Thèse de doctorat de l'université Paris VI

Développement et analyse de schémas adaptatifs pour les équations de transport

Martin Campos Pinto

Laboratoire Jacques-Louis Lions

Introduction

Plan de l'exposé

- I. Approximation multi-échelle
- II. Un schéma adaptatif semi-lagrangien pour l'équation de Vlasov-Poisson
 - (a) Estimation d'erreur a priori dans L^{∞}
 - (b) Analyse de complexité
- III. Analyse des lois de conservation scalaires en distance uniforme
 - (a) Stabilité des lois à flux convexes
 - (b) Régularité des solutions

- # On considère ici le problème consistant à approcher, en dimension 2, une fonction f donnée :
 - on notera $P_{\mathcal{K}}$ l'interpolation affine par morceaux associée à une triangulation conforme \mathcal{K} ,
 - on supposer que f est continue,
 - et on mesurera l'erreur d'interpolation $||(I P_{\mathcal{K}})f||$ dans L^{∞} .
- # On peut alors envisager deux questions :
 - pour un nombre maximal N de triangles, quelle est la plus petite erreur d'interpolation qu'on puisse réaliser ?
 - ou inversement, quel est le nombre minimal de triangles nécessaires pour atteindre une précision fixée ε ?

Triangulations réalisant une erreur ε prescrite

Avec une régularité uniforme : si $f \in W^{2,\infty}$, on peut utiliser l'estimation

$$\|(I-P_{\mathcal{K}})f\|_{L^{\infty}(\Delta)} \lesssim (h_{\Delta})^2 |f|_{W^{2,\infty}(\Delta)}.$$

$$\longrightarrow$$
 en posant $h^2_{\Delta} = \varepsilon(|f|_{W^{2,\infty}(\mathbb{R}^2)})^{-1}$, on aura

$$\#(\mathcal{K}) \sim |f|_{W^{2,\infty}(\mathbb{R}^2)} \varepsilon^{-1} \quad \text{et} \quad ||(I - P_{\mathcal{K}})f||_{L^{\infty}} \leq \varepsilon$$

Triangulations réalisant une erreur ε prescrite

On peut aussi utiliser une régularité plus faible, avec

 $\|(I - P_{\mathcal{K}})f\|_{L^{\infty}(\Delta)} \lesssim |f|_{W^{2,1}(\Delta)}$

et vouloir équilibrer la courbure : si tous les triangles vérifient

 $c\varepsilon \leq |f|_{W^{2,1}(\Delta)} \leq \varepsilon,$

alors $\#(\mathcal{K}) \leq |f|_{W^{2,1}(\mathbb{R}^2)} \varepsilon^{-1}$ et $\|(I - P_{\mathcal{K}})f\|_{L^{\infty}} \leq \varepsilon$

Approche multi-échelle : un compromis

- Pour des raisons de simplicité géometrique et algorithmique, nos maillages seront basés sur des cellules carrées et dyadiques
- # qui correspondent à des découpages isotropes, récursifs et non-uniformes :

structure d'arbre naturelle : on notera

- $\mathcal{F}(\alpha)$ les 4 filles de α ,
- $\mathcal{P}(\alpha)$ la parente de α ,
- $\ell(\alpha)$ le niveau de α

Algorithme d'ε-adaptation

- # partant d'un niveau uniforme très large ℓ_0 :
 - \diamond poser $\Lambda_{\ell_0} := \{ \alpha : \ell(\alpha) = \ell_0 \}$,
 - Ajouter des cellules plus fines par découpages récursifs :

$$\Lambda_{\ell+1} := \Lambda_{\ell} \cup \{\beta \in \mathcal{F}(\alpha) : \alpha \in \Lambda_{\ell} \text{ et } |f|_{W^{2,1}}(\alpha) > \varepsilon\}$$

jusqu'à ce que $\Lambda_{L+1} = \Lambda_L$,

o considérer la partition composée des cellules feuilles :

$$M_{\varepsilon}(f) := \{ \alpha \in \Lambda : \mathcal{F}(\alpha) \cap \Lambda_L = \emptyset \}$$

Si $f \in W^{2,1}$, cet algorithme converge ($L < \infty$) et clairement,

$$\sup_{\alpha \in M_{\varepsilon}(f)} |f|_{W^{2,1}}(\alpha) \le \varepsilon$$

Analyse de complexité

- # Observation : à cause de la structure d'arbre, il peut arriver que |f|_{W^{2,1}(α)} ≪ ε sur de nombreuses cellules de M_ε(f).
- # Exemple: si le support de ψ est dans $[0,1]^2$, le support de $\psi_j := \psi(2^j x, 2^j v)$ sera dans $[0, 2^{-j}]^2$, et $|\psi_j|_{W^{2,1}} = |\psi|_{W^{2,1}}$.

 $\# \big((M_{\varepsilon}(\psi_j)) \ge j$ dès que $\varepsilon < |\psi|_{W^{2,1}}$

Pour un résultat de complexité, il nous faut donc prévenir tout phénomène de concentration par plus de régularité.

Analyse de complexité

- # Observation : à cause de la structure d'arbre, il peut arriver que |f|_{W^{2,1}(α)} ≪ ε sur de nombreuses cellules de M_ε(f).
- # Exemple: si le support de ψ est dans $[0,1]^2$, le support de $\psi_j := \psi(2^j x, 2^j v)$ sera dans $[0, 2^{-j}]^2$, et $|\psi_j|_{W^{2,1}} = |\psi|_{W^{2,1}}$.

 $\# \big((M_{\varepsilon}(\psi_j) \big) \geq j$ dès que $\varepsilon < |\psi|_{W^{2,1}}$

Pour un résultat de complexité, il nous faut donc prévenir tout phénomène de concentration par plus de régularité. Ainsi,

$$f \in W^{2,p}$$
 with $p > 1 \implies \#(M_{\varepsilon}(f)) \le C|f|_{W^{2,p}} \varepsilon^{-1}$

Graduation des niveaux

pour assurer la stabilité du schéma, nos partitions dyadiques M devront être graduées :

$$\alpha \in M, \ \beta \in M, \ \bar{\alpha} \cap \bar{\beta} \neq \emptyset \implies |\ell(\alpha) - \ell(\beta)| \le 1$$

- # l'algorithme d' ε -adaptation sera donc corrigé suivant
 - \diamond partant de $\Lambda_{\ell_0} := \{ \alpha : \ell(\alpha) = \ell_0 \}$
 - \diamond construire pour $\ell \geq \ell_0$, $\Lambda_{\ell+1} := (\ldots)$
 - \diamond prendre pour $M_{\varepsilon}(f)$ les feuilles de Λ_L
 - \diamond définir $A_{\varepsilon}(f)$ comme le plus petit raffinement gradué de $M_{\varepsilon}(f)$.
- # Clairement, le maillage ainsi obtenu vérifie $|f|_{W^{2,1}}(\alpha) \leq \varepsilon$ sur toutes ses cellules α .

Graduation des niveaux

pour assurer la stabilité du schéma, nos partitions dyadiques M devront être graduées :

$$\alpha \in M, \ \beta \in M, \ \bar{\alpha} \cap \bar{\beta} \neq \emptyset \implies |\ell(\alpha) - \ell(\beta)| \le 1$$

- # l'algorithme d' ε -adaptation sera donc corrigé suivant
 - \diamond partant de $\Lambda_{\ell_0} := \{ \alpha : \ell(\alpha) = \ell_0 \}$
 - \diamond construire pour $\ell \geq \ell_0$, $\Lambda_{\ell+1} := (...)$
 - \diamond prendre pour $M_{\varepsilon}(f)$ les feuilles de Λ_L
 - \diamond définir $A_{\varepsilon}(f)$ comme le plus petit raffinement gradué de $M_{\varepsilon}(f)$.
- # Clairement, le maillage ainsi obtenu vérifie $|f|_{W^{2,1}}(\alpha) \leq \varepsilon$ sur toutes ses cellules α .
- # On peut également montrer que $\#(\mathbf{A}_{\varepsilon}(f)) \leq C \#(M_{\varepsilon}(f))$

Discretisations \mathcal{P}^1 adaptatives

Partant d'un maillage dyadique M gradué, on peut construire une triangulation conforme $\mathcal{K}(M)$ suivant

Discretisations \mathcal{P}^1 adaptatives

Partant d'un maillage dyadique M gradué, on peut construire une triangulation conforme $\mathcal{K}(M)$ suivant

Discretisations \mathcal{P}^1 adaptatives

Partant d'un maillage dyadique M gradué, on peut construire une triangulation conforme $\mathcal{K}(M)$ suivant

L'interpolation associée $P_M := P_{\mathcal{K}(M)}$ vérifie alors

$$|(I - P_M)f||_{L^{\infty}} \lesssim \sup_{\alpha \in M} |f|_{W^{2,1}(\alpha)}$$

LJLL-18.11.05

II. Un schéma adaptatif semi-lagrangien pour l'équation de Vlasov-Poisson

travaux réalisés en collaboration avec

Michel Mehrenberger

Equation de Vlasov-Poisson

Décrit l'évolution dynamique d'un plasma non-collisionnel dans l'espace des phases :

$$\partial_t f(t, x, v) + v \ \partial_x f(t, x, v) + E(t, x) \ \partial_v f(t, x, v) = 0 \tag{V}$$

$$\partial_x E(t,x) = \int f(t,x,v) \,\mathrm{d}v \ -1 + \partial_x E_{app}(t,x) \tag{P}$$

[#] à *t* fixé, $f(t, \cdot, \cdot)$ est la densité de particules dans l'espace des phases (x, v), de sorte que $\iint_{\Omega} f(t, x, v) dx dv$ représente la charge contenue dans un domaine Ω.

Forme lagrangienne de l'équation de Vlasov

En désignant par (X, V)(t) = (X, V)(t; x, v) les trajectoires caractéristiques, solutions du système différentiel

$$(X,V)(0) = (x,v), X'(t) = V(t), V'(t) = E(t,X(t)),$$

l'équation de Vlasov

 $\partial_t f(t, x, v) + v \ \partial_x f(t, x, v) + E(t, x) \ \partial_v f(t, x, v) = 0 \qquad (V)$

prend la forme $\frac{d}{dt}f(t, X(t), V(t)) = 0$, pour tout couple (x, v).

Forme lagrangienne de l'équation de Vlasov

En désignant par (X, V)(t) = (X, V)(t; x, v) les trajectoires caractéristiques, solutions du système différentiel

$$(X,V)(0) = (x,v), X'(t) = V(t), V'(t) = E(t,X(t)),$$

l'équation de Vlasov

 $\partial_t f(t, x, v) + v \,\partial_x f(t, x, v) + E(t, x) \,\partial_v f(t, x, v) = 0 \qquad (V)$

prend la forme $\frac{d}{dt}f(t, X(t), V(t)) = 0$, pour tout couple (x, v).

... et le flot $(x, v) \rightarrow (X, V)(t; x, v)$ est un difféomorphisme.

Principe du schéma semi-lagrangien

Connaissant $f_n \approx f(t_n)$ (où $t_n = n\Delta t$), on approche le flot arrière

$$\mathcal{A}(t_n): (x,v) \to (X,V)(t_n;t_{n+1},x,v)$$

par un difféomorphisme $\mathcal{A}_n = \mathcal{A}[f_n]$.

- # La solution numérique est alors transportée par $T : f_n \to f_n \circ A_n$,
- # puis interpolée sur une triangulation \mathcal{K} , suivant $| f_{n+1} := P_{\mathcal{K}} \mathcal{T} f_n |$

Analyse d'erreur - approche uniforme

En décomposant l'erreur $e_{n+1} := \|f(t_{n+1}) - f_{n+1}\|_{L^{\infty}}$ suivant

 $e_{n+1} \leq \|f(t_{n+1}) - \mathcal{T}f(t_n)\|_{L^{\infty}} + \|\mathcal{T}f(t_n) - \mathcal{T}f_n\|_{L^{\infty}} + \|(I - P_{\mathcal{K}})\mathcal{T}f_n\|_{L^{\infty}},$

et en utilisant un schéma de splitting pour calculer \mathcal{T} , on peut établir (Besse ~ 04) que lorsque $f_0 \in W^{2,\infty}_c(\mathbb{R}^2)$,

 $e_{n+1} \le (1 + C(T)\Delta t)e_n + C(T)(\Delta t^3 + h^2), \quad n\Delta t \le T.$

- # D'où l'on déduit (Gronwall) que $e_n \leq C(T)(\Delta t^2 + h^2/\Delta t)$.
- # Complexité : avec $\Delta t^2 \sim h^2 / \Delta t$, on obtient $e_n \leq C(T) h^{4/3}$, de sorte que la taille $N_h \sim h^{-2}$ du maillage associé vérifie

$$e_n \le C(T) N_h^{-2/3}$$

Principe du schéma semi-lagrangien adaptatif

Connaissant $f_n \approx f(t_n)$ (où $t_n = n\Delta t$), on approche le flot arrière

$$\mathcal{A}(t_n): (x,v) \to (X,V)(t_n;t_{n+1},x,v)$$

par un difféomorphisme $\mathcal{A}_n = \mathcal{A}[f_n]$.

- # La solution numérique est alors transportée par $T : f_n \to f_n \circ A_n$,
- # puis interpolée sur un nouveau maillage : $f_{n+1} := P_{M^{n+1}}Tf_n$

Analyse d'erreur - approche adaptative

En décomposant l'erreur $e_{n+1} := \|f(t_{n+1}) - f_{n+1}\|_{L^{\infty}}$ suivant

 $e_{n+1} \le \|f(t_{n+1}) - \mathcal{T}f(t_n)\|_{L^{\infty}} + \|\mathcal{T}f(t_n) - \mathcal{T}f_n\|_{L^{\infty}} + \|(I - P_{M^{n+1}})\mathcal{T}f_n\|_{L^{\infty}},$

et en utilisant le même schéma de splitting pour \mathcal{T} , on peut encore établir (C.P.) que lorsque $f_0 \in W_c^{1,\infty}(\mathbb{R}^2)$,

$$e_{n+1} \leq (1+C(T)\Delta t)e_n + C(T)\Delta t^3 + ||(I-P_{M^{n+1}})\mathcal{T}f_n||_{L^{\infty}}, \quad n\Delta t \leq T.$$

Analyse d'erreur - approche adaptative

En décomposant l'erreur $e_{n+1} := \|f(t_{n+1}) - f_{n+1}\|_{L^{\infty}}$ suivant

 $e_{n+1} \le \|f(t_{n+1}) - \mathcal{T}f(t_n)\|_{L^{\infty}} + \|\mathcal{T}f(t_n) - \mathcal{T}f_n\|_{L^{\infty}} + \|(I - P_{M^{n+1}})\mathcal{T}f_n\|_{L^{\infty}},$

et en utilisant le même schéma de splitting pour \mathcal{T} , on peut encore établir (C.P.) que lorsque $f_0 \in W_c^{1,\infty}(\mathbb{R}^2)$,

$$e_{n+1} \le (1+C(T)\Delta t)e_n + C(T)\Delta t^3 + \|(I-P_{M^{n+1}})\mathcal{T}f_n\|_{L^{\infty}}, \quad n\Delta t \le T.$$

Pour estimer l'erreur numérique, il est donc naturel de vouloir prédire un maillage M^{n+1} qui soit ε -adapté à $\mathcal{T}f_n$:

$$\sup_{\alpha \in M^{n+1}} |\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le \varepsilon$$

Prédiction du maillage, I

Objectif : étant donné M^n et f_n , construire M^{n+1} de façon que

$$\sup_{\alpha \in M^{n+1}} |\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le \varepsilon$$

Idée : utiliser un algorithme de découpages adaptatifs.

Prédiction du maillage, I

Objectif : étant donné M^n et f_n , construire M^{n+1} de façon que

$$\sup_{\alpha \in M^{n+1}} |\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le \varepsilon$$

- # Idée : utiliser un algorithme de découpages adaptatifs.
- # On doit alors se demander :
 - Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?

Prédiction du maillage, I

Objectif : étant donné M^n et f_n , construire M^{n+1} de façon que

$$\sup_{\alpha \in M^{n+1}} |\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le \varepsilon$$

- # Idée : utiliser un algorithme de découpages adaptatifs.
- # On doit alors se demander :
 - Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?
 - Q_2 : que peut valoir $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} = |f_n \circ \mathcal{A}_n|_{W^{2,1}(\alpha)}$?

Prédiction du maillage, I

Objectif : étant donné M^n et f_n , construire M^{n+1} de façon que

$$\sup_{\alpha \in M^{n+1}} |\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le \varepsilon$$

- # Idée : utiliser un algorithme de découpages adaptatifs.
- # On doit alors se demander :
 - Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?
 - Q_2 : que peut valoir $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} = |f_n \circ \mathcal{A}_n|_{W^{2,1}(\alpha)}$?
 - Q_3 : le transport approché \mathcal{T} est-il stable vis-à-vis de la courbure,

$$|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C|f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))} ?$$

Prédiction du maillage, II

Q_3 : le transport approché T est-il stable vis-à-vis de la courbure,

 $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C |f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))}$?

Prédiction du maillage, II

Q_3 : le transport approché T est-il stable vis-à-vis de la courbure,

 $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C|f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))} ?$

La réponse est : non...

Prédiction du maillage, II

Q_3 : le transport approché T est-il stable vis-à-vis de la courbure,

 $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C|f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))} ?$

- # La réponse est : non...
- # ... mais s'il on introduit une courbure géométrique $|\cdot|_{\star}$ pour les fonctions affines par morceaux, et sous réserve d'une borne $L_t^{\infty}(W_x^{2,\infty})$ sur le champ électrique approché, on peut montrer que \mathcal{T} stabilise l'énergie

$$\mathcal{E}(f_n, \alpha) := |f_n|_{\star}(\alpha) + \Delta t \operatorname{Vol}(\alpha) |f_n|_{W^{1,\infty}}.$$

par simplicité, on supposera donc que la réponse est : oui.

Prédiction du maillage, III

$$Q_2$$
: que peut valoir $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} = |f_n \circ \mathcal{A}_n|_{W^{2,1}(\alpha)}$?

Prédiction du maillage, III

Q_2 : que peut valoir $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} = |f_n \circ \mathcal{A}_n|_{W^{2,1}(\alpha)}$?

Réponse :

$$|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C|f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))} \le C\sum_{\beta \in \mathcal{I}(\alpha)} |f_n|_{W^{2,1}(\beta)},$$

où $\mathcal{I}(\alpha)$ désigne les cellules de M^n qui intersectent $\mathcal{A}_n(\alpha)$:

Prédiction du maillage, III

Q_2 : que peut valoir $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} = |f_n \circ \mathcal{A}_n|_{W^{2,1}(\alpha)}$?

Réponse :

$$|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C|f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))} \le C\sum_{\beta \in \mathcal{I}(\alpha)} |f_n|_{W^{2,1}(\beta)},$$

où $\mathcal{I}(\alpha)$ désigne les cellules de M^n qui intersectent $\mathcal{A}_n(\alpha)$:

Prédiction du maillage, III

Q_2 : que peut valoir $|\mathcal{T}f_n|_{W^{2,1}(\alpha)} = |f_n \circ \mathcal{A}_n|_{W^{2,1}(\alpha)}$?

Réponse :

$$|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C|f_n|_{W^{2,1}(\mathcal{A}_n(\alpha))} \le C\sum_{\beta \in \mathcal{I}(\alpha)} |f_n|_{W^{2,1}(\beta)},$$

où $\mathcal{I}(\alpha)$ désigne les cellules de M^n qui intersectent $\mathcal{A}_n(\alpha)$:

Prédiction du maillage, IV

Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?

Prédiction du maillage, IV

- # Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?
- # Réponse :

♦ on découpe α lorsque $\mathcal{A}_n(c_\alpha)$ "tombe" dans une petite cellule $\beta \in M^n$, i.e. telle que $\ell(\beta) > \ell(\alpha)$.

Prédiction du maillage, IV

- # Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?
- # Réponse :
 - ♦ on découpe α lorsque $\mathcal{A}_n(c_\alpha)$ "tombe" dans une petite cellule $\beta \in M^n$, i.e. telle que $\ell(\beta) > \ell(\alpha)$.
- # Si $\Delta t \leq C(f_0, T)$, le maillage ainsi prédit $T[\mathcal{A}_n]M^n$ vérifie alors : # $(\mathcal{I}(\alpha)) \leq C$ sur toutes ses cellules,

Prédiction du maillage, IV

- # Q_1 : quelles cellules doit-on découper pour construire M^{n+1} ?
- # Réponse :

♦ on découpe α lorsque $\mathcal{A}_n(c_\alpha)$ "tombe" dans une petite cellule $\beta \in M^n$, i.e. telle que $\ell(\beta) > \ell(\alpha)$.

Si $\Delta t \leq C(f_0, T)$, le maillage ainsi prédit $T[\mathcal{A}_n]M^n$ vérifie alors : # $(\mathcal{I}(\alpha)) \leq C$ sur toutes ses cellules, de sorte que l'on a

$$|\mathcal{T}f_n|_{W^{2,1}(\alpha)} \le C \sum_{\beta \in \mathcal{I}(\alpha)} |f_n|_{W^{2,1}(\beta)} \le C \sup_{\beta \in M^n} |f_n|_{W^{2,1}(\beta)},$$

c'est-à-dire

 M^n est ε -adapté à $f_n \implies T[\mathcal{A}_n]M^n$ est $C\varepsilon$ -adapté à $\mathcal{T}f_n$

Forme complète du schéma adaptatif

- # Muni des algorithmes :
 - d' ε -adaptation de maillage A_{ε} à une fonction connue,
 - de prédiction (transport) de maillage $T[\mathcal{A}_n]$,
- # on calcule à chaque pas de temps, connaissant (M^n, f_n) : \diamond un maillage prédit $\tilde{M}^{n+1} := T[\mathcal{A}_n]M^n$
 - \diamond une solution intermédiaire $\tilde{f}_{n+1} := P_{\tilde{M}^{n+1}} \mathcal{T} f_n$
 - \diamond un maillage corrigé $M^{n+1} := A_{\varepsilon}(\tilde{f}_{n+1})$
 - \diamond et la solution interpolée $f_{n+1} := P_{M^{n+1}} \tilde{f}_{n+1}$

Forme complète du schéma adaptatif

- # Muni des algorithmes :
 - d' ε -adaptation de maillage A_{ε} à une fonction connue,
 - de prédiction (transport) de maillage $T[\mathcal{A}_n]$,
- # on calcule à chaque pas de temps, connaissant (Mⁿ, f_n):

 ◊ un maillage prédit $\tilde{M}^{n+1} := T[\mathcal{A}_n]M^n$
 - \diamond une solution intermédiaire $\tilde{f}_{n+1} := P_{\tilde{M}^{n+1}} \mathcal{T} f_n$
 - \diamond un maillage corrigé $M^{n+1} := A_{\varepsilon}(\widetilde{f}_{n+1})$
 - \diamond et la solution interpolée $f_{n+1} := P_{M^{n+1}} \tilde{f}_{n+1}$
- # Théorème 1 (Mehrenberger et C. P.)

Si
$$\Delta t \leq C(f_0, T)$$
, $\|\|f(t_n) - f_n\|_{L^{\infty}} \lesssim \Delta t^2 + \varepsilon / \Delta t$

Forme complète du schéma adaptatif

- # Muni des algorithmes :
 - d' ε -adaptation de maillage A_{ε} à une fonction connue,
 - de prédiction (transport) de maillage $T[\mathcal{A}_n]$,
- # on calcule à chaque pas de temps, connaissant (M^n, f_n) :
 ◊ un maillage prédit $\tilde{M}^{n+1} := T[\mathcal{A}_n]M^n$
 - \diamond une solution intermédiaire $\tilde{f}_{n+1} := P_{\tilde{M}^{n+1}} \mathcal{T} f_n$
 - \diamond un maillage corrigé $M^{n+1} := A_{\varepsilon}(\widetilde{f}_{n+1})$
 - \diamond et la solution interpolée $f_{n+1} := P_{M^{n+1}} \tilde{f}_{n+1}$
- # Théorème 1 (Mehrenberger et C. P.)

Si $\Delta t \leq C(f_0, T)$,

$$\|f(t_n) - f_n\|_{L^{\infty}} \lesssim \varepsilon^{2/3}$$

Forme complète du schéma adaptatif

- # Muni des algorithmes :
 - d' ε -adaptation de maillage A_{ε} à une fonction connue,
 - de prédiction (transport) de maillage $T[\mathcal{A}_n]$,
- # on calcule à chaque pas de temps, connaissant (Mⁿ, f_n):

 ◇ un maillage prédit $\tilde{M}^{n+1} := T[\mathcal{A}_n]M^n$
 - \diamond une solution intermédiaire $\tilde{f}_{n+1} := P_{\tilde{M}^{n+1}} \mathcal{T} f_n$
 - \diamond un maillage corrigé $M^{n+1} := A_{\varepsilon}(\widetilde{f}_{n+1})$
 - \diamond et la solution interpolée $f_{n+1} := P_{M^{n+1}} \tilde{f}_{n+1}$
- # Théorème 2 (Mehrenberger et C. P.)

Si $\Delta t \leq C(f_0, T)$,

$$\#\big(\tilde{M}^{n+1}\big) \lesssim \#(M^n)$$

Perspectives

- # Conclure l'analyse de complexité
 - point clé : évolution de la courbure totale $|f_n|_{W^{2,1}(\mathbb{R}^2)}$ lors des interpolations
- # Mettre au point des méthodes adaptatives qui conservent la masse $||f_n||_{L^1(\mathbb{R}^2)}$ des solutions
- # Mettre en œuvre des ordres d'interpolation plus élevés
- # Etudier le passage aux dimensions supérieures
 - schémas basés sur des "sparse grids" adaptatives

Perspectives : Sparse Grids

- # Eléments finis hiérarchiques obtenus par produits tensoriels
 - En dimension 1 :

Produits tensoriels :

Perspectives : Sparse Grids

- Ne sont pas associées à des maillages, mais correspondent à des alogrithmes de découpages récursifs
- # Avantage : taille des bases "éparses"
 - base complète : $N_L \sim 2^{dL}$ ($\approx 10^9$ pour d = 6 et L = 5)
 - base éparse : $N_L \sim 2^L L^{d-1}$ ($\approx 10^5$ pour d = 6 et L = 5)

LJLL-18.11.05

III. Analyse des lois de conservation scalaires en distance de Hausdorff

travaux réalisés en collaboration avec

Albert Cohen, Wolfgang Dahmen, Ronald DeVore et Pencho Petrushev

Lois de conservation scalaires

$$\partial_t u(t,x) + \operatorname{Div}_x[F(u(t,x))] = 0, \qquad u(t=0,\cdot) = u_0 \qquad (LCS)$$

- # Apparition de discontinuités au bout d'un temps fini, même pour des données initiales u_0 très régulières.
- # Kruzkov (~ 70): existence et unicité de solutions faibles entropiques appartenant à L[∞] ∩ L¹ en tout temps t > 0.
 - Monotonie : $u_0 \leq v_0 \implies u(t, \cdot) \leq v(t, \cdot)$
 - Stabilité L^1 : $\|u(t, \cdot) v(t, \cdot)\|_{L^1} \le \|u_0 v_0\|_{L^1}$

La stabilité comme facteur de régularité, l

Premier exemple : conservation de la régularité BV :

$$|u|_{BV} = \sup_{h \neq 0} \frac{\|u(\cdot) - u(\cdot - h)\|_{L^1}}{|h|}$$

$u(t, \cdot - h)$ étant la solution entropique issue de la donnée initiale translatée $u_0(\cdot - h)$, la stabilité L^1 permet d'écrire

$$||u(t,\cdot) - u(t,\cdot-h)||_{L^1} \le ||u_0 - u_0(\cdot-h)||_{L^1} \le |u_0|_{BV}|h|,$$

de sorte que

$$|u(t,\cdot)|_{BV} \le |u_0|_{BV}.$$

La stabilité comme facteur de régularité, II

- # Deuxième exemple : conservation de certaines régularités Besov (DeVore et Lucier, \sim 90).
- # Espaces de Besov $B_q^{\alpha}(L^p)$: de façon intuitive, une fonction $u \in L^p$ appartient à l'espace $B_q^{\alpha}(L^p)$ si elle possède $\alpha > 0$ dérivées dans L^p .
- Ces espaces permettent de caractériser les fonctions pouvant être approchées à un certain ordre par des polynômes par morceaux (DeVore, Popov et Petrushev, ~ 88).

Caractérisation des ordres d'approximation

- # Σ_N désigne ici l'ensemble des polynômes par morceaux de degré inférieur où égal à k sur N intervalles arbitraires.
- # Espaces d'approximation $\mathcal{A}^{\alpha}(L^p)$: on notera

$$u \in \mathcal{A}^{\alpha}(L^p) \iff \inf_{S_N \in \Sigma_N} \|u - S_N\|_{L^p} \lesssim N^{-\alpha}$$

Théorème (DeVore, Popov et Petrushev, \sim 88)

$$\mathcal{A}^{\alpha}(L^{1}) = B^{\alpha}_{q}(L^{q}) \quad \text{et} \quad \|u\|_{\mathcal{A}^{\alpha}(L^{1})} \sim \|u\|_{B^{\alpha}_{q}(L^{q})}$$
pour $1/q = \alpha + 1$

Conservation de certaines régularités Besov

Théorème (DeVore et Lucier, \sim 90)

 $u_0 \in B_q^{\alpha}(L^q) \implies u(t, \cdot) \in B_q^{\alpha}(L^q) \quad \text{pour tout } t, \text{ avec } 1/q = \alpha + 1$

- # Lorsque $\alpha < 2$ et $F(u) := u^2/2$, la preuve est élémentaire :
 - comme $u_0 \in \mathcal{A}^{\alpha}(L^1)$, il existe une suite $S_N \in \Sigma_N$ telle que

$$\|u_0 - S_N\|_{L^1} \lesssim N^{-\alpha}$$

- Une propriété de l'équation de Burgers est que la solution s_N issue de S_N est encore affine sur 2N morceaux.
- La stabilité L^1 nous permet alors d'écrire

$$\|u(t,\cdot) - s_N\|_{L^1} \le \|u_0 - S_N\|_{L^1} \le (2N)^{-\alpha}$$

et le résultat découle du théorème de caractérisation.

Distance de Hausdorff

Si u et v sont dans BV, on définit leur distance de Hausdorff par

$$d(u,v) := d_H(G_u, G_v),$$

autrement dit par la distance de Hausdorff usuelle entre leurs graphes respectifs :

 $d_H(G_u, G_v) := \max\{ \sup_{a \in G_u} \inf_{b \in G_v} |a - b|, \sup_{b \in G_v} \inf_{a \in G_u} |a - b| \}$

Un résultat de stabilité uniforme

Théorème (Cohen, Dahmen, DeVore et C. P.)

Si le flux *F* est fortement convexe

 $0 < A \le F'' \le B,$

et si la donnée initiale $u_0 \in BV$ est semi-lipschitzienne, alors

 $d(u,v) \le C(t)d(u_0,v_0)$

avec $C(t) \leq 1+t$.

Principe de la preuve

Encadrer v_0 par des translations de u_0 ,

utiliser la formule de Lax pour estimer la distance entre u_0^+ et u_0^- .

Sélection des trajectoires entropiques

Théorème (Lax, ~ 73) lorsque F est convexe, u est donnée par

$$u(x,t) = u_0(y), \text{ où } y \text{ minimise } \mathcal{L}_{u_0}(y,x) := \int_0^y u_0(s) ds + tF^*(\frac{x-y}{t}),$$

 F^* étant la transformée de Legendre de F.

Un résultat d'approximation uniforme

Théorème (Cohen, Petrushev et C. P.)

Sous les hypothèses du théorème précédent, on montre que

$$u_0 \in \mathcal{A}^{\alpha}(L^{\infty}) \implies u(t, \cdot) \in \mathcal{A}^{\alpha}(d)$$

c'est-à-dire

$$\inf_{S_N \in \Sigma_N} \|u_0 - S_N\|_{L^{\infty}} \lesssim N^{-\alpha} \implies \inf_{S_N \in \Sigma_N} d(u(t, \cdot) - S_N) \lesssim N^{-\alpha}$$

pour tout ordre $\alpha > 0$ et tout temps t.

Une application du théorème de stabilité

Théorème (Cohen et C. P.)

Pour une donnée initiale semi-lipschitzienne, le schéma upwind approchant l'advection linéaire

$$\partial_t u(t,x) + a \partial_x u(t,x) = 0$$

sur un maillage uniforme de pas *h* fait converger les solutions numériques en distance de Hausdorff suivant

$$d(U_N, u(n\Delta t)) \lesssim h^{1/3}$$

Perspectives

- # Analyse de méthodes existantes :
 - méthodes de viscosité évanescente
 - schémas ENO (Essentiellement Non Oscillants)
- # Développement de nouveaux schémas, notamment adaptatifs
- Etude en dimensions supérieures (avec une notion de distance de Hausdorff entre deux graphes pris à des instants différents)
- De façon plus générale, recherche de méthodes atteignant les ordres d'approximation garantis par la théorie...