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Introduction g énérale

En observant les images de la figure 1, on constate que les structures branchues sont présentes dans de
nombreux syst̀emes naturels et artificiels : poumons, réseau des veines et artères, arbres, nervures des
feuilles, ŕeseaux de drainage et d’irrigation, réseaúelectrique et de télécommunication... Sans vouloirà
tout prix trouver un principe unique caché derrìere cette diversité, on peut toutefois chercherà mod́eliser
la géoḿetrie et les fonctions de ces systèmes, et se demander si leur structure et leurs propriét́es peuvent
être relíesà des principes d’optimisation simples. Le paradigme qui soutient cette volonté est classique :
la naturéetant bien faite, les systèmes qu’elle propose sont efficaces pour la tâche qu’ils ŕealisent. Quelle
est cette t̂ache dans le cas présent? On constate que les systèmes branchus préćedemment mentionnés
partagent certaines propriét́es qui nous incitent̀a les d́enommer d́esormais systèmes irrigants :

• ces syst̀emes acheminent un fluide (ou un signal) d’une source vers un but : coeur vers tout le
corps humain pour les artères (et trajet inverse pour les veines) ; tout un bassin de rivière vers la
mer ; de la tige vers les cellules de la feuille ou inversement (xylème et phyl̀eme).

• les points terminaux constituent tout un volume : les capillaires sanguins irriguent ”tous” les
points du corps humains ; les bronchioles amènent de l’air en presque tout point des poumons ; le
bassin d’une rivìere occupe toute une surface...

• ces syst̀emes assurent uneégalit́e de distribution (m̂eme d́ebit aux points terminaux des poumons,
des veines) ou bien une distribution imposée (pluvioḿetrie moyenne inhomogène sur tout un
bassin de rivìere).

C’est l’objet de cette th̀ese de proposer et d’étudier une formulation variationelle de ce qu’on appellera
le probl̀eme d’irrigation (et ses variantes). Nous considérons dans cette introduction les cinq points
principaux de l’́etude : mod́elisation, existence, régularit́e, équivalence entre les modèles, simulations
numériques. Cette th̀ese apporte des contributionsà chacun de ces cinq points.

MODELISATION

C’est le syst̀eme irrigant que l’on souhaite modéliser. Il s’agit d’en retenir les propriét́es essentielles :
structure ǵeoḿetrique et flots/capacité en chaque point de la structure. Beaucoup de propositions ont
ét́e faites pour mod́eliser ce type d’objet, on distinguera les modèlesà tubes ”́epais” et les mod̀eles de
transport de masse.

Les mod̀elesà tube épais
Les articles de Brown, West et Enquist [31] et [32] utilisent un tel modèle. Comme illustŕe par la fig-

ure 1.1 du chapitre 1, ces auteurs considèrent un ensemble de tubes qu’ils regroupent par géńeration. Ni
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6 Introduction générale

Figure 1: Le réseau des veines et artères. Les nervures d’une feuille. Une rivière vue du ciel. Une
variét́e d’algue rouge.
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la manìere dont les tubes sont connectés entre deux ǵeńerations, ni le plongement des tubes dans l’espace
ambiant ne sont explicités. Seules sont retenues les sections et longueurs des tubes. L’objectif que se
donnent les auteurs en considérant de tels mod̀eles est de d́eduire des lois d’́echelles̀a partir de certains
axiomes : la structure minimise uneénergie, la structure a des points terminaux décrivant un volume,
le nombre de branchements est constantà chaque ǵeńeration... Notons que les résultats obtenus par ces
auteurs sont critiqúes par Dodds, Rothman et Weitz [15]à juste raison. Il est intéressant de mentionner
que ce type de modèle aégalement́et́e utilisé par Sapoval, Filoche, Mauroy et Weibel dans l’article
[23]. Bernard Sapoval et sońequipe montrent que des poumons qui seraient ”optimaux” dans le sens
où ils prennent le moins de place possible tout en nécessitant un effort d’inspiration tolérable, seraient
dangereux, i.e. qu’une petite diminution de la section des tubes entraı̂nerait un effort d’inspiration trop
important.

Nous pŕesentons dans le chapitre 1 un autre type de modèleà tubeépais, celui propośe par Caselles
et Morel dans [12]. Le système irrigant est tout simplement un ouvertU de l’espace ambiant (cf figure
1.1). Les auteurs introduisent une notion de profil pour contrôler la vitesse de d́ecroissance du rayon des
tubes. On dit alors qu’un point est accessible/irrigué selon un profilf donńe (voir la d́efinition 1.1.1 et
la figure 1.2) si ce point se trouvèa l’extrémit́e d’un tube contenu dansU et de profilf . La question
abord́ee dans [12] est de trouver des conditions nécessaires et suffisantes sur un profil pour que des
syst̀emes irrigant tout un volume puissent exister.

L’article [12] poursuit en montrant que ce type de modèle à tubesépais permet d’introduire une
définition naturelle de l’́egalit́e de distribution. SoitU ⊆ Ω (où Ω est un ouvert deRN tel que|∂U | > 0).
Un ensembleU permet l’́egalit́e de distribution s’il existe un champ de vecteurs borné v dansΩ, nul en
dehors deU , et une mesure sourceµ dont le support est dansU tels que−div v = −µ + χ∂U où χ∂U
est la mesure de Lebesgue restreinteà l’ensemble irrigúe∂U (cf section 1.2).

Les mod̀eles de transport de mesure

Une autre approche de la modélisation des systèmes irrigants consistèa ne retenir que le squelette
de la ǵeoḿetrie forḿee par les tubes, ainsi que les flots/capacités associésà ces tubes. L’objet qui vient
immédiatement̀a l’esprit pour mod́eliser ce type de structure est le graphe orienté à poids (v́erifiant les
lois de Kirchhoff). Un tel objet permet en effet de décrire comment un flot initial se scinde et se répartit
entre tous les points terminaux. Le problème principal líe aux graphes finis est qu’ils ne permettent pas
d’appŕehender des structures irrigant des volumes. Il s’agit alors de plonger les graphes finis dans un
espace plus important, si possible avec une propriét́e de compacit́e. L’espace que propose Xia dans [35]
est celui des mesures de Radon vectorielles ou des 1-courants ; on dit alors queG transporteµ+ vers
µ− si le bord deG estµ− − µ+ . Dans [22], Maddalena, Morel et Solimini introduisent une description
Lagrangienne en d́ecrivant la structure irrigante par une applicationχ : Ω×R+ → RN appeĺeepattern.
L’ensembleΩ est l’ensemble des particules et chaque fibreχ(ω, ·) indique le chemin suivi par la particule
ω. Les graphes orientés finis n’ayant qu’une seule source peuvent facilement s’écrire commepattern
et la mesure irrigúee par unpatternχ est simplement la mesure image deΩ parχ(·,∞). Une autre
possibilit́e propośee par Brancolini, Buttazzo et Santambrogio est de considérer un transport comme
un cheminγ sur l’espace des mesures [7], où γ est tel queγ(0) = µ+ et γ(1) = µ−. L’objet que
nous avons choisi d’introduire pour modéliser les syst̀emes irrigants se veutêtre la ǵeńeralisation des
patternset consiste simplement en l’ensemble des mesures de probabilité sur l’espace des courbes 1-
Lipschitzienne (cf figure 2). De la m̂eme manìere que pour lespatterns, on peut associer canoniquement
une mesure irrigúeeà un plan d’acheminement. Les plans d’acheminement offrent cependant plus de
souplesse puisque l’on peutégalement y associer une mesure source ainsi qu’un plan de transfert de la
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masse transportée.

Que souhaite-t-on optimiser?

Autrement dit, quel côut souhaite-t-on qu’une structure irrigante optimise? On va distinguer deux
types de côut : le côut de fabrication ; le côut du transport le long de la structure. Donnons deux
exemples.

Imaginons une structure faite d’un seul type de tube. Le coût de cette structure est obtenu en multi-
pliant la longueur totale du réseau par le côut au lińeaire d’un tube. Si le prix du lińeaire est proportionnel
à la quantit́e de matìere d’un tube, un tube de sectionS et de longueurL aura une quantité de matìere
de l’ordre deL

√
S, de sorte que le côut d’un tube par unit́e de longueur sera de l’ordre de

√
S. Il vaut

donc mieux du point de vue de la quantité de matìere un tube de sectionS que deux tubes de sectionS2 .
Pour une structure de type graphe, la fonctionnelle que l’on va chercherà optimiser est donc de la forme∑

e f(ce)l(e) où l’on somme sur toutes les arêtes de la structure etce désigne la capacité de l’ar̂etee,
l(e) la longueur de l’ar̂etee et f(c) est le côut d’une ar̂ete de capacité c par unit́e de longueur. C’est ce
type de côut que Gilbert [18] a utiliśe en 1967 pour optimiser des réseaux de télécommunication.

Imaginons,̀a l’instar du probl̀eme de Monge-Kantorovitch, que l’on souhaite transporter deux tas de
sable de 1kg vers une configuration faite d’un seul tas de 2kg situé à 100m. On peut soit transporter les
deux tas de 1kg sépaŕement ou bien les amener en un point commun puis les transporter ensemble. La
fonctionnelle qui d́ecrit ce côut prend la m̂eme forme que dans l’exemple préćedent :

∑
e f(ce)l(e) où

ce désigne la masse/flot transportée le long de l’ar̂etee, etf(c) désigne ce qu’il en côute de transporterc
par unit́e de longueur. Pour coder le fait que l’on encourage la masseà se grouper pour̂etre transport́ee,
on prend une fonctionf concave de sorte quef(a+ b) ≤ f(a) + f(b).

Dans les deux cas, nous sommes amenésà consid́erer la fonctionnelles de type
∑

e f(ce)l(e) qui a
ét́e introduite pour la première fois par Gilbert [18].

Sous quelle contrainte?

Quand on mod́elise un syst̀eme irrigant̀a l’aide du transport de mesure, la contrainte que l’on impose
à la structure est constituée de sa mesure irrigante et de sa mesure irriguée, i.e. on cherchèa optimiser le
coût d’une structure, ses mesures irrigantes et irriguéesétant prescrites. Notons que dans le cas des plans
d’acheminement, on peutégalement imposer le plan de transfert. En effet, la description lagrangienne
permet de garder la trace de la trajectoire précise de chaque particule et rien n’empêche de prescrire le
plan de transfert puisqu’il reste alors tout unéventail de possibilit́es pour la structure réalisant ce plan
de transfert. Bien entendu, cette contrainte n’aurait aucun sens dans le cas du problème de Monge-
Kantorovitch puisque c’est préciśement parmi l’ensemble des plans de transfert que l’on cherche le
transport optimal. L’objet plan d’acheminement (traffic plan) permet donc d’introduire un nouveau
probl̀eme que l’on nommera le problème de ”qui va òu” (”who goes where”). Imposer la contrainte
du plan de transfert pourrait par exemple permettre de modéliser la structure des transport urbains où le
plan de transfert logements vers lieux de travail est prescrit (cf les travaux de Buttazzo et Stepanov [10],
[9] et [8] pour une autre approche).

EXISTENCE

Le modèleépais

On s’int́eressèa l’ensemble des points accessibles et, en particulier, on se demande sous quelle
condition de profil il est possible d’irriguer un ensemble de mesure non nulle. Le corollaire 1.1.3 montre
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Figure 2: Trois plans d’acheminement (traffic plans) : une masse de Dirac enγ, un arbre avec une
bifurcation, un arbre irrigant la mesure de Lebesgue sur le segment[0, 1]× {0} du plan. Dans le cas du
dernier exemple,̀a ω ∈ [0, 1] correspondχ(ω) ∈ K, le chemin paraḿetŕe par sa longueur reliant une
masse de Dirac situé en(1/2, 1) au point(ω, 0).
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qu’une telle structure n’est possible que si le profil vérifie

lim sup
r→0+

f(r)/r = 0.

Réciproquement le lemme 1.1.5 donne une condition suffisante sur le profil, en construisant une structure
inspiŕee du tapis de Sierpinsky. Cette condition suffisante est vérifiée par des profils de typef(s) = sp

pourp > 1 etf(s) = s
| log s|β pourβ > 1 (cf lemme 1.1.6).

En consid́erant l’exemple inspiŕe du cube de Sierpinsky, on construit une suite de champs de vecteurs
satisfaisant l’́equation sur la structure obtenueà lan-ème it́eration de la construction du cube. On se sert
de cette suite pour obtenir l’existence du champ de vecteurs recherché sur la structure ǵeńerale.

Les deux ŕesultats que l’on vient de mentionner montrent qu’il n’y a pas d’obstructionà l’existence
de syst̀emes irrigant un volume et assurant uneégalit́e de distribution. Toutefois, si l’on tient en plus
compte de la ŕesistance du réseau, une obstructionénerǵetique survient. L’objet du chapitre 3 est princi-
palement de montrer l’obstruction suivante aux modèles infinit́esimaux pŕecedemment introduits : il ne
peut y avoir de structure irrigant un volume finià énergie finie. La principale conséquence est donc que
les tubes s’arr̂etent ńecessairementà une certainéechelle.

Le modèle transport de masse
Une fois que les fonctionnelles̀a optimiser sont bien d́efinies, on s’int́eresse au résultat d’existence

d’une structure optimale transportant une mesureµ+ versµ− (en imposant de plus un plan de transfert
π dans le cas du problème ”qui va òu”). Les différents mod̀eles emploient tous la ḿethode directe qui
consistèa montrer que la fonctionnelle est semicontinue inférieurement tout en montrant que l’on peut
extraire une suite convergente d’une suite minimisante. Xia [35] obtient aisément ce ŕesultat d’existence
d’une structure optimale pour le problème d’irrigation puisque la fonctionnelle coût qu’il utilise est
semicontinue inf́erieurement par d́efinition.

Le mod̀ele des plans d’acheminement est la géńeralisation naturelle despatterns[22] et les fonction-
nelles de côut sont presque identiques. La preuve d’existence d’une structure optimale pour le problème
d’irrigation pŕesent́ee dans le chapitre 4 est donc très similaireà celle obtenue pour lespatterns[22].
Notons toutefois que les plans d’acheminement permettent d’obtenir le résultat d’existencéegalement
sous la contrainte du plan de transfert, répondant ainsi au problème de l’existence du problème ”qui va
où”.

Une fois l’existence d’une structure optimale démontŕee, il s’agit de d́emontrer qu’il existe une
telle structurèa côut fini. Pour ce faire, on estime le coût pour irriguer une approximation dyadique
de la mesure irrigúee (cf [35]). Les estimations obtenues en considérant les approximations dyadiques
permettent alors de conclureà l’existence d’une structurèa côut fini dans le cas òuα > 1− 1

N , oùN est
la dimension de l’espace ambiant. Comme cela est montré dans le chapitre 5, on peut adapter ce type
d’argument au cas des plans d’acheminement et montrerégalement qu’il existe une structureà côut finie
sous la contrainte d’un plan de transfert.

Mentionnons que De Villanova et Solimini donnent dans [29] des conditions très pŕecises sous
lesquelles une mesure donnée peut̂etre irrigúeeà côut fini.

Variantes
La plupart des systèmes irrigants naturels considéŕes évitent les variations d’angle importantes.

Comme on peut le lire dans le manuel d’hydraulique [11], des angles dans un réseau de tubes entraı̂nent
des chutes de pression et des turbulences, de telle sorte que l’on fait tout pour leséviter au maximum.
Ces consid́erations nous font nous intéresser̀a l’existence de structuresà côut fini ayant des variations
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d’angles finies. On montre qu’en trois dimensions et dimensions supérieures (cf section 5.5), il existe
des arbres irrigant un volume tout en maintenant une variation d’angle fini le long des chemins.

STABILITE ET REGULARITE

En suivant le travail de Xia [35], le résultat d’existence d’un plan d’acheminement optimal entre deux
mesures permet d’introduire une distance sur les probabilités analoguèa la distance de Wasserstein.
L’article [35] contient de plus une preuve du résultat de stabilit́e suivant: la limite d’une suite convergente
de plans d’acheminement optimaux est un plan d’acheminement optimal (cf corollaire 5.3.3).

En ce qui concerne la régularit́e, tr̀es peu de ŕesultats sont pour l’instant acquis. Un résultat sat-
isfaisant serait bien sûr cet énonće : soitx un point du support de la structure, etB(x, r) une boule
n’intersectant pas le support des mesures irrigante et irriguée ; alors le support de la structure dans
B(x, r) est un graphe fini. C’est une version un peu affaiblie de ceténonće qui est annonćee dans [36].
L’article comporte toutefois une erreur et plusieurs imprécisions si bien que l’énonće reste actuellement
une conjecture. La stratégie emploýee dans [36] est dans un premier temps d’effectuer un blow-up, puis
de montrer par des estimations utilisant l’optimalité que la structure coı̈ncide avec le blow-up dans un
voisinage assez petit dex. L’existence du blow-up est correcte, mais l’usage qui en est fait est erroné.

Une classe de résultats de ŕegularit́e tr̀es utile sont les lemmes de ”nettoyage” qui réduisent l’́eventail
de ceà quoi peut ressembler un plan d’acheminement optimal. Mentionnons la preuveélégante d’un
résultat de non présence de boucle dans un plan d’acheminement optimal proposée par De Villanova et
Solimini [28] (cf lemme 6.2.4). Le premier lemme montrant qu’il n’y a pas de circuità flux minoŕe par
un c > 0 dans un transport path optimal aét́e donńe par Xia [35] et est red́emontŕe dans le lemme 6.2.5
(dans le cadre plan d’acheminement). Notons toutefois que ce résultat n’est valable que dans le cas du
probl̀eme d’irrigation et ne conserve pas la contrainte d’un plan de transfert. Il ne peut donc s’appliquer
dans le cas du problème ”qui va òu”. La proposition 6.2.7 montre quantà elle qu’il ne peut y avoir de
boucle en toute ǵeńeralit́e. Ce ŕesultat apporte un surcroı̂t d’information par rapport au lemme 6.2.5. En
effet, la proposition 6.2.7 ne requiert pas que le flux soit minoré par unc > 0 le long de la boucle.

L’absence de boucle est cruciale pour démontrer la ŕegularit́e d’un optimum dans le cas d’un trans-
port entre deux mesures atomiques (cf proposition 6.3.3). Notons que ce résultat n’est pas montré dans
[35]. En effet, Xia d́efinit le côutEα sur les graphes finis puis l’étend par relaxation sur l’espace formé
par les limites de graphes finis. Rien n’assure alors que les graphes finis ”demeurent” optimaux pour
transporter des mesures atomiques.

La régularit́e étant d́emontŕee dans le cas du transport entre masses atomiques, on peut s’intéresser
à la structure des embranchements. Les contraintes d’angles (cf 7.1.2) associéesà d’autres arguments
permettent de montrer qu’en deux dimensions, et pourα ≤ 1

2 , le seul type d’embranchement possible
pour un plan d’acheminement optimal est l’embranchement de typeY .

EQUIVALENCE

Les ŕesultats de ŕegularit́e obtenus pŕecedemment assurent que dans le cas du transport entre mesures
atomiques, un plan d’acheminement optimal a la structure d’un graphe fini. Ce résultat suffit̀a montrer
l’ équivalence entre la formulation du problème de Gilbert-Steiner (cf théor̀eme 6.4.2) et le problème de
l’irrigation. Le fait qu’un optimal n’ait pas de boucle géńerale de masse permet par ailleurs d’identifier
les mod̀eles de plan d’acheminement et depatternsdans le cas òu la source est réduiteà une seule masse
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de Dirac (cf th́eor̀eme 6.4.1). Enfin, l’́equivalence entre le problème d’irrigation et le mod̀ele de Xia est
démontŕee dans le chapitre 4.

SIMULATIONS NUMERIQUES

Un algorithme ayant pour ambition d’approcher un optimum global est présent́e dans l’article de Xia
[35]. L’algorithme consistèa ŕesoudre une tour de problèmes simples obtenus par approximation dyadique.
Décrivons-en rapidement le fonctionnement : soitµ− la mesure que l’on souhaite irriguerà partir d’une
sourceS. Une subdivision dyadique de l’espace permet d’approcher la mesureµ− par deux masses de
Dirac. On est alors ramené au probl̀eme tr̀es simple de trouver la structure optimale transportant une
masse de Dirac vers deux masses de Dirac enS1 et S2. Une fois cette structure trouvée on applique
à nouveau cette procédure pour transporterS1 et S2 vers le raffinement dyadique suivant deµ−. Une
fois que la structure globale est obtenue, Xia optimise la position des points de bifurcation. En deux
mots, cet algorithme consiste en une stratégie multíechelle utilisant des approximationsà deux masses
de Dirac. Comme on le montre dans le chapitre 8, cet algorithme ne peut que très rarement trouver
l’optimum global. La raison principale en est que l’arbre ainsi obtenu a une topologie dyadique im-
pośee. Or, le probl̀eme d’optimisation pośe par l’irrigation se scinde en deux sous-problèmes. D’une
part l’optimisation de la topologie de la structure ; d’autre part l’optimisation des points de bifurcations
(pour une structure de topologie donnée).

Comme cela áet́e mentionńe pŕecedemment, l’algorithme de Xia n’explore qu’une seule topologie.
Par ailleurs, l’optimisation de la position des points de bifurcation qu’il propose converge lentement
et reste approch́ee. Pourtant l’article [18] de Gilbert décrit une constructioǹa la r̀egle et au compas
récursive permettant d’obtenir la position exacte des points de bifurcation d’une structure optimale de
topologie prescrite. Cette construction est décrite dans la section 8.2.

En utilisant cette construction récursive, nous pouvons alors très rapidement obtenir le coût d’une
structure optimale de topologie prescrite. La recherche exhaustiveà travers toutes les topologies est alors
envisageable pour des mesures n’ayant pas plus de 6 masses de Dirac (au delà, le nombre de topologiesà
explorer est trop important). Dans le cas où les masses de Dirac sont alignées, le nombre des topologies
qui méritent d’̂etre prises en compte est considérablement ŕeduit. L’exploration exhaustive est alors
possible pour une dizaine de masses de Dirac.

Afin d’ éviter les recherches exhaustives quand le nombre de masses de Dirac est trop important, on
adopte une approche multiéchelle. Celle-ci consistèa approcher le problème park masses de Dirac où
k est le nombre de masses pour lequel l’exploration exhaustive reste possible. Ce sous-problème fournit
une structure optimale dont la première bifurcationS′ permet de scinder la mesure irriguée en deux
mesuresµ1 et µ2. On applique alors la stratégie multíechelle aux problèmes de transporterS′ versµ1

et S′ versµ2. Cette approche multiéchelle permet d’obtenir dans un temps raisonnable une topologie
efficace de transport. Celle-ci peut alorsêtre affińee par perturbation (cf figure 8.15).

Chapitre 1 : Irrigation géoḿetrique et EDP.

Ce chapitre pŕesente les ŕesultats obtenus dans [12] par Caselles et Morel qui explorent deux facettes
de l’irrigation : l’irrigation de volume et l’́egalit́e de distribution. Il s’agit d’abord de préciser ce que
l’on souhaite entendre par réseau irrigant un volume. En considérant le cas des poumons par exemple,
on est ameńe à consid́erer qu’un ŕeseau irrigue un volume si ses points terminaux forment un ensemble
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de mesure positive. Cette approche géoḿetrique permet de donner une première obstruction. En effet,
on montre que le rayon des tubes d’une structure arborescente irrigant un volume doit nécessairement
décrôıtre plus que lińeairement. Le problème de l’́egalit́e de distribution peut́egalement̂etre motiv́e
par l’étude des poumons. En effet, lorsque l’on respire, il est souhaitable que la structure des poumons
soit telle que chaque bronchiole terminale reçoive de l’airà la m̂eme pression. Nous formalisons dans
ce chapitre l’́egalit́e de distribution par l’interḿediaire d’une EDP et donnons un exemple de structure
irrigant un volume tout en permettant l’égalit́e de distribution.

Chapitre 2 : L’irrigation vue comme transport de mesure.

Les mod̀eles de transport de mesure permettent de définir de manìere satisfaisantèa la fois l’irrigation de
volume et l’́egalit́e de distribution. En effet, si l’on considère un transport deµ+ versµ−, on dira qu’un
volume est irrigúe si le support deµ− est de mesure positive. On dira qu’il y aégalit́e de distribution si
µ− est la mesure de Lebesgue sur un ensembleK. Ce chapitre fait la synth̀ese des diff́erents mod̀eles
baśes sur le transport de mesure et proposés jusqu’alors.

Chapitre 3 : Une obstructionénerǵetiqueà l’irrigation des volumes.1

Le résultat principal de cet article est un résultat de non existence : si l’on considère que la loi de
Poiseuille est satisfaite m̂eme aux plus petiteśechelles, alors une structure arborescente ne peutà la fois
irriguer un volume et causer une dissipation d’énergie finie.

Chapitre 4 : Le mod̀ele de plan d’acheminement.2

Ce chapitre d́ecrit en d́etail le mod̀ele de plan d’acheminement. On y démontre la semicontinuité
inférieure du côut et l’existence de plans d’acheminement optimaux dans le cas du problème d’irrigation
et du probl̀eme qui-va-òu.

Chapitre 5 : Irrigation à coût fini et questions de stabilit́e.

Pour unα ≥ 1− 1
N oùN est la dimension de l’espace ambiant, on montre que le coût de transport entre

deux mesures est fini, que ce soit pour le problème de l’irrigation ou le problème qui-va-òu. Toujours
pourα ≥ 1 − 1

N , on montre ce ŕesultat de stabilit́e : la limite d’une suite de structures optimales est
optimale.

Chapitre 6 : Régularité et structure des branchements d’un optimum.

On montre dans un premier temps que des structures optimales n’ont pas de boucles ou pas de circuit
(suivant si l’on consid̀ere le probl̀eme ”qui va òu” ou le probl̀eme d’irrigation). Cette tr̀es forte contrainte
permet de montrer la régularit́e dans le cas du transport entre deux mesures atomiques. Onétudie ensuite

1M. Bernot, V. Caselles and J.-M. Morel,Are there infinite irrigation trees?, Journal of Mathematical Fluid Mechanics,
Vol. 7, 2005.

2M. Bernot, V. Caselles and J.-M. Morel,Traffic plansPublicacions Matem̀atiques Vol. 49, Ńum. 2, pp. 417-451, 2005
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quels sont les branchements possibles en un point de bifurcation. Dans le cas oùα ≤ 1
2 et en dimension

2, les seuls branchements possibles sont en Y.

Chapitre 7 : Exemples d’irrigation optimale.

Cette partie d’exempleśetudie compl̀etement la structure optimale du transport d’une masse de Dirac
vers deux masses de Dirac. On s’intéresse ensuitèa la structure d’un optimum pour l’irrigation de la
mesure de Lebesgue portée par un segment. Onétudie alors une classe assez différente d’exemples, i.e.
on se demande si une structure de coût fini, irrigant un volume, et telle que la variation totale de l’angle
le long des fibres reste finie peut exister. La réponse est oui en toute dimension. La réponse demeure oui
en dimension suṕerieureà trois si l’on exige en plus d’avoir une vraie structure d’arbre dans le sens où
les fibres ne s’entrecoupent pas.

Chapitre 8 : Algorithmes de recherche des optima locaux et globaux.

Ce chapitre pŕesente une ḿethode de construction des emplacements optimaux des points de bifurca-
tions d’une structurèa topologie donńee. Les heuristiques multiéchelles et de perturbation topologique
permettent quant̀a elles d’obtenir des topologies efficaces en un temps raisonnable.



Chapter 1

Irrigation: the geometric and PDE
framework

Introduction

In many natural or artificial flow systems, a fluid flow network succeeds both in connecting every point
of a volume to a source, and in ensuring equality of supply (in the sense that the tips of a network
receive roughly the same flow). Examples are the blood vessels, the bronchial tree and many irrigation
and draining systems. The aim of this chapter is twofold ; to propose a definition of irrigating systems
i.e. ”structure irrigating a volume from a source”, and to introduce a PDE model to define the equality
of supply condition.

In the articles [31], [32] and [33], irrigating systems are viewed as homogeneous trees made of
tubes (see figure 1.1) in the sense that bifurcation ratio, scaling of the length and scaling of the section
are associated to each level of the tree. The problem of such a model is that it considers sets of tubes
separating them by generation, but does not take into account the set of all tubes as a whole so that it
avoids the question of the embedding of that tree in the real 2 or 3 dimension space.

In the first section of this chapter we present a much more general approach due to Caselles and
Morel [12], where the irrigating system is only supposed to be an open connected set. A point on the
boundary is said to be accessible or irrigable for some profilef if Ω is not too much ”narrow” in the
neighborhood of that point (see definition 1.1.1 and figure 1.2). The main question that is asked in
this purely geometric framework is whether or not an open set can irrigate a set with positive measure.
Proposition 1.1.2 gives a geometrical obstruction to irrigability (for instance, a profile of an irrigating set
cannot be linear). In subsection 1.1.2, we show the construction (given [12]) of a ”Sierpinsky gasket”
like irrigating tree for many different profiles.

In the second section of this chapter, we define the equality of supply requirement through a suitable
PDE, as it is proposed in [12]. Caselles and Morel say thatU ⊆ Ω (whereΩ is an open set inRN

with Lipschitz boundary, and|∂U | > 0) permits the equality of supply, if there is a bounded velocity
vector fieldv in Ω such that−div v = −µ + χ∂U whereχ∂U is Lebesgue measure restricted to the
irrigated set∂U , andv = 0 outsideU . We shall then give an example of a set permitting equality of
supply in2 dimensions, and such thatU irrigates a set with positive measure. Of course, ifU permits
an equality of supply flow, thenU cannot be any set, but a useful description of those sets is lacking
(even if integrating the PDE against characteristic functions of rectifiable sets inRN gives necessary and
sufficient conditions for its existence).

15
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Figure 1.1: The homogeneous tree model, the irrigating set model and the PDE framework for the
equality of supply. The homogeneous tree model only considers very simple trees made of tubes without
asking the question of the embedding of the tree in space or the question of the real flow in it. The
irrigating set model permits to study geometric obstructions, i.e. what kind of profile on the section of
tubes allows to irrigate a set with positive measure. The PDE framework permits to define precisely the
equality of supply, i.e. is it possible for a fluid to flow inX from a source to the boundary ofX.
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1.1 A geometric model for irrigability

In this section, a model of irrigating set based on irrigation at the boundary is considered. LetX be an
open set inRN andS ∈ X a source point. A pointx ∈ ∂X is said to be accessible if there is a path
connectingS to x, so that a tube of prescribed profile along the path is contained inX. We call irrigated
set the set of accessible points. Conditions are given on the profile so that it prevents a set from irrigating
a set of positive measure. Examples of irrigating sets with bounded mean lengths along accessible paths
is given in lemma 1.1.5 and lemma 1.1.6.

1.1.1 Accessible points

We denote byB(x, r) the open ball of centerx ∈ RN and radiusr > 0.

Let f : [0,∞) → [0,∞) be an increasing continuous function such thatf(0) = 0.

Definition 1.1.1 LetX be an open set inRN , S ∈ X. We say thatx ∈ ∂X is accessible fromS with
profile given byf if there is a curveγ : [0, L(γ)] → RN parameterized by its arc length such that
γ(0) = x andγ(L(γ)) = S,

B(γ(s), f(s)) = (γ(s) +B(0, f(s))) ⊂ X (1.1)

for all s ∈ (0, L(γ)] (see figure 1.2).

Figure 1.2: A point on the boundary ofX is said to be accessible fromS with profile f if there is a
pathγ such that balls centered onγ(s) with radii f(s) lie within X. On the figure at bottom,x is not
accessible with a linear profilef(r) = kr because of the cusp.
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If E ⊂ RN is Lebesgue-measurable andx ∈ RN , the upper and lower densities ofx inE are defined
by

d(E, x) := lim sup
ρ→0+

|E ∩B(x, ρ)|
|B(x, ρ)|

d(E, x) := lim inf
ρ→0+

|E ∩B(x, ρ)|
|B(x, ρ)|

.

When the upper and lower limits are equal, we denote their common value byd(E, x) and we call it the
density ofE atx. By Lebesgue density theorem [25], both densities are equal to1 at almost every point
of E.

Proposition 1.1.2 Letx ∈ ∂X be irrigable fromS with profilef . Assume thatd(RN \X,x) = 1. Then
lim supr→0+ f(r)/r = 0. As a consequence

∫ R
0

1
f(r) dr = ∞,R > 0.

Proof: Let γ be a curve of accessibility tox, andr < L(γ). Then, sinceγ is parameterized by its arc
length, we haveγ( r2) ∈ B(x, r2). As a consequence,B(γ( r2), r2) ⊂ B(x, r).

If f( r2) < r
2 , thenB(γ( r2), f( r2)) ⊂ B(x, r), so thatB(γ( r2), f( r2)) ∩ B(x, r) = B(γ( r2), f( r2)).

If f( r2) ≥ r
2 , thenB(γ( r2), r2) ⊂ B(γ( r2), f( r2)) ∩ B(x, r). By definition of accessibility, we have

B(γ( r2), f( r2)) ⊂ X, hence

|(X) ∩B(x, r)|
|B(x, r)|

≥
|B(γ( r2), f( r2)) ∩B(x, r)|

|B(x, r)|
≥
min( r2 , f( r2))N

rN

Taking the limsup, the inequality yieldsd(X,x) ≥ 1
2N min(lim supr→0+ f(r)/r, 1)N . Then,d(RN \

X,x) = 1 implies thatlim supr→0+ f(r)/r = 0.

Finally, observe that, for someR > 0, f(r)
r < 1 for all r < R; otherwise we would have

lim supr→0+ f(r)/r ≥ 1. It follows that 1
r <

1
f(r) for all r < R, and thus

∫ R
0

1
f(r) dr = ∞.

Corollary 1.1.3 If X irrigates a set of positive measure, then the profilef is such that

lim sup
r→0+

f(r)/r = 0.

Proof: Let us denoteA the set of accessible points. By Lebesgue density theorem [25],d(A, x) = 1 at
almost every point ofA. SinceA∩X = ∅ we haved(RN \X,x) = 1 and proposition 1.1.2 asserts that
the profilef is such thatlim supr→0+ f(r)/r = 0.

Remark 1.1.4 Let us consider a linear profile, i.e. f(r)=ar (see figure 1.3). Corollary 1.1.3 states that it
is not possible for a set to irrigate a set of positive measure with the profilef .

1.1.2 An example of irrigated set with positive measure in 2D

In this section, sufficient conditions are given on the profile of a particular 2D tree so that it permits to
irrigate a set of positive measure.
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Figure 1.3: The geometric content of proposition 1.1.2 is very natural. Indeed, if a point is accessible
from S ∈ X and has density1 in RN \X, then the ratio of the area of the profile upon the area of the
ball has to go to 0 since the profile is contained inX. The ratio for the linear profile (on the left hand
side) is constant so that there is no tree irrigating a set with positive measure with such a profile. The
profile on the right hand side is such thatlim supr→0+ f(r)/r = 0.

Lemma 1.1.5 Let ` > 0. Assume that
∞∑
n=1

2nf(
`

2n
) <∞. (1.2)

Then there is an open bounded subsetX of R2 whose boundary∂X is of positive measure and
accessible with profilef . In addition, accessibility paths can be taken with bounded lengths.

Proof:
We shall construct a Sierpinski carpet which is irrigable and of positive measure as illustrated on

figure 1.4. Let`0 = `. Take the squareΩ = [− `
2 ,

`
2 ]2 and take out the crossX1

0 = (− `0
2 ,

`0
2 ) ×

(− δ1
2 ,

δ1
2 ) ∪ (− δ1

2 ,
δ1
2 ) × (− `0

2 ,
`0
2 ) with δ1 < `0. This cross will be the step0 cross. We shall say

that the cross has length̀0 and widthδ1. The square(− δ1
2 ,

δ1
2 ) × (− δ1

2 ,
δ1
2 ) will be called the center

of the cross. There are four squares remaining inΩ \ X1
0 of lateral sizè 1 = `0−δ1

2 . Consider in each
of those squares a cross of length`1 and widthδ2(< `1). We call these crosses the step1 crosses and
denote them byXj

1 , j = 1, ..., 4. We continue iteratively in this way, thus, at stepn we have4n crosses
Xj
n, j = 1, ..., 4n, and each of them has length`n = `n−1−δn

2 and widthδn+1(< `n−1). Observe that
|Xj

n| = 2`nδn+1 − δ2n+1. At stepn the projections of the squares at the center of all crosses onto the
x-axis are a finite number of intervals whose total length is

∑n+1
j=1 2j−1δj . Thus our constraint onδn is

∞∑
j=1

2j−1δj ≤ `. (1.3)

LetX = ∪∞n=0 ∪4n

j=1 X
j
n. Then

|X| =
∞∑
n=0

4n(2`nδn+1 − δ2n+1)
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Figure 1.4: The irrigating set is constructed iteratively as a union of cross of controlled thickness. The
first step consists of the crossX1

0 . Then we consider the set made ofX1
0 and the four additional crosses

of the next step. For a suitable choice of the thickness of crosses, the set of points that do not lie in the
countable union of crosses is of positive measure and all of them are accessible for a particular profile.

Let us introduce the parameterstj = 2j−1δj
` , j = 1, 2, ... which represents the proportion of the interval

(−`, `) covered by the projections of the squares at the center of the crosses constructed at stepj− 1. In
terms oftj the constraint (1.3) becomes

t :=
∞∑
j=1

tj ≤ 1. (1.4)

Observe that

`n =
`

2n
− 1

2n

n∑
j=1

2j−1δj ,

where this equality holds for alln ≥ 0 if we understand that the sum at the right hand side is equal to
zero whenn = 0. Thus,

|X| = 2
∞∑
n=0

2nδn+1(`−
n∑
j=1

2j−1δj)−
∞∑
n=0

4nδ2n+1

which we may write in terms oftn as

|X| = 2`2
∞∑
n=0

tn+1(1−
n∑
j=1

tj)− `2
∞∑
n=0

t2n+1

= 2`2
∞∑
n=0

tn+1 − `2
(

2
∞∑
n=0

tn+1

n∑
j=1

tj +
∞∑
n=0

t2n+1

)
= 2`2t− `2t2 = `2(2t− t2).

We conclude that|X| < `2 if and only if we have the strict inequality in (1.4), or equivalently, in (1.3).
In this caseK = Ω \ X is of positive measure. Let us prove thatK is accessible with profilef by
properly choosing the values ofδk. This will imply, in particular, thatK = ∂X.



1.2. The equality of supply flow problem 21

Given a pointp ∈ K, there is a sequence of arms of crosses joiningp to the center ofΩ. Letγ be the
curve formed by the segments going through the centers of these arms. The worst case would happen if
the arc consists of segments, calleds0, s1, s2, s3, ..., s2n−2, s2n−1, ... of lengths

`1
2

+
δ1
2
,
`1
2

+
δ1
2
,
`2
2

+
δ2
2
,
`2
2

+
δ2
2
, ...,

`n
2

+
δn
2
,
`n
2

+
δn
2
, ...

Observe that the total length is less than2`. We consider thes0 as part of the step0 cross,s1, s2 as part of
the crosses constructed at step1, etc. Letmk be the length of segmentsk. If s ∈ [

∑∞
k=n+1mk,

∑∞
k=nmk]

we are just describing segmentsn. If n is even (odd) we are in a cross of typen/2 (resp.,n+1
2 ). Suppose

thatn = 2p, p = 0, 1, ..., ands ∈ [
∑∞

k=n+1mk,
∑∞

k=nmk]. Since

∞∑
k=n

mk =
∞∑

j=p+1

(`j + δj) =
∞∑

j=p+1

`

2j
+

∞∑
j=p+1

(δj −
1
2j

j∑
i=1

2i−1δi)

≤ `

2p
+

∞∑
j=p+1

(δj −
δj
2

) =
`

2p
+

1
2

∞∑
j=p+1

δj

=
`

2p
+ `

∞∑
j=p+1

tj
2j

=
`

2p
+

`

2p
=

`

2p−1
,

f is increasing and we are in a cross constructed at stepp whose width isδp+1. Thus, (1.1) will be
satisfied if we have the inequality

f(
`

2p−1
) ≤ δp+1

2
. (1.5)

In the same way, ifn = 2p − 1, p = 1, 2, ... ands ∈ [
∑∞

k=n+1mk,
∑∞

k=nmk], (1.1) will be satisfied
if the inequality (1.5) holds. By our assumption onf , (1.5) will be satisfied with a proper choice ofδk
which has to satisfy the constraint (1.3) with a strict inequality sign to guarantee thatK is of positive
measure. This ends the proof thatK is irrigable and the length of accessibility curves is less than2`.

Remark 1.1.6 The functionf(s) = sp satisfies (1.2) if and only ifp > 1. The functionf(s) = s
|logs|β

satisfies (1.2) if and only ifβ > 1. All these profiles combined with lemma 1.1.5 give a whole bunch of
sets irrigating a set with positive measure.

1.2 The equality of supply flow problem

Let Ω be a bounded set inRN with Lipschitz boundary (we may also takeΩ = RN ). LetU be an open
bounded set such thatU ⊂⊂ Ω and|∂U | > 0.

Definition 1.2.1 We say that the open setU permits an equality of supply flow if there is a positive
measureµ with supportsupp(µ) ⊂⊂ U with mass

∫
Ω µ = |∂U | and a vector fieldv ∈ L∞(Ω) such

that
−div v = −µ+ χ∂U in Ω (1.6)

v = 0 outsideU. (1.7)

The measureµ will be called the source measure.

Remark 1.2.2 Notice that condition (1.7) implies thatv · ν = 0 on the points of∂U where∂U is
described by a regular manifold.
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We are interested in studying conditions on the structure of the open setU which guarantee the
existence of a flow with equality of supply. We shall consider open sets such thatU = ∪nUn, whereUn
are open sets inRN with Lipschitz continuous boundary. The idea is then to solve a slightly modified
problem on eachUn and to use the sequence of vector fieldsvn thus obtained to solve the problem for
U . In the case of Lipschitz boundary sets, Proposition 1.2.4 below gives a simple criterion to ensure the
existence of a vector field of prescribed divergence. This criterion is then used to show that the 2D tree
introduced in section 1.1.2 permits an equality of supply flow.

Let us first consider the solvability of (1.6) in Lipschitz domains. We recall the following result
which was proved inRN by Bellettini, Caselles and Novaga in [4].

Proposition 1.2.3 [4] Let W be a bounded subset ofRN with Lipschitz boundary. Letf ∈ L2(W ) ∩
LN (W ). Then the functionu is a solution of

min
w∈L2(W )∩BV (W )

∫
W
|Dw|+ 1

2

∫
W

(w − f)2 dx (1.8)

if and only if there is a vector fieldv ∈ L∞(W,RN ) with ‖ v ‖∞≤ 1 such that
∫
W (v,Du) =

∫
W |Du|

and
u− div v = f in W

v · ν = 0 in ∂W .

(1.9)

The following result is an easy consequence of Proposition 1.2.3.

Proposition 1.2.4 Let W be a bounded subset ofRN with Lipschitz boundary. Letf ∈ L2(W ) ∩
LN (W ). Then there is a vector fieldv ∈ L∞(W,RN ) with ‖ v ‖∞≤ C such that

−div v = f in W

v · ν = 0 in ∂W

(1.10)

if and only if ∫
W
f = 0 (1.11)

and ∣∣∣ ∫
W
fw

∣∣∣ ≤ C

∫
W
|Dw| for all w ∈ BV (W ). (1.12)

Proof: By changingv into v
C we may assume thatC = 1. The vector fieldv ∈ L∞(W,RN ) with

‖ v ‖∞≤ 1 is a solution of (1.10) if and only if
∫
W f = 0 and the functionu = 0 is a solution of (1.9).

Under the assumption that
∫
W f = 0, u = 0 is a solution of (1.9) if and only if∫

W
|Dw|+ 1

2

∫
W

(w − f)2 dx ≥ 1
2

∫
W
f2 dx ∀w ∈ L2(W ) ∩BV (W ). (1.13)

Replacingw by εw (whereε > 0), expanding theL2-norm, dividing byε > 0, and lettingε → 0+, we
have ∣∣∣∫

W
f(x)w(x) dx

∣∣∣ ≤ ∫
W
|Dw| ∀w ∈ L2(W ) ∩BV (W ). (1.14)

Since (1.14) implies (1.13), we have that (1.13) and (1.14) are equivalent.
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Before proceeding, let us recall some results about BV functions and traces. In the following we
noteHN for theN−dimensional Hausdorff measure, and[u > t] = {y | u(y) > t}. Let u ∈ BV (U).
We define

u+(x) = inf{t : d([u > t], x) = 0}

u−(x) = sup{t : d([u < t], x) = 0}.

It is useful to introduceu∗ defined by the formulau∗(x) :=
u+(x) + u−(x)

2
. For a suitable mollifier,

u∗(x) = lim(ρn ∗ u)(x) for almost everyx ([17], p. 216, Corollary 1), relatively to theHN−1 measure.
This property is of particular interest since it permits to define the following linear form onBV (U)

δX(w) =
∫
X
w∗ dHN−1 w ∈ BV (U).

for anyX ⊂ U which isHN−1 rectifiable withHN−1(X) < ∞. If f is a linear form onBV (U), we
shall write indiscriminately

∫
U fw or f(w).

1.2.1 A solution to the equality of supply for the 2D tree described in Section 1.1.2

A convenient iterative description of the tree

LetXn = ∪nk=1 ∪4n

j=1X
j
k. The centers of the4n crossesXj

n will be called the sink boxes of the draining
networkXn while the center ofX1

0 will be called source box ofXn. At each sink box we place two
segments joined in the form of′V ′ whose total length

√
2δn+1, which coincides with the length of the

diagonal of the box, and at the source box we place a′V ′ of length
√

2δ1. Observe that, iff(s) = s2,
then δp+1

δp
= 1

4 . Hence4nδn+1 = δ1. Observe also that, iff(s) = sp, then4nδn+1 ≥ δ1 if and only if
p ≤ 2.

In the sequel we shall consider the casef(s) = s2. Let us describe precisely how we shall connect
the sink segments to the source segment. We shall describe with detail the first step of the construction.
Let us first describe the position of the sinks inside its box. Let us consider a box which we normalize to
be(0, 1)2. We shall use as a sink two segments of length

√
2

2 joined by its end point in the form of′V ′,
or an inverted′V ′, and forming an angle ofπ2 , and we center it in the sink box. Similarly we construct
the source in a form of′V ′ located at the source box. Let us describe how to connect the sinks and the
source in the draining networkX1. At the two upper sink boxes we put inverted′V ′ sinks of length√

2δ2, while we will place′V ′’s of the same size at the two lower sink boxes. To connect the sink at the
upper left cross, sayX1

1 , to the source we shall use first the descending arm ofX1
1 until we reach the

center of the left arm of the crossX1
0 . This will be called a re-directing station of the draining network.

There we place a re-directing join made of two segments in the form of a′ <′. Each segment of the
′ <′ re-directing station has length

√
2δ2. The re-directing station collects the flux from the upper and

lower left crosses and redirects it towards the source. This disposition permits to collect the flow from
the two arms of the type1 crosses which are incoming into the left arm of the crossX1

0 and redirect it to
its center. Observe that the sum of the lengths of the4 sinks equals the length of the′V ′ source. Thus,
each segment of each′V ′ sink is mapped into a segment of equal length of the source. We observe that
by a similar construction we may place a′V ′ segment at each sink box of then-th draining network
Xn and′V ′ segments in the corresponding redirecting stations in such a way that each segment of each
of the ′V ′ sinks is mapped to a segment of equal length of the source. For latter use, let us fix some
notation. For eachn, we divide the squareΩ into a familyCn made of22n squares whose side has length
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Figure 1.5: An irrigating tree inR2 with its re-directing stations.

αn = `
2n . For eachQ ∈ Cn there is a crossXj

n of Xn insideQ in which we place a sinkVQ in the
form of a ′V ′, or an inverted′V ′. The length ofVQ is

√
2δn+1. Let us call∆Q the box where the sink

VQ is located. LetV0 be the source. LetQ ∈ Cn. LetWQ be segment of the sourceV0 corresponding
to VQ which is of equal length. When we go fromXn to Xn+1 the source is unchanged, the sinks are
now at the centers of the crossesXj

n+1, j = 1, ..., 4n+1, while the sinks of the previous stages are now
transformed into re-directing stations. We have just to add some re-directing stations to connect the new
sinksVQ′ ,Q′ ∈ Cn+1, to the previous onesVQ,Q ∈ Cn, converted now into re-directing stations. These
new re-directing stations will be placed in the same way we did for the re-directing stations connecting
VQ, Q ∈ C1, to V0. We are now in position to prove that a bounded vector field may be constructed in
Xn sending the flux from the source to the sinks, and to prove that the bound on the supremum of the
norm of the vector field is independent ofn.

The solution inUn

Let us now writeU andUn, instead ofX andXn, respectively. ConsiderΩ to be a box such that
U ⊂⊂ Ω. Our purpose is to construct a vector fieldv ∈ L∞(Ω) and a positive measureµ supported on
the sourceV0 such that

−div v = −µ+ χ∂U in Ω (1.15)

andv = 0 in Ω \ U . Observe that integrating (1.15) inΩ and using thatv · ν = 0 in ∂Ω we deduce that
µ(V0) = |∂U |. To prove the existence ofv we shall proceed by constructing vector fieldsvn ∈ L∞(Un),
and measuresµn onV0, such that

−div vn = −µn + fn in Un, (1.16)

vn · ν = 0 in ∂Un, (1.17)
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wherefn is a sequence of functions converging toχ∂U weakly as measures. The sequencefn will be
chosen such thatvn is bounded independently ofn.

Construction of fn

Let

fn =
∑
Q∈Cn

|Q ∩ ∂U |
δVQ

H1(VQ)
.

Observe that, in particular, we have that ∫
Ω
fn = |∂U |.

Let k ≤ n,Q′ ∈ Ck,Q ∈ Cn. Observe that eitherVQ ⊆ Q′ or VQ ∩Q′ = ∅. Then∫
Ω
fnχQ′ =

∑
Q∈Cn

|Q ∩ ∂U |
∫

Ω

δVQ

H1(VQ)
χQ′ =

∑
Q∈Cn,Q⊆Q′

|Q ∩ ∂U | = |Q′ ∩ ∂U |.

Thus ∫
Ω
fnχQ′ → |Q′ ∩ ∂U | for all Q′ ∈ ∪kCk.

This implies that ∫
Ω
fnϕ→

∫
Ω
χ∂Uϕ for all ϕ ∈ C(Ω).

Construction of µn

In the notation introduced before, letWQ, Q ∈ Cn, be the segment of the sourceV0 corresponding to
VQ. Recall thatH1(VQ) = H1(WQ). Let

µn =
∑
Q∈Cn

|Q ∩ ∂U |
δWQ

H1(WQ)
.

By extracting a subsequence, if necessary, we may assume thatµn ⇀ µ whereµ is a positive measure
with support inV0 such that

∫
V0
µ = |∂U |.

In order to apply Proposition 1.2.4, conditions (1.11) and (1.12) are to be verified. This will prove
the existence of a vector fieldvn ∈ L∞(Un) satisfying (1.16), (1.17) with anL∞ bound depending on
the constantC appearing in (1.12). First, we observe that

∫
Un
fn =

∫
Un
µn. Next, letw ∈ BV (Un). We

evaluate ∫
Un

(µn − fn)w =
∑
Q∈Cn

|Q ∩ ∂U |
H1(VQ)

(∫
WQ

w∗ dH1 −
∫
VQ

w∗ dH1
)

Since for eachQ ∈ Cn we have

|Q ∩ ∂U |
H1(VQ)

≤ |Q|
H1(VQ)

=
|Q|√
2δn+1

=
`2/4n√
2δ1/4n

=
`2√
2δ1

, (1.18)

and ∑
Q∈Cn

∣∣∣∫
WQ

w∗ dH1 −
∫
VQ

w∗ dH1
∣∣∣ ≤ C

∫
Un

|Dw| (1.19)
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where the constantC does not depend onn, we have∣∣∣∫
Un

(µn − fn)w
∣∣∣ ≤ C

`2√
2δ1

∫
Un

|Dw| (1.20)

Having stated Proposition 1.2.4 for functions and not for measures, we have to regularizefn andµn.
Let ρ ∈ C∞0 (RN ) be such thatρ ≥ 0, supp(ρ) ⊆ B(0, 1),

∫
RN ρ(x) dx = 1, and letρε(x) = ε−Nρ(xε ).

We chooseε = εn such that the support ofρn(x) = ρεn(x) is contained in a ball of radius strictly less
than the distance from the support offn to the boundary ofUn. Observe that(ρn∗fn)|Un = ρn∗(fn|Un)
and the same property also holds forµn. The functions(ρn ∗ µn − ρn ∗ fn)|Un satisfy (1.11) and (1.12)
with the same constantC thanµn − fn.

Let vn ∈ L∞(Un,RN ) be the solution of (1.16), (1.17) inUn corresponding to(ρn∗µn−ρn∗fn)|Un .
To extendvn, we use the following Lemma.

Lemma 1.2.5 LetW,W1,W2 be two open bounded sets with Lipschitz boundary. Assume thatW1 and
W2 have a common boundaryF andW = W1 ∪W2 ∪ F . Letgi ∈ LN (Wi), i = 1, 2. Suppose that for
eachi = 1, 2, there are vector fieldszi satisfying

−div zi = gi in Wi

zi · ν = 0 in ∂Wi.

(1.21)

Letg = g1χW1 + g2χW2 , z = z1χW1 + z2χW2 . Then

−div z = g in W

z · ν = 0 in ∂W.

(1.22)

By settingvn = 0 inW2 = Ω\Un,W1 = Un andF = ∂Un, applying Lemma 1.2.5, we may extend
vn to Ω \ Un.

Proposition 1.2.6 The 2D irrigating tree defined in Section 1.1.2 with profilef(s) = sp, p ≤ 2, permits
an equality of supply flow.

Proof: Let us consider the sequence of vector fieldsvn obtained from the previous construction. Let us
prove that we may extract a subsequence fromvn which permits to solve (1.6), (1.7). Let us observe
first thatρn ∗ µn − ρn ∗ fn ⇀ µ− χ∂U in Ω. Indeed,ρn ∗ ϕ→ ϕ uniformly for eachϕ ∈ Cc(Ω), and
µn−fn ⇀ µ−χ∂U in Ω. Thus we have that

∫
Ω(ρn∗µn−ρn∗fn)ϕ =

∫
Ω(µn−fn)ρn∗ϕ→

∫
Ω(µ−f)ϕ

whenn → ∞ for all ϕ ∈ Cc(Ω). Sinceµ − f does not charge∂Ω, we deduce that
∫
Ω(µn − fn)ϕ →∫

Ω(µ − f)ϕ asn → ∞ for all ϕ ∈ C(Ω). By extracting a subsequence, if necessary, we may assume
that vn converges weakly∗ in L∞(Ω,RN ) to a bounded vector fieldv such thatv = 0 in Ω \ U . In
addition we have

−div v = −µ+ χ∂U in Ω. (1.23)

Remark 1.2.7 In fact, it is possible to give directly a vector field which answers the problem. The vector
field is the one that appears in figure 1.5. Letx be a point inU , there is an such thatx ∈ Un. Then,
if x is on a path between the source and a sink,v(x) is set to be the unit vector colinear to the path,
otherwisev(x) = 0.



Chapter 2

Measure transportation models

Introduction

In the previous chapter, we studied some geometrical obstruction to the existence of irrigating systems.
In this chapter we shall no longer consider systems with ”thick” tubes but rather an idealized structure
which will consist only of the skeleton of the structure. The information we want to keep trace of is the
way mass is transported from the sources to the tips. To do this we shall consider different formulations
of mass transportation problems. The first mathematical transportation problem was formalized by
Monge, then given a relaxed formulation by Kantorovitch ([24],[19]). The problem he considered was
the one of moving a pile of sand from a place to another with the less possible work. In the Monge-
Kantorovitch framework,µ+ andµ− are measures onRN , and to transportµ+ ontoµ− means to tell
where the mass ofµ+ is sent, i.e. to give a measureπ on RN × RN whereπ(A × B) represents the
amount of mass going fromA to B. This measureπ is called a transference plan. To evaluate the
efficiency of a transference plan, we consider the cost functionc : RN × RN → R wherec(x, y)
is the cost of transporting a unit mass fromx to y. The cost associated with a transference plan is∫

RN×RN c(x, y)dπ(x, y). The minimization of this functional is the Monge-Kantorovitch problem.

If we seeµ+ andµ− as supply (factories) and demand (clients) measures, the Monge-Kantorovitch
framework is well adapted to model the way the clients should be delivered when the roads already
exist. This problem is sometimes named the transport problem or the Hitchcock problem in the linear
programming literature. We also consider measure transportation framework as an alternative and con-
venient way to formalize irrigation of volume and equality of supply (see Chapter 1). Indeed, let us
takeµ+ = δS andµ− some measure ofRN . In such a context, for a source to irrigate a volume means
that we consider a transport fromµ+ to a measureµ− with a support of positive measure. To have the
equality of supply would be translated by the fact thatµ− is Lebesgue measure on some setK.

As an example, consider the cost functionc(x, y) = |x− y|2, and the supply and demand measures
µ+ = δx andµ− = 1

2(δy1+δy2). The minimizerπ is the measure onRN×RN such thatπ({x}×{y1}) =
1
2 andπ({x} × {y2}) = 1

2 . The actual transportation, for the real problem of transporting sand, is
achieved along geodesics betweenx, y1 andy2 as represented in Figure 2.1.

In the Monge-Kantorovitch framework, the transport structure along which the mass would be really
transported is all made of geodesics between starting and ending points, it is given by the transference
plan. We stress the fact that the structure plays no role in the cost functional, in the sense that the structure
depends completely on the transference plan. This is why the cost functional has to be adapted if we want
to apply this framework to the irrigation problem or to some particular supply-demand problems. Indeed,

27
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Figure 2.1: The transport fromδx to 1
2(δy1 + δy2). Monge-Kantorovich versus Q. Xia’s solution.

in the case of a supply-demand problem where the structure is still to be built, it could be preferable
to incorporate the cost of the construction of this structure into the total cost (finding a compromise
between construction cost and efficiency of the structure). A second motivation for taking into account
the structure is that it is in some cases preferable for the mass to be transported in a grouped way:
concerning the sand example, it is better for instance to use trucks, wheelbarrows and buckets rather
than just a shovel. In a fluid mechanics context, Poiseuille’s law states that the resistance of a tube
increases when a tube gets thinner in such a way that it is preferable to have a tube of sectionS rather
than two tubes of sectionS/2. This is also an invitation to group the mass/the flow in the case of the
irrigation problem, as it is illustrated by the structure of the lungs.

This chapter is dedicated to survey briefly the different mathematical objects that have been proposed
to model efficient transport structures.

2.1 The Gilbert-Steiner problem [18]

The Steiner problem consists in minimizing the total length of a network connecting a given set of
points. It is a good model to penalize the cost of the construction of a homogeneous transport structure.
However, this cost is not realistic since it does not discriminate the cost of high or low capacity edges (a
road has not the same cost as a highway). The first model taking into account capacities of edges was
proposed by Gilbert [18] in the case of communication networks. This author models the network as a
graph such that each edgee is associated with a capacityce. Let f(c) denote the cost per unit length
of an edge with capacityc. It is assumed thatf(c) is subadditive and increasing, i.e.,f(a) + f(b) ≥
f(a + b) ≥ max(f(a), f(b)). In this context, the cost of a graphG is C(G) =

∑
e f(ce)l(e) where

the sum is taken over all the edges of the graph andl(e) is the length ofe. Gilbert then considers the
problem of minimizing this cost over all networks supporting a given set of flows between prescribed
terminals. The subadditivity of the costf translates the fact that it is more advantageous to construct an
edge with capacityc rather than two edges of capacityc/2. Let us mention that Gilbert’s model was also
used in the study of optimal pipeline or drainage networks ([6],[20]).

2.2 Xia’s model of transport paths [35]

Though Gilbert clearly proposed this functional to optimize the construction cost of a network, the
subadditivity off could also be interpreted as a way to encourage the mass to move in a grouped way.
This is the object of articles [35] and [22] to use Gilbert-Steiner cost in a more general continuous
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Figure 2.2: Irrigation problem minimizer versus traffic problem minimizer in the caseα = 0.

framework where the supply and demand measures are not constrained to be atomic. Let us now detail
the approaches of [35] and [22].

Xia models the transportation network as an embedded graph with a countable number of vertices
and satisfying Kirchhoff’s law. This author starts with finite atomic measuresa and b and defines a
”path” from a to b as a flow on a finite embedded graph whose end vertices end up on a or b. He denotes
by e the (straight) edges of the graph, byw(e) the flow in the edgee, and by~e the unit vector in the
direction ofe. He denotes by[[e]] = H1

|e~e the vectorial measure obtained as the product of the Hausdorff
measure restricted toe and of the vector~e. Then the embedded path froma to b can be written as the
vectorial measure

G =
∑
e

w(e)[[e]].

The Kirchhoff law(K) is simply expressed as

div(G) = a− b,

wherea andb are the supply and the demand measures. The cost functional is defined as in the functional
of Gilbert-Steiner [18]:

Mα(G) =
∑
e

w(e)αlength(e),

whereα ∈ [0, 1]. Notice that this cost corresponds to a cost per unit length ofw(e)α for each edgee.
It is subadditive because of the concavity off(x) = xα. Then, Xia proceeds to define transport paths
between probability measures more general than finite graphs. He says that a vector measureT is a
transport path betweenµ+ andµ− if there are sequences of atomic measuresai andbi and pathsGi
connectingai to bi such thatai andbi converge weakly toµ+ andµ− andGi → T weakly in the sense
of vector measures. This impliesdiv(T ) = µ+ − µ− in the distribution sense. The energy of any such
path is defined by relaxation as

Mα(T ) := inf lim inf
i→∞

Mα(Gi),

where the infimum is taken over the set of all possible approximating graph sequencesai, bi, Gi of
T . As a simple example, the minimizer ofMα with µ+ = δx andµ− = 1

2(δy1 + δy2) is represented
in Figure 2.1. Let us consider another example that will illustrate the difference with the traffic plan
approach: takeµ+ = 1

2(δx1 + δx2) andµ− = 1
2(δy1 + δy2). The locations ofx1, x2, y1 andy2 and the

minimizer are represented in Figure 2.2.
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2.3 The pattern model [22]

The article [22] describes a (Lagrangian) formulation quite related to the transport paths proposed by
Xia.The pattern model describes an irrigation system as a (usually uncountable) set of paths or “fibers”
starting from a point sourceS and arriving at every point of the support of the irrigated measure. The
fibers represent either the trajectory inRd of a fluid particle, or a fiber of a tree. Each fiber is parame-
terized asχ(ω, l) ∈ Rd, wherel is time (or length along the fiber) andω denotes a particle, belonging
to an abstract probability spaceΩ. A stopping time (or length)σχ(ω) is associated with each fiber. This
permits to define the irrigation measure as a density measure of the fibers stopping in any given vol-
ume. Let us denoteT (ω) := χ(ω, σχ(ω)) ; the amount of fluid irrigating a Borel setA is the measure
of T−1(A) in Ω. The authors defineχ-vessels, or branches, as equivalence classes by the equivalence
relationω 'l ω′ if χ(ω, s) andχ(ω′, s) coincide up to timel. The cost of a pattern is defined as

E(χ) =
∫

Ω

∫
R+

|[χ(ω, t)]χ|α−1|χ̇(ω, t)|dtdω,

where|[χ(ω, t)]χ| is the measure of the equivalence class ofω at timet, andα ∈ [0, 1].
If we consider the simplest example of transportation with two Dirac masses as a demand (see Figure

2.1), Maddalena-Morel-Solimini’s solution coincides with the Xia’s one displayed in Figure 2.1. In this
case the solution is given by the set of fibersχ : [0, 1] × [0,∞) → R2, whereχ(p, t) is either the path
from x to y1 (if p ∈ [0, 1/2]), or the path fromx to y2 (if p ∈ (1/2, 1]). More details about this model
are given in Chapter 3.

2.4 Path functionals over Wasserstein spaces [7]

Quoting [7], the idea of the path functionals approach is that ”during the interpolation between the
starting configuration (a probability measure) and the terminal one, the condition of keeping the mass
together can be expressed by the requirement of passing through measures concentrated on discrete
sets”. Let us considerWp(Ω) the space of probability measures with Wasserstein distanceWp. Given
a source or initial measureµ0 and a target or final measureµ1, the object that realizes the transport is a
continuous pathγ : [0, 1] → Wp(Ω) such thatγ(0) = µ+ andγ(1) = µ− and the goal is to minimize
a suitable costJ (γ). To code for the fact that it is cheaper to transport the mass in a grouped way, the
authors make paths through atomic and concentrated measures cheaper with the functional

J (γ)=
∫ 1

0
J(γ(t))|γ′(t)|dt,

where|γ′| is the metric derivative in the Wassertstein spaceWp(Ω) and

J(µ) =

{∑
k(ak)

α if µ =
∑

k akδxk

+∞ otherwise,

with α < 1. Such a functional is indeed such that the path has to go through (possibly infinite) atomic
measure for the cost to be finite.

2.5 Optimal urban transportation networks [10],[9] and [8]

In [10], [9] and [8], a variation of the Monge-Kantorovitch problem has been proposed to model urban
transportation network. In [10], a transportation network is modelled as a connected closed setΣ.
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The users can either walk or join and useΣ. Thus, the cost for going fromx to y is dΣ(x, y) :=
d(x, y)∧ (dist(x,Σ) + dist(y,Σ)), i.e. the minimum between the Euclidian (walking) distanced(x, y)
and the sum of distances fromx andy to the network. Notice that the distancedΣ describes how the
Euclidian distance is twisted by the network. Given a population densityµ+ and a density of workplaces
µ−, the cost of this transportation network is given by the Monge-Kantorovitch distance betweenµ+

andµ− (in RN equipped with the twisted distancedΣ(x, y)). The authors of [10] then consider optimal
transportation networks, i.e. transportation networksΣ with minimal cost among all possibleΣ with
length less than a prescribed lengthL, and study their qualitative topological and geometrical properties.

2.6 The traffic plan model (see Chapter 4)

We define a traffic plan as a measure on the set of all possible paths. Thus the traffic plan model is a
straightforward generalization of patterns, since rather considering a particular parameterizationχ(ω)
of fibers, we only keep the information given byχ#λ, i.e. the measure on paths induced byχ. Figure
2.3 shows three examples of traffic plans: a Dirac mass on a finite length pathγ (which means that a
unit mass is transported fromγ(0) to γ(L)), a traffic plan with ”Y” shape, and a traffic plan transporting
a Dirac mass to the Lebesgue measure on a segment of the plane. In the same way as for the ”Y” shape,
a weighted graph can easily be modelled by an atomic measure on the space of paths in the graph.

This very handy object generalizes finite graphs and can allow more general structure as can be
seen on figure 2.3. In addition, this Lagrangian formalism is such that we can associate canonically a
transference plan, an irrigating measure, and irrigated measures to any traffic plan. We denote by|x|µ
the multiplicity at a pointx that will be the analogous of the capacity of an edge. It is the measure of
paths going throughx. The cost of the structure can then be written very similarly to the cost of patterns:

E(µ) =
∫
K

∫
R+

|γ(t)|α−1
µ |γ̇(t)|dtdµ(γ),

whereK is the set of 1-Lipschitz paths. We shall see further that it is the exact analogous of Gilbert-
Steiner and Xia cost.

2.7 The irrigation problem versus the ”who goes where” problem

The ”who goes where” problem.
The irrigation problem consists in optimizing some cost on the set of all structures transportingµ+

to µ−. In contrast, the ”who goes where” problem consists in optimizing some cost on the set of all
structures with prescribed transference plan. In the Monge-Kantorovitch framework, it would be absurd
to consider the ”who goes where” problem since the ambient space of transports is precisely the set of
transference plans. However, in the other models we presented, the structure and the transference plan
are in some way dissociated. In case that we incorporate a transference plan constraint, that is to say, a
”who is going where” set of constraints, we call this generalization the traffic problem and its solution a
traffic plan. This problem was briefly addressed by Xia in [35], but its solution is not satisfactory, to the
best of our knowledge as we shall detail in the next paragraph. In order to understand the discussion, it
is good to consider the very basic problem whereµ+ = δx1 + δx2 andµ− = δy1 + δy2 as in Figure 2.2,
i.e. d(x1, y1) = d(x2, y2) is smaller thand(y1, y2) = d(x1, x2). From the irrigation problem viewpoint,
the solution is the same as the Monge-Kantorovitch one since it is not efficient to group the mass ofµ+
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Figure 2.3: Three traffic plans and their associated embedding: a Dirac measure onγ, a tree with one
bifurcation, a spread tree irrigating Lebesgue’s measure on the segment[0, 1]× {0} of the plane. Let us
detail this last example. In that case, toω ∈ [0, 1] correspondχ(ω) ∈ K, the path parameterized by its
length from the Dirac mass located at(1/2, 1), to the point(ω, 0).
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together. It is not if instead we want to find the best transportation network with the ”who goes where”
constraint that all the mass inx1 is sent ontoy2, and all the mass inx2 onto y1. The solution of the
traffic problem versus the solution of the irrigation problem is displayed in Figure 2.2.

A traffic plan as a compatible pair of a transport path and a transference plan.
As mentioned in the previous paragraph, a graph approach modelling the traffic (or mailing) problem

was presented in section 7 of [35]. To express the transference plan constraint, Xia considers what he
calls ”compatible pairs” of a transport path and a transference plan. A piecewise rectilinear curveγ

can be viewed as a graph with starting and ending points denoted byγ−i andγ+
i . Given an atomic

transference planπ, a transport path (a weighed finite graph in that case) is said to be compatible with
π if it can be decomposed as a sum of curvesγi with weightwi so thatπ(γ−i , γ

+
i ) = wi. Notice that

the notion of traffic plan is a convenient way to handle such compatible pairs. Indeed, the traffic plan∑
iwiδγi contains both the transference plan and the transport path information and is such that they are

automatically ”compatible”. Xia then extends this compatibility definition to more general, non atomic,
irrigating and irrigated measures. A transport pathT and a transferenceπ from µ+ to µ− are said to be
compatible if

• there exist atomic measuresai andbi such thatai ⇀ µ+ andbi ⇀ µ−

• there exists a compatible pair(Gi, πi) of transport path and transference plan fromai to bi such
thatGi ⇀ T andπi ⇀ π.

We were not able to find a way to make this definition consistent with the discrete case. Indeed, a pair
of a transport path with a transference plan can be both at a time compatible with respect to this last
general definition but not compatible with respect to the atomic case definition.

To prove that, let us considerµ+ = µ− = 1
2δx + 1

2δy. Let T be the null transport path i.e the one
associated with an empty graph. It is such thatdiv(T ) = µ+ − µ− = 0 so thatT is a transport path
from µ+ to µ−. Let π be the transference plan such thatπ(x, y) = 1

2 andπ(y, x) = 1
2 . This means

that the mass inx and the mass iny are swapped byπ. Thus defined,T andπ form a compatible pair
with respect to the general definition. Indeed, takeGi the graph made of and edge(x, y) with weight 1

2

and of an edge(yi, xi) with weight 1
2 , parallel to(x, y) whereyi andxi are getting closer and closer of

x andy (see figure 2.4). ThenGi is weakly converging toT = 0. Let us defineai = 1
2δx + 1

2δyi and
bi = 1

2δy+
1
2δxi so thatai andbi are weakly converging toµ+ andµ− . Finally, letπi be the transference

plan such thatπi(x, y) = 1
2 andπi(yi, xi) = 1

2 so thatπi is weakly converging toπ (see figure 2.5).
SinceGi andπi form a compatible pair, it follows thatT andπ are compatible. However, considered as
a pair of a transport path and transference plan irrigating atomic measures, they are no more compatible
with respect to the atomic case definition. This proves that the general definition of a compatible pair
does not fit with what Xia wants a compatible pair in the atomic case to be.
Thus, it seems to us that the traffic plan object is a more convenient way to handle the transference plan
constraint since it conveys both at a time the transport path and the transference plan information.

2.8 Comparison of models

The table 2.8 presents a synthesis of different objects that were proposed to model irrigation type prob-
lems.

Cost of patterns versus cost of transport paths.
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Figure 2.4: On the left hand side: the transport pathGi = 1
2 [[e]] + 1

2 [[ei]] where[[e]] is the vector
measureH1bee with e the unit directional vector of the edgee. On the right hand side: the weak limit
of Gi is the null transport path.

Figure 2.5: On the left hand side: the transference planπi is such thatπi(x, y) = πi(yi, xi) = 1
2 . On

the right hand side: the limit ofπi is the transference planπ such thatπ(x, y) = π(y, x) = 1
2 .

Let us first mention that the cost functional defined in [22] is slightly different from the energy
proposed in [35]. Indeed, both functionals coincide on trees, and [22] only handles such tree like objects
by definition ofpatterns. To see why the two costs are different, let us considerµ− = 2

5δy1 + 2
5δy2 + 1

5δy3
andµ+ = δx. The left-hand side of Figure 2.6 shows that once two fibers get separated, they are
considered to be separated until the end, even if they coincide geometrically afterwards. Thus, the cost
of the segment part of the graph irrigatingy3 is 2l(1/10)α on the left-hand side of Figure 2.6 andl(1/5)α

on the right-hand side. Now, this difference does not matter, as it is easily shown [18], [35] that optimal
networks are loop free (due to the concavity ofxα for α ∈ [0, 1[).

The path functional model.
The path functionals model seems to be quite different of other approaches. Let consider an example

to illustrate that difference. Letγ be a path made of two Dirac masses, one is moving on a distance 1 at
speed 1 and the other one is still. By definition we haveJ(γ) = 2 andJ (γ) = 2. That is to say, the still
Dirac mass contributes to the global cost because some other part of the mass is moving. This model
may get closer of the one we shall consider if we were able to define a cost where only the moving mass
contributes to the cost.

Equivalence results.
Because of regularity results that are to be proven in Chapter 6, we can state equivalence between

some of the presented models.

Theorem 2.8.1 Traffic plans and patterns ([22]) are equivalent with respect to the irrigation problem
whenµ+ consists of a single Dirac mass.

Proof: The small difference between the traffic plan model and the pattern model is the definition of the
multiplicity. In the pattern model, when two fibers coincide for time[0, T ] then separate, there are viewed
as being separated for the remaining time even if the fibers happen to coincide again geometrically. This
is due to the fact that multiplicity of the fiberω at timet is the measure of all equivalent fibers (i.e. fibers
coinciding withω during time[0, t]). Let µ+ being a single Dirac mass at a source pointS andµ an
optimal traffic plan for the irrigation problem. Proposition 6.2.7 asserts that a parameterizationχ of µ
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Figure 2.6: Maddalena-Morel-Solimini’s versus Xia’s model of the irrigation problem withµ+ = δx
andµ− = 2

5δy1 + 2
5δy2 + 1

5δy3 . The two geometric objects are the same but on the left-hand side, once
fibers separate, they are considered to be separated until they stop. This difference, however, is irrelevant
for optimal networks, which are loop free (because of the concavity ofx 7→ xα).

has a tree structure, so that the definition of multiplicity in the traffic plan framework coincide with the
one of patterns. Since the cost of tree structures are identical, the models are then equivalent.

Theorem 2.8.2 The irrigation problem for traffic plans whenµ+ andµ− are atomic measures and the
Gilbert-Steiner problem are equivalent

Proof: Let µ+ andµ− be atomic measures andµ an optimal traffic plan for the irrigation problem.
Proposition 6.3.3 asserts thatµ has a graph structure so that theEα cost is the same than the Gilbert-
Steiner problem cost forf(c) = cα. Thus, both problems give same optima.



Chapter 3

Physical irrigation

Introduction

As was mentioned earlier, in many natural or artificial flow systems, a fluid flow network succeeds in
irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree
and many irrigation and draining systems. Such systems have raised recently a lot of interest and some
attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws
[31], [32] or alternately as an open set along with a profile constraint (see Chapter 1). Alternatively,
several mathematical models [12], [35], [22] (see Chapter 2) propose an idealization of these irrigation
trees, where only the skeleton structure of the network is preserved along with the mass transportation
information. There is no geometric obstruction for irrigating systems to exist (see Chapter 1). As we
show, there may instead be an energetic obstruction. Under Poiseuille lawR(s) = s−2 for the resistance
of tubes with sections, the dissipated power of a volume irrigating tree cannot be finite. In other terms,
infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies
that the usual principle analysis performed for the biological models needs not to impose a minimal size
for the tubes of an irrigating tree ; the existence of the minimal size can be proven from the only two
obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

3.1 Irrigation networks made of tubes

The function of many natural or artificial irrigation or drainage systems is to connect by a fluid flow a
finite size volume to a source. This happens, e.g., with the lungs [27] or with the blood circulation. A
space filling hierarchical branching pattern is obviously required and observed. The resulting irrigation
circuitry is a tree of tubes branching from a source and going as close as possible to any point of the
irrigated volume. The following principles have been proposed to characterize such irrigation patterns:

(SF) Space filling requirement: The network supplies uniformly an entire volume of the organism.

(K) Kirchhoff law at branching (conservation of fluid mass).

(W) Energy minimization: the biological networks have evolved to minimize energy dissipation.

(MSU) Minimal size unit: the size of the final branches of the network is lower bounded and the lower
bound does not depend on the global size of the structure.

37
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These principles are considered basic principles in all presentations of irrigation circuits [31], [32], [33],
[3]. In the case of trees and plants, the energy criterion must be related to the mechanical stability of
the trunk and branches in response to wind and gravity. In the case of irrigation or drainage networks,
the energy criterion aims at a reduction of the overall resistance of the system, or, equivalently, to a
minimization of the dissipated power.

In the mentioned papers, several additional assumptions are usually made to derive conclusions from
this set of principles, namely

(H) Homogeneous tree: The irrigation system is assumed to be a tree made of tubes, fully homoge-
neous in lengths and sections.

Let us describe in some detail this homogeneous framework and its consequences. We denote byk ∈ N,
k ≤ kmax(≤ ∞) the branching level in the tree. The tubes at the final levelkmax will be called the
capillaries. There is a single tube at level0, andNk tubes at levelk. By (H), at each levelk all tubes
(which we shall refer to ask-tubes) are equal and are described by the same parameters:lk, rk, fk,
namely the common value of their length, radius and flow. We shall also use the variablesk = r2k which
is proportional to the area of the constant section of the tube. With these variables, the power dissipated
by the irrigation network is expressed as

W =
kmax∑
k=1

Nk lk s
−β
k f2

k . (3.1)

Although we treatβ as a free parameter, Poiseuille’s law (see the appendix) states that for all Newtonian
fluids in laminar mode,β = 2. The homogeneity of the irrigation tree can be rendered still more specific
by imposing the realistic

(CB) Constant branching:Nk+1

Nk
= ν = constant.

The space filling requirement can be formalized in a rough way by stating that thek-th tube irrigates a
volume proportional tol3k. This is a possible interpretation of(SF ) which we shall call(SF1). So we
can summarize as a set of equations the constraints usually proposed for homogeneous trees

(H) Homogeneous tree with unknownk, lk, rk, fk, k ≤ kmax.

(K) Kirchhoff Nkfk = constant.

(SF1) Space fillingNkl
3
k = constant.

(MSU) Minimal size capillaries:kmax <∞.

(CB) Constant branching (optional),Nk+1

Nk
= ν = constant.

The aim of this set of assumptions was in [31], [32], [33] to prove that the network has a fractal-
like structure with self-similar properties. In the mentioned papers, it is claimed that the minimization
of the energy (3.1) with prescribed volume

∑
kNklkr

2
k = V leads to self-similar properties, namely

constant ratioslk+1

lk
= constant, rk+1

rk
= constant, so that alsolkrk = constant, namely the tubes have

a scale invariant shape and all quantities scale as powers ofn. Actually, such results were not proven,
the main focus of the mentioned papers being rather to discuss scaling laws in animal metabolism.
A mathematically more comprehensive study of the consequences of the above mentioned axioms is
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given in [15] where the correct consequences are drawn. We shall recall these results and extend their
techniques in section 3.3.

The above axiomatic of irrigation systems is simple and efficient enough, but has some weak points.
There is no mention of the tube non-intersection constraint. From that point of view, the homogeneity
assumption is probably not quite realistic. Also, the space filling assumption does not take into account
the volume occupied by the network itself. In short, the realistic embedding of the circuit in a volume is
not directly considered and the Lagrangian calculus involved in the mentioned papers is done as though
all lengths, radii and even branching numbers could move freely. This is certainly not the case for
a realistic embedded circuit. Thus, it would be good to get rid of the homogeneity assumption(H)
which clearly should be derived as a property from the first four principles. Also, the question arises of
whether the four basic principles(SF ), (K), (W ) and(MSU) are redundant or not. One of the main
outcomes of our discussion here will be to eliminate(MSU), that is, the minimal size constraint for
the capillaries. The(MSU) assumption, essential in the above mentioned physical models, was simply
written askmax <∞ and forbids infinite branching. It also actually excludes a volume direct irrigation
and only permits any point of a volume to be “close enough” to a capillary.

There is, however, no geometric obstruction for the existence of infinite trees irrigating a positive
volumeK in a strong sense, namely with a branch of the tree (a sequence of tubes) arriving at every
point ofK. Such tube trees can be constructed by rather explicit rules as in Chapter 1 ; they can satisfy
the Kirchhoff law and can even have the fluid speed decrease and be null at the tips of capillaries. Such
constructions can be found (e.g.) in [3], [26] and [12]. See Figure 3.1 for an example.

We shall prove that the only obstruction to infinite trees is the infinite resistance of such circuits.
We assume without loss of generality that Poiseuille law holds throughout the circuit: it is generally
acknowledged that this law is valid in all biological circuits, at least for the smaller tubes [23]. We shall
prove:

Theorem 3.1.1 Letβ ≥ 2. ThenW = +∞ for any set of tubes obeying(K) and(W ) and irrigating a
positive volume.

(See Theorem 3.6.4 for a more precise statement.)

This result may invalidate the infinitesimal models, admitting infinite branching, proposed in several
recent mathematical works [12], [35], [22]. Now, as we shall see, the tools developed in the mentioned
paper turn out to be quite handy to perform the present axiomatic discussion. And, of course, nothing
hinders the consideration of other resistance laws than Poiseuille law for other human built transportation
circuits. Poiseuille law states that for fluids, the resistanceR(s) = Cs−2 of a tube with sections scales
as the inverse second power ofs. If we instead considerR(s) = Cs−β , then infinitesimal circuits are
possible. The powerβ = 2 is the limit exponent.

Two of the mentioned mathematical models, [35] and [22], do not involve the radius of the tubes.
They instead express a “cost” of the flow directly as

W̃ =
∑
i∈I

lif
α
i

where0 < α < 1 andI denotes the countable set of all tubes. There is, however, a way to relate this
expression of the cost to the energyW , at least for optimal and homogeneous circuits.

Proposition 3.1.2 Let us consider an irrigation network which optimizes the dissipated powerW given
by (3.1) under the constraints of fixed volumeV and prescribed lengths of tubesli and flowsfi. Then
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Figure 3.1: An irrigating tree
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si = C1f
2/(β+1)
i , andW = C2

∑
lif

2/(β+1)
i for some constantsC1, C2 > 0. (Poiseuille law corre-

sponds to the caseβ = 2 in dimension 3, and in this casesi = Cf
2/3
i for some constantC > 0).

The proof of this proposition is easy and can be done along the lines of the proof of Proposition
3.3.1 in Section 3.3. The model equivalence thus obtained is not quite satisfactory: we are not a priori
allowed to move freely the radii in an optimal embedded circuit, since we do not take into account the
fact that the tubes should not intersect. Let us concede anyway some validity to the model equivalence
thus indicated. Then we see that there is no contradiction with the existence results in [35] and [22].
Indeed, these authors assume (in dimension 3)α > 2

3 which corresponds toβ < 2, and we prove that
β ≥ 2 is not compatible with Poiseuille law.

3.2 Mathematical, infinitesimal approaches

Let us give some details on the existing mathematical formalizations of the problem, since we shall use
some of them. The model proposed in [12] is directly compatible, but more general than the above tube
model. It directly considers the problem of finding a maximal irrigated volume with minimal cost. Let
D be an open domain ofRd (of course,d = 2 or 3). A point sourceS ∈ D is fixed. Say that a compact
setE ⊂ D is irrigable if the complementary open setU = D \ E is connected and containsS. U is
called the irrigation network and is nothing but an open set at this point. Caselles and Morel then fix
an ”accessibility profile”, namely a functionf(s) : R+ → R+, increasing and such thatf(0) = 0. A
point x ∈ E is saidf -irrigable if there is a pathx(s) such thatx(0) = x, x(L) = S, and for every
s ∈ [0, L], B(x(s), f(s)) ⊂ U , whereB(x, r) denotes the ball with centerx and radiusr. Such paths
exist in the physical tube model as a branch of the irrigation tree. In other terms, there is a thick path
insideU leading tox. This path becomes thinner when approaching the irrigated pointx, but with a
thinning rate uniformly bounded from below. The authors show first that iff slightly super-linear at 0
(e.g. f(s) = sα, 0 < α < 1) then the problem of irrigating a maximal positive volume is well posed.
Namely: there existsK with maximal volume among allf -irrigable sets.

From this paper, we shall retain the following result which will be a main ingredient here.

Proposition 3.2.1 Letx ∈ E be irrigable fromS with profilef . Assume thatx is a Lebesgue point of
E. Thenlim sups→0+ f(s)/s = 0. As a consequence

∫ R
0

1
f(s) dr = ∞ for all R > 0.

Almost every point of a measurable set is a Lebesgue point, and this yields a generic constraint on
accessibility profiles, not taken into account in finite models, but handy in infinitesimal ones. In the
terminology of homogeneous trees of tubes, this constraint yields under(H)

∑
k

lk
rk

= +∞. (3.2)

Our plan is as follows: Section 3.3 is devoted to the classical physical tube models, the derivation of
scaling laws and the proof of our result in the homogeneous case (hypothesis(H)). Section 3.4 gives all
elements we need from [22] to perform integration on the set of fibers. Section 3.5 constructs from any
embedded set of tubes a set of fibersχ(ω, l). Section 3.6 proves the main result. Three small appendices
are devoted, for a sake of completeness, to a proof of Proposition 3.2.1, the optimality of circular section
for tubes and the derivation of Poiseuille law in tubes.
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3.3 Dissipated power in a homogeneous network of tubes

In this section, we take the standard notation given in the introduction. We consider a homogeneous
irrigation network as a set of tubes which are organized as a hierarchical branching system from level 0
up to a final levelkmax(≤ ∞). There is a single tube at level0, andNk tubes at levelk. At each level
k, all tubes (which we shall refer to ask-tubes) are equal and are described by their lengthlk, radiusrk,
and flowfk We setsk = r2k which is proportional to the area of the constant section of the tube. With
these variables, the power dissipated by the irrigation network is expressed as

W =
kmax∑
k=1

Nklks
−β
k f2

k (3.3)

for someβ > 0 (Poiseuille law corresponds toβ = 2). As proposed in [31], [32], [33], if we pre-
scribe the volume occupied by the irrigation network, physical networks are designed to minimize the
dissipated powerW , and satisfy the following assumptions:

(K) Kirchhoff’s law: the fluid is conserved as it flows through the system, that is,Nkfk = Nk+1fk+1

for eachk. In other words, Kirchhoff’s law holds in the network.

(SF1) Space filling requirement: at each levelk the volume supplied by the set ofk-tubes is independent
of k and is approximately given by the sum of the volumes ofNk spheres of diameterlk/2. This total
volume isNkl

3
k and we assume that this quantity is a constant.

For a homogeneous irrigation network satisfying(K) and(SF1), there are constantsC,C ′ > 0
such that

fk =
C ′

Nk
, lk = CN

−1/3
k

and the dissipated power may be written as

W (sk) = C ′2C

kmax∑
k=1

N
−4/3
k s−βk .

In the same way the volumeV =
∑kmax

k=1 Nklksk can be written as

V (sk) = C

kmax∑
k=1

N
2/3
k sk.

We shall consider the geometry of the network as given, i.e. the valuesNk are prescribed, hence the
dissipated power is only a function of the variablessk. Under the constraint of given volume, we consider
an optimal irrigation network as a minimizer of the dissipated powerW .

Proposition 3.3.1 Assume thatβ ≥ 2. Under the assumptions(K) and (SF1), an optimal homoge-
neous irrigation network with prescribed volume satisfieskmax <∞ andNkr

β+1
k = constant.

We observe that ifkmax < ∞, then the relationNkr
β+1
k = constant does not require to assume

thatβ ≥ 2.

In particular, accepting that assumption(K) is a sound one, this proposition proves that the assump-
tion (SF1) cannot be fulfilled if we want to consider infinite trees. If we accept it, we have to assume
that capillaries cannot be infinitely thin.
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Proof. Assume first thatkmax < ∞. For simplicity, let us assume thatC ′2C = 1. Then, by Lagrange
multiplier’s Theorem, there is a constantλ ∈ R such that∂W∂sk

= λ ∂V∂sk
, that is,

−βN−4/3
k s

−(β+1)
k = λCN

2/3
k .

HenceN2
ks
β+1
k = − β

λC , and thereforeNkr
β+1
k = constant.

Assume thatkmax = ∞, and there exists a homogeneous irrigation network with specified vol-
umeV = V0 < ∞ and finite dissipated power. Then the dissipated power has a minimum in the
setS = {(sk)∞k=1 : sk > 0, C

∑∞
k=1N

2/3
k sk = V0}. Indeed, since the infimum ofW in S is fi-

nite, let {(sk(n))k}n be a minimizing sequence of elements inS. By extracting a subsequence, if
necessary, we may assume thatsk(n) → sk as n → ∞ for all k. If sk = 0 for somek, then
W (sk(n)) ≥ N

−4/3
k (sk(n))−β → ∞ asn → ∞, a contradiction with the fact that(sk(n))k is a

minimizing sequence. Hencesk > 0 for all k. Now, for eachp ≥ 1, we have

C

p∑
k=1

N
2/3
k sk ≤ lim

n
C

p∑
k=1

N
2/3
k sk(n) ≤ lim

n
C

∞∑
k=1

N
2/3
k sk(n) = V0.

ThusM := C
∑∞

k=1N
2/3
k sk ≤ V0. If M < V0, we defineSk = V0

M sk and we haveV (Sk) = V0. Now,

p∑
k=1

N
−4/3
k S−βk =

(M
V0

)β p∑
k=1

N
−4/3
k s−βk =

(M
V0

)β lim
n

p∑
k=1

N
−4/3
k (sk(n))−β

≤
(M
V0

)β lim
n

∞∑
k=1

N
−4/3
k (sk(n))−β =

(M
V0

)β inf
S
W.

In particular, we deduce thatinfSW > 0, and

W (Sk) ≤
(M
V0

)β inf
S
W < inf

S
W.

This contradiction proves thatM = V0, hence(sk) ∈ S, and(sk)k is a minimum ofW in S. Let us
denote~s = (sk)k, and for eachp ≥ 1, −spN2/3

p < ε < sp+1N
2/3
p+1, ~spε = (s1, . . . , sp + ε

N
2/3
p

, sp+1 −
ε

N
2/3
p+1

, sp+2, . . .). Then computing

lim
ε→0+

W (~sε)−W (~s)
ε

= 0,

we obtain that

N2
p s
β+1
p = N2

p+1s
β+1
p+1 .

Since this holds for allp, we obtain thatN2
ks
β+1
k = constant, hence alsoN2/3

k s
(β+1)/3
k = constant.

Using that(β + 1)/3 ≥ 1, we have

N
2/3
k s

(β+1)/3
k ≤ N

2/3
k sk,

whensk < 1. We conclude thatV (sk) = ∞. Notice that we also haveW (sk) = C
∑∞

k=1 s
(2−β)/3
k = ∞

sinceβ ≥ 2 andsk → 0 ask →∞.
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Remark 3.3.2 Observe that no relation of the typeNk+1/Nk = constant follows for optimal irrigation
trees under the assumption(K) and (SF1) as suggested in [31], [32], [33]. This fact has also been
observed in [15]. Now, if we add the assumption of constant branching

(CB) Nk+1

Nk
= ν,

we obtain the relations (written modulo multiplicative constants)Nk = νk, sk = ν−2k/(β+1), W =∑
k ν

( 2β
β+1

− 4
3
)k, V =

∑
k ν

( 2
3
− 2

β+1
)k and both quantities are infinite ifkmax = ∞, andβ ≥ 2.

We shall replace the space filling assumption(SF1) by a different assumption which is related to
the existence of a positive volume irrigated by the network. Indeed, we assume

(SF2) kmax = ∞ and
∑∞

k=1
lk
rk

= ∞.

This implies that the length of the tubes cannot be too small compared to its radius. Our analysis in
section 1.1 will prove that this assumption holds for networks irrigating a positive volume.

Proposition 3.3.3 Assume thatβ ≥ 2. Under the assumptions(K) and(SF2), bothV andW cannot
be finite.

Proof. Recall thatV =
∑∞

k=1Nklksk. SinceNkfk = C for some constantC > 0, we may write

W = C2
∑∞

k=1
lks

−β
k

Nk
, using Cauchy-Schwarz inequality, we have

√
W
√
V ≥ C

∞∑
k=1

√
l2ks

1−β
k = C

∞∑
k=1

lk

rβ−1
k

= ∞,

and the conclusion follows.

Remark 3.3.4 The proof of Proposition 3.3.3 can also be done using Lagrange multiplier’s theorem as
we did in the proof of Proposition 3.3.1.

3.4 A model of abstract tree

The purpose of this section is to recall the formalization defining “set of fibers” in the sense of [22]. In
Section 3.5, we shall make the link with irrigation trees. To do this, we shall describe the tree made
of tubes as a tree of segments, each segment being the medial axis of a tube. We shall also keep the
flow information inside each tube. These informations are enough, as we shall see, to associate with
the concrete tree an abstract “set of fibers”. The reason for making this association will become clear in
Section 3.6: we wish to compute the volume or the dissipated power by integrating along the sections of
the irrigation tree. These computations are facilitated by the “set of fibers” formalism.

Let us recall the main concepts introduced in [22]. Let(Ω, |.|) be a probability space which we
interpret as the reference configuration of a fluid incompressible material body. We can also interpret
it as the trunk section of a tree, this trunk being thought of as a set of fibers (which can bifurcate into
branches). Aset of fibers ofΩ with source pointS ∈ Rd is a mapping

χ : Ω× R+ → Rd

such that:
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C1) For a.e.material pointp ∈ Ω, χp : t 7→ χ(p, t) is Lipschitz continuous with Lipschitz constant
less than or equal to one.

C2) For a.e.p ∈ Ω: χp(0) = S.

We shall consider the source pointS ∈ Rd as given and we will denote byCS(Ω) the set of possible
χ : Ω× R+ → Rd.

Definition 3.4.1 [22] Given l ∈ R+, we shall say that two pointsp, q ∈ Ω belong to the sameχ-vessel
of valuel and we will writep 'l q if

χp(s) = χq(s) for all s ∈ [0, l].

For everyl ∈ R+, the equivalence relation'l induces a decomposition ofΩ into equivalence classesX.
We will call χ-vesselssuch classes.

Definition 3.4.2 [22] Givenp ∈ Ω andl ∈ R+, the equivalence class of'l which containsp and which
will be denoted by[p]t will be namedχ-vessel of the pointp at l.

Givenχ ∈ CS(Ω) andl > 0, we shall denote byΩl(χ) the set of all theχ-vessels at the valuel, that is

Ωt(χ) := Ω/'l.

The decomposition ofΩ induced by'l can be viewed as dividing the body in parts which are mapped,
throughχ, into tube-like regions ofRd which we identify with rectifiable curves. Since we control only
the total amount of fluid carried by these regions, we describe them by giving their axial curves. Thus, at
eachl a set of fibersχ can be regarded as a set of curves, obtained by varying[p]l. Indeed, by Definition
3.4.1, on the interval[0, l], χp coincides with any other functionχq for q varying in the set[p]l. A set of
fibers can also be interpreted as modelling a tree, in which case theχ-vessels represent the branches.

Definition 3.4.3 [22] Let χ ∈ CS(Ω) be given. The functionσχ : Ω → R+ defined by

σχ(p) := inf{l ∈ R+ | χp(s) is constant on[l,+∞[}

will be called absorption time. We shall say that a pointp ∈ Ω is absorbed whenσχ(p) < +∞. A point
p ∈ Ω is absorbed at timel if σχ(p) ≤ l. We denoteAl(χ) the set of absorbed points at timel, and
Aχ the set of absorbed points at some time. In the following, we shall only consider patterns such that
almost all points are absorbed.

Lemma 3.4.4 [22] Let f : Ω × R+ → R be such thatf(·, l) is measurable forl in a dense subset
D ⊂ R+ andf(p, ·) is continuous for a.e.p ∈ Ω. Thenf is a measurable mapping.

Theorem 3.4.5 [22] For every set of fiberχ ∈ CS(Ω) the following statements are equivalent.

1. χ is measurable.

2. χ(·, l) is measurable for everyl in a dense subsetD ⊂ R+.

3. χ(·, l) is measurable for everyl ∈ R+.
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In the following we only consider measurable sets of fibers.

Proposition 3.4.6 [22] For everyχ ∈ PS(Ω), the absorption functionσχ is a measurable mapping.

Let χ ∈ PS(Ω). We introduce theirrigation functiondefined on the setAχ of the absorbed points:

iχ(p) = χ(p, σχ(p))

We haveiχ(p) = limt→∞ χ(p, l) and soiχ : Aχ → Rd is a measurable function, as a pointwise
limit of a sequence of measurable functions. The functioniχ induces the image (push-forward) measure
µχ defined by the formula

µχ(A) := |i−1
χ (A)|

for any Borel setA ⊂ Rd. We shall refer toµχ as to theirrigation measureinduced byχ.

3.5 The set of fibers associated to the skeleton of a tree of tubes

Our purpose in this section is to obtain an abstract description of a physically realized tree. We first
introduce the skeleton of a tree of tubes which is a depurate description of an embedded tree (the tree
being viewed as a set of tubes). The skeleton description of a tree permits to associate a set of fibers to
it, in the sense of [22] as described in the section 3.4. Integration of functions which are constants on
any tube is then allowed and made easier with this formalism.

Since notation here is necessarily a bit cumbersome, we refer to Figure 3.2.

3.5.1 Embedded irrigation tree through its skeleton

Definition 3.5.1 Let{[xkn, ykn] | n ≥ 1, k ∈ [1, N(n)]} be a family of segments inRd such that]xkn, y
k
n]

are disjoint. We shall say that the setS = ∪∞n=1 ∪
N(n)
k=1 [xkn, y

k
n] is a skeleton if there are increasing

surjective functionsφn : [1, N(n)] → [1, N(n− 1)] such thatxkn = y
φn(k)
n−1 .

The numberN(n) will be called the number of branches at generation n. The segment[xkn, y
k
n] will be

called the (n,k) tube. We will consider skeletons such thatN(1) = 1.

The setKN = ∪Nn=1 ∪
N(n)
k=1 [xkn, y

k
n] will be called the partial tree at generation N of the skeleton.

We shall consider skeletons with a flow attached to each tube so that Kirchhoff’s law is satisfied at
each bifurcation.

Definition 3.5.2 Let S be a skeleton. We say that S is a skeleton with a flowF if the familyF =
{fkn | n ∈ N, k ∈ [1, N(n)]} is such thatmaxk fkn → 0 asn→∞ and satisfies Kirchhoff ’s law, i.e.,∑

l∈φ−1
n+1(k)

f ln+1 = fkn .

We shall say thatf1
1 is the total flow onS. In the sequel we normalize the total flowf1

1 = 1.

We associate to a skeleton with a flow the familyR = {rkn | n ∈ N, k ∈ [1, N(n)]}, whererkn represents
the radius of the(n, k) tube. We shall assume thatsupn,k rkn <∞.
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Figure 3.2: Skeleton of a tree of tubes

3.5.2 Correspondence between a skeleton and a filtration of [0,1)

The idea is to associate to each tube of generationn of the tree some intervalωkn ⊂ [0, 1], so that
σ-algebrasAn generated by the finite number of setsωkn form a filtration. A point of[0, 1) will then
correspond to a path in the tree. This construction follows [22].

Proposition 3.5.3 Let S be a skeleton with a flowF . We assume that the total flow is1. Then, there is
a familyωkn such that|ωkn| = fkn for all k ∈ [1, N(n)] and the family of intervals{ωkn : k ∈ [1, N(n)]}
forms a partition ofΩ = [0, 1). Moreover, theσ-algebrasAn generated by{ωkn | k ∈ [1, N(n)]} form a
filtration and theσ-algebraA generated by

⋃
nAn coincides with theσ-algebra of Borel sets of[0, 1).

Proof. Let ω1
1 = [0, 1). Suppose thatωkn are defined for allk ∈ [1, N(n)]. We have to defineωln+1 for

all l ∈ [1, N(n+ 1)]. Let k ∈ [1, N(n)]. Then, ifωkn = [a, b), for all r ∈ φ−1
n+1(k) = [lk + 1, lk+1], we

define

ωrn+1 = [ a+
r−1∑

i=lk+1

f in , a+
r∑

i=lk+1

f in )

From the definition,|ωrn+1| = f rn+1, andωrn+1 are intervals of the form[c, d) forming partition ofωkn
because of Kirchhoff’s law. Repeating the same construction for allk ∈ [1, N(n)] we obtain the family
{ωln+1}.

By construction, theσ-algebrasAn generated by{ωkn | k ∈ [1, N(n)]} form a filtration. Since
maxk |ωkn| = maxk fkn converges towards 0 whenn goes to infinity, theσ-algebraA generated by⋃
nAn coincides with theσ-algebra of Borel subsets of[0, 1). Moreover, ifω ∈ Ω = [0, 1) there is

a unique decreasing family of intervals{ωk(n)
n , n ≥ 1} such thatω =

⋂
n ω

k(n)
n , or, in other words,

paths of the tree are in a one-to-one correspondence with points of[0, 1). Note thatA1 = {ω1
1} with

ω1
1 = [0, 1).
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3.5.3 Construction of the set of fibers associated to the skeleton. The equality of supply.

Let S be a skeleton with a flow, and letlkn = |xkn − ykn| be the length of the(n, k) tube. By definition
of skeletons, there is a unique path fromxkn to the sourcex1

1, that is to say, givenωkn, there is a unique
family of intervalsωk(i)i such thatωkn ⊂ ω

k(i)
i for all i ≤ n. Notice thatωk(n)

n = ωkn. We shall denote

by Lkn the sum of lengths corresponding to the tubes{ωk(i)i : i ≤ n}, i.e.,Lkn =
∑n

i=1 l
k(i)
i . We also

setLk∗n =
∑n−1

i=1 l
k(i)
i . More generally, for allω ∈ Ω, there exists a unique sequencek(n) such that

ω = ∩nωk(n)
n . We defineL(ω) =

∑
n l
k(n)
n ∈ R ∪ {∞} to be the length of the pathω.

Proposition 3.5.4 Let S be a skeleton with a flow. Let us define by recursively

χ1(ω, l) =

{
x1

1 + l
y11−x1

1

|y11−x1
1|

if l ≤ l11

y1
1 if l > l11

and, forn ≥ 2, ω ∈ ωkn, let

χn(ω, l) =


χn−1(ω, l) if l ≤ Lk∗n

xkn + (l − Lk∗n ) y
k
n−xk

n

|yk
n−xk

n|
if l ∈ [Lk∗n , L

k
n]

ykn if l > Lkn

Then the pointwise limitχ(ω, l) := limn χn(ω, l) exists for any(ω, l) ∈ [0, 1]×R+, and it is measurable.
Henceχ is a measurable set of fibers in the sense [22].

Proof. Let us prove thatχn isAn × B(R+) measurable. First, since for any givenl, χn(·, l) is constant
on every intervalωkn, the inverse image of any subset ofRd is a finite union of intervalsωkn, hence it is
in An. Thusχn(·, l) is measurable for anyl. Moreover, since for anyω ∈ Ω, χn(ω, ·) is 1-Lipschitz, by
Lemma 3.4.4, we obtain thatχn is measurable, hence it is a set of fibers.

Let us prove that the pointwise limitχ(ω, l) = limn χn(ω, l) exists for any(ω, l) ∈ [0, 1] × R+. If
l < L(ω), andω = ∩mωk(m)

m , then there is an integern such thatl ∈ (Lk(n)∗
n , L

k(n)
n ]. The sequence

{χi(ω, l)}i≥n is constant, hence it is convergent. Ifl ≥ L(ω), thenχn(ω, l) is a Cauchy sequence.
Indeed,

|χn(ω, l)− χm(ω, l)| = |χn(ω,Lk(n)
n )− χm(ω,Lk(m)

m )| = |yk(m)
m − yk(n)

n |

and the conclusion follows from the fact thatyk(n)
n is a Cauchy sequence ; this being so because

L(ω) ≤ l < ∞. We conclude thatχ is Borel measurable, being a pointwise limit of Borel measur-
able functions.

Let χn andχ be the set of fibers associated to the skeletonS constructed in Proposition 3.5.4. Let
us define the functions

rχn(ω, l) =
∑

{(m,k):m≤n, k≤N(m)}

1lωk
m

(ω)1l(Lk∗
m ,Lk

m](l)r
k
m,

fχn(ω, l) =
∑

{(m,k):m≤n, k≤N(m)}

1lωk
m

(ω)1l(Lk∗
m ,Lk

m](l)f
k
m,

for (ω, l) ∈ [0, 1]× R+. Observe that

rχn(ω, l) = rχn−1(ω, l) if ω ∈ ωkn, l ≤ Lk∗n ,
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and similarly forfχn(ω, l). Thus if ω = ∩mωk(m)
m , and l < L(ω), there is an integern such that

l ∈ (Lk(n)∗
n , L

k(n)
n ], andrχi(ω, l) = r

k(n)
n , fχi(ω, l) = f

k(n)
n for all i ≥ n. Thus the pointwise limits

rχ(ω, l) = lim
n
rχn(ω, l),

fχ(ω, l) = lim
n
fχn(ω, l)

exist for any(ω, l) ∈ [0, 1] × R+ such thatl < L(ω). If l ≥ L(ω), thenrχn(ω, l) = 0, fχn(ω, l) = 0,
and we may define

rχ(ω, l) = 0,

fχ(ω, l) = 0.

Observe that the functionsrχn , fχn are measurable, and, hence,rχ, fχ are also measurable.

The functionL(ω) can be seen as an absorption length since it may be written as

L(ω) = inf{l ∈ R+ | χ(ω, l) is constant on[l,+∞)}.

Then, by Proposition 3.4.6, it is also Lebesgue measurable. As in [22] and Section 3.4, we define the
irrigation measureµ by µ(A) = |T−1(A)|, whereT : ω → χ(ω,L(ω)).

Definition 3.5.5 Let S be a skeleton with a flow. We shall say that S satisfies weak equality of supply if
its associated set of fibers defines an image measureµ such thatµ = f(x)λ whereλ is the Lebesgue
measure inRd andf ∈ L1(Rd), f ≥ 0, f 6= 0.

We say thatS satisfies the equality of supply iff = c1lK whereK is some set of positive measure
(we denote by1lA the characteristic function of a setA). In the general case, we shall denote byK :=
{x ∈ Rd : f(x) > 0}.

Remark 3.5.6 The setK can be taken as being a subset ofT (Ω), indeed∫
K\T (Ω)

f(x)dλ = µ(K \ T (Ω)) = |T−1(K \ T (Ω))| = |∅| = 0.

Sincef > 0 onK, we have thatK ⊂ T (Ω) almost everywhere and we may writeµ = f(x)1lK∩T (Ω)λ.
Thus, replacingK byK ∩ T (Ω) if necessary, we may assume thatK ⊂ T (Ω).

The aim of the above construction is to be able to reformulate the energy and the volume of the tube
network as Lebesgue integrals of adequate functions defined on the setΩ of paths, as we shall see in the
next section.

3.6 Source to volume transfer energy

There are technical difficulties if one wants to make calculations on a tree. For instance, if one wants to
write the volume of a tree as an integral, either one writes it as an integral of the total sections over all
branches, from the source to the tips; or we write it as an integral over[0, 1)×R+, i.e., an integral along
the paths of the tree. The construction of the last section will enable us to follow the latter approach. In
what follows, we introduce the volume and the dissipated power of a skeleton with a flow. It is to be
mentioned that these definitions only intend to be of the same order as the exact volume and dissipated
power of an associated embedded tree. Indeed, due to the fact that we assimilate the thick tree with its
skeleton, we neglect the influence of the real structure of junctions at bifurcations.
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Definition 3.6.1 LetS be a skeleton with a flow. Letlkn, r
k
n, f

k
n be the length, radius, and flow, respec-

tively, of the(n, k) tubes. We define the volume of the tree associated toS byV =
∑∞

n=1

∑N(n)
k=1 lkns

k
n,

and its dissipated power associated with a resistance lawR(s) byW =
∑∞

n=1

∑N(n)
k=1 lknR(skn)(f

k
n)2,

whereskn = (rkn)
d−1 (the quantities are taken modulo constants).

To prepare the proof of Theorem 3.6.4, it will be convenient to write them as double integrals overl

andω as follows.

Proposition 3.6.2 We may express the volume and the dissipated power of the tree by the formulas
V =

∫∞
0

∫ 1
0 Q1(ω, l)dldω whereQ1(ω, l) = rχ(ω,l)d−1

fχ(ω,l) for l ≤ L(ω) andQ1(ω, l) = 0 for l > L(ω),

andW =
∫∞
0

∫ 1
0 Q2(ω, l)dldω whereQ2(ω, l) = fχ(ω, l)R(sχ(ω, l)), wheresχ(ω, l) = rχ(ω, l)d−1,

for l ≤ L(ω) andQ2(ω, l) = 0 for l > L(ω).

Proof. Let us define
rχn(ω, l)d−1

fχn(ω, l)
= 0

when both terms are0. Then it is easy to check that

rχn(ω, l)d−1

fχn(ω, l)
=

∑
{(m,k):m≤n, k≤N(m)}

1lωk
m

(ω)1l(Lk∗
m ,Lk

m](l)
(rkn)

d−1

fkn
(ω, l) ∈ [0, 1]× R+,

and ∫ ∞

0

∫ 1

0

rχn(ω, l)d−1

fχn(ω, l)
dl dω =

n∑
m=1

N(m)∑
k=1

lkm(rkm)d−1 (3.4)

for eachn ≥ 1. Sincerχn (ω,l)d−1

fχn (ω,l) ↑ Q1(ω, l) pointwise asn → ∞, lettingn → ∞ in (3.4) we deduce
that

V =
∫ ∞

0

∫ 1

0
Q1(ω, l)dldω.

In a similar way, we prove thatW =
∫∞
0

∫ 1
0 Q2(ω, l)dldω.

Definition 3.6.3 We shall say that S is a skeleton with almost surely finite paths ifL(ω) <∞ for almost
everyω ∈ Ω.

Theorem 3.6.4 Let0 < α ≤ 1− 1
d . Let us assume that the resistivity function isR(s) = s(α−2)/α. Let

S be a skeleton with a flow which has almost surely finite paths and satisfies weak equality of supply.
Then,V andW cannot be simultaneously finite.

Proof. Observe that we haveQ1Q2 = rχ(ω, l)2(d−1)(1−α−1). HenceQ1Q2 ≥ c2

rχ(ω,l)2
whenrχ(ω, l) >

1 wherec = (supω,l rχ(ω, l))(d−1)(1−α−1). By Cauchy-Schwarz inequality we have

√
V
√
W ≥

∫ ∞

0

∫ 1

0

√
Q1

√
Q2 =

∫ ∞

0

∫ 1

0
rχ(ω, l)(d−1)(1−α−1)dωdl ≥ c

∫ ∞

0

∫ 1

0

1
rχ(ω, l)

dωdl.

LetK be the set wheref > 0, f being the function such thatµ = fλ, whereµ is the irrigation measure
defined by the set of fibers associated to the skeleton (see Definition 3.5.5). Let us decomposeK as
K = A ∪ R, whereA are the points of Lebesgue density 1 ofK, R has zero Lebesgue measure and,
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because of weak equality of supply, it is also ofµ measure zero. Then|T−1(R)| = 0, so that|T−1(A)|
is of non zero measure. By Proposition 3.2.1 in section 1.1, the profile of an irrigating branch must
decrease faster than linearly and

∫∞
0

1
rχ(ω,l)dl is infinite for allω such thatT (ω) = x ∈ A. Then it turns

out that ∫ 1

0

∫ ∞

0

1
rχ(ω, l)

dldω ≥
∫
T−1(A)

∫ ∞

0

1
rχ(ω, l)

dldω ≥ ∞.

We conclude that
√
V
√
W ≥

∫ 1

0

∫ ∞

0

1
rχ(ω, l)

dldω = ∞.

Thus, the exponentα = 1− 1
d is critical relatively to the fact that a tree cannot irrigate a volume at

finite cost. This result is consistent with the results presented in Chapter 5.
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Chapter 4

The traffic plan model

Introduction

A traffic plan is a measure on the set of paths. As it is possible to see on figure 2.3, this object can
describe a great variety of structures. We can associate to a traffic plan a canonical transference planπµ
along with its marginalsµ+ andµ−. Thus, as was mentioned in chapter 2, traffic plan can model both
the irrigation problem and the who goes where problem where the whole transference plan is prescribed.
Let us now give the plan of the present chapter. In Section 4.1, we define traffic plans and transference
plans. In Section 4.2, we model probability measures in a Lagrangian way as sets of particles indexed by
[0, 1]. In Section 4.3, we prove semicontinuity results, and sequential compactness properties of traffic
plans. Section 4.4 is devoted to the proof of existence of minimizers of the Monge-Kantorovitch problem
within our framework. In Section 4.5, we prove the existence of a minimizer for both the irrigation and
the traffic problems. This result in particular retrieves the existence results of [22] and [35] in a more
general setting.

4.1 Traffic plans with prescribed transference plans

LetX ⊂ RN be a compact set.

Definition 4.1.1 Let us denote byK the set of 1-Lipschitz mapsγ : R+ → X endowed with the distance

d(γ, γ′) := sup
k∈N∗

1
k
||γ − γ′||L∞([0,k]).

From now on, we considerB, the Borelσ-algebra onK.

Definition 4.1.2 Letγ ∈ K. We define its stopping time as

T (γ) := inf{t : γ constant on[t,∞[}.

Remark 4.1.3 Observe that the stopping timeT : K → R̄ is measurable. Indeed, using lemma 4.3.5
below,T is lower semicontinuous. This means thatT−1(]A,+∞]) is open, then measurable. Thus,T is
measurable.

Lemma 4.1.4 The metric space(K, d) is compact.

53
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Proof: The spaceK is complete and the totally boundedness is a straightforward consequence of Ascoli-
Arzela’s Theorem.

Definition 4.1.5 We define a traffic planµ as a probability measure on(K,B) such that∫
K
T (γ)dµ(γ) <∞. (4.1)

We denote byTP (X) the set of all traffic plans inX. We denote byTPC(X) the set of traffic plans
µ such that

∫
K T (γ)dµ(γ) ≤ C. We shall omit the mention ofX in the following.

Remark 4.1.6 This definition is realistic for a traffic plan, asT (γ) represents a transportation time and
we don’t want the average transportation time to be infinite! Observe that (4.1) implies thatT (γ) <∞,
µ−almost everywhere.

Definition 4.1.7 With any traffic planµ is associated a transference plan, that is to say a probability
measure onX ×X that we denote byπµ and define by

< πµ, φ >:=
∫
K
φ(γ(0), γ(T (γ)))dµ(γ),

whereφ ∈ C(X ×X,R). In an informal way,πµ(A × B) is the mass carried fromA to B by means
of the traffic planµ. We denote byTP (π) the set of traffic plansµ such thatπµ = π. This is the set of
traffic plans with prescribed transference planπ.

Definition 4.1.8 If µ is a traffic plan, we define its irrigating and irrigated measure by

< µ+, φ1 >:=< πµ, φ1 ⊗ 1lX > and < µ−, φ2 >:=< πµ, 1lX ⊗ φ2 > φ1, φ2 ∈ C(X).

We denote byTP (ν+, ν−) the set of traffic plansµ such thatµ+ = ν+ andµ− = ν−.

4.2 Parameterization of a probability measure on a totally bounded met-
ric space

The aim of this section is to show that we can associate with any probability measure a system of
”elementary particles” such thatµn ⇀ µ becomes ”almost every elementary particle ofµn tends to
an elementary particle ofµ”. In an abstract setting, we assume in this section that(K, d) is a totally
bounded metric space equipped with theσ−algebra of its Borel sets. The results in this section are well-
known [16], the main aim being to prove the Skorohod (or Skorokhod in other textbooks) representation
theorem, i.e. theorem 4.2.8. The results of this section will be applied to traffic plans but it is convenient
to develop them in a more general setting.

Definition 4.2.1 Let µ be a probability measure onK. We call parameterization ofµ a measurable
applicationχ : ω ∈ [0, 1] → K such thatµ = χ#λ whereλ is the Lebesgue measure on[0, 1].
That is to sayµ(A) = λ(χ−1(A)). Observe that ifφ : K → R+ is a µ−measurable function, then∫
K φ(γ)dµ(γ) =

∫
Ω φ(χ(ω))dω ([2], Def. 1.70, p. 32).

Remark 4.2.2 As an illustrative example, ifK = [−1, 1], the Dirac mass at0 is parameterized by the
null constant application on[0, 1]. In the same way, an atomic measure

∑n
1 aiδxi can be parameterized

by the piecewise constant functionχ(ω) = x1 on [0, a1], χ(ω) = x2 on ]a1, a2] and so on.
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Remark 4.2.3 Recall that the functionχ : [0, 1]×R+ → RN is called a Carath́eodory function ifχ(ω, t)
is a continuous function oft for almost everyω ∈ [0, 1] and is measurable inω for everyt ∈ R+. As
it is well-known, Carath́eodory functions are measurable as functions of(ω, t) [13]. As a function of
(ω, t), the parameterizationχ defined in Definition 4.2.1 is a Carathédory function. Observe that, as a
consequence of Proposition 4.3.1, both concepts coincide for functionsχ : [0, 1] → K.

In lemma 4.2.5, we shall construct a filtration onK of a special kind which gives us a parameteriza-
tion of µ (see lemma 4.2.6). For that, we first prove that we can construct a filtration onK whose sets
have a specified diameter. Then, in lemma 4.2.5, we prove that we can adapt the filtration so thatµ does
not charge the boundaries of its elements.

Lemma 4.2.4 There exists a filtration ofK made of finite partitionsFl = {F lj : 1 ≤ j ≤ Jl}, where
Jl ∈ N∗, such that the diameters of the setsF lj are less than2−l.

Proof: We construct this filtration recursively. In order to constructF1, we coverK with a finite number
of balls of radii1/4. Let us denote byBi, where1 ≤ i ≤ n, the intersection of these balls withK.
Let us find a partition ofK = ∪iBi with at mostn elements. To do this, we denotẽF 1

1 := B1 and,
in a recursive way, we definẽF 1

i+1 := Bi+1 \ ∪j≤iBj . If any of theF̃ 1
i is empty, we do not take it

into account, so that we obtain a family of non empty elementsF 1
i wherei ≤ J1. Since theF 1

i are
totally bounded, we can iterate the above process by covering them with balls of radius1/8. Proceeding
iteratively we construct the desired filtration.

Lemma 4.2.5 Let µ be a probability measure onK. There exists a filtration made of finite partitions
Fl = {F lj : 1 ≤ j ≤ Jl}, Jl ∈ N∗, such that the diameters ofF lj are less than2−l+1 andµ(∂F lj) = 0
for all l andj ≤ Jl.

Proof: To obtain this filtration, we slightly modify the construction of lemma 4.2.4. We only need to
request in addition thatµ(∂F lj) = 0 for all l and j ∈ Jl. For that, it is enough to perturb the radii
rl = 2−l(1 + εl), with εl ≤ 1 so thatµ does not charge the boundaries of the balls with radiusrl used to
constructFl.

The filtration obtained in lemma 4.2.5 allows us to define a parameterization ofµ. The idea is to
group together theω’s whose images are close.

Lemma 4.2.6 Letµ be a probability measure onK andF be the filtration constructed in lemma 4.2.5.
There exists a parameterizationχ of µ such that for alll, the sets

Ωj,l = {ω : χ(ω) ∈ F lj}

are intervals ordered in an increasing way withj.

Proof: We constructχ by successive approximationsχn using the filtration of lemma 4.2.5.

Step 1: Definition ofχn. Let tn0 := 0 andtnj :=
∑

i≤j µ(Fni ) where1 ≤ j ≤ Jn. The applicationχn
is defined as a piecewise constant function sending each interval[tnj−1, t

n
j [ onto an arbitrary element of

Fnj . By construction,Ωj,l := {ω : χn(ω) ∈ F lj} = [tlj−1, t
l
j [ for all j ≤ Jl. We notice that the intervals

[tlj−1, t
l
j [ where1 ≤ j ≤ Jl, are intervals ordered in an increasing way whenj goes from 1 toJl, so that

their union is[0, 1[. Notice also thatµ(F lj) = λ(Ωj,l).
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Step 2: The sequenceχn(ω) converges for allω. Let us prove thatχn is a Cauchy sequence. Let us
first observe thatχn(Ωm

j ) ⊂ Fmj for anyn ≥ m. Indeed, let us fixm andn ≥ m. By the definition
of filtration, Ωm

j is the union ofΩn
k wherek describes the set of indices such thatFnk ⊂ Fmj . Thus,χn

sends every element ofΩn
k to an element ofFnk ⊂ Fmj . A fortiori, the image ofΩm

j underχn is in Fmj .
Now, since the setsFmj have diameter less than2−m, we deduce thatd(χn(ω), χm(ω)) < 2−m for all
m ≤ n. Thus,χn(ω) is a Cauchy sequence.

Let χ be the pointwise limit ofχn. Observe thatχ is measurable as a pointwise limit of measurable
functions.

Step 3: The measureχ#λ is exactlyµ. We have to show thatχ#λ(F lj) = µ(F lj) for all (j, l). The
measuresµ andχ#λ will then be equal on the setsF lj which form aΠ-system. Then the extension
Theorem ofΠ-systems (lemma 1.6, p.19 [34]) shows thatµ = χ#λ on theσ-algebra generated by this
Π-system, that is, on theσ-algebra of Borel sets ofK.

Let us fixl, j ≤ Jl, and let us define

Gp := {γ ∈ F lj : d(γ, ∂F lj) ≥ 1/p}.

This is a non decreasing sequence of sets such that∪pGp = F lj \∂F lj . Fix ε > 0. For a sufficiently large
p, we have

µ(Gp) ≥ µ(F lj)− ε. (4.2)

Now, consider anl′ such that2−l
′
< 1

2p . For anyy ∈ Gp, there existsk so thaty ∈ F l
′
k . Since the

diameter ofF l
′
k is less than1

2p , F l
′
k ⊂ G2p so thatF̄ l

′
k ⊂ F lj . Forn ≥ l′, the construction ofχn ensures

thatχn(Ωl′
k ) ⊂ F l

′
k . Sinceχ is the pointwise limit ofχn,

χ(Ωl′
k ) ⊂ F̄ l

′
k ⊂ F lj . (4.3)

We obtain a covering ofGp with sets of the formF l
′
k satisfying (4.3), and, using (4.2), we have

χ#λ(F lj) ≥ µ(F lj) − ε. This being true for allε > 0, we deduce thatχ#λ(F lj) ≥ µ(F lj). Since
these sets form a partition for1 ≤ j ≤ Jl, andχ#λ is a probability measure, the inequality is indeed an
equality, that is:χ#λ(F lj) = µ(F lj). As a consequence, we haveχ−1(F lj) = Ωj,l modulo a null set.

Definition 4.2.7 Let (µn)n and µ be probability measures on(K, d). We say thatµn tends toµ
”pointwise” whenever there exist parameterizationsχn andχ of µn and ofµ, respectively, such that
d(χn(ω), χ(ω)) → 0 almost everywhere in[0, 1].

Theorem 4.2.8 Let (µn)n be a sequence of probability measures on(K, d). Thenµn weakly-* con-
verges toµ if and only ifµn to µ tends toµ ”pointwise”.

Proof: Assume thatµn converges toµ ”pointwise”, and letχn, χ denote the parameterizations ofµn
andµ, respectively. Sinceχn(ω) converges toχ(ω) for almost everyω, using Lebesgue’s theorem, for
all φ ∈ C(K), we have

< µn, φ > =
∫
K
φ(γ)dµn(γ) =

∫
[0,1]

φ(χn(ω))dω

→
∫

[0,1]
φ(χ(ω))dω =

∫
K
φ(γ)dµ(γ) =< µ, φ > .
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Conversely, letµn be weakly-* converging toµ. Let us consider the filtration associated withµ
constructed in lemma 4.2.5. Sinceµ(∂F lj) = 0, we deduce thatµn(F lj) converges toµ(F lj). Next,
applying lemma 4.2.6 to measuresµn andµ, we get applicationsχn andχ such thatχn#λ = µn and
χ#λ = µ. The fact thatµn(F lj) converges toµ(F lj) implies thatλ(Ωn

j,l) converges toλ(Ωj,l), where
Ωn
j,l := {ω : χn(ω) ∈ F lj} andΩj,l := {ω : χ(ω) ∈ F lj}. This convergence of measures implies the

convergence of intervalsΩn
j,l to some intervalsΩj,l, ordered in an increasing way withj.

We are now in a position to prove that for almost allω the sequenceχn(ω) converges toχ(ω).
Notice that for almost allω and for anyl ∈ N, there exists aj ≤ Jl such thatω is in the interior ofΩj,l.
Indeed, there is a finite number of such intervals at each rank of the filtration, and, thus, the set of its
endpoints is countable, hence of measure zero. Thus, forn large enough, we have thatω ∈ Ωn

j,l, i.e.,
χn(ω) ∈ F lj . This yieldsd(χn(ω), χ(ω)) < 2−l.

4.3 Stability properties of traffic plans

From now on, we will denote|A| := λ(A), the Lebesgue measure of a measurable setA ⊂ [0, 1].
Throughout this section,(K, d) is the compact metric space of Definition 4.1.1. According to lemma
4.2.6, we can associate with a traffic planµ a parameterizationχ : Ω → K. We setχ(ω, t) := χ(ω)(t).
It is easy to check thatχ is a measurable function fromΩ × R+ → X. This is true, sinceχ is a
Carath́eodory function (see Remark 4.2.3). Moreover, if a functionχ : [0, 1] → K is measurable as
a function of(ω, t), then it is measurable as a function from[0, 1] to (K, d). Since this is a simple
argument, we include it here for the sake of completeness.

Proposition 4.3.1 The applicationχ : Ω × R+ → X is measurable if and only if the application
ω ∈ [0, 1] 7→ χ(ω, ·) ∈ K is measurable.

Proof: Let χ : Ω× R+ → X be a measurable function. Observe that

χ−1(B(γ, r)) = {ω : d(χ(ω), γ) ≤ r}

= {ω : ∀k,
||χ(ω)− γ||L∞([0,k])

k
≤ r}

= ∩k{ω : ||χ(ω)− γ||L∞([0,k]) ≤ kr}
= ∩k ∩t∈Q∩[0,k] {ω : |χ(ω)(t)− γ(t)| ≤ kr}

This last expression is a countable intersection of measurable sets since the mapsχ̃ : ω 7→ χ̃(ω, t) are
measurable for anyt ∈ [0, 1].

This shows that ifχ : Ω × R+ → RN is measurable, we can define its associated traffic plan
µ := χ#λ. Of course, as we can deduce from the preceding section, a traffic plan can have many
different parameterizations.

Definition 4.3.2 Letµn be a sequence of traffic plans. We shall say thatµn converges to a traffic plan
µ if one of the equivalent relations is satisfied:

µn ⇀ µ,

χn(ω) → χ(ω) in K for almost allω ∈ Ω,

whereµn andµ are parameterized using a common filtration constructed as in lemma 4.2.5, such that
µn(∂F lj) = µ(∂F lj) = 0 for anyj, l.
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Remark 4.3.3 An immediate adaptation of lemma 4.2.5 permits to use the same filtration to construct
the parameterizations of all measuresµn andµ.

4.3.1 Lower semicontinuity of length, stopping time, averaged length and averaged stop-
ping time

Lemma 4.3.4 Let µn be a sequence of probability measures on a compact metric spaceK and such
thatµn weakly converges toµ. Letγ 7→ f(γ) be a lower semicontinuous function onK. Then,∫

K
f(γ)dµ(γ) ≤ lim inf

∫
K
f(γ)dµn(γ).

Proof: This is a straightforward application of the fact that any lower semicontinuous functionf on a
metric compact space is the increasing limit of a sequence of continuous functions ([2], lemma 1.61, p.
27), and the monotone convergence theorem.

Lemma 4.3.5 Let L(γ) denote the length ofγ ∈ K. If the sequenceγn ∈ K converges toγ for the
metricd, then

T (γ) ≤ lim inf T (γn),

and
L(γ) ≤ lim inf L(γn).

Proof: For all t ≥ s > lim inf T (γn), there exists an increasing sequence of indicesnk going to infinity
such thatT (γnk

) < s ≤ t. This ensures thatγnk
(t) = γnk

(s). Considering the limit of this equality,
we obtainγ(t) = γ(s). Thenγ is constant on] lim inf T (γn),+∞[, so thatT (γ) ≤ lim inf T (γn). The
lower semicontinuity of the length functional is well-known and we shall omit the details.

Lemma 4.3.6 If a sequence of traffic plansµn converges toµ, then∫
K
T (γ)dµ(γ) ≤ lim inf

∫
K
T (γ)dµn(γ)

and ∫
K
L(γ)dµ(γ) ≤ lim inf

∫
K
L(γ)dµn(γ).

Proof: Because of lemma 4.3.5, the applicationsγ 7→ T (γ) andγ 7→ L(γ) are lower semicontinuous.
The desired inequalities then directly come from lemma 4.3.4.

4.3.2 Multiplicity of a traffic plan and its upper semicontinuity

Definition 4.3.7 Letµ be a traffic plan. We call multiplicity ofµ at a pointx ∈ RN the number

|x|µ := µ({γ : ∃t, γ(t) = x}).

If χ is a parameterization ofµ, then we define the path class ofx ∈ RN as the set

[x]χ := {ω : ∃t, χ(ω, t) = x}.

Sinceχ#λ = µ, we have that|[x]χ| = |x|µ.
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Remark 4.3.8 The multiplicity is well defined since the set{γ : ∃t, γ(t) = x} is a Borel set ofK.
Indeed,{γ : ∃t, γ(t) = x} = ∪n{γ : ∃t ≤ n, γ(t) = x} is a union of closed sets inK.

Proposition 4.3.9 (lemma 6.2, [22]) Letχn be a sequence of parameterizations of traffic plans con-
verging toχ. Suppose further that there isC > 0 such that

∫
Ω T (χn(ω))dω ≤ C. Then, for almost all

ω,

lim sup |[χn(ω, t)]χn | ≤ |[χ(ω, t)]χ|.

Proof: Setε = C/M . By Markov’s inequality,

|{ω : T (χn(ω)) > M}| ≤ C

M
= ε.

Let us define an approximate multiplicity by

[χ(ω, t)]εχ := {ω′ ∈ [χ(ω, t)]χ : T (χ(ω′)) ≤M}.

Next, let us take an elementω′ in∩k∪n>k[χn(ω, t)]εχn
. This means that there exists a sequence of indices

ni which goes to infinity, and timessi ≤ T (χni(ω)) ≤M such thatχni(ω
′, si) = χni(ω, t). Sincesi is

bounded, it is possible to extractsi → s and because of uniform convergence ofχni(ω
′, ·) on [0,M ], we

obtainχ(ω′, s) = χ(ω, t), henceω′ ∈ [χ(ω, t)]χ. This shows that∩k ∪n>k [χn(ω, t)]εχn
⊂ [χ(ω, t)]χ,

so that

lim sup |[χn(ω, t)]εχn
| ≤ |[χ(ω, t)]χ|.

Thus,

lim sup |[χn(ω, t)]χn | − ε ≤ |[χ(ω, t)]χ|.

We prove another kind of upper semicontinuity which will be useful to prove Corollary 4.3.11.

Lemma 4.3.10 Let χ be a parametrization of a traffic planµ. Then, the functionφ : x 7→ |[x]χ| is
upper semicontinuous.

Proof: Let us show that for eachx such that|[x]χ| < r, there is a ballB(x, ε) such that for ally
in B(x, ε), |[y]χ| < r. This will prove thatφ−1([0, r[) is an open set, and therefore thatφ is upper
semicontinuous. Suppose that it is not the case. Then, for each ballBn := B(x, 1/n), there is a
yn ∈ Bn so that|[yn]χ| ≥ r. Notice thatyn tends tox whenn goes to infinity. Let us consider

Ω̃ := ∩n ∪m≥n [ym]χ.

Then, modulo a null set,̃Ω ⊂ [x]χ. Indeed, for almost everyω, T (χ(ω)) < ∞. For such anω in
Ω̃, this means that for alln, there is anm ≥ n such thatω ∈ [ym]χ, that is, there is atm such that
χ(ω, tm) = ym. SinceT (χ(ω)) < ∞, the sequence(tm)m can be supposed to be bounded. Thus, it
is possible to extract a convergent subsequencetm → t such thatχ(ω, t) = x, i.e.,ω ∈ [x]χ. Thus
|Ω̃| ≤ |[x]χ| < r and|Ω̃| = limn | ∪m≥n [yn]χ| ≥ r. This contradicts our initial assumption.

Corollary 4.3.11 Letχ be a parametrization of a traffic planµ. The function(ω, t) 7→ |[χ(ω, t)]χ| is
measurable.
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Proof: This a consequence of the measurability ofx 7→ |[x]χ| (lemma 4.3.10). Indeed, we have

{(ω, t) : |[χ(ω, t)]χ| < r} = {(ω, t) : χ(ω, t) = x and|[x]χ| < r}
= χ−1({x : |[x]χ| < r}).

4.3.3 Sequential compactness of traffic plans

Theorem 4.3.12 If (µn)n is a sequence ofTPC such thatµn ⇀ µ, thenπµn ⇀ πµ. Hence, given a
sequence(µn)n of TPC , it is possible to extract a convergent subsequence such thatπµn converges.

Proof: Setε = C/M . By Markov’s inequality, we haveµn(K \ Kε) ≤ C
M = ε whereKε := {γ :

T (γ) ≤M}. Because of lemma 4.3.6, we also have that
∫
K T (γ)dµ(γ) ≤ C, and, thus,µ(K \Kε) < ε.

Let φ ∈ C(X × X,R). Since, by definition of the distance onK, the mapγ 7→ φ(γ(0), γ(M)) is
continuous fromK to R, then, by definition of the transference plan associated with a traffic plan, we
have

lim sup
n

< πµn , φ > ≤ lim sup
n

(
∫
Kε

φ(γ(0), γ(T (γ)))dµn(γ) + ε||φ||∞)

= lim sup
n

∫
Kε

φ(γ(0), γ(M))dµn(γ) + ε||φ||∞

≤ lim sup
n

∫
K
φ(γ(0), γ(M))dµn(γ) + 2ε||φ||∞

=
∫
K
φ(γ(0), γ(M))dµ(γ) + 2ε||φ||∞

≤
∫
K
φ(γ(0), γ(T (γ)))dµ(γ) + 4ε||φ||∞

= < πµ, φ > +4ε||φ||∞.

In the same way,
lim inf

n
< πµn , φ >≥< πµ, φ > −4ε||φ||∞.

Corollary 4.3.13 Let π be a probability measure onX × X. There exists a traffic planµ such that
πµ = π.

Proof: Let us first prove this property in the case of finite atomic measuresπ. Let (ai)ki=1 and(bj)lj=1

the elements of the support of the two marginals ofπ. Let us denote byπi,j the valuesπ({ai} × {bj}).
We now defineγi,j ∈ K, the segment joiningai to bj , i.e. γi,j(0) = ai, for t ∈]0, |ai − bj |],

γi,j(t) :=
t

|ai − bj |
bj +

1− t

|ai − bj |
ai

andγi,j is constant on[|ai − bj |,∞[. The traffic planµ :=
∑

i,j πi,jδγi,j is such thatπµ = π by
construction.

Let us now consider a general transference planπ and a sequence of atomic measuresπn such
thatπn ⇀ π. The first part of the proof tells that there are traffic plansµn such thatπµn = πn. By
theorem 4.3.12, we can extract a converging subsequence from(µn)n such thatµn converges toµ with
πµn ⇀ πµ. Thus, the traffic planµ is such thatπµ = π.
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4.4 The Monge-Kantorovitch problem

For a sake of completeness, we show that the traffic plan formalism is adapted to solve the Monge-
Kantorovitch problem. Of course, no result is new here.

Definition 4.4.1 We call cost of a traffic plan a functional

I(µ) =
∫
K
c(γ(0), γ(T (γ)))dµ(γ),

wherec is a bounded non-negative lower semicontinuous function which informally represents the cost
for transporting a unit of mass fromx to y.

Let us notice thatI(µ) =
∫
X×X c(x, y)dπµ(x, y) whereπµ is the transference plan associated to the

traffic planµ. Given two measuresν+ andν−, the Monge-Kantorovitch problem consists in minimizing∫
X×X c(x, y)dπ(x, y) under prescribed marginal measuresν+ andν−. By corollary 4.3.13, any trans-

ference plan can be obtained (in a not unique way) as the transference planπµ associated to a traffic plan
µ. Thus, the problem of minimizingI(µ) under prescribed marginal measuresν+ andν− is equivalent
to the Monge-Kantorovitch problem. The existence of an optimal transference plan is given by standard
lower semicontinuity argument and compactness. The next two propositions uses the same strategy at
the level of traffic plans.

Proposition 4.4.2 If (µn)n andµ are traffic plans such thatµn ⇀ µ, then

I(µ) ≤ lim inf I(µn).

Proof: The applicationγ 7→ c(γ(0), γ(M)) is lower semicontinuous because of the lower semicontinu-
ity of c. Then lemma 4.3.4 asserts that

lim inf
∫
K
c(γ(0), γ(M))dµn(γ) ≥

∫
K
c(γ(0), γ(M))dµ(γ).

Setε = C/M . By Markov’s inequality,µn(K \Kε) ≤ C
M = ε where

Kε := {γ : T (γ) ≤M}.

For such anM , we have ∫
K
c(γ(0), γ(M))dµn(γ) ≤ I(µn) + ε||c||∞

and ∫
K
c(γ(0), γ(M))dµ(γ) ≥ I(µ)− ε||c||∞,

so that
I(µn) + ε||c||∞ ≥ I(µ)− ε||c||∞.

Proposition 4.4.3 The problem of minimizingI(µ), withµ ∈ TPC(ν+, ν−) admits a solution.

Proof: Let µn be a minimizing sequence. Because of Theorem 4.3.12, there exists a subsequence such
thatµn ⇀ µ andπµn ⇀ πµ. In particular, we haveµ+

n ⇀ µ+ andµ−n ⇀ µ−. Sinceµ+
n = ν+ and

µ−n = ν− for all n, µ is a traffic plan satisfying the constraints and such thatI(µ) ≤ lim inf I(µn).
Sinceµn is a minimizing sequence,µ is a minimizer ofI under the constraints of irrigating and irrigated
measures.
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4.5 Irrigation and traffic models

In this section, the cost functional we consider is taken from two irrigation models proposed in [35]
and [22]. As in these models, we prove that the functional admits a minimizer under the constraint
of prescribed irrigating and irrigated measures. In addition, our model permits to handle a prescribed
transference plan constraint. We prove the existence of minimizing traffic plans with this new constraint.
So we move from an irrigation model to a traffic model. The first three subsections are devoted to the
proof of the existence of minimizers of the energy functional under the two different sets of constraints.
In the other two subsections, we show that there exists a minimizer of the energy with simple paths. A
change of variable formula permits us to prove that the energy functional coincides with Q. Xia’s one
([35, 36]) on traffic plans with simple paths.

4.5.1 Energy of a traffic plan and existence of a minimizer

We use the convention that0α−1 = ∞ with α ∈ [0, 1).

Definition 4.5.1 Letα ∈ [0, 1]. We call energy of a traffic plan the functional

E(µ) =
∫

Ω

∫
R+

|[χ(ω, t)]χ|α−1|χ̇(ω, t)|dtdω, (4.4)

whereχ is a parameterization ofµ.

Remark 4.5.2 This energy will be proved to be a reformulation of the one used in [35] (see Proposition
4.6.6).

Remark 4.5.3 The application(ω, t) 7→ |[χ(ω, t)]χ| was shown to be measurable in Corollary 4.3.11.
Let us denote|χ̇(ω, t)|sup := lim sups→t |

χ(ω,t)−χ(ω,s)
t−s | and|χ̇(ω, t)|inf := lim infs→t |χ(ω,t)−χ(ω,s)

t−s |.
Both applications(ω, t) 7→ |χ̇(ω, t)|sup and (ω, t) 7→ |χ̇(ω, t)|inf are measurable since they can be
interpreted as a pointwise limit of measurable functions. For almost everyω and for almost everyt,
|χ̇(ω, t)|inf = |χ̇(ω, t)|sup sinceχ(ω, ·) is 1-Lipschitz. Thus, the setC where|χ̇(ω, t)| is well defined
is measurable. If|χ̇| is extended by 0 onΩ×R \C (which is of null measure), the function thus defined
is measurable.

Remark 4.5.4 The energy of a traffic plan could also be written

E(µ) =
∫
K

∫
R+

|γ(t)|α−1
µ |γ̇(t)|dtdµ(γ).

The traffic problem is the following: given two measuresν+ andν−, and a transference planπ
between those measures, we look for minimizers ofE with this prescribed transference plan. The
irrigation problem is the less constrained case where we specify globally the supply and the demand.
This latter case is essentially the same as in [35].

Lemma 4.5.5 Letµ be a traffic plan. Then, we have

E(µ) ≥
∫
K
L(γ)dµ(γ).
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Proof: As the multiplicity at a pointx is always less than 1, we have|x|α−1
µ ≥ 1 and then

E(µ) ≥
∫
K

∫
R+

|γ̇(t)|dtdµ(γ) =
∫
K
L(γ)dµ(γ).

4.5.2 Normalization of a traffic plan

Lemma 4.5.6 Let χ : [0, 1] → K be a parameterization of the traffic planµ. We definẽχ(ω) the
arc-length reparameterization ofχ(ω) in the usual way. Let

S(ω, t) =
∫ t

0
|χ̇(ω, r)| dr,

and let
T (ω, s) = inf{t ∈ [0,∞) : S(ω, t) = s}.

Let χ̃(ω, s) = χ(ω, T (ω, s)). Thenχ̃(ω) ∈ K is Lebesgue measurable and for allω ∈ [0, 1], χ̃(ω) is
the arc-length reparameterization ofχ(ω).

Proof: The mapχ̃ is the composition of the maps(I, T ) : [0, 1] × [0,∞) → [0, 1] × [0,∞) and
χ : [0, 1]× [0,∞) → RN . The measurability of̃χ will be a consequence of the measurability of(I, T )
andχ, and the fact that(I, T )−1(N) is a null set in[0, 1]× [0,∞) for any null setN in [0, 1]× [0,∞).

Let us prove first that(I, T ) is measurable. It suffices to prove that the functionT : [0, 1]×[0,∞) →
R is measurable. For that it will be sufficient to prove thatT−1((−∞, λ]) is measurable for anyλ ∈ R.
Let {tm}m be a dense sequence in[0,∞). Using thatT is non decreasing and lower semicontinuous in
s we may write

T−1((−∞, λ]) =
∞⋂
n=1

∞⋃
m=1

{ω ∈ [0, 1] : T (ω, tm) ≤ λ} × [0, tm +
1
n

].

Since{ω ∈ [0, 1] : T (ω, tm) ≤ λ} = {ω ∈ [0, 1] : S(ω, λ) ≥ tm} is measurable, we deduce that
T−1((−∞, λ]) is measurable.

Now, letN be a null set in[0, 1] × [0,∞) and letB be a Borel set containingN (of total measure
less thanε). Observe thatF (ω, s) := 1lB(ω, T (ω, s)) is a measurable map. Now, for a.e. fixed value of
eachω ∈ [0, 1], we have∫ ∞

0
F (ω, s)ds =

∫ ∞

0
1lB(ω, t)St(ω, t)dt ≤

∫ ∞

0
1lB(ω, t)dt,

the last inequality being true sinceSt(ω, t) ≤ 1. Integrating with respect toω ∈ [0, 1], and observing
that bothF and1lB are measurable in[0, 1]× [0,∞), we have

|(I, T )−1(B)| =
∫ 1

0

∫ ∞

0
1lB(ω, T (ω, s))dsdω ≤

∫ 1

0

∫ ∞

0
1lB(ω, t)dtdω ≤ ε.

We deduce that(I, T )−1(N) is a null set.

Definition 4.5.7 We say that̃µ is a normalization of a traffic planµ if for some parameterizationχ of
µ, χ̃#λ = µ̃, whereχ̃(ω) is the arc-length reparameterization ofχ(ω) defined in lemma 4.5.6. Observe
thatE(µ̃) = E(µ).

Remark 4.5.8 Due to the fact that{γ ∈ K : |γ̇| = 1} is not closed under the distanced, it is not true
thatµn ⇀ µ impliesµ̃n ⇀ µ̃.
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4.5.3 Existence of a minimizer

Proposition 4.5.9 If (µn)n is a normalized sequence inTPC , andµ is a traffic plan such thatµn ⇀ µ,
then

E(µ) ≤ lim inf E(µn).

Proof: Let χn, χ′ be parameterizations ofµn andµ, respectively, such thatχn(ω) → χ′(ω) converges
in (K, d) for almost everyω ∈ [0, 1]. Because of the upper semicontinuity of multiplicity which was
proved in Proposition 4.3.9 and the lower semicontinuity ofL(γ), we have

lim inf
n

E(µn) = lim inf
n

∫
Ω

∫ L(χn(ω))

0
|[χn(ω, t)]χn |α−1dtdω

≥
∫

Ω

∫ L(χ′(ω))

0
|[χ′(ω, t)]χ′ |α−1dtdω

≥
∫

Ω

∫ L(χ′(ω))

0
|[χ′(ω, t)]χ′ |α−1|χ̇′(ω, t)|dtdω

= E(χ′) = E(µ).

Proposition 4.5.10 The problem of minimizingE(µ) in TP (ν+, ν−) admits a solution.

Proof: In the caseinfTP (ν+,ν−)E(µ) = ∞, there is nothing to prove. Otherwise, there is someC <∞
such thatinfTP (ν+,ν−)E(µ) ≤ C. Because of lemma 4.5.5,infTP (ν+,ν−)E(µ) = infTPC(ν+,ν−)E(µ)
so that we can consider a minimizing sequence(µn)n in TPC(ν+, ν−). SinceE(µn) = E(µ̃n), without
loss of generality, we can takeµn as being normalized. Because of Theorem 4.3.12, it is possible to
extract a converging subsequence such thatµn ⇀ µ, ν+

µn
⇀ ν+

µ , andν−µn
⇀ ν−µ . Sinceν+

µn
= ν+ for

all n, andν−µn
= ν−, µ is a traffic plan satisfying the constraints andE(µ) ≤ lim inf E(µn). Sinceµn

is a minimizing sequence,µ is a minimizer ofE under the constraint of the prescribed irrigating and
irrigated measures.

Proposition 4.5.11 The problem of minimizingE(µ) in TP (π) admits a solution.

Proof: As in the proof of Proposition 4.5.10, we can consider a minimizing sequence(µn)n in TPC(π),
whereC is such thatinfTP (π)E(µ) ≤ C. SinceE(µn) = E(µ̃n), without loss of generality, we can
takeµn as being normalized. Because of Theorem 4.3.12, it is possible to extract a subsequence, which
we denote again byµn, such thatµn ⇀ µ andπµn ⇀ πµ. Sinceπµn = π for all n, µ is a traffic plan
satisfying the constraints and such thatE(µ) ≤ lim inf E(µn). Sinceµn is a minimizing sequence,µ is
a minimizer ofE under the constraint of the prescribed transference plan.

4.6 Simple paths traffic plan

Definition 4.6.1 Simple paths traffic planA traffic planµ is said to be with simple paths if there is
a parameterizationχ of µ such that for almost allω ∈ [0, 1], the elementχ(ω) of K is injective on
[0, T (χ(ω))] .
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Definition 4.6.2 SupportLetµ be a traffic plan. The support ofµ is defined asSµ := {x : [x]µ > 0}.

Proposition 4.6.3 Letµ be a traffic plan such thatE(µ) < ∞. There exists a traffic plan with simple
pathsµ̃ so thatSµ̃ ⊂ Sµ andπµ̃ = πµ.

Proof: Since the geometric embedding and the transference plans are invariant under normalization of a
traffic planµ, we can supposeµ to be normalized. Letχ be a parameterization ofµ. Because of lemma
4.5.5,L(χ(ω)) < ∞ for almost allω ∈ Ω. For theseω, we reparameterize the pathχ(ω), so that we
suppress loops. To do so, we introduce the set

Xω = {x ∈ χ(ω,R+)|#χ(ω, ·)−1(x) ∩ [0, L(χ(ω)] > 1},

which is empty if and only ifχ(ω) is injective.

Step 1: Existence of a maximal set of injectivity.We shall call a set of injectivity , a set

Aω =
⋃
x∈Xω

[t−x , t
+
x [

such thatχ(ω) is injective on[0, L(χ(ω))] \Aω, wheret−x andt+x are elements ofχ(ω, ·)−1(x).
Let us use an iterative process to construct such a set. Let us consider first the setT 0

ω = [0, L(χ(ω))].
If χ(ω) is injective onT 0

ω , then the empty set is a set of injectivity. Otherwise, we consider one of the
largest interval[t−1 , t

+
1 [ wheret−1 andt+1 are inT 0

ω ∩ χ(ω, ·)−1(x) with x in Xω. Such an interval exists
since[0, L(χ(ω))] is bounded. We then setT 1

ω = T 0
ω \ [t−1 , t

+
1 [. Continuing this process iteratively, we

obtain a decreasing sequence of sets

Tnω = Tn−1
ω \ [t−n , t

+
n [,

wheret−n , t
+
n ∈ Tn−1

ω ∩ χ(ω, ·)−1(x) andx ∈ Xω. The process stops whenever∪nk=1[t
−
k , t

+
k [ is a set of

injectivity. If the process never ends, the set∪∞k=1[t
−
k , t

+
k [ is a set of injectivity. Indeed, let us assume

thats1, s2 ∈ [0, L(ω)] \ ∪k[t−k , t
+
k [ are such thatχ(ω, s1) = χ(ω, s2). Then, by construction,

∞ > L(χ(ω)) ≥
∑
n

|t+n − t−n | ≥
∑
n

|s1 − s2|,

thuss1 = s2. We shall denote byTω the set[0, L(ω)] \ ∪k[t−k , t
+
k [.

Step 2: Definition of the reparameterization.The setTω is a set of time parameters describing an
injective subpath ofχ(ω). Let us consider the non-decreasing continuous function

Sω(u) =
∫ u

0
1lTω(s)ds

and let us defineτω(t) := inf{u ∈ [0,∞) : Sω(u) = t}. Then,τω(t) is such that|Tω ∩ [0; τω(t)]| = t.

Let us observe that the mapτω(t) is measurable as a function of(ω, t). Let{tm} be a dense sequence
in [0,∞). Following the proof of lemma 4.5.6, sinceτω(t) is non-decreasing, lower semicontinuous,
and

{ω ∈ [0, 1] : τω(tm) ≤ λ} = {ω ∈ [0, 1] : Sω(λ) ≥ tm}

it suffices to prove that the sets{ω ∈ [0, 1] : Sω(λ) ≥ tm} are measurable for anyλ ≥ 0. For that, it is
sufficient to prove that the sets

S = {ω ∈ [0, 1] : Sω(λ) ≤ tm} = {ω ∈ [0, 1] : |Tω ∩ [0, λ]| ≤ tm}
= {ω ∈ [0, 1] : |T cω ∩ [0, λ]| ≥ λ− tm}
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are measurable for anyλ ≥ 0. Let

Tω,p = [0, L(ω)] \ ∪{k:t+k −t−k ≥ 1
p
}[t

−
k , t

+
k [

and observe that∩pTω,p = Tω Let us prove that for anyp ≥ 1, the set

Sp := {ω ∈ [0, 1] : |T cω,p ∩ [0, λ]| ≥ λ− tm}

is measurable. Recall that, sinceχ : [0, 1] → K is measurable, for eachj ∈ N, there is a compact set
Bj ⊆ [0, 1] such thatχ : Bj → K is continuous [14]. Let us prove that for anyj ∈ N the set

Sp,j := {ω ∈ [0, 1] : |T cω,p ∩ [0, λ]| ≥ λ− tm} ∩Bj

is closed, hence, a Borel set. Letωi ∈ Sp,j , ωi → ω. Then, for each of the curvesχ(ωi), the sum of the
lengths of the loops of length≥ 1

p is≥ λ − tm. Letting i → ∞, we deduce that the sum of the lengths
of the loops ofχ(ω) of length≥ 1

p is also≥ λ− tm. In other words,ω ∈ Sp,j . SinceSp = ∪jSp,j ∪N
whereN is a null set, we deduce thatSp is a measurable set. Now, since∪pT cω,p = T cω, we have that

{ω ∈ [0, 1] : |T cω ∩ [0, λ]| ≥ λ− tm} = {ω ∈ [0, 1] : sup
p
|T cω,p ∩ [0, λ]| ≥ λ− tm}

= ∩j ∪k {ω ∈ [0, 1] : |T cω,k ∩ [0, λ]| ≥ λ− tm −
1
j
}.

HenceS is measurable. We conclude thatτω(t) is measurable as a function of(ω, t).

We reparameterize the pathsχ(ω, s) by χ̃(ω, t) := χ(ω, τω(t)). As in lemma 4.5.6, to prove that
the applicatioñχ(ω, t) is measurable it suffices to prove that(I, τ)−1(N) is a null set for any null set
N ⊆ [0, 1]× [0,∞). As in the proof of lemma 4.5.6, letB be a Borel set containingN (of total measure
less thanε). Observe thatG(ω, s) := 1lB(ω, τω(s)) is a measurable map. Now, for a.e. fixed value of
eachω ∈ [0, 1], we have∫ ∞

0
G(ω, s)ds =

∫ ∞

0
1lB(ω, u)S′ω(u)du ≤

∫ ∞

0
1lB(ω, u)du,

the last inequality being true sinceS′ω(u) ≤ 1. Integrating with respect toω ∈ [0, 1], and observing that
bothG and1lB are measurable in[0, 1]× [0,∞), we have

|(I, τ)−1(B)| =
∫ 1

0

∫ ∞

0
1lB(ω, τω(s))dsdω ≤

∫ 1

0

∫ ∞

0
1lB(ω, u)dudω ≤ ε.

We deduce that(I, τ)−1(N) is a null set. We conclude that̃χ is measurable. We can then define
µ̃ := χ̃#λ.

Step 3: The traffic plañµ is with simple paths.Indeed, if there is anω such thatχ̃(ω) is not injective,
there aret1 and t2 such thaty = χ̃(ω, t1) = χ̃(ω, t2) with t1 6= t2. Then, sinceτω is increasing,
τω(t1) 6= τω(t2). Thus#χ−1

ω (y) > 1 so by definition ofAω one of these two elements has to be in
Aω. But this is not possible since the image ofτω is disjoint fromAω. Thus,χ̃ is with simple paths. By
definition ofχ̃, πµ̃ = πµ andSµ̃ ⊂ Sµ.
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4.6.1 A change of variable formula

Let µ be a traffic plan andχ a parameterization ofµ. It will be called non-trivial ifL(χ(ω)) > 0 on a
set of positive measure inΩ := [0, 1]. Since we can eliminate the paths whose length is null, without
loss of generality we shall assume that for non-trivial traffic plans we haveL(χ(ω)) > 0 a.e.. First,
we prove that the geometric embedding of a non-trivial traffic plan with finite energy can be covered by
a countable set of paths. This permits us to compare our energy with the formulation given by Q. Xia
[35, 36]. For a sake of simplicity, we shall denote in the sequel[x] instead of[x]χ.

Lemma 4.6.4 Letµ be a non-trivial traffic plan with finite energy andχ a parameterization ofµ. There
exists a sequence(ωj)j such that

|[x]χ| = 0 H1 − a.e., for x ∈ R \ ∪∞j=1Imχ(ωj). (4.5)

Proof: Let us first prove that we may cover the set

D := {(ω, t) ∈ Ω× [0,∞) : 0 < t < L(χ(ω))}

with a countable number of sets of the formDω = {(ω̃, t) ∈ D : χ(ω̃, t) ∈ Imχ(ω)}. SinceE(µ) is
finite andχ is non-trivial, then for almost all(ω, t) ∈ D, |[χ(ω, t)]| > 0. For eachω ∈ Ω, let

D1
ω := {(ω̃, t) : χ(ω̃, t) ∈ Imχ(ω)}.

Observe that∫
Ω
|D1

ω| dω =
∫

Ω
|{(ω̃, t) : χ(ω̃, t) ∈ Imχ(ω)}| dω =

∫
Ω

∫ ∞

0

∫
Ω

1lImχ(ω)(χ(ω̃, t)) dω̃ dt dω

=
∫

Ω

∫ ∞

0

∫
Ω

1lImχ(ω)(χ(ω̃, t)) dω dt dω̃ =
∫

Ω

∫ ∞

0
|[χ(ω̃, t)]| dt dω̃ > 0.

Henced1 := supω |D1
ω| > 0. Let us chooseω1 ∈ Ω such that

|D1
ω1
| ≥ d1

2
> 0.

EitherDω1 covers allD, or

|D1
ω1
| <

∫
Ω

∫ L(χ(ω))

0
dt dω.

Proceeding iteratively in this way, and assuming that

k−1∑
j=1

|Dj
ωj
| <

∫
Ω

∫ L(χ(ω))

0
dt dω,

we define

Dk
ω := {(ω̃, t) : χ(ω̃, t) ∈ Imχ(ω) \ ∪k−1

j=1 Imχ(ωj)}

and we may check that ∫
Ω
|Dk

ω| dω =
∫

(∪k−1
j=1D

j
ωj

)c

|[χ(ω̃, t)]| dt dω̃ > 0,
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which implies thatdk := maxω |Dk
ω| > 0. Then we chooseωk ∈ Ω such that

|Dk
ωk
| ≥ dk

2
> 0.

Either this construction ends in a finite number of stepsk and we obtain that

a.e.ω ∈ Ω Imχ(ω) ⊆ ∪kj=1Imχ(ωj),

or we have an infinite number of setsDj
ωj and we have

a.e.ω ∈ Ω Imχ(ω) ⊆ ∪∞j=1Imχ(ωj). (4.6)

Indeed, if (4.6) does not hold then

∞∑
j=1

|Dj
ωj
| <

∫
Ω

∫ L(χ(ω))

0
dt dω.

In particular, we havedj ≤ 2|Dj
ωj | → 0 asj →∞, hence

sup
ω∈Ω

|Dj
ω| → 0 asj →∞. (4.7)

Since ∫
Ω
|Dj

ω| dω =
∫

(∪j−1
i=1D

i
ωi

)c

|[χ(ω̃, t)]| dt dω̃ ≥
∫ ∫

(∪∞i=1D
i
ωi

)c

|[χ(ω̃, t)]| dt dω̃ > 0,

we obtain a contradiction since the left-hand side tends to0 as j → ∞ while the right-hand side is
a positive constant. We have proved that∪∞j=1D

j
ωj coversD (modulo a null set), and, therefore (4.6)

holds.

To prove that (4.5) holds, assume on the contrary that there exists a setC such thatH1(C) > 0,

C ∩ (∪∞i=1Imχ(ωi)) = ∅, (4.8)

and such that|[x]| > 0 for all x ∈ C. Then

0 <

∫
C
|[x]| dH1(x) =

∫
C

∫
Ω

1l[x](ω) dω dH1(x)

=
∫

Ω

∫
C

1l[x](ω) dH1(x) dω =
∫

Ω
H1(C ∩ Imχ(ω)) dω.

This implies that there exists a subsetΩC of Ω such thatH1(C ∩ Imχ(ω)) > 0 for anyω ∈ ΩC , hence
for anyω ∈ ΩC the setIω := {t ∈ [0,∞) : χ(ω, t) ∈ C} is of positive measure. Since

{(ω, t) : ω ∈ ΩC , t ∈ Iω} ⊆ {(ω, t) : χ(ω, t) ∈ C},

we conclude that|{(ω, t) : χ(ω, t) ∈ C}| > 0. This contradicts (4.8). The lemma follows.

Definition 4.6.5 Letµ be a traffic plan andχ a parameterization ofµ. For eachω ∈ Ω, we define

Dχ(ω) = {x ∈ RN : x is a double point ofχ(ω)}.

We say thatχ has simple paths ifH1(Dχ(ω)) = 0 for almost everyω ∈ Ω.
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Assume that for a givenω ∈ Ω, χ(ω) is parameterized by arc-length. Let

Dχ(ω) = {t ∈ [0,∞) : ∃s < t, χ(ω, t) = χ(ω, s)}.

Observe thatH1(Dχ(ω)) = 0 if and only if |Dχ(ω)| = 0. Thus, ifχ is normalized,χ has simple paths
if and only if |Dχ(ω)| = 0 for almost everyω ∈ Ω.

Our purpose is to prove the following change of variable formula. Notice that, in the case of a graph
with the structure of a tree, the right-hand side of the identity (4.10) takes the form (

∑
ew(e)αl(e)), so

that our framework generalizes [35].

Proposition 4.6.6 Letχ be a parameterization of a nontrivial traffic planµ with finite energy. Then, we
have

E(µ) =
∫

Ω

∫ ∞

0
|[χ(ω, t)]|α−1|χ̇(ω, t)| dt dω ≥

∫
RN

|[x]χ|α dH1(x). (4.9)

If we assume, in addition, thatχ has simple paths, we have

E(µ) =
∫

Ω

∫ ∞

0
|[χ(ω, t)]|α−1|χ̇(ω, t)| dt dω =

∫
RN

|[x]χ|α dH1(x). (4.10)

Proof: Since the reparameterizatioñχ of χ is measurable (lemma 4.5.6), and since[x]χ = [x]χ̃ for all
x ∈ RN , we may assume that|χ̇(ω, t)| = 1 for almost allω ∈ Ω, a.e.t ∈ [0, L(χ(ω))[. Let us consider
the sequence(ωj)j constructed in lemma 4.6.4. We denote byD the set

D := {(ω, t) ∈ Ω× [0,∞) : 0 ≤ t < L(χ(ω))}.

Let us prove first that ∫
Dω1

|[χ(ω, t)]|α−1 dω dt =
∫

Imχ(ω1)
|[x]|α dH1(x),

whereDω1 is the set
Dω1 = {(ω̃, t) ∈ D : χ(ω̃, t) ∈ Imχ(ω1)}.

Let us define
Ωω1 := {ω ∈ Ω : Imχ(ω) ∩ Imχ(ω1) 6= ∅},

Iω = {t < L(χ(ω)) : χ(ω, t) ∈ Imχ(ω1)},

and

I ′ω := {t ∈ R+ \ Dχ(ω) : χ(ω, t) ∈ Imχ(ω1)}.

Notice that
Dω1 = ∪ω{ω} × Iω.

Let t be inI ′ω. Sinceχ(ω, t) ∈ Imχ(ω1) and because of the definition ofDχ(ω1), there is a unique
s = ϕ(t) ∈ R+ \ Dχ(ω1) such thatχ(ω1, s) = χ(ω, t). Let I∗ω be the set

I∗ω = ϕ(I ′ω) = {s ∈ R+ \ Dχ(ω1) : χ(ω1, s) ∈ Imχ(ω)}.

ThenI∗ω is a Borel set of the same one-dimensional Lebesgue measure asI ′ω. As in the proof of lemma
4.6.3, to prove the measurability of the set

Q = {(ω, s) : ω ∈ Ωω1 , χ(ω1, s) ∈ Imχ(ω)},
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we recall that for eachε > 0, there is a compact setBε ⊆ [0, 1] such thatχ : Bε → K is continuous
[14]. Now, one can easily check thatQ ∩Bε is a closed set. We deduce thatQ is measurable. Since

{(ω, s) : ω ∈ Ωω1 , χ(ω1, s) ∈ Imχ(ω) \ Dχ(ω1)} = Q ∩ {(ω, s) : ω ∈ Ωω1 , s 6∈ Dχ(ω1)}

we deduce that the set

{(ω, s) : ω ∈ Ωω1 , χ(ω1, s) ∈ Imχ(ω) \ Dχ(ω1)}

is measurable. Finally observe that1lI∗ω(s) = 1 if and only if ω ∈ [χ(ω1, s)] ands 6∈ Dχ(ω1). Thus, we
have ∫

Ωω1

1lI∗ω(s) dω = |[χ(ω1, s)]|1lR+\Dχ(ω1).

Then, we have∫
Dω1

|[χ(ω, t)]|α−1 dω dt =
∫

Ωω1

∫
Iω

|[χ(ω, t)]|α−1 dt dω

≥
∫

Ωω1

∫
I′ω

|[χ(ω, t)]|α−1 dt dω

=
∫

Ωω1

∫
I∗ω

|[χ(ω1, s)]|α−1 ds dω

=
∫

Ωω1

∫ ∞

0
1lI∗ω(s)|[χ(ω1, s)]|α−1 ds dω

=
∫ ∞

0

∫
Ωω1

1lI∗ω(s)|[χ(ω1, s)]|α−1 dω ds

=
∫ ∞

0
|[χ(ω1, s)]|α−1

∫
Ωω1

1lI∗ω(s) dω ds

=
∫

[0,∞)\Dχ(ω1)
|[χ(ω1, s)]|α ds =

∫
Imχ(ω1)

|[x]|α dH1(x).

Notice that in the caseµ has simple paths, modulo a null set we have the identity

Iω = I ′ω.

This proves that for a traffic plan with simple paths,∫
Dω1

|[χ(ω, t)]|α−1 dω dt =
∫

Imχ(ω1)
|[x]|α dH1(x).

We may reproduce iteratively the same argument for the arcs formingImχ(ωk) \ ∪k−1
j=1 Imχ(ωj) to

obtain ∫
∪k

j=1D
j
ωj

|[χ(ω, t)]|α−1 dω dt ≥
∫
∪k

j=1Imχ(ωj)
|[x]|α dH1(x).

Notice that there is equality in the caseµ has simple paths. Lettingk →∞, and using that∪∞j=1D
j
ωj is

a covering (modulo a null set) of

D = {(ω, t) ∈ Ω× [0,∞) : 0 ≤ t < L(χ(ω))},
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we obtain ∫
Ω

∫ L(χ(ω))

0
|[χ(ω, t)]|α−1 dt dω ≥

∫
∪∞j=1Imχ(ωj)

|[x]|α dH1(x),

and ∫
Ω

∫ L(χ(ω))

0
|[χ(ω, t)]|α−1 dt dω =

∫
∪∞j=1Imχ(ωj)

|[x]|α dH1(x)

if µ has simple paths. The proposition follows by using lemma 4.6.4.

Let us denote

Ex(µ) =
∫

RN

|[x]µ|α dH1(x)

Proposition 4.6.7 The minimum ofE on the set of traffic plans is attained at a traffic plan with simple
paths. Moreoverinf E = inf Ex where both infima can be taken with respect to the set of all traffic
plans or the set of traffic plans with simple paths.

Proof: We observe that ifµ is a traffic plan and̃µ its associated traffic plan with simple paths constructed
in Proposition 4.6.3, we haveE(µ̃) ≤ E(µ). To prove it, we observe that eliminating loops can only
decrease the multiplicity, henceEx(µ) ≥ Ex(µ̃). Now, by Proposition 4.6.6, we have

E(µ) ≥ Ex(µ) ≥ Ex(µ̃) = E(µ̃).

Our assertions are a simple consequence of Proposition 4.6.3 and this inequality.
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Chapter 5

Irrigation at finite cost, stability.

Introduction

We proved in the previous chapter the existence of a traffic planµ minimizing Eα(µ) whereµ ∈
TP (µ+, µ−). We prove in that section that forα > 1 − 1

N whereN is the dimension of the ambi-
ent space, the optimal cost is finite. To do this we introduce the pseudo-distancedα (the pseudo is here
to stress thatdα is not always finite) between measures ofRN and construct a chain of traffic plans
transportingµi to µi+1 where the sequenceµi is the sequence of dyadic approximation ofµ−. Thedα

pseudo-distance betweenµi andµi+1 is easy to estimate so that we get a bound onEα(µ) whereµ is
the concatenation of traffic plans obtained by transportingµi to µi+1 wheni ∈ N. As a consequence,
this bound is also a bound on the cost of an optimal structure. Thedα pseudo-distance allows also to
look closer at the stability problem. Indeed, we prove in lemma 5.3.2 thatdα(νn, ν) → 0 whenνn is a
sequence of probability measures on the compactX ⊂ RN weakly converging toν. Finally we investi-
gate the existence of structures at finite cost adding a constraint on the angle variation. The question we
ask is: can we irrigate a measure with a support of positive measure in such a way that the total variation
of the angles along fibers is bounded.

5.1 Preliminaries

5.1.1 Concatenation of a chain of traffic plans

Lemma 5.1.1 Letµ ∈ TP (µ+, µ−) andν ∈ TP (ν+, ν−) such thatµ− = ν+. There is a traffic plan
σ ∈ TP (µ+, ν−) such thatEα(σ) ≤ Eα(µ) + Eα(ν).

Proof : Let χ andξ be parameterizations ofµ andν. Let us denotef(ω) := χ(ω,∞) andg(ω) :=
ξ(ω, 0). By definition, µ− = ν+ means thatf#λ = g#λ. Thus, there is a measure preserving
applicationψ such thatf(ω) = g(ψ(ω)) for almost allω. The gluing of the fiberχ(ω) with the fiber
ξ(ψ(ω)) is thus well defined and we denoteχ̃ the parameterization

χ̃(ω, t) =

{
χ(ω, t) if t ≤ Tχ(ω), whereTχ(ω) is the stopping time of the fiberω

ξ(ψ(ω), t− Tχ(ω)) if t > Tχ(ω).

73
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The traffic planσ := χ̃#λ is such that|[x]σ| ≤ |[x]χ|+ |[x]ξ̃|. Thus, we have

Eα(σ) =
∫
x∈RN

|[x]χ̃|αdH1(x)

≤
∫
x∈RN

(|[x]χ|+ |[x]ξ̃|)
αdH1(x)

≤
∫
x∈RN

(|[x]χ|α + |[x]ξ̃|
α)dH1(x)

= Eα(χ) + Eα(ξ).

5.1.2 Thedα pseudo-distance

Definition 5.1.2 Letµ+ andµ− be two probability measures. We denote

dα(µ+, µ−) = inf
µ∈TP (µ+,µ−)

Eα(µ).

Lemma 5.1.3 Let us denoteW1 the Wasserstein distance of order 1 and letµ+ andµ− be two proba-
bility measures. We haveW1(µ+, µ−) ≤ dα(µ+, µ−) for all α ∈ [0, 1].

Proof : Indeed,

dα(µ+, µ−) := inf
∫

Ω

∫
t
|[χ(ω, t)]χ|α−1|χ̇(ω, t)|dωdt,

where the infimum is taken over all parameterizations transportingµ+ to µ−. Thus,

d1(µ+, µ−) := inf
∫

Ω

∫
t
|χ̇(ω, t)|dωdt,

is preciselyW1(µ+, µ−) and the inequality obviously comes from|[χ(ω, t)]χ|α−1 ≥ 1.

Proposition 5.1.4 dα is a pseudo-distance on the space of probability measures onX.

Proof : Because of lemma 5.1.3, we havedα(ν1, ν2) = 0 if and only if ν1 = ν2. Next, the triangular
inequality is easily proved as follow : letµ andν be optimal traffic plans respectively froma to b and
from b to c. By definition ofdα, we have

dα(a, c) ≤ Eα(σ),

whereσ is the concatenation defined by lemma 5.1.1. Thus

dα(a, c) ≤ Eα(µ) + Eα(ν) = dα(a, b) + dα(b, c).
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5.1.3 Dyadic approximation of a measure

Let C be a cube with edge lengthd and centerc. Let ν be a probability measure on the compactX

whereX ⊂ C. We may approximateν by atomic measures inAΛ(X) as follow. For eachi, let

Ci := {Chi : h ∈ ZN ∩ [0, 2i)N}

be a partition ofC into cubes of edge lengthd
2i . Now, for eachh ∈ ZN ∩ [0, 2i)N , let chi be the center

of Chi andmh
i = ν(Chi ) be theµ mass of the cubeChi . We define the atomic measure

Ai(ν) =
∑

h∈ZN∩[0,2i)N

mh
i δchi

,

which is classically weakly converging toµ.

Lemma 5.1.5 The atomic measureAi(ν) weakly converges toν. We callAi(ν) the dyadic approxima-
tion ofν.

5.2 Existence of a finite cost traffic plan

Lemma 5.2.1 The maximum off : (x1, ..., xn) 7→
∑
xαi under the constraint

∑
xi = 1 is n1−α.

Proof : Because of the concavity ofx 7→ xα, we have1
n

∑
xαi ≤ (

∑
xi

n )α. Thus the maximum off is
lower thann( 1

n)α. This value is attained forxi = 1
n for all i.

Lemma 5.2.2 Let ν be a probability measure on a compact setX, whereX is include in a cubeC of
edge lengthL. Then,

dα(Ai(ν), Ai+1(ν)) ≤
√
NL

2
2i(N(1−α)−1).

Proof : The atomic measureAi(ν) is made of2iN Dirac masses at the centers of the cubesChi . We
consider the traffic planµ obtained as the sum ofµh, whereµh is a traffic plan transportingmh

i δchi
on Ai+1(ν)|Ch

i
, for all of the 2iN values ofh. Let us denoteAi+1(ν)|Ch

i
=

∑2N

k=1mkδxk
, where∑2N

k=1mk = mh
i by definition ofAi(ν). We chooseµn as being the Monge-Kantorovitch transport i.e

the traffic plan made of weighted directed segments(chi xk,mk) , as illustrated on Figure 5.1. The cost
of µh is such that

Eα(µh) =
∑
k

(mk)α|chi xk|

≤
∑
k

(mk)α
√
NL

2i+1
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Figure 5.1: To transportAi(ν) toAi+1(ν), we simply transport straightforward all the mass at the center
of a cube with edge lengthL

2i to the centers of its subcubes with edge lengthL
2i+1 .

Thus,

Eα(µ) =
∑
h

Eα(µh)

≤
∑
h

∑
k

(mk)α
√
NL

2i+1

≤
√
NL

2i+1
2iN (

1
2iN

)α because of lemma 5.2.1

≤
√
NL

2
2i(N(1−α)−1)

Proposition 5.2.3 Letα ∈ (1 − 1
N , 1]. Letν be a probability measure with support in a cube centered

at c and of edge lengthL. We have

dα(An(ν), ν) ≤
2n(N(1−α)−1)

21−N(1−α) − 1

√
NL

2
.

In particular, dα(An(ν), ν) → 0 uniformly for allν whenn→∞

Proof : LetAi(ν) be the dyadic approximation ofν. Lemma 5.2.2 combined with lemma 5.1.1 permits
to iteratively construct a traffic planµi from An(ν) to Ai(ν) with i > n. By construction this traffic
plan converges to a traffic planµ such that

Eα(µ) ≤
∞∑
j=n

dα(Aj(ν), Aj+1(ν)).
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Sinceµ is irrigating the measureν, we have

dα(An(ν), ν) ≤ Eα(µ)

≤
∞∑
j=n

dα(Aj(ν), Aj+1(ν))

≤
√
NL

2

∞∑
j=n

2j(N(1−α)−1)

=
2n(N(1−α)−1)

21−N(1−α) − 1

√
NL

2
sinceα > 1− 1

N
.

Thusdα(An(ν), ν) → 0 uniformly for all ν whenn→∞ .

SinceA0(ν) = δc, we obtain directly from the previous proposition applied withn = 0, the follow-
ing uniform bound on the energy required to irrigate a measure.

Corollary 5.2.4 Let α ∈ (1 − 1
N , 1] and ν ∈ M1(X), whereX is of diameterL. There existsµ ∈

TP (δc, ν) such that

E(µ) ≤ 1
21−N(1−α) − 1

√
NL

2
.

Remark 5.2.5 In the case we transport a measure with massΛ, the uniform bound obtained in corollary
5.2.4 scales asΛα and we have

dα(δc, ν) ≤
1

21−N(1−α) − 1

√
NL

2
Λα.

Finally, combining a transport fromµ+ to δc with a transport fromδc to µ−, it is possible to obtain
any transference plan, so that the who goes where problem has a solution at finite cost in the case
α > 1− 1

N .

Corollary 5.2.6 Letα ∈ (1 − 1
N , 1]. Letµ+ andµ− in M1(X) andπ a prescribed transference plan

with marginalsµ+ andµ−. There existsµ ∈ TP (π) such that

E(µ) ≤ 1
21−N(1−α) − 1

√
NL.

Proof : Indeed, we can find a traffic planµ transportingµ+ to δc and a traffic planν transportingδc to
µ− with costsEα(µ) andEα(ν) inferior to 1

21−N(1−α)−1

√
NL
2 . Since all fibers ofµ terminates atc, it is

possible to glue fibers ofµ with fibers ofν so that we obtain a traffic plañµ with a transference planπµ̃
that can be any transference plan with marginalsµ+ andµ−. Since|[x]µ̃| ≤ |[x]µ|+ |[x]ν |, we have

Eα(µ̃) ≤ Eα(µ) + Eα(ν) ≤ 1
21−N(1−α) − 1

√
NL.

Remark 5.2.7 In the caseα ∈ (1 − 1
N , 1], it is not clear wether or notdα andW1 are equivalent

distances, i.e. does there exist a constantC depending onα andN such thatdα ≤ W1. An answer to
this question raised by Cedric Villani would make clearer the relation between Monge-Kantorovitch and
the irrigation problem.
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Remark 5.2.8 The work of De Villanova and Solimini [29] refine widely the result of corollary 5.2.4.
They call irrigable for the exponent α a probability measureν such that there exists a traffic plan
µ ∈ TP (δS , ν) with finite energyEα(µ) < ∞. The article [29] then gives precise condition for a
measure to be irrigable. In particular let us mention

Theorem 5.2.9 If ν is irrigable for the exponentα, thenν is concentrated on a 1
1−α negligible set (in

the sense of Hausdorff measure).

5.3 Stability results

In this section we partially answer to the stability question, i.e. ”is the limit of a sequence of optimal
traffic plans optimal?”. The property of thedα pseudo-distance in the caseα ∈ (1 − 1

N , 1] permits to
answer by a yes as stated by corollary 5.3.3. However, in the caseα ≤ 1− 1

N this stability is conjectural.

Lemma 5.3.1 Letα ∈ (1− 1
N , 1]. If νn is a sequence of probability measures on the compactX ⊂ RN

weakly converging toν, thendα(Ak(νn), Ak(ν)) → 0 whenn→∞.

Proof : The weak convergence ofνn to ν applied to characteristic functions of the cubesChk implies
thatmh

k(νn) → mh
k(ν) whenn → ∞, wheremh

k(ν) is the mass ofν contained in the cubeChk . Thus,
for anyε > 0, for n large enough we have∑

h

|mh
k(νn)−mh

k(ν)| < ε.

Let us denoteah := min(mh
k(νn),m

h
k(ν)) andγh(t) = chk for all t ∈ R. Let us consider the traffic plan

µ =
∑
h

ahδγh
+ µ̃,

whereµ̃ transports
∑

h(m
h
k(νn)−an)δchk on

∑
h(m

h
k(ν)−an)δchk . Notice that the first term ofµ consists

of a ”still” transport, i.e. the irrigating mass that is already at a position to be irrigated does not move.
The total mass of

∑
h(m

h
k(νn)− an)δchk is such that∑

h

(mh
k(νn)− an) ≤

∑
h

|mh
k(νn)−mh

k(ν)| ≤ ε.

Thus, corollary 5.2.4 asserts thatµ̃ can be chosen with a cost inferior toCεαLwhereL is the diameter of
X andC a constant depending onN andα. The ”still” component ofµ does not contribute to its cost, so
that we haveEα(µ) ≤ CεαL. Thus, for anyε > 0, for n large enough, we havedα(Ak(νn), Ak(ν)) ≤
CεαL.

Lemma 5.3.2 Letα ∈ (1− 1
N , 1]. If νn is a sequence of probability measures on the compactX ⊂ RN

weakly converging toν, thendα(νn, ν) → 0 whenn→∞.

Proof : Let us fix ε > 0. Proposition 5.2.3 applied toνn and ν asserts that fork large enough,
dα(Ak(νn), νn) < ε for all n anddα(Ak(ν), ν) < ε. Thus

dα(νn, ν) ≤ dα(νn, Ak(νn)) + dα(Ak(νn), Ak(ν)) + dα(Ak(ν), ν)

≤ 2ε+ dα(Ak(νn), Ak(ν)).

Sinceνn weakly converges toν, lemma 5.3.1 asserts that forn large enough,dα(Ak(νn), Ak(ν)) < ε.
Thus, forn large enough,dα(νn, ν) < 3ε and the result follows.
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Corollary 5.3.3 Let α ∈ (1 − 1
N , 1]. If µn is a sequence of optimal traffic plans for the irrigation

problem andµn is converging toµ, thenµ is optimal.

Proof : Because of the lower semicontinuity ofEα, we have

Eα(µ) ≤ lim inf Eα(µn) = lim inf dα(µ+
n , µ

−
n )

≤ lim inf dα(µ+
n , µ

+) + dα(µ+, µ−) + dα(µ−, µ−n )

≤ dα(µ+, µ−) sinceµ+
n → µ+ andµ+

n → µ+.

Thus,µ is optimal.

Remark 5.3.4 In the caseα < 1 − 1
N , the stability of optimal traffic plans remains an open question.

Of course, only the case whenµn is a sequence of optimal traffic plans withEα(µn) <∞ is of interest.
Is a limit of µn still optimal? The stability in the case of the who goes where problem is also an open
problem.

5.4 The topology induced by thedα pseudo-distance

Proposition 5.4.1 If α ∈ (1− 1
N , 1], dα metrizes the weak * topology of probability measuresM1(X).

Proof : Indeed, lemma 5.3.2 asserts that ifνn weakly converges toν thendα(νn, ν) → 0. Conversely,
if dα(νn, ν) → 0, then lemma 5.1.3 asserts thatW1(νn, ν) → 0, so thatνn weakly converges toν.

Remark 5.4.2 If α ≤ 1− 1
N , then it is no longer true thatνn weakly converges toν impliesdα(νn, ν) →

0. Indeed, let us considerνn := 1
vn

1lB(0, 1
n

), wherevn is the volume of a ball with radius1n . Indeed, we

haveνn ⇀ δ0, but due to theorem 5.2.9,dα(νn, δ0) = ∞ in the caseα ≤ 1− 1
N .

5.5 The total variation of the angle question

Real irrigating systems (blood vessels, pipe networks) seem to avoid big variation of angles since it
can cause turbulence and pressure drop [11]. At the same time, these systems manage to irrigate many
points: the whole human body in the case of the blood system or many users in a city. A natural question
is then the following: are there traffic plans both at a time irrigating a set with positive measure and such
that the angle variation along fibers is bounded?

Proposition 5.5.1 Letα ∈]1− 1
N−1 , 1]. There is a traffic plan of finite cost inRN irrigating a measure

which support is of codimension 1 and such that the total angle variation along fibers is bounded.

Proof: Let us first describe the case of dimension 2.
For a sake of convenience, we shall not define a parameterization of the traffic plan but rather define

the underlying infinite directed weighed graph.
We denote by ”level of an edgee”, the number of edges from the source toe. In this tree, all edges

of a same level will have the same length. For the angle variation to be as readable as possible, we shall
consider a tree made of vertical edges of lengthdi at all even level2i. Let us denoteli the length of
edges of level2i+ 1. Let us denoteαi, the angle of a level2i+ 1 branch with the vertical. We choose
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li such that the vertical projection of an edge of level2i + 1 is of length 1
2i+1 . By definition we have

sin(αi)li = 1
2i+1 . Since levels2i and2i + 1 are made of2i segments with weights1

2i , the total cost
of this tree is

∑
i (li + di)2i(1−α). Thus, the total cost and angle variation of fibers is finite if and only

if the series
∑

i (li + di)2i(1−α) and
∑

i αi are convergent. Let us takedi = li. We notice that when
li2i+1 → +∞,

αi = arcsin(
1

li2i+1
) ∼ 1

li2i+1
.

Thus, the convergence of both series is equivalent to the convergence of
∑

i li2
i(1−α) and

∑
i

1
li2i . Nu-

merous choices can fit these requirements, for instanceli = 2−βi makes the series convergent if and
only if β < 1 andβ > 1− α.

Figure 5.2: Finite cost traffic plan irrigating the Lebesgue segment and such that the total angle variation
along fibers is bounded.

Let us generalize this example to any dimension. The main feature of the tree in 2 dimensions is
that the graph made of the2i first levels irrigates the dyadic approximation of the Lebesgue measure
of the segment. Now we shall consider a tree in dimensionN , such that the graph stopped at level2i
irrigates the dyadic approximation of the Lebesgue measure on the hypercube of dimensionN − 1. Let
us describe the nodes of this tree: at level2i, the nodes are located at dyadic coordinates on a hybercube
of dimensionN − 1 which lies in the planezN = hN . To describe the positions of the nodes at leveli,
it is convenient to enumerate all2N−1 subcubes of an hypercube by(vi)2

N−1

i=1 , wherevi describes all the
elements(±1, ...,±1) ∈ RN−1 (see figure 5.3). Indeed, a sequenceki ∈ [1, 2N−1] of elements of type
vi can describe all dyadic nodes in this way:k1 codes for the fact that the node is in the cube subcube
Ck1 of C defined byvk1 , k2 says that the node is in thevk2 subcube ofCk1 ... Roughly speaking, the
sequenceki tells which direction to take at each bifurcation, i.e the node at leveln described by the
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sequence(ki) has coordinates
∑n

i=1

√
N−1vki

2i + (0, ..., 0, hn), wherehn stands for the height of the
hyperplane containing nodes of ordern. As in the 2 dimension example,

αi = arcsin(
√
N − 1
li2i+1

) ∼
√
N − 1
li2i+1

.

The total cost is
∑

i (li + di)2(N−1)i(1−α). If we takedi = li, the traffic plan has finite energy and
bounded total angle variation if and only if the two series

∑
i li2

(N−1)i(1−α) and
∑

i
1
li2i are convergent.

This is possible for the choiceli = 2−βi with β ∈](1 − α)(N − 1), 1] (this interval is not empty if
α ∈]1− 1

N , 1]). Notice that this traffic plan irrigates the Lebesgue measure on[−1, 1]N−1×{h}, where
h = limhi.

Figure 5.3: A sequence ofn elements of the form(±1, ...,±1) permits to describe all the2n(N−1)

subcubes at leveln. For instance the element(−1,−1) means west-south and the sequence of elements
of type(±1,±1) permits to describe iteratively along a finer and finer mesh, all the dyadic subcubes.

Proposition 5.5.2 Letα ∈]1− 1
N , 1]. There is a traffic plan inRN with finite cost, transporting a Dirac

mass to Lebesgue measure on a parallelepiped, and such that the total angle variation of fibers is finite.

Proof: Indeed, such a traffic plan is obtained through a suitable projection of the traffic plan obtained in
proposition 5.5.1 for the dimensionN + 1. The projection has to be such that the total angle variation
is not increased. This can be done with a direction of projection having an angle with vertical direction
superior to the maximal angle variation between two adjacent edges.

Remark 5.5.3 Notice that in general, the projection of the tree will be such that the projected structure
has intersecting edges, so that it has not a ”tree” structure. This raises a natural question: is it possible
for a traffic plan to irrigate the Lebesgue measure on a set with positive measure, to have finite total
angle variation and so that the traffic plan has a tree structure? It is obvious that it is impossible to
project the 3-D tree of proposition 5.5.1 inR2, so that edges do not intersect. This leads to state the
following conjecture. On the contrary, as proved in proposition 5.5.5, there is more room inR3 for edges
not to intersect.
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Figure 5.4: Finite cost traffic plan irrigating the Lebesgue hypercube of dimensionN − 1 and such
that the total angle variation along fibers is bounded. If we stop fibers at the hyperplane of heighthi,
we irrigate the dyadic approximation of leveli of the Lebesgue measure on the hypercube of dimension
N − 1.

Conjecture 5.5.4 A traffic plan with finite cost inR2 cannot at the same time irrigate Lebesgue measure
restricted to a set with positive measure, have fibers with bounded total angle variationand be a tree.

Proposition 5.5.5 Letα ∈]1− 1
N , 1] andN ≥ 3. There is a traffic planwith tree structure and finite

cost, transporting a Dirac mass to Lebesgue measure on a parallelepiped, and such that the total angle
variation of fibers is finite.

Proof:Let us project the tree obtained in proposition 5.5.1 for the dimensionN + 1 on the hyperplane
of dimensionN , zN+1 = 0, so that we obtain a traffic plan inRN . We shall assimilate the space of
projections onzN+1 = 0 to the hyperplaneRN × {1}. If not chosen specifically, the projection may be
such that some projected edges intersect one another. Let us prove that it is possible to choose a suitable
projection so that no intersection occurs (so that the resulting projected traffic plan has a tree structure).

We shall say that a projection is forbidden if it introduces a strict intersection (i.e. not at tips) between
two segments of the tree. Letx, x′, y, y′ be four points ofR4 and let us consider the two segments[x, x′]
and[y, y′]. To v = (v1, v2, v3, v4) ∈ R4 wherev4 6= 0, we associate the projection vectorṽ = v

v4
. The

set of forbidden projections consists of directions given by a point on]x, x′[ and a point of]y, y′[, i.e.:

Pf ([x, x′], [y, y′]) = {ãb|a ∈]x, x′[, b ∈]y, y′[}.

The setPf ([x, x′], [y, y′]) is a submanifold of dimension 2. Indeed,

Pf ([x, x′], [y, y′]) = {ãb|a = λx+ (1− λ)x′, b = λ′y + (1− λ′)y′ whereλ, λ′ ∈]0, 1[},
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so that it is described by the two parametersλ andλ′. Since the projective space ofR4 is of dimension 3,
the submanifoldPf ([x, x′], [y, y′]) has null measure and the countable union of all forbidden projection
sets associated to all couple of segments has null measure too. Thus there is a projection direction that
is allowed for all couple of segments and this projection permits to obtain a traffic plan irrigating a set
with positive measure, with a finite total angle variation and with a tree structure. Since the irrigated
measure of the traffic plan described in proposition 5.5.1 is a cube, the projected traffic plan irrigates a
parallelepiped.

Remark 5.5.6 Proposition 5.5.5 gives the example of a tree irrigating Lebesgue measure on the par-
allelepiped and such that the total angle variation along the paths of this tree is finite. Of course this
tree is a mathematical object with branches of no thickness. The next question would ask if it is possible
for a tree with ”thick” tubes to irrigate a set with positive measure with the same angle condition. The
human body seems to answer this question by a yes since blood vessels manage to irrigate the whole
body with very low angle variation.
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Chapter 6

Structure and regularity of an optimum

Introduction

Let µ+ andµ− be measures onRN and letπ be a transference plan with marginalsµ+ andµ−. We can
either consider the irrigation problem which consists in optimizingEα(µ) over allµ ∈ TP (µ+, µ−) or
the who goes where problem where we optimizeEα(µ) over allµ ∈ TP (π). These two problems are
quite different from a regularity point of view. Indeed,TP (π) is much smaller thanTP (µ+, µ−) so that
given a traffic planµ, there are less possibilities of perturbation ofµ to try to find a better competitor.
Typically, the no circuit lemma 6.2.5 concerns only the irrigation problem: we suppose thatµ is optimal
and has a circuit, we constructµε a perturbation ofµ such thatEα(µε) < Eα(µ) andµε ∈ TP (µ+, µ−)
so that there is a contradiction andµ has no circuit. However, this perturbationµε is not inTP (π) so that
we cannot conclude for the who goes where problem. The main proposition 6.2.7 of this chapter asserts
that mass cannot split and get together again (for both irrigation and who goes where problems). This
is different from the no circuit lemma since it covers who goes where problem and it does not assume
a lower bound on the multiplicity along the fibers. These no loop or no circuit properties are essentials
since they permit to state a regularity result whenµ+ andµ− are atomic measures so that we can state
equivalence results between models in section 6.4. The last section investigates the possible structure of
branches at a bifurcation point.

6.1 Convex hull property

Definition 6.1.1 A traffic planµ is said to be optimal, respectivelyπ−optimal if it is of minimal cost in
TP (µ+, µ−), respectively inTP (πµ).

Definition 6.1.2 (Support)Letµ be a traffic plan. The support ofµ is defined asSµ := {x : [x]µ > 0}.
We will denote bySµ+ the support of a measureµ+ of RN .

Lemma 6.1.3 An optimal traffic planµ is such thatSµ ⊂ conv(Sµ− , Sµ+) whereconv(E) is the convex
hull of a setE.

Proof: Let C := conv(Sµ− , Sµ+) andχ be a parameterization ofµ. For all ω ∈ Ω, let us define
χ̃(ω, t) = pC(χ(ω, t)) wherepC denotes the projection on the convexC. Sinceχ(ω, 0) andχ(ω,∞)

85
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are inC, χ̃ has the same transference plan asχ. Next, we have

Eα(χ̃) =
∫
Sχ̃

|[y]χ̃|αdH1(y)

=
∫
Sχ̃

(
∑

x∈p−1
C (y)∩Sχ

|[x]χ|)αdH1(y)

≤
∫
Sχ̃

∑
x∈p−1

C (y)∩Sχ

|[x]χ|αdH1(y)

≤
∫
Sχ

|[x]χ|αdH1(x) = Eα(χ).

The first inequality is obtained by the concavity ofx 7→ xα. The last inequality comes from the contrac-
tion of the length of fibers by the convex projectionpC and is a strict inequality if̃χ 6= χ. Thusχ̃ = χ,
by optimality ofµ.

6.2 The no-loop and no-circuit properties for an optimum

Definition 6.2.1 (Arc) Letµ be a traffic plan andχ a parameterization ofµ. Letγ : [0, T ] → X be a
curve parameterized by its arclength andΓ := γ([0, T ]). SetΩΓ := {ω : Γ ⊂ χ(ω,R)}. The curveγ is
said to be an arc ofµ if |ΩΓ| > 0. Note that this definition does depend only onµ and not on the choice
of the parameterization.

Lemma 6.2.2 Let µ be a simple path traffic plan parameterized byχ and γ an arc ofµ. For any
ω ∈ ΩΓ, there are uniquet−γ , t

+
γ ∈ R such thatχ(ω)|[t−γ ,t+γ ] coincides with a reparameterization ofγ.

Thus, we can defineΩ+
Γ andΩ−

Γ respectively as theω such thatχ(ω, t−γ ) = γ(0) and theω such that
χ(ω, t+γ ) = γ(0)

Proof: The parameterizationχ is such thatχ(ω, ·) is one to one. Thus, for allω ∈ ΩΓ, the set
I := {t : χ(ω, t) ∈ Γ} = χ−1(ω, ·) is closed and connected.

Lemma 6.2.3 No both waysLet µ be an optimal traffic plan fromµ+ to µ−. If γ is an arc ofµ then
either|Ω+

Γ | = 0 or |Ω−
Γ | = 0.

Proof: If Ω+
Γ andΩ−

Γ are both non-negligible, consider two subsets of same positive measureΩ1 ⊂ Ω+
Γ

andΩ2 ⊂ Ω−
Γ andφ := Ω1 → Ω2 bijective and measure preserving. Let us defineχ̃ asχ for all

ω /∈ Ω1 ∪ Ω2. For allω ∈ Ω1, we define

χ̃(ω, t) =

{
χ(ω, t) if t ≤ t−γ (ω)

χ(φ(ω), t− t−γ (ω) + t+γ (φ(ω))) if t ≥ t−γ (ω)

We defineχ̃ in the same way onΩ2. The traffic planµ̃ := χ̃#λ has a lower cost thanµ and has the
same transference plan. This is absurd so that the lemma is proved.

Lemma 6.2.4 No splitting and grouping of mass: the case of two arcs[28] Let µ be an optimal traffic
plan fromµ+ to µ− with a parameterizationχ. If γ1 andγ2 are two arcs ofµ such thatγ1(0) = γ2(0)
andγ1(T1) = γ2(T2), thenγ1 = γ2.
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Proof: Without loss of generality, we can restrict to the following two cases:Ω+
Γ1

andΩ−
Γ2

are non-
negligible, orΩ+

Γ1
andΩ+

Γ2
are non-negligible. In the first case, the traffic plan has an oriented loop that

we can easily remove as in the lemma??. In the second case, we suppose the two arcs to be different
and prove that we can decrease the energy. This proof is mainly reproduced from [28]. Let us consider
the two traffic plansχ1 andχ2 respectively obtained sending the arcΓ1 onΓ2 and sending the arcΓ2 on
Γ1. That is to say, let us defineχ1 asχ for all ω /∈ Ω1 ∪ Ω2. For allω ∈ Ω1, we define

χ1(ω, t) =


χ(ω, t) if t ≤ t−γ1(ω)

γ2(t− t−γ1(ω)) if t−γ1(ω) ≤ t ≤ t−γ1(ω) + T2

χ(ω, t− t−γ1(ω)− T2 + t+γ1(ω)) if t ≥ t−γ1(ω) + T2

wheret−γ1 andt+γ1 are defined as in lemma 6.2.2. We defineχ2 in the same way. Let us denotemi := |Ωi|
andmi(t) := |[γi(t)]mu|. The energy difference betweenµ andµ1 := χ1#λ is

δ1 : = E(µ)− E(µ1)

=
∫ T1

0
m1(t)αdt+

∫ T1

0
m2(t)αdt−

∫ T1

0
(m1(t)−m1)αdt−

∫ T2

0
(m2(t) +m1)αdt

=
∫ T1

0
(m1(t)α − (m1(t)−m1)α)dt+

∫ T2

0
(m2(t)α − (m2(t) +m1)α)dt.

In the same way,

δ2 := E(µ)− E(µ2) =
∫ T2

0
(m2(t)α − (m2(t)−m2)α)dt+

∫ T1

0
(m1(t)α − (m1(t) +m2)α)dt.

Let us now prove thatδ1m1
+ δ2

m2
< 0. Sincem1,m2 > 0, this will prove that eitherδ1 < 0 or δ2 < 0.

δ1
m1

+
δ2
m2

=
∫ T1

0

(m1(t) +m2)α −m1(t)α

m2
− m1(t)α − (m1(t)−m1)α

m1
− dt

+
∫ T2

0

(m2(t)α − (m2(t)−m2)α)
m2

− (m2(t) +m1)α −m2(t)α

m1
dt

< 0,

because of the concavity ofx 7→ xα.

The next lemma is a restatement of [35, proposition 2.1 p.256], and the proof is strongly inspired
from it. Still, in the author’s point of view, it makes clearer the perturbation used to decrease the energy,
in the case there is a circuit with a positive flow.

Lemma 6.2.5 No circuit made of arcs in the irrigation problem [35]Letµ be a traffic plan fromµ+

to µ− andα < 1. If there are(γi)ni=1, arcs ofµ such thatγi(Ti) = γi+1(0) for all i ∈ [1, n − 1] and
γn(Tn) = γ1(0), thenµ is not optimal for the irrigation problem.

Proof: Thanks to lemma??, it is consistent to define respectivelyL+ andL− as the set of indices such
that respectively|Ω−

Γi
| = 0 and|Ω+

Γi
| = 0. Let us consider setsΩi ⊂ ΩΓi such that|Ωi| = m for all

i. If two consecutive indices are inL+, we can shrink arcsΓi andΓi+1 to a single one up to a mixing
between fibers ofΓi andΓi+1. More precisely, letωi andωi+1 be fibers inΩi andΩi+1. The mixing of
ωi andωi+1 consists in defining

χ̃(ωi, t) =

{
χ(ωi, t) if t ≤ min(Iωi)

χ(ωi+1, t−min(Iωi) + min(Iωi+1) if t > min(Iωi),
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Figure 6.1: The oriented loop of the left hand side can be removed by mixing fibers ofΓ1 with those of
Γ2. Indeed, we can glue fibers ofΓ1 with the ends of fibers ofΓ2 and fibers ofΓ2 with the ends of fibers
of Γ1 as illustrated by the right hand side figure.

Figure 6.2: The fibers going throughΓ2 are modified betweenγ2(0) andγ2(T2) so that they go through
Γ1. Lemma 6.2.4 proves that either transferringΓ2 to Γ1 or Γ1 to Γ2 decreases the cost. Notice that this
transformation does not affect the transference plan.
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Figure 6.3: Gluing the beginning of a fiber ofΓi with the end of a fiber ofΓi+1 and reciprocally permits
to merge two arcs with same orientation. This mixing modifies the transference plan but not irrigating
and irrigated measures.

and

χ̃(ωi+1, t) =

{
χ(ωi+1, t) if t ≤ min(Iωi+1)

χ(ωi, t−min(Iωi+1) + min(Iωi)) if t > min(Iωi+1).

We defineχ̃ the parameterization obtained mixingω with ψ(ω) for all ω ∈ Ωi whereψ : Ωi → Ωi+1 is
a measure preserving bijection. Notice thatχ̃ has the same irrigating and irrigated measures, but not the
same transference plan asχ. Moreover, the swapping does not change the cost so thatEα(χ̃) = Eα(χ).
We have reduced the problem to the one of proving thatχ̃ is not optimal. It is indifferent to prove either
thatµ or the reversed time traffic plan obtained fromµ is not optimal, thus we can assume without loss
of generality that ∑

i∈L+

∫ li

0
mi(s)α−1ds ≤

∑
i∈L−

∫ li

0
mi(s)α−1ds.

We now defineχε such that all flow along anL+ path is increased byε and all flow along anL− paths
is decreased byε. This parameterization can be obtained through the convenient mixing of fibers and
is such that the irrigating and irrigated measures are the same as those ofχ. Let us denotef(ε) =
Eα(χε)− Eα(χ). We have∑

i∈L+

∫ li

0
(mi(s) + ε)αds+

∑
i∈L−

∫ li

0
(mi(s)− ε)αds.

The functionf is strictly concave becauseα < 1. Thus

f ′(ε) < f ′(0) =
∑
i∈L+

∫ li

0
(mi(s))α−1ds+

∑
i∈L−

∫ li

0
(mi(s))α−1ds ≤ 0.

Thus, the cost ofχε is lower than the one ofχ, andχ is not optimal.

Remark 6.2.6 Lemma 6.2.5 proves that an optimal traffic planfor the irrigation problem has no
circuit with a flow bounded below by a positive constant. This does prove that a more general circuit as
the one represented on figure 6.5 is not optimal for the irrigation problem. Indeed, such a traffic plan
is such that the fibers irrigate Lebesgue measure on the segment to finally group again to a Dirac mass.
Of course, such a structure is far from being optimal and proposition 6.2.7 rules out such candidates
through a perturbation similar to the one of lemma 6.2.4.
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Figure 6.4: The modification of the traffic planµ consists in transfering a multiplicityε from all arcs
Γ2i to arcsΓ2i+1. This perturbation gives a new traffic planµε which has a lower cost thanµ and same
irrigating and irrigated measures.

Figure 6.5: This traffic plan is obtained through the concatenation of a traffic plan transporting a Dirac
mass to Lebesgue measure on a segment and a traffic plan transporting Lebesgue measure on a segment
to a Dirac mass. Proposition 6.2.7 proves that such a structure is not optimal.
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Proposition 6.2.7 No splitting and grouping of mass: the general caseLet µ be an optimal traffic
plan with simple paths fromµ+ to µ−, andχ a parameterization ofµ. Let us denoteΩx := {ω : x ∈
χ(ω,R)}. Let x, y be such thatΩxy := Ωy ∩ Ωx is of positive measure. For allω ∈ Ωxy, we define
tx(ω) := χ(ω)−1(x), ty(ω) := χ(ω)−1(y) and Iω the time interval betweentx(ω) and ty(ω). For
almost allω1, ω2 ∈ Ωxy, we haveχ(ω1, Iω1) = χ(ω2, Iω2).

Proof: Let us first defineLi := Sµ ∩ (∪ω∈Ωiχ(ω, Iω)) whereSµ denotes the set of points with
positive multiplicity and suppose by contradiction that there areΩ1,Ω2 ⊂ Ωxy such that|Ω1|, |Ω2| >
0, |Ω1 ∩ Ω2| = 0, such that the symmetric difference|L1∆L2| > 0. This means that the structure
generated by fibers ofΩ1 andΩ2 are different. Let us consider some pointz in L1 ∪ L2 and denote
mi(z) := |Ωi ∩ Ωz| for i = 1, 2 andm̄(z) = |Ωz ∩ (Ω \ (Ω1 ∪ Ω2))|. Notice that the multiplicity
at z is |[z]χ| = m1(z) + m2(z) + m̄(z) for all z ∈ RN . As in lemma 6.2.4, we are going to transfer
mass ofL2 through theL1 structure. Letρ′ be the proportion of fibers ofΩ2 to be transferred toΩ1.
We takeρ′ := ρ |Ω1|

|Ω2| < 1. Let mρ(z) := (1 + ρ)m1(z) + (1 − ρ′)m2(z) + m̄(z). Let us prove that
there exists a traffic planµρ with the same transference plan asµ such that|[z]µρ | = mρ(z). Up to
a measure preserving bijection, we can suppose for the sake of convenience thatΩ1 = [0, |Ω1|] and
Ω2 =]|Ω1|, |Ω2| + |Ω1|]. Let us denotẽΩ1 = [0, |Ω1| + ρ′|Ω2|] andΩ̃2 =]|Ω1| + ρ′|Ω2|, |Ω2| + |Ω1|].
The application

ψ(ω) =


|Ω1|
|Ω̃1|

ω if ω ∈ Ω̃1

|Ω2|
|Ω̃2|

(ω − |Ω̃1|) + |Ω1| if ω ∈ Ω̃2

ω if ω ∈ Ω \ (Ω̃1 ∪ Ω̃2)

is an application contracting|Ω̃1| onto|Ω1| and dilating|Ω̃2| onto|Ω2|. We define

χρ(ω, t) =


χ(ω, t) if t ≤ min(Iω)

χ(ψ(ω), t−min(Iω) + min(Iψ(ω))) if t ∈ [min(Iω),min(Iω) + |Iψ(ω)|]
χ(ω, t− (min(Iω) + |Iψ(ω)|) + |Iω|) if t > min(Iω) + |Iψ(ω)|

which is obtained transferring uniformly mass ofΩ2 onto paths followed by fibers ofΩ1 betweenx and
y. The traffic planµρ = χ̃#λ is by definition such that|[z]µρ | = mρ(z). Further, the transference plan
of µρ is the same as the one ofµ sinceχρ(ω, 0) = χ(ω, 0) andχρ(ω,∞) = χ(ω,∞) for all ω ∈ [0, 1].
Let us compare the costs ofµ andµρ. We define the balance of the energy as

f(ρ) = Eα(µρ)− Eα(µ).

Let us denoteL := L1 ∪ L2. We have

f(ρ) =
∫
L
(mρ(z)α − |[x]µ|α)dH1.

Thus

f ′(ρ) = α

∫
L
mρ(z)α−1(m1(z)−m2(z)

|Ω2|
|Ω1|

)dH1,

and

f ′′(ρ) = α(α− 1)
∫
L
mρ(z)α−2(m1(z)−m2(z)

|Ω2|
|Ω1|

)2dH1.

We then notice that onL1 \ L2,m2(z) = 0 andm1(z) > 0. Symmetrically,m2(z) > 0 andm1(z) = 0
on L2 \ L1. Thus,(m1(z) − m2(z)

|Ω2|
|Ω1|) 6= 0 for all z ∈ L1∆L2. Since|L1∆L2| > 0 andα < 1,
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Figure 6.6: lemma 6.2.4 requires a lower bound on the multiplicity along some fibers to exclude loops
in optimal traffic plans. Thus it cannot rule out structure as the one presented on this figure, where the
mass is spreading on a Lebesgue measure on the segment to finally group again. The idea of the proof
of proposition 6.2.7 is roughly the same as in the case of two arcs. Indeed, suppose that we have two
different structures going fromx to y (in the sense that the geometric support of fibersΩ1 andΩ2 are
different). We convey some part of the mass of the second structure through the first structure or in the
other way, and we prove that the resulting structure which is represented on the right is better so that we
obtain a contradiction.

we obtain thatf ′′(ρ) < 0. Thusf ′(λ) < f ′(0) = α
∫
L(m(z)α−1(m1 − m2

|Ω2|
|Ω1|)dH

1. Without loss
of generality, we can assume thatf ′(0) ≤ 0, otherwise we exchangeΩ1 andΩ2. Thusf ′(ρ) < 0 and
f(ρ) < f(0) = 0 for a sufficiently smallρ. This inequality contradicts the optimality ofµ.

6.3 Regularity whenµ+ and µ− are atomic measures

Definition 6.3.1 Let µ be a traffic plan andΓ,Γ′ two arcs ofµ. Let us call bifurcation point some
p ∈ Γ ∩ Γ′ such thatΓ ∪ Γ′ \ {p} has at least three connected components.

Definition 6.3.2 Letµ be a traffic plan. We say thatµ has a circuit if there are arcs(Γi)ni=1 such that
there are bifurcation points(pi)ni=1 such thatpi ∈ Γi ∩ Γi+1 for i < n andpn ∈ Γn ∩ Γ1.

Proposition 6.3.3 Letπ be a transference plan such thatµ+ andµ− are finite atomic measures. An op-
timum for the who goes where problem has the structure of a finite graph. An optimum for the irrigation
problem is a finite tree made of segments.

Proof: Let us denoteµ+ =
∑
aiδxi andµ− =

∑
bjδyj . Letµ be an optimum for the who goes where

problem andχ a parameterization ofµ. We denoteΩij := {ω : χ(ω, 0) = xi andχ(ω,∞) = yj}.
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Figure 6.7: The applicationψ is contracting̃Ω1 onΩ1 and dilatingΩ̃2 onΩ2.

Figure 6.8: Proposition 6.2.7 asserts that fibers connectingxi with yj follow a single arcΓij .

Because of proposition 6.2.7, there is an arcΓij such thatχ(ω,R) = Γij for all ω ∈ Ωij . Thus,
an optimum for the who goes where problem has the structure of a finite graph. The same argument
stands for the irrigation problem. Moreover, lemma 6.2.5 permits to prove that no circuit occurs for an
optimum. Thus an optimum has a tree structure. Further, since the multiplicity of points of an arc does
not change between two consecutive bifurcation points, this tree is made of segments.

Remark 6.3.4 Neither in [35] nor in [36] does Xia investigate the question of the regularity in the
atomic case. We remind the reader that Xia defines a cost on Radon vectorial measures obtained from
finite graphs and then relaxes the functional to define a cost on more general Radon vectorial mea-
sures. Let us emphasize that though the initial cost is defined on finite graphs, it does not mean that the
relaxation process could not bring better structure than finite graphs whenµ+ andµ− are atomic.

6.4 Equivalence between models

It is now time to make a stop to look at the problem of equivalence between models described in chapter
2. Indeed, the knowledge we now have on the structure of an optimum permits to conclude that optima
and costs for traffic plan, patterns and Gilbert-Steiner problem are equivalent.

Theorem 6.4.1 Traffic plans and patterns ([22]) are equivalent with respect to the irrigation problem
whenµ+ consists of a single Dirac mass.

Proof: The small difference between the traffic plan model and the pattern model is the definition of the
multiplicity. In the pattern model, when two fibers coincide for time[0, T ] then separate, there are viewed
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as being separated for the remaining time even if the fibers happen to coincide again geometrically. This
is due to the fact that multiplicity of the fiberω at timet is the measure of all equivalent fibers (i.e. fibers
coinciding withω during time[0, t]). Let µ+ being a single Dirac mass at a source pointS andµ an
optimal traffic plan for the irrigation problem. Proposition 6.2.7 asserts that a parameterizationχ of µ
has a tree structure, so that the definition of multiplicity in the traffic plan framework coincide with the
one of patterns. Since the cost of tree structures are identical, the models are then equivalent.

Theorem 6.4.2 The irrigation problem for traffic plans whenµ+ andµ− are atomic measures and the
Gilbert-Steiner problem are equivalent

Proof: Let µ+ andµ− be atomic measures andµ an optimal traffic plan for the irrigation problem.
Proposition 6.3.3 asserts thatµ has a graph structure so that theEα cost is the same than the Gilbert-
Steiner problem cost forf(c) = cα. Thus, both problems give same optima.

6.5 The regularity result in [36]

In this section, we briefly survey the article [36] where Xia claims the following regularity result. Let
µ+ andµ− be two measures ofRN andT an optimal transport path fromµ+ to µ−. If x is a point
on the support ofT away from the support ofµ− andµ+, thenT has a finite graph structure in the
neighborhood ofx. Xia first proves the existence of a cone-shaped blow-up atx and then does estimates
to prove that the optimal structure coincides with the blow-up in a sufficiently small neighborhood.

The second part of this proof is lacking some argument. We have mainly two criticisms relative to
this article (we refer to [36] for the notations):

• Concerning lemma 4.8, the fact thatf(r) is decreasing because T contains no loop seems ques-
tionable. It rather seems to be a consequence of the radiality of an optimal transport from a center
of the ball to the sphere. Such radiality should be proven carefully.

• Lemma 4.9 seems also to be questionable since Xia moves from a transport between positive
measures to transport between an arbitrary infinite atomic measure (with positive and negative
Dirac masses) and a Dirac mass centered at a ball. The justification of that change is that the
boundary of the currentT can be viewed either as(µ+ − µ−)− δ0 or µ+ − (µ− + δ0). However
the estimations ofMα(Γp +λqγp)−Mα(Γp) in the proof of Lemma 4.9 strongly depends on the
fact that we consider a transport from a Dirac mass to a positive measure.

Since lemma 4.9 is crucial in the proof of final theorem, we consider that the regularity claim needs
another proof.

6.6 Number of branches at a bifurcation

In this section we investigate the geometry of branches at a bifurcation point of an optimal traffic plan.
The optimal structure of a traffic plan from one Dirac mass to two Dirac masses is essential in all that
follows. It is necessary to read section 7.1 in order to understand well the present section. Lemmas 6.6.2
and 6.6.3 give lower bound (depending onα) on the angle between two edges starting from the same
point (see figure). As a consequence, we prove that it is not possible for an optimal finite traffic plan in
R2 to have more than three edges meeting at a bifurcation point (away fromµ+ andµ− ), whenα ≤ 1

2
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(proposition 6.6.4). It is still a conjecture whether or not four edges can meet at a bifurcation point in
R2 when1 > α > 1

2 , though numerical experiments seem to exclude this situation.

Lemma 6.6.1 The functiong defined byg(m) = (m+1)2α−m2α−1
2mα is nondecreasing on]0, 1] for 1 >

α > 1
2 and nonincreasing forα < 1

2 . Thus,

sup
m∈]0,1]

g(m) =

{
22α−1 − 1 if α > 1

2

0 if 1 > α ≤ 1
2 .

Proof: Indeed,φ′ has the same sign as

(m+ 1)2α − 2(m+ 1)2α−1 −m2α + 1

that we denoteψ(α). We notice further thatψ(0) = m−1
m+1 < 0 , ψ(1/2) = ψ(1) = 0 and thatψ is

concave. Indeed,

ψ′′(α) = 4(m+ 1)2α ln(m+ 1)2 − 8(m+ 1)2α−1 ln(m+ 1)2 − 4m2α ln(m)2

= 4(m+ 1)2α−1 ln(m+ 1)2(m− 1)− 4m2α ln(m)2

≤ 0.

The last inequality results from the fact thatm ≤ 1. Thus,ψ(α) ≥ 0 for 1 > α > 1
2 andφ′ is positive

so thatφ is not decreasing. Similarly,ψ(α) ≤ 0 for α < 1
2 andφ′ is negative so thatφ is not decreasing.

The monotonicity ofg permits to easily calculate the supremum,

sup
m∈]0,1]

g(m) =

{
g(1) = 22α−1 − 1 if 1 > α > 1

2

limm→0 g(m) = 0 if 1 > α ≤ 1
2 .

Lemma 6.6.2 Lete1 = pa1 ande2 = pa2 be two oriented edges of the circleC(p, r). Letµ be a traffic
plan made of the two edgese1 ande2 with massesm1 andm2. If µ is optimal, the angleθ betweene1
ande2 is such thatcos(θ) ≤ 22α−1 − 1 for 1 > α > 1

2 andcos(θ) ≤ 0 for α ≤ 1
2 .

Proof: Indeed, because of proposition 7.1.7, and lemma 6.6.1,

cos(θ) ≤ sup
m1,m2∈[0,1]

(m1 +m2)2α −m2α
1 −m2α

2

2mα
1m

α
2

=

{
22α−1 − 1 if 1 > α > 1

2

0 if α ≤ 1
2 .

Lemma 6.6.3 Let e+ = a+p ande− = pa− two oriented edges of the circleC(p, r). Letµ be a traffic
plan made of the two edgese+ ande− with massesm andm′. If µ is optimal, the angleθ betweene+

ande− is such thatcos(θ) ≤ ( mm′ − 1)α − ( mm′ )α. In particular,θ is strictly superior toπ2 .

Proof: Without loss of generality, we can suppose thatm ≥ m′ . Let pε be the point on segmenta+p

at a distanceε of p. Let us consider the traffic planµε made of the edges(a+pε,m),(pεa−,m′) and
(pεp,m−m′). Let us denote

δ(ε) = Eα(µ)− Eα(µε)

= mα +m′α − (mα(1− ε) + (m−m′)αε+m′α√
1 + ε2 − 2ε cos(θ)).

Since the traffic planµε has the same transference plan asµ andµ is optimal,Eα(µε) ≥ Eα(µ), i.e.
δ(ε) ≤ 0. Thusδ′(0) ≤ 0, i.e. cos(θ) ≤ ( mm′ − 1)α − ( mm′ )α. In particular,cos(θ) < 0 so thatθ > π

2 .
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Proposition 6.6.4 Let α ≤ 1/2 andµ be an optimal traffic plan ofR2 with finite graph structure. A
node of the graph not in the support ofµ+ andµ− has an edge multiplicity less than or equal to 3.

Proof: Let p be a bifurcation point with more than three edges atp. Let us considerν, the restriction
of the traffic planµ to a small ballB(p, r) such thatp is the only bifurcation ofν. The traffic plan
ν is optimal for the irrigation problem fromν+ to ν− whereν+ andν− are atomic measures on the
circleC(p, r). Let us denote byL− andL+ respectively the set of edges connectingp to ν− andν+.
A subtraffic plan made of two edges ofL+ or two edges ofL− is optimal, otherwiseν would not be
optimal. Thus because of proposition7.1.7 the angle between two edges(e,m) and(e′,m′) is superior
to the angleθ such that

cos(θ) =
(m+m′)2α −m2α −m′2α

2mαm′α .

In the caseα ≤ 1
2 , cos(θ) ≤ 0 so that the angle betweene ande′ is superior or equal toπ2 . This fact in

addition with lemma 6.6.3 implies that#L+ ∪L− ≤ 3. Indeed, assume that#L+ ∪L− ≥ 4, and let us
extract four edgesei fromL+ andL−. Let us denoteθi the four angles between the edgesei considered
in a trigonometric order. All of these angles are superior toπ

2 and one of them is strictly superior toπ2
because of lemma 6.6.3. Thus, there is no room for more than three edges inL+ ∪ L−.

Remark 6.6.5 There is a very quick and geometric argument to prove that noΨ shape can occur for
an optimal traffic plan andα ≤ 1

2 . It is illustrated by figure 6.9. The argument is the following. Let us
suppose that aΨ shape is optimal and denotep the bifurcation point. In particular the subtraffic plan
made of edgespa1 andpa2 is optimal so thatp lies within the diskD1 defined by the equiangle circle
of proposition 7.1.7. In the same way, the subtraffic plan made of edgespa2 andpa3 is optimal so that
p lies within the diskD2 defined by the equiangle circle. Forα ≤ 1

2 , D1 ∩D2 = ∅ so that we obtain a
contradiction.

Conjecture 6.6.6 Let 1
2 < α < 1 andµ be an optimal traffic plan ofR2 with finite graph structure. A

node of the graph not in the support ofµ+ andµ− has an edge multiplicity less than or equal to 3.

Beginning of the proof: Let us defineL+ andL− as in the proof of 6.6.4. Because of the minimal
angle lemma, 6.6.2 bothL+ andL− are finite. Though, it does not seem as easy as in the caseα ≤ 1

2 to
reduce the cardinal ofL+ andL−. A first step would be to prove that it is enough to consider the case
#L+ = #L− = 2 and the case#L− = 3 and#L+ = 1. Remark 6.6.5 contains a strategy to deal with
the second case. Indeed, let us consider the optimal bifurcation pointp for the bestΨ shape structure
and consider that this structure is globally optimum. We denote(s, 1) the source and(ai,mi)3i=1 the
three irrigated points, such thatm1 +m2 +m3 = 1. Remark 6.6.5 proves thatp has to be inD1 ∩D2.
In addition, the first order local optimality criterion states that

3∑
i=1

mα
i ni = −n,

whereni is the unit vector directed by the vectorpai andn is the unit vector directed byps. If we
prove that||

∑3
i=1m

α
i ni|| 6= 1 for all p ∈ D1 ∩D2, the contradiction follows. Let us denoteθ1 andθ2

respectively the anglea1pa2 anda2pa3. The disksD1 andD2 are the equiangle circles corresponding
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Figure 6.9: If there is a triple point outside an equiangle circle, then a ”ψ” structure can be improved as
illustrated, thanks to proposition 7.1.7.
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Figure 6.10: As illustrated by figure 6.9, a triple point of an optimal traffic plan has to lie within the two
corresponding equiangle circles. In the caseα ≤ 1/2, the intersection of these two disks is empty (both
figures at the top). In the case1 > α > 1/2, the intersection is not empty so that we cannot conclude
immediately.

Figure 6.11: The balance equation at an optimal triple point asserts thatn := mα
1n1 +mα

2n2 +mα
3n3

has to be of norm 1. A strategy to prove that there is no triple point for an optimum is thus to prove that
||n|| < 1 for any point in the intersection of the two equiangle disks.
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respectively to(a1,m1), (a2,m2) and(a2,m2), (a3,m3), i.e. they are equiangle circles for the angles
τ1 andτ2 such that

cos(τ1) =
(m1 +m2)2α −m2α

1 −m2α
2

2mα
1m

α
2

,

and

cos(τ2) =
(m2 +m3)2α −m2α

2 −m2α
3

2mα
2m

α
3

.

Thus, the fact forp to be both at a time inD1 and inD2 is well expressed by the fact thatθ1 ≥ τ1 and
θ2 ≥ τ2, i.e. cos(θ1) ≤ cos(τ1) andcos(θ2) ≤ cos(τ2).

Let us evaluateφ(p) := ||
∑3

i=1m
α
i ni||2. We have

φ(p) = ||
3∑
i=1

mα
i ni||2

= m2α
1 +m2α

2 +m2α
3 + 2mα

1m
α
2 cos(θ1) + 2mα

2m
α
3 cos(θ2) + 2mα

1m
α
3 cos(θ1 + θ2).

If we prove thatφ(p) < 1 for all p ∈ D1 ∩ D2, this proves that aΨ shape structure cannot be
globally optimal. Let us denotea = cos(τ1) andb = cos(τ2). Sincecos(θ1) ≤ a andcos(θ2) ≤ b for
p ∈ D1 ∩D2, it is enough to prove that

m2α
1 +m2α

2 +m2α
3 + 2mα

1m
α
2a+ 2mα

2m
α
3 b+ 2mα

1m
α
3 (ab−

√
1− a2

√
1− b2) < 1,

for all m1,m2 andm3 such thatm1 +m2 +m3 and allα > 1
2 . Because this expression is symmetric

with respect tom1 andm3, we can suppose without loss of generality thatm1 > m3.
Sincem1 ≥ m3, lemma 6.6.1 implies thata ≥ b. Thus,ab−

√
1− a2

√
1− b2 ≤ 2a2 − 1 and it is

enough to prove that

m2α
1 +m2α

2 +m2α
3 + 2mα

1m
α
2a+ 2mα

2m
α
3 b+ 2mα

1m
α
3 (2a2 − 1) < 1,

in order to prove thatφ(p) < 1. This expression can be simplified in

(1−m1)2α + (1−m3)2α −m2α
2 +

mα
3

mα
1m

2α
2

((m1 +m2)2α −m2α
1 −m2α

2 )2 − 2mα
1m

α
3 < 1,

and the fact that noΨ shape can be optimal would then be a consequence of the following conjecture.

Conjecture 6.6.7 For everym1,m2,m3 > 0 such thatm1 + m2 + m3 = 1, and every1 > α > 1
2 ,

(1−m1)2α + (1−m3)2α −m2α
2 + mα

3

mα
1m

2α
2

((m1 +m2)2α −m2α
1 −m2α

2 )2 − 2mα
1m

α
3 < 1.

Hints: This inequality seems to hold. The main argument for it is numerical: the inequality has
been numerically tested on a regular mesh of10003 values and was always true. The other hint is the
following: let us denoteφ(m1,m3, α) the expression on the left hand side. We are interested in proving
thatφ < 1 in the domainD := T×]12 , 1[ whereT := {(x, y) : x ∈]0, 1[, y < x}. It is easy to prove that
φ|∂D ≤ 1. Moreover, ifm1 = m3 = m, then the inequality is true. Indeed, we have

φ(m,m,α) =
((1−m)2α −m2α)2

(1− 2m)2α
,

so thatφ(m,m,α) < 1 if and only if (1−m)2α −m2α < (1− 2m)α (sincem < 1
2 ). By concavity of

x 7→ xα, we have(1− 2m+m2)α < (1− 2m)α +m2α so thatφ(m,m,α) < 1.
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Chapter 7

Examples of optimal irrigation

Introduction

Because of the atomic regularity of the previous chapter, we are now in a position to investigate particular
examples. In section 7.1, we shall prove that an optimal structure for the problem of irrigating two
masses from one source has a tree structure and we shall describe analytically this case. This first
example is very important since it gives very constraining angle conditions at bifurcation points. Further,
this example is the foundation of a recursive algorithm of construction that was proposed in [18] and that
we shall present in the next chapter. In section 7.2 we investigate the structure of an optimal traffic plan
irrigating Lebesgue measure on the segment from one source and study if the tree gets totally spread as
in the case of the Monge-Kantorovitch transport problem or if diffusion along the segment occurs.

7.1 Optimum irrigation from one source to two sinks

Let a1, a2, a3 in RN with a1 6= a2, µ− = m1δa1 +m2δa2 andµ+ = m3δa3 with m3 = m1 +m2 and
m1,m2 > 0. We are looking for the optimal traffic plan fromµ− to µ+ under theEα cost.

Lemma 7.1.1 In the casea1, a2, a3 are aligned, an optimal traffic plan fromµ− to µ+ has its support
in the minimal segment containinga1, a2, a3. Otherwise, an optimal traffic plan has its support in the
trianglea1, a2, a3. In addition, it is a graph with two edges or three edges.

Proof: Because of the convex envelop property 6.1.3, the support of an optimal traffic plan fromµ−

to µ+ is in the convex envelop ofa1, a2 anda3. Further, proposition 6.3.3 proves that an optimal traffic
plan is a graph with at most3 edges.

Lemma 7.1.2 Letµ be an optimal traffic plan fromµ− to µ+ made of three edges. With the notation of
Figure 7.1, the bifurcation pointa has to satisfy the following angle constraints:

cos(θ1) =
k2α

1 + 1− k2α
2

2kα1
(7.1)

cos(θ2) =
k2α

2 + 1− k2α
1

2kα2
(7.2)

cos(θ1 + θ2) =
1− k2α

2 − k2α
1

2kα1 k
α
2

, (7.3)
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Figure 7.1: If an optimum has aY -structure, the perturbation of the bifurcation point gives necessary
condition through the cancellation of the derivative of the cost.

wherek1 = m1
m1+m2

, k2 = m2
m1+m2

.

Proof: Because of lemma 7.1.1, it is equivalent to consider the two dimension situation. Let us consider
the graphG(a) made of edges(a1a,m1), (a2a,m2) and(aa3,m3), with a ∈ R2 \ {a1, a2, a3}. The
cost of this graph is

C(a) = mα
1 ||a1 − a||+mα

2 ||a2 − a||+mα
3 ||a− a3||.

Notice that this function is differentiable onR2 \ {a1, a2, a3}. Thus, ifG(a) is an optimal path with
a /∈ {a1, a2, a3}, we have∂∂xC(a) = 0 and ∂

∂yC(a) = 0. Let us denote respectively by(x1, y1), (x2, y2)
and(x3, y3) the cartesian coordinates ofa1, a2 anda3. We have

∂

∂x
C(a) = mα

1

(x− x1)
||a1 − a||

+mα
2

(x− x2)
||a2 − a||

+mα
3

(x− x3)
||a3 − a||

,

and
∂

∂y
C(a) = mα

1

(y − y1)
||a1 − a||

+mα
2

(y − y2)
||a2 − a||

+mα
3

(y − y3)
||a3 − a||

.

For a /∈ {a1, a2, a3}, let us denote byni = a−ai
||a−ai|| the unit vector fromai to a for i = 1, 2, 3. The

necessary condition given by the derivative of the cost function yields the balance equation

mα
1n1 +mα

2n2 +mα
3n3 = 0. (7.4)

Let θi be the angle betweenni and−n3 for i = 1, 2 andk1 = m1
m1+m2

, k2 = m2
m1+m2

. Multiplying the
balance equation (7.4) byni for i = 1, 2, 3 we obtain the following equalities:

kα1 + kα2 n1n2 = cos(θ1) (7.5)

kα1 n1n2 + kα2 = cos(θ2) (7.6)

kα1 cos(θ1) + kα2 cos(θ2) = 1, (7.7)
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Figure 7.2: The locus of constant angle betweenM and two prescribed points is the union of two circle
arcs.

so that the angles satisfy

cos(θ1) =
k2α

1 + 1− k2α
2

2kα1
(7.8)

cos(θ2) =
k2α

2 + 1− k2α
1

2kα2
(7.9)

cos(θ1 + θ2) =
1− k2α

2 − k2α
1

2kα1 k
α
2

. (7.10)

This means that in the trianglea1aa3, the angle ata is π− θ1 and in the trianglea2aa3, the angle ata is
π − θ2.

Remark 7.1.3 Notice that in the casem1 = m2, θ1 = θ2 = arccos(22α−1− 1)/2 . If α = 1
2 the angles

satisfyθ1 + θ2 = π
2 , θ1 =

√
k1 andθ2 =

√
k2. Thus the bifurcation point lies on the circle of diameter

a1a2. If α = 0, we find the2π
3 angle constraint that has to satisfy a Steiner point in the Steiner tree

problem.

Lemma 7.1.4 Given two pointsb andc and an angleθ, the set of pointsa so that the not oriented angle
bac is θ is the union of two circle arcs going throughb andc, with radius ||c−b||

2 sin(θ) .

Proof:
The set of pointsa so that the not oriented anglebac is θ is given by the equation

(b− a) · (c− a) = cos(θ)||b− a|| · ||c− a||. (7.11)

To maintain simple calculations, we can assume with a suitable rotation and scaling thatb = (0, 0) and
c = (1, 0). Let us denote by(x, y) the cartesian coordinates ofa. Equation 7.11 becomes

x(x− 1) + y2 = cos(θ)
√
x2 + y2

√
x(x− 1) + y2.



104 Chapitre 7. Examples of optimal irrigation

Figure 7.3: The center of these circles can be obtained through a scaling transformation.

Squaring this equation, we obtain a polynomial equation that has to satisfya = (x, y). We notice that it
is the product of two circle equations:

(−p2 + 1)[(x− 1/2)2 + (y − yc)2 −R2
c ][(x− 1/2)2 + (y + yc)2 −R2

c ] = 0,

wherep = cos(θ), yc =
√

p2

4(1−p2)
andRc =

√
1

4(1−p2)
. Notice that ifa = (x, y) satisfies this equation,

it is no more sufficient for the anglebac to beθ. Indeed, we squaredcos(θ), so that the anglebac is θ
or π − θ. The set of points is then a subset of the two circles and is indeed the union of two symmetric
connected components of the circles from which we remove(0, 0) and (1, 0). Let us now give the
equation of equiangle points forb = (0, 0) andc = (x′, y′). We move from(1, 0) to (x′, y′) with a

scaling of factor||c− b|| so that the radius of circles will be||c− b||
√

1
4(1−p2)

. To obtain the coordinates

of the centers of two circles, we notice that it lies on the middle orthogonal of the segment[bc] and is

located at a distance
√

p2

4(1−p2)
of bc . Thus, the two centers of the equiangle circles have the following

coordinates:c/2± (−y′, x′)
√

p2

4(1−p2)
.

Lemma 7.1.5 Let µ be an optimal traffic plan fromµ− to µ+ made of three edges. LetE be the
equiangle circle arc associated toa1, a2 and θ, which is in the same half plane asa1. LetE′ be the
complementary circle arc. There is a ”pivot” pointp ∈ E′ which does not depend ona3 such that the
bifurcation pointa is the intersection ofa3p withE.

Proof: Let us denote byp the instersection of the linea3a with E′. The bifurcation pointa has to
satisfy the angle conditions given by 7.1.2, i.e. the anglepaa1 is prescribed as equal toθ1. SinceE ∪E′

is the only circle going througha, p anda1,E is an equiangle circle arc fora, p and the angleθ1 so that
the pointp does not depend on the source pointa3. Thus, the optimal bifurcation point is obtained as the
intersection of the linea3p with E. Let us denotec the center of the equiangle circle. The anglea1cp is
twice the anglea1ap which isθ1. Thus, the ”pivot” point is easily constructed as the rotation ofa1 with
angle2θ1.
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Figure 7.4: The equiangle locus associated toa, p with an angleθ1 is supported by a circle and thus is
the same circle as the equiangle locus associated toa, b with an angleθ1 + θ2.

Lemma 7.1.6 Let µ be an optimal traffic plan fromµ− to µ+ made of three edges andp the ”pivot”
point obtained in lemma 7.1.5. The cost ofµ is |a3p|.

Proof: Indeed, it is a direct consequence of Ptolemy’s theorem stating that the diagonals of a quadri-
lateral equals the sum of the products of the opposite sides. Let us notice first that|a1p| = |a1a2|(m2

m3
)α

and|a2p| = |a1a2|(m1
m3

)α. When applied to the equilaterala1aa2p, the theorem becomes|a3p||a1a2| =
|aa1||pa2|+ |aa2||pa1|. Thus,

mα
1 |aa1|+mα

2 |aa2| = mα
3 |a3p|.

Proposition 7.1.7 Letµ be an optimal traffic plan fromµ− to µ+. Letp be the pivot point associated
to (a1,m1), (a2,m2), in the half plane not containinga3. There are four different zones fora3. If
a3p ∩ E = {a}, either a ∈ [a3p] and the optimal has three edges witha the bifurcation point, or
a /∈ [a3p] and the optimal is made of the two edges[a3a1] and [a3a2]. If a3p ∩ E = ∅, then either
|a3a1| < |a3a2| andµ is made of the two edges[a3a1] and [a1a2] or |a3a2| < |a3a1| andµ is made of
the two edges[a3a2] and[a2a1]

Proof: The four zones are illustrated by figure 7.6. Ifa /∈ [a3p] or a3p∩E = ∅ , then an optimal struc-
ture cannot have three edges because no bifurcation point is able to satisfy necessary angle conditions.
The optimum thus have an ”L” or ”V” structure, depending on the position of the source pointa3. If
a ∈ [a3p], the three edges graph thus obtained is optimal.
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Figure 7.5: The bifurcation satisfying the angle constraints given by the balance equation is obtained as
the intersection of the equiangle circle and the source to pivot point line.

Figure 7.6: Let us sum up the process that permits to find the optimal structure from one source to two
sinks. 1) Given the massesm1 andm2, we obtain the angleθ at an optimal bifurcation. 2) We draw the
equiangle circle, the pivot point and the linespa1 andpa2. 3) Depending on the position of the source
point, we obtain one of the four possible configuration that are represented on this figure.
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Figure 7.7: The bifurcation point of an optimal ”Y ” lies on the three equiangle circles.

7.2 How to irrigate a Lebesgue segment

Letµ+ be the Lebesgue measure on the segment[0, 1]×{0} andµ− = δS the Dirac mass at the pointS.
In the following, we discuss the structure of an optimal traffic plan fromµ− to µ+. First, we determine
an optimal traffic plan in the case whereS ∈ R× {0}. This is the case of dissipation along the path.

7.2.1 The case of a source aligned with the segment

Lemma 7.2.1 LetS ∈ R × {0} andµ be an optimal traffic plan fromµ+ to µ−. Thenµ is equivalent
to χ#λ whereχ(ω, t) = min(ω, t). If S = (0, 0), E(µ) = 1

α+1 .

Proof: The convex envelop property 6.1.3 tells that the support ofµ is in the axis of the segment.
Because of the no-loop, the mass is dissipated uniformly along the fibers. Thus,E(µ) =

∫ 1
0 x

αdx =
1

α+1 .

7.2.2 A ”T structure” is not optimal: the better Y structure proof

Let S /∈ [0, 1]× {0}.

Definition 7.2.2 Lets ∈ [0, 1] andδs the Dirac mass located at(s, 0). To everys ∈ [0, 1], we associate
µs the traffic plan obtained as the concatenation of the optimal traffic plan fromµ− to δs and fromδs to
µ+. We say that such a traffic plan has aT -structure.

Lemma 7.2.3 A traffic plan with T structure is not optimal.

Proof: Let µ be the T structure associated tos ∈ [0, 1]. By construction, a masss is irrigating the
segment[0, s], and a mass1− s is irrigating the segment[s, 1]. We shall now prove that it is possible to
find aY structure more efficient than theT one.
Let us consider aY configuration with ending points of coordinates − x ands + x wherex is to be
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Figure 7.8: A T−structure and aY -structure perturbation of it.

Figure 7.9: A degenerateT -structure and a perturbation of it.

determined. The bifurcation is located at a distanceε from s.
The cost of thisY structure can be written

φ(ε, x) = sαa+ (1− s)αb+
1

α+ 1
(2xα+1 + (s− x)α+1 + (1− s− x)α+1)

wherea =
√
ε2 + x2 + 2εx cos(θ) andb =

√
ε2 + x2 − 2εx cos(θ).

Let us definev(ε) = φ(ε, cε).
The cost of the modified part of theT structure is

u(ε) = ε+
1

α+ 1
(sα+1 + (1− s)α+1).

Notice thatv(0) = u(0) andu′(0) = 1. Thus it is sufficient to show that for some suitablec, v′(0) < 1
so thatv(ε) < u(ε) for a sufficiently smallε. Let us calculate the derivative ofv at point 0,

v′(0) =
(√

c2 + 1 + 2c cos(θ)sα +
√
c2 + 1− 2c cos(θ)(1− s)α

)
− c(sα + (1− s)α).

For c = 0, v′(0) = sα + (1− s)α. Forc near infinity, the asymptotic expansion ofv′(0) is

v′(0) = c

(
sα(1 +

cos(θ)
c

+O(
1
c2

)) + (1− s)α(1− cos(θ)
c

+O(
1
c2

))
)
− c(sα + (1− s)α)

= cos(θ)(sα − (1− s)α) +O(
1
c
)

Let us suppose thatθ /∈ πZ ands /∈ {0, 1}, then, because of the continuity ofv′(0) regardingc, we
deduce that for a sufficiently largec, v′(0) < 1.
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Figure 7.10: The cut at Lebesgue segment induces optimal before and after cut traffic plans.

If s = 0, or s = 1, andθ /∈ πZ, let us show that the T structure is not optimal. The cost of the traffic
plan defined with a junction at coordinatex is

φ(ε, x) =
√
ε2 + x2 + 2εx cos(θ) +

1
α+ 1

(xα+1 + (1− x)α+1).

Let us considerv(ε) = φ(ε, cε). Then,v(0) = u(0) andv′(0) =
√

1 + 2 cos(θ) + c2 − c so that with
c at infinity, v′(0) = cos(θ) + O(1

c ). Thus, in caseθ /∈ πZ, the T structure with a junction ats = 0 or
s = 1 is not optimal so that we can find a betterT -structure with junction in]0, 1[ and therefore a better
Y -structure.

7.2.3 An optimum has not finite graph + fibers along the segment structure

Proposition 7.2.4 Let µ be an optimal traffic plan fromµ− = δS to µ+, whereµ+ is the Lebesgue
measure on the unit segment. Let us denote byν the measure obtained stopping fibers when they attain
the segment. The traffic planν is not atomic finite.

Proof: Let χ be a parameterization ofµ and suppose thatν =
∑n

i=1 aiδxi . The cut at Lebesgue
segment induces a traffic plañµ which transportsµ− to ν. Becauseµ is optimal, µ̃ is optimal and
lemma 6.3.3 proves that̃µ has a finite graph structure. Let us considerΩi the set of fibers going through
xi, i.e. Ωi := [xi]χ. Let us denote byµi the measure irrigated byΩi. Because of the no-loop property,
theΩi are disjoints and the support of the measuresµi form a partition of[0, 1]. Thus we can consider
an intervalI ⊂ [0, 1] such thatx1 ∈ I and the restriction of the traffic plan toΩ1 induces a traffic plan
with T -structure irrigating Lebesgue measure on the intervalI. It should be optimal as a restricted traffic
plan but is not because of lemma 7.2.3.

7.2.4 Can fibers move along the segment in the optimal structure?

Because of proposition 7.2.4, we know thatν is not a finite atomic measure. In the caseα = 1, the
transport problem is the one of Monge-Kantorovitch and then the cut of an optimum at the unit segment
is the Lebesgue measure on this segment. What ifα < 1? Does it depend on the position of the source
or not?
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Figure 7.11: Let ν be the measure obtained stopping fibers ofµ when they reach the unit segment. If
ν was a finite atomic measure, then the restriction around a Dirac mass ofν would be an optimal T
structure.

Conjecture 7.2.5 Let µ be an optimal traffic plan fromµ− to µ+ with α < 1 and ν the cut ofµ at
Lebesgue segment. The measureν is an infinite atomic measure, i.e.ν =

∑
miδai , wheremi are

positive andi ∈ N.

Hint: The case ofα = 1
2 seems to be more tractable than the general case since in that case, the angle

constraint formula is particularly simple, i.e. at a bifurcation point,cos(θ1) =
√
k1 andcos(θ2) =

√
k2.

Very roughly speaking, there is aπ/2 angle at any bifurcation of an optimal tree so that not many
bifurcation can occur along a path in an optimal tree, this obliges in some way the tree not to bifurcate
so that it has to dissipate.

Some numerical evidences (see chapter 8) go in the direction of the conjecture. Indeed, the optimal
shape irrigating an atomic approximation of Lebesgue measure on the segment shows that as the mesh
increases, the path are getting flatter and flatter so that it suggests that diffusion will occur in the end
along any path.



Chapter 8

Algorithms

Introduction

Numerical experiments can be important to rule out conjectures or to gain intuition on the structure of
efficient traffic plans. In the first section we present an algorithm proposed by Xia and explain why it
cannot give a global optimum. We then consider the optimization problem of finding the/a best traffic
plan as two separated problems: a topological optimization and an optimization of nodes. Indeed, given
a topology of the structure, there generally exists a local optimum with this prescribed topology. Thus,
an algorithm for this problem should both try to optimize the topology and the position of nodes of the
graph. In the article [18], Gilbert presented a recursive construction with ruler and compass that permits
to obtain the exact position of nodes of an optimal structure, for a general cost

∑
f(ce)l(e), wheref

is any concave function. We present this recursive construction in section 8.2. We then give examples
of exhaustive search through all possible topologies in the case where target Dirac masses are aligned.
Indeed, when target Dirac masses are aligned the number of possible topologies is drastically reduced.
For more than 10 target points, the combinatorial explosion requires to search through a reduced number
of topologies. The multiscale approach and different type of perturbation of the topology are a good
way to obtain efficient structures in a reasonable time. All the algorithms that we just spoke about are
confined to the plane and to the one source to any measure problem. We explain in the last section why
it is difficult to move to a ”any measure to any measure” problem and to increase dimension.

8.1 An algorithm suggested by Xia in [35]

8.1.1 Presentation of the algorithm

Let us recall the notation of the dyadic approximation of a measure presented in section 5.1.3. LetC

be a cube with edge lengthL and centerc. Let ν be a probability measure on the compactX where
X ⊂ C. We may approximateν by atomic measures inAΛ(X) as follow. For eachi, let

Ci := {Chi : h ∈ ZN ∩ [0, 2i)N}

be a partition ofC into cubes of edge lengthL
2i . Now, for eachh ∈ ZN ∩ [0, 2i)N , let chi be the center

of Chi andmh
i = ν(Chi ) be theµ mass of the cubeChi . We define the atomic measure

Ai(ν) =
∑

h∈ZN∩[0,2i)N

mh
i δchi

,

111
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which is classically weakly converging toµ. This approach is justified by corollary 5.3.3. Indeed, the
limit of sequence of optimal traffic plans is optimal.

Let µ be any probability measure in the cubeC ⊂ RN with edge lengthL. In section 6 of [35], Xia
proposes an algorithm to compute an optimal transport path from a Dirac massesδp wherep ∈ RN to
µ. LetH be a fixed positive real number.

1. Given an approximating depthn, let an = An(µ), be then−th dyadic approximation of ordern.

2. For eachh ∈ ZN ∩ [0, 2i)N , the cubeChn−1 of level n − 1 consisting in2N subcubes of level
n. For anyx ∈ X × [0,H], letGhx be the union of (the cone overanbQhn−1 with vertexx) and
the line segment̄xp with weight µ(Chn−1). ThenGhx is a transport path froman(µ)bChn−1 to
µ(Chn−1)δp. Let qh ∈ X × [0,H] be the point at whichMα(Ghx) achieves its minimum among all
x ∈ X × [0,H]. Let

an−1 =
∑

h∈ZN∩[0,2i)N

µ(Chn−1)δqh .

3. For eachk = n− 1, ..., 1, repeatedly doing step 2 to getak−1. In the end, we get a transport path
Gn from an to δp with finiteMα mass.

4. By using optimization from one source to two sinks, we can locally optimize the locations of the
vertices ofG. One may repeatedly doing upward and downward optimization until the transport
path converges to a fixed graph.

5. Increase depthn to get better approximation

8.1.2 Results and criticisms

We refer the reader to [35] to see the genuine figures obtained by Xia. However, for a sake of complete-
ness we shall represent on figure 8.1 some trees with very similar shapes. These results suggest three
remarks:

• We can see on figure 8.1 and in [35] that the structure of the tree is homogeneous dyadic in the
sense that at every bifurcation, the mass is split into two equal parts. This is due to the step 2 of
the algorithm.

• The second remark is that the cost of trees represented in figure 8.1 are not all identical with
the cost of trees in [35]. This is certainly due to the fact that the step 4 of the algorithm is not
efficient in optimizing the structure. Indeed, changing the location of bifurcation points upward
and downward is very costly and takes a lot of iterations to stabilize. Thus, during the optimization
process, the cost decreases very slowly so that the trees obtained by Xia are in general not fully
stabilized.

• The cost of the tree forµ− = λ64 is much lower than the one obtained by Xia in [35] for another
reason than the previous remark. Indeed, if one look closely at tips, the tree we obtained has a
degenerate topology in the sense that the Dirac mass on the extreme left ofλ64 is not irrigated
from a bifurcation point but from a point of the support ofλ64.

The first remark raises the question of whether or not a ”homogeneous” dyadic structure is optimal.
The answer is generally no. Indeed, two arguments prove that fact:
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Figure 8.1: Let µ+ be a Dirac mass at (0,-1) andµ− = λn with n = 2, 4, 8 andn = 64 whereλn is the
dyadic approximation of leveln of Lebesgue measure on the segment. From top left to bottom right, the
figures represent the trees considered in [35] as being optimal forα = 0.95.

• The numerical argument consists of the tree represented on figure 8.2. It has a better cost than the
best homogeneous dyadic tree.

Another numerical example illustrating why the dyadic structure is not always the best one is
represented on figure 8.3.

• The angle argument: as stated in remark 7.1.3, when the two exit masses are equal at a bifurcation
point, the angle variation is equal toarccos(22α−1−1)/2. Thus, if we consider the path on the left
of a homogeneous dyadic tree, the angle variation after each bifurcation isarccos(22α−1 − 1)/2
(see figure 8.4). So, aftern bifurcations, the path has an anglen arccos(22α−1 − 1)/2 with the
vertical. Since this angle cannot exceedπ

2 , it means that diffusion has to occur ifn is sufficiently
large.

In the end, these three remarks can finally be formulated as criticisms of this algorithm:

• By construction, the algorithm proposed by Xia can only lead to a homogeneous dyadic tree.
Such a tree is generally not optimal. The upward and downward optimization of the step 4 cannot
modify the topology so that the algorithm cannot reach an optimal tree. We shall present a method
to explore all possible topologies in the simple case of the irrigation of Lebesgue measure on the
segment.
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Figure 8.2: Two different topologies for the 64 problemα = 0.95.

Figure 8.3: The structure on the left has a lower cost than the dyadic one represented on the right. Here
is a hint to explain why: roughly speaking, the source is located on the right so that it is preferable to
keep the mass as grouped as possible while it is transported from the right to the left ; each Dirac mass
of the target is thus directly irrigated from the main flow.

• Step 4 consists in optimizing the location of bifurcation points upward and downward. This costs
a lot of computer time since these points are numerous and since the stabilization of these location
can take a while. Indeed, modifying the position of one pointP obliges to change the position of
all the other points to satisfy the angle condition we have at optimal bifurcations(see proposition
7.1.2). But since all the other points moved, the optimization process requires to moveP again
and so on. For the caseα = 1

2 , the angles at a bifurcation have to beπ2 ; due to the structure of
the algorithm, this angle condition is clearly not respected by the figures of page 261 in [35]. This
can be avoided by the recursive exact construction proposed in next section.

• Even looking after the best structure with the dyadic homogeneous topology, the step 4 prevents
the algorithm from finding the best structure. Indeed, the step 4 is not always successful in moving
from a topology to its degenerated topologies. This explains why the best dyadic tree of figure
8.1 looks different from the one in [35]. This calls for another algorithm taking into account
degenerated topologies during the exhaustive search through all possible structures.
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Figure 8.4: In the case of the homogeneous dyadic structure, the angle variation after each bifurcation
is θ = arccos(22α−1 − 1)/2. This explains why there cannot be an infinite number of bifurcation when
one consider the path on the extreme left of an optimal homogeneous dyadic tree.

8.2 Optimal shape of a traffic plan with given topology

The irrigation problem can be divided into two optimization problems: the optimization of the topology,
and the optimization of the locations of bifurcation points. The optimization of the topology is treated
in the section 8.4. Within this section, we present a recursive construction that gives the location of
bifurcation points (i.e. Steiner points) of the optimal structure that has a prescribed topology. To explain
this construction, we consider the simplest case of trees with full Steiner topology. We then consider the
different possible degeneracies of topologies and explain how to take them into account.

8.2.1 Topology of a graph

Definition 8.2.1 A topologyT for a given point set(vi)ni=1 of RN is an undirected connected graph
G = (V,E) whereE is the set of edges andV = (vi)n+m

i=1 is the set of vertices. The points(vi)n+m
i=n+1

which are not present in the initial point set(vi)ni=1 are called Steiner points.

Definition 8.2.2 A finite traffic plan induces a graph structure and thus a topology. Let us denote
TP (µ−, µ+, T ) the set of traffic plans with topologyT and

C(µ−, µ+, T ) := inf
TP (µ−,µ+,T )

E(µ)

the cost of the topologyT .

Definition 8.2.3 A Steiner topology is a topologyT such that all vertices corresponding to Steiner point
have degree 3. A full Steiner topology is such that it has2n− 2 vertices(vi)2n−2

i=1 and2n− 3 edges.

8.2.2 A recursive construction of an optimal with full Steiner topology [18]

In this subsection, we shall assume that the optimal structure associated to a prescribed full Steiner
topology is not degenerated.
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Let us first recall the construction of the optimal structure in the case we transport a sourceS to two
Dirac masses located at pointsa andb. Proposition 7.1.7 states that there is a pivot pointP such that the
only bifurcation point of the optimal structure with full Steiner topology is obtained as the intersection
of the lineSP with the circleabP .

In the more general case, this construction can be applied recursively as it was first described by
Gilbert in [18]. Let us explain the recursive construction on a simple example. We considerµ− as a
target measure made of 4 Dirac massesa, b, c, d, andµ+ the Dirac mass at a source pointS. Let us
suppose that the optimal structure has the full Steiner topology such that the first bifurcation occurs at
b1 and the first subtree irrigatesa andb and the second subtree irrigatesc andd. The second bifurcation
at b2 is such that one branch irrigatesa and the other oneb. At last, the bifurcationb3 is such that
one branch irrigatesc and the other oned. This topology is in fact the simplest we can imagine and is
illustrated by figure 8.6.

Let us explain why the construction of bifurcation pointsbi is only a recursive way to apply the
construction in the simplest ”one source to 2 Dirac masses” case. Indeed, if we look for the best structure,
every subtree has to be optimal for the irrigation problem it induces. That is to say, the subtree which
irrigatesa andb from b1 is optimal, so is the subtree irrigatingc andd from b1. Thus, pointsb2 andb3
can be constructed thanks to pivot pointsp1 andp2 as in proposition 7.1.7. Next, the irrigation fromS
to b2 andb3 has to be optimal as a subtree of an optimal structure. As a consequence, the irrigation from
S to p1 andp2 is also optimal. Indeed, sinceb1, b2 andp1 are aligned, andb1, b3, p2 are also aligned,
the anglep1b1p2 is the optimality angle so that the transport fromS to p1 andp2 is optimal. Thus we
can construct the position ofb1 through the pivot pointp3 associated top1 andp2.

Let us now give the construction top to down then bottom-up.

• The prescribed topology is such thata is grouped withb andc with d. Thus we construct their
associated pivot pointsp1 andp2.

• Since (to be found) bifurcation pointsb2 andb3 are then grouped, we construct the pivot point
associated top1 andp2.

• Since the subtree made of edgesSb1, b1p1 andb1p2 is optimal, the bifurcation pointb1 is obtained
as the intersection of the lineSp3 with the circlep3p1p2.

• Now that the bifurcation pointb1 is located, we obtain the bifurcation pointb2 as the intersection
of the lineb1p1 with the circlep1ab. And we obtain the bifurcation pointb3 as the intersection of
the lineb1p2 with the circlep2cd.

8.3 Optimal structure in the case of Lebesgue measure on the segment

8.3.1 Coding of the topology

Let A = (ai)i beN points of the space. When the points(ai)i are ordered on a line, it does not make
sense to group firsta1 with a3 anda2 with a4. No such mixing can occur in the case of an optimal
structure, otherwise there would be a circuit which is impossible thanks to proposition 6.2.5. Thus, we
can restrict to ”parenthesis” topologies, i.e. to topologies corresponding to all the possible way to do the
non-associative producta1...an. We present here a convenient way to code for ”parenthesis” topologies
and to generate them all.
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Figure 8.5: Given a topology, the pivot point permits to reduce two masses to one. Using this recursively
permits to reduce the problem to the transport of a Dirac mass to a Dirac mass. This is the top-down part
of the construction, i.e. the construction of the hierarchy of pivot points.

Definition 8.3.1 All parenthesis topologies are recursively described by a list[t1, t2, .., tn−1]. The cod-
ing works as follow:t1 denotes the index of the first grouping so that we shrinkat1 , at1+1 to a single for-
mal pointb1 := (at1 , at1+1). Then[t2, ..., tn−1] describes the topology, ofa1, ..., at1−1, b1, at1+2, ..., an.
The figure 8.7 permits to clearly understand how it works. As a matter of an example, the topology on
the left of figure 8.3 is[1, 1, 1] ; the one on the right is[1, 2, 1].

Lemma 8.3.2 The total number of topologies forN aligned points is the Catalan number1
n

(
2n−2
n−1

)
.

8.3.2 Exhaustive search

Let us briefly mention that the coding of topologies is particularly adapted to the pivot point algorithm
since it permits a recursive description of the topology. Thus, in the case of few Dirac masses at the
target measure, it is possible to proceed to an exhaustive search through all topologies. This permits to
find global optima in the case the target measure has less than 10 Dirac masses.

8.4 Heuristics for topology optimization

As it was said before, the irrigation problem can be divided into two optimization problems: the op-
timization of the topology, and the optimization of the locations of bifurcation points. The recursive
construction presented in section 8.2 answers to the second optimization problem with an accurate con-
struction along with an exhaustive search through all possible degeneracies of a topology. However, an
exhaustive search through all topologies takes a lot of time and increasing the number of Dirac masses
causes combinatorial explosion. Several heuristics can help in finding a reasonable topology within a
reasonable time or in improving it. We present three of them:

• The multiscale approach permits to find efficient topologies thanks to a compromise between
accuracy of the resolution of the target measure and exhaustive search.
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Figure 8.6: The bottom-up part of the construction: connecting the source to the last pivot point permits
to find the bifurcation point which is taken as the new source point for the two induced topologies.
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Figure 8.7: The hierarchy of grouping is coded by a chain of numbers indicating the position of the
successive merging.

• The optimality of subtrees criterion looks if it possible to improve some subtrees of the global
structure.

• The perturbation method permits to move from a topology to another, allowing global improve-
ment.

8.4.1 Multiscale method

When the Dirac masses of the target measure are too numerous, the total number of possible topologies is
much too big for the exhaustive exploration to take place. The multiscale approach permits to reduce the
number of target points, and thus reduce the problem to a tractable one. The solution of this approximate
problem gives hints on the structure of a good structure for the initial problem. These hints permit to
reduce the initial problem to appropriate subtrees problems. The synthesis of all subtrees problems can
then take place to obtain a reasonable (but not necessarily optimal) structure.

Let us illustrate how the multiscale approach works withµ− = λ64 being the target measure,µ+ the
source point at (0,-1) andα = 0.95.

The exhaustive search for an optimal structure takes less than a few minutes in the case of not more
than 10 target measures.

• Best structure at a lower resolution: let us start by considering the optimal traffic plan transporting
µ− to µ+ = λ10, we denote it byT10. It is represented on figure 8.11. This tree is symmetrical
and because of the symmetry of the problem we shall look for a symmetrical solution.
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Figure 8.8: All local optima associated to each topology forα = 1
2 .
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Figure 8.9: All local optima associated to each topology forα = 0.8 .
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Figure 8.10: The [1,1,...] topology for the irrigation of a 64-approximation of Lebesgue measure on the
segment (α = 0.95).

• Two subtrees: we denote byP the second bifurcation point ofT10, it is located at (-0.123,-0.41).
Two subtrees are starting fromP , T l10 on the left andT r10 on the right.

• The range of the two subtrees:T l10 irrigates target Dirac masses within[−0.5,−0.2] andT r10
irrigates target Dirac masses within[−0.2, 0].

• Go back to the initial resolution: letµ+
l andµ+

r be respectively the sum of Dirac masses ofλ64

located within[−0.5,−0.2] and within[−0.2, 0]. Because of the previous point we bring back the
initial problem to the one of finding efficient structures to transportP to µ+

l andP to µ+
l .

• Iteration of the process: sinceµ+
r is made of 13 Dirac masses, we proceed to an exhaustive search

of the optimal structure. Sinceµ+
l is made of 19 Dirac masses we apply the multiscale approach

to this problem.

• Best structure at a lower resolution: We denote byν10 an approximation ofµ+
l made of 10 Dirac

masses. The best traffic planT 2
10 represented on figure 8.11 and 8.12 has a bifurcation pointQ

located at(−0.215,−0.22).

• The range of the two subtrees (see figure 8.12): the two subtrees starting fromQ have range
[−0.5,−0.28] and[−0.28,−0.2]. The corresponding measures at the initial resolutionνl andνr
are respectively made of 14 and 5 Dirac masses. The problem of finding the best structure from
P to µ+

l thus reduces to the one of finding the best irrigation fromQ to νl andνr. An exhaustive
search can do this job.

• Recombination (see figure 8.13): we decomposedλ64 asλ+
64 +λ−64, respectively the Dirac masses

on the right and on the left. The multiscale approach made us considerλ−64 asλ−64 = νl+νr+µ+
r .

The recombination of optimal structures fromQ to νl andνr gives an efficient structureTl from
P to µ+

l . We can then combine it with the structureTr that transportsP to µ+
r .
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Figure 8.11: At the top,T10 is transportingµ− to µ+ = λ10. The bifurcation pointP induces two
subtrees. The two figures at the bottom represent these two subtrees at a better resolution so that we can
continue the multiscale optimization process.



124 Chapitre 8. Algorithms

Figure 8.12: The measureν10 is an approximation ofµ+
r that is made of 10 Dirac masses. The figure at

the top representsT 2
10, the best traffic plan irrigatingν10 from P . The bifurcation pointQ induces two

subtrees, that we look at the initial resolution. The two figures at the bottom represent these two subtrees
at the initial resolution.
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Figure 8.13: We obtained efficient structures to transport a mass atQ to νl andνr and to transport a
mass atP to µ+

r . These three structures are represented at the top. The figure at the bottom represents
the combination of these three structures that gives an efficient transport from the source point(0,−1)
to λ64. Notice that this structure is better than the dyadic homogeneous one and has a cost 1.1312635
which is very close of the optimal one 1.1312238.
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Figure 8.14: If a tree is optimal, then all of its subtrees also have to be optimal. For instance the two
subtrees starting fromP are optimal in this case. This tells that we can’t improve the initial structure
with the optimality of subtrees criterion.
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8.4.2 Optimality of subtrees

Given an optimal structureT , a subtree is optimal for the problem it induces. That is to say, if we look
at the two treesT1 andT2 (see figure 8.14) starting at a bifurcation pointP of an optimal structure, these
two trees have to be optimal. Indeed, if it was not the case, there would be better treesT ′1 andT ′2 such
that a combination ofT ′1 andT ′2 would give a better structure thanT . Thus, it is possible to improve
some structures, only trying to improve subparts of it. More precisely, since a target measure with 10
Dirac masses is computationally tractable, we can test all subtrees irrigating less than 10 Dirac masses
in order to improve a structure.

8.4.3 Perturbation of the topology

The second heuristics that permits to improve a given structureT consists in perturbing the topology
of T . That is to say, given an edgee, we can define the topological neighborhood of(T, e) the set of
topologies obtained through all possible perturbation of the edgee. In the case of parenthesis topologies,
we reduce these perturbations to reasonable ones (see figure 8.15).

8.5 Further

8.5.1 General measure to general measure

Let us illustrate the difficulties appearing in the case of several sources. In case the optimal structure
has a pointS with multiplicity 1, the structure is the union of an optimal irrigation fromS to µ+ and
an optimal irrigation fromS to µ− so that the pivot point approach holds (see figure 8.16). However, if
we try to find the optimal structure with the prescribed topology like the one represented on figure 8.17,
then the pivot point algorithm is of no use. Indeed, as illustrated by figure 8.17, Steiner points are no
longer being obtained from top to down. The pointb1 depends on the location ofb2 and the pointb2
depends on the location ofb1. This calls for another approach and another coding of topologies.

8.5.2 Three dimensions

One main difficulty is added in the case of three dimensions: it is no more possible to use a combinatoric
approach, even to optimize the transportation of a Dirac mass to a measure with very few Dirac masses.
Let us go back to dimension 2 to explain that. In the case of 2 dimensions, each couple of points(P1, P2)
can be reduced either to one of the two possible pivot point, either toP1 or P2. An exhaustive search
through all possible topologies and all possible degeneracies can then take place.

In the case of 3 dimensions, given two points(P1, P2) the set of possible location for the pivot point
is a whole circle. Thus, even for a prescribed topology, the combinatorics is of no help and one has to
use numerical approximation.
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Figure 8.15: The different possible topological perturbations associated to the edgee.
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Figure 8.16: The pivot point approach can give the optimum in that case since the top-dow, bottom-up
approach holds in that case. Indeed, the construction of pivot points bring back the problem to a one
source one target problem. We then reconstruct the whole structure as described in section 8.2.

Figure 8.17: If this structure is optimal, then the pivot points are of no help in finding the location of
the bifurcation pointsb1 andb2. Indeed, we needb1 to locateb2 and reciprocally so that a numerical
algorithm seems necessary in that case.
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Appendix: optimal flow and Poiseuille’s
law

In this appendix, we shall consider a fluid with laminar flow in a tube. We recall how Poiseuille law can
be derived from Navier-Stokes equation. Next, we discuss the optimality of the circular section.

Poiseuille law

Let us consider a tube of constant circular section with a straight axis. We take(x, y, l) as coordinates
in the tube, wherel ∈ [0;L] is the distance along the axis and(x, y) ∈ D(0, r) are orthogonal cartesian
coordinates.

We assume a stationary regime and that the flow is laminar, that is to say the velocity is oriented by
the axis and is constant on all trajectories, so that∂p

∂x = ∂p
∂y = 0. The velocityv at a point of a tube along

thez-axis is given by Navier-Stokes equation

−4 v(l)(x, y) =
1
η

∂p

∂z
, where4 =

∂2

∂x2
+

∂2

∂y2

Hence,∂p∂z = constant (whereη denotes the viscosity coefficient). Thus, the gradient of pressure has

the form [p]
L where[p] denotes the pressure difference at the ends of the tube, and we shall denote it by

5p. In other words,p is a linear interpolation of the initial and final pressures in the tube. We assume
that the pressure is constant on the initial and ending sections of the tube, so that the pressure is constant
on each section of the tube. For simplicity, let us takeη = 1.

Under these hypotheses, we can calculate the velocity and the corresponding flow through the whole
tube

v(x, y, l) =
(r2 − (x2 + y2))

4
5 p

f =
∫
D(0,r)

v(x, y, l) =
1
4
r4 5 p = r2vmax

The power dissipated by the steady flow isW = fL5 p. This is to be identified withW = Lf2R

where by definitionR stands for the resistivity of the tube. Thus we obtainR = 4/r4: Poiseuille law
says that the resistivity of a tube scales as the inverse fourth power of the radius.

Optimality of the circular section

What is the optimal form of the section of a tube? If we prescribe the pressure at both ends of a tube of
constant section, the circular form ensures the maximal flow. We briefly present the result obtained in
[30] and [1].
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Let us recall the definition of the rearrangement of a set (see [21]). IfA ⊂ Rd, we denote byA∗

the ballB(0, r) = {x | |x| < r} such that|B(0, r)| = |A|. If f : Rd → R is a Borel measurable
function vanishing at infinity, we define the symmetric decreasing rearrangement off by f∗(x) =∫∞
0 χ∗{|f |>t}(x)dt. It results from the definition that|{x | |f(x)| > t}| = |{x | f∗(x) > t}| and
||f ||p = ||f∗||p.

Letu be such that−4u(x, y) = 5p in the domainΩ. Letv be such that−4v(x, y) = (5p)∗ = 5p
in Ω∗. Then, it can be shown thatu∗ ≤ v [30]. As a consequence, the flow in a tube of sectionΩ is
such that

∫
Ω u =

∫
Ω∗ u

∗ ≤
∫
Ω∗ v. Then a circular section is always more advantageous from the point

of view of the flow.

In [1], the authors prove the uniqueness of the optimal form: ifmaxu = max v, then there isx0

such thatΩ = x0 + Ω∗ andu = v(· + x0). Then, ifΩ is an optimal form, we have
∫
Ω u =

∫
Ω∗ v and

u∗ ≤ v, hencemaxu = maxu∗ = max v necessarily. Then there isx0 such thatΩ = x0 + Ω∗, and,
therefore, the circular form is the unique optimum.
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