Probabilistic models of impedance matrices Application to dynamic soil-structure interaction

Régis Cottereau ${ }^{1}$
under the supervision of Prof. D. Clouteau ${ }^{1}$ and Prof. C. Soize ${ }^{2}$
${ }^{1}$ LMSSMat, École Centrale Paris, France
${ }^{2}$ LaM, Université de Marne-la-Vallée, France

Impedance in the time domain

- Introduction

- Det. model
- Prob. model
- Application
- Conclusion

- Force $f(t)$ to impose a displacement $u\left(t_{0}\right)$ on the boundary

■ Causality $\Rightarrow \mathrm{Z}\left(t<t_{0}, t_{0}\right)=0$

Impedance in the frequency domain

- Introduction

- Det. model
- Prob. model
- Application
- Conclusion

- Linearity
- $\hat{f}(\omega)=\hat{\mathrm{Z}}(\omega) \hat{u}(\omega)$
- Complex, frequency-dependent spring.

Example of impedance

Rigid surface foundation on homogeneous soil

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

- Additional flexibility
- Damping due to radiation

Example of impedance

Rigid surface foundation on homogeneous soil

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

- Additional flexibility
- Damping due to radiation

Variability of the impedance

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Rigid surface foundation on uncertain soil

Probabilistic analysis

- Consider all possible situations (?)
- Assign probability weights (?)

Variability of the impedance

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Rigid surface foundation on uncertain soil

Probabilistic analysis

- Consider all possible situations (?)
- Assign probability weights (?)

Variability of the impedance

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Rigid surface foundation on uncertain soil

Probabilistic analysis

- Consider all possible situations (?)
- Assign probability weights (?)

Objectives

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Goal: construct models for the impedance matrix
\rightarrow Always causal
\rightarrow Accounting for variability

- Challenges:
- Unbounded domain
- Frequency-dependence
- Introduction
- Part I: Deterministic model of the impedance matrix [Z(ω)]
- Definition of the impedance matrix
- The Hidden Variables (HV) model
- Identification of the HV model
- Part II: Probabilistic model of the impedance matrix [Z(ω)]
- Parametric approach
- Nonparametric approach
- Comparison
- Part III: Seismic design of a structure on a random soil
- Conclusions and Perspectives
[Cottereau et al., CMAME, 2006, accepted]: Parts I-II
[Cottereau et al., EESD, in preparation]: Parts III
- Introduction
- Part I: Deterministic model of the impedance matrix [Z(ω)]
- Definition of the impedance matrix
- The Hidden Variables (HV) model
- Identification of the HV model
- Part II: Probabilistic model of the impedance matrix [$\mathrm{Z}(\omega)$]
- Parametric approach
- Nonparametric approach
- Comparison
- Part III: Seismic design of a structure on a random soil
- Conclusions and Perspectives
[Cottereau et al., CMAME, 2006, accepted]: Parts I-II
[Cottereau et al., EESD, in preparation]: Parts III

Part I: Deterministic model of $[\mathrm{Z}(\omega)]$

Simple and general model taking into account causality

- Application
- Conclusion
- Definition of the impedance matrix
- Definition
- Numerical methods
- Properties of the impedance matrix
- The Hidden Variables (HV) model
- Causality condition
- The HV model
- Identification of the HV model
- Methodology
- Interpolation
- Identification

- Harmonic (linear) Boundary Value Problem: find $\boldsymbol{u}_{s} \in V\left(\Omega_{s}\right)$ such that:

$$
\begin{cases}\underline{\boldsymbol{\sigma}}_{i j, j}\left(\boldsymbol{u}_{s}\right)+\rho \omega^{2} \boldsymbol{u}_{s}=\mathbf{0} & \text { in } \Omega_{s} \tag{1}\\ \boldsymbol{\sigma}_{i j}\left(\boldsymbol{u}_{s}\right) n_{j}=\mathbf{0} & \text { on } \partial \Omega_{s} \backslash \Gamma \\ \boldsymbol{u}_{s}=\boldsymbol{u}_{\Gamma} & \text { on } \Gamma\end{cases}
$$

- There exists, $\forall \omega \in \mathbb{R}$, a unique displacement field \boldsymbol{u}_{s} solution of (1)
- f_{Γ} the corresponding traction field on Γ
- The impedance is defined, $\forall \omega \in \mathbb{R}$, by

$$
\mathcal{Z}(\omega) \boldsymbol{u}_{\Gamma}(\omega)=\boldsymbol{f}_{\Gamma}(\omega) \Rightarrow[\mathrm{Z}(\omega)][u(\omega)]=[f(\omega)] .
$$

Numerical methods for $[\mathrm{Z}(\omega)]$

- Introduction

- Det. model
- Prob. model
- Application
- Conclusion
- Finite Element method
- Complex
- \Rightarrow Absorbing boundary conditions ? [Givoli, 1992]
- Boundary Element method
- Complex
- \Rightarrow Green's functions ?
- Lumped-parameter models [Wolf, 1988]
- Simple
- \Rightarrow Limited applicability: network chosen a priori ? coupling ?

■ Charts, Winkler spring foundation, Cone models, ...

Properties of the impedance matrix

- Symmetry
- symmetry of elasticity tensors
- $[\mathrm{Z}(\omega)]^{T}=[\mathrm{Z}(\omega)]$
- Stability
- bounded $[u(\omega)] \Rightarrow$ bounded $[f(\omega)]$
- Poles with negative real value
- Damped system
- Sink of energy
- $\Im\{[Z(\omega)]\}$ positive
- Causality
- \Rightarrow enforcement in frequency domain?

Causality in the frequency domain

■ Physical approach: Kramers-Kronig relations

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
\Re\{[\mathrm{Z}(\omega)]\}=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\Im\left\{\left[\mathrm{Z}\left(\omega^{\prime}\right)\right]\right\}}{\omega-\omega^{\prime}} d \omega^{\prime}
$$

- Mathematical approach: expansion on a Hardy functions basis

$$
[\mathrm{Z}(\omega)]=-\omega^{2}\left[\mathrm{M}_{\Gamma}\right]+i \omega\left[\mathrm{C}_{\Gamma}\right]+\left[\mathrm{K}_{\Gamma}\right]+\sum_{n \geq 0}\left[\mathrm{Z}_{n}\right] e_{b}(\omega)
$$

- Alternative approach

> Sufficient condition: Condensation of an underlying causal system

the HV model: definition

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

- Structure of the approximation

Structure of the boundary impedance matrix of a mechanical system whose vibrations in the time domain follow a second-order differential equation with constant coefficients.
[Chabas and Soize, LRA, 1987]

- Block decomposition

$$
\left(\left[\begin{array}{cc}
{\left[\mathrm{K}_{\Gamma}\right]} & {\left[\mathrm{K}_{c}\right]} \\
{\left[\mathrm{K}_{c}\right]^{T}} & {\left[\mathrm{~K}_{h}\right]}
\end{array}\right]+i \omega\left[\begin{array}{cc}
{\left[\mathrm{C}_{\Gamma}\right]} & {\left[\mathrm{C}_{c}\right]} \\
{\left[\mathrm{C}_{c}\right]^{T}} & {\left[\mathrm{C}_{h}\right]}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
{\left[\mathrm{M}_{\Gamma}\right]} & {\left[\mathrm{M}_{c}\right]} \\
{\left[\mathrm{M}_{c}\right]^{T}} & {\left[\mathrm{M}_{h}\right]}
\end{array}\right]\right)\left[\begin{array}{c}
{\left[u_{\Gamma}\right]} \\
{\left[u_{h}\right]}
\end{array}\right]=\left[\begin{array}{c}
{[\mathrm{Z}]\left[u_{\Gamma}\right]} \\
0
\end{array}\right]
$$

- Schur complement $\left(\right.$ with $\left.\left[A_{\alpha}(\omega)\right]=-\omega^{2}\left[\mathrm{M}_{\alpha}\right]+i \omega\left[\mathrm{C}_{\alpha}\right]+\left[\mathrm{K}_{\alpha}\right]\right)$

$$
[\mathrm{Z}(\omega)]=\left[A_{\Gamma}(\omega)\right]-\left[A_{c}(\omega)\right]\left[A_{h}(\omega)\right]^{-1}\left[A_{c}(\omega)\right]^{T}=\frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}
$$

the HV model: properties

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Basic properties verified when [M], [C], and [K] positive definite
- Symmetry
- Causality
- Stability
- Damped system
- Comparison with lumped-parameter models
- Simple - Inexpensive
- Network of elements NOT defined a priori
- Coupling taken into account
- \Rightarrow Identification?

Methodology for identification

- Input impedance matrix [Z̃]
- discrete set $\left\{\left[\tilde{Z}\left(\omega_{\ell}\right)\right]\right\}_{1 \leq \ell \leq L}$
- computed or measured
- Rational interpolation $[\tilde{\mathrm{Z}}] \Rightarrow([\mathrm{P}], \mathrm{Q})$
- Using existing numerical schemes [van Barel and Bultheel, NM, 1992]
- Choice of number of $\mathrm{HV} \Rightarrow$ degree of approximation

$$
[\tilde{\mathrm{Z}}(\omega)] \approx \frac{[\mathrm{P}(\omega)]}{\mathrm{Q}(\omega)}=\frac{\sum_{\ell=0}^{2 N+2}(i \omega)^{\ell}\left[\mathrm{P}_{\ell}\right]}{\sum_{\ell=0}^{2 N}(i \omega)^{\ell} \mathrm{Q}_{\ell}}
$$

- Identification $([\mathrm{P}], \mathrm{Q}) \Rightarrow([\mathrm{K}],[\mathrm{C}],[\mathrm{M}])$
- No approximation
- Non-unique identification

Non-unique set of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

Non-uniquely defined model

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \\
\mathrm{~K}_{c}^{T} & \mathrm{~K}_{h}
\end{array}\right]+i \omega\left[\begin{array}{ll}
\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \\
\mathrm{C}_{c}^{T} & \mathrm{C}_{h}
\end{array}\right]-\omega^{2}\left[\begin{array}{ll}
\mathrm{M}_{\Gamma} & \mathrm{M}_{c} \\
\mathrm{M}_{c}^{T} & \mathrm{M}_{h}
\end{array}\right]\right)\left[\begin{array}{l}
u_{\Gamma}(\omega) \\
u_{h}(\omega)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Z}(\omega) u_{\Gamma}(\omega) \\
0
\end{array}\right] \\
\mathrm{Z}(\omega)=\mathrm{A}_{\Gamma}(\omega)-\mathrm{A}_{c}(\omega) \mathrm{A}_{h}(\omega)^{-1} \mathrm{~A}_{c}(\omega)^{T}
\end{gathered}
$$

■ Example
■ Diagonalization of the hidden part
■ Cancellation of the mass coupling

Non-unique set of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

Non-uniquely defined model

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \\
\mathrm{~K}_{c}^{T} & \mathrm{~K}_{h}
\end{array}\right]+i \omega\left[\begin{array}{ll}
\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \\
\mathrm{C}_{c}^{T} & \mathrm{C}_{h}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\mathrm{M}_{\Gamma} & \mathrm{M}_{c} \\
\mathrm{M}_{c}^{T} & \mathrm{M}_{h}
\end{array}\right]\right)\left[\begin{array}{l}
u_{\Gamma}(\omega) \\
u_{h}(\omega)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Z}(\omega) u_{\Gamma}(\omega) \\
0
\end{array}\right] \\
\mathrm{Z}(\omega)=\mathrm{A}_{\Gamma}(\omega)-\mathrm{A}_{c}(\omega) \mathrm{A}_{h}(\omega)^{-1} \mathrm{~A}_{c}(\omega)^{T}
\end{gathered}
$$

- Example

■ Diagonalization of the hidden part

- Cancellation of the mass coupling
$\left(\left[\begin{array}{cc}\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \Phi \\ \Phi^{T} \mathrm{~K}_{c}^{T} & \Phi^{T} \mathrm{~K}_{h} \Phi\end{array}\right]+i \omega\left[\begin{array}{cc}\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \Phi \\ \Phi^{T} \mathrm{C}_{c}^{T} & \Phi^{T} \mathrm{C}_{h} \Phi\end{array}\right]-\omega^{2}\left[\begin{array}{cc}\mathrm{M}_{\Gamma} & \mathrm{M}_{c} \Phi \\ \Phi^{T} \mathrm{M}_{c}^{T} & \Phi^{T} \mathrm{M}_{h} \Phi\end{array}\right]\right)\left[\begin{array}{l}u_{\Gamma} \\ u_{h}^{\prime}\end{array}\right]=\left[\begin{array}{l}f \\ 0\end{array}\right]$
$\mathrm{Z}(\omega)=\mathrm{A}_{\Gamma}(\omega)-\mathrm{A}_{c}(\omega) \Phi \Phi^{-1} \mathrm{~A}_{h}(\omega)^{-1} \Phi^{-T} \Phi^{T} \mathrm{~A}_{c}(\omega)^{T}$

Non-unique set of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

Non-uniquely defined model

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \\
\mathrm{~K}_{c}^{T} & \mathrm{~K}_{h}
\end{array}\right]+i \omega\left[\begin{array}{ll}
\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \\
\mathrm{C}_{c}^{T} & \mathrm{C}_{h}
\end{array}\right]-\omega^{2}\left[\begin{array}{ll}
\mathrm{M}_{\Gamma} & \mathrm{M}_{c} \\
\mathrm{M}_{c}^{T} & \mathrm{M}_{h}
\end{array}\right]\right)\left[\begin{array}{l}
u_{\Gamma}(\omega) \\
u_{h}(\omega)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Z}(\omega) u_{\Gamma}(\omega) \\
0
\end{array}\right] \\
\mathrm{Z}(\omega)=\mathrm{A}_{\Gamma}(\omega)-\mathrm{A}_{c}(\omega) \mathrm{A}_{h}(\omega)^{-1} \mathrm{~A}_{c}(\omega)^{T}
\end{gathered}
$$

- Diagonalization of the hidden part

$$
\begin{gathered}
\left(\left[\begin{array}{cc}
\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \\
\mathrm{~K}_{c}^{T} & \Omega_{h}^{2}
\end{array}\right]+i \omega\left[\begin{array}{cc}
\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \\
\mathrm{C}_{c}^{T} & 2 \Xi_{h} \Omega_{h}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\mathrm{M}_{\Gamma} & \mathrm{M}_{c} \\
\mathrm{M}_{c}^{T} & \mathrm{I}_{h}
\end{array}\right]\right)\left[\begin{array}{l}
u_{\Gamma}(\omega) \\
u_{h}^{\prime}(\omega)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Z}(\omega) u_{\Gamma}(\omega) \\
0
\end{array}\right] \\
\mathrm{Z}(\omega)=\mathrm{A}_{\Gamma}(\omega)-\sum_{\ell=1}^{N} \frac{\mathrm{~A}_{c}(\omega) \mathrm{A}_{c}^{T}(\omega)}{-\omega^{2}+2 i \zeta_{\ell} \omega_{\ell} \omega+\omega_{\ell}^{2}}
\end{gathered}
$$

Non-unique set of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

Non-uniquely defined model

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \\
\mathrm{~K}_{c}^{T} & \mathrm{~K}_{h}
\end{array}\right]+i \omega\left[\begin{array}{ll}
\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \\
\mathrm{C}_{c}^{T} & \mathrm{C}_{h}
\end{array}\right]-\omega^{2}\left[\begin{array}{ll}
\mathrm{M}_{\Gamma} & \mathrm{M}_{c} \\
\mathrm{M}_{c}^{T} & \mathrm{M}_{h}
\end{array}\right]\right)\left[\begin{array}{l}
u_{\Gamma}(\omega) \\
u_{h}(\omega)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Z}(\omega) u_{\Gamma}(\omega) \\
0
\end{array}\right] \\
\mathrm{Z}(\omega)=\mathrm{A}_{\Gamma}(\omega)-\mathrm{A}_{c}(\omega) \mathrm{A}_{h}(\omega)^{-1} \mathrm{~A}_{c}(\omega)^{T}
\end{gathered}
$$

- Diagonalization of the hidden part
- Cancellation of the mass coupling

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
\mathrm{K}_{\Gamma} & \mathrm{K}_{c} \\
\mathrm{~K}_{c}^{T} & \Omega_{h}^{2}
\end{array}\right]+i \omega\left[\begin{array}{cc}
\mathrm{C}_{\Gamma} & \mathrm{C}_{c} \\
\mathrm{C}_{c}^{T} & 2 \Xi_{h} \Omega_{h}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\mathrm{M}_{\Gamma} & 0 \\
0 & \mathrm{I}_{h}
\end{array}\right]\right)\left[\begin{array}{l}
u_{\Gamma}(\omega) \\
u_{h}^{\prime}(\omega)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Z}(\omega) u_{\Gamma}(\omega) \\
0
\end{array}\right] \\
\mathrm{Z}(\omega)=-\omega^{2} \mathrm{M}_{\Gamma}+i \omega \mathrm{C}_{\Gamma}+\mathrm{K}_{\Gamma}-\sum_{\ell=1}^{N} \frac{\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)^{T}}{-\omega^{2}+2 i \zeta_{\ell} \omega_{\ell} \omega+\omega_{\ell}^{2}}
\end{gathered}
$$

Identification of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

- Pole-residue expansion
- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
[\tilde{\mathrm{Z}}(\omega)] \approx \frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}=-\omega^{2} \mathrm{R}_{2}+i \omega \mathrm{R}_{1}+\mathrm{R}_{0}+\sum_{\ell=1}^{N} \frac{i \omega \mathrm{R}_{-1}^{\ell}+\mathrm{R}_{-2}^{\ell}}{-\omega^{2}+i \omega \mathrm{p}_{1}^{\ell}+\mathrm{p}_{0}^{\ell}}
$$

- Schur complement

$$
\mathrm{Z}(\omega)=-\omega^{2} \mathrm{M}_{\Gamma}+i \omega \mathrm{C}_{\Gamma}+\mathrm{K}_{\Gamma}-\sum_{\ell=1}^{N} \frac{\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)^{T}}{-\omega^{2}+2 i \zeta_{\ell} \omega_{\ell} \omega+\omega_{\ell}^{2}}=\frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}
$$

Identification of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

- Pole-residue expansion
- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
[\tilde{\mathbf{Z}}(\omega)] \approx \frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}=-\omega^{2} \mathbf{R}_{\mathbf{2}}+i \omega \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{0}}+\sum_{\ell=1}^{N} \frac{i \omega \mathbf{R}_{-\mathbf{1}}^{\ell}+\mathbf{R}_{-\mathbf{2}}^{\ell}}{-\omega^{2}+i \omega \mathbf{p}_{\mathbf{1}}^{\ell}+\mathbf{p}_{\mathbf{0}}^{\ell}}
$$

- Schur complement

$$
\mathrm{Z}(\omega)=-\omega^{2} \mathbf{M}_{\boldsymbol{\Gamma}}+i \boldsymbol{\omega} \mathbf{C}_{\boldsymbol{\Gamma}}+\mathbf{K}_{\boldsymbol{\Gamma}}-\sum_{\ell=1}^{N} \frac{\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)^{T}}{-\omega^{2}+2 i \boldsymbol{\zeta}_{\ell} \boldsymbol{\omega}_{\ell} \omega+\boldsymbol{\omega}_{\ell}^{2}}=\frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}
$$

- Identification

$$
\begin{cases}\mathrm{K}_{c}^{\ell} \mathrm{K}_{c}^{\ell T}-2 \boldsymbol{\zeta}_{\boldsymbol{\ell}} \boldsymbol{\omega}_{\ell} \mathrm{C}_{c}^{\ell} \mathrm{C}_{c}^{\ell T}=-\mathbf{R}_{-\mathbf{2}}^{\ell} & 1 \leq \ell \leq N \\ \mathrm{C}_{c}^{\ell} \mathrm{K}_{c}^{\ell T}+\mathrm{K}_{c}^{\ell} \mathrm{C}_{c}^{\ell T}-\boldsymbol{\omega}_{\ell}^{2} \mathrm{C}_{c}^{\ell} \mathrm{C}_{c}^{\ell T}=-\mathbf{R}_{-\mathbf{1}}^{\ell} & 1 \leq \ell \leq N\end{cases}
$$

Identification of $[\mathrm{M}],[\mathrm{C}]$ and $[\mathrm{K}]$

- Pole-residue expansion
- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

$$
[\tilde{\mathbf{Z}}(\omega)] \approx \frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}=-\omega^{2} \mathbf{R}_{\mathbf{2}}+i \omega \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{0}}+\sum_{\ell=1}^{N} \frac{i \omega \mathbf{R}_{-\mathbf{1}}^{\ell}+\mathbf{R}_{-\mathbf{2}}^{\ell}}{-\omega^{2}+i \omega \mathbf{p}_{\mathbf{1}}^{\ell}+\mathbf{p}_{\mathbf{0}}^{\ell}}
$$

- Schur complement

$$
\mathrm{Z}(\omega)=-\omega^{2} \mathbf{M}_{\boldsymbol{\Gamma}}+i \boldsymbol{\omega} \mathbf{C}_{\boldsymbol{\Gamma}}+\mathbf{K}_{\boldsymbol{\Gamma}}-\sum_{\ell=1}^{N} \frac{\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)\left(i \omega \mathrm{C}_{c}^{\ell}+\mathrm{K}_{c}^{\ell}\right)^{T}}{-\omega^{2}+2 i \boldsymbol{\zeta}_{\ell} \boldsymbol{\omega}_{\ell} \omega+\boldsymbol{\omega}_{\ell}{ }^{2}}=\frac{[\mathrm{P}(i \omega)]}{\mathrm{Q}(i \omega)}
$$

- Identification [Takagi, JJM, 1925] [Cottereau et al., CMAME, 2006, accepted]

$$
\begin{cases}\mathrm{K}_{c}^{\ell} \mathrm{K}_{c}^{\ell T}-2 \boldsymbol{\zeta}_{\ell} \boldsymbol{\omega}_{\ell} \mathrm{C}_{c}^{\ell} \mathrm{C}_{c}^{\ell T}=-\mathbf{R}_{-\mathbf{2}}^{\ell} & 1 \leq \ell \leq N \\ \mathrm{C}_{c}^{\ell} \mathrm{K}_{c}^{\ell T}+\mathrm{K}_{c}^{\ell} \mathrm{C}_{c}^{\ell T}-\boldsymbol{\omega}_{\ell}^{2} \mathrm{C}_{c}^{\ell} \mathrm{C}_{c}^{\ell T}=-\mathbf{R}_{-\mathbf{1}}^{\ell} & 1 \leq \ell \leq N\end{cases}
$$

$$
\left[L^{\ell}\right]\left[L^{\ell}\right]^{T}=\left[\boldsymbol{c}_{\mathbf{1}}\right] \Rightarrow \begin{cases}\mathrm{K}_{c}^{\ell}=\boldsymbol{c}_{\mathbf{2}}^{\ell} \Re\left\{\left[L^{\ell}\right]\right\}+\boldsymbol{c}_{\mathbf{3}}^{\ell} \Im\left\{\left[L^{\ell}\right]\right\} & 1 \leq \ell \leq N \\ \mathrm{C}_{c}^{\ell}=\Im\left\{\left[L^{\ell}\right]\right\} & 1 \leq \ell \leq N\end{cases}
$$

Application

Embedded foundation on layer of homogeneous soil over bedrock

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

CENTRE NATIONAL

Part II: Probabilistic model of $[\mathrm{Z}(\omega)]$

Find a simple and general model taking into account soil variability

- Introduction
- Parametric approach: SFE method
- Principle
- Example
- Nonparametric approach
- Principle
- Methodology
- Application
- Comparison

What/Why are probabilistic models ?

Origin of the uncertainty

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Model uncertainties
- Homogeneity within a layer
- Nonlinearity (behavior)
- ...
- Parameter uncertainties
- Measurement errors
- Reshuffling
- Under-sampling
- ...

Probabilistic model

$$
[\mathbf{Z}(\omega, \theta)] \text { random process indexed on } \mathbb{B}_{\Omega} \text { with values in } \mathbb{M}
$$

- Space of matrices \mathbb{M}
- \Rightarrow Symmetric
- \Rightarrow Positive imaginary part
- Trajectories of $[\mathbf{Z}(\omega, \theta)]$
- \Rightarrow Causal
- \Rightarrow Stable

Parametric approach: Principle

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

MODEL $\longrightarrow(\rho, \lambda, \mu, h, \ldots) \longrightarrow[\mathrm{Z}(\omega)]$

Parametric approach: Principle

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

- Limitations
- Size of the random domain - cost of the approach
- Appropriate choice of stochastic model (including correlation model)?
- Appropriate representation of random fields
- Previous studies at ECP
- [Savin and Clouteau, IJNME, 2002] [Lafargue et al., 2003, SIAM CSE]
- Software MISSVAR [Clouteau, Tech. Rep.]

Parametric approach: Example

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Embedded foundation on layer of heterogeneous soil over bedrock

- Random Lamé coefficients
- Karhunen-Loève decomposition
- Uniform random variables (60\% variance)
- Exponential correlation: parameter $L=5 \mathrm{~m}$
- Shear-wave velocity $c_{s}=200 \mathrm{~m} / \mathrm{s}$
- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

CENTRE NATIONAL SCIENTIFIQUE

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Parametric approach: Variance

Variability considered mostly on pumping element

Nonparametric approach: Principle (1)

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Uncertainty taken into account at a higher level

- Interests
- No stochastic model of the soil parameters
- No meshing of the soil required
- Parametric uncertainties and some model uncertainties
- Heterogeneity of the soil
- NO nonlinearities
- Already applied for stochastic reduced dynamic models
[Soize, PEM, 2000] [Soize, JASA, 2001]

Nonparametric approach: Principle (2)

Principle

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Identification of the available information
- Construction of the laws of $[\mathbf{Z}(\omega)]$ by Entropy Maximization $\Rightarrow \mathrm{HV}$ model

Available information

- Properties of $[\mathbf{Z}(\omega)]$
- Causality ensured by the form of the HV model
- Algebraic information on \mathbf{K}, \mathbf{C} and \mathbf{M}
- Matrices of the mean model $\underline{\mathrm{K}}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}} \Leftarrow$ Identification
- Dispersion parameters $\delta_{\mathrm{K}}, \delta_{\mathrm{C}}$ and δ_{M}
[Soize, CMAME, 2005] [Arnst et al., PEM, 2005]

Nonparametric approach: Example

Embedded foundation on layer of heterogeneous soil over bedrock

- Chosen model
- Mean impedance $[\tilde{Z}(\omega)]$ computed using BE software MISS (deterministic)
- Identification of $\underline{\mathrm{K}}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}}$
- Choice of $\delta_{\mathrm{K}}=\delta_{\mathrm{C}}=\delta_{\mathrm{M}}=0.1$

Nonparametric model: Methodology

Methodology

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Computation of an input impedance matrix (set of $\left\{\left[\tilde{Z}\left(\omega_{\ell}\right)\right]\right\}_{1 \leq \ell \leq L}$)
- Identification of $\underline{K}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}}$
- Choice of dispersion parameters $\delta_{\mathrm{K}}, \delta_{\mathrm{C}}$ and δ_{M}
- Computation of stochastic models for \mathbf{K}, C and M
- Computation of stochastic model of $[\mathbf{Z}(\omega)]$

Nonparametric model: Methodology

Methodology

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Computation of an input impedance matrix (set of $\left\{\left[\tilde{Z}\left(\omega_{\ell}\right)\right]\right\}_{1 \leq \ell \leq L}$)
- Identification of $\underline{\mathrm{K}}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}}$
- Choice of dispersion parameters $\delta_{\mathrm{K}}, \delta_{\mathrm{C}}$ and δ_{M}
- Computation of stochastic models for \mathbf{K}, C and M
- Computation of stochastic model of $[\mathbf{Z}(\omega)]$

Nonparametric model: Methodology

Methodology

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Computation of an input impedance matrix (set of $\left\{\left[\tilde{Z}\left(\omega_{\ell}\right)\right]\right\}_{1 \leq \ell \leq L}$)
- Identification of $\underline{\mathrm{K}}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}}$
- Choice of dispersion parameters $\delta_{\mathrm{K}}, \delta_{\mathrm{C}}$ and δ_{M}
- Computation of stochastic models for \mathbf{K}, \mathbf{C} and \mathbf{M}
- Computation of stochastic model of $[\mathrm{Z}(\omega)]$

Nonparametric model: Methodology

Methodology

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Computation of an input impedance matrix (set of $\left\{\left[\tilde{Z}\left(\omega_{\ell}\right)\right]\right\}_{1 \leq \ell \leq L}$)
- Identification of $\underline{\mathrm{K}}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}}$
- Choice of dispersion parameters $\delta_{\mathrm{K}}, \delta_{\mathrm{C}}$ and δ_{M}
- Computation of stochastic models for \mathbf{K}, \mathbf{C} and \mathbf{M}
- Computation of stochastic model of $[\mathrm{Z}(\omega)]$

$[M]^{(2)}$

Nonparametric model: Methodology

Methodology

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Computation of an input impedance matrix (set of $\left\{\left[\tilde{Z}\left(\omega_{\ell}\right)\right]\right\}_{1 \leq \ell \leq L}$)
- Identification of $\underline{\mathrm{K}}, \underline{\mathrm{C}}$ and $\underline{\mathrm{M}}$
- Choice of dispersion parameters $\delta_{\mathrm{K}}, \delta_{\mathrm{C}}$ and δ_{M}
- Computation of stochastic models for \mathbf{K}, \mathbf{C} and \mathbf{M}
- Computation of stochastic model of $[\mathbf{Z}(\omega)$]

Nonparametric approach: Results

- Introduction

- Det. model
- Prob. model
- Application
- Conclusion

CENTRE NATIONAL

- deterministic
- $=$ HV model
- = f.w. mean
- 90\%-confidence
- MC trial

Nonparametric approach: Variance

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Nonparametric approach
Parametric approach

- Variability on shaking AND pumping
- Identification of δ on pumping term
- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

CENTRE NATIONAL SCIENTIFIQUE

Comparison Nonparametric-Parametric

- deterministic

- - HV model
- = f.w. mean (Param.)

90\%-conf. (Param.)
90\%-conf. ($\delta=0.17$)

Conclusion on probabilistic models

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Parametric approach
- Possibility to control the length of correlation, when available
- Nonparametric approach
- No required identification of the variability of the soil parameters
- Non-localized variability
- Inexpensive

Choice of nonparametric approach for most seismic design problems

Part III: Seismic design on random soil

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

[Cottereau et al., EESD, in preparation]

HV model of the impedance

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

- Problems in identification of mean model
- $\delta=0.1$

	$\ell=1$	$\ell=2$	$\ell=3$
$\omega_{\ell}[\mathrm{Hz}]$	18.8	59.9	73.0
$\zeta_{\ell}[-]$	0.09	0.14	0.30

Results: Response on top

- Introduction

- Det. model
- Prob. model
- Application
- Conclusion

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

Conclusions

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion
- Features of HV model
- Ensures the validation of the basic properties of the impedance
- Takes into account matrix-character of the impedance
- Usable for stochastic applications
- Usable in time domain
- Features of nonparametric method
- No meshing of the soil
- No identification of the soil parameters variability
- Inexpensive
- Correlation between seismic input and impedance
- Problems in identification
- Problems in identification

- Introduction

- Det. model
- Prob. model
- Application
- Conclusion
- Enforce impedance conditions during interpolation
- Stability [Strelitz, AMM, 1977]
- Positivity
- Extension to experimental impedances matrices
- Measures of wave propagation in Lincent, Belgium [Arnst et al., Tech. Rep., 2006]
- Modification of interpolation
- Extension to complex and flexible foundations [Taherzadeh and Clouteau, 1st ECEE, 2006]

Thank you...

- Introduction
- Det. model
- Prob. model
- Application
- Conclusion

