

Thèse

financée par Electricité De France et le Commissariat à l'Energie Atomique

Transfert de solutés réactifs dans la zone non-saturée des sols à différentes échelles d'observation.

soutenue le 6 octobre 2006 à Grenoble par **Guillaume LIMOUSIN** pour l'obtention du titre de Docteur de l'Université Joseph Fourier

- Financement :
 - Electricité De France (50%).
 - Commissariat à l'Energie Atomique (50%).
- Directeur de thèse :

Jean-Paul GAUDET, Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE), Grenoble.

• Co-encadrants :

- Laurent LE SAOUT et Mohamed KRIMISSA (EDF).
- Véronique BARTHES (CEA).
- Laboratoire d'accueil :

CEA - Direction de la Recherche Technologique, Laboratoire des Innovations pour les Technologies des Energies Nouvelles et des Nanomatériaux, Département des Technologies pour les Nanomatériaux, Laboratoire de Technologies des Traceurs (L2T), Grenoble.

Plan

- Contexte et objectifs
- Matériel et méthodes
- Résultats

• Conclusion

Contexte et objectifs

Site d'étude, problématique, objectifs

Centrale nucléaire de **Brennilis**

la physique du milieu:

- structure des pores
- teneur en eau
- hydrodynamique

- la chimie des contaminants:
- pH, Eh, force ionique
- substances compétitrices
- argiles, matières organiques, ...

les interactions avec le vivant :

- racines
- micro-organismes, ...

(pas étudié ici)

désorption

facteurs liés et évolutifs

Découpler les mécanismes. Hiérarchiser les facteurs d'influence. Trouver l'échelle représentative.

			-	4
con		oh		пг
	 			1116

Matériel et méthodes

Caractérisation physique et chimique du sol

Arène granitique : issue d'un granite d'anatexie à muscovite,

donnant habituellement du quartz et des minéraux micacés (micas, illite) par altération en climat tempéré.

contexte et objectifs materier et metrioues resultats conclusion
--

C	Ð	. т н	E					E	Elé	me	ent	s a	l'in	tér	êt			
1,	3 ^β Η												13	14	15	16	17	18 He 2
1	(+	-1)]										В	С	N	0	F	Ne
	3	4											5	6	7	8	9	10
2	Na	Mg	j										AI	Si	Р			
J	11	12	3	4	5	6	7	50	₹Y €0		11	12	13	14	15			
4		_		Ti	V	Сг	Mn	☐ 59	,60		Cu	Zn	Ga	Ge	As	□ ⁰⁰	_	
4		<i>₹</i> ²		22	23	24	25		Co		29	30	31	32	33	L	Зr	
5	88 , 88 , 8 , 1	90		Zr	Nb	Мо	Tc	27	(-	+2)	Ag	Cd	In	Sn	Sb	35	(-	-1)
5		Sr		40	41	42	43	44	45	46	47	48	49	50	51	52	<u></u>	54
6	38	(-	+2)	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Ū		56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
7	Fr	Ra	Ac#	Rf	Db	Sg	Bh	Hs	Mt									
•	87	88	89	104	105	106	107	108	109									
			* 1		Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			- Lanth	aniues	58	59	60	61	62	63	64	65	66	67	68	69	70	71
		İ	# 0.045	nidee	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			# ACU	mues	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Co: <u>Spéciation complexe</u>. <u>Contaminant</u> potentiel des sols de centrales. Représentatif des <u>métaux cationiques</u>. *Sr*: $[Sr(6H_2O)]^{2+}$ en sol acide. Rare <u>contaminant</u> des sols de centrales. Représentatif des <u>alcalino-terreux</u>. ³*H*: Sous forme d'<u>eau tritiée</u>. <u>Contaminant</u> potentiel des centrales + <u>traceur inerte</u> (se comporte comme l'eau). *Br*: Sous la seule forme <u>*Br*</u>. <u>Traceur inerte</u> en substitution de l'eau tritiée.

contexte et objectifs

Innin

ed

Méthodologie

adsorption pseudo-irréversible (irréversible pour la durée d'expérimentation)

Le réacteur agité à flux ouvert permet d'<u>étudier la désorption bien plus facilement qu'en tube à essai</u>. L'ajustement du débit permet d'<u>étudier les cinétiques réactionnelles</u>, pour l'adsorption et pour la désorption. Le réacteur agité à flux ouvert permet un <u>temps de mise à l'équilibre plus faible qu'en colonne de sol</u>. Contrairement à la colonne, on peut <u>choisir le rapport sol/solution</u>, sans pouvoir atteindre celui du terrain.

contexte et objectifs	matériel et méthodes	résultats	conclusion	10
-----------------------	----------------------	-----------	------------	----

Résultats

Comportement de l'eau et des solutés inertes l'exemple de la dispersion hydrodynamique en arène granitique

Traçage sur le terrain

Profils de bromure après 131 mm de hauteur d'eau en conditions atmosphériques (ajustements à l'EAD) (teneur en eau ≈ 0.17 , vitesse porale moyenne $\approx 3,4.10^{-4}$ m.h⁻¹, $\langle D \rangle \approx 3,9.10^{-6}$ m².h⁻¹)

La vitesse porale et la dispersion hydrodynamique sur le terrain sont spatialement peu hétérogènes.

contexte et objectifs	matériel et méthodes	résultats	conclusion	13
-----------------------	----------------------	-----------	------------	----

Traçage de bromure pour une vitesse de Darcy de 1,56.10⁻² m.h⁻¹ (ajustements à l'EAD à vitesse fixée) (teneur en eau proche de celle du terrain, vitesse porale plus élevée d'un ordre de grandeur)

La dispersion hydrodynamique en lysimètre <u>dépend fortement de la présence de rares cailloux</u> > 5 cm.

indeficient interiores
--

Conclusion sur la dispersion en arène

Conclusions phénoménologiques

Comme les autres propriétés physiques, la dispersion hydrodynamique est <u>spatialement peu hétérogène</u>. De <u>rares hétérogénéités</u>, de volume négligeable, peuvent avoir un <u>effet local majeur</u>, observé en lysimètre. On peut soupçonner l'existence de <u>circulations préférentielles</u> dues aux cailloux.

Conclusions opérationnelles

Les résultats montrent l'importance de <u>l'échelle d'observation</u>, en relation avec la <u>taille des hétérogénéités</u>. Pour ce sol, le <u>volume prospecté par le traceur semble avoir plus d'influence que le non-remaniement</u>.

Interactions chimiques sol/contaminants l'exemple du couple cobalt/arène granitique

Isotherme d'adsorption en tube à essai

Traçage en colonne de sol tamisé

Les ajustements issus du traçage en colonne fournissent l'ordre de grandeur des quantités adsorbées.

contexte et objectifs matériel et méthodes résultats conclusion 1

Traçage en lysimètre : mise en évidence de réactions lentes

Profil obtenu au bout de 120 jours de traçage pour une vitesse de Darcy de 1,56.10⁻² m.h⁻¹ (vitesse porale et teneur en eau similaires à celles de la colonne de sol tamisé, même concentration initiale)

L'hypothèse d'une adsorption instantanément réversible est incompatible avec le temps de transfert constaté.

contexte et objectifs	matériel et méthodes	résultats	conclusion	20
-----------------------	----------------------	-----------	------------	----

Type de réaction	Equations	Paramètres ajustés
adsorption instantanément réversible	Q = KdC	Kd
adsorption instantanément réversible + adsorption irréversible, lente, de 1 ^{er} ordre	$Q_{rev} = Kd_{rev}C$ $\frac{\partial Q_{irrev}}{\partial t} = k_{ads}C$	$\frac{Kd_{rev}}{donc}, k_{ads}$ $donc t_{ads} = ln(2) / k_{ads}$

contexte et objectifs	matériel et méthodes	résultats	conclusion	21
-----------------------	----------------------	-----------	------------	----

Pour $C_0 = 3,5.10^{-6}$ mol.L⁻¹, il existe des <u>réactions lentes</u> d'adsorption qui s'ajoutent à des <u>réactions rapides</u>. Pour $C_0 = 1,0.10^{-4}$ mol.L⁻¹, <u>les réactions lentes sont masquées par les réactions rapides</u>.

contexte et objectifs	matériel et méthodes	résultats	conclusion	22

Les valeurs des paramètres Kd et t_{ads} sont <u>concordantes avec celles obtenues en tube à essai</u>.

contexte et objectifs	matériel et méthodes	résultats	conclusion	23
-----------------------	----------------------	-----------	------------	----

Traçages en réacteur à flux ouvert : 2. influence du pH

Perspectives de recherche sur les interactions cobalt/arène (résultats obtenus après la rédaction du manuscrit)

a: James & Healy, 1972 ; b: McBride, 1994 ; c: Dzombak & Morel, 1980 ; d: Bradbury & Baeyens, 2005.

Espèces solubles : cobalt (toutes formes) + composition selon les analyses (Ca²⁺, Mg²⁺, K⁺, Na⁺, Cl⁻, HCO₃⁻).

Tous les autres paramètres (constantes d'échange, de complexation, etc...) sont issus de la bibliographie.

contexte et objectifs	matériel et méthodes	résultats	conclusion	26

Application du modèle mécaniste aux expériences avec le réacteur à flux ouvert

Conclusions phénoménologiques

La confrontation du modèle mécaniste à d'autres conditions expérimentales devrait permettre :

- d'obtenir le domaine de validité du modèle,
- de valider la signification physique des paramètres ajustés.

Conclusions opérationnelles

Les résultats issus des <u>différents dispositifs sont concordants</u> (cette concordance est incertaine pour Sr). L'influence majeure du pH permet d'envisager des <u>méthodes d'immobilisation des contaminants</u>.

Conclusion

Bilan, applications, perspectives

- Bilan des mécanismes mis en évidence dans les conditions de l'étude
 - Ce sol industriel non-structuré possède des <u>propriétés hydrodynamiques</u> (vitesse, dispersion) <u>peu hétérogènes spatialement</u> en comparaison avec les sols non-remblayés.
 - Même sur ce sol de minéralogie peu complexe, la rétention et le relargage du cobalt sont soumis à <u>plusieurs réactions rapides</u> et <u>lentes</u>, <u>dépendantes des conditions</u> (concentration, pH).

• Applications opérationnelles

- L'échelle d'observation a une influence majeure sur les résultats des paramètres d'écoulement, en relation avec la taille des plus grosses hétérogénéités (volume élémentaire représentatif).
- Le tube à essai ne suffit pas pour l'étude des interactions chimiques sol/contaminants.
- La hiérarchisation des mécanismes implique la comparaison des temps caractéristiques.

• Perspectives

- Régimes hydriques <u>transitoires</u> ?
- Milieu <u>chimiquement plus complexe</u> (fraction fine multiphasique, matières organiques...) ?
- <u>Revégétalisation</u> (réhabilitation, enfrichement...) ?

contexte et objectifs	matériel et méthodes	résultats	conclusion	30
				4

Remerciements

Stéphanie SZENKNECT Jean-Paul GAUDET Véronique BARTHES Laurent LE SAOUT Mohamed KRIMISSA Sylvain MAZUEL Et pour toi, public ! Jean-Marc LAPETITE **Rafael ANGULO** Jean-Paul LAURENT Marie-Anne BERTON **Romain CASTAGNE** Jacques ROGUIER Vincent HALLAIRE Tous les autres collègues du L2T et du LTHE L'équipe de la centrale nucléaire de Brennilis Les membres du service de neuro-radiologie de l'hôpital de Grenoble Mon ancien et nouvel employeur : la société d'ingénierie MILLENNIUM Les membres du jury et j'en oublie...