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Introduction

0.1 Motivations

Cette thèse a deux objectifs principaux :
-Le premier est d’aborder des problèmes de modélisation liés à l’émergence de nouveaux types

de produits dérivés. Ainsi, des questions telles que la dépendance entre le marché Actions et celui
du Crédit ou celle entre le marché Actions et celui des Taux d’intérêt sont étudiées. La prise en
compte de la nature spécifique des frais de gestion facturés par les hedge funds à leurs investisseurs
est modélisée afin d’évaluer cet effet dans le pricing d’options sur les hedge funds eux-mêmes. Les
différentes modélisations ainsi obtenues m’ont conduit à étudier la littérature sur les distributions
des processus de Bessel et de diffusions qui en dérivent, la théorie des excursions du mouvement
Brownien, les premiers temps de passage de ces processus, la théorie des changements de temps et
les concepts de vraie martingale et/ou martingale locale stricte.

-Le second objectif est de s’interroger sur la notion de prime de risque sur les marchés d’options
en faisant abstraction des modèles mathématiques sous-jacents. Pour cela, la théorie générale des
processus et plus particulièrement les concepts d’immersion et de changement de mesure devraient
permettre aux agents financiers de comprendre les risques non ou mal perçus par les modélisations
usuelles.

0.2 Organisation et contribution

• Cette thèse est composée de cinq chapitres qui correspondent aux articles écrits entre Janvier
2004 et Avril 2006. Chaque chapitre peut, en principe, être lu indépendamment des autres. Toutefois,
à bien des égards, les trois premiers chapitres se complètent. Tout d’abord, ils traitent tous les
trois de problèmes liés aux modèles hybrides, ensuite ils utilisent des propriétés des processus de
Bessel et enfin ils abordent des questions de volatilité locale, de volatilité stochastique ainsi que
de volatilité locale stochastique. Sur la question des hybrides, le premier chapitre aborde l’impact
de taux d’intérêt stochastiques sur l’évaluation d’options sur actions alors que les chapitres 2 et 3
(écrits avec Boris Leblanc) étudient la dépendance entre le marché des actions et celui du crédit.
Enfin, ils visent à fournir des formules analytiques pour les différentes quantités mises en jeu ; nous
reviendrons sur celles-ci dans les chapitres concernés ainsi que brièvement dans la section qui suit.

• Le chapitre 4 (écrit avec Hélyette Geman et Marc Yor), quant à lui, propose un modèle
stochastique où l’actif étudié est un hedge fund et où l’on tient compte des frais de gestion et de
performance. Il y est choisi un modèle de type Brownien géométrique ou encore de type Black
Merton Scholes (1973) et l’on considère un drift qui est une fonction déterministe du temps et de

vii
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la Valeur Actualisée Net (NAV) du fond. Dans ce contexte, nous sommes en mesure de fournir des
formules quasi-analytiques pour des prix d’options vanille européennes. Le modèle ainsi construit
est finalement une diffusion à volatilité constante mais à drift local où la forme particulière du drift
permet d’obtenir une formule fermée pour la transformée de Laplace de la loi de la NAV. Il apparaît
ainsi que mathématiquement les quatre premiers chapitres ont en commun l’étude de diffusions
inhomogènes dont les dynamiques, telles qu’elles sont spécifiées, en font des modèles intéressants et
nouveaux en mathématiques financières.

• Pour résumer la démarche suivie dans cette thèse, des produits nouveaux y sont étudiés et
des risques généralement ignorés dans les modélisations classiques y sont caractérisés. Ceci peut
être compris comme une illustration du principe d’adaptation de modèles connus à des problèmes
nouveaux. Ayant choisi d’observer les modèles d’évaluation sous l’angle des risques qui sont pris en
compte, l’on est naturellement amené à se demander ce que signifie valoriser un risque. Ceci nous
ramène à l’idée de Markowitz (1952) qui formalise le fait qu’un risque est valorisé dès lors qu’il y
a un excès de rendement. Dans le langage probabiliste des options, cela veut dire que la mesure de
pricing sous la probabilité statistique et celle sous la probabilité risque-neutre diffèrent.

• Ainsi, le chapitre 5 écrit avec Hélyette Geman, Dilip Madan et Marc Yor examine à un
niveau conceptuel illustré d’exemples provenant de propriétés fines du mouvement Brownien et des
grossissements de filtration, la question des risques qui sont ou ne sont pas pricés dans une économie.
On introduit diverses acceptions pour la notion de risque valorisé dans le chapitre 5.

0.3 Les contributions nouvelles

Dans les quatre paragraphes ci-dessous, nous donnons les idées maîtresses et les principaux
résultats des cinq chapitres (le second paragraphe regroupe la discussion sur les chapitres 2 et 3)
qui composent cette thèse.

0.3.1 Autour de la Volatilité Locale

Il s’agit ici de présenter succinctement les principales directions du chapitre 1 qui est en fait un
article intitulé Localizing volatilities. Rappelons d’abord que le concept de volatilité locale remonte
à Dupire (1994) et Derman et Kani (1994) et que si l’on considère un actif modélisé par la diffusion :

dSt

St
= r(t)dt + σ(t, St)dWt

alors connaissant les prix des calls pour un continuum de maturités et de prix d’exercice, la fonction
(t, x) 7→ σ(t, x) peut être définie implicitement par

σ2(t, x) =
∂C
∂t + xr(t)∂C

∂x
1
2x2 ∂2C

∂x2

A présent, considérons un modèle à volatilité stochastique générale de la forme

dSt

St
= r(t)dt + σtdWt
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où σt est un processus d’Itô continu. En se fondant sur les résultats de Gyöngy (1986), l’on obtient
l’existence d’une équation différentielle stochastique Markovienne inhomogène telle que, à t fixé, la
loi de la solution soit exactement la même que celle de St. De plus, on est capable de construire
cette EDS et l’on obtient ainsi une détermination de la fonction σ(t, x) :

σ2(t, x) = E[σ2
t |St = x]

Maintenant qu’il est établi comment les modèles à volatilité stochastique et volatilité locale sont
liés, l’on fournit une série d’exemples de modèles à volatilité stochastique construits à partir de
processus de Bessel (type Heston (1993)) où l’on est en mesure de calculer explicitement la fonction
volatilité locale. Le calcul de la volatilité locale est alors principalement basé sur la connaissance de
la loi du couple (R2

t , At) où (Rt, t ≥ 0) est un processus de Bessel et At =
∫ t
0 R2

sds.

L’autre direction principale de ce chapitre est l’addition de taux d’intérêt stochastiques à la
diffusion à laquelle le cours de l’actif obéit. Ainsi, la dynamique de l’action s’écrit :

dSt

St
= rtdt + σtdWt

où (rt, t ≥ 0) est également un processus d’Itô continu. Nous étendons les résultats connus dans le
cas de taux déterministes et obtenons l’existence d’une diffusion de la forme :

dXt

Xt
= rtdt + σ(t,Xt)dWt

telle que pour tout t fixé, les lois de St et Xt soient les mêmes. Pour cela, la fonction σ(t, x) doit
vérifier :

σ2(t, x) =
E[σ2

t e
−
∫ t
0 rsds|St = x]

E[e−
∫ t
0 rsds|St = x]

D’autre part, l’équation implicite portant sur la volatilité locale peut être étendue au cas des taux
stochastiques de la façon suivante :

σ2(t, x) =
∂C
∂t − xE[e−

∫ t
0 rsdsrt1{St>x}]

x2

2
∂2C
∂x2

D’autres constructions de volatilité locale à partir de modèles à volatilité stochastique sont proposées
dans ce chapitre et une réécriture et discussion de l’équation implicite ci-dessus sont fournies.

0.3.2 Valorisation de Produits Dérivés Hybrides Action et Crédit

Cette section résume le travail élaboré en collaboration avec Boris Leblanc qui a donné lieu à
deux chapitres (2 et 3) de cette thèse et ainsi qu’à deux articles dont le premier intitulé Time-
Changed Bessel Processes and Credit Risk est soumis à Mathematical Finance et dont le second
intitulé Hybrid Equity-Credit Modelling a été publié dans Risk Magazine. La problématique posée
est la modélisation du cours de l’action d’une compagnie en tenant compte de son risque de faillite,
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lui-même un actif financier coté sur le marché obligataire et sur celui du crédit. Un standard de
marché depuis quelques années pour modéliser le cours d’une action sous cette contrainte est le
modèle à probabilité locale de défaut (voir par exemple Davis et Lischka (2002)) où le défaut que
l’on définit comme le fait que l’action vaille zéro, est calibré sur un processus à sauts destiné à
engendrer la faillite et dont la partie continue est quant à elle présente pour calibrer la surface de
volatilité implicite dans des zones où les options sont cotées.

Le problème de ce type de modélisation est qu’il ne tient pas compte des scénarios de marché
où le cours de l’actif baisse lentement en se dirigeant vers la faillite sans pour autant faire de saut
significatif et en entraînant une hausse des spreads de crédit. Ayant ce type d’inconvénient à l’esprit,
nous nous intéressons au modèle Constant Elasticity of Variance de Cox (1975) pour son aptitude
à générer des trajectoires qui atteignent 0 en un temps fini. Cette propriété résulte du fait que le
CEV peut être vu comme une puissance de Bessel changé de temps. On notera que dans la même
année Albanese et Chen (2005), Campi, Polbennikov et Sbuelz (2005) et Carr et Linetsky (2005)
ont étudié ce modèle dans le même objectif. Rappelons maintenant la dynamique de ce processus :

dSt

St
= rdt + σSα−1

t dWt

Ainsi le chapitre 2 propose une étude détaillée du processus CEV ; on y appliquera les résultats de
cette étude à la valorisation d’options vanilles, de credit default swaps (CDS) et d’equity default
swaps (EDS) pour lesquels on obtient des formules analytiques. L’on étend par la suite ce modèle
en y ajoutant une volatilité stochastique dont le mouvement brownien qui l’engendre est supposé
indépendant de celui qui engendre le cours de l’action :

dSt

St
= rdt + σtS

α−1
t dWt

Dans cette configuration, l’on est en mesure d’obtenir des formules analytiques pour les prix d’op-
tions et pour les CDS conditionnellement à la connaissance de la loi pour tout t de la quantité

Ht = (1 − α)2
∫ t

0
σ2

se
−2(1−α)rsds

L’addition de volatilité stochastique permet de générer plus ou moins de skew et de smile à la
surface de volatilité implicite. Maintenant afin de pouvoir décorréler la probabilité de défaut de la
"skewness", on corrèle les mouvements de l’action à ceux de sa volatilité. De nombreux exemples
où des calculs analytiques sont possibles sont présentés.
Le chapitre 3 illustre de façon appliquée ces propriétés mathématiques des processus CEV et im-
plicitement des processus de Bessel, et également les arguments financiers empiriques discutés plus
haut et qui y sont détaillés.

0.3.3 Frais de gestion et de performance et Options sur Hedge Funds

Lors de l’évaluation d’options sur Hedge Funds, sous réserve que l’on puisse se couvrir, il est
important de considérer les différents frais (importants) liés à la détention de participations dans
un hedge fund. En effet, l’investisseur est soumis à des frais de gestion qui sont fixes et de l’ordre
de 1% à 2% du montant investi mais il est également soumis à des frais de performance suivant
la High-Water Mark rule, qui sont de l’ordre de 15% à 20% de la performance annuelle du hedge
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fund. Cette question est traitée dans le chapitre 4 qui, à l’origine, est un article écrit avec Hélyette
Geman et Marc Yor intitulé Options on Hedge Funds under the High-Water Mark Rule soumis à
Quantitative Finance.

Afin de tenir compte de ces différents frais, nous proposons le modèle suivant pour régir la valeur
nette actualisée S :

dSt

St
= (r + α − c − f(St))dt + σdWt

où r est le taux sans risque, c représente les frais de gestion, α l’excès de rendement du fond par
rapport au marché, f est la fonction modélisant le high-water mark :

f (s) = µa 1{s>H}

et µ est le rendement statistiquement observé, a le pourcentage prélevé sur la performance et H le
niveau par rapport auquel cette performance est mesurée.

Relativement à ce modèle, nous sommes en mesure de calculer les prix de calls européens. Ainsi,
l’on démontre que le calcul des prix d’options vanille repose essentiellement sur la connaissance de
la quantité

g(t) = E
[
h(Wt) exp(λLt) exp(−µA+

t − νA−
t )

]

où Wt est un mouvement brownien, Lt est son temps local en 0 et A+
t etA−

t respectivement les
temps passés positivement et négativement jusqu’au temps t. Il est remarquable que la variable
tri-dimensionnelle mise en jeu (Wt, Lt, A

+
t ) joue un rôle crucial dans l’étude de la loi de l’Arcsinus

étudié par exemple dans Karatzas et Shreve (1991). Il est relativement clair que le calcul de la
transformée de Laplace de g peut être fait, par exemple, via un détour par la théorie des excursions
du mouvement brownien (voir Jeanblanc, Pitman et Yor (1997) ou Revuz et Yor (2005)) et l’on
démontre ainsi que pour tout θ suffisamment grand

∫ ∞

0
dte−

θ
2
tg(t) = 2

( ∫ ∞
0 dxe−x

√
θ+2µh(x) +

∫ ∞
0 dxe−x

√
θ+2νh(−x)

)

√
θ + 2µ +

√
θ + 2ν − 2λ

0.3.4 Prime de Risque et Théorie Générale des Processus

Une question très importante en finance de marché est l’identification des risques dans l’évalua-
tion d’actifs financiers. Depuis Fama (1970), l’on dit qu’un risque est valorisé dans l’évaluation d’un
actif financier dès lors que la covariance entre le risque considéré et l’actif observé est différente de
zéro. Une conséquence importante de cette vision est qu’un risque n’est pas valorisé dans une éco-
nomie s’il n’est pas corrélé aux actifs qui la composent. Un peu plus récemment dans la littérature
sur les produits dérivés (Harrison et Kreps (1979), Harrison et Pliska (1981)), un risque est pricé si
les valorisations de l’actif d’Arrow Debreu associé à ce risque ont des espérances différentes sous la
probabilité statistique et sous la probabilité risque neutre. Les deux approches sont cohérentes dans
la mesure où un risque est pricé dès qu’il impacte les excès de rendements. Mathématiquement, la
corrélation entre les processus de l’économie et le risque donné précisément par le changement de
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mesure n’est pas un critère suffisant pour assurer qu’un risque est pricé ou non.

Selon ces considérations, le chapitre 5 rédigé avec Hélyette Geman, Dilip Madan et Marc Yor a donné
lieu à un article intitulé Correlation and the Pricing of Risks accepté dans Annals of Finance. Nous
y fournissons entre autres des exemples de risques pricés et de corrélation nulle. Après l’introduction
de nouveaux concepts et une étude détaillée de la notion de risque, laquelle est considéré aussi bien
au niveau des variables aléatoires, des processus continus que des filtrations nous sommes capables
de montrer que l’absence d’excès de rendement et une corrélation nulle pour des processus continus
sont équivalents à condition de se placer dans une filtration étendue que l’on appellera self sufficient.
Cette filtration construite en détail dans le chapitre 5 prend en compte les trajectoires de processus
permettant de prédire l’évolution du risque considéré. Nous démontrons que la self sufficiency d’une
filtration dépend de la mesure de probabilité sous laquelle elle est étudiée et nous examinons les
changements de mesure de probabilité pour lesquelles la self sufficiency est préservée.
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Chapitre 1

Localizing Volatilities

[Submitted∗]

We propose two main applications of Gyöngy (1986)’s construction of inhomogeneous Markov-
ian stochastic differential equations that mimick the one-dimensional marginals of continuous Itô
processes. Firstly, we prove Dupire (1994) and Derman and Kani (1994)’s result. We then present
Bessel-based stochastic volatility models in which this relation is used to compute analytical formu-
las for the local volatility. Secondly, we use these mimicking techniques to extend the well-known
local volatility results to a stochastic interest rates framework.

1.1 Introduction

It has been widely accepted for at least a decade that the option pricing theory of Black and Scholes
(1973) and Merton (1973) has been inconsistent with option prices. Actually, the model implies
that the informational content of the option surface is one dimensional which means that one could
construct the prices of options at all strikes and maturities from the price of any single option.
It has also been shown that unconditional returns show excess kurtosis and skewness which are
inconsistent with normality. Special attention was given to implied volatility smile or skew, but
research has concentrated on implied Black and Scholes volatility since it has become the unique
way to price vanilla options. Accordingly, option prices are often quoted by their implied volatility.
Nevertheless, this method is unsuitable for more complicated exotic options and options with early
exercise features. To explain in a self-consistent way why options with different strikes and maturi-
ties have different implied volatilities or what one calls the volatility smile, one could use stochastic
volatility models (eg. Heston (1993) or Hull and White (1987))

Given the computational complexity of stochastic volatility models and the difficulty of fitting
their parameters to the market prices of vanilla options, practitioners found a simpler way to price
exotic options consistently with the volatility smile by using local volatility models as introduced
by Dupire (1994) and Derman and Kani (1994). Local volatility models have the advantage to fit
the implied volatility surface; hence, when pricing an exotic option, one feels comfortable hedging

∗I thank Marc Yor for providing key ideas for the elaboration of this work and for all his precious comments. I
also thank Hélyette Geman for all her helpful and useful remarks.
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2 1. Localizing Volatilities

through the stock and vanilla options markets.
In the last twenty years, academics and practitioners have been primarily interested in building

models that describe well the behavior of an asset whether it is equity, FX, Credit, Fixed-Income
or Commodities and very rarely models that specify any cross-asset dependency. For all cross-asset
derivative products, this dependency modifies the model one should use or at least the calibration
procedure. Certainly, models that incorporate a dependency on other asset classes than a specific
underlying need to be recalibrated as soon as the other asset classes become random, in particular
in the fast growing hybrid industry where it is necessary to model several assets.

The remainder of the paper is organized as follows. Section 2 recalls preliminary results on
Bessel processes and states mimicking properties of continuous Itô processes exhibited by Gyöngy
(1986) and Krylov (1985). Section 3 recalls well-known results of Dupire (1994) and Derman and
Kani (1994) on local volatility, gives a proof of the existence of a local volatility model that mimicks
a stochastic volatility one based on Gyöngy (1986) theorem. Section 4 gives examples of stochastic
volatility models where a local volatility can be computed. Those examples are based on remarkable
properties of Bessel processes such as scaling properties. In order to extend the class of volatility
models (where closed-form formulas can be obtained), we propose a general framework in which
the volatility diffusion is a general deterministic time and space transformation of Bessel processes.
Analytical computations are proposed in cases where the volatility diffusion is independent from
the stock price diffusion as well as in cases where they are correlated. Section 5 applies the results
of Section 3 to the case of stochastic interest rates and more generally shows how Gyöngy (1986)
theorem can be applied to construct a local volatility model in a deterministic interest rate frame-
work, starting from a stochastic volatility model with stochastic rates. Finally, Section 6 concludes
our work and presents an important open question on mimicking the laws of Itô processes.

1.2 Preliminary Mathematical Results

1.2.1 Bessel and CIR Processes

Let (Rt, t ≥ 0) denote a Bessel process with dimension δ, starting from 0 and (βt, t ≥ 0) an
independent brownian motion from (Bt, t ≥ 0) the driving brownian motion. Let us recall that R2

t

solves the following SDE:

dR2
t = 2RtdBt + δdt

and let us now define :

It =

∫ t

0
Rsdβs and At =

∫ t

0
R2

sds

Then, the one-dimensional marginals of (At, It) are at least in theory well-identified, via Fourier-
Laplace expressions, and are closely related with the so-called Lévy area formula (see Lévy (1950),
Williams (1976), Gaveau (1977), Yor (1980), Chapter 2 of Yor (1992) and many other references).
Here we simply recall, for our purposes the formulae:
∀(α, β) ∈ R2

E

[
exp

(
iαIt −

β2

2
At

)]
=

(
cosh(t

√
α2 + β2)

)− δ
2 (1.1)
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as well as:
∀(a, b) ∈ R+ × R

E

[
exp

(
− aR2

t −
b2

2
At

)]
=

(
cosh(bt) +

2a

b
sinh(bt)

)− δ
2 (1.2)

a formula that we shall use later. Some developments for the law of At are given, e.g. in Pitman
and Yor (2003).
For a Bessel process of dimension δ starting at x, one gets the following formula:
∀(a, b) ∈ R+ × R

Ex

[
exp

(
− aR2

t −
b2

2
At

)]
=

(
cosh(bt) +

2a

b
sinh(bt)

)− δ
2 ×

exp

(
− x2b

2

sinh(bt) + 2a
b cosh(bt)

cosh(bt) + 2a
b sinh(bt)

)

Let us now present a scaling property of the Bessel process with respect to conditioning, which
is important in the sequel.

Proposition 1.2.1 For any Bessel process Rt with dimension δ, we have:

E

[
R2

t |
∫ t

0
R2

sds

]
=

2

t

∫ t

0
R2

sds (1.3)

Remark 1.2.2 This result is in fact a very particular case of a more general result involving only
the scaling property of the process (R2

t , t ≥ 0), see, e.g, Pitman and Yor (2003). But, for the sake
of completeness, we shall give a direct proof of (1.3) below:

Proof. From the scaling property of (R2
t , t ≥ 0), we deduce that for every f ∈ C1(R, R+), with

bounded derivative, we have:

E

[
f

(∫ t

0
R2

sds

)]
= E

[
f

(
t2

∫ 1

0
R2

sds

)]

We then differentiate both sides with respect to t, to obtain:

E

[
f ′

( ∫ t

0
R2

sds

)
R2

t

]
= E

[
f ′

(
t2

∫ 1

0
R2

sds

)
(2t)

∫ 1

0
R2

sds

]

= E

[
f ′

( ∫ t

0
R2

sds

)
2

t

∫ t

0
R2

sds

]

Since this identity is true for every bounded Borel function f ′, the identity (1.3) follows.

Remark 1.2.3 We now check that formula (1.3) can be obtained directly as a consequence of for-
mula (1.2): differentiating (1.2) both sides with respect to a and taking a = 0, we obtain:

E

[
R2

t exp
(
− b2

2
At

)]
=

δ

(cosh(bt))
δ
2
+1

(1

b
sinh(bt)

)
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while, taking a = 0 in (1.2), and differentiating both sides with respect to b, we get:

bE

[
At exp

(
− b2

2
At

)]
=

δt

2(cosh(bt))
δ
2
+1

sinh(bt)

and the identity (1.2) follows from the comparison of these last two equations.

A reason why squared Bessel processes play an important role in financial mathematics is that
they are connected to models used in finance. One of these models is the Cox, Ingersoll and Ross
(1985) CIR family of diffusions which are solutions of the following kind of SDEs:

dXt = (a − bXt)dt + σ
√

|Xt|dWt (1.4)

with X0 = x0 > 0, a ∈ R+, b ∈ R, σ > 0 and Wt a standard brownian motion. This equation
admits a unique strong (that is to say adapted to the natural filtration of Wt) solution that takes
values in R+.

One is now interested in the representation of a CIR process in terms of a time-space transfor-
mation of a Bessel process:

Lemma 1.2.4 A CIR Process Xt solution of equation (2.1) can be represented in the following
form:

Xt = e−btR2
σ2

4b
(ebt−1)

(1.5)

where R denotes a Bessel process starting from x0 at time t = 0 of dimension δ = 4a
σ2

Proof. This lemma results from simple properties of squared Bessel processes that can be found
in Revuz and Yor (2001), Pitman and Yor (1980, 1982).

This relation has been widely used in finance, for instance in Geman and Yor (1993) or Delbaen
and Shirakawa (1996).

1.2.2 Mimicking Theorems

A common topic of interest of Krylov and Gyöngy respectively in Krylov (1985) and Gyöngy (1986)
is the construction of stochastic differential equations whose solutions mimick certain features of the
solutions of Itô processes. The construction of Markov martingales that have specified marginals
was studied by Madan and Yor (2002). Bibby, Skovgaard and Sørensen (2005) as well as Bibby and
Sørensen (1995) proposed construction of diffusion-type models with given marginals.

Let us now consider an Itô differential equation of the form:

ξt =

∫ t

0
δsdWs +

∫ t

0
βsds (1.6)

where Wt is a Ft-Brownian motion of dimension k, (δt)t∈R+ and (βt)t∈R+ are bounded Ft-adapted
processes that belong respectively to Mn,k(R), the space of n × k real matrices and to Rn.
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Definition 1.2.5 (Green Measure) Considering two stochastic processes Xt, valued in Rn and
γt, with γt > 0, one defines the Green measure µX,γ by:

µX,γ(Γ) = E

[ ∫ ∞

0
1Γ(Xt) exp

(
−

∫ t

0
γsds

)
dt

]
(1.7)

where Γ is any borel set of Rn

Remark 1.2.6 The stochastic process γt is called the killing rate

Theorem 1.2.7 (Krylov) If ξt is an Itô process defined as previously and satisfying the uniform
ellipticity condition: ∃λ ∈ R∗

+ such as δδ∗ ≥ λIn

as well as the lower boundedness condition: ∃α ∈ R+ such as γ > α,
then there exist deterministic functions σ : Rn → Mn(R) , b : Rn → Rn and c : Rn → R+ such that
the following SDE:

dxt = σ(xt)dWt + b(xt)dt

x0 = 0

has a weak solution satisfying:

∀Γ ∈ B(Rn)

E

[ ∫ ∞

0
1Γ(ξt) exp

(
−

∫ t

0
γsds

)
dt

]
= E

[ ∫ ∞

0
1Γ(xt) exp

(
−

∫ t

0
c(xs)ds

)
dt

]

ie : µξ,γ(Γ) = µX,c(Γ)

Proof. See Krylov (1985)

Definition 1.2.8 (Weak Solution) The stochastic differential equation

dXt = f(t, Xt)dWt + g(t,Xt)dt (1.8)

X0 = 0 (1.9)

is said to have a weak solution if there exist a probability space (Ω,F , P) and an Ft-Brownian motion
with respect to which there exists a Ft-adapted stochastic process Xt that satisfies (1.8) and (1.9).

A natural question asked and answered by Gyöngy is whether it is possible to find the solution
of an SDE with the same one-dimensional marginal distributions as an Itô process. The answer is
stated below:

Theorem 1.2.9 (Gyöngy) If ξt is an Itô process satisfying the uniform ellipticity condition: ∃λ ∈
R∗

+ such as δδ∗ ≥ λIn

then there exist bounded measurable functions σ : R+ × Rn → Mn,n(R) and b : R+ × Rn → Rn

defined by:

∀(t, x) ∈ R+ × Rn

σ(t, x) =

(
E

[
δtδ

∗
t |ξt = x

]) 1
2

b(t, x) = E
[
βt|ξt = x

]
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such that the following SDE:

dxt = σ(t, xt)dWt + b(t, xt)dt

x0 = 0

has a weak solution with the same one-dimensional marginals as ξ.

Proof. See Gyöngy (1986)

Remark 1.2.10 Two kinds of mimicking features of a general Itô process were illustrated in this
section . With Krylov, we were able to construct a Markov homogeneous process solution of an
SDE, that has the same Green measure than the Itô process. Using Gyöngy’s results, we were able
to build a time-inhomogeneous Markov process solution of an SDE that has the same one-dimensional
marginals as the Itô process.

A possible extension to the above mimicking property is to consider a real Itô process ξ driven
by a multidimensional Brownian motion and obtain a new mimicking result useful for the remainder
of the paper; the proof is straightforward from Gyöngy (1986) proof. Let ξ be as follows :

ξt =

∫ t

0
< δs, dWs > +

∫ t

0
βsds (1.10)

where Wt is a Ft-Brownian motion of dimension k, (δt)t∈R+ and (βt)t∈R+ are bounded Ft-adapted
processes that belong respectively to Rk and to R.

Theorem 1.2.11 If ξt is an Itô process defined as in (1.10) satisfying the uniform ellipticity con-
dition: ∃λ ∈ R∗

+ such as δδ∗ ≥ λ
then there exist bounded measurable functions σ : R+ × R → R and b : R+ × R → R defined by:

∀(t, x) ∈ R+ × R

σ(t, x) =

(
E

[
δtδ

∗
t |ξt = x

]) 1
2

b(t, x) = E
[
βt|ξt = x

]

such that the following SDE:

dxt = σ(t, xt)dWt + b(t, xt)dt

x0 = 0

has a weak solution with the same one-dimensional marginals as ξ.
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1.3 Generalities on Local Volatility

1.3.1 Fokker-Planck Equation

Let us assume that:
dSt

St
= r(t)dt + σ(t, St)dWt (1.11)

where r and σ are deterministic functions, σ is usually called the local volatility. Under the local
volatility dynamics, option prices satisfy the following PDE:

∂V

∂t
+

σ2(t, St)

2
S2 ∂2V

∂S2
+ r(t)S

∂V

∂S
− r(t)V = 0 (1.12)

and terminal condition V (S, T ) = C(S, T ) = PayOffT (S).
If we consider call options, we would get V (S, T ) = (S − K)+. It has been proved that one can
obtain a forward PDE for C(K,T ) instead of fixing (K, T ) and obtaining a backward PDE for
C(S, t). To get the Forward PDE equation, one could just differentiate (1.12) twice with respect to

the strike K and then get the same PDE, with variable φ = ∂2C
∂K2 and terminal condition δ(S−K). φ

is the transition density of S and is also the Green function of (1.12). It follows that φ as a function
of (K, T ) satisfies the Fokker-Planck PDE:

∂φ

∂T
− ∂2

∂K2

(σ2(T, K)

2
K2φ

)
+ r(T )

∂

∂K
(Kφ) + r(T )K = 0

Now, integrate twice this equation taking into account the boundary conditions, one obtains the
Forward Parabolic PDE equation:

∂C

∂T
− σ2(T, K)

2
K2 ∂2C

∂K2
+ r(T )K

∂C

∂K
= 0 (1.13)

with initial condition C(K, 0) = (S0 − K)+. Hence, one obtains Dupire (1994) equation

σ2(T,K) =
∂C
∂T + r(T )K ∂C

∂K
1
2K2 ∂2C

∂K2

(1.14)

Moreover, if one expresses the option price as a function of the forward price, one would write a
simpler expression:

σ2(T, K, S0) =
∂C
∂T

1
2K2 ∂2C

∂K2

where C is now a function of (FT ,K, T ) with FT = S0 exp
( ∫ T

0 r(s)ds
)
.

1.3.2 Matching Local and Stochastic Volatilities

A stock price diffusion with a stochastic volatility is one of the following form:

dSt

St
= r(t)dt +

√
VtdWt (1.15)
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where Vt is a stochastic process, solution of an SDE and r(t) is a deterministic function of time. (We
do not yet discuss the dependence of the stock price and volatility processes, also called Leverage
effect)
One can find a relation between the local volatility and a stochastic volatility. First, one applies
Tanaka’s formula to the stock price process:

e−
∫ t
0 r(s)ds(St − x)+ = (S0 − x)+ −

∫ t

0
r(u)e−

∫ u
0 r(s)ds(Su − x)+du

+

∫ t

0
e−
∫ u
0 r(s)ds

1{Su>x}dSu +
1

2

∫ t

0
e−
∫ u
0 r(s)dsdLx

u(S)

Assuming that (e−
∫ t
0 r(s)dsSt, t ≥ 0) is a true martingale, then

(
∫ t
0 1{Su>x}d(e−

∫ u
0 r(s)dsSu), t ≥ 0) is a martingale and one gets:

E[e−
∫ t
0 r(s)ds(St − x)+] = E[(S0 − x)+] + x

∫ t

0
E[r(u)e−

∫ u
0 r(s)ds

1{Su>x}]du

+
1

2
E

[ ∫ t

0
e−
∫ u
0 r(s)dsdLx

u(S)

]

Then, differentiating the previous relation and using Fubini theorem, one obtains:

dtC(t, x) = xE[r(t)e−
∫ t
0 r(s)ds

1{St>x}]dt +
1

2
E[e−

∫ t
0 r(s)dsdLa

t (S)] (1.16)

where C(t, x) = E[e−
∫ t
0 r(s)ds(St − x)+] Using a classical characterization of the local time of any

continuous semi-martingale:

Lx
t (S) = lim

ǫ→0

1

ǫ

∫ t

0
1{x≤Ss<x+ǫ}d < S, S >s (1.17)

one gets with a permutation of the differentiation and the expectation:

dtC(t, x) = xE[r(t)e−
∫ t
0 r(s)ds

1{St>x}]dt +
1

2
lim
ǫ→0

E[
1

ǫ
1{x≤St<x+ǫ}e

−
∫ t
0 r(s)dsVtS

2
t ]dt (1.18)

as a result of d < S, S >t= VtS
2
t dt. Now, one may write using conditional expectations and the fact

that interest rates are assumed to be deterministic, the following identity:

E[VtS
2
t 1{x≤St<x+ǫ}] = E

[
E[Vt|St]S

2
t 1{x≤St<x+ǫ}

]

From there assuming regularity conditions on qt(x) and E[Vt|St], one easily obtains:

lim
ǫ→0

1

ǫ
E[VtS

2
t 1{x≤St<x+ǫ}] = lim

ǫ→0

1

ǫ
E

[
E[Vt|St]S

2
t 1{x≤St<x+ǫ}

]

= E[Vt|St = x]x2qt(x)

where qt(x) is the value of the density of St in x. Since Breeden and Litzenberger (1978), it is

well known that ∂2C(t,x)
∂x2 = e−

∫ t
0 r(s)dsqt(x). It is also known that ∂C

∂x = −E[e−
∫ t
0 r(s)ds

1{St>x}] One
finally may write:

∂C

∂t
+ xr(t)

∂C

∂x
= E[Vt|St = x]

1

2
x2 ∂2C

∂x2
(1.19)
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Comparing equation (1.14) and the above equation, one may obtain an equation that relates local
and stochastic volatility models

σ2(t, x) = E[Vt|St = x] (1.20)

Hence, we have proven that if there exists a local volatility such that the one-dimensional marginals
of the stock price with the implied diffusion are the same as the ones of the stock price with the
stochastic volatility, then the local volatility satisfies equation (1.20).

Another way to prove this relation is to apply Gyöngy (1986) result. Since the stock price
dynamics with a stochastic volatility given by equation (1.15) and the ones with the local volatility
given by equation (1.11) must have the same one-dimensional marginals, one can apply Gyöngy
Theorem: assuming that there exists λ ∈ R∗

+ such that S2V ≥ λ we get the well-known relation
between the local and the stochastic volatilities:

σ(t, St = x) =

(
E

[
Vt|St = x

]) 1
2

It is important to notice that Gyöngy gives us the existence of such a diffusion in addition to provide
an explicit way to construct it. More generally, assuming just that the volatility process is a general
continuous semi-martingale, one can also get the same result, and a justification for the use of
local volatility models. Hence, we obtain an illustration of Gyöngy’s result in a finance framework.
Moreover, it is shown that one can get the relation (1.20) without using the Forward PDE equation.

As a first remark, we should notice that if we choose Vt such as
√

Vt = σ(t, St), we then obtain
another direct proof of equation (1.14).

As a second remark, we can prove that if (S̃t = e−
∫ t
0 r(s)dsSt), t ≥ 0) is a strict local martingale

(which is studied in Cox and Hobson (2005) who named this market situation a bubble), then

E[

∫ t

0
1{Su>x}dS̃u] = E[S̃t − S0] − E[

∫ t

0
1{Su≤x}dS̃u]

= E[S̃t − S0]

since using Madan and Yor (2006), (
∫ t
0 1{Su≤x}d(e−

∫ u
0 r(s)dsSu), t ≥ 0) is a square integrable mar-

tingale. Hence, defining
c
S̃
(t) = E[S0 − S̃t]

and assuming that c
S̃

is a continuously differentiable function, one obtains an extension of equation
(1.14) that is a generalization to the case of strict local martingales. This equation writes

σ2(t, x) =

∂C
∂t + xr(t)∂C

∂x + c′
S̃
(t)

1
2x2 ∂2C

∂x2

1.4 Applications to the Heston (1993) model and Extensions

1.4.1 The Simplest Heston Model

The aim of this paragraph is now to compute the local volatility not by excerpting it from the option
prices (see for instance Derman and Kani (1994)) but by applying Gyöngy’s theorem.
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Among the possible choices of stochastic volatility models, we will consider the simplest one,
given by the following SDE:

dSt

St
= WtdBt (1.21)

S0 = 1

where (Wt) and (Bt) are two independent one-dimensional Brownian motions starting at 0. We do
not consider any drift term in our stock diffusion as we look at the forward price dynamics that are
driftless by construction.

To make our discussion a little more general than the model presented in equation (1.21), we
write (1.21):

dSt

St
= |Wt|sgn(Wt)dBt

S0 = 1

Now we define βt =
∫ t
0 sgn(Ws)dBs, another Brownian motion which is independent of (Wt, t ≥ 0)

and consequently of the reflecting Brownian motion (|Wt|, t ≥ 0). We get the following model:

dSt

St
= |Wt|dβt, S0 = 1

Now this modified form leads itself naturally to the generalization:

dSt

St
= Rtdβt, S0 = 1 (1.22)

where, as in subsection 1.2.1, (Rt) denotes a Bessel process with dimension δ starting at 0 and (βt)
an independent Brownian motion.

Let us consider a Markovian martingale (Σt, t ≥ 0), which is the unique solution of:

dΣt

Σt
= σ(t,Σt)dβt (1.23)

Σ0 = 1

for some particular diffusion coefficient {σ(t, x), t ≥ 0, x ∈ R+} which has the same one-dimensional
marginal distributions as (St, t ≥ 0) the solution of (1.22).

We will now use proposition 1.2.1 to find σ, the local volatility. We follow the notation in 1.2.1,
and introduce a useful notation:

L
(µ)
t = It − µAt (1.24)

(Law)
= N

√
At − µAt (1.25)

where N is a standard gaussian variable independent of At. Next we remark as a consequence of
(1.25) that for any fixed t ≥ 0 :

(Rt, L
(µ)
t )

(Law)
= (Rt, N

√
At − µAt)
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and
E

[
R2

t |L
(µ)
t = l

]
= E

[
E(R2

t |N,At)|N
√

At − µAt = l
]

Since N is independent of Rt, we obtain

E
[
R2

t |L
(µ)
t = l

]
= E

[
E(R2

t |At)|N
√

At − µAt = l
]

From (1.3), we deduce:

E
[
R2

t |L
(µ)
t = l

]
=

(2

t

)
E

[
At|N

√
At − µAt = l

]
(1.26)

Now, the computation of the expression in (1.26) is a simple exercise, which we present in the
following form:

Lemma 1.4.1 Let X > 0 be a random variable independent from a standard gaussian variable N .
Denote Y (µ) = N

√
X − µX. Then:

i) for any f : R+ → R+, Borel function, the following formula holds:

E
[
f(X)|Y (µ) = z

]
=

h(µ)(f ; z)

h(µ)(1; z)

where: h(µ)(f ; z) = E

[
f(X)√

X
exp

(
− (z+µX)2

2X

)]

ii) in particular, for f(x) = x, one can write :

E
[
X|Y (µ) = z

]
= −

(
∂k
∂b

k

)
(z2

2
,
µ2

2

)
(1.27)

where k(a, b) = E

[
1√
X

exp

(
−

(
a
X + bX

))]

The proof of this lemma results from elementary properties of conditioning and is left to the
reader.
We now give a formula for σ2(t, x) in terms of the law of At ≡ A

(δ)
t , by using equation (1.26) and

the above lemma. Indeed, it follows from these results that:

E
[
R2

t | ln(St) = l
]

= −2

t

∂kt
δ

∂b

(
l2

2 , 1
8

)

kt
δ

(
l2

2 , 1
8

)

where kt
δ(a, b) = E

[
1√
At

exp

(
−

(
a
At

+ bAt

))]
.

Using the scaling property, we have kt
δ(a, b) = 1

t k
1
δ (

a
t2

, bt2) which allows us to concentrate on
kδ(a, b) ≡ k1

δ (a, b).
The following formula for the density fδ of A1 is borrowed from Biane, Pitman and Yor (2001).
Denoting h = δ

2 , we have:

fδ(x) ≡ f ♯
h(x) =

2h

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

(2n + h)√
2πx3

exp

(
− (2n + h)2

2x

)
(1.28)
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For δ = 2, A(2), or equivalently f2(x) = f ♯
1(x) enjoys a symmetry property (also shown in Biane,

Pitman and Yor (2001)):
For any non-negative measurable function g

E

[
g(

4

π2A(2)
)

]
=

√
2

π
E

[
1√
A(2)

g(A(2))

]
, (1.29)

f
♯
1(x) = (

2

πx
)

3
2 f

♯
1(

4

π2x
) (1.30)

and

f
♯
1(x) = π

∞∑

n=0

(−1)n(n +
1

2
)e−(n+ 1

2
)2π2 x

2 (1.31)

From formula (1.28), one may compute with the change of variables a = α2

2 , b = β2

2

kδ(a, b) ≡ E

[
1√
A(δ)

exp

(
− 1

2

( α2

A(δ)
+ β2A(δ)

))]

=
2h

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
2π

∫ ∞

0

dx

x2
e−

1
2

(
α2+(2n+h)2

x
+β2x

)

=
2h

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
2π

∫ ∞

0
e−

1
2

(
(α2+(2n+h)2)x+β2

x

)
dx (⋆)

Also of importance for us, is the result:

∂

∂b
(kδ(a, b)) =

−(2h)

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
2π

∫ ∞

0

e−
1
2

(
α2

nx+β2

x

)

x
dx (1.32)

where αn =
√

α2 + (2n + h)2.
Recall the integral representation for the Mc Donald functions Kν :

Kν(z) ≡ K−ν(z) =
1

2

(z

2

)ν
∫ ∞

0

dt

tν+1
exp−

(
t +

z2

2t

)
(1.33)

In particular, we have:

K0(z) =
1

2

∫ ∞

0

dt

t
e−

(
t+ z2

2t

)

As a consequence: ∫ ∞

0

du

u
e−

1
2

(
α2u+β2

u

)
= 2K0

(
αβ√

2

)
(1.34)

Now, plugging (1.34) in (1.32), we obtain:

∂

∂b
(kδ(a, b)) =

−(2h)

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
2π

2K0

(
αnβ√

2

)
(1.35)



1.4. Applications to the Heston (1993) model and Extensions 13

Likewise, we deduce from (1.33) that:

K1(z) ≡ K−1(z) =
1

z

∫ ∞

0
dte−

(
t+ z2

2t

)

which implies ∫ ∞

0
due−

1
2

(
α2

nu+β2

u

)
=

β
√

2

αn
K1

(αnβ√
2

)

Hence, we get as a consequence of (⋆):

kδ(a, b) =
2h

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
π

β

αn
K1

(
αnβ√

2

)
(1.36)

Recalling that β =
√

2b and that αn =
√

2a + (2n + h)2, we may now write (1.36) and (1.35) as:

kδ(a, b) =
2h

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
π

√
2b

αn
K1(αn

√
b) (1.37)

∂

∂b
(kδ(a, b)) =

−(2h)

Γ(h)

∞∑

n=0

(−1)n Γ(n + h)

Γ(n + 1)

2n + h√
2π

2K0(αn

√
b) (1.38)

And finally, we obtain the following formula for the local volatility:

σ2(t, x = el) = −4

t

( ∂kδ

∂b

kδ

)( l2

2t2
,
t2

8

)
(1.39)

1.4.2 Adding the Correlation

We now assume a non-zero correlation between the volatility process and the stock price process.
This is a common fact in finance called the Leverage Effect and translated by a negative correlation.
For a financial understanding of this effect, one can refer for instance to Black (1976), Christie (1982)
or Schwert (1989).

Let us define our new model for the stock price dynamics with a Bessel process of dimension δ
starting from 0 correlated to the Brownian motion of the stock price process:

dSt

St
= RtdWt (1.40)

dR2
t = 2RtdW σ

t + δt (1.41)

d < W σ,W >t= ρdt (1.42)

S0 = 1 and R0 = 0 (1.43)

Then, there exists a Brownian motion β independent of the Bessel process such that ∀t:

Wt = ρW σ
t +

√
1 − ρ2βt

Using the previous formula, plugging it in (1.40) and then inserting (1.41) in the new (1.40), one
gets:

dSt

St
=

ρ

2
(dR2

t − δdt) +
√

1 − ρ2Rtdβt (1.44)
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Then using Itô formula applied to f(x) = ln(x)

d ln(St) =
dSt

St
− 1

2
R2

t dt

one obtains:

ln(St) =
ρ

2
(R2

t − δt) +
√

1 − ρ2

∫ t

0
Rsdβs −

1

2

∫ t

0
R2

sds (1.45)

Let us consider as in subsection 1.4.1, L
(µ)
t =

∫ t
0 Rsdβs − µ

∫ t
0 R2

sds (we are especially interested
in the case µ = 1

2
√

1−ρ2
). Since R and β are independent, we shall use the same notation as above.

Particularly, At and It will refer to the quantities defined in subsection 1.2.1
Now, equation (1.45) can be rewritten as follows:

ln(St) =
ρ

2
(R2

t − δt) +
√

1 − ρ2L
( 1

2
√

1−ρ2
)

t (1.46)

Since we wish to evaluate the local volatility E
[
R2

t | ln(St) = l
]
, we will try to compute more generally

the following quantity:

E
[
R2

t |mR2
t + L

(µ)
t = l

]
(1.47)

where m is a real constant.

Remark 1.4.2 We immediately see that if we take m = 0, i.e ρ = 0, we are back to the previous
paragraph setting.

First, we see that equation (1.26) is easily extended to the case with correlation and we obtain:

E
[
R2

t |mR2
t + L

(µ)
t = l

]
=

2

t
E

[
At|mR2

t + L
(µ)
t = l

]
(1.48)

Before extending Lemma 1.4.1, one must recall that for any t ≥ 0:

(Rt, At, L
(µ)
t )

(Law)
= (Rt, At, N

√
At − µAt)

where N is a standard gaussian variable independent of Rt and At. The following simple result will
be helpful for the remaining of the paper:

Lemma 1.4.3 Let X > 0 and Z ≥ 0 independent from a standard gaussian variable N . Denote
Y (µ) = N

√
X − µX. Then:

i) for any Borel function f : R2
+ → R+ , real number m we have the formula:

E
[
f(X,Z)|mZ + Y (µ) = z

]
=

a(µ,m)(f ; z)

a(µ,m)(1; z)

where: a(µ,m)(f ; z) = E

[
f(X,Z)√

X
exp

(
− (z+µX−mZ)2

2X

)]

ii) in particular, for f(x, y) = x, we obtain:

E
[
X|mZ + Y (µ) = z

]
= − 1

µ
√

2

(
∂α
∂b

α

)
( z√

2
,

µ√
2
,

m√
2

)
(1.49)
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where α(a, b, c) = E

[
1√
X

exp

(
−

( (a−cZ)2

X + b2X + bcZ
))]

The other fundamental result we now need, is the joint density of (R2
t ,

∫ t
0 R2

sds)t≥0.

Theorem 1.4.4 The joint density gt of (R2
t ,

∫ t
0 R2

sds) is given by:

gt(x, y) =
1√

2πΓ( δ
2)

∞∑

j=0

(−1)j

j!
xj+ δ

2
−1y−

j
2
− δ

4
−1f j

t (x, y) (1.50)

where f j
t is defined by

f j
t (x, y) =

∞∑

k=0

(j + δ
2)k

k!
e
− 1

4y
[2(k+j+ δ

4
)t+x

2
]2
D δ

2
+j+1

(2(k + j + δ
4)t + x

2√
y

)
(1.51)

Dν(ξ) is a parabolic cylinder function and (ν)k the Pochhammer’s symbol defined by (ν)k ≡ ν(ν +
1)...(ν + k − 1) = Γ(ν + k)/Γ(ν)

Proof. See Ghomrasni (2004) who evaluates the Laplace transform of (1.2) in order to get the
density function.

For the definition and properties on the parabolic cylinder functions, we refer to Gradshteyn and
Ryzhik (2000).
Let us define αt in the following form:

αt(a, b, c) = E

[
1√
At

exp

(
−

((a − cR2
t )

2

At
+ b2At + bcR2

t

))]
(1.52)

Unfortunately, there is no more scaling property as in the zero-correlation case and we may not
rewrite αt as a function of t and α1. One can then compute the local volatility σ(ρ) by noticing that
in the case of particular interest for us, the parameters are defined as follows:

m =
ρ

2
√

1 − ρ2
and z =

l + ρ
2δt√

1 − ρ2
and µ =

1

2
√

1 − ρ2

We then obtain

σ(ρ)(t, x = el) = −
√

2(1 − ρ2)

(
∂αt

∂b

αt

)
( l + ρ

2δt√
2(1 − ρ2)

,
1√

8(1 − ρ2)
,

ρ√
8(1 − ρ2)

)
(1.53)

1.4.3 From a Bessel Volatility process to the Heston Model

The Heston (1993) model for representing a stochastic volatility process is a particular case of the
Cox, Ingersoll and Ross (1985) stochastic process, of the form:

dVt = κ(θ − Vt)dt + η
√

VtdWt (1.54)

with initial condition V0 = v0

Actually, it is possible to find out deterministic space and time changes such as the law of the
Heston SDE solution and the Time-Space transformed Bessel Process are the same.
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Proposition 1.4.5 For every Heston SDE solution, there exist a Bessel process and two determin-
istic functions f and g with g increasing such as:

Vt = f(t) × R2
g(t)

where R denotes a Bessel Process of dimension δ = 4κθ
η2 starting from

√
v0 at time t = 0 and f and

g are defined by:

f(t) = e−κt

g(t) =
η2

4κ
(eκt − 1)

Proof. It is just an application of Lemma 1.2.4.

One may now apply the results of the previous sections using the time and space transformations
presented in the previous paragraph

Proposition 1.4.6 Let us consider the following stochastic volatility model:

dSt

St
=

√
vtdβt, S{t=0} = S0

vt =
η2

4
e2κtVt, v0 =

η2

4
V0

dVt = κ(θ − Vt)dt + η
√

VtdWt

d < β.,W. >t = ρdt

where βt is a Brownian motion and Vt is an Heston process as defined above.
Then the local volatility σ̃ that gives us the expected mimicking properties, satisfies the following
equation:

σ̃(t, x) =
η2

4
eκtσ

( η2

4κ
(eκt − 1),

x

s0

)
(1.55)

where σ2(t, x) = E[R2
t | exp(It − 1

2At) = x] and Rt is a Bessel Process of dimension δ starting from

V0 if ρ = 0 and σ2(t, x) = (σ(ρ)(t, x))2 as defined above otherwise.

Proof. First, one has the Gyöngy volatility formula:

σ̃2(t, x) =
η2

4
e2κtE

[
Vt|St = x

]
(1.56)

Then using Lemma 1.2.4, one easily obtains the result.

Remark 1.4.7 Let us note that we only have closed-form formulas in cases where V0 = 0 and that
otherwise we have to go through Laplace transform inversion techniques.

One can propose a general framework for constructing stochastic volatility models based on
Bessel processes. Local volatilities can be computed through the proposition below whose proof is
left to the reader.
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Proposition 1.4.8 Let us consider the following stochastic volatility model:

dSt

St
=

√
vtdβt, S{t=0} = S0

vt =
g′(t)
f(t)

Vt, v0 =
g′(0)

f(0)
V0

dVt =

(
δf(t)g′(t) +

f ′(t)
f(t)

Vt

)
dt +

√
f(t)g′(t)

√
VtdWt

d < β., W. >t = ρdt

where βt and Wt are Brownian motions, f is a positive continuously differentiable function and g
an increasing C1 function.
Then the local volatility σ̃ that gives us the expected mimicking properties, satisfies the following
equation:

σ̃(t, x) = g′(t)σ
(
g(t),

x

S0

)
(1.57)

where σ2(t, x) = E[R2
t | exp(It − 1

2At) = x] and Rt is a Bessel Process of dimension δ starting from

V0 if ρ = 0 and σ2(t, x) = (σ(ρ)(t, x))2 as defined above otherwise.

1.5 Pricing Equity Derivatives under Stochastic Interest Rates

1.5.1 A Local Volatility Framework

With the growth of hybrid products, it has been necessary to take properly into account the sto-
chasticity of interest rates in FX or Equity models in a way that makes the equity volatility surface
calibration easy at a given interest rate parametrization. It has been now a while that people have
been considering interest rates as stochastic for long-dated Equity or FX options, but they have not
been thinking about it in terms of calibration issues. Besides, according to the interest rates part of
an equity - interest rates hybrid product for example, the instruments on which the interest rates
model will be calibrated are different; hence it becomes necessary to parameterize the volatility
surface efficiently. For most of hybrid products, no forward volatility dependence is involved and
then a local volatility framework is sufficient. Let us now consider a local volatility model with
stochastic interest rates:

dSt

St
= rtdt + σ(t, St)dWt

where rt is a stochastic process and σ a deterministic function.
Now, we can observe that equation (1.18) is still valid under stochastic rates and we may then write

dtC(t, x) = xE[rte
−
∫ t
0 rsds

1{St>x}]dt +
1

2
lim
ǫ→0

E[
1

ǫ
1{x≤St<x+ǫ}e

−
∫ t
0 rsdsσ2(t, St)S

2
t ]dt

The second term of the right-hand side may be written as follows

E[e−
∫ t
0 rsdsσ2(t, St)S

2
t 1{x≤St<x+ǫ}] = E

[
E[e−

∫ t
0 rsds|St]σ

2(t, St)S
2
t 1{x≤St<x+ǫ}

]

and then we have

lim
ǫ→0

1

ǫ
E[e−

∫ t
0 rsdsσ2(t, St)S

2
t 1{x≤St<x+ǫ}] = x2σ2(t, x)qt(x)E[e−

∫ t
0 rsds|St = x]
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where qt(x) is the value of the density of St in x. It is easily shown as well that

∂2C

∂x2
= qt(x)E[e−

∫ t
0 rsds|St = x]

Let us now define the t-forward measure Qt (see Geman (1989), Jamshidian (1989)) by

dQt

dQ
=

e−
∫ t
0 rsds

B(0, t)
where B(0, t) = E[e−

∫ t
0 rsds]

Hence, we finally obtain an extension of Dupire (1994)’s formula :

σ2(t, x) =
∂C
∂t − xB(0, t)Et[rt1{St>x}]

x2

2
∂2C
∂x2

Under a T -forward measure for T ≥ t, one has

ET [rT |Ft] = f(t, T )

where f(t, T ) is the instantaneous forward rate. To conclude this subsection, we can first notice
that this slight extension of Dupire equation may be also written

σ2(t, x) =
∂C
∂t + xf(0, t)∂C

∂x − xB(0, t)Covt(rt;1{St>x})
x2

2
∂2C
∂x2

(1.58)

We then assume that it is possible to extract from markets prices the quantities Covt(rt;1{St>x})
(i.e. there exist tradeable assets from which we could obtain these covariances) in order to add
stochastic interest rates to the usual local volatility framework. For the remainder of the paper, we
denote this assumption the (HC)-Hypothesis that stands for Hybrid Correlation hypothesis. Under
this market hypothesis, one is able to calibrate a local volatility surface with stochastic interest
rates implied by the derivatives’ market prices.

1.5.2 Mimicking Stochastic Volatility Models

In this subsection, we consider the case of a stochastic volatility model with stochastic interest rates
and see how it is possible to connect it to a local volatility framework. Let us consider the following
diffusion

dSt

St
= rtdt +

√
VtdWt

with Vt a stochastic process and let us use equation (1.18) in order to exhibit a new mimicking
property:

dtC(t, x) = xE[rte
−
∫ t
0 rsds

1{St>x}]dt +
1

2
lim
ǫ→0

E[
1

ǫ
1{x≤St<x+ǫ}e

−
∫ t
0 rsdsVtS

2
t ]dt

Then,

lim
ǫ→0

1

ǫ
E[e−

∫ t
0 rsdsVtS

2
t 1{x≤St<x+ǫ}] = lim

ǫ→0

1

ǫ
E

[
E[Vte

−
∫ t
0 rsds|St]S

2
t 1{x≤St<x+ǫ}

]

= x2qt(x)E[Vte
−
∫ t
0 rsds|St = x]

= x2 ∂2C

∂x2

E[Vte
−
∫ t
0 rsds|St = x]

E[e−
∫ t
0 rsds|St = x]
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Hence, we obtain

E[Vte
−
∫ t
0 rsds|St = x]

E[e−
∫ t
0 rsds|St = x]

=
∂C
∂t + xf(0, t)∂C

∂x − xB(0, t)Covt(rt;1{St>x})
x2

2
∂2C
∂x2

Spot Mimicking Property Finally, if there exists a stochastic process, solution of the following
SDE

dXt

Xt
= rtdt + σ(t,Xt)dWt

such that the one-dimensional marginals of the triple (rt,
∫ t
0 rsds,Xt) are the same as (rt,

∫ t
0 rsds, St),

then by identification one must have

σ2(t, x) =
E[Vte

−
∫ t
0 rsds|St = x]

E[e−
∫ t
0 rsds|St = x]

The existence is easily proven in the cases where (rt, t ≥ 0) is a Markovian diffusion. Hence, we
exhibit a strong mimicking property since we obtained an explicit way to construct a local volatility
surface.

Remark 1.5.1 We may notice that if interest rates are deterministic, we recover the well-known
formula (1.20).

Forward Mimicking Property Let us now write a Forward mimicking property by applying
Gyöngy’s result to match the one dimensional marginals of a stochastic volatility model and of a
local volatility one:

If one defines F
(1)
t = Ste

−
∫ t
0 rsds and F

(2)
t = Xte

−
∫ t
0 rsds where S and X are defined above, we obtain

the existence of diffusions Y
(1)
t and Y

(2)
t solutions of

dY
(i)
t

Y
(i)
t

= Σ(i)(t, Y
(i)
t )dWt

for i = 1, 2 such as

Σ2
(1)(t, x) = E[Vt|St = xe

∫ t
0 rsds]

Σ2
(2)(t, x) = E[σ2(t, xe−

∫ t
0 rsds)|Xt = xe

∫ t
0 rsds]

Since the one-dimensional marginals of F
(1)
t and F

(2)
t must be equal, one obtains

E[Vt|St = xe
∫ t
0 rsds] = E[σ2(t, xe−

∫ t
0 rsds)|Xt = xe

∫ t
0 rsds] (1.59)

We consequently obtain an implicit way to construct a local volatility surface we say that this
relation is weak in the sense that it is a weak mimicking distribution property which is involved in
the above relation.



20 1. Localizing Volatilities

1.5.3 From a Deterministic Interest Rates Framework to a Stochastic one

Going from a framework to another is valuable for calibration issues. Let us assume, for instance
that a model has been calibrated with deterministic interest rates and that one wants to recalibrate
the same model assuming stochastic interest rates. Let us introduce some notation to define the
different kinds of frameworks we will go through in this subsection.

Notation
LV stands for Local Volatility, SV stands for Stochastic Volatility, DIR stands for Deterministic
Interest Rates and SIR stands for Stochastic Interest Rates

From DIR-LV to SIR-LV Let us first consider the local volatility case. Under deterministic
interest rates, the stock price dynamics are driven by the equation

dSt

St
= r(t)dt + σ(t, St)dWt

while under stochastic interest rates it would be

dSt

St
= rtdt + σ(t, St)dWt

and we know that both local volatility functions solve the following implied equations:

σ2(t, x) =
∂C
∂t + xf(0, t)∂C

∂x
x2

2
∂2C
∂x2

σ2(t, x) =
∂C
∂t + xf(0, t)∂C

∂x − xB(0, t)Covt(rt;1{St>x})
x2

2
∂2C
∂x2

where f(0, t) = r(t).

Now, if the prices involved in the estimation of the local volatility surfaces are observed on
markets and respect the (HC)-Hypothesis, one may write

σ2(t, x) − σ2(t, x) =
2B(0, t)Covt(rt;1{St>x})

x∂2C
∂x2

(1.60)

From DIR-SV to SIR-SV If we assume that a general Itô process drives the volatility we will
write

dS
(1)
t

S
(1)
t

= r(t)dt +

√
V

(1)
t dWt

dS
(2)
t

S
(2)
t

= rtdt +

√
V

(2)
t dWt
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and then, if S(1) and S(2) have the same one-dimensional marginals, we obtain the following relation
to relate V (1) to V (2):

E[V
(1)
t |S(1)

t = x] − E[V
(2)
t e−

∫ t
0 rsds|S(2)

t = x]

E[e−
∫ t
0 rsds|S(2)

t = x]
=

2B(0, t)Covt(rt;1{S(2)
t >x})

x∂2C
∂x2

(1.61)

From SIR-SV to DIR-LV Let us now specify a Heath Jarrow and Morton (1992) diffusion for
the interest rate model and see precisely how one could extract, using Gyöngy’s result, the volatility
of the forward contract under deterministic interest rates from the volatility of the forward contract
under stochastic interest rates. Let us recall that in a standard HJM framework, the instantaneous
forward rate follows

df(t, T ) =
(
σ(t, T )

∫ T

t
σ(t, u)du

)
dt + σ(t, T )dW r

t

where σ(t, T ) is a stochastic process adapted to its canonical filtration and where the price satisfies

B(t, T ) = exp

(
−

∫ T

t
f(t, s)ds

)

By definition rt = f(t, t) and then we obtain

dB(t, T )

B(t, T )
= rtdt − σB(t, T )dW r

t

σB(t, T ) =

∫ T

t
σ(t, u)du

For our purpose, let us consider a general model

dSt

St
= rtdt +

√
VtdWt

then recall the price of the T -forward contract written on S

F T
t =

St

B(t, T )

where we assume d < W,W r >t= ρdt. We are now able to write the dynamics of F T
t under Q the

risk-neutral measure:

dF T
t

F T
t

=
dSt

St
− d < S·, B(·, T ) >t

StB(t, T )
−

(
dB(t, T )

B(t, T )
− d < B(·, T ) >t

B2(t, T )

)

If we introduce the T -forward probability measure as above by

dQT

dQ
=

e−
∫ T
0 rsds

B(0, T )

we explain the dynamics of F T
t under QT

dF T
t

F T
t

=
√

VtdW̃t + σB(t, T )dW̃ r
t
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where W̃ and W̃ r are Brownian motions under QT such as d < W̃ , W̃ r >t= ρdt.
We now apply Theorem 1.2.11 and obtain the existence of a process F̃ T

t solution of an inhomogeneous
Markovian stochastic differential equation

dF̃ T
t

F̃ T
t

= ΣT (t, F̃ T
t )dβt

where β is a Brownian motion and

Σ2
T (t, x) = ET [Vt + 2ρ

√
VtσB(t, T ) + σ2

B(t, T )|St = xB(t, T )]

If we consider a local volatility model with deterministic interest rates as follows

dSt

St
= f(0, t)dt + σ(t, St)dγt

the dynamics of the T -forward contract then becomes

dF T
t

F T
t

= σ(t, F T
t e−

∫ T
t

f(0,s)ds)dγt

and Gyöngy’s result enables us to conclude that

ΣT (t, x) = σ(t, xe−
∫ T

t
f(0,s)ds)

Hence, we have proven a new relation that links a local volatility framework with deterministic
interest rates to a stochastic volatility one with stochastic interest rates, namely

σ2(t, x) = ET [Vt + 2ρ
√

VtσB(t, T ) + σ2
B(t, T )|St = xB(t, T )e

∫ T
t

f(0,s)ds] (1.62)

An illustration of this formula can be found for a Black and Scholes (1973) framework with random
rates for example in Hull and White (1994).
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1.6 Conclusion

This paper recalls well-known results on local volatility and establishes links to stochastic volatility
through the powerful theorems of Krylov and Gyöngy. These general results are then illustrated with
explicit computations of local volatility in different stochastic volatility models where the volatility
process is a time-space transformation of Bessel processes. In this framework, we show the impact
of the stock-volatility correlation on the local volatility surface.
The local volatility extracted from a stochastic volatility model allows us to get a precise idea of
the skew generated by a stochastic volatility model. Hence, an important theoretical and numerical
advantage of generating a local volatility surface from a stochastic volatility rather than from market
option prices is the stability and the meaningfulness of the surface. Indeed, the local volatility surface
constructed with the Forward PDE equation is known to be completely unstable whereas as one
can see the one built from a stochastic volatility is really smooth.
With the growth of hybrid products, it has been important to seriously consider the issue of volatility
calibration under stochastic interest rates and that is the reason why we exhibit different relations
between local volatilities, stochastic volatilities and derivative prices. It is shown that Dupire
(1994) and Derman and Kani (1998) formulas can easily be extended and that it is possible to
relate any continuous stochastic volatility model with stochastic interest rates to a local volatility
one with deterministic interest rates. By extending the local volatility formula to a stochastic rates
framework, it is observed that a market premium for the hybrid correlation risk is to be implied for
the construction of the local volatility surface, which can be performed under the (HC)-Hypothesis
as at some point a market premium for the volatility risk is to be taken into account.
A remaining interesting question is the existence of a local volatility diffusion with a general Ito
interest rates process framework such that the joint law of instantaneous rate, the discount factor
and the stock price is the same as the one in a stochastic volatility framework.
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Chapter 2

Time-Changed Bessel Processes and

Credit Risk

[Joint work with Boris Leblanc; submitted for publication∗]

The Constant Elasticity of Variance (CEV) model is mathematically presented and then used in
a Credit-Equity hybrid framework. Next, we propose extensions to the CEV model with default:
firstly by adding a stochastic volatility diffusion uncorrelated from the stock price process, then by
more generally time changing Bessel processes and finally by correlating stochastic volatility moves
to the stock ones. Properties about strict local and true martingales in this study are discussed.
Analytical formulas are provided and Fourier and Laplace transform techniques can then be used
to compute option prices and probabilities of default.

2.1 Introduction

It has been widely recognized for at least a decade that the option pricing theory of Black and Scholes
(1973) and Merton (1973) is not consistent with market option prices and underlying dynamics. It
has been noted that options with different strikes and maturities have different implied volatilities.
Indeed, markets take into account in option prices the presence of skewness and kurtosis in the
probability distributions of log returns. In order to deal with those effects, one could use stochastic
volatility models (e.g. Heston (1993), Hull and White (1987) or Scott (1987)). Another common
alternative is to use a deterministic time and stock price dependent volatility function, the so-called
local volatility to capture these effects. One would then build the volatility surface by excerpting
the values of this function from option prices, thanks to the well-known Derman and Kani (1994)
and Dupire (1994) formula.

One of the first models developed after Black Merton Scholes (1973) is the Constant Elasticity of
Variance model pioneered by Cox (1975) where the volatility is a deterministic function of the spot
level; This latter model is somehow an ancestor of local volatility models. It has very interesting
features since it suggests that common stock returns are heteroscedastic and that volatilities implied
by the Black and Scholes formula are not constant, in other words skew exists in this model. Another

∗We thank Marc Yor for all the important contributions to this paper.
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interesting property is that it takes into account the so called "Leverage Effect" which considers the
effects of financial leverage on the variance of a stock: a stock price increase reduces the debt-equity
ratio of a firm and therefore decreases the variance of the stock’s returns (see for instance Black
(1976), Christie (1982) or Schwert (1989)). A last but not least feature of this model is that it
has a non-zero probability of hitting 0 and this could be of importance when one is interested in
modelling default by defining bankruptcy as the stock price falling to 0.

For the last few years, the credit derivatives market has become more and more important and
the issue of modeling default has grown, giving birth to two main classes of models. The first class
is the structural models of the firm pioneered by Merton (1974) where bankruptcy occurs if the
asset value falls to a boundary determined by outstanding liabilities. Other early work on such
models was done by Black and Cox (1976) and Geske (1977). The other class commonly called
reduced-form models is less ambitious than structural models. They consider the time of default
as an exogenous parameter that they calibrate under a risk neutral probability to market data.
These models were developed by Artzner and Delbaen (1995), Jarrow and Turnbull (1995), Duffie,
Schroder and Skiadas (1996) and Madan and Unal (1998).

The credit risk is also a component of the equity derivatives market as it may appear in con-
vertible bonds or more generally in Capital Structure Arbitrage for people that embedded it from
out-of-the money puts. It is then clear that having a consistent modeling of equity and credit is
essential to eventually be able to manage those cross-asset positions. Indeed, a market standard
has been developed during the last few years which involves a jump diffusion dynamics for the stock
price with a local probability of default for the jump factor. This kind of model has been presented
for instance in Ayache, Forsyth and Vetzal (2003). An important drawback of this modeling is that
the stock has to jump to zero in order to default, which isn’t a realistic assumption as we can see
on several historical data and as argued in Atlan and Leblanc (2005).

The necessity to have stock price diffusions that don’t jump to zero in order to default and
still have a non-zero probability of falling to zero leads us to naturally consider CEV processes.
Moreover, CEV models have the advantage to provide closed-form formulas for European vanilla
options and for the probability of default. Those computations were originally performed by Cox
(1975) in the case where the stock can default and by Emanuel and McBeth (1982) when the stock
never defaults. Then, one may want to add a stochastic volatility process to the CEV diffusion in
order to capture some volatility features such as a smile or such as a more realistic volatility term
structure. Finally, to get more dependency between the stock price and the volatility, one may add
some correlation.

Those guidelines lead us to study in section 2 the one-dimensional marginals, the first-passage
times below boundaries and the default of martingality of Constant Elasticity of Variance processes,
mainly by relating those latest to Bessel processes. In section 3, we propose a CEV model that
is stopped at its default time and we provide closed form formulas for European vanilla options,
Credit Default Swaps and Equity Default Swaps. Section 4 extends the Constant Elasticity of Vari-
ance framework to a Constant Elasticity of Stochastic Variance one by firstly adding a stochastic
volatility to the CEV diffusion and in a second time more generally consider time-changed Bessel
processes with a stochastic integrated time change. Quasi-analytical formulas conditionally on the
knowledge of the law of the time change are provided for vanilla options and CDSs and examples
are given. Section 5 adds a correlation term to the general time-changed power of Bessel process
framework, once again quasi analytical formulas conditionally on the knowledge of the joint law of
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the time change and a process related to the rate of time change are provided for probabilities of
default and for vanilla options, and computations for several examples are shown. All the models
proposed in this paper are true martingales and the martingale property is carefully proven for the
different frameworks. Finally, section 6 concludes and presents possible extensions of this work.

Convention For strictly negative dimensions we define squared Bessel processes up to their first
hitting time of 0 after which they remain at 0.

We set this convention because we wish to consider positive Bessel processes. For a study
of negative dimension Bessel processes with negative values, we refer to Göing-Jaeschke and Yor
(2003).

2.2 A Mathematical Study of CEV Processes

2.2.1 Space and Time Transformations

A reason why Bessel processes play a large role in financial mathematics is that they are closely
related to widely used models such as Cox, Ingersoll and Ross (1985), i.e. the CIR family of dif-
fusions for interest rates framework, such as the Heston (1993) stochastic volatility model or even
to the Constant Elasticity of Variance model of Cox (1976). They are more generally related to
exponential of time-changed Brownian motions thanks to Lamperti (1972) representations.

Let us now concentrate on the CIR family of diffusions: they solve the following type of stochastic
differential equations:

dXt = (a − bXt)dt + σ
√

|Xt|dWt (2.1)

with X0 = x0 > 0, a ∈ R+, b ∈ R, σ > 0 and Wt a standard Brownian motion. This equation
admits a strong (e.g. adapted to the natural filtration of Wt) unique solution that takes values in R+.

Let us remark that squared Bessel processes of dimension δ > 0 can be seen as a particular case
of a CIR process with a = δ, b = 0 and σ = 2. We also recall that a Bessel process Rt solves the
following diffusion equation

dRt = dWt +
δ − 1

2Rt
dt

where for δ = 1, the latter δ−1
2Rt

dt must be replaced by a local time term.

One is now interested in the representation of a CIR process in terms of a time-space transfor-
mation of a Bessel Process:

Lemma 2.2.1 A CIR Process Xt which solves equation (2.1) can be represented in the following
form:

Xt = e−btBESQ(δ,x0)(
σ2

4b
(ebt − 1)) (2.2)

where BESQ(δ,x0) denotes a squared Bessel Process starting from x0 at time t = 0 of dimension

δ = 4a
σ2
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Proof. This lemma results from the identification of two continuous functions f and g (with g
strictly increasing and g(0) = 0) such as

Xt = f(t)BESQ(δ,x0)(g(t))

To do so, we apply Itô’s formula and Dambis (1965), Dubins-Schwarz (1965) theorem

This relation is widely used in finance, for instance in Geman and Yor (1993) or Delbaen and
Shirakawa (2002).

Let us now introduce the commonly called CEV (Constant Elasticity of Variance), which was
introduced by Cox (1975, 1996) and that solves the following equation:

dXt = µXtdt + σXα
t dWt (2.3)

with X0 = x0 > 0, α ∈ R, µ ∈ R, σ > 0 and Wt a standard brownian motion.

Lemma 2.2.2 A CEV Process Xt which solves equation (2.3) can be represented as a power of a

CIR process, indeed for β = 2(α − 1), 1/Xβ
t solves

d
( 1

Xβ
t

)
=

(
a − b

1

Xβ
t

)
dt + Σ

√
| 1

Xβ
t

|dWt (2.4)

where a = β(β+1)σ2

2 , b = βµ, Σ = −βσ and .

Proof. This lemma is just an application of Itô’s Lemma.

As a consequence of Lemma 2.2.1 and Lemma 2.2.2, one obtains the following representation
for a CEV process:

Proposition 2.2.3 A CEV Process Xt solution of equation (2.3) can be represented in the following
form:

Xt = eµtBESQ
1

2(1−α)

( 2α−1
α−1

,x
−2(α−1)
0 )

(
(α − 1)σ2

2µ
(e2(α−1)µt − 1)

)
(2.5)

where BESQ(δ,x0) denotes a squared Bessel Process starting from x0 at time t = 0 of dimension δ.

2.2.2 Distributions and Boundaries

We will now recall well known results about squared Bessel processes and deduce some properties
about CEV processes.

Path Properties

Proposition 2.2.4 According to its dimension, the squared Bessel process has different properties:
(i) if δ ≤ 0, 0 is an absorbing point.
(ii) if δ < 2, {0} is reached a.s.
(iii) if δ ≥ 2, {0} is polar.
(iv) if δ ≤ 2, BESQ is recurrent.
(v) if δ > 2, BESQ is transient.
(vi) if 0 < δ < 2, {0} is instantaneously reflecting.
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Proof. The proof can be found in Revuz and Yor (2001) chapter XI.

As a consequence, one may give some properties of the CEV diffusions. A topic of interest for
the remaining of the paper is whether or not {0} is reached by a CEV process.

Proposition 2.2.5 According to the value of α, the CEV diffusion has different properties:
(i) if α < 1, {0} is reached a.s.
(ii) if α ≤ 1

2 , {0} is instantaneously reflecting.
(iii) if 1

2 < α < 1, {0} is an absorbing point.
(iv) if α ≥ 1, {0} is an unreachable boundary.

Proof. It is a consequence of the previous proposition and of Proposition 2.2.3.

Distributional Properties

It is important to notice that the law of a squared Bessel process can be seen in terms of non-central
chi-square density:

Lemma 2.2.6 For any BESQδ,x, one has:

BESQδ,x(t)
(d)
= tV (δ, x

t
) (2.6)

where V (a,b) is a non-central chi-square r.v. with a degrees of freedom and non-centrality parameter
b ≥ 0. Its density is given by:

fa,b(v) =
1

2
a
2

exp

(
− 1

2
(b + v)

)
v

a
2
−1

∞∑

n=0

(
b

4

)n vn

n!Γ(a
2 + n)

(2.7)

Proof. This proof results from simple properties of Laplace transforms and can be found for
instance in Delbaen and Shirakawa (2002).

We leave to the reader the calculation of the CEV density in terms of non-central chi-square
distributions.

Let us recall a useful result for the remaining of the paper on the moments of a squared Bessel
process:

Corollary 2.2.7 If V (a,b) is a non-central chi-square r.v. with a degrees of freedom and noncen-
trality parameter b ≥ 0, then for any real constants c and d:

E[(V (a,b))c
1{V (a,b)≥d}] = e−

b
2 2c

∑

n≥0

( b

2

)n Γ(n + a
2 + c)

n!Γ
(

a
2 + n)

G(n +
a

2
+ c,

d

2

)
(2.8)

where G is defined as follows:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz
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Proof. This calculation is a simple application of Lemma 2.2.6.

Finally, for the computations involved in this paper, one recalls the two following identities on
the complementary non-central chi-square distribution function Q that one can find in Johnson and
Kotz (1970):

Q(2z, 2ν, 2κ) =
∑

n≥1

g(n, κ)G(n + ν − 1, z)

1 − Q(2κ, 2ν − 2, 2z) =
∑

n≥1

g(n + ν − 1, κ)G(n, z)

where g(x, y) = −∂G
∂y (x, y).

First-Hitting Times

We now concentrate on the first hitting time of 0 by a Bessel process. For this purpose, let us
consider a Bessel Process R of index ν > 0 starting from 0 at time 0, then, one has:

L1(R)
(d)
=

1

2Zν
(2.9)

where L1(R) = sup{t > 0, Rt = 1} and Zν is a gamma variable with index ν that has the following
density:

P(Zν ∈ dt) =
tν−1e−t

Γ(ν)
1{t>0}dt (2.10)

This result is due to Getoor (1979). Thanks to results on time reversal (see Williams (1974), Pitman
and Yor (1980) and Sharpe (1980)), we have:

(R̂T0−u;u < T0(R̂))
(d)
= (Ru; u < L1(R)) (2.11)

where R̂ is a Bessel Process, starting from 1 at time 0 of dimension δ = 2(1 − ν) and T0(R̂) =
inf{t > 0, R̂t = 0}. As a consequence, one has:

T0(R̂)
(d)
=

1

2Zν
(2.12)

Using the scaling property of the Squared Bessel Process, one may write:

T0(BESQδ
x)

(d)
=

x

2Zν
(2.13)

with δ = 2(1 − ν).

Hence, we are now able to state the proposition below:

Proposition 2.2.8 The probability of a CEV diffusion solution of equation (2.3) to reach 0 at time
T with α < 1 is given by:

P(T0 ≤ T |X0 = x0) = G(
1

2(1 − α)
, ζT ) (2.14)
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where G and ξT are defined as follows:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz (2.15)

ζT =
µx

2(1−α)
0

(1 − α)σ2(1 − e2(α−1)µT )
(2.16)

Proof. This proof is just a consequence of Proposition 2.2.3 and equation (2.13).

Remark 2.2.9 The calculation of the probability of default was originally done by Cox (1975).

In order to compute first-passage times of scalar Markovian diffusions below a fixed level, let us
recall Itô and McKean (1974) results. If (Xt, t ≥ 0) is scalar Markovian time-homogeneous diffusion
starting from x0 at time 0 of infinitesimal generator L and that we define τH = inf{t ≥ 0;Xt ≤ H}
for H < x0, then for any λ > 0, we have

E[e−λτH ] =
φλ(x0)

φλ(H)

where φλ is solution of the ODE

Lφ = λφ

with the following limit conditions:
limx→∞ φλ(x) = 0
If 0 is a reflecting boundary then φλ(0+) < ∞
If 0 is an absorbing boundary then φλ(0+) = ∞

As a first example, let us now consider the first-hitting time below a fixed level 0 < y ≤ x of a
Bessel process Rt of dimension δ = 2(ν + 1) starting from x :

τy = inf{t ≥ 0;Rt ≤ y}

The law of τy (see Itô and McKean (1974), Kent (1978) or Pitman and Yor (1980)) is obtainable
from the knowledge of its Laplace transform L. One has for any positive λ

L(λ) = E[e−λτy ]

=
x−νKν(x

√
2λ)

y−νKν(y
√

2λ)

where ν ∈ R\Z and Kν is a Modified Bessel function defined as follows:

Kν(x) =
π

2 sin(νπ)
(I−ν(x) − Iν(x))

Iν(x) =
∞∑

k=0

(x/2)ν+2k

k!Γ(ν + k + 1)
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As a second example that will be useful for the computation of EDS prices, let us write the
infinitesimal generator of a CEV process:

LCEV φ = σ2x2α d2φ

dx2
+ µx

dφ

dx

that must solve
LCEV φ = λφ

with the following conditions:
φλ is a decreasing function, limx→∞ φλ(x) = 0
If α ≤ 1

2 , then φλ(0+) = ∞
If 1

2 < α < 1, then φλ(0+) < ∞

We obtain the following result whose computations of the Laplace transforms were originally
performed by Davydov and Linetsky (2001):

Proposition 2.2.10 For a CEV process solution of (2.3) with α < 1 and µ 6= 0, then

φλ(x) = xα− 1
2 exp

(
− µx2(1−α)

σ2(1 − α)

)
Wk,m

( |µ|x2(1−α)

σ2(1 − α)

)
(2.17)

where

k = sgn(µ)(
1

4(1 − α)
− 1

2
) − λ

2|µ|(1 − α)
and m =

1

4(1 − α)

and Wk,m is a Whittaker function

The definition of the Whittaker function can be found for instance in Abramowitz and Stegun
(1972).

2.2.3 Loss of Martingality

Let us now state a result on some martingale properties of Bessel processes which play an essential
role in pricing theory as is well known:

Theorem 2.2.11 Let Rt be a Bessel process of dimension δ starting from a 6= 0, then:
(i) If δ ≤ 0, R2−δ

t is a true martingale up to the first hitting time of 0.
(ii) If 0 < δ < 2, the process R2−δ

t − Lt is a martingale where Lt is a continuous increasing process
carried by the zeros of (Rt, t ≥ 0).
(iii) If δ = 2, log(Rt) is a strict local martingale.
(iv) If δ > 2, R2−δ

t is a strict local martingale. Moreover, the default of martingality is

γ(δ)(t) = E[R2−δ
0 ] − E[R2−δ

t ] = a2−δP(4−δ)
a (T0 ≤ t) (2.18)

where Pδ
a is the law of (R

(δ)
t , t ≥ 0).
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Proof. (i) and (ii): Since {0} is reached a.s., we need to apply Itô’s formula in a positive
neighborhood of 0. Let us consider ǫ > 0. We have:

(ǫ + R2
t )

1− δ
2 = (ǫ + a2)1−

δ
2 + (2 − δ)

∫ t

0
(ǫ + R2

s)
− δ

2 RsdWs + ǫδ(1 − δ

2
)

∫ t

0

ds

(ǫ + R2
s)

δ
2
+1

Then, as ǫ tends to zero, it is easy to see the first term of the right hand side is a true martingale
for δ < 2 and that the second term of the right hand side is increasing whose support is the zeros
of (Rt, t ≥ 0) when δ ≥ 0. If δ < 0, T 2−δ

t is a true martingale.
(iii): By applying Itô formula, we obtain

log(Rt) = log(R0) +

∫ t

0

dWs

Rs

We then see that log(Rt) is a local martingale. We prove that it is a strict local martingale by first
using the fact that

Pδ
a = Pδ

0 ∗ P0
a

then writing that

E[log(Rt)] =
1

2
E[log(R2

t )] =
1

2
E[log(BESQ2,0(t) + BESQ0,a(t))]

≥ 1

2
E[log(BESQ2,0(t))]

and finally since BESQ2,0(t)
d
= 2te where e is a standard exponential, we obtain

E[log(Rt)] ≥ C +
1

2
log(t) −→t→∞ +∞

which shows that log(Rt) is not a true martingale.
(iv): To compute γ(δ), we will need the following result:

Lemma 2.2.12 Let (R
(δ)
t , t ≥ 0) be a Bessel process of dimension δ > 2 starting from a 6= 0, then

P4−δ
a|Rt∩{t<T0} =

(
R

(δ)
t

a

)2−δ

· Pδ
a|Rt

where Rt is the canonical filtration of the Bessel process and T0 the first-hitting time of the level 0.

Proof. This property results from a double application of Girsanov Theorem by computing

dP4−δ
a|Rt∩{t<T0}
dP2

a|Rt

and
dPδ

a|Rt

dP2
a|Rt

Then, by identification, one gets the announced result. A more general result can be found in Yor
(1992).

We may then write
E(δ)[R2−δ

t ] = E(4−δ)[a2−δ
1{t<T0}]
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and consequently compute the default of martingality.

A proof in the case 0 < δ < 2 can be found in Donati-Martin et al. (2006) and proofs when
δ > 2 exist in Elworthy, Li and Yor (1999). As a consequence, we obtain similar results for a CEV
process.

Proposition 2.2.13 Let Xt be a CEV Process of elasticity α solving the following equation

dXt = µdt + σXα
t dWt

then:
(i) If α ≤ 1

2 , the process e−µtXt is a true martingale up to the first hitting time of 0.
(ii) If 1

2 < α < 1, the process e−µtXt − LX
t is a martingale where LX

t is a continuous increasing
process carried by the zeros of (Xt, t ≥ 0) and consequently e−µtXt is a true martingale up to the
first hitting time of 0.
(ii) If α = 1, e−µtXt is a geometric Brownian motion and hence a martingale.
(iii) If α > 1, e−µtXt is a strictly local martingale. Moreover, the default of martingality is

γX(t) = E[X0] − E[e−µtXt] = x0G(
1

2(α − 1)
, ζT ) (2.19)

where G and ζT are defined as follows:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz

ζT =
µx

2(1−α)
0

(α − 1)σ2(e2(α−1)µT − 1)

Proof. This is just an application of Theorem 2.2.11, Proposition 2.2.3 and equation (2.14).

A proof of the failure of the martingale property can be found in Lewis (2000).

Remark 2.2.14 For α > 1, one has ∀(t,K) ∈ R2
+:

E[(e−µtXt − K)+] − E[(K − e−µtXt)+] + γX(t) = E[X0] − K (2.20)

The last equation shows that in the case of a strictly local martingale, the Call price must
incorporate the default of martingality in order to remain in a No Arbitrage model. For a study
on option pricing for strict local martingales, we refer to Madan and Yor (2006) for continuous
processes and to Chybiryakov (2006) for jump-diffusion processes. Lewis (2000) also did this study
in the case of explosions with stochastic volatility models and in particular for a CEV diffusion.

2.3 Credit-Equity Modelling

2.3.1 Model Implementation

Usually, in the mathematical finance literature, one defines a CEV diffusion for the stock price
dynamics S to be

dSt

St
= µdt + σSα−1

t dWt
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First of all, in a credit perspective, we will just consider the case α < 1 since we are interested
in models with a non-zero probability of default. Once the stock has reached zero, the firm has
bankrupted and that is the reason why we stop the CEV diffusion at its first default time. Then
from what has been proven above, we know that the stock price process hence defined is a true
martingale and that ensures the Absence of Arbitrage and moreover the uniqueness of the solution.
Hence, the stock price diffusion now becomes under the risk-neutral pricing measure:

dSt

St
= rdt + σSα−1

t dWt if t < τ.

St = 0 if t ≥ τ.

where τ = T0(S) = inf{t > 0, St = 0}. In other words, the stock price process considered is nothing
else than a stopped CEV diffusion (St∧τ )t≥0.

Remark 2.3.1 Delbaen and Shirakawa (2002) showed the existence of a risk-neutral probability
measure whose uniqueness is only ensured on the stock price filtration considered at time τ Fτ =
σ(St, t ≤ τ). Since our purpose is to compute the price of options whose payoffs are Fτ−measurable,
we have the uniqueness of the no-arbitrage probability.

2.3.2 European Vanilla Option Pricing

Lemma 2.2.12 states that

P4−δ
x|Rt∩{t<T0} =

(
R

(δ)
t

x

)2−δ

· Pδ
x|Rt

(2.21)

Thanks to this identity, we obtain the law of the stopped CEV diffusion at a given time. Lemma
2.2.6 and Corollary 2.2.7 enable us to compute the call and put option price:

For the call C0 option price

C0 = e−rT E[(ST∧τ − K)+]

= e−rT E[(ST − K)+1T<τ ]

and the put P0 option price:

P0 = e−rT E[(K − ST∧τ )+]

= e−rT E[(K − ST )+1T<τ ] + Ke−rT P(τ ≤ T )

Consequently, for the call price:

C0 = S0Q(zT , 2 +
1

1 − α
, 2ζT ) − Ke−rT (1 − Q(2ζT ,

1

1 − α
, zT ))

and for the put price:

P0 = Ke−rT
(
Q(2ζT ,

1

1 − α
, zT ) − G(

1

2(1 − α)
, ζT )

)

−S0(1 − Q(zT , 2 +
1

1 − α
, 2ζT )) + Ke−rT P(τ ≤ T )

= Ke−rT Q(2ζT ,
1

1 − α
, zT ) − S0(1 − Q(zT , 2 +

1

1 − α
, 2ζT ))
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where

zT =
2rK2(1−α)

σ2(1 − α)(e2(1−α)rT − 1)

ζT =
rS

2(1−α)
0

(1 − α)σ2(1 − e−2(1−α)rT )

Hence, one easily verifies that the put-call parity is satisfied. Closed-form CEV option pricing
formulas were originally computed by Cox (1975) for α < 1 and Schroder (1989) expressed those
formulas in terms of non-central chi-square distributions. Computing option prices using the squared
Bessel processes distributions was done by Delbaen and Shirakawa (2002).

2.3.3 Pricing of Credit and Equity Default Swaps

Since we are dealing with default probabilities, it is obvious to consider derivative products relying
on these probabilities. One of the most liquid protection instruments against default is the Credit
Default Swap (CDS). The buyer of the protection agrees to pay periodical amounts until a default
time (if it occurs) and in exchange receives a cash amount which is a notional amount minus a
recovery rate in the case the company on which the contract is written, defaults. The payoff of such
kind of contract is:

ΠCDS = −
n∑

i=1

e−rTiC1{τ>Ti} + e−rτ (1 − R)1{τ≤Tn}

where C is the periodical coupon, T1, ..., Tn the payment dates, R the recovery rate assumed to be
deterministic and τ the default time. For simplicity purposes, we consider in this paper deterministic
interest rates. The CDS Fair Price is the expectation of the payoff conditionally to the spot price
filtration taken at the pricing time, e.g.:

CDSt(T1, Tn; C; R) = −C
n∑

i=1

e−r(Ti−t)P(τ > Ti|St) + (1 − R)E[e−r(τ−t)
1{τ≤Tn}|St]

By absence of arbitrage, one must have CDSt(T1, Tn; C; R) = 0 and then

C =
(1 − R)E[e−r(τ−t)

1{τ≤Tn}|St]∑n
i=1 e−r(Ti−t)P(τ > Ti|St)

From Proposition 2.2.8, we know the value of (P(τ > Ti|St)1≤i≤n). It then remains to compute the
following quantity E[e−rτ

1τ≤t] to be able to price the CDS coupon C. By an integration by parts,
we show that

E[e−rτ
1τ≤t] = e−rtP(τ ≤ t) + r

∫ t

0
e−rsP(τ ≤ s)ds (2.22)

Otherwise, one could just obtain this expectation by directly using the density of the first-hitting
time of 0 that is provided by the differentiation of the cumulative distribution function :

fτ (t) =
2r(1 − α)ζ

1
2(1−α)

t e−ζt

Γ( 1
2(1−α))(e

2(1−α)rt − 1)
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where ζt is defined above.
EDSs are very similar to CDSs except that payouts occur when the stock price falls under a pre-
defined level, which is often referred to as a trigger price. The trigger price is generally between 30%
and 50% of the equity stock price at the beginning of the contract. Hence, these contracts provide a
protection against a credit event happening on the equity market for the buyer. They were initiated
by the end of 2003. At that time, it had become difficult in many countries to structure investment-
grade credit portfolios with good returns because the CDS spreads were tightening, as reported by
Sawyer (2003). Another reason why people have interest in those contracts is because the settlement
of the default is directly observed on the stock price. Let us now define τL as the first passage time
of the stock price process under the level L < S0. Formally, we write τL = inf{t > 0;St ≤ L}. We
recall the general valuation formula of an EDS:

EDSt(T1, Tn; C;R) = −C
n∑

i=1

e−r(Ti−t)P(τL > Ti|St) + E[e−r(τL−t)
1{τL≤Tn}|St]

where C is the coupon, T1, ..., Tn the payment dates and r the risk-free interest rate. Again, by
absence of arbitrage, we can find the coupon price, by stating that at the initiation of the contract:

EDSt=0(T1, Tn;C; R) = 0

Or equivalently

C =
E[e−r(τL−t)

1{τL≤Tn}|St]∑n
i=1 e−r(Ti−t)P(τL > Ti|St)

In order to price the coupon C, one needs to evaluate:

E[e−rτL1{τL≤t}] and P(τL ≤ t)

An integration by parts gives the Laplace transform of P(τL ≤ t) for any λ > 0

∫ +∞

0
dte−λtP(τL ≤ t) =

E[e−λτL ]

λ

Applying Fubini theorem, one observes that

∫ +∞

0
dte−λtE[e−rτL1{τL≤t}] =

E[e−(r+λ)τL ]

λ

Hence using Proposition 2.2.10, one is able to compute the Laplace transform of the desired
quantities necessary to evaluate an EDS. One can then use numerical techniques (see Abate and
Whitt (1995) for instance) to inverse the Laplace transform in order to evaluate prices.

2.4 Stochastic Volatility for CEV Processes

2.4.1 A Zero Correlation Pricing Framework

Impact of a Stochastic Time Change

Due to the very important dependency between the probability of default, the level of volatility
and the skewness, we were naturally brought to consider extensions of the CEV model that could
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relax the high correlation between these three effects. More precisely, in a CEV model, if one
first calibrates the implied at-the-money volatility, then either the skewness or the CDS will be
calibrated on adjusting the elasticity parameter. Hence, to be able to get some freedom on the
volatility surface, a possible extension is to introduce a stochastic volatility in the CEV model
instead of a constant volatility. A CEV diffusion with a stochastic volatility is actually just a power
of a squared Bessel Process with a stochastic time change instead of having a deterministic one like
in Proposition 2.2.3.

Another extension is to consider a power of a Bessel Process time changed by an independent
increasing process. More precisely, one writes the following process for the stock price:

St = ertBESQ
1− δ

2

(δ,x)(ξt) if t < τ. (2.23)

St = 0 if t ≥ τ.

where x = S
2

2−δ

0 , τ = T0(S) = inf{t > 0, St = 0} = ξ−1(T0(BESQ)) and ξt is a strictly increasing
continuous integrable process independent from the squared Bessel process. Subordinating a contin-
uous process by an independent Lévy process is an idea that goes back to Clark (1973). Stochastic
time changes are somehow equivalent to adding a stochastic volatility in stock price diffusions.
The basic intuition underlying this approach could be foreseen through the scaling property of the
Brownian motion, or through Dambis (1965),Dubins and Schwarz (1965) (DDS) theorem or even
its extension to semimartingales by Monroe (1978). More recently, Carr et al. (2003) generated
uncertainty by speeding up or slowing down the rate at which time passes with a Lévy process. Our
approach differs from the one done in the Lévy processes literature for mathematical finance: We
are not considering the exponential of a time changed Lévy process but a power of a time changed
Bessel process. Thanks to Lamperti representation (1972), this means that we are considering a
time changed geometric Brownian motion B. More precisely, it is known that

Rt = exp
(
BCt + νCt

)
and Ct =

∫ t

0

ds

R2
s

where (Rt, t ≥ 0) is a Bessel process of dimension δ = 2(1 + ν) starting from a 6= 0. Hence the time
change considered in the stock price is

Yt =

∫ ξt

0

ds

R2
s

and the stock price process as defined in equation (2.23) can be identified as follows:

St = ert exp
(
− 2νBYt −

(2ν)2

2
Yt

)

As a consequence, we have now proposed a new class of time changes where analytical computations
are possible thanks to a good knowledge of Bessel processes.
For the absence of arbitrage property, there must exist a probability under which all the actualized
stock prices are martingales. A very simple property on martingales is that a process Mt is a
martingale if and only if for every bounded stopping time T , E[MT ] = E[M0]. Nonetheless, this
result is not very convenient. Let us state and give a straightforward proof of the martingality of
the stock price process
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Proposition 2.4.1 Consider Mt = BESQ
1− δ

2

(δ,x)(ξt∧τ ) where following the previous hypotheses ξt is

a strictly increasing continuous integrable process independent from BESQ, τ is the (Mt, t ≥ 0)
first hitting time of 0 and BESQ(δ,x) is a squared Bessel process of dimension δ < 2 starting from
x 6= 0, then (Mt, t ≥ 0) is a true martingale.

Proof. Let us define Rt = σ(Rs; s ≤ t). We then naturally write the canonical filtrations
Rξt = σ(Rξs ; s ≤ t) and Ξt = σ(ξs; s ≤ t). For any bounded functional F , we want to compute

E[F
(
Rξu ;u ≤ s

)(
R2−δ

ξt
− R2−δ

ξs

)
]

Since ξ is integrable and independent from R, we obtain by using Fubini theorem

E[F
(
Rξu ; u ≤ s

)(
R2−δ

ξt
− R2−δ

ξs

)
] = E

[
E[F

(
Rξu ; u ≤ s

)(
R2−δ

ξt
− R2−δ

ξs

)∣∣ Ξt]

]

=

∫
PΞt(da)E[F

(
Ra(u); u ≤ s

)(
R2−δ

a(t) − R2−δ
a(s)

)
]

The latest quantity is null by Theorem 2.2.11 and we have then shown that for s ≤ t < τ

R2−δ
ξs

= E[R2−δ
ξt

|Rξs ]

which is the announced result.

Pricing Vanilla Options

One can find closed-form formulas for the call and put options prices. Let us define the two following
quantities C0(x, δ,K, T ; S0) and P0(x, δ,K, T ;S0):

C0(x, δ,K, T ; S0) = S0Q(
(Ke−rT )

2
2−δ

x
, 4 − δ,

S
2

2−δ

0

x
)

−Ke−rT (1 − Q(
S

2
2−δ

0

x
, 2 − δ,

(Ke−rT )
2

2−δ

x
))

P0(x, δ,K, T ; S0) = Ke−rT Q(
S

2
2−δ

0

x
, 2 − δ,

(Ke−rT )
2

2−δ

x
)

−S0(1 − Q(
(Ke−rT )

2
2−δ

x
, 4 − δ,

S
2

2−δ

0

x
))

From there, one may obtain the option prices under the new general framework.

Proposition 2.4.2 If one has the following stock price process:

St = ertBESQ
1− δ

2

(δ,x)(ξt) if t < τ.

St = 0 if t ≥ τ.
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where x = S
2

2−δ

0 , τ = T0(S) = inf{t > 0, St = 0} and ξt is a strictly increasing continuous integrable
process independent from BESQ whose probability measure is µξt(dx), then:

C0 =

∫

R+

C0(x, δ,K, T ; S0)µξT
(dx)

P0 =

∫

R+

P0(x, δ,K, T ; S0)µξT
(dx)

Proof. Let us prove this result for the call option price, a similar result may be obtained for
the put price. One has:

C0 = e−rT E[(ST − K)+]

= e−rT E
(
E[(ST − K)+|σ(ξs; s ≤ T )]

)

= E[C0(ξT , δ,K, T ; S0)]

Computing the Default

Having the integrability of the change of time and knowing its density, one could find a closed-form

formula for the probability of default τ = T0(S) = inf{t > 0, St = 0} where St = ertBESQ
1− δ

2

(δ,x)(ξt).
Let us now compute the probability of default the proof of which is left to the reader:

Proposition 2.4.3 If one considers a stock price process defined as follows:

St = ertBESQ
1− δ

2

(δ,x)(ξt)

then the probability of default τ = inf{t > 0, St = 0} is given by

P(τ ≤ T ) = E

[
G(1 − δ

2
,
S

2
2−δ

0

ξT
)

]

where G is the complementary Gamma function.

2.4.2 CESV Models

Stochastic volatility models were used in a Black and Scholes (1973) and Merton (1973) framework
mainly to capture skewness and kurtosis effects, or in terms of implied volatility skew and smile. In
a Constant Elasticity of Variance framework, one would use stochastic volatility not to capture the
leverage effect which partly already exists due to the elasticity parameter but to obtain environments
for instance of low volatilities, high probabilities of default and low skew. Let us consider a jump-
diffusion process (σt, t ≥ 0) satisfying sup0≤t≤T E[σ2

t ] < ∞ for all stopping time T to model the
volatility. We will call those diffusions Constant Elasticity of Stochastic Variance (CESV) for the
remainder of the paper. Leblanc (1997) introduced stochastic volatility for CEV processes.
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Hence, the class of models under a risk-neutral probability measure proposed is of the following
form:

dSt

St
= rdt + σt−Sα−1

t dWt

where σ is assumed to be independent from the Brownian motion driving the stock price returns.
Next, within an equity subject to bankruptcy framework, we are going to stop the diffusion when
the stock reaches 0 just as in the previous section. As a consequence, our diffusion becomes:

dSt

St
= rdt + σt−Sα−1

t dWt if t < τ.

St = 0 if t ≥ τ.

where τ = T0(S) = inf{t > 0, St = 0}.
Before giving any concrete examples, let us show how CESV models can be seen as Bessel processes
with a stochastic time change. So first, let us recall elementary results:

Lemma 2.4.4 Let R be a time change with s 7→ Rs continuous, strictly increasing, R0 = 0 and
Rt < ∞, for each t ≥ 0, then for any continuous semimartingale X and any caglad (left continuous
with right limits) bounded adapted process H, one has:

∫ Rt

0
HsdXs =

∫ t

0
HRudXRu (2.24)

Proof. The proof can be found in Revuz and Yor (2001).

Then, using Lemma 2.4.4, (DDS) theorem and Itô formula, we obtain that

St
d
= ertBESQ

1
2(1−α)

(2−1/(1−α),S
2(1−α)
0 )

(Ht∧τ )

τ = inf {t ≥ 0, St = 0}

Ht = (1 − α)2
∫ t

0
σ2

se
−2(1−α)rsds

Ht is by construction an increasing continuous integrable process.
Hence (e−rtSt, t ≥ 0) is a continuous martingale by Proposition 2.4.1. All the results of the previous
subsection apply and we are able to compute Vanilla option and CDS prices conditionally on the
knowledge of the law of Ht. As a result, we showed that a CESV model is in fact a timed-changed
power of Bessel process where the subordinator is an integrated time change Ht =

∫ t
0 hsds with a

specific rate of time change ht that is defined by

ht = (1 − α)2σ2
t e

−2(1−α)rt

We now provide two examples of well-known stochastic volatility models where we compute the
law of the time change.
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Heston Model Let us first consider a CIR (1985) diffusion for the volatility process

dσ2
t = κ(θ − σ2

t )dt + ησtdW σ
t and σ2

0 = x > 0

where κ, θ and η are strictly positive constants and W σ is a Brownian motion independent from
W . In fact we are proposing a variation of the Heston (1993) model by considering α 6= 1. We then
want to compute the law of

Ht = (1 − α)2
∫ t

0
σ2

se
−2(1−α)rsds

More precisely, we will compute its Laplace transform, that is to say, for any λ > 0

E[e−λHt ]

For this purpose, let us use the following result:

Lemma 2.4.5 If X a squared Bessel process BESQ(δ,x) starting from x 6= 0 and of dimension δ,

then for any function f : R+ → R+ such that for any t > 0:
∫ t
0 f(s)ds < ∞, we have

E

[
exp

(
−

∫ t

0
Xsf(s)ds

)]
=

1

ψ′
f (t)δ/2

exp
x

2

(
φ′

f (0) −
φ′

f (t)

ψ′
f (t)

)

where φf is the unique solution of the Sturm-Liouville equation

φ′′
f (s) = 2f(s)φf (s)

where s ∈ [0;∞[, φf (0) = 1, φf is positive and non-increasing and

ψf (t) = φf (t)

∫ t

0

ds

φ2
f (s)

Proof. The proof can be found in Pitman and Yor (1982).

By Lemma 2.2.1, we can see that

Ht
d
=

(2(1 − α)

η

)2
∫ η2

4κ
(eκt−1)

0
Xu

du
(

4κu
η2 + 1

)2[
(1−α)r

κ
+1]

where X is a BESQ( 4κθ

η2 ,x). Hence for any λ > 0,

E[e−λHt ] = E

[
exp

(
−

∫ l(t)

0
Xsfλ(s)ds

)]

with

l(t) =
η2

4κ
(eκt − 1) and fλ(t) = λ

(2(1 − α)

η

)2(4κu

η2
+ 1

)−2[
(1−α)r

κ
+1]

(2.25)
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Defining a = 8((1 − α)/η)2, b = 4κ/η2 and n = −2( (1−α)r
κ + 1) and using Lemma 2.4.5 we are

brought to the resolution of the following ordinary differential equation

φ′′(x) − aλ(bx + 1)nφ(x) = 0

Then under the boundary conditions, one obtains (see Polyanin and Zaitsev (2003)):

φλ(x) =
√

bx + 1

π
sin(νπ)I1/(n+2)

(
2
√

aλ
b(n+2)(bx + 1)(n+2)/2

)

I−1/(n+2)

(
2
√

aλ
b(n+2)

)

+
√

bx + 1
K1/(n+2)

(
2
√

aλ
b(n+2)(bx + 1)(n+2)/2

)

I−1/(n+2)

(
2
√

aλ
b(n+2)

) (2.26)

ψλ(x) = C1

√
bx + 1 I1/(n+2)

( 2
√

aλ

b(n + 2)
(bx + 1)(n+2)/2

)

+C2

√
bx + 1 K1/(n+2)

( 2
√

aλ

b(n + 2)
(bx + 1)(n+2)/2

)
(2.27)

where with using the fact that I ′ν(x)Kν(x) − Iν(x)K ′
ν(x) = 1/x one has

C1 = −b(n + 2)

2aλ
K1/(n+2)

( 2
√

aλ

b(n + 2)

)

C2 =
b(n + 2)

2aλ
I1/(n+2)

( 2
√

aλ

b(n + 2)

)

We finally obtain the Laplace transform of Ht for any λ > 0

E[e−λHt ] =
1

ψ′
λ(l(t))δ/2

exp
x

2

(
φ′

λ(0) − φ′
λ(l(t))

ψ′
λ(l(t))

)

with δ = 4κθ
η2 .

A simpler example for the forward contract is provided in Atlan and Leblanc (2005).

Hull and White Model Let us now consider the Hull and White (1987) volatility diffusion that
is driven by the following stochastic differential equation:

dσ2
t

σ2
t

= θdt + ηdW σ
t

where θ and η are positive constants and W σ is a Brownian motion independent from W . Then H
may be computed and after some simplifications, we obtain:

Ht =
4(1 − α)σ2

0

η2

∫ η2t
4

0
dse2(W σ

s +νs) (2.28)
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where ν = 2
η2 (θ − η2

2 − 2(1 − α)r).

If we define Aν
t =

∫ t
0 exp 2(Bs + νs)ds where B is a Brownian motion, we recognize a typical quantity

used for the pricing of Asian options with analytical formulae. Thus, we can write

Ht =
4(1 − α)σ2

0

η2
Aν

η2t
4

and obtain its law using Yor (1992), more precisely we have ∀(u, v) ∈ R2
+:

f|Aν
t
(u) =

exp
(

π2

2t − ν2t
t − 1

2u

)

u2
√

2π3t

∫ +∞

−∞
dxex(ν+1)e−

e2x

2u ψ ex

u
(t) (2.29)

where:

ψr(v) =

∫ ∞

0
dy exp(−y2

2v
)e−r cosh(y) sinh(y) sin(

πy

v
) (2.30)

2.4.3 Subordinated Bessel Models

Another way to build stochastic volatility models is to make time stochastic. Geman, Madan
and Yor (2001) recognize that asset prices may be viewed as Brownian motions subordinated by a
random clock. The random clock may be regarded as a cumulative measure of the economic activity
as said in Clark (1973) and as estimated in Ané and Geman (2000). The time must be an increasing
process, thus it could either be a Lévy subordinator or a time integral of a positive process. In
this paper, we only consider the case of a time integral because we need the continuity of the time
change in order to compute the first-passage time at 0 to be able to provide analytical formulas
for CDS prices. More generally, for the purpose of pricing path-dependent options, one needs the
continuity of the time change in order to simulate increments of the time changed Bessel process.
Consequently, we study the case of a time change Yt such as

Yt =

∫ t

0
ysds

where the rate of time change (yt, t ≥ 0) is a positive stochastic process.
As we have seen in the previous subsection, considering a stochastic volatility (σt, t ≥ 0) in the CEV
diffusion is equivalent to the following rate of time change

yt =
σ2

t e
2rt
δ−2

(2 − δ)2

where δ is the dimension of the squared Bessel process. Hence, in order to provide frameworks where
one is able to compute the law of the time change, we are going to go directly through different
modellings of the rate of time change yt.

Integrated CIR Time change As a first example, let us consider the case where yt solves the
following diffusion

dyt = κ(θ − yt)dt + η
√

ytdW Y
t
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where W Y is independent from the driving Bessel process. The Laplace transform of Yt is then
defined for any λ > 0 by :

E[e−λYt ] = e
κ2θt

η2
exp

(
− 2λy0/(κ + γ coth(γt/2))

)
(
cosh(γt/2) + κ

γ sinh(γt/2)
)2κθ/η2

γ =
√

κ2 + 2η2λ

Integrated Ornstein-Uhlenbeck Time Change We now assume the rate of time change to
be the solution of the following SDE

dyt = −λytdt + dzt

where (zt; t ≥ 0) is a Lévy subordinator. Let ψz denote the log characteristic function of the
subordinator zt, then

E[eiaYt ] = exp
(
iay0

1 − e−λt

λ

)
exp

(∫ a 1−e−λt

λ

0

ψz(x)

a − λx
dx

)
(2.31)

Then we can compute the characteristic function of Yt for different subordinators and we present
here three examples that one can find in Carr et al. (2003) for which we recall below the characteristic
functions:
a) For a process with Poisson arrival rate ν of positive jumps exponentially distributed with mean
µ, we have a Lévy density that is

kz(x) =
ν

µ
e
− x

µ 1{x>0}

and a log characteristic function

ψz(x) =
ixνµ

1 − ixµ

then we obtain ∫
ψz(x)

a − λx
dx = log

((
x +

i

µ

) ν
λ−iµa (a − λx)

νaµ
λaµ+iλ

)
(2.32)

b) Let us consider the first time a Brownian motion with drift ν reaches 1. It is well known that this
passage time follows the so-called Inverse Gaussian law which Lévy density and log characteristic
function are respectively

kz(x) =
e−

ν2x
2

√
2πx3

1{x>0}

ψz(x) = ν −
√

ν2 − 2ix

and we then get

∫
ψz(x)

a − λx
dx =

2
√

ν2 − 2ix

λ
+

2
√

ν2λ − 2ia

λ3/2
arctanh

(√
λ(ν2 − 2ix)

ν2λ − 2ia

)

−ν log(a − λx)

λ
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c) Finally, recall the Stationary Inverse Gaussian case which Lévy density and log characteristic
function are

kz(x) =
(1 + ν2x)e−

ν2x
2

2
√

2πx3
1{x>0}

ψz(x) =
iu√

ν2 − 2ix

From these definitions, we obtain

∫
ψz(x)

a − λx
dx =

√
ν2 − 2ix

λ
− 2ia

λ3/2
√

ν2λ − 2ia
arctanh

(√
λ(ν2 − 2ix)

ν2λ − 2ia

)

2.5 Correlation Adjustment

2.5.1 Introducing some Correlation

We propose a time-changed Bessel process as in the previous section with some leverage in order
to get more independence between skewness and credit spreads, with respect to which we add a
term that contains a negative correlation (equal to ρ) component between the stock return and the
volatility. Hence, let us consider zt a σ(hs, s ≤ t) adapted positive integrable process such as

eρzt

E[eρzt ]

is a martingale and a general integrated time change Ht =
∫ t
0 hsds such as E(Ht) < ∞ then, we can

define the stock price process as follows

St = ertBESQ2−δ
Ht∧τ

eρzt

E[eρzt ]

τ = inf{t > 0;St = 0}

where BESQ is a squared Bessel process of dimension δ < 2 starting from S
1/(2−δ)
0 .

Let us first show that the process (e−rtSt; t ≥ 0) hence defined is a martingale. We know from
Proposition 2.4.1 that BESQ2−δ

Ht∧τ
is a martingale. Now because of the independence of the processes

z and BESQ

< BESQ2−δ
H·∧τ

,
eρz·

E[eρz· ]
>t= 0

which ensures that (e−rtSt; t ≥ 0) is a local martingale. Let us show that it is actually a true
martingale. For this purpose, let us recall some results:

Definition 2.5.1 A real valued process X is of class DL if for every a > 0, the family of random
variables XT1{T<a} is uniformly integrable for all stopping times.

We now state the following property:
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Proposition 2.5.2 Let Mt be a local martingale such that E|M0| < ∞ and such that its negative
part belongs to class DL. Then its negative part is a super-martingale. Mt is a martingale if and
only if E[Mt] = E[M0] for all t > 0.

Proof. The proof may be found in Elworthy, Li and Yor (1999).

All the financial assets being positive, one may use a simpler result than the previous property the
proof of which is left to the reader:

Corollary 2.5.3 Let Mt be a positive local martingale such that E|M0| < ∞. Then Mt is a super-
martingale and it is a martingale if and only if E[Mt] = E[M0] for all t > 0.

Consequently to prove that the actualized stock price process is a martingale with regards to
the filtration Ft = RHt ∨ σ(hs; s ≤ t), we just need to show that for any t > 0

E[e−rtSt] = S0

which is the case since

E[e−rtSt] = E[BESQ2−δ
Ht∧τ

eρzt

E[eρzt ]
] = E

[
E

[
BESQ2−δ

Ht∧τ

eρzt

E[eρzt ]

∣∣σ(hs; s ≤ t)
]]

= E

[
eρzt

E[eρzt ]
E

[
BESQ2−δ

Ht∧τ

∣∣σ(hs; s ≤ t)
]]

= E
[ eρzt

E[eρzt ]
S0

]
= S0

2.5.2 Pricing Credit and Equity Derivatives

The computation of the probability of default is immediate from Proposition 2.4.3 because

τ = inf{t ≥ 0;St = 0} = inf{t ≥ 0;BESQHt = 0}

and then for any T > 0

P(τ ≤ T ) = E

[
G(1 − δ

2
,
S

2
2−δ

0

HT
)

]

where G is the complementary Gamma function.

Let us compute the European vanilla option prices. For this purpose, we define C
(ρ)
0 (x, y, δ,K, T ; S0)

and P
(ρ)
0 (x, y, δ,K, T ; S0):

C
(ρ)
0 (x, y, δ,K, T ; S0) = S0

eρzT

E[eρzT ]
Q(

(Ke−(rT+ρy)E[eρzT ])
2

2−δ

x
, 4 − δ,

S
2

2−δ

0

x
)

−Ke−rT (1 − Q(
S

2
2−δ

0

x
, 2 − δ,

(Ke−(rT+ρy)E[eρzT ])
2

2−δ

x
))

P
(ρ)
0 (x, y, δ,K, T ; S0) = Ke−rT Q(

S
2

2−δ

0

x
, 2 − δ,

(Ke−(rT+ρy)E[eρzT ])
2

2−δ

x
)

−S0
eρzT

E[eρzT ]
(1 − Q(

(Ke−(rT+ρy)E[eρzT ])
2

2−δ

x
, 4 − δ,

S
2

2−δ

0

x
))
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Then, the knowledge of the joint law µHt,zt for any t > 0 enables us to compute the option prices
as in the previous section:

C0 =

∫

R+

∫

R+

C
(ρ)
0 (x, y, δ,K, T ;S0)µHt,zt(dx, dy)

P0 =

∫

R+

∫

R+

P
(ρ)
0 (x, y, δ,K, T ; S0)µHt,zt(dx, dy)

2.5.3 Examples

Let us go through most of the time changes presented previously and see how we can obtain the
joint law of the couple (Ht, zt).

Integrated CIR Time change Let us consider the following dynamics

dht = κ(θ − ht)dt + η
√

htdWH
t

where WH and BESQ are independent and the stability condition 2κθ
η2 > 1 is satisfied. Let us take

zt = ht + (κ − ρη2

2
)Ht

or equivalently

ρzt = ρ(h0 + κθt) + ρη

∫ t

0

√
hsdWH

s − ρη2

2

∫ t

0
hsds

Hence, it is obvious that
eρzt

E[eρzt ]

is a local martingale and it is known that it is a martingale as one may check using the Laplace
transform below, that

E[exp(ρη

∫ t

0

√
hsdWH

s − ρη2

2

∫ t

0
hsds)] = 1

In order to compute credit and equity derivatives prices, we then compute for any positive λ, µ the
Laplace transform of

E[e−λHt−µht ]

It is well known (see Karatzas and Shreve (1991) or Lamberton and Lapeyre (1995)) that

E[e−λHt−µht ] =
e

κ2θt

η2

(
cosh(γt/2) + κ+µη2

γ sinh(γt/2)
)2κθ/η2 exp

(
− h0B(t, λ, µ)

)

B(t, λ, µ) =
µ
(
γ cosh(γt

2 ) − κ sinh(γt
2 )

)
+ 2λ sinh(γt

2 )

γ cosh(γt
2 ) + (κ + λη2) sinh(γt

2 )

γ =
√

κ2 + 2η2λ
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Heston CESV with correlation In the same class of models, let us now construct z in terms
of the solution of the following stochastic differential equation

dσ2
t = κ(θ − σ2

t )dt + ησtdWH
t and σ2

0 = x.

First, h is defined by

ht =
σ2

t e
2rt/(δ−2)

(2 − δ)2

Then, following the same method as in the integrated CIR time change case, we choose z as:

zt = ht + (κ − 2r

δ − 2
− ρη2

2
)Ht

Consequently, eρzt

E[eρzt ] is a martingale.

Hence, it remains to evaluate for any positive t the Laplace transform of (Ht, zt), that is to say
for any positive λ, µ

E[e−λHt−µht ]

In order to compute the above quantity, we use the following result which extends Lemma 2.4.6
that one can find in Pitman and Yor (1982).

Lemma 2.5.4 If X a squared Bessel process BESQ(δ,x) starting from x 6= 0 and of dimension δ,

then for any functions f and g : R+ → R+ such that for any t > 0:
∫ t
0 f(s)ds < ∞, we have

E

[
exp

(
−

∫ t

0
Xsf(s)ds − g(t)Xt

)]
=

1

(ψ′
f (t) + 2g(t)ψf (t))δ/2

×

exp
x

2

(
φ′

f (0) −
φ′

f (t) + 2g(t)φf (t)

ψ′
f (t) + 2g(t)ψf (t)

)

where φf is the unique solution of the Sturm-Liouville equation

φ′′
f (s) = 2f(s)φf (s)

where s ∈ [0;∞[, φf (0) = 1, φf is positive and non-increasing and

ψf (t) = φf (t)

∫ t

0

ds

φ2
f (s)

Taking

g(t) =
µ

(2 − δ)2

(
η2

4κt + η2

)1+ 2r
κ(2−δ)

in the above Lemma, we obtain that for any positive λ, µ

E[e−λHt−µht ] =
1

(ψ′
λ(l(t)) + 2 µ

(2−δ)2
e−(κ+ 2r

2−δ
)tψλ(l(t)))δ/2

×

exp
x

2

(
φ′

λ(0) −
φ′

λ(l(t)) + 2 µ
(2−δ)2

e−(κ+ 2r
2−δ

)tφλ(l(t))

ψ′
λ(l(t)) + 2 µ

(2−δ)2
e−(κ+ 2r

2−δ
)tψλ(l(t))

)

where noting α = δ−1
δ−2 , the functions φλ, ψλ and l are defined respectively in (2.25),(2.26) and (2.27).
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Integrated Ornstein-Uhlenbeck Time Change We consider the stochastic time change Ht =∫ t
0 hsds and assume that (ht; t ≥ 0) is given by

dht = −λhtdt + dzt

where (zt; t ≥ 0) is a Lévy subordinator. Carr et al. (2003) compute the characteristic function
Φ(t, a, b) of (Ht, zt) for any t > 0 and it is given by

E[eiaHt+ibzt ] = exp
(
iah0

1 − e−λt

λ

)
exp

(∫ b+a 1−e−λt

λ

b

ψz(x)

a + λb − λx
dx

)
(2.33)

for any (a, b) ∈ R2
+ where ψz is the log characteristic function of the subordinator. Let us first

notice that
E[eρzt ] = exp(tψz(−iρ))

We quickly recall the computations of Φ(t, a, b) for different subordinators:
a) For a process with Poisson arrival rate ν of positive jumps exponentially distributed with mean
µ, we obtain

∫
ψz(x)

a + λb − λx
dx = log

((
x +

i

µ

) ν
λ−iµ(a+λb) ((a + λb) − λx)

ν(a+λb)µ
λ(a+λb)µ+iλ

)

b) For an Inverse Gaussian subordinator of parameter ν, we have

∫
ψz(x)

a + λb − λx
dx =

2
√

ν2 − 2ix

λ

+
2
√

ν2λ − 2i(a + λb)

λ3/2
arctanh

(√
λ(ν2 − 2ix)

ν2λ − 2i(a + λb)

)

−ν log((a + λb) − λx)

λ

c) For the Stationary Inverse Gaussian of parameter ν, we write

∫
ψz(x)

a + λb − λx
dx =

√
ν2 − 2ix

λ

− 2i(a + λb)

λ3/2
√

ν2λ − 2i(a + λb)
arctanh

(√
λ(ν2 − 2ix)

ν2λ − 2i(a + λb)

)
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2.6 Conclusion

Twelve continuous stochastic stock price models were built in this paper for equity-credit modelling
purposes, all derived from the Constant Elasticity of Variance model, and as a consequence from
Bessel processes. They all exploit the ability of Bessel processes to be positive, for those of dimension
lower than 2 to reach 0 and for a certain power of a given Bessel process to be a martingale. We
first propose to add a stochastic volatility diffusion to the CEV model, then more generally to
stochastically time change a Bessel process in order to obtain a stochastic volatility effect, motivated
by known arguments that go back to Clark (1973). Next, in order to add some correlation between
the stock price process and the stochastic volatility, we extend our framework by multiplying the
Bessel process by exponentials of the volatility and correcting it by its mean in accordance with
arbitrage considerations to obtain martingale models that are martingales with respect to the joint
filtration of the time-changed Bessel process and the stochastic time change itself. Hence, among
the different models proposed based on the CEV with default model, there were first the Constant
Elasticity of Stochastic Variance ones (CESV) taking a Hull and White (1987) stochastic volatility
as well as a Heston (1993) one. We then proposed integrated time change models, by considering
an integrated CIR time change and an Integrated Ornstein-Uhlenbeck time change (see Carr et
al. (2003)) with different subordinators for the process driving the diffusion. We finally added
correlation between stock price returns and volatilities to the models presented previously and
provided quasi-analytical formulas for option and CDS prices for all of them. Let us note that
we discussed the true and local strict martingale properties of CEV processes, that we naturally
extended to the time change framework.
The models presented and discussed in this paper are not specifically designed to cope just with
Equity-Credit frameworks but they also can be used for instance for FX-rates hybrid modelling by
specifying stochastic interest rates. We can also note that a Poisson jump to default process can
be added to the CEV-like framework in order to deal with credit spreads for short-term maturities.
Campi, Polbennikov and Sbuelz (2005) and Carr and Linetsky (2005) precisely considered a CEV
model with deterministic volatilities and hazard rates. The latest paper can easily be generalized
to fit in our time-changed Bessel frameworks. Since our goal was to concentrate on continuous
diffusions, we leave the addition of a jump to default for further research.
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Chapter 3

Hybrid Equity-Credit Modelling

[Joint work with Boris Leblanc; published in Risk Magazine, August 2005 ∗]

We propose a study of the pitfalls of the market widely used Poisson Default model in the Equity-
Credit Hybrid land and show that a slight modification of the Constant Elasticity of Variance (CEV)
model can, in addition to its well-known properties, capture the default event probability. Because
of a need of more freedom between the volatility level, the skewness and the risk of default, we
exhibit extensions of the CEV model adding stochasticity in the volatility.

3.1 Introduction

The growth of the credit derivatives market and the development of derivatives such as equity
default swaps (EDSs) has led to a need for models that realistically capture stock price behaviour.
The probability of default has become a crucial issue for pricing new claims. We therefore need to
define "default".

The notion of default has been discussed in market financial literature for a long time and
in corporate finance literature for much longer. Defaults happen when a party is unwilling or
unable to pay its debt obligations. Default is usually the step before bankruptcy in corporate
finance. In the US, a firm getting in trouble usually files for bankruptcy protection under Chapter
11 (Reorganization), which defines a default event. Chapter 11 allows a firm to cancel some or all
of its debts and contracts while attempting to achieve financial stability without interruption of the
operating business.

In the common structural model literature pioneered by Black & Scholes (1973) and Merton
(1974), one defines default as being the event for which the asset value of a firm goes below a
boundary that is a function of the firm debts. But the impossibility of knowing the barrier level
leads us to consider alternatives to structural models. Reduced-form models do not model the value
of the firm’s assets and its capital structure, they consider the credit event to be an exogenously
specified jump process. Two reduced-form model subclasses are the credit migration model family

∗We thank Stéphane Tyc for providing the idea of this study and for his careful reviews, Marc Yor for the very
helpful and necessary discussions. We also thank Hélyette Geman and Imad Srairi for their useful remarks and Gildas
Guilloux for his numerous remarks on Convertible Bonds trading and modeling. The remaining errors are our own.
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and the intensity-based model family. In the case of intensity- based models, one is interested in
modelling the default event process; the traditional literature on these kinds of models (see, for
instance, Jarrow and Turnbull (1995)) does not describe the behaviour of stocks just before default.

Since our aim is to build a unique model for stock prices and default events, modelling the
probability of default as the consequence of the stock price falling under a certain boundary seems
natural. Now, for simplicity, recent models (see, for example, Albanese and Chen (2005) and
Linetsky (2005)) consider the default event as the stock price falling to zero and this is the framework
we will use. We may nevertheless notice that for a firm, the fact of being under Chapter 11 doesn’t
imply that the stock price is equal to zero, but being under Chapter 7 (Liquidation) will imply
a null stock price. As lognormal models are unable to comply with this latest feature, financial
practitioners and academics have added to the diffusion model a Poisson default process. Such
models were first presented in Davis and Lischka (2002), where the default probability depends on
the level of the spot price. In this article, we wish to build a stock price diffusion with continuous
paths, since for most companies going bankrupt the stock price behaviour doesn’t default as a
Poisson process does. This stock price property can be illustrated on the US stock market (see
for instance WorldCom, Enron, Mirant or Kmart) and that is the reason why building continuous
processes with a non-zero probability of reaching zero is a very interesting feature.

The constant elasticity of variance (CEV) model designed by Cox (1975) is a continuous path
model that has the following diffusion dS

S = rdt + σSα−1dW and a non-zero probability of reaching
zero under certain conditions on the elasticity parameter α.

First we will explain why the CEV model describes the equity market better than the Poisson
default model in terms of realism of the stock price paths and pricing downside risks. By this we
mean that the path continuity of the CEV model brings consistency with low-strike put options
and equity default swap (EDS) market prices, for example. We will then more precisely present the
stopped CEV process and price vanilla options, credit default swaps (CDSs) and equity default swaps
within this model. The major drawbacks of the CEV model are the lack of independence between
the skewness and the probability of default, and the high dependency between the level of volatility
and the probability of default. To deal with these drawbacks, we will present some generalizations
of the CEV model using stochastic volatility. Our contribution is threefold: explaining default
Poisson model mis-pricing features and illustrating the necessity of smoother stock price processes
(with continuous paths) to model the default event; showing that the stopped CEV model can
approximately fit vanilla options and CDSs and price EDSs more safely; introducing and presenting
an extension of the stopped CEV model using Heston stochastic volatility (constant elasticity of
stochastic variance (CESV)). We additionally provide closed-form pricing formulas for the Heston
CESV model presented in this article.

3.2 Tracking a Stock Price Process that models default

To price exotic derivatives, it is first necessary to be able to reproduce existing, observable vanilla
option prices with sufficient precision and a small number of adjustable parameters. The main
drawback of this view is often the irrelevance of the underlying asset price behaviour and, as a
consequence, a lack of accuracy for the hedging portfolio. The local probability of default model
doesn’t represent a typical path of a default event since the stock price process can jump to zero at
any time with a probability that is a function of the underlying stock price. Our purpose is to create
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a model consistent with the sustainable stock price evolutions. An important feature of a stochastic
model is its ability to integrate extremal events realistically. When building a model concerned with
default, the choice of the diffusion may be of importance for pricing non plain-vanilla derivatives
such as EDSs that are swaps where payouts occur when the stock price falls under a pre-defined
level. We will now recall the Poisson default model and present a slight modification of the CEV
model as an alternative to the unrealistic stock behaviour of the Poisson default process.

3.2.1 Poisson Default Models

The most commonly used equity-credit market models are those based on jump-diffusion processes
with a jump to zero if the stock defaults. This type of model usually solves the following equation
under the risk-neutral measure:

dSt

St−
= rdt + σdWt − dQt

where:

τ = inf{t > 0;

∫ t

0
p(u, Su)du ≥ Θ}

Qt = 1t≥τ −
∫ t∧τ

0
p(u, Su)du

where Θ is an exponential random variable, p is a deterministic function of the time and the spot
level. This model was presented for instance in Davis and Lischka (2002) and is commonly used for
the pricing of defaultable claims, especially of convertible bonds. In Andersen and Buffum (2003)
and in Ayache et al. (2003) for instance, the probability function is of the following form:

p(S) = p0

( S

S0

)α

where p0 is the estimated hazard rate for the stock price level S = S0. Linetsky (2005) provides
closed-form formulae for vanilla option prices and corporate bonds with the specification on the
local probability function presented above.

Such processes generate paths where the stock price drops down directly to zero from its level
just before default. As shown in figure 1, it is not a natural hypothesis for a default modelling
framework and that is why we consider alternative smoother processes.

3.2.2 CEV Diffusion

A positive continuous process that has a strictly positive probability of reaching zero can be found
in the family of squared Bessel processes with dimensions lower than two. Among the different
stock price models, the CEV model is a well-known stock price diffusion based on Bessel processes.
In this article, we will consider a CEV process stopped at the first hitting time of zero in order to
build a credit-coherent model under a risk-neutral pricing measure:

dSt

St
= rdt + σSα−1

t dWt if t < τ.

St = 0 if t ≥ τ.
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Figure 3.1: United Airlines Historical Stock Price prior to Default

where τ = T0(S) = inf{t > 0, St = 0}, σ a constant and α < 1 in order to get a non-zero probability
of default.

For a CEV process, zero is an absorbing boundary for 1
2 < α < 1 and is a reflecting boundary

for α < 1
2 and this is why we consider a stopped CEV process. There is much literature on CEV

models. Since CEV processes are based on squared Bessel processes, they have the advantage of
giving analytical formulas for many derivatives. They were introduced by Cox (1975), who only
considered the case α < 1, which takes into account the so-called leverage effect to price vanilla
options. Then Emanuel and Mac-Beth (1982) proposed pricing formulas for α > 1 and Schroder
(1989) showed that the CEV pricing formula could be expressed in terms of noncentral chi-square
distributions. More recently, Delbaen and Shirakawa (2002) proposed a call pricing formula for the
stopped CEV process. We can calculate the law of this stopped process in terms of squared Bessel
processes and hence in terms of non-central chi-square distributions. For a detailed study of the
stopped process, we refer to Delbaen and Shirakawa (2002). But, for the purpose of self-consistency,
some essential results are reproduced in the Appendix.

3.2.3 Poisson Default Process Problem

We aim at continuous diffusions that can reach zero. A possible inconsistency of Poisson default
models comes from the pricing of EDSs. If we wish to price an EDS with a low implied volatility
and a high credit grade, there won’t be a significant price difference between a quarterly 20% two-
year EDS and a quarterly 30% two-year EDS. For example, let us consider the US company Tyco,
with a 23% one-year at-the-money implied volatility and a 250-basis point one-year credit grade
with a $36.50 spot price. For simplicity, we will consider down-and-in barrier put options whose
payout is of the following form: E[e−rτ

1τ<T ] with τ = inft<T {St < B} and calculate their prices
under the CEV model and under the Poisson default model. All the prices can be found in table A.
The two models are fitted on the one-year at-the-money volatility and probability of default. The
prices under the Poisson default model show a bad strike scaling feature. We see that reaching low
barriers is equivalent to reaching zero in our jumpdiffusion framework for the pricing of down-and-in
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barrier put options, and that is why they all have the same price. In the CEV model, they all have
different prices and they are more expensive than in the jump-diffusion model. Let us remark that
to get the one-year Poisson default model price presented in table A, one would need to take a 5%
barrier to get the same price under the CEV model. Nonetheless, one could argue that the default
event could be chosen not to be zero but a certain small value ê as presented in its generality in
Ayache, Forsyth and Vetzal (2003), but that would only shift up the options prices and they would
remain insensitive to strike scaling. Another explanation of this important price difference can be
excerpted from a qualitative study of the hedging strategy, and this will illustrate another problem
with Poisson default models. Indeed, when selling a down-and-in digital put barrier option under
a Poisson default model, in the case of a jump to zero the profit will come from the number of
short stocks. But the stock price usually declines smoothly before jumping down in case of default,
so the Poisson default model won’t perform efficiently, whereas managing these options under the
CEV model is better because the intrinsic structure of this model sees the default event as it may
happen. This means that for the pricing involved, the delta for the CEV process is higher than
for the default Poisson process. To summarise, these price differences come from different hedging
strategies, which themselves come from different stock price behaviour modelling.

TYCO -December 2004
DOWN-AND-IN DIGITAL BARRIER OPTION PRICES IN DOLLARS

Poisson Default Model, σ = 20.2%, α = 2, r = 2% and p0 = 3.7
Strike/Maturity 1 Year

30% 0.0246
40% 0.0246
50% 0.0249

CEV Model, σ = 23%, α = −1.6 and r = 2%
Strike/Maturity 1 Year

30% 0.045
40% 0.062
50% 0.083

3.3 Consistent Pricing of Credit and Equity Derivatives within CEV

3.3.1 Calibration and Pricing of Vanilla Options

Since our purpose is to build a cross-asset market model for strategies that involve equity and credit
assets, we calculate the European-style vanilla option prices. To ensure the absence of arbitrage,
the discounted stopped CEV process has to be a true martingale. This is the case for α < 1, as
proven in Atlan and Leblanc (2004).
Let us now calculate the European-style put P0 option price at maturity T and strike K for the
stopped CEV process:

P0 = e−rT E[(K − ST )+1T<τ ] + Ke−rT P(τ ≤ T )

We can see explicitly that the put option price incorporates the price of default and that the
martingale property ensures the put-call parity relation. We can now give the option pricing formula,
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Figure 3.2: CEV Skewness, σ = 40%, r = 2% and T=1 year

knowing the density of the stopped CEV process thanks to equation (3.11) that one can find in the
Appendix:

P0 = Ke−rT Q(2ξT ,
1

1 − α
, zT ) − S0(1 − Q(zT , 2 +

1

1 − α
, 2ξT ))

where

zT =
2rK2(1−α)

σ2(1 − α)(e2(1−α)rT − 1)

ξT =
rS

2(1−α)
0

(1 − α)σ2(1 − e−2(1−α)rT )

and Q is the complementary non-central chi-square distribution function. One can obtain the call
option price thanks to the Call-Put parity relation. For homogeneity reasons, we may define σ0 to
be such as:

σ =
σ0

Sα−1
0

To fit an implied volatility curve at a given maturity, take :

σ0 ≃ σBS
ATM

∂σBS

∂K
≃ σ0(α − 1)

S

These approximations enable us to get a good idea of the parameters. Figure 2 shows several skews
generated by a CEV model at a given at-the-money implied volatility for a given maturity. Figure 3
shows General Motors’ implied volatility skew for the maturity January 2006 as of May 2005. The
calibration of α and σ0 was performed for a given maturity on all the call options where bids and
asks were provided.
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Using the General Motors calibrated volatility curve, the calculated credit grade of the one year
CDS with a recovery rate R = 30 is 326bp.
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Figure 3.3: General Motors January 06 Implied Volatility Curve, σ0 = 43%, α = −0.28, S0 = $27
and r = 2%
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Figure 3.4: General Motors January 07 Implied Volatility Curve, σ0 = 41%, α = −0.28, S0 = $27
and r = 2%

Figure 4 displays the implied volatility curve for January 2007 call options based on the calibra-
tion of the á performed on January 2006 options and on an adjustment of σ0 to the at-the-money
volatility. It is well known that for short-term maturities, jumps are needed in the dynamic to
perform a model calibration. That is the reason why adding a regular Poisson jump process to the
CEV model allows a short-term maturity calibration. However, this is not the aim of this article
and we leave it for further research.
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3.3.2 Credit Derivatives Pricing

In the past few years, with the growth of the credit derivatives market, the issue of pricing CDSs
with a view on the equity market has become important, especially with the recent interest in EDS
pricing.
To calibrate a model to CDS market prices, we need to be able to calculate the probability of default
in the CEV framework. That means we want to calculate the first hitting time of the zero cumulative
distribution function. This calculation was originally done by Cox (1975). Not long afterwards, the
cumulative distribution function was computed for Bessel processes by Getoor (1979). We obtain
the following simple formula for the CEV process:

P(τ ≤ T |S0) = G(
1

2(1 − α)
, ξT ) (3.1)

where G and ξT are defined as follow:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz

ξT =
rS

2(1−α)
0

(1 − α)σ2(1 − e2(α−1)rT )

This last formula enables us to calibrate the CEV model to the CDS market. We recall the general
valuation formula of a CDS initiated at time zero and evaluated at time t:

CDSt(T1, Tn; C; R) = −C
n∑

i=1

B(t, Ti)P(τ > Ti|St) + (1 − R)E[e−r(τ−t)
1τ≤Tn |St]

where C is the coupon, T1, ..., Tn the payment dates, B(t, Ti) the risk-free zero-coupon bonds, r
the risk-free interest rate, R the recovery rate assumed to be deterministic, τ the default time and
P(τ > Ti|St) is given by formula (3.1). Figure 5 illustrates the different probabilities of default
generated for a given level of at-the-money 1-year implied volatility within the CEV model. In the
absence of arbitrage the coupon value at the inception of the contract is given by:

CDSt=0(T1, Tn; C;R) = 0

To price a CDS within the CEV Model, we just need to compute the rebate price that can be found
in Davydov and Linetsky (2001).

EDSs are very similar to CDSs except that payouts occur when the stock price falls under a pre-
defined level, which is often referred to as a trigger price. The trigger price is usually around 30% of
the equity stock price at the beginning of the contract. Hence, these contracts provide a protection
against a credit event happening on the equity market for the buyer. They were initiated by the
end of 2003. At that time, it had become difficult in many countries to structure investment-grade
credit portfolios with good returns because the CDS spreads were tightening, as reported by Sawyer
(2003). Let us now define τL as the first passage of time of the stock price process under the level
L < S0. Formally, we write τL = inf{t > 0;St ≤ L}. We recall the general valuation formula of an
EDS:

EDSt(T1, Tn; C; R) = −C

n∑

i=1

B(t, Ti)P(τL > Ti|St) + E[e−r(τL−t)
1τL≤Tn |St]
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Figure 3.5: CEV Probabilities of default, σ = 40% and r = 2%

where C is the coupon, T1, ..., Tn the payment dates, B(t, Ti) the risk-free zero-coupon bonds and r
the risk-free interest rate. Again, by absence of arbitrage, we can find the coupon price, by stating
that at the initiation of the contract:

EDSt=0(T1, Tn;C; R) = 0

Analytical formulae for the EDS price are obtained using Davydov and Linetsky (2001) and can be
found in Albanese and Chen (2004).

3.4 Heston CESV Model

Due to the limitations in the CEV model’s ability to capture the main derivatives market effects
- that is to say some flexibility between the level of volatility, the probability of default and the
smile structure - we are led to consider a stochastic volatility instead of a constant one. More
precisely, it enables us to cope with the bad time dependency of CEV credit curves for stocks with
low volatilities and high probabilities of default. A well-known model of this family used in fixed
income is the SABR model introduced by Hagan et al (2002). Hence, we wish to build a Heston
stochastic volatility model with a CEV diffusion for the stock price dynamics:

dSt

St
= rdt + σ

√
vtS

α−1
t dWS

t if t < τ. (3.2)

dvt = κ(1 − vt)dt + η
√

vtdWt (3.3)

v0 = 1 (3.4)

St = 0 if t ≥ τ (3.5)

d < W,WS > = 0 (3.6)



70 3. Hybrid Equity-Credit Modelling

where W and WS are standard Brownian motions, τ = T0(S) = inf{t > 0, St = 0} and α < 1.
We do not correlate the stock price return dynamics and the volatility process because the leverage
effect is sufficiently well explained by the constant elasticity effect. Adding a stochastic volatility
also permits the capture of a smile effect less correlated to the probability of default and changes
of regimes in volatility that are shown in figure 6.
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Figure 3.6: United Airlines 6 month Historical Volatility prior to Default

Therefore, if we consider the following process X defined as follows:

Xt = ertR
1

2(1−α)

(2− 1
1−α

,x
2(1−α)
0 )

(Ht) if t < τ (3.7)

Xt = 0 if τ > t (3.8)

where Ht = σ2(1 − α)2
∫ t
0 vse

−2(1−α)rsds and R(δ,x) is a Squared Bessel Process, we can show that
this process is a solution of Equations (3.2) and (3.5). To prove this relation, it suffices to apply
Ito Formula and the change of variable formula. A crucial point in the use of stochastic volatility
is that the absence of Arbitrage is expressed by the property of the discounted stock price process
being a true martingale, as mentioned above. Now, using the conditioning formula, we are able
to get formulae that just depend on the law of H at terminal time. More precisely, defining the
following quantity P0(x,K, T ; S0) by:

P0(x, K, T ;S0) = Ke−rT Q(
S

2(1−α)
0

x
,

1

1 − α
,
(Ke−rT )2(1−α)

x
)

−S0(1 − Q(
(Ke−rT )2(1−α)

x
, 2 +

1

1 − α
,
S

2(1−α)
0

x
))

we obtain the put option price:

P0 =

∫

R+

P0(x,K, T ; S0)µHT
(dx)
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where µHT
is the law of H at time T . The call option price may be obtained using the call-put

parity relation.
The probability of default can still be different from 0 and we have:

P(τ ≤ T ) =

∫

R+

p(x; S0)µHT
(dx) (3.9)

where p(x, S0) = G( 1
2(1−α) ,

S
2(1−α)
0

x ).
It is well known that the law of this process can be expressed in terms of a space and time

changed squared Bessel processes. A condition on vt ensuring that 0 remains a reflecting boundary
is 4κ

η2 > 0 and a stability condition ensuring that the volatility process remains strictly positive is

that 4κ
η2 > 2. Let us for simplicity reasons consider a CEV diffusion for the forward contract Ft, it

will then solve the SDE below:

dFt

Ft
= σ

√
vtS

α−1
t dWF

t if t < τ

Ft = 0 if t ≥ τ

dvt = κ(1 − vt)dt + η
√

vtdWt

v0 = 1

d < W,WF > = 0

where WF is a brownian motion and τ = T0(F ) = inf{t > 0, Ft = 0} .
Consequently, we are looking for the law of:

Ht = σ2(1 − α)2
∫ t

0
vsds (3.10)
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Figure 3.7: Heston CEV Skewness, σ0 = 40%, κ = 2, α = −0.3, r = 2% and T=1 year

Hence, we are able to compute the Laplace transform of Ht and then get the law of Ht. It is
a well-known computation for those who are for example, calculating the price of discount bonds
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within a CIR (1985) model. Let us recall its Laplace transform that one can find for instance, in
Lamberton and Lapeyre (1995) ∀λ ∈ R+:

E[e−λHt ] = e−κϕλ(t)e−ψλ(t)

where:

γ =
√

κ2 + 2η2λσ2(1 − α)2

ϕλ(t) = − 2

η2
ln

(
2γet γ+κ

2

γ − κ + eγt(γ + κ)

)

ψλ(t) =
2λσ2(1 − α)2(eγt − 1)

γ − κ + eγt(γ + κ)

Figure 7 shows the impact of the addition of a stochastic volatility to the smile structure. One
can see that a simple way to get an upward smile for upside strikes is to take κ and η such that
1 > 2κ

η2 > 0.

3.5 Conclusion

This article presents a study of the CEV model and an analysis of one of its possible extensions where
we add a stochastic volatility (CESV model), both dedicated to the pricing of credit derivatives and
equity derivatives where a downside risk is involved. We have shown that the widely used Poisson
default model cannot represent the stock price behaviour of a firm defaulting, and thus a process
is needed with a continuous component that by itself can "easily" reach low spot levels. This
is the case of the well-known CEV model, and that is why we considered a slight modification
involving stopping the CEV process at its first-passage time by zero, to be consistent with the
default event. Then, to get more freedom in the correlation structure of the skewness with the level
of default, we naturally build CESV models. Moreover, for some stochastic volatility models, we
are able to calculate analytical formulas. At this point, we note that we haven’t performed any
hedging strategies based on the CEV-type models. We leave this for future research. We also leave
for future research the study of models mixing jumps and diffusions able to reach zero, such as a
Poisson default CEV model that would solve the following SDE:

dSt

St−
= rdt + σSα−1

t− dWt − dQt

where :
Qt = 1t≥τ − λt

This last class of models generates exogeneous default events independent of the stock price level.
We believe the CEV model and its extensions could be useful for pricing and understanding the

growing equity credit-related market.
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Appendix : CEV and Bessel Processes

The law of a CEV diffusion can be thought of in terms of squared Bessel process in the following
way for: t < τ ,

St = ertR
1

2(1−α)

( 2α−1
α−1

,x
2(1−α)
0 )

(
(1 − α)σ2

2r
(1 − e−2(1−α)rt)

)

where R(δ,x) is a squared Bessel Process of dimension δ and starting from x solution of

R(δ,x)(t) = x + δt + 2

∫ t

0

√
R(δ,x)(u)dWu

where W is a brownian motion.
Next, we are interested in the law of the stopped CEV diffusion, thanks to Girsanov theorem, we
obtain for a squared Bessel process R with Rt its canonical filtration

Pδ
x|Rt∩{t<τ} =

(
R(4−δ,x)(t)

x

) δ
2
−1

· P4−δ
x|Rt

(3.11)

We can also get from Laplace transforms (see for example Delbaen and Shirakawa (2002)) the law
of a squared Bessel process in terms of noncentral chi-square random variables:

R(δ,x)(t)
(d)
= tV (δ, x

t
)

where V (a,b) is a noncentral chi-square r.v with a degrees of freedom and noncentrality parameter
b ≥ 0.
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Chapter 4

Options on Hedge Funds under the

High-Water Mark Rule

[Joint work with Hélyette Geman and Marc Yor; submitted for publication]

The rapidly growing hedge fund industry has provided individual and institutional investors
with new investment vehicles and styles of management. It has also brought forward a new form of
performance contract: hedge fund managers receive incentive fees which are typically a fraction of
the fund net asset value (NAV) above its starting level - a rule known as high water mark.

Options on hedge funds are becoming increasingly popular, in particular because they allow
investors with limited capital to get exposure to this new asset class. The goal of the paper is
to propose a valuation of plain-vanilla options on hedge funds which accounts for the high water
market rule. Mathematically, this valuation leads to an interesting use of local times of Brownian
motion. Option prices are numerically computed by inversion of their Laplace transforms.

4.1 Introduction

The term hedge fund is used to characterize a broad class of "skill-based" asset management firms
that do not qualify as mutual funds regulated by the Investment Company Act of 1940 in the United
States. Hedge funds are pooled investment vehicles that are privately organized, administered by
professional investment managers and not widely available to the general public. Due to their private
nature, they carry much fewer restrictions on the use of leverage, short-selling and derivatives than
more regulated vehicles.

Across the nineties, hedge funds have been embraced by investors worldwide and are today
recognized as an asset class in its own right. Originally, they were operated by taking a "hedged"
position against a particular event, effectively reducing the overall risk. Today, the hedge component
has totally disappeared and the term "hedge fund" refers to any pooled investment vehicle that is not
a conventional fund using essentially long strategies in equity, bonds and money market instruments.

Over the recent years, multi-strategy funds of funds have in turn flourished, providing institu-
tional investors with a whole spectrum of alternative investments exhibiting low correlations with
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traditional asset classes. In a parallel manner, options on hedge funds have been growing in numbers
and types, offering individual investors the possibility of acquiring exposure to hedge funds through
a relatively low amount of capital paid upfront at inception of the strategy.

Hedge funds constitute in fact a very heterogeneous group with strategies as diverse as convertible
arbitrage, global macro or long short equity. In all cases however, common characteristics may be
identified such as long-term commitment of investors, active management and broad discretion
granted to the fund manager over the investment style and asset classes selected. Accordingly,
incentive fees represent a significant percentage of the performance - typically ranging from 5% to
20%. This performance is most generally measured according to the high-water mark rule, i.e., using
as a reference benchmark the Net Asset Value (NAV) of the fund at the time of purchase of the
shares or options written on the hedge fund.

So far, the academic literature on hedge funds has focused on such issues as non-normality of
returns, actual realized hedge fund performance and persistence of that performance. Amin and
Kat (2003) show that, as a stand-alone investment, hedge funds do not offer a superior risk-return
profile. Geman and Kharoubi (2003) propose instead the introduction of copulas to better represent
the dependence structure between hedge funds and other asset classes. Agarwal and Naik (2000)
examine whether persistence is sensitive to the length of the return measurement period and find
maximum persistence at a quarterly horizon.

Another stream of papers has analyzed performance incentives in the hedge fund industry (see
Fung and Hsieh (1999), Brown, Goetzmann and Ibbotson (1999)). However, the high water mark
rule specification has been essentially studied by Goetzman, Ingersoll and Ross (2003).

High-water mark provisions condition the payment of the performance fee upon the hedge fund
Net Asset Value exceeding the entry point of the investor. Goetzmann et al examine the costs and
benefits to investors of this form of managers’ compensation and the consequences of thess option-
like characteristics on the values of fees on one hand, investors’ claims on the other hand. Our
objective is to pursue this analysis one step further and examine the valuation of options on hedge
funds under the high-water mark rule. We show that this particular compound option-like problem
may be solved in the Black-Scholes (1973) and Merton (1973) setting of geometric Brownian motion
for the hedge fund NAV by the use of Local times of Brownian motion.

The remainder of the paper is organized as follows: Section II contains the description of the
Net Asset Value dynamics, management and incentive fees and the NAV option valuation. Section
II also extends the problem to a moving high water mark. Section III describes numerical examples
obtained by inverse Laplace transforms and Monte Carlo simulations. Section IV contains concluding
comments.

4.2 The High-Water Mark Rule and Local Times

4.2.1 Modeling the High-Water Mark

We work in a continuous-time framework and assume that the fund Net Asset Value (NAV) follows
a lognormal diffusion process. This diffusion process will have a different starting point for each
investor, depending on the time she entered her position. This starting point will define the high
water mark used as the benchmark triggering the performance fees discussed throughout the paper.
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We follow Goetzmann, Ingersoll and Ross (2003) in representing the performance fees in the
following form

f (St) = µa 1{St>H} (4.1)

where St denotes the Net Asset Value at date t, µ is a mean NAV return statistically observed, a
is a percentage generally comprised between 5% and 20% and H = S0 denotes the market value of
the NAV as observed at inception of the option contract.

We consider (Ω,F , {Ft, t ≥ 0}, P0) a filtered probability space where (Bt)t≥0 is an {Ft, t ≥ 0}
Brownian motion.

We now consider an equivalent measure Q under which the Net Asset Value dynamics (St)t≥0

satisfy the stochastic differential equation:

dSt

St
= (r + α − c − f(St))dt + σdWt (4.2)

and the instantaneously compounding interest rate r is supposed to be constant. α denotes the
excess return on the fund’s assets and is classically defined by

α = µ − r − β (rm − r)

where rm is the expected return on the market portfolio. Hence, the "risk-neutral" return on the
fund NAV is equal to (r + α)∗; σ denotes the NAV volatility.

The management fees paid regardless of the performance are represented by a constant fraction
c (comprised in practice between 0.5% and 2%) of the Net Asset Value. We represent the incentive
fees as a deterministic function f of the current value St of the NAV, generally chosen according
to the high water mark rule defined in equation (1). We can note that management fees have the
form of the constant dividend payment of the Merton (1973) model while performance fees may be
interpreted as a more involved form of dividend paid to the manager.

Because of their central role in what follows, we introduce the maximum and the minimum
processes of the Brownian motion B, namely

Mt = sup
s≤t

Bs, It = inf
s≤t

Bs

as well as its local time at the level a, a ∈ R

La
t = lim

ǫ→0

1

2ǫ

∫ t

0
1{|Bs−a|≤ǫ}ds

We also consider A
(a,+)
t =

∫ t
0 1{Bs≥a}ds and A

(a,−)
t =

∫ t
0 1{Bs≤a}ds, respectively denoting the

time spent in [a;∞[ and the time spent in ] −∞; a] by the Brownian motion up to time t.

For simplicity, we shall write Lt = L0
t , A+

t = A
(0,+)
t and A−

t = A
(0,−)
t the corresponding quantities

for a = 0.

∗ Our claim is that the measure Q incorporates the price of market risk as a whole but not the excess performance
- the fund "alpha" - achieved by the manager through the selection of specific securities at a given point in time.
This view is in agreement with the footnote 6 in Goetzmann, Ingersoll and Ross (2003)



80 4. Options on Hedge Funds under the High-Water Mark Rule

In order to extend our results to different types of incentive fees, we do not specify the function
f but only assume that it is a bounded, increasing and positive function satisfying the following
conditions:

f(0) = 0, lim
x→∞

f(x) < +∞

Proposition 4.2.1 There exists a unique solution to the stochastic differential equation

dSt

St
= (r + α − c − f(St))dt + σdWt

Proof. Let us denote Yt = ln(St)
σ . Applying Itô’s formula, we see that the process Yt satisfies

the equation
dYt = dWt + ψ(eσYt)dt

where ψ(x) = r − σ2

2 + α − c − f(x).
f , hence ψ is a Borel bounded function; consequently, we may apply Zvonkin (1974) theorem and
obtain strong existence and pathwise uniqueness of the solution of equation (4.2).
We recall that Zvonkin theorem establishes that for every bounded Borel function ξ, the stochastic
differential equation

dZt = dWt + ξ(Zt)dt

has a unique solution which is strong, i.e.: in this case, the filtration of Z and W are equal.
Integrating equation (4.2), we observe that this unique solution can be written as

St = S0 exp

((
r + α − c − σ2

2

)
t −

∫ t

0
f(Su)du + σWt

)

We now seek to construct a new probability measure P under which the expression of St reduces to

St = S0 exp(σW̃t) (4.3)

where W̃t is a P standard Brownian motion.

Proposition 4.2.2 There exists an equivalent measure P under which the Net Asset Value dynamics
satisfy the stochastic differential equation

dSt

St
=

σ2

2
dt + σdW̃t (4.4)

where
Q|Ft

= Zt · P|Ft
(4.5)

Zt = exp
( ∫ t

0

(
b − f(Su)

σ

)
dW̃u − 1

2

∫ t

0

(
b − f(Su)

σ

)2
du

)

and

b =
r + α − c − σ2

2

σ

Proof. Thanks to Girsanov theorem (see for instance McKean (1969) and Revuz and Yor
(2005)) we find that under the probability measure P,

W̃t = Wt +
∫ t
0 du

(
b − f(eσYu )

σ

)
is a Brownian motion, which allows us to conclude.
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4.2.2 Building the Pricing Framework

For practical purposes, the issuer of the call is typically the hedge fund itself, hence hedging ar-
guments allow to price the option as the expectation (under the right probability measure) of the
discounted payoff. More generally, a European-style hedge fund derivative with maturity T > 0
is defined by its payoff F : R+ −→ R+ and the valuation of the option reduces to computing
expectations of the following form:

VF (t, S, T ) = e−r(T−t)EQ
[
F (Su;u ≤ T )

∣∣Ft]

For the case where the valuation of the option takes place at a date t = 0, we denote VF (S, T ) =
VF (0, S, T ). We can observe that we are in a situation of complete markets since the only source of
randomness is the Brownian motion driving the NAV dynamics.

Proposition 4.2.3 For any payoff F that can be written as an increasing function of the stock price
process, the option price associated to the above payoff is an increasing function of the high-water
mark level.

Proof. This result is quite satisfactory from a financial perspective. Mathematically, it may be
deduced from the following result :
Let us consider the solutions (S1, S2) of the pair of stochastic differential equations :

dS1
t = b1(S1

t )dt + σS1
t dWt

dS2
t = b2(S2

t )dt + σS2
t dWt

where

b1(x) = (r + α − c − µa 1{x>H})x

b2(x) = (r + α − c − µa 1{x>H′})x

with H > H ′ and S1
0 = S2

0 a.s.
We may apply a comparison theorem since b1 and b2 are bounded Borel functions and b1 ≥ b2

everywhere, obtain that
P[S1

t ≥ S2
t ;∀t ≥ 0] = 1

and then conclude.
If we consider a call option and a put option with strike K and maturity T , we observe the

following call-put parity relation:

C0(K, T ) − P0(K, T ) = EQ[e−rT ST ] − Ke−rT (4.6)

We now wish to express the exponential (Ft, P)-martingale Zt featured in (4.5) in terms of well-
known processes in order to be able to obtain closed-form pricing formulas.

Lemma 4.2.4 Let us define dH , λ, α+, α− and φ as follows:

dH =
ln( H

S0
)

σ
, λ =

µa

2σ
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α+ = 2λ2 +
b2

2
− 2λb, α− =

b2

2

φ(x) = ebx−2λ(x−dH)+

We then obtain:

Zt = e2λ(−dH)+φ(W̃t) exp(λLdH
t ) exp(−α+A

(dH ,+)
t − α−A

(dH ,−)
t ) (4.7)

Proof. The proof of this proposition is based on the one hand on the Tanaka formula which,
for a Brownian motion B and any real number a, establishes that

(Bt − a)+ = (−a)+ +

∫ t

0
dBs1{Bs>a} +

1

2
La

t

On the other hand, we can rewrite

f(St) = µa1{W̃t>dH}

Observing that A
(dH ,+)
t + A

(dH ,−)
t = t leads to the result.

From the above lemma, we obtain that:

VF (S, T ) = e−rT EP
[
ZT F (Su;u ≤ T )

]

= e−rT+2λ(−dH)+EP
[
φ(WT ) exp(λLdH

T − α+A
(dH ,+)
T − α−A

(dH ,−)
T )F (S0e

σW̃u ; u ≤ T )
]

The price of a NAV call option is closely related to the law of the triple (Wt, L
a
t , A

(a,+)
t ). Karatzas

and Shreve (1991) have extensively studied this joint density for a = 0 and obtained in particular
the following remarkable result

Proposition 4.2.5 For any positive t and b, 0 < τ < t, we have

P[Wt ∈ dx;Lt ∈ db,A+
t ∈ dτ ] = f(x, b; t, τ) dx db dτ ; x > 0

= f(−x, b; t,−τ) dx db dτ ; x < 0

where

f(x, b; t, τ) =
b(2x + b)

8πτ
3
2 (t − τ)

3
2

exp

(
− b2

8(t − τ)
− (2x + b)2

8τ

)

This formula could lead to a computation of the option price based on a multiple integration but
it would be numerically intensive; moreover, obtaining an analytical formula for the triple integral
involved in the option price seems quite unlikely. We observe instead that in the above density f ,
a convolution product appears, which leads us to compute either Fourier or Laplace transforms.
We are in fact going to compute the Laplace transform with respect to time to maturity of the
option price. This way to proceed is mathematically related to the Karatzas and Shreve result in
Proposition 4.2.5. In the same way, we can notice that the Laplace transform exhibited by Geman
and Yor (1996) for the valuation of a Double Barrier option is related to the distribution of the triple
(Wt,Mt, It) Brownian motion, its maximum and minimum used by Kunitomo and Ikeda (1992) for
the same pricing problem. The formulas involved in the NAV call price rely on the following result
which may be obtained from Brownian excursion theory:
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Proposition 4.2.6 Let Wt be a standard Brownian motion, Lt its local time at zero, A+
t and A−

t

the times spent positively and negatively until time t. For any function h ∈ L1(R), the Laplace
transform of the quantity g(t) = E

[
h(Wt) exp(λLt) exp(−µA+

t − νA−
t )

]
has the following analytical

expression

∫ ∞

0
dte−

θ
2
tg(t) = 2

( ∫ ∞
0 dxe−x

√
θ+2µh(x) +

∫ ∞
0 dxe−x

√
θ+2νh(−x)

)

√
θ + 2µ +

√
θ + 2ν − 2λ

for θ large enough to ensure positivity of the denominator.

Proof. See the Appendix for details. The result is rooted in the theory of excursions of the
Brownian motion.

4.2.3 Valuation of the Option at Inception of the Contract

In this section, we turn to the computation of the price of a European call option written on a Hedge
Fund NAV under the high-water mark rule. Consequently, the payoff considered is the following:

F (Su; u ≤ T ) = (ST − K)+ (4.8)

or, in a more convenient way for our purpose

F (W̃u;u ≤ T ) = (S0 exp(σW̃T ) − K)+

At inception of the contract, the high-water mark that is chosen is the spot price, hence H = S0 and
dH = 0. This specific framework allows us to use fundamental results on the joint law of the triple
(Bt, L

0
t , A

+
t ) presented in Proposition 4.2.6. We write the European call option price as follows

C(0, S0) = e−rT EP
[
h(W̃T ) exp(λLT − α+A+

T − α−A−
T )

]

where h(x) = (S0e
σx − K)+ebx−2λ(x)+ .

We now compute the Laplace transform in time to maturity of the European call option on the
NAV of an Hedge Fund, that is to say the following quantity:

∀θ ∈ R+ I(θ) =

∫ ∞

0
dte−

θ
2
te−rtEQ[(St − K)+]

=

∫ ∞

0
dte−( θ

2
+r)tEP[Zt(St − K)+]

Lemma 4.2.7 The Laplace transform with respect to time to maturity of a call option price has the
following analytical expression:

I(θ) = 2

(∫ ∞
0 dxe−x

√
θ+2(r+α+)h(x) +

∫ ∞
0 dxe−x

√
θ+2(r+α−)h(−x)

)

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

(4.9)

where h(x) = ebx−2λx+(S0e
σx − K)+
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Proof. We obtain from Lemma 4.2.4 that:

EP[Zt(St − K)+] = E
[
h(W̃t) exp(λLt) exp(−α+A+

t − α−A−
t )

]

where:

h(x) = ebx−2λx+(S0e
σx − K)+

Then, using Proposition 4.2.6, we are able to conclude.

This lemma leads us to compute explicit formulas for the Laplace transform of a call option
that is in-the-money (S0 ≥ K) at date 0 and out-of-the-money (S0 < K) that we present in two
consecutive propositions.

Proposition 4.2.8 For an out-of-the-money call option (S0 ≤ K), the Laplace transform of the
price is given by the following formula:

I(θ) =
N(θ)

D(θ)

where

θ > (σ + b − 2λ)2 − 2(r + α+)

and

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N(θ) =
S0√

θ + 2(r + α+) + 2λ − σ − b

(
S0

K

)√
θ+2(r+α+)+2λ−σ−b

σ

− K√
θ + 2(r + α+) + 2λ − b

(
S0

K

)√
θ+2(r+α+)+2λ−b

σ

Proof. Keeping the notation of Proposition 4.2.6, we can write

∀x > 0, h(x) = (S0e
σx − K)1{x≥ 1

σ
ln( K

S0
)}e

(b−2λ)x and h(−x) = 0

and then by simple integration, obtain the stated formula.

Proposition 4.2.9 For an in-the-money call option (S0 ≥ K), the Laplace transform of the price
is given by the following formula:

I(θ) =
N1(θ) + N2(θ)

D(θ)
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where θ > (σ + b − 2λ)2 − 2(r + α+) and

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N1(θ) =
S0√

θ + 2(r + α+) + 2λ − σ − b
− K√

θ + 2(r + α+) + 2λ − b

N2(θ) =
S0√

θ + 2(r + α−) + σ + b

(
1 −

( K

S0

)√
θ+2(r+α−)+σ+b

σ

)

− K√
θ + 2(r + α−) + b

(
1 −

( K

S0

)√
θ+2(r+α−)+b

σ

)
,

α− and α+ being defined in Lemma 4.2.4 .

Proof. We have

∀x > 0, h(x) = (S0e
σx − K)e(b−2λ)x and h(−x) = (S0e

−σx − K)1{x≤ 1
σ

ln(
S0
K

)}e
−bx

and as in the previous proposition, the Laplace transform is derived.
As a side note, we observe that the case K = 0 provides the Laplace transform of the t−maturity
forward contract written on the NAV at date 0

∫ ∞

0
dte−

θ
2
tEP[e−rtSt] = 2

S0√
θ+2(r+α+)+2λ−σ−b

+ S0√
θ+2(r+α−)+σ+b√

θ + 2(r + α+) +
√

θ + 2(r + α−) − 2λ

where θ > (σ + b − 2λ)2 − 2(r + α+).

It is satisfactory to check that by choosing a = 0, α = 0, we obtain the Laplace transform of a
European call option on a dividend-paying stock with a continuous dividend yield c whose dynamics
satisfy as in Merton (1973), the equation

dSt

St
= (r − c) dt + σ dWt

This Laplace transform is derived from Proposition 4.2.8 for an out-of-the-money call option and
from Proposition 4.2.9 for an in-the-money call option.

4.2.4 Valuation during the lifetime of the Option

Evaluating at a time t a call option on a hedge fund written at date 0 implies that we are in
the situation where dH = 1

σ ln( H
St

) may be different from 0. Since the solution of the stochastic
differential equation driving the Net Asset Value is a Markov process, the evaluation of the option
at time t only depends on the value of the process at time t and on the time to maturity T − t.
Hence, we need to compute the following quantity

C(t, St) = EQ
[
e−r(T−t)(ST − K)+|Ft

]
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Given the relationship between P and Q, we can write

C(t, St) = e−r(T−t)e2λ(−dH)+EP
[
h(W̃T−t) exp(λLdH

T−t − α+A
(dH ,+)
T−t − α−A

(dH ,−)
T−t )

]

where h(x) = ebx−2λ(x−dH)+(Ste
σx − K)+

Because of the importance of the level dH in the computations, we introduce the stopping time
τdH

= inf{t ≥ 0; W̃t = dH} and split the problem into the computation of the two following
quantities:

C1 = e−r(T−t)e2λ(−dH)+EP
[
1{τdH

>T−t}h(W̃T−t) exp(λLdH

T−t − α+A
(dH ,+)
T−t − α−A

(dH ,−)
T−t )

]

and

C2 = e−r(T−t)e2λ(−dH)+EP
[
1{τdH

<T−t}h(W̃T−t) exp(λLdH

T−t − α+A
(dH ,+)
T−t − α−A

(dH ,−)
T−t )

]

In order to compute C1, we introduce for simplicity s = T − t and obtain

EP
[
1{τdH

>s}h(W̃s)e
λL

dH
s −α+A

(dH,+)
s −α−A

(dH,−)
s

]
= e−sα−EP

[
1{Ms<dH}h(W̃s)

]
if dH > 0

= e−sα+EP
[
1{Is>dH}h(W̃s)

]
if dH < 0

We now need to recall some well-known results on Brownian motion first-passage times that one
may find for instance in Karatzas and Shreve (1991).

Lemma 4.2.10 The following equalities hold for u > 0 and a > 0

P[τa ≤ u] = P[Mu ≥ a] =
2√
2π

∫ ∞

a√
u

e−
x2

2 dx

Hence, for u > 0 and a ∈ R

P[τa ∈ du] =
|a|√
2πu3

e−
a2

2u du

and for λ > 0

E[e−λτa ] = e−|a|
√

2λ

where τa = inf{t ≥ 0;Wt = a}

Lemma 4.2.11 For b ≥ 0 and a ≤ b, the joint density of (Wu,Mu) is given by :

P[Wu ∈ da,Mu ∈ db] =
2(2b − a)√

2πu3
exp

{
− (2b − a)2

2u

}
da db

and likewise, for b ≤ 0 and a ≥ b the joint density of (Wu, Iu) is given by

P[Wu ∈ da, Iu ∈ db] =
2(a − 2b)√

2πu3
exp

{
− (2b − a)2

2u

}
dadb

These lemmas provide us with the following interesting property
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Proposition 4.2.12 Let us consider Wu a standard Brownian motion, Iu and Mu respectively its
minimum and maximum values up to time u.
For any function h ∈ L1(R), the quantity ka(u) = E

[
1{τa>u}h(Wu)

]
is given by

∫ a√
u

−∞
dv

e−
v2

2

√
2π

h(v
√

u) −
∫ − a√

u

−∞
dv

e−
v2

2

√
2π

h(v
√

u + 2a) if a > 0

∫ − a√
u

−∞
dv

e−
v2

2

√
2π

h(−v
√

u) −
∫ a√

u

−∞
dv

e−
v2

2

√
2π

h(−v
√

u + 2a) if a < 0

Proof. We first observe that

EP
[
1{τa>u}h(Wu)

]
= EP

[
1{Mu<a}h(Wu)

]
if a > 0

= EP
[
1{Iu>a}h(Wu)

]
if a < 0

By symmetry, we only need to show the result in the case a > 0. From the previous lemma, we can
write

E
[
1{Mu<a}h(Wu)

]
=

∫ a

0
db

∫ b

−∞
dxh(x)

2(2b − x)√
2πu3

exp
{
− (2b − x)2

2u

}

Finally, we conclude by applying Fubini’s theorem.
As a consequence, we can now compute the quantity C1

Proposition 4.2.13 For a call option such that dH > 0 or equivalently H > St, the quantity C1 is
equal to

e−(r+α−)sG(K, H, St, s)

where s = T − t and

G(K,H, St, s) = 0 if K ≥ H

G(K,H, St, s) = Ste
s

(b+σ)2

2 N1 − Kes b2

2 N2 if K < H

N1 = N(
dH√

s
−
√

s(b + σ)) − N(
dK√

s
−
√

s(b + σ))

−e2(b+σ)dH
(
N(−dH√

s
−
√

s(b + σ)) − N(
dK − 2dH√

s
−
√

s(b + σ))
)

N2 = N(
dH√

s
−
√

sb) − N(
dK√

s
−
√

sb)

−e2bdH
(
N(−dH√

s
−
√

sb) − N(
dK − 2dH√

s
−
√

sb)
)

where N(x) = 1√
2π

∫ x
−∞ dye−

y2

2

Proof. We apply Proposition 4.2.12 in the case a > 0 with h(x) = (S0e
σx −K)+ebx−2λ(x−dH)+ .
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Proposition 4.2.14 For a call option such that dH < 0 or equivalently H < St, the quantity C1 is
given by

e−(r+α+)sJ(K, H, St, s)

where s = T − t

J(K,H, St, s) = Ste
s

(b−2λ+σ)2

2 N1(d1, d2) − Kes
(b−2λ)2

2 N2(d1, d2)

N1(d1, d2) = N(− d1√
s

+
√

s(b + σ − 2λ)) − e2(b+σ−2λ)dH N(
d2√
s

+
√

s(b + σ − 2λ))

N2(d1, d2) = N(− d1√
s

+
√

s(b − 2λ)) − e2(b−2λ)dH N(
d2√
s

+
√

s(b − 2λ))

(d1, d2) = (dK , 2dH − dK) if K > H

(d1, d2) = (dH , dH) if K ≤ H

where N(x) = 1√
2π

∫ x
−∞ dye−

y2

2

Proof. We apply Proposition 4.2.12 in the case a < 0 with h(x) = (S0e
σx −K)+ebx−2λ(x−dH)+ .

In order to compute C2, it is useful to exhibit a result similar to the one obtained in Proposition

4.2.5 to obtain the Laplace transform of the joint density of (Bt, L
a
t , A

(a,+)
t , A

(a,−)
t ).

Proposition 4.2.15 Let us consider Wt a standard Brownian motion, La
t its local time at the level

a, A
(a,+)
t and A

(a,−)
t respectively the time spent above and below a by the Brownian motion W until

time t.
For any function h ∈ L1(R), the Laplace Transform

∫ ∞
0 dte−

θ
2
tga(t) of the

quantity ga(t) = E
[
1{τa<t}h(Wt) exp(λLa

t ) exp(−µA
(a,+)
t − νA

(a,−)
t )

]
is given by

2e−a
√

θ+2ν

( ∫ ∞
0 dxe−x

√
θ+2µh(a + x) +

∫ ∞
0 dxe−x

√
θ+2νh(a − x)

)

√
θ + 2µ +

√
θ + 2ν − 2λ

if a > 0

2ea
√

θ+2µ

( ∫ ∞
0 dxe−x

√
θ+2µh(a + x) +

∫ ∞
0 dxe−x

√
θ+2νh(a − x)

)

√
θ + 2µ +

√
θ + 2ν − 2λ

if a < 0

for θ large enough, as seen before.

Proof. Let us prove this result in the case a > 0; it easily yields to the case a < 0.
We first write

ga(t) = e−νtE
[
1{τa<t}h(Wt) exp(λLa

t )e
−(µ−ν)A

(a,+)
t

]

Then

I(θ) =

∫ +∞

0
dt e−t θ+2ν

2 E
[
1{τa<t}h(Wt) exp(λLa

t )e
−(µ−ν)A

(a,+)
t

]
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We now use the strong Markov property and observe that Bt = Wt+τa − Wτa = Wt+τa − a is a
Brownian motion. Next, we compute the quantity

E
[
1{τa<t}h(Wt) exp(λLa

t )e
−(µ−ν)A

(a,+)
t

]
= E

[
1{τa<t}h(Bt−τa + a) exp(λLt−τa)e

−(µ−ν)A+
t−τa

]

=

∫ t

0
ds

ae−
a2

2s

√
2πs3

E
[
h(Bt−s + a) exp(λLt−s)e

−(µ−ν)A+
t−s

]

=

∫ t

0
ds

ae
− a2

2(t−s)

√
2π(t − s)3

E
[
h(Bs + a) exp(λLs)e

−(µ−ν)A+
s
]

since

La
t (a + B(·−τa)+) = L(t−τa)+

A
(a,+)
t =

∫ t

0
ds1{B(s−τa)+

>0} = A+
(t−τa)+

Hence, applying Fubini’s theorem and Proposition 4.2.6 we obtain

I(θ) =

∫ ∞

0
dse−

θ
2
sE

[
h(a + Bs) exp(λLs) exp(−µA+

s − νA−
s )

] ∫ ∞

0
due−

θ+2ν
2

u |a|e−
a2

2u

√
2πu3

= 2e−a
√

θ+2ν

( ∫ ∞
0 dxe−x

√
θ+2µh(a + x) +

∫ ∞
0 dxe−x

√
θ+2νh(a − x)

)

√
θ + 2µ +

√
θ + 2ν − 2λ

Proposition 4.2.16 In the case H ≤ K, the Laplace transform with respect to the variable T − t
of the quantity C2 is given by the following formula:

I(θ) = M(θ)
N(θ)

D(θ)

where
θ > (σ + b − 2λ)2 − 2(r + α+)

and

M(θ) =

(
H

St

) b−
√

θ+2(r+α−)

σ

if H > St

M(θ) =

(
St

H

) 2λ−b−
√

θ+2(r+α+)

σ

if H < St

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N(θ) =
H√

θ + 2(r + α+) + 2λ − σ − b

(
H

K

)√
θ+2(r+α+)+2λ−σ−b

σ

− K√
θ + 2(r + α+) + 2λ − b

(
H

K

)√
θ+2(r+α+)+2λ−b

σ
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Proof. We prove this result by applying Proposition 4.2.8 and Proposition 4.2.15 and noticing
that (S0e

σ(x+dH) − K)+ = (Heσx − K)+

Proposition 4.2.17 In the case H ≥ K, the Laplace transform with respect to the variable T − t
of the quantity C2 is given by the formula:

I(θ) = M(θ)
N1(θ) + N2(θ)

D(θ)

M(θ) =

(
H

St

) b−
√

θ+2(r+α−)

σ

if H > St

M(θ) =

(
St

H

) 2λ−b−
√

θ+2(r+α+)

σ

if H < St

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N1(θ) =
H√

θ + 2(r + α+) + 2λ − σ − b
− K√

θ + 2(r + α+) + 2λ − b

N2(θ) =
H√

θ + 2(r + α−) + σ + b

(
1 −

(K

H

)√
θ+2(r+α−)+σ+b

σ

)

− K√
θ + 2(r + α−) + b

(
1 −

(K

H

)√
θ+2(r+α−)+b

σ

)

where θ > (σ + b − 2λ)2 − 2(r + α+)

Proof. This result is immediately derived from Proposition 4.2.9 and Proposition 4.2.15.

4.2.5 Extension to a Moving High-Water Mark

We now wish to take into account the fact that the threshold triggering the performance fees may
accrue at the risk-free rate. As a consequence, we define f̃ as

f̃(t, St) = µa1{St>Hert}

Proposition 4.2.18 There exists a unique solution to the stochastic differential equation

dSt

St
= (r + α − c − f̃(t, St))dt + σdWt (4.10)

Proof. Let us denote Yt = ln(Ste−rt)
σ . Applying Itô’s formula, we can see that Yt satisfies the

following equation
dYt = dWt + ψ(eσYt)dt

where ψ(x) = −σ2

2 + α − c− f(x) and f denotes the performance fees function defined in equation
(4.1).
ψ is Borel locally bounded, consequently we may again apply Zvonkin theorem that ensures strong
existence and pathwise uniqueness of the solution of (4.10).
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Let us denote S̃t = Ste
−rt; we seek to construct a probability measure Q̂ under which

S̃t = S0 exp(σŴt)

where Ŵt is a Q̂ standard Brownian motion. We briefly extend the results of the previous section
to the case of a moving high-water mark.

Proposition 4.2.19 There exists an equivalent measure Q̂ under which the Net Asset Value dy-
namics satisfy the stochastic differential equation

dSt

St
= (r +

σ2

2
)dt + σdŴt (4.11)

Moreover,

Q|Ft
= Zt · Q̂|Ft

(4.12)

where

Zt = exp
( ∫ t

0

(
b − f(S̃u)

σ

)
dŴu − 1

2

∫ t

0

(
b − f(S̃u)

σ

)2
du

)

and

b =
α − c − σ2

2

σ

Lemma 4.2.20 Let us define dH , λ, α+, α− and φ as follows:

dH =
ln( H

S0
)

σ
, λ =

µa

2σ

α+ = 2λ2 +
b2

2
− 2λb, α− =

b2

2

φ(x) = ebx−2λ(x−dH)+

We then obtain:

Z ′
t = e2λ(−dH)+φ(Ŵt) exp(λLdH

t ) exp(−α+A
(dH ,+)
t − α−A

(dH ,−)
t ) (4.13)

For the sake of simplicity, we write in this paragraph the strike as KerT and need to compute

C(t, St) = e−r(T−t)EQ
[
(ST − KerT )+|Ft

]
(4.14)

The pricing formulas† are derived in a remarkably simple manner by setting r = 0 in the results
obtained in sections 4.2.3 and 4.2.4.

†All full proofs may be obtained from the authors.
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4.3 Numerical Approaches to the NAV option prices

At this point, we are able to compute option prices thanks to Laplace Transforms techniques (see
Abate and Whitt (1995)) or Fast Fourier Transforms techniques (see Walker (1996)) . We can ob-
serve that if Monte Carlo simulations were performed in order to obtain the NAV option price, the
number of such simulations would be fairly large because of the presence of an indicator variable in
the Net Asset Value dynamics. The computing time involved in the inversion of Laplace transforms
is remarkably lower compared to the one attached to Monte Carlo simulations. The times to ma-
turity considered below are chosen to be less or equal to one year in order to avoid the high water
mark reset arising for more distant maturities. Taking into account the reset feature would lead to
computations analogous to the ones involved in forward start options and is not the primary focus
of this paper.
Tables 1 to 4 show that the call price is an increasing function of the excess performance α, and in
turn drift µ, a result to be expected.

The call price is also increasing with the high water mark level H as incentive fees get triggered less
often.

Table 5 was just meant to check the exactitude of our coding program : by choosing a = 0 and
α = 0, the NAV call option pricing problem is reduced to the Merton (1973) formula. Table 5
shows that the prices obtained by inversion of the Laplace transform are remarkably close to those
provided by the Merton analytical formula.

Table 1
Call Option Prices at a volatility level σ = 20%

H = $85, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%

Strike / Maturity 6 Months 1 Year

90% $14.5740 $18.9619

100% $7.6175 $12.1470

110% $3.3054 $7.2058

H = S0 = $100, α = 10%, r = 2%, c = 2%, a = 20% and µ = 15%

Strike / Maturity 6 Months 1 Year

90% $15.0209 $19.6866

100% $7.8346 $12.5922

110% $3.3837 $7.4427

H = $115, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%

Strike / Maturity 6 Months 1 Year

90% $15.7095 $20.8464

100% $8.4147 $13.5815

110% $3.7084 $8.1198
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Table 2
Call Option Prices at a volatility level σ = 20%

H = $85, S0 = $100, α = 15%, r = 2%, c = 2%, a = 20%, µ = 20%

Strike / Maturity 6 Months 1 Year

90% $16.3804 $22.6562

100% $8.9668 $15.1925

110% $4.1091 $9.4795

H = S0 = $100, α = 15%, r = 2%, c = 2%, a = 20% and µ = 20%

Strike / Maturity 6 Months 1 Year

90% $16.9611 $23.6036

100% $9.2703 $15.8190

110% $4.2276 $9.8398

H = $115, S0 = $100, α = 15%, r = 2%, c = 2%, a = 20%, µ = 20%

Strike / Maturity 6 Months 1 Year

90% $17.9362 $25.2503

100% $10.1156 $17.2719

110% $4.7300 $10.8943

Table 3
Call Option Prices at a volatility level σ = 40%

H = $85, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%

Strike / Maturity 6 Months 1 Year

90% $18.8245 $25.3576

100% $13.2042 $19.9957

110% $8.9804 $15.6276

H = S0 = $100, α = 10%, r = 2%, c = 2%, a = 20% and µ = 15%

Strike / Maturity 6 Months 1 Year

90% $19.1239 $25.8231

100% $13.3979 $20.3534

110% $9.1012 $15.8949

H = $115, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%

Strike / Maturity 6 Months 1 Year

90% $19.5128 $26.4273

100% $13.7277 $20.8726

110% $9.3409 $16.3134
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Table 4
Call Option Prices at a volatility level σ = 40%

H = $85, S0 = $100, α = 15%, r = 2%, c = 2%, a = 20%, µ = 20%

Strike / Maturity 6 Months 1 Year

90% $20.3926 $28.6499

100% $14.4928 $22.8861

110% $9.9903 $18.1179

H = S0 = $100, α = 10%, r = 2%, c = 2%, a = 20% and µ = 15%

Strike / Maturity 6 Months 1 Year

90% $20.7978 $29.2995

100% $14.7618 $23.3938

110% $10.1615 $18.5044

H = $115, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%

Strike / Maturity 6 Months 1 Year

90% $21.3417 $30.1555

100% $15.2260 $24.1402

110% $10.5042 $19.1158

Table 5
NAV Call Option Prices when µ = 0 at a volatility level σ = 40%

S0 = $100, r = 2%, c = 0.3%

Maturity 6 months 1 year
Strike Laplace Transform Merton formula Laplace Transform Merton formula

90% $12.3324 $12.3324 $14.577 $14.577

100% $6.0375 $6.0375 $8.7434 $8.7434

110% $2.4287 $2.4287 $4.8276 $4.8276
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4.4 Conclusion

In this paper, we proposed a pricing formula for options on hedge funds that accounts for the
high-water mark rule defining the performance fees paid to the fund managers. The geometric
Brownian motion dynamics chosen for the hedge fund Net Asset Value allowed us to exhibit an
explicit expression of the Laplace transform in maturity of the option price through the use of
Brownian local times. Numerical results obtained by inversion of these Laplace transforms display
the influence of key parameters such as volatility or moneyness on the NAV call price.
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4.5 Appendix : Excursion Theory

Proof. of Proposition 4.2.5: We use the Master formula exhibited in Brownian excursion theory;
for more details see Chapter XII in Revuz and Yor (2005) the notation of which we borrow:
n denotes the Itô characteristic measure of excursions and n+ is the restriction of n to positive
excursions;
V (ǫ) = inf{t > 0; ǫ(t) = 0} for ǫ ∈ Wexc the space of excursions,
(τl)l≥0 is the inverse local time of the Brownian motion.

We can write

E

[ ∫ ∞

0
dte−

θ
2
th(Wt) exp(λLt) exp(−µA+

t − νA−
t )

]
= I · J

where

I = E
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0
dle−

θ
2
τleλl exp(−µA+

τl
− νA−

τl
)
]

=

∫ ∞

0
dl exp

(
l
(
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∫
n(dǫ)(1 − e−

θ
2
V −µA+

V −νA−
V )
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=
1

∫
n(dǫ)

(
1 − e−

θ
2
V −µA+

V −νA−
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)
− λ
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1

√
θ+2µ+

√
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2 − λ

and

J =

∫ ∞

0
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θ
2
s

{
e−µsn+

(
h(ǫs)1{s<V }

)
+ e−νsn+

(
h(−ǫs)1{s<V }

)}

Next, we use the result

n+

(
ǫs ∈ dy; s < V

)
=

y√
2πs3

e−
y2

2s dy (y > 0) (4.15)

and obtain

J =

∫ ∞

0
dxe−x

√
θ+2µh(x) +

∫ ∞

0
dxe−x

√
θ+2νh(−x) (4.16)

where the proof of equation (4.16) comes from the fact that in (4.15) the density of n+ as a function

of s, is precisely the density of Ty = inf{t : Bt = y}, and E[e−λTy ] = e−y
√

2λ.
This example of application of excursion theory is one of the simplest illustrations of Feynman-Kac
type computations which may be obtained with excursion theory arguments. For a more complete
story, see Jeanblanc, Pitman and Yor (1997).
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Chapter 5

Correlation and the Pricing of Risks

[Joint work with Hélyette Geman, Dilip Madan and Marc Yor; published in Annals of Finance,
November 2006 ∗]

Given a pricing kernel we investigate the class of risks that are not priced by this kernel. Risks
are random payoffs written on underlying uncertainties that may themselves either be random vari-
ables, processes, events or information filtrations. A risk is said to be not priced by a kernel if
all derivatives on this risk always earn a zero excess return, or equivalently the derivatives may
be priced without a change of measure. We say that such risks are not kernel priced. It is shown
that reliance on direct correlation between the risk and the pricing kernel as an indicator for the
kernel pricing of a risk can be misleading. Examples are given of risks that are uncorrelated with
the pricing kernel but are kernel priced. These examples lead to new definitions for risks that are
not kernel priced in correlation terms. Additionally we show that the pricing kernel itself viewed
as a random variable is strongly negatively kernel priced implying in particular that all monotone
increasing functions of the kernel receive a negative risk premium. Moreover the equivalence class
of the kernel under increasing monotone transformations is unique in possessing this property.

Keywords Kernel Pricing. Change of Measure. Catastrophic Risk Pricing. Self Sufficient Filtra-
tions.

JEL Classification Numbers G10.G12.G13

5.1 Introduction

An important question in finance is the identification of risks that are priced in the economy. The
traditional approach to this issue has been one of ascertaining whether the covariance of returns
on financial assets with the risk in question is priced in a classical analysis of cross-sectional excess
returns (Fama (1970)). A particular consequence of this method is that risks that are uncorrelated
with all financial asset returns, are by virtue of then being untraded, also not priced. However,

∗We wish to thank the referee for a very constructive report.
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one recognizes that in complete markets there are no nontrivial risks that are uncorrelated with
all financial returns. Alternatively, one has the relatively more recent approach developed in the
literature on derivatives where an event is priced if the probability used for pricing differs from
the statistical or true probability (Harrison and Kreps (1979), Harrison and Pliska (1981)). In the
latter case, the Arrow Debreu security associated with this event has a different expectation under
the two measures and their ratio reflects the excess return. The two approaches are consistent in
recognizing that a risk is priced if it impacts financial excess returns. In particular, we recognize
that the latter approach when viewed from the perspective of the former equates the absence of a
change of probability, to all functions of the risk in question being uncorrelated with the relevant
financial asset return (e.g. the market portfolio in the case of the capital asset pricing model) and
hence as earning a zero excess return.

For this paper we define risk as a traded payoff function that is measurable with respect to some
information filtration and it is thus a random variable. This payoff random variable however, has
a probability law that is deduced from the underlying risks of the payoff. This underlying risk may
be as simple as, for example, the level of an equity index at a future point of time. Alternatively it
may be a function of the path as is typical for structured products like cliquets or options on the
realized variance. The risk in the latter case depends on the law of the process, in contrast with
the former case where we focus only on the underlying law of the random variable defined by the
level of the index at the specified time. Apart from levels and paths contracts are also written on
specific events like corporate defaults or catastrophic losses associated with events like hurricanes
or earthquakes. More generally the underlying risk could be that of a subfiltration where we take a
G measurable random variable for a payoff for a general subfiltration G.

For the pricing of risks or underlying risks we shall henceforth refer to a risk as being kernel
priced or not kernel priced if the probability law of this risk in question is changed or not changed
by a particular candidate pricing kernel or equivalently some contingent claim written on the risk
in question earns a nonzero excess return at some time. In this case we say that the underlying risk
is priced.

Increasingly one also sees the pricing kernel explicitly defined in a continuous time model, where
the risks are described by the natural filtration associated with the time paths of processes. By way
of example we cite Bakshi and Chen (1997), Duffie, Pan and Singleton (2000), Chernov and Ghysels
(2000), Collin-Dufresne and Goldstein (2002), Carr, Geman, Madan and Yor (2002) and Kimmel
(2002). We wish to analyze the precise relation between the absence of a change of probability and
concepts of no correlation in such continuous time models with respect to risks defined by various
subfiltrations of the economy filtration. For instance one might ask if firm-specific dividend yields
in the Bakshi and Chen (1997) model are not kernel priced. Alternatively, and somewhat more
interesting is whether the risk of the time to first default in a basket of names is kernel priced
by a particular estimated kernel on the larger filtration of the economy. More importantly, it is
essential to be careful about incorrectly infering the absence of a change of probability on the mere
confirmation of the absence of correlation between a risk and the pricing kernel.

In fact our investigation was initially motivated by comments in the literature on catastrophic
risks (see Cummins, Lewis, and Phillips (1999), Froot (1999), Doherty (1997)) where it is argued
that reinsurance contracts on losses related to natural disasters should be priced at the actuarial
loss value as the risks on such exposures are not correlated with a wide class of financial assets.
These reinsurance contracts are derivative contracts and their actuarial valuation implies that they
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are to be priced without a change of probability or in our terminology they are not kernel priced
by any reasonable kernel. It therefore seemed to us that a critical evaluation of the relationship
between the absence of correlation and the absence of a change of probability was called for. Our
investigation into these questions, for the purpose of rigor and clarity, took an abstract mathematical
turn. However, we provide in section 2 below a commentary on the implications of these results to
financial questions related to the pricing of contingent claims.

We recognize that a change of probability is intimately linked with the presence of excess returns,
positive or negative. We shall show however that, correlation between processes and the pricing
kernel, is an important but incomplete guide to issues of kernel pricing. In fact, we provide examples
of kernel pricing in situations of zero correlation. A more detailed investigation of the examples
reveals that the absence of kernel pricing is related to the absence of correlation provided the
latter tests are conducted with respect to a particular set of terminal random variables. These
variables define an extended filtration. This filtration includes the time paths of variables useful
in predicting the evolution of the risk in question. We call such filtrations self sufficient within
the economy filtration and define this concept. A filtration may lose the self sufficiency property
under a measure change and in this case the absence of kernel pricing is also lost. Hence we study
the conditions under which we have the invariance of self sufficiency under changes of probability.
Essentially we demonstrate that self sufficiency will be preserved if the pricing kernel does not have
any hidden exposure to risks in the self sufficient filtration in a sense made precise later in the paper.

Additionally we show that the pricing kernel, now itself seen as a random variable is “strongly
negatively priced” in that the law of the kernel as a random variable, after the measure change
first order stochastically dominates its law before the change. As a consequence all monotone
increasing functions of the kernel as a random variable or equivalently all random variables aligned
with the kernel receive a negative risk premium. Moreover, the kernel (viewed as an equivalence
class of random variables under increasing monotone functional transformations) uniquely possesses
this property and hence it constitutes the classic insurance asset for the economy for which it is
the kernel. The contribution of this paper is threefold: (i) we provide a precise definition of the
concept of risks that are not kernel priced, (ii) we demonstrate that the pricing kernel is the unique
equivalence class of random variables with the property that all random variables aligned with it
receive a negative risk premium, and (iii) we introduce the concept of self sufficient filtration and
investigate its role in kernel pricing.

Two sets of correlation tests result. The first addresses no kernel pricing assuming that the
chosen self sufficient filtration containing the risk filtration remains self sufficient under the measure
change and hence we may evaluate conditional expectations restricted to this chosen self sufficient
filtration. These tests deliver the property of almost no kernel pricing abbreviated as ANKP . The
second collection of tests validate the invariance of self sufficiency under the measure change as
required for the full no kernel pricing NKP property. As self sufficient filtrations containing a
particular risk filtration are not unique henceforth when we make a reference to ‘the self sufficient
filtration’ we mean a fixed particular choice from the collection of self sufficient filtrations.

For ANKP one has to ensure that the projection of the pricing kernel onto the self sufficient
filtration containing the risk in question is orthogonal to all the martingales in this self sufficient
filtration that finish in a random variable measurable with respect to the risk filtration. This
requires that the conditional expectation process of a terminal random variable measurable with
respect to the risk filtration, which in general is a martingale adapted to the self sufficient filtration,
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is orthogonal to the projection of the pricing kernel onto this filtration. This is a fairly large class
of orthogonality tests that is well defined in one variable, the projection of the pricing kernel, but
is large in the class of terminal random variables to be considered.

For NKP one has to further test that the stochastic logarithm of the kernel less the stochastic
logarithm of its projection onto the self sufficient filtration is orthogonal to all the martingales in
the self sufficient filtration. This is also a second large class of tests. The deviation between the
stochastic logarithm of the kernel and its projection is well defined, but the class of self sufficient
martingales is now generated by all the terminal random variables of this filtration which is larger
than the risk filtration. We expect that in most cases of practical interest self sufficiency under
the physical measure will carry over to self sufficiency under the measure change. The pricing
kernel has to be very specially designed to violate self sufficiency under the measure change by
constructing an exposure of the kernel to the martingales in the filtration self sufficient under the
physical measure that has a null projection onto this filtration and therefore is unobservable to the
conditional expectation operator and hence we call such exposures hidden exposures. Barring such
hidden exposures in the kernel ANKP is in fact NKP.

The development of econometric procedures for the evaluation of the self sufficiency of a filtration
with respect to a larger filtration is an important question for future research into issues of risk
pricing proposed by our study. In addition we need to address issues of basis generation of terminal
random variables in a filtration to exhaust its martingales and make operative the orthogonality
tests proposed here in a relatively abstract framework.

The remainder of the paper is organized as follows. Section 2 presents a financial commentary
that draws on the results of the rest of the paper and illustrates their use in addressing issues of
interest to the wider financial community. Section 3 briefly addresses the case of a continuous state
one period model. The continuous time context with risks defined by the filtration associated with a
stochastic process is studied in section 4. We present here our result on the strong negative pricing
of the change of measure density, a number of examples connecting correlation and pricing, followed
by our result relating the absence of kernel pricing to no correlation. In section 5 we study the
important question of the invariance of self sufficiency to a change of measure. Section 6 considers
event risk in a continuous time context. Section 7 concludes and presents a few remaining questions,
which seem to be hard to solve and should be of interest to theorists in financial economics and
probability.

5.2 Financial Commentary

We employ, in this section, the results of this paper to comment on a number of issues related to
the pricing of financial risks, a prototype being catastrophic risk. We also comment on the role
of self sufficient filtrations in asset pricing in the context of the Heston (1993) model. This latter
discussion also illustrates how processes adapted to the pricing kernel may fail to undergo a change
of law under the measure change defined by the kernel. These issues are taken up in the following
three brief subsections.
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5.2.1 Catastrophic Risk and Measure Changes

One may take a stylized view of the effects of catastrophes as driven by a Brownian motion say
(w1(t), t ≥ 0) that is orthogonal to a second Brownian motion (w2(t), t ≥ 0) driving the market
portfolio or the pricing kernel for that matter. The severity of the impact of catastrophic events
depends on things like property values and these may very well be random and related to the market
portfolio or the pricing kernel. Hence the integrand of the loss process has a potential dependence
on the kernel. The kernel changes very strongly the law of the random variable with which it is
associated as shown in Propositions 3 and 4.

Such a view of the situation puts us quite easily in the context of the single period model
described by equation (5.2) where we show that there is no reasonable pricing kernel, that is a
function of the integrand, that does not change the law of the reinsurance loss process. Hence these
considerations suggest that catastrophic loss reinsurance claims should always be priced under a
change of measure, notwithstanding claims to the contrary in the existing literature.

5.2.2 Self Sufficiency in the Heston Model

The volatility process of the Heston model is an autonomous Markov process under the stated
physical law. It can be shown that the volatility filtration is self sufficient in the full filtration under
the physical law. We might ask how this self sufficiency may be lost under the risk neutral law. Or
in other words, what sorts of market prices of risk would lead to a loss of self sufficiency under the
law induced by the resulting kernel?

It may be shown, using Proposition 6, that as long as the price of volatility risk is just a function
of the volatility process, self sufficiency is maintained. We note that all the risk pricing formulations
studied in the literature make such an assumption and therefore self sufficiency has been preserved.
On the other hand, just adapting the market price of volatility risk to the process for the stock price
may not in and of itself involve a loss of self sufficiency. For this the kernel has to have a market price
of risk which is orthogonal to the density when projected onto the volatility filtration. Alternatively
the market price of volatility risk must have a zero conditional expectation when projected onto
the volatility process. Hence there is an exposure that is not observed by the volatility process and
that is a specially designed and hidden exposure. We have at this writing not constructed such a
hidden exposure in this filtration but expect that it is possible.

5.2.3 Dependence and No change of Measure

The technique of hidden exposures is also the vehicle for ways of building exposures to martingales
correlated with the pricing kernel whereby the correlation disappears upon projection onto the self
sufficient filtration containing the risk filtration. Since the exposure vanishes upon projection, it
guarantees that the risk filtration does not see a change of law even though it was partly adapted
to risks correlated with the movements of the kernel.

5.3 Single Period Risk

Consider a one period two date model with uncertainty resolved at time 1 and prices determined at
time 0. For simplicity, we suppose that interest rates are zero. The uncertainty in the economy is
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given by the probability space (
∑

,F , P ), where P is the true probability on the event space (
∑

,F).
Let X denote a random variable defined on this space. This variable could represent a future asset
price or the level of some macroeconomic variable.

We wish to consider in addition, a pricing kernel or a candidate for a change of probability. For
the current context of a single period zero interest rate economy, it suffices to define it as a positive
random variable Y with unit expectation under P. The random variable Y is also commonly referred
to in the literature as a state price density (See for example Campbell, Lo and MacKinlay (1997)
and the references therein). Hence the pricing measure or risk neutral probability of a set A ∈ F is
given by the probability Q,

Q(A) = EP [Y 1A]

where EP denotes expectation under P and 1A is the indicator function of the set A.
We define the underlying risk of a random variable X as not kernel priced (NKP ) by the kernel

Y if the distributions of X under P and Q are the same. Equivalently, for any contingent claim
paying f(X) at time 1, with finite expectation under P, the risk neutral expectation of f(X) equals
its statistical expectation or

EQ[f(X)] = EP [f(X)]

and hence there is no risk premium on all such claims. Note finally that one has

NKP ⇐⇒ EP [Y |X] = 1. (5.1)

On the other hand, if the distribution of X under Q differs from that under P then for some
positive function f , 0 ≤ f ≤ 1 of X, we must have EQ[f(X)] < EP [f(X)] and in this case there is a
positive risk premium for the security paying f(X) and the contingent claim f represents a risk that
is being compensated. Likewise, for the positive function g(X) = 1 − f(X) we have the property
EQ[g(X)] > EP [g(X)] and the contingent claim g represents a hedge or an insurance contract with
a negative excess return. Typically, out-of-the-money puts on the market index, say the S&P500 are
examples of the latter while at-the-money index calls are examples of the former (see for example
Jackwerth (2000)).

The first simple observation we make, for emphasis, is that the underlying risk of the random
variable X may not have the NKP property but yet may be uncorrelated with the kernel Y. Consider
for example the case of X a standard normal variable and take for Y the absolute value of X, scaled
to a unit expectation. The expectation of the product of Y and X is then zero and we have a
zero covariance. However, X and Y are clearly not independent as the latter is just a functional
transformation of the former and we observe that the probability distribution of X under Q has
been changed. In fact the probability of X > 1.96 under P is 2.5% while under Q this probability
is easily computed to be above 7%.

On the other hand for an arbitrary kernel Y , if all contingent claims trade and we have a zero
covariance for all positive contingent claims so that

EP [f(X) (Y (X) − 1)] = 0 for all f ≥ 0

then it must be the case that Y = 1, Q = P and there is no change of probability and we have the
NKP property. Hence we note that a broader test of orthogonality is linked to the absence of a
change of probability. The more general results we develop later for filtrations are in this vein.
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Yet another example of zero correlation and a change of probability, related to issues of stochastic
volatility, arises when we take the risk X to be of the form

X =
√

GZ

where Z is a standard normal variate and G is a positive random variable independent of Z. Here
the volatility of the risk conditional on the realization of G is

√
G. To be specific, and to illustrate

our point we consider the case when G has the gamma density fa with parameter a

fa(γ) =
γa−1

Γ(a)
e−γ

then the conditional characteristic function of X given G is

E[eiuX |G] = exp

(
−G

u2

2

)

The unconditional characteristic function is then easily evaluated from the Laplace transform of a
gamma variable as

E
[
eiuX

]
=

[
1

1 + u2

2

]a

Now consider the kernel

Y = 2ae−G

then Y and X are uncorrelated but the law of X is changed as the Laplace transform of G under
this kernel is

EQ
[
e−λG

]
= EP [2ae−Ge−λG]

=

[
2

2 + λ

]a

It follows that the characteristic function of X under Q is then

EQ[eiuX ] =

[
2

2 + u2

2

]a

.

Hence with obvious notation

XQ (d)
=

1√
2
XP .

Somewhat more generally we may consider the context of two independent random variables, Z
a standard normal variate and Y a positive random variable with density q(y), and

X =
√

Y Z. (5.2)

In this general context we may show that there is no nontrivial kernel f(Y ) for which the law of
X is left unchanged. This is done by computing the conditional expectation of f(Y ) given X and
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observing that this could never be 1 for any nonconstant f. To evaluate the conditional expectation
we note that for any test function g(X)

E [f(Y )g(X)] =

∫ ∞

−∞
dx

∫ ∞

0
dy q(y)f(y)

1√
2πy

e
−x2

2y g(x)

But we also have with h(x) the density of X that

E [f(Y )g(X)] =

∫ ∞

−∞
dx h(x)E [f(Y )|X = x] g(x)

where

h(x) =

∫ ∞

0
dy q(y)

1√
2πy

e
−x2

2y .

Hence it follows that

E [f(Y )|X = x] =
1

h(x)

∫ ∞

0
dy q(y)f(y)

1√
2πy

e
−x2

2y

This conditional expectation is unity just if
∫ ∞

0
dy q(y)

1√
2πy

e
−x2

2y =

∫ ∞

0
dy q(y)f(y)

1√
2πy

e
−x2

2y (5.3)

for all x. We observe that both sides of equation (5.3) are Laplace transforms in x2

2 with respect to
the variable 1/y. By the uniqueness of Laplace transforms we deduce that f = 1, q(y)dy a.e.

A somewhat different construction of NKP and zero correlation is to take for X an exponential
random variable with respect to which the Laguerre polynomials are an orthogonal family and in
particular we may use the second Laguerre polynomial L2(X) = (X − 2)2 − 2 to define the change
of probability by

Y = 1 +
1

2
L2(X)

that satisfies zero correlation with X but changes the law of X. One could use such constructions
to leave invariant the first n moments under the change of measure induced by Y and yet change
the law of X.

It is correct to observe that in our examples with zero correlation between X and Y we have
induced a dependence for if they were independent then there would be no change of law for X as

EP [Y |X] = EP [Y ] = 1 (5.4)

and so we must introduce some dependence and we do. However, it is equally important to note
that the NKP property does not mean that Y and X are independent as this requires that for all
measurable functions f, g ≥ 0 we have

E[g(Y )f(X)] = E[g(Y )]E[f(X)] (5.5)

and the property (5.5) is a much stronger statement than NKP or the property (5.4). In other
words it is possible for Y and X to be dependent but yet we have NKP. A simple example is given
by

Y = eXZ−X2

2 (5.6)
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where Z is a standard normal variate independent of X a nontrivial (i.e. not equal to a constant
almost surely) positive random variable. Clearly Y and X are dependent by construction but as
E[Y |X] = 1 the NKP condition (5.1) holds.

On the other hand we recognize that if there is a nonzero covariance then the distribution of X
under Q is not the same as under P , in fact the mean changes. Furthermore, we note that if we do
have a change in probability then there may yet remain contingent claims written on X that have
as random variables in their own right the NKP property. This is simply observed by taking again
the standard normal variate X under P and changing probability using Y = c(X− + 1X≥0) (where
c is a normalization constant) which leaves the law of X+ unchanged. Such a view towards changes
in probability has recently been taken in Jarrow and Purnandam (2004).

The general question we wish to investigate is the structure of risks that have the NKP property
and those for which the law is changed by a candidate change of measure. A decomposition of the
space of risks into those with the NKP property and its complement would be instructive. In
particular, is it possible that the set of nontrivial risks with the NKP property is empty or that
every nontrivial risk is priced? In the above example of a standard normal distribution for X
under P there is always a nontrivial risk with the NKP property. To construct an element of
NKP consider the arbitrary change of measure defined by the non constant function Y (x) such
that the positive random variable Y (X) has a unit expectation. The function Y (x) must take
values both below and above unity and so there exists proper subsets A,B of the real line such
that E[Y (X)|X ∈ A] < 1 and E [Y (X)|X ∈ B] > 1. Let A = {A|E[Y (X)|X ∈ A] < 1} and let
B = {B|E[Y (X)|X ∈ B] > 1} . Let A∗ be the union of a maximal chain of elements of A. We must
then have that E [Y (X)|X ∈ A∗] = 1 and as a consequence E [Y (X)|X ∈ A∗c] = 1. Further we note
that A∗ is a proper subset of the real line. Define the random variable W = 1A∗ . By construction
E[Y (X)|W ] = 1 and W is a nontrivial risk that has NKP.

For a more concrete example suppose that U is uniform on [0, 1] and Y (u) is 2u. We can choose
A∗ =

{
u|14 ≤ u ≤ 3

4

}
and evaluate

E [Y (u)|u ∈ A∗] = 1.

On the other hand for a single period two state model there are no nontrivial risks that are not
priced by a measure change that has altered the probability of one of these two states. Essentially
there is only one random variable here and it is aligned with the measure change density.

Instead of studying these questions at the level of random variables in a single period context, we
recognize that many of the risks that have to be priced in practice involve complex claims referring
to time paths of financial or macroeconomic variables. We therefore take up these questions in the
more relevant context of continuous time models in the next section.

5.4 Risk in Continuous Time

For our true probability space we consider
(∑

,FT , {Ft}0≤t≤T , P
)

a filtered probability space where

F = ({Ft}0≤t≤T ) is the information filtration of the economy. The space of stochastic processes
that we shall consider consists of F semimartingales and the concepts we introduce will be defined
for such processes. However, in the construction of examples and counterexamples we shall restrict
attention to the widely used model of an n − dimensional Brownian motion (B(t), t ≤ T ) and its
natural filtration. For general results on continuous martingales and Brownian motion we refer to
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Revuz and Yor (2001). Well known examples of models in finance formulated with this general
structure include the Black and Scholes (1973) and Merton (1973) models for equity options, the
jump diffusion model of Merton (1976), the Heath, Jarrow and Morton (1992) model for interest
rate risk, the Heston (1993) stochastic volatility model, and more recently the Lévy process models
of Eberlein, Keller and Prause (1998) and Carr, Geman, Madan and Yor (2002).

The results of Harrison and Kreps (1979), and Harrison and Pliska (1981) establish the founda-
tions of arbitrage free pricing showing that such prices in a zero interest rate economy are given by
expected cash flows evaluated under a change of measure to Q. This change of measure is always
given by a positive FT measurable random variable DT that defines the terminal value of the density
of the pricing measure Q with respect to the measure P. The change of measure density process
D = (Dt, 0 ≤ t ≤ T ) is given by the (F , P ) martingale

Dt = EP [DT |Ft] .

This density is explicitly modeled in many of the papers already cited and here we reference by
way of examples Duffie, Pan and Singleton (2000), Chernov and Ghysels (2000) and Carr, Geman,
Madan and Yor (2002). In this context we wish to describe the processes that are kernel priced and
those that are not kernel priced and hence have the NKP property at the process level. Specifically
we suppose that the pricing kernel is given and may also have been estimated.

Consider for this purpose a set of underlying risks that are specified by an F semimartingale
vector X = (Xt, 0 ≤ t ≤ T ) . In general we are interested in the valuation of claims written on the
price paths of a set of risk variables and so we consider in general a XT measurable functional where
XT = σ {X(t), t ≤ T} and denote this path functional by F = F (X(u), u ≤ T ). We also denote by
X the filtration X = {Xt, t ≤ T} where Xt = σ {X(s), s ≤ t} . The prices of contingent claims are
developed in a no arbitrage framework by evaluating discounted expected cash flows under a change
of probability. For the purposes of this paper we have assumed a zero interest rate environment and
hence we consider just the expected cash flow under a change of probability to Q.

At the initial date, prices π0(F ) will be given by

π0(F ) = EQ [F (X(u), u ≤ T )|F0] .

At subsequent times s < T a conditional expectation is involved in determining the price. In general
we condition on all information at time s (e.g. Fs). We then write

πs(F ) = EQ [F (X(u), u ≤ T )|Fs] .

Consider now the expectation of F at time s evaluated without a measure change. We write this as

µs(F ) = EP [F (X(u), u ≤ T ) |Fs]

However, we now note that with respect to claims that are XT measurable there is in general a lot
of information in Fs that has nothing to do with the evolution of the paths of X(t). For a particular
example, we know that the level of the stock price at time s has no relevance for the evolution of
volatility in the Heston (1993) stochastic volatility model under the specified physical probability
P . These considerations lead us to introduce the concept of self sufficient filtrations that we now
define.



5.4. Risk in Continuous Time 109

A subfiltration J is said to be self sufficient in F if every (J , P ) martingale is an (F , P )
martingale. This condition is equivalent to the statement that for every JT ≥ 0, JT measurable
random variable and s < T we have that

EP [JT |Fs] = EP [JT |Js] , (5.7)

or equivalently that JT and Fs are conditionally independent given Js (Brémaud and Yor (1978)).

Hence for self sufficient filtrations, all information necessary for predicting a JT measurable
random variable is already in Js. The concept of self sufficiency was studied in Brémaud and Yor
(1978) where it was referred to as hypothesis H. It was later referred to as J being immersed in
F in Tsirelson (1998) and Emery (2000). For some examples of a lack of self sufficiency involving
Brownian motion see Jeulin (1996). We note here that if {Bt} denotes the one-dimensional Brownian
filtartion generated by (Bt, t ≥ 0), then this filtration loses self sufficiency with respect to any
non-trivially enlarged filtration, that is: {Bt ∨ σ(X)}t≥0 , for X a non constant B∞ − measurable
variable. Indeed, if (Bt) remained a martingale with respect to {Bt ∨ σ(X)} , then it would be a
Brownian motion in that filtration and therefore would be independent of the information at the
origin of time, that is σ(X), which is absurd since X is a nontrivial functional of (Bt) . For a further
reference on initial enlargements we mention Mansuy and Yor (2006).

For evaluating conditional expectations we may without loss of generality focus attention on self
sufficient filtrations. We denote by Z any filtration containing X with the property that Z is self
sufficient in F . We always assume that Z0 is trivial. The expectation of the claim F at time s is
then

µs(F ) = EP [F (X(u), u ≤ T )|Fs]

= EP [F (X(u), u ≤ T ) |Zs]

We say that X has the NKP property with respect to D if for all functionals of the paths of X
, F = F (X(u)0≤u≤T ) it is the case that for all s < T

πs(F ) = µs(F ) (5.8)

EQ [F (X(u), 0 ≤ u ≤ T )|Fs] = EP [F (X(u), 0 ≤ u ≤ T )|Zs] (5.9)

We note that expected values are computed in accordance with the right hand side of (5.9). The
price is given by the left hand side of (5.9). When NKP holds, all contingent claims written on
the paths of X have a zero excess return continuously through time when the pricing kernel is DT .
In this case all the X contingent claims are not priced in the sense of earning zero excess returns
continuously through time for investments over arbitrary horizons on any of the derivative securities.
The equivalence of (5.9) with (5.8) is based on exploting the self sufficiency of Z in F as we may
then replace conditioning by Zs on the right hand side of equation (5.9) by conditioning on Fs. We
make a detailed study of this NKP property (5.8) in sections 4.2 and 5 of this paper.

For ease of notation we shall delete the superscript P on the expectation operator and we
understand that all expectations, when no measure is indicated, are under the measure P.

We now provide an important necessary condition for X to possess the NKP property under
the additional hypothesis that X is itself self sufficient in F .
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Proposition 1. If X has the NKP property and X is itself self sufficient in F under P
then

E [DT |XT ] = 1.

where the expectation here is under the measure P.
Proof. Suppose X has the NKP property with respect to DT . We apply the property (5.9) to

the claim given by F = E[DT |XT ] to deduce on noting Zs = Xs that

E [DT E[DT |XT ]|Fs] = E [E[DT |XT ]|Xs] (5.10)

It follows in particular that the left hand side is now Xs measurable and so

E [DT E[DT |XT ]|Fs] = E [DT E[DT |XT ]|Xs]

= E
[
(E [DT |XT ])2 |Xs

]
(5.11)

Combining equations (5.10) and (5.11) we deduce that

E
[
(E [DT |XT ])2 |Xs

]
= E [E[DT |XT ]|Xs]

Taking expectations on both sides, we get:

E
[
(E [DT |XT ])2

]
= E [E[DT |XT ]]

= E[DT ] = 1

= (E [E[DT |XT ]])2

Hence E[DT |XT ] must be a constant equal to its expectation that is unity.
This necessary condition for the NKP property when X is self sufficient in F does not on its

own imply the NKP property. From this necessary condition we may deduce that

EQ [F (X(u), u ≤ T ) |Xs] = E [DT F (X(u), u ≤ T ) |Xs]

= E [E [DT |XT ] F (X(u), u ≤ T ) |Xs]

= E [F (X(u), u ≤ T ) |Xs] (5.12)

We then get the NKP property provided we also have

EQ [F (X(u), u ≤ T ) |Fs] = EQ [F (X(u), u ≤ T ) |Xs] (5.13)

which is precisely the condition that X is self sufficient in F under Q.
Hence we may state the result
Proposition 2 If X is self sufficient in F under both P and Q then the NKP property holds

if and only if
E [DT |XT ] = 1 (5.14)

These considerations motivate our interest in the property (5.14) as a vehicle in understanding
the NKP property. In addition we present explicit results showing how self sufficiency may be
maintained under a change of probability.
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We may usefully decompose the full NKP property into two properties. The first we call the
almost NKP property, ANKP , obtained via conditioning on the left hand side of equation (5.9)
by Zs in place of Fs. The second property is then the self sufficiency of Z in F under Q or equation
(5.13). This is studied later in section 5 where we observe that except for specially designed kernels
with what we call hidden exposures to the self sufficient filtration the self sufficiency is preserved
under Q and we do in fact have the NKP property. In the continuous process context these hidden
exposures are stochastic integrals with respect to martingales in the self sufficient filtration that
have integrands with zero conditional expectation and hence we say the exposures are hidden to
the self sufficient filtration.

We thus define X to have the ANKP property with respect to D if there exists a filtration Z
which is self sufficient in F under P containing X such that for all functionals of the paths of X ,
F = F ((X(u)0≤u≤T )) it is the case that for all s < T

EQ [F (X(u)0≤u≤T )|Zs] = EP [F (X(u)0≤u≤T )|Zs] (5.15)

EP [DF (X(u)0≤u≤T )|Zs] = EP [F (X(u)0≤u≤T )|Zs] (5.16)

The condition (5.16) is equivalent to the assertion that there is no change of law of the process
X on the filtration Z. But as the probability law depends on the filtration there may be a change of
law on the larger filtration F . In addition to ANKP we require the self sufficiency of Z in F under
Q to lift the absence of a change of probability on Z to the absence of such a change of probability
on F . We further note by Proposition 1 and a computation similar to (5.12), that the condition
E[DT |XT ] = 1 is both necessary and sufficient for the ANKP property in the case X is itself self
sufficient in F .

Finally we note that the structure of risks studied need not be associated with the continuous
time paths of processes. One could be interested in other filtrations of the economy. We might
consider for example just the set of times at which the stock markets attain a new peak and then
extract the filtration of the economy at these times. Such a sequence of filtrations is no longer
associated with the path of a process in continuous time. We may then ask whether the NKP
property holds for such a filtration. In case it does, then derivatives written on the market index
with payoffs measurable with respect to its peaks would be priced with no change of probability.

Hence we define more generally for an arbitrary increasing filtration G = {Gt, t ≤ T} , that G is
not kernel priced or has the NKP property with respect to D if for s ≤ T , GT ≥ 0,and GT is GT

measurable

EQ [GT |Fs] = EP [GT |Zs] (5.17)

where Z is a filtration containing G and Z is self sufficient in F .

Similarly we define that G has the almost not kernel priced property (ANKP ) with respect to
D if for s ≤ T , GT ≥ 0,and GT is GT measurable

EQ [GT |Zs] = EP [GT |Zs] (5.18)

where Z is a filtration containing G and Z is self sufficient in F .

Apart from the not kernel priced or NKP risks, we are also interested in the set of risks that are
definitely priced. We next define the set of risks that are strongly kernel priced SKP and strongly
negatively kernel priced SNKP .
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We say that X is strongly kernel priced or has the property SKP if for all n , s < T and times
t1 < t2 < · · · < tn ≤ T and arbitrary levels a1, a2, · · · an

Q ((X(ti) < ai)1≤i≤n|Fs) > P ((X(ti) < ai)1≤i≤n|Fs) . (5.19)

For a strongly priced risk, in particular the conditional marginal cumulative distribution func-
tions have been lifted up. Such a condition in the univariate case is well known to be equivalent
to the statement that the law of X under P first order stochastically dominates the law under Q.
Equivalently we have the property that every monotone increasing function of a strongly priced risk
has a higher expectation under P than under Q and hence a positive risk premium. We call such
monotone increasing functions of a risk X, risks that are aligned with X. For strongly priced risks
all aligned risks have a positive risk premium.

Alternatively, we say that X is strongly negatively kernel priced or has the SNKP property if
−X has the SKP property. For strongly negatively priced risks all aligned random variables have
a negative risk premium.

We first show that the density DT itself has the SNKP property. Furthermore, the equivalence
of random variables aligned with the kernel is unique in possessing this property. Hence the acquisi-
tion of cash flows aligned with the pricing kernel are the classic insurance contracts of the economy.
This observation is in line with basic economic principles that indicate a relatively over weighting
of states with the worse outcomes in measure changes. However, here we see these properties at a
more general level without any appeal to utility theory. These are the considerations that lead to
a basic representation of excess returns in terms of covariations of returns with the negative of the
growth rate in the pricing density (See Back (1991)).

Proposition 3 DT has the SNKP property.
Proof. We may observe that DT is SNKP by first considering n = 1, s < t ≤ T and a < Ds

for which

Q [(D(t) < a)|Fs] =
EP

[
1D(t)<aDT |Fs

]

Ds

=
EP

[
1D(t)<aDt|Fs

]

Ds

< EP [1D(t)<a|Fs]

where the last inequality follows on noting that on the set D(t) < a, D(t)
D(s) < a

D(s) < 1 by the choice

of a. On the other hand for s < t ≤ T and a > D(s) we have

Q [(D(t) > a)|Fs] =
EP

[
1D(t)>aDT |Fs

]

Ds

=
EP

[
1D(t)>aDt|Fs

]

Ds

> EP [1D(t)>a|Fs].

Hence all the conditional cumulative marginals distribution functions for D(t) have been shifted
downwards. This argument may be generalized by induction to show that DT has the SNKP
property.



5.4. Risk in Continuous Time 113

The result that the marginal cumulative distributions of DT under Q are shifted down is related
to the Hardy-Littlewood result (See Dubins and Gilat (1978)) that

v(x) = E [X|X > x]

is an increasing function of x. For X a positive change of measure density the function v is unity
at 0 and hence is above unity over its range. However it is also the ratio of the probability that
(X > x) under Q to that under P.

Proposition 4 DT is the only equivalence class of random variables (up to increasing monotonic
transformations) with the property that every monotone increasing function of the random variable
has a negative risk premium.

Proof. Consider a random variable Γ that is not aligned with the density. Define by C the set
of all random variables aligned with Γ. The set C contains all random variables that are monotone
increasing functions of Γ and we easily see that C is a convex set and DT − 1 /∈ C. By convex set
separation we may obtain a random variable Y such that

E[Y (DT − 1)] < 0 (5.20)

and for all X ∈ C we have
E [Y X] ≥ 0.

It follows from equation (5.20) that Y has a positive risk premium. Furthermore if Y is not aligned
with Γ then one may construct X aligned with Γ for which E[XY ] < 0 and so Y ∈ C and we have
a variable aligned with Γ with a positive risk premium.

5.4.1 The Examples

We now investigate further the NKP properties with respect to a specific D. Our first example
supports the basic intuition of considering correlations in making judgements about the kernel
pricing of risks or about the NKP property.

Example 1 If X = (Xt, 0 ≤ t ≤ T ) is a (F , P ) one dimensional Brownian motion and X, D
are orthogonal as (F , P ) martingales then X has the NKP property with Z = F .

Proof. The orthogonality assumption implies that X is a Q local martingale, and since the
quadratic variation of X under Q is the same as that under P by Girsanov’s theorem we have that

< X >Q
t =< X >P

t = t,

and it follows by Lévy’s theorem that X is a (F , Q) Brownian motion; in particular, (5.8) holds.
For a particular illustration of example 1, let B = (Bt, 0 ≤ t ≤ T ) be a n dimensional Brownian

motion with n > 1 and let F = {σ {Bs, s ≤ t} , t ≤ T} . Then we know that:

D(t) = 1 +

∫ t

0
δs · dBs

for some F predictable process δs such that
∫ t
0 |δs|2ds is almost surely finite, and that likewise:

X(t) = X(0) +

∫ t

0
xs · dBs
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with our assumption implying here that

|xs|2 = 1, dsdP almost surely

xs · δs = 0.

Even more specifically we could take n = 2, B = (U, V ) a two dimensional standard Brownian
motion and

D(t) = exp

(
A(t) − t

2

)

A(t) =

∫ t

0

U(s)dU(s) + V (s)dV (s)√
U(s)2 + V (s)2

X(t) =

∫ t

0

−V (s)dU(s) + U(s)dV (s)√
U(s)2 + V (s)2

This example illustrates the type of considerations involved in widely used continuous time
models supporting correlation calculations as fundamental to evaluating the kernel pricing of risk.
We see here a tight connection between the absence of correlation and the absence of a change of
probability or the NKP property. However, the situation can be more subtle even in the standard
context of a one dimensional Brownian motion model. This is illustrated in our next example.

Example 2 We consider here X = (Xt, t ≤ T ) as a (F , P ) Brownian motion, XT = σ {Xt, t ≤ T}
with the property that

EP [D(T )|XT ] = 1. (5.21)

These constructions give us examples of the ANKP property with Z = X under P. In fact we have
noted that (5.21) is equivalent to (5.16) when X is self sufficient in F under P .

In particular, consider for example in a one dimensional Brownian motion (B(t), t ≤ T ) context:

D(T ) = 1 + λsign(B(T )) (5.22)

for |λ| < 1, and

X(t) =

∫ t

0
sign(B(s))dB(s).

As is well known, the filtration of X is self sufficient (so Z = X ), and X (t) = σ {|B(s)|, s ≤ t} ,
hence X (T ) is independent from sign(B(T )) which immediately implies that (5.21) holds and hence
that

Q|X (T ) = P|X (T ). (5.23)

But note that on the filtration F , X = (Xt, t ≤ T ) is a (F , P ) Brownian motion and not a (F , Q)
Brownian motion and has on F a nonzero instantaneous correlation structure with the kernel. It
follows in particular from the considerations we investigate later in Section 5, that X is not self
sufficient in F under Q and the ANKP does not lead to NKP in this case.

We mention this case as it is often customary to define a filtration under P describing a set
of risks as for example in a stochastic volatility model of the Heston type where it is clear that
the filtration describing the evolution of volatility and the stock is self sufficient under P. Now a
prospective measure change could leave the law of the stock price and volatility unchanged when
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attention is restricted to this filtration and so a researcher may be inclined to believe that they have
NKP but in fact they may only have ANKP for under Q the market price of volatility risk may
be dependent on other variables that are correlated with either the stock or the volatility and these
must be included in the self sufficient filtration under Q.

This example may instructively be generalized somewhat by considering an odd functional of
Brownian motion, that is:

Φ(B) = Φ(B(u), u ≤ T ),

such that

(i) ||Φ||∞ < 1

(ii) Φ(B) = −Φ(−B)

Now take

D(T ) = 1 + Φ(B)

It is still true that

EP [D(T )|X (T )] = 1,

as (5.21) is equivalent to (5.24)

EP [Φ(B)|X (T )] = 0, (5.24)

and (5.24) follows from the oddity of Φ, condition (ii) above, since for every F ≥ 0

EP [F (|B(u)|, u ≤ T )Φ(B)] = −EP [F (|B(u)|, u ≤ T )Φ(B)]

and hence (5.24).

Although this argument seems very easy, if we are given D = (D(t), t ≤ T ) in exponential form

D(t) = exp

(∫ t

0
hs(B)dB(s) − 1

2

∫ t

0
h2

s(B)ds

)

with
∫ t
0 h2

s(B)ds < ∞ almost surely for all t ≤ T , then it may not be so obvious at first sight that
(5.23) is satisfied. In fact for the example of equation (5.22) we may use the general formula for
every bounded Borel function f , with
B(t) = σ {B(s), s ≤ t} ,

E [f(B(T ))|B(t)] = E[f(B(T ))] +

∫ t

0

∂V

∂B
|(s,B(s))dB(s)

V (s, x) = E [f(B(T ))|B(s) = x]

=

∫ ∞

−∞
dy

exp
(
− (y−x)2

2(T−s)

)

√
2π(T − s)

f(y).
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For our example of equation (5.22) we have

V (s, x) = 1 + λ

∫ ∞

−∞
dy

exp
(
− (y−x)2

2(T−s)

)

√
2π(T − s)

sign(y)

= 1 + λ

∫ ∞

0
dy

exp
(
− (y−x)2

2(T−s)

)

√
2π(T − s)

− λ

∫ ∞

0
dy

exp
(
− (y+x)2

2(T−s)

)

√
2π(T − s)

= 1 + λ

(
2N

(
x√

T − s

)
− 1

)

where N(x) is the standard normal distribution function. It follows that

∂V

∂x
=

2λ√
(T − s)

n

(
x√

T − s

)

=
Def

q(s, x)

where n(x) is the standard normal density.
To develop the exponential form for D(t) we note that

D(t) = V (t, B(t))

= 1 +

∫ t

0
q(s,B(s))dB(s)

= 1 +

∫ t

0
V (s,B(s))

(
q(s,B(s))

V (s, B(s))

)
dB(s)

= exp

(∫ t

0

(
q(s, B(s))

V (s,B(s))

)
dB(s) − 1

2

∫ t

0

(
q(s,B(s))

V (s,B(s))

)2

ds

)

and we have

h(s, B(s))

=

(
1 + λ

(
2N

(
B(s)√
T − s

)
− 1

))−1 2λ√
(T − s)

n

(
B(s)√
T − s

)

In general we have

Φ(B) =

∫ T

0
φ(s, (B(u), u ≤ s))dB(s)

From the oddity of Φ and the uniqueness of φ we deduce that φ is even or that

φ(s, (B(u), u ≤ s)) = φ(s,−(B(u), u ≤ s))

as is also the case for our example h(s,B(s)). Under Q we get

B(t) = B̃(t) +

∫ t

0

φ(s, (B(u), u ≤ s))

1 + Φ(s, (B(u), u ≤ s))
ds

= B̃(t) +

∫ t

0

φ(s, (B(u), u ≤ s))

1 + E [Φ(B)|Fs]
ds
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with B̃ an (F , Q) Brownian motion. We may now exhibit the dynamics of X under Q,

X(t) =

∫ t

0
sign(B(s))dB(s)

=

∫ t

0
sign(B(s))dB̃(s) +

∫ t

0

sign(B(s))φ(s, (B(u), u ≤ s))

1 + Φ(s, (B(u), u ≤ s))
ds

so that X(t) is a semimartingale under Q reflecting a nonzero correlation structure but X(t) has
the ANKP property. That X(t) is a martingale with respect to its own filtration X (t) follows from
the fact that

EQ

[
sign(B(s))φ(s, (B(u), u ≤ s))

1 + Φ(s, (B(u), u ≤ s))
|X (s)

]
= 0 (5.25)

This follows on observing that the left hand side of equation (5.25) is

EP [D(s)sign(B(s))|X (s)]

EP [D(s))|X (s)]
= EP [sign(B(s))|X (s)]

= 0.

Example 2 illustrates an interesting situation: The existence of a change of measure density that
prices positively the risk of the Brownian motion driving the economy continuously through time:
Yet there exist martingales correlated with the change of measure density continuously through
time that are not priced when attention is restricted to the risk filtration itself. It is true that in
this example the expected correlation projected onto the filtration X (s) of the martingale is zero
by construction, but in practice such a situation is not that easy to detect.

We grant that example 2 is one dimensional but a comparable discussion may easily be embedded
into a higher dimensional context. For example we could consider the Heston model for the evolution
of the stock price S(t) and the volatility v(t). Now consider a pricing kernel of the form

D(T ) = 1 + λsign(B(T ))F (S(T ), v(T )) (5.26)

for a bounded and positive function F (S(T ), v(T )) with B(t), t > 0 an independent Brownian
motion. Let X be the filtration of the stock and its volatility. For any XT measurable random
variable CT we have that

EP [CT D(T )] = EP [EP [CT D(T )|XT ]]

= EP [CT EP [D(T )|XT ]]

= EP [CT ]EP [D(T )]

and we have no correlation between the risk and the density as random variables at time zero. We
also have no correlation between the risk and the density as random variables at all times s > 0
with respect to the risk filtration as

EP [CT D(T )|Xs] = EP [EP [CT D(T )|XT ] |Xs]

= EP [CT EP [D(T )|XT ]|Xs]

= EP [CT |Xs]E
P [D(T )|Xs]
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But the filtration X is not self sufficient in F under Q and we do have correlation between the risk
and the density at time s > 0 with respect to the filtration Fs as

E [CT D(T )|Fs] = EP [EP

[
CT

(
1 + λ

(
2N

(
B(s)√
T − s

)
− 1

)
F (S(T ), v(T ))

)]
|Fs]

where the expression in brackets multiplying λ is just the conditional expectation of sign(B(T ))
conditional on B(s). We could now take by way of example for CT the variable F (S(T ), v(T )) to
get correlation conditional on Fs. Here NKP fails but ANKP holds. By construction we have
given the density an exposure to movements in the stock and volatility process that is not visible
to the risk filtration and projects to zero.

To see the hidden nature of the exposure in the density (5.26) one explicitly writes out the (F , P )
martingale associated with the density (5.26) as a terminal random variable as a stochastic integral
with respect to the Brownian motions (B(t), t > 0), and the two Brownian motions (W1(t), t > 0)
and (W2(t), t > 0) that drive the stock and the volatility processes. Assuming that one has written
F (S(T ), v(T )) in the form

F (S(T ), v(T )) = E [F (S(T ), v(T ))] +

∫ T

0
(f1(s)dW1(s) + f2(s)dW2(s))

for some integrands f1, f2 one may show that the exposure of the density to the filtration generated
by the stock and volatility processes takes the form

D(T ) = 1 +

∫ T

0
a(s)dB(s) +

∫ T

0
E [λsign(B(T )|Bs] ((f1(s)dW1(s) + f2(s)dW2(s)))

= 1 +

∫ T

0
a(s)dB(s) +

∫ T

0
λ

(
2N

(
B(s)√
T − s

)
− 1

)
((f1(s)dW1(s) + f2(s)dW2(s)))

but as the function

2N

(
B(s)√
T − s

)
− 1

is an antisymmetric function of B(s) that is independent of the stock and volatility processes,
its projection onto this filtration is zero. The exposure of the density to the stock and volatility
filtration is therefore hidden from this filtration.

Our next example illustrates the possibility in one dimension of a situation where we have zero
correlation between a risk and the change of measure but the risk in question is kernel priced and
does not have the NKP property.

Example 3 Define the density process by

D(t) = exp

(∫ t

0
1B(s)>0dB(s) − 1

2

∫ t

0
1B(s)>0ds

)

and let X = (X(t), t ≤ T ) be the martingale

X(t) =

∫ t

0
1B(s)<0dB(s).

The law of X is changed by the density D.
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Proof. It is clear by construction that

〈X,D〉t =

∫ t

0
D(s)1B(s)>01B(s)<0ds

= 0

and there is no correlation between the density D and the martingale X.

However the quadratic variation of X is

〈X〉t =

∫ t

0
1B(s)<0ds

= t −
∫ t

0
1B(s)>0ds

and the law of this quadratic variation under Q is different from its law under P. More specifically:

EQ
[
1(B(t)<0)

]
<

1

2
= EP

[
1(B(t)<0)

]
.

Indeed

EQ
[
1(B(t)<0)

]
= EP

[
1(B(t)<0)D(t)

]

= EP

[
1(B(t)<0) exp

(
−1

2
Σ(t) − 1

2

∫ t

0
1(B(s)>0)ds

)]

since on (B(t) < 0), L(t) =
∫ t
0 1B(s)>0dB(s) ≡ B(t)+ − 1

2Σ(t) = −1
2Σ(t) where Σ(t) is the local

time of Brownian motion at zero.

Another example of zero correlation with absence of NKP property is provided by the following
two dimensional construction.

Example 4 Let B = (U, V ) be a standard two dimensional Brownian motion. Define

R2(t) = U2(t) + V 2(t)

D(t) = exp

(∫ t

0
U(s)dU(s) + V (s)dV (s) − 1

2

∫ t

0
R2(s)ds

)

= exp

(
1

2
(R2(t) − 2t) − 1

2

∫ t

0
R2(s)ds

)

Further let

X(t) =

∫ t

0
−U(s)dV (s) + V (s)dU(s)

then X is a martingale under both P and Q but X does not have the NKP property.

Proof. We easily verify that X remains a martingale under Q as

〈X, D〉t =

∫ t

0
D(s)(−U(s)V (s) + U(s)V (s))ds

= 0.
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But the probability law of X under Q is not that under P. In fact both under P and Q we have
that

X(t) = γ

(∫ t

0
R2(s)ds

)

where (γ(u), u ≥ 0) is a one dimensional Brownian motion independent of R, but the law of R
(hence the law of 〈X〉) is different under P and Q.

Under Q we have that

U(t) = Ũ(t) +

∫ t

0
U(s)ds

V (t) = Ṽ (t) +

∫ t

0
V (s)ds

where
(
Ũ , Ṽ

)
is a two dimensional (F , Q) Brownian motion; hence, under Q, U and V are two

independent Ornstein-Uhlenbeck processes, and

R2(t) = 2

∫ t

0
R(s)dβ̃(s) + 2

∫ t

0
R2(s)ds + 2t

with β̃ = (β̃(t), t ≥ 0) a Brownian motion, is a CIR (Cox, Ingersoll, Ross (1985)) type process.
While under P we have that

R2(t) = 2

∫ t

0
R(s)dβ(s) + 2t,

for a Brownian motion β = (β(t), t ≥ 0).We note that under the respective probabilities P and Q,
the Brownian motions β̃, β are independent of γ.

We have now seen examples of nonzero correlation and presence of the ANKP property and
examples of zero correlation and absence of the NKP property. From the perspective of financial
economics and valuation of claims, the NKP property is fundamental. An analysis of the ANKP
property in terms of orthogonality is precisely developed in subsection 4.2 below. This is followed in
section 5 by a study of the invariance of self sufficiency to the measure change, the property needed
to infer NKP from ANKP. We now illustrate the case of a risk satisfying ANKP with respect to
the simplest measure change in the one-dimensional Brownian context.

Example 5 Consider the change of measure density

D(t) = exp

(
λB(t) − λ2t

2

)

so that under Q, B(t) is a Brownian motion with drift λ. Let

X(t) = B(t) −
∫ t

0

B(s)

s
ds.

The semimartingale X = (X(t), t ≥ 0) is a Brownian motion both under P and Q.
Proof. Let G(t) = σ {X(u), u ≤ t} . We verify that in its own filtration the process X is

Brownian motion. It is clear that it is a Gaussian process with zero mean and covariance function

C(s, t) = EP

[(
B(t) −

∫ t

0

B(u)

u
du

)(
B(s) −

∫ s

0

B(v)

v
dv

)]
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and for s < t we have

C(s, t) = s − EP

[∫ s

0

B(u)B(s)

u
du +

∫ t

s

B(u)B(s)

u
du

]

−EP

[∫ s

0

B(t)B(v)

v
dv

]

+EP

[∫ s

0

∫ s

0

B(u)B(v)

uv
dvdu +

∫ t

s

∫ s

0

B(u)B(v)

uv
dvdu

]

= s − s − s log

(
t

s

)
− s +

∫ s

0

∫ s

0

u ∧ v

uv
dvdu

+s log

(
t

s

)

= −s +

∫ s

0
du

∫ u

0
dv

1

u
+

∫ s

0
du

∫ s

u

1

v
dv

= −s + s +

∫ s

0
dv

∫ v

0

1

v
du

= s.

We therefore have that

E [D(t)|G(t)] = 1

In fact we have that

E[B(t)X(s)] = 0

for s ≤ t and B(t) is independent of G(t).

We see here that even the simplest measure change that prices the Brownian motion at a constant
price continuously through time, fails to change probability when restricted to the filtration of the
risk for some semimartingale risks. We note however, that though probability has not been changed
we do not here have the NKP property as the filtration of X is not self sufficient in F under either
P or Q.

The result that X(t) in example 5 is a Brownian motion is explained in greater detail in chapter
1 of Yor (1992). It is obtained by considering the semimartingale decomposition of Brownian motion
(B(u), u ≤ t) enlarged by its value B(t) at time t, and then reversing time from time t.

We further comment that X(t) in example 5 has the ANKP property with respect to any change
of measure density D(t) = h(B(t), t) where h is a positive space time harmonic function which is
known to be of the form

h(B(t), t) =

∫ ∞

−∞
µ(dλ) exp

(
λB(t) − λ2t

2

)

for any probability measure µ on R.

5.4.2 Almost No Kernel Pricing for filtrations

In this subsection we clarify precisely what the ANKP property means in terms of orthogonality
relations between certain martingales. For this purpose we discuss the ANKP property just at the
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level of filtrations as defined in (5.18). We suppose that G is the filtration under consideration and
Z is a filtration containing G and self sufficient in F .

Proposition 5 G has the ANKP property with respect to D if and only if every (Z, P ) mar-
tingale whose terminal value is GT measurable is orthogonal to the martingale EP [DT |Zt].

Proof. Let M(t) be a (Z, P ) martingale with terminal value GT , which is GT measurable. By
the ANKP property we may write

EQ [GT |Zs] = EP [GT |Zs] .

The left hand side is given by

EQ [GT |Zs] =
EP [DT GT |Zs]

EP [DT |Zs]

Substituting above we get that

EP [DT GT |Zs] = EP [DT |Zs] E
P [GT |Zs]

and the result holds.

Proposition 5 describes the precise link between orthogonality and the ANKP property. For
example, it is not sufficient to just test the orthogonality of X and D in the case G is generated
by the process X. One needs to consider the martingales in (Z, P ) with GT measurable terminal
values and ensure that these are all orthogonal to EP [DT |Zt]. Typically the filtration Z would
contain variables necessary for predicting outcomes in G and the law of these variables may be
altered by the change of probability and hence indirectly the law of G measurable variables. Hence
orthogonality tests need to reach beyond just X and D to confirm the ANKP result. However,
in many cases it is sufficient to simply check that EP [DT |Zt] is trivial. This happens because the
collection of (Z, P ) martingales finishing in GT often generates all the (Z, P ) martingales in the
sense of Kunita-Watanabe.

In the special case of G itself being self sufficient in F we choose systematically that Z = G and
we need only consider all the G martingales in this case. In addition when G has the martingale
representation property with respect to a set of martingales (γj , j ∈ J) then one may restrict the
orthogonality tests to just these martingales. It follows that if G has the martingale representation
property with respect to X , which is both a G and F martingale, then G is self sufficient in F and
a mere test of the orthogonality of X and D suffices.

It is now helpful to construct a typical situation resulting in the ANKP property for some risk.
For this we wish to take for G the filtration of a risk not self sufficient in F under P. This means that
Fs contains information about risks in GT that Gs does not have. One of the simplest examples for
such a relation between filtrations is that of Brownian bridges whereby we take for G the filtration
of a Brownian motion, (Bu, u > 0), with Gt = σ(Bu, u ≤ t) and G = {Gt, t ≤ S} . For T > S
and for another independent Brownian motion (Wu, u > 0) we let Ft = {σ(B(T )) ∨ σ(Bu, u ≤
t) ∨ σ(Wu, u ≤ t)}, with F = {Ft, t ≤ S} . For the filtration Z ⊃ G self sufficient in F we take
Zt = {σ(B(T ) ∨ σ(Bu, u ≤ t)} with Z = {Zt, t ≤ S} .

We now choose the density D to be FS measurable with a projection on Z that is orthogonal to
all the (Z, P ) martingales finishing in GS . For this it is important to know what these martingales
are and what are the (Z, P ) martingales orthogonal to all the (Z, P ) martingales finishing in GS , if
any. We now recognize that in this case ZS = GS∨σ(B(T )−B(S)) and B(T )−B(S) is independent
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of GS . Hence the projection of D onto ZS being B(T ) − B(S) measurable will give the required
orthogonality of the projection to all the (Z, P ) martingales finishing in GS . This will deliver the
ANKP property of GS with respect to D. In particular we may take

D = exp

(
B(T ) − B(S) − T − S

2

)
× E

(∫ S

0
v(s)dB(s) + w(s)dW (s)

)
(5.27)

for any processes v(s), w(s) that are adapted to the F filtration. The projection of D on ZS is then
the ZS measurable random variable

∆ = exp

(
B(T ) − B(S) − T − S

2

)

whose associated (Z, P ) martingale is orthogonal to all (Z, P ) martingales finishing in GS and
we therefore have ANKP. For the NKP property we take up this example again after we have
established the conditions for NKP.

5.4.3 ANKP for filtrations and the examples

We now reexamine the five examples in the light of Proposition 5. For the first example we note
that G is the filtration generated by the Brownian motion X. G has the martingale representation
property with respect to X hence is self sufficient in F and one only needs to verify the orthogonality
of D with respect to X. This example is in line with our final comment in section 4.2.

In the statement of example 1 we can relax the hypothesis that X is a one dimensional Brownian
motion and take for X any extremal martingale, which is a martingale for which there is only one
equivalent martingale measure with respect to its own filtration X .

In example 2 G is self sufficient and hence Z is chosen equal to G. Furthermore EP [DT |Gt] is
trivially orthogonal to all the G martingales and hence we have the ANKP property. We comment
for example 3, that the NKP property does not hold and the filtration of X is not self sufficient in
F . Indeed there are discontinuous martingales in the X filtration, Lane (1978) and Knight (1987).
In contrast, example 4 is comparable to 3 but the filtration of X is that of F when the two Brownian
motions start away from zero. Example 5 does not quite fit the structure of Proposition 5 as the
filtration of X is not self sufficient in F .

5.4.4 A decomposition of risks

In the context of self sufficient filtrations we ask if it is possible to decompose all risks viewed as
F measurable martingales as the sum of two risk classes, those that are not kernel priced with a
restricted filtration G and have the ANKP property, and those that are kernel priced with the
restricted filtration H. A more precise statement follows below.

We say that two filtrations G and H supplement each other in F if both are self sufficient,
every G martingale is orthogonal to every H martingale, and every square integrable F martingale
is generated in the sense of Kunita and Watanabe by the square integrable martingales with respect
to either G or H.

Furthermore we say that a pricing decomposition of F risks with respect to D exists if there exist
two filtrations G and H supplementing each other in F with the further requirement that every G
martingale has the ANKP property and no nontrivial H martingale has the ANKP property.
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We present some partial results in this direction at the level of square integrable martingales.
We begin by selecting G∗ a maximal self sufficient filtration with the ANKP property. We then
define by MG∗ the collection of all square integrable G∗ martingales. We construct from MG∗ the F
stable subspace S2(MG∗) generated by these martingales in MF . We further observe that S2(MG∗)
is orthogonal to the change of measure D. Hence the orthogonal complement of S2(MG∗) in the
Hilbert space MF is nonempty. We may therefore decompose the Hilbert space MF as

MF = S2(MG∗) ⊕K.

It remains to relate K to the stable space generated by a set of priced risks. A more constructive
characterization of the subspace of priced risks is left for future research at this stage.

5.5 Self Sufficiency and Measure Changes

In this section we study conditions on the change of measure density with the property that self
sufficient filtrations under P remain self sufficient under Q. As we have noted in Proposition 2,
this property is essential to deliver the NKP property from the ANKP property that we have
studied in detail. For simplicity we assume throughout that all (F , P ) martingales are continuous.
We introduce a collection of processes associated with the change of measure density D and the
filtration J which we suppose is self sufficient under P in F .

The first process we identify is the projection of D onto the filtration J that we define by ∆,

∆(t) = EP [D(t)|Jt] .

We next define the stochastic logarithms of D, ∆ by L,Λ as

L(t) =

∫ t

0

dD(s)

D(s)

Λ(t) =

∫ t

0

d∆(s)

∆(s)

so that D(t) = E(L)t, ∆(t) = E(Λ)t.
Proposition 6 Assume that J is self sufficient in F under P, then J is self sufficient in F

under Q if and only if the (F , P ) local martingale

L − Λ

is orthogonal to the set of all (J , P ) local martingales. Equivalently the Kunita-Watanabe projection
of L on (J , P ) is Λ.

Proof. We simultaneously establish both directions. A classical reinforcement of Girsanov’s
theorem states that every (J , Q) local martingale ĨQmay be obtained as

ĨQ(t) = IP (t) −
∫ t

0

d〈IP ,∆〉u
∆(u)

(5.28)

for IP a generic (J , P ) local martingale.
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Since under self sufficiency of J in F under P, IP is also a (F , P ) local martingale we may
write, by using Girsanov’s theorem with respect to the filtration F that

IP (t) = JQ(t) +

∫ t

0

d〈IP , D〉u
D(u)

(5.29)

where (JQ(t), t ≥ 0) is a (F , Q) local martingale.

Combining (5.28) and (5.29) we obtain

ĨQ(t) = JQ(t) +

∫ t

0

d〈IP , D〉u
D(u)

−
∫ t

0

d〈IP , ∆〉u
∆(u)

= JQ(t) +

∫ t

0
d〈IP , L〉u −

∫ t

0
d〈IP ,Λ〉u

Thus ĨQ(t) is a (F , Q) local martingale if and only if

∫ t

0
d〈IP , L〉u −

∫ t

0
d〈IP , Λ〉u = 0

which proves the result.

Two applications of Proposition 5, in the one and two dimensional cases illustrate the type of
measure changes preserving self sufficiency of a filtration.

Example 7 Assume J is self sufficient in F under P and that:

· every (F , P ) martingale is a stochastic integral with respect to (B(t), t ≥ 0) a one dimensional
Brownian motion

· every (J , P ) martingale is a stochastic integral with respect to (β(t), t ≥ 0) a one dimensional
(J , P ) Brownian motion

Then, J is self sufficient in F under Q if and only if

D = ∆ or equivalently L = Λ.

Proof. Since L−Λ is orthogonal to all the (J , P ) martingales and since under the joint three
hypotheses these martingales generate in the sense of Kunita, all the (F , P ) martingales it must
be that L − Λ = 0.

A concrete example is given by F the natural filtration of a one dimensional Brownian motion
(B(t), t ≥ 0), and J the filtration of the absolute value of (|B(t)|, t ≥ 0). It is well known that J is
self sufficient in F under P and that the (J , P ) Brownian motion may be chosen such as

β(t) =

∫ t

0
sign(B(s))dB(s).

If we take for D

D(t) = exp

(
µB(t) − µ2t

2

)

then J is not self sufficient in F under Q. Here we must have the density adapted to J for stability
of self sufficiency under a change of measure. It is not so adapted. More precisely we may evaluate
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L and Λ as follows. First we obtain that

∆(t) = cosh(µB(t))e−
µ2t
2

= exp

(
log (cosh (µB(t))) − µ2t

2

)

Thus

L(t) = µB(t)

Λ(t) = µ

∫ t

0
tanh (µB(s)) dB(s)

= µ

∫ t

0
tanh(µ|B(s)|)dβ(s)

and we explicitly see that L 6= Λ.
Example 8 Assume J is self sufficient in F under P and that
· every (J , P ) martingale is a stochastic integral with respect to (β(t), t ≥ 0) a one dimensional

(J , P ) Brownian motion
· every (F , P ) martingale is a stochastic integral with respect (B(t), t ≥ 0) a two dimensional

(F , P ) Brownian motion ((β(t), γ(t)); t ≥ 0,
Then, J is self sufficient in F under Q if and only if for some F predictable process l2(s)

L(t) − Λ(t) =

∫ t

0
l2(s)dγ(s)

for some (l2(s), s ≥ 0) a F predictable process such that

∫ t

0
(l2(s))

2 ds < ∞

and in this case we have

Λ(t) =

∫ t

0
λ(s)dβ(s) and

L(t) =

∫ t

0
λ(s)dβ(s) + l2(s)dγ(s) (5.30)

Proof. The representation for L(t) in the form

L(t) =

∫ t

0
l1(s)dβ(s) +

∫ t

0
l2(s)dγ(s)

is immediate. In order that L−Λ is orthogonal to the set of all (J , P ) martingales it is necessary
and sufficient that

〈L − Λ,

∫ t

0
(l1(s) − λ(s)) dβ(s)〉 = 0

or that l1(s) = λ(s) dsdP almost surely.
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For a concrete example we take for F the natural filtration of (U(t), V (t); t ≥ 0) a two dimen-
sional Brownian motion and J = {Jt : t ≥ 0} the filtration of

(
R2(t) = U2(t) + V 2(t), t ≥ 0

)

Again it is well known that J is self sufficient in F under P and that the Brownian motion

β(t) =

∫ t

0

U(s)dU(s) + V (s)dV (s)

R(s)
, t ≥ 0

generates all the (J , P ) martingales. We may also take the second Brownian motion

γ(t) =

∫ t

0

V (s)dU(s) − U(s)dV (s)

R(s)

and it is well known that β and γ, which is independent of β, generate all the (F , P ) martingales.
Consider for D

D(t) = exp

(
a

∫ t

0
R(s)dγ(s) − a2

2

∫ t

0
R2(s)ds

)

so that now we have

L(t) = a

∫ t

0
R(s)dγ(s)

∆(t) = EP [D(t)|Jt] ≡ 1

or that Λ(t) ≡ 0, and L(t) = L(t) − Λ(t) is orthogonal to the (J , P ) martingales. Hence we still
have J self sufficient in F under Q.

Combining the lessons of examples 7 and 8 we learn that to preserve self sufficiency, the change
of measure density factors as

D(t) = ∆(t)E(L − Λ)t.

where L − Λ is orthogonal to all the (J , P ) martingales and in particular to Λ.
We consider now the density (5.27) in our example for ANKP using the Brownian bridge. We

see that for the orthogonality of L−Λ to all the (Z, P ) martingales we cannot have the first integral
with respect to the Brownian motion B(s) and to preserve the self sufficiency of Z in F under Q
we must take the density in the form

D = exp

(
B(T ) − B(S) − T − S

2

)
× E

(∫ S

0
w(s)dW (s)

)

with w(s) adapted to the F filtration. Financially we have that the risk of the Brownian motion
B(u), u ≤ S is not priced. An independent component in Z is priced as is the Brownian motion
W (u), u ≤ S with the prices being F adapted. In this case we also have NKP.

To illustrate what is necessary for the failure of the self sufficiency of J in F under Q we observe
that, in the context of example 8, using Proposition 6,

L(t) − Λ(t) =

∫ t

0
l1(s)dβ(s) +

∫ t

0
l2(s)dγ(s)
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for some particular integrand l1(s). Indeed, since the projection onto the filtration generated by β
of the integral of l1 with respect to β is zero it must be the case that the integrand is special and
in fact

E [l1(s)|B∞] = 0

To establish this result let

Mu
t =

∫ t

0
usdβs

for any us predictable with respect to F and E
[∫ t

0 u2
sds < ∞

]
. It is a simple consequence of the

martingale representation property for (J , P ) that

E [Mu
t |Jt] =

∫ t

0
E [us|Js] dβs

consequently E [Mu
t |Jt] = 0 if and only if E [us|J∞] = 0.

The density D has in this case a sort of hidden exposure to the risks of filtration J in that
conditional on all of J∞ these exposures cannot be observed by evaluating conditional expectations
of the integrand of exposure. The density would have to be specially constructed with respect to the
particular risk filtration to mask the conditional expectation of the exposure. Barring the presence
of such hidden exposures we expect to maintain self sufficiency of J in F under Q when we have it
under P.

5.6 Event Risk and No Kernel Price

One is often interested in the pricing of events like default or first passage to various boundaries. In
fact we now have specific event risks with a growing market like the credit default swap contracts.
In this section we inquire about the no price property for events and the martingales associated with
them via conditional expectations. Consider a set A ∈ FT and the associated (F , P ) martingale

XA(t) = EP [1A|Ft] .

Unlike the martingales considered earlier, orthogonality of XA and D ensures that there is no change
of probability for the event risk or that

Q(A) = P (A).

Orthogonality does ensure no risk premium on the event risk security itself. This is a consequence
of the following equalities.

EQ [1A] = EP [D(T )1A]

= EP
[
XA(T )D(T )

]

= EP [XA(0)D(0) + 〈XA, D〉T ]

= EP [XA(0)] + EP
[
〈XA, D〉T

]

= EP [XA(T )] + EP
[
〈XA, D〉T

]

= EP [1A] + EP
[
〈XA, D〉T

]
.
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However even in the presence of zero correlation continuously in that 〈XA, D〉t ≡ 0 we may have
the absence of the NKP property for the martingale XA. Financially we may be interested in the
structure of excess returns on derivatives written on the price process

JA(t) = EQ [1A|Ft]

We show here that such derivatives may experience a non zero excess return even under orthogonality
and even when JA(t) = XA(t) and there is no risk premium on the base security.

We give in this section two examples of this situation. The first is in a two dimensional Brownian
setting while the second considers the one dimensional case. The design of these examples is
comparable and we present their structure together. Table 1 below presents the choice of D and
the set A for both contexts.

TABLE 1
Structure of Event Risk Examples

2 Dimensions 1 Dimension
D(t) = E(L)t L(t) = L(t) =∫ t

0 U(s)dU(s) + V (s)dV (s) λ
∫ t
0 1B(s)>0dB(s)

= 1
2

(
R2(t) − 2t

)
= λ

(
B(t)+ − 1

2Σ(t)
)

A = (γ̂T > 0) Θ(t) =
Def

Θ(t) =
Def

with γ̂ a Brownian
∫ t
0 −U(s)dV (s) + V (s)dU(s) B(t)− − 1

2Σ(t)

motion defined via: = γ̂
(∫ t

0 R(s)2ds
)

= γ̂
(∫ t

0 1B(s)<0ds
)

In both cases, we first show that XA(t) may be represented as a stochastic integral with respect
to dΘ which is orthogonal to L. For this purpose we begin to express 1γ̂(T )>0 as a stochastic integral
with respect to dγ̂. Specifically we write

1γ̂(T )>0 =
1

2
+

∫ T

0
φ(s, γ̂(s))dγ̂(s)

where

φ(s, x) =
1√

T − s
n

(
x√

T − s

)
1s<T

The computation of φ is comparable to the one of q(s, x) in Example 2. Making the change of
variable s = H(u) where in the 2 dimensional case

H(u) =

∫ u

0
R2(v)dv

and in the one dimensional case

H(u) =

∫ u

0
1B(v)<0dv

we obtain

1γ̂(T )>0 =
1

2
+

∫ ∞

0
φ(H(u), γ̂(H(u)))1H(u)<T dγ̂(H(u))
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which provides us with a formula for (XA(t), t ≥ 0) in both cases:

XA(t) =
1

2
+

∫ t

0
φ(H(u), Θ(u))1H(u)<T dΘ(u)

In order to show that the martingale XA fails the NKP property it remains to show that the
laws of

(
φ2(H(u), Θ(u))1H(u)<T

d
du (〈Θ〉(u)) , u ≥ 0

)
under Q and under P differ. Some elementary

manipulations reduce the problem to showing that the laws of (H(u), u ≥ 0) differ under P and Q
and this is easily verified and was referred to in previous examples.

5.7 Conclusion

This paper documents the problems inherent in viewing risk pricing in purely covariation terms.
We provide examples of processes correlated with the change of measure density for which there is
no change of probability on the reduced self sufficient filtration containing the risk being considered.
Hence there is no excess return on derivative claims written on these processes provided the self
sufficient filtration under P remains self sufficient under Q. This property is called almost no kernel
pricing, ANKP as it falls just short of NKP which also requires the invariance of self sufficiency
to the change of measure. However, we show that the loss of self sufficiency under Q when we have
it under P requires a very specially designed kernel with exposure to the martingales of the self
sufficient filtration that vanish on projection onto this filtration and are therefore a form of hidden
exposures. We also provide examples with zero correlation where the risks involved are priced and
we have excess returns associated with the investments involved.

These examples lead us to investigate the precise form of no kernel pricing in terms of correlation
considerations. There are two sets of correlation conditions involved. The first delivers ANKP and
introduces the concept of the self sufficient filtration containing a particular risk filtration. The
self sufficient filtration heuristically includes all variables useful in predicting the future path of
the risk in question. Hence we have the smaller filtration which we call the risk filtration that is
contained in the larger self sufficient filtration containing the risk filtration that plays a critical role
in understanding the pricing of risks. For ANKP to hold, the projection of the pricing kernel onto
the self sufficient filtration must be orthogonal to all the martingales in the self sufficient filtration
that end in a random variable measurable with respect to the smaller risk filtration.

The second set of correlation conditions are designed to ensure that self sufficiency is maintained
under the measure change, a property critical for ANKP to actually yield NKP. For NKP it is
required that the stochastic logarithm of the density minus the stochastic logarithm of the projection
be orthogonal to all the martingales in the self sufficient filtration. Equivalently, the projection of
the difference must vanish and hence we call these exposures hidden exposures.

Additionally we show that the density is strongly negatively priced in that, for example, all
monotonic increasing functions of the density receive a negative risk premium. Furthermore, the
equivalence of the density under increasing monotonic transformations is the unique random variable
with this property. It is therefore the classic insurance asset.

A number of interesting questions remain. We would like to know if there exists a change
of measure in a continuous time setting with the property that all nontrivial martingales on the
filtration of the economy experience a change of probability or that all risks are priced. For the case
of a one factor model with a constant price for the Brownian motion risk (Example 5) we showed
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that there exists a semimartingale that undergoes no change of probability. It remains to find a
martingale if any, with this property.
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