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1. Contexte des activités de recherche et
d’enseignement et remerciements

Les travaux que je vais présenter dans les chapitres suivants ont été effectués principa-
lement en deux lieux : le Laboratoire Kastler-Brossel et le département de physique de
l’Australian National University, à Canberra, dans le groupe de Hans Bachor. L’origine
de cette collaboration date de ma thèse, pendant laquelle nos deux groupes se sont mis
en relation pour réaliser une expérience commune, expérience que je suis allé faire à la fin
de ma thèse en passant un mois à Canberra. Je vais préciser ici comment s’articulent mes
différents travaux entre ces deux endroits, puis je dirai quelques mots de mes activités
d’enseignement.

J’ai effectué ma thèse dans le groupe d’optique quantique de Claude Fabre au sein du
laboratoire Kastler-Brossel, à l’Université Pierre et Marie Curie. Cette thèse portait sur
l’étude des effets quantiques dans les images optiques. J’y ai étudié expérimentalement
le comportement des oscillateurs paramétriques concentriques et confocaux au dessus
du seuil, à la fois de manière classique en étudiant les motifs optiques émis par de telles
cavités, et quantiquement en mettant en évidence le caractère multimode du champ
émis par la cavité confocale. Ces études se sont doublées d’une partie théorique sur les
propriétés quantiques des solitons et les propriétés quantiques transverses des faisceaux
lumineux de manière générale. Un article du groupe ayant montré la possibilité d’amé-
liorer les mesures de position par rapport à la limite quantique standard, nous avons
initié la collaboration avec l’Australie -le groupe de Hans Bachor disposant d’une source
de vide comprimé de grande qualité- et j’ai pu réaliser l’expérience correspondante à la
fin de ma thèse.

C’est donc naturellement que je me suis tourné vers l’Australie pour effectuer mon sé-
jour post-doctoral. Cette fois-ci, je me suis intéressé à la génération d’états non-classiques
et aux protocoles d’information quantique, ce qui m’a permis de réaliser, notamment, des
expériences d’intrication de polarisation et de téléportation. De plus, j’ai développé en
parallèle la théorie de la mesure des images d’intensité pour généraliser à toute mesure
les prédictions sur les mesures de position. Ainsi, j’ai également pu pendant ce séjour
réaliser une expérience de mesure de position d’un faisceau laser à deux dimensions
transverses au delà de la limite quantique standard.

La même année (2002), j’ai été recruté comme Maître de Conférences à l’Université
Pierre et Marie Curie, au sein du laboratoire Kastler-Brossel. À mon retour, j’ai parti-
cipé au renouvellement de l’expérience d’imagerie, qui a pris une autre orientation avec
l’amplification sans bruit d’images. Je me suis également intéressé aux expériences sur
les oscillateurs paramétriques optiques, qu’elles soient classiques (avec des mesures de
brisure de symétrie) ou quantiques (intrication, mesure conditionnelles, bruit basse fré-
quence, etc...). J’ai ainsi commencé à m’intéresser de manière plus précise aux critères
d’intrication et à leur lien avec l’optique quantique multimode.
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1. Contexte des activités de recherche et d’enseignement et remerciements

De plus, je me suis attaché à développer la collaboration avec l’Australie, ce qui nous
a permis de recruter un étudiant en thèse en cotutelle entre nos deux institutions. J’ai
donc partagé mon temps entre ces différentes activités, en effectuant régulièrement des
séjours à Canberra. La grande réussite de cette collaboration vient des bases de son
fonctionnement. Tout d’abord, nous avions trouvé un thème commun, novateur, celui de
l’optique quantique à petit nombre de modes, où l’on produit à la demande la lumière
nécessaire à améliorer une mesure spécifique. Ensuite, il était clair que les expériences
se déroulaient en Australie, sous la responsabilité de Hans Bachor, et la théorie était
faîte en France, sous ma responsabilité et celle de Claude Fabre. Cette collaboration est
toujours en cours et a donné lieu à de nombreuses publications.

Tout cela m’a mené à étudier l’optique quantique multimode, de façon générale, en me
penchant à la fois sur les critères d’intrication et les propriétés des champs multimodes.
Avec Claude Fabre, nous avons alors défini un nouveau projet de recherche, l’optique
quantique avec un peigne de fréquence, pour lequel nous avons obtenu un financement
de l’ANR et qui est en cours de montage.

L’ensemble des travaux effectués durant cette période ne sont pas, par soucis de cohé-
rence et de concision, repris dans ce manuscrit. Au delà des extensions et compléments
des travaux présentés, certains thèmes ne sont pas abordés. Ainsi, je ne reviendrai pas
sur les travaux faits exclusivement pendant ma thèse, ni sur l’étude de la brisure spon-
tanée de symétrie lors de la génération intracavité de second harmonique (article [19]
de la liste de publications). Je ne détaillerai pas non plus l’étude des fluctuations quan-
tiques dans les solitons (articles [2,14,17,31] de la liste de publications), études faîtes en
partie durant ma thèse et dont les idées physiques sont pour l’essentiel contenues dans
les travaux présentés.

Je tiens à insister sur les nombreuses collaborations initiées par le groupe qui ont per-
mis ce travail et l’ont enrichi, que toutes et tous en soit remercié. Je voudrais en particu-
lier citer, tout d’abord, Hans Bachor, puis, dans le désordre, Ping Koy Lam et Magnus
Hsu en Australie, Warwick Bowen à Ottago en Nouvelle Zélande, Roman Schnable à
Hanovre et Ulrik Andersen à Copenhague. Le groupe de Luigi Lugiato et Alessandra
Gatti à Como en Italie, Éric Lantz et son groupe de l’institut Femto ST à Besançon,
Mikhail Kolobov du laboratoire Phlam à Lille, Philippe Réfrégier de l’institut Fresnel
à Marseille, Yuri et Tania Goliubev de l’université de Saint Petersbourg, German de
Valcarcel de l’université de Valence, les brésiliens Paulo Souto-Ribeiro, Antonio Khoury,
Paulo Nussenzweig et Carlos Monken.

Je voudrais également mentionner les collaborations internes au laboratoire, tout
d’abord l’autre partie du groupe d’optique quantique, notamment Michel Pinard et Al-
berto Bramati et les thésards successifs de ce groupe. Également Serge Reynaud et
Brahim Lamine pour notre début de collaboration sur les mesures de temps. Je n’ai
cité ici que les personnes avec lesquelles j’ai collaboré scientifiquement directement, mais
bien entendu le laboratoire dans son ensemble, de part son fonctionnement et les per-
sonnalités présentes est une clé essentielle de mon travail de recherche. Je remercie aussi
en particulier Michèle Leduc, avec laquelle j’ai organisé et participé à de nombreux
workshop.

L’équipe elle-même s’est bien malheureusement réduite avec le départ de Thomas
Coudreau, merci des moments passés et bonne chance pour la suite ! et celui d’Agnès
Maître qui, bien que partie, est toujours présente, disponible et avec qui j’ai maintenant
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l’immense plaisir d’enseigner. Enfin, Claude Fabre, lui toujours bien présent, jamais à
court d’idées, de conseils ou de projets, et avec qui j’espère vraiment pouvoir continuer
à travailler le plus longtemps possible ! Merci à tous les trois.

Enfin, je terminerai par les doctorants avec lesquels j’ai travaillé directement, et sans
lesquels, au vu de ma charge d’enseignant chercheur, je n’aurai pu continuer mes activités
de recherche, en particulier expérimentales. Ce sont Vincent Delaubert, Laurent Lopez,
Gaëlle Keller, Giuseppe Patera, Antonino Chiummo, Sylvain Gigan, Julien Laurat et
Laurent Longchambon qui ont fait tout le travail !

Je voudrais aussi profiter de cet espace pour évoquer mes activités d’enseignement
et de vulgarisation scientifique. Loin d’être une activité au pire secondaire ou au mieux
parallèle à la recherche, l’enseignement fait partie intégrante de notre métier et on se rend
compte, au fil des années, que l’un ne peut plus aller sans l’autre. Bien que les conditions
d’enseignements ne soient pas toujours idéales, l’organisation compliquée et la charge
de travail demandée aux enseignants-chercheurs toujours plus importante, le plaisir des
moments passés devant les étudiants compense encore toutes ces difficultés, quel que soit
d’ailleurs le niveau et la matière de l’enseignement délivré. J’ai également pris l’habitude
de recruter souvent des stagiaires, et je pense que, indépendamment du travail effectué,
cela est toujours profitable pour tout le monde, merci à eux et j’espère continuer à avoir
les moyens -à la fois en infrastructure mais aussi en temps- de leur proposer des séjours
dans notre laboratoire. Je voudrais, pour l’ensemble de mes activités d’enseignement,
souligner le soutien dont j’ai pu bénéficier au sein du laboratoire, et en particulier l’aide
de Lucile Julien, de Jean-Michel Courty, de Catherine Schwob et d’Agnès Maître.

Je ne vais pas remercier individuellement l’ensemble des personnes avec qui j’ai la
chance d’enseigner, mais je voudrais insister sur la confiance qu’elles m’ont en général
accordée et sur la liberté dont on dispose du moment que l’on en a la volonté (et le
temps !). Cela rend optimiste sur la possibilité de faire évoluer le fonctionnement de
notre institution dans le bon sens. Un certain nombre de chantiers sont en cours en
particulier sur le rôle de notre enseignement et nos ambitions de formation, et j’espère
pouvoir continuer à y participer.

Enfin, j’ai eu la chance de pouvoir, en plus, m’impliquer dans un grand nombre d’acti-
vités de vulgarisation, dont la reconstitution de l’expérience de Fizeau constitue la partie
visible. Ces activités sont, pour moi, tout à fait similaires à celles de l’enseignement dans
leur esprit même si le public y est différent. Merci à ceux qui ont permis ces activités,
et en particulier, encore une fois, à Jean-Michel Courty et à Claude Fabre. La diffusion
d’une culture de base sur la physique est à mon avis essentielle si l’on veut que cette
science ne soit plus considérée, au mieux, comme hermétique par le plus grand nombre.
Les efforts de pédagogie faits dans ce cadre sont d’ailleurs tout à fait profitables à la
fois à nos activités d’enseignement et à celles de recherche. J’espère voir ces activités se
pérenniser, continuer à y impliquer les étudiants du laboratoire et de l’université, afin
d’apporter du dynamisme et de la visibilité a notre discipline, mais également afin de
continuer à y prendre plaisir !
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2. Introduction

Les études sur les propriétés spécifiquement quantiques de la lumière ont porté prin-
cipalement sur deux types distincts d’états quantiques du champ, liés à des techniques
de détection très différentes : les états à photons bien isolés d’une part, et les faisceaux
intenses ou macroscopiques d’autre part. Le cas des photons uniques donne directement
accès à des objets quantiques que l’on peut manipuler pour faire des tests fondamentaux
de la mécanique quantique ou mettre en œuvre des protocoles d’information quantique.
Cependant, le nombre de particules intriquées très faible limite la gamme des états réa-
lisables, et la technologie des détecteurs (qui permettent difficilement de détecter plus
d’un photon à la fois) limite la gamme des états mesurables. Dans le cas des faisceaux
macroscopiques, où cette fois-ci le nombre de photons est très grand et où ils ne sont pas
distingués individuellement, on a pu réaliser de nombreux états quantiques comme des
états comprimés ou des faisceaux intriqués. Cependant, du fait à la fois des non-linéarités
atteignables et des techniques de détection, on se trouve dans la limite des petites fluc-
tuations quantiques ce qui interdit de réaliser, par exemple, des états à fonction de
Wigner négative. Notre point de départ est pourtant ce deuxième cas, qui englobe la
quasi-totalité du travail décrit ici. Dans cette limite des petites fluctuations quantiques,
nous allons chercher à augmenter la richesse, et les possibles applications, des états quan-
tiques produits en multipliant le nombre de "modes" -ou degrés de libertés- mis en jeu
par le processus de détection. C’est ce que nous appelons l’optique quantique multimode.

La complexité multimode introduite permet d’envisager des applications dans le trai-
tement quantique de l’information. On citera l’accroissement des capacités de stockage
et de transfert d’information, la réalisation d’intrication plus robuste, le traitement en
parallèle de l’information quantique. Mais ces études peuvent également trouver des ap-
plications pour améliorer les techniques d’imagerie et de métrologie. Le champ d’étude
est donc très vaste et très général, à l’image des multiples applications de l’optique pour
les mesures de précisions et les communications. Les enjeux sont à la fois d’étudier avec
nos outils des dispositifs bien connus, mais également d’explorer les possibilités nou-
velles offertes par une approche quantique appliquée aux degrés de liberté multiples de
la lumière.

Dans ce cadre, nous commencerons par un chapitre technique permettant de rappeler
quelques notions sur l’écriture de l’opérateur champ électrique multimode, et verrons
comment, en pratique, compter le nombre de modes pertinents au sein d’un faisceau
lumineux. Puis nous reprendrons la théorie de la mesure optique pour associer le carac-
tère multimode de la lumière à la recherche d’information dans un faisceau. Par cette
approche, nous redéfinirons les limites ultimes de la mesure mais nous pourrons éga-
lement nous pencher sur l’intrication quantique à partir de n’importe quelle grandeur
mesurable. La suite de ce mémoire, présentant les travaux effectués et s’appuyant sur
une liste d’article, sera alors vue sous l’angle d’illustrations de cette théorie, en par-
tant des expériences monomodes vers les expériences les plus multimodes. Les titres et
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2. Introduction

les abstracts des articles sont repris dans le texte de manière à l’illustrer. Les articles
eux-mêmes sont reproduits en fin de manuscrit.

L’angle multimode sous lequel sont abordés les travaux présentés n’est pas le seul point
vue possible ; même s’ils s’intègrent dans ce cadre, ils n’y trouvent pas forcément leur
origine. Des domaines comme l’information quantique, l’optique non-linéaire, l’imagerie,
etc... ont été souvent moteurs dans ce travail, mais l’approche multimode est celle qui à
la fois unifie l’ensemble et permet de présenter, en fin de mémoire, les futurs projets de
recherche.
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3. Les degrés de liberté de la lumière

3.1. L’opérateur champ électrique

La quantification de la lumière dans le vide permet d’exprimer l’opérateur champ
électrique dans la base des ondes planes1 :

�̂E(+)(�r, t) = i

√
h̄

2ε0

∫
d3k

(2π)3
√

ωâ(�k)e−i(ωt−�k.�r) (3.1)

où nous avons considéré l’opérateur des fréquences positives, qui ne s’écrit qu’en fonction
des opérateurs d’annihilation, l’opérateur champ électrique réel étant la somme de cet
opérateur et de son hermitien conjugué. Sous cette forme, le continuum de modes est
difficile à manipuler, nous allons donc considérer -comme c’est le cas expérimentalement-
des conditions aux limites permettant de s’en affranchir. Nous choisissons une direction
de propagation privilégiée, z, et supposons que, transversallement, le champ s’annule à
l’infini. De plus, nous nous plaçons dans l’approximation paraxiale. Enfin, nous allons
supposer que la détection du champ se fait pendant un temps d’intégration2 T . Ces
conditions aux limites, à la fois spatiales et temporelles, permettent de remplacer le
continuum par un nombre dénombrable de modes et ainsi écrire le champ :

�̂E(+)(�ρ, u) =
∑

i

Eiâi�ui(�ρ, u). (3.2)

Dans cette équation, Ei est une constante qui dépend du mode considéré, âi est l’opéra-
teur d’annihilation d’un photon dans le mode i. Un mode est une fonction qui dépend des
différents paramètres de la propagation : transverse (�ρ = x�i + y�j), temporel (u = z − ct)
et polarisation, qui est normalisée et qui vérifie l’équation de propagation du champ dans
le vide. L’ensemble des modes considérés dans la décomposition précédente forme une
base dans laquelle tous champ lumineux peut être décomposé, en associant au champ
son amplitude sur chacun de ces modes. Connaissant cette décomposition, on connaît le
champ en n’importe quel point de l’espace des paramètres. Les modes sont normalisés
et orthogonaux entre eux de telle sorte que :

[âi, â
†
j ] = δij (3.3)

et chacun est un oscillateur harmonique, un degré de liberté quantique.
1On pourra se reporter à M. I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999) où sont également posées

les bases de l’optique quantique multimode spatiale
2On pourrait à la place d’introduire le temps de détection supposer que le champ s’annule aux temps

-ou mieux, aux u- plus et moins l’infini, mais l’introduire dès maintenant permet d’obtenir plus
rapidement les expressions qui nous intéressent.
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3. Les degrés de liberté de la lumière

Cette dernière équation permet de traiter tous les problèmes que nous allons aborder
ici, cependant, dans l’essentiel des cas nous pourrons faire une hypothèse supplémentaire :
que le champ est de fréquence centrale ω0 et de largeur en fréquence Δω petite devant
ω0. Dans ce cas, les constantes de normalisation sont toutes égales et l’opérateur champ
s’écrit :

�̂E(+)(�ρ, u) = E
∑

i

âi�ui(�ρ, u). (3.4)

où E = i
√

h̄ω0
2ε0cT .

Enfin, pour alléger les calculs, nous travaillerons souvent directement avec l’opérateur
Â tel que :

�̂A(+)(�ρ, u) =
∑

i

âi�ui(�ρ, u) (3.5)

où l’intégrale sur tout l’espace des paramètres de �̂A(+)† �̂A(+) est homogène à un nombre
de photons.

C’est dans la somme sur i présente dans l’expression de l’opérateur champ électrique
que sont présents les degrés de liberté de la lumière. En effet, comme nous l’avons déjà
dit, chaque mode représente un oscillateur harmonique indépendant et donc un degré de
liberté. Les paramètres mis en jeu sont ρ, u et la polarisation, nous serons donc à même
de décrire des systèmes multimodes en polarisation, transversalement, temporellement
ou frequentiellement. L’espace considéré est donc très riche et nous verrons, dans les
chapitres suivants, comment tirer parti indépendamment de chacun de ces paramètres.
Pour ce faire, l’expression 3.4 est bien adaptée car, la constante étant la même pour
tous les modes, les changement de bases sont particulièrement aisés. En effet, pour
passer d’une base {ui, âi} à une base {vi, b̂i}, connaissant la matrice de passage entre
les modes : vi =

∑
j cijuj , les opérateurs de créations se déduisent des mêmes relations :

b̂†i =
∑

j cij â
†
j . De plus dans le cas, fréquent, où cette matrice est réelle, cette relation

est également valable pour les opérateurs d’annihilation.

3.2. Lumière monomode, multimode
Il convient maintenant de décrire l’état quantique de la lumière. Cependant, et afin

de fixer le vocabulaire, rappelons ici que nous appellerons mode les modes ui comme
nous venons de les définir, état quantique de la lumière dans le mode i ou état du mode i
l’état quantique de l’oscillateur harmonique caractérisé par l’opérateur âi et enfin l’état
quantique de la lumière le ket3 |Ψ > représentant l’état complet de la lumière dans tous
les modes et s’écrivant, sous sa forme la plus générale et, pour chaque mode, dans sa
base des états de Fock :

|Ψ >=
∑

n1,...,ni,...

Cn1,...,ni,...|n1, . . . , ni, . . . > (3.6)

où |n1, . . . , ni, . . . > représente l’état quantique produit tensoriel des états de Fock n1

photons dans le mode 1, n2 photons dans le mode 2, etc ...
3les même considérations peuvent se faire en matrice densité, mais les notions deviennent alors un peu

plus difficiles à manier et ne sont pas nécessaires pour le travail présenté ici
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3.2. Lumière monomode, multimode

mode lumière monomode lumière multimode
état quelconque de valeur moyenne état quelconque de valeur moyenne

v0, b̂0
�E(+)(�ρ, u) �E(+)(�ρ, u)

état non-classique tel que
v1, b̂1 vide < Ψ|b̂1|Ψ >= 0

...
...

...
état non-classique tel que

vn, b̂n vide < Ψ|b̂n|Ψ >= 0
vn+1, b̂n+1 vide vide

...
...

...

Tab. 3.1.: Comparaison entre un champ monomode et un champ multimode dans la
base du champ moyen

L’ensemble des calculs menant à une définition propre du caractère monomode ou
multimode de la lumière est présenté dans l’article 1 (reproduit en page 54). Nous allons
voir ici que quelques considérations simples permettent d’en comprendre la substance.
Donnons nous une base de modes {�ui, âi} et un ket |Ψ > décrivant l’état de la lumière.
La valeur moyenne du champ électrique, qui correspond au champ classique, s’écrit :

�E(+)(�ρ, u) =< Ψ| �̂E(+)(�ρ, u)|Ψ > . (3.7)

On peut alors définir une nouvelle base {�vi, b̂i}, que nous appellerons base du champ
moyen, telle que

�v0(�ρ, u) =
�E(+)(�ρ, u)

|| �E(+)(�ρ, u)|| (3.8)

et on choisit les autres modes vi afin de former une base othonormale et complète.
Comme nous l’avons dit, les opérateurs d’annihilation b̂i se déduisent des âi avec les
même relations que celles permettant de passer des ui aux vi. Dans cette base, le champ
électrique moyen est porté uniquement, par définition, par le premier mode. Autrement
dit < Ψ|b̂i|Ψ >= 0 pour tout i �= 0. On peut à partir de cette base donner une définition
des champs monomode et multimode, illustrée dans le tableau 3.2. La lumière monomode
est telle que seul le mode de champ moyen est dans un état différent du vide, alors
que, pour le cas multimode, des modes autres que le mode de champ moyen sont non-
classiques (mais la valeur moyenne du champ électrique y est nulle, nous qualifierons par
abus de langage ces modes de vide, mais toujours en italique pour les différentier du vide
électromagnétique proprement dit). Nous avons choisi ici (n − 1) modes non-classiques,
décrivant alors un champ d’ordre n (en supposant que l’on se soit placé dans la base où
n est le plus petit possible). On notera également que des corrélations peuvent exister
entre les modes dans le cas multimode, mais elles n’apparaissent pas dans le tableau.

En résumé, une superposition d’états cohérents, dans des modes différents, reste un
champ monomode selon notre critère, car il suffit de se placer dans la base de champ
moyen. Un état non-classique l’est également puisqu’il se décrit à l’aide d’un seul mode
non-classique, les autres modes étant vides. Le caractère multimode est donc donné par
les fluctuations quantiques non-classiques, i.e. différentes de celles du vide, des modes
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3. Les degrés de liberté de la lumière

autres que celui de champ moyen. On peut interpréter cela en disant que les fluctuations
du vide -donc celles des états cohérents- sont parfaitement aléatoires et donc les analy-
ser suivant n’importe quelle base n’en change pas la nature. Alors que les fluctuations
non-classique sont organisées, et que le paramètre d’ordre s’applique pour un mode du
rayonnement bien défini, regarder les fluctuations selon une autre base en change donc
la nature -car on les mélange avec des fluctuations du vide-.

Nous avons considéré ici des cas purs, donc en particulier sans fluctuations classiques.
Nous avons fait une première extension de ce critère au cas des matrices densités, en
étendant la notion d’état monomode à celle d’un état dont la matrice densité s’écrit
comme le produit tensoriel d’une matrice densité quelconque sur un mode et la matrice
densité du vide sur les autres modes. Ces calculs étant préliminaires, ils ne sont pas
détaillés ici, mais permettent d’envisager une extension de nos critères au cas général. En
particulier, dans les lasers communément appelés multimodes par exemples, ce sont des
modes au dessus du seuil qui sont en compétition, et qui ont des fluctuations classiques
différentes : multimodes. Ce cas pourrait être inclus dans l’approche matrice densité,
de même que le cas où on part d’états purs et on considère des pertes (ce qui rajoute
des fluctuations du vides). Néanmoins, ces différents exemples concernent des réalités
physiques assez différentes, non utilisées dans le présent manuscrit, et leur étude générale
fait l’objet de nos projets de recherches.
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4. La mesure optique

4.1. Définition

Le champ étant bien décrit, nous allons maintenant le mesurer. Un détecteur optique
intègre, sur un domaine de l’espace des paramètres, soit l’intensité soit l’amplitude du
champ. Nous allons donc considérer ces deux types de détections, en appelant x le pa-
ramètre général qui prend en compte, outre les dimensions transverses et fréquentielles,
celles de polarisation. De cette façon, nous allons oublier le caractère vectoriel de l’opé-
rateur champ donné en équation 3.5, mais en comprenant que l’expression

∫
dx est une

intégrale sur les paramètres continus et une somme sur ceux discrets (ici uniquement la
polarisation). Le détecteur d’intensité est alors modélisé par :

ŜI =
∫

gI(x)Â(+)†(x)Â(+)(x)dx (4.1)

où gI est la fonction de gain, réelle et sans dimension, qui prend en compte la géométrie
et les propriétés du détecteur. ŜI est homogène à un nombre de photons. Nous ne consi-
dérons ici que des détecteurs linéaires. On voit dans les figures ci-dessous deux exemples
simples de mesures où la fonction de gain ne prend que deux valeurs différentes, +1 et
−1, dans un cas en fonction de la polarisation, dans l’autre en fonction de la position :

-Champ à

mesurer

Séparateur de polarisations

S
I Champ à 

mesurer
Détecteur

à deux zones

- S
I

De la même façon le détecteur d’amplitude s’écrit :

ŜE =
∫

gE(x)Âθ(x)(x)dx (4.2)

où gE est de nouveau la fonction de gain, et �̂Aθ(x)(x) l’opérateur de quadrature du champ
défini par

Âθ(x)(x) = Â(+)(x)e−iθ(x) + Â(+)†(x)eiθ(x). (4.3)

Ce détecteur est défini ici d’une manière totalement abstraite où l’on suppose qu’il
existe des dispositifs capables de détecter les quadratures du champ en appliquant un
gain qui dépend de la position dans l’espace des paramètres. On remarque qu’il est né-
cessaire de faire le choix de la quadrature à mesurer via le choix de la fonction θ(x).
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4. La mesure optique

Pour réaliser un tel détecteur il est nécessaire
d’utiliser un dispositif interférométrique de type
homodyne. Un exemple en est donné ci-contre,
où une nouvelle fois la fonction de gain peut
prendre deux valeurs en fonction de la position,
et sur chaque position on détecte une quadrature
du champ. Nous verrons par la suite que changer
la forme de l’oscillateur local permet également
d’agir sur la fonction de gain.

Champ à

mesurer

Oscillateur local 

-

-
S

I
g

4.2. Mode propre

Les mesures telles que nous les avons définies réalisent une combinaison linéaire des
valeurs locales du champ pour en extraire une seule information. Le but de cette section
est donc de déterminer quelle est cette information, et comment elle peut être décrite
simplement. Nous allons voir que, en choisissant la bonne base dans la description du
champ donnée en équation 3.5, l’opérateur de mesure défini ci-dessus, qu’il soit d’intensité
où d’amplitude, se ramène à la mesure de l’état du champ dans un seul mode, que l’on
appelle alors mode de détection. Il est de plus possible d’expliciter ce mode en fonction
de la définition de la mesure et de la forme du champ mesuré.

Prenons l’exemple de la mesure de la différence des polarisations verticales et horizon-
tales de la figure de la section précédente. Dans le cas où le champ incident est polarisé
verticalement (respectivement horizontalement), SI mesure le mode de polarisation ver-
ticale (respectivement, au signe près, horizontale). Mais, quand le champ incident est
polarisé à +45o, SI , de valeur moyenne nulle dans ce cas, est sensible aux fluctuations
de polarisation orthogonales à la polarisation incidente, le mode de détection est donc
dans ce cas le mode à -45o.

Pour généraliser cette approche, supposons que l’opérateur champ électrique de l’équa-
tion 3.5 est écrit dans la base du champ moyen (c’est à dire que le premier mode de la
décomposition est proportionnel au champ, et que tous les autres sont vides). À partir
de cette décomposition, il est possible de construire le mode de détection de la mesure,
celui dont l’état est mesuré par notre appareil. Nous appelons ce mode w1, et il est défini
par :

w1(x) =
1
f

gI(x)u0(x) (4.4)

où f assure la normalisation du mode. En effet, en utilisant les opérateurs différentiels
(δâ = â− < â >) et en se plaçant dans la limite des petites fluctuations (les termes
en carré d’opérateurs de fluctuations sont négligés), les fluctuations de l’opérateur ŜI

peuvent s’exprimer uniquement en fonction de celles du mode w1 :

δŜI = fα0(δb̂
†
1 + δb̂1)

= fα0δX̂
+
w1

(4.5)
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4.2. Mode propre

où α0 est la valeur moyenne de â0 -opérateur d’annihilation associé au mode de champ
moyen u0- , supposée réelle (sans perte de généralité), δb̂1 est l’opérateur de fluctuations
associé au mode w1 et δX̂+

w1
l’opérateur de quadrature amplitude correspondant1. Les

fluctuations mesurées par notre appareil sont donc celles de la quadrature amplitude du
mode de détection w1. On voit dans son expression que ce mode correspond au mode de
champ moyen u0 pondéré par la fonction de gain gI . En reprenant l’exemple de la mesure
de polarisation où la fonction de gain est égale à +1 pour la polarisation verticale et −1
pour l’horizontale, quand le champ incident est polarisé à +45o, le mode de détection
est bien celui à -45o.

Les même idées sont valables pour les mesures d’amplitudes, nous en donnerons des
exemples dans le chapitre suivant, ici nous allons nous limiter au calcul du mode. Comme
nous le verrons au chapitre suivant, cette détection peut être réalisée à l’aide d’une
détection homodyne où la forme de l’oscillateur local est donnée par gE(x)eiθ(x). Ainsi,
définissons le mode de détection par :

w1(x) =
1
f

gE(x)eiθ(x) (4.6)

où f est encore une fois un facteur de normalisation que nous n’explicitons pas. Il est
alors possible de construire une base de mode {wi} dont le mode w1 est donné par
l’équation précédente, et d’exprimer l’opérateur champ dans cette base. Dans ce cas,
dans l’intégrale 4.2 seule l’intégrale de recouvrement avec w1 est non nulle et il vient,
sans avoir besoin de se placer dans la limite des petites fluctuations :

ŜE = f(b̂†1 + b̂1)
= fX̂+

w1
. (4.7)

Comme pour les mesures d’intensité, l’opérateur de mesure d’amplitude est proportionnel
à la quadrature amplitude d’un seul mode, que nous appelons mode de détection, et qui
se détermine à partir des caractéristiques de la détection et du mode de champ moyen.
Il est important de souligner que ce mode dépend donc de la valeur moyenne locale du
champ lui-même.

Nous venons de montrer que toute mesure se ramène à la considération d’un seul
mode, que nous savons décrire à partir du mode de champ moyen et des propriétés du
détecteur. En particulier, le bruit sur la détection provient exclusivement des propriétés
de bruit de ce mode. En agissant sur ses fluctuations on peut donc modifier -et en parti-
culier améliorer !- la sensibilité de la mesure. Lorsque plusieurs détections sont effectuées
simultanément, l’action doit porter sur chacun des modes de détection correspondants.
Nous avons ainsi les outils théoriques pour réaliser et détecter de la lumière multimode.
L’article regroupant l’essentiel de ces idées est le suivant :

Article 1, reproduit en page 54

Quantum noise in multipixel image processing
N. Treps, V. Delaubert, A. Maître, J.M. Courty and C. Fabre

1On appelle quadrature amplitude celle pour laquelle θ = 0 : X̂+
w1 = b̂†1 + b̂1, et quadrature de phase

celle pour laquelle θ = π/2 : X̂−
w1 = i(b̂†1 − b̂1)
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4. La mesure optique

Phys. Rev. A 71, 013820 (2005)

Abstract : We consider the general problem of the quantum noise in a multipixel measurement of
an optical image. We first give a precise criterium in order to characterize intrinsic single mode
and multimode light. Then, using a transverse mode decomposition, for each type of possible
linear combination of the pixels’ outputs we give the exact expression of the detection mode, i.e.
the mode carrying the noise. We give also the only way to reduce the noise in one or several
simultaneous measurements.

4.3. Mesure d’un paramètre p

4.3.1. Limite de Cramer-Rao
Nous avons décrit en détail le comportement d’un appareil de mesure, l’étape sui-

vante consiste à adapter et optimiser cet appareil relativement à la quantité à mesurer.
Considérons que la lumière transporte de l’information que l’on désire retrouver. Cette
information peut par exemple provenir de l’interaction entre le faisceau et un échantillon
physique dont on souhaite retrouver certaines propriétés. Elle peut également avoir été
directement inscrite dans faisceau pour, par exemple, des communications quantiques.
En tous les cas, nous pouvons modéliser cette modification du faisceau par un paramètre
p qui affecte uniquement le mode de champ moyen u0(x, p), l’action du paramètre étant
supposée classique (elle n’agit pas sur les fluctuations).

Nous cherchons à caractériser le meilleur estimateur possible de p (que p soit petit ou
non). Pour cela, nous considérons un estimateur non biaisé (i.e. dont la valeur moyenne
sur un grand nombre de mesures est p) et cherchons sa variance. Ce problème est clas-
sique et est résolu par la théorie de l’information2, en introduisant une quantité appelée
information de Fisher IF . Cette quantité, dont nous ne donnons pas le détail du calcul
ici, permet d’évaluer la quantité d’information disponible sur p en fonction de la statis-
tique de la lumière (son bruit) et, cela, indépendamment de l’appareil de mesure utilisé,
seul le type de mesure (intensité ou amplitude) devant être défini. On peut en déduire
la variance de l’estimateur : σ2 = 1/IF , et ainsi la plus petite valeur de p pouvant être
mesurée (définie par un rapport signal sur bruit égal à 1). Cette limite absolue s’appelle
la limite de Cramer-Rao. Dans notre cas, et en considérant de la lumière cohérente (sta-
tistique poissonienne), on obtient ce que nous appelons la limite quantique standard, qui
s’écrit respectivement pour les mesures d’amplitude et d’intensité :

pmin =
amplitude

A

2
√

N
où ∂u0(x, p)

∂p

∣∣∣∣
p=0

=
1
A

vA(x) (4.8)

pmin =
intensité

a

2
√

N
où ∂|u0(x, p)|

∂p

∣∣∣∣
p=0

· u0(x)
|u0(x)| =

1
a
vI(x) (4.9)

où vA et vI sont des modes normalisés et A et a les constantes de normalisation, réelles
positives, correspondantes. N est le nombre total de photons. On observe que pour la
mesure d’amplitude, la normalisation est donnée par la dérivée du mode champ moyen ;

2Voir par exemple Théorie du bruit et applications en physique, P. Réfrégier, Lavoisier (2002)
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ceci est à mettre en parallèle avec la variation du mode champ moyen pour une petite
variation du paramètre p :

u0(x, p) ≈ u0(x) + p
∂u0(x, p)

∂p

∣∣∣∣
p=0

= u0(x) +
p

A
vA(x). (4.10)

Le mode vA est celui qui porte l’information, et nous verrons que pour réaliser cette
limite il faut un système de détection dont le mode de détection est justement vA. Les
mêmes considérations sont valables pour la mesure en intensité, exceptée la prise en
compte d’une norme dans l’équation 4.9 nécessaire si le paramètre p ne modifie pas
uniquement l’amplitude du champ, mais également sa phase (signal auquel n’est pas
sensible la détection en intensité).

4.3.2. Les appareils de mesure optimaux

La connaissance à la fois du mode portant le signal, indépendamment de l’appareil de
mesure, et du mode de détection pour un détecteur donné permet d’optimiser le détecteur
relativement au paramètre mesuré. Le cas de la mesure d’amplitude étant le plus simple,
nous allons ici détailler les calculs, qui permettent d’appréhender le problème de façon
synthétique. En effet, en utilisant la décomposition de Taylor de l’équation 4.10 pour
calculer la valeur moyenne de l’opérateur ŜE de l’équation 4.2, on trouve, en omettant
le terme ne dépendant pas de p (ce qui revient à calibrer la détection en ajoutant une
constante, mesurable en l’absence de signal) :

< ŜE(p) >=
p

A
α0f

∫
[w∗

1(x)vA(x) + w1(x)v∗A(x)] dx. (4.11)

où, on le rappelle, w1 est le mode de détection associé à l’appareil de mesure et vA est
le mode qui porte l’information à mesurer. Le rapport signal sur bruit, dans le cas des
états cohérents, est alors égal à :

< ŜE(p) >2

< δŜE(p)2 >
= p2 N

A2

[∫
[w∗

1(x)vA(x) + w1(x)v∗A(x)] dx
]2

(4.12)

L’intégrale est une intégrale de recouvrement entre deux modes normalisés, elle n’est
donc maximale que lorsque ces modes sont identiques, le meilleur choix pour w1, et donc
du gain et de la phase de la détection comme explicité en éq. 4.6, est vA.
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4. La mesure optique

On obtient dans ce cas, et pour des états cohé-
rents, que la plus petite valeur du paramètre me-
surable, définie par un rapport signal sur bruit
égal à 1, est donnée :

pmin =
A

2
√

N
(4.13)

limite identique à celle de Cramer-Rao. Nous
avons déjà dit que cette mesure d’amplitude cor-
respondait à une détection homodyne dont l’os-
cillateur local a la forme de w1 (voir figure ci-
contre), nous avons donc un schéma expérimen-
tal permettant d’atteindre la limite de Cramer-
Rao (qui sera mis en œuvre au chapitre suivant).

-Champ à

mesurer BS

Oscillateur local 

dans le mode du champ 

que l'on veut extraire

S
E

Pour la mesure d’intensité, les mêmes considérations peuvent se faire avec une petite
complication technique du fait du module apparaissant dans la dérivée. Cependant, on
trouve cette fois-ci que le gain permettant d’optimiser le rapport signal sur bruit est
donné par :

gI(x) ∝ 1
|u0(x)|

∂|u0(x, p)|
∂p

∣∣∣∣
p=0

(4.14)

qui mène, comme pour la mesure d’amplitude, à la limite de Cramer-Rao.
Ce système est matérialisé par un
détecteur multipixel : un pixel par
valeur de x (voir figure ci-contre)
et peut donc être implémenté, au
moins de manière approchée, expé-
rimentalement.

Champ à mesurer

Détecteur

multipixels

S(p)
g

Article 2, reproduit en page 62

Quantum limits in image processing
V. Delaubert, N. Treps, C. Fabre, H.A. Bachor and P. Refrégier

Soumis à Phys. Rev. Lett.

Abstract : We determine the bound to the maximum achievable sensitivity in the estimation of a
scalar parameter from the information contained in an optical image in the presence of quantum
noise. This limit, based on the Cramer-Rao bound, is valid for any image processing protocol. It
is calculated both in the case of a shot noise limited image and of a non-classical illumination.
We also give practical experimental implementations allowing us to reach this absolute limit.

4.3.3. Facteur de bruit et amplification

Les limites données précédemment concernent des détecteurs parfaits (sans bruit élec-
tronique) et au gain ajustable indéfiniment. Or, lorsque les signaux sont faibles, ou
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lorsque la distance de propagation est grande et donc les pertes importantes, il est sou-
vent nécessaire d’amplifier la lumière. Nous allons voir ici rapidement l’effet de cette
amplification sur notre mesure.

Notre amplificateur agit sur le champ en entrée {âi} pour produire le champ en sortie
{b̂i}. On le modélise par un processus du type Bogoliubov3 généralisé, qui agit sur
les opérateurs d’annihilation et de création. On suppose de plus qu’il existe une base
multimode propre, c’est à dire inchangée par cette transformation (qui ne couple donc
pas ces modes entre eux). Ce cas correspond à la plupart des amplificateurs (et aussi
les lames séparatrices) linéaires pour lesquels on peut trouver une base découplant les
modes. Nous considérons de plus que des sources de bruit externes peuvent intervenir.
Les modes de sortie s’écrivent :

b̂i = Uiâi + Viâ
†
i +

∑
k

(αkiv̂ki + βkiv̂
†
ki). (4.15)

où tous les coefficients sont réels. Chacune de ces transformation devant être unitaire, il
vient

U2
i − V 2

i +
∑

k

(α2
ki − β2

ki) = 1. (4.16)

C’est cette dernière relation la plus importante. Elle montre qu’un amplificateur simpliste
-seul U �= 0 par exemple- n’est pas autorisé par la mécanique quantique, et donc que
tout processus d’amplification est susceptible de rajouter du bruit.

Deux cas sont à dégager dans les processus d’amplification. Tout d’abord, le cas où
Vi = 0. Dans ce cas, les modes de bruit étant des modes vides ne contribuant pas au
signal, le gain du processus est simplement Gi = U2

i , c’est ce qu’on appelle l’amplification
insensible à la phase. On définit le facteur de bruit du processus F i

P IA (donné en puissance
de bruit dans cette section) comme le quotient entre le rapport signal sur bruit avant
amplification et le rapport signal sur bruit après amplification. Il se calcule simplement
en utilisant les équations précédentes et on obtient, en tenant compte de l’unitarité :

F i
P IA = 2 − 1

Gi
+ 2

∑
k β2

ki

Gi
. (4.17)

Il apparaît le résultat bien connu que, même en annulant le dernier terme de cette
équation, le processus rajoute 3dB de bruit pour un gain infini.

Le deuxième cas est celui où ni U ni V ne sont nuls, communément appelé sensible à
la phase. Le calcul du gain est un peu plus délicat, mais si l’on suppose qu’en entrée nous
avons des états cohérents αi = |αi|eiφi , alors le gain s’écrit Gi = U2

i +V 2
i +2UiVi cos(2φi),

il est bien sensible à la phase du champ. En considérant alors la quadrature d’amplitude,
pour laquelle le gain est maximal, il vient pour le facteur de bruit :

F i
PSA = 1 +

∑
i

(αki + βki)2

G
. (4.18)

Dans ce cas, et uniquement sur la bonne quadrature, il est possible d’obtenir de l’ampli-
fication sans bruit ajouté en s’affranchissement des entrées de vide supplémentaires, ce

3Voir N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947) et également C.M. Caves, Quantum limits
on noise in linear amplifiers, Phys. Rev. D. 26, 1817-1839 (1982) pour une étude approfondie des
processus d’amplification.
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qui impose U2
i − V 2

i = 1. Ce type d’amplificateur permet d’améliorer les mesures dans
le cas de détecteurs d’efficacité quantique faible par exemple. On montre en effet dans
ce cas que, en prenant en compte l’efficacité de détection dans le calcul du facteur de
bruit, on peut obtenir un facteur de bruit effectif inférieur à un, c’est à dire améliorer la
mesure de notre paramètre grâce à de l’amplification sans bruit4.

Nous verrons en fin de ce mémoire comment réaliser cette amplification à l’aide d’un
amplificateur paramétrique optique. On notera ici la grande généralité des équations
présentées qui permettent de modéliser les processus passifs tels les lames séparatrices,
mais aussi de prédire les propriétés non-classiques des champs émis par les amplificateurs
paramétriques optiques par exemple.

4.4. États non-classiques, intrication et information quantique
Comme nous l’avons vu au début de ce mémoire, les champs multimodes quantiques

sont liés à la présence d’états non-classiques de la lumière. Nous venons de voir égale-
ment qu’une mesure optique était caractérisée par son mode de détection, et donc en
particulier ses propriétés de bruit. Ceci nous a permis de donner et d’atteindre la limite
quantique standard, liée à l’utilisation de lumière cohérente. Il est possible, en changeant
les propriétés de bruit du mode de détection -et en particulier en utilisant dans ce mode
de la lumière comprimée- d’aller au delà de la limite de Cramer-Rao standard, puisque
le bruit de la mesure lui est directement proportionnel. Ainsi, dès lors que ce mode est
différent du mode de champ moyen, de la lumière multimode quantique est nécessaire
pour améliorer la mesure.

L’expression 4.7 donnant la mesure d’amplitude en fonction de son mode de détection
recèle d’autres possibilités. En effet, la définition du mode w1 est très libre (contraire-
ment à la mesure d’intensité où gI est réel) et notamment, en changeant la phase dans
sa définition de π/2, on accède à la quadrature de phase δX̂−

w1
de ce mode. Expérimen-

talement, cela est réalisé simplement en déphasant l’oscillateur local. Ainsi, pour chaque
mesure, on a accès très simplement à l’observable conjuguée Ŝ−

E = fδX̂−
w1

telle que

[ŜE , Ŝ−
E ] = 2if2. (4.19)

Il est possible de réaliser de l’intrication multimode en adressant individuellement les
propriétés quantiques des modes de détection de deux faisceaux. Ainsi, avec ces mesures
d’amplitude, l’extension multimode des protocoles d’information quantique monomode
est évidente, et on peut penser paralléliser le traitement de l’information quantique pour,
par exemple, augmenter les débits, mais également en augmenter la sécurité.

On peut finalement se demander quel est le cadre adéquat pour décrire l’intrication
quantique. En effet, si nous considérons deux champ monomodes intriqués (comme cela
sera décrit au chapitre suivant), il est possible de les caractériser, comme nous allons
le faire, via les critères d’intrication usuels. Pour les champs multimodes intriqués nous
ferons alors de même en isolant, dans ces champs, les paires de modes intriqués et
en les caractérisant via les même critères. Cependant, et pour revenir à l’exemple de
deux faisceaux monomodes, il est possible de décrire ce système comme un seul système
quantique multimode, en fusionnant les deux bases de modes. En se placant alors dans

4Voir par exemple A. Mosset, F. Devaux et E. Lantz, Phys. Rev. Lett. 94, 223603 (2005)
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la base du champ moyen le mode de champ moyen devient comprimé en phase et le
premier mode vide comprimé en intensité (comme cela est le cas lorsqu’on mélange nos
deux champs intriqués, en phase, sur une lame 50/50 : l’une des sortie est intense et
comprimée en phase, l’autre est vide et comprimée en intensité). Cependant, les notions
de non-séparabilités et de non-localité, par exemple, n’ont plus beaucoup de sens lorsque
les deux bases sont mélangées et nous avons donc choisi de nous en tenir aux critères
d’intrication habituels et de restreindre nos champs multimodes à des champs dont tous
les modes sont copropageants. On notera pourtant que l’autre approche rappelle celle
qui consiste à regrouper les états quantiques via des classes d’équivalences définies par
des opérations locales, et est un sujet de recherche que nous poursuivons car il peut être
très riche pour la caractérisation des états multimodes.
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5. Du monomode au tout multimode

5.1. La mesure monomode : intrication et téléportation

Une mesure est dite monomode lorsqu’un seul détecteur mesure l’ensemble du champ,
ou, pour une détection homodyne, lorsque l’oscillateur local a la forme du champ moyen.
Dans ce cas, le mode de détection n’est autre que le mode de champ moyen et, même si
la lumière est multimode, la détection ne sera pas sensible aux propriétés non-classiques
des modes vides. C’est le régime habituel de l’optique quantique en variables continues
et dans ce cadre il est possible de réaliser des expériences de génération d’états non-
classiques, d’intrication, et de les utiliser pour des protocoles d’information quantique.
Ces types d’expériences étant maintenant bien connus, nous ne donnerons que peu de
détails, en insistant cependant sur la difficulté de caractériser ces états et en particulier
les corrélations, caractérisation autrement appelée la science des critères. Nous allons
décrire ici des expériences qui mettent en évidence successivement différents niveaux de
corrélations.

5.1.1. Photons jumeaux et mesures conditionnelles

Le premier niveau de corrélation entre deux champs, n’impliquant qu’une seule qua-
drature de chaque champ, est appelé gémellité, par extension des photons jumeaux qui
reflètent des corrélations d’intensité. Les corrélations entre deux champ sont dites quan-
tiques quand elles ne peuvent être expliquées par une théorie semi-classique (où le champ
est traité classiquement). Ce critère, très simple dans le cas symétrique mais un peu
technique dans le cas général, signifie qu’en faisant une somme (ou différence) pondérée
entre les deux quadratures des deux champ on obtient une quantité dont les fluctuations
quantiques sont inférieures à celles d’un état cohérent de même puissance. Il est décrit
en détail, dans l’article suivant, qui contient aussi l’ensemble des critères que nous allons
évoquer dans ce chapitre :

Article 3, reproduit en page 68

Criteria of quantum correlation in the measurement of continuous variables in
optics

N. Treps, and C. Fabre
Laser Physics 15, 187 (2005)

Abstract : The purpose of this short tutorial paper is to review various criteria that have been
used to characterize the quantum character of correlations in optical systems, such as "gemellity",
QND correlation, intrication, EPR correlation and Bell correlation, to discuss and compare them.
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5. Du monomode au tout multimode

This discussion, restricted to the case of measurements of continuous optical variables, includes
also an extension of known criteria for "twin beams" to the case of imbalanced correlations.

Nous réalisons au laboratoire des photons jumeaux à l’aide d’un oscillateur paramé-
trique optique. Cette cavité, à l’intérieur de laquelle se trouve un cristal non-linéaire
de type 2 (du KTP), génère, lorsqu’elle est pompée avec de la lumière à 532nm, na-
turellement des faisceaux signal et complémentaire corrélés en intensité, du fait de la
conservation de l’énergie lors du processus de génération paramétrique. La très grande
stabilité de notre cavité semi-monolithique permet d’obtenir un seuil bas (d’une dizaine
de milliwatts) et un bruit sur la différence de 7,5 dB inférieur au bruit quantique stan-
dard, en utilisant le critère de gémellité.

Ces fortes corrélations nous ont permis de mettre en place un protocole original de
génération conditionnelle d’état sub-poissonien. L’idée consiste à mesurer les fluctuations
d’intensité du complémentaire ce qui, du fait de la forte corrélation existante, nous
renseigne sur celles du faisceau signal. Ainsi, on peut sélectionner dans le faisceau signal
les moments où les fluctuations du faisceau complémentaire sont comprises dans une
certaine bande de valeurs -proche de zéro par exemple-. Le nouveau faisceau signal
produit (une version hachée de l’original, générée conditionnellement à la mesure du
complémentaire) possède alors des fluctuations proches de zéro, modulo la taille de la
bande de sélection et la valeur des corrélations. L’expérience a été faite en mesurant et
stockant informatiquement les fluctuations d’intensité du signal et du complémentaire,
puis en faisant une post-sélection sur le signal à partir des valeurs du complémentaire.
Nous avons pu de cette façon produire un faisceau dont les fluctuations en intensité
sont réduites de 4,4 dB sous le bruit quantique standard, partant de 7,5 dB de photons
jumeaux. Cette méthode originale est très intéressante car elle s’apparente aux techniques
utilisées en photon uniques et permet d’envisager la création, de manière conditionnelle,
de nombreux états quantiques. Les détails en sont donnés dans :

Article 4, reproduit en page 77

Conditionnal Preparation of a Quantum State in the Continuous Variable
Regime : Generation of a sub-Poissonian State from Twin Beams

J. Laurat, T. Coudreau, N. Treps, A. Maître and C. Fabre
Phys. Rev. Lett. 21 213601 (2003)

Abstract : We report the first experimental demonstration of conditional preparation of a non-
classical state of light in the continuous variable regime. Starting from a nondegenerate optical
parametric oscillator which generates above threshold quantum intensity correlated signal and
idler ”twin beams,” we keep the recorded values of the signal intensity only when the idler in-
tensity falls inside a band narrower than its standard deviation. By this very simple technique,
we generate a sub-Poissonian state 4.4 dB (64%) below shot noise from twin beams exhibiting
7.5 dB (82%) of noise reduction in the intensity difference.
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5.1.2. Intrication
Avec la même cavité, nous avons généré de l’intrication. Les faisceaux signal et com-

plémentaire émis dans un OPO sont naturellement corrélés en intensité, mais également
en phase. Cependant, la diffusion de phase vient modifier la fréquence du signal et com-
plémentaire et donc, même si la somme de leurs phases reste bien fixée, la différence elle
peut varier et empêche de détecter simplement les corrélations. Pour fixer ces fréquences
nous avons donc introduit à l’intérieur de la cavité un couplage (une lame quart d’onde)
qui mélange très légèrement les polarisations signal et complémentaire. Deux oscillateurs
légèrement couplés, s’ils ont des fréquences suffisamment proches se verrouillent l’un à
l’autre pour osciller à une fréquence commune. C’est le phénomène qui se produit dans
l’OPO lorsque la température du cristal est suffisamment proche de la température de
dégénérescence1.

Néanmoins, pour des raisons qui restent encore à explorer -mais que nous supposons
venir du bruit de phase du laser de pompe- nous n’avons pas pu observer de corrélations
de phase, au niveau quantique, au dessus du seuil. Le système, une fois réglé, est donc
utilisé au dessous du seuil d’oscillation, et ce sont les fluctuations des champs vides
émis que nous analysons. Pour caractériser ces doubles corrélations, nous avons utilisé le
critère de Duan décrit en équation (20) de l’article 3, et qui reflète le caractère intriqué,
ou non-séparable, de l’état quantique produit. Non-séparable signifiant que sa fonction
d’onde ne peut pas s’écrire comme le produit tensoriel de deux fonctions d’onde (une
pour chacun des faisceaux), où comme la superposition statistique de tels produits. La
non-séparabilité mesurée reste, a l’heure d’aujourd’hui, la meilleure jamais mesurée (0,33,
à comparer à 1 pour des états cohérents). L’article correspondant est :

Article 5, reproduit en page 81

Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very
low noise frequencies

J. Laurat, T. Coudreau, G. Keller, N. Treps and C. Fabre
Phys. Rev. A 70 042315 (2004).

Abstract : We report on the experimental demonstration of strong quadrature Einstein-Podolsky-
Rosen entanglement and squeezing at very low noise sideband frequencies produced by a single
type-II, self-phase-locked, frequency degenerate optical parametric oscillator below threshold.
The generated two-mode squeezed vacuum state is preserved for noise frequencies as low as 50
kHz. Designing simple setups able to generate nonclassical states of light in the kHz regime is
a key challenge for high sensitivity detection of ultraweak physical effects such as gravitational
wave or small beam displacement.

Dans cet article, nous avons également démontré le caractère basse fréquence des fluc-
tuations non-classiques, ce qui signifie que pour des fréquences d’analyse d’environ 50kHz
nous observons encore des effets quantiques. Cette propriété très intéressante n’avait pas
été observée jusqu’alors et vient de ce que, en théorie, le bruit de la pompe ne se couple
pas aux champs émis lorsque l’on travaille sous le seuil. Nous n’avons pas exploré cette

1Voir l’expérience originale de E. J. Mason et N. C. Wong, Opt. Lett. 23 1733 (1998)
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voie plus avant, mais cela prouve que ce genre de système peut être utilisé avec profit
dans des dispositifs où il est nécessaire d’avoir des propriétés quantiques sur une grande
bande de fréquence (lecture optique de l’information, détection d’ondes gravitationnelles,
etc...).

Le niveau suivant de corrélation est celui de l’intrication dite EPR2. Dans ce cas, où
comme pour l’inséparabilité il y a des corrélations entre les deux quadratures des deux
champs, on caractérise l’intrication via la variance conditionnelle. Celle-ci représente la
variance d’une quadrature d’un champ connaissant les fluctuations de la même qua-
drature de l’autre champ (c’est ce qu’on obtiendrait en rétroagissant sur un champ de
manière optimale grâce aux mesures faites sur l’autre champ). Dans le cas des corré-
lations EPR, les produits des variances conditionnelles des deux quadratures du même
champ connaissant celles de l’autre champ viole l’inégalité de Heisenberg, on parle alors
de violation apparente de cette inégalité3. Ce critère est identique à celui de Duan pour
des cas purs, mais est beaucoup plus sensible aux pertes : au delà de 50% de pertes les
corrélations EPR ne peuvent subsister. Or, 50% de perte signifient que, potentiellement,
une tierce partie a pu prélever plus de la moitié du faisceau et donc posséder une copie
de l’original plus fidèle que celle des opérateurs. En ce sens, le critère EPR est relié au
théorème de non-clonage qui explique qu’il n’est pas possible de réaliser deux copies
identiques d’un état quantiques, et est pertinent pour, comme nous allons le voir, les
expériences de téléportation4.

5.1.3. Téléportation quantique

L’intrication quantique est utilisée dans nombre de protocoles d’information quan-
tique, le plus célèbre étant la téléportation. Ce protocole est très intéressant car il permet
de mettre en évidence le caractère non-classique des faisceaux autrement que via un cri-
tère direct. La téléportation a d’abord été introduite pour des états à photons uniques,
puis a été étendue aux variables continues à la fois théoriquement et expérimentalement
5. Rappelons-en ici le principe, la figure ci-dessous donnant un exemple de téléportaiton
classique :

Champ à

téléporter BS

mesure

de phase

mesure

d'amplitude

source 

de bruit

Champ

téléporté

source

de bruit

modulation

de phase

modulation

d'amplitude

Transmission

des résultats

des mesures

2A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935)
3Voir par exemple M. Reid and P. Drummond, Phys. Rev. Lett. 60, 2731 (1989)
4Voir à ce sujet F. Grosshans et P. Grangier, Phys. Rev. A 64, 010301 (2001)
5Voir en particulier C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993) et A. Furusawa et al., Science

282, 706 (1998)
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Lors d’une mesure effectuée sur un faisceau lumineux, si l’on désire mesurer à la fois
son intensité et sa phase du bruit est introduit dans cette mesure du fait de la non-
commutabilité des observables. Le dispositif modèle pour mettre en œuvre ces mesures
consiste à séparer en deux le faisceau sur une lame séparatrice et utiliser une des sorties
pour mesurer l’intensité et l’autre pour mesurer la phase. Dans ce cadre, le bruit de
la mesure vient de l’entrée non-utilisée de la lame séparatrice, par laquelle arrivent des
fluctuations du vide.

De la même façon, si on désire utiliser les informations de la mesure pour reconstruire
le faisceau un peu plus loin, une autre source de bruit apparaît inévitablement : le
support sur lequel est faîte cette reconstruction, le faisceau que l’on cherche à moduler
par exemple. Ainsi, dans une expérience complète de téléportation deux quantas de bruit
sont introduits, un à la mesure, un à la reconstruction. L’idée, pour aller au delà de cette
limite, consiste à corréler ces deux sources de bruit de telle sorte qu’elles se compensent
à la fin de l’expérience. En utilisant deux faisceaux EPR, l’un à l’entrée vide de la lame
séparatrice et l’autre à la reconstruction, on réalise exactement ce système et, idéalement,
une téléportation parfaite est alors possible. Nous avons, en Australie, réalisé une telle
expérience :

Article 6, reproduit en page 85

Experimental investigation of continuous-variable quantum teleportation
W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H.-A. Bachor,

T. Symul, and P. K. Lam
Phys. Rev. A. 67, 032302 (2003)

Abstract : We report the experimental demonstration of quantum teleportation of the quadrature
amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in
terms of fidelity F and with signal transfer Tq = T++T− and noise correlation Vq = V +

in|outV
−
in|out.

We observed an optimum fidelity of 0.64±0.02, Tq = 1.06±0.02, and Vq = 0.96±0.10. We discuss
the significance of both Tq > 1 and Vq < 1 and their relation to the teleportation no-cloning
limit.

La technique pour générer les faisceaux EPR est, dans cette expérience, différente
de celle présentée en section précédente, elle repose sur le mélange de deux faisceaux
comprimés produit chacun dans des Amplificateurs Paramétriques Optiques (OPA). Le
mélange de deux états comprimés en amplitude, déphasés de π/2, sur une lame 50/50
génère directement des états intriqués. La technique utilisée ici pour produire ces états
comprimés est le processus de de-amplification dans un amplificateur paramétrique op-
tique. En effet, ce dispositif réalise, dans le cas idéal, une transformation des champs
du type proposé en équation 4.15 où on peut s’affranchir des sources de bruits externes
et donc, pour le cas monomode, U2 − V 2 = 1. On montre dans ce cadre facilement
que pour un processus de de-amplification où U = cosh x et V = − sinhx on obtient
< (δ̂X+

b )2 >= e−2x, le champ sortant est comprimé. Expérimentalement, on place un
cristal non-linéaire d’ordre 2 dans une cavité, on choisira généralement du type I pour
assurer simplement la dégénérescence entre signal et complémentaire. Cette cavité est
pompé, dans nos expériences, à 532nm et injectée à 1064nm ; sa longueur est asservie sur
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une résonance infrarouge et, souvent, nous la choisirons non résonnante pour la pompe.
Étant en configuration sensible à la phase, l’ajustement de la phase relative entre la
pompe et le signal permet de se placer en régime de dé-amplification, et d’obtenir un
champ sortant dans l’infrarouge comprimé en intensité. La puissance de ce champ sor-
tant peut être très faible -la dizaine de microwatts- mais, n’étant pas nulle, on a une
référence de phase permettant de réaliser des asservissements dans les expériences en
aval6.

Nous avons ici mis, en particulier, l’accent sur la caractérisation de l’expérience. En
effet, de nombreux critères sont utilisés : la Fidélité -intégrale de recouvrement entre
l’état original et l’état produit-, le transfert de signal -la quantité d’information utile
transmise, critère originellement introduit dans le cadre des mesures quantiques non
déstructives -, et les variances conditionnelles -comment le caractère non-classique des
faisceaux se transmet- ; et nous avons de plus étudié l’influence de l’incertitude de mesure
de différents paramètres (comme le gain, l’efficacité quantique de détection, etc...) sur les
résultats trouvés. Les valeurs mesurées pour ces critères étaient à l’époque les meilleures
jamais atteintes, néanmoins la limite du "non-clonage", reflétant que le faisceau téléporté
est forcément la meilleure copie existante de l’original, bien qu’ayant été approchée de
près n’a pas été battue, seule sa version restreinte au transfert de signal l’ayant été7.

La téléportation quantique étant une pierre essentielle des protocoles d’information
quantiques, et notamment pour les réseaux de communications, nous avons étudié, de
manière théorique, comment ses principes pouvaient s’étendre aux ensembles atomiques.
Nous proposons ici un protocole de téléportation basé sur le transfert des propriétés
quantiques des atomes vers la lumière, une mesure de la lumière et une reconstruction
effectuée directement sur le nuage atomique :

Article 7, reproduit en page 89

Teleportation of an atomic ensemble quantum state
A. Dantan, N. Treps, A. Bramati and M. Pinard

Phys. Rev. Lett. 94, 050502 (2005)

Abstract : We propose a protocol to achieve high fidelity quantum state teleportation of a ma-
croscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how
to prepare this pair of ensembles using quasiperfect quantum state transfer processes between
light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states
and magnetic feedback reconstruction.

5.2. La mesure de polarisation
L’espace de la polarisation d’un faisceau lumineux est un espace à deux dimensions,

à deux modes comme nous les avons définis au début de ce mémoire, par exemple les
6Voir par exemple le livre de Hans Bachor et Tim Ralph, A guide to experiments in quantum optics,

Wiley-VCH, Weinheim, (2005) pour plus de précisions sur ces techniques maintenant standard.
7Depuis cette limite à été dépassée par N. Takei, H. Yonezawa and A. Furusawa, Phys. Rev. Lett. 94,

220502 (2005)
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modes de polarisation horizontale et verticale. Par rapport à la section précédente un
degré de liberté en plus est disponible et l’espace des états est donc plus riche, mais plus
complexe à évaluer. Commençons par définir la réduction de bruit en polarisation. En
accord avec notre premier chapitre, il faut, pour évaluer un faisceau donné, se placer dans
la base du champ moyen : le mode de champ moyen est alors celui de la polarisation de
la valeur moyenne du champ et le deuxième mode est sa composante orthogonale. Dans
ce cadre, les propriétés quantiques du mode de champ moyen ne nous intéressent pas, car
c’est ce qui est détecté par une détection monomode. Nous dirons donc que nous avons
de la réduction de bruit en polarisation lorsque le mode de polarisation orthogonal au
champ moyen est non-classique, en accord avec ce qui a été proposé par N.V. Korolkova
et al.8.

Nous avons réalisé en Australie une expérience de réduction de bruit de polarisation,
dont les résultats ont été obtenu préalablement à l’achèvement de la théorie présentée
ici. Ainsi, la définition de la réduction de bruit de polarisation y est différente. Nous
nous étions placé dans l’espace des paramètres de Stockes, dont l’extension quantique
par rapport à la définition classique est immédiate (voir l’article). Cet espace est inté-
ressant car les quatre paramètres de Stokes peuvent être mesurés grâce à des mesures
d’intensité (et ne nécessitent donc pas de référence de phase). C’est d’ailleurs pourquoi
les variables de polarisation suscitent beaucoup d’intérêt pour les protocoles de commu-
nication. La réduction du bruit d’un des paramètres de Stokes en dessous de sa valeur
dans le cas cohérent nous permettait d’affirmer que le faisceau était comprimé en polari-
sation. Néanmoins, et afin de ne pas reproduire des expériences monomodes, nous avions
réduit simultanément les fluctuations de 3 sur 4 des paramètres, ce qui implique que le
faisceau est comprimé en accord avec la définition donnée au paragraphe précédent. Les
résultats sont exposés dans :

Article 8, reproduit en page 94

Stokes-operator-squeezed continuous-variable polarization states
R. Schnabel, W. P. Bowen, N. Treps, T.C. Ralph, H.-A. Bachor et P.K. Lam

Phys. Rev. A 67, 012316

Abstract : We investigate nonclassical Stokes-operator variances in continuous-wave polarization-
squeezed laser light generated from one and two optical parametric amplifiers. A general expres-
sion of how Stokes-operator variances decompose into two-mode quadrature operator variances
is given. Stokes parameter variance spectra for four different polarization-squeezed states have
been measured and compared with a coherent state. Our measurement results are visualized
by three-dimensional Stokes-operator noise volumes mapped on the quantum Poincaré sphere.
We quantitatively compare the channel capacity of the different continuous-variable polarization
states for communication protocols. It is shown that squeezed polarization states provide 33%
higher channel capacities than the optimum coherent beam protocol.

Pour produire cette réduction de bruit nous avons utilisés deux faisceaux comprimés
-les mêmes que ceux de la téléportation- que nous avons mélangé grâce à un cube sépara-

8Natalia Korolkova and Rodney Loudon, Phys. Rev. A 71, 032343 (2005).
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5. Du monomode au tout multimode

teur de polarisation. L’analyse complète du faisceau produit à été faite ce qui nous permis
de tracer notre état produit -et le faire varier- à l’intérieur de la sphère de Poincaré.

La suite logique de cette expérience consiste à réaliser de l’intrication de polarisation.
Nous avons donc cherché, dans une approche similaire à celle de l’article précédent,
à intriquer les paramètres de Stokes de deux faisceaux différents. Nous avions choisi
également de réaliser une intrication non-triviale -qui serait uniquement celle des champs
moyens- et avons donc réalisé une intrication équivalente à l’intrication des modes vides
des deux faisceaux, intrication qui rentre donc dans le cadre que nous avons défini et
que nous pouvons donc appeler intrication multimode en polarisation.
Il est à noter que nous avons déve-
loppé des critères basés sur les pa-
ramètres de Stokes -du fait de leur
utilité en information quantique-,
mais que les critères généraux d’in-
trication multimode manquent en-
core. On remarquera également la
similitude formelle entre cette expé-
rience et l’intrication spatiale propo-
sée en section suivante (voir figure
ci-contre).
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Article 9, reproduit en page 105

Experimental demonstration of continuous variable polarization entanglement
W.P. Bowen, N. Treps, R. Schnabel et P.K. Lam

Phys. Rev. Lett. 89, 253601 (2002)

Abstract : We report the experimental transformation of quadrature entanglement between two
optical beams into continuous variable polarization entanglement.We extend the inseparability
criterion proposed by Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] to polarization states and use
it to quantify the entanglement.We propose an elaboration utilizing two quadrature entangled
pairs for which all three Stokes operators between a pair of beams are entangled.

5.3. Le nano-positionnement
Originellement, ce sont les degrés de libertés transverses de la lumière (�ρ = x�i+y�j) qui

nous ont conduit vers l’étude du multimode. Ces paramètres décrivent la distribution
du champ électrique dans un plan transverse à sa propagation, ce que nous appelons
ici une image. Les mesures et caractérisations des images se heurtent, ultimement, au
bruit quantique de la lumière. La volonté d’aller au delà de cette limite suscita les
études menées, qui mêlent à la fois des techniques d’imagerie, de théorie du signal et
d’optique quantique. Plusieurs approches ont été utilisées, l’une consistant à considérer
chaque position transverse �ρ comme un degré de liberté -nous l’évoquerons dans le dernier
chapitre de ce mémoire- et l’autre à décomposer la lumière en modes transverses -comme
les modes gaussiens- et à en dégager ceux importants pour l’application considérée. Cette
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5.3. Le nano-positionnement

dernière approche ne met en jeu simultanément que quelques modes, et c’est celle que
nous allons évoquer ici.

5.3.1. Les détecteurs à quadrants

Les études expérimentales sont ici la
conséquence directe de la théorie présen-
tée en début de ce mémoire. Nous nous
sommes penchés sur des appareils de me-
sure et avons tenté d’atteindre, puis de dé-
passer, la limite quantique standard asso-
ciée. Premier appareil considéré, le détec-
teur à deux zones qui permet, en faisant la
différence des photocourants délivrés par
ces deux zones, de déterminer la position
du faisceau relativement au détecteur. Ce
détecteur de position, très sensible, est uti-
lisé dans de nombreux appareils tel, par
exemple, le microscope à force atomique.
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Fig. 5.1.: Figure de phase des deux modes in-
tervenant dans une mesure de po-
sition : un champ gaussien et un
champ gaussien retourné.

0 0 180

x

y
mode retourné : w1TEM00

Nous nous plaçons donc dans le cadre d’une mesure d’intensité, comme définie par
l’équation 4.1, où le gain est égal à −1 pour x < 0 et +1 pour x > 0. Le mode de
détection w1 associé -dont on rappelle qu’il est égal au mode de champ moyen pondéré
par le gain du détecteur- est donc un mode identique à celui du champ moyen pour x > 0
et égal à moins celui du champ moyen pour x < 0, mode que l’on appelle mode retourné.
Il se trouve de plus que, lorsque le faisceau est pratiquement centré -ce qui est le cas
dans toutes les expériences- le mode retourné est orthogonal au mode de champ moyen,
et ces deux modes forment donc le début d’une base. Cette précision est importante
car elle signifie qu’il est possible d’adresser directement, au moins en théorie, le mode
retourné sans perturber celui de champ moyen. Tous calculs faits, on trouve que le plus
petit déplacement mesurable est donné dans cette expérience, avec un faisceau gaussien
TEM00 de taille w0, par :

dsplit
min =

w0

2
√

N

√
π

2
·
√

< δX̂+2
w1 >. (5.1)

On voit apparaître deux paramètres important : le nombre de photons détecté pendant
le temps de mesure-plus il est grand, plus la mesure est précise- et le bruit du mode
retourné -plus il est petit, plus la mesure est sensible-. Dans l’expérience suivante nous
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5. Du monomode au tout multimode

avons réalisé un tel montage, et nous avons produit un mode retourné vide et comprimé en
intensité en plaçant une lame de phase sur le faisceau comprimé dont nous disposions. Ce
faisceau était mélangé sur une lame avec le champ moyen, puis déplacé -à une fréquence
d’oscillation de quelques MHz- et enfin mesuré. Nous avons pu mesurer des déplacements
de l’ordre de l’Angström et aller au delà de la limite quantique standard :

Article 10, reproduit en page 111

Surpassing the standard quantum limit for high sensitivity measurements in
optical images using non classical light

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maître, H.-A. Bachor, C. Fabre
Phys. Rev. Lett. 88, 203601 (2002)

Abstract : Using continuous wave superposition of spatial modes, we demonstrate experimen-
tally displacement measurement of a light beam below the standard quantum limit. Multimode
squeezed light is obtained by mixing a vacuum squeezed beam and a coherent beam that are
spatially orthogonal. Although the resultant beam is not squeezed, it is shown to have strong
internal spatial correlations. We show that the position of such a light beam can be measured
using a split detector with an increased precision compared to a classical beam. This method
can be used to improve the sensitivity of small displacement measurements.

Le faisceau produit dans cette expérience est, d’après notre partie théorique, un fais-
ceau multimode quantique à deux modes. Ce fut la première mise en évidence expéri-
mentale d’un tel faisceau dans le domaine spatial.

L’étape suivante consista à étudier le détecteur à quadrants -4 cases de taille identique-
qui permet de mesurer simultanément les positions verticale et horizontale du faisceau.
Les modes de détections associés à ces mesures sont les versions horizontale et verticale
du mode retourné décrit plus haut. Ces deux modes étant, de nouveau, orthogonaux entre
eux et orthogonaux au mode de champ moyen, nous avons les trois premiers modes d’une
base orthonormale. Les plus petits déplacements mesurables dans chaque direction sont
identiques et donnés par l’équation 5.1. La difficulté de l’expérience réside dans le mé-
lange sans perte des modes ; en effet, seul le mode de champ moyen pouvant subir des
pertes sans voir son état modifié, il y a au moins un mélange sans pertes à effectuer. Nous
avons donc développé des dispositifs permettant le mélange de modes transverses ortho-
gonaux. Celui utilisé dans l’expérience suivante est une cavité en anneau, résonnante
pour un des modes qu’elle transmet donc parfaitement, et non résonnante pour l’autre
qu’elle peut donc réfléchir sur son miroir de sortie afin de le mélanger parfaitement au
faisceau transmis9. L’efficacité d’un tel système nous a permis de réaliser un faisceau
multimode quantique à trois modes et de l’utiliser pour faire des mesures au delà de la
limite quantique standard dans les deux directions transverses simultanément :

9Les différentes méthodes développées pour mélanger des modes transverses, ainsi que nombre de tech-
niques expérimentales, sont détaillées dans l’article N. Treps, N. Grosse, W. Bowen, M.T.L. Hsu,
A. Maître, C. Fabre, H.-A. Bachor et P.K. Lam, Nano-displacement measurements using spatially
multimode squeezed light, J. Opt. B : Quantum Semiclass. Opt 6 S664-S674 (2004), non reproduit ici
par soucis de concision.
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5.3. Le nano-positionnement

Article 11, reproduit en page 115

A Quantum Laser Pointer
N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam

Science Aug 15 2003 : 940-943

Abstract : The measurement sensitivity of the pointing direction of a laser beam is ultimately
limited by the quantum nature of light. To reduce this limit, we have experimentally produced
a quantum laser pointer, a beam of light whose direction is measured with a precision greater
than that possible for a usual laser beam. The laser pointer is generated by combining three
different beams in three orthogonal transverse modes, two of them in a squeezed-vacuum state
and one in an intense coherent field. The result provides a demonstration of multichannel spatial
squeezing, along with its application to the improvement of beam positioning sensitivity and,
more generally, to imaging.

5.3.2. Mesure optimale de déplacement et d’inclinaison
D’après l’équation 4.8 le mode de détection associé à une mesure de déplacement est

la dérivée par rapport à la dimension transverse -le déplacement- du mode de champ
moyen, un TEM00 dans notre cas. Or, la dérivée du mode TEM00 n’est autre que le mode
TEM01. Il nous faut donc mesurer la composante TEM01 du faisceau pour en déduire sa
position. Pour ce faire, reconsidérons le principe d’une détection homodyne : le champ
à mesurer arrive sur une lame 50/50, où il interfère avec un champ intense incident sur
l’autre entrée de la lame et que l’on appelle oscillateur local. Deux détecteurs mesurent
les deux sorties de la lame et le signal de différence est enregistré. Il est bien connu que
si l’oscillateur local est suffisamment intense ce signal est proportionnel aux fluctuations
du champ à caractériser. Ceci est du aux interférences entre les deux champs sur la lame.
En terme multimode, cela signifie que le mode du champ qui est effectivement mesuré
est celui qui interfère parfaitement avec l’oscillateur local. Une détection homodyne dont
l’oscillateur local est un TEM01 nous permettra donc de mesurer cette composante du
champ incident. Le plus petit déplacement mesurable est dans ce cas, en calculant la
constante de normalisation de l’équation 4.8 :

dhomodyne
min =

w0

2
√

N

√
< δX̂+2

w1 > (5.2)

où w1 est le mode de détection, donc la composante TEM01 du faisceau incident. On
observe un facteur d’amélioration

√
π
2 par rapport à la détection avec un détecteur à

quadrant, qui n’était donc pas optimale (alors qu’ici, comme nous l’avons montré, nous
atteignons la limite de Cramer-Rao). On a de plus, du fait de la détection homodyne,
accès à la quantité conjuguée mesurée en déphasant l’oscillateur local de π/2. On montre
que cette nouvelle observable correspond, comme attendu, à l’inclinaison du faisceau,
quantité conjuguée du déplacement, de manière analogue à la dualité entre position
et impulsion d’une particule -en effet, l’inclinaison du faisceau est équivalente à une
impulsion transverse-.

Nous avons réalisé cette expérience de mesure optimale en mettant en place une détec-
tion homodyne ’spatiale’ dont l’oscillateur local est un mode TEM01 -produit en faisant
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5. Du monomode au tout multimode

passer un faisceau gaussien légèrement désaligné dans une cavité vide asservie sur le
mode à produire-. Le faisceau à mesurer, un mode TEM00 est mélangé avec un mode
TEM01 comprimé pour réaliser le faisceau comprimé en position. Le mode comprimé
est réalisé directement en asservissant la cavité de l’OPA sur ce mode et en adaptant
température de cristal et forme de l’injection.
Il est mélangé avec le champ
moyen grâce, cette fois-ci, à
un interféromètre de Mach-
Zehnder avec un miroir sup-
plémentaire pour le rendre
sensible à la parité du mode
comme illustré dans la figure
ci-contre.

TEM00

TEM01

+

Nous avons pu mettre en évidence les mesures optimales de la position et de l’incli-
naison d’un faisceau gaussien, et ensuite aller au delà de la limite quantique standard :

Article 12, reproduit en page 119

Quantum measurements of spatial conjugate variables : Displacement and tilt of
a Gaussian beam

V. Delaubert, N. Treps, C.C. Harb, P.K. Lam and H.-A. Bachor
Optics Letters 31 1537-1539 (2006)

Abstract : We consider the problem of measurement of optical transverse profile parameters
and their conjugate variable. Using multimode analysis, we introduce the concept of detection
noise modes. For Gaussian beams, displacement and tilt are a pair of transverse-profile conjugate
variables. We experimentally demonstrate the optimal encoding and detection of these variables
with a spatial homodyning scheme. Using higher-order spatial mode squeezing, we show the
sub-shot-noise measurements for the displacement and tilt of a Gaussian beam.

Ces mesures ayant montré la faisabilité expérimentale des détections homodyne mul-
timode ainsi que l’accès aux quantités conjuguées, nous avons cherché à développer une
boîte à outils permettant de faire de l’information quantique multimode spatiale. Nous
avons montré comment produire, adresser individuellement, comprimer et mesurer dif-
férents modes transverses :

Article 13, reproduit en page 122

Tools for multi-mode quantum information : modulation, detection and squeezing
of spatial laser modes

M.Lassen, V.Delaubert, C.C.Harb, P.K.Lam, N.Treps, P.Buchhave, C.Fabre, and
H-A.Bachor

Soumis à Phys. Rev. Lett.
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Abstract : We present here all the required tools for continuous variable parallel quantum in-
formation protocols based on multi-mode quantum correlations and entanglement. We describe
our ability to encode and detect quantum information with high efficiency. We experimentally
demonstrate the generation of spatial correlations or optical squeezing in higher order transverse
Hermite-Gauss modes. The higher order mode squeezing is achieved by the mode selective tuning
of the phase matching condition and the cavity resonance condition of the nonlinear χ(2) optical
parametric amplification.

5.3.3. Intrication spatiale
La possibilité de mesurer, à la limite quantique, deux observables conjuguées d’un

même faisceau permet d’envisager la réalisation d’intrication. Il est remarquable, comme
nous l’avons évoqué dans la section précédente, que les deux observables mises en jeu
correspondent précisément à la position et l’impulsion du faisceau. On notera cependant
que ceci n’est vrai que pour un faisceau TEM00. En effet, autant il est toujours vrai que la
transformée de Fourier du déplacement est l’impulsion (et ceci est réalisé couramment en
faisant simplement une transformation champ proche - champ lointain avec une lentille),
autant le produit des variances des observables correspondantes n’est minimum que
lorsque que l’on part d’une forme gaussienne, comme c’est le cas pour la position et
l’impulsion d’une particule. Néanmoins, partant de deux faisceaux gaussiens, il est donc
possible de les intriquer en position et impulsion comme nous l’avons proposé.

La méthode proposée ici consiste à réaliser deux faisceaux individuellement comprimés
en position, identiques à celui réalisé en section précédente. Ces deux faisceaux sont
ensuite mélangés sur une lame 50/50 et les faisceaux de sortie sont, comme cela se passe
pour les champs monomodes, intriqués en position et impulsion.

On remarquera l’analogie for-
melle avec l’intrication de po-
larisation puisque, ici aussi,
on travaille avec une base à
deux modes et on intrique les
modes vides de chacun des
faisceaux. La réalisation expé-
rimentale de cette proposition
est prévue très prochainement
dans le cadre de notre collabo-
ration avec l’Australie.
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Article 14, reproduit en page 127

Continuous-Variable Spatial Entanglement for Bright Optical Beams
M.T.L. Hsu, W.P. Bowen, N. Treps and P.K. Lam

Phys. Rev. A 72, 013802 (2005)

Abstract : A light beam is said to be position squeezed if its position can be determined to an
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5. Du monomode au tout multimode

accuracy beyond the standard quantum limit. We identify the position and momentum obser-
vables for bright optical beams and show that position and momentum entanglement can be
generated by interfering two position, or momentum, squeezed beams on a beam splitter. The
position and momentum measurements of these beams can be performed using a homodyne de-
tector with local oscillator of an appropriate transverse beam profile. We compare this form of
spatial entanglement with split detection-based spatial entanglement.

5.3.4. Lecture optique de l’information
La possibilité de caractériser et d’améliorer toute mesure effectuée avec un détecteur

à pixels permet d’envisager des applications pour la lecture optique de l’information.
Nous nous sommes penchés sur un système modèle, le disque optique (CD), et avons
cherché à en augmenter la capacité en introduisant des méthodes de lecture permettant
de dépasser la limite de diffraction.
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Fig. 5.2.: Principe géné-
ral de la lecture
optique de l’in-
formation à l’aide
d’un détecteur à
pixels.

La reconstruction du champ lu avec un détecteur à pixel n’est a priori pas limitée
par la diffraction, puisque nous avons accès à la valeur de l’intensité et des techniques
de superrésolution permettent de reconstruire l’image avec précision. Cependant, pour
des images complexes, ces techniques se trouvent très vite limitées par le bruit (qu’il
soit d’origine électronique ou quantique) et les améliorations obtenues par rapport à la
limite de diffraction sont faible. La situation est toute autre quand on désire n’extraire
que quelques paramètres -comme défini au premier chapitre de ce mémoire- car dans
ce cas la grande quantité d’information a priori rend caduque la limite de diffraction.
En effet, dans le cas de la mesure d’un paramètre où on connaît tout sauf la valeur de
p elle-même, les limites de précision sont imposées par la mécanique quantique et non
plus par la théorie de la diffraction. Ceci car l’information a priori permet d’adapter le
détecteur à la quantité que nous voulons mesurer. Ainsi, si plusieurs informations sont
disposées sur le support optique dans une tache de diffraction -une information consistant
en un trou d’une profondeur un quart de longueur d’onde- la distribution d’intensité du
faisceau réfléchi en champ lointain, lue par un détecteur à pixels, doit permettre de faire
la différence entre les quelques combinaisons de bit possibles. C’est la proposition que
nous avons faîte, où pour chaque combinaison de bit possible on adapte la configuration
des gains du détecteur pour que le mode de détection soit le plus proche possible du mode
portant l’information. Nous avons montré qu’il était ainsi possible de faire la différence
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5.4. Le tout multimode : les cavités dégénérées

entre les 8 combinaisons possibles induites par 3 bits dans la tache de diffraction à l’aide
d’un détecteur à 5 zones. De plus, en cas de faible flux de photons (pour un temps
de lecture court par exemple) il est possible d’augmenter le rapport signal sur bruit
en comprimant les mode de détections pertinents. De la lumière multimode quantique à
quelques modes permet dans ce cas d’augmenter significativement la capacité de stockage
des supports optiques.

L’article suivant reprend ce principe en détail, et revient sur un certain nombre de
difficultés que nous n’avons pas abordées ici, comme le calcul de la propagation du champ
avec de grandes ouvertures numériques et des détails sub longueur d’onde, l’interaction
entre le champ et le support, la géométrie de l’ensemble, etc... :

Article 15, reproduit en page 134

Optical storage of high density information beyond the diffraction limit : a
quantum study

V. Delaubert, N. Treps, G. Bo and C. Fabre
Phys. Rev. A 73, 013820 (2006)

Abstract : We propose an optical readout scheme allowing a proof of principle of information
extraction below the diffraction limit. This technique, which could lead to improvement in data
readout density onto optical disks, is independent from the wavelength and numerical aperture
of the reading apparatus, and involves a multipixel array detector. Furthermore, we show how to
use nonclassical light in order to perform a bit discrimination beyond the quantum noise limit.

5.4. Le tout multimode : les cavités dégénérées
Dans les sections précédentes nous avons étudié des exemples où les modes mis en

jeu étaient bien identifiés, et les modes importants en nombre réduit. Cette approche
de synthèse de mode est bien adaptée lorsque l’on dispose d’information a priori sur
la quantité à mesurer, mais est limitée, du fait des techniques expérimentales, à un
nombre de mode restreints et donc à des problèmes simples. Lorsque l’on désire de
manière générale caractériser une image et en extraire le plus de détails possibles, sans
savoir à l’avance où il se trouvent, on utilise un détecteur possédant un grand nombre
de pixels et des techniques de superrésolution. Ces techniques se ramènent in fine à
des combinaisons linéaires de pixel et sont sensibles, comme toutes mesures, au bruit
de modes de détection. Cependant, l’absence d’information a priori ne permet pas de
connaître à l’avance la forme de ces modes et donc d’en réduire le bruit préalablement
à la mesure. Pour aller plus loin, il faut abandonner l’approche de la synthèse de mode
et tenter de réduire simultanément le bruit de tous les modes, ce que l’on appelle la
réduction de bruit locale. C’est le principe des configurations dégénérées où tous les
modes sont équivalents10. Nous étudions ici ce cas pour les dimensions transverses, nous
verrons en section suivante le même type d’approche pour les dimensions temporelles.
10Une étude précise du bruit quantique dans la supperésolution et des modes transverses à comprimer

est faite dans V. Beskrovnyy and M. Kolobov, Phys. Rev. A 71, 043802 (2005)
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Notre outil de base est encore une fois la génération paramétrique. En effet, aux pro-
priétés quantiques de photons jumeaux et d’intrication s’ajoutent, lors de ce processus,
des propriétés spatiales remarquables car les champ émis sont également corrélés en
impulsion du fait de l’accord de phase dans le cristal. De plus, en configuration d’am-
plification, si le cristal est suffisamment mince, chaque point transverse du cristal se
comporte comme un amplificateur indépendant et une amplification point à point -donc
multimode- d’un champ incident peut être réalisée.

5.4.1. Images et cavités

Dans le régime des variables continues il est nécessaire, lorsque les puissances dispo-
nibles ne sont pas élevées, de placer le cristal à l’intérieur d’une cavité. Or les cavités
habituelles possèdent des modes propres détruisant le caractère multimode du processus
paramétrique. Nous avons donc étudié les propriétés des cavités dégénérées transversal-
lement : des cavités résonnantes, pour une longueur donnée, pour un grand nombre de
modes transverses simultanément.

Un point de vue intéressant consiste à écrire la matrice ABCD correspondant à la
propagation de la lumière sur un tour de cavité. Une condition nécessaire et suffisante
pour que la cavité soit dégénérée est qu’il existe un entier N tel que cette matrice élevée
à la puissance N soit égale à l’identité. Cela signifie simplement qu’au bout de N tours
dans la cavité un rayon revient sur lui même. Cependant, cette matrice ne prend pas
en compte la phase accumulée par ce rayon, et l’ordre de dégénérescence est défini de
manière plus précise dans :

Article 16, reproduit en page 144

Image transmission through a stable paraxial cavity
S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre

Phys. Rev. A 72 023804 (2005)

Abstract : We study the transmission of a monochromatic "image" through a paraxial cavity.
Using the formalism of self-transform functions, we show that a transverse degenerate cavity
transmits the self-transform part of the image, with respect to the field transformation over one
round-trip of the cavity. This formalism gives insight into the understanding of the behavior of a
transverse degenerate cavity, complementary to the transverse mode picture. An experiment of
image transmission through a hemiconfocal cavity shows the interest of this approach.

Il existe plusieurs types de cavités dégénérées. Les cavités parfaitement dégénérées,
pour lesquelles la matrice ABCD est l’identité, sont aussi appelées auto-imageantes,
elles reproduisent le champ à l’identique en un tour de cavité et cela signifie que toute
image incidente sur la cavité est transmise sans déformation. Nous avons étudié une telle
cavité et montré qu’elle permettait de transférer une image du champ fondamental au
champ second harmonique en configuration de doublage de fréquence.

Cependant, cette cavité est complexe à manipuler et nous avons donc étudié des cavi-
tés partiellement dégénérées, pour lesquelles N �= 1. Dans ce cas, le champ transmis par
la cavité est la somme du champ incident, plus le champ ayant subi un tour de cavité,
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5.4. Le tout multimode : les cavités dégénérées

jusqu’à celui ayant subi N − 1 tours de cavité. Les images transmises sans déformation
par la cavité sont donc celles invariantes par une telle transformation. Ce sont des fonc-
tions auto-transformes comme défini dans l’article précédant. Notons simplement que,
en revenant dans la base des modes gaussiens, cela signifie que seul 1 mode sur N est
résonnant dans la cavité.

5.4.2. Propriétés quantiques d’un OPO confocal

La cavité confocale est une cavité composée de deux miroirs sphériques, de même
rayon de courbure R et espacés d’une distance R. La matrice ABCD d’une telle cavité
est égale à moins l’identité, un rayon se reboucle sur lui-même en deux tours de cavité.
Ainsi, suivant le réglage fin de sa longueur, cette cavité transmet soit tous les modes
pairs, soit tous les modes impairs ; c’est la configuration modes pairs que nous avons
utilisée exclusivement.

Avec un cristal non-linéaire d’ordre deux placé à l’intérieur, cela forme un OPO confo-
cal. Nous considérons ici le cas d’un cristal de type II, du KTP, tel que les faisceaux
signal et complémentaire sont polarisés orthogonalement, il est donc possible de les sé-
parer pour mesurer des propriétés de photons jumeaux. La cavité n’étant résonnante que
pour les modes pairs, elle mélange les photons d’impulsion transverse (i.e. la composante
du vecteur d’onde orthogonale à l’axe de la cavité) �kT avec ceux d’impulsion −�kT , une
géométrie intéressante pour regarder les effets quantiques consiste donc à considérer les
cônes d’émission d’angle d’ouverture l’angle du vecteur �k avec l’axe de la cavité. Nous
avons réglé à dégénérescence une telle cavité et regardé les corrélations d’intensité entre
les champs signal et complémentaire (photons jumeaux). Puis, pour observer des effets
multimodes, nous avons placé un diaphragme pour couper le faisceau émis en fonction
de l’angle d’émission. Nous avons pu montrer que les propriétés quantiques des fais-
ceaux ainsi coupés spatiallement n’étaient pas linéaires avec la puissance transmise, ce
qui serait le cas pour un champ monomode. Nous avons donc montré le comportement
multimode quantique de l’OPO confocal :

Article 17, reproduit en page 154

Experimental study of the spatial distribution of quantum correlations in a
confocal optical parametric oscillator

M. Martinelli, N.Treps, S. Ducci, S. Gigan, A. Maître et C. Fabre
Phys. Rev. A 67, 023808 (2003)

Abstract : We study experimentally the spatial distribution of quantum noise in the twin beams
produced by a type-II optical parametric oscillator operating in a confocal cavity above threshold.
The measured intensity correlations are at the same time below the standard quantum limit and
not uniformly distributed inside the beams. We show that this feature is an unambiguous evidence
for the multimode and nonclassical character of the quantum state generated by the device.

L’étude théorique précise, au delà des considérations de symétries simples utilisés dans
l’expérience précédente, d’une telle cavité nécessite la prise en compte des propriétés
transverses de la cavité en même temps que la propagation du champ dans le cristal où,
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5. Du monomode au tout multimode

quand on parle d’image, les effets de diffraction sont essentiels. Nous avons donc écrit les
relations d’entrée-sortie complètes de la cavité en utilisant des opérateurs locaux, et nous
avons résolu numériquement ces équations. Ces études ont confirmé en grande partie les
prédictions précédentes, moyennant la prise en compte d’une longueur de cohérence

lcoh =
√

λlc
πns

(5.3)

où lc est la longueur du cristal et ns l’indice optique. Si on s’intéresse aux effets quantiques
en champ proche (i.e. dans le plan du cristal), pour des détecteurs de taille caractéristique
supérieure à lc on retrouve les prédictions de photons jumeaux intuitives, alors que pour
des détecteurs de taille inférieure ces effets disparaissent. En d’autres termes, l’aire de
cohérence, induite par la diffraction dans le cristal, correspond à la taille caractéristique
des modes pouvant osciller indépendamment, et donc en divisant l’aire du faisceau par
l’aire de cohérence on peut obtenir une estimation du nombre de modes mis en jeu dans
l’expérience :

Article 18, reproduit en page 163

Multimode squeezing properties of a confocal optical parametric oscillator :
Beyond the thin-crystal approximation

L. Lopez, S. Gigan, N. Treps, A. Maître, C. Fabre, and A. Gatti
Phys. Rev. A 72, 013806 (2005)

Abstract : Up to now, transverse quantum effects usually labeled as "quantum imaging" effects
which are generated by nonlinear devices inserted in resonant optical cavities have been calculated
using the "thin-crystal approximation," i.e., taking into account the effect of diffraction only
inside the empty part of the cavity, and neglecting its effect in the nonlinear propagation inside
the nonlinear crystal. We introduce in the present paper a theoretical method which is not
restricted by this approximation. It allows us in particular to treat configurations closer to the
actual experimental ones, where the crystal length is comparable to the Rayleigh length of the
cavity mode. We use this method in the case of the confocal optical parametric oscillator, where
the thin-crystal approximation predicts perfect squeezing on any area of the transverse plane,
whatever its size and shape. We find that there exists in this case a "coherence length" which
gives the minimum size of a detector on which perfect squeezing can be observed, and which
gives therefore a limit to the improvement of optical resolution that can be obtained using such
devices.

5.4.3. Amplification d’image

La dernière étape de ces expériences en cavité partiellement dégénérée consiste en
l’amplification sans bruit d’images. Comme nous l’avons vu au début de ce mémoire, ce
processus permet de régénérer des images et également de s’affranchir de la mauvaise
efficacité quantique de détecteur. De plus, naturellement, l’amplification via un milieu
paramétrique crée des états non-classiques très intéressants.
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Pour réaliser de l’amplification multimode, nous avons choisi, pour des raisons pra-
tiques, comme cavité dégénérée une cavité semi-confocale, composée d’un miroir plan et
d’un miroir sphérique de rayon de courbure R distants de R/2. Il faut élever la matrice
ABCD de ce dispositif à la puissance 4 pour obtenir l’identité, un seul mode transverse
sur 4 y est donc résonnant. On se reportera à l’article 16 pour les propriétés de cette
cavité.

L’oscillateur paramétrique optique, sous le seuil et injecté par un signal, réalise exac-
tement le processus d’amplification que nous avons évoqué au début de ce mémoire. En
type II, où signal et complémentaire sont polarisés orthogonalement, l’injection selon
une des polarisations réalise un amplificateur insensible à la phase alors que l’injection à
45o des polarisations propres réalise un amplificateur sensible à la phase. Nous n’avons
pu, du fait du mélange -même faible- des polarisations induit par notre cavité, ne réaliser
que le deuxième, qui est celui le plus pertinent car sans bruit.

La cavité elle même est en configuration de double cavité, comme expliqué dans :

Article 19, reproduit en page 173

Noiseless Optical Amplification of Images using transverse degenerate OPOs
L. Lopez, N. Treps, C. Fabre and A. Maître

En préparation

Abstract :

Nous avons pu mettre en évidence de l’amplification d’image en type II, puis montrer
que cette amplification rajoutait moins de bruit qu’une amplification classique et était
donc dans le régime sans bruit. Ces résultats remarquables ont été pris à chaque fois en
mesurant une modulation d’intensité sur l’ensemble de l’image, et nous avons montré que
le facteur de bruit de notre amplificateur ne dépend pas de l’image injectée, démontrant
ainsi son caractère multimode quantique. De plus, nous avons pu passer d’une configu-
ration d’amplification à une configuration de de-amplification, et dans ce cas observer de
la réduction du bruit d’intensité quelle que soit l’image transmise. La prochaine étape de
cette expérience est de remplacer la cavité semi-confocale par la cavité auto-imageante
pour ne plus déformer les images. De plus, dans cette configuration, sous le seuil, nos
calculs théoriques ont montré que les propriétés locales des champs sont quantiquement
remarquables, et nous pourront alors faire des mesures locales pour mettre en évidence
le caractère multimode, plutôt que des mesures globales en changeant le mode injecté
comme nous l’avons fait jusqu’à présent.

5.5. Multimode en temps et fréquence : futures directions

5.5.1. L’OPO en mode synchrone

Les degrés de liberté non encore explorés des faisceaux continus sont ceux de temps
et fréquence, ce qui paraît naturel car, traditionnellement, un faisceau continu est mo-
nochromatique et stationnaire. Cependant, la description théorique donnée en premier
chapitre autorise ce degré de liberté, d’ailleurs mis en œvre sous des formes diverses par
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plusieurs groupes à travers le monde. Ici, et afin de garder l’aspect cohérent inhérent
à notre approche, nous avons choisi de considérer les peignes de fréquence, qui sont
une superposition cohérente de différentes fréquences optiques. Ces peignes sont émis
en général par les lasers à impulsions à verrouillage de modes et se traduisent, dans le
domaine temporel, par un train d’impulsions cohérentes entre elles. Vu sous l’angle des
fréquences, l’analogie est parfaite avec notre approche de l’imagerie, où une image est
une superposition cohérente de différents modes transverses. Ce domaine est l’objet de
notre nouveau projet de recherche et l’expérience correspondante est en cours d’instal-
lation. Nous ne présentons ici que les études théoriques que nous avons menées jusqu’à
présent.

Le système modèle que nous avons considéré est celui d’un oscillateur paramétrique
optique pompé en mode synchrone. Cet OPO est tel que le temps que met la lumière à
faire un tour de cavité est égal au temps entre deux impulsions successives de la pompe,
ainsi les différentes impulsions pompe se superposent dans la cavité et les champs émis
par l’OPO sont de nouveaux des peignes de fréquences. Le bilan de puissance dans ce
dispositif est alors très intéressant, car du fait de sa cohérence ce système se comporte
comme un OPO continu, mais sa puissance crête, de l’ordre de 5 ordres de grandeurs
supérieure, augmente de manière considérable les non-linéarités et réduit les seuils. De
plus, cette cavité est dégénérée puisque toutes les fréquences du peigne de fréquence y
sont résonnantes simultanément. Ainsi, dans ce dispositif, et ce contrairement au cas
spatial, la dégénérescence est assurée dès que l’on obtient l’oscillation.

Laser femtoseconde à 
verrouillage de modes

OPO en 
mode synchrone

Signal/complémentaire

Impulsions pompe

Nous avons étudié théoriquement les propriétés quantiques d’un tel système, dans le
cas où signal et complémentaire sont dégénérés. Comme la cavité ne sélectionne pas na-
turellement de modes, cette sélection est effectuée à la fois par la forme de la pompe et
par les propriétés d’accord de phase du cristal. On voit ainsi apparaître naturellement
une nouvelle base de modes, que l’on appelle super-modes, où chaque mode est une com-
binaison linéaire de modes monochromomatiques, ce sont donc des peignes de fréquence.
La forme, dans le domaine des fréquences, de ces modes est similaire, sous certaines
hypothèses, à celle des modes de Hermite-Gauss. On trouve alors que lorsque l’on s’ap-
proche du seuil d’oscillation, le super-mode le plus proche du seuil devient comprimé.
Mais ce qui est remarquable est qu’il existe des domaines de valeur des paramètres où un
grand nombre de super-modes ont des seuils comparables, et dans ce cas tous ces modes
ont des propriétés quantiques comparables mais indépendantes, on atteint un régime
multimode :

Article 20, reproduit en page 178

Squeezing frequency combs
G.J. de Valcarcel, G. Patera, N. Treps and C. Fabre

Soumis à Phys. Rev. A

Abstract : We have developed the full multimode theory of a synchronously pumped type I
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optical parametric oscillator (SPOPO). We derive expressions for the oscillation threshold and
the characteristics of the generated mode-locked signal beam. We calculate the output quantum
fluctuations of the device, and find that, in the degenerate case (coincident signal and idler set of
frequencies), significant squeezing is obtained when one approaches threshold from below for a set
of well defined "super-modes", or frequency combs, consisting of a coherent linear superposition
of signal modes of different frequencies which are resonant in the cavity.

Ces études ont plusieurs objectifs. Tout d’abord, du fait des non-linéarités disponibles
nous espérons non-seulement améliorer les expériences existantes mais de plus explorer de
nouveaux états quantiques. D’un autre côté, la dimension multimode en temps/fréquence
permet d’envisager des applications par exemple en métrologie des fréquences -qui utilise
maintenant des peignes de fréquences- et en transfert de temps. C’est cette dernière
configuration que nous avons commencé à étudier.

5.5.2. Le transfert de temps
Le transfert de temps consiste en le partage, entre deux opérateurs distants, de la

variable u définie au début de ce mémoire, variable qui est invariante lors de la propa-
gation de la lumière dans le vide. Une petite variation du temps de trajet de la lumière
entre les deux opérateurs induit donc une variation de u à l’arrivée. Une mesure de haute
sensibilité de cette variable permet une optimisation du transfert de temps, nous sommes
donc exactement dans le cadre de notre théorie de la mesure multimode. En effet, ce
que nous cherchons à mesurer est une petite variation du u sous l’action d’un paramètre
qui agit directement sur u lui-même, de manière analogue aux mesures de position où
l’on mesure la position du faisceau sous l’action d’un déplacement. Le mode de détection
associé à la mesure est donc la dérivée du champ par rapport à u.

Ainsi, considérons que le faisceau lumineux partagé est une impulsion gaussienne,
que nous supposerons simplement de durée grande devant le cycle de la lumière (soit la
femtoseconde pour une impulsion dans le proche infrarouge), ce qui permet de la supposer
quasi-monochromatique et d’utiliser la décomposition 3.5. En omettant les variables
autres que u, le mode de champ moyen est de la forme u0(u) = 1

π1/4τ1/2 e−
u2

2t2 e−iω0u. Il
vient, pour une petite variation ε de u :

u0(u − ε) ≈ u0(u) +
ε

a
u1(u)

= u0(u) + ε

[
iω0u0(u) +

1
τ
√

2
v1(u)

]
(5.4)

où u1 est la dérivée normalisée de u0, v1 est un mode TEM01 dans l’espace temporel, équi-
valent au mode de signal des petits déplacements, qui s’écrit v1(u) =

√
2

π1/4τ3/2 ue−
u2

2t2 e−iω0u,
et ω0τ est égal au nombre d’oscillations du champ à l’intérieur d’une impulsion. Nous
avons ici explicité les modes afin de souligner les analogies, mais surtout les différences,
avec les mesures de déplacement. Contrairement à ce dernier cas, où le mode de signal
est simplement le TEM01, il apparaît ici un terme nouveau proportionnel, mais en qua-
drature, à u0. Ce terme apparaît car la variable mesurée est également la variable de
la propagation. Le mode de signal, qui est l’ensemble de l’expression entre crochets,
est donc plus subtil que dans le cas spatial et nous avons choisi de le séparer en ses
composantes u0 et v1 car elles recouvrent deux approches différentes.
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Le terme proportionnel à u0 est un terme de déphasage, qui exprime simplement que si
le temps de trajet d’un faisceau augmente légèrement, il s’en trouvera déphasé à l’arrivée.
Mesurer ce déphasage correspond donc à faire du suivi de phase du faisceau, et peut se
faire avec un champ partagé continu (qui rentre dans le cadre de notre approche en
faisant tendre τ vers l’infini). Le terme en u1 est celui auquel nous sommes maintenant
habitué et est induit par un décalage global de l’enveloppe du champ. En définissant la
mesure de temps comme le temps de trajet du maximum de l’enveloppe, c’est ce terme
qui lui correspond. Ces deux termes, liés dans le vide, peuvent différer dans un milieu
dispersif où la vitesse de phase est différente de la vitesse de groupe.

Une mesure de temps effectuée en mesurant le temps de trajet de l’enveloppe d’im-
pulsions lumineuses pourra donc être réalisée de manière optimale via une détection
homodyne dont l’oscillateur local est dans le mode u1. De plus, en utilisant par exemple
un OPO en mode synchrone, il est possible de réduire le bruit de ce mode et donc
d’améliorer la mesure de temps. L’article correspondant, réalisé en collaboration avec B.
Lamine, S. Reynaud et C. Fabre et que nous avons intitulé "Quantum enhancement of
time transfer", est en préparation.
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L’effort à la fois théorique et expérimental présenté dans ce mémoire n’est pas isolé
et suit une tendance internationale vers l’exploration de la complexité, en particulier
en optique quantique. L’imagerie quantique est par exemple le fruit du réseau européen
QUANTIM, qui découle lui-même de travaux pionniers effectués en Europe et en Russie.
Depuis, le département de la défense américain a financé un projet "Quantum Imaging,
New Methods and Applications" pour lequel nous sommes collaborateurs. Nous sommes
de plus engagés, avec un nouveau groupe de laboratoires européens issus en partie du ré-
seau QUANTIM, dans la rédaction d’un nouveau projet visant spécifiquement à explorer
la complexité de l’intrication en optique quantique.

En parallèle, sous l’impulsion en particulier de l’information quantique, la nécessité de
générer des états plus complexes et permettant des protocoles plus riches et plus efficaces
a mené la communauté au mélange de techniques de variables continues et de photons
uniques. On citera en particulier la génération d’états à fonction de Wigner négative,
à la fois dans le domaine impulsionnel1 et dans le domaine continu2, qui reposent dans
les deux cas sur la soustraction d’un seul photon au champ -à l’aide d’une lame faible-
ment réfléchissante et d’un détecteur de photons uniques- à laquelle on conditionne la
caractérisation du champ restant. De la même façon, des idées permettant de caractéri-
ser le champ via les corrélations entre ce photon soustrait et les fluctuations du champ
transmis ont été proposées et commencé à être mises en œuvre3.

Finalement, les travaux en optique quantique à petit nombre de modes trouvent un
écho dans la recherche d’application de la lumière comprimée à la mesure optique. Nos
partenaires australiens ont également un protocole pour améliorer les performances du
CD4, projet aussi à l’étude, via des techniques dites classiques, par des laboratoires en
Hollande, au Royaume-Uni et en Allemagne. Avec ces différents groupes nous sommes en
train de monter un consortium européen pour fédérer les approches classiques et quan-
tiques à l’amélioration de la densité d’information accessible par des moyens optiques. Il
est intéressant de rapprocher ces études des efforts faits par la communauté pour réaliser
de la réduction de bruit quantique à basse fréquence5. Motivées par l’amélioration de la

1Generating Optical Schrödinger Kittens for Quantum Information Processing A. Ourjoumtsev, R.
Tualle-Brouri, J. Laurat et P. Grangier, Science 312, 83-86 (2006).

2Generation of a Superposition of Odd Photon Number States for Quantum Information Networks J.
S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett.
97, 083604 (2006)

3 Giant Violations of Classical Inequalities through Conditional Homodyne Detection of the Quadrature
Amplitudes of Light H. J. Carmichael, H. M. Castro-Beltran, G. T. Foster, and L. A. Orozco, Phys.
Rev. Lett. 85, 1855-1858 (2000)

4A quantum study of multi-bit phase coding for optical storage, Magnus T.L. Hsu, Vincent Delaubert,
Warwick P. Bowen, Claude Fabre, Hans-A. Bachor, Ping Koy Lam, quant-ph/0602132

5Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band Henning Vahl-
bruch, Simon Chelkowski, Boris Hage, Alexander Franzen, Karsten Danzmann, and Roman Schnabel
Phys. Rev. Lett. 97, 011101 (2006). Squeezing in the Audio Gravitational-Wave Detection Band Kirk
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sensibilité des détecteurs à ondes gravitationelles, ces études trouvent un écho dans la
recherche d’application à la lecture optique où de la réduction de bruit large bande est
nécessaire.

On le voit, les différents thèmes de recherche présenté dans ce mémoire sont poursui-
vis de manière active au niveau international et, en particulier, européen. La suite de
ces recherches s’inscrit dans ces différents cadres en s’appuyant en particulier sur l’ex-
périence d’optique quantique avec des peignes de fréquences que nous sommes en train
d’installer, mais également en poursuivant l’expérience d’imagerie et celle de génération
d’intrication. Le nouveau réseau IRCOQ, financé par l’ANR et dont je suis coordinateur,
dont l’acronyme signifie "Intrication et Réseau de Communication Quantique" fédère ces
différentes approches sous l’angle de l’information quantique en regroupant les acteurs
principaux de l’optique quantique en variables continues en France.

Tout d’abord, à court terme, l’étude quantique de l’oscillateur paramétrique optique en
cavité auto-imageante s’impose. Le but en est non-seulement de réaliser de l’amplification
d’image parfaitement multimode mais également, en configuration sous le seuil et sans
injection, de générer pour la première fois du vide comprimé localement. Les calculs
que nous avons fait prédisent ces compressions, et prédisent de plus que l’analyse en
champ lointain des fluctuations quantiques émises par ce dispositif permet d’observer
des corrélations EPR locales. La mise en évidence de telles corrélations serait une étape
majeure dans l’étude de la complexité en optique quantique mais également dans la
perspective d’applications en imagerie. Ainsi, suivant les résultats obtenus dans cette
expérience nous pourrons envisager de mettre en œuvre des applications à la mesure
optique où à l’information quantique multimode. Le réseau IRCOQ se prête parfaitement
à ces études où nous pourrons évaluer la possibilité d’un réseau de communications
quantiques multimode.

Du côté de la génération d’états intriqués, nous voulons poursuivre l’étude théorique et
expérimentale de la caractérisation de l’intrication et des critères associés. En particulier,
la qualité des faisceaux EPR produits par l’expérience permet d’envisager l’étude de
corrélations dites "photons-champ" entre la statistique de photon et celle des fluctuations
de quadrature. Au delà des avantages en terme de sensibilité vis-à-vis des pertes et de
caractérisation nouvelle de la réduction de bruit, ces études nous permettront de mettre
en œuvre, à la fois théoriquement et expérimentalement, des critères d’intrication d’un
type nouveau. Nous en attendons une meilleure compréhension des propriétés des états
quantiques à plusieurs modes mais également d’étudier la possibilité de générer des états
à fonction de Wigner négative en configuration multimode. Enfin, ces études permettent
bien évidemment d’étudier quelles sont les meilleures configurations pour générer des
états non-classiques pour les communications quantiques.

L’essentiel de nos efforts va néanmoins se porter sur l’études des nouvelles variables
que sont le temps et la fréquence, et les applications envisagées grâce à l’utilisation de
peignes de fréquences. Nous sommes en train d’installer une expérience consistant en
un oscillateur paramétrique optique pompé en mode synchrone, comme décrit dans le
dernier chapitre de ce manuscrit. Ce système à très bas seuil -du fait de l’intensité crête
très importante- et à très grande longueur de cohérence permet dans un premier temps
de revisiter un certain nombre d’expériences d’optique quantique en variables continues

McKenzie, Nicolai Grosse, Warwick P. Bowen, Stanley E. Whitcomb, Malcolm B. Gray, David E.
McClelland, and Ping Koy Lam Phys. Rev. Lett. 93, 161105 (2004)
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avec des non-linéarités supérieures de plusieurs ordres de grandeurs à celle utilisées ha-
bituellement. Dans un second temps, nous prévoyons de mettre en œuvre la théorie
présentée au chapitre précédent visant à générer des "super-modes" au propriétés quan-
tiques remarquables. Nous étudierons alors les domaines de comportement monomode
et multimode de notre oscillateur et envisagerons de réaliser une expérience de mesure
de temps par détection homodyne.

À plus long terme, cette expérience doit nous permettre d’étudier l’intrication à un
grand nombre de modes, quelle que soit leur origine : fréquence - en intriquant les dif-
férentes dents des peignes produits- temps -en intriquant les super-modes- et bien sur
spatiales. Ces études seront portées par un effort théorique visant à étudier quelles sont
les meilleures configurations pour les réseaux de communications quantiques mais éga-
lement quelles sont les applications en terme de métrologie du temps et des fréquences.
Ce système est intrinsèquement très riche et ses possibles applications sont multiples,
ces recherches ont donc un caractère exploratoire très important. Nous pourrons étudier,
par exemple, l’application de la lumière produite par notre cavité aux protocoles mêlant
photons uniques et détection homodyne. En effet, les très fortes non-linéarités, qui in-
duisent une non-linéarité par photon très importante, permettent de se diriger vers des
états à nombre de photons mésoscopique, intermédiaires entre les photons uniques et les
variables continues.
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Sont reproduits ici les articles cités dans la partie précédente et sélectionnés pour
recouvrir l’ensemble des travaux de recherche. La structure générale du corps du texte
est reprise, et chaque partie est précédée des abstracts des articles sélectionnés.

La mesure optique

Article 1, reproduit en page 54

Quantum noise in multipixel image processing

N. Treps, V. Delaubert, A. Maître, J.M. Courty and C. Fabre
Phys. Rev. A 71, 013820 (2005)

Abstract : We consider the general problem of the quantum noise in a multipixel measurement of
an optical image. We first give a precise criterium in order to characterize intrinsic single mode
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We consider the general problem of the quantum noise in a multipixel measurement of an optical image. We
first give a precise criterion in order to characterize intrinsic single-mode and multimode light. Then, using a
transverse mode decomposition, for each type of possible linear combination of the pixels’ outputs we give the
exact expression of the detection mode, i.e., the mode carrying the noise. We give also the only way to reduce
the noise in one or several simultaneous measurements.
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INTRODUCTION

Multipixel photodetectors such as diode arrays or charge-
coupled device �CCD� sensors are now frequently used to
record images. These sensors provide signals in which the
useful information is mixed with random noise. A contribu-
tion to this noise originates from the quantum nature of light:
the arrival of individual photons is a random process. Con-
trarily to technical noise, due to imperfections in the source,
the optical system, or the detector, this quantum noise cannot
be reduced by eliminating the defects in the measurement
process. The purpose of this paper is to determine the precise
origin of this noise and to analyze whether and how it can be
reduced. With the analysis of the spatial distribution of this
noise, we will single out the precise transverse modes whose
fluctuations are at the origin of this quantum noise, and de-
termine the parameters that have to be changed in order to
reduce this noise.

As images are complex objects which carry a great deal of
information, there are actually many ways to extract infor-
mation from them, depending on the image user needs �1–3�.
We will focus our attention on the extraction from the image
of one or several continuous parameters, the variation of
which modifies the light distribution in the image plane and
not its total intensity. In such a case, the quantity of a priori
information on the image is very important, as one assumes
that the variation of the image under observation is due only
to the variation of a searched parameter M. A second use to
which our calculations can apply is the determination of pre-
defined patterns in the image, such as given shapes, surfaces,
borders, textures, and so on. It is a very difficult problem per
se, and the incidence of quantum noise on it, to the best of
our knowledge, has not been precisely studied so far. In con-
trast, we do not consider the search for the smallest possible
details, where resolution is at stake. In this problem, there is
very little to none a priori information and the problem of
quantum limits to resolution has been already considered in
other publications �4,5�.

In most cases, the light used to carry the image comes
from “classical sources,” such as lamps or the usual lasers, in
which the photons are randomly distributed in the image
plane. This gives rise to a spatial shot noise which will yield
a “standard quantum limit” in the measurement of a very
small variation of M. It is now well known that “nonclassical
light,” such as squeezed light or sub-Poissonian light, is

likely to reduce quantum fluctuations on a given measure-
ment �6�. The aim of the last part of the present paper is to
identify the best nonclassical light enabling us to reduce the
quantum noise in the measurement of the quantity M per-
formed in the image. It has been already shown �7� that
nonclassical light in a single transverse mode, though very
effective in reducing the noise for a measurement performed
on the total beam, is of little use for a measurement per-
formed on an image. One therefore needs multi-transverse-
mode nonclassical light for our purpose. This is the reason
why we devote the first section of this paper to a precise
analysis of such a concept, before considering in the second
section the problem of information extraction: we identify
the exact noise source in the measurement of M, and show
how to choose the best configuration which allows us to
measure a variation of M with a sensitivity beyond the stan-
dard quantum limit.

I. “INTRINSIC” MULTIMODE LIGHT

We consider the propagation of light in the vacuum along
the z direction, and call the transverse coordinate r�. We as-
sume that the light frequency is �0 with a linewidth �� much
smaller than �0, and that it has a well defined polarization.
One knows that it is possible to find several bases of trans-
verse modes �ui�r� ,z��, such that each mode verifies the
propagation equation of the field in vacuum projected onto
the polarization axis,

��uie
ikz� +

�0
2

c2 ui = 0; �1�

it is an orthonormal basis,

� ui
*�z,r��uj�z,r��d2r = �ij; �2�

and it satisfies a completeness relation,

	
i

ui
*�z,r��ui�z,r��� = ��r� − r��� . �3�

For instance, the usual Laguerre-Gauss TEMpq basis satisfies
these conditions. Considering a light beam, the electric field
is written as the sum of the positive and negative frequencies
components:
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E�r�,z,t� = E�+��r�,z�e−i��0t−kz� + c.c. �4�

It is possible to expand the electric field positive frequency
envelope in the transverse modes basis as

E�+��r�,z� = 	
i

Eiui�r�,z� . �5�

A. Single-mode or multimode light: Classical approach

For a TEMpq basis field expansion, when more than one
Ei is nonzero, it seems at first sight natural to say that this
field is multimode. However, if the Ei coefficients are fixed
�i.e., we consider a coherent superposition of modes and not
a statistical one�, one can always define a new transverse
mode

v0 =
1


	
i

�Ei�2
	

i

Eiui �6�

and construct a basis �vi� in which v0 is the first element. In
this basis, the field is proportional to v0 which means it is
single mode. We can conclude that for a coherent superposi-
tion of modes, there is no intrinsic definition of a multimode
beam �i.e., a definition independent of the choice of the ba-
sis�. We will restrict our analysis to spatial variables, but it
can be applied to any physical dimension. For instance, in
the time domain, a mode locked laser is single mode, as it is
a coherent superposition of many temporal modes. If the
temporal modes are incoherent with each other then the sys-
tem is unambiguously multimode. More precisely, if the field
is a stochastic superposition of modes, the v0 mode cannot be
defined and the multimode character has a clear meaning. We
will exclude this case in the following.

B. Single-mode light: Quantum approach

In order to give the quantum description of the transverse
plane of a light beam, it is very common to quantize the field
starting from a transverse mode basis such as the one we just
defined in the previous section. In order to obtain standard
formulas, we consider that all measurements are performed
in an exposure time T and associate to each vector of the
mode basis a set of creation and annihilation operators âi

† and
âi such that the field Ei of the previous section is replaced by
the operator i
��0 /2�0cTâi. With these notations we obtain
the standard commutation relations �âi , âj

†�=�ij, and the posi-
tive field envelope operator can be written as �8�

Ê+�r�,z� =
 ��0

2�0cT
Â+�r�,z� �7�

with

Â�+��r�,z� = 	
i

âi�z�ui�r�,z� , �8�

so that Â�+�†Â�+� is a photon number per unit surface.
In order to give a proper definition of the single-mode

case, let us write the most general state of the field in the

Fock state basis �n1 , . . . ,ni , . . . �, where ni stands for the num-
ber of photons in the mode i:

��� = 	
n1,. . .,ni,. . .

Cn1,. . .,ni,. . .�n1, . . . ,ni, . . . � �9�

and the mean value of the electric field is given by

��Â��� = 	
i
� 	

n1,. . .,ni	1,. . .
Cn1,. . .,ni−1,. . .

* Cn1,. . .,ni,. . .�
niui�r�� .

�10�

Following the definition for the classical beams, we can give
a definition of a single-mode beam.

Definition 1. A state is single mode if a mode basis
�v0 ,v1 , . . . � exists in which it can be written

��� = �
� � �0, . . . ,0, . . . �

where �
� is the state of the field in the first transverse mode.
The question is now whether, in contrast with the classical

states, quantum states exist that cannot be written as �1�. To
answer this question, we will demonstrate the following
proposition.

Proposition 1. A quantum state of the field is single mode
if and only if the actions on it of all the annihilation opera-
tors of a given basis give collinear vectors.

One can note that if this property stands for a given basis,
it then stands for the action of any annihilation operator.

Let us assume first that our field ��� is single mode with
respect to the basis �ui , âi�; then

â0��� = ��0� and âi��� = 0 ∀ i � 0. �11�

Consider now any linear combination of the operators

b̂ = 	
i

ciâi �12�

where 	i�ci�2=1 which ensures that �b̂ , b̂†�=1. The action of
this operator on the field is given by

b̂��� = 	
i

ciâi��� = c0��0� . �13�

This demonstrates the first implication of our proposition: all
the actions of annihilation operators on the field are propor-
tional.

To prove the other implication, consider now a field ���
on which the action of any annihilation operator âi is propor-
tional to ��0�. This is in particular true for the basis �ui , âi�:

âi��� = �i��0� . �14�

If we assume that 	i��i�2=1 �which is always possible by
changing the normalization of ��0��, we can define a new

basis �vi�r� ,z� , b̂i� such that

b̂0 = 	
i

�i
*âi, v0 = 	

i

�i
*ui, �15�

and complete the basis by defining a unitary matrix �cij� such
that
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b̂i = 	
j

cijâj with c0j = � j
* and 	

j

cijckj
* = �ik.

�16�

It is then straightforward to show that

b̂i��� = �0i��0� , �17�

which concludes the demonstration.
In addition to the proposition, Eq. �15� gives the expres-

sion of the mode in which “lies” the mean field, knowing the
action of a particular basis. We can also note that to show
that a field is single mode, it is sufficient to show that all its
projections on the annihilation operators of one particular
basis are proportional.

To illustrate the proposition, if one considers the superpo-
sition of coherent states

��� = ��1� � ¯ � ��i� � ¯ �18�

it is straightforward to show that the actions of all the anni-
hilation operators on this state are proportional to the state
itself; we have a single-mode beam. The basis in which it is
single mode is the same as the one for the classical case,
setting v0 as in Eq. �6�.

Using this proposition, we can also look for the different
states that satisfy our definition of a single-mode quantum
beam. As a state that cannot be written as follows in any
mode basis:

��� = �
1� � ¯ � �
i� � ¯ �19�

is obviously not a single-mode beam, we will consider now
such a factorized state of the field, on which the action of the
annihilation operators gives

âi��� = �
1� � ¯ � �âi�
i�� � ¯ . �20�

Consequently, there are only two possibilities to have all
these states proportional: either only one of the actions is
different from zero, which means we are already in the basis
in which the state is single mode; or all the states are coher-
ent states.

We have described here all the possible single-mode
states, and they agree with the intuitive description one
might have. For instance, if one considers the superposition
of several transverse modes, if at least one of them is a
noncoherent state, one gets a quantum multimode state.

C. Multimode light: Quantum approach

A beam of light is said to be multimode, from a quantum
point of view, when it is not single mode according to Defi-
nition 1. We can characterize such a beam by its degree n
�this degree equals 1 for a single-mode beam�.

Definition 2. For a beam ���, the minimum number of
modes necessary to describe it �or the minimum number of
nonvacuum modes in its modal decomposition�, reached by
choosing the appropriate basis, is called the degree n of a
multimode beam. Any corresponding basis is called a mini-
mum basis for the field ���.

The degree of a multimode beam can also be related to
the generalization of Proposition 1 to an n-mode beam. Us-

ing the same technique, one can show that a quantum field is
an n-mode beam if and only if the action on it of all the
annihilation operators belongs to the same n-dimensioned
subspace.

Whereas the previous paragraph gives a good definition of
the degree of a multimode beam, it is not very convenient as
one has no information on the basis in which the beam is
exactly described by n modes. We can, however, define a
particular basis, useful for calculations.

Proposition 2. For a beam ��� of degree n, it is always
possible to find a basis �ui , âi� such that the mean value of
the electric field is nonzero only in the first mode; and, it is a
minimum basis for the field ���. We will call that basis an
eigenbasis.

In order to demonstrate this proposition, let us consider a
minimum basis �ui , âi� for the field ���. This basis is sup-
posed to be ordered such that the n first modes are the rel-

evant ones. We can then define a new basis �vi , b̂i� such that

v0 =
1


	
i=0

n−1

âi�2

	
i=0

n−1

âi�ui,

vi,0�i�n = 	
j=0

n−1

cijuj ,

vi,in = ui, �21�

where the coefficients �cij� are chosen in order to get an
orthonormal basis. Definitions similar to the one of Eq. �21�
apply for the annihilation operators. The first vector of this
basis is the same as the one defined for a classical beam in
Eq. �6�. In that basis, the mean field is single mode in a
classical sense. However, the energy lying in all the other
modes is not necessarily zero; only the electric field mean
value is zero for these modes, and as the modes for in
were not changed, this new basis is still a minimum one for
the field ���. This demonstrates the proposition. The demon-
stration illustrates the construction of a basis as defined in
Proposition 2 from a minimum basis, even though thanks to
the �cij� coefficients an infinite number of bases are possible.

The existence of this basis is also a confirmation of the
intuitive idea of the difference between single-mode and
multimode quantum light. Indeed, for a single-mode beam,
the spatial variation of the noise is the same as the one of the
mean field. For a multimode beam, the previous description
shows that some of the modes orthogonal to the mean field
are sources of noise but do not contribute to the mean field.
This implies that the variation of the noise is independent of
the one of the mean field. This property can be used to ex-
perimentally characterize the multimode character of light.
For instance, one can show the quantum multimode character
of the light using a variable spatial filter. This idea has been
implemented to study the semiconductor lasers output by
cutting the field with a razor blade �9�, and, more recently,
we have shown that spatial quantum behavior of a spatially

QUANTUM NOISE IN MULTIPIXEL IMAGE PROCESSING PHYSICAL REVIEW A 71, 013820 �2005�

013820-3

56



7.1. Quantum noise in multipixel image processing

multimode optical parametric oscillator can be demonstrated
using an iris whose aperture size is continuously varied �10�.

We have defined the theoretical basis required to develop
a study on optical image measurements. The following sec-
tion on information extraction will indeed strongly rely on
the propositions and definitions of the first part.

II. DIFFERENCE MEASUREMENTS

A. Description

A widely used technique in optics, and more generally in
physics, to improve the signal to noise ratio in a measure-
ment is to perform a difference measurement. It consists in
producing two identical signals from the light source used in
the experiment. When one monitors the difference between
these two signals, one gets of course a zero mean signal, but
one also cancels all the common mode noises, for example,
the one arising from the classical intensity fluctuations of the
source. The remaining noise arises from the noise sources
affecting the two channels differently.

One simple way to produce two identical beams is to use
a 50% beam splitter. In this case, the vacuum noise coming
from the unused side of the splitter is such a not-common-
mode noise and remains in the difference measurement:
whatever the actual excess noise of the beam impinging on
the beam splitter, the remaining noise corresponds to the shot
noise of this beam.

This simple technique of noise cancellation is used, for
example, to measure very small absorptions �11� by inserting
the absorbing medium in one of the arms of the difference
setup, or very small frequency shifts, by inserting a Fabry-
Pérot cavity in one of the arms. It is also extensively used in
multipixel measurements, with either split detectors or quad-
rant detectors, to measure submicrometer displacements, for
example of nanoscale fluorophores in biological samples
�12� and in atomic force microscopy �13�, and ultrasmall
absorptions by the mirage effect �14�.

The problem of the determination of the origin of quan-
tum noise on a split detector and of its reduction has been
already investigated theoretically �7� and experimentally
�15–17�. We will here extend these considerations to more
general configurations.

More formally, we consider the measurement by a detec-
tor consisting of a set of pixels, each one occupying a trans-
verse area Di. The pixels cover the whole transverse plane,
with no overlap between them. Each photodetector delivers a
power given by

Î�Di� = �
Di

2�0cÊ†�r��Ê�r��d2r . �22�

This can also be written as the photon number measured
during the exposure time T of the detector:

N̂�Di� = �
Di

Â†�r��Â�r��d2r . �23�

In this section, the measurement M is defined by

M̂���i�� = 	
i

�iÎ�Di� such that �i = ± 1 �24�

or again in terms of number of photons per second:

N̂���i�� = 	
i

�iN̂�Di� , �25�

where �i= ±1 corresponds to the electronic gain of de-
tector i.

Considering a light beam in state ���, the measurement is
a difference measurement for that beam if its mean value is
zero, i.e., if

N̂���i��� = 0. �26�

B. One difference measurement

If one considers one difference measurement performed
with a coherent state, which has spatially uncorrelated quan-
tum fluctuations, the noise arising from the measurement will
not depend on the choice of ��i� if �i= ±1, and will be equal
to the square root of the total number of photons. This is
what is called the standard quantum noise. In the general
case, in order to compute the noise, an analysis equivalent to
the one performed in the case of a small displacement mea-
surement, as done in Ref. �7�, is necessary. We recall it here
and extend it to the general case of transverse modes of any
shape, in order to show the following proposition.

Proposition 3. The noise on a difference measurement
performed on a beam ��� originates from a single mode,
orthogonal to the mean field: the “flipped mode.” In order to
reduce the noise in that measurement, it is necessary and
sufficient to inject a squeezed state in this flipped mode.

In order to perform the general noise calculation, let us
define the two “detectors”:

D+ = �
i,�i=+1

Di,

D− = �
i,�i=−1

Di, �27�

which gives

N̂− = N̂�D+� − N̂�D−�

= 	
i,j

âi
†âj��

D+

ui
*�r��uj�r��d2r − �

D−

ui
*�r��uj�r��d2r� .

�28�

Considering small quantum fluctuations for which �âi= âi

− âi�, the fluctuations of N̂− are

�N̂− = N̂− − N̂−� = 	
i

��âi
†C−

i + �âiC−
i*� , �29�

with C−
i defined as
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C−
i = 	

j

âj���
D+

ui
*�r��uj�r��d2r − �

D−

ui
*�r��uj�r��d2r�

= �
D+

ui
*�r��A��r��d2r − �

D−

ui
*�r��A��r��d2r

and where A��r�� is the mean value of the electric field

��Â�r�����. The C−
i coefficients are the partial overlap inte-

grals between the modes ui and the mean field.
We can now compute the noise related to this measure-

ment:

�N̂−
2� = 	

i

�C−
i �2 + �	

i,j
�âi

†�âj
†�C−

i C−
j

+ �âi
†�âj�C−

i C−
j* + c.c.� . �30�

Using the completeness relation, the first term of the last
equation can be shown to be equal to the total number of
incident photons per second, N0. This shows that the noise
related to this measurement arises a priori from all the
modes.

We will now demonstrate that the noise comes in fact

from a single mode when we write �N̂−
2� in the appropriate

basis. We indicate by v0 the mode of the mean field as de-
fined in the previous part:

v0�r�� =
1


N0

A��r�� . �31�

If v0 is the first mode of a basis, the mean value of the
electric field in all the other modes will be zero, as shown in
the previous section. We define now the mode v1, which we
will refer to as the flipped mode of v0, such that

v1�r�� = �v0�r�� if r � D+,

− v0�r�� if r � D−.
� �32�

As we have assumed that the mean value of the measurement
is zero, v1 is orthogonal to v0, which means that we can find

a basis �vi , b̂i� where v0 and v1 are the two first modes. In
that basis, the overlap integrals become

C−
i = 
N0��

D+

vi
*�r��v0�r��d2r − �

D−

vi
*�r��v0�r��d2r�

= 
N0�
D

vi
*�r��v1�r��d2r = 
N0�i,1. �33�

These integrals are different from zero only for the flipped
mode. The noise of Eq. �30� becomes

�N̂−
2� = N0��b̂1

† + �b̂1�2� , �34�

which shows that the noise arises only from the quadrature
of the flipped mode of v0 in phase with the mean field mode.
For this reason, we call this mode the eigenmode of the
measurement. Another standard notation is

�N̂−
2� = N0�X1

+2� , �35�

where X1
+= b̂1+ b̂1

† is the quadrature of the flipped mode, and
N0 represents the shot noise. Consequently, having a
squeezed state in that mode is necessary and sufficient to
reduce the noise related to the measurement.

This calculation shows that, for a difference measurement,
the noise in the measurement is exactly the one of the flipped
mode. Changing the noise properties of the flipped mode is
then the only way to change the noise in the measurement.
We have a necessary and sufficient condition to improve the
measurement compared to the standard quantum limit.

This demonstration imposes the noise properties of only
one quadrature of the flipped mode, but there is no condition
on the other quadrature, and all the other modes can be in
any state. Then, there is not only one practical solution.

C. Multiple difference measurement

We have demonstrated which mode one needs to squeeze
in order to perform one difference measurement on a beam.
We can now expand this analysis in the case of several dif-
ference measurements. Let us consider n difference measure-
ments of the type of Eq. �26�. We will assume that these
measurements are independent, which means that none of
them is a linear combination of the others. One can show that
the corresponding flipped modes are then also linearly inde-
pendent. We have shown that in order to improve simulta-
neously the sensitivity of all these measurements it is neces-
sary, and sufficient, to squeeze all these flipped modes.
Practically these modes are in general not orthogonal, but
one can find an orthogonal basis of the subspace generated
by these modes. Injecting squeezed vacuum states in each of
these modes will result in squeezed states in each of the
flipped modes.

Regarding the degree of the beam necessary to improve
simultaneously all the measurements, it is clear that in order
to perfectly squeeze all the flipped modes, a beam of degree
n+1 is necessary �and sufficient�. We can summarize all the
considerations of Sec. II into a proposition.

Proposition 4. In order to reduce the noise simultaneously
in n independent difference measurements it is necessary and
sufficient to use a beam of degree at least n+1 that can be
described in a transverse mode basis �âi ,ui� such that u0 is
proportional to the electric field profile of the beam; �ui�0�i�n

is the basis of the space vector generated by the flipped
modes of the measurements; and all these modes are per-
fectly squeezed.

III. LINEAR MEASUREMENT

Difference measurements are obviously not the only ones
performed in image processing �1–3�. The extraction of the
pertinent information arises generally from the numerical
computation of a function F(I�D1� , I�D2� , . . . , I�Dn�) from
the intensities I�Di� �i=1, . . . ,n� measured on each pixel. To
simplify the following discussion, we will restrict ourselves
to the case when this function is linear with respect to the
intensities I�Di�, as is a case often encountered in real situa-
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tions, for example, when one wants to determine the spatial
Fourier components of the image, or when the variations of
the parameter to measure are small enough so that the func-
tion F can be linearized.

In the formalism of Eqs. �24� and �25�, using a linear
function corresponds to letting the gain �i of the detectors
take any real value and not only ±1:

M̂��� j�� = 	
j

� jÎ�Dj� ,

N̂� = 	
j

� jN̂�Dj� . �36�

We emphasize that, contrary to the previous section, the
mean value of the measurement is not necessarily zero. In
that case, we will show the following proposition.

Proposition 5. Consider a field state ��� described in an

eigenbasis �b̂i ,vi�, and consider a linear measurement per-
formed with an array of detectors Di, each detector having a

gain �i. The noise on the measurement, N̂�=	 j� jN̂�Dj�,
arises only from the generalized flipped mode w defined by

∀ r�,r� � Di ⇒ w1�r�� =
1

f
�iv0�r�� �37�

where f is a normalization factor.
Here, there is not much sense in defining the positive and

negative gain domains. We can anyway extend the notion of
overlap integral between a basis vector and the mean field:

C�
i = 	

j

� j�
Dj

ui
*�r��A��r��d2r , �38�

which leads to a formula equivalent to Eq. �30�

�N̂�
2� = 	

i

�C�
i �2 + �	

i,j
�âi

†�âj
†�C�

i C�
j

+ �âi
†�âj�C�

i C�
j* + c.c.� . �39�

Recalling that A��r��=
N0v0�r��, we can also extend the
notion of the flipped mode, and define a detection mode by

∀ r�,r� � Di ⇒ w1�r�� =
1

f
�iv0�r�� , �40�

where f ensures the normalization of w1:

f2 = 	
j

� j
2�

Dj

v0
*�r��v0�r��d2r . �41�

However, as the mean value of the measurement can be dif-
ferent from zero, the detection mode w1 is not in general
orthogonal to the mean field mode v0. In order to calculate
the noise in the measurement, it is necessary to construct a
basis that contains the detection mode w1. As the mean value
of the electric field in this mode is different from zero, it is
not possible to obtain an eigenbasis with w1, but we can still
choose w0 such that the mean field mode v0 is a linear com-
bination of w0 and w1. Choosing all the other modes wi �with

i2� in order to obtain an orthonormal basis, we obtain a
basis such that the mean field is distributed in the two first
modes, the detection mode is w1, and the mean value of the
electric field in all the other modes is zero. We can then
perform a calculation similar to the one of the previous sec-
tion, which gives

C�
i = 
N0f�

D

wi�r�� * w1�r��d2r = 
N0f�i,1. �42�

Once again the detection mode is the only one that is rel-
evant for the calculation of the noise related to the measure-
ment. Taking into account that the normalization giving rise
to the shot noise has changed,

	
i

�C�
i �2 = �C�

1 �2 = N0f2, �43�

the noise formula becomes

�N̂�
2� = f2N0��ĉ1

† + �ĉ1�2� , �44�

where the �ĉi� are the annihilation operators associated with
the transverse mode basis �wi�.

The f2 factor is a global effect of the gain, and modifies
both the measured signal and shot noise level. In any case, if
the flipped mode is perfectly squeezed, we can still perform
a perfect measurement. However, the experimental configu-
ration is much more complicated as, in general, the mean
value of the electric field in mode w1 is different from 0,
which means that, as is shown in the Appendix, generating
the good mode is difficult. An appropriate approach would
be to describe the field back into an eigenbasis, and check
how to set the noise of the different modes in that basis. We
will see in the Appendix how this can be done in a simple
case. The important result of this part is that whatever the
measurement we perform the noise arises only from one
mode. Changing the noise of this mode allows us to improve
the sensitivity of the measurement. As in the previous sec-
tion, it is also possible in that general case to perform several
simultaneous measurements, and to identify the subspace of
modes responsible for the noise.

It is interesting to note that, in the particular case of a
measurement where the gains are adapted to have

M̂��� j���=0, the mode v0 coincides with w0. Indeed, v0 is
here orthogonal to w1:

�
D

w1
*�r��v0�r��d2r = 	

j

� j

f
�

Dj

v0
*�r��v0�r��d2r � �	

j

� jN̂�Dj��
= 0; �45�

hence the basis is an eigenbasis of the field. Again, that case
is relevant experimentally as it means that one can act on the
noise without perturbing the mean field mode.

CONCLUSION

We have shown in this article how to properly define the
degree of multimode character of a light beam. We have used
the basis decomposition associated with that definition in
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order to single out, in a linear transverse measurement, the
transverse mode carrying the noise. We have shown that it is
possible to go beyond the standard quantum noise limit by
injecting in that mode squeezed light, and that this can be
done simultaneously for several independent measurements.

It order to implement the theory developed here to com-
plex experimental configurations we have shown that it was
preferable that the various detection modes be orthogonal to
the mean field �i.e., they do not contribute to the mean elec-
tric field�, and it is necessary to mix them without introduc-
ing losses. For instance, one can use the proposal we have
detailed in �17� and used to mix two nonclassical beams in
orthogonal transverse modes, and a mean coherent field, in
order to improve the sensitivity of the transverse position
measurement of a laser beam.

In this paper, we have analyzed in great detail the origin
of quantum noise in a multipixel measurement. What re-
mains to be considered now is the signal, and not only the
noise in the measurement. This will be the natural continua-
tion of our work, and we will describe in a future publication
what is the influence of the gain configuration on the signal
to noise ratio and how to optimize a given measurement in
an optical image.
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APPENDIX: TWO-ZONE MEASUREMENT

In this article, we have exhibited the mode structure of the
light in a multipixel measurement, using a basis that contains
the detection mode. However, when the mean value of the
measurement is different from zero, we have shown that this
detection mode has a mean electric field value different from
zero. In that configuration, it is very difficult experimentally
to address the detection mode without modifying the mean
field distribution. We have shown that the only basis perti-
nent for such a task is an eigenmode basis. We will show
here what is the structure of that basis for a two-zone mea-
surement of nonzero mean value.

Using the notations of the previous sections, we consider
two detectors D+ and D− whose gains are, respectively, +1
and −1. We recall here the mode structure defined in the
main text of this article. v0 is the transverse mode carrying
the mean field of the beam and w1 is the detection mode as
defined in Eq. �40� �which, in this case, is equivalent to the
flipped mode of Eq. �32��. w0 is the mode orthogonal to w1 in
the subspace generated by v0 and w1. Let us call the partial
integrals of v0 on each zone i+ and i−,

i+ = �
D+

v0
*�r��v0�r��d2r and i− = �

D−

v0
*�r��v0�r��d2r .

A simple calculation gives

w0�r�� = �

i−

i+
v0�r�� if r � D+,


 i+

i−
v0�r�� if r � D−.� �A1�

The first mode of an eigenbasis for the field is v0. The second
one, v1, is defined as the mode orthogonal to v0 in the sub-
space generated by w0 and w1. Its expression is found to be
v1 such that

v1�r�� = �w0�r�� if r � D+,

− w0�r�� if r � D−.
� �A2�

As w0 is orthogonal to w1, which is the flipped mode of v0,
one can show that v0 is orthogonal to v1, which is the flipped
mode of w0 �see Fig. 1�. In order to calculate the noise in the
measurement using that basis, the flipped mode is expressed
as a linear combination of the two first modes of the eigen-
basis:

w1 = �v0 + �v1, �A3�

where �= i+− i− and �=2
i+i−, which leads to

��ĉ1
† + �ĉ1�2� = �2��b̂0

† + �b̂0�2� + �2��b̂1
† + �b̂1�2�

+ 2����b̂0
† + �b̂0���b̂1

† + �b̂1�� . �A4�

Expressed in an eigenbasis that does not contain the detec-
tion mode, we see that the noise arises from the individual
noise of the two first modes and from their correlation func-
tion. In that basis, in order to reduce the noise we have sev-
eral solutions: either the two first modes are perfectly
squeezed, or they are perfectly correlated, or any solution in
between. Anyway, we can assume that if we want to make a
lot of different measurements, it is very difficult to produce
correlation between the mean field and the different vacuum
modes; hence the easiest solution is to have the mean field
squeezed, and the corresponding vacuum squeezed. The
same argument as before applies, and we show that we still
need an extra mode for each piece of extra information.

FIG. 1. Electric field profile of the constituent modes used to
form the nonclassical multimode beam.

QUANTUM NOISE IN MULTIPIXEL IMAGE PROCESSING PHYSICAL REVIEW A 71, 013820 �2005�

013820-7

60



7.1. Quantum noise in multipixel image processing

�1� M. Bertero and P. Boccacci, Introduction to Inverse Problems
in Imaging �IOP Publishing, Bristol, 1998�.

�2� A. K. Jain, Fundamentals of Digital Image Processing, Infor-
mation and System Sciences Series �Prentice-Hall, Englewood
Cliffs, NJ, 1989�.

�3� A. K. Katsaggelos, Digital Image Restoration, Springer Series
in Information Sciences Vol. 23 �Springer-Verlag, Berlin,
1991�.

�4� M. Bertero and E. R. Pike, Opt. Acta 29, 727 �1982�.
�5� M. I. Kolobov and C. Fabre, Phys. Rev. Lett. 85, 3789 �2000�.
�6� H-A. Bachor, A Guide to Experiments in Quantum Optics

�Wiley-VCH, Weinheim, 1998�.
�7� C. Fabre, J. B. Fouet, and A. Maître, Opt. Lett. 25, 76 �1999�.
�8� C. Fabre, in Quantum Fluctuations, edited by S. Reynaud, E.

Giacobino, and J. Zinn-Justin, 1995 Proceedings of the Les
Houches Summer School of Theorectical Physics, LXIII
�Elsevier Science, Amsterdam, 1997�.

�9� J. P. Poizat, T. Chang, O. Ripoll, and P. Grangier, J. Opt. Soc.
Am. B 15, 1757 �1998�; J.-P. Hermier, A. Bramati, A. Z.

Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph.
Grangier, ibid. 16, 2140 �1999�.

�10� M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C.
Fabre, Phys. Rev. A 67, 023808 �2003�.

�11� C. Schwob, P. H. Souto Ribeiro, A. Maître, and C. Fabre, Opt.
Lett. 22, 1893 �1997�, and references therein.

�12� C. Tischer, S. Altmann, S. Fisinger, J. K. H. Hrber, E. H. K.
Stelzer, and E.-L. Florin, Appl. Phys. Lett. 79, 3878 �2001�.

�13� Tim J. Senden, Curr. Opin. Colloid Interface Sci. 6, 95 �2001�.
�14� C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36,

130 �1980�.
�15� N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maître, H-A.

Bachor, and C. Fabre, Phys. Rev. Lett. 88, 203601 �2002�.
�16� N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H-A. Bachor, and

P. K. Lam, Science 301, 940 �2003�.
�17� N. Treps, N. Grosse, W. Bowen, M. T. L. Hsu, A. Maître, C.

Fabre, H. A. Bachor, and P. K. Lam, J. Opt. B: Quantum
Semiclassical Opt. 6, S664 �2004�.

TREPS et al. PHYSICAL REVIEW A 71, 013820 �2005�

013820-8

61



7. La mesure optique

Quantum limits in image processing
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We determine the bound to the maximum achievable sensitivity in the estimation of a scalar
parameter from the information contained in an optical image in the presence of quantum noise.
This limit, based on the Cramer-Rao bound, is valid for any image processing protocol. It is
calculated both in the case of a shot noise limited image and of a non-classical illumination. We
also give practical experimental implementations allowing us to reach this absolute limit.

PACS numbers: 42.50.Dv; 42.30.-d; 42.50.Lc

Introduction. - Many of the most sensitive techniques
for the measurement of a physical parameter - which we
will call p in the following and assume to be a scalar -
are optical. In some cases, the total intensity or am-
plitude of the light beam varies with p and conveys the
information. It is then well known [1–4] that there ex-
ists a standard quantum limit in the sensitivity of the
measurement of p when the light beam is in a coherent
state, and that it is possible to go beyond this limit us-
ing sub-Poissonian or squeezed light. In other cases, the
parameter p of interest only modifies the distribution of
light in the transverse plane and not its total intensity.
The present paper deals with this latter situation. For
example, the parameter p modifies the position or direc-
tion of a light beam. This configuration has been studied
at the quantum level, both theoretically and experimen-
tally using split detectors [5–7] or homodyne detection
[8, 9]. But in many instances the parameter p affects in
a complicated way the field distribution in the detection
plane (that we will call here the image). For example a
fluorescent nano-object imbedded in a biological environ-
ment modifies the image recorded through a microscope
in a complex way because of diffraction. Nevertheless
its position can be determined from the information con-
tained in the image with a sensitivity which can be much
better than the wavelength [10]. In order to extract the
parameter value in such experiments, one needs to use
detector arrays or CCD cameras and to combine in an
appropriate way the information recorded on the differ-
ent pixels.

When all the sources of technical noise have been re-
moved in the apparatus, quantum fluctuations still affect
the optical measurement and limit its sensitivity, in a
way that can be readily calculated for each specific mea-
surement protocol. The purpose of this paper is much
broader. It is to answer the following question: what is
the lowest limit imposed by quantum noise to the accu-
racy of the determination of p, independently of the in-
formation processing protocol used for the extraction of
information? As we will see, this optimum limit depends

only on the statistics of the fluctuations of the incom-
ing light. We use an approach based on the Cramer-Rao
Bound. This tool, widely used in the signal processing
community [11], has already been applied to different do-
mains, such as gravitational wave detection [12] or dia-
magnetism [13].

Notations and assumptions. - The parameter p is mea-
sured relative to an a priori value chosen for simplicity to
be 0. Because of the quantum fluctuations in the optical
measurements, there will be an uncertainty on its esti-
mation. An evaluation of this uncertainty thus provides
the precision on the determination of the parameter p
around a zero value.

The mean value of the local complex electric field op-
erator in the image plane, normalized to a number of
photons, will be written for a given value of the param-
eter as

Ē(�r, p) = 2
√

Nu0(�r, p), (1)

where N refers to the total number of photons detected in
the mean field during the integration time of the detector.
N is assumed to be independent of p, as stated previously.
u0(�r, p) is the p-dependent transverse distribution of the
mean field, complex in the general case, and normalized
to 1 (its square modulus integrated over the transverse
plane equals 1). The local mean photon number detected
during the same time interval is

n̄(�r, p) =
Ē∗(�r, p)Ē(�r, p)

4
= N |u0(�r, p)|2. (2)

Intensity measurements. - We first assume that p is
determined by processing the information contained in
the measurement of the local intensity, i.e. local number
of photons. The best possible local intensity detection
device would consist in a set of indexed pixels paving
the entire transverse plane, in the limit when their spa-
tial extension approaches 0. Let n = [n1, ..., nk, ...] be
one measurement of the photon distribution with such a
hypothetical detector, where nk corresponds to the num-
ber of photons detected on pixel k. Because of the noise
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2

present in the light, the sample n differs from its statis-
tical mean value n̄(p) = [n̄1(p), ..., n̄k(p), ...]. Let L(n|p)
be the likelihood of its observation. Note that n cor-
responds to a single measurement and hence does not
explicitly depend on p, contrarily to the average on all
the possible realizations.

The achievable precision on the estimation of p is lim-
ited by the Cramer-Rao Bound (CRB). More precisely,
the variance of any unbiased estimator of p is necessarily
greater than σ2

min = 1/IF , where the Fisher information
IF is given, when the actual value of p is 0, by [11]:

IF = −
∫

∂2

∂p2
l(n|p)

∣∣∣∣
p=0

L(n|0)dn, (3)

where we have introduced the log-likelihood l(n|p) =
lnL(n|p). The integration spans continuously over all
possible photon distributions that can be detected when
the parameter value is p = 0. This information is thus
highly dependent on the noise statistics.

Let us first assume that the illumination is coherent,
and therefore that the local intensity noise is Poissonian.
The probability of measuring nk photons on pixel k, when
the parameter equals p is given by

Pk,p(nk) =
n̄k(p)nk

nk!
e−n̄k(p). (4)

Restricting our analysis to spatially uncorrelated beams,
the likelihood L(n|p) simply corresponds to the product
of all local probabilities given in Eq. 4. Then, taking the
limit of infinitely small pixels and using Eq. 3, one can
show that the Fisher information equals

IPoisson
F =

∫ [
n̄′(�r, 0)2

n̄(�r, 0)
− n̄′′(�r, 0)

]
d2r, (5)

where the ′ denotes a derivative relative to p. Using Eq. 1,
one finally finds that

IPoisson
F =

4N

a2
, (6)

where a is a global positive parameter characterizing the
variation of the image intensity with p, defined by

1
a2

=
∫ [

∂

∂p
|u0(�r, p)|

]2

p=0

d2r. (7)

The smallest value of p that can be distinguished from
the shot noise - i.e. corresponding to a signal to noise
ratio (SNR) equal to 1 -, whatever the algorithm used to
determine it from the local intensity measurements, pro-
vided that it gives an unbiased estimation of p, is finally
greater than a/2

√
N . This value sets the standard quan-

tum noise limit for intensity measurements of p, imposed
by the random time arrival of photons on the detector. It
is inversely proportional to the square root of the num-
ber of photons, as expected, and is related, through the

dependence with a, to the modification of the mean in-
tensity profile with p.

We now consider a non-classical illumination, still with
identical mean intensity, but with local sub-Poissonian
quantum fluctuations described by a noise variance
σ2

P < 1 (assumed to be the same over the entire trans-
verse plane). One can show that the CRB leads to

psub−Poisson
min ≥ aσP

2
√

N
. (8)

As we have already noticed, the limit given by Eq. 8
is valid for any measurement strategy. Nevertheless, a
practical way enabling us to reach such an absolute limit
remains to be found. This is what is presented in the
next paragraph.

Let us assume that an image processor calculates a
given linear combination of the local intensity values
recorded by the pixels of an array detector, as represented
in Fig. 1. Assuming that the pixels are small compared

Input

beam

Array

Detector

S(p)
g

FIG. 1: Array detector as an optimal intensity detection. g
refers to the pixel gain distribution. S(p) is the p-dependent
processed signal.

to the characteristic variation length of the image, the
mean value S̄(p) of the computed signal can be written
as an integral over the transverse plane as follows

S̄(p) =
∫

g(�r)n̄(�r, p)d2r, (9)

where g(�r) is the local gain on the pixel localized at posi-
tion �r, which can be positive or negative. Assuming that
p is small, |u0(�r, p)| can be expanded at first order into

|u0(�r, p)| = |u0(�r, 0)| + p

a
uI(�r), (10)

where a has been defined in Eq. 7, and uI is a transverse
function normalized to 1, already introduced in a partic-
ular case in reference [8]. The gains are chosen such as
S̄(p = 0) = 0 (difference measurement), so that S̄(p) is
given, at first order, by

S̄(p) =
2Np

a

∫
g(�r)|u0(�r, 0)|uI(�r)d2r, (11)

For a coherent illumination, because the local quantum
fluctuations are uncorrelated, the noise variance ΔS2 on
on S̄(p) is equal to the shot noise on each pixel weighted
by g2(�r) [14]. Moreover, as p is small, the noise is inde-
pendent of p at the first order, and we get

ΔS2 = N

∫
g2(�r)|u0(�r, 0)|2d2r. (12)
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It is then possible to optimize the gain factor g(�r)
in order to get the highest possible SNR defined by
SNR= S̄(p)2/ΔS2. Using Cauchy-Schwartz inequality,
one can show that the highest SNR value for the present
measurement strategy is given by SNR= 4Np2/a2, and
is obtained for an optimal value of the gain distribution
given by

gopt(�r) = β
uI(�r)

|u0(�r, 0)| , (13)

where β is an arbitrary constant. The minimum measur-
able value of p - corresponding to comparable signal and
noise, i.e. SNR= 1 - is given by pmin = a/2

√
N , which

is precisely equal to the CRB for classical illumination.
The present measurement strategy is therefore optimal
as it allows to reach the CRB for small values of the pa-
rameter p, with the certainty that no other measurement
strategy can do better. Note that we have not proven
that it is the unique way to reach the CRB.

We can even extend this result to the use of non clas-
sical light. Indeed, using a bimodal field composed of a
bright mode u0 in a coherent state carrying the mean
field, and a squeezed vacuum mode in the mode uI , the
detected noise power is modified into

ΔS2 = Nσ2
P , (14)

when the noise variance on the amplitude quadrature of
the mode uI is given by σ2

P [14]. Note that the use of a lo-
cally squeezed beam would not provide any improvement
as uI is the only mode contributing to the measurement
noise, referred to as the noise-mode of detection [8, 14].
The minimum measurable p value is in this case

pmin =
aσP

2
√

N
. (15)

We have thus found a way to reach the bound, i.e. the
minimum accessible p-value given in Eq.8. Moreover, our
scheme requires minimum quantum resources, namely a
bimodal field with squeezing in only one mode.

Field measurements. - We now assume that the infor-
mation about p is extracted from the knowledge of the
local complex field, i.e. local amplitude and phase, that
can be obtained by interferometric techniques. Similarly
to the previous section, the best possible detection would
here access the local complex field on k-indexed areas
paving the entire transverse plane, in the limit when their
spatial extension approaches 0. Let E = [E1, ..., Ek, ...]
be a single measurement of the field distribution, hence
independent of p, where Ek corresponds to the complex
field detected on area k. Again, because of the noise
present in the light, the sample E differs from its statisti-
cal mean value Ē(p) =

[
Ē1(p), ..., Ēk(p), ...

]
. Let L(E|p)

be the likelihood of its observation.
A bound to the maximal precision on p can again be

calculated from the CRB, which, for a field measurement,
is the inverse of the following Fisher information

IF = −
∫ [

∂2

∂p2
l(E|p)

]
p=0

L(E|0)dE, (16)

We assume that the local field fluctuations in the trans-
verse plane can be described by a Gaussian probability
density function independent of the mean field. More-
over, we consider a classical or non classical illumination
whose amplitude and phase quadrature fluctuations are
described by the noise variances σ2

P and σ2
Q, respectively.

These factors neither depend on �r nor on p, as we assume
the fluctuations to be homogeneous and independent of
the parameter p.

The probability to measure a field given by Ek = Pk +
iQk on area k, where Pk and Qk correspond to the local
field quadratures, is, for a parameter value p

Pk,p(Ek) =
1

2πσP σQ

e
−

»
(Pk−P̄k(p))2

2σ2
P

+
(Qk−Q̄k(p))2

2σ2
Q

–
, (17)

where P̄k(p) and Q̄k(p) are the local quadratures sta-
tistical averages, satisfying: Ēk(p) = P̄k(p) + iQ̄k(p).
Without loss of generality, we define the orientation of
the Fresnel diagram relative to the phase of the mean
field, i.e. P̄ (�r, p) = 2

√
Nu0(�r, p) and Q̄(�r, p) = 0, taking

the limit of infinitely small detection areas. Assuming
no spatial correlations in the field fluctuations, one can
show that the Fisher information is given by

IGauss
F =

∫
1

σ2
P

[
∂P̄ (�r, p)

∂p

]2

p=0

d2r. (18)

We now introduce b, a second global positive parameter,
characterizing the variation of the image field with p

1
b2

=
∫ [

∂

∂p
u0(�r, p)

]2

p=0

d2r. (19)

Using Eq.1 and 19, the Fisher information simplifies into

IGauss
F =

4N

b2σ2
P

. (20)

The smallest value of p that can be distinguished from
the quantum noise using a field detection of the optical
beam is finally greater than the CRB:

pGauss
min ≥ bσP

2
√

N
. (21)

Again, we can propose an experimental scheme en-
abling to reach this limit in the case of a small parameter
p, and for which the mean value of the complex electric
field can be written at first order

Ē(�r, p) = 2
√

N
[
u0(�r, 0) +

p

b
uE(�r)

]
, (22)

where b has been introduced in Eq.19, and where uE(�r)
is a transverse function normalized to 1.

Let us consider a balanced homodyne detection, as rep-
resented in Fig. 2, with a local oscillator (LO) chosen to
be defined by the following complex field operator

ĒLO(�r) = 2
√

NLOuE(�r)eiθLO , (23)
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-Input

beam Homodyne

 Detector
BS

Local

Oscillator

-n (p)

θ
LO

FIG. 2: Balanced homodyne detection as an optimal field
detection. n

−
(p) is the p-dependent signal. φLO is the local

oscillator phase. BS : 50/50 beamsplitter.

where NLO corresponds to the number of photons de-
tected in the entire LO beam during the integration
time. The LO is much more intense than the image,
i.e. NLO � N . θLO is the LO phase. The mean inten-
sity difference n− between the photocurrents of the two
detectors is given in terms of number of photons by

n̄−(p) =
1
4

∫ [
Ē∗

LO(�r)Ē(�r, p) + Ē∗(�r, p)ĒLO(�r)
]
d2r.(24)

Note the similarity with Eq.9, as incident field amplitude
and LO field play here identical roles of incident inten-
sity and electronic gain, respectively. Though detectors
do not resolve the spatial distribution of the beams and
no processing of the spatial information is made, the bal-
anced homodyne technique directly provides an ”analog”
computation of the quantity of interest.

When the LO phase is tuned to the maximum of the
p-dependent term, the homodyne signal becomes

n̄− = 2
√

NNLO

p

b
. (25)

For coherent illumination, the noise power on the homo-
dyne signal corresponds to NLO, i.e. to the shot noise
of the LO. The SNR of the homodyne measurement is
thus given by SNR= 4Np2/b2. The minimum measur-
able value of p - corresponding to a SNR of 1 - with
homodyne detection is given by

pmin =
b

2
√

N
. (26)

Moreover, when the component of the image selected by
the LO is in a non classical state , i.e. allowing a squeezed
vacuum uE mode with a noise variance σ2

P on the ampli-
tude quadrature within the incoming beam, we get

pmin =
bσP

2
√

N
. (27)

This result corresponds exactly to the CRB calculated
for amplitude measurements of p. The homodyne detec-
tion scheme with the appropriate LO shape and phase is
therefore an optimal field detection of p. Again, it uses
minimal resources as only one source of squeezed light is
needed to reach the non classical CRB.

Comparison and conclusion. - We have presented two
efficient - i.e. reaching the associated CRB - signal pro-
cessing techniques for the extraction of information con-
tained in an image. We can show that the CRB for field
measurements, in which all quadratures can be accessed,
is smaller than the one for intensity measurements, i.e.
a ≥ b. Yet, both schemes are useful: the intensity scheme
is interesting since it is not restricted to monochromatic
light, whereas the amplitude scheme is useful since it does
not require pixellized detectors.

Let us finally note that this work provides limits which
are valid for a shot noise limited light of any shape. How-
ever it is not valid so far for any kind of non-classical
light, as we have restricted our analysis to homogeneous
squeezed states. In a forthcoming publication, we will
study the situation of quantum fields with quantum spa-
tial correlations in the transverse plane and will investi-
gate for the corresponding modifications of the CRB.
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Criteria of quantum correlation in the measurement of continuous variables in
optics

N. Treps, and C. Fabre
Laser Physics 15, 187 (2005)

Abstract : The purpose of this short tutorial paper is to review various criteria that have been
used to characterize the quantum character of correlations in optical systems, such as "gemellity",
QND correlation, intrication, EPR correlation and Bell correlation, to discuss and compare them.
This discussion, restricted to the case of measurements of continuous optical variables, includes
also an extension of known criteria for "twin beams" to the case of imbalanced correlations.
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Conditionnal Preparation of a Quantum State in the Continuous Variable
Regime : Generation of a sub-Poissonian State from Twin Beams

J. Laurat, T. Coudreau, N. Treps, A. Maître and C. Fabre
Phys. Rev. Lett. 21 213601 (2003)

Abstract : We report the first experimental demonstration of conditional preparation of a non-
classical state of light in the continuous variable regime. Starting from a nondegenerate optical
parametric oscillator which generates above threshold quantum intensity correlated signal and
idler ”twin beams,” we keep the recorded values of the signal intensity only when the idler in-
tensity falls inside a band narrower than its standard deviation. By this very simple technique,
we generate a sub-Poissonian state 4.4 dB (64%) below shot noise from twin beams exhibiting
7.5 dB (82%) of noise reduction in the intensity difference.

Article 5, reproduit en page 81

Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very
low noise frequencies

J. Laurat, T. Coudreau, G. Keller, N. Treps and C. Fabre
Phys. Rev. A 70 042315 (2004).

Abstract : We report on the experimental demonstration of strong quadrature Einstein-Podolsky-
Rosen entanglement and squeezing at very low noise sideband frequencies produced by a single
type-II, self-phase-locked, frequency degenerate optical parametric oscillator below threshold.
The generated two-mode squeezed vacuum state is preserved for noise frequencies as low as 50
kHz. Designing simple setups able to generate nonclassical states of light in the kHz regime is
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a key challenge for high sensitivity detection of ultraweak physical effects such as gravitational
wave or small beam displacement.
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Experimental investigation of continuous-variable quantum teleportation
W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H.-A. Bachor,

T. Symul, and P. K. Lam
Phys. Rev. A. 67, 032302 (2003)

Abstract : We report the experimental demonstration of quantum teleportation of the quadrature
amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in
terms of fidelity F and with signal transfer Tq = T++T− and noise correlation Vq = V +

in|outV
−
in|out.

We observed an optimum fidelity of 0.64±0.02, Tq = 1.06±0.02, and Vq = 0.96±0.10. We discuss
the significance of both Tq > 1 and Vq < 1 and their relation to the teleportation no-cloning
limit.

Article 7, reproduit en page 89

Teleportation of an atomic ensemble quantum state
A. Dantan, N. Treps, A. Bramati and M. Pinard

Phys. Rev. Lett. 94, 050502 (2005)

Abstract : We propose a protocol to achieve high fidelity quantum state teleportation of a ma-
croscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how
to prepare this pair of ensembles using quasiperfect quantum state transfer processes between
light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states
and magnetic feedback reconstruction.
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Criteria of quantum correlation in the measurement of continuous variables in optics

N. Treps, C. Fabre
Laboratoire Kastler Brossel, UPMC, Case 74, 4 Place Jussieu, 75252 Paris cedex 05, France

(Dated: May 30, 2006)

The purpose of this short tutorial paper is to review various criteria that have been used to
characterize the quantum character of correlations in optical systems, such as ”gemellity”, QND
correlation, intrication, EPR correlation and Bell correlation, to discuss and compare them. This
discussion, restricted to the case of measurements of continuous optical variables, includes also an
extension of known criteria for ”twin beams” to the case of imbalanced correlations.

PACS numbers: 42.50.Dv; 42.30.-d; 42.50.Lc

I. INTRODUCTION

One of the most striking features of quantum mechanics is the existence of the so-called entangled states, i.e. of
quantum states |Ψ > describing a system made of two separable parts which cannot be written as a tensor product
of quantum states |Ψ1 > and |Ψ2 > describing separately each of the subsystems :

|Ψ > �= |ψ1 > ⊗|ψ2 > (1)

In such states, there exist strong correlations between measurements performed on the sub-systems. These correlations
have been widely studied, almost from the onset of quantum physics, but they still keep a part of their mystery, and
therefore of their attraction. The discovery that quantum correlations play an irreplaceable role in information
processing gave recently a new impetus to their study.

The existence of correlations between different measurements is obviously not a specific property of quantum
physics : it is simply the consequence of a former interaction, whatever its character, between the two parts sub-
mitted to the measurement. Consequently, the observation or prediction of a correlation, even perfect, between the
measurements of two variables is not at all a proof of the quantum character of the phenomenon under study, in
contrast to what can be found sometimes in articles. One can find in the literature a great deal of criteria setting
a border between the classical and the quantum effects, differing by the definitions of the quantum character of a
given physical situation. The purpose of the present paper is mainly tutorial : it is to give a short overview of the
different criteria which are already well-known and extensively used in the literature, to compare them and discuss
their domain of relevance. We will also introduce slight original additions to some already known criteria, especially
for the criterion of ”gemellity” in the case where the two correlated systems do not play symmetrical roles.

Of course, it is impossible to treat the problem of quantum correlations in all its generality in such a short review. We
will restrict ourselves here to the domain of the so-called continuous variables in optics. More precisely we will consider
correlations between measurements performed on light beams in the case where the photons cannot be distinguished
individually, and leave aside the correlations between photo-counts and between measurements performed on other
observables than the ones arising from photodetection. One of the important application of this work is to be able to
precisely assess the quantum aspects of the correlations appearing between two points of the transverse plane of an
optical image.

After a short paragraph devoted to the introduction of the problem and of the notations, we will successively focus
on the different criteria of quantum correlations, involving either a single correlation measurement, and assessing first
the impossibility of a classical description of the phenomenon, then the QND character of the correlation, or involving
the measurement of two correlations on non-commuting observables, and assessing first the intrication of the state
describing the system, then its EPR character, and finally its impossibility of description in terms of local hidden
variables.

II. POSITION OF THE PROBLEM, NOTATIONS

Let us consider two modes of the electromagnetic field, labelled 1 and 2, that can be separated without introducing
losses in the system, and that are measured by detectors situated at different locations : the modes can differ either by
the frequency, the direction of propagation, the polarization, the transverse shape, or by several of these characteristics.
â1 and â2 are the corresponding annihilation operators, and

X̂+
i = âi + â†

i X̂−

i =
âi − â†

i

i
(i = 1, 2) (2)
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the quadrature operators. The measurement performed on these modes can be either a direct photodetection, which
measures the fluctuations of the amplitude quadrature component, parallel to the mean field Ēi in the Fresnel
representation plane, or a balanced homodyne detection, which measures any quadrature component. We will call in
a generic way X̂i the quadrature component which is measured, and δX̂i its fluctuations.

¿From the fluctuations measured on a single detector, one can deduce the quantity :

Fi = 〈δX̂2
i 〉 (3)

equal to 1 when the field is in a coherent state. Fi is the Fano factor [1, 2] of the beam in the case of a direct
photodetection, and the quadrature noise normalized to shot noise in a homodyne measurement.

The simultaneous recording of the fluctuations measured by the two detectors allows us to determine the normalized
correlation coefficient :

C12 =
〈δX1δX2〉
(F1F2)1/2

(4)

which varies between −1 (perfect anti-correlation) and 1 (perfect correlation).
For the sake of simplicity, we will assume in the following, when it turns out to be necessary, that the system under

study has correlations, and not anti-correlations, and therefore that C12 is positive. All our following discussion can be
readily extended to the case of anti-correlations by exchanging the role of sum and differences between the quantities
measured on the two modes. One can also note that the study performed here can be applied to the fluctuations of
non-optical physical systems, as soon as a protocol exists to transfer these fluctuations to an optical field, as is done
in the case of cold atoms and entanglement between light and cold atoms [3, 4].

Let us consider now the case of an optical experiment which gives an experimental value of C12 close to 1. In which
respect can one claim the quantum nature of the observed correlations ? That is the question that we will address in
the following sections.

III. NON CLASSICAL CHARACTER OF THE CORRELATED BEAMS : ”TWIN BEAMS”

One knows that most of the optical phenomena can be explained by using the so-called semi-classical approach
of the light-matter interaction, in which a quantized matter interacts with the electro-magnetic field treated as a
classical quantity, possibly endowed with classical fluctuations. Even the photo-electric effect, for which the photon
was introduced by Einstein [5] lies in this category, which also includes all interference effects that are directly
measured on the intensity of the field. In this model, the fluctuations which exist in the photo-detection signal
are due to the random character of the ”quantum jump” occurring in the atom because of its irradiation by the
classical field. The minimum noise measured on the photo-detector is the shot noise, or standard quantum noise
limit. As explained in many textbooks on Quantum Optics [1, 6, 7], it was realized in the seventies that there
existed light states which gave rise to measurements that could not be accounted for within the semi-classical
approach. These states are named ”non-classical states”, and are unveiled by measurements involving either
intensity correlations between two photocurrents, or intensity fluctuations of a given photocurrent around the mean.
The observation of photon antibunching using single photon states has been historically the first unambiguous
experimental situation[8] where a classical description of the field was not able to account for the observed results.
Let us note that Herbert Walther has played a major role in the study of these effects, using the light emitted
by a single trapped ion [9, 10]. One can therefore define a first level of quantum correlation by the following statement :

Quantum correlation, level 1 : The correlation measured in the system cannot be described by a semi-classical

model involving classical electromagnetic fields having classical fluctuations.

In the domain of continuous variables and intense beams to which we restrict the present discussion, one shows that
the situations where one records quadrature fluctuations above the standard quantum noise limit can be described
using the semi-classical approach with classical stochastic electro-magnetic fields [1, 11], and that quantum fluctuations
below the this limit are only produced by non-classical states. Squeezed states are one example of non-classical states.
The border between the classical and quantum world corresponds to the situation where all the beams used in the
experiment are in coherent and vacuum states (Fano factor of 1). Furthermore, it is easy to show that the classical

character of the field is preserved by linear ”passive” optical devices, which involve only linear, energy-preserving,
optical elements like beamsplitters and free propagation.

To ascertain whether the correlation between two given beams can be described in a classical frame or not, the
simplest way is therefore to process the two beams by all possible linear passive optical devices : if one is able to
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produce in such a way a beam having fluctuations below the quantum noise limit, the correlation will be termed as
”non-classical”. This procedure is easy to implement if the two beams have the same frequency. If the two beams
have different frequencies ω1 and ω2, it is more difficult but still possible, at least in principle : the noise reduction
will then be measured by a homodyne detection scheme using a local oscillator at frequency (ω1 + ω2)/2, and will
appear at a noise frequency Ω = |ω1 − ω2|/2.

A. Classical correlation

Let us first consider the simplest way to produce correlated beams by classical means : one inserts a 50% beamsplitter
in a given classical beam, which is thus divided into two output beams having a degree of correlation that can be
simply calculated. Taking into account the vacuum mode entering through the unused port of the beamsplitter, one
obtains the following value for the correlation obtained by splitting an input classical field on a 50% beamsplitter :

[C12]class =
Fin − 1
Fin + 1

(5)

where Fin is the Fano factor of the input beam on the beamsplitter, or equivalently by :

[C12]class = 1 − 1
F

(6)

where F is the common value of the Fano factor of the two beams at the output of the beamsplitter (F = (Fin +1)/2).
Let us note that C12 tends to 1 when Fin goes to infinity, i.e. when the vacuum noise of the second input can

be neglected with respect to the proper noise of the input beam. A very strong correlation is therefore not always
the sign of a quantum origin : it can be just the reverse, and due to the fact that the quantum fluctuations can be
neglected in the problem ! The normalized correlation factor C12 is thus not the most unambiguous way to appreciate
the quantum character of a correlation.

B. ”Gemellity”

Let us now exploit the operational definition of the quantum character of the correlation given at the beginning of
this section, which is to use a linear passive operation which transforms the correlation into a sub-shot noise beam.
In the case of two beams, this operation simply consists of recombining the beams on a beamsplitter of variable
transmission and reflection after variable optical paths. The phases are adjusted so that one mixes the relevant
quadrature components X1 and X2. One eventually obtains a beam having quadrature fluctuations δX̂out given by :

δX̂out = rδX̂1 − tδX̂2 (7)

r and t being adjustable amplitude reflection and transmission coefficients. If the minimum noise on this beam is
below the standard quantum limit, we are sure that the initial correlation can only be described in a full quantum
frame. We will name by the neologism ”gemellity” (”twinship”) the minimum variance of this quantity, labelled G,
which can be found to be :

G =
F1 + F2

2
−

√
C2

12F1F2 +
(

F1 − F2

2

)2

(8)

and state :

G < 1
⇓

Impossibility of a classical description of correlated beams
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C. Balanced case

Let us first consider the case of two beams of equal means and noises, so that F1 = F2 = F . In this case, the
gemellity has a very simple expression :

G = F (1 − |C12|) (9)

The reflection and transmission amplitude coefficients r and t are both equal in this case to 1/
√

2, so that G can also
be written as :

G =
〈
(
δX̂1 − δX̂2

)2

〉
2

(10)

It is nothing else than the normalized noise on the difference between the fluctuations of the two measurements,
and can be easily monitored by simple electronic means. In the classical case described in the previous paragraph,
it is easy to show that G takes the value 1, whatever the initial Fano factor Fin of the beam. If the gemellity G
has a value smaller than 1, the two beams have identical mean values and almost identical fluctuations (within the
quantum noise). Such beams are usually named ”twin beams”, in a way reminiscent of the ”twin photons” studied
in the photon counting regime. One can distinguish between ”intensity twin beams”, where the measured quadrature
is the amplitude quadrature (in that case, the measured gemellity is equivalent to the normalized difference of the
intensity fluctuations of the two beams), and which are produced by above threshold OPOs [12, 13] or by the mixing
on a 50% beamsplitter of a coherent state and a squeezed vacuum [14], and ”quadrature twin beams”, which are
produced by non degenerate OPOs below threshold [15, 16]. The smallest measured value of the gemellity G is to the
best of our knowledge G = 0.11 [17].

The non-classical region (G < 1) corresponds to correlations C12 larger than 1 − 1/F . The correlation likely to
produce non-classical twin beams has a lower limit which is more and more close to 1 when the two fields have more
and more excess noise. If each field is at shot noise, any non-zero correlation is a proof of gemellity, and therefore of
non-classical character.

D. Unbalanced case

Unbalanced beams may have also strong, or even perfect, classical correlations. To produce classically correlated
fields of unequal intensities and fluctuations, one can use a non equal beam-splitter with different amplitude trans-
mission and reflection coefficients. In this case, the correlation C12 is found to be

[C12]class =
√

(1 − 1
F1

)(1 − 1
F2

) (11)

which is the generalization of relation (6). This amount of correlation, as expected, gives a value larger than or equal
to 1 to the gemellity G, defined by Eq(8).

If F1 or F2 is equal to 1, Expression(8) implies that any non-zero correlation C12 gives a value of G smaller than 1
: any correlation between a field at shot noise and another field has thus a quantum origin.

In order to experimentally determine the gemellity, one uses the operational definition : it is the minimum noise
-normalized to shot noise - obtained when one mixes the two considered beams on a beamsplitter of variable trans-
mission and reflection. The gemellity criterion for a non-classical correlation between unbalanced beams is interesting
from an experimental point of view, because in a given experimental situation the two measured beams do not have
necessarily the same mean power and noise [18, 19, 20].

IV. NON-CLASSICAL CHARACTER OF THE MEASUREMENT PROVIDED BY THE

CORRELATION : ”QND-CORRELATED BEAMS”

When two observables M1 and M2 are perfectly correlated, the measurement of M2 gives without uncertainty the
value of M1. The first measurement is thus a Quantum Non Demolition measurement (QND) of the observable M1

performed on the second sub-system.
We can now define a second level in the quantum character of correlations :
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Quantum correlation, level 2 : The information extracted from the measurement on one field provides a
Quantum Non Demolition measurement of the other.

In the last decade, many studies have been devoted to the precise definition of QND criteria[21], that we can use
now in our discussion. In the present case, the ”Non Demolition” part of the measurement is automatically ensured,
as the measurement, performed on beam 2, does not physically affect the measured system, which is beam 1. Its
quantum character is effective when the measurement is able to provide enough information on the instantaneous
quantum fluctuations of the other beam so that it is possible, using the information acquired on mode 2, to correct
mode 1 from its quantum fluctuations and transform it into a non-classical state in the meaning of the previous section
by a feed-back or feed-forward electronic device. This criterion is well known in QND studies[22], where it is shown
that it is equivalent to state that the conditional variance V1|2 of beam 1 knowing beam 2 takes a value smaller than
1. The conditional variance has the following expression in terms of the Fano factor of beam 1 and the normalized
correlation C12 between the two :

V1|2 = F1(1 − C2
12) (12)

A. Balanced case

Let us first consider the case where the two beams have identical mean values and fluctuations (F1 = F2 = F ). In
this case there is only one conditional variance V1|2 = V2|1 = V , and the criterion for ”QND-correlated beams” is :

V1|2 = V2|1 = V < 1 (13)

The conditional variance and the gemellity are related by :

V = G(1 + C12) = 2G − G2

F
(14)

so that :

G ≤ V ≤ 2G (15)

One notices that the conditional variance is always bigger than the gemellity, so that all the QND-correlated beams
are twin beams, whereas the reverse is not true. We see also that a small enough gemellity, namely smaller than 0.5,
implies that the beams are QND-correlated.

It is possible to show [22] that the conditional variance can be directly measured by using an adjustable amplification
on one of the two photocurrents, i.e. by measuring the quantity :

X̂g = X̂1 − gX̂2 (16)

The conditional variance is equal to the minimum value of < δX̂2
g > when g is varied.

B. Unbalanced case

In this case the two conditional variances are different, and there are two possible criteria V1|2 < 1 and V2|1 < 1.
They are not always simultaneously satisfied : there exist situations where V1|2 < 1 and V2|1 > 1 for example. This
shows that the QND criterion evaluates the correlation from the point of view of one beam, and the information
that one can have on this beam from measurements on another one, and does not intrinsically quantize the quantum
correlation between the two fields.

It is easy to show that it is enough to have one of the two conditional variances smaller than 1 to have twin beams.
In contrast, there are regions of the parameter space where G is smaller than 0.5 and where one of the two conditional
variances is bigger than 1.

We will therefore give an ”asymmetrical” criterion to characterize this second level of quantum correlation :

V1|2 < 1 or C12 >
√

1 − 1
F1

⇓
Possibility of a QND measurement of beam 1 using the correlation between beams 1 and 2
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V. IMPOSSIBILITY OF DESCRIPTION BY A STATISTICAL MIXTURE OF FACTORIZABLE

STATES : ”INSEPARABLE BEAMS”

We now define a new level in the quantum character of correlations, related to the entangled character of the state,
as already stated in the introduction :

Quantum correlation, level 3 : The correlation arises from a system which can be described only by an

entangled or non-separable quantum state.

Let us first consider the case of a pure state, which is described by a state vector |Ψ >. If this vector can be written
as a tensor product of states belonging to each Hilbert sub-space (i.e it is not entangled nor non-separable), the mean
value of a product of observables Ô1 and Ô2 acting separately in the two sub-spaces (1) and (2) will be the product
of the mean value of each observable : there will be therefore no correlations in such a system, whatever the two
observables. So, if one finds a non-zero correlation on a single couple of observables, even when this correlation is
weak, it is a proof that the system is in an entangled state : correlation implies entanglement for pure cases.

Reciprocally, if the system is described by an entangled state |Ψ > of the form (1), what are the conditions to get
a non-zero correlation between two observables Ô1 and Ô2 ? One knows that |Ψ > can be written in the following
form (Schmidt decomposition [23]) :

|Ψ >=
∑

j

|ψ1,j > ⊗|ψ2,j > (17)

where the states |Ψi,j > belong to the Hilbert space of the sub-system labelled (i) (i = 1, 2). Non-zero correlations
will happen when, firstly, the measurement on sub-system (1) is performed on an observable Ô1 which has not all the
states |Ψ1,j > in the same eigenspace, so that the state reduction due to the measurement changes the total state
|Ψ >. Secondly, in order to affect the measurement performed on an observable Ô2 on system (2) the states |Ψ2,j >

must not be in the same eigenspace of Ô2.
These arguments prove that the presence of entanglement in a pure state does not imply that any couple of

observable will be correlated, and, if a correlation between two observables is obtained, it does not imply that the
correlation has reached even the level 1 of quantum correlation. The requirement of the quantum description of the
correlation (twin beams) is therefore stronger than the requirement of having an entangled state.

The situation is completely different if one allows the system to be in a statistical mixture of quantum states, so
that it is described by a density matrix instead of a state vector: in this case, the existence of a correlation between
two measured quantities does not imply that the system is in an entangled state. A single correlation, even perfect,
between a given observable of sub-system (1) and a given observable of sub-system (2) can be obtained with ”separable
states” in the meaning of [24], i.e. with states that are classical statistical mixtures of factorizable states. They can
be written as :

ρ =
∑

j

pj|ψ1,j > ⊗|ψ2,j >< ψ1,j |⊗ < ψ2,j | (18)

with pj positive real numbers such that
∑

j pj = 1. States which cannot be written as (18) will be called non-separable.
They are also named ”entangled states” in an extended meaning.

Let us consider as an example the system described by the separable density matrix :

ρ =
∑

n

pn|n : 1, n : 2 >< n : 1, n : 2| (19)

where |n : 1, n : 2 > is a Fock state with the same number n of photons in the two modes (1) and (2). This state
yields a perfect intensity correlation between the two modes, and satisfies the two previous criteria : the correlation
C12 is 1, and therefore the gemellity G is zero, as well as the conditional variances V1|2 and V2|1.

Note that the state described by (19) is indeed very ”quantum”, in spite of not being entangled or non-separable, as
it is built from Fock states having exactly the same number of photons in the two modes, which cannot be produced
classically, but only through cascade processes, such as parametric down-conversion. We see here that quantum
correlations and entanglement are different notions, which are of course related, but not in a straightforward and
simple way.

Duan et al. [24] have shown that in order to ascertain the separable character of the physical state of a system,
one needs to make two joint correlation measurements on non-commuting observables on the system, and not only
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one, as was the case in the two previous sections. They have shown that in the case of Gaussian states, there exists
a necessary and sufficient criterion of separability in terms of the quantity S12, that we will call ”separability”, and
is given by :

S12 =
1
2

(
〈δ(X̂+1 − X̂+2)2〉 + 〈δ(X̂−1 + X̂−2)2〉

)
(20)

The separability S12 appears as the sum of the gemellity G+ measuring the correlations between real quadrature
components of the two beams, and the (anti)gemellity G− measuring the anticorrelation between the imaginary
quadrature component of the same beams (defined with a + instead of a − in equation (??)).

The third level of quantum correlation is evaluated by the well-known Duan criterion, which writes :

S12 < 2

⇓
Quantum correlation arising from an entangled or non-separable state

This criterion allows us to establish some relations between the different levels of quantum correlations that we
have already considered.

For example, classical beams will give values larger than 1 for the gemellities measured on any variables, and in
particular on X̂+ and X̂−. In this case, the quantity S12 is larger than 2, and the two beams are therefore separable.
A contrario, non separable beams imply that at least one of the two gemellities is smaller than 1, and therefore that
the beams are at least ”twins”, in intensity or in phase. For quadrature measurements on statistical mixtures of
Gaussian states, the non-separability criterion implies that the criterion 1 is fulfilled and is therefore stronger than
this latter one. Note that the beams are not necessarily QND-correlated in one of these variables., so that level 2 is
not necessarily reached.

Non separable beams are usually prepared by mixing two non-classical states, such as squeezed states, on a beam-
splitter [25], but it has been shown [26] that one can generate an entangled state from a single squeezed beam mixed
with a coherent state plus some well adapted linear processing of the two output beams.

VI. POSSIBILITY OF QND MEASUREMENT OF TWO CONJUGATE VARIABLES : ”EPR BEAMS”

In their famous paper, Einstein, Podolsky and Rosen [27] have exhibited the following wavefunction for the contin-
uous variables position x̂i and momentum p̂i (i = 1, 2) of two particles :

ψ(x1, x2) =
∫ +∞

−∞

eip(x1−x2+x0)/�dp (21)

where x0 is a constant, and shown that it provides perfectly correlated position measurements and perfectly anti-
correlated momentum measurements of the two particles. This state, which is obviously entangled, can be readily
transferred in the domain of quadrature operators of two light modes [28]. In quantum optics terms, it allows us
to perform perfect QND measurements of the two quadrature components of mode 1, by measurements performed
only on beam 2. This perfect information that one eventually gets on the two quadratures of the field apparently
contradicts the fact that these measurements are associated to two non-commuting operators, and therefore obey a
Heisenberg inequality.

We now reach a fourth level in the quantum character of the correlations :

Quantum correlation, level 4 : The information extracted from the measurement of the two quadratures of
one field provides values for the quadratures of the other which violate the Heisenberg inequality

This situation has been extensively considered and discussed by M. Reid and co-workers [28, 29], which have shown
that this violation is only apparent, and does not violate the basic postulate of Quantum Mechanics. They have in-
troduced the following criterion to characterize this fourth level of quantum correlation of the so-called ”EPR beams” :

VX+1|X+2VX
−1|X−2 < 1

⇓
Possibility of an apparent violation of the Heisenberg inequality

for the quadratures components of beam 1 through measurements performed on beam 2
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where VX+1|X+2 is the conditional variance of X+1 knowing X+2, and VX
−1|X−2 is the conditional variance of X−1

knowing X−2.
This condition is related somehow to the QND-correlated beams of section 4. It can be written in terms of the

normalized correlation CX+1X+2 and anticorrelation CX
−1X

−2 :

(
1 − C2

X+1X+2

)(
1 − C2

X
−1X

−2

)
>

1
F+F−

(22)

where F+ and F− are the noise variance on quadratures + and − normalized to shot noise (fulfilling F+F− > 1).
The EPR correlation turns out to be stronger than the non-separability correlation, in the same way as the QND

criterion of section 4 is stronger than the non-classical criterion of section 3 : it has been shown [30] that all EPR
beams are non-separable, whereas the reverse is not true. In the same article, Bowen et al. show that for pure states
the two criteria correspond to the same physical states. However, Duan criteria is robust with respect to the mixed
character of the fields states, whereas the EPR criteria can not be fulfilled in the presence of more than 50% of losses.
Let us stress that this behaviour is linked to the no-cloning theorem : it has been proved that linear amplification
and a 50/50 beam-splitter produces the best possibles two copies (clones) of any input state [31]. Hence, when two
beams are EPR correlated, i.e. that less than 50% losses are present, on a quantum information point of view we are
sure than no spy has a better copy of the state. This is in the same way relevant for the success of teleportation [32].

VII. IMPOSSIBILITY OF DESCRIPTION OF THE MULTIPLE CORRELATION BY LOCAL

CLASSICAL STOCHASTIC VARIABLES : ”BELL BEAMS”

Quantum fluctuations can be mimicked in many instances by classically-looking stochastic supplementary variables.
This is the case in particular when one uses the approach of ”vacuum fluctuations”, behaving as classical fluctuations,
but with a variance given by quantum mechanics and carrying no energy. This is to be distinguished from the classical
stochastic fields, originating from the uncontrolled variations of the classical parameters of the light source. Bell [33]
has shown that such a stochastic modelling was not likely to reproduce all the correlations that can be encountered in
quantum mechanical systems when these supplementary stochastic variables (usually named ”hidden variables”) were
local, i.e. attached to the sub-system under measurement. He introduced inequalities fulfilled by any local hidden
variable models, and violated in some very specific situations of quantum mechanical correlated systems.

We must therefore introduce a new level of quantum correlations :

Quantum correlation, level 5 : The multiple correlations of the system cannot be described by local hidden
variable approaches

The corresponding criterion for this level of quantum correlation is the celebrated Bell inequality [33]. We will not go
into the details of it here for the following reason : one shows in Quantum Optics that all phenomena can be described
through the use of quasi-probability distributions [1, 7], such as the Wigner representation or others. For the special
case of light beams having a Gaussian statistics, which the case of all the physical situations encountered so far in
the regime of continuous variables in optics, the Wigner representation is everywhere positive : the quasi-probability
distribution becomes a true probability distribution, the evolution of which can be mapped into stochastic equations
for fluctuating fields : these stochastic fields constitute in this case the local ”hidden” variables which account for all
the observed quantity, including the variances and the correlations between measurements. This means that there
is never a violation of the Bell inequality in the continuous variable regime with Gaussian states, and the level 5 of
quantum correlations is never reached in this case.

To reach it, one needs to deal with non Gaussian states, with partly negative Wigner functions, such as the
Fock states, Schrödinger cat states [34], or states produced through conditional non-Gaussian measurements like
photon-counting. The discussion of such situations is beyond the scope of this simple introductory paper on quantum
correlations.

VIII. CONCLUSION

The exploration of the quantum world, in which professor Walther has undoubtedly played a major role, has unveiled
physical situations which are looking more and more strange for an observer only acquainted to the certainties of
classical physics. We have tried in this short review to assess and classify the ”degree of oddness” of quantum optical
phenomena. In the last decades, theoreticians and experimentalists have gone higher and higher in such a ladder of
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pure quantum effects. There is no doubt that they are far from reaching the top of the quest, and that new heights
of even stranger quantum properties will be attained in the future.
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Conditional Preparation of a Quantum State in the ContinuousVariable Regime:
Generation of a sub-Poissonian State from Twin Beams

J. Laurat, T. Coudreau,*,† N. Treps, A. Maı̂tre,* and C. Fabre
Laboratoire Kastler Brossel, UPMC, Case 74, 4 Place Jussieu, 75252 Paris Cedex 05, France

(Received 16 April 2003; published 18 November 2003)

We report the first experimental demonstration of conditional preparation of a nonclassical state of
light in the continuous variable regime. Starting from a nondegenerate optical parametric oscillator
which generates above threshold quantum intensity correlated signal and idler ‘‘twin beams,’’ we keep
the recorded values of the signal intensity only when the idler intensity falls inside a band narrower
than its standard deviation. By this very simple technique, we generate a sub-Poissonian state 4.4 dB
(64%) below shot noise from twin beams exhibiting 7.5 dB (82%) of noise reduction in the intensity
difference.

DOI: 10.1103/PhysRevLett.91.213601 PACS numbers: 42.50.Dv, 42.65.Yj

A well-known technique to generate a single photon
state from quantum correlated photons (‘‘twin photons’’)
is to use the method of conditional measurement: if one
labels (1) and (2) the two modes in which the twin photons
are emitted, it consists of retaining in the information
collected on mode (1) only the counts occurring when a
photon is detected in mode (2) (within a given time
window �T). This method has been widely and very
successfully used over the past decades, first with twin
photons generated by an atomic cascade [1], then by
using the more efficient technique of parametric down-
conversion [2]. Various protocols have been proposed to
use conditional preparation in order to generate other
kinds of nonclassical states, for example, Schrödinger
cat states using a squeezed vacuum state transmitted
through a beam splitter and a measurement conditioned
by the counts detected on the reflected port [3]. In a
similar way, teleportation of a quantum state of light
can be achieved by using conditional measurements [4]
and the degree of entanglement can be improved by
photon subtractions [5]. In cavity QED, conditional mea-
surements on the atomic state have also led to the experi-
mental generation of nonclassical photon states [6].

State reduction is obviously not restricted to the case of
photon counting, so that it may be interesting to extend
this technique to the continuous variable regime, where a
continuously varying photocurrent is measured instead of
a series of photocounts. Continuous detection conditioned
by a photon counting event has been implemented in
various schemes [7]. Closer to our proposal where con-
tinuous measurements are used both for triggering and
characterizing the generated state, many theoretical pro-
tocols have been suggested relying on a two-mode
squeezed vacuum produced by a nondegenerate optical
parametric amplifier [8,9]. For instance, homodyne mea-
surements on the idler can be used to condition the
detection of the signal and would reduce it to a squeezed
state [8].

In a conditional state preparation, the generation of the
nonclassical state can be seen as the collapse of the
entangled wave function induced by the measurement
on one of its components. However, very frequently, the
measurement is made by postselection of the relevant
events in the record of all the values measured on the
two channels, which can be made after the end of the
physical measurement, so that no wave-function collapse
actually occurs during the experiment. Note that, in con-
trast to the methods of direct generation of a nonclassical
state, the exact time window when the state is produced is
not controlled in a conditional measurement, and what we
call the ‘‘preparation probability,’’ i.e., the probability of
generating the nonclassical state in a given time interval,
is an important parameter to characterize its efficiency.

To the best of our knowledge, no scheme has been
suggested so far to generate nonclassical intense beams
by the technique of conditional measurement performed
on continuous variables. This is the purpose of the present
Letter, which proposes a very simple way of conditionally
preparing a bright sub-Poissonian beam from twin
beams, and reports on its experimental implementation.
The theory of the presented technique will be detailed in
a forthcoming publication [10].

It is well-known that a nondegenerate optical para-
metric oscillator (ND-OPO) produces above threshold
an intense signal and idler twin beams [11]: in the ideal
case of a system without losses, the Fourier components
of the signal and idler intensity quantum fluctuations
which lie inside the cavity bandwidth are perfectly cor-
related. The correlations are characterized by the ‘‘gemel-
lity,’’ which is the remaining noise on the intensity
difference between the signal and idler intensities nor-
malized to the corresponding quantum noise level [12].
The instantaneous values of the signal and idler photo-
currents play therefore the role of the occurrence of
counts in the photon counting regime. The conditional
technique that we propose consists of selecting the signal
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photocurrent Is only during the time intervals when the
idler intensity Ii has a given value I0 (within a band �I
smaller than the photocurrent standard deviation). The
measurements outside these time intervals are discarded.
If the correlation is perfect and the interval �I close to
zero, the recorded signal intensity is perfectly constant,
and an intense number state is generated.

In a real experiment, the correlation between the
signal and idler photocurrents is not perfect, and the
selection band �I is finite, so that the method will not
prepare a perfect number state, but a sub-Poissonian
state instead. The density matrix describing the state
of light which is produced by such a state reduction
technique can be determined within the approxima-
tion that the signal and idler photon distributions are
Gaussian [10]. In the limit where �I is very small, one
finds that, whatever the initial intensity noise of the
beams are, the conditional measurement produces a
sub-Poissonian signal beam, characterized by a Fano
factor equal to the conditional variance of the intensity
fluctuations of the signal beam knowing the intensity
fluctuations of the idler beam, which plays an important
role in the characterization of quantum nondemolition
measurements [13]. In other words, in the limit of large
correlations, the intensity noise reduction on the condi-
tionally prepared state is equal to the twin beam noise
reduction minus 3 dB.

Obviously, if �I is very small, the probability that the
idler intensity lies within the chosen band is also very
small, and the preparation probability of the nonclassical
state production by such a conditional measurement is
also very low. Computer simulations, as well as analytical
calculations [10], show that the Fano factor of the gen-
erated state remains almost constant in a wide range of �I
values, whereas the preparation probability of the method
increases quickly. It is only when �I reaches values
comparable to the shot noise standard deviation that the
postselection process becomes less efficient, and the Fano
factor tends to its uncorrected value.

The present conditional measurement technique has
strong analogies with the method of active feed-forward
correction of the signal beam intensity, by optoelec-
tronics techniques, using the information obtained from
the measurement of the idler intensity [14,15], which
produces a sub-Poissonian state with a Fano factor also
equal to the conditional variance. The present technique
is much simpler to implement, whereas the active correc-
tion technique is nonconditional and has the advantage of
producing the nonclassical state at all times.

The experimental setup is shown in Fig. 1. A con-
tinuous frequency-doubled Nd:YAG laser pumps a triply
resonant ND-OPO above threshold, made of a semimo-
nolithic linear cavity: in order to increase the mechanical
stability and reduce the reflection losses, the input flat
mirror is directly coated on one face of the 10-mm-long
KTP crystal. The reflectivities for the input coupler are
95.5% for the pump (532 nm) and almost 100% for the

signal and idler beams (1064 nm). The output coupler
(R � 38 mm) is highly reflecting for the pump and its
transmission is 5% for the infrared. At exact triple reso-
nance, the oscillation threshold is less than 15 mW. The
OPO is actively locked on the pump resonance by the
Pound-Drever-Hall technique: we detect by reflection a
remaining 12 MHz modulation present in the laser and
the error signal is sent to a homemade proportional-
integral controller. In order to stabilize the OPO infrared
output intensity, the crystal temperature has to be drasti-
cally controlled (within a mK). The OPO can operate
stably during more than one hour without mode hop-
ping. The signal and idler orthogonally polarized beams
(1–5 mW range) generated by the OPO are then sepa-
rated by a polarizing beam splitter and detected on a
pair of balanced high quantum efficiency InGaAs photo-
diodes (Epitaxx ETX300, quantum efficiency: 95%). A
half-wave plate is inserted before the polarizing beam
splitter. When the polarization of the twin beams is
turned by 45� with respect to its axes, it behaves as a
50% usual beam splitter, which allows us to measure the
shot noise level [11].

In almost all the bright twin beam experiments to
date [11], the photocurrents are subtracted and the differ-
ence is sent onto a spectrum analyzer which gives the
variance of the photocurrent distribution. We have imple-
mented a different protocol to have access to the full
photon-number quantum statistics of the signal and idler
beams at a given Fourier frequency � (see also [16]):
each photocurrent is amplified and multiplied by a sinu-
soidal current at frequency � produced by a signal gen-
erator, and filtered by a 22 kHz low-pass filter in order to
obtain the instantaneous value of the photocurrent
Fourier component at frequency �, which is then digi-
tized at a sampling rate of 200 kHz by a 12-bit, 4-channel
acquisition card, which also simultaneously records the
instantaneous values of the dc photocurrents. Two suc-
cessive acquisitions (200 000 points for each channel) are
required, one for calibrating the shot noise by rotating the

λ /2 λ /2
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FIG. 1 (color online). Experimental layout. The 1064 nm
orthogonally polarized bright twin beams generated by the
ND-OPO are separated by a polarizing beam splitter and
detected. The high frequency components of the photocurrents
are amplified and demodulated at a given Fourier frequency.
The two channels are digitized and simultaneously recorded on
a computer.
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half-wave plate and the other to record the quantum
correlated signals.

Figure 2 sums up the measurements obtained with a
demodulation frequency �=2� � 3:5 MHz. Figure 2(a)
shows the actual recording of the fluctuations of the idler
beam during a time interval of 100 ms. As the OPO is
pumped close to threshold, the signal and idler beams
have intensity fluctuations which are much larger than the
standard quantum limit, as can be seen on curve 2(b),
giving the probability distribution of the intensity fluc-
tuations normalized to the shot noise. The corresponding
Fano factor exceeds 100 (20 dB above the shot noise
level). One can calculate the noise variance on the differ-
ence between the signal and idler intensities. It reaches a
value of 7.5 dB below the standard quantum limit (8.5 dB
after correction of dark noise), in good agreement with
the value of the noise variance measured on the spectrum
analyzer. The dark noise, which is more than 6 dB below
all measurements, is not subtracted in the following
experimental results.

The conditional measurement is performed in the fol-
lowing way: the signal intensity values are kept only if
the idler intensity values recorded at the same time fall
inside a narrow band around its mean value. The remain-
ing ensemble of values of the signal intensity is given in
Fig. 2(c), in which the shot noise is given at the same
time: one indeed observes a significant narrowing of the
probability distribution below the shot noise level. Let us

stress that the shot noise is unchanged by this selection
process: the beam exists only in the selection intervals so
that the unselected intervals do not contribute to the
average value. Figure 2(d) gives the probability distribu-
tion of the intensity fluctuations of the conditionally
prepared state normalized to the shot noise, together
with the Poissonian distribution of photons for the same
mean intensity. With a selection bandwidth �I equal to
0.2 times the standard deviation �0 of a coherent state
having the same power (shot noise level), the condition-
ally prepared light state exhibits 4.4 dB of noise reduc-
tion below the Poisson distribution. This value is very
close to the theoretical expectation in the case of a van-
ishingly narrow intensity band. The preparation probabil-
ity of the conditional preparation is around 0.85%
(1700 points out of 200 000 are accepted). This value
would be higher for an initial state with less excess noise.

The preparation probability can be improved by in-
creasing the selection bandwidth, at the expense of a
decreased nonclassical character of the selected state.
Figure 3 shows the measured residual noise in the condi-
tionally produced state, and the preparation probabil-
ity of the state generation, as a function of the selection
bandwidth normalized to �0. The noise reduction turns
out to be almost constant until the normalized selection
bandwidth becomes of the order of 0.1, whereas the
preparation probability steadily increases, in very good
agreement with numerical simulations. However, one
can see a slight increase in the noise when the selec-
tion bandwidth becomes very narrow. This artifact is
due to the sampling process on a finite range of bits,
which restricts the resolution of the acquisition.

In Fig. 4, we give the measured residual noise for
different amounts of intensity correlations between the
beams, which can be varied by inserting losses on the
OPO beams. One checks on the figure the validity of
the prediction that the noise reduction is equal to the
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FIG. 2 (color online). Experimental results: (a) idler intensity
fluctuations: 200 000 acquired points at 3.5 MHz demodu-
lation frequency (only 20 000 shown). (b) Corresponding
probability distribution. The unit is the width �0 of the
Poisson distribution of the same mean intensity (shot noise).
(c) Values of the signal intensity conditionally selected by
the value of the idler intensity recorded at the same time
(selection bandwidth �I equal to 0:2�0 around the mean),
superimposed to the corresponding experimentally measured
shot noise. (d) Corresponding probability distribution, com-
pared to the Poisson distribution (grey line), displaying the
sub-Poissonian character of the conditionally generated state.
The black line is a Gaussian fit of the intensity distribution.
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FIG. 3 (color online). Measured intensity noise on the post-
selected signal (a) and preparation probability (proportion
of selected points) (b) as a function of the selection band-
width on the idler normalized to �0. Circles: experimental data.
Squares: theoretical predictions.
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gemellity minus 3 dB. One also observes that, when the
intensity difference noise is reduced by less than 3 dB
below the standard quantum level, the conditional state
has reduced intensity noise fluctuations in comparison
with the very noisy initial beam, but that it is not a
nonclassical sub-Poissonian state.

The continuous variable regime offers a unique
possibility to improve dramatically the efficiency of
conditional strategy, by choosing multiple selection
bands with different mean values on the idler intensity.
Independent selection bands will correspond to inde-
pendent sets of time windows. By using hundreds of
independent intervals, one keeps most of the values of
the signal, each of these intervals reducing the signal
to a given sub-Poissonian state. Figure 5 shows that
the noise reduction does not depend of the band center
and that the preparation probability follows the initial
Gaussian noise distribution.

To conclude, we have shown the first experimental
demonstration of conditional preparation of a quantum
state in the continuous variable regime. We have studied
the influence of the selection bandwidth on the obtained
nonclassical state and on the preparation probability of its
preparation and shown that many sub-Poissonian states
can be produced in parallel. This method to generate
nonclassical states of light in the continuous variable
regime is equivalent to sending the signal beam through
an intensity modulator which either totally transmits the
beam when the idler beam has the right value, or blocks it
when it is not the case. It therefore drastically changes the
light state and seems to be very different from the usual
technique which consists of correcting the beam fluctua-
tions by a feed-forward or feedback optoelectronic loop
which only slightly modifies the quantum fluctuations.
This strongly nonlinear character of the action on the
light may lead to the generation of non-Gaussian states.
One could also envision other criteria of conditioning the
quantum state than simply imposing to the idler beam
intensity to lie within a given band. This could also lead to
the generation of new families of nonclassical bright
states of light.
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Compact source of Einstein-Podolsky-Rosen entanglement and squeezing
at very low noise frequencies
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We report on the experimental demonstration of strong quadrature Einstein-Podolsky-Rosen entanglement
and squeezing at very low noise sideband frequencies produced by a single type-II, self-phase-locked, fre-
quency degenerate optical parametric oscillator below threshold. The generated two-mode squeezed vacuum
state is preserved for noise frequencies as low as 50 kHz. Designing simple setups able to generate nonclassical
states of light in the kHz regime is a key challenge for high sensitivity detection of ultraweak physical effects
such as gravitational wave or small beam displacement.
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Since the pioneering work of Caves [1], which showed
that it is possible to improve the sensitivity of interferometric
measurements by the use of squeezed light, and its experi-
mental demonstrations [2], various protocols involving
squeezed light have been discussed in order to beat the stan-
dard quantum limit in gravitational wave detectors [3]. As
next generations of gravitational wave detectors will be de-
signed to be shot noise limited in the acoustic band from
10 Hz to 10 kHz, such techniques appear as quite promis-
ing ways to improve their sensitivity. Recently, a squeezing-
enhanced power-recycled Michelson interferometer has been
experimentally demonstrated and signal-to-noise ratio im-
provement obtained [4]. However, the injected squeezing
bandwidth lies around 5 MHz and not in the frequency band
of gravitational waves. A source of low-frequency squeezing
is thus a key point for the implementation of future
squeezed-input interferometers.

More generally, many high sensitivity measurements per-
formed at low modulation frequency can benefit from such a
device. In [5], a “quantum laser pointer” has been experi-
mentally demonstrated and an improvement of modulated
small displacement measurements in two orthogonal direc-
tions in the transverse plane has been reported. Improved
beam positioning sensitivity below the shot-noise limit is
obtained at the frequency where squeezing is available, a few
MHz in the case of this experiment. Two sources of low-
frequency squeezing are needed to apply this promising dis-
placement measurement technique to actual instruments
where frequency modulation is generally low. This could be
applied, for instance, to AFM microscopy in the tapping
mode where the cantilever oscillates at its resonant frequency
which is typically a few hundreds of kHz. Such a squeezing
source should also improve the thermo-optical spectroscopy
technique called the “mirage effect” [6], which enables the
measurement of very weak absorption: a thermo-optical
modulation on a sample induces a periodic refractive index
gradient and results in a low-frequency modulated probe
beam deflection.

Broadband and low-frequency squeezing is also very use-
ful even if the information is not carried by a single fre-
quency modulation. When a beam is detected during a finite
time, the signal-to-noise ratio depends on the noise in an
extended range of sideband frequencies. Broadband squeez-
ing with a cutoff frequency as low as possible is thus re-
quired. A great number of measurements can be improved in
that way, for instance the detection of weak pulsed signals or
the reduction of the bit error rate in the readout of digitized
optical information.

In [7], quantum noise reduction on the intensity difference
of twin beams has been observed down to 90 kHz. However,
only two experiments to date have demonstrated continuous-
wave squeezing at low frequencies. Both experiments are
based on an optical noise cancellation scheme where sources
of squeezing are inserted within a Mach-Zehnder interferom-
eter: squeezing has been obtained around 220 kHz with a
pair of independent optical parametric amplifiers (OPA) [8]
and very recently around 100 kHz with a single OPA [9].
This frequency range is rather unusual in the experimental
quantum optics field where nonclassical properties are gen-
erally observed in the MHz range due to the presence of
large classical noise at lower frequencies. In this paper, we
report on what is to our knowledge the first experimental
demonstration of very-low-frequency continuous-wave
squeezing without the need of an optical noise cancellation
scheme. Broadband vacuum squeezing is observed for fre-
quencies down to 50 kHz. Furthermore, our setup generates
not only single-mode squeezing but also Einstein-Podolsky-
Rosen (EPR) entanglement, which is a basic requisite in
quantum information protocols such as teleportation, dense-
coding, or optical-atomic interfacing [10].

Our setup relies on a frequency degenerate type-II phase-
matched optical parametric oscillator (OPO) below thresh-
old, in which a quarter-wave plate inserted in the cavity adds
a linear coupling between the signal and idler fields. In this
paper, we focus on the case where the plate is rotated by a
very small angle (smaller than 0.02°) relative to the principal
axis of the nonlinear crystal. In such a configuration, the
signal and idler modes are entangled: they show quantum
correlations and anticorrelations on orthogonal quadratures*Electronic address: coudreau@spectro.jussieu.fr
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8. La mesure monomode : intrication et téléportation

for noise frequencies inside the bandwidth of the cavity. This
nonclassical behavior exists also without the plate. However,
the linear coupling—even for a plate rotated by a very small
angle—facilitates the finding of experimental parameters for
which entanglement is observed. When our setup is operated
above threshold, frequency degenerate operation is obtained
in a small locking zone and not only for a precise value of
experimental parameters [11], which corresponds also to the
required parameters below threshold. When this zone is
found, the OPO can be operated below threshold and the
entanglement is maximized by fine tuning of the crystal tem-
perature. Furthermore, the degenerate operation with bright
beams opens the possibility to match the homodyne detec-
tion without infrared injection of the OPO. In prior experi-
ments with KTP crystals and green pump, the pairing of
crystals in order to compensate walk-off [2] or using �-cut
KTP for noncritical phase matching and frequency-doubled
Nd:YAP laser [12] was necessary to generate entangled
states of light.

Instead of directly measuring the quantum correlations
and anticorrelations of the signal and idler fields, A1 and A2,
we characterize the noise of the superposition modes ori-
ented ±45° from the axes of the crystal,

A+ =
A1 + A2


2,
A− =

A1 − A2


2
.

These two modes have squeezed fluctuations due to the cor-
relations and anticorrelations between signal and idler fields.
The amount of entanglement between signal and idler can be
inferred from the amount of squeezing available on these
superposition modes. We have developed in [13] a theoreti-
cal study of this original device named “self-phase-locked
OPO” in the above-threshold regime. Below threshold, the-
oretical and experimental behavior for various birefringent
plate angles will be reported on in a forthcoming paper [14].

The experimental setup is shown in Fig. 1. A continuous-
wave frequency-doubled Nd:YAG laser (“Diabolo” without
option “noise eater,” Innolight GmbH) pumps a triply reso-
nant type-II phase-matched OPO, made of a semimonolithic
linear cavity: in order to increase the mechanical stability
and reduce the reflection losses, the input flat mirror is di-
rectly coated on one face of the 10-mm-long KTP crystal
(�=90°, �=23.5°, Raicol Crystals Ltd.). The reflectivities
for the input coupler are 95.5% for the pump at 532 nm and
close to 100% for the signal and idler beams at 1064 nm.

The output coupler with a radius of curvature of 38 mm is
highly reflecting for the pump and its transmission is 5% for
the infrared. A birefringent plate—� /4 for the infrared and
almost � for the pump—is inserted inside the cavity. Rota-
tion as small as 0.01° can be obtained thanks to a rotating
mount controlled by a piezoelectric actuator. At exact triple
resonance and for a very small angle of the plate relative to
the axes of the crystal, the oscillation threshold is less than
20 mW, close to the threshold without the plate [15]. The
OPO is actively locked on the pump resonance by the
Pound-Drever-Hall technique: we detect by reflection a
12 MHz modulation and the error signal is sent to a home-
made proportional-integral controller. The OPO can operate
stably during more than one hour without mode-hopping us-
ing a drastic control of the crystal temperature within the mK
range and an optical table isolated from floor vibrations by
pneumatic feet (Newport I-2000).

The 1064 nm laser output is used as a local oscillator for
homodyne detection of the generated state. This beam is spa-
tially filtered and intensity-noise cleaned by a triangular-ring
45-cm-long cavity with a high finesse of 3000, which is
locked on the maximum of transmission by the tilt-locking
technique [16]. The homodyne detection is based on a pair of
balanced high quantum efficiency InGaAs photodiodes (Epi-
taxx ETX300, quantum efficiency: 95%) and the fringe vis-
ibility reaches 0.97. The shot noise level of all measurements
is easily obtained by blocking the output of the OPO. A
half-wave plate inserted at the output of the OPO, just before
the first polarizing beam splitter of the homodyne detection,
enables us to choose the field to characterize signal or idler
modes which are entangled, or the ±45° rotated modes which
are squeezed. The homodyne detection can be locked on the
squeezed quadrature during more than an hour using a stan-
dard dither and lock technique. The error signal is extracted
from the demodulated noise at a given frequency after enve-
lope detection.

Figure 2 shows the experimental broadband noise reduc-
tion observed in the ±45° vacuum modes for frequencies
between 300 kHz and 10 MHz. One observes that these two
modes are squeezed well below the standard quantum limit,
except around 1 MHz, where the narrow peak of excess
noise is due to the relaxation oscillation of the laser. One can
note that this excess is less important on the mode A+, which
is sensitive to phase noise of the laser. A noise eater imple-
mented on the Nd:YAG laser should permit us to largely

FIG. 1. Experimental layout. A continuous
frequency-doubled Nd:YAG laser pumps below
threshold a frequency degenerate type-II phase-
matched OPO with a quarter-wave plate inserted
inside the cavity. The generated two-mode state is
characterized by homodyne detection and the dif-
ference of the photocurrents is sent onto a spec-
trum analyzer. PD Lock: FND-100 photodiode
for locking of the OPO. PD Split: split two-
element InGaAs photodiode for tilt-locking of the
filtering cavity.

LAURAT et al. PHYSICAL REVIEW A 70, 042315 (2004)

042315-2

82



8.3. Compact source of EPR entanglement and squeezing at very low noise(. . .)

reduce this classical excess noise. The degree of entangle-
ment between signal and idler fields can be evaluated by the
inseparability criterion developed by Duan et al. [17] and
Simon [18]: a necessary condition for inseparability is that
the half-sum of the previous squeezed variances falls below
1. This criterion is well verified in the considered frequency
band, as one can observe in Fig. 2. To the best of our knowl-
edge, our setup generates the best EPR entangled beams ever
produced in the continuous variable regime. We have mea-
sured at a given noise frequency of 3.5 MHz (RBW set to
100 kHz and VBW to 300 Hz) a value of the inseparability
criterion equal to 0.33±0.02 [14].

Figure 3 sums up the same experimental measurements as
given by Fig. 2 but now for low noise frequencies, between
40 kHz and 150 kHz. Measurements are corrected from the
electronic dark noise, which is at least 4 dB below all traces.
One can see that the ±45° vacuum modes are strongly
squeezed: the noise variances are still reduced by 3 dB
around 100 kHz and reach the shot noise limit for
frequencies below 50 kHz. No significant difference is ob-
served between the two rotated modes. The low limit fre-
quency is well below the ones previously reported. In con-
trast to [8] and [9], the low-frequency squeezing is obtained
with the same efficiency on both rotated modes, showing that
the effect is not due to common mode rejection of excess
noise but to an intrinsic absence of low-frequency noise in
our setup.

We have reported in this paper the demonstration of a
compact source of squeezing from 50 kHz to 10 MHz (still
present above, in the bandwidth of the cavity, but not mea-
sured) with a slight increase of noise in a frequency band of
100 kHz around 1 MHz. This broadband noise reduction is
likely to reduce noise in a pulsed measurement during a time
window of duration T. The noise variance �2 of the measure-
ment can be written

�2 = �
0

+�

S���T2sinc2���T�d� ,

where S��� is the spectral noise density of the light source.
Let us evaluate the improvement obtained on a measurement
during a window of duration T=1 �s. We model our device
by a shot-noise limited source below 50 kHz (the excess
noise can be reduced to shot noise by a feedback loop) and
squeezed by 3 dB above. In comparison with a shot-noise
limited source at all frequencies, the noise variance is di-
vided by a factor 1.7. This very simple example shows the
great interest of broadband and low-frequency squeezing to
improve a large class of physical measurements.

In summary, we have demonstrated significant broadband
vacuum EPR entanglement and squeezing down to 50 kHz
with a single OPO below threshold and without the need of
optical noise cancellation technique. The degree of entangle-
ment can be improved further by increasing the transmission
escape efficiency of the OPO. Up to now, the attainable low-
est frequency seems only limited by the technical noise of
the laser and locking noise of the different cavities involved
in our setup. The implementation of the intensity noise eater
on the Nd:YAG laser—as is the case for gravitational wave
detectors where lasers are expected to be shot noise limited
around a few tens of Hz—should allow it to reach even
lower frequencies.

Laboratoire Kastler-Brossel, of the Ecole Normale
Supérieure and the Université Pierre et Marie Curie, is asso-
ciated with the Centre National de la Recherche Scientifique
(UMR 8552). Laboratoire Matériaux et Phénomènes Quan-
tiques is a Fédération de Recherche (CNRS FR 2437). This
work has been supported by the European Commission
project QUICOV (IST-1999-13071) and ACI Photonique
(Ministère de la Recherche).

FIG. 3. Normalized noise variances from 40 kHz to 150 kHz
of the ±45° vacuum modes after correction of the electronic noise
and inseparability criterion for signal and idler modes. Squeezing
and entanglement are observed down to 50 kHz. The resolution
bandwidth is set to 3 kHz and the video bandwidth to 10 Hz.

FIG. 2. Normalized noise variances from 300 kHz to 10 MHz
of the ±45° vacuum modes and inseparability criterion for signal
and idler modes defined as the half-sum of the previous squeezed
variances. The resolution bandwidth is set to 100 kHz and the video
bandwidth to 300 Hz.
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We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light
field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity F and with
signal transfer Tq�T��T� and noise correlation Vq�V in� out

� V in� out
� . We observed an optimum fidelity of

0.64�0.02, Tq�1.06�0.02, and Vq�0.96�0.10. We discuss the significance of both Tq	1 and Vq�1 and
their relation to the teleportation no-cloning limit.

DOI: 10.1103/PhysRevA.67.032302 PACS number�s�: 03.67.Hk, 03.65.Ud, 42.50.Dv, 42.65.Yj

Quantum teleportation �1� is a key part of quantum infor-
mation technology both in terms of communicating �2� and
processing �3� quantum information. Experimental demon-
strations of teleportation have so far fallen into three main
categories: teleportation of photon states �4�; of ensemble
properties in liquid NMR �5�; and of optical-field states �6�.
An important feature of the technique used in the optical-
field state experiment of Furusawa et al. �6� is its high effi-
ciency. This results in the ability to faithfully teleport arbi-
trary input states continuously. This is due to the in principle
ability to perform the required joint measurements exactly
and the technical maturity of optical-field detection. In con-
trast, the efficiency of single-photon experiments is presently
restricted in principle due to the inability to identify all four
Bell states, and also in practice by the low efficiency of
single-photon production and detection.

Since the Furusawa et al. experiment, there have been
many proposals for how quantum teleportation may be re-
peated using different systems �7–9�; applied to different in-
put states �10,11�; generalized to multiparty situations �12�;
and more comprehensively characterized �13,14�. Inspite of
the considerable interest, to date no new experiment has been
performed �15�.

This paper reports the quantum teleportation of the
quadrature amplitudes of a light beam. Our scheme has a
number of notable differences to the previously published
experiment. The input and output states are analyzed by the
same homodyne detector, allowing a more consistent evalu-
ation of their properties. Our experiment is based on a
Nd:YAG �yttrium aluminum garnet� laser that produces two
squeezed beams in two independently pumped optical-
parametric amplifiers �OPAs�. We use a more compact con-
figuration for Alice’s measurements. Finally, the encoding
and decoding of the input and output signals uses a total of
four independent modulators. This allows us to completely
span the phase space of the input state.

We analyze our results using the fidelity F between the
input and output states, and also with signal transfer Tq and
noise correlation Vq in a manner analogous to quantum non-
demolition analysis �7� �which we refer to as the T-V mea-
sure henceforth�. This enables us to give a more detailed
characterization of the performance of our teleporter.

Teleportation is usually described as the disembodied
transportation of an unknown quantum state from one place
�Alice� to another �Bob�. In our experiment, as in Ref. �6�,
the teleported states are modulation sidebands of a bright
optical beam. The teleportation process can be described us-
ing the field annihilation operator â�(X̂��iX̂�)/2 where
X̂��2����X̂� are the amplitude (�) and phase (�)
quadratures of the field, ���	X̂�
/2 are the real and imagi-
nary parts of the coherent amplitudes, and �X̂� are the
quadrature noise operators. Throughout this paper, the vari-
ances of these noise operators are V��	�X̂�2
 . The fidelity
can be evaluated from the overlap of the input �in� and out-
put �out� states, and for the Gaussian states is given by

F�2e�(k��k�)� V in
�V in

�

�V in
��Vout

� ��V in
��Vout

� �
, �1�

where k��� in
�2(1�g�)2/(V in

��Vout
� ) and g���out

� /� in
� are

the teleportation gains. For a sufficiently broad set of coher-
ent states, the best average fidelity at unity gain without en-
tanglement is Fclass�0.5. Another interesting limit is at F
�2/3. This limit guarantees that Bob has the best copy of the
input state and is commonly referred to as the no-cloning
limit �14�. Ideal teleportation would result in F�1.

Alternatively, quantum teleportation can be defined as the
transfer of quantum information between Alice and Bob us-
ing the T-V measure. This more general definition includes
cases for which only the useful quantum features of a system
have been transferred. In such cases a demonstrably quantum
result may be obtained even though other features of the
state, for example, the state amplitude, have been distorted
sufficiently to degrade fidelity. In the absence of entangle-
ment, strict limits are placed on both the accuracy of mea-
surement and reconstruction of an unknown state. These are
the so-called two quantum duties. In contrast to fidelity, the
T-V measure is state independent and therefore invariant un-
der local symplectic operations.

Bob’s reconstruction is limited by the generalized uncer-
tainty principle of Alice’s measurement VM

�VM
��1 �16�,

where VM
� are the measurement penalties, which holds for

simultaneous measurements of conjugate quadrature ampli-
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tudes. In the absence of entanglement, this places a strict
limit on Bob’s reconstruction accuracy. The limit can be ex-
pressed in terms of quadrature signal transfer coefficients �7�,
T��R out

� /R in
� as

Tq�T��T��T�T�� 1�
1

V in
�V in

�� �1 �2�

where R ����/V� are the signal-to-noise ratios. For mini-
mum uncertainty input states (V in

�V in
��1), this expression

reduces to Tq�T��T� .
Bob’s reconstruction must be carried out on an optical

field, the fluctuations of which obey the uncertainty prin-
ciple. In the absence of entanglement, these intrinsic fluctua-
tions remain present on any reconstructed field. Thus the
amplitude and phase conditional variances, V in� out

� �Vout
�

��	�X̂ in
��X̂out

� 
�2/V in
� , which measure the noise added during

the teleportation process, must satisfy V in� out
� V in� out

� �1. This
can be written in terms of the quadrature variances of the
input and output states and the teleportation gain as

Vq��Vout
� �g�2V in

���Vout
� �g�2V in

���1. �3�

It should be noted that (V in� out
� �V in� out

� )�2 has also been
proposed for the conditional variance limit. For cases where
both quadratures are symmetric, as considered previously
�7,10�, both limits are equivalent. The product limit, how-
ever, is significantly more immune to asymmetry in the tele-
portation gain and is, therefore, preferred. The criteria of
Eqs. �2� and �3� enable teleportation results to be represented
on a T-V graph similar to those used to characterize quantum
nondemolition experiments �17�.

Both the Tq and Vq limits have independent physical sig-
nificance. If Bob passes the Tq limit, this forbids any others
parties from doing so, therefore, ensuring that the transfer of
information to Bob is greater than to any other party. This is
an ‘‘information cloning’’ limit that is particularly relevant in
light of recent proposals for quantum cryptography �18�. Fur-
thermore, if Bob passes the Tq limit at unity gain (g��1),
then Bob has beaten the no-cloning limit and has F�2/3.
Surpassing the Vq limit is a necessary prerequisite for recon-
struction of nonclassical features of the input state such as
squeezing. The T-V measure coincides with the teleportation
no-cloning limit at unity gain when both Tq�Vq�1. Clearly
it is desirable that the Tq and Vq limits are simultaneously
exceeded. Perfect reconstruction of the input state would re-
sult in Tq�2 and Vq�0.

The laser source for our experiment was a 1.5 W mono-
lithic nonplanar ring Nd:YAG laser at 1064 nm. Its output
was split into two roughly equal power beams. One beam
was mode matched into a MgO:LiNbO3 frequency doubler
producing 370 mW of 532 nm light. The other beam was
passed through a high finesse ring cavity to reduce spectral
noise. This spectrally cleaned beam, which was quantum
noise limited above 6 MHz, was then used to generate the
signal for teleportation; to seed a pair of MgO:LiNbO3
OPAs; and to provide local oscillator beams.

Our experimental setup to generate entanglement and per-
form teleportation is shown in Fig. 1. We produced the en-
tanglement by combining a pair of amplitude squeezed
beams with a /2 phase shift on a 50/50 beam splitter �19�.
The squeezed beams were produced by the two OPAs, each
pumped with half of the 532 nm light �20�. We characterized
the entanglement with the inseparability measure proposed
by Duan et al. �21�; and obtained the result �	(X̂a

��X̂b
�)2


�	(X̂a
��Xb

�)2
�/2�0.44�0.02, where subscripts a and b
label the two entangled beams; this result is well below the
inseparability limit of unity. In our situation, this value be-
comes equivalent to the average of the squeezed variances of
the two OPAs. This corresponds to 3.6 dB of squeezing on
each beams. Taking account of 16% loss in post-
entanglement optics, we infer 4.8 dB of squeezing at the
output of each OPA.

The teleportation experiment �Fig. 1� consisted of three
parts: measurement �Alice�, reconstruction �Bob�, and gen-
eration and verification �Victor�. At the generation stage, a
beam was independently phase and amplitude modulated at
8.4 MHz. Alice then took one of the entangled beams and
combined it on a 50/50 beam splitter with the input state with
/2 phase shift. The intensities of these two beams were
balanced so that the sum �difference� of the photocurrents
obtained through detection of the two beam splitter outputs
provided a measure of the amplitude �phase� quadrature of
the input state combined with the entangled beam. These
photocurrents were sent electronically to Bob. Bob used
them to modulate an independent laser beam that was then
combined with the second entangled beam on a 98/2 beam
splitter. One output of this beam splitter was Bob’s recon-
structed output state.

By using removable mirrors, Victor could measure the
Wigner functions of both the input and output states. Assum-
ing the states are Gaussian, Victor need only measure the two
quadratures to fully characterize the input state. We achieved
these measurements in a locked homodyne detector. It is in-
teresting to note that imperfections such as inefficiency and
low local oscillator power actually improve the results ob-

FIG. 1. A schematic diagram of the teleportation experiment.
RM, removable mirror; 50/50, symmetric beam splitter; 98/2, 98%
transmitting beam splitter; � , phase control; A�P�M, amplitude
�phase� modulators.
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8.4. Experimental investigation of continuous-variable quantum teleportation

tained by Victor. In our analysis, we corrected for these
effects.

Active control of the entire experiment required ten lock-
ing loops and four temperature control loops. They ensured
that the mode cleaner, frequency doubler, two OPA cavities,
phases of the OPA pump beams, Alice and Bob phases, Vic-
tor homodyne detection, and the relative phase between the
squeezed beams were all stably locked. A sample of the data
obtained from our teleporter is shown in Fig. 2. Figures 2�a�
and 2�b� show the noise of the output state as a function of
time. The complete system maintained lock for long periods.
The data in Figs. 2�c� and 2�d� show the measurement of the
two quadratures over a 100 kHz bandwidth. Over this range
the noise floor of the system was constant. The signal-to-
noise-ratio was, therefore, found by comparing the peak
height at 8.4 MHz to the noise at 8.35 and 8.45 MHz. Every
set of teleportation data consisted of four spectra, such as
those shown in Fig. 2�c� and 2�d�, as well as a quantum noise
calibration �not shown�. Also drawn in each part of Fig. 2 are
lines corresponding to the classical limit �solid line at 4.8
dB� and the no-cloning limit �dashed line at 3 dB�. For this
dataset, the noise floor of both quadratures lies convincingly
below the classical limit and approaches very close to the
no-cloning limit. Note that these limits are those calculated
for an ideal lossless teleporter. The fidelity obtained for this
data was F�0.64�0.02.

Figure 3�d� shows the area of phase space that our experi-
ment has probed. All points shown here satisfied F	0.5. For
the most part, our input states had nonzero coherent ampli-
tude components, thereby allowing verification of the gains
of both quadratures. One of the features of fidelity is a strong
dependence on gain and signal size. For example, in the limit
of a vacuum input state, the fidelity criterion will actually be

satisfied perfectly by a classical teleporter �i.e., one with the
entangled state replaced by two coherent states� with zero
gain. The fidelity criterion, therefore, requires proof that the
gain of a teleportation event is unity. A subset of our data is
shown in Figs. 3�a� and 3�b�. Each diagram plots fidelity as a
function of teleportation gain for results with identical input
states. The solid curves show the best possible performance
of our system, based on our entanglement, detection effi-
ciency, dark noise, and assuming equal gain on each quadra-
ture. Both plots demonstrate that the highest fidelity occurs
for gain less than unity. The increased fidelity is less obvious
in Fig. 3�b� where the signal is approximately twice as large
as that in Fig. 3�a�. For small signals it is, therefore, crucial
to ensure unity gain. Obtaining the correct gain setting is
actually one of the more troublesome experimental details.
To illustrate this point, we have plotted the dashed curves on
Figs. 3�a� and 3�b� for a teleporter with asymmetric quadra-
ture gains. Such asymmetry was not unusual in our system,
and explains the variability of the results shown in Fig. 3�a�.
A summary of all our fidelity results is shown in Fig. 3�c� as
a function of deviation from unity gain.

Analyzing teleportation results on a T-V graph has several

FIG. 2. The input and output states of the teleporter, as mea-
sured by Victor. �a� and �b� show the amplitude and phase noise of
the output state at 8.4 MHz. �c� and �d� show the input and output of
the teleporter, when probed with a signal at 8.4 MHz. In all cases,
the dotted line is the no-cloning limit, while the solid line is the
classical limit. All data have been corrected to account for the de-
tection losses of Victor. Resolution bandwidth�10 kHz, video
bandwidth�30 Hz.

FIG. 3. Measured fidelity plotted; versus teleportation gain, g, in
�a� and �b�; versus coherent amplitude separation between input and
output states in �c�; and on phase space in �d�. In �a� the input signal
size was (��,��)�(2.9,3.5) and in �b� (��,��)�(4.5,5.4). g
was calculated as the ratio of the input and output coherent ampli-
tudes. The dashed �solid� lines show the classical �no-cloning� lim-
its of teleportation at unity gain. The solid curves are calculated
results based on available entanglement, the dot-dashed curves in-
clude the experimental asymmetric gains: for �a� g��0.84g� and
for �b� g��0.92g�. In �c� and �d� axes are normalized to the QNL.
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8. La mesure monomode : intrication et téléportation

advantages when compared to fidelity. The T-V graph is two
dimensional, and, therefore, conveys more information about
the teleportation process. It tracks the quantum correlation
and signal transfer in nonunity gain situations. In particular,
it identifies two particularly interesting regimes that are not
evident when using fidelity: the situations where the output
state has minimum noise �minimum Vq), and when the input
signals were transferred to the output state optimally �maxi-
mum Tq). Our T-V results are shown in Fig. 4. The classical
limit curve shows the ideal achievable result as a function of
gain if the entanglement was replaced with two coherent
states. The unity gain curve shows the locus of points ob-
tained at unity teleportation gain with increasing entangle-
ment. Finally, a theoretical curve �as a function of gain� is
shown for our experimental parameters. By varying our ex-

perimental conditions, particularly the gain, we have mapped
out some portion of the T-V graph.

Perhaps the most striking feature of these results are the
points with Tq	1, the best of which has Tq�1.06�0.03.
Since only one party may have Tq	1, this shows that Bob
has maximal information about the input signal and we have
broken the information cloning limit. The lowest observed
conditional variance product was Vq�0.96�0.10. This point
also had Tq�1.04�0.03. This is the first observation of both
Tq	1 and Vq�1, and with unity gain this would imply
breaking of the no-cloning limit for teleportation. This par-
ticular point, however, had a fidelity of 0.63�0.03. The main
reason for this low fidelity is asymmetric gain, the amplitude
gain was g��0.92�0.08, while the phase gain was g�

�1.12�0.08. Such gain errors have a dramatic impact on
the measured fidelity because the output state then has a
different classical amplitude (��) to the input, a difference
in the classical properties of the input and output states to
which fidelity is very sensitive.

In conclusion, we have performed stably locked quantum
teleportation of an optical field. The best fidelity, we directly
observed was F�0.64�0.02. The maximum two quadrature
signal transfer for our apparatus was Tq�1.06�0.03. We
also observed a conditional variance product of Vq�0.96
�0.10 coincident with Tq�1.04�0.03. This is the first ob-
servation of both Tq	1 and Vq�1. At unity gain this would
ensure violation of the no-cloning limit for teleportation. The
asymmetry in our gain, however, prevented a direct measure-
ment of F	0.67, thereby leaving the no-cloning limit as a
tantalising prospect for future experiments.

We thank the Australian Research Council for financial
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We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic
ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of
ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol
relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction.
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The realization of quantum networks involving opti-
cal fields and atomic ensembles is one of the most prom-
ising paths towards robust long distance quantum com-
munication and information processing [1,2]. The effi-
cient transfer of quantum states within that network is a
key ingredient for a practical implementation [2]. Several
continuous variable teleportation experiments with optical
fields [3] have shown that continuously teleporting optical
quantum states with a high efficiency was possible. On the
other hand, the teleportation of a single atom or ion quan-
tum state was demonstrated very recently [4]. In this Letter
we present a direct scheme to teleport an atomic spin state
in a way very similar to that used in the teleportation
protocols for optical field states [5], which can hence be
efficiently integrated within a light-atom quantum net-
work, for instance.

Because of the long lifetime of their ground-state
spins, atomic ensembles are good candidates to store
and manipulate quantum states of light [6]. We show
how to prepare the spin states via quantum state transfers
with optical fields [7–9] and propose to achieve the tele-
portation of an atomic ensemble quantum state using an
Einstein-Podolsky-Rosen- (EPR-)correlated pair of atomic
ensembles. An optical joint measurement of the unknown
ensemble (1) and one of the entangled ensemble (2) is then
performed by Alice who sends the results to Bob. Using a
suitable magnetic field Bob can reconstruct the input state
on the other correlated ensemble (3). The quasi-ideal char-
acter of the atom-field quantum transfer processes allows
high fidelity teleportation for easily accessible experimen-
tal parameters.

Another atomic teleportation protocol, relying on suc-
cessive measurements alternating with optical displace-
ments performed on two ensembles, was proposed by
Kuzmich and Polzik [10]. However, this protocol requires
several exchanges of information between Alice and Bob.
Our scheme, being a direct adaptation of the teleportation
protocols for light, needs two simultaneous measurements
to achieve real-time quantum teleportation, and can easily
be extended to other quantum communication and infor-
mation protocols, such as entanglement swapping and
quantum repeaters. This Letter successively describes the

three steps of atomic teleportation: preparation, joint mea-
surement, and reconstruction.

In this Letter we mainly consider cold atom ensembles,
but our protocol also extends to atomic vapors. We con-
sider three N-atom ensembles with an energy level struc-
ture in � [Fig. 1(a)]. We assume that they are placed inside
optical cavities, for which the input-output theoretical
treatment of the atom-field quantum fluctuations is well-
adapted. They each interact with a coherent control field
�i and with a vacuum field Ai (i � 1� 3). In reality, the �
structure should be part of a larger J ! J or J ! J� 1
transition, the two ground states being two Zeeman sub-
levels with mJ � J; J� 1, but after the preparation phase,
the other levels play no role and can be safely ignored. To
simplify the discussion we will therefore focus on the case
of a J � 1=2 ground-state spin.

Preparation.—During the preparation stage Victor
pumps the ensembles with the control fields so that their
ground-state collective spins are aligned along the z axis:
hJzii � N=2. Ensemble 1 is assumed to be almost com-
pletely spin-polarized along z, with a small tilt corre-
sponding to a nonzero coherence: hJz1i ’ N=2 and hJx1i;
hJy1i �O� ����

N
p �. This means that we consider small planar

displacements of the spin in the vicinity of the north pole of
the Bloch sphere. This approximation is all the more
correct as the number of atoms is large. The quantum state
of an ensemble is then determined by the ground-state
coherence, the spin components Jx and Jy obeying a com-
mutation relation h�Jx; Jy	i � ihJzi � iN=2, similar to that
of an harmonic oscillator. In the Gaussian approximation
the atomic quantum state can then be represented by a
noise ellipsoid in the �x; y� plane orthogonal to the mean
spin [see Fig. 1(a)], in a manner very similar to the Fresnel
representation of quantum optical field states. The atomic
state is then completely characterized by the amplitude and
phase of the coherence mean value, as well as its variances
�J2x and �J2y , which are equal to N=4 for a coherent spin
state, for instance.

Let us suppose that the atomic state to be teleported is
that of ensemble 1, prepared by Victor, unknown to Alice
and Bob. With a suitable interaction Victor can prepare any
Gaussian state (coherent state, squeezed state...) by an
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adequate choice of the field state Ain
1 , the state of which can

be perfectly mapped onto the atoms. More explicitly, the
coherence mean value depends on the field amplitude and
phase, whereas the noise ellipsoid is given by the field
quantum fluctuations. This transfer can be achieved using
an electromagnetically induced transparency (EIT) (one-
and two-photon resonant) or a ‘‘Raman’’ (large one-photon
detuning, but two-photon resonant) interaction between the
fields and the atoms [7,8]. In these two configurations there
is little to no dissipation and the quantum fluctuations are
predicted to be conserved in atom-field quantum state
transfer processes. Using EPR-correlated fields Victor
can also map their entanglement onto spins 2 and 3 with
the same techniques [9]. Since the mean spins are parallel
and equal, Jx2 � Jx3 and Jy2 
 Jy3 are the equivalent of the
usual EPR operators, satisfying h�Jx2 � Jx3; Jy2 
 Jy3	i �
ihJz2 � Jz3i � 0. We can assume without loss of generality

that the fluctuations of Jx2 and Jx3 are correlated and those
of Jy2 and Jy3 anticorrelated, so that the condition for their
inseparability reads [11]

��Jx2 � Jx3�2 
 ��Jy2 
 Jy3�2 < jhJz2ij 
 jhJz3ij � N:

In a symmetrical configuration the amount of atomic en-
tanglement is given by the sum of the EPR variances
(normalized to 2) [12]

I 2;3 � 2

N
���Jx2 � Jx3�2 
 ��Jy2 
 Jy3�2	: (1)

When the preparation stage is over all fields are switched
off, and one disposes of an unknown atomic quantum state
1 and an EPR-correlated pair 2 and 3.

Joint measurements.—Alice then performs a simulta-
neous readout of ensembles 1 and 2 by rapidly switching
on the control fields in cavities 1 and 2. The reverse trans-
fer process of the preparation then takes place, and the
states of spins 1 and 2 imprint in a transient manner
onto the outgoing fields exiting the cavities Aout

1 and Aout
2 .

These two fields are then mixed on a 50=50 beam splitter
and Alice performs two homodyne detections of the result-
ing modes A� � �Aout

1 � Aout
2 �= ���

2
p

[Fig. 1(b)]. To obtain
maximal information about the initial state, Alice measures
the noise of two orthogonal quadratures—say X� � A� 

Ay� and Y
 � i�Ay


 � A
�—and sends the results to Bob
who disposes of ensemble 3. As we will show further, Bob
can then reconstruct state 1 using a suitable magnetic field
and achieve teleportation.

In more details, we assume an ‘‘EIT’’-type interaction
(one- and two-photon resonance), although a Raman inter-
action either with cold atoms or even with an atomic vapor
would yield similar results. Alice rapidly switches the
control field on in ensembles 1 and 2 at time t � 0. The
outgoing modes can be expressed as a function of the
initial atomic operators in ensembles 1 and 2 [8]

Xout
i �t� � Xin

i �t� � �Jxi�0�e�~�0t

� 2�2�Xin
i �t� � ~�0

Z t

0
e�~�0�t�s�Xin

i �s�ds	


 ��Xvi�t� � ~�0

Z t

0
e�~�0�t�s�Xvi�s�ds	; (2)

(i � 1; 2), with �2 � 2C=�1
 2C�, � � �
���������������
8~�0=N

p
, � �

2�=
���������������
1
 2C

p
, C being the cooperativity parameter quanti-

fying the collective strength of the atom-field coupling [7].
~�0 represents the effective atomic decay rate in presence of
the control field. This parameter depends on the coopera-
tivity and the pumping rate due to the control field [8], and
it is related to the duration of the transient optical pulse
carrying the atomic state out of the cavity. � is actually
related to the efficiency of the transfer [7], and is close to
unity for large values of the cooperativity. Xvi is a noise
atomic operator accounting for noise induced by sponta-
neous emission and with unity white noise spectrum. Xin

i is

Ain
2

Ain
3Ensemble 3

Ensemble 2
EPR

source

Ensemble 1

Aout
2

1
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FIG. 1. Teleportation scheme: (a) Preparation. Insert: �-type
level structure considered. Left: schematic atomic initial states
for each ensemble (for spins 2 and 3, the dashed circle indicates
the coherent spin state fluctuation distribution). (b) Measurement
and reconstruction. Left: teleported state after reconstruction is
completed. AD: amplitude detector. PD: phase detector.
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the amplitude quadrature of the vacuum field incident on
cavity i. Similar expressions hold for the phase quadratures
Yi, replacing x’s, X’s by y’s, Y’s. To derive (2) we assumed
a cavity frequency bandwidth much larger than ~�0. In (2)
the amplitude of the term proportional to Jx�0� shows
how the atomic state reflects on the outgoing field state.
The other terms correspond to intrinsic optical field noise
(/Xin) and added atomic noise (/Xv). The photocurrents
measured by Alice can be expressed as a sum of these noise
terms and the initial atomic state:

i� / X� � noise 
 �Jx1�0� � Jx2�0�	e�~�0t; (3)

i
 / Y
 � noise 
 �Jy1�0� 
 Jy2�0�	e�~�0t: (4)

By choosing the right temporal profile of her local oscil-
lator it was shown in [8] that Alice can measure with a
great efficiency the atomic states, which corresponds to the
joint measurements used in the continuous variable tele-
portation protocols for light.

Reconstruction.—From Alice’s results and his corre-
lated ensemble 3 Bob is therefore in principle able to
deduce the initial state of ensemble 1. Were we dealing
with light beams, Bob could directly feed Alice’s measure-
ments to standard phase or intensity modulators to recon-
struct state 1 [3,5]. The difficulty with an atomic ensemble
is to physically implement the reconstruction stage. An all
optical method was proposed in [10]. Another way to
control the quantum fluctuations of an atomic ensemble
is to use a magnetic field in order to have the spin precess in
a controlled manner. Such a method was proposed to
generate spin squeezing [13] and was successfully imple-
mented recently by Geremia et al. to continuously monitor
the atomic spin noise via feedback [14]. We propose here
to use a transverse magnetic field, the components of which
are proportional to Alice’s homodyne detection results.
Indeed, if we choose the components of the magnetic field,
Bx and By, to be proportional to �i
 and i�, we will couple
Jx3 to i�, and Jy3 to i
. Since spin 2 and 3 are initially
correlated, their correlated noises will cancel leaving only
spin 1 state imprinted onto that of spin 3 at the end of the
reconstruction phase.

More quantitatively, the Hamiltonian corresponding to
the unitary transformation that Bob performs on spin 3 is
simply a ~J: ~B coupling

HB � ���Bx�t�Jx3 
 By�t�Jy3	: (5)

The evolution equations of Jx3 and Jy3 are then of the form

_J x3�t� � G�t�X��t�; _Jy3�t� � G�t�Y
�t�; (6)

in which G�t� gives the electronic gain of the reconstruc-
tion process. Its temporal profile can be adjusted in order to
maximize the fidelity of the reconstruction. At this point
we would like to stress that choosing the right profile for
this electronic gain is equivalent to choosing the right lo-
cal oscillator profile in Alice’s homodyne detections. We

therefore choose a temporal profile in G�t� � Ge�~�0t for
the gain, which we know will maximize the information
that Bob gets [8]. After completion of the reconstruction,
i.e., for t � 1=~�0, the final state of Jx3, which we denote
by Joutx3 , can be shown to be

Joutx3 � gJx1�0� 
 Jx3�0� � gJx2�0� 
 Jnoisex (7)

in which g � �G�=
����������
N ~�0

p
is the normalized gain of the

teleportation protocol and Jnoisex is a vacuum noise opera-
tor taking into account the losses of the process. Its ex-
plicit form is not reproduced, but it is uncorrelated with
the spin operators and its variance, which can be calcu-
lated from Eqs. (2) and (6), is related to the intrinsic noise
added during the atom-field transfer processes: �2Jnoisex �
�N=2�g2�1� �2�=�2.

We assume for simplicity initial isotropic fluctuations
for the EPR-entangled ensembles, i.e., �J2xi � �J2yi �
�N=4� cosh�2r� (i � 2; 3), and symmetrical correlations
h	Jx2	Jx3i � �h	Jy2	Jy3i � �N=4� sinh�2r�. With these
notations the inseparability criterion value (1) is then given
by I2;3 � 2e�2r, which is 0 for perfect EPR entanglement
and 2 for no entanglement. The normalized variance of Jx3
after reconstruction is then

Vout
x3 � g2Vx1 
 2g2

1� �2

�2 
 �1
 g2� cosh�2r�

� 2g sinh�2r�; (8)

with an identical expression for the variance of Jy3. Note
that, if the gain is set to 0, one retrieves the fact that the
fluctuations of spin 3 are not modified: Vout

x3 � cosh�2r� �
Vx3. Setting a unity gain (g � 1), the variances of the
equivalent input noises Nout

�  Vout
�3 � g2V�1 (� � x; y)

[15] are related to the EPR entanglement and the losses

Nout
x;y � 2e�2r 
 2

1� �2

�2 : (9)

For high entanglement (r � 1) and negligible losses (��
1) the equivalent input noises go to 0, which means that the
spin 1 state has indeed been fully teleported to spin 3.

At this point we can make a few comments. First, this
result is very similar to that of light beam teleportation
protocols [3,5,15,16] and shows that the input noise var-
iances go down to 0 if Alice and Bob share perfectly
entangled ensembles (r � 1) and in the absence of losses
(� � 1). In absence of entanglement (r � 0), Nout

x �
Nout

y � 2, one retrieves the fact that two units of vacuum
noise are added for the measurement and the reconstruc-
tion in the protocol. A good criterion to estimate the quality
of the teleportation is provided by the product of the

equivalent input noise variances Vq 
������������������
Nout

x Nout
y

q
[16]. In

the absence of losses the classical limit of 2 is beaten as
soon as one disposes of entanglement. The equivalent input
noises being independent of the input state our teleporta-
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tion protocol is unconditional, and the various measures
used in light teleportation protocols [3,5,15,16] to assess
the success of the teleportation are valid. Of course, for a
fixed value of N, the state to be teleported has to satisfy
hJx1i; hJy1i �O� ����

N
p �, else the fidelity decreases. However,

teleporting larger coherences can always be achieved by
increasing N.

Second, we have assumed that the measurement and the
feedback times are negligible with respect to the ground-
state spin lifetime, so that ensemble 3 does not evolve
before the reconstruction. This approximation is fairly
reasonable since the ground-state lifetime for cold atoms
or paraffin-coated cells is at least of the order of several
milliseconds or even up to the second [10].

Third, the intrinsic noise (/1=C), that is, the noise
which does not come from the detector quantum ineffi-
ciency or electronic noise, is expected to be rather small,
thanks to the cooperative behavior of the atoms in the
cavity—C can easily be made of the order of 100–1000
using low finesse cavities. This should ensure losses at the
percent level and, therefore, a good teleportation. High-Q
cavities are not required because the atom-field coupling is
enhanced by the collective atomic behavior (C / N). Bad
cavities are actually preferable since the cavity bandwidth
has to be much larger than the atomic spectrum width ~�0.

It is also interesting to look at the physical meaning
of the magnetic reconstruction. The unity gain condition
g � 1 actually translates into the very intuitive condi-
tion that the rotation angle of spin 3 during reconstruc-
tion in a time �2~�0��1 should be equal to the relative spin
fluctuations: 
 � !L=�2~�0� � 1=

����
N

p
, where !L is the

Larmor frequency. This condition also gives us the order
of magnitude of the magnetic field necessary to perform
the reconstruction. For an interaction with N � 106 cesium
atoms on the D2 line, a gyromagnetic factor of 450 kHz=G
and ~�0 � �2��225 kHz, the amplitude of the magnetic
field is about 1 mG.

Last, in order to check the quality of the teleporta-
tion, Victor can simply perform a readout of ensemble 3
with the same technique previously used by Alice and
compare the output state with the input state that he had
prepared. Another way to check that this teleportation
scheme is successful would be for Bob not to reconstruct
the atomic state, but instead, to perform an optical read-
out of ensemble 3 and use both his homodyne detection
results and Alice’s results to deduce the input state.
However, in this scheme, the atomic state of 1 is never

effectively teleported to ensemble 3. The spin 1 state is
actually teleported to the outgoing field Aout

3 , realizing
atom-to-field teleportation.

A straightforward but nonetheless important application
of our protocol for quantum communication is atomic
entanglement swapping: if ensemble 1 in the previous
scheme was initially quantum-correlated with another en-
semble 0, the previous teleportation scheme ensures that
ensembles 0 and 3 are entangled at the end of the process.
This is of importance for the realization of quantum net-
works in which quantum repeaters can ensure good quality
transmission of the quantum information over long dis-
tances [2].
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Abstract : We investigate nonclassical Stokes-operator variances in continuous-wave polarization-
squeezed laser light generated from one and two optical parametric amplifiers. A general expres-
sion of how Stokes-operator variances decompose into two-mode quadrature operator variances
is given. Stokes parameter variance spectra for four different polarization-squeezed states have
been measured and compared with a coherent state. Our measurement results are visualized
by three-dimensional Stokes-operator noise volumes mapped on the quantum Poincaré sphere.
We quantitatively compare the channel capacity of the different continuous-variable polarization
states for communication protocols. It is shown that squeezed polarization states provide 33%
higher channel capacities than the optimum coherent beam protocol.
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We investigate nonclassical Stokes-operator variances in continuous-wave polarization-squeezed laser light
generated from one and two optical parametric amplifiers. A general expression of how Stokes-operator vari-
ances decompose into two-mode quadrature operator variances is given. Stokes parameter variance spectra for
four different polarization-squeezed states have been measured and compared with a coherent state. Our
measurement results are visualized by three-dimensional Stokes-operator noise volumes mapped on the quan-
tum Poincaré sphere. We quantitatively compare the channel capacity of the different continuous-variable
polarization states for communication protocols. It is shown that squeezed polarization states provide 33%
higher channel capacities than the optimum coherent beam protocol.
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I. INTRODUCTION

The quantum properties of the polarization of continuous-
wave light are of increasing interest since they offer new
opportunities for communicating quantum information with
light and for transferring quantum information from atoms to
photons and vice versa. In the single photon regime, the
quantum polarization states have been vigorously studied,
theoretically and experimentally, with investigations of fun-
damental problems of quantum mechanics, such as Bell’s
inequality �1,2�, and of potential applications such as quan-
tum cryptography �3,4�. In comparison, continuous-variable
quantum polarization states have received little attention. Re-
cently, however, due to their apparent usefulness to quantum
communication schemes, interest in them has been growing
and a number of theoretical papers have been published
�5–14�.

Continuous-variable quantum polarization states can be
carried by a bright laser beam, providing high-bandwidth
capabilities and, therefore, faster signal transfer rates than
single-photon systems. In addition, several proposals have
been made for quantum networks that consist of spatially
separated nodes of atoms, whose spin states enable the stor-
age and processing of information, connected by optical
quantum communication channels �15–17�. Mapping of
quantum states from photonic to atomic media is a crucial
element in these networks. For continuous-variable polariza-
tion states, this mapping has been experimentally demon-
strated �18�. Very recently, entanglement was experimentally
demonstrated for optical continuous-variable polarization
states �19�.

Several methods for generating continuous-variable polar-
ization squeezed states have been proposed, most using non-
linearity provided by Kerr-like media and optical solitons
�8,11,14�. The two experimental demonstrations previous to
our work reported here and in Ref. �20�, however, were
achieved by combining a dim quadrature squeezed beam
with a bright coherent beam on a polarizing beam splitter
�22,23�. In both cases, only the properties of the state rel-
evant to the experimental outcome were characterized. The

full characterization of a continuous-variable polarization
state requires measurements of the fluctuations in both the
orientation, and the length of the Stokes vector on a Poincaré
sphere.

In this paper, we present the complete experimental char-
acterization of the Stokes-vector fluctuations for four differ-
ent quantum polarization states. We make use of ideas re-
cently published by Korolkova et al. �14�. Their concept of
squeezing more than one Stokes-operator of a laser beam and
a simple scheme to measure the Stokes-operator variances
are realized. Our results given in Ref. �20� are extended and
discussed in more detail. Experimental data from
polarization-squeezed states generated from a single quadra-
ture squeezed beam and from two quadrature squeezed
beams are compared.

The outline of this paper is as follows. We present a de-
scription of the theory involved in our experiments. The
well-known Schwinger bosonic representation allows the de-
composition of any spinlike operator into a pair of mode
operators of the quantum harmonic oscillator �21�. In this
paper, we are interested in the variances of these operators
and present a decomposition for the Stokes-operators vari-
ances; our decomposition is general within the commonly
used linearization approach. In the experimental section, we
characterize the polarization fluctuations of a single ampli-
tude squeezed beam from an optical parametric amplifier
�OPA�. It can be seen that only the fluctuations of the Stokes
vector length are below that of a coherent beam �i.e.,
squeezed�. Grangier et al. �22� and Sørensen et al. �23� con-
verted this to squeezing of the Stokes vector orientation by
combining the quadrature squeezed beam with a much
brighter coherent beam on a polarizing beam splitter. We
experimentally generate this situation and indeed show that
the Stokes vector orientation is squeezed. This result is com-
pared with measurements on polarization states generated
from two quadrature squeezed beams. Two bright amplitude
or phase squeezed beams from two independent OPAs are
overlapped on a polarizing beam splitter �14,20� demonstrat-
ing ‘‘pancakelike’’ and ‘‘cigarlike’’ uncertainty volumes on
the Poincaré sphere for phase and amplitude squeezed input
beams, respectively. Both the orientation and the length of
the Stokes vector were squeezed for the cigarlike
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uncertainty volume. In the final section, several schemes for
encoding information on continuous-variable polarization
states of light are discussed. The conventional fiber-optic
communication protocol is compared with the optimized co-
herent beam and squeezed beam protocols. We show that the
channel capacity of the cigarlike polarization-squeezed states
exceeds the channel capacity of coherent states, quadrature
squeezed states, and all other polarization-squeezed states.

II. THEORETICAL BACKGROUND

The polarization state of a light beam in classical optics
can be visualized as a Stokes vector on a Poincaré sphere
�Fig. 1� and is determined by the four Stokes parameters
�24�: S0 represents the average beam intensity whereas S1 ,
S2, and S3 characterize its polarization and form a Cartesian
axes system. If the Stokes vector points in the direction of
S1 , S2, or S3 the polarized part of the beam is horizontally,
linearly at 45°, or right-circularly polarized, respectively.
Two beams are said to be opposite in polarization and do not
interfere if their Stokes vectors point in opposite directions.
The quantity S�(S1

2�S2
2�S3

2)1/2 is the radius of the classi-
cal Poincaré sphere and describes the average intensity of the
polarized part of the radiation. The fraction S/S0 (0�S/S0

�1) is called the degree of polarization. For quasimonochro-
matic laser light that is almost completely polarized S0 is a
redundant parameter, completely determined by the other
three parameters (S0�S in classical optics�. All four Stokes
parameters are accessible from the simple experiments
shown in Fig. 2.

An equivalent representation of polarization states of light
is given by the four elements of the coherence matrix �Jones
matrix�. The relations between these elements and the Stokes
parameters can be found in Ref. �25�. In contrast to the co-
herence matrix elements, the Stokes parameters are observ-
ables and, therefore, can be associated with Hermitian opera-
tors. Following Refs. �26,27�, we define the quantum-
mechanical analog of the classical Stokes parameters for
pure states in the commonly used notation:

Ŝ0� âH
† âH� âV

† âV ,

Ŝ1� âH
† âH� âV

† âV ,

Ŝ2� âH
† âVei�� âV

† âHe�i�, �1�

Ŝ3�i âV
† âHe�i��i âH

† âVei�,

where the subscripts H and V label the horizontal and verti-
cal polarization modes, respectively, � is the phase shift be-
tween these modes, and the âH ,V and âH ,V

† are annihilation
and creation operators for the electromagnetic field in fre-
quency space �28�.

The commutation relations of the annihilation and cre-
ation operators

� âk , â l
†���kl , with k ,l��H ,V�, �2�

directly result in Stokes-operator commutation relations

� Ŝ1 , Ŝ2��2i Ŝ3 , � Ŝ2 , Ŝ3��2i Ŝ1 , � Ŝ3 , Ŝ1��2i Ŝ2 .
�3�

Apart from the normalization factor, these relations are iden-
tical to the commutation relations of the Pauli spin matrices.
In fact, the three Stokes parameters in Eq. �3� and the three
Pauli spin matrices both generate the special unitary group of
symmetry transformations SU�2� of Lie algebra �29�. Since
this group obeys the same algebra as the three-dimensional
rotation group, distances in three dimensions are invariant.
Accordingly, the operator Ŝ0 is also invariant and commutes
with the other three Stokes-operators (� Ŝ0 , Ŝ j��0, with j

�1,2,3). The noncommutability of the Stokes-operators Ŝ1 ,
Ŝ2, and Ŝ3 precludes the simultaneous exact measurement of
their physical quantities. As a direct consequence of Eq. �3�,
the Stokes-operator mean values 	Ŝ j
 and their variances
V j�	Ŝ j

2
�	Ŝ j

2 are restricted by the uncertainty relations

�26�

V1V2��	 Ŝ3
�2, V2V3��	Ŝ1
�2, V3V1��	Ŝ2
�2. �4�

FIG. 1. Diagram of �a� classical and �b� quantum Stokes vectors
mapped on a Poincaré sphere; the ball at the end of the quantum

vector visualizes the quantum noise in Ŝ1 , Ŝ2, and Ŝ3; and the
nonzero quantum sphere thickness visualizes the quantum noise in

Ŝ0.

FIG. 2. Apparatus required to measure each of the Stokes pa-
rameters. PBS, polarizing beam splitter; �/2 and �/4, half- and
quarter-wave plates, respectively, the plus and minus signs imply
that an electrical sum or difference has been taken.
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In general, this results in nonzero variances in the individual
Stokes parameters as well as in the radius of the Poincaré
sphere �see Fig. 1�b��. The quantum noise in the Stokes pa-
rameters even affects the definitions of the degree of polar-
ization �5,11� and the Poincaré sphere radius. It can be
shown from Eqs. �1� and �2� that the quantum Poincaré
sphere radius is different from its classical analog, 	 Ŝ

�	Ŝ0

2�2 Ŝ0

1/2.

Recently, it has been shown that the Stokes-operator vari-
ances may be obtained from the frequency spectrum of the
electrical output currents of the setups shown in Fig. 2 �14�.
To calculate the Stokes-operator variances, we use the linear-
ized formalism here. The creation and annihilation operators
are expressed as sums of real classical amplitudes �H ,V and
quantum noise operators � âH ,V �30�,

âH ,V��H ,V�� âH ,V . �5�

The operators in Eq. �5� are non-Hermitian and therefore
nonphysical. To express the Stokes-operators of Eq. �1� in
terms of Hermitian operators, we define the generalized
quadrature quantum noise operators �X̂H ,V(�),

�X̂H ,V����� âH ,V
† ei��� âH ,Ve�i�, �6�

�X̂H ,V���0 ���X̂H ,V
� �� âH ,V

† �� âH ,V , �7�

�X̂H ,V���/2���X̂H ,V
� i�� âH ,V

† �� âH ,V�. �8�

� is the phase of the quantum-mechanical oscillator and
�X̂H ,V

� and �X̂H ,V
� are the amplitude quadrature noise opera-

tor and the phase quadrature noise operator, respectively.
If the variances of the noise operators are much smaller

than the coherent amplitudes, then a first-order approxima-
tion of the noise operators is appropriate. This yields the
Stokes-operator mean values

	Ŝ0
��H
2 ��V

2 �	 n̂
,

	Ŝ1
��H
2 ��V

2 ,

	Ŝ2
�2�H�V cos � , �9�

	Ŝ3
�2�H�V sin � .

These expressions are identical to the Stokes parameters in
classical optics. Here, 	 n̂
 is the expectation value of the
photon number operator. For a coherent, beam the expecta-
tion value and variance of n̂ have the same magnitude, this
magnitude equals the conventional shot-noise level. The
variances of the Stokes parameters are given by

V0��H
2 	��X̂H

��2
��V
2 	��X̂V

��2
�2�H�V	�X̂H
��X̂V

�
 ,

V1��H
2 	��X̂H

��2
��V
2 	��X̂V

��2
�2�H�V	�X̂H
��X̂V

�
 ,

V2�����H
2 	��X̂V�����2
��V

2 	��X̂H����2
 ,

�2�H�V	�X̂V�����X̂H���
 , �10�

V3����V2� ��


2 � .

It can be seen from Eqs. �10� that the variances of Stokes-
operators can be expressed in terms of the variances of
quadrature operators of two-modes. The polarization-
squeezed state can then be defined in a straightforward man-
ner. The variances of the noise operators in the above equa-
tion are normalized to one for a coherent beam. Therefore,
the variances of the Stokes parameters of a coherent beam
are all equal to the shotnoise of the beam. For this reason a
Stokes parameter is said to be squeezed if its variance falls
below the shot-noise of an equal-power coherent beam. Al-
though, the decomposition to the H, V-polarization axis of
Eqs. �10� is independent of the actual procedure of generat-
ing a polarization-squeezed beam, it becomes clear that two
overlapped quadrature squeezed beams can produce a single
polarization squeezed beam. If two beams in the horizontal
and vertical polarization modes having uncorrelated quantum
noise are used, then Eqs. �10� can be rewritten as

V0�V1��H
2 	��X̂H

��2
��V
2 	��X̂V

��2
,

V2����cos2���V
2 	��X̂H

��2
��H
2 	��X̂V

��2
�

�sin2���V
2 	��X̂H

��2
��H
2 	��X̂V

��2
� , �11�

V3����V2� ��


2 � .

Here, we choose the amplitude and the phase quadrature
noise operators to express the variances. This corresponds to
our actual experimental setup, where either amplitude or the
phase quadratures were squeezed. It can be seen from Eqs.
�11� that in a polarization-squeezed beam generated from
two amplitude squeezed beams Ŝ0 and two additional Stokes
parameters can in theory be perfectly squeezed while the
fourth is antisqueezed if specific angles of ��0 or ��/2
are used. By utilizing only one squeezed beam it is not pos-
sible to simultaneously squeeze any two of Ŝ1 , Ŝ2, and Ŝ3 by
more than 3 dB below shot noise (Vi�V j�	n̂
, with i , j
��1,2,3;i� j�).

III. EXPERIMENT

Prior to our work presented here and in Ref. �20�, polar-
ization squeezed states were generated by combining a
strong coherent beam with a single weak-amplitude squeezed
beam �22,18�. In both of those experiments, the variance of
only one Stokes parameter was determined, and therefore,
the polarization state was not fully characterized. In this pa-
per, we experimentally characterize the mean and variance of
all four Stokes-operators for these states. We extend the work
to polarization-squeezed states produced from two amplitude
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9.1. Stokes-operator-squeezed continuous-variable polarization states

or phase squeezed beams. Figure 3 shows our experimental
setup.

A. Generation of quadrature squeezed light

We produced the two quadrature squeezed beams required
for this experiment in a pair of OPAs. Each OPA was an
optical resonator consisting of a hemilithic MgO:LiNbO 3
crystal and an output coupler. The reflectivities of the output
coupler were 96% and 6% for the fundamental �1064 nm�
and the second harmonic �532 nm� laser modes, respectively.
Each OPA was pumped with single-mode 532-nm light gen-
erated by a 1.5 W Nd:YAG nonplanar ring laser and fre-
quency doubled in a second-harmonic generator �SHG�. The
SHG was of identical structure to the OPAs but with 92%
reflectivity at 1064 nm. The OPAs were seeded with
1064-nm light after spectral filtering in a modecleaner. The
refractive indices of the MgO:LiNbO3 crystals in each reso-
nator was modulated with an rf field, this provided error
signals on the reflected seed power that were used to lock
their lengths. The modulation also resulted in a phase modu-
lation on the output beams from the SHG and each OPA. The
coherent amplitude of each OPAs output was a deamplified
or amplified version of the seed coherent amplitude; the level
of amplification was dependent on the phase difference be-
tween pump and seed (�SH). Therefore, the second-
harmonic pump phase modulation resulted in a modulation
of the amplification of the OPAs. Error signals could be ex-
tracted from this effect, enabling the relative phase between
pump and seed to be locked. Locking to deamplification or
amplification provided an amplitude or phase squeezed out-
put, respectively. Typical measured variance spectra of the
two locked quadrature squeezed beams are shown in Fig. 4.
Since the squeezed states were carried by bright laser beams
of �1 mW, the noise reduction was degraded at lower fre-
quencies due to the laser relaxation oscillation. At higher
frequencies, the squeezed spectrum was limited by the band-
width of the OPAs.

Past experiments requiring two quadrature squeezed
beams commonly used a single ring resonator with two out-
puts �31�; with two independent OPAs the necessary intrac-
avity pump power is halved, this reduces the degradation of
squeezing due to Green-induced infrared absorption �32�.

B. Measuring the Stokes operators

Instantaneous values of the Stokes-operators of all polar-
ization states analyzed in this paper were obtained with the
apparatus shown in Fig. 2. The uncertainty relations of Eqs.
�4� dictate that Ŝ1 , Ŝ2, and Ŝ3 cannot, in general, be mea-
sured simultaneously. The beam under interrogation was split
on a polarizing beam splitter and the two outputs were de-
tected on a pair of high quantum efficiency photodiodes with
30 MHz bandwidth; the resulting photocurrents were added
and subtracted to yield photocurrents containing the instan-
taneous values of Ŝ0 and Ŝ1. To measure Ŝ2, the polarization
of the beam was rotated by 45° with a half-wave plate before
the polarizing beam splitter and the detected photocurrents
were subtracted. To measure Ŝ3, the polarization of the beam
was again rotated by 45° with a half-wave plate and a
quarter-wave plate was introduced before the polarizing
beam splitter such that a horizontally polarized input beam
became right-circularly polarized. Again the detected photo-
currents were subtracted. The expectation value of each
Stokes-operator was equal to the dc output of the detection
device and the variance was obtained by passing the output
photocurrent into a Hewlett-Packard E4405B spectrum ana-
lyzer. Every polarization state interrogated in this work had a
total power 	Ŝ0
 of roughly 2 mW.

An accurate shot-noise level was required to determine
whether any given Stokes-operator was squeezed. This was
measured by operating a single OPA without the second-
harmonic pump. The seed power was adjusted so that the
output power was equal to that of the beam being interro-
gated. In this configuration, the detection setup for Ŝ2 �see
Fig. 2�c�� functions exactly as a homodyne detector measur-
ing vacuum noise scaled by the OPA output power, the vari-
ance of which is the shot noise. Throughout each experimen-
tal run the power was monitored and was always within 2%
of the power of the coherent calibration beam. This led to a
conservative error in our frequency spectra of �0.05 dB.

The Stokes-operator variances reported in this paper were
taken over the range from 3 to 10 MHz. The dark noise of
the detection apparatus was always more than 4 dB below
the measured traces and was taken into account. Each dis-

FIG. 3. Schematic of the polarization squeezing experiment.
MC, mode cleaner; BS, beam splitter; DC, dichroic beam splitter;
�/2, half-wave plate; �SH , phase shift between 532 nm and 1064
nm light at the OPAs; � , phase shift between quadrature squeezed
beams; PBS, polarizing beam splitter; H, horizontal polarization
mode; V, vertical polarization mode.

FIG. 4. Typical measured variance spectra of the two locked
bright quadrature squeezed beams.
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9. Mesure de polarisation

played trace is the average of three measurement results nor-
malized to the shot noise and smoothed over the resolution
bandwidth of the spectrum analyzer which was set to 300
kHz. The video bandwidth of the spectrum analyzer was set
to 300 Hz.

As is the case for all continuous-variable quantum optical
experiments, the efficiency of the Stokes-operator measure-
ments was critical. The overall detection efficiency of the
interrogated beams was 76%. The loss came primarily from
three sources: loss in escape from the OPAs �14%�, detector
inefficiency �7%�, and loss in optics �5%�. In the experiment,
where a squeezed beam was overlapped with a coherent
beam, additional loss was incurred due to poor mode match-
ing between the beams and the detection efficiency was 71%.
Depolarizing effects are thought to be another significant
source of loss for some polarization squeezing proposals �5�.
In our scheme, the nonlinear processes �OPAs� are separated
from the polarization manipulation �wave plates and polariz-
ing beam splitters�, and depolarizing effects are insignificant.

C. Quantum polarization states from a single squeezed beam

We first characterize the polarization state of a single
bright amplitude squeezed beam provided by one of our
OPAs, as shown in Fig. 5. The squeezed beam was horizon-
tally polarized, resulting in Stokes-operator expectation val-
ues of 	 Ŝ0
�	 Ŝ1
���H�2 and 	Ŝ2
�	Ŝ3
�0. The variance
spectra of the operators were measured and are displayed in
Fig. 6. The variances of S0 and S1 were squeezed. This
result is quite obvious since the laser beam used was ampli-
tude squeezed and impinged on a single detector in this de-
tector setup. Therefore, both the measurements performed
equated a measurement of the amplitude quadrature vari-
ance. For the measurements of Ŝ2 and Ŝ3, the beam intensity
was divided equally between the two detectors. The elec-
tronic subtraction yielded vacuum noise scaled by the beam
intensity, thus both variance measurements were at the shot-
noise level. It is apparent from these measurements that only
the length of the Stokes vector, is well determined; the ori-
entation is just as uncertain as it would be for a coherent
state.

To obtain squeezing of the orientation of the Stokes vec-
tor, Grangier et al. �22� and Sørensen et al. �23� overlapped a
dim quadrature squeezed beam with a bright orthogonally
polarized coherent beam. We consider this situation next �as
shown in Fig. 7�. Since two beams are now involved, the
relative phase � becomes important. A dc and an rf error
signal, both dependent on � , were extracted from the Stokes-
operator measurement device. Together, these error signals

allowed us to lock � to either 0 or /2 rad in all of the
following experiments. We mixed a bright horizontally po-
larized coherent beam with a dim vertically polarized ampli-
tude squeezed beam. Since the horizontally polarized beam
was much more intense than the vertically polarized beam,
the Stokes-operator expectation values became 	Ŝ0
�	Ŝ1

���H�2 and 	 Ŝ2
�	Ŝ3
�0. The Stokes-operator variances
obtained for this polarization state are shown in Fig. 8, here
Ŝ2 is antisqueezed and Ŝ3 is squeezed. The variances of Ŝ0

and Ŝ1 were slightly above the shot-noise level because of
residual noise from our laser resonant relaxation oscillation.
The experiment carried out with � locked to 0 rad is not
shown, in this case, the measured variances of Ŝ2 and Ŝ3
were swapped. In fact, the Stokes vector was still pointing
along Ŝ1 but the quantum noise was rotated on the Poincaré
sphere �see Fig. 13�b��.

FIG. 5. Apparatus used to produce and analyze a single ampli-
tude squeezed beam. Optics in �a� and �b� were included to measure

the variance and the expectation value of Ŝ2 and Ŝ3, respectively.

FIG. 6. Measured variance spectra of quantum noise on Ŝ0 , Ŝ1 ,

Ŝ2, and Ŝ3 for a single bright amplitude squeezed beam; normalized
to shot noise. The shaded region was used to construct the Poincaré
sphere representation in Fig. 12�b�.

FIG. 7. Apparatus used to produce and analyze the polarization
squeezed beam produced by overlapping a dim quadrature squeezed
beam with a bright coherent beam. Optics in �a� and �b� were in-

cluded to measure the variance and the expectation value of Ŝ2 and

Ŝ3, respectively.
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9.1. Stokes-operator-squeezed continuous-variable polarization states

D. Quantum polarization states from two quadrature
squeezed beams

The two experiments described in Sec. III C demonstrated
how it is possible to squeeze the length and orientation of the
Stokes vector. In this section, we demonstrate that it is pos-
sible to do both simultaneously. The two quadrature
squeezed beams produced in our OPAs were combined with
orthogonal polarization on a polarizing beam splitter �14� as
shown in Fig. 9. This produced an output beam with Stokes-
parameter variances as given by Eqs. �11�. Both input beams
had equal power (�H��V��/�2) and both were squeezed
in the same quadrature. The Stokes parameters and their vari-
ances were again determined as shown in Fig. 2. The relative
phase between the quadrature squeezed input beams � was
locked to /2 rads producing a right-circularly polarized
beam with Stokes parameter means of 	Ŝ1
�	Ŝ2
�0 and

	Ŝ0
�	Ŝ3
����2.
First, both OPA pump beams were phase locked to ampli-

fication, this produced two phase squeezed beams. Figure 10
shows the measurement results obtained; Ŝ0 , Ŝ1, and Ŝ3

were all anti-squeezed and Ŝ2 was squeezed throughout the
range of the measurement. The optimum noise reduction of
Ŝ2 was 2.8 dB below shot noise and was observed at 4.8
MHz. Our OPAs are particularly sensitive to phase noise
coupling in from the MgO:LiNbO 3 crystals. We attribute the
structure in the frequency spectra of Ŝ2 and the poorer degree
of squeezing observed here, to this. Apart from this structure,
these results are very similar to those produced by a single

squeezed beam and a coherent beam; the orientation of the
Stokes vector is squeezed. However, here the uncertainty in
the length of the Stokes vector is greater than for a coherent
state so the polarization state, although produced from two
quadrature squeezed beams, is actually less certain.

Figure 11 shows the measurement results obtained with
the OPAs locked to deamplification. Therefore, both OPAs
provided amplitude squeezed beams. Again, we interrogated
the combined beams and found Ŝ0 , Ŝ1, and Ŝ3 all to be
squeezed from 4.5 MHz to the limit of our measurement, 10
MHz. Ŝ2 was antisqueezed throughout the range of the mea-
surement. Between 7.2 MHz and 9.6 MHz Ŝ0 , Ŝ1, and Ŝ3
were all more than 3 dB below shot noise. The squeezing of
Ŝ0 and Ŝ3 was degraded at low frequency due to our lasers
resonant relaxation oscillation. Since this noise was corre-
lated, it is canceled in the variance of Ŝ1. The maximum
squeezing of Ŝ0 and Ŝ2 was 3.8 dB and 3.5 dB, respectively,

FIG. 8. Measured variance spectra of quantum noise on Ŝ0 , Ŝ1 ,

Ŝ2, and Ŝ3 for a vacuum amplitude squeezed and a bright coherent
input beams; normalized to shot noise. The shaded region was used
to construct the Poincaré sphere representation in Fig. 12�c�.

FIG. 9. Apparatus used to produce and analyze the beam pro-
duced by combining two quadrature squeezed beams. Optics in �a�
and �b� were included to measure the variance and the expectation

value of Ŝ2 and Ŝ3, respectively.

FIG. 10. Measured variance spectra of quantum noise on Ŝ0 ,

Ŝ1 , Ŝ2, and Ŝ3 for two locked phase squeezed input beams; nor-
malized to shot noise. The shaded region was used to construct the
Poincaré sphere representation in Fig. 12�d�.
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9. Mesure de polarisation

and was observed at 9.3 MHz. The maximum squeezing of
Ŝ1 was 4.3 dB at 5.7 MHz. The repetitive structure at 4, 5, 6,
7, 8, and 9 MHz was caused by electrical pickup in our SHG
resonator emitted from a separate experiment operating in
the laboratory. In this case both the orientation and the length
of the Stokes vector were squeezed.

Finally, we point out that the variances of Ŝ1 in Figs. 8,
10, and 11 were all squeezed at frequencies down to 3 MHz
and even below, whereas Fig. 4 shows a clear degradation
below 4 MHz. This improved performance is due to electri-
cal noise cancellation of correlated laser relaxation oscilla-
tion noise. This noise is effectively reduced by taking the
difference of the two photo currents in our detector setup to
measure V1.

IV. VISUALIZATION OF QUANTUM CORRELATIONS
IN CONTINUOUS-VARIABLE POLARIZATION STATES

In this section, measured quantum correlations in polar-
ization states at 8.5 MHz are visualized. Based on the theo-
retical formalism in Sec. II continuous-variable polarization
states can be characterized by the measurement of Stokes-
operator expectation values and variances using the setup
shown in Fig. 2. Our noise measurement results at 8.5 MHz
on five different states are summarized in Fig. 12. The noise
characteristics of the Stokes parameters are mapped onto the
coordinate system of the Poincaré sphere, assuming Gauss-
ian noise statistics. Given this assumption, the standard de-
viation contour surfaces shown here provide an accurate rep-
resentation of the states three-dimensional noise distribution.

The quantum polarization noise of a coherent state forms a
sphere of noise as portrayed in Fig. 12�a�. The noise volumes
�b�–�e� visualizes the measurements on a single bright am-
plitude squeezed beam, on the combination of a vacuum am-
plitude squeezed beam and a bright coherent beam, on two

FIG. 11. Measured variance spectra of quantum noise on Ŝ0 ,

Ŝ1 , Ŝ2, and Ŝ3 for two locked amplitude squeezed input beams;
normalized to shot noise. The shaded region was used to construct
the Poincaré sphere representation in Fig. 12�e�.

FIG. 12. Measured quantum polarization noise at 8.5 MHz from
different combinations of input beams. �a� Single coherent beam,
�b� coherent beam and squeezed vacuum, �c� bright squeezed beam,
�d� two phase squeezed beams, and �e� two amplitude squeezed
beams. The surface of the ellipsoids defines the standard deviation

of the noise normalized to shot noise (�Si
��Vi). Ŝ � denotes the

Stokes operator along the Stokes vector.
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9.1. Stokes-operator-squeezed continuous-variable polarization states

locked phase squeezed input beams and on two locked am-
plitude squeezed beams, respectively. In all cases, the
Stokes-operator noise volume describes the end position of
the Stokes vector pointing upwards. In �b� and �c� the Stokes
vectors are parallel to the direction of S1, in �d� and �e�
parallel to the direction of S3, since we used horizontally and
right-circularly polarized light, respectively. However, there
was no fundamental bias in the orientation of the quantum
Stokes vector in our experiment. By varying the angle of an
additional half-wave plate in the polarization-squeezed beam
or by varying � , any orientation may be achieved. In fact, as
mentioned earlier, our experiments were also carried out with
� locked to 0 rad. This had the effect of rotating the Stokes
vector and its quantum noise by /2 around Ŝ1. Nearly iden-
tical results were obtained but on alternative Stokes param-
eters. Figure 13 a� shows Poincaré sphere representations of
this rotation for the polarization states produced by two am-
plitude squeezed beams. In Fig. 13�b�, the combination of a
amplitude squeezed vacuum and a bright coherent beam ex-
emplifies that different orientations of the noise volume can
be generated using appropriate combination of wave plates.

V. CHANNEL CAPACITY OF POLARIZATION
SQUEEZED BEAMS

The reduced level of fluctuations in polarization-squeezed
light can be used to improve the channel capacity of com-
munication protocols. Let us consider information encoded
on the sidebands of a bandwidth-limited single spatial mode
laser beam. We assume that only direct detection is em-
ployed, or in other words, that phase sensitive techniques
such as homodyne measurement are not available. This is not
an artificial constraint since phase-sensitive techniques are
technically difficult to implement and are rarely utilized in
conventional optical communications systems.

An upper bound to the amount of information that can be
carried by a bandwidth-limited additive white Gaussian noise
channel is given by the Shannon capacity C �33� in bits per
dimension,

C�
1

2
log2�1�R �. �12�

R is the signal-to-noise ratio of the channel and is given by
the ratio of the spectral variance of the signal modulation Vs
and the noise spectral variance Vn,

R�
Vs

Vn
. �13�

We wish to compare the channel capacities achieveable with
pure coherent and squeezed states for a given average photon
number in the sidebands n̄ , where

n̄�	� âH
† � âH�� âV

† � âV
 �14�

and

	� â†� â
�
1

4
�Vn

��Vn
��2�Vs

��Vs
��. �15�

n̄ takes into account both sideband photons entailed by
squeezing of the quantum noise and by signal modulation.
The superscripts � and � label the amplitude and the phase
quadrature, respectively. Note that without squeezing and
signal modulation, the number of sideband photons is equal
to zero. An overview of quantum noise limited channel ca-
pacities may be found in Refs. �34,35�.

First, let us consider strategies which might be employed
with a coherent light beam. In conventional optical commu-
nication systems, the polarization degrees of freedom are ig-
nored completely and information is encoded only on Ŝ0 as
intensity fluctuations. Taking �V�0, the variance of the
Stokes-operator Ŝ0 is given by V0��H

2 (Vn ,H
� �Vs ,H

� ) in ac-
cordance with Eq. �11�. For this one-dimensional coherent
channel, Vn ,H

� �	��XH
��2
�1 and, therefore, R�Vs ,H

� . It can
be shown from Eqs. �14� and �15� that for this arrangement,
the average photon number per bandwidth per second is n̄
� 1

4 Vs ,H
� providing a photon resource limited Shannon capac-

ity of

Ccoh
i �

1

2
log2�1�4 n̄ �, �16�

as a function of n̄ . This is a nonoptimal strategy, however.
Examining Eqs. �3� and �9� we see that it is possible to
choose an arrangement, for which two of the Stokes opera-
tors commute and so can be measured simultaneously. In-
deed, it is easy to show that such simultaneous measure-
ments can be made using only linear optics and direct
detection. In particular, let us assume that �H��V such that
Ŝ2 and Ŝ3 commute, and use Ŝ2 and Ŝ3 as two independent
information channels. Then Ŝ2� Ŝ0 and the information in
both dimensions can be simultaneously extracted by sub-
tracting and adding the photocurrents of the same pair of
detectors. Assuming equal signal-to-noise ratios, R2�R3, we
find that Vs ,2�Vs ,3�2 n̄ , and the channel capacity may be
written

FIG. 13. Visualization of measured quantum noise and mea-
sured Stokes vectors of four polarization states mapped onto the
Poincaré sphere. The states were generated from �a� two bright
amplitude squeezed inputs and �b� a bright coherent beam and a
amplitude squeezed vacuum. The rotation in �a� and also in �b� was
achieved by a ��/2 phase shift or an additionally introduced �/4
wave plate.
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9. Mesure de polarisation

Ccoh
ii �

1

2
log2�1�R2��

1

2
log2�1�R3��log2�1�2 n̄ �.

�17�

This channel capacity is always greater than that of Eq. �16�

and for large n̄ is 100% greater.
For sufficiently high n̄ a further improvement in channel

capacity can be achieved. Consider placing signals on all
three Stokes-operators. Because of the noncommutation of
Ŝ1 with Ŝ2 and Ŝ3, it is not possible to read out all three
signals without a measurement penalty. Suppose the receiver
adopts the following strategy: divide the beam on a beam-
splitter with transmitivity � and then measure Ŝ1 on the re-
flected output and Ŝ2 and Ŝ3 on the other output. Division of
the beam will reduce the measured signal-to-noise ratios due
to the injection of quantum noise at the beamsplitter such as
R1�(1��)Vs ,1 , R2��Vs ,2 , and R3��Vs ,3 . We find that
for large n̄ an optimum is reached with ��2/3 and the signal
photon number in each Stokes parameter being n̄1� n̄2� n̄3

� n̄/3. Hence the channel capacity is

Ccoh
iii �

1

2
log2�1�R1��

1

2
log2�1�R2��

1

2
log2�1�R3�

�
1

2
log2� 1�

4

9
n̄ ��log2� 1�

8

9
n̄ � . �18�

This capacity beats that of Eq. �17� for n̄	7.56. In summary,
the optimum coherent channel capacity is given by Eq. �18�

for average photon numbers n̄	7.56 and by Eq. �17� for
lower values, see Fig. 14 curves traces c and d.

Now let us examine the effect of polarization squeezing
on the channel capacity. Consider, first, the simple case of

intensity modulation on a single squeezed beam, which is
equivalent to using a squeezed beam in the first coherent
case considered �case �i��. The channel capacity can be maxi-
mized by optimizing the fraction of photons that are intro-
duced by squeezing the quantum noise and the residual frac-
tion of photons, which actually carries the signal. For large
photon numbers we find a proportioning of 0.5. For an aver-
age photon number of 1, just one-third of that photon should
be used to reduce the quantum noise. The maximum channel
capacity for a one-dimensional squeezed channel is found to
be

C1sqz
i �log2�1�2 n̄ �, �19�

which was previously given in Ref. �34�. This capacity beats
only the corresponding coherent state. It is as efficient as the
two-dimensional coherent channel, but less efficient than the
three-dimensional coherent one for large photon numbers.

Consider now a polarization-squeezed beam that is pro-
duced from a minimum uncertainty squeezed beam and a
coherent beam, as in Sec. III C. Suppose, as in case ii, that Ŝ2

and Ŝ3 commute and arrange such that Ŝ2 has fluctuations at
the quantum noise level, while Ŝ3 is optimally squeezed.
Again signals are encoded on Ŝ2 and Ŝ3. The channel capac-
ity can be maximized by adjusting the relative signal sizes on
the two Stokes-operators for fixed average photon number as
a function of the squeezing. Here, one-third of the photons is
used to squeeze and two-third is split equally for the two
dimensions. The resultant maximum channel capacity is

C1sqz
ii �

3

2
log2� 1�

4

3
n̄ � . �20�

This always beats all three coherent state cases considered
here, but in the limit of large n̄ the advantage is minimal
since the scaling with photon number is the same as that of
Ccoh

iii in Eq. �18�.
If the polarization-squeezed beam is produced from two

amplitude squeezed beams as in Sec. III D, the enhancement
becomes more significant. Suppose again that Ŝ2 and Ŝ3
commute but now that both are optimally squeezed. Again
encoding on Ŝ2 and Ŝ3, and varying the signal strength as a
function of squeezing to maximize the channel capacity for a
given n̄ . The maximum is reached when the photons are
used to squeeze the noise and transport information in equal
shares. The channel capacity for this arrangement is given by

C2sqz
ii �2 log2�1� n̄ �, �21�

which for large n̄ is 33% greater than both the optimum
coherent scheme and the scheme using a single quadrature
squeezed beam. No further improvement of the channel ca-
pacity can be obtained by encoding the information on three
Stokes parameters, as in case �iii�. Optimization of the beam
splitter reflectivity results in the already considered two-
dimensional arrangement. This is not a surprising result since
the third Stokes parameter is antisqueezed. Figure 14 sum-
marizes our results.

FIG. 14. Calculated channel capacities for various continuous-
variable polarization states. The channel’s dimension and the chan-
nel’s quantum noise performance is varied. The cross in the upper
curve marks the channel capacity, which can be achieved using the
polarization-squeezed state in Fig. 11 and is compared with the
optimum coherent state channel capacity �lower cross�.

STOKES-OPERATOR-SQUEEZED CONTINUOUS- . . . PHYSICAL REVIEW A 67, 012316 �2003�

012316-9

102



9.1. Stokes-operator-squeezed continuous-variable polarization states

Finally, we assess the channel capacities that could, in
principle, be achieved using the polarization-squeezed state
generated in our experiment from two amplitude squeezed
beams. The polarization squeezing achieved in Fig. 11 im-
plies that, in the frequency range of 8–10 MHz, 0.17 side-
band photons per bandwidth per second were present in each
of the two dimensions. This is an optimum quantum resource
to transmit 0.68 sideband photons. Signals sufficiently high
above detector dark noise would achieve a channel capacity
that is around 21% greater than the ideal channel capacity
achievable from a coherent beam with the same average
sideband photon number �see crosses in Fig. 14�.

VI. CONCLUSION

The field of quantum communication and computation is
receiving much attention. The continuous-variable polariza-
tion states investigated here are one of the most promising
candidates for carrying the information in a quantum net-
work. In this paper, we have characterized the nonclassical
properties of these states on the basis of the Stokes-operators
and their variances. Different classes of polarization-

squeezed states have been generated and experimentally
characterized. We compared the coherent polarization state
in Fig. 12�a� with squeezed polarization states generated
from a single amplitude squeezed beam as in Fig. 12�c� and
from two amplitude squeezed beams as in Fig. 12�e�, and
proved that squeezing of better than 3 dB of three Stokes
parameters ( Ŝ0 , Ŝ1, and Ŝ3) simultaneously is possible only
in the latter case. We have theoretically analyzed the channel
capacity for several communication protocols using
continuous-variable polarization states. For a given average
photon number n̄ , we found the polarization state produced
from two quadrature squeezed states can provide a 33%
greater channel capacity than both the optimum coherent
scheme and the scheme using a single quadrature squeezed
beam.
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Experimental Demonstration of ContinuousVariable Polarization Entanglement

Warwick P. Bowen, Nicolas Treps, Roman Schnabel, and Ping Koy Lam
Department of Physics, Faculty of Science, Australian National University, ACT 0200, Australia

(Received 13 March 2002; published 4 December 2002)

We report the experimental transformation of quadrature entanglement between two optical beams
into continuous variable polarization entanglement. We extend the inseparability criterion proposed by
Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] to polarization states and use it to quantify the
entanglement. We propose an elaboration utilizing two quadrature entangled pairs for which all three
Stokes operators between a pair of beams are entangled.

DOI: 10.1103/PhysRevLett.89.253601 PACS numbers: 42.50.Dv, 03.67.Hk, 42.65.Yj

The polarization state of light has been extensively
studied in the quantum mechanical regime of single (or
few) photons. The demonstration of entanglement of the
polarization of pairs of photons has been of particular
interest. This entanglement has facilitated the study of
many interesting quantum phenomena such as Bell’s in-
equality [1]. Comparatively, research on continuous var-
iable quantum polarization states has been cursory.
Recently, however, interest in the field has increased
due to the demonstration of transfer of continuous varia-
ble quantum optical polarization states to the spin state
of atomic ensembles [2]; and to its potential for local
oscillator-free continuous variable quantum communica-
tion networks. A number of theoretical papers have now
been published [3,4], of particular interest is the work of
Korolkova et al. [5] which introduces the new concept of
continuous variable polarization entanglement, and pro-
poses methods for its generation and characterization.
Previous to the work presented here, however, only the
squeezing of polarization states had been experimentally
demonstrated [2,6,7].

In this paper we report the experimental transforma-
tion of the commonly studied and well understood en-
tanglement between the phase and amplitude quadratures
of two beams (quadrature entanglement) [8] onto a polar-
ization basis. Quadrature entanglement can be character-
ized using the inseparability criterion proposed by Duan
et al. [9]. We generalize this criterion to an arbitrary pair
of observables and apply it to the Stokes operators that
define quantum polarization states. We experimentally
generate entanglement of Stokes operators between a
pair of beams, satisfying both the inseparability crite-
rion, and the product of conditional variances which is a
signature of the EPR paradox [10]. Interacting this en-
tanglement with a pair of distant atomic ensembles could
entangle the atomic spin states.We also analyze the polar-
ization state generated by combining two quadrature
entangled pairs. We show that if the quadrature entangle-
ment is strong enough to beat a bound

���
3

p
times lower than

that for the inseparability criterion, then all three Stokes
operators can be simultaneously entangled.

The polarization state of a light beam can be described
as a Stokes vector on a Poincaré sphere and is determined
by the four Stokes operators [11]: ŜS0 represents the
beam intensity whereas ŜS1, ŜS2, and ŜS3 characterize its
polarization and form a Cartesian axis system. If
the Stokes vector points in the direction of ŜS1, ŜS2, or
ŜS3, the polarized part of the beam is horizontally, line-
arly at 45�, or right-circularly polarized, respectively.
Quasimonochromatic laser light is almost completely
polarized, in this case ŜS0 is a redundant parameter,
determined by the other three operators. All four Stokes
operators can be measured with simple experiments [5].
Following [11] we expand the Stokes operators in terms of
the annihilation âa and creation âay operators of the con-
stituent horizontally (subscript H) and vertically (sub-
script V) polarized modes

ŜS0 � âay
HâaH 
 âay

VâaV; ŜS2 � âay
HâaVei
 
 âay

VâaHe�i
;

ŜS1 � âay
HâaH � âay

VâaV; ŜS3 � iâay
VâaHe�i
 � iâay

HâaVei
;

(1)

where 
 is the phase difference between the
H;V-polarization modes. Equations (1) are an example
of the well-known bosonic representation of angular mo-
mentum type operators in terms of a pair of quantum
harmonic oscillators introduced by Schwinger [12]. The
commutation relations of the annihilation and creation
operators �âak; âa

y
l 	 � 	kl with k; l 2 fH;Vg directly result

in Stokes operator commutation relations, �ŜSi; ŜSj	 �
2iŜSk, where i; j; k � 1; 2; 3 are cyclically interchangeable.
These commutation relations dictate uncertainty rela-
tions, which indicate that entanglement is possible
between the Stokes operators of two beams, we term
this continuous variables polarization entanglement.
Three observables are involved, compared to two for
quadrature entanglement, and the entanglement between
two of them relies on the mean value of the third. To
provide a proper definition of this entanglement, we have
chosen to extend the inseparability criterion proposed by
Duan et al. [9]. The inseparability criterion characterizes
the separability of, and therefore the entanglement
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9. Mesure de polarisation

between, the amplitude X̂X
 and phase X̂X� quadratures of
a pair of optical beams (denoted throughout by the sub-
scripts x and y) with Gaussian noise statistics. These
quadrature operators are observables and can be obtained
from the annihilation and creation operators, X̂X
 � âa 

âay, X̂X� � i�âay � âa�. In this paper we restrict ourselves to
the symmetric situation where all experimental outcomes
are independent of exchange of beams x and y, in this
case the inseparability criterion can be written as

�2
x�yX̂X


 
 �2
x�yX̂X

� < 4: (2)

Throughout this paper �2ÔO � h	ÔO2i where ÔO � hÔOi 

	ÔO. �2

x�yÔO is the smaller of the sum and difference
variances of the operator ÔO between beams x and y,
�2

x�yÔO � minh�	ÔOx � 	ÔOy�2i. Note that for physically
realistic entanglement between two observables, one ob-
servable must be correlated, and the other anticorrelated
between subsystems x and y. The minimization utilized
in calculating �2

x�yÔO selects the relevant sign for each
observable. The measure in Eq. (2) relies explicitly on
the uncertainty relation between the amplitude and phase
quadrature operators. Given the general Heisenberg
uncertainty relation �2ÂA�2B̂B � jh	ÂA	B̂Bij2 �
j�	ÂA; 	B̂B	j2=4
 jh	ÂA	B̂B 
 	B̂B	ÂAij2=4 [13] it can be
generalized to any pair of observables ÂA, B̂B. Unlike the
commutation relation j�	ÂA; 	B̂B	j, the correlation function
jh	ÂA	B̂B 
 	B̂B	ÂAij is state dependant. In this work we
assume it to be zero and arrive at the sufficient condition
for inseparability

�2
x�yÂA 
 �2

x�yB̂B < 2j�	ÂA; 	B̂B	j: (3)

To allow direct analysis of our experimental results, we
define the degree of inseparability I�ÂA; B̂B�, normalized
such that I�ÂA; B̂B�< 1 guarantees the state is inseparable

I�ÂA; B̂B� � �2
x�yÂA 
�2

x�yB̂B

2j�	ÂA; 	B̂B	j : (4)

An arbitrary pair of polarization modes may be con-
structed by combining horizontally and vertically polar-
ized modes on a pair of polarizing beam splitters. In the
symmetric situation, which this paper is restricted to, the
horizontally (vertically) polarized input beams must be
interchangeable; therefore, their expectation values and
variances must be the same (�H � hâaH;xi � hâaH;yi, �V �
hâaV;xi � hâaV;yi, �2X̂X�

H � �2X̂X�
H;x � �2X̂X�

H;y, �2X̂X�
V �

�2X̂X�
V;x � �2X̂X�

V;y), and the relative phase between hori-
zontally and vertically polarized modes for subsytems x
and y must be related by 
 � 
x � �
y 
m� where m is
an integer. Given these assumptions it is possible to
calculate I�ŜSi; ŜSj� from Eqs. (1). We choose to simplify
the situation further, providing results that may be di-
rectly related to our experiment. We assume that the
horizontal and vertical inputs are not correlated, and
that each input beam does not exhibit internal ampli-

tude/phase quadrature correlations. Finally, we assume
that the vertically polarized input modes are bright
(�2

V � 1) so that second order terms are negligible. The
denominators of Eq. (4) for the three possible combina-
tions of Stokes operators are then found to be

j�	ŜS1	; ŜS2	j � 4�H�V sin
;

j�	ŜS1; 	ŜS3	j � 4�H�V cos
;

j�	ŜS2; 	ŜS3	j � 2j�2
H � �2

V j:
(5)

In our experiment the phase 
 between the horizontally
and vertically polarized input modes was controlled to be
�=2, in this situation j�	ŜS1; 	ŜS3	j � 0 which means that
using the inseparability criterion of Eq. (4) it is impos-
sible to verify entanglement between ŜS1 and ŜS3. On the
other hand j�	ŜS1; 	ŜS2	j and j�	ŜS2; 	ŜS3	j both have finite
values and therefore the potential for entanglement. We
experimentally determined I�ŜS1; ŜS2� and I�ŜS2; ŜS3� from
measurements of �V , �H, and �2

x�yŜSi.
The experimental transformation between quadrature

and polarization entanglement demonstrated here
becomes clearer if �2

x�yŜSi are expressed in terms of
quadrature operators. Assuming that �2

H � �2
V we find

from Eqs. (1) that �2
x�yŜS1 � �2

V�
2
x�yX̂X



V , �2

x�yŜS2 �
�2
V�

2
x�yX̂X

�
H , and �2

x�yŜS3 � �2
V�

2
x�yX̂X



H . I�ŜS1; ŜS2�

and I�ŜS2; ŜS3� can then be written

I�ŜS1; ŜS2� � �V

�H

�
�2

x�yX̂X


V 
 �2

x�yX̂X
�
H

8

�
; (6)

I�ŜS2; ŜS3� �
�
1
 �2

H

�2
V

��
�2

x�yX̂X


H 
 �2

x�yX̂X
�
H

4

�
: (7)

Equation (6) shows that as �V=�H increases the level of
correlation required for I�ŜS1; ŜS2� to fall below unity and
therefore to demonstrate inseparability quickly becomes
experimentally unachievable. In particular, if the hori-
zontal inputs are vacuum states I�ŜS1; ŜS2� becomes infinite
and verification of entanglement is not possible. In con-
trast, Eq. (7) shows that in this situation I�ŜS2; ŜS3� becomes
identical to the criterion for quadrature entanglement
[Eq. (2)] between the two horizontally polarized inputs.
Therefore, quadrature entanglement between the horizon-
tally polarized inputs is transformed to polarization en-
tanglement between ŜS2 and ŜS3. In the following section
we experimentally demonstrate this transformation. The
asymmetry of these results arises because the Stokes
vector of the output mode of each polarizing beam split-
ter is aligned almost exactly along ŜS1 (since �H � �V).
This creates an asymmetry in the commutation relations
and a corresponding bias in the uncertainty relations that
define the inseparability criteria.

In our experiment two equal power 1064 nm amplitude
squeezed beams were produced in a pair of spatially
separated optical parametric amplifiers (OPAs). The
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9.2. Experimental demonstration of continuous variable polarization entanglement

OPAs were optical resonators constructed from hemi-
lithic MgO:LiNbO3 crystals and output couplers and are
described in detail in Ref. [7]. We combined the squeezed
beams with �=2 phase shift on a 50/50 beam splitter with
interference efficiency of 97.8%. The output beams ex-
hibited the conventional quadrature entanglement [8]. We
modematched each entangled beam into a homodyne
detector that provided amplitude or phase quadrature
measurements and characterized the entanglement with
the inseparability measure given in Eq. (2). We obtained
the result I�X̂X
; X̂X�� � ��2

x�yX̂X

 
 �2

x�yX̂X
��=4 � 0:44,

which is well below unity. We also determined the pro-
duct of conditional variances between the beams
(ming�h�	X̂X


x 
 g	X̂X

y �2ih�	X̂X�

x � g	X̂X�
y �2i	< 1), which

was propose by Reid and Drummond [10] as a signature
of the EPR paradox. We observed a value of 0:58 which is
also well below unity.

We transformed the entanglement onto a polarization
basis by combining each entangled beam (horizontally
polarized) with a much more intense vertically polarized
coherent beam (�2

V � 30�2
H) with measured mode-

matching efficiency for both of 91% (see Fig. 1). The
relative phase between the horizontal and vertical input
modes 
 was controlled to be �=2. The two resultant
beams were polarization entangled. We verified this en-
tanglement by measuring correlations of the Stokes oper-
ators between the beams.

Each beam was split on a polarizing beam splitter and
the two outputs were detected on a pair of high quantum
efficiency photodiodes. Dependent on the inclusion of
wave plates before the polarizing beam splitter, the dif-
ference photocurrent between the two photodiodes
yielded instantaneous values for ŜS1, ŜS2, or ŜS3 (see
Fig. 1). The variance of the unity gain electronic sum or
subtraction of the Stokes operator measurements between
the polarization entangled beams was obtained in a spec-
trum analyzer that had a resolution bandwidth of 300 kHz
and video bandwidth of 300 Hz. This resulted in values
for �2

x�yŜSi. All of the presented results were taken over
the sideband frequency range from 2 to 10 MHz and are
the average of ten consecutive traces. Every trace was

more than 4.5 dB above the measurement dark noise
which was taken into account. We determined �2

V directly
by blocking the horizontal modes and measuring the
power spectrum of the subtraction between the two
homodynes, this also gave �2

H since the ratio �2
V=�

2
H

was measured to equal 30.
Figure 2 shows our experimental measurements of

I�ŜS1; ŜS2� and I�ŜS2; ŜS3�. The dashed lines indicate the
results a pair of coherent beams would produce. Both
traces are below this line throughout almost the entire
measurement range; this is an indication that the light is
in a nonclassical state. At low frequencies both traces
were degraded by noise introduced by the relaxation
oscillation of our laser. I�ŜS2; ŜS3� shows polarization en-
tanglement, however as expected I�ŜS1; ŜS2� is far above
unity. The best entanglement was observed at 6.8 MHz
with I�ŜS2; ŜS3� � 0:49 which is well below unity.

By electronically adding or subtracting the Stokes
operator measurements with a gain g chosen to minimize
the resulting variance we observed a signature of the EPR
paradox for polarization states. In this case the product of
the conditional variances of ŜS2 and ŜS3 from one beam
after utilizing information gained through measurement
of the other must be less than the Heisenberg uncertainty
product (ming�h�	ŜS2;x � g	ŜS2;y�2ih�	ŜS3;x � g	ŜS3;y�2i	<
j�	ŜS2; 	ŜS3	j2=4). We observed a conditional variance
product of 0:77j�	ŜS2; 	ŜS3	j2=4.

Polarization entanglement has more degrees of free-
dom than quadrature entanglement because three observ-
ables, rather than two, are involved. In the following
section we consider the continuous variable situation
most analogous to single photon polarization entangle-
ment where the correlation is independent of the basis of
measurement, and demonstrate theoretically that all three
Stokes operators can be simultaneously entangled. We
extend the work of Ref. [5], and arrange the entanglement
such that Eqs.. (5) are equal and the mean value of the

1
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2)

3 4 5 6 7 8 9
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FIG. 2 (color online). Experimental measurement of
(a) I�ŜS1; ŜS2� and (b) I�ŜS2; ŜS3�, values below unity indicate
entanglement. The dashed line is the corresponding measure-
ment inferred between two coherent beams.
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FIG. 1. Experimental production and characterization of con-
tinuous variable polarization entanglement. The optics within
(a) are included to measure ŜS2, and those within (b) to measure
ŜS3. (P)BS: (polarizing) beam splitter.
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three Stokes operators are the same (jhŜSiij � �2). This
leads to �2

V � �� ���
3

p � 1�=2	�2, �2
H � �� ���

3
p 
 1�=2	�2,


x � �=4
 nx�=2, and 
y � �=4
 ny�=2, where nx
and ny are integers. We assume that the two horizontally
polarized inputs, and the two vertically polarized inputs,
are quadrature entangled with the same degree of corre-
lation such that �2

x�yX̂X
�
H � �2

x�yX̂X
�
V � �2

x�yX̂X . In this
configuration, Eqs. (5) become jh	ŜSi	ŜSjij � �2, for all
i � j. To simultaneously minimize all three degrees of
Stokes operator inseparability [I�ŜSi; ŜSj�] it is necessary
that 
x � �
y 
 n�. After making this assumption we
find that �2

x�yŜSi �
���
3

p
�2�2

x�yX̂X for all i. Hence, in this
situation I�ŜSi; ŜSj� are all identical, and the entanglement
is equivalent between any two Stokes operators. The
condition for entanglement can then be expressed as a
simple criterion on the quadrature entanglement between
the input beams

I�ŜSi; ŜSj�< 1()I�X̂X
; X̂X��< 1=
���
3

p
; (8)

where I�X̂X
; X̂X�� � I�X̂X

H; X̂X

�
H� � I�X̂X


V ; X̂X
�
V �. The factor

of 1=
���
3

p
arises from the projection of the quadrature

properties onto a polarization basis in which the Stokes
vector is pointing at equal angle [ cos�1�1= ���

3
p �] from all

three Stokes operator axes. In principle it is possible to
have all three Stokes operators perfectly entangled. In
other word, ideally the measurement of any Stokes op-
erator of one of the beams could allow the exact predic-
tion of that Stokes operator from the other beam (see

Fig. 3). The experimental production of such a field is a
straightforward extension of the experiment reported
here, given the availability of four independent squeezed
beams. Maximal single photon polarization entanglement
enables tests of Bells inequality [1]. It has recently been
shown that continuous variable polarization entangle-
ment of the form discussed above can also exhibit Bell-
like correlations [4]. This entanglement resource would
also enable the demonstration of maximal continuous
variable polarization teleportation.

To conclude, we have presented the first generation
of continuous variable polarization entanglement. The
scheme presented transforms the well-understood quad-
rature entanglement to a polarization basis. The two
Stokes operators orthogonal to the Stokes vectors of the
polarization entangled beams easily fulfill a generalized
version of the inseparability criterion proposed by Duan
et al.. We have also demonstrated that in the limiting case
of our experimental configuration where �2

V � 1 and
�2
H � 0 it is not possible to verify entanglement between

any other pair of Stokes operators. Finally, we have shown
that using four squeezed beams it is possible for all three
Stokes operators to be perfectly entangled, although with
a bound

���
3

p
times lower (stronger) than that for quadra-

ture entanglement.
This work was supported by the Australian Research

Council and is part of the EU QIPC Project, No. IST-
1999-13071 (QUICOV). R. S. acknowledges the
Alexander von Humboldt Foundation for support. We
are grateful of H. A. Bachor and T. C. Ralph for invaluable
discussion.

[1] A. Aspect et al., Phys. Rev. Lett. 49, 91 (1982).
[2] J. Hald et al., Phys. Rev. Lett. 83, 1319 (1999);

B. Julsgaard et al., Nature (London) 413, 400 (2001).
[3] N.V. Korolkova and A. S. Chirkin, J. Mod. Opt. 43, 869

(1996); A. S. Chirkin et al., Kvant. Elektron. Mosk. 20,
999 (1993); A. P. Alodjants et al., Appl. Phys. B 66, 53
(1998).

[4] T. C. Ralph et al., Phys. Rev. Lett. 85, 2035 (2000).
[5] N.V. Korolkova et al., Phys. Rev. A 65, 052306 (2002).
[6] P. Grangier et al., Phys. Rev. Lett. 59, 2153 (1987).
[7] W. P. Bowen et al., Phys. Rev. Lett.88, 093601 (2002).
[8] Z.Y. Ou et al., Phys. Rev. Lett. 68, 3663 (1992).
[9] L-M. Duan et al., Phys. Rev. Lett. 84, 2722 (2000).

[10] M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60,
2731 (1988).

[11] J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Springer, Berlin, 1976), 2nd ed.; B. A. Robson,
The Theory of Polarization Phenomena (Clarendon,
Oxford, 1974).

[12] J. Schwinger, in Quantum Theory of Angular
Momentum, edited by L. C. Biedenharn and H. van
Dam (Academic Press, New York, 1965), pp. 229–279.

[13] H. A. Haus, Electromagnetic Noise and Quantum Optical
Measurements (Springer, Berlin, 2000).

S1Δ

S3Δ

S2Δ

S3Δ

S2ΔS1Δ

2 1

2

1
1 2

2

1

1 22 1

a)

2 1

2

1
1 2

2
1

1 22 1

S1Δ

S3Δ

S2Δ

S3Δ

S2ΔS1Δ

c)

2 1

2

1
1 2

2

1

1 22 1

S1Δ

S3Δ

S2Δ

S3Δ

S2ΔS1Δ

b)

2 1

2

1
1 2

2

1

1 22 1

S1Δ

S3Δ

S2Δ

S3Δ

S2ΔS1Δ

FIG. 3. Calculated polarization entanglement produced from
four pure quadrature squeezed beams with squeezed quadrature
variances of 0.1; axes normalized to 1 for a coherent state. The
top left figure represents the knowledge of beam y before any
measurement of beam x. (a), (b), and (c) represent the condi-
tional knowledge of beam y given measurements of ŜS1, ŜS2, and
ŜS3, respectively, on beam x. If the conditional knowledge is
better than the dashed circles the state is entangled.
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Article 10, reproduit en page 111

Surpassing the standard quantum limit for high sensitivity measurements in
optical images using non classical light

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maître, H.-A. Bachor, C. Fabre
Phys. Rev. Lett. 88, 203601 (2002)

Abstract : Using continuous wave superposition of spatial modes, we demonstrate experimen-
tally displacement measurement of a light beam below the standard quantum limit. Multimode
squeezed light is obtained by mixing a vacuum squeezed beam and a coherent beam that are
spatially orthogonal. Although the resultant beam is not squeezed, it is shown to have strong
internal spatial correlations. We show that the position of such a light beam can be measured
using a split detector with an increased precision compared to a classical beam. This method
can be used to improve the sensitivity of small displacement measurements.

Article 11, reproduit en page 115

A Quantum Laser Pointer
N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam

Science Aug 15 2003 : 940-943

Abstract : The measurement sensitivity of the pointing direction of a laser beam is ultimately
limited by the quantum nature of light. To reduce this limit, we have experimentally produced
a quantum laser pointer, a beam of light whose direction is measured with a precision greater
than that possible for a usual laser beam. The laser pointer is generated by combining three
different beams in three orthogonal transverse modes, two of them in a squeezed-vacuum state
and one in an intense coherent field. The result provides a demonstration of multichannel spatial
squeezing, along with its application to the improvement of beam positioning sensitivity and,
more generally, to imaging.

Article 12, reproduit en page 119

Quantum measurements of spatial conjugate variables : Displacement and tilt of
a Gaussian beam

V. Delaubert, N. Treps, C.C. Harb, P.K. Lam and H.-A. Bachor
Optics Letters 31 1537-1539 (2006)

Abstract : We consider the problem of measurement of optical transverse profile parameters
and their conjugate variable. Using multimode analysis, we introduce the concept of detection
noise modes. For Gaussian beams, displacement and tilt are a pair of transverse-profile conjugate
variables. We experimentally demonstrate the optimal encoding and detection of these variables
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with a spatial homodyning scheme. Using higher-order spatial mode squeezing, we show the
sub-shot-noise measurements for the displacement and tilt of a Gaussian beam.

Article 13, reproduit en page 122

Tools for multi-mode quantum information : modulation, detection and squeezing
of spatial laser modes

M.Lassen, V.Delaubert, C.C.Harb, P.K.Lam, N.Treps, P.Buchhave, C.Fabre, and
H-A.Bachor

Soumis à Phys. Rev. Lett.

Abstract : We present here all the required tools for continuous variable parallel quantum in-
formation protocols based on multi-mode quantum correlations and entanglement. We describe
our ability to encode and detect quantum information with high efficiency. We experimentally
demonstrate the generation of spatial correlations or optical squeezing in higher order transverse
Hermite-Gauss modes. The higher order mode squeezing is achieved by the mode selective tuning
of the phase matching condition and the cavity resonance condition of the nonlinear χ(2) optical
parametric amplification.

Article 14, reproduit en page 127

Continuous-Variable Spatial Entanglement for Bright Optical Beams
M.T.L. Hsu, W.P. Bowen, N. Treps and P.K. Lam

Phys. Rev. A 72, 013802 (2005)

Abstract : A light beam is said to be position squeezed if its position can be determined to an
accuracy beyond the standard quantum limit. We identify the position and momentum obser-
vables for bright optical beams and show that position and momentum entanglement can be
generated by interfering two position, or momentum, squeezed beams on a beam splitter. The
position and momentum measurements of these beams can be performed using a homodyne de-
tector with local oscillator of an appropriate transverse beam profile. We compare this form of
spatial entanglement with split detection-based spatial entanglement.

Article 15, reproduit en page 134

Optical storage of high density information beyond the diffraction limit : a
quantum study

V. Delaubert, N. Treps, G. Bo and C. Fabre
Phys. Rev. A 73, 013820 (2006)

Abstract : We propose an optical readout scheme allowing a proof of principle of information
extraction below the diffraction limit. This technique, which could lead to improvement in data
readout density onto optical disks, is independent from the wavelength and numerical aperture
of the reading apparatus, and involves a multipixel array detector. Furthermore, we show how to
use nonclassical light in order to perform a bit discrimination beyond the quantum noise limit.
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Surpassing the Standard Quantum Limit for Optical Imaging
Using Nonclassical Multimode Light

N. Treps,1,2 U. Andersen,2,3 B. Buchler,2 P. K. Lam,2 A. Maître,1 H.-A. Bachor,2 and C. Fabre1

1Laboratoire Kastler Brossel, Université Pierre et Marie Curie, case 74, 75252 Paris cedex 05, France
2Department of Physics, Faculty of Science, Australian National University, Canberra ACT 0200, Australia

3Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
(Received 18 January 2002; published 3 May 2002)

Using continuous wave superposition of spatial modes, we demonstrate experimentally displacement
measurement of a light beam below the standard quantum limit. Multimode squeezed light is obtained
by mixing a vacuum squeezed beam and a coherent beam that are spatially orthogonal. Although the
resultant beam is not squeezed, it is shown to have strong internal spatial correlations. We show that
the position of such a light beam can be measured using a split detector with an increased precision
compared to a classical beam. This method can be used to improve the sensitivity of small displacement
measurements.

DOI: 10.1103/PhysRevLett.88.203601 PACS numbers: 42.50.Dv, 42.30.–d, 42.50.Lc

It has long been known that optical measurements are
ultimately limited in their sensitivity by quantum noise, or
shot noise, of the light. For more than a decade the usage
of nonclassical light has provided ways of improving the
sensitivity beyond this standard quantum limit [1]. For
example, squeezed light has been used to improve inter-
ferometric [2] and absorption [3] measurements. However,
these improvements can be applied only to signals that cor-
respond to the time modulation of light, as they rely on the
temporal quality of the light. On the other hand, many ap-
plications require spatial measurement of light. While im-
provements for spatial applications based on nonclassical
light have been proposed theoretically [4,5], no experimen-
tal demonstration has yet been shown to work with continu-
ous wave light. The challenge is to create strong spatial
correlations within a laser beam, rather than the tempo-
ral correlation typically found in nonclassical light sources
[6]. While some experiments involving sub-Poissonian
vertical cavity surface admitting lasers operating in a trans-
verse multimode regime exhibited a nonrandom spatial dis-
tribution of the quantum noise [7], no spatial correlation
was observed within the produced beam. Here we present
the first successful experimental demonstration of a spa-
tially ordered light source and a measurement of the spatial
modulation of a laser beam position to below the standard
quantum limit in the continuous wave regime.

This experimental work builds on theoretical work done
on nonclassical multimode states of light [8]. Such states
display strong spatial correlations, and their productions
have been the subject of extensive studies in recent years
[9]. In particular, the process of parametric down conver-
sion in a nonlinear optical medium has been extensively
studied, as it produces “twin photons” which are quantum
correlated both temporally and spatially. Such strong spa-
tial quantum correlations in the plane perpendicular to the
direction of propagation are produced in spontaneous down
conversion [10] and in multimode transverse optical para-
metric oscillators [11]. Nevertheless, to our knowledge,

there has been no experimental demonstration of quantum
correlations with a multimode transverse light in the con-
tinuous wave regime.

Precision optical imaging using CCD cameras or
photodetector arrays is required in many areas of science,
ranging from astronomy to biology. Ultimately, the per-
formance of optical imaging technology is limited by
quantum mechanical effects. Of particular importance, as
far as applications are concerned, is the measurement of
image displacements, for example, the position of a laser
beam. Techniques that rely on determining the position of
a laser spot include atomic force microscopy [12], mea-
surement of very small absorption coefficients via the mi-
rage effect [13], and observation of the motion of single
molecules [14]. These measurements are usually per-
formed as shown in Fig. 1. The beam is incident on a split
detector that delivers two currents proportional to the light
intensity integrated over the two halves (x , 0 and x . 0)
of the image plane. If the beam is initially centered on the
detector, the mean value of the photocurrent difference is
directly proportional to the relative displacement d of the
beam with respect to the detector. With a classical, shot

light beam

d

signal

d

split detector

FIG. 1. Measurement of the displacement of a light beam. A
split detector measures the intensities of the two halves of the
image plane. When the beam is nearly centered, the difference
between these intensities gives a signal that is proportional to
the beam displacement d.
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noise limited laser source, the smallest displacement that
can be measured (with a signal-to-noise ratio of one) is
shown to be [4]

dSQL �

p
N

2I�0�
. (1)

Here N is the total number of photons recorded by the
two detectors during the measurement time, and I�0� is
the local density of photons (photons per unit transverse
length) at the position of the boundary between the two
detectors. For a TEM00 Gaussian beam with radius w0,
the minimum measurable displacement is found to be

dSQL �

r
p

8
w0p
N

. (2)

For maximum focusing of the Gaussian beam, w0 � l,
and we obtain dSQL � l�

p
N , which is the absolute mini-

mum displacement of a physical system that can be mea-
sured with classical beams [12]. Equation (2) shows that a
more powerful laser, or a longer measurement time, gives
increased measurement precision. However, in many ap-
plications these alternatives are simply not practical. In
the case of atomic force microscopy, for example, exces-
sive laser power ultimately leads to radiation pressure noise
[15]. For biological applications, large laser power may
damage the samples under investigation and an increased
integration time leads to loss of bandwidth. This is the mo-
tivation for looking for alternative methods of increasing
measurement precision.

The limit of Eq. (2) can be surpassed only using multi-
mode nonclassical light. Let us consider a beam of light
with an electric field distribution given by E�x�. We can
build an orthonormal basis of the transverse plane �ui�
such that u0 � E�x�� kE�x�k is the first vector; u1 is a
“flipped” mode, given by 2u0�x� for x , 0 and u0�x�
for x . 0 (see Fig. 2); and the other modes are chosen
in order to form a basis. In this basis, the mean field
of our light lies only in the first mode u0 but, a priori,
all of the modes contribute to the quantum noise. In or-
der to determine the relevant modes of our measurement,
we consider the interference quantities between two modes
on each half of the split detector:

⊗

TEM00 Flipped mode

u0 u1

FIG. 2. Electric field profile of the two constituent modes used
to form the nonclassical multimode beam.

Ix,0�ui, uj� �
Z 0

2`
u�

i �x�uj�x� dx ,

Ix.0�ui, uj� �
Z 1`

0
u�

i �x�uj�x� dx . (3)

Then the interference quantities relevant for a total mea-
surement (sum of the two photodetectors) and a differential
measurement (difference of the two photodetectors) can be
written as follows:

Isum�uiuj� � Ix,0�ui, uj� 1 Ix.0�ui , uj� ,

Idiff�uiuj� � Ix,0�ui, uj� 2 Ix.0�ui , uj� . (4)

One can then show that for any transverse mode ui ,

Isum�uiu1� � Idiff�uiu0� . (5)

Since all ui , for i $ 2, are orthonormal to u1 [i.e.,
Isum�uiu1� � 0], Eq. (5) demonstrates that these modes
have a zero overlap integral with u0 in a differential mea-
surement. It can then be shown that only u1, which has
a nonzero overlap integral with u0, has to be considered
along with u0 in the noise calculation [4,16].

We note that the modes u0 and u1 have perfect interfer-
ence visibility as shown by their complete overlap integral
for the differential measurement, i.e., Idiff�u0u1� � 1. In
this regard, the measurement is analogous to a perfect ho-
modyne measurement with a beam splitter. The two modes
are equivalent to the two input beams of a beam splitter and
the two halves of the multimode beam are equivalent to the
two outputs. Therefore, similar to a homodyne measure-
ment, the noise on the differential measurement is com-
pletely canceled when the flipped mode is occupied by a
perfect squeezed vacuum, with the squeezed quadrature in
phase with the coherent field of the u0�x� mode. Con-
versely, the same result is also obtained when the mode
profiles of the squeezed and the coherent fields are inter-
changed. In order to avoid the effect of losses, we have
chosen a squeezed vacuum mode u0�x�. We would like to
stress that this simplified explanation can be applied only
because we have conveniently identified the two relevant
transverse modes of the measurement. However, contrary
to a homodyne measurement, the entire measurement is
performed using a single beam. Furthermore, a more gen-
eral analysis is not limited to only two-mode beams.

The experimental setup is shown in Fig. 3. A stable
Nd:YAG 700 mW laser provides a cw single mode beam
at 1064 nm. A part of this beam is sent to a locked
MgO:LiNbO3 frequency doubling cavity. The 532 nm out-
put of the frequency doubler is used to pump a degenerate
optical parametric amplifier (OPA) that produces a stable
10 mW squeezed beam in the TEM00 mode at 1064 nm.
The noise reduction of the OPA output is measured to be
3.5 dB. Details of this squeezing system may be found in
[17]. The flipped mode, u1�x�, is produced by sending the
remaining part of the initial 1064 nm laser beam through
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Laser

OPA

-
Split

detector

Phase plate

SHG

EOM2EOM1

To ESA

TEM00 mode

Flipped mode

FIG. 3. Scheme of the experimental setup. SHG: second har-
monic generator; OPA: optical parametric amplifier; EOM: elec-
trooptic modulator; and ESA: electronic spectrum analyzer. The
dashed lines correspond to light at 532 nm, and the solid line
to the light at 1064 nm. The TEM00 mode is produced by the
OPA and is a squeezed vacuum, the flipped mode is a coherent
state.

a specially designed phase plate. This phase plate consists
of two birefringent half-wave plates, one rotated by 90±
with respect to the other, forming the two halves x , 0
and x . 0 of the transverse plane. These elements intro-
duce a phase shift of 180± between the field amplitudes
of the two halves. The squeezed output from the OPA is
required to be superimposed onto the flipped mode with
minimal loss. This is achieved by using a beam splitter
that reflects 92% of the squeezed state and transmits 8%
of the coherent state. The reflected output is then sent to a
quadrant InGaAs detector (EPITAXX 505Q) with quantum
efficiency greater than 90%. Only two of the four quad-
rants, of dimensions 500 mm 3 500 mm each and with a
dead zone between the pixels of 25 mm, are used in this
experiment. A lens of focal length 30 mm is used to image
the phase plate on the detector plane and to counteract the
diffraction of the flipped mode, which undergoes an abrupt
phase change and therefore contains high spatial frequency
components.

Figure 4 shows the different noise levels monitored as
a function of time when the relative phase between the
coherent state and the squeezed state is chosen for maxi-
mum noise reduction. Because of the high stability of the
various servoloops in the experimental setup, the actively
locked operation of the setup can be kept for hours. The
noise measured on the sum of the two halves (Fig. 4a),
i.e., on the total beam, coincides with the shot noise level
for the conditions of this experiment, as expected from
the coherent beam, which is not affected by the presence
of a squeezed vacuum in an orthogonal mode. The noise
measured on each individual half (Fig. 4c) is reduced by
1.08 6 0.06 dB below the quantum noise limit. The fact
that the intensity noise on each half of the beam is below
the quantum noise limit, whereas the whole beam is at shot
noise, shows the strong nonclassical characteristic of this
multimode beam. This is corroborated by the experimental
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FIG. 4. Noise spectral density at 4.5 MHz of the photocurrents
as a function of time (resolution bandwidth 100 kHz). (a) Sum
of the two photocurrents. (b) Difference between the photocur-
rents. (c) Noise on each detector.

data of Fig. 4b, which give the noise on the intensity differ-
ence between the two halves at 2.34 6 0.05 dB below the
quantum limit. The results suggest that the beam is made
of two strongly quantum correlated parts, indicating that a
significant amount of spatial correlation has been created
among the photons. With the measured noise reduction
in the squeezed vacuum and a perfect setup (i.e., a per-
fect phase plate and a perfect mode matching between the
two transverse modes), one would expect 2.5 6 0.2 dB of
noise reduction on the difference between the two pixels.
This demonstration is, to our knowledge, the first experi-
ment in which spatial quantum effects have ever been
observed in a bright beam of light.

This spatial noise correlation can now be used to im-
prove the precision of displacement measurements in the
image plane. For practical reasons, we have chosen to in-
duce the displacement only in the coherent mode, before
the mixing on the beam splitter. However this displace-
ment is of the order of the nanometer, which is several
orders of magnitude smaller that the relevant precision for
the mode matching of the two transverse modes, and the
theoretical prediction for the measurements is the same as
if the displacement were done on the total beam. In or-
der to produce a small controllable beam displacement in
the frequency range of the previous measurements, we use
two electro-optic modulators (EOMs) driven at 4.5 MHz.
Figure 3 shows that EOM2 is slightly tilted with respect to
the propagation of the light beam. When a voltage is ap-
plied across EOM2, a change in refractive index is induced
and the transmitted beam experiences a parallel transverse
displacement measured at about 3 nm�V. We introduce
a modulation at 4.5 MHz as signal for our displacement
measurement which can be easily distinguished from the
low frequency beam displacements induced by mechani-
cal or acoustic vibrations. Apart from the parallel dis-
placement, EOM2 will also introduce an unwanted phase
modulation on the transmitted beam which is detrimental
to our measurement. EOM1 of Fig. 3 is therefore used to
compensate for this introduced phase modulation. When
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FIG. 5. Noise spectrum of the photocurrent difference in the
presence of an oscillating displacement of amplitude 2.9 Å and
frequency 4.5 MHz (resolution bandwidth: 100 kHz). (a) Using
a coherent state of light. (b) Using the two-mode non classical
state of light. This curve is obtained by averaging the signal
over 10 successive traces.

correct gains are chosen for both modulators, the transmit-
ted beam will not have any phase or amplitude modulation
and is left only with pure transverse displacement modula-
tion. Figure 5 shows the differential signal monitored by
a spectrum analyzer when the light beam undergoes a dis-
placement modulation with an amplitude of 2.9 Å. With
a resolution bandwidth of 100 kHz, our setup recorded a
modulation peak in the Fourier spectrum. Figure 5a shows
the trace when vacuum instead of the squeezed vacuum is
used in mode u0�x�. Thus this noise floor gives the stan-
dard quantum limit in such a displacement measurement.
The signal-to-noise ratio (SNR) of this measurement is
0.68. When the two-mode nonclassical beam is utilized
in the measurement (Fig. 5b), we obtain a SNR of 1.20.
This gives an improvement of the displacement measure-
ment sensitivity by a factor of 1.7. The result is in agree-
ment with the theoretical value calculated with the noise
reduction reported in the previous paragraph. Similar mea-
surements have been performed with a 10 kHz resolution
bandwidth (and therefore a longer measurement time) and
the results show the same improvement of the SNR.

Our results demonstrate that multimode nonclassical
states of light can be utilized to improve the optical
measurement of small displacements. The noise floor of
displacement measurements can actually be reduced to
below the standard quantum limit. Of particular relevance

are the potential usage of multimode squeezed light in
atomic force microscopy and biological microscopy.
Though our experimental demonstration is restricted to
one-dimensional displacement measurements, it can be
extended to two-dimensional displacement measurements
with more complex forms of multimodal nonclassical
light.

We would like to thank L. Lugiato and M. Kolobov for
many enlightening discussions and CSIRO, Sydney, for
the manufacturing of the special phase plate. This work
is funded by the European Project No. IST-2000-26019
“Quantum images,” the Centre National de la Recherche
Scientifique, and the Australian Research Council.
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We previously considered two possibili-
ties as activated �-amino acid: an N-carboxy-
amino acid anhydride or an oxazolidinone
(1). We now tentatively favor the N-carboxy-
amino acid anhydride, because so far in the
reaction of Phe to Phe-Phe we have not de-
tected N-formyl-Phe-Phe. N-carboxy-amino
acid anhydrides are well known to form pep-
tides in aqueous systems through N-
carbamoyl peptides (3). In the experiments
starting with L-Phe, we confirmed our previ-
ous finding (1) of a racemization of the
�-amino acid. We suggest that this racemiza-
tion occurs at the hydantoin stage, which
agrees with previous work (4), whereas the
N-carboxy-amino acid anhydride is refractory
to racemization (3).

Our findings establish the catabolic seg-
ment of a peptide cycle. Both the anabolic
and the catabolic segments of the peptide
cycle are driven by energy coupling with a
net conversion of CO to CO2. The mecha-
nisms of both energy couplings are analo-
gous, proceeding through analogous five-
membered rings (N-carboxy-amino acid
anhydride or imide, respectively). This con-
version is an oxidation reaction. The corre-
sponding oxidizing agent is seen in the col-
loidal system (FeII,NiII)S-CO, which is
present in great excess. Its reduction may
proceed stoichiometrically or catalytically
with H� and/or CO as terminal oxidant. The
redox energy driving the peptide cycle is
converted into group activation energy in (B)
and (E). The redox energy flow is normally
inhibited, but it is here catalyzed by the pep-
tide cycle. This is the mark of a metabolism.

Our results are compatible with the theory
of a chemoautotrophic origin of life (5, 6) in
the presence of CO-laden volcanic exhala-
tions. For the heterotrophic origin of life in a
prebiotic broth, it has been suggested that
hydantoin derivatives of �-amino acids (not
of peptides) formed by dehydrating ring clo-
sure of N-carbamoyl-amino acids and led to
prebiotic peptides and to the emergence of an
Ur-hydantoinase (7). According to our re-
sults, hydantoins are not precursors for the
synthesis of peptides but rather are interme-
diates in the breakdown of peptides. This is

yet another example of the differences be-
tween these two theories.

The anabolic and catabolic segments of
the peptide cycle operate simultaneously and
under exactly the same conditions. This
means that in a primordial metabolism the
constituents of the peptide cycle exist under
steady-state conditions. In extant organisms,
peptides or proteins are synthesized as well as
degraded. This is a precondition for metabol-
ic control and for preventing the cellular me-
tabolism from being choked by peptides. We
suggest that the primordial peptide cycle may
have continued to function until after the
onset of cellularization.

Because the constituents of the primordial
peptide cycle are continuously formed and
degraded, they form a dynamic chemical li-
brary that scans the space of structural possi-
bilities. This library may well have been self-
selecting, because the constituents may be
differentially stabilized by bonding as ligands
to transition-metal centers, and early evolu-
tion may be seen as proceeding by positive
ligand feedback into the catalytic transition-
metal centers of the metabolism.

The new CO-driven peptide degradation
may be used for a one-pot sequencing of

peptides or proteins (at least their N-terminal
segments). The reaction may also be used for
converting a mixture of �-amino acids into a
chemical library for screening.

The hydantoin derivative resulting from a
glycylpeptide is related to the imidazol ring of
uric acid. This opens a surprise connection be-
tween the origin of peptides and a possible origin
of purines, which by extension would support
the notion of a coevolution of peptides (proteins)
and nucleic acids. The demonstrated hydrolysis
of the hydantoin derivative with (Fe,Ni)S may be
seen as the evolutionary precursor of the reaction
of hydantoinase, a metal-dependent enzyme (4).
The demonstrated hydrolysis of the urea deriva-
tive with (Fe,Ni)S may be seen as the evolution-
ary precursor of the reaction of the Ni-enzyme
urease (8). If this notion is correct, these en-
zymes and their metal dependence may well be
extant echoes from the distant past of life.
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A Quantum Laser Pointer
Nicolas Treps,1,2* Nicolai Grosse,1 Warwick P. Bowen,1 Claude

Fabre,2 Hans-A. Bachor,1 Ping Koy Lam1

The measurement sensitivity of the pointing direction of a laser beam is
ultimately limited by the quantum nature of light. To reduce this limit, we have
experimentally produced a quantum laser pointer, a beam of light whose
direction ismeasuredwith a precision greater than that possible for a usual laser
beam. The laser pointer is generated by combining three different beams in
three orthogonal transverse modes, two of them in a squeezed-vacuum state
and one in an intense coherent field. The result provides a demonstration of
multichannel spatial squeezing, along with its application to the improvement
of beam positioning sensitivity and, more generally, to imaging.

Measuring the pointing direction of a laser
beam is one of the most direct, practical, and
sensitive applications of light. It is used to
detect with high sensitivity various weak

physical effects such as spatial electro-optical
or magneto-optical variations, refractive in-
dex gradients, the motion of single macro-
molecules, or the displacements of cantile-

Table 3. L-Phe as starting material. Concentrations: 500 �mol Phe, 8.5 mmol Mg(OH)2,1 mmol FeSO4,
1 mmol NiSO4, and 3 mmol Na2S; 1 bar CO charged after 0, 4, 20, and 44 hours.

Time
(hours) pH

Phe-Phe (D) Urea (F)
Hydantoin (E)
all isomers
(�mol)

LL � DD
(�mol)

DL � LD
(�mol

LL � DD
(�mol)

DL � LD
(�mol)

0.5 9.5 4 — 4 — —
1 9.5 5 — 5 — —
2 9.4 18 — 7 — —
4 9.4 20 — 9 — 2
20 9.5 29 — 11 — 4
44 9.9 32 2 15 1 7
120 9.7 29 8 18 5 14
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vers in surface microscopes (1). On the other
hand, this type of measurement, done at the
quantum level, is one of the simplest systems
for the study of the quantum properties of
optical imaging (2). We demonstrated exper-
imentally the limit to position measurements
imposed by the quantum aspects of a usual
laser beam, in which the photons are random-
ly distributed within the transverse plane. We
showed how this standard quantum limit can
be reduced using nonclassical light with spe-
cially designed spatial quantum correlations
in both spatial coordinates (x and y), which
allows a cancellation of the quantum noise in
the position measurement. This device,
termed a “quantum laser pointer,” may be
used to improve the sensitivity of a wide
range of optical instruments. This is also a
demonstration of a multichannel nonclassical
beam of light: The photons are spatially or-
dered in the two transverse dimensions.

The most commonly used device to mea-
sure the position of the center of a beam of
light is a split detector, that is, a detector with
two or more separated areas. The difference
between the photocurrents delivered by these
areas is proportional to the displacement of
the beam relative to the detector. Because we
wanted to measure the two coordinates of the
beam’s center, we used a quadrant detector
(Fig. 1). The two currents

Ix � (Ia � Ib) � (Ic � Id),

Iy � (Ia � Ic) � (Ib � Id) (1)

(where Ia, Ib, Ic, and Id designate measure-
ments in each quadrant) are proportional,
respectively, to the horizontal and vertical
position of the laser beam in the small dis-
placement regime.

Instead of the average position of the
beam, which is difficult to measure because
of low-frequency vibrations and air index
fluctuations, we considered and measured os-
cillations of the beam position with ultrasmall
amplitude dmod at high temporal frequencies
� (� � 1 Mhz). The ultimate limit of the
position measurement is given by quantum
mechanics: The noise in the measurement
arising from the random arrival time of the
photons on the detector is responsible for a
lower limit to the amplitude d that can be
measured with a coherent beam (i.e., a perfect
usual laser beam) and corresponds to a sig-
nal-to-noise ratio equal to 1 (3). This quan-
tum noise, or shot noise, limit is given, in the
case of a TEM00 (transverse electromagnetic)
beam, by

dQNL � 
	

8

w0


N
(2)

where w0 is the waist of the Gaussian beam
and N is the number of photons detected per
measurement time interval 
t. To demon-

strate this limit experimentally, we first
measured the quantum noise n(�) with no
modulation, using standard quantum optics
techniques (4 ), and then added a very small
modulation of the beam position d(�). The
recorded signal contains both the actual
displacement signal and the quantum noise.
This noise can be reduced by averaging the
traces over a long time, but at the expense
of fast response time. We therefore chose a
fixed integration time, 
t. We can be sure,
with a reasonable degree of confidence,
that the signal is due to an actual beam
oscillation, rather than to a large fluctuation
of the background noise, when the total
signal— displacement and noise—is larger
than the quantum noise alone. For example,
we can choose as the smallest detectable
amplitude that value for which the two
traces differ by 3 standard deviations.

To determine the oscillation amplitude at
a defined analysis frequency �, we used a
spectrum analyzer, which demodulates the
signal and measures the power spectral den-
sity. It displays the value for n(�)2 � d(�)2

on a logarithmic dB scale (Fig. 2A). We
chose as the detection time 
t � 10 �s and
set the resolution bandwidth (RBW) and vid-
eo bandwidth (VBW) of the spectrum ana-

1Australian Research Council Centre of Excellence for
Quantum-Atom Optics, the Australian National Uni-
versity, Canberra ACT 0200, Australia. 2Laboratoire
Kastler Brossel, Université Pierre et Marie Curie, case
74, 75252 Paris cedex 05, France.
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Fig. 1. Measurement of laser beam direction. A
laser beam is incident on a quadrant detector.
Simple arithmetic operations are performed on
the four photo currents to produce signals Ix
and Iy, which are proportional to the displace-
ment in the horizontal and vertical axes, re-
spectively. An example signal for Ix is plotted.
The standard deviation of the signal �I defines
the quantum noise limited displacement dQNL.

Fig. 2. (A) Measurement of
horizontal displacement sig-
nal ramped up in time, with
(i) coherent beams and (ii)
spatially squeezed beams.
Both radio-frequency spec-
trum analyzer traces are the
averages of 20 runs with
VBW� RBW� 1 kHz. The
observed noise reduction of
the squeezed beams mea-
surement is 3.3� 0.2 dB. (B)
Data from (A) processed to
show signal-to-noise im-
provement (left vertical axis)
plotted against the inferred
displacement. Traces (iii)
and (iv) show the results
from data (i) and (ii), re-
spectively. The squeezing
translates into an increase
in displacement sensitivity.
Choosing a 99% confidence
level (right vertical axis), the
smallest displacement de-
tectable improved from 2.3
to 1.6 Å.
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10.2. A Quantum Laser Pointer

lyzer to 1 kHz. We used a mirror mounted on
a piezo-electric transducer to perform the os-
cillation. The modulation amplitude dmod was
slowly increased over time. The upper curve
corresponds to the measurement performed
with a coherent state and is the best measure-
ment that can be achieved with classical
means. The lower curve corresponds to the
same measurement but with the nonclassical
beam, called a “spatially squeezed” beam,
that we produced as described below. The
signal differs from the background noise for a
modulation amplitude, which is greater for
the coherent beam than for the spatially
squeezed beam. In Fig. 2B, the same data are
normalized to the respective noise levels,
both for a usual laser and for a spatially
squeezed beam. The vertical axis is now the
difference between the measured signal and
the noise with no displacement, and the traces
for the coherent and the spatially squeezed
beams are superimposed. In the case of the
spatially squeezed light, the average of the
signal trace crosses the threshold of confi-
dence, set here at 3 standard deviations, for a
smaller oscillation amplitude. We found a cor-
responding oscillation amplitude of 1.6 Å and
an improvement by a factor of 1.5 compared
with the standard quantum noise limit. Because
both traces increase linearly with dmod, this
result is independent of the choice of confi-

dence level. Most important, we have achieved
such an improvement for two simultaneous
measurements performed on the beam, namely
the oscillation amplitudes in two orthogonal
directions.

Let us consider a beam incident and cen-
tered on a quadrant detector. As in (3), we
describe the electric field operator by

Ê x, y� � �
i

âi ui x, y� (3)

where (x, y) are the transverse coordinates,
[ui] is a complete basis of transverse modes,
and âi is the corresponding annihilation op-
erator. Because the displacement to be mea-
sured is very small compared with the diam-
eter of the beam, the noise on the signals Ix

and Iy of Eq. 1 can be calculated when the
beam is exactly centered, that is, when

��
x � 0

Ê†Ê dxd y� � ��
x � 0

Ê†Ê dxd y� and

��
y � 0

Ê†Ê dxd y� � ��
y � 0

Ê†Ê dxd y� (4)

We chose the transverse modes basis such
that the first transverse mode u0 has the shape
of the input beam, u0(x,y) � �Ê(x,y)�/�E(x,y)�.
Then we defined two “flipped modes,” u1 and
u2, such that u1(x,y) � �u0(x,y) for x � 0,
u1(x,y) � u0(x,y) for x � 0, u2(x,y) �

�u0(x,y) for y � 0, and u2(x,y) � u0(x,y) for
y � 0. The important point is that Eq. 4
ensures that u0, u1, and u2 are orthonormal
and hence can actually be the beginning of a
transverse-mode basis. It can be shown that
the noise in the horizontal and vertical mea-
surements arises only from the noise of u1

and u2, respectively (5). Hence, both mea-
surements can be improved if and only if both
modes are vacuum-squeezed states. These
considerations show that to improve simulta-
neously two independent measurements on a
light beam, it is necessary to use a multimode
transverse beam containing two squeezed
states in the mode u1 and u2, that is, a true
spatially multimode squeezed beam (6 ).
This analysis can be extended to an arbi-
trary number of independent measure-
ments, each measurement being a channel
in an information theory point of view: To
improve an n-channel measurement beyond
the standard quantum limit, one needs to
use n squeezed states in appropriate modes.
This bears a strong similarity to the quan-
tum study of superresolution (7 ).

To construct our quantum laser pointer,
three beams are necessary, two in squeezed-
vacuum states and the third in an intense
coherent state. These three beams have to be
mixed, avoiding any losses for at least the
two squeezed beams, because that would de-
stroy the squeezing. In our setup (Fig. 3), the
two highly squeezed beams (about 4 dB) are
produced by two optical parametric amplifi-
ers (OPAs) (8) driven by one laser. We chose
an unusual spatial mode distribution: The
transverse mode u0 (corresponding to the
bright coherent state) is the horizontally
flipped mode of a TEM00 mode. Hence, the
first squeezed beam (u1) is in the TEM00

mode and the second squeezed beam (u2) is
in a “doubly flipped” TEM00 mode, as shown
in the phase distribution maps in Fig. 3. The
transverse modes are produced with optical
wave plates made from birefringent half
wave plates that were assembled at the ap-
propriate 	/2 angle. We used either two sin-
gly flipped wave plates or a four-quadrant
wave plate. The mixing is achieved with a
ring optical cavity. The TEM00 squeezed
beam can be transmitted with nearly 100%
efficiency in the case of an impedance-
matched cavity. Because we chose a transver-
sally nondegenerate cavity, the other
squeezed beam, which is in a transverse mode
orthogonal to the TEM00 mode, is reflected at
the output mirror of the cavity and then per-
fectly mixed with the first squeezed beam.
The cavity had a finesse of around 35, and
we measured an efficiency of �95% for the
transmitted beam and �94% for the reflect-
ed beam. The limit in efficiency came es-
sentially from the imperfections of the OPA
beam shape compared with a TEM00 mode.
This technique for mixing the two beams

Fig. 3. Schematic of the
experiment. SHG, second
harmonic generator; OPA,
optical parametric ampli-
fier; MC, mode cleaner;
95/5, beam splitter with
95% reflectivity; TEM00,
squeezed TEM00 mode
used for improving the
horizontal measurement;
TEMf0f0, squeezed TEMf0f0
mode used for improving
the vertical measure-
ment; TEMf00, coherent
TEMf00 mode used as a
local oscillator. Dotted
lines, 532 nm light; solid lines, 1064 nm light.

Fig. 4. Measured spectra show-
ing the noise reductions in both
horizontal and vertical measure-
ments. The top trace corre-
sponds to the quantum noise
limit (QNL), whereas the two
lower ones correspond to the
noise in the vertical and the hor-
izontal measurements done with
a spatially squeezed beam. The
noise spectra are normalized to 0
dB � QNL.
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had, to our knowledge, never been imple-
mented before and can be extended to a
wide range of applications. In particular, it
can be used to mix any two orthogonal
transverse modes. Finally, the resulting
beam is mixed with the coherent beam on a
95%/5% beam splitter as in (5).

The experiment was performed in a fully
locked configuration, stable for at least 10 min-
utes. The detection was performed with a quad-
rant detector, each of the quadrants having a
high quantum efficiency (more than 90%), and
the corresponding electronic amplifiers were
optimized to ensure their exact balance (9). The
four individual photocurrents were combined to
measure the quantities Ix and Iy of Eq. 1. A
spectrum analyzer was used to perform the
demodulation and obtain the detection at 4.3
MHz. A first experiment, without any modula-
tion, showed the amount of noise reduction we
could obtain (Fig. 4). We achieved simulta-
neously 3.05 � 0.1 dB of horizontal noise
reduction and 2.0 � 0.1 dB of vertical noise
reduction. The configuration used here is scal-
able, and it is possible to increase the number of
independent modes with a slight variation of the
layout. From a quantum information point of
view, each transverse mode is an independent
communication channel, and the usual quantum
communication proposals can be extended to
the multichannel configuration (10, 11). This
same beam of light was used to perform the
displacement measurement described above.

Our experiment can be considered with equal
interest from different points of view. On the
fundamental side, it is now possible to experi-
mentally mix several nonclassical beams in or-
thogonal transverse modes, thereby producing
multimode spatially squeezed beams. This abil-
ity is of major importance in the field of quantum
imaging. On the quantum information side,
this experiment opens the way to the use of
multimode light in the parallel processing of
quantum information. Finally, this experi-
ment clearly demonstrates the practical ap-
plicability of spatial squeezing to displace-
ment measurements. As a major advance,
this experiment overcomes most of the tech-
nical obstacles. In particular, we can avoid
losses in the mixing of the transverse modes.

Our technique can be used to improve the
measurement of a displacement induced by
interaction with a physical system, as dis-
cussed in (12), even if this interaction intro-
duces losses. Indeed, it will be possible to
mix the coherent state with the squeezed
states after the interaction, and without loss-
es. Real applications will follow after the
production of easy-to-use, efficient sources
of squeezed light.
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Electrical Manipulation of
Magnetization Reversal in a
Ferromagnetic Semiconductor
D. Chiba,1 M. Yamanouchi,1 F. Matsukura,1 H. Ohno1,2*

We report electrical manipulation of magnetization processes in a ferromag-
netic semiconductor, in which low-density carriers are responsible for the
ferromagnetic interaction. The coercive force HC at which magnetization re-
versal occurs can be manipulated by modifying the carrier density through
application of electric fields in a gated structure. Electrically assisted magne-
tization reversal, as well as electrical demagnetization, has been demonstrated
through the effect. This electrical manipulation offers a functionality not pre-
viously accessible in magnetic materials and may become useful for reversing
magnetization of nanoscale bits for ultrahigh-density information storage.

Magnetization reversal is a fundamental process
for writing information, or bits, onto magnetic
materials used in data storage, and is generally
done by applying magnetic fields locally to the
magnetic material. In order to realize higher data
density per unit area, the magnetic energy den-
sity of the material has to be increased to make
the nanometer-scale magnetic bits stable against
thermal fluctuations, which at its limit pushes

the required magnetic fields for writing too high
to generate. Manipulation of magnetization re-
versal by other means has thus become an im-
portant challenge for magnetic information stor-
age (1–5). We show that electrical manipulation
of the magnetization processes is possible in a
semiconducting ferromagnetic material and
demonstrate electrically assisted magnetization
reversal, as well as electrical demagnetization.

Fig. 1. (A) Hall bar-
shaped field effect
transistor having a ferro-
magnetic semiconduc-
tor (In,Mn)As channel.
To probe themagnetiza-
tion M of the channel,
Hall resistance RHall �
VHall/I proportional to
the channel magne-
tization is measured.
(B) Temperature depen-
dence of RHall (� M)
versus magnetic field
�0H curves with square-
shaped hysteresis up to
temperatures below 50
K in sample A. Sample A
has a ferromagnetic
transition temperature
of 52 K. No electric field
is applied (E � 0). Mag-
netic field sweep rate is
3.7 mT/min.
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variables: displacement and tilt of a Gaussian beam
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We consider the problem of measurement of optical transverse profile parameters and their conjugate vari-
able. Using multimode analysis, we introduce the concept of detection noise modes. For Gaussian beams,
displacement and tilt are a pair of transverse-profile conjugate variables. We experimentally demonstrate
the optimal encoding and detection of these variables with a spatial homodyning scheme. Using higher-order
spatial mode squeezing, we show the sub-shot-noise measurements for the displacement and tilt of a Gauss-
ian beam. © 2006 Optical Society of America

OCIS code: 270.6570.

Quantum information protocols rely on the use of
conjugated variables of a physical system for infor-
mation encoding. For single-mode continuous-
variable systems, there are only a very limited num-
ber of choices for such conjugate-variable pairs.
Phase and amplitude quadrature measurements
with a balanced homodyne detector or polarization
Stokes parameter measurements using polarization
discriminating detectors1,2 are the common conjugate
variables used experimentally.

By not restricting ourselves to single-mode analy-
sis, we can use the ability of a laser beam to transmit
high multimode information by extending these pro-
tocols to the transverse spatial domain. The trans-
verse profile of the beam is then described by a set of
orthonormal modes that potentially allows a parallel
treatment of information. Recently this parallel pro-
cessing scheme was used in single-photon experi-
ments to extend q-bits to q-dits using modes with
higher angular momentum.3,4

Such an improvement requires perfect matching of
the detection system to the spatial information con-
tained in the light beam. Indeed, we have shown that
a single detector extracts information from only one
specific transverse mode of the beam.5 We call this
mode the noise mode of detection since it is the only
mode contributing to the measurement noise. As a
consequence, information encoded in any other mode
orthogonal to the detection noise mode is undetected.
Moreover, noise modes of detection are the transverse
spatial modes whose modulation in magnitude is
transferred perfectly to the detected output as a
photocurrent.

The use of classical resources sets a lower bound on
detection performance that is called the quantum
noise limit (QNL) and arises from the random time
arrival of photons on the detector. In the case of dis-

placement measurement of a laser beam, the trans-
verse displacement dQNL of a TEM00 laser beam cor-
responding to a signal-to-noise ratio (SNR) of 1 is
given by dQNL=w0 /2
N, where w0 is the waist of the
beam and N is its total number of photons in the in-
terval �=1/RBW, where RBW is the resolution
bandwidth.6 Note that the ability to resolve signal
relative to noise can be further improved by averag-
ing with the spectrum analyzer, by reducing the
video bandwidth (VBW) and thus increasing the
number of photons detected in the measurement in-
terval, if the system has enough stability. For a
100 �m waist, 1 mW of power at a wavelength of �
=1 �m, with RBW=100 kHz and VBW=100 Hz, the
quantum noise limit is, for instance, given by dQNL
=0.2 nm, and the minimum measurable transverse
displacement is dmin=7 pm.

To achieve a measurement sensitivity beyond the
QNL, it is a necessary and sufficient condition to fill
the noise mode of detection with squeezed light.5 As
required by commutation relations, a measurement
of the conjugate variable shows excess noise above
the QNL.

In this Letter we first explain how spatial informa-
tion can be encoded onto a beam and how optimized
measurement of spatial properties of a beam can be
achieved classically. As an example, we use the dis-
placement and tilt of a Gaussian laser beam7 (which
are two spatial conjugate variables) to show the
quantitative results of SNR measurements that sur-
pass the quantum noise limit.

Encoding information in the transverse plane of a
laser beam can be achieved by modulating any of its
scalar parameters p around a mean value p0. This
parameter can correspond to any deformation of the
transverse profile, such as displacement and tilt,
which are properties that are easy to visualize and to
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10. Le nano positionnement

use in practice. In the simple case of a TEM00 mode,
the parameterized beam can then be written in the
general form by considering the first-order Taylor ex-
pansion for small modulations �p−p0� /p0�1:

u00�p� � u00�p0� + �p − p0�
��u00�

�p
, �1�

where uij denote the TEMij Hermite–Gauss modes
and uij�p� denotes the same mode that experienced
the modification induced by p. Specifically, a trans-
versely displaced and tilted beam along the x direc-
tion is given by

u00�d� = u00 + d
��u00�

�x
= u00 +

d

w
u10, �2�

u00�	� = u00 + 	
��u00�

�	
= u00 + i


	w

�
u10, �3�

where d, 	, and w are the displacement, tilt, and
waist diameter of the beam in the plane of observa-
tion, respectively.7 Equations (2) and (3) show that
small displacement information of a Gaussian beam
is encoded in the amplitude quadrature of the co-
propagating TEM10 mode, while small tilt modula-
tion is directly coupled to the phase quadrature of the
TEM10 mode.

To extract this spatial information out of the modu-
lated beam, let us consider the example of homodyne
detection. This device selects the particular mode of
the incoming beam, which is matched to the local os-
cillator transverse profile. Thus, the detection noise
mode is the one imposed by the local oscillator. By
changing the transverse distribution and phase of
the local oscillator, �LO, one can, at will, tune the
noise mode of detection to any spatial information of
the incoming beam. In addition, by squeezing the

noise mode of the incoming beam, one can improve
the measurement sensitivity. This apparatus, which
we call a spatial homodyne detector, is therefore a
perfect tool for multimode quantum information pro-
cessing.

In the case of small displacement and tilt measure-
ment, a homodyne detector with a TEM10 local oscil-
lator can measure the TEM10 component of an incom-
ing beam with up to 100% efficiency. Hence, the
detector precisely matches the displacement and tilt
conjugate observables of a TEM00 incident beam. A
TEM10 spatial homodyne detector, as shown in Fig. 1,
is in this sense an optimal small displacement and
tilt detector. Note that this scheme is not only 25%
more efficient than the conventional split detector for
measuring a displacement,8 it is also sensitive to tilt,
which is not accessible in the plane of a split detector.

As the TEM10 mode is the noise mode of the spatial
homodyne detector, we can experimentally improve
the detection sensitivity by filling the TEM10 mode of
the input beam with squeezed light. This nonclassi-
cal beam is produced with an optical parametric am-
plifier (OPA) that emits a very low power (pW) 3.6 dB
squeezed TEM00 mode at 1064 nm (note that a ring
cavity—not represented in Fig. 1—spatially filters
the laser beam to a pure TEM00 mode that is used as
the main TEM00 mode and produces a shot-noise-
limited beam for frequencies greater than 1 MHz
that is used to seed the OPA). A phase mask converts
the low-power squeezed beam into a TEM10 mode,
with an efficiency of 80%,9 which brings the squeez-
ing level in the TEM10 down to 2 dB. This squeezed
TEM10 beam is combined (with less than 5% losses)
with the main bright TEM00 beam by means of a
modified Mach–Zehnder interferometer.6 This beam
interacts with a piezoelectric (PZT) actuator that in-
duces simultaneously displacement and tilt at RF
frequencies �4 MHz�. Note that the relative amounts
of tilt and displacement are fixed here by the charac-
teristics of the actuator. This beam is analyzed with a
homodyne detector whose TEM10 local oscillator
beam is produced via a misaligned ring cavity that is
resonant for the TEM10 mode. Note that mode match-
ing between these two beams is achieved in a pre-
liminary step by measuring a fringe visibility of 97%
between the bright TEM00 mode and the TEM00 mode
generated when the cavity is locked on resonance for
the TEM00 mode instead of the TEM10 mode.

The experimental results obtained with the spec-
trum analyzer in zero-span mode at 4 MHz when the
TEM10 local oscillator phase is scanned and locked
for displacement ��LO=0� and tilt ��LO=
 /2� mea-
surement are presented in Figs. 2(a) and 2(b), respec-
tively. Note that, without the use of squeezed light,
the displacement modulation is masked by quantum
noise. Improvement of the SNR for displacement
measurement beyond the quantum noise limit is
achieved when the squeezed quadrature of the
TEM10 mode is in phase with the displacement mea-
surement quadrature (i.e., in phase with the incom-
ing TEM00 mode). Since we are dealing with conju-
gated variables, improving displacement mea-

Fig. 1. (Color online) Schematic diagram of the experi-
ment for optimal displacement and tilt measurements with
a spatial homodyne detector. A TEM00 mode, which is dis-
placed and tilted using a PZT actuator (i), is mode matched
to the TEM10 local oscillator (ii) of a balanced homodyne de-
tector (iii). The TEM10 local oscillator selects the quadra-
tures amplitude of the TEM10 component of the input beam
that contains the small displacement and tilt information
of the incident TEM00 beam (iv).
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surement degrades the tilt measurement of the same
beam, as required by the antisqueezing of the other
quadrature. Displacement measurement is improved
by the 2 dB of squeezing, whereas the tilt measure-
ment is degraded by the 8 dB of antisqueezing. The-
oretical curves calculated with 2 dB of noise reduc-
tion and 90% of tilt modulation and 10% of
displacement modulation [smooth curves in Fig. 2(a)]
are in very good agreement with the experimental

data. In our experiment, we have a TEM00 waist size
of w0=106 �m in the PZT plane, a power of 170 �W,
RBW=100 kHz, and VBW=100 Hz, corresponding to
a QNL of dQNL=0.6 nm. The measured displacement
lies 0.5 dB above the squeezed noise floor, yielding a
displacement modulation 0.08 times larger than the
QNL. As the modulation has a square dependence on
the displacement d, we get dexp=
0.08dQNL
=0.15 nm. This would correspond to a trace 0.3 dB
above the QNL and cannot therefore be clearly re-
solved without squeezed light. The ratio between the
displacement and tilt modulation can be inferred
from the theoretical fit in Fig. 2, giving a measured
tilt of 0.13 �rad.

We have demonstrated a technique for encoding
and extracting continuous-wave quantum informa-
tion on multiple co-propagating optical modes. We
use spatial modulation as a practical technique to
couple two transverse modes and have devised a de-
tection system whose noise mode perfectly matches
beam position and momentum variables, which are a
pair of conjugate transverse variables.

This work shows that in principle a large set of or-
thogonal multimode information is accessible. We
can already simultaneously encode and detect infor-
mation in the x and y directions,10 which corresponds
to simultaneous use of TEM10 and TEM01 modes.
Possible extension of this approach to array detectors
and higher-order spatial modes will be investigated.
This technique, demonstrated here in the context of
quantum imaging, leads to feasible parallel quantum
information processing.

We thank Claude Fabre, Magnus Hsu, Warwick
Bowen, and Nicolai Grosse for stimulating discus-
sions, and Shane Grieves for technical support. This
work was made possible by the support of the Austra-
lian Research Council Centre of Excellence program.
V. Delaubert’s e-mail address is vincent.delaubert
@anu.edu.au.
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Tools for Multi-mode Quantum Information: Modulation, Detection and Spatial

Quantum Correlations

M.Lassen1,2, V.Delaubert1,3, H-A.Bachor 1,, ∗ P.K.Lam1, N.Treps3, P.Buchhave 2, C.Fabre3, and C.C.Harb 1,41

1The Australian National University, ACQOA, Canberra ACT 0200, Australia
2Department of Physics, DTU, Building 309, 2800 Lyngby, Denmark

3Laboratoire Kastler Brossel, 4 place Jussieu, case 74, Paris 75252 Cedex 05, France
4 School of Information Technology and Electrical Engineering,

University College, The University of New South Wales, Canberra, ACT, 2600.
(Dated: July 7, 2006)

We present here all the required tools for continuous variable parallel quantum information proto-
cols based on multi-mode quantum correlations and entanglement. We describe our ability to encode
and detect quantum information with high efficiency. We experimentally demonstrate the gener-
ation of spatial correlations or optical squeezing in higher order transverse Hermite-Gauss modes.
The higher order mode squeezing is achieved by the mode selective tuning of the phase matching
condition and the cavity resonance condition of the nonlinear χ

(2) optical parametric amplification.

PACS numbers: 42.50.-p; 03.67.a; 42.50.Dv

Optical quantum communication and information pro-
cessing is developing rapidly [1]. Both single photons
and continuous wave laser beams (CW) are being used,
already enabling the generation, transmission and detec-
tion of quantum correlations. One of the advantages of
CW optical techniques is that close to perfect modulation
and detection schemes are available, which is a require-
ment for the effective use of squeezed and entangled light
[2–5] for applications such as sensing and gravitational-
wave detection [6], quantum communication [7], crypto-
graphy [8–10] and quantum logic.

FIG. 1: A multi-mode optical system for quantum commu-
nication and information processing.

The aim of our research is to explore how a single laser
beam can be used to carry multiple quantum informa-
tion encoded in orthogonal modes. Conventionally, the
information is encoded on the two quadratures of a single
mode TEM00 laser beam [11, 12], where each quadrature
contains a spectrum of modulations as well as quantum
correlations. However, it is possible to use the transverse
spatial modes to carry additional information and entan-
glement. Restricting ourselves to variations along one
dimension of the transverse plane, x, we will denote the
higher order Hermite-Gauss (H-G) modes TEMn0, with
spatial mode function un(x). The first H-G modes are

∗Electronic address: Hans.Bachor@anu.edu.au

directly related to small spatial variations of a Gaussian
beam [13]. The real and imaginary parts of the TEM10

mode represent changes in tilt, δθ, and transverse po-
sition, δd, of a TEM00 beam [14], whereas the real and
imaginary parts of the TEM20 mode are related to a waist
size mismatch, δw, and a waist position mismatch along
the propagation axis, δz. The following equation quanti-
fies these relationships:

E(x) = A0

[
u0(x) +

(
δd

w0
+ i

πw02δθ

λ

)
u1(x)

+

√
2δw

w0
u2(x) + i

δzπλ

w2
0

(u0(x) + u2(x))

]
,(1)

where A0 is the amplitude, w0 is the waist and λ is the
wavelength.

We can synthesize a multi-mode laser beam which
combines the TEM00 mode with the higher order trans-
verse modes TEM01, TEM10, TEM02 and TEM20 [14,
15]. Each mode contains two quadratures and can be
squeezed. It is possible to address each mode individu-
ally and to encode signals via efficient spatial modulators.
We can also transfer modulation from one mode to an-
other. Such a multi-mode system can provide advantages
in regard to the complexity of the protocols [16] and al-
lows the parallel transfer of quantum information. This
is complementary to single photon systems designed to
transmit more than q-bits or q-dits [17, 18].

The key requirements for the CW multi-mode inform-
ation system is our availability of simple and fully effi-
cient modulation and detection of quantum information
of a laser beam and our ability to generate and combine
higher order modes selectively with high efficiency. We
can preform information encoding using mechanical or
electro-optic spatial modulators directly into the trans-
verse orthogonal modes. These devices are simple and
can have close to perfect efficiencies [14, 15]. The detec-
tion of these modes requires special attention. Conven-
tional spatial detectors, such as split detectors or diode
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arrays, are simple but provide only limited efficiency not-
ably because of their geometry. For example, the best
theoretical efficiency of a split detector for displacement
measurements is only 64% [19]. In contrast, spatial ho-
modyne detectors, with a local oscillator (LO) beam that
is mode matched to the higher order mode under investig-
ation can achieve, in theory, perfect detection efficiency.
We have shown efficiency values of more than 96% in
ref. [14, 20]. This combination of modulation, detection
and combination of higher order modes means that we
have all the tools for encoding and readout of spatial
quantum information. The crucial component missing
until now was the selective and efficient generation of
quantum correlations or squeezing in higher order trans-
verse modes. In this paper we fill this technology gap
by demonstrating an experimental technique for select-
ively generating the required squeezed spatial modes. We
exploit the subtle physics of phase matching in type I
second order (χ(2)) nonlinear processes to select the in-
dividual transverse modes and to squeeze the modes.

The nonlinear interaction in second harmonic genera-
tion (SHG) and optical parametric amplification (OPA)
are reciprocal. We analyze the mode up-conversion of a
single pass SHG to optimize the performance of our OPA.
The SHG process combines two fundamental photons
from the pump beam to generate one second harmonic
(SH) photon with twice the energy. The transverse pro-
file of the SH mode therefore corresponds to the decom-
position of the square of the fundamental pump mode
profile into the SH basis. In the general case, the gener-
ated SH field is hence composed of several components.
These components are all even since the TEMn0 pump
squared profile is necessarily even. 2n is their highest or-
der as the squared TEMn0 profile does not project onto
higher order modes. The normalized profile of the gen-
erated SH field for a TEMn0 pump can thus be written
as: En(x) =

∑n

i=1 Γniv2i(x), where v2i denotes the even

SH modes and Γni =
∫
∞

−∞

u2

n
(x)

αn

v2i(x)dx describes the
spatial mode overlap between the squared pump and the
SHG modes in the transverse plane, where un denotes the
fundamental modes and α2

n =
∫
∞

−∞
u4

n(r)dx corresponds
to the normalization of the squared pump.

The common case of using a TEM00 mode for the pump
yields Γ00 = 1 and corresponds to a perfect spatial over-
lap as the profile of the generated SH mode is also a
TEM00 mode. For non TEM00 pump modes, the overlap
coefficients calculated for a TEM10 pump are given by
Γ10 = 0.58 and Γ12 = 0.82 , for a TEM20 mode pump
Γ20 = 0.47, Γ22 = 0.44 and Γ24 = 0.77. The presence
of several non zero coefficients implies that for all cases,
except a TEM00 pump mode, the generated profiles do
not correspond to the pump intensity distribution.

In order to test this simple mode overlap model for
second order nonlinear interaction, we pump a single pass
SHG experiment with a TEMn0 pump mode, the exper-
imental setup is shown in Fig. 2 a). We use a lithium
niobate crystal (MgO:LiNbO3) in a type I second order
(χ2) nonlinear interaction [21]. The TEMn0 pump mode,

wavelength of 1064 nm produced by a diode-pumped
NPRO Nd:YAG laser, is generated by misaligning a ring
cavity, designed to prevent any transverse mode degener-
acy and locked to the resonance of the TEMn0 mode. The
locking of the cavities is achieved by using the Pound-
Drever-Hall method [22]. This mode converting device
delivers a pure transverse TEMn0 output mode, which is
then focused into the crystal such that zR = l/2, where
zR is the beam Rayleigh range and l is the crystal length.
A dichroic mirror, DM, is used to filter out the funda-
mental pump field, and the SH profile is detected with a
CCD camera in the far field using an imaging lens.

FIG. 2: a) Scheme for single pass SHG measurement. b)
SH profiles generated in the crystal far field for three phase
matching temperatures. (i) TEM10 and (ii) TEM20 pump
mode. The cross-section traces contain both the data and
theory fits.

The generated SH profiles, normalized to their max-
imum, are presented for different crystal temperatures in
Fig. 2 b)(i) and b)(ii) for a TEM10 and TEM20 pump
mode, respectively. It is clearly observed that the spa-
tial distribution of the SH field varies strongly with the
phase matching temperature of the nonlinear interaction.
In the case of a TEM10 pump the SH field can be con-
verted from a predominantly TEM00 mode to a predom-
inantly TEM20 profile. Tuning the crystal temperature
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allows reproducible control over the coefficients of the lin-
ear combination between the TEM00 and TEM20 modes.
Similarly, for the TEM20 pump mode we find that the SH
field is a crystal temperature dependant linear combina-
tion of the TEM00, TEM20 and TEM40 modes. This is in
good agreement with the calculated overlap coefficients.

This phenomenon can be explained if we consider the
propagation of the H-G modes. The H-G modes have
different Gouy phase shifts [23], and consequently not all
of the SH components are simultaneously phase matched
with the pump along the length of the crystal. Since the
birefringence of lithium niobate is highly temperature de-
pendant, phase matching for each mode occurs at differ-
ent crystal temperatures. Allowing small variations of
the coefficients given in the mode overlap integral to ac-
count for the mode selectivity and including phase shifts
between each component to account for the Gouy phase
shift accumulated during the propagation, we see an ex-
cellent agreement between the theoretical prediction and
the experiment, as shown by the cross-section traces in
Fig. 2. This proves that transverse mode coupling can
be fully described by our simple mode-overlap model and
that no coupling with other modes need to be considered.

Since the first generation of squeezed states by para-
metric down conversion by Wu et al. in 1986 [24], OPAs
have proven to reliably produce up to 6 dB of squeezing
[25] and down to sub-kHz frequencies [6], but have been
limited to TEM00 mode operation. The use of such a
system to generate squeezing in higher order H-G modes
has to date not been demonstrated.

As discussed previous the ideal profile of the pump
beam should match the square of the seed beam. Al-
though generating such a complicated multi-mode pump
beam is in principle possible by using holograms [26]
or using a spatial light modulator, we chose to simply
use the TEM00 green mode delivered by the laser at the
cost of reduced parametric interaction. Also the mode-
mismatch between the SH TEM00 pump mode and fun-
damental TEMn0 seed modes leads to nonlinear losses
and noise, which will degrade or even destroy the non-
classical correlations. It is therefore very important to
mode-match the SH TEM00 pump mode with the fun-
damental TEMn0 seed mode of the OPA cavity. In or-
der to achieve better mode-matching with a non-optimal
pump we use the effect of mode selective phase match-
ing to tune the OPA cavity to a specific mode. Per-
fect phase-matching temperature is measured at approx-
imately 63.20 Celsius. In order to generate TEMn0

squeezing with a non-optimal TEM00 SH pump mode,
we change the temperature of the nonlinear crystal to
approximately 62.80 Celsius. We find that the nonlin-
ear interaction is increase with respect to case of perfect
mode-matching temperature, this is due to better spatial
overlap between the SH pump and seed modes. From
Fig. 2b)(i) and b)(ii) can it be seen that the multi-mode
SH pump mode is mainly a TEM00 mode and therefore
the spatial overlap between the non-optimal TEM00 SH
pump mode and the TEMn0 seed mode is increased.
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FIG. 3: Experimental setup to generate TEMn0 transverse
mode squeezing. An OPA is seeded with a infrared misaligned
TEM00 beam. The cavity is then locked to the TEMn0 mode
and pumped with a SH TEM00 beam. The TEMn0 squeezed
beam thereby produced is analyzed using spatial homodyne
detection, whose TEMn0 LO is created from a misaligned ring
cavity. Transverse beam profiles are represented in the case
of TEM10 mode squeezing.

A schematic diagram of our experimental setup to gen-
erate higher order squeezing with non-optimal pump is
presented in Fig. 3. The figure shows an hemilithic OPA
with a near-concentric cavity design, the nonlinear crys-
tal is a lithium niobate (MgO:LiNbO3) crystal. All the
technical details about the operation of the OPA can be
found in ref. [27]

The measured squeezing in the three first H-G modes
is shown in Fig. 4 with a resolution bandwidth of 300 kHz
and a video bandwidth of 300 Hz at a detection frequency
of 4.5 MHz. All traces are normalized to the quantum
noise level (QNL), which is given by trace ii) and is meas-
ured by blocking the squeezed beam before the homodyne
detector. Traces i) and iii) are obtained by scanning the
LO phase and locking to the squeezed amplitude quad-
rature. The squeezing and anti-squeezing values are cor-
rected for electronic noise, which is measured about -9 dB
below the QNL. We measured −4.0 ± 0.1 dB of squeez-
ing and +8.5 ± 0.1 dB of anti-squeezing for the TEM00,
−2.6 ± 0.1 dB of squeezing and +5.4 ± 0.1 dB of anti-
squeezing for the TEM10 and −1.5± 0.1 dB of squeezing
and +2.7 ± 0.1 dB of anti-squeezing for the TEM20.

The detection efficiency of our experiment is affected
by different kind of losses. The efficiency of photo-
detection and propagation through the optics is recorded
as ηprop = 0.90± 0.06. The homodyne efficiency is meas-
ured to be ηhd(TEM00) = 0.98 ± 0.02, ηhd(TEM10) =
0.95 ± 0.02 and ηhd(TEM20) = 0.91 ± 0.02 for the dif-
ferent modes. This mode dependance is due to the
larger spatial extension and stronger aperturing of the
higher order modes by the optics. The induced losses
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FIG. 4: Experimental squeezing traces for a) TEM00, b)
TEM10 and c) TEM20 recorded by homodyne detection. The
different traces are i) Scan of the relative phase between the
LO and the squeezed beam. ii) The quantum noise limit. iii)
Locked to the squeezed amplitude quadrature.

due to non-optimal pump mode limit us presently to
noise suppressions of -2.6 dB and -1.5 dB for the TEM10

and TEM20 mode. However, we can infer about -7 dB
and -5 dB of noise suppression inside the OPO. This is
similar to the degree of squeezing observed in conven-
tional CW quantum information experiments, future re-
finements will allow us to increase the observed squeez-
ing.

To our knowledge this is the first demonstration of
higher order transverse mode squeezing. Temperature
dependent phase matching of spatial modes is shown in
a single pass SHG experiment. It shows that mode coup-
ling between different transverse modes is possible in a
second order type I nonlinear interaction, and that the ra-
tio and phase between the generated SH components can
be adjusted continuously via crystal temperature. This is
the key effect for coupling the higher order modes using
nonlinear interactions such as SHG or OPA. We combine
all this to show the generation of squeezed light in the
TEM10 and TEM20 H-G modes. We believe that using
an optimal pump mode the output field of the OPA can
in principle be squeezed in an arbitrary higher order H-G
mode.

Our experiments have demonstrated all the necessary
tools for multi-mode parallel quantum information. The
encoding of quantum information is direct and efficient
since the higher order modes contain information that
is directly linked to the position, momentum, size and
focussing of a TEM00 mode. The detection with spatial
homodyne detection is very efficient. These important
result opens the way for quantum information processing
with continuous variables in the transverse plane using
the basis of H-G modes. The technology for multiple
squeezers driven by one laser is available [28] and we can
now consider the synthesis of multi-mode beams with at
least 5 orthogonal modes, each with a pair of commuting
variables. We can now envision a procedure to generate
entangled beams and test information protocols that are
based on parallel mode processing. These experiments
complement the work on quantum imaging which aims
at generating multi-mode spatial quantum information in
one device and to transmit, amplify and process spatial
quantum correlations [29, 30].

We would like to thank Magnus Hsu, Gabriel Hétet,
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work was supported by the Australian Research Coun-
cil Centre of Excellence scheme. ML is supported by the
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Continuous-variable spatial entanglement for bright optical beams
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A light beam is said to be position squeezed if its position can be determined to an accuracy beyond the
standard quantum limit. We identify the position and momentum observables for bright optical beams and
show that position and momentum entanglement can be generated by interfering two position, or momentum,
squeezed beams on a beam splitter. The position and momentum measurements of these beams can be per-
formed using a homodyne detector with local oscillator of an appropriate transverse beam profile. We compare
this form of spatial entanglement with split detection-based spatial entanglement.

DOI: 10.1103/PhysRevA.72.013802 PACS number�s�: 42.50.Dv, 42.30.�d

I. INTRODUCTION

The concept of entanglement was first proposed by Ein-
stein, Podolsky, and Rosen in a seminal paper in 1935 �1�.
The original Einstein-Podolsky-Rosen �EPR� entanglement,
as discussed in the paper, involved the position and momen-
tum of a pair of particles. In this paper, we draw an analogy
between the original EPR entanglement and the position and
momentum �x− p� entanglement of bright optical beams.

Entanglement has been reported in various manifesta-
tions. For continuous wave �cw� optical beams, these in-
clude, quadrature �2,3� and polarization �4� entanglement.
Spatial forms of entanglement, although well studied in the
single photon regime, have not been studied significantly in
the continuous wave regime. Such forms of entanglement are
interesting as they span a potentially infinite Hilbert space.
Spatial EPR entanglement �5� has wide-ranging applications
from two-photon quantum imaging �6,7� to holographic tele-
portation �8,9� and interferometric faint phase object quan-
tum imaging �10�.

Current studies are focused on x− p entanglement for the
few photons regime. Howell et al. �11� observed near and
far-field quantum correlation, corresponding to the position
and momentum observables of photon pairs. Gatti et al. �12�
have also discussed the spatial EPR aspects in the photons
pairs emitted from an optical parametric oscillator below
threshold. Other forms of spatial entanglement which are re-
lated to image correlation have also been investigated. A
scheme to produce spatially entangled images between the
signal and idler fields from an optical parametric amplifier
has been proposed by Gatti et al. �13–15�. Their work was
extended to the macroscopic domain by observing the spatial
correlation between the detected signal and idler intensities,
generated via the parametric down conversion process �16�.

Our proposal considers the possibility of entangling the
position and momentum of a free propagating beam of light,

as opposed to the entanglement of local areas of images,
considered in previous proposals. Our scheme is based on
the concept of position squeezed beams where we have
shown that we have to squeeze the transverse mode corre-
sponding to the first order derivative of the mean field in
order to generate the position squeezed beam �17�. Similarly
to the generation of quadrature entangled beams, the position
squeezed beams are combined on a beam splitter to generate
x - p entangled beams. We also propose to generate spatial
entanglement for split detection, utilizing spatial squeezed
beams reported by Treps et al. �18–20�. This form of spatial
entanglement has applications in quantum imaging systems.

By considering the relevant modal decomposition of dis-
placed and tilted fields, we arrive at general expressions for
the position and momentum of an optical beam. We then
limit ourselves to the regime of small displacements and tilts.
This is the relevant regime for observing quantum optical
phenomena, since for large displacements �tilts� the overlap
between displaced �tilted� and nondisplaced �nontilted�
beams approaches zero and hence they become perfectly dis-
tinguishable even in a classical sense. Applying this restric-
tion, we show that as expected the position and momentum
of an optical field are Fourier transform related. We then
consider the specific case of a beam with TEM00 mode
shape. TEM00 beams have the unique feature of satisfying
the position-momentum uncertainty relation in the equality,
and therefore represent an ideal starting point for the genera-
tion of spatial entanglement. We explicitly show that the po-
sition and momentum observables derived in this paper for a
TEM00 beam are conjugate observables which obey the
Heisenberg commutation relation. We then propose a scheme
to produce x - p entanglement for TEM00 optical beams. Fi-
nally, we consider spatial squeezed beams for split detectors
and show that it is also possible to generate spatial entangle-
ment with such beams.

II. POSITION-MOMENTUM ENTANGLEMENT

A. Definitions—Classical treatment

Let us consider an optical beam with an x- and
y-symmetric transverse intensity profile propagating along
the z axis. Since the axes of symmetries remain well defined

*Present address: Quantum Optics Group, MC 12-33, Norman
Bridge Laboratory of Physics, California Institute of Technology,
Pasadena, CA 91125, USA.

†Email address: ping.lam@anu.edu.au
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during propagation, we can relate the beam position relative
to these axes. To simplify our analysis we henceforth assume
without loss of generality, a one-dimensional beam displace-
ment, d, from the reference x axis �see Fig. 1�a��. We denote
the electric field profile of the beam by E�x�. For a displaced
beam, the electric field profile is given by

Ed�x� = E�x� + d
�E�x�

�x
+

d2

2

�2E�x�
�x2 + ¯ . �1�

In the regime where displacement is much smaller than the
beam size, we can utilize the linearized approximation where
only the zeroth and first order terms are significant. We see
from this expression that the zeroth order term is not depen-
dent on d, and that the displacement is directly proportional
to the derivative of the field amplitude �E�x� /�x �17�.

The transverse beam momentum p on the other hand, can
be obtained from the transverse component of the wave num-
ber of the beam, p=k sin �, where k=2� /� and the beam tilt
is �. This beam tilt is defined with respect to a pivot point at
the beam waist, as shown in Fig. 1�b�.

The electric field profile for a tilted beam with untilted
electric field profile E�x� and wavelength � is given by

E��x� = exp� i2�x sin �

�
�E�x cos �� . �2�

We can again simplify Eq. �2� by taking the zeroth and first
order Taylor expansion terms to get a transverse beam mo-
mentum of p�k�. In the case of small displacement or tilt,
we therefore obtain a pair of equations

Ed�x� 	 E�x� + d
�E�x�

�x
, �3�

Ep�x� 	 E�x� + p ixE�x� . �4�

Equations �3� and �4� give the field parameters that relate to
the displacement and tilt of a beam. For freely propagating
optical modes, the Fourier transform of the derivative of the
electric field, F��E�x� /�x�, is of the form ixE�x�. Hence the
Fourier transform of displacement is tilt.

In the case of a single photon, the position and momen-
tum are defined by considering the spatial probability density
of the photon, given by 
E�x�
2 / I, where I=�
E�x�
2dx is the
normalization factor. The mean position obtained from an
ensemble of measurements on single photons is then given

by �x= �1� �I� �x
E�x�
2dx. The momentum of the photon is
defined by the spatial probability density of the photon in the
far-field, or equivalently by taking the Fourier transform of
�x. These definitions are consistent with our definitions of
position and momentum for bright optical modes.

B. TEMpq basis

In theory, spatial entanglement can be generated for fields
with any arbitrary transverse mode shape. However, as with
other forms of continuous-variable entanglement, the effi-
cacy of protocols to generate entanglement is highest if the
initial states are minimum uncertainty. For position and mo-
mentum variables, the minimum uncertainty states are those
which satisfy the Heisenberg uncertainty relation �2x̂�2p̂
�	, in the equality. This equality is only satisfied by states
with Gaussian transverse distributions �21�, therefore we
limit our analysis to that of TEM00 modes.

A field of frequency 
 can be represented by the positive
frequency part of the mean electric field E+ei
t. We are inter-
ested in the transverse information of the beam described
fully by the slowly varying field envelope E+. We express
this field in terms of the TEMpq modes. For a measurement
performed in an exposure time T, the mean field for a dis-
placed TEM00 beam can be written as

Ed
+�x� = i� 	


2�0cT
�N�u0�x� +

d

w0
u1�x�� , �5�

where the first term indicates that the power of the displaced
beam is in the TEM00 mode while the second term gives the
displacement signal contained in the amplitude of the TEM10
mode component. The corresponding mean field for a tilted
TEM00 beam can be written as

Ep
+�x� = i� 	


2�0cT
�N�u0�x� +

iw0p

2
u1�x�� , �6�

where the second term describes the beam momentum signal,
contained in the � /2 phase-shifted TEM10 mode component.

C. Definitions—Quantum treatment

We now introduce a quantum mechanical representation
of the beam by taking into account the quantum noise of
optical modes. We can write the positive frequency part of
the electric field operator in terms of photon annihilation
operators â. The field operator is given by

Êin
+ = i� 	


2�0cT�
n=0

�

ânun�x� , �7�

where un�x� are the transverse beam amplitude functions for
the TEMpq modes and ân are the corresponding annihilation
operators. ân is normally written in the form of ân= �ân
+ân, where �ân describes the coherent amplitude part and
ân is the quantum noise operator.

In the small displacement and tilt regime, the TEM00 and
TEM10 modes are the most significant �17�, with the TEM10
mode contributing to the displacement and tilt signals. We

FIG. 1. �Color online� �a� Beam displacement d, and �b� beam
tilt by angle �, from a reference axis.
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can rewrite the electric field operator for mean number of
photons N as

Êin
+ = i� 	


2�0cT
��Nu0�x� +

X̂a0

+ + iX̂a0

−

2

+ �
n=1

� � X̂ai

+ + iX̂ai

−

2
�ui�x�� , �8�

where the annihilation operator is now written in terms of the

amplitude X̂a
+ and phase X̂a

− quadrature operators.
The displacement and tilt of a TEM00 beam is given by

the amplitude and phase of the u1�x� mode in Eqs. �5� and
�6�, respectively. We can, therefore, write the beam position
and momentum operators as

x̂ =
w0

2�N
X̂a1

+ , �9�

p̂ =
1

w0
�N

X̂a1

− . �10�

D. Commutation relation

Two observables corresponding to the position and mo-
mentum of a TEM00 beam have been defined. We have
shown that the position and momentum observables corre-
spond to near- and far-field measurements of the beam, re-
spectively. Hence we expect from Eqs. �9� and �10� that the
position and momentum observables do not commute. In-
deed, the commutation relation between the two quadratures

of the TEM10 mode is �X̂a1

+ , X̂a1

− �=2i. This leads to the com-
mutation relation between the position and momentum ob-
servables of an optical beam with N photons

�x̂, p̂� =
i

N
. �11�

This commutation relation is similar to the position-
momentum commutation relation for a single photon, aside
from the 1/N factor. The 1/N factor is related to the preci-
sion with which one can measure beam position and momen-
tum. Rewriting the Heisenberg inequality using the commu-
tation relation gives

�2x̂�2p̂ �
1

4N
. �12�

The position measurement of a coherent optical beam
gives a signal which scales with N. The associated quantum
noise of the position measurement scales with �N. Hence the
positioning sensitivity of a coherent beam scales as �N
�17,18�. The same consideration applied to the sensitivity of
beam momentum measurement shows an equivalent depen-
dence of �N. This validates the factor of N in the Heisenberg
inequality and the commutation relation for a cw optical
beam.

As an aside, it is interesting to consider the implications
of the Heisenberg inequality of Eq. �12� on recent discus-

sions of ghost imaging in discrete variable quantum optics
�22–24�. In ghost imaging, the spatial resolution of an imag-
ing system is enhanced using a pair of correlated fields. One
field passes through the object, and object information is
then retrieved through spatially resolved photon coinci-
dences between the two fields. At first glance, the results of
Bennink et al. �22,23�, and Gatti et al. �24� appear contra-
dictory. According to Bennink et al. the position-momentum
uncertainty relation sets an ultimate resolution limit which
can only be surpassed using entangled fields; while Gatti
et al. show that thermal fields can achieve the same resolu-
tion as entangled fields for large N. We see from Eq. �12� that
these statements are not mutually incompatible. For small N
the position and momentum of the beams, and therefore also
the imaging resolution, are highly uncertain; however, as N
becomes large the uncertainty product �2x̂�2p̂ approaches
zero, so that even without quantum resources x and p can be
known simultaneously with arbitrary precision.

E. Entanglement scheme

We have shown that the position and momentum observ-
ables of cw TEM00 optical beams satisfy the Heisenberg
commutation relation. Consequently, EPR entanglement for
the position and momentum of TEM00 beams is possible.
Experimentally, the usual quadrature entanglement is gener-
ated by mixing two amplitude squeezed beams on a 50:50
beamsplitter. The same idea can be applied to generate EPR
x - p entanglement, by using position squeezed beams �17�.
Our scheme to produce x - p entanglement between two cw
TEM00 optical beams is shown in Fig. 2. The position
squeezed beams in Figs. 2�a� and 2�b� are generated via the
in-phase combination of a vacuum squeezed TEM10 beam
with a coherent TEM00 beam. Such a beam combination can
be achieved experimentally, for example, using an optical
cavity or a beam-splitter �20�. The result of the combination
is a position squeezed beam. To generate entanglement, we
consider beams with zero mean position and momentum, but
we are interested in the quantum noise of the position and
momentum of the beam. With this assumption, the electric
field operators for the two input beams at the beam splitter
are given by

FIG. 2. �Color online� Scheme for generating position-
momentum entanglement for continuous wave TEM00 optical
beams. OPA: optical parametric amplifiers for the generation of
squeezed light, BS: 50:50 beam splitter, HD: homodyne detectors,
LO: local oscillator beams, and �: phase of local oscillator beam.
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Ê1
+ = i� 	


2�0cT
��Nu0�x� + �

n=0

�

ânun�x�� �13�

Ê2
+ = i� 	


2�0cT
��Nu0�x� + �

n=0

�

b̂nun�x�� �14�

where in both equations, the first bracketed term describes
the coherent amplitude of the TEM00 beam. The second
bracketed terms describe the quantum fluctuations present in
all modes. For position squeezed states, only the TEM10
mode is occupied by a vacuum squeezed mode. All other
modes are occupied by vacuum fluctuations. It is also as-
sumed that the number of photons in each of the two beams,
during the measurement window, is equal to N. The two
position squeezed beams �1,2� are combined in-phase on a
50:50 beam splitter �BS� in Fig. 2�c�.

The usual input-output relations of a beam splitter apply.
The electric field operators describing the two output fields

from the beam splitter are given by Ê3= �Ê1+ Ê2� /�2 and Ê4

= �Ê1− Ê2� /�2. To demonstrate the existence of entanglement,
we seek quantum correlation and anticorrelation between the
position and momentum quantum noise operators. The posi-
tion operators corresponding to beams 3 and 4 are given,
respectively, by

x̂3 =
w0

2�2�N
�X̂a1

+ + X̂b1

− � =
1
�2

�x̂a +
w0

2

2
p̂b� , �15�

x̂4 =
w0

2�2�N
�X̂a1

+ − X̂b1

− � =
1
�2

�x̂a −
w0

2

2
p̂b� . �16�

The momentum operators corresponding to the photocurrent
difference for beams 3 and 4 are given by

p̂3 =
1

w0
�2�N

�X̂a1

− + X̂b1

+ � =
1
�2

�p̂a +
2

w0
2x̂b� ,

�17�

p̂4 =
1

w0
�2�N

�X̂a1

− − X̂b1

+ � =
1
�2

�p̂a −
2

w0
2x̂b� .

�18�

In our case where the two input beams are position squeezed,
the sign difference between the position noise operators in
Eqs. �15� and �16� as well as that between the momentum
noise operators in Eqs. �17� and �18� are signatures of corre-
lation and anticorrelation for x̂ and p̂.

F. Inseparability criterion

Many criterions exist to characterize entanglement, for
example, the inseparability criterion �25� and the EPR crite-
rion �26�. We have adopted the inseparability criterion to
characterize position-momentum entanglement. For states
with Gaussian noise statistics, Duan et al. �25� have shown
that the inseparability criterion is a necessary and sufficient
criterion for EPR entanglement.

In the case where two beams are perfectly interchangeable
and have symmetrical fluctuations in the amplitude and
phase quadratures, the inseparability criterion has been gen-
eralized and normalized to a product form given by
�4,27–31�

I�x̂, p̂� =
��x̂3 + x̂4�2��p̂3 − p̂4�2


�x̂, p̂�
2
�19�

for any pair of conjugate observables x̂ and p̂, and a pair of
beams denoted by the subscripts 3 and 4. For states which
are inseparable, I�x̂ ,p̂��1. By using observables x̂ and
p̂ from Eqs. �15�–�18� as well as the commutation relation
of Eq. �11� the inseparability criterion for beams 3 and 4 is
given by

I�x̂,p̂� =
16N2


0
4 ��x̂a1

+ �2��x̂b1

+ �2 = ��X̂a1

+ �2��X̂b1

+ �2 � 1,

�20�

where we have assumed that the TEM10 modes of beams 1

and 2 are amplitude squeezed �i.e., ��X̂a1

+ �2�1 and

��X̂b1

+ �2�1�.
Thus we have demonstrated that continuous-variable EPR

entanglement between the position and momentum observ-
ables of two cw beams can be achieved.

G. Detection scheme

Reference �17� has shown that the optimum small dis-
placement measurement is homodyne detection with a
TEM10 local oscillator beam �see Fig. 2�d��. When the input
beam is centered with respect to the TEM10 local oscillator
beam, no power is contained in the TEM10 mode. Due to the
orthogonality of Hermite-Gauss modes, the TEM10 local os-
cillator only detects the TEM10 vacuum noise component. As
the input beam is displaced, power is coupled into the TEM10
mode. This coupled power interferes with the TEM10 local
oscillator beam, causing a change in photocurrent observed
at the output of the homodyne detector. Thus the difference
photocurrent of the TEM10 homodyne detector is given by
�17�

n̂−
d =

2�N�NLO

w0
x̂ , �21�

where NLO and N are the total number of photons in the local
oscillator and displaced beams, respectively, with NLO�N.
The linearized approximation is utilized, where second order
terms in â are neglected since N� 
�ân

2
 for all n.
In order to measure momentum, one could use a lens to

Fourier transform to the far-field plane, where the beam is
then measured using the TEM10 homodyning scheme. How-
ever, we have shown that the position and momentum of a
TEM00 beam differs by the phase of the TEM10 mode com-
ponent. Indeed for a tilted TEM00 beam, the TEM10 mode
component is � /2 phase shifted relative to the TEM00 mode
component. Consequently the phase quadrature of the TEM10
mode has to be interrogated. This can be achieved by utiliz-
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ing a TEM10 local oscillator beam with a � /2 phase differ-
ence relative to the TEM10 mode component of the TEM00
beam. The resulting photocurrent difference between the two
homodyning detectors, for NLO�N, is given by

n̂−
p = w0

�N�NLOp̂ . �22�

III. SPATIAL ENTANGLEMENT FOR SPLIT
DETECTION

The entanglement presented in the previous section is
analogous to x - p entanglement in the single photon regime.
However, the choice of the mean field mode is restricted to
the TEM00 mode. This limits the richness of a spatial vari-
able and thus excludes the possibility of generating an infi-
nite Hilbert space. To exploit the properties of spatial vari-
ables, we now consider more traditional forms of spatial
squeezing. Consequently, we study the possibility of gener-
ating spatial entanglement for array detection devices, based
on spatial squeezed beams.

A. Spatial squeezing

Spatial squeezing was first introduced by Kolobov �32�.
The generation of spatial squeezed beams for split and array
detectors was experimentally demonstrated by Treps et al.
�18–20�. A one-dimensional spatial squeezed beam has a
spatially ordered distribution, where there exists correlation
between the photon numbers in both transverse halves of the
beam. A displacement signal applied to this beam can thus be
measured to beyond the QNL.

We consider a beam of normalized transverse amplitude
function v0�x� incident on a split detector. The noise of split
detection has been shown to be due to the flipped mode �33�,
given by

v1�x� = �v0�x� for x � 0,

− v0�x� for x � 0.
�

When the field is centered at the split-detector, such that
the mean value of the measurement is zero, the flipped mode
is thus orthogonal to the mean field mode. In this instance,
modes vi�x� �for i�1� can be derived to complete the modal
basis. The electric field operator written in this new modal
basis is given by

Ê+ = i� 	


2�0cT��Nv0�x� + �
n=0

�

ĉnvn�x�� , �23�

where the first term describes the coherent excitation of the
beam in the v0�x� mode and N is the total number of photons
in the beam. It has been shown that the corresponding photon
number difference operator for split detection is given by
�17�

n̂−
�+� = �NX̂c0

+ . �24�

The beam is spatially squeezed if the state of the flipped
mode is vacuum squeezed and in phase with the mean field
mode �see Figs. 3�a� and 3�b��.

B. Spatial homodyne

Since split detection is commonly used as a detection de-
vice for beam position, one would naturally consider taking
the Fourier transform of a spatial squeezed beam to obtain
the conjugate observable for the beam. However, we have
shown that split detection does not correspond exactly to
beam position measurement. Thus the Fourier plane of the
spatial squeezed beam does not provide the conjugate ob-
servable. More practically, the flipped mode is not mode-
shape invariant under Fourier transformation. In the far-field,
each odd-ordered mode component of the flipped mode ob-
tains a �2n+1�� Gouy phase difference, compared to the
near-field. Thus the mode shape in the far-field is no longer a
flipped mode. Consequently, far- and near-field measure-
ments of a spatial squeezed beam will not give the conjugate
observables.

However, we can find the conjugate observables of a spa-
tial squeezed beam by drawing an analogy to standard ho-
modyne detection. In split detection, the equivalent local os-
cillator mode is the mean field v0�x� mode. The mode under
interrogation by the split detector is the flipped mode v1�x�.
In the case of homodyne detection, the phase of the local
oscillator beam is varied to measure the conjugate observ-
ables �i.e., amplitude and phase quadratures� of the input
beam. Adapting this concept to the split detector, the conju-
gate observables for the spatial squeezed beam is thus the
amplitude and phase quadratures of the flipped mode, while
the mode shape of the flipped mode remains unaltered. This
is further verified upon inspection of Eq. �24�.

Our scheme to perform a phase measurement of the
flipped mode is shown in Fig. 3�d�. In our scheme we assume
that the mean field is a TEM00 mode. Note that in principle,
this analysis could be performed for any mode shape. The
coherent TEM00 mode component provides a phase reference
for the flipped mode, analogous to that of a local oscillator
beam in homodyne detection. Thus the phase quadrature of
the flipped mode can be accessed by applying a � /2 phase
shift between the TEM00 mode and the flipped mode noise
component. Experimentally, this is achievable using an opti-
cal cavity. When the cavity is nonresonant for the v0�x� and
v1�x� modes it will reflect off the two modes, in phase, onto

FIG. 3. �Color online� Scheme for generating spatial entangle-
ment for TEM00 continuous wave light beams. OPA: optical para-
metric amplifiers for generating squeezed beams, PP: phase plates
for producing flipped modes, and BS: 50:50 beam splitter.

CONTINUOUS-VARIABLE SPATIAL ENTANGLEMENT … PHYSICAL REVIEW A 72, 013802 �2005�

013802-5

131



10. Le nano positionnement

the split detector. This will give a measurement of the am-
plitude quadrature of the flipped mode. However, the cavity
can be tuned to be partially resonant on the v0�x� mode while
reflecting the flipped mode. A � /2 phase difference can then
be introduced between the reflected v0�x� and v1�x� modes,
giving a measurement of the phase quadrature of the flipped
mode. The corresponding photon number difference operator
is

n̂−
�−� = �NX̂c0

− , �25�

which is the orthogonal quadrature of the spatial squeezed
beam. The photon number operators corresponding to the
two measurements in Eqs. �24� and �25� are conjugate ob-
servables and satisfy the commutation relation �n̂−

�+� , n̂−
�−��

=2iN.
It is important to realize that the number of photons N in

Eqs. �24� and �25� are only approximately equal. This is due
to the fact that partial power in the TEM00 mode is transmit-
ted by the cavity, when the cavity is partially resonant on the
TEM00 mode. Although it is possible to implement a scheme
that conserves the total number of photons at detection �e.g.,
losslessly separating the mean field and flipped modes and
recombining them with a phase difference�, we would like to
emphasize that our scheme is more simple and intuitive, as
well as being valid when N is large.

C. Entanglement scheme

In order to generate spatial entanglement for split detec-
tion, two spatial squeezed beams labeled 1 and 2 are com-
bined on a 50:50 beam splitter, as shown in Fig. 3�c�.

The electric field operators for the two input spatial
squeezed beams at the beam splitter are described in a form
identical to that of Eq. �23�. The annihilation operators of the
electric field operators for input beams 1 and 2 are labeled by

ĉn and d̂n, respectively. By following a similar procedure as
before, the photon number difference operator for output
beams 3 and 4 from the beam splitter are calculated.

For the amplitude quadrature measurement, the addition
of the difference photocurrent between beams 3 and 4 yields

n̂3−
�+� + n̂4−

�+� = �N�X̂c0

+ + X̂d0

+ � . �26�

For the phase quadrature measurement, the subtraction of the
difference photocurrent between beams 3 and 4 gives

n̂3−
�−� − n̂4−

�−� = �N�X̂d0

+ − X̂c0

+ � . �27�

To verify spatial entanglement, the inseparability crite-

rion is utilized. The substitution of Eqs. �26� and �27� and the
commutation relation between the photon number difference
operators into the generalized form of the inseparability cri-
terion gives

I�n̂−
�+�,n̂−

�−�� =
N�Vc0

2 + 2Vc0
Vd0

+ Vd0

2 �
4N

� 1, �28�

where Vc0
= ��X̂c0

+ �2 and Vd0
= ��X̂d0

+ �2 are the variances for
the flipped mode component of the spatial squeezed beams 1
and 2. The inseparability criterion is satisfied for amplitude
squeezed flipped modes Vc0

�1 and Vd0
�1.

We have proposed a scheme to generate spatial entangle-
ment for split detection using spatial squeezed beams. Spatial
squeezing has been defined for any linear measurement per-
formed with an array detector �34�. Similarly, spatial en-
tanglement corresponding to any linear measurement can be
obtained. For an infinite span array detector with infinitesi-
mally small pixels, it is thus possible to generate multimode
spatial entanglement, increasing the Hilbert space to being
infinite-dimensional.

IV. CONCLUSION

We have identified the position and momentum of a
TEM00 optical beam. By showing that x̂ and p̂ are conjugate
observables that satisfy the Heisenberg commutation rela-
tion, a continuous variable x - p entanglement scheme is pro-
posed. This proposed entanglement, as considered by EPR
�1�, was characterized using a generalized form of the in-
separability criterion.

We further explored a form of spatial entanglement which
has applications in quantum imaging. The detection schemes
for quantum imaging are typically array detectors. In this
paper, we considered the split detector. We utilized the one-
dimensional spatial squeezing work of Treps et al. �18� and
proposed a spatial homodyning scheme for the spatial
squeezed beam. By identifying the conjugate observables for
the spatial squeezed beam as the amplitude and phase
quadratures of the flipped mode, we showed that split
detection-based spatial entanglement can be obtained.
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Optical storage of high-density information beyond the diffraction limit: A quantum study
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We propose an optical readout scheme allowing a proof of principle of information extraction below the
diffraction limit. This technique, which could lead to improvement in data readout density onto optical disks,
is independent from the wavelength and numerical aperture of the reading apparatus, and involves a multipixel
array detector. Furthermore, we show how to use nonclassical light in order to perform a bit discrimination
beyond the quantum noise limit.
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I. INTRODUCTION

The reconstruction of an object from its image beyond the
diffraction limit, typically of the order of the wavelength, is a
hot field of research, though a very old one, as Bethe already
dealt with the theory of diffraction by subwavelength holes
in 1944, to the best of our knowledge �1�. More recently, a
theory has been developed to be applied to the optical stor-
age problem, in order to study the influence of very small
variations of pit width or depth relative to the wavelength
�1–6�. To date, only a few super-resolution techniques �7�
include a quantum treatment of the noise in the measure-
ment, but to our knowledge, none has been applied to the
optical data storage problem.

Optical disks are now reaching their third generation, and
have improved their data capacity from 0.65 Gbytes for
compact disks �using a wavelength of 780 nm�, to
4.7 Gbytes for DVDs ��=650 nm�, and eventually to 25 GB
for the Blu-Ray disks �using a wavelength of 405 nm�. In
addition to new coding techniques, this has been achieved by
reducing the spot size of the diffraction-limited focused laser
beam onto the disk, involving higher numerical apertures and
shorter wavelengths.

Several further developments are now in progress, such as
the use of volume holography, 266 nm reading lasers, im-
mersion lenses, near field systems, multidepths pits �8�, or
information encoding on angle positions of asymmetrical pits
�9�. These new techniques rely on a bit discrimination using
small variations of the measured signals. Therefore, the noise
is an important issue, and ultimately, quantum noise will be
the limiting factor.

In this paper, we investigate an alternative and comple-
mentary way to increase the capacity of optical storage, in-
volving the retrieval of information encoded on a scale
smaller than the wavelength of the optical reading device.
We investigate a way to optimize the detection of subwave-
length structures using multipixel array. With an attempt to a
full treatment of the optical disk problem being far too com-
plex, we have chosen to illustrate our proposal on a very
simple example, leaving aside most technical constraints and
complications, but still involving all the essence of the over-
all problem.

We first explain how the use of an array detector can lead
to an improvement of the detection and distinction of sub-

wavelength structures present in the focal spot of a laser
beam. We then focus on information extraction from an op-
tical disk with a simple but illustrative example, considering
that only a few bits are burnt on the dimensions of the focal
spot of the reading laser, and show how the information is
encoded from the disk to the light beam, propagated to the
detector, and finally detected. We explain the gain configu-
ration of the array detector that has to be chosen in order to
improve the signal-to-noise ratio of the detection. Moreover,
as quantum noise is experimentally accessible, and will be a
limiting factor for further improvements, we perform a quan-
tum calculation of the noise in the detection process. Indeed,
we present how this detection can be optimized to perform
simultaneous measurements below the quantum noise limit,
using nonclassical light.

II. PROPOSED SCHEME FOR BIT SEQUENCE
RECOGNITION IN OPTICAL DISKS

We propose an optical readout scheme shown in Fig. 1
allowing information extraction from optical disks beyond
the diffraction limit, based on the multipixel detection. Bits,
coded as pits and holes on the optical disk, induce phase flips
in the electric field transverse profile of the incident beam at
reflection. The reflected beam is imaged in the far field of the
disk plane, where the detector stands. In the far field, the
phase profile induced by the disk is converted into an inten-
sity profile, that the multipixel detectors can, at least partly,
reconstruct.

FIG. 1. �Color online� Scheme for information extraction from
optical disks, using an array detector.
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10.6. Optical storage of high density information beyond the diffraction limit(. . .)

Taking into account that a lot of a priori information is
available—i.e., only a finite number of intensity profiles is
possible—we propose to use a detector with a limited num-
ber of pixels Dk whose gains can independently be varied
depending on which bit sequence one wants to detect. The
signal is then given by

S = �
k

�kNk, �1�

where Nk is the mean photon number detected on pixel Dk,
and �k is the electronic gain of the same pixel. Ideally, to
each bit sequence present on the disk corresponds a set of
gains chosen so that the value of the measurement is zero,
thus canceling noise from the mean field. Measuring the sig-
nal for a given time interval T around the centered position
of a bit sequence in the focal spot, and testing, in parallel, all
the predefine sets of gain in the remaining time, allows us to
deduce which bit sequence is present on the disk.

We will first show that this improvement in a density of
information encoded on an optical disk is already possible
using classical resources. Moreover, as the measurement is
made around a zero mean value, the classical noise is mostly
canceled. Hence, we reach regimes where the quantum noise
can be the limiting factor. We will demonstrate how to per-
form measurements beyond the quantum noise limit, using
previous results on quantum noise analysis in multipixel de-
tection developed in Ref. �10�.

III. ENCODING INFORMATION FROM A DISK ONTO A
LIGHT BEAM

We have explained the general principle of readingout
subwavelength bit sequences encoded on an optical disk, and
now focus on the information transfer from the optical disk
to the laser beam, through an illustrative example.

Let us recall that bits are encoded by pits and holes on the
disk surface: a step change from hole to pit �or either from
pit to hole� encodes bit 1, whereas no depth change on the
surface encodes bit 0, as represented in Fig. 2. A hole depth
of � /4 ensures a � phase shift between the fields reflected by
a pit and a hole. In this section, we compute the incident field
distribution on the optical disk affected by the presence of a
bit sequence in the focal spot, and finally analyze the inten-
sity back reflected in the far field, in the detection plane, as
sketched in Fig. 1.

A. Beam focalization

Current optical disk readout devices involve a linearly
polarized beam strongly focused on the disk surface to point
out details whose size is of the order of the laser wavelength.
The numerical aperture �NA� of the focusing lens can be
large �0.47 for CDs, 0.6 for DVDs, and 0.85 for BLU RAY
disks�, and the exact calculation of the field cannot be done
in the paraxial and scalar approximation. Thus, the vectorial
theory of diffraction has to be taken into account.

The structure of the electromagnetic field in the focal
plane of a strongly focused beam has been investigated for
decades now �11�, as its applications include areas such as
microscopy, laser microfabrication, micromanipulation, and
optical storage �12–19�.

In our case of interest, we can restrict the field calculation
to the focal plane, which is the disk plane. Thus Richards and
Wolf integrals �20�, that are not suitable for a general propa-
gation of the field, but which can provide the field profile in
the focal plane for any type of polarization of the incoming
beam as long as the focusing length is much larger than the
wavelength, can be used to achieve this calculation. These
integrals have already been used in many publications deal-
ing with tight focusing processes �21–28�. As highlighted in
these references, the importance of the vectorial aspect of the
field can easily be understood when a linearly polarized
beam is strongly focused, as the polarization of the wave
after the lens is not perpendicular to the propagation axis
anymore and has thus components along this axis. In order to
estimate the limit of validity of the paraxial approximation,
we computed focused spot sizes of linearly polarized beams
in the focal plane for different numerical apertures, first in
the paraxial approximation, and then calculated with
Richards and Wolf integrals. The results are compared in Fig.
3 for an incident plane wave in an air medium with
�=780 nm, where the spot size is defined as the diameter

FIG. 2. �Color online� Example of a bit sequence on an optical
disk. The spacing between the bits is smaller than the wavelength,
the minimum waist of the incident laser beam being of the order of
�. A hole depth of � /4 insures a � phase shift between fields re-
flected on a pit and a hole.

FIG. 3. �Color online� Evolution of the focused spot size of an
incident plane wave with the numerical aperture �for �=780 nm in
air medium�. The spot size is limited to the order of the wavelength
in the nonparaxial case ���, whereas it goes to zero for very high
numerical apertures in the paraxial case ���.
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which contains 86% of the focused energy, as in Ref. �29�.
We see that when the numerical aperture exceeds 0.6, a good
prediction requires a nonparaxial treatment. Moreover,
whereas there is no theoretical limit to focalization in the
paraxial case, we see that nonparaxial effects prevent us to
reach a waist smaller than the order of the wavelength. Note
that this limit is not fundamental and can be overcome by
modifying the polarization of the incoming beam. Quabis
and co-workers have indeed managed to reduce the spot area
to about 0.1 �2 using an incident radially polarized doughnut
beam �21,24�.

As our aim is to present a demonstration of principle and
not a full treatment of the optical disk problem, the following
calculations will be done using the physical parameters of
the actual compact disks ��=780 nm and NA=0.47, corre-
sponding to a focalization angle of 27° in air medium�. In
this case, the paraxial and scalar approximations are still
valid. Indeed, Fig. 4, giving the transverse profile of the three
field components and the resultant intensity in the focal plane
using the former parameters, shows that although the field is
not strictly linearly polarized as foreseen before, Ey�Ez
�Ex, and we can thus consider that only Ex is different from
zero with a good approximation. Note that the exact expres-
sion would not intrinsically change the problem, as our
scheme can be adapted to any field profile discrimination.

B. Reflection onto the disk

In order to compute the reflected field, we simply assume
that bumps and holes are generated in such a way that
they induce a � phase shift between them at reflection on the
field profile. Note that the holes’ depth is usually � /4, but
precise calculations would be required to give the exact
shape of the pits, as they are supposed to be burnt below the
wavelength size, and as the field penetration in those holes is
not trivial �4–6�. As we have shown that only one vectorial
component of the field was relevant in the focal plane, we
can directly apply this phase shift to the amplitude profile of
this component.

We first envision a scheme with only three bits in the
focal spot, which means that 23 different bit sequences, i.e., a
byte, have to be distinguished from each other, using the
information extracted from the reflected field. Note that we
neglect the influence of other bits in the neighborhood. A
more complete calculation involving this effect with more
bits will be considered in a further approach.

The amplitude profiles obtained when the incident beam
is centered on a bit of the CD are presented on Fig. 5, for a
particular bit sequence. Note that we have chosen the space
between two bits on the disk equal to the waist size of the
reading beam. The first three curves, respectively, show the
field amplitude profile incident on the disk, an example of a
bit sequence, and the corresponding profile just after reflec-
tion onto the disk. We see that binary information is encoded
from bumps and holes on the CD to phase flips in the re-
flected field.

C. Back propagation to the detector plane

In order to extract the information encoded in the trans-
verse amplitude profile of the beam, the field has to be back
propagated to the detector plane. A circulator, composed of a
polarizing beam splitter and a Faraday rotator, ensures that
the linearly polarized reflected beam reaches the array detec-
tor, as shown in Fig. 1. Assuming that the detector is posi-
tioned just behind the lens plane, the expression of the de-
tected field is given by the far field of the disk plane,
apertured by the diameter of the focusing lens. As the focal
length and the diameter of the lens are large compared to the
wavelength, we use the Rayleigh Sommerfeld integral to
compute the field in the lens plane �30�. As an example, the
calculated far field profile when the bit sequence 111 is
present in the focal spot is shown on the fourth graph of
Fig. 5.

FIG. 4. �Color online� Norm of the different field components
and resultant intensity in the focal plane with a linearly polarized
incident field along the x axis, focused with a 0.47 numerical
aperture.

FIG. 5. �Color online� Modifications of the transverse amplitude
field profile trough propagation, in the case of a 111 bit sequence in
the focal spot: �a� incoming beam profile; �b� 111 bit sequence; �c�
corresponding reflected field in the disk plane; �d� far field profile in
the detector plane.
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10.6. Optical storage of high density information beyond the diffraction limit(. . .)

The presence of the lens provides a limited aperture for
the beam and cuts the high spatial frequencies of the field,
which can be a source of information loss, as the difference
between each bit sequence can rely on those high frequen-
cies. However, we will see that enough information remains
in the low frequency part of the spatial spectrum, so that the
8 bits can be distinguished. This is due to the fact that we
have in this problem a lot of a priori information on the
possible configurations to distinguish.

We see in Fig. 6 that, with the physical parameters used in
compact disk readout devices, 6 over 8 profiles in the detec-
tor plane are still different enough to be distinguished. At this
stage, we are nevertheless unable to discriminate between
symmetric configurations, because they give rise to the same
far field profile. Therefore, 100 and 001, and 110 and 011,
cannot be distinguished. Note that this problem can be
solved thanks to the rotation of the disk. Indeed, an asym-
metry is created when the position of the disk relative to the
laser beam is shifted, thus modifying differently the two pre-
viously indistinguishable profiles. As shown in Fig. 7, where
the far field profiles are represented after a shift of w0 /6 in
the position of the disk, the degeneracy has been removed.
Moreover, it is important to note that the other profiles ex-
perience a small shape modification. This redundant informa-
tion is very useful in order to remove ambiguities while the
disk is rotating.

IV. INFORMATION EXTRACTION FOR BIT SEQUENCE
RECOGNITION

In this section, we describe the detection, present some
illustrative results, and the way they can be used to increase
the readout precision of information encoded on optical
disks. We show here that a pixellized detector with a very
small number of pixels is enough to distinguish between the

8 bit sequences. Note that for technical and computing time
reasons, it is not realistic to use a charge-coupled device
�CCD� camera to record the reflected images, as such cam-
eras cannot yet combine good quantum efficiency and high
speed.

A. Detected profiles

For simplicity reasons, we limit our calculation to a
5 pixels array detector D1 , . . . ,D5, each of whom has an
electronic gain �1 , . . . ,�5, as shown in Fig. 8 The size of
each detector has been chosen without a systematic optimi-

FIG. 6. �Color online� Field profiles in the array detector plane,
for each of the 8 bit sequence configuration. Note that they are
clearly distinguishable, except for the bit sequences 100 and 001,
and 011 and 110, which have the same profile because of the sym-
metry of the bit sequence relative to the position of the incident
laser beam.

FIG. 7. �Color online� Field profiles in the array detector plane,
for each of the 8 bit sequence configuration, when the position of
the disk has been shifted of w0 /6 relative to the incident beam. The
profile degeneracy for 100 and 001, and 011 and 110 is raised. Note
that the other profiles have experienced a much smaller shape modi-
fication between the two positions of the disk.

FIG. 8. �Color online� Far field profiles for each bit configura-
tion, and array detector geometry. The 5 detectors D1 , . . . ,D5 have
electronic gains �1�i� , . . . ,�5 , . . . , �i� according to the bit sequence i
which is present in the focal spot.
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10. Le nano positionnement

zation, which will be done in a further approach. Gain values
are adapted to detect a mean signal equal to zero for each bit
configuration present in the focal spot, in order to cancel the
common mode classical noise present in the mean field �10�.
It means that for each bit sequence i, gains are chosen to
satisfy the following relation:

�
k=1

5

�k�i�Nk�i� = 0, �2�

where Nk�i� is the mean photon number detected on pixel Dk

when bit i is present in the focal spot on the disk

Nk�i� = �
Dk

ni�x�dx , �3�

where ni�x� is the number of photons incident on the array
detector, at position x, when the bit sequence i is present in
the focal spot.

As all profiles are symmetrical when the incident beam is
centered on a bit, we have set �1=�5 and �2=�4. In addi-
tion, we have chosen �3=−�1 /2. Using these relations and
Eq. �2�, we compute gain values adapted to the recognition
of each bit sequence. Note that the calculation of each gain
configuration requires a priori information on the far field
profiles, or at least an experimental calibration using a well-
known sample.

Now that these gain configurations are set, we can inves-
tigate for a bit sequence on the optical disk.

B. Classical results

The expression of the detected signal Si�j� is given by

Si�j� = �
k=1

5

�k�j�Nk�i� , �4�

where i refers to the bit sequence effectively present in the
focal spot, and j to the gain set adapted to the detection of
the bit sequence j. It merely corresponds to the intensity
weighted by the electronic gains. Note that for i= j—and
only in this case if the detector is well chosen—the mean
value of the signal Si�i� is equal to zero, according to Eq. �2�.
All possible values of Si�j� are presented for a total number
of incident photons Ninc=25, in Table I where i is read ver-
tically, and corresponds to the bit sequence on the disk,
whereas j is read horizontally and refers to the gain set
adapted to the detection of bit j. In order not to have redun-
dant information, we have gathered results corresponding to
identical far field profiles. A zero value is obtained for only
one gain configuration, allowing an identification of the bit
sequence present in the focal spot.

The reading process to determine which bit sequence is lit
on the disk follows these few steps: the time dependent in-
tensity is first measured on each of the five detectors with all
electronic gains set to 1; these intensities are integrated for a
time T; the signal is then calculated, using the different gain
configurations j; the bit sequence effectively present in the
focal spot is determined by the only signal yielding a zero
value. Note that the second step just corresponds to the Nk

measurements. The integration time T is chosen as the time
interval during which the signal leads to the determination of
a unique bit sequence. The third step corresponds to the
simple calculation of a line in Table I. This can be done in
parallel thanks to the speed of data processing on dedicated
processors, and the reading rate will thus not be affected
compared to current devices. Finally, note that the last step
requires a good choice of the parameters in order to be able
to distinguish all bit sequences. It means that the noise level
has to be smaller than the difference between the two closest
values from 0, in order to get a zero mean value for only one
bit sequence. Indeed, there must be no overlap between the
expectation values when we take into account the noise and
thus the uncertainty relative to each measurement. Note that
using the zero value as the discriminating factor could be
combined with the use of all the calculated values, as each
line of Table I is distinct. We just need to know how to
weight each data point according to the noise related to its
obtention.

V. NOISE CALCULATION

A. The shot noise limit

To include the noise in our calculation, we separate clas-
sical and quantum noise contributions. The classical noise
comprises residual noise of the laser diode, mechanical, and
thermal vibrations. The major part of this noise is directly
proportional to the signal, i.e., to the number of detected
photons. For a detection of the total number of photons Ninc
in the whole beam during the integration time of the detector,
the classical noise contribution ��Ninc

2  would thus be writ-
ten as

��Ninc
2  = �Ninc, �5�

where � is a constant factor. And the individual noise vari-
able Ni�k� arising from detection on pixel Dk is given by

Ni�k� =
Ni�k�
Ninc

Ninc. �6�

Using Eqs. �4�–�6� a simple calculation yields the variance of
the signal arising from the classical noise

TABLE I. Detected signals Si�j� where i is read vertically and
corresponds to the bit sequence on the disk, whereas j is read hori-
zontally and refers to the gain set adapted to the detection of bit j.
A zero value means that the tested gain configuration is adapted to
the bit sequence.

000 001/100 010 011/110 101 111

000 0 −34 −204 −254 −77 −303

001/100 15 0 −76 −99 −19 −121

010 23 20 0 −6 16 −13

011/110 24 22 5 0 19 −5

101 19 11 −36 −50 0 −63

111 24 23 9 5 20 0
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10.6. Optical storage of high density information beyond the diffraction limit(. . .)

�Ŝi
2�j�Cl =

BSi
2�j�

Ninc
, �7�

where the constant B=Ninc�
2 is the classical noise factor, and

is chosen so that, when B=1 and when all the intensity is
detected by one detector, the classical noise term is equal to
the shot noise term. Note that classical noise does not dete-
riorate measurements having a zero mean value. For this
reason, we have chosen to discriminate bit sequences by
choosing gains such as Si�i�=0, as mentioned earlier.

The calculation of the quantum contribution requires the
use of quantum field operators, describing the quantum fluc-
tuations in all transverse modes of the field. By changing the
gain configuration of the array detector, not only the signal
Si�j� is modified, but also the related quantum noise denoted

�Ŝi
2�j�Qu, as different gain configurations are sensitive to

noise in different modes of the field. We have shown in Ref.
�10� that for a multipixel detection of an optical image, the
measurement noise arises from only one mode component of
the field, referred to as the detection mode, or noise mode
�31,32�. The expression of the quantum noise is then

�Ŝi
2�j�Qu = f i,j

2 Ninc�X̂wi,j

2  , �8�

where X̂wi,j
is the quantum noise contribution of the noise-

mode wi,j�x� which is defined for one set of gain j, when the
bit sequence i is present in the focal spot, as

wi,j�x� =
�k�j�ni�x�

f i,j
, ∀ x � Dk �9�

and where f i,j is a normalization factor, which expression is

f i,j
2 =

�k=1

5
�k

2�j�Nk�i�dx

Ninc
. �10�

The noise mode corresponds in fact to the incident field pro-
file weighted by the gains. The shot noise level corresponds

to �X̂wi,j

2 =1.
The variance of the signal can eventually be written as

�Ŝi
2�j� = f i,j

2 Ninc�X̂wi,j

2  +
BSi

2�j�
Ninc

. �11�

We have first represented the classical noise with an ex-
cess noise of 10 dB, as error bars for each result Si�j�, in Fig.
9. We have chosen a representation with a number of de-
tected photons of only 25. Each of the six insets refers to the
measurement obtained for a particular bit sequence in the
focal spot. The six data points and associated error bars refer
to the results obtained when the six gain configurations are
tested. One inset thus corresponds to one line in Table I. We
can see that with this choice of parameters, the bit sequence
effectively present in the focal spot can be determined with-
out ambiguity by the only zero value. The sequence corre-
sponds to the one for which the gains were optimized. We
see that the bit sequence discrimination can be achieved even
with a very low number of photons. The relative immunity to
classical noise of our scheme arises from the fact that mea-
surements are performed around a zero mean value. Thus,
given this limit in the minimum necessary photon number
and the flux of photons one can calculate the maximum data
rate, which is found to be 2�107 Mbits/ s �this estimation
takes into account an integration time T corresponding to 1

10
of the delay between the readout process of two adjacent bits
with a 1 mW laser�. This very high value shows that classi-
cal noise should not be a limit for data rates in such a
scheme.

FIG. 9. �Color online� Classical noise �10 dB
of excess noise� represented as error bars, for �
=0.78 �m, NA=0.47, and 25 detected photons.
Each inset corresponds to the 6 signals obtained
for the different gain configurations, when one
particular bit sequence is present in the focal
spot. Each bit sequence present in the focal spot
can be clearly identified as only one gain configu-
ration can give a zero value for each inset.
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The effect of quantum noise is very small, but becomes a
limiting factor for such a small number of detected photons,
or for a large number of bits encoded on the disk in the
wavelength size. In order to see independently the effect of
each contribution to the noise, we have thus represented in
Fig. 10 the shot noise also for 25 detected photons, appearing
as the threshold under which it is impossible to distinguish
bit sequences because of the quantum noise. Note that for the
represented case, the shot noise is the most important contri-
bution, and that it prevents a bit sequence discrimination, as
a zero value for the signal can be obtained for several gain
configurations in the same inset.

B. Beyond the shot noise limit

When the shot noise is the limiting factor, nonclassical
light can be used to perform measurements beyond the quan-

tum noise limit. We have shown in Ref. �10� that squeezing
the noise mode of the incident field was a necessary and
sufficient condition to a perfect measurement. What we are
interested in is improving the measurements that yield a zero
value, which are obtained when the gain configuration
matches the bit sequence in the focal spot, as Si�i�=0. Using
Eq. �11�, we see that wi,i has to be squeezed. As no informa-
tion on the bit present in the focal spot is available before the
measurement, in order to improve simultaneously all the bit
sequence detections, the six noise modes have to be
squeezed at the same time in the incident field. These six
transverse modes are not necessarily orthogonal, but one can
show that squeezing the subspace that can generate all of
them is enough to induce the same amount of squeezing.

The quantum noise with 10 dB of squeezing on the sub-
space generated by the wi,i is represented as error bars in Fig.

FIG. 10. �Color online� Shot noise repre-
sented as error bars, for �=0.78 �m, NA
=0.47,25 detected photons. Some bit sequences
cannot be determined without ambiguity because
of the noise level.

FIG. 11. �Color online� Quantum detection
noise represented as error bars, for �=0.78 �m,
NA=0.47,25 detected photons and −10 dB of si-
multaneous squeezing for all the flipped modes.
The ambiguity in the presence of shot noise has
been removed and each bit sequence can be
identified.
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10.6. Optical storage of high density information beyond the diffraction limit(. . .)

11. The noise of each noise-mode wi,j is computed using its
overlap integrals with the generator modes of the squeezed
subspace, assuming that all modes orthogonal to the
squeezed subspace are filled with coherent noise. In this
case, the effect of squeezing, reducing the quantum noise on
the measurements, and especially on the measurement for
which the gains have been optimized, is enough to discrimi-
nate bit sequences that were masked by quantum noise.

VI. CONCLUSION

We have proposed a way of information extraction from
optical disks, based on a multipixel detection. We have first
demonstrated, using only classical resources, that this detec-
tion could allow large data storage capacity, by burning sev-
eral bits in the spot size of the reading laser. We have pre-
sented a proof of principle through a simple example which
will be refined in further studies. We have also shown that in

shot noise limited measurements, using squeezed light in ap-
propriate modes of the incident laser beam can lead to im-
provement in bit sequence discrimination.

The next steps are to study in detail how to extract the
redundant information when the disk is spinning, and to sys-
tematically optimize the number of bits in the focal spot, the
number and size of pixels in the array detector. Such a re-
gime involving a large number of bits in the focal spot will
ultimately be limited by the shot noise, and will require the
quantum noise calculations presented in this paper.
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Le tout multimode : les cavités dégéné-
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Image transmission through a stable paraxial cavity
S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre

Phys. Rev. A 72 023804 (2005)

Abstract : We study the transmission of a monochromatic "image" through a paraxial cavity.
Using the formalism of self-transform functions, we show that a transverse degenerate cavity
transmits the self-transform part of the image, with respect to the field transformation over one
round-trip of the cavity. This formalism gives insight into the understanding of the behavior of a
transverse degenerate cavity, complementary to the transverse mode picture. An experiment of
image transmission through a hemiconfocal cavity shows the interest of this approach.
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Experimental study of the spatial distribution of quantum correlations in a
confocal optical parametric oscillator

M. Martinelli, N.Treps, S. Ducci, S. Gigan, A. Maître et C. Fabre
Phys. Rev. A 67, 023808 (2003)

Abstract : We study experimentally the spatial distribution of quantum noise in the twin beams
produced by a type-II optical parametric oscillator operating in a confocal cavity above threshold.
The measured intensity correlations are at the same time below the standard quantum limit and
not uniformly distributed inside the beams. We show that this feature is an unambiguous evidence
for the multimode and nonclassical character of the quantum state generated by the device.
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Multimode squeezing properties of a confocal optical parametric oscillator :
Beyond the thin-crystal approximation
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Abstract : Up to now, transverse quantum effects usually labeled as "quantum imaging" effects
which are generated by nonlinear devices inserted in resonant optical cavities have been calculated
using the "thin-crystal approximation," i.e., taking into account the effect of diffraction only
inside the empty part of the cavity, and neglecting its effect in the nonlinear propagation inside
the nonlinear crystal. We introduce in the present paper a theoretical method which is not
restricted by this approximation. It allows us in particular to treat configurations closer to the
actual experimental ones, where the crystal length is comparable to the Rayleigh length of the

142



cavity mode. We use this method in the case of the confocal optical parametric oscillator, where
the thin-crystal approximation predicts perfect squeezing on any area of the transverse plane,
whatever its size and shape. We find that there exists in this case a "coherence length" which
gives the minimum size of a detector on which perfect squeezing can be observed, and which
gives therefore a limit to the improvement of optical resolution that can be obtained using such
devices.

Article 19, reproduit en page 173

Noiseless Optical Amplification of Images using transverse degenerate OPOs
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Image transmission through a stable paraxial cavity
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Laboratoire Kastler-Brossel, Université Pierre et Marie Curie, Case 74, 75252 Paris cedex 05, France
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We study the transmission of a monochromatic “image” through a paraxial cavity. Using the formalism of
self-transform functions, we show that a transverse degenerate cavity transmits the self-transform part of the
image, with respect to the field transformation over one round-trip of the cavity. This formalism gives insight
into the understanding of the behavior of a transverse degenerate cavity, complementary to the transverse mode
picture. An experiment of image transmission through a hemiconfocal cavity shows the interest of this
approach.

DOI: 10.1103/PhysRevA.72.023804 PACS number�s�: 42.60.Da, 42.30.Va, 42.30.Lr

I. INTRODUCTION

Image transmission and propagation in a paraxial system,
using optical devices such as lenses and mirrors, is a well
known and extensively studied problem �1�. The free propa-
gation of a field changes its transverse distribution, but in
some planes such as conjugate planes or Fourier planes, one
gets simple transformations of the image. On the other hand,
transmission through a cavity has a drastic effect on the
transverse distribution of the field, as one must take into
account the transverse characteristics and the resonances of
the cavities. Optical cavities have also been studied exten-
sively for a long time, starting with the Fabry-Perot resona-
tor, then to the laser �2�, and they are commonly used as
temporal frequency filters. Less known are their spatial fre-
quency filter properties. An optical cavity is associated with
an eigenmode basis—i.e., a family of modes �like TEMpq
Hermite Gaussian modes� which superimpose onto them-
selves after a round-trip inside the cavity. This basis depends
on the geometrical characteristics of the cavity �length, cur-
vature of the mirrors, etc.�. Only eigenmodes can be trans-
mitted through the cavity at resonance, and the cavity acts
both as a spatial filter and frequency filter. This mode selec-
tion property of cavities, which does not exist in free propa-
gation, is well known in the longitudinal domain for fre-
quency filtering. However, the general transverse effect of a
cavity on an image has, to the authors’ knowledge, never
been carefully investigated. Whereas the transmission of an
image through a cavity which is only resonant for one trans-
verse mode is well known to be completely destructive for
this image, some particular cavities called transverse degen-
erate cavities can partially transmit an image in a way that
we will present in the present paper.

We will show that it is possible to model the effect of any
cavity on an image by a general operator, which acts as a
nonunitary transformation on the field. This formalism ap-
pears to be very general and of broad interest not only in
optics �3� but in physics in general �4�. Indeed, we will show
how it is possible to produce specific states such as a self-
Fourier transform state of a physical system.

This work is part of a more general study of quantum
effects in optical images �5,6� and more precisely of noise-
less parametric image amplification �7,8�, performed in the
continuous-wave regime. In order to have a significant para-
metric gain with a low-power laser, we need resonant optical
cavities, operating in the regenerative amplifier regime, be-
low, but close to, the oscillation threshold �9�. As a first step,
we therefore need to precisely assess the imaging properties
of an empty optical cavity. This study turns out to be inter-
esting in itself and might also be useful for other experi-
ments.

We begin this paper by recalling in Sec. II some useful
features of paraxial propagation of an image and of degen-
erate cavities. Following some pioneering work �10,11�, we
develop in Sec. III a formalism to understand the transmis-
sion of an image through a paraxial cavity and link it to the
formalism of cyclic transforms. In Sec. IV, we show simula-
tions and experimental results of image transmission through
a simple degenerate cavity: the hemiconfocal cavity.

II. ABCD CAVITY ROUND-TRIP MATRIX TRANSFORMS

All the theory developed in this paper will be performed
within the paraxial approximation. We consider a monochro-
matic electromagnetic field E�r� , t� at frequency 
, linearly
polarized along a vector u� and propagating along a direction
z of space. The position in the transverse plane will be rep-

resented by the vector r�=xi�+yj�. The electric field is sup-
posed stationary and can be written in a given transverse
plane as

E� �r�,t� = Re�E�r��e−i
tu�� , �1�

where u� is the polarization unit vector. The local intensity in
this plane is then

I�r�� =
1

2
�0cE�r��E*�r�� . �2�

The input image considered all along this paper is defined
by a given transverse repartition of the complex transverse
field Ein�r�� in an input plane zin. We suppose that its exten-
sion is finite around the optical axis and that its transverse
variations are such that this image propagates within the*Electronic address: gigan@spectro.jussieu.fr
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11.1. Image transmission through a stable paraxial cavity

paraxial approximation. We will consider both intensity im-
ages and “field” images—i.e., not only the transverse inten-
sity distribution of the field, but also the amplitude distribu-
tion itself.

A. Image propagation in a paraxial system

The field E�r�� is propagating through an optical system
along the z axis. An input-output relation of the form can be
written

Eout�r�� = T �Ein�r��� , �3�

where Ein�r�� and Ein�r�� are the fields just before and just after
the optical system and T is the transformation of the field
associated with the optical system. If the system is only a
linear paraxial system �made of lenses or curved mirrors, but
without diaphragms�, the propagation properties of the sys-
tem are described by its Gauss matrix T �often called ABCD
matrix� which is written

T = �A B

C D
� . �4�

All the properties of the system can be inferred from the
values of the coefficients A, B, C, and D and of the total
optical length L of the system �responsible for a phase factor
which is not included in the ABCD coefficients�. We will
assume that the index of refraction is the same at the input
and output of the system. As a consequence, we have
det�T�=AD−BC=1. In particular, the transformation T of
the field can be derived from the Huygens-Fresnel equation
in free space in the case B�0 �2�:

T:E�r�1� → E�r�2�

= − eikL i

B�
� � d2r�1E�r�1�

�exp�− i
�

B�
�Ar�1

2 − 2r�1r�2 + Dr�2
2�� . �5�

If B=0, the Gauss matrix can be written

T = �M 0

C
1

M
� .

In this case the field in the output plane is given by

T:E�r�1� → E�r�2� = − eikLME�Mr�1�eikCMr�2
2/2. �6�

In terms of imaging, a conjugate plane corresponds to a
transformation for which one retrieves the input image
within a magnification factor M. From Eqs. �5� and �6�, the
following can be inferred.

�i� If B=0, one retrieves the intensity image but not the
amplitude �there is a phase curvature coming from the term

eikCMr�2
2/2 of Eq. �6��. We will call such a transform an

“intensity-conjugate transform,” �ICT�.
�ii� If B=0 and C=0, one retrieves the amplitude image

�and the intensity image of course�. We will call such a trans-

form an “amplitude-conjugate transform” �ACT�. This trans-
form is sometimes also called a near-field �NF� transform.

Another interesting transformation is the one for which
one obtains the spatial Fourier transform of the image. Still
from Eqs. �5� and �6�, one sees the following.

�i� If A=0, one obtains the Fourier transform for the field,
within a curvature phase term corresponding to the factor
e−i�Dr�2

2/B� of Eq. �5�. This factor does not affect the intensity
distribution. We will call this transformation a “intensity
Fourier transform” �IFT�.

�ii� If A=0 and D=0, one obtains a perfect spatial Fourier
transform for the amplitude field. We will call this transfor-
mation an “amplitude Fourier transform” �AFT�. It is some-
times called a far-field �FF� transform.

It is straightforward to see that a 2f-2f system �a lens of
focal distance f placed in between two free propagation of
length 2f� performs an ICT and that a f-f system performs an
AFT. A simple implementation of an ACT would be a system
of two lenses of focal distance f separated by a distance 2f ,
preceded and followed by a distance f �i.e., two successive
f-f systems�. When designing an optical system, is it impor-
tant to note that if one combines intensity transformations �or
any combination of amplitude and intensity transformation�,
the final result is in general not anymore a simple transfor-
mation of the field �even its intensity profile� due to the
phase factors. Whereas successive iterations of the AFT and
ACT perform AFT or ACT, this is not the case for the IFT
and ICT.

Let us recall a few obvious facts, which will be nonethe-
less useful to understand the rest of the discussion. Two
length scales have to be considered for the optical system
length L: the “rough length,” important to understand propa-
gation �diffraction� effects, and the “exact length,” which
must be known on the scale of �, necessary to determine the
exact phase of the field.

B. Transverse degeneracy of a resonator

For simplicity purposes, all our discussion about cavities
will be restricted to the case of linear optical cavities with
two spherical mirrors. Its extension of the discussion to more
complex cases �ring cavity, cylindrical mirrors, etc.� is
straightforward. We also assume that the transverse exten-
sion of the field is not limited by the size of the mirrors. In
this simple case the cavity is fully described by its round-trip
Gauss matrix Tcav, starting from a given reference plane.

We consider here only geometrically stable cavities �
A
+D
�2�. In this case, the eigenmodes of the device are the
Hermite-Gauss �HG� modes adapted to the cavity, i.e., hav-
ing a wave front coinciding with the mirror surfaces. The
normalized transverse electric field in the TEMmn-mode basis
is given by

Amn�r�,z� = Cmn
1

w�z�
Hm� �2x

w�z�
�

�Hn� �2y

w�z�
�eik�r2/2q�z��e−i�n+m+1�arctan�z/zR�eikz,

�7�

where
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11. Le tout multimode : les cavités dégénérées

Cmn =
1

��2m+n−1m!n!
,

zR =
�w0

�
,

q�z� = z − izR,

w�z� = w0�1 + � z

zR
�2

,

��z� = �n + m + 1�arctan� z

zR
� . �8�

w0 is the waist of the TEM00 mode of the cavity taken in its
focal plane, of coordinate z=0, and q is the complex radius
of curvature. It is important to note that q is independent
from m and n, and only depends on the position and size of
the waist. Finally, ��z�, the Gouy phase shift, will play a
major role in this discussion.

Let us note the mirror positions z1 and z2 and the total
length of the cavity, L=z2−z1. The resonant cavity eigen-
modes will be the HG modes Amn having a total round-trip
phase shift equal to 2p��, with p� integer. If the input field
has a fixed wavelength �, this will occur only for a comb of
cavity length values Lmnp� given by

Lmnp� =
�

2
�p� + �n + m + 1�

�

2�
� , �9�

where

� = 2�arctan� z2

zR
� − arctan� z1

zR
�� �10�

is the Gouy phase shift accumulated by the TEM00 mode
along one cavity round-trip. It is related to the cavity Gauss
matrix Tcav eigenvalues �12 by the relation

�1,2 = e±i�. �11�

This simple relation has been shown in �12� for a linear
cavity with two curved mirrors. We give in the Appendix a
demonstration of this result valid for any stable paraxial cav-
ity.

A cavity is called “transverse degenerate” when for a
given frequency and cavity length, several transverse modes
are simultaneously resonant. From Eq. �9�, we can see the
following.

�i� There is a natural degeneracy for HG modes giving the
same value to s=m+n, related to the cylindrical symmetry of
the device. We will not consider this natural degeneracy any
longer and call s the transverse mode order and p the longi-
tudinal mode order.

�ii� The cavity is transverse degenerate when � is a ratio-
nal fraction of 2�. Let us write � /2� as an irreducible frac-
tion

� = 2�
K

N
�2�� , �12�

with K, N integers and 0�K /N�1. K /N is called the de-
generacy order of the cavity �12�.

As the degeneracy order is the remainder part of the total
Gouy phase shift over one turn of the cavity, we conclude
that there exists an infinite number of cavity configurations
with the same degeneracy order. Furthermore, the rational
fraction ensemble being dense in R, transverse degenerate
cavities compose a dense ensemble among all the possible
cavities.

Let us first consider the comb of cavity resonant lengths
�see Fig. 1�. Rewriting Eq. �9� as

Lsp =
�

2N
�Np + K�s + 1�� . �13�

where p is an integer. One sees that whereas the free spectral
range of the cavity for longitudinal modes �p periodicity�
remains equal to the usual value � /2, the natural unit to
describe the comb is � /2N. N and K appear than as the steps,
in this natural unit, for the longitudinal comb �when fixing s�
and for the transverse comb �when fixing p�. Within a free
spectral range, there exist N lengths for which the teeth of
the comb coincide, allowing us to define N families of
modes.

Let us now consider the cavity in terms of rays optics.
Equation �11� implies that a paraxial cavity with a degen-
eracy order K /N verifies �12,13�

�Tcav�N = �A B

C D
�N

= �1 0

0 1
� = I2, �14�

where I2 is the identity matrix of size 2�2. This relation

FIG. 1. Partial transverse and longitudinal comb in three con-
figurations. �i� Low K /N cavity, �ii� cavity with K /N=1/2, for in-
stance confocal, and �iii� cavity with K /N=2/3. K and N are inte-
gers. For �ii� and �iii� we indicated besides each peak the first
possible modes �p ,s�. For simplicity, we represented in �iii� the
peaks corresponding to other combs on a grey dashed line.
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11.1. Image transmission through a stable paraxial cavity

means that any incoming ray will retrace back onto itself
after N round-trips, forming a closed trajectory, or orbit. The
total phase accumulated on such an orbit is 2K� �as can be
seen in Eq. �11��.

Up to now, only perfect Fabry-Perot resonators have been
considered. If one consider a cavity with a given finesse F
�2� /� where � is the energy loss coefficient over one
round-trip, supposed small, then F /2� is the mean number
of round-trips of energy in the cavity before it escapes. As a
consequence, for a given finesse and a cavity with a degen-
eracy order of K /N, we have to compare F to N. If the
finesse is low �i.e., F�N�, then light will escape before re-
tracing its path and the previous discussion is not relevant. In
the rest of the discussion we will then stay in the high-finesse
limit �F�N�.

We now have all the tools necessary to study the propa-
gation of a paraxial image in a stable resonant cavity.

III. IMAGE TRANSMISSION THROUGH A PARAXIAL
STABLE CAVITY

We will consider for simplicity an impedance-matched
cavity, where the input and output mirrors have the same
reflectivity and no other losses exist in the cavity, so that at
exact resonance a mode is transmitted with an efficiency
equal to unity. As shown on Fig. 2, we define the input image
as the transverse field configuration Ein�r�� at a chosen plane
before the cavity. We want to image it on a detection plane
after the cavity. After propagation along a first paraxial sys-
tem corresponding to an ACT of magnification equal to 1,
Ein�r�� is transformed into its near field at a given reference
plane inside the cavity �position zref�. After propagation
along a second identical paraxial system, a new near field
�output image� is obtained with unity magnification after the
cavity on a detection plane �a charge-coupled device �CCD�,
for instance�. As the three planes are perfectly imaged on
each other, we will use the same notation r� for these three
transverse coordinates and we will omit the z coordinate.

Let am,n be the projection of the image on the mode Am,n
of the cavity:

am,n =� Ein�r��Am,n
* �r��d2r� . �15�

We can write Ein as

Ein�r�� = �
m,n

am,nAm,n�r�� . �16�

The effect of the cavity on the image can be understood as
a complex transmission tm,n on each mode Am,n, depending
on the length and geometry of the cavity. The output image
will then be written as

Eout�r�� = �
m,n

tm,nam,nAm,n�r�� . �17�

A. Single-mode cavity

Let us consider a single-mode cavity having a length L
chosen so that only the TEM00 resonates. The transmission
function of the cavity is

tm,n = m0n0, �18�

and the output image is:

Eout�r�,t� = �
m,n

tm,nam,nAm,n�r�� = a0,0A0,0�r�� . �19�

All the transverse information about the input image Ein is
then lost when passing through the cavity. In such a single-
mode cavity, the Gouy phase shift � /2� is not a rational
fraction, so that whatever N, Tcav

N � I2. In terms of geometri-
cal optics, this means that no ray �except the ray on the
optical axis� ever retraces its path on itself. This is the usual
understanding of the effect of a cavity on an image, where
the image is completely destroyed.

In general the precise length of the resonator is controlled
through a piezoelectric transducer. If the single-mode cavity
length is scanned over one free spectral range, every
Laguerre-Gauss cavity eigenmode will be transmitted one
after the other. The intensity field averaged over time on a
CCD will be, at a given transverse position,

�Iout�r�� � �
m,n


am,n
2
Am,n�r��
2. �20�

Each mode is transmitted at a different moment and does
not interfere with the others. As a consequence we obtain the
sum of the intensity into each TEMpq mode of the image, and
not the image since �m,n
am,n
2
Am,n�r��
2� 
�m,nam,nAmn�r��
2.
This means that, even scanned, a single-mode cavity does
not transmit correctly an image.

B. Planar cavity

It is important to study the planar cavity, since it is both
widely used experimentally and often taken as a model cav-
ity in theoretical works. Let us consider a planar cavity of
length L. The Gauss matrix is

�A B

C D
� = �1 2L

0 1
� . �21�

It does not fulfill condition �14� for any N value and is there-
fore not degenerate. Strictly speaking, the planar cavity is not
a paraxial cavity, even for rays making a small angle � with

FIG. 2. Scheme of the transmission of an image through a cav-
ity. A real near field �ACT� is performed from the input image to the
inside of the cavity—with lenses and the input mirror—and another
one is performed from that plane to the imaging system.
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11. Le tout multimode : les cavités dégénérées

the cavity axis, which escape from the axis after a great
number of reflections. As a consequence, there is no Gauss-
ian basis adapted to this cavity. The planar cavity eigen-
modes are the tilted plane waves eik��1x+�2y�, which are not
degenerate since they resonate for different lengths: L
= p� /2�1+�1

2 /2+�2
2 /2�. For a given length the cavity selects

a cone of plane waves with a given value of �1
2+�2

2. The
planar cavity is therefore not an imaging cavity. However,
given a detail size, if the finesse is low enough and the cavity
short enough for the diffraction to be negligible, then the
image can be roughly transmitted. This study is again outside
the scope of this paper.

C. Totally degenerate cavity

Let us now consider a completely degenerate paraxial
cavity, in which all the transverse modes are resonant for the
same cavity length. As a consequence the transmission func-
tion of this cavity brought to resonance is

tm,n = 1 �22�

and the output field will be

Eout�r�� = �
m,n

tm,nam,nAm,n�r�� = Ein�r�� . �23�

Its Gauss matrix is Tcav= I2; its degeneracy order is 1:
every input ray will retrace its path after a single round-trip.
A completely degenerate cavity can be called self-imaging.
Examples of self imaging cavities have been described in
�13�.

D. Cavity of degeneracy order K /N

Let us now study the propagation of an image through a
transverse degenerate cavity with degeneracy order K /N. We
will use a formalism of self-transform function, which we
introduce in the next subsection.

1. Cyclic transforms

Some functions are there own Fourier transform. They
verify

f̃�u� = f�u� , �24�

where the Fourier transform f̃ is defined by

f̃�u� = �
−�

+�

f�x�e2�iuxdx . �25�

Two well-known examples are the Gaussian functions
f�x�=�e−�x2

and the infinite Dirac comb f�x�=�n�x−n�.
These functions are called self-Fourier functions �SFF’s�.
Caola �14� showed that for any function g�x�, then f , defined
as

f�x� = g�x� + g�− x� + g̃�x� + g̃�− x� , �26�

is a SFF. Lohmann and Mendlovic �15� showed later that this
construction method for a SFF �Eq. �26�� is not only suffi-
cient but necessary. Any SFF f�x� can be generated through

Eq. �26� from another function g�x�. Lipson �4� remarked
that such distributions should exist in the middle of a confo-
cal resonator. Lohmann and Mendlovic �3� also studied how
such states could be used to enhance the resolution in imag-
ing.

It is straightforward to generalize this approach to an
N-cyclic transform. A transform TC is said to be N-cyclic if
applied N times to any function F one gets the initial func-
tion

T C
N�F�x�� = F�x� .

Let T be any transform. A function FS will be a self-
transform function of T if

T �FS�x�� = FS�x� .

Given TC an N-cyclic transform and g�x� a function, it has
been shown in �15� that FS�x�, defined as

FS�x� = g�x� + T C�g�x�� + T C
2 �g�x�� + ¯ + T C

N−1�g�x�� ,

�27�

is a self-transform function of TC and that any self-transform
function FS of TC can be generated in this manner �take g
=FS /N, for instance�. The Fourier transform is 4-cyclic.
Other cyclic transforms and associated self-transform func-
tions are studied in �4,16,17�.

We will show here that degenerate cavities produce such
self-transform functions from an input image through a
transformation similar to Eq. �27�.

2. Image propagation through a K /N degenerate cavity

Let us consider a resonator cavity with order of degen-
eracy K /N. Let � be the �low� intensity losses over one
round trip on the mirrors. For an impedance-matched cavity
without internal losses, the losses are identical in the two
mirrors, meaning that the amplitude transmission of one mir-
ror is t=�� /2. For a cavity at resonance, we have

T cav
N �Ein�r��� = Ein�r�� , �28�

since after N turns the field comes back onto itself. It means
we can view Tcav as a N-cyclic transform on the intensity.

The output field at resonance will be

Eout�r�� = t2�
n=0

�

��1 − t2�Tcav�nEin�r�� , �29�

the factor �1− t2� taking into account the double reflection of
the field at each round-trip. Using the fact that T cav

N �Ein�r���
=Ein�r��, we can finally rewrite the output field as

Eout�r�� =
t2

1 − �1 − t2�N �
n=0

N−1

�1 − t2�nT cav
n �Ein�r��� . �30�

In the high-finesse limit �F�N� �1− t2�n�1−nt2�1 for n
�N, so that
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11.1. Image transmission through a stable paraxial cavity

Eout�r�� �
1

N
�
n=0

N−1

T cav
n �Ein�r��� . �31�

The output image is thus the self-transform field for N-cyclic
transform Tcav, constructed from the input image through the
method of Eq. �27�.

Let us finally note that most of this discussion can be
extended to more complex cavities, provided Tcav is a cyclic
transform and that the present formalism holds for single-
mode or totally degenerate cavities: in the former case it
means that a self-transform function for a noncyclic trans-
form is just a cavity mode; in the latter case the transform is
just the identity, and of course any field is a self-transform
for identity.

IV. HEMICONFOCAL CAVITY

We will now illustrate this formalism by considering in
more detail a particular cavity, the hemiconfocal cavity,
which is made of a plane mirror and a curved mirror R of
radius of curvature R separated by a distance L=R /2 �see
Fig. 3�, which has already been studied in terms of beam
trajectories �18�. We have studied this kind of cavity both
theoretically and experimentally in the framework of our ex-
perimental investigations of the cw amplification of images
in a cavity �19�.

A. Theoretical study

It is straightforward to show that the round-trip Gouy
phase shift � is equal to � /2 for a hemiconfocal cavity, so
that its degeneracy order is 1 /4: there are four distinct fami-
lies of transverse modes, depending on the value p+q
modulo 4. The round-trip Gauss matrix, starting from the
plane mirror, is

Tcav =� 0
R

2

−
2

R
0 � , �32�

so that

Tcav
2 = �− 1 0

0 − 1
�, Tcav

4 = �1 0

0 1
� . �33�

So two round-trips give the opposite of the identity �symme-
try with respect to the cavity axis�, which is the Gauss matrix
of the confocal cavity, and four round-trips give the identity,
as expected for a cavity with degeneracy order 1 /4.

Tcav is the transformation of an f-f system and is an exact
AFT transform:FIG. 4. Ray trajectory picture in the hemiconfocal cavity.

FIG. 5. �Color online� Input image: infinite slit intercepting a
large Gaussian mode �top�, projection on the first 400 modes of the
cavity �middle�, and spatial Fourier transform �bottom�. The trans-
verse unit is scaled to the waist w0 of the cavity.

FIG. 3. The confocal cavity �left� has a symmetry plane. Placing
a plane mirror in this plane gives us the hemiconfocal cavity �right�.

GIGAN et al. PHYSICAL REVIEW A 72, 023804 �2005�

023804-6

149



11. Le tout multimode : les cavités dégénérées

Tcav:E�r�1� → − eikL 2i

R�
� � d2r�1E�r�1�exp�− i

4�

�R
r�1r�2� .

�34�

It is equal to the two-dimensional �2D� spatial Fourier trans-
form of the form

ũ�y�� =
2

�R
� u�r��e−i�4�/�R�y�r�d2r� �35�

multiplied by a phase factor a= ieikL, which depends on the
exact length of the cavity. It must verify a4=1 at resonance,
so that a=1, i, −1 or −i.

If Ein�r�� is the input image, then the output field is �see
Fig. 4�

E�r�� =
1

4
�Ein�r�� + a2Ein�− r��� + a�Ẽin�r�� + a2Ẽin�− r��� .

�36�

In terms of imaging, a is the phase between then even-odd
parts of the field and its spatial Fourier transform, and a2

gives the parity of the output image. Each value of a corre-
sponds to a given family of modes—more precisely,

a = 1 → modes m + n = 0�4� ,

a = i → modes m + n = 1�4� ,

a = − 1 → modes m + n = 2�4� ,

a = − i → modes m + n = 3�4� . �37�

FIG. 6. Simulation of the transmissions peaks of the cavity for
the slit of Fig. 9, for a finesse F=500.

FIG. 7. �Color online� Theoretical transmission �amplitude� of the slit by the hemiconfocal cavity, for every mode family m+n= i�4�. The
transverse unit is scaled to the waist w0 of the cavity.
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11.1. Image transmission through a stable paraxial cavity

For example, the hemiconfocal cavity tuned on the m+n
=0�4� family will transmit the sum of the even part of the
image and of the even part of its Fourier transform.

B. Numerical simulation

We will now give results of a numerical simulation in a
simple experimental configuration: in order to create the in-
put image Ein, a large Gaussian TEM00 mode is intercepted
by a single infinite slit of width w0, shifted from the optical
axis by 1.5w0, which is imaged �near field� onto the reference
plane �zref� of the cavity. Without the slit, the input TEM00

mode has in the reference plane a size equal to 3 times the
waist of the TEM00 cavity eigenmode. We study the trans-
mission of this input image through the cavity at the near-
field detection plane. We represented in Fig. 5 the input im-
age, its decomposition over the first 400 TEMpq modes �with
0�p, q�20�, and its spatial Fourier transform. Limiting the
decomposition of the image to only �400 modes is equiva-
lent to cutting high-order spatial frequencies and, therefore,
takes into account the limited transverse size of the optics.

Figure 6 gives the expected transmission peak as a func-
tion of cavity length and displays the four families of modes

in a given free spectral range. The height of each peak is
proportional to the intensity of the image projection on the
family of mode. For instance, a symmetric field will have no
intensity on the 1�4� and 3�4� families.

Figure 7 gives the amplitude of the transmitted field for
each family of modes, calculated from the transmission of
the 400 first TEMmn modes. For each family, one easily rec-
ognizes the even or odd part of the image �two slits� and the
Fourier transform along the axis perpendicular to the slits.

The expected intensity image is represented in Fig. 8 for
each family. One observes that the Fourier transform is much
more intense that the transmitted image, even though Eq.
�36� shows that there is as much energy in the Fourier trans-
form than in the image. In the present case, the Fourier trans-
form is much more concentrated than the image, which is the
reason why the local intensity is higher. As the parity infor-
mation on the field disappears when looking at the intensity,
it is difficult to infer from it which resonance is involved. An
indication can come from the intensity on the optical axis,
which is always zero for an antisymmetric output. One can
note that if we add the amplitude fields corresponding to the
resonances m+n= j�4� and m+n= j+2�4�, the two terms cor-
responding to the Fourier transform vanish. One only gets

FIG. 8. �Color online� Theoretical transmission �in intensity� of the slit by the hemiconfocal cavity, for every mode family m+n= i�4�.
The transverse unit is scaled to the waist w0 of the cavity.
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11. Le tout multimode : les cavités dégénérées

the even or odd part of the image, which corresponds to the
action on the image of a confocal cavity. It is interesting to
note that no combination of modes transmit only the Fourier
transform of the image.

An interesting question is to know which information is
lost in the transmission through the cavity, since one only
transmits a quarter of the input intensity. By looking at the
transmitted image, it seems that no information is really lost,
except in areas where the image and its Fourier transform
overlap. But here we have some a priori information on the
image that we have sent and we know which part of the
output is the image and which part is the Fourier transform.
In more general cases, the information we lose is the knowl-
edge about whether what we observe is the image or the
Fourier transform, as well as half the image �since the parity
is fixed by the geometry of the cavity, only half the output
image is relevant to reconstruct it�. Therefore, for a given
resonance, this cavity not only cuts 75% of the modes; it also
destroys 75% of the information.

As a conclusion, the transmission through the cavity
transforms the input image into its its self-transform function
corresponding to the round-trip transform of the hemiconfo-
cal cavity. One may notice that for the resonance m+n
=0�4�, a self-Fourier image—i.e., a SFF field—is obtained.

C. Experimental demonstration

For practical reasons, we had to use a hemiconfocal cavity
in our experimental setup designed to study parametric im-
age amplification in optical cavities �see Fig. 9�. We placed a
USAF �U.S. Air Force� resolution target on the path of a
TEM00 mode produced by a Nd:YAG laser and imaged it
onto the plane mirror of a hemiconfocal cavity, of length
50 mm, servolocked on a resonance peak. The size of the
TEM00 mode inside the cavity was 3 times larger than the
eigenmode waist of the cavity. The finesse of the cavity was
about 600. The plane mirror of the cavity was then imaged
on a CCD camera. The experimental transmitted images, to-
gether with the corresponding objects, are represented in Fig.
10. The size of the TEM00 cavity mode is roughly equal to
the width of the transmitted slit in the second line. One no-
tices that each output image is symmetric, the center of sym-
metry being the axis of the cavity. It is possible to recognize
on the transmitted images the symmetrized input image and
the patterns at the center corresponding to the Fourier trans-
form of the input. For a slit it is well known that its Fourier
transform is the sinc-squared diffraction pattern, perpendicu-
lar to the slit. This kind of pattern can be recognized in the
upper two images of the figure. In the last image the sym-
metrized “2” is somewhat truncated by the limited field of
view imposed by the size of the illuminating TEM00 mode,

whereas the diffraction pattern has the general shape of the
Fourier transform of the slit formed by the main bar of the
“2,” tilted at 45°, plus a more complex shape corresponding
to the Fourier transform of the remaining part of the image.

V. CONCLUSION

In summary, this paper has studied in a general way the
problem of image transmission through a paraxial cavity,
characterized by its round-trip �ABCD� matrix, the eigenval-
ues of which give the round-trip Gouy phase shift and, there-
fore, the order of the transverse degeneracy of the cavity. We
have shown that the formalism of self-transform functions,
already applied in optics but never to cavities, was very use-
ful to understand how an image is transmitted through a
degenerate cavity: at resonance the cavity transmits the self-
transform part of the input field. We have then focused our
attention on the hemiconfocal cavity, which performs a spa-
tial Fourier transform over one round-trip, and shown that it
transmits the self-Fourier part of the image. This property
was demonstrated experimentally on various shapes of input
images. Furthermore, we have shown that a transverse de-
generate cavity is a very convenient way to produce a self-
transform field from any input field—for instance, in the case
of the hemiconfocal cavity a field which is its own Fourier
transform �i.e., its own far field�.

From a more practical point of view, transverse degener-
ate cavities can be useful for imaging purposes. For example,

FIG. 9. Schematic representation of the experimental setup.

FIG. 10. Image on the resolution target �left� and its transmis-
sion through the hemiconfocal cavity �right�.
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11.1. Image transmission through a stable paraxial cavity

they are necessary for intracavity cw parametric amplifica-
tion of images. The observation of cw image amplification
with low pump powers will be reported in a forthcoming
publication �19�. These experimental results open the way to
the observation of specific quantum aspects of imaging
which have been predicted to occur in such devices, such as
noiseless phase-sensitive amplification, local squeezing, or
spatial entanglement.
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APPENDIX: EIGENVECTORS AND GOUY PHASE
OF A CAVITY

Let A, B, C, and D be the coefficients of the cavity round-
trip Gauss matrix Tcav, starting from any plane. Given that
AD−BC=1, the eigenvalues of this Gauss are

�1,2 = e±i arccos��A+D�/2�. �A1�

They are simply related to the matrix trace A+D and, as
expected, independent of the reference plane one choses in

the cavity to calculate the Gauss matrix. Let us now consider
the fundamental Gaussian mode of the cavity, E�r�
=E�0�e−ikr2/2q, where q is the complex radius of curvature.
Using the propagation relation �5�, one easily computes that,
on axis, it becomes, after one round-trip,

E��0� = E�0�eikL 1

B/q + A
. �A2�

The round-trip Gouy phase shift � for this mode is therefore

� = Arg� 1

B/q + A
� . �A3�

On the other hand, after one round-trip in the cavity, the
complex radius of curvature becomes �Aq+B� / �Cq+d�, but
since it is an eigenmode of the cavity, q must verify

q =
Aq + B

Cq + d
, �A4�

from which one deduces

A +
B

q
=

D + A

2
+ i�1 − �A + D�2/4. �A5�

From Eq. �A3�, one then find that �=arccos��A+D� /2�, and
therefore using Eq. �A1� one retrieves relation �11�.
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Experimental study of the spatial distribution of quantum correlations in a confocal optical
parametric oscillator
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We study experimentally the spatial distribution of quantum noise in the twin beams produced by a type-II
optical parametric oscillator operating in a confocal cavity above threshold. The measured intensity correla-
tions are at the same time below the standard quantum limit and not uniformly distributed inside the beams. We
show that this feature is an unambiguous evidence for the multimode and nonclassical character of the quantum
state generated by the device.
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I. INTRODUCTION

To date, almost all the experiments investigating the quan-
tum properties of the states of light produced by optical para-
metric oscillators �OPOs� have been performed through the
measurement of the total intensity of the generated fields,
obtained by integrating on the detector the whole wave-front
intensity distribution. Such measurements have put in evi-
dence the squeezed vacuum character of the output of a de-
generate OPO below threshold �1�, the quantum intensity
correlations between the signal and idler beams �twin beams�
�2�, and the bright squeezing of the output of an optical para-
metric amplifier �OPA� �3� and of the pump beam reflected
by an OPO �4�.

In the past years, the interest has turned to the spatial
aspects of quantum fluctuations, in particular, because they
open new perspectives in the quantum information field: spa-
tial features offer the possibility of parallel processing and
multichannel operation, each part in a transverse section of a
beam playing the role of a channel. The concepts of temporal
squeezing and correlations of light beams as a whole have
been extended to spatiotemporal properties for the local
quantum fluctuations in the plane perpendicular to the propa-
gation: squeezing of the temporal fluctuations inside a small
part of the transverse plane, or temporal quantum correla-
tions between different transverse areas of the beam are
some of the manifestations of the transverse quantum prop-
erties of light. It has been shown that, in order to obtain
strong spatial quantum effects, one needs to use multimode
nonclassical states of light, in contrast to the single-mode
operation of the experiments quoted above. It has also been
shown that such nonclassical multimode states can be used to
improve the optical resolution �5� and to measure small
transverse displacements of a light beam below the standard
quantum limit �6,7�.

Our investigations of the spatial distribution of multimode
states of light produced by OPOs are related to the pioneer

studies of the stochastic spatial noise performed in gas lasers
�8�, and more recently in semiconductor lasers �diode lasers
and vertical cavity surface emitting lasers �VCSELs�� �9�, for
which the spatial distribution of the quantum fluctuations of
the output beam has been studied and interpreted in terms of
a superposition of several Hermite-Gauss modes. They must
also be connected to the studies of spatial quantum effects
for the photons generated by spontaneous parametric down-
conversion, at the photon counting level, for example, to the
recent demonstration of spatial antibunching �10�.

Parametric interaction in a nonlinear crystal has been
theoretically shown to be a very efficient source of multi-
mode nonclassical states of light. Many theoretical studies
�11,12� have shown in particular that OPAs generate multi-
mode squeezed states. OPOs have also been shown to be a
source of multimode squeezed states provided that they use
optical cavities with degenerate transverse modes: in particu-
lar, detailed theoretical investigations have been performed
on subthreshold OPOs in planar �13,14�, or quasiplanar cavi-
ties �15,16�.

From an experimental point of view, such cavities, which
are close to instability, are quite difficult to handle and have
very high oscillation thresholds. Confocal cavities are much
easier to operate, and still exhibit interesting nonclassical
transverse effects, such as multimode squeezing in the de-
generate case below threshold �17�. The multimode trans-
verse operation of confocal OPOs above threshold has been
theoretically investigated at the classical level �18�, and ex-
perimentally put in evidence in Ref. �20�, where it has been
shown that the field emitted by a confocal OPO above
threshold can be described as a superposition of a great num-
ber of TEMpq modes. The quantum description of this re-
gime is unfortunately a difficult task, as the device switches
from an uncoupled regime of the different transverse modes
to a strongly coupled regime when passing from the sub-
threshold emission to the regime of intense output.

This paper is devoted to the study of the spatial distribu-
tion of quantum fluctuations of such a device, and shows that
it generates multimode nonclassical states of light. In Sec. II,
we give the precise definition of multimode quantum states
of light. We present in Sec. III a criterion unambiguously
characterizing such states in our experimental configuration,
namely, the measurement of the spatial distribution of the
intensity correlations between the signal and idler beams.

*On leave from the Instituto de Fisica, Universidade de São
Paulo, P.O. Box 66318 CEP, São Paulo, Brazil.

†Also at the pôle Matériaux et Phénomènes Quantiques, FR
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Section IV presents the experimental setup and the procedure
for measuring these correlations. Finally, Sec. V presents the
experimental results proving that the signal and idler beams
emitted by the confocal OPO are multimode and spatially
quantum correlated.

II. INTRINSIC CHARACTERIZATION OF MULTIMODE
AND SINGLE-MODE BEAMS

A. Definition of single-mode and multimode beams

In the studies on optical patterns, a beam is said to be
multimode �in the TEMpq basis�, when the far-field patterns
appear to be different from the near-field patterns. Actually,
this feature is a proof that the beam consists of a superposi-
tion of several TEMpq modes. The electric-field positive fre-
quency envelope of such a light beam, E (�)(r� ,z), expanded
in the basis of TEMpq modes up ,q(r� ,z), writes

E (�)�r� ,z ���
p ,q

�p ,qup ,q�r� ,z �, �1�

with more than one �p ,q coefficient different from zero. Nev-
ertheless, if the �p ,q coefficients are fixed �i.e., if we deal
with a coherent superposition of modes and not a statistical
one�, one can always define a new mode v0(r� ,z):

v0�r� ,z ��
E (�)�r� ,z �

� 
E (�)�r� ,z �
2d2r

�2�

and construct a new orthonormal basis of modes �v i(r� ,z)	 in
which v0 is the first element. In this new basis, the field
which appeared multimode in the Gauss-Laguerre basis, is
proportional to v0 and is then single mode. This simple rea-
soning at the classical level seems to show that the single-
mode or multimode character of a beam having a well de-
fined and fixed amplitude distribution depends on the choice
of the basis, and is not an intrinsic property. A TEM00 laser
beam is single mode in the Laguerre-Gauss basis, and mul-
timode in the basis of transverse plane waves. We will show
here that this statement is no longer true when one describes
the beam at the quantum level.

We will now define a single-mode quantum state of light
in the following way: 

� is a single-mode quantum state of
light if there exists a basis of modes �v i(r� ,z)	 in which it can
be written as



��

0� � 
0� � 
0� � ••• , �3�

where the first transverse mode v0, whatever its shape, is a
nonvacuum state 

0�, and all the other modes are in the
vacuum state. We will call intrinsic multimode states all
states defined by a ket 

�, which cannot be written as Eq.
�3� in any basis. We will give in the following section a
characterization of such single-mode or multimode states,
which is independent of the basis used to describe it.

This striking difference between the classical and quan-
tum description of a multimode state comes from the fact

that a quantum state gives information on the mean electric
field, but also on the statistical distribution of quantum fluc-
tuations: a single-mode beam is characterized by a well de-
fined transverse variation that carries all its transverse infor-
mation. Consequently, in such a state the transverse
distribution of quantum fluctuations can be deduced from the
transverse variation of the mode itself. In contrast, in intrin-
sic multimode states, the spatial distribution of fluctuations
and correlations cannot be deduced from the structure of the
mean field.

Let us finally mention that this problem is modified if one
considers stochastic fields, i.e., having classical fluctuations.
In this case also, the comparison between the spatial �or tem-
poral� distribution of the mean field and of the classical fluc-
tuations is still an intrinsic tool to determine whether the
field can be considered as single mode or multimode �9�. We
will not consider further this problem here.

B. Characterization of a single-mode quantum state

Let us consider a single-mode state of light 

�, written
in the adapted basis �v i	 as Eq. �3�, and let us call â i the
annihilation operator of photons in the mode v i . Let us now
introduce any other mode basis of the transverse plane �w j	,
and the corresponding annihilation operators b̂ j . There is a
unitary transformation relating the two basis, and corre-
spondingly the two sets of annihilation operators:

b̂ i��
j

Ui jâ j . �4�

From Eqs. �3� and �4�, one deduces that:

b̂ i

��Ui0â0

0�. �5�

We thus obtain a specific property of a single-mode quantum
state: the action on it of all the annihilation operators of any
given basis of transverse modes gives vectors which are all
proportional. One can show that this feature is a necessary
and sufficient condition to be a single-mode state �21�. In
contrast, for an intrinsic multimode state, there exists at least
one basis of modes in which this property is not true. The
condition for single-mode states being very restrictive, the
set of single-mode states is a very small subset of the general
Hilbert space. The complement of this subspace, namely, the
set of intrinsic multimode states, is therefore much larger.

This characterization of single-mode and multimode
states appears to be quite mathematical, and seems difficult
to implement experimentally. We give in the following a
more convenient property of single-mode states, which is not
a necessary and sufficient condition, but which can be sub-
mitted to an experimental check with our setup.

III. CHARACTERIZATION OF SINGLE-MODE AND
MULTIMODE TWIN BEAMS

A. Partial measurement of intensity fluctuations on
a single-mode beam

Let us consider an intensity, or photon number, measure-
ment using a detector of variable transverse area SA . We
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11. Le tout multimode : les cavités dégénérées

have shown in Ref. �6� that if the light is in a single-mode
state, the variance of the photon number fluctuations mea-
sured with this partial detector is given by

�NA
2�NA��

NA�2

Ntot�
2
��Ntot

2 �Ntot��, �6�

where NA� is the mean number of photons detected on the
area SA , Ntot� is the mean number of photons detected on
the whole transverse plane, and �Ntot is the corresponding
variance. One sees that the intensity noise normalized to shot
noise, �NA

2 /NA�, varies linearly with the quantity T
�NA�/Ntot�. This formula can be understood by consider-
ing that in a single-mode state the photons are randomly
distributed in the transverse plane, so that a partial detection
performed on an area smaller than the tranverse section of
the beam will introduce sorting noise in the detection of the
photon number, exactly like when one introduces a linear
loss of value T in front of the detector. This intuitive picture
is no longer true for multimode beams.

B. Partial measurement of intensity correlations
on single-mode twin beams

In a nondegenerate OPO, the emitted signal and idler
fields present strong intensity correlations at the quantum
level �‘‘twin beams’’�. In particular, the variance of the dif-
ference Ndi f ,tot�N1,tot�N2,tot between the signal �labeled 1�
and idler �labeled 2� intensities detected over the whole
transverse plane is smaller than N1,tot��N2,tot� , which is
the shot noise for the sum of the signal and idler beams.
When the beams produced by the OPO are both single-mode,
one can easily show from Ref. �6� that the following for-
mula, similar to Eq. �6�, holds in case of a partial photode-
tection of signal and idler beams by two detectors having the
same areas and positions SA in the two beams:

�Ndi f ,A
2 ��N1,A��N2,A���

�N1,A��N2,A��2

�N1,tot��N2,tot��2

���Ndi f ,tot
2 ��N1,tot��N2,tot��� . �7�

Similarly to the interpretation of formula �6�, this formula
can be understood by considering that in single-mode twin
beams there is no spatial correlation between the twin pho-
tons inside the signal and idler beams, the photons being
randomly distributed inside the two beams. If, instead of
small detectors, we use detectors with a broad enough area to
detect the whole beams, but preceded by a diaphragm, or iris,
of variable transmission T, expression �7� shows that in
single-mode twin beams the relative noise on the intensity
difference, nA��Ndi f ,A

2 /N1,A��N2,A�, is a linear function
of the transmitted mean intensity. In contrast, a nonlinear
variation of this quantity will be a signature for intrinsic
multimode twin beams, for which the twin photons are not
randomly distributed inside the two beams.

C. Partial measurement of intensity correlations on
single-mode twin beams undergoing different losses

We have assumed so far that the detected mean intensities
of the output beams are always equal, even in partial photo-
detection. In real experiments, this is not exactly the case,
and imbalances of several percents are commonly measured,
especially in confocal OPOs, where the patterns observed in
the signal and idler beams are different. The imbalance will
affect the intensity fluctuations of the two beams in a differ-
ent way. The imbalance of the whole beams is due to the fact
that the signal and idler beams, produced in exact equal
amounts in the nonlinear crystal, experience different losses
in their propagation. Furthermore, in the case of a partial
photodetection, one must also take into account that the sig-
nal and idler beams may have different shapes. It is impor-
tant to precise the way to define the ‘‘twin character’’ of such
imbalanced beams in a partial measurement. We will first
introduce the normalized intensity difference noise n when
the whole beams are measured �Fig. 1�a��. We will then con-
sider a partial measurement �Fig. 1�b�� and define the direct
normalized intensity difference noise nd , with no correc-
tions, as it can be directly calculated from the measurement.
We will finally define the corrected normalized intensity dif-
ference noise ncorr , an attempt to recover the value of n
from nd assuming that the beams are single mode.

Assuming that the mean signal and idler fields are real,
and as the fluctuations in the cw regime are very small in
comparison to the mean field �19�, we can write the field
intensity operator as

� î m�2Em�Êm , m��1,2	, �8�

where �Êm is the quadrature fluctuation operator in the am-
plitude direction. We now introduce the normalized quantity

FIG. 1. Measurement of twin beams correlation in the imbal-
anced case. �a� id

out : direct difference measurement. �b� ig
out : differ-

ence measurement after gain corrections.
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11.2. Experimental study of(. . .) quantum correlations in a confocal OPO

n, which is the variance of the intensity difference fluctua-
tions normalized to the total shot noise, and can be written as

n�
�� î 1�� î 2�2�

4� i1�i2��2Ev

, �9�

where �2Ev is the noise variance of the vacuum field.
n�1 for beams with classical correlations �obtained, for ex-
ample, by using beam splitters� and n�1 for quantum cor-
related beams �twin beams�. Let us now assume that the two
beams are subject to losses before being incident on the pho-
todetectors �Fig. 1�b��. We call Em

out the fields which are in-
cident on the photodetectors and im

out their intensities, and nd

the normalized variance of their intensity difference:

nd�
�2id

out

4� i1
out�i2

out��2Ev

�
�� î 1

out�� î 2
out�2�

4� i1
out�i2

out��2Ev

. �10�

In the transverse single-mode case, losses of any origin and
partial photodetection have the same effect on the fluctua-
tions mechanism, identical to the effect of a beam splitter of
transmission tm (m�1,2) �with tm

2 �im
out/im). The field inten-

sity î m
out measured by the photodetectors presents fluctuations

� î m
out(t) that can be expressed in the linearization approxi-

mation as

� î m
out� t ��2tn

2Em�Êm�2tm��1�tm
2 �Em�Êvm , m��1,2	.

�11�

Knowing the effective loss coefficient tm , it is possible to
adjust the gain gm on the acquisition channels at the value
1/tm

2 , as shown in Fig. 1, so that the mean values of the

corrected intensities gm î m
out� are equal to their value without

losses  î m�. If one assumes that the two beams are single
transverse modes, it is possible to recover the original nor-
malized intensity difference noise n of Eq. �9� by subtracting
the effect of the vacuum fluctuations �Êvm . Writing �2ig

out

the fluctuations of the difference between the two acquisition
channels,

�2ig
out��g1� î 1

out�g2� î 2
out�2�, �12�

one easily shows that the quantity

ncorr�
�2ig

out

4�g1i1
out�g2i2

out��2Ev

�1�
g1

2i1
out�g2

2i2
out

g1i1
out�g2i2

out

�13�

is equal to n in the single-transverse-mode case. The last two
terms of Eq. �13� correspond to the corrections arising from
vacuum fluctuations introduced by the losses or the partial
detection.

D. Multimode twin beams

Since for single-mode signal and idler beams ncorr�n , a
constant value ncorr with the transmittance tm for a partial
measurement �or a linear variation of nd) is a good indica-

tion �but not a proof� of the single-mode character of the
signal and idler mode beams. In contrast, a nonconstant
value of ncorr , or a nonlinear variation of nd , with respect to
the losses is an unambiguous signature of the multimode
character of the two beams generated by the OPO. Further-
more, if these quantities are smaller than 1, we can conclude
that we are in presence of multimode nonclassical beams.
Strictly speaking, as the vacuum correction in ncorr has been
derived assuming single-mode beams, ncorr do not anymore
correspond exactly to a noise correlation in the case of mul-
timode beams. Moreover, for a partial measurement, the
mean intensity of both beams may be different, and neither
nd nor ncorr are perfectly suited for the exact characteriza-
tion of quantum intensity correlation. For these reasons, in
the case of a partial measurement of a multimode beam,
more sophisticated criteria should be investigated, which will
be developed in a forthcoming publication.

IV. EXPERIMENTAL SETUP

For OPOs operating in cavities with degenerate transverse
modes, the formation of complex spatial structures has been
theoretically �22,23� and experimentally �20,24� studied.
Furthermore, quantum multimode operation of the OPO has
been already theoretically predicted �14�. But, up to now, to
our knowledge, there has been no experimental demonstra-
tion that the emission of an OPO is intrinsically multimode.
The experiment presented here investigates the spatial distri-
bution of the intensity correlation between the signal and
idler beams emitted by a confocal OPO above threshold in
order to identify their single-mode or multimode character.
The setup, shown in Fig. 2, can be divided into two parts: the
triply resonant OPO and the acquisition system of the inten-
sity fluctuations of the beams.

A. The triply resonant OPO

In order to match the desired requirements of power and
stability of the experiment, an effective setup was made for

FIG. 2. Experimental setup. PZT, piezoelectric transducer; IC,
input coupler; OC, output coupler; DM, dichroı̈ mirror; M, mirror;
L, lens; BS, beam splitter; PBS, polarizing beam splitter; HWP,
half-wave plate; I, iris; D, detector; DG , detector for green light;
DIR , detector for IR light.
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the generation of the pump beam for the OPO. We used an
ultrastable single-mode Nd:YAG �yttrium aluminum garnet�
laser with 350 mW of output power to lock a flash-lamp-
pumped Nd:YAG laser operating in a ring cavity. This con-
figuration �20,24� gives a stable single-mode beam with an
output power of 3.5 W at 1064 nm. This beam is injected in
a semimonolithic frequency doubler, using a MgO:LiNbO3
crystal and a concave mirror. The output of the second har-
monic generator reproduces the frequency stability of the
injected Nd:YAG laser and gives a total output power of 1.3
W at 532 nm. The pump is then injected inside the OPO with
a waist equal to twice the TEM00 waist of the OPO cavity
mode like in Ref. �20�.

The nonlinear crystal used inside the OPO is a walk-off
compensated KTP �potassium titanyl phosphate� cut for
type-II phase matching. It is made by two 5-mm-long crys-
tals that are optically contacted, with their orientations com-
pensating the walk-off effect. The triply resonant OPO uses
two plane-concave mirrors, whose curvature is
R�100 mm. The input coupler has a transmittance of 10%
for the pump �532 nm� and high reflectance for the Nd:YAG
wavelength �1064 nm�. The output coupler has a high reflec-
tance at 532 nm and 1% transmittance at 1064 nm. Measured
finesse value of the cavity with the crystal is 40 at 532 nm
and 300 at 1064 nm and temperature is controlled such that
signal (o-polarization� and idler (e-polarization� emitted by
the OPO are close to frequency degeneracy. The cavity
length can be tuned over a few free spectral ranges with a
piezoelectric ceramic �piezoelectric transducer, PZT� at-
tached to the input coupler. A coarse control of the length of
the OPO is performed by means of translation stages fixed
on both cavity mirrors. A fraction of the infrared output of
the Nd:YAG laser can also be injected into the cavity for
alignment purposes and to check the transverse-mode sepa-
ration. The OPO works close to the confocal configuration.
In order to define the region of confocality, it is useful to
remember that the distance L between two spherical mirrors
for a confocal cavity depends not only on the ray of the
concave surface but also on the refractive index of the me-
dium inside the cavity. Therefore, considering the diffraction
effects inside a crystal of length � and refractive index n in a
cavity made by two spherical mirrors of ray R, the distance L
between the mirrors for the confocality will be �25�

Lcon f�R���1�1/n �. �14�

Since the refractive index for pump, signal, and idler are
different �respectively, 1.7881, 1.8296, and 1.7467 �26��, the
length of the cavity Lcon f for which the exact confocality is
obtained, is different for each of the three modes �104.41,
104.28, and 104.53 mm�. Transverse degeneracy is achieved
when different transverse modes are resonant for the same
cavity length. Due to the width of the resonance peaks, trans-
verse degeneracy can be obtained even if the cavity is not
exactly confocal. The range of confocality can be defined as
the region of the cavity length where the fundamental and
the first transverse even mode separation is smaller than the
cavity bandwidth, and, following Ref. �27�, can be expressed
as


L�Lcon f 
�
�R

2F
, �15�

where F is the finesse of the cavity. In our case, the range of
confocality for signal, idler �and pump� is larger than the
difference between the confocal lengths for the signal, idler,
and pump modes. Transverse degeneracy, essential for mul-
timode emission, is then achievable at the same time for the
three modes. Taking the average of the confocal length for
signal and idler, we will consider the confocal length as
Lcon f�104.41 mm, and express the cavity length in terms of
�L�L�Lcon f .

Although the threshold for oscillation is quite low and
around 30 mW, significant thermal effects take place inside
the cavity even close to threshold, because of the non-
negligible absorption of the green light �3% at 532 nm� and
of infrared light �0,45% at 1064 nm�: thermal lensing
changes the total Gouy phase shift added to the wave in a
round trip �27� and even a subconfocal cavity can become
transverse degenerate if the pump power injected into it is
sufficiently high. Therefore the confocality �20� is obtained
for cavity lengths that are shorter than the confocal length
Lcon f , defined above for a ‘‘cold’’ OPO with no thermal
effects.

B. Detection and acquisition

The details of the setup used for studying the transverse
distribution of noise in twin beams’ cavity can be seen in Fig.
2. Near the output coupler, a dichroic mirror �DM1� is used
to eliminate the residual green light transmitted through the
OPO cavity. A small fraction �2%� of the infrared light that is
reflected by this mirror and transmitted by a second dichroic
mirror DM2 is monitored by an InxGa1�xAs infrared photo-
detector DIR . It is used to stabilize the OPO cavity by a
servoloop made by a high-voltage amplifier connected to the
PZT, controlling the output power of the IR beam and stabi-
lizing it during a time ranging from seconds to minutes of
continuous operation. The green light reflected by DM1 and
DM2 is detected by a visible photodetector DG .

After the DM1 at the OPO output, a flipping mirror �M�
allows either the imaging of signal and idler far and near
fields on a screen, or the recording of their intensities by two
InxGa1�xAs infrared four-quadrant photodetectors D1 and
D2 �ETX505Q from Epitaxx�. In this experiment, only one
quadrant of each photodetector is used. Their quantum effi-
ciencies are very close �less than 1% difference� and equal to
90%�5%. In both configurations, polarizing beam splitters
�PBS� separate the signal and idler beams. Depending on the
orientation of the half-wave plate placed before PBS1, signal
and idler can be sent either to D1 or D2. During the mea-
surement process, two irises of variable diameter are used to
select in the far field a circular region of the output beam. Iris
I1 is used to select a narrow circular region on both signal
and idler, while iris I2 acts only on a single beam, either
signal or idler. The lenses L1 and L2 are adjusted for each
experiment in order to project the far field of the beam into
the iris plane. The transmitted intensities are recorded and
their fluctuations are monitored by an effective data acquisi-
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tion system that is described below.
The data acquisition system used for the noise measure-

ment differs from the usual method of direct measurement
and subtraction of noise fluctuations �e.g., Ref. �28��. The
high-frequency part of the photocurrent of each photodetec-
tor is amplified by a transimpedance amplifier and a broad-
band 36-dB amplifier. This signal is then mixed in an elec-
tronic demodulator at a frequency f 0 equal to 3.5 MHz,
which lies inside the cavity bandwidth for the infrared modes
and above the excess noise frequencies of the output beams.
The output of the mixer has an active low-pass filter, work-
ing at 100 kHz. This signal is registered by a fast analog-to-
digital acquisition card for measuring the noise correlation of
the photocurrents. We used two acquisition cards �PCI6110E
from National Instruments� with four simultaneous measure-
ment channels each and 12 bits for signal conversion. The
signal is measured with a repetition rate of 200 kHz and
registered in the computer. Remaining channels of the data
acquisition system are used for the measurement of the av-
erage value of the photocurrent of each detector, as well as
the photocurrents of detectors DG and DIR . From the stored
information of the average value and noise fluctuations of the
photocurrent we can calculate the noise correlation of the
intensity, and compare it to a previous calibration of the shot
noise level made with a single output of the OPO or with the
injected IR light from the Nd:YAG laser. This technique al-
lows us to acquire in a very short time interval both the
temporal fluctuations of a given Fourier component of the
photocurrents and of their mean values, and then to postpro-
cess the stored data. We can thus determine the different
normalized quantities that we have defined earlier in that
paper.

C. Experimental procedure

When the OPO oscillation is stabilized for a given cavity
length, we perform two kinds of experiments. In the first
experiment, we record the simultaneous noise distribution of
the signal and idler beams by using the iris I1. We continu-
ously close the iris I1 in 2 s, while acquiring a long series of
values of �is , �i i , is , i i , i IR , and iG �six series of 400 000
simultaneous values�. We analyze the data by groups of
10 000 values, calculating for each group the average photo-
current value im� (m�1,2) and the normalized variances
ncorr and nd . The corresponding vacuum fluctuation �2Ev
was previously calibrated, and the electronic noise level is
subtracted in the calculation of the variances. The transmit-
tance of the iris for each series of 10 000 points is defined as
T�r/ropen , where r is the ratio r�is�i i�/i IR�, and ropen
corresponds to the initial value of r when the diaphragm is
open. The normalized intensity difference noise variances
ncorr and nd are then plotted as a function of the transmis-
sion of the iris. For T�1, n�nd�ncorr . When the variation
of nd (ncorr) is not linear �flat�, one can conclude that the
beams are multimode. The quantum correlation between
them can be inferred from the intensity difference noise vari-
ances obtained for T�1. The second kind of experiments
consists in setting iris I2 on either the signal or the idler
beam path and taking the unaffected beam as a reference.

The procedure is identical to the previous one, except that r,
for the iris on the signal beam, is defined as r�is�/i IR� .
Closing the iris I2 attenuates only one of the beams, and
produces a strong imbalance between the photocurrents of
the two photodetectors, with a ratio (is /i i) well out of the
range 90% to 110%, which was typical in the previous con-
ditions. With such a large imbalance, the value of nd deduced
from the experiment does not give any quantitative informa-
tion on the quantum correlations between the two beams. On
the other hand, the calculation of the corrected value of the
normalized noise ncorr allows one to recover the information
on the quantum correlation only in the case where the two
beams are single-mode. Therefore, in this second kind of
experiments, we only calculate ncorr as a function of the
transmittance T.

V. SPATIAL DISTRIBUTION OF THE INTENSITY
CORRELATION

A. Experiments with the iris on both signal and idler beams

As described in the preceding section, only iris I1 is
present. We have realized in this configuration two series of
measurements: in the first one, the OPO oscillation is stabi-
lized for a cavity length outside the confocality range, ensur-
ing a TEM00 output mode for signal and idler beams �20,24�;
in the second one, the cavity length is set to a shorter value,
inside the confocality range, where complicated patterns can
be observed in the signal and idler beams. While closing
continuously the iris I1, we record the transmitted intensity
of the signal and idler modes and the normalized intensity
noise difference variance nd . The different normalized vari-
ances are then plotted as a function of the transmittance T. In
the Fig. �3�, the straight line represents the value of nd that
could be calculated with a single-mode beam having the
same intensity correlation as the whole beam. One observes
that outside the confocality range, where the signal and idler
fields are close to TEM00 , the calculated straight line fits
well the experimental points. Moreover, for an open dia-
phragm, the normalized intensity difference noise variance is
equal to 0.8, demonstrating significant quantum intensity
correlations between signal and idler.

In the confocality range, where the signal and idler fields
have more complicated, and different, transverse variations,
one observes that the variation of nd is no longer linear with
the transmittance, demonstrating that the emission of the
OPO is multimode. Moreover, when the iris is open in that
confocal configuration, the noise correlation is still below
shot noise and close to the value obtained for the single-
mode emission: the quantum intensity correlations for the
whole beams are preserved even for multimode beams. The
increase of noise when the iris is closed shows that the in-
tensity correlation is stronger in the outer parts of the beams
than in the center. Unfortunately, with such an experiment it
is difficult to describe more precisely the transverse distribu-
tion of correlations between the signal and idler beams.

B. Experiments with the iris either on signal or idler beam

1. Single-mode beams

For a length of cavity L�Lcon f�5,6 mm, where the OPO
is assumed to be far from transverse degeneracy, we com-
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pared the results of the two kinds of experiments for the
values of ncorr as a function of the transmittance. The results
are plotted in Fig. 4. For all those experiments, as the beam
intensity on the photodetector is reduced, the fluctuations of
the photocurrent approache the electronic level. The disper-
sion in the calculated data increases when we close the iris.
Typically, the variance of the intensity noise reached the dark
noise level for an incident power of 0.2 mW, obtained with a
typical iris transmittance of 10%.

One observes that all the experimental points are aligned
on a horizontal straight line, with a mean value around 70%,
which shows that the signal and idler beams are single-mode,
quantum-correlated beams. The difference in the obtained
level of noise in Fig. 4�b� �69% and 75%� is certainly due to
the fact that both experiments are performed at different mo-
ments, and therefore on possibly different longitudinal
modes. The values of ncorr remain stable during a single
series of measurements when we close the iris.

2. Beams emitted by an OPO close to confocality

The length for the cavity is chosen to be very close to the
exact confocal length Lcon f . In this configuration, complex
structures appear in far and near fields of the signal and idler
beams �20�. We performed the same experiments and analy-
sis as in the preceding section, adding the image of the near
field and the far field of the beam obtained with the charge-
coupled device cameras. Figures 5�a�, 5�b�, and 5�c� display,

respectively, the results obtained for L�Lcon f�0.38,
�0.37, and �0.62 mm. In the configuration of Fig. 5�a�,
one observes a Gaussian-like transverse distribution of the
idler beam and a clearly non-Gaussian distribution of the
signal beam. When the iris I2 is placed on the idler beam,
ncorr does not deviate in a clear way from a flat line, except
for lower values of the iris transmittance. In this situation,
the dispersion in the results increases, following the attenu-
ation of the idler field intensity. When we set the iris on the
signal path, the corrected noise deviates slightly from a con-
stant value for values of the transmittance close to 50%. The
same behavior can be observed when we perform the experi-
ment with iris 1 on both signal and idler.

In the configuration of Fig. 5�b�, more complex structures
appear: a ring pattern can be seen in the outer part of the
idler far-field image. In the near field, complex structures
appear for both signal and idler beams. In this situation,
when iris I1 is put on both beams, the corrected correlation
noise ncorr goes up to the shot noise level and stabilizes
around this value. It is interesting to observe that the level of
squeezing obtained is reduced, and the normalized noise for
open iris starts at 85%. When the iris I2 is put on the signal
path and closed, ncorr remains constant: from these observa-
tions, one can infer that the photons in the signal beams that
are correlated to the idler photons are uniformly distributed
inside the signal beam. On the contrary, when the diaphragm
I2 is set on the idler beam, the plot of ncorr deviates from a
flat line. In that case, the results are very close to those ob-
tained when the iris I1 is set on both signal and idler, show-
ing that most of the correlated photons in the idler are con-
centrated in the external part of the beam. The central part of
the idler is constituted essentially of noncorrelated photons.

In the configuration of Fig. 5�c�, both signal and idler
beams present a faint external ring out of the central maxi-

FIG. 3. Spatial distribution of the normalized intensity differ-
ence noise nd as a function of the transmittance T with iris I1 on
signal and idler beams. Points: values of nd for a cavity length equal
to Lcon f�L�0,5 mm �beyond the confocality range� and Lcon f

�L�0,4 mm �inside the confocality range�. Straight line: Values of
nd that would be obtained with a single-mode beam having the
same squeezing when the iris is fully open.

FIG. 4. Experimental values of ncorr for quasi-TEM00 signal and
idler beams. �a� Iris on both beams, �b� Iris on a single beam. Idler
(�) and signal (�). Dashed lines: average corrected noise.
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mum. In that case, the evolution of the noise when closing
iris 1 or closing iris 2 for signal or idler is very close. Both
signal and idler corrected noises ncorr are reduced when one
closes iris I2, showing that unlike the centers of signal and
idler beams, their outer parts are quantum correlated. We see
that these experiments give interesting indications on the de-
tails of transverse distribution of the correlations inside the
beams. Unfortunately, the great quantity of modes oscillating
simultaneously in a confocal cavity, which makes a theoret-
ical approach of the system very difficult, and the lack of
long term stability of the setup, which induces a large dis-
persion on the experimental results, prevent us from a more
quantitative comparison between theory and experiments,
which has been tackled in the case of the multimode VCSEL,
for example �9�.

VI. CONCLUSION

The results presented in this paper show that the intensity
correlations in a confocal OPO are at the same time below
the standard quantum limit and not uniformly distributed in-
side the beams, which is a clear evidence that the quantum
state generated by such an OPO is a multimode nonclassical
state of light. This experiment showed also that even in the
multimode case, the intensity fluctuations of the signal and
idler beams remain quantum correlated. It would be very

interesting to find a theoretical explanation, even qualitative,
to the fact that, in our experimental configuration, the central
part of the beams seems to be less quantum correlated than
the outer parts. We plan to extend this study in the case of an
OPO working in a lower degeneracy cavity, where only some
few modes are allowed to oscillate simultaneously. The small
number of oscillating modes can lead to a detailed theoretical
description of the system. Another interesting regime is the
operation below threshold, where the comparison with
theory is somehow simpler, but which requires a spatially
resolved homodyne detection. For a more general point, this
demonstration of an intrinsic multimode emission of signal
and idler beams in the quantum regime of the above thresh-
old OPO, opens interesting prospects for the study and use of
transverse quantum effects in bright beams.
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Multimode squeezing properties of a confocal optical parametric oscillator:
Beyond the thin-crystal approximation
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Up to now, transverse quantum effects �usually labeled as “quantum imaging” effects� which are generated
by nonlinear devices inserted in resonant optical cavities have been calculated using the “thin-crystal approxi-
mation,” i.e., taking into account the effect of diffraction only inside the empty part of the cavity, and
neglecting its effect in the nonlinear propagation inside the nonlinear crystal. We introduce in the present paper
a theoretical method which is not restricted by this approximation. It allows us in particular to treat configu-
rations closer to the actual experimental ones, where the crystal length is comparable to the Rayleigh length of
the cavity mode. We use this method in the case of the confocal optical parametric oscillator, where the
thin-crystal approximation predicts perfect squeezing on any area of the transverse plane, whatever its size and
shape. We find that there exists in this case a “coherence length” which gives the minimum size of a detector
on which perfect squeezing can be observed, and which gives therefore a limit to the improvement of optical
resolution that can be obtained using such devices.

DOI: 10.1103/PhysRevA.72.013806 PACS number�s�: 42.50.Dv, 42.65.Yj, 42.60.Da

I. INTRODUCTION

Nonlinear optical elements inserted in optical cavities
have been known for a long time to produce a great variety
of interesting physical effects, taking advantage of the field
enhancement effect and of the feedback provided by a reso-
nant cavity �1,2�. In particular, a great deal of attention has
been devoted to cavity-assisted nonlinear transverse effects,
such as pattern formation �4� and spatial soliton generation
�5�. More recently the quantum aspects of these phenomena
have begun to be studied, mainly at the theoretical level,
under the general name of “quantum imaging,” especially in
planar or confocal cavities.

Almost all the investigations relative to intracavity non-
linear effects, both at the classical and quantum level, have
been performed within the mean-field approximation, in
which one considers that the different interacting fields un-
dergo only weak changes through their propagation inside
the cavity, in terms of their longitudinal and transverse pa-
rameters. This almost universal approach simplifies a great
deal the theoretical investigations, and numerical simulations
are generally needed if one wants to go beyond this approxi-
mation �9�. It implies in particular that diffraction is assumed
to be negligible inside the nonlinear medium, which limits
the applicability of the method to nonlinear media whose
length lc is much smaller than the Rayleigh length zR of the
cavity modes zc �so-called “thin” medium�. This is a configu-
ration that experimentalists do not like much: they prefer to
operate in the case lc�zc which yields a much more efficient
nonlinear interaction for a given pump power �10�. If one
wants to predict results of experiments in realistic situations,
one therefore needs to extend the theory beyond the usual
thin nonlinear medium approximation, and take into account
diffraction effects occurring together with the nonlinear in-
teraction inside the medium.

The effects of simultaneous diffraction and nonlinear
propagation have already been taken into account in the case
of free propagation, i.e., without optical cavity around the
nonlinear crystal, and they have been found to have a direct
influence on the shape of the propagating beam �3�. These
effects have also been studied in detail at the quantum level
in the parametric amplifier case �8�, and recently for the soli-
ton case �11�. In contrast, they do not play a significant role
when the nonlinear medium is inserted in an optical cavity
with nondegenerate transverse modes, which imposes the
shape of the mode. But they are of paramount importance in
the case of cavities having degenerate transverse modes,
such as a plane or confocal cavity, which do not impose the
transverse structure of the interacting fields, and which are
used to generate multimode quantum effects.

Within the thin-crystal approximation, i.e., taking into ac-
count diffraction effects only outside the crystal, striking
quantum properties have been predicted to occur in a degen-
erate optical parametric oscillator �OPO� below threshold us-
ing a confocal cavity �12,13�: this device generates quadra-
ture squeezed light which is multimode in the transverse
domain. It was shown in the case of a plane pump that the
level of squeezing measured at the output of such an OPO
neither depends on the spatial profile of the local oscillator
used to probe it, nor on the size of the detection region. This
implies that a significant quantum noise reduction, in prin-
ciple tending to perfection when one approaches the oscilla-
tion threshold from below, can be observed in arbitrarily
small portions of the down-converted beam. Therefore in this
model there is no limitation in the transverse size of the
domains in which the quantum noise is reduced when the
OPO works in the exact confocal configuration. Such a mul-
timode squeezed light appears thereby as a very promising
tool to increase the resolution in optical images beyond the
wavelength limit.
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It is therefore very important to make a more realistic
theoretical model of this system, which is no longer limited
by the thin-crystal approximation, to see whether the pre-
dicted local squeezing is still present in actual experimental
realizations in which the crystal length is of the order of the
Rayleigh range of the resonator. This is the purpose of the
present paper, in which we will show that the presence of a
long crystal inside the resonator imposes a lower limit to the
size of the regions in which squeezing can be measured �“co-
herence area”�, which is proportional to wc

2lc /zR, where wc is
the cavity beam waist, lc is the crystal length, and zR the
Rayleigh range of the resonator.

The following section �Sec. II� is devoted to the general
description of the model that is used to treat the effect of
diffraction inside the crystal, using the assumption that the
single pass nonlinear interaction is weak in the crystal. We
then describe in Sec. III the method that is used to determine
the squeezing spectra measured in well-defined homodyne
detection schemes. We give in Sec. IV and V the results for
such quantities respectively in the near field and in the far
field, and conclude in Sec. VI.

II. MODEL

A. Assumptions of the model

Let us consider a confocal cavity, that for simplicity we
take as a ring cavity of the kind shown schematically in Fig.
1 ��14,15��. It is formed by four plane mirrors and two lenses
having a focal length equal to one-quarter of the total cavity
length, and symmetrically placed along the cavity, so that the
focal points coincide at two positions C and C�. It contains a
type-I parametric medium of length lc, centered on the point
C �see figure�. It is pumped by a field Ap of frequency 2
s
having a Gaussian shape and focused in the plane containing
the point C. In such a plane the variation of the mean enve-
lope with the transverse coordinate x is given by

Ap�x� = Ap exp�−

x
2

wp
2 � . �1�

We assume that the mirrors are totally transparent for the
pump wave, and perfectly reflecting for the field at frequency

s, except for the coupling mirror Mc, which has a small
transmission t at this frequency. The system was described in

Ref. �13� under the thin parametric medium approximation.
We will follow here the same approach, generalized to the
case of a thick parametric medium of length lc. The intrac-
avity signal field at frequency 
s is described by a field en-

velope operator B̂�x ,z�, where z is the longitudinal coordi-
nate along the cavity �z=0 corresponding to plane C�,
obeying the standard equal time commutation relation at a
given transverse plane at position z:

�B̂�x,z,t�,B̂†�x�,z,t�� = �x − x�� . �2�

As we are only interested in the regime below threshold and
without pump depletion, the pump field fluctuations do not
play any role.

In a confocal resonator the cavity resonances correspond
to complete sets of Gauss-Laguerre modes with a given par-
ity for transverse coordinate inversion; we assume that a set
of cavity even modes is tuned to resonance with the signal
field, and that the odd modes are far off resonance. It is then
useful to introduce the even part of the field operator:

B̂+�x,z,t� =
1

2
�B̂�x,z,t� + B̂�− x,z,t�� , �3�

which obeys a modified commutation relation:

�B̂+�x,z,t�,B̂+
†�x�,z,t�� =

1

2
��x − x�� + �x + x��� �4�

and can be written as an expansion over the even Gauss-
Laguerre modes:

B̂+�x,z,t� = �
p,leven

fp,l�x,z�âp,l�z,t� , �5�

where âp,l�z , t� is the annihilation operator of a photon in
mode �p , l� at the cavity position z and at time t.

The interaction Hamiltonian of the system in the interac-
tion picture is given by

Hint =
i	g

2lc
�

−lc/2

lc/2

dz�� � d2x��AP�x�,z���B̂+
†�x�,z�,t��2

− H.c.� , �6�

where g is the coupling constant proportional to the second
order nonlinear susceptibility ��2�. This equation generalizes
the thin medium parametric Hamiltonian of Ref. �16�.

B. Evolution equation in the image plane (near field)

In previous approaches �12,13�, the crystal was assumed
to be thin, so that one could neglect the longitudinal depen-

dence of AP and B̂+ along the crystal length in the Hamil-
tonian �6�. This cannot be done in a thick crystal. We will,
nevertheless, make a simplifying assumption which turns out
to be very realistic in the cw regime, with pump powers
below 1 W. We assume that the nonlinear interaction is very
weak, so that it does not affect much the field amplitudes in
a single pass through the crystal. We will therefore remove
the z dependence of the operators âp,l in Eqs. �5� and �6�,
assuming âp,l�z , t�= âp,l�z=0, t�= âp,l�t�, where z=0 is the

FIG. 1. Confocal ring cavity. The mirrors transmit the pump
wave and reflect the signal wave, with the exception of mirror Mc

that partially transmits the signal.
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crystal and cavity center C. The longitudinal variation of the

signal operator B̂ is then only due to diffraction and is de-
scribed by the well-known z dependence of the modal func-
tions fp,l�x ,z�. This assumption leads to a rather simple ex-

pression of the commutator for the B̂+ field at different
positions inside the crystal:

�B̂+�x,z,t�,B̂+
†�x�,z�,t��� = G+

*�z − z�;x,x�� . �7�

Here G+�z ;x ,x�� is the symmetrized part of the Fresnel
propagator G�z ;x ,x��, describing the field linear propagation
inside the crystal:

G+�z;x,x�� =
1

2
�G�z;x,x�� + G�z;x,− x��� �8�

with

G�z;x,x�� =
iks

2�z
eiks�
x − x� − �sz
2�/2z, �9�

where ks=ns
s /c is the field wave number, with ns being the
index of refraction at frequency 
s, and we have introduced
a walk-off term, present only if the signal wave is an extraor-
dinary one, described by the two-dimensional walk-off angle
�s.

It is now possible to derive the time evolution of the field

operator B̂�x ,z , t� due to the parametric interaction. We will,
for example, calculate it at the midpoint plane z=0 of the
crystal:

� �B̂+

�t
�x,0,t��

int
= g� � d2x�Kint�x,x��B̂+

†�x�,0,t� �10�

with the integral kernel Kint given by

Kint�x,x�� =
1

lc
�

−lc/2

lc/2

dz�

�� � d2x�AP�x�,z��G+
*�z�;x�,x�G+

*�z�;x�,x�� .

�11�

In the limit of a thin crystal considered in Refs. �12,13�, Eq.
�11� is replaced by the simpler expression

� �B̂+

�t
�x,0,t��

int
= gAP�x�B̂+

†�x,0,t� . �12�

In the thin-crystal case �Eq. �12��, the parametric interaction
is local, i.e., the operators at different positions of the trans-
verse plane are not coupled to each other, whereas in the
thick-crystal case �Eq. �11��, the parametric interaction mixes
the operators at different points of the transverse plane, over
areas of finite extension. Note, however, that operators cor-
responding to different z values are not coupled to each
other, because of our assumption of weak parametric inter-
action. This situation is very close to the one considered in
Refs. �6–8� for parametric down-conversion and amplifica-
tion in a single-pass crystal, where finite transverse coher-
ence areas for the spatial quantum effects arise because of

the finite spatial emission bandwidth of the crystal. In a simi-
lar way, in our case the spatial extension of the kernel Kint
will turn out to give the minimum size in which spatial cor-
relation or local squeezing can be observed in such a system.
The analogy will become more evident in the next section,
where we will explicitly solve the propagation equation of
the Fourier spatial modes along the crystal.

In order to get the complete evolution equation for the
signal beam, one must add the free Hamiltonian evolution of
the intracavity beam and the damping effects. This part of the
treatment is standard �17�, and is identical to the case of a
thin crystal inserted in a confocal cavity �13�. The final evo-
lution equation reads

�B̂+

�t
�x,0,t� = − ��1 + i��B̂+�x,0,t�

+ g� � d2x�Kint�x,x��B̂+
†�x�,0,t�

+ �2�B̂+in�x,0,t� , �13�

where � is the cavity escape rate, � the normalized cavity
detuning of the even family of modes closest to resonance

with the signal field, and B̂in the input field operator.
In order to evaluate the coupling kernel, let us first take

into account the diffraction of the pump field, focused at the
center of the crystal, z=0. It is described by the Fresnel
propagator Gp�z ;x ,x��, equal to Eq. �9� when one replaces ks

by the pump wave number kp, and the signal walk-off angle
�s with the pump walk-off angle �p. One then gets

Kint�x,x�� =
1

lc
�

−lc/2

lc/2

dz�� d2x�� d2y Ap�y�Gp�z�,0;x�,y�

�G+
*�z�,0;x�,x�G+

*�z�,0;x�,x�� . �14�

Assuming for simplicity exact collinear phase matching kp
=2ks, and neglecting the walk-off of the extraordinary wave,
four of the five integrations can be exactly performed, and
one finally gets

Kint�x,x�� =
1

2
�Ap�x + x�

2
���x − x��

+ Ap�x − x�

2
���x + x��� �15�

with

��x ± x�� =
iks

4�lc
�

−lc/2

lc/2 dz�

z�
e�iks/4z��
x ± x�
2. �16�

It can be easily shown that the function ��x±x�� tends to the
usual two-dimensional distribution �x±x�� when lc→0, and
that it can be written in terms of the integral sine function
Si�x�=�0

x�sin udu /u� �18�,
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��x ± x�� =
ks

2�lc
��

2
− Si� ks
x ± x�
2

2lc
�� . �17�

This expression shows us that � takes negligible values
when 
x±x�
���lc /�ns. Figure 2 plots � as a function of
the distance 
x±x�
 scaled to

lcoh =� �lc

�ns
= wC� lc

nszC
, �18�

where wC and zC are the cavity waist and Rayleigh range,
respectively. This expression shows that when the crystal
length is on the order of the Rayleigh range of the resonator,
the transverse coherence length is on the order of the cavity
waist. Recalling that the pump field has a Gaussian shape of
waist wp, in order to have a multimode operation one must
therefore use a defocused pump, with wp�wc, or alterna-
tively use a crystal much shorter than the Rayleigh range of
the resonator, which is detrimental for the oscillation thresh-
old of the OPO. The relevant scaling parameter of our prob-
lem is therefore

b =
wp

2

lcoh
2 = 2ns

zp

lc
, �19�

where zp is the Rayleigh or diffraction length of the pump
beam. This parameter sets the number of spatial modes that
can be independently excited, and it will turn out to give also
the number of modes that can be independently squeezed.

C. Evolution equation in the spatial Fourier domain (far
field)

In this section we will investigate the intracavity dynam-
ics of the spatial Fourier amplitude of the signal field, which
will offer an alternative formulation of the problem. Fourier
modes can be observed in the far-field plane with respect to
the crystal center C, which in turn can be detected in the
focal plane of a lens placed outside the cavity. Let us intro-
duce the spatial Fourier transform of the signal field enve-
lope operator,

B̂+�q,z,t� =� d2x

2�
B̂+�x,z,t�e−iq·x =

1

2
�B̂�q,z,t� + B̂�− q,z,t�� .

�20�

Equation �14� becomes

�B̂+

�t
�q,0,t� = − ��1 + i��B̂+�q,0,t�

+ g� d2q�K̃int�q,q��B̂+
†�q�,0,t�

+ �2�B̃+in�q,0,t� , �21�

where the coupling Kernel K̃int�q ,q�� is the Fourier trans-
form of the kernel �15� with respect to both arguments.
Straightforward calculations show that

K̃int�q,q�� =
1

2
�Ãp�q + q��sinc� lc

2ks
�q − q�

2
�2�

+ Ãp�q − q��sinc� lc

2ks
�q + q�

2
�2�� , �22�

where Ãp is the spatial Fourier transform of the Gaussian

pump profile �1�, i.e., Ãp�q�= �wp
2 /2�Ap exp�−
q
2�wp

2 /4��.
�and where sinc represents the Sinus Cardinal function.�

The result �22� can also be derived by solving the propa-
gation equation of the pump and signal wave inside a ��2�

crystal directly in the Fourier domain and in the limit of
weak parametric gain. We will follow here the same ap-
proach as in Refs. �8,19�, and write the propagation equation
in terms of the spatiotemporal Fourier transform field opera-

tors Âj�q ,
 ,z� of the pump �j= p� and signal �j=s� waves.
Since the cavity linewidth is smaller by several orders of
magnitude than the typical frequency bandwidth of the crys-
tal, the cavity filters a very small frequency bandwidth
around the carrier frequency 
s of the signal; moreover, we
have assumed that the pump is monochromatic, so that we
can safely neglect the frequency argument in the propagation
equations, which take the form

�Âj

�z
�q,z� = ikjz�q�Âj�q,z� + P̂j

NL�q,z� , �23�

where P̂j
NL is the nonlinear term, arising from the second-

order nonlinear susceptibility of the crystal. kjz�q�=�kj
2−q2

is the projection along the z axis of the wave vector, with
kj =kj�
 j ,q� being the wave number, which for extraordinary
waves depends also on the propagation direction �identified
by q�. For the pump wave, we assume an intense coherent
beam, that we suppose undepleted by the parametric down-
conversion process in a single pass through the crystal, so
that

Âp�q,z� → Ãp�q,z� = eikpz�q�zAp�q,0� , �24�

where we take the crystal center as the reference plane z=0.
For the signal, the propagation equation is more easily

solved by setting Âs�q ,z�=exp�iksz�q�z�âs�q ,z�. The evolu-

FIG. 2. Evaluation of the coupling kernel. � given by Eq. �16� is
plotted as a function of 
x±x�
 scaled to the coherence length �18�.
The first zero of � is obtained for the value 1.37 of the coordinate.
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11.3. Multimode squeezing properties of a confocal optical parametric oscillator(. . .)

tion along z of the operator âs is only due to the parametric
interaction and is governed by the equation �see, e.g., Refs.
�8,19� for more details�

� âs

�z
�q,z� =

�

lc
� d2q�Ap�q + q�,0�âs

†�q�,z�ei�q,q��z,

�25�

where � / lc is the parametric gain per unit length, and we
have introduced the phase mismatch function

�q,q�� = kpz�q + q�� − ksz�q� − ksz�q�� . �26�

Equation �25� has the formal solution

âs�q,
lc

2
� = âs�q,−

lc

2
� +

�

lc
�

−lc/2

lc/2

dz�

�� d2q�Ap�q + q�,0�âs
†�q�,z��ei�q,q��z�.

�27�

Assuming a weak parametric efficiency ��1, we can solve
this equation iteratively. At first order in � the solution reads

âs�q,
lc

2
� = âs�q,−

lc

2
� + �� d2q�K1�q,q��âs

†�q�,0� ,

�28�

with

K1�q,q�� = Ãp�q + q�,0�sinc��q,q��
lc

2
� . �29�

We observe that in the paraxial approximation kjz�q�	kj

−� j ·q−q2 /2kj, where  j is the walk-off angle and kj
=nj
 j /c. The phase mismatch function is hence given by

�q,q�� = kp − 2ks + ��s − �p� · �q + q�� −

q + q�
2

2kp

+
1

2ks
�q2 + q�2� . �30�

Assuming exact phase matching kp=2ks, and neglecting the
walk-off term, the argument of the sinc function in Eq. �29�
becomes

�q,q��
lc

2
=

lc

2ks
�q − q�

2
�2

. �31�

In this way we start to recover the result of the Hamiltonian
formalism used to derive Eqs. �22� and �14�, where, however,
the effect of walk-off and phase mismatch were neglected for
simplicity. Indeed, it is not difficult to show that the variation

of the intracavity field operator B̂+�q ,0 , t� per cavity round-
trip time !, due to the parametric interaction in a single pass
through the crystal, is

�1

!
�B̂+�q,0,t��

int
=
�

!
� d2q�

1

2
�K1�q,q��

+ K1�q,− q���B̂+
†�q�,0,t� . �32�

This approach permits us to understand the physical origin of
the sinc terms in the coupling kernel of Eq. �22� �which are
the Fourier transform of the � terms in Eq. �15��, that is, the
limited phase-matching bandwidth of the nonlinear crystal.
For a crystal of negligible length, phase matching is irrel-
evant and there is no limitation in the spatial bandwidth of
down-converted modes, whereas for a finite crystal the cone
of parametric fluorescence has an aperture limited to a band-
width of transverse wave vectors �q	1/ lcoh�1/��lc. As a
consequence of the confocal geometry, the cavity ideally
transmits all the Fourier modes, so that the only limitation in
spatial bandwidth is that arising from phase matching along
the crystal.

We notice that if the pump is defocused enough, the
phase-matching limitation results in a limitation of the spot
size �1/ lcoh in the far field with respect to the cavity center.
Inside this spot, modes are coupled because of the finite size

of the pump beam �the terms �ÃP in Eq. �22��, inside a
region of size �wp

−1. The relevant parameter which sets the
number of Fourier modes that can be independently excited
is again given by b=wp

2 / lcoh
2 �see Eq. �19��.

III. HOMODYNE DETECTION AND SQUEEZING
SPECTRUM

A. Homodyne detection scheme in the far field and near field

The method used for measuring the noise-spectrum out-
side the cavity is a balanced homodyne detection scheme
�20�. We will use two configurations: the near-field configu-
ration �x-position basis described in Sec. II B� and the far-
field configuration �q-vector basis described in Sec. II C�.
The complete detection scheme in the near-field case is sche-
matically shown in Fig. 3. The two matching lenses of focal
length f image the crystal and cavity center plane C onto the
detection planes D and D�. The image focal plane F of the
first lens coincides with the object focal plane of the second
one, and represents the far-field plane with respect to the
cavity center C. In planes C, F, D the signal field has its
minimum waist, and it has a flat wave front.

The detection scheme in the far field is obtained by using
only one lens as depicted in Fig. 4. The focal length f lens is
used to image the far-field plane with respect of the cavity
center C onto the detection plane D.

FIG. 3. Balanced homodyne detection scheme in the near field.
Two matching lenses of focal f are used to image the cavity center
C at the detection planes D and D�.
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11. Le tout multimode : les cavités dégénérées

The symmetrical beam-splitter BS �reflection and trans-
mission coefficients r=1/�2 and t=1/�2� mixes the output
signal field with an intense stationary and coherent beam
�L�x ,z�, called local oscillator �LO�. Note that for all the
fields being evaluated at the beam-splitter location, we will
omit the z dependence in the following. The difference pho-
tocurrent is a measure of the quadrature operator:

EH�"� = �
det

dx�Bout�x,"��L
*�x� + Bout+�x,− "��L�x�� ,

�33�

where “det” is the reciprocal image of the photodetection
region at the beam-splitter plane, and assumed to be identical
for the two photodetectors. We have also assumed here that
the quantum efficiency of the photodetector is equal to 1.
Here Bout is the sum of its odd and even part:

Bout�x,"� = B+
out�x,"� + B−

out�x,"� . �34�

The fluctuations EH�"� of the homodyne field around
steady state are characterized by a noise spectrum:

V�"� = �
−�

+�

d"��EH�"�EH�"�� = N + S�"� , �35�

where EH is normalized so that N gives the mean photon
number measured by the detector,

N = �
det

dx
�L�x�
2. �36�

N represents the shot-noise level, and S is the normally or-
dered part of the fluctuation spectrum, which accounts for
the excess or decrease of noise with respect to the standard
quantum level.

B. Input-output relation

The relation linking the outgoing fields B±
out�x , t� with the

intracavity and input fields at the cavity input-output port
�17� is

B±
out�x,t� = �2�B±�x,t� − B±

in�x,t� . �37�

Equation �13� in the near-field �or Eq. �21� in the far-field
case� is easily solved in the frequency domain, by introduc-
ing

B±
in/out�x,"� =� dt

�2�
B±

in/out�x,t�e−i"t.

Taking into account the boundary condition �37�, we obtain
the input-output relation:

�i" + ��1 + i����B+
out�x,"� + B+

in�x,"��

= 2�B+
in�x,"� +

�

i" + ��1 − i�� � � d2x�Kint�x,x��

��2�B+
in+�x�,− "� +� � d2x��Kint

* �x�,x���B+
in�x�,"�

+ B+
out�x�,"��� . �38�

In the case of a thin crystal in the near field �13� or a plane
pump in the far field, this relation describes an infinite set of
independent optical parametric oscillators. In these cases the
squeezing spectrum can be calculated analytically as we will
see in the following. But in other cases, this relation links all
points in the transverse plane. In order to get the input-output
relation, we have to inverse relation �38� by using a numeri-
cal method.

C. Numerical method

In order to inverse relation �38� by numerical means, we
need to discretize the transverse plane in order to replace
integrals by discrete sums. For the sake of simplicity, we will
only describe here the solution in the single transverse di-
mension model: the cavity is assumed to consist of cylindri-
cal mirrors, so that the the transverse fields depend on a
single parameter y. In this case the electromagnetic fields are
represented by vectors and the interaction terms by matrices.
Straightforward calculations show that we can introduce the
interaction functions U�y ,y�� and V�y ,y�� �calculated at
resonance �=0 and at zero frequency in near-field or far-
field configurations� linking two different points in the trans-
verse plane, so that relation �38� becomes

B+
out�y� = �

−�

�

dy�U�y,y��B+
in�y�� + �

−�

�

dy�V�y,y��B+
in+�y�� .

�39�

Since we assumed that the odd part of the output field is
in the vacuum state, B−

out gives no contribution to the nor-
mally ordered part of the spectrum S, which can be calcu-
lated by using the input-output relation �21� for the even part
of the field, and by using the commutation rules for the even
part:

�B±
in/out�x,t�,B±

in/out+�x�,t��� =
1

2
��x − x�� ± �x + x����t − t�� .

�40�

In the following, we will assume, as in Refs. �13,12�, that the
local oscillator has a constant phase profile #L�x�=#L, so
that �L�x�= 
�L�x�
ei#L. We obtain the ordered part of the
spectrum, normalized to the shot noise:

FIG. 4. Balanced homodyne detection scheme in the far field. A
matching lens of focal f is used to make the far-field image of the
cavity center C at the detection planes D and D�.
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11.3. Multimode squeezing properties of a confocal optical parametric oscillator(. . .)

S�0�
N

=
1

�
det

dy
�L
2
� �

det2
dxdx��

−�

+�

dy
�L�x�

�L�x��


���V�x,y�V�x�,y� + V�x,y�V�x,− y�� + cos�2#L�

��U�x,y�V�x�,y� + U�x,y�V�x�,− y��� . �41�

Now, knowing the U�y ,y�� and V�y ,y�� interaction func-
tions, we are able to calculate the squeezing spectrum in both
near- and far-field cases.

IV. SQUEEZING SPECTRUM IN THE NEAR FIELD

In this section, we use the near-field homodyne detection
�Fig. 3� described in Ref. �13�. As already said in Sec. II, in
the near field, the thick crystal couples pixels contained in a
region whose size is in the order of lcoh �18�.

Let us study first the case of a plane-wave pump and a
plane-wave local oscillator. As pointed out in Ref. �12�, in
this case and in the thin-crystal approximation, the level of
squeezing does not depend on the width of the detection
region. Figure 5 shows results predicted for a measurement
performed with a circular detector of radius � centered on
the cavity axis �which is a symmetric detection area, as
pointed out in Ref. �13��. We represent the squeezing spec-
trum at zero frequency as a function of the size of the detec-
tor, scaled to the coherence length lcoh=��lc /�ns. We can
see that for � � lc, the squeezing tends to zero when � 
→0, as already predicted. For larger values of the detector
size, perfect squeezing can be achieved. We can also see that
the squeezing evolution is comparable to the � function evo-
lution �Fig. 2�.

In the more realistic case of finite-size pump, the squeez-
ing level depends on the parameter b=wp

2 / lcoh
2 =2ns�zp / lc�, as

pointed out in Sec. I. Figure 6 represents the squeezing spec-
trum at zero frequency as a function the detector radius, nor-
malized to lcoh, for different b parameters, using a plane local
oscillator. As already seen in Fig. 5, for � →0, the noise
reduction effect tends to zero. But we see now that there is

also no squeezing effect for large values of the detector ra-
dius, because of the finite size of the pump, as already shown
in Ref. �13�.

Figure 7 shows theoretical results in the case of a detector
consisting of two symmetric pixels �pixel of size equal to the
coherence length�, for different b values, in function of the
distance between the two pixels. For large values of  , the
noise level goes back to shot noise because of the finite size
of the pump, as already depicted in Ref. �13�. But now, for
small  values, the squeezing does not tend to zero, as in the
thin-crystal case.

V. SQUEEZING SPECTRUM IN THE FAR FIELD

In this section, we will consider the spatial squeezing
spectrum in the far field �Fig. 4� and in the q-vector basis. As
already said in Sec. II C, the coupling between q-vector
modes is now due to the finite length of the pump. We will
see that a new coherence length lcoh f appears in such a case,
given by

FIG. 5. Squeezing spectrum at zero frequency, normalized to the
shot noise, as a function of the detector radius �scaled to lcoh�.

FIG. 6. Squeezing spectrum at zero frequency, normalized to the
shot noise, as a function of the radial amplitude of the detector
scaled to lcoh, plotted for several values of b.

FIG. 7. Squeezing spectrum at zero frequency, normalized to the
shot noise, as a function of the pixel distance between the two
pixels  from the cavity axis �scaled to lcoh�, plotted for several
values of b.
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lcoh f �
1

wp
.

We will successively investigate two configurations: the
plane-wave pump regime �where the squeezing spectrum can
be calculated analytically�, and the case of a finite pump size
�where a numerical method is necessary�.

A. Plane-wave pump regime in the far field

In order to evaluate the far-field case, we introduce the
spatial Fourier transforms of the electromagnetic field tem-
poral frequency components:

B̃±
in/out�q,"� =� � d2x

2�
B̂±

in/out�x,"�e−iq·x.

In the case of a plane-wave pump, Ap�x ,z�=Ap, so that Eq.
�22� becomes

�B̃+

�t
�q,0,t� = − ���1 + i��B̃+�q,0,t� + �2�B̃+in�q,0,t�

− Ap sinc� lcq
2

2ks
�B̃+

†�q,0,t�� . �42�

This equation, which does not mix different q values, can be
solved analytically. It is similar to Eq. �14� in Ref. �13�.
Taking into account the boundary condition

B̃±
out�q,t� = �2�B̃±�q,t� − B̃±

in�q,t� �43�

we obtain

B̃+
out�q,"� = U�q,"�B̃+

in�q,"� + V�q,"�B̃+
in+�− q,− "� ,

�44�

where

U�q,"� =

�1 − i�� − "/����1 − i�� + "/��� + Ap
2 sinc2� lcq

2

2ks
�

�1 + i�� + "/����1 − i�� − "/��� − Ap
2 sinc2� lcq

2

2ks
�

�45�

and

V�q,"�

=

2Ap sinc� lcq
2

2ks
�

�1 + i�� + "/����1 − i�� − "/��� − Ap
2 sinc2� lcq

2

2ks
� .

�46�

In the case of the plane-wave regime, the input-output rela-
tion in the spatial Fourier space describes therefore an infi-
nite set of independent optical parametric oscillators below
threshold. This can be simply understood: the q-vector basis
is the eigenbasis of the diffraction, so that no coupling be-
tween q-vector modes due to the crystal appears.

Let us now consider the homodyne-detection scheme,
schematically shown in Fig. 4. The lens provides a spatial
Fourier transform of the output field Bout�x ,"�, so that at the
location of plane D the field Bout

D �x ,"� is

Bout
D �x,"� =

2�

�f
B̃out�2�

�f
x,"� . �47�

In this plane, Bout
D �x ,"� is mixed with an intense stationary

and coherent beam �LO
D �x�= �2� /�f��̃LO�2�x /�f ,"�, where

�L�x� has a Gaussian shape, with a waist wLO. The homo-
dyne field has thus an expression similar to the near-field
case, where functions of x are now replaced by their spatial
Fourier transforms:

EH�"� = �
det

dq�B̃out�q,"��̃LO
* �q� + B̃out+�q,− "��̃LO�q�� .

�48�

This analogy shows that, in the case of a local oscillator that
has an even parity with respect to coordinate inversion, the
squeezing spectrum is given by �like in Ref. �13��

V�"� = �
det

dq�
�̃LO�q�
2�1 − ��q���

+ �
det

dq�
�̃LO�q�
2��q�R�q,"�� , �49�

where the noise spatial density R�q ,"� is given by

R�q,"� = 
U�q,"� + e2i#LO�q�V*�q,− "�
2 �50�

and where

��q� = �
det

dq�+�q,q�� . �51�

In order to minimize R�q ,"�, the local oscillator phase
should be chosen as #LO�q�=arg�U�q ,"�V�q ,"�� /2. In par-
ticular, at resonance and at zero frequency U�q ,0� and
V�q ,0� are real and the optimal local oscillator phase would
correspond to #LO�q�=� /2, when sinc�lcq

2 /2ks��0, and
#LO�q�=0, when sinc�lcq

2 /2ks��0, which is not indeed very
practical. However, modes for which sinc�lcq

2 /2ks��0 are
quite outside the phase matching curve, so that the choice
#LO�q�=� /2 everywhere should give good results. The
squeezing spectrum at resonance and zero frequency, for
#LO�q�=� /2 can be analytically calculated and as a function
of the radius r of a detector centered on the optical axis is
given by

V�r,0�
N

=
1

�
0

r/r0

u exp� −wLO
2 ksu

2

lc
�
�

0

r/ro

u exp�− wLO
2 ksu

2

lc
�

��1 + Ap sinc�u2�
1 − Ap sinc�u2��

2

, �52�

where
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r0 =
�f

2�
�2ks

lc
=
�f

�

1

lcoh
. �53�

Figure 8 shows the results obtained in the case of two differ-
ent detection configurations: the V curve shows results in the
case of a circular detector of variable radius r �scaled to r0�,
using a local oscillator waist wLO=r0. As already said in Sec.
II, the limitation of the squeezing level is due to the nonper-
fect phase matching along the crystal. For r�r0, the squeez-
ing level decreases. So, in the plane-wave pump regime in
the far field, the thickness of the crystal has a role compa-
rable with the finite size of the pump in the near field, as
reported in Ref. �13�. The R curve shows results obtained in
the case of two small symmetrical pixels and a plane-wave
local oscillator as a function of the pixel distance from the
cavity axis r, scaled to r0. We can see that the noise level
goes back to the shot-noise level for r�r0, because of the
nonperfect phase matching along the crystal.

B. Squeezing spectrum in the far-field case and finite-size
pump regime

When one takes into account the finite size of the pump, a
coupling between different q vectors appear, and one needs
to solve equations numerically, as in the near-field case. A
new coherence length lcoh f appears in the far field: lcoh f

=1/wP.
Figure 9 shows the evolution of the squeezing spectrum at

zero frequency, and at resonance, for different b parameters,
in a function of the detector radius scaled to lcoh f. We see the
same evolution as in the analytical case, except that the noise
level tends to shot noise for small values of the detector.

Figure 10 shows the results obtained in the case of two
symmetrical pixels �pixel of size equal to the coherence
length lcoh f�, for different b values, in a function of the dis-
tance between the two pixels  . The evolution is similar to
the one given by Fig. 6 for large distances, but there is also a
decrease of the squeezing effect for small distances.

VI. DISCUSSIONS AND CONCLUSIONS

We have seen that when one takes into account the effect
of diffraction inside the nonlinear crystal in a confocal OPO,
the local squeezing predicted for any shape and size of the
detectors in the thin-crystal approximation is now restricted
to detection areas lying within a given range, characterized
by a coherence length lcoh. This prediction introduces serious
limitations to the success of an experiment, and must be
taken into account when designing the experimental setup.
With the purpose of producing a light beam that is squeezed
in several elementary portions of its transverse cross section,
either a crystal short compared to zR should be used or, al-
ternatively, a defocused pump, with a waist much larger than
the cavity waist. In both cases the efficiency of the nonlinear
coupling is reduced. For instance, with a 1-cm-long crystal,
lcoh is equal to 40 �m, and one must choose a pump waist
much larger than this value in order to observe multimode
squeezing �the number of modes being roughly equal to the
ratio b=wp

2 / lcoh
2 �. This defocused pump will imply a much

FIG. 8. Squeezing spectrum normalized to the shot noise, at
zero frequency, at resonance, in the plane pump regime and far-field
case, for two measurement configurations. V is obtained using a
circular detector of radial amplitude r �scaled to r0�. R is obtained
using a pair of symmetrical pixels in function of the pixel distance
from the axis r �scaled to r0�.

FIG. 9. Squeezing spectrum normalized to the shot noise at zero
frequency, and at resonance, as a function of the radial amplitude of
the detector � �scaled to the coherence area lcoh f�, in the finite
pump regime and far-field approach and for different values of b.

FIG. 10. Squeezing spectrum normalized to the shot noise at
zero frequency, and at resonance, as a function of the distance be-
tween the two pixels  �scaled to the coherence area lcoh f�, in the
finite pump regime and far-field approach and for different values of
b.
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higher threshold for the OPO oscillation, which is multiplied
by a factor also close to b. The conclusion of this analysis is
that one cannot have multimode squeezing “for free,” and
that with a given pump power, one will be able to excite a
number of modes which is roughly equal to the ration of the
injected pump power to the threshold power for single mode
operation.
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I. INTRODUCTION

II. THEORIE

Noiseless amplification in a type II parametric crystal
has been performed either in a single mode [1] or multi-
mode [2, 3] configuration, and each time the single path
system had to be pumped with pulsed lasers. It is well
known [1] that the noise figure of such a system depends
on the input polarisation : if only the signal mode is in-
jected, the amplification is phase insensitive (PIA) and
the noise figure of the system F is given by F = 2−1/G.
If both signal and idler mode are injected (at 45◦ of the
optical axes), we are in a phase sensitive amplification
case (PSA) and no noise is added during the process.
The signal to noise ratio is preserved: F = 1.

With continuous lasers, in order performe the same
type of experiments one has to insert the non-linear crys-
tal in an optical cavity in order to create a so called op-
tical parametric oscillator (OPO). However, the presence
of the cavity changes the noise figure of the system, that
depends on the input and output coupler of the cavity.
This problem is usually omitted in the literature dealing
with noiseless amplification [4, 5]. In fact, the models
consider ring cavities with the input and the output on
the same mirror. Intracavity losses are neglected. In this
case, the noise figure is equivalent to the simple path case
(F = 2 − 1/G in the PIA case and F = 1 in the PSA
case).

In our experiment, which is a proof of principle of the
possibility of noiseless amplification within a parametric
oscillator, consists of a linear cavity with different input
and output ports. This configuration facilitates the mea-
surement of quantum effects and the experimental proof
of the quantum operation of the amplifier, but is far away
from this ideal model. To design our system, we intro-
duce a new ring OPO scheme represented in fig.1.

In order to model the linear cavity, the input and out-
put mirrors are separated. The amplitude transmission
losses on the input and the output mirrors are called re-
spectively γin and γout. An outside coupling (represented
by the modes si with i = 1, 2 corresponding to signal and
idler polarisations) appears due to the output mirror. In
a same way, intra-cavity losses are represented by a sec-
ond outside coupling (represented by the modes ci with
i = 1, 2 corresponding to signal and idler polarisations)
with a mirror of transmission losses γc. The presence of

Crystal

C

out
In

FIG. 1:

the losses will degrade the signal to noise ratio, even when
the amplification is phase sensitive. It can be shown that
the noise figure F is related to the gain G by the formula:

F = 1 +
γc

γin
+

γout

γin
+

1
G

− 2
√

γout

γinG
(1)

Experimentally, we don’t measure directly the noise
figure of our system. Like in the experiments [2, 3], all
the measurements are done at the output of the system.
We compare the signal to noise ratio with amplification
and the signal to noise ratio without amplification. Cor-
responding values of the gain G̃ and of the noise figure F̃
are calculated. We call them the ”normalized” parameter
of the system as they are equal to one without amplifica-
tion, which would not be the case if one would compare
the input beam to the output beam. In that procedure,
we get rid of the transmission of the cavity, which is a
problem if one want to apply directly our amplifier to
practical configuration but is not in order to evaluate its
quantum behavior. We will propose at the end of this
article how to adapt the system for applications.

Thanks to our model, we can plot the evolution of
the normalised noise factor in function of the normalised
gain in the phase sensitive (injection at 45◦ of the optical
axes) or phase insensitive case (see fig.4). In our ex-
periment, the amplification is called noiseless, when for
a given value of the normalised gain, the noise factor is
lower than the theoretical value of an amplifier equivalent
in terms of losses but which works in a phase insensitive
configuration.

The previous results have been obtained in the
monomode case. Nevertheless it can be shown [6] that,
for a perfectly spatially degenerate cavity, these results
can be generalised locally provided the detector used has

173



11. Le tout multimode : les cavités dégénérées

2

a size superior to a coherence area, whose caracteristic
size is lcoh =

√
λlc
πns

, with lc length of the crystal, ns lin-
ear indice and λ wavelength of the infra-red beam. In
order to amplify many transverses modes a large pump
waist wp has to be used [5, 6]. The relevant parameter of

such an experiment is b = w2
p

l2coh
[6] which corresponds to

the number of amplified transverse modes for a cavity of
degeneracy 1 [7]. This number has to be divided by the
cavity degeneracy if it is different from 1. (C’est VRAI
??).

III. EXPERIMENTAL SCHEME

The experiment scheme is depicted in fig. 2.
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FIG. 2: Noiseless amplification of image in an hemi-confocal
cavity: experimental scheme

We use a continuous wave Nd:Yag laser, frequency dou-
bled with two coherent outputs. One at 532 nm to pump
the OPO, the second at 1064 nm to generate the image,
that will be amplified. In order to eliminate technical
noise the infra-red beam is injected into an impedance-
matched ring Fabry-Perot cavity of high finesse (mode
cleaner).

To get a high stability of the experiment, we use a
peculiar system, a dual-cavity configuration already de-
picted in [8]. In this configuration (depicted in fig. 3)
where signal and idler fields are resonant in a cavity
which is different from the one of the pump, the three
fields are overlapping in the crystal. We use a non crit-
ical phase matched, type II, 3 ∗ 3 ∗ 10mm KTP crystal
(lcoh = 45μm). A very good temperature stabilization
(∼ mK), obtained thanks to a Peltier unit, is used to
reach, by fine tuning, the triple resonance of the cavity.

The pump cavity is bounded by the high reflect-
ing mirrors at 532nm M1 (90%@532nm, 5%@1064nm)
and M3 (99.3%@532nm, 0.11%@1064nm), the infra-red
one by M2 (5.25%@532nm, 99.96%@1064nm) and M4

(6.6%@532nm, 98.93%@1064nm). The M1 and M4 mir-

AR/90%
AR/HR

99%/AR
HR/AR

M1
M2 M3

M4

Green cavity

Infra-red cavity

FIG. 3: The dual cavity configuration. The infra-red cavity is
a transverse degenerate, hemi-confocal cavity made of a plane
mirror and a curve mirror of radius of curvature R, separated
by a distance R/2

ros are mounted on translation stages to reach the exact
transverse degeneracy.

In order to amplify many transverse modes, the infra-
red cavity has to be transverse degenerate. In our con-
figuration, the infra-red cavity is a hemi-confocal cavity,
that consist of a plane and a curve mirror separated by
a distance equal to half the radius of curvature of the
mirror. In our experiment, R = 100mm so the length of
the infra-red cavity is about 50mm. The hemi-confocal
cavity is a partially transmitting cavity, whose classical
transmission properties have been studied in [7]. In this
cavity, only half of the even (or odd) modes are resonant
at the same time for a given length of the cavity. In this
configuration, the OPO threshold is about 30mW .

The radius of curvature of the M1 mirror is large: R =
2000mm, so that the waist of the green cavity is large in
order to amplify many transverse modes. The length of
the green cavity is 50mm so that w532nm = 230μm. The

number of amplified transverse modes is about b = w2
p

l2coh
=

25 (DIVISER PAR l’ORDRE DE DEGENERESCENCE
??)

The image, which will be amplified is created thanks
to a USAF resolution target, that intercepts the infra-red
beam. The target plane is image on the mirror M2 in a
both amplitude and phase preserving near field transfor-
mation thanks to a telescopic system (lenses (L1, L2)).

At the output of the OPO, the green and infra-red
beams are separated thanks to a dichroic mirror. The
green beam is sent onto a photodiode to monitor the
green cavity and to stabilize it. For the infra-red, the
detection system is made of two levels. A flipping mir-
ror enable us to send the signal and idler beams onto
an imaging set-up, which consists of a CCD camera that
record the transverse distribution of infra-red beam, ei-
ther in the near or the far field. For a quantum study, sig-
nal and idler are separated thanks to a polarizing beam
spitter and sent to two InGaAs photodetectors having
matched high quantum efficiency around 95%.

The different optical cavities are stabilized using the
Pond-Drever-Hall method [11]. For the green, we use
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the 12MHz phase modulation present at the output of
the laser. For the infra-red, a new phase modulation at
8, 5Mhz is added thanks to an electro-optic modulator
(P.M) at the output of the mode cleaner. The relative
phase between the pump, signal and idler is controlled
by a mirror placed on a piezo-electric transducer which
modifies the optical length of the infra-red beam. We
work in two different regimes : either the piezo-electric is
continuously modulated, so that we can monitor simul-
taneously amplification and deamplification, either the
relative phase is locked. To do so, we use a technique al-
ready introduce in [9]: the infra-red beam is demodulated
at 12MHz at the output of the OPO.

IV. RESULTS

The results shown in this article have been obtained
with different images shapes: two vertical slits, two hor-
izontal slits, a large mode (3 times the size of the eigen
mode of the hemi-confocal cavity).

Classical properties of the amplification have been
studied in [8]. Thanks to the spatial gain repartition, it
can be shown that many transverse modes are amplified.

The first studied performed consisted of the proof of
the quantum multimode operation of our system. We
thus studied the quantum fluctuations of the images at
the output of the cavity, either or the amplification or the
de-amplification regime, with a digital acquisition system
described in [10]. However, in our system the local prop-
erties of the output beams are difficult to analyse, as
the complex geometry of the semi-confocal cavity mixes
them together. Furthermore, due to the walk-off inside
the cavity, signal and idler beam are slightly different.
We thus choose, instead of this local study, to analyse
the quantum fluctuations of the whole output beams, the
proof of the multimode operation then made by varying
the input image instead of varying the detector geometry,
which is mathematically equivalent, as far as we assume
a linear response of our system and that it stays stable
while we chage the input image, which is the case in our
experiment.

The results are the following : whatever the shape of
the input image, we see a quantum noise reduction of 30%
on the difference between signal and idler (twin beams
behavior). These results are in good agrement with the-
ory (45%). In the de-amplification case, we see a reduc-
tion of the intensity noise on the sum of signal and idler
of 30% (theoretically < 45%). This is, to our knowledge,
the first proof of a multimode operation of a continuous
wave OPO, appart from the preliminary studied we per-
formed in [10], and shows also that we are able to taylor
the quantum fluctuations of whatever beam shape reson-
nant in the cavity, which is of most use in multipixel
image analysis [12].

Having proven the quantum multimode operation of
our system, we can investigate its noise figure. An inten-
sity modulation at 5Mhz of the infra red beam is realized

at the output of the mode cleaner thanks to an ampli-
tude modulator (A.M). This modulation correspond to
the ”signal” that will be amplified. As already said, we
mesure normalised values corresponding to the compar-
ison of the system with and without amplification. In
order to investigate the noise of the system, the high fre-
quency channels of the photodiodes signal and idler are
summed and sent into a spectrum analyser. We have
access to the normalised gain and the normalised noise
figure of the amplifier.

The experimental results of normalised noise factor are
represented in figure 4.

FIG. 4: Experimental values of normalised noise factor using
the hemi-confocal OPO. Added to this points, the theoretical
values of normalised noise factor in function of the normalised
gain for the PIA ans PSA cases. The dotted lines represent
the incertitude of this curves

Added to this results, the theoretical values of nor-
malised noise factor in function of the normalised gain
for our system in the phase sensitive and phase insensi-
tive cases. Our system add less noise than an equivalent
one, whose losses are the same but who works in a phase
insensitive configuration: we are in a noiseless regime of
amplification.

We extend the study of the normalised noise factor
to a confocal OPO, using a non critical phase matched,
type I crystal (MgO : LiNbO3), whose temperature of
degeneracy is about 120◦. In this case, only a defocalised
mode was amplified, because the goal of the experiment
was to test the response of the normalised noise factor
in function of the different losses. In this case, we had
γout/γ = 1/3. The experimental results of normalised
noise factor and the theoretical values in the PSA and
PIA cases are represented in figure 5. Our system add
less noise than an equivalent one, whose losses are the
same but who works in a phase insensitive configuration:
we are in a noiseless regime of amplification.

Some general comments on these results are necessary.
First of all, one can see that the actuals values of the mea-
sured signal to noise ratio varry a lot from shot to shot.
We should stress that we did not do any post selection of
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FIG. 5: Experimental values of normalised noise factor using
the confocal OPO. Added to this points, the theoretical values
of normalised noise factor in function of the normalised gain
for the PIA ans PSA cases. The dotted lines represent the
incertitude of this curves

our experimental results, and thus the fluctuations come
essentially from the quality of the locking, which is crit-
ical due to high thermal effects inside the crystal. How-
ever, all our experimental data lie within the quantum
regime. Secondly, one can argue that this is not trully
noiseless amplification due to the normalization proce-
dure. Even is this is true and has to be assess for practi-
cal application, as we will propose in the conclusion, we
have indedd demonstrated here the quantum behavior of
our amplifier, as the signal to noise ratio obtained at the
output is in complete agreement with the non-classical
properties demonstrated without signal. The quantum
correlations are preserved in the presence of signal, and
are responsible for the improvement of the noise factor,
thus demonstrating the quantum noiseless amplification
regime achieved here.

V. CONCLUSION

We have demonstrated in this letter the first experi-
mental evidence of multimode noiseless amplification in

the continuous wave regime, along with the quantum
multimode behavior of a degenerate OPO. In order to
move to practical application, it is however necessary to
modify the properties of the cavity to get rid of the nor-
malization procedure and analyse a ”true” noise figure.
Calculations shows that, in an approach similar to an
impedance matched cavity where all the input power is
transmitted by the cavity, an OPO with an input coupler
of ?? transmission and output coupler of ?? transmission
will achieve this goal for gain comprised between 4 and 10
and cavity threashold comparable to our setup. In that
configuration, reflected power from the cavity would be
neglectible and noiseless amplification is predicted for the
input/output noise figure.

Finally, we would like to stress that this experiments
also demonstrate the possibility to modify the quantum
fluctuation of any transverse mode within the same ex-
perimental setup, and thus easily switched from one to
another transverse squeezing configuration. This is what
is needed for optical read-out bellow the standard quan-
tum limit, is for instance compact disc read out [13].
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Squeezing frequency combs
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Abstract : We have developed the full multimode theory of a synchronously pumped type I
optical parametric oscillator (SPOPO). We derive expressions for the oscillation threshold and
the characteristics of the generated mode-locked signal beam. We calculate the output quantum
fluctuations of the device, and find that, in the degenerate case (coincident signal and idler set of
frequencies), significant squeezing is obtained when one approaches threshold from below for a set
of well defined "super-modes", or frequency combs, consisting of a coherent linear superposition
of signal modes of different frequencies which are resonant in the cavity.
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Abstract
We have developed the full multimode theory of a synchronously pumped type I optical parametric oscillator (SPOPO). We

calculate the output quantum fluctuations of the device, and find that, in the degenerate case (coincident signal and idler set
of frequencies), significant squeezing is obtained when one approaches threshold from below for a set of well defined ”super-
modes”, or frequency combs, consisting of a coherent linear superposition of signal modes of different frequencies which are
resonant in the cavity.

PACS numbers: 42.50.Dv, 42.65.Yj, 42.65.Re

Optical Parametric Oscillators are among the best
sources of squeezed [1], correlated [2] and entangled [3]
light in the so-called continuous variable regime. They
have allowed physicists to successfully implement demon-
stration experiments for high sensitivity optical measure-
ments and quantum information protocols. In order to
maximize the quantum effects, one needs to optimize
the parametric down-conversion process. This has been
achieved so far by using either intense pump lasers or res-
onant cavities. Having in mind that the parametric pro-
cess is an almost instantaneous one, femtosecond mode-
locked lasers are the best pump sources in this respect,
as they generate very high peak optical powers with high
coherence properties. Furthermore, they minimize the
thermal effects in the linear crystal which often hamper
the normal operation of parametric devices. Mode-locked
lasers have been already used extensively to generate non
classical light, either to pump a parametric crystal [4, 5]
or an optical fiber [6]. However in such single-path con-
figurations, perfect quantum properties are only obtained
when the pump power goes to infinity. This is the rea-
son why mode-locking is often associated to Q-switching
and pulse amplification [7] in order to reach even higher
peak powers, at the expense of a loss in the coherence
properties between the successive pump pulses. In con-
trast, intracavity devices produce perfect quantum prop-
erties for a finite power, namely the oscillation threshold
of the device. It is therefore tempting to consider de-
vices in which one takes advantage of the beneficial effects
of both high peak powers and resonant cavity build-up.
Such devices exist: they are the so-called synchronously
pumped OPOs or SPOPOs. In a SPOPO, the inter-
pulse separation time is equal to the repetition rate of
the mode-locked laser, so that the effect of the successive
intense pump pulses add coherently, thus reducing con-
siderably its oscillation threshold. Such SPOPOs have
already been implemented as efficient sources of tunable
ultra-short pulses [8–13] and their temporal properties

Mode-Locked

Laser
OPOPump pulses

Signal/Idler pulses

FIG. 1: Synchronously pumped OPO

have been theoretically investigated [14–16]. Let us men-
tion that mode-locked OPOs have also been developed:
in such devices, the cavity is resonant only for the sig-
nal modes and idler modes, and the pump pulses are not
re-circulating. Degenerate mode-locked OPOs have been
used to generate pulsed squeezed light in the picosecond
regime[5].

In this paper, we make a complete multimode quantum
analysis of SPOPOs, and show theoretically that these
devices are very efficient to produce squeezed states.
Squeezing is effective not in a single frequency mode, as
usual, but instead in a whole set of ”super-modes”, which
are well defined linear combinations of signal modes of
different frequencies. Similar ”super-modes” have been
independently introduced by Wasilewski et. al [17] in the
different context of transient degenerate down-conversion
in a single-pass, single-pulse configuration. In their case,
the ”super-modes” are continuous linear superpositions
of the annihilation operators in free space, whereas in our
case, because of the resonant cavity, they are a discrete
combination of modes.

Let us first precise the model that we use (figure 1).
We consider a ring cavity of optical length L containing a
type I parametric crystal of thickness l. Degenerate phase
matching is assumed, meaning that the phase-matching
condition is fulfilled for frequencies 2ω0 and ω0. This
amounts to saying that n (2ω0) = n (ω0) ≡ n0, n (ω)

1
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being the refractive index of the crystal at frequency ω.
The mode-locked pump laser, having a repetition rate
Ω/2π = c/L, is tuned so that the frequency of one of its
modes is equal to 2ω0. The electric field generated by
the pump mode-locked laser can be expressed as:

Eext (t) =
(

P

2ε0c

) 1
2 ∑

m

iαme−i(2ω0+mΩ)t + c.c., (1)

where P is the average laser power per unit area, αm

the normalized (
∑

m |αm|2 = 1) complex spectral com-
ponent of longitudinal mode labelled by the integer in-
dex m, and m = 0 corresponds to the phase-matched
mode. For the sake of simplicity in this first approach
of the problem, we will take the modal coefficients αm

as real numbers, thus excluding chirped pump pulses.
As already mentioned, the SPOPO cavity length is ad-
justed so that its free spectral range coincides with that
of the pumping laser. In the nonlinear crystal, pump
photons belonging to all the different longitudinal pump
modes are converted into signal and idler photons via the
parametric interaction. In addition we will assume here
that we are in the ideal case of doubly resonant degener-
ate operation, meaning that among all the OPO cavity
resonant frequencies, there are all the pump mode fre-
quencies ωp,m = 2ω0 + mΩ but also all the frequencies
ωs,q = ω0 + qΩ around the phase-matched subharmonic
frequency ω0. The intracavity electric field generated by
the parametric interaction will then be a superposition
of fields oscillating at frequencies ωs,q. We will finally
call γp and γs, the cavity damping rates for the pump
and signal modes. Note that the free spectral range Ω is
assumed to be the same in the pump and in the signal
spectral regions. This is necessary for an efficient in-
tracavity parametric down conversion and requires, from
the experimental viewpoint, the use of extra dispersive
elements inside the cavity that compensate for the dis-
persion of the crystal. At the quantum level, the signal
field, taken at the middle of the crystal, is represented
by the quantum operator Ês which can be written as:

Ês(t) =
∑

q
iEs,q ŝq(t)e−iωs,qt + H.c., (2)

where ŝq is the annihilation operator for the qth signal
mode in the interaction picture. Es,q is the single photon
field amplitude, equal to

√
�ωs,q/2ε0n (ωs,q)AL, and A

its effective transverse area.
The following Heisenberg equations for the field oper-

ators can be derived using the standard methods. The
detail of the derivation will be given in a forthcoming
publication[18]. Below threshold, and in the linearized
regime for the pump fluctuations, they read:

dŝm

dt
= −γsŝm + γsσ

∑
q
Lm,q ŝ

†
q +

√
2γsŝin,m, (3)

where σ is the normalized pump amplitude

σ =
√

P/P0 (4)

in which P0 is the single mode c.w. oscillation threshold:

P0 = 2γ2
sγpn

3
0c

3ε0/
(
4
√

2χlω0

)2

(5)

with χ the crystal nonlinear susceptibility. Lm,q is the
product of a phase-mismatch factor by the pump spectral
normalized amplitude αm+q:

Lm,q =
sinφm,q

φm,q
αm+q, (6)

where φm,q is the phase mismatch angle:

φm,q =
l

2
(kp,m+q − ks,m − ks,q) (7)

which can be computed using a Taylor expansion around
2ω0 for the pump wave vectors kp,m and around ω0 for
the signal wave vectors ks,q:

φm,q 
 β1 (m + q) + β2p (m + q)2 − β2s

(
m2 + q2

)
, (8)

where β1 = 1
2Ω

(
k′

p − k′
s

)
l, β2p = 1

4Ω2k′′
p l, β2s = 1

4Ω2k′′
s l.

k′ and k′′ are the first and second derivative of the wave
vector with respect to frequency. Finally ŝin,m are the
input signal field operators at frequency ωs,m transmit-
ted through the coupling mirror. When the input is the
vacuum state, which we consider here, their only non-null
correlations are:〈

ŝin,m1 (t1) ŝ†in,m2
(t2)

〉
= δm1,m2δ (t1 − t2) . (9)

In order to get Eqs. (3), we assumed, as usual, that
Es,m 
 Es,0 for all m and we neglected the dispersion of
the nonlinear susceptibility. Therefore the present ap-
proach is not valid for ultra-short pulses, the spectrum
of which extends over the whole visible region.

Let us first determine the average values of the gener-
ated fields. They are determined by the ”classical” coun-
terpart of Eq. (3), removing the input noise terms, and
replacing the operators by complex numbers. The solu-
tion of these equations is of the form sm (t) = Sk,meλkt,
where k is an index labelling the different solutions. The
parameters Sk,m and λk obey the following eigenvalue
equation:

λkSk,m = −γsSk,m + γsσ
∑

q
Lm,qS

∗
k,q. (10)

As matrix L is both self-adjoint and real (Lm,q = Lq,m

real, see Eqs. (6)–(8)), its eigenvalues Λk and eigenvec-
tors �Lk, of components Lk,m, are all real. As γs and σ are
also real, there exist two sets of solutions of Eqs. (10),
that we will call S

(+)
k,m and S

(−)
k,m. The first set is given by

S
(+)
k,m = Lk,m and the second one is S

(−)
k,m = iLk,m, with

corresponding eigenvalues:

λ
(±)
k = γs (−1 ± σΛk) , (11)
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12. Multimode en temps et fréquence : futures directions

Let us now label by index k = 0 the solution of maximum
value of |Λk|: |Λ0| = max {|Λk|}. When σ |Λ0| is smaller
than 1, all the rates λ±

k are negative, which implies that
the null solution for the steady state signal field is stable.
For the simplicity of notations, we will take Λ0 positive
in the following [19]. The SPOPO reaches its oscillation
threshold when σ takes the value 1/Λ0, i.e. for a pump
power P = Pthr equal to:

Pthr = P0/Λ2
0, (12)

The exact value of Λ0, and therefore of the SPOPO
threshold, depends on the exact shape of the phase
matching curve and on the exact spectrum of the pump
laser[18]. In the most favorable situation, the theoreti-
cal SPOPO threshold can be extremely low, of the order
of the single mode threshold divided by the number of
pump modes.

Let us now define the normalized amplitude pump-
ing rate r by r =

√
P/Pth = σΛ0. We will call eigen-

spectrum the set of Sk,m values for a given k, which corre-
sponds physically to the different spectral components of
the signal field, and critical eigen-spectrum S

(+)
0,m, the one

associated with λ
(+)
0 , which changes sign at threshold.

Above threshold, this critical mode will be the ”lasing”
one, i.e. the one having a non-zero mean amplitude when
r > 1. Let us note that the eigen-spectrum in quadrature
with respect to the critical one, S

(−)
0 = iS

(+)
0 , has an as-

sociated eigenvalue λ
(−)
0 = −2γs at threshold. Further-

more, equation (11) implies that all the damping rates
λ

(±)
k are comprised below threshold between −2γs and

0, and that, whatever the pump intensity, all the eigen-
values λ

(±)
k (r) lie between λ

(+)
0 (r) and λ

(−)
0 (r). These

properties will be useful for the study of squeezing.
We can now determine the squeezing properties of the

signal field in a SPOPO below threshold. This is done
by using the SPOPO linearized quantum equations. Let
us introduce the operator Ŝin,k(t) by:

Ŝin,k(t) =
∑

m
Lk,mŝin,m(t) (13)

As
∑

m |Lk,m|2 = 1, one has
[
Sin,k(t), S†

in,k′(t′)
]

=

δ(t− t′)δk,k′ : Ŝin,k is the annihilation operator of a com-
bination of modes of different frequencies, which are the
eigen-modes of the linearized evolution equation (3). The
corresponding creation operator applied to vacuum state
creates a photon in a single mode, which can be labelled
as ”super-mode”, which globally describes a frequency
comb. Defining in an analogous way as in (13) the intra-
cavity operator Ŝk(t), one can then write:

d

dt
Ŝk = −γsŜk + γsσΛkŜ†

k +
√

2γsŜin,k, (14)

Let us now define quadrature hermitian operators Ŝ
(±)
k

by:

Ŝ
(+)
k = Ŝk + Ŝ†

k (15)

Ŝ
(−)
k = −i

(
Ŝk − Ŝ†

k

)
(16)

which obey the following equations:

d

dt
Ŝ

(±)
k = λ

(±)
k Ŝ

(±)
k +

√
2γsŜ

(±)
in,k, (17)

with λ
(±)
k given by Eq. (11). These relations enable us

to determine the intracavity quadrature operators in the
Fourier domain S̃

(±)
k (ω)

iωS̃
(±)
k (ω) = λ

(±)
k S̃±(ω) +

√
2γsS̃

(±)
in,k(ω). (18)

Finally, the usual input-output relation on the coupling
mirror:

s̃out,m(ω) = −s̃in,m(ω) +
√

2γss̃m(ω), (19)

extends by linearity to any super-mode operator as the
mirror is assumed to have a transmission independent
of the mode frequency. One then obtains the following
expression for the quadrature component in Fourier space
of any signal super-mode:

S̃
(±)
out,k(ω) =

γs (1 ± rΛk/Λ0) − iω

γs (−1 ± rΛk/Λ0) + iω
S̃

(±)
in,k(ω), (20)

These expressions are particularly simple for the critical
mode quadrature components (k = 0):

S̃
(±)
out,0(ω) =

γs (1 ± r) − iω

−γs (1 ∓ r) + iω
S̃

(±)
in,0(ω), (21)

The variance of these operators can be measured using
the usual balanced homodyne detection scheme: the local
oscillator is in the present case a coherent mode-locked
multimode field EL (t) having the same repetition rate as
the pump laser:

EL (t) = iεL

∑
m

eme−iωs,mt + c.c., (22)

where
∑

m |em|2 = 1, and εL is the local oscillator field
total amplitude factor. Assuming that the photodetec-
tors measure the intensity of the Fourier components of
the photocurrent averaged over many successive pulses,
the balanced homodyne detection scheme measures the
variance of the fluctuations of the projection of the out-
put field on the local oscillator mode when the mean field
generated by the OPO is zero, which is the case below
threshold. As a result, when the coefficients em of the
local oscillator field spectral decomposition are equal to
the coefficients Lk,m of the k-th super-mode, one mea-
sures the two following variances, depending on the local
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oscillator phase:

V −
k (ω) =

γ2
s (1 − rΛk/Λ0)

2 + ω2

γ2
s (1 + rΛk/Λ0)

2 + ω2
(23)

V +
k (ω) = V −

k (ω)−1 (24)

Eqs. (23,24) show that the device produces, as expected,
a minimum uncertainty state and that quantum noise
reduction below the standard quantum limit (equal here
to 1) is achieved for any super-mode characterized by a
non-zero Λk value and that the smallest fluctuations are
obtained close to threshold and at zero Fourier frequency:

(Vk)min =
(

Λ0 − |Λk|
Λ0 + |Λk|

)2

(25)

In particular, if one uses as the local oscillator the critical
mode k = 0, identical to the one oscillating just above
the threshold r = 1, one then gets perfect squeezing just
below threshold and at zero noise frequency, just like in
the c.w. single mode case. But modes of k �= 0 may be
also significantly squeezed, provided that |Λk/Λ0| is not
much different from 1. This occurs in particular when the
pump spectrum width is much smaller than the phase-
matching bandwidth[18]. Our multi-mode approach of
the problem has therefore allowed us to extract from all
the possible linear combinations of signal modes the ones
in which the quantum properties are concentrated [20].

In conclusion, we have studied the quantum behaviour
of a degenerate synchronously-pumped OPO, which
seems at first sight a highly multi-mode system, since
it involves roughly 105 different usual single frequency
modes for a 100fs pulse. We have shown that its
properties are more easily understood if one considers
the ”super-modes”, linear combinations of all these
modes that are eigen-modes of the SPOPO set of
evolution equations and describe in a global way the
frequency comb -or, equivalently, the train of pulses-
generated by the SPOPO. The super-mode of minimum
threshold plays a particular role, as it is the one which
turns out to be perfectly squeezed at threshold and
will oscillate above threshold, but all the super-modes
have non-classical character and can be significantly
squeezed. The present paper gives a first example of
the high interest of studying frequency combs at the
quantum level, as they merge the advantages of two
already well-known non-classical states of light: the
c.w. light beams, with their high degree of coherence
and reproducibility and the single pulses of light, with
their high peak power enhancing the non-linear effects
necessary to produce pure quantum effects.
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Résumé

Nous considérons la description quantique de la lumière dans le régime des variables
continues, où les photons ne sont pas distinguables individuellement. Dans la limite des
petites fluctuations quantiques, nous cherchons à augmenter la richesse, et les possibles
applications, des états quantiques produits en multipliant le nombre de "modes" -ou de-
grés de libertés- mis en jeu par le processus de détection. C’est ce que nous appelons
l’optique quantique multimode. Dans ce cadre, nous voyons comment, en pratique, comp-
ter le nombre de modes pertinents au sein d’un faisceau lumineux. Puis nous reprenons
la théorie de la mesure optique pour associer le caractère multimode de la lumière à la re-
cherche d’information dans un faisceau. Par cette approche, nous redéfinissons les limites
ultimes de la mesure et nous considérons l’intrication quantique à partir de n’importe
quelle grandeur mesurable. Nous illustrons cette théorie par des expériences mettant en
jeu de plus en plus de modes : mesures de photons jumeaux, intrication et téléporta-
tion quantique, mesure et réduction du bruit de polarisation, nano-positionnement d’un
faisceau au delà de la limite quantique standard, intrication spatiale, amplification sans
bruit d’images et optique quantique multimode avec des peignes de fréquence. Nous évo-
quons également les possibles applications à l’accroissement des capacités de stockage
et de transfert d’information, au traitement en parallèle de l’information quantique et à
l’amélioration les techniques d’imagerie et de métrologie.

We consider the quantum description of light in the continuous wave regime, where
photons are not distinguishable individually. In the small quantum fluctuations limit,
we intend to increase both the richness and possible applications of non-classical light
by the increase of the number of modes -or degree of freedom- involved in the detection
process. This is what is called multimode quantum optics. Within this frame, we des-
cribe a practical way to extract the number of relevant modes in a beam of light. Then,
measurement theory is reconsidered to link the multimode character of light to informa-
tion processing with a beam of light. Limits to optical measurement are thus redefined,
and quantum entanglement for any measurable observable described. Experiments in-
volving more and more optical modes are demonstrated to illustrate that theory : twin
beams, entanglement and quantum teleportation measurement, polarization squeezed
and entangled state generation, nano-positioning of a beam of light beyond the standard
quantum limit, spatial entanglement, noiseless amplification of images and multimode
quantum optics with frequency combs. On the way, we evoke the possible applications to
the increase of optical read-out capacity and information transfer, to parallel processing
of quantum information and to quantum imaging and metrology.
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