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Introduction g enerale

En observant les images de la figure 1, on constate que les structures branchuesssoteépdans de
nombreux systmes naturels et artificiels : poumongseau des veines etems, arbres, nervures des
feuilles, Eseaux de drainage et d'irrigatio@sealelectrique et deefécommunication... Sans vouldir
tout prix trouver un principe unique caelerrere cette diversit, on peut toutefois cherch@moctliser

la géonetrie et les fonctions de ces syBtes, et se demander si leur structure et leurs f@pmpeuvent
étre relésa des principes d'optimisation simples. Le paradigme qui soutient cette &@entlassique :
la naturettant bien faite, les sy&nes qu’elle propose sont efficaces pouatde qu'ils ealisent. Quelle
est cettedche dans le cas@sent? On constate que les gysés branchus peedemment mentior@s
partagent certaines proptés qui nous inciterd les @nommer ésormais sysimes irrigants :

e ces systmes acheminent un fluide (ou un signal) d’'une source vers un but : coeur vers tout le
corps humain pour les a@es (et trajet inverse pour les veines) ; tout un bassin dereiviers la
mer ; de la tige vers les cellules de la feuille ou inversemeng(rgl et phydme).

e les points terminaux constituent tout un volume : les capillaires sanguins irriguent "tous” les
points du corps humains ; les bronchiolessm@nt de I'air en presque tout point des poumons ; le
bassin d’'une rivdre occupe toute une surface...

e ces sysmes assurent uggalie de distribution (réme @bit aux points terminaux des poumons,
des veines) ou bien une distribution impes(pluviongtrie moyenne inhomage sur tout un
bassin de rivere).

C’est I'objet de cette thse de proposer et&tudier une formulation variationelle de ce qu’on appellera
le probEme d'irrigation (et ses variantes). Nous coBsahs dans cette introduction les cing points
principaux de letude : modlisation, existence ggularig, équivalence entre les mekds, simulations
nunmériques. Cette #se apporte des contributioaghacun de ces cing points.

MODELISATION

C'est le systme irrigant que I'on souhaite meliser. Il s'agit d’en retenir les prog@#€s essentielles :
structure @onetrique et flots/capadé&ten chaque point de la structure. Beaucoup de propositions ont
eté faites pour moeliser ce type d'objet, on distinguera les rmteba tubes &pais” et les moeles de
transport de masse.

Les mocklesa tube épais
Les articles de Brown, West et Enquist [31] et [32] utilisent un tel @l@edComme illust par la fig-
ure 1.1 du chapitre 1, ces auteurs coasiht un ensemble de tubes qu'ils regroupent paeigtion. Ni
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6 Introduction générale

Figure 1: Le réseau des veines etams. Les nervures d'une feuille. Une &xé vue du ciel. Une
variete d'algue rouge.
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la manere dont les tubes sont connesentre deuxénérations, ni le plongement des tubes dans I'espace
ambiant ne sont expli@s. Seules sont retenues les sections et longueurs des tubes. L'objectif que se
donnent les auteurs en considnt de tels maeles est de&duire des lois @chellesa partir de certains
axiomes : la structure minimise ummergie, la structure a des points terminaégriyant un volume,

le nombre de branchements est constachhaque grération... Notons que legsultats obtenus par ces
auteurs sont critiges par Dodds, Rothman et Weitz [1&]uste raison. |l est iBressant de mentionner
gue ce type de made aégalemengt utilise par Sapoval, Filoche, Mauroy et Weibel dans l'article
[23]. Bernard Sapoval et s@muipe montrent que des poumons qui seraient "optimaux” dans le sens
ou ils prennent le moins de place possible tout énassitant un effort d’'inspiration taable, seraient
dangereux, i.e. qu'une petite diminution de la section des tubedmaraé un effort d’inspiration trop
important.

Nous pesentons dans le chapitre 1 un autre type dealecdtubeépais, celui propd@spar Caselles
et Morel dans [12]. Le sy8me irrigant est tout simplement un ouv&rde I'espace ambiant (cf figure
1.1). Les auteurs introduisent une notion de profil pour &beitla vitesse de&troissance du rayon des
tubes. On dit alors qu’un point est accessible/irgégelon un profilf donré (voir la cfinition 1.1.1 et
la figure 1.2) si ce point se trouel’extrémite d’'un tube contenu dari$ et de profil f. La question
aborcee dans [12] est de trouver des conditiogsessaires et suffisantes sur un profil pour que des
systmes irrigant tout un volume puissent exister.

L'article [12] poursuit en montrant que ce type de ratech tubesépais permet d’'introduire une
définition naturelle de Bgali€ de distribution. SolV C € (ot 2 est un ouvert d&” tel que|oU| > 0).
Un ensembld/ permet Ieégali€ de distribution s’il existe un champ de vecteurs Barlans(2, nul en
dehors dd/, et une mesure sourgedont le support est dari$ tels que—divv = —u + xgu OU Xou
est la mesure de Lebesgue restreimtensemble irrigé 0U (cf section 1.2).

Les mockles de transport de mesure

Une autre approche de la madidation des syetnes irrigants consisgene retenir que le squelette
de la geonttrie formée par les tubes, ainsi que les flots/ca@acitssoéisa ces tubes. L'objet qui vient
immédiatemena I'esprit pour moéliser ce type de structure est le graphe oéénpoids (\erifiant les
lois de Kirchhoff). Un tel objet permet en effet déatire comment un flot initial se scinde et épartit
entre tous les points terminaux. Le preivle principal & aux graphes finis est gu’ils ne permettent pas
d’apphender des structures irrigant des volumes. |l s’agit alors de plonger les graphes finis dans un
espace plus important, si possible avec une petipde compaci. L'espace que propose Xia dans [35]
est celui des mesures de Radon vectorielles ou des 1-courants ; on dit al@¥strquesportes™ vers
u~ sile bord deG est~ — pt . Dans [22], Maddalena, Morel et Solimini introduisent une description
Lagrangienne endatrivant la structure irrigante par une applicationQ2 x R* — R appeéepattern
L'ensemble? est 'ensemble des particules et chaque filfte, -) indique le chemin suivi par la particule
w. Les graphes orieés finis n'ayant qu’une seule source peuvent facilemedrrise commepattern
et la mesure irrigée par urpattern x est simplement la mesure image depar x (-, c0). Une autre
possibilie propoge par Brancolini, Buttazzo et Santambrogio est de cénsidun transport comme
un cheminy sur I'espace des mesures [7]) ¢ est tel quey(0) = u* ety(1) = p~. Lobjet que
nous avons choisi d’introduire pour mgliser les systmes irrigants se vei@tre la gnréralisation des
patternset consiste simplement en I'ensemble des mesures de probahitit’espace des courbes 1-
Lipschitzienne (cf figure 2). De la@me margre que pour lepatterns on peut associer canoniquement
une mesure irriggea un plan d’acheminement. Les plans d'acheminement offrent cependant plus de
souplesse puisque I'on peagalement y associer une mesure source ainsi qu’un plan de transfert de la
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masse transpare.

Que souhaite-t-on optimiser?

Autrement dit, quel cot souhaite-t-on qu’une structure irrigante optimise? On va distinguer deux
types de ct : le cdit de fabrication ; le cat du transport le long de la structure. Donnons deux
exemples.

Imaginons une structure faite d’un seul type de tube. lid de cette structure est obtenu en multi-
pliant la longueur totale diéseau par le dd au lingaire d'un tube. Sile prix du l&aire est proportionnel
a la quantié de matre d’'un tube, un tube de sectiéhet de longueur. aura une quanétde matre
de l'ordre deL+/S, de sorte que le &t d’un tube par uné de longueur sera de I'ordre @éS. Il vaut
donc mieux du point de vue de la quaetite matre un tube de sectio$i que deux tubes de secti<§n
Pour une structure de type graphe, la fonctionnelle que I'on va chexamimiser est donc de la forme
> . f(ce)l(e) ol I'on somme sur toutes les&ies de la structure et désigne la capadtde l'agtee,

l(e) lalongueur de I'a&tee et f(c) est le cdit d’'une ate de capaditc par unié de longueur. C'est ce
type de cdit que Gilbert [18] a utilié en 1967 pour optimiser desseaux degiécommunication.

Imaginonsa l'instar du probtme de Monge-Kantorovitch, que I'on souhaite transporter deux tas de
sable de 1kg vers une configuration faite d’'un seul tas de 2kg&it®@0m. On peut soit transporter les
deux tas de 1kgé&paement ou bien les amener en un point commun puis les transporter ensemble. La
fonctionnelle qui écrit ce cdit prend la néme forme que dans I'exemplegoedent :> " f(c.)l(e) ou
ce désigne la massef/flot transpeetle long de I'aétee, et f(c) désigne ce qu'il en dite de transporter
par unié de longueur. Pour coder le fait que I'on encourage la massegrouper polgtre transpoée,
on prend une fonctiorf concave de sorte qu&a + b) < f(a) + f(b).

Dans les deux cas, nous sommes ags@nconsié@rer la fonctionnelles de type, f(c.)l(e) qui a
été introduite pour la prerare fois par Gilbert [18].

Sous quelle contrainte?

Quand on modlise un systme irriganta I'aide du transport de mesure, la contrainte que I'on impose
a la structure est constéte de sa mesure irrigante et de sa mesure &ggile. on cherch& optimiser le
colt d’'une structure, ses mesures irrigantes et ig@g@tant prescrites. Notons que dans le cas des plans
d’acheminement, on peégalement imposer le plan de transfert. En effet, la description lagrangienne
permet de garder la trace de la trajectoiregise de chaque particule et rien n’éuope de prescrire le
plan de transfert puisqu'il reste alors tout @entail de possibiltss pour la structuretalisant ce plan
de transfert. Bien entendu, cette contrainte n’'aurait aucun sens dans le cas émprdel Monge-
Kantorovitch puisque c’est pcigement parmi I'ensemble des plans de transfert que I'on cherche le
transport optimal. L'objet plan d’acheminemeiraffic plan) permet donc d’introduire un nouveau
probleme que I'on nommera le prashe de "qui va @” ("who goes where). Imposer la contrainte
du plan de transfert pourrait par exemple permettre degfis®t la structure des transport urbaitsl®
plan de transfert logements vers lieux de travail est prescrit (cf les travaux de Buttazzo et Stepanov [10],
[9] et [8] pour une autre approche).

EXISTENCE

Le modele épais
On s’interessea I'ensemble des points accessibles et, en particulier, on se demande sous quelle
condition de profil il est possible d’irriguer un ensemble de mesure non nulle. Le corollaire 1.1.3 montre
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Y(T()

Y(0)

Yi(TCY))  VaAT(Y2)
M:(8y1 +8yz) ) _ 12 172

Y1 (0)=y2(0)

X(@)(0)

M:X#k _ x(0) x(1)

0 1

Figure 2: Trois plans d’acheminementréffic plang : une masse de Dirac epn un arbre avec une
bifurcation, un arbre irrigant la mesure de Lebesgue sur le sedthént< {0} du plan. Dans le cas du
dernier exempleaw € [0, 1] correspondy(w) € K, le chemin para@tré par sa longueur reliant une

masse de Dirac situen(1/2, 1) au point(w, 0).
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gu’une telle structure n’est possible que si le prodiifie

limsup f(r)/r = 0.
r—0+
Réciproquement le lemme 1.1.5 donne une condition suffisante sur le profil, en construisant une structure
inspiree du tapis de Sierpinsky. Cette condition suffisante @sfi@e par des profils de typ&s) = s?
pourp > letf(s) = “C%%W pour3 > 1 (cf lemme 1.1.6).

En consi@rant I'exemple inspé du cube de Sierpinsky, on construit une suite de champs de vecteurs
satisfaisant Bquation sur la structure obtenaitan-eme ieration de la construction du cube. On se sert
de cette suite pour obtenir I'existence du champ de vecteurs reénaucha structurea@yérale.

Les deux ésultats que I'on vient de mentionner montrent qu'’il n’y a pas d’obstruétibexistence
de sysémes irrigant un volume et assurant wgali€ de distribution. Toutefois, si I'on tient en plus
compte de la&sistance dugseau, une obstructi@mergtique survient. L'objet du chapitre 3 est princi-
palement de montrer I'obstruction suivante aux #led infiniesimaux pecedemment introduits : il ne
peut y avoir de structure irrigant un volume fanénergie finie. La principale coaguence est donc que
les tubes s’aBtent recessairemert une certainéchelle.

Le modele transport de masse

Une fois que les fonctionnellésoptimiser sont bienéfinies, on s’'inkresse auvésultat d’existence
d’une structure optimale transportant une megureversy~ (en imposant de plus un plan de transfert
m dans le cas du probie "qui va @”). Les differents modles emploient tous la @hode directe qui
consistea montrer que la fonctionnelle est semicontinu@iigurement tout en montrant que I'on peut
extraire une suite convergente d’une suite minimisante. Xia [35] obtietrnaist ce &sultat d’existence
d’une structure optimale pour le pr@bhe d'irrigation puisque la fonctionnelle @oqu'il utilise est
semicontinue irérieurement paréfinition.

Le mockle des plans d’acheminement estéa&ralisation naturelle dgmatterng22] et les fonction-
nelles de cit sont presque identiques. La preuve d’existence d’une structure optimale pour &npgobl
d’irrigation préesenke dans le chapitre 4 est donedrsimilairea celle obtenue pour Ilgsatterns[22].
Notons toutefois que les plans d’acheminement permettent d’obter@isldtait d'existencégalement
sous la contrainte du plan de transfegpondant ainsi au pradiine de I'existence du praishe "qui va
ou”.

Une fois I'existence d’une structure optimaléndontée, il s'agit de émontrer qu'il existe une
telle structurea cdit fini. Pour ce faire, on estime le @bpour irriguer une approximation dyadique
de la mesure irrigee (cf [35]). Les estimations obtenues en coasidt les approximations dyadiques
permettent alors de concluad’existence d’une structugecdit fini dans le casa > 1 — 4, ol N est
la dimension de I'espace ambiant. Comme cela est raat#ns le chapitre 5, on peut adapter ce type
d’argument au cas des plans d’acheminement et mogdgadement qu'il existe une structuaedit finie
sous la contrainte d’'un plan de transfert.

Mentionnons que De Villanova et Solimini donnent dans [29] des conditi@sspecises sous
lesquelles une mesure ddrepeuttre irrigteea cdit fini.

Variantes

La plupart des systnes irrigants naturels conéiés évitent les variations d’angle importantes.
Comme on peut le lire dans le manuel d’hydraulique [11], des angles dagseawurde tubes entnant
des chutes de pression et des turbulences, de telle sorte que I'on fait tout penitdegau maximum.
Ces considrations nous font nous Bresseg I'existence de structuregscdit fini ayant des variations
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d’angles finies. On montre qu’en trois dimensions et dimensionsreupes (cf section 5.5), il existe
des arbres irrigant un volume tout en maintenant une variation d’angle fini le long des chemins.

STABILITE ET REGULARITE

En suivant le travail de Xia [35], leésultat d’existence d'un plan d’acheminement optimal entre deux
mesures permet d’introduire une distance sur les probabitinalogual la distance de Wasserstein.
L'article [35] contient de plus une preuve desultat de stabikit suivant: la limite d’'une suite convergente
de plans d’'acheminement optimaux est un plan d’acheminement optimal (cf corollaire 5.3.3).

En ce qui concerne leéégularig, tes peu deésultats sont pour l'instant acquis. Uestltat sat-
isfaisant serait bien(s ceténon& : soitxz un point du support de la structure, Btx, r) une boule
n'intersectant pas le support des mesures irrigante et @égigualors le support de la structure dans
B(z,r) estun graphe fini. C’est une version un peu affaiblie deenen& qui est annorée dans [36].
L'article comporte toutefois une erreur et plusieurs iggisions si bien que&noné reste actuellement
une conjecture. La striagie emploge dans [36] est dans un premier temps d’effectuer un blow-up, puis
de montrer par des estimations utilisant I'optinfalifue la structure ¢ocide avec le blow-up dans un
voisinage assez petit de L'existence du blow-up est correcte, mais I'usage qui en est fait estéerron

Une classe degsultats deggularie tres utile sont les lemmes de "nettoyage” ceduisent leventail
de cea quoi peut ressembler un plan d’acheminement optimal. Mentionnons la pl&gente d’'un
résultat de non @sence de boucle dans un plan d’acheminement optimal @reppas De Villanova et
Solimini [28] (cf lemme 6.2.4). Le premier lemme montrant gu'il n’y a pas de ci@tiix minoe par
unc > 0 dans un transport path optimaé#& donre par Xia [35] et est regmonté dans le lemme 6.2.5
(dans le cadre plan d'acheminement). Notons toutefois quéstdtat n'est valable que dans le cas du
probleme d'irrigation et ne conserve pas la contrainte d’'un plan de transfert. Il ne peut donc s’appliquer
dans le cas du probie "qui va @”. La proposition 6.2.7 montre quaatelle qu'il ne peut y avoir de
boucle en toutegréralitt. Ce ésultat apporte un surdta’information par rapport au lemme 6.2.5. En
effet, la proposition 6.2.7 ne requiert pas que le flux soit né@ngar unc > 0 le long de la boucle.

L'absence de boucle est cruciale poéntbntrer la égularié d’'un optimum dans le cas d’un trans-
port entre deux mesures atomiques (cf proposition 6.3.3). Notons gésuét n'est pas mor@rdans
[35]. En effet, Xia @finit le cdit E sur les graphes finis puisiend par relaxation sur I'espace farm
par les limites de graphes finis. Rien n'assure alors que les graphes finis "demeurent” optimaux pour
transporter des mesures atomiques.

La régularie étant @montée dans le cas du transport entre masses atomiques, on peares'set
a la structure des embranchements. Les contraintes d’angles (cf 7.1.2gasaatautres arguments
permettent de montrer qu’en deux dimensions, et pour % le seul type d’embranchement possible
pour un plan d’acheminement optimal est 'embranchement deXtype

EQUIVALENCE

Les resultats deé&gularie obtenus @rcedemment assurent que dans le cas du transport entre mesures
atomiques, un plan d’acheminement optimal a la structure d’un graphe fineésGkat suffita montrer

I’ équivalence entre la formulation du prébie de Gilbert-Steiner (cf#oeme 6.4.2) et le probme de
lirrigation. Le fait qu’'un optimal n’ait pas de boucleegerale de masse permet par ailleurs d’identifier

les moekles de plan d’acheminement etpieternsdans le caswla source eséduitea une seule masse
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de Dirac (cf tieoeme 6.4.1). Enfin, Equivalence entre le prashe d'irrigation et le moéle de Xia est
démontée dans le chapitre 4.

SIMULATIONS NUMERIQUES

Un algorithme ayant pour ambition d’approcher un optimum global e&stgmé dans I'article de Xia

[35]. L'algorithme consista résoudre une tour de pravhes simples obtenus par approximation dyadique.
Décrivons-en rapidement le fonctionnement : goitla mesure que I'on souhaite irrigu&ipartir d'une
sourceS. Une subdivision dyadique de I'espace permet d’approcher la mgsupar deux masses de
Dirac. On est alors raménau probdme tes simple de trouver la structure optimale transportant une
masse de Dirac vers deux masses de Dirageat S;. Une fois cette structure troée on applique

a nouveau cette prédure pour transportef; et S, vers le raffinement dyadique suivant de. Une

fois que la structure globale est obtenue, Xia optimise la position des points de bifurcation. En deux
mots, cet algorithme consiste en une &git multéchelle utilisant des approximatioasleux masses

de Dirac. Comme on le montre dans le chapitre 8, cet algorithme ne peutégueatement trouver
'optimum global. La raison principale en est que l'arbre ainsi obtenu a une topologie dyadigque im-
pose. Or, le prolme d’optimisation pdspar lirrigation se scinde en deux sous-peshes. D’une

part I'optimisation de la topologie de la structure ; d’autre part I'optimisation des points de bifurcations
(pour une structure de topologie d@®).

Comme cela &% mentioné pecedemment, I'algorithme de Xia n’explore qu’une seule topologie.
Par ailleurs, I'optimisation de la position des points de bifurcation qu'il propose converge lentement
et reste approd@e. Pourtant 'article [18] de Gilbertédrit une constructiom la ©gle et au compas
récursive permettant d’obtenir la position exacte des points de bifurcation d’une structure optimale de
topologie prescrite. Cette construction estudte dans la section 8.2.

En utilisant cette constructiorgcursive, nous pouvons alorgs$rrapidement obtenir le Gbd’'une
structure optimale de topologie prescrite. La recherche exhaastiageers toutes les topologies est alors
envisageable pour des mesures n'ayant pas plus de 6 masses de Diraé,(@undehbre de topologies
explorer est trop important). Dans le casles masses de Dirac sont aégs, le nombre des topologies
qui méritent détre prises en compte est cor&igblement &duit. L'exploration exhaustive est alors
possible pour une dizaine de masses de Dirac.

Afin d’ éviter les recherches exhaustives quand le nombre de masses de Dirac est trop important, on
adopte une approche mdthelle. Celle-ci consisi@ approcher le probme park masses de Diraclo
k est le nombre de masses pour lequel I'exploration exhaustive reste possible. Ce sarsgfobinit
une structure optimale dont la predme bifurcationS’ permet de scinder la mesure irriggien deux
mesures.; et ue. On applique alors la stiggie multéchelle aux prol@mes de transportest’ vers yi;
et S’ versps. Cette approche muéchelle permet d’obtenir dans un temps raisonnable une topologie
efficace de transport. Celle-ci peut alétse affiree par perturbation (cf figure 8.15).

Chapitre 1 : Irrigation géonetrique et EDP.

Ce chapitre grsente lesasultats obtenus dans [12] par Caselles et Morel qui explorent deux facettes
de lirrigation : l'irrigation de volume et Bgali€ de distribution. Il s’agit d'abord de @ciser ce que

I'on souhaite entendre pagéseau irrigant un volume. En congrdnt le cas des poumons par exemple,
on est amed@a consi@rer qu’un eseau irrigue un volume si ses points terminaux forment un ensemble
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de mesure positive. Cette approcl@mgeétrique permet de donner une préna obstruction. En effet,

on montre que le rayon des tubes d’une structure arborescente irrigant un volumecdssairement
décrdtre plus que ligairement. Le prokime de Iegalie de distribution peugégalemengtre motie

par I'etude des poumons. En effet, lorsque I'on respire, il est souhaitable que la structure des poumons
soit telle que chaque bronchiole terminale recoive de 8da néme pression. Nous formalisons dans

ce chapitre Egali€ de distribution par l'intertdiaire d'une EDP et donnons un exemple de structure
irrigant un volume tout en permettanéfali€ de distribution.

Chapitre 2 : L’irrigation vue comme transport de mesure.

Les moatles de transport de mesure permettentéfmit de mangre satisfaisant la fois l'irrigation de
volume et legalié de distribution. En effet, si I'on conside un transport de™ versy—, on dira qu’'un
volume est irrigé si le support dg~ est de mesure positive. On dira qu'il yegali€ de distribution si
1~ est la mesure de Lebesgue sur un enserfibl€Ce chapitre fait la syntrse des difrents modles
bass sur le transport de mesure et pr@sosisqu’alors.

Chapitre 3 : Une obstructionénerggtiquea lirrigation des volumes:

Le résultat principal de cet article est uasultat de non existence : si I'on consid que la loi de
Poiseuille est satisfaite@me aux plus petiteschelles, alors une structure arborescente negpleuiois
irriguer un volume et causer une dissipatiogrirgie finie.

Chapitre 4 : Le mockle de plan d’acheminemert.

Ce chapitre dcrit en ctail le moele de plan d’acheminement. On grdontre la semicontinut
inférieure du cat et I'existence de plans d’acheminement optimaux dans le cas déprellirrigation
et du probéme qui-va-a.

Chapitre 5 : Irrigation a cdit fini et questions de stabild.

Pouruna > 1— % ou N est la dimension de I'espace ambiant, on montre quelledmtransport entre
deux mesures est fini, que ce soit pour le peafd de l'irrigation ou le proBime qui-va-a. Toujours
poura > 1 — 4+, on montre ceésultat de stabilé : la limite d’une suite de structures optimales est
optimale.

Chapitre 6 : Régularité et structure des branchements d’'un optimum.

On montre dans un premier temps que des structures optimales n’ont pas de boucles ou pas de circuit
(suivant si I'on considre le probdme "qui va @” ou le probeme d’irrigation). Cette &s forte contrainte
permet de montrer l&gularié dans le cas du transport entre deux mesures atomiqué&tuda ensuite

IM. Bernot, V. Caselles and J.-M. Morelre there infinite irrigation trees?Journal of Mathematical Fluid Mechanics,
Vol. 7, 2005.
2M. Bernot, V. Caselles and J.-M. Mordlraffic plansPublicacions Mategtiques Vol. 49, Nim. 2, pp. 417-451, 2005
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guels sont les branchements possibles en un point de bifurcation. Dans [eocsgs?et en dimension
2, les seuls branchements possibles sonten Y.

Chapitre 7 : Exemples d'irrigation optimale.

Cette partie d’exemplestudie compttement la structure optimale du transport d’'une masse de Dirac
vers deux masses de Dirac. On fir@sse ensuité la structure d’'un optimum pour l'irrigation de la
mesure de Lebesgue peetpar un segment. Gaudie alors une classe assezéatifinte d’exemples, i.e.

on se demande si une structure datdmi, irrigant un volume, et telle que la variation totale de I'angle
le long des fibres reste finie peut exister. Eponse est oui en toute dimension. Baanse demeure oui

en dimension sugrieurea trois si I'on exige en plus d’avoir une vraie structure d'arbre dans le sens o
les fibres ne s’entrecoupent pas.

Chapitre 8 : Algorithmes de recherche des optima locaux et globaux.

Ce chapitre grsente une égthode de construction des emplacements optimaux des points de bifurca-
tions d’'une structura topologie donee. Les heuristiques muéithelles et de perturbation topologique
permettent quard elles d’obtenir des topologies efficaces en un temps raisonnable.



Chapter 1

Irrigation: the geometric and PDE
framework

Introduction

In many natural or artificial flow systems, a fluid flow network succeeds both in connecting every point
of a volume to a source, and in ensuring equality of supply (in the sense that the tips of a network
receive roughly the same flow). Examples are the blood vessels, the bronchial tree and many irrigation
and draining systems. The aim of this chapter is twofold ; to propose a definition of irrigating systems
i.e. "structure irrigating a volume from a source”, and to introduce a PDE model to define the equality
of supply condition.

In the articles [31], [32] and [33], irrigating systems are viewed as homogeneous trees made of
tubes (see figure 1.1) in the sense that bifurcation ratio, scaling of the length and scaling of the section
are associated to each level of the tree. The problem of such a model is that it considers sets of tubes
separating them by generation, but does not take into account the set of all tubes as a whole so that it
avoids the question of the embedding of that tree in the real 2 or 3 dimension space.

In the first section of this chapter we present a much more general approach due to Caselles and
Morel [12], where the irrigating system is only supposed to be an open connected set. A point on the
boundary is said to be accessible or irrigable for some prgfikeS? is not too much "narrow” in the
neighborhood of that point (see definition 1.1.1 and figure 1.2). The main question that is asked in
this purely geometric framework is whether or not an open set can irrigate a set with positive measure.
Proposition 1.1.2 gives a geometrical obstruction to irrigability (for instance, a profile of an irrigating set
cannot be linear). In subsection 1.1.2, we show the construction (given [12]) of a "Sierpinsky gasket”
like irrigating tree for many different profiles.

In the second section of this chapter, we define the equality of supply requirement through a suitable
PDE, as it is proposed in [12]. Caselles and Morel say that € (where( is an open set iR
with Lipschitz boundary, an®U| > 0) permits the equality of supply, if there is a bounded velocity
vector fieldv in Q2 such that—divv = —pu + xsy Wherexgy is Lebesgue measure restricted to the
irrigated setoU, andv = 0 outsideU. We shall then give an example of a set permitting equality of
supply in2 dimensions, and such th&tirrigates a set with positive measure. Of coursé/ ibermits
an equality of supply flow, thely cannot be any set, but a useful description of those sets is lacking
(even if integrating the PDE against characteristic functions of rectifiable S&t$ gives necessary and
sufficient conditions for its existence).

15
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Figure 1.1: The homogeneous tree model, the irrigating set model and the PDE framework for the
equality of supply. The homogeneous tree model only considers very simple trees made of tubes without
asking the question of the embedding of the tree in space or the question of the real flow in it. The
irrigating set model permits to study geometric obstructions, i.e. what kind of profile on the section of
tubes allows to irrigate a set with positive measure. The PDE framework permits to define precisely the
equality of supply, i.e. is it possible for a fluid to flow i from a source to the boundary af.
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1.1 A geometric model for irrigability

In this section, a model of irrigating set based on irrigation at the boundary is considerel.desain

open set iMRRY andS € X a source point. A point € 9X is said to be accessible if there is a path
connectingS to x, so that a tube of prescribed profile along the path is contain&d We call irrigated

set the set of accessible points. Conditions are given on the profile so that it prevents a set from irrigating
a set of positive measure. Examples of irrigating sets with bounded mean lengths along accessible paths
is given in lemma 1.1.5 and lemma 1.1.6.

1.1.1 Accessible points

We denote byB(x, r) the open ball of center € RY and radius- > 0.

Let f : [0,00) — [0, 00) be an increasing continuous function such the) = 0.

Definition 1.1.1 Let X be an open set iR, S € X. We say that: € 90X is accessible fron$ with
profile given byf if there is a curvey : [0, L(y)] — RY parameterized by its arc length such that

7(0) = z andy(L(y)) = S,
B(y(s), f(s)) = (v(s) + B(0, f(s))) € X (1.1)

forall s € (0, L()] (see figure 1.2).

Figure 1.2: A point on the boundary oKX is said to be accessible frosiwith profile f if there is a
path~ such that balls centered oris) with radii f(s) lie within X. On the figure at bottomy is not
accessible with a linear profil&(r) = kr because of the cusp.
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If £ c RY is Lebesgue-measurable and R”, the upper and lower densitiesofn E are defined
by

_ .
(B, z) = limsup ZOBE P
p—0t ’B(fx’p”

d(E,x) := liminf [E0 Bz, p)l :
p—0F ’B(.’IJ, p)‘
When the upper and lower limits are equal, we denote their common valdghy) and we call it the
density of £ atz. By Lebesgue density theorem [25], both densities are equaht@lmost every point
of E.

Proposition 1.1.2 Letz € 9X be irrigable fromS with profile f. Assume thai(R™ \ X, z) = 1. Then
limsup,_,q, f(r)/r =0. Asa consequenq%R ﬁ dr = oo, R > 0.

Proof: Let~ be a curve of accessibility to, andr < L(v). Then, sincey is parameterized by its arc
length, we have/(%) € B(x, %). As a consequencé(v(5), 5) C B(x, ).

If £(3) < 5. thenB(y(3), f(3)) € B(z,r), so thatB(y(3), f(5)) N B(z,7) = B(y(3), f(3))-
If f(5) > 5, thenB(y(5),5) C B(v(3),f(5)) N B(x,r). By definition of accessibility, we have
B((3). £(3)) © X, hence

(X) N B r)| _ [BO(3) f(5) 0 Ba.r)| _ min(s, £(5))"
|B(z,r)| | B, )] - r

Taking the limsup, the inequality yield§ X, z) > srmin(limsup, ., f(r)/r,1)". Then,d(RY \
X, z) = 1implies thatlim sup,_,q, f(r)/r = 0.

Finally, observe that, for som& > 0, @ < 1 for all r < R; otherwise we would have
limsup, o, f(r)/r > 1. Itfollows that; < 5 forallr < R, and thusf;’ Ty dr = 0. O

Corollary 1.1.3 If X irrigates a set of positive measure, then the profilis such that

limsup f(r)/r = 0.
r—0+

Proof: Let us denoted the set of accessible points. By Lebesgue density theoremd@8]z) = 1 at
almost every point ofi. SinceAN X = () we haved(R" \ X, z) = 1 and proposition 1.1.2 asserts that
the profilef is such thatim sup,._,o, f(r)/r = 0. H

Remark 1.1.4 Let us consider a linear profile, i.e. f(r)=ar (see figure 1.3). Corollary 1.1.3 states that it
is not possible for a set to irrigate a set of positive measure with the prbfile

1.1.2 Anexample of irrigated set with positive measure in 2D

In this section, sufficient conditions are given on the profile of a particular 2D tree so that it permits to
irrigate a set of positive measure.
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Figure 1.3: The geometric content of proposition 1.1.2 is very natural. Indeed, if a point is accessible
from S € X and has density in RY \ X, then the ratio of the area of the profile upon the area of the
ball has to go to O since the profile is containedXin The ratio for the linear profile (on the left hand
side) is constant so that there is no tree irrigating a set with positive measure with such a profile. The
profile on the right hand side is such thiah sup,._,q, f(r)/r = 0.

Lemma 1.1.5 Let? > 0. Assume that

22"]”(2%) < 0. (1.2)

n=1
Then there is an open bounded sub&ebf R? whose boundarg X is of positive measure and
accessible with profilg. In addition, accessibility paths can be taken with bounded lengths.

Proof:

We shall construct a Sierpinski carpet which is irrigable and of positive measure as illustrated on
figure 1.4. Letl, = (. Take the squar@ = [—£%, £]? and take out the cros&} = (—2,%) x
(8, 3 U (=%, %) x (=%, %) with & < £. This cross will be the step cross. We shall say

that the cross has length and widthd;. The squaré—%, %) x (—%, %) will be called the center

of the cross. There are four squares remainin@ inX{ of lateral size/; = 3%, Consider in each

of those squares a cross of lendgihand widthdy (< ¢1). We call these crosses the steprosses and
denote them by(f,j =1,...,4. We continue iteratively in this way, thus, at stepve have4” crosses

X3, j =1,...,4", and each of them has length = @ and widthé,, 11 (< ¢,—1). Observe that
|X£| = 20,0p41 — 572l+1. At stepn the projections of the squares at the center of all crosses onto the
z-axis are a finite number of intervals whose total Iengt@?j 2j—15j. Thus our constraint o#, is

o0
> 2itls < (1.3)
j=1

Let X = U, UM, X7 Then

X[ = 4"(2ln0ni1 — 62y1)
n=0
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Figure 1.4: The irrigating set is constructed iteratively as a union of cross of controlled thickness. The
first step consists of the cros§. Then we consider the set madeXj and the four additional crosses

of the next step. For a suitable choice of the thickness of crosses, the set of points that do not lie in the
countable union of crosses is of positive measure and all of them are accessible for a particular profile.

j—15. . . .
Let us introduce the parameters= 2 7 % , 7 = 1,2, ... which represents the proportion of the interval

(—¢,¢) covered by the projections of the squares at the center of the crosses constructeg-atistep
terms oft; the constraint (1.3) becomes

ti=> t; <L (1.4)

Observe that

where this equality holds for all > 0 if we understand that the sum at the right hand side is equal to
zero whem = 0. Thus,

|X| =2 i 2" g1 (£ — i 21715;) — imﬁﬂ
n=0 j=1 n=0

which we may write in terms of,, as

oo n o
IX| = 200 (1= t) =) 2,
n=0 j=1

n=0
o0 o0 n o0
Y S <2 St S+ Y tiH)
n=0 n=0 J=1 n=0
= 20%t — 0%t = 12(2t — t?).

We conclude thatX| < ¢2 if and only if we have the strict inequality in (1.4), or equivalently, in (1.3).
In this caseK = Q \ X is of positive measure. Let us prove thdtis accessible with profilg by
properly choosing the values &f. This will imply, in particular, that’ = 9.X.
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Given a poinp € K, there is a sequence of arms of crosses joipit@the center of). Let~ be the
curve formed by the segments going through the centers of these arms. The worst case would happen if
the arc consists of segments, callgds,, so, s3, ..., Son_2, Son_1, ... Of lengths

by 01 b1 61 by g by o T

2 e Tty T Ty Ty
Observe that the total length is less tl2dnWe consider they as part of the stepcross,sy, s2 as part of
the crosses constructed at steptc. Letm,, be the length of segmesit. If s € [> 072 mg, D op2, ma]
we are just describing segment If n is even (odd) we are in a cross of typg2 (resp.,”T“). Suppose
thatn = 2p,p =0,1,...,ands € 32 .| mg, y o, my]. Since

S ._z Bro= S L 3653
=n j=p+1 j=p+1 j=p+1
< —|— Z J 74_1 i S
- 2 2 2 /
=p+1 j=p+1
> £ l

f is increasing and we are in a cross constructed atzstepose width isé,;. Thus, (1.1) will be
satisfied if we have the inequality

flgper) < 2L (1.5)

In the same way, ik = 2p — 1, p = 1,2, ... ands € [} 72 . mg, > po, my], (1.1) will be satisfied
if the inequality (1.5) holds. By our assumption ¢n(1.5) will be satisfied with a proper choice &f
which has to satisfy the constraint (1.3) with a strict inequality sign to guarante&tiebf positive
measure. This ends the proof tHatis irrigable and the length of accessibility curves is less tar]

Remark 1.1.6 The functionf(s) = s? satisfies (1.2) if and only f > 1. The functionf(s) = ‘lOQS"G
satisfies (1.2) if and only i > 1. All these profiles combined with lemma 1.1.5 give a whole bunch of
sets irrigating a set with positive measure.

1.2 The equality of supply flow problem

Let Q2 be a bounded set iR”Y with Lipschitz boundary (we may also take= RV). Let U be an open
bounded set such that CC 2 and|oU| > 0.

Definition 1.2.1 We say that the open s&t permits an equality of supply flow if there is a positive
measureu with supportsupp(p) CC U with mass|, ¢ = |0U| and a vector field € L>(Q2) such
that

—divv = —p+ xou NN (1.6)

v=0 outsideU. a.7)

The measurg will be called the source measure.

Remark 1.2.2 Notice that condition (1.7) implies that- » = 0 on the points oDU wheredU is
described by a regular manifold.
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We are interested in studying conditions on the structure of the opeli sétich guarantee the
existence of a flow with equality of supply. We shall consider open sets suct that,,U,,, wherel,,
are open sets iRY with Lipschitz continuous boundary. The idea is then to solve a slightly modified
problem on eaclt/,, and to use the sequence of vector fielgghus obtained to solve the problem for
U. In the case of Lipschitz boundary sets, Proposition 1.2.4 below gives a simple criterion to ensure the
existence of a vector field of prescribed divergence. This criterion is then used to show that the 2D tree
introduced in section 1.1.2 permits an equality of supply flow.

Let us first consider the solvability of (1.6) in Lipschitz domains. We recall the following result
which was proved iR" by Bellettini, Caselles and Novaga in [4].

Proposition 1.2.3 [4] Let W be a bounded subset Bf¥ with Lipschitz boundary. Lef € L?(W) N
LY (W). Then the function is a solution of

min / |Dw| + = / (w— f)*dx (1.8)
we L2(W)NBV (W)
if and only if there is a vector field € L>(W,R") with || v || < 1 such thatf;,, (v, Du) = [}, |Dul
and
u—divv=f inW
(1.9)
v-v=0 indW.

The following result is an easy consequence of Proposition 1.2.3.

Proposition 1.2.4 Let W be a bounded subset & with Lipschitz boundary. Lef € L?(W) N
LN(W). Then there is a vector fieldc L>°(W, RY) with || v ||, < C such that

—divo=f inW

(1.10)
v-r=0 inoW

if and only if

/ f=0 (1.11)
W
and
}/ ful < o/ \Dw| forallw e BV(W), (1.12)
w w

Proof: By changingu into & we may assume tha&t = 1. The vector fieldv € L>(W, RN) with
| v [|«< 1is a solution of (1.10) if and only if};, f = 0 and the function: = 0 is a solution of (1.9).
Under the assumption thﬁv f =0,u = 0is asolution of (1.9) if and only if

1 1
/W |Dwl + 5 /W(w — f)?dx > 3 /W f2dx Yw e L>(W)Nn BV(W). (1.13)

Replacingw by ew (wheree > 0), expanding the.?-norm, dividing bye > 0, and lettinge — 0+, we
have
\/ Flayu(e) da| < / \Dw| Y € L2(W) 0 BV (W). (1.14)
w w

Since (1.14) implies (1.13), we have that (1.13) and (1.14) are equivalent. O
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Before proceeding, let us recall some results about BV functions and traces. In the following we
note " for the N —dimensional Hausdorff measure, dnd> t] = {y | u(y) > t}. Letu € BV (U).
We define
ut (z) = inf{t : d([u > t],z) = 0}

u” (z) =sup{t: d(Ju < t],x) = 0}.

ut(z) + u ()

It is useful to introduce.* defined by the formula*(z) := . For a suitable mollifier,

u*(x) = lim(p, * u)(z) for almost every: ([17], p. 216, Corollary 1), relatively to tr~ —! measure.
This property is of particular interest since it permits to define the following linear for@a 600 )

5X(w):/ w*dHN"1 w e BV(U).
X

for any X C U which is V=1 rectifiable with "V ~1(X) < oo. If f is a linear form onBV (U), we
shall write indiscriminately/,, fw or f(w).

1.2.1 A solution to the equality of supply for the 2D tree described in Section 1.1.2

A convenient iterative description of the tree

Let X, = Up_, UJ_, X7 The centers of the” crossesX?, will be called the sink boxes of the draining
network X,, while the center ofX& will be called source box oX,,. At each sink box we place two
segments joined in the form 6§’ whose total length/26,,.1, which coincides with the length of the
diagonal of the box, and at the source box we platé’af length v/26,. Observe that, iff(s) = s2,
then‘sg—:1 = %. Henced"$,+1 = ;. Observe also that, if (s) = s?, then4"é,,+; > ¢; if and only if

p < 2.

In the sequel we shall consider the ca$e) = s2. Let us describe precisely how we shall connect
the sink segments to the source segment. We shall describe with detail the first step of the construction.
Let us first describe the position of the sinks inside its box. Let us consider a box which we normalize to
be (0,1)2. We shall use as a sink two segments of Ienlézh'oined by its end point in the form &1,
or an invertedV”’, and forming an angle of, and we center it in the sink box. Similarly we construct
the source in a form dfi”’ located at the source box. Let us describe how to connect the sinks and the
source in the draining network;. At the two upper sink boxes we put invertdd’ sinks of length
V205, while we will place’V"’s of the same size at the two lower sink boxes. To connect the sink at the
upper left cross, sax{, to the source we shall use first the descending ardi ofintil we reach the
center of the left arm of the cros§}. This will be called a re-directing station of the draining network.
There we place a re-directing join made of two segments in the forn' ef’a Each segment of the
" <! re-directing station has lengi26,. The re-directing station collects the flux from the upper and
lower left crosses and redirects it towards the source. This disposition permits to collect the flow from
the two arms of the typé crosses which are incoming into the left arm of the ctigsand redirect it to
its center. Observe that the sum of the lengths ofitbanks equals the length of th&” source. Thus,
each segment of ea¢h’ sink is mapped into a segment of equal length of the source. We observe that
by a similar construction we may place¥d segment at each sink box of theth draining network
X, and’V’ segments in the corresponding redirecting stations in such a way that each segment of each
of the’V” sinks is mapped to a segment of equal length of the source. For latter use, let us fix some
notation. For each, we divide the squar® into a familyC,, made of22" squares whose side has length
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Figure 1.5: An irrigating tree inR? with its re-directing stations.

oy = QL For each) € C,, there is a cros/ of X, inside @ in which we place a sink/; in the

form of a’V’, or an invertedV’. The length ofi/ is v/24,,+1. Let us callAg the box where the sink

Vp is located. Let; be the source. Le) € C,. Let W be segment of the sourdg corresponding

to Vo which is of equal length. When we go froi, to X,,.; the source is unchanged, the sinks are
now at the centers of the crossk’éﬂ, j =1,...,4"1 while the sinks of the previous stages are now
transformed into re-directing stations. We have just to add some re-directing stations to connect the new
sinksVyy, Q' € C,+1, to the previous onegy, @ € C,,, converted now into re-directing stations. These

new re-directing stations will be placed in the same way we did for the re-directing stations connecting
Vo, @ € C1, 1o Vy. We are now in position to prove that a bounded vector field may be constructed in
X, sending the flux from the source to the sinks, and to prove that the bound on the supremum of the
norm of the vector field is independentef

The solution in U,,

Let us now writeU andU,, instead ofX and X,,, respectively. ConsideR to be a box such that
U cc Q. Our purpose is to construct a vector field L>°(€2) and a positive measugesupported on
the sourcéd/, such that

—divv = —p+ xou N (1.15)

andv = 0in Q \ U. Observe that integrating (1.15) éhand using that - v = 0 in 02 we deduce that
w(Vp) = |0U|. To prove the existence ofwe shall proceed by constructing vector fielgse L>°(U,,),
and measureg,, on Vj, such that

—divv, = —pn + frn N Uy, (1.16)

Up v =0 inoU,, (2.17)
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where f,, is a sequence of functions convergingyte, weakly as measures. The sequelfigevill be
chosen such that, is bounded independently of

Construction of f,

Let

fa= > 1QNOU|rr ( 5
QeCn

Observe that, in particular, we have that
/ £ = |0U|.
Q

Letk <n,Q € Ck, Q € C,. Observe that eithdry C Q" or Vo N Q" = 0. Then

/fnfoz > Qﬂé’Ul/ Hl Y |QnaU|=1Q naul.
QECn QECr,QCQ’

Thus
/ faxo — Q' NAU| forall Q' € UCy.
Q

This implies that
/fngp—>/X8U(p forall o € C(Q).
Q Q

Construction of p,,

In the notation introduced before, [8tg, @ € C,, be the segment of the sourtg corresponding to
V. Recall that! (V) = H'(Wg). Let

pn =D |QNOU| e ( )
QeCn

By extracting a subsequence, if necessary, we may assume,that . wherep is a positive measure
with support inVj such thatfv0 pu=|0U].

In order to apply Proposition 1.2.4, conditions (1.11) and (1.12) are to be verified. This will prove
the existence of a vector field, € L>°(U,,) satisfying (1.16), (1.17) with ah*>° bound depending on
the constant’ appearing in (1.12). First, we observe t[ﬁgy‘g fn= fUn tn. Next, letw € BV (U,,). We

evaluate
‘QﬂaU’ * 1 * 1
(o, — fr)w = / w* dH —/ w* dH

/n Q;n HI(VQ) ( Wao Vo )

Since for eacl) € C,, we have

Qnavl _ 1@l _ @l _ e _ e
HI(Vg) = H\(Vg)  Vaoumr  vZor/dn Vb,

> \/W w* dH' — /Qw*cml) gc/Un | Duw| (1.19)

QeCn

(1.18)

and
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where the constanit’ does not depend an we have

(/Un(un ~ fa)u| < C\/i’zal /U |Du)| (1.20)

Having stated Proposition 1.2.4 for functions and not for measures, we have to reqf}laaiag.,, .
Let p € C5°(RY) be such thap > 0, supp(p) C B(0,1), [pn p(x) dz =1, and letpe(z) = eV p(L).
We choose = ¢, such that the support @f,(z) = p, (x) is contained in a ball of radius strictly less
than the distance from the supportfafto the boundary ot/,,. Observe thatp,, * f,.)|v, = pn*(frlv,)
and the same property also holds for. The functions p,, * ., — pn * fn)|v, Satisfy (1.11) and (1.12)
with the same constaiit thany,, — f,.

Letv, € L>®(U,,RY) be the solution of (1.16), (1.17) @i, corresponding t6p,, * tt, — pn * fr) v, -
To extendv,,, we use the following Lemma.

Lemma 1.2.5 Let W, Wy, W5 be two open bounded sets with Lipschitz boundary. Assumé&lthand
W, have a common boundafy andW = W, U W, U F. Letg; € LY(W;), i = 1,2. Suppose that for
eachi = 1, 2, there are vector fields; satisfying

—div z; = gi in W;

(1.21)
zi-v=0 indW,.
Letg = gixw, + g2Xwy, 2 = Z1XW, + 22XW,- Then
—divz=¢9g InW
(1.22)

z-v=0 IindoW.

By settingu,, = 0in Wy = Q\ U,,, W1 = U,, andF = 9U,,, applying Lemma 1.2.5, we may extend
vp 0\ U,,.

Proposition 1.2.6 The 2D irrigating tree defined in Section 1.1.2 with profile) = s?, p < 2, permits
an equality of supply flow.

Proof: Let us consider the sequence of vector field®btained from the previous construction. Let us
prove that we may extract a subsequence figmwhich permits to solve (1.6), (1.7). Let us observe
first thatp,, * i, — pn * fn = 1 — xor In Q. Indeed,p,, x ¢ — ¢ uniformly for eachy € C.(Q2), and

fin = fr — = xov In Q. Thus we have thaf, (pn* pn — pu* fo) o = [o(n = fa)pnxe — [o(u—1f)e
whenn — oo for all ¢ € C.(). Sincen — f does not chargéf, we deduce thaf,, (s, — fn)p —

Jo(u = f)e asn — oo for all ¢ € C(2). By extracting a subsequence, if necessary, we may assume
thatv,, converges weaklyin L>=(©2, R") to a bounded vector field such thaty = 0in Q\ U. In
addition we have

—divv = —p+ xsu in€Q. (1.23)
O

Remark 1.2.7 Infact, it is possible to give directly a vector field which answers the problem. The vector
field is the one that appears in figure 1.5. kebe a point inU, there is an such thatr € U,. Then,

if = is on a path between the source and a sinfg) is set to be the unit vector colinear to the path,
otherwisev(x) = 0.



Chapter 2

Measure transportation models

Introduction

In the previous chapter, we studied some geometrical obstruction to the existence of irrigating systems.
In this chapter we shall no longer consider systems with "thick” tubes but rather an idealized structure
which will consist only of the skeleton of the structure. The information we want to keep trace of is the
way mass is transported from the sources to the tips. To do this we shall consider different formulations
of mass transportation problems. The first mathematical transportation problem was formalized by
Monge, then given a relaxed formulation by Kantorovitch ([24],[19]). The problem he considered was
the one of moving a pile of sand from a place to another with the less possible work. In the Monge-
Kantorovitch frameworky+ andy~ are measures dR”, and to transport,™ onto .~ means to tell

where the mass gft is sent, i.e. to give a measureon RY x RY wherer(A x B) represents the
amount of mass going from to B. This measurer is called a transference plan. To evaluate the
efficiency of a transference plan, we consider the cost funetionR” x RY — R wherec(z,y)

is the cost of transporting a unit mass framo y. The cost associated with a transference plan is
Jan gy ¢(z,y)dn(x, y). The minimization of this functional is the Monge-Kantorovitch problem.

If we seeu™ andyu~ as supply (factories) and demand (clients) measures, the Monge-Kantorovitch
framework is well adapted to model the way the clients should be delivered when the roads already
exist. This problem is sometimes named the transport problem or the Hitchcock problem in the linear
programming literature. We also consider measure transportation framework as an alternative and con-
venient way to formalize irrigation of volume and equality of supply (see Chapter 1). Indeed, let us
takeu™ = d5 andu~ some measure & . In such a context, for a source to irrigate a volume means
that we consider a transport fromt to a measurg~ with a support of positive measure. To have the
equality of supply would be translated by the fact thatis Lebesgue measure on some Ket

As an example, consider the cost functigm, y) = |= — y|?, and the supply and demand measures
pt =y andu™ = (8, +6,,). The minimizerr is the measure odR™ xRY such thatr({z} x {y1}) =
3 andr({z} x {y2}) = 3. The actual transportation, for the real problem of transporting sand, is
achieved along geodesics betweaem, andy- as represented in Figure 2.1.

In the Monge-Kantorovitch framework, the transport structure along which the mass would be really
transported is all made of geodesics between starting and ending points, it is given by the transference
plan. We stress the fact that the structure plays no role in the cost functional, in the sense that the structure
depends completely on the transference plan. This is why the cost functional has to be adapted if we want

to apply this framework to the irrigation problem or to some particular supply-demand problems. Indeed,

27
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1" 112,77

1/2 1/2
Y2 Y2

Figure 2.1: The transport frond,, to %(51,1 + 0y, ). Monge-Kantorovich versus Q. Xia’s solution.

in the case of a supply-demand problem where the structure is still to be built, it could be preferable
to incorporate the cost of the construction of this structure into the total cost (finding a compromise
between construction cost and efficiency of the structure). A second motivation for taking into account
the structure is that it is in some cases preferable for the mass to be transported in a grouped way:
concerning the sand example, it is better for instance to use trucks, wheelbarrows and buckets rather
than just a shovel. In a fluid mechanics context, Poiseuille’s law states that the resistance of a tube
increases when a tube gets thinner in such a way that it is preferable to have a tube of$eatiwr

than two tubes of sectiofi/2. This is also an invitation to group the mass/the flow in the case of the
irrigation problem, as it is illustrated by the structure of the lungs.

This chapter is dedicated to survey briefly the different mathematical objects that have been proposed
to model efficient transport structures.

2.1 The Gilbert-Steiner problem [18]

The Steiner problem consists in minimizing the total length of a network connecting a given set of
points. It is a good model to penalize the cost of the construction of a homogeneous transport structure.
However, this cost is not realistic since it does not discriminate the cost of high or low capacity edges (a
road has not the same cost as a highway). The first model taking into account capacities of edges was
proposed by Gilbert [18] in the case of communication networks. This author models the network as a
graph such that each edges associated with a capacity. Let f(c) denote the cost per unit length

of an edge with capacity. It is assumed thaf(c) is subadditive and increasing, i.¢(a) + f(b) >

fla+b) > max(f(a), f(b)). In this context, the cost of a grafghis C(G) = ), f(c.)l(e) where

the sum is taken over all the edges of the graphiéagdis the length ofe. Gilbert then considers the
problem of minimizing this cost over all networks supporting a given set of flows between prescribed
terminals. The subadditivity of the cogtiranslates the fact that it is more advantageous to construct an
edge with capacity rather than two edges of capacit§2. Let us mention that Gilbert’s model was also

used in the study of optimal pipeline or drainage networks ([6],[20]).

2.2 Xia’'s model of transport paths [35]
Though Gilbert clearly proposed this functional to optimize the construction cost of a network, the

subadditivity of f could also be interpreted as a way to encourage the mass to move in a grouped way.
This is the object of articles [35] and [22] to use Gilbert-Steiner cost in a more general continuous
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X1 Y1
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X2 Y2

Figure 2.2: Irrigation problem minimizer versus traffic problem minimizer in the case 0.

framework where the supply and demand measures are not constrained to be atomic. Let us now detalil
the approaches of [35] and [22].

Xia models the transportation network as an embedded graph with a countable number of vertices
and satisfying Kirchhoff’'s law. This author starts with finite atomic measuraadb and defines a
"path” from a to b as a flow on a finite embedded graph whose end vertices end up on a or b. He denotes
by e the (straight) edges of the graph, bye) the flow in the edge, and bye the unit vector in the
direction ofe. He denotes byfe]] = ’Hllee”the vectorial measure obtained as the product of the Hausdorff
measure restricted t®and of the vectoe. Then the embedded path frafrto b can be written as the
vectorial measure

G =Y we)e].
The Kirchhoff law(K) is simply expressed as
div(G) = a — b,

wherea andb are the supply and the demand measures. The cost functional is defined as in the functional
of Gilbert-Steiner [18]:

M*(G) =) w(e)*length(e),

&

wherea € [0, 1]. Notice that this cost corresponds to a cost per unit length(ej* for each edge.
It is subadditive because of the concavityfdf:) = z*. Then, Xia proceeds to define transport paths
between probability measures more general than finite graphs. He says that a vector Mdasare
transport path betweem™ and .~ if there are sequences of atomic measureandb; and pathss;
connecting; to b; such thatz; andb; converge weakly ta™ and,~ andG; — T weakly in the sense
of vector measures. This impligsv(T) = u* — p~ in the distribution sense. The energy of any such
path is defined by relaxation as

M™(T) = inflimii_rgo M(G;),
where the infimum is taken over the set of all possible approximating graph sequendes G; of
T. As a simple example, the minimizer 87 with 4+ = 6, andp™ = (6, + dy,) is represented
in Figure 2.1. Let us consider another example that will illustrate the difference with the traffic plan
approach: take™* = %(@1 +d,,) andp” = %(% + dy,). The locations ofcy, =2, y1 andys and the
minimizer are represented in Figure 2.2.



30 Chapitre 2. Measure transportation models

2.3 The pattern model [22]

The article [22] describes a (Lagrangian) formulation quite related to the transport paths proposed by
Xia.The pattern model describes an irrigation system as a (usually uncountable) set of paths or “fibers”
starting from a point sourc& and arriving at every point of the support of the irrigated measure. The
fibers represent either the trajectoryRf of a fluid particle, or a fiber of a tree. Each fiber is parame-
terized asy(w, 1) € R?, wherel is time (or length along the fiber) anddenotes a particle, belonging

to an abstract probability spa€e A stopping time (or lengthy, (w) is associated with each fiber. This
permits to define the irrigation measure as a density measure of the fibers stopping in any given vol-
ume. Let us denot&(w) := x(w, oy (w)) ; the amount of fluid irrigating a Borel set is the measure

of T~1(A) in Q. The authors defing-vessels, or branches, as equivalence classes by the equivalence
relationw ~; ' if x(w, s) andx(«’, s) coincide up to timé. The cost of a pattern is defined as

B00 = [ [ 1w O (o) e,

where|[x(w, t)]| is the measure of the equivalence class @t timet, anda € [0, 1].

If we consider the simplest example of transportation with two Dirac masses as a demand (see Figure
2.1), Maddalena-Morel-Solimini’s solution coincides with the Xia’s one displayed in Figure 2.1. In this
case the solution is given by the set of fibgrs [0, 1] x [0,00) — R2, wherex(p, t) is either the path
from z to y; (if p € [0,1/2]), or the path fromx to y2 (if p € (1/2,1]). More details about this model
are given in Chapter 3.

2.4 Path functionals over Wasserstein spaces [7]

Quoting [7], the idea of the path functionals approach is that "during the interpolation between the
starting configuration (a probability measure) and the terminal one, the condition of keeping the mass
together can be expressed by the requirement of passing through measures concentrated on discrete
sets”. Let us considerV,(€2) the space of probability measures with Wasserstein disténceGiven

a source or initial measuyg, and a target or final measurg, the object that realizes the transport is a
continuous path : [0, 1] — W,() such thaty(0) = u* and~(1) = p~ and the goal is to minimize

a suitable cosy (v). To code for the fact that it is cheaper to transport the mass in a grouped way, the
authors make paths through atomic and concentrated measures cheaper with the functional

1
70~ [ Ik Ol
wherel|/| is the metric derivative in the Wassertstein spagg(2) and

ﬂm:{zwmawﬂ=zwwu

400 otherwise

with o < 1. Such a functional is indeed such that the path has to go through (possibly infinite) atomic
measure for the cost to be finite.

2.5 Optimal urban transportation networks [10],[9] and [8]

In [10], [9] and [8], a variation of the Monge-Kantorovitch problem has been proposed to model urban
transportation network. In [10], a transportation network is modelled as a connected closed set
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The users can either walk or join and use Thus, the cost for going from to y is dx(z,y) =
d(z,y) A (dist(x,X) + dist(y, X)), i.e. the minimum between the Euclidian (walking) distadte, y)

and the sum of distances fromandy to the network. Notice that the distande describes how the
Euclidian distance is twisted by the network. Given a population depsitynd a density of workplaces
1~ the cost of this transportation network is given by the Monge-Kantorovitch distance bewween
andu~ (in RV equipped with the twisted distandg (z, y)). The authors of [10] then consider optimal
transportation networks, i.e. transportation netwdtkaith minimal cost among all possible with
length less than a prescribed lendthand study their qualitative topological and geometrical properties.

2.6 The traffic plan model (see Chapter 4)

We define a traffic plan as a measure on the set of all possible paths. Thus the traffic plan model is a

straightforward generalization of patterns, since rather considering a particular parametegizajion

of fibers, we only keep the information given Ry, i.e. the measure on paths inducedyoyFigure

2.3 shows three examples of traffic plans: a Dirac mass on a finite length fathich means that a

unit mass is transported from{0) to (L)), a traffic plan with "Y” shape, and a traffic plan transporting

a Dirac mass to the Lebesgue measure on a segment of the plane. In the same way as for the "Y” shape,

a weighted graph can easily be modelled by an atomic measure on the space of paths in the graph.
This very handy object generalizes finite graphs and can allow more general structure as can be

seen on figure 2.3. In addition, this Lagrangian formalism is such that we can associate canonically a

transference plan, an irrigating measure, and irrigated measures to any traffic plan. We dengte by

the multiplicity at a pointz that will be the analogous of the capacity of an edge. It is the measure of

paths going through. The cost of the structure can then be written very similarly to the cost of patterns:

B0 = [ [ O edednt)

where K is the set of 1-Lipschitz paths. We shall see further that it is the exact analogous of Gilbert-
Steiner and Xia cost.

2.7 The irrigation problem versus the "who goes where” problem

The "who goes where” problem.

The irrigation problem consists in optimizing some cost on the set of all structures transporting
to ~. In contrast, the "who goes where” problem consists in optimizing some cost on the set of all
structures with prescribed transference plan. In the Monge-Kantorovitch framework, it would be absurd
to consider the "who goes where” problem since the ambient space of transports is precisely the set of
transference plans. However, in the other models we presented, the structure and the transference plan
are in some way dissociated. In case that we incorporate a transference plan constraint, that is to say, a
"who is going where” set of constraints, we call this generalization the traffic problem and its solution a
traffic plan. This problem was briefly addressed by Xia in [35], but its solution is not satisfactory, to the
best of our knowledge as we shall detail in the next paragraph. In order to understand the discussion, it
is good to consider the very basic problem whete= 6., + 0., andu™ = d,, + d,, as in Figure 2.2,
i.e.d(x1,y1) = d(ze,y2) is smaller thanl(y1, y2) = d(x1, x2). From the irrigation problem viewpoint,
the solution is the same as the Monge-Kantorovitch one since it is not efficient to group the mass of
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Y1 (0)=y2(0)

X(@)(0)

M:X#k _ x(0) x(1)

0 1

Figure 2.3: Three traffic plans and their associated embedding: a Dirac measufeadnee with one
bifurcation, a spread tree irrigating Lebesgue’s measure on the seffmgnt {0} of the plane. Let us
detail this last example. In that casewas [0, 1] correspondy(w) € K, the path parameterized by its
length from the Dirac mass located(ay2, 1), to the point(w, 0).
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together. It is not if instead we want to find the best transportation network with the "who goes where”
constraint that all the mass iy is sent ontay,, and all the mass ins ontoy;. The solution of the
traffic problem versus the solution of the irrigation problem is displayed in Figure 2.2.

A traffic plan as a compatible pair of a transport path and a transference plan.

As mentioned in the previous paragraph, a graph approach modelling the traffic (or mailing) problem
was presented in section 7 of [35]. To express the transference plan constraint, Xia considers what he
calls "compatible pairs” of a transport path and a transference plan. A piecewise rectilinearycurve
can be viewed as a graph with starting and ending points denoteg @and~;". Given an atomic
transference plan, a transport path (a weighed finite graph in that case) is said to be compatible with
« if it can be decomposed as a sum of curygsvith weightw; so thatrr(%‘,yj) = w;. Notice that
the notion of traffic plan is a convenient way to handle such compatible pairs. Indeed, the traffic plan
>; wid~, contains both the transference plan and the transport path information and is such that they are
automatically "compatible”. Xia then extends this compatibility definition to more general, non atomic,
irrigating and irrigated measures. A transport patand a transferencefrom p* to ;~ are said to be
compatible if

e there exist atomic measuresandb; such tha,; — p™ andb; — p~

e there exists a compatible pdif7;, ;) of transport path and transference plan freymo b; such
thatG; — T andm; — .

We were not able to find a way to make this definition consistent with the discrete case. Indeed, a pair
of a transport path with a transference plan can be both at a time compatible with respect to this last
general definition but not compatible with respect to the atomic case definition.

To prove that, let us consider™ = = = %690 + %6y. Let T be the null transport path i.e the one
associated with an empty graph. It is such #hat(7) = u* — = = 0 so thatT is a transport path
from T to u~. Letw be the transference plan such thdt,y) = % andn(y,x) = 3. This means
that the mass im and the mass ig are swapped by. Thus defined]” andx form a compatible pair
with respect to the general definition. Indeed, tékehe graph made of and edge, ) with Weight%
and of an edgéy;, z;) with weight 1, parallel to(x, y) wherey; andz; are getting closer and closer of
x andy (see figure 2.4). Thed'; is weakly converging td@" = 0. Let us definey; = %5@, + %6%. and
b; = %5y+ %535 so thata; andb; are weakly converging ta™ andy~ . Finally, letr; be the transference
plan such thatr;(z,y) = % andm;(y;, x;) = % so thatr; is weakly converging ter (see figure 2.5).
SinceG; andr; form a compatible pair, it follows thaf and= are compatible. However, considered as
a pair of a transport path and transference plan irrigating atomic measures, they are no more compatible
with respect to the atomic case definition. This proves that the general definition of a compatible pair
does not fit with what Xia wants a compatible pair in the atomic case to be.
Thus, it seems to us that the traffic plan object is a more convenient way to handle the transference plan
constraint since it conveys both at a time the transport path and the transference plan information.

2.8 Comparison of models

The table 2.8 presents a synthesis of different objects that were proposed to model irrigation type prob-
lems.

Cost of patterns versus cost of transport paths.
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Name Object Functional Constraints Comments Article
Monge- mardinals ofr are Does not take into act
Kantorovitch Transference plan Jen gy c(@, y)dn(z, y) St %: du- count the cost of the net-[24, 19]
problem work
. . - . . E = lengthle), wh [ .
Gilbert-Steiner Finite weighed directed (@) M.Um Jele))lengti(e), w .m:wn@ 'S Compatibility of | _. .
the capacity of an edge anfic) is the cost " Finite graph framework | [18]
problem graphGG . . . capacities at nodes
per unit length of an edge with capacity
- The relaxation proce
MYG) = >, w(e)*lengthle) for finite xatt P CeSp
1-current or Radon vecto- ¢ . _ makes unclear the iden-
Transport path . graphs extended by relaxation on a subclp®d’ = v+ — v e [35]
rial measurd’ . tification of transport
of Radon vectorial measures
paths
— ! / h is en-
Path in Wasserstein pathv(t) in a Wassersteir J) . Jo ()Y (1)l dt where.] _m.m: v(0) = vt and| Different optima than
o couraging the path to go through atomic mea- _ [7]
spaces spaces of probabilities sures v(1)=v other models
x @ QxR — RV .
: The Lagrangian approach
such thaty(w,-) is a 1- X(w,0) = S the Um:::m@ . @_“o__oébcmmo:
Pattern Lipschitz curve describt E(y) = | x(w, t)|dtd source point and . 22
ing the trajectory of the iy = [t
. one source
particlew
Permits to handle a "who
, Measure: on the setof 14 E = )| A(t) |dtd =rorut =
Traffic plan easrg. () Jic Jwr OL 1 Oldtdp(y) | TR = 1 goes where” set of cont [5]
Lipschitz curves where|z|, = u({v: z € y(R)}). vtandy™ =v straint

Table 2.1: Comparison of different models.
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X —L—y
X<—>y
Xi<e+yi
Figure 2.4: On the left hand side: the transport paifh = J[[e]] + 3[[e;]] where[[e]] is the vector
measure! | .e with e the unit directional vector of the edge On the right hand side: the weak limit

of G; is the null transport path.

1/2 12

X y 7\
T X '\IE/ y
Xi yi 12

1/2

Figure 2.5: On the left hand side: the transference piaris such thatr;(z,y) = mi(y;, z;) = 3. On
the right hand side: the limit of; is the transference plansuch thatr(z,y) = n(y, z) = %

Let us first mention that the cost functional defined in [22] is slightly different from the energy
proposed in [35]. Indeed, both functionals coincide on trees, and [22] only handles such tree like objects
by definition ofpatterns To see why the two costs are different, let us consider= %@1 + %5y2 + %6@,3
andu™ = 6,. The left-hand side of Figure 2.6 shows that once two fibers get separated, they are
considered to be separated until the end, even if they coincide geometrically afterwards. Thus, the cost
of the segment part of the graph irrigatiggis 2/(1/10)“ on the left-hand side of Figure 2.6 ald /5)*
on the right-hand side. Now, this difference does not matter, as it is easily shown [18], [35] that optimal
networks are loop free (due to the concavity6ffor a € [0, 1]).

The path functional model.

The path functionals model seems to be quite different of other approaches. Let consider an example
to illustrate that difference. Let be a path made of two Dirac masses, one is moving on a distance 1 at
speed 1 and the other one is still. By definition we hde) = 2 and7 () = 2. That is to say, the still
Dirac mass contributes to the global cost because some other part of the mass is moving. This model
may get closer of the one we shall consider if we were able to define a cost where only the moving mass
contributes to the cost.

Equivalence results.
Because of regularity results that are to be proven in Chapter 6, we can state equivalence between
some of the presented models.

Theorem 2.8.1 Traffic plans and patterns ([22]) are equivalent with respect to the irrigation problem
wheny™ consists of a single Dirac mass.

Proof: The small difference between the traffic plan model and the pattern model is the definition of the
multiplicity. In the pattern model, when two fibers coincide for tifdgl’| then separate, there are viewed

as being separated for the remaining time even if the fibers happen to coincide again geometrically. This
is due to the fact that multiplicity of the fiberat timet is the measure of all equivalent fibers (i.e. fibers
coinciding withw during time|0, ¢]). Let u* being a single Dirac mass at a source pdirand . an

optimal traffic plan for the irrigation problem. Proposition 6.2.7 asserts that a parameterigatfgn
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X X

Figure 2.6: Maddalena-Morel-Solimini's versus Xia’s model of the irrigation problem with = §,

andp~ = 26, + 25,, + £4,,. The two geometric objects are the same but on the left-hand side, once
fibers separate, they are considered to be separated until they stop. This difference, however, is irrelevant
for optimal networks, which are loop free (because of the concavity-ef z%).

has a tree structure, so that the definition of multiplicity in the traffic plan framework coincide with the
one of patterns. Since the cost of tree structures are identical, the models are then equivalent]

Theorem 2.8.2 The irrigation problem for traffic plans whem' and .~ are atomic measures and the
Gilbert-Steiner problem are equivalent

Proof: Letu™ andu~ be atomic measures apdan optimal traffic plan for the irrigation problem.
Proposition 6.3.3 asserts thathas a graph structure so that th€ cost is the same than the Gilbert-
Steiner problem cost fof (c) = ¢*. Thus, both problems give same optima. O



Chapter 3

Physical irrigation

Introduction

As was mentioned earlier, in many natural or artificial flow systems, a fluid flow network succeeds in
irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree
and many irrigation and draining systems. Such systems have raised recently a lot of interest and some
attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws
[31], [32] or alternately as an open set along with a profile constraint (see Chapter 1). Alternatively,
several mathematical models [12], [35], [22] (see Chapter 2) propose an idealization of these irrigation
trees, where only the skeleton structure of the network is preserved along with the mass transportation
information. There is no geometric obstruction for irrigating systems to exist (see Chapter 1). As we
show, there may instead be an energetic obstruction. Under PoiseuiliR{lgw= s—2 for the resistance

of tubes with section, the dissipated power of a volume irrigating tree cannot be finite. In other terms,
infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies
that the usual principle analysis performed for the biological models needs not to impose a minimal size
for the tubes of an irrigating tree ; the existence of the minimal size can be proven from the only two
obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

3.1 Irrigation networks made of tubes

The function of many natural or artificial irrigation or drainage systems is to connect by a fluid flow a
finite size volume to a source. This happens, e.g., with the lungs [27] or with the blood circulation. A
space filling hierarchical branching pattern is obviously required and observed. The resulting irrigation
circuitry is a tree of tubes branching from a source and going as close as possible to any point of the
irrigated volume. The following principles have been proposed to characterize such irrigation patterns:

(SF) Space filling requirement: The network supplies uniformly an entire volume of the organism.
(K) Kirchhoff law at branching (conservation of fluid mass).
(W) Energy minimization: the biological networks have evolved to minimize energy dissipation.

(MSU) Minimal size unit: the size of the final branches of the network is lower bounded and the lower
bound does not depend on the global size of the structure.

37
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These principles are considered basic principles in all presentations of irrigation circuits [31], [32], [33],
[3]. In the case of trees and plants, the energy criterion must be related to the mechanical stability of
the trunk and branches in response to wind and gravity. In the case of irrigation or drainage networks,
the energy criterion aims at a reduction of the overall resistance of the system, or, equivalently, to a
minimization of the dissipated power.

In the mentioned papers, several additional assumptions are usually made to derive conclusions from
this set of principles, namely

(H) Homogeneous tree: The irrigation system is assumed to be a tree made of tubes, fully homoge-
neous in lengths and sections.

Let us describe in some detail this homogeneous framework and its consequences. We derolé, by

k < kma(< o0) the branching level in the tree. The tubes at the final léygl, will be called the
capillaries. There is a single tube at leGeland Ny, tubes at levek. By (H), at each levek all tubes

(which we shall refer to ag-tubes) are equal and are described by the same paramgters; fx,

namely the common value of their length, radius and flow. We shall also use the vagiable? which

is proportional to the area of the constant section of the tube. With these variables, the power dissipated
by the irrigation network is expressed as

kmaz

W= Nyls;,"f2. (3.1)
k=1
Although we treats as a free parameter, Poiseluille’s law (see the appendix) states that for all Newtonian
fluids in laminar modeg@ = 2. The homogeneity of the irrigation tree can be rendered still more specific
by imposing the realistic

(CB) Constant branching%:l = v = constant.

The space filling requirement can be formalized in a rough way by stating thattth&ube irrigates a
volume proportional td;. This is a possible interpretation 6§ F) which we shall cal(SF1). So we
can summarize as a set of equations the constraints usually proposed for homogeneous trees

(H) Homogeneous tree with unknoviin i, rx, fi, k& < kmag-
(K) Kirchhoff N fi, = constant.
(SF1) Space fillingV;;[? = constant.
(MSU) Minimal size capillariesk,,q,. < oc.

(CB) Constant branching (optiona@f,’f,f1 = v = constant.

The aim of this set of assumptions was in [31], [32], [33] to prove that the network has a fractal-
like structure with self-similar properties. In the mentioned papers, it is claimed that the minimization
of the energy (3.1) with prescribed volume, Nklkr,% = V leads to self-similar properties, namely
constant ratioékl:—1 = constant, ”’;Zl = constant, SO that alscfnﬁk = constant, namely the tubes have
a scale invariant shape and all quantities scale as powers Attually, such results were not proven,
the main focus of the mentioned papers being rather to discuss scaling laws in animal metabolism.
A mathematically more comprehensive study of the consequences of the above mentioned axioms is
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given in [15] where the correct consequences are drawn. We shall recall these results and extend their
techniques in section 3.3.

The above axiomatic of irrigation systems is simple and efficient enough, but has some weak points.
There is no mention of the tube non-intersection constraint. From that point of view, the homogeneity
assumption is probably not quite realistic. Also, the space filling assumption does not take into account
the volume occupied by the network itself. In short, the realistic embedding of the circuit in a volume is
not directly considered and the Lagrangian calculus involved in the mentioned papers is done as though
all lengths, radii and even branching numbers could move freely. This is certainly not the case for
a realistic embedded circuit. Thus, it would be good to get rid of the homogeneity assurf¥ition
which clearly should be derived as a property from the first four principles. Also, the question arises of
whether the four basic principlé$ F), (K), (W) and(M SU) are redundant or not. One of the main
outcomes of our discussion here will be to eliminaié¢ SU), that is, the minimal size constraint for
the capillaries. Th¢ M SU) assumption, essential in the above mentioned physical models, was simply
written ask,,.. < oo and forbids infinite branching. It also actually excludes a volume direct irrigation
and only permits any point of a volume to be “close enough” to a capillary.

There is, however, no geometric obstruction for the existence of infinite trees irrigating a positive
volume K in a strong sense, namely with a branch of the tree (a sequence of tubes) arriving at every
point of K. Such tube trees can be constructed by rather explicit rules as in Chapter 1 ; they can satisfy
the Kirchhoff law and can even have the fluid speed decrease and be null at the tips of capillaries. Such
constructions can be found (e.g.) in [3], [26] and [12]. See Figure 3.1 for an example.

We shall prove that the only obstruction to infinite trees is the infinite resistance of such circuits.
We assume without loss of generality that Poiseuille law holds throughout the circuit: it is generally
acknowledged that this law is valid in all biological circuits, at least for the smaller tubes [23]. We shall
prove:

Theorem 3.1.1Let3 > 2. Thenl¥ = 4o for any set of tubes obeyir{d<) and (1¥') and irrigating a
positive volume.

(See Theorem 3.6.4 for a more precise statement.)

This result may invalidate the infinitesimal models, admitting infinite branching, proposed in several
recent mathematical works [12], [35], [22]. Now, as we shall see, the tools developed in the mentioned
paper turn out to be quite handy to perform the present axiomatic discussion. And, of course, nothing
hinders the consideration of other resistance laws than Poiseuille law for other human built transportation
circuits. Poiseuille law states that for fluids, the resistaRte = Cs—? of a tube with section scales
as the inverse second powerflf we instead consideR(s) = C's—?, then infinitesimal circuits are
possible. The powes = 2 is the limit exponent.

Two of the mentioned mathematical models, [35] and [22], do not involve the radius of the tubes.
They instead express a “cost” of the flow directly as

W= Z li [
iel
where0 < « < 1 andI denotes the countable set of all tubes. There is, however, a way to relate this
expression of the cost to the enefdy, at least for optimal and homogeneous circuits.

Proposition 3.1.2 Let us consider an irrigation network which optimizes the dissipated p&wgiven
by (3.1) under the constraints of fixed voluieand prescribed lengths of tubésand flowsf;. Then
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Figure 3.1: An irrigating tree
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5; = C1f,-2/(ﬁ+1), andW = Cngiff/(ﬂ“) for some constant€’;, Cy > 0. (Poiseuille law corre-
2/3

sponds to the case = 2 in dimension 3, and in this case = C'f,’ "~ for some constant’ > 0).

The proof of this proposition is easy and can be done along the lines of the proof of Proposition
3.3.1in Section 3.3. The model equivalence thus obtained is not quite satisfactory: we are not a priori
allowed to move freely the radii in an optimal embedded circuit, since we do not take into account the
fact that the tubes should not intersect. Let us concede anyway some validity to the model equivalence
thus indicated. Then we see that there is no contradiction with the existence results in [35] and [22].
Indeed, these authors assume (in dimension 3) % which corresponds t@ < 2, and we prove that
6 > 2 is not compatible with Poiseuille law.

3.2 Mathematical, infinitesimal approaches

Let us give some details on the existing mathematical formalizations of the problem, since we shall use
some of them. The model proposed in [12] is directly compatible, but more general than the above tube
model. It directly considers the problem of finding a maximal irrigated volume with minimal cost. Let
D be an open domain @&? (of coursed = 2 or 3). A point sourceS € D is fixed. Say that a compact
setE C D isirrigable if the complementary open sét = D \ E is connected and contairts U is
called the irrigation network and is nothing but an open set at this point. Caselles and Morel then fix
an "accessibility profile”, namely a functiofi(s) : R, — R, increasing and such thgt0) = 0. A
pointz € E is said f-irrigable if there is a path:(s) such thatz(0) = =, (L) = S, and for every
s € [0,L], B(z(s), f(s)) Cc U, whereB(x,r) denotes the ball with centerand radiug-. Such paths
exist in the physical tube model as a branch of the irrigation tree. In other terms, there is a thick path
inside U leading toz. This path becomes thinner when approaching the irrigated poibtit with a
thinning rate uniformly bounded from below. The authors show first thétslightly super-linear at 0
(e.g. f(s) = s, 0 < a < 1) then the problem of irrigating a maximal positive volume is well posed.
Namely: there exist& with maximal volume among alf-irrigable sets.

From this paper, we shall retain the following result which will be a main ingredient here.

Proposition 3.2.1 Letz € FE be irrigable fromS with profile f. Assume that is a Lebesgue point of
E. Thenlimsup, o f(s)/s = 0. As a consequenck’ ﬁ dr = oo forall R > 0.

Almost every point of a measurable set is a Lebesgue point, and this yields a generic constraint on
accessibility profiles, not taken into account in finite models, but handy in infinitesimal ones. In the
terminology of homogeneous trees of tubes, this constraint yields @hter

fo; = +o0. (3.2)

k

Our plan is as follows: Section 3.3 is devoted to the classical physical tube models, the derivation of
scaling laws and the proof of our result in the homogeneous case (hypdtHegisSection 3.4 gives all
elements we need from [22] to perform integration on the set of fibers. Section 3.5 constructs from any
embedded set of tubes a set of fibg(s, /). Section 3.6 proves the main result. Three small appendices
are devoted, for a sake of completeness, to a proof of Proposition 3.2.1, the optimality of circular section
for tubes and the derivation of Poiseuille law in tubes.
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3.3 Dissipated power in a homogeneous network of tubes

In this section, we take the standard notation given in the introduction. We consider a homogeneous
irrigation network as a set of tubes which are organized as a hierarchical branching system from level 0
up to a final levek,,.. (< oo). There is a single tube at levél and Ny, tubes at levek. At each level

k, all tubes (which we shall refer to @stubes) are equal and are described by their lehgtradiusry,

and flow f,, We sets;, = r,% which is proportional to the area of the constant section of the tube. With
these variables, the power dissipated by the irrigation network is expressed as

knzaa:

W=">" Niles;"f} (3.3)
k=1
for somegs > 0 (Poiseuille law corresponds 1® = 2). As proposed in [31], [32], [33], if we pre-
scribe the volume occupied by the irrigation network, physical networks are designed to minimize the
dissipated powel/, and satisfy the following assumptions:

(K) Kirchhoff’s law: the fluid is conserved as it flows through the system, thaVigy = Ni11fr+1
for eachk. In other words, Kirchhoff's law holds in the network.

(SF1) Space filling requirement: at each lekehe volume supplied by the setftubes is independent
of k£ and is approximately given by the sum of the volumes\Vpfspheres of diametéy, /2. This total
volume isN/? and we assume that this quantity is a constant.

For a homogeneous irrigation network satisfyiffg) and (SF'1), there are constants,C’ > 0
such that o
fk‘ = Fka

and the dissipated power may be written as

I = CN;, '/*

k'max
Wi(si) = 020 > N s 0.
k=1

In the same way the volurmié = Z’,j’;iw Nplisy can be written as

knm,w

2/3
Vise) =C Y N sy
k=1
We shall consider the geometry of the network as given, i.e. the valyemre prescribed, hence the
dissipated power is only a function of the variabdgsUnder the constraint of given volume, we consider
an optimal irrigation network as a minimizer of the dissipated pdaer

Proposition 3.3.1 Assume thag > 2. Under the assumptiongs’) and (SF'1), an optimal homoge-
neous irrigation network with prescribed volume satiskigs., < oo and Nkrg“ = constant.

We observe that ik,,,, < oo, then the relatiori\fkrf+1 = constant does not require to assume
that3 > 2.

In particular, accepting that assumpti@ii) is a sound one, this proposition proves that the assump-
tion (SF'1) cannot be fulfilled if we want to consider infinite trees. If we accept it, we have to assume
that capillaries cannot be infinitely thin.
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Proof. Assume first that:,,,., < oo. For simplicity, let us assume that?C = 1. Then, by Lagrange
multiplier's Theorem, there is a constant R such thaf" = AJ”, that is,

—BN; s D = xoNP,

HenceN?Zs; "' = — 2 and thereforeVyr; *' = constant.

Assume that,,,., = oo, and there exists a homogeneous irrigation network with specified vol-
umeV = 1, < oo and finite dissipated power. Then the dissipated power has a minimum in the
setS = {(sp)92, ¢ sp > 0, 3%, N3, = V). Indeed, since the infimum d# in S is fi-
nite, let {(sx(n))x}» be a minimizing sequence of elements§h By extracting a subsequence, if
necessary, we may assume tkatn) — s, asn — oo for all k. If s, = 0 for somek, then
W(sk(n)) > Nk_4/3(sk(n))—5 — oo asn — oo, a contradiction with the fact thdts,(n)), is a
minimizing sequence. Heneg > 0 for all k. Now, for eachp > 1, we have

p Ld S
CY N s <timC Y NP s(n) <limC Y NP si(n) = Vo
k=1 k=1 b=t

ThusM :=C3% 2, N,f/ssk < Vy. If M < Vp, we defineS), = %sk and we havé/(Sy) = V,. Now,
p

P
_ _ M. g3

Z Nk 4/35k B _ (Vo)

k=1 k

Mﬁ.oo—4/3 5 M.
< (VO) hyrln;]\fk (sk(n)) ﬁ—(vo) 1ng

p
—4/3 — M, 5. —4/3 _
N30 = () lim Y~ Ny (g (n)) 7
1 k=1

In particular, we deduce thatfs W > 0, and

M.z, .
< (— .
W(Sg) < (VO) 1r§fW<1r§fW

This contradiction proves that/ = 1}, hence(sy) € S, and(sg) is @ minimum ofiV in S. Let us

- 2 2
denotes’ = (sj)x, and for eaclp > 1, —s, N, S ce< spHpri, 2 = (s1,...,8 + ﬁ,spﬂ —
r
—575, Sp+2, -+ -). Then computing
Npia
s.)—W(s
o WEI=WE
e—0+ €

we obtain that
2.84+1 _ g2 B
Npsg - Np+1sp+l'
Since this holds for alp, we obtain thatVZs? ™! = constant, hence alsav’*s\" ™/ — constant.
Using that(3 + 1)/3 > 1, we have
2/3 (B+1)/3 _ n2/3
NP o N2

whens;, < 1. We conclude thal’ (sj,) = oo. Notice that we also havé (s;) = C Y2, sf‘ﬁ)/?’ =00
since > 2 ands;, — 0 ask — oo. O
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Remark 3.3.2 Observe that no relation of the typé. ., 1 /N = constant follows for optimal irrigation
trees under the assumpti¢i’) and (SF'1) as suggested in [31], [32], [33]. This fact has also been
observed in [15]. Now, if we add the assumption of constant branching

(CB) N]’\}—:l =v,

we obtain the relations (written modulo multiplicative constaits) = v*, s, = v=28/(B+1) 1y =

Yk z/(ﬂ%ﬁf%)k, V=> LG mrnk and both quantities are infinite if,,,, = oo, andg > 2.

We shall replace the space filling assumpt{®i¥'1) by a different assumption which is related to
the existence of a positive volume irrigated by the network. Indeed, we assume

(SF2) kmaz = 0o andy 32, & = oo,

T

This implies that the length of the tubes cannot be too small compared to its radius. Our analysis in
section 1.1 will prove that this assumption holds for networks irrigating a positive volume.

Proposition 3.3.3 Assume tha > 2. Under the assumption(d<’) and (SF'2), bothV and W cannot
be finite.

Proof. Recall thatV = > 77, Nilgs,. SinceNyf, = C for some constanf’ > 0, we may write

-8
W=023%, lkfv’z , using Cauchy-Schwarz inequality, we have

VIV > ci\/zgs};ﬁ :ci% = o0,
k=1

k=1 Tk

and the conclusion follows. O

Remark 3.3.4 The proof of Proposition 3.3.3 can also be done using Lagrange multiplier’'s theorem as
we did in the proof of Proposition 3.3.1.

3.4 A model of abstract tree

The purpose of this section is to recall the formalization defining “set of fibers” in the sense of [22]. In
Section 3.5, we shall make the link with irrigation trees. To do this, we shall describe the tree made
of tubes as a tree of segments, each segment being the medial axis of a tube. We shall also keep the
flow information inside each tube. These informations are enough, as we shall see, to associate with
the concrete tree an abstract “set of fibers”. The reason for making this association will become clear in
Section 3.6: we wish to compute the volume or the dissipated power by integrating along the sections of
the irrigation tree. These computations are facilitated by the “set of fibers” formalism.

Let us recall the main concepts introduced in [22]. @t |.|) be a probability space which we
interpret as the reference configuration of a fluid incompressible material body. We can also interpret
it as the trunk section of a tree, this trunk being thought of as a set of fibers (which can bifurcate into
branches). Aset of fibers of) with source points € R? is a mapping

x:Q xR, —R?

such that:
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C1) For a.e.material pointp € Q, x, : t — x(p,t) is Lipschitz continuous with Lipschitz constant
less than or equal to one.

C2) Fora.ep € Q: x,(0) = S.

We shall consider the source poifitc R as given and we will denote b§ () the set of possible
X : Q X R+ — Rd.

Definition 3.4.1 [22] Given!l € R, we shall say that two points ¢ € 2 belong to the samg-vessel
of valuel and we will writep ~; ¢ if

Xp(8) = xq(s) forall s € [0,1].

For everyl € R, the equivalence relatior; induces a decomposition 6finto equivalence classes.
We will call x-vesselsuch classes.

Definition 3.4.2 [22] Givenp € Q and! € R, the equivalence class of, which containg and which
will be denoted byp|; will be namedy-vessel of the point at .

Giveny € Cg(92) andl > 0, we shall denote b§2;(x) the set of all they-vessels at the valugthat is
Q(x) == @/~

The decomposition df2 induced by~; can be viewed as dividing the body in parts which are mapped,
throughy, into tube-like regions oR? which we identify with rectifiable curves. Since we control only

the total amount of fluid carried by these regions, we describe them by giving their axial curves. Thus, at
eachl a set of fiberg, can be regarded as a set of curves, obtained by vafyjndndeed, by Definition

3.4.1, on the intervdD, I], x, coincides with any other functiog, for ¢ varying in the sefp];. A set of

fibers can also be interpreted as modelling a tree, in which casgthkssels represent the branches.

Definition 3.4.3 [22] Let x € Cg(f2) be given. The functioas, : 2 — R, defined by
ox(p) :=1inf{l € Ry | x,(s) is constant orl, +oo[}

will be called absorption time. We shall say that a pgirg 2 is absorbed when, (p) < +o0. A point

p € Qis absorbed at timé if o, (p) < I. We denoted, () the set of absorbed points at timieand

A, the set of absorbed points at some time. In the following, we shall only consider patterns such that
almost all points are absorbed.

Lemma 3.4.4[22] Let f : Q x Ry — R be such thatf(-,l) is measurable fol in a dense subset
D c Ry and f(p, -) is continuous for a.ep € €. Thenf is a measurable mapping.

Theorem 3.4.5[22] For every set of fibery € Cg(£2) the following statements are equivalent.
1. x is measurable.
2. x(+,1) is measurable for everyin a dense subsd? C R.

3. x(+,1) is measurable for everyc R,
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In the following we only consider measurable sets of fibers.

Proposition 3.4.6 [22] For every x € P5(12), the absorption function, is a measurable mapping.

Let x € Pg(£2). We introduce thérrigation functiondefined on the sed,, of the absorbed points:

ix(p) = x(p; ox(p))

We havei, (p) = lim; . x(p,1) and soi,, : A, — R? is a measurable function, as a pointwise
limit of a sequence of measurable functions. The funcijomduces the image (push-forward) measure
ity defined by the formula

px(A) = iy (A)]

for any Borel setd C R?. We shall refer tqu, as to therrigation measureinduced byy.

3.5 The set of fibers associated to the skeleton of a tree of tubes

Our purpose in this section is to obtain an abstract description of a physically realized tree. We first
introduce the skeleton of a tree of tubes which is a depurate description of an embedded tree (the tree
being viewed as a set of tubes). The skeleton description of a tree permits to associate a set of fibers to
it, in the sense of [22] as described in the section 3.4. Integration of functions which are constants on
any tube is then allowed and made easier with this formalism.

Since notation here is necessarily a bit cumbersome, we refer to Figure 3.2.

3.5.1 Embedded irrigation tree through its skeleton

Definition 3.5.1 Let {[z*,4*] | n > 1,k € [1, N(n)]} be a family of segments R such thafz’, 3/*]
are disjoint. We shall say that the s€t= U.° , Ug:(’f) [zF,4*] is a skeleton if there are increasing
surjective functiong,, : [1, N(n)] — [1, N(n — 1)] such thatz® = yﬁﬁ(lk).
The numbeV (n) will be called the number of branches at generation n. The segpafngX] will be
called the (n,k) tube. We will consider skeletons such Mgt) = 1.
The setiy = UN_, UN™ [k &] will be called the partial tree at generation N of the skeleton.
We shall consider skeletons with a flow attached to each tube so that Kirchhoff’s law is satisfied at
each bifurcation.

Definition 3.5.2 Let S be a skeleton. We say that S is a skeleton with a Alaivthe family ¥ =
{f¥|neN, ke[l,N(n)]}is such thatnax;, f* — 0 asn — oo and satisfies Kirchhoff’s law, i.e.,

>, fa=1a
€611 (k)
We shall say thaf] is the total flow onS. In the sequel we normalize the total figiv = 1.

We associate to a skeleton with a flow the famiily: {r% | n € N, k € [1, N(n)]}, wherer® represents
the radius of then, k) tube. We shall assume thatp,, rk < oo.
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Figure 3.2: Skeleton of a tree of tubes

3.5.2 Correspondence between a skeleton and a filtration of [0,1)

The idea is to associate to each tube of generatiai the tree some intervab® < [0, 1], so that
o-algebrasA,, generated by the finite number of sets form a filtration. A point of[0, 1) will then
correspond to a path in the tree. This construction follows [22].

Proposition 3.5.3 Let S be a skeleton with a flolv. We assume that the total flowlis Then, there is
a familyw” such thafw®| = f* for all £ € [1, N(n)] and the family of interval§w? : k € [1, N(n)]}
forms a partition of2 = [0, 1). Moreover, ther-algebrasA,, generated by{w! | k € [1, N(n)]} form a
filtration and thes-algebra.A generated by J,, A,, coincides with ther-algebra of Borel sets db), 1).

Proof. Letw] = [0,1). Suppose that are defined for alk € [1, N(n)]. We have to define!,_, for
alll € [1, N(n +1)]. Letk € [1, N(n)]. Then, ifwt = [a,b), forallr € gb;}rl(k:) = [l + 1, lk+1], we
define

r—1 r
whi=la+ > fioa+ > fi)

i=lp+1 i=l+1

From the definition|w? ;| = fr,,, andw?_, are intervals of the fornfc, d) forming partition ofw”
because of Kirchhoff’s law. Repeating the same construction fdr all1, N (n)] we obtain the family
{Wizﬂ}-

By construction, ther-algebrasA,, generated by{w® | & € [1,N(n)]} form a filtration. Since
maxy, |wF| = max; f* converges towards 0 when goes to infinity, thes-algebraA generated by
U,, An coincides with thes-algebra of Borel subsets @, 1). Moreover, ifw € Q = [0, 1) there is
a unique decreasing family of interva{@f{("),n > 1} such thatv = ), wﬁ(”), or, in other words,
paths of the tree are in a one-to-one correspondence with poiffisiof Note thatd; = {w}} with

wi=[0,1). O
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3.5.3 Construction of the set of fibers associated to the skeleton. The equality of supply.

Let S be a skeleton with a flow, and &t = |=* — y*| be the length of thén, k) tube. By definition
of skeletons, there is a unique path fro:fg to the sourcer}, that is to say, given”, there is a unique
family of intervalsw®® such thats? ¢ w® for all i < n. Notice thatw;™ = wF. We shall denote
by L* the sum of lengths corresponding to the tul{)@§ ci < n},ie,LE=3" 1 M9 We also
setLks = Yot lf( ). More generally, for all, € ©, there exists a unique sequerige:) such that
w = Nwh™ . We defineL(w) =5, M e Ry {0} to be the length of the path.

Proposition 3.5.4 Let S be a skeleton with a flow. Let us define by recursively

4TS i<
m(w,w:{wl*l Al
vt ifl>1

and, forn > 2, w € Wk, let

Xn—1(w,1) if [ < Lk
k k
Xn(w, D) = @+ (1 L) =i it L€ (L, Ly
yk ifl > Lk

Then the pointwise limi¢(w, 1) := lim,, x,, (w, () exists for anyw, 1) € [0, 1]xR*, and itis measurable.
Hencey is a measurable set of fibers in the sense [22].

Proof. Let us prove thag,, is A,, x B(R™) measurable. First, since for any giver, (-, 1) is constant
on every intervals®, the inverse image of any subsetRf is a finite union of intervals,*, hence it is
in A,,. Thusy, (-, 1) is measurable for any Moreover, since for any € €, x,(w, -) is 1-Lipschitz, by
Lemma 3.4.4, we obtain that, is measurable, hence it is a set of fibers.

Let us prove that the pointwise limjg(w, !) = lim,, x,(w, () exists for any(w ) e[0,1] x RT. If
| < L(w), andw = Npuwt™, then there is an integer such that € (LE™*, LE™]. The sequence
{xi(w,1)}i>n is constant, hence it is convergent./1f> L(w), theny,(w,!) is a Cauchy sequence.

Indeed,
X (W, 1) = Xom (@, )] = |xn (W, LEM) — X (w, LE)) | = [ykm) — k(0

and the conclusion follows from the fact thg,’i(") is a Cauchy sequence ; this being so because
L(w) <1 < oo. We conclude thaj is Borel measurable, being a pointwise limit of Borel measur-
able functions. O

Let x,, andyx be the set of fibers associated to the skelétaonstructed in Proposition 3.5.4. Let
us define the functions

Txn (W, 1) = > Do (@) ke i (D7,
{(m,k):m<n,k<N(m)}
frn (W, 1) = > i (@) i (1) fhs

{(m,k):m<n,k<N(m)}

for (w,1) € [0,1] x RT. Observe that

Ty (W, 1) =1y, (W, 1) ifwewk, 1 <LF
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and similarly for f,, (w,1). Thus ifw = Nmwi™ | andl < L(w), there is an integen such that

le (Lﬁ(")*, L,’i(")], andry, (w,1) = k) T (W, 1) = fff(") for all i > n. Thus the pointwise limits

rX(wa l) = h?En TXn (wa l)7

fx(w> l) = 117131 an(w’ l)

exist for any(w, 1) € [0,1] x R* such thal < L(w). If | > L(w), thenry, (w,l) = 0, fy, (w,1) =0,
and we may define
ry(w, 1) =0,

fX(wv l) =0.
Observe that the functions,,, f,,, are measurable, and, heneg, f, are also measurable.

The functionL(w) can be seen as an absorption length since it may be written as
L(w) = inf{l € Ry | x(w,l) is constant oif, +c0)}.

Then, by Proposition 3.4.6, it is also Lebesgue measurable. As in [22] and Section 3.4, we define the
irrigation measure: by ;(A) = |T-1(A)|, whereT : w — x(w, L(w)).

Definition 3.5.5 Let S be a skeleton with a flow. We shall say that S satisfies weak equality of supply if
its associated set of fibers defines an image measwsiech thaty, = f(x)\ where) is the Lebesgue
measure iR? and f € LY(R?), f >0, f # 0.

We say thatS satisfies the equality of supply jff = cllx whereK is some set of positive measure
(we denote byl 4 the characteristic function of a sd). In the general case, we shall denotefby=
{z e R%: f(x) > 0}.

Remark 3.5.6 The setK can be taken as being a subsef¢f2), indeed
/ fla)dA = p(K\T(Q)) = [T~ (K \T(Q)| = 0] = 0.
K\T()

Sincef > 0 on K, we have thaf C T'(€2) almost everywhere and we may wrjte= f ()17 o).
Thus, replacings by K N T'(Q2) if necessary, we may assume tiatc 7'(Q2).

The aim of the above construction is to be able to reformulate the energy and the volume of the tube
network as Lebesgue integrals of adequate functions defined on thegptths, as we shall see in the
next section.

3.6 Source to volume transfer energy

There are technical difficulties if one wants to make calculations on a tree. For instance, if one wants to
write the volume of a tree as an integral, either one writes it as an integral of the total sections over all
branches, from the source to the tips; or we write it as an integralf@yver x R, i.e., an integral along

the paths of the tree. The construction of the last section will enable us to follow the latter approach. In
what follows, we introduce the volume and the dissipated power of a skeleton with a flow. It is to be
mentioned that these definitions only intend to be of the same order as the exact volume and dissipated
power of an associated embedded tree. Indeed, due to the fact that we assimilate the thick tree with its
skeleton, we neglect the influence of the real structure of junctions at bifurcations.
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Definition 3.6.1 Let S be a skeleton with a flow. L&f, %, f* be the length, radius, and flow, respec-
tively, of the(n, k) tubes. We define the volume of the tree associatédaipV = Zn 1 Q(T) 1ksk,

and its dissipated power associated with a resistance &) by W = >"°° | Zk:l IER(sF)(fF)2,
wherest = (rk)4=1 (the quantities are taken modulo constants).

To prepare the proof of Theorem 3.6.4, it will be convenient to write them as double integrals over
andw as follows.

Proposition 3.6.2 We may express the volume and the dissipated power of the tree by the formulas
V = [ [} Qi(w,1)dldw whereQ; (w, ) = % for I < L(w) andQy(w,1) = 0 for I > L(w),
andW = [© fol Qo(w, l)dldw whereQs(w, 1) = fy(w, 1) R(sy(w,1)), wheres, (w, 1) = 7y (w, )¢}

for! < L(w) andQz(w,l) = 0forl > L(w).

Proof. Let us define

TX'n, (CU, l)d_l — O
Sxn (W, 1)
when both terms ar@ Then it is easy to check that
-1 kyd—1
P (@ D 3 D (@)D pke 1 ](z)% (w,1) € [0,1] x RF,
Frn (@) 1) , " o I
{(m,k):m<n,k<N(m)}
and
Ty, (W, l n Nm)
/ / i dldw => > (3.4)
pACH) m=1 k=1
for eachn > 1. Smce% 1 Q1(w,l) pointwise as» — oo, lettingn — oo in (3.4) we deduce
that )
Vv :/ / Q1(w,l)dldw.
o Jo
In a similar way, we prove thal/ = [ [' Qa(w, !)dldw. O

Definition 3.6.3 We shall say that S is a skeleton with almost surely finite pathg.ij < oo for almost
everyw € 2.

Theorem 3.6.4Let0 < a < 1 — L. Let us assume that the resistivity functiorig) = s(@=2/< Let
S be a skeleton with a flow which has almost surely finite paths and satisfies weak equality of supply.
Then,V andW cannot be simultaneously finite.

Proof. Observe that we hav@; Qs = 7 (w, )24 D0-2"") HenceQ,Q, > )2 whenry (w,1) >
1 wherec = (sup, ; 7y (w, 1))@= By Cauchy-Schwarz mequallty we have

WWZ/()W /01 \/@1\/@2:/000 /OITX(W,I)W—”“‘“1>dwdl20/ooo /01 Tx(lw’l)dwdl.

Let K be the set wher¢ > 0, f being the function such that= f\, wherey is the irrigation measure
defined by the set of fibers associated to the skeleton (see Definition 3.5.5). Let us decéima®se
K = AU R, whereA are the points of Lebesgue density 1/6f R has zero Lebesgue measure and,
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because of weak equality of supply, it is alsqofmeasure zero. The ! (R)| = 0, so that|T—1(A)|
is of non zero measure. By Proposition 3.2.1 in section 1.1, the profile of an irrigating branch must

decrease faster than linearly aﬁﬁ o is infinite for allw such thafl'(w) = x € A. Then it turns
out that
1 e o 1
/ / dldw > / / ——dldw > oo.
0 Jo 1) r-1a)Jo Tx(w,l)
We conclude that
VVVW > / / ol =

O

Thus, the exponent = 1 — é is critical relatively to the fact that a tree cannot irrigate a volume at
finite cost. This result is consistent with the results presented in Chapter 5.
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Chapter 4

The traffic plan model

Introduction

A traffic plan is a measure on the set of paths. As it is possible to see on figure 2.3, this object can
describe a great variety of structures. We can associate to a traffic plan a canonical transfererngce plan
along with its marginalg™ andp~. Thus, as was mentioned in chapter 2, traffic plan can model both
the irrigation problem and the who goes where problem where the whole transference plan is prescribed.
Let us now give the plan of the present chapter. In Section 4.1, we define traffic plans and transference
plans. In Section 4.2, we model probability measures in a Lagrangian way as sets of particles indexed by
[0,1]. In Section 4.3, we prove semicontinuity results, and sequential compactness properties of traffic
plans. Section 4.4 is devoted to the proof of existence of minimizers of the Monge-Kantorovitch problem
within our framework. In Section 4.5, we prove the existence of a minimizer for both the irrigation and
the traffic problems. This result in particular retrieves the existence results of [22] and [35] in a more
general setting.

4.1 Traffic plans with prescribed transference plans
Let X ¢ RY be a compact set.
Definition 4.1.1 Let us denote b the set of 1-Lipschitz maps: R™ — X endowed with the distance
d(r,7) = sup 71y =7 [l (ou)-
) per K ([0,k])
From now on, we considé3, the Borelo-algebra onk.
Definition 4.1.2 Lety € K. We define its stopping time as
T(~) := inf{t : v constant orjt, co|}.

Remark 4.1.3 Observe that the stopping time: K — R is measurable. Indeed, using lemma 4.3.5
below, T is lower semicontinuous. This means tfiat! (|4, +oc]) is open, then measurable. Thifsis
measurable.

Lemma 4.1.4 The metric spacékK, d) is compact.

53
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Proof: The spacds is complete and the totally boundedness is a straightforward consequence of Ascoli-
Arzela’s Theorem.

Definition 4.1.5 We define a traffic plap as a probability measure of¥, 5) such that

/ T(v)dpu(y) < oc. (4.1)
K

We denote by’ P(X) the set of all traffic plans ifX. We denote b¥ Po(X) the set of traffic plans
p such that[, T'(y)du(y) < C. We shall omit the mention df in the following.

Remark 4.1.6 This definition is realistic for a traffic plan, 8%y) represents a transportation time and
we don’t want the average transportation time to be infinite! Observe that (4.1) implié&s(that oo,
u—almost everywhere.

Definition 4.1.7 With any traffic planu is associated a transference plan, that is to say a probability
measure onX x X that we denote by, and define by

< = /K H(1(0), ¥ (T(7))du(),

where¢ € C(X x X,R). In an informal way;r,(A x B) is the mass carried froml to B by means
of the traffic plani:.. We denote b§"P() the set of traffic plang such thatr, = 7. This is the set of
traffic plans with prescribed transference plan

Definition 4.1.8 If 4 is a traffic plan, we define its irrigating and irrigated measure by

<ptipr >=<m, @1y > and <u ¢ >=<m,lx @p2 > ¢1,¢2 € C(X).

We denote by’ P(v ™, v™) the set of traffic plang such thaty™ = v™ andpy™ = v~

4.2 Parameterization of a probability measure on a totally bounded met-
ric space

The aim of this section is to show that we can associate with any probability measure a system of
"elementary particles” such that, — p becomes "almost every elementary particleugftends to

an elementary particle gf”. In an abstract setting, we assume in this section (fatdl) is a totally
bounded metric space equipped with thealgebra of its Borel sets. The results in this section are well-
known [16], the main aim being to prove the Skorohod (or Skorokhod in other textbooks) representation
theorem, i.e. theorem 4.2.8. The results of this section will be applied to traffic plans but it is convenient
to develop them in a more general setting.

Definition 4.2.1 Let i be a probability measure oK. We call parameterization gf a measurable
applicationy : w € [0,1] — K such thaty = y#X\ where\ is the Lebesgue measure @i 1].
That is to sayu(A) = A(x~!(A)). Observe thatifp : K — R* is a y—measurable function, then

Jx 6(Mdu(y) = [ d(x(w))dw ([2], Def. 1.70, p. 32).

Remark 4.2.2 As an illustrative example, il = [—1, 1], the Dirac mass di is parameterized by the
null constant application off), 1]. In the same way, an atomic measirg «;d,,, can be parameterized
by the piecewise constant functigiiw) = x; on [0, a1], x(w) = z2 OnJay, as] and so on.
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Remark 4.2.3 Recall that the functiog : [0, 1] xR+ — R¥ is called a Cara#odory function ify (w, t)

is a continuous function of for almost everyw € [0,1] and is measurable in for everyt € R*. As

it is well-known, CaratBodory functions are measurable as functionéwoft) [13]. As a function of
(w, t), the parameterizatiog defined in Definition 4.2.1 is a Cardtiory function. Observe that, as a
consequence of Proposition 4.3.1, both concepts coincide for fungtiofs 1] — K.

In lemma 4.2.5, we shall construct a filtration &nof a special kind which gives us a parameteriza-
tion of 1 (see lemma 4.2.6). For that, we first prove that we can construct a filtratiéh whose sets
have a specified diameter. Then, in lemma 4.2.5, we prove that we can adapt the filtrationustoist
not charge the boundaries of its elements.

Lemma 4.2.4 There exists a filtration of{ made of finite partitionsF; = {F} :1 < j < J;}, where
J; € N*, such that the diameters of the ségsare less thar2 .

Proof: We construct this filtration recursively. In order to constrégt we coverK with a finite number
of balls of radiil/4. Let us denote by3;, wherel < ¢ < n, the intersection of these balls wifk.
Let us find a partition ofX = U;B; with at mostn elements. To do this, we denofé := By and,
in a recursive way, we definéiﬂrl = Bi11 \ Uj<;Bj. If any of theFi1 is empty, we do not take it
into account, so that we obtain a family of non empty eleméfitsvherei < J;. Since theF! are
totally bounded, we can iterate the above process by covering them with balls of raglildroceeding
iteratively we construct the desired filtration. O

Lemma 4.2.5 Let i, be a probability measure oK. There exists a filtration made of finite partitions
Fi={F}:1<j<J},J; € N*, such that the diameters &f are less thare~'*! and u(0F}) = 0
forall landj < J,.

Proof: To obtain this filtration, we slightly modify the construction of lemma 4.2.4. We only need to
request in addition thau(aFj) = 0 foralllandj € J;. For that, it is enough to perturb the radii

r = 2—5(1 + ¢;), with ¢, < 1 so thatu does not charge the boundaries of the balls with radiused to
construct#,. ]

The filtration obtained in lemma 4.2.5 allows us to define a parameterization dhe idea is to
group together the’s whose images are close.

Lemma 4.2.6 Let » be a probability measure oA and F be the filtration constructed in lemma 4.2.5.
There exists a parameterizatignof 1 such that for alll, the sets

Qi = {w: x(w) € Fj}
are intervals ordered in an increasing way with

Proof: We constructy by successive approximatiorg using the filtration of lemma 4.2.5.

Step 1: Definition ofy,,. Letty := 0 andt] := >, u(F]") wherel < j < J,. The applicationy,

is defined as a piecewise constant function sending each inféfvalt’ | onto an arbitrary element of
ﬁf‘. By construction(;; := {w : xn(w) € F}} = [t}_,,t}[ forall j < J;. We notice that the intervals
t

J_l,té.[wherel < j < J;, areintervals ordered in an increasing way wh@oes from 1 taJ;, so that

their union is[0, 1[. Notice also that(F}) = A(€2;).



56 Chapitre 4. The traffic plan model

Step 2: The sequengg,(w) converges for allu. Let us prove thaj,, is a Cauchy sequence. Let us
first observe thaj(n(QT) - ij for anyn > m. Indeed, let us fixn andn > m. By the definition
of filtration, 27 is the union of2} wherek describes the set of indices such thgt C ™. Thus,x,
sends every element 6f; to an element of}' C FJ". A fortiori, the image of27" undery, is in F}".
Now, since the set;" have diameter less tha™, we deduce thad(x,(w), xm(w)) < 27 for all

m < n. Thus,y,(w) is a Cauchy sequence.

Let x be the pointwise limit ofy,,. Observe thak is measurable as a pointwise limit of measurable
functions.
Step 3: The measurg#\ is exactlyu. We have to show th@g#)\(F}) = u(F}) for all (5,1). The
measureg:. and x# A will then be equal on the seE} which form all-system. Then the extension
Theorem ofiI-systems (lemma 1.6, p.19 [34]) shows that y# )\ on theos-algebra generated by this
II-system, that is, on the-algebra of Borel sets of'.

Let us fixl, j < J;, and let us define
Gp:={re Fjl : d(v,@F}) > 1/p}.

This is a non decreasing sequence of sets suchufjis = FJ’ \ 8Fjl.. Fix e > 0. For a sufficiently large
p, we have

1(Gyp) > u(Fj) —e. (4.2)
1

Now, consider ari’ such tha2~" < %" For anyy € G), there exists: so thaty € F,i'. Since the
diameter ofF} is less thany;, Fi' C Ga, so thatF} C FL. Forn > I', the construction of,, ensures

thatx,(Q4) C F}. Sincey is the pointwise limit ofy,,,
X(Q%) C Ff c Fl. (4.3)

We obtain a covering ofy, with sets of the formF,i’ satisfying (4.3), and, using (4.2), we have
X#A(F}) > p(F}) — e. This being true for alk > 0, we deduce thak#A(F}) > u(F}). Since
these sets form a partition far< j < J;, andy# is a probability measure, the inequality is indeed an
equality, that isxx#A(F}) = u(F}). As a consequence, we haye' (F}) = €2;; modulo a null set. [J

Definition 4.2.7 Let (u,), and p be probability measures oK, d). We say thatu,, tends tou
"pointwise” whenever there exist parameterizations and x of u,, and of u, respectively, such that
d(xn(w), x(w)) — 0 almost everywhere i), 1].

Theorem 4.2.8 Let (1), be a sequence of probability measures(éf d). Thenu,, weakly-* con-
verges tqu if and only if u,, to p tends tou "pointwise”.

Proof: Assume thaj:,, converges tq: "pointwise”, and lety,,, x denote the parameterizationsof
andyu, respectively. Sincg,,(w) converges to¢(w) for almost everyw, using Lebesgue’s theorem, for
all ¢ € C(K), we have

<M@>:=Aywmmw=4mwmew

- MMMszéﬁwmmw:<w¢>.

(0,1]
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Conversely, letu,, be weakly-* converging tq:. Let us consider the filtration associated wijth
constructed in lemma 4.2.5. Singg¢dF}) = 0, we deduce tha, (F}) converges tqu(F}). Next,
applying lemma 4.2.6 to measurgs and i, we get applicationg,, andy such thaty,#X = u, and
X#A = u. The fact thatun(Fj) converges tm(F}) implies that\(£27,) converges to\(£2;,), where
QY = {w: xnlw) € F}} andQ;; = {w : x(w) € F}}. This convergence of measures implies the
convergence of interva;{l to some interval§); ;, ordered in an increasing way wigh

We are now in a position to prove that for almost @lthe sequence,,(w) converges toy(w).
Notice that for almost alb and for anyl € N, there exists @ < J; such thatv is in the interior of(}; ;.
Indeed, there is a finite number of such intervals at each rank of the filtration, and, thus, the set of its
endpoints is countable, hence of measure zero. Thus;, farge enough, we have that € Q?z i.e.,
Xn(w) € Fjl This yieldsd(x, (w), x(w)) < 274 O

4.3 Stability properties of traffic plans

From now on, we will denotéA| := A\(A), the Lebesgue measure of a measurabledset [0, 1].
Throughout this sectiorn K, d) is the compact metric space of Definition 4.1.1. According to lemma
4.2.6, we can associate with a traffic plaa parameterizatiog : @ — K. We sety(w, t) := x(w)(¢).

It is easy to check thay is a measurable function frof x Rt — X. This is true, sincey is a
Caratteodory function (see Remark 4.2.3). Moreover, if a function [0, 1] — K is measurable as

a function of (w, t), then it is measurable as a function frdf 1] to (K, d). Since this is a simple
argument, we include it here for the sake of completeness.

Proposition 4.3.1 The applicationy : Q@ x R*™ — X is measurable if and only if the application
w € [0,1] — x(w,-) € K is measurable.

Proof: Lety : 2 x RT — X be a measurable function. Observe that

X H(B(y,r) = {w:d(xw),”) <7}

_ {w vk, |’X(w)_ZHLm([O’k])§r}

= Mefw : |Ix(@) = Yllzee(or)) < kr}
= Nk Negnion] {w : Ix(W)(E) — ()] < kr}

This last expression is a countable intersection of measurable sets since th¢ maps x(w,t) are
measurable for any e [0, 1]. O

This shows that ify : @ x RT — RY is measurable, we can define its associated traffic plan
u = x#A. Of course, as we can deduce from the preceding section, a traffic plan can have many
different parameterizations.

Definition 4.3.2 Let u,, be a sequence of traffic plans. We shall say fhatonverges to a traffic plan
u if one of the equivalent relations is satisfied:
fon, = H,
Xn(w) — x(w) in K for almost allw € Q,

wherey,, and i are parameterized using a common filtration constructed as in lemma 4.2.5, such that
(in(OF}) = p(9F}) = 0 for anyj, .
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Remark 4.3.3 An immediate adaptation of lemma 4.2.5 permits to use the same filtration to construct
the parameterizations of all measurgsand ..

4.3.1 Lower semicontinuity of length, stopping time, averaged length and averaged stop-
ping time

Lemma 4.3.4 Let 11, be a sequence of probability measures on a compact metric dgaaed such
that 1., weakly converges to. Lety — f() be a lower semicontinuous function & Then,

/ f(v)dp(v) < liminf / (V) dpn ().
K K

Proof: This is a straightforward application of the fact that any lower semicontinuous funttiona
metric compact space is the increasing limit of a sequence of continuous functions ([2], lemma 1.61, p.
27), and the monotone convergence theorem. O

Lemma 4.3.5 Let L(~y) denote the length of € K. If the sequence,, € K converges toy for the
metricd, then
T(y) < liminf T'(yn),

and
L(v) < liminf L(7y,).

Proof: For allt > s > liminf T'(y, ), there exists an increasing sequence of indigegoing to infinity
such thatl'(y,,) < s < t. This ensures tha,, (t) = v,,(s). Considering the limit of this equality,
we obtaimy(t) = (s). Thenvy is constant oflim inf 7'(~y,,), +ool, so thatl'(y) < liminf T'(vy,). The
lower semicontinuity of the length functional is well-known and we shall omit the details. O

Lemma 4.3.6 If a sequence of traffic plans, converges tq:, then

/ T(y)dp(y) < liminf / T(y)dpn(7)
K

K

and

[ Lendnty) < timint [ L6)dia).
K

K

Proof: Because of lemma 4.3.5, the applications- T'(vy) and~y — L(-y) are lower semicontinuous.
The desired inequalities then directly come from lemma 4.3.4. O

4.3.2 Multiplicity of a traffic plan and its upper semicontinuity

Definition 4.3.7 Let . be a traffic plan. We call multiplicity gf at a pointz € RY the number
@] o= p({y : 3t y(t) = 2}).

If y is a parameterization gf, then we define the path classio€ RY as the set
[z]y = {w: 3t, x(w,t) = z}.

Sincex#X\ = u, we have thatz], | = |z],.
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Remark 4.3.8 The multiplicity is well defined since the sty : 3¢,~v(t) = =} is a Borel set ofK.
Indeed {7 : 3t,v(t) = 2} = Up{7y : It < n,~(t) = x} is a union of closed sets it

Proposition 4.3.9 (lemma 6.2, [22]) Lety,, be a sequence of parameterizations of traffic plans con-
verging toy. Suppose further that there @ > 0 such that|, T'(x»(w))dw < C. Then, for almost all

W,

lim sup |[xn(w, t)]ya| < [Ix(w, )]yl

Proof: Sete = C'/M. By Markov's inequality,

= €.

Sje

{w: T(xn(w)) > M}| <
Let us define an approximate multiplicity by

x(w, )], = A{w" € [x(w, )]y : T(x(w")) < M}.

Next, let us take an elementin Ny U, ~x[xn(w, t)]5, - This means that there exists a sequence of indices
n; which goes to infinity, and timeg < T'(x», (w)) < M such thaty,, (w’, s;) = xn,(w, ). Sinces; is
bounded, it is possible to extragt— s and because of uniform convergence@f(w’, -) on[0, M], we
obtainx(w’, s) = x(w,t), hencew’ € [x(w,t)]y. This shows that, Uy, [xn(w,t)]S, C [x(w,t)]y,
so that
lim sup |[xn(w, 1)]5,.| < [Dx(w, 1)]x]-

Thus,

lim sup |[xn (w, t)]y, | — € < [[x(w, D)]x ]

O

We prove another kind of upper semicontinuity which will be useful to prove Corollary 4.3.11.

Lemma 4.3.10 Let x be a parametrization of a traffic plap. Then, the functio® : « — |[z],]| is
upper semicontinuous.

Proof: Let us show that for each such that|[z],| < r, there is a ballB(x, ) such that for ally

in B(z,€), |[yly] < r. This will prove that¢=1([0,[) is an open set, and therefore thats upper
semicontinuous. Suppose that it is not the case. Then, for eactBpal= B(z,1/n), there is a
yn € By, so that|[y,],| > r. Notice thaty,, tends taxr whenn goes to infinity. Let us consider

Q= Ny Um>n [Ymly-

Then, modulo a null se C [z],. Indeed, for almost eveny, T(x(w)) < oco. For such anu in

(), this means that for ak, there is ann > n such thatv € [ymly, that is, there is &,, such that
X(w,tm) = Ym. SinceT'(x(w)) < oo, the sequencé,, ), can be supposed to be bounded. Thus, it
is possible to extract a convergent subsequepce- t such thaty(w,t) = z, i.e.,w € [z],. Thus

Q] < [[z]y| < rand|Q| = lim,, | Upy>n [yn]y| > 7. This contradicts our initial assumption. O

Corollary 4.3.11 Let x be a parametrization of a traffic plap. The function(w,t) — |[x(w,t)]y]| is
measurable.
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Proof: This a consequence of the measurabilityef |[z],| (lemma 4.3.10). Indeed, we have

{(@ ) [Ix(w, Ol <r} = {(wt): x(w 1) = zand|z]y| <r}
= x"'({z: [laly] <))

4.3.3 Sequential compactness of traffic plans

Theorem 4.3.121If (), is a sequence df P¢ such thaty, — y, thenw,, — m,. Hence, given a
sequencéy, ), of T'Pc, it is possible to extract a convergent subsequence suchrfhatonverges.

Proof: Sete = C'/M. By Markov’s inequality, we have, (K \ K.) < % = e where K, := {v :

T(v) < M}. Because of lemma 4.3.6, we also have thaf'(v)dyu(y) < C, and, thusp (K \ K.) < ¢

Let 9 € C(X x X,R). Since, by definition of the distance di, the mapy — ¢(v(0),v(M)) is
continuous fromK to R, then, by definition of the transference plan associated with a traffic plan, we
have

lisup < 7,0 > < limsup / B(1(0), (T dpn(3) + €l[l]oc)
= timsup [ 6(30), Y(M))din (1) + el
< Timsup / 9(7(0),7(M)dpin(7) + 2€l| 1o
- / 6(7(0), /(M) da() + 2¢[|6] oo

< / oy (7)) dp(y) + 4el|]oc
— <> +4eu¢uoo-

In the same way,
liminf < 7,0 >> <7, ¢ > —4e||@]|oo-
n

O

Corollary 4.3.13 Let 7 be a probability measure oX x X. There exists a traffic plap such that

Ty — 7.

Proof: Let us first prove this property in the case of finite atomic measurest (a;)*_, and(b )] 1
the elements of the support of the two marginals ot et us denote byt; ; the valuesr({a;} x {b;}).
We now definey; ; € K, the segment joining, to b;, i.e.~; ;(0) = a;, fort €]0, |a; — bj]],
t 1—t
() = |ai — bj\bj T =y
and~; ; is constant or{la; — b;|,00[. The traffic plany := >, . m; ;d,, ; is such thatr, = = by
construction.

Let us now consider a general transference ptaand a sequence of atomic measurgssuch
thatm,, — w. The first part of the proof tells that there are traffic plapssuch thatr,, = m,. By
theorem 4.3.12, we can extract a converging subsequence frpm such thatu,, converges tq: with
T, — Tu. Thus, the traffic plam is such thatr, = . O
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4.4 The Monge-Kantorovitch problem

For a sake of completeness, we show that the traffic plan formalism is adapted to solve the Monge-
Kantorovitch problem. Of course, no result is new here.

Definition 4.4.1 We call cost of a traffic plan a functional

I(u) = /K e(1(0), AT (1)) (),

wherec is a bounded non-negative lower semicontinuous function which informally represents the cost
for transporting a unit of mass fromto y.

Let us notice thaf (1) = [y y c(z,y)dr,(x,y) wherer, is the transference plan associated to the
traffic planyu. Given two measures™ andv—, the Monge-Kantorovitch problem consists in minimizing

Jxwx c(x,y)dr(z,y) under prescribed marginal measure€sandv—. By corollary 4.3.13, any trans-
ference plan can be obtained (in a not unique way) as the transferencs, jglasociated to a traffic plan

. Thus, the problem of minimizing(x) under prescribed marginal measur€sandv ~ is equivalent

to the Monge-Kantorovitch problem. The existence of an optimal transference plan is given by standard
lower semicontinuity argument and compactness. The next two propositions uses the same strategy at
the level of traffic plans.

Proposition 4.4.2 If (u4,,), andp are traffic plans such that,, — u, then
I(p) < liminf I'(uy,).

Proof: The applicationy — ¢(~(0),~(M)) is lower semicontinuous because of the lower semicontinu-
ity of ¢. Then lemma 4.3.4 asserts that

timin | (0 (0)din() 2 [ (0 2D)du().
K K
Sete = C/M. By Markov's inequality, (K \ K.) < & = e where
Ke:={v:T(y) < M}.

For such anV/, we have

/K e(1(0), /(M) dpin(y) < I(jim) + el ]l

and
/K e(7(0), Y (M))dp(y) > T(11) — elelloor

so that
I(pn) + €llclloo = I(1) — €]le]]oo-

Proposition 4.4.3 The problem of minimizing(u), with u € TPc(v*,v~) admits a solution.

Proof: Let 1, be a minimizing sequence. Because of Theorem 4.3.12, there exists a subsequence such
thatu, — pandm,, — m,. In particular, we have,t — ™ andy,, — p~. Sincey! = v and

wu, = v~ for all n, p is a traffic plan satisfying the constraints and such tat) < liminf 7(u,).

Sinceu,, is a minimizing sequence, is a minimizer ofl under the constraints of irrigating and irrigated
measures. O
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4.5 lIrrigation and traffic models

In this section, the cost functional we consider is taken from two irrigation models proposed in [35]
and [22]. As in these models, we prove that the functional admits a minimizer under the constraint
of prescribed irrigating and irrigated measures. In addition, our model permits to handle a prescribed
transference plan constraint. We prove the existence of minimizing traffic plans with this new constraint.
So we move from an irrigation model to a traffic model. The first three subsections are devoted to the
proof of the existence of minimizers of the energy functional under the two different sets of constraints.
In the other two subsections, we show that there exists a minimizer of the energy with simple paths. A
change of variable formula permits us to prove that the energy functional coincides with Q. Xia's one
([35, 36]) on traffic plans with simple paths.

4.5.1 Energy of a traffic plan and existence of a minimizer

We use the convention that—! = oo with a € [0, 1).

Definition 4.5.1 Leta € [0, 1]. We call energy of a traffic plan the functional

B = [ [l (o)t (4.4
QJR+
wherey is a parameterization qf.

Remark 4.5.2 This energy will be proved to be a reformulation of the one used in [35] (see Propaosition
4.6.6).

Remark 4.5.3 The applicationw, t) — |[x(w,t)],| was shown to be measurable in Corollary 4.3.11.
Let us denotex (w, t)[suy := limsup,_, [X&D=X) ) and |y (w, ¢)]5,; = liminf,_, [X&Ox@5)

Both applicationgw, t) — |x(w,t)|sup and (w,t) — |x(w,t)|iny are measurable since they can be
interpreted as a pointwise limit of measurable functions. For almost evenyd for almost every,
IX(w,t)|ing = |X(w,t)]sup SiNCEX(w, -) is 1-Lipschitz. Thus, the s&t where|x(w, )| is well defined

is measurable. Ify| is extended by 0 of2 x R\ C' (which is of null measure), the function thus defined

is measurable.

Remark 4.5.4 The energy of a traffic plan could also be written

= [ [ rop o),

The traffic problem is the following: given two measures and»—, and a transference plan
between those measures, we look for minimizersEoivith this prescribed transference plan. The
irrigation problem is the less constrained case where we specify globally the supply and the demand.
This latter case is essentially the same as in [35].

Lemma 4.5.5 Let i be a traffic plan. Then, we have

B > [ L0)du(y).
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Proof: As the multiplicity at a point: is always less than 1, we haye;~ 1> 1andthen

= [ [ Bl = [ Lo,

4.5.2 Normalization of a traffic plan

Lemma4.5.6Let x : [0,1] — K be a parameterization of the traffic plan We definey(w) the
arc-length reparameterization gf(w) in the usual way. Let

S(w,t) = /0 (w, )| dr,

T(w,s) =1inf{t € [0,00) : S(w,t) = s}.

Let ¥(w,s) = x(w,T(w,s)). Theny(w) € K is Lebesgue measurable and for alle [0, 1], x(w) is
the arc-length reparameterization gfw).

and let

Proof: The mapy is the composition of the mapd,T") : [0,1] x [0,00) — [0, 1] x [0,00) and
X : [0,1] x [0,00) — R¥. The measurability of will be a consequence of the measurability 6fT")
andy, and the fact thatZ, 7)~!(V) is a null setin0, 1] x [0, co) for any null setV in [0, 1] x [0, 00).

Let us prove first thatZ, T') is measurable. It suffices to prove that the funcfion[0, 1] x [0, o0) —
R is measurable. For that it will be sufficient to prove tiat! ((—oc, A]) is measurable for any € R.
Let {t,, }mm be a dense sequencelinoo). Using thatT" is non decreasing and lower semicontinuous in
s we may write

7 (00, X)) = () (U € [0.1]: T, tm) < A} x [0, + ).

n=1m=1
Since{w € [0,1] : T(w,tm) < A} = {w € [0,1] : S(w,A) > t,,} is measurable, we deduce that
T=1((—o0, \]) is measurable.
Now, let N be a null set if0, 1] x [0,c0) and letB be a Borel set containingy (of total measure
less thar¥). Observe that'(w, s) := 1p(w, T (w, s)) is a measurable map. Now, for a.e. fixed value of
eachw € [0,1], we have

/ F(w,s)ds-/ llB(w,t)St(w,t)dtS/ 1p(w,t)dt,
0 0 0

the last inequality being true sincg(w,t) < 1. Integrating with respect te € [0, 1], and observing
that both/” and1 5 are measurable i), 1] x [0, c0), we have

|(1,T)~ // Ip(w, T(w,s)) dsdw<// 1p(w,t)dtdw < e.

We deduce thatl, 7)~!(N) is a null set. O

Definition 4.5.7 We say thaf: is a normalization of a traffic plam if for some parameterizatiog of
w, X#XA = i, wherey(w) is the arc-length reparameterization gfw) defined in lemma 4.5.6. Observe
that E(i1) = E(p).

Remark 4.5.8 Due to the fact thafy € K : |§| = 1} is not closed under the distandegit is not true
thatu,, — pimplies i, — f.
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45.3 Existence of a minimizer

Proposition 4.5.9 If (u,,),, is @ normalized sequence TPc, andy is a traffic plan such that,, — g,
then
E(p) < liminf E(uy,).

Proof: Let x,, x' be parameterizations @f, andu, respectively, such that,(w) — x'(w) converges
in (K,d) for almost everyw € [0, 1]. Because of the upper semicontinuity of multiplicity which was
proved in Proposition 4.3.9 and the lower semicontinuity.6f), we have

L(xn(w))
liminf E(u,) = 1iminf// IIxn (W, )]y | Hdtdw

L(x'(w))
/ / I (@, )] |~ dtdeo
QJo

L(X ()
// 1 (w, )] |*HX (w, ) |dtdw
QJo
E(X') = E(w).

v

v

Proposition 4.5.10 The problem of minimizing'(x) in TP(v*,v~) admits a solution.

Proof: In the casénfrp(,+ ,-) (1) = oo, there is nothing to prove. Otherwise, there is s@ihe oo

such thainfrp(,+ -y E(n) < C. Because of lemma 4.5.5f7p(,+ ,-) E(1) = infrp, o+ ) E(p)

so that we can consider a minimizing sequeicg),, in T Po(v*,v ™). SinceE(u,) = E(ji,), without

loss of generality, we can take, as being normalized. Because of Theorem 4.3.12, it is possible to
extract a converging subsequence such that> u, v — v, andy, — v, . Sincev, = v for

alln, andv, = v~, uis atraffic plan satisfying the constraints afidu) < lim inf E(u,). Sincepu,,

is @ minimizing sequencey is a minimizer of £ under the constraint of the prescribed irrigating and
irrigated measures. O

Proposition 4.5.11 The problem of minimizing'(x) in T P(7) admits a solution.

Proof: As in the proof of Proposition 4.5.10, we can consider a minimizing sequengg in T’ Po (),
whereC'is such thainfrpy E(u) < C. SinceE(u,) = E(fi,), without loss of generality, we can
take ., as being normalized. Because of Theorem 4.3.12, it is possible to extract a subsequence, which
we denote again by,,, such thay:, — p andr,, — m,. Sincer,, = = for all n, u is a traffic plan
satisfying the constraints and such th&{) < liminf E(u,). Sinceu,, is a minimizing sequence, is

a minimizer of £ under the constraint of the prescribed transference plan. O

4.6 Simple paths traffic plan

Definition 4.6.1 Simple paths traffic planA traffic planu is said to be with simple paths if there is
a parameterizationy of x such that for almost allv € [0, 1], the elemeni(w) of K is injective on

[0, T(x(w))] -
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Definition 4.6.2 SupportLety be a traffic plan. The support ¢fis defined ass,, := {z : [z], > 0}.

Proposition 4.6.3 Let 1 be a traffic plan such thak(u) < oo. There exists a traffic plan with simple
pathsj so thatS; C S, andn; = 7.

Proof: Since the geometric embedding and the transference plans are invariant under normalization of a
traffic plangu, we can suppose to be normalized. Let be a parameterization pf Because of lemma
4.5.5,L(x(w)) < oo for almost allw € Q. For thesev, we reparameterize the pagliw), so that we
suppress loops. To do so, we introduce the set

Xo = {z € x(w,R")#x(w, ) @) N[0, Lx(w)] > 1},
which is empty if and only ify(w) is injective.
Step 1: Existence of a maximal set of injectivityle shall call a set of injectivity , a set

Ao = Izt

reXy,
such thaty(w) is injective on[0, L(x(w))] \ Aw, Wheret; andt} are elements of (w, -)~(z).
Let us use an iterative process to construct such a set. Let us consider firstfe=s@t, L(y(w))].
If x(w) is injective onT?Y, then the empty set is a set of injectivity. Otherwise, we consider one of the
largest intervalt; , t{ [ wheret; andt] are inT? N x(w,-)~!(x) with z in X,. Such an interval exists
since[0, L(x(w))] is bounded. We then s&t. = 79\ [¢],¢][. Continuing this process iteratively, we
obtain a decreasing sequence of sets

Tp =15\ [ty 6,

n»’n

wheret,, t € T71 N x(w, ) "}(z) andz € X,,. The process stops whenevgf_, [t, ¢, [ is a set of

n’»'n

injectivity. If the process never ends, the 88t , [t , ¢ [ is a set of injectivity. Indeed, let us assume
thats, s2 € [0, L(w)] \ Ug[t, , ;[ are such thag(w, s1) = x(w, s2). Then, by construction,

00 > L(x(w)) 2 ) ItF =112 Y Is1 — s,
n n

thuss; = s,. We shall denote b¥f,, the setl0, L(w)] \ Ux[t;, t; [

Step 2: Definition of the reparameterizatiomhe setT,, is a set of time parameters describing an
injective subpath of(w). Let us consider the non-decreasing continuous function

Sw(u) = /Ou 17, (s)ds

and let us define, (¢) := inf{u € [0,00) : S, (u) = t}. Then,r,(t) is such thatT, N [0; 7, (¢)]| = ¢.

Let us observe that the map(¢) is measurable as a function(f, t). Let{¢,,} be a dense sequence
in [0,00). Following the proof of lemma 4.5.6, sineg(t) is non-decreasing, lower semicontinuous,
and

{w e [0,1] : 7(tm) <A} ={w € [0,1] : Su(A) >t}

it suffices to prove that the sefs) € [0, 1] : S,,(\) > t,,,} are measurable for any > 0. For that, it is
sufficient to prove that the sets
S={wel0,1]:S,(\) <tm} = {wel0,1]:|T,NI[0,A|<tn}
= {we[0,1]: |TSN[0,N]]| > A —tm}
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are measurable for any> 0. Let
Top = [0, L(w)] \ U{k:tﬁ—t,jzi}[tl:’tli_[
and observe thaw, T, , = T;, Let us prove that for any > 1, the set
Sp i ={w € [0,1]: [T, N[0, A]] = A=t}

is measurable. Recall that, singe [0, 1] — K is measurable, for eache N, there is a compact set
B; € [0,1] such thaty : B; — K is continuous [14]. Let us prove that for afye N the set

Spj = {w € [0,1] : [T, N[0,\] > A — t,} N B;

is closed, hence, a Borel set. Lete S, ;, w; — w. Then, for each of the curvegw;), the sum of the
lengths of the loops of length % iS> A — t,,. Lettingi — oo, we deduce that the sum of the lengths
of the loops ofy(w) of length> % is also> A — t,,,. In other wordsw € S, ;. SinceS, = U;S, ; UN
whereN is a null set, we deduce tha}, is a measurable set. Now, sinogT;; , = T;5, we have that

eI TP Z A=t} = {w € (0,1 5|75, N0 2 A~ tm)

1
= NjUp{we[0,1]: ’Tikﬂ[()’)\” Z)\_tm_;}.

HenceS is measurable. We conclude that(t) is measurable as a function @f, t).

We reparameterize the pat$w, s) by x(w,t) := x(w,7,(t)). Asinlemma 4.5.6, to prove that
the applicationy(w, t) is measurable it suffices to prove ti{dt~)~!(N) is a null set for any null set
N C [0,1] x [0,00). As in the proof of lemma 4.5.6, |é¢ be a Borel set containiny (of total measure
less thare). Observe thaG(w, s) := 1p(w, 7,(s)) is @ measurable map. Now, for a.e. fixed value of
eachw € [0,1], we have

/ G(w,s)ds = / 1p(w,u)S, (u)du < / 1p(w,u)du,
0 0 0
the last inequality being true siné (u) < 1. Integrating with respect to € [0, 1], and observing that
bothG and1p are measurable i, 1] x [0, c0), we have

(1,7 Y(B)| = /01 /OOO L (w, 7 (5)) dsdw < /01 /OOO s (w, w) dudw < e.

We deduce thatl,7)"!(N) is a null set. We conclude that is measurable. We can then define
i = X#.

Step 3: The traffic plam is with simple pathsindeed, if there is an such thaty(w) is not injective,
there aref; andty such thaty = y(w,t1) = x(w,t2) with ¢; # t5. Then, sincer, is increasing,
7.(t1) # 7u(t2). Thus#x,'(y) > 1 so by definition ofA,, one of these two elements has to be in
A,,. But this is not possible since the imagergfis disjoint from A,,. Thus,x is with simple paths. By
definition of x, 7; = 7, andS; C S,. O
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4.6.1 A change of variable formula

Let . be a traffic plan ang a parameterization qf. It will be called non-trivial if L(x(w)) > 0 on a

set of positive measure @1 := [0, 1]. Since we can eliminate the paths whose length is null, without
loss of generality we shall assume that for non-trivial traffic plans we Hdwgw)) > 0 a.e.. First,

we prove that the geometric embedding of a non-trivial traffic plan with finite energy can be covered by
a countable set of paths. This permits us to compare our energy with the formulation given by Q. Xia
[35, 36]. For a sake of simplicity, we shall denote in the seftighstead ofiz],.

Lemma 4.6.4 Let ., be a non-trivial traffic plan with finite energy anda parameterization of.. There
exists a sequende;); such that

[z]y| =0 H'—ae., for z € R\ U2 Im x(wy). (4.5)

Proof: Let us first prove that we may cover the set
D :={(w,t) € 2 x[0,00):0<t<L(x(w))}

with a countable number of sets of the foil, = {(®,t) € D : x(©,t) € Imx(w)}. SinceE(u) is
finite andy is non-trivial, then for almost allw, t) € D, |[x(w,t)]| > 0. For eachw € (2, let

DL = {(@,t): x(@,t) € Imx(w)}.

Observe that

/Q\Di]dw = /\{wt (@,t) € Imy(w |dw—// /]llmxw) (@,t)) d dt dw
= // /lllmx(w (w,t)) dwdtdw—// t)]] dt dw > 0.

Henced! := sup,, |D}| > 0. Let us choose; € 2 such that

1

d
|D,, |>?>O

L(x(w))
Dl | < / / dt dw.
QJo

Proceeding iteratively in this way, and assuming that
, L(x(w))

D] | <// dt dw,
! QJo

Df = {(@,t) : x(@, 1) € Im x(w) \ UjZ{ Tm x (w;)}

and we may check that

EitherD,,, covers allD, or

k—1

j=1

we define

/ |DE| dw =/ (@, )] dtdo > 0,
Q (UsZiDL,)e
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which implies that?® := max,, |D¥| > 0. Then we choosey, €  such that

dk
IDE | > — >o0.
2
Either this construction ends in a finite number of stepsmd we obtain that
aeweN Imy(w)C U?lem X (wj),
or we have an infinite number of selté;j and we have
aeweQ Imy(w) CUZImx(w;). (4.6)

Indeed, if (4.6) does not hold then
o L(x(w))
Zmu<// dt dw.
= QJo

In particular, we have/ < 2|DJ.| — 0 asj — oo, hence

sup |DJ| — 0 asj — oo. 4.7)
wel

Since

[wao= [ @olaaz [ [ @ollaas >0
& Uiz DL)e (U2, DI, )e

we obtain a contradiction since the left-hand side tend$ & j — oo while the right-hand side is
a positive constant. We have proved th@ngZJj coversD (modulo a null set), and, therefore (4.6)
holds.

To prove that (4.5) holds, assume on the contrary that there exist€asseh that!(C) > 0,
N (U Imx(w;)) =0, (4.8)

and such thaffz]| > 0 for all z € C. Then

0 < [laat@ = [ [ e doar @)
_ /Q/Cn[x](w)dﬁl(z)dw:/Qﬁl(cmmx(w))dw.

This implies that there exists a sub$gt of Q such that{!(C N Im y(w)) > 0 for anyw € Q¢, hence
foranyw € Q¢ the setl,, ;= {t € [0,00) : x(w, t) € C} is of positive measure. Since

{(w,t) :weQe, t € l,} C{(w,t): x(w,t) € C},

we conclude thaf{ (w, t) : x(w,t) € C}| > 0. This contradicts (4.8). The lemma follows. O

Definition 4.6.5 Let u be a traffic plan andy a parameterization of.. For eachw € 2, we define
DX(w) = {z € RY : zis a double point o (w)}.

We say thak has simple paths if(! (DX (w)) = 0 for aimost everw € Q.
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Assume that for a givew € Q, x(w) is parameterized by arc-length. Let
Dy(w) = {t€[0,00) : Is <t, x(w.) = x(w,5)}.
Observe that{! (DX(w)) = 0 if and only if |D, (w)| = 0. Thus, ifx is normalized,x has simple paths

if and only if | D, (w)| = 0 for almost everyw € €.

Our purpose is to prove the following change of variable formula. Notice that, in the case of a graph
with the structure of a tree, the right-hand side of the identity (4.10) takes the Jormw(e)“l(e)), so
that our framework generalizes [35].

Proposition 4.6.6 Let x be a parameterization of a nontrivial traffic planwith finite energy. Then, we
have

E(u) —// x(w, )] Hx(w, t)|dtdw>/ |[z]y|* dH (). (4.9)
RN
If we assume, in addition, thathas simple paths, we have
// N t)|dtdw—/ 2] | dH (). (4.10)
RN
Proof: Since the reparameterizatignof x is measurable (lemma 4.5.6), and sificg, = [z]y for all

r € RN, we may assume thag(w, t)| = 1 for almost allw € Q, a.e.t € [0, L(x(w))]. Let us conS|der
the sequencg@v;); constructed in lemma 4.6.4. We denote/dyhe set

D = {(w,t) € Q2 x[0,00):0<t< L(x(w))}

Let us prove first that
[ Iy tdode= [ falfe @)
le ImX(wl)

Doy = {(@,) € D : x(@,1) € Imy(w1)}.

whereD,,, is the set

Let us define
Dy = {w € Q: Im x(w) NIm x(wq) # 0},

I, = {t < L(X(w>) : X(w7t) € ImX(wl)}a
and

I, .= {t e RT \ Dy(w) : x(w,t) € Imx(w1)}.

Notice that
D, = Uy{w} x I,.

Lett beinI/,. Sincex(w,t) € Im x(w1) and because of the definition B, (w; ), there is a unique
s =(t) € RT \ Dy (w1) such thaty(wy, s) = x(w, t). Let I be the set

15 = @(I,) = {s € RT \ Dy(w1) : x(w1,5) € Im x(w)}.

ThenI? is a Borel set of the same one-dimensional Lebesgue measifte As in the proof of lemma
4.6.3, to prove the measurability of the set

Q = {(Was) wE pr X(wlas) € ImX(w)}a
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we recall that for each > 0, there is a compact sé. C [0, 1] such thaty : B — K is continuous
[14]. Now, one can easily check th@tN B, is a closed set. We deduce tliais measurable. Since

{(w,8) 1w € Quyy x(wi,8) € Imx(w) \ DX(w1)} = QN {(w, ) :w € Ly, s & Dy(wr)}
we deduce that the set
{(w,s) :w e Quy, x(wi,5) € Imx(w) \ DX¥(w1)}

is measurable. Finally observe that (s) = 1 if and only ifw € [x(w1, s)] ands ¢ Dy (w1). Thus, we
have

| 1) = i, )ity
wi

Then, we have

[ ortasa = [ ot

|De(w, 1)]]* 7 dt dw

Dx(wr, 9)][*7" ds dw

175 (9)|[x(wr, 9)]| ! dw ds

/
[ e asa
/

[x(wi, 9)]|*7" /Q 1;: (s) dw ds

— / x(wn, )]| ds = / ]| dH (2).
[0,00)\ Dy (w1) Im x(w1)

Notice that in the casg has simple paths, modulo a null set we have the identity
I, =1,

This proves that for a traffic plan with simple paths,
[ Inoetasa = [ i drta),
Duy Im x(w1)

We may reproduce iteratively the same argument for the arcs forining(wy,) \ Uf;lllm X(wj) to
obtain

a—1 « 1
/U g, Il > / ]| 3 ().

U?lem x(wj)

Notice that there is equality in the cagdnas simple paths. Lettingg— oo, and using thatU]%’ngZuj is
a covering (modulo a null set) of

D = {(w,t) € 2 x[0,00): 0 <t < L(x(w))},
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we obtain
L(x(w)) . .
[ o= [ ]l a (x),
QJo U;‘;llmx(wj)
and
L(x(w)) . .
[ oo = [ ]| ()
QJo U2 Im x(w;)
if © has simple paths. The proposition follows by using lemma 4.6.4. O

Let us denote

B = [ Il " ar @)

Proposition 4.6.7 The minimum oF on the set of traffic plans is attained at a traffic plan with simple
paths. Moreoveinf E = inf E, where both infima can be taken with respect to the set of all traffic

plans or the set of traffic plans with simple paths.

Proof: We observe that if, is a traffic plan and: its associated traffic plan with simple paths constructed
in Proposition 4.6.3, we havB(i) < E(u). To prove it, we observe that eliminating loops can only

decrease the multiplicity, hende, (1) > E.(ii). Now, by Proposition 4.6.6, we have

(1) > Eu() > Buli)) = ().

Our assertions are a simple consequence of Proposition 4.6.3 and this inequality. O
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Chapter 5

Irrigation at finite cost, stability.

Introduction

We proved in the previous chapter the existence of a traffic plaminimizing E“(u) wherep €
TP(u*t,u~). We prove in that section that far > 1 — % where N is the dimension of the ambi-

ent space, the optimal cost is finite. To do this we introduce the pseudo-digtaite pseudo is here

to stress thatl® is not always finite) between measuresfof and construct a chain of traffic plans
transportingu; to u;+1 where the sequengg is the sequence of dyadic approximatiornuof. Thed®
pseudo-distance between andy;; is easy to estimate so that we get a bound8ii.) wherey is

the concatenation of traffic plans obtained by transportintp ;.1 wheni € N. As a consequence,

this bound is also a bound on the cost of an optimal structure.dTheseudo-distance allows also to

look closer at the stability problem. Indeed, we prove in lemma 5.3.2dth@4,, ) — 0 whenu, is a
sequence of probability measures on the compact RY weakly converging to. Finally we investi-

gate the existence of structures at finite cost adding a constraint on the angle variation. The question we
ask is: can we irrigate a measure with a support of positive measure in such a way that the total variation
of the angles along fibers is bounded.

5.1 Preliminaries

5.1.1 Concatenation of a chain of traffic plans

Lemmab.l.1lety € TP(pt,u~) andv € TP(v',v™) such thatu™ = v*. There is a traffic plan
o € TP(u",v™) suchthatE® (o) < E%(u) + E*(v).

Proof : Let y and{ be parameterizations @f andv. Let us denotef(w) := x(w,o0) andg(w) :=
&(w,0). By definition, u= = vt means thatf#\ = g#\. Thus, there is a measure preserving
applicationy> such thatf(w) = ¢g(¢»(w)) for almost allw. The gluing of the fiber(w) with the fiber
¢(v(w)) is thus well defined and we denotehe parameterization

o {X(w, t) if ¢ < T\ (w), whereT) (w) is the stopping time of the fiber
X\w,t) = .
EW(w), t — T (w)) ift > Ty (w).

73
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The traffic plano := x#A is such that[z],| < |[z],| + [[z]¢|. Thus, we have

2 = [ ekl @)
[ ik + el are! @)

/ (I [l @)
= B + B Q).

IN

IA

5.1.2 Thed* pseudo-distance

Definition 5.1.2 Let ™ and .~ be two probability measures. We denote

d*(ut,p) = inf E“(p).
Whn) = pinf B

Lemma 5.1.3 Let us denoté?; the Wasserstein distance of order 1 and/étand .~ be two proba-
bility measures. We havw& (u*, p~) < d*(ut,u~) forall a € [0,1].

Proof : Indeed,

& () = inf /Q AN eI
t
where the infimum is taken over all parameterizations transpogting .~ Thus,
') =it [ i, pldwdt,
QJt

is preciselyW; (u*, =) and the inequality obviously comes fraiy(w, )], |*~! > 1. O

Proposition 5.1.4 d* is a pseudo-distance on the space of probability measures.on

Proof : Because of lemma 5.1.3, we ha¥®(v1,1,) = 0 if and only if v, = v,. Next, the triangular
inequality is easily proved as follow : let andv be optimal traffic plans respectively fromto b and
from b to c. By definition ofd®, we have

d*(a, c) < E%(0),
whereo is the concatenation defined by lemma 5.1.1. Thus

d*(a,c) < E*(n) + E*(v) = d*(a,b) + d“(b, ¢).
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5.1.3 Dyadic approximation of a measure

Let C be a cube with edge lengthand centee. Let v be a probability measure on the compact
whereX C C. We may approximate by atomic measures id, (X) as follow. For each, let

Ci:={Ch:hezN n0,2)V}

be a partition ofC into cubes of edge Iengtﬁ. Now, for eachh, € ZV N [0, 29V, let c? be the center
of C* andm! = v(C!) be theu mass of the cub€?*. We define the atomic measure

Ay = Y mlioa,

hezZN n[0,2¢)N

which is classically weakly converging to

Lemma 5.1.5 The atomic measurd; () weakly converges to. We callA;(v) the dyadic approxima-
tion of v.

5.2 Existence of a finite cost traffic plan

Lemma 5.2.1 The maximum of : (z1, ..., x,) — >_ z& under the constrain}_ z; = 1isn!~°.

Proof : Because of the concavity of — z*, we havel 3" z¢ < (%)O‘. Thus the maximum of is
lower thann (). This value is attained for; = % for all 4. O

1
n

Lemma 5.2.2 Let v be a probability measure on a compact $&twhereX is include in a cube” of
edge length.. Then,

d*(Ai(v), Aita1(v)) < \/ngi(N(l—a)—l)_

Proof : The atomic measurd,;(v) is made of2'V Dirac masses at the centers of the cubés We
consider the traffic plamp obtained as the sum gf;,, wherey, is a traffic plan transporting:s
on A;11(v)|on, for all of the 2N values ofh. Let us denoted;(v)|on = Ziil my0z,, Where

Ziil my, = m! by definition of 4;(). We choose, as being the Monge-Kantorovitch transport i.e
the traffic plan made of weighted directed segméntts;;, m;,) , as illustrated on Figure 5.1. The cost
of uy, is such that

E(pun) = > (mg)®|cfayl

k

< > (my)® VNI

92i+1
k
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Figure 5.1: To transport4;(v) to A;+1(v), we simply transport straightforward all the mass at the center
of a cube with edge Iengt&% to the centers of its subcubes with edge Iergﬂg.

Thus,

E*(p) = Y E(u)

WVNL
< Zz(m’f) 9it1
hook
\/NL N «
< 27¢+12 (QZN) because of lemma 5.2.1

IA
Q

O

Proposition 5.2.3 Leta € (1 — %7 1]. Letr be a probability measure with support in a cube centered
at c and of edge lengtlh. We have

on(N(1-a)-1) \/NL

d*(An(v),v) < 9l-N(1-a) _1 2

In particular, d*( Ay (v),v) — 0 uniformly for all» whenn — oo

Proof : Let A;(v) be the dyadic approximation of Lemma 5.2.2 combined with lemma 5.1.1 permits
to iteratively construct a traffic plap; from A, (v) to A;(v) with ¢ > n. By construction this traffic
plan converges to a traffic plansuch that

E%(p) < Zda(Aj(V),Am(V))-
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Sincey is irrigating the measure, we have

d(Au(v),v) < E°(n)

< D d(A(), A ()

j=n

VNL <= (N (1—a)-1
< O Z 9J(N(1—a)—1)

Jj=n

2n(N(1—cx)—1) \/NL - 1

= SING=w 1 3 sincea > 1 — N
Thusd®(A,(v),v) — 0 uniformly for all » whenn — oo . ]

SinceAy(v) = J., we obtain directly from the previous proposition applied witk- 0, the follow-
ing uniform bound on the energy required to irrigate a measure.

Corollary 5.2.4 Leta € (1 — +,1] andv € M;(X), whereX is of diameterL. There existg, €
TP(d.,v) such that

1 VNL
E(p) < Q1-N(1—a) _ 1 9

Remark 5.2.5 In the case we transport a measure with masthe uniform bound obtained in corollary
5.2.4 scales ad“ and we have

) 1 VNL
d (5077/) < 921-N(1-a) _ 1 2 A

Finally, combining a transport from™ to §. with a transport fromj,. to 11—, it is possible to obtain
any transference plan, so that the who goes where problem has a solution at finite cost in the case
a>1-— %

Corollary 5.2.6 Leta € (1 — %, 1]. Letu™ andp~ in My (X) andw a prescribed transference plan
with marginalsy™ and p~. There existg € T'P(w) such that

1
E(M) S m\/ﬁlz
Proof : Indeed, we can find a traffic plantransportingu™ to 6. and a traffic plan transporting,. to
w1~ with costsE*(u) and E%(v) inferior to 21_N(11_a)71 @L. Since all fibers of: terminates at, it is
possible to glue fibers gf with fibers ofv so that we obtain a traffic plagiawith a transference plam;

that can be any transference plan with marginaisandy—. Since|[z];| < |[z].] + |[z].|, we have

o~ o' « 1
FE (M)SE (/,L)+E (V)Szl—]\f(l——()c)_l\/ﬁL

O

Remark 5.2.7 In the casex € (1 — %, 1], it is not clear wether or not!® and W, are equivalent
distances, i.e. does there exist a const@rdepending oy and N such thatd® < ;. An answer to

this question raised by Cedric Villani would make clearer the relation between Monge-Kantorovitch and
the irrigation problem.
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Remark 5.2.8 The work of De Villanova and Solimini [29] refine widely the result of corollary 5.2.4.
They callirrigable for the exponent « a probability measures such that there exists a traffic plan
w € TP(dg,v) with finite energyE“(u) < oo. The article [29] then gives precise condition for a
measure to be irrigable. In particular let us mention

Theorem 5.2.9If v is irrigable for the exponent, thenv is concentrated on q}—a negligible set (in
the sense of Hausdorff measure).

5.3 Stability results

In this section we partially answer to the stability question, i.e. "is the limit of a sequence of optimal
traffic plans optimal?”. The property of th& pseudo-distance in the casec (1 — %, 1] permits to
answer by a yes as stated by corollary 5.3.3. However, in theccase — % this stability is conjectural.

Lemma5.3.1Leta € (1 — %, 1]. If v, is a sequence of probability measures on the compact RY
weakly converging to, thend*(Ax(vy,), Ax(v)) — 0 whenn — oc.

Proof : The weak convergence of, to v applied to characteristic functions of the cult&s implies
thatm? (v,) — mf(v) whenn — oo, wherem!(v) is the mass of contained in the cub€?. Thus,
for anye > 0, for n large enough we have

Sl (vn) = mp(v)] < e
h

Let us denote” := min(m!(v,), m}(v)) andy,(t) = cf for all t € R. Let us consider the traffic plan
=, i
3

whereji transports ), (m? (vy,) —an)écfcz on>", (mh(v) —an)écz. Notice that the first term qf consists
of a "still” transport, i.e. the irrigating mass that is already at a position to be irrigated does not move.
The total mass 0§, (m} (v,) — an)d is such that

> (mi(vn) —an) <> Imi(vn) —mi(v)] < e
h h
Thus, corollary 5.2.4 asserts thatan be chosen with a cost inferior@&™ L whereL is the diameter of
X andC a constant depending avi anda. The "still” component of: does not contribute to its cost, so
that we haveE“ () < Ce®L. Thus, for any > 0, for n large enough, we havé' (A (vy,), Ax(v)) <
Ce“L. ]

Lemma5.3.2 Leta € (1 — %, 1]. If v, is a sequence of probability measures on the compact RY
weakly converging to, thend®(v,,,v) — 0 whenn — cc.

Proof : Let us fixe > 0. Proposition 5.2.3 applied to,, and v asserts that fok large enough,
d*(Ag(vn),vn) < eforalln andd*(Ag(v),v) < e. Thus

d*(vp,v) < d%vp, Ax(vn)) + d*(Ak(vn), Ak (V) + d*(Ax(v),v)
< 2e¢+ da<Ak<Vn), Ak<V))

Sincer,, weakly converges to, lemma 5.3.1 asserts that ferarge enoughd®(Ax(vy,), Ak(v)) < e.
Thus, forn large enoughd® (v, v) < 3e and the result follows.
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Corollary 5.3.3 Leta € (1 — %, 1]. If u, is a sequence of optimal traffic plans for the irrigation
problem andu,, is converging tqu, theny is optimal.

Proof : Because of the lower semicontinuity &8f, we have

< liminf E*(uy,) = liminf d* (), u;,)
< liminfd® (py, p) +d* (0" p7) +d (0 py)
< da(u+,u_) since;ﬁ{ — ,u+ anduj{ — ,u+.

E°(u)

Thus,u is optimal. O

Remark 5.3.4 In the casex < 1 — % the stability of optimal traffic plans remains an open question.
Of course, only the case when is a sequence of optimal traffic plans willf (1,,) < oo is of interest.

Is a limit of u,, still optimal? The stability in the case of the who goes where problem is also an open
problem.

5.4 The topology induced by thel* pseudo-distance
Proposition 5.4.1 If o € (1 — %, 1], d* metrizes the weak * topology of probability measukes(X).

Proof : Indeed, lemma 5.3.2 asserts that,ifweakly converges to thend®(v,,,v) — 0. Conversely,
if d*(vp,v) — 0, then lemma 5.1.3 asserts th&i (v, v) — 0, so thatv,, weakly convergesto. [J

Remark 5.4.2 If o < 1—4;, then itis no longer true that, weakly converges teimpliesd® (v, v) —
0. Indeed, let us consider, := UinllB(O 1), whereuw,, is the volume of a ball with radiu%. Indeed, we

haver,, — 4y, but due to theorem 5.2.9¢(v,,, dg) = oo in the casex < 1 — %

5.5 The total variation of the angle question

Real irrigating systems (blood vessels, pipe networks) seem to avoid big variation of angles since it
can cause turbulence and pressure drop [11]. At the same time, these systems manage to irrigate many
points: the whole human body in the case of the blood system or many users in a city. A natural question
is then the following: are there traffic plans both at a time irrigating a set with positive measure and such
that the angle variation along fibers is bounded?

Proposition 5.5.1 Leta €]1 — ﬁ, 1]. There is a traffic plan of finite cost iR" irrigating a measure
which support is of codimension 1 and such that the total angle variation along fibers is bounded.

Proof: Let us first describe the case of dimension 2.

For a sake of convenience, we shall not define a parameterization of the traffic plan but rather define
the underlying infinite directed weighed graph.

We denote by "level of an edg®, the number of edges from the sourceetdn this tree, all edges
of a same level will have the same length. For the angle variation to be as readable as possible, we shall
consider a tree made of vertical edges of lengitiat all even leveRi. Let us denoté; the length of
edges of leveRi + 1. Let us denotey;, the angle of a leveli + 1 branch with the vertical. We choose
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I; such that the vertical projection of an edge of le¥eh 1 is of Iengthzi%. By definition we have
sin(o)l; = 2% Since level®: and2i + 1 are made oR’ segments with Weight%, the total cost
of this tree isy ", (I; + d;)2°!=*). Thus, the total cost and angle variation of fibers is finite if and only
if the seriesy _, (I; + di)zi(l‘a) and) . «; are convergent. Let us takk = [;. We notice that when

1 ) 1
li2i+1 li2i+1‘

a; = arcsin(

Thus, the convergence of both series is equivalent to the converge@glﬁi(l—o‘) and) . 112 Nu-

merous choices can fit these requirements, for instanee 2-%* makes the series convergent if and
onlyif 6 < landg >1—a.

level i

Figure 5.2: Finite cost traffic plan irrigating the Lebesgue segment and such that the total angle variation
along fibers is bounded.

Let us generalize this example to any dimension. The main feature of the tree in 2 dimensions is
that the graph made of th& first levels irrigates the dyadic approximation of the Lebesgue measure
of the segment. Now we shall consider a tree in dimengigrsuch that the graph stopped at legél
irrigates the dyadic approximation of the Lebesgue measure on the hypercube of dimiénsibnLet
us describe the nodes of this tree: at I&igkhe nodes are located at dyadic coordinates on a hybercube
of dimensionNV — 1 which lies in the planey = hy. To describe the positions of the nodes at lgyel
it is convenient to enumerate @l —! subcubes of an hypercube by)2", ', whereu; describes all the
elementg+1,....+1) € RV-! (see figure 5.3). Indeed, a sequenges [1,2V~1] of elements of type
v; can describe all dyadic nodes in this way: codes for the fact that the node is in the cube subcube
Cy, of C defined byvy, , ko says that the node is in thg, subcube oiCy, ... Roughly speaking, the
sequence; tells which direction to take at each bifurcation, i.e the node at levééscribed by the
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sequencek;) has coordinatey """ , 7]\[;17% + (0,...,0, hy,), whereh,, stands for the height of the

hyperplane containing nodes of orderAs in the 2 dimension example,

N—1 N—1
2 )~ T

a; = arcsin(

The total cost isy", (I; + d;)2N"D{1=2) " If we taked; = I;, the traffic plan has finite energy and
bounded total angle variation if and only if the two sef€gl;2(N ~1(1=2) andy", 757 are convergent.
This is possible for the choick = 277 with 3 €](1 — a)(N — 1), 1] (this interval is not empty if
a €]1 — %, 1]). Notice that this traffic plan irrigates the Lebesgue measuife-ont]V ! x {h}, where

h = lim h;. ]

(-1,1) 1,1 (-1,1) (1,1)

-~
-
'

~

—~

~

(-1,-1) (1,-1) (-1,-1) (1,-1)

(-1,1) (1,1) (-1,1) (1,1

—-
~
—~

(-1,-1) (1,-1) (-1,-1) (1,-1)

Figure 5.3: A sequence of. elements of the forni+1, ..., +1) permits to describe all thg”(N—1)
subcubes at level. For instance the elemef(it1, —1) means west-south and the sequence of elements
of type (+£1, £1) permits to describe iteratively along a finer and finer mesh, all the dyadic subcubes.

Proposition 5.5.2 Leta €]1 — %, 1]. There is a traffic plan ifR" with finite cost, transporting a Dirac
mass to Lebesgue measure on a parallelepiped, and such that the total angle variation of fibers is finite.

Proof: Indeed, such a traffic plan is obtained through a suitable projection of the traffic plan obtained in
proposition 5.5.1 for the dimensial + 1. The projection has to be such that the total angle variation
is not increased. This can be done with a direction of projection having an angle with vertical direction
superior to the maximal angle variation between two adjacent edges. O

Remark 5.5.3 Notice that in general, the projection of the tree will be such that the projected structure
has intersecting edges, so that it has not a "tree” structure. This raises a natural question: is it possible
for a traffic plan to irrigate the Lebesgue measure on a set with positive measure, to have finite total
angle variation and so that the traffic plan has a tree structure? It is obvious that it is impossible to
project the 3-D tree of proposition 5.5.1 I®?, so that edges do not intersect. This leads to state the
following conjecture. On the contrary, as proved in proposition 5.5.5, there is more roBhfor edges

not to intersect.
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Figure 5.4: Finite cost traffic plan irrigating the Lebesgue hypercube of dimenaioa 1 and such
that the total angle variation along fibers is bounded. If we stop fibers at the hyperplane offheight
we irrigate the dyadic approximation of leviedf the Lebesgue measure on the hypercube of dimension
N —1.

Conjecture 5.5.4 A traffic plan with finite cost ifR? cannot at the same time irrigate Lebesgue measure
restricted to a set with positive measure, have fibers with bounded total angle vaaatidoe a tree

Proposition 5.5.5 Leta €]1 — +, 1] and N > 3. There is a traffic plawith tree structure and finite
cost, transporting a Dirac mass to Lebesgue measure on a parallelepiped, and such that the total angle
variation of fibers is finite.

Proof:Let us project the tree obtained in proposition 5.5.1 for the dimen&ion 1 on the hyperplane

of dimensionN, zy,1 = 0, so that we obtain a traffic plan iR". We shall assimilate the space of
projections orey . 1 = 0 to the hyperplan®”Y x {1}. If not chosen specifically, the projection may be

such that some projected edges intersect one another. Let us prove that it is possible to choose a suitable
projection so that no intersection occurs (so that the resulting projected traffic plan has a tree structure).

We shall say that a projection is forbidden if it introduces a strict intersection (i.e. not at tips) between
two segments of the tree. Leta’,y, v’ be four points ofR* and let us consider the two segmejatsr’]
and[y,y']. Tov = (v1,ve,v3,v4) € R* wherevy # 0, we associate the projection vector= o The
set of forbidden projections consists of directions given by a pointar| and a point ofy, ¢/, i.e.:

Py ([, 2], [y, y']) = {abla €], 2'[,b €]y, y'[}.
The setP([z, 2], [y, y']) is a submanifold of dimension 2. Indeed,

Pr(2,a']. [y,y/]) = {abla = Az + (1 — N)a',b = Ny + (1 — N)y/ where, N’ €]0,1[},
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so that it is described by the two parameteend.\’. Since the projective space®f is of dimension 3,

the submanifold?s([z, 2], [y, v']) has null measure and the countable union of all forbidden projection
sets associated to all couple of segments has null measure too. Thus there is a projection direction that
is allowed for all couple of segments and this projection permits to obtain a traffic plan irrigating a set
with positive measure, with a finite total angle variation and with a tree structure. Since the irrigated
measure of the traffic plan described in proposition 5.5.1 is a cube, the projected traffic plan irrigates a
parallelepiped. O

Remark 5.5.6 Proposition 5.5.5 gives the example of a tree irrigating Lebesgue measure on the par-
allelepiped and such that the total angle variation along the paths of this tree is finite. Of course this
tree is a mathematical object with branches of no thickness. The next question would ask if it is possible
for a tree with "thick” tubes to irrigate a set with positive measure with the same angle condition. The
human body seems to answer this question by a yes since blood vessels manage to irrigate the whole
body with very low angle variation.
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Chapter 6

Structure and regularity of an optimum

Introduction

Let x* andu~ be measures dR’Y and letr be a transference plan with marginats andy~. We can

either consider the irrigation problem which consists in optimizity ;) over ally € TP (™, ™) or

the who goes where problem where we optimiz¥(y.) over ally € T P(n). These two problems are

quite different from a regularity point of view. Inde€tlP(r) is much smaller tha#"P(u, ) so that

given a traffic plan, there are less possibilities of perturbationuofo try to find a better competitor.
Typically, the no circuit lemma 6.2.5 concerns only the irrigation problem: we suppose ithaptimal

and has a circuit, we constryet a perturbation of: such thatE® () < E*(u) andpe € TP(u™, ™)

so that there is a contradiction andhas no circuit. However, this perturbatippis not inT P (7) so that

we cannot conclude for the who goes where problem. The main proposition 6.2.7 of this chapter asserts
that mass cannot split and get together again (for both irrigation and who goes where problems). This
is different from the no circuit lemma since it covers who goes where problem and it does not assume
a lower bound on the multiplicity along the fibers. These no loop or no circuit properties are essentials
since they permit to state a regularity result whehand .~ are atomic measures so that we can state
equivalence results between models in section 6.4. The last section investigates the possible structure of
branches at a bifurcation point.

6.1 Convex hull property

Definition 6.1.1 A traffic planu is said to be optimal, respectiveky—optimal if it is of minimal cost in
TP(u", ), respectively il P(m,).

Definition 6.1.2 (Support)Lety be a traffic plan. The support gfis defined as5,, := {z : [z], > 0}.
We will denote by, + the support of a measuye' of RN,

Lemma 6.1.3 An optimal traffic planu is such thatS,, C conv(S,,-, S,+) whereconv(E) is the convex
hull of a setE.

Proof: Let C' := conv(S,-,5,+) and x be a parameterization ¢f. For allw € Q, let us define
X(w,t) = pc(x(w,t)) wherepc denotes the projection on the conw@x Sincey (w, 0) and y (w, co)

85
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are inC', x has the same transference plancadlext, we have
B0 = [ Ikl
Sx

- / (S |lhhedar(y)

X xepal(y)ﬂsx

Sl vdH ()

S5 _
X xepcl(y)ﬂS

< /S et @) = B0,

IA

The first inequality is obtained by the concavityzof— x“. The last inequality comes from the contrac-
tion of the length of fibers by the convex projectipn and is a strict inequality iy # x. Thusy = ¥,
by optimality of 4. O

6.2 The no-loop and no-circuit properties for an optimum

Definition 6.2.1 (Arc) Let i be a traffic plan andy a parameterization of.. Lety : [0,7] — X be a
curve parameterized by its arclength afid= ~([0, 7). SetQr := {w : ' C x(w,R)}. The curvey is
said to be an arc of: if |Q2r| > 0. Note that this definition does depend only.oand not on the choice
of the parameterization.

Lemma 6.2.2 Let 1 be a simple path traffic plan parameterized hyand ~ an arc of . For any
w € Qp, there are uniquet;,t;r € R such thatx(w)\[t%m coincides with a reparameterization of
Thus, we can defin@;" and Q- respectively as the such thaty(w,t;) = ~v(0) and thew such that
X(w,t7) =7(0)

Proof: The parameterizatioly is such thaty(w, -) is one to one. Thus, for all € Qr, the set
I:={t:x(w,t) €T} =x (w,)is closed and connected. O

Lemma 6.2.3 No both wayd et . be an optimal traffic plan fronu™ to . If v is an arc ofu then
either || = 0 or || = 0.

Proof: If Qf: and(. are both non-negligible, consider two subsets of same positive mefaﬁmeﬂ}“
andQ, C Qp and¢ := ; — Qo bijective and measure preserving. Let us definas y for all
w ¢ Q1 U Q. Forallw € Q;, we define

3 Y(w, 1) if + <t (w)
X(w, t) = { - . v
X(p(w),t =t (w) + 1t (p(w))) ift >t (w)

We definey in the same way of2.. The traffic plani := x#A\ has a lower cost thap and has the
same transference plan. This is absurd so that the lemma is proved. O

Lemma 6.2.4 No splitting and grouping of mass: the case of two arf28] Let 1 be an optimal traffic
plan fromu™ to u~ with a parameterizatiory. If 4, and~, are two arcs ofu such thaty; (0) = 2(0)
andfyl (Tl) =2 (TQ), thenfyl = Y2.
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Proof: Without loss of generality, we can restrict to the following two ca§é§: andQp, are non-
negligible, oer:1 andQ}“2 are non-negligible. In the first case, the traffic plan has an oriented loop that
we can easily remove as in the lemra In the second case, we suppose the two arcs to be different
and prove that we can decrease the energy. This proof is mainly reproduced from [28]. Let us consider
the two traffic plang¢; andys respectively obtained sending the &yiconI's and sending the aic, on

I';. That is to say, let us defing asy for all w ¢ Q1 U Q9. For allw € Q, we define

X(w,t) if t <t (w)
x1(@,1) = § ot — £, () it 4 () <t <1 (w) + T
X(w,t =15 (W) = To + 5 (w)) ift >t (w )—f—Tg

wherezt;1 andt;f1 are defined as inlemma 6.2.2. We defingn the same way. Let us denotg := |Q;]|
andm;(t) := |[v:(t)]mu|. The energy difference betwegrandp, := x1#A\ is

op: = E(p)— E(m)

T1 Tl

Ty T>
= i+ [ ma)de - /O (m(t) — ma)dt — /0 (ma(t) + ma)®dt

OT1 0 -
= / (ml(t)a — (ml(t) — ml)a)dt + / (ma(t)* — (mg(t) +mq)%)dt.
0 0
In the same way,
Ts Ty
5y = E(u) — E(ja) = /0 (ma(t)* — (ma(t) — ma)*)dt + /0 (ma (£)* — (ma (1) + m2)®)dt.

Let us now prove tha%1 + T% < 0. Sincemy, ms > 0, this will prove that eithe; < 0 or d, < 0.

O % /T1 (m1(t) +ma)® —ma()*  ma(O)* — () —m)*
mp M2 0 ma2 my
n /T2 (ma()* — (ma(t) —mg)®)  (ma(t) +m1)® —ma(t)”
0 ma my
< 0,
because of the concavity of— x®. O

The next lemma is a restatement of [35, proposition 2.1 p.256], and the proof is strongly inspired
from it. Still, in the author’s point of view, it makes clearer the perturbation used to decrease the energy,
in the case there is a circuit with a positive flow.

Lemma 6.2.5 No circuit made of arcs in the irrigation problem [35]Let i be a traffic plan fromu™
top~ anda < 1. If there are(~;)?_,, arcs ofu such thaty;(7;) = ;4+1(0) forall ¢ € [1,n — 1] and
Y (Tn) = 71(0), thenu is not optimal for the irrigation problem.

Proof: Thanks to lemm&?, it is consistent to define respectively” andL~ as the set of indices such
that respectivelySdy. | = 0 and]QR\ = 0. Let us consider sefQ; C Qr, such that2;| = m for all

i. If two consecutive indices are ib*, we can shrink arck; andI';,; to a single one up to a mixing
between fibers of; andI'; ;. More precisely, lety; andw; ., be fibers in2; and2; ;. The mixing of
w; andw; 41 consists in defining

. X (wi, t) if ¢ < min(1,,)
X(wia t) = . . . .
X(wiy1,t —min(I,,) + min(1,,, ) if ¢ > min(ly,),

k3
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L
I

Figure 6.1: The oriented loop of the left hand side can be removed by mixing fibdrs with those of
T's. Indeed, we can glue fibers Bf with the ends of fibers dfs and fibers of", with the ends of fibers
of 'y as illustrated by the right hand side figure.

Figure 6.2: The fibers going throughy are modified betweef,(0) andv2(7%) so that they go through
I'y. Lemma 6.2.4 proves that either transferrlngto I'y or I'y to I's decreases the cost. Notice that this
transformation does not affect the transference plan.
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Figure 6.3: Gluing the beginning of a fiber df; with the end of a fiber oF ;; and reciprocally permits
to merge two arcs with same orientation. This mixing modifies the transference plan but not irrigating
and irrigated measures.

and
- X(wit1,1) if t < min(l,,,,)
X(wi+17 t) = . . . .
X(wi, t —min(ly,,,) + min(Z,,)) if £ > min(Z,,, ).

We definey the parameterization obtained mixiagwith ¢(w) for all w € Q; wherey : Q; — ;11 is

a measure preserving bijection. Notice tlydias the same irrigating and irrigated measures, but not the
same transference planasMoreover, the swapping does not change the cost sdthgt) = E*(x).

We have reduced the problem to the one of proving ghiatnot optimal. It is indifferent to prove either
thaty or the reversed time traffic plan obtained franis not optimal, thus we can assume without loss
of generality that

We now definey, such that all flow along an™ path is increased byand all flow along ar.— paths

is decreased by. This parameterization can be obtained through the convenient mixing of fibers and
is such that the irrigating and irrigated measures are the same as thgselLet us denotef(e) =
E*(xe) — E“(x). We have

l; I
Z/o (mi(s) +€)%ds + Z/o (m;(s) — €)“ds.

€Lt €L~

The functionf is strictly concave becauge< 1. Thus

l; l;
@<= [(omrass X [onr-ts <o

ieLt €L~

Thus, the cost of. is lower than the one of, andy is not optimal.
O

Remark 6.2.6 Lemma 6.2.5 proves that an optimal traffic pléor the irrigation problem has no

circuit with a flow bounded below by a positive constant. This does prove that a more general circuit as
the one represented on figure 6.5 is not optimal for the irrigation problem. Indeed, such a traffic plan
is such that the fibers irrigate Lebesgue measure on the segment to finally group again to a Dirac mass.
Of course, such a structure is far from being optimal and proposition 6.2.7 rules out such candidates
through a perturbation similar to the one of lemma 6.2.4.
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Figure 6.4: The modification of the traffic plap consists in transfering a multiplicity from all arcs
T'y; to arcsl'y;1 1. This perturbation gives a new traffic plagn which has a lower cost thanand same
irrigating and irrigated measures.

Figure 6.5: This traffic plan is obtained through the concatenation of a traffic plan transporting a Dirac
mass to Lebesgue measure on a segment and a traffic plan transporting Lebesgue measure on a segment
to a Dirac mass. Proposition 6.2.7 proves that such a structure is not optimal.
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Proposition 6.2.7 No splitting and grouping of mass: the general cadeet . be an optimal traffic
plan with simple paths from™ to ~, and y a parameterization ofi. Let us denot€, := {w : x €
X(w,R)}. Letz,y be such thaf),, := Q, N Q, is of positive measure. For alb € Q,,, we define
to(w) == x(w) I (z), ty(w) = x(w)"(y) and I, the time interval betweety(w) and t,(w). For
almost allwy, wy € Qyyy, We havey(wi, L, ) = x(w2, Lu,).

Proof: Let us first definel; := S, N (Uueq,x(w, I,)) where S, denotes the set of points with
positive multiplicity and suppose by contradiction that thereqyeQ, C €, such that,|, Q2] >

0, |1 N Q9| = 0, such that the symmetric differen¢g; ALy| > 0. This means that the structure
generated by fibers d2; and(), are different. Let us consider some poinin L; U L, and denote
mi(z) == [N Q| fori = 1,2andm(z) = |2, N (2 \ (21 UQ2))|. Notice that the multiplicity
atz is [[z]y| = mi(2) + ma(z) + m(z) for all = € RN, As in lemma 6.2.4, we are going to transfer
mass ofL, through theL; structure. Lety’ be the proportion of fibers df2; to be transferred t€;.
We takep’ := p% < 1. Letm,(2) := (1 4+ p)mi(z) + (1 — p')ma(z) + m(z). Let us prove that
there exists a traffic plap, with the same transference planasuch that|[z],,| = m,(z). Up to

a measure preserving bijection, we can suppose for the sake of convenien@e thafo, |2;|] and
Qs :”Ql‘, |QQ‘ + |Q1|] Let us denot@l = [O, |Ql| + p,’QQH andQQ 2”91’ + pl|Q2‘, |QQ‘ + |Ql|]
The application

8 if we
P(w) = %(w 1) + ] ifweQ
w ifweQ\ (QUQy)

is an application contracting; | onto |2, | and dilating|Q2;| onto |Q2;|. We define

X(w,t) if t < min(1,)
Xﬂ(w7t) = X(lb(w)?t - min(Lu) + min(Iw(w))) ift e [min( w)7min(Iw> + ’Iw(w)”
X(w,t — (min(ly) + [Lyw)|) + Lo]) if ¢ >min(ly) + Ly,
which is obtained transferring uniformly mass{ef onto paths followed by fibers 6t; between: and
y. The traffic plary, = X#X is by definition such thafz],, | = m,(z). Further, the transference plan
of 41, is the same as the one pfsincey,(w, 0) = x(w,0) andy,(w, o) = x(w, co) for all w € [0, 1].
Let us compare the costs pfandy.,. We define the balance of the energy as

f(p) = E%(pp) — E“(n).

Let us denotd. := L; U L. We have

f(o) = /L (mp(2)® — |[2],*)aH".

Thus 0
"(p) = [ my(2)* L (my(2) — ma(z) 2t 1
F(o) = [ m(e) s () = ) 2

and 0]
£1(0) = o =1) [ ()" 2m(z) = ma(e) 2 Pt

We then notice that o \ L2, ma(z) = 0 andm;(z) > 0. Symmetricallyyna(z) > 0 andm;(z) =0

on Ly \ Li. Thus,(m(z) — mz(z)%) # 0forall z € LiALy. Since|L1ALy| > 0 anda < 1,
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Figure 6.6: lemma 6.2.4 requires a lower bound on the multiplicity along some fibers to exclude loops

in optimal traffic plans. Thus it cannot rule out structure as the one presented on this figure, where the
mass is spreading on a Lebesgue measure on the segment to finally group again. The idea of the proof
of proposition 6.2.7 is roughly the same as in the case of two arcs. Indeed, suppose that we have two
different structures going from to y (in the sense that the geometric support of fidkersand(, are
different). We convey some part of the mass of the second structure through the first structure or in the
other way, and we prove that the resulting structure which is represented on the right is better so that we
obtain a contradiction.

we obtain thatf”(p) < 0. Thusf'(\) < f'(0) = «a [, (m(2)* 1 (m — mg%)d?ﬂ. Without loss
of generality, we can assume thgt0) < 0, otherwise we exchande; and{2.. Thusf’(p) < 0 and
f(p) < f(0) = 0 for a sufficiently smalp. This inequality contradicts the optimality pf O

6.3 Regularity wheny™ and p~ are atomic measures

Definition 6.3.1 Let 1 be a traffic plan and’,I” two arcs ofu. Let us call bifurcation point some
peI'NTsuchthal UT"\ {p} has at least three connected components.

Definition 6.3.2 Let i be a traffic plan. We say that has a circuit if there are arc$I';)!" ; such that
there are bifurcation pointép; )" ; such thayp; € I, "' I';y; fori < nandp, € I', N T';.

Proposition 6.3.3 Letr be a transference plan such that and .~ are finite atomic measures. An op-
timum for the who goes where problem has the structure of a finite graph. An optimum for the irrigation
problem is a finite tree made of segments.

Proof: Letus denotg.™ = 3" a;0,, andu~ = 3 b;0,,. Let, be an optimum for the who goes where
problem andy a parameterization qi. We denote);; := {w : x(w,0) = z; andx(w,o0) = y;}.
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Figure 6.7: The application) is contracting; on2; and dilating®, on .

Y2 Y2
Y1

X3

X2
X1 X1

Figure 6.8: Proposition 6.2.7 asserts that fibers connectingith y; follow a single ard’;;.

Because of proposition 6.2.7, there is an Bfg such thaty(w,R) = T; for all w € €;;. Thus,

an optimum for the who goes where problem has the structure of a finite graph. The same argument
stands for the irrigation problem. Moreover, lemma 6.2.5 permits to prove that no circuit occurs for an
optimum. Thus an optimum has a tree structure. Further, since the multiplicity of points of an arc does
not change between two consecutive bifurcation points, this tree is made of segments. O

Remark 6.3.4 Neither in [35] nor in [36] does Xia investigate the question of the regularity in the
atomic case. We remind the reader that Xia defines a cost on Radon vectorial measures obtained from
finite graphs and then relaxes the functional to define a cost on more general Radon vectorial mea-
sures. Let us emphasize that though the initial cost is defined on finite graphs, it does not mean that the
relaxation process could not bring better structure than finite graphs wheand .~ are atomic.

6.4 Equivalence between models

Itis now time to make a stop to look at the problem of equivalence between models described in chapter
2. Indeed, the knowledge we now have on the structure of an optimum permits to conclude that optima
and costs for traffic plan, patterns and Gilbert-Steiner problem are equivalent.

Theorem 6.4.1 Traffic plans and patterns ([22]) are equivalent with respect to the irrigation problem
wheny* consists of a single Dirac mass.

Proof: The small difference between the traffic plan model and the pattern model is the definition of the
multiplicity. In the pattern model, when two fibers coincide for tifdgl'] then separate, there are viewed
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as being separated for the remaining time even if the fibers happen to coincide again geometrically. This
is due to the fact that multiplicity of the fiberat timet is the measure of all equivalent fibers (i.e. fibers
coinciding withw during time|[0, ¢]). Let u* being a single Dirac mass at a source pdirand . an

optimal traffic plan for the irrigation problem. Proposition 6.2.7 asserts that a parameterigatfon

has a tree structure, so that the definition of multiplicity in the traffic plan framework coincide with the
one of patterns. Since the cost of tree structures are identical, the models are then equivalent]

Theorem 6.4.2 The irrigation problem for traffic plans whem™ and .~ are atomic measures and the
Gilbert-Steiner problem are equivalent

Proof: Letu™ andyu~ be atomic measures apdan optimal traffic plan for the irrigation problem.
Proposition 6.3.3 asserts thathas a graph structure so that th€& cost is the same than the Gilbert-
Steiner problem cost fof (¢) = ¢*. Thus, both problems give same optima. O

6.5 The regularity result in [36]

In this section, we briefly survey the article [36] where Xia claims the following regularity result. Let

pt and .~ be two measures d&Y andT an optimal transport path from* to u~. If z is a point

on the support of" away from the support ofi~ and ™, thenT has a finite graph structure in the

neighborhood of. Xia first proves the existence of a cone-shaped blow-upeaid then does estimates

to prove that the optimal structure coincides with the blow-up in a sufficiently small neighborhood.
The second part of this proof is lacking some argument. We have mainly two criticisms relative to

this article (we refer to [36] for the notations):

e Concerning lemma 4.8, the fact thatr) is decreasing because T contains no loop seems ques-
tionable. It rather seems to be a consequence of the radiality of an optimal transport from a center
of the ball to the sphere. Such radiality should be proven carefully.

e Lemma 4.9 seems also to be questionable since Xia moves from a transport between positive
measures to transport between an arbitrary infinite atomic measure (with positive and negative
Dirac masses) and a Dirac mass centered at a ball. The justification of that change is that the
boundary of the currerf can be viewed either dg™ — =) — dp or ™ — (1™ + &). However
the estimations of/*(I", + Ayyp) — M*(I'p) in the proof of Lemma 4.9 strongly depends on the
fact that we consider a transport from a Dirac mass to a positive measure.

Since lemma 4.9 is crucial in the proof of final theorem, we consider that the regularity claim needs
another proof.

6.6 Number of branches at a bifurcation

In this section we investigate the geometry of branches at a bifurcation point of an optimal traffic plan.
The optimal structure of a traffic plan from one Dirac mass to two Dirac masses is essential in all that
follows. It is necessary to read section 7.1 in order to understand well the present section. Lemmas 6.6.2
and 6.6.3 give lower bound (depending @pon the angle between two edges starting from the same
point (see figure). As a consequence, we prove that it is not possible for an optimal finite traffic plan in
R? to have more than three edges meeting at a bifurcation point (away;ffoamd .~ ), whena < %



6.6. Number of branches at a bifurcation 95

(proposition 6.6.4). It is still a conjecture whether or not four edges can meet at a bifurcation point in
R? whenl > a > % though numerical experiments seem to exclude this situation.

Lemma 6.6.1 The functiong defined byg(m) = 2" —m*~1 s nondecreasing oiv, 1] for 1 >

2m®
a > 1 and nonincreasing for < 3. Thus,

):{220<—1—1 if o > 1

sup g(m )
( 0 |f1>04§%.

me]0,1]
Proof: Indeed,¢’ has the same sign as
(m+1)%* = 2(m+1)* 1 —m?* 41
that we denote)(«). We notice further that)(0) = E—H < 0,%(1/2) = ¢(1) = 0 and thaty is
concave. Indeed,
P'(a) = 4(m+1)*In(m+1)2 = 8(m+1)?*"LIn(m + 1)2 — 4m>*In(m)?
= 4(m+ 1% tn(m + 1)%(m — 1) — 4m>** In(m)?
<

e

The last inequality results from the fact that< 1. Thus,)(a) > 0for1 > o > % and¢’ is positive
so thaty is not decreasing. Similarly;(a) < 0 for a < % and¢’ is negative so that is not decreasing.
The monotonicity of; permits to easily calculate the supremum,

{9(1)222a1—1 if1>a>

sup g(m) =
m) lim,—og(m)=0 ifl>a<

me|0,1]

N N

Ol

Lemma 6.6.2 Lete; = pa; andes = pay be two oriented edges of the cird&p, ). Letu be a traffic
plan made of the two edges and e, with massesn; andms. If p is optimal, the anglé betweere;
ande, is such thatos(¢) < 22¢~1 —1for1 > a > 1 andcos(d) < 0fora < 3.

Proof: Indeed, because of proposition 7.1.7, and lemma 6.6.1,

2a—1 ; 1
cos(f) < sup (m1 +mg)** — m%a - m%a _ 2207 1 if1>a>35
- 0 if a < 3.

oy
m1,m2€[0,1] 2m1 my

O]

Lemma 6.6.3 Lete™ = a*pande™ = pa~ two oriented edges of the circté(p, r). Let i be a traffic
plan made of the two edges ande~ with massesn andm/’. If  is optimal, the anglé betweere™
ande™ is such thatos(9) < (/77 — 1)* — (;%7)*. In particular, § is strictly superior to7.

Proof: Without loss of generality, we can suppose that- m’ . Letp, be the point on segment™p
at a distance of p. Let us consider the traffic plan. made of the edge&:i*p,, m),(p.a™, m’) and
(pep, m —m'). Let us denote

5(6) = B — E(no)
m® +m'* — (m®(1 — €) + (m — m/)% +m'*\/1 + € — 2ecos(6)).

Since the traffic plan. has the same transference plarnuasnd i is optimal, E® () > E®(u), i.e.
6(e) < 0. Thusy’(0) < 0, i.e.cos(f) < (2 —1)* — (2)“. In particular,cos(f) < 0 so thaty > 7. [
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Proposition 6.6.4 Leta < 1/2 and z be an optimal traffic plan oR? with finite graph structure. A
node of the graph not in the supportef andx~ has an edge multiplicity less than or equal to 3.

Proof: Letp be a bifurcation point with more than three edgep.atet us consider, the restriction
of the traffic plany to a small ballB(p, ) such thatp is the only bifurcation ofv. The traffic plan

v is optimal for the irrigation problem from™ to v~ wherev™ andv~— are atomic measures on the
circle C(p,r). Let us denote by.~ and L™ respectively the set of edges connecting v~ andv ™.

A subtraffic plan made of two edges 6f" or two edges of.~ is optimal, otherwise- would not be
optimal. Thus because of propositidn .7 the angle between two edgesm) and(e’, m’) is superior
to the angle’ such that

Ra

N2a _ 20
005(9):(m+m) m m

2moem/e

In the casex < % cos(f) < 0 so that the angle betweerande’ is superior or equal t§. This fact in
addition with lemma 6.6.3 implies thatL* U L~ < 3. Indeed, assume thgtL* U L~ > 4, and let us
extract four edges; from L+ andL~. Let us denot#; the four angles between the edggsonsidered
in a trigonometric order. All of these angles are superiof and one of them is strictly superior

because of lemma 6.6.3. Thus, there is no room for more than three edgesit. . O

Remark 6.6.5 There is a very quick and geometric argument to prove tha¥rahape can occur for
an optimal traffic plan andv < % It is illustrated by figure 6.9. The argument is the following. Let us
suppose that & shape is optimal and denotethe bifurcation point. In particular the subtraffic plan
made of edgega; andpas is optimal so thap lies within the diskD; defined by the equiangle circle
of proposition 7.1.7. In the same way, the subtraffic plan made of edgesnd pas is optimal so that

p lies within the diskD, defined by the equiangle circle. Far< % Dy N Dy = () so that we obtain a
contradiction.

Conjecture 6.6.6 Let% < a < 1 andyu be an optimal traffic plan oR? with finite graph structure. A
node of the graph not in the supportef and .~ has an edge multiplicity less than or equal to 3.

Beginning of the proof: Let us defineL*™ and L~ as in the proof of 6.6.4. Because of the minimal
angle lemma, 6.6.2 both™ and L~ are finite. Though, it does not seem as easy as in theocg:sé to
reduce the cardinal af ™ and L. A first step would be to prove that it is enough to consider the case
#LT =#L- =2andthe cas¢:L~ = 3 and#L" = 1. Remark 6.6.5 contains a strategy to deal with
the second case. Indeed, let us consider the optimal bifurcationpé&intthe bestl shape structure
and consider that this structure is globally optimum. We denete) the source anda;, m;);_; the
three irrigated points, such that; + mo + m3 = 1. Remark 6.6.5 proves thathas to be inD; N Ds.

In addition, the first order local optimality criterion states that

wheren; is the unit vector directed by the vectpti; andn is the unit vector directed bys. If we
prove that| E?:l mén;|| # 1 forall p € Dy N Do, the contradiction follows. Let us denaie and6,
respectively the angle;pas andaspas. The disksD; and D, are the equiangle circles corresponding
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Figure 6.9: If there is a triple point outside an equiangle circle, themyastructure can be improved as
illustrated, thanks to proposition 7.1.7.
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a<l/2

a=1/2

a>1/2

Figure 6.10: As illustrated by figure 6.9, a triple point of an optimal traffic plan has to lie within the two
corresponding equiangle circles. In the case 1/2, the intersection of these two disks is empty (both
figures at the top). In the case> « > 1/2, the intersection is not empty so that we cannot conclude

immediately.

n

Figure 6.11: The balance equation at an optimal triple point assertsithat m{'n; + m§ngs + m§ns
has to be of norm 1. A strategy to prove that there is no triple point for an optimum is thus to prove that
||n]| < 1 for any pointin the intersection of the two equiangle disks.
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respectively tda;, m1), (a2, m2) and(az, m2), (as, ms), i.e. they are equiangle circles for the angles
71 andry such that

20 _ 200 2«
cos(m) = (m1 + mo) — 7:1 ma ,
2mems
and ) ) )
a a «
cos(mo) = (m3 & ma) Ul 3

2mgmg
Thus, the fact fop to be both at a time i), and in D, is well expressed by the fact thét > = and
0o > o, 1.e.cos(fy) < cos(71) andcos(fz) < cos(72).

Let us evaluate(p) := || Y5, m&n,||>. We have

3
o) = 1Y minill®
i=1
= m* + m3* + m3% + 2m$my cos(61) + 2m§m$ cos(f2) + 2mPms cos(6; + 69).

If we prove thatp(p) < 1 for all p € Dy N Do, this proves that a shape structure cannot be
globally optimal. Let us denote = cos(7;) andb = cos(72). Sincecos(f;) < a andcos(f2) < b for
p € D1 N Do, itis enough to prove that

m3® + m3® + m2® + 2m$mSa + 2m§mGb + 2m¢ms (ab — /1 — a2/1 — b?) < 1,

for all m1, ms andmg such thatn; + ms + ms3 and allae > % Because this expression is symmetric
with respect ton; andmg, we can suppose without loss of generality that> ms.

Sincem; > mg, lemma 6.6.1 implies that > b. Thus,ab — V1 — a2y/1 — b2 < 24> — 1 and itis
enough to prove that

mi® + m3® + m3® + 2m$¢mSa + 2mSmgb 4+ 2mimS(2a® — 1) < 1,
in order to prove thad(p) < 1. This expression can be simplified in

m@
(1—m1)?* + (1 —m3)** —m3® + man:fﬂo‘ ((my +m9)?* —m?* — m3*)?% — 2mim§ < 1,
1y

and the fact that n& shape can be optimal would then be a consequence of the following conjecture.

Conjecture 6.6.7 For everymy, ms, ms > 0 such thatm; + mqe + mg = 1, and everyl > a > %

(1—m1)? + (1= mg)? —m3® + T ((my + m2)?* — m3® —md®)? — 2mgmg < 1.

1M3

Hints: This inequality seems to hold. The main argument for it is numerical: the inequality has
been numerically tested on a regular mesh@f0? values and was always true. The other hint is the
following: let us denote)(m, ms, «) the expression on the left hand side. We are interested in proving
that¢ < 1in the domainD := T'x]%, 1 whereT := {(z,y) : z €]0,1[,y < z}. Itis easy to prove that
olap < 1. Moreover, ifm; = mg = m, then the inequality is true. Indeed, we have

((1 _ m>2a o m2a>2
(1—2m)2 7

¢(m7 m7 a) =

so thatg(m, m, ) < 1if and only if (1 — m)?* — m?® < (1 — 2m) (sincem < 3). By concavity of
z — 2% we have(l — 2m +m?)® < (1 — 2m)® + m>* so thatp(m, m, a) < 1.
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Chapter 7

Examples of optimal irrigation

Introduction

Because of the atomic regularity of the previous chapter, we are now in a position to investigate particular
examples. In section 7.1, we shall prove that an optimal structure for the problem of irrigating two
masses from one source has a tree structure and we shall describe analytically this case. This first
example is very important since it gives very constraining angle conditions at bifurcation points. Further,
this example is the foundation of a recursive algorithm of construction that was proposed in [18] and that
we shall present in the next chapter. In section 7.2 we investigate the structure of an optimal traffic plan
irrigating Lebesgue measure on the segment from one source and study if the tree gets totally spread as
in the case of the Monge-Kantorovitch transport problem or if diffusion along the segment occurs.

7.1 Optimum irrigation from one source to two sinks

Letay, as, az in RN with a; # ag, p= = m18a, + Mada, andu™ = mgd,, with mg = my + my and
m1,ms > 0. We are looking for the optimal traffic plan fropr to ™ under theE* cost.

Lemma 7.1.1 In the caseuy, as, a3 are aligned, an optimal traffic plan from~ to u™ has its support
in the minimal segment containing, a2, ag. Otherwise, an optimal traffic plan has its support in the
triangle a1, as, az. In addition, it is a graph with two edges or three edges.

Proof: Because of the convex envelop property 6.1.3, the support of an optimal traffic plamfrom
to u is in the convex envelop af;, a; andas. Further, proposition 6.3.3 proves that an optimal traffic
plan is a graph with at mostedges. O

Lemma 7.1.2 Let 1 be an optimal traffic plan from ™~ to ™ made of three edges. With the notation of
Figure 7.1, the bifurcation point has to satisfy the following angle constraints:

K 41— k3

cos(f1) = BT (7.1)
1
k?a 41— k2a
cos(f2) = T (7.2)
2
1— k,2a o k,2a
cos(fy +02) = W (7.3)
1vg

101
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m28a;

m3da;

Figure 7.1: If an optimum has & -structure, the perturbation of the bifurcation point gives necessary
condition through the cancellation of the derivative of the cost.

wherek; = mf}r%, ko = ml’ﬁw.

Proof: Because oflemma7.1.1, itis equivalent to consider the two dimension situation. Let us consider
the graphG'(a) made of edges$a;a, m1), (aza, ms) and(aas, m3), with a € R? \ {a1, as,a3}. The

cost of this graph is

C(a) = millar — al[ +m3]lag — al| + mg]la — as]|.
Notice that this function is differentiable d&? \ {a1, as,as}. Thus, if G(a) is an optimal path with

a ¢ {a1, a2, a3}, we havel-C(a) = 0andZ-.C(a) = 0. Letus denote respectively Iy, y1), (2, o)
and(zs, y3) the cartesian coordinates @f, a; andas. We have

0 (x — x1) (x — x2) (z — x3)

—C(a) =m§ ms m$ ,

5 = " o= all " g = all " lea —all
and

9 (y —y1) (y — y2) (y — v3)

——C(a) =mT +mg +mg .

5y = o=l T " az = all T ™ s =l

Fora ¢ {a1,a9,as}, let us denote by,; = =% the unit vector fromu; to a for i = 1,2,3. The

lla—a;l|

necessary condition given by the derivative of the cost function yields the balance equation
m{ni +msng +msng = 0. (7.4)

Let 0; be the angle betweeny and—ng fori = 1,2 andk; = /12—, k 72— Multiplying the

mit+me’ "2 T mitma

balance equation (7.4) by, for i = 1,2, 3 we obtain the following equalities:

kY + k3ning = cos(6y) (7.5)
kf‘nlng + k2a = COS(QQ) (7.6)
kS cos(01) + kS cos(f2) = 1, (7.7)
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\ /

Figure 7.2: The locus of constant angle betwekhand two prescribed points is the union of two circle
arcs.

so that the angles satisfy

K 41— k3

cos(0r) = g (7.8)
1
k.?a +1-— kQa
cos(fy) = % (7.9)
2
1— k2a o k2a
COS(el + 92) = W (710)
172

This means that in the trianglg aas, the angle at is * — 6; and in the trianglesaas, the angle at is
T — 09. O

Remark 7.1.3 Notice that in the casgi; = mo, 61 = 0 = arccos(22*~1 —1)/2. If « = 1 the angles
satisfyty + 0 = 5,01 = Vk1 andfy = k. Thus the bifurcation point lies on the circle of diameter
aiaz. If o = 0, we find the%7T angle constraint that has to satisfy a Steiner point in the Steiner tree
problem.

Lemma 7.1.4 Given two point$ andc and an anglé, the set of pointa so that the not oriented angle

bac is @ is the union of two circle arcs going throughand ¢, with radiusz‘lgi;fy).

Proof:
The set of pointa so that the not oriented anglec is 6 is given by the equation

(b—a)-(c—a)=-cos(0)||b—al|-||c—all (7.12)

To maintain simple calculations, we can assume with a suitable rotation and scalihgttat0) and
¢ = (1,0). Let us denote byz, y) the cartesian coordinates @f Equation 7.11 becomes

z(x— 1) + 9 = cos(0)V/a? + 2/ x(x — 1) + 42
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\

Figure 7.3: The center of these circles can be obtained through a scaling transformation.

Squaring this equation, we obtain a polynomial equation that has to satisfye, ). We notice that it
is the product of two circle equations:

(=0 + Dl(z — 1/2)* + (y — ye)* = Re]l(x = 1/2)* + (y + yc)* — R =0,

wherep = cos(0), y. = ,/4(%2]72) andR. = | /W. Notice that ifa = (z, y) satisfies this equation,
it is no more sufficient for the angle:c to bed. Indeed, we squaregbs(f), so that the angléac is ¢
or ™ — 6. The set of points is then a subset of the two circles and is indeed the union of two symmetric
connected components of the circles from which we rem@ve) and (1,0). Let us now give the
equation of equiangle points for= (0,0) andc = (2/,3’). We move from(1,0) to (z/,y) with a

1

scaling of factotf|c — b|| so that the radius of circles will B& — b|| , | i+ TO obtain the coordinates

of the centers of two circles, we notice that it lies on the middle orthogonal of the seffideand is
located at a distancg 4(17fp2) of g Thus, the two centers of the equiangle circles have the following

. 2
coordinatesc/2 + (—y/, 2’) 4(1”_p2). O
Lemma 7.1.5 Let i, be an optimal traffic plan fromu~ to ™ made of three edges. Lét be the
equiangle circle arc associated tg, a; and 6, which is in the same half plane as. Let £’ be the
complementary circle arc. There is a "pivot” poipt € E’ which does not depend en such that the
bifurcation pointa is the intersection ofsp with £.

Proof: Let us denote by the instersection of the linesa with E’. The bifurcation pointz has to
satisfy the angle conditions given by 7.1.2, i.e. the apglg is prescribed as equal €. SinceFE U E’

is the only circle going through, p anda1, E is an equiangle circle arc far, p and the anglé; so that
the pointp does not depend on the source paint Thus, the optimal bifurcation point is obtained as the
intersection of the linesp with E. Let us denote the center of the equiangle circle. The anglep is
twice the angle:; ap which isf#,. Thus, the "pivot” point is easily constructed as the rotation ofvith
angle26,. O
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R,
a~~ | xb
/

/
91/6

q

Figure 7.4: The equiangle locus associatedut with an angled; is supported by a circle and thus is
the same circle as the equiangle locus associatedhtwith an angled; + 6,.

Lemma 7.1.6 Let 1 be an optimal traffic plan fromu~ to ™ made of three edges andthe "pivot”
point obtained in lemma 7.1.5. The cosoE |asp|.

Proof: Indeed, it is a direct consequence of Ptolemy’s theorem stating that the diagonals of a quadri-
lateral equals the sum of the products of the opposite sides. Let us notice fitgt that |a;az|(];2)”
and|azp| = |a1az|(7). When applied to the equilater@j aazp, the theorem becomessp||aiaz| =
|aay||pas| + |aaz||pai|. Thus,

mf|aar| +m3laas| = mglasp|.

Proposition 7.1.7 Let u be an optimal traffic plan fronp~ to u™. Letp be the pivot point associated
to (a1, m1), (a2, m2), in the half plane not containings. There are four different zones fag. If
asp N E = {a}, eithera € [agp] and the optimal has three edges withthe bifurcation point, or
a ¢ [asp] and the optimal is made of the two eddesa;| and [asaz]. If asp N E = (), then either
lasai| < |agaz| and u is made of the two edgéesa;| and[ajas] Or |asaz| < |aga;| and u is made of
the two edge&isaq] andfaza;]

Proof: The four zones are illustrated by figure 7.6al# [asp] oraspN E = (), then an optimal struc-

ture cannot have three edges because no bifurcation point is able to satisfy necessary angle conditions.
The optimum thus have an "L” or "V” structure, depending on the position of the source it

a € [asp], the three edges graph thus obtained is optimal. O
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Figure 7.5: The bifurcation satisfying the angle constraints given by the balance equation is obtained as
the intersection of the equiangle circle and the source to pivot point line.

Figure 7.6: Let us sum up the process that permits to find the optimal structure from one source to two
sinks. 1) Given the masses, andms, we obtain the anglé at an optimal bifurcation. 2) We draw the
equiangle circle, the pivot point and the lin@s, andpas. 3) Depending on the position of the source
point, we obtain one of the four possible configuration that are represented on this figure.
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|

Figure 7.7: The bifurcation point of an optimalY”” lies on the three equiangle circles.

7.2 Howto irrigate a Lebesgue segment

Let ™ be the Lebesgue measure on the segriteit x {0} andu~ = J5 the Dirac mass at the poist
In the following, we discuss the structure of an optimal traffic plan fyonto ;.. First, we determine
an optimal traffic plan in the case whefec R x {0}. This is the case of dissipation along the path.

7.2.1 The case of a source aligned with the segment

Lemma7.2.1LetS € R x {0} andu be an optimal traffic plan fronx™ to ,~. Thenu is equivalent
to x#A wherey(w, t) = min(w, t). If S = (0,0), E(p) = a%rl

Proof: The convex envelop property 6.1.3 tells that the suppont &f in the axis of the segment.
Because of the no-loop, the mass is dissipated uniformly along the fibers. Afus~= fol %z =

1
a+1* O

7.2.2 AT structure” is not optimal: the better Y structure proof

LetS ¢ [0,1] x {0}

Definition 7.2.2 Lets € [0, 1] andd, the Dirac mass located &k, 0). To everys € [0, 1], we associate
us the traffic plan obtained as the concatenation of the optimal traffic plan frorto 6, and fromd, to
. We say that such a traffic plan hagastructure.

Lemma 7.2.3 A traffic plan with T structure is not optimal.

Proof: Let i be the T structure associated4os [0, 1]. By construction, a massis irrigating the
segmenf0, s], and a mas$ — s is irrigating the segmerjt, 1]. We shall now prove that it is possible to
find aY structure more efficient than tAeone.

Let us consider & configuration with ending points of coordinate- 2 ands + = wherez is to be
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0 S-X StX 1

ds

Figure 7.8: A T'—structure and & -structure perturbation of it.

Figure 7.9: A degeneratd-structure and a perturbation of it.

determined. The bifurcation is located at a distanfrem s.
The cost of this” structure can be written

1
d(e,x) = 5%+ (1 —5)*b+ ?(warl + (s —2)*T 4 (1 -5 —2)>t)
«

wherea = /€2 + 22 + 2ex cos(f) andb = /€2 + 22 — 2ex cos(6).
Let us definev(e) = (e, ce).
The cost of the modified part of tfe structure is

1 a+1 1
=e+—— 1— )%,
u(©) = e+ (s (1= 9

Notice thatv(0) = «(0) and«’(0) = 1. Thus it is sufficient to show that for some suitabje’(0) < 1
so thatv(e) < u(e) for a sufficiently smalk. Let us calculate the derivative ofat point O,

V' (0) = <\/02 + 14 2ccos(f)s® + /2 +1 —2ccos(F)(1 — s)o‘> — (s 4+ (1 —5)%).

Forc =0,7'(0) = s* + (1 — s)®. Forc near infinity, the asymptotic expansion®f{0) is

cos(#)

FO() + (15201 - 20 4o

J0) = ¢ (s"‘(l +

= cos(0)(s* — (1 —s)%) + O(%)

cos(f) +0(1>)> — (s 4 (1= 5)%)

Let us suppose that ¢ 7Z ands ¢ {0,1}, then, because of the continuity of(0) regardinge, we
deduce that for a sufficiently largev’(0) < 1.
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\Y/ = l + —o o o o

Figure 7.10: The cut at Lebesgue segment induces optimal before and after cut traffic plans.

If s =0,0rs =1, andf ¢ nZ, let us show that the T structure is not optimal. The cost of the traffic
plan defined with a junction at coordinatas

7($a+1 + (1 _ :L,)a-i-l)‘

— 2 2 2
ple,x) = /2 + a2+ excos(9)+a+1

Let us considen(e) = ¢(e, ce). Then,v(0) = u(0) andv’(0) = /1 + 2cos(d) + c2 — ¢ so that with
c at infinity, v/(0) = cos(#) + O(%). Thus, in casé ¢ 7Z, the T structure with a junction at= 0 or
s = 1 is not optimal so that we can find a bet#@structure with junction if0, 1| and therefore a better
Y -structure. O

7.2.3 An optimum has not finite graph + fibers along the segment structure

Proposition 7.2.4 Let 1 be an optimal traffic plan fronu~ = d¢ to u™, whereu™ is the Lebesgue
measure on the unit segment. Let us denote the measure obtained stopping fibers when they attain
the segment. The traffic planis not atomic finite.

Proof: Let x be a parameterization @f and suppose that = 3 " | a;0,,. The cut at Lebesgue
segment induces a traffic plahwhich transports:~ to v. Becauseu is optimal, i is optimal and
lemma 6.3.3 proves thathas a finite graph structure. Let us consifiethe set of fibers going through
xi, i.e. Q; := [z;],. Let us denote by,; the measure irrigated kfy;. Because of the no-loop property,
the (2; are disjoints and the support of the measyrgfrm a partition of[0, 1]. Thus we can consider
an intervall C [0, 1] such that:; € I and the restriction of the traffic plan @, induces a traffic plan
with T'-structure irrigating Lebesgue measure on the intervitishould be optimal as a restricted traffic
plan but is not because of lemma 7.2.3. O

7.2.4 Can fibers move along the segment in the optimal structure?

Because of proposition 7.2.4, we know thais not a finite atomic measure. In the case= 1, the
transport problem is the one of Monge-Kantorovitch and then the cut of an optimum at the unit segment
is the Lebesgue measure on this segment. Whatif 1? Does it depend on the position of the source

or not?
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Figure 7.11: Let v be the measure obtained stopping fiberg avhen they reach the unit segment. If
v was a finite atomic measure, then the restriction around a Dirac massvolild be an optimal T
structure.

Conjecture 7.2.5 Let i be an optimal traffic plan fromu~ to 4 with o < 1 and v the cut ofy at
Lebesgue segment. The measuris an infinite atomic measure, i.e: = > m;d,,, wherem,; are
positive and € N.

Hint: The case ofv = % seems to be more tractable than the general case since in that case, the angle
constraint formula is particularly simple, i.e. at a bifurcation paing(6;) = v/k1 andcos(fs) = Vko.

Very roughly speaking, there is7a/2 angle at any bifurcation of an optimal tree so that not many
bifurcation can occur along a path in an optimal tree, this obliges in some way the tree not to bifurcate
so that it has to dissipate.

Some numerical evidences (see chapter 8) go in the direction of the conjecture. Indeed, the optimal
shape irrigating an atomic approximation of Lebesgue measure on the segment shows that as the mesh
increases, the path are getting flatter and flatter so that it suggests that diffusion will occur in the end
along any path.



Chapter 8

Algorithms

Introduction

Numerical experiments can be important to rule out conjectures or to gain intuition on the structure of
efficient traffic plans. In the first section we present an algorithm proposed by Xia and explain why it
cannot give a global optimum. We then consider the optimization problem of finding the/a best traffic
plan as two separated problems: a topological optimization and an optimization of nodes. Indeed, given
a topology of the structure, there generally exists a local optimum with this prescribed topology. Thus,
an algorithm for this problem should both try to optimize the topology and the position of nodes of the
graph. In the article [18], Gilbert presented a recursive construction with ruler and compass that permits
to obtain the exact position of nodes of an optimal structure, for a generap ¢gst. )i(e), where f

is any concave function. We present this recursive construction in section 8.2. We then give examples
of exhaustive search through all possible topologies in the case where target Dirac masses are aligned.
Indeed, when target Dirac masses are aligned the number of possible topologies is drastically reduced.
For more than 10 target points, the combinatorial explosion requires to search through a reduced number
of topologies. The multiscale approach and different type of perturbation of the topology are a good
way to obtain efficient structures in a reasonable time. All the algorithms that we just spoke about are
confined to the plane and to the one source to any measure problem. We explain in the last section why
it is difficult to move to a "any measure to any measure” problem and to increase dimension.

8.1 An algorithm suggested by Xia in [35]

8.1.1 Presentation of the algorithm

Let us recall the notation of the dyadic approximation of a measure presented in section 5.1.3. Let
be a cube with edge length and center. Let v be a probability measure on the compactwhere
X C C. We may approximate by atomic measures id, (X) as follow. For each, let

Ci:={CM:hezNnJo,2)"}

be a partition ofC' into cubes of edge lengtf. Now, for eachh € ZV N [0,2%)", let ] be the center
of C* andm! = v(C") be theu mass of the cub€’*. We define the atomic measure

Ay = Y mlioa,

hezZN n[0,2)N
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which is classically weakly converging j@ This approach is justified by corollary 5.3.3. Indeed, the
limit of sequence of optimal traffic plans is optimal.

Let . be any probability measure in the cubec R with edge length.. In section 6 of [35], Xia
proposes an algorithm to compute an optimal transport path from a Dirac négssherep € RV to
u. Let H be a fixed positive real number.

1. Given an approximating depth leta,, = A, (1), be then—th dyadic approximation of order.

2. For eachh € ZV n[0,2Y)%, the cubeC”_; of leveln — 1 consisting in2" subcubes of level
n. For anyz € X x [0, H], let G" be the union of (the cone ovey,| Q" , with vertexx) and
the line segmentp with weight u(C"_;). ThenG" is a transport path from,,(1)|C"_; to
w(Ch_)5,. Letq" € X x [0, H] be the point at whicd/(G") achieves its minimum among all
z € X x [0, H]. Let

an—1 = Z M(Cﬁ_l)éqh.

heZNA[0,2¢)N

3. Foreachk =n —1,...,1, repeatedly doing step 2 to get_;. In the end, we get a transport path
Gy, from a,, to 6, with finite M, mass.

4. By using optimization from one source to two sinks, we can locally optimize the locations of the
vertices ofG. One may repeatedly doing upward and downward optimization until the transport
path converges to a fixed graph.

5. Increase depth to get better approximation

8.1.2 Results and criticisms

We refer the reader to [35] to see the genuine figures obtained by Xia. However, for a sake of complete-
ness we shall represent on figure 8.1 some trees with very similar shapes. These results suggest three
remarks:

e We can see on figure 8.1 and in [35] that the structure of the tree is homogeneous dyadic in the
sense that at every bifurcation, the mass is split into two equal parts. This is due to the step 2 of
the algorithm.

e The second remark is that the cost of trees represented in figure 8.1 are not all identical with
the cost of trees in [35]. This is certainly due to the fact that the step 4 of the algorithm is not
efficient in optimizing the structure. Indeed, changing the location of bifurcation points upward
and downward is very costly and takes a lot of iterations to stabilize. Thus, during the optimization
process, the cost decreases very slowly so that the trees obtained by Xia are in general not fully
stabilized.

e The cost of the tree fgi~— = Ag4 is much lower than the one obtained by Xia in [35] for another
reason than the previous remark. Indeed, if one look closely at tips, the tree we obtained has a
degenerate topology in the sense that the Dirac mass on the extreme lgftisfnot irrigated
from a bifurcation point but from a point of the support’gf,.

The first remark raises the question of whether or not a "homogeneous” dyadic structure is optimal.
The answer is generally no. Indeed, two arguments prove that fact:
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01 02 ‘0"3 ‘0"2 —9.1 0‘.1 0.‘2 0.‘3
[ S v

669764242739064323 .1004646364108596484

1172087424793362565 1.1318664529664997289

Figure 8.1: Let u™ be a Dirac mass at (0,-1) apd = \,, with n = 2,4, 8 andn = 64 where),, is the
dyadic approximation of level of Lebesgue measure on the segment. From top left to bottom right, the
figures represent the trees considered in [35] as being optimalf00.95.

e The numerical argument consists of the tree represented on figure 8.2. It has a better cost than the
best homogeneous dyadic tree.

Another numerical example illustrating why the dyadic structure is not always the best one is
represented on figure 8.3.

e The angle argument: as stated in remark 7.1.3, when the two exit masses are equal at a bifurcation
point, the angle variation is equaldoccos(22¢~1 —1) /2. Thus, if we consider the path on the left
of a homogeneous dyadic tree, the angle variation after each bifurcatioris (222! — 1)/2
(see figure 8.4). So, after bifurcations, the path has an anglerccos(22~! — 1)/2 with the
vertical. Since this angle cannot excegdt means that diffusion has to occunrifis sufficiently
large.

In the end, these three remarks can finally be formulated as criticisms of this algorithm:

e By construction, the algorithm proposed by Xia can only lead to a homogeneous dyadic tree.
Such a tree is generally not optimal. The upward and downward optimization of the step 4 cannot
modify the topology so that the algorithm cannot reach an optimal tree. We shall present a method
to explore all possible topologies in the simple case of the irrigation of Lebesgue measure on the
segment.
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1.1318664529664997289 1.1312237539608578268

Figure 8.2: Two different topologies for the 64 problem= 0.95.

—0.2 0.2 0.4 02 0.2 0.4

\ \

=02 0.2

~0.4 0.4

—0.6 -06

—0.8- —0.8

.2778005353847491691 1.2818290787191117884

Figure 8.3: The structure on the left has a lower cost than the dyadic one represented on the right. Here
is a hint to explain why: roughly speaking, the source is located on the right so that it is preferable to
keep the mass as grouped as possible while it is transported from the right to the left ; each Dirac mass
of the target is thus directly irrigated from the main flow.

e Step 4 consists in optimizing the location of bifurcation points upward and downward. This costs
a lot of computer time since these points are numerous and since the stabilization of these location
can take a while. Indeed, modifying the position of one pétrabliges to change the position of
all the other points to satisfy the angle condition we have at optimal bifurcations(see proposition
7.1.2). But since all the other points moved, the optimization process requires tofrayain
and so on. For the cage= % the angles at a bifurcation have to He due to the structure of
the algorithm, this angle condition is clearly not respected by the figures of page 261 in [35]. This
can be avoided by the recursive exact construction proposed in next section.

e Even looking after the best structure with the dyadic homogeneous topology, the step 4 prevents
the algorithm from finding the best structure. Indeed, the step 4 is not always successful in moving
from a topology to its degenerated topologies. This explains why the best dyadic tree of figure
8.1 looks different from the one in [35]. This calls for another algorithm taking into account
degenerated topologies during the exhaustive search through all possible structures.
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Figure 8.4: In the case of the homogeneous dyadic structure, the angle variation after each bifurcation
is § = arccos(222~1 — 1)/2. This explains why there cannot be an infinite number of bifurcation when
one consider the path on the extreme left of an optimal homogeneous dyadic tree.

8.2 Optimal shape of a traffic plan with given topology

The irrigation problem can be divided into two optimization problems: the optimization of the topology,
and the optimization of the locations of bifurcation points. The optimization of the topology is treated
in the section 8.4. Within this section, we present a recursive construction that gives the location of
bifurcation points (i.e. Steiner points) of the optimal structure that has a prescribed topology. To explain
this construction, we consider the simplest case of trees with full Steiner topology. We then consider the
different possible degeneracies of topologies and explain how to take them into account.

8.2.1 Topology of a graph

Definition 8.2.1 A topology7 for a given point setv;)™_, of RY is an undirected connected graph
G = (V, E) whereE is the set of edges arid = (v;)"*/™ is the set of vertices. The poidt&)?j,?}rl
which are not present in the initial point s@t;)?"_, are called Steiner points.

Definition 8.2.2 A finite traffic plan induces a graph structure and thus a topology. Let us denote
TP(u,u",T) the set of traffic plans with topologf and

Clu=,ut.7):= inf FE
(= p",T) L (1)

the cost of the topology .

Definition 8.2.3 A Steiner topology is a topology such that all vertices corresponding to Steiner point

have degree 3. A full Steiner topology is such that it has- 2 vertices(vi)fgl‘2 and2n — 3 edges.

8.2.2 Arrecursive construction of an optimal with full Steiner topology [18]

In this subsection, we shall assume that the optimal structure associated to a prescribed full Steiner
topology is not degenerated.
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Let us first recall the construction of the optimal structure in the case we transport a Sdortveo
Dirac masses located at pointandb. Proposition 7.1.7 states that there is a pivot péirsuch that the
only bifurcation point of the optimal structure with full Steiner topology is obtained as the intersection
of the line S P with the circleabP.

In the more general case, this construction can be applied recursively as it was first described by
Gilbert in [18]. Let us explain the recursive construction on a simple example. We copsides a
target measure made of 4 Dirac massés c, d, andu™ the Dirac mass at a source poifit Let us
suppose that the optimal structure has the full Steiner topology such that the first bifurcation occurs at
b1 and the first subtree irrigatesandb and the second subtree irrigateandd. The second bifurcation
at b, is such that one branch irrigatesand the other oné. At last, the bifurcatiorbs is such that
one branch irrigates and the other oné. This topology is in fact the simplest we can imagine and is
illustrated by figure 8.6.

Let us explain why the construction of bifurcation poinisis only a recursive way to apply the
construction in the simplest "one source to 2 Dirac masses” case. Indeed, if we look for the best structure,
every subtree has to be optimal for the irrigation problem it induces. That is to say, the subtree which
irrigatesa andb from b, is optimal, so is the subtree irrigatimgandd from b,. Thus, pointds andbs
can be constructed thanks to pivot poiptsandp, as in proposition 7.1.7. Next, the irrigation frafh
to b, andbs has to be optimal as a subtree of an optimal structure. As a consequence, the irrigation from
S to p; andps is also optimal. Indeed, sindg, b, andp; are aligned, and,, b3, p, are also aligned,
the anglep,b1p- is the optimality angle so that the transport fréfmo p; andps is optimal. Thus we
can construct the position 6f through the pivot poinps associated tp; andps.

Let us now give the construction top to down then bottom-up.

e The prescribed topology is such thats grouped withb andc with d. Thus we construct their
associated pivot poings; andps.

e Since (to be found) bifurcation points andbs are then grouped, we construct the pivot point
associated tp; andps.

e Since the subtree made of edg#s, b, p; andb;p, is optimal, the bifurcation poirit; is obtained
as the intersection of the lingps with the circlepspps.

e Now that the bifurcation poin; is located, we obtain the bifurcation poiitas the intersection
of the lineby p; with the circlepab. And we obtain the bifurcation poimt as the intersection of
the lineb,po with the circlepscd.

8.3 Optimal structure in the case of Lebesgue measure on the segment

8.3.1 Coding of the topology

Let A = (a;); be N points of the space. When the poirits); are ordered on a line, it does not make
sense to group firsi; with a3 andas with a4. No such mixing can occur in the case of an optimal
structure, otherwise there would be a circuit which is impossible thanks to proposition 6.2.5. Thus, we
can restrict to "parenthesis” topologies, i.e. to topologies corresponding to all the possible way to do the
non-associative produaet ...a,,. We present here a convenient way to code for "parenthesis” topologies
and to generate them all.
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Figure 8.5: Given a topology, the pivot point permits to reduce two masses to one. Using this recursively
permits to reduce the problem to the transport of a Dirac mass to a Dirac mass. This is the top-down part
of the construction, i.e. the construction of the hierarchy of pivot points.

Definition 8.3.1 All parenthesis topologies are recursively described by ddists, .., t,—1]. The cod-

ing works as follow?; denotes the index of the first grouping so that we shiinka,, +; to a single for-

mal pointbl := (a¢,, at,+1)- Then[t2, ..., t,—1] describes the topology, of, ..., a;, —1, b1, ay, 42, ..., ap.

The figure 8.7 permits to clearly understand how it works. As a matter of an example, the topology on
the left of figure 8.3 i$l, 1, 1] ; the one on the right i§l, 2, 1].

D).

Lemma 8.3.2 The total number of topologies fé¥ aligned points is the Catalan numbg

8.3.2 Exhaustive search

Let us briefly mention that the coding of topologies is particularly adapted to the pivot point algorithm
since it permits a recursive description of the topology. Thus, in the case of few Dirac masses at the
target measure, it is possible to proceed to an exhaustive search through all topologies. This permits to
find global optima in the case the target measure has less than 10 Dirac masses.

8.4 Heuristics for topology optimization

As it was said before, the irrigation problem can be divided into two optimization problems: the op-
timization of the topology, and the optimization of the locations of bifurcation points. The recursive
construction presented in section 8.2 answers to the second optimization problem with an accurate con-
struction along with an exhaustive search through all possible degeneracies of a topology. However, an
exhaustive search through all topologies takes a lot of time and increasing the number of Dirac masses
causes combinatorial explosion. Several heuristics can help in finding a reasonable topology within a
reasonable time or in improving it. We present three of them:

e The multiscale approach permits to find efficient topologies thanks to a compromise between
accuracy of the resolution of the target measure and exhaustive search.
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Figure 8.6: The bottom-up part of the construction: connecting the source to the last pivot point permits
to find the bifurcation point which is taken as the new source point for the two induced topologies.
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[1,1,2,1]

Figure 8.7: The hierarchy of grouping is coded by a chain of numbers indicating the position of the
successive merging.

e The optimality of subtrees criterion looks if it possible to improve some subtrees of the global
structure.

e The perturbation method permits to move from a topology to another, allowing global improve-
ment.

8.4.1 Multiscale method

When the Dirac masses of the target measure are too numerous, the total number of possible topologies is
much too big for the exhaustive exploration to take place. The multiscale approach permits to reduce the
number of target points, and thus reduce the problem to a tractable one. The solution of this approximate
problem gives hints on the structure of a good structure for the initial problem. These hints permit to
reduce the initial problem to appropriate subtrees problems. The synthesis of all subtrees problems can
then take place to obtain a reasonable (but not necessarily optimal) structure.

Let us illustrate how the multiscale approach works with= g4 being the target measure; the
source point at (0,-1) and = 0.95.

The exhaustive search for an optimal structure takes less than a few minutes in the case of not more
than 10 target measures.

e Best structure at a lower resolution: let us start by considering the optimal traffic plan transporting
u~ tout = Ao, we denote it byl'g. It is represented on figure 8.11. This tree is symmetrical
and because of the symmetry of the problem we shall look for a symmetrical solution.
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1,1 1/4014452362992676805 8.2,1] .4014452362992676806

[2,1,1] 1/4489853974761890610 [2,2,1] .4489853974761890610

[1,2,1] 1.3750000000000000000

Figure 8.8: All local optima associated to each topology foe= %
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1,1 1(2210721734293196686

8.2,1] .2210721734293196685

[2.1,1] 1.2274267215865464675

[2,2,1] 1.2274267215865464676

[1,2,1]

1

.2119688655261386618

Figure 8.9: All local optima associated to each topology tor= 0.8 .
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Figure 8.10: The [1,1,...] topology for the irrigation of a 64-approximation of Lebesgue measure on the
segmentd = 0.95).

e Two subtrees: we denote by the second bifurcation point @fg, it is located at (-0.123,-0.41).
Two subtrees are starting frof, T}, on the left andl},, on the right.

e The range of the two subtreeﬂ?ll0 irrigates target Dirac masses withjr0.5, —0.2] and 77,
irrigates target Dirac masses witHin0.2, 0].

e Go back to the initial resolution: Ie,ul+ andy," be respectively the sum of Dirac masses\gf
located within[—0.5, —0.2] and within[—0.2, 0]. Because of the previous point we bring back the
initial problem to the one of finding efficient structures to transpoto ;" and P to 4"

e Iteration of the process: singe" is made of 13 Dirac masses, we proceed to an exhaustive search
of the optimal structure. Sinqael+ is made of 19 Dirac masses we apply the multiscale approach
to this problem.

e Best structure at a lower resolution: We denote/hyan approximation ofi;” made of 10 Dirac
masses. The best traffic pldif, represented on figure 8.11 and 8.12 has a bifurcation [gpint
located at—0.215, —0.22).

e The range of the two subtrees (see figure 8.12): the two subtrees starting)ffweme range
[—0.5,—0.28] and[—0.28, —0.2]. The corresponding measures at the initial resolutioand v,
are respectively made of 14 and 5 Dirac masses. The problem of finding the best structure from
Pto Mfr thus reduces to the one of finding the best irrigation f@ro v; andv,.. An exhaustive
search can do this job.

e Recombination (see figure 8.13): we decomposads), + Ay, respectively the Dirac masses
on the right and on the left. The multiscale approach made us congjdas\g, = v+ v, + ;'
The recombination of optimal structures fraghto v; andv,. gives an efficient structurg; from
Pto Mf- We can then combine it with the structdfethat transports to ;'
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0.2 0.4
i 1
—14
045 04 035 —03 025 —02 045 0.1 ~0.18-0.14 —0.1 ~0.06 —0.02
0 [
-01 ~0.19
-0.2 -02
Q
-03 -03
-0.4 P -0.44 P

Figure 8.11: At the top, Ty is transportingu™ to u+ = A\jo. The bifurcation point? induces two
subtrees. The two figures at the bottom represent these two subtrees at a better resolution so that we can

continue the multiscale optimization process.
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—0.‘45 —q.4 —0.‘35 —q.S -0 .‘25 _0\'2 -0 .‘1 5 —q. 1
0
—0.14
—0.2
Q
—0.31
-0.4- P
-045 -0.4 -035 -03 -025 -0.2 -0.26-0.24-0.22 02
0 07
—0.05 -0.05
0.1 -0.1
~0.15 -0.15
0.2 02
Q Q

Figure 8.12: The measure; is an approximation ofi," that is made of 10 Dirac masses. The figure at

the top representg?,, the best traffic plan irrigating;( from P. The bifurcation point) induces two
subtrees, that we look at the initial resolution. The two figures at the bottom represent these two subtrees
at the initial resolution.
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026-024-022 02

008 008

1.1312635321735933927

Figure 8.13: We obtained efficient structures to transport a masg & v; andv, and to transport a

mass atP to u;". These three structures are represented at the top. The figure at the bottom represents
the combination of these three structures that gives an efficient transport from the sourg@,peint

to Ag4. Notice that this structure is better than the dyadic homogeneous one and has a cost 1.1312635

which is very close of the optimal one 1.1312238.
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Figure 8.14: If a tree is optimal, then all of its subtrees also have to be optimal. For instance the two
subtrees starting fron®? are optimal in this case. This tells that we can't improve the initial structure
with the optimality of subtrees criterion.
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8.4.2 Optimality of subtrees

Given an optimal structur@, a subtree is optimal for the problem it induces. That is to say, if we look

at the two tree§’ and7x (see figure 8.14) starting at a bifurcation paihof an optimal structure, these

two trees have to be optimal. Indeed, if it was not the case, there would be betteF,ti@es$T; such

that a combination of] and T}, would give a better structure thdn Thus, it is possible to improve

some structures, only trying to improve subparts of it. More precisely, since a target measure with 10
Dirac masses is computationally tractable, we can test all subtrees irrigating less than 10 Dirac masses
in order to improve a structure.

8.4.3 Perturbation of the topology

The second heuristics that permits to improve a given stru@ucensists in perturbing the topology
of 7. That is to say, given an edge we can define the topological neighborhood ®fe) the set of
topologies obtained through all possible perturbation of the edethe case of parenthesis topologies,
we reduce these perturbations to reasonable ones (see figure 8.15).

8.5 Further

8.5.1 General measure to general measure

Let us illustrate the difficulties appearing in the case of several sources. In case the optimal structure
has a pointS with multiplicity 1, the structure is the union of an optimal irrigation frafrto ™ and

an optimal irrigation fromS to .~ so that the pivot point approach holds (see figure 8.16). However, if
we try to find the optimal structure with the prescribed topology like the one represented on figure 8.17,
then the pivot point algorithm is of no use. Indeed, as illustrated by figure 8.17, Steiner points are no
longer being obtained from top to down. The pdintdepends on the location 63 and the poinb,
depends on the location 6f. This calls for another approach and another coding of topologies.

8.5.2 Three dimensions

One main difficulty is added in the case of three dimensions: it is no more possible to use a combinatoric
approach, even to optimize the transportation of a Dirac mass to a measure with very few Dirac masses.
Let us go back to dimension 2 to explain that. In the case of 2 dimensions, each couple of Boifts
can be reduced either to one of the two possible pivot point, eithé twr . An exhaustive search
through all possible topologies and all possible degeneracies can then take place.

In the case of 3 dimensions, given two poifif§, P») the set of possible location for the pivot point
is a whole circle. Thus, even for a prescribed topology, the combinatorics is of no help and one has to
use numerical approximation.
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[2,1,2,2,1]

[1,1,2,2,1] [1,3,3,2,1]

[1,3,2,2,1] [1,2,2,2,1]

Figure 8.15: The different possible topological perturbations associated to theecedge
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Figure 8.16: The pivot point approach can give the optimum in that case since the top-dow, bottom-up
approach holds in that case. Indeed, the construction of pivot points bring back the problem to a one
source one target problem. We then reconstruct the whole structure as described in section 8.2.

Cc

Figure 8.17: If this structure is optimal, then the pivot points are of no help in finding the location of
the bifurcation point$, andb,. Indeed, we neeé; to locateb, and reciprocally so that a numerical
algorithm seems necessary in that case.
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Appendix: optimal flow and Poiseulille’s
law

In this appendix, we shall consider a fluid with laminar flow in a tube. We recall how Poiseuille law can
be derived from Navier-Stokes equation. Next, we discuss the optimality of the circular section.

Poiseuille law

Let us consider a tube of constant circular section with a straight axis. We:talg/) as coordinates
in the tube, wheré € [0; L] is the distance along the axis afid y) € D(0,r) are orthogonal cartesian
coordinates.
We assume a stationary regime and that the flow is laminar, that is to say the velocity is oriented by
the axis and is constant on all trajectories, so ggat: % = 0. The velocityv at a point of a tube along
the z-axis is given by Navier-Stokes equation
0? 0?

10p
AN = ——, whereA = — + —
v(l)(z,y) o where 2 "

Hence,% = constant (wheren denotes the viscosity coefficient). Thus, the gradient of pressure has

the form% where[p] denotes the pressure difference at the ends of the tube, and we shall denote it by
vp- In other wordsyp is a linear interpolation of the initial and final pressures in the tube. We assume
that the pressure is constant on the initial and ending sections of the tube, so that the pressure is constant
on each section of the tube. For simplicity, let us take 1.

Under these hypotheses, we can calculate the velocity and the corresponding flow through the whole

tube
(2~ (a4 4)
4
1 4 2
f: U(f'?,y’l)Z*T‘ VP =T "VUnax
D(0,r) 4

v(z,y,l) = 7P

The power dissipated by the steady flowis= fL 7 p. This is to be identified withV = Lf?R
where by definitionR stands for the resistivity of the tube. Thus we obt&in= 4/r*: Poiseuille law
says that the resistivity of a tube scales as the inverse fourth power of the radius.

Optimality of the circular section

What is the optimal form of the section of a tube? If we prescribe the pressure at both ends of a tube of
constant section, the circular form ensures the maximal flow. We briefly present the result obtained in
[30] and [1].

131
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Let us recall the definition of the rearrangement of a set (see [21]). df R?, we denote byA*
the ball B(0,7) = {x | |z| < r} such thatB(0,7)| = |A|. If f: R? — R is a Borel measurable
function vanishing at infinity, we define the symmetric decreasing rearrangemgnbyff*(z) =
I X{ ¢y (®)dt. It results from the definition thafx | |f(x)] > t}| = {= | f*(x) > t}| and

A1l = 1L -
Letwu be such that Au(z,y) = sypinthe domai. Letv be such that Av(z,y) = (Vp)* = vp
in Q*. Then, it can be shown that < v [30]. As a consequence, the flow in a tube of secfibis
such thatf,u = [,. u* < [,. v. Then a circular section is always more advantageous from the point
of view of the flow.

In [1], the authors prove the uniqueness of the optimal formndk © = maxv, then there iscq
such that) = zo + Q* andu = v(- + xo). Then, ifQ is an optimal form, we havé, u = [,. v and
u* < v, hencemaxu = maxu* = maxwv necessarily. Then there ig such that) = zy + Q*, and,
therefore, the circular form is the unique optimum.
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