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Introduction

In this thesis we analyze several problems from the calculus of variations in
the framework of optimal transport theory. We are mainly concerned with
optimization problems from this theory and with other transportation prob-
lem which are alternative to the classical Monge-Kantorovich formalization.
Most of the models we present come from application purposes and the set
of possible applications includes urban economics, biology, fluid mechanics
and geophysics.

The main topic of the thesis consists of the study optimal transport
problem where some kind of concentration phenomena occur: on the one
hand concentration of the marginal measures and on the other concentration
along the transport itself.

The first subject, concentration of marginal measures, has been devel-
oped in the form of Transport and Concentration Problems, i.e. minimization
problems where the unknowns are probability measures and the quantity to
be minimized involves some functional encouraging or discouraging their
concentration or dispersion and some transport costs as well. In particular,
in these problems, transport appear only through their minimal value and
we are in general not interested in finding the variables (transport plans,
maps...) that actually realize the minimum, and we are only concerned
with the properties of “optimal” marginal measures. These problems have
some quite natural interpretation from a modelistic point of view. For in-
stance, if we are concerned with the planning of a geographical region, we
may be interested in finding a concentrated distribution of production cen-
ters together with a spread distribution of consumers, keeping anyway as
small as possible the transportation costs for commuting or bringing the
product to the consumers. Similar problems may also have an interpreta-
tion in the study of the shape of certain biological objects, such as leaves;
these are in fact objects whose goal is to maximize their extension to take
advantage of sunlight, but they receive their nutrient from a single concen-
trated source and the transport cost for this nutrient is to be taken into



account.

The attention that we give to these problems dates back to the Laurea
Thesis [66], prepared in 2003 under the direction of Prof. Buttazzo, and has
evolved in the years, considering several models and discussing the corre-
sponding results. A detailed report on these models is exactly the aim of
the first part of this thesis. Our attention will be devoted to some modeling
aspects and to the analysis of optimality conditions. In particular necessary
optimality conditions, typically of the first order, are a key feature of this
thesis. They are exploited as much as possible to obtain regularity, qualita-
tive properties and, when possible, explicit expressions for the minimizers.
In this case, as the unknowns are measures and hence belong to a nice vector
space, differentiation is often feasible and this program gives unexpectedly
strong results.

The second of the subjects we mentioned, concentration along transport,
has a more classical structure: we are given the starting and arrival measures
and we look for the optimal structure which transports the first onto the
second. What is important is that in some applications we want to take
into account how much the transportation appears to be concentrated: for
instance if too many people pass through a same road in a city there could
be a congestion effect; on the other hand if we need to create a road system,
we would like to concentrate most of the path that different drivers follow
on a same road, so that we only need to build few larger roads instead of
several smaller ones. This suggests that there should be some quantities
measuring how much the transportation is concentrated and, according to
the different applications, we would like to consider minimization problem
which encourage or discourage this concentration. It seems reasonable to
consider Monge’s problem as the concentration-neutral one and that we may
create variants departing from this one.

In the thesis the main model discouraging concentration of transport,
i.e. taking into account congestion effects, is hidden in Chapter 2, in the
middle of Transport and Concentration Problems. In such a chapter we only
briefly present it and we are much more interested in its minimal value, in
the sense that we will use it as a functional of the marginal measures. A
more refined and self-contained study of congestion models is in progress in
[36] but it has not been included in this thesis due to its preliminary state.

On the other hand a lot of attention is given to transport problems
encouraging joint transportation. There is a wide literature on them, as
they are very natural in applications, and they give raise to some optimal
one-dimensional branching structures. these structures are dealt with in
the thesis in three chapters (6,7 and 9), together with a brief review of the



already existing results.

Let us see now how the themes above have been developed in the chapters
of the thesis. Each chapter corresponds roughly to a paper that has been
prepared during this three-years doctoral period: some of these articles have
been published and some are accepted. Only the last chapter contains some
new computations not yet presented in preprint form.

Chapters 1, 2 and 3 are the first part of the thesis and present trans-
port and concentration problems. In these chapters we are concerned with
optimization problems of the following kind:

min _ §(u, v) :=T(p,v) + F(p) + Gv),
n,vEP(Q)

where the functional T represents transport costs between the two proba-
bility measures p and v and F' and G are functionals over the space P(£)
of probability measures on {2 with opposite behavior: the first favors spread
measures and penalizes concentration while the latter, on the other hand,
favors concentrated measures. Chapter 1 is devoted to a problem fitting into
this framework that has been proposed in the Laurea Thesis [66] and then
in [28]. A particular choice of the functionals T, F' and G is performed: we
set

T(p,v) = WE(u,v),
Fu) = {fo(u) et if p—u- Ll

400 otherwise,

Gw) = {zkeNgmw i = Tper anday
400 otherwise.
The functions f and g must obviously satisfy some conditions, and in partic-
ular f must be convex and g subadditive. In this way 7" is the minimum of a
Kantorovich optimal transport problem and F and G are local semicontinu-
ous functionals over measures (see [16], [17] and [18]). A short introduction
of this useful class of functionals over measures has been inserted into the
chapter: in this way we can see that both concentration preferring func-
tionals (as G is) and functionals favoring spread measures (as F' does) fall
into this class. Some emphasis is given throughout the Chapter to the in-
terpretation of such a variational model in terms of urban planning: here
the measure u represents residents’ distribution in the urban area €2 and
v stands for the distributions of services. The first measure has to be as
spread as possible to maximize the average use of land of the citizens, while



the second has to be concentrated in order to increase the efficiency f the
production (i.e. we have positive externalities for nearby services). How-
ever, the commuting transportation cost for people needing to move from
home to services must be considered as well. From the interpretation of the
model the convexity and subadditivity assumptions on f and g, which are
useful for technical reasons, turn out to be quite natural.

Besides the modelistic side, the chapter is devoted to some mathematical
aspects of the problem. In this minimization existence results are straight-
forward, at least when €2 is compact. This is due to the semicontinuity of
the functionals with respect to weak convergence of measures. Our atten-
tion is consequently mainly devoted to optimality conditions. Notice that
any pair (u,v) giving finite value to § must be necessarily composed by an
absolutely continuous measure p with density v € L'(2) and by a purely
atomic measure v. Hence it is interesting to deduce properties on the density
u and on the location of the atoms of v. The main results are obtained by
perturbing an optimal p into a new measure p+e(u; —p) and keeping frozen
v. The duality formula in mass transportation plays a crucial role. The idea
is very simple and the computations are simple as well, up to overcoming
some technical difficulties about Kantorovich potentials. The result we get
is the following: if u is the density of p and v a suitably chosen Kantorovich
potential between p and v we have

f'(w) + 9 = const  a.e.

For this result two proofs are provided. The second, mainly based on convex
analysis, has been suggested by an anonymous referee while reviewing the ar-
ticle [28]. In the original paper, anyway, such a proof was only sketched and
it actually requires some preliminary work before being performed. Then,
after understanding optimality conditions for fixed v the attention comes
back to the whole problem when both p and v vary and the results are
applied in order to characterize the global optima. The same results are
also useful to gain some compactness when the problem is posed in an un-
bounded domain, such as Q = R?, where the existence is no longer trivial.
The qualitative shape of the optimal configurations is in the end the follow-
ing: v is composed by finitely many atoms z; and p = u- £ is concentrated
on some balls B; centered at these atoms, with radially decreasing densities
given by an explicit formula:

u=(f)"(c; — v —a;P) forz € B,

These balls may be interpreted as subcities (or cities if  is thought of as
a larger region) and the atoms are their centers, where services are located.



In Chapter 2 we introduce in the subject of urban planning the concept
of traffic congestion. The source of inspiration is a set of works by Beckmann
([10] and [11]) and the idea is the following: it is well known that the Monge-
Kantorovich problem for a distance cost |z — y| is equivalent to the minimal
flow problem

inf{/ Y(z)lde : V- Y=p—rinQ, Y -n=0 onaQ};
Q
if one instead looks at the problem
inf{/ Y(z)]?de : V- Y=p—-vinQ, Y-n=0 onaQ}
Q

we are not only minimizing the total movement that is necessary to pass
from p to v, but we are also penalizing an excessive concentration of this
movement. At the beginning of the chapter this congestion model for opti-
mal transportation is explained in more details. In minimizing the L? norm
of the vector field Y under divergence constraints an elliptic equation with
Neumann boundary conditions appears as an Euler equation. the optimal
flow Y is in fact characterized by

—Ap=pu—v in €,
Y =Vo;
¢ {%ZO on 01},

where the equation as to be taken in the weak sense.

Anyway, as we said above, in the chapter we are not much interested
in the minimization problem itself and in understanding how the optimal
flow looks like, but we are more interested in using the minimal L? norm
of the flow as a quantity which represents the congestioned transport cost
between the two measures. Then we insert this quantity in a Transport and
Concentration Problem as in Chapter 1. It is quite easy to convince oneself,
due to the link with elliptic theory, that the infimum of the L?— flow is
infinite if ;4 — v does not belong to a suitable functional space. This requires
a sort of H~! regularity and in particular prevents v from having atoms.
Hence, in the functional § we will not only replace T by a congestion term,
but G has to be replaced too, as the atomic choice of Chapter 1 is no longer
possible. A very natural choice for the functional G is the following one,
that we call interaction energy, and it is well known in the framework of
optimal transport from the work of McCann ([58]):

G(v) = /Q Ve ) dy),

8



where V (z,y) is, for instance, an increasing function of the distance between
x and y. The idea is to take the interaction cost for a service located at x and
another service located at y and average it with respect to the distribution
of services. For the functional F' we keep the same choice as in Chapter
1 but we particularize it to the case f(s) = s, and in the end we get the
following functional

S, v) = |l = |5 + ull72 + G),

which is a quadratic functional. Here the space X' is the dual space of X =
{v € H'(Q) : oo = 0} with norm |[¢||x = |[V4]|z2 (this representation
of the congestion cost of transport comes from the representation formula
for the optimal flow Y).

After setting the problem and getting some existence results, as in Chap-
ter 1 we look for optimality conditions. Here too the first step is freezing v
and getting a convex quadratic problem in . Then the attention goes to
the problem in v only. This is more involved than what we had in Chapter 1
since now v is no longer discrete and it can a priori be any probability mea-
sure since G(v) < oo for any v € P(€2). We prove consequently a regularity
result for v which guarantees that v is actually absolutely continuous with
bounded density under certain assumptions (in particular, we need 2 to be
convex: in the non-convex case v may have a singular part concentrated on
the non-convex part of 9€2). The result is obtained by approximation and
it is interesting to see that a very powerful regularization technique comes
actually from the use of Monge-Kantorovich theory. In fact the original
idea was to perturb the problem by adding a small term e||v||3, in order
to force the optimal v, to have a density and then to get uniform estimates
on the L* norm of v.. Unfortunately, in this way we could retrieve at the
limit some information only on a particular minimizer of §, i.e. the one
which is approximated by minimizers of the perturbed problems. As we are
not facing a convex problem we have no guarantee that there is a unique
minimizer and we would like to have a regularity result which is valid for
arbitrary minimizers. To do this we decide to add a small perturbation of
the kind 5W22 (v,7), where 7 is a minimizer that we can fix. In this way
we are somehow forcing the minimizers v, to converge to . What is inter-
esting is that, in computing optimality conditions for the minimizers of the
perturbed problems, the Kantorovich potential, induced by the presence of
the Wasserstein distance Wy, appears. Then, well-known estimates on Kan-
torovich potentials help in getting uniform bounds on the densities of v,.
After a long part devoted to regularity the chapter contains some explicit
examples. The one-dimensional case is treated in detail and in this case it



turns out that the functionals involved have some displacement convexity
properties (and the proof of this fact is interesting in itself). Then, the
two-dimensional radial case is treated under some assumptions that ensure
the uniqueness (and hence the radiality) of the solution. The case of a ball,
of the whole space and of a crown is treated with explicit solutions. The
whole work in Chapter 2 comes from a joint paper with Guillaume Carlier
([37]) that has been developed during a three months visit at the University
of Bordeaux IV in 2004.

Chapter 3 contains a subsequent short work ([67]) that has been written
to complete the subject of Transport and Concentration Problems. The goal
was twofold: first, presenting this class of problems as a whole subject, with
possible applications in urban planning (but not only); then, completing the
framework of the problems we studied. In fact with G. Buttazzo we studied
the problem where the transport cost was given by a Wasserstein distance
and the concentration one by a local functional on atomic measures and
with G. Carlier the case of a congestion transport cost and an interaction
concentration cost. We already noticed that the case of congestion + local
atomic functionals is not meaningful as it would have lead to a constantly
infinite functional. Consequently, to complete the framework it is interesting
to consider the Wasserstein + interaction case. The problem is hence the
minimization of the functional

§n.0) = WEu2) + Pl + [ Vie) o v)(de.dy)
X
where F' is the same as in Chapter 1. In Chapter 3 the goals are: determining
some optimality conditions (mainly on v for fixed u, because those on y for
fixed v come directly from what we saw in Chapter 1), using them to get
L regularity, analyzing an explicit, quadratic, example. The regularity
is obtained by the same scheme as in Chapter 2: almost the same kind
of perturbations are performed, but the results on elliptic PDEs are here
replaced by some results on Monge-Ampere equation. This comes from the
fact that the Kantorovich potential plays here the role that in the previous
case was played by the solution of the elliptic PDE. A more refined analysis of
the behavior of the Kantorovich potential on the boundary of 2 allows to give
a result under milder assumptions than what we did in Chapter 2. Anyway,
at least a third of the Chapter is devoted to the general topic of transport and
concentration problems, and a general definition of concentration preferring
functional is given: a functional G : P(Q2) — R U {400} is said to be
concentration preferring if we have G(t;v) < G(v) for any v € P(Q2) and
any t : 0 — Q which is 1—Lipschitz. Moreover it is shown that several other

10



well-known variational problems fall into this class of problems. This is the
case for instance of optimal location problems, which are quite studied in
urban economics, but also of other average distance problems that will be
discussed in Chapter 8 as well.

From Chapter 4 on our attention begins to be more directed towards
branched transport problems. These problems are quite natural when we
look at situations where we want to encourage joint transportation, for in-
stance because building a network system with few large roads is cheaper
than building several small roads. The structures that arise are all charac-
terized by a first gathering of the masses, followed by joint transportation
paths and finally a branching distribution towards the individual destina-
tions. These structures and these problems are likely to appear also in
natural phenomena, for instance in leaves, trees, river basins and blood ves-
sels, and not only in human-built systems. The first mathematical precise
formulation of the problem is due to Gilbert, who looked at it, in its discrete
version, from the point of view of the applications in communication net-
works (see [48]). Once given some sources z; with masses a; and some sinks
y; wth masses b;, his model consists in solving the following minimization
problem

min E(G) := Zwﬁ '(en),
h

where the infimum is among all weighted oriented graphs G = (ep, éx, wp)n
which fulfill the Kirchoff law at any vertex (at any x; we have a;+ incoming
mass = outcoming mass, at any y; we have incoming mass = outcoming
mass +b; and at all the other vertices incoming and outcoming mass are
equal). The exponent « is a fixed parameter 0 < a < 1 so that the function
t — t“ is concave and subadditive.

The main recent mathematical interest on this subject has been try-
ing to generalize this problem to the case of non-discrete measures p and
v. There are very interesting models by Qinglan Xia ([72]), Maddalena-
Solimini-Morel ([57]) and Bernot-Caselles-Morel ([13]). Chapter 4 contains
a different approach that we tried to give to the problem in a joint work
with Alessio Brancolini and Giuseppe Buttazzo. The main idea is looking
at an interpolation between p and v, i.e a curve « in the space of probability
measures, which minimizes a certain length functional

1
T = /0 J(v () |(8) dt,

where J : P(Q) — [0,+0o0] is a functional encouraging the curve to pass
through concentrated measures and || is the metric derivative according

11



to a suitable distance in P(Q2) (for instance the Wasserstein one W,). In
particular, the interest is choosing J = G, where we have

Ga(v) = {ZkeN ap v =73 ey arda,

400 otherwise,

that is a particular case of the functional G used in Chapter 1. It turns out
that this model is not equivalent to those by Gilbert, Xia et al. In fact, as
it considers all the atoms of the measure v(t) at time ¢ and it computes its
speed in a global way and not for each atom separately, it follows that the
functional takes into account also the mass of those atoms that have already
reached their destination and stay eventually still. Anyway the model has a
certain mathematical simplicity, due to the fact that it is in fact a geodesic
problem in the space of probability measures endowed with a conformal
perturbation of the Wasserstein distance. Moreover, the same model may
work under minor changes to obtain very different functionals and optimal
curves. For instance one can replace the functional G, by Fy, given by

Jolul?dl fp=wu-L
F —
(i) {—I—oo otherwise.

In this case too we have a particular choice of a local semicontinuous func-
tional from those that we used in Chapter 1, but here we are discouraging
concentration, favoring on the contrary spread measures.

Throughout the chapter we give some general theoretical existence re-
sults for the minimization of this length energies in the framework of metric
spaces. Then we analyze separately the two cases of G, and Fy. In order
to have a well-posed problem it is also necessary to answer the question
whether the minimal value is finite or not. It is in fact not obvious that
a diffuse measure may be reached by a curve of atomic measures keeping
the energy finite, as well as reaching an atomic measure with L?¢ densities
could be sometimes impossible. What we get is that it may depend on the
exponents a and ¢: for the case of the functional G, we have finite energy
for any pairs of measures (u,v) if « > 1—1/d (d being the dimension of the
ambient space) and for Fj, the same is true if ¢ < 1+1/d. It is interesting to
see how the two cases are somehow specular. At the end of the chapter we
also partly approach the case of Q = R%, where existence is less trivial due
to a certain lack of compactness. This is anyway solved by a more general
theoretical result for metric spaces which are not locally compact. These two
geodesic problems (the one with G, and the one with F,) could be some-
how considered as transport problem where we look at concentration criteria
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along the transport. We are in fact applying to the interpolating measures
the same concentration functional that we used in Chapter 1. Anyway, it
looks rather different from what we did to define congestion in Chapter 2
and to what we will see later on for branching problems. Here the approach
is less Eulerian and more time-dependent.

In Chapter 5 we develop a little more the case of the geodesic functional
based on Fj. In fact this had been presented in Chapter 4 only as a natural
counterpart of the concentration case, which was the main object from a
branching point of view, but has some interesting feature in itself. First it
may model the expansion of a gas whose initial and final configuration are
known and which is subject to a negative pressure which leads it to diffuse
as much as possible. Second, as we are facing L? measures, we have in
fact densities, i.e. functions of time and space, and we can write optimality
conditions on them. The interest is towards the fact that the optimality
conditions for those densities are expressed in the form of a system of PDEs
which are very similar to the Euler equation for compressible gases. The
chapter follows a joint work with Luigi Ambrosio where we rigorously derive
this system of PDEs by means of perturbations of the measures through a
transport-like variation (i.e. we replace p; by (id + €T')sp). The system
involves the densities and the velocity fields of the particles composing the
densities, for a total of d 4+ 1 equations. It consists of d equations of kinetic
type and the d+ 1—th equation is the continuity equation of conservation of
the mass: if we denote by u the density and by v the velocity field we have

H(t)Vul 4+ K(t)V - (u|v|p_2v & v) + % (K(t)u|v]p_2v) =0 inQ,
Lu+ V- (vu) =0 in Q
uwv-n =20 on 0f2
ltil%lu(tv )‘Cd = [Ho; lti%lu(ta )‘Cd = M1,

for suitable time-depending functions K and H.

At the end of the chapter we look for some particular solutions of the
system, i.e. self-similar solutions. These are densities which have a certain
shape which remains the same during time, up to scaling and translations. It
turns out that there exist solutions of this kind (which, obviously, may only
link self-similar boundary data p and pq or at the limit Dirac masses), but
they are characterized by a certain special shape: the allowed densities are
in fact of the same form of the reversed parabolas that we found in Chapter
1. In the easiest case, i.e when the exponents p and ¢ (for the Wasserstein
space W), and the diffusion functional Fy, respectively) are equal to 2, they
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have the form .
’U,(t,IE) = (At — Bt‘iﬂ — {Et‘2) .

The link with the optimal densities of Chapter 1 is evident, as we are min-
imizing a certain combination of Wasserstein distances and Fj, functionals.
Moreover, the reference measure is in both cases a Dirac mass (in the first
problem v is a finite sum of Dirac masses, and hence the situation is lo-
cally as if it were composed by a single atom; in this case, since if we have
self-similar densities, at the limit we also have a single Dirac mass). It is
however very interesting to see how this kind of densities appears in several
problems involving mass transport.

After presenting the alternative (but different) models viewing branched
transport structures as arising from geodesic problems in Wasserstein spaces,
we come back in Chapter 6 to the formulations that have been equivalently
given by Xia and Maddalena et al. as a generalization of Gilbert’s problem.
We first present Xia’s relaxed problem: the Kirchoff constraint in Gilbert’s
problem is expressed in [72] as a divergence constraint

V-Ag=p—v, where\g= th[[eh]].
h

Here [[e]] is the integration measure measure on the segment e, given by
[[e]] = él. - H!, and hence \g is a vector measure representing the flow
which goes from p to v through the graph G. After this consideration Xia
extended Gilbert’s problem by relaxation to generic probabilities p and v.
The problems becomes

min E(\): V- A=pu—v

where E(\) := inf liminf,, E(\g,) and the infimum is over all possible se-
quences of finite graphs (G),), such that the corresponding vector measures
Ag,, converge to A. It is also possible to prove a representation formula for
the relaxed energy E()):

E . (0.0.1)
400 otherwise.

()\)_ {fMeadHl’ lf)\:(M797£)7
The equality A = (M, 6, ) means that A is a vector measure concentrated on
the 1—rectifiable set M and absolutely continuous w.r.t. H! with density
given by 6¢ (6 being a real multiplicity and £ a measurable tangent unit
vector field on M).
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It is interesting to notice that this problem, as in the congestion problem
of Chapter 2 and in the bidual version of Monge-Kantorovich, requires to
minimize a quantity on A under the constraint V-A = p—v. In Monge’s case
this quantity is just the mass of ), i.e. the L' norm when X is absolutely
continuous, in the congestion case it is the L? norm or more generally a
convex superlinear functional, and here it is a concave functional also known
as M“—mass. This means that, under the same constraints, not only we
want to minimize the total movement quantity, but we may encourage or
discourage this movement to be concentrated or dispersed. Here we want it
to be concentrated (concentrated on one dimensional structures and with a
subadditive cost which prefers few larger flows than several small ones), in
Chapter 2 we want it to be as spread as possible. Monge’s case is somehow
in the middle, as a concentration-neutral case. This shows how we have
a common Eulerian formulation of some different transport problems, with
different features and applications, all starting from Monge (i.e. c(z,y) =
|z — y| and we cannot hope to retrieve them by means of other costs, such
as [z — y|P).

After presenting the Eulerian approach by Xia the same problem is pre-
sented under the Lagrangian approach of two works, the first one by Mad-
dalena, Solimini and Morel, [57], where only the case of a single source (i.e.
p = 0p) is dealt with, and the second one by Bernot, Caselles and Morel,
[13], where the results are generalized to the case of arbitrary measures. The
main idea is to look at measures 7 on the space I' of 1—Lipschitz paths which
eventually stop (at a time denoted by o(v)) and to define the multiplicity
that this system of paths has at a point x: we set [z], = n({y : © € 7}).

Then we define Z,(y) = fOU(W) [y(t)]9~!dt and we minimize the functional

J(n) = / Zy(y)n(d).

The constraint in this case is that the initial and terminal measures of 7
are p and v, respectively, i.e. (m)yn = p and (7 )yn = v, where mo(7y) =
7(0) and 7o (y) = v(o(7)). In a recent paper by the same authors, [14],
the equivalences between all these model (i.e. the one by Xia, the one by
Maddalena, Solimini and Morel and the one by Bernot, Caselles and Morel)
are proven.

What we do in Chapter 6 is mainly looking at the infimum values of
these problems and at their dependence on p and v. First we recall some
finiteness result, and the main one is that the minimum is always finite for
any pair of compactly supported measures p and v if > 1—1/d. It is well-
known that this bound is sharp (see [43]): here we provide only a short proof
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of the fact that, if « is strictly below the threshold, then it is not possible
to arrive at the rescaled Lebesgue measure on () with finite energy. Notice
that this threshold exponent is the same that we had in Chapter 4. By the
way, we also take advantage of the Lagrangian formulations that we present,
where the time variable is present, and we develop a little more a comparison
between the two models. From the formalism of Chapter 4, it turns out that
the way to get a problem which is as similar as possible to these branched
problems is to take p = oo in the choice of the distance W,,. After looking
at the finiteness of the value, for a > 1 — 1/d, we denote the minimum by
do (g, v) as in [72]. This quantity turns out to be a distance over the space of
probability measures and it was known from Xia that it metrized the weak
convergence. In a joint work with Jean Michel Morel, which is the main
original part of the chapter, we prove some sharp inequalities between these
distances and the Wasserstein distance W;. Namely, what we prove is

Wi, v) < do (i, v) < Wy (g, )@= 0-1/D),

where c¢ is a constant depending only on the dimension d and on the expo-
nent «. We also prove that the exponents of W7 in the above inequalities
are sharp. This result gives an answer to a question posed by Cedric Vil-
lani about the comparison of standard Kantorovich transport and branched
transport.

If Chapter 6 has also played the role of a general introduction to branched
transport problems, in Chapter 7 we develop a very peculiar feature of them
whose motivations lie, as far as interdisciplinary applications are concerned,
mainly in geophysics. In fact, geophysicists, while studying the shape and
evolution of river basins, have two main objects to deal with: the structure
of the river network and the elevation of the landscape in the region. In
many physical models the landscape elevation is obtained at a point = by
integrating along the only stream arriving at x from the outlet of the whole
basin the quantity 6!, where at any point of the river network @ stands
for the multiplicity of the network itself. This topic has been considered in
a series of paper (see for instance [9] or the book [64]) mainly under some
strong discretization. Anyway, the formula we gave for 7, and its use in the
definition of the functional J suggest that it should be possible to define a
similar landscape function also in the continuous case. Roughly speaking,
the idea is to take an optimal measure n € P(I') minimizing J with initial
measure g and terminal measure p € P(Q2) and defining the landscape
function z by

z2(x) = Zy(y) for ysuch that 7 (7) =«

16



(this obviously requires to check that it is well-defined, i.e. that different
curves give the same result). The chapter follows a recent paper (see [68])
that has been widely discussed with Jean-Michel Morel during the same
six-months visit to Cachan in which the results of [60] and of Chapter 9
have been established.. As a first thing we argue in a detailed way the
interest of defining a landscape function z associated to branched transport
problems and we point out the features it should have: the main one is a
certain link with the geometry of the network and in particular we want that
at every point of the network the maximal slope direction of z must agree
with the direction of the network itself at x. Then it should be interesting
to have some regularity property of z, even if one cannot expect it to be
Lipschitz continuous, since it must have arbitrarily large derivatives #2~1
in the direction of the network. This in particular forces us to give a weak
concept of maximal slope direction in the above requirement. Anyway, at
the end of the chapter, the function z is proven to be Holder continuous
under some extra assumptions (through an interesting use of Campanato
spaces), and in general lower semicontinuous.

Another very interesting feature of this study of the landscape function,
which is developed in Chapter 7, is the fact that z also acts as a derivative
of the functional p — X, (u) := do(dg, p). In fact we can prove that, if we
set pe = p+e(p1 — ), it holds

Xa _Xa
i sup e (12) = Xa ()

e—0t €

< a/ zd(p1 — ),
Q

where z is the landscape function with respect to the fixed measure u. This
is pointed out in the discrete case and then generalized to arbitrary measures
. This formula may be useful while studying minimization problems for
functionals like F'(u) + X (1), which was in fact proposed in [57]. Recently
similar problems, where F' is a functional which encourages the dispersion
of u, have been proposed to model the shape of leaves or flowers. The
interpretation comes from the fact that we let y stand for such a shape and
0o represent the source of nutrient for the leave which arrives at a single
point. Then, the shape tries to optimize the cost for being irrigated starting
from such a single point and the positive effect of being as widespread as
possible to take advantage of sunlight. This problem falls easily in the wide
framework of Transport and Concentration Problems proposed in Chapter
3 and in the chapter an example of this kind is developed to show how this
derivative formula could be useful in getting necessary optimality conditions.
This derivative result involving the landscape function may be compared to
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what happens in the case of usual optimal transportation, where we have

wp - Wy
limsup p(/“L&V) p(:U’aV
e—0t €

) < /ﬂwd(m—u),

1 being the Kantorovich potential in the transportation from p to v with
cost c¢(x,y) = |z — y|P (provided it is unique up to constants, otherwise
the situation is a little more tricky). This derivative result on Wasserstein
distances was in fact the starting point for the results in Chapters 1 and 3.
In fact we may realize that the landscape function plays somehow the role of
Kantorovich potential in branched transportation and this comes not only
from this derivative result, but also from the representation formula

Xalw) = [ zdu= [ zdu—s0)

which is proven in the chapter, and from the Holder continuity result. The
Landscape function is proven in fact to be d(a—(1—1/d))—Holder continuous
under some conditions on g, and this result, as the Holder exponent varies
from 0 to 1 as a goes from 1 — 1/d to 1, perfectly fits with the fact that
Kantorovich potentials are Lipschitz continuous. Unfortunately, due to the
lack of convexity in the minimization problem for branched transport, it
seems that there is no interpretation of z as the optimum of a dual problem.

In Chapter 8, we leave the framework of branched transport and we
present another optimization problem on one-dimensional structures. This
problem, introduced in [27], consists in finding a subset ¥ C © which mini-
mizes the cost function

DY) = /Q d(z, %) p(dz)

among all compact connected sets whose length does not exceed a given
value [, i.e. under the constraint H'(¥) < I. This means looking for a set
which must be as spread as possible (so that the values d(z, X) are as small as
possible), without breaking the connectedness and length constraints. This
problem has some interesting interpretations both in terms of applications
(in image reconstruction it corresponds to recovering a line 3 from a pixel
cloud p in a picture, recalling the well-known concept of skeleton of the
image; in urban planning ¥ may be interpreted as a subway network in a
city © with population density p) and in optimal transport theory. The link
with optimal transport theory comes from the equality

D(Y) = inf {W1(p,v)| spt(v) C £}.
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In this way we can also see that this problem too falls into the framework
of the Transport and Concentration Problems introduced in their generality
in Chapter 3: we are just minimizing v — Wj(u,v) under a constraint
G(v) < I, the functional G standing for the minimal length of a compact
connected subset containing the support (this functional is explicitly listed
in Chapter 3 among those who satisfy the definition on being concentration
preferring).

This average distance problem with length constraints has been studied
as far as existence and qualitative properties of the minimizers are concerned
in [27] and the main tool for the existence is Golab’s theorem (which jus-
tifies the connectedness assumption, which makes anyway sense for several
applications). In the joint work ([69]) with Paolo Tilli on which the chapter
is based we look at some regularity properties of the minimizers. The main
question is the existence of blow-up limits of an optimal ¥ around its points.
Precisely, we say that ¥ has a blow-up limit K at xg € ¥ if the localized
and rescaled sets (X N B(zo,r) — zo)/r converge, in the Hausdorff distance
as v — 0, to some set K C B(0,1). Due to compactness results on the
Hausdorff convergence it is not difficult to have the existence of these limits
up to subsequences. It is not even difficult to characterize their shapes: they
can be only composed by up to three unit rays, which may form a diam-
eter, a corner or triple 120° configuration when they are not a single ray
(this up-to-subsequence result is proven in the chapter). What is not trivial
at all is that these limits do not change according to the subsequence and
this is proven with different techniques in different cases (endpoints, triple
junctions. .. ): these techniques involve stationarity, small perturbations and
I'—convergence as well. Under an L* assumption on the measure y it is
proven that at any point zg € % the full limit of the blow-up procedure ex-
ists. Moreover, in some cases it is possible to estimate the rate of change of
the direction of the rays which form this limit, thus getting a C!'! regularity
result. This is proven in the last section of the chapter in a neighborhood
of any point xg such that the diameter of the set

T (z9) ={z € :dx,X) = |z — x|}

is sufficiently small. In particular this happens if z¢ is a triple point, since
in this case we are able to prove that this set reduces to xg only. In this
way we have a satisfactory description of the behavior of ¥ near its triple
junctions: it is composed by three Cb! curves whose tangent vectors at
xo from three angles of 120°. This gives a complete answer to one of the
main questions posed in [27] about this problem, the other ones being about

19



regularity (partially answered by this blow-up result), asymptotics as [ — oo
or [ — 0, boundary behavior and no-loop properties.

Some of the techniques introduced in Chapter 8 are then used in Chapter
9 on a different problem. We come back to the branched transport frame-
work and we want to study the blow-up. This has been first done by Xia in
[74], and we know from it how the blow-up limits up to subsequences look
like. In a work in progress with Jean-Michel Morel (see [61]) we try to use a
curvature approach to deduce the existence of the limits: we fix a curve in
the optimal network, we perturb it and we get optimality conditions. These
conditions ensure that the derivative of the curve is a BV function on the
interval of parametrization and allow to say that the curve has a side tangent
vector at any point. This result requires some strong assumptions on the
marginal measures, and in particular a lower bound on the densities. Here in
this chapter we propose an alternative approach, which works under differ-
ent conditions, which are less restrictive on the measures. We suppose that
p belongs to LP(Q2) for a certain p > 1 and that the couple (u, ) satisfies
the regularity assumption, i.e. either v is atomic or spt(u) Nspt(r) = 0. On
the other hand, the result is only valid in two spatial dimensions and if the
point xy where to center the blow-up is a branching point (which is anyway
the most interesting case, since then we could apply some angle conditions).
Under these conditions we are able to perform a procedure exactly as the
one used in Chapter 8 for triple points. We prove that the oscillation of
the angle 6(r) which represents the intersection direction of a branch of the
optimal network N = {z € Q : [z], > 0} with 0B(z,r) may be estimated
by a quantity linked to the mass which is transported onto N N B(xzq, 7).
Then it is sufficient to estimate this mass to get a convergence result and it
is what we do, via some geometric and asymptotic estimates.

At the very beginning of the thesis there is a preliminary chapter on
optimal transportation where all the results which will be useful later are
introduced. There is no proof but only some bibliographical reference to
the books by Villani, Ambrosio-Gigli-Savaré and the lecture notes by Am-
brosio ([71], [4] and [3], respectively). We deal with the primal and dual
Kantorovich problems, with the existence of optimal maps, i.e. solutions
to Monge’s problem, with the regularity of transports and potentials in the
quadratic case by Monge-Ampere equation and with Wasserstein distances,
curves in Wasserstein spaces, geodesics and geodesically convex functionals.

As a whole, this thesis presents, in a quite unified setting of transport
problems involving concentration criteria, almost all the researches that we
carried out during these PhD studies. Only some subjects, mainly related to
shape optimization, where the transport component was completely absent

20



has been neglected. Probably the most interesting feature of the thesis are
the techniques to get necessary optimality conditions in the set of problems
that have been approached. Most of them are not new; we simply use them
in a particular way, obtaining sometimes unexpectedly strong results. This
is the case of the derivation of some functionals on P(€2) with respect of
perturbations such as p+¢e(p1 — p) or (id+€€)gp. On the other hand some
regularization issues such as the L° one in Chapter 2 or the blow-up one
in Chapter 8 have required some more technical tools which seem to be
quite original. Moreover, also some very classical results, for instance from
linear or nonlinear elliptic PDEs, from the theory of Campanato Spaces or
from convex analysis, are used throughout the thesis and this completes the
picture of the different techniques to get necessary conditions or regularity.
Anyway, the thesis does not develop only this aspect of the variational prob-
lems that approaches, but devotes also a certain space to the interpretation
of the models (as in Chapters 1 and 2 for urban planning and in Chapter 7
for river basins) and to existence results (mainly in Chapter 4).
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Notations

We summarize here most of the peculiar notations and expressions which
are used throughout the thesis and not always explicitely recalled.

First, let us precise that we will call, for simplicity, domains those sets
which are the closure of a non-empty connected and bounded open subset
of R? with negligible boundary. These domains will be often denoted by
(), so that the reader must not be astonished if {2 denotes a compact set
instead of an open one. Moreover, we will silently confuse a domain 2 and

its interior 2 when some functional spaces involving higher regularity are
o

concerned: for instance when we write H'(Q) we usually mean H'(Q). This
is performed in order not to avoid heavy notations, should we distinguish
between the closed and the open set.

Given a set C' endowed with a natural topology (usually a domain) we
will denote by P(C) the set of all Borel probability measures on C. The set
of finite vector on C' measures valued in R¥ will be denoted by M*(C).

The d—dimensional Lebesgue measure will be denoted by £¢, but some-
times we will write |Q| for £4(Q). When we say “the Lebesgue measure
on 2”and we are speaking of a probability measure, we actually mean the
rescaled measure 1/|Q| - £? restricted to Q. The symbol H' will denote
instead the 1—dimensional Hausdorff measure.

For a sequence of probability or vector measures on {2 we will use the
term weak convergence to mean the convergence in the duality with the
space C(€2) of bounded continuous functions on Q. This convergence will be
denoted by the symbol — (with no stars), so that s, — p means [, ¢ du, —
Jo @ du for any ¢ € CP(Q).

Crucial will also be the concept of image measure: given a measure p
on €)1 and a measurable map 7' : €21 — {23 we denote by Tyu the image of
p through T, which is a measure on €2y defined by Tyu(A) = u(T~1(A)) for
any measurable subset A C Q. If Ty = v we will also say that T' transports
(or pushes) p onto v.
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As far as more transport-related concepts are concerned, we denote by
II(p, v) the set of transport plans with marginal measures p, v € P(Q) (see
Section 0.1) and by T'P(u, v) the set of traffic plans from p to v. This latter
concept is typical of the theory of branched transport: it consists of the
set of all probability measures on the space of Lipschitz curves on [0, 00|
which eventually stop such that the images under the evaluation at the
starting time and at the stopping time are p and v, respectively. These two
evaluations are denoted by my and 7., respectively, as well as the evaluation
at a generic time t which is denoted by m;. See Section 6.2 for details.

The symbol id denotes the identity mapping from a set to itsels id(x) =
x. The identity matrix is denoted by the symobl I. The symbol I the
indicator function: if we write I4 we mean the function whose value is 1 on
A and 0 outside. We may also write I.ondition, Which means a function of
possibly several variables whose value is 1 if the condition is verified and 0
otherwise. For instance, writing I, is a function of two variables (z and
v) which has the same values as I, (z). When a measure p (usually the
Lebesgue or the Haudorff measures | or H') and a set A are given, we will
write [4 - p or ul_ A with the same meaning.

The indicator function in the sense of convex analysis is on the contrary
denoted by a d§ symbol: §(-|A) is the function whose value is 0 on A and
400 elsewhere. Its Legendre-Flenchel transform is the support function of
A and it is given by §*(y|A) = sup,ea ¥ - .
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Preliminaries on Optimal
Transportation

This chapter does not want to be an exhaustive presentation of the topic,
but only a short list of useful results with no proofs that will be used later
on in thesis. The main reference is [71]. Anyway, the approach is the same
used in the lectures given by Prof. L. Ambrosio at SNS Pisa in 2001/02 and
hence another possible reference is [3].

The motivation for the whole subject is the following problem proposed
by Monge in 1781 ([59]): given two densities of mass f, g > 0 on R%, with
[f=[g=1,find amap T : RY — R? pushing the first one onto the other,
i.e. such that

/ g(x)dx = / f(y)dy  for any Borel subset A C RY
A T-1(A)
and minimizing the quantity

/ T(2) - 2| f(2)de
Rd

among all the maps satisfying this condition.

This problem has stayed with no solution (does a minimizer exist? how
to characterize it?...) for centuries. Only with the work by Kantorovich
it has been inserted into a suitable framework which gave the possibility
to approach it and, later, to find that actually solutions exist and to study
them. The problem has been widely generalized, with very general cost
functions c¢(z,y) instead of the euclidean distance |z — y| and more general
measures and spaces. For simplicity, here we will not try to present a very
wide theory on generic metric spaces, but we will deal only with the euclidean
case.
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0.1 Primal and dual problems

In what follows we will suppose Q to be a domain of R% and the cost func-
tion ¢ : 2 x  — [0, 4o00[ will be supposed continuous and symmetric (i.e.
c(z,y) = c(y, ©)).

The generalization that appears as natural from the work of Kantorovich
([53]) of the problem raised by Monge is the following:

Definition 0.1.1. Given two probability measures u and v on €2 and a cost
function ¢ : ©Q x Q — [0, 400] we consider the problem

(K) min {/ cdr|m € I(p,v) } , (0.1.1)
QxQ

where II(p,v) = {r e P(Ax Q) : (pT)ym =p, (p)gm = v, } and p* and p~

are the two projections of €2 x € onto 2. The minimizers for this problem

are called optimal transport plans between p and v. Should 7 be of the form

(id x T)yp for a measurable map ¢ : Q — €, the map 7" would be called

optimal transport map from p to v.

Remark 0.1.2. It can be easily checked that if (id x T");u belongs to II(1u, v)
then T pushes u onto v (i.e. v(A) = u(T~1(A)) for any Borel set A) and
the functional takes the form [ c¢(z,T(z))u(dz), thus generalizing Monge’s
problem.

Remark 0.1.3. This generalized problem by Kantorovich is much easier to
handle than the original one by Monge, for instance because in the Monge
case we would need existence of at least a map T satisfying the constraints.
This is not the case in the case p = Jg if v is not a single Dirac mass.
On the contrary, there always exist transport plan in II(u,v) (for instance
p® v e II(p,v)). Moreover, one can state that (K) is the relaxation of
the original problem by Monge: if one considers the problem in the same
setting, where the competitors are transport plans, but sets the functional
at 400 on all the plans that are not of the form (id x T')4u, then one has a
functional on II(u, ) whose relaxation is the functional in (K) (see [5]).

An important tool will be duality theory and to introduce it we need in
particular the notion of c—transform (a kind of generalization of the well-
known Legendre transform).

Definition 0.1.4. Given a function x : Q@ — R we define its c—transform
(or ¢—conjugate function) by

X“(y) = inf c(z,y) - x(z).

25



Moreover, we say that a function 1 is ¢—concave if there exists x such that
1 = x© and we denote by W¥.(Q2) the set of c—concave functions.

It is well-known a duality result stating the following equality (see The-
orem 1 together with the following Remark on c¢—concavity in [71]):

Proposition 0.1.5. We have

min(K) = sup / Ydu+ / Ve dv. (0.1.2)
PeW (

In particular the minimum value of (K) is a convex function of (u,v) as it

s a supremum of linear functionals.

Definition 0.1.6. The functions ¢ realizing the maximum in (0.1.2) are
called Kantorovich potentials for the transport from p to v. This is in fact a
small abuse, because usually this term is used only in the case ¢(x, y) = |z—y|
only.

Notice that any c—concave function shares the same modulus of continu-
ity of the cost c. In particular, in the case c¢(z,y) = |z — y|P, if Q is bounded
with diameter D, any ¢ € W.(Q) is pDP~! —Lipschitz continuous. The case
where ¢ is a power of the distance is in fact of particular interest and two
values of the exponent p are remarkable: the cases p = 1 and p = 2. In
these two cases we provide characterizations for the set of ¢—concave func-
tions when Q = R?. Let us denote by W) (£2) the set of c—concave functions
with respect the cost ¢(x,y) = |z — y|P/p. It is not difficult to check that

(NS ‘P(l)(Rd) < 1) is a 1-Lipschitz function;
2
Y€ Wy RY) & z— % — () is a convex function .

The first characterization is true also when ) does not coincide with the
whole space, while the second in fact becomes just an implication (if ¢ €
VU (g), then 9”2—2 — 9 (x) is convex, but not any convex function comes from a
c—concave function, due to the restriction on the Lipschitz constant).

The case ¢(z,y) = |x —y| shows a lot of interesting features, even if from
the point of the existence of an optimal map T it is one of the most difficult.
A first interesting property is the following:

Proposition 0.1.7. For any 1—Lipschitz function ¢ we have ¥¢ = —1. In
particular, Formula 0.1.2 may be re-written as

min(K) = sup /wd —v).

eLipy
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Another peculiar feature of this case is the following;:

Proposition 0.1.8. Consider the problem
(B) min {M()\) A EMUQV N =p— y} , (0.1.3)

where M(\) denotes the mass of the vector measure A and the divergence
condition is to be read in the weak sense, with Neumann boundary conditions,
ice. —[Vo-d\= [¢d(u—v) for any ¢ € CH(Q). If Q is convex then it
holds

min(K) = min(B).

This proposition links the Monge-Kantorovich problem to a minimal
flow problem which has been first proposed by Beckmann in [10], under
the name of continuous transportation model, without knowing this link,
as Kantorovich’s theory was being developed independently almost in the
same years. In Section 2.1 we will see some details more on this model and
on the possibility of generalizing it to the case of distances ¢(x,y) coming
from Riemannian metrics. In particular, in the case of a nonconvex €, (B)
would be equivalent to a Monge-Kantorovich problem where c is the geodesic
distance on €.

We now come back to the case of a generic cost ¢(x,y). Another useful
result about c—transform is the following:

Proposition 0.1.9. For any cost ¢ and any function ¢ :  — R we have
Y > and the equality holds if and only if 1 is c—concave.

We summarize here some useful results for the case where the cost ¢ is
of the form c(x,y) = h(z — y), for a strictly convex function h.

Theorem 0.1.10. Given p and v probability measures on a domain Q C R?
there exists unique an optimal transport plan 7. It is of the form (id x T')yp,
provided [ is absolutely continuous. Moreover there exists also at least a
Kantorovich potential i, and the gradient Vi is uniquely determined p—a.e.
(in particular 1 is unique up to additive constants, provided the density of i
is positive a.e. on Q). The optimal transport map T and the potential 1) are
linked by T(x) = x — (0h) "1 (Vy(x)). Moreover it holds 1 (z) + ¢¢(T(x)) =
c(z, T(x)) for p—a.e. x. Conversely, every map T which is of the form
T(z) = x—(0h)~Y(Vih(x)) for a function i) € W.(Q) is an optimal transport
plan from p to Typ.
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Remark 0.1.11. Actually, the existence of an optimal transport map is true
under weaker assumptions: we can replace the condition of being absolutely
continuous by the condition u(A) = 0 for any A C RY such that H?1(A) <
+00. Anyway, in this thesis only the absolutely continuous case will be used.

Remark 0.1.12. In Theorem 0.1.10 only the part concerning the optimal
map t is not symmetric in g and v: hence the uniqueness of the Kantorovich
potential is true even if it v (and not u) has positive density a.e.

Remark 0.1.13. Theorem 0.1.10 may be particularized to the quadratic case
c(z,y) = |r — y|?/2, thus getting the existence of an optimal transport
map t = V¢ for a convex ¢. By using the converse implication (sufficient
optimality conditions), this also proves the existence and uniqueness of a
gradient of a convex function transporting p onto v. This well known fact
has been investigated first by Brenier in [21].

All the costs ¢(z,y) = |x —y|P with p > 1 fall under Theorem 0.1.10. For
the case c¢(x,y) = |x — y| the results are a bit weaker and are summarized
below (this is the classical Monge case and we refer to [5] and [45]).

Theorem 0.1.14. Given p and v probability measures on a domain Q C R?
there exists at least an optimal transport plan w. Moreover, one of such plans
is of the form (id x T)yu provided pu is absolutely continuous. There exists
also at least a Kantorovich potential 1, and we have ¥(x) — Y(T(x)) =
|z — T(x)| for p—a.e. x, for any choice of optimal T and .

Here the absolute continuity assumption is essential to have existence of
an optimal transport map, in the sense that in general it cannot be replaced
by weaker assumptions as in the strictly convex case. This can be seen from
the following example.

Ezxample 0.1.15. Set

'L B+HL
pw=H'LA and I/:H ;H ¢

where A, B and C are three vertical parallel segments in R? whose vertexes
lie on the two line y = 0 and y = 1 and the abscissas are 0, —1 and 1,
respectively. In this case one can get a sequence of maps T, : A — BUC by
dividing A into 2n equal segments (A;)i=1,... 2n and B and C into n segments
each, (B;)i=1,..n and (C;)i=1,...n (all ordered upwards). Then define T}, as
a piecewise affine map which sends Ay; 1 onto B; and As; onto C;. In this
way the cost of the map T, is less than 1/2 + 1/n, but no map 7 may
obtain a cost 1/2, as this would imply that any point is sent horizontally
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and but this cannot respect the push-forward constraint. On the other hand,
the transport plan associated to T,, weakly converge to the transport plan
1/2Tﬁ+,u+ 1/2T; p, where T*(x) = z+eand e = (1,0). This transport plan
turns out to be the only optimal transport plan and has a Kantorovich cost
of 1/2.

The same construction provides also an example of the relaxation pro-
cedure leading from Monge to Kantorovich.

0.2 Wasserstein distances and spaces

Starting from the values of the problem (K) in (0.1.1) we can define a set
of distances over P(Q2). For any p > 1 we can define

Wi, v) = (min(K) with e(z,y) = |z — y[*)"/".
We recall that it holds, by Duality Formula,
1
—Wh(u,v) = sup / Ydv + / Ve dp. (0.2.1)
b PEW,L(Q) JQ Q

Theorem 0.2.1. If ) is compact, for any p > 1 the function W), is in
fact a distance over P(2) and the convergence with respect to this distance
1 equivalent to the weak convergence of probability measures. In particular
any functional p — Wy(p,v) is continuous with respect to weak topology.

The case of a noncompact €2 is a little more difficult. First, the distance
must be defined only on a subset of the whole space of probability measures,
to avoid infinite values. We will use the space of probabilities with finite
p—th momentum:

(@) = {1 € P() : My(u) = [ [al’(dn) < +o0}.

Theorem 0.2.2. For any p > 1 the function W), is a distance over W, (Q)
and, given a measure ji and a sequence (fin)n n Wp(Q2), the following are
equivalent:

® (i, — pu according to Wiy,
® fin — pand Mp(pn) — Mp(p);

. fﬂgﬁdun — fﬂgbdu for any ¢ € C°(Q) whose growth is at most of
order p (i.e. there exist constants A and B depending on ¢ such that
¢(x) < A+ Blz|P for any x).
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Notice that, as a consequence of Holder inequalities, the Wasserstein
distances are always ordered, i.e. W, < W), if p1 < pa. Reversed in-
equalities are possible only if ) is bounded, and in this case we have, if set
D = diam(92), for p; < po,

L@QH < L@?n < 1)1'—P1/p2[4655/p2.

From the monotone behavior of Wasserstein distances with respect to
p it is natural to introduce the following distance Woo: set Woo(2) =
{n € P(Q) : spt(n) is bounded } (obviously if € itself is bounded one
has W (©2) = P(Q2)) and then

Woo(pp,v) =inf<¢m—ess sup |z —y|: 7mell(p,v);.
z,y€ENXN

It is easy to check that W), / W, and it is interesting to study the metric
space Wuo(€2). Curiously enough, this supremal problem in optimal trans-
port theory, even if quite natural, has not deserved much attention up to
now.

The W4, convergence is stronger than any W, convergence and hence
also than the weak convergence of probability measures. The converse is
not true and Wy, converging turns out to be actually rare: consequently
there is a great lack of compactness in Wy,. For instance it is not difficult
to check that, if we set py = td5, + (1 — t)d5,, where zg # 1 € Q, we have
Woo(fit, fts) = |zo — 21| if t # s. This implies that the balls B(u¢, |zo—z1|/2)
are infinitely many disjoint balls in Wy, and prevents compactness.

The following statement summarizes the compactness properties of the
spaces W), for 1 < p < 0o and its proof is a direct application of the consid-
erations above and of Theorem 0.2.2.

Proposition 0.2.3. For 1 < p < co the space W,(Q) is compact if and only
if Q0 dtself is compact. Moreover, for an unbounded ) the space W,(Q) is
not even locally compact. The space Woo(Q2) is neither compact nor locally
compact for any choice of 0 with §Q > 1.

0.3 Geodesics, continuity equation and displace-
ment convexity

We are concerned in this sections with several properties linked to the curves
in the Wasserstein space W),. For this subject the main reference is [4].
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Before giving the main result we are interested in, we recall the definition
of metric derivative, which is a concept that may be useful when studying
curves which are valued in generic metric spaces.

Definition 0.3.1. Given a metric space (X,d) and a curve v : [0,1] — X
we define metric derivative of the curve v at time ¢ the quantity

d(y(s),~(t) (0.3.1)

provided the limit exists.

As a consequence of Rademacher Theorem it can be seen (see [7]) that
for any Lipschitz curve the metric derivative exists at almost every point
t € [0,1]. We will be concerned quite often with metric derivatives of curves
which are valued in the space W, (€2).

Definition 0.3.2. If we are given a Lipschitz curve u : [0,1] — W,(Q), we
define velocity field of the curve any vector field v : [0,1] x © — R? such
that for a.e. t € [0,1] the vector field v; = v(t,-) belongs to [LP(u)]% and
the continuity equation

d
gt TV (vem) =0

is satisfied in the sense of distributions: this means that for all ¢ € C}(Q)
and any £, < tp € [0,1] it holds

to
[ odus~ [ oduy = [ ds [ Vo v.du,
Q Q t1 Q

or, equivalently, in differential form:

2/ ddus = / V- v dus for a.e. t € [0,1].

We say that v is the tangent field to the curve py if, for a.e. ¢, v has minimal
[LP(p1¢)]¢ norm for any ¢ among all the velocity fields.

The following proposition is concerned with the existence of tangent
fields and comes from Theorem 8.3.1 and Proposition 8.4.5 in [4].
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Theorem 0.3.3. If p > 1 and p = () is a curve in Lip([0,1]; W,(2))
then there exist unique a tangent vector field v, and it is characterized by

0
ot +V-(v-p) =0, (0.3.2)
[otll gy < 1) for ace. t, 03.3)

where the continuity equation is satisfied in the sense of distributions as
previously explained. Moreover, if (0.3.2) holds for a family of vector fields
(00)e with |[0n] o ) < C then 1 € Tip([0, 1 Wy (2)) and [1](8) < l[vell o
for a.e. t.

This characterization of Lipschitz (or, up to reparameterization, abso-
lutely continuous) curves in W), will be very useful in Chapter 5. Moreover,
in the general theory of Wasserstein spaces, it is a key instrument for study-
ing geodesics and other properties linked to them, which will be used in
Chapters 2, 5, 6 and 7.

The following result is a characterization of geodesics in W), (€2) when
is a convex domain in R (see Proposition 7.2.2 in [4], but some extension
to the case of length spaces, for instance non convex domains, may be found
in [54]). This procedure is also known as McCann’s linear interpolation.

Theorem 0.3.4. All the spaces Wy(S2) are length spaces and if p and v
belong to W,(Q2), any geodesic curve linking them, when parametrized by
arc-length, is of the form
77 (s) = (ps)gm

where ps : A x Q — Q is given by ps(x,y) = z+ s(y —x) and 7 is an optimal
transport plan from p to v for the cost c,(x,y) = |v —y[P. In the case p > 1
and p, v absolutely continuous, if T' is the corresponding optimal transport
map such that m = (id x T)yu,then the curve has the form

Y (s) = [(1 — s)Id+ sT)pp.

Conversely, any curve of this form, for a transport plan © or a transport
map T, is an arc-length geodesic.

By means of this characterization of geodesics we can also define the
useful concept of displacement convexity introduced by McCann in [58].

Definition 0.3.5. Given a functional F : W,(2) N L' — [0, +oc], we say
that it is displacement convez if all the maps t — F(y™(t)) are convex on
[0,1] for every choice of p and v in W,(Q2) and m optimal transport plan
from p to v with respect to c(x,y) = |z — y|P.

32



The following well-known result provides a wide set of displacement con-
vex functionals. In the case p = 2 this result is due to McCann ([58]), while
the generalization to any p can be found in [4].

Theorem 0.3.6. Consider the following functionals on the space Wy(§2),
where Q is any convex subset of RV :

T p) = {fgf(U(:c))da: if = u- Lo

if 1 is not absolutely continuous;

+0o0
J(w) = [ V(z)p(do);
Q

P = [ [ wle =y,

Suppose f : [0, +00] — [0,+00] is a conver and superlinear lower semi-
continuous function with f(0) =0, V : Q — [0, +00] and w : RY — [0, +00]
are convex functions. Then the functionals J? and J3 are displacement con-
vez in Wy(Q2) and the functional Jb is displacement convex provided the
following additional condition holds: the map

r—rlfr)

is required to be convex and non-increasing on |0, 4+o0].

0.4 Monge-Ampere equation and regularity

The next step of our analysis is concerned with some regularity properties of
t and v (the optimal transport map and the Kantorovich potential, respec-
tively) and their relations with the densities of p and v. We will consider
only the quadratic case c(x,y) = |z —y|?/2, because it is the one where more
results have been proven. Very recent results for generic costs may be found
in [70].

It is easy, just by a change-of-variables formula, to transform, in the
case of regular maps and densities, the equality v = Tyu into the PDE
v(t(z)) = u(z)/|Jt|(x), where u and v are the densities of p and v and J
denotes the determinant of the Jacobian matrix. Recalling that we may
write t = V¢ with ¢ convex (Remark 0.1.13), we get the Monge-Ampere
equation

M¢o = (0.4.1)




where M denotes the determinant of the Hessian

%
8%‘1‘ &cj ij '

M¢p =det Hp = det {

This equation up to now is satisfied by ¢ = id — 1 in a formal way only. We
define various notions of solutions for (0.4.1):

e we say that ¢ satisfies (0.4.1) in the Brenier sense if (V¢)yu-£4 = v- L4
(and this is actually the sense to be given to this equation);

e we say that ¢ satisfies (0.4.1) in the Alexandroff sense if H¢, which is
always a positive measure for ¢ convex, is absolutely continuous and
its density satisfies (0.4.1) a.e.;

e we say that ¢ satisfies (0.4.1) in the viscosity sense if it satisfies the
usual comparison properties required by viscosity theory but restrict-
ing the comparisons to regular convex test functions (since M is in
fact monotone just when restricted to positively definite matrices);

e we say that ¢ satisfies (0.4.1) in the classical sense if it is of class C?
and the equation holds pointwise.

Notice that any notion except the first may be also applied to the equation
M¢ = f, while the first one just applies to this specific transportation case.
The results we want to use are well summarized in Theorem 50 of [71]:

Theorem 0.4.1. If u and v are C%*(Q)) and are both bounded from above
and from below on the whole by positive constants and € is a convex
open set, then for the unique Brenier solution ¢ of (0.4.1) it holds ¢ €
C?(Q) N CY*(Q) and ¢ satisfies the equation in the classical sense (hence
also in the Alexandroff and viscosity senses).

Even if this precise statement is taken from [71], we just detail a possible
bibliographical path to arrive at this result. It is not easy to deal with
Brenier solutions, so the idea is to consider viscosity solutions, for which it
is in general easy to prove existence by Perron’s method. Then prove some
regularity result on viscosity solutions, up to getting a classical solution.
Then, once we have a classical convex solution to Monge-Ampére equation,
this will be a Brenier solution too. Since this is unique (up to additive
constants) we have got a regularity statement for Brenier solutions. We
can find results on viscosity solutions in [31], [33] and [32]. In [31] some
conditions to ensure strict convexity of the solution of M¢ = f when f is
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bounded from above and below are given. In [33] for the same equation
it is proved C1® regularity provided we have strict convexity. In this way
the term u/v(V¢) becomes a C%* function and in [32] it is proved C%
regularity for solutions of M¢ = f with f € C%.
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Chapter 1

An urban planning model by
local functionals

This chapter mainly contains results from [28], a joint work with G. Buttazzo
which was written in 2003, right after the Laurea Thesis [66]. As it is the
oldest of the papers concerned by this thesis, we provide here a slightly
different version which has undergone some changes with respect to the
published one. In particular the alternative proof for the main theorem has
been well detailed and some differences in the presentation of the whole
subject may be found.

1.1 Overall optimization of residence and working
areas

The efficient planning of a city is a quite complicated problem, possibly
involving a huge number of parameters (population density, price of the
land, kind and location of the industries working in the area, quality of the
life, prices and time for transportations, geographical obstacles, ... ). In this
study we want to present a simplified model involving only the distribution
of inhabitants and of services in the urban area under consideration.

The geographical area will be considered as given and represented by a
subset  of R? (d = 2 in the applications to concrete urban planning prob-
lems). We want to study the optimal location in  of a mass of inhabitants,
that we denote by p, as well as of a mass of services (working places, stores,
offices, ...), that we denote by v. We assume that p and v are probability
measures on ). This corresponds to say that the total amounts of popu-
lation and production are fixed as problem data: they are exogenous, in
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economical language. The measures 1 and v represent the unknowns of the
problem and have to be found in such a way that they satisfy some criteria:

i) there is a transportation cost for commuting from the residential areas
to the services areas;

ii) people desire to live in areas with low population density;

iii) services need to be concentrated as much as possible, in order to in-
crease efficiency and decrease management costs.

Fact i) will be described through a Monge-Kantorovich mass trans-
portation model; the transportation cost will be indeed given by using a
p-Wasserstein distance (p > 1, see Section 0.2): we set T},(u, v) = Wh(u,v).

Fact ii) will be described by a penalization functional F', a kind of to-
tal unhappiness of citizens due to high density of population, obtained by
integrating with respect to the citizens’ density their personal unhappiness.

Fact iii) is modeled by a third term G representing the costs for managing
services once they are located according to the distribution v, taking into
account that efficiency depends strongly on how much v is concentrated.

An interesting mathematical model for the description of the equilibrium
structure of a city is presented by Carlier and Ekeland in [35]. The same
criteria (concentration of services and dispersion of inhabitants) appear and
transportation costs are considered as well. Moreover, Monge-Kantorovich
optimal transport theory plays an important role. Anyway, the goal is very
different since in [35] there is no total performance to be optimized. On the
other hand, in this chapter we are precisely looking for a configuration of
inhabitants and services which optimizes an overall utility criterion. This
will be made by minimizing a suitable total cost functional F(u,v).

The cost functional we will consider is

§(1.v) = Ty(u,v) + F(p) + Gv) (L.1.1)

(notice that we will also refer to this functional as §?, when we will need to
let p vary) and so the optimal location of u and v will be determined by the
minimization problem

min {F(u,v) : p,v probabilities on Q}. (1.1.2)

In this way this optimization problem falls into the wider subject of
transport and concentration problems, which will be presented in its gen-
erality in Chapter 3. In this particular case both F and G will be chosen
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among local semicontinuous functionals over measures. These functionals
have been widely studied by Bouchitté and Buttazzo in [16], [17] and [18]
and are briefly presented in the next section.

1.2 Local semicontinuous functionals on measures

The general theory of local functionals over measures has been developed in
the framework of vector measures on a metric space 2. Consequently, we
provide here very general definitions and concepts which are valid in M*(€2),
even if later we will particularize our analysis to the case of positive scalar
measures. Moreover, in the minimization problem for §, only probability
measures will be actually concerned.

Definition 1.2.1. A functional J : M¥(Q) — [0, +o0] is said to be local if
it is additive on mutually singular measures, i.e. J(u1+p2) = J(p1)+J(u2)
whenever p; € M*(Q) and p1 Lpus.

In [16] and [17] the set of local functionals which are l.s.c. with respect
to the weak convergence of measures is characterized as the set of those
functionals having this general form:

rw= [ () e [ 0= () il [ st

m

where
e m is a nonatomic positive measure on §2;
e du/dm is the Radon-Nicodym derivative of p with respect to m;

o f: R —]—o00,+00] is convex, lower semicontinuous and proper (i.e.
not identically +00);

e [ is the recession function given by

f°(s) == lim M — sup f(so+ts)— f(s0)

t—+00 t t>0 t

(the limit is independent on the choice of sy in the domain of f, i.e.
the set of points such that f < +o00);

e A, is the set of atoms of p, i.e. the points such that p({z}) > 0;
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e g: R — [0,400] is a lower semicontinuous subadditive function such
that ¢g(0) = 0;

e # is the counting measure;

e f and g satisfy a compatibility condition, namely for any s we have

o g(st)
i) = i

= f>(s).

Notice that these functional can be written in a simpler form since in the
case of positive measures dus/d|us| = 1 for |us|—a.e. x:

200 = [ 1 () dut Pl @\ A0 + [ ol da)
w
The key point is that, by the results that can be found in [16], these function-
als are lower semicontinuous for the weak convergence. Notice that both f*°
and ¢° are positive 1—homogeneous functions. In particular, in the positive
scalar case, the compatibility condition, which is crucial for semicontinuity,
may be checked for s = 1 and written as

lim 9(t) = lim f(St).

t—0+ t t—oo ¢

The main advantage of this class of functionals is that it contains both
convex and nonconvex functionals (as opposed to what happens in the case
of local semicontinuous functionals over LP functions). In particular the two
extreme cases are the ones we get if we let f or g be infinite. In fact, by
choosing g = 6(-|{0}) (i.e. g = 400 on |0,+oc[ and ¢g(0) = 0), together
with a function f such that lim; .~ f(t)/t = 400 we get the following
functional:

Fu) = {fg flu)dm i p= - m

+o00 if u is not absolutely continuous w.r.t. m.

Analogously, by setting f = 6(:|{0}), together with a function g such that
lim, g+ g(s)/s = +00 we get

;9(a; if p=">,0a;04;
G(u)z{z @) = aadei
+00 if p is not atomic.

Typical cases are f(s) = s? and g(s) = s%, for exponents ¢ > 1 and o < 1.
In general, g is often chosen to be concave, even if subadditivity would be
sufficient to apply the general existence theory.
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1.3 Interpretation of the model

To define the three terms appearing in our functional §, we must precise
the choices for F' and G, since the first term will be a Monge-Kantorovich
transport cost, as explained in Section 1.2. For the functional F' we take

. (1.3.1)
~+00 otherwise,

flu(z))dr if p=u- L ue L'(Q)
F(p) = {f “
where the integrand f : [0, 4+00] — [0, +00] is assumed to be lower semicon-
tinuous and convex, with f(0) = 0 and superlinear at infinity, that is

lim @

dim = oo, (1.3.2)

In this form we have a particular local semicontinuous functional on mea-
sures (with m = £%). Without loss of generality, by subtracting constants
to the functional F, we can suppose f’(0) = 0. Due to the assumption
f(0) = 0, the ratio f(t)/t is an incremental ratio of the convex function f
and so it is increasing in ¢. Then, if we write the functional F' as

Mu(m) dx,

o u(z)

we can see the quantity f(u)/u, which is increasing in v and tends to co as
u‘tooco, as the unhappiness of a single citizen when he lives in a place where
the population density is u. Integrating it with respect to u = u - £¢ gives
the total unhappiness of the population.

As far as the concentration term G(v) is concerned, we set

Gv) = {220 g9(a;) if v =377 0aids,

+00 if v is not atomic.

(1.3.3)

To the function g we require to be subadditive, lower semicontinuous and
such that ¢(0) = 0 and

lim == = 4o0. (1.3.4)
Every single term g(a;) in the sum in (1.3.3) represents the cost for building
and managing a service pole of size a;, located at the point x; € €.

In this model, as already pointed out, we fix as a datum the total pro-
duction of services; moreover, in each service pole the production is required
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as a quantity proportionally depending on its size (or on the number of in-
habitants using such a pole). We may define the productivity P of a pole of
mass (size) a as the ratio between the production and the cost to get such
a production. Then we have P(a) = a/g(a) and

[e.o]

gg(ai) T = P(ay)

1=0

As a consequence of the assumption (1.3.4), the productivity in very small
service poles is near 0. When g is also concave, for instance in the case of
powers g(s) = s", the productivity is also an increasing function of the size
of the pole.

Notice that in the functional G we do not take into account distances
between service poles. It would be interesting to consider also non local
functionals involving such distances, taking into account possible interac-
tions and the consequent gain in efficiency. A study of the corresponding
problem for an interaction functional G' can be found in Chapter 3. The
results of next section (since they do not depend on the choice of G) will be
used there as well as in the present setting.

For the problem introduced in (1.1.2) existence results are straightfor-
ward, especially when we use as an environment a compact set 2.

Theorem 1.3.1. Suppose € is a domain, p > 1 and f and g satisfy the
conditions listed above. Then the minimization problem (1.1.2) has at least
one solution.

Proof. By the direct method of Calculus of Variations, this result is an
easy consequence of the weak compactness of the space P(£2), the space of
probability measures on §2, when € itself is compact, and of the weak semi-
continuity of the functional §. The second and third term in the expression
(1.1.1) are in fact local semicontinuous functionals (due to results in [16]),
while the first term is nothing but a Wasserstein distance raised to a certain
power. Since it is known that in compact spaces this distance metrizes the
weak topology, T}, is actually continuous. O

In [66], where we first presented the model, other existence results were
shown, for instance in the case of a non compact bounded convex set  C R¢.
Here we will not go through this proof, and will discuss only one existence
result in a non-compact setting, obtained as a consequence of a proper use
of the optimality conditions presented in next section.
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1.4 Necessary optimality conditions on §,

In this section we find optimality conditions for probability measures on 2
minimizing the functional

Sv(p) = Tp(p,v) + F(p).

It is clear that, if (u,v) is an optimal pair for the whole functional §, it
happens that p is a minimizer for §,. We will come back later, in the next
section, to the problem of minimizing §, and we will refer to it as the whole
minimization problem.

The goal of this section is to derive optimality conditions for §,, for any
v, without any link to the minimization of §. There are several different
proof for this result, all based on a derivation of the functional §,. The idea
is not difficult but some technical problems, mainly linked to the lack of
uniqueness of Kantorovich potentials, arise. We provide here to two differ-
ent proofs, and another one was present in [66]. The former we give here, as
well as the one in [66], rely on a regularizing approach: we start by the easier
case p > 1 and v “regular” in some sense, and then recover the general case
as a limit. The reason to do so are the conditions ensuring uniqueness prop-
erties of the Kantorovich potential presented in Section 0.1. The same idea
can be found in [66], where purely atomic probability measures (i.e. finite
sums of Dirac masses) were first considered and then, by approximation, the
result was extended to any measure v. The second proof, suggested by an
anonimous referee while he/she was reviewing [28], is based on some convex
analysis tools and strongly uses the convex structure of the problem.

In the sequel the function f in (1.3.1) will be assumed to be strictly
convex, C! and with polynomial growth, and we will denote by k the con-
tinuous, strictly increasing function (f’)~!. Strict convexity of f will ensure
uniqueness for the minimizer of §,. Typical choices are f(t) =t%, ¢ > 1.

1.4.1 An approximation proof

Lemma 1.4.1. If i is optimal for §, then, for any other probability measure
w1 with density uy, such that §,(pu1) < 00, the following inequality holds:

Ty (1, v) — Tyl v) + /Q 7' (@) () - u(a)lde > 0.

Proof. For any € > 0, due to the convexity of the transport term and the
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minimality of p, it holds

Tp(p,v) + F(p) < Tp(p+e(pn — p) + Flp+e(p — p),v)
< Ty, v) + e(Tylpnv) = Ty(u,v)) + Fu+ (g — p1))-
We deduce that the quantity

Ty(p1,v) = Tp(p,v) + e [F(u+ e(pn — 1) — F(p)]

is nonnegative. If we let € — 0 we obtain the thesis if we prove

lim/ Flute(u ; W) = 1) ypa _ /f'(u)(m —u)dL?

e—0

To prove this, notice that by convexity the inequality
/f(u+€(u1 ; U)) — f(u) dﬁd > /f/(u)(ul _ u) dﬁd

is straightforward. For the opposite inequality, we will use Fatous’s Lemma.
the pointwise convergence of the integrand is trivial and we can get an upper
bound by means ofthe following inequality, which is a consequence, for € < 1,
of the monotonicity of the incremental ratios of convex functions:

flu+e(ur —u)) = f(u)

3

< fur) — f(u).

Since we have f(u), f(u1) € L'(Q), this is sufficient to apply Fatou’s Lemma
and get

limsup/ flut el ;u)) — /() dcd < /f’(u)(m —u)dL?. O

e—0

Lemma 1.4.2. Let us suppose v = v+v-L4, withv € L>®(Q), v*LLL, v > 0
a.e. in Q. If p is optimal for §,, then u >0 a.e. in §2.

Proof. The Lemma will be proved by contradiction. If the set A = {u =0}
is not negligible, we will find a measure p; for which Lemma 1.4.1 is not
verified. Let N be a Lebesgue-negligible set where v® is concentrated and
T an optimal transport map between p and v. Such an optimal transport
exists, since p < L%, see Section 0.1.

Let B =T~'(A). Up to modifying t on the u—negligible set A, we may
suppose BN A =1{. Set uy = 1ge - p+ 1g\n - v: it is a probability measure
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with density u; given by 1geu + 14v = 1ge\ gu + 1av (this equality comes
from u =0 on A). We have

P = [ sdets [ f0)de? < P 15 @)lel0] < o

Setting

i

T*(2) = T(x) ifxe(AUB)°
P if x € (AU B)

we can see that T™ is a transport map between p; and v. In fact, for any
Borel set E C (2, we may express (T*)"1(E) as the disjoint union of EN A4,
ENBand T7Y(E) N B¢N A°, and so

p (T YE) = v(ENnA)+v(ENBNA)+ u(T7HE)N BN A°)
V(ENA) + u(T7HE N A%) = v(E),

were we used the fact that A N B = (0 and that A€ is a set of full measure
for p. Consequently,

T (,v) < / @ — T()[Pu(z)dz < /Q & — (@) Pu(z)de = Ty (. v).

(AUB)°

(1.4.1)
From this it follows that for p; Lemma 1.4.1 is not satisfied, as the integral
term [, f'(u)(u1 — u)dL? is non-positive, because u; > u only on A, where
f'(u) vanishes. The strict inequality in (1.4.1) follows from the fact that,
if [y p5lT—T(z)Pu(r)dr = 0 then for a.e. z € B we have u(x) = 0 or
x = T(z), which, by definition of B, implies z € A: in both cases we are
led to u(x) = 0. This would give ¥(A) = pu(B) = 0, contradicting the
assumptions |A| > 0 and v > 0 a.e. in . O]

from now on we will need some of the results from duality theory in mass
transportation that we presented in Section 0.1.

Theorem 1.4.3. Under the same hypotheses of Lemma 1.4.2, assuming
also p > 1, if p is optimal for §, and we denote by 1y the unique, up to
additive constants, Kantorovich potential for the transport between p and v,
there exists a constant | such that the following relation holds:

u=k(l —1) a.e. in Q. (1.4.2)
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Proof. Let us choose an arbitrary measure p; with bounded density u; (so
that F'(u1) < +00) and define p. = p+ (1 — p). Let us denote by 9. a
Kantorovich potential between p. and v, chosen so that all the functions .
vanish at a same point. We can use the optimality of u to write

Tp(pe,v) + Fpe) — Tp(p,v) — F(p) = 0.

By means of the duality formula, as Tp(ue,v) = [tedpe + [Sdv and
Tp(p,v) > [edu+ [Sdv, we can write

[ et =)+ i)~ F =

Recalling that . — p = e(pu1 — p) and that

F(ue) — F(u) = / (f(u+ e(us — ) — f(u)) dLe,

we can divide by ¢ and pass to the limit. We know from Lemma 1.4.4 that
1. converge towards the unique Kantorovich potential v for the transport
between p and v. For the limit of the F' part we use Fatou’s Lemma, as in
Lemma 1.4.1. We then obtain at the limit

/Q (@) + £ (u(2)))(w (2) — u(z))dz > 0.

This means that for every probability @1 with bounded density u; we have

/ (@) + 1 (u(@)))u (z) dz > / ((x) + 1 (u(z)))ulx) dr.

Define first | = essinf,ecq ¢¥(x) + f/(u(x)). The left hand side, by choosing
properly u1, can be made as close as we want to [. Then we get that the
function v + f'(u), which is £L%—a.e. (and consequently also j-a.e.) greater
than [, integrated with respect to the probability u gives a result less or
equal than [. It follows

(@) + f(u(x)) =1 p—aexel
since by Lemma 1.4.2 we know u > 0 a.e., we get an equality valid £L%—a.e.:

fllu) =1-1. (1.4.3)

We can then compose with k£ and get the thesis. ]
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To establish Lemma 1.4.4, that we used in the proof of Theorem 1.4.3,
we will use uniqueness properties for Kantorovich potentials when the ab-
solutely continuous part of one of the measures has strictly positive density
a.e. in the domain €. Notice that proving Lemma 1.4.1 was in fact not
essential to get this uniqueness, as in fact we had already supposed that the
density of v was positive (and in fact one of the two densities is sufficient
to ensure uniqueness). On the other hand, having u > 0 guarantees that
(1.4.3) is valid a.e. and not only u—a.e.

Lemma 1.4.4. Let 1. be Kantorovich potentials for the transport between
pe = b+ e(p1 — p) and v, all vanishing at a same point Ty € Q. Suppose
that i = u - L4 and v > 0 a.e. in Q and let ¥ be the unique Kantorovich
potential between p and v vanishing at the same point: then 1. converge
uniformly to 1.

Proof. First, notice that the family (¢.). is equicontinuous since any func-
tion which is c—concave with respect to the cost c(z,y) = |z — y|P is
pDP~!—Lipschitz continuous. Moreover, thanks to 1.(z¢) = 0, we get also
equiboundedness, and so, by Ascoli-Arzela Theorem, the existence of uni-
form limits up to subsequences. Let 1) be one of these limits, arising from
a certain subsequence. From the optimality of 1. in the duality formula for
te and v we have, for any c—concave function ¢,

Jvetner [vcavz [pdpr [oan

We want to pass to the limit as € — 0: we have uniform convergence of 1.
but we need uniform convergence of ¢ as well. To get it, just notice

ve(w) = inf [z -y = ¥e(y), (x) = inf |z — y|” — ¥ (y),
[Ye(x) — " (@)| < [|Ye — ¥

Passing to the limit as ¢ — 0 along the considered subsequence we get, for

any ¢
/@du%—/@chZ/cpdu—i-/cpcdu.

This means that ¢ is a Kantorovich potential for the transport between s
and v. Then, taking into account that ¥(xg) = 0, we get the equality 1) = 1.
We can also derive that the whole sequence converges to . ]

We now highlight that the relation we have proved in Theorem 1.4.3
enables us to choose a density u which is continuous. Moreover, it is also

46



continuous in a quantified way, since it coincides with k composed with a
Lipschitz function with a fixed Lipschitz constant. As a next step we will try
to extend these results to the case of general v and to the case p = 1. The
uniform continuity property we proved will be essential for an approximation
process.

In order to go through our approximation approach, we need the fol-
lowing lemma, requiring the well-known theory of I'—convergence. For all
details about this theory, we refer to [39)].

Lemma 1.4.5. Given a sequence (vp)n of probability measures on §2, sup-
posing vy, — v and p > 1, it follows that the sequence of functionals (FV, )n,
['—converges to the functional F with respect to weak—x topology on P(Q).
Moreover if v is fixed and we let p vary, we have I'—convergence, according
to the same topology, of the functionals (§), to the functional SLoasp— 1.

Proof. For the first part of the statement, just notice that the Wasser-
stein distance is a metrization of weak—# topology: consequently, being
Tp(u,v) = Wy (p,v), as v, — v we have uniform convergence of the contin-
uous functionals T} (-, vp,). This implies I'—convergence and pointwise con-
vergence. In view of Proposition 6.25 in [39], concerning I'—convergence of
sums, we achieve the proof. The second assertion follows the same scheme,
once we notice that, for each p > 1 and every pair (u,v) of probability
measures, it holds

Wi, v) < Wylu,v) < DVYPWP ().

This gives uniform convergence of the transport term, as

Tp(luv V) - Tl(lu’v V) < (Dpil - 1)T1(M7 V)
< D(DP ' —1) 0.
Ty v) = T ) > T2(n,v) - Tal,v)
> (p—De(Ti(pv) ze(p—-1) =0,
where ¢(t) = tlogt, ¢ = inf ¢ and we used the fact T (u,v) < D. O

We now state in the form of lemmas two extensions of Theorem 1.4.3

Lemma 1.4.6. Suppose p > 1 and fix an arbitrary v € P(Q): if u is optimal
for &, then there exists a Kantorovich potential v for the transport between
w and v such that Formula (1.4.2) holds.
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Proof. We choose a sequence (vp,); approximating v in such a way that
each v, satisfies the assumptions of Theorem 1.4.3. By Lemma 1.4.5 and
the properties of I'— convergence, the space P(2) being compact and the
functional §, having a unique minimizer (see, for instance, Chapter 7 in
[39]), we get that pp, — p, where each py, is the unique minimizer of §,,.
Each measure py, is absolutely continuous with density uj,. We use (1.4.2)
to express up in terms of Kantorovich potentials v, and get uniform conti-
nuity estimates on uy,. We would like to extract converging subsequences by
Ascoli-Arzela Theorem, but we need also equiboundedness. We may obtain
this by using together the integral bound fuhdﬁd = k(—p)dL? = 1 and
the equicontinuity. So, up to subsequences, we have this situation:

pn=un - LY up = k(—p),
up — U, ¥, — 1 uniformly,

un — M, M:u'£d7 Vp — U,

where we have absorbed the constants [ into the Kantorovich potentials.
Clearly it is sufficient to prove that 1 is a Kantorovich potential between p
and v to get our goal.

To see this, we consider that, for any c—concave function ¢, it holds

/whdﬂh+/¢dehZ/@dﬂh‘*'/@Cth-

The thesis follows passing to the limit with respect to h, as in Lemma
1.4.4. O

Next step will be proving the same relation when v is generic and p = 1.
We are in the same situation as before, and we simply need approximation
results on Kantorovich potentials, in the more difficult situation when the
cost functions cp(z,y) = |z — y|P vary with p.

Lemma 1.4.7. Suppose p =1 and fix an arbitrary v € P(Q): if u is optimal
for L then there exists a Kantorovich potential v for the transport between
p and v with cost c(x,y) = |x — y| such that Formula (1.4.2) holds.

Proof. For any p > 1 we consider the functional §, and its unique mini-
mizer jp. Thanks to Lemma 1.4.6 we get the existence of densities u, and
Kantorovich potential v, between p,, and v with respect to the cost ¢, such
that

Uy = Up - Ed, up = k(—1p).
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By Ascoli-Arzela compacteness result, as usual, we may suppose, up to
subsequences,
Up — U, Pp — 1 uniformly,

and, due the I'—convergence result in Lemma 1.4.5, since . has a unique
minimizer denoted by u, we get also

pp =g, p=u-L%

Asin Lemma 1.4.6, we simply need to prove that 1) is a Kantorovich potential
between p and v for the cost ¢;. The limit function ¢ is Lipschitz continuous
with Lipschitz constant less or equal than liminf, ; pDP~1 =1, since it is
approximated by 1,. Consequently v is c—concave for ¢ = ¢;. We need to
show that it is optimal in the duality formula.

Let us recall that, for any real function ¢ and any cost function c, it holds
> ¢ and p° is a c—concave function whose c—transform is ¢ = ¢°.
Consequently, by the optimality of v, we get

/ Updpp+ / by dv > / e dpy+ / ePdy > / edpp+ / prdv. (1.4.4)

We want to pass to the limit in the inequality between the first and the last
term. We start by proving that, for an arbitrary sequence (¢yp),, if ¢, — @1,
we have the uniform convergence gozp — ¢7'. Let us take into account that
we have uniform convergence on bounded sets of c¢,(z,y) = | — y[P to
c1(z,y) = |x — y|. Then we have

Cp

op () = igf lz —ylP —op(y), ©'(z) = ir;f lz —y] — ¢1(y),
1
P (x) — o7 ()] < llep = ctlloo + lop — P1loos

which gives us the convergence we needed. If we apply it to the sequences
¢p = Ypdandig,¢, we obtain, passing to the limit as p — 1 in (1.4.4),

/wdu+/¢01du2/¢du+/wdu.

By restricting this inequality to the set of ¢;—concave functions we get that
1 is a Kantorovich potential for the transport between u and v and the cost
C1. O

We can now state the main Theorem of this section, whose proof consists
only in putting together all the results we have obtained above.
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Theorem 1.4.8. Let Q be a bounded domain in R, f a C' strictly convex
function, p > 1 and v a probability measure on ): then there exists a unique
measure p1 € P(Q) minimizing §, and it is absolutely continuous with density
u. Moreover, there exists a Kantorovich potential ¢ for the transport between
pw and v and the cost c(x,y) = |x — y|P such that w = k(—1), where k =
(f)="

Consequences on the regularity of u come from this expression, which
gives Lipschitz-type continuity, and from the relationship between Kan-
torovich potentials and optimal transport, which can be expressed through
some PDEs. It is not difficult, for instance, in the case p = 2, to obtain a
Monge-Ampere equation for the density w.

1.4.2 A convex analysis proof

The idea of this proof consists in looking at the subdifferential of the func-
tional §,, in order to get optimality conditions on the unique minimizer
measure p and its density u (here we will identify any absolutely continuous
probability measure with its density). We provide first some lemmas.

Lemma 1.4.9. If F: X — Rand G : X — RU{+o00} are convez functionals
with OF (ug) = {&o} and such that, for any u; € X we have

(F(uo + e(ur —uo)) — F(uo))/e =< ur —uo, o >,
then O(F + G)(ugp) = &o + 0G(up).

Proof. We only need to prove in fact that if £ € O(F + G)(ug), then £ — &y €
0G(up). To do this we take u; € dom(F + G) = dom(G), set us = ug +
e(u1 — up), and we write
Fue) = Fluo) | Glue) = Guo)
€ €

><up —ug,§o >+ < up —up, & —& > .

Passing to the limit as € — 0 gives

<up —ug,§ =& >< 1ir% M < G(u1) — G(uo),

where the last inequality follows from convexity and gives £ — &y € 9G(ug).
]

In this subsection, the c¢—transform of an L' function will be defined
replacing the inf by an essinf, i.e.

¢°(z) = essinf c(z, y) — o (y).
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Lemma 1.4.10. For any L' function ¢ the inequality ¢° > ¢ is true almost
everywhere.

Proof. For any x we have
¢““(x) = ess irylf [C(l’, y) — ess ir;f (c(y,z) — ¢(z))] .

Notice that, in general essinf, £(z) = inf,c4 £(2) if A is the set of Lebesgue
point of . Since ¢ is continuous, the Lebesgue points of ¢(y, ) —¢(+) coincide
with the Lebesgue points of ¢. Hence, if = is a Lebesgue point for ¢, we get
essinf, (c(y,z) — ¢(2)) < c(y,x) — ¢(z) and, consequently,

¢%(2) 2 essinf [e(z,y) — ey, 2) + d(x)] = ¢(). O

Lemma 1.4.11. Define K(¢) = [ ¢°dv: then K is concave and upper
semicontinuous in ¢ with respect to the (L', L>)— convergence.

Proof. To prove the concavity of K, just notice that

(tp1+ (1 —t)po)(x) = ess irylf te(z,y)+ (1 —t)e(z,y) — (td1 + (1 —t)do) (y)

> tessinf e(z,y)~ 1 (y)+(1—t)-essinf (. y) ~do(y) = t65(@)+(1-1)¢5(2).

For semicontinuity, first notice that, once we have concavity, it is sufficient
to prove semicontinuity with respect to the strong convergence. Then we
prove that, if ¢, — ¢ a.e., then for any z it holds ¢°(x) > limsup,, ¢S (z).
In fact, suppose by contradiction

¢°(x) = ess iry1f c(z,y) — o(y) < A < limsup ¢ ().
n
Then, let A be the set of points which are Lebesgue points for all the ¢, and
for ¢ and where pointwise convergence happens. For at least a point yg € A
we have ¢(z, yo) —¢(yo) < A and this implies eventually c(x, yo) —én(yo) < A.
From this we infer ¢¢(x) < A, which is a contradiction to the assumption.
Then take a sequence ¢, — ¢ in L' with K(¢) < limsup, K(¢,). Up
to subsequences we may suppose ¢, — ¢ pointwisely a.e. and ¢f —
uniformly (by Ascoli-Arzela Theorem, as all functions ¢¢ have the same
modulus of continuity as ¢). By the pointwise semicontinuity we proved we
have ¢ < ¢¢ and in the end we get lim, K(¢n) = [, vdv < K(¢). O
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Lemma 1.4.12. If F: X — R and G : X’ — R are convezx l.s.c. (F is
(X, X")—lsc and G is o(X', X)—lsc) functionals with

F(u) =sup < u,v > —G(v),

then for any ug € X we have
OF (up) = argmax, < up,v > —G(v).

Proof. From our assumption we deduce that ' = G* and G = F*. Then,
we can use the well-known relation v € 0F(ug) < ug € 0F*(v) (see [44],
Prop. 5.1, for instance). This means that v € 0F(ug) is equivalent to

G(w) > Gv)+ <w —v,up >  for any w € X',
which means that v actually maximizes < ug,- > —G. O
We are now ready to give the alternative proof of Theorem 1.4.8.

Proof. Consider the minimizing probability p with density v € L'(2) and
define the vector space X = span (L*°(Q2), {u}), and the space X’

X' = {f e LY(Q): / EludL? < —1—00},
Q

which is in duality with X by means of the product < v,& >= fQ vEdLe.
Then, we consider the minimization problem for the functional H defined
on X by

400 otherwise.

v if 2);
H(v):{g (v) ifveP)
It is clear that v minimizes H on X. We will prove

OH (u) = {f’(u) + 1 : 1) maximizes / odu +/ ¢°dv for ¢ € X’} ,
Q Q

(1.4.5)
and then consider as an optimality condition 0 € 0H (u). The subdifferential
OH of the convex functional H is to be considered in the sense of the duality
between X and X'.

To prove (1.4.5) we will use the fact that H = F + T}, where both F
and 7T, are convex functionals. Here F' is defined as the usual functional
w— [f (u)dL?: notice that, from the growth assumption on f, we have
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dom(F) = X. Moreover we have, we have 0F(u) = {f’(u)} € X' and for
any u; € X we have

(F(u+e(ur — ) — F(u)/e =< ur —u, f'(u) >

This can be proven by using the same computations as in Lemma 1.4.1. The
functional T},, on the other hand, is defined as usual on X NP() and +o0
elsewhere.

Then we may apply Lemma 1.4.9 to get (1.4.5), provided we prove

0T (u) = {zp : 1) maximizes / odp +/ ¢Cdv for ¢ € X’} . (14.6)
Q Q

By Lemma 1.4.12; applied to the spaces X and X', (1.4.6) is a consequence
of the equality T},(v) = sup, < v,¢ > +K(¢) and Lemma 1.4.11.

So far we have proven Formula (1.4.5), and, by minimality of u, we
get 0 € OH(u), which means 0 = f’(u) 4+ v for a certain ¢ attaining the
maximum in the duality formula among all functions of X’. It is necessary
to prove that 1 is (or agrees a.e.) actually a Kantorovich potential, so that
we get the thesis of Theorem 1.4.8. First consider the double transform
1 and remember that it holds (Lemma 1.4.10) ¢ > 9 a.e. (see below).
Then, by optimality, necessarily we have ¢ = 1) a.e. on {u > 0}, since ¥
belongs to X'(it is a bounded function) and it would improve the value of
the integrals in the duality formula. By ¢ > 9 together with 0 = f'(u) 4+
we may infer ¢ = ¥ A 0 a.e. which shows that ¢ agrees a.e. with an
infimum of two c—concave function (which is itself a ¢—concave function)
and concludes the proof. O

1.5 Whole minimization on bounded and un-
bounded domains

In this section we want to go through the consequences that Theorem 1.4.8
has in the problem of minimizing the whole §, when this functional is built
by using a term G as in (1.3.3), which forces the measure v, representing
services, to be purely atomic. Two are our goals: trying to have an explicit
expression for u in the case of a bounded domain €2 and proving an existence
result in the case Q = R%.

Theorem 1.5.1. Suppose (u,v) is optimal for problem (1.1.2). Suppose
also that the function g is locally Lipschitz in |0,1]: then v has finitely many
atoms and is of the form v =3 " a;d,.
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Proof. 1t is clear that v is purely atomic, i.e. a countable sum of Dirac
masses. We want to show their finiteness. Consider a = maxa; (such a
maximum exists since lim; a; = 0 and a; > 0) and let L be the Lipschitz
constant of g on [a,1]. Now consider an atom with mass a; and modify v
by moving its mass onto the atom z; whose mass a; equals a, obtaining
a new measure /. The G—part of the functional decreases, while it may
happen that the transport part increases. Since we do not change p the
F—part remains the same. By optimality of v we get T)(u,v) + G(v) <
Tp(p,v') + G(v') and so

g(ai) = La; < g(ai) + g(a) — gla+ a;) < Tp(p, V') = Tp(p,v) < a;D.

This implies

Q

@) _pyp

a;
and, by the assumption on the behavior of g at 0, this gives a lower bound
0 on a;. Since we have proved that every atom of v has a mass greater than
d, we may conclude that v has finitely many atoms. O

Now we can use the results from last section.

Theorem 1.5.2. For any v € P(2) such that v is purely atomic and com-
posed by finitely many atoms at the points x1,...,Tm, if u minimizes §,
there exist constants c¢; such that

u(z)=k((ca—|lz—z1P) V...(em — |z —z|") VO). (1.5.1)

In particular the support of u is the intersection with €0 of a finite union of
balls centered around the atoms of v.

Proof. concerning the Kantorovich potential 1 appearing in Theorem 1.4.8
we know that

Y(x) +9°(y) = lv —ylP V(z,y) € spt(n),
V() +9°(y) < |z —ylf Y(z,y) € 2xQ,

where 7 is an optimal transport plan between p and v. Taking into account
that v is purely atomic we obtain, defining ¢; = ¥(x;),

() =c¢ — |z —x’ p—aexe,
—P(x) > ¢ — | —x|P Vo € Q, Vi,
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where Q; = T~ !(z;) and T is an optimal transport map between p and
v. Since pu—a.e. point in € is transported to a point x;, we know that
u = 0 a.e. in the complement of (J;€;. Since, by f'(u) = —, it holds
—1(x) > 0, one gets that everywhere in Q the function —1 is greater than
each of the terms ¢; — |z — ;P and 0, while a.e. it holds equality with at
least one of them. By changing u on a negligible set, one obtains (1.5.1).
The support of u, consequently, turns out to be composed by the union of
the balls B; = B(z;, cil/p) intersected with . O

Theorem 1.5.2 allows us to have an almost explicit formula for the density
of p. Formula (1.5.1) becomes more explicit when the balls B; are disjoint.
We give now a sufficient condition on v under which this fact occurs.

Lemma 1.5.3. There exists a positive number R, depending on the function
k, such that all the balls B; have a radius not exceeding R. In particular,
for any atomic probability v such that the distance between any two of its
atoms is larger than 2R, the balls B; are disjoint.

Proof. Set R; = c; /P and notice that

R;
1= / u > / k(e; — |v — x|P) dx = / E(RY — rP)dwgr®™" dr,
Q B; 0

where the number wy stands for the volume of the unit ball in R?. This
inequality gives the required upper bound on R;, since
R; Ri—1
k(RP — rP)dwqr®™ ' dr > C’/ nr¢=tdr = C(R; — 1)%.
0 0

O

When the balls B; are disjoint we have B; = {2; for every ¢ and we get a
simple relation between radii and masses corresponding to each atom. The
constants ¢; can then be found by using R; = ci/ P In fact, by imposing the
equality of the mass of p in the ball and of v in the atom, the radius R(m)
corresponding to a mass m satisfies

R(m)
m = / E(R(m)P — rP)dwgr?dr. (1.5.2)
0
For instance, if f(s) = s2/2, we have
1/(d+p)
Rim) = <m(d+p)> '
wdp
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The second aim of this section is to obtain an existence result for the problem
1.1.2 when Q = R?. A difference from the bounded case is the fact that we
must look for minimization among all pairs of measures in W, (R?), the p—th
Wasserstein metric space (see Section 0.2), rather than in P(R9).

We start by some simple results about the minimization problem for §,.

Lemma 1.5.4. For every fived v € P(R?) there exist a unique minimizer
p for Fy: it belongs to W,(R?) if and only if v € W,(RY), and if v does
not belong to this space the functional §, is infinite on the whole Wp(Rd).
Moreover, if v is compactly supported, the same happens for .

Proof. The existence of y comes from the direct method of the calculus
of variations and the fact that if (7),(un,v))s is bounded, then (up)p is
tight. Uniqueness follows from the strict convexity of f. The behavior of
the functional with respect to the space Wp(Rd) is trivial. Finally, the last
assertion can be proved by contradiction, supposing u(B(0, R)¢) > 0 for
every R < 400 and replacing p by

/’L(BR) IB Ed,

r=1

where B(0,r) is a ball containing the support of v. By optimality, we should
have

Tp(pr,v) + Fpr) = Tp(p, v) + F(p), (1.5.3)

but we have
Tp(pr,v) — T( ) (2r)P)u(Bg), (1.5.4)

v) < —
F(ug) — [ ( |B| ) f(u)] dce. (1.5.5)
(1.5

By summing