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Introduction

1 Avant-propos

Cette thèse est une exposition des différents travaux de recherche effectués par l’auteur

au cours de son doctorat. Chaque chapitre pourra donc être considéré indépendamment

des autres. Nous avons toutefois décidé de regrouper les références bibliographiques par

soucis de présentation. Les chapitres 1, 2 et 5 sont respectivement extraits de [70], [71]

et [48]. Les résultats du chapitre 3 sont annoncés dans [60].

2 Présentation de la thèse

2.1 Energie avec poids des applications à valeurs dans S2 et sin-

gularités prescrites

Dans le premier chapitre, nous étudions un problème variationnel inspiré d’un célèbre

article de H. Brezis, J.M. Coron et E.H. Lieb [30].

Pour N points distincts a1, . . . , aN dans un domaine borné régulier Ω ⊂ R
3 (ou Ω = R

3)

et N entiers non nuls d1, . . . , dN tels que
∑

di = 0, nous considérons la classe

E =
{

u ∈ C1
(
Ω \ ∪i{ai}, S2

)
, u = constante sur ∂Ω,

∫

Ω

|∇u(x)|2dx < +∞, deg(u, ai) = di pour i = 1, . . . , N
}

(sans condition au bord si Ω = R
3). La condition

∑
di = 0 nous assure ici que E 6= ∅

(ce qui n’est pas le cas dans l’hypothèse inverse, voir [30]). On se donne une fonction

mesurable w : Ω → R satisfaisant

0 < λ ≤ w ≤ Λ presque partout dans Ω (1)

pour deux constantes λ et Λ. Notre objectif est de déterminer une formule (explicite si

possible) nous permettant de calculer

Ew

(
(ai, di)

N
i=1

)
= Inf

u∈E

∫

Ω

|∇u(x)|2w(x)dx. (2)

ix
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Dans [30], H. Brezis, J.M. Coron et E.H. Lieb ont étudié le cas w ≡ 1 et ont montré

que

E1

(
(ai, di)

N
i=1

)
= 8πL1

où L1 désigne la longueur d’une connexion minimale associée à la configuration (ai, di)
N
i=1

et à la distance géodésique euclidienne dΩ sur Ω. Le problème était motivé par des ques-

tions se rattachant à la théorie des cristaux liquides (cf. [43, 50]). Peu après, F. Bethuel,

H. Brezis et J.M. Coron ont mis en évidence l’importance de la notion de connexion mi-

nimale en ce qui concerne l’approximation pour la topologie forte de H1 des applications

de H1(Ω, S2) par des applications régulières (cf. [16, 18]). Plus récemment, cette notion

s’est révélée très utile pour l’étude des applications à valeurs dans S1 en liaison avec la

minimisation de la fonctionnelle de Ginzburg-Landau tridimensionnelle (voir J. Bourgain,

H. Brezis et P. Mironescu [23] et H. Brezis, P. Mironescu et A.C. Ponce [32]). En étudiant

le problème (2), nous chercherons à définir une notion de connexion minimale adaptée

aux problèmes posés dans des milieux inhomogènes discontinus lorsque l’inhomogénéité

peut être modélisée par une fonction de densité w.

Rappelons brièvement la définition générale de longueur d’une connexion minimale.

Dans un espace métrique M muni d’une distance D et pour une configuration donnée

(ai, di)
N
i=1 ∈ MN × (Z∗)N telle que

∑
di = 0, nous assignons le signe de di à chaque point

ai que nous écrivons |di| fois. Nous obtenons alors une liste de points positifs (p1, . . . , pK)

et une liste de points négatifs (n1, . . . , nK) (ces deux listes ont le même nombre d’éléments

puisque
∑

di = 0). La longueur LD d’une connexion minimale associée à (ai, di)
N
i=1 est

définie par la formule :

LD = Min
σ∈SK

K∑

j=1

D(pj, nσ(j))

où SK est l’ensemble des permutations de K indices.

Dans la situation dite du dipôle, c’est à dire pour une configuration prescrite de la

forme
(
(a, +1), (b,−1)

)
, la valeur de L1 est simplement donnée par dΩ(a, b). Lorsque la

fonction w est régulière, nous verrons que Ew

(
(a, +1), (b,−1)

)
= 8πδw(a, b) où δw désigne

la distance (riemannienne) sur Ω définie par

δw(a, b) = Inf

∫ 1

0

w
(
γ(t)

)
|γ̇(t)| dt, (3)

l’infimum étant pris sur toutes les courbes lipschitziennes γ : [0, 1] → Ω satisfaisant

γ(0) = a et γ(1) = b. Pour une fonction mesurable w, nous observons que la formule

(3) n’a plus de sens puisque w n’est pas bien définie sur les courbes qui sont des objets

de mesure nulle. Nous démontrons que pour toute fonction mesurable w, la quantité

(1/8π)Ew

(
(a, +1), (b,−1)

)
définit une distance sur Ω notée dw(a, b) qui est équivalente à

la distance géodésique euclidienne. De plus, nous établissons le caractère géodésique de

cette distance : la distance géodésique associée à dw coïncide avec dw.
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Dans le cas d’une configuration générale, nous montrons que

Ew

(
(ai, di)

N
i=1

)
= 8πLw

où Lw désigne la longueur d’une connexion minimale associée à (ai, di)
N
i=1 et à la dis-

tance dw. Nous présentons ensuite quelques propriétés de stabilité et d’approximation par

rapport à w de (2) ainsi que des résultats partiels concernant une version anisotrope de (2)

(le problème général restant ouvert).

2.2 Energie relaxée des applications à valeurs dans S2 et poids

mesurables

Comme application des résultats que nous venons de présenter, nous étudions un

problème de relaxation rattaché au phénomène de non densité des fonctions régulières

dans H1(Ω, S2) muni de sa topologie forte (voir [22]).

Etant donnés un domaine borné régulier Ω ⊂ R
3, une fonction mesurable w : Ω → R

satisfaisant la condition (1), et une application régulière g : ∂Ω → S2 de degré topologique

nul, nous chercherons à expliciter la fonctionnelle

Ew(u)= Inf
{

lim inf
n→+∞

∫

Ω

|∇un(x)|2w(x)dx, un∈H1
g (Ω, S2)∩C1(Ω), un ⇀ u dans H1 faible

}

définie pour u ∈ H1
g (Ω, S2).

Dans [18], F. Bethuel, H. Brezis et J.M. Coron ont montré que pour w ≡ 1,

E1(u) =

∫

Ω

|∇u(x)|2dx + 8πL1(u),

où L1(u) désigne la longueur d’une connexion minimale relative à la distance géodésique

Euclidienne dΩ sur Ω connectant les singularités topologiques de u. Plus précisément,

L1(u) est définie par la formule

L1(u) =
1

4π
Sup

{
〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz par rapport à dΩ

}
, (4)

T (u) désignant la distribution

〈T (u), ζ〉 =

∫

Ω

D(u) · ∇ζ −
∫

∂Ω

(D(u) · ν) ζ

où D(u) =
(
u · ∂2u∧ ∂3u, u · ∂3u∧ ∂1u, u · ∂1u∧ ∂2u

)
. Lorsque l’application u a un nombre

fini de singularités a1, . . . , aN dans Ω, T (u) s’écrit sous la forme (voir [30])

T (u) = 4π
N∑

i=1

di δai
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où di = deg(u, ai). Dans cette situation, L1(u) coïncide avec la longueur d’une connexion

minimale associée à la configuration (ai, di)
N
i=1 et à la distance dΩ.

Nous montrons que pour tout u ∈ H1
g (Ω, S2),

Ew(u) =

∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u),

où

Lw(u) =
1

4π
Sup

{
〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz par rapport à dw

}
.

Nous étudions comme pour le problème (2), certaines propriétés de stabilité et d’ap-

proximation par rapport à w de la fonctionnelle Ew. Le cas d’une fonctionnelle sans donnée

prescrite sur le bord est également traité.

2.3 Tourbillons dans un condensat de Bose-Einstein bidimension-

nel en rotation (en collaboration avec R. Ignat)

Le phénomène de condensation de Bose-Einstein a donné lieu à une recherche intense

depuis sa première réalisation dans des gaz alcalins en 1995. Un condensat de Bose-

Einstein (BEC) est un gaz quantique pouvant être décrit par une seule fonction d’onde

complexe. La présence de tourbillons est une particularité majeure de ces systèmes, ils

sont définis comme les zéros de la fonction d’onde autour desquels il y a une circulation

de phase. Expérimentalement, ces tourbillons peuvent être obtenus par la rotation du

piège regroupant les atomes (voir [1, 68, 69]). Les premiers tourbillons sont observés à

partir d’une certaine vitesse de rotation, puis leur nombre croît progressivement quand la

vitesse augmente. Les tourbillons se répartissent alors régulièrement autour du centre du

condensat.

Un modèle bidimensionnel de BEC en rotation a été utilisé par Y. Castin et R. Dum [40].

Ce modèle correspond à un piège confinant fortement les atomes dans la direction de l’axe

de rotation. Dans le cas axisymétrique, la fonction d’onde uε minimise l’énergie de Gross-

Pitaevskii

Fε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]
− Ωx⊥ · (iu,∇u)

}
dx

sous la contrainte de masse ∫

R2

|u|2 = 1

où ε > 0 est un petit paramètre d’échelle, Ω = Ω(ε)≥ 0 désigne la vitesse de rotation et

a(x) = a0 − |x|2 avec a0 determinée par
∫

R2 a+(x) = 1 (i.e. a0 =
√

2/π ), représente le

potentiel de piégeage.

Notre but est d’étudier le nombre et la position des tourbillons en fonction de la

vitesse angulaire Ω(ε) quand ε → 0. Nous nous plaçons dans la situation où Ω est au plus

de l’ordre de | ln ε|, ce qui correspond au régime critique pour l’existence de tourbillons.
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Lorsque ε → 0, la minimisation de Fε force |uε| à se rapprocher de
√

a+. La densité de

masse est donc asymptotiquement localisée dans

D :=
{
x ∈ R

2, a(x) > 0
}

= B(0,
√

a0 ).

Nous montrons également que |uε| décroît exponentiellement vers 0 en dehors de D. Nous

limitons la recherche des tourbillons au disque D. Un développement asymptotique de

Fε(uε) nous permet d’estimer la vitesse critique Ωd pour laquelle le d ième tourbillon

devient énergétiquement favorable et aussi de calculer l’énergie renormalisée (i.e. l’énergie

d’interaction) gouvernant la position des tourbillons.

2.4 Sur une énergie de Ginzburg-Landau avec un poids dépen-

dant de ε

Le quatrième chapitre est consacré à l’étude des minimiseurs uε de la fonctionnelle de

type Ginzburg-Landau avec poids

Eε(u) =
1

2

∫

G

|∇u(x)|2dx +
1

4ε2

∫

G

aε(x)(1 − |u(x)|2)2dx

définie pour u ∈ H1
g (G,S1) où G ⊂ R

2 est un domaine borné régulier simplement connexe,

g : ∂G → S1 est une donnée régulière de degré topologique d > 0 et ε > 0 est un petit

paramètre. La fonction de poids aε(x) que nous considérons est de la forme

aε(x) = ε−α si x ∈ G+ et aε(x) = 1 si x ∈ G−,

où α est une constante strictement positive, G+ et G− sont deux ouverts disjoints de G

tels que G+ ∪ G− = G et Σ = G+ ∩ G− définisse une courbe régulière.

Lorsque aε(x) ≡ 1, F. Bethuel, H. Brezis et F. Hélein [20] ont montré que pour toute

suite εn → 0, il existe une sous-suite (εnk
) et d points a1, . . . , ad ∈ G tels que uεnk

converge

dans certaines topologies vers l’application harmonique u0 donnée par

u0(z) =
z − a1

|z − a1|
. . .

z − ad

|z − ad|
eiϕ(z) dans G \ {a1, . . . , ad}

où {
∆ϕ = 0 dans G,

u0 = g sur ∂G.

Il est également montré dans [20] que les singularités limites a1, . . . , ad peuvent être loca-

lisées dans G comme une configuration minimisante d’une certaine énergie renormalisée

W (·) associée à la fonction g.

Dans notre situation, nous obtenons un résultat de convergence similaire et nous mon-

trons que toutes les singularités limites se situent dans G− ∪ Σ, celles-ci pouvant être

localisées au moyen de l’énergie renormalisée W (·) restreinte à l’ensemble G− ∪ Σ.
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2.5 Stabilisation en temps fini pour un système d’oscillateurs

amortis (en collaboration avec J.I. Díaz)

Dans le dernier chapitre, nous présentons des résultats obtenus en collaboration avec

J.I. Díaz [48]. Dans cette étude, nous avons cherché à déterminer certaines conditions

entrainant l’arrêt en temps fini de processus où interagissent les phénomènes de frottement

de Coulomb (ou frottement solide) et d’oscillation. De telles situations se présentent dans

de nombreuses formulations allant de la plus élémentaire, correspondant au mouvement

d’un oscillateur harmonique soumis à un amortissement solide et visqueux

mẍ(t) + 2kx(t) + µββ(ẋ(t)) + µgg(ẋ(t)) ∋ 0,

à celle plus complexe d’une corde vibrante amortie occupant un intervalle borné Ω

utt − uxx + µββ(ut) + µgg(ut) ∋ 0.

Dans chaque cas, β désigne le graphe maximal monotone de R
2 associé à la fonction signe

β(r) =





{1} si r > 0,

[−1, 1] si r = 0,

{−1} si r < 0,

g désigne une fonction lipschitzienne satisfaisant certaines conditions auxiliaires et les

paramètres m, k, µβ et µg sont supposés strictement positifs.

Nous nous intéressons principalement au cas intermédiaire à N degrés de liberté

(1 ≤ N < +∞) se présentant lors de la discrétisation spaciale par différences finies de

la corde vibrante et lors de l’étude de N oscillateurs couplés amortis. Un système modèle,

admettant de nombreuses variantes, peut être formulé de la façon suivante

(PN)





mẍi(t) + k(−xi−1(t) + 2xi(t) − xi+1(t)) + µββ(ẋi(t)) + µgg(ẋi(t)) ∋ 0,

xi(0) = u0,i,

ẋi(0) = v0,i.

L’objectif principal de notre analyse est de montrer que la présence de la fonction g

peut générer deux types d’orbite qualitativement distincts : en fonction des données ini-

tiales, l’état du système atteint un état d’équilibre soit en temps fini soit de façon asymp-

totique (lorsque t → +∞). Cette dichotomie constraste avec le phénomène d’extinction

en temps fini pour les équations paraboliques non linéaires de premier ordre en temps.



Chapitre 1

Energy with weight for S2-valued maps

with prescribed singularities

1.1 Introduction and main results

Let Ω be a smooth bounded and connected open set of R
3 or Ω = R

3 and let w : Ω → R

be a measurable function such that

0 < λ ≤ w ≤ Λ a.e. in Ω (1.1)

for some constant λ and Λ. We consider N distinct points a1, . . . , aN in Ω and we define

the following class of S2-valued maps

E =
{

u ∈ C1
(
Ω \ ∪i{ai}, S2

)
, u = const on ∂Ω,

∫

Ω

|∇u(x)|2dx < +∞, deg(u, ai) = di for i = 1, . . . , N
}

(without boundary condition if Ω = R
3) where the di’s are given in Z \ {0} and such that∑

di = 0 (which is a necessary and sufficient condition for E to be non-empty, see [30]).

Our goal is to establish a formula for

Ew

(
(ai, di)

N
i=1

)
= Inf

u∈E

∫

Ω

|∇u(x)|2w(x)dx. (1.2)

In [30], H. Brezis, J.M. Coron and E.H. Lieb have proved that for w ≡ 1 this quantity is

equal to 8πL where L is the length of a minimal connection associated to the configuration

(ai, di)
N
i=1 and the Euclidean geodesic distance dΩ on Ω (see also [8, 27, 28, 53]). The

first motivation for studying such a problem comes from the theory of liquid crystals

(see [43, 50]). Later F. Bethuel, H. Brezis and J.M. Coron have shown that the notion

of minimal connection is very useful when dealing with questions of approximation of

S2-maps by smooth S2-maps in the strong H1-topology (see [16, 18]). We also refer to

the results of J. Bourgain, H. Brezis, P. Mironescu [23] and H. Brezis, P. Mironescu, A.C.

1
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Ponce [32] for some similar problems involving S1-valued maps. In the dipole case, namely

when we have two prescribed points P and N of degree +1 and −1 respectively, the value

of L is equal to dΩ(P, N). When w is continuous, we prove that Ew(P, N) = 8πδw(P, N)

where δw denotes the Riemannian distance on Ω defined by

δw(P, N) = Inf

∫ 1

0

w (γ(t)) |γ̇(t)|dt, (1.3)

where the infimum is taken over all curves γ ∈ LipP,N

(
[0, 1], Ω

)
. Here LipP,N

(
[0, 1], Ω

)

denotes the set of all Lipschitz maps γ from [0, 1] with values into Ω such that γ(0) = P

and γ(1) = N . For a general measurable function w, we prove that Ew(P, N) induces a

geodesic distance on Ω (in the sense defined in Section 1.2.1). We call the attention of the

reader to the fact that, in the measurable case, there is no way to define a distance by

a formula like (1.3) since w is not well defined on curves which are sets of null Lebesgue

measure. To overcome this difficulty, we construct a kind of “length structure” in which

the general idea is to thicken the curves. We proceed as follows. For two points x and y

in Ω, we consider the class P(x, y) of all finite collections of segments F = ([αk, βk])
n(F)
k=1

such that βk = αk+1 , α1 = x , βn(F) = y and [αk, βk] ⊂ Ω. We define “the length” of an

element F ∈ P(x, y) by

ℓw (F) =

n(F)∑

k=1

lim inf
ε→0+

1

πε2

∫

Ξ([αk,βk],ε)∩Ω

w(ξ)dξ.

where Ξ ([αk, βk], ε) = { ξ ∈ R
3, dist (ξ, [αk, βk]) ≤ ε} and then we consider the function

dw : Ω × Ω → R+ defined by

dw(x, y) = Inf
F∈P(x,y)

ℓw(F).

In Section 1.2, we extend dw to Ω×Ω and we prove the metric and geodesic character

of dw. We also show that dw agrees with δw whenever w is continuous. In Section 1.3, we

give the proof of the following result.

Theorem 1.1. We have

Ew

(
(ai, di)

N
i=1

)
= 8πLw

where Lw is the length of a minimal connection associated to the configuration (ai, di)
N
i=1

and the distance dw on Ω.

The geodesic character of the distance dw implies that dw coincides with the distance

induced by the length functional associated to the Finsler metric ϕw obtained by diffe-

rentiation of dw (cf. Section 1.2.2). More precisely, for every P and N in Ω, we prove that

dw(P,N) = Min

{∫ 1

0

ϕw (γ(t), γ̇(t)) dt, γ ∈ LipP,N

(
[0, 1], Ω

)}
. (1.4)
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Formula (1.4) shows that, for a non-smooth w, the quantity Ew

(
(ai, di)

N
i=1

)
is still given

in terms of shortest paths between the ai’s but the metric we compute the lengths with

might be non-isotropic (a metric ϕ is said to be isotropic if ϕ(x, ν) = p(x)|ν| for some

positive function p ).

We recall that the length Lw of a minimal connection is computed as follows (see [30]).

We relabel the points ai, taking into account their multiplicity |di|, as two lists of positive

and negative points say (p1, . . . , pK) and (n1, . . . , nK) (note that this two lists have the

same number of elements since
∑

di = 0). Then we have

Lw = Min
σ∈SK

K∑

j=1

dw(pj, nσ(j)) (1.5)

where SK denotes the set of all permutations of K indices. Another way to compute Lw

is to use the following formula (see [30]),

Lw = Max
K∑

j=1

ζ(pj) − ζ(nj), (1.6)

where the supremum is taken over all functions ζ : Ω → R which are 1-Lipschitz with

respect to dw, i.e., |ζ(x)−ζ(y)| ≤ dw(x, y) for any x, y ∈ Ω. In Section 1.2.3, we give a cha-

racterization of 1-Lipschitz functions for the distance dw. Combining this characterization

with formula (1.6), we obtain the lower bound of the energy following the approach in [30].

The upper bound is obtained using explicit test functions based on a dipole construction.

Section 1.4.1 concerns a stability property of problem (1.2). We investigate the fol-

lowing question. Given an arbitrary sequence (wn)n∈N of real measurable functions, un-

der which condition on (wn)n∈N, can we conclude that
{
Ewn

(
(ai, di)

N
i=1

)}
n∈N

converges

to Ew

(
(ai, di)

N
i=1

)
? From Theorem 1.1, we infer that the convergence of the sequence{

Ewn

(
(ai, di)

N
i=1

)}
n∈N

is strictly related to the convergence of the variational problems

Min

{∫ 1

0

ϕwn (γ(t), γ̇(t)) dt, γ ∈ LipP,N

(
[0, 1], Ω

)}

where P, N ∈ Ω and ϕwn denotes the Finsler metric derived from wn. The same ques-

tion involving the class LipP,N ([0, 1], Ω) instead of the class LipP,N

(
[0, 1], Ω

)
has been

studied in [34] by G. Buttazzo, L. De Pascale and I. Fragalà in the Γ-convergence frame-

work. Adapting their result to our setting, we give a necessary and sufficient condition

on (wn)n∈N under which
{
Ewn

(
(ai, di)

N
i=1

)}
n∈N

converges to Ew

(
(ai, di)

N
i=1

)
. In Section

4.2, we concentrate on the approximation procedure by smooth weights. If one requires

that wn is continuous and converges to w uniformly in Ω then we get easily the conver-

gence using formula (1.3) but such an assumption implies that w is continuous and this

is quite restrictive in our setting. On the other hand if one assumes that wn → w almost

everywhere in Ω, we show that the convergence of the problems does not hold in gene-

ral (c.f. Remark 1.4). However, we prove that Ew

(
(ai, di)

N
i=1

)
is the limit of a sequence{

Ewn

(
(ai, di)

N
i=1

)}
n∈N

where wn obtained from w by a regularization procedure.
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In the last section, we present a partial result on a similar problem involving a matrix

field M = (mkl)
3
k,l=1 instead of a weight :

EM

(
(ai, di)

N
i=1

)
= Inf

u∈E

∫

Ω

3∑

k,l=1

mkl(x)
∂u

∂xk

· ∂u

∂xl

dx.

Throughout this chapter, a sequence of smooth mollifiers means any sequence (ρn)n∈N

satisfying

ρn ∈ C∞(R3, R), Supp ρn ⊂ B1/n(0),

∫

R3

ρn = 1, ρn ≥ 0 on R
3.

1.2 Preliminary results : Metric properties of dw

1.2.1 Metric and geodesic character of dw

First of all we recall that for any metric space (M, d), we may associate the length

functional Ld defined by

Ld(γ) = Sup

{
m−1∑

k=1

d (γ(tk), γ(tk+1)) , 0 = t0 < t1 < . . . < tm = 1, m ∈ N

}

where γ : [0, 1] → M is any continuous curve. Note that Ld is lower semicontinuous on

C0([0, 1],M) endowed with the topology of the uniform convergence on [0, 1].

Definition 1.1. A distance d is said to be geodesic on M if for any x, y ∈ M ,

d(x, y) = Inf Ld(γ)

where the infimum is taken over all continuous curves γ : [0, 1] → M such that γ(0) = x

and γ(1) = y.

Proposition 1.1. dw defines a geodesic distance on Ω which is equivalent to the Euclidean

geodesic distance dΩ and dw agrees with δw whenever w is continuous.

Proof. Step 1. Let x, y ∈ Ω and let F = ([α1, β1], . . . , [αn, βn]) be an element of P(x, y).

From assumption (1.1), we get that

ℓw(F) ≥
n∑

k=1

lim
ε→0+

λ

πε2

∫

Ξ([αk,βk],ε)∩Ω

dξ = λ

n∑

k=1

|αk − βk| ≥ λ dΩ(x, y). (1.7)

By the definition of dw and (1.1), for any F = ([α1, β1], . . . , [αn, βn]) in P(x, y), we have

dw(x, y) ≤ Λ
n∑

k=1

lim
ε→0+

1

πε2

∫

Ξ([αk,βk],ε)∩Ω

dξ = Λ
n∑

k=1

|αk − βk|.
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Taking the infimum over all F ∈ P(x, y), we infer that

dw(x, y) ≤ Λ dΩ(x, y). (1.8)

From (1.7) and (1.8), we deduce that dw(x, y) = 0 if and only if x = y. Now let us

now prove that dw is symmetric. Let x, y ∈ Ω and δ > 0 arbitrary small. We can find

Fδ = ([α1, β2], . . . , [αn, βn]) in P(x, y) satisfying

ℓw (Fδ) ≤ dw(x, y) + δ.

Then for F ′
δ = ([βn, αn], . . . , [β1, α1]) ∈ P(y, x), we have

dw(y, x) ≤ ℓw (F ′
δ) = ℓw (Fδ) ≤ dw(x, y) + δ.

Since δ is arbitrary, we obtain dw(y, x) ≤ dw(x, y) and we conclude that dw(y, x) = dw(x, y)

inverting the roles of x and y. The triangle inequality is immediate since the juxtaposition

of F1 ∈ P(x, z) with F2 ∈ P(z, y) is an element of P(x, y). Hence dw defines a distance

on Ω verifying

λdΩ(x, y) ≤ dw(x, y) ≤ ΛdΩ(x, y) for any x, y ∈ Ω. (1.9)

Therefore distance dw extends uniquely to Ω × Ω into a distance function that we still

denote by dw. By continuity, dw satisfies (1.9) on Ω.

If w is continuous, it is easy to see that for a segment [α, β] ⊂ Ω we have

lim
ε→0+

1

πε2

∫

Ξ([α,β],ε)∩Ω

w(ξ)dξ =

∫

[α,β]

w(s)ds,

and we obtain for F = ([α1, β1], . . . , [αn, βn]) ∈ P(x, y) and x, y ∈ Ω,

ℓw (F) =

∫

∪n
k=1[αk,βk]

w(s)ds. (1.10)

Since w is continuous, the infimum in (1.3) can be taken over all piecewise affine curves

γ : [0, 1] → Ω such that γ(0) = x and γ(1) = y and we infer from (1.10) that

dw(x, y) = δw(x, y).

Then dw ≡ δw on Ω × Ω which implies that the equality holds on Ω × Ω by continuity.

Step 2. We prove the geodesic character of dw on Ω. Since dw is equivalent to dΩ, Ω

endowed with dw remains complete. By Theorem 1.8 in [55], it suffices to prove that for

any x, y ∈ Ω and any δ > 0, we can find a point z ∈ Ω verifying

max(dw(x, z), dw(z, y)) ≤ 1

2
dw(x, y) + δ.
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We fix x, y ∈ Ω and then x̃, ỹ ∈ Ω such that dw(x, x̃) + dw(y, ỹ) ≤ δ/2. We choose

some F = ([α1, β1], . . . , [αn, βn]) in P(x̃, ỹ) satisfying ℓw(F) ≤ dw(x̃, ỹ) + δ/2. For every

1 ≤ m ≤ n, we set Fm = ([α1, β1], . . . , [αm, βm]). We consider n⋆ ∈ N defined by

n⋆ =

{
Max

{
m, 2 ≤ m ≤ n, ℓw (Fm−1) < 1

2
ℓw(F)

}
if ℓw (F1) < 1

2
ℓw(F),

1 otherwise,

and s ∈ (0, 1) defined by

s =





ℓw(F) − 2 ℓw(Fn⋆−1)

2 ℓw([αn⋆ , βn⋆ ])
if n⋆ > 1,

ℓw(F)

2ℓw([αn⋆ , βn⋆ ])
if n⋆ = 1.

Let εk → 0+ as k → +∞ such that

ℓw([αn⋆ , βn⋆ ]) = lim
k→+∞

1

πε2
k

∫

Ξ([αn⋆ ,βn⋆ ],εk)∩Ω

w(ξ)dξ.

For each k ∈ N, we choose zk ∈ [αn⋆ , βn⋆ ] verifying

1

πε2
k

∫

Ξ([αn⋆ ,zk],εk)∩Ω

w(ξ)dξ =
s

πε2
k

∫

Ξ([αn⋆ ,βn⋆ ],εk)∩Ω

w(ξ)dξ + O(εk),

and
1

πε2
k

∫

Ξ([zk,βn⋆ ],εk)∩Ω

w(ξ)dξ =
1 − s

2πε2
k

∫

Ξ([αn⋆ ,βn⋆ ],εk)∩Ω

w(ξ)dξ + O(εk).

Extracting a subsequence if necessary, we may assume that zk →
k→+∞

z with z ∈ [αn⋆ , βn⋆ ].

Then we have

1

πε2
k

∫

Ξ([αn⋆ ,z],εk)∩Ω

w(ξ)dξ =
s

πε2
k

∫

Ξ([αn⋆ ,βn⋆ ],εk)∩Ω

w(ξ)dξ + O(εk) + O(|z − zk|),

and

1

πε2
k

∫

Ξ([z,βn⋆ ],εk)∩Ω

w(ξ)dξ =
1 − s

2πε2
k

∫

Ξ([αn⋆ ,βn⋆ ],εk)∩Ω

w(ξ)dξ + O(εk) + O(|z − zk|).

Taking the lim inf in k, we derive

ℓw([αn⋆ , z]) ≤ sℓw([αn⋆ , βn⋆ ]) and ℓw([z, βn⋆ ]) ≤ (1 − s)ℓw([αn⋆ , βn⋆ ]).

Hence we deduce that the elements Fx̃ = ([α1, β1], . . . , [αn⋆ , z]) ∈ P(x̃, z) and Fỹ =

([z, βn⋆ ], . . . , [αn, βn]) ∈ P(z, ỹ) verify

dw(x̃, z) ≤ ℓw(Fx̃) ≤
1

2
ℓw(F) ≤ 1

2
dw(x̃, ỹ) + δ/4,

dw(ỹ, z) ≤ ℓw(Fỹ) ≤
1

2
ℓw(F) ≤ 1

2
dw(x̃, ỹ) + δ/4,
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and we conclude that

max(dw(x, z), dw(y, z)) ≤ max(dw(x̃, z), dw(ỹ, z)) +
δ

2
≤ 1

2
dw(x̃, ỹ) +

3δ

4

≤ 1

2
dw(x, y) + δ,

i.e., the point z meets the requirement. ¥

Remark 1.1. The geodesic character of dw implies that two arbitrary points of
(
Ω, dw

)

can be linked by a minimizing geodesic. We mean by a minimizing geodesic any curve

γ : I → Ω such that

dw(γ(t), γ(t′)) = |t − t′| for any t, t′ ∈ I,

where I is some interval of R. In particular we obtain the existence for any x, y ∈ Ω of a

curve γxy ∈ Lipx,y

(
[0, 1], Ω

)
satisfying

dw (γxy(t), γxy(t
′)) = Ldw(γxy)|t − t′| for any t, t′ ∈ [0, 1]

(and then dw(x, y) = Ldw(γxy)). Indeed,
(
Ω, dw

)
defines a complete and locally compact

metric space and since dw is of geodesic type, the existence of a minimizing geodesic is

ensured by the Hopf-Rinow Theorem (see [55], Chapter 1). Moreover we deduce from

(1.9) that any minimizing geodesic for the distance dw is a λ−1-Lipschitz curve for the

Euclidean geodesic distance.

1.2.2 Integral representation of the length functional

In this section, we show that dw is actually induced by a Finsler metric in the sense

defined below.

Definition 1.2. A Borel measurable function ϕ : Ω×R
3 → [0, +∞) is said to be a Finsler

metric if ϕ(x, ·) is positively 1-homogeneous for every x ∈ Ω and convex for almost every

x ∈ Ω.

Proposition 1.2. There exists a Finsler metric ϕw : Ω × R
3 → [0, +∞) such that for

any Lipschitz curve γ : [0, 1] → Ω,

Ldw(γ) =

∫ 1

0

ϕw (γ(t), γ̇(t)) dt. (1.11)

Moreover, for any x, y ∈ Ω we have

dw(x, y) = Min

{∫ 1

0

ϕw (γ(t), γ̇(t)) dt, γ ∈ Lipx,y

(
[0, 1], Ω

)}
. (1.12)
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Proof. Step 1. First, we assume that Ω = R
3. To distance dw we associate the function

ϕw : R
3 × R

3 → [0, +∞) defined by

ϕw(x, ν) = lim sup
t→0+

dw(x, x + tν)

t
.

In [83], it is proved that ϕw defines a Finsler metric and the proof of (1.11) is given in

[42], Theorem 2.5. Then (1.12) directly follows from Remark 1.1.

Step 2. Assume that Ω is a smooth bounded and connected open set of R
3. For δ > 0,

we consider Ωδ = {x ∈ R
3, dist(x, Ω) < δ} where "dist" denotes the usual Euclidean

distance on R
3. We choose δ sufficiently small for the projection Πx of x ∈ Ωδ on Ω to

be well defined and smooth. Setting x⊥ = x − Πx for x ∈ Ωδ, we define the function

dw,δ : Ωδ × Ωδ → [0, +∞) by

dw,δ(x, y) = dw(Πx, Πy) + |x⊥ − y⊥|.

We easily check that dw,δ defines a distance on Ωδ. Then we consider for x, y ∈ Ωδ,

dw,δ(x, y) = Inf Ldw,δ
(γ),

where the infimum is taken over all γ ∈ C0 ([0, 1], Ωδ) satisfying γ(0) = x and γ(1) = y.

We also easily verify that dw,δ defines a distance on Ωδ and it follows from Proposition 1.6

in [55] that

Ldw,δ
= Ldw,δ

on C0 ([0, 1], Ωδ). (1.13)

Therefore dw,δ(x, y) is a geodesic distance on Ωδ. Moreover we infer from (1.9) that dw,δ is

equivalent to the Euclidean geodesic distance on Ωδ. We consider ϕw,δ : Ωδ×R
3 → [0, +∞)

defined by

ϕw,δ(x, ν) = lim sup
t→0+

dw,δ(x, x + tν)

t
.

By the results in [83], ϕw,δ is Borel measurable, positively 1-homogeneous in ν for every

x ∈ Ωδ and convex in ν for almost every x ∈ Ωδ. By Theorem 2.5 in [42], we have for any

Lipschitz curve γ : [0, 1] → Ωδ,

Ldw,δ
(γ) =

∫ 1

0

ϕw,δ (γ(t), γ̇(t)) dt. (1.14)

Since dw,δ = dw on Ω, we deduce that

Ldw,δ
= Ldw on C0

(
[0, 1], Ω

)
. (1.15)

If we denote by ϕw the restriction of ϕw,δ to Ω × R
3, we obtain (1.11) combining (1.13),

(1.14) and (1.15). Then (1.12) follows from Remark 1.1. ¥
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Remark 1.2. If we assume that w is continuous in Ω, we have

ϕw(x, ν) = w(x)|ν| for any (x, ν) ∈ Ω × R
3.

Indeed, fix (x, ν) ∈ Ω × R
3 \ {0}, t > 0 such that B(x, 2tλ−1|ν|) ⊂ Ω and consider a

sequence γn ∈ Lip([0, 1], Ω) verifying
∫ 1

0

w (γn(s)) |γ̇n(s)|ds → dw(x, x + tν) as n → +∞.

Since dw ≥ λdΩ, we infer that γn([0, 1]) ⊂ B(x, 2tλ−1|ν|) and therefore
∫ 1

0

w (γn(s)) |γ̇n(s)|ds ≥ w(x)

∫ 1

0

|γ̇n(s)|ds − o(t) ≥ w(x)t|ν| − o(t).

Letting n → +∞, we obtain

dw(x, x + tν)

t
≥ w(x)|ν| − o(1).

But we trivially have

dw(x, x + tν)

t
≤ 1

t

∫ t

0

w(x + sν)|ν|ds = w(x)|ν| + o(1).

We derive the result from these two last inequalities letting t → 0.

1.2.3 Characterization of 1-Lipschitz functions

Proposition 1.3. Assume that (1.1) holds. Then for any ζ : Ω → R, the following

properties are equivalent :

i) |ζ(x) − ζ(y)| ≤ dw(x, y) for any x, y ∈ Ω.

ii) ζ is Lipschitz continuous and |∇ζ(x)| ≤ w(x) for a.e. x ∈ Ω.

Proof. i) ⇒ ii). Let ζ : Ω → R satisfying i). From Proposition 1.1, we infer that ζ

is Lipschitz continuous. Fix x0 ∈ Ω and R > 0 such that B3R(x0) ⊂ Ω. Let (ρn)n∈N

be a sequence of smooth mollifiers and consider, for n > 1/R , the smooth function

ζn = ρn ∗ ζ : BR(x0) → R. We write

ζn(x) =

∫

B1/n

ρn(−z)ζ(x + z)dz

and then for any x, y ∈ BR(x0),

|ζn(x) − ζn(y)| ≤
∫

B1/n

ρn(−z) |ζ(x + z) − ζ(y + z)| dz

≤
∫

B1/n

ρn(−z) dw(x + z, y + z)dz

≤
∫

B1/n

ρn(−z) ℓw ([x + z, y + z]) dz.
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Taking an arbitrary sequence εk → 0+ as k → +∞ and using Fatou’s lemma, we get that

|ζn(x) − ζn(y)| ≤
∫

B1/n

ρn(−z)

(
lim inf
k→+∞

1

πε2
k

∫

Ξ([x+z,y+z],εk)∩Ω

w(ξ)dξ

)
dz

≤ lim inf
k→+∞

1

πε2
k

∫

B1/n

∫

Ξ([x+z,y+z],εk)∩Ω

ρn(−z)w(ξ)dξdz.

For k ∈ N sufficiently large, we have Ξ ([x + z, y + z], εk) ⊂ B3R(x0) and accordingly
∫

B1/n

∫

Ξ([x+z,y+z],εk)

ρn(−z)w(ξ)dξdz=

∫

Ξ([x,y],εk)

∫

B1/n

ρn(−z)w(ξ + z)dzdξ

=

∫

Ξ([x,y],εk)

ρn ∗ w(ξ)dξ.

Since ρn ∗ w is smooth, we obtain as in the proof of Proposition 1.1,

1

πε2
k

∫

Ξ([x,y],εk)

ρn ∗ w(ξ)dξ →
∫

[x,y]

ρn ∗ w(s)ds as k → +∞.

Thus for each x, y ∈ BR(x0) we have

|ζn(x) − ζn(y)| ≤
∫

[x,y]

ρn ∗ w(s)ds.

Then for x ∈ BR(x0), h ∈ S2 fixed and δ > 0 small, we derive

|ζn(x + δh) − ζn(x)|
δ

≤ 1

δ

∫

[x,x+δh]

ρn ∗ w(s)ds →
δ→0+

ρn ∗ w(x)

and we conclude, letting δ → 0, that |∇ζn(x) · h| ≤ ρn ∗ w(x) for each x ∈ BR(x0) and

h ∈ S2 which implies that |∇ζn| ≤ ρn ∗ w on BR(x0). Since ∇ζn → ∇ζ and ρn ∗ w → w

a.e. on BR(x0) as n → +∞, we deduce that |∇ζ| ≤ w a.e. on BR(x0). Since x0 is arbitrary

in Ω, we get the result.

ii) ⇒ i) The reverse implication follows from the lemma below.

Lemma 1.1. Let ζ : Ω → R be a Lipschitz continuous function. For any a, b ∈ Ω with

[a, b] ⊂ Ω and all ε > 0 sufficiently small, we have

|ζ(a) − ζ(b)| ≤ 1

πε2

∫

Ξ([a,b],ε)∩Ω

|∇ζ(z)|dz + 2ε‖∇ζ‖∞ .

Proof of ii) ⇒ i) completed. Indeed, let ζ be a Lipschitz continuous function satisfying ii).

We deduce from Lemma 1.1 and (1.1) that for any F = ([α1, β1], . . . , [αn, βn]) ∈ P(x, y)

and any parameters ε1, . . . , εn > 0 sufficiently small, we have

|ζ(x)−ζ(y)| ≤
n∑

k=1

|ζ(βk)−ζ(αk)| ≤
n∑

k=1

(
1

πε2
k

∫

Ξ([αk,βk],εk)∩Ω

w(z)dz + 2Λεk

)
.
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Taking successively the lim inf in εk → 0+ for each parameter εk, we get that

|ζ(x) − ζ(y)| ≤ ℓw (F) .

We obtain the result for x, y ∈ Ω taking the infimum over all F ∈ P(x, y). We conclude

that i) holds in all Ω by continuity. ¥

Proof of Lemma 1.1. First note that we just have to prove the inequality for smooth

functions ζ, the general case follows by a density argument. Let ζ be a smooth real valued

function. Without loss of generality, we may assume that a = (0, 0, 0) and b = (0, 0, R).

Then for any ε > 0 such that the 3D-cylinder B
(2)
ε (0) × [0, R] is included in Ω, and any

(x1, x2) ∈ B
(2)
ε (0), we have

|ζ(b) − ζ(a)| ≤ |ζ(0, 0, R) − ζ(x1, x2, R)| + |ζ(x1, x2, R) − ζ(x1, x2, 0)|
+ |ζ(x1, x2, 0) − ζ(0, 0, 0)|

≤
∫ R

0

|∇ζ(x1, x2, x3)| dx3 + 2ε‖∇ζ‖∞ .

Integrating the last inequality in (x1, x2) ∈ B
(2)
ε (0) yields

πε2 |ζ(b) − ζ(a)| ≤
∫

B
(2)
ε (0)×[0,R]

|∇ζ(x1, x2, x3)| dx1dx2dx3 + 2πε3 ‖∇ζ‖∞ .

Dividing by πε2, we get the result since B
(2)
ε (0) × [0, R] ⊂ Ξ([a, b], ε) ∩ Ω. ¥

Remark 1.3. In [38], F. Camilli and A. Siconolfi study the Hamilton-Jacobi equation

H(x,∇u) = 0 a.e. in Ω

where the Hamiltonian H(x, ν) is measurable in x, continuous and quasiconvexe in ν.

They construct the optical length function LΩ : Ω × Ω giving a class of “fundamental

solutions”. They show that for every y0 ∈ Ω, LΩ(y0, ·) is the maximal element of the set

C(y0) =
{
v ∈ W 1,∞(Ω, R), H(x,∇v) ≤ 0 a.e in Ω, v(y0) = 0

}
.

In the case H(x, ν) = |ν| − w(x), Proposition 1.3 shows that dw and the optical length

function LΩ coincide i.e., dw(x, y) = LΩ(x, y) for any x, y ∈ Ω.

1.3 Energy estimates - Proof of Theorem 1.1

Theorem 1.1 follows from the combination of Lemma 1.2 and Lemma 1.5 below. In

Section 1.3.2, we give an explicit dipole construction.
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1.3.1 Lower bound of the energy

Lemma 1.2. For any u ∈ E, we have
∫

Ω

|∇u|2w(x)dx ≥ 8πLw.

Proof. The proof is essentially the same as in [30] once we have the results of Section 1.2.

We introduce for each u ∈ E the vector field D defined by

D =

(
u · ∂u

∂x2

∧ ∂u

∂x3

, u · ∂u

∂x3

∧ ∂u

∂x1

, u · ∂u

∂x1

∧ ∂u

∂x2

)
. (1.16)

As in [30], we have 2|D| ≤ |∇u|2 and D ∈ L1(Ω) defines a distribution which satisfies

div D = 4π
N∑

i=1

diδai
in D′(Ω). (1.17)

Relabelling the points (ai) as positive and negative points taking into account their mul-

tiplicity |di|, we get a list (pj) of positive points and a list (nj) of negative points. Since∑
di = 0, we have as many positive points as negative points. Then we write (1.17) as

div D = 4π
K∑

j=1

δpj
− δnj

. (1.18)

From Proposition 1.3 and the properties of D, we deduce that for any function ζ : Ω → R

which is 1-Lipschitz with respect to dw,
∫

Ω

|∇u|2w(x)dx ≥ 2

∫

Ω

|D|w(x)dx ≥ −2

∫

Ω

D · ∇ζ. (1.19)

Using (1.18), we get that

∫

Ω

|∇u|2w(x)dx ≥ 8π

(
K∑

j=1

ζ(pj) − ζ(nj)

)
− 8π

∫

∂Ω

(D · η)ζ dσ

without the boundary term if Ω = R
3. On ∂Ω, we have D ·η = Jac2(u/∂Ω) where η denotes

the outward normal and Jac2(u/∂Ω) denotes the 2×2 Jacobian determinant of u restricted

to ∂Ω. Since each u ∈ E is constant on ∂Ω, we have D · η ≡ 0 on ∂Ω and therefore we

derive ∫

Ω

|∇u|2w(x)dx ≥ 8π Max
K∑

j=1

ζ(pj) − ζ(nj)

where the maximum is taken over all functions ζ which 1-Lipschitz with respect to dw.

By (1.6) we conclude that ∫

Ω

|∇u|2w(x)dx ≥ 8πLw

for any map u ∈ E which completes the proof of the lower bound. ¥
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1.3.2 The dipole construction

Lemma 1.3. Let P, N be two distinct points in Ω. For any δ > 0, there exists a map

uδ ∈ C1
(
Ω \ {P, N}, S2

)
such that deg(uδ, P ) = +1, deg(uδ, N) = −1 and

∫

Ω

|∇uδ|2w(x)dx ≤ 8πdw(P, N) + δ.

Moreover uδ is constant outside a small neighborhood of a polygonal curve running between

P and N .

Proof. For ε > 0, we consider the map ωε : R
2 → S2 defined by

ωε(x, y) =





2ε2

ε4 + r2
(x, y,−ε2) if r ≤ ε

(A(r) cos θ, A(r) sin θ, C(r)) if ε ≤ r ≤ 2ε

(0, 0, 1) if 2ε ≤ r

(1.20)

where (x, y) = (r cos θ, r sin θ) and

A(r) =
−2ε2

ε4 + ε2
r +

4ε3

ε4 + ε2
, C(r) =

√
1 − (A(r))2 .

According to the results in [29], ωε is Lipschitz continuous and deg ωε = +1 when one

identifies R
2 ∪ {∞} with S2. As in [30], the map ωε will be the main ingredient in our

construction. First we define the following objects. For two distinct points α, β ∈ Ω with

[α, β] ⊂ Ω, we denote by pα,β(x) the projection of x ∈ R
3 on the straight line passing by

α and β and

rα,β(x) = dist (x, [α, β]) , hα,β(x) = dist (pα,β(x), {α, β}) ,

where “dist” denotes the Euclidean distance in R
3. For some small σ > 0, we consider the

following sets :

Cσ
ε (α, β) =

{
x ∈ R

3, pα,β(x) ∈]α, β[, σrα,β(x) ≤ hα,β(x), 0 ≤ hα,β(x) ≤ σε
}
,

T σ
ε (α, β) =

{
x ∈ R

3, pα,β(x) ∈ [α, β], rα,β(x) ≤ ε, hα,β(x) ≥ σε
}
,

Vε(α, β) =
{
x ∈ R

3, pα,β(x) ∈ [α, β], rα,β(x) ≤ ε
}
.

We choose ε small enough such that Cσ
2ε(α, β)∪T σ

2ε(α, β)∪V2ε(α, β) ⊂ Ω. We fix δ > 0 and

we consider F = ([α1, β1], . . . , [αn, βn])∈P(P,N) such that the curve γ = ∪k[αk, βk] has

no self-intersection points. Then for each k ∈ {1, . . . , n}, we fix two unit vectors ik and jk
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in the orthogonal plane to βk − αk such that (ik, jk,
βk−αk

|βk−αk|) defines a direct orthonormal

basis of R
3 and we consider u

(k)
ε : Ω → S2 defined by

u(k)
ε (x) =





ωε (Xk(x), Yk(x)) if x ∈ Cσ
2ε(αk, βk),

ωε ((x−pαk,βk
(x)) · ik , (x−pαk,βk

(x)) · jk) if x ∈ T σ
2ε(αk, βk),

(0, 0, 1) otherwise

with

Xk(x) =
2σε

hαk,βk
(x)

(x − pαk,βk
(x)) · ik , Yk(x) =

2σε

hαk,βk
(x)

(x − pαk,βk
(x)) · jk .

We check that u
(k)
ε ∈ W 1,∞

loc

(
Ω \ {αk, βk}, S2

)
, deg(u

(k)
ε , αk) = +1, deg(u

(k)
ε , βk) = −1.

Using coordinates in the basis (ik, jk,
βk−αk

|βk−αk|), some classical computations (see [27]) lead

to

|∇u(k)
ε (x)|2≤(1+Cε2)

4σ2ε2

h2
αk,βk

(x)
|∇ωε (Xk(x), Yk(x))|2 in Cσ

2ε(αk, βk). (1.21)

By the results in [29], we have

∫

B2ε(0)\Bε(0)

|∇ωε|2 = O(ε) ,

∫

Bε(0)

|∇ωε|2 = 8π + O(ε) (1.22)

and therefore
∫

(T σ
2ε\T σ

ε )(αk,βk)

|∇ωε((x−pαk,βk
(x))·ik , (x−pαk,βk

(x))·jk)|2dx=O(ε), (1.23)

∫

Cσ
2ε(αk,βk)

4σ2ε2

h2
αk,βk

(x)
|∇ωε (Xk(x), Yk(x))|2 dx = O(ε). (1.24)

We infer from (1.21-1.24) that

∫

Ω

|∇u(k)
ε |2w(x)dx ≤

≤
∫

T σ
ε (αk,βk)

|∇ωε ((x−pαk,βk
(x)) · ik , (x−pαk,βk

(x)) · jk)|2w(x)dx+O(ε).

Since we have

|∇ωε(x, y)|2 =
8ε4

(ε4 + x2 + y2)2
for (x, y) ∈ Bε(0),

we conclude that
∫

Ω

|∇u(k)
ε |2w(x)dx ≤ 8

∫

Vε(αk,βk)

ε4w(x)
(
ε4 + r2

αk,βk
(x)

)2 dx + O(ε). (1.25)
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Then we set

ℓ̃w (F) =
n∑

k=1

lim inf
ε→0+

1

π

∫

Vε(αk,βk)

ε4w(x)
(
ε4 + r2

αk,βk
(x)

)2 dx. (1.26)

By (1.25) and (1.26), we can choose ε1, . . . , εn > 0 arbitrarily small to have

n∑

k=1

∫

Ω

|∇u(k)
εk
|2w(x)dx ≤ 8πℓ̃w (F) +

δ

4
. (1.27)

We choose σ and then each εk for
{
Cσ

2εk
(αk, βk) ∪ T σ

2εk
(αk, βk)

}n

k=1
to define a family of

disjoint sets (which is possible since the curve γ has no self intersection points) and such

that (1.27) holds. Then we consider the map ũδ : Ω → S2 defined by

ũδ(x) =





u
(k)
εk if x ∈ Cσ

2εk
(αk, βk) ∪ T σ

2εk
(αk, βk),

(0, 0, 1) if x 6∈ ∪kC
σ
2εk

(αk, βk) ∪ T σ
2εk

(αk, βk).

By construction, we have ũδ ∈ W 1,∞
loc

(
Ω \ {P, α2, . . . , αn, N}, S2

)
and deg(ũδ, P ) = 1,

deg(ũδ, N) = −1, deg(ũδ, αk) = 0 for k = 2, . . . , n. From (1.27), we derive that

∫

Ω

|∇ũδ|2w(x)dx ≤ 8πℓ̃w (F) +
δ

4
.

Since deg(ũδ, αk) = 0 for k = 2, . . . , n, we can smoothen ũδ around γ, using the result

in [16], in order to obtain a new map uδ ∈ C1
loc

(
Ω \ {P, N}, S2

)
verifying deg(uδ, P ) = 1,

deg(uδ, N) = −1 and ∫

Ω

|∇uδ|2w(x)dx ≤ 8πℓ̃w (F) +
δ

2
. (1.28)

Now we recall that the collection F = ([α1, β1], . . . , [αn, βn]) ∈ P(P, N) such that the

curve γ = ∪k[αk, βk] has no self-intersection points, can be chosen for the construction of

uδ. From Lemma 1.4 below, we can find F such that

ℓ̃w (F) ≤ dw(P,N) +
δ

16π

and according to (1.28), the map uδ satisfies the required properties. ¥

Lemma 1.4. For x, y ∈ Ω, let P ′(x, y) be the class of elements F =([α1, β1], . . . , [αn, βn])

in P(x, y) such that the curve γ = ∪k[αk, βk] has no self intersection points. Then

d̃w(x, y) = Inf
F∈P ′(x,y)

ℓ̃w(F) ≤ dw(x, y),

where ℓ̃w(F) is defined in (1.26).
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Proof. Step 1. First we prove that d̃w defines a distance. As for distance dw, we in-

fer that d̃w(x, y) = 0 if and only if x = y and d̃w is symmetric. Then we just have

to check the triangle inequality. We remark that the juxtaposition of F1 ∈ P ′(x, z)

with F2 ∈ P ′(z, y) is not an element of P ′(x, y) in general and we can’t proceed as

for dw. Let x, y, z be three distinct points in Ω. We consider two arbitrary elements

F1 = ([α1
1, β

1
1 ], . . . , [α

1
n1

, β1
n1

]) ∈ P ′(x, z), F2 = ([α2
1, β

2
1 ], . . . , [α

2
n2

, β2
n2

]) ∈ P ′(z, y), and

the curves γ1 = ∪k[α
1
k, β

1
k ] and γ2 = ∪k[α

2
k, β

2
k ]. We have to prove that we can construct

F3 ∈ P ′(x, y) such that ℓ̃w(F3) ≤ ℓ̃w(F1) + ℓ̃w(F2).

First Case : If the curve γ1 ∪ γ2 has no self intersection points then we take F3 =

([α1
1, β

1
1 ], . . . , [α

1
n1

, β1
n1

], [α2
1, β

2
1 ], . . . , [α

2
n2

, β2
n2

]) ∈ P ′(x, y) and we have

ℓ̃w(F3) = ℓ̃w(F1) + ℓ̃w(F2).

Second Case : If γ1 ∪ γ2 has self intersection points then we rewrite the curves γ1 and γ2

as γ1 = ∪ñ1
k=1[α̃

1
k, β̃

1
k ] and γ2 = ∪ñ2

k=1[α̃
2
k, β̃

2
k ] such that

a) (αi
k)

ni
k=1 ⊂ (α̃i

k)
ñi
k=1 for i = 1, 2,

b) if S is a connected component of γ1 ∩ γ2 then one of the following cases holds :

b1) S ⊂
(
∪ñ1

k=1 {α̃1
k, β̃

1
k}

)
∩

(
∪ñ1

k=1 {α̃2
k, β̃

2
k}

)
,

b2) S ∈
{
[α̃1

1, β̃
1
1 ], . . . , [α̃

1
ñ1

, β̃1
ñ1

]
}
∩

{
[α̃2

1, β̃
2
1 ], . . . , [α̃

2
ñ2

, β̃2
ñ2

]
}
,

c) F̃1 = ([α̃1
1, β̃

1
1 ], . . . , [α̃

1
ñ1

, β̃1
ñ1

]) ∈ P ′(x, z) ,

d) F̃2 = ([α̃2
1, β̃

2
1 ], . . . , [α̃

2
ñ2

, β̃2
ñ2

]) ∈ P ′(z, y).

By construction, we can write for every k = 1, . . . , ni and i = 1, 2 ,

[αi
k, β

i
k] =

mi
k⋃

l=1

[α̃i
l, β̃

i
l ] for some mi

k ∈ N.

Since we have

Vε(α
i
k, β

i
k) = ∪mi

k
l=1Vε(α̃

i
l, β̃

i
l ),

we get that

lim inf
ε→0+

1

π

∫

Vε(αi
k,βi

k)

ε4w(x)
(
ε4 + r2

αi
k,βi

k
(x)

)2 dx ≥
mi

k∑

l=1

lim inf
ε→0+

1

π

∫

Vε(α̃i
l ,β̃

i
l )

ε4w(x)
(
ε4 + r2

α̃i
l ,β̃

i
l

(x)
)2 dx

and we conclude that ℓ̃w(F̃i) ≤ ℓ̃w(Fi) for i = 1, 2. In the collection

(
[α̃1

1, β̃
1
1 ], . . . , [α̃

1
ñ1

, β̃1
ñ1

], [α̃2
1, β̃

2
1 ], . . . , [α̃

2
ñ2

, β̃2
ñ2

]
)
,

we just have to delete some segments in order to obtain a new element F3 ∈ P ′(x, y)

which then satisfies ℓ̃w(F3) ≤ ℓ̃w(F̃1) + ℓ̃w(F̃2) ≤ ℓ̃w(F1) + ℓ̃w(F2).
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From these constructions, we conclude that d̃w(x, y) ≤ ℓ̃w(F1) + ℓ̃w(F2). Taking the

infimum over all F1 ∈ P ′(x, z) and all F2 ∈ P ′(z, y), we derive the triangle inequality.

Step 2. We fix two arbitrary points x0 and y0 in Ω and we consider ζ : Ω → R defined by

ζ(x) = d̃w(x, y0).

From the triangle inequality, we get that ζ is 1-Lipschitz with respect to distance d̃w.

Let z0 ∈ Ω and R > 0 such that B3R(z0) ⊂ Ω and let (ρn)n∈N be a sequence of smooth

mollifiers. For n > 1/R, we consider ζn = ρn ∗ ζ : BR(z0) → R. For any x, y ∈ BR(z0) we

have

|ζn(x) − ζn(y)| ≤
∫

B1/n

ρn(−z)|ζ(x + z) − ζ(y + z)|dz

≤
∫

B1/n

ρn(−z)d̃w(x + z, y + z)dz

≤
∫

B1/n

ρn(−z)ℓ̃w ([x + z, y + z]) dz.

We remark that Vε(x + z, y + z) = z + Vε(x, y) and that for any ξ ∈ Vε(x, y), we have

rx,y(ξ) = rx+z,y+z(ξ + z).

Then we obtain for any z ∈ B1/n(0),

ℓ̃w ([x + z, y + z]) = lim inf
ε→0+

1

π

∫

Vε(x,y)

ε4w(ξ + z)
(
ε4 + r2

x,y(ξ)
)2 dξ.

Taking an arbitrary sequence εk → 0+ and using Fatou’s lemma, we get that

|ζn(x) − ζn(y)| ≤ lim inf
k→+∞

1

π

∫

B1/n

∫

Vεk
(x,y)

ε4
k ρn(−z)w(ξ + z)
(
ε4

k + r2
x,y(ξ)

)2 dξdz

≤ lim inf
k→+∞

1

π

∫

Vεk
(x,y)

ε4
k(

ε4
k + r2

x,y(ξ)
)2 ρn ∗ w(ξ) dξ.

Without loss of generality we may assume that [x, y] = {(0, 0)} × [−R, R]. Then we have

Vε(x, y) =
{
(ξ1, ξ2, ξ3) ∈ R

3, |ξ3| ≤ R,
√

ξ2
1 + ξ2

2 ≤ ε
}

and rx,y(ξ) =
√

ξ2
1 + ξ2

2 for ξ ∈ Vε(x, y). Therefore we can write

∫

Vεk
(x,y)

ε4
k ρn ∗ w(ξ)

(
ε4

k + r2
x,y(ξ)

)2 dξ =

∫

Bεk
(0)×[−R,R]

ε4
k ρn ∗ w (ξ)

(ε4
k + ξ2

1 + ξ2
2)

2 dξ

=

∫

Bεk
(0)×[−R,R]

ε4
k (ρn ∗ w (0, 0, ξ3) + On(εk))

(ε4
k + ξ2

1 + ξ2
2)

2 dξ,
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where On(εk) denotes a quantity which tends to 0 as εk → 0 for n fixed. Since we have

∫

Bεk
(0)

ε4
k

(ε4
k + ξ2

1 + ξ2
2)

2 dξ = π + O(εk),

it follows that

|ζn(x) − ζn(y)| ≤
∫ R

−R

ρn ∗ w(0, 0, ξ3)dξ3 =

∫

[x,y]

ρn ∗ w(s)ds.

As in the proof of Proposition 1.3, we conclude that |∇ζ| ≤ w a.e. in BR(z0) and since z0

is arbitrary in Ω, we get that |∇ζ| ≤ w a.e. in Ω. According to Proposition 1.3, it implies

that for any x, y ∈ Ω,

|ζ(x) − ζ(y)| ≤ dw(x, y)

which leads to d̃w(x0, y0) ≤ dw(x0, y0) taking x = x0 and y = y0. ¥

1.3.3 Upper bound of the energy

Lemma 1.5. For any δ > 0, there exists a map uδ ∈ E such that

∫

Ω

|∇uδ|2w(x)dx ≤ 8πLw + δ.

Proof. We relabel the list (ai)
N
i=1 as a list of positive points (pj)

K
j=1 and a list of negative

points (nj)
K
j=1 and we may assume that

∑
j dw(pj, nj) = Lw. We will construct dipoles

between each pair (pj, nj) which do not intersect each other. We claim that we can find

F1 = ([α1
1, β

1
1 ], . . . , [α

1
m1

, β1
m1

]) ∈ P ′(p1, n1) such that

(A.1) γ1 = ∪k[α
1
k, β

1
k ] does not contain any pj 6= p1 and any nj 6= n1,

(A.2) ℓ̃w(F1) ≤ dw(p1, n1) + δ
8Kπ

.

Indeed if we define for x, y ∈ ΩA = Ω \ {pj, nj| pj 6= p1, nj 6= n1},

DA
w(x, y) = Inf ℓ̃w(F)

where the infimum is taken over all F = ([α1, β1], . . . , [αm, βm]) ∈ P ′(x, y) such that

∪k[αk, βk] ⊂ ΩA then we prove, using the arguments in the proof of Lemma 1.4 that

DA
w(x, y) ≤ dw(x, y) for any x, y ∈ ΩA.

Since p1, n1 ∈ ΩA, we obtain DA
w(p1, n1) ≤ dw(p1, n1) and by the definition of DA

w , we draw

the existence of F1 ∈ P ′(p1, n1) satisfying (A.1) and (A.2).

Now we will show that we can find some F2 = ([α2
1, β

2
1 ], . . . , [α

2
m2

, β2
m2

]) in P ′(p2, n2)

such that
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(B.1) γ2 = ∪k[α
2
k, β

2
k ] does not contain any pj 6= p2 and any nj 6= n2 and does not

intersect γ1 \ {p1, n1},

(B.2) ℓ̃w(F2) ≤ dw(p2, n2) + δ
8Kπ

.

As previously we define

ΩB = Ω \
(
{pj, nj| pj 6= p2, nj 6= n2} ∪ (γ1 \ {p1, n1})

)

and

DB
w (x, y) = Inf ℓ̃w(F) for x, y ∈ ΩB

where the infimum is taken over all F = ([α1, β1], . . . , [αm, βm]) ∈ P ′(x, y) such that

∪k[αk, βk] ⊂ ΩB. In the same way we infer that for any x, y ∈ Ω2,

DB
w (x, y) ≤ dw(x, y)

and the existence of F2 ∈ P ′(p2, n2) satisfying (B.1) and (B.2) follows.

Iterating this process, we finally reach the existence of K elements

Fj = ([αj
1, β

j
1], . . . , [α

j
mj

, βj
mj

]) ∈ P ′(pj, nj)

such that

ℓ̃w(Fj) ≤ dw(pj, nj) +
δ

8Kπ
,

and γj = ∪k[α
j
k, β

j
k] and γi = ∪k[α

i
k, β

i
k] do not intersect except maybe at their extremities

for i 6= j.

From the dipole construction in Lemma 1.3, we construct K maps uj
δ in C1

loc

(
Ω \

{pj, nj}, S2
)

constant outside an arbitrary small open neighborhood Nj of γj and such

that deg(uj
δ, pj) = +1, deg(uj

δ, nj) = −1 and

∫

Ω

|∇uj
δ|2w(x)dx ≤ 8πdw(pj, nj) +

δ

K
.

By construction of the Fj’s, we can choose the Nj sufficiently small for Nj and Ni to not

intersect whenever j 6= i. Then the map

uδ(x) =





uj
δ(x) if x ∈ Nj,

(0, 0, 1) if x 6∈ ∪jNj,

is well defined and satisfies the required properties. ¥
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1.4 Some stability and approximation results

1.4.1 Stability results

The stability result below is based on Theorem 3.1 in [34]. It relies on the Γ-convergence

of the length functionals (we refer to [41] for the notion of Γ-convergence). In the sequel,

we denote by Lip
(
[0, 1], Ω

)
the class of all Lipschitz map from [0, 1] into Ω and we endow

Lip
(
[0, 1], Ω

)
with the topology of the uniform convergence on [0, 1].

Theorem 1.2. Let (wn)n∈N be a sequence of measurable real functions such that

0 < c0 ≤ wn ≤ C0 a.e in Ω

for some constants c0 and C0 independent of n ∈ N. The following properties are equiva-

lent :

(i) Ewn

(
(ai, di)

N
i=1

)
→

n→+∞
Ew

(
(ai, di)

N
i=1

)
for any configuration (ai, di)

N
i=1,

(ii) the functionals Ldwn
Γ-converge to Ldw in Lip

(
[0, 1], Ω

)
.

In the proof of Theorem 1.2, we will make use of the following lemma.

Lemma 1.6. Let (dn)n∈N be a sequence of geodesic distances on Ω such that

c0dΩ ≤ dn ≤ C0dΩ (1.29)

for some positive constants c0 and C0 independent of n ∈ N. Then there exits a subsequence

(nk)k∈N and a geodesic distance d′ on Ω such that dnk
→ d′ as k → +∞ uniformly on

every compact subset of Ω × Ω.

Proof. For (x1, y1), (x2, y2) ∈ Ω × Ω we have

dwn(x1, y1) − dwn(x2, y2) ≤ dwn(x1, x2) + dwn(x2, y1) − dwn(x2, y2)

≤ dwn(x1, x2) + dwn(y1, y2)

≤ C0 (dΩ(x1, x2) + dΩ(y1, y2)) .

Inverting the roles of (x1, y1) and (x2, y2) we infer that

|dwn(x1, y1) − dwn(x2, y2)| ≤ C0 (dΩ(x1, x2) + dΩ(y1, y2)) .

Thus dwn is C0-Lipschitz on Ω × Ω for every n ∈ N and we conclude by Ascoli’s theorem

that we can find a subsequence (nk)k∈N and a Lipschitz function d′ on Ω × Ω such that

dnk
→ d′ as k → +∞ uniformly on every compact subset of Ω × Ω. We easily check that

d′ defines a distance on Ω and it remains to prove that d′ is geodesic. Since d′ satisfies

(1.29) as the pointwise limit of (dnk
)k∈N, Ω endowed with d′ is a complete metric space. By

Theorem 1.8 in [55], it suffices to prove that for any x, y ∈ Ω and δ > 0 there exists z ∈ Ω
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such that max (d′(x, z), d′(z, y)) ≤ 1
2
d′(x, y) + δ. We fix x, y ∈ Ω and δ > 0. Since dnk

is

of geodesic type, we can find zk ∈ Ω such that max (dnk
(x, z), dnk

(z, y)) ≤ 1
2
dnk

(x, y) + δ.

Then the sequence (zk) is bounded and we may assume that zk → z ∈ Ω. Since dnk
→ d′

uniformly on every compact subset of Ω × Ω, we deduce that dnk
(x, zk) → d′(x, z) and

dnk
(zk, y) → d′(z, y). Letting k → +∞ in the last inequality we draw that z satisfies the

requirement. ¥

Proof of Theorem 1.2. Step 1. We prove (i) ⇒ (ii). From (i) we derive that

Ewn(P,N) → Ew(P, N)

in the dipole case for any distinct points P,N ∈ Ω. By Theorem 1.1 we conclude that

dwn → dw pointwise on Ω. As in the proof of Proposition 1.1 we have c0dΩ ≤ dwn ≤ C0dΩ

in Ω. By Lemma 1.6 and the uniqueness of the limit we get that dwn → dw uniformly on

every compact subset of Ω×Ω. Using the arguments of the proof of i) ⇒ ii) Theorem 3.1

in [34], we infer that Ldwn

Γ→Ldw in Lip
(
[0, 1], Ω

)
.

Step 2. We prove (ii) ⇒ (i). Since we have c0dΩ ≤ dwn ≤ C0dwn in Ω we draw from

Lemma 1.6 that we can find a subsequence (nk)k∈N and a geodesic distance d′ on Ω such

that dwnk
→ d′ uniformly on every compact subset of Ω × Ω. As in the previous step, we

obtain using the method in [34] that Ldwnk

Γ→Ld′ in Lip
(
[0, 1], Ω

)
. Then we conclude by

assumption (ii) that Ld′ ≡ Ldw on Lip
(
[0, 1], Ω

)
. Since c0dΩ ≤ d′ ≤ C0dΩ as the pointwise

limit of (dwnk
)k∈N, we can proceed as in Remark 1.1 to prove that for any x, y ∈ Ω there

exists a curve γ ∈ Lip
(
[0, 1], Ω

)
such that d′(x, y) = Ld′(γ). Since the same property holds

for dw we finally get that d′ ≡ dw. The uniqueness of the limit implies the convergence of

the full sequence. Then (i) follows by Theorem 1.1. ¥

In the next proposition, we give some sufficient conditions on a sequence (wn)n∈N

converging pointwise to w for Property (i) in Theorem 1.2 to hold.

Proposition 1.4. Let (wn)n∈N be a sequence of measurable functions such that

0 < c0 ≤ wn ≤ C0 a.e in Ω

for some constants c0 and C0 independent of n ∈ N. Assume that one of the following

conditions holds :

(a) wn ≥ w and wn → w a.e. in Ω,

(b) wn → w in L∞(Ω).

Then Property (i) in Theorem 1.2 holds.

Proof. Step 1. Assume that (a) holds. Since w ≤ wn a.e. in Ω we infer that

Ew

(
(ai, di)

N
i=1

)
≤ Ewn

(
(ai, di)

N
i=1

)
for any n ∈ N
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and therefore

Ew

(
(ai, di)

N
i=1

)
≤ lim inf

n→+∞
Ewn

(
(ai, di)

N
i=1

)
. (1.30)

Fix some u ∈ E . Since wn ≤ C0 and wn → w a.e. on Ω, we obtain by dominated

convergence that ∫

Ω

|∇u|2wn(x)dx →
n→+∞

∫

Ω

|∇u|2w(x)dx.

Then we derive

lim sup
n→+∞

Ewn

(
(ai, di)

N
i=1

)
≤

∫

Ω

|∇u|2w(x)dx,

and since u is arbitrary we conclude

lim sup
n→+∞

Ewn

(
(ai, di)

N
i=1

)
≤ Ew

(
(ai, di)

N
i=1

)
. (1.31)

Finally, the announced result follows from (1.30) and (1.31).

Step 2. Assume that (b) holds. We set δn =‖ wn − w ‖L∞(Ω) and

w̃n = (1 + c−1
0 δn)wn.

By construction we have w̃n ≥ w and w̃n → w a.e. in Ω. From the previous case we deduce

lim
n→+∞

Ew̃n

(
(ai, di)

N
i=1

)
= Ew

(
(ai, di)

N
i=1

)
,

which yields the result since

Ew̃n

(
(ai, di)

N
i=1

)
= (1 + c−1

0 δn)Ewn

(
(ai, di)

N
i=1

)

and 1 + c−1
0 δn → 1 as n → +∞. ¥

Remark 1.4. The conclusion of Proposition 1.4 case (b) may fail if the sequence {wn}
converges to w almost everywhere in Ω. Indeed, if one considers a sequence (wn)n∈N of

smooth functions on Ω = B1(0) satisfying

wn(x) =





1 if |x3| ≥ 1/n ,

1/2 if |x3| = 0 ,

and 1/2 ≤ wn ≤ 1 in Ω, one can easily check that wn → 1 in Lp(Ω) for any 1 ≤ p < +∞.

Now if we choose two distinct points P, N ∈ {(x1, x2, 0)∈Ω}, we obtain in the dipole case

Ewn(P, N)=1/2|P−N | for any n ∈ N and E1(P, N) = |P − N |. Note that if we consider

the sequence of variational problems

Pn = Min

{∫

Ω

|∇u(x)|2wn(x)dx, u ∈ H1
g (Ω, R)

}
,

where g denotes some given function in H1/2(∂Ω, R), then it follows by classical results

(see [41] for instance) that

Pn −→
n→+∞

Min

{∫

Ω

|∇u(x)|2dx, u ∈ H1
g (Ω, R)

}
.
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1.4.2 Approximation result

In this section, we give an approximation procedure by smooth weights.

Theorem 1.3. Let (ρn)n∈N be a sequence of smooth mollifiers. Extending w outside Ω by

a sufficiently large positive constant and taking wn = ρn ∗ w, we have

Ewn

(
(ai, di)

N
i=1

)
→ Ew

(
(ai, di)

N
i=1

)
as n → +∞.

Proof. Step 1. Assume that Ω = R
3. Let (ρn)n∈N be a sequence of smooth mollifiers. Fix

any function ζ which is 1-Lipschitz with respect to dw. Using the arguments in the proof

of Proposition 1.3, we obtain that the function ζn = ρn ∗ ζ satisfies |∇ζn| ≤ ρn ∗w on R
3.

Then we conclude that ζn is 1-Lipschitz with respect to the distance δρn∗w. Relabelling

the ai’s as a list of positive and negative points (pj, nj)
K
j=1, we get from formula (1.6) and

Theorem 1.1,

8π
K∑

j=1

ζn(pj) − ζn(nj) ≤ Eρn∗w
(
(ai, di)

N
i=1

)
.

Taking the lim inf as n → +∞, we obtain

8π
K∑

j=1

ζ(pj) − ζ(nj) ≤ lim inf
n→+∞

Eρn∗w
(
(ai, di)

N
i=1

)
.

Since ζ is arbitrary, we deduce from (1.6) and Theorem 1.1 that

Ew

(
(ai, di)

N
i=1

)
≤ lim inf

n→+∞
Eρn∗w

(
(ai, di)

N
i=1

)
. (1.32)

Since ρn ∗ w ≤ Λ, we obtain by dominated convergence that for any u ∈ E ,
∫

Ω

|∇u|2ρn ∗ w(x)dx →
n→+∞

∫

Ω

|∇u|2w(x)dx

and therefore

lim sup
n→+∞

Eρn∗w
(
(ai, di)

N
i=1

)
≤

∫

Ω

|∇u|2w(x)dx.

Since u is arbitrary, we infer that

lim sup
n→+∞

Eρn∗w
(
(ai, di)

N
i=1

)
≤ Ew

(
(ai, di)

N
i=1

)
, (1.33)

and the result follows from (1.32) and (1.33).

Step 2 : Assume that Ω is a smooth bounded and connected open set. We extend w by

setting w = M in R
3 \Ω for a large positive constant M that we will choose later. We fix

some δ > 0 small enough and consider

Ωδ =
{
x ∈ R

3, dist(x, Ω) < δ
}

.
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We extend to Ωδ any function ζ which is 1-Lipschitz with respect to dw by setting

ζ(x) = ζ(Πx) for x ∈ Ωδ

where Πx denotes the projection of x ∈ Ωδ on Ω. By construction, such a ζ is Lipschitz

continuous on Ωδ and |∇ζ| ≤ C(Ω, δ, Λ) a.e. on Ωδ \ Ω and |∇ζ| ≤ w a.e. on Ω. Then we

choose M ≥ C(Ω, δ, Λ). Setting ζn : x ∈ Ω → ρn∗ζ(x) for n ≥ 1/δ, we have |∇ζn| ≤ ρn∗w

on Ω. Then ζn is 1-Lipschitz with respect to the distance δρn∗w and we can proceed as in

Step 1. ¥

Remark 1.5. If (wn)n∈N denotes the sequence constructed in Theorem 1.3, the previous

results show that dwn → dw uniformly on every compact subset of Ω×Ω and the functionals

Ldwn
Γ-converge to Ldw in Lip

(
[0, 1], Ω

)
.

1.5 Energy involving a matrix field

In this section, we consider M = (mkl)
3
k,l=1 a continuous map from Ω onto the set of

real symmetric 3 × 3 matrices such that

λ|ξ|2 ≤ M(x)ξ · ξ ≤ Λ|ξ|2 for any ξ ∈ R
3 and x ∈ Ω

(here “ · " denotes the Euclidean scalar product on R
3) and we investigate on the problem

EM

(
(ai, di)

N
i=1

)
= Inf

u∈E

∫

Ω

3∑

k,l=1

mkl(x)
∂u

∂xk

· ∂u

∂xl

dx.

Under the continuity assumption above, we show that EM

(
(ai, di)

N
i=1

)
can also be com-

puted in terms of minimal connections relative to some geodesic distance on Ω.

In order to state the result we introduce the following objects. For x ∈ Ω, we denote

by cof(M(x)) the cofactor matrix of M(x). For any Lipschitz curve γ : [0, 1] → Ω, we

define the length LM(γ) by

LM(γ) =

∫ 1

0

√
cof

(
M(γ(t))

)
γ̇(t) · γ̇(t) dt

and we construct from LM the Riemannian distance dM on Ω defined by

dM(x, y) = Inf LM(γ)

where the infimum is taken over all curves γ ∈ Lipx,y

(
[0, 1], Ω

)
.

Theorem 1.4. We have

EM

(
(ai, di)

N
i=1

)
= 8πLM

where LM is the length of a minimal connection associated to the configuration (ai, di)
N
i=1

and the distance dM on Ω.
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Remark 1.6. One can slightly relax the continuity assumption on M . For example, we

can assume that

M(x) =

{
M1(x) if x ∈ Ω1,

M2(x) if x ∈ Ω2,

where Ω1 and Ω2 are two open sets of Ω with piecewise smooth boundaries such that

Ω1 ∪ Ω2 = Ω, and x → Mj(x) is continuous on Ωj for j = 1, 2. Hence M is possibly

discontinuous on the surface Σ = Ω1∩Ω2. Then the conclusion of Theorem 1.4 holds with

the geodesic distance dM constructed from the length LM defined by

LM(γ) =

∫ 1

0

ϕ (γ(t), γ̇(t)) dt for γ ∈ Lip
(
[0, 1], Ω

)
,

where

ϕ(x, ν) =





√
cof (M(x)) ν · ν if x ∈ Ω \ Σ,

min
{√

cof (M1(x)) ν · ν,
√

cof (M2(x)) ν · ν
}

if x ∈ Σ.

Open Problem . Assuming that the coefficients of M are only in L∞(Ω), is the conclusion

of Theorem 1.4 still valid for a certain distance ?

Sketch of the Proof of Theorem 3. The Lower Bound. We follow the strategy in Sec-

tion 1.3.1. For any u ∈ E , we have

2[cof(M)D · D]1/2 ≤
3∑

k,l=1

mkl(x)
∂u

∂xk

· ∂u

∂xl

a.e. on Ω (1.34)

where D is the vector field defined by (1.16). Next we infer that

∫

Ω

3∑

k,l=1

mkl(x)
∂u

∂xk

· ∂u

∂xl

dx ≥ −2

∫

Ω

D · ∇ζ = 8π
K∑

j=1

ζ(pj) − ζ(nj) (1.35)

for any Lipschitz function ζ : Ω → R such that

[
cof(M)−1 ∇ζ · ∇ζ

]1/2 ≤ 1 a.e. in Ω. (1.36)

Since a function ζ satisfies (1.36) if and only if ζ is 1-Lipschitz with respect to the distance

dM , we conclude from (1.35) that

EM

(
(ai, di)

N
i=1

)
≥ 8π Max

K∑

j=1

ζ(pj) − ζ(nj) = 8πLM

where the maximum is taken over all functions ζ which are 1-Lipschitz with respect to

distance dM .

The Upper Bound. The proof relies on the dipole construction.



26 Chapitre 1. Energy with weight for S2-valued maps with prescribed singularities

Lemma 1.7. For any distinct points P, N ∈ Ω, any smooth simple curve γ ⊂ Ω running

between P and N and δ > 0, there exists a map uδ in C1
(
Ω \ {P, N}, S2

)
such that

deg(uδ, P ) = +1 , deg(uδ, N) = −1 and

∫

Ω

3∑

k,l=1

mkl(x)
∂uδ

∂xk

· ∂uδ

∂xl

dx ≤ 8πLM(P, N) + δ. (1.37)

Moreover uδ is constant outside an arbitrary small neighborhood of γ.

We may assume that
∑

j dM(pj, nj) = LM . Then we choose K smooth simple curves γj

running between pj and nj which do not intersect except at their endpoints and such that

LM(pj, nj) ≤ dM(pj, nj) + δ. By Lemma 1.7, we construct K maps uj constant outside

a small neighborhood Nj of γj and Nj ∩ Ni = ∅ if j 6= i. Letting uδ = uj on Nj for

j = 1, . . . , K and uδ = (0, 0, 1) outside ∪jNj, we have uδ ∈ E and

EM

(
(ai, di)

N
i=1

)
≤

∫

Ω

3∑

k,l=1

mkl(x)
∂uδ

∂xk

· ∂uδ

∂xl

dx ≤ 8πLM + Cδ.

Since δ is arbitrary, we obtain that EM

(
(ai, di)

N
i=1

)
≤ 8πLM . ¥

Sketch of the Proof of Lemma 1.7. Since we can approximate the coefficients of M locally

uniformly by smooth coefficients, we just have to prove Lemma 1.7 for M with smooth

entries. We construct as in [8] a smooth diffeomorphism Φ from a small neighborhood V
of γ into a small neighborhood of {(0, 0)} × [−|γ|/2, |γ|/2] such that

Φ(γ) = {(0, 0)} × [−|γ|/2, |γ|/2]

(here |γ| denotes the Euclidean length of γ) and Φ−1(0, 0, ·) : [−|γ|/2, |γ|/2] → R
3

defines a normal parametrization of γ orientating γ from N to P . Then we set for

y3 ∈ [−|γ|/2, |γ|/2],

B(y3) = (bk,l(y3))
3
k,l=1 = [∇Φ−1(0, 0, y3)]

−1M(Φ−1(0, 0, y3))∇Φ−1(0, 0, y3),

and

B̂(y3) = (bk,l(y3))
2
k,l=1 .

For small ε > 0 and n ∈ N large, we consider the map ũn : Φ(V) → S2 defined by

ũn(y1, y2, y3) = ωε

(
n

|γ|2
4

− y2
3

B̂−1/2(y3) · (y1, y2)

)

where ωε is given by (1.20). Then we take

un(x) =

{
ũn(Φ(x)) if x ∈ V ,

(0, 0, 1) if x 6∈ V .
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Following the computations in [27] and using the properties of Φ, we easily check that

un ∈ W 1,∞
loc

(
Ω \ {P,N}, S2

)
, deg(un, P ) = +1, deg(un, N) = −1. Choosing n sufficiently

large and smoothening un around γ by the procedure in [16], we get a new map uδ ∈ E
which satisfies (1.37). ¥
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Chapitre 2

The relaxed energy for S2-valued maps

and measurable weights

2.1 Introduction and main results

Let Ω be a smooth bounded and connected open set of R
3 and let w : Ω → R be a

measurable function such that

0 < λ ≤ w ≤ Λ a.e. in Ω (2.1)

for some constant λ and Λ. We set H1
g (Ω, S2) = {u ∈ H1 (Ω, S2) , u = g on ∂Ω}, where

g : ∂Ω → S2 is a given smooth boundary data such that deg(g) = 0. Our main goal in

this chapter is to obtain an explicit formula for the relaxed functional

Ew(u)= Inf
{
lim inf
n→+∞

∫

Ω

|∇un(x)|2w(x)dx, un∈H1
g (Ω, S2) ∩ C1(Ω), un ⇀ u weakly in H1

}

defined for u ∈ H1
g (Ω, S2). By a result of F. Bethuel (see [16]), H1

g (Ω, S2) ∩ C1(Ω) is

sequentially dense for the weak topology in H1
g (Ω, S2) and then the functional Ew is well

defined.

In [18], F. Bethuel, H. Brezis and J.M. Coron have proved that for w ≡ 1,

E1(u) =

∫

Ω

|∇u(x)|2dx + 8πL(u),

where L(u) denotes the length of a minimal connection relative to the Euclidean geodesic

distance dΩ in Ω connecting the singularities of u (see also M. Giaquinta, G. Modica,

J. Souček [53]). If u ∈ H1
g (Ω, S2) is smooth on Ω except at a finite number of points

in Ω, the length of a minimal connection relative to dΩ connecting the singularities of u

is given by

L(u) = Min
σ∈SK

K∑

i=1

dΩ(Pi, Nσ(i))

29
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where (P1, . . . , PK) and (N1, . . . , NK) are respectively the singularities of positive and

negative degree counted according to their multiplicity (since deg(g) = 0, the number

of positive singularities is equal to the number of negative ones) and SK denotes the

set of all permutations of K indices. For the definition of L(u) when u is arbitrary in

H1
g (Ω, S2), we refer to (2.6)-(2.7) below. The notion of length of a minimal connection

between singularities has its origin in [30]. We also refer to the results of J. Bourgain,

H. Brezis, P. Mironescu [23] and H. Brezis, P. Mironescu, A.C. Ponce [32] for similar

problems involving S1-valued maps.

For u ∈ H1(Ω, S2), the vector field D(u) first introduced in [30] and defined by

D(u) =

(
u · ∂u

∂x2

∧ ∂u

∂x3

, u · ∂u

∂x3

∧ ∂u

∂x1

, u · ∂u

∂x1

∧ ∂u

∂x2

)
(2.2)

plays a crucial role. Indeed, if u is smooth except at a finite number of points (Pi, Ni)
K
i=1

in Ω, then (see [30], Appendix B)

div D(u) = 4π
K∑

i=1

(δPi
− δNi

) in D′(Ω) (2.3)

and if in addition u|∂Ω = g, we have (since deg(g) = 0, see [30], Section IV)

L(u) = Sup

{
K∑

i=1

(ζ(Pi) − ζ(Ni))

}
(2.4)

where the supremum is taken over all functions ζ : Ω → R which are 1-Lipschitz with

respect to distance dΩ i.e., |ζ(x) − ζ(y)| ≤ dΩ(x, y). Note that for any real Lipschitz

function ζ,

K∑

i=1

ζ(Pi) − ζ(Ni) =
1

4π

∫

Ω

div D(u) ζ = − 1

4π

∫

Ω

D(u) · ∇ζ +
1

4π

∫

∂Ω

(D(u) · ν) ζ (2.5)

where ν denotes the outward normal to ∂Ω. We recall that D(u) · ν is equal to the 2 × 2

Jacobian determinant of u restricted to ∂Ω and then it only depends on g. In view of (2.4)

and (2.5), L(u) has been defined in [18] for u ∈ H1
g (Ω, S2) by

L(u) =
1

4π
Sup

{
〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz with respect to dΩ

}
(2.6)

where T (u) ∈ D′(Ω) denotes the distribution defined by its action on real Lipschitz

functions through the formula :

〈T (u), ζ〉 =

∫

Ω

D(u) · ∇ζ −
∫

∂Ω

(D(u) · ν) ζ . (2.7)
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In Chapter 1, we have studied the following variational problem : given two distinct

points P and N in Ω,

Ew(P, N) = Inf
{ ∫

Ω

|∇v(x)|2w(x)dx, v ∈ E(P, N)
}

where

E(P,N) =
{
v ∈ H1(Ω, S2) ∩ C1

(
Ω \ {P,N}

)
, v = const on ∂Ω,

T (v) = 4π(δP − δN) in D′(Ω)
}
.

In the case w ≡ 1, H. Brezis, J.M. Coron and E. Lieb have shown that (see [30])

E1(P, N) = 8πdΩ(P, N).

For an arbitrary function w, we have proved (see Chapter 1) that Ew(·, ·) defines a distance

function satisfying

8πλ dΩ(·, ·) ≤ Ew(·, ·) ≤ 8πΛ dΩ(·, ·). (2.8)

From (2.8), we infer that Ew extends to Ω × Ω into a distance on Ω. In what follows, we

set for x, y ∈ Ω,

dw(x, y) =
1

8π
Ew(x, y).

When w is continuous, we also have shown that the distance dw can be characterized in

the following way : for any x, y ∈ Ω,

dw(x, y) = Min

∫ 1

0

w(γ(t))|γ̇(t)|dt

where the minimum is taken over all Lipschitz curve γ : [0, 1] → Ω verifying γ(0) = x and

γ(1) = y. For an arbitrary measurable function w, the previous formula is meaningless

since w is not well defined on curves but a similar characterization of dw actually holds.

We refer to Chapter 1 for more details. We also recall the general result in Chapter 1 :

Theorem 2.1. Let (Pi)
K
i=1 and (Ni)

K
i=1 be two lists of points in Ω and consider

E
(
(Pi, Ni)

K
i=1

)
=

{
v ∈ H1(Ω, S2) ∩ C1

(
Ω \ {(Pi, Ni)

K
i=1}

)
,

v = const on ∂Ω and T (v) = 4π
K∑

i=1

δPi
− δNi

in D′(Ω)
}
.

Then we have

Inf

{∫

Ω

|∇v(x)|2w(x)dx, v ∈ E
(
(Pi, Ni)

K
i=1

)}
= 8πLw

where Lw is the length of a minimal connection relative to distance dw connecting the

points (Pi) and (Ni), i.e.,

Lw = Min
σ∈SK

K∑

i=1

dw(Pi, Nσ(i)).
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By analogy with the case w ≡ 1, we define for u ∈ H1
g (Ω, S2),

Lw(u) =
1

4π
Sup

{
〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz with respect to dw

}

(note that any real function ζ which is 1-Lipschitz with respect to dw, is a Lipschitz

function with respect to dΩ since dw is strongly equivalent to dΩ and then 〈T (u), ζ〉 is well

defined). When u is smooth except at a finite number of points (Pi, Ni)
K
i=1 in Ω, it follows

as in [30] that Lw(u) is equal to the length of a minimal connection relative to distance

dw connecting the points (Pi) and (Ni). Our main result is the following.

Theorem 2.2. For any u ∈ H1
g (Ω, S2), we have

Ew(u) =

∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u) .

The proof of Theorem 2.2 is presented in Section 3 and is based on a method similar

to the one used in [18] and on a Dipole Removing Technique exposed in the next section.

This technique is mostly inspired from [16] but involves some tools developed in Chapter 1

in order to treat the problem for a non smooth function w.

In Section 4, we prove a stability property of Ew. More precisely, we give some condi-

tions on a sequence (wn)n∈N under which one can conclude that the sequence of functionals

(Ewn)n∈N converges pointwise to Ew on H1
g (Ω, S2). The results are obtained using previous

ones in Chapter 1. In Section 5, we present similar results for a relaxed type functional

in which we do not prescribed any boundary data.

Throughout this chapter, a sequence of smooth mollifiers means any sequence (ρn)n∈N

satisfying

ρn ∈ C∞(R3, R), Supp ρn ⊂ B1/n,

∫

R3

ρn = 1, ρn ≥ 0 on R
3.

2.2 The dipole removing technique

In this section, we first give a technical result which will be used for the dipole removing

technique in Section 2.2.2 .

2.2.1 Preliminaries

Let α and β be two distinct points in Ω. We denote by pα,β (ξ) the projection of ξ ∈ R
3

on the straight line passing by α and β and rα,β (ξ) = dist (x, [α, β]) , where “dist” denotes

the Euclidean distance in R
3. For m ∈ N

∗, we set

aα,β
m =

|α − β|
m

and sα,β
j = j aα,β

m for j = 0, . . . , m.
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For ξ ∈ R
3 such that pα,β (ξ) ∈ [α, β], we define

hα,β
m (ξ) = min

0≤j≤m

∣∣∣|pα,β (ξ) − α| − sα,β
j

∣∣∣ ,

and we set

Θm ([α, β]) =
{
ξ ∈ R

3, pα,β (ξ) ∈ [α, β] and rα,β (ξ) ≤ aα,β
m hα,β

m (ξ)
}

.

For two points x and y in Ω, we consider the class Q(x, y) of all finite collections of

segments F = ([αk, βk])
n(F)
k=1 such that βk = αk+1 , α1 = x , βn(F) = y, [αk, βk] ⊂ Ω and

αk 6= βk. We define the “length” of an element F ∈ Q(x, y) by

ℓw (F) =

n(F)∑

k=1

lim inf
m→+∞

1

π

∫

Θm([αk,βk])∩Ω

εm
αk,βk

(ξ) w (ξ) dξ

with

εm
αk,βk

(ξ) =

(
hαk,βk

m (ξ)
)2 (

aαk,βk
m

)4

((
hαk,βk

m (ξ)
)2 (

aαk,βk
m

)4

+ r2
αk,βk

(ξ)

)2 .

We shall use the following Lemma.

Lemma 2.1. Let P be a finite collection of distinct points in Ω or P = ∅. For any distinct

points x0, y0 in Ω \ P and δ >0, there exists Fδ = ([α1, β1], . . . , [αn, βn]) ∈ Q(x0, y0) such

that (P ∪ {y0}) ∩
(
∪n−1

k=1 [αk, βk] ∪ [αn, βn[
)

= ∅ and

ℓw (F) ≤ dw(x0, y0) + δ.

Proof. Step 1. Assume that w is smooth on Ω. We are going to prove that for every element

F = ([α1, β1], . . . , [αn, βn]) ∈ Q(x, y), we have

ℓw (F) =

∫

∪n
k=1[αk,βk]

w(s)ds.

It suffices to prove that for any distinct points α, β ∈ Ω,

lim
m→+∞

1

π

∫

Θm([α,β])∩Ω

εm
k (ξ) w (ξ) dξ =

∫

[α,β]

w(s)ds. (2.9)

Without loss of generality, we may assume that [α, β] = {(0, 0)} × [0, R] and we drop the

indices α and β for simplicity. We set for j = 0, . . . , m − 1,

Cj+
m =

{
ξ = (ξ1, ξ2, ξ3) ∈ Θm ([α, β]) , ξ3 ∈

[
sj, sj +

am

2

]}
,

and for j = 1, . . . , m,

Cj−
m =

{
ξ = (ξ1, ξ2, ξ3) ∈ Θm ([α, β]) , ξ3 ∈

[
sj −

am

2
, sj

]}
.
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For ξ ∈ Cj+
m ∪ Cj−

m , we have hm (ξ) = |ξ3 − sj| and we get that for m large enough,

∫

Θm([α,β])∩Ω

εm
k (ξ) w (ξ) dξ =

m−1∑

j=0

Ij+
m +

m∑

j=1

Ij−
m (2.10)

with

Ij+
m =

∫

Cj+
m

|ξ3 − sj|2 a4
mw (ξ)

(
|ξ3 − sj|2 a4

m + r2 (ξ)
)2 dξ for j = 0, . . . , m − 1,

Ij−
m =

∫

Cj−
m

|ξ3 − sj|2 a4
mw (ξ)

(
|ξ3 − sj|2 a4

m + r2 (ξ)
)2 dξ for j = 1, . . . , m.

Using the change of variable z1 = ξ1
|ξ3−sj | , z2 = ξ2

|ξ3−sj | and z3 = ξ3, we derive that

Ij+
m =

∫ sj+
am
2

sj

(∫

Bam (0)

a4
mw (|z3 − sj|z1, |z3 − sj|z2, z3)

(a4
m + z2

1 + z2
2)

2
dz1dz2

)
dz3

=

∫ sj+
am
2

sj

(w(0, 0, z3) + O(am))

(∫

Bam (0)

a4
m

(a4
m + z2

1 + z2
2)

2
dz1dz2

)
dz3

= π

∫ sj+
am
2

sj

w(0, 0, z3)dz3 + O(a2
m).

By similar computations we get that

Ij−
m = π

∫ sj

sj−am
2

w(0, 0, z3)dz3 + O(a2
m).

Combining this equalities with (2.10), we obtain that
∫

Θm([α,β])∩Ω

εm
k (ξ) w (ξ) dξ = π

∫ R

0

w(0, 0, z3)dz3 + O(am)

which ends the proof of (2.9).

Step 2. We fix two distinct points x0, y0 ∈ Ω \ P. For any points x, y in Ω \ (P∪ {y0}), let

Q′(x, y) be the class of elements F = ([α1, β1], . . . , [αn, βn]) ∈ Q(x, y) such that

∪n
k=1[αk, βk] ⊂ Ω \ (P ∪ {y0}).

We consider the function Dw : Ω \ (P ∪ {y0}) × Ω \ (P ∪ {y0}) → R+ defined by

Dw(x, y) = Inf
F∈Q′(x,y)

ℓ (F) .

We are going to show that Dw defines a distance function which can be extended to Ω×Ω.

Let x, y ∈ Ω \ (P ∪ {y0}) and let F = ([α1, β1], . . . , [αn, βn]) be an element of Q′(x, y).

Assumption (2.1) and similar computations to those in Step 1 lead to

λ

n∑

k=1

|αk − βk| ≤ ℓw (F) ≤ Λ
n∑

k=1

|αk − βk|.
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Taking the infimum over all F ∈ Q′(x, y), we infer that

λ dΩ(x, y) ≤ Dw(x, y) ≤ Λ dΩ(x, y). (2.11)

From (2.11), we deduce that Dw(x, y) = 0 if and only if x = y. Let us now prove that Dw

is symmetric. Let x, y ∈ Ω \ (P ∪ {y0}) and δ > 0 arbitrary small. By definition, we can

find Fδ = ([α1, β2], . . . , [αn, βn]) in Q′(x, y) satisfying

ℓw (Fδ) ≤ Dw(x, y) + δ.

Then for F ′
δ = ([βn, αn], . . . , [β1, α1]) ∈ Q′(y, x), we have

Dw(y, x) ≤ ℓw (F ′
δ) = ℓw (Fδ) ≤ Dw(x, y) + δ.

Since δ is arbitrary, we obtain Dw(y, x) ≤ Dw(x, y) and then, inverting the roles of x

and y, we conclude that Dw(y, x) = Dw(x, y). The triangle inequality is immediate since

the juxtaposition of F1 ∈ Q′(x, z) with F2 ∈ Q′(z, y) is an element of Q′(x, y). Hence

Dw defines a distance on Ω \ (P ∪ {y0}) verifying (2.11). Therefore distance Dw extends

uniquely to Ω×Ω into a distance function that we still denote by Dw. By continuity, Dw

satisfies (2.11) for any x, y ∈ Ω.

Step 3. We consider the function ζ : Ω → R defined by

ζ(x) = Dw(x, x0).

Note that function ζ is 1-Lipschitz with respect to distance Dw and therefore Λ-Lipschitz

with respect to the Euclidean geodesic distance on Ω by (2.11). We fix an arbitrary

point z0 ∈ Ω \ (P ∪ {y0}) and some R > 0 such that B3R(z0) ⊂ Ω \ (P ∪ {y0}). Let

(ρn)n∈N be a sequence of smooth mollifiers. For n>1/R , we consider the smooth function

ζn = ρn ∗ ζ : BR(z0) → R. We write

ζn(x) =

∫

B1/n

ρn(−z)ζ(x + z)dz

and therefore for any x, y ∈ BR(z0),

|ζn(x) − ζn(y)| ≤
∫

B1/n

ρn(−z) |ζ(x + z) − ζ(y + z)| dz

≤
∫

B1/n

ρn(−z)Dw(x + z, y + z)dz

≤
∫

B1/n

ρn(−z) ℓw ([x + z, y + z]) dz.

We remark that Θm ([x + z, y + z]) = z + Θm ([x, y]). Whenever m is large enough, we

have z + Θm ([x, y]) ⊂ B3R(z0) and then

εm
x+z,y+z (ξ + z) = εm

x,y (ξ) for any vector ξ ∈ Θm ([x, y]).



36 Chapitre 2. The relaxed energy for S2-valued maps and measurable weights

Hence we obtain for any z ∈ B1/n(0),

ℓw ([x + z, y + z]) = lim inf
m→+∞

1

π

∫

Θm([x,y])

εm
x,y (ξ) w (ξ + z) dξ.

Using Fatou’s lemma, we get that

|ζn(x) − ζn(y)| ≤
∫

B1/n

ρn(−z)

(
lim inf
m→+∞

1

π

∫

Θm([x,y])

εm
x,y (ξ) w(ξ + z)dξ

)
dz

≤ lim inf
m→+∞

1

π

∫

B1/n

∫

Θm([x,y])

ρn(−z) εm
x,y (ξ) w(ξ + z)dξdz.

For each m ∈ N sufficiently large we have

1

π

∫

B1/n

∫

Θm([x,y])

ρn(−z) εm
x,y (ξ) w(ξ + z)dξdz =

1

π

∫

Θm([x,y])

εm
x,y (ξ) ρn ∗ w(ξ)dξ,

and since ρn ∗ w is smooth, we obtain as in Step 1,

1

π

∫

Θm([x,y])

εm
x,y (ξ) ρn ∗ w(ξ)dξ →

∫

[x,y]

ρn ∗ w(s)ds as m → +∞.

Thus for each x, y ∈ BR(z0) we have

|ζn(x) − ζn(y)| ≤
∫

[x,y]

ρn ∗ w(s)ds.

Then for x ∈ BR(z0), h ∈ S2 fixed and δ>0 small, we infer that

|ζn(x + δh) − ζn(x)|
δ

≤ 1

δ

∫

[x,x+δh]

ρn ∗ w(s)ds →
δ→0+

ρn ∗ w(x)

and we conclude, letting δ → 0, that |∇ζn(x) · h| ≤ ρn ∗ w(x) for each x ∈ BR(z0) and

h ∈ S2 which implies that |∇ζn| ≤ ρn ∗ w in BR(z0). Since ∇ζn → ∇ζ and ρn ∗ w → w

a.e. on BR(z0) as n → +∞, we deduce that |∇ζ| ≤ w a.e. in BR(z0). Since z0 is arbitrary

in Ω \ (P ∪ {y0}), we derive

|∇ζ| ≤ w a.e. in Ω.

By Proposition 1.3 in Chapter 1, it follows that |ζ(x) − ζ(y)| ≤ dw(x, y) for any x, y ∈ Ω

and in particular, we obtain choosing y = x0,

Dw(x, x0) ≤ dw(x, x0) for any x ∈ Ω.

Step 4. End of the Proof. Let δ > 0 be given. We choose some ỹ0 ∈ Ω \ (P ∪ {y0}) such

that [ỹ0, y0] ⊂ Ω \ P and |ỹ0 − y0| ≤ δ
3Λ

. By the previous step, we can find an element

F ′ = ([α1, β1], . . . , [αn, βn]) ∈ Q′(x0, ỹ0) verifying

ℓw (F ′) ≤ dw(x0, ỹ0) +
δ

3
.
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Then we consider F = ([α1, β1], . . . , [αn, βn], [ỹ0, y0]) ∈ Q(x0, y0). We have

ℓw (F) ≤ ℓw (F ′) + Λ|ỹ0 − y0| ≤ dw(x0, ỹ0) +
2δ

3

≤ dw(x0, y0) + dw(y0, ỹ0) +
2δ

3

≤ dw(x0, y0) + δ

and then F satisfies the requirement. ¥

2.2.2 The dipole removing technique

We first present the dipole removing technique for a single dipole. We then treat the

case of several point singularities.

Lemma 2.2. Let P and N be two distinct points in Ω and u ∈ H1(Ω, S2)∩C1
(
Ω \ {P,N}

)

with deg (u, P ) = +1 and deg (u,N) = −1. Let F = ([α1, β1], . . . , [αn, βn]) be an element

of Q(P, N) such that N 6∈ ∪n−1
k=1 [αk, βk] ∪ [αn, βn[. Then for any δ>0 small enough, there

exists a map uδ ∈ C1
(
Ω, S2

)
such that :

∫

Ω

|∇uδ(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πℓw (F) + δ

and uδ coincides with u outside a δ-neighborhood of ∪n
k=1[αk, βk] included in Ω.

Proof. Let F = ([α1, β1], . . . , [αn, βn]) ∈ Q(P,N) such that N 6∈ ∪n−1
k=1 [αk, βk] ∪ [αn, βn[

and fix some δ>0 small. We proceed in several steps.

Step 1. We consider a small 0 < r0 < δ verifying Br0(α1) ⊂ Ω \ {N}. By Lemma A.1 in

[16], we can find v ∈ C1
(
Ω \ {α1, N}, S2

)
∩ H1(Ω) (recall that α1 = P ) satisfying

v(x) =





u(x) on Ω \ Br0(α1),

R

(
x − α1

|x − α1|

)
on Br0(α1),

(2.12)

for some rotation R and
∫

Ω

|∇v(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + δ. (2.13)

Let W = {x ∈ R
3, dist(x, [α1, β1])<δ}. For δ small enough, we have W ⊂ Ω \ {N}. We

set d = |α1−β1|. We choose normal coordinates such that α1 = (0, 0, 0) and β1 = (0, 0, d).

Let 0<r < r0

2
. Since v is smooth on W \ Br0(α1), we can find a constant σ(r) such that

|∇v| ≤ σ(r) on W \ Br0(α1). For m ∈ N
∗, we consider

Km =

[
−aα1,β1

m

2
,
aα1,β1

m

2

]2

×
[
−aα1,β1

m

2
, d +

aα1,β1
m

2

]
.



38 Chapitre 2. The relaxed energy for S2-valued maps and measurable weights

For m large enough, we have Θm ([α1, β1]) ⊂ Km ⊂ W . As in [16], we are going to

construct in the next step a map v1 ∈ C1
(
W \ {β1}, S2

)
∩ H1(W ) verifying v1 = v in a

neighborhood of ∂W and deg(v1, β1) = +1. For simplicity, we drop the indices α1 and β1.

Step 2. We divide Km in m + 1 cubes Qj
m defined by

Qj
m =

[
−am

2
,
am

2

]2

×
[(

j − 1

2

)
am,

(
j +

1

2

)
am

]
for j = 0, . . . , m.

Arguing as in [16], we infer from (2.12) that

m∑

j=0

∫

∂Qj
m

|∇v|2 ≤ C

(
r

am

+ m σ(r)2a2
m

)
. (2.14)

We are going to make use of a map ωm : B2
am

(0) ⊂ R
2 → S2 defined by

ωm(x1, x2) =
2a2

m

a4
m + x2

1 + x2
2

(
x1, x2,−a2

m

)
+ (0, 0, 1)

(ωm was first introduced in [29] and we refer to the proof of Lemma 2 in [29] for its main

properties). For j = 1, . . . , m, we choose an orthonormal direct basis (ej
1, e

j
2, e

j
3) of R

3 such

that

v(0, 0, (j − 1/2)am) = (0, 0, 1) in the basis (ej
1, e

j
2, e

j
3),

and we define the map vm
1 : ∪m

j=0∂Qj
m → S2 by

1) for (x1, x2, x3) ∈ (∪m
j=0∂Qj

m) \ (∪m
j=1B

2
a2

m
(0) × {(j − 1/2)am}),

vm
1 (x1, x2, x3) = v(x1, x2, x3),

2) for j = 1, . . . , m and (x1, x2, x3) ∈ B2
a2

m
2

(0) × {(j − 1/2)am},

vm
1 (x1, x2, x3) = ωm

(
2x1

am

,
2x2

am

)
in the basis (ej

1, e
j
2, e

j
3),

3) for j = 1, . . . ,m, for (x1, x2, x3) ∈ (B2
a2

m
(0) \ B2

a2
m
2

(0)) × {(j − 1/2)am} and using

cylindrical coordinates (x1, x2, x3) = (ρ cos θ, ρ sin θ, z),

vm
1 (x1, x2, x3) =

(
A1ρ + B1, A2ρ + B2,

√
1 − (A1ρ + B1)2 − (A2ρ + B2)2

)

in the basis (ej
1, e

j
2, e

j
3), where A1, A2, B1, B2 are determined to make vm

1 continuous. More

precisely, if we write v = v1e
j
1 + v2e

j
2 + v3e

j
3 then





a2
mAi(θ) + Bi(θ) = vi(a

2
m cos θ, a2

m sin θ, (j − 1/2)am) i = 1, 2,

a2
m

2
A1(θ) + B1(θ) =

2a3
m

a4
m + a2

m

cos θ,

a2
m

2
A2(θ) + B2(θ) =

2a3
m

a4
m + a2

m

sin θ.
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The map vm
1 satisfies by construction vm

1 = v on ∂Km. Moreover, it follows exactly

as in the proof of Lemma 2 in [16] that deg(vm
1 , ∂Qj

m) = 0 for j = 0, . . . ,m − 1 and

deg(vm
1 , ∂Qm

m) = +1. Then we extend vm
1 on each cube Qj

m by setting

vm
1 (x) = vm

1

(
am(x − bj)

2‖x − bj‖∞
+ bj

)
on Qj

m for j = 0, . . . , m,

where bj = (0, 0, sj) is the barycenter of Qj
m and ‖x − bj‖∞ = max(|x1|, |x2|, |x3 − sj|).

We easily check that vm
1 ∈ H1(Km, S2), vm

1 = v on ∂Km, vm
1 is continuous except at the

points bj and Lipschitz continuous outside any small neighborhood of the points bj. We

also get that

deg(vm
1 , bm) = +1 and deg(vm

1 , bj) = 0 for j = 0, . . . ,m − 1 . (2.15)

We remark that if we set

Dj
m = B2

a2
m
2

(0) × {(j − 1/2)am} ∪ B2
a2

m
2

(0) × {(j + 1/2)am} for j = 1, . . . ,m − 1,

D0
m = B2

a2
m
2

(0) × {1/2 am} and Dm
m = B2

a2
m
2

(0) × {(m − 1/2)am} ,

then we have
m⋃

j=0

{
x ∈ Qj

m,
am(x − bj)

2‖x − bj‖∞
+ bj ∈ Dj

m if x 6= bj or x = bj otherwise

}
= Θm ([α1, β1])

and if x ∈ Qj
m ∩ Θm ([α1, β1]) for some j ∈ {0, . . . , m} then

hm(x) = |x3 − sj| = ‖x − bj‖∞ and r(x) =
√

x2
1 + x2

2 . (2.16)

Some classical computations (see [16] and [29]) lead to, for j = 0, . . . , m,
∫

(∂Qj
m)\Dj

m

|∇vm
1 |2 ≤

∫

∂Qj
m

|∇v|2 + O(a2
m)

and therefore
∫

Qj
m\Θm([α1,β1])

|∇vm
1 (x)|2w(x)dx ≤ C1Λ am

∫

∂Qj
m

|∇v|2 + C2Λ a3
m.

Adding these inequalities for j = 0, . . . , m and combining with (2.14) we obtain
∫

Km\Θm([α1,β1])

|∇vm
1 (x)|2w(x)dx ≤ CΛ

(
r + mσ(r)2a3

m + a2
m

)
. (2.17)

For x ∈ Qj
m ∩ Θm ([α1, β1]) for some j ∈ {0, . . . , m}, we have

vm
1 (x) =





ωm

(
x1

|x3 − sj|
,

x2

|x3 − sj|

)
in the basis (ej+1

1 , ej+1
2 , ej+1

3 ) if x3 − sj >0,

ωm

(
x1

|x3 − sj|
,

x2

|x3 − sj|

)
in the basis (ej

1, e
j
2, e

j
3) otherwise.
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Following the computations in [27], we infer that

|∇vm
1 (x)|2 ≤ 1 + Ca2

m

|x3 − sj|2
∣∣∣∣∇ωm

(
x1

|x3 − sj|
,

x2

|x3 − sj|

)∣∣∣∣
2

in Qj
m ∩ Θm ([α1, β1]).

Since we have (see [29])
∣∣∣∣∇ωm

(
x1

|x3 − sj|
,

x2

|x3 − sj|

)∣∣∣∣
2

=
8|x3 − sj|4a4

m

(|x3 − sj|2a4
m + x2

1 + x2
2)

2
,

we derive that
∫

Qj
m∩Θm([α1,β1])

|∇vm
1 (x)|2w(x)dx ≤

∫

Qj
m∩Θm([α1,β1])

8|x3 − sj|2a4
mw(x)

(|x3 − sj|2a4
m + x2

1 + x2
2)

2
dx + CΛa3

m.

Summing these inequalities for j = 0, . . . ,m and using (2.16) we obtain that
∫

Θm([α1,β1])

|∇vm
1 (x)|2w(x)dx ≤ 8

∫

Θm([α1,β1])

εm
α1,β1

(x)w(x)dx + CΛa2
m (2.18)

Combining (2.17) with (2.18) we conclude that
∫

Km

|∇vm
1 (x)|2w(x)dx ≤ 8

∫

Θm([α1,β1])

εm
α1,β1

(x)w(x)dx + CΛ
(
r + mσ(r)2a3

m + a2
m

)
.

Taking the lim inf in m, we derive that we can find m1 ∈ N large and r small enough such

that
∫

Km1

|∇vm1
1 (x)|2w(x)dx ≤ 8 lim inf

m→+∞

∫

Θm([α1,β1])

εm
α1,β1

(x)w(x)dx + δ. (2.19)

Since vm1
1 = v on ∂Km1 , we may extend vm1

1 to W by setting vm1
1 = v on W \ Km1 .

Now we recall that vm1
1 is singular only at the points bj, j = 0, . . . , m (we also recall that

bm = β1). From (2.15) and the results in [16, 17, 22], we infer that exists a map v1 in

C1
(
W \ {β1}, S2

)
∩H1(W ) satisfying v1 = v in a neighborhood of ∂W , deg(v1, β1) = +1

and ∫

W1

|∇v1(x)|2w(x)dx ≤
∫

W1

|∇vm1
1 (x)|2w(x)dx + δ. (2.20)

Since v = u in a neighborhood of ∂W , we may extend v1 to Ω by setting v1 = u in

Ω \ W . Then we conclude that v1 ∈ C1
(
Ω \ {β1, N}, S2

)
∩ H1(Ω), deg(v1, β1) = +1,

deg(v1, N) = −1 and by (2.13)-(2.19)-(2.20),
∫

Ω

|∇v1(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8 lim inf
m→+∞

∫

Θm([α1,β1])

εm
α1,β1

(x)w(x)dx + Cδ.

Step 3. Applying Step 1 and Step 2 to v1 instead of u and replacing (α1, β1) by (α2, β2)

(recall that β1 = α2), we obtain a map v2 ∈ C1
(
Ω \ {β2, N}, S2

)
∩H1(Ω) satisfying v2 = v1

outside a δ-neighborhood of [α2, β2] included in Ω, deg(v2, β2) = +1, deg(v2, N) = −1 and
∫

Ω

|∇v2(x)|2w(x)dx ≤
∫

Ω

|∇v1(x)|2w(x)dx + 8 lim inf
m→+∞

∫

Θm([α2,β2])

εm
α2,β2

(x)w(x)dx + Cδ.
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Iterating this process, we finally obtain a map vn−1 ∈ C1
(
Ω \ {αn, βn}, S2

)
∩H1(Ω) (recall

that βn = N) verifying vn−1 = u outside a δ-neighborhood of ∪n−1
k=1 [αk, βk] included in Ω,

deg(vn−1, αn) = +1, deg(vn−1, βn) = −1 and

∫

Ω

|∇vn−1(x)|2w(x)dx≤
∫

Ω

|∇u(x)|2w(x)dx+8
n−1∑

k=1

lim inf
m→+∞

∫

Θm([αk,βk])

εm
αk,βk

(x)w(x)dx+Cδ.

As in Step 1, we consider 0<r0 <δ such that

Br0(αn) ∩ Br0(βn) = ∅ and Br0(αn) ∪ Br0(βn) ⊂ Ω

and we construct, using Lemma A1 in [16], a map ṽ ∈ C1
(
Ω \ {αn, βn}, S2

)
∩ H1(Ω)

satisfying

ṽ(x) =





u(x) on Ω \ Br0(αn),

R+

(
x − αn

|x − αn|

)
on Br0(αn),

−R−

(
x − βn

|x − βn|

)
on Br0(βn),

for some rotations R+ and R− and
∫

Ω

|∇ṽ(x)|2w(x)dx ≤
∫

Ω

|∇vn−1(x)|2w(x)dx + δ.

Applying the construction in Step 2 starting from ṽ, we obtain a new map ṽmn
n (for some

large mn ∈ N) defined on δ-neighborhood W ′ of [αn, βn] included in Ω, which coincide with

ṽ near ∂W ′, which then has only point singularities of degree zero (since deg(ṽ, βn) = −1)

and satisfying
∫

W ′
|∇vmn

n (x)|2w(x)dx ≤
∫

W ′
|∇ṽ(x)|2w(x)dx+8 lim inf

m→+∞

∫

Θm([αn,βn])

εm
αn,βn

(x)w(x)dx+Cδ.

Since the degree of each singularities of vmn
n is zero, we can construct a map vn in

C1(W
′
, S2) (see [17, 22]) verifying vn = ṽ in a neighborhood of ∂W ′ and

∫

W ′
|∇vn(x)|2w(x)dx ≤

∫

W ′
|∇vmn

n (x)|2w(x)dx + δ.

Then we define uδ : Ω → S2 by

uδ(x) =





vn−1(x) if x ∈ Ω \ W ′,

vn(x) if x ∈ W
′
.

Since vn−1 = ṽ and ṽ = vn−1 near ∂W ′, we deduce that uδ ∈ C1(Ω, S2). Moreover it

follows by construction that uδ = u outside a δ-neighborhood of ∪n
k=1[αk, βk] included

in Ω and ∫

Ω

|∇uδ(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πℓ (F) + Cδ,



42 Chapitre 2. The relaxed energy for S2-valued maps and measurable weights

which ends the proof since δ is arbitrary small. ¥

Lemma 2.3. Let (Pi, Ni)
K
i=1 be 2K distinct points in Ω and consider u ∈ H1(Ω, S2) ∩

C1(Ω \ ∪K
i=1{Pi, Ni}) such that deg(u, Pi) = +1 and deg(u,Ni) = −1 for i = 1, . . . , K.

There exists a sequence of maps (un)n∈N ⊂ C1(Ω, S2) satisfying un|∂Ω = u|∂Ω,
∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u) + 2−n,

and

meas ({x ∈ Ω, un(x) 6= u(x)}) ≤ 2−n.

Proof. Without loss of generality we may assume that
∑

i dw(Pi, Ni) is equal to the length

of a minimal connection relative to dw between the points (Pi) and (Ni). As in [16], we

are going to “remove” each dipole (Pi, Ni). More precisely, for each n ∈ N, we construct

successively K maps (ui
n)

K
i=1 satisfying

(a) ui
n ∈ H1(Ω, S2) ∩ C1

(
Ω \ ⋃

i+1≤j≤K{Pj, Nj}
)

for i = 1, . . . , K,

(b) u1
n = u on Ω\W 1

n and ui
n = ui−1

n on Ω\W i
n for i = 2, . . . , K where W i

n is is strictly

included in Ω \ ⋃
i+1≤j≤K{Pj, Nj} and |W i

n| ≤ 2−n/K,

(c)

∫

Ω

|∇u1
n(x)|2w(x)dx ≤

∫

Ω

|∇u(x)|2w(x)dx + 8πdw(P1, N1) +
2−n

K
and

∫

Ω

|∇ui
n(x)|2w(x)dx ≤

∫

Ω

|∇ui−1
n (x)|2w(x)dx+8πdw(Pi, Ni)+

2−n

K
for i = 2, . . . , K.

We easily check that the sequence (uK
n )n∈N then satisfies the requirement since we have

Lw(u) =
∑

i dw(Pi, Ni). We start with the construction of u1
n.

Construction of u1
n. By Lemma 2.1, we can find F1 = ([α1, β1], . . . , [αl, βl]) ∈ Q(P1, N1)

satisfying (
∪K

i=2 {Pi, Ni} ∪ {N1}
)
∩

(
∪l

k=2[αk, βk] ∪ [α1, β1[
)

= ∅, (2.21)

and

ℓw (F1) ≤ dw(P1, N1) +
2−(n+1)

8Kπ
.

From (2.21), we infer that we can find δ>0 small enough such that

W 1
δ = {x ∈ R

3, dist(x,∪l
k=1[αk, βk]) ≤ δ} ⊂ Ω \ ∪K

i=2{Pi, Ni} and |W 1
δ | ≤

2−n

K
.

By the method described in the proof of Lemma 2.2, we construct a map u1
n ∈ H1(Ω, S2)∩

C1(Ω \ ∪K
i=2{Pi, Ni}) verifying u1

n = u outside W 1
δ and

∫

Ω

|∇u1
n(x)|2w(x)dx ≤

∫

Ω

|∇u(x)|2w(x)dx + 8πℓw (F1) +
2−(n+1)

K

≤
∫

Ω

|∇u(x)|2w(x)dx + 8πdw(P1, N1) +
2−n

K
.
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Construction of ui
n, i = 2, . . . , K. We iterate the previous process, i.e., we proceed as for

the construction of u1
n but starting from ui−1

n instead of u. ¥

2.3 Proof of Theorem 2.2

2.3.1 Lower bound of the energy

In this section, we denote by Fw the functional defined for maps u ∈ H1
g (Ω, S2) by

Fw(u) =

∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u).

Proposition 2.1. The functional Fw is sequentially lower semi-continuous on H1
g (Ω, S2)

for the weak H1-topology.

Proof. We follow the method in [18]. Since the supremum of a family of sequentially lower

semi-continuous functionals is sequentially lower semi-continuous, it suffices to show that

for any function ζ : Ω → R which is 1-Lipschitz with respect to dw, the functional

u ∈ H1
g 7→

∫

Ω

|∇u(x)|2w(x)dx + 2

∫

Ω

D(u) · ∇ζ dx

is sequentially lower semi-continuous for the weak H1-topology (the term
∫

∂Ω
(D(u) · ν)ζ

only depends on g and ζ ). Consider (un)n∈N ⊂ H1
g (Ω, S2) and u ∈ H1

g (Ω, S2) such that

un ⇀ u weakly in H1. Setting vn = un − u, we have
∫

Ω

|∇un(x)|2w(x)dx =

∫

Ω

|∇u(x)|2w(x)dx +

∫

Ω

|∇vn(x)|2w(x)dx + o(1),

and writing

2

∫

Ω

D(un) · ∇ζ dx = An + Bn + Cn

with

An = 2

∫

Ω

un ·
(

∂u

∂x2

∧ ∂u

∂x3

∂ζ

∂x1

+
∂u

∂x3

∧ ∂u

∂x1

∂ζ

∂x3

+
∂u

∂x1

∧ ∂u

∂x2

∂ζ

∂x3

)
,

Bn = 2

∫

Ω

un ·
(

∂vn

∂x2

∧ ∂u

∂x3

+
∂u

∂x2

∧ ∂vn

∂x3

)
∂ζ

∂x1

+ 2

∫

Ω

un ·
(

∂vn

∂x3

∧ ∂u

∂x1

+
∂u

∂x3

∧ ∂vn

∂x1

)
∂ζ

∂x2

+ 2

∫

Ω

un ·
(

∂vn

∂x1

∧ ∂u

∂x2

+
∂u

∂x1

∧ ∂vn

∂x2

)
∂ζ

∂x3

,

Cn = 2

∫

Ω

un ·
(

∂vn

∂x2

∧ ∂vn

∂x3

∂ζ

∂x1

+
∂vn

∂x3

∧ ∂vn

∂x1

∂ζ

∂x3

+
∂vn

∂x1

∧ ∂vn

∂x2

∂ζ

∂x3

)
.
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We easily obtain that An → 2
∫
Ω

D(u) · ∇ζ as n → +∞ since un ⇀ u weak⋆ in L∞ and

that Bn → 0 since vn ⇀ 0 weakly in L2 and un → u strongly in L2. Now we set

Vn =

(
un · ∂vn

∂x2

∧ ∂vn

∂x3

, un · ∂vn

∂x3

∧ ∂vn

∂x1

, un · ∂vn

∂x1

∧ ∂vn

∂x2

)
.

We have

|Cn| = 2

∣∣∣∣
∫

Ω

Vn · ∇ζ

∣∣∣∣ ≤ 2

∫

Ω

|Vn||∇ζ|.

By Lemma 1 in [18], we know that 2|Vn| ≤ |∇vn|2 and by Proposition 1.3 in Chapter 1,

any ζ : Ω → R which 1-Lipschitz with respect to dw satisfies |∇ζ| ≤ w a.e. in Ω. Then we

obtain

|Cn| ≤
∫

Ω

|∇vn(x)|2w(x)dx

and we conclude that
∫

Ω

|∇un(x)|2w(x)dx + 2

∫

Ω

D(un) · ∇ζ dx ≥
∫

Ω

|∇u(x)|2w(x)dx + 2

∫

Ω

D(u) · ∇ζ dx + o(1)

which clearly implies the result. ¥

Proof of “ ≥” in Theorem 2.2. Let u ∈ H1
g (Ω, S2) and consider an arbitrary sequence

(un)n∈N ⊂ H1
g (Ω, S2) ∩ C1(Ω) such that un ⇀ u weakly in H1. Since un is smooth in Ω,

we have T (un) ≡ 0 and then Lw(un) = 0. We conclude by Proposition 2.1 that

lim inf
n→+∞

∫

Ω

|∇un(x)|2w(x)dx = lim inf
n→+∞

Fw(un) ≥ Fw(u) =

∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u).

Since the sequence (un)n∈N is arbitrary, we get the announced result. ¥

2.3.2 Upper bound of the energy

Proposition 2.2. Let u ∈ H1
g (Ω, S2). There exists a sequence (un)n∈N ⊂ H1

g (Ω, S2) ∩
C1(Ω) such that un ⇀ u weakly in H1 and

lim sup
n→+∞

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u).

End of the proof of Theorem 2.2. Let u ∈ H1
g (Ω, S2) and let (un)n∈N be the sequence of

maps given by Proposition 2.2. By definition of Ew(u) and Proposition 2.2, we have

Ew(u) ≤ lim inf
n→+∞

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u),

which ends the proof of Theorem 2.2. ¥

To prove Proposition 2.2, we need the following Lemma. We postpone its proof at the

end of this section.
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Lemma 2.4. For any u, v ∈ H1
g (Ω, S2), we have

|Lw(u) − Lw(v)| ≤ CΛ
(
‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

)
‖∇u −∇v‖L2(Ω), (2.22)

for a constant C independent of w.

Proof of Proposition 2.2. Let u ∈ H1
g (Ω, S2). By the result in [16, 22], we can find a

sequence of maps (vn)n∈N ⊂ H1
g (Ω, S2) such that vn ∈ C1(Ω \ ∪Kn

i=1{Pi, Ni}) for some 2Kn

distinct points (Pi, Ni) in Ω, deg(vn, Pi) = +1 and deg(vn, Ni) = −1 for i = 1, . . . , Kn and

such that

‖∇(vn − u)‖L2(Ω) ≤ 2−n. (2.23)

From this inequality we infer that

meas
({

x ∈ Ω, |vn(x) − u(x)|<2−n/2
})

≤ C 2−n. (2.24)

Applying Lemma 2.3 to vn, we find a map un ∈ C1(Ω, S2) satisfying un|∂Ω = g,
∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇vn(x)|2w(x)dx + 8πLw(vn) + 2−n (2.25)

and

meas ({x ∈ Ω, un(x) 6= vn(x)}) ≤ 2−n. (2.26)

From (2.23) and Lemma 2.4 we deduce that Lw(vn) → Lw(u) as n → +∞ and then it

follows that (un)n∈N is bounded in H1. Moreover we obtain from (2.24) and (2.26) that

un → u a.e. in Ω and we conclude that un ⇀ u weakly in H1. Letting n → +∞ in (2.25)

leads to

lim sup
n→+∞

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πLw(u),

which completes the proof. ¥

Proof of Lemma 2.4. To prove Lemma 2.4, we follow the method in [18]. For u and v in

H1
g (Ω, S2), we set

Lw(u, v) = Sup

{∫

Ω

(D(u) − D(v)) · ∇ζ , ζ : Ω → R 1-Lipschitz with respect to dw

}
.

Since D(u) · ν = D(v) · ν on ∂Ω (it only depends on g), we have
∫

Ω

D(u) ·∇ζ −
∫

∂Ω

(D(u) · ν) ζ =

∫

Ω

D(v) ·∇ζ −
∫

∂Ω

(D(v) · ν) ζ +

∫

Ω

(D(u) − D(v)) ·∇ζ ,

and we easily derive that

|Lw(u) − Lw(v)| ≤ Lw(u, v).

Similar computations to those in [18], proof of Theorem 1, lead to
∣∣∣∣
∫

Ω

(D(u) − D(v)) · ∇ζ

∣∣∣∣ ≤ C
(
‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

)
‖∇u −∇v‖L2(Ω)‖∇ζ‖L∞(Ω).

By Proposition 1.3 in Chapter 1, any real function ζ which is 1-Lipschitz with respect to

dw satisfies |∇ζ| ≤ w a.e. in Ω. We deduce that (2.22) holds since w ≤ Λ a.e. in Ω. ¥



46 Chapitre 2. The relaxed energy for S2-valued maps and measurable weights

2.4 Stability and approximation properties

2.4.1 A stability property

Before stating the result, we need to recall some previous ones obtained in Chapter 1.

For any real measurable function w satisfying assumption (2.1), we may associate to

distance dw the length functional Ldw defined by

Ldw(γ) = Sup

{
m−1∑

k=0

dw (γ(tk), γ(tk+1)) , 0 = t0 <t1 <. . .<tm = 1, m ∈ N
⋆

}
,

where γ : [0, 1] → Ω is any continuous curve. In Chapter 1, we have proved that for any

x, y ∈ Ω,

dw(x, y) = Inf
{
Ldw(γ), γ ∈ Lip([0, 1], Ω), γ(0) = x and γ(1) = y

}
(2.27)

where Lip([0, 1], Ω) denotes the class of all Lipschitz maps from [0, 1] into Ω. We have also

shown that the infimum in (2.27) is in fact achieved.

The following stability result relies on the Γ-convergence of the length functionals (we

refer to [41] for the notion of Γ-convergence). In the sequel, we endow Lip([0, 1], Ω) with

the topology of the uniform convergence on [0, 1].

Theorem 2.3. Let (wn)n∈N be a sequence of measurable real functions such that

0 < c0 ≤ wn ≤ C0 a.e. in Ω (2.28)

for some constants c0 and C0 independent of n ∈ N. The following properties are equiva-

lent :

(i) the functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω) and

∫

Ω

|∇ϕ(x)|2wn(x)dx →
n→+∞

∫

Ω

|∇ϕ(x)|2w(x)dx for any ϕ ∈ H1(Ω, R), (2.29)

(ii) for every smooth boundary data g : ∂Ω → S2 such that deg(g) = 0,

Ewn(u) →
n→+∞

Ew(u) for any u ∈ H1
g (Ω, S2).

Proof. (i)⇒(ii). We fix a smooth boundary data g : Ω → S2 such that deg(g) = 0. Clearly

(2.29) implies that

∫

Ω

|∇u(x)|2wn(x)dx →
n→+∞

∫

Ω

|∇u(x)|2w(x)dx for any u ∈ H1
g (Ω, S2),

and by Theorem 2.2, it remains to prove that

Lwn(u) →
n→+∞

Lw(u) for any u ∈ H1
g (Ω, S2). (2.30)
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Consider u ∈ H1
g (Ω, S2). By the result in [16, 22], there exits a sequence of maps (vk)k∈N ⊂

H1
g (Ω, S2) such that vk ∈ C1(Ω \ ∪Mk

j=1{Pj, Nj}, S2) for some 2Mk points (Pj, Nj) in Ω,

deg(vk, Pj) = +1 and deg(vk, Nj) = −1 for j = 1, . . . ,Mk, and vk → u strongly in H1.

We have

Lwn(vk) = Min
σ∈SMk

Mk∑

j=1

dwn(Pj, Nσ(j)) and Lw(vk) = Min
σ∈SMk

Mk∑

j=1

dw(Pj, Nσ(j))

Since the functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω), we deduce from Theorem 1.2

in Chapter 1 that for every k ∈ N, Lwn(vk) → Lw(vk) as n → +∞. Now we fix a small

δ > 0. Since vk → u strongly in H1, we derive from Lemma 2.4 and (2.28) that exists

k0 ∈ N which only depends on u, δ and C0 such that

Lwn(vk) − δ ≤ Lwn(u) ≤ Lwn(vk) + δ for any n ∈ N and k ≥ k0.

Letting n → +∞ in this inequality, we get that

Lw(vk) − δ ≤ lim inf
n→+∞

Lwn(u) ≤ lim sup
n→+∞

Lwn(u) ≤ Lw(vk) + δ for k ≥ k0.

Passing to the limit in k and using Lemma 2.4, we obtain

Lw(u) − δ ≤ lim inf
n→+∞

Lwn(u) ≤ lim sup
n→+∞

Lwn(u) ≤ Lw(u) + δ,

which leads to the result since δ is arbitrary small.

(ii)⇒(i). First we prove (2.29) for ϕ ∈ C∞(Ω, R). Let ϕ ∈ C∞(Ω, R) and consider the

smooth map g : ∂Ω → S2 defined by g(x) =
(
cos(ϕ(x)), sin(ϕ(x)), 0

)
. We easily check

that deg(g) = 0. Now consider the map u defined for x ∈ Ω by

u(x) = (cos(ϕ(x)), sin(ϕ(x)), 0).

We have u ∈ H1
g (Ω, S2) ∩ C∞(Ω) and then Lwn(u) = Lw(u) = 0 for any n ∈ N. Since

|∇u|2 = |∇ϕ|2, we derive from assumption (ii) and Theorem 2.2 that

∫

Ω

|∇ϕ(x)|2wn(x)dx →
n→+∞

∫

Ω

|∇ϕ(x)|2w(x)dx.

Let us now prove (2.29) for any ϕ ∈ H1(Ω, R). Let ϕ ∈ H1(Ω, R) and consider a sequence

(ϕk)k∈N ⊂ C∞(Ω, R) such that ϕk → ϕ strongly in H1. We fix a small δ > 0. From

assumption (2.28), we infer that exists k0 ∈ N which only depends on ϕ, δ and C0 such

that for any n ∈ N and k ≥ k0,

∫

Ω

|∇ϕk(x)|2wn(x)dx − δ ≤
∫

Ω

|∇ϕ(x)|2wn(x)dx ≤
∫

Ω

|∇ϕk(x)|2wn(x)dx + δ.
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Since ϕk is smooth, letting n → +∞ we obtain for k ≥ k0,

∫

Ω

|∇ϕk(x)|2w(x)dx − δ ≤ lim inf
n→+∞

∫

Ω

|∇ϕ(x)|2wn(x)dx

≤ lim sup
n→+∞

∫

Ω

|∇ϕ(x)|2wn(x)dx ≤
∫

Ω

|∇ϕk(x)|2w(x)dx + δ.

Passing to the limit in k and then δ → 0, we conclude

lim
n→+∞

∫

Ω

|∇ϕ(x)|2wn(x)dx =

∫

Ω

|∇ϕ(x)|2w(x)dx.

It remains to prove that the functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω). Let P

and N be two distinct points in Ω. We take g ≡ (0, 0, 1) and consider u ∈ H1
g (Ω, S2) ∩

C1(Ω \ {P, N}) (such a map is constructed for instance in [27, 30]). By Theorem 2.2, we

have

Ewn(u) =

∫

Ω

|∇u(x)|2wn(x)dx + 8πdwn(P,N)

and

Ew(u) =

∫

Ω

|∇u(x)|2w(x)dx + 8πdw(P, N).

From (2.29) we get that
∫

Ω
|∇u(x)|2wn(x)dx →

∫
Ω
|∇u(x)|2w(x)dx and from assumption

(ii) we deduce that

dwn(P, N) → dw(P,N) as n → +∞.

Since the points P and N are arbitrary in Ω, we derive that dwn converges to dw pointwise

in Ω × Ω and the conclusion follows by the results in Chapter 1, Section 1.4.1. ¥

In the next proposition, we give some sufficient conditions on a sequence (wn)n∈N

converging pointwise a.e. to w for property (ii) in Theorem 2.3 to hold.

Proposition 2.3. Let (wn)n∈N be a sequence of measurable real functions satisfying (2.28)

and assume that one of the following conditions holds :

(a) wn ≥ w and wn → w a.e. in Ω,

(b) wn → w in L∞(Ω).

Then property (ii) in Theorem 2.3 holds.

Proof. By Proposition 1.4 and Theorem 1.2 in Chapter 1, (a) or (b) implies that the

functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω). We also check that (a) or (b) implies

(2.29) by dominated convergence. Then the conclusion follows from Theorem 2.3. ¥

Remark 2.1. The conclusion of Proposition 2.3 may fails if we only assumes that wn → w

a.e. in Ω (see Remark 1.4 in Chapter 1).
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2.4.2 Approximation property

In this section, we show that the functional Ew can be obtain as pointwise limit of a

sequence (Ewn)n∈N in which the weight function wn is smooth.

Proposition 2.4. Let (ρn)n∈N be a sequence of smooth mollifiers. Extending w by a suf-

ficiently large constant and setting wn = ρn ∗ w, we have

Ewn(u) →
n→+∞

Ew(u) for any u ∈ H1
g (Ω, S2).

Proof. By construction, (2.29) clearly holds. Then property (i) in Theorem 2.3 follows from

Theorem 1.2 and Theorem 1.3 in Chapter 1 which leads to the result by Theorem 2.3. ¥

2.5 The relaxed energy without prescribed boundary

data

In this section, we consider the relaxed type functional

Ẽw(u) = Inf

{
lim inf
n→+∞

∫

Ω

|∇un(x)|2w(x)dx, un ∈ C1(Ω, S2), un ⇀ u weakly in H1

}

defined for u ∈ H1(Ω, S2). We recall that F. Bethuel has also proved (see [16]) that

C1(Ω, S2) is sequentially dense in H1(Ω, S2) for the weak H1 topology and then Ẽw is

well defined.

As in [18], there is also a notion of length of a minimal connection relative to dw

defined for any u ∈ H1(Ω, S2) :

L̃w(u) =
1

4π
Sup

{
〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz with respect to dw and ζ = 0 on ∂Ω

}
.

Since no assumptions are made on u|∂Ω, it may happen that deg(u|∂Ω) 6= 0 or that deg(u|∂Ω)

is not well defined. But clearly L̃w(u) always makes sense. When u is smooth except at a

finite number of point in Ω, L̃w(u) is equal to the length of a minimal connection relative

to dw between the singularities of u and some virtual singularities on the boundary (see

[30]). More precisely, one adds some virtual singularities on the boundary in such a way

that the new configuration has the same number of positive and negative points and one

consider the length of a minimal connection relative to dw for this configuration. Then

L̃w(u) corresponds to the infimum of these quantities when one varies the position and

the number of the boundary points. There is the variant of Theorem 2.2 for Ẽw.

Theorem 2.4. For any u ∈ H1(Ω, S2), we have

Ẽw(u) =

∫

Ω

|∇u(x)|2w(x)dx + 8πL̃w(u).
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2.5.1 Proof of Theorem 2.4

The inequality "≥" in Theorem 2.4 can be proved using a method similar to the one

used in Section 2.3.1 and we omit it. We obtain "≤" as in Section 2.3.2 using Proposi-

tion 2.5 and Lemma 2.5 below instead of Proposition 2.2 and Lemma 2.4. The proof of

Lemma 2.5 is almost identical to the proof of Lemma 2.4 and we also omit it (note that

all the boundary integrals vanish since ζ = 0 on ∂Ω).

Proposition 2.5. Let u ∈ H1(Ω, S2). There exists a sequence (un)n∈N ⊂ C1(Ω, S2) such

that

un ⇀ u weakly in H1

and

lim sup
n→+∞

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πL̃w(u).

Lemma 2.5. For any u, v ∈ H1(Ω, S2), we have
∣∣∣L̃w(u) − L̃w(v)

∣∣∣ ≤ CΛ
(
‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

)
‖∇u −∇v‖L2(Ω), (2.31)

for a constant C independent of w.

Proof of Proposition 2.5. Let u ∈ H1(Ω, S2). By the result in [16, 22], we can find a

sequence (vn)n∈N ⊂ H1(Ω, S2) such that vn ∈ C1(Ω \ {(ai)
Nn
i=1}) for some Nn distinct

points a1, . . . , aNn in Ω and

‖u − vn‖H1(Ω) ≤ 2−n. (2.32)

Since we are dealing with an approximating sequence, we may assume that (see [16])

| deg(vn, ai)| = 1 for i = 1, . . . , Nn.

Since vn is smooth except at a finite number of point in Ω, the length of a minimal

connection L̃w(vn) is computed as follows (see [30], part II). We pair each singularity ai

either to another singularity in Ω of opposite degree or to a virtual singularity on the

boundary with opposite degree. In other words, we allow connections to the boundary

of Ω. Pairing all the singularities in this way, we take a configuration that minimizes the

sum of the distances between the paired singularities, computing the distances with dw.

We relabel all the singularities (the ai’s and the virtual singularities on the boundary),

according to their multiplicity for those on the boundary, as a list of positive and negative

points say (P1, . . . , PKn) and (N1, . . . , NKn) such that

L̃w(vn) =
Kn∑

j=1

dw(Pj, Nj).

Using Lemma 2 bis in [16], we can find ṽn ∈ H1(Ω, S2) ∩ C1(Ω \ ∪Kn
j=1{P̃j, Ñj}) for 2Kn

distinct points (P̃j, Ñj) in Ω such that ṽn = vn outside a small neighborhood of ∂Ω,
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deg(ṽn, P̃j) = +1 and deg(ṽn, Ñj) = −1 for j = 1, . . . , Kn, P̃j = Pj (respectively Ñj =

Nj) if Pj ∈ Ω (respectively if Nj ∈ Ω) and |P̃j − Pj| ≤ 2−n

Kn
otherwise (respectively

|Ñj − Nj| ≤ 2−n

Kn
), and

‖ṽn − vn‖H1(Ω) ≤ 2−n. (2.33)

Note that, for each pair (Pj, Nj), we necessarily have P̃j = Pj or Ñj = Nj and then

∣∣∣∣∣

Kn∑

j=1

dw(Pj, Nj) −
Kn∑

j=1

dw(P̃j, Ñj)

∣∣∣∣∣ ≤ C 2−n, (2.34)

and from (2.32) and (2.33), we infer that

meas
(
{x ∈ Ω, |u(x) − ṽn(x)|<2−n/2}

)
≤ C 2−n. (2.35)

Applying Lemma 2.3 to ṽn, we find a map un ∈ C1(Ω, S2) satisfying

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇ṽn(x)|2w(x)dx + 8π
Kn∑

j=1

dw(P̃j, Ñj) + 2−n (2.36)

and

meas ({x ∈ Ω, un(x) 6= ṽn(x)}) ≤ 2−n. (2.37)

From (2.34) and (2.36), we derive that

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇vn(x)|2w(x)dx + 8πL̃w(vn) + C 2−n. (2.38)

Since vn → u strongly in H1, we deduce from Lemma 2.5 that L̃w(vn) → L̃w(u) as

n → +∞ which implies that (un)n∈N is bounded in H1. From (2.33) and (2.37) we obtain

un → u a.e. in Ω and then we conclude that un ⇀ u weakly in H1. Passing to the limit

in (2.38) leads to

lim sup
n→+∞

∫

Ω

|∇un(x)|2w(x)dx ≤
∫

Ω

|∇u(x)|2w(x)dx + 8πL̃w(u)

and the proof is complete. ¥

2.5.2 Stability and approximation properties for Ẽw

We present in this section the variants for Ẽw of the results in Section 2.4.

Theorem 2.5. Let (wn)n∈N be a sequence of measurable real functions satisfying (2.28)

and assume that (i) in Theorem 2.3 holds. Then we have

Ẽwn(u) →
n→+∞

Ẽw(u) for any u ∈ H1(Ω, S2). (2.39)
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Proof. Assumption (2.29) clearly implies that
∫

Ω

|∇u(x)|2wn(x)dx →
n→+∞

∫

Ω

|∇u(x)|2w(x)dx for any u ∈ H1(Ω, S2),

and by Theorem 2.4, we just have to prove that

L̃wn(u) →
n→+∞

L̃w(u) for any u ∈ H1(Ω, S2). (2.40)

Consider u ∈ H1(Ω, S2). By the result in [16, 22], we can find a sequence (vk)k∈N ⊂
H1(Ω, S2) such that vk ∈ C1(Ω \ ∪Mk

i=1{aj}, S2) for some Mk points (ai) in Ω and vk → u

strongly in H1. We easily check that a minimal connection for vk relative to distance

dwn does not allow more than
∑Mk

i=1 | deg(vk, ai)| connections to the boundary. Therefore,

extracting a subsequence (nl)l∈N, we can relabel the singularities of vk and the virtual

singularities on the boundary given by a minimal connection relative to dwnl
, as a list of

positive points (P l
1, . . . , P

l
Kk

) and a list of negative points (N l
1, . . . , N

l
Kk

) with Kk inde-

pendent of l and such that

L̃wnl
(vk) = Min

σ∈SKk

Kk∑

j=1

dwnl
(P l

j , N
l
σ(j)) =

Kk∑

j=1

dwnl
(P l

j , N
l
σl(j)

)

for some permutation σl ∈ SKk
. Extracting another subsequence if necessary, we may

assume that σl = σ⋆ is independent of l ∈ N and that P l
j →

l→+∞
Pj and N l

j →
l→+∞

Nj for

j = 1, . . . , Kk. From the results in Chapter 1 Section 1.4.1, we know that assumption (i)

implies that dwn converges to dw uniformly on Ω × Ω and then we have

L̃wnl
(vk) =

Kk∑

j=1

dwnl
(P l

j , N
l
σ⋆(j)) →

l→+∞

Kk∑

j=1

dw(Pj, Nσ⋆(j))

By definition of L̃w(vk), we obtain that

L̃w(vk) ≤ lim
l→+∞

L̃wnl
(vk).

On the other hand, we can also relabel the singularities of vk and the virtual singularities

on the boundary given by a minimal connection relative to dw, as a list of positive points

(P 1, . . . , PK) and a list of negative points (N1, . . . , NK) such that

L̃w(vk) =
K∑

j=1

dw(P j, N j).

As previously, we have for any l ∈ N,

L̃wnl
(vk) ≤

K∑

j=1

dwnl
(P j, N j).
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Letting l → +∞, we obtain

lim
l→+∞

L̃wnl
(vk) ≤

K∑

j=1

dw(P j, N j)

and then we conclude that lim
l→+∞

L̃wnl
(vk) = L̃w(vk). By uniqueness of the limit, we deduce

that the convergence holds for the full sequence, i.e.,

L̃wn(vk) →
n→+∞

L̃w(vk).

At this stage, we can proceed as in the proof of Theorem 2.4 (i)⇒(ii) using Lemma 2.5

instead of Lemma 2.4. ¥

We also obtain the following variants of Proposition 2.3 and Proposition 2.4 using

Theorem 2.5 instead of Theorem 2.3.

Proposition 2.6. Let (wn)n∈N be a sequence of measurable real functions satisfying (2.28)

and assume that (a) or (b) in Proposition 2.3 holds. Then (2.39) holds.

Proposition 2.7. Let (ρn)n∈N be a sequence of smooth mollifiers. Extending w by a suf-

ficiently large constant and setting wn = ρn ∗ w, then (2.39) holds.
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Chapitre 3

Vortices in a two dimensional rotating

Bose-Einstein condensate

3.1 Introduction

The phenomenon of Bose-Einstein condensation has given rise to an intense research,

both experimentally and theoretically, since its first realization in alkali gases in 1995.

One of the most beautiful experiments was carried out by the ENS group and consisted of

rotating the trap holding the atoms [68, 69] (see also [1]). Since a Bose-Einstein condensate

(BEC) is a quantum gas, it can be described by a single complex-valued wave function

(order parameter) and it rotates as a superfluid : above a critical velocity, it rotates

through the existence of vortices, i.e., zeroes of the wave function around which there is

a circulation of phase. Then the number of vortices increases as the angular speed gets

larger and the vortices arrange themselves in a regular pattern around the center of the

condensate.

A two-dimensional model for a rotating BEC was used by Y. Castin and R. Dum

[40]. This model corresponds to a harmonic trap that confines strongly the atoms in the

direction of the rotation axis, so that the system becomes effectively two-dimensional

(see [77]). After the nondimensionalization of the energy (see [4]), the wave function uε

minimizes the Gross-Pitaevskii energy
∫

R2

{
1

2
|∇u|2 +

1

2ε2
(x2

1 + λ2x2
2)|u|2 +

1

4ε2
|u|4 − Ω x⊥ ·(iu,∇u)

}
dx (3.1)

under the mass constraint ∫

R2

|u|2 = 1 (3.2)

where ε > 0 is small and represents a ratio of two characteristic lengths, 0 < λ ≤ 1 and

Ω = Ω(ε) ≥ 0 denotes the rotational velocity. The term x2
1 + λ2x2

2 in (3.1) models the

trapping potential. In [40], the equilibrium configurations are studied by looking for the

minimizers in a reduced class of functions and some numerical simulations are presented.

55
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In this chapter, our main goal is to study the number and the location of vortices

according to the value of the angular speed Ω(ε) as ε → 0. We consider the situation in

which the trap is axisymmetric, i.e. λ = 1, and Ω is at most of order | ln ε|. Using (3.2),

we rewrite the energy (3.1) in the equivalent form

Fε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]
− Ωx⊥ · (iu,∇u)

}
dx (3.3)

where a(x) = a0 − |x|2 and a0 is determined by
∫

R2 a+(x) = 1 so that a0 =
√

2/π . Here

a+ and a− represent respectively the positive and the negative part of a. We will see that

in the limit ε → 0, the minimization of Fε strongly forces |uε|2 to be close to a+ which

means that the resulting density is asymptotically localized in

D :=
{
x ∈ R

2, a(x) > 0
}

= B(0,
√

a0 ).

We will also prove that |uε| decays exponentially outside D. We will seek vortices only

inside the domain D and compute an asymptotic expansion of Fε(uε) in order to

a) determine the critical velocity Ωd for which the d th vortex becomes energetically

favourable,

b) express the part of the energy governing the location of the vortices (the so called

“renormalized energy”).

Let us now recall some related works. In [20], F. Bethuel, H. Brezis and F. Hélein have

developed the main tools for studying vortices in “Ginzburg-Landau type” problems. We

also refer to L. Almeida and F. Bethuel [7], F. Bethuel and T. Rivière [21], E. Sandier [73]

and E. Sandier and S. Serfaty [75, 74, 76] for additional techniques. A similar functional

to (3.3) was considered by S. Serfaty in [80] where a(x) ≡ 1 and R
2 is replaced by a

disc. She proves the existence of local minimizers having vortices for different ranges of

rotational velocity. In [4], A. Aftalion and Q. Du follow the strategy in [80] for the study

of global minimizers of the Gross-Pitaevskii energy (3.3) where R
2 is replaced by D. In

[2], A. Aftalion, S. Alama and L. Bronsard analyze the global minimizers of (3.3) for

potentials of different nature leading to an annular region of confinement. We finally refer

to [5, 6, 63] for mathematical studies on 3D models.

We emphasize that we tackle here the problem which corresponds exactly to the phy-

sical model. In particular, we minimize Fε under the mass constraint (3.2) and the admis-

sible configurations are defined on the whole space R
2. Several difficulties arise especially

in the proof of the existence results and the construction of test functions. We point out

that we do not assume any implicit bound on the number of vortices. The singular and

degenerate behavior of
√

a+ near ∂D induces a cost of order | ln ε| in the energy and

requires specific tools to detect vortices in the boundary region.

We now start to describe our main results. We introduce the functional space in which

we perform the minimization

H :=
{
u ∈ H1(R2, C),

∫

R2

|x|2|u|2 < ∞
}
. (3.4)
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When Ω = 0, Fε(u) = Eε(u) where

Eε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]}
dx. (3.5)

We shall prove that for ε small enough, the minimization problem

Min
{
Eε(η), η ∈ H, ‖η‖L2(R2) = 1

}
(3.6)

admits a unique solution η̃ε (up to a complex multiplier of modulus one) which is a real

positive function. Moreover η̃ε converges to
√

a+ in L∞(R2) as ε → 0.

The notion of vortex that we consider here, is similar to the one used in [7, 78, 79, 80]

and will be specified later. Defining for any integer d ≥ 1, the critical velocities

Ωd =
2

a0

| ln ε| + 2(d − 1)

a0

ln | ln ε|, (3.7)

our main theorem can be stated as follows :

Theorem 3.1. Let uε be any minimizer of Fε in H under the mass constraint (3.2) and

let 0 < δ ≪ 1 be any small constant.

(i) If Ω ≤ Ω1 − δ ln | ln ε|, then for any R0 <
√

a0, there exists εR0 > 0 such that for

any ε < εR0, uε is vortex free in BR0, i.e., uε does not vanish in BR0. In addition,

Fε(uε) = Eε(η̃ε) + o(1).

(ii) If Ωd + δ ln | ln ε| ≤ Ω ≤ Ωd+1 − δ ln | ln ε| for some integer d ≥ 1, then for

any R0 <
√

a0, there exists εR0 > 0 such that for any ε < εR0, uε has exactly d

vortices xε
1, . . . , x

ε
d of degree one in BR0. Moreover, we have that |xε

j| ≤ CΩ−1/2

for any j = 1, . . . , d and |xε
i − xε

j| ≥ CΩ−1/2 for any i 6= j for some constant

C > 0 independent of ε. Setting x̃ε
j =

√
Ω xε

j , the configuration (x̃ε
1, . . . , x̃

ε
d) tends to

minimize in R
2d the renormalized energy

w(b1, . . . , bd) = −πa0

∑

i6=j

ln |bi − bj| +
πa0

2

d∑

j=1

|bj|2. (3.8)

In addition,

Fε(uε) = Eε(η̃ε)−
πa2

0

2
d(Ω−Ω1)+

πa0

2
(d2−d) ln | ln ε|+ Min

b∈R2d
w(b)+Qd+o(1) (3.9)

where Qd is an explicit constant depending only on d.

These results are in agreement with theoretical predictions on Bose-Einstein conden-

sates. More precisely : the critical angular velocity Ω1 coincides with the one found in

[4, 40] and the vortices are concentrated around the origin at a scale
√

Ω . The minimi-

zing configurations for the renormalized energy w(·) has been studied by S. Gueron and
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I. Shafrir in [56]. They prove that for d ≤ 6, regular polygons centered at the origin and

“stars" are local minimizers. For larger d, they numerically found minimizers with a shape

of concentric polygons and then triangular lattices as d increases. These figures are exactly

the ones observed in physical experiments (see [68, 69]).

We now describe briefly the content of this chapter. Section 2 is devoted to the study

of the density profile η̃ε defined by (3.6). We first introduce the real positive minimizer ηε

of Eε, i.e.,

Eε(ηε) = min
η∈H

Eε(η). (3.10)

We show the existence and uniqueness of ηε (see Theorem 3.2) and we have that ηε →
√

a+

in L∞(R2) ∩ C1
loc

(D) as ε → 0 (see Proposition 3.1). Then we explicitly characterize the

link between ηε and η̃ε in Theorem 3.3 and we prove that |Eε(ηε) − Eε(η̃ε)| = o(ε). We

point out that the mass of ηε may not be equal to 1 in general. Therefore, we shall use

the profile η̃ε as a test function.

In Section 3, we prove the existence of minimizers uε under the mass constraint (3.2)

(see Proposition 3.2) and some general results about their behavior : Eε(uε) ≤ C| ln ε|2,
|∇uε| ≤ CKε−1 and |uε| .

√
a+ in any compact K ⊂ D, uε decreases exponentially quickly

to 0 outside D (see Proposition 3.3). Using a method introduced by L. Lassoued and P.

Mironescu [65], we show that Fε(uε) splits into two independent pieces (see Lemme 3.4) :

the energy Eε(ηε) and a reduced energy Fηε
ε of vε = uε/ηε, i.e.,

Fε(uε) = Eε(ηε) + Fηε
ε (vε) (3.11)

where

Fηε
ε (vε)= Eηε

ε (vε) −Rηε
ε (vε), (3.12)

Eηε
ε (vε)=

∫

R2

η2
ε

2
|∇vε|2 +

η4
ε

4ε2
(|vε|2 − 1)2 and Rηε

ε (vε)= Ω

∫

R2

η2
εx

⊥ · (ivε,∇vε). (3.13)

In (3.11), Eε(ηε) carries the energy of the singular layer near ∂D and hence, we may

detect vortices by the reduced energy Fηε
ε (vε). We study the vortex structure of uε via

the map vε applying the Ginzburg-Landau techniques to the weighted energy Eηε
ε (vε) ; the

difficulty will arise in the region where ηε is small. We notice that vε inherits the following

properties : Eηε
ε (vε) ≤ C| ln ε|2, |∇vε| ≤ CKε−1 and |vε| . 1 in any compact K ⊂ D. Using

(3.11) and η̃ε as a test function, we obtain in Proposition 3.5 an important upper bound

of the reduced energy inside D :

Fηε
ε (vε,D) ≤ o(1). (3.14)

In Section 4, we compute a first lower bound of Eηε
ε (vε) using a method due to

E. Sandier and S. Serfaty (see [75, 76]). We start with a first construction of small vortex
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balls {B(pi, ri)}i∈Iε
in a domain Dε slightly smaller than D : outside these balls |vε| is

close to 1, so that vε carries a degree di on ∂B(pi, ri) and (see Proposition 3.7)

Eηε
ε (vε,Dε) ≥

∑

i∈Iε

Eηε
ε (vε, B(pi, ri)) & π

∑

i∈Iε

a(pi)|di| | ln ε|. (3.15)

Then we prove an asymptotic expansion of the rotational energy outside the vortex balls

{B(pi, ri)}i∈Iε
(see Proposition 3.8),

Rηε
ε

(
vε,Dε \ ∪i∈IεBi

)
≈ πΩ

2

∑

i∈Iε

a2(pi) di. (3.16)

Estimates (3.15) and (3.16) yield a first lower bound of Fηε
ε (vε,D) that we match with

(3.14) in order to derive the first critical angular velocity Ω1 and to prove the absence

of vortices for velocities strictly less than Ω1 (see Proposition 3.9). We also obtain that

for Ω ≤ Ω1 + O(ln | ln ε|), the number of vortex balls with nonzero degree is uniformly

bounded in ε (see Proposition 3.10). We conclude by two fundamental energy estimates

(see Proposition 3.11)

Eηε
ε (vε,Dε) = O(| ln ε|) and Eηε

ε (vε,Dε \ B2| ln ε|−1/6) = o(| ln ε|). (3.17)

In Section 5, we give a finer description of the vortex structure inside BR ⊂⊂ D using

the method of “bad discs” introduced by F. Bethuel, H. Brezis and F. Hélein [20]. We find

that the number of bad discs is uniformly bounded, all of them remaining close to the

origin (see Theorem 3.4). The main ingredients are the energy estimates (3.17) and a local

version of the Pohozaev identity. Using a “clustering” method presented in [7], we obtain

a new family of modified bad discs
{
B(xε

j, ρ)
}

j∈J̃ε
such that ρ ∼ εα, |vε| ≥ 1/2 outside

these discs and vε has a non zero degree Dj on each ∂B(xε
j , ρ) (see Proposition 3.15). We

identify a vortex with the center of a modified bad disc B(xε
j , ρ).

In Section 6, we establish some lower estimates of the energy taking into account the

interaction between vortices. Following similar methods to [20], we evaluate separately

the energy carried by each vortex (see Lemma 3.9)

Eηε
ε (vε, B(xε

j , ρ)) ≥ πa(xε
j)|Dj| ln

ρ

ε
+ O(1) (3.18)

and the energy away from the vortices (see Proposition 3.16)

Eηε
ε

(
vε, BR \ ∪j∈J̃ε

B(xε
j , ρ)

)
≥ π

∑

j∈J̃ε

D2
j a(xε

j)| ln ρ| + WR,ε

(
(xε

j , Dj)j∈J̃ε

)
+ OR(1). (3.19)

Here, the radius R ∈ (
√

a0

2
,
√

a0) is fixed and the error term OR(1) is computed in function

of R. The quantity WR,ε is similar to the renormalized energy in [20] and involves the

interaction between the vortices. As for (3.16), we find an asymptotic expansion of the
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rotational energy outside the modified bad discs
{
B(xε

j , ρ)
}

j∈J̃ε
and it yields (see (3.155)

in the proof of Lemma 3.10)

Fηε
ε (vε,Dε) ≥ Eηε

ε (vε, BR) − πΩ

2

∑

j∈J̃ε

a2(xε
j) Dj + oR(1). (3.20)

Using (3.14), (3.18), (3.19) and (3.20), we prove in Section 7 that each vortex is of

degree 1, i.e., Dj = 1 (see Lemma 3.11). Then it allows us to improve the above estimates

and to obtain the result in the subcritical case (i) in Theorem 3.1. The rest of the proof

requires an upper bound of Fηε
ε (vε) which is proved at the end of the chapter adapting

a method due to N. André and I. Shafrir [12] (see Theorem 3.5). We are then led to the

following expansion (see Proposition 3.18)

Fηε
ε (vε) = −πna2

0(Ω − Ω1)

2
+

πa0

2
(n2 − n) ln | ln ε| + O(1) where n = Card J̃ε.

If Ωd + δ ln | ln ε| ≤ Ω ≤ Ωd+1 − δ ln | ln ε| for any small δ > 0, this expansion yields the

exact number of vortices Ω : n = d (see Proposition 3.19). Moreover, we find that the

vortices are uniformly distributed at a scale Ω−1/2 around the origin (see Lemma 3.13).

Then we compute an asymptotic formula of the energy WR,ε given in (3.19) as ε → 0 (see

(3.175) in the proof of Proposition 3.20) :

lim
ε→0

(
WR,ε(x

ε
1, . . . , x

ε
d) + πa0

∑

i6=j

ln |xε
i − xε

j|
)

= −πa0d
2

2
+

πa0d
2

2
ln a0 + O(|R −√

a0|).

(3.21)

We derive from (3.18), (3.19), (3.20) and (3.21) the lower estimate of Fηε
ε (vε) (see (3.176)

in the proof of Proposition 3.20) :

lim inf
ε→0

(
Fηε

ε (vε) +
πa2

0

2
d(Ω − Ω1) −

πa0

2
(d2 − d) ln | ln ε|−w(x̃ε

1, . . . , x̃
ε
d)

)
≥

≥ Qd + O(|R −√
a0|) (3.22)

(the constant Qd is explicitly given in Proposition 3.20 and w is the renormalized energy

given by (3.8)). Since the left hand side in (3.22) does not depend on R, we can pass to

the limit R → √
a0 on the right hand side. Using the upper bound of Fηε

ε (vε) given by test

functions (see Theorem 3.5), we find the expansion of the energy (3.9) and we conclude

that the rescaled configuration (x̃ε
1, . . . , x̃

ε
d) tends to minimize the renormalized energy w

(see Proposition 3.20).

We now list some open problems about the 2d model (3.3). The first one concerns the

non-existence of vortices in the whole space R
2 for Ω small (Ω = O(1)). For Ω larger,

vortices may exist in the region where uε is small. Therefore, a natural problem is to

investigate the vortex structure close to the boundary ∂D and outside the domain D for

Ω ∼ Ω1. One can also ask if our results hold for the case of asymmetric trapping potentials,
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i.e., a(x) = a0 − x2
1 − λx2

2 with 0 < λ < 1, or even for some functions a(x) positive in a

domain which is not simply connected.

Notations. Throughout this chapter, we denote by C a positive constant independent

of ε and we use the subscript to point out a possible dependence on the argument. For

A ⊂ R
2, we write

eε(u) =
1

2
|∇u|2 +

1

4ε2

(
(|u|2 − a(x))2 − (a−(x))2

)
,

e
η
ε(v) =

1

2
η2|∇v|2 +

η4

4ε2
(1 − |v|2)2 ,

Eε(u,A) =

∫

A
eε(u) , Rε(u,A) = Ω

∫

A
x⊥ · (iu,∇u) , Fε(u,A) = Eε(u,A)−Rε(u,A) ,

Eη
ε (v,A) =

∫

A
e

η
ε(v) , Rη

ε(v,A) = Ω

∫

A
η2x⊥ · (iv,∇v) , Fη

ε (v,A) = Eη
ε (v,A)−Rη

ε(v,A) ,

where η denotes one of the functions a, ηε or η̃ε. We do not write the dependence on A
when A = R

2.

3.2 Analysis of the density profiles

In this section, we establish some preliminary results on ηε and η̃ε defined respectively

by (3.10) and (3.6). We will show that the shapes of ηε and η̃ε are similar.

We notice that the space H is the set of finiteness for Eε, i.e.,

H =
{
u ∈ H1(R2, C), Eε(u) < +∞

}
.

In the sequel, we endow H with the scalar product

〈u, v〉H =

∫

R2

∇u · ∇v + (1 + |x|2)(u · v) for u, v ∈ H,

and then (H, 〈·, ·〉H) is a Hilbert space.

3.2.1 The free profile

We start by proving the existence and uniqueness for small ε of ηε defined as the real

positive solution of (3.10). Hence ηε has to satisfy the associated Euler-Lagrange equation

{
ε2∆ηε + (a(x) − η2

ε)ηε = 0 in R
2,

ηε > 0 in R
2.

(3.23)

We have the following result.
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Theorem 3.2. For any 0 < ε < a0

2
, there exists a unique classical solution ηε of (3.23).

Moreover, ηε is radial, ηε ≤ √
a0 and ηε is the unique minimizer of Eε in H up to a

complex multiplier of modulus one.

The method that we use for solving (3.23) involves several classical arguments generally

used for a bounded domain. The main difficulty here is due to the fact that the equation

is posed in the entire space R
2 without any condition at infinity. We start with the

construction of the minimal solution : we consider the solution ηR,ε of the same equation

posed in a ball of large radius R with homogeneous Dirichlet boundary conditions and then

we pass to the limit in R. We prove the uniqueness by estimating the ratio between the

constructed solution and any other solution. A crucial point in the proof is an L∞-bound

of any weak solution.

Before proving Theorem 3.2, we present the asymptotic properties of ηε as ε goes to 0.

We show that ηε decays exponentially fast outside D and that η2
ε tends uniformly to a+.

The following estimates will be essential at several steps of our analysis.

Proposition 3.1. For ε sufficiently small, we have

3.1.a) Eε(ηε) ≤ C| ln ε|,

3.1.b) 0 < ηε(x) ≤ Cε1/3 exp

(
−|x|2 − a0

4ε2/3

)
in R

2 \ D,

3.1.c) 0 ≤
√

a(x)−ηε(x) ≤ Cε1/3
√

a(x) for x ∈ D with dist(x, ∂D) ≥ ε1/3,

3.1.d) ‖∇ηε‖L∞(R2) ≤ Cε−1,

3.1.e) ‖ηε −
√

a ‖C1(K) ≤ CKε2 for any compact subset K ⊂ D.

Remark 3.1. As a direct consequence of 3.1.a), we obtain
∫

R2\D
|ηε|4 + 2a−(x)|ηε|2 +

∫

D
(a(x) − |ηε|2)2 ≤ Cε2| ln ε|. (3.24)

Proof of Theorem (3.2). Step 1 : Existence. For 0 < ε < a0

2
and R > 0, we consider the

equation 



ε2∆ηR + (a(x) − η2
R
)ηR = 0 in BR,

ηR > 0 in BR,

ηR = 0 on ∂BR.

(3.25)

By a result of H. Brezis and L. Oswald (see [33]), we have the existence and uniqueness

of weak solutions of (3.25) if and only if the following first eigenvalue condition holds

Inf

{∫

BR

|∇φ|2 − a(x)|φ|2
ε2

, φ ∈ H1
0 (BR) with ‖φ‖L2(BR) = 1

}
< 0

or equivalently

Inf

{∫

BR

|∇φ|2 +
|x|2|φ|2

ε2
, φ ∈ H1

0 (BR) with ‖φ‖L2(BR) = 1

}
<

a0

ε2
. (3.26)
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We claim that for R sufficiently large, this condition is fulfilled. Indeed, setting for x ∈ R
2,

ψ(x) =
1√
επ

exp

(
−|x|2

2ε

)
,

we define for any integer n ≥ 1,

ψn(x) = cn ζ

( |x|
n

)
ψ(x),

where ζ : R → R denotes the “cut-off" type function given by

ζ(t) =





1 if t ≤ 1,

2 − t if t ∈ (1, 2),

0 if t ≥ 2,

(3.27)

and the constant cn is chosen such that ‖ψn‖L2(R2) = 1. We easily check that

∫

B2n

(
|∇ψn|2 +

|x|2
ε2

|ψn|2
)

−→
n→+∞

∫

R2

(
|∇ψ|2 +

|x|2
ε2

|ψ|2
)

=
2

ε
,

and we deduce that for R ≥ 2n,

Inf
φ∈H1

0 (BR)

‖φ‖L2(BR)=1

∫

BR

(
|∇φ|2 +

|x|2
ε2

|φ|2
)

≤
∫

B2n

(
|∇ψn|2 +

|x|2
ε2

|ψn|2
)

=
2

ε
+ o(1),

where o(1) denotes a quantity which tends to 0 as n → +∞. Hence there exists Rε > 0

such that for every R > Rε, condition (3.26) is fulfilled and equation (3.25) admits a

unique weak solution ηR,ε. By standard methods, it results that ηR,ε is a radial classical

solution of (3.25). We notice that, for any Rε < R < R̃, ηR̃,ε is a supersolution of (3.25)

in BR and thus

ηR,ε ≤ ηR̃,ε in BR

by the uniqueness of ηR,ε. By the maximum principle, we have

ηR,ε ≤
√

a0 in R
2.

For every R > Rε, we extend ηR,ε by 0 on R
2 \ BR. Since the function R → ηR,ε(x) is

non-decreasing for any x ∈ R
2, we may define for x ∈ R

2,

ηε(x) = lim
R→+∞

ηR,ε(x).

From the properties of ηR,ε, we deduce that ηε is radial and satisfies

0 < ηε ≤
√

a0
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and

ε2∆ηε + (a(x) − η2
ε)ηε = 0 in D′(R2).

Since ηε ∈ L∞(R2), we derive by standard methods that ηε is smooth and then it defines

a classical solution of (3.2).

Step 2. L∞-bound for solutions of (3.23). The result in this step is due to A. Farina

(see [51]) and relies on a result of H. Brezis (see [26]). We present the proof for convenience.

Let η be any weak solution of (3.23) in L3
loc

(R2). We claim that

η ≤ √
a0 a.e. in R

2.

Indeed, if we consider w = ε−1(η −√
a0), then w ∈ L3

loc
(R2) and since η satisfies (3.23),

we infer that ∆w ∈ L1
loc

(R2). By Kato’s inequality, we have

∆(w+) ≥ sgn+(w)∆w ≥ sgn+(w)

ε3
(η2 − a0)η =

1

ε2
w+(εw + 2

√
a0)(εw +

√
a0) ≥ (w+)3.

Therefore w+ ∈ L3
loc

(R2) and w+ satisfies

−∆(w+) + (w+)3 ≤ 0 in D′(R2).

By Lemma 2 in [26], it leads to w+ ≤ 0 a.e. in R
2 and thus w+ ≡ 0.

Step 3. Uniqueness. Let ηε be the solution constructed at Step 1 and let η be any weak

solution of (3.23) in L3
loc

(R2). By the previous step, η ∈ L∞(R2) and using standard

arguments, we derive that η is a classical solution of (3.23). We remark that η is a super-

solution of (3.25) for every R > Rε. Hence (recall that we extend ηR,ε by 0 outside BR),

ηR,ε ≤ η in R
2.

Passing to the limit in R, we get that 0 < ηε ≤ η in R
2. Thus, ηε is the minimal solution

of (3.23) and we can define the L∞-function ρ : R
2 → R by

ρ =
ηε

η
.

The function ρ is smooth, takes values in (0, 1] and satisfies

div(η2∇ρ) +
η4

ε2
(1 − ρ2)ρ = 0 in R

2. (3.28)

For every integer n ≥ 1, we set ζn(x) = ζ (n−1|x|), where ζ is given by (3.27). Multiplying

(3.28) by (1 − ρ)ζ2
n and integrating by parts, we derive

∫

R2

(
η4

ε2
ρ(1 − ρ)2(1 + ρ)ζ2

n + η2ζ2
n|∇ρ|2

)
= 2

∫

R2

η2(1 − ρ)ζn(∇ρ · ∇ζn). (3.29)
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Since ρ is bounded, the Cauchy-Schwarz inequality yields
∫

R2

η2(1 − ρ)ζn(∇ρ · ∇ζn) =

∫

B2n\Bn

η2(1 − ρ)ζn(∇ρ · ∇ζn)

≤
(∫

B2n

η2(1 − ρ)2|∇ζn|2
)1/2 (∫

B2n\Bn

η2ζ2
n|∇ρ|2

)1/2

≤ 2
√

π ‖η‖L∞(R2)

(∫

R2\Bn

η2ζ2
n|∇ρ|2

)1/2

.

Using (3.29) and the bound on η obtained in Step 2, we infer that

∫

R2

η2ζ2
n|∇ρ|2 ≤ 4

√
πa0

(∫

R2\Bn

η2ζ2
n|∇ρ|2

)1/2

. (3.30)

It then follows

16πa0 ≥
∫

R2

η2ζ2
n|∇ρ|2 −→

n→+∞

∫

R2

η2|∇ρ|2

by monotone convergence. Since η2|∇ρ|2 ∈ L1(R2), the right hand side in (3.30) tends

to 0 as n → +∞ and we deduce
∫

R2

η2|∇ρ|2 = 0.

Hence ρ is constant in R
2 and by (3.29), we necessarily have ρ = 1 i.e., η = ηε.

Step 4. End of the proof. The existence of a minimizer η of Eε in H is standard. Since

Eε(|η̃|) ≤ Eε(η̃) for any η̃ ∈ H, we infer that η̃ := |η| is also a minimizer and therefore η̃

satisfies the equation {
ε2∆η̃ + (a(x) − η̃2)η̃ = 0 in R

2,

η̃ ≥ 0 in R
2.

By the maximum principle, it follows that either η̃ > 0 in R
2 or η̃ ≡ 0. Let us prove that

η̃ > 0. For 0 < ε < a0

2
and R > 0 sufficiently large, we consider the unique solution ηR,ε

of (3.25). By the results in [33], ηR,ε is the unique non-negative minimizer of Eε(·, BR) in

H1
0 (BR, R). Extending ηR,ε by 0 outside BR, we have

Eε(η̃) ≤ Eε(ηR,ε) = Eε(ηR,ε , BR) < Eε(0, BR) = Eε(0)

which implies that η̃ is not identically equal to 0. Then η̃ solves (3.23) and by Step 3,

we conclude that |η| = η̃ = ηε. From the equality Eε(|η|) = Eε(η), we easily deduce that

exists a real constant α such that η = |η|eiα = ηεe
iα. ¥

Remark 3.2. The range of ε ∈ (0, a0

2
) where we have existence and uniqueness of positive

minimizers ηε is optimal. This is due to an argument based on the first eigenvalue condition

(given in [33]) for problem (3.25). In particular, for ε larger than a0

2
, zero is the unique

minimizer of Eε.



66 Chapitre 3. Vortices in a two dimensional rotating Bose-Einstein condensate

Remark 3.3. We emphasize that from the proof of Theorem 3.2, it follows that any

smooth function η satisfying

{
−ε2∆η ≥ (a(x) − |η|2)η in R

2,

η > 0 in R
2,

verifies η ≥ ηε in R
2.

Proof of Proposition 3.1. Proof of 3.1.a). We construct an explicit test function ξ ∈ H1(R2)

such that Eε(ξ) ≤ C| ln ε|. Since ηε minimizes Eε, we deduce

Eε(ηε) ≤ Eε(ξ) ≤ C| ln ε|.

We construct ξ as follows. We consider for s ∈ R,

γ(s) =





√
s if s ≥ ε2/3

s

ε1/3
otherwise

and we set ξ(x) = γ(a+(x)) for x ∈ R
2. We obtain exactly as in [63] that

∫

R2

|∇ξ|2 ≤ C| ln ε| and

∫

R2

(a+ − γ(a+)2)2 ≤ Cε2

for a positive constant C independent of ε.

Proof of 3.1.b). We construct a radial supersolution η of (3.23) of the form :

η(x) = η(|x|) =





√
a0 − |x|2 if |x| ≤

√
a0 − δ ,

−|x|
√

a0 − δ + a0√
δ

if
√

a0 − δ ≤ |x| ≤ rδ,

β exp(−|x|2/2σ) otherwise,

(3.31)

where δ > 0 will be determined later,

rδ =
a0

2
√

a0 − δ
+

√
a0

2
,

and β, σ are chosen such that η ∈ C1(R2) i.e.,

β =
a0 −

√
a0(a0 − δ)

2
√

δ
exp(r2

δ/2σ) and σ =
a0δ

4(a0 − δ)
.

A straightforward computation shows that for δ = 4a
1/3
0 ε2/3, η is a supersolution of (3.23)

and then

rδ −
√

a0 = O(ε2/3), σ = O(ε2/3) and β = O(ε1/3ea0/2σ).
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By Remark 3.3, it results that ηε ≤ η in R
2 which leads to 3.1.b). Note that we also obtain

ηε(x) ≤
√

a(x) for |x| ≤
√

a0 − δ and ηε(x) ≤ Cε1/3 for
√

a0 − δ ≤ |x| ≤ √
a0. (3.32)

Proof of 3.1.c). Here, the proof is similar to that of Proposition 2.1 in [2]. Let x0 ∈ D be

such that √
a0 − |x0| ≥ ε1/3 (3.33)

and set

α = min
B(x0, ε2/3)

a = a0 − (|x0| + ε2/3)2 = O(ε1/3).

We want to construct a subsolution in Bδ(x0). For ε̃ = ε1/3/
√

α , we denote by w̃ the

unique solution of 



−∆w̃ +
1

ε̃2
(w̃2 − 1)w̃ = 0 in B1,

w̃ > 0 in B1,

w̃ = 0 on ∂B1.

(3.34)

From Proposition 2.1 in [10], we know that

0 ≤ 1 − w̃(x) ≤ C exp

(
−1 − |x|2

2ε̃

)
.

Then we map w̃ to B(x0, ε
2/3), namely

w(x) =
√

α w̃

(
x − x0

ε2/3

)
.

From (3.34) we derive

−∆w +
1

ε2
(w2 − a(x))w ≤ −∆w +

1

ε2
(w2 − α)w = 0 in B(x0, ε

2/3).

Since ηε > 0 on ∂B(x0, ε
2/3), by the uniqueness of w̃, we deduce that w ≤ ηε in B(x0, ε

2/3).

The decay estimate on w̃ implies 0 ≤ √
α−w(x0) ≤ C

√
α exp

(
−

√
α

2ε1/3

)
≪ C

√
α ε1/3. By

(3.33), we have √
a(x0) −

√
α ≤ C

√
a(x0)ε

1/3.

Then (3.32) yields

0 ≤
√

a(x0) − ηε(x0)√
a(x0)

≤
√

a(x0) − w(x0)√
a(x0)

=

√
a(x0) −

√
α√

a(x0)
+

√
α − w(x0)√

a(x0)
≤ Cε1/3,

for a constant C independent of x0.
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Proof of 3.1.d). Let x0 ∈ R
2 arbitrary. We are going to show that |∇ηε| ≤ Cε−1 in B(x0, ε)

with a constant C independent of x0. We define θ : B2(0) → R by θ(y) = ηε(x0 + εy).

From 3.1.b) and 3.1.c), we infer that |∆θ| = | (a(x0 + εy) − θ2) θ| ≤ C in B2(0) for a

constant C independent of x0. By elliptic regularity, we deduce that for any 1 ≤ p < ∞,

‖θ‖W 2,p(B1(0)) ≤ Cp for a constant Cp independent of x0. Taking some p > 2, it implies

that

‖∇θ‖L∞(B1(0)) ≤ C

for a constant C independent of x0 which leads to the result.

Proof of 3.1.e). The idea of the proof is due to I. Shafrir. Suppose that K ⊂ Br ⊂ BR ⊂ D
for some 0 < r < R <

√
a0 . First we prove that

|ηε −
√

a| ≤ CR,r ε2 in Br. (3.35)

From (3.23) we infer that

−ε2∆(ηε −
√

a ) + ηε(ηε +
√

a )(ηε −
√

a ) = ε2∆(
√

a ) = O(ε2) in BR.

By 3.1.c), for ε small, we have |ηε−
√

a| ≤
√

a
2

in BR and then, ηε(ηε +
√

a) ≥ d0 > 0 in BR

for some constant d0 which only depends on R. Then estimate (3.35) comes immediately

by the following result (which is a slight modification of Lemma 2 in [19]) :

Lemma 3.1. Assume that d0 > 0 and 0 < r < R. Let wε be a smooth function such that

{
−ε2∆wε + d0wε ≤ 0 in BR,

wε ≤ 1 on ∂BR.

Then wε ≤ e−Cε−1
in Br with C = C(R, r, d0).

From (3.23) and (3.35), we deduce that ηε is uniformly bounded in W 2,p(Br) for any

1 ≤ p < ∞. In particular, it implies

‖∇ηε‖L∞(K) ≤ Cr . (3.36)

We now use the same argument to prove 3.1.e). We denote

zε =
∂ηε

∂xj

and z0 =
∂
√

a

∂xj

for j ∈ {1, 2}.

Obviously, we can assume that (3.35) and (3.36) holds in BR. Then we have that

− ε2∆z0 + (3η2
ε − a)z0 = 2az0 + O(ε2) =

√
a

∂a

∂xj

+ O(ε2) = ηε
∂a

∂xj

+ O(ε2) in BR,

− ε2∆zε + (3η2
ε − a)zε = ηε

∂a

∂xj

in BR.
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Therefore,

−ε2∆(zε − z0) + (3η2
ε − a)(zε − z0) = O(ε2)

and we conclude by Lemma 3.1. ¥

We now state a result that we will require in Section 2.2. We follow here a technique

introduced by M. Struwe (see [81]).

Lemma 3.2. Let I : (0, a0

2
) 7→ R+ be the function defined by

I(ε) = Min
{
Eε(η), η ∈ H

}
. (3.37)

Then I(·) is locally Lipschitz continuous and non-increasing in (0, a0

2
). Moreover,

|I ′(ε)| ≤ C| ln ε|
ε

for almost every ε ∈ (0,
a0

2
). (3.38)

Proof. First we infer from 3.1.b) in Proposition 3.1 that we can find R>
√

a0 such that

for any 0 < ε < a0

2
, ∫

R2\BR

|ηε|4 + 2a−(x)|ηε|2 ≤ Cε3. (3.39)

Let us now fix some ε0 ∈ (0, a0

2
) and 0 < h < ε0

2
. We have

Eε0+h(ηε0+h) = I(ε0 + h) ≤ Eε0+h(ηε0−h) ≤ Eε0−h(ηε0−h) = I(ε0 − h) ≤ Eε0−h(ηε0+h)

and hence

Eε0−h(ηε0−h) − Eε0+h(ηε0−h) ≤ I(ε0 − h) − I(ε0 + h) ≤ Eε0−h(ηε0+h) − Eε0+h(ηε0+h)

By (3.39), it leads to

I(ε0 + h) − I(ε0 − h)

2h
≥ −ε0

2(ε0 + h)2(ε0 − h)2

∫

BR

[
(a(x) − |ηε0+h|2)2 − (a−(x))2

]
− C

(3.40)

and

I(ε0 + h) − I(ε0 − h)

2h
≤ −ε0

2(ε0 + h)2(ε0 − h)2

∫

BR

[
(a(x) − |ηε0−h|2)2 − (a−(x))2

]
+ C.

(3.41)

which proves with (3.24) that I(·) is locally Lipschitz continuous in (0, a0

2
). Therefore I(·)

is differentiable almost everywhere in (0, a0

2
). We easily check using standard arguments

that ηε0−h → ηε0 and ηε0+h → ηε0 in L2(BR) and L4(BR) as h → 0. Assuming that ε0 is a

point of differentiability of I(·), we obtain letting h → 0 in (3.40) and (3.41),

I ′(ε0) =
−1

2ε3
0

∫

BR

[
(a(x) − |ηε0|2)2 − (a−(x))2

]
+ O(1). (3.42)

Then we deduce (3.38) combining (3.24) and (3.42). ¥
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3.2.2 The profile under the mass constraint

In this section, we study the minimization problem (3.6). The main motivation here

is to construct admissible test functions for our model. The result is stated as follows :

Theorem 3.3. For ε sufficiently small, problem (3.6) admits a unique solution η̃ε up to a

complex multiplier of modulus one. Moreover, denoting by kε ∈ R the Lagrange multiplier

associated to the constraint ‖η̃ε‖L2(R2) = 1, we have

|kε| ≤ C| ln ε| (3.43)

and η̃ε is characterized by

η̃ε(x) =

√
a0 + kεε2

√
a0

ηε̃(

√
a0 x√

a0 + kεε2
) with ε̃ =

a0ε

a0 + kεε2
. (3.44)

In addition, ∣∣Eε(η̃ε) − Eε(ηε)
∣∣ ≤ Cε2| ln ε|2. (3.45)

Remark 3.4. Identity (3.44) gives us automatically the asymptotic properties of η̃ε from

those of ηε by a simple change of scale and hence we obtain the analogue of Proposition 3.1

for η̃ε.

Proof of Theorem 3.3. Step 1 : Existence. Let (ηn)n∈N be a minimizing sequence for (3.6).

Extracting a subsequence if necessary, we may assume that ηn ⇀ η̃ε weakly in H and

strongly in L2
loc

(R2) as n → ∞. We easily check that Eε is lower semi-continuous on H
with respect to the weak H-topology and therefore

Eε(η̃ε) ≤ lim inf
n→∞

Eε(ηn).

To conclude that η̃ε is a solution of (3.6), it remains to prove that ‖η̃ε‖L2(R2) = 1. Writing

ηn = η̃ε + ρn, we have ρn ⇀ 0 weakly in H and therefore,

1 =

∫

R2

|ηn|2 =

∫

R2

|η̃ε|2 +

∫

R2

|ρn|2 + o(1). (3.46)

Obviously, ρn → 0 in L2
loc

(R2) and
∫

R2 |x|2|ρn|2 ≤ C. For any R > 0, we have

R2 lim sup
n→∞

∫

R2\BR

|ρn|2 ≤ lim sup
n→∞

∫

R2

|x|2|ρn|2 ≤ C.

Letting R → +∞ in this inequality, we conclude that ρn → 0 strongly in L2(R2). Then we

derive from (3.46) that ‖η̃ε‖L2(R2) = 1. Since Eε(|η̃ε|) = Eε(η̃ε), we infer that η̃ε = |η̃ε|eiα

for some constant α. Hence we may assume that η̃ε is R-valued and η̃ε ≥ 0 in R
2.

Step 2 : Energy bound. We now prove that

Eε(η̃ε) ≤ C| ln ε|. (3.47)
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Setting η̂ε = ‖ηε‖−1
L2(R2)ηε, it suffices to check that Eε(η̂ε) ≤ C| ln ε| by the minimizing

property of η̃ε. First we show that ‖ηε‖L2(R2) remains close to 1 as ε → 0. Since
∫

R2 a+ = 1,

we have ∫

R2

|ηε|2 = 1 +

∫

R2

(|ηε|2 − a+(x))

and by (3.24),

∫

R2

||ηε|2−a+(x)| ≤
∫

{a−≥1/2}
2a−(x)|ηε|2+C

(∫

{a−≤1/2}
(|ηε|2 − a+(x))2

)1/2

≤ Cε| ln ε|1/2.

Hence ‖ηε‖2
L2(R2) = 1 + O(ε| ln ε|1/2). Then we derive from 3.1.a) in Proposition 3.1,

∫

R2

|∇η̂ε|2 = ‖ηε‖−2
L2(R2)

∫

R2

|∇ηε|2 ≤
∫

R2

|∇ηε|2 + Cε| ln ε|3/2 ≤ C| ln ε|.

Using (3.24), we deduce that

1

ε2

∫

R2

(a(x) − |η̂ε|2)2 − (a−(x))2 =
1

ε2

∫

D
(a(x) − |η̂ε|2)2 +

‖ηε‖−4
L2(R2)

ε2

∫

R2\D
|ηε|4

+
‖ηε‖−2

L2(R2)

ε2

∫

R2\D
2a−(x)|ηε|2

≤ 1

ε2

∫

D
(a(x) − |η̂ε|2)2 + C| ln ε|

and

1

ε2

∫

D
(a(x) − |η̂ε|2)2 =

1

ε2

∫

D
(a(x) − |ηε|2)2 +

2(1 − ‖ηε‖−2
L2(R2))

ε2

∫

D
(a(x) − |ηε|2)|ηε|2

+
(1 − ‖ηε‖−2

L2(R2))
2

ε2

∫

D
|ηε|4

≤ C| ln ε| + C

(
1

ε2

∫

D
(a(x) − |ηε|2)2

)1/2

≤ C| ln ε|.

Therefore Eε(η̂ε) ≤ C| ln ε| and (3.47) holds.

Step 3 : First bound on the Lagrange multiplier. Since η̃ε is a solution of (3.6), there exists

kε ∈ R such that η̃ε satisfies

−∆η̃ε =
1

ε2
(a(x) − |η̃ε|2)η̃ε + kεη̃ε in R

2. (3.48)

Multiplying this equation by η̃ε, integrating by parts and using that
∫

R2 |η̃ε|2 = 1, we

obtain that

kε =

∫

R2

|∇η̃ε|2 +
1

ε2

∫

R2

(
|η̃ε|2 − a(x)

)
|η̃ε|2.
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From (3.47) we derive

∣∣∣∣
∫

R2

|∇η̃ε|2 +
1

ε2

∫

R2\D

(
|η̃ε|2 − a(x)

)
|η̃ε|2

∣∣∣∣ ≤ C| ln ε|

and
∣∣∣∣
1

ε2

∫

D
(|η̃ε|2 − a(x))|η̃ε|2

∣∣∣∣ ≤
1

ε2

∫

D
(|η̃ε|2 − a(x))2 +

1

ε2

∫

D
a(x)

∣∣|η̃ε|2 − a(x)
∣∣

≤ C| ln ε| + C

ε2

(∫

D
(|η̃ε|2 − a(x))2

)1/2

≤ Cε−1| ln ε|1/2.

Hence we have

|kε| ≤ Cε−1| ln ε|1/2. (3.49)

Step 4 : Proof of (3.44). We rewrite equation (3.48) as

−∆η̃ε =
1

ε2
(aε(x) − |η̃ε|2)η̃ε in R

2, (3.50)

with

aε(x) = a0 + kεε
2 − |x|2. (3.51)

Since η̃ε ≥ 0 and ‖η̃ε‖L2(R2) = 1, we necessarily have η̃ε > 0 in R
2 by the maximum

principe. Setting for ε small enough,

ϑε(x) =

√
a0√

a0 + kεε2
η̃ε(

√
a0 + kεε2 x√

a0

), (3.52)

a straightforward computation shows that

{
−ε̃2∆ϑε = (a(x) − |ϑε|2)ϑε in R

2,

ϑε > 0 in R
2

with ε̃ = a0ε
a0+kεε2 . For ε sufficiently small we have ε̃ < a0

2
and by Theorem 3.2, it leads to

ϑε ≡ ηε̃ (3.53)

Combining this identity with (3.52) we obtain (3.44).

Step 5 : Proof of (3.43). From (3.53) we infer that

Eε̃(ϑε) = I(ε̃)

where I(·) is defined by (3.37). On the other hand, we easily see from (3.52) that

Eε̃(ϑε) =
a0

a0 + kεε2
Ẽε(η̃ε)
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with Ẽε defined by

Ẽε(u) =
1

2

∫

R2

|∇u|2 +
1

4ε2

∫

R2

(aε(x) − |u|2)2 − (a−
ε (x))2 (3.54)

and aε(x) given by (3.51). Therefore

Ẽε(η̃ε) =
a0 + kεε

2

a0

I(ε̃). (3.55)

But since ‖η̃ε‖L2(R2) = 1, we have

Ẽε(η̃ε) = Eε(η̃ε) −
kε

2

∫

R2

|η̃ε|2 +
1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2

= Eε(η̃ε) −
kε

2
+

1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2 (3.56)

≥ I(ε) − kε

2
+

1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2. (3.57)

Using the fact that
∫

R2 a+ = 1, a simple computation leads to

−kε

2
+

1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2 =

πa0k
2
εε

2

4
+

πk3
εε

4

12
. (3.58)

Combining (3.55), (3.57) and (3.58), we are led to

πa0k
2
εε

2

4
≤ |I(ε̃) − I(ε)| + |kε|ε2

a0

I(ε̃) +
π|kε|3ε4

12
. (3.59)

Then we estimate using (3.38), (3.49) and 3.1.a) in Proposition 3.1,

∣∣I(ε̃) − I(ε)
∣∣ ≤ Cε−1| ln ε||ε̃ − ε| ≤ C|kε|ε2| ln ε| (3.60)

and
|kε|ε2

a0

I(ε̃) ≤ C|kε|ε2| ln ε|, π|kε|3ε4

12
≤ C|kε|ε2| ln ε|.

Inserting this estimates in (3.59), we deduce that |kε| ≤ C| ln ε|.
Step 6 : Uniqueness. Let η̂ε be another solution of (3.6). As for η̃ε, we may assume that

η̂ε is a real positive function. Let k̂ε be the Lagrange multiplier associated to η̂ε, i.e., η̂ε

satisfies

−∆η̂ε =
1

ε2
(a(x) − |η̂ε|2)η̂ε + k̂εη̂ε in R

2.

By Step 4, whenever ε is small enough, solution η̂ε is characterized by

η̂ε(x) =

√
a0 + k̂εε2

√
a0

ηε̂(

√
a0 x√

a0 + k̂εε2
) with ε̂ =

a0ε

a0 + k̂εε2
.
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Hence it suffices to prove that k̂ε = kε. We proceed by contradiction. Assume for instance

that kε < k̂ε. Then η̂ε satisfies

−∆η̂ε ≥
1

ε2
(a(x) − |η̂ε|2)η̂ε + kεη̂ε in R

2. (3.61)

We consider the function

ϑ̂ε(x) =

√
a0√

a0 + kεε2
η̂ε(

√
a0 + kεε2 x√

a0

), (3.62)

which satisfies by (3.61),

{
−ε̃2∆ϑ̂ε ≥ (a(x) − |ϑ̂ε|2)ϑ̂ε in R

2,

ϑ̂ε > 0 in R
2.

Therefore ϑ̂ε is a supersolution of (3.23) with ε̃ instead of ε. By Remark 3.3, we infer

that ϑ̂ε ≥ ηε̃ in R
2. By (3.44) and (3.62), it leads to η̂ε ≥ η̃ε in R

2. Since ‖η̂ε‖L2(R2) =

‖η̃ε‖L2(R2) = 1, we conclude that η̂ε ≡ η̃ε and hence kε = k̂ε, contradiction.

Step 7 : Proof of (3.45). By (3.43), (3.55), (3.60) and 3.1.a) in Proposition 3.1, we have

Ẽε(η̃ε) = Eε(ηε) + O(ε2| ln ε|2). (3.63)

On the other hand, by (3.43), (3.56) and (3.58), we also have

Ẽε(η̃ε) = Eε(η̃ε) + O(ε2| ln ε|2).

and (3.45) follows. ¥

3.3 Minimizing Fε under the mass constraint

Our aim in this section is to make a first description of minimizers uε of Fε under

the mass constraint. We prove the existence of uε and that |uε| is concentrated in D.

We also present some tools that we will use in the sequel, in particular the splitting of

energy (3.11).

3.3.1 Existence and first properties of minimizers

First, we seek minimizers uε of Fε under the constraint ‖uε‖L2(R2) = 1 and then study

some first asymptotic properties. We want to perform the minimization in H and we shall

see that Fε is well defined on H :
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Lemma 3.3. For any u ∈ H, σ > 0 and R >
√

a0 , we have

|Rε(u)| ≤ σ

∫

R2

|∇u|2 +
Ω2R2

8σ(R2 − a0)

∫

R2

[
(a(x) − |u|2)2 − (a−(x))2

]
+ CR,σ Ω2.

In particular, the functional Fε is well defined on H.

Proposition 3.2. Assume that Ω < ε−1. Then there exists at least one map uε which

minimizes Fε in
{
u ∈ H, ‖u‖L2(R2) = 1

}
. Moreover, uε is smooth and there exists ℓε ∈ R

such that uε satisfies

−∆uε + 2iΩx⊥ · ∇uε =
1

ε2
(a(x) − |uε|2)uε + ℓεuε in R

2. (3.64)

We emphasize that we state the result for an angular velocity Ω strictly less than 1/ε

but we also recall that we only consider the case of an angular velocity Ω at most of order

| ln ε|. In the sequel, we assume that

Ω ≤ ω0| ln ε| (3.65)

for some positive constant ω0.

Before proving Lemma 3.3 and Proposition 3.2, we present some basic properties of

any minimizer uε. We point out that the exponential decay of |uε| outside the domain D
(see 3.3.c) below) shows that almost all the mass of uε is concentrated in D.

Proposition 3.3. For ε sufficiently small,

3.3.a) Eε(uε) ≤ Cω0| ln ε|2,
3.3.b) |ℓε| ≤ Cω0 ε−1| ln ε|,

3.3.c) |uε(x)|≤Cω0ε
1/3| ln ε|1/2 exp

(
a0 − |x|2

4ε2/3

)
for x ∈ R

2\D with |x|≥
√

a0 + 2ε1/3,

3.3.d) |uε(x)| ≤
√

a(x) + |ℓε|ε2 + ε2Ω2|x|2 for x ∈ D with dist(x, ∂D) ≥ ε1/8,

3.3.e) |uε| ≤
√

a0 + Cω0ε| ln ε| in R
2,

3.3.f) ‖∇uε‖L∞(K) ≤ Cω0,K ε−1 for any compact set K ⊂ R
2.

Remark 3.5. As a direct consequence of 3.3.a), we have

∫

R2\D

(
|uε|4 + 2a−(x)|uε|2

)
+

∫

D
(|uε|2 − a(x))2 ≤ Cω0 ε2| ln ε|2. (3.66)

Proof of Lemma 3.3. Let u ∈ H and σ ∈ (0, 1). We have

4σ |Rε(u)| ≤ 4σ2

∫

R2

|∇u|2 + Ω2

∫

R2

|x|2|u|2.
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For R >
√

a0 , we have |x|2 ≤ − R2

R2−a0
a(x) whenever |x| ≥ R. Then we derive

4σ |Rε(u)| ≤ 4σ2

∫

R2

|∇u|2 − Ω2R2

2(R2 − a0)

∫

R2\BR

2a(x)|u|2 + Ω2

∫

BR

|x|2|u|2. (3.67)

Now we notice that
∫

BR

|x|2|u|2 =
R2

2(R2 − a0)

∫

BR

−2a(x)|u|2 − a0

R2 − a0

∫

BR

|x|2|u|2 +
a0R

2

R2 − a0

∫

BR

|u|2

≤ R2

2(R2 − a0)

∫

BR

−2a(x)|u|2 +
R2

2(R2 − a0)

∫

BR

|u|4 +
πR4a2

0

2(R2 − a0)
.

Inserting this estimate in (3.67), we obtain

|Rε(u)| ≤ σ

∫

R2

|∇u|2 +
Ω2R2

8σ(R2 − a0)

∫

R2

[
(a(x) − |u|2)2 − (a−(x))2

]
+

πΩ2R4a2
0

8σ(R2 − a0)

and the proof is complete. ¥

Proof of Proposition 3.2. Since Ω < ε−1, we can find 0 < δ < 1 such that Ω ≤ δε−1.

Taking in Lemma 3.3

σ =
δ2 + 1

4
and R =

√
2(1 + δ2)a0

1 − δ2
,

we infer that for any u ∈ H,

1 − δ2

2
Eε(u) − Cδ Ω2 ≤ Fε(u) ≤ 2 Eε(u) + Cδ Ω2. (3.68)

We easily check that Eε is coercive in H (i.e., there exists a positive constant C such

that Eε(u) ≥ C(‖u‖2
H − 1) ) and by (3.68), Fε is coercive, too. Let (un)n∈N ⊂ H be a

minimizing sequence of Fε in
{
u ∈ H, ‖u‖L2(R2) = 1

}
. From the coerciveness of Fε, we

get that (un)n∈N is bounded in H and therefore, there exists uε ∈ H such that up to a

subsequence,

un ⇀ uε weakly in H and un → uε in L4
loc

(R2). (3.69)

Arguing as in Step 1 in the proof of Theorem 3.3, we infer that ‖uε‖L2(R2) = 1. Writing

for u ∈ H,

Fε(u) =
1

2

∫

R2

∣∣(∇− iΩx⊥)u
∣∣2 +

1

2ε2

∫

{a−(x)≥Ω2ε2|x|2}

[
1

2
|u|4 +

(
a−(x) − ε2Ω2|x|2

)
|u|2

]

+
1

4ε2

∫

{a−(x)≤Ω2ε2|x|2}

[
(a(x) − |u|2)2 − (a−(x))2 − 2Ω2ε2|x|2 |u|2

]
.

we observe that the functional

u ∈ H 7→ 1

2

∫

R2

∣∣(∇− iΩx⊥)u
∣∣2 +

1

2ε2

∫

{a−(x)≥Ω2ε2|x|2}

[
1

2
|u|4 + (a−(x) − ε2Ω2|x|2) |u|2

]
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is convex continuous on H for the strong topology. Then from (3.69), it follows that

Fε(uε) ≤ lim inf
n→∞

Fε(un).

Hence uε is a minimizer of Fε in
{
u ∈ H, ‖u‖L2(R2) = 1

}
and by the Lagrange multiplier

rule, there exists ℓε ∈ R such that (3.64) holds. By standard elliptic regularity, we deduce

that uε is smooth in R
2. ¥

Proof of Proposition 3.3. Proof of 3.3.a). Let η̂ε be any real minimizer of Eε under the

constraint ‖η̂ε‖L2(R2) = 1. Since (iη̂ε,∇η̂ε) ≡ 0, we derive from (3.47),

Fε(uε) ≤ Fε(η̂ε) = Eε(η̂ε) ≤ C| ln ε|. (3.70)

Using Lemma 3.3 with σ = 1/4 and R =
√

2a0 , we infer that for ε small enough,

1

2
Eε(uε) − CΩ2 ≤ Fε(uε). (3.71)

Combining (3.70) and (3.71), we obtain 3.3.a).

Proof of 3.3.b). Multiplying equation (3.64) by uε, integrating by parts and using that∫
R2 |uε|2 = 1, we obtain

ℓε =

∫

R2

|∇uε|2 − 2Ω

∫

R2

x⊥ · (iuε,∇uε) +
1

ε2

∫

R2

(|uε|2 − a(x))|uε|2. (3.72)

From 3.3.a) and Lemma 3.3, we derive

∣∣∣∣
∫

R2

|∇uε|2 − 2Ω

∫

R2

x⊥ · (iuε,∇uε) +
1

ε2

∫

R2\D
(|uε|2 − a(x))|uε|2

∣∣∣∣ ≤ Cω0| ln ε|2 (3.73)

and arguing as in the proof of (3.49), we obtain by (3.66),

∣∣∣∣
1

ε2

∫

D
(|uε|2 − a(x))|uε|2

∣∣∣∣ ≤ Cω0 ε−1| ln ε|. (3.74)

Using (3.72), (3.73) and (3.74), we derive that |ℓε| ≤ Cω0ε
−1| ln ε|.

Proof of 3.3.c). We argue as in [2], Proposition 2.5. Setting Uε := |uε|2, we deduce from

equation (3.64),

1

2
∆Uε = |∇uε|2 − 2Ω x⊥ · (iuε,∇uε) −

1

ε2
(a(x) − Uε)Uε − ℓεUε

and hence

−∆Uε +
2

ε2

(
Uε − (a(x) + ε2|ℓε| + ε2Ω2|x|2)

)
Uε ≤ 0 in R

2. (3.75)
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Let Tε =
{
x ∈ R

2 \ D, a−(x) > 2(ε2|ℓε| + ε2Ω2|x|2)
}
. From (3.75), we infer that

∆Uε ≥
1

ε2
a−(x)Uε ≥ 0 in Tε (3.76)

and thus Uε is subharmonic in Tε ⊂ R
2 \ D. Note that by (3.66),

∫

R2\D
U2

ε ≤ Cω0ε
2| ln ε|2. (3.77)

Consider now

Dε =
{
x ∈ R

2, dist(x,D) > ε1/3
}
.

By 3.3.b), for ε small enough we have ∂Tε ⊂
{
x ∈ R

2, |x| ≤ a0 + ε1/3

2

}
. Then for ε small

and any x0 ∈ Dε, we have B(x0,
ε1/3

2
) ⊂ Tε. We infer from the subharmonicity of Uε in Tε

and (3.77),

0 ≤ Uε(x0) ≤
4

πε2/3

∫

B(x0, ε1/3

2
)

Uε ≤
C

ε1/3

(∫

B(x0, ε1/3

2
)

U2
ε

)1/2

≤ C⋆
ω0

ε2/3| ln ε| ∀x0 ∈ Dε,

with a constant C⋆
ω0

independent of x0. Hence we conclude that Uε → 0 locally uniformly

in R
2 \ D as ε → 0. It also follows that uε ∈ L∞(R2) and Uε ∈ H1(R2). By (3.76), Uε is

a subsolution of 



−ε2∆w + a−(x)w = 0 in Dε,

w > 0 in Dε,

w = C⋆
ω0

ε2/3| ln ε| on ∂Dε.

(3.78)

We check that for ε small enough,

vout(x) = C⋆
ω0

ε2/3| ln ε| exp
(a0 + ε1/3 − |x|2

ε2/3

)

is a supersolution of (3.78). Therefore

Uε(x) = |uε(x)|2 ≤ vout(x) ≤ C⋆
ω0

ε2/3| ln ε| exp

(
a0 − |x|2

2ε2/3

)
for |x|2 ≥ a0 + 2ε1/3.

Proof of 3.3.d) and 3.3.e). We set r0 =
√

a0 − ε1/8 and

vin(x) =

{
a(x) + |ℓε|ε2 + ε2Ω2 |x|2 if |x| ≤ r0

−(1 − ε2Ω2)r0(2|x| − r0) + a0 + |ℓε|ε2 if r0 ≤ r ≤ √
a0 + ε1/3

We easily verify that for ε sufficiently small, vin satisfies




−ε2∆vin ≥ 2 (a(x) + |ℓε|ε2 + ε2Ω2|x|2 − vin) vin in B√
a0+ε1/3 ,

vin > 0 in B√
a0+ε1/3 ,

vin(x) ≥ C⋆
ω0

ε2/3| ln ε| ≥ Uε(x) on ∂B√
a0+ε1/3

(3.79)
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and

vin(x) ≥ a(x) + |ℓε|ε2 + ε2Ω2|x|2 in B√
a0+ε1/3 .

Setting Vε = Uε − vin, we deduce from (3.75) and (3.79),

{
−ε2∆Vε + b(x)Vε ≤ 0 in B√

a0+ε1/3 ,

Vε ≤ 0 on ∂B√
a0+ε1/3 ,

with

b(x) = 2
(
Uε + vin − (a(x) + |ℓε|ε2 + ε2Ω2|x|2)

)
≥ 0.

Hence Vε ≤ 0 which gives us 3.3.d). Then estimate 3.3.e) directly follows from the

construction of vin and vout and from 3.3.b).

Proof of 3.3.f). Without loss of generality, we may assume that K = BR with R > 0.

Consider the rescaled function

ũε(x) = uε(εx), ∀x ∈ B3+R
ε
.

From (3.64), we obtain

−∆ũε = (a(εx) − |ũε|2)ũε − 2iΩε2x⊥ · ∇ũε + ℓεε
2ũε in B3+R

ε
.

Take an arbitrary x0 ∈ BR
ε
. It suffices to prove that exists a constant CR > 0 independent

of x0 and ε such that

‖∇ũε‖L∞(B(x0,1)) ≤ Cω0,R. (3.80)

Indeed, by 3.3.c), we know that a(x)uε is bounded in R
2. Using 3.3.a), 3.3.b) and 3.3.e),

we derive that

‖∆ũε‖L2(B(x0,3)) ≤C
(
‖(a(x) + ℓεε

2 − |uε|2)uε‖L∞(R2) + Ωε2‖x⊥ · ∇ũε‖L2(B(x0,3))

)

≤Cω0(1 + Ωε‖x⊥ · ∇uε‖L2(BR+1))

≤Cω0,R(1 + Ωε| ln ε|)
≤Cω0,R.

Since ‖ũε‖L∞(B(x0,3)) ≤ Cω0 by 3.3.e), it follows that ‖ũε‖H2(B(x0,2)) ≤ Cω0,R by elliptic

regularity. From Sobolev inequalities, we deduce that

‖∇ũε‖L4(B(x0,2)) ≤ Cω0,R.

We repeat the above argument and it results

‖∆ũε‖L4(B(x0,2)) ≤ Cω0,R(1 + Ωε3/2‖∇ũε‖L4(B(x0,2))) ≤ Cω0,R.

It finally yields ‖ũε‖W 2,4(B(x0,1)) ≤ Cω0,R which implies (3.80). ¥
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3.3.2 Splitting the energy

In this section, we prove the splitting of the energy (3.11). The splitting technique

has been introduced by L. Lassoued and P. Mironescu in [65]. The goal is to decouple

the energy Fε(u) into two independent parts : the energy of the density profile ηε and the

reduced energy of the function u/ηε (which plays the role, in some sense, of the phase of

u). For 0 < ε < a0

2
, we introduce the class

Gε =

{
v ∈ H1

loc
(R2, C),

∫

R2

η2
ε |∇v|2 + η4

ε(1 − |v|2)2 < +∞
}

.

We have the following result :

Lemma 3.4. Let u ∈ H and 0 < ε < a0

2
. Then v = u/ηε is well defined, belongs to Gε

and

Fε(u) = Eε(ηε) + Fηε
ε (v). (3.81)

Proof. Let u ∈ H and define v = u/ηε ∈ H1
loc

(R2). We consider the sequence (un)n∈N ⊂ H
defined by

un(x) = ζ
(
n−1|x|

)
u(x)

where ζ is the “cut-off" type function defined in (3.27). We easily check that un → u a.e.

and ∇un → ∇u a.e. in R
2. Setting vn = un/ηε, then we have vn → v a.e. and ∇vn → ∇v

a.e. in R
2. Since un has a compact support, we get that vn ∈ Gε for any n ∈ N. We have

|∇un|2 = |∇ηε|2 + η2
ε |∇vn|2 + (|vn|2 − 1)|∇ηε|2 + ηε∇ηε · ∇(|vn|2 − 1),

and therefore,

Eε(un) = Eε(ηε) +
1

2

∫

R2

(
η2

ε |∇vn|2 +
η4

ε

2ε2
(|vn|2 − 1)2

)

+
1

2

∫

R2

(
(|vn|2 − 1)|∇ηε|2 + ηε∇ηε · ∇(|vn|2 − 1) +

1

ε2
η2

ε(|vn|2 − 1)(η2
ε − a(x))

)
.

As in [65], the main idea is to multiply the equation (3.23) by ηε(|vn|2 − 1) and then to

integrate by parts. It leads to
∫

R2

{
(|vn|2 − 1)|∇ηε|2 + ηε∇ηε∇|vn|2 +

η2
ε

ε2
(|vn|2 − 1)(η2

ε − a(x))

}
= 0

and we conclude that Eε(un) = Eε(ηε) + Eηε
ε (vn) for every n ∈ N. Now we observe that

|un| ≤ |u| and |∇un| ≤ |∇u| + |u| a.e. in R
2, (3.82)

and by dominated convergence, it results Eε(un) → Eε(u). Applying Fatou’s lemma, we

obtain

Eηε
ε (v) ≤ lim

n→+∞
Eηε

ε (vn) = lim
n→+∞

Eε(un) − Eε(ηε) = Eε(u) − Eε(ηε) < +∞,
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and we conclude that v ∈ Gε. Since η−1
ε |u||∇ηε| ≤ |∇u| + ηε|∇v| , we infer from (3.82)

that

η2
ε |∇vn|2 ≤ C(|∇u|2 + |u|2 + η2

ε |∇v|2)

and

η4
ε(|vn|2 − 1)2 ≤ 2(|u|4 + η4

ε).

By dominated convergence, we finally get that

Eηε
ε (v) = lim

n→+∞
Eηε

ε (vn) = lim
n→+∞

Eε(un) − Eε(ηε) = Eε(u) − Eε(ηε).

The rest of the proof is trivial since x⊥ · (iu,∇u) = η2
εx

⊥ · (iv,∇v) a.e. in R
2. ¥

Remark 3.6. By the splitting of the energy, one can deduce the uniqueness of positive

minimizers ηε of Eε.

We now want to translate some of the properties of uε to the map uε/ηε. To this aim,

we define the subclass G̃ε ⊂ Gε by

G̃ε =
{
v ∈ Gε, ηεv ∈ H and ‖ηεv‖L2(R2) = 1

}
.

The result below directly follows from Proposition 3.1, Proposition 3.2 and Proposi-

tion 3.3.

Proposition 3.4. For small ε > 0, let uε be a minimizer of Fε in
{
u ∈ H, ‖u‖L2(R2) = 1

}
.

Then vε = uε/ηε minimizes Fηε
ε in G̃ε. Moreover, we have

3.4.a) Eηε
ε (vε) ≤ Cω0| ln ε|2,

3.4.b) |vε(x)| ≤ 1 + Cω0 ε1/3 for x ∈ D with dist(x, ∂D) ≥ ε1/8,

3.4.c) ‖∇vε‖L∞(K) ≤ Cω0,K ε−1 for any compact subset K ⊂ D.

3.3.3 Splitting the domain

The main goal in this section is to show that we can excise the region of R
2 where

the density |uε| is very small (which corresponds roughly speaking to the exterior of D)

without modifying the relevant part in the energy.

Proposition 3.5. For small ε and ν ∈ (1, 2), we set

Dν
ε =

{
x ∈ R

2, a(x) > ν| ln ε|−3/2
}
. (3.83)

We have

Fηε
ε (vε,Dν

ε ) ≤ Cω0| ln ε|−1.
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Proof. Since uε minimizes Fε on
{
u ∈ H, ‖u‖L2(R2) = 1

}
, we have for ε sufficiently small

Fε(uε) ≤ Fε(η̃ε) (we recall that η̃ε is defined as the unique real positive solution of (3.6)).

As before, Rε(η̃ε) = 0 since η̃ε is real valued. Then we get that Fε(uε) ≤ Eε(η̃ε) and by

Lemma 3.4 it leads to

Fηε
ε (vε) ≤ Eε(η̃ε) − Eε(ηε).

Using (3.45), we deduce that

Fηε
ε (vε) ≤ Cε2| ln ε|2. (3.84)

We set N ν
ε = R

2 \ Dν
ε . From the previous inequality, it suffices to prove that

Fηε
ε (vε,N ν

ε ) ≥ −Cω0| ln ε|−1 (3.85)

with Cω0 > 0 independent of ε and ν. Arguing as in the proof of Lemma 3.3 with σ = 1/4

and R = 2
√

a0 , we infer from (3.66),

|Rηε
ε (vε,N ν

ε )| ≤1

4

∫

N ν
ε

η2
ε |∇vε|2 + Ω2

∫

N ν
ε

|x|2|uε|2

≤1

4

∫

N ν
ε

η2
ε |∇vε|2 +

2Ω2

3

∫

R2\B2
√

a0

2a−(x)|uε|2 + 4a0Ω
2

∫

B2
√

a0
\Dν

ε

|uε|2

≤1

4

∫

N ν
ε

η2
ε |∇vε|2 + 4a0Ω

2

∫

B2
√

a0
\Dν

ε

|uε|2 + Cω0ε
2| ln ε|4.

By (3.66), we may also estimate
∫

B2
√

a0
\Dν

ε

|uε|2 =

∫

B2
√

a0
\B√

a0

|uε|2 +

∫

B√
a0

\Dν
ε

(|uε|2 − a(x)) +

∫

B√
a0

\Dν
ε

a(x)

≤C
( ∫

B2
√

a0
\B√

a0

|uε|4
)1/2

+ C
( ∫

B√
a0

\Dν
ε

(|uε|2 − a(x))2
)1/2

+ C| ln ε|−3

≤Cω0(| ln ε|−3 + ε| ln ε|).

Then it follows that

|Rηε
ε (vε,N ν

ε )| ≤ 1

2
Eηε

ε (vε,N ν
ε ) + Cω0| ln ε|−1 (3.86)

which leads to (3.85). ¥

For some technical reasons, it will be easier to deal with a+ instead of ηε. We now

prove that the energy estimates inside Dν
ε remain unchanged if one replaces η2

ε by a+ in

the energies.

Proposition 3.6. We have

Ea
ε (vε,Dν

ε ) ≤ Cω0| ln ε|2 and Fa
ε (vε,Dν

ε ) ≤ Cω0| ln ε|−1.
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Proof. From 3.1.c) in Proposition 3.1, we infer that

∥∥∥∥
a − η2

ε

η2
ε

∥∥∥∥
L∞(Dν

ε )

≤ Cε1/3 and

∥∥∥∥
a2 − η4

ε

η4
ε

∥∥∥∥
L∞(Dν

ε )

≤ Cε1/3

and then 3.4.a) in Proposition 3.4 yields

|Ea
ε (vε,Dν

ε ) − Eηε
ε (vε,Dν

ε )| ≤ Cε1/3 Eηε
ε (vε,Dν

ε ) ≤ Cω0ε
1/3| ln ε|2. (3.87)

Using 3.3.a) and 3.3.e) in Proposition 3.3, we derive

|Ra
ε(vε,Dν

ε ) −Rηε
ε (vε,Dν

ε )| ≤ Ω

∫

Dν
ε

a − η2
ε

η2
ε

|uε| |∇uε|

≤ Cε1/3Ω(Eε(uε,Dν
ε ))

1/2 ≤ Cω0ε
1/3| ln ε|2.

Therefore, it follows that

|Fa
ε (vε,Dν

ε ) −Fηε
ε (vε,Dν

ε )| ≤ Cω0ε
1/3| ln ε|2. (3.88)

Then the conclusion comes immediately from 3.4.a) in Proposition 3.4 and Proposi-

tion 3.5. ¥

3.4 Energy and degree estimates

In this section we find some a priori estimates of the energy and of the number of

vortices. The main ingredients are the construction of vortex balls and an asymptotic

expansion of the rotational energy in terms of these balls. From this formula, we show

the non existence of vortices for velocities strictly less than Ω1. For larger angular speeds,

we give a first result about the location and number of the vortices inside D. We also

prove a fundamental energy estimate (Proposition 3.11) which is the starting point for

our analysis in the next section.

3.4.1 Construction of the vortex balls

We present here a first vortex structure. It relies on the construction of vortex balls

by a method due to E. Sandier [73] and E. Sandier and S. Serfaty [74].

Proposition 3.7. Assume that (3.65) holds. Then there exists a positive constant Λ0 such

that for small ε, there exist νε ∈ (1, 2) and a finite collection of disjoint balls
{
Bi

}
i∈Iε

:={
B(pi, ri)

}
i∈Iε

satisfying the conditions :
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(i) Bi ⊂⊂ Dε := Dνε
ε for every i ∈ Iε (where Dνε

ε is defined by (3.83)),

(ii)
{
x ∈ Dε, |vε(x)| < 1 − | ln ε|−5

}
⊂ ∪i∈IεBi,

(iii)
∑

i∈Iε

ri ≤ | ln ε|−10,

(iv)

∫

Bi

a(x)

(
1

2
|∇vε|2 − Ωx⊥ · (ivε,∇vε)

)
≥ πa(pi)|di|

(
| ln ε| − Λ0 ln | ln ε|

)
,

where di = deg

(
vε

|vε|
, ∂Bi

)
for every i ∈ Iε.

Proof. Using the method of E. Sandier [73] and E. Sandier and S. Serfaty [74], we prove

as in [2] (by the estimates in Proposition 3.6 with ν = 1) the existence of a finite col-

lection of disjoint balls
{
Bi

}
i∈Iε

such that the conditions (ii) and (iii) are fulfilled for

D1
ε =

{
x ∈ R

2, a(x) > | ln ε|−3/2
}

and we have

∫

Bi

a(x)

2
|(∇− iΩx⊥)vε|2 ≥ πa(pi)|di|

(
| ln ε| − Λ0 ln | ln ε|

)
, ∀i ∈ Iε.

Therefore, by (iii), we can find νε ∈ (1, 2) such that

∂Dνε
ε ∩ ∪i∈IεBi = ∅.

By cancelling the balls Bi that are not in Dνε
ε , it remains a finite collection of balls which

satisfies (i), (ii) and (iii) for Dνε
ε . Notice now that (iv) takes place since

Ω2

∫

Bi

a

2
|x|2|vε|2 ≤ Ω2

∫

Bi

|x|2|uε|2 ≤ CΩ2r2
i = o(| ln ε|−10)

and this term can be absorbed by Λ0 ln | ln ε| (up to a different constant Λ0 + 1). ¥

3.4.2 Expansion of the rotation energy

We are now in a position to compute an asymptotic expansion of the rotation energy

according to the center of each vortex ball Bi and the associated degree di. We have :

Proposition 3.8. For small ε,

Ra
ε

(
vε,Dε \ ∪i∈IεBi

)
=

πΩ

2

∑

i∈Iε

(a2(pi) − ν2
ε | ln ε|−3) di + o(| ln ε|−5)

Proof. By Proposition 3.7, Dε \∪i∈IεBi ⊂ Dε \ {|vε| < 1/2} if 0 < ε < ε2. For x ∈ Dε such

that |vε(x)| ≥ 1/2, we set

wε(x) =
vε(x)

|vε(x)| .
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Since (ivε,∇vε) = |vε|2(iwε,∇wε) in Dε \ {|vε| < 1/2}, we have

Ra
ε (vε,Dε \ ∪i∈IεBi) = Ω

∫

Dε\∪i∈IεBi

a(x)x⊥ · (iwε,∇wε)

+ Ω

∫

Dε\∪i∈IεBi

a(x)(|vε|2 − 1)x⊥ · (iwε,∇wε). (3.89)

Then we estimate using Proposition 3.6,

∣∣∣∣∣

∫

Dε\∪i∈IεBi

a(x)(|vε|2 − 1) x⊥ · (iwε,∇wε)

∣∣∣∣∣ ≤Cε (Ea
ε (vε,Dε))

1/2 ‖∇wε‖L2(Dε\{|vε|<1/2})

≤Cε| ln ε|‖∇wε‖L2(Dε\{|vε|<1/2}) . (3.90)

In Dε \ {|vε| < 1/2}, we have |∇wε| ≤ 2(|∇vε| + |∇|vε||) ≤ 4|∇vε|. We deduce that

∫

Dε\{|vε|<1/2}
|∇wε|2 ≤ 16

∫

Dε

|∇vε|2 ≤ 16| ln ε|3/2

∫

Dε

a(x)|∇vε|2 ≤ C| ln ε|7/2 (3.91)

and hence we obtain combining (3.89), (3.90) and (3.91),

Ra
ε (vε,Dε \ ∪i∈IεBi) = Ω

∫

Dε\∪i∈IεBi

a(x) x⊥ · (iwε,∇wε) + O(ε| ln ε|4). (3.92)

We now define the function Pε : Dε → R by

Pε(x) =
a2(x) − ν2

ε | ln ε|−3

4
.

The function Pε satisfies

{
∇Pε(x) = −a(x) x for x ∈ Dε,

Pε(x) = 0 for x ∈ ∂Dε.

Since (iwε,∇wε) = wε ∧∇wε , we derive that

∫

Dε\∪i∈IεBi

a(x) x⊥ · (iwε,∇wε) = −
∫

Dε\∪i∈IεBi

∇⊥Pε(x) · (wε ∧∇wε)

=
∑

i∈Iε

∫

∂Bi

Pε(x)

(
wε ∧

∂wε

∂τ

)

where τ denotes the counterclockwise oriented unit tangent vector to ∂Bi. The smoothness

of vε implies the existence of αε ∈ (1
2
, 2

3
) such that U =

{
x ∈ R

2 , |vε| < αε

}
is a smooth

open set. Then we set for i ∈ Iε,

Ui = Bi ∩ U
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(note that Ui ⊂⊂ Bi for ε small enough by Proposition 3.7). For each i ∈ Iε, we have

by (3.91),

∣∣∣∣
∫

∂Bi

Pε(x)

(
wε ∧

∂wε

∂τ

)
−

∫

∂Ui

Pε(x)

(
wε ∧

∂wε

∂τ

)∣∣∣∣ =

∣∣∣∣
∫

Bi\Ui

∇⊥Pε(x) · (wε ∧∇wε)

∣∣∣∣

≤C ri ‖∇wε‖L2(Dε\{|vε|<1/2})

≤C ri | ln ε|7/4

and since |vε| < 2/3 in Ui, it results from 3.4.b) in Proposition 3.4 and Proposition 3.6,

∣∣∣∣
∫

∂Ui

(Pε(x) − Pε(pi))

(
wε ∧

∂wε

∂τ

)∣∣∣∣ ≤C

∣∣∣∣
∫

∂Ui

(Pε(x) − Pε(pi))

(
vε ∧

∂vε

∂τ

)∣∣∣∣

≤C

∣∣∣∣
∫

Ui

a(x) x⊥ · (ivε,∇vε)

∣∣∣∣

+ C

∣∣∣∣
∫

Ui

(Pε(x) − Pε(pi)) det(∇vε)

∣∣∣∣

≤C (ri ‖
√

a∇vε‖L2(Dε) + ri | ln ε|3/2 ‖√a∇vε‖2
L2(Ui)

)

≤C ri | ln ε|7/2 .

Therefore we conclude by (iii) in Proposition 3.7 that

Ra
ε (vε,Dε \ ∪i∈IεBi) =Ω

∑

i∈Iε

Pε(pi)

∫

∂Ui

wε ∧
∂wε

∂τ
+ o(| ln ε|−5)

=2πΩ
∑

i∈Iε

Pε(pi) di + o(| ln ε|−5)

and the proof is complete. ¥

3.4.3 Asymptotic behavior for subcritical velocities

We are now in a position to prove point (i) in Theorem 3.1 for small angular veloci-

ties. In terms of the map vε, the result takes the following form (using the notations in

Proposition 3.7) :

Proposition 3.9. Assume that

Ω ≤ ω0| ln ε| with ω0 <
2

a0

. (3.93)

Then for ε small enough, we have that

∑

i∈Iε

|di| = 0 (3.94)
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and

|vε| → 1 in L∞
loc

(D) as ε → 0. (3.95)

Moreover,

Fηε
ε (vε) = o(1) and Eηε

ε (vε) = o(1). (3.96)

Proof. Combining Proposition 3.6 and Proposition 3.7, we get that

O(| ln ε|−1) ≥ Fa
ε (vε,Dε) ≥

1

2

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +
1

4ε2

∫

Dε

a2(x)(1 − |vε|2)2 (3.97)

+ π
∑

i∈Iε

a(pi)|di| (| ln ε| − Λ0 ln | ln ε|) −Ra
ε (vε,Dε \ ∪i∈IεBi) .

Since a2(pi) − ν2
ε | ln ε|−3 ≤ a0 a(pi), we infer from Proposition 3.8 that

Ra
ε (vε,Dε \ ∪i∈IεBi) ≤

πa0ω0

2

∑

i∈Iε, di≥0

a(pi)|di|| ln ε| + o(| ln ε|−5) (3.98)

Since ω0 < 2/a0, we infer from (3.97) and (3.98) that for ε small enough,

1

2

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +

∫

Dε

a2

4ε2
(1− |vε|2)2 + C

∑

i∈Iε

a(pi)|di|| ln ε| ≤ O(| ln ε|−1), (3.99)

for a positive constant C independent of ε. Since a(pi) ≥ | ln ε|−3/2 in Dε, we derive that∑
i∈Iε

|di| ≤ O(| ln ε|−1/2) and therefore (3.94) holds for ε sufficiently small. Coming back

to (3.99), (3.94) implies
1

ε2

∫

Dε

a2(x)(1 − |vε|2)2 ≤ o(1). (3.100)

Then the proof of (3.95) follows as in [19] using the estimate 3.4.c) in Proposition 3.4

on |∇vε|.
Since

∑
i∈Iε

|di| = 0, we derive from Proposition 3.8 that Ra
ε(vε,Dε \ ∪i∈IεBi) = o(1).

On the other hand, 3.1.c) in Proposition 3.1, 3.3.a) in Proposition 3.3 and (iii) in

Proposition 3.7 yield

∣∣Ra
ε (vε,∪i∈IεBi)

∣∣ ≤ Ω
∑

i∈Iε

∫

Bi

a(x)η−2
ε

∣∣(iuε,∇uε)
∣∣ ≤ CΩ‖∇uε‖L2(Bi)

∑

i∈Iε

ri = o(1)

(3.101)

and we conclude that Ra
ε(vε,Dε) = o(1). Since Fa

ε (vε,Dε) ≤ o(1), we deduce that

Ea
ε (vε,Dε) = o(1) (3.102)

and hence we have Fa
ε (vε,Dε) = o(1). By (3.87) and (3.88), it leads to Eηε

ε (vε,Dε) = o(1)

and Fηε
ε (vε,Dε) = o(1). Using (3.84) and (3.85), then we get

o(1) ≤ Fηε
ε (vε,N νε

ε ) ≤ −Fηε
ε (vε,Dε) = o(1) (3.103)
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and therefore Fηε
ε (vε) = o(1). By (3.86), we have

Fηε
ε (vε,N νε

ε ) = Eηε
ε (vε,N νε

ε ) + Rηε
ε (vε,N νε

ε ) ≥ 1

2
Eηε

ε (vε,N νε
ε ) + o(1)

and we conclude from (3.103) that Eηε
ε (vε,N νε

ε ) = o(1). ¥

Remark 3.7. Assuming that (3.93) holds, it follows from (3.102) and Proposition 3.1

that for any sequence εn → 0 we can extract a subsequence (still denoted by εn) such that

uεn →
√

a+eiα in H1
loc

(D) for some constant α ∈ R. By Proposition 3.1, Proposition 3.3

and Proposition of 3.9, we also have |uε| →
√

a+ as ε → 0 in L∞
loc

(R2 \ ∂D).

3.4.4 Degree estimates near the critical velocity

In this section, we are going to prove that the number of vortex balls with nonzero

degree present in a slightly smaller domain than Dε, is bounded. To this aim, we need to

distinguish different types of vortex balls. We divide Iε into three pieces : Iε = I0∪I∗∪I−
where

I0 =
{
i ∈ Iε , di ≥ 0 and |pi| < | ln ε|−1/6

}
,

I∗ =
{
i ∈ Iε , di ≥ 0 and |pi| ≥ | ln ε|−1/6

}
,

I− =
{
i ∈ Iε , di < 0

}
.

Then the result can be stated as follows.

Proposition 3.10. Assume that

Ω ≤ 2

a0

(| ln ε| + ω1 ln | ln ε|) , (3.104)

for some constant ω1 ∈ R. Then

N0 :=
∑

i∈I0

|di| ≤ Cω1 (3.105)

and setting Bε =
{
x ∈ R

2, |x| ≤
√

a0 − | ln ε|−1/2
}
, we have for ε sufficiently small,

∑

i∈I∗∪I−, pi∈Bε

|di| = 0. (3.106)

Proof. From Proposition 3.8, we derive that for ε small enough,

Ra
ε (vε,Dε \ ∪i∈IεBi) ≤

πa0Ω

2

∑

i∈I0

a(pi)|di| +
π(a0 − | ln ε|−1/3)Ω

2

∑

i∈I∗

a(pi)|di| + o(| ln ε|−5)

≤ π
∑

i∈I0∪I∗

a(pi)|di|| ln ε| + πω1

∑

i∈I0

a(pi)|di| ln | ln ε| (3.107)

− π

2a0

∑

i∈I∗

a(pi)|di|| ln ε|2/3 + o(| ln ε|−5)
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(here we used that

(a0 − | ln ε|−1/3)Ω ≤ 2| ln ε| − 2

a0

| ln ε|2/3 + 2|ω1| ln | ln ε| ≤ 2| ln ε| − 1

a0

| ln ε|2/3

for i ∈ I∗ and ε small). Combining (3.107) and (3.97), we infer that for ε small enough,

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +
∑

i∈I∗

a(pi)|di|| ln ε|2/3 +
∑

i∈I−

a(pi)|di|| ln ε| ≤

≤ C0

(
Λ0 + ω1

) ∑

i∈I0

a(pi)|di| ln | ln ε| + O(| ln ε|−1)

≤ C0

(
Λ0 + ω1

)
a0N0 ln | ln ε| + O(| ln ε|−1) (3.108)

for some positive constant C0 independent of ε. We set

Ĩ∗ =

{
i ∈ I∗, |pi| ≤

√
a0 − | ln ε|−1/2

}
, N∗ =

∑

i∈Ĩ∗

|di|,

and

Ĩ− =

{
i ∈ I−, |pi| ≤

√
a0 − | ln ε|−1/2

}
, N− =

∑

i∈Ĩ−

|di|.

Since a(pi) ≥ | ln ε|−1/2 for any i ∈ Ĩ∗ ∪ Ĩ− , we obtain from (3.108),

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 + N∗| ln ε|1/6 + N−| ln ε|1/2 ≤ C0|Λ0 + ω1|a0N0 ln | ln ε|+O(| ln ε|−1)

(3.109)

which implies in particular,

max{N∗, N−} ≤ N0

2
(3.110)

for ε sufficiently small. We now show that N0 is uniformly bounded in ε. Consider the

sets

Iε =
[
| ln ε|−1/6,

√
a0

2

]
and Jε =

{
r ∈ Iε : ∂Br ∩ (∪i∈IεBi) = ∅

}
.

Notice that Jε is a finite union of intervals verifying |Iε \ Jε| ≤ | ln ε|−10. For r ∈ Jε and

ε small, we have |vε| ≥ 1
2

on ∂Br and therefore, we can define

D(r) = deg

(
vε

|vε|
, ∂Br(0)

)
.

By (3.110), we obtain that for small ε,

|D(r)| =
∣∣ ∑

|pi|<r

di

∣∣ ≥ N0 − N− ≥ N0

2
for any r ∈ Jε.
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We have

∫

B√
a0
2

\∪i∈IεBi

a|∇vε|2 ≥
∫

Jε

a(r)

( ∫ 2π

0

|∇vε|2r dθ

)
dr

≥ 1

4

∫

Jε

a(r)

r

( ∫ 2π

0

|vε ∧
∂vε

∂τ
|2r2 dθ

)
dr.

Set wε = vε

|vε| in B√
a0
2

\ ∪i∈IεBi. Since

|vε ∧
∂vε

∂τ
| = |vε|2|wε ∧

∂wε

∂τ
| ≥ 1

4
|wε ∧

∂wε

∂τ
|,

it follows that

∫

B√
a0
2

\∪i∈IεBi

a|∇vε|2 ≥ C

∫

Jε

a(r)

r

( ∫ 2π

0

|wε ∧
∂wε

∂τ
|2r2 dθ

)
dr

≥ C

∫

Jε

1

r

( ∫ 2π

0

wε ∧
∂wε

∂τ
r dθ

)2

dr

≥ C

∫

Jε

D(r)2

r
dr ≥ CN2

0

∫

Jε

dr

r
.

Notice now that ∣∣∣∣
∫

Iε

dr

r
−

∫

Jε

dr

r

∣∣∣∣ ≤ | ln ε|1/6|Iε \ Jε| = o(1)

and since

∫

Iε

dr

r
= C ln | ln ε| + O(1), we finally get that

∫

B√
a0
2

\∪i∈IεBi

a

2
|∇vε|2 ≥ C1 ln | ln ε|N2

0 .

for some positive constant C1 independent of ε. From (3.109), we derive that

(
C1N

2
0 − C0|Λ0 + ω1|a0N0

)
ln | ln ε| ≤ O(| ln ε|−1)

which implies that for ε small enough, C1N
2
0 − C0|Λ0 + ω1|a0N0 ≤ 1 and hence N0 is

necessarily bounded in ε. Then it follows by (3.109) that

N∗ ≤ O(
ln | ln ε|
| ln ε|1/6

) and N− ≤ O(
ln | ln ε|
| ln ε|1/2

).

Therefore, N− = N∗ = 0 for ε sufficiently small. ¥
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3.4.5 Energy estimates near the critical velocity

We give here some fundamental energy estimates. These estimates follow from Propo-

sition 3.10 and will allow us to construct a fine vortex structure in the next section.

Proposition 3.11. Assume that (3.104) holds. Then there exist two positive constants

M1 and M2 (which only depend on ω1) such that

Ea
ε (vε,Dε) ≤ M1| ln ε| and Ea

ε (vε,Aε) ≤ M2 ln | ln ε|,

where Aε = Dε \ B2| ln ε|−1/6 .

Proof. From Proposition 3.8 and (3.106), we infer that for ε small,

Ra
ε (vε,Dε \ ∪i∈IεBi) ≤

πa0Ω

2

∑

i∈I0

a(pi)|di| +
πΩ

2
| ln ε|−1/2

∑

i∈I∗\Ĩ∗

a(pi)|di| + o(| ln ε|−5)

≤ π
∑

i∈I0

a(pi)|di|
(
| ln ε| + ω1 ln | ln ε|

)
+

2π

a0

∑

i∈I∗

a(pi)|di|| ln ε|1/2

+ o(| ln ε|−5)

Injecting this estimate in (3.97), we derive that

∑

i∈I∗

a(pi)|di|| ln ε| ≤ Cω1N0 ln | ln ε|

and from (3.105), we deduce that
∑

i∈I∗ a(pi)|di|| ln ε|1/2 = o(1). Hence

Ra
ε (vε,Dε \ ∪i∈IεBi) ≤ π

∑

i∈I0

a(pi)|di|
(
| ln ε| + ω1 ln | ln ε|

)
+ o(1). (3.111)

By (3.101) we have Ra
ε(vε,Dε) = Ra

ε (vε,Dε \ ∪i∈IεBi) + o(1) and since

O(| ln ε|−1) ≥ Fa
ε (vε,Dε) = Ea

ε (vε,Dε) −Ra
ε(vε,Dε),

it follows by (3.111) and (3.105),

Ea
ε (vε,Dε) ≤ π

∑

i∈I0

a(pi)|di|
(
| ln ε| + ω1 ln | ln ε|

)
+ o(1) (3.112)

≤ Cω1N0| ln ε| ≤ Cω1| ln ε|.

As in (3.101), we have that Ra
ε (vε,∪i∈I0Bi) = o(1) and we infer from Proposition 3.7 that

∑

i∈I0

1

2

∫

Bi

a(x)|∇vε|2 =
∑

i∈I0

1

2

∫

Bi

a(x)|∇vε|2 −Ra
ε (vε,∪i∈I0Bi) + o(1)

≥ π
∑

i∈I0

a(pi)|di| (| ln ε| − Λ0 ln | ln ε|) + o(1).
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Matching this inequality with (3.112), we finally obtain

Ea
ε (vε,Aε) ≤ Ea

ε (vε,Dε \ ∪i∈I0Bi) ≤ π(ω1 + Λ0)
∑

i∈I0

a(pi)|di| ln | ln ε| + o(1)

≤ Cω1N0 ln | ln ε| ≤ Cω1 ln | ln ε|

and the proof is complete. ¥

3.5 Fine structure of vortices

The main goal of this section is to define a fine structure of vortices away from the

boundary of D. The analysis here follows the ideas in [20] and [21]. The main difficulty in

our situation is due to the presence in the energy of the weight function a(x) which vanishes

on ∂D and it does not allow us to construct the structure up to the boundary. From now,

we assume that (3.104) holds, i.e., Ω ≤ 2
a0

(| ln ε| + ω1 ln | ln ε|) for some constant ω1 ∈ R.

We will prove the following result :

Theorem 3.4. 1) For any R ∈ (
√

a0

2
,
√

a0 ) there exists εR > 0 such that for any ε < εR,

|vε| ≥
1

2
in BR \ B√

a0
2

.

2) There exist some constants N ∈ N, λ0 > 0 and ε0 > 0 (which only depend on ω1) such

that for any ε < ε0, there exists a finite collection of points
{
xε

j

}
j∈Jε

⊂ B√
a0
4

such that

Card(Jε) ≤ N and

|vε| ≥
1

2
in B √

a0
2

\
(
∪j∈JεB(xε

j , λ0ε)
)
.

Remark 3.8. The statement of Theorem 3.4 also holds if the radius
√

a0

2
is replaced by

an arbitrary r ∈ (0, R) but then the constants in Theorem 3.4 depend on r. For sake of

simplicity, we prefered to fix r =
√

a0

2
.

3.5.1 Some local estimates

We start with a fundamental lemma. It strongly relies on Pohozaev’s identity and it

will play a similar role as Theorem III.2 in [20]. In our situation, we only derive local

estimates as in [7, 21, 82]. Some of the arguments used in the proof are taken from [7, 21].

In the sequel, R denotes some arbitrary radius in [
√

a0

2
,
√

a0 ) and we will write R′ =
R+

√
a0

2
.

Lemma 3.5. For any 2/3 < α < 1, there exists a positive constant CR,α such that

1

ε2

∫

B(x0,εα)

(1 − |vε|2)2 ≤ CR,α for any x0 ∈ BR.
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Proof. Step 1. We claim that

Eε(uε, BR′) ≤ CR| ln ε|. (3.113)

Indeed, since uε = ηεvε, we get that

|∇uε|2 ≤ (
√

a0|∇vε| + |vε||∇ηε|)2 ≤ CR(|∇vε|2 + |∇ηε|2) in BR′

(here we use 3.4.b) in Proposition 3.4). Then it results

∫

BR′

|∇uε|2 ≤ CR

(
min

y∈BR′
a(y)

)−1 ∫

BR′

a(x)|∇vε|2 + CR

∫

BR′

|∇ηε|2 ≤ CR| ln ε|,

by 3.1.a) in Proposition 3.1 and Proposition 3.11. On the other hand, we also have by

the same propositions,

1

ε2

∫

BR′

(a(x) − |uε|2)2 ≤C

ε2

∫

BR′

[
(a(x) − η2

ε)
2 + η4

ε(1 − |vε|2)2
]

≤C

ε2

∫

BR′

(a(x) − η2
ε)

2 +
CR

ε2

∫

BR′

a4(x)(1 − |vε|2)2 ≤ CR| ln ε|

and therefore (3.113) follows.

Step 2. We are going to show that one can find a constant CR,α > 0, independent of ε,

such that for any x0 ∈ BR, there is some r0 ∈ (εα, εα/2+1/3) satisfying

Eε (uε, ∂B(x0, r0)) ≤
CR,α

r0

.

We proceed by contradiction. Assume that for any M > 0, there is xM ∈ BR such that

Eε (uε, ∂B(xM , r)) ≥ M

r
, ∀r ∈ (εα, εα/2+1/3). (3.114)

Without loss of generality we may assume that B(xM , εα/2+1/3) ⊂ BR′ since ε is small.

Integrating (3.114) in r ∈ (εα, εα/2+1/3), we derive that

Eε (uε, BR′) ≥ M

∫ εα/2+1/3

εα

dr

r
= M(α/2 − 1/3)| ln ε|

which contradicts Step 1 for M large enough.

Step 3. Fix x0 ∈ BR and let r0 ∈ (εα, εα/2+1/3) be given by Step 2. As in Step 2, we may

assume that B(x0, r0) ⊂ BR′ . By Proposition 3.2, we have

−∆uε =
1

ε2
(a(x0)−|uε|2)uε+

1

ε2
(a(x)−a(x0))uε−2iΩx⊥·∇uε+ℓεuε in B(x0, r0). (3.115)
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As in the proof of the Pohozaev identity, we multiply (3.115) by (x − x0) · ∇uε and we

integrate by parts in B(x0, r0). We have

∫

B(x0,r0)

−∆uε · [(x − x0) · ∇uε] =
r0

2

∫

∂B(x0,r0)

|∇uε|2 − r0

∫

∂B(x0,r0)

∣∣∣∣
∂uε

∂ν

∣∣∣∣
2

(3.116)

and

1

ε2

∫

B(x0,r0)

(a(x0) − |uε|2)uε · [(x − x0) · ∇uε] =

=
1

2ε2

∫

B(x0,r0)

(a(x0) − |uε|2)2 − r0

4ε2

∫

∂B(x0,r0)

(a(x0) − |uε|2)2 (3.117)

(where ν is the outer normal vector to ∂B(x0, r0)). From (3.115), (3.116) and (3.117) we

derive that

1

ε2

∫

B(x0,r0)

(a(x0) − |uε|2)2 ≤C
(
r0

∫

∂B(x0,r0)

|∇uε|2 + r0

∫

∂B(x0,r0)

ε−2(a(x0) − |uε|2)2

+ r0ε
−2

∫

B(x0,r0)

|a(x) − a(x0)||uε||∇uε|

+ Ωr0

∫

B(x0,r0)

|∇uε|2 + |ℓε|r0

∫

B(x0,r0)

|uε||∇uε|
)
.

Then we estimate each integral term in the right hand side of the previous inequality.

According to (3.113) and to 3.3.a), 3.3.b), 3.3.e) in Proposition 3.3, we have

ε−2

∫

∂B(x0,r0)

(a(x0) − |uε|2)2 ≤ Cε−2

∫

∂B(x0,r0)

[
(a(x0) − a(x))2 + (a(x) − |uε|2)2

]

≤ Cε−2

∫

∂B(x0,r0)

(a(x) − |uε|2)2 + CRε
3
2
α−1

and

Ωr0

∫

B(x0,r0)

|∇uε|2 ≤ Ωr0Eε(uε, BR) ≤ CR εα/2+1/3| ln ε|2

and

r0ε
−2

∫

B(x0,r0)

|a(x) − a(x0)||uε||∇uε| ≤ CR r2
0 ε−2

∫

B(x0,r0)

|∇uε|

≤ CR r3
0 ε−2[Eε(uε, BR)]1/2 ≤ CR ε

3
2
α−1| ln ε|1/2

and

|ℓε|r0

∫

B(x0,r0)

|uε||∇uε| ≤ CR|ℓε| r2
0 [Eε(uε, BR)]1/2 ≤ CR εα− 1

3 | ln ε|3/2

(here we used that |a(x)− a(x0)| ≤ CR r0 for any x, x0 ∈ BR′), so that we finally get that

1

ε2

∫

B(x0,r0)

(a(x0) − |uε|2)2 ≤ CR,α

(
1 + r0Eε (uε, ∂B(x0, r0))

)
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for some constant CR,α independent of ε. By Step 2, we conclude that

1

ε2

∫

B(x0,εα)

(a(x0) − |uε|2)2 ≤ CR,α. (3.118)

Using 3.1.e) in Proposition 3.1, we may write

1

ε2

∫

B(x0,εα)

(1 − |vε|2)2 ≤ CR

ε2

∫

B(x0,εα)

(η2
ε − |uε|2)2

≤ CR

ε2

∫

B(x0,εα)

(a(x) − |uε|2)2 + o(1)

≤ CR

ε2

∫

B(x0,εα)

(a(x0) − |uε|2)2 + o(1) ≤ CR,α

and we conclude with (3.118). ¥

The next result will allow us to define the notion of a bad disc as in [20].

Proposition 3.12. There exist positive constants λR and µR such that if

1

ε2

∫

BR′∩B(x0,2l)

(1 − |vε|2)2 ≤ µR with x0 ∈ BR ,
l

ε
≥ λR and l ≤ 1,

then |vε| ≥ 1/2 in BR′ ∩ B(x0, l).

Proof. By 3.4.c) in Proposition 3.4, there exists a constant CR > 0 independent of ε such

that

|∇vε| ≤
CR

ε
in BR′ .

Then the result follows as in [20], Theorem III.3. ¥

Definition 3.1. For x ∈ BR, we say that B(x, λRε) is a bad disc if

1

ε2

∫

BR′∩B(x,2λRε)

(1 − |vε|2)2 ≥ µR.

Now we can give a local version of Theorem 3.4. We will see that Lemma 3.5 plays a

crucial role in the proof.

Proposition 3.13. Let 2/3 < α < 1. There exist positive constants NR,α and εR,α such

that for every ε < εR,α and x0 ∈ BR one can find x1, . . . , xNε ∈ B(x0, ε
α) with Nε ≤ NR,α

verifying

|vε| ≥
1

2
in B(x0, ε

α) \
(
∪Nε

k=1B(xk, λRε)
)
.
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Proof. First, choosing ε small enough, we may assume that B(x0, ε
α) ⊂ BR′ . Consider

now a family of discs
{
B(xi, λRε)

}
i∈F such that





xi ∈ B(x0, ε
α),

B
(
xi, λRε/4

)
∩ B

(
xj, λRε/4

)
= ∅ for i 6= j,

B(x0, ε
α) ⊂ ⋃

i∈F B(xi, λRε).

(3.119)

We denote by F ′ the set of indices i ∈ F such that B(xi, λRε) is a bad disc. We derive

from Proposition 3.12 that for ε small enough,

µR Card(F ′) ≤
∑

i∈F

1

ε2

∫

BR′∩B(xi,2λRε)

(1 − |vε|2)2 ≤ C

ε2

∫

B(x0,εα′
)

(1 − |vε|2)2

where C is some absolute constant and α′ = 1/2(α +2/3). The conclusion now follows by

Lemma 3.5. ¥

Remark 3.9. By proof of Proposition 3.13, any cover
{
B(xi, λRε)

}
i∈F of B(x0, ε

α) sa-

tisfying (3.119) contains at most NR,α bad discs.

We will need the following lemma to prove that vortices of degree zero do not occur :

Lemma 3.6. Let D > 0, 0 < β < 1 and γ > 1 be given constants such that γβ < 1. Let

0 < ρ < εβ be such that ργ > λRε. We assume that for x0 ∈ BR,

(i)

∫

∂B(x0,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 <

D

ρ
,

(ii) |vε| ≥
1

2
on ∂B(x0, ρ),

(iii) deg

(
vε

|vε|
, ∂B(x0, ρ)

)
= 0.

Then we have

|vε| ≥
1

2
in B(x0, ρ

γ).

Proof of Lemma 3.6. Step 1. We are going to construct a comparison function to obtain

the following estimate :

∫

B(x0,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ Cβ,R. (3.120)

Since the degree of vε restricted to ∂B(x0, ρ) is zero, we may write on ∂B(x0, ρ)

vε = |vε|eiφε



3.5. Fine structure of vortices 97

where φε is a smooth map from ∂B(x0, ρ) into R. Then we define v̂ε : R
2 → C by

{
v̂ε = χεe

iψε in B(x0, ρ)

v̂ε = vε in R
2 \ B(x0, ρ)

where ψε is the solution of {
∆ψε = 0 in B(x0, ρ)

ψε = φε on ∂B(x0, ρ),

and χε has the form, written in polar coordinates centered at x0,

χε(r, θ) = (|vε(ρeiθ)| − 1)ξ(r) + 1

and ξ is a smooth function taking values in [0, 1] with small support near ρ with ξ(ρ) = 1

(note that by 3.4.b) in Proposition 3.4, 0 ≤ χε ≤ 1 + Cε1/3). Arguing as in [19], proof of

Theorem 2, we may prove

∫

B(x0,ρ)

|∇ψε|2 ≤ Cρ

∫

∂B(x0,ρ)

∣∣∣∣
∂φε

∂τ

∣∣∣∣
2

≤ Cρ

∫

∂B(x0,ρ)

|∇vε|2 (3.121)

and
∫

B(x0,ρ)

|∇χε|2 +
1

ε2
(1 − χ2

ε)
2 ≤ Cρ

∫

∂B(x0,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 + O(ρ). (3.122)

From (3.121), (3.122) and assumption (i), we infer that
∫

B(x0,ρ)

|∇v̂ε|2 +
1

2ε2
(1 − |v̂ε|2)2 ≤ C . (3.123)

We set ṽε = m−1
ε v̂ε with mε = ‖ηεv̂ε‖L2(R2). Clearly we have ṽε ∈ G̃ε and hence, by

Proposition 3.4,

Fηε
ε (vε) ≤ Fηε

ε (ṽε). (3.124)

We claim that

Fηε
ε (ṽε) ≤ Fηε

ε (v̂ε) + Cρ| ln ε|2. (3.125)

Indeed, using (3.123), ‖ηεvε‖L2(R2) = 1, v̂ε = vε in R
2 \B(x0, ρ) and 3.4.a) in Proposition

3.4, we estimate

m2
ε = 1 +

∫

B(x0,ρ)

η2
ε(|v̂ε|2 − 1) +

∫

B(x0,ρ)

η2
ε(1 − |vε|2)

= 1 + O(ρ ε| ln ε|) (3.126)

From 3.4.a) in Proposition 3.4, (3.123) and (3.126) we derive
∫

R2

η2
ε |∇ṽε|2 = m−2

ε

∫

R2

η2
ε |∇v̂ε|2 =

∫

R2

η2
ε |∇v̂ε|2 + O(ρε| ln ε|3), (3.127)
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by 3.3.a) in Proposition 3.3, Lemma 3.3, (3.123) and (3.126),

Rηε
ε (ṽε) = m−2

ε Rηε
ε (v̂ε) = Rηε

ε (v̂ε)− (1−m−2
ε )Rε(ηεv̂ε) = Rηε

ε (v̂ε) +O(ρε| ln ε|3), (3.128)

and using also 3.3.e) in Proposition 3.3, (3.66) and 3.4.a) in Proposition 3.4,

1

ε2

∫

R2

η4
ε(1 − |ṽε|2)2 =

1

ε2

∫

R2

η4
ε(1 − |v̂ε|2)2 +

2(1 − m−2
ε )

ε2

∫

R2

η2
ε(1 − |v̂ε|2)|ηεv̂ε|2

+
(1 − m−2

ε )2

ε2

∫

R2

|ηεv̂ε|4

≤ 1

ε2

∫

R2

η4
ε(1 − |v̂ε|2)2

+ Cρ| ln ε|
(

1

ε2

∫

R2\B(x0,ρ)

η4
ε(1 − |vε|2)2

)1/2 (∫

R2\B(x0,ρ)

|uε|4
)1/2

+ Cρ2| ln ε|2

≤ 1

ε2

∫

R2

η4
ε(1 − |v̂ε|2)2 + Cρ| ln ε|2. (3.129)

We conclude from (3.127), (3.128) and (3.129) that (3.125) holds.

Since v̂ε = vε in R
2 \ B(x0, ρ), we get from (3.124) and (3.125) that

Fηε
ε (vε, B(x0, ρ)) ≤ Fηε

ε (v̂ε, B(x0, ρ)) + Cρ| ln ε|2.

By (3.123) we have Eηε
ε (v̂ε, B(x0, ρ)) ≤ C and therefore,

∣∣Rηε
ε (v̂ε, B(x0, ρ))

∣∣ ≤ CRΩ

∫

B(x0,ρ)

|∇v̂ε| ≤ CRΩρ‖∇v̂ε‖L2(B(x0,ρ)) = O(ρ| ln ε|).

Hence, Fηε
ε (v̂ε, B(x0, ρ)) ≤ C and we conclude that

Fηε
ε (vε, B(x0, ρ)) ≤ Cβ.

As for v̂ε, using Proposition 3.11, we easily check that |Rηε
ε (vε, B(x0, ρ))| = O(ρ| ln ε|3/2)

and we finally get that Eηε
ε (vε, B(x0, ρ)) ≤ Cβ which clearly implies (3.120) by 3.1.c) in

Proposition 3.1.

Step 2. We deduce from (3.120) that

∫ ρ

2ργ

(∫

∂B(x0,s)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2

)
ds ≤ Cβ,R.

Since
∫ ρ

2ργ
ds

s| ln s|1/2 ≥ Cγ| ln ε|1/2, we derive that for small ε there exists s0 ∈ [2ργ, ρ] such

that ∫

∂B(x0,s0)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

s0| ln s0|1/2
.
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Repeating the arguments used to prove (3.120), we find that

∫

B(x0,s0)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

| ln s0|1/2
.

In particular, we have
1

ε2

∫

B(x0,2ργ)

(1 − |vε|2)2 = o(1)

and the conclusion follows by Proposition 3.12. ¥

We now establish an estimate of the contribution in the energy of any vortex :

Proposition 3.14. Let x0 ∈ BR and 2
3

< α < 1. Assume that |vε(x0)| < 1/2. Then there

exists a positive constant CR,α (which only depends on R, α and ω1) such that

∫

B(x0,εα)

|∇vε|2 ≥ CR,α| ln ε|.

Proof. Let NR,α and x1, . . . , xNε ∈ B(x0, ε
α) be as in Proposition 3.13. Set

δα =
α1/2 − α

3(NR,α + 1)

and for k = 0, . . . , 3NR,α + 2 we consider

αk = α1/2 − kδα , Ik = [εαk , εαk+1 ] and Ck = B(x0, ε
αk+1) \ B(x0, ε

αk).

Then there is some k0 ∈ {1, . . . , 3NR,α + 1} such that

Ck0 ∩
(
∪Nε

j=1B(xj, λRε)
)

= ∅. (3.130)

Indeed, since Nε ≤ NR,α and 2λRε < |Ik| for small ε, the union of Nε intervals of length

2λRε

∪Nε
j=1(|xi − x0| − λRε, |xi − x0| + λRε)

cannot intersect all the intervals Ik of disjoint interior, for 1 ≤ k ≤ 3NR,α + 1. From

(3.130) we deduce that

|vε(x)| ≥ 1

2
∀x ∈ Ck0 .

Therefore, for every ρ ∈ Ik0 ,

dk0 = deg

(
vε

|vε|
, ∂B(x0, ρ)

)

is well defined and does not depend on ρ.

We claim that

dk0 6= 0. (3.131)
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By contradiction, we suppose that dk0 = 0. From Proposition 3.11, it results that
∫

BR′

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ CR| ln ε|.

Using the same argument as in Step 2 of the proof of Lemma 3.5, there is a constant CR,α

such that ∫

∂B(x0,ρ0)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ CR,α

ρ0

for some ρ0 ∈ Ik0 .

According to Lemma 3.6 (where β = αk0+1 and γ =
αk0−1

αk0
), we should have |vε(x0)| ≥ 1/2

which is a contradiction.

By (3.131), we obtain for every ρ ∈ Ik0 ,

1 ≤ |dk0| =
1

2π

∣∣∣∣
∫

∂B(x0,ρ)

1

|vε|2
(
vε ∧

∂vε

∂τ

)∣∣∣∣ ≤ C

∫

∂B(x0,ρ)

|∇vε|

(where we use that |vε| ≥ 1
2

in Ck0). Cauchy-Schwarz inequality yields
∫

∂B(x0,ρ)

|∇vε|2 ≥
C

ρ
∀ρ ∈ Ik0

and the conclusion follows integrating on Ik0 . ¥

3.5.2 Proof of Theorem 3.4

The part 1) in Theorem 3.4 follows directly from Lemma 3.7 below.

Lemma 3.7. There exists a constant εR > 0 such that for any 0 < ε < εR,

|vε| ≥
1

2
in BR \ B√

a0
5

.

Proof. First, we fix some α ∈ (2/3, 1). We proceed by contradiction. Suppose that there is

some x0 ∈ BR \ B√
a0
5

such that |vε(x0)| < 1/2. Then for any ε sufficiently small, we have

B(x0, ε
α) ⊂ Aε (Aε is defined in Proposition 3.11) and therefore, by Proposition 3.11, we

get that ∫

B(x0,εα)

|∇vε|2 ≤ CR Ea
ε (vε,Aε) ≤ CR ln | ln ε|

which contradicts Proposition 3.14 for ε small enough. ¥

Proof of 2) in Theorem 3.4. We fix some 2/3 < α < 1. As in the proof of Proposition 3.13,

we consider a finite family of points {xj}j∈J satisfying

xj ∈ B√
a0
2

B
(
xi, λ0ε/4

)
∩ B

(
xj, λ0ε/4

)
= ∅ for i 6= j,

B√
a0
2

⊂
⋃

j∈J
B (xj, λ0ε) ,
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where λ0 := λ√
a0
2

(defined in Proposition 3.12 with R =
√

a0

2
) and we denote by Jε the

set of indices j ∈ J such that B(xj, λ0ε) contains at least one point yj verifying

|vε(yj)| <
1

2
. (3.132)

Applying Lemma 3.7 (with R =
3
√

a0

4
), we infer that there exists ε0 such that for any

0 < ε < ε0,

B(xj, λ0ε) ⊂ B√
a0
4

for any j ∈ Jε. (3.133)

Then it remains to prove that Card(Jε) is bounded independently of ε. Using (3.133) and

Proposition 3.14 (with R =
√

a0

2
), we derive that for every j ∈ Jε,
∫

B(yj ,εα)

|∇vε|2 ≥ Cα| ln ε| (3.134)

for some positive constant Cα which only depends on α (where yj is any point satisfying

(3.132) in the ball B(xj, λ0ε)). We set for ε small enough

W =
⋃

j∈Jε

B(xj, 2ε
α) ⊂ B√

a0
3

.

We claim that there is a positive integer Mα independent of ε such that for any y ∈ W , the

point y belongs to at most Mα balls in the collection {B(xj, 2ε
α)}j∈Jε . Indeed, consider

for y ∈ W the subset Ky of Jε defined by

Ky =
{
j ∈ Jε, y ∈ B(xj, 2ε

α)
}
.

We have for every j ∈ Ky,

xj ∈ B(y, εα′
) ⊂ B√

a0
2

(3.135)

with α′ = 1/2(2/3 + α). Obviously, the family
{
B(xj, λ0ε)

}
j∈Ky

can be completed into

a cover of B(y, εα′
) satisfying (3.119) (with R =

√
a0

2
) and by Remark 3.9, this cover

contains at most Mα bad discs for a constant Mα independent of ε. On the other hand,

B(xj, λ0ε) is a bad disc for any j ∈ Jε by Proposition 3.12. Hence

Card(Ky) ≤ Mα.

From (3.134), we infer that
∫

B√
a0
2

|∇vε|2 ≥
∫

W

|∇vε|2 ≥
1

Mα

∑

j∈J

∫

B(xj ,2εα)

|∇vε|2 ≥ CαCard(Jε)| ln ε|. (3.136)

Moreover, we know from Proposition 3.11,
∫

B√
a0
2

|∇vε|2 ≤ C

∫

B√
a0
2

a(x)|∇vε|2 ≤ C| ln ε| (3.137)

for some constant C independent of ε. We deduce that Card(Jε) is bounded independently

of ε matching (3.136) with (3.137). ¥
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3.5.3 Modifying the bad discs

In this section, we refine the vortex structure given by 2) in Theorem 3.4. We obtain

the following result as in [78] combining Theorem 3.4 with an adaptation of Theorem V.1

in [7] (the method comes from a preliminary version of [20]).

Proposition 3.15. Let 0 < β < µ < 1 be given constants such that µ := µN+1 > β and

let {xε
j}j∈Jε be the collection of points given by 2) in Theorem 3.4. There exists 0 < ε1 < ε0

such that for any ε < ε1, we can find J̃ε ⊂ Jε and ρ > 0 verifying

(i) λ0ε ≤ εµ ≤ ρ ≤ εµ < εβ,

(ii) |vε| ≥
1

2
in B √

a0
2

\ ∪j∈J̃ε
B(xε

j , ρ),

(iii) |vε| ≥ 1 − 2

| ln ε|2 on ∂B(xε
j , ρ) for every j ∈ J̃ε,

(iv)

∫

∂B(xε
j ,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ C(β, µ)

ρ
for every j ∈ J̃ε,

(v) |xε
i − xε

j| ≥ 8ρ for every i, j ∈ J̃ε with i 6= j.

Moreover, for each j ∈ J̃ε, we have

Dj := deg

(
vε

|vε|
, ∂B(xε

j, ρ)

)
6= 0. (3.138)

Proof. By Theorem 3.4, we have for ε small enough,

∪j∈JεB(xε
j , λ0ε) ⊂ B√

a0
3

.

From (iii) in Proposition 3.7, there exists a radius rε ∈ (
√

a0

3
,
√

a0

2
] such that

B̄i ∩ ∂Brε = ∅ for every i ∈ Iε (3.139)

where {Bi}i∈Iε denotes the collection of vortex balls constructed in Proposition 3.7. Hence

we have

|vε| ≥ 1 − | ln ε|−5 on ∂Brε .

The existence of a subset J̃ε ⊂ Jε satisfying (i)-(v) can now be proved identically as

Proposition 3.2 in [78]. It remains to prove (3.138). From the proof of Theorem 3.4, we

know (by construction) that each disc B(xε
k, λ0ε), k ∈ Jε, contains at least one point yk

such that |vε(yk)| < 1
2
. Therefore each disc B(xε

j, ρ), j ∈ J̃ε, contains at least one of the yk’s

with |xε
j − yk| < λ0ε. Assume now that Dj = 0. By Lemma 3.6 with γ = µ−1/2, it would

lead to |vε| ≥ 1
2

in B(xε
j, ρ

γ) and then |vε(yk)| ≥ 1
2

for ε small enough, contradiction. ¥

Remark 3.10. We emphasize that each ball B(xε
j , ρ) carries at least one zero of vε since

Dj 6= 0 for any j ∈ J̃ε.
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The previous result also gives us a control on the degrees Dj :

Lemma 3.8. For every j ∈ J̃ε, we have

|Dj| ≤ C

for a constant C independent of ε.

Proof. We have

|Dj| =
1

2π

∣∣∣∣∣

∫

∂B(xε
j ,ρ)

1

|vε|2
(
vε ∧

∂vε

∂τ

)
∣∣∣∣∣ ≤ C‖∇vε‖L2(∂B(xε

j ,ρ))

√
ρ ≤ C

by (iv) in Proposition 3.15. ¥

3.6 Lower energy estimates

In this section, we obtain various lower energy estimates for vε in terms of the vortex

structure defined in Section 3.5.3, Proposition 3.15. We start by proving a lower bound

on the kinetic energy away from the vortices which brings out the interaction between

vortices. The method we use is based on the techniques developped in [7], [20] and [78].

As in the previous section, the main difficulty is due to the degenerate behavior near the

boundary of D of the weight function a(x). To avoid this problem, we shall establish your

estimates in BΛ
R for an arbitrary radius R ∈ [

√
a0/2,

√
a0 ). To emphasize the possible

dependence on R in the “error term”, we will denote by OR(1) (respectively oR(1)) any

quantity which remains uniformly bounded in ε for fixed R (respectively any quantity

which tends to 0 as ε → 0 for fixed R). In the rest of the chapter, we consider that ε is

sufficiently small and we write J̃ε = {1, . . . , n}. By Theorem 3.4, we may also assume

∪n
j=1B(xε

j , ρ) ⊂ B√
a0
3

. (3.140)

3.6.1 A lower estimate away from the vortices

Proposition 3.16. Setting Θρ = BR \ ∪n
j=1B(xε

j, ρ), we have

1

2

∫

Θρ

a(x)|∇vε|2 ≥ π

n∑

j=1

D2
j a(xε

j)| ln ρ| + WR,ε

(
(xε

1, D1), . . . , (x
ε
n, Dn)

)
+ OR(1) (3.141)

where

WR,ε

(
(xε

1, D1), . . . , (x
ε
n, Dn)

)
= −π

∑

i 6=j

DiDj a(xε
j) ln |xε

i − xε
j| − π

n∑

j=1

DjΨR,ε(x
ε
j)

and ΨR,ε is defined by (3.146). Moreover, if ρ
|xε

i−xε
j |
→ 0 as ε → 0 for any i 6= j then the

term OR(1) is in fact oR(1).
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Remark 3.11. We point out that the dependence on R in the interaction term WR,ε

only appears in the function ΨR,ε. Moreover, for ΨR,ε to be well defined, 1/a(x) has to be

bounded inside BΛ
R (see (3.146)) so that we can not pass to the limit R → √

a0 in (3.141)

without an a priori deterioration of the error term.

Proof. We consider the solution Φρ of the linear problem




div
(1

a
∇Φρ

)
= 0 in Θρ,

Φρ = 0 on ∂BR,

Φρ = const. on ∂B(xε
j , ρ),

∫

∂B(xε
j ,ρ)

1

a

∂Φρ

∂ν
= 2πDj j = 1, . . . , n,

and ΦR,ε the solution of




div
(1

a
∇ΦR,ε

)
= 2π

n∑

j=1

Dj δxε
j

in BR

ΦR,ε = 0 on ∂BR

(3.142)

For x ∈ Θρ, we set wε(x) = vε(x)
|vε(x)| and

S =

(
−wε ∧

∂wε

∂x2

+
1

a

∂Φρ

∂x1

, wε ∧
∂wε

∂x1

+
1

a

∂Φρ

∂x2

)
.

We easily check that

div S = 0 in Θρ and

∫

∂BRε

S · ν =

∫

∂B(xε
j ,ρ)

S · ν = 0.

By Lemma I.1 in [20], there exists H ∈ C1(Θρ) such that S = ∇⊥H and hence we can

write the Hodge-de Rham type decomposition

wε ∧∇wε =
1

a
∇⊥Φρ + ∇H.

Consequently,
∫

Θρ

a(x)|∇wε|2 =

∫

Θρ

1

a(x)
|∇Φρ|2 + 2

∫

Θρ

∇⊥Φρ · ∇H +

∫

Θρ

a(x)|∇H|2

≥
∫

Θρ

1

a(x)
|∇Φρ|2 + 2

∫

Θρ

∇⊥Φρ · ∇H.

The last term is in fact equal to zero since it is the integral of a Jacobian and Φρ is

constant on ∂Θρ. Hence
∫

Θρ

a(x)|∇wε|2 ≥
∫

Θρ

1

a(x)
|∇Φρ|2.
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Since |∇vε|2 ≥ |vε|2|∇wε|2 in Θρ, we derive that

∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1

a(x)
|∇Φρ|2 + T1 + 2T2

with

T1 =

∫

Θρ

(
|vε|2 − 1

) 1

a(x)
|∇Φρ|2 and T2 =

∫

Θρ

(
|vε|2 − 1

)
∇Φ⊥

ρ · ∇H.

Arguing as in [7] (see Step 4 in the proof of Theorem 6), it turns out that T1 = oR(1) and

T2 = oR(1) and therefore

∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1

a(x)
|∇Φρ|2 + oR(1). (3.143)

On the other hand, we have

∫

Θρ

1

a(x)
|∇Φρ|2 =

∫

∂Θρ

1

a(x)

∂Φρ

∂ν
Φρ = −2π

n∑

j=1

Dj Φρ(zj)

for any point zj ∈ ∂B(xε
j , ρ). By Lemma 3.8, we may write this equality as

∫

Θρ

1

a(x)
|∇Φρ|2 = −2π

n∑

j=1

Dj ΦR,ε(zj) + O(‖ΦR,ε − Φρ‖L∞(Θρ)) (3.144)

Using an adaptation of Lemma I.4 in [20] (see e.g. [15], Lemma 3.5), we derive that

‖ΦR,ε − Φρ‖L∞(Θρ) ≤
n∑

j=1

(
sup

∂B(xε
j ,ρ)

ΦR,ε − inf
∂B(xε

j ,ρ)
ΦR,ε

)
. (3.145)

Now we define for x ∈ BR,

ΨR,ε(x) = ΦR,ε(x) −
n∑

j=1

Dj a(xε
j) ln |x − xε

j|.

Since ΦR,ε satisfies (3.142), we easily derive that ΨR,ε verifies





div

(
1

a
∇ΨR,ε

)
= −

n∑

j=1

Dj a(xε
j)∇

(
1

a

)
· ∇

(
ln |x − xε

j|
)

in BR,

ΨR,ε = −
n∑

j=1

Dj a(xε
j) ln |x − xε

j| on ∂BR.

(3.146)

By elliptic regularity, we have (recall that all the xε
j ’s remain close to the origin)

‖ΨR,ε‖W 2,p(BR) ≤ CR,p for any 1 ≤ p < 2.
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In particular, ΨR,ε is uniformly bounded with respect to ε in C0,1/2(BR) and hence

sup
∂B(xε

j ,ρ)

ΨR,ε − inf
∂B(xε

j ,ρ)
ΨR,ε ≤ CR

√
ρ = oR(1).

Since |xε
j − xε

i | ≥ 8ρ, we have by Lemma 3.8,

sup
∂B(xε

j ,ρ)

(
n∑

i=1

Di a(xε
i ) ln |x − xε

i |
)

− inf
∂B(xε

j ,ρ)

(
n∑

i=1

Di a(xε
i ) ln |x − xε

i |
)

≤ ρ

n∑

i=1

a(xε
i ) sup

∂B(xε
j ,ρ)

|Di|
|x − xε

i |
≤ O(1),

(respectively ≤ o(1) if ρ
|xε

i−xε
j |
→ 0 as ε → 0 for any i 6= j). Coming back to (3.145), we

deduce that

‖ΦR,ε − Φρ‖L∞(Θρ) ≤ OR(1)

(respectively ≤ oR(1) if ρ
|xε

i−xε
j |

→ 0 as ε → 0 for any i 6= j). Inserting this estimate in

(3.144), we get that
∫

Θρ

1

a(x)
|∇Φρ|2 = − 2π

n∑

j=1

Dj ΦR,ε(zj) + OR(1)

= − 2π
n∑

j=1

Dj ΨR,ε(zj) − 2π
∑

i 6=j

DiDj a(xε
i ) ln |zj − xε

i |

+ 2π
n∑

j=1

D2
j a(xε

j)| ln ρ| + OR(1)

(respectively +oR(1) as ε → 0). Since ΨR,ε is uniformly bounded with respect to ε in

C0,1/2(BR), we have

|ΨR,ε(zj) − ΨR,ε(x
ε
j)| ≤ CR

√
ρ = oR(1).

By Lemma 3.8 and since |xε
j − xε

i | ≥ 8ρ, we derive

∣∣ ∑

i6=j

DiDj a(xε
i )(ln |zj − xε

i | − ln |xε
j − xε

i |)
∣∣ ≤

∑

i6=j

|Di| |Dj| ln
∣∣1 +

zj − xε
j

xε
j − xε

i

∣∣

≤
∑

i6=j

|Di| |Dj|
ρ

|xε
j − xε

i |
≤ O(1)

(respectively ≤ o(1) as ε → 0) and we conclude that
∫

Θρ

1

a(x)
|∇Φρ|2 = − 2π

n∑

j=1

Dj ΨR,ε(x
ε
j) − 2π

∑

i 6=j

DiDj a(xε
i ) ln |xε

j − xε
i |

+ 2π
n∑

j=1

D2
j a(xε

j)| ln ρ| + OR(1)

(respectively +oR(1) as ε → 0). Combining this estimate with (3.143), we obtain the

result. ¥
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Remark 3.12. It would be interesting to know if the estimates on ΨR,ε and ΦR,ε hold

independently on R when ε is small.

3.6.2 Lower estimate for Ea
ε

From Proposition 3.16 and Proposition 3.15, we derive the following lower bounds

estimating the contribution of any vortex.

Lemma 3.9. We have

Ea
ε (vε, BR) ≥ π

n∑

j=1

D2
j a(xε

j)| ln ρ| + π

n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
+ WR,ε + OR(1) (3.147)

and

Ea
ε (vε, BR) ≥ π

n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
+ O(1). (3.148)

Proof. By Proposition 3.16, it is sufficient to show that

Ea
ε (vε, B(xε

j, ρ)) ≥ π|Dj| a(xε
j) ln

ρ

ε
+ O(1)

which is equivalent to prove

1

2

∫

B(xε
j ,ρ)

|∇vε|2 +
a(xε

j)

2ε2
(1 − |vε|2)2 ≥ π|Dj| ln

ρ

ε
+ O(1) (3.149)

(we used that |a(x)−a(xε
j)| ≤ Cρ for x ∈ B(xε

j , ρ) and Ea
ε (vε, BR) ≤ C| ln ε|). We consider

the change of variable x̃ =
x − xε

j

ρ
and we set

ṽ(x̃) = vε(x) and ε̃ =
ε

ρ
√

a(xε
j)

.

From (iii) in Proposition 3.15 we have ṽ ≥ 1− 2
| ln ε| on ∂B1 and by (iv) in Proposition 3.15,

∫

∂B1

|∇ṽ|2
2

+
1

4ε̃2
(1 − |ṽ|2)2 = ρ

∫

∂B(xε
j ,ρ)

|∇vε|2
2

+
a(xε

j)

4ε2
(1 − |vε|2)2 ≤ C

and
1

2

∫

B1

|∇ṽ|2 +
1

2ε̃2
(1 − |ṽ|2)2 =

1

2

∫

B(xε
j ,ρ)

|∇vε|2 +
a(xε

j)

2ε2
(1 − |vε|2)2.

As in the proof of Lemma VI.1 in [7], we infer that for ε small enough,

1

2

∫

B1

|∇ṽ|2 +
1

2ε̃2
(1 − |ṽ|2)2 ≥ π|Dj| | ln ε̃| + O(1) = π|Dj| ln

ρ

ε
+ O(1)

and hence (3.149) holds. ¥
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3.6.3 Lower estimate for Fa
ε

We are now able to give some lower expansions for Fa
ε (vε,Dε).

Lemma 3.10. We have

Fa
ε (vε,Dε) ≥ π

n∑

j=1

D2
j a(xε

j)| ln ρ| + π

n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
− πΩ

2

n∑

j=1

a2(xε
j) Dj +

+ WR,ε + OR(1) (3.150)

and

Fa
ε (vε,Dε) ≥ π

n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
− πΩ

2

n∑

j=1

a2(xε
j) Dj + O(1). (3.151)

Proof. Consider the family of vortex ball {Bi}i∈Iε given in Proposition 3.7. As in the proof

of Proposition 3.15, we can find rε ∈ [R,
R+

√
a0

2
] such that (3.139) holds. We set

Î∗ =
{
i ∈ I∗, pi 6∈ Brε

}
and Î− =

{
i ∈ I−, pi 6∈ Brε

}
(3.152)

where I∗ and I− are defined in Section 4.4. By construction, we have

Bi ⊂ Dε \ Brε for any i ∈ Î∗ ∪ Î−.

Setting Ξε = Dε \
(⋃

i∈Î∗∪Î−
Bi ∪

⋃n
j=1 B(xε

j , ρ)
)
, we derive from Proposition 3.7, 1) in

Theorem 3.4 and Proposition 3.15, that for ε small enough,

|vε| ≥
1

2
in Ξε.

Arguing exactly as in the proof of Proposition 3.8 we obtain that

Ra
ε(vε, Ξε) =

πΩ

2

n∑

j=1

a2(xε
j) Dj +

πΩ

2

∑

i∈Î∗∪Î−

(
a2(pi) − ν2

ε | ln ε|−3
)
di + oR(1). (3.153)

Now we remark that
∣∣Ra

ε(vε, B(xε
j, ρ))

∣∣ ≤ CΩρ‖∇vε‖L2(Dε) = o(εβ| ln ε|3/2)

(here we use Proposition 3.11, 3.1.c) in Proposition 3.1 and 3.4.b) in Proposition 3.4)

and using Proposition 3.7, we deduce that

Fa
ε (vε,Dε) ≥ Ea

ε (vε, Brε) −Ra
ε(vε, Ξε) +

∑

i∈Î∗∪Î−

Fa
ε (vε, Bi) + oR(1)

≥ Ea
ε (vε, Brε) −

πΩ

2

n∑

j=1

a2(xε
j) Dj + π

∑

i∈Î∗∪Î−

a(pi)|di|
(
| ln ε| − Λ0 ln | ln ε|

)

− πΩ

2

∑

i∈Î∗∪Î−

(
a2(pi) − ν2

ε | ln ε|−3
)
di + oR(1). (3.154)
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Since pi 6∈ Brε for i ∈ Î∗ ∪ Î−, we have a(pi) ≪ a0 and we infer that for ε small enough,

π
∑

i∈Î∗∪Î−

a(pi)|di|
(
| ln ε| − Λ0 ln | ln ε|

)
− πΩ

2

∑

i∈Î∗∪Î−

(
a2(pi) − ν2

ε | ln ε|−3
)
di ≥ 0

which leads to (since rε ≥ R)

Fa
ε (vε,Dε) ≥ Ea

ε (vε, BR) − πΩ

2

n∑

j=1

a2(xε
j) Dj + oR(1). (3.155)

Combining (3.155) and (3.147) we obtain (3.150). In the same way, (3.155) with R =
√

a0

2

and (3.148) yield (3.151). ¥

3.7 Proof of Theorem 3.1

In this section, we are going to prove Theorem 3.1 in terms of the map vε. We write

Ω =
2

a0

(| ln ε| + ω(ε) ln | ln ε|) (3.156)

so that assumption (3.104) can be reformulated as ω(ε) ≤ ω1.

3.7.1 Vortices have degree one

Lemma 3.11. We have

Dj = +1 for j = 1, . . . , n,

for ε sufficiently small.

Proof. By (3.140) we may use the estimates in Section 6 with R =
√

a0

2
. Combining

Proposition 3.6 and Lemma 3.10, we get that

π

n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
−πa0Ω

2

n∑

j=1

a(xε
j) Dj ≤ π

n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
−πΩ

2

n∑

j=1

a2(xε
j) Dj ≤ O(1)

Using (3.156), we derive
n∑

j=1

|Dj| a(xε
j) ln

ρ

ε
≤

∑

Dj>0

|Dj| a(xε
j)| ln ε| + o(| ln ε|)

Since ρ ≥ εµ, it yields (recall that Dj 6= 0)

(1 − µ)
∑

Dj<0

|Dj| a(xε
j)| ln ε| ≤ µ

∑

Dj>0

|Dj| a(xε
j)| ln ε| + o(| ln ε|).

For ε small we have a0 ≥ a(xε
j) ≥ a0

2
and therefore (using Lemma 3.8)

∑

Dj<0

|Dj| ≤
2µ

1 − µ

∑

Dj>0

|Dj| + o(1) ≤ Cµ

1 − µ
+ o(1).
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Choosing µ and then ε sufficiently small, we obtain
∑

Dj<0 |Dj| ≡ 0, i.e.,

Dj > 0 for any j = 1, . . . , n.

Since all the xε
j ’s remain close to the origin, we have for ε small enough,

−π
∑

i6=j

DiDj a(xε
j) ln |xε

i − xε
j| ≥ O(1)

and hence W√
a0
2

,ε
≥ −π

∑n
j=1 DjΨ√

a0
2

,ε
(xε

j) = O(1). We deduce from Lemma 3.6 and

Lemma 3.10,

π
n∑

j=1

D2
j a(xε

j)| ln ρ| + π
n∑

j=1

Dj a(xε
j) ln

ρ

ε
− πΩ

2

n∑

j=1

a2(xε
j) Dj ≤ O(1).

As previously, we derive from (3.156),
n∑

j=1

(D2
j − Dj) a(xε

j)| ln ρ| ≤ o(| ln ε|).

Since ρ ≤ εµ and the xε
j ’s are closed to 0,

µ

n∑

j=1

(D2
j − Dj) ≤ o(1)

which leads to Dj = +1 for ε sufficiently small. ¥

We now derive an easy estimate for the energy.

Corollary 3.1. We have

Fηε
ε (vε) ≥ π

n∑

j=1

a(xε
j)| ln ε| − πΩ

2

n∑

j=1

a2(xε
j) + WR,ε + OR(1).

Proof. This estimate follows directly from Lemma 3.10, Lemma 3.11, (3.85) and (3.88).¥

3.7.2 The subcritical case

In this section, we extend Proposition 3.9 to higher rotational speeds which remain

below Ω1.

Proposition 3.17. Assume that ω1 < 0. Then the conclusion of Proposition 3.9 holds.

Proof. We fix
√

a0

2
< R0 <

√
a0. We get from Corollary 3.1 with R =

√
a0

2
and (3.84) that

π

n∑

j=1

a(xε
j)| ln ε| − πa0Ω

2

n∑

j=1

a(xε
j) ≤ π

n∑

j=1

a(xε
j)| ln ε| − πΩ

2

n∑

j=1

a2(xε
j) ≤ O(1)

Using (3.156), we obtain that

−ω1 na0

2
ln | ln ε| ≤ −ω1

n∑

j=1

a(xε
j) ln | ln ε| ≤ O(1)
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and then n ≤ C
|ω1| ln | ln ε| which implies that n = 0 for ε small enough. Therefore we have

J̃ε = ∅ i.e.,

|vε| ≥
1

2
in B √

a0
2

.

By 1) in Theorem 3.4, for ε < εR0 we have

|vε| ≥
1

2
in BR0 .

Using the notation (3.152), we infer from Proposition 3.6 and (3.154),

π
∑

i∈Î∗∪Î−

a(pi)|di|
(
| ln ε| − Λ0 ln | ln ε|

)
− πΩ

2

∑

i∈Î∗∪Î−

(
a2(pi) − ν2

ε | ln ε|−3
)
di ≤ O(| ln ε|−1).

Since a(pi) ≪ a0 for i ∈ Î∗ ∪ Î−, we infer that exists c > 0 independent of ε such that

c
∑

i∈Î∗∪Î−

a(pi)|di|| ln ε| ≤ π
∑

i∈Î∗∪Î−

a(pi)|di|
(
| ln ε|−Λ0 ln | ln ε|

)
− πΩ

2

∑

i∈Î∗∪Î−

(
a2(pi)−ν2

ε | ln ε|−3
)
di

and since a(x) ≥ | ln ε|−3/2 in Dε, we finally obtain

∑

i∈Î∗∪Î−

|di| ≤ O(| ln ε|−1/2).

Hence
∑

i∈Î∗∪Î−
|di| = 0 for ε sufficiently small and we conclude from (3.153),

Ra
ε(vε,Dε \ ∪i∈Î∗∪Î−

Bi) = o(1).

Then the rest of the proof follows as in the proof of Proposition 3.9. ¥

3.7.3 The supercritical case

From now, we assume that

ω(ε) ≥ δ > 0

for some constant δ independent of ε. We are going to prove that vortices appear in this

regime. We will use explicit test functions constructed in Section 3.8. We start with :

Lemma 3.12. vε has at least one vortex (i.e., n ≥ 1) for any ε sufficiently small.

Proof. By Theorem 3.5 in Section 3.8 (with d = 1), there exists for ε small enough, ũε ∈ H
such that ‖ũε‖L2(R2) = 1 and

Fε(ũε) ≤ Eε(ηε) − πa0ω(ε) ln | ln ε| + O(1).



112 Chapitre 3. Vortices in a two dimensional rotating Bose-Einstein condensate

By the minimizing property of uε and Lemma 3.4, we have Eε(ηε) + Fηε
ε (vε) = Fε(uε) ≤

Fε(ũε) and then we deduce that

Fηε
ε (vε) ≤ −πa0ω(ε) ln | ln ε| + O(1).

From here, it turns out by Corollary 3.1 with R =
√

a0

2
(recall that W√

a0
2

,ε
≥ O(1)),

−πa0ω(ε) ln | ln ε| + O(1) ≥ Fηε
ε (vε) ≥ π

n∑

j=1

a(xε
j)| ln ε| − πΩ

2

n∑

j=1

a2(xε
j)

≥ π

n∑

j=1

a(xε
j)

(
−ω(ε) ln | ln ε| + Ω|xε

j|2
2

)

≥ −πa0ω(ε)n ln | ln ε|.

Hence n ≥ 1 + o(1) and the conclusion follows. ¥

We shall use this first development of energy :

Proposition 3.18. We have

Fηε
ε (vε) = −πa0ω(ε)n ln | ln ε| + πa0

2
(n2 − n) ln | ln ε| + O(1)

Proof. In the case n = 1, we have already proved the result in the proof of the pre-

vious lemma. Then we may assume that n ≥ 2. Since ‖Ψ√
a0
2

,ε
‖∞ = O(1), we get from

Corollary 3.1 with R =
√

a0

2
,

Fηε
ε (vε) ≥ π

n∑

j=1

a(xε
j)

(
| ln ε| −

n∑

i=1
i6=j

ln |xε
i − xε

j| −
Ω

2
a(xε

j)

)
+ O(1)

≥ π

n∑

j=1

a(xε
j)

(
− ω(ε) ln | ln ε| −

n∑

i=1
i6=j

ln |xε
i − xε

j| +
Ω

2
|xε

j|2
)

+ O(1). (3.157)

By Proposition 3.5, Fηε
ε (vε) ≤ o(1) and therefore

−
∑

i6=j

ln |xε
i − xε

j| +
Ω

2

n∑

j=1

|xε
j|2 ≤ C ln | ln ε|

On the other hand −∑
i 6=j ln |xε

i − xε
j| ≥ O(1) so that |xε

j|2 ≤ C
(
ln | ln ε|

)
| ln ε|−1 and

hence

π

n∑

j=1

a(xε
j)

(
− ω(ε) ln | ln ε| −

n∑

i=1
i6=j

ln |xε
i − xε

j| +
Ω

2
|xε

j|2
)

= (3.158)

= −πa0ω(ε)n ln | ln ε| − πa0

∑

i6=j

ln |xε
i − xε

j| +
πa0Ω

2

n∑

j=1

|xε
j|2 + o(1)
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Setting r = maxj |xε
j|, we remark that

−
∑

i6=j

ln |xε
i −xε

j|+
Ω

2

n∑

j=1

|xε
j|2 ≥ −(n2−n) ln 2r+

Ωr2

2
≥ n2 − n

2
ln | ln ε|+O(1). (3.159)

Combining this estimate with (3.157) and (3.158), we finally obtain

Fηε
ε (vε) ≥ −πa0ω(ε)n ln | ln ε| + πa0

2
(n2 − n) ln | ln ε| + O(1). (3.160)

By Theorem 3.5 in Section 8, there exists ũε ∈ H such that ‖ũε‖L2(R2) = 1 and

Fε(ũε) ≤ Eε(ηε) − πa0ω(ε)n ln | ln ε| + πa0

2
(n2 − n) ln | ln ε| + O(1).

Since Eε(ηε) +Fηε
ε (vε) = Fε(uε) ≤ Fε(ũε), we obtain the reverse inequality in (3.160) and

the proof is complete. ¥

Now we are in position to derive the critical rotational velocities for which vε has

exactly d vortices.

Proposition 3.19. Assume that (d − 1) + δ ≤ ω(ε) ≤ d − δ for some integer d ≥ 1 and

0 < δ ≪ 1. Then, for ε sufficiently small, vε has exactly d vortices of degree one, i.e.,

n = d.

Proof. We start with proving that n ≥ d. The case d = 1 is given by Lemma 3.12. Now

we assume that d ≥ 2. By Proposition 3.18 and using the test functions in Theorem 3.5

as in the proof of Proposition 3.18, we infer that

−πa0ω(ε)n ln | ln ε|+πa0

2
(n2−n) ln | ln ε|≤−πa0ω(ε)d ln | ln ε|+πa0

2
(d2−d) ln | ln ε|+O(1).

Hence we have

−ω(ε)n +
n2 − n

2
≤ −ω(ε)d +

d2 − d

2
+ o(1)

and it yields

ω(ε)(d − n) ≤ (d − n)(d + n − 1)

2
+ o(1). (3.161)

If assume that n ≤ d − 1, it would lead to

(d − 1) + δ ≤ d + n − 1

2
+ o(1) ≤ d − 1 + o(1)

which is impossible for ε small enough.

Assume now that n ≥ d + 1. As previously we infer that (3.161) holds and therefore

d − δ ≥ d + n − 1

2
+ o(1) ≥ d + o(1)

which is also impossible for ε small. ¥
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3.7.4 Vortex location and final expansion of the energy

In this section, we assume that (d− 1) + δ ≤ ω(ε) ≤ d− δ for some integer d ≥ 1 and

0 < δ ≪ 1. By Proposition 3.19, we may assume that vε has exactly d vortices. We obtain

here a precise information on their location.

Lemma 3.13. Under the assumptions above, we have

|xε
j| ≤

C

| ln ε|1/2
for j = 1, . . . , d

and for d ≥ 2,

|xε
i − xε

j| ≥
C

| ln ε|1/2
for i 6= j.

Proof. Combining Proposition 3.18, (3.157) and (3.158), we get that

−πa0

∑

i6=j

ln |xε
i − xε

j| +
πa0Ω

2

d∑

j=1

|xε
j|2 ≤

πa0

2
(d2 − d) ln | ln ε| + O(1)

Hence
d∑

j=1

(
−

∑

i6=j

ln
(√

| ln ε| |xε
i − xε

j|
)

+
Ω|xε

j|2
2

)
≤ O(1)

and the conclusion follows. ¥

Since ρ
|xε

i−xε
j |

= o(1) and Dj = 1, we may now improve the lower estimates obtained in

Lemma 3.9 :

Lemma 3.14. We have

Ea
ε (vε, BR) ≥ πa0

d∑

j=1

a(xε
j)| ln ε| + WR,ε(x

ε
1, . . . , x

ε
d) +

πa0d

2
ln a0 + a0dγ0 + oR(1)

where γ0 is an absolute constant.

Proof. Since ρ
|xε

i−xε
j |

= o(1) and Dj = 1, we obtain by Proposition 3.16,

1

2

∫

Θρ

a(x)|∇vε|2 ≥ π

d∑

j=1

a(xε
j)| ln ρ| + WR,ε(x

ε
1, . . . , x

ε
d) + oR(1) (3.162)

and it remains to estimate Ea
ε (vε, B(xε

j , ρ)) for j = 1, . . . , d. We proceed as follows. Since

Dj = 1, we may write on ∂B(xε
j, ρ) in polar coordinates with center xε

j ,

vε(x) = |vε(x)| ei(θ+ψj(θ)), θ ∈ [0, 2π]
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where ψj ∈ H1([0, 2π], R) and ψj(0) = ψj(2π) = 0. Then in each disc B(xε
j , 2ρ), we

consider the map v̂ε defined by

v̂ε(x) = vε(x) if x ∈ B(xε
j , ρ)

and if x ∈ B(xε
j , 2ρ) \ B(xε

j , ρ),

v̂ε(x) =
(r − ρ

ρ
+

2ρ − r

ρ
|vε(x

ε
j + ρ eiθ)|

)
exp i

(
θ + ψj(θ)

2ρ − r

ρ
+ ψj(0)

ρ − r

ρ

)
.

Exactly as in the proof of Proposition 5.2 in [78, 79], we prove that

∣∣Ea
ε (v̂ε, B(xε

j , 2ρ) \ B(xε
j , ρ)) − πa(xε

j) ln 2
∣∣ = o(1). (3.163)

Since |a(x) − a(xε
j)| = O(ρ) on B(xε

j , 2ρ), we may write

Ea
ε (v̂ε, B(xε

j , 2ρ)) =
a(xε

j)

2

∫

B(xε
j ,2ρ)

|∇v̂ε|2 +
a(xε

j)

2ε2
(1 − |v̂ε|2)2 + o(1). (3.164)

Now we should recall a result in [20]. For ε̃ > 0, consider

I(ε̃) = Min
u∈C

1

2

∫

B(0,1)

|∇u|2 +
1

2ε̃2
(1 − |u|2)2

where

C =

{
u ∈ H1(B(0, 1), C), u(x) =

x

|x| on ∂B(0, 1)

}
.

Then we have

lim
ε̃→0

(
I(ε̃) + π ln ε̃

)
≡ γ0. (3.165)

Since v̂ε(x) =
x−xε

j

|x−xε
j |

eiψj(0) on ∂B(xε
j , 2ρ), we obtain by scaling

1

2

∫

B(xε
j ,2ρ)

|∇v̂ε|2 +
a(xε

j)

2ε2
(1 − |v̂ε|2)2 ≥ I


 ε

2ρ
√

a(xε
j)




= π ln
ρ

ε
+ π ln 2 +

π

2
ln a(xε

j) + γ0 + o(1).

With (3.163) and (3.164), we derive that for j = 1, . . . , d,

Ea
ε (vε, B(xε

j, ρ)) ≥ πa(xε
j) ln

ρ

ε
+

πa(xε
j)

2
ln a(xε

j) + a(xε
j)γ0 + o(1)

≥ πa(xε
j) ln

ρ

ε
+

πa0

2
ln a0 + a0γ0 + o(1).

Combining this estimate with (3.162), we get the result. ¥
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Proposition 3.20. Setting x̃ε
j =

√
Ω xε

j for j = 1, . . . , d, as ε → 0 the x̃ε
j’s tend to

minimize the renormalized energy w given by

w(b1, . . . , bd) = −πa0

∑

i6=j

ln |bi − bj| +
πa0

2

d∑

j=1

|bj|2.

Moreover, we have

Fηε
ε (vε) = −πa0ω(ε)d ln | ln ε|+πa0

2
(d2−d) ln | ln ε|+Min

b∈R2d
w(b1, . . . , bd)+Qd+o(1) (3.166)

where Qd =
πa0

2
(d2 − d) ln 2 + πa0d ln a0 −

πa0d
2

2
+ a0dγ0.

Proof. Step 1. From Lemma 3.14 and (3.155), we infer that for any [
√

a0/2,
√

a0 ),

Fa
ε (vε,Dε) ≥ π

n∑

j=1

a(xε
j)| ln ε| − πΩ

2

n∑

j=1

a2(xε
j) + WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1).

By (3.85), it implies

Fηε
ε (vε) ≥ π

n∑

j=1

a(xε
j)| ln ε| − πΩ

2

n∑

j=1

a2(xε
j) + WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1).

Expanding Ω and writing a(xε
j) = a0 − |xε

j|2, we derive that

Fηε
ε (vε) ≥ π

n∑

j=1

a(xε
j)

(
−ω(ε) ln | ln ε| + Ω|xε

j|2
2

)
+ WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1)

and by Lemma 3.13, it yields

Fηε
ε (vε) ≥ −πa0ω(ε)d ln | ln ε|+πa0

2

n∑

j=1

Ω|xε
j|2+WR,ε+

πa0d

2
ln a0+a0dγ0+oR(1). (3.167)

Step 2. By Lemma 3.13, we may write

WR,ε = −πa0

∑

i6=j

ln |xε
i − xε

j| − π

d∑

j=1

ΨR,ε(x
ε
j) + o(1). (3.168)

By (3.146) and since Dj = 1 for any j, the function ΨR,ε satisfies the equation





div

(
1

a
∇ΨR,ε

)
= −

d∑

j=1

a(xε
j)∇

(
1

a

)
· ∇

(
ln |x − xε

j|
)

in BR,

ΨR,ε = −
d∑

j=1

a(xε
j) ln |x − xε

j| on ∂BR.

(3.169)
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Now we remark that in BR, we have

−
d∑

j=1

a(xε
j)∇

(
1

a

)
· ∇

(
ln |x − xε

j|
)

=
−2a0d

a2(x)
+ 2

d∑

j=1

( |xε
j|2

a2(x)
− a(xε

j)x
ε
j · (x − xε

j)

a2(x)|x − xε
j|2

)

=
−2a0d

a2(x)
+ fε(x).

Moreover, for any p ∈ [1, 2) fixed, we have by Lemma 3.13,

‖fε‖Lp(BR) = oR(1). (3.170)

We also have by Lemma 3.13,

∥∥da0 ln R −
d∑

j=1

a(xε
j) ln |x − xε

j|
∥∥

C1(∂BR)
= o(1). (3.171)

Let us now define Ψ∗
R to be the solution of the equation





div

(
1

a
∇Ψ∗

R

)
=

−2da0

a2(x)
in BR,

Ψ∗
R = −da0 ln R on ∂BR.

(3.172)

It follows by (3.170), (3.171) and classical results that

‖ΨR,ε − Ψ∗
R‖L∞(BR) = oR(1). (3.173)

We are going to compute explicitly the function Ψ∗
R. Since a(x) is a radial function, it

follows by uniqueness that Ψ∗
R is radial. Setting Ψ∗

R(x) = g(|x|), we have to solve the

equation (
g′

a(r)

)′
+

g′

ra(r)
=

−2da0

a2(r)
in (0, R) (3.174)

together with the conditions

g(R) = −da0 ln R and g′(0) = 0.

Multiplying (3.174) by r and integrating the equation, we obtain that

rg′(r)

a(r)
= −2da0

∫ r

0

sds

a2(s)

and it yields

g(r) = −2da0

∫ r

0

(∫ t

0

a(t)s

ta2(s)
ds

)
dt + c

where c denotes the constant determined for g to satisfy the condition g(R) = −da0 ln R.

Therefore we found

g(r) =
d(R2 − r2)

2
− da0 ln(R)
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and consequently

Ψ∗
R(x) =

d(R2 − |x|2)
2

− da0 ln(R).

Hence we may write

lim
ε→0

{
−π

d∑

j=1

Ψ∗
R(xε

j)

}
= −πa0d

2

2
+

πa0d
2

2
ln a0 + O

(
|R −√

a0|
)
.

By (3.168), it follows

lim
ε→0

{
WR,ε(x

ε
1, . . . , x

ε
d) + πa0

∑

i6=j

ln |xε
i − xε

j|
}

= −πa0d
2

2
+

πa0d
2

2
ln a0+

+ O
(
|R −√

a0|
)
. (3.175)

Step 3. We derive from (3.167) and (3.175) that

lim inf
ε→0

{
Fηε

ε (vε) + πa0ω(ε)d ln | ln ε| + πa0

∑

i6=j

ln |xε
i − xε

j| −
πa0

2

n∑

j=1

Ω|xε
j|2

}
≥

≥ −πa0d
2

2
+

πa0d
2

2
ln a0 +

πa0d

2
ln a0 + a0dγ0 + O

(
|R −√

a0|
)
.

Setting x̃ε
j =

√
Ω xε

j for j = 1, . . . , d, we deduce

lim inf
ε→0

{
Fηε

ε (vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε| − w(x̃ε

1, . . . , x̃
ε
d)

}
≥

≥ Qd + O
(
|R −√

a0|
)

Letting R → √
a0, we finally conclude that

lim inf
ε→0

{
Fηε

ε (vε)+πa0ω(ε)d ln | ln ε|− πa0

2
(d2 −d) ln | ln ε|−w(x̃ε

1, . . . , x̃
ε
d)

}
≥ Qd (3.176)

and hence

lim inf
ε→0

{
Fηε

ε (vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≥

≥ Min
b∈R2d

w(b1, . . . , bd) + Qd. (3.177)

Step 4. End of the proof. Let b̂ = (b̂1, . . . , b̂d) ∈ R
2d be a minimizing configuration for the

renormalized energy w, i.e.,

w(b̂1, . . . , b̂d) = Min
b∈R2d

w(b1, . . . , bd) (3.178)

(and therefore bi 6= bj for i 6= j). By Theorem 3.5 in Section 8, for any δ′ > 0, there exists

(ũε)ε>0 ⊂ H such that ‖ũε‖L2(R2) = 1 and

lim sup
ε→0

{
Fε(ũε)−Eε(ηε)+πa0ω(ε)d ln | ln ε|−πa0

2
(d2−d) ln | ln ε|

}
≤ w(b̂1, . . . , b̂d)+Qd+δ′
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As in the proof of Proposition 3.18, Fε(uε) ≤ Fε(ũε) implies

lim sup
ε→0

{
Fηε

ε (vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤ w(b̂1, . . . , b̂d) + Qd + δ′.

Letting δ′ → 0, we infer from (3.178) that

lim sup
ε→0

{
Fηε

ε (vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤

≤ Min
b∈R2d

w(b1, . . . , bd) + Qd. (3.179)

Matching (3.177) with (3.179), we conclude

lim
ε→0

{
Fηε

ε (vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
= Min

b∈R2d
w(b1, . . . , bd) + Qd.

Coming back to (3.176), we are led to

Min
b∈R2d

w(b1, . . . , bd) + Qd − lim sup
ε→0

w(x̃ε
1, . . . , x̃

ε
d) ≥ Qd

and therefore lim
ε→0

w(x̃ε
1, . . . , x̃

ε
d) = Min

b∈R2d
w(b1, . . . , bd) which ends the proof. ¥

Remark 3.13. In the case d = 1, the expansion of the energy takes the simpler form

Fηε
ε (vε) = −πa0ω(ε) ln | ln ε| + Q1 + o(1)

with Q1 = πa0 ln a0 −
πa0

2
+ a0γ0 and the renormalized energy w reduces to

w(b) =
πa0|b|2

2
.

In particular, if xε denotes the single vortex of vε, we have
√

Ω xε → 0 as ε goes to 0.

3.8 Upper bound of the energy

In this section, we give the construction of the test functions used in the previous

section. For any integer d ≥ 1, we consider an arbitrary configuration of d distinct points

b = (b1, . . . , bd) in R
2. We assume that Ω ≤ 2

a0

(
| ln ε| + ω1 ln | ln ε|

)
for some constant

ω1 ∈ R. Using notation (3.156), we have

Theorem 3.5. For any δ′ > 0, there exists (ũε)ε>0 ⊂ H such that ‖ũε‖L2(R2) = 1 and

lim sup
ε→0

{
Fε(ũε)−Eε(ηε)+πa0ω(ε)d ln | ln ε|−πa0

2
(d2−d) ln | ln ε|

}
≤ w(b1, . . . , bd)+Qd+δ′

where the constant Qd is defined in Proposition 3.20.
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3.8.1 First construction

Using a slight modification of a result of N. André and I. Shafrir (see [12], Lemma 2.6),

we obtain the following.

Proposition 3.21. For any δ′ > 0, there exists (v̂ε)ε>0 such that ηεv̂ε ∈ H and

lim sup
ε→0

{
Fηε

ε (v̂ε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤ w(b1, . . . , bd) + Qd + δ′.

Proof. Step 1. Let σ > 0 and κ be two small parameters that we will choose later. We

define in D the function aσ by

aσ(x) =





a(x) if |x| ≤ √
a0 − σ,

−2
√

a0 − σ |x| + 2a0 − σ if
√

a0 − σ ≤ |x| ≤ √
a0.

It turns out that aσ ∈ C1(D), aσ ≥ a and aσ ≥ Cσ2 in D for some positive constant C.

We infer from the supersolution of (3.23) given by (3.31) that exists εσ > 0 such that for

any 0 < ε < εσ,

η2
ε(x) ≤ aσ(x) for x ∈ D. (3.180)

Step 2. We consider Φσ : D → R the solution of the equation





div(
1

aσ

∇Φσ) = 2πd δ0 in D,

Φσ = 0 on ∂D.

(3.181)

By the results in Chap. I of [20], we may find a map vσ
0 ∈ C2(D \ {0}, S1) satisfying

vσ
0 ∧∇vσ

0 =
1

aσ

∇⊥Φσ in D \ {0}. (3.182)

For ε small, we set Θκ = D \ B(0, κ−1Ω−1/2). By (3.181) and (3.182), we have

1

2

∫

Θκ

aσ|∇vσ
0 |2 =

1

2

∫

Θκ

1

aσ

|∇Φσ|2 = −
∫

∂B(0,κ−1Ω−1/2)

1

a

∂Φσ

∂ν
Φσ

= −
∫

∂B(0,κ−1Ω−1/2)

1

a

(∂Ψσ

∂ν
+

a0d

|x|
)(

Ψσ + a0d ln |x|
)

(3.183)

where Ψσ(x) = Φσ(x) − a0d ln |x|. Notice that Ψσ is of class C2 in D since it satisfies the

equation 



div(
1

aσ

∇Ψσ) = fσ(x) in D,

Ψσ = −a0d

2
ln a0 on ∂D

(3.184)
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with

fσ(x) = −a0d∇
( 1

aσ(x)

)
· x

|x|2 =





−2a0d

a2
σ(x)

if |x| ≤ √
a0 − σ,

−2a0d

a2
σ(x)

√
a0 − σ

|x| otherwise.

Arguing as in Step 3 in the proof of Proposition 3.20, we infer that

Ψσ(x) = −
∫ √

a0

|x|

aσ(t)

t

(∫ t

0

fσ(s)sds

)
dt − a0d

2
ln a0.

A straightforward computation gives for |x| ≤ √
a0 − σ,

∇Ψσ(x) = −dx and Ψσ(x) =
d(a0 − |x|2)

2
− a0d

2
ln a0 + O(σ).

By (3.183), we conclude that choosing σ small enough,

lim
ε→0

{
1

2

∫

Θκ

aσ|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}
= −πa0d

2

2
+

πa0d
2

2
ln a0 +

δ′

2
(3.185)

In R
2 \ B(0, κ−1Ω−1/2), we define

v̂ε(x) =





vσ
0 (x) if x ∈ Θκ,

vσ
0 (
√

a0
x

|x|) if x ∈ R
2 \ D.

Since v̂ε does not depend on ε in R
2 \Dε (for ε small enough) and |v̂ε| = 1 in R

2 \Dε, we

derive from (3.32) and 3.1.b) in Proposition 3.1,

lim
ε→0

Eηε
ε (v̂ε, R

2 \ Dε) = 0 (3.186)

From (3.180), (3.185), (3.186) and the fact that vσ
0 is S1-valued in R

2 \ B(0, κ−1Ω−1/2),

we deduce that

lim sup
ε→0

{
Eηε

ε (v̂ε, R
2 \ B(0, κ−1Ω−1/2))−πa0d

2 ln(κΩ1/2)
}
≤

≤ −πa0d
2

2
+

πa0d
2

2
ln a0 +

δ′

2
. (3.187)

Step 3. We are going to extend v̂ε to B(0, κ−1Ω−1/2). As in [20], we may write in a

neighborhood of 0 (using polar coordinates),

vσ
0 (x) = exp

(
i(dθ + ψσ(x))

)
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where ψσ is a smooth function in that neighborhood. We choose κ sufficiently small such

that max |bj| ≤ 1/4κ . We set b
(ε)
j = Ω−1/2 bj. We proceed exactly as in in the proof of

Lemma 2.6 in [12]. In Aκ,ε = B(0, κ−1Ω−1/2) \ B(0, (2κ)−1Ω−1/2), we write

eiψσ(0)

d∏

j=1

x − b
(ε)
j

|x − b
(ε)
j |

= exp
(
i(dθ + φε(x))

)

for a smooth function φε satisfying

|∇φε(x)| = O(κ2Ω1/2) and |φε(x) − ψσ(0)| = O(κ2) for x ∈ Aκ,ε.

We define in Aκ,ε,

v̂ε(x) = exp
(
i(dθ + ψ̂ε(x))

)

with

ψ̂ε(x) =
(
2 − 2κΩ1/2|x|

)
φε(x) +

(
2κΩ1/2|x| − 1

)
ψσ(x).

As in [12], we get that

lim sup
ε→0

{
1

2

∫

Aκ,ε

aσ|∇v̂ε|2 − πa0d
2 ln 2

}
≤ O(κ2).

and hence (using (3.180))

lim sup
ε→0

{
Eηε

ε (v̂ε, Aκ,ε) − πa0d
2 ln 2

}
≤ O(κ2). (3.188)

Next we define v̂ε in

Ξκ,ε = B(0, (2κ)−1Ω−1/2) \ ∪d
j=1B(b

(ε)
j , 2κΩ−1/2)

by

v̂ε(x) = eiψσ(0)

d∏

j=1

x − b
(ε)
j

|x − b
(ε)
j |

.

Once more as in [12], we have (using (3.180))

lim sup
ε→0

Eηε
ε (v̂ε, Ξκ,ε) ≤ lim sup

ε→0

1

2

∫

Ξκ,ε

aσ|∇v̂ε|2

≤ πa0(d
2 + d) ln

1

2κ
− πa0

∑

i6=j

ln |bi − bj| + O(κ). (3.189)

Finally, in each B
(ε)
j := B(b

(ε)
j , 2κΩ−1/2), we set

v̂ε(x) = eiψσ(0)w̃j
ε

(
x − b

(ε)
j

2κΩ−1/2

)
(3.190)



3.8. Upper bound of the energy 123

where w̃j
ε realizes

Min

{
1

2

∫

B(0,1)

|∇v|2 +
1

2ε̂2
(1 − |v|2)2 , v(y) =

d∏

i=1

2κy + bj − bi

|2κy + bj − bi|
on ∂B(0, 1)

}
(3.191)

with

ε̂ =
ε

2κ
√

a0 Ω−1/2
.

As in the proof of Lemma 2.3 in [12], we derive

lim
ε→0

{
1

2

∫

B(0,1)

|∇w̃j
ε|2 +

1

2ε̂2
(1 − |w̃j

ε|2)2 − π| ln ε̂|
}

= γ0 + X(κ)

where γ0 is defined in (3.165) and X(κ) denotes a quantity satisfying X(κ) → 0 as κ → 0.

By scaling, we then obtain

lim
ε→0

{
1

2

∫

B
(ε)
j

|∇v̂ε|2 +
a0

2ε2
(1 − |v̂ε|2)2 − π ln

2κΩ−1/2

ε

}
=

π

2
ln a0 + γ0 + X(κ).

Notice that in B
(ε)
j , we have

aσ(x) = a(x) ≤ a0 − (| ln ε| + ω1 ln | ln ε|)−1 min
y∈B(bj ,2κ)

a0|y|2
2

and therefore

lim sup
ε→0

{ 1

2

∫

B
(ε)
j

aσ|∇v̂ε|2 +
a0aσ

2ε2
(1 − |v̂ε|2)2 − πa0 ln

2κΩ−1/2

ε

}
≤

≤ πa0

2
ln a0 + a0γ0 −

πa0|bj|2
2

+ X(κ)

and we deduce (using (3.180))

lim sup
ε→0

{
Eηε

ε (v̂ε, B
(ε)
j ) − πa0 ln

2κΩ−1/2

ε

}
≤ πa0

2
ln a0 + a0γ0 −

πa0|bj|2
2

+ X(κ). (3.192)

Combining (3.187), (3.188), (3.189) and (3.192), we conclude that choosing κ small en-

ough,

lim sup
ε→0

{
Eηε

ε (v̂ε) − πa0d| ln ε|−πa0

2
(d2 − d) ln | ln ε|

}
≤ (3.193)

≤ −πa0

∑

i 6=j

ln |bi − bj| −
πa0

2

d∑

j=1

|bj|2 + Qd + δ′.

Step 4. Now we are going to estimate Rηε
ε (v̂ε). We have

|Rηε
ε (v̂ε, R

2 \ Dε)| ≤ CΩ

(∫

R2\Dε

|x|2η2
ε

)1/2 (
Eηε

ε (v̂ε, R
2 \ Dε)

)1/2
(3.194)
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and by 3.1.b) in Proposition 3.1, (3.32) and (3.186), we derive

lim
ε→0

∣∣Rηε
ε (v̂ε) −Rηε

ε (v̂ε,Dε)
∣∣ = 0. (3.195)

By the results in Chap. IX in [20], for ε̂ sufficiently small, for j = 1, . . . , d there exists

exactly one disc D̂j
ε ⊂ B(0, 1) with diam(D̂j

ε) ≤ Cε̂ such that |w̃j
ε| ≥ 1/2 in B(0, 1)\D̂j

ε. By

scaling, we infer that exist exactly d discs D1
ε , . . . , D

d
ε with Dj

ε ⊂ B
(ε)
j and diam(Dj

ε) ≤ Cε

such that

|v̂ε| ≥
1

2
in Dε \ ∪d

j=1D
j
ε.

By (3.192) we have

∣∣Rηε
ε (v̂ε,∪d

j=1D
j
ε)

∣∣ ≤ CΩ ε

d∑

j=1

(
Eηε

ε (v̂ε, B
(ε)
j )

)1/2 →
ε→0

0,

and by (3.195), it leads to

lim
ε→0

∣∣Rηε
ε (v̂ε) −Rηε

ε (v̂ε,Dε \ ∪d
j=1D

j
ε)

∣∣ = 0.

Arguing as in the proof of Proposition 3.6, we infer that

lim
ε→0

∣∣Rηε
ε (v̂ε,Dε \ ∪d

j=1D
j
ε) −Ra

ε(v̂ε,Dε \ ∪d
j=1D

j
ε)

∣∣ = 0

and hence

lim
ε→0

∣∣Rηε
ε (v̂ε) −Ra

ε(v̂ε,Dε \ ∪d
j=1D

j
ε)

∣∣ = 0. (3.196)

To compute Ra
ε(v̂ε,D \ ∪d

j=1D
j
ε), we may proceed as in the proof of Proposition 3.8(here

we use that Eηε
ε (v̂ε) ≤ C| ln ε| by (3.193)). It yields

lim
ε→0

(
Ra

ε(v̂ε,Dε \ ∪d
j=1D

j
ε) −

πΩ

2

d∑

j=1

a2(b
(ε)
j )

)
= 0

since deg(v̂ε/|v̂ε|, ∂Dj
ε) = +1 for j = 1, . . . , d. Expanding a2(b

(ε)
j ) and Ω, we deduce from

(3.196) that

lim
ε→0

(
Rηε

ε (v̂ε) − πa0d | ln ε| − πa0ω(ε)d ln | ln ε|
)

= −πa0

d∑

j=1

|bj|2. (3.197)

Combining (3.193) and (3.197), we obtain the announced result. ¥
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3.8.2 Proof of Theorem 3.5

We consider the map v̂ε given in Proposition 3.21 and we set

ṽε = m−1
ε v̂ε and ũε = η̃εṽε with mε = ‖η̃εv̂ε‖L2(R2),

where η̃ε is given by Theorem 3.3. Using the characterization of η̃ε given in Theorem 3.3

(see (3.44)), we check easily that ũε ∈ H (and obviously ‖ũε‖L2(R2) = 1). We are going to

prove that the map ũε satisfies the required property. We proceed in several steps.

Step 1. We recall that η̃ε satisfies equation (3.50) and then, exactly as in Lemma 3.4, the

functional Ẽε defined in (3.54) splits into two independent pieces. More precisely, for any

u ∈ H we have

E η̃ε
ε

(
u

η̃ε

)
< +∞

and

Ẽε(u) = Ẽε(η̃ε) + E η̃ε
ε

(
u

η̃ε

)
.

From (3.63), we infer that

Ẽε(u) = Eε(ηε) + E η̃ε
ε

(
u

η̃ε

)
+ o(ε) (3.198)

where the "error term" o(ε) is independent of u. Moreover, if ‖u‖L2(R2) = 1 we may also

rewrite Ẽε(u) as

Ẽε(u) = Eε(u) − kε

2
+

1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2.

By (3.58) and (3.43), we have

−kε

2
+

1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2 = o(ε)

and using (3.198), we conclude that

Eε(ũε) = Eε(ηε) + E η̃ε
ε (ṽε) + o(ε). (3.199)

Step 2. We claim that

E η̃ε
ε (ṽε) = E η̃ε

ε (v̂ε) + o(1). (3.200)

First we estimate mε. Since |v̂ε| = 1 in R
2 \ ∪d

j=1B
(ε)
j and ‖η̃ε‖L2(R2) = 1, we have

m2
ε =

∫

R2

η̃2
ε +

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1) = 1 +

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1).

Using Cauchy-Schwarz inequality, we derive from (3.190), (3.191) and Theorem III.2 in

[20] that
∣∣
∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1)

∣∣ ≤ Cε| ln ε|−1/2 (3.201)
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and thus

m2
ε = 1 + O(ε| ln ε|−1/2). (3.202)

By Theorem 3.3 and (3.193), we derive that

E η̃ε
ε (v̂ε) ≤ C| ln ε|. (3.203)

and thus
∫

R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫

R2

η̃2
ε |∇v̂ε|2 =

∫

R2

η̃2
ε |∇v̂ε|2 + O(ε| ln ε|1/2). (3.204)

Since |v̂ε| = 1 in R
2 \ ∪d

j=1B
(ε)
j , we may write

1

ε2

∫

R2

η̃4
ε(1 − |ṽε|2)2 =

1

ε2

∫

R2

η̃4
ε(1 − |v̂ε|2)2 +

2(1 − m−2
ε )

ε2

∫

∪d
j=1B

(ε)
j

η̃4
ε |v̂ε|2(1 − |v̂ε|2)

+
(1 − m−2

ε )2

ε2

∫

R2

η̃4
ε |v̂ε|4. (3.205)

We infer from (3.201), (3.202) and (3.203) that

(1 − m−2
ε )2

ε2

∫

R2

η̃4
ε |v̂ε|4 ≤ C| ln ε|−1, (3.206)

and

0 ≤ |1 − m−2
ε |

ε2

∫

∪d
j=1B

(ε)
j

η̃4
ε |v̂ε|2(1 − |v̂ε|2) ≤ C| ln ε|−1. (3.207)

Combining (3.204), (3.205), (3.206) and (3.207), we deduce that (3.200) holds.

Step 3. By (3.199) and (3.200), we have

Eε(ũε) = Eε(ηε) + E η̃ε
ε (v̂ε) + o(1). (3.208)

Moreover, (3.197) and Theorem 3.3 imply |Rη̃ε
ε (v̂ε)| ≤ C| ln ε|. Hence

Rη̃ε
ε (ṽε) = m−2

ε Rη̃ε
ε (v̂ε) = Rη̃ε

ε (v̂ε) + O(ε| ln ε|1/2)

and since Rε(ũε) = Rη̃ε
ε (ṽε), we conclude

Fε(ũε) = Eε(ηε) + F η̃ε
ε (v̂ε) + o(1).

In view of Proposition 3.21, to prove Theorem 3.5, it suffices to show

lim
ε→0

∣∣F η̃ε
ε (v̂ε) −Fηε

ε (v̂ε)
∣∣ = 0. (3.209)

By (3.44), we may obtain exactly as for (3.186) and (3.195),

lim
ε→0

E η̃ε
ε (v̂ε, R

2 \ Dε) = 0 and lim
ε→0

Rη̃ε
ε (v̂ε, R

2 \ Dε) = 0.
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As in the proof of Proposition 3.6, we derive using (3.193),

lim
ε→0

∣∣Eηε
ε (v̂ε,Dε) − Ea

ε (v̂ε,Dε)
∣∣ = 0 and lim

ε→0

∣∣Rηε
ε (v̂ε,Dε) −Ra

ε(v̂ε,Dε)
∣∣ = 0.

To get (3.209) it suffices to prove that

lim
ε→0

∣∣E η̃ε
ε (v̂ε,Dε) − Ea

ε (v̂ε,Dε)
∣∣ = 0 and lim

ε→0

∣∣Rη̃ε
ε (v̂ε,Dε) −Ra

ε(v̂ε,Dε)
∣∣ = 0. (3.210)

From 3.1.c) in Proposition 3.1 and Theorem 3.3, we infer that (see Remark 3.4)

∥∥∥∥
a − η̃2

ε

η̃2
ε

∥∥∥∥
L∞(Dε)

≤ Cε1/3 and

∥∥∥∥
a2 − η̃4

ε

η̃4
ε

∥∥∥∥
L∞(Dε)

≤ Cε1/3

and we may proceed as in the proof of Proposition 3.6 (using (3.193)) to obtain (3.210)

which ends the proof. ¥
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Chapitre 4

On a Ginzburg-Landau energy with

ε-depending weight

4.1 Introduction and main results

Let G be a smooth bounded and simply connected domain in R
2 and let g : ∂G → S1

be a fixed smooth map of topological degree d > 0. For ε > 0, we consider the Ginzburg-

Landau type functional

Eε(u) =
1

2

∫

G

|∇u(x)|2dx +
1

4ε2

∫

G

aε(x)(1 − |u(x)|2)2dx,

defined for u ∈ H1(G, C) such that u = g on ∂G. The weight function aε(x) is given by

aε(x) = ε−α if x ∈ G+ and aε(x) = 1 if x ∈ G−,

where G+ and G− are two open subsets of G such that G+ ∪ G− = G and Σ = G+ ∩ G−

defines a smooth curve as in Figure 4.1, and α is a positive constant.

In this chapter, we study the asymptotic behavior as ε goes to 0 of minimizers uε of

the energy Eε. Each minimizer uε satisfies the associated Euler equation



−∆uε =

1

ε2
aε(x)(1 − |uε|2)uε in G,

uε = g on ∂G.
(4.1)

In the case aε ≡ 1, F. Bethuel, H. Brezis and F. Hélein have proved that for each

sequence εn → 0, there exist a subsequence εnk
→ 0 and d distinct points a1, . . . , ad in

G such that uεnk
converges in certain topologies to u0 the canonical harmonic map with

values into S1 associated to {a1, . . . , ad} with degrees +1 and to the boundary data g (see

[20]). The map u0 is given by

u0(z) =
z − a1

|z − a1|
. . .

z − ad

|z − ad|
eiϕ(z) in G \ {a1, . . . , ad}

129
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G+

G−

G

Σ

G

G+

G−

Σ

Fig. 4.1 – Admissible geometries for G+ and G−

with {
∆ϕ = 0 in G,

u0 = g on ∂G.

They also show that the singularities a1, . . . , ad can be localized in G as a minimizing

configuration of the renormalized energy W (·) associated to the boundary data g and the

configurations of d points in G of degree +1 (cf. Section 4.4 for the definition of W and

we refer to Chapter II in [20] for more details).

In our situation, we prove a similar result of convergence and we show that all the

singularities are confined in G− ∪ Σ , the less penalized part of the domain. This result

can be stated as follows.

Theorem 4.1. For each sequence εn → 0, there exist a subsequence also denoted by (εn)

and d distinct points a1, . . . , ad in G− ∪ Σ such that uεn converges to u0 as εn → 0 in the

spaces H1
loc

(
G \ ∪d

i=1{ai}
)
, C0

loc

(
G \ ∪d

i=1{ai}
)
, C1,β

loc

(
G \ (∪d

i=1{ai} ∪ Σ)
)

for any β < 1,

Ck
loc

(
G \ (∪d

i=1{ai} ∪ Σ)
)

for any k ∈ N where u0 is the canonical harmonic map with

values into S1 associated to {a1, . . . , ad} with degrees +1 and to the boundary data g.

We also prove that the location of the singularities a1, . . . , ad is governed by the re-

normalized energy W (·) restricted to (G− ∪ Σ)d. More precisely, we have :

Theorem 4.2. The limiting configuration (a1, . . . , ad) minimizes the renormalized energy

W (·) over all configurations in (G− ∪ Σ)d.

Remark 4.1. Since W (a1, . . . , ad) → +∞ as one point ai tends to ∂G, any minimal

configuration (a1, . . . , ad) for W/(G−∪Σ)d satisfies ai 6∈ ∂G but some of the ai’s might be

on Σ. Indeed, if g(z) = z , G is the unit disc of R
2 and G− = G∩{(x1, x2) ∈ R

2, x2 > 0},
then a = 0 minimizes W on G− ∪ Σ.
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The proofs of Theorem 4.1 and Theorem 4.2 are given in Section 4.3 and Section 4.4

respectively. In Section 4.2, we present the analogue result of Theorem 2 in [19]. This

result is the main tool in the proof of the convergence near a point of Σ.

4.2 A preliminary study in degree zero

Let B be the unit disc of R
2 and let f be a smooth real function defined on a neigh-

borhood of [−1, 1] such that f(0) = 0 and ‖f ′‖∞ ≪ 1. We denote by Γ the smooth curve

{(x1, f(x1)), x1 ∈] − 1, 1[} ∩ B and we define for any set E ⊂ B,

E+ = {(x1, x2) ∈ E, x2 > f(x1)} and E− = {(x1, x2) ∈ E, x2 < f(x1)} .

For ε > 0, we consider the following minimization problem :

Min
u∈H1

gε
(B,C)

1

2

∫

B

|∇u(x)|2dx +
1

4ε2

∫

B

ãε(x)(1 − |u(x)|2)2dx, (4.2)

where gε : ∂B → C is a smooth given map, H1
gε

(B, C) denotes the set of all maps

u ∈ H1(B, C) such that u = gε on ∂B and the function ãε(x) is given by

ãε(x) = ε−α if x ∈ B+ and ãε(x) = 1 if x ∈ B−.

For any ε > 0, this problem admits at least one solution uε which satisfies



−∆uε =

1

ε2
ãε(x)(1 − |uε|2)uε in B,

uε = gε on ∂B.
(4.3)

Our goal in this section is to study the asymptotic behavior of uε as ε goes to 0 in the

following context : we suppose that exists a function g : ∂B → C such that

gε → g uniformly on ∂B as ε → 0, (4.4)

‖gε‖L∞(∂B) ≤ 1, (4.5)

‖gε‖H1(∂B) ≤ C, (4.6)
∫

∂B

ãε(x)(1 − |gε(x)|2)2dx ≤ Cε2. (4.7)

We notice that (4.4) and (4.7) imply that |g| ≡ 1 on ∂B. Therefore the topological degree

of g is well defined. We assume that

deg(g, ∂B) = 0. (4.8)

From (4.8) we infer that exists a function ϕ0 ∈ H1(∂B, R) such that g = eiϕ0 on ∂B.

Moreover (4.8) implies that

H1
g (B, S1) =

{
u ∈ H1(B, C), |u| = 1 a.e. in B, u = g on ∂B

}
6= ∅
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and the following minimization problem makes sense

Min
u∈H1

g (B,S1)

∫

B

|∇u|2. (4.9)

By the results in [19], we know that (4.9) admits a unique solution u⋆ which satisfies

{
−∆u⋆ = |∇u⋆|2u⋆ in B,

u⋆ = g on ∂B.

In addition, u⋆ is characterized by u⋆ = eiϕ⋆ where ϕ⋆ is the unique solution of the equation

{
∆ϕ⋆ = 0 in B,

ϕ⋆ = ϕ0 on ∂B.
(4.10)

Theorem 4.3. Under the hypothesis (4.4)-(4.8), we have as ε → 0 :

uε → u⋆ in H1(B), (4.11)

uε → u⋆ uniformly on B, (4.12)

uε → u⋆ in Ck
loc (B \ Γ) ∀k, (4.13)

ãε(x) (1 − |uε|2)
ε2

→|∇u⋆|2 in Ck
loc (B \ Γ) ∀k. (4.14)

We split the proof into several steps.

Step 1 : Proof of (4.11). As in [19], we use a comparison method. We consider vε : B → C

defined by

vε = ηεe
iψε ,

where ηε is the solution of
{
−ε2∆ηε + ãε(x)(ηε − 1) = 0 in B,

ηε = |gε| on ∂B,
(4.15)

and ψε the solution of {
∆ψε = 0 in B,

ψε = ϕε on ∂B,
(4.16)

where ϕε : ∂B → R is given by

eiϕε =
gε

|gε|
,

(which is possible since deg(gε, ∂B) = 0 for ε sufficiently small by (4.4) and (4.8)). By

(4.4), we may choose ϕε such that ϕε → ϕ0 uniformly on ∂B. We claim that
∫

B

|∇ηε|2 +
1

ε2

∫

B

ãε(x)(ηε − 1)2 ≤ Cε. (4.17)
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Proof of (4.17) : The function ηε minimizes on H1
|gε|(B, R) the functional

η 7−→
∫

B

|∇η|2 +
1

ε2

∫

B

ãε(x)(η − 1)2.

We use a comparison function. We construct η̃ε an extension in B of |gε|. We proceed as

follows. We define the map Φ on a neighborhood of B by

Φ(x1, x2) = (x1, x2 − f(x1)).

By the assumptions on f , Φ defines a smooth change of variables in a neighborhood of

B. Since Φ is a small perturbation of the identity, Φ(B) can be parametrized using polar

coordinates :

Φ(B) =
{
seiθ, s ∈ [0, R(θ)[

}
.

We remark that for any set E ⊂ B,

Φ(E+) = Φ(E) ∩
{
(y1, y2) ∈ R

2, y2 > 0
}

and

Φ(E−) = Φ(E) ∩
{
(y1, y2) ∈ R

2, y2 < 0
}

.

We denote by (r(x), θ(x)) the polar coordinates of Φ(x) for x ∈ B and we define η̃ε by

η̃ε(x) =
(∣∣gε(Φ

−1
(
R(θ(x))eiθ(x)

)∣∣ − 1
)
γ (|x|) + 1,

where γ is a smooth real function with small support near 1 with γ(1) = 1. By (4.6) we

infer that ∫

B

|∇η̃ε|2 ≤ C

and using the change of variables y = Φ(x), we obtain
∫

B+

(η̃ε − 1)2 ≤ C

∫

Φ(B+)

(η̃ε(Φ
−1(y)) − 1)2dy

≤ C

∫ π

0

∫ R(θ)

0

(|gε(Φ
−1(R(θ)eiθ)| − 1)2sdsdθ

≤ C

∫ π

0

(|gε(Φ
−1(R(θ)eiθ)| − 1)2R(θ)dsdθ

≤ C

∫

(∂B)+
(|gε| − 1)2

and in the same way, ∫

B−
(η̃ε − 1)2 ≤ C

∫

(∂B)−
(|gε| − 1)2.

We derive from (4.7) that
∫

B

|∇η̃ε|2 +
1

ε2

∫

B

ãε(x)(η̃ε − 1)2 ≤ C.
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Hence we conclude ∫

B

|∇ηε|2 +
1

ε2

∫

B

ãε(x)(ηε − 1)2 ≤ C. (4.18)

Now, we multiply (4.15) by V · ∇(ηε − 1) with V (x) =
∂x

∂r
γ(|x|) (recall that (r, θ) is

defined as the polar coordinates of Φ(x)) and we integrate by parts. Estimates (4.6) and

(4.18) yield

∫

B

∆ηε(V.∇(ηε − 1)) =
1

2

∫

∂B

∣∣∣∣
∂ηε

∂ν

∣∣∣∣
2

(V · ν) +

∫

∂B

∂ηε

∂ν

∂|gε|
∂τ

(V · τ) + O(1)

and
∫

B

ãε(x)(ηε − 1).(V.∇(ηε − 1)) = ε−α

∫

B+

(ηε − 1).(V.∇(ηε − 1))

+

∫

B−
(ηε − 1).(V.∇(ηε − 1))

=
ε−α

2

∫

∂(B+)

(|gǫ| − 1)2(V · ν)

+
1

2

∫

∂(B−)

(|gǫ| − 1)2(V · ν) + O(1).

By construction, V (x) is tangent to Γ at x ∈ Γ and since V (x) is close to x/|x| on ∂B,

we can find c > 0 such that V (x) · ν ≥ c on ∂B. Therefore we obtain

c

2

∫

∂B

∣∣∣∣
∂ηε

∂ν

∣∣∣∣
2

+
c

2ε2

∫

∂B

ãε(x)(|gε| − 1)2 ≤ −
∫

∂B

∂ηε

∂ν

∂|gε|
∂τ

(V · τ) + O(1).

From (4.6) and (4.7), we conclude that

∫

∂B

∣∣∣∣
∂ηε

∂ν

∣∣∣∣
2

≤ C.

Now we multiply (4.15) by (ηε − 1) and we integrate by parts. This yields

ε2

∫

B

|∇ηε|2 +

∫

B

ãε(x)(ηε − 1)2 ≤ ε2

∫

∂B

∣∣∣∣
∂ηε

∂ν

∣∣∣∣ |ηε − 1|

≤ ε2

∥∥∥∥
∂ηε

∂ν

∥∥∥∥
L2(∂B)

‖ |gε| − 1 ‖L2(∂B)

≤ Cε3

which ends the proof of (4.17). ¥

End of Step 1. Now we claim that

1

2

∫

B

|∇uε|2 +
1

4ε2

∫

B

ãε(x)(1 − |uε|2)2 ≤ 1

2

∫

B

|∇ψǫ|2 + Cε. (4.19)
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By construction of vε and (4.17), we have

1

ε2

∫

B

ãε(x)(1 − |vε|2)2 =
1

ε2

∫

B

ãε(x)(1 − |ηε|2)2 ≤ Cε

and ∫

B

|∇vε|2 =

∫

B

|∇ηε|2 + η2
ε |∇ψε|2 ≤ Cε +

∫

B

|∇ψε|2

(by the maximum principle we get easily that ηε ≤ 1). This prove (4.19) since uε is a

solution of problem (4.2).

We infer from (4.6), ϕε is bounded in H1(∂B), ϕε → ϕ0 uniformly on ∂B and ϕε → ϕ0

strongly in H1/2(∂G). From Equation (4.16) we derive that ψε → ϕ⋆ strongly in H1(G)

and by (4.19), uε is bounded in H1(B). Therefore we can find a sequence εn → 0 and

u ∈ H1(B) such that

uεn ⇀ u weakly in H1 .

From (4.19) and a lower semi-continuity argument, we deduce that the map u satisfies

∫

B

|∇u|2 ≤
∫

B

|∇ϕ⋆|2 =

∫

B

|∇u⋆|2. (4.20)

Since we have ∫

B

(1 − |uεn|2)2 ≤ Cεn
2,

we conclude that |u| = 1 a.e. in B. Thus u ∈ H1
g (G,S1) and u is a solution of (4.9). By

uniqueness, it implies that u = u⋆. We obtain the strong convergence of uε as ε → 0 to

u⋆ in H1(B) from (4.19) and the uniqueness of the limit. ¥

Remark 4.2. Note that we also obtain from (4.19),

1

ε2

∫

B

ãε(x)(1 − |uε|2)2 → 0. (4.21)

Step 2 : Proof of (4.12). As in [19], we derive from the maximum principle that

|uε| ≤ 1 in B. (4.22)

By Lemma A.1 in [19] and (4.3), we infer that the following estimates hold

|∇uε| ≤ CK1ε
−(1+α/2) in any compact set K1 ⊂ B, (4.23)

|∇uε| ≤ CK2ε
−1 in any compact set K2 ⊂ B−. (4.24)

Arguing as in Step A.1-A.2, Section 2 in [19], we show that |uε| → 1 uniformly in any

compact set K1 ⊂ (B+ ∪ Γ) or K2 ⊂ B− (here we make use of (4.21)). Following Step 2,
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Section 3 in [19], we also prove that |uε| → 1 on B+ and in any compact set K ⊂ ( B−\Γ ).

We claim that

|uε| → 1 uniformly on B−. (4.25)

We argue by contradiction. Assume that exist a sequence εn → 0, a sequence (xn) ⊂ B−

and δ > 0 such that

|uεn(xn)| ≤ 1 − δ for every n ∈ N. (4.26)

We may also assume that

xn →
n→+∞

x̃ ∈ Γ.

We set un = uεn and dn = dist(xn, ∂B−) where “dist" denotes the Euclidean distance

in R
2. Following Step 2, Section 3 in [19] and using (4.21), we obtain

dn

εn

→ 0 as n → +∞. (4.27)

Now we use a blow-up argument with vn = |un|2. The function vn satisfies the equation





−∆vn =
1

ε2
n

(1 − |un|2)|un|2 − 2|∇un|2 in B−,

vn = |gεn|2 on ∂B− ∩ ∂B,

vn = |un|2 sur ∂B− ∩ Γ,

(4.28)

and ∫

B−
|∇vn|2 ≤ 4

∫

B

|∇un|2 ≤ C < +∞. (4.29)

We set

wn(y) = vn (dny + xn) for y ∈ Ωn =
1

dn

(
G− − {xn}

)
.

The function wn satisfies the equation

−∆wn =
d2

n

ε2
n

(1 − wn)wn − 2d2
n |∇un(dny + xn)|2 in Ωn (4.30)

and ∫

Ωn

|∇wn|2 =

∫

B−
|∇vn|2 ≤ C. (4.31)

We may assume that Ωn → Ω as n → +∞ where Ω is an angular sector of R
2 and

the convergence is defined in the following sense : for any compact set K ⊂ Ω, resp.

K ′ ⊂ R
2 \ Ω, there exists N ∈ N such that for any n ≥ N , K ⊂ Ωn, resp. K ′ ⊂ R

2 \ Ωn.

We claim that ∫

Ω

∆wn ϕ →
n→+∞

0 for every ϕ ∈ D(Ω). (4.32)
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Indeed, let ϕ ∈ D(Ω) and K = supp ϕ. For n sufficiently large, K ⊂ Ωn and then we have

∫

Ω

−∆wn ϕ =

∫

K

(
d2

n

ε2
n

(1 − wn(y)) wn(y) − 2d2
n|∇un(dny + xn)|2

)
ϕ(y)dy

Since 0 ≤ wn ≤ 1, we derive that

I1 =

∣∣∣∣
d2

n

ε2
n

∫

K

(1 − wn)wnϕ

∣∣∣∣ ≤
d2

n

ε2
n

|K| ‖ϕ‖∞

and by (4.27), we conclude that I1 → 0 as n → +∞. Next we have

I2 =

∣∣∣∣
∫

K

2d2
n|∇un(dny + xn)|2ϕ(y)dy

∣∣∣∣

=

∣∣∣∣
∫

dnK+xn

2|∇un(z)|2ϕ
(

z − xn

dn

)
dz

∣∣∣∣

≤
(∫

dnK+xn

2|∇un(z)|2dz

)
‖ϕ‖∞.

Since un → u⋆ strongly in H1(B) and |dnK + xn| → 0, we deduce that
∫

dnK+xn

|∇un(z)|2dz →
n→+∞

0.

Therefore I2 → 0 as n → +∞ and (4.32) is proved.

Going back to (4.31), we may assume that wn → w strongly in Lp(K) for any compact

set K ⊂ Ω. From (4.31) and (4.32), we infer that

∆w = 0 in D′(Ω) (4.33)

and ∫

Ω

|∇w|2 < +∞. (4.34)

We claim that

wn → w uniformly in any compact set K ⊂ Ω. (4.35)

Fix y ∈ Ω and σ > 0 such that dist(y, ∂Ω) ≥ 2σ. For n sufficiently large, Bσ(y) ⊂ Ωn. By

Lemma A.1 in [19], we have

|∇un(x)|2 ≤ C

(
1

ε2
n

+
4

d2
nσ2

)
for every x ∈ B dnσ

2
(dny + xn).

Using (4.22), (4.27) and (4.30), we deduce that

|∆wn| ≤ Cσ in Bσ
2
(y).

Therefore (wn)n∈N is compact in C0( B σ
4
(y)). We conclude that wn → w uniformly on

Bσ
4
(y) which ends the proof of (4.35).
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We claim that

w = 1 on ∂Ω. (4.36)

It suffices to prove that |w − 1| ≤ ε̃ a.e. on ∂Ω for any ε̃ > 0. Since all cases can be

treated in the same way, we just consider the case

Ω = (−∞, a] × (−∞, b] with a, b < +∞.

Let z ∈ ∂Ω, for instance z = (a, z2). For δ̃ > 0, let y = (a− δ̃, z2). For n sufficiently large,

the projection Πn(z) of z on ∂Ωn in the direction (z, y) is well defined. From (4.31) and

(4.34), we get that for almost every x2,

∫

(R×{x2})∩Ωn

|∇wn|2 ≤ C, (4.37)

and ∫

(R×{x2})∩Ω

|∇w|2 < +∞. (4.38)

We may assume that z2 satisfies (4.37) and (4.38) and we deduce that for n sufficiently

large and δ̃ sufficiently small,

|w(z) − w(y)| ≤ ε̃

4
and |wn(y) − wn (Πn(z))| ≤ ε̃

4
. (4.39)

Since |un| → 1 uniformly on ∂(B+), and by (4.4), (4.35), we have for n sufficiently large

|w(y) − wn(y)| ≤ ε̃

4
and |wn(Πn(z)) − 1| ≤ ε̃

4
.

We finally obtain, choosing δ̃ sufficiently small and n sufficiently large,

|w(z) − 1| ≤ |w(z) − w(y)| + |w(y) − wn(y)|
+ |wn(y) − wn(Πn(z))| + |wn(Πn(z)) − 1|

≤ ε̃.

Therefore |w(z) − 1| ≤ ε̃ for almost every z ∈ ∂Ω.

By classical arguments (see [54] for instance), we deduce from (4.33), (4.34) and (4.36)

that w ≡ 1 in Ω. Then (4.35) implies that wn(0) → 1 which contradicts vn(xn) = wn(0) ≤
1 − δ for every n ∈ N, and the proof of (4.25) is complete.

Since |uε| → 1 uniformly on B, we have |uε| ≥ 1
2

for ε sufficiently small and we can

write

uε = ρεe
iϕε with ρε = |uε|. (4.40)

As in [19], we get from (4.3),

−∆ρε + ρε|∇ϕε|2 =
1

ε2
ãε(x)(1 − ρ2

ε)ρε in B, (4.41)
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and

div
(
ρ2

ε∇ϕε

)
= 0 in B. (4.42)

By (4.10) and (4.42), we have

− div
(
ρ2

ε∇(ϕε − ϕ⋆)
)

= div
(
(ρ2

ε − 1)∇ϕ⋆

)
in B. (4.43)

Since ρε → 1 uniformly, the equation (4.43) is uniformly elliptic for ε sufficiently small.

By classical estimates (see [54]), we obtain for p > 2,

‖ ϕε − ϕ⋆ ‖L∞(B)≤ C
(
‖ ϕε − ϕ⋆ ‖L∞(∂B) + ‖ (ρ2

ε − 1)∇ϕ⋆ ‖Lp(G)

)
. (4.44)

Since g ∈ H1(∂B), we infer from (4.10) that ϕ∗ ∈ H3/2(B) and therefore ∇ϕ∗ ∈
H1/2(B) ⊂ L4(B). Choosing p = 4 in (4.44), we get that

‖ ϕε − ϕ⋆ ‖L∞(B)≤ C
(
‖ ϕε − ϕε ‖L∞(∂B) + ‖ (ρ2

ε − 1) ‖L∞(B)

)
→
ε→0

0.

Then ϕε → ϕ⋆ uniformly on B which end the proof of (4.12). ¥

Step 3 : End of the proof. To prove (4.13) and (4.14), we consider uε on B+ and B−

separately. We have

−∆uε =
1

ε2+α
(1 − |uε|2)uε in B+,

and uε → u⋆ in H1(B+) and uniformly on B+. Applying Step 3, Section 3 in [19], we

obtain

uε → u⋆ in Ck
loc

(B+) for any k ≥ 1

and
1 − |uε|2

ε2+α
→ |∇u⋆|2 in Ck

loc
(B+) for any k ≥ 0.

Using the same arguments on B− (with ε2 instead of ε2+α), we obtain the announced

result. ¥

Remark 4.3. A consequence of Theorem 4.3 is that uε converges in B+ faster than in

B−. To illustrate this fact, one can consider the function

wε(x) =
ln (1 − |uε(x)|2)

ln ε
.

If we assume that |∇u⋆| does not vanish in B, we derive from (4.14) that for each x ∈ B,

ln(1 − |uε(x)|2) =





2 ln ε + ln (|∇u⋆(x)|2) + O(1) if x ∈ B+,

(2 + α) ln ε + ln (|∇u⋆(x)|2) + O(1) if x ∈ B−.

and we conclude that wε → 2 + αχB+ uniformly on every compact subset of B \ Γ as

ε → 0 (here χB+ denotes the characteristic function of the set B+). The precise behavior

of the profile of uε across Γ remains an open question.
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4.3 The convergence result, proof of Theorem 4.1.

We begin the proof of Theorem 4.1 by some fundamental estimates.

Lemma 4.1. There exist ε0 > 0 and C1 > 0 such that for any 0 < ε < ε0,

Eε(uε) ≤ πd ln
1

ε
+ C1. (4.45)

Proof. We fix d distinct points b1, . . . , bd in G− and R > 0 such that

B(bi, R) ∩ B(bj, R) = ∅ and B(bi, R) ∩ ∂G− = ∅ ∀i 6= j.

Let Ω = G \ ⋃d
i=1 B(bi, R) and g : ∂Ω → S1 defined by

g(z) =





g(z) if z ∈ ∂G,

z − bi

|z − bi|
if z ∈ ∂B(bi, R).

By construction deg(g, ∂Ω) = 0 and then there exists a smooth function v : Ω → S1 such

that v = g on ∂Ω. We set

v(z) =

{
v(z) if z ∈ Ω,

w(z − bi) if z ∈ B(bi, R),

where w realizes

I(ε,R) = Min
v∈H1

z
|z|

(BR,C)

1

2

∫

BR

|∇v(x)|2dx +
1

4ε2

∫

BR

(1 − |v(x)|2)2dx.

Since uε is a minimizer of Eε, we have

Eε(uε) ≤ Eε(v) =
1

2

∫

Ω

|∇v(x)|2dx + dI(ε,R).

By the results in [20], we know that for ε < R,

I(ε,R) ≤ π ln
1

ε
+ I(1, 1),

which leads to (4.45). ¥

Lemma 4.2. There exists a constant C2 > 0 such that for any ε > 0,

1

4ε2

∫

G

aε(x)(1 − |uε(x)|2)2dx ≤ C2. (4.46)
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Proof . We follow the method in [44]. For any ε > 0, we have

Eε(uε) − E2ε(uε) =
3

16ε2

∫

G−
(1 − |uε|2)2 +

22+α − 1

24+αε2+α

∫

G+

(1 − |uε|2)2. (4.47)

By the results in [20], there exists a constant C0 such that for any v ∈ H1
g (G, C) and

any ε > 0,
1

2

∫

G

|∇v|2 +
1

4ε2

∫

G

(1 − |v|2)2 ≥ πd ln
1

ε
− C0.

For ε small enough, a2ε ≥ 1 and consequently

E2ε(uε) ≥ πd ln
1

2ε
− C0. (4.48)

Combining (4.45), (4.47) and (4.48), we derive

3

16ε2

∫

G−
(1 − |uε|2)2 +

22+α − 1

24+αε2+α

∫

G+

(1 − |uε|2)2 ≤ πd ln 2 + C1 + C0

which ends the proof. ¥

We deduce directly from Lemma 4.1 and Theorem 4 in [73], the first convergence result

which can be stated as follows :

Proposition 4.1. For each sequence εn → 0, there exist a subsequence (also denoted

by εn) and k distinct points a1, . . . , ak in G with k ≤ d such that uεn converges weakly in

H1
loc

( G \ {a1, . . . , ak}) to an S1-valued map u⋆.

Now we can precise the convergence result.

Proposition 4.2. We have

u⋆ ∈ C∞ (G \ {a1, . . . , ak}) , (4.49)

{
−∆u⋆ = |∇u⋆|2u⋆ in G \ {a1, . . . , ak},
u⋆ = g on ∂G,

(4.50)

and the following convergences hold as εn → 0 :

uεn → u⋆ in C0
loc

(
G \ {a1, . . . , ak}

)
, (4.51)

uεn → u⋆ in C1,β
loc

(
G \

(
Σ ∪ {a1, . . . , ak}

))
∀β < 1, (4.52)

uεn → u⋆ in Ck
loc (G \ (Σ ∪ {a1, . . . , ak})) ∀k, (4.53)

aεn(x) (1 − |uεn|2)
ε2

n

→|∇u⋆|2 in Ck
loc (G \ (Σ ∪ {a1, . . . , ak})) ∀k. (4.54)
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Proof. We fix x0 ∈ G \ {a1, . . . , ak} and consider R > 0 satisfying

B(x0, 2R) ⊂ G \ (Σ ∪ {a1, . . . , ak}) if x0 6∈ Σ

or

B(x0, 2R) ⊂ G \ {a1, . . . , ak} if x0 ∈ Σ.

From Proposition 4.1 and Lemma 4.2, we can find R′ ∈ (R, 2R) such that
∫

∂B(x0,R′)
|∇uεn|2 ≤ C (4.55)

and ∫

∂B(x0,R′)
aεn(x)(1 − |uεn|2)2 ≤ Cε2

n. (4.56)

From (4.55), we infer that (extracting a subsequence if necessary)

uεn → u⋆ uniformly on ∂B(x0, R
′).

Since u⋆ ∈ H1(B(x0, R
′), S1), we have

deg(u⋆, ∂B(x0, R
′)) = 0.

For n sufficiently large, |uεn| ≥ 1/2 on ∂B(x0, R
′) and extracting a subsequence if neces-

sary, we may assume that

deg(uεn , ∂B(x0, R
′)) = 0.

If x0 6∈ Σ , we apply Theorem 2 in [19]. If x0 ∈ Σ, choosing R′ sufficiently small, we may

assume that Σ∩B(x0, R
′) can represented, in local coordinates, by the graph of a function

f as in Section 2. Then we apply Theorem 4.3. We obtain (4.49), (4.50), (4.53), (4.54) and

convergence in C0
loc(G \ {a1, . . . , ad}) and C1,β

loc (G \ (Σ ∪ {a1, . . . , ad})). Now we consider

x0 ∈ ∂G \ {a1, . . . , ad}. If x0 6∈ ∂G ∩ Σ, we apply Theorem A.3 in [20] and we get (4.52).

If x0 ∈ ∂G∩Σ, we use a simple modification of Theorem 4.3 in order to obtain (4.51). ¥

Lemma 4.3. We have

deg(u⋆, ai) = 1 ∀i and then k = d, (4.57)

ai ∈ G− ∪ Σ ∀i ∈ {1, . . . , d}. (4.58)

Proof. As in [20], we will extend our maps to a largest domain G′such that G ⊂⊂ G′.

We fix a smooth map g : G′ \ G → S1 verifying g = g on ∂G. Then we extend all maps

u : G → S1 into a map defined on G′ and also denoted by u letting u = g on ∂G.

We may assume that for any i = 1, . . . , k, deg(u⋆, ai) 6= 0. Indeed, suppose that

deg(u∗, ai) = 0. Then, for R > 0 sufficiently small, uεn is bounded in H1(B(ai, R)) and
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ai is not a singularity. Since Eεn(uεn) → +∞ as n → +∞, there is at least one singular

point.

We fix ρ > 0 such that

4ρ <
1

8
min {dist(ai, ∂G′), |ai − aj|} .

From Proposition 4.2 we infer

∫

∂B(ai,ρ)

|∇uεn|2 ≤ C(ρ).

Then for n sufficiently large, we have |uεn| ≥ 1/2 on ∂B(ai, ρ) and

deg(uεn , ∂B(ai, ρ)) = deg(u⋆, ∂B(ai, ρ)) := ki .

Applying the Corollary in [73], we obtain for i = 1, . . . , k,

1

2

∫

B(ai,ρ)

|∇uεn|2 +
1

4ε2
n

∫

B(ai,ρ)

(1 − |uεn|2)2 ≥ π|ki| ln
1

εn

− C(ρ).

Summing these inequalities in i and then combining with (4.45), we get that

k∑

i=1

|ki| ≤ d +
C(ρ)

| ln εn|
.

Letting n → +∞, we derive
k∑

i=1

|ki| ≤ d.

Since
∑

ki = d, we deduce that ki > 0 for each i ∈ {1, . . . , k}. By Lemma 4.1, we can

apply Theorem 3 in [73]. Then we find a constant C3 > 0 such that for any n ≥ N(ρ),

there exists a collection of points in G (xn
1 , . . . , x

n
k̃(n)

), k̃(n) ≤ d, satisfying

1

2

∫

G′\⋃j B(xn
j , ρ

2)
|∇uεn|2 ≤ πd ln

1

ρ
+ C3.

Extracting a subsequence if necessary, we may assume that

k̃(n) ≡ K = constant and xn
j → lj ∈ G as n → +∞.

Then, for n sufficiently large, we have
⋃

j B(xn
j ,

ρ
2
) ⊂ ⋃

j B(lj, ρ) and therefore

1

2

∫

G′\⋃j B(lj ,ρ)

|∇uεn|2 ≤ πd ln
1

ρ
+ C3. (4.59)
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We set J =
{
j ∈ {1, . . . , K}, B(lj, ρ) ∩

(⋃
i B(ai, ρ)

)
6= ∅

}
. We have

⋃

j∈J

B(lj, ρ) ⊂
k⋃

i=1

B(ai, 4ρ).

From (4.59) and Proposition 4.1, we infer that

1

2

∫

G′\⋃i B(ai,4ρ)

|∇uεn|2 ≤ πd ln
1

ρ
+ C.

Letting n → +∞, we get

1

2

∫

G′\⋃i B(ai,4ρ)

|∇u⋆|2 ≤ πd ln
1

ρ
+ C. (4.60)

By Corollary II.2 in [20], we have

1

2

∫

G′\⋃i B(ai,4ρ)

|∇u⋆|2 ≥ π

(
k∑

i=1

k2
j

)
ln

1

ρ
− C.

Combining the last inequality with (4.60), and letting ρ → 0, we obtain

∑

i

k2
i − ki ≤ 0

and then ki = 1 for each i ∈ {1, . . . , k}. Since
∑

ki = d, we deduce k = d.

It remains to prove that ai 6∈ ∂G for any i. We argue by contradiction. Suppose that

exists i0 ∈ {1, . . . , d} such that ai0 ∈ ∂G and fix R > 0 verifying

B(ai, R) ∩ B(aj, R) = ∅ ∀i 6= j and B(ai, R) ⊂ G′ ∀i.

By Lemma VI.1 in [20], we have for any ρ ∈
(
0, R

4

)
,

1

2

∫

B(ai0
,R)\B(ai0

,4ρ)
|∇u⋆|2 ≥ 2π ln

1

ρ
− C,

and by Lemma 1.1 in [73], for any i 6= i0,

1

2

∫

B(ai,R)\B(ai,4ρ)

|∇u⋆|2 ≥ π ln
1

ρ
− C.

From this two inequalities, we obtain

1

2

∫

G′\⋃i B(ai,4ρ)

|∇u⋆|2 ≥ π(d + 1) ln
1

ρ
− C,

which contradicts (4.60) for ρ sufficiently small. Therefore ai ∈ G for any i.
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Now suppose that exists ai0 ∈ G+ and fix R > 0 such that

B(ai, R) ∩ B(aj, R) = ∅ ∀i 6= j, B(ai, R) ⊂ G ∀i and B(ai0 , R) ⊂ G+.

For n sufficiently large, |uεn| ≥ 1/2 on ∂B(ai, R) and

deg(uεn , ∂B(ai, R) = deg(u⋆, ∂B(ai, R) = 1.

Applying the Corollary of [73], we obtain for any i 6= i0,

1

2

∫

B(ai,R)

|∇uεn|2 +
1

4ε2
n

∫

B(ai,R)

(1 − |uεn|2)2 ≥ π ln
1

εn

− C,

and
1

2

∫

B(ai0
,R)

|∇uεn|2 +
1

4ε2+α
n

∫

B(ai0
,R)

(1 − |uεn|2)2 ≥ π
(
1 +

α

2

)
ln

1

εn

− C.

We deduce that

Eεn(uεn) ≥ π
(
d +

α

2

)
ln

1

εn

− C,

which contradicts Lemma 4.1 for εn sufficiently small. ¥

Lemma 4.4. We have

u⋆ ≡ u0

the canonical harmonic map relative to the singularities (a1, . . . , ad) with associated degrees

(+1, . . . , +1) and to the boundary data g.

Proof. Taking the exterior product between equation (4.1) and uεn and letting n → +∞
we obtain

div(∇u⋆ × u⋆) = lim
n→∞

div(∇uεn × uεn) = 0 in D′(G).

Using the method in [82], we infer that (uεn) is bounded in W 1,p(G) for any p < 2 and then

u⋆ ∈ W 1,p(G) for p < 2. From the results in [20] Chapter I, we conclude that u⋆ ≡ u0. ¥

4.4 The Renormalized Energy

In section I.4 in [20], the authors introduce the function called renormalized energy,

W = W (b, d, g), associated to a general configuration of distinct points in G, b = (bi)
n
i=1,

of degrees (di)
n
i=1 ⊂ Z

n with
∑

i di = d. In our setting, we consider only the configurations

of d distinct points of degree +1. Then the renormalized energy W is given by

W (b) = −π
∑

i 6=j

ln |bi − bj| +
1

2

∫

∂G

Φ0

(
g × ∂g

∂τ

)
− π

d∑

i=1

R0(bi),
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where Φ0 is the solution of the Neumann problem




∆Φ0 =
d∑

i=1

2πδbi
in G,

∂Φ0

∂ν
= g × ∂g

∂τ
on ∂G,

such that

∫

∂G

Φ0 = 0 and R0(x) = Φ0(x) − ∑d
i=1 ln |x − bi|. The proof of Theorem 4.2 is

based on the two following lemmae.

Lemma 4.5. Let b = (bi) be a configuration of d distinct points in G−. There exists ρb > 0

such that for any 0 < ρ < ρb and for any ε > 0,

Eε(uε) ≤ dI(ε, ρ) + W (b) + πd ln
1

ρ
+ O(ρ), (4.61)

where

I(ε, ρ) = Min
v∈H1

x
|x|

(Bρ)

1

2

∫

Bρ

|∇v|2 +
1

4ε2

∫

Bρ

(1 − |v|2)2.

Lemma 4.6. For any ρ > 0 sufficiently small, there exists an integer N(ρ) such that for

any n ≥ N(ρ),

Eεn(uεn) ≥ dI(εn, ρ) + W (a) + π ln
1

ρ
+ oρ(n), (4.62)

where oρ(n) denotes a quantity verifying lim
ρ→0

(
lim sup

n→∞
oρ(n)

)
= 0.

Proof of Theorem 4.2. Let b = (bi) be a configuration of d distinct points in G−. From

Lemma 4.5 and Lemma 4.6, we infer that for ρ sufficiently small and any n ≥ N(ρ),

W (a) ≤ W (b) + oρ(n) + O(ρ).

Letting n → +∞ and then ρ → 0, we get that

W (a) ≤ W (b).

Since b est arbitrary in (G−)d, we conclude that a realizes

Inf
b∈(G−)d

W (b) = Min
b∈(G−∪Σ)d

W (b)

which ends the proof of Theorem 4.2. ¥

Proof of Lemma 4.5. We apply Theorem I.9 in [20] to the configuration of points b. For

any 0 < ρ <
1

2
min
i6=j

{|bi − bj|, dist(bi, ∂G)}, there exists a map ûρ : G \ ⋃
i B(bi, ρ) → S1

such that ûρ = g on ∂G and ûρ(z) = αi
z − bi

|z − bi|
on ∂B(bi, ρ) with |αi| = 1 and

1

2

∫

G\⋃i B(bi,ρ)

|∇ûρ|2 = πd ln
1

ρ
+ W (b) + O(ρ).
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Let w be a map realizing I(ε, ρ). We define

v(z) =





ûρ(z) in G \ ⋃
i B(bi, ρ),

αiw(z − bi) in B(bi, ρ) for i = 1, . . . , d.

We easily check that v ∈ H1
g (G) and

Eε(v) = dI(ε, ρ) + W (b) + πd ln
1

ρ
+ O(ρ).

Then (4.61) directly follows from Eε(uε) ≤ Eε(v). ¥

Proof of Lemma 4.6. By Theorem 4.1, for any ρ > 0 fixed sufficiently small, there exists

N1(ρ) ∈ N such that for any n ≥ N1(ρ),

1

2

∫

Ωρ

|∇uεn|2 ≥
1

2

∫

Ωρ

|∇u0|2 − ρ2, (4.63)

where Ωρ = G \ ⋃
i B(ai, ρ). By the results in [20], we know that

1

2

∫

Ωρ

|∇u0|2 = W (a) + π ln
1

ρ
+ O(ρ2). (4.64)

Combining (4.63) and (4.64), we obtain for any n ≥ N1(ρ),

1

2

∫

Ωρ

|∇uεn|2 +
1

4ε2
n

∫

Ωρ

aεn(x)(1 − |uεn|2)2 ≥ W (a) + π ln
1

ρ
+ O(ρ2).

Then it suffices to prove that for every i ∈ {1, . . . , d},

1

2

∫

B(ai,ρ)

|∇uεn|2 +
1

4ε2
n

∫

B(ai,ρ)

aεn(x)(1 − |uεn|2)2 ≥ I(εn, ρ) + oρ(n). (4.65)

We use the method in [65] and [66]. In the annulus

Ai
ρ,λρ = {x ∈ C, ρ ≤ |z − ai| ≤ λρ}

with λ = 1 + ρ, we can write for n sufficiently large,

uεn(z) = |uεn(z)| z − ai

|z − ai|
eiψn(z),

where ψn is a smooth real function. We consider the test function

w(z) =





uεn(z) in B(ai, ρ),

ξn(z − ai) in Ai
ρ,λρ,
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with

ξn(z) =

(
|uεn(ρ z

|z| + ai)| − 1

ρ(1 − λ)
+

1 − λ|uεn(ρ z
|z| + ai)|

(1 − λ)|z|

)
z exp

(
i
|z| − λρ

ρ(1 − λ)
ψn

(
ρ

z

|z| + ai

))
.

We easily check that

ξn(z − ai) =





uεn(z) on ∂B(ai, ρ),

z − ai

|z − ai|
on ∂B(ai, λρ),

and |uεn(z)| ≤ |ξn(z − ai)| ≤ 1 in B(ai, λρ). Then we have w ∈ H1(B(ai, λρ) and w(z) =
z − ai

|z − ai|
on ∂B(ai, λρ). Therefore we deduce that

I(εn, λρ) ≤ 1

2

∫

B(ai,λρ)

|∇w|2 +
1

4ε2
n

∫

B(ai,λρ)

(1 − |w|2)2,

Since I(εn, λρ) ≥ I(εn, ρ), it remains to prove that

1

2

∫

Ai
ρ,λρ

|∇ξn(z − ai)|2 +
1

4ε2
n

∫

Ai
ρ,λρ

(1 − |ξn(z − ai)|2)2 = oρ(n).

From (4.21) we derive

1

ε2
n

∫

Ai
ρ,λρ

(1 − |ξn(z − ai)|2)2 ≤ 1

ε2
n

∫

B(ai,ρ)

aεn(x)(1 − |uεn|2)2 = oρ(n).

By Theorem 4.1, we have
∫

Ai
ρ,λρ

|∇ξn(z − ai)|2 →
∫

Ai
ρ,λρ

|∇ξ|2 as n → +∞

where

ξ(z) =
z − ai

|z − ai|
exp

(
i
|z − ai| − λρ

ρ(1 − λ)
ψ

(
ρ

z − ai

|z − ai|
+ ai

))
,

and ψ is a smooth function in a neighborhood of ai such that

u0(z) =
z − ai

|z − ai|
eiψ(z).

Since ψ is smooth, we infer ∫

Ai
ρ,λρ

|∇ξ|2 = O(ρ),

and we conclude that ∫

Ai
ρ,λρ

|∇ξn(z − ai)|2 = oρ(n),

which ends the proof of Lemma 6. ¥



Chapitre 5

Stabilization in finite time for a system

of damped oscillators

5.1 Introduction

The purpose of this work is to made a first presentation of the study made by the

authors on the dynamics of the finite-dimensional system corresponding to vibration of

N -particles of equal mass m located along the interval (0, 1) of the x axis. Each particle

is connected to its neighbors by two harmonic springs of strength k, the elongation of the

left one is given by xi(t) and we assume the motion subject to a resultant friction force

which is the composition of a Coulomb (or solid) friction and other type of frictions such

as, for instance, the one due to the viscosity of an surrounding fluid. The equations of

motion for this system are

(PN)





mẍi(t) + k(−xi−1(t) + 2xi(t) − xi+1(t)) + µββ(ẋi(t)) + µgg(ẋi(t)) ∋ 0

xi(0) = u0,i

ẋi(0) = v0,i

i = 1, . . . , N, where we are assuming that x0(t) = 0, xN+1(t) = 0 for any t ∈ (0, +∞),

µβ, µg are positive constants, the term µββ(ẋi(t)) represents the Coulomb friction, with

β given by the maximal monotone graph in R
2

β(r) =





{−1} if r < 0,

[−1, 1] if r = 0,

{1} if r > 0,

g is a Lipschitz continuous function such that g(0) = 0, µββ(r)+µgg(r) > 0 for any r > 0

and the reverse inequality for r < 0. The internal initial data (u0,i), (v0,i) are given in R
N .

It is well known that, if we write, for simplicity, k = 1
h2 (with h = 1/(N + 1)) and

m = 1, then problem (PN) arises in the spatial discretization, by finite differences, of the

149
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damped string equation

(P∞)





utt − uxx + µββ(ut) + µgg(ut) ∋ 0 in (0, 1) × (0, +∞),

u(0, t) = u(1, t) = 0, t ∈ (0, +∞),

u(x, 0) = u0(x) x ∈ (0, 1),

ut(x, 0) = v0(x) x ∈ (0, 1).

In fact, it was by passing to the limit, N → ∞ in (PN), how the wave equation (without

friction) was obtained by Jean Le Rond D’Alembert in 1746.

Our main goal is to give several criteria in order to have the stabilization in a finite

time for this mechanical system. The study of the special case of a single oscillator, N = 1,

without viscous friction,

mẍ + 2kx + µββ(ẋ) ∋ 0,

can be found in many textbooks (see, for instance, [67]). It is easy to see then that

the motion stops definitively after a finite time, i.e., there exists Te < +∞ and x∞ ∈
[−µβ

2k
,

µβ

2k
] such that x(t) ≡ x∞ for any t ≥ Te. There are, also, some partial results on the

stabilization to an equilibrium state in a finite time for the solutions of the wave equation

(see [36] and [37] for some particular initial data). The case of arbitrary initial data u0(x)

and v0(x) seems to be, still, an open problem.

Concerning the case of N−particles we can mention the work by Bamberger and

Cabannes [14] in which they prove the stabilization in a finite time in absence of viscous

friction (µg = 0). We point out that this type of friction arises very often in the applications

and that its consideration was already proposed by Lord Rayleigh (see, e.g. [72]). Concrete

expressions for g can be found also in [67]. The case of a linear damping g(ẋi) = λẋi and

the absence of stabilization in a finite time for λ large enough was commented at the

end of the paper [14] but no mention to the possibility of a simultaneous dichotomy of

behaviors was made there.

One of our main goals is to prove that the presence of a viscous friction may origi-

nate a qualitative distinction among the orbits in the sense that the state of the sys-

tem x(t) := (x1(t), x2(t), ..., xN(t))T (here hT means, in general, the transposed vec-

tor of h) may reach an equilibrium state in a finite time or merely in an asymptotic

way (as t → +∞), according the initial data x(0) = x0 := (u0,1, u0,2, ..., u0,N)T and

ẋ(0) = v0 := (v0,1, v0,2, ..., v0,N)T . This dichotomy seems to be new in the literature and

contrasts with the phenomena of finite extinction time for first order (in time) ordinary

and parabolic nonlinear equations (see, for instance, the exposition made in [13]). Some

results exhibiting this alternative, but for the case of a single particle with a non-Lipschitz

friction term β(u) = |u|α−1 u (α ∈ (0, 1)), can be found in [46], [47] and [9] (problem rai-

sed, many year ago, by Haïm Brezis). In the last section we show that this alternative

may occur also in the case of the wave equation (P∞) in all dimension in space and under

suitable conditions.
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5.2 The dichotomy for the N-dimensional system

The system under study can be written, in short, as a vectorial problem

(PN)





mẍ(t) + kAx(t) + µβB(ẋ(t)) + µβG(ẋ(t)) ∋ 0,

x(0) = x0,

ẋ(0) = v0

where x(t) := (x1(t), x2(t), ..., xN(t))T , A is the symmetric positive definite matrix of

R
N×N given by

A =




2 −1 0 ... 0

−1 2 −1 0 ...

0 −1 2 −1 0

... 0 −1 2 −1

0 ... 0 −1 2




,

B :RN → P( R
N) denotes the (multivalued) maximal monotone operator given by

B(y1, . . . , yN) = (β(y1), . . . , β(yN))T

and G : R
N → R

N is the Lipschitz continuous function defined by

G(y1, . . . , yN) = (g(y1), . . . , g(yN))T .

In what follows, a · b denotes the Euclidian scalar product of a,b ∈R
N and ‖ . ‖ the

Euclidean norm.

Our first result deals with the existence, uniqueness and asymptotic behavior of solu-

tions of (PN)

Theorem 5.1. For any initial datum (x0,v0) ∈ R
2N , the Cauchy problem (PN) admits a

unique weak solution x ∈ C1([0, +∞) : R
N). Moreover, there exists a unique equilibrium

state x∞ ∈ R
N satisfying that Ax∞ ∈ ([−µβ

2k
,

µβ

2k
]N)T such that

‖ ẋ(t) ‖ + ‖ x(t) − x∞ ‖→ 0 as t → +∞. (5.1)

Concerning the dichotomy mentioned at the introduction, the following result shows

that the stabilization in a finite time depends of the structural behavior of the viscous

friction g near 0.

Theorem 5.2. i) Suppose that g(r)r ≤ 0 in some neighborhood of 0. Then all solutions

of (PN) stabilize in a finite time.

ii) Suppose that g(r) = λr with λ ≥ 2
√

λ1mk
µg

, where λ1 denotes the first eigenvalue of A.

Then there exist solutions of (PN) which do not stabilize in any finite time.

iii) Suppose that N = 1, A = 1 ∈ R and g is C1 in some neighborhood of 0. Then, if

g′(0) < 2
√

mk
µg

, all solutions stabilize in finite time but if g′(0) ≥ 2
√

mk
µg

there exist some

solutions which do not stabilize in any finite time.
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Remark 5.1. Notice that the growth condition on g(r), near r = 0, is independent on

µβ. In the case of a single particle (notice that then λ1 = 1) more precise results can

be obtained by using, as in [46], [47], [9], the trajectory equation in the phase space

yx ∈ −kx−µββ(y)−µgg(y)

y
but they will not be presented here.

Remark 5.2. The positive results on stabilization in a finite time remain true for a

general symmetric and positive definite matrix A as well as under the presence of some

impulsive forces f(t) leading to the system

mẍ(t) + kAx(t) + µβB(ẋ(t)) + µβG(ẋ(t)) ∋ f(t)

assuming that their amplitude is small enough : more precisely if

∃α > 0 such that µββ(r) + µgg(r) ≥ α and g(−r) = g(r) for any r > 0

then we have to we assume that

f(t) ∈([−α + ǫ, α − ǫ]N)T for some ǫ ∈ [0, α) and for a.e. t ≥ Tf , for some Tf ≥ 0.

This behavior face up to with the case in which the amplitude of f(t) becomes large and

g′(v) < 0 for any v 6= 0. Then, the dynamics generates a wide range of events leading to

the chaos (see [39]).

Remark 5.3. The simultaneous possibility of the occurrence of stabilization in a finite

or infinite time does not hold for solutions of scalar first order in time equations of the

form

ut − d∆u + β(u) ∋ 0 (5.2)

for β(u) multivalued at u = 0 and d ≥ 0 (see, for instance, [31], [45] and their references).

We assume given homogeneous Dirichlet boundary conditions and an initial datum. Mo-

reover, if we add an extra term, g(u), such that, g(u)u ≥ 0 for any u ∈ R, then the

solutions of

Ut − d∆U + β(U) + g(U) ∋ 0 (5.3)

satisfy that ‖u(t, .)‖Lp(Ω) ≥ ‖U(t, .)‖Lp(Ω) and so, the extinction in a finite time of u(t, .)

implies the same property for U(t, .). The opposite comparison holds when g(u)u ≤ 0.

This explain the important different behaviors among the solutions of problems of first

and second order in time. Notice that if we assume k = 0 in (P1) then we get that

U(t) = ẋ(t) satisfies an equation similar to (5.3) with d = 0. Notice, also, that if m is very

small then problem (P1) becomes a quasi-static problem (in the terminology of [49]) and

then the solutions are closed to the solutions of the first order in time problem

(QSP1)

{
2kx + µββ(ẋ) + µgg(ẋ(t)) ∋ 0,

x(0) = x0

In that case, g(u)u ≥ 0 implies an opposite comparison to the above mentioned one with

respect the solutions with g = 0. Nevertheless, the multivalued character of β at u = 0

does not imply, now, the stabilization in a finite time for the solutions of (QSP1).
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Proof of Theorem 5.1. In order to reformulate (PN) in the framework of nonlinear semi-

group operators theory we introduce the phase space H = (RN , <, >A) × (RN , ·), with

< a,b >A= Aa · b, and we define the operator L in H by

L(x,y) = {−y} × { k

m
Ax +

µβ

m
B(y)} for (x,y) ∈ H. (5.4)

It is easy to prove that L is maximal monotone in H and since µg

m
G(y) is Lipschitz conti-

nuous, by using the results on Lipschitz perturbations of maximal monotone operators

(see [25]) we get the existence and uniqueness of a solution of (PN). Multiplying the

equation by ẋ(t) and integrating in time we get the energy relation

E(t) +

∫ t

0

[ N∑

i=1

µβ

m
|ẋi(s)| +

µg

m
g
(
ẋi(s)

)
ẋi(s)

]
ds = E(0), (5.5)

where

E(t) =
1

2
‖ ẋ(t) ‖2 +

k

2m
Ax(t) · x(t). (5.6)

By (5.5), the trajectory (x(t), ẋ(t))t≥0 is compact in H, so, we can find α > 0 such that

µβ|ẋi(t)| + µgg(ẋi(t))ẋi(t) ≥ α|ẋi(t)| for i = 1, . . . , N and all t ≥ 0.

By (5.5), we conclude that ẋ ∈ L1(R+) which leads to the existence of the limit

x∞ := lim
t→+∞

x(t)

and to limt→+∞ ẋ(t) = 0. ¥

In order to prove Theorem 5.2, it is useful to reformulate the problem in its nondi-

mensional form.

Lemma 5.1. The change of scales x(t) := x̃( t̃ )x∗, t̃ = t
t∗ , x∗ =

µβ

k
, t∗ =

√
m
k
, transforms

(PN) in the nondimensional problem

(P̃N)





¨̃x
(
t̃
)

+ Ax̃
(
t̃
)

+ B
(
˙̃x
(
t̃
))

+ µg

µβ
G

( µβ√
mk

˙̃x
(
t̃
))

∋ 0,

x̃(0) = x̃0,

˙̃x(0) = ṽ0,

with x̃0 = k
µβ

x0 and ṽ0 =
√

mk
µβ

v0.

Proof. It is enough to check that ẋ(t) = x∗

t∗
dx̃
dt̃

and to use that B(θẋ(t)) = B(ẋ(t)) for any

θ > 0. ¥

We come back to the proof of part i) of Theorem 5.2. In the following we shall identify

(P̃N) with (PN) if no confusion may arises. In view of Theorem 5.1 and Lemma 5.1, we



154 Chapitre 5. Stabilization in finite time for a system of damped oscillators

have to prove that there exists Te ≥ 0 such that x(t) ≡ x∞ for any t ≥ Te. In what follows

we shall adopt some notation similar to the introduced by Bamberger and Cabannes in [14]

∆i(t) := (Ax(t))i and ∆∗
i := (Ax∞)i , for i ∈ {1, . . . , N}.

We recall that, since x∞ is an stationary point, we have (∆∗
i )

N
i=1 ∈ [−1, 1]N . We need

an auxiliary lemma describing the behavior of x(t) for large time. In the statement, the

constants may depend on the initial data.

Lemma 5.2. 1) Suppose that for some i ∈ 1, . . . , N , |∆∗
i | < 1. Then there exists Ti ≥ 0

such that ∀t ≥ Ti, ẋi(t) = 0.

2) If, for some i ∈ 1, . . . , N , ∆∗
i = 1 (resp. ∆∗

i = −1). Then there exists Ti ≥ 0 such that

∀t ≥ Ti, ẋi(t) ≤ 0 (resp. ẋi(t) ≥ 0).

Proof. Let 0 < δ ≪ 1 be fixed. By Theorem 5.1 we can find t0 ≥ 0 such that

∀t ≥ t0, |∆i(t)| ≤ (1 − 2δ) and |g(
µβ√
mk

ẋi(t))| ≤
µβ

µg

δ. (5.7)

If ẋi(t0) = 0, we conclude that xi(t) ≡ xi(t0) = (x∞)i for any t ≥ t0 since ∆i(t) ∈ [−1, 1]

for any t ≥ t0. If not, let

T = sup
{
s ≥ t0, |ẋi(t)| > 0 ∀t ∈ [t0, s[

}
.

Multiplying the ith component of (PN) by ẋi(t) and using (5.7) we obtain

1

2

d

dt
(|ẋi(t)|2) + δ|ẋi(t)| ≤ 0 for a.e. t ∈ [t0, T [. (5.8)

Dividing (5.8) by |ẋi(t)| we get

d

dt
(|ẋi(t)|) + δ ≤ 0 for a.e. t ∈ [t0, T [. (5.9)

Integrating, we see that

ẋi

(
t0 +

|ẋi(t0)|
δ

)
= 0.

Thus T < +∞ and we conclude, as before, that xi(t) ≡ xi(T ) = (x∞)i for any t ≥ T .

To prove part 2) we consider, again, 0 < δ ≪ 1 and suppose that ∆∗
i = 1 (the case

∆∗
i = −1 is similar). By Theorem 5.1 we can find t0 ≥ 0 such that

∆i(t) ≥ δ and |g(
µβ√
mk

ẋi(t))| ≤
µβ

µg

δ for a.e. t ≥ t0. (5.10)

Suppose that ẋi(t0) > 0 and let

τ = sup
{
s > t0, ẋi(t) > 0 ∀t ∈ [t0, s[

}
.
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In [t0, τ [ we have

ẍi(t) + ∆i(t) + 1 +
µg

µβ

g(
µβ√
mk

ẋi(t)) = 0.

From (5.10), we get that ẍi(t) ≤ −1 in [t0, τ [ and by integration

ẋi(t) ≤ ẋi(t0) − (t − t0) in [t0, τ [.

Thus τ < +∞ and we conclude that we can find T ≥ t0 such that ẋi(T ) ≤ 0. Now suppose

that there exists t1 > T such that ẋi(t1) > 0. From the continuity of ẋi, there exists some

interval ]t2, t3[ with t2 > T and ẋi(t2) > 0, where ẋi is strictly increasing. In ]t2, t3[ we

have ẍi = −1 − ∆i − µg

µβ
g(

µβ√
mk

ẋi). Thus form the choice of δ, ẋ is strictly decreasing in

]t2, t3[, which is a contradiction. ¥

Proof of Theorem 5.2 (continuation), proof of i). We set

I+ =
{
i ∈ {1, . . . , N}, ∆∗

i = 1
}

and I− =
{
i ∈ {1, . . . , N}, ∆∗

i = −1
}
.

In view of Lemma 5.1, we can find T ≥ 0 such that for any t ≥ T we have that :

a) ∀i ∈ {1, . . . , N}, g(
µβ√
mk

ẋi(t))ẋi(t) ≤ 0,

b) ∀i ∈ I+, ẋi(t) ≤ 0,

c) ∀i ∈ I−, ẋi(t) ≥ 0,

d) ∀i 6∈ I+ ∪ I−, ẋi(t) = 0.

We write the equations of (PN) as

ẍi(t) + ∆i(t) − ∆∗
i + 1 + β(ẋi(t)) +

µg

µβ

g(
µβ√
mk

ẋi(t)) ∋ 0, for i ∈ I+, (5.11)

(and analogy for i ∈ I−). Multiplying by ẋi(t) and summing over i, we get

ẍ(t) · ẋ(t) + A(x(t) − x∞) · ẋ(t) +
µg

µβ

G(
µβ√
mk

ẋ(t)) · ẋ(t) = 0, ∀t ≥ T,

Integrating in time, we infer that for t ≥ T ,

‖ ẋ(t) ‖2 +A(x(t) − x∞) · (x(t) − x∞) ≥‖ ẋ(T ) ‖2 +A(x(T ) − x∞) · (x(T ) − x∞) ≥ 0

Letting t → +∞ we obtain ‖ ẋ(T ) ‖2 +A(x(T ) − x∞) · (x(T ) − x∞) = 0. Since A is a

positive definite matrix, we conclude that x(T ) = x∞ and thus x(t) = x∞ for any t ≥ T .

Proof of ii). Assume now that g(r) = λr with λ ≥ 2
√

λ1mk
µg

. In order to construct a solution

of (PN) which does not stabilize in finite time we seek a particular solution of the vectorial

linear ODE

Ẍ + AX+
λµg√
mk

Ẋ = 0. (5.12)
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Since A is a symmetric definite positive matrix, we can find a matrix P ∈ R
N×N such

that A = PT diag(λ1, · · · , λN)P with 0 < λ1 ≤ λ2 ≤ . . . ≤ λN and PTP = I, the identity

matrix. Writing X = PTY, system (5.12) is equivalent to the system

ÿi + λiyi +
λµg√
mk

ẏi = 0 for i = 1, . . . , N . (5.13)

The equation ÿ1 + λ1y1 + λµg√
mk

ẏ1 = 0 admits a solution y1(t) such that ẏ1(t) < 0 for

any t ≥ 0 since λ ≥ 2
√

λ1mk
µg

. We define Y(t) = (y1(t), 0, . . . , 0) which satisfies (5.13).

Then, X(t) := PTY(t) satisfies (5.12) and is such that ẋi(t) has a constant sign and

never vanishes or ẋi(t) ≡ 0 . If we denote by ∆∗ the constant vector of R
N defined by

∆∗
i = β0(ẋi), i = 1, . . . , N , with β0(r) = β(r) if r 6= 0 and β0(0) = 0, and consider x∞ as

the solution of Ax∞ = −∆∗. Summing X and x∞, we get a solution of (PN) which never

stops.

Proof of iii). We suppose N = 1 (and take A = 1). The problem becomes

ẍ + x + β(ẋ) +
µg

µβ

g(
µβ√
mk

ẋ) ∋ 0. (5.14)

Firstly, suppose that g′(0) < 2
√

mk
µg

. We want to prove that all solutions of (5.14) stabilize

in finite time. In view of the previous steps, we only have to consider the case |x(t)| → 1.

By analogy, it is enough to consider the case x(t) → 1. We know that there exists a time

T such that ẋ(t) ≤ 0 and |x(t) − 1| ≪ 1 for any t ≥ T . If the process does not stop at a

time T , then there exists a t0 ≥ T such that ẋ(t0) < 0. Let τ = sup{t ≥ t0, ẋ(t) < 0}.
Since g is regular near 0 and g′(0) < 2

√
mk

µg
we know by Hartman’s Theorem ([59]) that

the point (1, 0) is a center or a focus for the equation

ü + u − 1 +
µg

µβ

g(
µβ√
mk

u̇) = 0. (5.15)

Since x(t) satisfies this equation in (t0, τ), we deduce that τ < ∞ and x(τ) < 1 with

ẋ(τ) = 0, thus the process stops at time τ which contradicts that x(t) → 1 as t → +∞.

If we assume, now, that g′(0) ≥ 2
√

mk
µg

, since g is regular near 0, by Hartman’s Theorem,

the point (1, 0) is a node for equation (5.15) and we can find a solution u(t) such that

u̇(t) < 0 for any t ≥ 0. Such solution is also a solution of (5.14) which does not stabilize

in any finite time. ¥

Remark 5.4. Similar results also hold for other N -dimensional systems arising when the

spatial discretization of the wave equation is taken by finite elements instead of finite

differences.
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5.3 The dichotomy for the damped wave equation

As an illustration of possible extensions of ii) of Theorem 5.2 to other dynamical

systems, we consider the damped wave equation in a bounded regular open set Ω ⊂ R
N

utt − ∆u + β(ut) + λut ∋ 0 in Ω × (0, +∞), (5.16)

with Dirichlet boundary conditions u(., t) = 0 on ∂Ω for t ∈ (0, +∞). Let us assume

that λ ≥ 2
√

λ1 , with λ1 the first eigenvalue of the operator u → −∆u associated to

homogeneous Dirichlet boundary conditions. Then we can find some solution of (5.16)

which does not stabilize in any finite time and also some solution which stabilizes in a

finite time. We construct the first type of solution in the form

u(x, t) = a(t)v(x) + ξ(x),

where v is a solution of the eigenvalue problem

{
−∆v = λ1v in Ω,

v = 0 on ∂Ω,

such that v > 0 in Ω, the function ξ is defined as the solution of

{
∆ξ = 1 in Ω,

ξ = 0 on ∂Ω,

and a(t) solves the ODE

ä + λ1 a + λȧ = 0, (5.17)

such that ȧ(t) > 0 for any t > 0 (which is possible since λ ≥ 2
√

λ1 ). Then, we get a

solution which does not stabilize in any finite time.

By the contrary, if we choose a(t) as a solution of (5.17) such that

ȧ(t) > 0 for t ∈ [0, 1), ȧ(1) = 0 and a(1) = K,

with K = 1
λ1‖v‖L∞(Ω)

and take

u(x, t) = b(t)v(x) + ξ(x)

where

b(t) =

{
a(t) if t ≤ 1,

K otherwise,

we get a solution which attains the stationary state u∞(x) = Kv(x) + ξ(x) exactly at

time t = 1. ¥
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Résumé

Dans le Chapitre 1, nous calculons l’infimum d’une énergie comportant un poids mesurable,
sur des classes d’applications à valeurs dans S2 ayant des singularités prescrites. Nous montrons
qu’une telle quantité induit une distance. Ceci nous permet de calculer dans le Chapitre 2, une
énergie de type relaxée pour des applications u : Ω ⊂ R

3 → S2. La formule fait intervenir la
longueur d’une connexion minimale associée à la distance obtenue au Chapitre 1, connectant
les singularités topologiques de u. Dans le Chapitre 3, nous étudions le modèle physique d’un
condensat de Bose-Einstein bidimensionnel en rotation. Nous estimons la vitesse critique de
rotation pour avoir d tourbillons et nous déterminons leur position. Dans le Chapitre 4, nous
étudions le comportement asymptotique des minimiseurs d’une énergie de Ginzburg-Landau avec
un poids dépendant de ε et nous montrons un phénomène d’ancrage des singularités limites. Dans
le Chapitre 5, nous présentons quelques résultats sur la stabilisation en temps fini de processus
mécaniques où un frottement de Coulomb coexiste avec d’autres types de forces donnant lieu à
des oscillations dans l’absence de frottement.

Mots-clés: singularités topologiques, connexion minimale, énergie relaxée, condensation de Bose-
Einstein, fonctionnelle de Ginzburg-Landau, énergie renormalisée, frottement de Coulomb, sta-
bilisation en temps fini

Abstract

In Chapter 1, we compute the infimum of an energy with measurable weight, over classes
of S2-valued maps with prescribed singularities. We prove that such quantity induces a distance.
This result allows to compute in Chapter 2 a relaxed type energy for maps u : Ω ⊂ R

3 → S2. The
explicit formula involves the length of a minimal connection relative to the distance defined in
Chapter 1 connecting the topological singularities of u. In Chapter 3, we investigate the physical
model for a two dimensional rotating Bose-Einstein condensate. We estimate the critical angular
velocity for having d vortices and we determine their location. In Chapter 4, we study the
asymptotic behavior of minimizers of a Ginzburg-Landau energy ε-depending weight and we
prove a pinning effect on the limiting singularities. In Chapter 5, we present a set of results on
the stabilization in a finite time of some mechanical processes where a Coulomb friction term
coexists with other physical frameworks leading to oscillations in absence of friction.

Keywords: topological singularities, minimal connection, relaxed energy, Bose-Einstein conden-
sation, Ginzburg-Landau functional, renormalized energy, Coulomb friction, stabilization in finite
time
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