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The beauty of discovery in science:
to transform, at the same time,
our image of the world and that of ourself.
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Introduction

Il est une expérience commune qu’en utilisant juste le sens de l’audition il est possible
de récupérer beaucoup d’informations sur le monde qui nous entoure. Par exemple,
nous pouvons comprendre si nous sommes dans un endroit surpeuplé ou isolé, si une rue
est proche de nous, si nous sommes entourés par des personnes et même nous essayons
de prévoir le temps juste avec le bruit du vent.

Cependant, si nous voulions savoir plus au sujet des objets autour de nous, en util-
isant seulement notre sens de l’audition, nous serions déus; la matière reste silencieuse
si elle n’est pas interrogée. Même dans ce cas-ci, sans bonnes questions, elle n’a pas
beaucoup dire. Du bruit qu’un objet produit par le coup d’un marteau nous pouvons
faire des hypothèses sur sa composition mais nous ne pouvons rien dire au sujet de
sa nature microscopique. Il semble alors qu’onde acoustique ne soit pas les meilleurs
moyens d’indiquer les secrets de la matière. L’information sur la nature de la matière
condensée devrait être récupérée des modes vibratoires qui montent spontanément
(par exemple en raison des mouvements thermiques) sur une échelle de longueur mi-
croscopique. Malheureusement, de telles vibrations ne peuvent pas produire un bruit
comme celui employé pour entendre.

Si nous imaginons pour améliorer nos facultés sensorielles dans la région des fréquences
o de telles vibrations sont présentes, nous découvririons que chaque système a ses pro-
pres ” son ” et, d’ailleurs, nous serions étonnés de découvrir qu’il y a également un
” son caractéristique du désordre ”. Ceci signifie qu’un ” bruit ” peut nous dire si
la structure du système est amorphe ou cristalline. Cette étonnante découverte n’est
pas si lointaine, elle est de Zeller et de Pohl. En 1971, ils ont observé que la ca-
pacité de chaleur et la conductivité thermique présentent de différents comportements
de la température si mesuré d’un cristallin ou d’un amorphe. Les études successives
ont prouvé qu’un tel comportement marque réellement une différence universelle entre
la densité des états vibratoires (DOS) d’un verre et de celui d’un cristal. Une telle
différence apparat comme une augmentation du nombre de vibrations 1 dans la phase
vitreuse au-del de ceux de ses contre-parties cristallines. Cette augmentation des états
vibratoires s’appelle le ” Boson Peak ”(BP) : le ” son caractéristique du désordre ”.

On n’a jamais proposé l’idée que le désordre topologique pourrait avoir une signa-
ture dans les propriétés vibratoires de basse température du système avant l’expérience
sur SiO2 de Zeller et de Pohl en 1971. Depuis cette première expérience, les études de
BP ont montré un intérêt croissant, devenant le sujet de nombreuses études théoriques
et expérimentales. Étant donné que la présence de BP dans les verres est liée aux pro-

1la région de la fréquence o un tel phénomène a lieu est de THz.
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Introduction

priétés vibratoires de cet état, la recherche sur BP peut être placée dans le contexte plus
large de l’étude de la dynamique dans les systèmes désordonnés. Les principaux taches
de ce sujet de recherche ont été de comprendre l’effet général du désordre sur la dy-
namique vibratoire des verres. En outre, l’étude de la dynamique des verres permet de
rechercher les mécanismes microscopiques sur lesquels les propriétés macroscopiques de
ces systèmes sont basées, ainsi certaines de ces études ont des applications potentielles
dans la science des matériaux.

En verres, la dynamique vibratoire a été explorée sur un éventail d’échelles de
longueurs et de temps de la limite macroscopique, o le système devrait, en principe,
apparatre comme continuum, la limite microscopique, o seulement le comportement
de chaque atome est pris en considération.

Récemment, ces études expérimentales ont tiré bénéfice de l’arrivée de basé sur
de nouvelles techniques spectroscopiques basé sur les rayons X. L’avantage de ces
techniques est de fournir des informations précises sur la dynamique vibratoire mi-
croscopique et de donner l’accès la recherche sur une large classe des systèmes. Par
exemple, les rayons X sondent facilement des échantillons de petites dimensions et
dans des conditions extrêmes. L’étude présente dans cette thèse a employé, en tant
que méthodes expérimentales principales, deux techniques spectroscopiques de rayons
X : Dispersion non élastique nucléaire (NIS) et dispersion non élastique de rayon X
(IXS). Utilisant ces technique, nous pouvons mesurer la densité des états vibratoires
de différents verres et de sonder les excitations vibratoires des verres une échelle mi-
croscopique. Le but final de notre étude est d’étudier les mécanismes responsables de
la présence de BP dans les systèmes vitreux.

Trente ans après la première observation de BP, ce dispositif est encore en grande
partie discuté dans la communauté scientifique et jusqu’ici son origine n’a pas été
complètement comprise. En fait, quoiqu’une grande variété de modèles puissent repro-
duire le BP dans le DOS des verres ont été proposés, le nombre d’expériences capables
de le distinguer est très limité.

Dans ce travail nous avons entrepris une recherche sur la dynamique vibratoire
d’une classe des systèmes o la phénoménologie de BP est fortement discutée : verres ”
hyperquenched et densified ”. Grce une caractérisation étendue de nos échantillons,
nous avons étudié leur dynamique et les propriétés structurales sur une gamme d’échelle
de longueur allant du macroscopique la limite du microscopique. Nous avons observé
cela, en changeant la pression appliquée sur le verre, ou en changeant la température
de l’échantillon. La modification de la faible part de l’énergie du DOS est strictement
corrélée avec les changements de la réponse élastique de continuum du verre. C’est
vrai moins qu’une transformation structurale soit induite. La recherche sur le DOS
des verres a été enrichie par l’étude de la nature des excitations vibratoires aux énergies
comparables celles de BP. Ceci a été fait par des mesures de la dépendance de pression
des vibrations haute fréquence d’un verre.

La thèse a été présentée en accord avec les principes suivant :

• Dans le premier chapitre les aspects généraux de l’état vitreux sont présentés
en se référant plus particulièrement au comportement particulier des propriétés
thermo-dynamiques et au transport de cet état. Ici nous discutons comment

10



Introduction

le comportement thermo-dynamique anormal des verres peut être associé la
présence du Boson Peak dans la densité des état vibratoires du verre. Enfin
une brève vue d’ensemble sur les différents modèles actuels en littérature pour
expliquer la pésence du BP.

• Dans le deuxième chapitre, nous discuterons les principales techniques spectro-
scopiques utilisées dans cette étude: Diffusion non élastique nucléaire (NIS) et
la diffusion non élastique de rayon X (IXS). Les principes de base et les aspects
techniques du NIS et de l’IXS seront évoquées.

• Dans le troisième chapitre, nous présentons l’étude du verre hyperquenched. Dans
ce chapitre, les effets de l’histoire thermique sur les propriétés dynamiques et
structurales des verres seront étudiés. Une attention particulière sera consacrée
l’analyse de BP.

• Le quatrième chapitre est consacré l’étude de l’effet de la pression et de la
densité sur le DOS d’un verre. Les changements que les expériences de DOS sont
corrélées une fois de plus avec les changements macroscopiques, moins qu’une
transformation structurale ait lieu. Les pricipales implications de ces corrélations
sur la phénoménologie de BP sont discutées.

• Dans le cinquième chapitre, nous présenterons une étude sur la dynamique haute
fréquence (dans la région de fréquence de THz) d’ortho-terphénylique vitreux, et
l’effet de la pression sur cette dynamique sera discuté. En comparant nos résultats
aux données disponibles dans la littérature, il a été possible de déduire quelques
conclusions sur la nature des modes acoustiques aux énergies comparables celle
de BP. Enfin nous présenterons le tableau d’ensemble de BP au lequel le travail
actuel nous a permis d’obtenir. Nous récapitulons tous les résultats important,
et nous donnerons des perspectives sur des études possibles venir.

11



Introduction

12



Introduction

It is common experience that using just the sense of hearing it is possible to recover
a lot of information about the world around us. For instance, we can understand if
we are in a crowded or lonely place, if a street is close to us, if we are surrounded by
people and even try to forecast the weather just from the sound of the wind.

However, if we wanted to know more about the objects around us, using only our
sense of hearing, we would be disappointed; matter keeps silent if it is not interrogated.
Even in this case, without the right questions, it does not have a lot to say. From the
noise that an object produces once hit by a hammer we can make hypotheses on
its composition but we cannot say anything about its microscopic nature. It seems
then that acoustic waves are not the best means to reveal the secrets of matter. The
information on the nature of condensed matter should be recovered from the vibrational
modes that spontaneously rise (for instance because of the thermal motions) on a
microscopic length-scale. Unfortunately, such vibrations are not able to produce a
sound like the ones used to hear.

If we imagine to improve our sensorial faculties in the region of frequencies where
such vibrations are present, we would discover that each system has its own ”sound”
and, moreover, we would be surprised to find out that there is also a characteristic
”sound of disorder”. This means that a ”sound” is able to tell us if the structure of
the system is amorphous or crystalline.

Such astonishing discovery is not too far from that of Zeller and Pohl. In 1971 [1]
they observed that heat capacity and thermal conductivity show different temperature
behaviors if measured for a crystalline or amorphous SiO2. Successive studies have
shown that such a behavior actually marks a universal difference between the density
of vibrational states (DOS) of a glass and that of a crystal. Such difference appears as
an increase of the number of vibrations2 in the glassy phase over those of its crystalline
counterpart. This increase of vibrational states is called the Boson Peak (BP): the
characteristic ”sound of disorder”.

The idea that topological disorder could have a signature in the low temperature
vibrational properties of the system was never proposed before the experiment on SiO2

of Zeller and Pohl in 1971. Since this first experiment, studies of the BP have shown
an increasing interest, becoming the subject of numerous theoretical and experimental
studies.

Due to the fact that the presence of the BP in glasses is related to the vibrational
properties of this state, the investigation of the BP can be placed in the wider context

2The region of frequency where such phenomenon takes place is ≈ THz.
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of the study of the dynamics in disordered systems. The main tasks of this subject
of research have been to understand the general effect of disorder on the vibrational
dynamics of glasses.

Furthermore, the study of the dynamics of glasses allows one to look for the mi-
croscopic mechanisms on which the macroscopic properties of these systems are based,
thus some of these studies have a potential applications in material science.

In glasses, the vibrational dynamics has been explored over a wide range of lengths
and times scales from the macroscopic limit, where the system should, in principle,
appear as a continuum, to the microscopic limit, where only the behavior of each atom
is taken into account.

Recently, these experimental studies have benefitted from the advent of new x-ray
based spectroscopic techniques. The advantage of these techniques is to give accurate
information on the microscopic vibrational dynamics and to give access to the inves-
tigation of a wide class of systems. For example, x-rays can easy probe samples with
small dimensions and under extreme conditions. The study presented in this Thesis
has used, as main experimental methods, two x-rays spectroscopic techniques: Nuclear
Inelastic Scattering (NIS) and Inelastic X-ray Scattering (IXS). Using these technique
we can measure the density of vibrational states of different glasses and probe the vi-
brational excitations in glasses at microscopic length-scales. The ultimate goal of our
study is to investigate the mechanisms responsible for the presence of the BP in glassy
systems.

Thirty years after the first observation of the BP, this feature is still largely debated
in the scientific community and until now its origin has not been completely understood.
In fact, even though a wide variety of models are able to reproduce the BP in the DOS
of glasses have been proposed, the number of experiments able to discriminate among
are than quite limited.

In the present work we undertook an investigation into the vibrational dynamics of
a class of systems where the phenomenology of the BP is highly debated: the hyper-
quenched and densified glasses. Thanks to an extensive characterization of our samples,
we studied their dynamical and structural properties over a range of length-scales from
the macroscopic to the microscopic limit. We have observed that, varying the pressure
applied on a glass, or changing the thermal history of the sample, the modification of
the low energy part of the DOS is strictly correlated with the changes of the contin-
uum elastic response of the glass. This is true unless a structural transformation is
induced. The investigation of the DOS of glasses has been enriched by the study of the
nature of the vibrational excitations at energies comparable to that of the BP. This
has been done through measurements of the pressure dependence of the high frequency
vibrations of a glass.

The Thesis has been set out according the following scheme:

• In the first chapter the general aspects of the glassy state are introduced with
particular attention to the peculiar behavior of the thermodynamic and transport
properties of this state. Here we discuss how the anomalous thermodynamic
behavior of glasses can be associated to the presence of the Boson Peak in the
density of vibrational state of the glass. Finally a short overview on the different
models present in literature to explain the BP is presented.

14
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• In the second chapter we discuss the main spectroscopic techniques used in this
study: Nuclear Inelastic Scattering (NIS) and the Inelastic X-ray Scattering
(IXS). The basic principles and the technical aspects of NIS and IXS are in-
troduced.

• In the third chapter we present the study of a hyperquenched glass. In this chap-
ter the effects of the thermal history on the dynamical and structural properties
of glasses are investigated. Particular attention is devoted to the analysis of the
BP.

• The fourth chapter is dedicated to the study of the effect of pressure and density
on the DOS of a glass. The changes that the DOS experiences are correlated
once more to the macroscopic changes, unless a structural transformation takes
place. The main implications of these correlations on the phenomenology of the
BP are discussed.

• In the fifth chapter we present a study on the high frequency dynamics (in the
THz frequency region) of glassy ortho-terphenyl, and the effect of pressure on
this dynamics is discussed. From the comparison of our results to others data
available in the literature it has been possible to deduce some conclusions on the
nature of the acoustic modes at energies comparable to that of the BP.

Finally we present the general picture of the BP that the present work has allowed
us to get to. We summarize all the main results and we offer perspectives for
possible futures studies.

15



Résumé du chapitre 1

Résumé du chapitre 1

Dans ce chapitre on trouve une introduction aux principales caractéristiques
de la phase vitreuse en soulignant les particularités de cet état de la
matière condensée qui sont à la base de l’intérêt de notre étude. Les
propriétés thermodynamiques du verre telles que la capacité thermique,
la conductivité et l’expansion thermique sont mentionnées ici; ainsi que
l’analyse de leur comportement a basse température. En effet, toutes
ces quantités physiques, à basse température se comportent de manière
inattendue si on les compare par rapport à celles des cristaux issus de la
théorie de Debye. Dans ce même chapitre on traitera le problème de la
dynamique du verre en introduisant le concept de phonon et en illustrant
les différents modes vibrationnels que peut supporter le verre. On intro-
duit alors la propriété physique de la densité d’états vibrationnels DOS
(g(E)) en éclaircissant sur cette grandeur qui est liée aux propriétés ther-
modynamiques du verre. Dans ces paragraphes on montrera que à basse
température, le comportement anormal des propriétés thermodynamiques
d’un système vitreux révèle une augmentation du nombre d’états vibra-
tionnels. Dans la RDOS (g(E)/E2) à basse énergie cette augmentation a
son maximum que l’on appelle Boson Peak (BP). Enfin la dernière partie
de ce chapitre est dédiée au BP. On fournira un bref aperçu de quelques
modèles qui décrivent cette caractéristique vibrationnelle du verre. On
discutera la validité de certains modèles du BP sur le quel sont basés les
résultats de cette thèse.

16



Chapter 1

General aspects of the glassy state

In this chapter the fundamental properties of the glassy state will be reviewed.

1.1 The glassy state

The glassy state is a state of matter that behaves macroscopically as a solid. The
peculiar character of this state compared to crystalline state appears evident in its
microscopic structure. The structure of a glass is defined as that of an amorphous
solid. The term amorphous reflects its Greek root and is descriptive of any condensed
phase which lacks long-range order.

In literature concerned with ”glass”, there is no a unique definition. Several different
ways have been proposed to identify the glassy state, each of them focusing on a
different aspect of glasses. One of the most used definitions of glass, that we assume
in the context of this thesis, is based not only on the microscopic structural properties
of the solid but also on the glass forming process, that starting from a liquid gives rise
to the glass. Thus, it has been proposed to define a glass as: ”an amorphous solid that
exhibits a glass transition”.

Here the glass transition identifies that phenomenon where a liquid experiences
on cooling a change of its internal energy with varying temperature. Such change
appears as a sudden modification in the derivative, respect to the temperature, of its
thermodynamic properties (e.g. heat capacities cP , etc ). This definition of glass, based
on the glass forming process, has the advantage of underlining one peculiarity of the
glassy state: its non-equilibrium nature.

The glass cannot be described only by the value of the thermodynamic parameters
of the system; one has also to specify as well the thermodynamic history of the material
and the experimental time scale of observation. In fact, as it will be clarified in the
next paragraph, a glass will exhibit liquid-like or solid like behavior depending on the
timescale over which the measurements take place.

In order to clarify the process that drives a system to form a glass, we can deal
with an ideal experiment where, starting from isolated atoms we build an amorphous
material. The actual experiment that most closely corresponds to this process is cooling
a vapor until it condenses into the liquid state and then further gradually cooling
the liquid until it solidifies. The results of such experiment, for a given quantity of

17



Chapter 1. General aspects of the glassy state

material, may be represented using volume versus temperature (V (T )) plot such as the
one represented in fig. 1.1.

A sharp break or bend in V (T ) marks a change of state occurring with decreas-
ing temperature. The first occurs when the gas condenses to the liquid phase at the
boiling temperature. Continued cooling now decreases the liquid volume continuously.
Eventually, when the temperature is low enough, a liquid-solid transition takes place.
Such transition can occur in two ways: either discontinuously to a crystalline solid, or
continuously to an amorphous solid (glass). The liquid-crystal transition temperature
Tm is marked by a discontinuity in V (T ), an abrupt contraction to the volume of the
crystalline solid. In a quenching experiment carried out at sufficiently low cooling rate
this is usually the route taken to get to the solid state. However, at sufficiently high
cooling rates most materials alter their behavior, Tm is bypassed and the liquid phase
persists until a lower temperature, Tg, is reached: here the second solidification scenario
is realized. During the liquid-glass transition no volume discontinuity appears, V (T )
bends over to acquire a smaller slope (similar to that of the crystal) characteristic of
the low thermal expansion of a solid compared to a liquid (the thermal expansion is
defined as α = (1/V )(∂V/∂T )P [2]). Thus the process of glass formation is an alterna-
tive route for a liquid to fall into the solid, by-passing the crystallization mechanism.
The differences between glass formation and crystallization have a clear image in the
microscopic aspect of the crystalline and glassy state.

The higher cooling rate, responsible for the glass formation, produces randomness
in the structure of the glassy state. This disorder should be compared to a standard
definition of order: that of a perfect crystal. In a crystal the atoms are arranged
on a periodic three dimensional array. Conversely, a glass presents no translational
periodicity and then shows topological disorder. In addition, different types of disorder
can be added. For instance, spin disorder, when each atomic site possesses a spin or
magnetic moment randomly oriented or substitutional disorder where one or more types
of atoms are randomly substituted for the others in the crystalline lattice.

Actually, the effect of disorder on the microscopic and macroscopic properties of
a solid represents the main reason of interest for the study of the glassy state. Such
characteristic has been pointed out to be responsible for the properties that are unique
to glasses and are not at all shared with crystalline solids. For instance, the heat
capacity cP and the thermal conductibility k of glasses at low temperature present a
behavior that is quite far from what found in crystalline materials. Such peculiarities
of the glassy state have been called thermodynamic ”anomalies” [3].

The first experimental observation of the differences between the thermodynamic
properties of glasses and their crystalline counterparts dates to 1971 by Zeller and
Pohl [1]. Before this date it was not predicted that cP or k could exhibit different low
temperature behavior for amorphous silica and crystalline quartz. At low tempera-
tures the structural irregularities of glasses become progressively less important for the
propagation of vibrational excitations with increasing wavelength.

Since these first observations the interest to study the glassy state is increased,
leading to intensive experimental studies of a wide variety of amorphous materials.
The results of such experimental efforts have established the universal nature of the
low temperature behavior of cP and k in glasses. Beyond the interest of these anomalies,
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1.2. The glass transition

the process of glass formation has been the subject of its own active research efforts.

Figure 1.1: Temperature behavior of the volume of a system through its vapor, liquid,
crystalline, and glassy state.

1.2 The glass transition

The glass transition has been referred to the physical phenomenon that marks the
attainment, on cooling, of a state which exhibits the thermodynamic properties of
a solid. Such solid has the amorphous structure typical of a glass and it keeps its
disordered nature at all temperatures lower than the glass transition temperature (on
the time scale of the human experience). The understanding of the nature of the glass
transition and its origin is regarded by the scientific community as a central problem
in condensed matter physics.

The most general concept of a glass is related to those systems which have some
degree of freedom that fluctuate at a rate which depends strongly on temperature
(T ) or pressure (P ) and that become so slow at low T or high P that the fluctuations
become frozen. The properties determined by the slow degrees of freedom change value
more or less abruptly giving rise to the glass transition. The decrease of the degree
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Chapter 1. General aspects of the glassy state

of freedom of the system can also be related to the break down of ergodicity [4]. In
fact the glass formation process brings the system from an ergodic condition (i.e. the
system in equilibrium in the course of spontaneous fluctuations revisits the same state
within the experimental observation period) to a non ergodic state. The phenomena
associated with the break of the ergodicity condition are macroscopically visible in a
sudden change in the derivative of the thermodynamic properties (such as cP , etc) of
the system across the glass transition temperature (Tg). For instance, in glass forming
liquids the heat capacity, compressibility and expansivity decrease while the system
experience the crossover between the two microscopic dynamical regimes. In a liquid,
molecules have extensive translational motions, in contrast atom in glasses can only
oscillate around their equilibrium positions since the glass transition marks the freezing
of the free diffusion typical of the liquid phase.

In some aspects, the glass transition can be described by monitoring the thermody-
namic properties of a system as a function of temperature. Figure 1.2 shows a typical
cP (T ) scan (cP = (∂Q/∂T )P , where Q is the heat exchanged by the system) in an
amorphous and in a crystalline solid. The glass transition clearly appears as a step
in the specific heat on decreasing T . For glassy material, cP (T ) can be followed con-
tinuously from low temperature up through Tg and well into the liquid regime and
beyond. The curve for the crystal is continuous up to the melting point Tm where
cP diverges because of the heat fusion (finite ∆Q with ∆T = 0, cP → ∞) associated
with the crystal liquid transition. No similar latent heat singularity accompanies the
glass-liquid transition.

Figure 1.2: Behaviour of the specific heat of ortho-terphenyl through its liquid-crystal
and liquid-glass phase transitions [5].

The liquid-glass transition can be observed readily through monitoring the change of
volume as a function of temperature (as shown in fig. 1.1). The crystallization process
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1.2. The glass transition

is manifested by an abrupt change in volume at Tm, whereas the glass formation is
characterized by a gradual change in the slope of V . The region over which the change
of slope occurs, is centered around the glass transition temperature Tg (similar behavior
is also exhibited by other extensive thermodynamic variables such as the entropy, S,
and enthalpy, H). Since the transition to the glassy state is continuous, it is often
used the term ”fictive” temperature Tf to mark the transition temperature, which can
be defined as that specific temperature where the extrapolated liquid and glass curves
intersect (in fig. 1.1 Tf = Tg).

The glass transition temperature depends on the rate of cooling of the liquid. The
slower the rate of cooling, the larger the region over which the liquid may be supercooled
(brought below the melting temperature but still in liquid state), and hence giving a
lower Tg. Thus, the glass transition temperature of a particular material depends on
its thermal history and is not an intrinsic property.

The reason for the shifting of Tg to lower temperatures when the cooling process
is extended over longer times can be described by theories that represent the glass
transition in terms of relaxation processes [6]. The typical relaxation time τ of a liquid
increases decreasing the temperature. The quantity 1/τ characterizes the rate at which
the structure of the system at the atomic scale adapts itself to an external perturbation.
This quantity varies enormously during the cooling process. The structural rearrange-
ment response time may increase from 10−12s in the liquid to 1010 years at T=Tg − 50
K. As T is lowered below Tg, τ becomes much larger than any experimentally accessible
time and the material loses its ability to rearrange the atomic configuration, e.g., in
response to the imposed decrease of temperature. The system reaches the behavior of
a solid with a huge increase of the viscosity and the atoms are frozen into well-defined
positions that correspond to the configuration that they had at Tg.

The definition of Tg is always related to the experimental conditions of measure-
ment, in particular to the relation between the characteristic timescale (1/ω) at which
the system is probed, and the time that the system takes to recover its equilibrium after
an external perturbation. If the experimental time is short compared to the material
relaxation time (ωτ >> 1), the measured properties are out of equilibrium.

The relation between Tg and the cooling rate at which the experiment is carried
out is an indication of the characteristic kinetic nature of the glass transition. The
essential requirement for glass formation is that the thermal energy of an ensemble
of molecules, ions, etc. can be removed at a rate that, for kinetic reasons, precludes
the organization of the particles in a crystal lattice. In fact, the crystalline phase is
energetic favorite and crystal growth will always dominate over the formation of the
amorphous phase if it is allowed to take place.

The question that then naturally arises is: ”Why many systems can get into solid
phase by-passing the crystallization and becoming glass?

A connection between the kinetic and thermodynamic nature of the glass transition
is provided by the Adam-Gibbs relationship [7]:

τ = τ0exp(∆H∗/(TSc)), (1.1)

here τ0 is a pre-exponential constant, ∆H∗ is the activation enthalpy and Sc is the con-
figurational entropy of the system. According to Eq. (1.1), the origin of the increase in
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Chapter 1. General aspects of the glassy state

τ approaching Tg, decreasing temperature, is related to the decrease number of config-
urations that the system is able to sample. In fact, the liquid phase can accommodate
a great range of molecular configurations. Conversely, in the crystalline state, trans-
lational symmetry places severe restrictions on the relative molecular arrangements.
While kinetic effects clearly play a role in the determination of Tg, the Adam-Gibbs
formula suggests that the observed liquid-glass transition is a manifestation of an un-
derlying thermodynamic transition. Such thermodynamic transition would correspond
to the limit of an infinitely long observation time t → ∞, and of an infinitely low
cooling rate (∂T/∂t → 0).

The fact that certain extensive thermodynamic variables (e.g. V , S, H) are con-
tinuous while the differential quantities α, cP , k are discontinuous at Tg, might suggest
that the glass transition is a second order phase transition 1. The liquid-crystal tran-
sition is an example of the first order transition, since the volume V = (∂G/∂P )T

(here G is the Gibbs free energy) changes discontinuously at Tm whereas in a glass
cP = T (∂S/∂T )P = −T (∂2G/∂T 2)P is almost discontinuous at Tf (see fig. 1.1 and
1.2).

Unfortunately, this rather simple model of the glass transition fails at several points.
A difficulty arises when one examines the predictions made for a second order phase
transition. In particular, the Prigogine-Defay ratio, i.e. a ratio of thermodynamic
parameters expected to be one for a second order transition, gives a value different
from one [8].

The glass transition is not therefore a simple second order phase transition. How-
ever, the question remains if the glass formation process can be associated to an ideal
glass transition temperature.

Kauzmann [9] answered this question using the argument that the entropy of an
undercooled liquid cannot decrease below the value of the crystalline phase. This
argument can be understood if we plot S vs T over a large range of temperatures
through the liquid, the crystal and the glassy state. Integrating the difference in heat
capacity over the temperature interval between the glass transition temperature and the
melting point shows that some 60% of the entropy of fusion is lost on the supercooling
the liquid before internal equilibrium is lost. In fact we can write:

Sex = ∆S(fusion) −
∫ Tm

T
(cP (liquid) − cP (crystal)) dlogT . (1.2)

Here Sex represents the amount by which the entropy of the liquid exceeds that of
the crystalline phase at the same temperature and ∆S(fusion) the change of entropy
associated to the fusion of the solid. As the temperature decreases from Tm to Tg, Sex

drops sharply as shown in fig. 1.3. The significant feature of fig. 1.3 is the dashed
line that extrapolates the behaviour of the liquid below Tg. This part of the curve
cannot of course be measured, solidification occurs when the temperature is decreased
below Tg. If the glass transition did not intervene, the liquid entropy would equal
the crystal’s entropy at nonzero temperature Tk (the Kauzmann temperature). At

1The definition of the transition order (according the Ehrenfest scheme) is the order of the lowest
derivative of the Gibbs free energy which shows a discontinuity at the transition point.
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1.3. Fragility of a glass

this temperature, which in reality is kinetically unreachable, a thermodynamic phase
transition could take place.

Figure 1.3: Temperature behavior of the excess of entropy of crystalline H2SO4 · 3H2O
relative to its liquid phase [11]. Sliq − Scry is equal to zero at T=Tk=120 K.

Tk may be regarded as a limiting value that sets a lower bound on Tg. However,
the Nature averts the ”paradox” of negative entropy and intercedes by solidifying the
liquid at Tg.

Different theories invoke other mechanisms to explain glass-transition phenomenol-
ogy. Despite the variety of arguments used to describe glass forming processes, up
to now a theory able to account for all of the phenomena associated with the glass
transition is still lacking.

1.3 Fragility of a glass

As we have discussed in the previous paragraph a quantity that can be used to charac-
terize the glass forming process is the structural relaxation time τ . For small departures
from equilibrium and over short temperature ranges, the temperature dependence of τ
can be approximated by the Adam-Gibbs equation (1.1).

Because the activation enthalpy ∆H∗ is positive, a decrease in temperature results
in an increases of τ and the rate of structural relaxation decelerates rapidly. The
expression 1.1 can be expressed in terms of the Vogel-Fulcher equation [12, 13, 14]:

τ = τ0exp(DT0/(T − T0)), (1.3)

here T0 and D are parameters that depend on the system. Starting from the temper-
ature dependence of τ it is possible to classify the systems according their ability to
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Chapter 1. General aspects of the glassy state

change structure by varying the temperature around the glass transition temperature
Tg. This classification introduces the concept of fragility of a glass, m [15, 16].

m =
dlogτ

d(Tg/T )

∣∣∣∣
T=Tg

. (1.4)

The same quantity m can also be defined from the temperature behavior of a macro-
scopic quantity, such as the shear viscosity η. A simple viscoelastic model introduced
by Maxwell in 1877 establishes the relationship between τ and η: τ = η/G∞ (here G∞

is the shear modulus). The temperature dependence of η and τ are very close, on de-
creasing the temperature the shear viscosity increases and the value of T where η=1012

Pa s defines the glass transition temperature Tg. Moreover, describing the temperature
dependence of η by an Arrhenius expression (η = η0exp(∆H∗

η/RT )), it has been found
that the structural activation enthalpies ∆H∗ and the correspondent shear viscosity
enthalpies ∆H∗

η have the same values suggesting that the structural relaxation process
and the viscous flow under mechanical stress are controlled by the same mechanisms.

Figure 1.4: Tg scaled Arrhenius plots for viscosities of different glass forming liquids
showing a spread of data between strong and fragile extremes [17].

Thus, it is possible to define the fragility from the shear viscosity as:

m =
dlogη

d(Tg/T )

∣∣∣∣
T=Tg

. (1.5)
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In figure 1.4 we show logη versus Tg/T , which shows clearly the difference between
a system with a high value of m (”fragile”), and a system with a low value of m
(”strong”).

Fragile materials (as ortho-terphenyl with m=80 [18]) have a η vs Tg/T behavior
that is far from the Arrhenius form of Eq. (1.1), such systems are characterized by
simple Coulomb or van der Waals interaction forces. On the other hand, strong ma-
terials (e.g. SiO2 with m=20 [18]) present covalent or directionally oriented bonds
and eventually can form networking structures that strongly decrease the ability of the
system to rearrange its structure with varying temperature.

1.4 Thermodynamic properties of a glass

1.4.1 General interest

A striking feature of glasses is that they exhibit a behavior markedly different from
their crystalline counterpart in some thermodynamic properties such as specific heat
(cP ), thermal expansion (α) and thermal conductivity (k). The purpose of this section
is to give a short overview of the thermodynamic peculiarities of glasses and to show
how the behavior of glasses differs from that of crystals at low temperature.

Since Zeller and Pohl (1971) [1] first found that the thermal conductivity of vitreous
silica at low temperature was unexpectedly far from that of crystalline quartz, the study
of the thermodynamical properties of glasses has attracted the interest of the scientific
community.

Figure 1.5 shows that k has a quite different temperature behavior in crystalline and
glassy states, the glass shows a slowly decreasing function in contrast to the peaked be-
havior characteristic of the crystal. Moreover, the difference between the two behaviors
appears much more surprising because it remains at low temperatures. In fact, Debye
theory [2] would predict a similar temperature dependence for the thermal properties
of the two states (crystalline and glassy) at low temperature.

Debye theory ignores the lattice structure of the system, which is modeled as a con-
tinuum elastic medium and predicts a quadratic frequency distribution for the acoustic
excitations of the solid. This distribution (g(ω)) has a cut-off at some frequency ωD

(Debye frequency)2 associated with a characteristic temperature ΘD (Debye tempera-
ture) that represents the temperature needed to efficiently excite all acoustic modes.
This simple theory works well for temperature low compared to ΘD. In fact, at low
temperatures the thermally excited acoustic vibrations of the solid have a wavelength
much larger than the atomic scale. The continuum approximation is then satisfied.

In amorphous solids, one would expect that the low temperature continuum ap-
proximation is valid at least as well as in crystalline solids and that the behavior of the
thermal properties should converge to a unique low temperature limit for both: the
crystals and glasses. However Zeller and Pohl have shown that this is not the case.
The low temperature properties (α, cP , and k) are so different between a glass and

2The Debye frequency ωD represents the highest frequency of an acoustic vibration that can prop-
agate in the system.
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Chapter 1. General aspects of the glassy state

the relative crystal that considerable efforts have been put to attempt to understand
them. As a consequence of this, large variety of theories propose different origins for
such differences.

1.4.2 Heat capacity

A puzzling behavior of the specific heat cP of glassy phase has been found. The
low temperature value of cP exceeds the amount predicted by Debye theory. The
continuum approximation that underly the Debye model, predicts for the specific heat
a T 3 behavior as T tends to zero:

cV =
2π2

5

k4
BT 3

h̄3ρv3
D

,
3

v3
D

=
1

v3
l

+
2

v3
t

, (1.6)

here ρ is the mass density, and vD is the Debye sound velocity of the system that is
given by a weighted average of longitudinal (vl) and transverse (vt) sound velocities.

By analogy to the behavior of thermal conductivity, one would expect that as the
structural disorder of a glass becomes unimportant at low temperature (see previous
section), cP should be similar to that of a crystal. Figures 1.5 and 1.6 show that cP

of the glass decreases much more slowly with temperature (cP ∼ (aT + bT 3)) than the
Debye prediction (cP ∼ T 3) valid for a crystal. As a consequence, amorphous materials
exhibit an excess of heat capacity at low temperature compared to the Debye limit (see
fig.1.6). A bump in cP /T 3 vs T plot of fig.1.6 is also observed in crystalline materials at
higher temperature, such behavior is usually related to the effect of transverse acoustic
vibrational excitations near the boundary of the first Brillouin zone.

Despite the fact that the origin of the cP anomalous behavior of glasses has not
found a unique interpretation, it has been recognized that such phenomenon reflects
the presence of low frequency modes that are peculiar to the glassy state.

1.4.3 Thermal conductivity

We have an excellent understanding of the fundamental mechanism that control the
thermal transport in crystals at low temperature; this contrasts with our understanding
of amorphous materials, for which we have a much more primitive level of comprehen-
sion.

In a crystal, heat is transported by phonons (i.e. quanta of vibrations) which are
the elementary vibrational excitations of the systems. The thermal conductivity can
be expressed as [2]:

k =
1

3

∑

i

∫ ωM

0
ci(ω)vi(ω)li(ω)dω. (1.7)

In Eq. (1.7) the sum is over all phonon branches (acoustic and optical see section 1.6)
vi and li are the phonon velocity and the mean free path. The contribution to the
lattice specific heat from phonons of the ith branch and frequency ω is represented by
ci(ω). The integration in 1.7 is extended from the lowest excited frequency ω = 0 to
the highest ωM excited mode.
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Figure 1.5: Thermal conductivity and heat capacity measured in amorphous silica (red
symbols) and α-quartz (black symbols) by Zeller and Pohl (1971) [1].
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Figure 1.6: Heat capacity measured in amorphous silica (red line) and α-quartz (black
line) by Zeller and Pohl (1971)[1].

In a crystal the mechanism of thermal conduction is based on phonons that prop-
agate the heat through the system and the ability of this mechanism is related to the
efficiency of phonons diffusions through the solid, which is limited by intrinsic scattering
processes. At sufficiently low T , l becomes comparable to the size of sample. l is defined
only by the dimensions of the crystal and is constant. At low temperature, the Debye
approximation is valid (the wavelength of efficiently excited vibrational excitations are
much larger than the typical structural inhomogeneities of the system) and k behaves
as T 3. At higher temperatures, increasing the phonon population the mean free path
becomes reduced by Umklapp processes. The resulting change of regime is marked by
the presence of a peak in k (see figure 1.5). Moreover, decreasing the temperature an
additional scattering of phonons results from the increase of the anharmonicity of the
system.

In contrast, the behavior of amorphous solids is completely different at low tem-
perature. No peak in k is observed, instead a plateau region occurs at 10 K and k
behaves approximately as T 2, rather then T 3. The reason for the plateau region of k
in glasses is still matter of debate. This behavior can be explained if the phonon free
path is highly frequency dependent l(ω) Each temperature can then be associated to
a frequency excitation ω of phonons h̄ω = kBT where kB is the Boltzmann’s constant.
The plateau in k would then correspond to a characteristic vibrational frequency (ω0),
and this frequency marks the crossover between two regions with a different behavior of
the mean free path: where for ω > ω0 l is frequency independent, at ω < ω0 l behaves
as ∼ 1/ω4. The reasons for such behavior of l(ω) must be found in a new source of
phonon scattering that does not occur in crystalline phase phase.
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1.4. Thermodynamic properties of a glass

1.4.4 Thermal expansion

The last thermal property that we discuss as example of the anomalous low temperature
behavior of glasses is the thermal expansion coefficient, α = (∂lnV /∂T )P [2].

It has been found that the value of α in glasses is much smaller then that of
the crystalline phase. For instance, in vitreous silica at T = 293 K α = 1.4 · 10−6

K−1 [19], smaller than that of quartz and other crystalline forms of silica by a factor
25. The access to the measurement of thermal expansion has been obtained at low
temperature only since in the 1960’s new reliable techniques as optical levers and
capacitance methods became available. The results of these measurements of α have
been interpreted in terms of quasi-harmonic approximation. In a harmonic model, the
potential energy contains no terms beyond the second order term on the expression in
the atomic displacement. This limitation inhibits the thermal expansion that can only
occurs via the anharmonicity of the system. In the presence of anharmonicity (e.g. the
quasi-harmonic approximation), the second order coefficients is volume dependent and
the atomic vibrations are treated as harmonic but with volume dependent frequencies
(ω(V )).

Using the ”quasi-harmonic” approximation the basic quantity to calculate the
thermal expansion is the entropy S, and a change of S resulting from a change of V
and T may be written [19]:

dS = (∂S/∂T )V dT + (∂S/∂V )T dV = cV dlnT + αBT V dlnV. (1.8)

Hence, at constant entropy dS = 0 we can introduce the Grüneisen parameter γth

γth = αBT V/cV = −(∂lnT/∂lnV )S, (1.9)

here BT = (∂P/∂lnV )T represents the isothermal compressibility. According to Eq.
(1.9) we observe that γth is directly proportional to the thermal expansion α. Moreover,
γth is the sum of all Grüneisen parameter of the vibrational modes of the system;
γth =

∑
i γici/

∑
ci, here ci indicates the heat capacity contribution of the ith vibrational

mode. It can also be shown that γ may be expressed in terms of the volume dependence
of the energy levels of the solid; thus γi = (∂lnh̄ωi/∂lnV ).

In order to have a deeper understanding of the mechanisms that control thermal
expansion at microscopic levels we can compare γth predicted by thermodynamics (Eq.
1.9) with the Grüneisen parameter γD estimated only from acoustic modes using the
Debye approximation:

γD =

(
γL

v3
L

+
2γT

v3
T

) (
1

v3
L

+
2

v3
T

)−1

, γL,T =
∂lnωL,T

∂lnV
, (1.10)

here ωL,T are the corresponding frequencies of the longitudinal and transverse modes
of the system. The agreement between the values of γth and γD of course relies on
the validity of the Debye approximation and is, in general, fulfilled in crystalline solids
at low temperature. In crystals the values of thermal expansion are comparable with
that derived from 1.9 replacing γth with γD and α can be calculated directly from the
volume derivatives of sound velocities. The agreement between γth and γD is good
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in the low temperature limit where the Debye description is adequate. However, as
expected, γth departs significantly from γD at higher temperatures.

Figure 1.7: Grüneisen parameter of silica γth (red line) and α-quartz (circles), the
arrow indicates the Debye limit γD for the amorphous SiO2, the full and open symbols
are respectively γl and γT of the quartz [19].

In most glasses the situation is not this simple, γth and γD are usually markedly
different. The magnitude of discrepancy between γD and γth is clearly visible in figure
1.7, where at low temperature γth clearly departs from the value of γD. The comparison
between γth and the value of the Grüneisen parameter obtained by the volume derivative
of sound velocities shows that the small value of |γth| in glasses arises from the alternate
positive and negative mode Grüneisen parameters of vibrational modes (i.e. alternate
sign of γi).

Although for practical purposes the thermal expansion is one of the most important
properties of a glass, there are no satisfactory descriptions of it at the microscopic level.
The study of Grüneisen parameter and then the anharmonicity in glasses will be the
subject of the last chapter of this thesis.
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1.5. The study of the dynamics of glassy phase

1.5 The study of the dynamics of glassy phase

Atomic motions can be described in terms of the field of forces in which the atoms are
plunged. This field can be expressed at each point r̄ through an interaction potential
VN(r̄) that involves all of the N atoms of the system through their positions (r̄1,r̄2,r̄3,....
r̄N). Thus, VN(r̄) reflects the microscopic picture of the glass and can be used to predict
the thermodynamic state as well as the other properties of the system.

Atoms in a solid experience spontaneous vibrations, these motions have origin in
the thermal excitations of the system. The definition of the temperature T in a solid is
associated to the microscopic motions of the atoms about their equilibrium positions,
this motion persists even at T = 0 where quantum mechanics predicts a kinetic energy
different from zero [2]. The existence of thermal vibrations in solids is responsible for
the transfer of heat through the system; moreover, the ability of the solid to conduct
the heat can be considered as a first characterization of its vibrational properties. Nev-
ertheless, to know more details of the mechanisms that underlie the motions of atoms
it is necessary to make a more systematic observation of the microscopic vibrations of
the system under controlled thermodynamic conditions. The study of the dynamics in
a solid can be approached by perturbing the equilibrium of the system by an external
force and recording its reaction (i.e. relaxation to the equilibrium state). Studying
systematically the response, and paying attention that the perturbation does not alter
too much the equilibrium properties of the system (linear response), it is possible to
get information on the field of forces of the system.

The reliability of an experimental technique that follows this procedure to probe
the dynamics of a solid is based on the theorem of the ”linear response”. This theorem
sets the equivalence between the response of a system in the regime of small perturba-
tion (linear response) and the spontaneous fluctuations in absence of the perturbation.
Considering a dynamical (i.e. dependent on time t) variable of the system B(t), its
behavior is controlled by a Hamiltonian of the unperturbed system H0. When a per-
turbation is applied to the system through an external field F (t) linearly coupled to
the system by another variable A(t), we can write the new Hamiltonian of the system
as: H = H0 + H ′ where H ′ = A(t)F (t). Now the value of B(t) out of the equilibrium
< B(t) >N.eq. can be written as:

< B(t) >N.eq.=
∫ t

−∞
θ(t − s)F (s)ds, (1.11)

θ(t) is the response function of the unperturbed system. There are several techniques
that probe the dynamics of a system in the linear regime (H ′ = A(t)F (t)); they differ
in the dynamical variable perturbed, the time and the length-scales explored. In the
present study we explore the dynamics of glasses in a time scale of the order of pico-
second and in a region of length scale from ≈ 0.1 nm to ≈ 100 nm. In chapter 2 the
main features and the interaction processes for the techniques involved in our study
will be treated more extensively.

It has been possible to probe the high frequency vibrations of glasses measuring the
density of vibrational states DOS using the Nuclear Inelastic Scattering. Moreover,
we measured the density fluctuations of the system as function of the probed length
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scale and energy using Inelastic X-ray scattering (IXS) and Brillouin Light Scattering
(BLS).

The information on the dynamics of a solid collected by these techniques repre-
sents the starting point in testing microscopic models for the interpretation of the
thermodynamic properties of glasses.

1.6 Vibrational modes in glasses

In the previous section it has been underlined that by studying the dynamics of a
system, we have access to basic information on the microscopic mechanisms responsible
for the thermodynamic properties of the solid. Nevertheless, in order to establish this
link between macroscopic properties and microscopic mechanisms it is necessary to
have a theoretical framework, based an assigned interaction potential for the atoms,
that is able to predict the vibrational properties of the solid.

The development of such theoretical framework has been carried out since the
beginning of the 20th century with the classical paper of Debye (1912) [20] and Born
von Karman (1912) [21]. These works were devoted to the study of normal modes and
the thermodynamic properties in crystalline solids. A systematic study of the dynamics
of disordered systems started in the 50’s but it was not until 70’s that a formalism was
developed that could derive the vibrational spectrum of an amorphous material from a
fixed interaction potential. The development of theoretical tools has been followed by
the advent of new spectroscopic techniques: Inelastic Neutron Scattering (INS), more
recently Inelastic X-ray Scattering (IXS) and Nuclear Inelastic Scattering (NIS) able
to experimentally test the reliability of these models.

The difficulty in studying the dynamics of amorphous materials stems from the
absence of any real simplifying feature in the geometry of the systems. There is no
periodicity in the structures of glasses and then theories applicable to crystalline solids
cannot be invoked. Moreover, disordered systems are not sufficiently closely related
to any simpler structure that can be used in a perturbative approach to solve the
problem. For this reason in amorphous materials we cannot use some of the quite
familiar concepts normally associated with crystalline materials.

In a crystal a phonon is wavelike excitation extends spatially through the whole
structure. This is not generally true for a disordered system where an excitation of
atomic vibrations do not exhibit a well defined wavelength (λ) or wave-vector (q =
2π/λ).

If we consider a crystal with N identical atoms in a volume V , the position of
the l-th atom can be specified by the coordinate ~Rl: ~Rl(t) = ~xl + ~ul where xl is the
equilibrium position of the atom and ul its displacement about it. The Hamiltonian of
the system can written as [2]:

H =
1

2

∑

l,α

mu̇2
l,α +

1

2

∑

l,α

∑

l′,β

Uαβ(l, l′)uα,luβ,l′ . (1.12)

Here l and l′ are the indexes of each particle, α that of the spatial coordinates. ml is
the mass of the particle and the matrix U is the Hessian of the potential energy relative

32



1.6. Vibrational modes in glasses

to the 3N variables.

Uαβ(l, l′) =

[
∂2U

∂uα,l∂uβ,l′

]

. (1.13)

The force that a particle feels as effect of the other N − 1 atoms is:

Fα(l) = −
∑

l′,β

Uαβ(l, l′)uβ,l′ . (1.14)

The equation of motion associated with Eq.(1.12) has oscillatory solutions (ul =
ei(qxl−ωlt)) in which the 3N values for ω can be derived from the secular equation
[2]:

∣∣∣Dαβ(l, l′) − ω2δαβδll′

∣∣∣ = 0, (1.15)

Dαβ(l, l′) =
Uαβ(l, l′)

m
. (1.16)

The amplitudes of the atomic vibrations eα,l satisfy the equation:

ω2eα,l =
∑

l′,β

Dαβ(l, l′)eβ,l′ , (1.17)

here Dα,β(l, l′) is called dynamical matrix, it contains all the information on the dy-
namical quantities of the glass. In the case of a periodic structure, like a crystal, it is
convenient to express Dα,β(l, l′) as:

Dαβ(l, l′) =
1

m

∑
Uα,β(l, l′)e(iq̄(x̄l−x̄′

l
)) (1.18)

where q̄ is the exchanged wave vector and x̄l the coordinate of the l-atom.
Introducing the normal modes Qq,j(t) we can express the most general solution of

the Hamiltonian of a crystal as:

ūl(t) =
1√
m

∑

q,j

Qq,j(t)ē(q, j)e
(iq̄x̄l). (1.19)

Here the quantities ul(t) describe the atomic displacements and Eq. (1.19) expresses
each of them as a linear combination of crystalline Qq,j(t). Due to the periodic structure
of the crystal the eigenvectors are plane waves and the eigen-frequencies can be labeled
with the wave vector and the branch index. Thus, the description of the dynamics
of the crystal is reduced to that of the elementary unit cell: for each wave vector q
there are 3r frequencies where r is the number of atoms in the elementary cell. When
r = 1 there are only three branches called acoustic because thy are responsible for the
propagation of sound in crystals. If r > 1, in addition to the acoustic modes, other
3(r−1) modes arise: these are the optical modes. The frequencies of these modes tend
to a finite value at q = 0.

These classical results can be extended to the more general quantum case by re-
placing Q and P (P = Q̇) by the corresponding operators and applying the usual
commutation rule valid in quantum mechanics [2]:
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[
Qα

l , P β
l′

]
= ih̄δll′δαβ. (1.20)

Q and P can be expressed in terms of particle creation and destruction operators (a+

and a−); these particles have fixed energy (h̄ω) and satisfy the Bose statistics. Thus,
the state of the crystal is defined as the state of a gas with N non- interacting particles
called ”phonons”.

In the case of an amorphous material, the presence of the disorder has a consequence
that the eigenvectors are no longer plane waves and the concept of ”phonon” loses its
original meaning.

A wide variety of models have been proposed to describe the effect of disorder in
glasses. It has also been claimed that vibrational excitations with different nature can
coexist in amorphous materials: propagating, localized and diffusive ones. However,
it has been experimentally observed that, at large wavelengths, the vibrational excita-
tions have the same propagating nature as the phonons in crystals. Such results can
be confirmed theoretically for a harmonic disordered system. A strategy to solve the
equation of motion, when the system lacks translational periodicity, is first to average
the equations on the positions of the atoms and then solving it. This average can be ex-
pressed in terms of conditional probability for the position of the atoms [22]. Using the
harmonic approximation (the potential U is expanded in terms of atomic displacements
up to the quadratic term), and a pair-wise spherically symmetric potential UN

UN(r) =
1

2

∑

m6=n

U(|rm − rn|), (1.21)

one can express the values of the dynamical matrix components in terms of the deriv-
atives of the potential:

Dαβ = (ρ/m)
∫

d(rm − rn)g(|rm − rn|)∇α∇β < U(|rm − rn|) > [1 − e(ik(rm−rn))],

(1.22)
where g(r) is the pair correlation function that represents the conditional probability
to find a particle at r when it is known that another is at r = 0. Choosing Carte-
sian coordinates with the z axis in the direction of the wave vector q, performing the
spherical coordinate integration, we obtain [22]:

Dxx(q) = (ρ/m)4π
∫

drg(r)[rU ′

(

1 − sin(qr)

qr

)

+ (1.23)

(r2U ′′ − rU ′)

(
1

3
+

cos(qr)

(qr)2
+

sin(qr)

(qr)3

)

],

Dzz(q) = (ρ/m)4π
∫

drg(r)[rU ′(1 − sin(qr)

qr
) +

(r2U ′′ − rU ′)

(
1

3
+

sin(qr)

qr
+ 2

cos(qr)

(qr)2
+ 2

sin(qr)

(qr)3

)

], (1.24)

34



1.6. Vibrational modes in glasses

Dxy(q) = Dyx(q) = Dyz(q) = Dzy(q) = Dzx(q) = Dxz(q) = 0.

Here U ′ = ∂U(r)/∂r and U ′′ = ∂2U(r)/∂r2. The non-diagonal terms of the Dαα are
0 due to the use of the spherical pair potential model. The diagonal terms Dxx =
Dyy = ω2

T and Dzz = ω2
L are equal to the squared frequencies of the transverse (ωT )

and longitudinal acoustic excitations (ωL).
From the asymptotic behavior of Eq. (1.24) at q = 0 [22] we obtain ωL and ωT that

are proportional to q; thus, at q = 0 the vibrational excitations have the characteristics
of propagating acoustic waves with speeds of sound equal to vL and vt:

ωT = vT q, ωL = vLq. (1.25)

These results show that systems without translational periodicity can have acoustic
modes even if the q wave vector cannot be used as a good quantum number to classify
the vibrational modes strictly as ”phonons”.

It has to be underlined here that the study of the vibrational excitations in solids
within the harmonic framework does not allow us to predict the damping of the vi-
brations. However, a first mechanism responsible for the finite life-time of a density
fluctuation in a glass is associated with the disordered nature of the system. An acoustic
plane wave cannot be an eigenstate of a system with non periodic structure.

In order to take into account the damping of acoustic waves related to the an-
harmonicity of the system we need to calculate the terms beyond the second order
in the series expansion of U(r). The anharmonicity is in fact responsible for a direct
interaction of sound waves with other thermal vibrations.

When a sound wave passes through a solid it can be attenuated by different processes.
A first source of absorption arises from the irreversible heat exchange between the com-
pressed and the rarefied regions of the wave. Attenuation of sound wave can also occur
in absence of temperature gradient according to the Akhiezer mechanism [24]. In this
case the acoustic excitations, that propagate in the solid can cause a disturbance of the
distribution of all phonon efficiently excited at a given temperature bringing them out
of equilibrium. The thermally excited modes are driven back to thermal equilibrium
with a mean thermal lifetime τth, subtracting energy from the acoustic waves and giv-
ing rise to the damping. Such mechanism in a crystal can be described as the collision
between the acoustic phonons and the thermal phonons, where τth is the character-
istic time between two collisions. The coupling between thermal phonon and lattice
vibrations is determined by the Grüneisen parameter γ and the mean phonon lifetime
τth.

In glasses in addition to the Akhiezer process, other mechanisms have been found
to be relevant for the attenuation of vibrational modes. The presence of defects can
produce relaxation processes in which unstable structures relax in the strain field of
the sound waves. Another possible damping mechanism is the scattering of the sound
wave by the static density of elastic constant distribution; a mechanism introduced for
the first time by Rayleigh [25]. Finally, the tunneling model has been used to describe
the energy dissipation associated with the anharmonic processes at low temperature.
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Chapter 1. General aspects of the glassy state

Figure 1.8: The dots are the phonon energies measured in a metallic glass [23], the
dashed line represents what expected for the respective crystal. QP /2 is the boundary
of the pseudo-Brillouin zone of the glass.

Figure 1.9: Sketch of the typical dynamic structure factor S(Q,ω) of a glass (thick line)
and of a crystal (dashed line) measured in the in the energy and wave-vectors regions
of meV and nm−1.
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1.6. Vibrational modes in glasses

In this model an energy barrier separates two energy levels of the system [26]. If the
tunneling occurs, the barrier is overcame and the transition takes place. In this case
as well, the coupling of the tunneling systems to the strain field is described by the
Grüneisen parameter.

However, it has to be emphasized that the phenomenon of sound attenuation is still
not fully understood. The presence of many competing factors that control the energy
dissipations of sound waves is the origin of a vivid debate.

1.6.1 Density of vibrational States

In the previous section it has been shown that at low Q values in amorphous systems
acoustic phonons can be excited.

At low frequency-i.e. in the long wavelength limit- the precise arrangement of the
atoms is of little relevance, the amorphous solid appears homogeneous. The vibrational
excitations at the low Q limit can therefore be properly described as acoustic modes.
At higher frequencies and lower wavelengths, the modes in general are no longer plane
waves. Therefore, the ω vs Q dispersion relationship loses its original meaning that is
valid for crystalline systems.

It has also been pointed out in the previous section that structural disorder modifies
the nature of vibrational excitations in glasses. Different mechanisms are responsible
for the damping of vibrational excitations in glasses compared to those in crystals.
Such differences between atomic vibrations in glasses and in crystals have been sug-
gested from the measurements of the dynamical structure factor S(Q,ω) that in crystal
and glasses show relevant differences Fig.1.91.8. S(Q,ω) represents a measure of the
distribution in Q and frequency ω of vibrational excitations (see section 2.2). The
S(Q,ω) therefore contains all basic information on the dynamical behavior of the sys-
tem. Figure 1.9 shows that at high values of Q, when the wavelength of the excitation
(λ = 2π/Q) is comparable with the inter-atomic distance of the system, the crystalline
and glassy S(Q,ω) look quite different. In particular, phonon excitations are no longer
well defined and the S(Q, ω) spectra assume the aspect of distributions of modes in
the glassy systems. Both, long-range periodicity and the concept of Brillouin zone are
lost, as a consequence, the frequency distribution of excitations become broader and
ill-defined. The acoustic waves are no longer eigenstates of the system.

These differences between the vibrational modes of crystals and glasses lead us to
look for a quantity that is able to describe the dynamics of the system and is well
defined in both the crystalline and glassy states.

A quantity that fulfils these needs is the density of vibrational states DOS g(ω).
In obtaining g(ω) one measures the number of modes with frequencies between ω and
ω + δω [2]. This quantity is always well defined irrespective of whether the vibrational
excitations are well defined or appear as distributions. The DOS can be written as:

g(ω) =
1

3N

3N∑

i

δ(ω − ωi). (1.26)

Here the sum is extended over the all 3N possible vibrational modes of the system.
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The correspondence between the ω−q relationship and the DOS in a crystal can be
visualized in figure 1.10. The peaks present in the DOS of a crystal are associated with
the Van Hove singularities, the region where the dispersion curve is flat with ∂ω/∂q = 0.
In amorphous materials the typical sharpness of the crystalline DOS disappears, the
Van Hove singularities are smeared out as a consequence of the finite width of energy
distribution of vibrational excitations about a given q value. The relevance of the
density of vibrational states lies not only on its definition that is not affected by the
disordered nature of the system, but in the fact that it represents the natural link
between the microscopic description of the glass and its macroscopic (thermodynamic)
properties.

Figure 1.10: Correspondence between the dispersion curve of a crystalline diamond (left
panel) and its DOS (right panel) [27].

Different thermodynamic quantities can be calculated directly from g(ω); for ex-
ample the internal energy (UI), the heat capacity (cV ) and the vibrational entropy
(Sv):

UI =
3

2
h̄

∫ ∞

0
g(ω)ω

eβω + 1

eβω − 1
dω, (1.27)

cV = 3kB

∫ ∞

0
g(ω)(βω)2 eβω

(eβω − 1)2
dω, (1.28)

Sv = 3kB

∫ ∞

0
g(ω)

[
βω

2

(eβω + 1)

(eβω − 1)
− ln(eβω/2 − e−βω/2)

]

dω, (1.29)

with β = h̄/kBT .

1.6.2 The excess of vibrational states: the Boson Peak

In the previous section it has been stressed that the density of vibrational states (DOS)
g(ω) is a well defined quantity for both the crystalline and the amorphous materials.
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1.6. Vibrational modes in glasses

Moreover, it has been shown that g(ω) is related to the thermodynamic properties of
a glass. It is then natural to look at g(ω) for an answer to the questions concerning
the origin of the anomalous low temperature behavior of glasses.

After the first measurements of cP and k in glasses performed by Zeller and Pohl
[1], much more data have been collected fora wide variety of amorphous systems. Re-
searchers have started to attribute the low temperature peculiarities of glasses to an
increase of g(ω) at low energy.

In fact, according to Eq. (1.28) and Eq. (1.7), cP and k are related to the density of
vibrational states. At low temperature, the thermally excited modes of the solid have
an energy typical of the acoustic excitations (at 10 K the thermal energy corresponds to
≈ 1 meV), the wavelength of these atomic vibrations is slightly larger than the typical
length-scale R of the microscopic inhomogeneities of the solid (λ ≥ R). It is then
expected that at low temperature the system appears as a continuum elastic medium
for acoustic modes. According to this hypothesis, at low frequency no differences
should be present in the g(ω) of a crystal and of a glass. However, the low-temperature
anomalies of glasses do not validate to this simple scheme suggesting an excess of
vibrational modes compared to the value expected in the continuum approximation.

In order to evaluate the influence of the DOS in the low temperature thermal
properties of glasses, we consider the g(ω) predicted for a continuum medium in the
Debye model [2]. Such model approximates a solid as a continuum in which acoustic
waves can propagate. Thus the vibrational modes of system are described by the
three branches of the acoustic modes, each with the same linear dispersion relation
(ω = vDq). Here vD is obtained by averaging the longitudinal (vl) and the transverse
(vt) speeds of sound,

3

v3
D

=

(
1

v3
l

+
2

v3
t

)

. (1.30)

A characteristic wave-vector qD (qD = (2πn)
1
3 , where n is the number density of

the system) is defined as the maximum allowed wave-vector for the acoustic modes. qD

corresponds to the typical inverse inter-particle distance of the system. Consistently,
the characteristic Debye frequency ωD = vDqD and temperature ΘD = (h̄ωD)/kB are
defined. ωD represents the highest frequency of the acoustic waves and the relative
Debye temperature ΘD indicates the temperature above which all modes are efficiently
excited.

The DOS predicted by the Debye model has the following form:

g(ω) =
3

ω3
D

ω2, (1.31)

and the resulting reduced density of vibrational state g(ω)/ω2 (RDOS) is a constant
equal to 3/ω3

D. The squared behavior of g(ω) is responsible according Eq. (1.28) and
(1.7), for the low temperature behavior T 3 of cP and k in agreement with the experi-
mental data collected in crystals. In glasses, however, the low temperature anomalies
of the thermodynamic properties correspond to an excess of vibrational modes above
the Debye level (see figure 1.11); called the ”Boson Peak” (BP).
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Figure 1.11: Reduced density of state of a silicate glass (see section 3.8), the red arrow
indicates the limit predicted by the Debye model, the black line measures the height of
the BP.
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The first measurements of the low energy region of the DOS were performed by
inelastic neutron scattering (NIS) techniques in the 60’s. These studies have been
extended in the last 40 years to a wide variety of materials showing that the BP can
be considered as an universal signature of the glassy phase.

Experimental investigations of the behavior of the BP has taken advantage from
the use of different spectroscopic techniques; mainly neutron inelastic scattering and
Raman spectroscopies. In the recent years Nuclear Inelastic Scattering technique has
also been used for these studies.

Due to the universal character of the BP, this feature has recently increased in
interest and has been the object of active research in both theoretical and experimental
directions. However, debated fundamental questions still exists:

• What is the origin of the universal character of the BP in the glassy phase?

• What is the nature of the vibrational modes in the BP energy region? Are these
propagating waves or localized excitations?

In order to answer these questions different and somewhat contrasting models have
been proposed in the last 30 years. In roughly chronological order the basic ideas
behind these models can be listed as follows: dispersive and damped phonons, tunneling
states, cavity models, cellular and microcrystalline effects, scattering from structural
inhomogeneities, defects, and effects of the energy landscape of glasses.

Here we briefly discuss only some of these models relevant for the experimental
investigations presented in this thesis.

• Dynamical disorder

A first class of models that describes the BP is based on the presence of dynamical
disorder in the glass [28, 29].

The vibrational properties of an amorphous system are described by elastic forces
Kij whose strength fluctuates according a distribution density P (Kij). Increasing
the width of the distribution P (Kij) the system becomes unstable, this instabil-
ity manifests itself by the existence of negative eigenvalues for the vibrational
frequencies and by the appearance of the BP. Wider is the distribution stronger
the BP will be.

According to this model the presence of the BP is connected to acoustic modes
that, in the low energy region, are strongly affected by the disorder of the elastic
constants. The BP is related to the lowest Van Hove singularity of the reference
crystalline structure, which is shifted downwards in energy and broadened by
disorder. The vibrational states responsible for the BP mainly correspond to the
transverse phonon branch [28, 29].

• Soft modes

Another model used to describe the DOS in glasses at low frequencies is based
on the presence of quasi-localized soft modes [30, 31].
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Here the glass is represented as a continuum elastic medium with defects that
cause local vibrations with an oscillation frequency ω0. These modes are quasi-
localized in the sense that they describe Einstein oscillators, weakly coupled
with the continuum medium, with randomly distributed frequency (ω0). The
DOS predicted by this model is able to describes the BP as well as the prevalent
acoustic nature of the low frequency modes. The weak coupling between the
quasi-localized modes and the continuum medium avoids any influence of the
localized modes on the acoustic properties of the system. On the other hand the
DOS is strongly affected by these quasi-localized modes in the energy region of
the BP,.

• Spatial correlated modes

The excess of DOS has been suggested to reflect a crossover from long wavelength
vibrations propagating in the continuous medium to localized vibrations on a
characteristic length scale R ∼ 10Å. R has been interpreted as the correlation
length for the disordered structure of the system [32, 33]. The energy of the BP
results to be inversely proportional to the size of these spatial correlated regions
ωBP ∼ 1/R.

Different studies connect the correlation length R to the middle range order of
the glass through the width or position of the first diffraction peak of the glass.

• Energy landscape

Finally, one of the most recent theoretical descriptions of the BP has been built
through relating the vibrational properties of glasses to their energy landscape
[34]. A solid of N particles has a potential energy that depends on the 3N coor-
dinates of the particles; the shape of this energy surface defines the vibrational
properties of the system.

In a glass the energy landscape is characterized by a dominant number of instable
energy points (saddle points). In contrast, the crystalline phase presents a large
number of stable energy points (minima). The BP is intimately connected to the
energetic instability of the glass; the theory states that the height of the BP scales
with the number of saddle points in the energy landscape. Such argument allows
quantitative predictions about the effect of the thermal history on the height of
the BP. Cooling a liquid with a fast rate results in particles becoming trapped in
the glassy phase in configurations energetically more unstable compared to those
obtained with a slow cooling rate. The faster is the cooling rate, the higher the
intensity of the BP will be.

The models that we have briefly introduced here are representative of the wide
variety of arguments used to explain the presence of the BP. Such a wide variety of
descriptions has encouraged, in these last few years, an intense experimental effort
on the topic. However, the comparison between models and experiments, most of the
case, does not reach conclusive statements. The main difficulty in combining theoretical
models and experimental observations can be summarized by a sentence present in one
of the theoretical papers dedicated to the BP.
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”It is well known that soluble models are not realistic and realistic models are not
soluble” (G. Parisi [35]).

In this sense the simplicity of the models proposed for the BP does not help us
in targeting decisive experiments. In order to reveal the details of the mechanisms
responsible for the anomalous behavior of glasses one needs to perform an accurate
characterization of the system under study. Moreover, the measurement of the basic
quantity of these studies, the g(ω), cannot be always performed in absolute units.
Thus, the discussion on the BP does not always stay on safe ground of quantitative
analysis.
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Résumé du chapitre 2

Ce chapitre est consacré aux deux principales techniques utilisées pour
notre étude expérimentale sur la dynamique des verres: ” Nuclear In-
elastic Scattering ” (NIS) and ” Inelastic X-ray Scattering ” (IXS).
Dans les premiers paragraphes de ce chapitre, une brève introduction sera
présentée sur l’effet Mössbauer et à son application immédiate en toute
que technique spectroscopique. Cet effet permet, en analysant l’énergie
des niveaux nucléaires d’un particulier isotope, d’avoir des informations
sur les propriétés microscopiques du système quelles la distribution des
charges autour du mme isotope. On discute le lien entre les propriétés
électriques ou magnétiques d’un système et l’énergie des niveaux nucléaires
des isotopes de ce système. Un paragraphe sera dédié à la présentation
de la spectroscopie NIS, une technique basée sur l’effet Mössbauer qui
exploite les propriétés de la radiation de synchrotron. Cette technique
permet de mesurer la DOS d’un système et a été largement utilisée dans
le cours de notre étude. Les principales caractéristiques de la spectro-
scopie utilisée pour nos mesures de NIS seront discutées. Directeur de
thèse Dans la seconde partie de ces chapitre la spectroscopie IXS sera
présentée, en tant que technique qui permet d’avoir accès au facteur de
structure dynamique (S(Q,ω)) d’un système dans une région de moments
échangés (Q) et énergies respectivement de nm−1 et meV. Il sera ainsi
illustré le procès de diffusion inélastique, la section de diffusion et lien
avec le S(Q,ω). Enfin les principales caractéristiques techniques de la
ligne de diffusion inélastique ID16 a ESRF sont présentées.
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Chapter 2

Experimental techniques

2.1 Nuclear resonant scattering

2.1.1 Introduction to the Mössbauer effect

The recoilless resonance absorption of γ rays from nuclei was observed for the first
time in 1958 by R. Mössbauer [36]. This effect, thereafter called Mössbauer effect, has
found powerful application in the development of new spectroscopic techniques.

A photon emitted in the de-excitation of a nuclear state can be absorbed by another
nucleus of the same kind and excite it, the absorption takes place when the energy of
the photon emitted by the nucleus matches the energy of the nuclear levels of another
nucleus. However, for free nuclei the probability of absorption of photons is very small,
such process can only occurs when the nucleus is forced to not recoil.

The energy distribution N(E) of γ ray, emitted by a non-bonded nucleus, has a
Lorentian shape with full width at half maximum Γ0 related to the mean lifetime of the
nuclear excited state τ0 through Heisenberg’s uncertainty principle; Γ0 = h̄/τ0. The
momentum carried by the γ ray is transferred to the emitting free nucleus that recoils
with an energy: ER ≈ E2

0/(2Mc2), where E0 = Ee−Eg is the energy difference between
excited Ee and ground Eg states and M is the mass of the nucleus. The Lorentian
energy distribution of the emitted photons is centered at an energy Eem = E0 − ER

[37] and can be written as:

N(E) = No
1

π

(Γ0/2)

(E − Eem)2 + (Γ0/2)2
. (2.1)

Similarly, the absorption cross section σa(E) is centered at an energy Ea = E0 + ER:

σa(E) = σ0
(Γ0/2)2

(E − Ea)2 + (Γ0/2)2
. (2.2)

σ0 is the maximum of the resonance cross section given by:

σ0 =
2πc2h̄2

E2
0

· 2Ie + 1

2Ig + 1
· 1

1 + α
, (2.3)
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here Ie and Ig are the spins of the nuclear excited and ground states, respectively, and
α the internal conversion coefficient. The factor 1/(1 + α) originates from the fact
that the excited state can have a de-excitation via internal conversion with no γ ray
emitted. For 57Fe, α=8.14 and the contribution to the radiative decay is then only
11%.

Thus, according Eq.s (2.1) and (2.2), the emission and the absorption spectra are
shifted with respect to each other by 2ER preventing the resonance absorption of the
emitted γ rays, due to the negligible overlap of the two distributions in the case of a
free nucleus. For a 57Fe atom with Eg=14.4 keV ER is 2 ·10−3eV . Its mean life τ = 141
ns, which in energy corresponds to Γ0 = 4.7 · 10−9eV. Therefore, for a free nucleus
of 57Fe ER >> Γ0 and according Eq. 2.1 and Eq. 2.2 the probability of resonance
absorption is strongly reduced.

If now we consider nuclei bonded in a solid, there is a finite probability that absorp-
tion or emission of the photons can occur without changing the phonon state of the
system. In which case, the recoil has to be felt by the solid as whole. The difference
in mass between the single nucleus and the solid (Msolid ≈ 1020M) assures that the
recoil energy of the nucleus is negligible and the emission is centered at E = E0 [38].
The probability of a nucleus to absorb a γ without changing the phonon state of the
system is defined as the Lamb-Mössbauer factor fLM .

It is possible to calculate the probability of the resonant absorption (the magnitude
of the fLM) using a classical approach. Considering the nucleus bonded in a solid
emitting a γ radiation of energy E0 = h̄ω0, we can write the vector potential as [39]:
~A(t) = ~A0e

iω0t. At high temperatures, the thermal vibration of the lattice leads to a
variation of the emitted frequency via the Doppler shift ω(t′) = ω0(1 + v(t′)/c) The
vector potential then becomes:

~A(t) = ~A0exp
[
i
∫ t

0
ω(t′)dt′

]
= ~A0e

iω0teikx(t)t, (2.4)

where x(t) is the displacement of the nucleus and k = ω0/c the wave vector of the emit-
ted radiation. If we apply the Einstein model of the lattice vibrations, we assume the
presence of only one vibrational frequency Ω in the lattice, we write x(t) = x0sin(Ωt)

obtaining ~A(t) = ~A0e
iω0teikx0 sin(Ωt).

The frequency distribution of the emitted radiation consist of the frequencies ω0, ω0±
Ω, ω0 ± 2Ω,.... The central line (at ω = ω0) corresponds to a transition in which the
phonon state of the system is unaltered, its intensity represents the Lamb-Mossbauer
factor and is given by:

fLM = |An=0|2 = J2
0 (kx0). (2.5)

where J0 represents the Bessel’s function.
If we consider a solid with N atoms and we assume 3N Einstein modes, the displace-

ment of the emitter x(t) is the sum of different components: x(t) =
∑3N

m xmsin(Ωmt)
and fLM can be expressed as:

fLM =
3N∏

m=1

J2
0 (kxm). (2.6)
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2.1. Nuclear resonant scattering

Figure 2.1: Sketch of the frequency spectrum of a classical electromagnetic wave emitted
by the nuclei of a solid according the Einstein model.

Because fLM cannot exceed 1, and 3N is very large, each factor of Eq. (2.6) is close
to 1. The amplitude xm is very small and we can thus expand Eq.(2.6) as a series of
xm. Truncating the series expansion of Eq.(2.6) to the quadratic term we obtain:

lnfLM ≈ −2
3N∑

m=1

1

4
(kxm)2, (2.7)

fLM = e−k2<x2> = e−
E2

0
h̄2c2

<x2>. (2.8)

Here < x2 > is the mean square displacement of the nucleus and k the wave vector
of the emitted γ-ray. It follows that in order to have a large value of fLM , k2 < x2 >
should be ≪ 1. This sets an upper limit to the energy of the emitted γ-ray at about
100 − 150 keV, above which the resonant absorption cannot be observed. For the
same reason the Mössbauer effect is basically zero in gases or liquids, where < x2 > is
extremely large.

2.1.2 Classical Mössbauer spectroscopy

Using Mössbauer spectroscopy one can probe the nuclear energy levels of resonant
nuclei present in a system. The nuclear energy levels En are influenced by the electronic
and magnetic structure of the system and these perturbations are called hyperfine
interactions (see following sections). The changes of En induced by these interactions
can be larger than the natural width Γ0 of the γ rays emitted by a recoilless nucleus.
Thus, by varying continuously the energy of the γ rays emitted by a nucleus and
monitoring their absorption in the probed system, is possible to study the hyperfine
interactions.

A typical Mössbauer transmission experiment (sketched in fig. 2.2) consists of a γ
ray source and of an absorber (i.e. the probed system) at some distance. The energy of
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the γ rays emitted by a radioactive source is shifted over an energy range of some µeV
via Doppler effect obtained moving the source relative to the absorber with a relative
speed v. Thus the energy of the emitted γ ray Eγ can be written as Eγ = E0

(
1 ± v

c

)
,

where E0 is the energy of the γ ray when the source has v=0. From Eq. (2.1) we write
the energy distribution of the emitted γ rays Is(v, E) as:

Is(v, E) =
fLMΓ0/2π

(E − E0(1 − v
c
))2 + (Γ0/2)2

. (2.9)

Here Is(v, E) has been normalized to obtain
∫ ∞
−∞ Is = fLM . The number of photons that

pass through the absorber and hit the detector on the other side, depends on the number
of atoms per unit number (n), thickness (d) and the absorption cross section. An
interaction of a γ rays with absorber consists of two contributions: one associated with
the electronic absorption σe and the other related to the nuclear resonant absorption
σn. The fraction of radiation transmitted through the sample T (E) can be written as:

T (E) = e−dnσ(E), (2.10)

σ(E) = σel + σn(E), (2.11)

σn(E) = βfLMσ0
(Γ0/2)2

(E − E0)2 + (Γ0/2)2
. (2.12)

In Eq. (2.12), β represents the isotopic enrichment of the sample. The intensity of
the radiation arriving on the detector Z(v) can be written as:

Z(v) = (1 − fLM)e−dnσel +
∫ ∞

0
Is(v, E)e−dnσele−dnσr(E)dE. (2.13)

The factor (1 − fLM)e−dnσel originates from the non resonant part of the radiation
emitted by the source. The transmitted intensity Ie far from the resonance is given by
Z(∞) = e−dnσel . For a thin sample (e−dnσr(E) ≈ 1 − dnσr(E)) we obtain:

Z(v)

Z(∞)
= 1 − dn

∫ ∞

0
Is(v, E)e−dnσele−dnσn(E)dE, (2.14)

= 1 − 1

2
dnβf s

LMfa
LMσ0

(Γ0/E0)
2

(v/c)2 + (σ0/E0)2
, (2.15)

where fa
LM and f s

LM are respectively the Lamb-Mössbauer factor of the absorber and
of the emitter nucleus.

R. Mössbauer, in 1957, was the first to measure the nuclear resonant absorption
[36].
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2.1. Nuclear resonant scattering

Figure 2.2: Set-up for a Mössbauer spectroscopy experiment in transmission geometry
(left panel). Sketch of the line shape of a Mössbauer spectrum in absence of splitting
or shift of the nuclear levels by hyperfine interactions (right panel).

Perturbation of the energy of nuclear levels: hyperfine interactions

In the previous section we have analyzed the nuclear resonant absorption, here we
discuss how the energy of nuclear levels can be altered by the local environment around
nucleus.

Nuclei are positively charged and have various kinds of nuclear moments. In ad-
dition they are surrounded by electric and magnetic fields that are created mainly by
electronic charges and currents present in their own atomic shells. These fields perturb
the energy of nuclear levels but their influence is so weak that these perturbations
called hyperfine interactions [37]. The interaction Hamiltonian H of a nucleus can
be written as [40]:

H = HN + HC + HQ + HM = HN + Hhfs. (2.16)

Here HN represents the energy of intranuclear forces and Hhfs is associated with the
hyperfine interactions. HC refers to the electric monopole interaction that is a result of
penetration of electrons into the nuclear volume. HQ stands for interaction of the nu-
clear electric quadrupole moment with the electric field gradient at the nuclear site and
HM represents the interaction between the nuclear magnetic dipole and the magnetic
field.

Electric monopole interaction: the isomer shift

The electric monopole term has its origin in the finite probability of an electron pen-
etrating inside the nucleus volume. The Coulomb interaction between protons and
electrons inside the nucleus causes a shift in the nuclear energy levels. Assuming con-
stant electronic charge density, ρ(0), inside the nuclear volume, the energy shift δE
can be written as [41]:
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δE =
2π

3
Ze2ρ(0) < r2 >, (2.17)

where < r2 > is the mean square nuclear radius. The energy shift is different for the
ground and excited state and the energy of a γ ray emitted by source nuclei (Eγ)s is:

(Eγ)s = (Ee + δEe)s − (Eg + δEg)s = E0 +
2π

3
Ze2ρs(0)(< r2 >e − < r2 >g). (2.18)

The absorbing and emitting nuclei have different chemical environments; therefore, the
absorption and emitter probability has the maximum value at different energies: (Eγ)s

and (Eγ)a. The energy difference between (Eγ)s and (Eγ)a is called isomer shift δE
and is defined as:

δE = (Eγ)s − (Eγ)a =
2π

3
Ze2(ρs(0) − ρa(0))(< r2 >e − < r2 >g). (2.19)

The value of S is due mainly to the ability of electrons of s-shells to penetrate in the
nucleus [41]. The total s-electron density at a nucleus is composed of a contribution
from filled s-orbital of inner electron shells, as well as those electrons from chemical
bonds. The changes in the valence shell (e.g. change of oxidation state, change of spin
state or change of bond properties) can therefore influence the s-electron density at
the nucleus. The modification may be caused either by direct altering the s-electron
population in the valence shell or by shielding the s-electrons by electrons with nonzero
angular momentum.

Electric quadrupole interaction: the quadrupole splitting

The electric quadrupole moment of nuclear states with spin I > 1/2 interacts with the
non spherical symmetric distribution of electronic charges leading to so-called quadru-
pole splitting. The nuclear charge distribution can be described by the nuclear quadru-
pole moment eQij (a 3× 3 tensor of rank 2) [37]. The value of Qij differs from 0 when
the nucleus is not spherically symmetrical. The distribution of the electronic charges
can be described by the electric field gradient (EFG) tensor, whose components are
defined as second derivatives of the electric potential V produced by extra-nuclear
charges at the nuclear site (∂2V/∂xi∂xj). It is possible to find a principal axis coor-
dinate system where all non diagonal components of Vij vanish. Moreover, Laplace’s
equation requires that the trace of Vij is zero (Vxx + Vyy + Vzz = 0). The interaction
of the electric quadrupole moment of the nucleus with the EFG is described by the
Hamiltonian:

HQ =
e2QVzz

4I(2I − 1)
[3I2

z − I2 + η(I2
x − I2

y )]. (2.20)

Here eQ represent the nuclear charge and Ix and Iy are the components of the spin
on the x and y axes. In Eq. (2.20) z has been chosen as the principal axis, thus the
eigenvalues for the Hamiltonian, in the case of I = 3/2, are:
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2.1. Nuclear resonant scattering

EQ =
e2QVzz

12

[
3m2

I −
15

4

] √
(1 + η2/3), (2.21)

where η is the asymmetry parameter, η = |(Vxx − Vyy)/Vzz| and mI is the magnetic
quantum number. The electric quadrupole interaction leads to a splitting of the (2I+1)-
fold degenerate energy level of a nuclear state into sub-levels characterized by the
magnitude of the magnetic quantum number mI .

As Q is constant for each nuclear level of a given Mössbauer nuclide [41], changes in
the quadrupole interaction energy can arise only from changes of EFG at the nucleus.
Two sources contribute to the total EFG. The first of them results from charges on
distant ions that surround the Mössbauer atom, giving the lattice contribution (Vzz)lat.
The other come from anisotropic electron distribution in the valence shell of the Möss-
bauer atom, the valence electron contribution (Vzz)val. The lattice contribution is still
enhanced by the fact that the field gradient from the distant ions polarizes the electron
shells of the Mössbauer atom. In contrast, the valence contribution is diminished by
shielding of the core electrons. Taken together, the sum of both contributions can be
expressed as:

Vzz = (Vzz)lat(1 − γ∞) + (Vzz)lat(1 − R), (2.22)

whereγ∞ is the Sternheimer anti-shielding factor that accounts for the fact that (Vzz)lat

induces a polarization of the electronic shell of the Mössbauer nucleus. R is the Stern-
heimer shielding factor that express the core electrons shielding of (Vzz)val. This shield-
ing is normally much weaker than γ∞. For 57Fe we have γ∞ ≈ −9 and R=0.25-0.35
[42].

Magnetic hyperfine splitting

A nucleus with a spin I > 0 has a non zero magnetic dipole moment µI and interacts
with the magnetic field Bhf according the Hamiltonian HM [41]:

HM = −~µI
~Bhf . (2.23)

The eigenvalues of the Hamiltonian are:

EM = −µI

I
mIBhf , (2.24)

where µI = (1/h̄)gIµNI, gI is the Landé factor of the nuclear state with spin I and
µN is the nuclear magneton. According to Eq. (2.24), a nuclear state I splits into an
equidistant set of 2I+1 non degenerate sub-levels characterized by the sign and the
magnitude of the magnetic quantum number mI . The selection rules for possible γ
transitions are ∆m=-1,0,+1, where ∆m is the change of magnetic quantum number
between the two nuclear states. In the case of 57Fe the nuclear angular moment are
Ig=1/2 and Ie=3/2, the ground state splits into two levels and the excited state into
four. Six transitions are allowed.

The magnetic hyperfine field acting on a nucleus is the sum of five main contribu-
tions:
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Figure 2.3: Sketch of nuclear transitions and of the corresponding Mössbauer spectra
for Ie=3/2 and Ie=1/2. Unsplit levels in the absence of hyperfine interactions (upper
graph), a quadrupole splitting (middle graph) and a magnetic hyperfine splitting (lower
graph) are represented.
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2.1. Nuclear resonant scattering

Bhf = Bcore + Bcep + Borb + Bdip + Bthf . (2.25)

The Fermi contact or core polarization field Bcore is due to the interaction of un-
paired spin density of s-electrons at the nuclear site with the nuclear magnetic moment.
Even for a closed s-shell, the net spin density is nonzero, as the spin of the s-electrons
interact with the total spin of the outer electron shell (p, d and f). The conduction
electron polarization field Bcep is the contribution from polarization of the conduction
electrons by the electrons of the outer shells (like 4 f or 5 f). The conduction electrons
have a finite probability to penetrate the nucleus and induce a spin density at nuclear
site with a mechanism similar to the that of polarization (previously described). The
orbital field Borb come from the interaction of the nucleus with the orbital angular
moment of the electrons of open shells. The dipolar field Bdip is the coupling between
the magnetic moment of the nucleus and the magnetic moment associated to the spin
of the electrons. The contribution is zero for s-electrons, closed or half-filled shells
and for cubic local symmetry. Finally, the transferred hyperfine field Bthf originates
from the influence of distant magnetic ions, these can polarize the core electrons or the
conduction electrons via magnetic interaction.

2.1.3 Nuclear inelastic scattering

In this section, we will shortly introduce the Nuclear Inelastic Scattering (NIS), the
technique that has been intensively used during this thesis work for the measurements
of the density of vibrational states of glasses (see chapter three and four). NIS spec-
troscopy exploits the performance of third generation source of synchrotron radiation
and existence of Mössbauer isotopes with resonant energies in the 10-30 keV energy
range.

The principle, on which the NIS is based, is the process of nuclear absorption of a
photon. NIS allows measurements of the DOS because for a particle energy transfer
phonons with any momentum contribute equally to nuclear absorption. Therefore
NIS represents an alternative route to access the DOS, compared to the standard
experimental method of Inelastic Neutron Scattering (INS) [44]. Despite the fact that
first NIS experiment was relatively recent (1995)[45] in comparison to the INS, NIS has
already proven to be a very competitive technique. The NIS technique presents some
relevant advantages to measure the DOS relatively to INS. In particular, NIS measures
the DOS without the use of any model, in absolute scale [46]. Moreover, using x-rays
as probe, small beam size can be achieved to investigate systems with small dimensions
and under extreme conditions.

Absorption process is by definition specially incoherent over various nuclei, the
radiation collected in an experiment of NIS is purely incoherent [43].

Such properties of NIS bypass most of the difficulties related to measurements of the
DOS by INS. In fact, in order to derive the DOS of a system one has to have access to
the incoherent part of the scattered radiation of the sample. With neutron scattering
technique, besides the incoherent scattering, there is also the coherent contribution
to the scattering of the sample. Such contribution can be evaluated from models
of the probed system or can be reduced in INS experiments by making use of the
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incoherent approximation: the scattered radiation with a exchanged momentum Q →
∞ it is purely incoherent. This approximation can be obtained collecting the radiation
scattered at high Q values. However, the price that one has to pay in the high Q region
is an increase of the contribution to the total scattering of multi-phonon processes 1(that
scales with Q) [44]. A reasonable compromise between the coherent and the incoherent
scattering and the multi-phonon contribution is needed. The compromise is obtained
considering the average of the scattering over a large range of Q values performing a
subsequent evaluation of the multi-phonon contribution.

Another limitation to the accuracy of the DOS measurements performed by INS is
the difficulty to obtain the DOS in absolute units. INS data are normalized using an
external input parameter, the Debye Waller factor2.

This parameter is evaluated from a model of the dynamics of the system. The same
parameter also has a critical relevance the evaluation of multi-phonon contributions
[44]. Conversely, with the NIS technique no theoretical model has to be invoked.
Because nuclear absorption is limited to Mössbauer nuclei, it is easy to use the mass of
these atoms in order to obtain a normalization constant. Furthermore, the correction
for the multi-phonon contribution is straight forward. Contrary to neutrons, using NIS
there are no multiple scattering processes.

Finally, we have to recall the different nuclear selectivity of INS and NIS. By defi-
nition, NIS is only sensitive to the vibrations of atoms with Mössbauer nuclei. On the
other hand, the sensitivity of INS is related to the incoherent cross section of nuclear
species. This difference imposes certain limitations on the accessible materials for the
two techniques, giving a useful feature of site selectivity that allows considering INS
and NIS as two complementary tools for the study of lattice dynamics.

Cross-section of NIS and the DOS

We want to calculate the probability of absorption or emission of a γ ray of momentum
~p by a single nucleus of a sample, so that, the nucleus experiences a transition from
a state |A〉 to a state |B〉 and, at the same time, the solid in which the nucleus is
embedded changes from a lattice state |n0〉 to a lattice state |n〉.

As the interaction of the γ ray with a nucleus is much stronger than the interaction
among different nuclei, we can consider the latter as a perturbation. The interaction
operator describing the absorption of a γ ray of momentum ~p by a single nucleus a can
be written as:

H ′ =
P∑

i=1

cape
i~p~ri

h̄ = e
i~p~Ra

h̄

P∑

i=1

cape
i~p(~ri−

~Ra)

h̄ . (2.26)

Here c = c(~p) is a constant, ap is the annihilation operator for a photon with momentum
pi, ri is the position of the ith nucleon within the nucleus; a, P is the number of nucleons
in nucleus a and Ra is the position of nucleus a with respect to the center of mass of

1A multi-phonon process involves the creation or the annihilation of more than one phonon.
2The Debye-Waller factor parameter is a measure of the ratio between the inelastic and the total

scatterd radiation.
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the whole system of nuclei. For a transition from the state |An0, p〉 to the state |Bn〉,
the transition matrix element is:

〈Bn|H ′|An0p〉 = 〈B|
P∑

i=1

cape
i~p(~ri−

~Ra)

h̄ |A〉〈n|e i~p~Ra
h̄ |n0p〉. (2.27)

Here the first term corresponds to the change in the internal state of nucleus a from |A〉
to |B〉 , whereas the second term corresponds to a change in the state of the nucleus a.

We can now write, from usual dispersion theory [47], the absorption cross section
of a γ ray with energy E by a nucleus a:

σa(E) =
σ0Γ

2
0

4

∑

n,n0

gn0

|〈n|e i~p~R
h̄ |n0〉|2

(E0 − E − ǫn − ǫn0)2 + (Γ0/2)2
. (2.28)

Here E0 = EB − EA is the difference between the energy of the final state (EB) and
that of the initial (EA) of the nucleus a, en and en0 are respectively the energies of
states |n〉 and |n0〉, of the whole system, Γ0 is the width of the excited state of the
nucleus and gn0 is the statistical weight factor for the state |n0〉. In Eq. (2.28) the
width of the nuclear levels Γ0 has been assumed to be independent from the state |n〉,
finally σ0 is the resonant absorption cross section. The absorption cross section can be
written in a more useful way, using the definition of the Dirac δ function:

δ(x) =
1

2π

∫
eitxdt, (2.29)

σa(E) =
σ0Γ

2
0

4

∑

n,n0

gn0|〈n|e
i~p~R
h̄ |n0〉|2

∫ ∞

−∞
dρ

δ(ρ − ǫn−ǫn0

h̄
)

(E − E0 − h̄ρ)2 + (Γ0/2)2
. (2.30)

Therefore,

σa(E) =
σ0Γ

2
0

8π

∫ ∞

−∞
dt

{
∑

n,n0

gn0|〈n|e−
i~p ~R(0)

h̄ e
i~p ~R(t)

h̄ |n0〉 > |
}

×
∫ ∞

−∞
dρ

e−itρ

(E − E0 − h̄ρ)2 + (Γ0/2)2
.

(2.31)
Taking into account that |n〉 is an eigenstate of H (the Hamiltonian of the inter-

acting system) with eigenvalue εn, that |n0〉 is eigenstate of H with eigenvalue εn0 and
that the closure relation

∑
n |n〉〈n| = 1 is applied to the state |n〉, we can write the

cross section as:

σa(E) =
σ0Γ

2
0

4h̄

∫ ∞

−∞
dte−it

E−E0
h̄

−
Γ0
2h̄

|t|

{
∑

n,n0

gn0|〈n|e−
i~p ~R(0)

h̄ e
i~p ~R(t)

h̄ |n0〉|
}

. (2.32)

Here the temporal evolution of operators in Heisenberg notation has been used. The
quantity included in curly brackets is, at the same time, the description of the quantum

mechanical and the statistical average of the operator e−
i~p ~R(0)

h̄ e
i~p ~R(t)

h̄ in the state |n0〉 at
the temperature T . Therefore we write:
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σa(E) =
σ0Γ

2
0

4h̄

∫ ∞

−∞
dte−it

E−E0
h̄

−
Γ0
2h̄

|t|
〈
e−

i~p ~R(0)
h̄ e

i~p ~R(t)
h̄

〉

T,n0

. (2.33)

If we define a function Gs(r, t) such that:

〈
e−

i~p ~R(0)
h̄ e

i~p ~R(t)
h̄

〉

T,n0

=
∫

e
i~p~r
h̄ Gs(~r, t)d~r, (2.34)

we have:

Gs(~r, t) =
1

(2π)3

∫
e−

i~p~r
h̄

〈
e−

i~p ~R(0)
h̄ e

i~p ~R(t)
h̄

〉

T,n0

d

(
~p

h̄

)

. (2.35)

In general Gs(r, t) describes the correlation between the positions of the same particle
at different times. In the classical approximation it gives the probability of finding a
particle at time t at position r, if the same particle was the origin at t = 0.

We can now substitute the definition Eq. (2.34) into Eq. (2.33), define E−E0 = h̄ω
and p = h̄k, obtaining:

σa(E) =
σ0Γ

2
0

4h̄

∫ ∞

−∞
dt

∫ ∞

0
d~re−i(~k~r−ωt)−

Γ0
2h̄

|t|Gs(~r, t). (2.36)

It is worthwhile to mention that the incoherent differential scattering cross section for
slow neutrons is proportional to the integral in Eq. (2.36) [48]. In order to calculate
σa(E) one needs an explicit form for Gs(r, t). It can be calculated rigorously only in
the case of a Maxwellian gas or for a solid in the harmonic approximation. In these
two cases, van Hove has shown [48] that the self-correlation function has the general
form.

Gs(~r, t) =
1

[2πγ(t)]
3
2

e−
r2

2γ(t) . (2.37)

For a monatomic cubic crystal [48] we have:

γ(t) =
h̄

M

∫ ∞

0

[(
1 − cos

zt

h̄

)
coth

(
z

2kBT

)
− isin

(
zt

h̄

)]
g(z)

z
dz, (2.38)

where M is the mass of the nucleus and g(z) is the distribution of energy levels of the
phonons (i.e. the phonon density of states) normalized so that

∫ ∞
0 g(z)dz = 1 and where

g(z)=0 beyond z = zmax. With some algebra and the definition 2W = (k2γ(∞))/2 one
can write a new expression for the cross section [49]:

σa(E) = 2π
σ0Γ0

4h̄
e−2W

{
h̄Γ0/2π

(E − E0)2 + (Γ0/2)2
+

∞∑

n=1

(k2/2)n

n!

1

2π

∫ ∞

−∞
dte−i(ωt−ωt)−

Γ0
2h̄

|t|[γ(∞) − γ(t)]n
}

. (2.39)

We define:
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∫ ∞

0

g(z)

z
coth

(
z

2KBT

)
dz = F (T ), (2.40)

from which it follows that 2W = h̄2k2

2M
F (T ). The cross section then becomes:

σa(E) =
σ0Γ0π

2h̄
e−2W

{
h̄Γ0/2π

(E − E0)2 + (Γ0/2)2
+

∞∑

n=1

(2W )n

n!

1

2π

1

F (T )n

∫ ∞

−∞
dte−i(ωt)

×
[∫ ∞

0

g(z)

z
coth

(
z

2kBT

)
cos

(
zt

h̄

)
dz +

∫ ∞

0

g(z)

z
isin

(
zt

h̄

)
dz

]n}

.(2.41)

If one chooses E0 = 0, sets 1/(kBT ) = β and defines the function S1(E, T ) as:

S1(E, T ) =

{
g(|E|)

2F (T )E

[

coth

(
βE

2

)

+ 1

]}

=
g(|E|)ER

2WE

(
1

1 − e−βE

)
, (2.42)

the absorption cross section can be written in its final form:

σa(E) =
σ0Γ0π

2h̄
e−2W

{

δ(E) + 2WS1(E, T ) +
∞∑

n=2

(2W )n

n!
Sn(E, T )

}

, (2.43)

where:

Sn(E, T ) =
∫ ∞

−∞
S1(E − E ′, T )Sn−1(E, T )dE ′. (2.44)

The first term inside the curly brackets in Eq. (2.43) gives a sharp absorption peak
that represents the recoilness absorption of γ-rays and therefore corresponds to an
elastic process. The other terms are the inelastic interactions accompanied by phonon
exchange: the term containing the S1(E, T ) describes the absorption of a γ ray associ-
ated with creation or annihilation of one phonon (single phonon term) while the term
containing the Sn(E, T ) is the absorption of a γ ray with creation and/or annihilation
of n phonons (multi-phonon term).

Thus, according to Eq. (2.43) from the inelastic absorption process, once isolated
the one phonon term from the multi-phonon contribution, one can derive the DOS
of the resonant nuclei. This procedure can be carried out using the forward and the
back Fourier transform of the experimental data. The experimental energy spectrum
of NIS is directly proportional to the absorption cross section; the entire spectrum can
be written as [50]:

I(E, k) = I0

∫
dE ′P (E ′)σa(E − E ′) (2.45)

where P (E) is the instrumental function. The single-phonon contribution to the cross
section can be obtained by dividing the Fourier transformation of the experimental
data

∫
dEeiEτI(E, k) by the Fourier transformation Q(τ) of the experimental function.
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The logarithm of this ratio separates the single phonon term from the multi-phonon
contribution.

J(k, τ) =

∫
dEeiEτI(E, k)

I0fLMQ(τ)
, (2.46)

M(k, τ) = ln(1 + J(k, τ)), (2.47)

M(k, τ) =
∫

dEe(iEτ)S1(E). (2.48)

Finally, from the reverse Fourier transformation, we can obtain the partial density of
phonon states:

g(E) =
E

ER

(1 − e−βE)
∫ dτ

2π
e−ıEτM(k, τ). (2.49)

2.1.4 Experimental set-up

As the intensity of the radiation emitted in the nuclear resonant process is much weaker
than that scattered by the electrons of the system, the main problem dealing with
nuclear spectroscopy is to separate the two scattering contributions. This task is ac-
complished using two mechanisms simultaneously. Firstly, the broadband synchrotron
radiation is monochromatized to meV, in order to reduce the ratio between electronic
scattering and nuclear scattering. Secondly, electronic scattering is much faster than
the nuclear scattering (≈ 10−15s for electronic scattering as compared to ≈ 10−8s for
nuclear scattering). In order to separate in time the fast electronic scattering from the
slow nuclear scattering it is possible to use the pulsed time structure of synchrotron
radiation.

If two successive pulses have a time difference comparable or larger than the nuclear
lifetime then it is possible to detect the delayed photons of the nuclear deexcitation, in a
time window that is completely free from the contribution due to electronic scattering.
The electronics used for the data collection allow discriminating the scattering from
the electrons, i.e. the signal that arrives at early times after the passage of the bunch
of electrons in the undulator. Proper synchronization of the system of data collection
with synchrotron radiation pulses allows accepting of only the counts from the delayed
nuclear scattering. In the ”16-bunch mode” of the synchrotron operation at the ESRF,
16 equally spaced bunches of electrons produce 16 pulses of synchrotron radiation, each
with a duration ≈ 100 ps and with a separation of 176 ns between two consecutive
pulses. This is particularly favorable for 57Fe, which has a lifetime τ0=141 ns. The
scattering from the electrons takes place almost instantaneously (on the time scale of
nuclear scattering) when the pulse hits the target, and the products of the nuclear
de-excitation can be observed in the time between two pulses.

In a NIS experiment, the delayed nuclear scattering is integrated over the whole
available time window, and its energy dependence is studied. It is therefore necessary
to have a high resolution monochromator with an energy resolution of ∼ meV allowing
the study of lattice dynamics. The typical experimental set-up of the nuclear resonance
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Figure 2.4: Sketch of the experimental layout of the ID-18 beam-line.

beam-line ID-18 is shown in figure 2.4. A synchrotron radiation beam is produced by
three undulators (1.5 m per segment, minimum gap of 11 mm and a period of 32
mm for two and 20 mm for the third) optimized for the energy of the 57Fe nuclear
transition: 14.4 keV. The beam is monochromatised in two stages. In the first stage,
the bandwidth is reduced down to few eV by a high-heat-load monochromator.

The high-heat-load monochromator has the task of handling the heat load of the
”white” radiation produced by the undulators and reducing the energy bandwidth of
the radiation to the eV region (∆E/E ∼ 10−4). This is obtained with two Si (1 1 1)
reflections. The crystals are cut slightly asymmetric to match the angular acceptance
of the x-ray. The offset between the incoming and the out-coming beam is 25 mm, the
monochromator can easily be tuned over the energy interval between 6 and 30 keV. In
the second stage, the bandwidth is reduced down to the meV region (∆E/E ∼ 10−7)
by a high resolution monochromator HRM. A narrow energy bandpass is achieved
with high order reflection, which provides large angle-energy dispersion and has small
angular acceptance. A triple set of crystals gives an energy resolution of 0.5 meV at
14.4 keV keeping the flux as high as 5.5·108 photons/s (at 90 mA synchrotron current).
With this setup of the HRM it is possible to switch among energy resolution of 0.5,
1 and 2 meV. However, the HRM can only be tuned over a limited energy interval,
and it is necessary to design a special HRM for each Mössbauer isotope. For better
matching the beam divergence to the angular acceptance of the first crystal of the HRM,
collimating lens have been installed downstream of the high heat-load monochromator.
For example at 14.4 keV, the intrinsic divergence of the x-ray beam of about 14 µrad
has been decreased to 1.7 µrad.

After the high-resolution monochromator, the beam passes through ionization cham-
ber, which monitors the flux of incident radiation. As the nuclear scattering has to
be separated in time from the electronic one, a fast detector (with ns to sub-ns time
resolution) with fast recovery time is mandatory. The detector must survive the in-
tense initial flash and be able to count a single photon event from the delayed nuclear
radiation few nanoseconds later. The detectors used for NIS experiments at ID-18 are
avalanche photodiodes (APD) characterized by a time resolution between 100 ps and
1 ns.

An APD is placed in forward direction and detects the delayed photons that have
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interacted elastically with the target.
In order to collect in the widest possible solid angle the secondary products of

nuclear absorption (atomic fluorescence) another APD is placed as close as possible
to the target. The products of nuclear deexcitation can be observed within a wide
solid angle around the target. The energy transfer from the x-rays to the system are
determined as a difference between the energy of the incident radiation and that at
the resonance (i.e. 14 keV). In NIS, the narrow width of nuclear levels (∼ neV) makes
the nuclear resonance itself an ideal energy reference. At the resonance (E = E0),
the APD counts the absorption events after having excited elastically the nuclei of
the target, whereas at energies above or below resonance the APD detects the nuclear
absorption process after having inelastically excited the nuclei of the target. In this case
the nuclear resonance can be excited by creating (E > E0) or annihilating (E < E0)
phonons.

2.2 Inelastic X-ray Scattering

In this section the theory of Inelastic X-ray Scattering (IXS) is presented in the first
two sections. The basic working principles of an IXS spectrometer are discussed in the
last section with reference to beamline ID-16 at the European Synchrotron Radiation
Facility.

2.2.1 IXS cross-section

The energy dependence of the Inelastic X-ray Scattering provides a direct determina-
tion of the coherent dynamical structure factor, S(Q,ω), whenever the listed hypotheses
hold [51]:

• The scattering process is dominated by the Thomson term and both the resonant
and the spin-dependent contributions to the electron-photon interaction can be
neglected.

• The center of mass of the electron cloud follows the nuclear motion without delay;
i.e. the adiabatic approximation is valid.

• There are no electronic excitations in the considered energy transfer range.

The IXS scattering schematics is illustrated in fig. 2.5. Here, and in the following,
the suffixes ”i” and ”f” refer to the incident and scattered photon, respectively. The
incoming photon, characterized by its energy h̄ωi, wave-vector ~ki, and polarization ε̂i,
is scattered by the sample at an angle 2θ within a solid angle dΩ. The energy, wave-
vector and polarization vector of the scattered photon are denoted by: h̄ωf , ~kf and ε̂f ,
respectively. According to energy and momentum conservation laws, the momentum
and energy transfer to the sample are:

h̄ω ≡ h̄(ωf − ωi) and h̄~q ≡ h̄
(
~kf − ~ki

)
. (2.50)
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2.2. Inelastic X-ray Scattering

In the limit ω ≪ ωi, which is the case for IXS, the modulus of ~ki and ~kf are basically
the same, and the modulus of the exchanged momentum is entirely determined by the
scattering angle 2θ and the wave vector ki:

q = 2|~ki|sin(2θ/2) (2.51)

Figure 2.5: Kinematics of a scattering experiment.

The double differential cross section, ∂2σ/∂Ω∂ωf , representing the fraction of pho-
tons having frequency ωf ± dωf scattered into a solid angle dΩ around the direction

defined by ~kf , can be calculated within the frame of linear response theory assuming
a weak coupling between the probe and the system. In this approximation the double
differential cross section can be regarded as an intrinsic property of the unperturbed
sample. Neglecting the interaction of the probe (i.e. the incident photons) with the
nuclei, in the weak relativistic limit the interaction between probe and system is de-
scribed by the photon-electron interaction Hamiltonian, Hint. It consists of four terms
[53]:

Hint =
e2

2mc2

∑

j

~A(~rj, t) · ~A∗(~rj, t) +
e

2mc

∑

j

~A(~rj, t) · ~pj(~rj, t) −

− e

mc

∑

j

~sj · ~A(~rj, t) −
e2

2m4c4

∑

j

~sj · (
d ~A

dt
(~rj, t) × ~A(~rj, t)). (2.52)

The sum extends over all the electrons in the system, the electron positions, momenta
and spins are indicated as ~rj, ~pj and ~sj, respectively. m and e are the electron mass

and charge, while c is the speed of light. Finally, ~A(~rj, t) is the vector potential of the
photon electromagnetic field, which, in the quantum electrodynamic representation
with the gauge ∇ · ~A(~rj, t) = 0, can be written as [54]:

~A(~rj, t) =

(
4πc2

V

)1/2 ∑

λ

[aλǫ̂λe
i(~qλ·~rj) + a∗

λǫ̂λe
−i(~qλ·~rj)], (2.53)

where aλ and a∗
λ are the λ-th components of the photon annihilation and creation

operator, and ǫ̂λ is the polarization of the electromagnetic field.
The first term in Eq. (2.52) describes the diamagnetic coupling between electron

current and photon electric field (Thomson scattering). The second term accounts
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for paramagnetic coupling responsible for the absorption/emission of a photon by the
electron system. The last two terms describe respectively the coupling of the electron
spins to the photon magnetic field and the spin-orbit interaction.

For photon energies of the order of 20 keV (i.e. energies ≪ mc2, where mc2 is the
rest mass energy of the electron) the magnetic terms are smaller than the first two terms
by a factor of 10−2, and will be therefore neglected. Furthermore, the paramagnetic
contribution can also be neglected if we consider photons with energies away from any
absorption resonance. The interaction Hamiltonian therefore simplifies to:

Hint =
e2

2mc2

∑

j

~A(~rj, t) · ~A∗(~rj, t). (2.54)

The double-differential cross-section can be determined in the framework of first order
perturbation theory, according to the Fermi golden rule [55]. Considering the initial
and final photon states, |I〉 and |F 〉 as plane waves, the double-differential cross-section
can be written as:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)

(ε̂f · ε̂i)
2

∑

I,F

PI

∣∣∣∣∣∣

〈

F

∣∣∣∣∣∣

∑

j

ei~q · ~rj

∣∣∣∣∣∣
I

〉∣∣∣∣∣∣

2

δ(h̄(ω − ωF + ωI)), (2.55)

where r0 = e2/mc2 is the classical electron radius and PI is the equilibrium number of
initial states of the system over all the possible states.

Within the validity of the adiabatic approximation, the atomic quantum state, |S〉,
can be factorized into its electronic, |Se〉, and nuclear, |Sn〉, part. This approximation
is particularly good for exchanged energies that are small compared to the electron
excitation energies. In this case, the contribution to the total scattering coming from
the valence electrons close to the Fermi level is small compared to the contribution
coming from the core electrons [55]. The double differential cross section, under these
hypotheses, can be written as:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)

(ǫ̂f · ǫ̂i)
2

∑

In,Fn

PIn

∣∣∣∣∣∣

〈

Fn

∣∣∣∣∣∣

∑

j

fj(~q) ei~q · ~Rj

∣∣∣∣∣∣
In

〉∣∣∣∣∣∣

2

δ(h̄(ω − ωF + ωI)),

(2.56)

where fj(q) is the atomic form factor of the jth atom with position vector ~Rj, while
the suffix ”n” refers to the nuclear states. Now the sum extends over all the atoms
of the system. Assuming that all the scattering units in the system are equal, this
expression can be further simplified by factorization of the form factor. At the q → 0
limit, f(q) is equal to the number of electrons in the atom. For increasing values of q
the form factor decays almost exponentially with a decay constant determined by the
radial distribution of the electrons in the atomic shells of the considered atom. Using
the Van Hove pair correlation function, S(q, ω) can be formally written as [48]:

S(~q, ω) =
1

2πh̄N

∫ +∞

−∞
eiωt〈

∑

jk

ei~q·~Rj(t)e−i~q·~Rk(0)〉dt, (2.57)
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where N is the number of particles in the system. Combining Eq. (2.57) and (2.56)
one obtains:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)

(ǫ̂f · ǫ̂i)
2|f(q)|2S(q, ω). (2.58)

This derivation is strictly valid for monatomic systems, but it can be easily generalized
to molecular systems with several atomic species by replacing the atomic form factor
with the molecular one. In the case of non-crystalline samples with different atoms
the procedure to determine the scattering cross section is more complicated. The
formalism introduced here is still valid if we assume that the cross section splits into
two components: a coherent and an incoherent term. The latter is associated with
fluctuations of the form factor while the former is proportional, through the mean
value of the form factor, to S(~q, ω) [52]:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)

(ǫ̂f · ǫ̂i)
2[〈f(q)〉2S(~q, ω) + 〈δf(q)2〉Ss(q, ω)]. (2.59)

Here 〈f(q)〉2 is the average value of the form factor over the whole system while 〈δf(q)2〉
is the average of its fluctuation. The incoherent part of the cross section is given
by Ss(q, ω), which describes the single particle dynamics rather than the collective
behavior.

In order to derive the effective intensity of the radiation collected in an IXS ex-
periment, absorption processes have to be considered as well. In fact, the number of
photons (N) that, per unit time, are scattered into the solid angle (dΩ) and in the
frequency interval (dω) are given by [52]:

N = N0
∂2σ

∂Ω∂ω
dΩdωnLe−µL, (2.60)

where N0 is the number of incident photons per seconds, n is the number of an atoms
per unit volume, L is its length along the scattering path and µ is the total absorption
coefficient. The maximum IXS intensity is achieved for L = 1/µ, and consequently
N ∝ 1/µ. Considering X-ray energies of ≈ 20 KeV and Z > 3, µ is almost completely
determined by the photoelectric absorption process. In this process µ ∝ Z3, with im-
portant modifications at energies close to the electron absorption edges. Consequently,
the scattering volume of high Z materials is very much reduced, while, on the other
hand, the cross section increases as Z2. Fig. 2.6 reports the scattering intensity for an
IXS experiment, as a function of Z, in the case of a sample with optimum thickness
and an incident photon energy of 17.8 KeV.

2.2.2 Dynamic structure factor and phonons

In this paragraph it is shown how the dynamic structure factor is related to the quanta
of vibrational energy of a system: the phonons [52]. The simplest case is represented
by an ideal Bravais lattice with only one atom per unit cell. Being ~uj(t) the atomic

displacement of atom j relative to its lattice equilibrium position, ~Rj, its instantaneous

position, ~Rj(t), can be expressed as follows:
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Figure 2.6: Relative intensity of Inelastic X-ray Scattering, for an optimum sample
thickness (L = 1/µ), as a function of the atomic number Z at the photon energy of
17.8 KeV, in the small Q-limit (i.e. f(Q) = Z). The large discontinuity between
Z = 39 and Z = 40 is due to the K absorption edge of zirconium.

~Rj(t) = ~Rj + ~uj(t) (2.61)

The dynamic structure factor (eq.2.57) reads:

S(q, ω) =
1

2πh̄N

∑

j,k

ei~q·(~Rj−~Rk)
∫ +∞

−∞
eiωt〈e−i~q·~uk(0)ei~q·~uj(t)〉dt. (2.62)

In the framework of second quantization, the displacement is given by [56]:

~uj(t) =

√
h̄

2MN

∑

s,~q

ǫ̂s,~q√
ωs(~q)

[aei(~q·~Rj−ωs(~q)t) + a+e−i(~q·~Rj−ωs(~q)t)]. (2.63)

here the suffix ”s” indicates the cartesian indexes and a and a+ are respectively the
annihilation and creation phonon operators. ~q and ωs(~q) represent the phonon momen-
tum and frequency, while ǫ̂s,~q is the phonon polarization. Exploiting the commutation
rules of a and a+, and some general relations, Eq. (2.62) becomes:

S(~q, ω) =
1

2πh̄N

∑

j

ei~q·~Rj−2W (q)
∫ +∞

−∞
e−iωte〈(~q·~u0(0))(~q·~uj(t))〉dt, (2.64)

Where the quantity e−2W (q) = e−〈(q·ui(0))2〉 is called the Debye-Waller factor. Since we
are dealing with small displacements, the argument of the integral can be expanded
as:

e〈(~q·~u0(0))(~q·~uj(t))〉 = 1 + 〈(~q · ~u0(0))(~q · ~uj(t))〉 + .... (2.65)
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The first term leads to elastic scattering, while the second one represents the inelas-
tic scattering with the creation or annihilation of one phonon. Higher order terms
can be omitted since only small momentum transfers, compared to the inverse of the
typical atomic displacements, are considered. Within this approximation the dynamic
structure factor can be expressed as:

S(q, ω) =
1

4πMN
e−W (q)

∑

j

ei~q·~Rj
(~q · ǫ̂s,~q)

2

ωs(~q)

∫ +∞

−∞
eiωt[e−i(~q·Rj−ωs(~q)t)〈nq + 1〉

+ e−i(~q·Rj+ωs(~q)t)〈nq〉]dt, (2.66)

where 〈nq〉 represents the Bose occupation number of the excited phonon mode. For
crystals with more than one atom per unit cell, the unit cell form factor has to be
taken into account in the calculation of the one phonon process scattering cross section.
For disordered systems the lack of translational periodicity makes the treatment more
complicated, because the eigenvectors depend also on the equilibrium positions of the
atoms [57, 58, 59].

2.2.3 IXS spectrometer: beamline ID-16 at ESRF

The IXS beamline ID-16 at the European Synchrotron Radiation Facility (ESRF) in
Grenoble [60] will be briefly described in this section. The instrument layout is reported
in fig. 2.7

Figure 2.7: Layout of the IXS beamline ID-16 at the European Synchrotron Radiation
Facility.

The instrumental concept is based on a triple axis spectrometer. The first axis
is the one of the monochromator crystal. Its role is to fix the energy, h̄ωi, of the
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incident photons. The second axis is located at the sample position, and determines
the momentum transfer. The third axis is the analyzer crystal, its role is the selection
of the scattered photon energy, h̄ωf . The ID16 beamline is equipped with a 5 analyzers
system that collect 5 different IXS spectra simultaneously. The spectra correspond to
5 different transfer momenta.

The x-ray source consists of three undulators of 35 mm magnetic period, placed in
a straight high-β section of the electron storage ring. The x-ray radiation energies used
correspond to the 3rd or 5th harmonics of the characteristic undulator emission. The
x-ray beam from the undulators odd-harmonics have approximately a 40 × 15 µRad
(horizontal × vertical) angular divergence (FWHM), a spectral bandwidth ∆E/E ≈
10−2 and an integrated power within this divergence in the order of 200 W.

The x-ray beam from the undulators is pre-monochromatized to give a bandwidth
of ∆E/E ≈ 2 · 10−4 using in-vacuum nitrogen-cooled channel cut silicon crystal. The
main role of the pre-monochromator is to reduce the heat load impinging on the main
monochromator. This is mandatory in order to keep the thermal deformation of the
silicon crystal below the limits for which the energy resolution is deteriorated.

The x-ray photons from the pre-monochromator impinge onto the high energy reso-
lution backscattering monochromator, consisting of an asymmetrically cut silicon crys-
tal operating at a Bragg angle of 89.98o. The natural angular acceptance of the crystal,
the so-called Darwin width, is larger than the x-ray beam divergence, and, therefore, all
the photons within the desired energy bandwidth are transmitted. High order Bragg
reflections and perfect crystals are required in order to obtain the necessary energy
resolution of ∆E/E ≈ 10−7 ÷ 10−8, these reflections are the silicon (h, h, h), with
h = 7, 8, 9, 11, 12, 13 [61].

The monochromatic beam is focused in the horizontal and vertical plane by a plat-
inum coated toroidal mirror, located at 2 m from the sample.

The scattered radiation is subsequently analyzed in energy. Although problems
related to energy resolution are conceptually the same for the monochromator and for
the analyzer, the required angular acceptance is very different. The monochromator
can be realized using a flat perfect crystal. For the analyzer crystal, the optimal angular
acceptance is dictated by the desired momentum resolution. Considering values of ∆q
in the range of 0.1 ÷ 0.5 nm−1, the corresponding angular acceptance of the analyzer
crystal must be ≈ mrad or higher, a value much larger than the Darwin width. The
only way to obtain such a large angular acceptance is the use of a focusing system,
which, nevertheless, has to preserve the single crystal perfection necessary to obtain
the desired energy resolution. This constraint excludes the possibility to consider
elastically bent crystals. A solution consists of gluing a large number of undistorted
perfect flat crystals on a spherical surface, on a 1:1 pseudo-Rowland circle geometry
with aberrations kept such that the desired energy resolution is not degraded. These
analyzers consist of 12000 perfect silicon single crystals of surface size 0.6 × 0.6 mm2

and a thickness of 3 mm, glued on a spherical substrate of a radius equal to the length
of the spectrometer arm, 6.5 m [62, 63].

The spectrometers are furthermore equipped with an entrance pinhole, motorized
slits in front of the analyzer crystal to set the desired momentum resolution, and
a detector with its corresponding pinhole. The detectors are Peltier cooled 1.5 mm
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thickness silicon diodes with an active area of 2 × 12 mm2, inclined at 20o in order
to enhance the x-ray absorption. They have a very low dark count (≈ 1 count in 30
minutes). On ID-16 there are five independent analyzers with a fixed angular offset
among them of ≈ 1.5o, mounted on a 6.5 m long arm that can rotate around a vertical
axis passing through the scattering sample. This allows recording of 5 IXS spectra at
the same time, with a nearly constant Q-offset.

Figure 2.8: Measured instrumental resolution function, corresponding to the
Si(11, 11, 11) configuration of the spectrometer, plotted both in linear and logarithmic
scale.

As a consequence of the extreme backscattering geometry, and in contrast to tradi-
tional triple axis spectrometers, the change of energy difference between analyzer and
monochromator cannot be performed modifying the Bragg angle of the monochromator
or of the analyzer. The energy scans are therefore performed by changing the relative
temperature, ∆T , of the monochromator. This induces a relative variation of the lat-
tice parameters, ∆d/d = α(T )∆T . Therefore a relative variation of the energy of the
diffracted radiation, ∆E/E = −∆d/d, is induced as well. Considering that the ther-
mal expansion coefficient of Si α has a value of ≈ 2.58· 10−6K−1 at room temperature,
the required energy resolution of 10−7 ÷ 10−8 implies an accuracy in the temperature
control of the monochromator crystal in the mK-range. This task is achieved with
a carefully designed temperature bath, controlled by an active feedback system [61],
which assures a temperature control with a precision of 0.2 mK in the temperature
region around 295 K. In order to convert the temperature scale into the energy scale,
the most recent result for α(T ) has been considered [64]:

α(T ) = α0 + β∆T, (2.67)

where α0 = 2.581 ± 0.002 · 10−6 K−1, β = 0.016 ± 0.004 · 10−6 K−2. From Eq. (2.67)
one can precisely calculate the variation of lattice constants at the temperature T :

∆d/d0 =
∫ T

T0

α0 + β(T ′ − T0)dT ′ = (α0 − βT0)∆T +
1

2
β(T 2 − T 2

0 ). (2.68)
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Finally, the variation of the energy of the diffracted radiation, ∆E/E = −∆d/d, can
easily be found.

Figure 2.8 shows the instrumental function of one of the five analyzers, correspond-
ing to an energy resolution of 1.5 meV, when operating at the Si(11, 11, 11) reflection .
It has been recorded by measuring the scattering from a disordered sample (Plexiglas)
at a temperature of 10 K and at a q-transfer corresponding to the first maximum of its
static structure factor (10 nm−1). In this way the elastic contribution to the scattering
is maximized. Table 2.1 summarizes the main characteristics of the spectrometer.

h Energy ∆E Qmax ∆Q Flux
[keV] [meV] [nm−1] [nm−1] [photons/s/200mA]

7 13.839 7.6± 0.2 64 1.89 1.5 · 1011

8 15.816 5.5± 0.2 74 2.16 9.0 · 1010

9 17.793 3.0± 0.2 83 2.43 2.7 · 1010

11 21.747 1.5± 0.1 101 3.00 6.6 · 109

12 23.724 1.3± 0.1 111 3.24 5.9 · 109

13 25.701 1.0± 0.1 120 3.50 1.5 · 109

Table 2.1: Main characteristics of the ID-16 6.5 m spectrometer for the different
Si(h, h, h) reflections. Energy indicates the incident photon energy, ∆E is the total
energy resolution, Qmax indicates the maximum momentum transfers and ∆Q indi-
cates the Q-spacing between adjacent analyzers. The photon flux values are measured
at the sample position.
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Résumé du chapitre 3

Dans ce chapitre on présente une étude sur un verre ” hyperquenched ”,
c’est-à-dire un verre obtenu en refroidissant un liquide en mode extrme-
ment rapide (105 K/s). Dans une brève introduction, sera présentée la
problématique scientifique qui est objet de notre étude: la dépendance du
BP de l’histoire thermique du verre et en particulier de sa température
fictive Tf . On discutera des modèle théorique présent en littérature
qui permettent d’accomplir des prédictions quantitatives sur l’évolution
du BP en fonctionne de Tf . Dans un autre paragraphe, on présente
l’objet de les nos études : NaFeCaSiO, et la caractérisation de sa struc-
ture et la vitesse du son. En suite, seront discutées les procédures et
les résultats des mesures de calorimétrie (DCS scannes), de diffusion
de lumière (BLS), de rayon X (XRD) et de spectroscopie Mössbauer.
Cette caractérisation de nos échantillons donne évidence à une varia-
tion de Tf qui correspond a une diminution de la densité du système
avec une correspondant diminution de la vitesse du son. La variation de
Tf ne semble pas cependant avoir des effets sur la structure du verre,
mme sur une échelle de longueurs plutt petite. Dans une seconde par-
tie de ce chapitre on pressente les mesures NIS de nos échantillons et
les relatives DOS. On observe une augmentation de l’intensité du maxi-
mum de RDOS en augmentant la Tf du système. Aufin de comprendre
l’influence des propriétés macroscopiques du verre sur la variation de
DOS obtenue en variant Tf , on a procédé à calculer l’énergie de Debye
de chaque échantillon et on a réduit la RDOS en unités d’énergie de De-
bye. De cette représentation de la RDOS, en unités d’énergie de Debye,
on observe que la variation de DOS associée au changement de Tf peut
tre complètement décrit par le changement des seules propriétés macro-
scopiques du système. Dans les conclusions de ce chapitre on reprend les
principaux résultats de cette étude sur le verre ”hyperquenched” et on le
compare avec les prédictions avancées de la théorie.
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Chapter 3

Study of a hyperquenched glass

3.1 Scientific Background: the energy landscape

approach

One of the peculiarities of the glassy state is represented by the fact that this state is out
of thermodynamic equilibrium. A theoretical model to relate the presence of the BP to
the non-equilibrium nature of glasses has been developed. As we have already shown in
section 1.2, the formation of a glass can be seen as the result of two opposite processes.
On the one hand the free energy decreases, favoring the formation of the crystalline
phase. On the other hand, the system keeps its disordered structure because the high
number of equivalent configurational states augments the value of the entropy. The
competition between these two processes leaves the system in a metastable condition,
out of thermodynamic equilibrium: the glassy state.

In principle one could quantify the non-equilibrium character of a glass evaluating
the free energy that should be subtracted from the system in order to bring it to
equilibrium (to obtain the crystalline phase). Equally, one can define the degree of
non-equilibrium of the system through the difference in energy ∆H = H − Href ,
that the system has relative to a reference energy of the glass. It has been observed
experimentally that cooling a liquid at different rates leads to the formation of glasses
at different temperatures Tf (called fictive temperature). The value of Tf can be
used to directly quantify ∆H, defining Href as the free enthalpy of that glass where
Tf = Tg (here Tg is the temperature at which the structural relaxation time τα of the
glass is equal to 100 s). From the knowledge of the structural relaxation time at Tf :
τα(Tf ) using the Adam-Gibbs equation (3.1) [7], one can estimate ∆H = H(τα(Tf ))−
H(τα(Tg)):

τα(T ) = τ0exp
(

∆µ

TSc

)
= τ0exp

(
∆µ

H(T )

)

; (3.1)

In Eq.(3.1) Sc is the configurational entropy evaluated from the Kauzmann tem-
perature TK (see section 1.2):

Sc =
∫ T

TK

∆cP dlnT, (3.2)
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∆µ is the free energy barrier for the structural rearrangement. ∆H has been identified
in theory as the critical parameter that controls the height and the energy of the BP
in glasses. However, the value of ∆H alone is not sufficient to predict the vibrational
properties of a glass. In the last few years, a description of the dynamical properties of
solids, based on the topological aspect of its energy surface [65], has been developed.

Figure 3.1: Sketch of the energy landscape.

Once the interaction potential between the particles is fixed, the potential energy
is a function of the spatial coordinates of each particle H(r1, r2...r3N). Moreover, one
can have a topographic view of H with a multidimensional map that shows the value
of H at any location r̄ = (r1, r2....r3N) of the N particles. In this configurational space
(here the number of coordinates is 3N , associated with the position of all particles)
the potential energy of the system is represented by a point that moves on a sur-
face. This surface is characterized by maxima, minima and saddle points. The minima
correspond to mechanically stable arrangements of the N particles. The lowest-lying
minimum is the configuration where the system is a perfect crystal. In contrast, the
higher minima correspond to amorphous packings of the atoms (see figures 3.1 and 3.2).
Each minimum is separated from another by a saddle; these energy points characterize
metastable phases and play a fundamental role in the transitions of the system. More-
over, indications for a relationship between the distribution of basins and the height
of the saddle points have been found [66]. At temperatures higher than the melting
point (Tm) the liquid samples the saddles energy points; if the temperature is lowered
fast, the system migrates to higher basins. Conversely, upon slow cooling, the system
is trapped in one of the lower minima, see 3.2.

The representation of a system through this topographic vision is useful to simplify
the description of its collective properties. The manner by which a system samples
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its landscape as a function of the temperature provides information on its dynamical
behavior. Moreover, from the way in which the system moves over the energy land-
scape, due to a change in density, we obtain information on the mechanical properties
of the system. In recent years, the energy landscape approach has been found to be
a powerful tool for the description of the low energy vibrations of glasses, allowing to
establish a relationship between the energy landscape and the presence of the BP in
the glass [67, 68, 69, 70, 71].

Figure 3.2: Sketch of the energy landscape of a glass (left panel) corresponding to dif-
ferent cooling processes (right panel). Φ is the coordinate of the space of configurations
of the system Φ = Φ(r1, ..., r3N) .

In order to check the reliability of the description of the dynamics of a glass obtained
using the energy landscape approach, hyperquenched glasses have been investigated.
These systems are characterized by a high value of Tf obtained by a fast quenching
of the liquid, with a cooling rate up to 105 K/s. Hyperquenched glasses reveal a
non-exponential behavior of the structural relaxation time τα. This result has been
interpreted considering τα as the average of a broad spectrum of relaxation times,
suggesting the presence of heterogeneities in the regions where the relaxations take
place. Such heterogeneities could be reflected in the energy landscape through the
presence of a large number of unstable points. Measurements of DOS in hyperquenched
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glasses have revealed an increase of DOS in the BP energy region [68]. The height of
the maximum in the reduced density of states (RDOS) g(E)/E2 increases increasing
Tf , confirming the connection between the topology of the energy landscape of the
glass and the presence of the BP.

In particular the rise in height of the BP can be associated with a transition in
the energy landscape between a region dominated by minima to a region dominated
by saddle energy points. This transition is controlled by the critical parameter ∆c

(∆c ∝ ∆H)[69] that represents the difference between the energy of the glass and that
of the same system at the Mode-coupling temperature, Tc [72]. The high number of
unstable energy points leads to an increase in the number of low frequency modes in
the system that, despite their low energy, have a short wavelength (high value of the
corresponding wave vector Q) [70]. The typical linear dependence of the frequency of
the vibrational excitations on Q, in the acoustic region (i.e. at low values of Q), would
not be influenced by the modes embedded in the BP because of their high Q values.
Numerical investigations on the relationship between the energy of the BP and the value
of the critical parameter ∆c [69] allowed the authors to make quantitative predictions
of the relation between the height IBP and energy position EBP of the BP with varying
Tf . In particular it has been pointed out that: IBP = g(EBP )/E2

BP ∝ E
−1/2
BP because

EBP ∝ ∆c, and IBP = g(EBP )/E2
BP ∝ ∆−1/2

c .

On the basis of these theoretical predictions, we decided to experimentally inves-
tigate the relationship between the DOS and Tf in hyperquenched (high value of Tf )
and annealed glasses (samples with low value of Tf obtained by annealing the hyper-
quenched glasses). Moreover, using different techniques we have probed the effect of
the thermal history on both structural and vibrational properties. The results obtained
are quite surprising: the increase of DOS at low energy, for increasing values of Tf ,
is only associated with the change of the macroscopic properties of the glass. These
conclusions suggest to reconsider some aspects of the previously discussed theory and
renew the interest in the experimental investigations on this topic that is still far from
being fully understandood.

3.2 The sample

We investigated the effect of the thermal history on the vibrational dynamics of a glass
using: 74SiO2 4CaO 16Na2O 6FeO (% in weight). The preparation of the samples has
been done by Prof. Y. Yue at the Aalborg University, starting from a mixture of raw
quartz powder, CaCO3, Na2CO3, and Fe2O3 added in analytical grades. The mixture
has been melted heating the material at high temperature (1500◦C); cooling the melt
at below 781K a reference glass was obtained.

The choice of a glass with such composition is the result of a compromise between
two requirements. On one hand, we would like to have a system representative of a wide
variety of glassy materials; like sodium silicates. On the other hand, the system should
contain iron atoms that allow using spectroscopic techniques based on the Mössbauer
effect. The glass was chosen by starting from a relatively high silica content. In order
to introduce iron atoms into the glass, Fe2O3 has been added together with Na2CO3
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Figure 3.3: Hyperquenched material (left panel), some pieces of the glass used for the
measurements (right panel).

and CaCO3, these last two components are responsible for the low hygroscopic level
of the material and assure the mechanical stability of the system. 30 % of Fe2O3 was
substituted by the isotopic 57Fe2O3 to increase the cross section of nuclear excitations.

A first characterization of the dynamical properties of the reference glass was pro-
vided by viscosity η measurements. In figure 3.4 we report the behavior of η vs T
compared with viscosity measurements of other systems. The glass has a ”strong” be-
havior, the index of fragility is m=34, close to other sodium silicate glasses [75]. From
differential calorimetric scan measurements (see section 3.3), we determined the glass
transition temperature Tg=781 K.

Starting from the reference glass two samples have been prepared: the ”hyper-
quenched” and the ”annealed” glass, using different thermal treatments. The final task
of this preparation protocol was to have two glasses with different fictive temperature
Tf . The ”hyperquenched” sample has been obtained by a double-crucible technique
to cool the melt at high rates. The raw material was melted in a Pt/Au crucible (80
mm in height and 75 mm in diameter) at 1500◦C. After 4-hours of homogenization the
crucible has been taken out of the furnace and placed on a porous alumina/silica brick.
Then another smaller platinum crucible (72 mm in height and 40 mm in diameter) was
immersed upside down into the melt in the larger crucible, was quickly pulled out of
the melt, and was quenched into water. By pulling the small crucible from the melt, a
thin melt film (100−300 µm) is generated. The fast quenching of the thin film reduces
the material to small pieces: the final hyperquenched sample. To obtain the second
sample, the annealed glass, the hyperquenched material was warmed to 785K for 10
minutes and then cooled to room temperature with a rate of 2 K/min.

3.3 Differential scanning calorimetry

As discussed in the first chapter, during heating and subsequent cooling, the temper-
ature Tf is obtained where the structural relaxation time τα becomes comparable to
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Figure 3.4: Behavior of viscosity as function of temperature for different compounds,
the full circles are the measurements on the hyperquenched glass.
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the characteristic time scale ∆t∆T/rc (∆t/τα ∼ 1). Where ∆T is the scanned range of
temperature and rc the rate of cooling. Thus, changing the cooling or heating rate rc,
∆t changes (∆t′ = ∆T/r′c) and the relaxation time τα at Tf will be altered similarly. In
fact, because τα is temperature dependent, a change in cooling or heating rate changes
fictive temperature Tf according to ∆t/τα(Tg) = ∆t′/τα(Tf ) ∼ 1.

We have applied high cooling rate and an annealing procedure to get two samples
with respectively a higher and a lower Tf relative to the glass transition temperature
of a glass (obtained cooling the melt with the reference cooling rate rc= 10 K/min).
The efficiency of the thermal treatments applied to obtain the samples with two dif-
ferent Tf has been evaluated by differential scanning calorimetry scans (DSC). DSC
measurements allow us to estimate the potential energy stored in or removed from the
sample relative to the value of a reference glass. From this a precise determination
of Tf is obtained. The property monitored by DSC scans is the enthalpy (H) and
the value measured by the instrument is proportional to the derivative of this function
(cP = ∂H/∂T |P ). If we perform two measurements of cP varying the temperature from
the glass at low temperature Tcn up into the melt Teq (cP1 scans) and back in the same
range of temperature from Teq to Tc (cP2 scan) (see figure 3.5 and 3.6), the integrated
difference between the two DCS scans gives a measure of the total enthalpy released
during the entire heating:

∆H =
∫ Teq

Tc

∂∆H

∂T
dT =

∫ Teq

Tc

(cP2 − cP1) dT, (3.3)

this integral is evaluated between Tc, the temperature where the release of energy starts,
and Teq, the temperature where the system returns into equilibrium; i.e. cP2 = cP1

in the melt. Due to the low compressibility of liquids under ambient pressure, it is
possible to neglect the pressure volume work and obtain ∆H = ∆ET , where ∆ET is
the total internal energy of the system. ∆ET is then the sum of two contributions,
one from the vibrational energy and one associated with the configurational energy,
i.e. ∆ET = ∆Ev + ∆Ec.

∆ET represents the variation of energy associated with the shift of the glass forma-
tion from Tg to Tf ; therefore, we can write:

dET = (cPl − cPg) dT , (3.4)

here cPl is heat capacity of the liquid and cPg is the heat capacity of the glass. Com-
bining equation 3.3 and 3.4 one can derive:

∫ Teq

Tc

(cP2 − cP1) dT =
∫ Tf

Tg

(cPl − cPg) dT. (3.5)

From this expression is possible to obtain the Tf of the glass from the energy defined
by the two DCS scans (the area between the two curves of figure 3.5) and comparing
this energy to that expected from the transition between the liquid and glassy phase
(i.e. Eq.(3.5) corresponds to the condition A=B in figure 3.6 (left panel)).

In figure 3.5 we show the up and down DSC scans performed on our samples: the
hyperquenched and the annealed glass. The measurements have been performed by
Prof. Y. Yue using a differential calorimetric scan model Netzsch STA 449C Jupiter.
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Figure 3.5: Heat capacity up-scan cP1(continuous line) and down-scan cP2(dashed line)
in hyperquenched (left panel)and annealed (right panel) samples.
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glasses.

79



Chapter 3. Study of a hyperquenched glass

For both the cooling and the heating scans a rate equal to 10K/min has been used.
The value of Tf according Eq.(3.5) has been found to be 929K and 770K respectively
for the hyperquenched and the annealed samples. From the difference between the up
DSC scans of the two glasses (see figure 3.7) it was possible to evaluate the excess of
internal energy ∆U stored by the hyperquenched glass relative to the annealed one:

∆U =
∫ Teq

Tc

(cP1(Ann.) − cP1(Hq.)) dT. (3.6)

∆U was found to be 8.0 meV per atom in average.
Furthermore, using the value of Tf we could evaluate, from the measurements of

viscosity, the cooling rate rc at which the hyperquenched glass has been cooled. In
silicate systems a simple relationship links the viscosity ηc at T = Tg with rc [76]:

log rc = A − log ηc. (3.7)

The value of ηc has been derived from viscosity measurements, using the Avramov
Eq.(3.8), to extrapolate the experimental data of ηc up to Tf .

log η = D + B
(

Tg

T

)α

. (3.8)

The parameters D, B and α have been fitted to the experimental data (see fig. 3.4).
From Eq. (3.7) it was estimated that hyperquenched glass was prepared with the
cooling rate of 1500 K/s.

3.4 Density measurements

We characterized macroscopic properties of the samples, in particular their density.
The method that we used for these measurements is historically called Archimedes

method, it is in fact an application of the Archimede principle referred as ”any body
plunged in a liquid experiences a force Fl proportional to the density of the liquid ρl and
to the volume V of the solid” (Fl = ρlgV , where g is the gravitational acceleration).

Exploiting such principle the density of a solid can be measured using a liquid with
known density ρl. Considering the weight of the solid in air Wa and the weight of the
solid in the liquid Wl, one can write:

Wa = Mg − ρagV Wl = Mg − ρlgV, (3.9)

ρ =
Wa

Wa − Wl

(ρl − ρa) + ρa, (3.10)

here M is the mass of the solid and ρa is the density of the air. The measurement of
Wa and Wl of our samples has been performed using a balance (Mettler Toledo AT201)
equipped with a sample holder immersed in ethanol (see fig. 3.8). Each sample has been
weighed in air and in ethanol, taking into account the Fl acting on the sample holder.
The temperature of the liquid was monitored during the measurement. The density of
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ethanol depends only slightly on the temperature ∂ρ/∂T=5.5 10−4 g/cm3/K, neverthe-
less this dependence represents the major source of uncertainty of the measurements.
The error in the density using the Archimede’s method depends intrinsically on the
size of the measured sample. From Eq.(3.10) one recognize that the uncertainty in ρ is
inversely proportional to the difference Wa − Wl that is proportional to the volume of
the sample V (Wa −Wl = gV (ρl − ρa)). To increase the accuracy of our measurements
we weighed (in air and ethanol) all the material obtained from the hyperquenching (or,
alternatively from the annealing) processes, then we increased considerably the weight
of the measured sample reducing the uncertainty in ρ. Moreover, we repeated the
measurements several times, in order to reduce the statistical uncertainty. The value
of the density for the hyperquenched was found to be 2.404(1) g/cm3, and 2.439(5)
g/cm3 for the annealed glass.

Figure 3.8: Picture of the balance used for the density measurements.

3.5 The Brillouin light scattering technique

In this section we will briefly consider an application of Brillouin Light Scattering to
investigate the macroscopic elastic properties of a solid. The approach that we will fol-
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low to describe the capabilities of the BLS technique is based on a classical description
of the interaction between matter and radiation. The choice to neglect a more detailed
quantum mechanical description of the phenomenon has been motivated not just by
reasons of space, but also by the way we used the BLS technique in our studies. We
used this spectroscopic technique to characterize the macroscopic dynamical behavior
of glasses and, in particular, to measure the longitudinal and transverse speed of sound
of the systems. As we will show below, these quantities can be extracted from BLS data
using a classical approach to treat the interaction between the probe (i.e. photons) and
the system.

If we send a monochromatic radiation on a sample, the spectrum of the scattered
radiation contains, in addition to the incident frequency, other components at different
frequencies. This phenomenon, is called inelastic scattering and has been observed
for the first time in 1928 by C.V. Raman [78]. A possible description of the inelastic
scattering can be found within the framework of classical electromagnetism.

A neutral ensemble of charges, as an atom or a molecule, has an instantaneous
dipole momentum ~µ:

~µ(t) =
∑

i

qi~ri. (3.11)

If now we plunge the charges into an electric field in plane wave form: ~Ei(r, t) =

ε̂iE0e
i(~ki~r−ωit) (ε̂i is the unit vector in the direction of the radiation of the incident

electric field, ~ki is the wave number and ωi the frequency of the radiation), the distri-
bution of charges is modified together with the dipole. The induced dipole µin has to
be considered now. This quantity can be written in terms of the applied electric field
introducing the molecular polarizability tensor ᾱ(t) [79]:

~µ(t)in = ᾱ(t)[ε̂iE0e
iωit]. (3.12)

Here the possibility for α(t) to depend also on time due to the molecular motion has
been included

If we consider a free, isolated atom, α is independent of time, then µin vibrates
with the frequency of the incident electric field and the radiation is scattered elastically
(i.e. no change of frequency). At distance ~R from the atom the induced momentum
generates a scattered electric field along the direction ês that one can write as [79]:

ês
~Es(R, t) =

ω2
i

~Rc2
~Eie

i(~kiR−ωit)[êsêi]αei(~q~r(t)). (3.13)

Here ~r represents the instantaneous position of the atom with dimensions much smaller
than the wavelength of the incident radiation and c is the speed of light. ~Q is the
exchanged wave vector defined by the scattering angle θ between the incident (~ki) and

scattered (~ks) wave vectors whose modulus is respectively equal to 2π/λi and 2π/λs (λi

and λs are the wavelengths of the incident and scattered radiation). In the hypothesis

of quasi-elastic scattering (~ki ≈ ~ks) Q can be written as:

Q = |~ki − ~ks| ∼ 2nkisinθ. (3.14)
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here n is the refractive index.

In the case of a diatomic molecule, the expression of the scattered field can be ob-
tained by taking into account the influence of the intramolecular motion on α(t). The
time dependence of the molecular polarizability can be expressed using normal coor-
dinates θ1 θ2 (rotational coordinates) and Q (vibrational coordinate) of the molecular
modes. Considering only small variations of α compared to the value at equilibrium
α0, we can write α as:

α(t) = α0 +
∂α

∂Q
(Q0e

iωV t) +
∑

θ1θ2

∂α

∂θi

(θ0ie
iωRt), (3.15)

here ωV and ωR are respectively the vibrational and rotational frequencies of the mole-
cule.

In the case of a polyatomic molecule this results is generalized taking into account
all normal vibrational modes (that will be 3N-5 or 3N-6 depending if the molecule is
linear or not). All normal frequencies of the system will be present in the spectrum of
the emitted radiation if the mode is active, i.e.:

[
∂α

∂Q

]

6= 0. (3.16)

In addition to the isolated molecule it is also possible to treat the scattering of an
ensemble of atoms or molecules. If one sends a monochromatic radiation on a solid,
the scattered radiation contains information on the modes involving the entire system.
In this experiment the scattered radiation will be the result of the sum of all scattered
fields from the induced dipoles of the molecules. In order to treat the interaction of
the radiation in a solid we can replace α by the dielectric tensor εij [79]:

εij(~r, t) = 1 + 4παijρ, (3.17)

εij(~r, t) = εI + δεij(~r, t), (3.18)

here I indicates the unit tensor, ε is the average value of the dielectric constant and
δε represents its fluctuation respect to the mean value. It may be shown [80] that the
scattered electric field at a large distance R can be written as:

êsEs(R, t) =
E0

4πRǫ
ei~ks

~R
∫

V
dr3ei(~q~r−ωf t)ês(~ks × (~ks × (δε(r, t)ês))) (3.19)

where ε̂s is polarization of the field, ks the propagation vector and ωf the frequency of
the scattered radiation.

From the expression of the scattered electric field, the information that one can
extract on the dynamics of the system is determined by δε. Assuming that the system
is locally at equilibrium, the fluctuations of the dielectric constant are associated with
density fluctuations. Considering ε as a function of temperature and density we can
write:
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δε(T, ρ) =

(
∂ε

∂T

)

ρ

δT +

(
∂ε

∂ρ

)

T

δρ. (3.20)

Experimentally the magnitude of the term
(

∂ε
∂T

)

ρ
is found to be much smaller than

(
∂ε
∂ρ

)

T
, so we can neglect it in analysis of the amplitude of the electric field of the

scattered radiation. As is shown in Appendix A, in a solid perturbed by an external
force, elastic waves (longitudinal and transverse) are generated that locally change the
density of the solid. Thus, according to Eq.(3.20) the dielectric constant is modulated
by the atomic motions associated with the elastic waves. These modes can be written
in terms of normal coordinates as:

Qv(t) = Qvcos(ωvt) (3.21)

here ωv is the frequency of the elastic wave proportional to the speed of sound and
wave vector ωv = vsQ. Similarly, in the case of α(t) for an isolated molecule, we can
write ε in terms of vibrational modes:

δε(t) = δε0 +

(
∂δε

∂Qv

)

Qv + ...., (3.22)

here we have neglected the dependence of ε on the molecular rotations. The first term
of the expansion gives rise to an elastic contribution (the frequency of the scattered
radiation is the same as that of the incident one) called Rayleigh scattering. The second
term is associated with the interaction of the electric field with the elastic waves of the
solid and can be written as:

ês
~Es(R, t) ∝

(
∂δε

∂Qv

)

Qvcos(ωvt)Eicos(ωit), (3.23)

ês
~Es(R, t) ∝

(
∂δε

∂Qv

)
QvEi

2
{cos[(ωi + ωv)t] + cos[(ωi − ωv)t]}. (3.24)

The resulting spectrum of the scattered electric field (Es) consist of three lines:
one located at ωi, the Rayleigh line, and the others two at frequencies ωs = ωi ± ωv.
The frequency ωv is related to the speed vs of the elastic wave according the relations:
ωv = vsQ.

These three characteristic lines are present also into the spectrum of the scattered
intensity Is(Q,ω): the Brillouin spectrum. The Is(Q,ω) is the quantity measured in
a light scattering experiment. The theorem of Wiener-Kinchini [80] identify Is(Q,ω)
with the Fourier transform of the autocorrelation function of the electric field:

Is(q, ω) =
1

2π

∫
〈 ~Es(0) ~Es(t)〉eiωtdt =

k4
sE

2
0

32π3ε2R2

∫
〈δε(~q, t)δε∗(~q, 0)〉eiωtdt. (3.25)
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3.5. The Brillouin light scattering technique

Inserting 3.24 into 3.25, it can be shown that Is(q, ω) has three characteristic lines (see
figure 3.9) located at ωi ± ωs and ωi. To conclude, in this paragraph we have shown
that it is possible, by analyzing the spectrum of radiation scattered from a solid, to
have access to the characteristic vibrational frequencies of elastic waves propagating in
the solid. Moreover, from the knowledge of the momentum transfer in the scattering
process we can directly derive the speed of sound of the elastic wave vs.
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Figure 3.9: Example of a BLS spectrum.

3.5.1 The Sandercock interferometer and the experimental
setup

The Brillouin Light Sscattering measurements have been performed in collaboration
with the group of Prof. D. Fioretto in his laboratory at the Department of Physics
of Perugia. The experimental set-up used for the measurements consists of a laser,
a Fabry-Perot interferometer and of optical elements used to focus the light on the
sample and to collect the scattered radiation.

The laser is the commercial Coherent Inova 300 device at Ar+ ions with a maximum
power of 600 mW on a single mode used at a wavelength of 514.5 nm. The laser beam
is focused on the sample by a mirror and a system of lenses that can also be used to
collect the radiation scattered from the sample and send it into the interferometer. The
interferometer has a variable aperture controlled by a pinhole. The solid angle of the
collected scattered radiation, and then the resolution in Q, is defined by a diaphragm
located close to the sample.

In figure 3.10 we show the used experimental set-up with two possible scattering
geometries. Configuration 1 is the 90◦ geometry, where 90 stays for the angle θexp

between the direction of the laser incident on the sample and the direction of the
collected radiation. Configuration 2 corresponds to the geometry where the laser beam
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Chapter 3. Study of a hyperquenched glass

is focused into the sample using the same lens that collects the scattered radiation,
θexp is now 180◦ and the geometry is called backscattering. It is possible to change
configuration just displacing a mirror.

Figure 3.10: Scheme of the apparatus used for the BLS measurements .

The interferometer used for the measurements of BLS is a Sandercock Fabry-Perot
tandem 3+3 device. This analyzer device consists of two Fabry-Perot interferometers.
The scattered radiation is analyzed after three passes through each Fabry-Perot. A
Fabry-Perot interferometer is a resonant cavity defined by two mirrors, the cavity
works as a filter with a characteristic frequency ωc = πc/L where L is the distance
between the mirrors and c the speed of light. In addition to ωc the cavity transmits
also all the frequencies multiple of ωc: ωnc = nπc/L. Through each cavity the radiation
goes three times allowing increasing the filtering power of the device. The two Fabry-
Perot interferometers have a slight difference in L and thus also in the characteristic
frequencies (ωnc = nπc/L, ω′

nc = nπc/L’). The second Fabry-Perot is tuned on the
frequency of the first one changing the relative distance between the mirrors. The
condition that allow transmitting through the two Fabry-Perot is: L−L′ = λ/2(n−n′),
where λ is the wavelength of the laser. The effect resulting from coupling the two filters
(i.e. the tandem effect) is that only one frequency of the first filter is accepted also
by the second cavity and the other resonant frequencies ωnc are extinguished. The
frequency scan is obtained varying the distance between the mirrors of the cavities
with a piezo-electric crystal, thus the transmitted frequency of radiation is modified
without destroying the tandem effect.

The characteristic parameters representative for the performance of the spectrom-
eter are:

• The free spectral range defined as c/(2L) that represents the distance in frequency
between two modes of the interferometer. In the Sandercock model this parameter
can be changed between 3 and 150 GHz by changing L.
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3.5. The Brillouin light scattering technique

Figure 3.11: The 90◦ and the Backscattering (180◦) geometries of the BLS measure-
ments.

• The contrast: the ratio between the maximum and the minimum of the intensity
of the radiation transmitted through the interferometer. Thanks to the three
passages of the radiation in each cavity the contrast reaches the value of 1011.

• The resolution: the width in frequency of a single mode of the interferometer.
This characteristic is determined by the quality of the two cavities, the vibrations
of the system and the size of the pinhole. The resolution in our measurements
was set to ≈ 0.15 GHz.

Finally the radiation transmitted through the interferometer is collected by a pho-
tomultiplier and visualized as a function of the frequency via an acquisition system.

3.5.2 The measured spectra and the speed of sound.

The BLS measurements have been performed using the two different scattering geome-
tries: the 90◦ and the backscattering (θexp = 180◦) geometry. These two geometries
allow us to measure both: the longitudinal and the transverse acoustic modes. In the
backscattering geometry the direction of ~kin and ~kout are parallel, the transverse mode
cannot be detected in this configuration. In the 90◦ degree geometry, the spectra show
both: the longitudinal and the transverse excitations (see figure 3.12).

We collected 6 different spectra, two in the backscattering geometry and four at 90◦.
In the 90◦ geometry, we measured the angle θin between the direction of the incident
laser beam and the vector perpendicular to the surface of the sample n̂ (see figure 3.11).
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Chapter 3. Study of a hyperquenched glass

Table 3.1: Here we report: the scattering geometry, the angle θi, the exchanged wave
vector (Q), the longitudinal (νL) and transverse (νT ) frequencies, and the ratio R =
νL/νT for the hyperquenched (Hq.) and annealed (Ann.) glasses.

Sample Scattering θi Q ωL ωT ωL/ωT

Geometry [nm−1] [GHz] [GHz]

Hq. 90◦ 17.5◦ 0.0318(3) 29.42(3) 17.65(6) 1.67(2)

Hq. 90◦ 12.5◦ 0.0321(3) 29.47(2) 17.65(5) 1.67(2)

Hq. 180◦ — 0.0356(2) 33.07(2) — —

Hq. 180◦ — 0.0356(2) 33.18(2) — —

Ann. 90◦ 17.5◦ 0.0318(3) 30.51(6) 18.14 1.68(2)

Ann. 90◦ 30◦ 0.0313(3) 30.61(4) 18.25 1.68(2)

Ann. 180◦ — 0.0356(2) 34.10(2) — —

The measurement of this angle was possible using the reflection of the laser from the
sample, then we determined the angle between the incident and the reflected beam r̂.
As one can see in figure 3.12, the spectra at 180◦ have a higher intensity in the inelastic
region as compared to the 90◦ geometry. That difference is caused by the efficiency of
the set-up, in the backscattering geometry the same lens is used to focus the laser on
the sample and to collect the scattered radiation.

The spectra are cut close to ω ≈ ωi (ωi is the radial frequency of the incident
radiation) where the intensity starts to increase because of the elastic scattering, the
cut corresponds to the positioning of a filter that reduces the radiation in order to
avoid damages to the detector due to the high intensity of the radiation at ω ≈ ωi.

An accurate measurement of the inelastic features of Fig. 3.12 reveals that the
width of the longitudinal peaks measured in the backscattering geometry is smaller
of that measured at 90◦. This phenomenon is mostly related to the Q distribution of
the collected radiation in the 90◦ scattering geometry 1. In fact, in the 90◦ geometry
the solid angle for the collection of the scattered radiation increases in comparison to
the backscattering geometry: kout varies in an interval and then also Q is not longer
defined as a unique value but it is rather the average value of a distribution. The
final effect is that each spectrum becomes the superposition of several spectra each

1In the 90◦ geometry the image of the scattering volume is not any longer a point, then the
collection optics cannot focus the image in the pin-hole of the spectrometer.
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3.5. The Brillouin light scattering technique

with a different characteristic radial frequency ωs. Then, an additional broadening of
the inelastic features of the spectra ∆ωs, is produced. Assuming a linear relationship
between ωs and momentum Q (ωs = vQ) we obtain ∆ω = v∆Q.

Using a fitting routine we determined the position of each excitation, modeling
the peaks as lorentzian functions. The frequencies of the inelastic excitations have
been determined averaging the values obtained from the position of the inelastic peaks
present on both sides of each spectrum. In table 3.1 we report the measured frequencies
νL and νT . To evaluate the magnitude and direction of Q, we needed to estimate the
refractive index n of the sample. In fact, Q is defined by the incident wavelength of
the laser λ, the scattering geometry (via the angle θ between the incident radiation
and the collected one) and the refractive index: Q = 4nπ/λsin(θ).

Passing through the interface between two homogeneous materials, an electromag-
netic radiation changes wavelength due to the different values of n. The wave vector
inside a material has the value kin = nk0 where k0 = 2π/λ0 (λ0=514.5 nm−1) is the
value of the wave vector in the air and n is the refractive index of the material. More-
over, the refraction index changes not just the modulus of the wave vector kin, but
also its direction because inside the medium the light is refracted to a new angle θr(in).
According the Snell’s law the direction of kin is closer to the normal to the surface of
the sample and similar considerations have to be applied to kout (see figure 3.11). The
value of Q in the 90◦ geometry is defined from the values of n and θin according to
Eq.(3.29).

sin(θr(out))

sin(θ(out))
=

1

n

sin(θr(in))

sin(θ(in))
=

1

n
(3.26)

θin + θout =
π

2
, (3.27)

θ = π − θr(in) − θr(out), (3.28)

Q = 2n|k0|sin(θ). (3.29)

In the backscattering geometry the orientation of the sample relative to the laser
direction does not change the value of Q that is always 2nk0 because now θ = π. In fact,
the same lens is used to focus the incoming laser beam and to collect the scattered
radiation (see figure 3.11). The value of n has been determined by comparing the
longitudinal excitations measured at 90◦ and in back scattering geometry. Recalling
that ωL(90◦) = vLQ(90◦) and ωL(180◦) = vLQ(180◦) we can write (using Eq.(3.28) and
Eq.(3.29)):

ωL(90◦)

ωL(180◦)

= sin

[(

π − arcsin

(
sin(θin)

n

)

− arcsin

(
sin(θout)

n

))

/2

]

. (3.30)
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Figure 3.12: BLS spectra in backscattering and 900−xx0 geometry. The xx indicates the
values of 2θin, L and T identify respectively the longitudinal and transverse excitations.
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3.6. X-ray scattering measurements

Table 3.2: Here we report the density (ρ), refractive index (n), longitudinal (vL) and
transverse (vT ) sound velocity for the hyper-quenched (Hq.) and annealed (Ann.)
glass.

Sample ρ (g cm−3) n vL (m s−1) vT (m s−1)

Hq. 2.404(1) 1.446(2) 5820(20) 3470(20)

Ann. 2.439(5) 1.454(2) 6060(20) 3620(10)

Therefore, using Eq.(3.30) it is possible obtain n from the measurements of ωL(90◦),
ωL(180◦) and θin. Following this procedure we determine the value of n for the hype-
quenched sample.

Because of the small dimensions and the quality of the sample, the refractive index
for the annealed glass has been estimated using the Clausius-Mossotti equation [2]:

n − 1

n + 2
= 4παρ, (3.31)

here α is the polarizability (a parameter related to the chemical composition of the
glass). The slight difference in density (≈ 1.4%) according to Eq. (3.31) does not lead
to significant changes in n (see Table 3.2). From the value of n we determined the values
of the exchanged wave vectors Q and the values of the longitudinal and transverse speed
of sound vL = ωL/Q, vT = ωT /Q. In Table 3.2 we report the measured values of vL

and vT for both samples, the differences can be observed also from the BLS spectra,
see figure 3.13.

Thus we can conclude that the annealed sample has a slightly higher speed of sound
(≈ 4%) for both the longitudinal and the transverse waves modes.

3.6 X-ray scattering measurements

In this paragraph we discuss the x-ray scattering measurements performed to inves-
tigate the effect of the different thermal history on the microscopic structure of our
glasses.

As we have shown in section 2.2, the cross section for the photons scattering process,
with energies in the x-ray range, can be written as:

(
∂2σ

∂Ω∂ωf

)

= r2
0

(
kf

ki

)

(ǫ̂f · ǫ̂i)
2|f(Q)|2S(Q,ω), (3.32)

here ǫ̂f and ǫ̂i are the polarization vectors, ki and kf the wave vectors of the photons
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Figure 3.13: BLS spectra of the annealed and hyperquenched glass collected in the same
90◦ geometry.

before and after the scattering process; r0 is the classical electron radius, f(Q) and
S(Q,ω) are respectively the form factor and the dynamical structure factor of the
system. Here, for simplicity, we give the scattering cross section expression valid for a
monatomic system. Eq.(3.32) is valid in the following hypothesis [81]:

• The energies of the system in the final state (h̄ωf ) and the initial state (h̄ω0) are
comparable ωf/ω0 ≈ 1.

• In the probed system the adiabatic approximation can be applied to separate the
dynamics of electrons from that of nuclei.

Starting from the expression 3.32 it is possible to extract information on the distri-
bution of nuclei and electrons of a solid through f(Q) and S(Q,ω). The intensity of
the scattered radiation by the sample can be written as:

Iexp ∝ |f(Q)|2S(Q,ω) (3.33)

In a system with N different atomic species, we substitute f(Q) and S(Q,ω) with:

∑N
i=1 f2

i (Q)Si(Q, ω). If now we consider the integral value of the dynamic structure
factor:

∫
dωS(Q,ω), we probe instead of S(Q,ω) the static structure factor S(Q). S(Q)

represents the Fourier transform of the correlation function of the density fluctuations of
the system. From the static structure factor we can have information on the microscopic
structure of the system and find what are the typical correlation lengths between the
atoms.
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3.6. X-ray scattering measurements

The Q dependence of S(Q) has some characteristic features that are strictly asso-
ciated with the topological aspect of the probed system. For instance, if we consider
a crystal (i.e. an ordered system) the S(Q) is composed of Bragg peaks (see figure
3.14 [82] bottom part, here the maxima of the density fluctuations appear as delta
functions). The position in Q space of the peaks is related, according to the Bragg
law, to the distance between the crystalline planes.

In an amorphous system, the S(Q) loses the well defined structure typical for a
crystal and the maxima of S(Q) are not sharply defined (see figure 3.14 [82] upper
part). The static structure factor presents pronounced peaks associated with the typical
correlation lengths between the atoms, at higher Q values the S(Q) has an oscillating
structure.

Figure 3.14: X-ray diffraction data for silica glass and its relative crystalline phase:
quartz (from the work of Y. Ding et al. [82]).

3.6.1 X-ray scattering for hyperquenched samples

The x-ray scattering measurements have been performed at the ID27 beamline [83] at
the ESRF. This experimental station is optimized for monochromatic x-ray diffraction
on systems at high pressure and high temperature having a high photon flux and high
capabilities of focusing the beam. In figure 3.15 we report a sketch of the main elements
of the beam line.

The measurements of our samples have been done using an incident beam energy of
33 keV allowing for collecting the scattered radiation over Q values from 5 to 60 nm−1.
The geometrical constraints that have limited the probed Q range are: the minimum
angle of scattering θmin, defined by the finite size of the beam stop, and the size of
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Figure 3.15: Layout of the ID-27 beamline .

Figure 3.16: Image plate detector used for the x-ray measurements at the ID-27 beam-
line.

the sensitive area of the image plate detector (see figure 3.16). The typical beam size
of the sample was about 0.5x0.8 mm2; the samples have been placed on a needle at
1.5 m far from the detector. In order to have the best efficiency on the detection of
the scattered radiation a MAR345 camera has been used. This detector allows for
collecting radiation within a surface with a diameter of 150 mm with spatial resolution
of 150 µm. The typical acquisition time for each measurement was 1-5 s; the read-out
time of the detector was 2 min.

After each measurement of our glasses, the radiation scattered by air has also been
measured in absence of sample. In this way the contribution of the scattering from the
air IA has been measured (see figure 3.17). Such contribution is particularly strong at
low Q values where it can mask the small features of the static structure factor of the
samples. We subtracted IA from the intensity of the scattered radiation Iexp taking
into account the absorption of the sample µ:

Ic = Iexp − IAe−µL. (3.34)
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3.7. Mössbauer measurements

Here L represents the length of the sample. The intensity Ic has been normalized in
order to have for both the sample the same height of the first diffraction peak located
at 17 nm−1. In figure 3.17 we present the scattering intensity for the two samples after
normalization and correction for air scattering.

3.6.2 Results

As we have shown in the previous section, the measurements of x-ray scattering allow
for having access to the microscopic structure of the system through its static structure
factor S(Q). Nevertheless, in a polyatomic system the S(Q) is averaged over different
atomic species weighted by the corresponding square form factor f 2(Q). Thus the
information coming out from x-ray scattering measurement is not sensitive only to a
specific atomic specie. However, this property of x-ray scattering does not represent a
problem for the final task of our study: a qualitative understanding of whether there
is difference between the microscopic structure of the two glasses.

Due to the identical conditions of measurement, for the two samples we have the
identical contributions of other contribution as the Compton scattering. Moreover, the
identical composition of the investigated samples (identical f(Q) in Eq. (3.33)) allows
us to attribute the differences between the scattered radiation I(Q) for the two samples
to the differences in S(Q), and then to the microscopic structure of the samples.

In figure 3.17 we show the x-ray scattering data for both samples: hyperquenched
and annealed. The data have been corrected for the air scattering and normalized
to have the same height at 60 nm−1. From a first glance at figure 3.17 we cannot
recognize any notable difference between the two samples; the two curves follow the
same qualitative behavior in the all measured Q range, while at 21 nm−1 a small
decrease in the intensity of the radiation scattered from the hyperquenched glass can
be recognized. Moreover, figure 3.17 shows a slight Q shift between the two curves, in
particular the first maximum of the annealed sample moves to higher Q values. This
difference is qualitatively consistent with the change in density for the two glasses.
In fact, for higher density the average distance between the atoms decreases, and the
position of the first maximum at 16.6 nm−1 (see figure 3.17) moves to higher Q values.

We can conclude that the different thermal history of the two samples does not
have any significant effect in the range of intermediate length scale corresponding to
the Q range of 5-20 nm−1.

3.7 Mössbauer measurements

Using Mössbauer spectroscopy we investigated the chemical environment of iron atoms
in our samples. Such measurements complete the microscopic characterization of the
samples started with the x-ray scattering measurements because they give information
on the local structure of iron atoms.

According to the results of x-ray scattering measurements discussed in the previous
paragraph, the different thermal history of the two samples does not have a significant
effect on the microscopic structure of the glass. However, those results do not exclude
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Figure 3.17: Intensity of the scattered radiation from the hyperquenched (red line)
and annealed glass (black line). In the upper panel we show the raw data with the
contribution to the scattering from the air (green line). In the bottom panel we show
the data corrected for the contribution of air scattering.
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3.7. Mössbauer measurements

Figure 3.18: Scheme of the experimental set-up of a Mössbauer measurements.

completely a slight change of the local structure of the system. The intensity of the
scattered radiation is proportional to the static structure factor S(Q) averaged over
all atomic species by the corresponding form factor: f(Q)2. Thus a rearrangement of
the atomic species with a low number of electrons can be masked by the unchanged
structure of heavier atoms.

In order to have a clearer pictures of the local structure of the glasses, we probe
our samples by Mössbauer spectroscopy. As we have discussed in paragraph 2.1.2 such
technique is chemically selective, allowing the extraction of quantitative information on
the distribution of charges around iron atoms. We performed Mössbauer measurements
on both samples (annealed and hyperquenched) using a ”classical” experimental set-up
(sketched in figure 3.18). The measurements have been performed at the ESRF using a
transmission geometry. γ rays emitted by the 57Co(Rh) source, that moves with a con-
stant acceleration, go through the sample. When the energies of γ rays matches that of
the nuclear levels of iron atoms the probability that the photons are absorbed strongly
increases. Detecting the γ rays that pass through the sample we obtain the Mössbauer
spectra that correspond to the energy distribution of the absorption cross section of
the glass. In figure 3.19 we report the measured spectra. Before the measurement we
calibrate the energy scale of the spectrometer by measuring a reference sample of α-iron
foil. This sample has a Mössbauer spectrum consisting of 6 characteristic absorption
lines allowing calibrating precisely the energy scale of the spectrometer.

Each sample has been measured for 48 hours. The spectra consists of the superpo-
sition of two doublets. These two doublets correspond to two different valence states of
iron atoms: Fe+3 and Fe+2. In order to extract quantitative information on the gradi-
ent and magnitude of the electric field acting on the iron atoms we estimate the value
of the hyperfine parameters: quadrupole splitting, ∆, and isomer shift, δ (see section
2.1.2). Each spectrum has been compared to the following model function IM [41]:

IM = B + Ce−(A1Q1+A2Q2), (3.35)
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Figure 3.19: Mössbauer spectra for the hyperquenched (upper panel) and annealed (down
panel), the continuous red lines represent the results of the fit.
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3.7. Mössbauer measurements

Table 3.3: The hyperfine parameters: isomer shift (relative to α-iron) and quadrupole
splitting ∆ are reported for each sample (Hq. indicates the hyperquenched and Ann.
the annealed sample). ”Fe state” indicates the state of oxidation of Fe atoms according
to the values of the hyperfine parameters. R is the relative weight of the particular
excitation state.

Sample Fe state δ (mm/s) ∆ (mm/s) R %

Hq. 3+ 0.24(9) 0.84(7) 81
Hq. 2+ 0.91(1) 2.13(3) 19
Ann. 3+ 0.26(8) 0.82(5) 80
Ann. 2+ 0.94(4) 2.10(0) 20

Q1 =
1

2

(Γ1/2)2

((x − δ1 − ∆1/2)2 + (Γ1/2)2)
+

1

2

(Γ1/2)2

((x − δ1 + ∆1/2)2 + (Γ1/2)2)
,

Q2 =
1

2

(Γ2/2)2

((x − δ2 − ∆2/2)2 + (Γ2/2)2)
+

1

2

(Γ2/2)2

((x − δ2 + ∆2/2)2 + (Γ2/2)2)
.

Here δi and ∆i are respectively the chemical shift and the quadrupole splitting,
B and C are constants. The parameter Γi has been introduced to take into account
the broadening of the Mössbauer lines due to the typical distribution of the local
environments in glasses [103]. The values of Ai give a measure of the intensity of the
Mössbauer lines.

Using a fitting routine we compared the model 3.35 with the experimental data,
obtaining the values of Ai, Γi, ∆i, δi that describe the line-shape of each Mössbauer
spectrum (see table 3.3). The values of δi reported in table 3.3 are given relative to
the α-iron absorber. These values have been obtained adding to the measured isomer
shift 0.11 mm/s (i.e. the value of δ of the 57Co(Rh) relative to the α-iron).

From the value of Ai we also estimated the relative weight of the particular excita-
tion state Ri = AiΓi/(A1Γ1 + A2Γ2). This quantity determines the prevalent valence
state of iron atoms in the glass. For both samples it has been found that 80% of iron
atoms is Fe+3 and 20% Fe+2.

The presence in the literature of a study of iron sodium silicates based on Mössbauer
and neutron diffraction measurements [84] [85] allows us to use the values of δ to
establish the coordination state of the iron atoms. The tetrahedral coordination states
for Fe+3 and Fe+2 state has been found to correspond to values of δ in the range of
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Figure 3.20: Scheme of the geometry of NIS measurements.

0.20-0.32 and 0.90-0.95 mm s−1, respectively. Thus the measured values of δi 0.24-0.26
for Fe+3 and 0.91-0.94 for Fe+2 indicate that in our samples most of iron atoms are in
the tetrahedral coordination state, the same as silicon atoms. This result suggest that
most of iron substitutes for silicon in the glass network.

Both hyperfine parameters (∆ and δ) have been found identical (within the error
bars) for the annealed and the hyperquenched glass. Thus the different thermal history
and consequently the different Tf of the samples did not produce notable effects on the
local environment of the Fe atoms in the glass.

3.8 Nuclear inelastic scattering measurements

In order to probe the effect of the thermal history of our glass on its density of vi-
brational state (DOS) we performed nuclear inelastic scattering measurements (NIS).
The measurements have been performed at the Nuclear Resonance beam line ID18 of
the ESRF. We used as hyperquenched material two independent prepared samples:
fibers (collected together in a small kapton pocket) and thin plates. All samples have
been positioned with an angle below ∼ 10◦ between the surface of the sample and the
beam direction. This choice has been motivated by the need to increase the number of
photons produced in the nuclear deexcitation that are transmitted through the sample
to the detector placed below the sample (see figure 3.20).

The samples have been mounted directly on an avalanche photo diode (APD) de-
tector that collects the secondary products of nuclear deexcitation: Fe-Kα fluorescence
radiation. A second APD detector has been placed in the forward direction to measure
the instrumental function of the spectrometer (see figure 3.20). In order to have a high
energy resolution we used a monochromator with an energy band pass of 0.5 meV.

3.8.1 Energy dependence of NIS

The measurements of the NIS energy dependence have been carried out scanning the
incident energy from -120 to +120 meV in steps of 0.2 meV. For each step, the integra-
tion time used to collect the secondary products of nuclear deexcitation has been either
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5 or 10 s. Thus the typically acquisition time for an entire energy scan was about 1
hour. Several successive scans were added to obtain the raw spectra shown in figure
3.21.

To check the reproducibility of our measurements we performed the NIS measure-
ments for two independently prepared samples for both the annealed and the hyper-
quenched glass. In order to compare directly the raw spectra they have been normalized
to their first moment < E1 >I . The intensity of the experimental spectrum I(E) is
related to the probability of the nuclear absorption of a photon S(E) through the con-
volution with the instrumental function of the monochromator P (E), see Eq. (3.36).
It can be shown [86] that the first moment of the scattering probability < E1 >S is
equal to the recoil energy of a free 57Fe nucleus: ER=1.956 meV.

I(E) = I0

∫
P (E ′)S(E − E ′) dE ′, (3.36)

< E1 >I=
∫

dEI(E)E =< E0 >I< E1 >P +I0ER, (3.37)

here < E0 >I is the zero moment of the spectrum, < E1 >P the first moment of the
resolution function and I0 a scaling factor, then combining < E1 >I , < E1 >P and
< E0 >I we obtain:

I0 =
(< E1 >I − < E0 >I< E1 >P )

ER

, (3.38)

and if

< E1 >P = 0, (3.39)

I0 =< E1 >I /ER. (3.40)

Passing from Eq. (3.38) to Eq. (3.40) we have exploited the symmetry of the instru-
mental function (< E1 >P = 0). In order to proceed with a comparison between the
collected raw spectra we took into account the different values of I0 multiplying each
set of data by ER < E1 >IM / < E1 >I , where < E1 >IM is the value of the first
moment averaged for all spectra. Figure 3.21 shows that the measurements of both
glasses (hyperquenched and annealed) are completely reproducible. The intensity of
the experimental spectra of the two samples superimposes on each other. The samples
are prepared independently with the same procedure.

Moreover, the NIS data reported in figure 3.21 show a clear difference between the
hyperquenched and the annealed glass. At 5 meV, the NIS spectrum of the hyper-
quenched sample shows an increase of intensity of ≈ 16% compared to the value of the
annealed one. The effect cannot be explained by an unlikely normalization error be-
cause the effect stays even if the spectra are superimposed on the tails. The difference
between the intensity of the NIS spectra of the annealed and hyperquenched samples
decreases increasing the energy, at 15 meV the data have already the same value.

Inspecting the NIS data of figure 3.21, the spectra are asymmetric with respect to
the zero energy position; the peak at 5 meV is more intense compared to that at -5
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Figure 3.21: Energy dependence of nuclear inelastic scattering. The circles and trian-
gles show the data for two independently prepared samples. The red color indicate the
hyperquenched sample, the black color the annealed sample, and the dashed line is the
resolution function.
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meV. Such difference is caused by the processes of creation and annihilation of phonons.
In fact, the ratio between the intensities of the positive and negative energy region of
the spectra is equal to:

I(E)

I(−E)
= eE/kBT , (3.41)

where e(+E/(kBT ) is the ratio of the probability to create and annihilate phonons. In
equation 3.41 T is the temperature and kB is the Boltzmann constant.

3.8.2 Density of vibrational States and reduced DOS

From the NIS data showed in figure 3.21 we extracted the DOS using a procedure
based on a double Fourier transformation (see section 2.1.3). We first subtracted the
elastic scattering contribution from the energy dependence of the NIS data, this has
been obtained writing the measured intensity I(E) close to the energy region where
E ≃ 0 as:

I(E) = In(E) + ζP (E) (3.42)

here ζP (E) is the elastic contribution, P (E) is the instrumental function and In(E) is
the intensity of the radiation inelastically scattered. Then, once calculated ζ, from the
knowledge of P (E) it is possible to reconstruct In(E) from I(E). A raw approximation
of In(E) at E ≈ 0 can be obtained by neglecting the contribution of the elastic peak.
This first approximation of In(E), that we indicate by I∗

n(E), can be obtained by
cutting the spectrum of the elastic peak and replacing it by a straight line. Now the
value of ζ can be determined minimizing the difference between In(E) = I(E)−ζP (E)
and the value of I∗

n(E). Once subtracted from the spectra the elastic contribution, is
possible to evaluate the Lamb-Mössbauer factor starting from the zero moment of the
spectrum, according Eq. (3.36) we can write:

< E0 >In=
∫

dEIn(E) = I0(1 − fLM). (3.43)

The values of I0 and fLM (calculated by Eq. (3.43) and Eq. (3.40)) allows us
to perform a Fourier transformation procedure able to isolate the one phonon term
contribution S1(E) from the probability of nuclear absorption (see section 2.1.3). S(E)
in fact is the sum of different contributions (S(E) =

∑
i Si(E) ) that correspond to the

processes in which n phonons can be created or annihilated. From S1(E) it is possible
obtain the Fe partial DOS g(E) of the system (see section 2.1.3):

g(E) = S1(E)
E

ER

(
1 − e−βE

)
. (3.44)

From the measured g(E) we can derive different quantities (for instance the fLM)
that can be also estimated from the spectral moments of I(E) [46]. The comparison
between the two values of the same quantity calculated with the two independent
procedures allow us to check the reliability of the measured g(E).
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Figure 3.22 shows the measured DOS for the hyperquenched and the annealed
sample. The two DOS have a higher statistical quality up to 20 meV, due to the
chosen longer acquisition time for this energy range. Looking at the entire measured
energy range (figure 3.22) we cannot recognize any significant difference between the
two samples; the DOS has the same qualitative behavior for both glasses. Inspecting
the measured DOS we observe up to 20 meV the typical monotonic increase of DOS
due to the acoustic excitations of the glass (see section 1.6.1). Moreover, a pronounced
inelastic feature located between 60 and 70 meV, is evident.
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Figure 3.22: The left panel shows the DOS, the right panel the RDOS. The full red
circles represent the hyperquenched glass, the open circles the annealed one. The two
arrows on the left panel indicate the zero energy limit of the RDOS estimated by the
Debye model.

In order to investigate the behavior of the DOS at low energy we plot the reduced
density of states g(E)/E2. This quantity in fact allows us to make a direct comparison
in the low energy region between the data and the behavior predicted by the Debye
model. The right panel of that figure shows a large excess of the density of vibrational
states over the level defined by the Debye approximation, thus both samples show the
BP. The energy position of the BP in our glasses is consistent with the value found in
others silicate glasses (∼ 5 meV) [75]. The maximum of the RDOS is ∼ 19% higher in
the hyperquenched sample compared to that of the annealed one. Moreover, the figure
also reveals a slight difference in the energy position of the maximum.

Fitting the energy dependence of the RDOS, for both samples, at energies higher
than the BP, we observe that g(E)/E2 has, up to energies of 30 meV, an exponential
decay: g(E)/E2 ∼ exp(−E/E0). As it has been observed as well in others systems
[87], increasing the Debye energy of the glass (ED=28.9 and 30.3 meV, respectively for

104



3.8. Nuclear inelastic scattering measurements

the hyperquenched and the annealed glass, see next section) the characteristic energy
E0 increases (E0 = 7 and 7.4 meV, respectively in the hyperquenched and the annealed
glass).

Starting from the measured DOS we evaluated the difference in vibrational energy
per iron atom between the hyperquenched and the annealed glass ∆U = UHq. − Uann,
where U is determined using the following relation [88]:

U =
3

2

∫ Emax

Emin

dEg(E)E
eβE + 1

eβE − 1
. (3.45)

Integrating the measured density of state in the energy range from Emin=2 to Emax=20
meV, U has been found equal to 2.0 meV per iron atom, which would correspond to
0.8 meV per atom in average, assuming the same shape of the DOS for all atom species
within the considered energy range.

Our NIS measurements reveal that there is a clear difference between the DOS of
the hyperquenched and annealed glass. Such difference is evident in the RDOS where
it appears as an increase in intensity of the peak at ≈ 5 meV.

3.8.3 RDOS in reduced scales

To evaluate the influence of the modification of the macroscopic properties of the glass
to the low energy region of the DOS, we compared the zero energy limits of the RDOS
estimated by the NIS measurements, with the corresponding values predicted by the
Debye model:

lim
E→0

g(E)

E2
≡ mr

< m >

3

E3
D

, (3.46)

Here we have introduced the factor mr

<m>
because we consider the partial DOS of

iron atoms [89], mr is the mass of the iron atom and < m > is the average atomic mass
of the glass. The value of the Debye energy has been calculated from the measured
values of density and speed of sound according to the relation:

ED = (6π2h̄3n〈v〉3) 1
3 , (3.47)

1

〈v〉3 =
1

3

(
1

v3
L

+
2

v3
T

)

, (3.48)

here n is the number of atoms per unit volume, vL, and vT are the longitudinal and
transverse speed of sound. The values of the Debye energies that we obtain from Eq.
(3.47) for the annealed and the hyperquenched sample are respectively: 30.3± 0.3 and
28.9 ± 0.3 meV. The corresponding zero energy limit of the RDOSs are shown in the
right panel of figure 3.22 as the two arrows at E = 0. According to the definition of
the BP: the excess of vibrational modes over the Debye level (see section 1.6.2), we
have to consider these arrows as reference levels to evaluate the height of the BP.

Figure 3.22 shows that the increase of low energy modes in the hyperquenched glass
does not correspond to an increase of the height of the BP with respect to the annealed
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Figure 3.23: Reduced density of state rescaled in Debye energy units, the red and open
circles show respectively the data for the hyperquenched and the annealed glass, the
arrow indicate the zero energy limit estimated by the Debye model.

sample, in fact also the relative Debye level increases. This observation suggests that
the differences in RDOS between the two samples can be attributed simply to the
different continuum properties of the glass. Plotting the RDOS in dimensionless units
E ′ = E/ED we remove from the RDOS the effect induced by the transformation of the
macroscopic properties of the glass.

Figure 3.23 shows that in the reduced energy units E ′ the reduced densities of states
of the two samples become almost identical. The slight residual difference is comparable
to the uncertainty in 3/E3

D and therefore is not significant. Thus, the observed effect of
quenching on the density of vibrational states is described entirely by the changes in the
macroscopic properties of the glass. In particular this implies that quenching does not
affect the height of the BP. The increase of RDOS is compensated by a corresponding
increase of the Debye energy and also the position of the BP scales according to the ED

of the glass. The effect of quenching is described by the transformation of a continuum
medium.

3.9 Conclusions

The main result of our study is the insensitivity of the BP to the change of fictive
temperature of the glass. The different thermal histories of the glass have the effect of
transforming its macroscopic properties and then consistently the DOS.

Such results have been obtained combining the measurements of the DOS with
those of density and sound velocity in a hyperquenched and an annealed glass (glasses
with different Tf ). The measured DOS shows a higher level of low-energy vibrational
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states for the hyperquenched glass with respect to the annealed one; the difference
vanishes after correction for the corresponding Debye energy of the sample.

The measurements of Mössbauer spectra and x-ray diffraction reveal that the differ-
ent thermal history of the two samples does not have notable effects on the structure of
the glass in the intermediate and short length scale range. The changes in DOS between
the glasses with different Tf can be associated completely with the transformation of
the macroscopic properties of the glass. The increase of the DOS of the hyperqunched
glass in the region of the BP is compensated by a lower density and speed of sound
that decreases the Debye energy (ED) of the glass. The energy position of the BP
(EBP ) scales with ED. Moreover, the Debye energy of these two glasses correlates with
the shape of the RDOS g(E)/E2, which exhibits a characteristic exponential decay:
g(E)/E2 ∼ exp(−E/E0) that is also observed for other systems where the parameter
E0 scales with the Debye energy [90].

This study leads us to reconsider the theoretical arguments that associate the pres-
ence of the BP to the peculiar energy landscape of the system and then to the different
Tf . We observed that in two glasses, with a significant difference in Tf , the height
of the BP is the same and the differences in the DOS are related to changes in the
continuum properties of the glass. Conversely, theory predicts [69, 70] that varying,
through Tf , the potential energy of the system (H), the BP moves in energy (EBP )

and changes in height (IBP ) according to the relation: IBP ∝ 1/E
1/2
BP (EBP ∝ ∆c and

IBP = g(EBP )/E2
BP ∝ ∆−1/2

c where ∆c ∝ ∆H). Moreover, the lack of this effect, in
the samples that we have investigated, cannot be associated with the fact that the
theory has neglected the effect on Tf of the macroscopic properties of the glass. We
found experimentally that the height of the maximum of the RDOS (I∗

BP ) and its en-
ergy position (E∗

BP ) are correlated differently from what is claimed in theoretical work:
I∗
BP ∝ 1/E3∗

BP (I∗
BP = g(EBP )/E2

BP ∝ E−3
D and E∗

BP ∝ ED). A possible explanation
for this inconsistency between theory and experiment could be the magnitude of the
effect of Tf on the BP. Theory, in fact, points out that this effect is active if the sys-
tem samples, varying Tf , different energy landscapes. Unfortunately experimentally
a relationship between the value of Tf of a glass and its energy landscape cannot be
established. However, using annealed and hyperquenched glasses we could relevantly
change Tf (∆Tf/Tg=20%) around Tg (Tf (Ann.)=770 K< Tg and Tf (Hq.)=929 K > Tg

where Tg=781 K). According to theory, Tg represents the reference temperature for
the system, where it would undergo a transition between an energy landscape char-
acterized by instability configurations of the system (Tf > Tg), where the BP clearly
appears, and a region of stability (Tf < Tg), where the BP progressively decreases.
Nevertheless, we observed that while the main effect of varying Tf around Tg is to alter
the macroscopic properties of the system, there is no significant effect on the BP of the
glass.
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Résumé du chapitre 4

Dans ce chapitre, on concentre sur l’étude de la dépendance par la pres-
sion et par la densité de la DOS d’un verre, on analysera en particulier
la région à basse énergie de la DOS ou est présent le BP. Dans le pre-
mier paragraphe, on introduit la thématique scientifique en tant qu’objet
de ce chapitre en éclaircissant: soit la pression, soit la densité, pourront
tre utilisés comme paramètres pour étude du BP. Il est présenté le verre
objet de nos mesures Na2FeSi3O8 sous pression et densifié. Le procès
de densification est obtenu en appliquant au système original de la pres-
sion à haute température. On illustre les résultats de notre mesure de
NIS sur le verre sous pression, dans ce cas le verre montre une forte
dépendance de la DOS à basse énergie de la pression. Pour approfondir
les mécanismes qui contrlent ce phénomène, on analyse les systèmes den-
sifies. On présentera les résultats des mesures de diffusion de rayons X,
Mössbauer et BLS, dédiée à caractériser le processus de la densification.
Ce processus semble procéder en deux temps, dans un premier temps, il
y a un réarrangement de la structure locale du système sans variation
de sa vitesse du son ou de la densité. Dans un seconde temps le système
augmente sa densité et vitesse du son mais sa structure reste inchangée.
Après la caractérisation des échantillons, on illustrera les résultats qui
sont obtenus par des mesures NIS. La DOS du système change forte-
ment en augmentant la densification avec une diminution de l’intensité
du maximum de la RDOS. Pour chaque échantillon on a procédé à cal-
culer la relative énergie de Debye et à obtenir la RDOS en unités de
Debye. Cette procédure nous a permis d’évaluer l’effet du changement
des propriétés macroscopiques du système sur la DOS et on à observé
l’effet du processus de la densification sur le BP. En conclusion, cette
étude révèle que la présence du BP dans les verres dépend fortement de
la structure locale du verre.
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Chapter 4

Study of a densified glass

4.1 Scientific background

In this chapter we present a study of the effect of pressure and densification on the
density of vibrational states DOS of a glass. In particular, we focus our efforts on
the investigation of the characteristic excess of low energy modes: the Boson Peak
(BP). With an extensive characterization of our samples we evaluate the influence of
the changes of the microscopic structure and of the continuum properties of a glass on
the DOS. The nature of the mechanisms that control the changes of the BP caused by
pressure and densification are discussed.

As we have already showed in section 1.6.2, in glasses the DOS has an excess of
states over the value predicted by the Debye model at low energy. This excess of
vibrational states is named Boson Peak; because of its universality and lack of full
understanding, since many years the Boson Peak is matter of debate in the scientific
community. Various experimental works have shown that in the meV energy region
the vibrational density of states as well as the BP are strongly influenced by pressure
[91, 92, 93, 94]. In particular, increasing the pressure applied to a glass, the BP
decreases in intensity and moves to higher energies. For this reason many studies used
pressure as a tool to study the nature of the low energy vibrations responsible for the
BP. Nevertheless, these studies did not end up with conclusive statements on the origin
of the BP supporting different and sometimes not compatibles models. According to
these experimental observations the presence of the BP in glasses has been attributed
to: i) a strong anharmonicity of the glass [92] ii) the presence of relaxations modes
[93] iii) the existence of localized vibrations in the material [95, 96, 97].

The studies of glasses under pressure in the recent past have been complemented
by those on densified systems [95, 96, 97, 98, 99]. These materials are obtained with
a process of compression of the glass at high temperature: the ”densification” process.
Once released to ambient condition the samples have a higher density compared to the
original glass. Using densified materials it is often simpler to investigate the BP, these
samples in fact allow performing in situ measurements. The effect of densification on
the DOS is similar to that observed in glasses under pressure, increasing densification
the BP decreases and moves to higher energies. Nevertheless, different interpretations
of the nature of the BP as well as of the effect of densification on the BP have been
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reported. In particular, the suppression of the modes induced by the voids present in
the glass and the non-reversible change of the structure of the system [96, 99] have been
identified as the main mechanisms responsible for the decrease of the BP in densified
glasses.

These conclusions contrast with those arising from the studies of glasses under pres-
sure. Despite the universal behavior of the BP as function of pressure and densification
a unique common explanation is still lacking. Moreover, in the studies present in liter-
ature a precise evaluation of the intensity of the BP is missing due to the difficulties to
have access to the macroscopic properties of the samples. According to the definition
of the BP (see section 1.6.2) the value of the Debye energy is required to correctly
estimate the effect of pressure and densification on the BP. The changes of density
and speed of sound, induced by pressure or densification, lead the system to transform
its continuum properties and as a consequence the Debye energy of the glass. Heat
capacities measurements in glasses under pressure [91, 92] suggest that the change in
energy and in intensity of the BP can be described by an increase of the Debye energy
of the glass.

In our study we measured the DOS in densified samples as well as in a glass under
pressure. Using various techniques we investigated the transformation of the DOS and
of the continuum properties of a densified glass. The results obtained with the densified
samples allow us to clearly address the responsibility for the change of the BP to a
change in the local structure of the glass. We observe that whenever there is no change
of the local structure of the sample the effect of densification on the Debye energy of
a glass can completely describe the changes of the DOS at low energies.

4.2 The Na2FeSi3O8 glass

In order to investigate the effect of pressure and densification in the DOS of glasses
we focused our experimental efforts on the study of the Na2FeSi3O8 glass. The choice
of this glass has been supported by the need to have a system representative of a
large class of glasses as silicates. Moreover, we were looking for a glass able to embed
iron atoms in its structural network in order to extract from Mössbauer measurements
information representative of the dynamics of the entire glass. The Na2FeSi3O8 belongs
to the class of sodium silicate glasses, these systems have a big relevance in earth science
being responsible for many processes of geological interest being the main component
of magmas.

The original glass used in our studies has been prepared by the Prof. A. Meyer
and F. Kargl at the Technical University of Munich. The Na2FeSi3O8 glass has been
obtained from a mixture of Na2CO3, Fe2O3 and SiO2 oxides powders. The material
was melted in an Au/Pt crucible for several hours at 1400◦ C allowing to evaporate the
CO2 and oxygen. In order to get the melt homogeneous and bubble free it was stirred
with a Pt spindle. Finally the glass has been obtained by cooling the sample inside the
Pt-crucible, from 1400◦C down to room temperature.

Differential scanning calorimetry allowed determination of glass transition temper-
ature of the material Tg = 744 K that is almost identical to that of a pure sodium
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Figure 4.1: Large volume ”Paris-Edinburgh” press used for the densification of
Na2FeSi3O8 glass.

silicate glass Na2Si3O7 (Tg = 737 K) [75]. The iron atoms present in the glass have
been observed (by Mössbauer spectroscopy) to substitute for silicon in the network
structure.

The original glass has been used to prepare densified samples. Silicate glasses in
fact can experience a densification process; after compressing the systems at high tem-
perature, once that the glass is released to ambient condition its density is higher
than that of the original glass. The densified samples have been prepared in the high
pressure laboratory of ID27 at the ESRF in collaboration with Dr. W. Crichton. To
obtain samples with different densities we compressed the Na2FeSi3O8 glass at different
pressures, in a Paris-Edinburgh large volume press (see figure 4.1) for 10 minutes at
673 K. The glass has been densified starting from a lump reduced in cylindrical shape
to fill the gasket of the press. We prepared according to this procedure four densified
samples obtained from a compression of the original glass to 1, 2, 3 and 7 GPa. Further
characterization of the density and structure of the samples reveal the efficiency of the
used protocol for densification. In figure 4.2 we show the samples in their final aspect.
In the next sections we refer to the samples using the pressure at which they have been
prepared, 0 GPa indicates the non-densified glass.

111



Chapter 4. Study of a densified glass

Figure 4.2: Picture of the densified samples, the labels indicate the pressure at which
the glass has been pressurized.

4.3 Na2FeSi3O8 under pressure

We start the study of the Na2FeSi3O8 glass investigating the effect of pressure on the
density of vibrational state of this glass.

In particular we were interested to probe how the vibrational modes in the low
energy part of the DOS are modified by the increase of pressure, what is the influence
of pressure on the Boson Peak and whether pressure modifies the DOS of the glass
differently in different energy regions.

This study has been performed in collaboration with the group of Prof. G. Wort-
mann of the University of Paderborn, in particular H. Giefers and U. Ponkratz helped
to load the sample in a high pressure cell and to measure the values of pressure.

4.3.1 Na2FeSi3O8 in a diamond anvil cell

In order to perform Nuclear Inelastic Scattering measurements on a glass under pressure
we used a diamond anvil cell (DAC). This device allows applying pressures exceeding
the Mbar.

The cell is essentially made out of a guided piston and a cylinder, which are able
to slide one into the other, and of two diamonds mounted with opposed tips that
press a Be metallic thin sheet (gasket) of 100 µm thickness. The sample, a powder
of Na2FeSi3O8, has been placed inside a hole (the diameter of the hole drilled in the
gasket was 150 µm) with ethanol used as transmitting medium to ensure hydrostatic
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compression. The thickness of the samples is essentially determined by that of the
gasket (150 µ m) (see figure 4.3). The relatively small pressure applied mechanically to
the piston by a set of screws mounted on the body of the cell allows generating on the
sample a much higher pressure (Psample > 103Pcell). The capability to generate pressure
in the GPa range arises from the hardness of the diamond and from the possibility to
cut the stones with a surface ratio between the upper face and the culet of ≈ 103. To
measure the pressure applied to the sample, a ruby (α−Al2O3 : Cr+3) of few microns
of diameter has been placed in the hole of the gasket. Measuring with a spectrometer
the frequency of the ruby luminescence line it was possible to determine the pressure
applied to the sample [100]. Using the DAC we applied on the Na2FeSi3O8 glass three
values of pressure 2.8, 5.6, and 11 GPa.

Figure 4.3: Scheme of a diamond anvil cell (DAC).

4.3.2 Nuclear inelastic scattering measurements

The Nuclear Inelastic Scattering measurements have been performed at the ID18 beam-
line at the ESRF. The DAC was placed with the axis aligned on the path of the incident
x-ray beam allowing the synchrotron radiation to reach the sample through the two
anvils (see figure 4.4). An APD detector close to the cell was used to collect the Fe-
Kα fluorescent radiation transmitted through the beryllium gasket. A second APD
detector was located in front of the DAC at approximately 2 m. This detector has
been used to measure the instrumental function of the spectrometer.

The energy resolution of the spectrometer was 0.5 meV, allowing resolving the
inelastic features of the glass also in the BP energy region. Each energy scan has been
performed from -70 to +100 meV. We increased, at low energy, the time for collecting
the fluorescent radiation in order to have a higher statistics for the spectra. The average
acquisition time for each scanned energy point varies from 80 to 130 s. Between 15 and
30 scans were added in order to increase the statistics. The NIS measurements have
been done for increasing values of pressure from ambient condition (0 GPa) up to 11
GPa, in figure 4.5 we show the collected NIS data at all pressures.
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Figure 4.4: Geometry used for the NIS measurements performed on the sample under
pressure.
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Figure 4.5: Energy dependence of NIS for Na2FeSi3O8 under pressure, the legend shows
the different values of pressure, the dotted line is the instrumental function of the
spectrometer.
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The energy dependencies present a characteristic peak between 5 and 10 meV, this
maximum is the signature of the BP in the DOS of the glass, as we have already dis-
cussed in section 3.8.1. The effect of pressure in the low energy region of the spectrum
is clearly visible; increasing the applied pressure the maximum decreases in intensity
and moves to higher energies.

4.3.3 Effect of pressure on the density of vibrational states

In order to extract from the energy dependence of NIS the density of vibrational state
we follow the same procedure discussed in the section 3.8.2. In figures 4.6 and 4.7 we
report respectively the value of the DOS and RDOS . The reduced density of states
has been plotted to emphasize the presence in the glass of the BP (located at 5÷10
meV) and the effect of pressure in the low energy region of the DOS relative to the
E2 behavior predicted by the Debye model. From figure 4.7 we observe that at higher
values of pressure a smaller height of the peak in the RDOS can be observed, its
intensity reduces up to ≈ 60 % while its position moves toward higher energies by ≈
25 %. However, the effect of pressure on the RDOS is less pronounced at higher energy.
All curves corresponding to different pressures merge at 15 meV, beyond this energy
it is not possible to distinguish between the RDOS associated to different pressures.

Nevertheless, only from the measurements of NIS we cannot infer about the reason
of such behavior, neither we have a quantitative estimation of the effect of pressure on
the BP. The magnitude of the BP is defined with respect to the zero energy limit of
the RDOS as predicted by the Debye model (see section 1.6.2). We do not have any
information on the transformation of the macroscopic and microscopic properties of the
glass induced by the changes of pressure. Unfortunately, obtaining such information
for a sample loaded in a DAC is not an easy task because of the small dimensions of
the samples and of the difficulties arising from the in situ measurements.

4.4 Study of densified Na2FeSi3O8

In order to perform a more extensive study on the effect of pressure and density on the
low energy region of the DOS of Na2FeSi3O8, we decided to densify the glass. Applying
to Na2FeSi3O8 pressure at high temperature (T=0.9Tg) (see section 4.2), once released
to ambient condition the glass has a higher density. These samples, called densified
glasses allow probing the effect of density on the DOS without any constraint associated
with the presence of a DAC.

4.5 Density measurements

The method and the instrument used to determine the density (ρ) of our samples are
the same used for the hyperquenched glasses and have been already discussed in section
3.4.

Because of the small dimensions of the densified samples the error in the density ∆ρ
has been found larger than we hoped. In fact, as explained in section 3.4 ∆ρ is inversely
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Figure 4.6: Density of vibrational states (DOS) of Na2FeSi3O8 glass under pressure,
the inset shows the low energy part of the DOS.
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Figure 4.7: Reduced density of vibrational states (RDOS) of the Na2FeSi3O8 glass under
pressure.

116



4.6. Microscopic characterization of samples

0 1 2 3 4 5 6 7 8
2.6

2.7

2.8

2.9

3.0

 (g
/c

m
3 )

 

 

Pressure of densification (GPa)

Sample ρ (g cm−3)

0 GPa 2.714(3)
1 GPa 2.72(2)
2 GPa 2.87(2)
3 GPa 2.88(4)
7 GPa 2.87(6)

Figure 4.8: Density of the original (0 GPa) and densified (1-7 GPa) Na2FeSi3O8

glasses.

proportional to the volume of the sample. In order to reduce ∆ρ we exploited the high
accuracy of the used experimental method, repeating the measurements for each sample
10 times, and considering the variance and the mean value of these measurements we
obtain ∆ρ/ρ in the range of 0.001 ÷ 0.03.

In figure 4.8 we show the results of the density measurements of our sample. From
a first glance we can conclude that the effect of densification on the density does not
proceeds linearly and saturates above 3 GPa. In an initial stage the compression does
not alter significantly the density of the glass: the samples 0 and 1 GPa present only
a small difference in density. Above 1 GPa, the increase of pressure is followed by an
important increase of the density, the 3 GPa sample have a density 6% higher than the
initial glass. Above 3 GPa the densification does not change the density significantly.

4.6 Microscopic characterization of samples

In this section we discuss the microscopic characterization of the densification process
for the Na2FeSi3O7 glass. We present the results of x-ray scattering and Mössbauer
measurements showing how the densification modifies the middle range as well as the
local structure of the glass. The technical details and the principles on these two
techniques are discussed elsewhere (see sections 3.5 and 2.1.2).

The x-ray scattering measurements on the densified samples have been performed
with a double aim i) to check, during the preparation of the sample, the efficiency of the
protocol used for the densification; ii) to study the relation between the changes of the
microscopic structure of the glass and the transformation of its vibrational properties.
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The increase of pressure during the densification process do not correspond necessarily
to an increase of the density of the sample; in order then to check if the densification
process takes place we need to look at the microscopic structure of the glass.

The characterization of the samples performed by Mössbauer spectroscopy allows
us to get a picture of the local structure of the glass. These measurements were re-
quired because the changes of the microscopic structure of the glass associated with a
rearrangement of the environment of iron atoms cannot be easily distinguished in x-ray
scattering data. These data are the result of a process involving all atomic species of
the system and then the contribution of Fe atoms cannot be clearly distinguished. In
contrast Mössbauer spectroscopy is sensitive to the chemical environment of the Fe
atoms allowing us to probe the local structure of the atoms surrounding Fe. Moreover,
the use of Mössbauer spectroscopy, combined with x-ray and neutron scattering tech-
niques, has already been applied to the study of sodium silicates allowing establishing
a relationship between the Mössbauer data and the coordination state of iron atoms
[84][85]. Supported by such experimental data we used the Mössbauer spectroscopy to
understand the effect of densification on the local structure of the glass.

Finally combining the information on the structure of densified samples with that
on their DOS we could test the reliability of models that relate the presence of the
Boson Peak to a characteristic correlation length between the atoms of the system.

4.6.1 X-ray scattering measurements and results

The measurements of x-ray scattering have been performed at the ID27 beamline at the
ESRF in collaboration with Dr. W. Crichton, using the same equipment and procedure
discussed in section 3.6.1. The energy of the probing radiation was 61 keV; this energy
allows collecting the radiation scattered from the sample in a range of Q between 5
and 150 nm−1.

The sample holder used for the measurements was a needle placed at 1.5 m far
from the detector. After each measurement the sample was removed and we collected
the radiation scattered from air. This measurement has been subtracted from the data
collected using the sample, following the same procedure described in section 3.6.1.
The scattering from the air is particulary intense in the low Q region (≈ 5 nm−1) and
it masks the changes in the intensity of the radiation scattered from the sample. We
did not estimate other contributions to the scattering from our samples (as Compton
scattering) because, as we have discussed in section 3.6.1, we were interested only to
observe the relative changes in the static structure factor of the samples. To proceed
with a comparison between the different samples, we normalized the data to the same
value of the intensity of the scattered radiation at Q=100 nm−1. Figure 4.9 clearly
shows significant differences in the intensity of the scattered radiation (I(Q)) in the
region of the first diffraction peak (between 10 and 25 nm−1); at higher Q values, all
Na2FeSi3O8 samples show the same I(Q).

Between 12 and 25 nm−1 the first sharp diffraction peak (FDP) appears not as
a unique well defined line but we can recognize the presence of at least two distinct
contributions: at 14.5 and 21.5 nm−1. These two features have been associated, by
previous studies in sodium silicate glasses [101], to the correlation length of oxygen
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Figure 4.9: Momentum dependence of the intensity of the scattered radiation for den-
sified Na2FeSi3O8 glasses, the inset shows the correlation between the density of the
samples and the center-of-mass position M1 (see text).

atoms O-O (the peak at 14.5 nm−1) and of Si-Na atoms (the maximum at 21.5 nm−1).
Increasing the densification we observe a progressive increase of the scattered intensity
at 21.5 nm−1 with a correspondent decrease of that at 14.45 nm−1; the change of FSDP
is also accompanied by a shift of its position toward high Q values (see inset of figure
4.9). This effect has been evaluated measuring the center of mass of the FSDP M1.

M1 =
∫ Qmax

Qmin

dQI(Q)Q, (4.1)

here Qmin=10 nm−1 and Qmax=25 nm−1 identify the limits of the Q region for the
FSDP.

The shift of M1 towards higher Q values reflects the increase in density of the glass.
As well as for a crystal, an increase in reciprocal space of the dimension of the first
pseudo-Brillouin zone (M1 moves to higher Q values) corresponds to a decrease, in
real space, of the distance between atoms and then to an increase of the density (V ∼
1/M3

1 , ρ ∼ M3
1 ).

The change of the first diffraction peak increasing the densification seems not to
proceed continuously; passing from the 0 to the 1 GPa sample we observe a clear
change of the shape of the FSDP. The structure of the FSDP of the 0 GPa sample,
where one can recognize a peak and a well pronounced shoulder, appear in the 1
GPa sample as a unique maximum at 19.5 nm−1. On the other hand at 2 GPa the
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Figure 4.10: Experimental set-up used for the Mössbauer measurements.

FSDP presents again the structure of a peak and a shoulder and the maximum at 21.5
nm−1 significantly increases in intensity. At 3 GPa the glass has already reached the
maximum level of densification, the 7 GPa sample in fact shows only small changes
in the FSDP compared to 3 GPa. The saturation of the densification process, as seen
in the microscopic changes of the glass, is also supported by the results of density
measurements: beyond 3 GPa, the density does not reveal appreciable changes.

We conclude that the densification has a direct influence on the FSDP of the glass,
the shape and the position of the FSDP change remarkably with densification. Such
changes on the FSDP have been interpreted in the literature as a transformation of a
the middle range order of the system [105, 99]. In particular, according to these models
the structure of the glass can be regarded as a packing of atoms and interstitial voids,
the increase of the density would produce a suppression of the void spaces present
in the glass with a consequently decrease of the length associated with the structural
correlations that give rise to the FSDP.

4.6.2 Mössbauer measurements

In order to study the effect of densification on the local structure of the Na2FeSi3O8

glass, the electron conversion Mössbauer spectroscopy technique has been used. Such
technique allows obtaining Mössbauer spectra via a process of internal conversion of
nuclear excitation [102]. The energy corresponding to the deexcitation of Fe nuclear
levels can be transferred to the electrons of the atom because of their finite probability
to be at the nuclear site.

In figure 4.10 we sketched the experimental set-up used for the measurements. The
electrons coming out from the sample are accelerated by the electric field produced
by a difference in electric potential between a wire of tungsten and the sample. The
collisions of the electrons with the molecules of the gas, present in the chamber of
sample, produce a large number of ions that diffuse toward the wire producing a signal.
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Measuring the absorption of γ rays by electron conversion we can obtain Mössbauer
spectra also for samples in which the thickness prevents the use of the ”classical”
Mössbauer technique. If the thickness of the sample exceeds ∼200µm, using the usual
transmission geometry all γ rays are absorbed by the sample itself.
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Figure 4.11: Conversion electron Mössbauer spectra of densified Na2FeSi3O8 glass.

The measurements of electron conversion Mössbauer spectroscopy have been per-
formed by Prof. J. Korecki in the Department of Physics of the University of Krakow.
The data analysis of the measurements has been performed in collaboration with Dr.
M. Zajac.

The data have been normalized to the same unity area: after subtracting the back-
ground we integrated for each spectrum the number of counts between -2.5 to 2.5 mm/s,
then at each velocity the counts of the spectrum have been divided by the integrated
value.

In figure 4.11 and 4.12 we report the measured Mössbauer spectra of 0-3 GPa
Na2FeSi3O8 samples. Because the time consuming character of this technique and the
small dimensions of the 7 GPa glass we did not measure this sample. The figures clearly
show the presence of a doublet in the measured signal, the quadrupole splitting allows
identifying the Fe+3 coordination state for the iron atoms. The collected spectra do
not show the presence of the characteristic Fe+2 doublet.

From a first glance at figure 4.11 a difference between the original glass (0 GPa
sample) and the densified samples is clearly visible. The 0 GPa sample has a smaller
quadrupole splitting compared to the densified samples. On the other hand the 1-
2-3 GPa glasses have quite similar Mössbauer spectra and do not show significant
differences. In order to extract quantitative information from Mössbauer data we
proceed with an analysis of the lineshape of the spectra using a quadrupole pair. We
fit the experimental data with the following model function [41]:
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Figure 4.12: Conversion electron Mössbauer spectra, the red lines are the results of the
fit (see text).

122



4.7. Brillouin light scattering measurements

IM = I0
1

2

(
(Γ/2)2

((x − δ − ∆/2)2 + (Γ/2)2)
+

(Γ/2)2

((x − δ + ∆/2)2 + (Γ/2)2)

)

. (4.2)

The results of the fit to our data with the model function IM are shown in figure
4.12. The function IM includes the two parameters δ and ∆: respectively the chemical
shift and the quadrupole splitting. As we have discussed in section 2.1.2 these two
parameters are related to the distribution of electrical charges surrounding the iron
atoms. ∆ quantifies the gradient of the electric field at the nuclear site and δ the
density of electric charge. Thus the hyperfine parameters allow speculating on the
relative changes in position between the ions surrounding the Fe atoms of the glass.
The Γ parameter presents in Eq. 4.2 has been introduced to take into account the
broadening of the Mössbauer lines, due to the distribution of the local environments
that is typical for glasses [103].

The value of δ, that in our samples is comprised between 0.26 and 0.30, allows
us to estimate that the Fe atoms are tetrahedrally coordinated to oxygen. From the
works present in the literature [84, 85] it has been found that in silicate glasses, with
composition similar to our glasses, the tetrahedral coordination to oxygen corresponds
to a value of δ in the range of 0.2-0.32 mm/s.

In table 4.1 we report the values of the hyperfine parameters ∆ and δ for all sam-
ples. The densification proceeds increasing the isomer shift linearly, conversely the
quadrupole splitting does not show any linear dependence on densification. Passing
from the 0 to the 1 GPa sample the quadrupole splitting increases relatively by 12%
while from 1 to 3 GPa it changes only by 5%. The behavior of ∆ indicates that in the
earlier stage of densification there is a relevant change in the gradient of the electric
field at the nuclear site, suggesting that passing from the 0 to the 1 GPa samples there
is rearrangement of the local structure of the glass around the iron atoms.

Combining this information with that coming from density and x-ray scattering
measurements we can conclude that the densification process proceeds in two steps.
Passing from the 0 to the 1 GPa sample, we have a rearrangement of the local structure
of the glass around the iron atoms (the hyperfine parameters ∆ increases by 12%), this
change is not followed by a relevant modification of the density of the glass. Increasing
the densification further on, passing from the 1 to 3 GPa sample, the glass does not
change considerably its local structure (i.e. ∆ increases by only about 5%) while the
structure in the middle range region changes continuously.

4.7 Brillouin light scattering measurements

In this paragraph we present Brillouin Light Scattering measurement performed on the
Na2FeSi3O8 samples. The measurements have been performed in collaboration with
Prof. D. Fioretto at the Department of Physics of Perugia, using the same experimental
equipment discussed in section 3.5. Thus most of the experimental details of the
measurements are in section 3.5.
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Table 4.1: The hyperfine parameters of the isomer shift δ and quadrupole splitting ∆
for the initial (0 GPa) and densified samples are here reported. The isomer shift is
given relative to α-iron absorber.

Sample δ (mm/s) ∆ (mm/s)

0 GPa 0.262(1) 0.862(2)
1 GPa 0.274(3) 0.963(4)
2 GPa 0.292(3) 0.999(4)
3 GPa 0.302(3) 1.018(5)

4.7.1 The measured spectra and the speed of sound

The BLS measurements have been performed collecting the scattered radiation in the
two geometries: at 90◦ and in backscattering (180◦) geometry. As we already pointed
out in section 3.5, these two geometries allow us to investigate both the longitudinal
and the transverse acoustic excitations of the glass.

The samples have been aligned in order to match the position, on the sample, of
the incident laser beam and the focus of the lens used to collect the scattered radiation.
The procedure used for the alignment is the same discussed in section 3.5. Because
of the high value of the imaginary part of the refractive index (ni) of Na2FeSi3O8, we
could not collect the radiation scattered from a point too far from the surface: the
absorption of the glass limits the transmission of the radiation. We try to find a good
compromise in the choice of the scattering volume between a point representative of
the bulk properties of the glass (inside the sample), and a point where the absorption
of the sample allows us to have an intense scattered radiation (not too far from the
surface).

The typical acquisition time for a spectrum was of 12h in the 90◦ degree configura-
tion and 3 h in the 180◦ geometry, where the intensity increases because of the higher
efficiency of the collecting optics.

We collected 8 BLS spectra, one in backscattering geometry and one in the 90◦ for
each sample (0-3 GPa sample, we exclude the 7 GPa because of its small dimensions).
The spectra collected at 90◦ show, in addition to the presence of transverse excitations,
a quite different aspect compared to the spectra in the backscattering geometry. In the
90◦ geometry the increase of intensity associated with the elastic scattering (i.e. when
E ≈ 0) is already important at ±10 GHz. In backscattering geometry the intensity
increases at lower frequencies. This effect is mostly associated with the scattering from
the surface. In fact, in the 90◦ scattering geometry we collect the radiation from a
wider surface position of the sample. Moreover, the increase of the uncertainty on the
selected values of Q results in a broadening of the inelastic features of the spectra (see
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Table 4.2: Here we report for all densified samples: the geometry used for the BLS
measurement, the exchanged wave vector Q, the longitudinal νL and transverse νT

frequencies, and the ratio R = νL/νT .

Sample Geometry Q νL νT νL/νT

[nm−1] [GHz] [GHz]

0 GPa 90◦ 0.0359(2) 30.15(2) 17.54(8) 1.72(1)

1 GPa 90◦ 0.0360(2) 30.51(5) 17.57(8) 1.74(1)

2 GPa 90◦ 0.0366(2) 31.49(6) 18.1(1) 1.73(2)

3 GPa 90◦ 0.0345(2) 30.66(6) 17.5(2) 1.75(2)

0 GPa 180◦ 0.0398(2) 33.43(1) — —

1 GPa 180◦ 0.0399(1) 33.73(2) — —

2 GPa 180◦ 0.0409(1) 35.28(3) — —

3 GPa 180◦ 0.0410(1) 36.39(3) — —

section 3.5).
As we have discussed in section 3.5.2 in order to determine the Q corresponding to

the collected spectrum, we needed an accurate estimation of the value of the refractive
index of the sample. In order to measure n for the Na2FeSi3O8 glass we followed the
procedure discussed in section 3.5.2. Measuring the Brillouin shift of the longitudinal
excitation at 90◦ and in the backscattering geometry, and assuming the same value of
speed of sound we obtain the value of n. Such procedure has been applied for the 0
GPa sample where the quality of the surface allowed also for a precise measurement of
the angle of scattering θi at 90◦ (see figure 3.11).

For the densified samples we derived the value of n from the 0 GPa sample taking
into account the change of density according to the Clausius -Mossotti relationship [2]:

n − 1

n + 2
= 4παρ. (4.3)

The value of n allows us to calculate the wave vector Q for the backscattering geom-
etry measurements1. To determine the wave vector associated with the 90◦ geometry

1In the backscattering geometry θi is always equal to 180◦ that correspond to Q = 2nk0 (see section
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Figure 4.13: Panel of the BLS spectra collected in backscattering and 90o geometry, the
L and T indicate the longitudinal and the transverse Brillouin peaks.
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Table 4.3: We report, for all samples: the density (ρ), the refraction index n, the
longitudinal (vL) and transverse (vT ) sound velocity.

Sample ρ (g cm−3) n vL (km s−1) vT (km s−1)

0 GPa 2.714(3) 1.622(1) 5.28(2) 3.07(3)
1 GPa 2.72(2) 1.624(5) 5.32(2) 3.06(3)
2 GPa 2.87(2) 1.668(6) 5.41(2) 3.12(5)
3 GPa 2.88(4) 1.671(5) 5.58(3) 3.18(5)

spectra, we could not measure directly θi, exploiting the radiation reflected from the
sample (this radiation would allows us to know the angle between the sample surface
and the incoming laser beam, see section 3.5.2). In fact, the high absorption of the
glass and the roughness of the sample decrease significantly the intensity of the re-
flected radiation. However, previously we determined the longitudinal speed of sound
vL from the spectra measured in backscattering geometry. vL is independent of the
relative orientation of the sample (see note) while Q is defined by ni. Then, once deter-
mined the position in frequency of the longitudinal excitation measured at 90◦ (ω90L),
we derived the value of the corresponding exchanged wave vector Q from the relation
Q = ω90L/vL. Here we have assumed that vL does not depend on Q, in fact the linear
relation between ω and Q is valid up to Q values of the order of ≈ 1 nm−1, quite far
from that probed by BLS (≈ 10−2 nm−1). In the table 4.2 we report the values of
ωL and ωT with the relatives values of Q measured for all samples at 90◦ and in the
backscattering geometry. From the value of Q for the spectra in the 90◦ geometry we
could determine the value of the transverse speed of sound vT = ωT /Q (see table 4.3).

In figures 4.14 we show that the values of the speed of sound (the frequency of the
Brillouin peak is proportional to the speed of sound of the glass ωL = vLQ) change
passing from the 1 to the 3 GPa sample, i.e., the samples which show as well an increase
in the density. The 0 and the 1GPa glasses show only a small difference in the peak
position of the longitudinal excitation.

The relative increase of the Brillouin frequency shift between 0 and 3 GPa is ≈ 6%:
the same value measured for the density. Moreover, the ratio between the longitudinal
and transverse speed of sound R = ωL/ωT is not affected by the increase of densification
and keeps almost the same value (see table 4.2). The measurements of Brillouin light
scattering confirm the two step scenario for the densification process arising from the
measurements of the density of samples. The compression of the initial glass at 1 GPa
does not lead to notable changes of the properties of elastic media, both density and
sound velocity reveal only a slight increase. In a second step the Na2FeSi3O8 glass
experiences an increase of density and speed of sound up 6%.

3.5.2).
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Figure 4.14: Longitudinal peak of BLS spectra measured in backscattering geometry for
all samples. The dashed line indicates the shift of the peak with densification.
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4.8 NIS measurements

In this section we present the measurements of Nuclear Inelastic Scattering (NIS) on
densified glasses and the results relative to the effect of the densification on the DOS.
The procedure used to derive the DOS from the NIS spectra is not discussed here, for
this topic we refer to chapter 2.

4.8.1 Raw spectra

The Nuclear Inelastic Scattering measurements have been performed at the Nuclear
Resonance beam-line ID18 of the European Synchrotron Radiation Facility (ESRF).

The densified samples have been placed under the beam at an angle of ≃ 70◦

between the normal to the surface of the sample and the direction of the beam (see
figure 3.20).

This geometry decreases the escape depth for the collected Fe Kα fluorescent radi-
ation and, therefore, increases the count rate. At the same time the orientation of the
sample allow the synchrotron radiation to be transmitted through the sample. This ra-
diation is collected by an APD detector in order to measure the instrumental function
of the spectrometer.

The energy resolution used during the measurements was 0.5 meV in order to have
high quality data also in the low energy region. For each sample we scanned an energy
range from -100 to +120 meV. In different energy ranges we used different acquisition
times, in order to acquire the entire scan in a relative short time and to increase the
statistics in the low energy region (from 0 to 20 meV). The average acquisition time
for each energy points was between 80 and 130 s. We obtained the energy dependence
of NIS adding a number of scans composed between 10 and 20.

In figure 4.15 we report the collected raw energy dependence of NIS for all densified
samples. The data have been normalized to the same value of the first moment allowing
for a comparison of the raw data in absolute scale (see section 3.8.1). The collected
NIS data present a maximum in the energies range between 5 and 8 meV, this feature
corresponds to the presence of the BP in the DOS of the glass. Moreover, increasing
the densification of the samples the intensity of the maximum decreases. At 3 GPa this
effect seems to saturate, the intensity of the maximum is close to that of the sample at
7 GPa. The asymmetry of the intensity of the energy dependence of NIS with respect
to the zero energy, visible in figure 4.15, is associated to the different probability of
creating or annihilating phonons and depends on the temperature according to Eq.
(3.41).

4.8.2 DOS in densified samples

From the measured energy dependence of Nuclear Inelastic Scattering we extract the
corresponding partial density of vibrational states of iron atoms, following the proce-
dure described in section 2.1.3.

Figure 4.16 shows the measured Fe partial DOS for all samples, the data have a
higher quality up to 20 meV. In this energy region the picture presents the typical
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Figure 4.15: Energy dependence of NIS normalized to the first moment, the dashed line
represents the resolution function of the measurements; the legend indicate the different
densified samples.
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Figure 4.16: Density of vibrational states (DOS) of the initial and densified Na2FeSi3O8

glass, the inset shows the DOS in the low energy region.

130



4.8. NIS measurements

0 5 10 15 20
0.0000

0.0001

0.0002

0.0003

0.0004

0 GPa
1 GPa
2 GPa
3 GPa
7 GPa

 

g(
E

)/E
2  (m

eV
-3

)

Energy (meV)

  

 

Figure 4.17: Reduced density of vibrational states (RDOS) of the initial and densified
Na2FeSi3O8 glasses. The arrows indicate the zero energy limit predicted by the Debye
model for each sample (the arrows of 0 and 1 GPa sample coincide). The dashed line
emphasizes the shift of the BP with densification.

increase of the number of vibrational states (from 0 up to 20 meV) associated with
the acoustic phonon branches (see section 1.6.1). At higher energies the contribution
to the DOS from optical modes is clearly visible, these appear as peaks at 30 and 70
meV.

In order to study the effect of densification on the low energy region of the DOS,
we plotted the reduced density of states (RDOS) g(E)/E2. Figure 4.17 shows for all
samples a maximum in the RDOS located around 5 meV: the Boson Peak. Its position
is in agreement with the values typical for other silicate glasses [75]. Increasing the
densification, the maximum of the RDOS decreases in intensity and moves to higher
energies. In particular, comparing the 0 and 3 GPa samples, the intensity of the
maximum is reduced about 35% and its energy position shifts by 23.5%. Beyond 3 GPa
the effect of the densification on the DOS does not proceed further on, the samples 3
and 7 GPa have the same value in the maximum of the RDOS. The differences between
the measured RDOS vanish at higher energy, at 17 meV the tails merge in a unique
curve.

4.8.3 RDOS in Debye energy units

Looking at figure 4.17 the question naturally arises about the mechanisms responsible
for the changes in the maximum of the RDOS. We try to have insights into this issue
estimating the effect of the transformation of the macroscopic properties of the glass on
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the RDOS. In particular, we calculated the Debye energy ED for each sample according
to Eq. 4.4 using the values of number of atoms per unit volume n and the speed of
sound vL, vT previously measured (see section 4.7 and 4.5).

ED = (6π2h̄3n < v >3)
1
3 , (4.4)

3

< v >3
=

(
1

v3
L

+
2

v3
T

)

. (4.5)

Applying the Debye model to our Na2FeSi3O8 glass, the zero energy limit of the RDOS
is defined by the value of the Debye energy according the relationship:

lim
E→0

g(E)

E2
=

3

E3
D

mr

< m >
(4.6)

Here the ratio between the average atomic mass of the glass < m > and the mass
of iron atoms mr has been introduced because the model is compared to the partial
density of vibrational states of iron atoms. In table 4.4 we report for each sample the
calculated ED and the relative zero energy limit of the RDOS. The zero energy limit
defined by Eq. (4.6) represents also the reference level for the RDOS to evaluate the
intensity of the Boson Peak.
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Figure 4.18: Reduced density of vibrational states in rescaled Debye energy units
E’=E/ED.

The limit at 0 energy of the RDOS predicted by the Debye model has been reported
for each sample in figure 4.17 using arrows. Looking at figure 4.17 we observed that
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Table 4.4: We report the Debye energy (ED), and the zero limit energy of RDOS

limE→0
g(E)
E2 for the initial (0 GPa) and the densified glasses.

Sample ED (meV) limE→0
g(E)
E2 (10−4 meV−3)

0 GPa 15.1(2) 1.57(2)
1 GPa 15.1(2) 1.57(3)
2 GPa 15.6(4) 1.41(3)
3 GPa 16.0(5) 1.32(4)

the positions of the arrows change from the 0 to the 3 GPa samples suggesting that
the evolution of the maximum of the RDOS with densification does not correspond to
a change of the intensity of the BP. In fact, according to the definition of the BP, its
intensity has to be evaluated with respect to the level defined by equation 4.6. To take
into account the effect of the transformation of the macroscopic properties of the glass
on the RDOS, we rescaled the RDOS in Debye energy units: E ′ = E/ED.

The plot of g(E ′)/E ′2 vs E ′ (see figure 4.18) allows removing from figure 4.17 the
changes in the density of states induced by the modification of the elastic medium.
After this correction the differences between the 1 2 and 3 GPa samples disappear, on
the other hand the curve corresponding to the initial glass (0 GPa) stays still different
from the others.

Figure 4.18 reveals a two step scenario for the influence of densification on the
DOS of the glass. In a first stage, between the 0 and 1GPa samples, the densification
process changes the DOS and this modification cannot be taken into account by the
relative change of the Debye energy. We recall that passing from the 0 to the 1 GPa
sample the glass experiences a structural rearrangement on the short length scale (see
section 4.6.2). This indicates that the BP is closely connected to the local structure
of the sample. In a second step, the densification produces a decrease and a shift of
the maximum of the RDOS that is compensated by the increase of the Debye energy
of the glass. This further densification of the glass does not change the BP and the
modification of the DOS can be completely described by the transformation of the
macroscopic properties of the continuum medium.

4.9 Conclusions

The main conclusions that we can derive from our study on the Na2FeSi3O8 glass is
that the presence of the Boson Peak in glasses is intimately connected to the local
structure of the system. Moreover, in absence of changes in the local structure of the
effect of the densification process on the DOS of the sample, can be related to the
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transformation of a continuum medium.

These conclusions have been obtained combining information on the structure and
on the dynamical properties of densified glasses. Using Nuclear Inelastic Scattering
we observed that increasing densification and pressure the peak of the reduced DOS
decreases in height and shifts to higher energies. Brillouin light scattering, x-ray scat-
tering and Mössbauer spectroscopy reveal two steps in the glass modification: i) the
glass changes its local structure at constant density (from 0 to 1 GPa sample) ii) the
glass increases density and sound velocity with a continuous modification of its middle
range order but keeping the same local structure (from the 1 to the 3 GPa sample).

Rescaling the energy axes of the RDOS in Debye energy units E ′ = E/ED the
reduced densities of states becomes almost identical for all densified samples that have
the same local structure. The energy position of the Boson Peak scales with the Debye
energy and the corresponding peak in the RDOS increases its height according to the
change of 3/E3

D. Thus, with the exeption of the case where structural rearrangement
takes place, the transformation of the density of vibrational states induced by densifica-
tion is described entirely by the transformation of the continuous medium. Conversely
if a structural modification in the short range order takes place, the dependence of the
Boson Peak on density cannot any longer be taken into account by the corresponding
changes in the macroscopic properties and the system behaves as a different glass.

Our results allow testing the reliability of some of the models proposed to describe
the mechanisms responsible for the presence of the Boson Peak in glasses.

In the ”phonon localization” model [96] the BP is related to the presence of modes
localized at a characteristic correlation length R on the intermediate range scale; at
such length scale the glass does not have a completely random structure but shows
some structural correlation. If we consider the structure of the glass as a packing of
atoms and interstitial voids, R can be regarded as the length over which the partial
atom-void distribution function become featureless. According to this model the energy
of the boson peak EBP behaves as: EBP ∼ v/R (v is the speed of sound of the system).
Assuming that R scales as the inverse of the cubic root of the density R ∼ (1/ρ)1/3 =
(V )1/3 (here V is the volume of the glass, the correlation length R scales with the
mean distance between the atoms), it follows that EBP ∼ (ρ)1/3v exactly as the Debye
energy, whereas the height of the Boson Peak in the RDOS ∼ 1/(ρv3). Such results
are in agreement with our data, nevertheless our study does not confirm the relation
between R and the first diffraction peak (FSDP) of the glass [96, 97, 104, 105] as
claimed by the ”phonon localization” model. In the literature R, referred to as the
length scale for the middle range order of the glass, has been associated with the width
or the position of the FSDP. The modification of the BP has been attributed to the
corresponding modification of the first diffraction peak of the glass. In contrast to this
interpretation our data show that despite the continuous modification of the FSDP, the
BP does not change. Passing from the 1 to the 3 GPa sample, while the first diffraction
peak experiences a relevant evolution in shape and position, the BP does not change.

Another model that can be directly compared against the results of our study is the
”dynamical disorder” model [29]. Such model associates the origin of the BP to the
distribution of the elastic constants K in the glass. Such distribution has a finite width
σ(K) around a fixed value K. Changing only the density of the glass we vary the value
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of K without altering σ(K). In this case the density dependence of RDOS is described
only by a single parameter: the Debye energy. This model is thus in agreement with
what we found in the Na2FeSi3O8 glass.
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Résumé du chapitre 5

Dans ce dernier chapitre une étude sur l’orto-terphenile (OTP) vitreux
sera présentée. Elle sera effectuée en utilisant la Spectroscopie Inelas-
tique de rayons-X (IXS). En particulier avec cette technique, on a étudie
la dynamique du verre en mesurant le facteur de structure dynamique
S(Q,ω) dans un intervalle de moments échangés (Q) entre 2 et 10 nm−1.
Dans le première paragraphe la thématique scientifique d’intért de cette
étude est présentée: le comportement de la dynamique d’un verre dans
une région d’énergie proche à celle du BP. Dans cette partie, on ac-
centuera’ sur l’utilisation de la pression et en particulier de l’évaluation
du paramètre de Gruneisen, qui permet d’avoir des informations sur la
nature des modes vibrationnels étudies. En suite, on est passé à illus-
trer la méthode expérimentale suivi pour réaliser les mesures IXS et celle
pour l’analyse de donnés. Un paragraphe sera dédié à rappeler les infor-
mations qui permettent d’extraire des mesures IXS et de présenter les
paramètres du modèle utilisé pour décrire les données expérimentales.
Donc, om montrera les résultats de la comparaison du modèle avec ceux
des données expérimentales, en discutant le comportement de Q et en
pression des différents paramètres du modèle. Une attention particulière
sera réservée à l’analyse du comportement en pression de la fréquence
vibrationnelle caractéristique du système. Avec ce paramètre a été pos-
sible évaluer le paramètre de Gruneisen (γ) des modes vibrationnelles
sondés par les mesures IXS. Les valeurs ainsi estimées de γ des mesures
IXS ont été confrontés avec ceux obtenus de mesures US et BLS. En-
fin on a confronté le comportement de gamma en variant l’énergie en
plusieurs systèmes : OTP, Glicerol, et silica. Cette comparaison avec les
données présentes en littérature nous a permit d’insérer les résultats sur
l’OTP dans contexte plus vaste. Dans les derniers paragraphes on donne
des conclusions sur l’interaction parmi les modes acoustiques mesure par
IXS dans un verre et le modes responsables du BP.
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Chapter 5

Glassy ortho-terphenyl: an Inelastic
X-ray Scattering study

5.1 Scientific Background

In this section we present a study of the high frequency dynamics of glassy ortho-
terphenyl (OTP) performed using Inelastic X-ray Scattering (IXS). With such tech-
nique we probed the density fluctuations of the glass in the mesoscopic length-scale
region (from ≈ 0.6 up to ≈ 3 nm) in order to recover information on the acoustic modes
present in the system at these wavelengths.

In our previous studies of hyperquenched and densified glasses (see chapter 3 and 4)
we have observed that the density of vibrational states, at low energy, scales with the
contribution of the acoustic modes of the system. Thus a detailed characterization of
the acoustic excitations, up to energies across the Boson Peak (BP), appears necessary
to investigate the nature of the vibrational states present in the low energy region of
the DOS.

In the literature there are several studies that have speculated on the origin of the
BP in glasses looking at the behavior of the high frequency acoustic modes [106, 107,
108, 109, 110, 111]. Nevertheless, these studies do not produce conclusive or unique
results. For example, it has been both pointed out that the vibrational excitations
responsible for the presence of the BP in glasses have a character strongly localized [106]
or propagating [108]. To give new insights into this issue we used the thermodynamic
parameter of pressure to investigate the connection between the acoustic dynamics
and the low energy vibrations involved in the BP. In particular, we characterized the
high frequency vibrations of glassy orto-therphenyl measuring the Grüneisen parameter
γL(Q).

Monitoring the energy shift of a vibrational excitation induced by a change of
volume V of the glass, we directly estimate γL(Q) (γL(Q) = dlnΩL(Q)

dlnV
, where ΩL(Q) is

the frequency of the longitudinal excitation corresponding to the exchanged wavevector
Q [112]). We measured the value of γL(Q) for vibrations at an energy (in the ≈ meV
region) across that of the BP. The value of the Grüneisen parameter allows us to give
hints on the nature of the probed vibrational excitations: comparing γL(Q) for different
energies of the acoustic wave, we investigated whether the nature of the acoustic waves

137



Chapter 5. Glassy ortho-terphenyl: an Inelastic X-ray Scattering study

experiences a change at energies across that of the BP.

So far, for practical reasons, most of the studies on disordered systems were dedi-
cated to the investigation of acoustic modes as a function of temperature at ambient
pressure. Nevertheless, the use of pressure allows us to recover more efficiently the value
of γL(Q). The primary effect of pressure in a solid is to change interatomic distances,
the changes in vibrational energies can follow via the anharmonicity (in a crystal) or
from the topological disorder (in a glass). In contrast the primary effect of temperature
is to alter the population of vibrational states, the changes of the interatomic distances
are usually a secondary effect.

In the present study we measured the density-density correlation function of glassy
OTP varying the pressure from 0.001 up to 2.5 kbar (the temperature was fixed at
T=233 K). We observe that OTP is able to support acoustic modes up to energies above
that of the BP. Moreover, we found that the acoustic excitations are characterized by a
Grüneisen parameter that does not change if evaluated at energies lower or higher than
the BP. Conversely, in glycerol and SiO2, the behavior of γL(Q) changes through the
energy region of the BP. These observations indicate that the nature of the interaction
between acoustic and BP’s modes depends on the system, and might be related to the
fragility of the glass.

5.2 Glassy ortho-terphenyl

The system which we have decided to investigate by IXS is the molecular glass: ortho-
terphenyl (OTP, C18H14 with a melting point Tm=330 K and a glass transition tem-
perature Tg=243.5 K ).

OTP has been extensively studied for more than 40 years [115, 116, 117, 127,
128, 129, 130] as an archetypal glass former, it is neither a polymer nor hydrogen
bonded material but forms a glass simply because of the steric hindrance due to the
molecular structure. The molecule is not polar and consists of a central benzene ring
and two lateral phenyl rings rotated out of plane (see figure 5.1). The molecular shape
allows describing the liquid phase of OTP by simple models: rigid molecular units that
interact via non directional van der Waals forces [113]. Such simple picture of OTP has
suggested that the dynamics of this system presents universal features representative
for the entire class of glass formers and is independent of the microscopic peculiarities
of the system.

OTP has an extremely non-Arrhenius behavior of the shear viscosity as function of
temperature, thus its fragility index puts the system into the class of the fragile glasses
(see section 1.3). An interesting characteristic of OTP, that justifies the existence of
such a large number of studies, is the possibility to have the liquid, crystalline and glassy
state close to room temperature. The system can be easily supercooled, however single
crystals of high quality and considerable size can be grown from methanol solutions.
Depending on the cooling rate the fictive temperature Tf lies between 242 K and 245
K. One can bypass Tg avoiding the nucleation of the crystal cooling the liquid with a
rate relatively low.

The thermodynamic properties as the pressure-volume-temperature relations (PVT)
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Figure 5.1: Ortho-therphenyl molecule, the blue spheres are the hydrogen atoms and
the gray ones represent carbon.

have been investigated in a wide range of pressure and temperature [114]. Such exten-
sive characterization of thermodynamic properties of the system has encouraged using
OTP to test theories describing the density correlation function. This system was
among the first simple molecular liquids in which the secondary β-relaxation process
has been measured [115], and several studies have explored the structural α-relaxation
process on a wide timescale [128, 129, 119]. Nevertheless, despite the large number of
studies of OTP, for practical reasons, only few of them have investigated the effect of
pressure on the glass dynamics [128, 131].

5.3 Information on the dynamics of a glass by IXS

In section 2.2 we have illustrated how it is possible to have access by IXS to the
Fourier transform (in the Q − ω space) of density-density correlation function, i.e. to
the dynamic structure factor S(Q,ω).

S(Q,ω) =
1

2πh̄N

∫ +∞

−∞
eiωt〈ei ~Q·~Rj(t)e−i ~Q·~Rk(0)〉dt = (5.1)

1

2πh̄N

∫ +∞

−∞
dteiωt〈

∫ +∞

−∞
d~rd~r′ei ~Q(~r−~r′)δ(~r − ~Rj(t))δ(~r′ − ~Rk(0))〉.

S(Q,ω) contains all the dynamical information of the system on the length-scale
defined by Q. In section 2.2 we have shown that for a crystal it is possible to describe
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the S(Q,ω) starting from first principles; within the hypothesis of small displacements
(u << R) of the atoms from their equilibrium positions (R) we can write:

S(Q,ω) =
1

4πMN
e−W (Q)

∑

j

ei ~Q·~Rj
( ~Q · ǫ̂s, ~Q)2

ωjs

[δ(ω − ωjs)〈n(ω) + 1〉 + δ(ω + ωjs)〈n(ω)〉],

here ǫ and ωs represent respectively the phonon polarization and frequency, and <
n(ω) > is the Bose occupation number.

Thus according to the previous equation, in a crystal where the S(Q,ω) is domi-
nated by the Brillouin contribution, we have two inelastic lines located at ±ωjs. These
lines have an intensity that reflects the probability of creating and annihilating phonons.
The ratio between the intensity of S(Q,ω) at energies ±h̄ωjs is equal to :

S(Q,ωjs)

S(Q,−ωjs)
=

〈n(ω) + 1〉
〈n(ω)〉 = e

h̄ωjs
kBT

Nevertheless the dynamical structure factor predicted by the theory presents some
differences compared to the experimental one. In a crystal the anharmonicity and the
interactions of phonons with the imperfections of the material lead to a finite lifetime
of the phonon excitations. The vibrational excitations are not any longer two delta
functions δ(ω ± ωjs) but they show a finite width Γ.

In a glass, the simple form that S(Q,ω) assumes in crystals is strongly modified and
there are no models able to describe the dynamic structure factor from first principles.
In contrast to the crystalline state a disordered system is characterized by the absence
of translational invariance, thus a density fluctuation with wave-vector Q is not an
”eigenstate” of the system. The dynamics of a glass is influenced by the presence
of new degrees of freedom compared to a crystal: hopping, tunneling and relaxation
processes.

According to the complexity of the processes that control the dynamics in a glass,
its S(Q,ω) is not simply structured as in a crystal. However, the dynamic structure
factor of a glass at low Q can be characterized using the quantities that have well
defined meaning in the relative crystalline state as Ω, Γ, fQ.

• Ω represents the frequency of the investigated excitation. As we have discussed
in section 1.6 an amorphous system is able to support acoustic vibrational ex-
citations. Such modes are characterized by their energy h̄Ω and wave-length
λ = 2π/Q. At low Q, where the system roughly behaves as a continuum, these
excitations have the character of acoustic modes and define the macroscopic elas-
tic properties of the glass. At high Q, Ω starts to be strongly modified because
the typical length scale of the structure becomes comparable to the wavelength of
the excitation. At even higher Q values the excitations lose their acoustic nature.

• Γ is the width of the inelastic excitations. As we have discussed in section 1.6,
the mechanisms responsible for sound attenuation in glasses are still not fully
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understood. Nevertheless different sources of damping have been identified: re-
laxation processes, scattering from defects, anharmonicity. These mechanisms
lead to a decay of the density fluctuations toward different degrees of freedom
and therefore to a broadening of the S(Q,ω) that now is characterized by a finite
width Γ of the inelastic peaks.

• fQ is the non-ergodicity factor defined as the fraction of the radiation elastically
scattered by the sample (see figure 5.2) and represents a measure of the ergodicity
of the system (0 < fQ < 1). The relevance of this quantity rises from the role that
it plays in a theory of the glass transition, the Mode Coupling theory [132]. fQ

in fact quantifies the arrest of density fluctuations in the non-ergodic glassy state
(fQ = φQ(t → ∞) where φQ is the time correlation function of the system at fixed
Q value). The theory makes precise predictions on the behavior of fQ passing
from the liquid (fQ=0) to the glassy state. Moreover, it has been proposed that
fQ allows predicting an important property of the glass as the fragility [118]
though this relationship is still highly debated.
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Figure 5.2: Example of the S(Q, ω) predicted by the model function (DHO plus a
Lorentian function, see text) used in the data analysis. An indication of the features
associated to the parameters: Γ, Ω = (ω2

0 + 2Γ2)1/2 and fQ is also reported.

In order to quantitatively evaluate from the collected IXS data the values of Γ, Ω
and fQ, we used a model function able to describe the measured S(Q,ω). Such model
is the sum of a Lorentian function, that takes into account the elastic and quasi-elastic
scattering by the sample (the peak at ω = 0) and a Damped Harmonic Oscillator
(DHO) able to describe the inelastic scattering (see Eq. (5.2)). In figure 5.2 we show

141



Chapter 5. Glassy ortho-terphenyl: an Inelastic X-ray Scattering study

the typical shape of the S(Q.ω) predicted by the model and the features corresponding
to the parameters Ω, Γ and fQ. The DHO model function can be theoretically derived
as the high frequency limit of the S(Q,ω) line shape obtained within the generalized
hydrodynamic theory [133]. This model has been applied with success not only to the
study of glasses with inelastic x-ray scattering but also with inelastic neutron scattering.

S(Q,ω)

S(Q)
=

[

(n(ω) + 1)
h̄ω

kBT

] [
fQ

π
· ξ

ω2 + ξ2
+ (1 − fQ)

2Γ(Q)Ω2(Q)

(ω2 − Ω2(Q))2 + Γ2(Q)ω2

]

.

(5.2)
In Eq.(5.2) the parameter Γ represents the full width at half maximum (FWHM)

of the inelastic excitation, and Ω is the frequency of the maximum of the correlation
function of the longitudinal current J(q, ω) = (ω2/q2)S(Q,ω), while the maxima of the
DHO function are placed at ω0 =

√
Ω2 − 2Γ2. Ω identifies the frequency of the acoustic

mode of the system. The parameter ξ controls the width of the elastic peak.
The factor [(n(ω) + 1) h̄ω

kbT
] in Eq.(5.2) has been introduced in order to take into

account the asymmetry of the S(Q,ω) associated to the different probability of anni-
hilation or creation of phonons [44].

5.4 IXS measurements

The IXS measurements have been performed at the ID-16 beam-line at the ESRF.
The temperature for the measurements was fixed at T = 233 K and the pressure was
changed in the range between 0.001 and 2.5 kbar. The spectra have been collected at
values of the exchanged wave vector equal to 1, 2, 4, 7 and 10 nm−1, using an energy
resolution of 1.5 meV (FWHM). The total acquisition time for each thermodynamic
point has been between 6 and 12 h. We have summed several spectra at each value of
pressure. This strategy of data collection was assumed in order to minimize the loss of
data due to the crystallization of the sample. In fact, after each spectrum we checked
the state of our sample collecting the total scattering as function of wave vector Q,
the crystallization is visible by the appearance of characteristic Bragg peaks in the
intensity of the total scattered radiation I(Q) (see figure 5.3). The samples in which
we recognized the start of a crystallization process have been replaced by new ones.

In figure 5.4 we report the collected spectra at different values of Q and at different
values of pressure. From a first sight at the figure we can observe the dispersion of the
inelastic excitations Ω = Ω(Q). The energy of the characteristic vibrational excitation
Ω (indicated by arrows in the picture) increases at higher Q values. Moreover, the at-
tenuation of the acoustic excitations is strongly Q dependent, we observe a broadening
of the inelastic feature increasing Q.

5.4.1 Experimental apparatus

Pressure, as we pointed out in the introduction of this chapter, is the key parameter
of our study allowing investigating the nature of the high frequency vibrations of OTP
in a region of energy close to that of the BP.
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Figure 5.3: Intensity of the radiation scattered by glassy (left panel) and partially crys-
tallized (right panel) OTP.

However, the two requirements of the experiment, i.e. to have a sample in the
glassy state and to change its pressure, have been the source of not negligible technical
difficulties during our measurements. The main problem that we had to face was to
prevent the crystallization of the sample and, at the same time, guarantee hydrostatic
pressure condition for the sample. Moreover, we had to ensure the stability of the
thermodynamic conditions of the sample over the entire duration of each measurement,
i.e. over a relative long time (6-12 h).

In order to keep our sample at low temperature and under pressure we used a large
volume cell formed by a stainless steel cubic body with an interior cylindrical hole (0.8
cm3) where the samples were loaded. A drawing of this cell is reported in fig. 5.5. Its
main characteristics are the long sample length (10 mm) and the angular acceptance
of 30 degrees, which at our working energy of 21.7 keV allows reaching exchanged
momenta up to 50 nm−1. The cell can be connected to the external pressure generator
through a standard Nova Swiss HP connection.

The HP sealing of this cell is shown in fig. 5.5. The two diamond windows, through
which the incident and the scattered beam passes, are single crystal diamond disks of
6 mm diameter and 1 mm thickness. Beside the resistance to mechanical solicitations,
a decisive advantage in using diamond windows is their negligible contribution to the
scattered intensity. Diamonds are glued on the flat internal face of the two conical
supports. The diameter of the hole (2.3 mm) at the flat surface of the support, which
allows the beam to go through the cell, was chosen as the best compromise between
maximizing the angular opening and minimizing the pressure on the windows. The
supports are screwed and tightened against the cell’s body by special circular nuts.
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Figure 5.4: IXS spectra collected at different pressures and exchanged wave-vectors
Q, the arrows indicate the position in energy of the vibrational frequency Ω. The red
lines represent the results of the fit and the dashed line the resolution function of the
measuremsts. 144



5.4. IXS measurements

Figure 5.5: The sketch (left panel) of the large volume cell used for the experiment
(right panel).

Two brass or copper ring gaskets with triangular section are inserted into the inner
space between the conical surface of the supports and the inner wall of the internal
chamber. The HP tightness is accomplished by this double metal to metal contact
(conical supports and internal chamber). The two gaskets were coated with indium in
order to improve the tightness. A couple of viton O-rings were used in addition to seal
the cell at low pressure. In fact, while at high pressures the compression medium itself
pushed the metallic gasket ensuring the tightness, the O-rings are used as a spring,
which pushes the gaskets from the back, ensuring the tightness also at low pressure.

The HP generator was a Nova-Swiss hand pump, whose maximum output pressure
is 7 kbar. This hand pump was located outside the experimental hutch and connected
to the HP cell through a long capillary. In this way the pressure could be changed
without entering in the experimental hutch. Moreover, pressure valves that allow
decoupling the HP generator from the HP cell were used (see fig. 5.6). The pressure
was controlled by two pressure gauges with a precision of ±20 bar at 3 kbar.

We used the silicone oil (AP 150 Wacker) as transmitting medium for the pressure,
such material has the characteristics to keep its liquid phase over all thermodynamic
conditions explored in our measurements (P=0.001-2.5 kbar, T=233 K). OTP has
been introduced inside the cell being previously enclosed in a cylindrical container
of aluminium (diameter of 8.0 mm and height 9.0 mm). The aluminium container
is formed by a short and a long cap of 0.2 mm thickness; the two parts are glued
together once the longest has been filled by OTP. The container provides hydrostatic
pressure conditions, the silicone oil in fact surrounds completely the cylinder. The
use of aluminium for the container has been motivated by the fact that the radiation
scattered by aluminium gives a negligible contribution to the total inelastic scattering
signal coming from OTP, as we will observe in what follows.

In order to have OTP in the glassy state, after loading the cell with the sample we
heated the entire cell up to 373 K (≈40 K over the melting point of OTP, Tm=330 K)
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Figure 5.6: High pressure apparatus used for the experiment.
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to get OTP in liquid phase, then we plunged the cell into liquid nitrogen. The glass
was kept below Tg using the circulation of a cooling liquid around the cell at 220 K.
A thermocouple inserted in the body of the cell close to the sample has been used to
monitor the temperature during the sample preparation and the measurements.

5.4.2 Data analysis

In order to perform a quantitative analysis of the effect of pressure on the acoustic
dynamics of the OTP, we started to collect the IXS spectrum of the empty cell. The
measurements were performed with the Al cylinder closed without sample inside the
cell filled with the silicon oil. Such measurement allows evaluating the contribution to
the scattered radiation coming from the empty cell (I0(e)): the aluminium container
plus the two diamond windows of the cell and the silicon oil. Then we subtracted from
each IXS spectrum Iexp the I0(e) weighted by the coefficient e−µL (µ is the absorption
coefficient and L the length of the sample), that takes into account the fraction of the
scattered radiation transmitted through the sample. The resulting scattered radiation
coming only from glassy OTP I∗

OTP can be written as:
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Figure 5.7: IXS spectrum of OTP (red line) and the corresponding contribution of the
empty cell (black line).

I∗
OTP = Iexp − I0(e)e

−µL. (5.3)

Comparing I∗
OTP and Iexp we observe that the contribution to the total scattering

due to the empty cell is negligible (see figure 5.7).1

1This is confirmed also by the results of our data analysis that lead to almost the same value of
the parameters Ω, Γ, fQ when analyzing either I∗OTP or Iexp.
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function of the exchanged wave-vector
Q at ambient pressure. The empty
symbols are from [119].

As we have pointed out in section 5.3 to have quantitative information from IXS
data we compare Iexp with the model S(Q,ω) (see Eq. 5.2). The model S(Q,ω) has
been convoluted to the experimental resolution function R(ω) before being compared
to the experimental data.

Ĩ∗
OTP (Q,ω) =

∫
S(Q,ω′)R(ω − ω′)dω′. (5.4)

A fitting routine looks for the best values of the free parameters fQ, Ω, and Γ, in
order to minimize the χ2 estimated from the experimental data and the model:

χ2 =
N∑

i=1



Ii
∗
OTP − Ĩi

∗

OTP

σi




2

here σi is the error on the experimental data Ii
∗
OTP . The agreement between the model

function Ĩi
∗

OTP and Ii
∗
OTP evaluated minimizing the χ2 function, is shown in figure 5.4.

The statistical quality of our IXS spectra combined with the used energy resolution
(≈ 1.5 meV) allowed us to extract reliable values for the fitting parameters (Ω, Γ, fQ)
in the Q wave-vector range from 2 to 10 nm−1. At lower Q values the energy resolution
does not allow resolving the inelastic features of the sample. In addition at Q values
larger than 10 nm−1 the intensity of the radiation scattered inelastically is too low for
the fitting routine to give a reliable estimation of the free parameters. Thus we derived
the values of Ω, Γ, fq only for the spectra collected at Q=2,4,7 and 10 nm−1.
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5.5 Results

Here we report the results of our data analysis, in particular we present the behavior
of the parameters discussed in the previous section (Ω, Γ, fQ) as function of exchanged
wave vector Q and pressure P . Collecting data at different exchanged wave vectors we
have observed a progressive increase of the error bar for the parameters on increasing
Q. This effect is essentially related to the decrease of inelastic scattering compared
to elastic one that reduces, at high Q, the sensitivity of the fitting routine used to
estimate the parameters of the model.

Q-dependence

Looking at figure 5.8 we observe that the characteristic energy of the inelastic excita-
tions Ω follows the expected behavior as a function of the exchanged wave-vector Q.
Up to Q=4 nm−1 Ω increases almost linearly, moreover such linear dependence defines
a value of the speed of sound (vs = Ω/Q, vs ≈2500 m/s) that is compatible with that
of the pure longitudinal modes measured by Brillouin Light Scattering (BLS) and ultra
sound (US) technique [117, 119]. The values of Ω at ambient pressure are in agreement
with the data from previous IXS measurements [119]. Such agreement confirms the
soundness of the entire procedure used to extract the values of the parameters involved
in the model of the IXS data.

At high energy values, Ω loses its linear dependence on Q (see figure 5.8), the Ω−Q
dispersion relation starts to bend because the wave-length of the excitation approaches
the characteristic correlation length for the microscopic structure of OTP. Similarly to
what happens in a crystal, the dispersion relationship Ω − Q bends because Ω → 0
at the end of the Brillouin zone where the static structure factor S(Q) of the system
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presents a maximum. In OTP the presence of a pre-peak in the S(Q) at ≈ 8 nm−1

(see figure 5.3) is responsible for the bending of the vibrational frequencies already at
Q=7 nm−1.

From what concerns the attenuation of the probed excitations, we observe that
the widths of the excitations Γ are in agreement with the Q2 trend also found in
the previous IXS measurement [119] on OTP (see figure 5.9). The same behavior of
Γ has been found in other systems measured by IXS. However, the origin of this Q
dependence of the sound attenuation is still highly debated [120, 106, 121, 122]. While
in fact, the anharmonicity of the system predicts a Q2 behavior of Γ, it is not clear
whether such mechanism can be extrapolated in the nm−1 region of Q. At this values
of exchange wave-vector, Γ is strongly influenced by the microscopic structure of the
system; however, a clear picture of the connection between the Q2 dependence of Γ
and the topological disorder of the system is still missing.

Figure 5.10 shows the dependence of the non-ergodicity factor fQ on the exchanged
wave vector Q; at Q=2 and 4 nm−1 fQ has comparable values (within the error bars),
at higher Q its value increases. The change of fQ increasing Q is related to the increase
of the intensity of the radiation elastically scattered from the sample approaching the
maximum of the S(Q).

P-dependence

Inspecting figure 5.11 we observe that the influence of pressure on Ω is more pronounced
at high Q values (i.e. at Q=7 and 10 nm−1). At Q=7 and 10 nm−1, the slope of the
Ω − P line increases considerably, this increase will be discussed in the next section.
Here it has to be stressed that the pressure dependence of Ω is linear in the whole
explored pressure range allowing to derive a unique value of the Grüneisen parameter
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Figure 5.14: Non-ergodicity factor fQ measured as function of temperature by IXS
at Q=2 nm−1 (left panel). The solid circles are the results from [118], the square is
the value obtained from our IXS data at ambient pressure, the open symbols are the
values of fQ estimated at different values of pressure (see text). The dashed line is
the linear fit to the full symbols. In the right panel the open symbols represent the
vibrational fragility estimated from our values of fQ (see text) measured at Q=2 nm−1

as a function of pressure. The dashed line corresponds to the value of mv estimated
from the fit of the full symbols in the left panel, the continuous line is the mean value
of the open symbols.
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(see next section).

In figure 5.12 we report the dependence on pressure of the parameter Γ, and we
observe that at fixed Q values, Γ is constant (within the error bar). Such result indicates
that the main contribution to the damping of the acoustic excitations in OTP, does
not change significantly in the explored pressure range.

The non-ergodicity factor fQ as well does not experience relevant changes induced
by pressure (see figure 5.13). From the measured values of fQ, we could explore the
pressure dependence of the vibrational fragility (mv) of the glass defined from the work
of Scopigno et al. [118]. Here the slope αm of the quantity f−1

Q reported as a function
of T/Tg is related to the vibrational fragility according the linear relation mv = 135αm.

Taking into account that varying the pressure of the glass we modify the glass
transition Tg of the glass [114], we can plot each measured value of fQ as a function of
T/Tg and derive a value of mv. In figure 5.14 we report our values of fQ together with
those from Ref. [118]. The values of mv derived from Fig. (5.14) do not show any strong
dependence on P within their (rather large) error bar and suggest a P-independent
value of mv for OTP (mv=100± 20). This value is compatible with that observed from
[118] being mv=80± 5. The P independence of mv is in agreement with the pressure
independence of the fragility of OTP estimated by viscosities measurements in the
same pressure range [123].

5.6 The frequency dependence of the Grüneisen pa-

rameter

From a first sight at the behavior of Ω vs P (see figure 5.11) we observe that the fre-
quency of the acoustic excitations increases linearly with pressure but its slope changes
for different values of Q. Such behavior can be directly related to a different behavior of
the probed vibrations. An indication of the different nature of the acoustic excitations
of glassy OTP from those of an ideal harmonic system can be obtained measuring the
Grüneisen parameter. γL(Q) can be written as a function of the pressure dependence
of Ω as:

γL(Q) = −∂lnΩi

∂lnP

∂lnP

∂lnV
, (5.5)

where V is the volume of the system. Thanks to the pressure-volume-temperature
(PVT) measurements present in the literature [114] we can estimate the volume cor-
responding to each applied pressure and then using Eq. (5.5) we determine γL(Q) in
a Q range from 2 up 10 nm−1 (see figure 5.15). The Grüneisen parameter obtained by
IXS data increases increasing Q. In order to understand the reason for such behavior
we estimated also the value of the Grüneisen parameter γth from thermodynamic data
and that resulting from the measurements of the acoustic modes using US (γL(QUS))
and BLS (γL(QBLS)) spectroscopy (see table 5.1). The value of γth is obtained starting
from the value of the thermodynamic parameters: bulk modulus BT = V ∂P/∂V |T ,

heat capacity at constant volume cv, and thermal expansion α = 1
V

dV
dT

∣∣∣∣
P
. γth can be
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also expressed as the sum of the Grüneisen parameters γi(Q) of all modes of the system
weighted by the respective contribution to the heat capacity cv:

γth =
αBT

cv

=

∑
i

∫
dQcvi(Q)γi(Q)

∑
i

∫
dQcvi(Q)

. (5.6)

In order to determine γL(QUS) and γL(QBLS), we have used data present in the litera-
ture on the temperature behaviour of Ωi measured at different frequencies by US and
BLS spectroscopy. In fact γL(Q) can be also written as [112]:

γi = −∂lnΩi

∂lnV
= −∂lnΩi

∂lnT

∣∣∣∣
V

∂lnT

∂lnV

∣∣∣∣
P

= −∂lnΩ

∂T

∣∣∣∣
P

1

α
. (5.7)

In table 5.1 we report the value of the Grüneisen parameters obtained by the differ-
ent spectroscopic techniques: γL(QUS), γL(QBLS), γL(QIXS), corresponding to different
Q values.
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Figure 5.15: Grüneisen parameter calculated from IXS data using the volume depen-
dence of Ω at different Q values.

Looking at the values of table 5.1 we observe that γL(QUS), γL(QBLS), γL(QIXS)
are higher than the thermodynamic one γth. Such difference can be understood if we
recall that γth contains the contributions from all possible thermally excited vibrations
weighted by the relative heat capacity (ci) (see Eq. (5.6))2. Thus γth contains also
contributions from non-acoustic excitations possibly characterized by a Grüneisen pa-
rameter much smaller than that of the modes probed by US, BLS or IXS spectroscopy.

From figure 5.16 we observe that the value of γL(Q) is constant in a large range of
energy. The Grüneisen parameter of the longitudinal modes γL(QUS) and γL(QBLS),

2The values of the Grüneisen parameters corresponding to the transverse modes are supposed to
be close to the longitudinal one reported in Table 5.1.
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corresponding respectively to an energy of ≈10−6 meV and ≈10−1 meV, is comparable
of that measured by IXS up to energy values of ≈ 7 meV. This result suggests that
the acoustic excitations measured at relevantly high values of Q (i.e. Q=2 and Q=4
nm−1, see figure 5.15) have a very similar nature as the lower-energy ones.

We refer to the properties evaluated by the Grüneisen parameter as the anharmonic-
like nature of the mode. The terminology has been chosen in analogy with the case
of a crystal where the Grüneisen parameter is also a measure of the anharmonicity
of the system. From figure 5.16 we observe that the longitudinal acoustic vibrations
in OTP are characterized by the same anharmonic-like behavior up to energies above
that of the Boson Peak. This result suggests two possible scenarios: i) The Grüneisen
parameter of the modes embedded in the BP is very similar to that of the acoustic
modes, and therefore γL(Q) is insensitive to any possible coupling between these modes
and the acoustic ones; ii) There is no or marginal effect of a possible coupling among
the excitations embedded in the BP and the acoustic ones.

Concerning the second scenario, we note that, e.g., in network glasses [106] an
analysis of the Q-dependence of the acoustic attenuation does suggests a strong cou-
pling between acoustic excitations and BP modes. This, however, may not necessarily
be valid for the case of OTP.

Further information supporting the proposed two scenarios, can be provided ana-
lyzing the width of the inelastic excitations Γ measured at different Q values. In fact,
sound waves passing through a solid can be attenuated by two processes. First, the
acoustic wave produces through the dilatations and contractions of the solid a tem-
perature wave via thermal expansion. The energy of the acoustic wave is dissipated
by heat conduction between the regions of different temperature. Here we name Γth,
the contribution to sound attenuation from this mechanism. A second source of sound
attenuation is that called Akhiezer mechanism (ΓAk): the sound waves propagating
in a system interact with other thermally excited modes (i.e. the thermal phonons).
Because of anharmonicity, the strain field associated to a sound wave causes a change
in the thermal phonon energies. This change in general differs for phonons with dif-
ferent polarization vectors and propagation directions. The equilibrium condition is
re-established via phonon-phonon collisions; such process requires an increase of en-
tropy and then leads to the absorption of sound wave at finite temperature. One can
show that in OTP the Akhiezer mechanism represents the main contribution to sound
attenuation Γth/ΓAk ≈ 0.03 [122].

The Akhiezer mechanism of sound attenuation is characterized by a mean time
τth that the phonon’s population takes to return to equilibrium and by the Grüneisen
parameter γL(Q). According a simple model [140] one can relate γ to the value of the
measured ΓL, following the relationship:

Γ = γ2
L · cvTv

2ρv3
D

· Ω2τth

1 + Ω2τ 2
th

, (5.8)

here v is the speed of the acoustic wave, vD is the Debye sound velocity of the system,
cv the heat capacity at constant volume, ρ the density and T the temperature.

The Q dependence of the Γ parameters obtained by BLS and IXS measurements
up to Q=4 nm−1 can be described, according to Eq. (5.8) by the Akhiezer mechanism.
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Inserting in Eq. (5.8) the values of Γ measured at different Q, and the correspond-
ing Grüneisen parameters γL(Q), we obtain in the whole probed Q range τth ≈ 0.25
ps3.This results confirms that in OTP the anharmonic-like nature of the acoustic exci-
tations of the glass stays unaltered from ≈10−1 up to 7 meV. The modes have almost
identical Grüneisen parameter and are attenuated by the same mechanism, i.e. the
Akhiezer one.

Furthermore, the fact that the attenuation of the acoustic waves, across the energy
of the BP, does not differ from that predicted by the Akhiezer mechanism, indicates
that there is a small or negligible interaction between the BP’s modes and the acoustic
one.

5.7 Comparison to literature data

In order to have a deeper understanding of the results obtained from the measurements
of IXS on OTP, we proceed to compare these data with those present in literature for
other two systems: glycerol and amorphous SiO2.

These three glasses are characterized by a value of the fragility m that varies in
a large range (glycerol has m=50, SiO2 m=20 and OTP m=80) allowing to collect
information representative of a wide class of systems. Moreover in all three systems
the sound attenuation is dominated by the Akhiezer mechanism (Γth/ΓAk ≈ 0.03, 0.01
and 10−7 respectively for OTP, glycerol and glassy SiO2). Similarly to the case of
OTP, we recover from the literature the value of the Grüneisen parameter estimated
by the pressure or temperature dependence of the longitudinal mode, measured using
US, BLS, and IXS techniques. In tables 5.1, 5.2, 5.3, and figure 5.16 we report the
collected γL(Q) values.

Looking at figure 5.16 we observe that in glycerol the energy dependence of γL(Q),
up to energies of 10−1 meV is similar to that observed in OTP. The Grüneisen parameter
obtained from the longitudinal excitations probed by US and BLS techniques is almost
the same. However, at high energy ≈ 7 meV (i.e. corresponding to Q=2 nm−1)
γL(Q) increases. This increase of the Grüneisen parameter takes places at an energy
corresponding to that of the BP (red arrow in the figure). This effect suggests that
in glycerol there is an interaction of the excitations responsible for the BP with the
longitudinal ones, possibly resulting in a hybridization of these excitations.

Finally we analyzed the behavior of the Grüneisen parameter in glassy SiO2, a
system that has been the object of intensive studies because of its peculiar behavior.
Silica, in fact, is characterized by thermal activated relaxation processes that appear in
the anomalous temperature dependence of the speed of sound v (∂v/∂T < 0 at T <70 K
and ∂v/∂T > 0 at T >70 K) as shown in Fig. (5.17). The effect of these relaxations is
also visible in the value of the Grüneisen parameter that is quite different if evaluated
varying the volume of the system by changing temperature or pressure of the glass
(in the latter case γ is 20 times smaller compared to the value obtained varying the
temperature) 4. Such effect suggests that activated relaxations are not equally sensitive

3The value of τth ≈0.25 ps is in agreement with that estimated in SiO2 also using Eq. (5.8) [140].
4Here it has to be stressed that the relative changes of the volume ∆V/V of the glass obtained
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Figure 5.16: Energy dependence of the Grüneisen parameter in OTP, glycerol and SiO2

measured at temperature 0.95 T/Tg for glycerol and OTP and 0.25 T/Tg for silica. The
points at ≈ 10−6 meV have been estimated using US data, at ≈ 0.1 meV using BLS
data and in the meV region using IXS data. The arrows indicate the energy position
of the BP. The open square in the SiO2 panel indicates the Grüneisen parameter of the
Boson Peak γBP (see text).
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5.7. Comparison to literature data

to pressure and temperature. Here we analyzed the value of the Grüneisen parameter
obtained varying the temperature of SiO2.
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Figure 5.17: Energy dependence of the longitudinal speed of sound in amorphous silica
measured by R. Vacher at al. [126] using BLS.

We evaluated γL(Q) from measurements of the longitudinal excitations performed
at T=275 K where the speed of sound of the glass shows a linear behavior. Studies
available in the literature [140] predict that at such temperature the activated relax-
ation processes are strongly suppressed. Looking at the values of γL(Q) for SiO2 in
figure 5.16 we recognize a behavior similar to that of glycerol.

In SiO2 the values of γL(QBLS) and γL(QUS) are almost the same, while at energies
corresponding to that of the BP the Grüneisen parameter strongly increases. Moreover,
thanks to the presence in the literature of measurements of the BP as function of
temperature we could estimate the Grüneisen parameter for the modes embedded in
the BP. Similarly to a single vibrational excitation it is possible to define the Grüneisen
parameter also for the BP:

γBP = −∂lnΩBP

∂lnV
, (5.9)

where ΩBP is the frequency position of the BP (defined as the maximum of the RDOS).
In figure 5.16 we observe that the value of γBP is comparable to the Grüneisen

parameter measured by IXS for an acoustic excitation almost at the same energy ≈6

varying temperature are much smaller than that obtained varying pressure. Applying of 1 GPa
∆V/V ≈ 0.03, varying the temperature of 100 K at 200 K ∆V/V ≈ 0.001.
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Table 5.1: We report for the OTP the Grüneisen parameters γL(QUS), γL(QBLS),
γL(QIXS) and γTh with the corresponding errors ∆γ (see text); all data correspond to
measurements at 0.95 T/Tg. We indicate also the exchanged wave-vector Q correspond-
ing to the measured Grüneisen parameters. The [*] refers to our IXS measurements.

γ ∆γ Q (nm−1) Ref.

γL(QUS) 3.6 0.2 ≈ 10−6 [141]
γL(QBLS) 3.30 0.05 0.04 [142]
γL(QIXS) 3.5 0.8 2 [*]
γL(QIXS) 3.5 0.8 4 [*]
γL(QIXS) 7.4 1.4 7 [*]
γL(QIXS) 9.4 1.9 10 [*]

γth 1.02 0.8 – [114, 143]

meV. Thus we conclude that in silica, approaching the energy of the BP, the vibrational
excitations start to lose their purely acoustic nature being strongly hybridized with the
modes of the BP.

Comparing for these three glasses the relative increase of γL(Q) at energies close
to that of the BP, we conclude that the coupling between the vibrational excitations
responsible for the BP and the acoustic ones increases passing from OTP to glycerol
and to SiO2. Thus, it seems that the effect of the increase of γL(Q) at energies typical
of the BP might correlate with the increase of fragility of the glass.

Using the measurements that we have performed on the Boson Peak and on the
acoustic modes in densified and hyperquenched glasses we can estimate γBP and γL(QBLS)
also for these two systems. In this case γBP ≈ γL(QBLS) ≈ 0.9. In these glasses, both
densified and hyperquenched, we have observed that the BP scales with the Debye
energy of the glass and then with the acoustic modes measured by BLS spectroscopy
(see chapter 3 and 4). Varying the density of these glasses the corresponding shift in
energy of the BP is dominated by the effect of the acoustic modes. This implies that
in these systems the analysis of the Grüneisen parameter does not allow discriminating
between the modes responsible for the BP and the acoustic ones.

This clearly does not allow us to estimate a coupling mechanism -weak or strong-
between the modes embedded in the BP and the acoustic ones for these network glasses.
Maybe a detailed study of the acoustic absorption in the energy range of the BP would
allow solving this issue.
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Table 5.2: Grüneisen parameter in glycerol measured at 0.95T/Tg.

γ ∆γ Q (nm−1) Ref.

γL(QUS) 1.1 0.3 ≈ 10−6 [144]
γL(QBLS) 1.0 0.1 0.037 [145]
γL(QIXS) 2.7 0.2 2 [146]

γth 3 0.2 – [147, 148]

Table 5.3: Grüneisen parameter in amorphous SiO2 measured at 0.25T/Tg.

γ ∆γ Q (nm−1) Ref.

γL(QUS) 64 10 ≈ 10−6 [149]
γL(QBLS) 75 7 0.03 [126]
γL(QIXS) 170 50 1.6 [150]

γth 0.034 0.005 – [152, 153]
γBP 190 20 – [150, 151]

5.8 Conclusions

Measuring by IXS the dynamic structure factor of glassy OTP, we have characterized
the high frequency dynamics of the glass, studying the influence of pressure (0.001-2.5
kbar) on the density fluctuations of the system at wave vectors between 2 and 10 nm−1.

Here we briefly summarize the main results of our study.

• Concerning the effect of pressure on the S(Q,ω) of glassy OTP, we have observed
that the width of the inelastic excitations Γ, and the non-ergodicity factor fQ do
not change varying the pressure. Conversely, the characteristic frequency Ω has a
linear dependence on pressure allowing to obtain a unique value of the Grüneisen
parameter in the all probed pressure range.

• Exploiting the connection between the measured non-ergodicity factor fQ and
the vibrational fragility (mv) of the glass we have been able to evaluate the ef-
fect of pressure on mv. No sensible variation of mv has been observed increasing
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pressure. The same effect of pressure has been reported in the literature concern-
ing the kinetic fragility m [123]. These observations indicate that the increase
of pressure does not alter the correlation between mv and m valid at ambient
pressure, at least within the (rather large) error bars of the present experiment.

• Analyzing the values of the Γ measured at different Q values, using BLS and IXS,
we have observed that the same Akhiezer mechanism dominates the attenuation
of the acoustic excitations from Q ≈0.04 nm up to 4 nm−1. The values of Γ can
be properly described by a simple model of the Akhiezer mechanism using as
characteristic phonon relaxation time τth ≈ 0.25 ps.

• In OTP the Grüneisen parameter keeps a constant value ≈3 from Q = 10−6nm−1

up to Q = 4nm−1, corresponding to energies across the BP’s energy. This obser-
vation suggests that in OTP the measured acoustic excitations do not or weakly
interact with those responsible for the BP. At energies higher than ≈ 7 meV the
Grüneisen parameter shows a clear increase. This effect can be associated to
different causes, e.g. hybridization of the sound wave with non-acoustic modes.

• Finally we studied the interaction between the acoustic vibrations and those
embedded in the BP recovering from the literature the Grüneisen parameter in
a wide range of energies also for glycerol and amorphous SiO2. In glycerol, at
the energy of the BP, the acoustic excitations do not have the same Grüneisen
parameter as in the MHz frequency region. In silica, the acoustic waves in the
nm−1 range are completely hybridized with the excitations embedded in the BP.
The variation of the Grüneisen parameter across the BP for glycerol and SiO2,
together with the previously recalled results obtained for OTP, suggest a possible
relation between the fragility of the glass and hybridization of the BP’s excitations
with the acoustic ones.
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Conclusions and Perspectives

In this section we summarize the main results of the present Thesis work and we trace
some perspectives for future experimental investigations on this topic.

The object of our studies was to investigate the vibrational dynamics of the glassy
phase with a particular interest on the low frequency ”anomaly” in the density of vi-
brational states: the Boson Peak. The research project presented in this manuscript
has been developed in three years and it has involved the investigation of the vibra-
tional dynamics of four classes of samples: hyperquenched glasses, the silicate glass
Na2FeSi3O8 both under pressure and densified, the fragile glass OTP under pressure.
Our studies have been supported by various experimental techniques: Nuclear Inelas-
tic Scattering, Inelastic X-ray Scattering, Brillouin Light Scattering, X-ray diffraction,
Differential Calorimetric scans, Mössbauer spectroscopy and density measurements.
Such variety of experimental methods allowed us to have information on the dynamics
and on the structure of the probed glassy systems over a wide range of length and
times scales, from the macroscopic limit to the mesoscopic region of nm and ps.

We can summarize the main conclusions of our study, for each specific class of
samples, as follows:

• In the hyperquenched glass we have observed that the variation of the fictive
temperature Tf of the glass corresponds to a modification of the DOS in the low
energy region where the BP is present. Such change is entirely associated with
the corresponding transformations of the macroscopic properties of the glass.

• From the study on the silicate glass Na2FeSi3O8, we have observed that the
effect of ”densification” on the the maximum of the RDOS is associated with the
change of the macroscopic properties of the glass. Moreover, in the Na2FeSi3O8

glass we could clarify that a rearrangement of the local structure of the glass
leads to a modification of the BP. Conversely, a change of the structure of the
sample in the middle range length scale, as it appears from the modification of
the first diffraction peak of the glass, does not have any strict correlation with
the evolution of the low energy region of the DOS.

• From the study of glassy OTP, we have observed that the acoustic modes prop-
agate at energies beyond that of the BP. These excitations, that are clearly not
plane waves, are characterized by a value of the Grüneisen parameter γ that does
not change passing from the MHz up to the THz frequency region. Moreover, a
unique mechanism, the Akhiezer one, can describe the acoustic attenuation over
this entire frequency range. These two observations suggests that in OTP there is
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no or marginal interaction between the acoustic waves and the modes responsible
for the BP. An analysis of literature data shows in addition that in both glycerol
and SiO2 there is a clear hybridization between the BP modes and the acoustic
one, suggesting that the strength of the coupling might be simply related to the
fragility of the glass.

These conclusions allowed us to have new insights on fundamental questions on
the vibrational dynamics of glasses, for instance: What is the nature of the modes
involved in the BP, how it depends on external parameters as pressure or thermal
history. However, several and new questions naturally arise from our conclusions.

In order to answer some of them, a further experimental effort on the same class of
samples is required. We could imagine to plan a new set of experiments to complete
those presented on this Thesis work. For instance, in the case of hyperquenched glasses,
a study with molecular dynamics simulations could be helpful to understand if the
established correlation between Tf , DOS and macroscopic properties of the glass, can
be predicted also within the energy landscape approach.

In fact, according to the experience of this Thesis work, in order to plan decisive
experimental studies on this subject, one has to elaborate a new strategy of investiga-
tion. The complexity of the subject and the number of theoretical models proposed to
describe the BP demand for a closer integration between theoretical and experimental
studies. In particular the final task of the experimental studies should be to perform a
more accurate analysis of the BP on a quantitative basis.

In this perspective it would be helpful to use, at the same time, on the same
sample, different techniques able to probe both the structure and the dynamics of the
system. Moreover, one would more easily trace general conclusions on the investigated
phenomenology using samples for which the physical properties, even the most peculiar
ones, are well characterized.

A possible experiment, decisive for the study of the BP, could be realized on a
system in which one can easily control its DOS by an external parameter. Monitoring,
at the same time, the evolution of the DOS and that of the dynamic structure factor
S(Q,ω) in the range of energy of the BP, one could clarify the role of the possible
coupling between the modes of the BP and the acoustic one.

Finally, it would be an interesting approach the study of the BP from another point
of view: looking at the crystalline phase. It should be interesting to investigate the
dynamics and the microscopic structure of a system when it experiences the transition
between the glass to the crystalline phase. In fact, a description of the BP starting from
the analysis of the corresponding crystalline phase could be helpful for an explanation
of this vibrational ”anomaly” which is consistent with the knowledge of the dynamics
at the microscopic scale.
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Dans cette section on cherchera de faire un résume des résultats de notre étude de
thèse et nous tracerons les prospectives pour les futures études expérimentales dans ce
domaine.

L’objet de notre étudie a été l’investigation de la dynamique vibrationelle de la
phase vitreuse avec un intérêt particulier pour l’anomalie de basse fréquence dans la
densité d’états vibrationelle: le ”Boson Peak”. Le projet de recherché présenté dans ce
manuscrit a été développé in trios années avec l’etude de la dynamique vibrationelle
de quatre classes de échantillons: verres ”hyperquenched”, verres silicates Na2FeSi3O8

sois sous pression sois densifiés, et un verre d’orto-therphenil sous pression. Ntres
études ont été supportées de différentes techniques expérimentales: Nuclear Inelastic
Scattering, Inelastic X-ray Scattering, Brillouin Light Scattering, X-ray diffraction,
Differential Calorimetric scans, Mössbauer spectroscopy et mesures de densité. Cette
variété de méthodes expérimentales ont permis d’avoir informations sur la dynamique
et sur la structure des systèmes vitreux a différents echelles de longheurs et temps, de
la limite macroscopique jusqu a la région mesoscopique de nm et ps.

Nous pouvons faire un résumé des conclusions principales de notre étude, pour
chaque classe de échantillon, dans la manière suivant:

• Dans le verre ”hyperquenched” nous avons observé que la variation de température
fictive Tf du verre corresponde a une modification de la DOS dans la région de
basse énergie ou est présente le BP. Ce changement est directement associé avec
la transformation de les propriétés macroscopiques du verre.

• Avec l’étude du verre silicate Na2FeSi3O8, nous avons observé que l’affect de
densification sur le maximum de la RDOS est associé avec un changement des
propriétés macroscopiques du verre. Dans le Na2FeSi3O8 le réarrangèrent de
la structure locale du verre conduit a la modification du BP. Contrairement, a
changement de la structure de l’échantillon a une echelle de longheurs du nanome-
ter, qui modifie le premier pic de diffraction du verre, n’as aucune corrélation avec
l’évolution de la DOS a basse énergie

• De l’étude du verre OTP, nous avons observé que un mode acoustique propagate
a énergies plus élevés du BP. Ces excitations, que ne sont pas des ondes planes,
sont caractérisés par un valeur du paramètre de Grüneisen γ que ne change pas
en passant de MHz jusqu’à a la région de fréquence du THz. En plus, un seul
mécanisme, celui d’Akhiezer, peut décrire l’atténuation acoustique sur dans cette
region de fréquences. Ces deux observations suggèrent que dans l’OTP il n’y a
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pas interaction entre le modes acoustiques et le modes responsables du BP. Une
analyse des donnes présente en littérature montre en plus que dans le glycerol
et le SiO2 il y a une hybridization entre le mode du BP et celles acoustiques, ce
résultat nous suggère que l’intensité de l’interaction peut être simplement associé
a la fragilité du verre.

Ces conclusions permet d’avoir des nouveaux point de vu sur des questions fonda-
mentales de la dynamique vibrationelle des verres, pour exemple: Quelle est la nature
des modes du BP, comme ils dépendent par un paramètre extérieure. Pourtant, beau-
coup et nouvelles questions naturellement sortent par notre conclusions.

Au fin de répondre a ces questions, il faut an effort expérimental plus profond
sur la même classe d’ échantillons. Nous pouvons penser de planifier des nouvelles
expériences au fin de compléter celles présente dans ce travaille de thèse. Pour exem-
ple, dans le cas des verres ”hyperquenched”, un étude avec simulations numérique de
la dynamique pourra être utile pour comprendre si la corrélation entre Tf , DOS, et
propriétés macroscopiques du verre peut être prévu aussi en utilisant la méthode de
”l’energy landscape”.

En fait, a partir de ce travaille de thèse, au fin d’avoir expériences décisives dans ce
domaine, il faut élaborer une nouvelle stratégie d’investigation. La complexité du sujet
et le nombre des modelés proposés pour décrire le BP ont besoin d’une intégration
plus proche entre études théoriques et expérimentales. En particulier le but final des
expériences expérimentales dois être d’avoir une plus fin analyse du BP sur de bases
quantitatives.

Dans ce perspective est utile avoir, au même temps, sur le même échantillon,
différents techniques qui peuvent étudier la structure et la dynamique du système. En
plus, on pourrait plus facilement avoir des conclusions générales sur la phénoménologie
étudié en utilisant des échantillons dans le quel aussi le propriétés plus spécifiques au
système sont bien caractérisé.

Une expérience décisive pour l’étude du BP peut être réalisé sur un système dans le
quel on peut facilement contrler la DOS avec en paramètre extérieur. En contrlent, au
même temps, l’évolution de la DOS et celle du facteur de structure dynamique S(Q,ω)
dans la region d’énergie du BP, on pourrait clarifier le rle d’un possible connexion entre
le mode du BP et celles acoustiques.

Enfin, serait intéressant affronter l’étude du BP avec en autre point de vu: en
regardant a la phase cristalline. En fait, une description du BP en partant de l’analyse
de la phase cristalline correspondent pourrait être utile pour une explication de cette
anomalie vibrationelle consistent avec la connaissance de la dynamique du cristal.
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Appendix A

Elasticity of a solid

Under the action of applied forces, solid bodies exhibit a behavior that on the macro-
scopic scale can be considered elastic: the system returns to its initial state after the
external force is removed. The characterization of the elasticity in a solid can be re-
garded as a first look at the dynamical behavior of the system on a macroscopic length
scale.

A natural way to define the elasticity of a solid is to monitor its reaction to an
applied deformation. When a body is deformed the distance between its points changes.
Considering a particular point we can define its position vector before the deformation
as ~r, and after the deformation as ~r′ (with components x′

i). The displacement of the
point because of deformation is given by ~r′−~r, which we denote as u with components:
ui = x′

i − xi.
If we consider now two points very close together and the radius vector joining

them before the deformation has components dxi, after the deformation of the solid,
the new radius vector will be dx′

i = dxi + dui, where du is the displacement of these

two points. The distance between the points will change from dl = (dx2
1 + dx2

2 + dx2
3)

1
2

to dl2
′

= (dx′2
1 + dx′2

2 + dx′2
3 )

1
2 ; using dui = ( ∂ui

∂xk
)dxk we can write [77]:

dl
′2 = dl2 + 2

∂ui

∂xk

dxidxk +
∂ui

∂xk

∂ui

∂xl

dxkdxl. (A.1)

Eq. (A.1) can be also expressed in the form:

dl
′2 = dl2 + 2uik dxidxk, (A.2)

introducing the strain tensor uik:

uik =
1

2

(
∂ui

∂xk

+
∂uk

∂xi

+
∂ul

∂xi

∂ul

∂xk

)

, (A.3)

uik gives a measure of the change in length of an element of the body deformed by
dui (here i is the index of the component of the direction of deformation). When a
deformation occurs the arrangement of the atoms is altered and the body ceases to
be in its original state of equilibrium. Therefore, forces arise which tend to return the
body to equilibrium. These internal forces are called internal stresses. The total force
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acting on a part of the body along the ith direction FTi, as reaction to a deformation,
can be written as the volume integral: FTi =

∫
FidV , where the Fi is the force per unit

volume. FTi is regarded as the force exerted on a given portion of the body by the
portion surrounding it and can be written as the sum of forces acting on all surfaces
elements df :

∫
FidV =

∫ ∂σik

∂xk

dV =
∮

σikdfk, (A.4)

with

Fi = ∂σik/∂xk. (A.5)

Here we have defined the stress tensor σik as the ith component of the force on a unit
area perpendicular to the xk axis. Using the strain tensor uik and the stress tensor σik

we can fully characterize the elasticity of a solid introducing the elastic constants Cijkl.
The elastic behavior of a solid (the system returns to its initial state after external forces
are removed) can be expressed formally by the proportionality between the stress and
the strain tensor:

σij = Cijkl ukl. (A.6)

The fourth rank tensor Cijkl is called elastic constant and because of the symmetrical
properties of the strain and the stress tensor it has 36 independent components. Never-
theless it can be shown that for an isotropic medium the number of independent elastic
constants is reduced to two components: ξ and µ [77]. A possible way to measure ξ
and µ is to observe the reaction of the solid to an induced deformation.

An isotropic solid in fact can support two types of elastic waves: longitudinal and
transverse waves. The longitudinal waves are characterized by a displacement of the
medium parallel to the direction of propagation of the wave i.e. a polarization parallel
to its wave vector ~q (|q| = 2π/λ where λ is the wavelength of the wave). Conversely
in transverse waves the medium is displaced perpendicularly to the wave vector. The
existence of elastic waves in solids can be derived starting from the fundamental law
of dynamics ~F = m~a. The force per unit volume of a stressed material Fi = ∂σij/∂xj,
gives rise to an acceleration ∂2ui/∂t2 of the unit volume along the ith axis that can be
written as:

ρ
∂2ui

∂t2
=

∂σij

∂xj

. (A.7)

Using of Eq.(A.6) the equation of the motion A.7 becomes:

ρ
∂2ui

∂t2
= Cijkl

∂2ul

∂xj∂xk

. (A.8)

A general solution of this equation for an isotropic solid has the form: ui = u
i~q(xi−vt)
0 ,

that represents a propagating wave. To calculate the phase velocity v and the wave
vector ~q (i.e. the displacement direction) we insert ui = u

i~q(xi−vt)
0 into Eq.(A.8) obtain-

ing:
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ρv2ui = Cijklqjqkul. (A.9)

Alternatively Eq. (A.9) can be expressed as:

Γilul = ρv2ui, (A.10)

introducing the second rank tensor Γil:

Γil = Cijklqjqk. (A.11)

The eigenvalues and the eigenvectors of the tensor Γil give the velocities and the po-
larizations of the plane waves that propagate along the direction ~q. In an isotropic
medium the Eq. (A.11) can be replaced by:

Γil = (ξ + µ) qiql + µ qiqlδil. (A.12)

This equation has two solutions [77]:

• When ~q⊥~u, which corresponds to a shear wave propagating with velocity vT =√
µ/ρ.

• When ~q//~u, which corresponds to a longitudinal wave propagating with a velocity

vL =
√

(4/3µ + ξ/)ρ.

Thus, an isotropic solid supports the propagation of longitudinal or transverse plane
waves in which the velocities: vL and vT , do not depend on the propagation directions.
Moreover, the solid has two independent elastic constants ξ and µ, that can be directly
evaluated by measurements of density and speed of sound (µ = ρv2

T and ξ = ρv2
L-

4/3ρv2
T ).
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[57] S. Takeno and M. Gôda, Prog. Theor. Phys., 45, 331 (1971).
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Résumé
Le travail actuel de thèse est consacrè l’étude de la dynamique vibrationnelle du

verre et en particulier à la recherche sur l’anomalie de basse fréquence: le ” Boson Peak
” (BP). Dans le premier chapitre, les aspects généraux de l’état vitreux sont présentés.
Ici nous discutons comment le comportement thermodynamique anormal des verres
peut tre associé à la présence du Boson Peak dans la densité vibrationnelle (DOS)
du verre. Dans le deuxième chapitre, nous discutons les techniques spectroscopiques
principales utilisées dans cette étude: Diffusion non élastique nucleaire et la diffusion
non élastique de rayons X. Dans le troisième chapitre, nous présentons l’étude du verre
” hyperquenched ”. Les effets de l’histoire thermique sur les propriétés dynamique et
structurales des verres sont étudies. Le quatrième chapitre est consacrée à l’étude de
l’effet de la pression et de la densité sur le DOS d’un verre. Les changements de la DOS
sont corrélées une fois de plus avec les changements macroscopiques à moins qu’une
transformation structurale ait lieu. En conclusion, nous présentons une étude sur la
dynamique à haute fréquence (dans la région de fréquence de THz) d’ortho-terphenyl
vitreux, et l’effet de la pression sur cette dynamique est discute. En comparant nos
résultats à d’autres données disponibles dans la littérature, il à été possible de déduire
quelques conclusions sur la nature des modes acoustique aux énergies identiques à celle
du BP.

Mots clés: Boson Peak, densité des états vibrationelles, verres densifiés, hyper-
quenched, Diffusion non élastique nucléaire, diffusion non élastique de rayons x.

Summary
The present thesis work is devoted to the study of the vibrational dynamics in

glasses, in particular we investigated the low frequency anomaly: the Boson Peak. In
the first chapter the general aspects of the glassy state are. Here we discuss how the
anomalous thermodynamic behavior of glasses can be associated to the presence of
the Boson Peak in the density of vibrational state of the glass. In the second chapter
we discuss the main spectroscopic techniques used in this study: Nuclear Inelastic
Scattering (NIS) and the Inelastic X-ray Scattering (IXS). In the third chapter we
present the study of hyperquenched glass. In this chapter the effects of the thermal
history on the dynamical and structural properties of glasses are investigated. The
fourth chapter is dedicated to the study of the effect of pressure and density on the
DOS of glass. The changes that the DOS experiences are correlated once more to
the macroscopic changes, unless structural transformation takes place. Finally we
present study on the high frequency dynamics (in the THz frequency region) of glassy
ortho-terphenyl, and the effect of pressure on this dynamics is discussed. From the
comparison of our results to others data available in the literature it has been possible
to deduce some conclusions on the nature of the acoustic modes at energies comparable
to that of the BP.

Key words: Boson Peak, vibrational density of states, densified glasses, hyperquenched,
nuclear inelastic scattering, inelastic x-ray scattering.


