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INTRODUCTION i

Cette these représente la synthese des résultats obtenus ces dernieres quatre années
de recherche et étude sous la direction et I’enseignement de M. Sergio Solimini et de
M. Jean-Michel Morel. Dans cette these on aborde quelques problemes d’analyse non
linéaire et de calcul des variations qui donnent origine a des structures singulieres. Notre
but est celui de démontrer comment dans certains cas ces structures singuliéres sont
un obstacle & surmonter pour obtenir des résultats d’existence ou multiplicité et dans
d’autres cas les singularités présentes dans les solutions sont le vrai objet d’étude et
justifient le choix de la fonctionnelle introduite. Ce travail se compose de deux parties: la
premiere concerne les résultats sur une classe de problemes qui ont été affrontés par des
chercheurs en analyse non linéaire dans les dernieres vingt années, sur I'existence et la
multiplicité de solutions de équations elliptiques, obtenus malgré un manque de compacité
dii a des phénomenes de concentration; la deuxieme concerne une catégorie de problémes
d’irrigation ou les trajectoires suivies par les particules de fluide donnent naissance a un
ensemble monodimensionnel et qui peut étre située dans la théorie du transport.

En particulier, dans les premiers deux chapitres de cette these on a a faire avec le
suivant probleme de croissance critique

~Au = |[u2u+Xu  en{
(CP) { u = 0 sur 05,
ol 2 est un sous-ensemble ouvert et régulier de RY (N > 3), 2* = 22 est exposant

critique de Sobolev pour I'immersion de H; () dans LP(Q), et A > 0. Pour ce probléeme
on obtient une infinité de solutions quand N > 7 et seulement un résultat de multiplicité
finie qui laisse ouvert le probleme sur l'existence de solutions en nombre infini quand
N > 4. Plus précisément, on trouve au moins & + 1 (couples de) solutions (ou encore
N +1 si A est opportunément pres de zéro) et A €]0, A;[, étant A; la premiére auto-valeur
de —A défini sur H;(Q).

Le manque de compacité dans le probléeme (CP) est dii & la concentration de séquences
de Palais-Smale de la relative fonctionnelle énergie a certains niveaux, comme décrit avec
des arguments de concentration-compacité dis & P.L. Lions (voir [22]) ou comme dans le
théoreme de compacite de Struwe (voir [25] et [26]).

Le troisieme chapitre est consacré au probleme

(P) u e HY(RY),

{ —Au+a(z)u = |ulf?u en RN

ou N >2,p>2 p< 2 (quand N > 2), et la potentielle a(z) est une fonction con-
tinue, positive dans IRY, excepté au maximum un ensemble borné, qui vérifie des oppor-
tunes hypotheses de décroissance mais a laquelle on ne demande aucune symétrie. Le
manque de compacité dans le probléme (P) est structurellement similaire, dans le sens de
la concentration-compacité, a celui du probleme (CP). Ce qui arrive dans ce cas est que
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le manque de compacité est di au fond au fait que le domaine est illimité, ce qui permet
la création de quelques masses qui vont a l’infini alors que l'on calcule le limite d’une
séquence de Palais-Smale, comme décrit dans un théoreme de compacité de V. Benci et
G. Cerami (voir [6]).

Dans les deux derniers chapitres (deuxiéme Partie) on suit I’approche utilisée in [32] ou
les auteurs ont introduit une fonctionnelle de cotit pour modéliser les structures branchées
comme les arbres, les appareils radicaux et cardiovasculaires pour 1’étude de structures
branchées définie sur un espace de recherche tres ample fait d’élément que les auteurs
appellent “irrigation patterns”. Cette approche est tres différente de celle utilisée par
M. Qinglan Xia en [35]. En fait pour Xia le réseau est un graphe avec une quantité
nombrable de sommets qui satisfait la Lois de Kirchhoff, en plus quand ces graphes G
sont finis ’auteur considére, pour « €)0, 1], une fonctionnelle énergie qui est formellement
la méme de celle considérée en [32]

BXG) = Y w(e)long(e),
e arétesde G
ou w(e) représente la quantité de fluide transportée le long de I’aréte e. Le fait que le
parametre « est plus petit que 1 implique que les bifurcations ne sont pas convenables du
point de vue de ’économie d’énergie en établissant une lois de Poiseuille qualitative selon
laquelle la résistance d’un tuyau augmente quand il se restreint.

Un systeme d’irrigation au contraire n’est pas défini comme un “embedded” graphe,
mais comme un ensemble mesurable de voies (fibres) qui partent d’une unique source
et s’arrétent en quelques points de IR" sur lesquels ce que les auteurs appellent mesure
d’irrigation est concentrée. L’espace de recherche d’une solution est plus grand car on
permet a priori des arbres qui s’éparpillent (spreading trees) pour lesquels on pourrait
avoir des ensembles de particules de mesure positive qui pourraient suivre leur chemin sans
suivre une branche (voir fig. 1). Le formalisme de [32] considére les chemins qui partent
d’une seule source et qui peuvent étre interprétés soit comme la trajectoire en R d’une
particule de fluide soit comme une fibre d’un arbre. Ces chemins en nombre infini (en
principe un pour chaque particule) qui dépendent d’un parametre ¢ sont appelles “fibres”
et notés x(p, t) ou t représente le temps ou la particule p, qui appartient & un espace de
probabilité abstraite Q, rejoint la position x(p, ) € IRY. Tout ensemble mesurable de
fibres x, c’est-d-dire tout structure d’irrigation, induit sur JRY une mesure d’irrigation
py qui donne & tout ensemble de Borel A de R" la quantité, in 2, de ensemble des
particules qui s’arrétent en A (c’est-a-dire qui sont absorbés en ’ensemble A). Toujours
en [32] les auteurs ont proposée une fonctionnelle cotit I, définie sur ’ensemble de toutes
les structures d’irrigation en posant

1) = [ [y o [l dp

Cette fonctionnelle, formellement semblable a E¢, considere, a tout instant, seulement les
points p € M;(x) c’est-a-dire les points qui sont encore en mouvement au temps ¢ et, en
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prenant la puissance o — 1 < 0 de la quantité de ’ensemble [p]; des particules qui ont
coulé ensemble jusqu’au temps ¢, pénalise la ramification en produisant une structure qui
a 'aspecte de la figure 2.

| |

S fig. 1 S fig. 2

Les propriétés dérivées dans le Chapitre 4 pour les structures optimales sont des “pro-
priétés élémentaires” dans le sens qu’elles ne sont pas intéressées aux points finaux de
ces structures, ou les propriétés d’autosimilarité présumables devraient se vérifier. Cette
étude préliminaire trouve déja une application dans le Chapitre 5 ot on pose le probleme
de déterminer si une mesure donnée est irrigable ou pas. La réponse a cette question
montre clairement, en particulier, qu’il y a des cas ou les mesures de probabilité sont
irrigables par une preuve différente du résultat en [35] dans un contexte trés proche. On
analyse une question plus générale qui consiste a caractériser, pour une valeur donnée de
I’exposant, quelle mesures de probabilités sont irrigables ou pas. Dans ce but on donne
une notion de dimension d’irrigabilité d’une mesure et on démontre des bornes supérieures
et inférieures en fonction de la dimension minimale de Hausdorff ou respectivement de
Minkowski d’un ensemble sur lequel la mesure est concentrée. On introduit ensuite une
notion de dimension de résolution d’une mesure basée sur ses approximations discretes et
on étudie sa relation avec la dimension d’irrigation.

Un résumé plus détaillé des deux parties de cette these suit.

Part I - Résultats de multiplicité pour quelques proble-
mes elliptiques sans compacité

Avant les années 80 la théorie des équations elliptiques a été développée surtout sous
I’hypothese de croissance sous-critique. En particulier le probleme modele

(0.0.1) —Au = |[ulfu,
avec la condition de Dirichlet sur la frontiére, a été étudié pour p < 2* = 2 en dimension
N > 2.
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Dans le cas de croissance critique p = 2*, étant I'injection de H; (2) en L? non compact,
'opérateur de Nemitsky |u|P~?u n’est pas compact et ainsi I'un d’eux ne peut pas avoir de
solution non banale en (P) en utilisant la plupart des techniques variationales standard.
En plus Pohozaev, dans sa célebre étude [22], a établi une identité qui, appliquée aur
probléme (P) pour un domaine étoilé, a démontré la non-existence d’une solution non
banale dans le cas de croissance critique. D’autre part, ’exposant critique p = 2* est le seul

1 1 .
qui rend I’énergie fonctionnelle Iy(u) = 5 / |Vul? — o / lu|*” homogene par rapport aux
0 Q

changements d’échelle. Dans leur travail de pionnier [9], Brezis et Nirenberg ont eu l'idée
d’introduire un terme d’ordre plus bas, c’est-a-dire un terme sous-critique, en particulier
le terme linéaire Au, qui ne change pas la croissance de I’énergie fonctionnelle mais rompt
son homogéneité qui pénalise les concentrations, méme si de fagon infinitésimale. En
alternative & l'identité de Pohozaev, qui garantit qu’en général (pur un domaine étoilé)
(CP) n’a pas de solution non banale pour A < 0, en [9] Brezis and Nirenberg donne
le résultat de lexistence pour 0 < A < A; (A opportunément plus grand que zéro en
dimension trois). Par conséquent, le résultat a été étendu en [10] to A > A;. Pour
cette raison, dans le cas de croissance critique, la rupture de 'homogénéité de 1’énergie
fonctionnelle peut donner le résultat de I'existence pour un probleme elliptique approprié.
En particulier, le changement de déviation de I’homogénéité de la fonctionnelle énergie
(cC’est-a-dire changeant de A < 0 & A > 0 dans le cas du probleme (CP)) fait passer de
résultats de non existence a des résultats d’existence. Le probleme d’avoir des résultats
de multiplicité pour le probléme (CP) a été soulevé dans cette période et les techniques,
alternatives a ’emploi du Théoreme de Rellich, ont été introduites pour trouver une
solution comme la limite des séquences de Palais Smale (ou, plus briévement, séquence
PS) pour Iénergie fonctionnelle

B = [Vl =2 [P~ o [ Ju

En particulier, les travaux sur la concentration-compacité comme [20], [25] and [24]
donnent une analyse précise de I'obstruction a la compacité, en mettant en évidence des
mauvais niveauz ou la condition PS tombe. Dans le Chapitre 1 la question sur ’existence
de infinies solutions au Probleme (CP), pour tout domaine borné régulier  C RN dans
le cas N > 7, obtient une réponse affirmative.

Nous avons rencontré des problemes semblables pour trouver des résultats d’existence
et de multiplicité pour des problemes elliptiques a croissance sous-critique sur tout le
domaine comme le Probleme (P). Dans le cas ou le coefficient a(x) n’est pas symétrique
le manque de compacité dérive de la naissance de quelques masses qui sont concentrées
autour de quelques points qui vont a l’infini.

Dans le Chapitre 3 on pose le probleme d’avoir des résultats d’existence et de multi-
plicité au Probleme (P) et on a trouvé des solutions en nombre infini sans demander de
symétrie pour a(z). On a seulement adapté les mémes techniques utilisées pour avoir une
infinité de solutions au Probléme (CP).

2%
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Chapitre 1 Concentrations estimées et solutions multiples aux
problémes elliptiques & croissance critique’

Les premiers résultats de multiplicité des olutions au Probléme (CP) ont été obtenus pour
certains domaines symétriques, voir [19], en particulier les auteurs réduisent le résultat
de multiplicité a celui de I'existence en coupant le domaine en un nombre fini de sous-
domaines de méme grandeur et puis en collant les solutions trouvées sur chaque tranche
(Iexistence de solutions en nombre infini vient de la possibilité de choisir arbitrairement
le nombre de tranches).

Ce type d’approche ne peut pas étre appliqué quand on travaille dans un domaine
de forme réguliere. Pour les domaines symétriques aussi cela peut échouer quand on
recherché des résultats de multiplicité d’'un type particulier, par exemple les solutions
radiales quand le domaine est une boule. Le cas radial permet en fait de donner résultats
d’existence et de non existence complémentaires en correspondance précise. Si N > 7 et
2 est une boule, alors pour tout A > 0 (CP) a des solutions radiales en nombre infini qui
changent de signe, voir [23] and [12], si 4 < N < 6 il y a une constante \* > 0 de sorte
que (CP) n’a pas de solution qui change de signe si A €]0, A*[ (voir [1], [2]). Ainsi la
condition N > 7 dans le résultat d’existence précédent ne peut pas étre éliminée.

Dan ce chapitre la question de I'existence de solutions en nombre infini au Probléeme
(CP), pour chaque domaine régulier 2 C IRY dans le cas N > 7, obtient une réponse
affirmative. La nouvelle idée qui nous a permis de prouver ’existence d’une infinité de
solutions au Probléeme (CP) a été celle de changer le concept de “quasi solution” et de
prouver la compacité pour ce nouvel objet. En fait le concept habituel de quasi solution
dépendant de la norme H~! de la dérivée de Fréchet de 1’énergie, qui conduit & la no-
tion bien connue de séquences PS, ne permet pas de déduire des résultats de compacité
dans ce contexte. Les séquences PS ont été remplacées par des séquences de solutions
de problémes approximatifs (appelées “séquences équilibrées” (“balanced sequences” en
anglais)). La circonstance que u,, est une solution d’un probléme autonome du méme type
que le Probléme (CP) nous permet d’établir une inégalité locale de type Pohozaev qui,
clairement, tient compte de la modification de ’énergie I,, (relative au probléme approxi-
matif n-sime) relativement aux concentrations. On prouve en premier lieu que méme pour
les suites équilibrées limitées que ’on suppose non compactes il y a le méme phénomene de
concentration qui se vérifie pour les séquences PS non compactes. En travaillant avec les
séquences non compactes équilibrées et en changeant leur paramétrer de concentration on
peut produire une modification locale de la fonctionnelle approximative qui est du méme
ordre de la fonction en contradiction avec le fait que les éléments d’une suite équilibrée
sont des points critiques. La variation de la fonctionnelle sous cette modification locale a
été évaluée par une inégalité locale de type Pohozaev et une estimation a prior: uniforme

LG. Devillanova & S. Solimini Concentrations estimates and multiple solutions to elliptic problems at
critical growth Advances in Differential Equations, 7 (2002), 1257-1280.
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de décroissance sur les termes d’une suite équilibrée limitée et de leurs dérivés qui, portées
dans cette inégalité, engendrent formellement la contradiction.

Ce résultat de compacité peut étre employé aussi dans le cas radial, en produisant
Pexistence d’une infinité de solutions radiales. Par les résultats en [1] et [2], ou I'unicité
d’une solution radiale non banale est affirmée pour N < 7, on déduit que 'argument de
compacité est faux pour les dimensions basses. Cette circonstance ne signifie pas que
I’existence de solutions en nombre infini peut étre démontrée avec différent instruments
comme il arrive, par exemple, dans le cas de domaines symétrique (voir [19]).

La dimension sept n’a pas de sens particulier comme il arrive, par exemple, avec les
problemes de surface minimale, mais elle dépend de la linéarité du terme Au de perturba-
tion sous-critique. Un terme non linéaire sous-critique demanderait une limite différente
dans la dimension. Remarquons que N > 4 est suffisant pour ’existence d’une solu-
tion non-banale pour chaque A > 0 mais trois dimensions de plus sont nécessaires pour
les résultats de multiplicité. La raison est due au fait qu’en partant de la dimension 4,
I’avantage di au terme quadratique —A / u? de la fonctionnelle I, est plus grand que le
colit d’un terme de troncature qui porteﬂune fonction de Talenti a zéro dans les bornes
de €. D’autre part, si ’on veut faire un test similaire pour le probleme de la multiplicité,
on doit couper la fonction pour atteindre une valeur de signe opposé. Ainsi le coiit de
la troncature est considérablement plus élevé et trois dimensions de plus sont nécessaires
pour rejoindre une estimation appropriée.

Chapitre 2 Un Résultat de Multiplicité pour des Equations El-
liptiques a Croissance Critique en Dimension Basse 2

On a abordé le probleéme(CP) en dimension basse N > 4 et on a montré, en travaillant
sur la double contrainte naturelle

(0.02) U= {u € Hy(Q) | u* #0, (VIy(u),u*) =0, pour les deux + signes} ,

que, pour A €]0, [ le probléme (CP) a au moins & + 1 (paires de) solutions (N + 1
for A assez proche en 0), améliorant ainsi le résultat de [11] obtenu, en travaillant sur la
contrainte U, en cherchant des solutions qui changent de signe tout pres de la frontiere.
L’idée est de comparer le probleme dans un domaine général avec le probleme dans une
boule ol on peut employer la symétrie. Le phénomene de concentration sous le seuil %S%
(ou S est la constante de Sobolev) est di seulement & une unique fonction de Talenti et
pour cette raison si ¢ < %S % est un niveau de min-max, et donc au moins un entre ¢ and
c—+S % est critique. En plus, on peut trouver N + 1 niveaux de min-max sous le seuil

%S %, auquel on doit ajouter le niveau de I’état fondamental (ground state en anglais).

2G. Devillanova & S. Solimini A Multiplicity Result for Elliptic Equations at Critical Growth in Low
Dimension Comm. in Contemporary Math., Vol. 5 N. 2( April 2003), 171-177.
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On peut dire aussi que si quelques-uns de ces N + 1 niveaux de min-max concident le
probléeme admet des solutions en nombre infini, méme si on ne sait pas si un tel niveau
est critique ou pas (on ne sait pas si 'on doit le diminuer de la quantité 1.5 %) Dans ce
cas, Nous avons N;’ 2 paires de solutions.

Ce résultat a été récemment étendu par [14] dans le cas A > A;. En tout cas, il n’y a
pas de raison pour supposer que ce résultat peut étre optimal et le probleme de démontrer
Iexistence de solutions en nombre infini, ou méme si on donne une estimation optimale
sur le nombre de solutions, reste, comme on sait, largement ouvert pour N < 6.

Chapitre 3 Etats bornés infinis pour quelques équations non
linéaires de champs scalaire 3

Finalement, on aborde le Probléme (P) qui est similaire aux problémes qui naturellement
apparaissent dans différentes branches de Physique Mathématique, en fait les solutions a
(P) peuvent étre vues comme des ondes solitaires (états stationnaires) dans des équations
non linéaires du type de Klein-Gordon ou de Schrodinger. En plus, ils présentent des
difficultés mathématiques spécifiques qui sont un défi pour les chercheurs. Les solutions
au Probleme (P) peuvent étre cherchées comme points critiques de I’énergie fonctionnelle
I: H'(RY) — IR defined by

(0.0.3) I(u) = % [ (Vul + a(e)u?)dz - % [ lulrds

Les méthodes habituelles de calcul des variations, qui permettent de démontrer ’existence
de solutions en nombre infini de (P) dans un domaine limité, ne peuvent pas étre ap-
pliquées telles quelles en I. En fait, I'injection j : H'(IRY) — LP(IRM) est continue mais
non compacte, pour cette raison la condition de base de Palais-Smale n’est pas satis-
faite par I a tous les niveaux d’énergie. Dans ce cas aussi il y a des résultats partiels
quand a(z) a quelques propriétés de symétrie. En effet, les premiers résultats con-
nus ont été obtenus en considérant a(z) = a(|z|) ou encore a(z) = a, € RT\ {0}
(see [21], [8], [13], [16], [24], [7]). Dans ce cas, la restriction de I & H}(IR"), le sous-espace
de H'(IRM) qui consiste de fonction symétriques sphériques, rétablit la compacité, parce
que 'injection de H}(IRY) dans LP(IRY) est compacte. Ainsi, existence d’une solution
positive de (P) peut étre montrée soit en utilisant le Théoréme du Col soit par minimisa-
tion sur une contrainte naturelle, alors que I'existence de solutions en nombre infini se fait
par des arguments standard de minimax. En plus il est bien de rappeler que, méme sous
I'hypotheése a(x) = a(|z|), on peut trouver aussi l’existence de solutions en nombre infini
non radiales qui changent de signe, en brisant la symétrie radiale de ’équation (see [5] et
références ici).

3G. Cerami, G. Devillanova and S. Solimini Infinitely many bound states for some non linear scalar
field equation Calc. of Var. and PDE’s, Vol. 23 N. 2, 139-168.
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Quand a(z) ne jouit d’aucune propriété de symétrie, le probleme devient plus diffi-
cile et méme démontrer I'existence d'une solution positive n’est pas une affaire banale.
Cette situation demande une compréhension plus profonde de la nature des obstructions
a la compacité et ’emploi d’instruments plus subtils. La plupart des recherches se sont
intéressées au cas

(0.0.4) lim a(z) =ax >0

|z| =400

ainsi que (P) peut étre rapporté au “probléme & I'infini”

(Py) —Au+ agou = |ulP~u in RN .

On a donné une premiere réponse a la question de 'existence en démontrant que,
dans quelques cas, étant vraies quelques solutions qui apportent des inégalités entre les
solutions de (P) et (P), on peut appliquer le principe de concentration-compacités et
on peu résoudre (P) par minimisation, voir [20]. C’est le cas, par exemple, quand a(z)
est une fonction continue qui a en plus (0.0.10) et quelques hypothéses de décroissance,
satisfait

(0.0.5) 0<d <a(z)<an VzeRN.

Par conséquent, une analyse attentive du comportement des séquences de Palais-Smale
(voir [6], [3]) a permis d’affirmer que la compacité peut étre perdue (dans le sens qu’une
PS-séquence ne converge pas vers un point critique) si et seulement si cette séquence se
brise en un nombre fini de solutions de (Py) qui sont centrés en des points qui vont &
Iinfini. Comme conséquence, il a été possible d’estimer les niveaux d’énergie ol la con-
dition PS échoue en termes d’énergie de ces masses et de mieux faire face a quelques
questions d’existence et de multiplicité pour (P). En fait, I’existence d’une solution pos-
itive & (P) a été démontrée (voir [3]) méme quand une solution de ground state ne peut
pas exister, c’est-a-dire, par exemple, quand, en plus (0.0.10) et quelques opportunes hy-
pothéses de décroissance, la potentielle satisfait la condition a(z) > ay pour tout z € RY;
en plus, dans les conditions (0.0.10), (0.0.11) et une opportune hypothése de décroissance
a l'infini, on a démontré ’existence d’une solution qui change de signe en plus de la solu-
tion positive (voir [33]). En suivant [13] on pose la fonction a pour satisfaire les conditions
suivantes.

(a1) a € CY(RY, R);
(a2) liminfig 400 a(2) = G > 0;

(as) %(z)eam — +4o00,Ya >0, ot Vz € RN \ {0}, T = &;

T |z|—+o0 |z|?
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(a4) il y a une constante ¢ > 1 telle que

o5}
=)

|Vra(z)| <€ —=(z) Ve € RN :|z| >,

ot

ou V. a(z) dénote la composante de Va(z) dans 'hyperplan orthogonal au Z et qui
contient z.

Les hypothéses (a;) — (a2) permettent que le terme super-quadratique de la fonction-
nelle soit borné en termes de la partie quadratique et permettent la démonstration d’un
théoréme de décomposition qui est semblable & celui de [6]. La régularité demandée en
(a) est plus forte que celle dont on a besoin dans ce but (a= € L% (IRY) serait plus
que suffisant) mais elle est demandée pour les autres hypothéses. La condition (as) est
équivalente & la borne N > 7 pour le probleme (CP). La démonstration des résultats
de multiplicité sans cette hypothese demanderait probablement des arguments différents.
On peut démontrer aussi des résultats d’unicité dans quelques cas particuliers, comme il
arrive pour le Probleme (CP) dans I’hypothese de symétrie radiale. Au contraire (a4) a été
utilisé seulement dans le but de passer d’une intégrale de la fonction % a une intégrale de
% et pour démontrer qu’il n’est pas admis que les masses fuient. Elle peut étre certaine-
ment affaiblie, le probleme est de savoir si quelque hypothese de ce type est nécessaire
pour le résultat de multiplicité ou quelle est la condition minimale est ouvert.

De la méme fagon que pour le probléme (CP) on change la notion de “quasi solution”
et on démontre la compacité pour ce nouvel objet. En fait on abandonne la notion de
séquences PS et adopte la notion de “séquences contrdlées ” (“controlled sequences” en
anglais) parce que le réle du probléme limite est joué par I'inégalité elliptique —Au+asou <
|u[P~2u.

D’autre part si on pose qu’une séquence limitée contrélée n’est pas compacte, on
démontre qu’elle se “brise” en quelques masses qui vont & l'infini et, en changeant le
vecteur de translation, qui correspond a une des masses qui vont a l'infini de fagon plus
lente, on peut produire une modification locale de la fonctionnelle approximative qui a le
méme ordre de la variation de la fonction en obtenant ainsi une contradiction. De cette
contradiction on tire que toute les séquences limitées contrélées, au maximum en passant
a une sous séquence, doivent converger vers une solution non banale du probleme. Comme
fait dans le cas du Probléme (CP), ici aussi la variation de la fonctionnelle sous une telle
modification locale a été analysée avec des instruments d’une opportune inégalité locale
du type Pohozaev et quelques estimées a priori uniformes de décroissance dans les termes
d’une séquence limitée controlée et leurs dérivées qui, transportées dans cette inégalité,
produisent clairement la contradiction.
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Part IT - Des propriétés sur les structures de irrigation
et le mesures irrigables

Ces dernieres 20 années on a considéré plusieurs problemes de Calcul des Variations
(Calculus of Variations) impliqués dans la modélisation de structures singuliéres. Entre
autres on peut mentionner les probleme avec des discontinuités libres, introduites au début
pour la segmentation de 'image. Le but était de déterminer I’ensemble des points de la
discontinuité d’une fonction donnée, c’est-a-dire d’une image numérique donnée.

La solution qui minimise la fonctionnelle, introduite au début par Mumford et Shah
en [34], est pour cette raison irréguliere et ce manque de régularité n’est pas un point
faible de la théorie mais I’ensemble de la discontinuité contient, au contraire, I'information
principale qu’on cherche. Il y a beaucoup d’autres probléemes d’interfaces et de frontiere
libres o1 le manqué de régularité est essentiel parce qu’elles ont été introduites dans le but
d’uniformiser les phenomenes qu’on ne peut décrire que par des structures singulieres.

Dans ce grand contexte on peut aussi inclure quelques problemes de transport ou la
densité de transport devient concentrée dans un ensemble uni-dimensionnel, comme les
problemes de transport avec un ensemble de Dirichlet ou les problemes d’irrigation. Les
derniers viennent de I'observation que le but de beaucoup de systemes naturels de flux
est celui d’irriguer un volume fini a partir d’'une source. Dans les travaux concernant
les réseaux de drainage, plantes, arbres, systemes de racines, systemes bronchiques et
systemes cardiovasculaires (voir [36], [37] et [38]), le méme systéme de réseau est dessinée
d’apres des principes, c’est-a-dire axiomes, surtout les suivants, voir par exemple [36] et
les références qu’il contient:

e le réseau irrigue un volume entier d’un organisme et la structure qui remplit 'espace
doit avoir un branchement hiérarchique;

e les réseaux biologiques ont évolué pour minimiser la dissipation d’énergie;
e la mesure des branches finales du réseau est une unité invariante de grandeur;
e 1’égalité de la fourniture de flux par le systeme du réseau.

En plus, on utilise d’habitude une autre hypothese de base, c’est-a-dire que le réseau
est une structure arborescente faite a chaque échelle de tubes d’une certaine uniforme
longueur, rayons et avec un nombre donné de branches. Le résultat est que le réseau a
une structure presque fractale avec des propriétés auto-similaires (voir [36], [37] et [38]).
Le point faible de ce raisonnement heuristique et qu’on “suppose” ’existence d’un réseau
qui accomplit son travail et que ce réseau est une structure arborée. En plus, il n’y a pas
de théorie générale basée sur des lois fondamentales d’ol1 on peut déduire le comportement
fractal.
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Dans le travail de pionnier de Maddalena, Morel and Solimini (voir [32]) les au-
teurs ont uniformisé “la forme” d’un arbre seulement en minimisant un certain type
d’énergie fonctionnelle. De cette fagon, ils ont posé sur des bases mathématiques le
susdites lois empiriques hypotheses dans ’étude de systemes d’irrigation et drainage en
laissant a quelqu’un de les démontrer comme théoremes ou de les laisser comme conjec-
tures mathématiques claires. L’étude n’est pas, pourtant, le premier essai mathématique
et on sait que d’autres travaux affrontent le probléme de l’existence, notamment [28].

Dans [28] Caselles and Morel abordent le the probléme de trouver un volume maximal
irrigué avec un coiit minimal. Ils fixent un domaine ouvert {2 et un point S en lui, apres
ils donnent la notion d’ensembles irrigable en disant qu'un ensemble compact K C €
est irrigable si le complémentaire U = Q \ K, appelé réseau d’irrigation, est connexe
et contient S. Puis ils introduisent un “ profil d’accessibilité ”, c’est-a-dire une fonction
positive, croissante définie en IR, qui est nulle en zéro pour définir les points irrigables d’'un
ensemble irrigable compact K. Ils appellent un point x € K f-irrigable s’il y a un chemin
z(s) paramétré sur [0, L] tel que z(0) = z and z(L) = S et pour tout s € [0, L] la boule
du centre z(s) avec rayon f(s) se trouve dans le réseau d’irrigation U. En d’autres mots
ils disent qu’un point £ d’un ensemble irrigable K est f-irrigable s’il y a une voie dans le
réseau d’irrigation qui relie z a S. Le profil f est une fonction croissante et donc cette voie
devient de plus en plus petite en se rapprochant de  mais le rapport de rapetissement reste
uniformément borné inférieurement. Appelant ensembles f-irrigables les sous-ensembles
d’un ensemble irrigable K qui consistent de points f-irrigables, les auteurs ont démontré
I’existence d’un ensemble f-irrigable avec un volume maximal positif sous 'hypothese de
sous-linéarité de f (comme, par exemple, le profil f(s) = s* avec 0 < a < 1). Puis ils
associent & toute voie d’accessibilité z(s) pour atteindre z un coiit qu’on suppose semi-
continue inférieurement par rapport a la convergence uniforme de chemins en assignant
de cette fagon & tout point £ € K un cout minimal d’accessibilité cx(z). Pour cela en

appelant le cout d’irrigation de K la fonctionnelle ¢(K) = / ck(z)dz ils trouvent un
K

volume maximal irrigué K avec un coiit minimal.

Ces problemes récents sont souvent insérés dans la littérature du probleme de transport
de Monge méme si le probléeme qu’ils abordent est radicalement différent de celui proposé
par Monge en [33]. En effet, dans le modéle de Monge-Kantorovitch le coit d’une unique
particule de fluide n’est pas influencé par les interactions avec la partie restante du fluide
ou par leur mouvement alors que, dans ce contexte, on n’est pas tellement intéressé a
connaitre la destination finale d’une unique particule de fluide (le probléme “qui va ou
”) comme dans la forme de ’ensemble des trajectoires, en sachant, en particulier, que si
les particules bougent ensemble elle donnent origine & un grand flot et si elles bougent
“solitaires” elles donnent origine & beaucoup de petits flots.

Un irrigation pattern avec source en un point S € IRY est une application

x:Qx R, - RY
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telle que:

C1) pour presque tout point matérielp € Q, la “fibre” x, : t — x(p, t) est une application
Lipschitz continue avec une constante de Lipschitz plus petite que ou égale a un;

C2) pour presque tout p € : x,(0) = S;

ou (Q, |-|) est un espace de probabilité non atomique qui est interprété comme la
configuration de référence d’un corps fluide. On peut penser que €1 joue le réle d’'un
section d’un tronc d’arbre. Ce tronc est imaginé comme un ensemble de fibres qui peuvent
se diviser en branches.

Ps(Q) représente I’ensemble de tous les irrigation patterns de 2 avec source en S €
RN,

Tout x € Pg(Q), & tout instant , définit une relation d’équivalence ~, sur 2 en mettant
en relation au temps ¢ deux points p et ¢ € {2 si les deux fibres x,, et x, coincident en [0, £].
Ainsi tout irrigation pattern a tout temps ¢ divise € en classes d’équivalence appelées -
vessels. Pour tout p € Q, [p]; représente le x-vessel au temps ¢ qui contient p, alors que
pour tout ¢ > 0 V() représente ’ensemble de tous les x-vessels au temps t.

La fonction o, : 2 — IR, définie, Vp € (), comme la borne inférieure de I’ensemble
{t € Ry | xp(-) est constante en [t,+o0[}, donne le temps d’absorption d’un point et est
appelée fonction de stopping ou d’absorption pour x. L’ensemble

My(x) = {p € Q| oy(p) > t}

est I’ensemble des points qui, au temps £, ne se sont pas encore arrétés.

La function d’irrigation i, : A, — IRY, definie en posant Vp € A, : i,(p) =
x(p, 0y (p)) donne, & tout point absorbé, la position d’absorption.

La fonction 4, induit sur RY la mesure image (push-forward) p, définie par la formule

px(4) = i (A)],

pour tout ensemble de Borel A C IRY. On se référe & pu, comme & 'irrigation measure
produit par la structure x.

Pour un exposant fixe o €]0,1[, on introduit le colit fonctionnel I, as in [32], défini
dans ’ensemble Pg(€2) de toutes les structures d’irrigation , par la formule suivante

()= [, [, ek dp .

Cette fonctionnelle ne prend en condsidération que les points en mouvement. Comme
0 < a < 1, la fonctionelle pénalise les points mobiles dans des récipients minces, c’est-
a-dire la fonctionnelle pénalise I’embranchement. Donée une mesure de probabilité [, on
dit que c’est c-irrigable, dans le sens de [32], s’il y a une structure d’irrigation x de cotit
fini tal que p, = 7.
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Le Probleme de Dirichlet qui consiste & minimiser en Pg(Q2) la fonctionnelle I,(x) +
J(py), ot J est défini en posant

_J0 sip =T
(0.0.6) ) = { +oo  otherwise
est analysé. Le but de la fonctionnelle I est de contraindre les fibres arester ensemble en
pénalisant, de cette fagon, leur embranchement. La nécessité de maintenir la fonctionnelle
a un bas niveau entre en compétition avec la condition de contour exprimée par la présence
de la fonctionnelle J qui, d’autre part, contraint les fibres a se diviser en deux vu que le
fluide qu’elles transportent doit attendre une mesure donnée distribuée dans un volume.
Le résultat de cette compétition est que les fibres ont avantage a se tenir ensemble le
plus longtemps possible et puis qu’elles se divisent en s’approchant des points finaux, en
mettant en évidence la structure branchée. Tout minimum x de I,(x) + J(u,) est appelé
une structure d’irrigation optimale (“optimal irrigation pattern” en anglais) pour I et
I,(x) est appelé (irrigation) coit de la mesure de probabilité . En bref on dit que x is
une structure optimale s’il est optimal pour sa mesure d’irrigation .

Une fonctionnelle tres semblable a celle utilisée en [32] a été proposé en [35] seulement
dans le but de décrire une variante du problem de transport de Monge-Kantorovitch. Dans
cette approche, soit le début que la configuration du cible sont décrits avec des instrument
d’approximation avec de mesures atomiques finies mais la configuration de début n’est pas
nécessairement un point source comme supposé en [32]. Dans [32] et dans [35] les auteurs
supposent que le mouvement d’une particule est influencé par d’autres particules dans le
sens que c’est moins cher que deux ou plus particules bougent ensemble plutot qu’elles
coulent toutes seules. Ainsi les deux différentes approches menent & une fonctionnelle tres
similaire. Dans des articles plus récents (voir par exemple [27] et [34]), ces questions sont
vues comme des problemes particuliers d’évolution de mesures en Espaces de Wasserstein.

En [32] les auteurs ont abordé the probléme en supposant que la morphologie des
arbres dérive par un essai de nature pour réduire une opportune fonctionnelle d’énergie.
De cette facon, il n’ont pas explicitement considéré les lois hydrodynamiques, comme, par
exemple, la lois de Kirchhoff pour laisser 1’énergie constant ou la lois de Poiseuille pour
quantifier la résistance qu’un fluide rencontre pendant qu’il coule dans un réseau de tubes,
laissant aux études successives la raison de cette fonctionnelle, ou de quelques variantes
proches avec un comportement similaire, a partir de lois hydrodynamiques.

Comme dans les problémes classiques de Calcul des Variation (Calculus of Variations)
la minimisation des fonctionnelle convexes ameéne & une solution réguliere, en [32] les
auteurs introduisent une fonctionnelle avec des termes concaves qui rendent les concen-
trations convenables et aenent a la présence de singularités dans les solutions.

Le but de la fonctionnelle d’irrigation est d’obliger les fibres de rester ensemble en
pénalisant, de cette facon, leur branchement. La nécessité de maintenir la fonctionnelle
basse se heurte a une condition de frontiere qui, d’autre part, contraint les fibres & se di-
viser en deux, en établissant que le fluide qu’elles transportent doit atteindre une mesure
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donnée répandue dans un volume. Le résultat de cette compétition est que les fibres ont
avantage a rester ensemble le plus longtemps possible et puis en se divisant en branches
pendant qu’elle se rapprochent aux points terminaux, en donnant naissance & une struc-
ture branchée.

Chapitre 4 Propriétés élémentaires de structures d’irrigation
optimales *

L’existence de minima, démontré en [32], pose un probléme de régularité qui devrait mener
a la preuve de la structure arborée et des propriétés de self similarité.

Comme premier pas dans cette direction, dans ce chapitre on commence cette étude
par l'identification de quelques propriétés élémentaires géométriques, dont jouissent les
structures d’irrigation optimales. Les propriétés dérivées pour des structures optimales
sont des “propriétés élémentaires” dans le sens qu’elles ne sont pas impliquées dans la
régularité aux points terminaux de ces structures, ou les présumables propriétés de self
similarité devraient se trouver. Parmi ces propriétés, on rappelle la notion de structure
stmple caractérisée par les propriétés suivantes:

e pour p.p.t. point p € Q la fibre ouverte x, est une courbe simple en [0, o, (p);

e for a.e. paires de points p et ¢ de Q x,(t) # x,(s) pour tous s, t > s,(p, q), t < 0y (p),
s < 0y(q), o oy (q) = inf{t € Ry | xp(t) # xq4(t)} est le temps de separation de les
points p et ¢;

exprimée en termes de fibres ou également par la notion de courbes de flux qui, plus
clairement, représente les trajectoires suivies par le flux. Aprés I'introduction de la notion
de branche et du colit d’une branche, on a un théoréme qui clairement nous permet de
tailler un arbre en sorte que la somme du cott des branches taillées soit arbitrairement
petite (voir [29, Pruning Theorem| pour la formulation précise). L’ensemble F,, appelé
zone de flux (“flow zone” en anglais ), qui contient les trajectoires des flux, peut étre
considéré comme le support d’une structure y et en un certain sens le caractérise. Sous
quelques hypotheses sur x (c’est-a-dire x étant non-spread), F), est 'union énumérable des
supports de courbes rectifiables. Quand on suppose que Yy est une structure simple, alors
trois structures sont induites sur le support F): un ordre partiel, une fonction “temps” et
une fonction “quantité”. Ces trois structures caractérisent la structure d’irrigation. En
réalité on démontre qu’on peut établir ce type de structures dans un “ ensemble branché
” sans faire aucune référence a une structure. Ces structures, sous quelques hypotheses,
identifient une classe de structures simples et bien paramétrées (un histogramme) par
laquelle les trois structures s’accordent avec celle dérivées d’une structure d’irrigation.

4G. Devillanova, S. Solimini, Elementary properties of optimal irrigation patterns to appear
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Pour cela le a-cotit d’une structure non-spread simple et bien paramétrée peut étre évalué
par un intégral sur son support.

Cette étude préliminaire a le but de donner quelques instruments de base qui seront
utiles dans 'approche des sus-dits problemes de régularité et elle trouve déja une applica-
tion dans le Chapitre 5, ou ces propriétés sont utilisées pour analyser l'irrigabilité d’une
mesure donnée.

Chapitre 5 Sur la dimension d’une mesure irrigable ®

Dans ce dernier chapitre on explore si une mesure est irrigable en termes d’un ensemble
dans lequel elle se concentre, comme suggéré par le fait qu'une mesure répandue dans un
ensemble de haute dimension contraint les fibres a un embranchement plus fréquent et
pour cette raison la structure & augmenter son cotit. Dans ce but, on introduit la notion
de dimension d’irrigation (“irrigability dimension”) d(u) d’une mesure de probabilité u
et puis on exprime le probleme posé plus avant en termes de donner quelques estima-
tions sur la dimension d’irrigation d’une mesure positive donnée qu’on suppose étre Borel
réguliére, avec un support borné et une masse finie (par normalisation on suppose qu’elle
est une mesure de probabilité). On montre, avec quelques exemples, que 'idée intuitive et
discutable que la dimension d’irrigation d’une mesure concide avec la dimension de Haus-
dorft de son support est fausse, malgré le fait que les deux valeurs expriment combien la
mesure est répandue. D’autre part, on donne quelques bornes par le haut et par le bas
pour la dimension d’irrigation d(u) d’une mesure de probabilité y & travers la dimension
minimale de Hausdorff et respectivement de Minkowski d'un ensemble ou la mesure est
concentrée.

Ce résultat sera démontré avec différentes approches. En fait, on le démontre directe-
ment, avec quelques informations plus significatives et en introduisant quelques instru-
ments qui seront aussi utilisés dans d’autres parties du chapitre mais on pourra le déduire
par une estimation plus approfondie de d(u) qui demandera I'introduction de nouvelles
notions. Plus précisément, il faudra la notion de dimension de résolution d’une mesure
qui, intéressée par un index, exprime la possibilité de décrire la mesure par des approxima-
tions discretes. Quand la mesure est opportunément réguliere, la valeur de la dimension
de résolution ne dépend pas de I'index, alors que pour une mesure générique, comme on
expliquera avec quelques exemples, la dimension de résolution est “au dehors du focus”
dans le sens que des index différents donnent des valeurs différentes. On montre que,
en tout cas, il est toujours possible de trouver un index, opportunément caractérisé, qui
donne une dimension de résolution qui concide avec la dimension d’irrigation.

5G. Devillanova, S. Solimini, On the dimension of an irrigable measure, to appear.
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This thesis represents the synthesis of the results obtained during these last four years
of research and study under the guide and teachings of professor S. Solimini and professor
J.-M. Morel. In this thesis we approach some problems of Nonlinear Analysis and of
Calculus of Variations which give rise to “singular” structures. Our purpose is to show
how in some cases these singular structures are an obstacle to overcome to get existence
or multiplicity results and in other cases the singularities in the solutions are the object
of the study and justify the choice of the functional introduced. The work is divided into
two parts: the first one concerns results on a class of problems, which have been faced
by researchers in nonlinear analysis in the last twenty years, about the existence and the
multiplicity of solutions of elliptic equations, obtained in spite of a lack of compactness due
to some concentration phenomena; the second one regards a certain category of irrigation
problems in which the trajectories followed by fluid particles give rise to a one-dimensional
set and which can be set in the transport theory.

In particular, in the first two chapters of this thesis we deal with the following critical
growth problem

~Au = |[uf2u+du inQ
(CP) { U 0 on 05},

for the embedding of H}(Q) into LP(2), and A > 0. For this problem we get infinitely
many solutions for N > 7 and only a finite multiplicity result which leaves the question
about the infinite multiplicity still open when N > 4. More precisely, we find at least
Y +1 (pairs of) solutions (or even N + 1 if X is suitably close to zero) and A €]0, Ai[, A1
being the first eigenvalue of —A defined on H} ().

The lack of compactness in problem (CP) is due to the “concentration” of Palais Smale
sequences for the relative energy functional at some levels, as described trough arguments
of concentration-compactness due to P.L. Lions (see [22]) or as in Struwe Compactness
Theorem (see [25] and [26]).

The third chapter is devoted to the problem
(P) { —Au+a(z)u = [uf?u  in RN

u € HY(RV),

where N > 2, p > 2, p < 2* (when N > 2), and the potential a(z) is a continuous function,
positive in RN, except at most a bounded set, verifying suitable decay assumption but
not required to possess any symmetry property. The lack of compactness in problem (P)
is structurally similar, in the spirit of Concentration-Compactness, to that in problem
(CP). What happens in this case is that the lack of compactness is fundamentally due
to the domain being unbounded, which allows the “escaping” to infinity of masses while
taking the limit of a Palais Smale sequence, as described in a compactness theorem of V.
Benci and G. Cerami (see [6]).
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In the last two chapters (Part II) we follow the approach in [32] where the authors
have introduced a cost functional aiming at modeling ramified structures, such as trees,
root systems, lungs and cardiovascular systems for the study of the ramified structures
defined on very large search space consisting in what the authors call irrigation patterns.
This approach is very different from that used by Qinglan Xia in [35]. Actually for Xia
the network is an embedded graph with a countable number of vertices which satisfy the
Kirchhoff Law, moreover when such graphs G are finite the author considers, for « €]0, 1],
an energy functional which is formally the same as the one considered in [32]

E*(G)= > w(e)*length(e),
e edge of G

where w(e) represents the amount of fluid carried along the edge e. The parameter « being
less than 1 implies that byforcations are not convenient from the energy saving viewpoint
stating in this way a qualitative Poiseuille Law according to which the resistance of a tube
increases when it gets thinner.

An irrigation system on the contrary is not defined as an embedded graph, but as
measurable set of paths (fibers) starting from a unique source and stopping in some
points in RN on which what the authors call irrigation measure is concentrated. The
search space for a solution is larger since it allows a priori spreading trees for which could
exist sets of positive measure of particles which could go its way without following a
branch (see fig. 1). The formalism in [32] considers paths starting from the source and
can be interpreted either as the trajectory in RN of a fluid particle or as a fiber of a tree.
These infinitely many paths (in principle one for each particle) depending on a parameter
t are called “fibers” and denoted by x(p, t) where ¢ represents the time in which the
particle p, belonging to an abstract probability space 2, gets the position x(p, t) € RY.
Any measurable set of fibers Y, i.e. any irrigation pattern, induces on IRY an “irrigation
measure” u, which gives to any Borel set A of IR the amount, in €, of the set of the
particles which stop in A (i.e. which are absorbed in the set A). Always in [32] the
authors proposed a cost functional I, defined on the set of all the irrigation patterns by
setting

1) = [ [y o [l dp

This functional, formally similar to E%, takes into account, time by time, only the points
p € M(x) i.e. the points which are still moving at the time ¢ and, taking the power
a— 1 < 0 of the amount of the set [p]; of particles which have flown in a solid way up to
the time ¢, penalizes the branching leading to a structure shaped as in fig. 2.
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| |

The properties derived in Chapter 4 for optimal patterns (an irrigation pattern x is
an optimal pattern if it minimizes the cost among all the irrigation patterns which have
the same irrigation measure u,) are “elementary properties” in the sense that they are
not concerned with the regularity at the ending points of these structures, where the
presumable selfsimilarity properties should take place. This preliminary study already
finds an application in Chapter 5 where the problem of determining if a given measure
is irrigable or not is addressed (a probability measure p is “a-irrigable” if there exists
an irrigation pattern x such that I,(x) < oo and p, = p). The answer to this question
clearly shows, in particular, what are the cases in which all the probability measures will
turn out to be irrigable, giving in this way a different proof of a result in [35] in a very
close setting. We investigate a more general question consisting in characterizing, for a
given value of the index, what probability measures are irrigable or not. To this aim a
notion of irrigability dimension of a measure is given and lower and upper bounds are
proved in terms of the minimal Hausdorff and respectively Minkowski dimension of a set
on which the measure is concentrated. A notion of resolution dimension of a measure
based on its discrete approximations is also introduced and its relation with the irrigation
dimension is studied.

A more detailed abstract of the two parts of this thesis follows.

Part I - Multiplicity results for some elliptic problems
with lack of compactness

Before the eighties the elliptic equations theory was mainly developed under subcritical
growth hypothesis. In particular the model problem

(0.0.7) —Au = |[ulfu,

2N

with boundary Dirichlet condition, was studied for p < 2* = = in dimension N > 2.
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In the case of critical growth p = 2*, being the embedding of H;(f2) into L? not
compact, the Nemitsky operator |u[P~2u is not compact and so one can not get a non-
trivial solution to (P) by using the most standard variational techniques. Moreover Po-
hozaev, in his celebrated paper [22], stated an identity which, applied to problem (P) for
a star-shaped domain, proved the nonexistence of nontrivial solution in the case of critical
growth. On the other hand, the critical exponent p = 2* is the only one which makes the

1 .
energy functional Iy(u) = 5 /Q (Vul? - o /Q lu|*" homogeneous with respect to scalings.

In their pioneering work [9], Brezis and Nirenberg had the idea to introduce a lower or-
der term, i.e. a subcritical term, in particular the linear one Au, which does not change
the growth of the energy functional but breaks its homogeneity penalizing, even if in an
infinitesimal way, concentrations. In alternative to Pohozaev identity, which guaranteed
that in general (for a star-shaped domain) (CP) has no nontrivial solution for A < 0,
in [9] Brezis and Nirenberg get the existence result for 0 < A < A; (X suitably bigger that
zero in dimension three). Subsequently, the result has been extended in [10] to A > A;.
Therefore, in the case of critical growth, the breaking of the homogeneity of the energy
functional can give the existence result for a suitable elliptic problem. In particular, by
changing the deviation from the homogeneity of the energy functional (i.e. changing from
A < 0to A > 0in the case of problem (CP)) one switches from nonexistence to existence
results. The problem of getting multiplicity results for problem (CP) was raised in that
period and techniques, alternative to the use of the Rellich Theorem, where introduced
to find solution as the limit of a Palais Smale sequence (or, more briefly, PS sequence) for
the energy functional

2%

B =g Vel =2 [P~ o [ Ju

In particular, the works on concentration-compactness such as [20], [25] and [24] gave a
precise analysis of the obstruction to compactness, pointing out the bad levels at which
the PS condition fails. In Chapter 1 the question about existence of infinitely many
solutions to Problem (CP), for any bounded smooth domain 2 C IR" in the case N > 7,
is affirmatively answered.

Analogous problems are met in finding existence and multiplicity results for elliptic
problems at subcritical growth on the whole domain such as Problem (P). In the case in
which the coefficient a(z) is not symmetric the lack of compactness comes out by giving
rise to some masses which are concentrating around some points which escape to infinity.
In Chapter 3 the problem of getting existence and multiplicity results to Problem (P) is
addressed and infinitely many solutions are found without asking symmetry for a(z). We
just fit the same techniques employed to get infinitely many solutions to Problem (CP).
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Chapter 1 Concentrations estimates and multiple solutions to
elliptic problems at critical growth '

The first multiplicity results on the number of solutions to Problem (CP) where obtained
for suitably symmetric domains, see [19], in particular the authors essentially reduced
the multiplicity result to the existence one by slicing the domain into a finite number of
equal subdomains and then glueing the solutions found on each slice (the existence of
infinitely many solutions follows from the possibility of arbitrarily choosing the number
of the slices).

This kind of approach can not be applied when one has to work in a general shape
domain. Even for symmetric domains it may fail when one searches for multiplicity results
of solutions of a particular type, for instance the radial solutions when the domain is a
ball. The radial case actually allows to give complementary existence and non existence
results in sharp correspondence. If N > 7 and 2 is a ball, then for any A > 0 (CP) has
infinitely many changing sign radial solutions, see [23] and [12], if 4 < N < 6 there exists
a constant A* > 0 such that (CP) has no changing sign radial solution if A €]0, A*[ (see [1],
[2]). So the bound N > 7 in the previous existence result cannot be removed.

In this chapter the question about existence of infinitely many solutions to Problem
(CP), for any bounded smooth domain  C IRM in the case N > 7, is affirmatively
answered. The new idea, which has allowed us to prove the existence of infinitely many
solutions to Problem (CP) has been that of changing the concept of “almost solution”
and prove compactness for this new object. Actually the usual concept of almost solution
in terms of the H~!-norm of the Fréchet derivative of the energy functional, which leads
to the well known notion of PS sequences does not allow us to deduce any compactness
results in such a context. The PS sequences have been substituted in favor of sequences
of solutions of approximating problems (called “balanced sequences”). Every term w,, of
a balanced sequence is a solution in Hj(Q2) to the problem —Au = |u[P»~2u 4+ Au where
the corresponding sequence of subcritical exponents p,, converges to 2*. The circumstance
that wu,, is a solution of an autonomous problem of the same type of Problem (CP) allows
us to establish a local Pohozaev inequality which, roughly speaking, takes into account
the modification of the energy functional I,, (which is relative to the n-th approximating
problem) with respect to concentrations. We have firstly proved that also for bounded
balanced sequences which are supposed to be noncompact there is the same concentration
phenomena which occurs for noncompact PS sequences. By working with noncompact
balanced sequences and by perturbing their concentration parameter we are then able to
produce a local modification of the approximating functional which is of the same order
as the function in contradiction to the fact that the elements of a balanced sequence are
critical points. The variation of the functional under such a local modification has been

LG. Devillanova & S. Solimini Concentrations estimates and multiple solutions to elliptic problems at
critical growth.Advances in Differential Equations, 7 ( 2002), 1257-1280
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evaluated by a local Pohozaev inequality and some a prior: uniform decay estimates on
the terms of a bounded balanced sequence and of their derivatives which, carried in such
inequality, formally produce the contradiction.

This compactness result can be employed also in the radial case, producing the ex-
istence of infinitely many radial solutions. By the results in[1] and [2], in which the
uniqueness of a nontrivial radial solution is stated for N < 7, we deduce that the com-
pactness argument is false for lower dimensions. This circumstance does not mean that
the existence of infinitely many solutions cannot be proved through different tools as it
happens, for instance, in the case of symmetric domains (see [19]).

The dimension seven has no particular meaning as happens, for instance, with the
minimal surface problems, but depends on the linearity of the subcritical perturbation
term Au. A nonlinear subcritical term would require a different bound on the dimension.
Let us point out that N > 4 is enough for the existence of a nontrivial solution for every
A > 0 but three more dimensions are needed for multiplicity results. The reason is due

to the fact that starting on dimension 4, the gain due to the quadratic term —\ / u? in

the functional I, is more consistent than the cost of a cut-off term which brings a %alenti
function to zero within the boundary of 2. On the other hand, if one wants to perform a
similar test for the multiplicity problem, one must cut-off the function in order to reach a
value of opposite sign. So the cost of the cut-off is considerably more expensive and three
more dimensions are needed to reach the appropriate estimate.

Chapter 2 A Multiplicity Result for Elliptic Equations at Crit-
ical Growth in Low Dimension 2

We have approached problem (CP) in low dimension N > 4 and we have shown, working
on the double natural constraint

(0.08) U ={ueH)(Q)|u*#0, (VIz(u),u*) =0, for both + signs} ,

that, for A €]0, A;[ problem (CP) has at least & +1 (pairs of) solutions (N + 1 for A close
enough to 0) improving thus the result in [11] which has been obtained, working on the
constraint U, by searching for solutions which change sign near the boundary. The idea is
that of making a comparison between the problem in a general domain with the problem
in a ball where one can use symmetry. The concentration phenomena below the threshold
S 2 (being S the so called Sobolev constant) is due only to a unique Talenti function

and therefore if ¢ < £S5 % is a min-max level, then at least one between ¢ and ¢ — =S Bl

is critical. Furthermore, we are able to find N + 1 min-max levels under the threshold
N .

%S 2, to which one must add the ground state level. We can also say that if some of

2G. Devillanova & S. Solimini A Multiplicity Result for Elliptic Equations at Critical Growth in Low
Dimension Comm. in Contemporary Math., Vol. 5 N. 2( April 2003), 171-177.
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these N + 1 min-max levels coincide the problem admits infinitely many solutions, even
if we do not know if such a level is critical or not (we do not know if we must decrease it
of the amount %S %) In this way, we get at least % pairs of solutions.

This result has been recently extended in [14] to the case A > A;. In any case, there
is no reason to suppose that such a result may be optimal and the problem of proving
the existence of infinitely many solutions, or even of getting an optimal estimate on the

number of solutions, remain, as far as we know, largely open for N < 6.

Chapter 3 Infinitely many bound states for some non linear
scalar field equation 3

Finally, we have approached Problem (P) which is similar to those problems which natu-
rally arise in various branches of Mathematical Physics; actually the solutions to (P) can
be seen as solitary waves (stationary states) in nonlinear equations of the Klein-Gordon
or Schrodinger types. Moreover, they present specific mathematical difficulties that make
them challenging to the researchers. The solutions to Problem (P) can be searched as
critical points of the energy functional I : H'(IRY) — IR defined by

(0.0.9) I(u) = % [ (Vul + a(e)u?)dz - % [ lulrds

The usual variational methods, that allow to prove the existence of infinitely many
solutions to (P) in a bounded domain, cannot be straightly applied to I. Indeed, the
embedding j : H'(IRY) — LP(IRY) is continuous but not compact, therefore the basic
Palais-Smale condition is not satisfied by I at all energy levels. Also in this case there
are some partial results when a(z) enjoys some symmetry. Indeed, the first known re-
sults have been obtained considering a(xz) = a(|z|) or even a(z) = ay € R\ {0}
(see [21], [8], [15], [16], [24], [7]). In this case, the restriction of I to H!(IR"), the subspace
of H'(IRY) consisting of spherically symmetric functions, restores compactness, because
the embedding of H!(IRY) into LP(IRY) is compact. So, the existence of a positive so-
lution to (P) can be proved either by using Mountain Pass Theorem or by minimization
on a natural constraint, while the existence of infinitely many solutions follows by stan-
dard minimax arguments. Moreover it is worth recalling that, still under the assumption
a(z) = a(|z|), one can also find the existence of infinitely many nonradial changing sign
solutions, breaking the radial symmetry of the equation (see [5] and reference therein).

When a(z) does not enjoy any symmetry property, the problem becomes more difficult
and even proving the existence of one positive solution is not a trivial matter. This situa-
tion requires a deeper understanding of the nature of the obstructions to the compactness

3G. Cerami, G. Devillanova and S. Solimini Infinitely many bound states for some non linear scalar
field equation Calc. of Var. and PDE’s., Vol. 23 N. 2, 139-168
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and the use of more subtle tools. Most of the researches have been concerned with the
case
(0.0.10) lim a(z) =ax >0

|z| =400

so that (P) can be related to the “problem at infinity”

(Py) —Au + agou = |uff?u in RN .

A first answer to the existence question has been given proving that, in some cases,
being true some inequalities relating to solutions to (P) and to (P,), the concentration-
compactness principle can be applied and (P) can be solved by minimization, see [20].
This is the case, for instance, when a(z) is a continuous function that, besides (0.0.10)
and some decay assumptions, satisfies

(0.0.11) 0<d <a(z)<aw VzeRN.

Subsequently, a careful analysis of the behavior of the Palais-Smale sequences (see [6], [3])
has allowed to state that the compactness can be lost (in the sense that a PS-sequence
does not converge to a critical point) if and only if such a sequence breaks into a finite
number of solutions to (P,) which are centered at points which go to infinity. As a
consequence, it has been possible to give an estimate of the energy levels in which the PS
condition fails in terms of the energy of such masses and to face better some existence
and multiplicity questions for (P). Indeed, the existence of a positive solution to (P)
has been proved (see [3]) even when a ground state solution cannot exist, that is, for
instance, when, besides (0.0.10) and suitably decay assumptions, the potential satisfies
the condition a(z) > ay for all z € IRY; moreover, under conditions (0.0.10), (0.0.11) and
a suitable decay at infinity, it has been shown the existence of a changing sign solution in
addition to the positive one (see [33]). Following [13] we assume the function a to satisfy
the following conditions.

(1) a € CY(RY, R);
(a2) liminfig 400 a(2) = G > 0;

0
(a3) a_;»(z)eO"w' — +oo,Va > 0, where Vz € RV \ {0}, & = &;

|z|—+o0 |z|?
(a4) there exists a constant ¢ > 1 such that

|Vra(z)| <€ %(z) Ve € RN :|z| >,

where V. a(z) denotes the component of Va(z) lying in the hyperplane orthogonal
to & and containing z.
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The assumptions (a1) — (az) let the superquadratic term of the functional be bounded
in terms of the quadratic part and allow the proof of a decomposition Theorem which
is similar to that in [6]. The smoothness asked in (a;) is more than what we need to
this aim (¢~ € L= (JRY) would be more than enough) but it is required for the other
assumptions. Condition (as) is the equivalent of the bound N > 7 for (CP). The proof
of the multiplicity results without this assumption would probably require completely
different arguments. One can possibly show even uniqueness results in some particular
cases, as happens for (CP) with the radial symmetry. On the contrary (as) has been
only used to the aim of passing from an integral of the function %% to an integral of 5
and to prove that escaping of the masses is avoided. It can certainly be weakened; the
question if some assumption of this kind is necessary for the multiplicity result or what
is the minimal condition is open.

Analogously to problem (CP) we change the notion of “almost solution” and prove
compactness for this new object. Actually we abandon the notion of PS sequences and
adopt the notion of “controlled sequences”, being the role of the limit problem played by
the elliptic inequality —Au + axu < |ulP~2u.

On the other hand if one assumes that a bounded controlled sequence is noncompact
we prove that it is “breaking” into some masses which are escaping to infinity and by
perturbing the translation vector, which corresponds to one of the masses which runs
toward infinity in the slowest way, we are then able to produce a local modification of
the approximating functional which has the same order of the variation of the function
getting in this way a contradiction. ;From this contradiction we get that any bounded
controlled sequence, at most passing to a subsequence, must converge to a nontrivial
solution to the problem. As done in the case of Problem (CP), here also the variation of
the functional under such a local modification has been evaluated by means of a suitable
local Pohozaev inequality and some a prior: uniform decay estimates on the terms of a
bounded controlled sequence and of their derivatives which, carried in such inequality,
formally produce the contradiction.

Part II - Some properties of irrigation patterns and
irrigable measures

In the last twenty years several problems of Calculus of Variations concerned with model-
ing singular structures have been considered. Among them we can mention the problems
with free discontinuities, initially introduced for image segmentation. The goal was to
determine the set of the discontinuity points of a given function, i.e. of a given digital
image. The solution which minimize the functional, firstly introduced by Mumford and
Shah in [34], is therefore not regular and this lack of regularity is not a weak point of the
theory but the discontinuity set contains, on the contrary, the main information which one
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is looking for. There are many other interface and free boundary problems in which the
lack of regularity is essential because they have been introduced to the aim of modeling
phenomena which can only be described by singular structures.

In this large context, we can also include some transport problems in which the trans-
port density gets concentrated in a one-dimensional set, as the transport problems with
a Dirichlet set or the irrigation problems. The last ones come from observing that the
function of many natural flow systems is to connect by a fluid a finite size volume to a
source. In works dealing with drainage networks, plants, trees, root systems, bronchial
systems and cardiovascular systems (see [36], [37] and [38]), the network system itself is
designed according to some principles, i.e. axioms which mainly are the following ones,
see for instance [36] and the references therein:

e the network supplies an entire volume of an organism and a space filling hierarchical
branching pattern is required;

e the biological networks have evolved to minimize energy dissipation;
e the size of the final branches of the network is a size-invariant unit;
e the equality of flow supply through the network system.

Moreover, another basic assumption is usually used, namely that the network is a branched
tree structure made at each scale of tubes of a certain uniform length, radius and with a
given branching number. The result is that the network has a fractal like structure with
selfsimilar properties (see [36], [37] and [38]). The weak point in this euristic reasoning is
that one “assumes” the existence of a network which does the task and that this network
is a tree-like structure. Moreover, there was no general theory based on fundamental laws
from which to deduce the fractal behavior.

In the pioneering work of Maddalena, Morel and Solimini (see [32]) the authors have
modeled the “shape” of a tree only by minimizing a certain type of energy functional. In
this way, they have put on a mathematical basis the above listed empirical laws assumed
in the study of irrigation and draining systems letting someone prove them as theorems or
state them as clear mathematical conjectures. That paper is not, however, the first math-
ematical attempt and we know other works addressing the existence problem, namely [28].

In [28] Caselles and Morel address the problem of finding a maximal irrigated volume
with a minimal cost. They fix an open domain {2 and a point S in it, then they give the
notion of irrigable sets by saying that a compact set K C 2 is irrigable if the comple-
mentary U = Q \ K, called irrigation network, is connected and contains S. Then they
introduce an “accessibility profile”, i.e. a positive, increasing function defined on IR,
which is null in zero to define the irrigable points of an irrigable compact set K. They
call a point z € K f-irrigable if there exists an (accessibility) path z(s) parameterized
on [0, L] such that z(0) = z and z(L) = S and for every s € [0, L] the ball of center
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z(s) with radius f(s) is contained in the irrigation network U. In other terms they say
that a point z of an irrigable set K is f-irrigable if there exists a thick path inside the
irrigation network which connects x to S. Being the profile f an increasing function, this
path becomes thinner and thinner while approaching z but the thinning rate remains
uniformly bounded from below. Calling f-irrigable sets the subsets of an irrigable set K
consisting of f-irrigable points, the authors prove the existence of an f-irrigable set with
maximal positive volume under superlinearity assumption on f (such as, for instance, the
profile f(s) = s* with 0 < & < 1). Then they associate to every accessibility path z(s) to
reach = a cost which is supposed to be lower semicontinuous with respect to the uniform
convergence of paths allocating in this way at any point z € K a minimal accessibility

cost cx(z). Therefore calling irrigation cost of K the functional ¢(K) = / ck (z)dz they
K

find a maximal irrigated volume K with minimal cost.

These recent problems are often included in the literature of the Monge transport
problem even if the problem they approach is radically distinct from that proposed by
Monge in [33]. Indeed, in the Monge-Kantorovitch model the cost of a single fluid particle
is not influenced by interactions with the remaining part of the fluid or by their motion
while, in this context, one is not so much interested in knowing the final destination of a
single fluid particle (the so called “who goes where” problem) as in the shape of the set
of the trajectories, knowing, in particular, if particles move together giving rise to a big
river or move “alone” giving rise to many little rivers. An irrigation pattern with source
point S € IRY is a measurable mapping

x:Qx R, - RY
such that:

C1) For a.e. material point p € Q, the “fiber” x, : t — x(p, ) is a Lipschitz continuous
map with a Lipschitz constant less than or equal to one;

C2) For a.e. p € 2 x,(0) = S;

where (2, |-|) is a nonatomic probability space which is interpretated as the reference
configuration of a fluid material body. We can think €2 playing the role of the trunk section
of a tree, this trunk being thought as a set of fibers which can bifurcate into branches.
Ps(Q) denotes the set of all irrigation patterns of Q with source at a given point S € R".

Every x € Pg(Q), time by time, defines an equivalence relation ~; on Q by relating
two points p and ¢ € Q at the time ¢ if the two fibers x, and x, coincide on [0, £]. So
every irrigation pattern at every time ¢ divides €2 into equivalence classes which are called
x-vessels. For any p € Q [p]; denotes the x-vessel at time ¢ which contains p, while for
any t > 0 Vi(x) denotes the set of all the x-vessels at time t.

The function o, :  — IR, defined by setting for a.e. p € Q o, (p) as the infimum of
the set {t € IR, | x,(+) is constant on [, +00[}, gives the absorption time of a point and
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is called stopping or absorption function for y. The set

Mi(x) = {p € Q| ox(p) > t}

is the set of the points that, at time ¢, are still moving.

The irrigation function i, : A, — IRY, defined by setting Vp € A, : i,(p) =
x(p, 0y (p)) gives, point by point, the absorption position of the absorbed points.

The function 7, induces on IR" the image (push-forward) measure u, defined by the

formula
py (A) = [i, " (A)],

for any Borel set A C IRN. We refer to u, as to the irrigation measure induced by the
pattern x.

For a fixed exponent « €]0, 1], we introduce the functional cost I, as in [32], defined
on the set Pg(Q2) of all the irrigation patterns x, by the following formula

L(x) = /m+ /Mt(x) lple|*\dp dt .

This functional takes into account only the moving points moreover, being 0 < o < 1, the
functional penalizes the points which move into thin vessels, i.e. the functional penalizes
the branching. Given a probability measure 1, we say that it is a-irrigable, in the sense
of [32], if there exists an irrigation pattern x of finite cost such that u, = 7.

The Dirichlet Problem which consists in minimizing on Ps(Q?) the functional I,(x) +
J (1, ), where J is defined by setting

0 itu=n
(00.12) Tp) = { +oo otherwise
is approached. The aim of the functional I, is to force the fibers to keep themselves
together penalizing, in this way, their branching. The necessity of keeping the functional
low competes with the boundary condition expressed by the presence of the functional J
which, on the other hand, forces the fibers to bifurcate prescribing that the fluid they carry
must reach a given measure spread out on a volume. The result of this competition is
that the fibers take advantage in keeping themselves together as long as possible and then
branching while approaching the terminal points, giving rise to the ramified structure.
Any minimum x of I, + J is called an optimal irrigation pattern for i and I,(x) is called
(irrigation) cost of the probability measure . We briefly say that x is an optimal pattern
if it is optimal for its irrigation measure p,,.

A very similar functional to I, introduced in [32], has been proposed in [35] only to the
aim of describing a variant of Monge-Kantorovitch transport problems. In this approach,
both the starting and the target configuration are described by means of approximation
with finite atomic measures but the starting configuration is not necessarily a source point
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as assumed in [32]. In [32] and in [35] the authors take the assumption that the motion
of a particle is influenced by other particles in the sense that it is cheaper that two or
more particles move together rather than flow lonely. So the two distinct approaches
lead to a very similar functional. In more recent papers (see for instance [27] and [34]),
these questions are addressed as particular measures evolutions problems in Wasserstein
Spaces.

In [32] the authors approached the problem assuming that the morphology of trees
derives by the attempt of nature to reduce a suitable energy functional. In this way,
they have not explicitely taken into account hydrodynamic laws, such as, for instance,
Kirchhoftf Law, to keep energy constant or Poiseuille law to quantify the resistance a
fluid encounters while flowing into a tube network, leaving to subsequent studies the
motivation of such a functional, or of some close variants with a similar behaviour, from
hydrodynamic laws. As in classical problems of Calculus of Variations the minimization
of convex functionals leads to regular solutions, in [32] the authors introduce a functional
with concave terms which make concentrations convenient and lead to the presence of
singularities in the solutions. The aim of the irrigation functional is to force the fibers to
keep themselves together penalizing, in this way, their branching. The necessity of keeping
the functional low competes with a boundary condition which, on the other hand, forces
the fibers to bifurcate, prescribing that the fluid they carry must reach a given measure
spread out on a volume. The result of this competition is that the fibers take advantage in
keeping themselves together as long as possible and then in branching while approaching
the terminal points, giving rise to the ramified structure.

Chapter 4 Elementary properties of optimal irrigation patterns
The existence of minima, proved in [32], raises regularity problem which should hopefully
lead to a proof of the tree-like structure and the selfsimilarity properties.

As a first step in this direction, in this chapter we begin this study by identifying some
geometric, elementary properties which are enjoyed by optimal irrigation patterns. The
properties derived for optimal patterns are “elementary properties” in the sense that they
are not concerned with the regularity at the ending points of these structures, where the
presumable selfsimilarity properties should take place. Among these properties, we recall
the notion of simple pattern characterized by the following properties:

e for a.e. point p € 2 the open fiber X, is a simple curve on [0, o, (p)];
e for a.e. pair of points p and ¢ of Q x,(t) # x,(s) for all s, ¢ > s,(p,q), t < 0y (p),

s < o0y(q), where s,(p, ¢) = inf{t € R, | x,p(t) # x4(t))} is the separation time of
the two points;

4@G. Devillanova, S. Solimini, Elementary properties of optimal irrigation patterns, to appear.
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expressed in terms of fibers or equivalently by the notion of flow-curves which, roughly
speaking, represent the trajectories followed by flows. After introducing the notion of
branch and the cost of a branch, we give a theorem which roughly speaking allows us to
prune a tree so that the amount of the cost of the pruned branches is arbitrarily small
(see Theorem 4.7.1 (Pruning Theorem) for the precise statement). The set F,, called
flow zone, which contains the trajectories of the flows, can be considered as the support
of a pattern x and in a certain sense characterizes it. Under some hypotheses on x
(namely x being non-spread), F) is the countable union of supports of rectifiable curves.
When ¥ is also supposed to be a simple pattern, then three structures are induced on the
support F,: a partial order, a “time” function and a “quantity” function. These three
structures characterize the pattern. Actually we prove that one can prescribe such a kind
of structures on a “branching set” without making any reference to a pattern. These
structures, under some assumptions, identify a class of simple and well parameterized
patterns (an histogram) for which the three structures agree with those derived from the
pattern. Moreover the a-cost of a non-spread simple and well parameterized pattern can
be evaluated by an integral on its support.

This preliminary study has the aim of giving some basic tools which will be hopefully
useful for the approach to the above mentioned regularity problems and already finds an
application in Chapter 5, where these properties are used in order to discuss the irrigability
of a given measure.

Chapter 5 On the dimension of an irrigable measure °
In this last chapter we are investigating the irrigability of a measure in the terms of the set
on which it concentrates, as suggested by the fact that a measure spread out on a set of
high dimension forces the fibers to a more frequent branching and therefore the pattern to
increase its cost. To this aim, we have introduced the notion of irrigability dimension d()
of a probability measure ;1 and then we have expressed the above stated problem in the
terms of giving some estimates on the irrigability dimension of a given positive measure
which is always supposed to be Borel regular, with a bounded support and a finite mass
(by normalization we suppose it to be a probability measure). We have shown, with some
examples, that the intuitive and conjecturable idea that the irrigability dimension of a
measure coincides with the Hausdorff dimension of its support is false, in spite of the
fact that both the two values express how much the measure is spread out. On the other
hand, we have given some lower and upper bounds for the irrigability dimension d(u) of
a probability measure p by means of the minimal Hausdorff and respectively Minkowski
dimension of a set on which the measure is concentrated.

This result will be overproved. Indeed, we prove it directly, getting some further
meaningful information and introducing some tools which will be also used in other parts

5G. Devillanova, S. Solimini, On the dimension of an irrigable measure, to appear.
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of the chapter but we shall be also able to deduce it from a deeper estimate of d(u)
which will need the introduction of new notions. More precisely, it will need the notion of
resolution dimension of a measure which, affected by an index, expresses the possibility to
describe the measure by means of discrete approximations. When the measure is suitably
regular, the value of the resolution dimension does not depend on the index, while for a
generic measure, as will be explained by some examples, the resolution dimension is “out
of focus” in the sense that different indexes give different values. We have shown that,
in any case, it is always possible to find an index, suitably characterized, which gives a
resolution dimension which coincides with the irrigability dimension.
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Multiplicity results for some elliptic
problems with lack of compactness






Chapter 1

Concentration estimates and
multiple solutions to elliptic
problems at critical growth!

In this paper we consider the problem —Au = |u|> 2u + Au in Q, u = 0 on 69, where
Q is an open regular bounded subset of RN (N > 3), 2* = 2% s the critical Sobolev
exponent and A > 0. Our main result asserts that, if N > 7, the problem has infinitely
many solutions and, from the point of view of the compactness arguments employed here,

the restriction on the dimension N cannot be weakened.

Introduction

This paper deals with the critical growth problem

(CP)

~Au = |[u Zu+du  inQ
u = 0 on 012,

where Q is an open regular subset of RN (N > 3), 2* = 2 is the critical Sobolev expo-
nent for the embedding of Hy((2) into LP(Q2), and A > 0. Several people have got involved
with this problem and the main known results have been collected in the introduction
to [2]; adding theorems 1 and 2 of a subsequent paper [3] we complete the “state of art”
obtaining the following list of main results.

1. If A < 0, Pohozaev Identity (see [12]) allows us to say that Problem (CP) has, in
general (for a star-shaped 2), no nontrivial solution.

LG. Devillanova & S. Solimini Concentrations estimates and multiple solutions to elliptic problems at
critical growth. Advances in Differential Equations, 7 ( 2002), 1257-1280
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2. There exists a constant A\* € [0, \{[ such that (CP) has a positive solution if A €
JA*,A1[, where ); is the first eigenvalue of —A defined on Hy (Q2). Moreover if N > 4,
A* = 0 (see Brezis-Nirenberg [6]). In the three-dimensional case and when (2 is a ball
then \* = ’\4—1. Moreover, by using also in this case a suitable version of Pohozaev
Identity we known that, for A €]0, A*[, (CP) has no radial solution (see [6]) but it is
still unknown if there exist non radial solutions to (CP) (changing sign).

3. If N > 4 and Q is a ball, then for any A > 0 (CP) has infinitely many solutions
changing their sign (which cannot be all radial, as shown in [2]) which are built
using the particular symmetry of the domain 2 (see Fortunato-Jannelli [8]).

4. If N > 7 and Q is a ball, then for each A > 0 Problem (CP) has infinitely many
changing sign radial solutions (the so called “nodal solutions”): see Solimini [15]
and a previous paper of Cerami-Solimini-Struwe [7] where it is also shown that for
N > 6 (CP) has at least two (pairs of) solutions on any smooth bounded domain.

5. When 4 < N < 6 and  is a ball there exists a constant A* > 0 such that (CP)
has no radial solutions which change sign if A €]0, A*[. So the bound N > 7 in the
previous result cannot be removed, see Atkinson, Brezis and Peletier [3].

A natural question, which seems to be still open, is whether (CP) has infinitely many
solutions on every bounded smooth domain. The above mentioned results suggest that
the lower bound N > 7 on the dimension should be considered as a natural assumption,
since it is necessary in the radial case. The main difficulty in solving Problem (CP) is the
existence of noncompact Palais-Smale sequences (PS sequences), whose definition will be
recalled in next section, of the corresponding functional

nw=g [1vup =3 [P -5 [

defined on the Hilbert space Hj(€). The behavior of noncompact PS sequences has
been studied in [16] which, roughly speaking, guarantees the existence of a subsequence
approximated by its weak limit plus terms which tend to concentrate around a finite
number of points, see Theorem 1.1.3 below. This theorem allows a precise description of
the behavior of noncompact PS sequences at every level of the functional I, and suggests
the way to look for “good levels” in order to get compactness. On the contrary, we
shall give an answer to the question about multiplicity of solutions by introducing some
compactness techniques which show as, in dimension N > 7, every min-max admissible
class produces precompact PS sequences. This will follow as a consequence of a uniform
bound theorem stated for bounded sets U of solutions to

{ —Au = |[uff?u+AIu  in{

o*
Y

(SP) u = 0 on 0€,
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with p varying in [2,2*]. The precise results will be stated in the next section, where
the characterization of PS sequences will also be recalled and some related terminology
will be introduced. Firstly, we shall need to establish suitable a priori estimates on
some norms of the functions in U, which will be proved in Section 1.2 and which will be
employed to the aim of finding sharper estimates on the functions and on their derivatives,
see sections 1.3 and 1.4 respectively. Subsequently, in Section 1.5, we establish a local
Pohozaev Identity which allows, in Section 1.6, the proof of the uniform bound theorem.
Finally, in Section 1.7, we show how this technique allows to apply classical min-max
arguments to (CP) and to prove, in this way, the existence of infinitely many solutions.

1.1 Statement of the results and notation

The main results in this paper are the following ones.

Theorem 1.1.1 (Uniform bound through concentration estimates) Let N > 7
and U be a bounded set in H;(Q)) whose elements are solutions, for a fized A > 0, to
problems (SP), for p varying in [2,2*]. Then U is uniformly bounded, i.e. there exists a
constant C' > 0 such that

supsup |u(z)| < C.
uel zeQ

Theorem 1.1.2 (Infinitely many solutions to (CP) in large dimension) If N >
7, then problem (CP) admits infinitely many solutions.

Analogous multiplicity results, like the existence of infinitely many radial solutions to (CP)
when (2 is a ball, can be obtained from Theorem 1.1.1 in the same way as Theorem 1.1.2.
Therefore the uniqueness result in [3, Theorem A] allows us to deduce the following
remark.

Remark 1.1.1 The restriction N > 7 in Theorem 1.1.1 cannot be removed. Indeed, the
theorem 1is false for N < 6.

On the other side, we do not know if Theorem 1.1.2 can still hold or not for N < 6. We
have already pointed out that the statement still holds true for N > 4 if Q is a ball and
that for N = 6 and 0 < A < A; one still has multiplicity of solutions for every bounded
smooth domain. Any question about sharper results or extensions to lower dimensions
on general domains seems to be open.

Now we shall introduce some notation and terminology we shall use during this note.
Given ¢ > 0 and 7 € IR", let us consider the following scaled function

N
*

p(u) =ugs : z = o7 u(Z 4+ oz — T)).
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This scaling operation p keeps constant the norms || Vu, ||z2 and || u, ||;2+ and is
determined by the center or concentration point T and the modulus 0. For every real
number ¢ we shall say that a sequence (un)nemw is a PS sequence for the functional I at
level ¢ if the following two conditions hold:

1. In(up) = c;
2. VI (u,) — 0 strongly in H~! where VI, is the Fréchet derivative of I .

We shall briefly say that (u,)nemw is a PS sequence if there exists a level ¢ € IR such
that (uy)nemw is a PS sequence at level c¢. In order to produce estimates on the values of
solutions u to (SP), we observe that v = |u| (extended by zero out of Q) solves

(EI) —Av < b? 7!+ A,

where b is any coefficient bigger than one and A = —inf(bs? ! — sP~1 — \s) (taken for
1 <p<2 s >0)is a constant which does not depend on u. Since b can be trivially
normalized, we shall always take b = 1 in (EI). So the estimates in these next two sections
will be derived for solutions to (EI) in H'(/RY) and this will make us free from caring
about the sign of u or taking into account the domain (2.

Definition 1.1.1 Let (up)nemw be a given sequence. We shall say that (up)nemw 18

e a controlled sequence if each uy, is a solution to (EI);

e ¢ balanced sequence if each u, solves (SP) for some p € [2,2*].

Remark 1.1.2 As we have already pointed out, every solution to (SP) (under a null
extension out of Q) is solution also to (EI). Therefore every balanced sequence is a con-
trolled sequence. On the other side, when we shall deal with controlled sequences, we shall
assume that they are positive since we can always replace them with their absolute values,
and that Q = RN.

Let us recall the main result in Struwe (see [16], [17] and, for some terminology used
below, [15]).

Theorem 1.1.3 Let (uy)nemnw be a noncompact PS sequence. Then, by replacing (Un)nemw

with o suitable subsequence, there exists a finite number k, depending on a bound M on
|unlly (namely k < MS?T, where S is the so called Sobolev constant), of global solutions
@; to (CP) in HY(IRN) with A = 0 with corresponding k sequences of mutually diverging
scalings (p)nemw with respective concentration points zi, and diverging moduli ot (i.e.
limy, , o 0% = +00) such that

k
(1.1.1) Un = D Pp(@i) = o in Hg(Q),

i=1

where U, weak limit of the sequence, solves (CP).
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We shall call concentrating sequence any bounded sequence which satisfies a weaker case
of the property in the above thesis. More precisely, we shall say that (up,)nem is a concen-
trating sequence if the limit (1.1.1) holds in the L?" strong topology with 1 < k < MS—%,
U solution to (CP) and ¢; multiple of a global solution by a constant «; > 1. So The-
orem 1.1.3 says, in particular, that from any noncompact PS sequence we can extract a
concentrating sequence. Given any concentrating sequence we shall also consider the scal-
ings p!, and the limit functions ¢; (which are not uniquely determined by Theorem 1.1.3)
as also given. In what follows, we shall call (p,)ncv One of the “basic scaling sequences”
pt. which corresponds to a function ¢; which concentrates in z,, = z in the slowest way
(for which the respective o, = ot is the lowest order infinite). So o, and z,, will be also
considered to be given, once we have fixed any concentrating sequence. Actually, we may
find two different sequences of scalings with the modulus of the same order: in this last
case we shall choose arbitrarily one of them. We shall now consider, for any n, k£ + 1
concentric annuli centered in z, and of width 70,2, Among them, for every n € IV,
we can find at least one annulus without concentration points. Being £k < M S~% inde-
pendent by n, this procedure allows, passing to a subsequence, to choose a constant C,
which does not depend on n, such that 1 < C <T7k+1< TMS—% + 1, such that the
o-1/2neighborhood of the annulus A! = B g5zt (@n) \ Bg,-1/2(za) doesn’t contain
any concentration point for every n € IN. We add this last requirement to the definition
of concentrating sequence, so the sequence of the annuli A} and of their thinner subsets
Ai = B(6+4)a;1/2 (IEn) \ B(6+1)a;1/2 (IEn) and A?L = B(6+3)a;1/2 (IEn) \ B(6+2)a;1/2 (IEn) will be
also considered to be fixed in correspondence of any given concentrating sequence. We
shall refer to these terms as to safe regions of the sequence and they are the sets on which
the local uniform bounds will be established.

1.2 Integral estimates for controlled concentrating
sequences

Definition 1.2.1 Let p1,pe €2, +00[ be real numbers such that ps < 2* < p;, a > 0 and
o > 0. We consider an inequalities system

U < «@
Juallp, < @

N
o

S =

which will let us introduce a norm depending on p,ps and o, by setting
| % ||py po,o= i f {e >0 | Juy, ug such that (1.2.1) is satisfied and |u| < uy + ua} .

The above norm will be briefly denoted by || u ||, when py and py can be supposed to be
given.
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Remark 1.2.1 Let py,ps €]2, +oo| real numbers such that p; < 2* < p; and o > 0,
then, by the very definition, for any function u we get

N_N
lulle < Nlullpy s [lulle < llullp,o® >

The goal of this section is the following Brezis-Kato type regularity result (see [5, Theo-
rem 2.3]):

Proposition 1.2.1 Let (uy)new be a controlled concentrating sequence, then for any
D1, P2 E]%, +o0[, p2 < 2* < p; there exists a constant C(p1,p2) depending on the se-
quence and on the exponents py and po, such that for any n € IN

|| Un ||0'nS C.

To this aim, we shall state three preliminary lemmas: a continuity lemma, a bootstrap
lemma and the relative initialization lemma.

Lemma 1.2.1 Let u and v € H'(IRY) and a € L (IRY) be three positive functions such
that
—Au < a(z)v .

Then for each pi,pa €]2, +00| there exists a constant C(N,p1,p2), depending on the
dimension N and on the exponents p; and py, such that for any o > 0

I llo< C(N 1) a1y el

PROOF. Let u, v be as in the statement of the lemma and let fix ¢ > 0 and € > 0. Let
v < vy + v such that v; and v, satisfy (1.2.1) for a =|| v ||, p,,» +€. Let us consider, for
i =1, 2, the solution u; € H'(IRY) to —Awu; = av;. Then

lwi [lpe< C(N, pi) [ @ [[ ]| 03 lp:

and, being —Au; — Auy = av; + ave > av > —Au, by the maximum principle we have
u < uy + uy. Since the functions v; satisfy (1.2.1) with oo = C(N, py)||al|x (|v]|- +€), by
the arbitrariness of € we get the thesis. &

The bootstrap argument relies in the use of the following lemma.

Lemma 1.2.2 Let p,p, €)322, TXE2] such that py < 2* < p; and let ¢; be defined, for
1=1, 2, by

(1.2.2) —= 222
If u and v are two positive functions whose support is contained in a bounded set Q) and

such that
—Au <P 4+ A,
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then there exists a constant C(N,py, pa, Q) such that for any o > 0:

N2

(123) Il < OV, 1,22, D) (10 ) +1)).

Proor. By proceeding as in the previous lemma, we consider v = v; + v where the
functions v; satisfy (1.2.1) for & =|| v ||, po,c +€ and € is a real strictly positive number
arbitrarily small. Let u; and ug be two functions in H}(€2) such that

Since

2

N2 N+2 1

—Au<vN 2+A<2N—_ . +A+2N2 2N2=—Au1—Au2,

by the maximum principle 4 < u; + ug follows . Hence, we have to estimate || u1 ||, and

| ug ||g,- We have, using (1.2.2) and being 312 < p; < NN

2 N-2?
Ltz btz L Ny2
lun o S OOV 107 + Al yazs < CWVp0) (Il o 7 +Ajgl ¥)
N+2
< C(N7p179) ((“ v ||;D17;D2,ff +5) -2+ 1) .
Analogously, if we use the equality
N N _ (N N\N+2
2 ge \2* p/ N-2’
we get
N _N e
N¢ N _NIN-2
I e < OOV} v ) ¥ < OV ) (10 e +2)0™ 5]
Ni2 (N _ N yN42
= CO )0 g +) 720 2R
Nyz NN
= CE )0 lpugno )30 5

So u; and uy solve (1.2.1) for C = C(N, py,p2, ) ((|| U || p1,pa,o +5)% + 1); this con-

cludes the proof by the arbitrary choice of £. B
Now we need to initialize the exponents through the following lemma.

Lemma 1.2.3 Let (uy)nemw be a controlled concentrating sequence then there exists a
constant C' and exponents p1, po E]%, +00, po < 2* < py, such that for any n € IN

(1.2.4) | tn [lon< C .
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PROOF. This proof will follow a Brezis-Kato type argument (see [5]) in order to get
free from an infinitesimal term which is the only real obstacle to our estimates. For any
n € IN, we can consider, using a homogeneous notation, u, = u® + ul + u2, where

e u, stands for the weak limit u;
e u2 stands for the sum of rescaled functions ¢;, u2 = 3% | o (;);
o u) = u, —u2 — uy is, by definition of concentrating sequence, an infinitesimal term

. *
in L? -norm.

We shall overcome the difficulty due to the presence of ul by taking advantage of the
assumption that we are dealing with a controlled concentrating sequence. Let u be one
of the terms u,, u; = v}, and a; = max(l,?)%)uiﬁ fori=1, 2, 3,and ¢ = g, . The
infinitesimal character of u) shall allow us to consider ay as small as we want in the Lz
norm ((1.2.4) is easily checked on a finite number of terms, see [5] and [9]). Being

2% _9 6-—N _4 _4 _4
a=u Smax(l,?)N—2)(|u0|N—2 + up N2 +u2N—2) ,

we can consider u as a solution to —Au < (agp + a1 + az)u + A, so by the monotonicity
of the Green operator G (G : H-'(Q) — Hj(€) denotes the inverse operator of —A) we
have

(1.2.5) u < G(agu) + Glaru + A) + Gagu) .

Since © is a bounded set and a; € L™, we get that G(a,u+ A) is bounded in W2?" — [P,

for any p; such that
2 N-6

1 1
> 2=
and so (see Remark 1.2.1)

(1.2.6) 1G(a1u+ Ao < [|G(aru + Allp, < C.

Now let 2% < py < 2* be given. We consider the index r such that

1 1 1 2

Do 7"+2*_N’

from p, > 2* we get r > &. The decay speed of the solution ¢ = ¢; (see [9]) allows us
to say that ay € L™ and, if we want to estimate the L"-norm of ay, we just have to take
into account the less concentrated term, namely p,(p), as follows from r < %, which is
in turn a consequence of ps < 2*. By easy computations we have

||a2||Lr S 00'2_% y
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which, taking into account that 2 — & = X — X implies
P2
N_N
(1.2.7) 1G(azu)lp, < Cllaz||zr||ullz2x < Co? 72,
therefore, from Remark 1.2.1
N_N
(1.2.8) 1G(azu)|ls < o727 |G (azu)lp, < C'.

Now we point out that with the above choice for p; and p, we get

1
(1.2.9) 19 (a0l < 5 llulls -

Indeed, by Lemma 1.2.1, we get

1
(1.2.10) 1G(aow)lls < Cllaolly llulls < 5 llulls

under a suitable choice of the bound on the norm of ay. So by (1.2.5), (1.2.9) and the
triangular inequality, we finally obtain

lulle < 2[1G(aru + A)lls + 2(|G(azu) |, ,

which, combined with (1.2.6) and (1.2.8), gives the thesis. &

PROOF OF PROPOSITION 1.2.1.  Let (uy)nev be a controlled concentrating se-
quence. By applying the initialization Lemma 1.2.3, we can find a constant C' > 0 and
two exponents, p; and po E]%, % %[, P2 < 2* < py such that (1.2.4) holds. Using the
bootstrap Lemma 1.2.2 we can repeatedly enlarge the interval |ps, p1[ to ]gs, ¢1[, where the
exponents ¢; are given by (1.2.2), obtaining (1.2.3). This procedure allows us to manage,

in a finite number of steps, every exponent p;, po E]%, +oof. m

1.3 Local uniform bounds on controlled concentrat-
ing sequences

In this section we shall establish a local uniform bound on the terms of a controlled
concentrating sequence on the safe regions A2.

Proposition 1.3.1 Let (uy,)new be a controlled concentrating sequence. Then there exists
a constant C > 0 such that for any n € IN and for any z € A2:

un(z) < C.
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The proof is a simple variant of the argument used in [14] and in [9] and shall require
some preliminary steps. We begin by establishing a weaker estimate.

Proposition 1.3.2 Let (uy)nemw a controlled concentrating sequence. Then there exists a
constant C > 0 such that for any n € IN and for any z € AL:

N-2

un(z) < Con* .

PROOF. We shall proceed by contradiction: let (y,)nenv be a sequence such that y, € AL
for any n € IN and

2—N

(1.3.1) lim wu,(yn)on® = +oo,

n——+0o

and let us scale the functions u, in such a way to carry the point y, in the origin and
normalize the value of the functions. The required scaling sends u,, in %, defined as

where

(1.3.2) lim — =

Therefore, since y, € AL, there is no concentration point which approximates y, at a
distance less or equal to o, 1/2 and so of the order of p,, we can deduce that @, — % = 0.
The contradiction will be archived by showing that we can choose the points ¥, in such a
way to have % # 0. This shall possibly force us to work on a eo;,'/2-neighborhood of AL,
but this change will obviously not make any relevant difference in the above argument.
The choice will consist in forcing the property

(1.3.3) Un(y) <2 (= 2i,(0)) Yy e B,(0)

for some given p > 0. Then by using that @, still satisfies (EI) and by estimating the
variation of the mean value of u,,, we have for 0 <r < p

T 1
~n = ~n ANn
]gBTu in(0) + 0o NboytN-1 (/Bt b )dt

r 1 2% _1 2
> 1-¢f tN_l/Bt(2 YAt =1—Cr >

1

2 7

where by stands for the N — 1 dimensional measure of the unit sphere in IRY, provided
we choose r conveniently small. So the weak limit % can’t be zero. Therefore we only
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have to prove (1.3.3). To this aim, let us fix p > 0 and assume that, for a given n € IV,
yn, does not satisfy (1.3.3). Then we must fire y,, and look for a better point to hire for
the same job. Since (1.3.3) is false, we can find z, € B,(0) such that

- Up 2 :pn¥un PnZn +Yn) 2 2.
1.3.4 7 > 2

The first candidate to replace y,, is

yr(zl) = Pn2n T Yn

which leads us to replace p, by

(1.3.5) P = [un (yf}’)]ﬁ <27vp, .

We can be sure that y(! is at least as good as ¥, to let (1.3.1) hold since (1.3.4) implies
that

(1.3.6) Un, (yfll)) > 2 (Yn) -

Moreover, being z, € B,(0), we get

(1.3.7) 195 = yn| = |2npnl < ppn -

We can define i, as before by substituting y, and p, with y{" and p{) respectively. If
this new 4,, satisfies (1.3.3) we do not have to look for other choices. Otherwise, we repeat

the same argument and we choose a second candidate y ) by arguing in the same way.

For any fixed n € IN, we proceed recoursively finding a sequence y{", y@ ... &) as

far as we don’t find a successful choice, which lets us claim (1.3.3). We can easily see
that this process cannot go on indefinitely. Indeed (1.3.5) becomes in the general case,

for i >0

p(l+1) < 2_Np$1l)
and (1.3.7)

it — 4D < pplD)

Then one easily sees, by taking the sum of a geometric sequence, that y{) converges to a

point y,(fo) as 1 — 400 but, by construction, we have un(y,(f)) — +00, in contradiction to

the smoothness of u,,. Finally, for every 7z > 0, we have

U — yul < ppn 222 ¥ < g0y ?,
7=0

for n large. So all the points y{?) are in the 0/, '/?-neighborhood of A, and so can be used
to replace y,. &
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Proposition 1.3.3 Let (uy)nenv be a controlled concentrating sequence, then there exists
a constant C > 0 such that for any n € IN and for any r € [60;1/2, (C + 5)0;1/2] :

]L U, < C.
8B, (zn)

PROOF. By continuity, being (u,)new bounded in L¥ C L', we can suppose

with a constant C independent from n. So, for any n € IN, there exist r, € [1,1], such
that
][ U, = C .
8By, (zn)
We are going to use Proposition 1.2.1 for p; = NX*2 and p, = {32, so, for any n € IV,

we choose u; = uy, and us = ug, such that (1.2.1) is satisfied for ¢ = o, and with a
constant « that does not depend on n. Estimating the spherical mean variation from r,
~1/2 < %, i.e. v < ry for n large, we find:

to r and taking into account that (C + 5)o;,
][ o+ [ 8 ][ dt=C + / — / Auydt
U, = — Updt = — —Au,
8B, (zn) rn At JoB.(zn) r NbytN=1 JB,(z,)

C 7/ n A)dt
+ ﬁan—lﬂ NbNtN_l Bt(:l:n) (U + )

C + ' Qﬁ 1 / %dt
6051/2 NbNtN_l Bi(zn) Y1n

IA

IA

1 4 1

+ 9w / ¥, A /ltdt
N—-2 N-=-2 -
Coy'/? NoytN-1 Bt(zn)uQ’" N Jo

PEE A
Nby (Ar+4) + 55

- C
* N’

where for ¢+ = 1,2
1

1
Ai = /60.;1/2 t—N—l /Bt(wn) ui,nN—2dt B

Being u; , € Ly %, by Hoélder inequality we get

1 Ny1-L s
ASCAtMAt)NMMLwﬁﬁSCaSC.
N42 N42
. . o= N-2 1
On the other side, being uy, € LV-2, i.e. uy,” € L' we have

[

N+

1 1 N _NN-2)]N-2 Nyz 2=N pl 1
Ay < /_ i NI [0407(12 +2)] dt = a N30y, 2 / dat < C,
Cop,
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and this concludes the proof. m

JFrom Proposition 1.3.3 we see, by integrating with respect to r, that

(1.3.8) ]gl U < C.

3

Since, Vx € Ai : Ba_—l/2 (@) C A}L and the measure of the two sets are of the same order,

from (1.3.8) we deduce that

(1.3.9) Vz € A2 : ][ u, < C.
Ba_—l/2(w)
Since
up(x) = lim Un,
p—0 By (z)
Proposition 1.3.1 follows from (1.3.9) if we estimate the variation of uy for0 < p < o;1/2,

By (z)
PROOF PROPOSITION 1.3.1.  Let us fix an index n € IN and a point z € A2. If
un(z) <245 _1/2(a) Un» DY (1.3.9) we have done. Otherwise, setting for any p > 0

m(p) = ]ng(w) up, and  m(0) = u,(z),

we deduce that
35 < 042 such that m(p) < =m(0) =

Then we take p; and ps € [0, p] such that m(p) attains its maximum in p;, and py is the
least value of p > p; such that m(p) < im(p).
Being u, solution to (EI), and B,,(z) C A, we have on such a set, by Proposi-
4

tion 1.3.2, un > < Coy,. So we find, for n sufficiently large,

1 () /pl ( d ][ > q o2 1 / Aud

—m = —_ Unp, == ~r1 N1 — AUy

9T p2 \dp JoB,(z) P pn NonpVN—1 JB,(x) P
02 1

4
< 7/ (uFun +A) d
o NonpN—1 JB,(z) g
1 /P2 1 4 / N)
- sup u, V-2 Up | + Ab d
Nby Jpr pN—! ((B,,(lz) )(Bp(w) ) vy
b2 1
c / <0n / Up + Ap™ ) d
1 pN_l By(z) g g

P2
C(m(p)on +A) | pdp < Cm(p1)on(ps — pl)

1

IA

IA

IA
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1/2

therefore (p2 — p?) > Co,; ' and so ps — p; > Co;, /2. Denoting by A the annulus centered
N

in z of radii p; and p, we have that measure of A is of the order of o, ?, i.e. of the same
order of Al and so as in (1.3.9) we have

]gungC.

frn 2 mipn) = Sm(on)

On the other hand:

and so
un(z) = m(0) <m(p) < C.

1.4 Gradient estimates

In this section we shall give a integral bound for the derivatives of every term u, of a
controlled concentrating sequence in its safe regions A2 which shall be used, jointly to a
local Pohozaev Identity, to prove the nonexistence of balanced concentrating sequences.
One can easily guess that, since u,, and Au,, are uniformly bounded on A2 and the width
of A2 is of the order of ;%2 Vu, can be expected to be of the order of ¢:/2. Such
estimate can be very easily proved in a rigorous way in an integral form on the smaller

annulus A2, by a Caccioppoli-type inequality.

Proposition 1.4.1 Let (uy)nemw be a controlled concentrating sequence. Then there exists
a constant C > 0 such that for any n € IN:

2—N
2

(1.4.1) /Ag |Vu,|* < Co.

PROOF. Let us fix n € IN and consider ¢, : RN — [0,1] a smooth positive mollifier
radially symmetric around z,, such that

1) ¢, =1o0n A3;
2) ¢, = 0 out of A2;

3) Ay, < Coy,.
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By 2) we have ¢, = 0 and Vg, = 0 on d.A2, and so, integrating by parts, by 1) we get

/ —AUnUntpn, = / Vg *on + / Vg - Vo ty
RN A2 A2
1
2 2\ .
> /A% |V, +/A%V (Eu") Vo,

1
_ 2 _ 1 2
= /A% V] B /A% Apn Uy, -

Therefore, being u,, solution to (EI), by Proposition 1.3.1 and 3) we have:
- 1
2 2 2 2
(1.4.2) /A% |Vu,|” < /A% (|un| +Aun) on + 5/,4% Appus < C(1+0,)| Azl .

Since oy, > 1 for n large one has (1.4.1). u

Corollary 1.4.1 For any n € IN there exists t, € [C + 2,C + 3] such that, denoting by
B, = B(zy,tho;1?):

3-N
(1.4.3) / |Vug|* < Con?
8By

where C s the constant in the above proposition.

1.5 Local Pohozaev Identity

In the next section, we shall test the presence of concentrations which would prevent us to
find solutions to (CP) as limits of a balanced concentrating sequence. To this aim, we shall
evaluate the infinitesimal variation of the functional corresponding to (SP) under a scaling
of a concentrated part of w,. Such a variation must be null because we are dealing with
a balanced sequence. This condition is equivalent to the well-known Pohozaev Identity
which we must establish in a local form (namely without using boundary conditions) since
it shall be tested on a small concentrated part of the functions u,. We fix a general open
smooth set B in IRY and shall consider, more in general, a semilinear elliptic equation of

the form
(1.5.1) —Au = g(u) .

Let u be a smooth solution to (1.5.1) on a smooth domain B. Multiplying by « and
integrating by parts we get

2 __ =
(1.5.2) /B |Vul* = /B g(u)u+ /8B (Vu - u,
where 77 is the outward normal to B. Multiplying (1.5.1) for Vu - z, since
V- ((Vu-z)Vu) = Au(Vu - z) + (V(Vu - z)) - Vu,
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using the Divergence Theorem and by integrating by parts we get

[ -suu-2) = - [ (Vu-a)(Vu-i)+ [ Vu- (Viurz+1-Vu)
(1.5.3) = -/ (Vu-x)(Vu-ﬁ)-i-/BV(%WuP) .x+/B|Vu|2
~ o (Vu-x)(Vu-ﬁ)+%/aB|VU|2($'ﬁ)+¥/B|V”|2'

On the other side, calling G(u) a primitive of the function g(u), integrating by parts we
get:

(1.5.4) /Bg(u)(Vu-:E)=/BVG(u)-xz/aBG(u)(:E-ﬁ)—N/BG u

Combining (1.5.3) with (1.5.4) we obtain

(15.5) AL / " Jon &0
(Vu z)(Vu - i) 2/ \Vul*(z - 7) .

Multiplying (1.5.2) for — & and summing (1.5.5), we have

(1.5.6) N/ / g(wu = /alfG(U)(IE'ﬁ)+/aB(Z[u-x)(Vu-ﬁ)
=5 | VP @)+ 5 [ (Vu- i

which becomes in our case (i.e. g(u) = |u[P~2u + Au)

(= F) L[ = 5 [ b my [ e
(1.5.7) +/a (V- 2)(Vu - 75) — %/OB VulX(z - 7)

+§/ (Vu - t)u

By a translation, we can move the origin to any fixed point 7y € IRY and we can for-
N

get, being p < 2*, the positive term (— - —) / |ulP, in order to obtain the following
p

“Pohozaev-type” inequality:

Al < 3 [ (e a0 @)+ 5 [ (@) -9
(1.5.8) —i—/a (Vu- (x — 0))(Vu - 71)
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1.6 Concentration estimates

In this section we shall use the local Pohozaev Identity to prove that concentrations are
not possible for balanced sequences in dimension N > 7.

Lemma 1.6.1 If N > 7 no concentrating sequence can be balanced.

PROOF. Let a concentrating sequence (uy)nemw be given and assume by contradiction that
it is balanced. Let us fix n € IN, we shall use (1.5.8) on B,, = B(zy, t,0;, /%) N Q, where
t, is the same as in Corollary 1.4.1, and we shall split 0B,, = 0;B, U 0.B,, where 0.B,,
(empty in the case in which the concentration point z, of the basic rescaled function ¢
is sufficiently far from 92) is Q N B,,. When 9,B, = 0, to the aim of applying (1.5.8),
we shall take zy equal to the concentration point z,,. Otherwise we shall take o out of 2
such that d(zg, z,) < 2t,0; /% and

(1.6.1) Ve € 0.B, : fi-(x—x) <0,

where 77 is the outward normal to B, (roughly speaking z, is the “symmetric” of =,
with respect to 92). We want to show that (1.5.8) cannot hold true, in contradiction to
the assumption that the sequence is balanced. To this aim, we must give a lower bound
to the left hand side of (1.5.8) and a smaller upper bound to the right hand side. In the
first case, we shall restrict the integral on the ball B!, = B(z,, 0, '), which is contained in
Q for n large, and we shall make use of the decomposition u, = u? + u,, + u2 introduced

in the proof of Lemma 1.2.3. So we have

1
(162 [ @2 [ 2y [ -2 @i -of @)
Now [ (uz)? is of the same order of [5 (0u(¢))?, namely of the order of 0,2 because ¢
corresponds to the less concentrated global solution. Moreover

() < lluccll 1By < Co™

n

and

BL" 5 < [|ud]2.02 .

) < ws)?

!
n

o
2

Since [|ul ||« — 0, by (1.6.2), we see that the left hand side of (1.5.8) has a lower bound
of the form Co,?, for a suitable constant C. Passing to the right hand side, we firstly
evaluate the possible contributions of 0,B,. On such set only two of the integrals must
be taken into account because we have u, = 0 on 0,B, C 0{2. For the same reason, Vu,,
has the direction of 77 and so the whole sum, from (1.6.1), can be written as

1

3 Joun. (Vg |*(x — 20) -7 < 0.
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So we can focus our attention to the integrals extended to 9;B,. Hence from Proposi-
tion 1.3.1, we get

N

A 9 L1 ) B 3 oy
3 Lo il @ =) @)+ [l (@ =) @) S C [ (2= 20) ) < Con ™,

8;Bp, 8;Bp,

and from Corollary 1.4.1 and our choice of B,
2N
/ (Vug|?|lz — 2| < Con® .
8; Bp,

Finally, from both Proposition 1.3.1 and Corollary 1.4.1, by Holder Inequality

1/2 1/2 2-N
| (Vi un < ( / |Vun|2) ( / |un|2) <Con® .
8;Bp, 9;Bp, 8; By,

Combining these estimates, we see that the right hand side of (1.5.8) is therefore bounded
=N
by Con? . So (1.5.8) requires
2-N
(1.6.3) Mo, 2 < Con’®

which is clearly false for n large. n

The utility of the previous lemma is guaranteed by the next statement, which can be
seen as a variant of Theorem 1.1.3 and which allows us to say that from a noncompact
balanced sequence (u,)ncmw We can always extract a concentrating sequence, even if we
do not know if (up)new is a PS sequence.

Lemma 1.6.2 Let (u,)new @ noncompact bounded balanced sequence in H}(Q). Then
from (Uy)nenw we can extract a concentrating subsequence.

PROOF. We can assume (by passing to a subsequence) that (un)nemw has no converging
subsequence. Under a null extension of u,, to the whole of IRY, we can use the structure
theorem for bounded sequences in [15], according to which every term of the sequence
can be approximated by a sum in H'(IRY) of the scaled “restored scale limits” of the
sequence itself. What we still need to know is how to quantify the number of such limits
and to qualify them as multiple of global solutions. To this aim, we shall prove that:

a) the weak limit u., of the sequence solves (CP);

b) any restored scale limit ¢; of the sequence is a solution to the limit critical problem
on IRYN multiplied by a constant o; > 1.

For any n € IN we call p, the exponent p such that u, is solution to (SP). Now, being
(un)nemv a bounded sequence, by reflexivity of H}(€2), using Rellich Theorem, we can pass
to a subsequence such that
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® Pn =P < 2%
® u, — Uy weakly in H}(Q);
® U, — Uy a.E.

Therefore
(1.6.4) U [P 20, + Ay, = oo [P 2o + Mo ae.

moreover, by linearity, we can say that —Auwu,, — —Au.,. Being u, a solution to (SP) the
two limits must coincide i.e. —Atg = |[Uoo|? *Uso + AUoo. Now p = 2%, otherwise we would
use the compact Sobolev immersion of Hj(€2) in LP(f2) obtaining a strongly converging
subsequence and this is a contradiction to our hypotheses; therefore a) is proved. Let
¢ = lim,_,, o pn(u,) in the weak H'-topology be any restored scale limit (see [15]), where
(pn)nenv is any diverging sequence of scalings each one of modulus v, > 0. By easy
calculations, being uy,, solution to (SP) we get that

(1.6.5) —Apa(tn) = (va)*~ T | oy (u) " pa(tn) + A pa(tn) -

Now it is obvious that, being {2 a fixed bounded domain, the only way to get non zero
weak limits is to have (p,)nen diverging by vanishing, i.e. lim,_, o v, = 0. Passing to a
subsequence, we can assume that

N N(1-2z
]/721, 2*(pn2):]/n( 2)_>'u§1

and pu > 0 because ¢ # 0. Using the linearity of the operator —A and Rellich Theorem
we can pass to the limit in (1.6.5) obtaining —A¢p = p|p[> 2. So, "5 ¢ solves (CP) in
H(IRY) for A = 0 and, since ,u¥ < 1, ¢ is as required by the definition of concentrating
sequence. Statement b) implies, in particular, that ||¢;|; > S* and so gives the bound
on k required by the definition of concentrating sequence. B

PrROOF OF THEOREM 1.1.1.  Let us suppose, by contradiction, that there exists a
bounded balanced sequence (uy)nen such that

sup sup |up(z)| = +o0.
nelN zeQ

A standard regularity argument [5] shows that u, cannot be compact in H', so by
Lemma 1.6.2 it has a balanced concentrating subsequence and this is excluded by Lemma 1.6.1.
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1.7 Multiple solutions to the critical problem

We can now give the proof of Theorem 1.1.2 stated in Section 1.1. Let us choose a
sequence (P )new in ]2,2*[ such that p, — 2* and the functionals

1 A 1
VIS =—/V2——/ 2——/ pn
s) =5 [ Vet =5 | vl - AU

whose critical points are solutions to problems (SP) for p = p,. We shall find, in a usual
way, an infinite number of critical levels c{*) of the subcritical functionals I} obtained by
means of min-max levels on a k£ dimensional min-max class of compact sets I'y on the

constraint
V={ue Hw | [IVu - [|uf =1},

which does not depend on n. Precisely we call I'y, the set of compact subset of V' which
have Krasnoselskii genus greater than k for all £ such that A < A;. For fixed n, k € IN
we set

¢ = inf sup I, (v)
AEFk vEA

and

(k) _ - n
c, Alglfk 3161112 I (v) .

It is easy to show that given 7{¥) € V such that I?(a{®) = ¢ then oFu), with

o) = [(1 _ E(k)) » ]2‘;
n 2 n n ?

is a solution to (SP) at level

2
1 2-pn [ 1 1
1.7.1 () — [(_ - —<k>) ] —_ ).
( ) CTL 2 CTL p 2 pn

Analogously we shall call

o7 s [G-2)] (G-3)

The proof will follow from the following lemmas.

Lemma 1.7.1 lim,_, c%k) =c¢ for any k € IN.

Lemma 1.7.2 limy_,, o ¢ = +00.
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PROOF OF THEOREM 1.1.2.  Fixed k € IN, we take, for any n € IV, u, = ul®
a critical point at level ¢® for the functional I¥. First we use Lemma 1.7.1 and [I,
Lemma 3.6] to have (u{")), ¢ bounded in H}. The sequence (uy)nemv, by Theorem 1.1.1 is
then uniformly bounded, so by standard compactness arguments we can find a converging
subsequence to a solution u{®) to (CP) at level ¢, as follows from Lemma 1.7.1. By
Lemma 1.7.2 we have infinitely many distinct values of ¢; for £ € IV and so the proof is
concluded.

Now we give the proofs of lemmas 1.7.1 and 1.7.2 which conclude the paper.
PROOF OF LEMMA 1.7.1. Let us fix k € IN and A € I';, then for any u € A :
I(u) — I)(u). Being A compact and the functionals equicontinuous,

sup I (u) — sup I\ (u) .
ucA u€A

Then lim sup,,c )y 2F) < sup,c 4 I»(u) and, being A an arbitrary set in I', we get

lim sup E&k) <c.
n—-+00

By the very definition, see (1.7.1) and (1.7.2), we get

lim sup cglk) <c -
n—+0o0o

Since for s > 0 the function h(s) = _-s”* — 5:5% gets its maximum value in s = 1 we
n
1 1

have h(s) < ;- — o= for all s > 0. Therefore for every u € Hj:

so, for any k£ € IN,

7 < limi (k)
o < minen

and by (1.7.1) and (1.7.2) we get

. . (k)
cr < lyllm inf Cy,
and the thesis.
|

PrOOF OF LEMMA 1.7.2. We want to remark that such a result is not based on
compactness properties because, if we prove the statement for A > 0, i.e. when we have
compactness, the statement itself is obviously true when A < 0 and compactness fails.
Moreover this lemma, is also true in lower dimension, as we can see, in the same way,
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by adding a suitably big subcritical term. On the other side, the use of compactness
techniques takes advantage of the previous results in this paper. Let us suppose, by
contradiction, that the sequence (cg)xev is bounded, hence it converges to a real number c.
For any k € IN by Lemma 1.7.1 there exists ng > k such that |c¥) — cx| < +; hence

. &) _ 1 _
(173) kEI-Poocnk kll}I-PooCk ¢

and the sequence (ng)rem is diverging, i.e.

lim ng; = +oc.
k—+oco
Let up, be a solution of (SP) at level c¥). Using the Morse Index estimates on min-max
points (see [4] and [10]), we can select the sequence (uy, )remw such that every u,, has an
augmented Morse index greater or equal to n,. By our assumptions, we can claim that
the sequence (uy, ke is bounded in Hg(Q). Indeed, being u,, a solution to (SP) we have

1 1
(1.7.4) I (up,) = (5 — —) /Q |t [P — €,

Pry,

which gives the boundedness of —Au,, — Au,, in H! and, in turn, the boundedness of
Uy, on Hj (this is obvious when A is not an eigenvalue and, in the general case, a blow up
of the component of u,, in the eigenspace is clearly excluded by (1.7.4)). So the sequence
(tn, )ken is uniformly bounded by Theorem 1.1.1 and therefore the Morse Index of u,,
must keep bounded in contradiction to our construction.
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Chapter 2

A multiplicity result for elliptic
equations at critical growth in low
dimension?

We consider the problem —Au = |u|? ~2u + Au in Q, u = 0 on 89, where Q is an open regular
subset of RN (N > 3), 2* = 2 is the critical Sobolev exponent and ) is a constant in ]0, Ay[
and A is the first eigenvalue of —A. In this paper we show that, when N > 4, the problem has

at least % + 1 (pairs of) solutions, improving a result obtained in [4] for N > 6.

Introduction

In this note, we shall deal with the problem

(P)

—Au = |u’ %u+ in
u = 0 on 99

where {2 is an open regular subset of RY (N > 3), 2* = 2% is the critical Sobolev exponent for

the embedding of H}(f2) into LP(92), and X €]0, A1[ is a constant, where \; is the first eigenvalue
of —A. Brezis and Nirenberg in a celebrated paper [2] found a positive solution to (P) at a level
co < %S %, where S denotes the so called Sobolev constant,

2 2

S= inf oVl _ inf ””VTP”?.
€H;(Q2 2%y 3% €H;(Q U ||9x
ueloi ) (Jo lul*)>™ el 2

Our aim consists in showing that, for N > 4, (P) has at least m (pairs of) solutions where
% + 1 <m € IN. We are really concerned with low values of N, since we have recently proved

2G. Devillanova & S. Solimini A Multiplicity Result for Elliptic Equations at Critical Growth in Low
Dimension Comm. in Contemporary Math., Vol. 5 N. 2( April 2003), 171-177.

27
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in [5] that (P) actually has infinitely many critical levels in dimension N > 7, thanks to some
compactness properties which can be shown to be false if N < 6. Nevertheless, if N = 6, a result
proved in [4] shows that (P) has at least two (pairs of) solutions, corresponding to a ground state
level ¢y (the one considered in [2]) and to a different level ¢; > ¢, obtained as the minimum of
the functional

1 2 A 2 i/ 2
(2.0.1) I)\(U)—2/ﬂ|vu| 2/Qlul o Jo [l

on the “double” natural constraint
(2.0.2) U= {u € H (D) |uF #0, (VIy(u),uT) =0, for both + signs} .

In problems involving critical growth, the main difficulty is in the “lack of compactness” of
the embedding of H}(2) into L () and this makes the Palais-Smale condition do not hold
“globally” with respect to the functional I defined on H}(£2), whose critical points are solutions
to (P). More precisely, the [P.S.]. condition is false at some levels ¢ € IR, namely there exists
some ¢ € IR and a P.S. sequence at level ¢, defined as a sequence (uy)new C HE(2) verifying

(a) I)\(’U,n) —cC,
(b) VIx(uy) = 0in H~1(Q) strongly ,

without any strongly converging subsequence.
The existence of a critical point at level ¢; > ¢ is proved in [4] thanks to the estimate

1
(2.0.3) e <o+ NS% .

The proof of such inequality is the step which requires the lower bound on the dimension and
which we are not able to extend to our case. Nevertheless, we shall show in this note that one can
also build some different min-max classes which will provide the above mentioned multiplicity
result.

Stronger results can be proved in suitably symmetric cases, see [6], but their extension to
general domains does not look to be trivial, as one can appreciate by looking to the corresponding
radial problem. Indeed, in such a case, we even need the stronger condition N > 7 in order to
get (2.0.3) and moreover, when 4 < N < 6, in [1] the existence of a constant A\* €]0, A;[ such
that (P) have not radial changing sign solutions for A €]0, A\*[ is proved.

After few preliminary lemmas, which will be archived in next section, in Section 2.2 we shall
prove the following theorem.

Theorem 2.0.1 Let N > 4, then (P) has at least Y +1 distinct (pairs of) solutions YA €]0, A1
2

In particular we get at least three pairs of solutions for N = 4 and four pairs of solutions for
N =5 and N = 6, improving also in this last case the analogous result in [4], see also [3].

The above estimate can be further on improved if we restrict the parameter A in a smaller
neighbourhood of 0. Indeed, in section 2.2 we shall also prove the following statement.

Theorem 2.0.2 Let N > 4, then there ezists a positive numbeIX €]0, A1 [ such that problem (P)
has at least N + 1 distinct (pairs of )solutions for every X €]0, A[.
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2.1 Variational approach and preliminary lemmas

We shall need some preliminary lemmas which will allow us to use a suitable variational approach
and to build P.S. sequences which must have a nonzero weak limit, by taking advantage of the
behavior of non compact P.S. sequences described in [8].

We start by observing that the level ¢y of the solution ug found in [2] can be obtained as

= inf I
co = inf Alu)

where
Uo = {u € Hy() | u#0,(VIy(u),u) =0} .

Analogously, we can use as in [4] the constraint defined in (2.0.2) and set

2.1.1 — inf I\(u) .
(2.1.1) ¢ = inf Alu)

It is easy to prove that U is a regular constraint (see Lemma 2.1.1 below) and this allow us

to state the following definition.

Definition 2.1.1 Let (uy)new be a sequence in H(S)), we shall say that (up)nem 8 a con-
strained P.S. sequence in U at level ¢ if every element u,, belongs to U, the sequence (In(up))nemw
converges to ¢ and the tangential component to U in uy, of VI (uy) is infinitesimal in H—'(9).

It is well known, and it can be easily proved, that U is a natural constraint, in the sense
that the infinitesimal character of the tangential part of VIy(u,) forces the whole VI, (uy) to
be infinitesimal, as stated in the following lemma.

Lemma 2.1.1 Let (up)nemv be a constrained P.S. sequence in U, then (up)nemw is a P.S. se-
quence i.e. VI\(up) — 0 in H-1().

PROOF. By the very definition we get

(2.1.2) 0w = (5 -5 ) ([ IVasP -2 [ut?) <c,

where C is a constant which does not depend on n, which gives a bound to (uy)nemw in H ()
since A < A;. Taking into account that u, € U and that the tangential component of VI, (uy,)
is infinitesimal, by the definition of U we can deduce that also the normal part of VI,(uy),
multiplied by u;f tends to zero. Namely, we can find a sequence of Lagrange multipliers (5, )nemv
such that the normal part of VIy(uy) in uy, to U is given by uy,(—2Auy, — 22u, — 2*u2 ~1) and

,un/ ((—2Aun - 2Xuy, — 2*ui*_1)uff) —0.
Therefore, by using once more that u, € U, we get

pn(2 =2 [ 0.
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Since the sequence (||u; ||l )nemv is bounded from below we get u, — 0 and therefore the normal
part of VI)(uy) tends to zero in H=1(2). n

We shall state a lemma which will be used as a compactness type property for constrained
N
P.S. sequences in U at levels ¢ < %S 2.

N
2

Lemma 2.1.2 Let (up)nemv be a constrained P.S. sequence in U at level ¢ < %S , then the

sequence cannot converge weakly to zero.

PROOF. Being (uy)nemv a constrained P.S. sequence in U and X €]0, \{[ we have | Vu;| >

S% therefore an eventual strong limit of the two sequences (ul),cm cannot be zero. We have
to extend this claim to the case of a weak limit, which brings a weaker information when the
sequence is not compact. We know, thanks to [8, Proposition 2.1], that the “bad” levels ¢ for

noncompact P.S. sequences in ]0, 25 %[ are c=c + %S T with ¢ critical level for I, and the
weak limit of the sequence is a solution u to (P) at level ¢’. The obstruction to the compactness
of (un)neav is given by scaled copies of a global solution (i.e. a solution to (P) in IRN for A = 0)
which has a constant sign and disappears if we restrict ourselves to uff for one of the 4+ or — signs.
So, in one of the two cases, we have ul — u® strongly and so u # 0, according to the assertion

in the beginning of the proof, see also [3] and [4]. Therefore or c or c— 1S % is a non null critical
level which corresponds to the strong or respectively to the weak limit of the sequence (uy )pem.

We shall introduce some usual min-max classes; for £ € IV \ {0} let us set
I'n={ACU | Aiscompact, A=—-A, v(4) >k},
where y(A) is the Krasnoselskii genus of the set A and V& > 0

¢ = inf sup I\(u) =inf sup ], .
A€l ycA ) Iy

We point out that for £ = 1 we obtain (2.1.1) because I'; gives the set of all compact symmetric
and nonempty subsets of U.

Lemma 2.1.3 For allk € {1,...,N + 1} we have
2 N
2¢g < —S872 .
co_ck<N 2

PROOF. The finite sequence of sets (I'y) ke{l,..,N+1} 18 decreasing and therefore we must only
prove that 2¢p < ¢; and ey < %S%. The first inequality is obvious since, for all v € U :
ut, u” € Uy and I)\(u) = Iy(uT)+ In(u™) > 2¢o. We start by determining a constant ¢ < %S%
such that ¢y < 2¢, namely we can find a set A € I'y such that supy I) < 2¢ < %S%. Let

B = Bpg, be a ball with radius R > 0 contained in €2 which, in order to use a simpler notation,
will be assumed, without any restriction, to be centered in the origin. For any v € SN~ = 9B,
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we consider two balls BY and Bj of radius g contained in B and tangent to OB respectively
in v and in —v. Let us consider the function ¢ : 3B — U such that for any v € 9B, ¢(v) =
u” : @ — IR where (u”)" and (u”)~ are respectively the positive solutions %; and uwy found
in [2] on BY and BY and let us call ¢ = I3((u”)*) = I\((v*)™). In this way we map OB into
a set A C U in an odd continuous way, therefore y(A) > v(0B) = N. Moreover Yv € 0B :
L) = L)) + L)) =28 < {57

From the bound ¢y < 2¢ we shall now pass to show that ¢y is below %S %. Actually

we shall find in this new case the bound ¢y < T+ %S %, by extending the above introduced
map ¢ from dB to a N + 1 dimensional sphere. We shall find more convenient now not to take
¢ as the infimum but as the test level considered in [2] by using as u; and Uy scaled copies of
the minimal global solution multiplied by a cut off coeflicient. This choice is convenient because
allows us to trivially deduce that @; can be modified continuously to a function %, which has a
support on the ball B¥(s) concentric with BY and radius s, belongs to Uy and keeps the property
IL(w) < %S%. Of course I\(uf) — %S% as s — 0.

We shall first extend ¢ to B, namely we shall find a continuous homotopy with values in U
from ¢ to a constant map. This homotopy will be performed in two steps.

Firstly we shall shrink the radius of BY to a conveniently small radius p by taking

Hy(s,v) =uj — s

with s € [O, %] Then we shall translate the balls B¥(p) and Bj bringing the two centers on the
origin, obtaining the homotopy

Hy(t,v) :=z — uf ($+t%) — Uy (x—t%)
for t € [0,1].
The very different scales of w/ and us make infinitesimal the mixed terms in the evaluation
of I, so we have for all ¢ € [0, 1]

(2.1.3) Iy(Hy(t,0)) = Iy(@) + () + £1(p) = 2+ 5% +e2(p)

where for i = 1, 2, ¢;(p) — 0 when p — 0. The definition of Hs should still be changed by
multiplying the positive and the negative part of Ha(t,v) by coeflicients a4 () in such a way to
provide that Ha(t,v) € U for all t € [0, 1]. Since the function o (¢) are clearly continuous and
a4 (t) = 1, as p — 0, as we can see by arguing as in (2.1.3), we still keep (2.1.3) after this small
correction. Ho(1l,v) gives the same function whatever is v € 9B, so the homotopy connects ¢
to a constant map.

We have in this way an extension of ¢ to B and so to a hemisphere in dimension N + 1. By
an odd extension we define ¢ on the whole sphere.

Then the set of the functions obtained via this transformation is a compact symmetric set
contained in U whose genus is greater or equal to N + 1, moreover on this set the functional I

is bounded by ¢+ +S T+ e2(p) < %S % and the thesis follows. N
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We shall now observe that if two different levels ¢; coincide, then (P) must necessarily have
infinitely many solutions, even if the [P.S.];, condition fails. Note that this lack of compactness
make us unable even to say that such a level must be critical, however Lemma 2.1.2 permits to
conclude that the number of solutions at a possibly lower level is necessarily infinite.

Lemma 2.1.4 If there exist i,5 € {1,...,N + 1}, i # j, such that ¢; = c¢;j, then (P) has
infinitely many solutions.

PROOF. We can reduce ourselves to the case in which j = i+1 with € {1,..., N}. We shall
prove that, in this hypothesis, we can find a solution to (P) which is orthogonal to every given
test function v. Let (Ag)nemw € XY, a minimizing sequence i.e. limsup, (supy, 1)) = ciy1. Let
us fix a test function v and consider for every n € IV

Al ={ue A4, | /uv:O}.

The sequence (A})ncm is, by construction, a sequence in I'; and being

n A 1

lim sup (sup I>\> < limsup (sup I>\> =cCiy1 =6,

’ n

it is a minimizing sequence. Let (up)ncmv be a constrained P.S. sequence at level ¢; close to the
sequence (Al Jnew (i-e. lim, d(up, An) = 0), then by Lemma 2.1.2 its weak limit % is a nontrivial
solution to (P) which is orthogonal to v. If (P) has a finite number of solutions we can built
a test function whose scalar product with every nontrivial solution is not null and we find a

contradiction. N

2.2 Proof of the Theorems

PROOF OF THEOREM 2.0.1.  Taking into account Lemma 2.1.4, we can suppose that Vi, j €
{1,...,N +1} : ¢; # ¢j. By Lemma 2.1.2, we know that for every ¢« € {1,..., N 4 1} we have
the following alternative: or ¢; or ¢, = ¢; — %S % is a nonzero critical level. Taking into account
that

2 N
O<co<cl<...<cN+1<NS7,

we can deduce that at most two different values ¢; can determine the same solution, so we
get at least % = & 1 1 solutions to (P). More precisely, when N is even we have at least

-2
& +1 pairs of solutions to (P) while if N is odd we get at least 2! +1 pairs of solutions to (P). &

PROOF OF THEOREM 2.0.2.  The proof is obvious taking into account that I\ €]0, A\q]

such that for all X €]0,\[ : 2¢o > %S %. This last property implies that Vi € {2,...,N + 1}

¢ — %S T < ¢1, so the only critical value which can be given by two different min-max ap-

proaches of the type considered above is ¢y. B
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Remark 2.2.1 We conclude this short note pointing out that in our approach we have lost the
initial variational characterization of the solutions and this does not allow us to be sure to find
a changing sign solution as in [4].
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Chapter 3

Infinitely many bound states for
some nonlinear scalar field
equations®

In this paper we consider the problem —Au + a(z)u = |u[P~%u in R, where p > 2 and
p <2t = 2N if N > 2. Assuming that the potential a(z) is a regular function such that
lim inf|g_, 1 o a(T) = ac > 0 and that verifies suitable decay assumptions, but not requiring any
symmetry property on it, we prove that the problem has infinitely many solutions.

3.1 Introduction and statement of the results

In this paper we are concerned with the existence of multiple solutions to

(P) u € HI(RN),

{ —Au+a(z)u = |uP~2u in RN

where N > 2, p>2andp < ﬁ—g when N > 2, and the potential a(z) is a continuous function,
positive in IRY, except at most a bounded set, verifying suitable decay assumptions, but not
required to possess any syminetry property.

During the past years there has been a considerable interest in problems like (P) due essen-
tially to two reasons: such problems arise naturally in various branches of Mathematical Physics,
indeed the solutions of (P) can be seen as solitary waves (stationary states) in nonlinear equa-
tions of the Klein - Gordon or Schréodinger type, and, on the other hand, they present specific
mathematical difficulties that make them challenging to the researchers.

Problem (P) has a variational structure: its solutions can be searched as critical points of

3G. Cerami, G. Devillanova and S. Solimini Infinitely many bound states for some non linear scalar
field equation Calc. of Var. and PDE’s
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the energy functional I : H'(IRY) — IR defined by

(3.1.1) I(u) = %/IRN (|Vul? + a(z)u?)dz — ;ll?/lRN |ulPdz .

However, the usual variational methods, that allow to prove the existence of infinitely many
solutions to (P) in a bounded domain, cannot be applied straightly to I. Indeed, the embedding
§ : HY(IRN) — LP(RY) is continuous, but not compact, therefore the basic Palais - Smale
condition is not satisfied by I in all the energy levels. This difficulty can be avoided when
a(z) enjoys of some symmetry. Indeed the first known results have been obtained considering
either a(z) = ax € IRT \ {0}, or a(z) = a(|z|) (see [18], [7], [8], [9], [23], [6]). In this case
the restriction of I to H}(IRN), the subspace of H'(IRV) consisting of spherically symmetric
functions, restores compactness, because the embedding of H}(R") into LP(IR") is compact.
So, the existence of a positive solution to (P) can be proved either by using Mountain Pass
Theorem or by minimization on a natural constraint, while the existence of infinitely many
solutions follows applying standard minimax arguments. Moreover it is worth recalling that,
still under the assumption a(z) = a(|z|), one can also find the existence of infinitely many
nonradial solutions, which change sign, breaking the radial symmetry of the equation (see [4]
and reference therein).

The question becomes more difficult when a(z) has not symmetry properties, then even
proving the existence of one positive solution is not a simple matter. To handle this situation a
deeper understanding of the nature of the obstructions to the compactness and subtle tools are
needed. Most of the researches have been concerned with the case

(3.1.2) lim a(z) =ax >0

|z| =400
so that (P) can be related to the “problem at infinity”

(Px) —Au + apou = |uP %y in RN .

A first answer to the existence question has been given, proving that, in some cases, being
true some inequalities relating (P) and (P ), the concentration-compactness principle can be
applied and (P) can be solved by minimization [15]. This is the case, for istance, when a(z) is
a continuous function that, besides (3.1.2) and decay assumptions, satisfies

(3.1.3) 0<é; <a(z) <ax Ve e RY .

Subsequently a careful analysis of the behaviour of the Palais-Smale sequences (see [5], [2]) has
allowed to state that the compactness can be loosen (in the sense that a PS-sequence does not
converge to a critical point) if and only if such a sequence breaks into a finite number of solutions
to (Pso) which are “centered” at points whose inter distances go to infinity. As a consequence,
it has been possible to give an estimate of the energy levels in which the PS condition fails in
terms of the energy of such masses and to face better some existence and multiplicity questions
for (P). In fact, the existence of a positive solution to (P) has been proved (see [2]) even when a
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ground state solution cannot exist, that is, for istance, when, besides (3.1.2) and suitably decay
assumptions, the potential satisfies the condition a(z) > ac Vz € IRYN; moreover, under the
conditions (3.1.2), (3.1.3) and of a suitable decay at infinity, it has been shown the existence of
a changing sign solution in addition to the positive one (see [16]).

To conclude this brief review of known results, let us mention that there is some other
work involving the use of variational methods to treat standing waves of nonlinear Schrédinger
equations. Some of these papers mainly deal with the existence of solutions for (P) using
mountain pass and comparison arguments. See e.g. [20], [12] as well as their bibliographies. In
particular, we point out that in [20] the existence of a positive and a negative solution is proved,
provided
(3.1.4) 1) %ljga(iv) >0;  48) limgoye0a(T) = +oo.
while in [3] the existence of a third changing sign solution is shown.

Some other papers discuss cases in which the potential a(x) possesses nondegenerate critical
points and depends on a parameter, i.e. it appears like ap(z) := a(hz), and contain results of
multiplicity of positive solutions under restriction on the size of A (see [13], [19], [1], and for
a(z) of a special form [17]). Finally we remind that, under assumptions of periodicity on a, (P)
has been shown to posses infinitely many solutions [10].

As far as we know the question of the existence of infinitely many solutions to (P) , without
symmetry or periodicity assumptions on the potential a(z), is largely open: the result we present
here is a contribution to the settlement of it.

Let us now state the hypotheses on the function g that will be used and our main result.

(a1) a € CH(IRN, R)
(a2) liminfly_, . a(z) = ac >0

(as) a—(_l,(a:)eo‘“”| — 400,Ya>0
or |z|—+o0

where for all z € RN \ {0}, 2= %

(aq) there exists a constant ¢ > 1 such that
|V a(z)| <€ %(a:) Ve e RN :|z| >¢

V..a(z) denoting the component of the gradient of a at z, in the hyperplane orthogonal
to # and containing z.

Theorem 3.1.1 If the potential a(z) satisfies the assumptions (a1) — (a4), then problem (P)
has infinitely many solutions.

Let us remark that we need to assume neither the existence of lim|y_, o a(z) nor a(z) >
§ > 0 in all IRN. Assumptions (ap) — (a3) imply only that a(z) is bounded from below at
infinity by a positive constant and that, for large values of z, a(z) is increasing in a reasonable
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way in the direction Z. The assumption (a4) implies a kind of stability of the value of %(z)
with respect to small perturbations of the direction.

The ingredients of the proof are a quite natural approach to (P) by approximation combined
with compactness techniques and estimates, in the spirit of what already done in [11] to prove the
existence of infinitely many solutions for problems having critical growth in bounded domains.
Indeed, let us consider a sequence of balls in IRY, B, (0) = {z € R : |z| < pn}, pn N +00,

and the related problems approaching (P)

(Py) —Au+a(z)u = [uf2u  in B, (0)
" u = 0 on 9B, (0) .

Since it is possible to prove that (P,) possesses infinitely many solutions, obtained construct-
ing infinitely many critical levels for the related functionals as minimax on suitable classes of
functions, it is a natural idea considering sequences {u,}, consisting of solutions u, to (Py),
corresponding to minimax classes of the same type, and then trying to pass to the limit.

Clearly such argument, by itself, is not sufficient, because, “a priori”, such a sequences are
not necessarily precompact. Hence some additional tool is needed to control the situation. This
is just a local Pohozaev type inequality that, together with some uniform decay estimates and
integral bounds on any bounded sequence of solutions to (Py), allows to conclude that, in our
assumptions, the loss of compactness due to translations cannot occur.

The paper is organized as follows: in section 3.2 some notation is introduced, useful facts
and preliminary results are stated, section 3.3 and 3.4 are devoted to the compactness question
settlement, section 3.5 contains the proof of Theorem 1.1.

Remark 3.1.1 It is worth pointing out that, if in (P) we replace RN by RN \ Q where Q is
any bounded smooth open set in RN, Theorem 1.1 is still true, because the arguments we shall
develop still hold after very simple modification.

3.2 Notation, preliminary remarks and results, use-
ful tools

Throughout the paper we make use of the following notations

e ILP(), 1 < p < +00, 2 C RN denotes a Lebesgue space, the norm in LP(Q) is denoted
by | - |p,a, when € is a proper subset of IRY, by | - |, when Q = IRN.

e H}(), Q C RN, and H'(IRY) denote the Sobolev spaces obtained as closure of C§°(£2),
CS°(IRN) respectively, with respect to the norms

lullo =

/Q(|Vu|2 +u2)dx]%

foll = [ v+ yaa]
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e H 1), 2 C RN, and H-'(IRN) denote the dual spaces of H}(2) and H'(IR") respec-
tively.

o If u € H}(Q), Q C RN, we denote also by u its extension to IRY made setting u = 0
outside (2.

We consider some inequalities, related to problem (P), that will be very useful in producing
estimates on the solutions to problems approximating (P):

—Au+a(z)u < uwP! in RN
(EI) u > 0 in RN
u € HYRN) ,
—Au+au < uP! in RN
(El) u > 0 in RN
u € HYRN)

We remark that if v weakly solves

(Pa)

—Au+a(z)y = |uff"2u inQ
u € H(Q) :

Q C RY, then |u|, eventually extended by 0 out of 2, weakly solves (EI).

Definition 3.2.1 Let (up)nemw be a sequence of functions. We say that (up)nemv 8 a:

e balanced sequence if, for each n, u, is a nontrivial weak solution to (PB,,D(O)) where
(on)nemv, pn € RT, is any sequence so that p, — +00.

e controlled sequence if, for each n, uy, is a nontrivial weak solution to (EI).

Remark 3.2.1 It is worth pointing out that to any balanced sequence (up)ncmv there corre-
sponds a controlled sequence (vn)ncv, where vy, = |uy| in B, (0) and v, =0 in RN \ B, (0).

We also observe that it is easy to see that given a balanced sequence (up)nciv and a sequence
(tn)nem, tn € RN, |ty W, TO00

then |u| weakly solves (Elo).
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We recall that a sequence (up)nemw, tn € HY(IRY), is called a Palais-Smale (briefly PS) se-
quence for the functional I, if there exists a level ¢ € IR such that I(uy,) 2C and dI (uy) = 0
n o0 n o0

strongly in H~'(IR"). As mentioned in section 3.1, a basic tool to face problems in unbounded
domains has been the analysis of the PS - sequences behaviour and the information that,
when (3.1.2) is satisfied, a noncompact PS-sequence differs from its weak limit by one or more
sequences that, after suitable translation, go to a solution of (Py) (see [5] and [2]).

Here, since our aim is finding solutions to (P) as limit of balanced sequences, we need to know
how a noncompact bounded balanced sequence can look like. Moreover, since, instead of (3.1.2),
we have the more general assumption (a2), we cannot say there is a limit equation corresponding
to (P). Nevertheless, taking into account Remark 3.2.1, it is not difficult to understand that in
our case the role of the limit problem can be played by (EI)s.

The following lemma gives the necessary information that the set of solutions to (El.) is
bounded from below.

Lemma 3.2.1 There ezists a positive constant Cy > 0 such that for any nontrivial solution ¢
to (El)oo:
(3:2.1) el > Co

holds.
PROOF. Let ¢ be a nontrivial solution to (EI), then ¢ satisfies

IVl + aoolols < |off .

By using Sobolev embedding theorem and by interpolating LP norm (taking into account that
2 < p < 2*) we have
Slel3- + acolels < lolp < (|0l lz~*)?
where S denotes the best Sobolev constant and a € (0,1) is such that 2 + 152 = %.
By applying Young Inequality we get

1

2|32
ol < aliel + (1= el < b | (VBloplar + Vaslela) |

IN

1
k127 (S|of3 + acolerl3)”

where k; 1s chosen so that k; > max ( o l-a )

ﬁ’ Vv Qoo
Hence 1
p_
(Slpls + acolpls)> ™' > —
k‘122

so we deduce, as desired, |¢|, > Cy > 0 where Cj is a costant not depending on ¢. B

Taking advantage of Lemma 3.2.1 and by using either arguments analogous to those of [5]
or the results contained in [21] and in [15], it is possible to prove the following proposition that
provides the desired picture of the balanced sequences behaviour.
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Proposition 3.2.1 Let a(x) satisfy (a1) - (a2). Let (up)nemw be a noncompact balanced se-
quence bounded in H'(IRYN). Then, there exists a subsequence (still denoted by uy,) for which
the following holds: there exist an integer k > 0, nontrivial solutions to (Ely) @i, 1 <i <k,
sequences (t2)nemv, 1 <i <k, ti € supp(uy), such that

Jun| — Sy @i(- — ) = |uo| in H'(RN)
(3:2:2 | o
¥ T __ 4] o .
thl == +oo th =] —= +oo 1<i£j<k
ug being the weak limit of (up)necm-

For the reader’s convenience, a self consistent proof of Proposition 3.2.1 is given in the
Appendix.

Definition 3.2.2 Let (uy)nemv be a sequence of functions, u, € H'(IRY), bounded in H'(RRY).
We say that (up)nemw s a:

e broken controlled sequence if there exist an integer k > 0, nontrivial solutions to (Ely)
i, 1 <1i <k, sequences (t%)nemv, 1 < i < k, t}, € supp(uy), such that, up to a subse-

quence,
Un — S8y @i+ — ) = ug in H(RN)
(3.2.3) ) ) )
4 v _ 4] . .
|tn|n_)—+>oo+oo |th, tn|n_)—+>oo+oo 1<i£j<k

ug being the weak limit of (up)necm-

e broken balanced sequence if there exist an integer k > 0, nontrivial solutions to (Ely)
vi, 1 <i <k, sequences (1) )nemv, 1 < i <k, such that, up to a subsequence,

un| — S5 @i — ) — |uo| in H(RV)
(3.2.4)

i i __ 4] . .
|t"|n—>_—|—>oo+oo’ |tn tn|n—>_—|—>oo+oo ISZ#JS’C

ug being the weak limit of (up)necm-

In what follows, given any broken sequence, controlled or balanced, (up)pcmv, we assume
as given, also, the functions ; and the translations vectors t!, (even if they are not uniquely
determined) that appear, respectively, in the relations (3.2.3) and (3.2.4). Moreover, by replacing

the sequences (1!, )necmv with suitable subsequences, we can suppose them ordered term by term,
80 it makes sense denoting by (t,)ncmw the smallest sequence, that is the one for which

(3.2.5) to| <t , Vi : 1<i<k,VYnelN.

In order to associate to any broken sequence some suitable regions of the space, we recall
the following
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Definition 3.2.3 Let A C IRYN be a subset of RN and v € RN a point v & A. We call cone of
vertex v generated by A the smallest set containing A and positively homogenous with respect
to the vertex v, i.e. the set

{fweRY : w=v+Az—v), z€ A A€ R'}.

Let us now consider a broken sequence (either controlled or balanced) (up)nemw, let (tn)nemw
be the respective smallest sequence (for which (3.2.5) holds) of those appearing in (3.2.3) or
(3.2.4) respectively, and let us define some sequences of subsets of RN that are related to
(tn)nem-

First of all, we construct a sequence of cones C,, having, for all n, vertex %L and generated
by a ball Bg, (tn). We begin taking the cone C;, having as vertex 2 and generated by the ball
By, := B, (tn), where

4 [tn] (1 1 )
2. =-— h
(3.2.6) ™=y with 0 < 4 < min 51+

¢ being the constant appearing in (a4).

If 3Cy N BrTn(t;) = () for all £}, # tn, 1 <i <k, we set Cp, = C1, and R, = ry,. Otherwise
we consider the larger cone Ca, having vertex ta and generated by Bar, (tn)- Then, taking into
account that [tn| < [t7], 1 <4 < k, for any index ¢ for which 8C1n N Bra (t7,) # @, we have
BTTn( ) C Cap, and we set Cp, = Cay if 0Cay does not touch any of the other balls BrTn(t;),
t1, # tn. Otherwise we pass to the cone Csy, having vertex , generated by Bs,, (t,) that surely
contains the balls, of radius " centered at the points t, touchmg 0Ca -

We iterate this arguments and, after at most & steps, we associate to ¢, a cone C,, having

vertex i, generated by a ball Bg,(tn), with 7 |t”| =r, < R, < kr, = fy| |, and having the

property that 0C, N B_a( ¢) =0, for any 1ndex i 1 < i <k, such that t, # t,.

Remark 3.2.2 Denoting by 8, the “width angle” of the cone C,, we emphasize that, since
R, = J%"l tan 6,
i A 11 )
0< = <tanf, <H< .
k= <y < min (5 ic+1)

For any s € R and for all n € IN, we consider the cones
tn
[t

and, for all n € IV, the regions around the boundary of C,
(3.2.8) S2s,n = Cs,n \ C—s,n .

(3.2.7) Con=Cn—s

Lastly we set

(3.2.9) S, = RN\ U B (1)
=0

where, for alln € IV, t) =0, r,, and tfl, 1 <i <k, are as above.
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3.3 Some estimates for controlled sequences

The purpose of this section is to establish some decay estimates and integral bounds, concerning
bounded controlled sequences, that are contained in the following propositions:

Proposition 3.3.1 Let a(z) satisfy (a1) - (a2). Let (up)nemw be a broken controlled sequence.
Then for any constant o € (0, \/aoo) there exists a constant co > 0 such that for n large enough

(3.3.1) U (z) < cue (@) Ve e Sy,
where oy, s defined by

s i N
(3.3.2) on(x) = ng'lék |z — | z€R

and S, and t',, are as in (3.2.9).

n’

Proposition 3.3.2 Let a(z), (up)nemw, Sn, be as in Proposition 3.8.1. Then, for all p > 2,
there exist constants & > 0 and ¢ > 0 such that for n large enough

(3.3.3) / (un)Pdz < ée~dltnl

n

(tn)nemv being the smallest sequence appearing in (3.2.8).

Proposition 3.3.3 Let a(x) and (up)nemv be as in Proposition 8.3.1. Then there exist constants

a* >0, ¢* >0 and a sequence (Sp)nem, Sn € (—3, 3) such that for alln € IN

(3.3.4) [ Vunffdz < e el
8Cspyn

where, for all n, Cy, n, is as defined in (3.2.7).

The proof of Proposition 3.3.1 is carried out through some estimates, on bounded controlled
sequences, proved in a slightly general setting. In order to do this we introduce the following
definitions.

Definition 3.3.1 Given a sequence of functions (up)nemw, un € H'(IRYN), and a sequence
(Zn)nenw, Tn € RN, we say that (zn)nev is a sequence of drift points for (up)nemw if

(3.3.5) Un (- — Z5) = 0 weakly in H'(RN) .

Definition 3.3.2 Given a sequence of functions (up)nemv, un € H'(IRN), and a drift points
sequence (Tp)nemw for (Un)nemw, we say that a diverging sequence of real numbers (6p)nemw 18
a sequence of drift distances for (zp)nemw with respect to (up)nemw if any sequence (Yn)nemv,
yn € RYN, such that d(zn,ys) < héy, for some constant h € [0, 1] independent of n, is a drift
points sequence for (Up)ncm-
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Remark 3.3.1 We observe that, if (up)nemw s a broken sequence, any sequence of points
(Tp)nemw, such that z, € Sy for all n, is a drift points sequence for (up)new and 6, = op(zy)
(where oy, is defined in (3.3.2)) is a drift distances sequence for (p)ncm-

Moreover, we remark that, given a drift points sequence (Zp)ncmv for a sequence of functions
(up)nemw, a sequence (Op)nem, as in Definition 3.8.2, is not uniquely determined. For istance,
given a broken sequence (up)nciv, any sequence (Tp)necm such that x, € 9Cy, is a drift points
sequence and considering either 0, = 2 (r, as defined in (3.2.6)) either bp = |tn|, n € IN, we
obtain drift distances sequences.

The first step is proving a lemma that allows to obtain an uniform upper bound on the
values of the Laplacian on a controlled sequence.

Lemma 3.3.1 Let a(z) satisfy (a1) - (a2). Let (up)nemw be a controlled sequence bounded in
H'(IRN). Then (up)new is bounded in L>®(IRN).

PROOF. By (a1) - (a2), there exist a constant & € (0, as) and a positive function c(z) € Co(IRY)
such that a(z) > & — c(z), Vo € IRN. Therefore u,, weakly solves

—Auy, + au, < uﬁ_l +c(z)u, in RN

moreover, by the maximum principle, for any weak positive solution v, € H'(IRN) to

(3.3.6) —Av+av =ult +c(z)u, in RN
the relation

(3.3.7) un(z) <wvp(z) in RN
holds.

Now, let us consider a sequence (vp)nemw, vn € H'(RY), such that, for all n € IN, v,
solves (3.3.6). By (3.3.7), the claim follows proving that (|vp|cc)nemnv is bounded.

Since u, € HY(RY) and c(z) € Co(IRN) we can assume ul~! + c(z)u, € LI%, so by

2* 2*
regularity results v, € W>»1(IRY). Now, the space W>5-1(IRN) embeds continuously in
2*

N N2
LY(IRYN), where § = ”‘1* and, since ;= > ot = 13—41\_’2 = (2%, ¢> Nﬂ22(_2*L), = 2*. Then,

by (3.3.7), u, € Li(IRYN), Wlth L > 1, and
[unlg < lonlg < kil + c(@)un| 2= <y -
o

By iterating the same argument, we gradually increase the regularity properties of u, and

vy, Obtaining also uniform bounds to the norms in the respective spaces. After a finite number

of steps we obtain v, € W3I(RN) with § > & and ||v,||yy2.4 < k3, k3 not depending on n.
Then Sobolev embedding theorem gives v, € CO*(IRY) for some u € (0, 1), and ||vy||co.x (rN)y < k4.
This last relation with the L? sommability allows to obtain an L* uniform bound on (v, )nemv

and, in turn, on (uy)pemw as desired. B
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Corollary 3.3.1 Let (up)new and a(z) be as in Lemma 3.8.1. Then there exists a constant
c1 > 0 such that for all n € IN, the relation

(3.3.8) —Au, <

weakly holds.

The following lemma guarantees that the values that a controlled bounded sequence takes
around the drift points z, of a sequence are small.

Lemma 3.3.2 Let a(z) and (up)new be as in Lemma 8.8.1. Let (zp)new and (Op)nemw be

respectively a drift points sequence for (up)new and a drift distances sequence for (zp)ncm-
Then for all h € (0, 1)

(3.3.9) lim sup wy(z)=0.

=+ Bys. (xn)

Proor.
We argue by contradiction and we assume that there exist real numbers h € (0, 1), n > 0
and a sequence (Yn)neiv, Yn € Bhrs, (zr) such that, for large n,

un(yn)>( sup un(z)>—1>n.

Bhsy, (#n) n

The above relation, combined with (3.3.8), allows to conclude that for large n and p small
enough

1 n

u dm‘ = U diL‘ > P
Jgpwn) " 1Bo(yn) JBo(ya) 2

where |B,(yn)| denotes the Lebesgue N-dimensional measure of B,(yy).
Hence u, (- — yn) — v # 0 as n — +oo. This is impossible because, by the choice of d,, h
and y,, and by Definition 3.3.1 uy(- — yn) — 0 in H'(IRY). u

Next lemma contains the key estimate for proving Proposition 3.3.1.

Lemma 3.3.3 Let a(z), (Un)new, (Tn)nemw; (On)nemw be as in Lemma 8.8.2 and, moreover, let
(Zn)nemw be supposed diverging. Then, for all oo € (0, \/ac) there exists a constant é, > 0 such
that for all n

(3.3.10) Un(Zn) < Eqe” %0 .

PrROOF. Let a € R, 0 < a < ,/ay be fixed, and let us choose h € (\/%, 1) and
@ € (o, Jah).

Then, by using Lemma 3.3.2, we obtain that, for any n large enough, w, weakly satisfies

(3.3.11) Aug > a(z)uy —ul™' > @h2u, >0 in Bpgs, (zn) -
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Thus, since hé, > 1 for large n, we have
(3.3.12) Up(xy) < / updo Vr: 0<r<l1
8B, (

and we deduce

1
Un(xn) < / / undal dr = / updz .
0 8BT(wn) Bl(wn)

So, in order to obtain (3.3.10) for large n, it is enough to show that a constant ¢, > 0 exists
such that

(3.3.13) / Updz < Coe %0 .
By (wn)
To do this, let us consider the functions
hé, )V =
n@ = [ wde ()= DLV
By (an) eaon

where wy is the Lebesgue measure of the unitary ball in IRY, and let us remark that v, (1) is
just the left hand side of (3.3.13), while

hén)N z 6N
wp(l) = (TL_)iéwNeﬁ < hwyeVee B < g e %n
e0ln etln

for n large enough. So (3.3.10) follows, by proving v, (1) < w,(1) and taking into account that
for any finite set un(zy), n <7, (3.3.10) is obviously true for a suitable choice of the constant
&

Let us then show that for n large
(3.3.14) va(p) Swalp) V€0, hén].

First, let us observe that
vr(0) < wy,(0) Vn e IN

and that, for n large, by Lemma, 3.3.2,

vn(hdn) < |Bhs, (zn)| sup wup(z) < wN(hdn)N = wy (hdy) -
Bps, (zn)

Now, if for some point in [0, hdy,] (3.3.14) were false, then the function (v, —wy)(p) should have a
maximum point, p,, € (0, hdy,), for which (v, —wy)(p,) > 0 and, of course, v"(p,,) —w"(p,) <O0.
Let us show that this is impossible. Indeed, since

0
vp(p) = / up(x)dz = / l/ undal dr
By (zn) 0 8B, (zn)

we have

:—n = nd
%h(e) = Lvn(o) Amm““
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moreover 1

][ U do = 7/ updo = M
OBp(zn) NwnpV=1 JoB,(zn) NwypN-1

and, by using divergence theoremn,

][ uda—/p;/ gudadr
9Bp(zn)  Jo NwnrN-1|Jop (g,) OV

p 1
= —_ A .
/0 NwnrN-1 l/Br(wn) unda:] dr

d v,(p) 1

n —

il = Auypdz
dp NunpN-1  NwypMN-1 /B,,(wn) "

from which, using (3.3.11), we obtain

v (P) vp(p) _ d (vp(p) 1 a*h~?
Nt T =N = (p’}v_l) = —§-i /B,,(wn) Atndz > —5=on(p) -

0

So

Hence, taking into account that v,(p) >0 and N > 1
(3.3.15) ol(p) > 3h2a(p)  Vp € (0, hén)

follows.
Let now p,, € (0, hd,) be a maximum point for (v, — wy)(p) for which (v, — wy)(p,) > 0
then by (3.3.15) we get

v (Pn) — wi (Bn) > @h ™2 (vn (P) — wn(Pn)) > 0,
and we are in contradiction. B
PROOF OF PROPOSITION 3.3.1. Arguing by contradiction, we assume that there is
a € (0, \/as) such that for all ¢ € IN there exist ny € IN and 4 € Sy, for which

—aong (2q) .

Un, (Tq) > qe

This is impossible because it contradicts Lemma 3.3.3 whose assumptions are fulfilled by «,
(tng )gelNs Tq and &g = o, (z,).

PROOF OF PROPOSITION 3.3.2. By using Proposition 3.3.1, we deduce that, for n large
enough and a € (0, \/ax),

/n (up)Pdzr < ca/
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The proof of Proposition 3.3.3 is based on the following lemma, that is proved by using a
Caccioppoli type argument.

Lemma 3.3.4 Let a(x) satisfy (a1) - (a2). Let (up)nemw be a broken controlled sequence . Then
there exist constants o, > 0 and ¢, > 0 such that for alln € IN

(3.3.16) / Vg 2 < c e ltn]
Sl,n

where Sy, s as defined in (3.2.8).

PROOF. For any fixed n € IV, let ¢, € C*°(IR", [0, 1]) be a function fulfilling the following

conditions:
1 ¢n =1on Sy

)
(3.3.17) i) supp(¢n) C S
141) Ap, <C CeRR.

Since u,, weakly solves (EI) and ¢, = 0 in IR \ Sa.n We have

(—Aun)(unpn) = (=Aun)(ungn) < [ (uh — a(@)uy)en
S2.n RN RN

(3.3.18)
= /S (a0

On the other hand, taking into account that by (3.3.17)(ii), ¢, = 0 and Vg, = 0 on 9S24,
and using (3.3.17)(i) we get

/ (_Aun)(uncpn) = / |Vun|290n+/ Vun V‘Pn)
S2n S2n

(3.3.19) | > /51 IVun|2+/ ( ( ) Vson)

-/ |Vun|2—§/ (Ap) w2
51 S2,n

So, inserting (3.3.18) in (3.3.19), using (3.3.17)(iii) and taking into account that, if n is large
enoungh, Sy, C S, and a(z) > 0 on Sy, we deduce for large n

1
[ovul < [ (@-e@w)ents [ (o)
Sl,n S2,n 2 S2,n
1
< /U?L(Pn'i'i/ (A(Pn)un
Sn Sn

1
< / uﬁ+§C : ul .

Then, applying Proposition 3.3.2, taking also into account that for any finite set of indices (3.3.16)
is true for a suitable choice of the constant c,, we obtain the thesis.
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PROOF OF PROPOSITION 3.3.3.  Denoting by 8,, the width angle of the cone C,, we have

1
/ |V, 2dz = /2 (/ |Vun|2da> sinfpds .
S1,n - Cs,n

1
]
So, using the integral mean value theorem and considering (3.3.16), we deduce that, for all n,
1

sn € (—3, 3) must exists so that

0< sinﬁn/ Vg 2o < c, ™It
acsn,n

from which (3.3.4) follows because, as a consequence of what observed in Remark 3.2.2, siné,, >
s > 0, s = const. independent on n. B

3.4 Local Pohozaev Identity and Compactness re-
sults for Balanced Sequences

The aim of this section is showing that our assumptions (a3) and (a4) prevent a bounded balanced
sequence to be not compact.

In order to do this, we start considering not compact balanced sequences bounded in H'(IRY)
and stating basic relations they must satisfy.

In the following Lemmas 3.4.1, 3.4.2, 3.4.3 we deal with balanced sequences (up)ncm, (con-
sisting Vn of solutions un, to (Pg, (o)) with p, — +00) that are bounded in H L(RN) and not
compact. To such sequences there correspond, in view of Remark 3.2.1 and Proposition 3.2.1,
bounded broken controlled sequences (|un|)nemv, to which Propositions 3.3.1, 3.3.2 and 3.3.3
apply. Then, it makes sense setting, for all n € IN,

Dy, :=C,N B, (0),

where C,, denotes the cone Cs, n, whose existence is stated in Proposition 3.3.3. We remark

that, for large n, %L € Dyp; in fact, even if p, < |t,|, for all n, |t,| — pp < C for some constant

C, otherwise uy(- — ty) _;\_ 0 contradicting the choice of t,. Moreover we remark that 9D,
n oC

consists of an “internal part” ~
(0Dy); == 0Cy, N B,,(0)

and an “external” one
(0Dy)e := C, N8B, (0) .
We recall, also, that Vy € RY \ {0}, ¥ denotes the unitary vector %
In next Lemma 3.4.1 we take a not compact bounded balanced sequence (up)nemnw and we
evaluate the infinitesimal variation of the functional I under translation, along the direction ¢,,

of that part of the function u,, that is contained in the cone én. Since (up )nev is balanced, such
a variation must be zero, then we are led to an identity of the well known Pohozaev type.
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Lemma 3.4.1 Let a(z) satisfy (a1) - (a2). Let (up)nemw be a noncompact balanced sequence.
Then the identity

1

" '_‘17:1 un|? + a(z)u2) (v, -
gy 2Jo, VAR A= /apn(iv of? + a(@)ud) (vn - T)

- / (Vi - 1) (Vi - ) — — / P (v - Ea)
0Dy, P

where vy, 18 the outward normal to 0D, holds.

PROOF. Since {uy,} is a balanced sequence we have

(3.4.2) / (—Auy + a(z)un — [un [P~ 2uy) (Vg - t,)dz =0 .

n

Now integrating by parts, we obtain

— Aty (Vg - ty)de = / (Vg - V(Vuy, - ty))ds — / (Vg - vg) (Vg - 1)do .
Dn n 8Dy,
Then, taking into account that %, does not depend on z, again using divergence theorem,
we get

/ (Vitn - V(Vu - £a))dz = / (Vatn - (V2 - o)) da

n n

1 o 1 -
= 5, VP Bde = 5 [ Vun G-

n

and, then,
—Aup (Vun L)z = = [ (Vual(E, - v)do
(3.4.3) D 2 Jop
o - /8D (Vuy, - vy) (Vuy, - fn)da.

Analogously we deduce

[ a0 (Vun-Eds = 3 1/” (@) (V|2 - ) de

(3.4.4) = ——/ u2(Va(z) - t,)dz
12 Pn
+ —/ a(z)u2 (vy - tn)do
2 Jop,
and
(3.4.5) / [P 2 (Vi - T)d = — / (V]unl? - To)dz = / P (v - ) dor
Dn P JD, D JoD,

Combining (3.4.2), (3.4.3), (3.4.4) and (3.4.5) we obtain (3.4.1). N
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Lemma 3.4.2 Let a(x) satisfy (a1), (az2), (a4). Let (up)ncmw be a noncompact balanced se-
quence. Then, for large n, the inequality

- ]_
(3.4.6) / (Va(z) - tp)ulde > = 8—(_1,(x)uidx
. 2 Jp, 0%
holds.
PROOF.

Denoting by (75_;1)77c the component of %,, lying in the space orthogonal to Z and containing z,
using (a4), we get, for large n

(Vol@) ) = (Valz)-B)(fn-5) + (Ve.a(o) - ()r)
da S
> @) - 7@ (E)e
= 220) [(fn 2) ~ el(Eu)e |

—

In order to evaluate [(tn - 2) — ¢ (tn)r, |] , let us first suppose « € Bag, (i), so that |z — t,| < 2R, < §|ty|
then we have

(3.47)  (5,-2) = (t_",t""'x_tn) > [l =1z =ta] § tn] =|o—tu| S 1-7%

[tal || ] Tl e —ta] T 144
and, since
P8 o
t ] (el 7
- t T .
(349 (Gl < 2251 <

On the other hand, we can assert that, by homothety, (3.4.7) and (3.4.8) are also true for
all z belonging to the cone X having as vertex the origin and generated by Bag, (,). Then, in
particular, (3.4.7) and (3.4.8) are true for all z € D,,, being D,, C C, C K.

Thus (3.4.6) follows because we have, by the choice of ¥, %L‘_—z > % and }4_——:71 —4e¢y > 0.
|

Lemma 3.4.3 Let a(z) and (up)nemw be as in Lemma 3.4.2. Then the inequality

1 da 9 1 ) \ .
_ huthed < = )

(3.4.9) o
- /(aD y (Vug - vn) (Vup - tn) —

1
holds.
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PrROOF. Combining (3.4.1) and (3.4.6) we obtain

1 da 1 R
4 Dn %ui = 2 /3Dn (|Vun|2 + a(w)ui)(l/n “tn)

o AT AREY BT A

(3.4.10)

Now, for all n, uy, solves (P, ()); un = 0 on 8B,,(0) D (0Dy)e, s0 Vuy, and vy, have the
same direction, moreover on (8D,), it is (vy, - t,) > 0, thus we deduce

—

(3.4.11) / W@ (v 1) = 0 = / P (v - )
(0Dn)e (8Dn)e

and

—

]- —
- / V> (vn -Ty) — / (Vitn - ) (Vg - L)
2 J(8Dy)e (8Dn)e

]_ —
= = |Vun|2(yn “tn)

(3.4.12) 2 J(@Dn).

2 J(0Dp)e
Hence (3.4.9) follows inserting (3.4.11) and (3.4.12) in (3.4.10). B

Proposition 3.4.1 Let a(z) satisfy (a1), (a2), (a3), (a1). Let (up)nemw be a balanced sequence
bounded in H'(IRYN) then (up)nemv is relatively compact.

PROOF. We argue by contradiction and we assume that (uy)ncmn is not compact. Then, by
Proposition 3.2.1, up to a subsequence, it is broken and, by Lemma 3.4.3, the inequality (3.4.9)
must be true.

Let us consider, for n large, the right hand side of (3.4.9). First of all, let us observe that,
by (az), a(z) > 0 for all z € (9D,,); so, taking into account that (v, -i,) < 0 on (8D, );, we have

—

(3.4.13) / (|Vun|2 + a(x)ui) (v 1) <0.
(8Dn)s
Moreover, by using Proposition 3.3.3, we deduce

—/ (Vg - ) (Vg - th)do < / |Vun|2da
(8Dr); ODn);
< /~ Vug|?do < cte ltal |

n

(3.4.14)

Let us now show that there exist constants o/ > 0 and ¢’ > 0, independent on n, so that

(3.4.15) —/ |un|P (v - fn)da < / |up|Pdo < de?ltnl
(0Dn)i D)

( nje
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Since (8Dy); C 8C,, and, for large n, 8C, C Sy, using Proposition 3.3.1, we infer,

—/ |up|Pdo < /~ |un|Pdo
(0Dn)s aCy,

< Ca/~ —aon(z pda <C°‘Z/ —aplw—tfz|da’
ac

n acn

(3.4.16)

a € (0, /o), ca > 0.
Setting, for A >1and i=0,1,..., k

2 2

and denoting by |Ap;| the (N — 1) - dimensional (Hausdorff) measure of A ;, we have for
i=0,1,..., k

(3.4.17) Api=1z€8C, : P10 < g —4i| <onn
3 n

N-1
(3.4.18) |Ani| < C [2’1 %"] CeR

because it is not difficult to understand that, Vh, |Aj ;| can be estimated by the surface of the
cylinder having height and basis diameter measure equal to 32&2".
Thus, in view of (3.4.17) and (3.4.18), we deduce

(3.4.19) /ac~ e~Pletl gy < Z/

g—ap2h=1n > —apziire [oata ]V
P 2do < C Z e P 2 2" =
Ahz h=1

2

hence, inserting (3.4.19) in (3.4.16), we obtain as desired,

o]
(3.4.20) / |up |Pdo < Clak"l“év_le_ap%z Z e 0P gh(N=1) < Jo—0/lt] |
(0Dn)i he0

On the other hand, denoting by g, := max{py, |t,|} and by
Dy, := C, N B, (0)
we have, for large n,

Oa Oa Oa
> widy > 2
. 8_,( T)ul de 1nf (817( )) /n sdx Clnf (817( )) /ﬁnunda:,

C > 0 constant, because, as remarked at the beginning of the section, (| |t,] — pn|)nemw is
bounded from above. Moreover, in view of Proposition 3.2.1 and of the choice of ¢,,, we infer

(3.4.21)

(3.4.22) liminf [ w2dz > X >0, A = const .

n—+co /P,

Then, combining (3.4.9) with (3.4.13), (3.4.14), (3.4.15), (3.4.21) and (3.4.22), we obtain

/
—AC inf (‘9“( )) < cre-altnl | € gmedltn] < go-atal
8$ p



96 CHAPTER 3. INFINITELY MANY BOUND STATES

@ = min(a*, o), and this is impossible by (as).

3.5 Multiplicity of solutions

This section is devoted to the proof of the existence of infinitely many solutions to problem (P).
Let us fix a sequence (pp)nemw, pn € IRT such that p, == +00 and consider the problems
n o0

(Pn)

—Au+a(z)uy = |[uff~?u in B, (0)
u = 0 on 9B, (0)

approximating (P).
Our first step is proving that, for all n € IN, (P,) possesses infinitely many solutions. In
order to do this, we consider, Vn € IN, the homogeneus functional

Jn : Hy(Bp, (0) \ {0} » R

defined by

/ (IVul? + a(z)u?)dz
In(u) = By (0) .

(/ |u|pdx> ’
Bﬂn(o)

and we look for critical points of it constrained on

Zn = {u € Hy(B,, (0)) ; llulls,, @ =1} -
We remark that, by the homogeneity of J,,, J,,(tu) = J,,(u), Yu € %, Vt € IRT \ {0}, hence,
Yu € By, (Vp(u), u) my = 0. So a critical point of J, constrained on ¥, is actually a free

critical point of J,. Moreover, it is easy to verify that, to any w € %,, for which J, (@) > 0 and
VJn (@) = 0, there corresponds, unique ¢ € IR™ \ {0} such that tu belongs to the set

Ny = {u € H}(B,,(0)) : u#0, / |Vu|2+a(a:)u2:/ ()|u|p}

P

and, clearly, VJ,(tw) = 0. Furthermore, a direct computation shows that u € H}(B,, (0)) solves
(Py), i.e. is a critical point of the free functional

1

1
(IVul? + a(z)u?)dz — —/ |ulPdz |
2J/5,.0

p Bﬂn (0)

if and only if VJ,,(u) = 0 and u € N, (see also Lemma 3.6.2 and Remark 3.6.1 in the Appendix).
Now, let us call, for any fixed n and for all £ € IN

In(u) =

»={ACZX, : Acompact,A =—A,v(A) >k},
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~v(A) denoting the Krasnosel’skii genus of A, and let us set

3.5.1 n— inf J(u) .
(3.5.1) % = juf, sup n(w)

Since the assumptions on a(x) do not imply that J, is bounded from below on ¥,, we
cannot apply straightly the well known minimax principle to conclude that the numbers (c})i
defined in (3.5.1) are, for all &, critical levels for the functional J,,. Nevertheless this difficulty
is overcame thanks to the following

Proposition 3.5.1 Let a(z) satisfy (a1) - (a2). Then there exists k € IN such that
(3.5.2) >0 Vk>k VYnelN.
To prove Proposition 3.5.1 we need to state beforehand the

Lemma 3.5.1 Let a(z) satisfy (a1) - (a2). Then for all f < min(1, as), there exists k € IN
such that for oll compact sets A such that

Ac{ue HY(RY) : lu|=1} =&

A= —A, y(A) > k, there exists us € A such that
(3.5.3) /IRN IVual? + alz)ud > Blluall? -

PRroOOF. The desired result can be easily obtained once proved the following claim:
VB < min(1l, as) there exists a subspace E of H'(IRN), codim(E) < +oo such that

(3.5.4) /IRN (IVul? + a(@)u?)dz > Bllul? VueE.

In fact, setting k = codim(E), by the genus properties

(3.5.5) ANE#0® VACZY, compact,A=—A, y(A) >k

and (3.5.4)- (3.5.5) imply (3.5.3).
Let us now prove the claim. We argue by contradiction. Then, we can select a sequence
(Un)nenw, Un € H'(IRN) such that

(3.5.6) |lun| = 1, (Un, Um ) =0 n#m

(3.5.7) /IRN (IVun|? + a(@)ud)dz < Blual? =8  Vne V.

Indeed, setting Vn € IN, E, = {[ug, u1,--., un_1]}*, [u0, ©1,-.., un_1] being the subspace
spanned by the mutually orthogonal unitary vectors {ug, u1,..., up—1} since we assume false
the claim, we can find a unitary vector, u, € E,, which verifies (3.5.7).
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By (3.5.6), passing eventually to a subsequence, we have u, — 0.
On the other hand, by (a1) - (a2), choosing a constant @ € (3, a ), there exists a function
c(z) € Co(RYN) such that a(z) > & + c(z) Vo € IRY. Hence

B> [ (Vuil+o@udda> [ (VunP +aud)+ [ claped > minl, a)lual+ [ elayud
RN RN RN RN

so, taking into account that / c(z)u? — 0, we obtain 8 > min(1,a) contradicting the
RN n—+0o0o

choice of § and a. B

PROOF OF PROPOSITION 3.5.1.
Setting

[ (VP +a()u)ds
(3.5.8) J(u) = 18 5 Yu € H'(IRY)

(e

and

¢ = inf sup J(u
Azt sup (u) ,

where
I'y :={ACX:Acompact,A=—-A,~v(A) >k},

we have, by Lemma 3.5.1,

(3.5.9) >0 VE>E.
Moreover, for any fixed &
'y CTy Vne N
and, obviously, J(u) = Jp(u), for all u € A € T'}, thus
(3.5.10) e < cp Vn € IN, Vke IN

and (3.5.9) - (3.5.10) imply (3.5.2). u

We are now ready to give the

ProOOF OF THEOREM 3.1.1.

In view of (3.5.2), by using well known results of minimax theory (see for istance [24]) we
can assert that, for any fixed n € IV, the numbers ¢}, defined in (3.5.1), are, for all k£ > k,
critical values of the functionals J,,. Moreover for any fixed k > &

(3.5.11) cp >ttt
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Then, it is easy to verify that the numbers b} defined, for all n € IV, for all k£ > k, by

1 1 P

are critical values for the functional I,, and that, for any fixed k& > k, by (3.5.11) (3.5.9) (3.5.10),
the sequence (b} )necmv is a decreasing sequence bounded from below by (% — %) (ck)# > 0.
Set now
by == lim by Vk> k.
n—+0o0o

Clearly by, > 0, we claim that

3.5.12 lim by = .
( ) k—ir-ll-loo k o0
Once proved (3.5.12), it is easy to conclude the proof. Indeed, for any fixed k& > k we
can construct a balanced sequence (v{)necmv, taking, for all n € IV, a critical point vf of I,
at level b}. Since Ip(vy) = by and VI,(v}) = 0, it is a standard matter to derive that
n o0

(lvg)nemv is bounded; then, by Proposition 3.4.1, (v} )npem is relatively compact and strongly
converges (up to a subsequence) in H'(IR") to a solution v, of problem (P) such that I(vg) = by.
By (3.5.12) we have infinitely many distinct values of by, so the conclusion follows.

Let us now show that (3.5.12) holds.

We argue by contradiction and we assume

lim kaEER.

k—+400

Then, there exists a k > % such that for all k£ > k there exists ny, for which

(3.5.13) b <b+1 Vn > ny, .

Then, by using Morse index estimates on min-max critical points (see [22], Lemma 3.6.2
and Remark 3.6.1 in the Appendix) we can select a sequence (wy)y, wg € H} (By,, (0)), k€ IN,

k> IAc, such that for all k&

a) In, (wp) —=0br*
(3.5.14) B VInk(I:u N
and
(3.5.15) irve(wy) >k

ipr(wy) denoting the augmented Morse index of wy, (see Definition 3.6.1 in the Appendix).
(wg ) is, by construction, a balanced sequence and using (3.5.13) - (3.5.14), it is not

difficult to deduce that (||wg||)x is bounded. Hence, Proposition 3.4.1 apply to (wg)r and,

passing eventually to a subsequence, still denoted by (wg)g, wg k_)—+>oow strongly in H'(IRY)

and w is a solution to (P).
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Hence, taking into account that the augmented Morse index of the critical points of I is well
defined and finite (see Lemma 3.6.1 in the Appendix), we can assert that a finite dimensional
subspace M C H'(IRN) and a constant £ > 0 must exist so that

(3.5.16) (V2I(W)z, 2z) > €||2|)? Vze Mt
moreover, the strong convergence of (wg)x to w imply, for k large enough,
(3.5.17) IV2I(wy) — V2I(@)|| < % .
On the other hand, by (3.5.15), for all k large enough, we can find z;, € M+ so that

(3.5.18) (V2I,,, (wi)zk, 2) <O .
Then, we deduce from (3.5.17) and (3.5.18)

(VI(@)zg, 28) < (V2I(@)2g — V2, (i) 2k, 21) + (V2 (i) 2k, 21)
. _ £
V2 I(@) — VI, (wi) || [|26]1> = IV?I(@) — VI (wg)|| ||z l* < 3 [EAI&

IN

contradicting (3.5.16) and completing the argument. B

3.6 Appendix

PROOF OF PROPOSITION 3.2.1.

Let (uy)nemw be a non compact balanced sequence bounded in H'(IRY).

Being (||un||)nev bounded, there exists ug € H'(IRN) such that, up to a subseqence, still
denoted by uy,,

(A.1) u, — ug weakly in H'(IRY) and in LP(R")
(A.2) u, — ug strongly in LY (IRN) Vg < 1\%—% =: 2%
(A.3) up(z) = up(z) a.e. in RN,

Since u,, is not compact, we have also

(A.4) Up, — ug 7 0 strongly in H'(IRN)

so there exists 7 € IR, 7 > 0 such that

(A.5) ||lup —ugl| >7>0 VnelN .
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Let us decompose IRY into N-dimensional unitary hypercubes, Q, with vertices having
integer coordinates and put

dy, = sup/ |un, — u0|2da: .
Q JQ
We claim there exists € IR, n > 0 such that
(A.6) dpn,>n>0 Vne N .

Arguing by contradiction, we assume (A.6) false. Therefore, up to a subsequence, dy, _)—+> 0.
n o0

Now, by Holder’s inequality, we have, for all ¢, r : 2 < ¢ < r < 2*

a B
/RN |up, — up|¥dz = Z/Q |up, — ugl?dz < Z (/Q |up — u0|2) (/Q |un, —u0|7”)
Q Q

—2

where o = T—2, =

Thus by Sobolev nequahtles we deduce
s
ot % < et 5 [ [ (90— ) b 0] =l — el
Q

if 8> 1, withc1€R+\{O}

rB 5
Since 5 :} 5 > 1, we obtain for all g € (2, 2*)

(A7) / |un, — ug|?dz — 0
IRN

On the other hand, since u,, is balanced,
[ 19 = ) + (@)~ w]ds = [ fun —wolPds

and, by (a1) - (a ) there exist a constant @ € (0, ax) and a positive function c(z) € Co(IRY)
such that a(z) > @ — c(z), Vz € IRYN. Therefore there exists c; € IR \ {0} such that

callun — uol|? + (1) < up — uol}
that, in view of (A.5), contradicts (A.7) and gives (A.6).
Being true (A.6), there exists a sequence of hypercubes @, C IRY such that

(A.8) / |, — uo|*dz > g >0.

n

Let us denote, for all n, by ¢, the center of (), and by
tin(-) = (un —uo)(- — tn) -
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We may assume, up to a subsequence, that, as n — +oo, i, — 4 in H HRN), @, — @ in
L2 (RN) and i, (z) — 1(z) a.e. in RN . Denoting by @), the N-dimensional unitary hypercube
centered at the origin, (A.8) gives

/ fin2dz> 1 >0,
4 2
so0, it follows from the Rellich Theorem
/~ l?dz > 1 >0

aQ 2

and @ # 0. But u, —ug — 0 in H'(IRN), hence |t,| — +oo.
n—+00
Note that
U= ngr-il—loo Up = ngrfoo(u" —ug)(- — 1) = ngrfoo tn(- — tn)

weakly, therefore, according to Remark 3.2.1, |@| solves (Ely).
Moreover, since (U )pemw and (G, — @)pcv are weakly orthogonal we have

(A.9)
/ IV (= o) [2dz :/ |Vﬁn|2da::/ |V(an—ﬂ)|2dx+/ \Va2dz + o(1)
RN RN RN RN
/ lun — woPd = / |an|2da::/ |an—a|2dx+/ |@f2de + o(1) .

RN RN RN RN

Iterating the above argument and observing that the iteration procedure has to stop in a
finite number of steps because of (A.9) and Lemma 3.2.1, we obtain

k
un—Zgoi(-—tfl)—)uo in H'(RR")
i=1
i i 4 < <
|t"|n—>_—|—>oo+oo |tn tn|n—>_—|—>oo+oo 1 _Z7é.7 <k
where |p;| are solutions of (El).
In order to prove (3.2.2) let us observe that for any given ¢ > 0 there exist sets By, By, ... , B
such that
|Vug|? < e / Vil < e 1<i<k.
RN\ By RN\B;

So for n € IN large enough, denoting by H a positive real constant, we have:

k
/IRN |v(un - (Uo + Z ‘Pi( . — t;)))|2d$ _

i=1

i=1

k
— .4t 2
/B°U (Uf=1(Bi+t%)) [V un = (o + 3 (- = £)))Pdct
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=1

k .
+/1RN\(B0LJ(U (Bitt ))) |V (un = (uo + Z @i+ —th)))|*dz =

= A |V (up — ug)| 2dm+2/ —goi(-—tfl))|2dx+H6:
o Bi+ti,

= [ 1¥(fua] = o] 2dx+2/ V(- + 85)] — lgil) Pz + He =

= V{|un| — (Jug| + (- —t 2dx + He =
(U ) 0~ > i~ 0))

= [ 19l = (il + 3 st = D)

i=1

Let us recall the following definition (see [22]).

Definition 3.6.1 We call augmented Morse index of a critical point u for a functional I, the
number (possibly +00) of the eigenvalues of V2I(u) less or equal than zero.

Lemma 3.6.1 Let a(x) satisfy (a1) - (a2). Let w € HY(IRN) be a critical point of I. Then the
augmented Morse index of w is well defined and finite.

PROOF. By (a1) - (ag), choosing a constant & € (0, as), there exists a function é(z) € Co(IRN)
such that

a(z) — (p— D|wfP2 > a+ &) .

Arguing by contradiction, we now assume that the linear operator

Lyv = —Av + a(z)v — (p — 1)|w|P~v
possesses infinitely many eigenfunctions v, so that

(3.6.8) |lon] =1 (vn, vm) =0 form#m
and

< vanavn >S 13”,0"”2

for some f € IR : 0 < 8 < min(1, a).
Then
min(1, @) ”Un”2+ < &é(z)vn, v >< /Bllvn“2
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80
< &(z)vp, v >< (B —min(1, @)) < 0.

On the other hand v, — 0, thus < é(z)vy,, v, > _)—+> 0 and we are in contradiction. B
n oC

Lemma 3.6.2 A function w € H'(IRN) is a critical point for the functional I if and only if it
is a critical point for the functional J and belongs to the mainfold

N = {u € HY(RN) : u#0, /IRN(|VU|2 + a(z)u?)dz = /IRN updx} .

Moreover the augmented Morse Index of W as critical point of I is greather o equal than the
augmented Morse index of u as critical point of J.

PRrROOF. Since

VJ@) =2 ( /IRN |u|de) | _awt a(e)s—

the first part of the claim follows straightly. In order to get the thesis it is enough to show that
if w is a critical point of I (and then of J)

(3.6.9) /IRN (V2 (@)][o]ode > 2 ( /IRN |u|de) ’ /IRN (V2I(@)][o]odz Vo € H(IRY) .

Indeed, observing that

| (Val + a(a)a)ds

_2
_Ati+ a(z)u - {B aP—2g / v( / |u|de) "lo=0
/ |U|Pd$ RN RN
RN

we have

/W(wm2 + a(z)u?)de

/ a[Pds
RN

v2Ilel = 2 ([, [6Pds) T3 -av+ e (o= D

_ m [/IRN(_AU+G($)U)U P ~%a
-
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| (Val + a(z)a?)do
IR

+ r— ([ piaPw) a2
Ly o
T _2
~ 2 ( /IRN |u|de) *{~Av+a(@) - (p - a2
2
- — [ / |ﬂ|”‘2mdm] [aP~%u
/IRN aPds /RN
p alP—2g alP—2g
+ 7(/N|u| uvda:) [P~ u
R

/ P de
IRN

_ ( /IRN |u|de)_’2’ (V21(@)][0] + /p%ﬁ;dx ( /IRN |H|”‘2Uvdx) aP—2a
-

So, being p > 2, (3.6.9) follows.
Remark 3.6.1 We point out that the same conclusions of Lemma 3.6.2 hold if u € H'(B,,(0))

is a critical point for the functional I,, because the arguments of Lemma 3.6.2 can be repeated
just replacing RN, I, J , N respectively with B,,(0), I, Jpn , Np.
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Chapter 4

Elementary properties of optimal
irrigation patterns?

In this paper we follow the approach in [3] for the study of the ramified structures and we
identify some geometrical properties enjoyed by optimal irrigation patterns. These properties
are “elementary” in the sense that they are not concerned with the regularity at the ending
points of such structures, where the presumable selfsimilarity properties should take place. This
preliminary study already finds an application in [2], where it is used in order to discuss the
irrigability of a given measure.

4.1 Introduction

In many works, see for instance [4], [6], [7], [8] and [9], irrigation and draining systems, trees and
roots, lungs and cardiovascular systems are described trough empirical observations assuming
some selfsimilarity laws which lead to their fractal structures.

In [3] the authors, introducing the notion of irrigation pattern, propose a model, similar
to that presented in [5] for the study of some transport problems, to the aim of setting on
a mathematical basis the question and to investigate the causes which justify the ramified
structures. They assume that the ramified structure is the result of a compromise between
the necessity of keeping together the fibers (to reduce a cost) and the necessity of reaching
a measure spread out on a large set. Thanks to [3], one can reformulate all the empirical
observations which supply this recent literature in terms of precise mathematical conjectures
or prove them as theorems. As a first step in this direction, in this paper we begin this study
by identifying some geometrical, elementary properties which are enjoyed by optimal irrigation
patterns, i.e. by those patterns which are solutions to a variational problem with Dirichlet
boundary conditions. These properties are “elementary properties” in the sense that they are
not concerned with the regularity at the ending points of these structures, where the presumable
selfsimilarity properties should take place. This preliminary study has the aim of giving some

4@G. Devillanova, S. Solimini, Elementary properties of optimal irrigation patterns, to appear.
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72 CHAPTER 4. ELEMENTARY PROPERTIES

basic tools which will be hopefully useful for the approach to the above mentioned probleims
and already finds an application in [2], where these properties are used in order to discuss the
irrigability of a given measure.

4.2 Fundamental notions and notation

In this section we recall some notions and notation introduced for the first time in [3] and at
the same time we introduce some new terminology.

Let (€2, |-|) be anonatomic probability space which we interpret as the reference configuration
of a fluid material body. We can think € playing the role of the trunk section of a tree, this
trunk being thought as a set of fibers which can bifurcate into branches. A set of fibers of Q
with source point S € RV is a mapping

x:Qx R, - RN
such that:

Cl1) For a.e. material point p € 2, xp : t — x(p,t) is a Lipschitz continuous map with a
Lipschitz constant less than or equal to one.

C2) For a.e. p € : xp(0) = S.

The condition [2] = 1 is of course assumed by normalization in order to simplify the exposition.
In some cases this normalization will be impossible (we can, for instance, work with two different
spaces and assume an inclusion), then we shall consider all the notions trivially extended to the
case || < +o0o. We shall consider the source point S € IRY as given and we shall denote
by Cs(€2) and Pg(f2) the set of all the sets of fibers of € and respectively the set of all the
measurable sets of fibers of 2 and we shall call the elements of Pg() irrigation patterns.

When the pattern y is the constant map of constant value S we shall say that x is a trivial
pattern. When we shall deal with subsets 2’ C © we shall use X|sv Instead of x|/, to denote
the restriction of x to €' x IR, and we shall call x|/ the subpattern of x defined on €.

Let (91, | -]1) and (9, | - |2) be two disjoint probability spaces, let S € IRY and let x; €
Pg(Q1) and x2 € Pg(Q2) be two irrigation patterns with the same source S. Let us consider
the set Q2 = Q; U Q9 endowed with the finite measure defined by setting, for all A C Q, |A| =
|JANQ|1 +|ANQ2|2. Then we can consider x; and x2 as subpatterns of a pattern x € Pg(f)
defined by setting for a.e. p € Q and for all t € R,

xi(p,t) iHpeh
1) = )
X, 1) { x2(p, t) ifpes.

The above defined pattern will be called bunch of the patterns x; and xo. It is clear that the
definition of bunch can be extended to a finite number of patterns defined on disjoint probability
spaces and also, with little changes, to a sequence of patterns, as in the following definition.
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Definition 4.2.1 Let (xn)nemv be a sequence of irrigation patterns xn : Qn x Ry — RN
all with the same source S € RN, where (U, |- |n)new i a sequence of measurable spaces
such that 3, |Qp|n < +00. Let Q be the disjoint union of the sequence (y)nemw endowed with
the probability measure | - | defined by setting, VA C Q, |A| = X, |AN Qp|n. The function
x: Qx Ry — RN defined by setting for a.e. p € Q and for all t > 0, x(p, t) = xn(p,t) if
p € Qy, will be called bunch of the sequence of patterns (Xn)necm-

We recall that every set of fibers of {2, time by time, defines an equivalence relation ~; on
) by relating two points p and ¢ € € at the time ¢ if x, and x4 coincide on [0, t]. So every set
of fibers at every time ¢ divides {2 into equivalence classes which we shall call x-vessels. For any
p € Q, we shall denote by [p]: the x-vessel at time ¢ which contains p while for any ¢ > 0 we
shall denote by V;(x) the set of all the x-vessels at time ¢. Then the following lemma trivially
follows.

Lemma 4.2.1 Let x be an irrigation pattern. Then for all 0 <t <ty and for all Vi, € Vi, (x)
and Vi, € V4, (x) we have the following two alternatives:

1. Vi, CVy
2. Vi, NV, = 0.
Definition 4.2.2 Let, fori € {1, 2}, v; : [0, T;[— IR" be a curve in RN . Let
X = {t <min{Ty, To} [ () #17())}
be a nonempty set, then we shall call
3(v1, v2) = inf X
the separation time of the two curves v1 and yo.

Definition 4.2.3 Let x be an irrigation pattern, then if one takes y1 = xp and va = x4 for
some points p and q € @ with p #; q at some time t > 0 we shall call s(y1, 72) the separation
time of the two points p and q and we shall denote it by s, (p, q).

We can introduce for any time ¢ > 0 a more restrictive equivalence relation among the points of
Q as stated in the following definition.

Definition 4.2.4 Let x be an irrigation pattern, p € Q and t > 0. We shall say that two points
D, g € 2 are strictly equivalent at the time t, and we shall write p ~} q, if there exists € > 0
such that p ~¢1. q. We shall call strict equivalence class of p at the time t, or equivalently strict
vessel of the point p at the time t, the following set

[pl; ={qg € Q|p={ q}

and we shall denote by V{(x) the set of the strict vessels at time t.
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Remark 4.2.1 Let x be an irrigation pattern, p € Q and t > 0. Then the strict equivalence
class of p at the time t coincides with the union of the equivalence classes [ply of p at times
>t ie.

(4.2.1) [l = Ulele = Ulpl -

t>t t>t
Remark 4.2.2 For a.e. p, ¢ € Q and for all t > 0:
o pyq forallt < s,(p,q)
o p~fq for all t < sy(p,q).

In the following we assume x € Cg(€2). We introduce the following function o, : 2 = IR, which
gives the absorption time of a point defined as follows

VpeQ : oy(p) =inf{t € IR, | xp(-) is constant on [t,4+-o0[} ,
which will be called stopping or absorption function for x.

Definition 4.2.5 We shall say that a point p € €2 is absorbed, according to x, when o, (p) < +o00.
A point p € ) is absorbed at the time t if o, (p) < t. Analogously, we shall say that a set X C )
is an absorbed set at the time t if 0, (p) <t for a.e. p € X, in particular when the set X is a
x-vessel we shall say that X is an absorbed x-vessel.

We shall denote by A;(x) the set of the points of {2 which are absorbed at the time ¢ and by
Ay = Ui At(x) the set of the absorbed points. On the contrary, the set

Mi(x) ={p € Q| ox(p) >t} = 2\ At(x)

is the set of the points that, at time %, are still moving.

Definition 4.2.6 We shall call x-flow at time t any x-vessel which is not absorbed and we shall
denote by Fi(x) the set of the x-flows at time t and by Fy(x) the union of all the x-flows at time
t.

Definition 4.2.7 Let I C IRy. We shall say that the one parameter family of sets Vi = (Vi)ser
is a x-vessel evolution if

e V; is decreasing under inclusion,
e V; € Vi(x) for every t € I.

In particular, when for all t Vi € F(x), the x-vessel evolution V; = (Vi)rer will be called x-flow
evolution.

Definition 4.2.8 At any time t > 0, the set S¢(x) = Mi(x) \ Fi(x) will be called spread flow
at time t. We shall say that the pattern x is a non-spread irrigation pattern if |Si(x)| = 0 for
everyt € IR, .
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Definition 4.2.9 For every set of fibers x € Cg(Q2) we introduce the irrigation function
iyt Ay — RV,

defined by setting
Vp € Ay ix(p) = x(p, ox(P)) 5

which gives, point by point, the absorption position of the absorbed points.

In the case in which we deal with an irrigation pattern x € Pg(£2), the absorption time function
oy and, for all £ > 0, the set A;()x) of the absorbed points at time ¢ are both measurable (see [3]).
We remark that iy (p) = lims_, X(p,t) and so also iy : A, — RY is a measurable function, as
a pointwise limit of a sequence of measurable functions, when xy € Pg(Q).

Definition 4.2.10 The image (push-forward) measure p, determined by the irrigation function
iy, defined by setting
ux(A4) = i (A)]

for any Borel set A C RN, will be called irrigation measure induced by the pattern x.

4.3 Flow curves and Dispersion

Definition 4.3.1 Let x be an irrigation pattern and T > 0. We shall call flow curve param-
eterized on [0, T[ any measurable function v : [0, T[— RN for which there exists a (unique)
x-flow evolution (V;)o<i<T such that

(4.3.1) VEe [0, T[ : () = x(p: ) = xp(t) forp € Vi.
In such a case we shall say that (V;)o<¢<7 is the x-flow evolution relative to the flow curve ~.

Definition 4.3.2 Let x be an irrigation pattern and v be a flow curve. We shall say that vy is
a maximal flow curve if it is not the restriction of any other flow curve.

Remark 4.3.1 Let x be a non-spread pattern and let v be a flow curve with the relative x-flow
evolution (Vi)o<i<r. Then, v is mazimal if and only if Vr = Ng<ior Vi is not a flow at time T.
Indeed, by continuity, the assumption Vo € Fr would state the existence of a positive measure
subset of Vr consisting of points which are not absorbed at a time 3 > T, so0, x being non-spread,
V1 would contain a flow at the time 3.

Definition 4.3.3 Let x be an irrigation pattern and let v : [0, T[— RN be a flow curve of .
Let p € Q. We shall say that the point p follows 7 if

1 oy(p) <T and

2 v = xp on [0, ox(p)]-
and we shall set Dy = {p € Q | p follows v} and 74, = supp, oy (modulo a negligible set).
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Definition 4.3.4 Let x be an irrigation pattern. For any point p € Q we shall call open fiber
of the point p the restriction of the x-fiber xp to the set [0, oy (p)].

Remark 4.3.2 Let x be an irrigation pattern and let v : [0, T[— RN be a nonmazimal flow
curve. Then v can be seen as a set of x fibers of positive measure. Indeed, by Definition 4.3.1
there exists a x-flow evolution (Vi)o<i<T such that v = xp on [0, T[ for all p € V.

To get the counterpart of the above remark we must add the hypotheses that the pattern is
non-spread.

Remark 4.3.3 Let x be a non-spread irrigation pattern, then almost every open fiber is a
flow curve. Indeed, by [3, Proposition 1.5], almost every point p belongs to a flow at any time

t < oy(p)-

The two above remarks suggest the idea that flow curves and open fibers are very similar
objects and therefore they share many properties. Let us begin by pointing out with the following
examples that this is not the case of every general property.

Example 4.3.1 There exists an irrigation pattern x such that any x fiber has a length strictly
smaller than 1 while all its mazimal flow curves have length equal to 1.

PROOF. Let us consider the pattern x defined on Q = [0, 1[ by setting for all p € [0, 1[ and
for all t € Ry, x(p, t) = min{p, t}. The pattern x gives rise to a unique maximal flow curve
whose support is the whole of the segment [0, 1| and therefore it has a length equal to 1, while
any x fiber has a length strictly smaller than 1. B

Example 4.3.2 There exists an irrigation pattern x such that any x fiber has a length equal to
1 and any nonmazimal flow curve has length strictly smaller than 1.

PROOF. Let us consider the pattern x defined on Q = [0, 1[ by setting for all p € [0, 1[ and
for all t € R, x(p, t) = min{l, t}. For any p € Q the fiber x, has a support which is the
segment [0, 1] and therefore has a length equal to 1. On the contrary, any nonmaximal flow
curve has a length strictly smaller than 1. B

The above stated examples lead us to give the following definition.

Definition 4.3.5 Let P be a property enjoyed by curves. We shall say that P is an inductive
property if the following equivalence holds true: P is satisfied by a curve parameterized on [0, T'[
if and only if P is satisfied by all the restrictions to [0, s for s < T.

Example 4.3.3 The property of being without self intersections is an inductive property.

Example 4.3.4 The property of having length strictly smaller than 1 is not an inductive prop-
erty.
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The following proposition will explain how the introduction of flow curves gives the advantage
of studying the inductive properties of the fibers without caring of negligible sets.

Proposition 4.3.1 Let x be an irrigation pattern and let P be an inductive property. If almost
all the open x-fibers satisfy P, then P is also satisfied by any flow curve. Moreover, if x is
a non-spread pattern, if all the flow curves satisfy P, then P is satisfied by almost every open

x-fiber.

PROOF. Let us assume that the inductive property P is enjoyed by almost any open y-fiber
then, being, by Remark 4.3.2, a nonmaximal flow curve coincident with a set of open x fibers of
positive measure, P is also satisfied by nonmaximal flow curves and therefore, by induction, by
any flow curve. Now let us assume that x is non-spread. By Remark 4.3.3 almost every open
x-fiber is a flow curve. So if P is a property which is satisfied by all the flow curves then it is
also satisfied by almost every fiber. B

Definition 4.3.6 Let x € Ps(Q)) be an irrigation pattern. We shall say that
F,={ze€ RY | 3t>0,3A € Fi(x) s.t. z=x(p, t), p € A}
is the flow zone of .
Definition 4.3.7 Let x € Ps(Q2) be an irrigation pattern of 2, then the set
(4.3.2) Dy={pe|peF, un}
will be called dispersion of the pattern x. Moreover we shall say that
e x has a complete dispersion or, equivalently, x is totally dispersed if |2\ Dy| =0
e x is a pattern with dispersion if | D,| > 0
e x is a pattern without dispersion if |D,| = 0.

Hence, when a pattern y has a complete dispersion, every point is absorbed just because it stops
its motion while it still belongs to a flow.

Remark 4.3.4 By Definition 4.5.3 and Remark 4.5.1, if x is non-spread D, = |J D, where
the union is extended to the (nonmazimal) flow curves ~y.

Remark 4.3.5 Let x be an irrigation pattern. Then the irrigation function sends the disper-
sion D, in the flow zone F,, i.e.
(4.3.3) ix(Dy) C Fy .

As a consequence, by the definition of irrigation measure induced by x, we have
(4.3.4) [Dy| < py(Fy) -

Therefore any irrigation pattern x such that p, (Fy) = 0 is a pattern without dispersion.
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Lemma 4.3.1 Let x be given. Then there exists a sequence (Yp)nemw of flow curves such that
for any nonmazimal flow curve v there exists n such that v is a restriction of .

PROOF. Let T > 0 and let v be a nonmaximal flow curve defined on [0,T[. Being
nonmaximal there exist T' > T and a flow curve 7 defined on [0, T[ such that v = ;o 7. Let

us fix s € D such that T < s < T, then y, = Y0, s[ 18 @ nonmaximal flow curve defined on [0, s
with s € £. Since there is an injective map between the nonmaximal flow curves defined on
[0, s[ and the flows in F,(x) and since F,(x) and D are countable sets, the thesis follows. B
By Remark 4.3.4 we have the following corollary.

Corollary 4.3.1 Let x be a non-spread irrigation pattern. Then

Dy = U D,, ,
nelN

where the sequence (Vp)nemw of nonmazimal flow curves is provided by the above lemma.

Corollary 4.3.2 Let x be a non-spread irrigation pattern. Then F, is the countable union of the
support of a sequence of flow curves (which can also be supposed to be mazimal or nonmazimal).

PROOF. Let z € F), then by definition there exists V' € F(x) such that z = x(p, t) forallp € V.
Let us fix p € V, then z belongs to the support of the open fiber x, and so by, Remark 4.3.3,
to the support of a (nonmaximal) flow curve. Then the thesis follows by applying Lemma 4.3.1.

Corollary 4.3.3 For any pattern x the flow zone F, is a Borel set and d(Fy) = 1.

Lemma 4.3.2 Let x be an irrigation pattern. Then x|q\p,) 5 a subpattern of x without
dispersion.

PROOF. Let us set X' = x|(\p,) and p € 2\ Dy. Then if t = o4 (p) = oy (p), p & Fr(x) D
Fi(x'). n

On the contrary, we cannot say that the complementary restriction x|p, has in general a
complete dispersion, as shown by the following example.

Example 4.3.5 There exists some irrigation pattern x such that |Dy| > 0 and x| D, s without
dispersion.

PROOF. Let 2 = [0, 1] and x : @ x IR; — IR be defined by setting

. l . <
TR e L
min {t, 1} ifp >

D= D=

It is easy to see that
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1) py = %6 1 + %61, where ¢ L and 4, are Dirac masses respectively centered in % and 1;

2) D, = [O, %] and, by consequence, x|p, is without dispersion.
|
In the above example we have considered a case of a discrete irrigation measure. It is easy to

see that this is the only obstruction to the possibility of splitting a pattern x as the bunch of a
pattern without dispersion and a totally dispersed one.

Lemma 4.3.3 Let x be an irrigation pattern such that p, (X) = 0 if X is a finite set. Then
X|Dy 5 a subpattern of x with a complete dispersion.

PROOF. Let us set X' = x|p,, we have to prove that |Dy \ D,s| = 0. Thanks to the de-
composition of D, stated in Corollary 4.3.1, we just have to prove that |D, \ D,s| = 0 for
any flow curve . Given vy, we shall split D, in the sets A, = {¢ € D, | oy(q) = 7y} and
By ={q € Dy | oy(q) < 7y}. We know that |A,| = 0 because otherwise, if p € A,, i, (p) would
be the center of a Dirac mass in u,, in contradiction to our assumptions. Let p € B, then
there exists a set of positive measure of points ¢ € D, such that o, (p) < oy(g), by consequence
pE F(,X,(p) (x'). So for a.e. point p € D, we have p€ B, C D,/. &

As a consequence of lemmas 4.3.2 and 4.3.3 we get the following corollaries.

Corollary 4.3.4 Let x € Ps(Q2) be an irrigation pattern of 2, then we can consider it as the
bunch of three irrigation patterns x1, x2 and x3 where x1 has a discrete (i.e. with a countable
support) irrigation measure fi,, x2 has a complete dispersion and x3 has no dispersion.

Corollary 4.3.5 Let x € Ps(2) be an irrigation pattern of 2, then we can consider it as the
bunch of a sequence of patterns (xn)nemw where xo s totally dispersed while for alln > 1 xy, is
without dispersion.

4.4 Reduction formula and fiber cost

Given x € Ps(f2) and 0 < a < 1, we shall make use of the function ¢, : QxR — IR, defined
by
(4.4.1) (0, 1) = |[plel* ™ Tag, ) () -

Remark 4.4.1 Let x € Ps(Q2) and ' C Q. If x' = x|ov we have
Py >y on U X Ry .

By integrating with respect to one of the two variables we obtain the following two functions,
respectively defined on IR, and {2

(4.4.2) ey (1) = /Qtpx(p, t)dp = /Mt(x) |[P]t|a_1dp
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and
B “+oo a'x(l’) a—1
(4.4.3) & (p) = /0 o (p, t)dt = /0 Iple]*dt .

The function ¢,, already introduced in [3], gives the a-cost of x at a time ¢ € JR;. On the other
hand, the function ¢, gives, for every point p € €2, the a-cost of the fiber ;. Being ¢, a positive
measurable function, the a-cost

Lo(x) = /Q o, tydpdt
X IRy

of the pattern x can be either obtained, as in [3], by

(4.4.4) T(x) = /0 T ()t
or by
(4.4.5) L) = | ex()dp -

Remark 4.4.2 Let x be an irrigation pattern of finite cost, then a.e. point p € Q is absorbed,
i.e. for a.e. p € Q oy (p) < +o00.

Given a probability measure i, in the case in which there exists an irrigation pattern y of
finite cost such that p, = @ we shall say that fz is an irrigable measure and that x irrigates
i. Then we shall consider the Dirichlet problem which consists in minimizing on Pg(2) the
functional I (x) + J (i), where J is defined by setting

_J 0 fu=npn
(4.4.6) ) = { 400 otherwise .

Definition 4.4.1 Let iz be a given probability measure. The Dirichlet Problem (4.4.6) admits a
minimum if and only if @ is irrigable, see [3, Section 9]. Any minimum x of I, + J will be called
an optimal irrigation pattern for @ and I,(x) will be called (irrigation) cost of the probability
measure i. We shall say that x is an optimal pattern if it is optimal for its irrigation measure .

Lemma 4.4.1 Let x be the bunch of a sequence of patterns X, : Qn x IRy — RN, where
(Qn, | - In)nemw is a sequence of measurable spaces such that Y, |Qp|n < +00. Then

In(x) < Z In(xn) -

nclN

PROOF. For any n € IN and p € Q,, let [p]} be the xy-vessel at time ¢ which contains p,
then [p]? C [p]s. Therefore, being oy, (p) = oy (p) for all p € Q,

oxn (P) ox(p)
o) = [ k1> [ et = (o)
Therefore, by (4.4.5),

100 = [ a®ip <3 [ e @)p =3 L) -
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4.5 Good parameterization of a pattern

Let x be an irrigation pattern, then by definition for a.e. p € €2 the fiber x, is a Lipschitz
continuous map with a Lipschitz constant less than or equal to one. Therefore, by Rademacher
Theorem, for a.e. p € Q we know that for a.e. t € IR, the derivative 9;x(p, t) exists and

Definition 4.5.1 Let x be an irrigation pattern. We shall say that x is well parameterized if
for a.e. p € Q and for a.e. t >0, t < o, (p), we have

(4.5.1) %(t)‘ =1.

Remark 4.5.1 When x is a well parameterized pattern, for a.e. p € Q, x(p, -) is parameter-
ized with respect to the length.

Remark 4.5.2 The property of a curve of being parameterized with respect to the length is an
inductive property. Therefore, by Proposition 4.3.1, a non-spread pattern x is well parameterized
if and only if any flow curve is parameterized with respect to the length.

In the case of a general x, we can consider the following function defined on IR, by setting
forallt >0

(45.2) ) = [

which turns out to be a 1-Lipschitz function.

Oxp
E(S)‘ ds,

Remark 4.5.3 For a.e. p € Q, ), is the identity function on [0, oy (p)] if and only if x is well
parameterized.

Remark 4.5.4 Let us fizp € Q and t > 0, then, for all q € [p]s, being x(p, -) = x(g, -) on
[0, t], we have ny(t) = ny(t).

Remark 4.5.5 Let x € Ps(). Let us fix p € Q and t > 0 such that t < oy(p). Then
np(t) < np(oy(p)). Indeed, being t < oy (p), the fiber x(p, -) can not be constant on [t, oy (p)].

Definition 4.5.2 Let x be an irrigation pattern. We shall say that X : Q x IR, — IRYN is the
good parameterization of x if, for a.e. p € Q and for allt € R,

(4.5.3) x(p, t) = Xx(p, (1)) ,

and
X(p, t) = const Vi > n,(0y(p)) -

It is easy to see that, for any given irrigation pattern y, X exists and it is determined
by (4.5.3), that ¥ is a well parameterized pattern and that x = x if and only if x is well
parameterized. In the remaining part of this section we shall consider the patterns y and ¥ as
given. Let mt be the x-vessel at time ¢ which contains the point p.
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Lemma 4.5.1 The following properties hold true
(4.5.4) fora.e. pe QR and for allt >0 : [p|: C mnp(t) )
(4.5.5) forae.pe Ay ox(p) =mplox(p)) -

PROOF. The proof is a straightforward application of the definition. Indeed, the thesis
follows from (4.5.3) with the help of remarks 4.5.4 and 4.5.5. B

Corollary 4.5.1 For p € Q and for t < oy(p) if [p)¢ is a x-flow at the time t then mnp(t) is a
X-flow at the time ny,(t).

Corollary 4.5.2 Being, for all p € Q, n, a 1-Lipschitz function, from (4.5.5) we get o3 < oy
and consequently for all t > 0
(4.5.6) At(x) C Ae(x) -

Corollary 4.5.3 A, C Ay and (ix) |4, = ix-

PRrROOF. By (4.5.6) A, C Ay. The remaining part of the thesis is only an application of the
definition of the irrigation function, indeed for a.e. p € A, we have by (4.5.5) and (4.5.3)

ix(p) = X(p, ox(p)) = X(P; Mp(9x(P))) = x(p, ox(0)) = ix(p) -

Corollary 4.5.4 When the pattern x has a finite cost we have A, = Q and consequently
(4.5.7) iy = iy and Py = Py -
Remark 4.5.6 For ollt > 0 and for a.e. p €

t < ox(p) = s < oy (p) such that t = ny(s) .

PROOF. Being 7, a continuous function such that 7,(0) = 0 and, by (4.5.5), ny(oy(p)) =
ox(p) >t > 0 the existence of s follows by continuity. B

Lemma 4.5.2 Let x be a non-spread irrigation pattern. Then the good parameterization X of
X s also non-spread.

PROOF. Let us fix p €  and t < ox(p), then by Remark 4.5.6 we get the existence of a time
s < oy (p) such that ¢ = n,(s). So, being x a non spread pattern, we have for a.e. p that [p]; is
a x-flow at the time ¢ and, by Corollary 4.5.1, that [p],  is a X- flow at the time 7,(s) =¢. B
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Lemma 4.5.3 For a.e. p € )
(4.5.8) cx(p) < e (p) -

PROOF. By (4.5.4) and (4.5.5), being 7, < 1 for a.e. p € Q,

7x(p) ox(p)
o) = [Tk [T B
ox(p) mp(ox(P))
> [ Bl mpd = [T
ff;(l’) T la— _
= [ Bl = o)

Remark 4.5.7 The proof of Lemma 4.5.3 shows that if (4.5.8) is an equality 77]’[, =1 ag.e. in
R,. So (4.5.8) is an equality for a.e. p if and only if the pattern x is well parameterized.

Corollary 4.5.5 I,(Xx) < I,(x) and the equality holds if and only if x is well parameterized.

Remark 4.5.8 By corollaries 4.5.4 and 4.5.5 any optimal irrigation pattern is a well param-
eterized patiern.

Definition 4.5.3 Let x € Ps(Q2). We shall say that x is a partitioned pattern if for all t € IR,
and for all p, g € Q such that p ~; q

p € A(x) and g€ My(x) = ox(p)=t.

Remark 4.5.9 Let x be an irrigation pattern such that for any p € § the fiber x, is not
constant on any interval [a, b] such that 0 < a < b < oy (p). Then x is a partitioned pattern. In
particular, a well parameterized patiern is partitioned.

Lemma 4.5.4 Let x € Ps(2) be a partitioned non-spread irrigation pattern. Then for a.e.
te Ry
(4.5.9) ()= D |AI*.

AeF(x)

PROOF. We shall prove a little bit more, actually we shall prove that (4.5.9) holds true
with the exception of a countable set of times, which are the values of ¢ for which the level set
{g € Q| 0y (¢) =t} has a positive measure. Indeed, for the other values of t € R, if A € F(x)
then, for a.e. p € A, o,(p) # t and therefore, being x partitioned, p cannot be absorbed. So for
all A € Fi(x), A C M(x) and, being x non-spread, M;(x) is the countable union of the flows
in F¢(x). Therefore we have
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o) = [l bM< [ i / APTlap= YA

AEF(X) AeFi(x AeFi(x)

Remark 4.5.10 The hypothesis that x is a non-spread pattern can not be removed. Indeed,
if x is totally spread then it has no flows and so, for all't, 3 acr,y) |A|* = 0 while, by [3,
Proposition 2.1], I,(x) = +oc.

By [3, Proposition 2.1] we know that a pattern of finite cost is non-spread, therefore Lemma 4.5.4
admits the following corollary.

Corollary 4.5.6 Let x be a partitioned pattern of finite cost. Then for a.e. t € Ry (4.5.9)
holds true. Therefore

(4.5.10) / > A~ dt.

AeF(x)

Corollary 4.5.7 Let x be a partitioned pattern of finite cost, then for any subpattern x' = X|q
of x and for a.e. t € IRy we have ¢y (t) < ¢y (t). Moreover the inequality is strict unless
contains Fy(x).

PROOF. The thesis easily follows from (4.5.9) since the flows of ¥’ are the traces of the flows
of y on . &

Corollary 4.5.8 Let x be a partitioned pattern, then, for any subpattern X' of x, Io(x') <
Ia(x)-

In Corollary 4.5.6, which, in some sense, states a “monotonicity” property of the cost functional
1, the hypothesis that x is partitioned can not be removed, as shown by the following example.

Example 4.5.1 There exists a pattern x (which is not partitioned) and a subpattern x' of x
such that In(x) < In(x')

PROOF. Fixed e <T € Ry, let 2 =10, 1], S =0 € IR and for all p € Q let x,, be defined by

. 1
BX( t)—{ 1 ifte[T, T+¢ andpe [O, 5]

ot 0 otherwise |,

and let x' = X|[o, 1]- An easy computation shows that Io(x) = 5T + sx& > while I(x') =
)
= (T +¢€) > I,(x)- 1
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Lemma 4.5.5 If x is non-spread then the flow curves of X coincide with the flow curves of x
parameterized with respect to the length.

PROOF. It is a not completely straightforward but simple consequence of Proposition 4.3.1.
The details are left to the reader. B

Corollary 4.5.9 If x is non-spread then

F, = F.

4.6 Simple patterns, branches and cost of a branch

Definition 4.6.1 Let x € Ps(Q) be an irrigation pattern of Q. We shall say that x is a simple
pattern if:

e for a.e. point p € §) the open fiber xp is a simple curve on [0, oy (p)[;

e for a.e. pair of points p and q of Q xp(t) # xq(s) for all s,t > s,(p,q), t < oy(p),
s < 0y(q).

Remark 4.6.1 By Remark 4.5.9, any simple irrigation pattern is a partitioned pattern.
Remark 4.6.2 Let x be a simple irrigation pattern, then any subpattern x' of x is simple too.

By Proposition 4.3.1 the above stated definition can be formulated as in the following remark
by means of flow curves, since the property of being a simple curve is an inductive property.

Remark 4.6.3 Let x be a simple irrigation pattern. Then
1) any flow curve vy is a simple curve;

2) for any pair (1, v2) of flow curves we have v1(t) # va(s) for all s,t > s(v1, 72)-

Moreover, if a non-spread pattern x satisfies 1) and 2) then it is a simple pattern.
Remark 4.6.4 A non spread irrigation pattern x is simple if and only if
Ve € F, 3|t > 03|[pls € Fe(x) s.t. = =x(p, t) .

Definition 4.6.2 Let x be an irrigation pattern. For any pair (p, t) € Q x IRy the function
X(p,t) [Pl X Ry — RN | defined, for all (g, s) € [p]s x Ry, by

X(p,t)(q’ 3) = X(qas +t) 3

is the branch of x starting from the vessel [p]; at time t.
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Remark 4.6.5 If for the pair (p, t) € Q x R4 the vessel [p]; is not a flow, for a.e. q € [p]+
and for all s > 0 we would have x(q,s +1t) = x(p, ox(p)) and therefore the branch of x starting
from [p]; at time t would be trivial. This is the reason for which the notion of branch starting
from a vessels [pl; is meaningful when [pl: is actually a flow.

Definition 4.6.3 Let x be a simple irrigation pattern. For any pair (p, t) € Q X IR, the pattern
Xfp 1) = X(o.1) 2 is the single branch of x starting from the strict vessel [p]; at time t.
? i

Where [p]: # [p]{ we shall have branches which are not “single” and, in order to point out that
the point x(p, t) give rise to more than one single branch, we shall call x(y, ) multiple branch.
Remark 4.6.4 allows us to give, for a simple pattern x, the definition of branch of x which starts
from a point z € F,, according to Definition 4.6.2 applied to any pair (p, t) such that z = x(p, t).
The following definition is the analogous of Definition 4.6.2 for a point z € F,.

Definition 4.6.4 Let x be a simple irrigation pattern. For any x € F,, we shall call branch of
X with source point x the branch of x starting from the flow [p|; at the time t where t > 0 and
[p]¢ are determined by the condition x(p, t) = =, see Remark 4.6.4.

Remark 4.6.6 Let x € F,, z = x(p, t), being, in general, [pl; # [p]i we have not a single
branch but ¢ multiple branch with source point x at time t. More precisely, the multiple branch
of x starting from x € F, can be seen as the bunch of the single branches which start from x.

Definition 4.6.5 Let x be a simple irrigation pattern with source point S. For any branch x'
of x starting from = = x(p, t) € Fy, we shall call pattern of x “stumped” of the branch x’, the
restriction of x to (\ [p]t) and we shall denote it by x \ X'

Lemma 4.6.1 Let x be a simple pattern and let X' be a branch of x. Then

(4.6.1) Py = ty' + by\y
and
(4.6.2) Io(x) < To(X) + Ta(x \ X) -

PROOF. Equality (4.6.1) is obvious. To prove (4.6.2) we have only to remark that, if the
branch x/ starts from the point z = x(p, t), for a.e. s >t we have

cx(8) = ey (s =) + ey (8);-

Then the thesis follows by Corollary 4.5.7. &

Definition 4.6.6 Given a pattern x and a x-vessel V = [p]¢ at a time t, we shall call cost of
the vessel V' and we shall denote it by I1,(V, t) or more briefly, when no ambiguity is possible,
by I(V) the cost I,(x') of the branch x' which starts from the vessel [p]y at the time t.
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Remark 4.6.7 Let x be an irrigation pattern, then for allt >0

(4.6.3) S I(V) = /t T e (s)ds .

Veve(x)
The analogous property also holds true for strict vessels.
Lemma 4.6.2 Let x be an optimal irrigation pattern. Then any flow curve is a simple curve.

PROOF. Let us assume, by contradiction, the existence of a flow curve -y defined on [0, T
and of two real positive numbers 0 < ¢; < 9 < T such that

(4.6.4) v(t1) = (t2)

Let (V;)o<t<T be the flow evolution relative to the flow curve y. Let us define x' : QxR — RN
by setting for all p € Q and t € R,

) _ ) xw. t) ift<t; or pgV,
(4.6.5) x(p t) = {X(p,t+t2_t1) ift>% and peV,.

It is easy to show that x' € Ps(2) and pys = py. The contradiction will follow if we show that
In(x') < In(x). In estimating I,(x) and I,(x') we shall make use of two distinct partitions of
Q x IR.. More precisely, we shall split

4
(4.6.6) o) =3 / pulp. tydpt

where the partition E1, Eq, E3, E4 of the cylinder 2 x IR, is given by

(4.6.7) E=Qx[0, t1];

(4.6.8) Ey = Vi, X [ta, +00[;

(4.6.9) B3 = (2 X [ta, +00]) \ B2 = (2\ V3,) X [ta, +00[;

(4.6.10) By =Qx [t ta) -

Analogously )

(4.6.11) LX) = X;/E oy (p;, t)dpdt
1= i

where

(4.6.12) E| = E ;

(4.6.13) Ey = Vi, x [t1, +ool;

(4.6.14) Ej = E3;

(4.6.15) Ey=E4\ Ey.
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By (4.6.5) for all (p, t) € E; we have ¢,/(p, t) = ¢, (p, t), while for all (p, t) € E3 we have
@y < @y so that

(4.6.16) / Py (p, t)dpdt < / oy (p, t)dpdt for i € {1, 3} .
jol B

Moreover, by (4.6.15) being x a well parameterized pattern, as stated in Remark 4.5.8, by
Corollary 4.5.7 and by Remark 4.4.1, being x|a\v;, = Xiﬂ\Viz’ we find

/E i ey (p, t)dpdt < /E ; ey (p, t)dpdt < /E P, (p, t)dpdt = /E Pxiow, (p, t)dpdt

to to
— / Cyony,, (D)t < / e (t)dt = / o (p, )dpdt .
t1 2 £ Ey
We still need to show that
(4.6.17) / Py (p; t)dpdt < / oy (p, t)dpdt .
El Es

Actually, for (p, t) € El we have by (4.6.13) that p € V;, and ¢ > ¢;. Then it is easy to see that
1. [Ple+t,—t; C [p]} where [p]; is the x'-vessel of the point p at time ¢;
2. oy (p) < max{ti, oy (p) +t1 —ta}.

As a consequence, being o — 1 < 0, we get that

ox (0, 1) = Pl Doy (0) < NPlerto—ta [*T Dntiyey oy 00y () = 9x(0, t 22 — 1)

from which (4.6.17) easily follows taking into account that (p, t) € E} gives (p, t+to—t1) € Eo.

Lemma 4.6.3 Let x € Ps(2) be an optimal irrigation pattern. Then for any pair (v1, v2) of
flow curves of x we have

(4.6.18) Y1(t) # 72(s) Vi, s > s(v1, 72) -

PROOF. Let us assume by contradiction that there exist a pair of flow curves (v, 72) and
real positive numbers #;,%y > tg = s(y1, v2) such that v, (t1) = v2(t2). Now let us call (V;)o<i<
and (Wy)o<i<T, the x-flow evolutions relative to y; and to -y, respectively. Let us call a = |V;,|
and b = |Wy,|. Let us define the following pattern by setting for all p € Q and ¢t > 0

x(p, ) if p g Wy,
(4.6.19) xi(p, t) = § M) if ¢ € [0, t1] and p € Wy,
x(p, t+ (t2 — t1)) ift>t andpeW,,.

Since the absorption position of a point p €  is the value of x(p, t) for a large ¢, it is easy to
see that
(4.6.20) Iyr = Iy
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and by consequence
(4.6.21) by, = Py -

Let 61 = In(x1) — Ia(x)- One easily cecks that

t1 t2
(4.6.22) &1 g/t (|Vs| + b)® — Itha)dt+/t (IWe| = b)* — |[Wy|*)dt .

In a symmetric way, we set

X( s t) ifp ¢ Vi
(4.6.23) xa(p, t) = 72(t) ift € [0, tz) and p € V3,
x(p, t+ (t1 —t2)) ift>tandpeV; .

Analogously as before, one can deduce that
(4.6.24) Uyy = by

and by consequence
(4.6.25) txs = by -

Symmetrically, the difference do = I,(x2) — Io(x) can be estimated by

t [
(4.6.26) b2 < /to (V] —a)* — |Vt|“)dt+/t0 (W] + a)* — [Wi|*)dt .

The contradiction will follow from the inequality

(4.6.27) ady + bds <0,

89

which we are going to prove and which shows that y is not optimal. Indeed, being 0 < o < 1,

the concavity of the function z% gives

t o (s o _ @
P (R L S (7R a
b a to b a
+ (7 [(|Wt| +a)* = W W — (We| — b)®
to a b

From lemmas 4.6.2 and 4.6.3 and Remark 4.6.3 the following theorem easily follows.

Theorem 4.6.1 Let x be an optimal irrigation pattern. Then x is a simple pattern.

Jat<o.
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4.7 Pruning Theorem

We shall devote this section to the proof of the following theorem.

Theorem 4.7.1 (Pruning Theorem) Let € > 0 and x € Ps(Q)) be an irrigation pattern of
finite cost without dispersion. Then there exists a finite number k of points z; € F, such that,
denoting by x; the branchs of x with source point x;, we have

k
(4.7.1) Y In(xi)<e
i=1
k
(4.7.2) (b — ZNM)(RN) <e.
i=1

We shall need to introduce some technical tools to be essentially used in this section. The
following definition quantifies the short life-flows i.e. the flows such that most of their points
are going to become absorbed in a short time.

Definition 4.7.1 Let x € Ps(2), t > 0 and A € Fi(x). For fized € > 0 and § > 0 we shall say
that a flow A at time t is a (g, §)-flow if

(4.7.3) Hpe A|oy(p) >t+6} <e.

In the following, we shall denote by F, 5 the set of all the (g, 6)-flows of the pattern x at some
time. For all A € F_ s there exists therefore by definition t4 > 0 such that A is an (e, 6)-flow at
the time t 4.

Lemma 4.7.1 Let x be an irrigation pattern of finite cost and without dispersion. Then for all
€>0 and § >0, for a.e. p € Q, there exists A € F, 5 such that p € A.

PROOF. We shall prove that the set of the points p for which the thesis is false is a negli-
gible set. By [3, Proposition 2.1] the pattern x is a non-spread pattern and therefore, by [3,
Proposition 1.5], for a.e. p, if t < oy (p), A € F¢(x) such that p € A. So,let usfixp €, e >0
and § > 0 and let us assume that

(4.74) Vt<oy(p), VA€ Fy(x), suchthatpe A : |{g€e A|oy(q) >t+ 6} >¢.

By Remark 4.4.2 we know that, being x a pattern of finite cost, for a.e. p € Q, o, (p) < +o00.
Let (tp)ncmv be an increasing sequence of real positive numbers such that lim,_; . t, = oy ().
So, for every n € IN let A, € Fi,(x) be the flow at time ¢, such that p € A,. Setting
Xn={q € Ay | oy(q) > tn +d} we get, by (4.7.4), | X,,| > €. Being the sequences (Ay)nemw and
(tn)nem respectively decreasing and increasing, we get that (X, )ncmv is a decreasing sequence.
So, if X = N, Xn, |X| > €. By construction X is made of points which belong to the same
x-vessel up to time o, (p) and which are not absorbed before the time o, (p) + . So X is con-
tained in a flow at the time oy (p) and, since X C [p],, (), P € Dy, which is a negligible set being
X a pattern without dispersion. i
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Lemma 4.7.2 Let x € Ps(2) be an irrigation pattern of finite cost without dispersion, F a set
of x-flows, A € F, n > 0 such that

(4.7.5) VA€ F suchthat AC A : |[A\A|<n.

Then there exists a measurable set T such that |T| < n and for all A € F, A C A we have
A\ACT.

PROOF. Let us set

(4.7.6) D= {t € IR, | 3A € F flow at the time ¢, s.t. A C A} and t=infD.

Let us call A’ the strict flow at time # which contains A and T = A’ \ A. Let (t,)nemw be a
sequence of elements of D such that ¢, — ¢ for n = +oo. For any n € IV let us call 4,, the
flow at the time #, such that A C A,. Being t, € D, we deduce that A, € F and A, C A'.
Therefore, by (4.7.5), |An \ 4| <7 for alln € IN. Then |T| = |A’\ 4| = sup,, |4, \ 4| < 7. For
allt € D let A € F be a flow at the time ¢ which contains A, we have ANAC A'\A=T. 1

Lemma 4.7.3 Let x be an irrigation pattern of finite cost without dispersion, then for any given
€, 0 and 1 > 0 there exists a finite set A C F, 5 consisting of disjoint flows such that

(4.7.7) o\ J 4l <n.
AcA

PROOF. Let us fix ¢, § and n > 0. Let us set Fy = F. 5 and s; = supscp, |A|- Let us fix
A; € Fy such that |A;| > s; — 3. By Lemma 4.7.2 applied to F = Fy we can find a measurable
subset 77 C Q, |T1| < 3 such that for all A € F; 5, A; C A, we have A\ A; C T;. We shall
recoursively procede to define other sets A;. For all £k € IN, k > 1 let us assume to have already
defined A, Ay, ..., Ag, and let us set F*¥ = {A € F.s] AN (UF_,A;) = B}. In the first part of

the construction we shall assume that Vk € IN, k > 1, F* £ (), so we can set

(4.7.8) s, = sup |A].
AeFk—l

We chose A;, € F*=1 guch that

1
(4.7.9) |Ak| > S — 2_k .
By Lemma 4.7.2 applied to F = F*¥~! we can find a subset T}, of Q, |T}| < 3¢ such that for all
A€ FF1 Ay C A we have A\ A C Ty. If, on the contrary, we reach a k such that F* = (),
we put s, =0, A, =T, = 0 for n > k. Let us remark that by construction (|A,|)pcm is an
infinitesimal sequence, so (4.7.9) gives
(4.7.10) lim s,=0.

n——+0o
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Setting T = Jo~ | Tr, we have

o] o]

n
(4.7.11) T <> Tl <> o =1
n=1 n=1
We claim that .
(4.7.12) @\ J4)\T|=0.
i=1

Indeed, otherwise by Lemma 4.7.1 we could find A € F, 5 such that ((Q\ U2, A4)\T)NA#(
and so, in particular,

o0
(4.7.13) Ag|JA;.

i=1
By (4.7.10) we can find k € IN such that s;,; < |A|, so by construction (see (4.7.8)) A ¢ F*,
therefore AN(U%_, 4;) # 0 and so, by (4.7.13) and Lemma 4.2.1, A; C A for some i < k. Let h be
the minimum of such values of 4. By construction A € F*~1, A, C A and so A\ Ap, C T}, hence
A C Ap UT, in contradiction to the choice of A. Therefore by (4.7.12), |Q\ U2, 4i| < |T| <.
So for some n € IV, |Q\ UL, 4i| <n. &

Lemma 4.7.4 Let x € Ps() be an irrigation pattern of finite cost and without dispersion,
then given € > 0 there exists § > 0 such that for any set A consisting of disjoint flows in Fs 4

(4.7.14) Y I(A)<e.
AcA

PRrROOF. Let £ > 0 be given, then by the absolute continuity of the integral we can find § > 0
such that the following properties hold true

(4.7.15) forany AC Q x IRy s.t. |[A| <46 /A oy (p, t)dpdt < % ;
(4.7.16) forany BC Qs.t. |[B|<d / oy (p, t)dpdt < £ ;
BX]R+ 3
€
4717 / H)dpdt < .
(4.7.17) sy oalp it <

Let us fix a set A of disjoint elements of Fj 5. Then we can split A in the following two sets
Al ={A€cA||A|>¢} and A={AcA||A <d}.

Let us evaluate the contribution given to the left-hand side of (4.7.14) by A;. To this aim, we
shall split any flow A€ A in A' ={ge A|oy(q) >ta+d}and A" ={g € A| oy(q) <ta+6},
so that

(4.7.18) Y I (A) = /

oy (p, t)dpdt + / ox(p, t)dpdt .
Ac Ay UAE.A1 A'x[ta, ool UAeAl A

""%[ta,+o0[
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Taking into account that, by the definition of A;, we have card(A4;) < 6~! and that, by the
definition of F 4 flow, |A'| < 6 we have

| U A'| < card(A4)0? <4,
Ac Ay
and therefore, by (4.7.16),

(4.7.19) oy (p, t)dpdt < % .

/UAG.AI A'X[ta,+o0]
On the other hand, being the elements of A; disjoint sets and || =1,

| | A" x[ta, ta+d[] <6 > |A"|<6.
Ac A Ac A

Therefore from (4.7.15)

(@200 | ol tydpdt = [ o (p, t)dpdt < = .
A€A] Ax[ta;+oo] AeAy A"X[ta,tato] 3
By combining (4.7.18) with (4.7.19) and (4.7.20) we get
2
(4.7.21) Y I(4) < 3¢

AcA

Finally, if A € Ay and (p, t) € A X [ta, +oo[ we have ¢, (p, t) = |[p]¢|* ! > |[ple, |27t > 6% L or
oy (p, t) = 0 if p is absorbed at the time t. So by (4.7.17)

47.22) Y I(4) = /

AcAs Ui, Ax[tas+oo]

The thesis trivially follows from (4.7.21) and (4.7.22). 1

&
,tddt</ t)dpdt < .
x(p; t)dpdt < {wxzéa_l}sox(p Jdpdt < 3

PROOF OF THEOREM 4.7.1. Let us fix £ > 0 and consequently é > 0 as in the thesis
of Lemma 4.7.4. By Lemma 4.7.3 we can find a finite set A = {A;, Ao, ..., Ax} of disjoint
elements of Fy» 5 such that |Q\UF_; 4;| < e. The thesis follows from Lemma, 4.7.4, see also Def-
inition 4.6.6, taking, for all ¢ € {1, 2,..., k}, x; as the branch which starts from z; = x(p, t4,)
forpe A;. B

4.8 Rearranged patterns

Definition 4.8.1 Let x be an irrigation pattern with source point S. We define ¥ : @ X IRy —
IR by setting, for a.e. p € Q, and for allt >0

(4.8.1) X(p, t) = np(t)
where 1y, is defined by (4.5.2). We shall call x the stretched pattern of x on IR, .
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Remark 4.8.1 If x € Ps(2), being, for a.e. p € Q, n, a 1-Lipschitz function, we have
X € Py(Q). Moreover, if x is a well parametrized pattern then, for a.e. p € Q, x(p, -) is the
identity function on [0, oy (p)] see Remark 4.5.5.

For every p € 2 and for all ¢t € IR, we shall denote by [;)]t the y-vessel at time ¢ which contains
the point p;

Lemma 4.8.1 Let x be an irrigation pattern and let x be the stretched pattern of x. Then the
following properties hold true

(4.8.2) for a.e. p€ Q and forallt >0 : [p]s C [;)]t ;
(4.8.3) forae. peQ : oy(p) =oy(p) -

PROOF. The first part of the thesis is an easy consequence of Remark 4.5.4. To prove the
second part let us remark that, by definition, for a.e. p € Q we have o5(p) < oy (p). The reverse
inequality follows from Remark 4.5.5

Corollary 4.8.1 Let x be an irrigation pattern and let x¥ be the stretched pattern of x. Then
(4.84)  forallt>0 : MJ(x)=Mdx) , AX)=A4:x) and @z <py.
Corollary 4.8.2 Let x be an irrigation pattern and let x¥ be the stretched pattern of x. Then
(4.8.5) In(X) < Ta(x) -

For any p > 1 we recall the definition of Kantorovitch-Wasserstein distance of index p.

Definition 4.8.2 Letp > 1 and let u, v be two probability measures. We define the Kantorovitch-
Wasserstein distance of index p between u and v by

1
dy(g, v) = (mi / - Pd)”,
b1, V) (m;n N i

where the minimum is taken on all the transport plans o which lead p to v, i.e. measures
on Q x Q such that their push forward measures by the first and the second projection on
respectively are p and v (mpo = p and mopo =v) (see [1] for more details).

Taking into account that ¥ maximizes the distance of the absorbed points from the source one
can easily prove the following lemma.

Lemma 4.8.2 Let x € Ps(2) be an irrigation pattern and let x be the stretched pattern of x.
Then we have
(4.8.6) Vge: [iy(g) — S| <liz(g) — 0]
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PROOF. Given g € €2, we have

ox(9)
i@ =81 7 15K 0 Ol = ny(0(@) = e 75(0)) = ix(@) = ix(0) ~ 0]

Corollary 4.8.3 Let x be an irrigation pattern and let x be the stretched pattern of x. Then
for all p > 1 we have

(4.8.7) dy(iix, 05) < dpljigs bo) -

Lemma 4.8.3 Let x be an irrigation pattern and let x be the stretched pattern of x. Then for
all p > 1 we have

(4.8.8) dy i1z, o) < 11 (%) -

1
P

PROOF. Let us fix p > 1. We must prove that the Kantorovitch-Wasserstein distance of
index p

1
P

d=dy(uz,o0) = ([ Paug(s))

of pg from the source point 0 of ¥ is less or equal to the cost

c=n(=[ (/:oodufc(S))%dt-

We can assume without any restriction that u, is a discrete measure and then recover the general
case by weak continuity. So let u, = Zle m;ds,, where sp =0 < 81 < ... < s;. Then

k % k k 1_11
d= Z m;sy and c¢= Z Z mi | (85— sj-1) -
j=1 j=1 \i=j

=3

We shall prove that d < ¢ by induction on k. Let us assume the statement true for £ — 1 masses
and let us estimate the variation of the distance d and of the cost ¢ with respect to the position
s of the last mass my;. We get

13

14
) 1 (& ? 1 Y mysh)
_d — _ ms SP m Sp — M m
sy, p (]2::1 ? ]) P

mksg

1 0
< 'mk = EC .

G =

Therefore it is sufficient to prove that the inequality d < ¢ is true when the distance s — sg_1
from the masses my, and my,_; is zero. In such a case, the number of the masses reduces to £ —1
and the inequality is given by the induction assumption.

By combining in order Corollary 4.8.3, Lemma 4.8.3 and Corollary 4.8.2 we get the following
theorem.
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Theorem 4.8.1 Let x be an irrigation pattern. Then for all p > 1 we have
(4.8.9) dp(px; 0s) < 11(x) -

Definition 4.8.3 Let x be an irrigation pattern with source point S and o : Q@ — IR, be a
measurable function. Let us consider the function X : Q x Ry — RN defined by setting for a.e.
p € Q and for allt >0

5 _ ] x(pt) ift <o(p)
(4.8.10) e, 1) = { x(p,o(p))  Ht=o(p).

Being x € Ps(Q) it is easy to check that x € Ps(2). We shall say that x is the “o-forced
absorption pattern” of x.

Remark 4.8.2 Let ' C Q. By Definition 4.8.3 we can say that the bunch of a subpattern
x = X and a trivial pattern gives a o-forced absorption pattern of x trough the function
o = oy - Loy . Equivalently, we can say that any subpattern x', modulo the bunching with a trivial
pattern, is the o-forced absorption pattern of x trough a characteristic function.

Therefore, in general, oll what we shall say about o-forced absorption patterns of x still holds
true for subpatterns of x modulo the bunching with a trivial pattern.

Remark 4.8.3 Let x be a well parameterized (or simple) pattern. Then for any measurable
function o : Q@ — IRy the o forced absorption pattern of x is a well parameterized (or simple)
pattern.

Remark 4.8.4 Both the assumptions on x of being a well parameterized or a simple pattern
guarantee that for any measurable function o : Q — IR, the o forced absorption pattern of x is
a partitioned pattern. However, the property of a pattern of being partitioned is not inherited,
in general, by its forced absorption patterns as shown by the following example.

Example 4.8.1 Let us consider Q = [0, 1], S = 0 and the pattern x defined by setting for all
p € [0, 1] and for allt € IR,

t ift < é
(4.8.11) x(p,t) = {3 if 3 <t<3
min{t — 1, 1} ift> 3.

For any t > 0 and for all p € Q, [p]: = Q and so x is a partitioned pattern. Let us take a
subset O C Q and 0 = 2— 1. Then the o-forced absorption pattern § of x is not a partitioned
pattern. Indeed, let us take p € ' and g € Q\ ', then we have, for t =1, xp = Xq on [0, 1],

p € A(R), a € My(X) but og(p) = 5 <t.

Lemma 4.8.4 Let x and o be given and let x be the o-forced absorption pattern of x. Then
(4.8.12) oy < inf{oy, o} .

Moreover if x, and therefore by Remark 4.8.3 X, is well parameterized or simple then

(4.8.13) oy = inf{oy, o} .
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PROOF. Inequality (4.8.12) follows from (4.8.10). Moreover, if the inequality is strict, ¥ (p, )
is constant on [0y, inf{c,, o}] for a set of positive measure of points p € . This case is avoided
when x is well parameterized or simple. B

Corollary 4.8.4 Let x and o be given and let x be the o-forced absorption pattern of x. Then

(4.8.14) My(%) C Me(x) -

Lemma 4.8.5 Let x be a well parameterized pattern and let ¢ : @ — IR, be a measurable
function. Let x be the o-forced absorption pattern of x. Then for any t € IRy and for any
A € F(x) there exists A’ € Fy(x) such that A C A'.

PROOF. Let us fix t € IRy and A € F;(x). By definition of F(x), there exists B C A,
|B| > 0, such that, for all p € B, o4(p) > t. Let us fix p € B, then A = [Z;]t Moreover,
by (4.8.12), for any g € B we have o(q) > 04(¢q) > t and therefore, by Definition 4.8.3, x4 = X4
on [0, t]. By consequence we have B C [p]; and, by(4.8.12), B C My(x). Therefore, set A’ = [p];,
we get that A’ is a x-flow at the time ¢. Now we must prove that also A\ B C [p];. This is
the step which requires x to be partitioned, as guaranteed by Remark 4.8.4. Indeed, for any
g € A\ B C [p], we have x4, = Xp on [0, t] and therefore o4 (q) =t. By (4.8.12) it follows that
o(q) > o3(q) >t for all ¢ € A\ B. By consequence, for any ¢ € A\ B, x4 = x4 on [0, ¢[ and, by
continuity, on [0, t]. Being, for all¢ € A\B, g € [{)]t and X4 = x4 0on [0, t], we have A\ B C [p];. B

As shown by the following example the hypotheses of the good parameterization of the pattern
x in Lemma 4.8.5, which can be replaced by x being simple, can not be completely removed.

Example 4.8.2 Let us consider = [0, 1] endowed with the Lebesgque measure. Let us set
+
t—2 ifpelo, L
(4.8.15) x(p, t) = ( ‘:’)+ , [1 ? [
(t-3)  iwels]
and o = I[o 1 Let ¥ be the o-forced absorption patter of x. Then set p = % andt = % we have
®

that [p}: = |5, 1] € Fix), [pl, = [0, 1] € F(%) and [p], ¢ [pls-

Remark 4.8.5 In other terms, the above lemma states that, for a.e. p € Q and for all t > 0,
if [pl; is a x-flow at the time t then

(4.8.16) [Pl C lpls
and [p); is a x-flow at the time t.

Lemma 4.8.6 Let x be a non-spread irrigation pattern, then for any measurable function o :
Q — IR, the o-forced absorption pattern of x is also non-spread.
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PrOOF. We just remark that for any ¢ > 0 the function ¢ must be strictly greater than ¢
on the spread flow Si(¥). So, by Definition 4.8.3, S;(x) is actually contained in the spread flow
St(x)- Being x a non-spread pattern Si(x), and therefore S;(x), must be a negligible set. i
By Remark 4.8.2, Lemma 4.8.6 admits the following corollary.

Corollary 4.8.5 Let x be a non-spread irrigation pattern, then any subpattern x' of x is also
non-spread.

Corollary 4.8.6 Let x be a well parameterized irrigation pattern and let o be a measurable
function. Let X be the o-forced absorption pattern of x. Then I (%) < In(x)-

PROOF. We can assume, without any restriction, that y is a pattern with a finite cost and
therefore a non-spread pattern. By Lemma 4.8.6 x is also a non spread pattern, then the thesis
easily follows by Corollary 4.5.6. 1

Definition 4.8.4 Let x be an irrigation pattern with source point S. We shall call “rearranged
pattern” of x the function x* : @ x IRy — IR, s.t., for a.e. p € Q and for allt >0

(4.8.17) x*(p, t) = min{t, |S — iy (p)|} -
Remark 4.8.6 By the definition of x* it follows that x* € Py(R?) and
Vpe : |0—iy-(p)| =ix-(p) =[S —ix(P)| = ox=(P) -

Therefore py~ is the image measure of p, trough the function ¢ : p — |S — iy (p)|.
Corollary 4.8.7 Let x be an irrigation pattern, then for any p > 1
(4.8.18) dp(px=,00) = dp(piy, s) -
Remark 4.8.7 We can obtain the rearrangement x* of an irrigation pattern x by

1. the good parameterization X (see Definition 4.5.2);

2. the stretched pattern x of x on IRy (see Definition 4.8.1);

3. the o-forced absorption pattern of X (see Definition 4.8.3) where the function o which
forces the absorption is defined by setting, for all p € Q, o(p) = |S — iy ()|

Lemma 4.8.7 Let x be an irrigation pattern then for any o €]0, 1[:
Io(x*) < Ta(x) -

ProoOF. The proof easily follows from Remark 4.8.7. Indeed, we get the thesis by applying in
sequence corollaries 4.8.6, 4.8.2 and 4.5.5. 1
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4.9 Support of a simple pattern

The set F) which contains the trajectories of the flows can be considered as the support of a
pattern x. Under some regularity conditions, it can also be considered to be equipped with
some structure. By Corollary 4.3.2, if x is non-spread, F), is the countable union of supports of
rectifiable curves.

Definition 4.9.1 We shall say that the sequence of open simple curves (yn)nemw, each one with
left extreme in S € RN and defined in [0, T,[, satisfies the “separation property” if

(4.9.1) Vm#n Ym(s) #mt) Vs, t> s(vm, M) -

Definition 4.9.2 Let F C RN and S € RN. We shall say that the set F is a “branching set”
with respect to S if for all x € F there exists a unique simple curve which joins x with S.

Remark 4.9.1 If (y,)nemv satisfies the separation property, then F = U,cnsupp(vn) is a
branching set with respect to S.

Remark 4.9.2 Let x € Ps(Q2) be a simple non-spread pattern. Then, by Corollary 4.8.2 and

Remark 4.6.3, the support of x is the countable union of a sequence (yn)nemw of flow curves
which satisfies the separation property. In particular, the support of x is a branching set with
respect to S.

When x is a non-spread simple pattern three structures are induced on the support Fy: a
partial order, a “time” function and a “quantity” function as will be specified in the following
definitions.

Definition 4.9.3 Let x € Ps(Q) be a simple non-spread pattern. Then for any x € F,, x =
x(p, t) we shall refer to t, which, being x simple, is determined by x (see Remark 4.6.4), as to
the “time” of the point x and we shall denote it by t,.

Remark 4.9.3 For all x € F, the time t, represents the “geodetical” distance of x from S
along the unique simple curve which joins x© to S if and only if x is well parameterized.

Definition 4.9.4 Let x € Ps(Q2) be a simple non-spread pattern. Let x = x(p, s) andy = x(q,t)
be two points of the support F,. We shall say that x precedes y on F, and we shall write x <, y
if [q]: C [p]s and s < 1.

Definition 4.9.5 Let x be a simple pattern. The function Py, defined on F, by setting for all
z € Fy, x = x(p, t), Py(z) = |[pl¢| will be called quantity function of x.

The following lemma can be trivially proved.
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Lemma 4.9.1 Let x € Ps(2) be a simple non-spread pattern. Then for all z € F),

n

(4.9.2) Z Py(z;) < Py(z)

i=1
holds true for any finite sequence x1, T2, ..., T, of non-comparable points of F, such that
z =3 z; Vie{l, ..., n}.

Remark 4.9.4 Let x € Ps(Q) be a simple non-spread pattern. Then F,, equipped with the
partial order <, ., the time function and the quantity function, is invariant modulo equivalence.

One can wonder if any given branching set can be seen as the support of an equivalence class of
patterns. Let S € RN be a given point and let F C IRY be a branching set with respect to S.
Then we can define on F a partial order as follows.

Definition 4.9.6 We shall say that © < y if the simple curve which joins y to S passes through
the point x. The partial order = will be called branching order.

A time function can also be assigned on F or it can be automatically defined by the length in
such a way to lead to a well parameterized pattern.

Definition 4.9.7 For any x € F, we shall call “time” of the point x the parameter t, which
represents the length of the unique arc of curve which joins © to S. For any t > 0 we set
ft:{Z‘EF|tw:t}.

Definition 4.9.8 Let F be a branching set and P be a measurable positive function defined on
F. We shall say that P satisfies the superadditivity property on F if for all x € F

n

(4.9.3) > P(z;) < P()

i=1

holds true for any finite sequence x1, Ta, ..., Tn of non-comparable points of F such that x < x;
Vie{l, ..., n}.

If we take as the parameter ¢ the values of the time function, as the flows at a time ¢ the
points ¢ € F such that ¢, = ¢ and as their measure the values of the quantity function, the
same argument already used to prove [3, Theorem 7.1] can be employed to prove the following
theorem. The proof follows the same framework as in [3, Section 7], the easy changes are left to
the reader.

Theorem 4.9.1 Let S € RN and let F be a branching set with respect to S. Let P: F — IR,
be a measurable positive function which satisfies the superadditivity property. Then there exists
a simple and well parameterized pattern x, with source point S, such that F = F, and P is the
quantity function P, of the pattern.
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The a-cost of a non-spread simple well parameterized pattern can be evaluated by an integral
on its support. This property is a particular case of the following lemma.

Lemma 4.9.2 Let x be a non-spread simple and well parameterized pattern. Then, if F; is used
as in Definition 4.9.7 for F = F,, for any measurable function f : F,, — IR, we have

(4.9.4) x)dy, (x / e > f

x€F:(x

PrOOF. By Corollary 4.3.2, we can find a sequence (7, )ncmv of simple flow curves param-
eterized with respect to the length such that Fy, = U, cpn supp(vn). Let us assume f positive
and, for all k > 1, let us set F* = UZ L supp(y;) and FF = F; N F¥. Let us remark that, being
x well parametenzed, for all £ > 1 we have

(4.9.5) Fr={zeF*|t, =t} ={3() | 1<i<k}.

First we shall prove that (4.9.4) holds true in the case in which F, and F(x) are respectively
replaced by F* and FF for some k > 1. We shall proceed by induction on k. The case k = 1
is obvious. Let us assume that (4.9.4) holds true for F* and let us prove it for F*¥*!. We can
obviously assume that 7, has a support which is not completely contained in F*. Let us call
t the biggest separation time among 7,1 and the other curves v;, i < k. Then

fow f@B0@) = [ f@dn@+ [ ),

which by the induction hypotheses gives

(4.9.6) /Fk+1 / Zf dt+/ g1 (2))dt

Taking into account (4.9.5), we have that, for t < ¥, FFtl = Fk, while, for t > #, Frtl =
FEU{ve11(t)}, so by (4.9.6) we get

(4.9.7) /F o T (@) (2 / > flz)dt.

zeFit!

Being f a positive measurable function, by (4.9.7) we have by monotone convergence

[ i@in@ =sw [ @@ =sw [ f@d= [ > s

Fy TEF] zE€F(x
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Theorem 4.9.2 Let x be a non-spread simple and well parameterized pattern. Then for any
a €]0, 1]

(4939) 100 = [ IP(@)|ds(a) -

FX
PROOF. Being x a well parameterized pattern, one can apply Corollary 4.5.6 so that

+0oo

I(x) = / Z |A|* dt. So, the thesis follows by applying Lemma 4.9.2 to the func-
O 4em(x)

tion f(z) = |Py(z)|*. 0

4.10 Index of the main notation in order of appear-
ance
e (2, |-|) a nonatomic probability space

x:Qx Rt = RN = set of fibers

e x(p,t) € RN position of the point p € ) at the time ¢

o xp =t x(p,t) = fiber of p

e Cg(2) = set of sets of fibers of

o Pg(2) = set of all irrigation patterns, i.e. the set of all the measurable sets of fibers of 2
e x| = subpattern of x defined on Q' C Q

e [p]; = equivalence class of p under the equivalence p ~; ¢ if x,(s) = x4(s) for all s € [0, 1]
s y-vessels = class of equivalence at time ¢ under ~;

e Vi(x) = Q/~ = set of x-vessels at time ¢

e 3(7v1, v2) = separation time of the two curves y; and 2, see Definition 4.2.2

e s,(p, g) = separation time of the two points p and g, see Definition 4.2.3

e [p]; = equivalence class of p under the equivalence p ~§ ¢ if there exists € > 0 s.t. p ~1c g
e strict x-vessels = class of equivalence at time ¢ under ~;}

o Vi(x) = Q/~f = set of the strict x-vessels at time ¢

e oy (p) =inf{t € IRy | xp(s)is constant on [¢, +o00[} : absorption (stopping) time of p, p is
absorbed at time ¢ if o (p) <t

e X C ) is an absorbed set at time ¢ if o, (p) <t for a.e. p € X, see Definition 4.2.5
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Ai(x) = set of the points of 2 which are absorbed at time ¢

Ay = U;>0 Ai(x) = set of the absorbed points

M;(x) = 2\ A¢(x) = set of the points of 2 that at time ¢ are still moving

x-flow = non absorbed yx-vessel (has positive measure in §2), see Definition 4.2.6

Fi(x) = set of x-flows at time ¢

Fi(x) = User,(x) A = union of the x-flows at time ¢

Se(x) = Mi(x) \ Fi(x)= spread flow at time ¢, see Definition 4.2.8

iy : Ay = IRN = irrigation function defined by i, (p) = x(p, oy (p)), see Definition 4.2.9

py = irrigation measure induced by the pattern x by setting u,(A) = |i} L(A)| for any
Borel set A C IRY, see Definition 4.2.10

D, = {p € Q| p follows v}, see Definition 4.3.3

Ty = SUpp, Oy, See Definition 4.3.3

F,={z¢€ RN | 3t > 0,34 € Fi(x) s.t. z = x(p, t),p € A} = flow zone or support of x,
see Definition 4.3.6

Dy ={p€Q|p€ F, )(x)} = dispersion of the pattern x, see Definition 4.3.7

ox(0; 1) = |[plt|* " pz, 1) (P)

ex(t) = /Q ox(p, t)dp = /Mt(x) |[p]e|* tdp

_ o0 a'x(l’) a—1
& (p) = /0 o (p, t)dt = /0 [l dt

I(x) = oy (p, t)dp dt = cost of the pattern x
QX1R+
t |y
=[ |
w) = [ |52 ds

X = the good parameterization of y, see Definition 4.5.2
mt = x-vessel at the time ¢ which contains the point p

X' [ple x Ry — RN = branch of x starting from x(p, t) defined by setting x'(q,-) =
x(g,- +t), see Definition 4.6.2.

x \ X' = pattern x stumped of the branch x/
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o I,(V,t) = I,(V) = cost of the vessel V at time ¢
e F, ; the set of all the (g, §)-flows of the pattern x at some time, see Definition 4.7.1
e x = the stretched pattern of x on IR, see Definition 4.8.1

e [p]: = x-vessel at the time ¢ which contains the point p

1
o dy(p, v) = (ngn / |z — y|pda) " = Kantorovitch-Wasserstein distance of index p be-
Qx0

tween u and v, see Definition 4.8.2

e y = the o forced absorption pattern of x trough a measurable function o, see Defini-
tion 4.8.3

o [p]: = x-vessel at the time ¢ which contains the point p
e x* = the rearranged pattern of y, see Definition 4.8.4

e P, = quantity function of the pattern x, see Definition 4.9.5
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Chapter 5

On the dimension of an irrigable

measure5

In this paper the problem of determining if a given measure is irrigable, in the sense of [4], or
not is addressed. A notion of irrigability dimension of a measure is given and lower and upper
bounds are proved in terms of the minimal Hausdorff and respectively Minkowski dimension of
a set on which the measure is concentrated.

A notion of resolution dimension of a measure based on its discrete approximations is also
introduced and its relation with the irrigation dimension is studied.

Introduction

In the paper [4] the authors have introduced a cost functional to the aim of modeling ramified
structures, such as trees, root systems, lungs and cardiovascular systems. A very similar func-
tional (even if the variable employed has a different form) has been introduced in [10]. The aim
of the functional is to force the fibers to keep themselves together penalizing, in this way, their
branching. The necessity of keeping the functional low competes with a boundary condition
which, on the other hand, forces the fibers to bifurcate prescribing that the fluid they carry
must reach a given measure spread out on a volume. The result of this competition is that the
fibers take advantage in keeping themselves together as long as possible and then branching,
always into a finite number of branches, while approaching the terminal points, giving rise to
the ramified structure. In [10] the problem consisting in determining the cases, depending on an
index, in which all the probability measures can be reached by a system of fibers (an irrigation
pattern) of finite cost, i.e. are irrigable measures, is formulated and solved in a very close setting.

In this work we shall investigate a more general question consisting in characterizing, for a
given value of the index, what probability measures are irrigable or not. The answer to this
question will clearly show, in particular, what are the cases in which all the probability measures
will turn out to be irrigable, giving in this way a different proof of the already mentioned result

5G. Devillanova, S. Solimini, On the dimension of an irrigable measure, to appear.
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in [10]. The fact that a measure spread on a set of high dimension forces the fibers to a
more frequent branching, and therefore needs a higher cost, seems to suggest that the higher
it is the dimension on which a measure is spread the more difficult it becomes to irrigate it.
For a better formalization, we introduce the notion of irrigability dimension of a measure and
then we equivalently express the above stated problem in terms of giving some estimates on
the irrigability dimension of a given positive measure which is always supposed to be Borel
regular, with a bounded support and a finite mass (by normalization we shall suppose it to be a
probability measure). We shall show, with some examples, that the intuitive and conjecturable
idea that the irrigability dimension of a measure coincides with the Hausdorff dimension of its
support is groundless in spite of the fact that both the two values express how much the measure
is spread out. On the other hand, we shall give some lower and upper bounds for the irrigability
dimension d(u) of a probability measure p by means of the minimal Hausdorff and respectively
Minkowski dimension of a set on which the measure is concentrated.

This result will be overproved. Indeed, we shall prove it directly, getting some further
meaningful information and introducing some tools which will be also used in other parts of the
paper but we shall also be able to deduce it from a deeper estimate of d(u) which will need the
introduction of new notions. More precisely, it will need the notion of resolution dimension of a
measure which, affected by an index, expresses the possibility to describe the measure by means
of discrete approximations. When the measure is suitably regular, the value of the resolution
dimension does not depend on the index, while for a generic measure, as will be explained by
some examples, the resolution dimension is “out of focus” in the sense that different indexes
give different values. We shall show that, in any case, it is always possible to find an index,
suitably characterized, which gives a resolution dimension which coincides with the irrigability
dimension.

The paper is organized as follows: In Section 5.1 we shall introduce the notion of irrigability
dimension and we shall state the main results which do not make use of the notion of resolution
dimension of a measure. Sections 5.2 and 5.3 are respectively dedicated to the lower and upper
estimate given for d(u) by means of the minimum among the Hausdorff and the Minkowski
dimension of the sets on which the measure is concentrated. In Section 5.4 remarks and examples,
mainly based on the compactness results stated in [4], which show that the estimates are, in
a certain sense, sharp are collected. In Section 5.5 we shall introduce the notion of resolution
dimension of a measure and we shall state some fundamental properties. The proof of the
irrigability and nonirrigability results which can be deduced from conditions on the resolution
dimension will be respectively shown in sections 5.6 and 5.7. In Section 5.8 we shall show how
the irrigability dimension of a measure can be seen as a resolution dimension with respect to
some index p > 1 and how to chose such a suitable value of p. Then we shall give another proof
of the main result in Section 5.9 (Theorem 5.1.1).

Since we are dealing with notions introduced for the first time in [4] and [3], which will be
used without any explanation, in order to help the reader we have gathered up in Appendix A
the notation and the results in [4] and [3] which are essential for the understanding of this paper.
In Appendix B we give the proof of the propositions stated in Section 5.5 with some examples
which justify the required assumptions. Finally, in Appendix C we give the index of the main
notation.
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5.1 Dimensions of a measure and irrigability results

We just recall the definition of irrigation pattern while, as said in the introduction, we have
gathered up in Appendix A the notation and the results in [4] and [3] which will help the reader
for the understanding of this paper.

Let (€2, |-|) be anonatomic probability space which we interpret as the reference configuration
of a fluid material body. We can also interpret it as the trunk section of a tree, this trunk being
thought of as a set of fibers which can bifurcate into branches. A set of fibers of Q with source
point S € IRYN is a mapping

x:Qx R, - RN

such that:

Cl) For a.e. material point p € §, xp(t) : t — x(p,t) is a Lipschitz continuous map with a
Lipschitz constant less than or equal to one.

C2) For a.e. p € : x,(0) = S.

The condition |2] = 1 is of course assumed by normalization in order to simplify the ex-
position. In some cases this normalization will be impossible (we can, for instance, work with
two different spaces and assume an inclusion), then we shall consider all the notions trivially
extended to the case [2| < +o0o. We shall consider the source point § € RN as given and we
shall denote by Cg(€2) and Pg(2) the set of all the set of fibers of 2 and respectively the set of
all the measurable sets of fibers of Q and we shall call the elements of P¢(f2) irrigation patterns.

We shall introduce some definitions which will be used to formalize the irrigability problem.

Definition 5.1.1 For a fized real number o €]0, 1] we shall call critical dimension of the ezpo-
7
nent « the constant d,, = ﬁ = (l) > 1.

[0
Definition 5.1.2 Let a €]0, 1] be given and let u be a probability measure on IRN. We shall
say that p is an irrigable measure with respect to o (or that u is a-irrigable) if there exists a
pattern x € Pg(Q) of finite cost Io(x) < +o00 such that p, = p.

It is clear that two approaches are possible and equivalent: one can fix a constant « €]0, 1]
and investigate the irrigable measures with respect to this constant or fix a measure y and find
out the constants « €]0, 1] with respect to which y is irrigable. This second point of view leads
us to introduce the following definition.

Definition 5.1.3 Let u be a positive Borel measure on RN, then we shall call irrigability di-
mension of u the number

d(u) = inf{d, | p is irrigable with respect to a} .

Remark 5.1.1 For any probability measure p, by definition, the irrigability dimension d(u)
of u is greater or equal to 1.
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Remark 5.1.2 If u is an irrigable measure with respect to o, then p is also irrigable with
respect to every constant 8 € [, 1[. Indeed, let x € Ps(§2) such that Io(x) < +00 and p, = p,
then for all B > o, Ig(x) < Io(x)-

Remark 5.1.3 By the definition of d(u) and by Remark 5.1.2 it follows that for a given o €
10, 1[ and for a given measure p:

1. if d(u) < do, then u is a-irrigable;

2. if d(u) > dg then p is not a-irrigable.

As we shall show in Section 5.4, both cases can occur when d, = d(u), see examples 5.4.4
and 5.4.5.

The aim of the first part of this paper is to give operative estimates of d(u) in terms of
geometrical properties of the measure y. So we introduce the following two definitions.

Definition 5.1.4 We shall say that a positive Borel measure p on RN is concentrated on a
Borel set B if u(IRN \ B) = 0 and we shall call concentration dimension of u the smallest
Hausdorff dimension d(B) of a set B on which p is concentrated i.e. the number

d.(p) = inf{d(B) | u is concentrated on B} .

Definition 5.1.5 We shall denote by supp(u) the support of u in the sense of distributions and
shall call support dimension of u, ds(u), its Hausdorff dimension.

Remark 5.1.4 The support of a measure can be characterized as the smallest closed set on
which p is concentrated and the existence of such a set a priori follows by the separability of RY,
precisely by the Lindelof property. While, as stated above, the existence of the smallest closed set
on which p is concentrated is granted, it is clear that the smallest set on which u is concentrated,
in general, does not exist. This is the reason for which the infimum is taken in Definition 5.1.4,
even if a set B of minimal dimension on which u is concentrated can always be fived. Moreover
being supp(u) a set on which u is concentrated, it follows that

dc(:u) < ds(,u) .

These two geometrical dimensions are not sufficient to study the irrigability of a measure,
as we shall show later in examples 5.4.1 and 5.4.3.

Definition 5.1.6 Let X C RN be a bounded set. We shall call Minkowski dimension of the set
X (see [8]) the constant
(5.1.1) dy(X)=N-— ligniglflog(; | Ns(X)|

_)

where, for all § > 0,
N5(X) = {y € R"|d(y, X) < 6} .
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It is useful to remark that
(5.1.2) 0<dy(X)<N VX £0.

Moreover the Minkowski dimension of a set X C IRY can be characterized by the following
two properties:

(5.1.3) VB < dpr(X) limsup |Ns(X)[6°N = +o0
§—0
and
(5.1.4) VB > du(X) lim |N5(X)|0%~N =0.
_)

Lemma 5.1.1 Let X C RN and B > dy(X). Then we can cover X by using 6—F balls of
radius 0 for all & sufficiently small.

PROOF. Being 8 > dp(X), we have, by (5.1.4), that for all C > 0 and for § > 0 sufficiently
small
|Ns (X)| < CoN—F .
2

We consider any family of disjoint balls (B;);cr of radius % contained in N (X). We know that,
2
N
being, for all i € I, |B;| = by (%) (by stands for the measure of the unitary ball of RY),
N
card(I)by (%) < |Ns(X)| < C6N—F s0, taking as C the constant 2,
2

N
(5.1.5) card(l) < ci—a—ﬂ _ 55
N

We have shown that the number of elements of any family consisting of disjoint balls con-
tained in N 5 (X) is bounded by 6—#. This allows us to find a family of such balls which is

maximal by inclusion. The corresponding family of balls with the same centers but with double
radius, by maximality, turns out to be a covering of X. Inequality (5.1.5) gives the thesis. B

Lemma 5.1.2 Let X C RN and B < dp(X). It is not possible to find a constant C > 0 such
that one can cover X with only C6—F balls of radius & for all § sufficiently small.

PROOF. We shall proceed by contradiction assuming that there exists a constant C' > 0 such
that for § sufficiently small it is possible to cover X using C§—# balls of radius 8. It is useful to
remark that doubling the radius of these balls we get a covering of Ns(X), so we have

|Ns(X)| < C6Pbn(20)N < cost 6V P

which gives § > dp(X) by (5.1.3). 1

Remark 5.1.5 Collecting the last two lemmas, we can say that for a set X C RN

(5.1.6)  dp(X) =inf{f > 0|X can be covered by 055_[3 balls of radius dfor all § < 1}.
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Definition 5.1.7 Let u be a probability measure, we shall use the notation
(5.1.7) dy(p) = inf{dp(X) | p is concentrated on X}
and we shall call it Minkowski dimension of u.

Remark 5.1.6 For any subset X of RN the Minkowski dimensions of X and of its closure X
are the same. Therefore

du () = dur(supp(p)) -

Moreover the Hausdorff dimension d(X) of a set X is less or equal to dp(X). So for any
probability measure u
(5.1.8) ds(p) < du(p) -

Remark 5.1.7 Let p be a probability measure, then collecting Remark 5.1.4 and (5.1.8) we
have that the following inequalities hold for ds(u)

(5.1.9) de(p) < ds(p) < dm(p) -
A similar estimate is enjoyed by d(u). Indeed, we shall prove the following statement.

Theorem 5.1.1 (Lower and Upper bound on d(u)) Let u be a probability measure then
the following bounds hold for d(u)

(5.1.10) de(y) < d(p) < max{dar(),1} .

The first inequality in (5.1.10) is a straightforward consequence of a deeper and more precise
result stated in the following theorem, whose proof is in Section 5.2.

Theorem 5.1.2 Let o €]0, 1] and let p be an a-irrigable probability measure, then u is con-
centrated on a do-negligible set, in particular,

(5.1.11) de(p) < dg .

Theorems 5.1.1 and 5.1.2 widely answer the question considered in [10] about the values of
« which make every measure of bounded support irrigable. Indeed, we can deduce the following
corollaries.

Corollary 5.1.1 Leta €]0, 1], & > % Then any probability measure u with a bounded support
is a-irrigable.

/
PROOF. Remarking that o > 3 is equivalent to d, = (%) > N, combining (5.1.2) with
(6.1.10), we have, for every p,

do > N > max{dpy (1), 1} > d(p) ,

80 every probability measure u with a bounded support is o-irrigable by Remark 5.1.3,1. B
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Corollary 5.1.2 Let o €]0, 1] be such that any probability measure p with a bounded support
s a-irrigable, then o > %

PROOF. ;From Theorem 5.1.2 we have that any probability measure y with a bounded
support is concentrated on a dy-negligible set. So, N < d,, namely o > % |

In spite of inequalities (5.1.10) and (5.1.9) it is not possible to establish some general in-
equality between d(u) and dgs(u), as shown in Section 5.4 by examples 5.4.1 and 5.4.3.

By the following lemmas we shall make the estimates on the dimension d(u) more precise in
the case in which the probability measure y enjoys some regularity properties.

Definition 5.1.8 Let u be a probability measure and 8 > 0. We shall say that u is Ablfors
reqular in dimension 3 if
(AR) 301, Cy > 0 s.t. Vr €0, 1], Vz € supp(p) :  C17? < u(B(z, 7)) < Cor? .

We shall separately consider the two bounds in (AR). So for a probability measure u and a real
number 3 > 0 we shall consider the two conditions

(LAR) 3C > 0s.t. Vre 0, 1], Vo € supp(p) :  Crf < u(B(z, 7)) .
and
(UAR) 3C > 0 s.t. Vre 0, 1], Vo € supp(p) :  w(B(z,r)) < Crf .

In (UAR) the restriction z € supp(u) can be removed, this could make the value of Cy increase
at most of 2. Tt is useful to recall the following definition.

Definition 5.1.9 A probability measure v : RN — IR, satisfies the uniform density property
(in short u.d.p.) in dimension 8 > 0 on a set M if

3C, >0 s.t. Ve e M, Vre[0,1]: CirP <v(B(z,r)) .

Lemma 5.1.3 Let v be a probability measure which satisfies the u.d.p. in dimension 8 > 0 on
a subset B. Then
(5.1.12) dy(B)<p5.

PROOF. Let us fix § > 0 and let us consider any family (B;);c; of disjoint balls of
radius % with centers on B. By hypotheses, v(B;) > C27#6f and v(B) < 1, therefore
card(I) < 26C~16=8. So we can consider a family (B;)ic; as above maximal by inclusion.
The maximality of (B;);cr guarantees that, for any other point « € B, d(z, U;c; B;) < g— holds.
Therefore the family (B;);cr which is obtained by doubling the radius of the balls B; is a covering
of B. So we have proved that B can be covered by constd—# balls of radius é arbitrarily small

and so by Remark 5.1.5 dps(B) < 5. &
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Corollary 5.1.3 Let u be a probability measure. Let B > 0 such that u satisfies (LAR) (i.e. u
satisfies the uniform density property in dimension B on supp(u)). Then

(5.1.13) dy(p) < B .

Remark 5.1.8 The thesis of Corollary 5.1.8 still holds true if one assumes the existence of a
probability measure v which satisfies the uniform density property in dimension 8 on a set B on
which u is concentrated.

Lemma 5.1.4 Let pu be a probability measure concentrated on a set A C RN. Let B > 0 such
that u satisfies (UAR). Then
(5.1.14) HA(A) > 0.

PROOF. Let (X;);cr be any countable covering of A. Every X; is contained in a ball B; with
a radius equal to dlam( i) So, by (UAR)

= u(RY) = p(A) < u(B;) < CY_ diam(X;)?,
el el

from which we have
3 diam(X;)? > ¢t > 0.
iel

Corollary 5.1.4 Let p be a probability measure. Let > 0 such that u satisfies (UAR). Then

(5.1.15) de(p) > B -

Corollary 5.1.5 Let u be an Ablfors regular probability measure in dimension 8 > 1. By
Corollary 5.1.8 and Corollary 5.1.4, being f = max{f, 1} > max{da(u), 1}, the lower and
upper bounds stated in Remark 5.1.7 and Theorem 5.1.1 for ds(u) and d(u) respectively, give

de(p) = ds(p) = d(p) =du(p) =8 .

This guarantees that, in the case of an Ahlfors reqular probability measure, all the geometrical
dimensions d.(u), ds(u) and dpr(n) and the irrigability dimension d(u) are equal to the Ahlfors
dimension .

Corollary 5.1.6 An Abhlfors reqular probability measure u of dimension 8 > 1, is a-irrigable
for all o €]0, 1] s.t. do > B i.e. for alla E]%, 1[ and is not irrigable for all o €]0, 1] s.t. doy <
i.e. for all a €]0, %]

PRrROOF. Let a €]0, 1[. If d,, # B = d(u), the thesis follows from Remark 5.1.3. Moreover,
when d, = (, by Theorem 5.1.2 it is clear that an Ahlfors regular probability measure of di-

mension 8 = dg, is not a-irrigable. Indeed by Lemma 5.1.4 it cannot be concentrated on a
do-negligible set. B

We shall make use of this last argument when in Section 5.4 we shall show that, in general,
d(p) = inf{d, | p is a-irrigable} is not a minimum, see Example 5.4.4.
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5.2 Lower bound on d(u)

This section is devoted to the proof of Theorem 5.1.2 from which d.(u) < d(u) trivially follows.

Lemma 5.2.1 Let x € Ps(2) be an irrigation pattern of Q and r > 0, then

Ia(x))é .

(5.2.1) xRV \ Br(9)) < ( .

PROOF. Taking into account that the less expensive way to carry some part of the fluid out
of B,(S) is to move it in a unique tube in the radial direction and to leave the other part in the
source point, we have

[k (RN \ B (S))]%r < Ia(x) ,

from which the thesis follows. i

Corollary 5.2.1 Let x € Ps(f) be an irrigation pattern of Q. If r > (Io(x))' ¢, then
(5.2.2) (BN \ Br(S)) < In(x) -
In [3] the following lemma has been proved.
Lemma 5.2.2 Let x € Ps(2) be a simple irrigation pattern of Q without dispersion and e > 0,

then there exists a finite number k € IN of points x; € F, such that, denoting by x; the branch
of x with source point x;,

k
(5.2.3) Y ILxi)<e
i=1
k
(5.2.4) (b — ZNM)(RN) <e.
i=1

Lemma 5.2.3 Let x € Ps(Q) be a simple irrigation pattern of Q without dispersion and e > 0,
then 3A C RN such that

1. A can be covered by a finite number of balls B; = By,(z;), s.t. 3 ;(ri)% <¢;
2. u (RN \ A) <e.

PROOF. By Lemma 5.2.2 we can find a finite number k& € IV of points z; € RN such that,
by denoting by x; the branch of x starting from z; and by ¢; = I,(x;), we have

k
(5.2.5) Y ei<e.
i=1
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Calling, for all i € {1,...,k}, as suggested by Corollary 5.2.1, r; = (Io(x:))' ™% = (&;)}7 we

have,
Z’r?"‘ :ZEZ' <eg.
i i

Moreover, from (5.2.2), we can deduce that
Hix; (RN \ Br;(zi)) <& .
Applying (5.2.4), (5.2.3) and (5.2.5) we get, for A = U%_, B,.(z;), that

k

k k
NX(IRN \A) < (py — Z:“xz')(]RN) + Z:“xz'(]RN \ Br;(zi)) <e+ Zei <2.
i=1 i=1 i=1

Replacing € by £ we complete the proof. i

PROOF OF THEOREM 5.1.2. By hypotheses there exists an irrigation pattern x € Pg(2)
of finite cost Io(x) < +o0, such that y = p,. By Lemma 5.9.2 we know that d(Fy) =1 < dq,
therefore we can reduce ourselves, as Remark 5.9.3 suggests, to a pattern y without dispersion.
Moreover, if one considers a pattern which is optimal with respect to the cost functional, the
pattern can also be supposed to be simple (see Definition 5.9.7), see Lemma 4.6.2.

So, for every n € IV, we can apply Lemma 5.2.3 to the pattern y and to ¢ = 27" > (.
Therefore for all n € IN there exists A4, C IRY which satisfies 1) and 2) of Lemma 5.2.3 for
€ =27". For a fixed h € IN we shall denote by Dy, = (5, 4n

Then

1
(5.2.6) :“X(RN \ Dp) = px( U RN \4n) < Z ,Ux(RN \4,) < Z on ok
n>h n>h n>h
Moreover, being Dy, C A, for all n > h, by Lemma 5.2.3,1), Dy, is covered by a finite number &
of balls of radius r; verifying 3% rf“ < 27", from which 2% (D) = 0 follows by the definition
of Hausdorff outer measure. For all 1 € IV

1
ux(BY\ | D) < (B \ Dy) < o
helN

therefore we have

(RN | Dp) =0
helN
and so p is concentrated on Jpcp Dr. Since, for all h € IV, 7Gx (Dp) = 0 we get that p is
concentrated on a d,-negligible set. B

PROOF OF THEOREM 5.1.1 (LOWER BOUND d () < d(u)). By Theorem 5.1.2 we have
proved in particular that, for every a €]0, 1|, if p is a-irrigable then d.(u) < d,. By the defini-
tion of d(u), taking the infimum on d, in the above inequality, the thesis follows.
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5.3 Upper bound on d(u)

The main goal of this section is the proof of the following theorem, from which the upper bound
on d(u) stated in Theorem 5.1.1 easily follows.

Theorem 5.3.1 Let y be a probability measure and o €]0, 1, then u is a-irrigable provided
dM(,u) < dq.

To this aim, we need to introduce some definitions and to establish some preliminary lemmas.

Definition 5.3.1 Let I = {1,2,...,n} C IN be a finite set of indexes. We shall say that
(P;,vi)icr s a hierarchy of collectors if

e Vi€ I: P isa finite subset of RN with k; elements a:;, 1< 5 <k

e Vicl,i#mn, ~; maps P; in P11 while vy, is a map on P, of constant value S (which is
the “head” of the hierarchy and will be the source S in the applications).

In the following we shall call each map ~; the “dependence” map of the points x; € P; from
those x;“ € Py,.

Remark 5.3.1 For a given hierarchy of collectors (P;,7;)icr, every time we fiz a point x =
17]1 € Py, we find, using the dependence maps, a chain of points {x,v1(z), v2(71(x)),..., S} which
allows us to reach the source S “in a hierarchical way”. We can consider the elements of such
a chain as the vertices of a polygonal which runs with unitary speed. Reversing the time, we get
a path which starts from the source S and arrives in . We shall call by g, : Ry — RYN this
path, parameterized in the whole of IR, by considering it constant after reaching x.

In what follows, let us set, Vz € Pp, v'(z) = v1(z), v%(z) = v2(y'(z)) and recoursively

¥(2) =7 (2)) € Py -

For a given hierarchy of collectors (P;,~y;)icr, we shall deal with a probability measure f; con-
centrated on Py, namely f; = f;l m]l d,1 is the sum of a finite number of Dirac masses centered
J

on the points a:]l of P,.
Being €2 a non atomic probability space, by Lyapunov Theorem, we can split 2 into k(=
card(P;)) sets €2; such that |Q;] = m]l, i.e. we can split Q into k; sets whose measures are just
1

the masses m; we find in the points (a:]l) jek, at the base of the hierarchy.

1

Definition 5.3.2 Let (P;,7;)icr be a hierarchy of collectors and i, = ?:1 m]ldw; a probability
measure concentrated on the base Py of the hierarchy.

We shall say that x : Q x Ry — IRN is a distribution pattern relative to 7Z; and to the
hierarchy (P;,~;)icr if Vo € , and Vt > 0:

x(,t) = gz1(t) forp ey,

where the paths g,1 and the partition (£;)1<j<k, are as above.
; <<
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Remark 5.3.2 Let (P;,7;)icr be a hierarchy of collectors and @, = ;?1:1 m}5w1 a probability
J

measure concentrated on the base Py of the hierarchy. Let x be a distribution pattern relative to

fy and to the hierarchy (P;,v;)icr- Then, by construction, being i, (€);) = {17]1}, we have

Definition 5.3.3 Let (P;,7;)1<i<n be a hierarchy of collectors. For any discrete probability
measure [ concentrated on Py we shall recoursively call for oall i € {2,...,n}, @, the image
measure of i;_, through the function v;_;.

Each one of these measures can be considered as a discrete measure defined on the whole of the
space and concentrated on P;.

Lemma 5.3.1 Let (P;,7;)icr be a hierarchy of collectors and i, be a discrete probability measure
concentrated on the base level Py of the hierarchy. Let x be a distribution pattern relative to @,
and to the hierarchy, then

(5.3.1) Lo(x) =) Y (mi(z))*|z —wi(z)|

i€l zeP;

where, for all i € I, and for all x € P;
mi(z) = B;({z}) -

PROOF. We shall proceed by induction on n = card(I). The thesis is obvious in the case
n = 1. Let us suppose that the statement is true for card(I) = n — 1 and let us prove that
the statement is also true for card(I) = n. Let us remark that each one of the k, = card(P,)
elements of the last level set P, can be seen as the head of a hierarchy of n — 1 levels, given by
the sets P;(z), where for all 1 <i<n—1:

Pi(z) ={y € P | yn—1(m—2(- .. (vi(y)))) =z} .

and by the suitable restrictions of the maps v;, ¢ =1,...,n — 1.
Therefore we can apply the induction hypotheses to the &, branches X, of x which start
from the point € P,. So each one of these patterns has a cost which can be estimated by

n—1
() =Y. Y. (mi(y)°le —ily)| -

i=1 yePy(z)

To bring %, back to the source S obtaining the pattern x;, restriction of x to (J,1¢ Pi(z) €,
J

we must add to I,(x,) the cost necessary for the connection of z to the source S. Therefore we
have
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n—1
Io(xa) = (ma(2))%|z = 8| + La(Xe) = (mn (@))% = Wm(2) + D D (mi(y)*z —%(y)| -
i=1 yEPZ(w)

Since the whole x can be regarded as a multiple branch starting from the source S which has
the patterns y, as the corresponding single branches, by additivity we have

n—1
L(x) = Y Lxd) =Y ma@) e —m@I+ D > > (mi@)*lz — %)

n
= > > (mi(«)z —ri(a)] -
i=1 :BEPZ'

Lemma 5.3.1 admits the following corollary.

Corollary 5.3.1 Let (P;,;)icr be a hierarchy of collectors and @, be a probability measure
concentrated on the base level Py of the hierarchy. Let x be a distribution pattern relative to [,
and to the hierarchy, then

Ia(X) S Zkzl_alz 3
iel

where for all i € {1,...,n}
li = max |z — vi(z)] .

PrOOF. The thesis follows because for all ¢ € I:

> (mi(z)* < (ki)'

zeF;

Indeed, by Hélder inequality, being, for all ¢ € I, -, p mi(z) = 1, we have:

« 11—
> (mi(z)* < (Z mi(x)) (Z 1) — e

zeP; zeF; zeP;

PROOF OF THEOREM 5.3.1.  Ifdp (1) < dg, we can fix a constant 8 such that dys(p) < 8 < dg-

Given n € IN, n > 1, let us consider a covering of supp(u) consisting of balls with radius
27", Let us call X,, the set made of the centers of such balls and let us set Xy = {S}. We
introduce for n > 1 the map ¢, : X,, =& X,,_1 which chooses, for every point z € X,,, one of
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the closest points ¢, (z) € X,,—1. It is easy to see that for n > 2 (and for n > 1, with a suitable
choice of S and a normalization of the diameter of the support of u)

(5.3.2) Vz e X, d(z, pn(z)) <3277

Moreover, by Lemma 5.1.1, being das () < 8, we can choose X, and a constant C > 0 so that
(5.3.3) card(X,) < C (2™ F=Cc28.

Let us now put a total order on X,,. On each center x € X,, we shall put the mass

mjy = u(By-n () \ [J Ba-n(y)) -
y<zx

In this way we get a probability measure u, = >, x, ™My, such that u, — u. Now, for a fixed
nelN,all1<i<n,letuscall P,=X,_ ;11 and 7; = @p_;11. By (5.3.3) we have:

(5.3.4) Vie{l,...,n}: k; = card(P;) = card(Xp_it1) < C (2~ (—i+Dy-8

while, by (5.3.2),

(5.3.5) Vie{l,...,n}: Li=max|z—7i(z)|= max |z—@n_ip(z) <32 D),
z€P; 2€Xn_i11

If we denote by xy,, a distribution pattern relative to the hierarchy of collectors (F;, v;)1<i<n
and to &; = py, by Corollary 5.3.1, using also (5.3.4) and (5.3.5), we have

L(xn) < Y. (k)05 < 0l7e Y [(2-(mmi+l)y—h]i-ag(g=(n-itD))
=1 i=1

1o N~ g (n—i+1)(~B(1-a)+1) _ al-a N~ g-jb < 3O °
_ —a 9—(n—i -B(l-c _ —a 9-Jb <
3¢~ 3 30 Y < S

i=1 j=1

where, being 8 < d,, is
b=—-0B1l—-a)+1>0.

The independence on n of the above bound allows us to build a sequence of patterns (xn )necmw
to which we can apply the compactness theorem [4, Theorem 8.1] and to get, in this way, the
existence of a limit pattern x of finite cost such that p, = u. B

It is worth remarking that the measure y, taken in the proof of Theorem 5.3.1 could be
replaced by any probability measure centered on the points of X,, such that the Kantorovitch-
Wasserstein distance between ., and p (see Definition 5.5.3) is less or equal to 27™.

PROOF OF THEOREM 5.1.1 (UPPER BOUND d(u) < max{da(u), 1}).  Arguing by con-
tradiction, let us suppose d(u) > max{dp(u), 1}. Then there exists a constant « €]0, 1[ such
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that das(u) < do < d(u). (From one side dp(u) < dg, so we have from Theorem 5.3.1 that p
is a-irrigable; on the other side d, < d(u), so we get from Remark 5.1.3 (2) that y cannot be
a-irrigable.

5.4 Remarks and examples

Definition 5.4.1 Let o €]0, 1] and let p be a finite measure on RYN. We shall call a-cost of the
measure u the value of the functional 1, on the optimal patterns x which irrigate the measure p.

Lemma 5.4.1 Let o €]0, 1[, v and p be two finite measure on RN such that v < p. If u is
a-irrigable then also v is a-irrigable, moreover the a-cost to irrigate v is less expensive that the
a-cost for .

PROOF. For any n € IN, let us consider a countable borel partition A, = (A%);cr of RY
made of sets of diameter less or equal to % for all : € I. By hypotheses there exists an irrigation
pattern x, defined on © x IR, where ) is a probability space, s.t. Io(x) < 400 and p, = p.
Let us call, for all 4, ;,, = i}, 1(A™). By construction we get

[Qunl = lix (AD)] = px (A7) = u(A7) > v(AD) .

Therefore, being any €); ,, a non atomic set, by Lyapunov Theorem, ; , admits a subset ngn
such that [ | = v(A}'). Let us consider £, = U; €, and let us denote xn = x|o.- By
construction u,, — v and

(5.4.1) Io(xn) < Ia(x) < +oo.

Therefore, by compactness, we get a limit pattern x such that yy = v. Moreover, being I,
a lower semicontinuous functional, (5.4.1) gives Io(x) < liminf, 400 Io(xn) < Ia(x)-

The following corollaries easily follow.

Corollary 5.4.1 Leta €]0, 1], c € IR and v and pu two finite Radon measures on RN such that
v <cu. Then
d(v) < d(p) .

Corollary 5.4.2 Let y and v be finite Radon measures such that cip < v < cou for some
positive constants ¢, ca. Then we have

Remark 5.4.1 The pattern X, found in the proof of Lemma 5.4.1, is the limit pattern, modulo
equivalence, of a sequence of subpatterns of x but it is not a subpattern in general. So one could
wonder if it is always possible to find a subpattern of x which irrigates v.
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The answer to this question is negative. For instance, one can consider Q2 = [0, 1] and, for
a.e. p €0, 1] and for all t > 0,
(5.4.2) x(p, t) = min(p, t) .

It is clear that x irrigates the Lebesgue measure pr, on [0, 1]. On the other side, it is not possible
to find a subpattern of x which can irrigate v = %,uL. Indeed, in such a case, one should find a

subset A C [0, 1] of density % everywhere and this is not possible. A pattern’y : [O, %] xR, —+ R,
provided by the proof of Lemma 5.4.1 is, for instance,

(5.4.3) x(p, t) = min(2p, t),

which irrigates %,uL.

The simple idea that the irrigability of a probability measure u depends only on the dimension
of the support is false. Indeed, ds(¢) and d(u) are not comparable in general, even if the
dimensions d.(u) and das(u) which respectively give a lower and an upper bound on dy(u) are
also bounds for d(u), as stated in Remark 5.1.7 and Theorem 5.1.1.

It is easy to see that, in general, d (1) € d(u), as stated in the following example.

Example 5.4.1 There exist probability measures p such that ds(u) = N (mazimum possible
value) and d(u) = 1 (minimum possible value) i.e. which are a-irrigable for all o €]0, 1].

PROOF. Let us call B the unit ball of RN, § =0 and let B = {z1, o, ..., n, ...} be the

countable set consisting in the points of B with rational coordinates.

Let us consider p = 3,5, (%)n dp, where, Yn € IN, §, is a Dirac mass centered in z,. By
construction, ds(u) = N. Moreover we shall prove that u is « - irrigable for all a €]0, 1], i.e.

d(u) = 1. Let x be the pattern which at unitary speed carries from S in the n-th point of B

the mass 5. Then for any o €]0, 1[ we have: I,(x) < Sas1 (%)an _ L < +oo. Therefore,

being by construction u, = u, p is a-irrigable. B

In order to show that also the converse inequality is, in general, not true, we shall point out
the following property.

Proposition 5.4.1 Let o €]0, 1] and p be a probability measure which is not a-irrigable. Then
for all n € IN it is possible to find a discrete approximation [ of u, of sufficiently high resolution
(see Definition 5.5.1), such that any pattern X which irrigates i has a cost Io(X) > n.

PROOF. Assume by contradiction that we can find a sequence (fiy)ncm of discrete approxi-
mations of u weakly converging to u and a sequence (Xn)ncmw of patterns, where, Vn € IN, Xy
irrigates fin, such that, Vn € IN: I,(Xn) < ¢. Then we could apply the compactness theorem [4,
Theorem 8.1] obtaining a limit pattern x of finite cost which irrigates u. B

Example 5.4.2 There exists a probability measure u with o countable support which is not
a-irrigable for o = %
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PROOF. Let B be the unit ball of IRY, let u;, be the normalized Lebesgue measure on
B and a = % Being, by Theorem 5.1.2, ur not a-irrigable, by Proposition 5.4.1, we can
consider a discretization u; of pr, such that for any pattern x; which irrigates ui: In(x1) > 1.
Analogously, let uo be a discretization of %,uL distributed on %B such that for any pattern yo
which irrigates ua: Io(x2) > 2. Recoursively, for any n € IN let u, be a discretization of 2%;1 I
restricted to %B such that for any pattern x, which irrigates it,

(5.4.4) Io(xn) 2 n

holds true. Let & = >.,,»1 tn and let us remark that supp(z) = U,>;supp(un) U {0} and
therefore, being for all n > 1 supp(uy,) a finite set, supp(f) is countable.

Let us show that @ is not a-irrigable. Indeed, the o-irrigability of & would imply, by
Lemma 5.4.1 (being p, < @ for all n > 1), that any u, is a-irrigable with a bounded cost
and this is in contradiction with (5.4.4). B

A measure as in the above statement satisfies, in particular, the condition in the following
one and shows that, in general, d(u) € dg(u).

Example 5.4.3 There exist probability measures p such that ds(u) = 0 (minimum possible
value) and d(u) = N (mazimum possible value).

We have stated in Section 5.1 that the information that, for a probability measure ¢ and a
real number o €]0, 1], the critical dimension d, coincides with the irrigability dimension d(u),
(ie. a= ﬁ) does not allow to decide whether the measure is irrigable or not. Examples 5.4.4
and 5.4.5 will motivate this claim.

Example 5.4.4 Let u be an Ahlfors probability measure in dimension § > 0. Then u is not
a-irrigable if dop, = B = d(u).

ProOF. The thesis follows from Corollary 5.1.6.

Remark 5.4.2 One has Ahlfors reqular measures for every dimension < N. Indeed, let C be
a selfsimilar (Cantor) set of RN with dimension B> 0. Let us call ’ch the Hausdorff measure

distributed on C, i.e. the measure on RN defined setting VX C RN
Hie(X) =HP (X ne).
Then ’ch is Ahlfors reqular with dimension (3.

Example 5.4.5 There exist some measures u for which d(u) is a minimum, i.e. there exist
some measures p and some exponents o €]0, 1[ such that d(u) = d,, and p is a-irrigable.
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PROOF. Indeed, let us fix @ €]0, 1] and let (Cp)nemv be a sequence of self similar (Cantor)
sets in RN with dimension d,, where (ay)nemw is a sequence converging to « from below, by

Corollary 5.1.5 and Remark 5.4.2 we know that d(?—l‘fg:) = d,, < dy and, by Remark 5.1.3

(1), we get that H‘fg: is a-irrigable. Let us consider a suitable sequence (e, )ncmv of positive
real numbers, sufficiently small to allow us to comsider u = > en?-lfg:. We know, by
Corollary 5.4.2 that also enH‘fg: are irrigable and we call x,, an irrigation pattern which irrigates
enH‘fg: (i.e. such that I,(xn) < 400 and pu,, = enH‘fg:) Under the choice of a sufficiently
infinitesimal sequence of coefficients (ey,)nemv, we have 37, v In(xn) < +00.

Now let us consider the bunch x of the sequence of patterns x, (see (5.9.1)) so that by
Remark 5.9.1 we have

(5.4.5) Py = 1 -

and

(5.4.6) 100 < Y Talxn) < +0.
nelN

Equality (5.4.5) and inequality (5.4.6) give the « - irrigability of u and therefore d(u) < d,.-

Moreover d(u) > d,. Indeed being, for all n € IN, u > enH‘fg: we get, by Corollary 5.4.1 and

Remark 5.4.2 that d(u) > d(enH‘fg:) =d( ‘fg:) =dg, — do. 1

5.5 Discretizations and resolution dimensions of a
measure

Definition 5.5.1 We shall say that a measure u is a discrete measure if
card(supp(p)) < oo
and we shall call card(supp(u)) “resolution” of u.

Definition 5.5.2 For every n € IN we shall denote by D, the set containing all the discrete
probability measures whose resolution is less or equal to n. Equivalently, D, is the set of all the
convezr combinations of n Dirac masses.

For any p > 1 we recall the definition of Kantorovitch-Wasserstein distance of index p.

Definition 5.5.3 Letp > 1 and let u, v be two probability measures. We define the Kantorovitch-
Wasserstein distance of index p between u and v by

1
dy(g, v) = (mi / - Pd)”,
b1, V) (m;n N

where the minimum is taken on all the transport plans o which lead p to v, i.e. measures
on Q x Q such that their push forward measures by the first and the second projection on
respectively are p and v (mpo = p and mopo =v) (see [1] for more details).
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Definition 5.5.4 Let y be a probability measure. For every n € IN, given p > 1, we shall
denote by py, (or, when necessary, by pb) one of the elements of Dy, of minimal distance with
respect to the Kantorovitch-Wasserstein distance of index p from u. We shall refer to uy as to
a discretization of resolution n of u (with respect to the index p).

Proposition 5.5.1 Let 1 <p < q and let u, v be two probability measures. Then

(5.5.1) dp(p, v) < dy(p, v)
and
(5.5.2) dg(, v) < d'73 (dy(p, v))7

where the constant d is the diameter of supp(u) U supp(v).

PROOF. Let 7 be an optimal transport plan from y to v with respect to the Kantorovitch-
Wasserstein distance of index ¢. Then, by Holder inequality,

r

dow P < [ p—ylar< ([ o —y|qdf)§ (f mdf)l_a — [dg(p, V)P -

To prove (5.5.2) we shall consider an optimal transport plan 7 from u to v with respect to
the p distance. Let us call d = diam(supp(u) U supp(v)), then

ol I < [ —ytar <t [ o yldr = aldy ()P

from which the thesis follows. i

In the following, for any n € IN and p > 1, we shall use the Kantorovitch-Wasserstein
distance of index p of y from D,

(5.5.3) 672 = dp(:ua,un) = d;l)(:ua Dy),

to test “how good” a discretization of resolution n can be. When we shall deal with more than
one measure we shall use the more detailed notation & (u) = dp(p, Dy).
In [3] the following proposition, which gives a relation between the cost of an irrigation

1
pattern x and the Kantorovitch-Wasserstein distance 6 (u, ) of the irrigation measure y, from
a Dirac delta, has been proved.

Proposition 5.5.2 Let x be an irrigation pattern, with o source point S, then

1

5 (py) < d1(py; 0s) < Ia(x) -

Remark 5.5.1 Let 1 < p < g, n € IN, n > 1 and let 4 be a probability measure. Then
from (5.5.1) and (5.5.2), applied for v = p;, and v = ud, we get

(5.5.4) 8 < 6¢
and . .
(5.5.5) 89 < d'"a (8P)a

where the constant d is the diameter of supp(u).
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It is clear that, increasing the number n, the discretizations u, become more accurate,
therefore it is rather natural to make some decay hypothesis on 4.

Definition 5.5.5 Let u be a probability measure and p > 1, then we shall call resolution di-
mension of p of index p the constant dP(u) defined as follows

-1
(5.5.6) dP(u) = (— limsuplog,, dﬁ) .

n—s4o00
Remark 5.5.2 Let 0 < a < (dP(u))~!, then there exists m such that
Vn>n: 6 <n™%.
Conversely, if a > (dP(u))~! then for any C > 0 we have
o >n°
for arbitrarily large values of n € IN.

Proposition 5.5.1 allows us to state the corresponding properties of dP(u) in terms of the
index p.

Proposition 5.5.3 Let 1 < p < q and pu a probability measure, then

(5.5.7) & (p) < d¥()
and
(5.5.8) di(p) < %d’r’(u) .

PrOOF. Taking into account (5.5.6), both inequalities easily follow from (5.5.4) and (5.5.5). B

Remark 5.5.3 It is useful to remark that, by (5.5.7) and (5.5.8), dP(u) changes with continuity
with respect to the index p. Moreover, if there exists a index p > 1 for which dP(u) = 0, then
for all g < 400 di(n) = 0. This means that, in such a case, we can not change the resolution
dimension of u acting on the index p as far as it is finite.

In Appendix B we shall prove the following propositions.
Proposition 5.5.4 Let y be a probability measure, then
4 () = de (1)
Proposition 5.5.5 Let y be a probability measure. Then

de(p) < dp(u) < dB(p)  Vp>1.
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Remark 5.5.4 Since in the case p = +oo the dimension dP(u) agrees with dpy(p) we shall
use the notation d2° in order to denote a weaker case, according to Proposition 5.5.3, of the
dimension of index +00, defined as

dy°(p) = supdl(p) -
p>1

Example 5.10.1 will show how for p = +o00 the “strong” and the “weak” dimensions djs(u) and
dX°(u) are, in general, distinct.

By the following lemmas we shall estimate the resolution dimension dP(u) in the case in
which the probability measure u enjoys some regularity properties, beginning by considering
a probability measure which satisfies the lower Ahlfors regularity (LAR). As a consequence of
Corollary 5.1.3, taking into account that, by Proposition 5.5.4, das(u) = d°(u) we have the
following corollary.

Corollary 5.5.1 Let p be a probability measure which satisfies (LAR) in dimension 8 > 0.
Then

(5.5.9) py<B  Vpx1.

PROOF. Indeed, by Corollary 5.1.3, we have d°(u) = sup,>; df (1) < dpr(p) < 5. 0

In the case in which a probability measure u satisfies the upper Ahlfors regularity (UAR),
by Corollary 5.1.4 Proposition 5.5.5 admits the following corollary.

Corollary 5.5.2 Let u be a probability measure such that (UAR) holds true. Then

(5.5.10) B<di(u).
From Corollary 5.5.1 and Corollary 5.5.2 we easily get the following proposition.

Proposition 5.5.6 Let u be an Ahlfors reqular probability measure of dimension > 0. Then

(5.5.11) EE =8 p>1.

Remark 5.5.5 So, when the measure is Ahlfors regqular, the value of the resolution dimensions
does not depend on the index, while for a generic measure, as it will be shown in the Appendiz B
by some examples, the resolution dimension is “out of focus” in the sense that different indexes
give different values. We shall show that, in any case, it is always possible to find an index,
suitably characterized, which gives a resolution dimension which coincides with the irrigability
dimension of the measure (see Theorem 5.8.1 below).
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5.6 Irrigability results via resolution dimension

In this section we shall establish some irrigability estimates, in particular we shall prove the
following proposition.
Proposition 5.6.1 Let y be a probability measure and p > 1. If p' > dP(u), then u is a-
irrigable, with o = %.

The idea of the proof consists in fixing n € IV and in using the distribution pattern introduced
in Section 5.2, induced by a hierarchy related to the measures uj, in order to irrigate p,. An
estimate of the cost and a passage to the limit will then ensure the irrigability of u.

More precisely, let us fix an integer £ > 1 (we shall assume that & is large enough to have
the estimate
(5.6.1) 2k <1,

1

where we choose a number a such that 0 < 1—-a = ; <a < (dP(w))~!, such a bound

will be useful later on). Then we shall denote by X; the support of y,. for any h < n.

Let Xp+1 = {z1, z2, ..., Tpr+1} and let m; = pprt1({z;}). We would like to have a map
1

@n ¢ Xp1 — Xp such that dp(pph, ppes1) = (thirl m;l; ) , where l; = |z; — pp(z;)|. However

such a formula would require the Kantorowich-Wassernstain distance between pr+1 and pgr to
be achieved by a transport map, while the discrete nature of p;r+1 guarantees only the existence
of an optimal transport plan, see [1]. Roughly speaking, if we want to carry in an optimal way
the masses m;, given on Xj1, to the set X3 in order to reconstruct p;s», we cannot bring each
m; to a unique point @p(z;) but we must split it in several parts and bring each piece to a
different point. To avoid this problem, we shall replace the measures p;» by other measures
fixr, recoursively defined taking fign = pg~ and proceeding backward by choosing, for h < n, a
measure fi;» which gives an optimal approximation of fizr+1 on Dys.

For h < n, let X, = supp(figr ), X, = {zh, 2b, ..., xzh} and m! = fn({z!}). Now,
for h < n, it is not difficult to choose fi;r in such a way that an optimal transport plan for
the Kantorowich-Wassernstain distance of index p between fi;r+1 and fiyr can be induced by a
transport map @y, : Xh—i—l — X’h

Indeed, if an optimal transport plan splits a mass mh+ brmgmg each piece to a different
point of X}, we just need to modify the values of the masses m] in the points of X}, of minimal
htl h+1 fully carried to one of such points,
Such a modification does not affect the

in such a way to let the mass m;
h+1 )

distance from z;
arbitrarily chosen which we shall chose as @p(z;
minimality of fign.

Therefore, by letting

P =l = on (2t
we can be sure that .
kh+1 2
(5.6.2) dy(fighs i) = (Z m?“(i?“)f”) :
i=1

In the following, for p > 1 and for all 4 € {0,1,...,n}, we shall set

g;]:h = dp(pt, figr)
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beside the already introduced notation

dzh = dp(,u, gh) -

The following metric lemmas, which are only based on the optimality of fi;» asked in the
recursive choice, will provide an estimate of the left hand side of (5.6.2).

Lemma 5.6.1 Forallp>1
~ n_h .
(5.6.3) Vh<n: &, <> 260, .
=0

ProOF. In the following we will forget the index p. The result easily follows from an iteration
of the following inequality
Vh <n: gkh d(ﬁkha ﬂkh+1) + d(ﬁkh'i‘la:u) < d(ukhaﬁkh""i) + gkh"‘l

5.6.4 -
(5:6.4) g 1) + (s figr) + s = Sy + 2B

<
<

which just uses the triangular inequality and the optimality of fzx. Then (5.6.3) follows by
induction on n — h. It holds true for A = n (being fixzr = pgn) then, if we assume it true if A is
replaced by h + 1, taking into account (5.6.4) we have

n—h—1 n—h—1 n—h
(Skh S (Skh + 26kh+1 S 2 Z 2Z6kh+i+1 + 5]’; = Z 2Z+16kh+i+1 + (Skh - Z 2Z6kh+i .
=0 =0 =0

Lemma 5.6.2 Given p > 1, a < (d2(u))~t. Then IC > 0 such that

(5.6.5) Vh<n: b, < CkMy™e.

ProoOF. By Lemma 5.6.1 and Remark 5.5.2, we have

n—~h ] n—h ] ] n—~h ]
By < D2 <O 2EMT) T =CHM T Y (2670
=0 =0 =0
+00 )
< CEM™> (2% = C(k") ™,
=0

where for the last inequality we have used (5.6.1). B

By the triangular inequality and (5.6.5) we get the following corollary.
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Corollary 5.6.1 Let p>1 and let a < (d2(u))~t. Then IC > 0 such that

(5.6.6) Vh<n: dy(fign, figre) < C(E")?
Combining (5.6.2) and (5.6.6) we have
kh+1 %
(5.6.7) (Z m?“(i?“)f”) < Gk
i=1
Now let us call x,, a distribution pattern relative to the hierarchy ((7;, vi))ier, I = {1, ..., n},

(where, for 1 <i<n, P, = Xn_z+1 and, for 1 <4 < n, v; = pp_; while ~y, is the constant map
on P, of a constant value given by the source S) and to the measure fi; = ug~ defined on the
basic level P, = X,,. Lemma 5.3.1 allows us to prove Proposition 5.6.1.

PROOF OF PROPOSITION 5.6.1.  Since p’ > dP(u), we can fix a such that 0 < 1 —a =
z% < a < (d(p)~! and k € IN satisfying (5.6.1). Given n € IN, we get the existence of a
sequence (figr)o<n<n such that Corollary 5.6.1 holds true. The cost I,(xn) needed to irrigate
prn can be estimated with the use of (5.3.1) in Lemma 5.3.1. Taking into account (5.6.7) and

calling b =a — 1 + o > 0 we get by Holder Inequality

k- i+1 n—i
Ia(Xn) — il Zl n z—|—1 ;L i+1 n z—|—1 i Z n i+1 aln i+1
1 3 : :
n k7t @
< Z Z mn—i+1(in—i+1)§ (kritlyl-o
i=1 j=1 ! !
n ) +00 )
< CEY O (RHhTlemte) < Okt 3 (k7)< 400

Therefore we get a bound on the cost to irrigate ug» which does not depend on n. Therefore
there exist a constant C = Ck® > 0 such that we can irrigate every discretization spending at
most C’Z;":"f(k_b)i, where b =a—1+4+a > 0. So, by the compactness theorem [4, Theorem 8.1],
we have, passing to a subsequence, a limit pattern modulo equivalence x such that I, (x) < +oc.
By construction, its irrigation measure p., is just the measure p which is therefore a-irrigable.
|

/
Taking into account that d, = (é) , we can also restate Proposition 5.6.1 in the following
way.

Proposition 5.6.2 Let u be a probability measure for which there exists a constant o €]0, 1]
such that

1
df(p) < dg .

Then u is a-irrigable.
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Corollary 5.6.2 Let u be a probability measure and let p > 1 be a solution to

(5.6.8) ) <p .
Then
(5.6.9) d(u) <p'.

PROOF. Let a €]0, 1[ be such that d, > p'. From d, > p’ we get é < p, therefore, applying

1
(5.5.7) and taking into account (5.6.8), we have dg (u) < dP(u) < p’ < do. So, by Proposi-
tion 5.6.2, we know that u is a-irrigable, therefore d(u) < d,,. Letting d, — p’ we get the thesis.
|

5.7 Nonirrigability results via resolution dimension

The aim of this section is to prove Proposition 5.7.1, or equivalently Proposition 5.7.2, which
gives the counterpart of the results stated in Proposition 5.6.1 (and respectively of Proposi-
tion 5.6.2).

Proposition 5.7.1 Let y be a probability measure and p > 1. If p' < dP(u), then p is not

a-irrigable, with a = %

!
Taking into account that d, = (é) , Proposition 5.7.1 can be also restated in the following
way.

Proposition 5.7.2 Let u be a probability measure for which there exists a constant o €]0, 1]
such that

Then u is not a-irrigable.

Proposition 5.7.2 admits the following corollary whose proof is similar to the proof of Corol-
lary 5.6.2.

Corollary 5.7.1 Let u be a probability measure and let p > 1 be a solution to

(5.7.1) ) >
Then
(5.7.2) d(u) >p'.

The proof of Proposition 5.7.1 is based on the semicontinuity properties of two functions
which we are going to introduce and which, time by time, give the maximum cost of the single
or multiple branches (see Definition 5.9.9).
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Definition 5.7.1 Let x be an irrigation pattern, then we shall consider the following two func-
tions W, and S, defined on IRy by setting, for allt > 0,

(5.7.3) Wi(t) = max{Ze(V) |V € Vi(x)}
(5.7.4) Sy(t) =max{I,(V)|V € Vi(x)} -
We state some properties enjoyed by the above defined functions.

Proposition 5.7.3 Let x be an irrigation pattern of finite cost. Then

(5.7.5) VE0:  Sy(t) < Wy(0)
and
(576) Vi, <tg: Sx(tl) > WX(tQ) .

So, in particular, S, and W, are decreasing functions.

PROOF. The proof of the statement relies on the definition of strict equivalence relation (see
Definition 5.9.4). Indeed, a strict vessel at time ¢ contains a multiple vessel at a bigger time.

Proposition 5.7.4 Let x be an irrigation pattern of finite cost. Then S, is a lower semicon-
tinuous function.

ProOF. In view of Proposition 5.7.3, the statement is equivalent to the right continuity of
Sy-
Let (tn)nemv be a decreasing sequence of real positive numbers such that lim, o t, =1 €
R,. We shall prove that lim,_, ;o Sy(ts) = Sy(%). Let V € V2(x) such that Sy (¥) = Io(V) and
fix p e V. Let us consider V;, = [pl{ € V§ (x). The sequence (Vy,)nen is monotone increasing
under inclusion, moreover U, e Vo = V.
Let us set, for any n € IN, A, =V, X [tg, +00[, then using Remark 5.9.11 we have

Sy@ =Io(V)=I(|J Vi, ) =v(|J 4n) = lim v(Ay)= Lm Io(Vp, tn) < lim Sy (tn) .

n—-+00 n—-+00 n——+0o
nclN nelN

Proposition 5.7.5 Let x be an irrigation pattern of finite cost. Then W, is an upper semi-
continuous function.

PROOF. In view of Proposition 5.7.3, the statement is equivalent to the left continuity of
W,. Let (tp)nemv be an increasing sequence of real positive numbers less or equal to ¢ such that
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Let us consider, for any n € IN, V,, a vessel at time ¢, such that
Io(Vn) = Wy (ty) -
Let us set, for any n € IN, A, = Vy, X [tg, +00[, then using Remark 5.9.11 we have
(5.7.7) V(Ap) = Io(Va, tn) > L(V, 1) .

We can assume that limy,_, o v(Ap) = limy 4 o0 Wy (t,) > 0 (otherwise we have nothing to
prove), therefore (A )ncmw admits a subsequence, still denoted by (Ay)nemw, with a nonempty
intersection.

By using Lemma 5.9.1 we get that the sequence of the vessels V,, is decreasing. Let us
set V. = yemw Vo By construction, we have that V is a vessel at time ¢{. Consequently,
bemg (tn)nem increasing, it follows that (A, )nem, is decreasing. Therefore, by (5.7.7), we have

Io(V, 1) = v(Npew An) = limy oo ¥(Ag) = limy o0 1o (Vp, tn) = limy, 4 oo Wy (t,) and so
Lm W, (t,) = 1o(V) < W, () .

n——+0o

Propositions 5.7.4 and 5.7.5 allow us to give the following proposition.

Proposition 5.7.6 Let x be an irrigation pattern, with a finite cost In(x) < +00. Let 0 < a <
I,(x). Then there exists a multiple branch x' of x such that Io(x') > a which is the bunch of
single branches (x}); such that Io((x});) <a for all j.

PROOF. Let ¢ = sup{t| W, (t) > a}. Using Proposition 5.7.5 we get the existence of a vessel
V € Vi(x) such that I,(V) > a. On the other hand, being S, (t) < W, (t), by Proposition 5.7.4
we know that can not exist any vessel V¥ € VZ(x) such that I,(V*) > a. Indeed, on the contrary,
by using the right continuity of S,, we would get a time ¢ > ¢ such that W, (t) > S,(t) > q, in
contradiction to the maximality of ¢. B

Theorem 5.7.1 Let x : Qx[0,+oo[— IRYN be an irrigation pattern with a finite cost c = I(x)-
Then for n > 1 there exist n source points for a finite number of patterns x; such that

1. Vi Io(xs) < 3
2. px = D2 My,

PROOF. Let us fix n € IN, n > 1, and let us apply Proposition 5.7.6 to the constant
a = & < ¢, where ¢ = I(x) < +oo. Then there exists ¢, > 0 and a multiple branch x' of x

such that I,(x') > £ and x' is the bunch of single branches whose cost is less or equal to £

We can regard x' as the union of a finite number of (not necessarily single) branches with a
c

cost less or equal to . If we consider the pattern x \ x' of x stumped of the branch x' (see
Definition 5.9.8), according to Lemma 5.9.3, we have that In(x \ X') < Ia(x) — Ia(x) < c— £.
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Let us apply Proposition 5.7.6 with the same constant - to the stumped pattern y \ x' and
proceed recoursively in this way. At every step, the cost of the iteratively stumped pattern loses
at least =. So we can do at most n — 1 stumps of this kind. At the end of this procedure we get
at most n sources, which are the cut point in the stumping procedure, which globally give rise
to a finite number of patterns each one with a cost which is less or equal to ;. The second part
of the statement is easily obtained by iterating (5.9.10). B

Proposition 5.7.7 Let u be a probability measure which is a-irrigable. Then 3C > 0 such that
forallne N

1
(5.7.8) 5 < COn~(-9)

PROOF. Let x be an irrigation pattern such that I (x) < 400 and p, = p. Let us apply the
decomposition Theorem 5.7.1 to the pattern x, so we get, for a fixed n € IV, n source points S;
and a finite number of subpatterns x; verifying 1. and 2. of the thesis of the theorem.

Let pn, = Y11 py, (RN)ds, € Dy, By Proposition 5.5.2 we have

R~

1

[&%]a < ldappn)]® < |d

Q=

(Z Hoxs Z Hoxs (RN)dsi)]

IN
7
g™
~~
b
p——a
p——a
R~
A
w0
=
el
—~~
g™
o
P
N
p——a
?
g™
~~
x
p——a
IN
N
| &
N
o]

from which we get

PrROOF OF PROPOSITION 5.7.2. Assuming, by contradiction that u is a-irrigable, by
1N\~ 1
(6.7.8) it would follow, by Remark 5.5.2, (1 — a) < (dﬁ‘) and so df < dg, in contradiction

to our assumptions. N

5.8 The irrigability dimension as a resolution dimen-
sion

In this section we show that the irrigability dimension of a measure can be seen as a resolution
dimension with respect to an appropriate choice of the index p.
We shall prove the following theorem.
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Theorem 5.8.1 Let u be a probability measure. Then
a) if d°(p) <1 then d(u) = 1;

b) if d°(u) > 1 then Ip > N' such that d(u) = dP(u).

T

Moreover, an exponent p for which the above inequality holds true is the unique solution of the
equation

(5.8.1) E(w) =7
PROOF. In the case a) we have that for all p > 1,
dP(p) <dP(p) <1<y,

so by applying Corollary 5.6.2 we have that d(u) < p’. The thesis follows taking the limit for
p — +o0.

For the proof of the remaining part of the statement, it is sufficient to show that equation
(5.8.1) admits a (unique) solution p > N’. Indeed, by applying Corollaries 5.6.2 and 5.7.1 one
gets d(u) = p’ and therefore b) follows.

We can get a solution to (5.8.1) since by means of Proposition 5.5.3, the map p — dP(p) is
a continuous map and by Proposition 5.5.4, being d>°(u) < dpr(u) < N, for p; = N’ we have
dP' (1) < p}. On the other side, by (5.5.7) we get d2°(u) = limy,_, 4 oo (1) > 1 =limy_, 1o p'. So
for py large enough we have d 2)(,u) > pl. Moreover equation (5.8.1) admits a unique solution
because the map p — dP(u) is increasing and the map p — p’ is strictly decreasing. B

Remark 5.8.1 The uniqueness of the solution to (5.8.1) does not guarantee in any way the
uniqueness of the exponent p for which d?(u) = d(u). Indeed, by Proposition 5.5.6 for a measure
w which is Ahlfors regular in dimension = d(u) any exponent p > 1 gives dP (u) = d(u).

As we have said in the introduction, Theorem 5.1.1 can be deduced from the previous result.

ALTERNATIVE PROOF OF THEOREM 5.1.1.  If d2°(u) < 1, by Theorem 5.8.1 we have
d(p) =1 and so

de(p) < d7°(p) =1 = d(p) <max{l, dy(u)} -

On the other hand, by propositions 5.5.4 and 5.5.5, we have for a suitable p

de(p) < dB(p) = d(p) < dpr(p) = max{l, das(p)} -
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5.9 Appendix A - Fundamental notions, remarks and
notation

In this appendix we shall introduce some terminology which has been used in this paper, in
particular we shall recall the same notation as in [4], introducing the notion of irrigable measure
and referring to that paper for more details. Then we shall give some new definitions and useful
tools.

Let (€, |-|) be a nonatomic probability space and y :  x IRy — IR" an irrigation pattern,
as defined in Section 5.1. When we shall deal with subsets ' C © we shall use X|qv instead of
X|' xR, 0 denote the restriction of x to Y x IR, and we shall call X| the subpatiern of x
defined on Y.

Let be (921, | - 1) and (g, | - |2) two disjoint probability spaces, let S € IRY and let x; €
Pgs(Q1) and x2 € Ps(€2) be two irrigation pattern with the same source S. Let us consider
the set Q = Q; U Q9 endowed with the finite measure defined by setting for all A C Q, |4| =
|JANQ|1 +|ANQ2|2. Then we can consider x; and x2 as subpatterns of a pattern x € Pg(f)
defined by setting for a.e. p € Q and for all t € R,

xi(p,t) iHpeh
5.9.1 1) = .
(5:9.1) X, 1) { x2(p, t) ifpes.

The above defined pattern will be called bunch of the patterns x; and xo. It is clear that the
definition of bunch of patterns can be extended to a sequence of patterns, see [3].

We recall that every set of fibers of €2, time by time, defines an equivalence relation ~; on
() by relating two points p and ¢ € © at the time ¢ if x, and x, coincide on [0, t]. So every set
of fibers at every time ¢ divides {2 into equivalence classes which we shall call y-vessels. For any
p € Q, we shall denote by [p]; the x-vessel at time ¢ which contains p, while for any ¢t > 0 we
shall denote by V;(x) the set of all the x-vessels at time ¢. The following lemma can be trivially
proved, see [4].

Lemma 5.9.1 Let x be an irrigation pattern. Then for all 0 <t <ty and for all Vi, € Vi, (x)
and Vi, € Vi, (x) we have the following two alternatives:

1. Vi, CVy

2. Vi NV, = 0.

For a set of fibers x € Cg(€2), we introduce the following function o, : @ — IR which gives
the absorption time of a point defined as follows

VpeQ : oy(p) =inf{t € IR, | xp(-) is constant on [t,4+-o0[} ,

which will be called stopping or absorption function for x.

We shall say that a point p € Q is absorbed when o, (p) < +00. A point p € Q is absorbed
at the time t if o, (p) <t. Analogously we shall say that a set X C () is an absorbed set at time
tif oy (p) <t for a.e. p € X, in particular when the set X is a x-vessel we shall say that X is
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an absorbed y-vessel. We shall denote by A:(x) the set of the points of 2 which are absorbed
at time ¢, and by Ay = ;- A:(x) the set of the absorbed points. On the contrary, the set

Mi(x) ={p € Q| ox(p) >t} = 2\ At(x)

is the set of the points that, at time ¢, are still moving. We shall call x-flow at time ¢ any not
absorbed x-vessel, and we shall denote by F;(x) the set of the y-flows at time ¢ and by Fi(x)
the union of all the y-flows at time t.

For every pattern x € Cg(f2) we introduce the irrigation function

. N
iyt Ay =+ IR,

defined by setting
Vpe Ay : ix(p) = x(p, o (p))

and giving, point by point, the absorption position of the absorbed points.

In the case in which we deal with an irrigation pattern y € Pg(f2), the absorption time
function oy, and, for all t > 0, the vessels and the set A:(x) of the absorbed points at time ¢
are both measurable (see [4]).

We remark that i, (p) = lim 00 X (p,t) and so also i, : A, — IR is a measurable function,
as a pointwise limit of a sequence of measurable functions, when x € Pg(2).

The function i, induces on IRY the image (push-forward) measure p, defined by the formula

ux(A) = i (4)]

for any Borel set A C IRY. We shall refer to Uy as to the irrigation measure induced by the
pattern x.

For a fixed cost exponent « €]0, 1], we introduce the functional cost I, in [4], defined on the
set Pg(2) of the irrigation patterns x, by the following formula

100 = [, ettt

where

(592 )= [, Bkl

is the relative density cost function.

Remark 5.9.1 Let (xn)new be a sequence of patterns xp : Q0 x IRy — RN all with the same
source S € RN, let x be the bunch of the sequence (Xn)new-. Then it is easy to show that for
any o €]0, 1] we have
(5.9.3) In(x) < ZIa(Xn)

n

and
(5.9.4) iy =2y, -
n
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We introduce some more definitions.

Definition 5.9.1 Let x € Ps(Q2) be an irrigation pattern of Q, we will say that
F,={z e R"|3t>0,34€ Fx) st. z = x(p, 1), p € A}

is the flow zone of y.

The following lemma has been proved in [3].

Lemma 5.9.2 For any pattern x of finite cost, Fy is a Borel set and d(F,) = 1.

Definition 5.9.2 Let x € Ps(Q2) be an irrigation pattern of Q, then the set

(5.9.5) Dy ={peQ|peF, (p)}

will be called dispersion of the pattern x. Moreover we shall say that
e x has a complete dispersion (or equivalently x is totally dispersed) if |2\ Dy| =0
e x is a pattern with dispersion if | Dy| >0

e x is a pattern without dispersion if |D,| = 0.

Remark 5.9.2 Let x be an irrigation pattern. Then the irrigation function sends the disper-
sion D, in the flow zone F,, i.e.
(5.9.6) ix(Dy) C Fy .

As a consequence, by the definition of irrigation measure induced by x, we have
(5.9.7) [Dy| < py(Fy) -

Therefore to get a pattern without dispersion it is sufficient to check that p,(F,) = 0.

Hence, when a pattern x has a complete dispersion, every point is absorbed just because it
stops its motion while it still belongs to a flow.

Remark 5.9.3 Let x € Ps(Q)) be an irrigation pattern of 2, then the subpattern of x restricted
to Q\ Dy is a pattern without dispersion.

Definition 5.9.3 Let x be an irrigation pattern, p, ¢ € Q and t > 0. We shall introduce the
separation time sy (p,q) of the two points p and q defined as

(5.9.8) sx(p,q) = inf{t > 0| x(p, 1) # x(q,1)}
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Definition 5.9.4 Let x be an irrigation pattern, p € Q and t > 0. We shall say that two points
D, ¢ €  are strictly equivalent at time t, and we shall write p ~; q, if there exists ¢ > 0 such
that p ~¢ . q. We shall call [p]] strict equivalence class defined by p at time t or equivalently
strict vessel of the point p at time t, the following set

[pl; ={qg € Q|p={ q}

and we shall denote by Vi(x) the set of the strict vessels at time t according to the pattern x.

Remark 5.9.4 Let x be an irrigation pattern, p € Q and t > 0. Then the strict equivalence
class defined by p at time t coincides with the union of the equivalence classes [ply defined by p
at times t' > t, i.e.

(5-9.9) [pli = Jlple = U pli -

>t >t
Remark 5.9.5 For a.e. p, q € Q and for all t > 0:

® pyq for all t < sy(p,q)

o p~fq for all t < sy(p,q).

Definition 5.9.5 Let x € Ps(2) be an irrigation pattern of . For any pair (p, t) € Qx IR, the
Junction x(p,1)  [pls X By — RY , defined, for all (g, s) € [pls x Ry, by X(p.1)(a> 3) = X(a5+1)
is the branch of x starting from x(p, t).

Remark 5.9.6 Let x € Ps(Q)) be an irrigation pattern of Q. Then for any (p, t) € Q@ x R, the
branch of x starting from x(p, t) does not depends on p but only on the x-vessel [p|;. Moreover
to get nontrivial (constant) branches one must require the vessel [p]; to be a flow.

Definition 5.9.6 Let x € Ps(2) be an irrigation pattern of Q. For any pair (p, t) € Qx IR, the
function X,  : [ple x R — IRV, defined, for all (g, s) € [p}f x B, by X,y (@ 5) = x(a; s+1),
where [p]§ is the strict x-vessel of p at time t, is the single branch of x starting from x(p, t).

Where [p]: # [p]i we shall have branches which are not single ones and, in order to point out
that the point x(p, t) give rise to more than one single branch, we shall call [p|; multiple branch.

We introduce the notion of a simple pattern which will allow us to extend Definitions 5.9.5
and 5.9.6 to any point z € F,.

Definition 5.9.7 Let x € Ps(Q2) be an irrigation pattern of ), we will say that x is a simple
pattern if:

e for a.e. point p € Q) the x-fiber of the point p, i.e. the function x, : IR, — IR" is a simple
curve up to the stopping time o, (p), i.e. once restricted to the interval [0, oy (p)]

e for a.e. pair of points p and g of Q: x,(s) # x4(t) for all s, t > s,(p,q).
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It is easy to show that any subpattern of a simple pattern is simple too. Moreover, when
we deal with an irrigable measure u, it is always possible to irrigate u by means of a simple
pattern, see Lemma 4.6.2. Lemma 5.9.2 and remarks 5.9.2 and 5.9.3 allow us to assume that
the restriction of y out of a 1-dimensional set can be irrigated by a simple pattern without
dispersion.

Remark 5.9.7 It is worth to remark, see Lemma 4.6.2, that one can say that a pattern x is
simple if
Vo € By, 3t > 0, 3|V = [pl € Fy(t) 5.t v = x(p, 1) -

The above remark allows us to give, for simple patterns yx, the definition of branch of x
which starts from a point z € F, according to definitions 5.9.5 and 5.9.6, applied to any pair
(p, t) such that z = x(p, ).

Definition 5.9.8 Let x be a simple irrigation pattern with source point S. For any branch X'
from x = x(p, t) of x, we shall call pattern x “stumped” of the branch x’', the restriction of x
to Q\ [p]s and we shall denote it by x \ X'

The following lemma can be trivially proved.

Lemma 5.9.3 Let x be an irrigation pattern and let x' be a branch of x. Then

(5.9.10) Py = By + o\y
moreover
(5.9.11) Io(x) > In(X) + Ln(x \ X)-

Definition 5.9.9 Given a pattern x and a vessel V = [p]: at a time t, we shall call cost of the
vessel V' and we shall denote it by I,(V, t) or, when there is no doubt about the time at which
one refers, by I,(V') the cost I,(x'), where x’ is the branch of x which starts from x(p, t).

Remark 5.9.8 Let x be an irrigation pattern, then for allt >0
+oo
(5.9.12) Y L(V)= / ¢y (8)ds.
Veve(x) t

The analogous property also holds true for the strict vessels.
We recall the definition of x-vessel evolution introduced in [4]

Definition 5.9.10 Let I C IRy. We shall say that the one-parameter family of sets Vi = (Vi)ser
s a x-vessel evolution if:

e il is decreasing under inclusion

e V; € Vi(x) for every t € I.
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Remark 5.9.9 Let V; be a x-vessel evolution, then the family (1o(V;))icmr, which, time by
time, gives the cost of the vessel Vi, is decreasing but it is, in general, not continuous because of
the possible “multiple branching” of the pattern x at some time.

The function ¢, : Q x IRy — IR, is defined by setting for a.e. p € 2 and for all t € IR
(5.9.13) ox(p, 1) = |[ple|* " Tag 0 ()
so that ¢, (t) = [, ox(p, t)dp.

Definition 5.9.11 Let x be an irrigation pattern. Then x induces on QX IR a positive measure
v defined in the following way:

v(A) = [ 1Pk L @dpdt = [ o\(p, Odpa

Remark 5.9.10 Let x be an irrigation pattern. Then
| extdt =vi@x Ry) =100
Ry

Remark 5.9.11 Let x be an irrigation pattern, then for all t > 0 and for all vessel Vi € Vi(x)

at time t
In(Vi) = v(Ve x [t, +00]) -

5.10 Appendix B

This second appendix is devoted to the proof of some tools and propositions stated and used in
Section 5.5.

Lemma 5.10.1 Let p be a probability measure. Then for all d' > dl(n) and for all e > 0
JA, ¢ RN such that
(5.10.1) p(RN\ A.) < e and dyr(A:) < d' .

PROOF. Let us call d = d!(u) and let us fix d’ > d and € > 0. For any k € IV let us set
er = 2 %e. Fix k € IN, since limy,_, 1o d1 (4, D) = 0 there exists ny € IN and Yn,, € Dy, such
that
(5.10.2) di(p, pn,) < €k -

r
Let {z1, z2, ..., Zn, } =supp(pn,) and Uy = U;*, B(zi, € ). By (5.10.2)

d

(5.10.3) W(BN\U) <e, @ .
Let us call A, = e Us. Then, by (5.10.3), being d < d’, we have

1-4 _d i
PRV A) < YT uBY\U) < D g P =t Yy @MV = ——r.
keIN kelv keN 1_(%) &
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dl
d'—d d—d
1

Replacing ¢ by ((1 — (5) e we get the first inequality in (5.10.1).

Let us remark that, for all £ € IN large enough, we can fix nj in order to have

4

(5.10.4) n < ex? .

Indeed, being d < d’, by (5.5.6), we have, for large enough n, log, §} < —7 ie. & < n_dL’,
namely
(5.10.5) n< (854 .

Then set ny, = min{n | §}, < e} we have §;, | > ¢; and so, by (5.10.5), ny, < e,zd’ + 1, from
which (5.10.4) follows by the arbitrariness of d'.

4
Now let us consider £ = min{h € IN | ¢’ < §}, where § > 0 is a fixed real positive number
small enough to have k > 1 (§ < ed is enough), then

d

d d
(5.10.6) §<ef | =20ef .

rl
Being A; C Uy, A. can be covered by using ny, balls with a radius e < §. Combining (5.10.4)

with (5.10.6) we have
& o @)’
ng < 2 0" d .

(d:l)z. By the arbitrariness of d’ the thesis

This last inequality gives, by Lemma 5.1.2, dps(4:) <
follows. B

PROOF OF PROPOSITION 5.5.5. We shall prove that, for any d' > dl(u) we have
de(p) < d'. Let d' > d!(u), then by applying Lemma 5.10.1 to £ = % we get the existence of a
sequence of sets (A, )nemw such that

(5.10.7) p(IRN \ Uo Apn) =0
n=1
and
(5.10.8) d(U An) < sup(d(A4p)) < sup(dum(4n)) < d .
n=1 neclN nelv

By (5.10.7) and (5.10.8) we get that d.(u) < d’' and therefore the thesis. B

We shall now prove Proposition 5.5.4 which states that the resolution dimension of in-
dex p = +00 coincides with the Minkowski dimension d; introduced in Definition 5.1.7. This
circumstance explains why we have used the notation d2°(u) to refer to supy>; df(u) which is,
according to Proposition 5.5.3, a weaker option see Remark 5.5.4. However in the following part
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of this appendix, to the aim of proving the equivalence with the Minkowski dimension, we shall
need to use the notation d° according to Definition 5.5.5, taking p = +o0 in (5.5.6).

By the definition of Kantorowich-Wasserstein distance we can easily deduce the following
remark.

Remark 5.10.1 Let y be a probability measure, then for all n € IN §3° is the infimum of the
numbers § > 0 such that there exists a 6-net of supp(u) of cardinality n.

1

PROOF OF PROPOSITION 5.5.4.  Let 8 > dp(p). Givenn € IN large enough, let § =n" 3.

By Lemma 5.1.1 we can cover supp(u) by using 6% = n balls of radius § and so, by Re-
mark 5.10.1, 6;° < 4. Therefore limsup,, . log, 67° < —%, namely d2° < . By the arbi-

trariness of 3, d7° < djs follows. Conversely, let 8 > d°, namely —% > limsup,,_, o log, 0;°.

1
Then §%° < n” #, namely n < (62°)~# for n large enough and, by Remark 5.10.1, supp(u) has a
62°-net of cardinality n. Since n < (62°)#, we can deduce from Lemma 5.1.2 that djs < S and,
by the arbitrariness of 3, that das < d;°. I

We know by Proposition 5.5.3 that sup,>; df (1) < d2°(p) = dpr (). We shall show by the
following example that, in general, the two values are different, so the weaker definition of d>°
gives a different dimension.

Example 5.10.1 There exist probability measures pu such that dyr(p) = N and sup,>; df (1) = 0.

PROOF. Let u = 3.5 | my6,, where, for alln € IV, z,, € 2V N B% (S) and my, = ce™™ >0,
where the constant ¢ > 0 is a normalization constant which allows 3., mn, = 1. By construc-
tion dpr(u) = dpr(supp(p)) = dM(B% (S)) = N. For any p > 1 we shall bound ¢® by considering

as an element of D,, the sum of the first n masses of u.
So

1

1
5£ < dp('u’ kadwk) < ( Z mk) < (/ ce_wdiL‘)p — (Ce_")z_ll .

k=1 k=n-+1

Therefore

1 7 1
log,,(62) < —log,, ¢ — —log,, e = —log,, ¢ — —00,

_>
plogn
which, taking into account (5.5.6) easily leads to dP(u) =0 forallp > 1. 1

In the following example we shall show a probability measure (which cannot be Ahlfors
regular, see Proposition 5.5.6) for which there is a real the dependence of dP(u) on the index
p > 1. In particular, we shall show that £ is the best possible constant in (5.5.8) while any

Ahlfors regular u shows the optimality of (5.5.7).

Example 5.10.2 For any p < g, the constant % in (5.5.8) of Proposition 5.5.8 cannot be
improved.



144 CHAPTER 5. ON THE DIMENSION OF AN IRRIGABLE MEASURE

PROOF. Let N =1, § = 0 and let us consider a p = ),y m;0z, where, for all ¢ € IV, §;

denotes the Dirac mass concentrated in a point z; € IR. Let us fix two exponents v, 5 > 1 and
take Vi € IN,

(5.10.9) ri = Tiy1 — o; = dist(z;, {iL‘j |j #+ Z}) =47
and

5.10.10 m; =i .

( )

By using the triangular inequality, we get that
(5.10.11) Vz € IR 3 at most one ¢ € IN s.t. |z —z;| < % .

For a given p > 1 and for a fixed n € IN let us evaluate 62. Let us set up, = > ;v midy,
B-1

where for all ¢ < n, m; = m;, while m], = 3.5, m;. Then we can bound ¢5 by C n'Tr e

Indeed, by (5.10.10) and (5.10.9)

1
0o 00 Ly
eam<[( £ m) (£
(5.10.12) i i:n-l—l i:n-l—l

i=n+1 i=n+1

jzn

Fix now an arbitrary discretization u, € D, of u. By (5.10.11) for any point z of supp(u,) we
find at most a point z; such that |z — ;| < %. So we can find at most n points z; which are
at a distance less or equal to § from supp(u,). We can assume, being (m;)icwv and (r;)iemw

decreasing sequences, that such points z; are the first n ones. Therefore we have

1 1
e NP\ P 00 P B
(5.10.13) 0, = dp(pt, pn) > ( > my (%) ) >c ( > i_ﬁi_”’) > en 5

i=n-+1 i=n-+1
¢From (5.10.13) and (5.10.12) we have the existence of two positive constants, ¢ and C such
that for all p > 1 and n € IN:

-1

B-1 8
(5.10.14) enTF <P <CalTT

Taking the log,, and then taking the lim sup of the three members of (5.10.14) as in (5.5.6), we
have for all p > 1

p P p
(5.10.15) vy g S ) sy pray

gp(y-N+6-1 dilw) ~q¢ py+pf-1
p gy+B-1 ~d&W " pey-1)+p-1"

Taking into account that, for a fixed value of v > 1, both the bounds in (5.10.16) go to % as
B8 — +oo we conclude the proof.

and therefore
(5.10.16)

<
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5.11 Appendix C - Index of the main notation

The order first follows the exposition in Appendix A and then the exposition of the paper:

(€, | - |) a nonatomic probability space

x: Q2 x Rt — RN = get of fibers

x(p,t) € RYN position of the point p € Q at the time ¢

Xp =t x(p,t) = fiber of p

Cs(2) = set of sets of fibers of Q2

P(€2) = set of all irrigation patterns, i.e. the set of all the measurable sets of fibers of
[pl: = equivalence class of p under the equivalence p ~; g if x,(s) = x4(s) for all s € [0, ¢]
x-vessels = class of equivalence at time ¢ under ~,

Vi(x) = Q)= = set of x-vessels at time ¢

ox(p) = inf{t € IR | xp(s) is constant on [t, +oo[} : absorption (stopping) time of p, p is
absorbed at time ¢ if o (p) <t

X C ) is an absorbed set at time ¢ if o, (p) <t forae. pe X

x-flow = non absorbed y-vessel (has positive measure in 2)

Fi(x) = set of x-flows at time ¢

Ai(x) = set of the points of 2 which are absorbed at time ¢

Ay = Uy As(x) = set of the absorbed points

M;(x) = 2\ A¢(x) = set of the points of 2 that at time ¢ are still moving
Fi(x) = Uaer,(x) A = union of the x-flows at time ¢

iy : Ay — RN = irrigation function defined by i, (p) = x(p, oy (p))

py = irrigation measure induced by the pattern x by setting u,(A) = |i} L(A)| for any
Borel set A C RV

ey (t) = /M 0 |[p]¢|*'dp = density cost function see (5.9.2)
i

I(x) = /IR ¢y (t)dt = cost of the pattern x
+

F, ={z e R |3t > 0,34 € Fi(x) st. = x(p, t),p € A} = flow zone of ¥, see
Definition 5.9.1
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D,={pefipe For (o) (x)} = dispersion of the pattern x, see Definition 5.9.2

sy(p, q) = inf{t > 0| x(p, t) # x(g, t)} = separation time of the two points p and g, see
Definition 5.9.3

[p]§ = equivalence class of p under the equivalence p >~ g if there exists € > 0s.t. p ~ (¢ g,
see Definition 5.9.4

strict x-vessels = class of equivalence at time ¢ under ~}, see Definition 5.9.4
Vi(x) = 2/~ = set of the strict x-vessels at time ¢, see Definition 5.9.4

X' : [ps x Ry — IRYN = branch of x starting from x(p, t) defined by setting x'(g,-) =
x(g,- +t), see Definition 5.9.5

x \ X' = pattern x stumped of the branch x’, see Definition 5.9.8
Io(V,t) = I,(V) = cost of the vessel V at time ¢, see Definition 5.9.9

Ox (, 1) = |[Ple|* M Las, () (p), see (5.9.13)
v(A) = [4 oyx(p, t)dpdt, see Definition 5.9.11

/
do = 1= (cl—y) = critical dimension of the exponent «, see Definition 5.1.1

d(u) = inf{d, | p is irrigable with respect toa} = irrigability dimension of u, see Defini-
tion 5.1.3

d(B) = Hausdorff dimension of the set B

do(u) = inf{d(B) | u is concentrated on B}, see Definition 5.1.4
ds(p) = Hausdorff dimension of the supp(u), see Definition 5.1.5
dpr(X) = Minkowski dimension of the set X, see Definition 5.1.6
Ns(X) = {y € RV |d(y, X) < 6}, see Definition 5.1.6

dy(p) = inf{dp(X)|p is concentrated on X} = Minkowski dimension of y or equiva-
lently strong resolution dimension of index 400, see Definition 5.1.7, Definition 5.5.5 and
Proposition 5.5.4

resolution of p = card(supp(u)) < oo, see Definition 5.5.1

D,, = set of all the convex combinations of n Dirac masses, see Definition 5.5.2

dp(p, v) = (ngn / |z — y|pda) " = Kantorovitch-Wasserstein distance of index p be-
Qx0

tween u and v, see Definition 5.5.3

0P = dp(u, Dy), see (5.5.3)



5.11. APPENDIX C - INDEX OF THE MAIN NOTATION 147

o dP(u limsup,,_, |« log, (65’;))_1 = resolution dimension of y of index p, see Defini-

)= (-
tion 5.5.5

e d°(u) = supy>; d7(p) = weak resolution dimension of index +oo, see Remark 5.5.4
o W, (t) =max{I,(V)|V € Vi(x)}, see (5.7.3)

o S (t) =max{I,(V)|V € Vi(x)}, see (5.7.4).
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