N

N

A Distributed Real-Time Architecture For Advanced
Vehicles
Khaled Chaaban

» To cite this version:

Khaled Chaaban. A Distributed Real-Time Architecture For Advanced Vehicles. Networking and
Internet Architecture [cs.NI]. Université de Technologie de Compiegne, 2006. English. NNT:
tel-00126989

HAL Id: tel-00126989
https://theses.hal.science/tel-00126989
Submitted on 27 Jan 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00126989
https://hal.archives-ouvertes.fr

<« UlC

Universit_é‘ de Technologie
Compiegne

By Khaled Chaaban

A Distributed Real-Time Architecture
For Advanced Vehicles

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Computer Science

Université de Technologie de Compiégne (UTC).

Client::Call()

Server —CleCl) Client
.
or ServerAcoepi) o Gps -
Emitter RS o Trimble AG 132 RTK-T7400
T e == Recerver: Daa flow ™ T Driver Camera Thalés PPK -
ne
STUBS STUBS

PROTOCOL SPECIFICATIONS

OS Kernel

NETWORK ADAPTERS] NETWORK ADAPTERS

NETWORK Bus

Defended: June 2006
Option: Technologies de I'information et des systéemes

Architecture Informatique Temps-Reéel Pour

By Khaled Chaaban

Véhicules Avancés

Thesis defended on June 2006

Doctoral committee:

Mme.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.

Isabelle Puaut
Yvon Trinquet
Laurent George
Guy Friedrich
Mohamed Shawky
Paul Crubillé
Pavol Barger

Professeur, IRISA, Université de Rennes
Professeur, IRCCyN, Nantes

Mdc, ECE, Paris

Professeur, LEC, UTC

Mdc (HDR), Heudiasyc, UTC

Ingénieur de recherches CNRS, Heudiasyc, UTC
Mdc, UTC

(rapporteur)
(rapporteur)
(examinateur)
(examinateur)
(directeur)
(co-directeur)
(Invité)

v

For my parents and my dear wife Rouba

Abstract

During the recent years, car manufacturers have been developing new Advanced Driving Assistance
Systems (ADAS) such as Collision Warning, Lane Keeping, Night Vision and Navigation systems,
etc. To assess their real impacts on improving the driver behavior, car manufactures need adequate
and efficient tools. A set of metrics has been pointed out that truly reflects the driver performances
like Driver Reaction Time, Time To Collision, etc. To compute such metrics, an experimental car is
equipped with numerous types of sensors, whose data is acquired and processed in real-time. All these
requirements have lead us to the development of an object oriented middleware called SCOOT-R!.

SCOOT-R consists of a set of basic services built as a middleware layer above an existing real-
time kernel. It offers a framework for distributing tasks on multi-processing units architecture, along
with communication and synchronization services. It also includes run-time monitoring of real-time
constraints and ensures a dynamic reconfiguration by replicated software components. SCOOT-R aims
to reduce the cost and time of distributed real-time applications development by providing the frame-
work necessary for building reusable multi-purpose real-time software components. The benefits of our
middleware are demonstrated by building a testbed and executing representative applications such as
driving assistance applications.

Moreover, middleware must support applications with real-time QoS requirements. Our middle-
ware SCOOT-R provides an ideal platform to design and implement distributed scheduling strategies
that permit to ensure end-to-end real-time QoS capabilities. Thus, we have enhanced SCOOT-R clien-
t/server model by incorporating end-to-end scheduling strategies. The developed scheduling techniques
consist of timing constraints propagation of remote operations. Three strategies are proposed in this
context, the client priority propagation, the client deadline propagation (EDF), and finally a hybrid
strategy is proposed to take into account the criticalness constraints with the distributed EDF schedul-
ing strategy.

Finally, we have developed adaptive scheduling strategies to schedule at run-time driving assistance
functions in presence of driving situation change. The adaptation in our approach is carried out on
the driving situation, which will lead to the change of the associated driving assistance function’s
criticalness.

!SCOOT-R: Serveur et Client Orienté Objet pour le Temps-Réel

vii

Ces derniéres années, de nouveaux systémes d’aide & la conduite, comme les systémes de prévention
de collision, ou de sortie de route, d’aide a la vision de nuit et & la navigation, etc., ont été développés
par les constructeurs automobiles. Afin d’évaluer 'impact de ces systémes d’aide sur I’ameélioration
de la sécurité et le comportement du conducteur, les constructeurs automobiles ont besoin d’outils
assez flexibles et efficaces. Un ensemble de métriques a été défini afin d’évaluer les performances du
conducteur face au systéme d’aide et de la situation de conduite & laquelle il fait face. Afin de calculer
une telle métrique, un véhicule expérimental est équipé de nombreux types de capteurs, dont les données
doivent étre acquises et traitées en temps-réel. Toutes ces conditions ont motivé le développement d’une
architecture distribuée appelée SCOOT-R.

SCOQOT-R est un intergiciel orienté objet qui permet I’échange d’objets entre des processus s’exécu-
tant sur des calculateurs reliés par un réseau selon un modeéle client/serveur ou émetteur/récepteur
en respectant des échéances temporelles. Il offre aux applications des services de synchronisation et
de controle des contraintes temporelles, ainsi que la configuration dynamique par la réplication des
composants logicielles. SCOOT-R vise & réduire le cotit et le temps du développement des applications
distribuées temps-réel en fournissant le cadre nécessaire pour le développement des composants logiciels
temps-réel réutilisables. Les avantages de SCOOT-R sont démontrés en construisant un banc d’essai
et en développant des applications représentatives telles que les fonctions d’aide a la conduite.

Un intergiciel temps-réel doit supporter des applications temps-réel avec des contraintes temporelles
plus ou moins strictes. SCOOT-R représente une plateforme idéale pour la conception et le développe-
ment des stratégies d’ordonnancement distribués afin de garantir des communications de bout-en-bout
prévisibles. Nous avons amélioré le modeéle client/serveur de SCOOT-R en incorporant des stratégies
d’ordonnancement bout-en-bout. Ces techniques d’ordonnancement développées consistent essentielle-
ment en la propagation des contraintes temporelles. Trois stratégies ont été proposées dans ce contexte,
la propagation de la priorité des clients, la propagation de I’échéance des clients (EDF) et finalement
une stratégie hybride est proposée pour tenir compte les contraintes de criticité des opérations avec la
stratégie d’ordonnancement distribuée EDF.

Finalement, nous avons développé des stratégies d’'ordonnancement adaptatif (feedback scheduling)
pour ordonnancer des fonctions d’aide a la conduite en présence de changement de situation de conduite.
L’adaptation dans notre approche est porté sur la situation de conduite, qui ménera au changement
de la criticité des fonctions d’aide & la conduite associées.

X

Acknowledgements

This thesis has been conducted at Heudiasyc laboratory, among the advanced vehicle team and with
the support of the European project RoadSense (ROad Awareness for Driving via a Strategy that
Evaluates Numerous Systems).

This thesis would not have been possible if not for the help and encouragement from teachers,
friends and loved ones.

I am in great debt to my mentors and supervisors, Mohamed Shawky and Paul Crubillé. They
were an example to follow and from them I have learned so much. The amount of time and effort they
have spent with me on never ending drafts of the thesis, and their wise and precise comments have
contributed significantly to the quality of this thesis.

I would like to thank also my reviewers, Isabelle Puaut and Yvon Trinquet for their relevant and
precise comments concerning the thesis dissertation and that lead to a high quality document.

I also want to thank all the members of PACPUS team at our laboratory. Specially, Ali Charara,
Philippe Bonnifait, Véronique Cherfaoui and Dominique Meizel.

I have always received encouragement and support from my close friends, specially Amadou, Fahed,
Géry, Gérarld and Olivier. I will be always in debt with them.

I am thankful to all the members of the Heudiasyc laboratory at the UTC university for their
support and good moments.

Compiégne, France 27th January 2007

X1

Publications

Papers

[CCS04| K. Chaaban, P. Crubillé, and M. Shawky. Real-Time Framework for Distributed Embedded
Systems, In Principles of Distributed Systems, volume 3144 of Lecture Notes in Computer Science,
pages 96 - 107. Springer-Verlag GmbH, January 2004.

International conferences

[CSCO05] K. Chaaban, M. Shawky, and P. Crubille. A distributed framework for real-time in vehicle
applications. In proceedings of the IEEE Conference on Intelligent Transportation Systems ITSC,
Vienna, Austria, September 2005.

[CSC04] K. Chaaban, M. Shawky, and P. Crubillée. Dynamic reconfiguration for high level in-vehicle
applications using IEEE-1394. In proceedings of the IEEE Conference on Intelligent Transportation
Systems (ITSC), Washington, D.C, October 2004.

[CCS03c] K. Chaaban, P. Crubillé, and M. Shawky. SCOOT-R: Middleware communication services
for real-time systems. Principles of Distributed Systems: 7th International Conference, OPODIS 2003,
La Martinique, French West Indies, December 10-13, 2003.

[CCS03b] K. Chaaban, P. Crubillé, and M. Shawky. SCOOT-R: A framework for distributed real time
applications. In proceedings of the WIP of the 24h IEEE Real-Time Systems Symposium, Cancun,
Mexico, November 2003.

[CCS03a] K. Chaaban, P. Crubillé, and M. Shawky. Real-time embedded architecture for intelligent
vehicles. In proceedings of the Fifth Real-Time Linux Workshop, Valencia, Spain, November 2003.

xiii

Contents

Abstract vii
Résumé ix
Acknowledgements xi
Publications xiii
Table of contents XV
Liste of tables xix
Liste of figures xxi
Introduction 1
Introduction générale 5
1 An overview on real-time systems 9
1.1 The concept of real-time system 11
1.2 Distributed real-time systems L 0oL Lo Lo 13
1.3 Real-time operating systems and strategies for distributed systems 16
1.3.1 MARSssystem e 17

1.3.2 SPRING system 18

1.3.3 OSEK/VDX e 19

1.3.4 RTAT . . . e 20

1.4 Communication networks L 21
1.5 Conclusion o e 24

2 From Middleware To Real-Time Automotive Middleware 25
2.1 Introduction e e 27
2.2 Middleware for information systems. Lo Lo Lo 28
2.2.1 RPC vs. asynchronous messagingo 28

XV

2.2.2 Distributed object middleware Lo L o oL 28

2.2.3 Middleware and Quality of Service (QoS) 28
2.24 Programming models Lo 29
2.2.5 Software architectureo 30
2.2.6 CORBA architecture 34
2.3 Real-Time middleware e 35
2.3.1 Real-Time CORBA 35
2.3.2 Armada 37
2.4 Architecture and methodology for distributed automotive real-time systems 38
2.4.1 Embedded automotive architecture: methodology of design 39
2.4.2 In-Vehicle network technologyo o oL 42
2.5 Conclusion L e e 45

SCOOT-R: Middleware communication services for distributed real-time systems 47

3.1 Introduction 49
3.2 Research context e 50
3.3 SCOQOT-R hardware architecture 52
3.4 SCOOT-R software architecture 53
3.4.1 Failure detection and recovery in SCOOT-R 56
3.4.2 Client/server communication model 000 57
3.4.3 Emitter/receiver communication model Lo Lo 57
3.4.4 Client/server invocations v v v v it i e e 59
3.5 Dynamic reconfiguration and redundancy management 64
3.6 SCOQOT-R internal services operation 65
3.6.1 Time stamping 66
3.6.2 Services localization L. L L 67
3.6.3 Registration algorithm o 67
3.6.4 A safe diffusion mechanism Lo L Lo 68
3.7 Defining application-level SCOOT-R objects 69
3.7.1 Defining a server object L L 70
3.7.2 Defining a client objecto 72
3.7.3 Defining an emitter objecto 73
3.7.4 Defining a receiver object L 73
3.8 Performances 74
3.9 Typical automotive application involving SCOOT-R 75
3.9.1 Presentation of the application o0, 75

Xvi

3.9.2 Internal structure of the application’s components 75

3.9.3 Timing constraints of the application L. 7
3.9.4 Worst case time analysis for the distributed application 78
3.10 Conclusion L oL e e e e e 81
Real-Time Scheduling 83
4.1 Introduction L 85
4.2 Tasks definitions oL 85
4.3 Scheduling algorithms characteristics 86
4.4 Static scheduling examples: the case of RM algorithm 88
4.5 Dynamic scheduling examples: EDF, MLF, and MUF algorithms 89
45.1 Earliest Deadline First (EDF) 89
4.5.2 Minimum Laxity First (MLF) 90
453 Maximum Urgency First (MUF) 91
4.6 Distributed Scheduling: a brief survey o0 91
4.6.1 Static versus dynamic distributed scheduling of communication resources 93
4.6.2 Messages characteristics and quality of service 94

4.7 Enhancing SCOOT-R client/server by incorporating distributed scheduling strategies . 95

4.7.1 System model and assumptions Lo oo 96
4.7.2 Integrated messages and tasks scheduling 97
4.8 Performance evaluation and experimental results 105
4.8.1 Testbed architecture 105
4.8.2 Experimental resultso 106
4.8.3 Simulation results oL 108
4.9 Conclusion e 112
Dynamic feedback scheduling for automotive environments 115
5.1 Introduction L 117
5.2 Feedback scheduling: state of the art 118
5.2.1 Integrated control and real-time system design 119
5.2.2 Quality of service approaches in real-time systems 119
5.2.3 Flexible and adaptive real-time system algorithms and architectures 119
5.2.4 Feedback scheduling for autonomous vehicles 119
5.3 Our architecture for advanced autonomous vehicles 120
5.3.1 Driving situations and metrics definition o000 121
5.3.2 Distributed computing architectureo 123
5.4 Feedback scheduling of tasks and messages 124

xXvii

5.4.1 Confidence coefficient of metricso 124

5.4.2 Upward scheme: feedback scheduling using SCOOT-R quality indicator 125

5.4.3 Downward scheme: feedback scheduling regarding driving situation 126

5.5 Simulation results Lo 131
5.6 Conclusion 133
Conclusions and Perspectives 135
Bibliography 139

xXviil

Liste of tables

2.1
2.2
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
4.1
5.1
5.2
5.3
5.4

Failures classification L 32
Main categories of buses L 42
Real-time contracts: client/server model Lo Lo oL 58
Real-time contracts: emitter/receiver model 59
SCOOT-R performances (communication delays) — client/server model 74
RMA for computer 1 e 78
RMA for computer 2 e 79
RMA for computer 3 e 79
Clients and servers per computert 79
Computation and network delays o L 80
Baseline experimental settings Lo o 106
Computers and their associated components oL 123
Computing architecture L e 131
Driving situation and associated criticalness on computer 2 132
Driving situation and associated criticalness on computer 4 132

xix

Liste of figures

1 D-BITE architecture 2

2 Architecture du systéme D-BITE 6
1.1 Hard vs. soft real-time systems e 11
1.2 Architecture of a distributed system o Lo 14
1.3 Mars architectureo 18
1.4 Spring Architecture L 19
1.5 RTAI architecture e 21
1.6 Delay intervening in a real-time communication 24
2.1 Middleware architecture (CORBA middleware example) 27
2.2 OSI and middleware layers L 30
2.3 Corba Transactions e e 34
2.4 Components in the CORBA Reference Model (Client/Server Model) 35
2.5 Real-Time CORBA e 36
2.6 Software architecture of armada middleware 38
2.7 Hardware Architecture of a BASEMENT system 41
2.8 IEEE-1394 cycle e 44
3.1 SCOOT-R Architecture e 49
3.2 Sensors of the STRADA vehicle 51
3.3 The two instantiations of D-BITE 52
3.4 SCOOT-R Hardware Architecture 53
3.5 Components in the SCOOT-R Model 54
3.6 SCOOT-R vs. OSI Model e e 54
3.7 Service implementation L. 55
3.8 Component-oriented architecture — client/server model 95
3.9 Component-oriented architecture — emitter/receiver Model 95
3.10 Object oriented architecture — client/server Model, 57
3.11 Object oriented architecture - emitter/receiver model 58
3.12 Simplified statechart of a client operation 60
3.13 Simplified statechart of a server operation 60

xxi

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Client/server operation modeso oo o e 61

Transactions chronogram e 62
Jitter . o 63
Emitter/receiver operation modes L Lo L 63
Redundancy approach e 65
Redundancy of servers on duplicated buses 65
SCOOT-R service operation o v v i v i vttt 65
Cycle counter format L 66
Statechart of the registration algorithm 0. 67
Broadcasted message format L L L 69
SCOOT-R main classes used in a user application 69

An example of a user application implementation by inheritance of SCOOT-R main classes 70

communication architecture of the application00 75
GPS sensor component structure Lo Lo 76
Position imprecision and computation delays 78
A simple taxonomy of some scheduling algorithms 87
MUF priorities encoding« .. e 91
Local/Distributed scheduler L o 92
Example of a system configuration L. 97
Media and CPU sharing example o o 97
CPP: Client Priority Propagation 98
CPP implementation 99
Queues Architecture L. 99
CDP: Client Deadline Propagation 100
Distributed vs. end-to-end distributed EDF o000 100
CDP implementation 101
Deadline-based scheduling 102
Tasks and messages scheduling L o 102
CDP-BBA scheduling strategy L 104
Best benefit algorithm implementation o oL 105
Application configuration 106
Random shift of transactions sequence oL 107
Client/Server transaction time L L 107
Clients response times with CDP, 108
Clients response times with FIFO scheme 109
Our application architecture modeled by TrueTime toolbox 110

xxii

4.22
4.23
4.24
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15

Dispatching incoming messages to clients and servers,
With CDP scheme e
Using CDP algorithm
ADAS evaluation e
Adaptive ADAS e
A real example of metrics architecture
Computation architecture of metrics
Adaptive Scheduler L
Activation frequency and confidence coefficient
Driving situation switch o

Driving situations ” National — Road—2%1” and ” Driving—In— F'ile” and their associated
MEtTiCS o e e e

Utility values for ” National — Road — 2 % 1”7 driving situation obtained by pairwise
COMPATISON « « + v v v v e v i e e e e e e e e e e e e e e e

Utility values for all metrics of all driving situations obtained by pairwise comparison

Computing architecture and criticalness inheritance
Using BBA to distribute adaptive scheduling
Components interactions and metrics computation architecture
Dispatching incoming messages to clients and servers

Transactions response time

xxiil

110
111
112
117
118
122
123
124
126
127

128

Introduction

In last years, the real-time systems community has been making significant effort in using commercial
off-the-shelf (COTS) components to develop performance-assured systems. Several research initiatives
have been undertaken to enable writing cost-effective software that provides Quality-of-Service (QoS)
guarantees on multiple platforms whose resource capacity, speed and load profile are unknown at
application design time.

Today, the notion of distributed real-time architecture is commonly accepted in the industrial
sector and the real-time systems are used in many fields such as equipment control in the automotive
sector (engine, brake, etc.), aerospace (satellite follow-up, automatic piloting, etc.), railway transport,
telecommunication, medical (assistance and monitoring of patients), military (follow-up of missiles
trajectories), multimedia (video conference, etc.).

The research works depicted in this thesis have been conducted at Heudiasyc laboratory, among
the advanced vehicle team, with the support of the European project RoadSense?. The main objective
of the RoadSense project was to provide a framework for establishing robust Human Vehicle Interface
(HVI) requirements that will drive technology change. RoadSense provides the car manufacturers by
analysis tools in order to enable them to define the guidelines for the evaluation of the relevance of the
assistance systems of future generations. A certain number of criteria (metrics) was defined describing
the reaction of the driver vis-a-vis the driving assistance system, the performances of the driver are
thus evaluated, with and without the driving assistance system, in order to evaluate its true benefit to
the improvement of safety.

Part of our contribution was the development of a design methodology, realization and deploy-
ment of a real-time system having a sufficient robustness required to evaluate the Advanced Driving
Assistance System (ADAS). The distributed system is called D-BITE for Driver Behavior Interface
Test Equipment. The system is conceived to be open and maintainable. This methodology is based on
an (OO) Object Oriented middleware dynamically reconfigurable (SCOOT-R), and reflects the study
case chosen by the car manufacturers. The middleware allows the real-time communication between
the perception sensors, fusion elements, decision modules, and the Man-Vehicle Interface (Figure 2).

In order to evaluate ADAS functions, D-BITE elaborates driver behavior indicators (or metrics)
for safety, comfort and support assessment.

Initially, these computations are made off-line (for the RoadSense project), i.e., during an experi-
mental phase, all sensors data and video flows are logged on embedded computers aboard the vehicle,
and then the driver indicators are computed off-line in order to apprehend the driver vehicle interaction.

Our proposition later is the on-line computation of these metrics. SCOOT-R ensures a reliable de-
velopment framework to design and compute these metrics using sensors data. The on-line computation
of metrics allows the integration of these indicators to the ADAS functions in order to take into account
the driving situation and the external vehicle environment. On the other hand, this on-line processing

ROADSENSE: ROad Awareness for Driving via a Strategy that Evaluates Numerous Systems, http://www.eu-
projects.com/roadsense/

9 Introduction

phone »
radio » HVI Manager
Ex: o HVI
Sensor or Communication gl Human vehicle
inf i » » manager Interface
information n ADAS
source
L <
] HF mefrics
>
»
» Data(video,..) HD
» >
D-BITE
Sensor or l
information
e 7 \

Screen

keyboard

Figure 1: D-BITE architecture

has imposed several requirements concerning for example the real-time and feedback scheduling to
adapt the resources to the current driving situation. Computing resources used inside an advanced
vehicle are limited, and may fail. Thus, we must adapt the resources according to the criticalness of
services and to select them dynamically. For this purpose, we have developed distributed scheduling
strategies to deal with asynchronous systems and to facilitate the deployment of such distributed
applications.

The thesis effort is therefore divided into three complementary areas: (i) low-level real-time commu-
nication support and additional middleware services for synchronisation and dynamic reconfiguration,
(ii) distributed real-time scheduling strategies to ensure end-to-end real-time QoS guarantees to appli-
cations, and (iii) feedback scheduling techniques for the automotive environment.

Real-time communication sub-system and middleware services

The main goal of this part was the contribution to the design and implementation of an object oriented
middleware called SCOOT-R formerly developed at our laboratory.

The large amount of data to be processed and the distribution of calculation on several computers
have lead us to the development of SCOOT-R. It enables programmers to develop distributed real-time
applications. It is layered between the application and the OS kernel and handles, on behalf of the
application, the temporal correctness, synchronisation, and resource allocation issues in a performance-
assured system.

Given the distributed nature of our architecture, the need of a synchronisation mechanism is
obvious. SCOOT-R ensures a low-level middleware service for synchronisation between computers.
It provides a global time base with high resolution for on-line data time stamping. This reference time
is then used to provide a post-processing synchronisation in a distributed architecture.

SCOOT-R is based on client/server and emitter/receiver communication models. It also includes
run-time monitoring of real-time constraints and ensures a dynamic reconfiguration by replicating
software components.

Introduction 3

The communication services use the IEEE-1394 bus. The advantage of using this bus is its dual
transfer modes, its determinism and high bandwidth capabilities. Moreover, the IEEE-1394 norm
provides low level dynamic configuration and synchronisation services that are useful for the design
and implementation of reconfigurable distributed real-time systems.

To facilitate the development of communication-oriented services, our communication subsystem is
implemented using the RTATI Linux kernel originally developed at the University of Milano. We have
chosen Linux RTAI system primarily for its performance and its complete support and availability.

This middleware solution is very relevant for us; instead of losing time and effort to code a real-time
kernel, we concentrated on the true added value of our contribution, such as, the simple data objects
sharing, synchronisation with high temporal resolution, and distributed scheduling.

Distributed real-time scheduling

Middleware in a distributed real-time system can provide the framework and mechanisms required
to perform the necessary scheduling strategies. Thus, it provides the required end-to-end support for
various real-time quality of service (QoS) aspects, such as bandwidth, latency, and jitter.

During the initial development of the SCOOT-R middleware, the management of exchanged mes-
sages was relatively rudimentary by using the FIFO scheme for messages and fixed priority for tasks.
The initial scheme did not consider the priority of the task sending or receiving the message.

In this phase, the work was devoted to the development of distributed scheduling strategies in order
to achieve end-to-end delay predictability. Two scheduling strategies are developed:

e Client Priority Propagation (CPP)

e Client Deadline Propagation (CDP)

In addition and to deal with overloaded situations, we have developed a hybrid static/dynamic
distributed scheduling strategy called the Best Benefit (CDP-BBA) strategy. It explicitly takes into
account both the deadlines and criticalness of tasks and messages while making scheduling decisions.

The main objective of these proposed scheduling strategies is to provide SCOOT-R middleware by
a global real-time scheduling service to support the end-to-end timing constraints for the distributed
client/server interactions.

The distributed system considered here is composed of nodes interconnected by a deterministic
network bus. The target applications are qualified by their timing constraints and they may include
functions with different levels of criticalness. Moreover, the proposed scheduling strategies are well
adapted to the transactional models (e.g., client/server) and are implemented using our SCOOT-R
middleware.

Dynamic feedback scheduling in automotive environments

Future real-time systems for advanced vehicles control will need to have intelligent and adaptive
behavior in order to operate in dynamic and non-deterministic environment characterized by the
unpredictable nature of the vehicle, road condition and driving situation. Hence, the criticalness of
applications evolve dynamically with the driver environment.

4 Introduction

To realize such complex system, two objectives must be met: first, safety and critical services must
be guaranteed to provide their results with acceptable quality with respect to their deadlines; second,
the utility of the system as determined by timeliness, precision and confidence level must be maximized.

Moreover, the static scheduling for future ADAS functions in automotive applications leads to
over dimensioning the distributed computing resources. In such applications, critical and less critical
components coexist. The criticalness of certain component may depend on the driving situation, partial
failure and redundant component activation

In the case study depicted in chapter 5, we consider a set of driving situation defined at pre-
runtime. To each driving situation corresponds a set of metrics. Each metric has a relative importance
level represented by a utility value or criticalness. This criticalness depends on the current driving
situation and changes with it. We have proposed to use feedback scheduling technique to consider
the criticalness of components based on the driving situation. These techniques were first used in the
field of systems control. We believe applying them to the embedded automotive field to be a novel
contribution.

Thus, the adaptation in our approach is carried out on the driving situation, which will further lead
to the change of the associated metrics components criticalness. Thus the schedule will be adjusted so
that it satisfies the desired real-time requirements.

Introduction générale

Ces derniéres années, la communauté des systémes temps-réel avait fait un effort significatif en util-
isant des composants sur étagére (COTS) pour développer des systémes informatiques performants.
Un certain nombre d’initiatives de recherches ont été introduises afin d’augmenter la rentabilité du
développement des logiciels fournissant des garanties de Qualité de Service (QoS) et s’exécutant sur
des plateformes hétérogénes dont les profils de capacité, de vitesse et de charge de ressource sont
inconnu au moment de la conception d’application.

Aujourd’hui, la notion de ’architecture temps-réel distribuée est généralement acceptée dans le
secteur industriel et les systémes temps-réel sont utilisés dans beaucoup de domaines tels que le
controle/commande dans le secteur automobile (moteur, frein, etc.), ’espace (suivi satellite, pilotage
automatique, etc.), transport ferroviaire, télécommunication, médicale (aide et surveillance des pa-
tients), militaire (suivi de trajectoire de missiles), multimédia (vidéoconférence, etc.).

Les travaux de recherche présentés dans cette thése ont été réalisés au laboratoire Heudiasyc, au
sein de I’équipe véhicule avancé et dans le cadre du projet européen RoadSense.

L’objectif principal du projet RoadSense était le développement d’une méthodologie d’évaluation de
Iefficacité de nouveaux systémes d’aide a la conduite. RoadSense fournit les constructeurs automobiles
par des outils d’analyse afin de leur permettre de définir les directives pour I’évaluation de la pertinence
des systémes d’aide de futures générations. Un certain nombre de critéres (indicateur) ont été définis
décrivant la réaction du conducteur vis-a-vis du systéme d’aide & la conduite, les comportements du
conducteur sont ainsi évaluées, avec et sans le systéme d’aide & la conduite, afin d’évaluer sa vraie
participation a ’amélioration de la sireté.

Une partie de notre contribution dans le projet était le développement d’une méthodologie de
conception, réalisation et déploiement de systéme temps-réel ayant un fonctionnement suffisamment
robuste requis pour l’évaluation des systémes d’aide a la conduite (ADAS). Ce systéme distribué
s’appelle D-BITE (Driver Behavior Interface Test Equipment) et il est congu pour étre ouvert et
maintenable.

Cette méthodologie s’appuiera sur un intergiciel orienté objet dynamiquement reconfigurable, SCOOT-
R. Cet intergiciel permettra la communication temps-réel entre les organes de perception, de fusion,
de décision et de I'Interface Homme-Véhicule (IHV) (Figure 2).

Afin d’évaluer ces systémes d’aide & la conduite, le systéme D-BITE élabore des indicateurs
permettant ’évaluation du comportement de conducteur, sa streté, son confort et son support.

En premier temps, ces calculs sont faits hors ligne (pour le projet RoadSense), c.-a-d., pendant une
phase expérimentale, toutes les données venant des capteurs et des caméras sont enregistrées sur des
ordinateurs embarqués a bord du véhicule pour étres traitées ultérieurement en post traitement.

Notre proposition plus tard est le calcul en ligne de ces indicateurs. SCOOT-R assure un cadre
de développement fiable et flexible pour la conception et le calcul de ces indicateurs en utilisant des
données capteurs. Le calcul en ligne de ces indicateurs permet leur intégration dans la boucle fermée

6 Introduction générale

phone »
radio » HVI Manager
Ex: o HVI
Sensor or Communication gl Human vehicle
inf i » » manager Interface
information n ADAS
source
L =
] HF mefrics
>
»
» Data(video,..) HD
» >
D-BITE
Sensor or l
information
e 7 \
\ Screen
keyboard

Figure 2: Architecture du systéme D-BITE

d’évaluation des systémes d’aide & la conduite ADAS afin de tenir compte de la situation de conduite
courante et du comportement de conducteur.

Drailleurs, ces calculs en ligne et en boucle fermée ont imposés un certain nombre de contraintes
sur le systéme informatique sous-jacent, notamment ’ordonnancement temps-réel et contextuel pour
adapter les ressources a la situation de conduite courante.

Etant donné que les ressources informatiques utilisées dans un véhicule avancé sont limitées, et
peuvent échouer. Ainsi, nous devons adapter les ressources selon la criticité des services et de les
choisir dynamiquement.

Ce document est donc divisé en trois parties complémentaires : (i) le middleware reconfigurable et la
communication, (ii) 'ordonnancement temps-réel des opérations SCOOT-R avec un objectif de qualité
de service de bout en bout, et (iii) les techniques d’ordonnancement régulé adaptées aux situations de
conduite.

Sous systéme de communication temps-réel

L’objectif principal de cette partie était la contribution & la conception et & l'implémentation d’un
intergiciel orienté objet, SCOOT-R.

La masse importante de données & acquérir et & traiter en temps-réel ainsi que la distribution du
calcul sur plusieurs machines nous a motivé pour le développement de SCOOT-R.

SCOOT-R fournit un ensemble de services, construit comme une couche middleware au dessus d’un
noyau temps réel. Il permet ’échange d’objets entre des processus s’exécutant sur des machines dis-
tribués selon un modéle client /serveur et émetteur/récepteur et en respectant des échéances temporelles
strictes.

Parmi les services principaux fournis par SCOOT-R on peut citer ceux de la gestion de répliques
pour la reconfiguration dynamique du systéme et la fourniture d’un temps global pour la synchronisa-
tion entre les applications.

Les services de communication utilisent le bus IEEE-1394. Parmi les avantages de ce bus sont

Introduction générale 7

ses double modes de transfert, son déterminisme ainsi que sa bande passante trés élevée. D’ailleurs,
la norme IEEE-1394 fournit des services de reconfiguration dynamique et de synchronisation bas
niveau qui sont utiles pour la conception et 'implémentation des systémes distribués temps-réel
dynamiquement reconfigurable.

Ordonnancement distribué temps-réel

L’intergiciel dans un systéme distribué temps-réel peut fournir les outils et les mécanismes nécessaires
pour la conception et 'implémentation des stratégies d’ordonnancement temps-réel. Ainsi, il fournit le
support d’exécution de bout en bout requis par les différentes approches de la Qualité de Service QoS
temps-réel, tels que la bande passante, la latence, et la gigue.

La premiére version de SCOOT-R ne fournit pas de mécanismes aux clients afin d’indiquer les
priorités relatives a leurs requétes. Néanmoins, cette caractéristique est intéressante, pour réduire au
minimum le phénomeéne d’inversion de priorités, et pour minimiser le temps de latence et le jitter pour
les opérations prioritaires. Lors du développement initial de SCOOT-R, la gestion des messages était
relativement rudimentaire en utilisant le schéma du premier arrivé premier servi qui ne tenait pas
compte de la priorité de la tache envoyant ou recevant le message. Les taches sont ordonnancés en se
basant sur des profiles de priorités fixes.

Dans cette phase, le travail a été consacré au développement des stratégies d’ordonnancement
distribuées afin de minimiser les temps de latence de bout-en-bout. Deux stratégies d’ordonnancement
sont développées:

e Client Priority Propagation (CPP)

e Client Deadline Propagation (CDP)

Afin de traiter les situations de surcharge du systéme, nous avons développé une stratégie mixte
d’ordonnancement appelée CDP-BBA (Best Benefit Algorithm). Elle tient compte explicitement des
échéances absolues et de la criticité des tiches/messages.

L’objectif principal de ces stratégies d’ordonnancement proposées est de fournir SCOOT-R par
un service d’ordonnancement global pour garantir les contraintes temporelles de bout en bout des
opérations prioritaires.

Le systéme distribué considéré ici est composé d’un ensemble de machines reliées par un bus réseau.
Les applications cibles sont qualifiées par leurs contraintes temporelles et elles peuvent inclure des
fonctions avec différents niveaux de criticité. D’ailleurs, les stratégies d’ordonnancement proposées
sont bien adaptées aux modeéles de communication transactionnels (par exemple, client/serveur) et
sont implémentées mises en oeuvre en utilisant notre intergiciel SCOOT-R.

Ordonnancement dynamique & boucle fermée en environnements au-
tomobiles

Les futurs systémes temps-réel utilisés pour le contrdle des véhicules avancés devront avoir le comporte-
ment intelligent et adaptatif afin de fonctionner dans un environnement dynamique et non déterministe
caractérisé par la nature imprévisible du véhicule, état de route et la situation de conduite. Par
conséquent, la criticité des applications évolue dynamiquement avec ’environnement de conducteur

8 Introduction générale

Afin de réaliser de tels systémes complexes, deux objectifs doivent étre abordés: d’abord, les services
critiques du systéme doivent étre garantis pour fournir leurs résultats avec une qualité acceptable et
une fiabilité suffisante; en second lieu, 1'utilité du systéme défini par I’opportunité, la précision et le
niveau de confiance doivent étre maximisées.

D’ailleurs, l'ordonnancement statique des futurs systémes d’aides a la conduite (ADAS) méne
typiquement au surdimensionnement des ressources de calcul distribuées dans le véhicule. Dans de
tels systémes, des composants critiques et moins critiques peuvent coexister. La criticité de certains
composants peut dépendre de la situation de conduite courante, de la défaillance partielle du systéme
et de l’activation des composants redondants.

Dans I’é¢tude de cas représentée en chapitre 5, nous considérons un ensemble de situations de
conduite défini & priori. A chaque situation de conduite correspond un ensemble des indicateurs.

Dés que la situation de conduite change, la criticité des indicateurs associés change également. Nous
avons proposé d’utiliser la technique d’ordonnancement dynamique en boucle fermée (feedback) pour
adapter l'allocation de ressources a la criticité des composants selon la situation de conduite.

Chapter 1 __

An overview on real-time systems

Abstract

The purpose of this introductory chapter is to describe the environment of real-time computer systems.
We start with the definition of a real-time system and a discussion of its functional and temporal
requirements. A particular emphasis is made on the temporal requirements. These definitions pro-
vide a common base of real-time vocabulary, updated technologically and opened to the embedded
applications, in particular the automotive field.

Contents
1.1 The concept of real-time system v v v v v v v vttt v o a v a0 o 11
1.2 Distributed real-time systems 0 0o od s e 13
1.3 Real-time operating systems and strategies for distributed systems 16
1.3.1 MARS system o o e e e e e e 17
1.3.2 SPRING system it e e 18
1.3.3 OSEK/VDX 19
1.3.4 RTAT o e 20
1.4 Communicationnetworks00 21
1.5 Conclusion @ @ i i i i i it e e e e e e e e e e e e e 24

1.1. THE CONCEPT OF REAL-TIME SYSTEM 11

1.1 The concept of real-time system

A real-time computing element is always part of a larger system, the real-time system. If the real-
time computer system is distributed, it consists of a set of nodes (computers, microcontrollers) that
cooperate to realize a set of functions prone to real-time constraints and interconnected by a real-time
communication network.

The complexity of processes that must be controlled or supervised, the high amount of data and
events to be treated, the geographic distribution of processes at one hand, and the appearance from
many years of industrial local buses on the other hand have conducted to reconsider the centralized
real-time applications and encouraged the distributed solutions.

Today, the notion of distributed real-time architecture is commonly accepted in the industrial field.
Real-time systems are used now in many fields such as equipment control in the automobile field
(motor, brake, etc.) [Ack97][AFHT 03] [MGFSKO04]|[AFH 03], aerospace field (satellite follow-up, auto-
matic piloting, etc.) [ABAT97||[SGHPI7], railway train [ZHO03|, telecommunication |[AAS97|, medical
field (assistance and control of patients) [GEP00], military field (follow-up of missiles trajectories)
[ABAT97], multimedia (video conference, etc.) [PJ90][Jef92].

The design of a hard real-time system, which must produce the results at the correct instant, is
fundamentally different from the design of a soft real-time one.

A A

Quality Qi Quality Qi correct
correct range

unacceptable

» »

Response time tri Response time tri
Deadline di Deadline di

(a) Hard real-time system (b) Soft real-time system

Figure 1.1: Hard vs. soft real-time systems

Definition 1. Hard real-time systems: A hard real-time system comprises functions with strict
constraints. The principal objective in the realization of such system is to strictly satisfy all the hard
time constraints of hard real-time functions. With the situation depicted in Figure 1.1(a), the damage
that arises if the deadline is missed is catastrophic and the result is unacceptable. In a hard real-time
system, it is necessary to have a static (a priori) wvalidation or analysis in order to guarantee the
temporal behavior of its functions.

Definition 2. Soft real-time systems: A soft real-time systems is defined as a system when the
occasional miss of deadlines does not put the system in difficulty. i.e., the non-respect of deadlines
leads to a correct result, but with degraded quality. In Figure 1.1(b) the failure becomes more severe as
time passes beyond the deadline. A soft real-time system comprises only functions having soft real-time
constraints. It can be validated while computing statistically the average response time (multimedia,
etc.). Components used to implement a soft real-time system (operating systems, communication net-
works, etc.) do not have necessarily deterministic response times.

Definition 3. Firm real-time systems: A firm real-time system [BBL01] can tolerate some degree
of missed deadlines provided that this rate is bounded and guaranteed off-line. Thus, deadlines can

12 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

be missed occasionally but producing a late result is worthless. Nevertheless, the term occasional is
so ambiguous that it has no practical meaning for a specification. The extent to which a system may
tolerate missed deadlines has to be stated precisely. Assuming that some deadlines can be missed, the
way that these missed and met deadlines are distributed is important. An example of a firm approach
is the (m,k) firm when the system accepts to miss (k - m) deadlines each k consecutive deadlines.

In most large real-time systems, not all computational events will be hard or firm. Some will have
no deadlines attached and others will merely have soft deadlines. The distinction between hard and
soft application may, however, produce hybrid behaviors.

Scheduler, scheduling, and schedulability: One of the basic parts of a real-time system is the
scheduler. It allows the establishment of an order to execute system tasks and to switch from task or
process to another by applying a scheduling algorithm. A scheduling algorithm rests on a tasks model
that defines a set of restrictions and constraints that must conform the tasks, and on a schedulability
test that permits to verify if the temporal requirements of tasks will be met or not. In a critical real-
time system, the schedulability test must be verified before execution in order to off-line guarantee the
temporal behavior of its tasks.

Periodic, aperiodic and sporadic tasks: In the real world, events occur simultaneously and a
system that interacts with this real world has to mimic this parallel behavior. This is usually done by
building the system as a set of cooperating sequential tasks that interact with each other and with the
environment, and that execute continuously. Each of these tasks models a small part of the system
and these tasks can be either periodic or aperiodic. A periodic task is executed repeatedly, in a regular
and cyclic pattern. Aperiodic tasks are usually executed in response to asynchronous events, where
a measure of the arrival rate is usually provided. There are also sporadic tasks that are invoked at
arbitrary times but with a specified minimum time interval between invocations.

Static and dynamic scheduling: In real-time systems, it is required to guarantee that the tem-
poral constraints will be met during execution. With design guarantees, also called static guarantees,
a warrant on task temporal constraints has to be given a priori, these static guarantees correspond
usually to static scheduling policies. In run-time guarantees, also called dynamic guarantees, no a
priori guarantees on the tasks completion times can be given, but at run-time, the system determines
whether a given task invocation will satisfy its temporal constraints [Nic98|. So, dynamic scheduling
policies have been introduced to guarantee temporal constraints at run-time [MMMO00][SJK8S|.

For temporal constraints that are guaranteed at run-time, there are two situations. Whenever a
task is accepted for execution, it has to be guaranteed that it will finish by its deadline, or it may
be accepted for execution even though it may not finish by the deadline. This leads to two types of
schedulers: guaranteed and best-effort. Guaranteed schedulers apply an acceptance test and the tasks
are either accepted or rejected. Best-effort scheduling accepts the task for execution but they do not
provide a guarantee that the task will meet its temporal constraint.

If temporal constraints that have been guaranteed miss at run-time, it is said that at run-time, a
specification violation occurs. This can be due to the software (operating system, applications, etc.) or
the hardware (computer, communication network, etc.) do not work as it was assumed. It is therefore
required to monitor the behavior of the system during execution and either to stop the system or to
introduce some fault-tolerance mechanisms.

Predictability and safety: One common misconception of real-time systems is that real-time
computing is fast computing. This misconception, among others, has been discussed by Stankovic in
[Sta88]. The objective in safe real-time systems is to meet the timing requirements, and the property
required to do so is predictability.

Predictability requires some level of determinism [SR90]. The predictability is guaranteed as long

1.2. DISTRIBUTED REAL-TIME SYSTEMS 13

as a set of assumptions of the system hold. The usual assumption framework is that:

e the hardware and operating system have a deterministic behavior;
e the tasks do not execute for more than its pre-computed worst-case execution time;

e sporadic tasks do not re-arrive faster than a minimum interarrival time [Nic98].

Moreover, predictable schedule requires that the information including in the tasks model is defined
and sufficient. The minimal information needed is the worst case execution time (WCET) of the tasks.
This requires information on how the task is implemented and on the hardware details (for instance,
the timing properties of the processor instruction set).

However, safety is closely coupled to the notion of risk. In a safety critical system, the situation
may indeed be worse with actual damage resulting from an early or missed deadline. A system can be
defined to be a safety critical real-time system if the damage has the potential to be catastrophic.

Real world examples: As an example of the key mass markets of real-time systems is the
field of consumer electronics and automotive electronics. The automotive electronics market is of
particular interest, because of its high performance requirements (stringent timing, security, and cost
requirements).

After a conservative approach to computer control during the last years, a number of automotive
manufacturers now view the proper use of computer technology as a key competitive element in the
never-ending quest for increased vehicle performance and reduced manufacturing cost (for example,
in a Renault Megane I vehicle, one finds 20 embedded microcontrollers). While some years ago, the
computer applications on board focused on non-critical electronics or comfort functions, there is now
a substantial growth in the computer control of core vehicle functions (critical), e.g., engine, brake,
transmission, suspension control and high-level functions (non-critical), e.g., infotainment, comfort,
and driving assistance functions. Obviously, an error in any of the core vehicle functions (critical part)
has severe safety implications.

Another example of real-time systems markets is the multimedia. The multimedia market is an
emerging mass-market for specially designed real-time systems (soft real-time systems). Although the
deadlines for many multimedia tasks, such as the synchronisation of audio and video streams, are firm.
An occasional failure to meet a deadline results in a limited degradation of the quality of service, but
will not cause a global failure.

The emphasis of our research depicted in this document is the automotive field. Particularly, we are
interested to the design of a distributed real-time system for high-level automotive applications (non
critical). i.e., the development of a software/hardware architecture allowing the evaluation of driving
assistance functions while integrating coherent information computing and distribution.

1.2 Distributed real-time systems

Distributed real-time systems are now used in many important application areas as mentioned before.
Further, distributed real-time technology is becoming increasingly important and pervasive. Strategic
directions for research in real-time computing involve addressing new types of distributed real-time
systems including globally distributed real-time systems and multimedia systems. Research is required
in the areas of system evolution, composability, software engineering, reliability, formal verification,
and programming languages. Furthermore, economic and safety considerations, have to be taken into
account by these research.

14 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

A distributed computer system is a collection of loosely coupled computers that operate au-
tonomously and cooperate on the execution of one (or more) specific problems. Each node is a complete
computer system. The nodes have no shared memory and communicate only via messages (Figure

1.2(a)).
A distributed computer system can be viewed as consisting of three major layers: application

processes (tasks), a distributed operating system on each node, and a communication subsystem
[Kop97b].

In a distributed system, it is feasible to encapsulate a logical function and the associated computer
hardware into a single unit node.

Host Computer

Real-Time Communication System

Communication Network Interface

Communication Controller

(a) Architecture of a distributed system (b) host

Figure 1.2: Architecture of a distributed system

A node can be partitioned into at least two subsystems, the local communication controller, and the
host computer (Figure 1.2(b)). The CNI (Communication Network Interface) is located at the transport
level of the OSI reference model, and is considered to be an important interface of a distributed real-
time architecture.

The application processes are the "user application" in this structure, making use of the services
provided by the distributed operating system and the communication subsystem.

The communication subsystem hardware and software facilitate the exchange of messages among
the distributed components. Its speed, throughput, reliability, and its behavior regarding eventual
failure are determining factors in the performance of the entire distributed system. This is especially
true for real-time applications, in which information gathered at one point in the system must be
processed and output elsewhere in the system within rigid time constraints. Such systems require
dedicated high-performance communications.

The Distributed Object Computing (DOC) is one of the flexible paradigms available today which
tackles the development of next-generation distributed and embedded systems [IN02|. The economic
constraints with regard to the capacity of computers (processors, microcontrollers, FPGA, etc.) have
enhanced the interest in embedded distributed systems and their ability to partition the computing
load between their components. Usually, the DOC paradigms are implemented as Object Oriented
(00) middleware(s), i.e., a software layer that extend the functionalities of an OS for the applications.

Middleware hides the architectural complexity of the underlying OS and network and provides the
applications by a set of APIs. Thus, the application designers focus on their applications development
instead of the adaptation of the low-level services of the underlying OS and network. Furthermore,
the middleware extends the basic services of the OS by a rich set of advanced services that are
relevant for the development of distributed real-time applications. For example, a middleware provides
a synchronisation service in order to guarantee that all the nodes have the same common time base, a

1.2. DISTRIBUTED REAL-TIME SYSTEMS 15

middleware provides also other important services such as a reliable communication service that may
tolerate network failures.

Another way that may be used to design a distributed real-time system is the distributed RTOS".
The distributed RTOS unifies and integrates the control of distributed hardware components (re-
sources), and provides a uniform high-level system interface to the application processes. Thus, it
allows the development of an integrated system with a rich set of services and functionalities. Usually,
a distributed RTOS is designed to be object oriented, and it has a communication mechanism that
allows the transparent use of the resources of a distributed system. Moreover, a distributed RTOS
provides certain level of fault tolerance implemented by several policies.

The use of distributed systems is motivated by many reasons, in particular:

e To increase the availability and the run-time maintenance of the computer system by the replace-
ment of a damaged component of the system without significant failure. This aspect is mandatory
in the distributed real-time applications for which the failure situations must be rare;

e To process information close to actuators (can operate in safe and degraded mode) and to
sensors (decrease of signal to noise ratio). There is a need to adapt the computer system to
its environment. It is important that the system takes into account the physical distribution of
the real-time applications.

e The demand of computing capacity at lower cost and using COTS-based components;
Distributed systems have some characteristics that distinguish them from centralized systems:

e Communication delays between nodes vary from a message to another according to the network
protocol used and the network traffic;

e No common clock; a node has its own time perception and, as the physical clocks derive compared
to the time reference, the various times read on the nodes can be different at the same universal
time. The computational processes may need references to a common time base, which would
lead to unreliable results or errors. Moreover, the scheduling and the computation of real-time
constraints of communicating tasks are tributary of these clock drifts and of communication
delays;

e Absence of a common memory has as a consequence the impossibility to define a global state
using common variables. The impossibility of having an identical global state instantaneously on
all the nodes leads to many difficulties to make decisions on the management and the resource
sharing.

e Distributed applications are more complex to specify, to design, to implement, to test and to be
validated.

In a distributed real-time system, the distributed computer system performs a multitude of different
functions concurrently, e.g., the monitoring of real-time entities, the detection of alarm conditions and
the time-stamping of data collected on several nodes. These different functions are normally executed at
different nodes. In addition, replicated nodes are introduced to provide fault tolerance by redundancy.
To guarantee a consistent behavior of the entire distributed system, it must be ensured that all nodes
process all events and data in the same consistent order. The events time-stamping provides a global
time base to establish such a consistent temporal order.

'RTOS: Real Time Operating System

16 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

Given the complexity and the distribution nature of our main applications target (assistance driving
functions evaluation), we envisaged to use the notion of (OO) object oriented middleware in order to
design and implement our distributed real-time system. These applications require certain level of auto-
reconfiguration and synchronisation properties. For that, we have developed a middleware support to
respond to this requirements by providing a global time-stamping and reconfiguration services of the
distributed system.

1.3 Real-time operating systems and strategies for distributed sys-
tems

The increasing complexity of real-time systems has led to the development of Real-Time Operating
Systems (RTOS). RTOSes are now employed widely in many sectors, e.g., military, avionics, must-not-
fail telecom, medical, industrial and power plants, railway and automotive equipment.

Unlike a desktop operating system, an RTOS is usually far smaller in size, more modular in structure
and focused on the most essential functions. There is no need for an RTOS to include programming
interfaces to hundreds of popular software packages that desktop operating systems must provide.

The operating system must be able to take into account this concept of time on all the levels. The
following characteristics are thus essential for a RTOS [Gho94|[Sta96]:

e A robust programming library (or extension API) that allows a clear specification of real-
time applications, guarantees the execution independently of architecture targets and takes into
consideration the environment of asynchronous communications;

e A real-time scheduler that applies a scheduling policy (algorithm) to allocate resources while
satisfying timing requirements of the underlying tasks model.

In addition, for the distributed real-time operating systems, we may have the additional following
characteristics:

e Communication protocols that support the temporal constraints and manage the priority of the
real-time messages in order to guarantee the order of execution established between the tasks
and their constraints;

e Mechanisms of synchronisation and maintenance of a global real-time clock so that the mechanism
of allocation and scheduling uses a single clock in the system. The clocks of the various processors
in the system often have a drift, so mechanisms of synchronisation are strongly recommended.

Several operating systems were proposed for real-time and distributed applications. They may
be classified by three categories regarding their industrial usage [Tri03]. The first category is the
"general-purpose" RTOSes that are usually used in real-time applications having hard and/or soft
real-time constraints. The second category is the embedded RTOSes used generally in civil or military
applications when a high level of certification is required (e.g., avionic and railway sectors). The third
category is the real-time UNIX operating systems, these RTOSes provide applications by POSIX
interfaces (Real-time extension of UNIX). These RTOSes provide a rich set of services required by a
transactional application such as objects management in a distributed environment.

POSIX is a proposed operating system interface standard based on the popular UNIX operating
system. The main objective is to support application portability at the source-code level. POSIX is an

1.3. REAL-TIME OPERATING SYSTEMS AND STRATEGIES FOR DISTRIBUTED SYSTEMS 17

evolving group of standards, each of which covers different aspects of the operating systems. Some of
these standards have already been approved, while others are currently being developed.

POSIX 4 is the part of POSIX that defines system interfaces to support applications with real-time
requirements. It extends the base POSIX standard by a set of specifications concerning the real-
time scheduling, memory management, synchronisation, IPC communication, and timing management
functions.

In the first category, we will detail hereafter two examples of distributed real-time operating
systems, the MARS and SPRING kernels. Among those distributed RTOSes, only the SPRING OS
uses mechanisms of dynamic placement of tasks. These operating systems make of a communication
system guaranteeing bounded times on the messages transfer a necessary condition for the correct
operation of any distributed and real-time application.

For the automotive applications, and giving the increasing number of microcontrollers in automo-
biles and other complex systems, the incompatibility of control units made by different manufactures
due to different interfaces and protocols, and the need of a support of portability and reusability of the
application software, all these requirements have lead to the development of the standard OSEK/VDX
that was adopted by the European automotive industry and that will be presented later as a typical
example of the second category of RT'OSes (Embedded RTOSes).

Moreover, many solutions have been developed in the third category of RTOS and that lead to the
introduction of UNIX in the real-time market (e.g., RT-Linux, RTAI, QNX, VxWorks, etc.). We will
present hereafter the RTAI kernel as an example of such operating systems.

Let’s note that we have chosen the RTAI kernel as an operating system to implement our real-time
services encapsulated in data objects and distributed upon a middleware layer.

1.3.1 MARS system

The MARS project (MAintainable Real-time System) [KDK'89] began at the university of Berlin,
then continued at the university of Vienna. The objective of MARS is to propose an architecture of
a distributed real-time system tolerating the faults and intended for critical applications. One of the
principal properties of MARS is thus naturally the checking, in an analytical way, the guarantee of the
temporal constraints of the tasks set. This objective limits obviously the field of application of MARS,
since one can analytically check only tasks whose behavior is known a priori (i.e., periodic tasks or
who appear at moments known in advance).

An application, according to the MARS approach, can be decomposed into a whole of autonomous
subsystems (clusters). A common time base is available on all the subsystems. A subsystem is composed
of fault-tolerant units (Figure 1.3). A fault-tolerant unit is an aggregation of three processors function-
ing in active redundancy to provide a reliable service to the subsystem. These units are inter-connected
by an Ethernet bus duplicated and managed by the TDMA (Time Division Multiple Access) protocol.
This protocol guarantees messages transmission times known in advance and it is implemented by
the MARS kernel atop the Ethernet bus. The messages are the only way to communicate between
processing units. The messages are time stamped at the emission and the reception phase, which
makes it possible to synchronize the clocks.

The tasks are executed in a cyclic way or at instants fixed and known a priori. All the task data
must be ready before running the task. A task is running without interaction with the environment
and without synchronisation with the other tasks. At the end of its execution, the task distributes its
result to the other entities of the subsystem by state messages. This execution model of tasks, which
is restrictive, has as advantage the possibility to off-line computing the execution time of each task.

18 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

Processing Unit Processing Unit

P P
—{P| see P—
P P

Ethernet Bus

Ethernet Bus

P = Processor

Figure 1.3: Mars architecture

As the tasks periods are known, the communication instants are known a priori and the reservations
of access time to the TDMA network are carried out a priori. Thus, MARS chooses a fixed scheduling
of tasks and messages.

In order to take into account certain dynamic aspects (alarms appearance, for example), MARS
forces an application design with several functional modes and a fixed schedule must be established
for each mode. When a significant event (and envisaged in advance) appears, the system switches the
scheduling table.

The MARS kernel is presented here as a prototype kernel using the Time-Triggered (TT) ap-
proach for the design of distributed real-time systems. It offers an integrated approach for the system
conception, communication, and scheduling.

1.3.2 SPRING system

SPRING is a distributed real-time operating system developed at the university of Massachusetts
[SRI1]. It designed for dynamic, large complex applications. All the types of tasks are considered:
periodic or aperiodic tasks, tasks with variable degrees of importance (critical tasks, essential tasks
and nonessential tasks), with or without resources and precedence constraints. SPRING also makes it
possible to guarantee a specified deadline for a group of tasks (in this case, one is interested in the
termination instant of the last task of the group and not only at the termination instants of each task).

Each node of a SPRING system is composed of a multiprocessor machine, which contains one (or
several) application processor and one (or several) system processor and subsystem of inputs/outputs
(Figure 1.4). The system processors execute the system operations (for example the scheduling algo-
rithm, memory allocation, etc.), in order not to load the operating system by the application tasks. To
calculate the execution time of a task, one is interested only in the proper computing of the task and
thus all uncertainties concerning the execution times of the system primitives are avoided. The overhead
generated by the operating system is often a crucial point in the determination of the execution time
to be allocated efficiently to a real-time task. In practice, this time is considered as negligible, or a
maximum value is used to avoid all the inconveniences with the applications tasks. SPRING thus brings
an effective solution (but expensive) to this problem.

The application tasks are generally executed on the application processors, but can also use

1.3. REAL-TIME OPERATING SYSTEMS AND STRATEGIES FOR DISTRIBUTED SYSTEMS

[Node‘:: {: Node:‘ l:\ Node I L .f/ Node |
—|—| 1 . —l— | i
Nd_.\l see | Nod \"'I/Nd_\\'
\-——/J l\ _ o e/l

19

System System In/Out
Processor [*®®| Pprocessor Subsystem
Application - Application Application

Processor Processor Processor

Figure 1.4: Spring Architecture

computing time on system processors. A dynamic algorithm is used to guarantee the constraints of the
critical or essential tasks. When the local processors are too loaded to guarantee the constraints of all the
local critical or essential tasks, a distributed scheduling algorithm is launched to determine reception
nodes for certain tasks. To minimize the transfer times of tasks during the migration operations,
SPRING chooses the tasks duplication on the nodes of the network. SPRING uses a dynamic placement
with tasks migration. Information on the load of the various nodes is collected and maintained by each
node (as a distributed management of the load information).

On the opposite of MARS, SPRING chooses a flexible combination of on-line and off-line techniques:
the periodic tasks (which are critical or essential) are treated off line and the sporadic tasks are treated
on line. Thus, SPRING has a large variety of techniques to schedule distributed real-time applications
but with complex hardware architectures.

1.3.3 OSEK/VDX

OSEK/VDX [ZPS199] is a joint project of the automotive industry that aims to the definition of
an industry standard for an open-ended architecture for distributed control units in vehicles. The
objective of the standard is to describe an environment which supports efficient utilization of resources
for automotive control unit application software. This standard can be viewed as a set of API for
real-time operating system integrated on a network management system that together describes the
characteristics of a distributed environment that can be used for developing automotive applications.

Originally, OSEK was targeted as a standard open architecture for automotive Electronic Control
Units (ECUs) distributed throughout the vehicle. However, the resulting standard is generic and does
not limit usage to an automotive environment. Consequently, this standard can be used in many stand-
alone and networked devices, such as in a manufacturing environment, household appliances, intelligent
transportation system devices, and so forth.

There is now four principal specifications of the standard OSEK. These specifications are the
operating system (OSEK-OS), communication (OSEK-COM), network management (OSEK-NM), and
implementation language (OSEK-OIL). Recently, the OSEK standard has provided the specification

20 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

of OSEKTime OS, a time triggered OS that can be fully integrated in the OSEK/VDX framework;

In the OSEK OS, tasks can be basic or extended and preemptive or non-preemptive. The primary
difference between a basic task and an extended task is whether the task can go into a waiting state
(in which it is waiting for an event to occur). Only extended tasks can wait for an event. Basic tasks
must run to completion unless preempted. Preemptive tasks can be preempted by a higher-priority
task becoming ready to run or by an interrupt. Non-preemptive tasks can only be preempted by an
interrupt (unless interrupts are disabled).

The tasks are scheduled (nor or full or mixed preemptive scheduling) according to their user assigned
priority. The priorities of tasks are statically assigned by the user (the user cannot change tasks priorities
at the execution time). OSEK being a specification (with several implementations), requires that any
implementation provides at least 8 priority levels.

OSEK-COM specifications comprise an agreement on interfaces and protocols for in-vehicle commu-
nication. The in-vehicle communication term means both communication between nodes and internal
communication in a node of the whole vehicle. The basic idea is to provide a standardized API for
software communication that is independent from the particular communication media used in a way
to ease porting of applications between different hardwares.

OSEK-COM provides a rich set of communication facilities but it is likely that many applications
will only require a subset of this functionality. For that reason, the standard defines a set of conformance
classes to enable the integration of OSEK-COM in systems featuring various levels of capabilities in a
scalable way, enabling the car manufacturers to integrate software parts produced by different suppliers.

The communication in OSEK-COM is based on messages. Senders and receivers of messages are
either tasks or interrupt service routines (ISRs) in an OSEK OS.

A receiving message object can be defined as either queued or unqueued. A message received by a
message object with the property "queued" (queued message) can only be read once (the read operation
removes the oldest message from the queue), like a FIFO (first-in first-out) queue. A message received
from a message object with the property "unqueued" (unqueued message) can be read more than once;
it returns the last received value each time it is read.

There are three different transmission modes for the messages transmission: Direct, Periodic and
Mixed. The message transmission with the Direct transmission mode is initiated by the application
using the "SendMessage" transfer function (on demand of the application). In Periodic transmission
mode, the transmission is performed by repeatedly calling the appropriate service "SendMessage" in
the underlying layer. Finally, in the Mized transmission mode, the message transmission is performed
periodically or occasionally by the detection of relevant variable modification.

The temporal monitoring of communication is performed by watchdogs associated to system alarms.
Thus, a deadline expiration, that launches system alarm, may be compensated by a task activation or
an event notification to an applicative task.

1.3.4 RTAI

RTATI (Real Time Application Interface) is one of the Linux solutions to design and implement real-time
applications [Yag01]. It started at the Dipartimento di Ingeneria Aerospaziale, Politecnico di Milano by
Professor Paolo Mantegazza. RTAI evolved from NMT-RTLinux (New Mexico Institute of Technology’s
Real-Time Linux), and takes a unique approach of running Linux as lowest priority tasks for the RTAI
scheduler. Linux only executes when there are no real-time tasks to run, and the real-time kernel is
inactive. The Linux OS can never block interrupts or prevent itself from being preempted.

1.4. COMMUNICATION NETWORKS 21

Basically RTAI consists of an interrupts redistributor; it collects the peripherals interrupts and
retransmits them if necessary to Linux. It is not a radical modification of the standard Linux kernel.
It uses the concept of HAL (Hardware Abstraction Layer) to isolate some fundamental data and
operations (Figure 1.5). Typically, this data information concerns essentially the Interrupts Descriptor
Table (IDT), interrupts masking/unmasking functions, and timer management.

REAL TIME
S ONO
Scheduler Comm IPC ‘ @ @
Linux Comm. IPC | Scheduler
HW Management
RTAI

Interrupt Dispatcher
HAL

\ U1, U2: Unix tasks

LXRTI1, LXRT2: RTAI-LXRT tasks
K1, K2: RTAI kernel tasks

Processor

HW

Peripherals

Figure 1.5: RTAI architecture

The RTAI philosophy is to let Linux do all that it can do well. For example the initialization of the
system and management of the peripherals (which are not concerned by the real-time application). It
is based on the mechanism of "loadable modules" of Linux to install the real-time services of RTAIL
Loading a real-time module is not a real-time operation and thus Linux can do it. This makes it possible
to use all the services of the Linux kernel during the initialization phase of RTAI module.

RTAI provides special system calls to implement periodic threads and there are two scheduling
policies available, (FIFO) RT _SCHED _FIFO and (Round Robin) RT SCHED _RR. Being an open
source kernel, RTAI allows the developers to define and implement their own scheduling policies in
the native kernel. There are now several scheduling algorithms that are developed for the RTAT kernel
(e.g., DM, EDF, etc.).

RTAI provides also FIFOS and Shared Memory which are used to communicate between real-time
tasks in kernel space and Linux applications and also between real-time tasks.

An important extension of RTAI kernel is the LXRT (LinuX Real-Time). It offers soft and hard
real-time functionality to Linux user space tasks. The main objective is a fully "symmetric API", i.e.,
to offer the same real-time API to user space tasks (LXRT1, LXRT2 tasks in Figure 1.5) as what is
available to RTAI kernel tasks (K1, K2 tasks in Figure 1.5). A symmetric API, available in user space,
reduces the threshold for new users to start using real-time in their applications, but it also allows for
easier debugging when writing applications.

1.4 Communication networks

Distributed real-time applications impose temporal constraints on communicating tasks execution;
these constraints are reflected directly on the messages exchanged between the tasks when those
are placed on different nodes. In a distributed real-time application, tasks may have strict or soft
temporal constraints, and consequently the exchanged messages may have strict or soft constraints
also. For example, a threshold exceedance detection message must be transmitted and received with
strict constraints before it generates a failure, whereas a file transfer in general does not require strict
temporal constraints.

22 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

The communication stack must provide a mean to express the temporal constraints of messages and
must implement protocols that guarantee the respect of temporal constraints specified in the services.

Several works have been developed in real-time networks for packet switching networks and for local
area networks with multiple access. In the first category of networks, efforts were primarily devoted to
ATM (Asynchronous Transfer Mode) to take into account the temporal constraints in the multimedia
applications [SK96][C.96][VZF91]. In the second category of networks, the work primarily concerned
networks of type CSMA (Carrier Sense Multiple Access) with its various alternatives CSMA/CD
(with Collision Detection), CSMA/CA (with Collision Avoidance) (numerous variants of bit-level
synchronous bus as CAN, FIP, etc.), CSMA/DCR (with Deterministic Collision Resolution) (e.g.,
IEEE-1394), Token ring, FDDI (Fiber Distributed Data Interface) and FIP (Flow of Information
Process) [ea93][CLW91][MZ95].

Another paradigm of networks was introduced for safety-critical distributed real-time control sys-
tems called the time-triggered networks (MARS internal network, TTCAN and Flexray [Kop00]). In a
time-triggered architecture all information about the behavior of the system, e.g., which node has to
send what type of message at a particular point in time, is known a priori (at design time) to all nodes
of the network. Thus, the architecture ensures a high level of determinism for their applications. This
paradigm of networks will be presented more in details in the next chapter (section 2.4.2.2).

In a packet switching network, each node connected to the network is regarded as a subscriber
and does not know the protocols used inside the switching network. To transmit its data, each
subscriber establishes a connection according to a contract guaranteeing a certain quality of service
(loss rate, maximum transfer time, etc.). The nodes (or subscribers of the network) can neither enter
in competition with others, nor consult each other to know which must transmit data. The temporal
constraints are entirely supported by the network, provided that each node negotiates a sufficient
quality of service to take into account the characteristics of the messages which it wishes to transmit.
Consequently, the mechanisms used are established in the commutation nodes of the network and not
in all of them.

In the case of multiple access network, the nodes connected to the network control the medium
access via a MAC technique (Medium Access Control) established on each node. Each node reaches the
shared medium either by competition, or by consultation (by using a token, for example) according
to the type of the MAC technique used by the network. If a node sends a packet on the medium,
it will be directly received by its recipient (except, obviously, in the event of collision or of network
using equipment of interconnection such as bridges and routers). The nodes must be configured (in
particular by determining the priorities of the messages or the nodes, times of use of the tokens, etc.) to
be able to guarantee the temporal constraints imposed on the messages. Consequently, the associated
mechanisms are implemented on the nodes.

For the automotive field, additional requirements for future in-car control applications include the
combination of higher data rates, deterministic behavior and the support of fault tolerance, reliability
and availability are beginning to add specifications to the communication technology that are not
currently addressed by existing communication protocols (e.g., CAN). FlexRay protocol has been
specified as a route to a new network standard that offers high bandwidth, fault-tolerant operation
and deterministic behavior as a basis for advanced future automotive applications, such as steer-
by-wire and brake-by-wire. The FlexRay data rates of up to 10 Mbps open up new dimensions of
automotive communication. Two redundant communication channels support fault-tolerant operation.
Unlike event-triggered systems such as CAN, FlexRay is based on a time-triggered architecture where
communication is organized in predefined time slots on the FlexRay bus. This ensures deterministic
behavior with predefined latencies and avoids bus overloads.

An important subcategory of the "multiple access network" is the infotainment buses. In such buses,

1.4. COMMUNICATION NETWORKS 23

the messages transfer delays are bounded thanks to a fairness MAC protocol. Another important service
ensured by such networks is the synchronisation technique and the dual transfer mode (asynchronous
and isochronous modes). The network offers to nodes a global time base synchronisation. Such buses
have typically large bandwidth and high reconfiguration capabilities. Examples of such network buses
are the MOST bus [Gro00] and the IEEE-1394 bus [And98]. This kind of networks will be discussed
in details in the next chapter (§2.4.2).

A real-time communication is defined by explicit temporal constraints, i.e., it must begin or finish in
a specified time interval. Usually, the temporal constraints associated to a real-time message are of two
types: bounded transfer time and bounded jitter. The networks that have the adequate mechanisms
to guarantee the respect of these constraints are called real-time networks, also called field buses.

Many works have listed the main properties that real-time networks must have [PD93][Ram87]:

e prediction of messages response times: based on the media access strategy used, a network can
be able to guarantee the respect of the temporal constraints of messages;

e known maximum limit for the transfer time and the jitter;

e high degree of schedualibility, i.e., guarantee a priori the respect of temporal constraints of a
high number of messages with the possibility of periodic or aperiodic messages exchange;

e possibility of messages exchange with strict temporal constraints;

e protocol robustness, i.e., its aptitude to continue to work correctly in the presence of variations
of the traffic and overloads;

e good performance and bounded CPU and memory usage;
e transmission error and link breakdown detection and/or fault tolerance;

e high level of validation and testability.

In traditional networks with packet switching, the performances are measured primarily in terms of
average response time. In real-time networks, it is necessary to be able to guarantee a priori bounded
transfer times for individual messages (Figure 1.6). Therefore, a network with high bandwidth is not
necessarily a real-time network. It is more particularly by the media access strategy, and not by its
flow, that a network can be able to guarantee the respect of the temporal constraints of messages. A
network must however have minimal performances required by the target applications.

The communication protocols play a significant role in the distributed real-time applications.
Moreover, many current works concern the manner of modifying or extending the OSI (Open Systems
Interconnection) model to adapt them to the real-time. The introduction of temporal constraints
imposes the integration of new mechanisms, in particular the messages scheduling [CDKMO00].

Given the high bandwidth, dynamic reconfiguration, and synchronisation requirements of our high-
level in-vehicle applications, we have chosen the IEEE-1394 bus as a communication media of our
distributed system. Moreover, its ability to simultaneously stream multiple channel of audio and high-
quality video and also the handling of asynchronous transactions make it the technology that can be
used for the infotainment and multimedia functions, as for the assistance driving systems in the vehicle.
The TEEE-1394 bus will be presented in this document in section 2.4.2.3.

24 CHAPTER 1. AN OVERVIEW ON REAL-TIME SYSTEMS

Delay of crossing High High Delay of crossing
High layers High layers
igh layet layers layers

>+ —>

Emission delay Reception delay
Sub-layer Sub-layer
MAC MAC
—— —K—
Media

Delay of transmission and propagation

Figure 1.6: Delay intervening in a real-time communication

1.5 Conclusion

Real-time systems may be divided into two categories: hard real-time and soft real-time systems. Hard
real-time are those real-time systems in which the time constraints of the processing requests play
critical role; that is not meeting the constraints of an accepted processing request is considered a
system failure. A soft real-time system, on the other hand, may be desirable to meet deadlines, but
failure to do so does not cause a system failure.

The next generations systems are expected to be large, complex, and distributed. A distributed
system will be constituted of a set of nodes connected by a communication network. Several works
have been developed in real-time communication networks for packet switching networks and for local
area networks with multiple access (e.g., fieldbus). Industrial fieldbus would allow low cost and simple
devices to be interconnected to form a network with real-time characteristics.

However, most of the research on real-time systems has been concentrated on scheduling algorithms
and operating systems which contain many of these algorithms.

The next chapter will present the notion of middleware as a solution to facilitate the design and
development of distributed real-time systems.

Chapter 2 __

From Middleware To Real-Time
Automotive Middleware

Abstract

In the chapter 1, we have presented an overview on distributed real-time systems by outlining their
main functional and temporal features. This chapter presents the middleware technology as a solution
to facilitate the development of distributed and real-time systems.

Today, the benefits of middleware are desirable not only for the software development and trans-
actional database but also for the development of distributed, real-time, and embedded systems that
impose stringent quality of service (QoS) constraints (e.g., bandwidth, latency, and dependability).

Recently, several initiatives from car industries and third-part suppliers have been taken for the
definition of an automotive communication middleware as a software architecture, shared between
them and ensuring the portability and interoperability of the in-vehicle applications.

Contents
2.1 Introduction ¢ i i i i i i i ittt e e e e e e e e e 27
2.2 Middleware for information systems 0 0000 e . 28
2.2.1 RPC vs. asynchronous messaging 28
2.2.2 Distributed object middleware oL Lo 28
2.2.3 Middleware and Quality of Service (QoS) 28
2.2.4 Programmingmodels.o o 29
2.2.5 Software architecture Lo 30
2.2.6 CORBA architecture 34
2.3 Real-Time middleware ittt ennenn. 35
2.3.1 Real-Time CORBA 35
232 Armada L. e 37
2.4 Architecture and methodology for distributed automotive real-time systems 38
2.4.1 Embedded automotive architecture: methodology of design 39
2.4.2 In-Vehicle network technology L. 42
2.5 Conclusion v i it i i i e e e e e e e e e e e e e e 45

25

2.1. INTRODUCTION 27

2.1 Introduction

Middleware is a class of software frameworks designed to help manage the complexity and heterogeneity
inherent to distributed systems. It is defined as a software layer above the operating system but below
the application program that provides a common programming abstraction across a distributed system
(Figure 2.1). Middleware provides higher-level building blocks for programmers than OS Application
Programming Interfaces (APIs) [Bak03]. This significantly reduces the burden on application program-
mers by relieving them of this kind of tedious and error-prone programming. Middleware is sometimes
informally called "plumbing" because it connects parts of a distributed application with data pipes for
message exchange.

(Security, Event notification, Transactions, Persistence, Load balacing, Fault tolerance,
AJV streaming, Dynamic resource management, Scheduling, Naming)

o—
operation()
Client [— o — o Component
executer

- Container

‘ Examples of some Middleware Services (CORBA):

Middleware
interface

-

OS KERNEL

NETWORK
PROTOCOLS

OS KERNEL

NETWORK
PROTOCOLS

NETWORK NETWORK
INTERFACE INTERFACE

Figure 2.1: Middleware architecture (CORBA middleware example)

As shown in Figure 2.1, a middleware is built above an operating system using its interfaces and
its low-level communication stack. The middleware adds also high-level communication interfaces and
provides usually a generic object-oriented API for a component-oriented model.

Moreover, it offers a set of common services that are not provided by the underlying operating
system. Thus, the time available for providing new functionalities is decreasing. Often this can only
be achieved if components are got off-the-shelf and integrated into a system rather than built from
scratch. Components to be integrated may have incompatible requirements for their hardware and
operating system platforms; they have to be deployed on different hosts, forcing the resulting system
to be distributed [EmmO00].

Hereafter, we describe the general-purpose middleware(s) (§2.2) by presenting their main categories
and features of their software architecture. Then, we introduce and define the notion of real-time
middleware (§2.3) by presenting some typical examples. We end this chapter by a presentation of the
software methodology and architecture for distributed real-time automotive applications (§2.4).

28 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

2.2 Middleware for information systems

This section gives an overview of the information systems middleware. We begin by the classification
of middleware(s) and then we present some characteristics and features that they must fulfill.

We commonly classify middleware systems along several criteria. The following list is not exhaustive,
but still shows that many different types of middleware are possible and necessary to solve the
integration problems.

2.2.1 RPC vs. asynchronous messaging

At an abstract level, remote procedure calls enable programmers to invoke (distributed) services as if
they were intra-application procedure calls [Vin02]. Much like function or procedure calls in traditional
programming languages, RPCs block the caller’s execution while the invoked service carries out the
caller’s request. In other words, while the called service is busy handling the caller’s request, the calling
thread stops executing and waits until the request either returns normally or encounters an error such
as a timeout condition.

Messaging systems, on the other hand, are based on a queuing model in which producers post data
to queues for consumers to retrieve and act upon. Messaging systems are typically data or document
oriented, while RPC systems are procedure or object oriented.

2.2.2 Distributed object middleware

Distributed object middleware provides the abstraction of an object that is remote, yet whose methods
can be invoked just like those of an object in the same address space as the caller. Distributed objects
make all the software engineering benefits of object-oriented techniques, encapsulation, inheritance,
and polymorphism available to the distributed application developer [Bak03][Vin93].

CORBA represents a standard solution which implements the Distributed Object Computing
(DOC). Since its first publication in 1991, CORBA specification has provided abstractions for dis-
tributed programming that have served as the basis for a variety of distributed systems. Despite its
original flexibility and applicability to various environments, CORBA has had to evolve to remain
viable as a standard for distributed object-oriented applications [SK00][SGHP97].

There are other examples of distributed object middleware, such as Microsoft DCOM and Java RMI.
DCOM is a distributed object technology from Microsoft that evolved from its Object Linking and
Embedding (OLE) and Component Object Model (COM). DCOM’s distributed object abstraction
is augmented by other Microsoft technologies, including Microsoft Transaction Server and Active
Directory. DCOM provides heterogeneity across languages but not across operating system or tool
vendors. COM+ is the next-generation DCOM that greatly simplifies the programming of DCOM.

Moreover, Java has a facility called Remote Method Invocation (RMI) that is similar to the distrib-
uted object abstraction of CORBA and DCOM. RMI provides heterogeneity across operating system
and Java vendor, but not across language. However, supporting only Java allows closer integration
with some of its features, which can ease programming and provide greater functionality [Raj98].

2.2.3 Middleware and Quality of Service (QoS)

There is no one common or formal definition of QoS. Initially, QoS was used as a networking term
to describe the speed and reliability of data transmission (e.g., throughput, transit delay, and error

2.2. MIDDLEWARE FOR INFORMATION SYSTEMS 29

rate). However, the notion of QoS has been extended from the communication layer up through the
intervening architectural layers to the application level. In the simplest sense, Quality of Service (QoS)
is a framework that permits to formalize and specify the applications’s functional and behavioral
requirements [BGMT97][AS99].

QoS for distributed real-time systems provides quality of services assessments to tasks (execution)
and messages (transfers). The essential QoS mechanisms when sharing resources concern the tasks
scheduling, and the scheduling of messages and the communication protocols for the underlying net-
work. QoS performances like delays, losses, incorrect values, etc. are the metrics to be addressed for
integrated QoS in distributed real-time systems.

QoS management at the middleware and application levels aims to control attributes such as
response time, availability, data accuracy, consistency, and security level [Gei01|. Middleware is partic-
ularly well-suited to express QoS at an application program’s level of abstraction. Distributed object
middleware is particularly well-suited for this due to its generality in the resources it encapsulates and
integrates.

Providing QoS to applications can help them operate acceptably when operational patterns or
available resources vary over a wide spectrum and with little predictability. This makes the environment
appear more predictable to the distributed application layer, and helps the applications to adapt when
this predictability is impossible to achieve.

Moreover, QoS in a middleware may be implemented as a software layer inside the software
framework, or it may be implemented as a common service for the high level applications.

2.2.4 Programming models

Computer scientists have sought to determine the appropriate programming abstractions, particularly
for distributed processing and middleware. In this section, we present two main paradigms of program-
ming approaches commonly used by the middleware(s).

2.2.4.1 Client/server model

The client/server model has been the predominant abstraction for building distributed open systems.
The client, which binds to a server, initiates the interaction, sends a request, and awaits the answer. In
principle, this is a sequential pull model with a single logical control thread. The server stores long-term
state information related to particular client/server associations. The term client/server is generally
synonymous with distributed systems. However, a significant part of application scenarios fit poorly
with the client/server interaction model.

Thus, using the client/server model is inappropriate for interaction scenarios such as multimedia
data flow. These application scenarios require other models and more adequate terminology.

2.2.4.2 Publish/Subscribe model

The publish /subscribe paradigm [Gei01] is a model where publishers produce events and subscribers
consume events. A subscriber would initially register an interest in a particular event or pattern/set of
events through some subscription mechanism. Any subscriber that has expressed an interest in an event
will be notified once a producer has generated an event that matches the subscription required by the
consumer. Therefore, the publish/subscribe model relies on an event notification system forming the

30 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

basis of the underlying transport system. Hence, an efficient mechanism is required in which consumers
can register a subscription for an efficient delivery of events between consumers and producers.

The publish/subscribe model differs from other distributed programming models through the
decoupling of the event service. This allows for publishers and subscribers to be classified into three
categories of space decoupling, time decoupling and flow decoupling. Space decoupling is when there
is no reference in a subscriber to any particular publisher.

There are many variants of Publish/Subscribe systems, such as producer/consumer, emitter/re-
ceiver, etc. Each of which have a number of differences and capabilities [EFGK03|[EmmO00].

2.2.5 Software architecture

This section presents briefly some trends of the software architecture features and requirements. These
features include the middleware layers, transparency of distribution, the dynamic reconfiguration, and
the errors detection and recovery.

2.2.5.1 Middleware and layering

A middleware system may be decomposed in multiple layers of middleware [Bak03]. Usually, a mid-
dleware system is implemented at the "Application" layer in the OSI network reference architecture
(Layer 7), however, some parts of it may be also at the "Presentation" layer (Layer 6). Hence, the
middleware is viewed as "application" to the network protocols in the operating system (Figure 2.2).

Application Application
Presentation Presentation
Session
Transport
Network
Data Link Data Link
Physical Physical
OSl layers Middleware layers

Figure 2.2: OSI and middleware layers

2.2.5.2 Transparent distribution

Achieving transparency to hide the complexity and to isolate applications from the underlying hardware
and software details is a cornerstone of all system software, especially for middleware and component-
oriented systems [Gei01].

For a distributed component-oriented system, transparent distribution means that (1) the functional
and temporal behavior of a system is the same no matter where a component is executed and (2)
the developer does not have to care about the differences of local versus distributed execution of a
component.

2.2. MIDDLEWARE FOR INFORMATION SYSTEMS 31

The definition and discussion of distribution transparencies played a major role in the International
Organization for Standardization’s Reference Model for Open Distributed Processing. Distributing
transparency is beneficial and necessary for programming distributed applications. However, it cannot
be the foremost goal in nomadic computing and context-aware applications. The open research ques-
tions involve how to expose network imperfections at the right level of granularity to abstraction and
how applications on top of the middleware deal with a selectable degree of transparency.

Increasing awareness of QoS requires making certain effects of distribution explicit. For example,
customers who are charged for a certain level of communication service want to know about bandwidth
variations or bad transmission quality to optimize the data flow. However, we do not currently have
middleware facilities to control the degree of transparency.

2.2.5.3 Dynamic reconfiguration

Dynamic changes in system configuration and operating context at runtime will be inherent character-
istics of future computing environments. The purpose of dynamic reconfiguration is to make a system
evolve incrementally from its current configuration to another configuration. Dynamic reconfiguration
should introduce as little impact as possible on the system execution [AWPvS01]. Moreover, dynamic
reconfiguration consists of modifying the configuration of a system during runtime, contributing to the
availability of the system.

In this way, systems do not have to be taken off-line, rebooted or restarted to accommodate
changes. Changes can be classified with relation to the moment they are envisioned as programmed
and evolutionary changes.

New generations of distributed applications often consist of co-operating objects and use object-
middleware technology, such as CORBA, Java RMI and DCOM. There are many systems that would
benefit from dynamic reconfiguration facilities for object-middleware, such as, critical and/or long-
running systems. The development of such systems would be facilitated through the inclusion of
(transparent) reconfiguration support in the middleware platform.

2.2.5.4 Detection, diagnosis, and recovery of errors

A component (software or hardware) failure is an event that occurs when the obtained service value
deviates of the envisaged value by this service. An error is a part of a system’s state that may lead to
a failure. The cause of an error is called fault. A fault may be qualified by its cause and origin such
as human, physical, internal, external, conceptual, operational. Another criteria to qualify faults is
by their temporal persistence. Faults are generally classified as transient, intermittent, or permanent.
Transient faults occur once and then disappear. If the operation is repeated, the fault goes away (e.g.,
transient communication failure in a distributed system). An intermittent fault may be related to
an occasional overload on a node. A permanent fault is one that continues to exist until the faulty
component is repaired (e.g., shutdown of a node).

If we consider a distributed system built as a set of servers that communicate with their clients,
not adequately providing services means that servers, communication channels, or possibly both, are
not doing what they are supposed to. Several classification schemes for the faults models have been
developed. One such scheme is shown in Table 2.1, and is based on the schemes described in [Che99]
and [Cri9l].

A server’s result is considered as correct if all its clients receive the same copy and the value of this
copy is correct. For an incorrect result, the error is called in the value domain if the received value of

32 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

at least one client is false. The error is considered as temporal error if the value received by at least
one client is not in the specified time interval.

The error detection may be implement by hardware or software solutions according to the errors
type. The temporal errors may be detected immediately by the client application if the server did
not respond in the time interval specified (Timing failure assumption). They may be detected also
by a monitor component that receives regularly specific signalization messages from all the supervised
components.

Moreover, the value errors may be detected by the comparison bit-to-bit of the results obtained
by two identical hardware components. Another part of byzantine errors may detected by the use of
one hardware component that performs successively n times the same calculation. The execution is
considered correct if the n results are succeeded and identical.

‘ Type of failure ‘ Description
Fail-silent failure A server stops functioning and produces no ill output
Omission failure A server fails to respond to incoming requests
Receive omission A server fails to receive incoming messages
Send omission A server fails to send messages
Timing failure A server’s response lies outside the specified time interval
Response failure (or Byzantine failure) A server’s response is incorrect
Value failure The value of the response is wrong
Behavior failure The server deviates from the correct flow of control

Table 2.1: Failures classification

Fault tolerance is the ability of a system or component to continue normal operation despite the
presence of hardware or software faults. A fault tolerant technique may be implemented by the errors
and faults processing.

The errors processing is intended to remove errors from the system after or before the error occurs.
It includes the error detection, error diagnosis, and error recovery. The faults processing aims to prevent
the occurrence of old faults that has been occurred in the system. It consists in developing systems in
such a way as to avoid that a fault is not activated again.

The error recovery may be implemented by several ways [BPB00][DTT99], generally, by redundancy.
Redundancy is a common practice formasking the failures of individual components of a system. With
redundant copies, a replicated object can continue to provide a service in spite of the failure of some
of its copies, without affecting its clients. Redundancy may be applied at several levels:

Information redundancy. seeks to provide fault tolerance through replicating or coding the data.

Time redundancy. achieves fault tolerance by performing an operation several times. Timeouts
and retransmissions in reliable point-to-point and group communication are examples of time redun-
dancy.

Physical redundancy. deals with devices, not data. We add extra equipment to enable the system
to tolerate the loss of some failed components. RAID disks and backup name servers are examples of
physical redundancy.

2.2. MIDDLEWARE FOR INFORMATION SYSTEMS 33

In distributed systems, the best known replication techniques are active, passive, and semi-active
replication. Each of these techniques has its own advantages, and they are thus complementary. A brief
description of these replication techniques is given below.

Active replication. It is a general protocol for replication management that has no centralized
control. All copies of the replicated object play the same role: they all receive each request, process
it, update their state, and send a response back to the client. Since the invocations are always sent
to every replica, the failure of one of them is transparent to the client. Active replication requires
the operations on the replicated object to be deterministic in order to have a consistent shared state
between replicated objects. An interesting property of active replication lies in the fact that a crash
does not increase the latency experienced by a client.

Passive replication. With passive replication one server is designated as the primary, while all
other are backups. The clients send their requests to the primary only. The primary executes the
request, atomically updates the other copies, and sends the response to the client. If the primary
fails, then one of the backups takes over. Unlike active replication, passive replication does not waste
extra resources through redundant processing, and permits nondeterministic operations. Furthermore,
passive replication requires additional application support for the primary to update the state of the
other copies.

Semi-active replication. Semi-active replication style is based on the European Delta-4 (XPA)
architecture [BBH90]. This replication style is designed to have some of the benefits of both the
active replication and passive replication styles, including predictable fail over times and deterministic
behavior during program execution. Semi-active replication extends active replication with the notion
of leader and followers. In the leader/follower model, all copies of an object are active, as they all
execute the same function. One copy is designated the leader, however, and is responsible for taking
all decisions which affect replicate determinism; such decisions are propagated from leader to followers
via synchronization messages.

The Object Management Group (OMG), which standardizes CORBA, has addressed many of
these application requirements in the Fault-tolerant CORBA (FT-CORBA) specifications. The Fault-
Tolerant CORBA (FT-CORBA) [GNSCO04] specification defines a standard set of interfaces, policies,
and services that provide robust support for applications requiring high reliability. The fault tolerance
mechanism used in FT-CORBA to detect and recover from failures is based on entity redundancy. Since
FT-CORBA is a DOC middleware standard, the redundant entities are replicated CORBA objects.
Although dealing with the semantic incompatibilities between real-time and fault-tolerant features for
a distributed real-time system seems a promising approach. Thus, the ability to engineer a good fault
tolerant solution requires tradeoffs that may compromise a distributed real-time system’s ability to
meet real-time deadlines, and vice-versa.

Unfortunately, the FT-CORBA model for failure detection and recovery emphasizes a certain
type of failure, namely component failure, which is also called crash failure. In this type of failure
the individual component ceases all interactions with its environment. The policies and detection
mechanisms in FT-CORBA, such as the use of heartbeats and timeouts, acknowledge this limited view
implicitly.

Fault tolerance is not our research topic in this thesis. Our developed SCOOT-R environment
provides only errors detection and dynamic reconfiguration means for the failures processing and
recovery. Actually, we focus on the redundancy management by the activation of software replicated
components in a distributed environment (middleware approach).

34 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

2.2.6 CORBA architecture
The Common Object Request Broker Architecture (CORBA) [GGM97] is a distributed object frame-
work proposed by the Object Management Group (OMG). CORBA supports distributed object-

oriented computing across heterogeneous hardware devices, operating systems, network protocols, and
programming languages. Figure 2.3 illustrates the CORBA components described as follows.

Implementation
code
CORBA Bus (ORB)

GIOP ivati i
—GOP) oren Activation / Oject
Request/ Reply Object state
- |

Servant
Server application|

Client application

Object
reference

IOR

Object interface

Figure 2.3: Corba Transactions

The Object Request Broker (ORB), the core of CORBA, allows objects to interact transparently
with other objects (located locally or remotely). A CORBA object is represented by its interface, is
identified by its reference, and is implemented in an object-oriented program as a local object called
"servant". The client of a CORBA object acquires the object reference called inter-operable object
reference (IOR) and invokes methods on this reference as if the object were located in the client
address space.

The dynamic invocation interface (DII)(Figure 2.4) enables clients to directly access the underlying
request mechanisms at run time to generate dynamic requests to objects, whose type (interface) were
not known at the client compile time. The interface repository provides the type of information that
a client needs to dynamically create a request. Similarly, the dynamic skeleton interface (DSI) enables
an ORB to deliver requests to a servant that does not have compile-time knowledge of the type of
the object it supports. The implementation repository enables late deployment of CORBA objects. It
receives the first request targeted to a CORBA object, looks up the object meta information in its
database, activates the object, and forwards the request to the target object. Permanent forwarding,
in contrast to transient forwarding, also causes automatic forwarding of all future requests from the
same client and to the same target object directly from the client ORB. The object adapter activates
servants and dispatches requests to them.

The ORB interface provides access to standard ORB services, such as resolving the CORBA initial
services (for example the naming service). The general inter-ORB protocol (GIOP) is a standard for
inter-ORB communication that enables interoperability among different CORBA-compliant ORBs.
The Internet inter-ORB protocol (IIOP) is a particular mapping of the GIOP specification that runs
over TCP/IP connections.

CORBA middleware is used today in many areas, such as aerospace, telecommunications, med-
ical systems. However, conventional CORBA suffers from substantial priority inversion and non-
determinism, which makes it unsuitable for applications with deterministic real-time requirements.
On the other hand, CORBA is hard to be implemented, verified and validated. Moreover, CORBA
architecture is very complex for the programmer to validate the code and the specifications of the

2.3. REAL-TIME MIDDLEWARE 35

Interface IDL Implementation
Repository Compiler Repository

. in args Object
Client 08BJ © Gperation)” (Servant)
REF) fLoutargs +
Qg = return B
IDL '
4] SKEL DSl

DIl IDL ORB
STUBS INTERFACE Object Adapter

- GIOP/1IOP/ESIOPS

Figure 2.4: Components in the CORBA Reference Model (Client/Server Model)

application. Thus, a real-time adaptation of CORBA for embedded applications was developed and is
presented in the next section.

2.3 Real-Time middleware

The real-time middleware technology was introduced to consider the end-to-end timing constraints
specified by application requirements. The middleware system must allow the user to express the
timing constraints, transfer these constraints along the path of execution in the system, and always
allocate resources in respect to these constraints.

The field of real-time and dependable middleware is a developing area. It is clear that the develop-
ment of dependable systems requires standard platforms, just as do other distributed systems. Examples
of the real-time middleware include the Real-Time CORBA (RT-CORBA) specification [SK00], and
other non CORBA-compliant real-time middleware, such as the ARMADA project [ABAT97], the
HADES project [ACCP98|, and our own SCOOT-R middleware [CCS04].

For the automotive field, some initiatives from car industries and third-party suppliers for the
definition of a communication middleware have been taken. OSEK/VDX [Tri03], the standard of an
open-ended architecture for distributed control units in vehicle, has a communication extension (OSEK-
COM) whose the main goal is to offer a uniform communication interface through an API to transfer
data between tasks independently from their location. Volcano [CRTM99| is a commercial in-vehicle
communication middleware used by Volvo. Finally, the remaining initiatives are the EAST-EEA and
the Autosar projects that are presented later in this chapter (see section 2.4.1).

In the continuation of this section, we present two examples of real-time middleware. The real-time
CORBA (ACE/TAO implementation) and a non-CORBA related middleware (ARMADA middle-
ware).

2.3.1 Real-Time CORBA

The Real-time CORBA (RT-CORBA) 1.0 specification defines standard features that support end-to-
end predictability for operations in fixed-priority CORBA applications. This specification extends the
existing CORBA standard and the recently adopted OMG messaging specification [SK00]. In particular,

36 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

RT-CORBA 1.0 leverages features from GIOP /IIOP version 1.1 and the messaging specification’s QoS
policy framework. All these features and specifications are being integrated into the CORBA 3.0
standard.

End-to-End priority
Propagation v
Client —_ 4 Object
OoBJ Operation () (Servant)
REF “«— o

Scheduling

v Service 1

A
IDL
IDL SKEL Thread
STUBS Pools
Standard]
Explicit Binding \Synchronizers Object Adapter

{ ORB CORE e 8 Portable Priorities GIOP }
A
Protocol Properties

Figure 2.5: Real-Time CORBA

The RT-CORBA specification identifies capabilities that must be vertically (i.e., network interface,
application layer) and horizontally (i.e., peer-to-peer) integrated and managed by ORB endsystems to
ensure end-to-end predictable behavior for activities that flow between CORBA clients and servers.

These capabilities include standard interfaces and QoS policies that allow applications to configure
and control the following resources:

e Processor resources via thread pools, priority mechanisms, intraprocess mutexes, and global
scheduling service. This is an encapsulation of the RTOS services to schedule application-level
activities end-to-end.

e Communication resources via protocol properties control (e.g., ATM virtual circuits or Internet
RSVP) and explicit bindings with non-multiplexed connections. These properties define stan-
dard interfaces to allow the control of the underlying communication protocols and endsystem
resources. In addition, client applications should ezplicitly bind to server objects.

e Memory resources via buffering requests in queues and bounding the size of thread pools. This
model allows server developers to preallocate pools of threads and to set certain thread attributes,
such as default priority levels.

Real-time CORBA supports both static [SGHP97] and dynamic [GLS01] real-time scheduling
strategies. The static real-time scheduling includes essentially the above features to manage CPU
by thread pools, end-to-end static priority propagation mechanism, network by protocol properties
and explicit bindings, and memory resources by bounding thread pools.

Moreover, in the recently real-time CORBA implementation TAO [GLS01], dynamic scheduling
strategies define the interfaces for assigning, discovering, and altering the dynamic scheduling para-
meters. By this way, applications can use the real-time scheduling service to specify the processing
requirements of their operations in terms of various parameters, such as worst-case execution time,
period, end-to-end latency, etc. TAO’s run-time scheduler maps these application QoS parameters, to
the endsystem OS/network resources.

2.3. REAL-TIME MIDDLEWARE 37

TAO supports several dynamic scheduling strategies, such as Rate Monotonic (RM), Earliest
Deadline First (EDF), Minimum Laxity First (MLF), and Maximum Urgency First (MUF). These
scheduling techniques are applied on the CORBA operations (local or remote) that contain QoS
parameters related to the application requirements. TAQ’s scheduler uses the notion of static and
dynamic priorities and subpriorities and according to the scheduling strategy used, TAQO’scheduler
maps these priorities to the CORBA operations and associated threads and dispatching queues. For
example, when an operation request arrives from a client at run-time, TAO’s scheduler extracts the
QoS parameters of the operation and then apply the local scheduling strategy specified (e.g., RM,
EDF, MUF) to the local node resources (CPU and I/O subsystem).

It is important to recall that real-time CORBA does not support the end-to-end EDF. i.e., there
is no propagation of the absolute deadlines of operations, there is only the propagation of the relative
deadline of operations that will be applied on the remote node (distributed EDF) (see Figure 4.10 for
more explication on this point).

As the standard CORBA, the main objective of RT-CORBA is the development of a component-
oriented technology and the reuse of application component codes. RT-CORBA is today now in many
systems such as multimedia [CW96], telemedicine system [CS01] and embedded system [OSK™00].

2.3.2 Armada

ARMADA is a collaborative project between the Real-Time Computing Laboratory (RTCL) at the
University of Michigan and the Honeywell Technology Center [ABAT97]. The goal of the project is
to develop and demonstrate an integrated set of communication and middleware services and tools
necessary to realize embedded fault-tolerant and real-time services on distributed, evolving computing
platforms. These techniques offer tools for designing, implementing, modifying, and integrating real-
time distributed systems. Key challenges addressed by the ARMADA project include:

e timely delivery of services with end-to-end soft/hard real-time constraints;

e dependability of services in the presence of hardware or software failures, scalability of compu-
tation and communication resources;

e exploitation of open systems and emerging standards in operating systems and communication
services.

The ARMADA hardware architecture comprises Pentium-based PCs (133 MHz) connected by a
Cisco 2900 Ethernet switch (10/100 Mb/s), with each PC connected to the switch via 10 Mb/s Ethernet
link.

Ethernet is normally unsuitable for real-time applications due to the MAC protocol (collision
detection) and the subsequent retransmissions that make it impossible to impose deterministic bounds
on communication delays. However, since ARMADA is conceived to use a private Ethernet, only
one machine can send messages at any given time. This prevents collisions and guarantees that the
Ethernet driver always succeeds in transmitting each packet on the first attempt, making message
communication delays deterministic. In other words, ARMADA uses a high-level Time Triggered
protocol whose Ethernet adapter is just a physical layer (With CSMA /CD option inhibited).

The services developed in the context of the ARMADA project are to augment the essential
capabilities of a real-time microkernel by introducing a collection of communication, fault-tolerance, and
testing tools to provide an integrated framework for developing and executing real-time applications.
Most of these tools are implemented as separate multithreaded servers.

38 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

— j
Server Application Application
(and protocol stack) Library Library
Stb Stub
Application] Application user siact
Library Library
Stub Stub —;I
A R 7 | Colocated
yser ! i - Microkernel [
o
1) I
Microkernel device driver
- i device driver
1 T
network r g network T
1 | 1 |
(a) User-level server configuration (b) Co-located server

Figure 2.6: Software architecture of armada middleware

ARMADA services are designed as user-level multithreaded servers. Clients of the service are
separate processes that communicate with the server via the kernel through a user library (Figure
2.6). A server may be configured to run in user or microkernel space. Whether the server runs in user
space or is colocated in the microkernel, processes use the same service API to communicate with
it. The library exports the desired middleware API. As operating system, ARMADA uses the MK
7.2 microkernel from the Open Group (OG) Research Institute to provide the essential underlying
real-time support for ARMADA services.

The dynamic distributed scheduling and the fault tolerance of ARMADA are the key points. It
defines QoS-sensitive scheduling profiles that allow to implement user-level scheduling algorithms.

The tasks are scheduled based on an earliest-deadline-first (EDF) policy layered on top of the
underlying operating system scheduler.

Concerning the messages scheduling, ARMADA implements a dynamic priority-based link scheduler
at the bottom of the user-level protocol stack. OQutgoing real-time packets are scheduled in the order
of their deadlines, which is application dependent. The link scheduler implements the EDF scheduling
policy using a priority heap for outgoing packets. Best-effort packets are maintained in a separate
packet heap within the user-level link scheduler and serviced at a lower priority than those of real-time
packets.

After this description of some related and relevant real-time frameworks and realizations. There-
after, the focus will be made on the in-vehicle real-time systems and the software architecture.

2.4 Architecture and methodology for distributed automotive real-
time systems

As the emphasis of our research in this thesis concerns the automotive field, we depict in this section
software methodology and architecture for distributed real-time automotive applications. We begin
by the description of in-vehicle functions going from maintenance and mechanical control functions
to high-level functions including infotainment and telematics while passing by diagnosis and driving
assistance functions. These later functions require a high-level of reconfiguration and monitoring. An

2.4. ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 39

integrated software architecture is needed to design and implement them in an integrated system.

Future automotive systems will be required to simultaneously handle multiple safety critical func-
tions and a large number of less critical functions. All of these features are to be provided at a production
cost substantially lower than that of current systems, and, at the same time, with a reliability allowing
vehicles to be built without mechanical backup systems, even for safety critical subsystems such as
braking and steering. In this section, we present some current trends in vehicle networking, together
with descriptions of some of the context in which vehicle networks and software architectures are
developed today by some car manufacturers.

Functionality in a vehicle is not limited to mechanical control and maintenance functions, but
includes also end-user functions. Hereafter, we will outline some important groups of functionality,
both supportive and end-user functions that is often addressed in vehicle development.

Feedback control includes functions that control the mechanics of the vehicle, for example engine
control and Anti lock-Brake-Systems (ABS). Feedback control systems can be combined to achieve
advanced control functions for vehicle dynamics. Examples are electronic stabilizer programs (ESP),
and other chassis control systems like antiroll.

The vehicle manufacturers strive to achieve cheaper and more flexible functionality by going towards
x-by-wire solutions, such as steer-by-wire, which achieved by replacing mechanical or hydraulic solutions
by computer controlled systems.

Discrete control, in this context, includes simple functions to switch on or off devices, e.g., control
of lamps or wipers. The challenges for this group of functions often relates to the sheer number of such
simple devices and thereby the amount of traffic on the network.

Functions for diagnosis are used in vehicles to support maintenance and vehicle service. Diagnostic
functions provide means to investigate physical components, such as sensors, as well as software
properties, such as version number and network connectivity. Service functions provide means for
updating the electronic system by downloading new software and testing vehicle operation. Because of
the large amounts of retrievable information, solutions are needed for automatic diagnostic, or at least
tool supported diagnosis.

Infotainment refers to in-vehicle systems related to information and entertainment. Examples are
Internet connection and video consoles. This leads to requirements on high bandwidth for vehicle
networks. Components like network controllers and software are often purchased off-the-shelf, and
must be integrated in a harsh physical environment. Components must also be integrated without
impacting safety critical functionality in the vehicle.

Telematics [AFH103] is a name of the set of functions that uses communication networks outside
the vehicle to perform their task. There is a strong trend in the vehicle industry to increase the use of
telematics. Examples include fleet management systems, maintenance systems, and anti-theft systems.

2.4.1 Embedded automotive architecture: methodology of design

The extra-vehicle functions and modules mentioned above are mostly stand-alone functions although
some of the information is already shared. One of the main challenges is therefore the integration of
different electronic systems, subsystems, functions and components, delivered by different suppliers
into the complete network of a vehicle system. The challenge is to efficiently manage the constantly
increasing complexity of electronically controlled functions in today’s and tomorrow’s vehicles.

Several French and European initiative works have been started during the last years in order to
respond to these requirements and research challenges. The first project was the French research action

40 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

AEE ("Architecture Electronique Embarquée")!. In order to maintain the competitive position of the
French car industry, the Ministry for Industry decided to support the project AEE (1998 - 2001). The
main goal of the project was to define a unified software framework of the embedded architecture
in transport vehicles, to provide this framework by tools of architecture design and analysis, and
to facilitate the installation of multi-suppliers processes to develop these architectures. AEE teamed
several partners including car manufacturers, equipment suppliers, and academic partners in the real-
time field.

The European project EAST-EEA (Embedded Electronic Architecture) 2 has appeared as a contin-
uation of the French project AEE. EAST-EEA began in January 2002 and stopped by the end of 2004.
It mainly aims at improving, through a European co-operation, the management of the increasing
complexity of the in-vehicle functions controlled electronically in the current and future cars. The
major objective of EAST-EEA was to enable a proper electronic integration through the definition
of an open architecture aiming to the interoperability of the software and hardware components. For
that, a software architecture in layers is aimed using the concept of middleware which offers interfaces
and services to support the portability of the embedded software modules with a high level of quality.

In order to continue the European research activities in this direction, the European project
AUTOSAR was initiated to pursue AEE and EAST-EEA projects. The objective of the AUTOSAR
partnership is the establishment of an open standard for automotive E/E architecture. It will serve as
a basic infrastructure for the management of functions within both future applications and standard
software modules.

All the above mentioned projects and actions have focused on the effort of standardization and
specification of the in-vehicle embedded architecture and associated services. Thereafter, we present
some realizations for the in-vehicle software architecture development.

2.4.1.1 BASEMENT

BASEMENT is a real-time architecture for in-vehicle applications developed within the Swedish Road
Transport Informatics Programme project Vehicle Internal Architecture (VIA). The objective has been
to design a platform that meets the stringent demands of the automotive industry [HLB97].

BASEMENT covers application development, as well as the hardware and software that provide
execution and communication support. Its key constituents are:

e resource sharing (multiplexing) of processing and communication resources;

e 3 guaranteed real-time service for safety critical applications;

a best-effort service for non-safety critical applications;
e a communication infrastructure providing efficient communication between distributed devices;

e a program development methodology allowing resource independent and application oriented
development of application software;

a straightforward and well-defined operation principle enabling efficient fault tolerance mecha-
nisms to be employed.

Yhttp://www.inria.fr /valorisation /actions-nationales/ AEE /R A-2004.fr.html
2EAST-EEA project site web: http://www.east-eea.net/

2.4. ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 41

The hardware architecture in a BASEMENT system consists of a set of nodes interconnected with
a communication network (Figure 2.7). Each node is a self-contained microcomputer, equipped with a
network interface and, possibly, a set of sensors and actuators.

Sensors/actuators Sensors/actuators Sensors/actuators
Node Node Node
A
A 4
Communication Network Gateway

Figure 2.7: Hardware Architecture of a BASEMENT system

The communication network is required to be deterministic, i.e., it should provide error free
transmission of data with bounded and predictable delays. The communication network also provides
facilities for communication with vehicle external equipment and networks.

The sensors (e.g., the speed of a wheel) and actuators (e.g., set the pressure on the break discs)
are used to interact with the outside world.

The scheduling of the critical part of the system is based on a cyclic, static off-line paradigm,
guaranteeing timing constraints to be satisfied. Scheduling decisions for the soft real-time part of the
system are made at run-time.

BASEMENT is a good example of an embedded in-vehicle software architecture. It reflects the tim-
ing and functional requirements of in-vehicle hard and soft real-time applications. Hereafter, we present
another solution for automotive application, the COSIMA system, it focuses on the communication
between the vehicle and the external environment.

2.4.1.2 COSIMA

COSIMA (Component System Information and Management Architecture) is a platform for services
and enabling technologies within vehicles that extends the notion of a distributed system inside the
vehicle to the outside world [MMMO98|.

The hardware architecture of COSIMA system is distributed and consists of two or more nodes. A
node may be a computer or any control device. There are two kinds of communication, the internal
and external vehicle communication. External communication allows a reliable communication between
the vehicle and the infrastructure. Such services may include Internet access, home banking, etc. As
implementation of the external communication service, wireless technology is used, this could be GSM
(mobile/cellular phones & modems) and wireless LAN technologies.

Concerning the internal communication management, the main goal is to deal with telematics
communication systems (e.g., MOST, IEEE-1394) and to make devices that are connected to these
systems available within COSIMA. "Bridging" between MOST and IEEE-1394 buses is a task that is
taken care of by a Protocol Conversion component.

The software architecture of COSIMA is based on a component-oriented model augmented by the
idea of completely dynamic behavior of the system. The components can be moved at runtime between

42 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

nodes of the system, and even to the infrastructure.

In order to implement these approaches, COSIMA uses a Java technology approach. This keeps
the solution open for easy adoption of emerging standards in this field. Moreover, the communication
is based on Java RMI but other protocols are also supported using (loadable) proxy components. A
test vehicle, equipped with five COSIMA devices, allows to demonstrate the loading of new services.
It is connected to infrastructure devices via GSM and Wireless LAN. Finally, streaming data (video
and audio) is not supported by COSIMA mechanisms.

2.4.2 1In-Vehicle network technology

In this section, we introduce present and emerging network technologies in the automotive industry.
The network technologies use different types of field buses that meet the requirements of automotive
applications and high-level communication protocols. Throughout this section, we will give an overview
of automotive network technologies.

There are two main categories of buses for the automotive industry (Table 2.2). The first category
is used for the Engine Control. This kind of buses is used to control and let communicate highly critical
modules when safety is concerned. A typical bus of such category is the CAN bus [Bus93|.

Applications

field
Bus categories

Safety and critical applications (e.g.,
discrete control)

High-level applications (e.g., driving
assistance systems)

CAN, VAN, LIN, etc.

Recommended

Not recommended (low Bandwidth)

IEEE-1394, MOST

Not recommended (high safety)

Recommended

Table 2.2: Main categories of buses

Another category of buses is the infotainment and multimedia buses. Such buses are used in the
vehicle to interconnect modules that are not very critical and that demand a certain level of diagnosis
and dynamic reconfiguration. Moreover, this kind of buses must support high transfer bandwidth. A
typical example of such category is the IEEE-1394 bus [And98| and the MOST bus [Gro00].

2.4.2.1 CAN bus

The dominant bus technology for power train and body electronics in vehicles is the Controller Area
Network (CAN) standard [Bus93].

CAN, which was developed by Bosch in the early 1980’s and became an international standard (ISO
11898) in 1994, was specially developed for fast serial data exchange between electronic controllers in
motor vehicles.

CAN is a broadcast bus designed to operate at speeds of up to 1 Mb/s. Data is transmitted in
messages (frames) containing between 0 and 8 bytes of data. An identifier is associated with each
message. The identifier serves two purposes: (1) assigning a priority to the message, and (2) enabling
receivers to filter messages.

CAN is a collision-detect broadcast bus, which uses deterministic collision resolution to control
access to the bus. During arbitration, competing stations are simultaneously putting their identifiers
on the bus, one bit at a time (bit-level synchronization). By monitoring the resulting bus value, a station
detects if there is a competing higher priority message and stops transmission if this is the case. Because
each identifier is sent by only one node, a station transmitting the last bit of the identifier without

2.4. ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 43

detecting a higher priority message must be transmitting the highest priority queued message, and
hence can start transmitting the body of the message.

The main disadvantage of the CAN bus is its low data transfer rate, inadequate for infotainment
applications and distributed applications used for driving assistance. In addition, the static assignment
of identifiers is unsuited for dynamic reconfiguration of systems.

2.4.2.2 Time-triggered buses

Emergent safety critical functions, such as x-by-wire applications, where x may be steer or brake, have
forced the development of bus technologies for use in automotive vehicles that meet demands on very
high reliability and timeliness. A group of buses that meet this demand have been evaluated by the
automotive industry in [Kop00].

These buses are all based on the time-triggered paradigm where the progression of time initiates
data transfers rather than asynchronous events. The time-triggered buses provide synchronous com-
munication without the need for arbitration. Moreover they offer mechanisms for redundant networks
and have built-in support for a global time base. Therefore the time-triggered protocols are suitable
for implementing safety critical control functions with stringent demands on low latency and low jitter.
Three time-triggered protocols developed for automotive use are FlexRay, TTP/C, and TTCAN. All
these protocols offer services, such as global time and time-triggered communication enabling pre-
run-time scheduling of communication. Moreover, these protocols also enable event-triggered traffic to
co-exist with time-triggered.

The FlexRay communication protocol [Kop98| supports bandwidth up to 10 Mbit/s with the
possible bus topologies, star, and multiple stars. Available communication controllers for the TTP/C
[KG94] protocol support 25 Mbit/s for time-triggered transmission and 5 Mbit/s for event-triggered
transmission. T'TP networks can contain up to 64 nodes and the connection topology can be bus, star,
or any combination of the two. Finally, TTCAN [Kop98| is a further development of Extended CAN
(version 2.0B), which, like Extended CAN is limited to 1 Mbit/s.

2.4.2.3 IEEE-1394 bus

Since vehicles are becoming equipped with more and more multimedia and telematic applications,
the need for dedicated infotainment buses has arisen. The two main buses in this category are the
IEEE-1394 bus [NTG02] and the MOST bus [Gro00].

MOST (Media Oriented Systems Transport) is based on optical fiber technology and provides
bandwidth up to 20 Mb/s. MOST is very similar to the IEEE-1394 bus regarding the functionalities
and services provided. The main difference between MOST and IEEE-1394 buses is the speed. When
IEEE-1394 bus reaches 1600 Mb/s (standard), the MOST bus can support 22 Mb/s maximum.

Other infotainment networks relevant to automotive applications are the wireless Bluetooth [JYIM101]
and IEEE 802.11b [SRF03] protocols, used mainly to connect external devices.

Thereafter, we present the IEEE-1394 bus since it is the bus chosen to develop our applications
depicted in this work. It is commercially available and affordable.

The TEEE-1394 bus is now suitable for the automotive manufactures to develop in-vehicle networks
designed for high-speed multimedia applications that require amounts of information to be moved at
high speed within a vehicle.

The IEEE-1394 specification is a high performance serial bus [And98|. This was standardized by

44 CHAPTER 2. FROM MIDDLEWARE TO REAL-TIME AUTOMOTIVE MIDDLEWARE

the IEEE in 1995 based on the specification of a bus called FireWire that had been developed by
Apple. Tt can be used to interconnect personal computers, peripheral devices, video decks and digital
video cameras. This standard is suitable as a basis for constructing a small-size local area network.

The TEEE-1394 standard has several characteristics that differ from other LAN protocols such
as Ethernet. IEEE-1394 specification uses an arbitration method for medium access control. The
arbitration method is centralized, and there exists a root node that controls the access to the bus
by all nodes in the network. But the root node can change on each bus reconfiguration, so for the
transport layer it works as a symmetric bus.

The second difference is that the IEEE-1394 standard specifies two kinds of data transfer modes,
namely, isochronous data transfer and asynchronous data transfer. The IEEE-1394 standard provides
guaranteed bandwidth and latency for isochronous data and guaranteed delivery for asynchronous data.

The isochronous transfer is guaranteed to be periodic with bounded jitter (100 us). The asynchro-
nous transfer is guaranteed by an acknowledge notification and the worst case transfer delay may be
computed using the description of the traffic requests. This feature is useful for the design of real-time
systems when guaranteed transactions delivery and bounded transfer delays are required.

In the IEEE-1394 specification, time is divided into fixed-size frames called cycles, each of which has
a duration of 125 us (Figure 2.8). At most 80% of a cycle is available for transmission of isochronous
packets, while the rest of the cycle is available for asynchronous packets. During the asynchronous
part of the cycle, any node that wants to transmit an isochronous packet must defer to the nodes
transmitting asynchronous packets (the transmission of an isochronous packet has higher priority than
the transmission of an asynchronous packet). The transmission capacity for isochronous packets during
a cycle is independent of the asynchronous traffic load, but that of transmitting asynchronous packets
in a cycle depends on the isochronous traffic load. Because of this asymmetry, the performance of the
bus while in asynchronous mode is affected by the traffic conditions in isochronous mode.

Asynchronous Paquet

Delay of cycle start Delay of cycle start
Cycle start Isochronous Paquet Cycle start Isochronous Paquet Cycle start

o Channel 1 Channel 5 Packet d Channel 1 Channel 5 Panet

R N,

V.
i !
< V) Id
Basic cycle =125 ps Basic cycle =125 ps
Minimal period Minimal period

- Up to 100 ps for isochronous transfer: 63 channels
- At minimum 25 ps for asynchronous transfer

Figure 2.8: IEEE-1394 cycle

An TEEE-1394 network can be reconfigured automatically by its attached devices without any
intervention by the users each time the network topology changes. Thus, the system interconnection
reconfiguration may be seamless.

On the other hand, IEEE-1394a (version a) does not support the prioritized transmission. All the
nodes have the same level of priority. In the next specification of the norm (IEEE-1394b), it is envisaged
to have a support for the priority-based transmission, but actually there is no implementation of this
specification.

2.5. CONCLUSION 45

2.5 Conclusion

There are a small number of different kinds of middleware that have been developed. These vary in
terms of the programming abstractions they provide and the software architecture features they supply.

Programming abstractions like Remote Procedure Calls (RPC), client/server transactional model,
and the Distributed Object Model (DOM) have traditionally simplified and enabled the implementation
of complex distributed systems. These programming abstractions served as foundations for successful
middleware architectures. Programming abstractions offered by middleware can provide transparency
with respect to distribution in one or more of the following dimensions: location, concurrency, replica-
tion, and failures.

Distributed object middleware evolved from RPCs and benefits from all the software engineering
advances in object-oriented techniques (encapsulation, inheritance, and polymorphism) available to
the distributed application developer. Object middleware provides very powerful component models.
It integrates most of the capabilities of transactional or procedural middleware.

Most current middleware are only of limited use in real-time and embedded systems because all
requests have the same priority and there is no integrated real-time scheduling strategies. These
problems have been addressed by various research groups such as real-time CORBA. Furthermore,
distributed real-time systems impose stringent quality of service (QoS) constraints that must be
supported by the middleware layer. For example, real-time performance imposes strict constraints
upon bandwidth, latency, and dependability.

Recently, the notion of automotive middleware has been introduced by the car industries and third-
part suppliers. The main goal is to have a software architecture, shared between car industries and
third-part suppliers, ensuring the portability and interoperability of the automotive applications.

The next chapter presents our middleware proposition SCOOT-R developed at our laboratory to
design and implement distributed real-time applications.

Chapter 3 __

SCOOT-R: Middleware communication
services for distributed real-time systems

This chapter presents our middleware proposition SCOOT-R for high-level in-vehicles real-time ap-
plications. The middleware is based on a client/server and emitter/receiver models with real-time
extensions. Dynamic reconfiguration and fault detection mechanisms are developed to ensure a reliable
system. Interactions between processes are performed using the IEEE-1394 bus. Finally, we present
a typical automotive application involving our system: "real-time accurate vehicle positioning on a
digital map".

Contents
3.1 Introduction ¢ . i i i i i i i ittt e e e e e e e 49
3.2 Research context ¢ o i i i i i i it ittt it e e e 50
3.3 SCOOT-R hardware architecture 00000, 52
3.4 SCOOT-R software architecture 53
3.4.1 Failure detection and recovery in SCOOT-R 56
3.4.2 Client/server communication model 57
3.4.3 Emitter/receiver communication model L. 57
3.4.4 Client/server invocations v v v v v vt i 59
3.5 Dynamic reconfiguration and redundancy management 64
3.6 SCOOT-R internal services operation 65
3.6.1 Time stamping L 66
3.6.2 Services localization 67
3.6.3 Registration algorithm L o 67
3.6.4 A safe diffusion mechanismo 68
3.7 Defining application-level SCOOT-R objects 69
3.7.1 Defining a server object L L 70
3.7.2 Defining a client object L L 72
3.7.3 Defining an emitter object 73
3.7.4 Defining a receiver object L 73
3.8 Performances o o v i i i i i i e e e e e e e e e e e e 74
3.9 Typical automotive application involving SCOOT-R 75
3.9.1 Presentation of the application 75
3.9.2 Internal structure of the application’s components 75
3.9.3 Timing constraints of the application, 77

47

48 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

3.9.4 Worst case time analysis for the distributed application 78
3.10 Conclusion o i i i i i it e e e e e et e e e e e e e e e e e e e e 81

3.1. INTRODUCTION 49

3.1 Introduction

SCOOT-R presents a solution for software development [CCS03c]. It provides a set of basic services
built as a middleware layer above a real-time kernel. SCOOT-R offers a framework for distributing
components on multi-processing unit architecture, along with communication and synchronization
services (Figure 3.1). It also includes run-time monitoring of real-time constraints and ensures a
dynamic reconfiguration by replicating software components.

APPLICATIONS

MIDLLEWARE
SERVICES

API
(REAL-TIME

- CHANNELS AND
{ Real-time kernel L

PORTS

Figure 3.1: SCOOT-R Architecture

Our objective in SCOOT-R was to implement distributed and real-time applications while respect-
ing the applications timing constraints. The system is designed so that it is possible to prove, before
launching, that the temporal constraints of applications will be respected. SCOOT6R does not estimate
the worst-case execution time of tasks (WCET supposed known a priori), but it allows the clients to
define their worst case time to have their service (worst service delay). At the server side, the server
announces its worst case time necessary to return its service. Thus, before launching, SCOOT-R verifies
the compatibility of these timing constraints.

Below, we present the main features that SCOOT-R offers for the developers:

e Communication functions, allowing communication between distributed nodes (based on clien-
t/server and emitter/receiver models);

e Dynamic reconfiguration and redundancy approach by software components replication and
activation;

e A priori predictability for real-time applications; i.e., it should be possible to determine by static
analysis (off-line) if sufficient resources are available to guarantee required behavior;

e A synchronization technique to ensure a global time base for the whole network;

e Simplicity, both in terms of minimal run-time overhead (i.e., minimal amount of nonproductive
code), and in terms of intuitive method for application development, which facilitates validation
and formal proof of correctness.

All these features described above make SCOOT-R an operational model for the design and
development of distributed real-time applications. In addition to these features, it provides some tools
and features for the research development in the area of distributed real-time systems. In particular,
it provides:

50 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

e Resource sharing, i.e., permitting multiple applications to efficiently share communication in-
frastructure as well as computing resources (processors);

e A framework for the design and development of local/distributed real-time scheduling strategies;

e An application development environment and methodology, providing researchers with an appli-
cation oriented interface, as well as tools for efficient development and integration of applications.

Our focus in this work has been on how to design a working system satisfying the above listed
requirements, rather than solving a very specific technical problem.

While SCOOT-R was designed to be used mostly in control/command distributed systems, the
main target application depicted in this thesis is the automotive applications. i.e., SCOOT-R offers
an integrated framework to design and evaluate driving assistance functions. In particular, it allows
to acquire embedded sensors data at run-time and then to perform on-line computation. A set of
driving metrics and indicators was defined to implement several driving assistance functions. The
use of SCOOT-R in such applications is justified by the need of distributed, modular and flexible
architecture that provide diagnostic and synchronization services. The next section presents the context
of our research activities depicted in this thesis.

3.2 Research context

Given the research activities of our laboratory in the field of the "advanced vehicles" and "data fusion"
[NBO05|[PG96][PG98][VB94], and our work in the "real-time" field [CCS03¢][CCS03b][CCS03a][CSCO04],
the framework of our research activities in this thesis was mainly the European project RoadSense
(ROad Awareness for Driving via a Strategy that Evaluates Numerous Systems), the national research
project ARCOS (Action de Recherche pour une COnduite Sécurisée), and Mobivip (Véhicules Indi-
viduels Publics pour la Mobilité en centre ville) national project.

This thesis was supported by the European project RoadSense whose main objective is to provide
automotive manufacturers by analysis tools in order to enable them to define the guidelines to evaluate
the relevance of the Advanced Driving Assistance Systems (ADAS) in next generations vehicles.

The HVI (Human Vehicle Interface) is the main point studied by this project. A certain number
of criteria was defined describing the reaction of the driver regarding the ADAS system. The driver
performances are thus evaluated, with and without the ADAS system, in order to assess its contribution
to the improvement of safety.

The objective is thus to provide the processing tools necessary to the calculation of these criteria,
which will be called in this document human factor metrics or indicators.

We have contributed to the development of a design methodology, realization and deployment of
a distributed real-time system. The system, called D-BITE, based on SCOOT-R middleware, with
respect to the study case chosen by Renault.

D-BITE system allows the perception and processing of large amount of data. These data are
acquired from the physical sensors and digital cameras embedded in the vehicle. In order to provide the
relevant assistance functions, we have defined a set of driving metrics and indicators. These indicators
are computed in run-time during experimentation courses and they are recorded on several embedded
hard disks aboard the vehicle.

As a simple example of these metrics, we can cite the "Exceed speed detection". To compute this
indicator, we need to compare the current vehicle speed with the maximum allowed speed on the

3.2. RESEARCH CONTEXT 51

current road. The calculation of this metric involves the ABS data to get the current vehicle speed,
the GPS data to get the current position and the GIS (Geographical Information System) data to map
the current vehicle position on the digital map and extract the maximum vehicle speed allowed on the
specified road.

Another example of metrics is the "actions on pedal". It is the number of pedal (accelerator and
brake) depressions, mean throttle position and position variance. The actions are considered versus
time (mn) or distance (km). For Renault case study, only the actuations had been considered for the
analysis; the acceleration is got from the CAN bus. The throttle position and the position variance of
the accelerator are calculated a posteriori. Moreover, a camera is pointing toward the feet of the driver
to see the actuations intentions on the accelerator and braking pedals.

The use of a middleware technology like SCOOT-R made the implementation of the component
architecture of D-BITE simpler, since SCOOT-R manages the real-time execution of all the components
(starting, monitoring and stopping) and their synchronisation and communication.

GPS

GPS
Trimble AG 132 - -
Driver Camera Thales PPK RTK - T7400

And Forward scene

orward scene . /7'_r .
GPS < € ~ - Back scene
Trimble Lassen sk-8 ~ /

camera
/

.

Steering wheel angle Stick

Telemeter Stick
w Telemeter Stick
~Correvit

4 ABS sensors

Inertial
Unit

Figure 3.2: Sensors of the STRADA vehicle

In order to test and evaluate our D-BITE system, we used our demonstrator car STRADA (Figure
3.2). STRADA is equipped with certain number of sensors (Figure 3.2). This includes the GPS (Global
Positioning System), the odometers (one per wheel), the accelerometers, the driver commands sensors
(eyes-tracker, brakes, accelerator, etc.). Embedded digital cameras (IEEE-1394 cameras) were added
to record the face of the driver, the external scene of the vehicle (forward and back scenes) and the
driver foot position on the accelerator pedal to detect its intentions. All these data are collected during
a course of experimentation (twenty experimentations, two hours each), and are recorded and time
stamped on several embedded hard disks aboard the vehicle.

The system specifications must be sufficiently flexible to allow several configurations, according to
the case study chosen by the automotive manufacturer. The case study is defined based on the ADAS
system to test. Several modules were developed in order to replay the experiments recorded data with
search possibility by simple criteria or sequences indexing [MSP00].

D-BITE is a set of equipments that can be embedded in the car equipped with the ADAS functions
or located in a room for the Human Factor analysis (Figure 3.3).

Another important research project that involves our research works depicted in this thesis is the
French project ARCOS. ARCOS is a pre-competitive research project, it takes place into the PREDIT
program. This project aims at improving road safety and considers vehicle, driver and road as a whole
system. Thus, the project aims at enhancing driving safety on the basis of four safety functions:

e Controlling inter-vehicle distances;

52 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

In the car: In the lab:
A FireWire network of A computer for post
computers/sensors processing and

visualization

N

Embedded part of
D -BITE

Figure 3.3: The two instantiations of D-BITE

e Avoiding collisions with fixed or slowly moving obstacles;
e Avoiding lane exit;

e Alerting other vehicles of accidents by vehicle to vehicle communication.

Let’s recall that all the perception and processing functions are encapsulated into software compo-
nents using our middleware proposition SCOOT-R. Hereafter, we present the features of SCOOT-R
that make of it a good solution for prototyping multi-sensor automotive applications. We begin by the
description of the hardware (§3.3) and software architecture (§3.4) of SCOOT-R. Then, we present the
dynamic reconfiguration (§3.5) and the services operation (§3.6). Finally we outline some performance
keys (3.8) of SCOOT-R and a typical automotive application involving it (§3.9).

3.3 SCOOT-R hardware architecture

A SCOOT-R system consists of a set of nodes interconnected by a communication network. A node
can be viewed as a computer (processor + main memory) with a network interface and a set of
input/ output devices (sensors and actuators) allowing interactions with the "physical process" (e.g.,
the vehicle) (Figure 3.4). The communication network has to be deterministic, i.e., it should provide
data transmission with bounded and predictable delays and it should provide also a synchronisation
mechanism to define a global time base.

As the main goal of a middleware is to mask the heterogeneity of computer architectures, operating
systems, programming languages, and networking technologies, our SCOOT-R middleware supports
multi-platforms. It interfaces heterogeneous nodes with heterogeneous operating system. A node in our
system can be:

e a PC (Real-Time Linux or Windows OS);

e a microcontroller: we are currently working on the development of an embedded version of
SCOOT-R for the PowerPc controllers (MPC555) and the Embedded OS OSEK/VDX.

Furthermore, a CAN gateway application was developed in our laboratory to ensure the commu-
nication between SCOOT-R applications and the raw CAN data.

As communication media, SCOOT-R uses the IEEE-1394 bus. The IEEE-1394 network has a
common clock so that devices can synchronize their operations; this is suitable for applications and

3.4. SCOOT-R SOFTWARE ARCHITECTURE 53

Sensors/actuators Sensors/actuators

1] e | e

High-level High-level
applications applications
(: e
OS primitives OS primitives
Network adapters Network adapters

Network bus (e.g. IEEE -1394) |

CAN Network adapters
gateway

OS primitives

i

High-level
applications

CAN bus

Node 3

j

Sensors/actuators

Figure 3.4: SCOOT-R Hardware Architecture

also for the diagnosis and dynamic reconfiguration techniques. The choice of the IEEE-1394 bus as a
communication media was mainly imposed by the partners of the RoadSense project. In addition, the
IEEE-1394 bus has also a set of interesting features that make of it a good candidate to implement
distributed real-time systems (e.g., high bandwidth, dual transfer modes, synchronsiation, and dynamic
network management). The IEEE-1394 bus was briefly presented in section 2.4.2.3.

3.4 SCOOT-R software architecture

In SCOOT-R, the communication and synchronisation between application components follow either
the client/server model, or the emitter/receiver one. As outlined in Figure 3.5, SCOOT-R middleware
services are sets of distributed software that exist between the application and the operating system
on a system node in the network.

Each application component is located on one node in the distributed system. The client/server
model as the emitter/receiver one are extended to allow explicit real-time protocol specifications (§3.4.2
and §3.4.3).

SCOOT-R is based on object-oriented programming and allows remote method invocations on
objects. It supports objects that are data abstractions with an interface of named operations and a
hidden local state. Objects have an associated type [class| and the types may inherit attributes from
supertypes.

SCOOT-R communication layers cover from network to presentation layers and lie on the physical
layer of the used network (IEEE-1394). The presentation layer encapsulates the full set of communi-
cation features in an object oriented API (Figure 3.6).

Currently, SCOOT-R beta version is running under the microkernel RTAI (§1.3.4). Using RTAI, the
system may turn in a hard or soft real-time mode. Thus, we have two modes of service implementation:
"Kernel mode" and "LXRT mode". In kernel mode (Figure 3.7(b)), the servers (emitters) and clients

54 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

Application Application
Server -t Client:CallO Client
Qr Server::Accept() Or'
Emitter Receiver
T Emitter --> Receiver:: Data flow = T
STUBS STUBS

SCOOT-R Core and Services

PROTOCOL SPECIFICATIONS

OS Kernel OS Kernel

NETWORK ADAPTERS NETWORK ADAPTERS,

NETWORK Bus

Figure 3.5: Components in the SCOOT-R Model

Application Application
Presentation Presentation
Session
Transport
SCOOT-R
Network
Data link Data link
Physical Physical
OSI Model SCOOT-R Model

Figure 3.6: SCOOT-R vs. OSI Model

(receivers) are implemented as kernel modules in the kernel space. In the "LXRT mode" (Figure 3.7(a)),
the services are implemented as Linux standard processes.

Another version of SCOOT-R was also developed for Windows platforms (Windows 2000, XP).
This implementation is not a real-time version, and it is mainly used by the developers that aim
to access Windows software components such as the GIS (Geographical Information System) and to
communicate with the RTAI platform to acquire and process real-time data.

Modular and component-oriented architecture is an important characteristic of SCOOT-R.
It is now recognized that object-oriented techniques are well suited to the design and implementation
of distributed real-time applications [Kop97a]. Objects may be used to encapsulate a great variety of
hardware devices used in such applications and to make abstraction of the low-level interface details.

The object-oriented concept has been widely used in SCOOT-R: each element of the system is
an object. Thus, one can easily write his own custom object in C/C++, and SCOOT-R provides the
interface to the other objects (e.g., sensors, display systems).

In our philosophy, a real-time system is constituted by interconnected software components (Figures
3.8 and 3.9). Each of them contains a set of servers, emitters, clients and receivers, and possibly other

3.4. SCOOT-R SOFTWARE ARCHITECTURE

User applications

User space
i e
API
o
T~
_____________:>,: _________________
= >
Real-Time Kernel = &
Kernel space | SCOOT-R Core |
RTAI
e
communication
Network interface

User application as
Linux processes

(a) User space implementation (LXRT mode)

Real-Time Kernel o
User application as
kernel modules

User applications

SCOOT-R
API

\ Stub /

~
~

IPC —
Scheduler Synchronization

Network interface

(b) Kernel space implementation (Kernel

mode)

Figure 3.7: Service implementation

Hardware Component

GPS Application

Software Component

[l

SCOOT-RCore

Hardware Component

Odometry application

| | | Client |

| SCOOTRCore |

Network bus

Figure 3.8: Component-oriented architecture — client/server model

GPS Application

Software Component

Telemeter application

Emitter | Emitter || Receiver || receiver |
I I I
I | I I]
| SCOQOTR Core | | SCOQOTR Core |

Network bus

Figure 3.9: Component-oriented architecture — emitter/receiver Model

tasks that cooperate between them to provide the results expected by the component interfaces.

55

A component is a self-contained function that can be used as a building block in the design of a
larger system. The component provides the specified service to its environment across the specified
component interface. The component can have a complex internal structure that is not visible to the
user of the component.

The development of standard real-time components that can be run on different hardware plat-

56 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

forms is complex. The components have different timing characteristics on different platforms. Thus
a component must be adapted and re-verified for each HW-platform to which it is ported, especially
in safety critical systems. Hence, we need to perform a timing analysis for each platform to which the
system is ported.

3.4.1 Failure detection and recovery in SCOOT-R

The SCOOT-R model for failure detection and recovery supports several schemes and situations of
failures. Failures may be hardware or software and they may be permanent or transient. SCOOT-R
processes the eventual failures by the release of watchdogs. This processing consists in a reconfiguration
limited to the concerned failed service (partial reconfiguration) but following the same schema used by
the global reconfiguration. The failures that may lead to a watchdog release are:

e Component failure: a crash of a software component due to a software error has been occurred
(e.g., internal inter-blockage). For SCOOT-R, the server that resides on the failed component
still exists, but the execution of the client request is not terminated. Thus, the client detects
a "timeout" error and considers the server as failed. This timing failure may be classified as
permanent error and it leads usually to a partial reconfiguration for the concerned service.

e Breakdown of a node: the whole node shuts down. This error may be due to an OS crash (e.g.,
RTAI microkernel) or to a crash of the SCOOT-R software layer, or due to an error on the network
interface (IEEE-1394) which leads to the non transmission of data. This failure is permanent and
may be classified as fail-silent failure. In this case, the clients that try to perform transactions with
a server located on this failed node will miss their transactions by a release of their watchdogs.
Partial reconfigurations will be performed respectively for each server located on this failed node.

e Transmission error on the IEEE-1394 network bus: the client request or the reply of the server
has been lost or arrived but incorrect (the retransmission mechanism of the IEEE-1394 bus is
deactivated, if not, it is difficult to compute the emission time on the bus). This kind of failures
is tramsient, it does not occur permanently in a nominal operation of the system and it leads to
a partial reconfiguration.

e Network overload: this overload may lead to longer than specified communication delays; a
complete study and a conform deployment of the system components may permit to prevent
this kind of situations. However, a design error or a non-controlled connection of a node or
application consuming high bandwidth may lead also to such situations. In this case, "timeout"
can occur (transaction failed) and that implies partial reconfiguration.

e Reset: a reset on the network may be initiated by several reasons: incidents detected by the
IEEE-1394 network adapter (hardware reset) that may be resolved by the reconfiguration of the
network. Another kind of reset is the software reset initiated by the SCOOT-R middleware layer
in case of adding of a new node (starting of the SCOOT-R software stack). A reset leads generally
to a global reconfiguration of the system.

On the other hand, there is no detection mechanism and processing of values failures (e.g., the
response arrives completely but incorrect). Furthermore, there is no support in SCOOT-T to restart
or reinitialize software or hardware failed components and to manage redundant network buses.

3.4. SCOOT-R SOFTWARE ARCHITECTURE 57
3.4.2 Client/server communication model

The client /server model has proved its efficiency for the development of network applications. Clients
and servers can be implemented by independent programmers teams. Once the communication protocol
is specified, the client and server code may be distributed.

Data
Server < send request Client
In, Out: data In, Out: data
Accept () Call ()

Return service>

Data

Figure 3.10: Object oriented architecture — client/server Model

Moreover, the use of a client/server model facilitates the object modeling of the system. As depicted
in Figure 3.10, each client and server of the system is modeled by an object. The interactions between
the applications are materialized by invocations of objects’ methods. SCOOT-R implements a very
simplified scheme: each server has only one remotely accessible method ("accept()" method).

SCOOT-R clients and servers exchange data while respecting a real-time contract, which is specified
as a set of standardized constraints. Table 3.1 illustrates these temporal clauses and the results in case
of non-respect of the rules. The runtime monitoring of the deadlines by watchdogs allows immediate
detection of failure. i.e., the watchdogs are associated to system exceptions. Thus, the expiration of a
"timeout" will launch the exception that will be examined by the SCOOT-R software layer.

Let’s note that the attributes in Table 3.1 are individual and depend on each client and server of
the system. Moreover, SCOOT-R client/server paradigm is an event-based system and is implemented
using the asynchronous transfer mode of the IEEE-1394 bus. The SCOOT-R data object following a
client /server model is encapsulated in an asynchronous IEEE-1394 packet. The maximum size of an
asynchronous packet is bounded (1024 bytes for the SCOOT-R Windows interface SEDNET) and thus,
the size of a client/server data object is limited. Generally, this data representation is sufficient for a
wide spectrum of applications. In case of non compatibility with the application requirements in term
of message size, the programmers can define several servers and then associate to each server a part of
the request data and thus decreasing the data request size. Another solution is to encapsulate in the
SCOOT-R layer an assembling/disassembling module that permits to send a data request on several
consecutive asynchronous packets.

3.4.3 Emitter/receiver communication model

Real-time emitter /receiver is a "classic" model to which we add timing constraints as contracts between
the emitter and the receiver. The essential point in such system is that the receiver consumes data ob-
jects produced by the emitter at the same rate they are delivered. Moreover, real-time emitter/receiver
is a broadcast-based protocol without registration of consumers close to producers. This paradigm is
particularly adapted to image acquisition and analog signal acquisition.

58 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

CLIENT SIDE

SERVER SIDE

Constraint
attribute

Description

Description

Recovery time on
simple error

This clause is an engagement of the
server and a request of the client

Maximum time to register a server in
the case of desactivation of the server
or some incidents such as a reset on the
IEEE-1394 bus

Min Period

Maximum rate of request to be re-
spected by the client. It must be com-
patible with the server constraint

Maximum rate of requests for each
client. This value multiplied with the
maximum number of clients limits
the processor resources needed by the
server

Max_ clients

N/A

Maximum number of simultaneous
clients supported by the server

Worst Case

This time includes the response time
and the communication time in the
worst case. If it expires, the transaction
fails with "time-out" error. The server

Response time of the server in worst
case. The non-respect of this time in-
dicates a software misconception rather
than hardware or network error

is considered defective and its client
may replace it by a redundant server

Table 3.1: Real-time contracts: client/server model

As depicted in Figure 3.11, each emitter and receiver of the system is modeled by an object. The
interactions between the applications are materialized by invocations of objects’ methods.

Data
Emitter Receiver
>
Out: data Data flow In: data
Deposit () Consume ()

Figure 3.11: Object oriented architecture - emitter /receiver model

Currently, there is a strong trend in the vehicle industry to increase the use of telematic and
infotainment services. Examples include fleet management systems, maintenance systems, and anti-
theft systems. Consequently, a data-flow driven model represents an important solution for such
in-vehicle applications. An emitter/receiver model may be used to fill these requirements. As the
client/server model, the emitter/receiver model permits the software component development and is
well adapted for the distributed computing.

Emitters and receivers in our model exchange data while respecting a real-time contract which
is specified as a set of standardized constraints. Table 3.2 illustrates these temporal clauses and the
results in case of non-respect of the rule.

Using the IEEE-1394 bus, the emitter/receiver paradigm is easily implemented using the isochronous
transfer mode. The basic cycle is the IEEE-1394 cycle of 125 us and the number of channels is limited
to 63 (we have one emitter per IEEE-1394 channel).

3.4. SCOOT-R SOFTWARE ARCHITECTURE

RECEIVER SIDE

EMITTER SIDE

Constraint
attribute

Description

Description

Recovery time on
simple error

This clause is an engagement of the
emitter and a request of the receiver

Maximum time of registering of the
emitter in the case of desactivation of
the emitter or some incidents such as a
reset on the IEEE-1394 bus

Nominal Period

N/A

Central value of the emitter period

59

Min_ Period Maximum rate of data stream. It must | N/A
satisfy: Min_Period < Nominal Pe-
riod - Jitter
Max_ Period Minimum rate of data stream. It must | N/A
satisfy:Max Period > Nominal Pe-
riod + Jitter
Jitter N/A Dynamic adjustment of the emitter pe-

riod

Table 3.2: Real-time contracts: emitter /receiver model

At the emission side, a data object (the image for example) is broken down into portions of identical
size so that each portion is sent in an isochronous packet of the IEEE-1394 cycle. These portions are
chained between them forming the whole data object. At the reception side, the receiver performs an
assembling method to rebuild the whole data object.

3.4.4 Client/server invocations

In order to explain the philosophy of our model operation, Figure 3.12 and Figure 3.13 illustrate
two simplified statecharts of our system for the client/server communication model. These statecharts
provide a simple illustration of the system operation by presenting the essential states of the system.

Below, we define the quality indicator used by SCOOT-R software layer to choose the best service
in case of redundant software components for the same service.

Definition 4. SCOOT-R quality indicator: The quality indicator associated to each service (server
or emitter) is a positive integer that may be zero. It expresses the quality of data (e.g., accuracy,
precision and confidence level), depending for example of the condition of the external environment
(e.g., vehicle visibility and temperature). This indicator is used by the middleware layer to select the
best service in case of redundant components. The high-level applications are allowed to modify this
quality value dynamically at runtime. This change will be taken into account by the middleware layer
by informing all the nodes on the network.

The "remote server" object (client side network interface) is a local representative of the server. As
shown in Figure 3.12 and on the client node, the client application starts the transaction by invoking the
call() method of the "remote server" object. This call is invoked sporadically by the client application
("next client invocation" loop in Figure 3.12).

The "server status" represents the current status of the server associated to the client as stored in
the local SCOOT-R services table. It has two steady states: the state "on" and the state "off" that
correspond respectively to a registered or unregistered server state.

When the client application initiates a client transaction by the call() method, normally the server
responds to the client transaction by the accept() method if it is in the "on" state (registered). If the

60 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

Client node \

Remote_server
L S [Server status \

Error
“server down” I

N

Transaction
done

Next client
invocation

/

Repl:
ety

Error | —
“timeout™ /unregister|
server

(I

Figure 3.12: Simplified statechart of a client operation

server is registered but it does not respect the client expiration time (timeout) of the client transaction,
the server is considered by the client as defective and it will be unregistered by the client. However, if
the server state is "off", no communication is initiated and the local services table directly return to
the "server down" state.

At the server side, initially the server is in the "off" state. It leaves this state and can be considered
as soon as its quality becomes greater than zero (Figure 3.13). In this case, the server will switch to the
"ready" block and it is considered as registrable. It will be registered if it has the highest quality of all
others servers of the network for the same service ("Better" state). If not, it remains in the "Degraded"

state.
Server
O

uality = 0

Quality < max (QSS)

[eacdy

Quality > max (QSS)
+/Registered *Unregistered Unregistered

by another by client

Registered
request
Ready Application
service
function
& — J

OSS = set of qualities of all servers in the whole network.

Figure 3.13: Simplified statechart of a server operation

Now, the server is registered (it has the highest quality), it will pass to the "registered" block and
will operate normally by responding to the client invocations. The server leaves the "registered" block
in case of unregistering of it.

The server may be unregistered by (1) the client (in case of "timeout error"), (2) by a bus reset that
occurs in the network and introduces a global reconfiguration or (3) another server registration that

3.4. SCOOT-R SOFTWARE ARCHITECTURE 61

leads to the re-registration of all the services available on the network, or (4) because server quality
becomes zero that occurs when the server application decides to stop it.

When the server is unregistered by a client detecting a "timeout", it goes to the "degraded" state,
its quality is set to "1", the smaller non "0" quality value, so it can be registered only if there is no
another server for this service.

In case of normal operation of the client/server model (Figure 3.14 (a)), the client initiates the
transaction by invoking the "call" method and a watchdog is activated for each transaction. The server
responds to the request by the "accept()" method. The response must be returned in a bounded time
(as announced in the real-time contract terms, see Table 3.1). If it is the case, the watchdog is reset to
the "timeout" value mentioned in the client real-time contract.

Client Server Client Server
k K
g o
s EL
@
2 LE
®
‘%
VY |
N Replacement of
server
Normal operation Abnormal operation

(a) (b)

Figure 3.14: Client/server operation modes

The exceptions that may occur at run-time are:

e server down: there is no server registered for this service at the time of the request. This happens
in initial phase or when the server is failed.

e timeout: the server exists, it should render the service within the bounded time, but it does not.
The cause of the problem can be a network failure, a hardware failure where the server is located,
or a failure of the software on the server application itself. In all cases, SCOOT-R software revokes
the server, which enables another possible server rendering the same service to take its place and
allow the resumption of the service. This failure case is illustrated in Figure 3.14 (b) and cited
in Table 3.1;

e overrate: the client does not respect the requests frequency bounds announced by its server, the
service is not rendered. This exception may occur when there is a system clock problem on the
client node.

In case of the two exceptions "server down" and "timeout", the system reacts by a partial reconfigu-
ration of the associated service. For the "overrate" exception, there is no recovery and handling of the
€error.

62 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

Other exceptions may occur in the system and they are used specifically to monitor and diagnose
the system. For these exceptions, we do not have any special treatment and recovery. These exceptions
are:

e type mismatch: the object types exchanged between the client and the server are not compatible.
The client will not be able to communicate with the server.

e too many clients: the server cannot support this client (maximum simultaneous clients number
has been reached). If it accepts this client, it could not guarantee the respect of its temporal
requirements (see Table 3.1);

e timeout too short: the client asks for a response time lower than the one announced by the server.
The service cannot be rendered.

e rate too high: the client announces a requests frequency higher than the maximum value sup-
ported by the server. The server could not respect its temporal engagements if it accepts this
flow of requests.

The verification of real-time contract clauses is made at pre-runtime for some clauses and at run-
time for others. For example, the "type mismatch", "too many clients", "timeout too short" and "rate
too high" exceptions are detected before the effective execution of communication between clients and
servers. The "overrate" exception is handled at run-time by the client side since it occurs when the
client overcomes the initially announced frequency.

As each transaction consumes some CPU time, the total server activity is calculated using "Min_ -
Period" and "Max_ Clients". The load distribution on the processing units is thus validated (Figure
3.15).

NB_clients NB_clients
| 1] L] time
y i =T |
| | |
AL N
d— ' ! 'S !
Min_period Min_period

Figure 3.15: Transactions chronogram

In a real-time application including several clients and servers, the processor load induced by this
application can be evaluated using the traditional techniques (e.g., RMA analysis).

Given that the number of simultaneous clients per server and the requests frequency of clients are
bounded, the worst case CPU load is known. This analysis enables to validate both the respect of the
temporal clauses of the server and the operation of the real-time application.

3.4.4.1 Emitter/receiver invocations
As depicted in the Figure 3.16, a data object is sent using one or more IEEE-1394 isochronous packets.
During an IEEE-1394 cycle, one packet of the data object is sent on the bus (P1, P2, ..., Pi).

The emitter sends its data objects at a specified period. The receiver checks if the period of the
received data objects is comprised in the interval [period - jitter, period + jitter|.

3.4. SCOOT-R SOFTWARE ARCHITECTURE 63

Period

Jitter

Py B .
>»

IEEE-13% cycle
(125 us)

Isochronous packets of the data object

Figure 3.16: Jitter

The Figure 3.17 illustrates two system behavior of the emitter/receiver model: operational and
failure modes.

In normal operation (Figure 3.17 (a)), the emitter broadcasts its objects on the network (by calling
the "deposit()" method) and the receiver(s) consume these objects at a frequency compatible with the
one announced by the emitter (see Table 3.2).

Emitter Receiver

Emitter Receiver

de"ow()
epo;,
deposl_[() Osit)
Emission period
Emission period
I~
~
~
(@)
O
O

L AT dter

50|
uonedUNWWO D

Replacement
K of emitter

Normal operation Abnormal operation

(a) (b)

Figure 3.17: Emitter/receiver operation modes

In case of communication loss or any other incident on the network, the receiver detects the failure
using a timeout watchdog and then it considers that the emitter has failed. It initiates the unregistration
of the emitter by decreasing its quality and thus it opens the possibility of an eventual replacement
(Figure 3.17 (b)).

SCOOT-R kernel uses its services table to check if there is another active emitter for this service,
if so, the new emitter will be registered in a bounded time and the receiver will continue to consume
data from this new emitter. If not (there is no active emitter for the service that failed), the emitter
returns an exception (no active emitter for the specified service). The registration algorithm is detailed
later in this chapter (see section 3.6.3).

During the start up of an emitter, there may be a problem of synchronisation between the emitter
and its receiver(s). In this case, the receiver may receive an incomplete object. Thus, the receiver
must tolerate the isolated missed objects. i.e., the receiver should wait a sufficient time before the

64 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

unregistration of the emitter by considering it as defective.

3.5 Dynamic reconfiguration and redundancy management

SCOOT-R uses a partial replication of the software components. The mechanism used to detect and
recover from failures is based on components redundancy. In the fault detection phase, the error state
and the needed reconfiguration are identified.

In fact, SCOOT-R uses the server and the emitter redundancy to implement services replication. A
specific algorithm, described in section 3.6.3, will permit the activation of the better server registered
in the services database replicated in each node of the network.

Let’s recall that the redundancy approach in our system is initialized by the programmers, i.e., the
high-level application must define, declare and then implement the redundant services. Then SCOOT-R
ensures the error detection and the activation of the available service having the best quality factor.

In order to respect the application’s timing constraints, the restoration time of the service should
be compatible with the temporal constraints announced by the application. The registered server waits
for input requests from the client and sends a response to the client to mark the end of an invocation. In
addition, all other servers replicas (not registered) are in a "standby" mode. i.e., these replicas do not
receive clients requests and they wait to be registered in case of an eventual reconfiguration operation.

In case of adding a new node on the bus, it should be informed of all the previously registered services
of the other nodes. For IEEE-1394 bus [And98| or for MOST bus [Gro00], a global reconfiguration is
made whose over-cost may be bounded. This global reconfiguration is also used for the node suppression
or other major network incidents.

Moreover, there are three main schemes that may lead to a reconfiguration operation and conse-
quently to register and replace a server (emitter):

e global reconfiguration: all the active services registered on the network are forgotten, each server
previously registered or not initiates a procedure of re-registration by broadcasting its registration
message to all nodes. Using the IEEE-1394 bus, this happens each time a bus reset (soft or hard)
occurs;

e timing constraint violation and server shutdown by the client (detection as watchdog "timeout"):
this case occurs when the server does not respond on time and the client has got a timeout
exception. So, the client has the capacity to consider the server as failed and shut it down. To
be reactivated, the server must initiate a registration procedure to introduce itself again. At the
emitter /receiver side, we have the same behavior, i.e., the receiver detects a loss of communication
and it considers that the emitter has failed. The receiver has the capacity to shutdown the emitter
and a mechanism of replacement may occur;

e quality indicator change: introduction of a new server with a higher quality than the current
registered server or the decreasing of the current active server’s quality factor. In this scheme,
there is no service interruption.

Let’s consider an accurate positioning system of a vehicle functioning by fusion of inertial and GPS
data. Another server yields position using GPS and Odometer data (Figure 3.18). A quality indicator
is associated to each server.

This quality may depend on the vehicle physical environment as speed, adherence, etc. Each fusion
module evaluates its quality. When the positioning data is needed, SCOOT-R provides the value having

3.6. SCOOT-R INTERNAL SERVICES OPERATION 65

. Fusion Fusion
@ [Inertial] ["GPS—incnial"] [Odometer] [‘GPS-odometer'L
Node 2

[SCOOT.R middleware

Figure 3.18: Redundancy approach

the best quality indicator. Let’s assume that "GPS-inertial fusion" module will be providing the best
value. In case of "Inertial" module failure, the quality indicator of the "GPS-inertial fusion" module
decreases significantly. Hence, SCOOT-R selects dynamically the "GPS-odometer fusion" module.

/D:] Camera

Node 1 Node 2

| Bus 1

| Bus 2

QH Node 5

Figure 3.19: Redundancy of servers on duplicated buses

9

Moreover and as illustrated in Figure 3.19, a service may be duplicated on several separated buses
of the whole network. When these buses are merged, the Bus 1 and Bus 2), the two instances of the
same service (in our case, the GPS service) candidate to be operational and SCOOT-R software layer
selects the service that have the best quality.

3.6 SCOOT-R internal services operation

Node A
. . . Normal
Registration Client Protocol:
Localization Algorithm Data integrity
and Recording
of Services
Time Stamping Server
safe broadcast:
~ broadcast,
A - collective confimation,

< IEEE-1394 bus:
- Recovery, broadcast
NodeB | |

Localization Registration safe broadcast: Client }/

Algorithm - broadeast,
- collective confimation|

and Recording

of Services

Time Stamping Server

Figure 3.20: SCOOT-R service operation

66 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

SCOOT-R needs a communication network providing a deterministic media access time and a
bounded transmission delay in order to provide the real-time services presented hereafter.

As depicted in Figure 3.20, SCOOT-R invokes several modules that cooperate in order to guarantee
correct operation of the system. Among these modules, we mention the "Time Stamping", "Localization
and Recording of Services", "Safe Broadcast protocol", and "Decision Algorithm". These modules are
detailed in next subsections.

3.6.1 Time stamping

In order to guarantee a consistent behavior of SCOOT-R, it must be ensured that all nodes process all
events in the same consistent order. For all the nodes on the network, the events chronology must be
the same. A global time base helps to establish such a consistent temporal order on the basis of the
timestamps of the events.

The IEEE-1394 bus offers a service of high rate synchronisation (8 kHz) that permits to obtain a
global time between two bus reconfigurations. A reconfiguration occurs each time a node is added or
removed.

We note "nettime" as the network time used by the nodes to compute the global time base. It
is built using the Cycle Counter register of the IEEE-1394 bus. Each 128 seconds, the Cycle Counter
register is reset to zero and the overflow of the Cycle Counter register increments a soft counter (Figure
3.21(a)).

Bus Resets

Nettime

Cycle Counter
Software counter Cycle counter Local counter 4

I I SN |

Common to all the IEEE-1394
Interfaces of the network
Its value is a multiple of
125 ps

B2 I T STETTETTITTTIE® V) PO

Incremented each time the

Local part
Cycle Counter overflows

v

(a) Nettime format (b) Cycle Counter reset

Figure 3.21: Cycle counter format

Each time a bus reset occurs, the software part of the "nettime" is reset and each TEEE-1394
interface resets its cycle counter (Figure 3.21(b)).

The application should manage the transition between these independent global times (before and
after reconfiguration) using the local time of the node it is running on. By this way, we can obtain a
continuous global time using a fusion of the IEEE-1394 cycle counter (that is reinitialized each 128
seconds) and the local clock (continuous).

In the next chapter, we present the use of this accurate synchronisation for the design and imple-
mentation of distributed scheduling strategies.

3.6. SCOOT-R INTERNAL SERVICES OPERATION 67

3.6.2 Services localization

When a client (receiver) requests a service, SCOOT-R middleware ensures the localization of the active
server (emitter) providing this service.

Every node maintains a table of services containing their description, including the node address,
the port associated to the server, the size of data, names of data types and parameters of the temporal
contract. All the services are identified by their names. This table is updated by the servers and emitters
registration algorithm and is reinitialized at each global or partial reconfiguration.

This approach is effective for networks with relatively modest size. Our implementation uses the
IEEE-1394 bus, the number of nodes is limited to 63, which is sufficient for a wide range of applications.

3.6.3 Registration algorithm

A server or emitter tries to register when its quality is greater than that of the current registered server
or emitter or when there is no registered server or emitter for the service.

If the current registered server or emitter decrements its quality factor, it sends the same registration
message as if it really registers. This way, it informs all the network of its degraded quality. If it is
no more the server or emitter having the best quality coeflicient for this service, the better one will
replace it (Figure 3.22).

Quiality > current_quality
/Send registration request

set_quality(>0) Quality > 0

«off»

Quality =0
«offy

set_quality(0)
/Send (un)registration request

\ /

We associate to each registration message a network date (timestamp) and we initiate the diffusion
of the registration message to all the nodes by the diffusion mechanism described in section 3.6.4. To
each reception of a registration message we apply registration algorithm outlined above (Algorithm
3.1).

set_quality(0)

«on» «off»

Quality > 0
«on»

set_quality(—)
/Send registration request

Figure 3.22: Statechart of the registration algorithm

The algorithm 3.1 selects the most recent registration message having the maximum "timestamp"
date. If the message has a "timestamp" date equal to the current one (this may occur only when the
requests are coming from different nodes), the algorithm selects in this case the message that have the
highest site number (note that the nodes are numbered from 0 to MAX NODES).

68 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

Algorithm 3.1 Registration algorithm

INPUT : We examine the registration message of a service :
if 7timestamp”of the message > current "timestamp” then
Set the new message as the active registration message; return;
else if "timestamp” of the message = current "timestamp” then
if node number of the message > local node then
Set the new request as the active registration message ; return;
end if
end if

This mechanism permits:

e that only one server is qualified by service, or rather, if there are several servers for the same
service, one server will be activated in a bounded time (the server having the best quality will
be activated) and all the others are stopped;

e that the server is recognized by all the clients being able to communicate with the server site in
a bounded time (in absence of permanent communication error);

e that if a server module able to render the service exists, a server is qualified in a bounded time
whatever was the former failures.

In order to maintain consistent state amongst the registered services, the service registration must
be performed after waiting a certain amount of time since the receiving of the registration message. i.e.,
when a node receives a new registration message, it schedules to register the service in a future time.
This delay permits to guarantee that all the other nodes have received this registration message and
thus a coherent decision may be made. Unfortunately, this leads to a large delay of service unavailability.

The other solution is to register the service immediately after the reception of the registration
message. By doing that, there may be a transient inconsistent states between the services. On the
other hand, this leads to an immediate availability of the service.

Given the application’s timing constraints, the designers may use one of these two techniques. In
our implementation, we have chosen the second method to ensure a fast availability of the service and
given that our applications are not critical from this point of view and do not require a deterministic
behavior in case of failovers (service replacement).

In order to avoid the over use of the network and to bound the CPU consumption for service
registration, each node waits for a sufficient delay between two registration messages. This solution is
efficient on the IEEE-1394 bus, especially when all servers send their registration message after a bus
reset.

3.6.4 A safe diffusion mechanism

SCOOT-R needs absolutely that any message describing a server registration (or unregistration) is
received by all the SCOOT-R nodes. Then it is sufficient to use the registration algorithm described
above to ensure that all the nodes take the same decision. So, SCOOT-R needs a safe diffusion
mechanism.

For our experimental implementation using the IEEE-1394 bus, we use a specific but unproved
mechanism. It addresses the minimization of the number of registration messages to be diffused after

3.7. DEFINING APPLICATION-LEVEL SCOOT-R OBJECTS 69

each bus reset. After a bus reset, each node broadcasts its registration message(s) for each service
presented in this node.

For that, our diffusion mechanism uses the IEEE-1394 broadcast mode to send the registration
(unregistration) message. The message includes also the sequence index of the message (integer that
goes up from zero to NB_MESSAGES). This sequence number is incremented and added to the
message header by the sending node.

Then, each node receives all the registration messages and notes them per node status. It waits
for a sufficient delay (TIME_TO __ACK) before the sending of the acknowledge message. This waiting
time allows the reception of several registration messages by the node. Then, a collective acknowledge
may be performed. By this way, we can decrease the number of messages to be diffused by each node.

0 N MAX_NODES - 1
i
~ S
———
MAX_NODES

Figure 3.23: Broadcasted message format

The acknowledge message is broadcasted using the IEEE-1394 broadcast mechanism also. It con-
tains a table of MAX NODES entries that is the maximum number of nodes on the IEEE-1394
network (Figure 3.23). For example, i in the Figure 3.23 corresponds to the maximum sequence index
of registration messages got correctly and in sequence from the node number N.

For example, if the node N broadcasted five messages (m0, m1, m2, m3, m4) and the receiving node
has received only four messages as follows (m0, m1, m2, m4), so the receiving node has detected that
there is a lost message (m3). In order to retrieve the lost message m3, the receiving node broadcasts
a message that contains the maximum sequence index correctly received (as shown in Figure 3.23).
For the scenario cited above, the broadcast message will contain 2. After reception of the acknowledge
message, the node N resends the two messages 3 and 4 one by one using the guaranteed delivery
point-to-point IEEE-1394 mechanism.

3.7 Defining application-level SCOOT-R objects

In SCOOT-R, the servers (emitters) and clients (receivers) are represented by objects and the commu-
nication between entities is performed via invocations on remote objects. There are five main classes
in SCOOT-R to design an application as depicted in Figure 3.24.

Scooter_data

Figure 3.24: SCOOT-R main classes used in a user application

Scooter_server Scooter_emitter Scooter_receiver Scooter_remote_server

Scooter server is the ancestor class which represents the server. All the servers used in a user
application must inherit from this ancestor class. Scooter remote_server is the ancestor class for
the clients. A client implementation in the user application will inherit from this class. For the

70 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

emitter/receiver model, we have an homogeneous representation. Thus the Scooter emitter class is
the ancestor class for application emitters objects and Scooter receiver for the application receivers
objects. Finally, even the data exchanged between the clients and their servers are encapsulated in
SCOOT-R objects. Scooter data represents the ancestor class of any exchanged data between client
and servers. The exchanged messages between the emitters and their receivers are represented by data
buffers.

Thus, in order to create a new application, it is sufficient to inherit classes from one of the five
ancestor classes and then to specify and redefine their functional and temporal specifications. i.e., by
implementing the pure virtual methods of the main class.

Scooter_server ‘ ’ Scooter_data ‘ ’ Scooter_remote_server

Inheritance .
Inheritance

Inheritance Inheritance

Example_reply Example_request

Server_exemple Accept() > Remote_server_exemple

Call()

Figure 3.25: An example of a user application implementation by inheritance of SCOOT-R main classes

Figure 3.25 illustrates an example of a client/server application. In SCOOT-R, clients (receivers)
and servers (emitters) exchange named type messages. SCOOT-R checks that clients (receivers) and
servers (emitters) are type compatible. In an object-oriented approach, compatible is not identical: a
server can accept a request sent by any client if this request inherits from the type of the request the
server waits for. Symmetrically, a server can return to a client a reply message that inherits from the
type of a message the client waits for. In SCOOT-R, the inheritance level for exchanged data is limited
to two and it is defined at the compilation.

Thus, adding a new service SCOOT-R is done by defining the service, then describing the data
structure exchanged between client (receiver) and server (emitter). Then, implementing at least one
server (emitter) and writing the stub (on the client (receiver) side) to allow a client (receiver) to access
the server (emitter).

3.7.1 Defining a server object

Creating an object from a class derived from the Scooter server base class implements a server. The
derived class Server_erzample has to implement the pure virtual methods from the base class.

For the source code shown in Listing 3.1, the methods "worst_case", "min_period" and "max_ -
at_once_clients" describe the real-time contract this server offers to its clients.

The "worst case" must be large enough so that the transaction always complete in this delay
including the communication media access delay. If not, the server can be unregistered (it is considered
as defective).

The "min period" determines the maximum global requests rates and so the maximum CPU usage
of this server. Thus, the CPU usage of this server can be bounded and a RMA analysis can be done
for lower priority processes.

3.7. DEFINING APPLICATION-LEVEL SCOOT-R OBJECTS 71

The "max_recover" specifies the maximum delay for the service to be re-established after a failure.
This value is checked only for compatibility between clients and servers, but no check is performed on
its respect.

The "max period" allows the server to control the delay to forget a client. If there is any request
from the client after "max period", the server forgets the client and considers it as inactive. "max_ -
period" must be long enough so that client connection will be stable, but short enough for human
management operations (a few seconds).

The "get _buffer _in()" and "get buffer out()" methods return prototypes of the "scooter data"
class the server waits for and returns back.

The "accept" method is the main server method which is called each time a client asks for the
service, sending a request and waiting for a returned reply. The parameters are buffers provided by the
SCOOT-R low-level software. The "ask" parameter points to a copy of the request sent by the client,
and a copy of the "reply" addressed buffer will be delivered back to the client.

Listing 3.1: Server code example

#include "scooter server .hh"

class Server example : public Scooter server
{
example request In; example reply Out;
char x S; // local data for the server_ezample
public: int nb accept call;
public:

virtual RTIME worst case() { return 100000 ; } // 0.1 milli

virtual RTIME max period() { return ((RTIME)1000000000) %10 ; } // 10 sec
virtual RTIME min period () { return 100000 ; } // 0.1 milli — 10 kHertz
virtual RTIME max recover(){ return 100000000 ; } // 100 milli

virtual scooter datax get buffer in() { return &In ; }
virtual scooter datax get buffer out() { return &Out ;
virtual int max_at_once_clients(void) { return NB_CLIENTS; }

Server example(charx name ,char *s, pL_e s L) : Scooter server(name , L)
{

init_server (); // now the server can be really started
}

virtual void accept(scooter data *ask, scooter datax reply)

/+ Here is the source code of the server treatment x/

}
}s

In order to start the server, the application must set its quality to a positive number. To stop the
server, it is sufficient to set its quality to zero (Listing 3.2).

Listing 3.2: Initializing and Launching of the server

my scootr handle = find 1 e s("OHCI-1394", 0); // the first OHCI-139/ adapter
if(my scootr handle = NULL) // nothing to do, network unavailable.
{
printf("Real—time LES_—_network_unavailable\n_");
return —1;

}

A = new server example(my scootr handle);
A—>set _quality(2); // Now, the server is operational

/* To stop the server x/
A—>set _quality(0);

72 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS
3.7.2 Defining a client object

The Remote_server ezample (client stub) inherits from the client ancestor class Scooter remote -
server. The pure virtual methods in the base class have to be provided in the same way than for
the server class. For the source code shown in Listing 3.3, "get _buffer request()" and "get buffer -
reply()" methods return prototypes of the "scooter data" class the client sends and returns back.

The "worst_case" must be large enough so that the transaction always complete in this delay
including the communication delay. If not, the server is unregistered. SCOOT-R checks if this value is
greater than those in the server declaration to start the client transaction.

Listing 3.3: Client code example

#include "scooter remote server.hh"

class Remote server example : public Scooter remote server
{
example request Request;
example reply Reply ;
public:

virtual RTIME worst case() { return 1000000 ; } // 1 mills
virtual RTIME min period () { return 500000 ; } // 500 micro
virtual RTIME max_recover(){ return 200000000 ; } // 100 mill

virtual scooter datax get buffer request () { return &Request ; }
virtual scooter datax get buffer reply () { return &Reply ; }

Remote server example(charx name ,pL e s L) : Scooter remote server (name , L)

{
}

init _remote server ();

};

Let’s recall that this object is not the client; it is the object the client uses to access the service (client
stub). Hence, in order to communicate with the server object, the application developer has to setup a
task which initiate this client/server communication. For the source code shown in Listing 3.4, the task
invokes the "call" method of the Remote server ezample object with a request parameter ("res").

When the call completes, it gets back an exception value. If "Exception" value is not NULL, the
transaction does not complete successfully and the value of this exception defines its type (e.g., timeout,
server _down, etc.).

Listing 3.4: Client task code example

void client task code(int t)
{
Message *Exception; // object describing the type of the returned ezception
scooter data *res; // here i get back the address for the returned object.
/* creating the Scooter_ remote_server object (client stub) x/
A = new Remote server example(my scootr handle);
Exception = A—>call log(&res); // initiates the client transaction
if (Exception = NULL)
{ // fine

printf("transaction_succeed");
else

printf("There_is_an_exception_occurred");

}

3.7. DEFINING APPLICATION-LEVEL SCOOT-R OBJECTS 73
3.7.3 Defining an emitter object

As the server side, creating an object from a class derived from the "Scooter emitter" base class
implements an emitter. The derived class has to implement the pure virtual methods from the base
class.

For the source code shown in Listing 3.5, the methods "period" and "jitter" describe the real-time
contract that the emitter offers to its receivers. The receiver declares that it will respect the average
"period" by keeping also a local variation smaller than the "jitter".

Listing 3.5: Emitter code example

class Emitter example : public Scooter emitter

{

example isoch *Qut; // data type of the sending data objects

public:
virtual RTIME period () { return((RTIME)1000000); } // 1 milli sec
virtual RTIME max_recover (){ return 100000000 ; } // 100 milli
virtual RTIME max jitter (){ return 400000 ; } // 400 micro
virtual scooter datax get buffer out() { return &Out ; }

Emitter _example (charx name , pL e s L) : Scooter emitter(name , L) ;
{
init _emitter(); // now "this" is ready and the emitter can be really started
}
I

In order to setup an emitter, the user application must implement a task which call the "deposit"
method of the emitter with respect to the emitter period and jitter as shown in Listing 3.6.

Listing 3.6: Emitter task code example

void emitter task(int t)
{
Emitter _example smthis = new Emitter example (my scootr handle);
mthis—>set quality (2); // starts the emitter
while(! FINI) {
mthis—>deposit(data =);
Sleep (mthis—>period ());

};

3.7.4 Defining a receiver object

The pure virtual method in the base class have to be provided in the same way than for the emitter
class. Each time a complete message is received from an emitter, the "consume" method is called
(Listing 3.7).

Listing 3.7: Receiver code example

class Receiver_example : public Scooter_receiver
{
example isoch *In; // data type of the received data objects
public:
virtual RTIME min_period () { return 500000 ; } // 500 micro
virtual RTIME max period() { return 1500000 ; } // 1500 micro
virtual RTIME max_recover(){ return 100001000 ; } // more than 100 mill
virtual scooter_datax get_buffer_in() { return In; }
Receiver_example (charx name , pL_e_s L) : Scooter_receiver (name , L)
{

init _receiver ();

74 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

}

virtual void consume(int channel)

// here, we process the incoming data objects for the specified channel

}
s

3.8 Performances

This section presents some indications on the performance of SCOOT-R middleware. The values
presented here are obtained for real experiments based on a test bank that we have performed. During
the test, the network is free from other client/server or emitter/receiver activities and free also of
any non SCOOT-R activity. The performances are measured while running PCs 800 Mhz Pentium,
using RTAI/Linux kernel and connected to the IEEE-1394a bus (400 Mbit/s). The following Table 3.3
summarizes the performance baselines in term of communication delays.

‘ ‘ Kernel Mode (RTAI) ‘ LXRT Mode (Linux real-time) ‘
average delay (local) 8 s < 15 pus
worst delay (local) < 50 us < 60 us
average delay (remote) < 50 us < 50 us
worst delay (remote) < 100 pus < 100 pus
service registration delay ~ 120 us ~ 120 us

Table 3.3: SCOOT-R performances (communication delays) — client/server model

The test bank is conducted using two different modes of SCOOT-R. The first mode is the kernel
mode, in this case the clients (receivers) and servers (emitters) are implemented as kernel modules of
the RTAI OS.

The other mode of implementation is the LXRT mode. Here, the clients and servers are implemented
as standard Linux processes.

In order to obtain the delays depicted in Table 3.3 and to evaluate SCOOT-R, we conducted several
interactions client/server (=~ 10000 transactions). In local experimentation, the client and its server are
located on the same computer. The computer does not running other SCOOT-R activities. In the
remote experimentation, the client and its server are located on two different computers connected by
the IEEE-1394 bus. The computers also do not run other SCOOT-R activities.

As shown in Table 3.3, the average client/server transaction delay for local communication (client
and server located on the same computer) is less than 8 us (this is the CPU overhead for the SCOOT-R
stack - about 10000 cycles per transaction) when the client and the server are implemented as RTAI
kernel modules.

The average client/server transaction delay for local communication is less than 15 us (this is the
CPU overhead for the SCOOT-R stack - about 15000 cycles per transaction) if the client and the server
are implemented as RTAI-LXRT Linux processes.

The worst case client/server transaction delay for local communication is less than 50 us and the
average client/server transaction delay for remote communication is less than 50 us (it looks like there
is a relatively long hardware delay on the IEEE-1394 adapters).

3.9. TYPICAL AUTOMOTIVE APPLICATION INVOLVING SCOOT-R 75

The maximum frequency for the emitter/receiver paradigm is 8 kHz (limited by the IEEE-1394
basic cycle of 125 us).

The recovery time when a server or an emitter is registered or removed or replaced by another
one is very short too. 120 us is the worst observed case without other communication activity or
servers/emitters registering activity.

3.9 Typical automotive application involving SCOOT-R

In this section, an overview of a real automotive application is given to illustrate the utility of
our SCOOT-R services for distributed and real-time applications. The application (Figure 3.26(a))
presented here is a small subset of the RoadSense application. It permits the real-time accurate
positioning on a digital map GIS (Geographical Information System) [NB02].

3.9.1 Presentation of the application

The application provides an accurate estimation of position for a vehicle relative to a digital road map.
Many modern in-vehicle navigation and safety applications require real-time positioning of the vehicle
with respect to a given set of digital map data. Real-time positioning allows the driving assistance
component to accurately depict the position of the vehicle on the map, facilitates operations such
as route calculation, supports ADAS applications such as Adaptive Cruise Control (ACC), adaptive
lighting control, collision warning and lane departure warning. For driving assistance applications, the
positioning component is of crucial importance to reach the ADAS attributes stored in the database,
like the radius of curvature, the width of the road or the speed limits.

3.9.2 Internal structure of the application’s components

For our application and in order to compute the vehicle position with the best accuracy and reliability,
GPS and Odometer sensors are necessary for the vehicle localization. These sensors and other tasks
like the fusion and GIS (Geographical Information System) are encapsulated in SCOOT-R components
(Figure 3.26(a)).

IComputer 1 IComputer 2
GPS | | Odometer | |Fusion 1 GIS Fusion 2
T T I [| GPS
\ SCOOT-R] SCOOT-R | p— server
,‘ i
Read a GPS
| IEEE-1394 bus \ o
‘Geopraphical
Information
. . Card Response: sends searched
GIS : Geographical Computer 3 Camera segments to client = Client
Information System. P = > of GPS
GIS 44— and GIS
play Server Client request (GPS point f— scrvers

and search radius R)

(a) General architecture of the application (b) Communications client/server, GPS -
GIS

Figure 3.26: communication architecture of the application

The "GPS" sensor component permits to acquire GPS data frames through the serial bus and to

76 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

provide them in real-time on the network as a SCOOT-R server. We use a differential GPS with a
precision about 4-5 meters at 1 Hz. It provides the GPS sensor data as a SCOOT-R server.

—dataflow o
SCOOT-R
I a % stack
A 3o g

GPS 3 2 g

=N s g -

s = 2

L
D o ~
\Mulual exclusion’

Figure 3.27: GPS sensor component structure

As shown in Figure 3.27, the GPS component acquires GPS data from the hardware interface
of the sensor. It includes two tasks, the "gps task" that performs the run-time data acquisition and
that stores them on a local memory variable protected by a mutual execution. The "server task" will
recuperate the last GPS data stored in the local memory each time a request arrives from a client and
it will return the GPS data as a SCOOT-R server’s reply using the SCOOT-R stack.

The "odometer" sensor component acquires through a PC-card the speed and the distance flowed
by each wheel. It provides the odometer sensor data as a SCOOT-R server.

The "GIS" component searches in a circle of radius R and center C (measured by the GPS) all
linear road segments and provides them in SCOOT-R data-compliant format (Figure 3.26(b)). It reads
the GIS information from the local database and then provides them as a SCOOT-R server. Let’s note
that the GIS component has a high worst case CPU overhead (1.5 seconds).

The first fusion component (fusionl) combines GPS and Odometer data for accurate positioning
that is kept between the GPS 1 Hz messages and during the GPS masking that may remain for several
seconds. In order to improve the precision, the vehicle position is mapped to the GIS map by the
second fusion component (fusion2).

The "fusion2" component asks for GIS information in asynchronous way and uses for its position
computation a cached part of the data map without waiting for the last updated data from the "GIS"
server. The set of road segments returned by a request to the "GIS" server covers a sufficient radius
that may be used by many several consecutive map-matching operations.

The components "fusionl1" and "fusion2" perform asynchronous calls to the different servers that
need to achieve their computations. These computations are performed at a fixed frequency (this is
the frequency of the fusion algorithm). Moreover, the "fusionl" and "fusion2" components perform a
call to the "display" server each time a new position is computed.

Implementing a SCOOT-R client/server service is done by defining new C++ classes for exchanged
data, server and client sides stubs. These classes inherit from base classes of the SCOOT-R library
(§3.7). Below, we detail the specifications of the SCOOT-R real-time contract and its use in the case
of the "GPS".

To create the "GPS" server, a descendant class "server gps" is created from the generic class
"scooter server". The method get buffer in() defines the object type received from the client and
get _buffer out() defines the object type returned by the server. The "accept" method is called at
every transaction initiated by any client of the "GPS" service. In this example, it consists in providing

3.9. TYPICAL AUTOMOTIVE APPLICATION INVOLVING SCOOT-R 7

to the client, the information on the actual position and speed of the vehicle.

The server definition also includes needed functions to supply the real-time specifications listed in
Table 3.1. For the "gps_server" implementation, "Max_clients" will be set to 10, "Min_Period" to
100 ms and "Max_Recover" to 200 ms. "Min Period" permits to compute the CPU and network load
taken by this client.

At the application level, an instance of the previously defined server class is created, then one has
to manage properly the quality of the server using the set quality() method.

In order to use the server defined previously, a new class is defined by inheritance from the basic
client class. For the "gps client" side, "Min_Period" to 100 ms and "Max_Recover" to 200 ms.

The "worst_case" of the "server gps" and its client may be set after a worst case analysis of the
network (described later in this section), or it may be assigned before this worst case analysis but it
must be sufficient small in order to ensure a correct operation of the application.

Once a local object is created as an instance of the previous "remote server gps" class, the "fusion"
or "GIS" applications use the call() method from this object to get back the GPS data from the "GPS"
server. In the case of GPS masking, the "GPS" server turned off and the "SERVER_DOWN" exception
will occur.

Let’us recall that "fusion1" and "fusion2" components compute redundant data and they implement
SCOQOT-R replicated servers. When the "fusion1" server does not respond to the client requests, it
will be considered as defective and the client transaction will fail. The server will be replaced by the
"fusion2" server. The client should wait until this replacement process has been completed before
initiating another transaction.

The commutation from "fusionl" to "fusion2" server is done in a bounded time without disturbing
the clients invocations on "fusion1" server. So, when the "fusion2" server is ready to operate, the client
may access it and continue its transactions.

3.9.3 Timing constraints of the application

We need that the global imprecision degradation to be less than one meter (GPS imprecision + 1
meter). Let’s consider a vehicle with a nominal speed of 30 m/s; note that one-meter corresponds
to 33 milliseconds at this speed. This precision should be preserved between the GPS messages and
during GPS masking. Using the SCOOT-R time-stamping mechanism for a distributed environment,
the degradation of the time-stamping does not exceed 10 us that is insignificant regarding the global
imprecision (33 milliseconds). Thus, the timing constraints of the application require a "display"
frequency less than 25 milliseconds and a global delay from the delivered data to the display component
less than 38 milliseconds.

The access by the "fusion1" component to the odometer data and for the "fusion2" component
to the data produced by the "fusionl" component should be done in a strictly bounded delay for the
application to operate properly. More critical even is the access to the "display" server, as unexpected
delay can’t be taken into account by a predictive algorithm. If each of these data communication is
less than 1/100 second (the transaction delay to be verified), our application delivers correct results.

In the zoomed zone of the Figure 3.28, a uniform speed is represented by the oblique dashed line (45
degree). GPS data are acquired at 1 Hz while the odometer data are acquired at 100 Hz. We present
at the Y-axis the imprecision intervals. Between the GPS acquisition time (tgps) and the odometer
acquisition time (tod), we have the real value of the vehicle position. After tod, we do not have a
valid measure of the position, and the vehicle model changes dynamically (region between upward and

78 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

. A ’
- .
_-~" Vehicle /’
e position 4 .7
- D2
< -’
-~ 2 _-
o i e
i //// L~
y e
A e id g
i - — Z
Ve}?f le Odometer data L § al /f/\, |
position . a L
¢acqu|smon at 100 Hz // o /’/
e T e I 3 e
i ju— e
= s
///’ /l
2 eee cee /l«f '
& tige < timg
) > T >
ops Tl toa tops toa lod teps. tod Lep. ta®T) LR

J GPS data acquisilio;\al‘rﬂz‘\

~~e Tod = Odometer data acquisition time

Teps = GPS data acquisition time.

S~< Tcp = time to complete processing (fusion)
-~ Td RT) = time of a reaktime display.
-~ Td (NRT) = time of a non reattime display

Figure 3.28: Position imprecision and computation delays

downward curved dashed lines).

The dynamic model of the vehicle uses odometer data to compute its position at instant tod. We
add the imprecision of the GPS data acquisition time to the imprecision of the GPS module (=~ 5
meters).

The imprecision of odometer data and of data acquisition time degrades the results quality. These
computations are achieved and displayed slightly later; so predictive model is used to provide results
at the display time rather than at the acquisition time.

3.9.4 Worst case time analysis for the distributed application

In nominal operation and for each computer, a local RMA (Rate Monotonic Analysis) is performed to
determine the worst-case behavior for each activity. We take into consideration the maximum number
of clients for each server. So, each computer is validated as a hardware component. The following tables
present the results of the RMA analysis for each computer. Let’s recall that this analysis consider the
maximum charge of each computer, i.e., the maximum clients number supported by each server and
not the number of clients deployed effectively.

WORST CPU TIME PER ACTIVITY | WORST
DELAYED DELAY TO
COMPLETE
ISR (Interrupt Service Routine) for timer, IEEE-1394, | 0 < 500 ps at 100 Hz 500 us
serial line (GPS) and high priority task (Acquisition
odometer)
Odometer server 500 us 80 ps (per transaction) * (8 | 0.9 ms
clients) = 400 us
Fusion 1 computation and server 0.9 ms 1 ms (fusionl computation | 2.3 ms
cost) + 50 us * (8 clients) =
1.4 ms
SCOOT-R overhead 2.3 ms 200 ps 2.5 ms
GPS server 2.5 ms 60 us * (8 clients) < 500 us 3.1 ms

Table 3.4: RMA for computer 1

3.9. TYPICAL AUTOMOTIVE APPLICATION INVOLVING SCOOT-R 79

WORST CPU TIME PER ACTIVITY WORST
DELAYED DELAY TO
COMPLETE
ISR for disk activities 0 < 10 ps at 2 kHz 10 us
Fusion 2 server 30 us 2 ms (fusion2 computing cost) | < 2,5 ms

+ 50 us (per transaction) * (8
clients) = 2.4 ms

GIS server 2.5 ms < 1.5 seconds (one client) < 1.6 seconds
Table 3.5: RMA for computer 2
WORST CPU TIME PER ACTIVITY WORST
DELAYED DELAY TO
COMPLETE
ISR for VGA card 0 < 10 ps at 4 kHz 10 us
Display server 10 ps < 2*%(50 ps + 5 ms) 10.11 ms

Table 3.6: RMA for computer 3

Knowing the list of clients and servers and the size of messages sent on the network, we can compute
the worst time for each node to send a message.

Thus and for each computer, we compute the maximum number of asynchronous messages to be
emitted by this computer. This number (maximum) can be computed by the following equation:

MAX ASY MSG _TO EMIT =nb_clients (for remote servers) + Z(remote clients per server) + 1 (3.1)

As shown in Equation 3.1, we consider only the number of remote clients and also only the servers
of remote clients. It is obvious that the communication between local clients and servers does not need
a media access.

Using the Table 3.7 we can compute easily the maximum number of messages to be emitted for
each computer. The one appeared in the equation 3.1 corresponds to the registration message emitted
by the node. For example, for the computer 1, we have: MAX ASY MSG TO_ EMIT = 2 (two
clients for remote servers "GIS" and "display") + 1 (one server for remote client "fusionl") + 1 (for
registration message) = 4.

COMPUTER NAME | CLIENTS SERVERS MAX_ASY MSG_-
TO EMIT

Computer 1 GPS, Odometer, GIS, Display GPS, Odometer, fusionl 4

Computer 2 Display, fusionl GIS, fusion2 4

Computer 3 (display) No clients Display 3

Camera Isochronous data flow (constant bandwidth usage)

Table 3.7: Clients and servers per computer

The following equation permits to evaluate the media access time:

MAT < nb_nodes x MET (3.2)

80 CHAPTER 3. SCOOT-R: MIDDLEWARE COMMUNICATION SERVICES FOR DISTRIBUTED REAL-TIME SYSTEMS

Where MAT = Media Access Time, and MET — Maximum Emission Time. Let’s note that there is
no priority on the bus access but a fairness interval mechanism allows each node to emit in a bounded
time. In our example, we have four computers in the network. So, from the previous:

MAT <4+« MET (3.3)
Where:

MET = 10us + Max_Length/speed;

Max_Length = Maximum size of messages in bytes;

Speed = Transmission speed on the IEEE-1394 bus in Mb/s;

In case of messages with maximum size of 1000 bytes and a bus speed of 400 Mb/s, we obtain:
MET = 12.5 us and MAT = 50 ps.

Let’s note that the 10 us in the MET formula corresponds to the arbitration period on the IEEE-
1394 bus.

COMPUTER| CLIENTS SERVER MAX ASY MSG - | MAX ASY MSG - | TRANSACTION
NAME RESPONSE TO EMIT (local | TO EMIT (remote | TIME
TIME node) node)

Computer 2 | GPS 3.1 ms 0 0 3.1 ms

Odometer 0.9 ms 0 0 0.9 ms

GIS 1.6 seconds 4 4 < 1.7 seconds

Display 10.11 ms 4 3 < 11 ms
Computer 2 | fusionl 2.3 ms 4 4 2.7 ms

Display 10.11 ms 4 3 < 11 ms
Computer 3 No clients

Table 3.8: Computation and network delays

In order to compute the transaction time in Table 3.8, it is sufficient to compute the maximum
number of messages to be transmitted at the local and remote nodes and to add the server response
time (worst case) computed by the local RMA analysis on each computer. For example to compute
the transaction time of the "display" client on computer 2, we have to add the MAX ASY MSG -
TO_EMIT on computer 2 (local node) to the MAX ASY MSG TO_ EMIT on computer 3 (remote
node) and to add the worst response time of the server "display" (10.11 ms), so we obtain, transaction
time = (4 + 3) * 50 pus + 10.11 ms < 11 ms.

Moreover, the arbitration mechanism on the IEEE-1394 bus is guaranteed by a fairness interval for
asynchronous transactions. The fairness interval ensures that each node wishing to initiate a transaction
gets fair access to the bus.

As shown in Table 3.8, the two "display" clients transactions are less than 25 milliseconds. In
addition, the time from the data source to the "display server" (while taking into account the time to
acquire the data) are less than 83 milliseconds. For example and as shown in Table 3.8, the transaction
time of the "odometer", "GPS", and "fusion1" components are less than 8 milliseconds (33 milliseconds
- 25 milliseconds for the display).

Moreover, let’s remember that the 1.6 seconds in the "GIS" server’s response time does not put any
difficulty to the application requirements as the "GIS" server returns a set of segments widely sufficient
to perform several consecutive map-matching operations. So, the application’s temporal requirements
are fulfilled.

3.10. CONCLUSION 81

Now the worst case analysis is made for the components of the network, we can set the "worst _case"
values of the different servers to achieve the dynamic diagnostic feature of SCOOT-R.

3.10 Conclusion

This chapter has given a presentation of the architecture and current status of the SCOOT-R project
developed at out laboratory, aiming at building distributed real-time applications. The solution rests
on a set of basic services built as a middleware layer above a real-time kernel. Essential protocols for
synchronisation of clocks, replication and reliable diffusion are implemented. Special attention was given
to the communication subsystem since it is a common resource to the middleware services developed.
The communication subsystem is based on client/server and emitter/receiver models.

The contribution of the thesis has related to the evolution of the temporal SCOOT-R model
(temporal contract and rules). Then, we have contributed to the development of the emitter/receiver
model that is added to the basis client/server model to provide a complete distributed solution
with the support of data flow applications (e.g., real-time image acquisition and processing, analog
signal acquisition, etc.). Finally, the thesis has contributed to the development methodology of user
applications and the worst case analysis of the distributed system.

The redundancy management in SCOOT-R system does not require specific efforts of design and
development to dynamically replace a server or an emitter or to activate a redundant function. This
enables an evolution of the services without interruption.

Given our participation to the RoadSense project whose main goal is to elaborate driver behavioral
indicators (or metrics) for safety, comfort and support assessment, and given the large amount of data
to be proceeded and the distribution of calculation on many computers have lead us to the use of
SCOOT-R as the software architecture of our automotive applications.

The initial development of SCOOT-R does not consider the dynamic scheduling of tasks and
messages. The messages are propagated using the FIFO scheme and the tasks are scheduled by the
fixed-priority RTAI scheduler. In the next chapter, we present our contribution to enhance SCOOT-R
by incorporating integrated tasks/messages scheduling.

Chapter § __

Real-Time Scheduling

Abstract

Many research works have been conducted to schedule a set of tasks in a system with a limited amount
of resources such that all tasks will meet their deadlines. However, research on real-time scheduling
has experienced a major shift during the last years, from local to distributed scheduling.

Moreover, middleware in a distributed real-time system can provide the infrastructure and mecha-
nisms required to perform the necessary scheduling (local and distributed) strategies. Thus, it provides
the required end-to-end support for various real-time quality of service (QoS) aspects, such as band-
width, latency, jitter, and dependability.

We present in this chapter distributed scheduling strategies that permit to ensure end-to-end real-
time QoS capabilities in a middleware environment. Using our SCOOT-R client/server middleware
presented in chapter 3, we compare static priority scheduling, with and without priority inheritance
with the distributed EDF scheduling. We show also the easiness to take into account the criticalness
constraints with EDF scheduling strategy in a distributed environment.

Contents
4.1 Introduction & @ i i i i i e e e e e e e 85
4.2 Tasks definitions 0 i it e e e e e e 85
4.3 Scheduling algorithms characteristics00 86
4.4 Static scheduling examples: the case of RM algorithm 88
4.5 Dynamic scheduling examples: EDF, MLF, and MUF algorithms 89
4.5.1 Earliest Deadline First (EDF) 89
4.5.2 Minimum Laxity First (MLF) o 90
4.5.3 Maximum Urgency First MUF) 91
4.6 Distributed Scheduling: a briefsurvey 91
4.6.1 Static versus dynamic distributed scheduling of communication resources . . . 93
4.6.2 Messages characteristics and quality of service 94
4.7 Enhancing SCOOT-R client/server by incorporating distributed schedul-
ing strategies L L i e e e e e e e e e e e e e e e e e e 95
4.7.1 System model and assumptionsl oo 96
4.7.2 Integrated messages and tasks scheduling, 97
4.8 Performance evaluation and experimental results 105
4.8.1 Testbed architecture 105
4.8.2 Experimental results L 106

83

84

CHAPTER 4. REAL-TIME SCHEDULING

4.8.3 Simulation results e 108

4.9 Conclusion

4.1. INTRODUCTION 85

4.1 Introduction

Scheduling algorithm is an important key to be considered in the design of a real-time system. A
scheduling algorithm defines the set of rules that determine the execution order of tasks at any instant.

To a scheduling algorithm, one associates generally a schedulability test that permits to verify if all
the real-time tasks will always meet their deadlines. Thus, the objective of an optimized scheduling is
to define how the different actions of the tasks have to be performed with the objective of meeting the
temporal constraints with the minimum of resources.

In the case that all information regarding the state of the system as well as the resource needs
of a task are known (for example centralized systems), an optimal assignment can be made based on
some criterion function [CSR89][dOdSF00][Tin93]. Examples of optimization measures are minimizing
total task completion time, maximizing utilization of resources in the system, or maximizing system
throughput. In the event that these problems are computationally infeasible (the case of distributed
system), suboptimal solutions may be tried [LRWK04|[MMMMO01|[MMMO00]. The goal of a suboptimal
solution is to find a feasible schedule for the distributed system with a sufficient robustness regarding
the system configuration change or system failure.

A scheduling algorithm is often based on a task model that defines the set of constraints and rules,
that must conform to the tasks. It depends also on an architectural model that describe the hardware
architecture of the underlying system (e.g., distributed system, multiprocessors, etc.).

Middleware in a distributed real-time system can provide the framework and mechanisms required
to perform the necessary scheduling. In such a distributed system, each endsystem may provide its
own local scheduling mechanisms. However, the middleware must take into account the entire system,
and provide coordinated scheduling information to the individual endsystems, which will enforce the
globally determined scheduling decisions.

The global scheduling decisions that are made in a distributed real-time system include where
to allocate service requests, how to provide scheduling information to local endsystems, and how to
handle overload that can cause QoS failures in the system. The middleware, by defining a common
communication semantic on all the nodes, facilitates the definition and implementation of end-to-end
scheduling policies. Typically and during a client/server transaction, the priority and/or deadline as
well as the criticality of the server’s processing task are related and inherited from those of the client
task that initiates this transaction.

In this chapter, we begin by a brief presentation of the tasks models used by the most scheduling
algorithms. Then we give an overview of static and dynamic scheduling algorithms by presenting
briefly some typical examples in each category. Then we discuss some strategies of distributed real-
time scheduling, and the structure of distributed schedulers (§4.6). Finally, we present our contribution
on the development of distributed real-time scheduling strategies. These scheduling techniques are
implemented using our middleware SCOOT-R (§4.7).

4.2 Tasks definitions

Throughout this section, we give some definitions that are commonly used to define a task in the
scheduling literature.

Tasks form the logical units of computation for a processor. A single application program will
typically consist of a set of tasks. Each task has a single thread of control. For multiple tasks on a
single processor, the execution of the tasks is interleaved. With a system containing multiple processors

86 CHAPTER 4. REAL-TIME SCHEDULING

(i.e., multi-processor or distributed), the tasks may be interleaved over all the processors in the system.

Tasks structure and arrival patterns: Two distinct forms of tasks structure may be immediately
defined: periodic and aperiodic tasks. Periodic tasks execute on a regular basis; they are characterised
by their period and their required ezecution time (per period). The execution time may be given in
terms of worst case execution time.

The activation of an aperiodic task is, essentially, a random event and is usually triggered by an
action external to the system. Aperiodic tasks also have timing constraints associated with them; i.e.,
having started execution they must complete within a predefined time delay. Often these tasks deal
with critical events in the system’s environment and hence their deadlines are particularly important.

Most real-time systems have a mixture of periodic and aperiodic tasks. Mok [Mok83] assumes also
a minimum separation time between two consecutive arrivals of aperiodic tasks and calls them sporadic
tasks. Our applications presented later in this chapter use mainly this kind of tasks.

Inter-task synchronisation: The tasks can interact between them according to a pre-determined
order or by an explicit synchronisation mechanism. Therefore, a precedence relation between tasks
may result. This relation is static, because it is known a priori and does not evolve at run-time. It is
usually represented by a graph of dependence.

The tasks can share other resources that the processor. A resource may be qualified as shared or
exclusive resource. In a shared resource, several tasks may access it instantaneously. Fzclusive resources
force the tasks to use them in mutual exclusion.

Worst case execution time: A real-time scheduler requires the Worst Case Execution Time
(WCET) of tasks. This information is needed for the scheduler’s admission tests and subsequently
limits a task’s execution time duration. Modern processors include several features that make it difficult
to compute the WCET at compile time, such as out-of-order execution, multiple levels of caches,
pipelining, and data-dependent graph execution, etc. One way of approximating the WCETs is to
perform testing of the system of tasks and use the largest value of computation time obtained during
these tests. The problem is that the largest value seen during testing may not be the largest observed in
the operational system. Another typical approach to determine a task computation time is by analyzing
the source code [CP00][CPO01b].

Deadline and Laxity: All real-time tasks define a deadline D by which they have to complete
execution. Task’s laxity may be defined as the time-to-deadline minus the remaining computation time.
If R(t) denotes the remaining CPU computation time of a task T at time t, the laxity of the task T at
time t is therefore defined as:

L(t) = D(t) — t — R(t), ¥t > 0. (4.1)

4.3 Scheduling algorithms characteristics

Several scheduling algorithms have been developed and having different characteristics. Precise termi-
nology is necessary to describe and evaluate static and dynamic scheduling strategies. Ghosh [Gho94]
defines a taxonomy of scheduling algorithms that we have used and simplified in Figure 4.1.

There are two main categories of real-time scheduling algorithms: static [CSR89][dOdSF00][SK96]
and dynamic scheduling [LRWKO4]|CSR89|[RSZ89b|[CP99|[ABRWO1].

Static scheduling algorithm has complete knowledge of the tasks model and its properties: deadlines,
periods, worst case execution time, etc. It calculates schedules for the system by generating a table
that includes the tasks execution order. Static scheduling algorithms require little run-time overhead

4.3. SCHEDULING ALGORITHMS CHARACTERISTICS 87

Real-Time S cheduling

Soft

N

Dynamic Static
Preemptive Non preemptive Preemptive Non preemptive

Figure 4.1: A simple taxonomy of some scheduling algorithms

and usually used for periodic or sporadic tasks with fized priorities. Rate Monotonic (RM) algorithm
[LL73| represents the major static scheduling algorithm.

Dynamic scheduling algorithm does not have the complete knowledge of the tasks model and its
timing constraints. It calculates the execution order of tasks at run-time according to their arrivals and
activation instants. Earliest Deadline First (EDF) [Gho94] is an optimal dynamic scheduling algorithm
in resource sufficient environments where the system resources are available, to a priori guarantee
that, even though tasks arrive dynamically, at any given time all them are schedulable. A dynamic
scheduling algorithm may be used with all the kinds of tasks (periodic, sporadic, and aperiodic) with
fized or dynamic priorities.

A scheduler is called offfine if all scheduling decisions are made prior to running the system. A table
is generated that contains all the scheduling decisions for use during run-time. This relies completely
upon a priori knowledge of tasks behavior.

Online scheduler makes scheduling decisions during the run-time of the system. The scheduling
algorithm can be either static or dynamic. The decisions are based on both tasks model properties and
the current state of the system.

A scheduler is called preemptive if it can arbitrarily suspend a task’s execution and restart it later
without affecting its behavior, except by increasing its elapse time. Preemption typically occurs when
a higher priority task becomes runnable. Unfortunately in presence of inter-tasks synchronisation (e.g.,
resources sharing), this scheme may lead to an inter-tasks priority inversion, when a lower priority task
suspends a higher priority task. This problem may be resolved by several methods, such as priority
inheritance/ceiling protocol.

A non-preemptive scheduler does not suspend tasks. When the scheduler selects a task to be
executed, it runs until its end of execution time. Thus, in this scheme, a higher priority task cannot
suspend a lower priority task even when it becomes runnable. This approach avoids the priority
inversion problem.

Hybrid systems are also possible. A scheduler may, in essence, be preemptive but allows a task to
continue executing for a short period after the instant it should be suspended.

Finally, a scheduler may be labeled local or global. Local scheduler allocates the local processor
to the set of tasks present in its node while respecting their timing and resource requirements. Global
scheduler tries to guarantee the tasks constraints by considering and exploiting the processing capacities

88 CHAPTER 4. REAL-TIME SCHEDULING

of all the processors composing the distributed system.

After this brief presentation of the essential terminologies used in the scheduling literature. Here-
after, we present some typical examples of static and dynamic scheduling algorithms.

4.4 Static scheduling examples: the case of RM algorithm

As a typical example of static scheduling algorithm we present in this section the RM (Rate Monotonic)
scheduling algorithm. The RM algorithm is a static scheduling algorithm based on periodic tasks. It
makes the following assumptions about the tasks set:

e the requests are periodic for all tasks for which hard deadlines exist;

e all tasks are independent on each other. There exists no precedence constraints or mutual
exclusion constraints between any pair of tasks;

e the deadline interval of every task is equal to its period;
e the required maximum computation time of each task is known a priori and is constant;

e the time required for context switching can be ignored.

The RM provides an optimal priority assignment and schedulability tests for systems scheduled
with fixed priorities. The importance of these results is so significant that it has been a reference point
for the later development of the scheduling theory.

Liu and Layland |[LL73] showed that the assignment of priorities according to periods, that is
the shorter the period, the higher the priority (Ti<Tj) Pi>Pj), is optimal in the sense that if there
exists an assignment of priorities for which the system is schedulable, then it is also schedulable under
this assignment. This is called the rate monotonic priority assignment. A sufficient condition of tasks
acceptability may be given as follows:

Vn, z”:
i=1

Q

E<n(2n - 1) (4.2)

g

where:
Ci = Computation time;
Pi = Period of the task;
n = number of tasks;

The RM scheduling algorithm may be implemented by an offfine or online scheduler (preemptive
or not) with fixed priorities. In the real world, most of the tasks are considered as sporadic (minimum
separation time between two activations), and the RM algorithm may be applied to such tasks with
the pessimist assumption on the tasks periods.

Moreover, the RM algorithm can be adapted to deal with aperiodic tasks also. The simplest
approach is to provide a periodic task whose function is to service one or more aperiodic tasks.
This periodic server task can be allocated the maximum execution time while continuing to meet
the deadlines of periodic tasks.

As aperiodic events can only be handled when the periodic server is scheduled, the approach is
essentially polling. The difficulty with polling is that it is incompatible with the bursty nature of
aperiodic tasks. When the server is ready there may be no tasks to handle. Alternatively the server’s

4.5. DYNAMIC SCHEDULING EXAMPLES: EDF, MLF, AND MUF ALGORITHMS 89

capacity may be unable to deal with a concentrated set of arrivals. To overcome this difficulty a number
of bandwidth preserving algorithms have been proposed [CB97].

Static scheduling algorithms provide resource access guarantees at the cost of lower resource
utilization. Certainly in safety critical systems it is reasonable to argue that no event should be
unpredicted and that schedulability should be guaranteed before execution. This encourages the use
of static scheduling algorithm.

To overcome the limitations of static scheduling, we have investigated the use of dynamic strategies
to schedule SCOOT-R operations for applications with real-time QoS requirements.

4.5 Dynamic scheduling examples: EDF, MLF, and MUF algorithms

Dynamic scheduling has the potential to offer relief from some of the restrictions imposed by strict
static scheduling approaches. Potential benefits of dynamic scheduling include better tolerance for
variations in activities, more flexible prioritization, and better CPU utilization in the presence of non-
periodic activities. However, the cost of these benefits has to be higher run-time scheduling overhead
and additional application development complexity [RSZ89b].

Hereafter, we review briefly two well known purely dynamic scheduling algorithms, EDF and
MLF algorithms [AB90]. In addition, we present the hybrid static/dynamic MUF [SK91a| scheduling
algorithm discussed in section 4.5.3.

4.5.1 Earliest Deadline First (EDF)

EDF is a dynamic scheduling algorithm [AB90| that assumes a preemptive priority-based online
scheduler. The tasks may be periodic or aperiodic. It dispatches the tasks at run-time based on their
deadlines. The task with the current closer deadline is assigned the highest priority in the system and
therefore executes.

The schedulability constraint is given as:

Vn, Z

w|q

(4.3)

where:
Ci = Computation time;
Pi = Period of the task;
n = number of tasks;

Hence, near 100 % processor utilisation is possible. This is a sufficient and necessary condition
for schedulability in case of Di = Pi (deadline = peirod). In [AB90], it has been shown that for an
arbitrary tasks set in which task timing constraint is relaxed to allow deadlines to be different from
periods, the condition in equation (4.3) is necessary but not sufficient. Thus, for arbitrary tasks, a
sufficient condition of schedulability is:

9!

vn, Z — (4.4)

bd

where:
Ri = Remaining execution time;

90 CHAPTER 4. REAL-TIME SCHEDULING

and a necessary condition is:

Q

Vn, Z
i=1

L<1 (4.5)

g/

A key limitation of EDF is that a task with the earliest deadline is dispatched, whether or not there
is sufficient time remaining to complete its execution prior to the deadline. Therefore, the fact that a
task cannot meet its deadline will not be detected until after the deadline has passed. Moreover, that
task will continue to consume CPU time that could otherwise be allocated to other tasks that could
still meet their deadlines.

Moreover, in the case of overloaded situations, the EDF performance degrades rapidly and may
lead to an awalanche of non respected deadlines.

4.5.2 Minimum Laxity First (MLF)

MLF refines the EDF scheduling algorithm by taking into account task execution time. The task which
has the least laxity is assigned the highest priority in the system and is therefore executed. The laxity
of a task is defined as the deadline minus the remaining computation time. An executing task can be
preempted by another whose laxity has decreased to below that of the running task. MLF uses the
same tasks model of the EDF algorithm while adding the WCET of tasks (used to compute the task
laxity). With the MLF algorithm, the scheduling constraint is again given by:

¥n, Y 5 <1 (4.6)

i=1 "

Using MLF algorithm, it is possible to detect that a task will not meet its deadline prior to the
deadline itself. If this occurs, a scheduler can reevaluate the operation before the CPU allocation.

A problem arises with this scheme when two tasks have similar laxities. One task will run for a
short while and then get preempted by other and vice versa. Thus, many context switches occur in
the lifetime of the tasks. This can result in "thrashing", meaning that the processor is spending more
time performing context switches than useful work.

Evaluation of EDF and MLF algorithms: The main advantage of EDF and MLF is that they
overcome the utilization limitations of RM algorithm. In addition, EDF and MLF handles non-periodic
tasks comparably. On the other hand, a disadvantage of purely dynamic scheduling, as the EDF and
MLF, is that their scheduling strategies require higher overhead at run-time. In addition, these purely
dynamic scheduling algorithms perform poorly in case of insufficient resources situations; as the system
becomes overloaded, the risk of an avalanche of deadline missing may occur.

To address these drawbacks, several scheduling algorithms have been developed to operate in
insufficient environments (Spring algorithm [But05], LBESA [LRWKO04], MUF [SK91a], etc.). In an
asynchronous system, a scheduler is charged to respect tasks requests deadlines, but also to reabsorb
the overloads or the failures consequences. In this case, it must guarantee the temporal requirements
of the mandatory tasks for the process. It has to respect the deadlines and to consider the criticalness
of the tasks in the case of overload. Thus, in order to deal with overload situations, several variants of
EDF scheduling algorithm have been developed, as for example the Maximum-Urgency First (MUF)
algorithm described below.

4.6. DISTRIBUTED SCHEDULING: A BRIEF SURVEY 91

4.5.3 Maximum Urgency First (MUF)

MUF combines the advantages of the RM, EDF, and MLF algorithms [SK91a]. MUF supports the
deterministic rigor of the static RM scheduling algorithm and the flexibility of dynamic scheduling
algorithms like EDF and MLF. MUF can assign both static and dynamic priority to its tasks (Figure
4.2). The hybrid priority assignment in MUF overcomes the drawbacks of the individual scheduling
strategies by combining techniques from each, as described below.

Criticality (static priority) Dynamic subpriority User static subpriority

Figure 4.2: MUF priorities encoding

In MUF, tasks with higher criticality are assigned to higher static priority levels. This prevents
tasks critical to the application from being preempted by non-critical tasks.

Ordering tasks by application-defined criticality reflects a subtle and fundamental shift in the notion
of priority assignment. In particular, RM, EDF, and MLF show a rigid mapping from empirical task
characteristics to a single priority value. Moreover, they offer little or no control over which tasks will
miss their deadlines under overload conditions.

In contrast, MUF gives applications the ability to distinguish tasks arbitrarily. MUF allows control
over which tasks will miss their deadlines. Therefore, it can protect a critical subset of the entire set
of tasks.

A task’s dynamic subpriority is evaluated whenever it must be compared to another task’s dynamic
subpriority and when the tasks have the same criticality. For example, a task’s dynamic subpriority is
evaluated whenever it is enqueued in or dequeued from a dynamically ordered dispatching queue. An
example of such a simple dynamic subpriority function is the inverse of the task’s laxity. Tasks with the
smallest positive laxities have the highest dynamic subpriorities, followed by tasks with higher positive
laxities.

In MUF, static subpriority is an application-specific and optional priority. It is used to order the
dispatches of tasks that have the same criticality and the same dynamic subpriority. Thus, static
subpriority has lower precedence than either criticality or dynamic subpriority.

4.6 Distributed Scheduling: a brief survey

In distributed real-time systems, end-to-end delay predictability for remote operations is essential for
the critical parts of the system. Most distributed scheduling algorithms have two common features
[MMMMO1]: (1) a media scheduler (or global scheduler) between nodes and (2) a local scheduler for
each individual node (Figure 4.3).

The local scheduling policy is often based on heuristics that efficiently determine which tasks to
accept or reject.

In order to schedule real-time distributed systems, some works [MMM98] have adapted the schedul-
ing algorithms with multiprocessor architecture to the distributed real-time scheduling after proper
consideration of the communication scheduling. But given the inherent non-determinism of distributed
and asynchronous systems, it is difficult to find an optimal scheduling algorithm satisfying all the timing
and resource requirements of the applications. Thus, the use of multiprocessor scheduling techniques

92 CHAPTER 4. REAL-TIME SCHEDULING

Node 1 Node 2 Node 3
Local scheduler Local scheduler Local scheduler

Network bus (Media scheduler)

Figure 4.3: Local/Distributed scheduler

are not adapted to most of the distributed real-time systems. This leads to the use of integrated tasks
(processor) and messages (media) scheduling techniques.

In distributed real-time systems, the worst-case response times of the communicating tasks are
mutually dependent because of the messages exchanged by them. The distributed scheduling policies
must take into account the synchronisation between the communicating tasks and also the scheduling
policies of the messages on the network.

Tindell and Clark have proposed a Response Time Analysis method for hard real-time distributed
systems called the holistic analysis [TC94]. This analysis permits to reproduce the schedulability analy-
sis for fixed-priority tasks with arbitrary deadlines, in order to determine the worst-case response times
of exchanged messages in a distributed environment. Thus, the holistic analysis permits to integrate
the schedulability analysis for single processor systems with the timing analysis for hard real-time
messages. Their approach is also useful for dealing with distributed systems based on several networks.
Results are known for several kinds of networks like TDMA, 802.5, and CAN. The disadvantage of the
holistic analysis is its pessimistic assumption while computing the worst-case delays.

In addition, one of the most important problems with a priori analysis for distributed fixed priority
systems has been the complications introduced by communication costs: the delays for messages being
sent between nodes must be accurately bounded, and the overheads due to communications must be
strictly bounded.

The real-time messages scheduling aims to allocate the shared medium between several nodes so
that the temporal constraints of the messages are respected. Thus, the messages scheduling constitutes
a basic function of any distributed real-time system. There are two main classes of communication
media, the packet switching networks and multiple access networks (§1.4). As we outline below, not
all the messages generated in a distributed real-time application are critical from the temporal point
of view. Thus, according to temporal constraints associated to the messages and to the network class
used, two strategies of scheduling are employed:

Best effort message transmission: a message accepted for transmission is not necessarily
transmitted by respecting its temporal constraints. This strategy is used to process the messages with
soft or mon real-time constraints.

Guaranteed message transmission: each message accepted for transmission is transmitted by
respecting its temporal constraints (except, obviously, in the event of failure of the communication
system). This strategy is usually reserved for the messages with strict temporal constraints.

In a distributed real-time system, both strategies may coexist, to be able to meet the needs for
communication of various applications. With the emergence of distributed real-time systems, new needs
for scheduling appeared: it is necessary, at the same time, to guarantee the respect of the temporal
constraints of the tasks and those of the messages. As the messages scheduling takes into account similar
constraints, real-time messages scheduling uses the same algorithms as the tasks scheduling. Thus,
much of messages scheduling algorithms employ policies like Rate Monotonic [ABA197||[dOdSF00]

4.6. DISTRIBUTED SCHEDULING: A BRIEF SURVEY 93

and Earliest Deadline First [RSZ89b|[MMGO04][RSZ89b].

Whereas the tasks may, in general, accept preemption, the transmission of a message does not
admit preemption. If the transmission of a message starts, it is necessary to transmit all the bits
of the message until the last, otherwise, the transmission fails. Thus, we must consider mainly non-
preemptive scheduling algorithms or to use preemptive algorithms with the proviso of implementing a
fragmentation of long messages in small packets and of reassembling them at the reception.

Several works have addressed the integrated tasks/messages scheduling. In [RSZ89b], the authors
consider a distributed scheduling algorithms to deal with the timing and resources requirements. They
use the notion of local and global scheduler to decide when and where a task must be executed. They
made the focus on the tasks migration and the preallocation of resources. In [dOdSF00], the authors
consider a set of periodic or sporadic tasks with fixed priority and precedence relations. They developed
algorithms to transfer the precedence relations between distributed tasks into release jitter (initially
introduced by Tindell for single processor scheduling) and then they apply the available schedulability
test that is valid for independent tasks.

For distributed real-time systems based on the middleware execution support, we may relie on the
communication semantic defined by the middleware to design and implement distributed scheduling
strategies. Thus, a middleware can provide a good framework to design and evaluate distributed
scheduling policies and thus ensures stringent real-time QoS to the distributed applications.

When using a real-time middleware to implement distributed scheduling algorithms, it should
have policies and mechanisms in the underlying communication infrastructure that support resource
guarantees. Since we are considering end-to-end timing constraints, the middleware must allow the
user to express timing constraints, transfer them along the path of execution in the system, and always
allocate resources in respect of these constraints.

In [SGHP97|, the authors consider distributed scheduling algorithms based on transactional model.
They propagate the scheduling policies and their parameters among the network using the CORBA
client /server model. They obtain empirical results using the client priority propagation and the server
declaration schemes.

4.6.1 Static versus dynamic distributed scheduling of communication resources

In a distributed environment, there are two main categories to schedule messages that correspond to
two main major fieldbuses. The "static" and "dynamic" categories.

In static scheduling of messages, the communication and traffic is analyzed before run-time and
configured in order to prevent run-time overloads. Hence, for the static configuration of a fieldbus
traffic, only algorithms for non-preemptive scheduling can be used.

The dynamic scheduling of messages is based usually on transactional models. It consists of
integrating messages/tasks using the timeliness propagation techniques.

Hereafter, we present and compare the main advantages and drawbacks of each category and the
associated scheduling policies.
4.6.1.1 Static scheduling of communication resources

Typical fieldbuses for static scheduling of messages are the TTCAN [CDKMO00], Flexray and TTP/C
[Kop00]. Almost all of these fieldbuses are based on Time-Triggered (TT) principle. TT architecture

94 CHAPTER 4. REAL-TIME SCHEDULING

is used for distributed real-time systems in safety-critical applications, such as computer controlled
brakes, computer controlled suspension, or computer assisted steering in an automobile [HO3].

In these distributed computing systems, a global time base is established and used for the generation
of synchronized time triggers throughout the system. In a TT system, every task will periodically
observe the state of its environment to determine whether a particular computational activity has to
be performed. In a TT architecture, the scheduler has a complete knowledge about the system state
before execution, e.g. release time, computation time, period, etc.

Static T'T scheduling algorithms are usually qualified as offline and they are suited for safety critical
applications and excel in temporal predictability. But the use of online algorithms for tasks has the
advantage of robustness and flexibility. On the other hand, the TT buses usually lack of the bandwidth
for high-level automotive functions (e.g., telematics, driving assistance functions, infotainment).

Using priority-based fieldbuses permits to built a global scheduler for the distributed system using
the notion of message priority. The messages are scheduled online at run-time using the static priorities
of messages. Thus, it is possible to implement an online media scheduler compliant with the RMA
analysis for messages. A typical example of such network buses is the CAN bus.

4.6.1.2 Dynamic scheduling of communication resources

While distributed static scheduling is well suited for safety critical applications, distributed dynamic
scheduling approach is suitable for high-level applications that require more reconfiguration and that
process large amount of data. Typical fieldbuses that may be used for dynamic scheduling are MOST
[Gro00] and IEEE-1394 [And98| buses. They are based on a fair and concurrent media access and
a collision avoidance mechanism that allow the access to media in a bounded time. These buses
provide a distributed synchronisation technique, so a global time base may be obtained by a mixed
hardware/software algorithm. The scheduling algorithms used here are "dynamic" and "decentralized".

A typical application of distributed scheduling techniques is the Advanced Driving Assistance Sys-
tem (ADAS), these applications are not mission-critical of the vehicle system and can be viewed as the
second critical class after the safety critical one (e.g., engine and brake system control). However, they
need a high-level of reconfiguration as they operate in dynamic and non-deterministic environments
characterized by the unpredictable nature of the vehicle, road conditions and driving situations.

The scheduling in such distributed systems consists of the propagation and coordination of schedul-
ing attributes for messages or rather transactions (client/server model) and then of pertinent use of this
attributes by each local online scheduler. The scheduling algorithms reside at the higher application
layer of the software architecture; it is implemented as a service of the software framework. There
are many works that have been conducted in this field [SGHP97|[ABA197]. The main known solution
is the Real-Time CORBA (RT-CORBA) [SGHP97|, which offers a scheduling service based on the
timeliness constraints propagation among the nodes connected to the network.

4.6.2 Messages characteristics and quality of service

The distributed tasks exchange messages with strict real-time constraints (hard real-time messages).
Any failure with the respect of the messages temporal constraints can lead to a breakdown of the service.
The respect of these constraints must be guaranteed. On the other hand, messages with relative real-
time constraints (soft real-time messages) are characterized by temporal constraints whose occasional
non-respect does not lead to the degradation of the service. Finally, non real-time messages may be

4.7. ENHANCING SCOOT-R CLIENT/SERVER BY INCORPORATING DISTRIBUTED SCHEDULING STRATEGIES 95

exchanged also, these messages do not have any specification of temporal constraints. Consequently,
no particular provision is required to consider this type of messages.

Moreover, distributed real-time application requires a subsystem of communication with a certain
quality of service which is expressed in particular by the following parameters.

e Maximum transfer deadline: it is the maximum time to transmit a message from a node
to another. The transfer time of a message is composed of several intermediate times: the time
of crossing the protocol stack at the transmitter, the waiting period at the MAC layer of the
transmitter before transmission, the message propagation time on the medium, the waiting period
at the MAC layer of the receiver and the time of crossing of the protocol stack at the receiver.

e Maximum jitter: the messages transmitted by a source can have variable transfer times ac-
cording to the load of the network. The maximum variation of the transfer time is called the
jitter. Certain applications as the multimedia (where the presentation of information requires a
synchronisation) specify a boundary for the jitter.

e Acceptable maximum messages loss: in case of overloaded situations, the network or I/0O
driver can then, without informing the user, remove certain messages, in order to serve other
sources of messages. For certain applications, like the video or audio applications, the loss of
some messages is acceptable. On the other hand, critical systems based on a reactive design and
validated by model checking or other formal method are very sensible to this loss since such
network behavior invalidates the proof of their model.

e Error rate: the communication network being imperfect, errors of transmission can appear at
any time. The correct operation of an application can impose a maximum error rate beyond
which the application is regarded as seriously compromised. Generally, a probabilistic model is
applied here to compute this metric.

After this brief overview on static and dynamic scheduling algorithms and the presentation of some
strategies for distributed real-time scheduling, the rest of this chapter will present our contribution to
enhance SCOOT-R middleware by distributed real-time scheduling. The main goal is to enforce QoS
capabilities to the initial SCOOT-R middleware by the priority, deadline and criticalness propagation
for remote operations.

4.7 Enhancing SCOOT-R client/server by incorporating distributed
scheduling strategies

Initially, SCOOT-R middleware did not include any technique of messages scheduling. The tasks
are scheduled by the fixed-priority RTAI scheduler and the management of messages was relatively
rudimentary using FIFO scheme. The initial diagram did not take into account the priority of the task
sending or receiving the message. The received message was simply piled up in the reception queue.
The effective sending of the packet is managed by hardware using OHCI-1394 adapter.

Moreover, original SCOOT-R middleware [CCS03c| did not provide any mechanism for clients
to indicate the relative scheduling parameters of their requests to SCOOT-R endsystems'. Such
a mechanism is necessary for the end-to-end predictability of invocations for distributed real-time
applications. Therefore, we get capability from the underlying OS and network bus in terms of CPU
utilization and bus bandwidth usage.

! A SCOOT-R endsystem includes the middleware layer, the underlying OS and the network adapter.

96 CHAPTER 4. REAL-TIME SCHEDULING

This section presents our contribution to introduce new specifications and techniques defining the
end-to-end timeliness propagation of service invocations. The timing constraints of an invocation might
specify the priority, deadline and criticalness of the remote operations.

4.7.1 System model and assumptions

Let us consider the distributed system in as a set, N, of n nodes N1, N2,....Nn, connected by a
network. Each node Nj runs a set M of software components M1, M2,..., Mk. Each software component
contains several clients and servers and eventually other real-time tasks, Mj=({Sk}, {Cl}, {Tm}). {Sk}
represents the set of k servers in the software component, {Cl} the set of | clients and {Tm} is the set
of m independent tasks (non SCOOT-R tasks).

Furthermore, tasks are considered as periodic or sporadic. In order to simplify the following, we do
not consider the interlocked or imbricated transactions. i.e., when a client Clm initiates a transaction
to its server Sm, the server Sm does not initiate other transactions to other servers in order to achieve
its transaction.

Each task Ti is characterized by an activation time Ai, a period Pi (for sporadic tasks, this is the
minimum time interval between two activations), a worst case execution time (WCET) Ci, a deadline
Di and a criticality Ii.

Al is the activation instant of the task Ti. We assume in our model that the tasks are sporadic. The
worst case execution time Ci (assumed known a priori) is the longest CPU time required to execute a
single occurrence of a task.

The deadline Di denotes the deadline of the task Ti. It is assumed to be known a priori and it is
obvious that Di > Ci. Di is relative to the Ti activation time Ai.

The task criticalness Ii is an application-supplied value that indicates the significance of a task’s
completion prior to its deadline. Higher criticality should be assigned to tasks that incur greater cost
to an application if they fail to complete execution before their deadlines. Some scheduling algorithms,
such as MUF (8§4.5.3), give greater priority to more critical tasks than to less critical ones. The tasks
are assumed to be preemptable with fixed-priority based scheme. A task execution may be preempted
by higher priority task activation. In our proposed scheduling strategies, CDP-BBA (§4.7.2.3) is the
only scheduling strategy that uses the criticalness and the laxity scheduling parameters.

A transaction message is assumed to be transmitted in one packet by the sender task. A transaction
M can be associated to a priority Mp, an absolute deadline Md, and a criticality M.

Priority, deadline and criticality of the transactions are also supplied by the applications. The sender
task priority Pi will be transmitted to the corresponding priority transaction Mp. The transaction
deadline Md is the one specified in the SCOOT-R contract (client side). The transaction criticality Mi
is supplied for this purpose by the client application.

Similarly to the task model, we use Mr(t) to denote the remaining execution time of a transaction
M at time t. As the communication model in our study is based on a client/server model, we define
the transaction execution time as the amount of time for the client to get the reply back. Thus, it
is equivalent to the server’s task computation time plus the communication delays and overhead of
network adapters.

We define the laxity of the transaction M at time t as:

MI(t) = Md(t) —t — Mr(t) (4.7)

4.7. ENHANCING SCOOT-R CLIENT/SERVER BY INCORPORATING DISTRIBUTED SCHEDULING STRATEGIES 97

Each transaction is assigned a fixed priority. Packets are queued in FIFO order queue shared
between the host processor and the network adapter. The packets are queued by the sender task.

Let’s recall that the server processes clients requests so that the arrival of a new client request will
not preempt the current server request processing even if its priority is greater than the current request
priority being processed by the server.

Node 1 Node 2 S Nosdi: 3
Servers: S3 ervers:
i?rvetrs.. CS 11 52 Clients: C2 Clients: C1, C4
fents: Tasks: T1 Tasks: T2
Network Bus

Figure 4.4: Example of a system configuration

Moreover, due to the distributed nature of the system, even if the initial data are sampled period-
ically, the release jitter in the later stages of processing becomes so large that the strict periodic task
model does not apply there.

In addition, as the distributed system is based on client/server model, exchanged messages are
closely linked to the temporal specification of the real-time clauses of the client/server model .

4.7.2 Integrated messages and tasks scheduling

The target application of our scheduling strategies is a set of end-to-end sporadic tasks. Each sporadic
task is triggered by the arrival of a sensor data message, a timer event, or data message arrival from
the network. Part of these tasks will initiate SCOOT-R transactions.

Node 1 Node 2 Node 3
C1, S2 c2 S1

T
1
H Computation time

] of the serverS 1 task
] < c1
i
: Computation time I
H of the serverS 2 task 1]
H < c2 Reply © !
a v :
1

A2

A Reques(cq
R

Minimal period of the client C1

Figure 4.5: Media and CPU sharing example

As shown in Figure 4.5, tasks and messages scheduling are strongly dependent. The client C1
located on nodel initiates its request and gets the media communication until its request has been
received by its Server S1 located on node3. Therefore, the request of the client C2 located on node2
will be transmitted after the request of C1.

98 CHAPTER 4. REAL-TIME SCHEDULING

4.7.2.1 Client Priority Propagation (CPP)

Description: This model allows clients to declare their transactions priority that must be honored
by their servers. In this model, each client request message carries the client task priority.

The middleware bus carries this end-to-end client task priority along the communication path to
the server. This priority will be used to order (ascending priority-based order) the messages at the
emission of clients requests and servers replies on the network. In case of several clients of one server in
the system, all the clients requests for this server are scheduled in prioritized queue at the server side.
So, the client having the highest priority will be served first. Consequently, the client task priority in
the client request will determine the priority of its reply (Figure 4.6).

(_ END-TO-END PRIORITY PROPAGATION)

Node 1 NOde 2 Priority (server b)= max (P1,P
h 4
Client bl Client b2 Serverb | reauet fom o2
P1 P2
request from b1
‘ (priority P 1)
[reT} Queue prioritized
| SCOOTR Core [scootRCoe |
l Network Bus l

Figure 4.6: CPP: Client Priority Propagation

In order to avoid priority inversion at the server node, the server’s task processes incoming requests
at a priority equivalent to the maximum priority of all its current clients requests (presented in the
prioritized queue). For example, as shown in Figure 4.6 the server "b" has two requests "rpl" and
"rp2" from two clients "b1l" and "b2", the server "b" will have the maximum priority of bl and b2
(Max(P1, P2)).

Recall that, in initial SCOOT-R, incoming messages are processed using FIFO queues in accordance
with the sequence in which messages are generated. If messages are processed in the queuing order, the
processing of high priority message can, therefore, be delayed by low priority messages that entered
earlier. As a result, the message-processing time is not determined by the priority of the messages
waiting to be processed, but rather by the number of messages that are waiting in the FIFO queue.
The message processing jitter time also changes relatively to the network overhead. To solve these
problems, messages must be processed in order of priority using priority-based queues. The tasks that
process messages must be able to be preempted by tasks dealing with high-priority messages and
scheduling together with the user tasks.

Implementation of CPP in SCOOT-R: In order to implement the CPP scheduling technique in
SCOOT-R, the message header for clients requests was increased to include the priority of the client
task (Figure 4.7).

The incoming requests messages at the server side are queued in a prioritized queue according to
their priorities. We have one queue by server (Figure 4.8).

SCOOT-R’s CPP scheduler takes in charge the modification of the server’s task priority according

4.7. ENHANCING SCOOT-R CLIENT/SERVER BY INCORPORATING DISTRIBUTED SCHEDULING STRATEGIES 99

Transaction priority (Mp)
Source Destination
Type Port
Data

Figure 4.7: CPP implementation

Server 1

Queue 1 —I

Server 2

Queue 2 I

Server n

All Incoming messages

Queue n

Network Bus

Figure 4.8: Queues Architecture

to the priorities of its current clients requests. Let’s note that sorting the messages at the emission
of clients requests and servers replies is not currently implemented in CPP. We use the facility of the
OHCI-1394 adapter that manage automatically the messages lists for emission and reception.

Evaluation of CPP: The Client Priority Propagation (CPP) scheme is relevant in case of distributed
applications with fixed-priority profile. It permits to reduce the end-to-end priority inversion, as well
as to bound latency and jitter for invocations with higher priorities. Like the RM algorithm (§4.4),
CPP provides schedulability assurance prior to run-time for invocations with higher priorities and
in case of overloaded situations. On the other hand, CPP offers an equivalent performance for lower
priorities invocations. The client propagation model is used in the real-time implementation of CORBA

((TAO/ACE).

From the methodology point of view, CPP imposes a global RM analysis for the tasks set of all
the components in the distributed architecture. This approach is not compliant with the philosophy of
the component approach and is neither adapted to the COTS-based development.

To overcome the limitations of static priorities propagation, therefore, we have envisaged the
development of deadline propagation scheme outlined below.

4.7.2.2 Client Deadline Propagation (CDP)

Description: CDP allows clients to declare their requests deadlines that must be honored by their
servers. In this model, each client request message carries the client task deadline.

The middleware bus carries this end-to-end client task deadline along the communication path to

100 CHAPTER 4. REAL-TIME SCHEDULING

the server. This deadline will be used also to order (ascending deadline-based order) the messages at
the emission of clients requests and servers replies on the network bus. In case of having several clients
for one server in the system, all the clients requests for this server are scheduled in deadline-based
ordered queue at the server node. So, the client having the closest deadline will be served first (Figure
4.9).

C END-TO-END DEADLINE PROPAGATION)

Node 1 Node 2
v
Client bl Client b2 Server b
D1 D2
a|Queue EDF
| SCOOT Core [scoorrCoe |
| Network Bus |

Figure 4.9: CDP: Client Deadline Propagation

The deadline parameter specified in the clients requests has an absolute value (absolute deadline).
Thus, CDP model cannot be implemented without having a global time base on all the nodes. Using
absolute deadline instead of relative deadline allows the implementation of an end-to-end distributed
EDF scheduling strategy. As shown in Figure 4.10, and in case of relative deadline propagation (TAO
CORBA), a transaction t1 having an earliest deadline than the transaction t2 (w(tl) < w(t2)) but
has arrived late at the node3 (e(t2) < e(t1)), will be processed after the transaction t2 by the server
on node3. The propagation of absolute deadline will permit to absorb this late arrival of requests and
thus a global and coherent scheduling decision may be taken (end-to-end distributed EDF).

t2 preempted

by t1
Node1 Node2 Node3 Node1 Node2

e(t2)

/
|

t1: transaction 1
12: transaction 2

witt) ¥ / | w(tt) ¥ [
W(t2) — v | g(t1) W(t2) —
w(t1): worst case execution time of t1
W(t2): worst case execution time of t2
1

)):
TAO (RT-CORBA variant) SCOOT-R end-to-end e(t1): deadline of t1
distributed EDF distributed EDF &(t2): deadline of 2

Figure 4.10: Distributed vs. end-to-end distributed EDF

As outlined in Algorithm 4.1, only messages that have their deadlines greater than the current time

4.7. ENHANCING SCOOT-R CLIENT/SERVER BY INCORPORATING DISTRIBUTED SCHEDULING STRATEGIES 101

can be in the feasible schedule. Thus, CDP discards all requests with missed deadlines.

Algorithm 4.1 CDP algorithm

Input : Absolute deadline ordered messages (requests) ready queue DQ;

For each message M in DQ in ascending order of Md

t = get current_time();

if Md(t) > t then
//We schedule only the messages that have deadlines > current time
Ezecute M; //Here we execute the message M until its end

end if

CDP has as input the DQ queue ready requests (deadlines-based ordered). The algorithm examines
the messages in the ready queue in ascending order of their deadlines. Note that the algorithm schedules
requests at two scheduling events: 1) the arrival of a new request and 2) the termination of the currently
executing request.

The number of requests in the queue D that have longer deadlines than di may be approximated
by:

dmax — d1

k =|DQ| x (4.8)

dmax — dmin
where dmax and dmin are the maximum and minimum deadlines among all requests currently in DQ),
respectively. Thus, k is the number of requests that will be affected by inserting Mi.

Moreover, the local servers on a node are scheduled using an EDF online scheduler. The deadline
of the server’s task will be the minimum deadline between the request being processed and the request
at the top of the ready requests queue DQ (lowest deadline).

Implementation of CDP in SCOOT-R: In order to implement the CDP scheduling strategy in
SCOOT-R, we have augmented the message header by the deadline of the transaction (Figure 4.11). A
message arriving at the server node causes a message arriving event. The CDP scheduler extracts the
transaction deadline value of the client request, and then it orders them in ascending deadline-ordered
queue to be proceeded by the server.

Transaction deadline (Md)
Source Destination
Type Port
Data

Figure 4.11: CDP implementation

In CDP SCOOT-R implementation, we associate to each server a reception queue (DQ). The clients
requests are queued into this reception queue (DQ) according to their deadlines (ascending deadlines
order). The CDP scheduler then uses the deadline information in order to select the client request to
be proceeded. The request with the earliest absolute deadline will be executed first (Figure 4.12).

102 CHAPTER 4. REAL-TIME SCHEDULING

Server 1/ | Ready Queue 1
Task 1 MI1: Md11| Mi12: Md12
Ready Queue 2
Server2/ | | CDP
Task 2 Scheduler M21: Md21 | M22: Md22 M2i: Md2i
Server n/ Ready Queue n
Taskn [Mnl: Mdn{ | Mn2: Mdn2 Mnj: Mdnj

Figure 4.12: Deadline-based scheduling

Server @ Request reply

D = server task deadline
d_current = deadline of the
current processing request

Server priority
@ change

D =min (rcN, d_current)

rcN
In queue
A Out queue
(FIFO)
EDF EDF sort
rc2
rcl

J

Request Reply
IEEE-1394 bus

Figure 4.13: Tasks and messages scheduling

In order to obtain absolute deadline of distributed clients transactions we use the service provided
by the SCOOT-R middleware that permits to obtain a global time base of the distributed system

(§3.6.1).

In RTAI native kernel, the tasks priorities are encoded on 32 bits. Thus, we have modified the
kernel to encode the priority on 64 bits. So, setting the task priorities to the deadlines implements
directly an EDF scheduler without the limitation of the RTAI EDF’s mode.

Using our EDF scheduler, the priority of the server’s task will be the minimum of the current
processing request deadline and the deadline of the request at the top of the in queue (EDF ordered)
(as depicted in Figure 4.13). Moreover, the out queue in Figure 4.13 is a FIFO-based queue since we did
not implement an ordered emission of messages on the IEEE-1394 bus. As the CPP implementation, we
use the facility of the OHCI adapter that manages automatically the emission/reception of messages.

4.7. ENHANCING SCOOT-R CLIENT/SERVER BY INCORPORATING DISTRIBUTED SCHEDULING STRATEGIES 103

Evaluation of CDP: While the client priority propagation model is useful for transactions in fixed-
priority applications, the Client Deadline Propagation (CDP) model reflects perfectly the timing profile
of distributed transactions. The client request deadline gives a global and dynamic interpretation of
the timing constraints. Clients may express their timing profile by an arbitrary deadline and thus a
coherent scheduling may be implemented on all the nodes.

From a methodology point of view, CDP is well adapted to our middleware proposition SCOOT-R
and more widely to any component-oriented approach. Moreover, CDP is adapted to mixed networks
when several nodes apply the EDF policy and other limited nodes (e.g., microcontrollers) work with
the FIFO scheme.

Unfortunately, the weakness of the CDP model is the performance degradation in case of overloaded
situations. Like all the purely dynamic scheduling algorithms (e.g., EDF, MLF), a transient overload
in the system may cause a critical task to fail, which is not desirable for a dynamically reconfigurable
system. So, the decision about the criticalness of messages/tasks must be taken in run-time. Next
section presents a hybrid static/dynamic scheduling technique that performs in overloaded situations.
It allows to schedule the tasks/messages while taking into account the criticalness at run-time.

4.7.2.3 CDP-BBA scheduling strategy

To alleviate the limitations with the CPP and CDP scheduling policies in overloaded situations, many
research works have been conducted in the field of overload real-time scheduling. The main objective is
to offer control over which invocations will be sacrificed under overload conditions. Below, we present
some implementations of overload real-time scheduling for mono-processor architecture.

Two recent overload and best-effort real-time scheduling are the Dependent Activity Scheduling
Algorithm (DASA) and Locke’s Best Effort Scheduling Algorithm (LBESA) [LRWKO04]|. DASA and
LBESA are equivalent to the Earliest Deadline First (EDF) algorithm during underloaded conditions.
In overload situation, DASA and LBESA permit to maximize the overall tasks benefit by guaranteeing
a schedulability of the critical part of the system. i.e., they associate to each task of the system a benefit
value, thus maximizing the overall tasks benefit returns by maximizing the sum of benefit values of the
tasks set.

Li and al developed in [LRWKO04| two fast best effort algorithms MLBESA and MDASA that
outperform LBESA and DASA algorithms in terms of speed. They use heuristic model and methods
to decide about scheduling of tasks. They consider an asynchronous environment and the target tasks
of their algorithms are aperiodic and independent. MLBESA and MDASA algorithms may be directly
adapted and integrated to our SCOOT-R middleware in order to schedule integrated tasks/messages
in a distributed environment.

Another implementation of overload real-time scheduling is the MUF (Maximum Urgency First)
algorithm (§4.5.3). MUF combines the advantages of static and dynamic scheduling techniques in order
to deal with transient overload situations. DASA, LBESA and their extensions may be considered as
variants of the MUF scheduling strategy.

Hereafter, we present our CDP-BBA? scheduling strategy. CDP-BBA is similar to MUF strategy
applied to the scheduling of messages and tasks in a distributed environment and using the middleware
approach (client/server model).

CDP-BBA overcomes the drawbacks of the individual scheduling strategies (CPP and CDP) by
combining techniques from each as outlined below.

2CDP-BBA: Client Deadline Propagation and Best Benefit Algorithm

104 CHAPTER 4. REAL-TIME SCHEDULING

Description: CDP-BBA schedules arriving messages and associated tasks based on both the native
criticalness and the absolute deadline of the arriving messages (Figure 4.14). In CDB-BBA, transactions
with higher criticalness are assigned to higher static priority levels.

Messages Queue 1
Server 1/ |__ ges Q
Task 1 Mil: Mi2:
M11i, M11d M12i, M12d
S Y Messages Queue 2
er‘liezr — Intelligent o . .
Tas Scheduler M21i, M21d | M22i, M22d M2ki, M2kd
Messages Queue n
Server n/
— Mnl: Mn2: Mnm:
Task n Mn5i, Mnsd | Mn2i, Mn2d Mnmi, Mnmd

Figure 4.14: CDP-BBA scheduling strategy

We denote the criticalness of a message M at time t as Mi (§4.7.1). As shown in Algorithm 4.2,
CDP-BBA takes as input a messages ready queue IDQ. IDQ queue orders the incoming messages in
ascending criticalness (criticalness-order) and then in ascending deadline. Thus, if two or more messages
have the same criticalness value, the message with the earliest deadline will be inserted before. Let’s
recall that M1i < M2i means that the message M1 is more critical than the message M2.

Algorithm 4.2 CDP-BBA scheduling algorithm

Input : Criticalness and Deadline ordered messages ready queue 1DQ;
Queue I of messages to be executed
Initialize : T «— ¢, C « 0;
for each message M in IDQ in ascending order of Mi and then of Md do
if Mli(t) > 0 then
if ' = ¢ then
I'—TuUM;
end if
it CTMrD) < 1.0 then
r=TUM;C « C+ Mr(t);
end if
end if

CDP-BBA schedules messages at two scheduling events: 1) the arrival of a new message and 2) the
termination of the currently executing message.

Implementation of CDB-BBA in SCOOT-R: In order to implement CDP-BBA algorithm in our
SCOQOT-R middleware, we have augmented the message header by the criticalness of the transaction
(Figure 4.15).

This criticalness indicator Mi encoded on 32 bits is combined with the deadline parameter (64 bits)
Md to choice the higher priority transaction.

The local scheduling of servers follows the same scheme that of MUF. Thus, the server’s task
priority inherits from the client request criticalness Mi. If two requests have the same criticalness, the
scheduler assigns to the server task the priority that corresponds to the request deadline Md.

Evaluation of CDB-BBA: With CDP-BBA, all critical messages are guaranteed not to miss
deadlines as long as there is sufficient resources available. Thus, CDP-BBA provides a higher scheduable
bound of the critical tasks and messages. Unlike CDP, where any message may have failed as there is
no way to predict, CDP-BBA permits to control which messages may fail.

4.8. PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 105

Transaction criticalness (Mi)

Transaction deadline (Md)

Source Destination

Type Port

Figure 4.15: Best benefit algorithm implementation

By assigning dynamic subpriority according to the transaction deadline, CDP-BBA offers a higher
utilization of the CPU resources and gives a coherent representation of scheduling decisions when the
transactions having the same criticalness value.

CDP-BBA is well suited for dynamically reconfigurable systems where the global state of the system
may change without a system halt. In such system, it is crucial that critical components do not fail. By
allowing applications to select which operations are critical, it is possible to provide scheduling behavior
that is appropriate to each application’s individual requirements. Thus, if it is possible to ensure that
missed deadlines will be isolated from non-critical operations, then adding non-critical operations to
the schedule to increase CPU usage will not increase the risk of missing critical deadlines. The risk will
only concern those operations whose execution prior to the deadline is not critical to the integrity of
the system.

Note that using such scheduling strategy with SCOOT-R will need some adaptation for the server
unregistration initiated by the clients. The simplest solution is to define a server criticality so only the
client with criticality higher than the server one can unregister it. It is envisaged also to explore more
dynamic solutions with more flexibility.

Finally, the overload scheduling algorithms DASA and LBESA and their variants MLBESA and
MDASA use the same scheduling data and need similar propagation mechanism as the MUF strat-
egy. They may be easily adapted to the distributed environment using the middleware client/server
methodology the same way our CDP-BBA derives from MUF.

4.8 Performance evaluation and experimental results

In order to evaluate the performance of the proposed distributed scheduling strategies and validate
the implementation approach, we have built a real experimental testbed based on our SCOOT-R
middleware. It is composed of several computers connected by an IEEE-1394 bus. This section begins
by the description of the testbed architecture, then the experimental results obtained are presented
and discussed. Finally, we will present the simulation results using the same testbed architecture and
built-up using the Matlab toolbox "truetime" [HCr03|.

4.8.1 Testbed architecture

Our experimental testbed comprises four Pentium-based computers (800 MHz) connected by an IEEE-
1394 (400 Mb/s). Each computer has SCOOT-R middleware installed to implement our applications.

106 CHAPTER 4. REAL-TIME SCHEDULING

The underlying OS is the real-time Linux microkernel (RTAI).

Computer 1 Computer 2 Computer 3
Server! 4 clients of server2 O EEEEeRED
Server2 Serverd 4 clients of server1

SCOOT-R SCOOT-R SCOOT-R

Network Bus (IEEE-1394)

SCOOT-R

4 clients of server1

Computer 4

Figure 4.16: Application configuration

As depicted in Figure 4.16, each computer of the testbed contains several clients and servers.
Table 4.1 summarizes the baseline experimental settings for clients and servers in each computer of
the Figure 4.16.

Components Clients Servers
Computer
Computer 1 No clients serverl: C1 = 2.5 ms; server2: C2 =
1 ms
Computer 2 client22:: D22i = 40 ms, i =0 to 3 serverd: C3 = 1 ms
Computer 3 client83:: D33i = 30 ms + i*5 ms, i | No servers
=0 to 3; client314: D31i = 30 ms +
i*4ms,i=0to3
Computer 4 client/1s: D41i = 15 ms + i*5 ms, i | No servers
=0to3

Table 4.1: Baseline experimental settings

Recall that client <m><n><i> denotes the client on computer m, client for server n, and 7 is the
index of this client (in case of multiple clients for the same server). D <m><n><i> denotes the relative
worst case deadline for client <m><n><i>. For example, D831 = 30 ms + 5 ms = 35 ms and D413
= 15 ms + 3*5 = 30 ms. To obtain absolute deadlines of clients transactions, it’s sufficient to add
D<m><n><i> to the current common time base Tcommon(t).

Ci denotes the worst case server computation time. We assume in this experimentation that the
server computation time = worst case server execution time (C) = server deadline (D) and remains
constant for all the server requests.

In order to bursty load the server, the clients requests have the same period and they start at the
same common time with a small random shift (Figure 4.17).

Let’s recall that this testbed is useless for real applications and it is designed just to verify the
relevance of the simulation model of our scheduling strategies. Thereafter, we present the experimental
and simulation results obtained using the CDP scheduling strategy and compared to the FIFO scheme.

4.8.2 Experimental results

By experimentally evaluating CDP scheme, our main goal is to determine how well this strategy
performs in bursty workload situations with respect to applications temporal requirements.

4.8. PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 107

Transaction start Transaction end

-

Client 0 | | | -
il i

Client 1 + + + | + »
[FS—— | 1]

Client 2 i } | i] | >
| | I |

Client 3 J I I niform Interval i i i > t
\ b ' '

Figure 4.17: Random shift of transactions sequence

Client Server
10

MAT

awi} uopoBSURL JUBID

o

T preemption

Figure 4.18: Client/Server transaction time

A client/server transaction time is depicted in Figure 4.18. The transaction time is composed of
several elementary times. MAT (Media Access Time) corresponds to the time that the client has to
wait before it accesses the bus and begins the transmission. (i is the worst computation time that the
server’s tasks consumes to process a client request. T preemption, is the time between the arrival of
the reply on the client node and the effective reception of the reply by the client (this delay is due to
the overhead of network adapter, OS software and SCOOT-R layers).

In order to evaluate the performance of the CDP scheduling technique, the experimentation has
been conducted using the testbed architecture outlined before (§4.8.1).

Each experiment test lasted for 10 hours. Figure 4.19 shows the responses time of the four clients
located on computer4 (client47) in the case of deadline propagation scheme (CDP). The clients requests
are assumed to an average period of 100 ms. We illustrates in Figure 4.19 only a limited number of
transaction to well show the behavior of the clients transactions.

As depicted in Figure 4.19, the client/70 response times vary around 2.78 ms. The peak in the
client410 response time (around the transaction number 2480) corresponds to the fact that the request
of the client410 arrives when the serverl is processing a request from the client/11.

Client411 has approximatively 5.43 ms of average response time. The peak around the transaction
number 2390 corresponds to the delay implied by the processing by the server of a request of the
client/10 and a previous request from another client. At the transaction 2480 approximately, the
client411 request has arrived and processed before the client410 request.

The client412 and client/18 have an average response times that vary around 8 ms for client/12
and 10 ms for client413. Client418 has the worst average response time and that corresponds to the
worst serverl load. i.e., when a client418 request arrives to the serverl, it has in its list three requests

108 CHAPTER 4. REAL-TIME SCHEDULING

x 10° Client410 — Computer 4 x 10° Client411 - Computer 4

o
o

(&3]
~ [oe]

IN
3
o

w
&)
o

Response time (nanoseconds)
3 I NS
Response time (nanoseconds)

IN

w
w

N A A A A A~ A AN AN SV

2.
2350 2400 2450 2500 2350 2400 2450
Transaction Transaction

x10° Client412 - Computer 4 x 10" Client413 - Computer 4

=
w
=
ul

I
N
=
IN

=
[
=
w

-
=
N

o
©
=
[N

]

1
2350 2400 2450 2500 2350 2400 2450 2500
Transaction Transaction

Response time (nanoseconds)
Response time (nanoseconds)

o
3

Figure 4.19: Clients response times with CDP

from clients having higher priority (client410 to client412). Thus, the serverl will process the requests
in deadline-based order, so the client413 will be served last.

In Figure 4.20, we illustrate the transactions response time in case of non transmission of the clients
requests deadlines (FIFO transmission scheme). As shown, the four clients (client410 to client413) have
the same behavior and thus the same performances.

4.8.3 Simulation results

In this section, we present some simulation results for the proposed scheduling techniques. The sim-
ulation developed here was mainly motivated by the validation of the testbed architecture described
earlier in order to evaluate our proposed feedback scheduling depicted in the next chapter. In addition,
this simulation permits to validate some possible configurations that are hardly implemented with real
experimentation. This simulation has allowed the validation of the SCOOT-R model to design and
implement end-to-end scheduling strategies.

For this purpose, we have used Truetime Matlab toolbox that allows the simulation of distributed
real-time control systems. Truetime makes it possible to simulate the timely behavior of real-time
kernels executing control tasks. Truetime simulates simple models of network protocols and their
influence on networked control loops.

Truetime consists of a kernel block and a network block, both variable-step S-functions written
in C++. It also provides a collection of Matlab functions used to do A/D and D/A conversion, send
and receive network messages, set up timers, and change task attributes. The Truetime blocks are
connected with ordinary continuous Simulink blocks to form a real-time control system.

4.8. PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 109

x 10° Client410 — Computer 4 x 10° Client411 — Computer 4

16 12
w ©w
214 2 1
3 S 10
c c 8
210 2
(] (0]
E 8 E 6
[0} (]
2 6 2
2 2 4
g 4 3
14 x

2 2

500 1000 1500 2000 500 1000 1500 2000
Transaction Transaction
x 10° Client412 — Computer 4 x 10° Client413 — Computer 4

16 12
w w
214 2
38 3 10
c = 8
g 10 2
(] (0]
E 8 E 6
[} (]
2 6 2
2 2 4
g 4 3
14 x _—

2 2

500 1000 1500 2000 500 1000 1500 2000
Transaction Transaction

Figure 4.20: Clients response times with FIFO scheme

The Truetime kernel block simulates a computer with an event-driven real-time kernel, A/D and
D/A converters, a network interface, and external interrupt channels.The kernel executes user-defined
tasks and interrupt handlers, representing, e.g., I/O tasks, control algorithms, and communication
tasks. Execution is defined by user-written code functions (C++ functions or m-files) or graphically
using ordinary discrete Simulink blocks. The simulated execution time of the code may be modeled as
constant, random or even data-dependent. Furthermore, the real-time scheduling policy of the kernel
is arbitrary and decided by the user.

The Truetime network block is event driven and distributes messages between computer nodes
according to a chosen network model. Currently five of the most common medium access control
protocols are supported: CSMA /CD (Ethernet), CSMA/CA (CAN), token-ring, FDMA, and TDMA.
It is also possible to specify network parameters such as transmission rate, pre- and post-processing
delays, frame overhead, and loss probability.

Using TrueTime, we have implemented the same testbed architecture described in section 4.8.1.
Thus, we have simulated the four computers of our experience by computer blocks and the IEEE-1394
network by a CSMA/CD Ethernet network block (Figure 4.21).

Each server and client in the software architecture are represented by kernel tasks. The client/server
communication is performed using the notion of port. A port number is associated to each client (in
case of multiple clients for the same server), this port number will be used by the ISR (Interrupt Service
Routine) to dispatch the transactions to the appropriate clients. The scheduling parameters such as
the priority, deadline and criticalness are encapsulated in the header of each exchanged message. We
consider that all the clients have the same period with a voluntary shift to overload the server (normal
random distribution).

110 CHAPTER 4. REAL-TIME SCHEDULING
Computer2 Computer 1 Computer 4
snd1 revl
snd2 rev2
Loniz>—""
snd3 revd
-J_,-> snd4 revd
snd5 oy L;- Lrova>—{Rev snd |—p<snd3]
Network
Computer 3
1.6
Clock Display
TrueTime (c)
Khaled Chaaban
UTC, Laboratoire Heudiasyc
email: chaaban@hds.utc.fr

Figure 4.21: Our application architecture modeled by TrueTime toolbox

The server, implemented as a non-periodic kernel task, processes clients requests using a reception
queue. A reception of a request is handled by a specified event that the server monitors (Figure 4.22).
The local scheduling policy used is the Fixed-Priority scheduling. The implementation of the CPP

Incoming message
on node

(request)

Signal
receive_msg_to_server

¥

Server
task

Server to client
(reply)

Client port number
dispatcher

Client1
task

Client3

Client2
task task

Figure 4.22: Dispatching incoming messages to clients and servers

and CDP algorithms consist of the replacement of the FIFO incoming queue at the server side by a

prioritized one.

The simulation results are similar to those of the real experimentation. Figure 4.23 shows the
transaction response time in seconds for the four clients (client330 to client333) and using the CDP

4.8. PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 111

scheduling strategy. The X axis represents the transaction number sequence and the Y axis the
transaction response time in seconds. We consider that the serverd has a computation time C8 =
1 ms.

As shown in Figure 4.23, the response time of the client330 is worth 1 ms or 2 ms. This is related
to the case where the client 330 request arrives the first to the server3 or it arrives when the server3 is
processing another request from another clients request. Let’s note that the client330 has the highest
priority (closest deadline) followed by client331, client332 and client333 (highest deadline).

x10° Client330 - Computer3 x10° Client331 - Computer3
2.2 35
2 ™ 1 ~ 3
) @
o 1.8 [J]
£ £
= e 25
2 1.6]
c c
o s 2
» 14 @
2 2
1 1 ‘
0 100 200 300 400 0 100 200 300 400
transaction transaction
. x10° Client332 - Computer3 . x10° Client333 - Computer3
@ 4 @ 4k
: 0 TUETr T
S £
[= W‘
3 3
c c
o o
o Q.
3 3
- B ’
1) LA A
0 100 200 300 400 0 100 200 300 400
transaction transaction

Figure 4.23: With CDP scheme

The response time of the client331 varies between 1 ms , 2 ms and 3 ms, depending on the number
of requests to be processed by the server3 at the arriving instant of the client331 request.

The response time of the client338 switches between 1 ms and 4 ms. This means that the client 353
request may arrive the first to the server3 (1 ms) or not and so processed at the end of all the server3
requests (4 ms).

To evaluate the CDP scheduling technique in case of overload situations, we have conducted a
simulation with a variable workload. In order to modify the average load, we have added a periodic
interfering task with constant CPU usage to the computer including the server. To load the CPU, we
increase the interfering task period regularly each 2 seconds of the total simulation time.

We define also the "loss ratio" as the ratio of missed transactions to the total transactions. Figure
4.24 shows the "loss ratio" of four clients with different deadline parameter (client330 to client333).

Client 330 with the highest deadline has the lowest "loss ratio". Client333 with the lowest deadline
has the highest "loss ratio". Let’s note also that the "loss ratio" of client333 becomes 1 rapidly with
the average load of the system. Client330 has always the lowest "loss ratio" whatever the average load

112 CHAPTER 4. REAL-TIME SCHEDULING

Client330 Client331
0.7 0.7
06 06
05 05
2 o)
T 04 T 04
® ®
9 03 S 03
02 02
0.1 0.1
0 0
0 5 10 15 20 0 5 10 15 20
Average load Average load
Client332 Client333
07 1
06
038
05
i) o
S 04 % 08
k7] -
303 804
02
02
0.1
0 0
0 5 10 15 20 0 5 10 15 20
Average load Average load

Figure 4.24: Using CDP algorithm
is.

4.9 Conclusion

Middleware in a distributed real-time system can provide the platform with mechanisms required
to perform the necessary local/distributed scheduling. Our distributed system is composed of nodes
interconnected by a deterministic network bus. The target applications are qualified by their timing
constraints. These applications may include functions with different levels of criticalness. Moreover,
our proposed scheduling techniques are well adapted for a transactional models and are implemented
using our SCOOT-R middleware.

Two distributed scheduling strategies were developed, (1) the Client Priority Propagation (CPP),
and (2) the Client Deadline Propagation (CDP). We have compared these scheduling strategies with
the trivial FIFO scheme.

The CPP is relevant in case of distributed application with fixed-priority profile. During over-
load situations, it provides a performance benefit for higher priorities invocations but an equivalent
performance for lower priorities invocations.

The CDP strategy is equivalent to the Earliest Deadline First (EDF) scheduling strategy. CDP gives
a global and dynamic interpretation of the timing constraints while making decision rules. Clients may
express their timing profile by an arbitrary deadline and thus a coherent scheduling may be implemented
on all the nodes.

From the methodology point of view, CDP is well adapted to our SCOOT-R middleware and

4.9. CONCLUSION 113

more widely to any component-oriented approach. Moreover, CDP is adapted to mixed networks when
several nodes apply the CDP policy and other limited nodes (e.g., microcontrollers) work with the
FIFO scheme.

Unfortunately, a transient overload in the system may cause a critical task to fail, which is not desir-
able for a dynamically reconfigurable system. So, the decision about the criticalness of messages/tasks
must be taken in run-time.

Thus, to deal with such overloaded situations, we have developed another distributed schedul-
ing technique called the CDP-BBA scheduling strategy. CDP-BBA explicitly accounts for both the
deadlines and criticalness of tasks and exchanged messages when making scheduling decisions.

In order to evaluate these scheduling techniques, we have described our implementation and show
experimental and simulation results. Moreover, our prototype implementation of these scheduling
strategies in a middleware also prove their effectiveness.

In the next chapter, several aspects of the next generation of adaptive and feedback-based scheduling
techniques will be presented. We present adaptive scheduling strategies to schedule dynamically driving
assistance functions in presence of driving situation change.

Chapter 5§ __

Dynamac feedback scheduling for
automotive environments

Abstract

The use of feedback and adaptive techniques has been gaining importance in the context of scheduling
in real-time systems as a mean to provide predictable performance with respect to the dynamics of the
environment in which the system is operating. Therefore, feedback scheduling can be used to adjust
the resource allocation and track the system performance.

The objective of our work in this chapter is to develop and analyze feedback-based adaptive
scheduling schemes for high-level vehicle applications. The proposed feedback-based scheduling schemes
are devoted to schedule ADAS (Advanced Driving Assistance System) functions.

The adaptation in our scheme is carried out according to the driving situation, which will further
lead to the change of the associated driving assistance function’s criticalness. Thus the schedule will
be adjusted, that is, we can obtain a schedule that may satisfy the desired real-time requirements.

Contents
5.1 Introduction & . & @ i i i i i i ittt it e e e e e 117
5.2 Feedback scheduling: state of theart 118
5.2.1 Integrated control and real-time system design 119
5.2.2 Quality of service approaches in real-time systems 119
5.2.3 Flexible and adaptive real-time system algorithms and architectures 119
5.2.4 Feedback scheduling for autonomous vehicles 119
5.3 Owur architecture for advanced autonomous vehicles. 120
5.3.1 Driving situations and metrics definition 121
5.3.2 Distributed computing architecture00, 123
5.4 Feedback scheduling of tasks and messages 124
5.4.1 Confidence coefficient of metrics 0oL, 124
5.4.2 Upward scheme: feedback scheduling using SCOOT-R quality indicator 125
5.4.3 Downward scheme: feedback scheduling regarding driving situation 126
5.5 Simulationresults i e e e e e 131
5.6 Conclusion & . @ @ i i i i i it it e e e e e e e e e e e 133

115

5.1. INTRODUCTION 117

5.1 Introduction

The case study depicted in this chapter focuses on the advanced applications for vehicles. The in-vehicle
applications may be classified in two main categories. The first category is the vehicle control system
with high demands on safety, reliability, and accurate timing. The tasks in such systems have hard
real-time requirements and are scheduled off-line and execute according to a dispatched table on-line.

The second category includes functions for diagnosis and infotainment that are used in vehicles to
support maintenance, vehicle service, comfort, and driving assistance functions. Components in this
category must be integrated without impacting safety critical functionality in the vehicle and may be
scheduled dynamically at run-time rather than statically at design time. The application concerned in
our case study falls in this category and it concerns more precisely the driving assistance functions.

The introduction of new technologies in and outside the car provides new opportunities to better
support the driver when confronted to exceptional situations that may result in an accident. These
new technologies can in particular prevent driver inattention or provide assistance on how to react.

The car industry is going now in a direction to define new ADAS (Advanced Driving Assistance
System) to increase driver safety. In order to evaluate these ADAS functions, we need an estimation
of driver behavior indicators, and robust models of Human Vehicle Interfaces (HVI). However, the
evaluation and testing of new proposals before technology investments may constrain the HVI models
(Figure 5.1).

[——=—n
— ADAS) HVI i—- COMMAND —»f
1

Figure 5.1: ADAS evaluation

As an example of existing ADAS, we consider the Adaptive Cruise Control (ACC). ACC is an
extension of existing cruise control systems, designed to maintain the vehicle speed. The advanced
features of ACC systems include the ability to track a car in the lane ahead using forward looking
radar. If the distance to a vehicle in front is below a safety distance value, the ACC system is designed
to slow the car down, to track the speed of the preceding vehicle, then to bring back the car to its
pre-set speed once the lane ahead is clear. Steering angle and yaw rate sensors detect lanes and predict
road curves, ensuring any vehicle in front is in the same lane as the target car.

One of the potential advantages of ACC is the foundation it provides for next generation advance-
ments in lane detection systems, eventually expected to include cameras. The use of cameras in the
vehicle is predicted to help provide for better lane following and collision avoidance by controlling
the steering mechanism of the vehicle. ACC is now implemented on some vehicle models (e.g., BMW,
Mercedes, Nissan).

An example of future ADAS that we can imagine is the Driver Hypovigilance (DH). DH intends to
monitor the driver and the environment and will detect driver hypovigilance on line, based on multiple
parameters. Using driver monitoring sensors (such as an eyelid movement and a steering grip sensor),
the system monitors and evaluates the time dt during which the driver does not look at the parebrise. If
dt is more than 10% of the last time unit AT, then the system alarms the driver. AT may be function
of several parameters such as the vehicle speed (AT o (1/speed)).

In the next generation of ADAS, the current driving situation and the driver behavior evaluation
using high-level HVI metrics have to be integrated on the real-time ADAS control loop. On the other
hand, this feedback assessment has imposed several requirements concerning for example the real-time

118 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

scheduling and feedback scheduling to adapt the computing resources to the current driving situation
(Figure 5.2).

— ADAS 1 HVI [—» Command
1

EVALUATE
ADAS & DRIVER

Figure 5.2: Adaptive ADAS

The static scheduling for future ADAS functions in automotive applications leads to over dimension-
ing the distributed computing resources. The dimensioning is based on the burst computing resources
needed at the moments the ADAS should be activated, which are quite rare with respect to the normal
operation. Moreover, in such systems, critical and less critical components coexist. The critical part of
such systems is generally scheduled at pre-runtime by using static and cyclic techniques [Kop00][KG94].
The high-level part of the automotive system (e.g., ADAS functions) is less critical but requires dynamic
reconfiguration and certain level of quality of service.

To deal with such complex systems, we propose to use the "Feedback" scheduling paradigm
[JST99]|[PB00][Fer93] to adapt dynamically the available CPU and communication resources to the
applications requirements. This technique is well adapted to perform in unpredictable dynamic systems,
i.e., systems whose workloads cannot be accurately modeled. For example, a real-time system for an
advanced vehicle is characterized by the unpredictable nature of the vehicle, road conditions and driving
situations.

This chapter begins with an overview on the "Feedback scheduling" paradigm. Then we present our
architecture and the general context of our automotive applications. Finally, we present our proposed
methods and techniques to schedule dynamically ADAS functions based on the automotive applications
context.

5.2 Feedback scheduling: state of the art

Many distributed real-time systems become more and more unpredictable due to several factors such as
the increasing use of commercial off-the-shelf components, the unpredictable environment, etc. These
systems interact with environments where both load and available resources are difficult to predict.
Thus, feedback scheduling is introduced, to deal with CPU and communication resource variations and
unpredictable workload during run-time.

This recent approach has been introduced by both the real-time computing field and the automatic
control field. By combining scheduling theory and control theory, it is possible to achieve higher resource
utilization and better control performance. To achieve the best results, co-designing, the scheduler and
the controllers is necessary.

The idea is to introduce control tasks to the system, which are generally considered as hard real-
time tasks with fixed sampling periods. The feedback scheduler may be viewed as a task that controls
the processor utilization by assigning task periods that optimize the overall control performance. The
controller task is viewed as a periodic task, with a period larger than the sampling periods of the system
tasks. Thus, the controller task modifies the sampling period of tasks only when resource availability
changes have been observed. Several research works have been conducted on the feedback scheduling,
they fall into three categories.

5.2. FEEDBACK SCHEDULING: STATE OF THE ART 119
5.2.1 Integrated control and real-time system design

In [SLSS96], sampling period selection for a set of control tasks is considered. The performance of a
task is given as a function of its sampling frequency, and an optimization problem is solved to find the
set of optimal task periods.

A conjuction of real-time scheduling theory and the control systems has been introduced in [RHS97],
where the performance parameters are expressed as functions of the sampling periods and the in-
put/output latencies. In [SM99] the authors deal with online rescaling and relocation of control tasks
in a multiprocessor system.

5.2.2 Quality of service approaches in real-time systems

The second category of feedback scheduling concerns Quality of Service (QoS) aware real-time systems.
In such approach, the system’s resource allocation is adjusted on-line in order to maximize the per-
formance with acceptable quality of service. In [JST99], the authors propose a framework that allows
the control of application requests for system resources using the amount of allocated resources for
feedback. It is shown that a PID (Proportional, Integral, Derivative) controller can be used to bound
the resource usage in a stable and fair way.

In [AB99], Abeni and Butazzo proposed task models suitable for multimedia applications. Two of
these models use PI (Proportional, Integral) control feedback to adjust the reserved fraction of CPU
bandwidth. Several tasks are competing for finite resources, and each task is associated with a utility
value, which is a function of the assigned resources. The system distributes the resources between the
tasks to maximize the total utility of the system.

In [AAS97], the authors proposed a QoS renegotiation scheme that allows a graceful degradation
in cases of overload, failures or violation of initial assumptions. Their solution allows the clients to
express, in their service requests, a range of QoS levels they can accept from the provider, and the
perceived utility of receiving service at each of these levels.

These adaptive scheduling algorithms are used for computing systems such multimedia [BGM197],
distributed visual tracking (to guarantee desired network packet rate) [LN99|, operating systems
[SGGT99] and communication systems [AS99).

5.2.3 Flexible and adaptive real-time system algorithms and architectures

The third category relates to the wealth of flexible scheduling algorithms available. An interesting
alternative to linear task rescaling is given in [BLA98] where an elastic task model for periodic tasks is
presented. The relative sensitivity of tasks to rescaling are expressed in terms of elasticity coefficients.
Schedulability analysis of the system under EDF scheduling is given.

In [BGM™97], the authors evaluated a dynamic QoS manager by measuring the transient perfor-
mance of applications in response to QoS adaptations. A set of metrics was proposed to capture the
transient state performance and its impact on applications.

5.2.4 Feedback scheduling for autonomous vehicles

Related to our work, in [PB00] the authors propose a method of ranking the automotive services at
pre run-time using the notion of "utility" of each service. They made the focus on the definition of

120 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

utility values of services, their computing and then their assignment to real automotive applications.
Their approach lacks of real implementation and effective distributed scheduling.

In [LMS04], the authors propose a feedback-based adaptive scheduling schemes for autonomous
vehicle systems. They consider a system with mobile nodes. When the nodes are mobile, they con-
tinuously move and execute certain tasks, so the mobility can affect the task parameters. Thus, they
identify the relation between the mobility characteristics (e.g., speed) and the values of task parameters
(e.g., execution time, deadlines and periods) for a particular application. The node in their system is
a vehicle which is equipped with sensing, processing, and actuating capabilities. Adaptation is focused
on the speed of the vehicle, which will lead to changes of task parameters (deadlines and periods of
tasks).

Moreover, computing resources used inside an autonomous vehicle are limited, and may fail. Thus,
we must adapt the available resources according to the criticalness of services and to select the services
dynamically. A dynamic and adaptive scheduling strategy may lead to a better utilization of resources
and to select the important services regarding the system configuration.

To evaluate a feedback scheduling technique, it is necessary to have simulators that allow joint
simulation of continuous time plant dynamics, discrete time controllers, and the real-time scheduling
of the corresponding controller tasks. The simulations of our feedback scheduling techniques are based
on the Matlab/Simulink toolbox "truetime" presented in [HCr03].

The objective of our work in this chapter is to develop and analyze feedback-based adaptive
scheduling schemes for autonomous vehicle systems. In particular, we are interested in the scheduling
of the driving assistance functions in case of driving situation change. Thus, we have to identify
the relation between the driving situation (e.g., overtaking or fluid driving on motorways) and the
parameters associated to driving assistance functions (e.g., criticalness or utility value).

The adaptation in our scheme is carried out on the driving situation, which will lead to the change
of the associated driving assistance function’s criticalness. Thus the task scheduling will be adjusted
to satisfy the desired real-time requirements.

The software architecture of our system considered here consists of several computers networked
by a communication bus, which communicate between them using a middleware.

5.3 Our architecture for advanced autonomous vehicles

In an advanced vehicle control system, safety and critical services are scheduled statically using an
execution order established offline. For the case study presented in this chapter, we consider the less
critical services such as ADAS functions. This class of functions processes a large amount of data and
requires a high-level of reconfiguration.

In order to assess and evaluate at run-time these ADAS functions, several sensors are embedded in
our demonstrator car STRADA in order to elaborate metrics to evaluate these ADAS. Our framework
SCOOT-R is used as the software architecture to acquire, process and display these metrics. We
consider here only the client/server model of SCOOT-R.

In order to schedule at run-time such ADAS functions and metrics, we have adapted the feedback
scheduling technique to implement adaptive and distributed scheduling strategies. The idea is to carry
out the adaptation on the driving situation and then to re-schedule computing of the associated metrics
based on their criticalness.

In the framework of the RoadSense project, several metrics were defined and implemented. These
metrics relate to the safety, comfort, and support assessment. The performances of the driver with

5.3. OUR ARCHITECTURE FOR ADVANCED AUTONOMOUS VEHICLES 121

respect to the assistance system are thus evaluated using these metrics.

Hereafter, we describe the driving situation and associated metrics used in this case study.

5.3.1 Driving situations and metrics definition

In order to provide a relevant assistance to the driver, it would be necessary for it to be individualized,
and adapted as much as possible to the driving situation. This implies that the on-board computer
should be able to recognize the driver behavior and the driving situation. The assistance can be also
adapted to the model of the vehicle, and can evolve with its life. To take all these parameters into
account, the real-time computation of the metrics seems to us a relevant prospect.

The driver behavior is very dependent on the driving situation, including:

the dynamic state of its vehicle (speed, acceleration);

the state of its vehicle according to the static environment (position on the road, position on the
lane);

the type of the static environment (highway, number of lanes, type of lines, etc.);

the state of the dynamic environment, that means the situation (position and speed) of the other
road users.

Moreover, each driving situation evokes a set of metrics. The relative criticalness of these metrics
change from a driving situation to another.

The metrics are grouped in several categories:

side and longitudinal controls by the driver;
e visual management, gathering the parameters relating to the direction of the driver glance;
e interactions with other vehicles;

e conscience of the driving situation (overtaking, fluid driving on motorways, etc.);

the direct reaction of the driver with respect to the assistance system.

In order to illustrate the type of calculations necessary to obtain these metrics, and to better
represent the principle of the temporal relations between them, we expose below some of these metrics:

Time Headway (TH): It is the time it would take the host vehicle to arrive in place of the leading
vehicle without changing the speed. This measure is computed as the bumper-to-bumper distance
divided by the speed of the host vehicle. This metric is coded at run-time.

Mean Speed (MS): This is the vehicle’s average speed over a given time period. For Renault case
study, the mean speed was in km/h. This metric is coded at run-time for a time period equal to 0,5
seconds.

122 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

Time To Collision (TTC): The time to collision is the delay before the host vehicle reaches the
preceding one if none of them changes its speed. It can be computed by the above formula:

Time to collision(s) = Following Distance(m)/Relative Speed(m/s) (5.1)

In this case study, we identify a set of driving situations S = {S1, 52,53, ...}, determined statically
at pre run-time by human factors experts. A driving situation is composed of a set of metrics M =
{M1,M2,M3,....}. Each metric is a useful information that indicates a relevant measure about the
vehicle and the driver behavior. A metric can be computed by one or more data sensors or the fusion
of many information sources.

Can data ‘ Facelab data
,] \ \ /
Tum Relative Relative | |Instantaneou| | Brake pedal Pedal Mean and Looked
signals speed distance s speed actuation takeover variance of the areas
(right 7 7 accelerator
/ and left)| .~ / \ / // pedal position /
Time To Target \ Mean Speed / // Accelerator /
Collision change . / lift /
Variance in Time / /
longitudinal speed | Headway /
S /

Facelab Reacticn
time

Time headway
classes duration

Braking

reaction time

Reaction
time

Figure 5.3: A real example of metrics architecture

An important type of constraints for real-time tasks is the precedence one. A possible technique
of scheduling with precedence constraints would be to assign the criticalness to the tasks according to
the constraints of precedence.

This technique seems interesting in our study case regarding the hierarchy of computing high-level
metrics (Figure 5.3). The programmer has to give in this case the precedence relations between metrics
and then the system computes the relative criticalness values.

As shown in Figure 5.3, for example to compute the "Mean Speed" metric we need to have the
"Instantaneous Speed" one. Moreover, to compute the "Time Headway" metric, we need the "Mean
Speed" value. Thus, the "Instantaneous Speed" component must have a criticalness greater than the
"Mean Speed" and "Time Headway" components.

Moreover, several computation methods of one metric could exist, either based on the same data
sensors, or on different sensors.

Switching from a driving situation to another is monitored by an independent module (CASSICE
module). The CASSICE (CAractérisation Symbolique de SItuations de ConduitE) [YL05| module was
developed in the framework of ARCOS action (Prédit national (2001-2004)). The driving situation,
like overtaking maneuver, regular driving, etc., is recognized using states sequence techniques coupled
to the belief theory.

This module allows the detection of driving situation change and then broadcasts this information
to all the nodes of the system. Thus, all nodes are informed by this change and apply the assignment
of the criticalness values to the related components.

5.3. OUR ARCHITECTURE FOR ADVANCED AUTONOMOUS VEHICLES 123

5.3.2 Distributed computing architecture

The computing architecture in this case study is distributed on several computers. The client/server
model of SCOOT-R is used to exchange data. Table 5.1 shows how the components of the system are
located and distributed on computers.

Components
Computer Clients Servers
Computerl No-Clients Instantaneous Speed (IS) server,
Relative Speed (RS) server, Rela-
tive Distance (RD) server
Computer2 Relative Speed client (Client 1) , | Time To Collision (TTC) server
Relative Distance client (Client 2)
Computer3 Instantaneous Speed (IS) client | Mean Speed (MS) server
(Client 3)
Computer4 Mean Speed (MS) Client (Client | Time Headway (TH) server
4), Relative Distance (RD) client
(Client 5)

Table 5.1: Computers and their associated components

In Figure 5.4, two metrics are illustrated: TTC (Time To Collision) and TH (Time Headway).
In order to compute a metric, we have to identify the components that contribute to elaborate it.
For example, to compute the TTC metric, we identify two components, component 1 and component
2. Each component contains several servers and clients and others tasks. Component 1 contains two
servers that provide CAN data "RS" and "RD" servers. Component 2 contains two clients (clientl
and client2) for the two servers "Relative Speed (RS)" and "Relative Distance (RD)" in component 1.
It also contains a task that computes the Time To Collision (TTC) and finally a server "T'TC" that
provides this metric to other components.

Is RD
RS RD Server Server

Component 1 Component 3
Server Server ‘ ‘

Instantaneous |Speed (I1S)
Relative| Speed (RS) Relative Distance (RD)
Relative |Distance (RD) Component4

Client 3

Mean Speed M

Client 1 Client 2

— -

Time To Collision

TTC Client 5 |
Time Headwa;
Server ™
TTC
Component 2 Component 5

Figure 5.4: Computation architecture of metrics

Thus, one component may have none or several clients, depending on its data requirement. One
component has always a server to provide the data it produces.

124 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

5.4 Feedback scheduling of tasks and messages

While the driving situation changes dynamically, the criticalness of the associated metrics changes too.
For example, overtaking on a two-way road and on motorways are two driving situations that have
different consequences on the high-level metrics criticalness. So, affecting static criticalness to compo-
nents is not suited for applications where components importance depends on the contextual situation.
Thus, we propose to use feedback scheduling paradigm to adapt the criticalness of components based
on the application context.

In order to design and implement feedback scheduling techniques, two schemes are proposed. First,
the "Upward scheme", where we evaluate the low-level data confidence coefficient and then map it to
the high-level behavior of the associated service. In this scheme, SCOOT-R quality indicator is used
to select the active service and to evaluate a concrete confidence coefficient of the service.

Second, we propose the "Downward scheme". In this case, we identify a set of driving situations
assumed to be known a priori. Each driving situation calls up several metrics. During a specified
driving situation and given the set of metrics used in this situation, we can compute at pre run-
time the criticalness of all the metrics by comparing their relative importance. Now that the services
criticalities are established, we use the distributed scheduling strategy proposed in the previous chapter
(CDP-BBA) to apply the scheduling policy in a distributed environment. Moreover, we can use the
criticalness profile diffused by the CDP-BBA algorithm to compute dynamically the criticalness of part
of the components. The architecture of a feedback scheduler is shown in Figure 5.5(a).

> Component 1
CPU
& P Component r
components
activation
A
Metric
h 4 s) o | Controller
erver
task
Intellignent Confidence Coefficient
Scheduler Cl L2 Wileriiors
{as)
(a) Feedback scheduler structure (b) Confidence coefficient assessment

Figure 5.5: Adaptive Scheduler

In order to express the criticalness of a metric, we use the notion of confidence coefficient that is
computed dynamically and described below.

5.4.1 Confidence coefficient of metrics

In order to deal with dynamic systems, we introduce the notion of confidence coefficient that reflects
data quality of the associated component.

We associate the confidence coefficient to each metric. This coefficient is obtained by the fusion
team of our laboratory in order to take into account the data imprecision of sensors [Bez05]. Let’s

5.4. FEEDBACK SCHEDULING OF TASKS AND MESSAGES 125

recall that a metric may be computed by various techniques; we compute the confidence coefficient
that corresponds to each technique.

In general, this coefficient may depend on several criteria, such as the quality of data (e.g., accuracy,
precision), the environment status (e.g., visibility, going beyond on a motorway), etc.

In order to illustrate the relevance of our concept, we present the vehicle speed computation by
two different sensors. By computing the distance between two GPS acquisitions (at 1 Hz), the degree
of confidence may be obtained from the uncertainty ellipse of the position delivered by the GPS. The
second technique uses the odometers on the wheels; we compute the mean value of n precedent values
of the speed from the odometer:

Vi
V= 2 ~ (5.2)

We thus obtain the speed for each wheel. The vehicle speed is the average of these four speeds. In
order to obtain the degree of confidence, we considered it inversely proportional to the difference AV
between the highest Vh and smallest Vs speed among the four wheels. This estimation seems correct
as the speed variation is proportional to the loss of adherence. We thus obtain:

1 1
AV =Vh—-Vs; and confidence coef ficient = — =k — (5.3)

The idea of using the confidence coefficient for achieving flexible behavior has been promoted in
the real-time literature. It is called wtility value in some related research works [PB00]. Hereafter, we
present how we compute the confidence coefficient in a given driving situation. Then, we describe the
dynamic assignment and scheduling of these metrics and their components.

5.4.2 Upward scheme: feedback scheduling using SCOOT-R quality indicator

In this scheme, the adaptive scheduling of metrics concerns particularly the dynamic assignment of
confidence coefficient to the metrics. There is a controller task associated to each service of the system,
which monitors and evaluates the confidence coefficient of the service at low frequency (Figure 5.5(b)).

In order to obtain a concrete confidence coefficient value of a metric, we have adapted the notion
of quality indicator of SCOOT-R. Let’s recall that a SCOOT-R quality indicator is useful in case of
multiple available servers for the same service. This indicator permits to select the server having the
best quality. Other servers for the same service switch to a mode of "standby". They decrease their
consumption and requirements of CPU resources (frequencies and deadlines) by applying a predefined
rule.

To illustrate this method, let’s suppose that we have the "vehicle speed" metric provided by two
different services (SCOOT-R servers) T1 and T2. T1 computes the vehicle speed using GPS and
T2 service by using the vehicle odometers. When the confidence coefficient varies (resulting from
GPS mask/unmask, connection/disconnection of an odometer of the wheels, etc.), the service switches
between two modes, "Active" and "Standby" modes. We notice that the decrease of the confidence
coefficient of the service T1 leads consequently to the decrease of its activation frequency (Standby
mode). This decrease of the confidence coefficient in T1 service is compensated by the increase of the
T2 one and consequently the increase of its activation frequency (Active mode) (Figure 5.6).

Since our architecture is based on a SCOOT-R client/server model, a metric in our architecture
contains a server that will provide the service. Thus, the confidence coefficient of a metric is mapped
to its server task (SCOOT-R quality indicator).

126 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

Activation frequency and confidence coefficient

©
o
)

©
o
L

~
o
L

@
o
L

Active —a—confT1

C /Active —=—freqT1
— —confT2
] ——freqT2
L \‘\ q

Standby

o
o
L

5
o
L

w
o
L

Freq (activations/s) and conf (%)

N
o
L

Standby

-
o
L

o

1 2 3 4 5 6 7
Time (mn)

Figure 5.6: Activation frequency and confidence coefficient

The major disadvantage of this scheme is the need to compute the metric by several techniques
in order to update the value of the confidence coefficient associated to each one. In order to limit
this computing overcost, the data fusion team could obtain the confidence coefficient of metrics
independently of the metric value.

5.4.3 Downward scheme: feedback scheduling regarding driving situation

In this scheme, we consider the run-time assignment of criticalness to the metrics of the current driving
situation. This assignment is based on the change of driving situation. Many criteria may affect the
driving situation, for example the state of the environment (e.g., 'wet’ or ’dry’ road conditions; ’day’
or 'night’ visibility). The switch from a driving situation to another will modify the set of metrics used
within the driving situation and the criticalness of these metrics.

As mentioned before, an independent module allows the detection of the driving situation change
(CASSISE module). It informs all the nodes by broadcasting this change. Each node of the system
contains a table that stores the criticalness of each local metric within a specified driving situation.
Thus, in case of change in the driving situation, each local node applies its policy using the local table
and assigns the criticalness to metrics based on the driving situation. The scheduling techniques follow
one of the two strategies described below.

5.4.3.1 Using a finite number of criticalness classes

In this scheme, we consider a finite number of criticalness classes. Thus, we assign to each metric
certain level of criticalness (Figure 5.7). Let’s recall that during a driving situation, the criticalness of
each metric remains constant.

In Figure 5.7, we consider for example three set of ADAS functions (driving situation, vehicle
diagnostic functions, and alarm functions), which are mapped to three level of criticalness.

However, we have defined four classes of criticalness to cover the most automotive high-level
applications requirements. These classes are:

5.4. FEEDBACK SCHEDULING OF TASKS AND MESSAGES 127

Driver Situation Criticalness Classes Criticalness Classes

High critical
Overtaking 2\
1

Situation 3
Change 5
b Less critical
Vehicle Diagnostic
Criticalness Classes Criticalness Classes
1 1
Vehicle 2 2

Body 3 Situation 4

Change
3 l
Signalisation
5

Alarms

Dynamic Situation 4
Vehicle Change

Speed q
2 3
Others
5 .

Figure 5.7: Driving situation switch

Highly Critical (class 1): highly critical metrics to be computed;

Critical (class 2): must be guaranteed excepted in the case of system failure (hardware reconfig-
uration, etc.);

Less Critical (class 3);

e non-critical (class 4).

Class 1 includes the most critical functions of the system such as decisive metrics for the current
driving situation. The services inside this class must satisfy their requirements whatever the situation
is (excepted in case of hardware failures).

In class 2, the services are considered critical and must satisfy their timing requirements in case of
normal operation of the system. In case of partial failure or another incidents in the system, this part
of services may miss some deadlines. Thus, these services are qualified as strict real-time in absence
of incident and soft real-time in presence of incidents. These services include the most metrics for the
current driving situation.

The class 3 concerns the soft real-time services of the system. The services of this class are not
hard real-time but require some level of correctness. This services concerns generally the metrics of no
interest with the current driving situation.

In class 4, the services are not real-time (e.g., telematic functions). The services of this class are
considered to be sacrificed in case of overload and failure situations.

128 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS
5.4.3.2 Using a continuous scale of criticalness

In this case, we consider a continuous scale of criticalness instead of finite number of classes. The main
advantage of this approach is that there is no restrictions on the criticalness levels of components,
i.e., the programmers may express their specifications without restrictions. We will use the notion of
"utility value" to define the criticalness of a metric.

The main objective in this scheme is to obtain a utility value for each metric that can be used for
best benefit scheduling. Given the set of metrics for a particular driving situation, we can generate an
ordinal measurement of values using pair-wise comparisons and preference judgments, through a sort
of dichotomy.

To compute the utility value, binary relations, commonly found in set theory can be used to compare
the utilities of different metrics. Let "More critical" be such a relation:

S1 More critical than S2 = V(S1) > V(52) (5.4)

Where V is the "value function" that assigns a real number to a driving situation. If V is defined
for only a part of S, then it is a partially ordered utility value function. If V is defined for all Si in S,
then it is called an ordinal value function.

Hereafter, we present an illustrative example of two driving situations ” National — Road — 2 x 17
(two-way road) and ” Driving— In— File”. Each driving situation contains several metrics that provide
the relevant information (Figure 5.8).

r Acceleration

- Target Change
- Braking

puitl

r MNational_Road_2*1 ——m

- Reaction Time
I Time Headway
I Facelab Reaction Time
Goal: To Pricritize metrics in driver situations L Mean Speed
Braking
Acceleration

= Criving_In_Fil UN
ULl Pedale Take Chver

TTC

Mean Speead

Figure 5.8: Driving situations ” National — Road—2+1” and ” Driving — In — File” and their associated metrics

In order to obtain an ordinal value of utility for each metric, we proceed by pairwise comparison
based on preference judgments between metrics. The domain expert decision maker can be asked to
express the preference relation between every pair of metrics available in a specified driving situation. If
the expressed preferences are consistent, then an ordinal value function can be constructed to represent
them.

Let’s note that the values are computed locally and globally. We consider that during a driving
situation, the utility values of metrics are computed and remain constant in the same situation. These
values are computed by two ways: (1) values are computed locally using the metrics for the current
situation, (2) values are computed globally using all metrics of all driving situation that may exist in
the system.

5.4. FEEDBACK SCHEDULING OF TASKS AND MESSAGES 129

We used Expert Choice (EC) software to perform the pair-wise comparisons and built up an internal
representation of preference judgments. EC is a independent shareware running under Windows that
supports various graphical and user-interface methods to enable these pair-wise comparisons to be
entered [EC886]. The comparison procedure is easy to carry out provided that there is a field knowledge
and engineering data available to support the comparisons.

Figure 5.9 illustrates an example of a driving situation ” National — Road — 2+ 1”. The utility value
of metrics are obtained locally using the pairwise comparison within the ” National — Road — 2 % 1”
driving situation.

Synthesis with respect ta: Mational_Foad_2+1
[Goal: Ta Prioritize metri > National Road_2<1 [L: 50)
Overall Inconsiztency = 11

Time Headway ey]
Acceleration T2 I ————
Mean Speed A2 I ——
Target Change 21—
Facelab Reaction Time 120 |
e 03—
Feaction Time 03—
I 057 I
Braking 074 I—
Utility values

Figure 5.9: Utility values for ” National — Road — 2 * 1”7 driving situation obtained by pairwise comparison

In Figure 5.10, an ordinal value of metrics utility is obtained for all the driving situations. The
pairwise comparison is made in two steps. First, by comparing the driving situations, and then, the
comparison of the metrics in each driving situation.

Synthesiz with respect to:
Goal To Prioritize metrics in diver stuations
Overall Inconsistency = .19

Acceleration 13 I
Braking 129 I
TV A2 I
Mean Speed 21—
TTC oy
Time: Headway ey
Pedale Take Over 020 I
Taiget Change ore
Facelab Reaction Time 072 [NNNNENGGGNEEE
Reaction Time ez I

Utility values

Figure 5.10: Utility values for all metrics of all driving situations obtained by pairwise comparison

The utility values of all metrics are obtained for a specified driving situation. Hence, we can apply
the CDP-BBA algorithm to schedule dynamically the transactions and associated tasks.

Choosing the utility values of all metrics at run-time regarding a specified driving situation is
prohibitively time consuming. To overcome this, we propose to compute statically and off-line the
utility values.

The set of driving situations is supposed to be known a priori and the associated metrics too.
Thus, at pre run-time, the field expert performs pairwise decisions and then obtains the desired values.
These values remain constant for a given configuration.

130 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

5.4.3.3 Using CDP-BBA scheduling strategy to schedule the metrics and associated
components

Now that the assignment of criticalness to metrics has been established, using a finite number of
criticalness classes or using continuous scale of criticalness, we can then apply the CDP-BBA dis-
tributed scheduling strategy to schedule these metrics and associated components. As our distributed
computing architecture is based on client/server model, the scheduling of transactions using CDP-BBA
is coherent with our case study presented here. Figure 5.11(a) shows the computing architecture using
a client/server model.

Computer 1 Computer 2

Server
Server Sewer e
RD
'}]
Server vi Client 2| |Client 1
s '
il
H
1
1
1
1
i

1
[}
}
| lo oo HI.
’ __________________ + Network Bus ‘
|

Server
Criticalness =

|
|
JE— Max(C1, C2, C3,)
* Client 5 ‘
s Server

Computer 3 Computer 4
Client1 Client2 Client3
Criticanless: C1 Criticanless: C2 Criticanless: C3
(a) Distributed computing architecture (b) Server criticalness inheritance from its clients

Figure 5.11: Computing architecture and criticalness inheritance

The feedback scheduling may be implemented directly using CDP-BBA. It will consider the criti-
calness and the deadlines of messages while making a scheduling decision. The use of a client/server
model in our architecture has lead to precedence relations. For example, client4 in computer4d must
wait the response from the server "MS" on computer3. The server "T'TC" on computer2 must wait
also the responses from the "RS" (Relative Speed) and "RD" (Relative Distance) servers (computerl)
to compute a new value of "MS" (Mean Speed). This precedence scheme introduces constraints on the
criticalness of the entities of the system. Let’s give the case of a client and its server, we suppose also
that the client and the server belong to two different components. It is the case of the client4 and the
"MS" server in our architecture. The client waits for the server response. Initially the client and the
server have different level of criticalness since they belong to two different components. Let’s suppose
that the client has a criticalness greater than the server one. This leads to a logical contradiction. To

solve this problem, the simple way is to assign to the server the highest criticalness of its clients (Figure
5.11(b)).

The server examines the client request and extracts the criticalness parameter from the message
header. Then, it compares it to its current criticalness and sets the highest value.

As shown in Figure 5.12, the distribution of decision is totally transparent and the scheduling
decisions are made on each node of our computing architecture using the same rules.

5.5. SIMULATION RESULTS 131

Messages Queue 1
Server 1/ |__ ges Q
Task 1 Mil: Mi2:
M11i, M11d M12i, M12d
S Y Messages Queue 2
er‘liezr — Intelligent o - .
Tas Scheduler M21i, M21d | M22i, M22d M2ki, M2kd
Messages Queue n
Server n/
— Mnl: Mn2: Mnm:
Task n Mn5i, Mnsd | Mn2i, Mn2d Mnmi, Mnmd

Figure 5.12: Using BBA to distribute adaptive scheduling

5.5 Simulation results

In order to illustrate the performance of the proposed feedback scheduling techniques, we have modeled
the computing architecture presented in section 5.3.2 using the TrueTime toolbox of Matlab.

The architecture comprises four computers. We have implemented the client/server model of
SCOOT-R in TrueTime Matlab toolbox to exchange data between the components. Table 5.2 shows
how the components are located and distributed on computers.

Components .
Computer Clients Servers
Computerl No-Clients Instantaneous Speed (IS) server,
Relative Speed (RS) server, Rela-
tive Distance (RD) server
Computer2 Relative Speed client (Client 1) , | TTC server
Relative Distance client (Client 2)
Computer3 Instantaneous Speed client (Client | Mean Speed (MS) server
3)
Computer4 Mean Speed (MS) Client (Client 4), | Time Headway (TH) server
Relative Distance client (Client 5)

Table 5.2: Computing architecture

The computing architecture is thus composed of several components, each component contains
several clients and servers and processing tasks. Figure 5.13 illustrates the communication between
these components.

To detect driving situation change, a fifth computer (monitor computer) is added. Monitor computer
contains a periodic task that broadcasts a message each 10 seconds to announce a driving situation
change.

Moreover, each computer contains an independent aperiodic task called "status change". This task
detects the reception of a driving situation switch message and then extracts the status information
from it to map the associated criticalness to the local component using a local static table (Figure
5.14).

To assign the criticalness of components on a local node, each computer contains a static table that
contains all the driving situations and associated components criticalness (Tables 5.3 and 5.4). The
criticalness values are computed at pre run-time.

To execute the components based on their criticalness and deadlines, we used the CDP-BBA
algorithm. We conducted simulation studies to determine the effect of driving situation change on

132

the components performances; the criteria used to measure the performance is the response time of

CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

Component 1

RS
Server

RD
Server

Relative

Speed (RS)
Relative

Is

Component 3
‘ Server

RD
Server

Instantaneous |Speed (I1S)

Distance (RD)

Client 1

Client 2

H

H

Time To Collision
TTC

Server

TTC

Component 2

Component 4
Client 3

Mean Speed M

Relative

Distance (RD)

Component 5

Client 5 |

Figure 5.13: Components interactions and metrics computation architecture

Components
Driving situation Client RS (Client1) Client RD (Client2) | TTC server
Driving Situation S1 1 1 2
Driving Situation S2 2 3
Driving Situation S3 1 1 2

Table 5.3: Driving situation and associated criticalness on computer 2

Components

Driving situation Client RS (Client1) Client RD (Client2) | TTC server
Driving Situation S1 3 4
Driving Situation S2 2 1 3
Driving Situation S3 3 3 3

Table 5.4: Driving situation and associated criticalness on computer 4

transactions.

Figure 5.15(a) shows response times in seconds of client2 in case of multiple driving situations.
While respecting the criticalness values depicted in Table 5.3, we show that client2 has a criticalness
value of 1 in the driving situation S1, whereas client5 has a criticalness 3 in this situation (Table 5.4).
The component having the lowest value of criticalness is the most critical. Thus, as shown in Figure
5.15(a) and Figure 5.15(b), the average response time of client 2 is smaller than client 5 during the
S1 driving situation, whereas during S2 driving situation, client 5 has a response time average smaller

than client 2.

Let’s note that in the absence of a feedback scheduling technique, those response times would be

equal to the highest value 0.015 seconds instead of 0.01 seconds.

5.6. CONCLUSION 133

Incoming messages
on node

!

I
|

Messages dispatcher

Driving situation
Client to serve Server toclient hange
(request), (reply,

Client port number Signal
3 dispatcher status_change
2
@

v

Changing criticalness

Signal of modules (static
receive_msg_server table)
Server Client3 Client2 Client1
task task task task

Figure 5.14: Dispatching incoming messages to clients and servers

Computer 2:" Relative distance” Client 2 (Component 2)
T T T T

0.016

T T T T Computer 4:" Relative Distance” Client 5 (Component 5)
| ' | 0016 T T T T T T T T
s2 s3 T
$1 1 ! 1 s1 . s2 ! S3 1
' I ' ' [
1 1 ' [l
0.014 | ' ' R 1
1 f ' 0014 [
1 1 i |
1 1 N | [
1 1 1 Il
0012 ' | ' R I
° ' ' ' _ 0012 i
2 1 2 (
E ' 1 .
; ' : - : :
o 1
2 o001 " " 1 I t
2 A 2 001)
2 5 l
-4 " 2 l
o U
i o v
0.008 ! g
0.008 i
i ‘ !
t
. . w I
| d |
0.006 | " ! R I
! 0.006 i
f 1
h Il
' ' ' .
0.004 . 1 . o . n . . . : ! '
0 50 100 150 200 250 300 350 400 450 500 0.004 . . . | . L, . . .
' ' ' 0 50 100 150 200 250 30D 350 400 450 500

Transaction ' Transaction

(a) Response time of client 2 regarding driving (b) Response time of client 5 regarding driving
situation change situation change

Figure 5.15: Transactions response time

5.6 Conclusion

For the case study depicted in this chapter, we have identified a set of driving situations, determined
statically at pre run-time. Each driving situation is related to a set of metrics. A metric is a useful
information that indicates a relevant measure about the vehicle and the driver behavior.

We have developed and analyzed feedback-based adaptive scheduling strategies to re-schedule
the metrics in case of driving situation change. Thus, we identified the relation between the driving

situation (e.g., overtaking or fluid driving on motorways) and the parameters of the associated metrics
components (e.g., criticalness or utility value).

The adaptation in our scheme is thus carried out on the driving situation, which will further lead
to the criticalness change of the associated metrics components. Thus the schedule will be adjusted so

134 CHAPTER 5. DYNAMIC FEEDBACK SCHEDULING FOR AUTOMOTIVE ENVIRONMENTS

that we obtained a task scheduling that satisfies the desired real-time requirements.

When the criticalness values of the metrics components inside a specified driving situation are
computed, we can apply our scheduling technique CDP-BBA to re-schedule the metrics components
in a distributed environment while taking into account their criticalness values.

The driving situation change is detected by a separate module that broadcasts this change in-
formation to all the nodes of the network. Then, the supervisor module on each node examines this
information and then applies the associated scheduling policy to its local components.

The simulation results show an amelioration of the worst response times for clients with higher
criticality with respect to the current driving situation.

We are also able to design these feedback-based schemes by applying other scheduling techniques
such as MUF [SK91a], DASA and LBESA [LRWKO04].

On the other hand, the run-time detection and diffusion of the driving situation change is pro-
hibitively time consuming.

Conclusions and Perspectives

(General context

The research works depicted in this thesis have been conducted at Heudiasyc laboratory, among the
advanced vehicle team, with the support of the European project RoadSense whose main objective
was the development of an evaluation framework for new Human Vehicle Interfaces (HVI) strategies.
A certain number of metrics was defined describing the reaction of the driver with respect to the
assistance system, the performances of the driver are thus evaluated, with and without the assistance
system, in order to assess its true benefit on the improvement of safety. The objective is thus to provide
the data-processing tools necessary to the calculation of these metrics.

Part of our laboratory contribution to the project was the design of a distributed real-time sys-
tem called D-BITE (Driver Behavior Interface Test Equipment). D-BITE permits to compute driver
behavioral metrics for safety, comfort and support assessment. D-BITE system uses our SCOOT-R
middleware to ensure the real-time communication between the perception sensors, fusion elements,
decision modules, and the man-vehicle interface.

Communication sub-system and middleware services: SCOOT-R

The large amount of data to be acquired and processed, the distributed environment of the applications,
and the need of dynamic reconfiguration and synchronisation mechanisms, all these requirements have
lead us to the development of the middleware SCOOT-R.

SCOOT-R enables application programmers to design and develop distributed real-time appli-
cations. It is layered between the application and the OS kernel and it handles, on behalf of the
application, the temporal correctness, real-time communication and synchronisation in a distributed
environment. SCOOT-R supports two different types of communication: request/reply interaction
(client /server model) for asynchronous applications as well as real-time streaming data (emitter/re-
ceiver model) for isochronous applications. While SCOOT-R client/server model was conceived to
respond to asynchronous applications, the emitter/receiver model is introduced to cover synchronous
applications with high bandwidth, such as image acquisition, high rate analog signals acquisition, etc.

SCOOT-R ensures also a dynamic reconfiguration by replicating software components. The re-
dundancy management in SCOOT-R does not require specific efforts of design and development to
dynamically replace a server or emitter or to activate a redundant function. This enables an evolution
of the services without interruption.

Using the TEEE-1394 bus as communication media and the RTAI kernel as operating system, the
worst case client/server transaction delay for remote communication (client and server located on
separate computers) is less than 100 ps without other activity on the IEEE-1394 bus. Furthermore,
The recovery time when a server or emitter is removed and replaced by another (with higher quality)
is in worst case 120 us without other communication activity or servers/emitters registering activity.

135

136 Conclusion

The contribution of the thesis to SCOOT-R was related to the evolution of the temporal SCOOT-R
model (temporal contract and rules). We have contributed to the development of the emitter/receiver
model that was added to the basic client/server model to provide a complete distributed solution
with the support of data flow applications (e.g., real-time image acquisition and processing, analog
signal acquisition, etc.). Finally, the thesis has contributed to the development methodology of user
applications and the worst case analysis of the distributed system.

SCOOT-R was used for the RoadSense project to acquire embedded sensors data in run-time and
to perform post-processing in order to elaborate the necessary metrics and indicators. The SCOOT-R
use is justified by the need of distributed, modular and flexible architecture that provide checking and
synchronisation services.

Using SCOQOT-R for this type of applications has shown us the need to provide a certain guarantee
of the proposed communication services. For this reason, a new research topic concerning the system
dependability is currently initiated. There is a double goal to this work: First, to prove that SCOOT-R
satisfies the constraints on its reliability. This means to verify that no message can be lost, delayed
or altered in case of occurrence of any internal or external event. Second, in a more general way to
show that a system integrating this middleware layer can be considered as reliable and thus providing
the required services in the defined time interval. This is why a formal SCOOT-R model is under
construction with a colored temporised petri network.

Moreover, we are currently working on the development of an embedded version of SCOOT-R using
OSEK RTOS on PowerPc (MPC555).

Distributed scheduling

The initial version of SCOOT-R does not provide any mechanism for clients to indicate the relative
scheduling parameters of their requests to SCOOT-R endsystems. This feature is necessary, however,
to minimize end-to-end priority inversion, as well as to bound latency and jitter for applications with
real-time QoS requirements.

Therefore, we have presented in chapter 4 our contribution to develop distributed scheduling
strategies defining the end-to-end priority and timeliness propagation of distributed transactions.

Two distributed scheduling strategies are proposed, the Client Priority Propagation (CPP) and
the Client Deadline Propagation (CDP). Then, we have compared these scheduling strategies with
the trivial FIFO scheme. A mechanism of priority inheritance is implemented to avoid the priority
inversion, i.e. the priority of the client task is mapped on the associated server task.

CPP provides, like the RM scheduling strategy, a schedulability assurance prior to run-time for
invocations with higher priorities in case of overloaded situations. On the other hand, CPP offers an
equivalent performance for lower priorities invocations.

When CPP is useful for transactions in fixed-priority applications, CDP reflects perfectly the timing
profile of distributed transactions. Clients in CDP may express their timing profile by an arbitrary
absolute deadline and thus a coherent scheduling may be implemented on all the nodes. Like CPP, CDP
guarantees a high schedulability assurance for invocations with higher priorities (earliest deadlines).

Moreover, from a methodology point of view, CDP is well adapted to our middleware and more
widely to any component-oriented approach (provided that we have an accurate global time). CDP is
also relevant in case of mixed networks when several nodes apply the CDP policy and other limited
nodes work with the FIFO scheme.

Unfortunately, the weakness of the CDP model is the performance degradation in case of overloaded

Conclusion 137

situations. Like all the purely dynamic scheduling algorithms (e.g., EDF, MLF), a transient overload
in the system may cause a critical task to fail, which is not desirable for a dynamically reconfigurable
system.

Thus, to overcome this limitation and to deal with overload conditions, we have developed a
hybrid static/dynamic scheduling strategy, the Best Benefit (CDP-BBA) strategy. CDP-BBA allows
the integrated tasks/messages scheduling while taking into account the deadlines and criticalness of
tasks and associated messages. CDP-BBA guarantees the temporal requirements of the mandatory
tasks and associated messages. It has to respect the deadlines and to consider the criticalness of the
tasks in case of overload.

The proposed scheduling techniques are well adapted for transactional communication model (e.g.
client/server) and are implemented using our SCOOT-R middleware. Our prototype implementation
of these scheduling strategies in a middleware shows their effectiveness.

The design and implementation phases of new scheduling strategies and their integration in a
distributed environment were significally reduced, proving the relevance of SCOOT-R middleware
technology.

Our experimental results show that the original SCOOT-R implementation, in case of high CPU
load or many concurrent clients on the network, cannot preserve end-to-end priority and deadline, and
thus leads to high latency bounds.

Using the scheduling strategies developed in this thesis, the priority and deadline are propagated
from end-to-end, thus avoiding the priority inversion phenomena. Furthermore, the client having the
closest deadline misses fewer deadlines in case of increasing workload.

As future perspective in this direction, we plan to establish a complete framework that allows the
development and integration of new scheduling techniques in a distributed environment. The main goal
is to provide the programmers by a complete set of tools and services that will permit to design and
develop real-time scheduling algorithms for real applications. In the mean time, we plan to integrate
the (m-k) firm scheduling algorithm to take into account the criticalness of tasks/messages. Thus, our
objective is the fast prototyping and implementation of real-time scheduling techniques in a distributed
environment using the middleware approach.

Feedback scheduling

Real-time systems for advanced vehicle are usually characterized by the highly dynamic and non-
deterministic environment. The inherent non-determinism may be introduced by many factors, such
as the road conditions, driving situation, and nature of other vehicles.

Moreover, computing resources used inside an advanced vehicle are limited, and may fail. A dynamic
and adaptive scheduling strategy may lead to a better utilization of resources and to select the
important services regarding the system configuration.

The idea in chapter 5 is to consider a feedback-based scheduling scheme for driving assistance
functions. The case study that we have considered for this purpose consists of a set of driving situations
where each driving situation includes a set of metrics.

The feedback scheduling technique allows the distributed scheduling of tasks/messages regarding
the driving situation change. Since the driving situation changes dynamically, the associated metrics
and their components criticalness values change too. By applying the CDP-BBA scheduling strategy
developed in chapter 4, we have re-scheduled the metrics components in a distributed environment
while taking into account their criticalness values.

138 Conclusion

In order to use the adaptive scheduling techniques developed in this thesis, we plan to test them
on real case study. For this purpose, we will consider the driving situations database of the CASSISE
project. The aim of the CASSICE project (French acronym for Symbolic Characterization of Driving
Situations) was to build an automatic classifier of driving situations. ADAS functions will be re-
scheduled and adapted to the current vehicle situation and driver behavior using our proposed feedback
scheduling techniques.

On the other hand, Vehicular Networks are a cornerstone of the envisioned Intelligent Trans-
portation Systems (ITS). By enabling vehicles to communicate with each other via Inter-Vehicle
Communication (IVC) as well as with roadside, vehicular networks will contribute to safer and more
efficient roads by providing timely information to drivers and concerned authorities.

Thus, an important direction of perspective is the scheduling of cooperative ADAS in a distributed
environment. Qur laboratory is involved in two European Integrated Projects for the IVC technology
such as SAFESPOT, and CVIS (2006-2010). These IVC activities motivate us to reconsider our
framework SCOOT-R to deal with wireless environment. The idea is to design a SCOOT-R Wireless
version that allows reliable communication and adaptive scheduling of messages between vehicles.
Because of the limited precision and reliability of exchanged messages, the true values of the logical data
are usually not known with certainty. The messages are thus considered with some level of confidence
(that may be computed by a belief function, statistical measures, etc.).

Bibliography

[AAS97]

[AB90)

[AB9S]

[AB9Y]

[ABA*97]

[ABD*95]

[ABRWO1]

[ACS6]

[ACCP98]

[Ack97]

Tarek F. Abdelzaher, Ella M. Atkins, and Kang G. Shin. QoS negotiation in real-time
systems and its application to automated flight control. In proceedings of the Third IEEE
Real-Time Technology and Applications Symposium (RTAS’97), Montreal, Canada, 1997.

N. Audsley and A. Burns. Real-time system scheduling. Technical report, University of
York, 1990.

L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems.
In proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS’98), Madrid,
Spain, 1998. IEEE Comput.

L. Abeni and G. Buttazzo. Adaptive bandwidth reservation for multimedia computing.
In proceedings of the IEEE Real Time Computing Systems and Applications, Hong Kong,
December 1999.

T. Abdelzaher, M. Bjorklund, S. Awson, W.-C. Feng, F. Jahanian, S. Johnson, P. Arron,
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, and H. Zou. ARMADA middleware
and communication services. In proceedings of the IEEE Workshop on Middleware for
Distributed Real-Time Systems and Services, San Francisco, California, USA, 1997.

Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J. Wellings.
Fixed priority preemptive scheduling: an historical perspective. Journal of Real-Time
Systems, 8(2-3):173 — 198, 1995.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time scheduling:
The deadline monotonic approach. In proceedings of the 8th IEEE Workshop on Real-Time
Operating Systems and Software, Atlanta, 1991.

Steven Anderson and Marina C. Chen. Parallel branch-and-bound algorithms on the
hypercube. In second Conference on Hypercube Multiprocessors, pages 309 — 317,
Knoxville, Tennessee, Oakridge National Laboratories, September 1986.

Emmanuelle Anceaume, Gilbert Cabillic, Pascal Chevochot, and Isabelle Puaut. HADES:
A middleware support for distributed safety-critical real-time applications. In proceedings

of the International Conference on Distributed Computing Systems, pages 344 — 351, 1998.

Sven Ackmer. Distributed real-time systems for automotive. Technical report, Computer
Systems, Engineering Halmstad University, January 1997.

139

140

[AFH*03]

[AHCA05]

[And9g|
[arc]

[AS99]

[AWPvS01]

[Bak03]

[Bat9g]

[BBH90]

[BBLO1]

[BCO5]

[Ber93]

[Bez05]

Bibliography

J. Axelsson, J. Froberg, H. Hansson, C. Norstrom, K. Sandstrém, and B. Villing. A
comparative case study of distributed network architectures for different automotive
applications. Technical Report 478, Mailardalen Research and Technology Centre,
Department of Computer Science and Electronics, Mélardalen University, January 2003.

Martin Andersson, Dan Henriksson, Anton Cervin, and Karl-Erik Arzén. Simulation
of wireless networked control systems. In proceedings of the 44th IEEE Conference
on Decision and Control and Furopean Control Conference ECC 2005, Seville, Spain,
December 2005.

D. Anderson. FireWire System Architecture TEEE-1394. MinDShare, Inc, 1998.
Projet arcos: Action de recherche pour une conduite sécurisée.

Tarek F. Abdelzaher and Kang G. Shin. QoS provisioning with qContracts in web and
multimedia servers. In proceedings of the IEEE Real-Time Systems Symposium (RTSS’99),
pages 44-53, 1999.

Jodo Paulo A. Almeida, Maarten Wegdam, Luis Ferreira Pires, and Marten van
Sinderen. An approach to dynamic reconfiguration of distributed systems based on object-
middleware. In proceedings of 19th Brazilian Symposium on Computer Networks, (SBRC
2001), Santa Catarina, Brazil, May 2001.

David E. Bakken. Middleware. Kluwer Academic Press, 2003.

J. Bates. The state of the art in distributed and dependable computing. Technical Report
90-038, Laboratory for Communications Engineering, Cambridge University, October
1998.

P. Barrett, P. Bond, A. Hilborne, L. Rodrigues, D. Seaton, N. Speirs, and P. Verissimo.
The Delta-4 extra performance architecture (XPA). In Digest of Papers of the 20th IEEE

International Symposium on Fault-Tolerant Computing (FTCS), pages 481 — 488, June
1990.

Guillem Bernat, Alan Burns, and Albert Llamosi. Weakly hard real-time systems. IEEE
transactions on computers, 50(4):308 — 321, 2001.

Olivier Bezet and Veronique Cherfaoui. On-line timestamping synchronization in
distributed sensor architectures. In proceedings of the 11th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS’05), pages 396 — 404, Washington, DC,
USA, 2005.

Philip A. Bernstein. Middleware: An architecture for distributed system services.
Technical Report CRL 93/6, Cambridge MA (USA), 1993.

Olivier Bezet. Etude de la qualité temporelle des données dans un systéme distribué pour la
fusion multi-capteurs. Phd dissertation, Université de Technologie de Compiégne, France,
2005.

Bibliography

[BG92)

[BGM*97]

[BISZ98]

[BLAYS]

[Bon99]

[BPBOO]

[BS89)

[Bur95|

[Bus93]

[But05]

[BW96]

C.96]

[CBY7]

[CCS03al

[CCS03b]

141

Thomas E. Bihari and Prabha Gopinath. Object-oriented real-time systems: Concepts
and examples. Computer, 25(12):25 — 32, 1992.

E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M. Spasojevic, and
J. Wilkes. Using attribute-managed storage to achieve QoS. In proceedings of the 5th
International Workshop on Quality of Service, New York, June 1997.

C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic reconfiguration service
for CORBA. In proceedings of the International Conference on Configurable Distributed
Systems, 1998.

G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control.
In proceedings of the IEEE Real-Time Systems Symposium, pages 286 — 295, Washington,
DC, USA, 1998.

Christian Bonnet. Introduction auz systémes temps-réel. Hermes Editions, 1999.

A. Burns, S. Poledna, and P. Barrett. Replica determinism and flexible scheduling in
hard real-time dependable systems. IEEE Transactions on Computers, 49, 2000.

T.P. Baker and A.C. Shaw. The cyclic executive model and Ada. Journal of Real-Time
Systems, 1, 1989.

Alan Burns. Preemptive priority-based scheduling: an appropriate engineering approach.
pages 225 — 248, 1995.

CAN Bus. Road vehicles - interchange of digital information - Controller Area Network
(CAN) for high-speed communication, November 1993.

Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms
and applications. Springer, New York, USA, 2005.

Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages.
Addison Wesley, 2nd edition, 1996.

Shen C. On ATM support for distributed real-time applications. In proceedings of IEEE
Real-Time Technology and Applications Symposium, Boston, MA, USA, June 1996.

M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for enhancing aperiodic
responsiveness. In proceedings of the 18th IEEE Real-Time Systems Symposium, page
330, Washington, DC, USA, 1997.

K. Chaaban, P. Crubill¢, and M. Shawky. Real-time embedded architecture for intelligent
vehicles. In proceedings of the Fifth Real-Time Linux Workshop, Valencia, Spain,
November 2003.

K. Chaaban, P. Crubillé, and M. Shawky. SCOOT-R: A framework for distributed
real-time applications. In proceedings of the WIP of the 2/h IEEE Real-Time Systems
Symposium, Cancun, Mexique, November 2003.

142

|CCS03c|

[CCS04]

[CDDY6)|

[CDKM99]

[CDKMOO0]

[CE00]

[Che99]

[CHY*97]

[CLWY1]

[CM95]

[CPY9]

[CP00]

[CPO01a]

Bibliography

K. Chaaban, P. Crubillé, and M. Shawky. SCOQOT-R: Middleware communication
services for real-time systems. In proceedings of the 7th International Conference on
Principles of Distributed Systems (OPODIS’03), pages 96 — 107, La Martinique, French
West Indies, December 2003.

K. Chaaban, P. Crubillé, and M. Shawky. Real-time framework for distributed embedded
systems. In Principles of Distributed Systems, volume 3144 of Lecture Notes in Computer
Science, pages 96 — 107. Springer-Verlag GmbH, January 2004.

Flaviu Cristian, Bob Dancey, and Jon Dehn. Fault-tolerance in air traffic control systems.
ACM Transactions on Computer Systems, 14(3):265 — 286, 1996.

Francis Cottet, Joélle Delacroix, Claude Kaiser, and Zoubir Mammeri. L’ordonnancement
centralisé en temps réel. Techniques de I'Ingénieur, Traité Informatique Industrielle, 1999.

Francis Cottet, Joélle Delacroix, Claude Kaiser, and Zoubir Mammeri. L’ordonnancement
réparti en temps réel. Techniques de I'Ingénieur, Traité Informatique Industrielle, 2000.

A. Cervin and J. Eker. Feedback scheduling of control tasks. In proceedings of the IEEE
Conference on Decision and Control, pages 4871 — 4876, Sydney, December 2000.

Pascal Chevochot. Conception de systémes distribués temps-réel strict tolérants aux fautes.
Phd dissertation, Université de Rennes I, Rennes, France, January 1999.

Emerald Chung, Yennun Huang, Shalini Yajnik, Deron Liang, Joanne C. Shih, Chung-Yih
Wang, and Yi-Min Wang. DCOM and CORBA side by side, step by step and layer by
layer. 1997.

Lim C., Yao L., and Zhao W. A comparative study of three token ring protocols for
real-time communications. In proceedings of the 11th IEEE International Conference on
Distributed Computing Systems, pages 308 — 317, Arlington, Texas, USA, May 1991.

C. Cardeira and Z. Mammeri. A schedulability analysis of tasks and network traffic in
distributed real-times systems. Journal of Measurement, 15, 1995.

P. Chevochot and I. Puaut. Scheduling fault-tolerant distributed hard real-time tasks
independently of the replication strategies. In proceedings of the 6th International
Conference on Real-Time Computing Systems and Applications (RTCSA), Hong-Kong,
China, December 1999.

Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor
with branch prediction. Real-Time Systems, 18(2-3):249 — 274, 2000.

Pascal Chevochot and Isabelle Puaut. Conception de systémes distribués temps-réel strict
tolérants aux fautes avec du matériel sur étagére. In proceedings of the 9th International
Conference on Real-Time Systems (RTS’01), pages 209 — 226, Paris, Mars 2001.

Bibliography

[CPO1b]

[Crigl]

|CRTM99]

[CS01]

[CSCO4]

[CSCO5)

[CSR89]

[CW96]

[CZ95]

[DA9G6]

[dC96]

[dOdSF00]

[DTTYY]

143

Antoine Colin and Isabelle Puaut. A modular and retargetable framework for tree-based
WCET analysis. In proceedings of the 13th Euromicro Conference on Real-Time Systems
(ECRTS’01), page 37, Washington, DC, USA, 2001.

Flaviu Cristian. Understanding fault-tolerant distributed systems. Communications of
the ACM, 34(2):56 — 78, 1991.

L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a revolution in on-
board communications. Technical report, Volvo, 1999.

Junchul Chun and Jaegi Son. A CORBA-based telemedicine system for medical image
analysis andmodeling. In proceedings of the 14th IEEE Symposium on Computer-Based
Medical Systems, CBMS’01, pages 14 — 29, Bethesda, MD, USA, 2001.

K. Chaaban, M. Shawky, and P. Crubillé. Dynamic reconfiguration for high level in-vehicle
applications using ITEEE-1394. In proceedings of the IEEE Conference on Intelligent
Transportation Systems (ITSC), Washington, D.C, October 2004.

K. Chaaban, M. Shawky, and P. Crubillé. A distributed framework for real-time in-vehicle
applications. In proceedings of the IEEE Conference on Intelligent Transportation Systems
ITSC, Vienna, Austria, September 2005.

S.-C. Cheng, J.-A. Stankovic, and K. Ramamritham. Scheduling algorithms for hard
real-time systems: a brief survey. Tutorial: hard real-time systems, pages 150 — 173, 1989.

Geoff Coulson and Daniel Waddington. A CORBA compliant real-time multimedia
platform for broadband networks. In proceedings of the International Workshop on trends
in distributed systems (TreDS), volume 1161, pages 14 — 29, 1996.

Cardeira C. and Mammeri Z. A schedulability analysis of tasks and network traffic in
distributed real-time systems. Journal of Measurement, 15(2):71 — 83, 1995.

Sekhar Darbha and Dharma P. Agrawal. Scalable scheduling algorithm for distributed
memory machines. In proceedings of the 8th IEEE Symposium on Parallel and Distributed
Processing (SPDP’96), page 84, Washington, DC, USA, 1996.

Francisco VASQUES de CARVALHO. Sur l’intégration de mécanismes d’ordonnancement
et de communication dans la sous-couche MAC de résequx locauxr temps-réel. Phd
dissertation, Laboratoire d’Analyse et d’Architecture des Systémes (LAAS), Toulouse,
June 1996.

R. Silva de Oliveira and J. da Silva Fraga. Fixed priority scheduling of tasks with
arbitrary precedence constraints in distributed hard real-time systems. Journal of Systems
Architecture, 46, 2000.

Anne-Marie Déplanche, Pierre-Yves Théaudiére, and Yvon Trinquet. Implementing a
semi-active replication strategy in CHORUS/ClassiX, a distributed real-time executive.
In Symposium on Reliable Distributed Systems, pages 90 — 101, 1999.

144

[ea93|

[EC886]

[EFGKO3]

[EmmO00]

[Fer93|

[Geil]]

[GEP*00]

[GFS93]

[GGMY7]

[Gho94]

[GLSO01]

[GNSC04]

[Gro00]

[HO3]

[HCr03]

Bibliography

Agrawal G. et al. Local synchronous capacity allocation schemes for guaranteeing
messages deadlines with the timed token protocol. In proceedings of INFOCOM’93, pages
186 — 193, San Francisco, 1993.

Expert Choice. McLean, VA: Decision support software, 1986.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114 — 131, 2003.

Wolfgang Emmerich. Software engineering and middleware: a roadmap. In proceedings of
the Conference on The Future of Software Engineering, (ICSE’00), pages 117 — 129, New
York, NY, USA, 2000.

Edward E. Ferguson. Resource scheduling for adaptive systems. In proceedings of the
IEEE Workshop on Real-Time Applications, pages 102 — 103, New York, USA, May 1993.

Kurt Geihs. Middleware challenges ahead. Computer, 34(6):24 — 31, 2001.

Juan C. Guerri, Manuel Esteve, Carlos Palau, Manuel Monfort, and M. Angeles Sarti.
A software tool to acquire, synchronize and playback multimedia data: an application in
kinesiology. Computer Methods and Programs in Biomedicine, 62, 2000.

Kaushik Ghosh, Richard M. Fujimoto, and Karsten Schwan. A testbed for optimistic
execution of realytime simulations. In proceedings of the IEEE Workshop on Parallel and
Distributed RealyTime Systems, April 1993.

Jean Marc Geib, Christophe Gransart, and Philippe Merle. CORBA: des concepts a la
pratigue. Inter Editions, Kraig Brocksmith, 1997.

K. Ghosh. A survey of real-time operating systems. Technical Report GIT-CC-93/18,
Georgia Institute of Technology, Atlanta, Georgia, February 1994.

Christopher D. Gill, David L. Levine, and Douglas C. Schmidt. The design and
performance of a real-time CORBA scheduling service. Journal of Real-Time Systems,
20(2):117 — 154, 2001.

Aniruddha S. Gokhale, Balachandran Natarajan, Douglas C. Schmidt, and Joseph K.
Cross. Towards real-time fault-tolerant CORBA middleware. Cluster Computing,
7(4):331 — 346, 2004.

Most Group. Digitization opens the way for new standard. Technical report, Automobi-
lentwicklung, 2000.

Kopetz H. Time-triggered real-time computing. Annual Reviews in Control, 27:3 —13(11),
2003.

Dan Henriksson, Anton Cervin, and Karl-Erik Arzén. TrueTime: Real-time control system
simulation with MATLAB/Simulink. In proceedings of the Nordic MATLAB Conference,
Copenhagen, Denmark, October 2003.

Bibliography

[HLB*97]

[HRP+93]

[IN02|

[Jef92]

[JST99]

[Jun]

[TYIM*+01]

[KBMO04]

[KDK*89]

[KG94]

[KKMS95]

[KMS5]

[KM90]

[KO87]

145

Hans Hansson, Harold Lawson, Olof Bridal, Christer Eriksson, Sven Larsson, Henrik L.,
and Mikael S. BASEMENT:: An architecture and methodology for distributed automotive
real-time systems. IEEE Transactions on Computers, 46(9):1016 — 1027, 1997.

Klein M. H, T. Ralya, B. Pollak, R. Obenza, and M. G Harbour. A Practitioner’s
Handbook for Real-Time Analysis. Kluwer Academic Publishers, Boston, Massachusetts,
1993.

Damir Isovic and Christer Norstréom. Components in real-time systems. In proceedings
of the 8th International Conference on Real-Time Computing Systems and Applications
(RTCSA), March 2002.

Kevin Jeffay. On kernel support for real-time multimedia applications. In proceedings
of the Third IEEE Workshop on Workstation Operating Systems, pages 39 — 46, Key
Biscayne, FL, April 1992.

Stankovic J.A., Chenyang Lu Son, and S.H. Gang Tao. The case for feedback control
real-time scheduling. In proceedings of the 11th Euromicro Conference, York ,UKA, 1999.

RPC: Remote procedure call protocol specification, version 2.

P. Johansson, E. YZ, 1 Mario, G. Manthos, and K. UCLA. Bluetooth an enabler of
personal area networking. IEEE Network, Special Issue in Personal Area Networks, 2001.

J. Kaiser, C. Brudna, and C. Mitidieri. COSMIC: a real-time event-based middleware
for the CAN-bus. Journal of Systems and Software (JSS), 2004.

Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolfgang Schwabl,
Christoph Senft, and Ralph Zainlinger. Distributed fault-tolerant real-time systems: The
Mars approach. IEEE Micro., 9(1):25 — 40, 1989.

Hermann Kopetz and Gunter Grunsteidl. TTp-A protocol for fault-tolerant real-time
systems. IEEE transactions on Computer, 27(1):14 — 23, 1994.

H. Kopetz, A. Kruger, D. Millinger, and A. Schedl. A synchronization strategy for a
time-triggered multicluster real-time system. In proceedings of the 14th IEEE Symposium
on Reliable Distributed Systems, Bad Neuenahr, Germany, September 1995.

Jeff Kramer and Jeff Magee. Dynamic configuration for distributed systems. IEEE Trans.
Softw. Eng., 11(4):424 — 436, 1985.

Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change
management. IEEE Trans. Softw. Eng., 16(11):1293 — 1306, 1990.

H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time systems.
IEEFE Transactions on Computers, 36(8):933 — 940, 1987.

146

[Kop97a|

[Kop97b|

[Kop98|

[Kop00]

[LA9Y]

[LL73]

[LMS04]

[LN99|

[ILRWKO3]|

[LRWK04]

[MGFSK04]

[Mil81]

[MMG04]

[MMMOYS]

Bibliography

H. Kopetz. Components-based design of large distributed real-time systems. In proceedings
of The 14th IFAC Workshop on Distributed Computer Control Systems, pages 171 — 177,
Seoul, Korea, 1997.

Hermann Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997.

H. Kopetz. The Time-Triggered Architecture. In proceedings of the 1st IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’98), page 22,
Washington, DC, USA, 1998.

Hermann Kopetz. A comparison of TTP/C and FlexRay. Research Report 22/2000,
Technische Universitét Wien, Institut fiir Technische Informatik, Treitlstr. 1-3/182-1, 1040
Vienna, Austria, 2000.

H. Lonn and J. Axelsson. A comparison of fixed-priority and static cyclic scheduling for
distributed automotive control applications, 1999.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46 — 61, 1973.

S. Lin, G. Manimaran, and BL. Steward. Feedback-based real-time scheduling in
autonomous vehicle systems. In proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’04), page 316, Washington, DC, USA,
2004.

B. Li and K. Nahrstedt. A control-based middleware framework for Quality of Service
adaptations. IEEE Journal on Select. Areas Commun., 1999.

Peng Li, Binoy Ravindran, Jinggang Wang, and Glenn Konowicz. Choir: A real-
time middleware architecture supporting benefit-based proactive resource allocation. In
proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’03), Hakodate, Hokkaido, Japan, 2003.

P. Li, B. Ravindran, J. Wang, and G. Konowicz. Fast, best-effort real-time scheduling
algorithms. IEEE Transactions on computers, 53, September 2004.

Klaus D. Miiller-Glaser, Gerd Frick, Eric Sax, and Markus Kiihl. Multiparadigm modeling
in embedded systems design. IEEE Transactions on control systems technology, 12, 2004.

Leslie Jill Miller. The ISO reference model of open systems interconnection: A first
tutorial. In proceedings of the ACM ’81 conference, pages 283 — 288, New York, NY,
USA, 1981.

D. Marinca, P. Minet, and L. George. Analysis of deadline assignment methods in
distributed real-time systems. Computer Communications, 27(15), 2004.

A. Mittal, G. Manimaran, and C.S.R Murthy. Integrated dynamic scheduling of hard
and QoS degradable real-time tasks in multiprocessor systems. In proceedings of the Fifth

Bibliography

[MMMO0]

[MMMMO1]

[Mok83]

[MSP00]

[MZ95]

[Nas00]

[NB02

[NBO05]

[NGYS00]

[Nico8]

[NTG02

[OSK*00]

147

International Conference on Real-Time Computing Systems and Applications, pages 127
— 136, Hiroshima, Japan, 1998.

Anita Mittal, G. Manimaran, and C. Siva Ram Murthy. Integrated dynamic scheduling
of hard and QoS degradable real-time tasks in multiprocessor systems. Journal of System
Architecture, 46(9):793 — 807, 2000.

G. Manimaran, Shashidhar Merugu, Anand Manikutty, and C. Siva Ram Murthy.
Integrated scheduling of tasks and messages in distributed real-time systems. Engineering
of distributed control systems, pages 99 — 112, 2001.

A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Cambridge, MA, USA, 1983.

Shawky M., Favard S., and Crubillé P. A computing platform and its tools for feature
extraction from on-vehicle image sequences. In proceedings of the 3rd IEEE Annual
conference on Intelligent Transportation Systems (ITSC), Dearborn, Michigan, USA,
Octobre 2000.

N. Malcolm and W. Zhao. Hard real-time communication in multiple-access networks.
Journal of Real-Time Systems, 8:35 — 77, 1995.

F. Nashashibi. RTm@ps: a framework for prototyping automatic multi-sensor applica-
tions. In proceedings of The IEEE Intelligent Vehicles Symposium, Dearborn, Michigan,
USA, October 2000.

M. EL Najjar and P. Bonnifait. A road reduction method using multi-criteria fusion. In
proceedings of The IEEE Intelligent Vehicles Symposium, Versailles, France, June 2002.

Maan E. El Najjar and Philippe Bonnifait. A road-matching method for precise vehicle
localization using belief theory and kalman filtering. Journal of Autonomous Robots,
19(2):173 - 191, 2005.

Balachandran Natarajan, Aniruddha S. Gokhale, Shalini Yajnik, and Douglas C. Schmidt.
DOORS: Towards high-performance fault tolerant CORBA. In proceedings of the
International Symposium on Distributed Objects and Applications, pages 39 — 48, 2000.

Guillem Bernat Nicolau. Specification and Analysis of Weakly Hard Real-Time Systems.
Phd dissertation, Universitat de les Illes Balears, Departament de Ciéncies Matematiques
i Informatica, Spain, January 1998.

Takashi Norimatsu, Hideaki Takagi, and H. Richard Gail. Performance analysis of the
IEEE 1394 serial bus. Journal of Performance Evaluation, 50(1-4):1 — 26, 2002.

Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff Parsons, Irfan
Pyarali, and David L. Levine. Evaluating policies and mechanisms for supporting
embedded, real-time applications with CORBA 3.0. In proceedings of Sizth IEEE Real
Time Technology and Applications Symposium (RTAS’00), page 188, WashingtonD.C.,
USA, 2000.

148

[PB00

[PD93]

[PGY6)

[PGOS

[PJ90]

[PPPDO1]

[PZ97]

[Rajos]

[Ram87|

[RE97]

[RHS97]

[roa]

[rpc]

Bibliography

D. Prasad and A. Burns. A value-based scheduling approach for real-time autonomous
vehicle control. Robotica, 18(3):273 — 279, 2000.

F. Panzieri and R. Davoli. Real-time systems: a tutorial. Performance evaluation of
computer and communication systems, 729:435 — 462, 1993.

Bonnifait P. and Garcia G. A multisensor localization algorithm for mobile robots and its
real-time experimental validation. In proceedings of the IEEE International Conference on
Robotics and Automation (ICRA’96), pages 1395 — 1400, Minneapolis, Minnesota, USA,
1996.

Bonnifait P. and Garcia G. Design and experimental validation of an odometric and
goniometric localization system for outdoor robot vehicles. IEEE Transactions on
Robotics and Automation, 14(4):541 — 548, 1998.

Dan Poirier and Kevin Jeffay. An implementation and application of the real-time
producer/consumer paradigm. Technical Report 90-038, University of North Carolina
at Chapel Hill Department of Computer Science, January 1990.

Bonnifait P., Bouron P., Crubille P., and Meizel D. Data fusion of four ABS sensors
and GPS for an enhanced localization of car-like vehicles. In proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 1050 — 4729,
Washington, D.C, 2001.

Michael Philippsen and Matthias Zenger. JavaParty — transparent remote objects in
Java. Concurrency - Practice and Experience, 9(11):1225 — 1242, 1997.

Gopalan Suresh Raj. A detailed comparison of CORBA, DCOM and Java/RMI,
September 1998.

Krithi Ramamritham. Channel characteristics in local-area hard real-time systems.
Computer Network and ISDN Systems, 13(1):3 — 13, 1987.

Mark Roy and Alan Edward. Inside DCOM: Microsoft’s distributed object architecture
extends the capabilities of COM to work across the network. DBMS Journal, 10(4):26 —
34, 1997.

Minsoo Ryu, Seongsoo Hong, and M. Saksena. Streamlining real-time controller design:
From performance specifications to end-to-end timing constraints. In proceedings of the
3rd IEEE Real-Time Technology and Applications Symposium (RTAS ’97), Washington,
DC, USA, 1997.

European project roadsense: Road awareness for driving via a strategy that evaluates
numerous systems.

RPC: Remote procedure call protocol specification, version 2, june 1988.

Bibliography

[RS01]

[RSZ89a]

[RSZ89b]

[Sch9g]

[Sch02]

[SGBST]

[SGGT99]

[SGHPY97]

[STKSS]

[SK91a]

[SK91b]

[SK96]

[SK00]

149

John Regehr and John A. Stankovic. HLS: A framework for composing soft real-time
schedulers. In proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS’01),
Washington, DC, USA, 2001.

K. Ramamritham, A. Stankovic, and W. Zhao. Distributed scheduling of tasks with
deadlines and resource requirements. IEEE Transactions on Computers, 38, 1989.

K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed scheduling of tasks with
deadlines and resource requirements. IEEE Transactions on Computers, 38(8):1110 —
1123, 1989.

Douglas C. Schmidt. An architectural overview of the ACE framework, 1998.

Douglas C. Schmidt. Middleware for real-time and embedded systems. Communications
of the ACM, 45(6):43 — 48, 2002.

K. Schawn, P. Gopinath, and W. Bo. CHAQOS- kernel support for objects in the real-time
domain. IEEE Transactions on Computers, 36(8):904 — 916, 1987.

David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu, and
Jonathan Walpole. A feedback-driven proportion allocator for real-rate scheduling. In

proceedings of the third symposium on Operating systems design and implementation
(OSDI ’99), pages 145 — 158, Berkeley, CA, USA, 1999.

Douglas C. Schmidt, Aniruddha Gokhale, Timothy H. Harrison, and Guru Parulkar. A
high-performance endsystem architecture for real-time CORBA. IEEFE Communications
Magazine, 14, 1997.

Biyabani S.R., Stankovic J.A., and Ramamritham K. The integration of deadline
and criticalness in hard real-time scheduling. In proceedings of the Real-Time Systems
Symposium, pages 152 — 160, Huntsville, AL, USA, 1988.

David B. Stewart and Pradeep K. Khosla. Real-time scheduling of dynamically
reconfigurable systems. In proceedings of the IEEE International Conference on Systems
Engineering, pages 139 — 142, Dayton Ohio, August 1991.

David B. Stewart and Pradeep K. Khosla. Real-time scheduling of sensor-based control
systems. In proceedings of Fighth IEEE Workshop on Real-Time Operating systems and
Software, pages 144 — 150, Atlanta, GA, 1991.

Kweon S.K and Shin K.G. Traffic-controlled rate monotonic priority scheduling of ATM
cells. In proceedings of 15th IEEE INFOCOM conference, San Francisco, USA, March
1996.

Douglas C. Schmidt and Fred Kuhns. An overview of the real-time CORBA specification.
Computer, 33(6):56 — 63, 2000.

150

[SLSS96]

[SM99]

[SMO3]

[SMS90]

[SO03]

[SR90]

[SR91]

|SRF03]|

[SSRO3]

[Sta88]

[Sta96|

[Ste01]

[TC94]

[Tin93]

Bibliography

D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in real-time
control systems. In proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS
’96), pages 13 — 21, Washington, DC, USA, 1996.

Kang G. Shin and Charles L. Meissner. Adaptation of control system performance by task
reallocation and period modification. In proceedings of the 11th Euromicro Conference on
Real-Time Systems (ECRTS99), York, England, 1999.

S. M. Sadjadi and P. K. McKinley. A survey of adaptive middleware. Technical report,
Computer Science and Engineering, Michigan State University, 2003.

S. Som, R. Mielke, and W. Stoughton. Strategies for predictability in real-time data-flow
architectures. In proceedings of the 11th IEEE Real-Time Systems Symposium, page 226
U 237, Florida, USA, 1990.

Douglas C. Schmidt and Carlos O’Ryan. Patterns and performance of distributed real-
time and embedded publisher/subscriber architectures. Journal of Systems Software,
66(3):213 — 223, 2003.

John A. Stankovic and Krithi Ramamritham. What is predictability for real-time systems?
Journal of Real-Time Systems, 2, 1990.

John A. Stankovic and Krithi Ramamritham. The Spring kernel: A new paradigm for
real-time systems. IEEE Software Magazine, 8(3):62 — 72, 1991.

C. Steger, P. Radosavljevic, and P. Frantz. Performance of IEEE 802.11b wireless LAN in
an emulated mobile channel. In proceedings of the IEEE Vehicular Technology Conference
(VTC), Jeju, Korea, April 2003.

O Sename, D. Simon, and D. Robert. Feedback scheduling for real-time control of systems
with communication delays. In proceedings of the IEEE conference on the Emerging
Technologies and Factory Automation (ETFA ’03), pages 454 — 461, Lisbon, Portugal,
2003.

John A. Stankovic. Misconceptions about real-time computing: A serious problem for
next-generation systems. IEEE Transactions on Computers, 21(10):10 — 19, 1988.

John A. Stankovic. Realgtime and embedded systems. Robotica Journal, 1996.
B. Steux. RTMAPS, un environnement logiciel dédié a la conception d’applications
embarquées temps-réel. Utilisation pour la détection automatique de véhicules par fusion

radar/Vision. Phd dissertation, Ecole des mines de Paris, Paris, December 2001.

Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocess, Microprogram., 40(2-3):117 — 134, 1994.

K. Tindell. Fized priority scheduling of hard real-time systems. Phd dissertation,
Department of Computer Science,University of York, UK, 1993.

Bibliography

[TM89)

[TN91]

[Tri03]

[TW]

[VB94]

[Vin93]
[Vin02]

[VZF91|

[Yag01]

[YL05]

[ZH03|

[ZPST99]

151

H. Tokuda and C. W. Mercer. ARTS: a distributed real-time kernel. SIGOPS Operating
Systems Review, 23(3):29 — 53, 1989.

Hideyuki Tokuda and Tatsuo Nakajima. Evaluation of real-time synchronization in real-
time Mach. In proceedings for the USENIX 1991 Mach Workshop, pages 213 — 222,
October 1991.

Y. Trinquet. Noyaux temps-réel: le cas de osek-vdx, Ecole d’été Temps Réel (ETR2003),
Toulouse, 9 - 12 September, 2003.

A. Tindell, K.and Burns and A. Wellings. Calculating controller area network (CAN)
message response times. In Distributed Computer Control Systems (DCCS’94). IFAC
Workshop. Pergamon; Oxford, UK.

Berge-Cherfaoui V. and Vachon B. Dynamic configuration of mobile robot perceptual
system. In proceedings of the IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI’94), pages 707 — 714, Washington DC, USA,
1994.

Steve Vinoski. Distributed object computing with corba. C++ Report Magazine, 1993.
Steve Vinoski. Where is middleware? IEEE Internet Computing, 6(2):83 — 85, 2002.

D.C. Verma, H. Zhang, and D. Ferrari. Delay jitter control for real-time communications
in a packet-switched network. In proceedings of IEEE TRICOM’91, pages 35 — 43, April
1991.

K. Yaghmour. The real-time application interface. In proceedings of the Linuz Symposium,
Ottawa, Canada, July 2001.

S.0. Yahia and S. Loriette. Fuzzy querying of evolutive situations: Application to driving

situations. Journal of Advanced Computational Intelligence and Intelligent Informatics
(JACIII), 9, 2005.

Armin Zimmermann and Giinter Hommel. A train control system case study in model-
based real time system design. In proceedings of the 17th International Symposium on
Parallel and Distributed Processing, Washington, DC, USA, 2003.

K. Zuberi, P. Pillai, K. Shin, T. Imai, W. Nagaura, and S. Suzuki. EMERALDS-OSEK:
A small real-time operating system for automotive control and monitoring. In proceedings
of the SAE International Congress, Indianapolis, IN, March 1999.

Titre :
Architecture Informatique Temps-Réel Pour Véhicules Avancés

Résumeé :

Cette thése se situe dans le domaine des systémes informatiques temps-réel embarqués, plus
particulierement les logiciels embarqués dans I'automobile pour tous les dispositifs émergents et
a venir d’évaluation des systémes d’aide a la conduite (ADAS) pour les prochaines générations de
véhicules. Ce document présente les trois axes principaux des travaux de cette thése : Le premier axe
comprend le développement d’'un middleware reconfigurable dynamiquement, SCOOT-R. Le deux-
ieme axe concerne le développement des techniques d’'ordonnancement distribuées des opérations
SCOOT-R avec un objectif de qualité de service de bout en bout. Finalement, le développement des
techniques d’ordonnancement régulé pour I'adaptation du systéme a des situations de conduite et
comportements du conducteur variables. Dans ce cas I'importance des fonctions est adaptée suivant
le contexte momentané du systéme.

Mots-clés :
Systémes distribués temps-réel, Intergiciels temps-réel, Ordonnancement temps-réel, Ordonnance-
ment contextuel, Applications automobiles

Title :
A Distributed Real-Time Architecture For Advanced Vehicles

Abstract:
This thesis falls in the field of embedded real-time systems, and more precisely the in-vehicle em-
bedded software for the evaluation of the next generation of driving assistance systems (ADAS). This
document presents the three principal axes of the thesis: First, the development of a dynamic recon-
figurable middleware called SCOOT-R. Second, the development of distributed real-time scheduling
strategies in order to schedule SCOOT-R operations with the main goal of end-to-end QoS guarantee.
Finally, the development of feedback-based scheduling schemes to schedule driving assistance sys-
tems. The adaptation in this scheme is carried out according to the current driving situation and the
driver behavior, which will further lead to the change of the associated driving assistance function’s
criticalness.

Keyword :
Distributed real-time systems, (OO) and real-time middleware, Real-time scheduling, Feedback schedul-
ing, Automotive applications

152

