easily detected in high than low mass

protostars (e.g. Comito et al. 2005; Schilke et al. 2001, 1997; Blake et al. 1995), which support

the above interpretation.

5.5 Relevance

The question of the relevance of the comparison arises because abundance ratios were deter-

mined in a different way in hot corinos and in hot cores.

In hot corinos, the CH3OH and H2CO hot core abundances were available from the analysis of

these molecules’ emission (Chapter 2.3; Maret et al. 2004, 2005). Assuming that the emission

of the complex molecules comes from the same region (an assumption supported by the inter-

ferometric observations), the hot corino abundances of the complex species were derived from

the beam-averaged values taking into account the beam dilution.

In most hot cores, however, only beam-averaged CH3OH and H2CO column densities are avail-

able, so that abundance ratios were taken as beam-averaged column density ratios. However, as

I will discuss a bit further, the generally high rotational temperatures derived for CH3OH (and

for some of the complex molecules) indicate that the observed CH3OH emission is dominated

by the hot cores.
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There are a few exceptions to the fact that only beam-averaged values could be found. In-

deed, in some sources, it was possible to find an analysis of the methanol emission similar to

what has been done for the hot corinos, namely disentangling the hot core from the cold outer

envelope contribution in the beam, by means of a two-component LTE model. This was the

case for SgrB2 (N) and (M) (Nummelin et al. 2000), and for G10.47+0.03, G31.41+0.31 and

G34.26+0.15 (Hatchell et al. 1998). The only analysis I could find in the literature which com-

bined radiative transfer and temperature, density and abundance profiles, is that of van der Tak

et al. (2000a). Unfortunately, the sources for which they find a jump are not part of the sample

I use in the comparison.

Considering the cases of SgrB2 (N) and (M), and assuming, as for hot corinos, that the

complex molecules’ emission originate from the 2′′ and 1′′ hot cores inferred by Nummelin et al.

(2000), I estimated the abundance ratios of complex O-bearing molecules to CH3OH in the hot

cores. The values are plotted with star symbols in Figure 5.2, which shows that there is only a

factor 4 difference in the abundance ratios if the hot core or the outer envelope abundance of

methanol is used. I also performed the same calculation for the sources analyzed by Hatchell

et al. (1998), and found similar results, but did not plot the values for clarity.

In principle, the different methods used to derive the abundance ratios in hot cores (beam-

averaged column density) and corinos (full density and chemical structure analysis) may lead

to such a different result that the comparison may be meaningless. However, while this would

certainly be the case for the absolute values of the abundances, the abundance ratios suffer

much less from the different methods, as shown by the “small” factor 4 in the SgrB2 (N) and

(M) sources (Nummelin et al. 2000). In practice, the beam-averaged abundance ratios are very

different from the reality only if the spatial distributions of the different molecules in the con-

sidered source are different, and/or if there is a large contribution from the outer envelope with

respect to the hot core. While a direct measure of the molecular emission extent would require

carrying out interferometric observations, the available data can give a good hint on where the

emission originates from, by looking at the rotational temperature, Trot. As a matter of fact,

the Trot of the hot cores considered in this study (with the possible exception of the H2CO and

HCOOH) are implying that the emission is dominated indeed by the hot cores rather than the

cold envelope (which may also be due to an observational bias, that is if the observed transitions

are probing warm rather than cold gas). In this respect, therefore, I think that the comparison

between hot corinos and hot cores shown in Figures 5.2 is reliable. There is, however, more

uncertainty associated with the hot cores’ abundance ratios reported in Figure 5.3, since H2CO

emission could have an important contribution from the cold envelope.
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Conclusion

Whether considering beam-averaged ratios in all objects or not, Figure 5.2 (and to a lesser extent

Figure 5.3) show that hot corinos are not just scaled versions of hot cores and that in fact, com-

plex molecules are relatively more abundant in hot corinos than in hot cores. This conclusion

would still be valid if I assume CH3OH and H2CO abundances from Jørgensen et al. (2005b)

since, as mentioned in the previous section, the abundance ratios with respect to CH3OH and

H2CO would be similar and higher respectively, so in any case, higher than the abundance ratios

in massive hot cores. The possible explanations for the difference between hot cores and hot

corinos will be investigated in Section 6.4.



Résumé du Chapitre 6

La chimie des hot corinos/cores

Dans ce chapitre, je passe en revue les concepts majeurs intervenant dans la chimie des

hot corinos et hot cores. Je décris les différents types de réactions ayant lieu, d’une manière

générale, dans le milieu interstellaire, et porte une attention particulière aux processus prenant

place lors de la phase pré-stellaire. En effet, c’est durant cette phase que les manteaux des grains

se forment, donc ces processus ont un fort impact sur la chimie ayant lieu par la suite dans les

hot corinos/cores. J’en viens ensuite au cœur du sujet en détaillant les chemins de formation

possibles pour certaines molécules organiques complexes, typiques des hot corinos/cores. Enfin,

j’analyse les résultats des chapitres 3 à 5 dans le contexte des éléments présentés dans les

premières parties du présent chapitre, pour montrer que, bien qu’on ne puisse éliminer aucun des

mécanismes de formation, il semblerait que la formation sur la surface des grains soit favorisée.

Cette analyse fait partie de Bottinelli et al. (2006).
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Chapter 6

Chemistry of hot corinos/cores

Abstract

I review in this section the major concepts intervening when dealing with the chemistry of hot

cores and corinos. I start with a description of the different types of reactions taking place in the

ISM (Section 6.1) and bring special attention to the processes occuring during the pre-stellar

phase (Section 6.2). Indeed, it is during this phase that the grain mantles are formed, so these

processes have a strong impact on the subsequent chemistry taking place in hot cores/corinos.

I then move on to the heart of the issue by detailing the possible formation pathways of some

complex organic molecules typically found in hot cores/corinos. Finally I put the results found

in Chapters 3 to 5 in the context of the elements presented in the first sections of this chapter

to show that, even though no formation mechanism can be discriminated against, there seems

to be more support in favor of grain-surface formation.

The analysis presented in this chapter is part of Bottinelli et al. (2006).

6.1 Interstellar chemistry: general considerations

Since the identification of the first interstellar molecule in 1940 by McKellar, over 120 molecules

have been discovered (see http://www.ph1.uni-koeln.de/vorhersagen/ for an up-to-date

list). These range from the simple diatomic molecules to a thirteen-atom carbon chain, which

shows that the ISM possesses sites of a very rich chemistry. Many models have been developed

to try and reproduce the chemistry leading to the formation of the detected molecules. Complex

chemical networks of up to 4000 reactions among several hundred species have been built. Gas-

phase chemistry has been successful in explaining several observational aspects of interstellar

chemistry, but it has become clear that it is not sufficient to understand all the data and that

grain-surface chemistry is necessary. I therefore describe here the types of reactions occurring

in the ISM for the two broad classes (gas-phase and grain-surface), including, in the case of

grain-surface chemistry, the desorption mechanisms that return the species in the gas-phase.
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6.1.1 Gas-phase reactions

Gas-phase reactions are generally constrained by the low densities and cold temperatures of the

ISM. Low densities imply that only binary (also called bimolecular, i.e. involving two reactants)

reactions can take place. Cold temperatures require that only exothermic reactions with a very

low or no activation barrier are possible in the gas-phase, because the rate coefficient k obey the

Arrhenius rate law (e.g. Herbst 1995):

k(T ) = A(T ) exp(−Ea/kBT ) (6.1)

where A(T ) is the pre-exponential factor, Ea is the activation energy and kB is Boltzmann’s

constant. Hence at low temperature, reactions are too slow to be competitive if the activation

barrier is too high.

The different types of reactions that can occur are detailed in a number of publications (e.g.

Tielens 2005; Lequeux 2002; Herbst 1995). They are briefly described below and summarized in

Table 6.1:

• Ion-molecule reactions A + B+ → C + D+: these reactions have no activation barrier

and can occur at very low temperatures provided that they are exothermic. The rate

coefficients are in the range ∼ 10−9 − 10−7 cm3 s−1 at 10 K (Herbst 1995).

• Radiative association A + B → AB + hν: the direct combination of the two reactants

with emission of a photon. For this kind of reaction to occur, the product must form in a

state that has permitted transitions with the fundamental state in order to get rid of excess

energy by emission of a photon. This is a slow process (rate coefficient k ∼ 10−17 cm3 s−1;

Lequeux 2005), unless one of the reactants is abundant (H or H2), in which case, k ∼
10−9 cm3 s−1 (Gerlich & Horning 1992).

• Dissociative recombination AB+ + e− → A + B: formation of neutral species by reaction

between a molecular ion and an electron. These tend to be quite rapid with rate coeffi-

cients at room temperature from 10−7 to 10−6 cm3 s−1 and a small inverse dependence on

temperature (Herbst 1995).

• Neutral-neutral reactions A + B → C + D: reactions between stable neutral atoms or

molecules. Many possess an activation barrier so that they do not happen in cold regions

of the ISM, due to the temperature dependence in equation (6.1). They are however

fundamental in regions with warm temperatures. Reactions between radicals (molecules

with one or several unpaired electrons) or between a radical and an atom generally do not

have an activation barrier and can occur at low temperatures at rate coefficients larger

than 10−10 cm3 s−1 (Herbst 1995; Smith et al. 2004, and references therein).

• Photodissociation and photo-ionization AB + hν → A + B and CD + hν → CD+:

destruction of molecules by one of the following: (i) UV radiation, (ii) cosmic rays (CR),



6.1. Interstellar chemistry: general considerations 99

Table 6.1 Types of gas-phase reactions

Name Equation Rate coefficient (cm3 s−1)

Ion-molecule reactions A + B+ → C + D+ ∼ 10−9 − 10−7

Radiative association A + B → AB + hν ∼ 10−17 − 10−9

Dissociative recombination AB+ + e− → A + B ∼ 10−7 − 10−6

Neutral-neutral reactions A + B → C + D ∼ 10−10

Photodissociation AB + hν → A + B ∼ 10−17 − 10−9 s−1

Photo-ionization CD + hν → CD+ ∼ 10−17 − 10−9 s−1

Charge transfer A+ + B → A + B+ ∼ 10−9

(iii) secondary UV radiation produced by collisional excitation of H2 or He by CR followed

by radiative de-excitation. The rate at which this type of reaction occurs is expressed by

the ionization rate, which ranges from 10−9 s−1 in environments suffering no extinction,

down to 10−17 s−1 in dense regions.

6.1.2 Grain-surface reactions

Dust particle surfaces are assumed to start out as mixtures of silicates and graphitic material,

and gradually covered by mantles of water-ice via accretion of atomic oxygen followed by hy-

drogenation (Tielens & Hagen 1982; Jones & Williams 1984). The production of molecules on

grain surfaces requires the reactants to stick. This adsorption process is known to occur with

high efficiency at low temperatures and for large (∼ 0.2µm in diameter) grains (Herbst 1995).

However, due to the low density of dust particles, it is slow: for example, for CO molecules in

a molecular cloud of density 104 cm−3and assuming a standard dust-to-gas ratio of 1:100, the

adsorption time scale is of order 105 years.

Following adsorption, the reactants need to be be mobile and/or reactive. It is generally

assumed that when exothermic reactions between adsorbed species are possible, then, whenever

the species approach each other, the reaction occurs (Williams 1993). The mobility, or diffusion,

can be achieved via the classical “thermal hoping” mechanism or via quantum tunneling (the

so-called Langmuir-Hinshelwood mechanism — see top of Figure 6.1), the later being faster for

light species such as atomic hydrogen. Alternatively, a gas-phase species can adsorb on a site

that is already occupied (Eley-Rideal mechanism, bottom of Figure 6.1), in which case only

exothermicity is required for the reaction to occur.

The most important grain-surface reaction is the formation of H2, which cannot be formed

in the gas-phase (e.g. Hollenbach & Salpeter 1971; Cazaux & Tielens 2004; Cuppen & Herbst

2005; Cuppen et al. 2006). It is also generally accepted that heavy atoms such as C, N, and

O striking and sticking to the grains will be hydrogenated efficiently to saturated forms (CH4,

NH3, H2O), unless intermediate radicals are desorbed before they can react with another H

(Tielens & Hagen 1982; Herbst 1995).

Several desorption mechanisms have been proposed (Williams 1993; Tielens 2005):



100 Chapter 6. Chemistry of hot corinos/cores

Figure 6.1 Reaction mechanisms on grain surfaces – Langmuir-Hinshelwood mechanism
(top): Two species adsorb on different sites of the grain surface and one of them diffuse via
thermal hoping or quantum tunneling. Eley-Rideal mechanism (bottom): One species
adsorb on a site already occupied by another one.
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• Thermal desorption: in the vicinity of a star, the grains can heat to a point at which

the vapor pressure of the mantle causes substantial sublimation of the icy material. For

water-ice mantle, this occurs around 100 K (Tielens & Allamandola 1987).

• Cosmic-ray heating: the passage of cosmic rays through dust deposits energy in each dust

grain, causing the evaporation of loosely bound species like CO (Leger et al. 1985).

• Chemical desorption: the energy released in exothermic reaction between adsorbed species

can lead directly to the ejection of the product, and even possibly of neighboring species,

as it is the case for H2 formation (e.g. Greenberg 1973).

• Sputtering of dust: when interstellar gas is shocked (e.g. by a stellar jet), there is substan-

tial gas flow around the dust (leading to h, H2 and He impacts on the grains), followed by

high post-shock temperatures. These cause sputtering of the dust and return of mantle

material to the gas (e.g. Pineau des Forets et al. 1993).

6.2 Chemistry of pre-stellar cores

The chemical mechanisms at play during the pre-stellar core phase are important for under-

standing the chemistry of Class 0 protostars, so I describe in this section several key processes

that characterize the chemistry in pre-stellar cores (PSCs): depletion (or freeze-out) of gas-phase

species, high deuterium fractionation and grain-surface reactions.

6.2.1 Depletion

Depletion is the process by which molecules stick onto grain surfaces, thereby lowering their

abundance with respect to ISM values. It occurs as a direct result of the increase in density

with evolution. Freeze-out has been expected due to the fact that, for typical H2 densities of

104 − 105 cm−3, the timescale for a gaseous CO to be deposited onto a dust grain (or depletion

timescale) is ∼ 105 − 104 yr, comparable to dynamical time-scales of PSCs (Caselli et al. 1999,

and references therein).

The amount of depletion of a given molecule is a function of the strength of the physical

adsorption bond between that species and the grain surface (i.e. its binding energy to the grain

surface), the cross section and number density of the grains, and the velocity of the molecule.

Bergin & Langer (1997) modeled the chemistry of evolving and collapsing low-mass protostellar

cores. Their models predict that at the middle to late stages of dynamical evolution of a cold

dense core, prior to the formation of a protostar, various species will selectively deplete from

the gas phase. For example, tightly bound sulfur-bearing molecules such as CS, SO and C2S,

are sensitive to the density increase and exhibit larger and larger depletions as the PSC evolves

(these species virtually disappear from the gas-phase for n(H2) ∼ 3× 104 cm−3, corresponding

to t ∼ 107 yr in the models presented by Bergin & Langer 1997). On the contrary, due to the

assumed low binding energy of the precursor molecule N2, both NH3 and N2H
+ only deplete at
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the highest densities (∼ 106 cm−3, Tafalla et al. 2002).

Observationally, freeze-out has been seen in several cores with depletion factors 4–1000 (Caselli

et al. 1999; Bacmann et al. 2002; Bergin et al. 2002; Pagani et al. 2005; see Di Francesco et al.

2006; Ceccarelli et al. 2006 for reviews). This process has direct consequences on deuterium

fractionation and grain-surface reactions as described below. It can also affect the dynamical

evolution since depletion affects the ionization fraction, and thereby the coupling of the cloud

to the magnetic field. Indeed, in a magnetized cloud, neutral particles contract relative to the

ionized species, which are bound to the magnetic field lines (this is the ambipolar diffusion

process; Mestel & Spitzer 1956). An increased abundance of ionized particles (i.e. a higher

ionization fraction) will counteract the contraction, and so reduce the collapse speed Since

electron fraction tends to increase with freezing-out of CO and other neutrals (due to the fact

that the destruction rate of H2D
+ and H+

3 is reduced, leading to an increase in the abundance

of H2D
+, the main agent of ionization — Caselli 2002), then depletion lengthens star formation

timescales.

6.2.2 Deuterium fractionation

High deuterium fractionation is the enhancement of deuterated isotopologues beyond levels

expected from the elemental D/H ratio of ∼ 1.5×10−5. Deuteration is initiated by the formation

of H2D
+ from HD (the main deuterium reservoir in cold molecular gas, such as PSCs and

molecular clouds), via:

H+
3 + HD → H2D

+ + H2 (6.2)

H2D
+ can then transfer deuterium to other molecules. However, H+

3 and H2D
+ are mainly

destroyed by CO. This is why CO depletion plays a role in deuteration as mentioned above.

Indeed, for large enough densities (∼> 105 cm−3) and low enough temperatures (∼< 20 K), CO

depletes onto grain surfaces, i.e. the main destruction agent of H+
3 and H2D

+ disappears, allow-

ing reaction 6.2 to become the dominant destruction route of H+
3 . Subsequently, the increased

abundance of H2D
+ leads to a more efficient propagation of the deuterium to other molecules,

i.e. a higher deuterium fractionation. In fact, H2D
+ is not the only molecule allowing deuterium

transfer from HD to other species. Indeed, further reactions of H2D
+ with HD in a similar way

as in 6.2, will lead to the formation of HD+
2 and D+

3 . For large CO depletion factors, D+
3 becomes

the most abundant deuterated form of H+
3 (Roberts et al. 2003; Walmsley et al. 2004; Ceccarelli

& Dominik 2005).

Observationally, the role of CO in the large deuteration of PSCs has been demonstrated by

Bacmann et al. (2003) and Crapsi et al. (2005), who found that the D/H ratio increases as the

CO depletion factor increases (see also Ceccarelli et al. 2006). Quantitatively, D/H ratios are

found to be between 0.05 and 0.4 in a sample of dense cores (Crapsi et al. 2005). Observations

of PSCs also revealed abundance enhancements of multiply deuterated species, such as D2CO

(Bacmann et al. 2003), ND3 (Roueff et al. 2005) and D2H
+ (Vastel et al. 2004, 2006).
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6.2.3 Grain-surface reactions

Another important process in PSCs are grain-surface reactions. Grain-surface reactions play a

crucial role in many astrophysical environment. The most notable example is the formation of

molecular hydrogen in the ISM. Due to the high abundance of this molecule, a high-efficiency

process is needed and none of the considered gas-phase reactions satisfy this condition (e.g.

Herbst et al. 2005). Grain-surface formation of H2 has therefore been invoked for many years

(as early as 1963 by Gould & Salpeter) and has recently been confirmed by laboratory work

(Hornekaer et al. 2003; Roser et al. 2002). Apart from reacting with itself, atomic hydrogen is also

thought to react with heavier, slower-moving species that stick to dust particles (e.g. Tielens &

Hagen 1982; Hasegawa et al. 1992). In these so-called association reactions, the product formed

by the two reactants is stabilized by a third body (here, the grain). This process leads to the

formation of another key component of the ISM, water ice, via:

O +H−→ OH +H−→ H2O (6.3)

or via a set of reactions where O2 acts as a catalyzer:

O + O2 → O3 (6.4)

O3 + H → O2 + OH (6.5)

OH + H2 → H2O + H (6.6)

which has the net effect: O + H2 → H2O.

Other important molecules formed in such a way include NH3 (from atomic nitrogen) and CH4

(from atomic carbon).

In PSCs, grain-surface reactions are believed to be responsible, in particular, for the forma-

tion of formaldehyde and methanol. Indeed, enhanced methanol (and formaldehyde) abundances

are observed in several environments (such as in hot corinos as described in Section 1.2.1, and

in outflows associated with some low-mass protostars), and gas-phase models are unable to

reproduce these abundances. For example, the methanol abundances observed in Orion are un-

derestimated by up to four orders of magnitude (Menten et al. 1988). This is one of the reasons

why this molecule is thought to form on the grains. As early as 1982, Tielens & Hagen proposed

a grain-surface route proceeding via successive hydrogenation of CO (a species that is known

to freeze-out onto grains in PSCs as mentioned above), leading to the formation of H2CO and

ultimately of CH3OH :

CO → HCO → H2CO → H2COH → CH3OH (6.7)

This process has been studied experimentally by several groups and, although Hiraoka et al.

(2002) could not form any CH3OH in this way, experiments by Watanabe et al. (2003) and

Hidaka et al. (2004) found that this process could form methanol efficiently at low temperatures.



104 Chapter 6. Chemistry of hot corinos/cores

Surface chemistry in PSCs also includes deuteration via atomic deuterium, which is produced

in the gas by dissociative recombination of deuterated ions, for example:

H2D
+ + e− → D + H + H (6.8)

D+
3 + 3e− → D + D + D (6.9)

As hydrogen atoms, deuterium atoms diffuse rapidly on grain surface and are highly reactive so

that they can produce deuterated species via successive D additions. The relative abundances of

the different isotopologues1 and isotopomers2 depends on the flux ratio between H and D landing

on the grains (Tielens 1983; Charnley et al. 1997). Alternatively, D atoms can substitute H atoms

in the main isotopologue: experiments by Nagaoka et al. (2005) showed that methanol could be

deuterated in this way.

6.3 Theories of formation paths of selected complex organic

molecules

In this section, we review the different reactions that have been proposed for the formation

of some complex species. For all the moleules considered here, these reactions can occur in

the gas-phase or on grain surfaces. Gas-phase reactions usually involve H2CO or CH3OH as

precursors, or parents. These are supposed to form on grain surfaces (e.g. Charnley et al. 1995)

and evaporate in the gas-phase where they undergo further reaction to form more complex, or

daughter, molecules. Grain-surface reactions generally consist in H or O additions and radical-

radical reactions.

6.3.1 Formic acid

In the gas-phase model of Leung et al. (1984), the precursor ion of HCOOH, HCOOH+
2 , is

produced via the radiative association

H2O + HCO+ → HCOOH+
2 + hν (6.10)

followed by dissociative electron recombination to produce HCOOH. But Irvine et al. (1990)

mention that this reaction is believed not to occur due to a competitive exothermic reaction

to form H3O
+ and CO. Instead, they attribute the gas-phase formation of HCOOH via an

ion-molecule reaction followed again by a dissociative electron recombination

CH4 + O+
2 → HCOOH+

2 + H (6.11)

HCOOH+
2 + e− → HCOOH + H (6.12)

1Isotopologue: species where one or several H atom(s) has/have been replaced by D atom(s); e.g. CH3OH
(the main isotopologue, where no H atoms have been replaced by D atoms) → CH3OD.

2Isotopomers: molecules with the same chemical composition but different arrangements of the atoms; e.g.
CH3OD, CH2DOH.
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Reaction (6.12) has been measured in the laboratory and found to be rapid at low temperature

(Rowe et al. 1984). Moreover, the calculated HCOOH abundance agrees with the values ob-

served by Irvine et al. (1990) in the dark cloud L134 N.

On grain surfaces, Tielens & Hagen (1982) proposed the formation of HCOOH through

successive additions of H, O, and H to solid-state CO:

CO +H−→ HCO +O−→ HCOO +H−→ HCOOH (6.13)

The models of Hasegawa & Herbst (1993) are able to reproduce the abundances observed in

massive hot cores for ages larger than 105−106 yr. Moreover, radiolysis experiments (simulating

the processing of interstellar ices by cosmic rays) by Hudson & Moore (1999) showed that

HCOOH could form in H2O–CO mixed ices via the above sequence. Finally, the grain-surface

formation of HCOOH is supported by the interferometric observations of Sgr B2 and W51 by

Liu et al. (2001), and would also be consistent with observations of this molecule in the ices

surrounding the massive protostar W33A (Schutte et al. 1999; Gibb et al. 2000b).

6.3.2 Methyl formate

The commonly accepted formation path for HCOOCH3 starts with the reaction between proto-

nated methanol and formaldehyde to form protonated methyl formate and molecular hydrogen:

[CH3OH2]
+ + H2CO → [HC(OH)OCH3]

+ + H2 (6.14)

followed by dissociative recombination of [HC(OH)OCH3]
+ with electrons to form HCOOCH3

(Blake et al. 1987). However, laboratory and theoretical work by Horn et al. (2004) indicates

the existence of a very large activation energy for reaction (6.14), so that the later cannot lead

to the formation of protonated methyl formate. Therefore, the formation of methyl formate in

hot cores cannot occur via this reaction. Horn et al. searched for more favorable transitions

between the reactants and products of reaction (6.14), but were unsuccessful. These authors

also investigated reactions involving other abundant species in hot cores, such as protonated

formaldehyde and CO. They show that none of the studied processes produces enough methyl

formate to explain the observed abundances. However, they also state that one possibility for

producing more methyl formate is that formic acid would be synthesized on grain surfaces and

desorbed into the gas phase, in which case the reaction:

CH+
3 + HCOOH → HC(OH)OCH+

3 + hν (6.15)

would play a significant role.

As pointed out in section 6.3.1, there are indeed evidences in favor of HCOOH being synthesized

on grain surfaces. The downfall is that Horn et al. (2004) find that even if HCOOH is injected

with an abundance one order of magnitude higher than observed in OMC-1, their model still
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predicts a HCOOCH3 abundance between one and two orders of magnitude below the observed

value in this source. In the light of their work, they conclude that HCOOCH3 should be pro-

duced at least in part on grain surfaces.

Two schemes for grain-surface formation of HCOOCH3 have been proposed, but none of

them has undergone laboratory investigation yet:

• Formation from precursors CO, O, C, and H landing on grain (Herbst 2005):

CO + H → HCO (6.16)

C +H−→ CH +H−→ CH2
+H−→ CH3

+O−→ CH3O (6.17)

CH3O + HCO → HCOOCH3 (6.18)

Charnley & Rodgers (2005) mention that many radicals (like CH3O and HCO) could form

in close proximity via the hot secondary electron generated by the passage of a cosmic ray

through the ice. In this case, it would ensues that radical-radical reactions such as (6.18)

could occur efficiently.

• Sorrell (2001) proposed a model in which the photoprocessing of grain mantles by UV

starlight creates a high concentration of radicals in the bulk interior of mantles. Grain-

grain collisions then provide excess heat causing radical-radical reactions to occur and form

large organic molecules. In this scheme, HCOOCH3 would be produced from the reaction

between the carboxyl acid (COOH) and the methyl group (CH3) in the following way:

CO + OH → COOH or HCO + HCO → COOH + CH (6.19)

CH +H−→ CH2
+H−→ CH3 (6.20)

COOH + CH3 → HCOOCH3 (6.21)

However, any grain-surface chemistry preceding the hot core/corino phase would occur

in a very dense and highly visually extinct environment, hence well shielded from UV

starlight. Therefore, such a UV photolysis of grains is unlikely to happen, as pointed out

by Peeters et al. (2006). Nevertheless, the radical-radical reaction (6.21) could still be a

possible formation path for HCOOCH3 via cosmic ray processing.

6.3.3 Dimethyl ether

CH3OCH3 was proposed by Blake et al. (1987) to form in the gas-phase by methyl cation transfer

to methanol, followed by electron dissociative recombination:

CH3OH+
2 + CH3OH → CH3OCH+

4 + H2O (6.22)

CH3OCH+
4 + e− → CH3OCH3 + H (6.23)
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Peeters et al. (2006) claim that their models support such a gas-phase route if the methanol

abundance is of the order 10−6 or more, as it is the case for the OMC-1 hot core (recall that

for hot corinos, X(CH3OH) ≤ 3 × 10−7). However, Ceccarelli et al. (2006) note that experi-

mental measurements of the neutral products of dissociative recombination reactions show that

two-body products such as in reaction (6.23) are often minor channels. Therefore, gas-phase

formation of CH3OCH3 is plausible but not demonstrated.

On the grains, CH3OCH3 could be produced by a similar scheme as for HCOOCH3, that

is cosmic ray processing followed by the radical-radical reaction CH3 + CH3O → CH3OCH3

(Allen & Robinson 1977). As in the case of HCOOCH3, this reaction has not been validated by

laboratory studies.

6.3.4 Methyl and ethyl cyanide

For completeness, I mention here the possible formation routes of these two molecules. However,

I will not discuss them any further in this work, due to the lack of data on potential parents

such as NH3.

Two substantially different formation routes for CH3CN have been proposed in the literature:

either in the gas-phase or on grain surfaces.

• In the Rodgers & Charnley (2001) chemical model of massive hot cores, CH3CN is syn-

thesized in the gas-phase from NH3 in the following way: HCN is synthesized from the

reaction between NH3 and C+ (yielding HCNH+, reaction (6.24)), followed by electron

recombination or proton transfer to ammonia (6.25). CH3CN is then formed from the

radiative association between the methyl ion and HCN (6.26), again followed by electron

recombination (6.27):

NH3 + C+ → HCNH+ (6.24)

HCNH+ + e− → HCN + H or HCNH+ → HCN + NH+
4 (6.25)

CH+
3 + HCN → CH3CNH+ + hν (6.26)

CH3CNH+ + e− → CH3CN + H (6.27)

Comparisons between the results from this model and observations suggest that a grain-

surface formation of CH3CN is not required.

• On grain surfaces, CH3CN can be formed by successive hydrogenation of C2N or by re-

combination between CN and CH3:

– C2N
+H−→ HCCN +H−→ CH2CN +H−→ CH3CN. This set of reactions, used in Caselli et al.

(1993), underestimates the CH3CN abundance by a factor about 50 compared to the
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Table 6.2 Summary of gas-phase and grain-surface reactions for the formation of selected complex
organic molecules.

Molecule Gas-phase Grain-surface

HCOOH CH4 + O+
2

→ HCOOH+
2

+ H CO +H
−→ HCO +O

−→ HCOO +H
−→ HCOOH

HCOOH+
2

+ e− → HCOOH + H

HCOOCH3 H2COH+ + H2CO → H2COHOCH+
2

+ hν CH3O + HCO → HCOOCH3

COOH + CH3 → HCOOCH3

CH3OCH3 CH3OH+
2

+ CH3OH → CH3OCH+
4

+ H2O CH3 + CH3O → CH3OCH3

CH3OCH+
4

+ e− → CH3OCH3 + H

CH3CN CH+
3

+ HCN → CH3CNH+ + hν C2N +H
−→ HCCN +H

−→ CH2CN +H
−→ CH3CN

CH3CNH+ + e− → CH3CN + H CN + CH3 → CH3CN

abundance observed in the Orion hot core. This could be explained by the fact that

HCCN formation is in competition with C3N formation and the former is indicated

by the authors as a less important pathway.

– CN + CH3 → CH3CN (Hasegawa & Herbst 1993), which yield a CH3CN abundance

in good agreement with the Orion hot core value for an age of 105 yr.

Regarding C2H5CN, some studies point towards grain-surface formation of this molecule by

hydrogenation of HC3N (Blake et al. 1987; Charnley et al. 1992; Caselli et al. 1993). Observa-

tions by Liu & Snyder (1999) are consistent with this theory. However, the abundance ratio of

CH3CN to C2H5CN predicted by Caselli et al. (1993) is at least two orders of magnitude smaller

than the ratio observed in hot cores and hot corinos. Therefore, it seems unlikely that both

CH3CN and C2H5CN form via the surface reactions proposed by Caselli et al.

6.3.5 Summary

For all the complex molecules considered here, grain-surface formation is a possible alternative

to gas-phase formation. So far, we implicitly implied that grain-surfaces processes were taking

place during the cold phase preceding the heat-up of the dust by the newly born star. However,

during the warm-up phase, it is improbable that the dust temperature suddenly jumps from

∼10 to ∼100 K. Instead, there is more likely a temperature gradient leading to a gradual heat-

ing of the grains (e.g. Viti et al. 2004; Garrod & Herbst 2006). The effect of this gradient on

grain-surface and gas-phase chemistry can be quite substantial. Indeed, the modeling by Garrod

& Herbst (2006) shows that gas-phase and grain-surface chemistries are strongly coupled dur-

ing the warm-up phase: molecules formed on the grain can evaporate and affect the gas-phase

chemistry whose products can re-accrete and change in turn the grain-surface chemistry. In

particular, Garrod & Herbst (2006) find that HCOOCH3, HCOOH and CH3OCH3 are formed

via both gas-phase and grain-surface chemistry, although surface processes are dominant for

slower onset of the central object.
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Note that for some molecules, grain-surface formation is not only an alternative, but also

apparently the only choice. This is the case for HCOOCH3 and even more so for HCOOH since

it has been detected in the ices of star forming regions (e.g. Schutte et al. 1999; Keane et al.

2001), as well as of quiescent molecular clouds (Knez et al. 2005). In particular, the detection

of icy HCOOH in quiescent clouds would indicate, not only that HCOOH formation occurs on

grain-surface, but also that it would pre-date the first phase of the star formation mechanism,

supporting the theory of formation in the cold, rather than warm-up phase. Whether the other

complex organic molecules could also follow the same pattern cannot be commented upon since,

to our knowledge, no other complex molecule has been detected in ices. This is because unfor-

tunately, the infrared spectra of complex organic molecules are not well known in this medium.

The difficulty in determining the presence of these molecules lies in the fact that they may

produce only slight shifts and broadenings, and that the peak positions are characteristic of

functional groups not molecular species (Tielens, priv. comm.). Hence, specific identifications

are always somewhat ambiguous. The carbonyl (C=O) group is probably best to search for

and Keane et al. (2001) attributed an absorption feature at 5.8 µm to this group in H2CO and

HCOOH.

Overall, it also stands out from the above sections that more experiments on thermal sur-

face chemistry at low temperatures are needed to check the feasibility of the outlined reactions.

Also, since cosmic ray processing of icy grain mantles seems able to produce complex molecules,

quantitative models are also necessary to determine the expected amount of specific molecules

from this process.

6.4 Implications

In this section, I refer to the ratios of complex molecules’ abundances to CH3OH and H2CO

abundances that were derived in Chapters 3 and 5, and plotted in Figures 3.7, 3.8, 5.2 and 5.3.

Since the later two figures summarized the data for both hot corinos and hot cores, I show them

again here as Figures 6.2 and 6.3, for pratical purposes.

6.4.1 Abundance ratios in hot corinos

In sections 3.5.2, I showed that the abundance ratios of complex organic molecules to H2CO or

CH3OH in hot corinos (i) are of order unity and (ii) do not seem to depend on the CH3OH or

H2CO abundances, as can be seen from Figures 6.2 and 6.3. The implications are:

• In the case of gas-phase formation from methanol or formaldehyde: (i) and (ii) mean that,

in all the hot corinos, the formation of complex molecules uses up a significant fraction

of the parent molecules sublimated from the mantles. However, gas-phase chemistry does

not seem able to reproduce this behavior. For example, the collapsing envelope model

of Rodgers & Charnley (2003; see also Rodgers & Charnley 2001) predicts CH3OCH3
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Figure 6.2 Abundance ratios of complex O-bearing molecules to methanol, plotted as a function
of the methanol abundance, in hot corinos and in hot cores. Open diamonds represent hot
corinos. Filled squares represent abundances ratios of hot cores, derived from beam-averaged
column density analysis. See Figure 5.2 for details.

Figure 6.3 Abundance ratios of complex O-bearing molecules to formaldehyde, plotted as a
function of the formaldehyde abundance, in hot corinos and in hot cores. Open diamonds
represent hot corinos. Filled squares represent abundances ratios of hot cores, derived by beam-
averaged column density analysis.
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to CH3OH abundance ratios of only 10−2 − 10−1. Similarly, Rodgers & Charnley (2001)

predicted HCOOCH3 to CH3OH abundance ratios < 7×10−3, and we now know that they

used too high a formation rate coefficient for HCOOCH3, so that the actual prediction

should be even smaller (Horn et al. 2004). Therefore, either gas-phase models are not

adequate, or complex molecules are not formed in the gas phase.

• In the case of grain-surface formation: (i) and (ii) show that complex molecules are as

important mantle constituent as CH3OH and H2CO. Observations of solid HCOOH and

CH3OH along quiescent lines of sight by Knez et al. (2005) and in protostars (Keane et al.

2001) support this idea since the quoted HCOOH and CH3OH abundances yield abundance

ratios of order unity, as I find for the hot corinos. No observations of other complex

molecules in the ices are available, but their presence cannot be excluded considering, as

mentioned in section 6.3.5, the difficulty of identifying their signature in infrared spectra.

Note that gas-phase reactions proposed in section 6.3.1 for the formation of HCOOH do not

involve CH3OH or H2CO. Therefore the conclusion mentioned for gas-phase formation do not

apply to this molecule, whereas the analysis regarding grain-surface formation is still valid.

Overall, in the Maret et al. (2004, 2005) framework, the hot corino data presented in my

thesis are consistent with either gas-phase or grain-surface formation of complex molecules in

hot corinos, with nonetheless more support for the later route. However, other scenarios could

be considered. For example, complex molecules could form in the ISM, deplete onto grain

mantles during the accretion phase and desorb as the protostar heats up its environment. If

this formation in the ISM were true, we should be able to observe their low-energy transitions

in dark clouds or in the cold envelopes of the protostars. For example, Remijan & Hollis (2006)

observed a transition of HCOOH with Eu=3.2 K around IRAS16293B for which the spatial

distribution is around (and not peaking at) the position determined from the continuum. I also

showed in Section 4.4.2 that there was some extended CH3CN emission, i.e. from the cold outer

envelope, in IRAS4A. I cannot therefore rule out this theory, but more observations are needed

to support it.

6.4.2 Comparison with abundance ratios in hot cores

In Section 5.4, I found that the abundance ratios of complex molecules to CH3OH in hot corinos

were larger than in hot cores (see Figure 6.2), i.e. that the complex molecules were relatively

more important in hot corinos.

This could be due to a difference in the chemistry, since the later depends on environmental

parameters such as the density and temperature of the gas. For example, the model of Rodgers

& Charnley (2001) shows that the predicted abundances are more or less important at 100

or 300 K, depending on whether O- or N-bearing species are considered. In any case, since

high-mass protostars are several orders of magnitude more luminous than low-mass ones, the

sublimation region is expected to be larger in the former, so that overall, complex organic
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molecules would be relatively more abundant in hot cores if formed in the gas-phase. However,

I observe the opposite, which seems to favor grain-surface formation. A number of processes

presented in Sections 6.2 and 6.3 would support this interpretation:

• Deuterium fractionation (§6.2.2)
It is already known that the levels of deuteration differ in low-mass and high-mass proto-

stars, more specifically that extreme deuteration occurs in low-mass but not in high-mass

protostars (e.g. Ceccarelli et al. 2006 and references therein). So a possible explanation

for the difference between hot cores and hot corinos could lie in the overall grain mantle

composition. Indeed, Boogert et al. (2004) summarize the abundances of some mantle

constituents (H2O, CO, CO2, CH3OH, OCN−) in two low-mass and high-mass embedded

protostars and there also large differences can be seen. It would therefore not be surprising

that this would also be the case for complex molecules if they formed on the grain surfaces.

• Grain-surface reactions in the PSC phase (§6.2.3)
Hot corinos are preceded by a longer cold phase than hot cores are. During this phase,

grain-surface reactions are at play, building up the icy mantles. Therefore, in the case of

grain-surface synthesis, complex molecules in hot cores would not have time to become as

important a grain-mantle constituent as in hot corinos.

• UV/X/cosmic-ray processing (§6.3)
Recall that all the proposed grain-surface formation routes of complex molecules involved

(secondary) UV, X-ray or cosmic-ray processing. Hot cores/corinos are shielded from

external UV radiation fields, but low-mass protostars, unlike massive ones, are known

to be powerful X-ray sources (e.g. Feigelson & Montmerle 1999). X-rays have already

been proposed to be the reason for the presence of calcite in the low-mass protostars

(Chiavassa et al. 2005; Ceccarelli et al. 2002b). In our case, X-rays emitted by Class 0

objects could provide the necessary energy to produce a large number of radicals and hence

a large amount of complex molecules on the grain surfaces, thereby explaining the larger

abundance ratios observed in hot corinos compared to hot cores.

• Gradual warm-up (§6.3.5)
Considering for example the methyl formate, the gas-grain model in the warm-up phase

presented in Garrod & Herbst (2006) shows that the gas-phase formation of this molecule

is more efficient at low temperatures, and that the grain-surface pathway leads to higher

abundances the longer the dust temperature remains in the 40 − 60 K range. Either way,

formation of complex molecules during the warm-up stage of the protostar would be more

efficient in low- than in high-mass environments.

Note that due to the low number statistics of hot corinos, the explanations proposed to

account for the apparent difference with hot cores are only pathways to explore, and further

observations are needed to increase the number of known hot corinos and hence to understand

better any variation between the two types of objects.
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6.4.3 Comparison with abundance ratios in Galactic Center clouds

Hot corinos/cores are not the only objects where complex molecules have been observed. In-

deed, Requena-Torres et al. (2006) have carried out a survey of complex O-bearing molecules

in Galactic Center (GC) clouds. These clouds are known to possess a warm (> 100 K) and

not too dense (∼ 104 cm−3) gas (Hüttemeister et al. 1993; Rodŕıguez-Fernández et al. 2000;

Ceccarelli et al. 2002a). This warm component is probably caused by shocks (e.g. Flower et al.

1995; Rodŕıguez-Fernández et al. 2004) arising from cloud-cloud collisions (Hüttemeister et al.

1993, 1998). These shocks are thought to be at the origin of the enhanced NH3 (Flower et al.

1995), SiO (Mart́ın-Pintado et al. 1997) and C2H5OH (Mart́ın-Pintado et al. 2001) abundances.

Surprisingly enough, considering the very different physical environments between GC clouds

and hot corinos, Requena-Torres et al. (2006) found, as I did in Chapter 3 for hot corinos (see

also Bottinelli et al. 2006), that the ratios of the abundances with respect to CH3OH (which are

comparable to those reported in Figure 6.2 for hot cores) are approximately constant and do

not depend on the CH3OH abundance. The authors conclude that the gas-phase abundances

of the organic molecules they observed in GC clouds are likely due to the formation of these

molecules on the grain surfaces and their release in the gas-phase from sputtering/erosion of the

grain mantles by the shocks, as it is the case for ammonia, silicon oxide and ethanol.

These observations have some implications for two of the processes already approached in

the previous section:

• X-ray processing

There is evidence for the presence of X-rays in these GC clouds as noted by Mart́ın-Pintado

et al. (2000) who suggest that X-rays could contribute to the formation of molecules on

grain surfaces and evaporate small dust grains. This theory adds some support to the

possible role played by X-rays in the formation of complex organic molecules on the grains.

• Gradual warm-up

Since GC clouds are not subject to a warm-up phase, it would seem at first that the

observations of complex molecules in these sources are acting against the gradual warm-

up theory. However, recall as well that the abundance ratios in GC clouds are comparable

to those in hot cores, i.e. smaller than in hot corinos. Therefore it may be possible that

complex molecules are solely formed on grain-surfaces in GC clouds, while they are formed

via the gradual warm-up schemes in hot corinos, and the (small) interaction with the gas-

phase would make the complex molecules formation more efficient, thereby accounting for

the difference between GC clouds and hot corinos.

Conclusion

The overview of the chemical processes intervening at different stages leading to the observation

of complex organic molecules show that explaining their existence is far from straightforward
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due to the many (interacting) factors potentially involved. Nethertheless, I believe that it will

be possible, via a combination of larger observational datasets, (increasingly more) accurate

models, and more laboratory experiments, to disentangle these factors. Until then, I tried to

answer one of the long-standing questions regarding the formation of complex molecules, namely

whether they are synthesized in the gas-phase or on grain-surfaces. As often in physics, it might

not be a “black-or-white” issue, as it has been suggested that the observed abundances could

be the result of a coupling between gas-phase and grain-surface reaction. But overall, although

there is no absolute proof, there is circumstantial evidence for the formation of complex organic

molecules on grain surfaces, either in the cold phase preceding the begin of the star formation

process, or in the warm-up phase following the birth of the protostar. In these scenarios, there

is also a possibility that X-rays emitted by low-mass protostars participate in the formation of

these complex molecules.



Chapitre 7

Conclusions et perspectives

7.1 Conclusions

Dans la section 1.3, j’ai présenté l’ébauche du contenu de ma thèse sous la forme de cinq ques-

tions auxquelles mon travail se voulait de répondre. Je réitère ces questions ci-dessous, avec

les résultats apportés par mes observations et la façon dont ces dernières aident à construire la

route menant aux réponses des quêtes posées.

1. Y a-t-il un saut dans l’abondance de H2CO dans les protoétoiles de Classe 0? (Chapitre

2)

Dans ce chapitre, j’ai rappelé le rôle essentiel de la détermination des profils d’abondance

de H2CO, un composant principal des manteaux des grains. En effet, la présence d’un saut

dans ce profil indiquerait la présence de régions internes chaudes dans les enveloppes des

protoétoiles de Classe 0, où les manteaux des grains subliment. De plus, puisque H2CO

est très probablement un réactif menant à la formation de molécules complexes dans la

phase gazeuse, il est crucial de connâıtre son abondance. Le saut de H2CO a été proclamé

et débattu dans la littérature et des observations de transitions à hautes energies de H2CO

devraient fournir les informations nécessaires pour résoudre la controverse. En utilisant

le JCMT, un télescope à antenne unique de 15 mètres, j’ai donc observé la transition

J = 7 − 6 de H2CO (Eup = 74 cm−1) dans cinq protoétoiles de faible masse, et je l’ai

détectée dans toutes les sources. La comparaison des flux observés et prédits montre que

le modèle de sauts semble plus approprié qu’un modèle constant pour IRAS16293, L1448-

MM et L1448-N, alors que ce pourrait être l’inverse pour IRAS4A et IRAS4B. Dans tous

les cas, les données présentées sont encore insuffisantes pour confirmer ou exclure l’une des

deux hypothèses.

2. Les hot corinos sont-ils communs parmi les protoétoiles de faible masse? (Chapitre 3)

La découverte d’un hot corino dans IRAS16293 a montré que, malgré le défi théorique posé

par leur présence, les molécules organiques complexes peuvent se former dans l’enveloppe

115
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interne d’un objet de Classe 0. Une question naturelle était donc de savoir si IRAS16293

est une exception ou si ces molécules sont omniprésentes dans les environnements chauds

des protoétoiles de type solaire. J’ai donc cherché des molécules organiques complexes

dans trois autres sources de Classe 0 (IRAS4A, IRAS4B et IRAS2A) avec l’IRAM-30m,

et j’ai effectivement trouvé certaines des molécules visées dans ces trois objets, indiquant

que les hot corinos sont probablement des objets répandus. Comparé à IRAS16293, un

plus petit nombre de molécules a été trouvé, ce qui est probablement dû au fait que mes

cibles ont une plus faible luminosité (et donc une région de sublimation plus petite) et

sont plus éloignées que IRAS16293. Par contre, les abondances relatives (par rapport à un

composant majeur des manteaux des grains, tel que CH3OH) sont comparables dans les

quatre sources, ce qui pourrait signifier que la chimie est semblable d’une Classe 0 à une

autre.

3. Où sont situées les molécules complexes? (Chapitre 4)

À l’origine, la présence des molécules organiques complexes a été proposée comme étant

due au chauffage thermique des manteaux de glace des grains dans l’enveloppe interne,

mais d’autres scenarios ont été suggérés: la désorption des molécules piégées dans les man-

teaux de glace pourrait être provoquée par les chocs occasionnés par les flots, la turbulence

ou le chauffage des murs d’une cavité par rayons UV ou X, plutôt que par chauffage ther-

mique. Il a également été proposé que les molécules pouvaient être situées à la surface

d’un disque circumstellaire, au lieu d’être réparties dans toute l’enveloppe interne. La

région d’émission des molécules complexes est donc un facteur clé pour mieux comprendre

leur formation et leur présence dans la phase gazeuse. La taille de cette région ayant été

prédite d’être de l’ordre de 1′′, l’utilisation d’un interféromètre est nécessaire. J’ai fait

des observations de IRAS16293 et IRAS4A avec le Plateau de Bure de l’IRAM, qui ont

montré que l’émission des molécules complexes est compacte et de taille ∼< 0.8′′, et qu’une

composante étendue est présente dans IRAS4A mais pas dans IRAS16293. Aucune preuve

de l’interaction du flot ou de la présence de cavités n’a été trouvée et mes données souti-

ennent donc la théorie du chauffage thermique.

4. Les hot corinos sont-ils semblables aux hot cores? (Chapitre 5)

Puisque les molécules organiques complexes ont d’abord été découvertes dans hot cores des

protoétoiles massives, j’ai pensé que des informations pouvaient ressortir de la comparaison

de ces deux types d’objets. Pour les hot cores massifs, j’ai utilisé les données trouvées dans

la littérature et j’ai fait des observations complémentaires avec le JCMT pour montrer que

les molécules organiques complexes sont relativement plus abondantes dans les hot corinos

que dans les hot cores. Les facteurs possibles expliquant cette différence sont la composi-

tion des manteaux des grains, l’efficacité des réactions chimiques ayant lieu dans la phase
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gazeuse et/ou à la surface des grains, ou la quantité de rayons X émanant de l’objet central.

5. Quelle est la voie de formation de ces molécules? (Chapitre 6)

A l’exception de la molécule HCOOCH3, pour laquelle des données récemment obtenues

en laboratoire ont montré que la formation en phase gazeuse de cette molécule est forte-

ment improbable, des chemins de réaction à la fois en phase gazeuse et à la surface des

grains ont été suggérés pour la formation des molécules complexes détectées dans les hot

corinos. Bien que mes observations n’excluent aucun des deux procédés, les abondances

relativement plus élevées des molécules complexes trouvées dans les hot corinos, comparées

aux hot cores, soutiennent la formation à la surface des grains. En effet, au moins deux

paramètres pourraient donner aux hot corinos l’opportunité de développer des manteaux

plus riches en molécules complexes: d’une part, l’échelle de temps de la phase pré-stellaire

(pendant laquelle les manteaux des grains se forment) est plus longue pour les protoétoiles

de faible masse que pour celles de haute masse, d’autre part, le rayonnement X émis par

les protoétoiles de faible masse est relativement plus important que celui émis par les

protoétoiles massives, ce qui pourrait diversifier les réactions de surface et/ou augmenter

leur efficacité.

7.2 Perspectives

Continuer la chasse aux hot corinos: IRAM-30m, Effelsberg et GBT

Le fait d’avoir trouvé trois hot corinos sur trois sources ciblées est très encourageant. Cepen-

dant, bien que j’ai essayé de chercher des tendances dans les abondances de molécules complexes

que j’ai calculées, les faibles statistiques ne permettent pas des conclusions sûres. Il est donc

nécessaire de détecter plus d’objets et de déterminer leur composition chimique afin de con-

firmer les résultats présentés. Plusieurs antennes sont idéales pour poursuivre cette recherche.

L’IRAM-30m permet d’obtenir la plus haute sensibilité et couverture spectrale dans le domaine

millimétrique et ces caractéristiques ont fait leurs preuves comme le montrent les détections

que j’ai présentées dans le chapitre 3. Puisque de l’émission étendue provenant de l’enveloppe

froide a été déduite dans IRAS4A, une autre façon de chercher les hot corinos est d’utiliser le

télescope d’Effelsberg ou le Green Bank Telescope (GBT): ils fonctionnent à des fréquences plus

basses que l’IRAM-30m, permettant ainsi la détection de transitions de plus basses energies.

Ces observations peuvent être ensuite combinées avec des données interférométriques du Very

Large Array pour déterminer la taille de la composante compacte.

Continuer à pister: ALMA

L’interféromètre du Plateau de Bure (PdB) de l’IRAM est actuellement le plus sensible pour

faire des observations à haute résolution de l’émission des molécules organiques complexes dans

les hot corinos. Il y a cependant deux problèmes dûs aux faibles luminosités des protoétoiles de
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Classes 0: (i) avec les observations d’IRAS4A, j’ai atteint la plus haute résolution dont le PdB

est capable (∼0.′′8 à 3 mm), mais ces données montrent aussi que la taille du hot corino est plus

petite que cela; (ii) il parâıt difficile de faire, dans un laps de temps raisonnable, un recensement

interférométrique des molécules complexes dans ces sources.

Un tel projet (c’est-à-dire, mesurer la taille d’émission des molécules complexes dans plusieurs

hot corinos) sera faisable avec l’instrument de prochaine génération, l’Atacama Large Millime-

ter Array (ALMA), qui aura les plus hautes sensibilités et résolutions requises: seulement une

heure d’intégration sur la source, au lieu de sept, pour atteindre la même sensibilité et résolution

spectrale que pour les observations d’IRAS4A, mais avec une résolution spatiale de 0.′′1. Les

résultats de ce recensement interférométrique devraient fournir des informations capitales pour

contraindres les modèles chimiques des hot corinos.

En attendant, on peut encore en apprendre beaucoup avec le PdB (grâce notamment aux nou-

veaux récepteurs et aux lignes de bases étendues) en choisissant avec soin les molécules et sources

ciblées.

Travail théorique et en laboratoire

Les modèles chimiques des hot cores et hot corinos sont limités par la précision des réseaux

chimiques et des coefficients de réactions (e.g. Aikawa et al. 2003; Wakelam et al. 2004, 2005).

Ainsi, comme l’ont montré des études récentes (e.g. Garrod & Herbst 2006; Horn et al. 2004),

le travail en laboratoire est indispensable pour améliorer la précision des modèles chimiques et

notre compréhension des observations. Quelques pistes pourraient être suivies dans ce domaine:

• les coefficients de réaction de surface sont mal connus et seulement une poignée d’études ont

essayé de s’attaquer à ce problème. Des nouveaux réseaux de réactions sont actuellement

en train d’être développés pour inclure des procédés tels que la photolyse et les réactions

entre radicaux (Widicus Weaver et al. 2005). Ce travail permettra d’avoir une base de

données plus complète à utiliser dans les modèles chimiques.

• peu de modèles prennent en compte la dynamique de l’enveloppe protostellaire. Un travail

notoire à cet égard est celui de Ceccarelli et al. (1996), mais le réseau chimique de ce

modèle n’inclue pas de molécules complexes. La modélisation de Rodgers & Charnley

(2003) a pallié ce manque, mais utilise seulement un réseau de réactions en phase gazeuse

alors qu’il est maintenant clair que les procédés à la surface des grains doivent être pris en

compte. Des recherches sont en cours (Aikawa et al. en préparation), sur le couplage des

chimies en phase gazeuse et à la surface des grains dans une enveloppe en effondrement,

afin de sonder les effets de la dynamique sur la formation et la localisation des molécules

complexes. Des observations interférométriques actuelles et à venir sont/seront tout à fait

adéquates pour contraindre ce type de modélisation.

• il y a tellement de raies non identifiées dans les spectres observés qu’il est possible que des

molécules clés manquent dans les réseaux menant aux molécules complexes. Par exemple,
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ainsi que Hollis (2005) l’a récemment dit, “l’isomérisme est-il la clé” des molécules com-

plexes? Hollis suggère que les isomères tels que celui de H2CO, t-HCOH, pourraient avoir

un rôle important dans la formation des molécules complexes. Afin d’établir si cet isomère

et d’autres sont présents dans l’espace, il est nécessaire de déterminer leur spectres, rota-

tionnels, ce qui peut être fait par des modèles “ab initio” de chimie quantique ou par des

mesures en laboratoire (Hollis 2005).

“Molecular Universe” est un réseau européen financé par le “Sixth Framework Programme”

(FP6) de l’Union Européenne. Le but de ce réseau, dans lequel le Laboratoire d’AstrOphysique

de Grenoble (LAOG) est impliqué, est de fournir des expériences en laboratoire clés et des calculs

de chimie quantique pour des molécules simples. Malheureusement, le sujet des molécules or-

ganiques complexes n’est pas couvert par ce réseau, mais, dans le cas où des hypothèses de simpli-

fication peuvent être faites pour les molécules complexes, j’espère que certains résultats pourront

être utilisés pour mieux comprendre la chimie de ces espèces ou pour renforcer l’argumentation

de la nécessité d’expériences et de calculs dédiés.

Avancer sur le chemin de l’évolution

Le devenir des molécules organiques complexes observées dans les hot corinos est bien sûr d’un

intérêt particulier puisque certaines de ces espèces sont aussi observées dans les comètes de

notre Système Solaire. Ces molécules sont-elles détruites et reformées dans la nébuleuse proto-

planétaire? Se peut-il qu’elles se (re)collent sur les grains de poussière, si bien que le matériau

circumstellaire garderait une “mémoire chimique” des phases précoces de formation? Avec

nos connaissances et instruments actuels, il parâıt difficile de savoir si on peut répondre à ces

questions. Cependant, j’espère que les hautes sensibilités et résolutions d’ALMA permettront

d’obtenir des observations révolutionnaires d’objets plus évolués. Par exemple, Lahuis et al.

(2006) ont trouvé du gaz chaud dans les régions internes (<6 AU) d’un objet de Classe I, et on

peut donc se demander quelle genre de chimie a lieu dans ce gaz. Toujours plus loin sur le chemin

d’évolution, les molécules complexes pourraient se former sur les grains dans le plan médian,

froid et dense, d’un disque proto-planétaire, comme elles l’ont fait dans le cœur pré-stellaire,

également froid et dense. Si les couches du disque pouvaient se mélanger, alors la désorption des

molécules pourrait survenir lorsque les grains atteignent la surface ou le bord interne du disque

(suivant si le mélange est radial ou vertical), auquel cas il y aurait une possibilité d’observer

leur émission.

7.3 Le mot de la fin

Les observations et études des hot cores ont mené à la recherche et découverte des hot corinos.

Cela a ouvert de nouvelles perspectives sur le premier type d’objets, notamment en ce qui

concerne les processus chimiques en place. Les hot corinos sont des objets très intéressants en

eux-mêmes. En effet, leur chimie pourrait affecter la composition chimique des materiaux à partir

desquels les planétésimaux se forment éventuellement. Il est également possible que les molécules
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organiques complexes se reforment dans le plan médian, froid et dense, du disque protoplanétaire

de la même manière que pendant l’effondrement précédant la phase de Classe 0. Dans un cas

comme dans l’autre, ces esp‘eces pourraient jouer un rôle majeur dans notre compréhension de

la composition des corps planétaires. Incidemment, les hot corinos peuvent aussi nous aider à

mieux comprendre leur homologues massifs. Au cours des 20 dernières années, nous sommes

partis des hot cores pour arriver aux hot corinos. Je me suis principalement concentrées sur les

hot corinos, une nouvelle classe d’objets pour laquelle j’ai trouvé et commencé à caractériser les

quelques premiers membres. J’espère que cette thèse aidera à indiquer le chemin, non seulement

pour de futurs travaux qui continueront la quête de la compréhension de cette phase critique de

l’évolution de protoétoiles de type solaire, mais aussi pour les études qui retourneront vers les

hot cores!

Finalement, il ressort clairement de ce travail que non seulement plus de données (antenne

simple, interférométrie et transitions à hautes énergies) sont requises, mais aussi que des études

en laboratoire des réactions à la surface des grains sont nécessaires afin de répondre aux questions

quelles, pourquoi, où et comment les molécules complexes se forment.



Chapter 7

Conclusions and perspectives

7.1 Conclusions

In section 1.3, I outlined the content of my thesis in the form of five questions that this work

aimed at answering. I list here these questions again, along with the findings that came from my

observations and how they helped to pave the road leading to the answers to the quests exposed

in the outline.

1. Is there a H2CO abundance jump in Class 0 protostars? (Chapter 2)

In this chapter, I recalled the pivotal role of determining the abundance profile of H2CO,

a major grain mantle constituent. Indeed, the presence of a jump in this profile would

indicate the presence of warm inner regions in the envelopes of Class 0 protostars, where

grain mantles sublimate. Moreover, since H2CO is likely to be a reactant leading to the

formation of complex molecules in the gas-phase, it is crucial to know its abundance. The

H2CO jump has been claimed and debated in the literature and observations of high-energy

transitions of H2CO should provide the necessary information to solve the controversy. Us-

ing the 15-meter single-dish of the JCMT, I therefore targeted the J = 7− 6 transition of

H2CO (Eup = 74 cm−1) in five low-mass and detected it in all of them. Comparison of

the observed and predicted fluxes show that the jump model seems more adequate than a

constant model for IRAS16293, L1448-MM and L1448-N, whereas it might be the opposite

for IRAS4A and IRAS4B. In any case, the present data are still insufficient to confirm or

exclude either hypothesis.

2. Are hot corinos common among low-mass protostars? (Chapter 3)

The discovery of a hot corino in IRAS16293 showed that, despite the theoretical challenged

posed by their presence, complex organic molecules can be formed in the inner envelope

of a Class 0 object. A natural question was whether IRAS16293 was an exception or if
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these molecules were ubiquitous in the warm environments of sun-like protostars. I there-

fore looked for complex organic molecules towards three other Class 0 sources (IRAS4A,

IRAS4B and IRAS2A) with the IRAM-30m and did find some of the targeted molecules

in all three objects, indicating that hot corinos are likely common. A smaller number

of molecules was found compared to IRAS16293, but this is likely due to the fact that

my targets have a lower luminosity (hence a smaller sublimation region) and are located

further away than IRAS16293. Indeed, relative abundances (with respect to a major ice

mantle constituent such as CH3OH) are comparable in all four sources, which could mean

that the chemistry is similar from one Class 0 to another.

3. Where are the complex molecules located? (Chapter 4)

Originally, the presence of complex organic molecules has been proposed to be due to

the thermal heating of icy grain mantles in the inner envelope, but alternative scenarios

have been suggested: the molecules could be located at the surface of a circumstellar disk,

molecules trapped in icy mantles could be desorbed by shocks from outflows, turbulence

or UV/X-ray heating of cavity walls, rather than thermal heating. The region of emission

of complex molecules is therefore a key factor to better understand their formation. In any

case, such region had been predicted to be of the order of 1′′ so that the use of an interfer-

ometer was required. I carried out IRAM Plateau de Bure observations of IRAS16293 and

IRAS4A, which showed that the emission from complex molecules is compact with sizes

∼< 0.8′′ and that an extended component is present in IRAS4A but not in IRAS16293. No

evidence was found for outflow interaction or the presence of cavities and my data supports

the thermal heating theory.

4. Are hot corinos similar to hot cores? (Chapter 5)

Since complex organic molecules were first discovered in the hot cores of massive proto-

stars, I thought that information could be gained by comparing the two types of objects. I

therefore used literature data and carried out complementary JCMT observations of some

massive hot cores to show that complex organic molecules are relatively more abundant in

hot corinos than in hot cores. Possible factors to explain this difference are the composi-

tion of grain mantles, the gas-phase and/or grain-surface chemical reactions taking place,

or the amount of X-ray radiation from the central object.

5. What is the formation path of these molecules? (Chapter 6)

With the exception of HCOOCH3, for which recent laboratory data have shown that gas-

phase formation of this molecule is highly unlikely, both gas-phase and grain-surface routes

have been suggested for the formation of the complex molecules detected in hot corinos.
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Although my observations do not rule out either of the two processes, the relatively higher

abundance of complex molecules found in hot corinos compared to hot cores is supportive

of grain-surface formation. Indeed, the time scale for the pre-stellar phase, during which

grain mantles form, is longer for low-mass than for high-mass protostars, giving the former

the opportunity to develop richer mantles.

7.2 Perspectives

Keep hunting for hot corinos: IRAM-30m and GBT

The fact that I found three hot corinos out of three targeted sources is very encouraging. How-

ever, although I tried to look for trends in the derived abundances of complex molecules, the

low-number statistics do not allow for firm conclusions. Therefore it is necessary to detect more

of these objects and determine their chemical composition in order to confirm the present results.

Two single-dish antennas are ideally suited to pursue this search. The IRAM-30m allows for

the highest sensitivity and bandwidth coverage in the millimeter range and these characteristics

have proved themselves as shown by the detections I presented in Chapter 3. Since extended

emission from the cold envelope was inferred in IRAS4A, another way to look for hot corinos is

to use the Green Bank Telescope (GBT): it operates at lower frequencies than the IRAM-30m,

thereby allowing the detection of lower-energy transitions. These observations can then be com-

bined with interferometric data from the Very Large Array to determine the size of the compact

component.

Keep tracking: ALMA

The IRAM Plateau de Bure (PdB) interferometer is currently the most sensitive facility to carry

out the high-resolution observations of the emission from complex organic molecules in hot cori-

nos. There are however two issues inherent to the low luminosities of Class 0 protostars: (i)

with the observations of IRAS4A, I have reached the highest resolution that the PdB is capable

of (∼0.′′8 at 3 mm), but these data also show that the size of the hot corino is smaller than that;

(ii) it appears difficult to carry out, in a reasonable amount of time, an interferometric survey

of complex molecules in these sources.

Such a project (that is, measure the size of the complex molecules’ emission in several hot cori-

nos) will be feasible with the next generation instrument, the Atacama Large Millimeter Array

(ALMA), which will provide the higher sensitivity and resolution needed: only one hour, instead

of seven, of on-source integration to reach the same sensitivity and spectral resolution as in the

IRAS4A observations, but with a spatial resolution of 0.′′1. The results of this interferometric

survey would provide invaluable information to constrain chemical models of hot corinos.

In the meantime, much can be learnt with the PdB by carefully choosing the targeted molecules

and sources.
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Theoretical and laboratory work

Chemical models of hot cores and hot corinos are limited by the accuracy of chemical networks

and rate coefficients (e.g. Aikawa et al. 2003; Wakelam et al. 2004, 2005) Hence, as shown by

recent studies (e.g. Garrod & Herbst 2006; Horn et al. 2004), laboratory work is critical to

improve the accuracy of chemical models and our understanding of observations. A couple of

leads could be pursued in this area:

• rate coefficients for surface reactions are poorly known and only a handful studies have

tried to tackle this issue. New reactions networks are being developped to include processes

such as photolysis and radical-radical reactions (Widicus Weaver et al. 2005). This work

will allow more complete reaction databases to be input in the chemical models.

• few models take into account the dynamics of the protostellar envelope. An important

work in this regard is that of Ceccarelli et al. (1996), but the chemical network of this

model did not include complex molecules. The modelling of Rodgers & Charnley (2003)

palliated this lack, but only made used of a gas-phase reaction network whereas it has

become clear that grain-surface processes need to be taken into account. Investigations are

currently under way (Aikawa et al. in prep), looking at the coupling of gas-phase and grain-

surface chemistries in an infalling envelope in order to probe the effects of the dynamics

on the formation and location of complex molecules. Current and future interferometric

observations are/will be perfectly suited to constrain this type of modelling.

• there are so many unidentified lines in the observed spectra that it may be that we are

missing some critical molecules in the networks leading to complex molecules. For example,

as Hollis (2005) recently put it, “is isomerism the key” to complex molecules? Hollis

suggests that isomers such as the one for H2CO, t-HCOH, may have an important role in

the formation of complex molecules. In order to establish whether this and other isomers

are present in space, it is necessary to determine their rotational spectra, which could

be done via ab initia quantum chemical models or via laboratory measurements. (Hollis

2005).

The Molecular Universe is a european network financed by Sixth Framework Programme (FP6)

of the European Union. The goal of this network, in which the Laboratoire d’AstrOphysique

de Grenoble (LAOG) is involved, is to provide some key laboratory experiments and quantum

chemical computations for simple molecules. Unfortunately, the issue of the complex organic

molecules is not covered by this network, but, in the cases where simplifying assumptions can

be made about complex molecules, I am hoping that some of the results may be of use either

to better understand the chemistry of these species or to make a stronger case for the need of

dedicated experiments/computations.
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Move up the evolutionary path

The fate of the complex organic molecules observed in hot corinos is of course of particular

interest since some of these species are also observed in the comets of our Solar System. Are

these molecules destroyed and reformed in the protoplanetary nebula? Could they (re)freeze

onto dust grains so that the circumstellar material would keep a “chemical memory” of the

early stages of formation? With our current knowledge and instrumentation, it seems uncertain

whether these questions could be answered. However, I hope that the high sensitivity and

resolution of ALMA will allow for some ground-breaking observations of more evolved objects.

For example, Lahuis et al. (2006) found hot gas in the inner regions (<6 AU) of a Class I object,

and one can wonder what kind of chemistry is taking place in this gas. Further up still on the

evolutionary path, complex molecules could form on the grains in the cold, dense, mid-plane

of a proto-planetary disk, as they did in the cold, dense prestellar core. If some mixing of the

disk’s layers could occur, then the molecules could desorb as the grains reach the disk’s surface

or inner edge (depending on whether mixing is radial or vertical), in which case there might be

a chance we could observe their emission.

7.3 Final words

Observations and studies of hot cores led to the search and finding of hot corinos. This opened

new perspectives on the first class of objects, especially regarding the chemical processes at play.

Hot corinos are very interesting objects in themselves. Indeed their chemistry might affect the

chemical composition of the material from which planetesimals eventually form. It may also be

possible that complex organic molecules are reformed in the cold, dense mid-plane of a proto-

planetary disk in the same way they may have been during the collapse prior to the Class 0 stage.

Either way, they could play a crucial role in our understanding of the composition of planetary

bodies. Incidentally, they can also help us to better understand their massive counterparts. In

the past 20 years we have gone from hot cores to hot corinos. I primarily focused on hot corinos,

a new class of objects for which I found and started characterizing the first few members. I

hope this thesis will help pave the road not only for subsequent work that will pursue the quest

of understanding this critical phase in the evolution of sun-like protostars, but also for studies

that will go back to hot cores!

Finally, it clearly stands out from this work that not only more data (single-dish, interferometric

and high-energy transitions) are needed, but also that laboratory studies of grain-surface reac-

tions are necessary in order to answer of the question of which, why, where and how complex

molecules are formed.
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Rodŕıguez-Fernández, N. J., Mart́ın-Pintado, J., de Vicente, P., Fuente, A., Hüttemeister, S.,
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Table A.1 Simple and complex organic molecules observed in hot cores.

Simple Common Complex Common
compounds name compounds name

CCH Ethynyl HCOOH Formic acid
C2H2 Acetylene C2H5OH Ethanol
CH3CCH Propyne CH3CHO Acetaldehyde
CH4 Methane HCOOCH3 Methyl formate
CO Carbon monoxide CH3COOH Acetic acid
CN Cyanide radical CH3OCH3 Dimethyl ether
CS Carbon monosulfide CH2CO Ketene
CH3OHa Methanol (CH3)2CO Acetone
H2O

b Water CH3CNg Methyl cyanide
H2S

c Hydrogen sulfide C2H5CN Ethyl cyanide
HC3N Cyanoacetylene C2H3CN Vinyl cyanide
HCN Hydrogen cyanide NH2CHO Formamide
HNC Hydrogen isocyanide CH2OHCHO Glycolaldehyde
HNCO Isocyanic acid HOCH2CH2OH Ethylene glycol
H2COd Formaldehyde CH2CHCHO Propenal
H2CS Thioformaldehyde CH3CH2CHO Propanal
OCS Carbonyl sulfide CH3CONH2 Acetamide
NH3

e Ammonia c-H2C3O Cyclopropenone
NO Nitric oxide
NS
SO Sulfur monoxide
SO2

f Sulfur dioxide
SiO Silicon monoxide

Isotopomers:
a 13CH3OH, CH3OD, CH2DOH
b HDO, D2O
c HDS
d D2CO
e NH2D, NHD2
f 33SO2
g CH3

13CN



Appendix B

Hot corinos: description and physical parameters

B.1 IRAS16293–2422 (IRAS16923)

IRAS16293 is a multiple system of low-mass protostars located in the ρ Ophiucus molecular

cloud, at a distance of 160 pc. It is composed of two main cores, A and B, identified from the

two continuum peaks seen in the radio (Wootten 1989; Estalella et al. 1991; Remijan & Hollis

2006) and in the (sub)millimeter (Mundy et al. 1992; Walker et al. 1993; Bottinelli et al. 2004b;

Kuan et al. 2004; Chandler et al. 2005). IRAS16293A is itself a multiple system with at least two

components (Wootten 1989; Mundy et al. 1992; Chandler et al. 2005). A quadrupolar outflow

is associated to the IRAS16293 system with a NE-SW outflow driven by source A and an E-W

“fossil” outflow originating from source B (Walker et al. 1988; Mizuno et al. 1990; Walker et al.

1993; Stark et al. 2004).

B.2 NGC1333-IRAS4A (IRAS4A) and NGC1333-IRAS4B (IRAS4B)

IRAS4A and IRAS4B belong to the multiple system IRAS 4, located in the NGC1333 reflection

nebula, in the Perseus cloud. IRAS4A and IRAS4B are separated by 30′′, and are located 11′′

and 17′′ respectively from the third component, IRAS4C (Looney et al. 2000; Reipurth et al.

2002). IRAS4A was itself resolved into two components with a separation of 1.′′8 (Lay et al.

1995; Reipurth et al. 2002; Looney et al. 2000). Looney et al. (2000) suggest that IRAS4B may

also be a multiple stellar system.

Both IRAS4A and IRAS4B are associated with highly collimated molecular outflows with

a dynamical age of a few thousand years, seen in CO, CS (Blake et al. 1995) and SiO (Lefloch

et al. 1998). Infall motion was detected by Di Francesco et al. (2001) and Choi et al. (1999)

with estimated accretion rates of 1.1 × 10−4 and 3.7 × 10−5 M⊙ yr−1, inner masses of 0.71 and

0.23 M⊙ and ages of ∼6500 and ∼6200 yr for IRAS4A and IRAS4B respectively (see also Maret

et al. 2002). Choi (2005) suggests multiple outflows in IRAS4A: a highly collimated one (that

had previously been observed), running NE-SW, that would be driven by component A2 and a

weaker one driven by A1, revealed by a red lobe south of this component.
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B.3 NGC1333-IRAS2A (IRAS2A)

IRAS2A is part of a protobinary system and is separated by 30′′ from its companion IRAS2B

(Looney et al. 2000; Reipurth et al. 2002). Two CO bipolar outflows appear to originate within

a few arcsec of IRAS2A: a highly collimated jet (also seen in HCN, SiO, SO, CS, and CH3OH;

Jørgensen et al. 2004) in the east-west direction and a large-scale outflow aligned NNE-SSW

(Sandell et al. 1994; Knee & Sandell 2000).

B.4 L1448-MM and L1448-N

L1448-MM (also called L1448C) and L1448-N (or L1448 IRS3) are Class 0 protostars separated

by 82′′ in the Perseus molecular cloud. A third, less luminous protostar (L1448NW or L1448

IRS2) also lies in the vicinity, at 101′′ and 16′′ from L1448-MM and N respectively (O’Linger

et al. 1999; Reipurth et al. 2002). see O’Linger et al. 1999; Barsony et al. 1998).

L1448-MM drives a powerful, high-velocity, highly collimated outflow seen in CO (Bachiller

et al. 1990), SiO (Girart & Acord 2001) and CH3OH (Jiménez-Serra et al. 2004).

L1448-N was observed as a binary (L1448-N(A) and L1448-N(B), separated by 7′′) in the

continuum at 2 and 6 cm, and a third component is seen at 2.7 mm, ∼ 20′′ away from both A and

B (Looney et al. 2000, and references therein). Two distinct outflows are observed in L1448N,

one powered by L1448N(A) and the other by L1448N(B) (Barsony et al. 1998). Barsony et al.

(1998) also detect a bridge of dust emission linking L1448C to L1448N, which traces the surface

where the L1448C and L1448N(A) outflows collide.

B.5 L1157-MM

The last object in the sample to be located in the Perseus molecular cloud A well-collimated CO

bipolar outflow is seen in CH3OH, H2CO, HCN, CN, SO and SO2 (Bachiller & Perez Gutierrez

1997), as well as in SiO and CS (Zhang et al. 2000). The outflow was found to precess (Gueth

et al. 1996, 1998) and Plateau de Bure interferometric images of this source by Gueth et al.

(1996) revealed the presence of two cavities which the authors explain as excavations by the

propagation of large bow-shocks due to episodic events in the precessing jet.

B.6 L1527

L1527 is a well-studied Class 0 source in the Taurus molecular cloud complex. This is seen as a

close (0.′′2 separation) binary at 7 cm by Loinard et al. (2002). It drives a compact CO outflow

oriented east-west and lying in the plane of the sky (Tamura et al. 1996). Moreover, Reipurth

et al. (2004) observed a curving radio continuum jet a 3.6 cm, which could be the effect of two

separate outflows produced by each of the binary component, or of rapidly changing outflow

direction. There is also strong evidence for rotation in this source (e.g. Ohashi et al. 1997).
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Table B.1 Characteristics of the sample of hot corinos (Adapted from Maret et al. 2004).

Source RA (2000) Dec (2000) Cloud Dist.a Lbol
b Menv

c Lsmm/Lbol
d Tbol

e R100K
f

h m s ◦ ′ ′′ (pc) (L⊙) (M⊙) (%) (K) (AU)

NGC1333–IRAS4A 03 29 10.3 +31 13 31 Perseus 220 6 2.3 5 34 53
NGC1333–IRAS4B 03 29 12.0 +31 13 09 Perseus 220 6 2.0 3 36 27
NGC1333–IRAS2A 03 28 55.4 +31 14 25 Perseus 220 16 1.7 ∼<1 50 47
L1448-N 03 25 36.3 +30 45 15 Perseus 220 6 3.5 3 55 20
L1448-MM 03 25 38.8 +30 44 05 Perseus 220 5 0.9 2 60 20
L1527 04 39 53.9 +26 03 10 Taurus 140 2 0.9 0.7 60 20
L1157-MM 20 39 06.2 +31 13 31 Isolated 325 11 1.6 5 60 40

IRAS16293–2422 16 32 22.7 −24 38 32 ρ-Ophiucus 160 27 5.4 2 43 133

a Distance.
b Bolometric luminosity.
c Mass of the envelope.
d Submillimetric-to-bolometric luminosity ratio.
e Bolometric temperature.
f Radius where T = 100 K.
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Table B.2 Physical parameters of the envelopes of hot corinos.

Source ri n(ri) α r10K Ref.
(AU) cm−3 (AU)

NGC1333–IRAS4A 66.7 1.1×108 1.5 1.5×103a m02
23.9 5.0×109 1.8 4.7×103 j02

NGC1333–IRAS4B 10.6 6.7×108 1.3 7.0×103 j02
NGC1333–IRAS2A 23.4 1.3×109 1.8 1.2×104 j02
L1448-N 10.0 4.9×108 1.2 7.0×103 m04
L1448-MM 9.0 5.4×108 1.4 8.1×103 j02
L1527 4.2 9.9×106 0.6 6.3×103 j02
L1157-MM 17.9 3.1×109 1.7 5.4×103 j02

IRAS16293–2422 66.7 2.4×107 1.5 4.0×103a cht96
32.1 2.3×109 1.7 8.0×103 s02

Note — n = n(ri) ×
(

r
ri

)−α
; r10K is the radius where T = 10 K, except where noted.

a Radius where T = 30 K.
References: m02 = Maret et al. (2002), j02 = Jørgensen et al. (2002), m04 = Maret et al. (2004),
cht96 = Ceccarelli et al. (1996), s02 = Schöier et al. (2002)
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Table C.1 Transitions in the observed frequency ranges with the IRAM-30m for the targeted
molecules and other species of interest.

Molecule Frequency log(I) Elow gup Transition
(GHz) (cm−1)

90 GHz
HCOOCH3-A 90156.4803 -4.8701 10.6618 15 72,5 − 62,4

90229.6286 -4.7840 10.9337 17 80,8 − 70,7

HCOOCH3-E 90145.6894 -4.8703 10.6742 15 72,5 − 62,4

90227.6052 -4.7840 10.9471 17 80,8 − 70,7

HCOOH 90164.6280 -4.4792 13.3446 9 42,2 − 32,1

C2H5OH 90117.6100 -4.7906 3.4925 9 41,4 − 30,3

98 GHz
HCOOCH3-A 98611.1703 -4.7752 15.6463 17 83,6 − 73,5

98682.6219 -4.8400 18.8698 17 84,5 − 74,4

HCOOCH3-E 98606.8055 -4.7758 15.6577 17 83,6 − 73,5

98711.8624 -4.8543 18.8768 17 84,5 − 74,4

98747.9796 -4.8540 18.8858 17 84,4 − 74,3

C2H5CNa 98523.8720 -3.7989 44.2506 23 116,∗ − 106,∗

98524.6720 -3.8919 54.2869 23 117,∗ − 107,∗

98532.0840 -4.0174 65.8601 23 118,∗ − 108,∗

98533.9870 -3.7283 35.7543 23 115,∗ − 105,∗

98544.1640 -4.1984 78.9669 23 119,∗ − 109,∗

98559.9270 -4.5086 93.6035 23 1110,∗ − 1010,∗

98564.9300 -3.6746 28.8014 23 114,8 − 104,7

98566.6150 -3.6746 28.8014 23 114,7 − 104,6

98610.2500 -3.6349 23.3943 23 113,9 − 103,8

98701.0700 -3.6341 23.3984 23 113,8 − 103,7

C2H5OH 98585.0950 -4.2602 106.4977 31 151,15 − 150,15

110 GHz
CH3CNb 110329.6080 -4.2473 133.3112 26 65,0 − 55,0

110348.9720 -3.8945 88.6466 26 64,0 − 54,0

110364.0840 -3.3907 53.8969 52 63,0 − 53,0

110374.8740 -3.5661 29.0700 26 62,0 − 52,0

110381.3459 -3.4961 14.1716 26 61,0 − 51,0

110383.4940 -3.5484 9.2052 22 60,0 − 50,0

C2H5OH 110368.4950 -4.5516 59.7280 17 81,8 − 80,8

135 GHz
HCOOH 135737.7000 -3.8897 20.1178 13 62,4 − 52,3

CH3CHO-A 135685.3490 -3.4196 19.8353 15 72,5 − 62,4

C2H5OH 135664.8650 -4.2741 58.4366 17 80,8 − 70,7

135830.6410 -4.3119 51.7391 27 132,12 − 131,13

146 GHz
CH3OCH3 146677.9635 -5.1331 10.2296 72 43,21

− 42,31

146684.7103 -5.1912 10.2294 45 43,20
− 42,30

146704.7162 -4.9872 2.8153 56 32,11
− 21,21

146707.1671 -5.1910 2.8150 35 32,10
− 21,20

146872.5451 -4.8712 13.3863 88 53,31
− 52,41

146877.3085 -5.2708 13.3861 33 53,30
− 52,40

C2H5CN 146894.5240 -3.1045 40.1247 35 171,17 − 161,16

C2H5OH 146707.2802 -4.4135 72.5945 21 102,9 − 101,9

146714.0944 -4.1501 63.4095 19 91,9 − 81,8
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Continued.
Molecule Frequency log(I) Elow gup Transition

(GHz) (cm−1)
223 GHz

CH3OCH3 223200.0564 -4.9725 19.1811 34 82,72
− 71,62

223200.0647 -4.7964 19.1811 51 82,73
− 71,63

223202.2444 -4.3704 19.1809 136 82,71
− 71,61

223204.4281 -4.5745 19.1806 85 82,70
− 71,6,0

C2H5CN 223385.3500 -2.6709 94.4441 53 261,26 − 251,25

226 GHz
HCOOCH3-A 226718.6880 -3.7282 75.9860 41 202,19 − 192,18

226778.7072 -3.7279 75.9812 41 201,19 − 191,18

HCOOCH3-E 226713.0600 -3.7282 75.9959 41 202,18 − 192,18

226773.1300 -3.7280 75.9911 41 203,18 − 193,17

CH3CHO-A 226589.5860 -2.7538 42.0021 25 120,12 − 110,11

CH3CHO-E 226850.5992 -4.1471 49.0674 23 113,8 − 112,9

C2H5OH 226661.7010 -3.8625 27.9057 21 102,9 − 91,8

241 GHz
HCOOH 241146.3283 -3.1242 40.7435 23 110,11 − 100,10

CH3OCH3 240985.0778 -4.3627 10.2470 88 53,31
− 42,21

240989.9393 -4.7598 10.2468 33 53,30
− 42,20

257 GHz

CH3CNb 257482.7789 -2.2745 100.5247 116 143,0 − 133,0

257507.5609 -2.5123 75.7023 58 142,0 − 132,0

257522.4310 -2.5057 60.8067 54 141,0 − 131,0

257527.3857 -2.4931 55.8411 54 140,0 − 130,0

Note — For CH3OCH3, the second subscript indicates the AA (0), EE (1), EA (2) or AE (3) states.
a A star in the subscript indicates that the transition is an unresolved doublet.
b All CH3CN lines listed here are unresolved triplets.
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✭ ✤ ✿ ✬ ✫ ❀ ⑧ ④ ✛ ✚ ⑦ ✪ ④ ✭ ✬ ⑧ ♦ ✪ ④ ❁ ✚ ⑤ ✦ ✾ ✚ ⑦ ✘ ✭ ✤ ✿ ✬ ✫ ❀ ⑧ ④ ✛ ✚ ⑦ ✪ ④ ✭ ✬ ⑧ ♦ ⑥ ✗ ⑧ ④ ✢ ✾ ✚ ⑦ ✘ ✭ ✤ ✿ ✬ ✫ ❀ ⑧ ④ ✛ ✚ ⑦ ✪ ④ ✭ ✬ ⑧ ✭❂ ✆ ✛ ✘ ✢ ✣ ✢ ✤ ✢ ④ ✬ ✚ ⑧ ✧ ✘ ✢ ⑧ ✚ ✛ ✚ ⑥ ✯ ♦ ✡ ✛ ✣ ✜ ④ ⑧ ✘ ✣ ✢ ✯ ✚ ✬ ❃ ✗ ✥ ✗ ✣ ✣ ♦ ✇ ♣ ✻ ① ❄ ✚ ✚ ✙ ✪ ✗ ✥ ✛ ③ ⑧ ✣ ✜ ④ ♦❃ ✚ ✛ ✚ ✪ ✤ ✪ ✤ ♦ ❃ ✆ ✉ ♣ ✻ ✇ ✇ ✽ ✿ ✮ ✥ ✾ ✣ ✬ ✗ ✭ ✦ ✗ ✥ ✗ ✣ ✣ ✭ ④ ✙ ✤ ✭❅ ✆ ✛ ✘ ✢ ✣ ✢ ✤ ✢ ✙ ④ ✟ ✗ ✙ ✣ ✚ ✗ ✘ ✢ ⑧ ✚ ✛ ✚ ⑥ ✣ ④ ★ ✣ ✪ ✪ ✣ ⑥ ④ ❆ ✢ ⑧ ✣ ✸ ✤ ④ ✲ ✆ ✟ ✧ ★ ✴ ♦ ✺ ① ① ⑧ ✤ ④ ✙ ④ ✪ ✗ ✩ ✣ ✘ ⑤ ✣ ✛ ④ ♦✺ ✻ ② ① ♣ ✰ ✗ ✣ ✛ ✢ ★ ✗ ⑧ ✢ ✣ ✛ ✙ ✷ ❃ ④ ❇ ⑧ ④ ✘ ♦ ✳ ⑧ ✗ ✛ ⑤ ④ ✽ ✛ ④ ⑧ ✣ ✾ ✣ ⑧ ✗ ⑥ ✭ ✬ ⑧ ✭❈ ☛ ④ ✛ ✢ ⑧ ④ ✙ ✷ ❉ ✢ ✤ ✙ ④ ✰ ✮ ✗ ✢ ✣ ✗ ✪ ④ ✙ ④ ✘ ✟ ✗ ✯ ✚ ✛ ✛ ④ ⑥ ④ ✛ ✢ ✘ ♦ ☛ ✝ ✟ ✰ ✫ ✡ ✩ ✰ ♦ ✉ ✧ ✜ ④ ✛ ✤ ④ ✙ ✤☛ ✚ ✪ ✚ ✛ ④ ✪ ✟ ✚ ⑤ ✦ ④ ♦ ✖ ✩ ② ✺ ② ♣ ♦ ✺ q ① ✇ ✻ ✞ ✚ ✤ ✪ ✚ ✤ ✘ ④ ♦ ☛ ④ ✙ ④ ✼ ② ♦ ✳ ⑧ ✗ ✛ ⑤ ④ ✽ ⑤ ✗ ✤ ✼ ✾ ⑤ ④ ✘ ⑧ ✭ ✬ ⑧ ✭❊ ✆ ✝ ✧ ✳ ♦ ✠ ✘ ✘ ④ ⑧ ✜ ✗ ✢ ✚ ⑧ ✣ ✚ ✧ ✘ ✢ ⑧ ✚ ❋ ✘ ✣ ⑤ ✚ ✙ ✣ ✧ ⑧ ⑤ ④ ✢ ⑧ ✣ ♦ t ✗ ⑧ ❀ ✚ ❉ ✛ ⑧ ✣ ⑤ ✚ ✳ ④ ⑧ ⑥ ✣ ♦ ✹ ✆ ✫ ✹ ① q ✇ ✹✳ ✪ ✚ ⑧ ④ ✛ ⑤ ④ ♦ ✆ ✢ ✗ ✪ ✯ ✽ ⑤ ✗ ● ✗ ✤ ✼ ✾ ✗ ⑧ ⑤ ④ ✢ ⑧ ✣ ✭ ✗ ✘ ✢ ⑧ ✚ ✭ ✣ ✢ ✭❍ ■ ✗ ✮ ✢ ④ ✯ ✛ ✧ ✘ ✢ ⑧ ✚ ✛ ✚ ⑥ ✣ ⑤ ✗ ✪ ✆ ✛ ✘ ✢ ✣ ✢ ✤ ✢ ④ ♦ ✩ ✭ ✠ ✭ ✖ ✚ ✼ ✻ ① ① ♦ ✉ r ① ① ✧ ❏ ✵ ⑧ ✚ ✛ ✣ ✛ ❀ ④ ✛ ♦ ✝ ④ ✢ ✦ ✫④ ⑧ ✪ ✗ ✛ ✙ ✘ ✽ ✢ ✣ ④ ✪ ④ ✛ ✘ ✾ ✗ ✘ ✢ ⑧ ✚ ✭ ⑧ ✤ ❀ ✭ ✛ ✪ ✭

↕ Ú Ó Ù × ä Û Ü Ý Ô Ù × å Ü Ñ Ý Ô ã ä ß Õ Þ Õ Ò Ñ Ô Õ Ü Ý Ô Õ Þ â Õ Û Ú Ü Ñ × Ó Ñ × Ù ä Õ ã Û Ú ä Ñ ä ß Õ Ó Ô Ù Ú Õ ä ➑
ç Ñ × Ò Û Ú Ø ã Û Þ ✍ Þ Þ Ý × × Ñ Ý Ú ã Û Ú Ø ä ß Õ Ó × Ñ ä Ñ Þ ä Ù × Þ ✔

➙ Ù Þ Õ ã Ñ Ú ä ß Õ Ñ × Õ ä Û Ü Ù Ô Ù × Ø Ý Ò Õ Ú ä Þ å Ú Ñ Ü Ñ Ò Ó Ô Õ Ö å Þ Õ Ü Ñ Ú ã ➑ Ø Õ Ú Õ × Ù ä Û Ñ Ú
Ò Ñ Ô Õ Ü Ý Ô Õ Þ Þ ß Ñ Ý Ô ã ß Ù à Õ ä ß Õ ä Û Ò Õ ä Ñ ç Ñ × Ò Û Ú Þ Ñ Ô Ù × ➑ ä á Ó Õ Ó × Ñ ä Ñ Þ ä Ù × Þ é
↔ ß Õ × Õ Ù Þ Ñ Ú Û Þ ä ß Ù ä ä ß Õ Ø Ù Þ Ü × Ñ Þ Þ Û Ú Ø ä Û Ò Õ Ñ ç ä ß Õ è Ù × Ò × Õ Ø Û Ñ Ú Þ Û Þ
Õ Þ ä Û Ò Ù ä Õ ã ä Ñ â Õ Ò Ý Ü ß Þ ß Ñ × ä Õ × ✁

!
➠ ☞ ➨ á × ✂ ä ß Ù Ú ä ß Õ Ó × Õ ã Û Ü ä Õ ã Ü ß Õ Ò Û Ü Ù Ô

ç Ñ × Ò Ù ä Û Ñ Ú ä Û Ò Õ ✁
"

➠ ☞ ➩ á × ✒ ➓ Ü ß Ñ ✓ Û Õ × Õ ä Ù Ô é ➡ ☞ ☞ ➡ ✂ é ➙ Ý ä Ñ Ý × ä ß Õ Ñ × Û Õ Þ
ß Ù à Õ Þ Ñ Ò Õ ê Ù è Þ å Þ Û Ú Ü Õ Ü Ñ Ò Ó Ô Õ Ö Ñ × Ø Ù Ú Û Ü Ò Ñ Ô Õ Ü Ý Ô Õ Þ ß Ù à Õ â Õ Õ Ú
ã Õ ä Õ Ü ä Õ ã Û Ú ä ß Õ ä è Ñ ✁ Ñ Ý ä Ñ ç ä è Ñ ✂ Þ Ñ Ý × Ü Õ Þ è ß Õ × Õ ä ß Õ á ß Ù à Õ â Õ Õ Ú

Þ Õ Ù × Ü ß Õ ã ç Ñ × ÿ ↕ ➐ ➏ ➓ ➠ ♠ ➡ ♥ ➢
!

➡ ➤ ➡ ➡ ✁ ➒ Ù ✌ Ù Ý Ö Õ ä Ù Ô é ➡ ☞ ☞ ➢ ✂ Ù Ú ã ➍ ❑ ➒
➠ ➢ ➢ ➢ ↕ ➐ ➏ ➓ ➤ ➏ ✁ ➙ Ñ ä ä Û Ú Õ Ô Ô Û Õ ä Ù Ô é ➡ ☞ ☞ ➤ ✂ é î Õ ä ß Õ × Õ ç Ñ × Õ Ò Ù á Õ à Õ Ú

ã Ñ Ý â ä ä ß Õ â Ù Þ Û Ü Ó × Õ ã Û Ü ä Û Ñ Ú ä ß Ù ä ä ß Ñ Þ Õ Ò Ñ Ô Õ Ü Ý Ô Õ Þ Ñ × Û Ø Û Ú Ù ä Õ Û Ú ä ß Õ
è Ù × Ò Û Ú Ú Õ × × Õ Ø Û Ñ Ú Þ Ñ ç ä ß Õ Õ Ú à Õ Ô Ñ Ó Õ Þ ▲ ↕ ä Û Þ å ç Ñ × Õ Ö Ù Ò Ó Ô Õ å Ó Ñ Þ Þ Û â Ô Õ
ä ß Ù ä ä ß Õ Ó × Ñ Ü Õ Þ Þ ä ß Ù ä Û Þ × Õ Þ Ó Ñ Ú Þ Û â Ô Õ ç Ñ × ä ß Õ × Õ Ô Õ Ù Þ Õ Û Ú ä ß Õ Ø Ù Þ Ó ß Ù Þ Õ
Ñ ç ä ß Õ Ò Ù Ú ä Ô Õ Ü Ñ Ú Þ ä Û ä Ý Õ Ú ä Þ Û Þ Ú Ñ ä ä ß Õ ä ß Õ × Ò Ù Ô Õ à Ù Ó Ñ × Ù ä Û Ñ Ú â Ý ä ä ß Õ
Û Ú ä Õ × Ù Ü ä Û Ñ Ú Ñ ç ä ß Õ Ñ Ý ä ê Ñ è è Û ä ß ä ß Õ Þ Ý × × Ñ Ý Ú ã Û Ú Ø Þ å Ñ × Õ à Õ Ú ä ß Õ Û Ú ➑
ä Õ × Ù Ü ä Û Ñ Ú Ñ ç ➣ ➛ ë ì ➑ × Ù á Þ è Û ä ß ä ß Õ Ü Ù à Û ä Û Õ Þ Õ Ö Ü Ù à Ù ä Õ ã â á ä ß Õ Ñ Ý ä ê Ñ è✁ ➓ Ü ß Ñ ✓ Û Õ × Õ ä Ù Ô é ➡ ☞ ☞ ➡ å ➡ ☞ ☞ ➤ ✂ é ➏ Ô ä Õ × Ú Ù ä Û à Õ Ô á å ä ß Õ Õ Ò Û Þ Þ Û Ñ Ú Ü Ñ Ý Ô ã Ü Ñ Ò Õ
ç × Ñ Ò ã Û Þ ✍ Þ Ý × ç Ù Ü Õ Þ ä ß Ù ä è Ñ Ý Ô ã ß Ù à Õ â Õ Õ Ú ß Õ Ù ä Õ ã â á Ù Ü Ü × Õ ä Û Ñ Ú

Þ ß Ñ Ü ✍ Þ ✁ ➓ Ü ß Ñ ✓ Û Õ × Õ ä Ù Ô é ➡ ☞ ☞ ➤ ✂ é ↔ ß Õ Ó × Ñ Ñ ç ä ß Ù ä ä ß Õ Ü Ñ Ò Ó Ô Õ Ö Ñ × Ø Ù Ú Û Ü
Ò Ñ Ô Õ Ü Ý Ô Õ Þ ã Õ ä Õ Ü ä Õ ã â á ➒ Ù ✌ Ù Ý Ö Õ ä Ù Ô é ✁ ➡ ☞ ☞ ➢ ✂ Ù Ú ã ➙ Ñ ä ä Û Ú Õ Ô Ô Û Õ ä Ù Ô é

✁ ➡ ☞ ☞ ➤ ✂ Ñ × Û Ø Û Ú Ù ä Õ ç × Ñ Ò ä ß Õ Û Ú Ú Õ × è Ù × Ò × Õ Ø Û Ñ Ú Þ ✁ Õ Ú à Õ Ô Ñ Ó Õ Ñ × ã Û Þ ✍ ✂ å
Ü Ù Ô Ô Õ ã ß Ñ ä Ü Ñ × Û Ú Ñ Þ ✁ ➒ Õ Ü Ü Ù × Õ Ô Ô Û ➡ ☞ ☞ ➤ ✒ ➙ Ñ ä ä Û Ú Õ Ô Ô Û Õ ä Ù Ô é ➡ ☞ ☞ ➤ ✂ å è Ù Þ

Þ ä Û Ô Ô Ò Û Þ Þ Û Ú Ø Ý Ú ä Û Ô ä Ñ ã Ù á é
↕ Ú ä ß Û Þ ❧ Õ ä ä Õ × è Õ â × Û Ú Ø ä ß Õ Ò Û Þ Þ Û Ú Ø Ó × Ñ Ñ ç Ù Ú ã × Õ Ó Ñ × ä Û Ú ä Õ × ç Õ × Ñ ➑

Ò Õ ä × Û Ü Ñ â Þ Õ × à Ù ä Û Ñ Ú Þ Ñ ç ä è Ñ Ü Ñ Ò Ó Ô Õ Ö å Þ Õ Ü Ñ Ú ã ➑ Ø Õ Ú Õ × Ù ä Û Ñ Ú Ò Ñ Ô Õ Ü Ý Ô Õ Þ å
Ò Õ ä ß á Ô Ü á Ù Ú Û ã Õ Ù Ú ã Ò Õ ä ß á Ô ç Ñ × Ò Ù ä Õ å ä Ñ è Ù × ã ä ß Õ Ó × Ñ ä Ñ ä á Ó Õ Ñ ç ä ß Õ
ß Ñ ä Ü Ñ × Û Ú Ñ Þ å ↕ ➐ ➏ ➓ ➠ ♠ ➡ ♥ ➢

!

➡ ➤ ➡ ➡ ✁ ß Õ × Õ Ù ç ä Õ × ↕ ➐ ➏ ➓ ➠ ♠ ➡ ♥ ➢ ✂ é
▼ ☎ ✠ ✖ ✰ ❉ ✟ ❏ ✧ ✞ ✆ ✠ ✝ ✰ ✧ ✝ ③ ✟ ❉ ✰ ✡ t ✞ ✰

➔ â Þ Õ × à Ù ä Û Ñ Ú Þ Ñ ç ↕ ➐ ➏ ➓ ➠ ♠ ➡ ♥ ➢ ◆
a

✁ ➡ ☞ ☞ ☞ ✂
p

➠ ♠ ❖ ➢ ➡ P ➡ ➡ ◗é ♠ å
d

✁ ➡ ☞ ☞ ☞ ✂
p !

➡ ➤
"

➡ ✑
#

➢ ➢
$

❘ è Õ × Õ Ü Ù × × Û Õ ã Ñ Ý ä Ù ä ä ß Õ ↕ ➐ ➏ þ ➟ Ô Ù ä Õ Ù Ý
ã Õ ➙ Ý × Õ ↕ Ú ä Õ × ç Õ × Ñ Ò Õ ä Õ × Ñ Ú ➡ ☞ ☞ ➤ ➜ Õ â × Ý Ù × á ➠ Ù Ú ã þ Ù × Ü ß ➡ ❙ Û Ú
ä ß Õ ➙ Ù Ú ã ➒ Ü Ñ Ú í Ø Ý × Ù ä Û Ñ Ú Þ Ñ ç ä ß Õ Ù × × Ù á é ➜ Û à Õ ➒ ➝

➨
➒ ➍ ä × Ù Ú Þ Û ä Û Ñ Ú Þ

Ù ä ➠ ➠ ☞ é ➤ ❑ ➝ ✌ Ù Ú ã ç Ñ Ý × ➝ ➒ ➔ ➔ ➒ ➝
➨

ä × Ù Ú Þ Û ä Û Ñ Ú Þ Ù ä ➡ ➡ ♠ é ➤ ❑ ➝ ✌
è Õ × Õ Ñ â ä Ù Û Ú Õ ã Þ Û Ò Ý Ô ä Ù Ú Õ Ñ Ý Þ Ô á å Ù Ô Ñ Ú Ø è Û ä ß ä ß Õ Ü Ñ Ú ä Û Ú Ý Ý Ò Õ Ò Û Þ ➑

Þ Û Ñ Ú Ù ä ➢ Ù Ú ã ➠ é ➢ Ò Ò é ↔ ß Õ × Õ Ü Õ Û à Õ × Þ è Õ × Õ ä Ý Ú Õ ã Þ Û Ú Ø Ô Õ Þ Û ã Õ â Ù Ú ã
Ù ä ➢ Ò Ò Ù Ú ã ã Ñ Ý â Ô Õ Þ Û ã Õ â Ù Ú ã ✁ → ➓ ➙ ✂ Ù ä ➠ é ➢ Ò Ò é ↔ ß Õ ➒ ➝

➨
➒ ➍

Ù Ú ã ➝ ➒ ➔ ➔ ➒ ➝
➨

ä × Ù Ú Þ Û ä Û Ñ Ú Þ è Õ × Õ Ü Ñ à Õ × Õ ã è Û ä ß ä è Ñ Ü Ñ × × Õ Ô Ù ä Ñ ×
Ý Ú Û ä Þ å Õ Ù Ü ß Ñ ç ➤ ☞ Ù Ú ã ✑ ☞ þ ➝ ✌ â Ù Ú ã è Û ã ä ß å × Õ Þ Ó Õ Ü ä Û à Õ Ô á é ↔ á Ó Û Ü Ù Ô

Þ á Þ ä Õ Ò ä Õ Ò Ó Õ × Ù ä Ý × Õ Þ è Õ × Õ ➡ ❙ ☞ ✎ ✁ Ý Ó Ó Õ × Þ Û ã Õ â Ù Ú ã ✂ Ù ä ➢ Ò Ò
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Fig. ❞ ❡ ❢ ❣ ❤ ✐ ❥ ❦ ❧ ♠ ♥ ♦ ♣ q r s t ✉ s ✈ ✇ ♦ ① ♠ ② ♦ ③ ♠ ④ q ① ♠ ② ⑤ ⑥ ♠ ⑦ ① ♠ ⑤ ② ♦ ❧ ⑧ ❦ ⑤ ❦ q ❧ ⑧ ⑨ ❦ ⑧ ⑤ ♠ ④ ❦ ❧ ⑩ ♦ ❶ ⑨ ♠ ❞ ❷ ⑤ ⑥ ♠ ② ♥ ⑧ ❦ ⑧ ❸ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ✇ ♦ ❧ ④ ❼ q ❧ ⑤ q ❽ ② ⑧ ② ♦ ❧ ③ ♠ r ② q ♥ ❞ ❾ ⑤ q ❞ ❾ ❿ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻
❦ ❧ ⑧ ⑤ ♠ ♣ ⑧ q r ❞ ❾ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❡ ❣ ➀ ✐ s q ❧ ⑤ ❦ ❧ ❽ ❽ ♥ ♠ ♥ ❦ ⑧ ⑧ ❦ q ❧ ♦ ⑤ ❸ ♥ ♥ ✇ ➁ ❦ ⑤ ⑥ ♦ ❧ ② ♥ ⑧ q r ❸ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❷ ❼ q ❧ ⑤ q ❽ ② ⑨ ♠ ① ♠ ⑨ ⑧ ② ♦ ❧ ③ ♠ r ② q ♥ ➂ ❿ ⑤ q ➂ ➂ ❿ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❦ ❧ ⑧ ⑤ ♠ ♣ ⑧ q r ➂ ❿ ♥ ❹ ❺❶ ♠ ♦ ♥ ! ❻ ❡ ❣ ➃ ✐ ❥ ❦ ❧ ♠ ♥ ♦ ♣ q r t s ➄ ➄ s t ✉ ➅ ➆ ♦ ❧ ④ ➅ ➇ ✇ ♦ ① ♠ ② ♦ ③ ♠ ④ q ① ♠ ② ⑤ ⑥ ♠ r q ❽ ② ⑤ ② ♦ ❧ ⑧ ❦ ⑤ ❦ q ❧ ⑧ ⑨ ❦ ⑧ ⑤ ♠ ④ ❦ ❧ ⑩ ♦ ❶ ⑨ ♠ ❞ ❷ ⑤ ⑥ ♠ ② ♥ ⑧ ❦ ⑧ ➈ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ✇ ♦ ❧ ④ ❼ q ❧ ⑤ q ❽ ② ⑨ ♠ ① ♠ ⑨ ⑧ ② ♦ ❧ ③ ♠ r ② q ♥➂ ❿ ⑤ q ➂ ❿ ❿ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❦ ❧ ⑧ ⑤ ♠ ♣ ⑧ q r ➂ ❿ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❡ ❣ ➉ ✐ s q ❧ ⑤ ❦ ❧ ❽ ❽ ♥ ♠ ♥ ❦ ⑧ ⑧ ❦ q ❧ ♦ ⑤ ❞ ❡ ❸ ♥ ♥ ✇ ➁ ❦ ⑤ ⑥ ♦ ❧ ② ♥ ⑧ q r ❞ ❾ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❷ ❼ q ❧ ⑤ q ❽ ② ⑨ ♠ ① ♠ ⑨ ⑧ ② ♦ ❧ ③ ♠ r ② q ♥ ❾ ❿ ⑤ q ➊ ❿ ❿♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❦ ❧ ⑧ ⑤ ♠ ♣ ⑧ q r ❾ ❿ ♥ ❹ ❺ ❶ ♠ ♦ ♥ ! ❻ ❡ ➋ ♠ ♦ ♥ ⑧ ❦ ➌ ♠ ⑧ ♦ ② ♠ ♦ ❧ ④ ♦ ⑤ ❸ ♦ ❧ ④ ❞ ❡ ❸ ♥ ♥ ✇ ② ♠ ⑧ ♣ ♠ ❼ ⑤ ❦ ① ♠ ⑨ ❺ ❡ ⑩ ⑥ ♠ ❼ ② q ⑧ ⑧ ❦ ❧ ④ ❦ ❼ ♦ ⑤ ♠ ⑧ ⑤ ⑥ ♠ ♣ q ❦ ❧ ⑤ ❦ ❧ ③ ♣ q ⑧ ❦ ⑤ ❦ q ❧ ❣ ➍ ➂ ✐ ❡➎

!❡ ➏ # ❞ !❡ ➊ ➂ !❡ ➂ # ❿ !❡ ➐
➑ ➒ ➓ ➔ ❱ ❱ → ➣ ↔ ↕ ❲ ➙ ➑ ➛ ❝ ❫ ➜ ➝ ➝ ❫ ➞ ➟ ➑ ➠ ➡ ➑ ➒ ➓ ➑ ➝ ➢ ❛ ➤ ➛ ➥ ➓ ➡ ➦ ➑ ❛ ➤ ➧ ➨ ➑ ➛ ➤ ❵ ➒ ➠
➩ ➡ ➨ ➡ ❵ ➧ ➛ ➑ ➤ ➒ ➡ ➓ ➧ ➫ ❵ ➧ ➠ ➡ ➨ ➭ ➤ ➒ ➯ ➛ ➟ ➡ ➒ ➡ ➑ ➨ ➧ ➫ ➢ ❵ ➤ ➒ ➛ ➠ ❵ ➥ ➨ ➦ ➡ ➠❝ ➔ ❝ ➲

!
➳ ➲ ❝ ➑ ➒ ➓ ❬ ➵ ❪ ❳ ➔ ➜ ❱ ➡ ➭ ➡ ➨ ➫ ➳ ❱ ➝ ➤ ➒ ➥ ➛ ➡ ➠ ❫ ❨ ➟ ➡ ➧ ➑ ➒ ➓ ➢ ➑ ➠ ➠

➦ ➑ ❛ ➤ ➧ ➨ ➑ ➛ ➤ ❵ ➒ ➩ ➑ ➠ ➦ ➑ ➨ ➨ ➤ ➡ ➓ ❵ ➥ ➛ ❵ ➒ ➜ ➸ ➳ ❯ ➜ ➑ ➒ ➓ ❱ ➺ ➔ ❝
"

➳ ❱ ➳ ➻ ➑ ➒ ➓ ➛ ➟ ➡
➑ ➧ ➠ ❵ ❛ ➥ ➛ ➡ ➼ ➥ ➽ ➓ ➡ ➒ ➠ ➤ ➛ ➫ ➠ ➦ ➑ ❛ ➡ ➩ ➑ ➠ ➓ ➡ ➨ ➤ ➭ ➡ ➓ ➾ ➨ ❵ ➝ ➚ ➪ ➸ ➜ ➲ ➶ ➻ ➜ ➸

➜ ➲ ➔ ➻ ➑ ➒ ➓ ❱ ➶ ➳ ➜
"

➜ ➶ ➳ ❫ ❨ ➟ ➡ ➓ ➑ ➛ ➑ ➦ ➑ ❛ ➤ ➧ ➨ ➑ ➛ ➤ ❵ ➒ ➩ ➑ ➠ ➢ ➡ ➨ ➾ ❵ ➨ ➝ ➡ ➓ ➤ ➒ ➛ ➟ ➡
➑ ➒ ➛ ➡ ➒ ➒ ➑ ➹ ➧ ➑ ➠ ➡ ➓ ➝ ➑ ➒ ➒ ➡ ➨ ➻ ➑ ➒ ➓ ➥ ➒ ➦ ➡ ➨ ➛ ➑ ➤ ➒ ➛ ➤ ➡ ➠ ➑ ➨ ➡ ❛ ➡ ➠ ➠ ➛ ➟ ➑ ➒ ❝ ❱ ➘ ➑ ➛➜ ➝ ➝ ➑ ➒ ➓ ❛ ➡ ➠ ➠ ➛ ➟ ➑ ➒ ➳ ❱ ➘ ➑ ➛ ❝ ❫ ➜ ➝ ➝ ❫ ➴ ❛ ➥ ➽ ➓ ➡ ➒ ➠ ➤ ➛ ➤ ➡ ➠ ➩ ➡ ➨ ➡ ❵ ➧ ➹
➛ ➑ ➤ ➒ ➡ ➓ ➾ ➨ ❵ ➝ ➭ ➤ ➠ ➤ ➧ ➤ ❛ ➤ ➛ ➤ ➡ ➠ ➥ ➠ ➤ ➒ ➯ ➠ ➛ ➑ ➒ ➓ ➑ ➨ ➓ ❩ ➵ ❪ ➚ ➢ ➨ ❵ ➦ ➡ ➓ ➥ ➨ ➡ ➠ ❫ ➸ ❵ ➒ ➹
➛ ➤ ➒ ➥ ➥ ➝ ➤ ➝ ➑ ➯ ➡ ➠ ➩ ➡ ➨ ➡ ➢ ➨ ❵ ➓ ➥ ➦ ➡ ➓ ➧ ➫ ➑ ➭ ➡ ➨ ➑ ➯ ➤ ➒ ➯ ❛ ➤ ➒ ➡ ➹ ➾ ➨ ➡ ➡ ➦ ➟ ➑ ➒ ➒ ➡ ❛ ➠ ❫
❚ ➤ ➒ ➡ ➝ ➑ ➢ ➠ ➩ ➡ ➨ ➡ ❵ ➧ ➛ ➑ ➤ ➒ ➡ ➓ ➧ ➫ ➦ ❛ ➡ ➑ ➒ ➤ ➒ ➯ ❛ ➤ ➒ ➡ ➤ ➝ ➑ ➯ ➡ ➠ ➑ ➾ ➛ ➡ ➨ ➠ ➥ ➧ ➹
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ß ❩ ❬ ❳ ❨ ❨ ❵ × P ◗ ❘ ❚ ❛ ❘ ❱ P ❙ ❳ ❳ P Ö Õ é ❭ ❭ Ô ❢ ❘ ❭ ❩ ❚ ❚ ❩ Ô ❬ ❙ ❘ ❣ ❩ Ô ❬ ❚ å ❳ ❬ ❫ ❤
❳ ❙ ❘ ❚ ◗ Ô ❯ ❬ ❩ ❬ ß ❩ ❣ ❪ ❙ ❘ Ø × ❳ ❚ ❚ ❪ ❭ ❩ ❬ ❣ ❜ ß ❩ ❣ Õ Ø ✐ ❡ ❳ ❬ ❫ Ø Õ ë❥

p

é Õ è❦ ❧ ♠♥ ❭ ❚
! ♦ ❜ ß ❩ ❣ Õ Ø ♣ ❡ × ❙ ❘ ❚ ❛ ❘ ❱ P ❩ ❲ ❘ ❨ ❵ ❜ ❚ ❘ ❘ ❫ ❩ ❚ ❱ ❪ ❚ ❚ ❩ Ô ❬ ❩ ❬ P ◗ ❘ ❬ ❘ ❞ P ❚ ❘ ❱ q

P ❩ Ô ❬ ❡ Õ å ❣ ❳ ❩ ❬ × ❬ Ô P ❘ P ◗ ❳ P P ◗ ❘ ❚ ❪ ❭ Ô ❢ å ❳ ❬ ❫ ❤ ❜ ß ❩ ❣ Õ Ø r ❡ ❙ ❘ ❛ ❙ Ô ❫ ❪ ❱ ❘ ❚
❲ ❘ ❙ ❵ ❯ ❘ ❨ ❨ P ◗ ❘ ❢ ❘ ❳ P ❪ ❙ ❘ ❚ ❩ ❬ P ◗ ❘ ❚ ❛ ❘ ❱ P ❙ ❪ ❭ Ô ❴ P ❳ ❩ ❬ ❘ ❫ ❳ P P ◗ ❘ Û Þ å á
é Ù ❭ P ❘ ❨ ❘ ❚ ❱ Ô ❛ ❘ ❜ ä ❳ ❝ ❳ ❪ ❞ ❘ P ❳ ❨ Õ Ø Ù Ù é ❡ Õ

s t ✉ ❋ ✺ ✞ ✈ ✺ ✺ ❋ ✛ ✠ í ✠ ✉ ✞ ✛ ✠ ✞ ï ✈ ✺ ❋ ✛ ✠ ✺
Ü ◗ ❘ ❭ Ô ❚ P ❩ ❭ ❛ Ô ❙ P ❳ ❬ P ❙ ❘ ❚ ❪ ❨ P Ô ❢ P ◗ ❘ ❛ ❙ ❘ ❚ ❘ ❬ P ❘ ❫ Ô ❴ ❚ ❘ ❙ ❲ ❳ P ❩ Ô ❬ ❚ ❩ ❚

P ◗ ❳ P P ◗ ❘ ❱ Ô ❭ ❛ ❨ ❘ ❞ ❭ Ô ❨ ❘ ❱ ❪ ❨ ❘ ❚ Ô ❴ ❚ ❘ ❙ ❲ ❘ ❫ ❴ ❵ ä ❳ ❝ ❳ ❪ ❞ ❘ P ❳ ❨ Õ ❜ Ø Ù Ù é ❡
Ô ❙ ❩ ❣ ❩ ❬ ❳ P ❘ ❩ ❬ P ❯ Ô ❱ Ô ❭ ❛ ❳ ❱ P ❙ ❘ ❣ ❩ Ô ❬ ❚ × ❯ ◗ Ô ❚ ❘ ❫ ❩ ❳ ❭ ❘ P ❘ ❙ ❚ ❳ ❙ ❘ ❳ ❴ Ô ❪ P

Ö
!
Õ ✇ ❜ å ❡ Ô ❙ ❨ ❘ ❚ ❚ ❜ ❤ ❡ × ❳ ❚ ❚ ◗ Ô ❯ ❬ ❩ ❬ ß ❩ ❣ ❪ ❙ ❘ Ö ❜ ❳ ❬ ❫ Ü ❳ ❴ ❨ ❘ Ö ❡ Õ Ü ◗ ❩ ❚

❣ Ô ❘ ❚ ❳ ❨ Ô ❬ ❣ ❯ ❩ P ◗ P ◗ ❘ ❢ ❳ ❱ P P ◗ ❳ P P ◗ ❘ ❩ ❭ ❳ ❣ ❘ ❚ ❫ Ô ❬ Ô P ❚ ◗ Ô ❯ ❳ ❬ ❵
❘ ❲ ❩ ❫ ❘ ❬ ❱ ❘ Ô ❢ ❘ ❭ ❩ ❚ ❚ ❩ Ô ❬ ❳ ❚ ❚ Ô ❱ ❩ ❳ P ❘ ❫ ❯ ❩ P ◗ P ◗ ❘ ❭ Ô ❨ ❘ ❱ ❪ ❨ ❳ ❙ Ô ❪ P ① Ô ❯ ❚
❚ ❘ ❘ ❬ ❳ P ❨ ❳ ❙ ❣ ❘ ❙ ❚ ❱ ❳ ❨ ❘ ❚ ❜ ❚ ❘ ❘ ❴ ❘ ❨ Ô ❯ ❢ Ô ❙ P ◗ ❘ ❫ ❩ ❚ ❱ ❪ ❚ ❚ ❩ Ô ❬ Ô ❬ P ◗ ❘ ❨ ❩ ❬ ❘
❛ ❙ Ô ② ❨ ❘ ❚ ❡ Õ å ❨ ❚ Ô × ❢ Ô ❨ ❨ Ô ❯ ❩ ❬ ❣ P ◗ ❘ ❙ ❘ ❭ ❳ ❙ ♥ ❩ ❬ ③ Ö × P ◗ ❘ ④ ❨ ❳ P ❘ ❳ ❪ ❫ ❘
❤ ❪ ❙ ❘ ❩ ❭ ❳ ❣ ❘ ❚ ❫ Ô ❬ Ô P ❙ ❘ ❲ ❘ ❳ ❨ ❳ ❬ ❵ ❘ ❲ ❩ ❫ ❘ ❬ ❱ ❘ Ô ❢ ❘ ❭ ❩ ❚ ❚ ❩ Ô ❬ ❢ ❙ Ô ❭
❱ ❳ ❲ ❩ P ❩ ❘ ❚ ❘ ❞ ❱ ❳ ❲ ❳ P ❘ ❫ ❢ ❙ Ô ❭ P ◗ ❘ Ô ❪ P ① Ô ❯ ❚ ❘ ❩ P ◗ ❘ ❙ Õ Û ❬ ❫ ❘ ❘ ❫ × P ◗ ❘ ❱ ❳ ❲ ❩ P ❩ ❘ ❚
❳ ❙ ❘ P ❵ ❛ ❩ ❱ ❳ ❨ ❨ ❵

∼

Ø Ù
!

❩ ❬ ❚ ❩ ❝ ❘ × ❨ Ô ❱ ❳ P ❘ ❫
∼

é Ù
!

❳ ❯ ❳ ❵ ❢ ❙ Ô ❭ P ◗ ❘ ❚ Ô ❪ ❙ ❱ ❘
❳ ❨ Ô ❬ ❣ P ◗ ❘ ♦ ⑤ ä à Ô ❪ P ① Ô ❯ ❜ ❚ ❘ ❘ × ❘ Õ ❣ Õ × å ❙ ❱ ❘ ⑥ æ ❳ ❙ ❣ ❘ ❬ P Ø Ù Ù Ú ❡ × ❯ ◗ ❩ ❱ ◗
❯ Ô ❪ ❨ ❫ ◗ ❳ ❲ ❘ ❴ ❘ ❘ ❬ ❘ ❳ ❚ ❩ ❨ ❵ ❫ ❘ P ❘ ❱ P ❘ ❫ ❴ ❵ P ◗ ❘ ④ ❨ ❳ P ❘ ❳ ❪ ❫ ❘ ❤ ❪ ❙ ❘ Õ Ü ◗ ❘
P ❯ Ô ❙ ❘ ❣ ❩ Ô ❬ ❚ ❯ ◗ ❘ ❙ ❘ P ◗ ❘ ❭ Ô ❨ ❘ ❱ ❪ ❨ ❳ ❙ ❘ ❭ ❩ ❚ ❚ ❩ Ô ❬ ❱ Ô ❭ ❘ ❚ ❢ ❙ Ô ❭ ❳ ❙ ❘
❱ Ô ❭ ❛ ❳ ❱ P × ❳ ❬ ❫ ❯ ◗ ❩ ❨ ❘ ❚ Ô ❪ ❙ ❱ ❘ å ❩ ❚ ❴ ❳ ❙ ❘ ❨ ❵ ❙ ❘ ❚ Ô ❨ ❲ ❘ ❫ ❩ ❬ P ◗ ❘ Ö ❭ ❭
❩ ❭ ❳ ❣ ❘ ❚ × ⑦ ❚ Ô ❪ ❙ ❱ ❘ ❤ ❩ ❚ ❪ ❬ ❙ ❘ ❚ Ô ❨ ❲ ❘ ❫ Õ Ü ◗ ❘ ❭ ❘ ❳ ❚ ❪ ❙ ❘ ❫ ❚ ❩ ❝ ❘ ❚ ❜ Ö

!
Õ ✇ ❳ P

Ö ç Ù ❛ ❱ ❱ Ô ❙ ❙ ❘ ❚ ❛ Ô ❬ ❫ ❚ P Ô ❳ ❙ ❳ ❫ ❩ ❪ ❚ Ô ❢ ❳ ❴ Ô ❪ P Ö Ø Ù å ⑧ ❡ ❳ ❙ ❘ ❙ ❘ ❭ ❳ ❙ ♥ ❳ ❴ ❨ ❵
❱ Ô ❬ ❚ ❩ ❚ P ❘ ❬ P ❯ ❩ P ◗ P ◗ ❘ ❘ ❭ ❩ ❚ ❚ ❩ Ô ❬ ❱ Ô ❭ ❩ ❬ ❣ ❢ ❙ Ô ❭ ❳ ❙ ❘ ❣ ❩ Ô ❬ ❯ ◗ ❘ ❙ ❘ P ◗ ❘
❫ ❪ ❚ P P ❘ ❭ ❛ ❘ ❙ ❳ P ❪ ❙ ❘ ❘ ❞ ❱ ❘ ❘ ❫ ❚ Ö Ù Ù ⑨ ❩ ❬ ❚ Ô ❪ ❙ ❱ ❘ å ❜ Ö ✇ Ù ⑩ Ø Ù Ù å ⑧ ×
❴ ❳ ❚ ❘ ❫ Ô ❬ ❭ ❪ ❨ P ❩ ❢ ❙ ❘ ❶ ❪ ❘ ❬ ❱ ❵ ❚ ❩ ❬ ❣ ❨ ❘ q ❫ ❩ ❚ ◗ Ô ❴ ❚ ❘ ❙ ❲ ❳ P ❩ Ô ❬ ❚ ❷ ä ❘ ❱ ❱ ❳ ❙ ❘ ❨ ❨ ❩
❘ P ❳ ❨ Õ Ø Ù Ù Ù ❳ × Ø Ù Ù Ù ❴ ❷ æ ❱ ◗ Ô ❸ ❩ ❘ ❙ ❘ P ❳ ❨ Õ Ø Ù Ù Ø ❡ ❳ ❬ ❫ P ◗ ❘ ❙ ❘ ❢ Ô ❙ ❘ × ❯ ◗ ❘ ❙ ❘
P ◗ ❘ ❣ ❙ ❳ ❩ ❬ ❭ ❳ ❬ P ❨ ❘ ❚ ❘ ❲ ❳ ❛ Ô ❙ ❳ P ❘ Õ Ü ◗ ❪ ❚ × P ◗ ❘ ❚ ❘ Ô ❴ ❚ ❘ ❙ ❲ ❳ P ❩ Ô ❬ ❚ ❚ ❪ ❛ ❛ Ô ❙ P
P ◗ ❘ ❴ ❳ ❚ ❩ ❱ ❛ ❙ ❘ ❫ ❩ ❱ P ❩ Ô ❬ ❜ ❢ ❙ Ô ❭ P ◗ ❘ ❭ Ô ❫ ❘ ❨ ❩ ❬ ❣ Ô ❢ P ◗ ❘ ❚ ❩ ❬ ❣ ❨ ❘ q ❫ ❩ ❚ ◗ Ô ❴ q
❚ ❘ ❙ ❲ ❳ P ❩ Ô ❬ ❚ ❷ ä ❘ ❱ ❱ ❳ ❙ ❘ ❨ ❨ ❩ ❘ P ❳ ❨ Õ Ø Ù Ù Ù ❳ × Ø Ù Ù Ù ❴ ❷ ä ❳ ❝ ❳ ❪ ❞ ❘ P ❳ ❨ Õ Ø Ù Ù é ❡
P ◗ ❳ P ❳ ◗ Ô P ❱ Ô ❙ ❩ ❬ Ô ❯ ❩ P ◗ ❳ ❙ ❳ ❫ ❩ ❪ ❚ Ô ❢ ❳ ❴ Ô ❪ P Ö ✇ Ù å ⑧ ❘ ❞ ❩ ❚ P ❚ ❩ ❬ ❚ ❩ ❫ ❘
P ◗ ❘ ❱ Ô ❨ ❫ ❘ ❬ ❲ ❘ ❨ Ô ❛ ❘ Ô ❢ Û Þ å æ Ö ç Ø è é ❳ ❬ ❫ P ◗ ❳ P ❩ ❬ P ◗ ❳ P ❙ ❘ ❣ ❩ Ô ❬ × ❱ Ô ❭ q
❛ ❨ ❘ ❞ ❭ Ô ❨ ❘ ❱ ❪ ❨ ❘ ❚ ❳ ❙ ❘ ❢ Ô ❙ ❭ ❘ ❫ ❴ ❘ ❱ ❳ ❪ ❚ ❘ Ô ❢ ❣ ❙ ❳ ❩ ❬ ❭ ❳ ❬ P ❨ ❘ ❘ ❲ ❳ ❛ Ô ❙ ❳ P ❩ Ô ❬ Õ

Û ❬ ❳ ❫ ❫ ❩ P ❩ Ô ❬ P Ô P ◗ ❳ P × P ◗ ❘ ④ ❨ ❳ P ❘ ❳ ❪ ❫ ❘ ❤ ❪ ❙ ❘ Ô ❴ ❚ ❘ ❙ ❲ ❳ P ❩ Ô ❬ ❚ ❱ Ô ❬ ② ❙ ❭
P ◗ ❳ P P ◗ ❘ P ❯ Ô ❚ Ô ❪ ❙ ❱ ❘ ❚ å ❳ ❬ ❫ ❤ ❳ ❙ ❘ ❫ ❩ ❢ ❢ ❘ ❙ ❘ ❬ P × ❳ ❚ ❬ Ô P ❘ ❫ ❴ ❵ ❛ ❙ ❘ ❲ ❩ Ô ❪ ❚
❳ ❪ P ◗ Ô ❙ ❚ ❜ ❹ Ô Ô P P ❘ ❬ Ö è ❺ è ❷ á ❪ ❬ ❫ ❵ ❘ P ❳ ❨ Õ Ö è è Ù × Ö è è Ø ❡ Õ Ü ◗ ❘ ❵ ❫ ❩ ❢ ❢ ❘ ❙
❩ ❬ ❨ ❩ ❬ ❘ ❩ ❬ P ❘ ❬ ❚ ❩ P ❩ ❘ ❚ ❳ ❬ ❫ ❘ ❞ P ❘ ❬ P ❜ ß ❩ ❣ Õ Ö ❡ × ❳ ❬ ❫ P ◗ ❩ ❚ ❱ Ô ❙ ❙ ❘ ❚ ❛ Ô ❬ ❫ ❚ P Ô ❳
❫ ❩ ❢ ❢ ❘ ❙ ❘ ❬ ❱ ❘ ❩ ❬ P ◗ ❘ ❩ ❙ ❱ ◗ ❘ ❭ ❩ ❱ ❳ ❨ ❱ Ô ❭ ❛ Ô ❚ ❩ P ❩ Ô ❬ Õ ❤ ❪ P × ❴ ❘ ❢ Ô ❙ ❘ ❫ ❩ ❚ ❱ ❪ ❚ ❚ ❩ ❬ ❣
P ◗ ❩ ❚ ❛ Ô ❩ ❬ P × ❩ P ❩ ❚ ❬ ❘ ❱ ❘ ❚ ❚ ❳ ❙ ❵ P Ô ❳ ❫ ❫ ❙ ❘ ❚ ❚ P ◗ ❘ ❚ ❘ ❱ Ô ❬ ❫ ❭ Ô ❚ P ❚ P ❙ ❩ ♥ ❩ ❬ ❣
❫ ❩ ❢ ❢ ❘ ❙ ❘ ❬ ❱ ❘ ❩ ❬ P ◗ ❘ P ❯ Ô ❚ Ô ❪ ❙ ❱ ❘ ❚ ❻ P ◗ ❘ ❩ ❙ ❨ ❩ ❬ ❘ ❛ ❙ Ô ② ❨ ❘ ❚ ❜ ß ❩ ❣ Õ Ø ❡ Õ æ Ô ❪ ❙ ❱ ❘
å ◗ ❳ ❚ ❱ ❨ ❘ ❳ ❙ ❨ ❵ ❴ ❙ Ô ❳ ❫ ❘ ❬ ❘ ❫ ❚ ❛ ❘ ❱ P ❙ ❳ ❜ ß ❹ ã á

∼

❺ ♥ ❭ ❚
! ♦ ❡ × ❯ ◗ ❩ ❨ ❘

❚ Ô ❪ ❙ ❱ ❘ ❤ ❚ ◗ Ô ❯ ❚ ❳ ❛ ❛ ❳ ❙ ❘ ❬ P ❨ ❵ ❭ ❪ ❱ ◗ ❬ ❳ ❙ ❙ Ô ❯ ❘ ❙ ❛ ❙ Ô ② ❨ ❘ ❚ ❜ ß ❹ ã á
∼Ø ♥ ❭ ❚

! ♦ ❡ Õ ß ❪ ❙ P ◗ ❘ ❙ ❭ Ô ❙ ❘ × P ◗ ❘ ❨ ❩ ❬ ❘ ❚ Ô ❢ ❚ Ô ❪ ❙ ❱ ❘ ❤ ❚ ❘ ❘ ❭ P Ô ❛ ❘ ❳ ♥ ❳ P♥ ❭ ❚
! ♦ × ❯ ◗ ❘ ❙ ❘ ❳ ❚ P ◗ ❘ ❛ ❳ ❙ ❘ ❬ P ❱ ❨ Ô ❪ ❫ ❲ ❘ ❨ Ô ❱ ❩ P ❵ ❩ ❚ ❳ P❥

p

Ø Õ ë❦ ❧ ♠ ♥ ❭ ❚
! ♦ ❜ ❱ Ô ❭ ❛ ❳ P ❩ ❴ ❨ ❘ ❯ ❩ P ◗ P ◗ ❘ ❚ ❛ ❘ ❱ P ❙ ❳ Ô ❢ ❚ Ô ❪ ❙ ❱ ❘ å ×❥

p

é Õ è❦ ❧ ♠❳ ❨ P ◗ Ô ❪ ❣ ◗ ❣ ❩ ❲ ❘ ❬ P ◗ ❘ ❴ ❙ Ô ❳ ❫ ❛ ❙ Ô ② ❨ ❘ ❚ ❩ P ❩ ❚ ❫ ❩ ❢ ② ❱ ❪ ❨ P P Ô ❛ ❙ ❘ ❱ ❩ ❚ ❘ ❨ ❵ ❫ ❘ q
P ❘ ❙ ❭ ❩ ❬ ❘ P ◗ ❘ Ô ❢ ❚ Ô ❪ ❙ ❱ ❘ å ❡ Õ Ó Ô P ❘ P ◗ ❳ P P ◗ ❘ ❱ ❨ Ô ❪ ❫ ❼ ❚ ❜ é Õ è❥ ❥❦ ❧ ♠ ❦ ❧ ♠♥ ❭ ❚

! ♦ ❡ ❩ ❚ ❲ ❘ ❙ ❵ ❬ ❩ ❱ ❘ ❨ ❵ ❭ ❘ ❳ ❚ ❪ ❙ ❘ ❫ ❴ ❵ P ◗ ❘ P ❯ Ô ä Ó ❳ ❴ ❚ Ô ❙ ❛ P ❩ Ô ❬ ❨ ❩ ❬ ❘ ❚

✤ ❋ ✧ ★ ✂ ✫ ★ ✯ ✁ ✫ ✬ ✧ ✪ ÿ ✧ ✧ ✪ ✁ ✁ ø ★ ✂ ✂ ★ ✥ ✦ ✭ � ✥ ø ✂ ✥ ✩ � ÷ ✁ í ✥ � ★ ✱ ★ ✦ ÿ ✧ ✁ ✂ ★ ✦ ✧ ✪ ✁ ✻ ★ ✂ ✯ ÿ � ✥ ✩ ✦ ✻✧ ✪ ★ ✂ ✂ ✥ ✩ � ÷ ✁ ☎ í ✻ ✁ ✧ ÿ ★ ✫ ✁ ✻ ✂ ✧ ✩ ✻ ✬ ✥ ✭ ✧ ✪ ★ ✂ ÿ ✂ ✳ ✁ ÷ ✧ ★ ✂ ✳ ✥ ✂ ✧ ✳ ✥ ✦ ✁ ✻ ✧ ✥ ÿ ✭ ✥ � ✧ ✪ ÷ ✥ ø ★ ✦ ✱ ✳ ÿ ✳ ✁ � ☎
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❽ ❾ ❿ ➀ ➁ ➂ ➂ ➃ ➄ ➅ ❽ ❽ ➃ ➅ ➂ ➆ ❽ ➇ ➈ ➉ ➊ ➇ ➋ ➌ ❾

➍ ➎ ➏ ➐ ➑ ➉ ➒ ➓ ➑ ➔ → ➑ ➣ ➒ ↔ ➎ ➣ ↕ ➙ ➛ ➍ ➜ ➇ ❿ ➝ ➇ ➆ ➓ ➓ ↔ ➍ ➣ ➞ ➎ ➉ ➑ → ➍ ➣ ➑ ➎ ➟ ➑ ➉ ➠ ➉ ➡ ➏ ➢ ➉ ➤ ➍ ➎ ➜
➜ ↔ ➓ ➍ ➓ ➓ ➑ ➑ ➎ ➍ ➎ ➏ ➐ ➑ ➍ ➥ ↔ ➜ ➑ ➓ ➞ ↔ ➎ ➣ ↔ ➊ ➓ ➉ ➏ ➐ ➑ ➒ ➔ ➉ ↔ ➣ ➊ ➍ ➎ ➑ ➦ ➔ ➉ ➧ ➊ ➑ ➓ ➉ ➠

➓ ➉ ➡ ➔ ➟ ➑ ➆ ↔ ➔ ➑ ➟ ➉ ➎ ➓ ➍ ➓ ➏ ➑ ➎ ➏ ➤ ➍ ➏ ➐ ➜ ↔ ➓ ➨ ➩ ➫ ➭ ➯ ➯ ➨ ➩ ➲ ➏ ➉ ➤ ↔ ➔ ➣ ↔ ➎
∼

➌ ➳
,➉ ➒ ➵ ➑ ➟ ➏ ➙ ➸ ➑ ➟ ➟ ↔ ➔ ➑ ➊ ➊ ➍ ➑ ➏ ↔ ➊ ➇ ❿ ➺ ➺ ➺ ↔ ➞ ❿ ➺ ➺ ➺ ➒ ➻ ➼ ➟ ➐ ➉ ➽ ➍ ➑ ➔ ➑ ➏ ↔ ➊ ➇ ❿ ➺ ➺ ❿ ➝ ➇ ➂ ➐ ➑ ➔ ➑ ➾

➠ ➉ ➔ ➑ ➞ ➒ ➉ ➏ ➐ ➏ ➐ ➑ ➍ ➥ ↔ ➜ ➑ ➓ ↔ ➎ ➣ ➊ ➍ ➎ ➑ ➦ ➔ ➉ ➧ ➊ ➑ ➓ ➉ ➠ ➓ ➉ ➡ ➔ ➟ ➑ ➆ ↔ ➔ ➑ ➠ ➡ ➊ ➊ ➚
➟ ➉ ➎ ➓ ➍ ➓ ➏ ➑ ➎ ➏ ➤ ➍ ➏ ➐ ➏ ➐ ➑ ➐ ➉ ➏ ➟ ➉ ➔ ➍ ➎ ➉ ➐ ➚ ➦ ➉ ➏ ➐ ➑ ➓ ➍ ➓ ➇

➂ ➐ ➑ ➟ ↔ ➓ ➑ ➉ ➠ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ➍ ➓ ➊ ➑ ➓ ➓ ➉ ➒ → ➍ ➉ ➡ ➓ ➪ ➤ ➐ ➚ ➣ ➉ ➑ ➓ ➏ ➐ ➍ ➓ ➓ ➉ ➡ ➔ ➟ ➑ ➐ ↔ → ➑
➎ ↔ ➔ ➔ ➉ ➤ ➑ ➔ ➊ ➍ ➎ ➑ ➓ ↔ ➎ ➣ ➤ ➐ ➚ ➣ ➉ ➏ ➐ ➑ ➚ ➦ ➑ ↔ ➶ ↔ ➏ ❿ ➇ ❾ ➶ ➥ ➓

! ➹ ➘ ➀ ➡ ➏ ➍ ➓ ➏ ➐ ➍ ➓
➏ ➔ ➡ ➑ ➘ ➆ → ➑ ➔ ➚ ➟ ↔ ➔ ➑ ➠ ➡ ➊ ➊ ➉ ➉ ➶ ↔ ➏ ➏ ➐ ➑ ➀ ➓ ➦ ➑ ➟ ➏ ➔ ↔ ➔ ↔ ➍ ➓ ➑ ➓ ➣ ➉ ➡ ➒ ➏ ➓ ➇ ➃ ➎ ➣ ➑ ➑ ➣ ➞
↔ ➊ ➊ ➏ ➐ ➑ ➀ ➊ ➍ ➎ ➑ ➓ ➐ ↔ → ➑ ↔ ➓ ➑ ➟ ➉ ➎ ➣ ➓ ➥ ↔ ➊ ➊ ➦ ➑ ↔ ➶ ➴ ➓ ➉ ➥ ➑ ➏ ➍ ➥ ➑ ➓ ↔ ➏ ➏ ➐ ➑ ➊ ➍ ➥ ➍ ➏
➉ ➠ ➏ ➐ ➑ ➎ ➉ ➍ ➓ ➑ ➴ ➉ ➎ ➏ ➐ ➑ ➔ ➑ ➣ ➓ ➐ ➍ ➠ ➏ ➑ ➣ ➓ ➍ ➣ ➑ ➉ ➠ ➏ ➐ ➑ ➓ ➦ ➑ ➟ ➏ ➔ ➡ ➥ ➇ ➂ ➐ ➍ ➓ ➓ ➑ ➟ ➉ ➎ ➣
➦ ➑ ↔ ➶ ➟ ➉ ➡ ➊ ➣ ➍ ➎ ➣ ➑ ➑ ➣ ➒ ➑ ➦ ↔ ➔ ➏ ➉ ➠ ➏ ➐ ➑ ➊ ➍ ➎ ➑ ➍ ➏ ➓ ➑ ➊ ➠ ➞ ➤ ➐ ➍ ➟ ➐ ➤ ➉ ➡ ➊ ➣ ➒ ➑ ➓ ➏ ➔ ➉ ➎ ➜ ➊ ➚

➓ ➑ ➊ ➠ ➾ ↔ ➒ ➓ ➉ ➔ ➒ ➑ ➣ ↔ ➏ ➶ ➥ ➓
! ➹ ➇ ➃ ➠ ➏ ➐ ➍ ➓ ➍ ➓ ➏ ➐ ➑ ➟ ↔ ➓ ➑ ➞ ➏ ➐ ➑ ➊ ➍ ➎ ➑➷

p ➬ ➇ ➮➱ ✃ ❐➤ ➍ ➣ ➏ ➐ ➓ ➉ ➠ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ➤ ➉ ➡ ➊ ➣ ➒ ➑
∼ ❒ ❮ ➋ ➶ ➥ ➓

! ➹ ➙ ➛ ➍ ➜ ➇ ❿ ➝ ➞ ➓ ➍ ➥ ➍ ➊ ↔ ➔ ➏ ➉
➏ ➐ ➑ ➊ ➍ ➎ ➑ ➤ ➍ ➣ ➏ ➐ ➓ ➥ ➑ ↔ ➓ ➡ ➔ ➑ ➣ ➏ ➉ ➤ ↔ ➔ ➣ ➓ ➉ ➡ ➔ ➟ ➑ ➆ ➇ ➄ ➉ ➏ ➑ ➏ ➐ ↔ ➏ ➏ ➐ ➑ ➒ ➊ ➡ ➑ ➦ ➑ ↔ ➶
➍ ➓ ➑ ❰ ➦ ➑ ➟ ➏ ➑ ➣ ➏ ➉ ➒ ➑ ➒ ➔ ➍ ➜ ➐ ➏ ➑ ➔ ➏ ➐ ↔ ➎ ➏ ➐ ➑ ➔ ➑ ➣ ➦ ➑ ↔ ➶ ➍ ➎ ➏ ➐ ➑ ➟ ↔ ➓ ➑ ➉ ➠ ➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚
➏ ➐ ➍ ➟ ➶ ➊ ➍ ➎ ➑ ➓ ➠ ➔ ➉ ➥ ➍ ➎ ➠ ↔ ➊ ➊ ➍ ➎ ➜ ➜ ↔ ➓ ➙ ❽ ➑ ➡ ➎ ➜ Ï ➀ ➔ ➉ ➤ ➎ ➌ ➮ ❾ ❾ ➻ Ð ➐ ➉ ➡ ➌ ➮ ➮ ❿ ➞

➌ ➮ ➮ Ñ ➻ ➸ ➐ ➉ ➍ ➑ ➏ ↔ ➊ ➇ ➌ ➮ ➮ Ñ ➝ ➞ ➓ ➉ ➍ ➏ ➤ ➉ ➡ ➊ ➣ ➒ ➑ ➟ ➉ ➎ ➓ ➍ ➓ ➏ ➑ ➎ ➏ ➤ ➍ ➏ ➐ ➏ ➐ ➑
∼

➌ ➳
,

➐ ➉ ➏ ➟ ➉ ➔ ➍ ➎ ➉ ➐ ➚ ➦ ➉ ➏ ➐ ➑ ➓ ➍ ➓ ➉ ➠ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ➏ ➉ ➉ ➇ ➂ ➐ ➍ ➓ ↔ ➊ ➏ ➑ ➔ ➎ ↔ ➏ ➍ → ➑
➑ ❰ ➦ ➊ ↔ ➎ ↔ ➏ ➍ ➉ ➎ ➞ ➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚ ➏ ➐ ➍ ➟ ➶ ➊ ➍ ➎ ➑ ➓ ➍ ➎ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ➞ ➍ ➓ ➏ ➐ ➑ ➔ ➑ ➠ ➉ ➔ ➑ → ➑ ➔ ➚
↔ ➦ ➦ ➑ ↔ ➊ ➍ ➎ ➜ ↔ ➎ ➣ ➤ ➉ ➔ ➏ ➐ ➑ ❰ ➦ ➊ ➉ ➔ ➍ ➎ ➜ ➍ ➎ ➓ ➉ ➥ ➑ ➣ ➑ ➏ ↔ ➍ ➊ ➇ Ò ➓ ➍ ➎ ➜ ➏ ➐ ➑ ❽ ➂ ➅
↔ ➦ ➦ ➔ ➉ ❰ ➍ ➥ ↔ ➏ ➍ ➉ ➎ ➞ ➏ ➐ ➑ ➔ ➑ Ó ➡ ➍ ➔ ➑ ➣ ➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➍ ➑ ➓ ➠ ➉ ➔ ➏ ➐ ➑ ➸ Ô Õ ➸ ➄ ↔ ➎ ➣
Ô ➸ ➁ ➁ ➸ Ô Õ ➊ ➍ ➎ ➑ ➓ ➏ ➉ ➒ ➑ ➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚ ➏ ➐ ➍ ➟ ➶ ↔ ➔ ➑ ➟ ➥

!
Ö ↔ ➎ ➣➹ ×Ø

∼
➌ ➺

➟ ➥
!

Ö ➞ ➔ ➑ ➓ ➦ ➑ ➟ ➏ ➍ → ➑ ➊ ➚ ➇ ➂ ➐ ➑ ➓ ➑ → ↔ ➊ ➡ ➑ ➓ ↔ ➔ ➑ ↔ ➒ ➉ ➡ ➏ ➌ ➉ ➔ ➣ ➑ ➔ ➉ ➠➹ ÙØ
∼

➌ ➺
➥ ↔ ➜ ➎ ➍ ➏ ➡ ➣ ➑ ➊ ↔ ➔ ➜ ➑ ➔ ➏ ➐ ↔ ➎ ➏ ➐ ➑ ➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➚ ➣ ➑ ➔ ➍ → ➑ ➣ ➍ ➎ ➀ ➠ ➔ ➉ ➥ ➏ ➐ ➑
➑ ➥ ➍ ➓ ➓ ➍ ➉ ➎ ➊ ➍ ➎ ➑ ➓ ➞ ↔ ➓ ➓ ➡ ➥ ➍ ➎ ➜ ➏ ➐ ↔ ➏ ➏ ➐ ➑ ➊ ➍ ➎ ➑ ➓ ↔ ➔ ➑ ➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚ ➏ ➐ ➍ ➎ ↔ ➎ ➣ ❽ ➂ ➅ ➾
➦ ➉ ➦ ➡ ➊ ↔ ➏ ➑ ➣ ↔ ➎ ➣ ➏ ➐ ↔ ➏ ➏ ➐ ➑ ➑ ➥ ➍ ➓ ➓ ➍ ➉ ➎ ➔ ➑ ➜ ➍ ➉ ➎ ➧ ➊ ➊ ➓ ➡ ➦ ➏ ➐ ➑ Ú ➊ ↔ ➏ ➑ ↔ ➡ ➣ ➑ ➀ ➡ ➔ ➑

➓ ➚ ➎ ➏ ➐ ➑ ➓ ➍ Û ➑ ➣ ➒ ➑ ↔ ➥ ➙ ➓ ➑ ➑ ➒ ➑ ➊ ➉ ➤ ➝ ➇ ➸ ➉ ➎ ➓ ➍ ➣ ➑ ➔ ➍ ➎ ➜ ➏ ➐ ↔ ➏ ➏ ➐ ➑ ➏ ➐ ➔ ➑ ➑ ↔ ➣ ➉ ➦ ➏ ➑ ➣
↔ ➓ ➓ ➡ ➥ ➦ ➏ ➍ ➉ ➎ ➓ ↔ ➊ ➊ ➡ ➎ ➣ ➑ ➔ ➑ ➓ ➏ ➍ ➥ ↔ ➏ ➑ ➏ ➐ ➑ ➏ ➔ ➡ ➑ ➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➚ ➞ ➍ ➏ ➍ ➓ ➍ ➎ ➣ ➑ ➑ ➣
➦ ➉ ➓ ➓ ➍ ➒ ➊ ➑ ➞ ➒ ➡ ➏ ➎ ➉ ➏ ➧ ➔ ➥ ➊ ➚ ➑ ➓ ➏ ↔ ➒ ➊ ➍ ➓ ➐ ➑ ➣ ➞ ➏ ➐ ↔ ➏ ➏ ➐ ➑ ➊ ➍ ➎ ➑ ➓ ➍ ➎ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ↔ ➔ ➑
➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚ ➏ ➐ ➍ ➟ ➶ ➇ Ò ➎ ➠ ➉ ➔ ➏ ➡ ➎ ↔ ➏ ➑ ➊ ➚ ➞ Ü ➦ ➐ ➚ ➓ ➍ ➟ ↔ ➊ Ý ➟ ➉ ➎ ➓ ➍ ➣ ➑ ➔ ↔ ➏ ➍ ➉ ➎ ➓ ➣ ➉ ➎ ➉ ➏
➐ ➑ ➊ ➦ ➑ ➍ ➏ ➐ ➑ ➔ ➏ ➉ ➣ ➍ ➓ ➏ ➍ ➎ ➜ ➡ ➍ ➓ ➐ ➒ ➑ ➏ ➤ ➑ ➑ ➎ ➏ ➐ ➑ ➏ ➤ ➉ ➦ ➉ ➓ ➓ ➍ ➒ ➊ ➑ ➍ ➎ ➏ ➑ ➔ ➦ ➔ ➑ ➏ ↔ ➏ ➍ ➉ ➎ ➓ ➞
➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚ ➏ ➐ ➍ ➎ ➉ ➔ ➏ ➐ ➍ ➟ ➶ ➊ ➍ ➎ ➑ ➓ ➍ ➎ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ➇ ➃ ➎ ➏ ➐ ➑ ➧ ➔ ➓ ➏ ➟ ↔ ➓ ➑ ➙ ➀ ➐ ↔ ➓

➶ ➥ ➓
! ➹ ↔ ➎ ➣ ➛ Þ Ô ß

∼
❿ ➶ ➥ ➓

! ➹ ➝ ➞ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ➤ ➉ ➡ ➊ ➣ ➒ ➑➷
p

❿ ➇ ❾➱ ✃ ❐➊ ➑ ➓ ➓ ➥ ↔ ➓ ➓ ➍ → ➑ ➏ ➐ ↔ ➎ ➆ ↔ ➎ ➣ ➤ ➉ ➡ ➊ ➣ ➔ ➑ → ➉ ➊ → ➑ ↔ ➔ ➉ ➡ ➎ ➣ ➍ ➏ ↔ ➏ ➌ ➇ ❿ ➶ ➥ ➓
! ➹➙ ➥ ➡ ➊ ➏ ➍ ➦ ➊ ➍ ➑ ➣ ➒ ➚ ➏ ➐ ➑ ➍ ➎ ➟ ➊ ➍ ➎ ↔ ➏ ➍ ➉ ➎ ➉ ➠ ➏ ➐ ➑ ➉ ➔ ➒ ➍ ➏ ➝ ➞ ↔ ➏ ↔ ➣ ➍ ➓ ➏ ↔ ➎ ➟ ➑ ➉ ➠

à ➺ ➺ ➆ Ò ➞ ➤ ➐ ➍ ➟ ➐ ➍ ➓ ➠ ➡ ➊ ➊ ➚ ➟ ➉ ➎ ➓ ➍ ➓ ➏ ➑ ➎ ➏ ➤ ➍ ➏ ➐ ➙ ➡ ➎ ➊ ➑ ➓ ➓ ➏ ➐ ➑➳
∼

➌ ➳á
,➉ ➔ ➒ ➍ ➏ ➍ ➓ ➍ ➎ ➏ ➐ ➑ ➓ ➶ ➚ ➦ ➊ ↔ ➎ ➑ ➝ ➇ ➃ ➎ ➏ ➐ ➑ ➓ ➑ ➟ ➉ ➎ ➣ ➟ ↔ ➓ ➑ ➙ ➀ ↔ ➊ ➓ ➉ ➐ ↔ ➓

➶ ➥ ➓
! ➹ ↔ ➎ ➣ ➛ Þ Ô ß

∼ ❒ ❮ ➋ ➶ ➥ ➓
! ➹ ➝ ➞ ➆ ↔ ➎ ➣ ➀ ➐ ↔ → ➑➷

p ➬ ➇ ➮➱ ✃ ❐➟ ➉ ➥ ➦ ↔ ➔ ↔ ➒ ➊ ➑ ➥ ↔ ➓ ➓ ➑ ➓ ➙ ➓ ➍ ➥ ➍ ➊ ↔ ➔ ➛ Þ Ô ß ➝ ➞ ➒ ➡ ➏ ➀ ➍ ➓ ➥ ➉ ➔ ➑ ➟ ➉ ➥ ➦ ↔ ➟ ➏ ➇
➛ ➡ ➏ ➡ ➔ ➑ ➐ ➍ ➜ ➐ ➾ ➔ ➑ ➓ ➉ ➊ ➡ ➏ ➍ ➉ ➎ ➉ ➒ ➓ ➑ ➔ → ↔ ➏ ➍ ➉ ➎ ➓ ➉ ➠ ➉ ➦ ➏ ➍ ➟ ↔ ➊ ➊ ➚ ➏ ➐ ➍ ➎ ➊ ➍ ➎ ➑ ➓ ↔ ➔ ➑
➐ ➑ ➎ ➟ ➑ ➔ ➑ Ó ➡ ➍ ➔ ➑ ➣ ➏ ➉ ➣ ➑ ➧ ➎ ➍ ➏ ➑ ➊ ➚ ➓ ➑ ➏ ➏ ➊ ➑ ➏ ➐ ➑ Ó ➡ ➑ ➓ ➏ ➍ ➉ ➎ ➇

â ã ä å æ ç è é ê ë ì í é î é ê í ï í î æ ì å è í î ì ä å ð é ê å ï ê é ñ î ò ó å î ô å õ é ë å
" ö õ é ñ ò ÷ ö é õ ò ï æ è ø

ù ä í ö ä æ ç è é ê ç è ì ä å ë ä é ì é î è å ú í ì ì å ò í î ì ä å ä é ì ö é ê í î é ê å ï í é î è ó ì ä å û ü å ú í è è í é î
ö é ú ë é î å î ì ø ç å í î ï å ý ì å î ò å ò ø í è þ õ ì å ê å ò é ñ ì ç ÿ ì ä å í î ì å ê ð å ê é ú å ì ê í ö é ç è å ê ô æ ì í é î è ÷ �

➆ ➓ ➓ ↔ ➍ ➣ ➞ ➏ ➐ ➑ ➎ ↔ ➏ ➡ ➔ ➑ ➉ ➠ ➓ ➉ ➡ ➔ ➟ ➑ ➀ ↔ ➠ ➠ ➑ ➟ ➏ ➓ ➏ ➐ ➑ ➣ ➑ ➏ ➑ ➔ ➥ ➍ ➎ ↔ ➏ ➍ ➉ ➎ ➉ ➠ ➏ ➐ ➑
➥ ➉ ➊ ➑ ➟ ➡ ➊ ↔ ➔ ↔ ➒ ➡ ➎ ➣ ↔ ➎ ➟ ➑ ➓ ➍ ➎ ➏ ➐ ➍ ➓ ➓ ➉ ➡ ➔ ➟ ➑ ↔ ➎ ➣ ➞ ➐ ➑ ➎ ➟ ➑ ➞ ➐ ➉ ➤ ➥ ➡ ➟ ➐ ➏ ➐ ➑
➟ ➐ ➑ ➥ ➍ ➟ ↔ ➊ ➟ ➉ ➥ ➦ ➉ ➓ ➍ ➏ ➍ ➉ ➎ ➉ ➠ ➏ ➐ ➑ ➆ ↔ ➎ ➣ ➀ ➐ ➉ ➏ ➟ ➉ ➔ ➍ ➎ ➉ ➓ ➣ ➍ ➠ ➠ ➑ ➔ ➇ Ò ➓ ➍ ➎ ➜
➏ ➐ ➑ ➔ ➑ ➊ ↔ ➏ ➍ ➉ ➎ ➒ ➑ ➏ ➤ ➑ ➑ ➎ ➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➚ ↔ ➎ ➣ ➉ ➒ ➓ ➑ ➔ → ➑ ➣ ➟ ➉ ➎ ➏ ➍ ➎ ➡ ➡ ➥ ➢ ➡ ❰
➣ ➑ ➎ ➓ ➍ ➏ ➚ ➞ ↔ ➎ ➣ ➡ ➓ ➍ ➎ ➜ ↔ ➣ ➡ ➓ ➏ ➉ ➦ ↔ ➟ ➍ ➏ ➚ ➉ ➠ ➺ ➇ à ➟ ➥ Ö ➜

! ➹ ↔ ➏ ➌ ➇ ➬ ➥ ➥ ↔ ➎ ➣
k

n↔ ➣ ➡ ➓ ➏ ➏ ➑ ➥ ➦ ➑ ➔ ↔ ➏ ➡ ➔ ➑ ➉ ➠ ❒ ➺ ✁ ➙ ➑ ➇ ➜ ➇ Þ ↔ ➊ ➶ ➑ ➔ ➑ ➏ ↔ ➊ ➇ ➌ ➮ à ➋ ➝ ➞ ➤ ➑ ➣ ➑ ➔ ➍ → ➑✂ ✄
➥ ➉ ➊ ➑ ➟ ➡ ➊ ↔ ➔ ➐ ➚ ➣ ➔ ➉ ➜ ➑ ➎ ➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➍ ➑ ➓ ➠ ➔ ➉ ➥ ➏ ➐ ➑ ➌ ➇ ➬ ➥ ➥ ➟ ➉ ➎ ➏ ➍ ➎ ➡ ➡ ➥
➑ ➥ ➍ ➓ ➓ ➍ ➉ ➎ ➑ Ó ➡ ↔ ➊ ➏ ➉ ➟ ➥

!
Ö ➍ ➎ ➆ ↔ ➎ ➣Ö ☎Ø ➙ Ô ➞ ➆ ➝

p ➬ ➇ Ñ
#

➌ ➺Ö➟ ➥
!

Ö ➍ ➎ ➀ ➙ ➟ ➉ ➎ ➓ ➍ ➓ ➏ ➑ ➎ ➏ ➤ ➍ ➏ ➐ ➏ ➐ ➑ → ↔ ➊ ➡ ➑ ➓ ➉ ➠Ö ✆Ø ➙ Ô ➞ ➀ ➝
p

➌ ➇ ❾
#

➌ ➺Öß ➡ ➎ ➣ ➚ ➑ ➏ ↔ ➊ ➇ ➌ ➮ ➮ ❿ ➝ ➇ ➹ ✝ Ò ➓ ➍ ➎ ➜ ➏ ➐ ➑ ➓ ➑ → ↔ ➊ ➡ ➑ ➓ ↔ ➎ ➣ ➏ ➐ ➑ ➸ Ô Õ ➸ ➄ ➏ ➉ ➏ ↔ ➊
➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➍ ➑ ➓ ➣ ➑ ➔ ➍ → ➑ ➣ ➠ ➔ ➉ ➥ ➏ ➐ ➑ ➔ ➉ ➏ ↔ ➏ ➍ ➉ ➎ ↔ ➊ ➣ ➍ ↔ ➜ ➔ ↔ ➥ ➥ ➑ ➏ ➐ ➉ ➣

➙ ➟ ➥
!

Ö ↔ ➎ ➣ ➟ ➥
!

Ö ➝ ➞ ➤ ➑ ➜ ➑ ➏➹ ✆ ➹ ☎Ø
p

➌ ➇ ❾
#

➌ ➺ Ø
p ➬ ➇ ➮

#
➌ ➺á ✞➸ Ô Õ ➸ ➄ ↔ ➒ ➡ ➎ ➣ ↔ ➎ ➟ ➑ ➓ ➉ ➠ ↔ ➎ ➣ ➠ ➉ ➔ ➆ ↔ ➎ ➣

! ➹ ✝ ! ➹ ➹❒ ➇ à
#

➌ ➺ ❿ ➇ ➬ #
➌ ➺

➀ ➞ ➔ ➑ ➓ ➦ ➑ ➟ ➏ ➍ → ➑ ➊ ➚ ➻ ➍ ➇ ➑ ➇ ➞ ➸ Ô Õ ➸ ➄ ➍ ➓
∼

❿ ➺ ➏ ➍ ➥ ➑ ➓ ➥ ➉ ➔ ➑ ↔ ➒ ➡ ➎ ➣ ↔ ➎ ➏ ➍ ➎ ➆
➏ ➐ ↔ ➎ ➍ ➎ ➀ ➇ ➆ ➔ ➉ ➏ ↔ ➏ ➍ ➉ ➎ ↔ ➊ ➣ ➍ ↔ ➜ ➔ ↔ ➥ ➟ ➉ ➡ ➊ ➣ ➎ ➉ ➏ ➒ ➑ ➣ ➔ ↔ ➤ ➎ ➠ ➉ ➔ ➏ ➐ ➑
Ô ➸ ➁ ➁ ➸ Ô Õ ➏ ➔ ↔ ➎ ➓ ➍ ➏ ➍ ➉ ➎ ➓ ↔ ➓ ➏ ➐ ➑ ➚ ➐ ↔ → ➑ ➓ ➍ ➥ ➍ ➊ ↔ ➔ ➡ ➦ ➦ ➑ ➔ ➑ ➎ ➑ ➔ ➜ ➚ ➊ ➑ → ➑ ➊ ➓ ➞
➒ ➡ ➏ ↔ ➓ ➓ ➡ ➥ ➍ ➎ ➜ ✁ ➙ ➸ ↔ Û ↔ ➡ ❰ ➑ ➏ ↔ ➊ ➇ ❿ ➺ ➺ ➬ ➝ ➤ ➑ ➜ ➑ ➏ Ô ➸ ➁ ➁ ➸ Ô Õ✂

∼
➋ ➺✟ ✠ ✡➟ ➉ ➊ ➡ ➥ ➎ ➣ ➑ ➎ ➓ ➍ ➏ ➍ ➑ ➓ ➉ ➠ ➟ ➥

!
Ö ↔ ➎ ➣➹ ×Ø

p
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ABSTRACT

We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core–
like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in
which such complex molecules have been searched for and reported, the other source being IRAS 16293!2422. It
is therefore likely that compact (a few tens of AU) regions of dense and warm gas, where the chemistry is
dominated by the evaporation of grain mantles and where complex molecules are found, are common in low-mass
Class 0 sources. Given that the chemical formation timescale is much shorter than the gas hot-core crossing time, it
is not clear whether the reported complex molecules are formed on the grain surfaces (first-generation molecules)
or in the warm gas by reactions involving the evaporated mantle constituents (second-generation molecules). We
do not find evidence for large differences in the molecular abundances, normalized to the formaldehyde abun-
dance, between the two solar-type protostars, suggesting perhaps a common origin.

Subject headinggs: ISM: abundances — ISM: individual (NGC 1333 IRAS 4A) — ISM: molecules —
stars: formation

1. INTRODUCTION

There is strong support from the composition of cometary
and meteoritic materials for the notion that the solar nebula,
from which the planets formed, passed through a phase of
warm, dense gas with a rich chemistry. While much observa-
tional effort has been dedicated to the study of such hot cores
around massive protostars, hot cores around low-mass proto-
stars have received little attention. Only very recently has the
first hot core around a solar-type protostar been discovered,
toward the typical Class 0 source IRAS 16293!2422 (hereafter
IRAS 16293), exhibiting all characteristics of such regions:
warm temperature (>100 K) and high density (>107 cm!3;
Ceccarelli et al. 2000a), high abundance of hydrides (CH3OH,
H2CO, H2O; Ceccarelli et al. 2000a, 2000b; Schöier et al.
2002), high deuteration levels (>10%; Ceccarelli et al. 1998,
2001; Parise et al. 2002; Roberts et al. 2002), and complex mol-
ecules (HCOOCH3, HCOOH, CH3OCH3, CH3CN, C2H5CN;
Cazaux et al. 2003). The definition of ‘‘hot core’’ used for
massive protostars implies the presence of a relatively large
amount of warm and dense gas, along with a complex chemistry
triggered by the grain mantle evaporation (e.g., Walmsley et al.
1992). In order to make clear that hot cores of low- and high-
mass protostars are, however, substantially different in the
amount of material involved, we use hereafter the term ‘‘hot

corino’’ to identify the warm inner regions of the envelope
surrounding the low-mass protostars.
The chemical composition of the (massive) hot cores is

thought to reflect a variety of sequential processes (Walmsley
et al. 1992; Charnley et al. 1992; Caselli et al. 1993; Charnley
1995; Rodgers & Charnley 2001, 2003). Specifically, in the
precollapse cold cloud phase, simple molecules form on grain
surfaces by hydrogenation of CO and other heavy elements
(notable examples are H2CO, CH3OH, and H2S). Upon heat-
ing by a newly formed star, these molecules, called ‘‘first-
generation’’ or ‘‘parent’’ molecules, evaporate into the gas and
undergo fast neutral-neutral and ion-neutral reactions produc-
ing complex organic molecules, i.e., ‘‘second-generation’’ or
‘‘daughter’’ molecules. The first part of this sequence (the for-
mation of fully hydrogenated molecules on the grain surfaces)
has been demonstrated to occur around low-mass protostars
by studies of the multiply deuterated molecules formaldehyde
(Ceccarelli et al. 1998; Bacmann et al. 2003), methanol (Parise
et al. 2002, 2004), and sulfide (Vastel et al. 2003). Evaporation
from grain mantles of these first-generation species (in par-
ticular H2CO and CH3OH) has been observed in IRAS 16293
(Ceccarelli et al. 2000b; Schöier et al. 2002) and in about a
dozen low-mass protostars (Maret et al. 2004). However,
since the timescale necessary to convert first-generation mo-
lecules into complex, second-generation molecules (around
104–105 yr; e.g., Charnley et al. 1992, 2001) is much longer
than the transit time of the gas in the hot corinos (a few hun-
dred years; e.g., Schöier et al. 2002), the formation in the
gas of second-generation molecules seems improbable (e.g.,
Schöier et al. 2002). The detection of a high abundance of
complex molecules in the hot core of IRAS 16293 (Cazaux
et al. 2003) has evidently been a challenge to the simple the-
oretical sequence described above. The key question has
shifted from ‘‘Is a hot core present in low-mass protostars?’’ to
‘‘What is the origin of the molecular complexity in these
sources?’’ In particular, there may well be chemical pathways
to complex molecules involving grain surface networks (e.g.,
Charnley 1995). In order to answer this question, more
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observations of other low-mass protostars are necessary. This
will allow the development of a solid observational framework
within which we might search for clues to the formation of
second-generation molecules. As remarked in previous studies,
the question is far from being academic, since the molecules
in the hot corinos constitute the material that will eventually form
the protoplanetary disk and possibly the planets of the forming
Sun-like star.

In this paper we present the first results of a survey we
are carrying out on the sample of Class 0 sources studied by
Maret et al. (2004). Here we report the detection of complex,
second-generation molecules in NGC 1333 IRAS 4A (here-
after IRAS 4A), a well-known Class 0 protostar and a target of
several studies of molecular emission (e.g., Blake et al. 1995).
IRAS 4A is part of the binary system IRAS 4, located in the
NGC 1333 reflection nebula in the Perseus cloud. It is sepa-
rated by 3100 from the other component, IRAS 4B, and was
itself resolved into two components with a separation of 200 by
Lay et al. (1995). The distance to the NGC 1333 cloud is un-
certain (see, e.g., Maret et al. 2002), but assuming a value of
220 pc (derived by Černis 1990, for consistency with previous
work), IRAS 4A has a luminosity of 6 L! and an envelope mass
of 3.5 M! (Sandell et al. 1991). IRAS 4A is associated with a
very highly collimated outflow detected in CO, CS, and SiO
(Blake et al. 1995; Lefloch et al. 1998). Infall motion was
detected by Di Francesco et al. (2001) and Choi et al. (1999) with
an estimated accretion rate of 1:1 ; 10"4 M! yr"1, an inner mass
of 0.7 M!, and an age of #6500 yr (see also Maret et al. 2002).

2. OBSERVATIONS AND RESULTS

The observations were carried out in 2003 June with the
IRAM 30 m telescope. The position used for pointing was
! (2000) ¼ 03h29m10:

s3 and "(2000) ¼ 31
%
1303100. Based on

the observations of IRAS 16293 by Cazaux et al. (2003), we
targeted the following complex molecules: methyl formate,
HCOOCH3 (A and E); formic acid, HCOOH; dimethyl ether,
CH3OCH3; methyl cyanide, CH3CN; and ethyl cyanide, C2H5CN.
Different telescope settings were used in order to include as
many transitions as possible for each molecule. All lines were
observed with a low-resolution, 1 MHz filter bank of 4 ;256
channels split between different receivers, providing a velocity
resolution of#3, 2, and 1 km s"1 at 3, 2, and 1 mm, respectively.
Each receiver was simultaneously connected to a unit of the
autocorrelator, with spectral resolutions of 20, 80, or 320 kHz
and bandwidths between 40 and 240 MHz, equivalent to an
(unsmoothed) velocity resolution range of 0.1–0.4 km s"1.
Typical system temperatures were 100–200 K, 180–250 K, and
500–1500 K, at 3, 2, and 1 mm, respectively.

Two observation modes were used: position switching with
the off position at an offset of !! ¼ "100, !" ¼ þ300, and
wobbler switching with a 11000 throw in azimuth. Pointing and
focus were regularly checked using planets or strong quasars,
providing a pointing accuracy of 300. All intensities reported in
this paper are expressed in units of main-beam brightness
temperature. At 3, 2, and 1 mm, the angular resolution is 2400,
1600, and 1000, and the main-beam efficiency is 76%, 69%, and
50%, respectively.

Figure 1 shows two examples of the low-resolution spectra
we obtained. Detected transitions have been identified using
the JPL molecular line catalog (Pickett et al. 1998) and are
reported in Table 1. We considered as good identifications only
lines with a 3 # detection and a VLSR ¼ 6:8' 0:3 km s"1. We
detected three of the five targeted molecules: 10 transitions for
HCOOCH3 (A and E), 2 for HCOOH, and 9 for CH3CN. We

also have a possible detection for C2H5OH at 90.118 GHz;
unfortunately, no other transition with a low enough energy
and high enough Einstein coefficient was contained within the
frequency ranges we observed to confirm the correct identifi-
cation. No transitions of CH3OCH3 and C2H5CN were detected
to a noise limit of 6 and 2 mK, respectively. All detected lines,
with a few exceptions, have line widths #2"3 km s"1, likely
due to the presence of unresolved triplets or to the contami-
nation of unidentified lines. In order to derive the rotational
temperature and column density, we built rotational diagrams
(Fig. 2) in which the observed fluxes were corrected for beam
dilution, assuming a source size of 0B5 (derived from a hot core
radius of 53 AU and a distance of 220 pc, as found by Maret
et al. 2004). The assumption that the complex molecules are
confined to the hot corino is supported by a Plateau de Bure
interferometric study of IRAS 16293, which shows localized
emission in a region #1B4 around the protostar (Bottinelli
et al. 2004).

The rotational temperatures, total column densities, and
abundances for the detected molecules are presented in Table 2.
Note that the large errors in the HCOOH (this work) and
CH3OCH3 (Cazaux et al. 2003) abundances are due to a poor
constraint of the rotational temperature, and hence column

Fig. 1.—Two low-resolution spectra obtained during our observations of
IRAS 4A. Lines that are not labeled are unidentified. The rms noise level is
2 mK (top spectrum) and 12 mK (bottom spectrum). The spectral resolution is
3.3 km s"1 (top) and 1.2 km s"1 (bottom). The VLSR is 7.0 km s"1. Known
transitions are indicated but not all of them are detections, e.g., HCOOCH3 at
90.145 GHz is not considered as such, but the upper limit derived from it is
consistent with the rotational diagram of Fig. 2.
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density, of these two molecules, even though each molecule is
clearly detected in each case.

3. DISCUSSION AND CONCLUSION

The most important result of the present work is the detec-
tion of complex molecules in the hot corino of IRAS 4A, the
second Class 0 protostar in which those molecules have been
searched for, after IRAS 16293 (Cazaux et al. 2003). This
result demonstrates that as soon as a warm region is created in
the center of the envelope of low-mass protostars, complex
molecules are readily formed and/or injected on timescales
lower than the estimated Class 0 source ages (!5 ; 104 yr in
IRAS 16293 and!6500 yr in IRAS 4A; e.g., Maret et al. 2002)
and, most importantly, shorter than the transit time in the hot
corinos. The latter is !400 and !120 yr in IRAS 16293 and
IRAS 4A, respectively, based on the hot corino sizes quoted in
Maret et al. (2004) and assuming free-falling gas.

We compare the measured composition of the hot corino of
IRAS 4A to IRAS 16293 (Cazaux et al. 2003) and the massive
hot core of OMC-1 (Sutton et al. 1995) in Table 2. Note that the
latter abundances are derived from single-dish measurements
with a 1400 beam, which encompasses several hot cores (Wright
et al. 1996). Unfortunately, not all the molecules considered here
have interferometric measurements available, so we can only use
these 1400 beam-averaged estimates of the abundances.

The first remark is that the absolute abundances of the ob-
served molecules are 1 order of magnitude smaller in IRAS 4A
than in IRAS 16293, but their relative abundances with respect
to H2CO are quite similar, with the exception of methanol,
which is underabundant with respect to H2CO by about a fac-
tor of 10 in IRAS 4A (Fig. 3). There are two reasons to con-
sider abundances with respect to formaldehyde. The first one is

observational: while the IRAS 16293 hot core has now been
imaged with the Plateau de Bure Interferometer (Bottinelli
et al. 2004) and its size confirmed to be !1B4, the IRAS 4A
core size is only indirectly estimated from dust continuum
single-dish (1200) observations to be 0B5, and no interferometric
observations are available yet with such a high resolution. So
the IRAS 4A core size might be wrong by up to a factor of 3
(Maret et al. 2004) and the abundances by up to a factor of 10,
i.e., the absolute abundances of IRAS 4A could be comparable
to those of IRAS 16293. Using abundance ratios allows us to
remove this size uncertainty. The second reason is theoret-
ical: ‘‘standard’’ hot-core models predict that molecules like
methyl formate or methyl cyanide are second-generation mol-
ecules formed in the warm gas from the evaporated grain
mantle constituents (formaldehyde, ammonia, andmethanol; e.g.,
Charnley et al. 1992; Caselli et al. 1993; Rodgers & Charnley
2003). It is therefore interesting to compare the abundances of
the complex molecules to those of one of these supposed parent
molecules. Formaldehyde was chosen because we only have
an upper limit on the methanol abundance (S. Maret et al. 2004,
in preparation), and no measurements of the ammonia abundance
are available.
A possible interpretation for the similarity in the complex

molecules’ relative abundances, with respect to H2CO and not
with respect to CH3OH, is that the former is the mother mol-
ecule of the observed O-bearing species, e.g., likely the case
of HCOOCH3 (Charnley et al. 1992), and that the chemical
evolution timescale is shorter than the age of the youngest
source. Charnley et al. (1992) also predict that methanol is the
mother molecule of CH3OCH3, but we cannot say whether the
available data confirm this hypothesis, since we only have an
upper limit on the abundance of this molecule in IRAS 4A and

TABLE 1

Molecular Lines Detected toward IRAS 4A

Molecule Transition Line

Frequency

(MHz)

Eu
a

(cm"1)

!V
b

(km s"1)

!V
c

(km s"1)

Tmb

(mK)

R
Tmb dV

(K km s"1)

rmsd

(mK)

HCOOCH3-A ............................. 72, 5–62, 4 90156.5 13.7 0.5 1.5 22 0.036 5

80, 8–70, 7 90229.7 13.9 0.5 2.5 16 0.041 5

83, 6–73, 5 98611.1 18.9 0.2 1.2 28 0.036 7

84, 5–74, 4 98682.8 22.2 1.9 4.2 95 0.042 2

HCOOCH3-E.............................. 72, 5–62, 4 90145.7 13.7 0.5 1.3 14 0.019 5

80, 8–70, 7 90227.8 14.0 0.5 3.1 16 0.055 5

83, 6–73, 5 98607.8 18.9 0.9 3.8 13 0.054 4

84, 5–74, 4 98711.7 22.2 0.2 1.4 22 0.034 7

202, 18–192, 18 226713.1 83.6 0.8 1.0 89 0.099 26

203, 18–193, 17 226773.3 83.6 0.8 2.1 54 0.121 19

HCOOH ..................................... 42, 2–32, 1 90164.5 16.4 0.5 0.8 16 0.015 5

62, 4–52, 3 135737.7 24.6 1.4 1.8 15 0.029 5

CH3CN
e...................................... 63, 0–53, 0 110364.6 57.6 0.8 5.1 20 0.110 6

62, 0–52, 0 110375.1 32.8 0.8 2.3 46 0.112 6

61, 0–51, 0 110381.5 17.9 0.8 3.4 67 0.241 6

60, 0–50, 0 110383.6 12.9 0.8 4.3 76 0.347 6

144, 0–134, 0 257448.9 143.9 1.2 3.3 40 0.141 12

143, 0–133, 0 257482.7 109.1 0.4 2.6 53 0.150 19

142, 0–132, 0 257507.9 84.3 0.4 3.1 59 0.195 19

141, 0–131, 0 257522.5 69.4 0.4 2.2 74 0.172 19

140, 0–130, 0 257527.4 64.4 1.2 3.8 68 0.274 12

a Energy of the upper level of the transition.
b Spectral resolution of the observation (when possible, the integrated intensity was derived from the high-resolution data).
c Width of the observed line.
d Computed over the line width.
e All the CH3CN lines are (unresolved) triplets. The quoted signal is the integral over each triplet. Larger line widths could be due to the larger spacing between

the components of the triplets.
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a large error in IRAS 16293. Similarly, the N-bearing mole-
cules CH3CN and C2H5CN could both be daughters of the
same mother molecule, probably ammonia. This would imply
that the two sources have a similar ammonia mantle abun-
dance. Alternatively, some or all of the reported molecules are
possible mantle constituents themselves. This may be the case
for formic acid, as predicted by Tielens & Hagen (1982) and
suggested by the observational study by Liu et al. (2001).
Moreover, the analysis of Infrared Space Observatory (ISO)
absorption spectra toward the massive hot core W33A (e.g.,
Schutte et al. 1997) is consistent with the presence of solid
formic acid and would also support the idea of this species
being a mantle constituent. However, these considerations do
not take into account the evolutionary state of the objects,
and the fundamental question is: does the abundance of any
of these complex molecules have anything to do with the age

Fig. 2.—Rotational diagrams of the detected molecules, corrected for beam
dilution. Arrows show the upper limits for the transitions that have not been de-
tected, and lines represent the best fit to the data. Top: Asterisks and solid lines are
associated with HCOOCH3-A and diamonds and dotted lines with HCOOCH3-E.
Bottom: Asterisks and solid lines are associated with CH3CN and diamonds and
dotted lines with HCOOH. Error bars are derived assuming a calibration uncer-
tainty of 10% on top of the statistical error. The excess of emission of the CH3CN
transition at 210 K is probably due to contamination from unknown line(s).

Fig. 3.—Abundances of the observed species (reported on the x-axis) nor-
malized to the H2CO abundances. Asterisks refer to the OMC-1 hot core,
squares to the hot corino of IRAS 16293, and diamonds to the corino of
IRAS 4A. Arrows represent upper limits in IRAS 4A derived from our ob-
servations. No errors were quoted by Cazaux et al. (2003) for the HCOOH
abundance, which was determined from two transitions only and is rather
uncertain.

TABLE 2

Results from the Rotational Diagrams for IRAS 4A, in Comparison with IRAS 16293 and the Massive Hot Core OMC-1

IRAS 4A

Molecule

Trot
(K)

Ntotal

(cm!2) X a

IRAS 16293
b

X

OMC-1
c

X

HCOOCH3-A ................................. 36d 5.5 " 2.7 E16 3.4 " 1.7 E!8 1.7 " 0.7 E!7 1 E!8

HCOOCH3-E.................................. 36 " 5 5.8 " 1.1 E16 3.6 " 0.7 E!8 2.3 " 0.8 E!7 1 E!8

HCOOH ......................................... 10 " 6 7.3 " 13.0 E15 4.6 " 7.9 E!9 #6.2 E!8 8 E!10

CH3CN........................................... 27 " 1 2.6 " 0.3 E15 1.6 " 0.2 E!9 1.0 " 0.4 E!8 4 E!9

CH3OH........................................... . . . . . . $7 E!9e 3 E!7 1 E!7

H2CO.............................................. . . . . . . 2 E!8f 1 E!7g 7 E!9

Upper Limits

CH3OCH3....................................... 36d $4.5 E16 $2.8 E!8 2.4 " 3.7 E!7 8 E!9

C2H5CN.......................................... 27h $1.9 E15 $1.2E!9 1.2 " 0.4 E!8 3 E!9

a Assuming an H2 column density in the hot corino of N (H2) ¼ 1:6 ; 1024 cm!2 (from Maret et al. 2004).
b From Cazaux et al. (2003).
c From Sutton et al. (1995).
d Trot assumed to be similar to the one derived for HCOOCH3-E.
e From S. Maret et al. (in preparation).
f From Maret et al. (2004).
g From Ceccarelli et al. (2000b).
h Trot assumed to be similar to the one derived for CH3CN.
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and/or evolutionary stage of the protostar, or is it dominated by
the initial mantle composition? Evidently, two sources are not
enough to answer this question, and observations of more low-
mass sources are required.

Regarding the comparison with the massive hot core(s) in
Orion, Figure 3 would suggest that, with respect to formalde-
hyde, there is a deficiency of methanol and of N-bearing
complex molecules in the low-mass hot corinos. It is possible
that these differences are mostly due to a different grain mantle
composition, i.e., to a different precollapse density. However,
recall that the abundance ratios of CH3CN and CH3OH in
Figure 3 refer to the 1400 beam-averaged values around the
OMC-1 hot core, which in fact includes several smaller cores
(Wright et al. 1996). Therefore, in order to make precise com-
parisons, higher resolution observations of the OMC-1 hot core
are needed. It is also worth noting that if we consider, for
example, the measurements by Wright et al. (1996) in the
compact ridge component (a region about 1000 away from the

hot core central position, which is also a site of mantle evap-
oration and of active gas-phase chemistry; e.g., Charnley et al.
1992), the CH3CN and CH3OH abundance ratios with respect
to H2CO are (surprisingly) close to those found for the hot
corinos of IRAS 16293 and IRAS 4A. Hence, interferometric
observations of a larger number of massive hot cores are
necessary to provide a significant comparison of the hot cori-
nos with their high-mass counterparts.
In summary, although the present observations do not allow

us to determine why and how complex molecules are formed,
they do show that hot corinos, in the wide definition of chem-
ically enriched regions, are a common property of solar-type
protostars in the early stages. The evidence is that the types of
complex molecules that are formed are determined primarily by
the composition of the grain mantles. At this stage, it is not clear
whether the evolutionary stage of the protostar plays any role at
all, other than governing the presence and size of the mantle
evaporation region.
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Abstract. Evidence for a large scale flow of low density gas onto the Cepheus A young stellar cluster is presented. Observations

of K-band near-infrared and multi-transition CS and N2H+ millimeter line emission are shown in relation to a sub-millimeter

map of the cool dust around the most embedded stars. The near-infrared emission is offset from the dust peak suggesting a

shift in the location of star formation over the history of the core. The CS emission is concentrated toward the core center but

N2H+ peaks in two main cores offset from the center, opposite to the chemistry observed in low mass cores. A starless core

with strong CS but weak N2H+ emission is found toward the western edge of the region. The average CS(2–1) spectrum over

the cluster forming core is asymmetrically self-absorbed suggesting infall. We analyze the large scale dynamics by applying a

one-dimensional radiative transfer code to a model spherical core with constant temperature and linewidth, and a density profile

measured from an archival 850 µm map of the region. The best fit model that matches the three CS profiles requires a low

CS abundance in the core and an outer, infalling envelope with a low density and undepleted CS abundance. The integrated

intensities of the two N2H+ lines is well matched with a constant N2H+ abundance. The envelope infall velocity is tightly

constrained by the CS(2–1) asymmetry and is sub-sonic but the size of the infalling region is poorly determined. The picture of

a high density center with depleted CS slowly accreting a low density outer envelope with normal CS abundance suggests that

core growth occurs at least partially by the dissipation of turbulent support on large scales.

Key words. radio lines: ISM – stars: formation – ISM: kinematics and dynamics – ISM: molecules – ISM: abundances –

radiative transfer

1. Introduction

Most stars, particularly massive stars, form in groups (e.g.,

Carpenter 2000). It is therefore essential to study cluster form-

ing regions in order to understand more completely the way

in which the majority of stars are formed. Isolated low mass

star formation occurs via the nearly isothermal free-fall col-

lapse of a dense molecular cloud core, followed by the evolu-

tionary phases Class 0, I, II and III objects (e.g., Evans 1999).

However, the applicability of this paradigm to the formation

of massive stars is debated (Garay & Lizano 1999): for exam-

ple, massive stars begin burning hydrogen and reach the main

sequence while still accreting matter from the surrounding pro-

tostellar envelope and they can also develop strong winds, both

of which will strongly affect the physical conditions, structure

and chemistry of their surroundings. Due to the shape of the

IMF and the fact that they evolve faster, massive protostars are

rarer (and therefore more distant on average) than low mass

protostars. Consequently fewer Class 0 massive protostar coun-

terparts have been studied in detail. It is only recently that cat-

alogs of high-mass protostellar objects have been made (e.g.,

Sridharan et al. 2002).

Send offprint requests to: S. Bottinelli,

e-mail: sandrine@ifa.hawaii.edu

The molecular cloud core Cepheus A East (hereafter

Cep A) is a nearby site of massive star formation (Sargent

1977) located in the Cepheus OB association at a distance of

725 pc (Blauuw et al. 1959). The far-IR luminosity is 2.4 ×

104 L⊙ (Evans et al. 1981), corresponding to a small cluster of

B stars. Cep A harbors one of the first molecular bipolar out-

flow sources discovered (Rodrı́guez et al. 1980). Higher spatial

resolution CO observations showed the outflow to be extremely

complex, and it was termed quadrupolar (Torrelles et al. 1993).

The fastest components of this outflow are bipolar and oriented

northwest-southeast (Rodrı́guez et al. 1980), perpendicular to

the low velocity CO structure. The slower and more extended

component has been interpreted as the diverting and redirecting

of the main outflow by the interaction with interstellar high-

density gas, seen in NH3 lines by Torrelles et al. (1993). Ultra

compact H  regions and a diffuse thermal dust emission source

have been identified from 20 µm maps and 6 cm low-resolution

VLA observations by Beichman et al. (1979). Seven ionized

hydrogen complexes lie in “strings” that form a “Y” tilted to

the east (Hughes & Wouterloot 1984), the bifurcation point

of which is coincident with the exciting source of the molec-

ular outflow. A cluster of compact radio sources have been

identified as pre-main-sequence stars by Hughes (1988) due

to their variability and the presence of OH and H2O maser
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emission. From subsequent ammonia VLA observations,

Torrelles et al. (1993) proposed that one of these radio sources,

HW2, is a ∼10–20 M⊙ protostar. The larger core surround-

ing the cluster has temperature 35 K and mass 200−300 M⊙
(Moriarty-Schieven et al. 1991). On the basis of its protostellar

content, high luminosity and low temperature, and following

the bolometric temperature definition of Chen et al. (1995), the

Cep A core may be considered a high mass Class 0 source.

In order to examine the properties of this young, massive

cluster forming region, we obtained near-infrared and millime-

ter wavelength multi-transition CS and N2H+ data. The obser-

vations are discussed in Sect. 2. We derive the density profile

from 850 µm continuum measurements and fit core-averaged

spectra using a 1-D radiative transfer model in Sect. 3. Our

results indicate large CS depletion in the central core and an

outer undepleted accreting layer. We discuss these results and

conclude in Sect. 4.

2. Observations

2.1. Millimeter data

Observations were made with the 10 antenna Berkeley-Illinois-

Maryland array1 (BIMA) for two 8 h tracks in CS(2–1) in April

and May 1998 and one 8 h track in N2H+(1–0) in May 1998,

all in C-array. A seven field hexagonal mosaic was made with

phase center, α(2000) = 22h56m18.s9, δ(2000) = 62◦01′42.′′6.

Amplitude and phase were calibrated using 5 min observa-

tions of 2322+509 interleaved with each 25 min integration on

source. The calibrator flux was 0.66 ± 0.22 Jy based on obser-

vations of Uranus during the middle of each track. The correla-

tor was configured with two sets of 256 channels at a bandwidth

of 12.5 MHz (0.15 km s−1 per channel) in each sideband and a

total continuum bandwidth of 800 MHz. Data reduction was

carried out using standard procedures in the MIRIAD package.

The final maps covered a hexagonal region ∼3.′5 × 3.′5 region

at ∼9′′ × 7′′ resolution.

Complementary single-dish maps of the same lines were

made at the Five College Radio Astronomy Observatory2

(FCRAO) 14-m telescope in December 1999 using the

SEQUOIA 16 beam array receiver and the FAAS backend con-

sisting of 15 autocorrelation spectrometers with 1024 channels

set to an effective resolution of 24 kHz (0.06 km s−1). The CS

and N2H+ lines were observed simultaneously in frequency

switching mode. The pointing and focus were checked every

three hours on nearby SiO maser sources. Third order base-

lines were removed from the data and spectra coadded using

the CLASS package. The resolution of the data is 50′′ and the

final maps were Nyquist sampled over 8′ × 8′ centered on the

BIMA phase center. A single spectrum of C34S(2–1) was also

taken toward the map center using the same setup.

1 The BIMA array is operated with support from the National

Science Foundation under grants AST-9981308 to UC Berkeley,

AST-9981363 to U. Illinois, and AST-9981289 to U. Maryland.
2 FCRAO is supported in part by the National Science Foundation

under grant AST-0100793 and is operated with permission of the

Metropolitan District Commission, Commonwealth of Massachusetts.

The FCRAO data were combined with the BIMA data us-

ing maximum entropy deconvolution (using a gain for FCRAO

at these frequencies of 43.7 Jy K−1). The resulting maps show

the large scale structure observed in the single-dish map at the

∼10′′ resolution of the interferometer map. These maps have an

rms noise of 0.2 and 0.4 K per 0.5 km s−1 channel, for CS (2–1)

and N2H+ (1–0) respectively. All the flux is recovered in the

combined map but features at intermediate scales, in the range

70′′−100′′, may be poorly represented (e.g., Williams et al.

2003).

Observations of CS(5–4), CS(7–6) and N2H+(3–2)

were made at the Heinrich Hertz Telescope3 (HHT) in

November 1999. The data were taken using the SIS-230 and

SIS-345 receivers and AOS backend (2048 channels, 48 kHz

resolution) in on-the-fly (OTF) mode. Pointing and focus were

checked using observations of Saturn and Orion IRc2. The fi-

nal maps, made from several OTF maps in orthogonal scan di-

rections, were coadded and first order baselines removed us-

ing the CLASS package. The resolution of the observations is

31′′, 22′′, and 27′′ for CS(5–4), CS(7–6) and N2H+(3–2) re-

spectively and the final maps covered 3.′5 × 3.′5, with an rms

noise of 0.4 K per 0.5 km s−1 channel.

To compare the near-infrared and millimeter wavelength

line data with the cool dust emission around the most em-

bedded (Class 0 counterpart) stars in the cluster, we down-

loaded archival SCUBA observations taken on the James Clerk

Maxwell Telescope in August 1997 and reduced them using the

SURF package.

2.2. Infrared data

Cep A was observed on the University of Hawai’i 2.2 m

telescope at the f /10 focus with QUIRC (QUick InfraRed

Camera) in K band (2.200 µm) in July and August 2003. The

plate scale of the telescope is 0.1886 arcsec pixel−1 and the

field-of-view 193′′ × 193′′. The total on source integration time

was 23.2 min. The average seeing was 1.′′1 FWHM. The ob-

servations were carried out by taking alternate object and sky

exposures. All frames were flat-fielded using a normalized in-

candescent light dome flat. Sky frames were obtained by com-

puting the median of several sky exposures close in time to a

given object frame. The sky frames were subtracted from the

object frames. The individual images were registered and co-

added to produce a single image. Unfortunately, the conditions

were non-photometric but we conservatively estimate that we

should be able to detect to a limiting magnitude of at least 19,

which is 3.4 mag fainter than 2MASS.

3. Analysis

3.1. Continuum and line maps

Figure 1 shows contours of the 850 µm continuum emission

overlaid on the grayscale K-band image. Note that for 35 K

3 The HHT is operated by the Submillimeter Telescope Observatory

on behalf of Steward Observatory and the Max-Planck-Institut fuer

Radioastronomie.
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Fig. 1. Grayscale K-band image over-plotted with SCUBA 850 µm contours of Cep A showing the stellar and dust content. The central position

is at α(2000) = 22h56m18.s9, δ(2000) = 62◦01′42.′′6. The 850 µm contours start at 1 Jy beam−1 and increment by 2 Jy beam−1. The large and

small white plus signs show the location of the IRAS and MSX point sources respectively (each with a positional accuracy of less than 5′′).

The small white circle near the center of the map marks the location of the high mass protostar, HW2. The arrows show the direction of the

bipolar CO outflow observed by Rodrı́guez et al. (1980). The dashed circle at the western edge of the map shows the location of the starless

core seen in the CS maps and the dotted circle, centered at (10, 10) with diameter 2′ defines the region over which the spectral line averages

were calculated.

dust and the SCUBA beamsize of 14′′, 1 Jy beam−1 corre-

sponds to a visual extinction, AV = 24, or an extinction at

K-band, AK = 2.4. The infrared nebulosity lies within the ex-

tended sub-millimeter emission (AK ∼ 5−8) but is offset from

the peak. There is one IRAS and one MSX point source in the

region, slightly offset from each other. The IRAS-HiRes 12 µm

and MSX 10 µm emission are both associated with the near-

infrared nebulosity, but the 60 µm IRAS-HiRes image peak is

closer to the maximum of the 850 µm map, which traces the

cooler dust. This suggests a spread in ages and location of star

formation in Cep A, with the youngest protostars more deeply

embedded in the core and invisible at near- and mid-infrared

wavelengths.

Spectral line maps and their comparison with the dust emis-

sion are shown in Figs. 2 and 3. In each case the emission

has been integrated over the full extent of the line, including

all hyperfine components in the case of N2H+. Figure 2 shows

the combined BIMA+FCRAO data at 10′′ resolution. Figure 3

shows these maps and the higher transition data smoothed to a

uniform resolution of 30′′. Due to their high dipole moments,

CS and N2H+ both trace high volume densities over a range,

nH2
∼ 104

−106 cm−3, for these transitions. The complex struc-

ture apparent in the line maps contrasts with the relative sim-

plicity of the dust continuum emission. The spatial distribu-

tion of N2H+ is similar to that of the ammonia (Torrelles et al.

1993) and generally follows the 850 µm continuum emission,

but N2H+ is notably absent toward the core center where the CS

is strongest. This behavior is opposite to the situation in low

mass cores where N2H+ is more centrally concentrated than CS

(Tafalla et al. 2002).

The maps also reveal an apparently starless core located

∼90′′ to the west of the bright 850 µm peak, indicated by a

dashed circle in Fig. 1. The core is detected in CS(2–1) and (5–

4) but has only very weak N2H+(1–0) emission (Fig. 2) and no

stars are seen in the near-infrared image. This core is on the

edge of the SCUBA map where there is extended emission but
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Fig. 2. Comparison of line and dust emission. The line maps have a resolution of 10′′ and are contoured with starting levels and increments

equal to 4.0 K km s−1 for CS (2–1) and 5.0 for N2H+ (1–0). The dust emission has a resolution of 14′′ and is shown as a grayscale ranging

from 1 to 15 Jy beam−1. Symbols are as in Fig. 1.

no significant peak. The presence of CS (5–4) emission indi-

cates large enough densities that we would expect to observe

N2H+ emission, as in the large core. Since this emission is

very weak, there must be a variation of abundances between the

two cores. Potential reasons for the wide range of abundances

throughout the region are discussed in Sect. 4.

3.2. Radiative transfer modeling

Our understanding of the structure and dynamics in Cep A is

complicated by the small scale chemical variations within the

core. Henceforth, we restrict attention to the large scale prop-

erties of the region as if observed with a 2′ Gaussian beam

centered at offset (10, 10). The size and location of the aver-

aging region was chosen so as to be broadly centered on the

sub-millimeter continuum map but also to include the most

prominent CS and N2H+ structures within the core. The av-

eraging region is indicated on the continuum and line maps in

Figs. 1 and 3. Averaged line profiles are displayed in Fig. 4.

This figure also includes the line profile for C34S(2–1). This

isotopomer of CS, which is less abundant and therefore opti-

cally thinner, peaks near the same velocity as the dip in the

average CS(2–1) spectrum. We therefore conclude that the two

peaks in the latter are due to radiative effects (self-absorption)

and not to two kinematically independent features along the

line of sight. Although individual CS profiles show both blue-

and red-shifted self-absorption that may be due to a mix of in-

fall, outflow, and rotation (Di Francesco et al. 2001), the aver-

age CS(2–1) profile has a blue-shifted peak brighter than the

red-shifted one, indicating that infall is the dominant effect on

the scale of the core (Leung & Brown 1977).

In order to examine the properties of the large scale struc-

ture and dynamics, we modeled the core average line pro-

files using the radiative transfer code, ratran (Hogerheijde &

van der Tak 2000). Collisional rate coefficients for CS are from

Turner et al. (1992) and for N2H+ from Monteiro (1985, and

references therein). From the brightness temperature of the

N2H+ and assuming an excitation temperature equal to the dust

temperature, 35 K, we estimate the optical depth of each hy-

perfine component to be less than 0.1. For the purposes of the

modeling, therefore, we can ignore the complicated hyperfine

structure (7 components at J = 1–0 and 45 at J = 3–2) and sim-

ply match the integrated intensity of each rotational transition.

The inputs to the radiative transfer model include the den-

sity, temperature, and velocity structure of the core and the

abundances of each molecule. However, many parameters are

constrained by related observations and results. The remaining

free parameters, eight in all, were then varied so as to fit the

profiles of each of the three CS transitions and the integrated

intensity of the two N2H+ transitions.

3.2.1. Model inputs

The 850 µm map in Fig. 1 allows us to measure the column

density profile of the core and thereby estimate the volume den-

sity. Since the radiative transfer model is one-dimensional, we

approximated the density structure as a radial function by cal-

culating the average flux in concentric elliptical annuli centered

on the peak of the emission. The equivalent radii were defined

as the geometric mean of the semi-major and semi-minor axes

of each ellipse. The column density was determined by assum-

ing a dust temperature of 35 K (Moriarty-Schieven et al. 1991)

and a mass-opacity κ = 0.02 cm2 g−1 (Ossenkopf & Henning

1994). The volume density was then derived by assuming a

path length through the core equal to twice the equivalent ra-

dius. The resulting density profile was fit to a Plummer-like

model,

nH2
(r) = n0

[

1 +

(

r

r0

)2 ]−α/2

,
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Fig. 3. Line maps of the Cepheus A core shown as grayscale with con-

tours overlayed. Positions are given in offset coordinates with the same

central position as Fig. 1. CS maps are shown in the left panels and

N2H+ in the right. The maps have been smoothed to a uniform 30′′ res-

olution. The contour starting levels and increments for each map are

4.0 K km s−1 (CS 2–1), 4.0 (CS 5–4), 1.5 (CS 7–6), 5.0 (N2H+ 1–0),

and 3.0 (N2H+ 3–2). Note the isolated core in the CS(2–1) map ∼ 90′′

west of center (see text for discussion). The 2′ diameter circle shows

the region over which the data were averaged to analyze the large scale

dynamics of the core, and symbols are as in Fig. 1.

where n0 = 1.1 × 107 cm−3, r0 = 0.02 pc and α = 2.0. The

model discretizes this density profile over nine logarithmically

spaced shells. Both measured and discretized density profiles

are displayed in Fig. 5; there are no data points for radii smaller

than 0.03 pc, the equivalent radius corresponding to a semi-

minor axis of half the 850 µm beamsize, and for radii larger

than 0.18 pc, which corresponds to the extent of the 850 µm

map.

Additional inputs to the model include a temperature of

35 K, derived from a graybody fit to the SED (Moriarty-

Schieven et al. 1991), and a systemic velocity and velocity dis-

persion derived from fitting the optically thin N2H+(1–0) line,

vcore = −10.5 km s−1 and σcore = 1.2 km s−1, respectively. A

constant temperature and velocity dispersion were adequate to

model the core.

To model the observed self-absorption in the CS(2–1) line,

we found that we required a low excitation (and therefore low

density) and low velocity dispersion (σenv = 1.1 km s−1) outer

shell. The low velocity dispersion is required by the narrowness

of the observed absorption dip. The overall model has 10 shells

Fig. 4. Averages of CS and C34S (2–1) (left) and N2H+ (right) spectra

over the central core region outlined by the circles in Figs. 1 and 3.

The heavy solid lines show the observed data and the dashed line

shows the modeled profiles for the CS lines. The multiple peaks in

the N2H+ spectra is due to hyperfine structure which was not mod-

eled (the fits matched only the integrated intensity of each rotational

transition).

therefore, but it can effectively be considered as two layers; a

power law core on the inside and a low density outer envelope.

The free parameters in the model are the inner core cutoff ra-

dius, the size, density, velocity dispersion and relative velocity

of the envelope and the molecular abundances in the core and

envelope.

The values for the molecular abundances were guided by

observations of other cores and theoretical models. In cold

molecular cloud cores prior to star formation, the chemistry

is dominated by low-temperature gas-phase ion-molecule and

neutral-neutral reactions (van Dishoeck & Blake 1998). During

the cold collapse phase, however, the density becomes so high

that many molecules freeze onto grain surfaces. Tafalla et al.

(1998) find that, in low mass star forming cores, the abun-

dances of the tightly bound sulfur-bearing molecules such as

CS begin to exhibit large depletions at densities in the range,

nH2
∼ 2−6 × 104 cm−3. This behavior is in contrast to that

of N2H+ which, due to the low binding energy of the pre-

cursor molecule N2, depletes only at the highest densities
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Fig. 5. Radial profiles of H2 volume density, core-envelope CS abun-

dance and velocity profiles used in the best fit model. Relative mo-

tions in the inner region, r < rcore, were not well constrained by the

data. The thin solid line shows the H2 density profile derived from the

850 µm data (see text).

(Bergin & Langer 1997). Based on these results, we assume

a constant abundance of N2H+ but allow the CS abundance to

vary. As we show later, we fit the data with a simple “jump”

model where the CS is depleted in the inner dense core relative

to a lower density outer envelope. This is a similar abundance

profile to the detailed chemical modeling of the high mass star

forming region, AFGL 2591, by Doty et al. (2002).

3.2.2. Model results

By varying the density, size and velocity of the envelope, and

the CS abundance in the core and envelope, we were able

to fit the integrated intensities of the three observed CS tran-

sitions to within 20% and reproduce the asymmetry in the

(2–1) line reasonably well. The observed and model CS spec-

tra are compared in Fig. 3. The parameters of the fit are tab-

ulated in Table 1, where rcore is the inner core cut-off radius,

renv, nenv and vin = venv − vcore are the size, density and rela-

tive velocity of the outer envelope, and x(CS)core and x(CS)env

are the CS abundances in the core and the envelope

Table 1. Fit parameters.

Parameter Value

rcore 0.26 pc

renv 0.51 pc

nenv 2 × 103 cm−3

σenv 1.1 km s−1

vin −0.22 km s−1

x(CS)core 5 × 10−10

x(CS)env 2 × 10−8

x(N2H+) 3 × 10−11

respectively. The density, velocity, and CS abundance profiles

are graphed in Fig. 5 and annotated with the above parameters.

Simultaneously, the N2H+ (1–0) and (3–2) integrated intensi-

ties were also matched: we found 8.1 and 9.5 K km s−1 respec-

tively for the modeled values, whereas the observed values are

9.7 and 8.2 K km s−1 for the (1–0) and (3–2) transitions re-

spectively. These results correspond to a match of 16 and 15%

respectively. Finally, we also fitted the C34S (2–1) integrated

intensity, using an abundance x(C34S) = x(CS)/30. We found

a modeled value of 1.4 K km s−1 which is within 8% of the

observed value (1.5 K km s−1).

Despite the good overall fit, some slight discrepancies

remain. The observed CS(5–4) is stronger than the model

by 20%. This may be due to calibration error or may reflect a

more complex CS abundance profile in the core. The observed

CS(2–1) profile is slightly narrower than the model spectrum,

perhaps due to the constant linewidth assumption in the core

(the velocity dispersion of cores is expected to decrease with

radius, Larson 1981). A more refined model with additional pa-

rameters would fit the data more closely but probably not with

greater significance.

Since the model reproduces the blue-red peak asymmetry

in the CS(2–1) spectrum well we are confident that we have

accurately measured the average infall speed of the envelope,

vin = −0.22 km s−1. However, the size of the infalling region is

not well determined because the average profiles of the higher

transition CS lines are not self-absorbed and therefore relative

motions of the higher density gas could not be constrained.

Nevertheless, we were unable to model the spectra with a static

outer shell and an inner collapse: no such set of parameters

could reproduce the dip in the CS (2–1) spectrum. That is, our

results indicate a large scale collapse from the outside-in.

4. Discussion and summary

The line observations reveal a complex chemistry in the core.

The CS emission is concentrated toward the center near the

peak of the 850 µm dust emission and the youngest, most em-

bedded protostars. However, the N2H+ map shows two promi-

nent cores offset on either side of the dust peak. The presence

of CS and absence of N2H+ toward the star forming center of

the core is likely due to the fact that neutral molecules released

from the dust grains in the hotter region surrounding the proto-

stars preferentially destroy ions such as N2H+ (Bergin 2000).
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The maps also reveal a small starless core toward the

west of the main core. The relatively strong CS and weak

N2H+ emission toward this core suggests that it has only re-

cently formed (Bergin & Langer 1997). Williams & Myers

(1999) found a starless core with similar chemical properties

in the Serpens NW cluster.

Despite the chemical complexities on small scales, the

average CS(2–1) spectrum is asymmetrically self-absorbed

suggesting large scale collapse. Using the Hogerheijde &

van der Tak radiative transfer code, we fit the average CS

and N2H+ spectra with a spherical model consisting of an in-

ner region with a Plummer-like density profile measured from

archival SCUBA 850 µm data with constant temperature and

linewidth. The best fit model that matches the three CS profiles

has a low CS abundance in the inner region and an outer, in-

falling envelope with a low density and higher CS abundance.

The depletion toward the center matches chemical evolution

model expectations (Bergin & Langer 1997) and the envelope

CS abundance is similar to that in the extended ridge of Orion

(van Dishoeck & Blake 1998). The fit also matched the inte-

grated intensities of the two N2H+ spectra with a constant abun-

dance similar to that found in B68 (Bergin et al. 2002). In prac-

tice the maps show that the N2H+ must deplete toward the core

center (see also Doty et al. 2002) but we have not attempted to

match the complicated small scale chemistry and our model fit

for the N2H+ abundance should only be considered an average,

weighted by column density, over the core.

The CS(2–1) self-absorption requires a large scale outside-

in collapse. The velocity of the collapse could be accurately

measured but the depth of the collapse region could not, due to

the absence of self-absorption in the higher transition CS lines.

At 0.22 km s−1, the infall velocity is sub-sonic for a gas tem-

perature of 35 K. The mass infall rate of the envelope can be

estimated from the ratio of its mass, Menv = 240 M⊙ deter-

mined from its size and density, and the time for the outer edge

to reach the core center,

Ṁin =
Menvvin

renv + rcore

= 7 × 10−5 M⊙yr−1
.

This may only be a lower limit to the total mass infall rate at

the center if the inner region is also collapsing. Nevertheless,

the envelope mass infall rate alone is more than an order of

magnitude higher than typical mass infall rates for solar mass

protostars (Zhou 1995).

Our data do not rule out inside-out collapse motions around

individual protostars at higher densities on smaller size scales

since the τ = 1 surface of the CS(2–1) emission occurs at

low densities and therefore at large scales. The multitude of

sources, powerful outflows, and the complex chemistry would

likely make an investigation of the small scale motions around

individual protostars quite challenging.

On large scales, however, our picture is of a core with a

Plummer-like density profile accreting low density gas sub-

sonically. The CS abundance in the infalling envelope is similar

to undepleted values in the ISM. The dissipation of turbulent

support resulting in “cooling flows” may lead to core growth in

this manner (Nakano 1998; Myers & Lazarian 1998; Williams

& Myers 2000). The growing availability of dust continuum

maps and multi-transition, multi-species line observations will

lead to more refined structural and dynamical modeling and

comparisons between different star forming environments in

the future.
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ABSTRACT

We report the detection of dust emission at submillimeter wavelengths from HD 107146, a G2 V star with an
age estimated to lie between 80 and 200 Myr. The emission is resolved at 450 !m with a size 300 AU ! 210 AU.
A fit to the spectral energy distribution gives a dust temperature of 51 K and a dust mass of 0:10 M". No excess
emission above the photosphere was detected at 18 !m, showing that there is very little warm dust and implying
the presence of a large inner hole, at least 31 AU (#100) in radius, around the star. The properties of this star-disk
system are compared with similar observations of other systems. We also discuss prospects for future obser-
vations that may be able to determine whether the inner hole is maintained by the dynamical effect of an unseen
orbiting companion.

Subject headings: circumstellar matter — planetary systems — stars: individual (HD 107146)

On-line material: color figure

1. INTRODUCTION

Protostellar disks dissipate over a period of several Myr
as their constituent dust and gas either accrete onto the star,
are dispersed by processes such as stellar winds and photo-
evaporation, or aggregate into planetesimals (Hollenbach,
Yorke, & Johnstone 2000). Possible observational examples of
disk systems in the process of dissipating are the ‘‘transitional
disks,’’ a thus far small class of objects that includes sources
such as V819 Tau (Skrutskie et al. 1990), HR 4796A (Jura et al.
1993; Jayawardhana et al. 1998; Koerner et al. 1998; Schneider
et al. 1999; Telesco et al. 2000), and HD 141569A (Weinberger
et al. 1999; Augereau et al. 1999; Fisher et al. 2000).

Dramatic evidence for disk dispersal through planetesimal
formation is the detection of numerous planets, and some
planetary systems, around nearby stars (Marcy, Cochran, &
Mayor 2000). Planetesimals are believed to grow into planets
through collisional agglomeration. However, collisions be-
tween planetesimals are also expected to create a cascade of
smaller particles, and in this way a relatively old circumstellar
disk may regenerate its own dust.

Such second-generation dust was first detected around
main-sequence stars by IRAS (Aumann et al. 1984). The IRAS
results indicated that #15% of main-sequence stars possess
dusty disks (Lagrange, Backman, & Artymowicz 2000), the
brightest of which have been detected at submillimeter
wavelengths (Zuckerman & Becklin 1993; Greaves et al.
1998; Sylvester, Dunkin, & Barlow 2001; see also Wyatt,

Dent, & Greaves 2003). Submillimeter observations are useful
because they place strong constraints on the dust mass of
the disk, because of the low optical depth of dust grains in
the submillimeter compared with their opacities at shorter
wavelengths. Because of their small angular size and weak
emission, only four debris disk systems have been spatially
resolved at these wavelengths to date (Holland et al. 1998;
Greaves et al. 1998). The maps of these systems show inter-
esting asymmetries that have been interpreted as the dynam-
ical signature of a planetary companion (Holland et al. 2003;
Wilner et al. 2002; Greaves et al. 1998).
Although the majority of the well-studied debris (and

transitional) disk systems surround early-type stars (Vega,
Fomalhaut, " Pic, HR 4796A, and HD 141569A are all A
stars), the expectation is that the process of disk dissipation
and the regeneration of dust through planetesimal collisions
is also a part of the evolutionary history of lower mass stars
and, indeed, our own solar system. Thus, it is of considerable
interest to identify debris disks associated with young solar-
mass stars, since the detailed study of these objects can pro-
vide direct insight into the evolutionary history of our solar
system. The # Eri system (d ¼ 3:2 pc) is one exciting example
(Greaves et al. 1998; Hatzes et al. 2000). In this paper, we
present submillimeter observations of a dusty disk around a
close solar analog, the nearby young G2 V star HD 107146.
HD 107146 was first identified as an ‘‘excess dwarf’’ on

the basis of IRAS colors by Silverstone (2000). We observed
it as part of a program to provide ground-based support for
the Formation and Evolution of Planetary Systems Spitzer
Space Telescope Legacy program.7 HD 107146 was selected
for inclusion in the Legacy program based on its distance
(28.5 pc; Perryman et al. 1997) and its high Ca ii H and
K index, log R0

HK ¼ %4:28, which is indicative of youth. An
age range can be estimated from its lithium equivalent width,
125 mÅ (Wichmann, Schmitt, & Hubrig 2003), which places
it at the lower envelope of the 125 Myr Pleiades distribution

1 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive,
Honolulu, HI 96822; jpw@ifa.hawaii.edu, mliu@ifa.hawaii.edu, sandrine@ifa
.hawaii.edu.

2 National Optical Astronomy Observatory, 950 North Cherry Avenue,
Tucson, AZ 85719; najita@noao.edu.

3 Hubble Fellow.
4 Department of Astronomy and Astrophysics, MS 105-24, California

Institute of Technology, 1201 East California Boulevard, Pasadena, CA
91125; jmc@astro.caltech.edu, lah@astro.caltech.edu.

5 Steward Observatory, University of Arizona, 933 North Cherry Avenue,
Tucson, AZ 85721; mmeyer@as.arizona.edu.

6 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore,
MD 21218; drs@stsci.edu.

7 Information concerning this program can be found at http://feps.as
.arizona.edu.

A

414

The Astrophysical Journal, 604:414–419, 2004 March 20

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

183



184 Appendix D. Publications

(Soderblom et al. 1993) but above the distribution for the
250 Myr old M34 (Jones et al. 1997) at the effective tem-
perature of a G2 V star. Wichmann et al. also show that its
space motions are similar to those of the Pleiades moving
group. Its X-ray luminosity, LX ¼ 2 " 1029 ergs s#1 (Voges
et al. 1999), is again similar to those of solar-type Pleiades
stars (Micela et al. 1999) but weaker than that of the average
solar-type stars in the 80 Myr old ! Per cluster (Prosser et al.
1996). Together, these indicators suggest an age for HD
107146 between 80 and 200 Myr. Its location in the H-R
diagram is also consistent with this age range but allows for
the possibility that it may be as young as 30 Myr if the star has
just reached the main sequence.

Our observations, made at submillimeter and mid-IR wave-
lengths, are detailed in x 2. The results from the imaging and
fits to the spectral energy distribution (SED) are presented in
x 3. The SED shows clear evidence for a large inner hole,
although the hole is too small to be resolved in the submilli-
meter maps presented here. In x 4, we compare the properties of
the HD 107146 star-disk system to those of other debris and
transitional disk systems. We also discuss prospects for future
observations that may be able to determine whether the inner
hole is maintained by the dynamical effect of an unseen
orbiting companion.

2. OBSERVATIONS

HD 107146 was mapped using the Submillimeter Common-
User Bolometric Array (SCUBA) at the James Clerk Maxwell
Telescope (JCMT) on Mauna Kea, Hawaii, in dry, stable
conditions during 2003 February 17–19. Precipitable water
vapor levels were less than 0.5–1 mm during the observations
and zenith optical depths ranged from 0.1 to 0.18 at 850 "m
and from 0.4 to 0.85 at 450 "m. Observations were made
simultaneously at 450 and 850 "m using a 64 point ‘‘jiggle’’
pattern to produce Nyquist-sampled images at each wave-
length. Two maps were rejected in the reduction process be-
cause of an error in the telescope tracking software at high
elevation (I. Coulson 2003, private communication). The final
maps presented here are the median of 23 maps made at a
range of image rotation angles on the array rebinned to a 100

rectangular grid in equatorial coordinates. Pointing was
checked between individual maps using Virgo A and 3C 273
and was accurate to an rms error of 2B5. Calibration was
carried out by observing the CRL 618 planetary nebula and
bootstrapped to observations of Mars later in the night. Based
on the gain variations from night to night, the calibration
accuracy is estimated to be 20% at 850 "m and 30% at
450 "m. The total on-source integration time was 4.0 hr, and
the noise in the final maps was 4 and 13 mJy beam#1 at 850
and 450 "m, respectively. The resulting peak signal-to-noise
ratio is $7 in both maps, but the calibration uncertainty
dominates the error in the absolute flux measurements.

We obtained mid-IR photometry of HD 107146 from the
Keck II Telescope on Mauna Kea, Hawaii, using the facility
instrument LWS. We observed the star on 2003 February 19
and 20 UT, using filters centered at 11.7 "m (10.5–12.9 "m)
and 17.8 "m (17.3–18.2 "m). Contemporaneously and at
similar airmasses, we observed the bright standard stars ! CrB
and " UMa from Tokunaga (1988) for photometric calibra-
tion. Both nights were characterized by dry conditions, with
an estimated 0.5–1.5 mm of precipitable water, as determined
from sky dip measurements from the JCMT. Seeing conditions
were poor and variable, leading to mid-IR images with 0B4

to 0B6 FWHM. Observations were conducted in the standard
‘‘chop/nod’’ mode, which involves switching between three
sky positions using fast chopping of the secondary mirror
and slower nodding of the telescope itself. This allows for
effective subtraction of the very bright and variable ther-
mal emission from the sky and telescope in the reduction
process.

HD 107146 was well detected in both filters, with a formal
signal-to-noise ratio of less than 15 for the 17.6 "m data and
less than 50 for the 11.7 "m data. However, the seeing con-
ditions limited the photometric precision, because of varying
image quality from the science target to the standard stars.
These conditions also prevented any useful constraints on any
extended mid-IR emission from HD 107146. Photometric
errors were first determined from the scatter in measurements
done with apertures scaled by the FWHM of the images. We
then added in quadrature an error term to account for seeing
mismatch (10 mJy at 11.7 "m; 8 mJy at 17.6 "m), estimated
from analyzing curve-of-growth photometry for standard stars
observed during the course of the entire night. The absolute
flux calibration is based on the flux of Vega (! Lyr) compiled
by Tokunaga (1988). The LWS and SCUBA fluxes are listed
in Table 1.

3. RESULTS

The resulting maps of the emission at 450 and 850 "m are
shown in Figure 1. There is a 2B9 offset between the two maps,
as measured by Gaussian fits to the data clipped at the FWHM
level. The centroid of the emission is consistent with the
stellar position to within 4B4 (450 "m) and 1B6 (850 "m). It is
not clear how significant such small offsets are, given the
relatively low signal-to-noise ratio in the data and the possi-
bility of systematic pointing errors as large as 2B5. No other
source within this angular range of the star was apparent in the
Digital Sky Survey, Two Micron All Sky Survey (2MASS),
the Keck imaging at 11.7 and 17.8 "m, or the Faint Images of
the Radio Sky at Twenty cm survey. In addition, Blain et al.
(1999) predict 100–300 sources deg#2 with fluxes greater than
20 mJy at 850 "m, implying a probability less than 1:4" 10#3

that an unrelated background object this bright would be
found within 4B4 of the star. Since the probability of unrelated
submillimeter emission is very low, we assume that the
SCUBA source is a disk associated with the star and discuss
its properties in this context.

Allowing for pointing errors, the resolutions of the maps
are 14B5 at 850 "m and 800 at 450 "m. The Gaussian fits give
sizes of 15B1" 14B9 and 13B2" 10B9 (position angle #35

%

),
respectively. The elongation at 450 "m is apparent at the half-
power level and is therefore not due to the JCMT beam
pattern, which shows significant noncircularity only at the
10% level. The slight extension in the 450 "m map is also

TABLE 1

Flux Measurements

k

("m)

Flux

(mJy)

Error

(mJy)

11.7........................................................... 175 10

17.8........................................................... 85 8

450............................................................ 130 40a

850............................................................ 20 4a

a Calibration uncertainty.
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seen in crosscuts through the image along the major axis. To
increase the signal-to-noise ratio, an average crosscut over a
range of position angles !35

"# 10
"
centered on the peak of

emission is shown for each wavelength in the bottom panels of
Figure 1. The same crosscut averaging, shown as dashed lines,
was performed for a map of Mars, taken from the last night of
observations, February 19, when the Martian diameter was
5B7. We conclude that the disk around HD 107146 is mar-
ginally resolved at the 800 resolution of the 450 !m data.
Subtracting the beam size in quadrature from the Gaussian fit
gives an angular size of 10B5$ 7B4 for the disk, corresponding
to 300 AU$ 210 AU.

The fluxes measured from the LWS and SCUBA observa-
tions are listed in Table 1. The SED of the source, from optical
to submillimeter wavelengths, is plotted in Figure 2. The
UBVRI photometry is from Landolt (1983), the near-IR fluxes
in the JHK bands are from 2MASS, and the 10 !m point is
from Palomar observations (Metchev, Hillenbrand, & Meyer
2004). IRAS fluxes were determined by color correcting the
quoted values in the Faint Source catalog. The IRAS 12 !m
flux is consistent with the Keck 11.7 !m observation and is

not plotted. The stellar photosphere was fitted by a Kurucz
model (TeA ¼ 5750 K; log g ¼ 4:5, and solar metallicity)
with a power-law extrapolation beyond 10 !m. Strong excess
emission is apparent beyond 25 !m. In order to compare the
properties of the excess with that detected from other debris
disk systems, we fitted the disk SED using a single-temperature
modified blackbody with emission efficiency Qk ¼ 1!
exp

!

! ðk0=kÞ
"
"

, which has asymptotic behavior: Qk ¼ 1 for
kTk0 and Qk ¼ ðk=k0Þ

"
for k3k0. The critical wavelength,

k0, was set to 100 !m for consistency with the assumptions
made in previous analyses of debris disk SEDs (Dent et al.
2000; Wyatt et al. 2003).
The parameters of the modified blackbody fit were measured

using a least-squares fit to the data. Errors were estimated via
fits to multiple simulations of the dust excess SED. Simulated
data points were drawn from a Gaussian distribution, with the
mean and standard deviation as determined by the observed
data. The resulting distributions of best-fit parameter values
are T ¼ 51 # 4 K and " ¼ 0:69 # 0:15. Similarly low values
of " are found for other disks around main-sequence stars
(Dent et al. 2000). The dust mass, based on the fitted flux at

Fig. 1.—Top: SCUBA images of the dust emission around HD 107146. Coordinates are offset from the J2000.0 position of the star: epoch 2003.13,
# ¼ 12h19m6F46, $ ¼ 16

"
32053B4, indicated by the star symbol. Top left: Emission at 850 !m. Contour levels begin at 2 % and increment by %, where % ¼ 4 mJy

beam!1 is the noise in the map. The gray scale runs from 1 to 7 %. Top right: Emission at 450 !m; contours begin at 3 % and increment by %, where % ¼ 13 mJy
beam!1. The gray scale runs from 2 to 8 %. The beam sizes, 14B5 at 850 !m and 800 at 450 !m, are indicated by the hashed circles in the lower right corner of each
figure. Inspection shows that the half-power point of the 450 !m image ((3.5 %) is slightly greater than the beam size. Averaged cuts of the source and Mars are
shown in the bottom panels for each wavelength. The cuts are centered on the peak of emission and averaged over position angles !35

" # 10
"
, outlined by dotted

lines in each image. The Mars profile is shown as the dashed line and is significantly narrower than that of HD 107146 in the higher resolution 450 !m image.
[See the electronic edition of the Journal for a color version of this figure.]
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850 !m and assuming a dust mass absorption coefficient of
"850 ¼ 1:7 cm2 g"1, is Md ¼ 0:10 # 0:02 M$. This value of
"850 is chosen for consistency with Holland et al. (1998) and
Greaves et al. (1998), but is on the high end of calculated
values (Pollack et al. 1994). For the full range of "850 ¼
0:4 1:7 cm2 g"1 discussed in Pollack et al., the corresponding
mass range is Md ¼ 0:10 0:43 M$. As with all submillimeter
observations, the inferred dust masses do not include a po-
tentially dominant mass component that resides in larger
bodies (grains and planetesimals) subtending a negligible solid
angle. The mean parameter fit is shown in Figure 2.

The single-temperature fit is a simplification that is
warranted by the small number of data points. Nevertheless,
the large dip in the SED at 25 !m imposes a strong limit on
the mass of warmer dust that may be present in the system.
To illustrate this constraint, a T ¼ 100 K, # ¼ 0:7 modified
blackbody component was added to the SED fit and increased
until the IRAS 25 !m upper limit was exceeded. This maxi-
mum allowable contribution, which corresponds to a mass
limit ofMdðT ¼ 100 KÞ ¼ 7' 10"4

M$; is shown in Figure 2
but was not included in the overall fit shown. The Keck
18 !m measurement tightly constrains the presence of
still warmer dust to a 3 $ limit of MdðT ¼ 200 KÞ < 3'
10"5

M$.
The limits on dust cooler than 50 K are less stringent, since

such dust emits less per unit mass and does so at longer
wavelengths. The minimum grain temperature is 23 K for
blackbody particles at the measured outer radius of the disk,
150 AU from the star. In practice, the effect of a range of cool
dust temperatures is indistinguishable from changes in the
wavelength dependence of the grain emissivity, parameterized

by #. However, without changing the parameters of the fit
in Figure 2, 0:13 M$ of 23 K dust can be added before the
850 !m 3 $ upper limit is exceeded. Thus, a significant
fraction of the total dust mass may reside in cooler dust.

4. DISCUSSION AND SUMMARY

We have detected strong submillimeter excess emission
from HD 107146, a G2 V star with an age estimated to lie in the
range 80–200 Myr. Based on a fit to the SED of the system, the
mass of the emitting dust is estimated to be 0:10 M$ or larger.
We also find that the disk is marginally resolved at 450 !m.
The constraints placed by these observations on the mass,
temperature, and physical extent of the dust in the system are
compared in Table 2 with the properties of other well-studied
debris disk systems.

Four of the six stars in Table 2 are A stars, a probable bias
due to the relatively high luminosity of these systems at far-IR
and submillimeter wavelengths. Nevertheless, despite the
range in central star masses and luminosities, the disks have
similar properties and follow several trends. The HD 107146
disk is quite massive, comparable in mass to the # Pic disk.
Although it lies noticeably above the trend of decreasing mass
with age that is defined by HR 4796A, # Pic, Fomalhaut, and
Vega (Holland et al. 1998), it is within the scatter in the mass-
age relation found for larger samples of dust disks (Wyatt et al.
2003). The fractional dust luminosity (Ld=L() of HD 107146
is also large; it is half that of # Pic, more than 10 times that of
Fomalhaut, and consistent with the trend of decreasing Ld=L(
with age (Spangler et al. 2001). Table 2 also indicates an
apparent trend of decreasing outer disk radius with age. Per-
haps this trend, admittedly of low statistical significance at

Fig. 2.—Optical to submillimeter SED of HD 107146. The open circle at 25 !m represents an upper limit from the IRAS Faint Source catalog. All other points
represent detections, with error bars shown when the error exceeds the symbol size. The double-peaked distribution is modeled as the sum of a Kurucz model of the
stellar spectrum and a modified blackbody fit to the points longward of 25 !m (T ¼ 51 K; Md ¼ 0:10 M$; # ¼ 0:7). The individual contribution of each
component is shown by the dotted lines and the sum of the two by the solid line. The dashed line shows the maximum allowable T ¼ 100 K dust component that fits
the constraint of the IRAS 25 !m upper limit. This component is not included in the overall fit shown by the solid line.
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present, will be verified when a larger number of debris disk
systems have been spatially resolved.

We also find that the local minimum in the SED at 25 !m
places a strong limit on the amount of warm dust in the
HD 107146 disk,MdðT ¼ 51 KÞ=MdðT ¼ 100 KÞk140. This
lack of warm dust implies that the disk does not extend all
the way to the star. The dust temperature, and therefore the
size of this inner hole, depends on the grain size distribution
and optical properties. For grains that emit as blackbodies at
850 !m, 51 K dust would lie at 31 AU (Wyatt et al. 1999).
This is a lower limit to the inner radius, since smaller grains
could achieve this temperature at greater distances from the
star. The other disks listed in Table 2 have inner holes of
similar size, as determined from spatially resolved images in
thermal emission or scattered light, and are comparable in size
to the Kuiper Belt in our solar system.

Inner holes are not by themselves long lasting, because
Poynting-Robertson drag will cause dust to spiral in from the
outer disk onto the central star on $10 Myr timescales. Such
inward migration would be evident in the SED by the presence
of warm dust (Jura et al. 1998). Thus, the existence of inner
holes has been explained as a consequence of either the dy-
namical sweeping of an orbiting companion (e.g., Vega; Wilner
et al. 2002) or the sublimation of icy grains (e.g., HR 4796A;
Jura et al. 1998). Since water ice sublimates at temperatures
greater than 100 K (Pollack et al. 1994), this explanation can
not apply to the HD 107146 disk, where the shape of the SED
places a strong limit on the mass of such warm dust. The
alternative explanation, that the inner hole is dynamically
maintained by a closely orbiting companion, would require
a fairly low mass companion. The best current limit on the
existence of close companions is from Palomar adaptive optics
imaging by Metchev & Hillenbrand (2004), who found
no companions at detection limits of 11.2, 11.7, and 15.2 in
absolute K-band magnitude at angular separations of 0B5, 100,
and 200, respectively. The corresponding mass limits for an age
of 100 Myr are approximately 30MJ, 25MJ, and 10MJ (Burrows
et al. 1997).

While it has been well recognized that the dynamical
sculpting of disks by orbiting companions can produce inner
holes and ringlike structures, recent studies have shown that
the migration of dust in the presence of a residual gas disk can
also induce ringlike structures in the dust distribution. For
example, Takeuchi & Artymowicz (2001) have shown that the
dust structures seen in the HR 4796A and HD 141569A
systems are qualitatively similar to those expected to result
from the coupling between gas and dust in disks. However,
orbiting companions may also induce significant departures

from axisymmetry in the dust distribution (e.g., Liou & Zook
1999; Ozernoy et al. 2000; Quillen & Thorndike 2002; Moro-
Martı́n & Malhotra 2002), whereas such nonaxisymmetric
structures cannot be produced by dust migration. Thus, dem-
onstrating the existence of asymmetries in the dust distribu-
tion, either in thermal emission or scattered light, as well as
measuring the gas content of the HD 107146 disk, is needed to
distinguish between these two possibilities.
At a distance of 28.5 pc, HD 107146 is relatively nearby.

Compared to the other sources listed in Table 2, it is more distant
than the debris disk systems that have been spatially resolved
at submillimeter wavelengths (" Pic, Vega, Fomalhaut, and
# Eri), but it is at half the distance of HR 4796A. Since the
HD 107146 disk is just resolved at the shortest operating
wavelength of SCUBA, and the submillimeter excess is rel-
atively bright, the Submillimeter Array should be able to map
the morphology of the emitting dust in greater detail. Phase
referencing will provide a more accurate absolute position,
and such observations could determine whether the dust is
distributed axisymmetrically (e.g., in a ring) or in a more
asymmetric distribution. For example, these observations may
confirm the marginal evidence for an offset between the stellar
position and the peak of the 450 !m emission found in the
observations presented here (Fig. 1). The offset, if real, may
result from an asymmetric dust distribution, as has been found
for several of the other debris disk systems in Table 2.
The dust disk asymmetry can also be addressed by imaging

the disk in scattered light. The possibility of detecting scat-
tered light from Vega-like stars is of great interest, given the
few such systems that have been detected thus far, despite
extensive deep surveys (e.g., Kalas & Jewitt 1996). Using the
quantities listed in Table 2, we can make a rough estimate of
the relative strengths of the scattered light from each disk. If
we ignore the disk inclination and assume a similar dust grain
size distribution and albedo, the scattering area will be pro-
portional to Md , and the flux of scattered light will be roughly
proportional to MdL%=R

2
outd

2, where d is the distance to the
star and Rout is the physical extent of the disk. The factor of
R
2
out arises in this expression because grains of a given size

located farther from the star intercept less starlight. Hence,
the surface brightness of the disk will be proportional to
MdL%=R

4
out. A potentially more relevant comparison is of the

contrast between the expected surface brightness from the disk
and the flux from the star, which is proportional to Mdd

2=R4
out

(e.g., Jura et al. 1998). For the disk around HD 107146, the
expected surface brightness of the scattered light is half that of
the disk around " Pic, and the expected contrast is 9 times
larger, suggesting that the scattered light from HD 107146

TABLE 2

Properties of Spatially Resolved Submillimeter Disks around Class V Stars

Source Spectral Type

Age

(Myr)

d

(pc)

L%

(L&)

Ld=L%
(10'5)

Rin

(AU)

Rout

(AU)

Td

(K)

Md

(M() References

HR 4796A...... A0 3–10 67.1 21 500 $50 $200 110 0.250 1, 2, 3, 4

" Pic............... A5 10–100 19.3 8.9 200 $20 210 85 0.096 5, 6, 7, 8

HD 107146 .... G2 80–200 28.5 1.1 120 >31 150 51 0.100 9

Fomalhaut....... A3 100–300 7.7 13 10 60 160 40 0.018 5, 6, 7

Vega................ A0 150–550 7.8 60 2 70 90 80 0.009 5, 6, 7, 10

# Eri................ K2 )103 3.2 0.3 8 30 60 35 0.005 6, 7, 11

References.—(1) Jura et al. 1998; (2) Jayawardhana et al. 1998; (3) Greaves, Mannings, & Holland 2000; (4) Schneider et al. 1999; (5) Holland et al. 1998;
(6) Spangler et al. 2001; (7) Dent et al. 2000; (8) Lagage & Pantin 1994; Pantin, Lagage, & Artymowicz 1997; (9) this work; (10) Wilner et al. 2002;
(11) Greaves et al. 1998.
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might not only be quite bright but might also stand out against
the glare of the star. Given the low dust temperature deduced
for the HD 107146 disk (<100 K), the grains are expected to
be icy with a high albedo, which favors the detection of
scattered light.

Nevertheless, there are significant uncertainties associated
with this estimate. Detecting reflected light will be more chal-
lenging if the disk is face-on rather than edge-on. In addition,
the submillimeter measurements from which Md is derived are
primarily sensitive to large grains (!100 !m), whereas the
scattered-light observations will be particularly sensitive to
much smaller grain sizes. Thus, scattered light from the HD
107146 disk will be weaker if the grain size distribution is
significantly skewed to large grain sizes. Conversely, scattered-
light measurements can help constrain the grain size distribu-
tion of the disk (e.g., Artymowicz, Burrows, & Paresce 1989).

Future spectroscopic observations of this disk with the
Spitzer Space Telescope, particularly in the 30–40 !m range,
will place additional constraints on the grain composition and

size distribution (e.g., Wolf & Hillenbrand 2003). The Spitzer
Space Telescope is also expected to discover many more disks
over a large range of ages and stellar masses, with consequent
improvements for our understanding of the formation and
evolution of planetary systems.
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Coulson, and Randy Campbell for advice on instrumentation,
Eric Mamajek for helpful discussions on the age of HD
107146, and Alan Tokunaga for making the Keck time
available. We acknowledge support from NSF grant AST 03-
24328 (J. P. W.), the Beatrice Watson Parrent Fellowship at
the University of Hawaii and NASA grant HST-HF-01152.01
(M. C. L.), and NASA contract 1224768, administered through
JPL (M. R. M., J. M. C., L. A. H.). This research has made use
of the SIMBAD database.

REFERENCES

Artymowicz, P., Burrows, C., & Paresce, F. 1989, ApJ, 337, 494
Augereau, J. C., Lagrange, A. M., Moillet, D., & Menard, F. 1999, A&A,
350, L51

Aumann, H. H., et al. 1984, ApJ, 278, L23
Blain, A. W., Kneib, J.-P., Ivison, R. J., & Smail, I. 1999, ApJ, 512, L87
Burrows, A., et al. 1997, ApJ, 491, 856
Dent, W. R. F., Walker, H. J., Holland, W. S., & Greaves, J. S. 2000, MNRAS,
314, 702

Fisher, R. S., Telesco, C. M., Piña, R. K., Knacke, R. F., & Wyatt, M. C. 2000,
ApJ, 532, L141

Greaves, J. S., Mannings, V., & Holland, W. S. 2000, Icarus, 143, 155
Greaves, J. S., et al. 1998, ApJ, 506, L133
Hatzes, A. P., et al. 2000, ApJ, 544, L145
Holland, W. S., et al. 1998, Nature, 392, 788
———. 2003, ApJ, 582, 1141
Hollenbach, D. J., Yorke, H. W., & Johnstone, D. 2000, in Protostars and
Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell (Tucson: Univ.
Arizona Press), 401

Jayawardhana, R., Fisher, S., Hartmann, L., Telesco, C., Piña, R., & Fazio, G.
1998, ApJ, 503, L79

Jones, B. F., Fischer, D., Shetrone, M., & Soderblom, D. R. 1997, AJ, 114, 352
Jura, M., Malkan, M., White, R., Telesco, C., Piña, R., & Fisher, R. S. 1998,
ApJ, 505, 897

Jura, M., Zuckerman, B., Becklin, E. E., & Smith, R. C. 1993, ApJ, 418, L37
Kalas, P., & Jewitt, D. 1996, AJ, 111, 1347
Koerner, D. W., Ressler, M. E., Werner, M. W., & Backman, D. E. 1998, ApJ,
503, L83

Lagage, P. O., & Pantin, E. 1994, Nature, 369, 628
Lagrange, A.-M., Backman, D. E., & Artymowicz, P. 2000, in Protostars and
Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell (Tucson: Univ.
Arizona Press), 639

Landolt, A. U. 1983, AJ, 88, 853
Liou, J.-C., & Zook, H. A. 1999, AJ, 118, 580
Marcy, G. W., Cochran, W. D., & Mayor, M. 2000, in Protostars and Planets IV,
ed. V. Mannings, A. P. Boss, & S. S. Russell (Tucson: Univ. Arizona
Press), 1285

Metchev, S. A., & Hillenbrand, L. A. 2004, in ASP Conf. Ser. Debris Disks and
the Formation of Planets, ed. L. Caroff & D. Backman (San Francisco: ASP),
in press

Metchev, S. A., Hillenbrand, L. A., & Meyer, M. R. 2004, ApJ, 600, 436
Micela, G., Sciortino, S., Harnden, F. R., Kashyap, V., Rosner, R., Prosser, C. F.,
Damiani, F., Stauffer, J., & Caillault, J.-P. 1999, A&A, 341, 751

Moro-Martin, A., & Malhotra, R. 2002, AJ, 124, 2305
Ozernoy, L. M., Gorkavyi, N. N., Mather, J. C., & Taidakova, T. T. 2000, ApJ,
537, L147

Pantin, E., Lagage, P. O., & Artymowicz, P. 1997, A&A, 327, 1123
Perryman, M. A. C., et al. 1997, A&A, 323, L49
Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T., &
Fong, W. 1994, ApJ, 421, 615

Prosser, C. F., Randich, S., Stauffer, J. R., Schmitt, J. H. M. M., & Simon, T.
1996, AJ, 112, 1570

Quillen, A. C., & Thorndike, S. 2002, ApJ, 578, L149
Schneider, G., et al. 1999, ApJ, 513, L127
Silverstone, M. 2000, Ph.D. thesis, UCLA
Skrutskie, M. F., Dutkevich, D., Strom, S. E., Edwards, S., Strom, K. M., &
Shure, M. A. 1990, AJ, 99, 1187

Soderblom, D. R., Jones, B. F., Balachandran, S., Stauffer, J. R., Duncan, D. K.,
Fedele, S. B., & Hudon, J. D. 1993, AJ, 106, 1059

Spangler, C., Sargent, A. I., Silverstone, M. D., Becklin, E. E., & Zuckerman, B.
2001, ApJ, 555, 932

Sylvester, R. J., Dunkin, S. K., & Barlow, M. J. 2001, MNRAS, 327, 133
Takeuchi, T., & Artymowicz, P. 2001, ApJ, 557, 990
Telesco, C. M., et al. 2000, ApJ, 530, 329
Tokunaga, A. T. 1988, IRTF Photometry Manual (Honolulu: Univ. Hawaii
Inst. Astron.)

Voges, W., et al. 1999, A&A, 349, 389
Weinberger, A. J., et al. 1999, ApJ, 525, L53
Wichmann, R., Schmitt, J. H. M. M., & Hubrig, S., 2003, A&A, 399, 983
Wilner, D. J., Holman, M. J., Kuchner, M. J., & Ho, P. T. P. 2002, ApJ,
569, L115

Wolf, S., & Hillenbrand, L. A. 2003, ApJ, 596, 603
Wyatt, M. C., Dent, W. R. F., & Greaves, J. S. 2003, MNRAS, 342, 876
Wyatt, M. C., Dermott, S. F., Telesco, C. M., Fisher, R. S., Grogan, K.,
Holmes, E. K., & Piña, R. K. 1999, ApJ, 527, 918

Zuckerman, B., & Becklin, E. E. 1993, ApJ, 414, 793

COOL DUST AROUND HD 107146 419No. 1, 2004





Résumé — L’un des buts majeurs de l’astrophysique est de comprendre la formation du Système

Solaire. Les protoétoiles de faible masse étant de jeunes soleils, leur observation est le meilleur moyen

d’étudier le processus de formation du Système Solaire. Dans ma thèse, je me suis concentrée sur les

premières phases d’évolution de ces protoétoiles, les Classes 0. Des molécules organiques complexes ont

été découvertes dans l’une d’entre elles, IRAS16293, démontrant l’existence d’un hot corino, région où les

manteaux des grains subliment. Elles ont aussi été observées dans des comètes, soulevant la question de

savoir si la chimie des Classes 0 affecte la composition du disque protoplanétaire formant les comètes et

autres corps planétaires. Mais il faut d’abord savoir si les hot corinos sont omniprésents dans les Classes

0, ou si IRAS16293 est une exception. Ceci était le premier but de ma thèse. L’approche consistait

principalement à chercher des molécules complexes dans trois Classes 0. J’ai ainsi découvert trois hot

corinos de plus. Le second but était de contraindre la taille d’émission des molécules complexes grâce à

l’interférométrie, taille que j’ai trouvée comparable à celle du Système Solaire. Enfin, j’ai confronté les

voies de formation possibles des molécules complexes avec les résultats de mes observations pour essayer

de distinguer si ces molécules se forment en phase gazeuse ou à la surface des grains. Mes données sem-

blent favoriser le deuxième cas. De plus, la comparaison des hot corinos et de leurs homologues massifs

(qui montre que les molécules complexes sont relativement plus abondantes dans les hot corinos), soutient

également la formation à la surface des grains.

Mots clés: Formation stellaire — Etoiles de faible masse — Interférométrie — Astrochimie —

Molécules pré-biotiques — Raies (sub)millimétriques — Abondances moléculaires — Continuum (sub)

millimétrique

Abstract — One of the major goals of astrophysics is to understand the formation of our Solar

System. Since low-mass protostars are young suns, their observation provides the best way to investigate

the formation process of the Solar System. In my thesis, I focused on the first evolutionary phases of

these protostars, the Class 0 objects. Complex organic molecules have been discovered in one of them,

IRAS16293, proving the existence of a hot corino, the inner region of the protostellar envelope where the

icy grain mantles sublimate. They have also been observed in comets, raising the question of whether

the chemistry of Class 0 objects affects the composition of the protoplanetary disk material from which

comets and other planetary bodies form. But it is first necessary to determine whether hot corinos are

ubiquitous in Class 0 objects, or if IRAS16293 is an exception. This was the first goal of my thesis.

The general approach was to search for complex organic molecules in three Class 0 objects. I thereby

discovered three more hot corinos. The second goal was to constrain the size of emission of complex

molecules via interferometric observations. I found this size to be of the order of the scale of the Solar

System. Finally, I confronted the possible formation pathways of complex molecules with the results of

my observations to try and discriminate between gas-phase and grain-surface formation. My data seem to

favor the later type. Moreover, the comparison of hot corinos and their high-mass analogs (which shows

that complex molecules are relatively more abundant in hot corinos), also support grain-surface synthesis.

Keywords: Star formation — Low-mass stars — Interferometry — Astrochemistry — Prebiotic

molecules — (Sub)Millimeter lines — Molecular abundances — (Sub)Millemeter continuum


