Propriétés de vivacité sous conditions d'équité et sémantique des systèmes d'événements avec la méthode B

Héctor Ruíz Barradas

Laboratoire Logiciels Systèmes Réseaux

Universidad Autónoma Metropolitana Azcapotzalco

22 décembre 2006

Plan

Introduction

Un cadre formel pour la vivacité

Le cas de progrès minimal

Le cas d'équité faible

Le raffinement

Conclusions et travail futur

Introduction

Modèle de calcul :

$$\underline{do} \ e_1 \ [] \ e_2 \dots [] \ e_n \ \underline{od}$$

Chaque e_i est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$

Modèle de calcul :

$$\underline{do} \ e_1 \ [] \ e_2 \dots [] \ e_n \ \underline{od}$$

Chaque e_i est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$
 ou $e_i = @z.(g_i \Longrightarrow c_i)$

Modèle de calcul :

$$\underline{do} \ e_1 \ [] \ e_2 \dots [] \ e_n \ \underline{od}$$

Chaque e_i est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$
 ou $e_i = @z.(g_i \Longrightarrow c_i)$

Hypothèses d'équité :

Modèle de calcul :

$$\underline{do} \ \underline{e_1} \ [\![\ e_2 \dots [\![\ \underline{e_n} \ \underline{od} \]\!]$$

• Chaque *e_i* est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$
 ou $e_i = @z.(g_i \Longrightarrow c_i)$

Hypothèses d'équité :

B événementiel : progrès minimal

Modèle de calcul :

$$\underline{do} \ e_1 \ [] \ e_2 \dots [] \ e_n \ \underline{od}$$

• Chaque *e_i* est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$
 ou $e_i = @z.(g_i \Longrightarrow c_i)$

Hypothèses d'équité :

B événementiel : progrès minimal

UNITY: équité inconditionnelle

Modèle de calcul :

$$\underline{do} \ e_1 \ [] \ e_2 \dots [] \ e_n \ \underline{od}$$

Chaque e_i est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$
 ou $e_i = @z.(g_i \Longrightarrow c_i)$

Hypothèses d'équité :

B événementiel : progrès minimal

UNITY: équité inconditionnelle

TLA, Action Systems: équité faible

Modèle de calcul :

$$\underline{do} \ e_1 \ [] \ e_2 \dots [] \ e_n \ \underline{od}$$

Chaque e_i est une commande gardée :

$$e_i = g_i \Longrightarrow c_i$$
 ou $e_i = @z.(g_i \Longrightarrow c_i)$

Hypothèses d'équité :

B événementiel : progrès minimal

UNITY: équité inconditionnelle TLA, Action Systems: équité faible, équité forte

• Approches logiques : ensemble de formules.

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité:
- Système de preuve.
- Approches algorithmiques : notation de programmation.
 - exemple
 - Action Systems
 - 2.40.1011 0.3011011
 - B événementiel.

- Notion d'invariant.
- Notion de terminaisonnelle d'itération
- Calcul de plus faible exácoadijos

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité
- Système de preuve.
- Approches algorithmiques : notation de programmation.

- Action Systems.
- B événementiel.

- Notion d'invariant
- Notion de terminaison d'itération
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques : notation de programmation.

- Action Systems
- B événementiel

- Notion d'invariant
- Notion de terminaison d'itération
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques : notation de programmation.

- Action Systems
- B événementiel

- Notion d'invariant
- Notion de terminaison d'itération
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques : notation de programmation.

- Action Systems.
- B événementiel.

- Notion d'invariant
- Notion de terminaison d'itération
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques: notation de programmation.

- Action Systems.
- B événementiel.

- Notion d'invariant.
- Notion de terminaison d'itération.
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques: notation de programmation.

- · Action Systems.
- B événementiel.

- Notion d'invariant.
- Notion de terminaison d'itération.
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques: notation de programmation.

- · Action Systems.
- B événementiel.

- Notion d'invariant.
- Notion de terminaison d'itération.
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques: notation de programmation.

- · Action Systems.
- B événementiel.

- Notion d'invariant.
- Notion de terminaison d'itération.
- Calcul de plus faible précondtions.

Approches logiques : ensemble de formules.

exemple

- TLA
- UNITY

- Propriétés de sûreté.
- Propriétés de vivacité.
- Système de preuve.
- Approches algorithmiques : notation de programmation.

- · Action Systems.
- B événementiel.

- Notion d'invariant.
- Notion de terminaison d'itération.
- Calcul de plus faible précondtions.

- Deux constatations :
 - 1. L'approche algorithmique : utilité pratique.
 - 2. L'approche logique : raisonnement sur les propriétés.
- Une proposition :
 - 1. Description algorithmique par le B événementiel.
 - 2. Propriétés de vivacité dans le style de UNITY.

- Deux constatations :
 - 1. L'approche algorithmique : utilité pratique.
 - 2. L'approche logique : raisonnement sur les propriétés.
- Une proposition :
 - 1. Description algorithmique par le B événementiel.
 - 2. Propriétés de vivacité dans le style de UNITY.

- Deux constatations :
 - 1. L'approche algorithmique : utilité pratique.
 - 2. L'approche logique : raisonnement sur les propriétés.
- Une proposition :
 - 1. Description algorithmique par le B événementiel.
 - Propriétés de vivacité dans le style de UNITY.

- Deux constatations :
 - 1. L'approche algorithmique : utilité pratique.
 - 2. L'approche logique : raisonnement sur les propriétés.
- Une proposition :
 - 1. Description algorithmique par le B événementiel.
 - Propriétés de vivacité dans le style de UNITY.

Un cadre formel pour la vivacité

Notation

- Système d'événements S composé de :
 - Un vecteur de variables d'état : x.
 - Un invariant I(x).
 - Un ensemble d'événements E.
- L'ensemble d'états du système :

$$u = \{z \mid I(z)\}$$

Chaque e dans E est un transformateur d'ensembles :

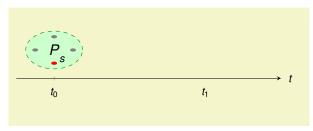
$$e \in \mathbb{P}(u) \to \mathbb{P}(u)$$

• $t \subseteq u$, e(t) est la plus faible précondition pour établir t:

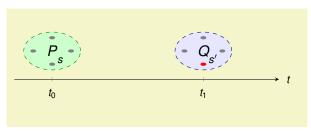
$$e(t) = \{z \mid z \in u \land wp(e, x \in t)\}$$

• Le choix d'événements dans E est S :

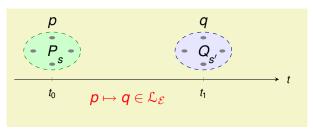
$$S = \parallel_{e \in F} e$$



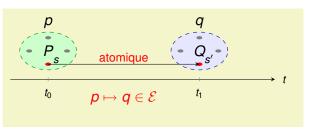
- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
 - 1. Base : E ⊂ Le.
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subseteq \mathcal{L}_{\mathcal{E}}$
 - 3. Disjonction : $I \times \{g\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow \bigcup \{I\} \mapsto g \in \mathcal{L}_{\mathcal{E}}\}$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$



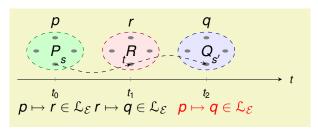
- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
 - 1. Base : $\mathcal{E} \subset \mathcal{L}_{\varepsilon}$.
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subseteq \mathcal{L}_{\mathcal{E}}$
 - 3. Disjonction : $I \times \{g\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow \bigcup \{I\} \mapsto g \in \mathcal{L}_{\mathcal{E}}\}$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$



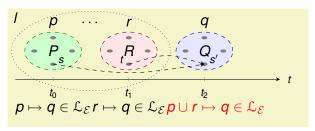
- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
- 1 Rase : 8 C f
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subset \mathcal{L}_{\mathcal{E}}$
 - 3. Disjonction : $I \times \{q\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow \bigcup \{I\} \mapsto q \in \mathcal{L}_{\mathcal{E}}\}$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$



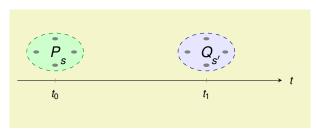
- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
 - 1. Base : $\mathcal{E} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subset \mathcal{L}_{\mathcal{E}}$
 - 3. Disjonction : $I \times \{g\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow | J(I) \mapsto g \in \mathcal{L}_{\mathcal{E}})$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$



- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
 - 1. Base : $\mathcal{E} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 3. Disjonction : $I \times \{q\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow \bigcup (I) \mapsto q \in \mathcal{L}_{\mathcal{E}})$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$



- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
 - 1. Base : $\mathcal{E} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 3. Disjonction : $I \times \{q\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow \bigcup (I) \mapsto q \in \mathcal{L}_{\mathcal{E}})$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$



- Relation d'atteignabilité $\mathcal{L}_{\mathcal{E}}$ ($\mathcal{L}_{\mathcal{E}} \in \mathbb{P}(u) \leftrightarrow \mathbb{P}(u)$)
- $\mathcal{L}_{\mathcal{E}}$ est la plus petite relation qui satisfait :
 - 1. Base : $\mathcal{E} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 2. Transitivité : $\mathcal{L}_{\mathcal{E}}$; $\mathcal{L}_{\mathcal{E}} \subseteq \mathcal{L}_{\mathcal{E}}$.
 - 3. Disjonction : $I \times \{q\} \subseteq \mathcal{L}_{\mathcal{E}} \Rightarrow \bigcup (I) \mapsto q \in \mathcal{L}_{\mathcal{E}})$
- Équivalence : $P \rightsquigarrow Q \equiv \operatorname{set}(P) \mapsto \operatorname{set}(P) \in \mathcal{L}_{\mathcal{E}}$

Terminaison de l'itération

Interprétation d'atteignabilité en tant que terminaison :

- W un "pas" de l'itération : $W \in \mathbb{P}(u) \to \mathbb{P}(u)$.
 - W(q): plus faible précondition pour établir q
 - monotone : $p \subseteq q \Rightarrow W(p) \subseteq W(q)$.
 - strict : $W(\emptyset) = \emptyset$.

Terminaison de l'itération

Interprétation d'atteignabilité en tant que terminaison :

$$\{P\}$$
 do $e_1 \parallel e_2 \parallel \dots \parallel e_n$ od

- W un "pas" de l'itération : $W \in \mathbb{P}(u) \to \mathbb{P}(u)$.
 - W(q): plus faible précondition pour établir q
 - monotone : $p \subseteq q \Rightarrow W(p) \subseteq W(q)$.
 - strict : $W(\emptyset) = \emptyset$.

Terminaison de l'itération

Interprétation d'atteignabilité en tant que terminaison :

$$\{P\}$$
 do $e_1 \parallel e_2 \parallel \dots \parallel e_n$ od $\{Q\}$

- W un "pas" de l'itération : $W \in \mathbb{P}(u) \to \mathbb{P}(u)$.
 - W(q): plus faible précondition pour établir q
 - monotone : $p \subseteq q \Rightarrow W(p) \subseteq W(q)$.
 - strict : $W(\emptyset) = \emptyset$.

Terminaison de l'itération

Interprétation d'atteignabilité en tant que terminaison :

$$\{P\}$$
 do $e_1 \parallel e_2 \parallel \dots \parallel e_n$ od $\{Q\}$

- W un "pas" de l'itération : $W \in \mathbb{P}(u) \to \mathbb{P}(u)$.
 - W(q): plus faible précondition pour établir q
 - monotone : $p \subseteq q \Rightarrow W(p) \subseteq W(q)$.
 - strict : $W(\emptyset) = \emptyset$.

• Le corps de l'itération $\mathcal{F}(q)$:

$$\mathcal{F}(q) = (\overline{q} \Longrightarrow W)$$

· L'itération :

$$\mathcal{F}(q)^{\hat{}} = (\mathcal{F}(q); \mathcal{F}(q)^{\hat{}}) [skip]$$

L'ensemble de terminaison :

$$\operatorname{pre}(\mathcal{F}(q)^{\widehat{}}) = \operatorname{fix}(\mathcal{F}(q))$$

• $fix(\mathcal{F}(q))$ contient q et les itérations de W terminant en q:

$$\mathcal{F}(q)^{\alpha} = \bigcup \beta \cdot (\beta < \alpha \mid \mathcal{F}(q)(\mathcal{F}(q)^{\beta}))$$

$$\mathfrak{T} \, \widehat{=} \, \{ \, p \mapsto q \, | \, p \subseteq u \land q \subseteq u \land p \subseteq \mathsf{fix}(\mathcal{F}(q)) \, \}$$

• Le corps de l'itération $\mathcal{F}(q)$:

$$\mathcal{F}(q) = (\overline{q} \Longrightarrow W)$$

· L'itération :

$$\mathcal{F}(q)^{\hat{}} = (\mathcal{F}(q) \ ; \mathcal{F}(q)^{\hat{}}) \ [] \ \textit{skip}$$

L'ensemble de terminaison :

$$\operatorname{pre}(\mathcal{F}(q)^{\hat{}}) = \operatorname{fix}(\mathcal{F}(q))$$

• $fix(\mathcal{F}(q))$ contient q et les itérations de W terminant en q:

$$\mathcal{F}(q)^{\alpha} = \bigcup \beta \cdot (\beta < \alpha \mid \mathcal{F}(q)(\mathcal{F}(q)^{\beta}))$$

$$\mathfrak{T} \, \widehat{=} \, \{ \, p \mapsto q \, | \, p \subseteq u \land q \subseteq u \land p \subseteq \mathsf{fix}(\mathcal{F}(q)) \, \}$$

• Le corps de l'itération $\mathcal{F}(q)$:

$$\mathcal{F}(q) = (\overline{q} \Longrightarrow W)$$

· L'itération :

$$\mathcal{F}(q)^{\hat{}} = (\mathcal{F}(q) \ ; \mathcal{F}(q)^{\hat{}}) \ [] \ \textit{skip}$$

L'ensemble de terminaison :

$$\operatorname{pre}(\mathcal{F}(q)^{\widehat{}}) = \operatorname{fix}(\mathcal{F}(q))$$

• $fix(\mathcal{F}(q))$ contient q et les itérations de W terminant en q:

$$\mathcal{F}(q)^{\alpha} = \bigcup \beta \cdot (\beta < \alpha \mid \mathcal{F}(q)(\mathcal{F}(q)^{\beta}))$$

$$\mathfrak{T} \, \widehat{=} \, \{ \, p \mapsto q \, | \, p \subseteq u \land q \subseteq u \land p \subseteq \mathsf{fix}(\mathcal{F}(q)) \, \}$$

• Le corps de l'itération $\mathcal{F}(q)$:

$$\mathcal{F}(q) = (\overline{q} \Longrightarrow W)$$

L'itération :

$$\mathcal{F}(q)^{\hat{}} = (\mathcal{F}(q) \ ; \mathcal{F}(q)^{\hat{}}) \ [] \ \textit{skip}$$

L'ensemble de terminaison :

$$\operatorname{pre}(\mathcal{F}(q)^{\widehat{}}) = \operatorname{fix}(\mathcal{F}(q))$$

• $fix(\mathcal{F}(q))$ contient q et les itérations de W terminant en q:

$$\mathcal{F}(q)^{\alpha} = \bigcup \beta \cdot (\beta < \alpha \mid \mathcal{F}(q)(\mathcal{F}(q)^{\beta}))$$

$$\mathfrak{T} \, \widehat{=} \, \{ \, p \mapsto q \, | \, p \subseteq u \land q \subseteq u \land p \subseteq \mathsf{fix}(\mathcal{F}(q)) \, \}$$

• Le corps de l'itération $\mathcal{F}(q)$:

$$\mathcal{F}(q) = (\overline{q} \Longrightarrow W)$$

L'itération :

$$\mathcal{F}(q)^{\hat{}} = (\mathcal{F}(q) ; \mathcal{F}(q)^{\hat{}}) [skip]$$

· L'ensemble de terminaison :

$$\operatorname{pre}(\mathcal{F}(q)^{\widehat{}}) = \operatorname{fix}(\mathcal{F}(q))$$

• $fix(\mathcal{F}(q))$ contient q et les itérations de W terminant en q:

$$\mathcal{F}(q)^{\alpha} = \bigcup \beta \cdot (\beta < \alpha \mid \mathcal{F}(q)(\mathcal{F}(q)^{\beta}))$$

$$\mathfrak{T} \,\widehat{=}\, \{\, p \mapsto q \,|\, p \subseteq u \land q \subseteq u \land p \subseteq \mathsf{fix}(\mathcal{F}(q))\,\}$$

Équivalence entre atteignabilité et terminaison

Théorème

- Si W est monotone.
- Si W est strict.
- $p \mapsto q \in \mathcal{E} \Rightarrow p \subseteq q \cup W(q)$
- si $W(q)\mapsto q\in\mathcal{L}_{\mathcal{E}}$ et
- $p \subseteq q \Rightarrow p \mapsto q \in \mathcal{E}$

alors

$$\mathcal{L}_{\mathcal{E}} = \mathfrak{T}$$

Preuve Case $\mathcal{L}_{\varepsilon} \subseteq \mathbb{T}$ (Cohérence) :

• Fermeture de $\mathcal{L}_{\mathcal{E}}$.

Case
$$\mathfrak{T}\subseteq \mathcal{L}_{\mathcal{E}}$$
 (Complétude) :

• Lemme : $\mathcal{F}(q)^{\alpha} \mapsto q \in \mathcal{L}_{\mathcal{E}}$.

Équivalence entre atteignabilité et terminaison

Théorème

- Si W est monotone.
- Si W est strict.
- $p \mapsto q \in \mathcal{E} \Rightarrow p \subseteq q \cup W(q)$
- si $W(q)\mapsto q\in\mathcal{L}_{\mathcal{E}}$ et
- $p \subseteq q \Rightarrow p \mapsto q \in \mathcal{E}$

alors

$$\mathcal{L}_{\mathcal{E}} = \mathfrak{T}$$

Preuve

Case $\mathcal{L}_{\mathcal{E}} \subseteq \mathfrak{T}$ (Cohérence) :

• Fermeture de $\mathcal{L}_{\mathcal{E}}$.

Case $\mathfrak{T}\subseteq \mathcal{L}_{\mathcal{E}}$ (Complétude) :

• Lemme : $\mathcal{F}(q)^{\alpha} \mapsto q \in \mathcal{L}_{\mathcal{E}}$.

Équivalence entre atteignabilité et terminaison

Théorème

- Si W est monotone.
- Si W est strict.
- $p \mapsto q \in \mathcal{E} \Rightarrow p \subseteq q \cup W(q)$
- si $W(q)\mapsto q\in\mathcal{L}_{\mathcal{E}}$ et
- $p \subseteq q \Rightarrow p \mapsto q \in \mathcal{E}$

alors

$$\mathcal{L}_{\mathcal{E}} = \mathfrak{T}$$

Preuve

Case $\mathcal{L}_{\mathcal{E}} \subseteq \mathfrak{T}$ (Cohérence) :

• Fermeture de $\mathcal{L}_{\mathcal{E}}$.

Case $\mathfrak{T} \subseteq \mathcal{L}_{\mathcal{E}}$ (Complétude) :

• Lemme : $\mathcal{F}(q)^{\alpha} \mapsto q \in \mathcal{L}_{\mathcal{E}}$.

Instanciation au cas de progrès minimal

Instanciation au cas de progrès minimal

- · Conditions pour établir une postcondition :
 - 1. N'importe quel événement doit l'établir
 - 2. Au moins un événement doit être habilité
- Relation de base sous condition de progrès minimal :

$$\mathcal{E}_m \, \widehat{=} \, \{ \, p \mapsto q \, | \, p \subseteq u \land q \subseteq u \land p \cap \overline{q} \subseteq S(q) \cap \operatorname{grd}(S) \, \}$$

Pas d'itération :

$$W_m \cong \operatorname{grd}(S) \mid S$$

Instanciation au cas de progrès minimal

- Conditions pour établir une postcondition :
 - 1. N'importe quel événement doit l'établir
 - 2. Au moins un événement doit être habilité
- Relation de base sous condition de progrès minimal :

$$\mathcal{E}_{\textit{m}} \, \widehat{=} \, \{ \, \textit{p} \mapsto \textit{q} \, | \, \textit{p} \subseteq \textit{u} \land \textit{q} \subseteq \textit{u} \land \textit{p} \cap \overline{\textit{q}} \subseteq \textit{S}(\textit{q}) \cap \text{grd}(\textit{S}) \, \}$$

Pas d'itération :

$$W_m \cong \operatorname{grd}(S) \mid S$$

Équivalence sous progrès minimal

Les définitions de W_m et \mathcal{E}_m :

- $W_m \cong \operatorname{grd}(S) \mid S$,
- $\mathcal{E}_m = \{ p \mapsto q | p \subseteq u \land q \subseteq u \land p \cap \overline{q} \subseteq S(q) \cap grd(S) \}$

répondent aux conditions :

- W_m est monotone et strict,
- $p \subseteq q \Rightarrow p \mapsto q \in \mathcal{E}_m$,
- $p \mapsto q \in \mathcal{E}_m \Rightarrow p \cap \overline{q} \subseteq W_m(q)$,
- $W_m(q) \mapsto q \in \mathcal{L}_{\mathcal{E}_m}$

par conséquence, l'égalité $\mathfrak{T}_m = \mathcal{L}_{\mathcal{E}_m}$ est vraie.

Les OP pour progrès minimal

• De la définition de \mathcal{E}_w on déduit :

$$p \cap \overline{q} \subseteq S(p \cup q) \cap \operatorname{grd}(S) \Rightarrow p \mapsto q \in \mathcal{E}_w$$

• Sous l'hypothèse $I \Rightarrow [S]$ I on obtient :

	ANTECEDENT	CONSEQUENT
MP0 MP1	$I \wedge P \wedge \neg Q \Rightarrow [S] Q$ $I \wedge P \wedge \neg Q \Rightarrow grd(S)$	$P\gg_m Q$

```
req ≘
 ANY p WHERE
   p \in IdI
 THEN
   st(p) := WT
  END;
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END;
```


req ≘

```
ANY p WHERE
  p \in IdI
 THEN
   st(p) := WT
 END;
ent \hat{=}
 ANY p WHERE
```

 $p \in Wtg \land pid(p) = pt$

THEN st(p) := AC END:

ANY p WHERE

$$p \in \mathit{Wtg} \wedge \mathit{pid}(p) = \mathit{pt}$$
THEN

st(p) := AC

END;

rel ≘

ANY p WHERE

 $p \in Act$

THEN

$$st(p) := ID \parallel$$

 $pt := (pt + 1) \mod \operatorname{card}(PR)$

END;


```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightarrow q \in Act
```

•
$$q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$$

•
$$q \in Wtg \land pid(q) = pt \gg_m q \in Act$$

```
· Vérification :
```

```
    MP0 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
        [req [ rel [ ent] q ∈ Act
```

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

- $q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$
- $q \in Wtg \land pid(q) = pt \gg_m q \in Act$
- Vérification :
 - MP0 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 [req [rel [ent] q ∈ Act
 - MP1 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 grd(req) ∨ grd(rel) ∨ grd(ent

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

•
$$q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$$

•
$$q \in Wtg \land pid(q) = pt \gg_m q \in Act$$

```
    Vérification :
```

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

•
$$q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$$

•
$$q \in Wtg \land pid(q) = pt \gg_m q \in Act$$

- Vérification :
 - MP0 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 [req [rel [ent] q ∈ Act
 - MP1 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 grd(req) ∨ grd(rel) ∨ grd(ent

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

•
$$q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$$

•
$$q \in Wtg \land pid(q) = pt \gg_m q \in Act$$

- Vérification :
 - MP0 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 [req [rel [ent] q ∈ Act
 - MP1 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 grd(req) ∨ grd(rel) ∨ grd(ent)

Instanciation au cas d'équité faible

Atteignabilité sous équité faible

- Conditions pour établir une postcondition :
 - 1. Un événement utile (helpful) doit l'établir
 - L'événement utile doit être habilité
 - 3. S préserve la garde ou établit la postcondition.
- Relation de base pour un événement utile G :

$$\mathcal{E}(G) \stackrel{\triangle}{=} \{ p \mapsto q \, | \, p \cap \overline{q} \subseteq S(p \cup q) \cap G(q) \cap \operatorname{grd}(G) \}$$

• Relation de base pour l'équité faible :

$$\mathcal{E}_{w} = []G \cdot (G \in E \mid \mathcal{E}(G))$$

Atteignabilité sous équité faible

- Conditions pour établir une postcondition :
 - 1. Un événement utile (helpful) doit l'établir
 - L'événement utile doit être habilité
 - 3. *S* préserve la garde ou établit la postcondition.
- Relation de base pour un événement utile G :

$$\mathcal{E}(\textit{G}) \mathbin{\widehat{=}} \{ p \mapsto q \, | \, p \cap \overline{q} \subseteq \textit{S}(p \cup q) \cap \textit{G}(q) \cap \text{grd}(\textit{G}) \}$$

• Relation de base pour l'équité faible :

$$\mathcal{E}_{w} = []G \cdot (G \in E \mid \mathcal{E}(G))$$

Atteignabilité sous équité faible

- Conditions pour établir une postcondition :
 - 1. Un événement utile (helpful) doit l'établir
 - L'événement utile doit être habilité
 - 3. *S* préserve la garde ou établit la postcondition.
- Relation de base pour un événement utile G :

$$\mathcal{E}(G) \stackrel{\triangle}{=} \{ p \mapsto q \, | \, p \cap \overline{q} \subseteq S(p \cup q) \cap G(q) \cap \operatorname{grd}(G) \}$$

Relation de base pour l'équité faible :

$$\mathcal{E}_{w} = \bigcup G \cdot (G \in E \mid \mathcal{E}(G))$$

L'opérateur dovetail

- Exemple : $X = (n := 0 \ \forall \ (X \ ; n := n + 1))$
- Définition :

$$\mathcal{L}(F \triangledown G)(r) = \mathcal{L}(F)(r) \cap \mathcal{L}(G)(r)$$

$$\operatorname{pre}(F \triangledown G) = (F(u) \cap G(u)) \cup (\overline{F(\varnothing)} \cap F(u)) \cup (\overline{G(\varnothing)} \cap G(u))$$

• La boucle équitable :

$$Y(q)(G) = \overline{q} \Longrightarrow ((S; Y(q)(G)) \triangledown (grd(G) \mid G))$$

• Le pas équitable :

$$W_w = \lambda r \cdot (r \subseteq u \mid | | G \cdot (G \in E \mid Y(r)(G)(r)))$$

- L'opérateur dovetail
 - Exemple : $X = (n := 0 \ \forall \ (X \ ; n := n + 1))$
 - Définition :

$$\mathcal{L}(F \triangledown G)(r) = \mathcal{L}(F)(r) \cap \mathcal{L}(G)(r)$$

$$\operatorname{pre}(F \triangledown G) = (F(u) \cap G(u)) \cup (\overline{F(\varnothing)} \cap F(u)) \cup (\overline{G(\varnothing)} \cap G(u))$$

La boucle équitable :

$$Y(q)(G) = \overline{q} \Longrightarrow ((S; Y(q)(G)) \triangledown (grd(G) \mid G))$$

• Le pas équitable :

$$W_w = \lambda r \cdot (r \subseteq u \mid | | G \cdot (G \in E \mid Y(r)(G)(r)))$$

- L'opérateur dovetail
 - Exemple : $X = (n := 0 \ \forall \ (X \ ; n := n + 1))$
 - Définition :

$$\mathcal{L}(F \triangledown G)(r) = \mathcal{L}(F)(r) \cap \mathcal{L}(G)(r)$$

$$\operatorname{pre}(F \triangledown G) = (F(u) \cap G(u)) \cup (\overline{F(\varnothing)} \cap F(u)) \cup (\overline{G(\varnothing)} \cap G(u))$$

La boucle équitable :

$$Y(q)(G) = \overline{q} \Longrightarrow ((S; Y(q)(G)) \triangledown (\operatorname{grd}(G) \mid G))$$

· Le pas équitable :

$$W_w = \lambda r \cdot (r \subseteq u \mid | | G \cdot (G \in E \mid Y(r)(G)(r)))$$

- L'opérateur dovetail
 - Exemple : $X = (n := 0 \ \forall \ (X \ ; n := n + 1))$
 - Définition :

$$\mathcal{L}(F \triangledown G)(r) = \mathcal{L}(F)(r) \cap \mathcal{L}(G)(r)$$

$$\operatorname{pre}(F \triangledown G) = (F(u) \cap G(u)) \cup (\overline{F(\varnothing)} \cap F(u)) \cup (\overline{G(\varnothing)} \cap G(u))$$

La boucle équitable :

$$Y(q)(G) = \overline{q} \Longrightarrow ((S; Y(q)(G)) \triangledown (grd(G) \mid G))$$

· Le pas équitable :

$$W_w = \lambda r \cdot (r \subseteq u \mid | | G \cdot (G \in E \mid Y(r)(G)(r)))$$

- L'opérateur dovetail
 - Exemple : $X = (n := 0 \ \forall \ (X \ ; n := n + 1))$
 - Définition :

$$\mathcal{L}(F \triangledown G)(r) = \mathcal{L}(F)(r) \cap \mathcal{L}(G)(r)$$

$$\operatorname{pre}(F \triangledown G) = (F(u) \cap G(u)) \cup (\overline{F(\varnothing)} \cap F(u)) \cup (\overline{G(\varnothing)} \cap G(u))$$

La boucle équitable :

$$Y(q)(G) = \overline{q} \Longrightarrow ((S; Y(q)(G)) \triangledown (grd(G) \mid G))$$

· Le pas équitable :

$$W_w = \lambda r \cdot (r \subseteq u \mid A \cap G \cdot (G \in E \mid Y(r)(G)(r)))$$

Équivalence sous équité faible

Les définitions de \mathcal{E}_w et W_w :

- $\mathcal{E}_{w} = \bigcup G \cdot (G \in E \mid \mathcal{E}(G)),$
- $W_w = \lambda r \cdot (r \subseteq u \mid \bigcup G \cdot (G \in E \mid Y(r)(G)(r)))$

répondent aux conditions :

- W_w est monotone et strict,
- $p \subseteq q \Rightarrow p \mapsto q \in \mathcal{E}_w$,
- $p \mapsto q \in \mathcal{E}_w \Rightarrow p \cap \overline{q} \subseteq W_w(q)$,
- $W_w(q) \mapsto q \in \mathcal{L}_{\mathcal{E}_w}$

par conséquence, l'égalité $T_W = \mathcal{L}_{\mathcal{E}_W}$ est vraie.

Les OP pour l'équité faible

• Pour certain G, de la définition de \mathcal{E}_w on déduit :

$$p \cap \overline{q} \subseteq S(p \cup q) \cap G(q) \cap \operatorname{grd}(S) \Rightarrow p \mapsto q \in \mathcal{E}_w$$

• Sous l'hypothèse $I \Rightarrow [S] I$ on obtient :

ANTECEDENT	CONSEQUENT
$I \wedge P \wedge \neg Q \Rightarrow [S] P \vee Q$ $I \wedge P \wedge \neg Q \Rightarrow grd(G) \wedge [G] Q$	$G\cdot P\gg_w Q$

Exemple sous l'hypothèse d'équité faible

```
req ≘
 ANY D WHERE
   p \in IdI
                                           • a \in Wta \rightsquigarrow a \in Act
  THEN
   st(p) := WT
                                           • q \in Wtg \land pid(q) = pt \rightsquigarrow q \in Act, ...
  END:
ent ≘
                                           • ent \cdot q \in Wtq \land pid(q) = pt \gg_m q \in Act
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
  THEN

    Vérification :

   st(p) := AC
                                                  • WF0 : I \land g \in Wtg \land pid(g) = pt \Rightarrow
  END:
rel ≘
 ANY p WHERE
   p \in Act
                                                  • WF1: I \land a \in Wta \land pid(a) = pt \Rightarrow
  THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

Exemple sous l'hypothèse d'équité faible

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END:
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

```
• q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots
```

```
• ent \cdot q \in Wtg \wedge pid(q) = pt \gg_m q \in Act
```

```
    Vérification :
```

```
• WF0 : I \land q \in Wtg \land pid(q) = pt \Rightarrow [req \llbracket rel \rrbracket ent \rrbracket q \in Act \lor q \in Wtg \land pid(q) = pt
```

```
• WF1 : I \land q \in Wtg \land pid(q) = pt \Rightarrow grd(ent) \land [ent] \ q \in Act
```

Exemple sous l'hypothèse d'équité faible

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END:
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

```
• q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots
```

```
• ent \cdot q \in Wtg \wedge pid(q) = pt \gg_m q \in Act
```

```
    Vérification :
```

```
• WF0 : I \land q \in Wtg \land pid(q) = pt \Rightarrow [req \llbracket rel \rrbracket ent \rrbracket q \in Act \lor q \in Wtg \land pid(q) = pt
```

• WF1 : $I \land q \in Wtg \land pid(q) = pt \Rightarrow grd(ent) \land [ent] \ q \in Act$

Exemple sous l'hypothèse d'équité faible

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END:
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

•
$$q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$$

•
$$ent \cdot q \in Wtg \wedge pid(q) = pt \gg_m q \in Act$$

```
    Vérification :
```

```
    WF0: I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
        [req [ rel [ ent] q ∈ Act ∨
        q ∈ Wtg ∧ pid(q) = pt
```

• WF1 : $I \land q \in Wtg \land pid(q) = pt \Rightarrow grd(ent) \land [ent] \ q \in Act$

Exemple sous l'hypothèse d'équité faible

```
req ≘
 ANY D WHERE
   p \in IdI
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in Wtg \wedge pid(p) = pt
 THEN
   st(p) := AC
  END:
rel ≘
 ANY p WHERE
   p \in Act
 THEN
   st(p) := ID \parallel
   pt := (pt + 1) \mod \operatorname{card}(PR)
  END:
```

```
• q \in Wtg \rightsquigarrow q \in Act
```

- $q \in Wtg \land pid(q) = pt \leadsto q \in Act, \dots$
- $ent \cdot q \in Wtg \wedge pid(q) = pt \gg_m q \in Act$
- Vérification :
 - WF0 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 [req [rel [ent] q ∈ Act ∨
 q ∈ Wtg ∧ pid(q) = pt
 - WF1 : I ∧ q ∈ Wtg ∧ pid(q) = pt ⇒
 grd(ent) ∧ [ent] q ∈ Act

Le raffinement

Notation pour le raffinement

- Le raffinement $\mathcal T$ de $\mathcal S$ est composé de :
 - Un vecteur de variables d'état : y.
 - Un invariant de collage J(x, y).
 - Un ensemble d'événements $E' : E' = Ec \cup Ne$.
- · L'ensemble d'états du raffinement :

$$V = \{ y \mid \exists x \cdot (I(x) \wedge J(x, y)) \}$$

La relation de raffinement :

$$r = \{y \mapsto x \mid I(x) \land J(x,y)\}$$

- Le choix des événements concrets est T.
- Le choix de nouveaux événements est H.

Préservation de la vivacité

- \mathcal{E}' relation de base dans \mathcal{T} ($\mathcal{E}' \in \mathbb{P}(v) \leftrightarrow \mathbb{P}(v)$).
- Relation d'atteignabilité dans $T : \mathcal{L}_{\mathcal{E}'} (\mathcal{L}_{\mathcal{E}'} \in \mathbb{P}(v) \leftrightarrow \mathbb{P}(v))$.
- β est un sous-ensemble non vide de \mathcal{E} .
- Propriétés de vivacité générées par β : \mathcal{L}_{β}

Théorème

Si les propriétés en β sont préservées dans T

$$\forall (p,q) \cdot (p \mapsto q \in \beta \Rightarrow r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'})$$

alors n'importe quelle propriété dans \mathbb{L}_eta est préservée dans $\mathcal T$

$$\forall (p,q) \cdot (p \mapsto q \in \mathcal{L}_{\beta} \Rightarrow r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'})$$

Préservation de la vivacité

- \mathcal{E}' relation de base dans \mathcal{T} ($\mathcal{E}' \in \mathbb{P}(v) \leftrightarrow \mathbb{P}(v)$).
- Relation d'atteignabilité dans $T : \mathcal{L}_{\mathcal{E}'} (\mathcal{L}_{\mathcal{E}'} \in \mathbb{P}(v) \leftrightarrow \mathbb{P}(v))$.
- β est un sous-ensemble non vide de ε.
- Propriétés de vivacité générées par β : \mathcal{L}_{β}

Théorème

Si les propriétés en β sont préservées dans T

$$\forall (p,q) \cdot (p \mapsto q \in \beta \Rightarrow r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'})$$

alors n'importe quelle propriété dans \mathcal{L}_{β} est préservée dans \mathcal{T}

$$\forall (p,q) \cdot (p \mapsto q \in \mathcal{L}_{\beta} \Rightarrow r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'})$$

Préservation sous progrès minimal

- Règles pour préserver des propriétés de base :
 - (PM1): $\forall n \cdot (n \in W \Rightarrow w(n) \subseteq H(w'(n)))$
 - (PM2) : $r^{-1}[\overline{S(\varnothing)}] \subseteq \overline{(T \parallel H)(\varnothing)}$

οù

- $w = \lambda n \cdot (n \in \mathbb{N} \mid \{z \mid z \in v \land V(z) = n\})$
- $w' = \lambda n \cdot (n \in \mathbb{N} \mid \{z \mid z \in v \land V(z) < n\})$
- Preuve :

$$p\mapsto q\in\mathcal{E}_m, S\sqsubseteq T, skip\sqsubseteq H, (PM1), (PM2) \ r^{-1}[p]\mapsto r^{-1}[q]\in\mathcal{L}_{\mathcal{E}'}$$

Règles pour préserver propriétés de base :

BMP :
$$I \wedge J \wedge V = n \Rightarrow [H] \ V \prec n$$

LMP : $I \wedge J \wedge grd(S) \Rightarrow grd(T) \vee grd(H)$

Préservation sous progrès minimal

Règles pour préserver des propriétés de base :

• (PM1) :
$$\forall n \cdot (n \in W \Rightarrow w(n) \subseteq H(w'(n)))$$

• (PM2) :
$$r^{-1}[\overline{S(\varnothing)}] \subseteq \overline{(T \parallel H)(\varnothing)}$$

οù

•
$$w = \lambda n \cdot (n \in \mathbb{N} \mid \{z \mid z \in v \land V(z) = n\})$$

•
$$w' = \lambda n \cdot (n \in \mathbb{N} \mid \{z \mid z \in v \land V(z) < n\})$$

Preuve :

$$\frac{p \mapsto q \in \mathcal{E}_{m}, S \sqsubseteq T, \textit{skip} \sqsubseteq H, (\textit{PM}1), (\textit{PM}2)}{r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'}}$$

Règles pour préserver propriétés de base :

BMP :
$$I \wedge J \wedge V = n \Rightarrow [H] \ V \prec n$$

LMP : $I \wedge J \wedge grd(S) \Rightarrow grd(T) \vee grd(H)$

Préservation sous progrès minimal

Règles pour préserver des propriétés de base :

• (PM1) :
$$\forall n \cdot (n \in W \Rightarrow w(n) \subseteq H(w'(n)))$$

• (PM2) :
$$r^{-1}[\overline{S(\varnothing)}] \subseteq \overline{(T \parallel H)(\varnothing)}$$

οù

•
$$w = \lambda n \cdot (n \in \mathbb{N} \mid \{z \mid z \in v \land V(z) = n\})$$

•
$$w' = \lambda n \cdot (n \in \mathbb{N} \mid \{z \mid z \in v \land V(z) < n\})$$

Preuve :

$$\frac{p\mapsto q\in\mathcal{E}_{m},S\sqsubseteq T,\textit{skip}\sqsubseteq H,(\textit{PM}1),(\textit{PM}2)}{r^{-1}[p]\mapsto r^{-1}[q]\in\mathcal{L}_{\mathcal{E}'}}$$

Règles pour préserver propriétés de base :

BMP :
$$I \wedge J \wedge V = n \Rightarrow [H] \ V \prec n$$

LMP : $I \wedge J \wedge grd(S) \Rightarrow grd(T) \vee grd(H)$


```
rea ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \wedge ch = \emptyset
 THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
 THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true
}
```

END;

```
req ≘
```

ANY p WHERE $p \in st^{-1}[\{ID\}] \wedge ch = \emptyset$ THEN st(p) := WTEND; ent ≘ ANY p WHERE $p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]$ **THEN** st(p) := ACEND;

rel ≘

ANY p WHERE

 $p \in st^{-1}[\{AC\}]$

THEN

 $st(p), ch := ID, ch \leftarrow p$

END ;


```
END:
rel ≘
 ANY p WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END ;
srv ≘
   SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))
       \mapsto true}
  END;
```

```
    Preuve de BMP :

rea ≘
 ANY p WHERE
  p \in st^{-1}[\{ID\}] \land ch = \emptyset
  THEN
   st(p) := WT
  END:
ent ≘
 ANY D WHERE
  p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN

    Preuve de LMP :

   st(p) := AC
  END:
rel ≘
 ANY D WHERE
  p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
    pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true
}
                                                       • g \in Wtg \rightsquigarrow g \in Act est préservée.
  END:
```

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \land ch = \emptyset
  THEN
   st(p) := WT
  END:
ent ≘
 ANY D WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN
   st(p) := AC
  END:
rel ≘
 ANY D WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true
}
  END:
```

Preuve de BMP :

$$card(\mathit{ch}) = n \Rightarrow [\mathit{srv}] \ card(\mathit{ch}) < n$$

• Preuve de LMP:

```
grd(req \ \ \ \ ent \ \ \ \ rel) \Rightarrow \\ grd(req_c) \lor grd(act_c) \\ \lor grd(rel_c) \lor grd(srv)
```

• $q \in Wtg \rightsquigarrow q \in Act$ est préservée.

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \land ch = \emptyset
  THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN
   st(p) := AC
  END:
rel ≘
 ANY D WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true
}
  END:
```

Preuve de BMP :

$$\operatorname{card}(\mathit{ch}) = n \Rightarrow [\mathit{srv}] \operatorname{card}(\mathit{ch}) < n$$

Preuve de LMP :

$$grd(req \ \| \ ent \ \| \ rel) \Rightarrow \\ grd(req_c) \lor grd(act_c) \\ \lor grd(rel_c) \lor grd(srv)$$

• $q \in Wtg \rightsquigarrow q \in Act$ est préservée.

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \land ch = \emptyset
  THEN
   st(p) := WT
  END:
ent ≘
 ANY p WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN
   st(p) := AC
  END:
rel ≘
 ANY D WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true
}
  END:
```

Preuve de BMP :

$$card(ch) = n \Rightarrow [srv] card(ch) < n$$

Preuve de LMP :

$$grd(req \ \| \ ent \ \| \ rel) \Rightarrow \\ grd(req_c) \lor grd(act_c) \\ \lor grd(rel_c) \lor grd(srv)$$

• $q \in Wtg \rightsquigarrow q \in Act$ est préservée.

Préservation sous équité faible

- Règles pour préserver $G \cdot x \in p \gg_w x \in q$
 - (PW1) : $r^{-1}[p \cap \overline{q}] \cap \operatorname{grd}(G') \subseteq (F' \parallel H)(\operatorname{grd}(G'))$
 - (PW2) : $r^{-1}[p \cap \overline{q}] \cap \overline{\operatorname{grd}(G')} \mapsto \operatorname{grd}(G') \in \mathcal{L}_{\mathcal{E}'_w}$
- Preuve :

$$egin{aligned} egin{aligned} egin{aligned} eta &\mapsto egin{aligned} eta &\in \mathcal{E}(G), S \sqsubseteq T, skip \sqsubseteq H, (PW1), (PW2) \\ \hline &r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'_W} \end{aligned}$$

• Règles sous la forme de prédicats :

SAP:
$$I \wedge J \wedge P \wedge \neg Q \wedge grd(G') \Rightarrow [F' \parallel H] grd(G')$$

LIP: $I \wedge J \wedge P \wedge \neg Q \wedge \neg grd(G') \rightsquigarrow grd(G')$

Préservation sous équité faible

- Règles pour préserver $G \cdot x \in p \gg_w x \in q$
 - (PW1) : $r^{-1}[p \cap \overline{q}] \cap \operatorname{grd}(G') \subseteq (F' \parallel H)(\operatorname{grd}(G'))$
 - (PW2) : $r^{-1}[p \cap \overline{q}] \cap \overline{\operatorname{grd}(G')} \mapsto \operatorname{grd}(G') \in \mathcal{L}_{\mathcal{E}'_w}$
- Preuve :

$$\frac{p \mapsto q \in \mathcal{E}(G), S \sqsubseteq T, \textit{skip} \sqsubseteq H, (PW1), (PW2)}{r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'_{W}}}$$

• Règles sous la forme de prédicats :

SAP :
$$I \wedge J \wedge P \wedge \neg Q \wedge grd(G') \Rightarrow [F' \parallel H] grd(G')$$

LIP : $I \wedge J \wedge P \wedge \neg Q \wedge \neg grd(G') \rightsquigarrow grd(G')$

Préservation sous équité faible

- Règles pour préserver $G \cdot x \in p \gg_w x \in q$
 - (PW1) : $r^{-1}[p \cap \overline{q}] \cap \operatorname{grd}(G') \subseteq (F' \parallel H)(\operatorname{grd}(G'))$
 - (PW2) : $r^{-1}[p \cap \overline{q}] \cap \overline{\operatorname{grd}(G')} \mapsto \operatorname{grd}(G') \in \mathcal{L}_{\mathcal{E}'_{w}}$
- Preuve :

$$\frac{p \mapsto q \in \mathcal{E}(G), S \sqsubseteq T, \textit{skip} \sqsubseteq H, (PW1), (PW2)}{r^{-1}[p] \mapsto r^{-1}[q] \in \mathcal{L}_{\mathcal{E}'_{w}}}$$

Règles sous la forme de prédicats :

SAP:
$$I \wedge J \wedge P \wedge \neg Q \wedge grd(G') \Rightarrow [F' \parallel H] grd(G')$$

LIP: $I \wedge J \wedge P \wedge \neg Q \wedge \neg grd(G') \rightsquigarrow grd(G')$

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \wedge ch = \emptyset
  THEN
   st(p) := WT
 END:
ent ≘
 ANY D WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
 THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in st^{-1}[\{AC\}]
 THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
 THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true }

  END;
```

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \wedge ch = \emptyset
  THEN
   st(p) := WT
  END;
ent ≘
 ANY D WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true }

  END:
```

```
    Le système abstrait satisfait :
```

```
\mathsf{ent} \cdot \mathsf{q} \in \mathsf{Wtg} \wedge \mathsf{pid}(\mathsf{q}) = \mathsf{pt} \gg_{\mathsf{w}} \mathsf{q} \in \mathsf{Act}
```

- La préservation est garanti par :
 - $q \in Wtg \land pid(q) = pt \land grd(ent) \Rightarrow$ [req $[\![rel \]\!] srv] grd(ent)$
 - $q \in Wtg \land pid(q) = pt \land \neg grd(ent)$ $\leadsto grd(ent)$

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \wedge ch = \emptyset
  THEN
   st(p) := WT
  END:
ent ≘
 ANY D WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true }

  END:
```

Le système abstrait satisfait :

$$ent \cdot q \in Wtg \wedge pid(q) = pt \gg_w q \in Act$$

- La préservation est garanti par :
 - q ∈ Wtg ∧ pid(q) = pt ∧ grd(ent) ⇒
 [req [rel [srv] grd(ent)
 - q ∈ Wtg ∧ pid(q) = pt ∧ ¬grd(ent)
 → grd(ent)

```
req ≘
 ANY p WHERE
   p \in st^{-1}[\{ID\}] \wedge ch = \emptyset
  THEN
   st(p) := WT
  END;
ent ≘
 ANY D WHERE
   p \in st^{-1}[\{WT\}] \cap tk^{-1}[\{true\}]
  THEN
   st(p) := AC
  END;
rel ≘
 ANY p WHERE
   p \in st^{-1}[\{AC\}]
  THEN
   st(p), ch := ID, ch \leftarrow p
  END:
srv ≘
  SELECT
   ch \neq \emptyset
  THEN
   ch := \emptyset \parallel tk := tk \Leftrightarrow \{ch(1) \mapsto false,\}
     pid^{-1}((pid(ch(1)) + 1) \mod card(PR))

→ true }

  END:
```

Le système abstrait satisfait :

$$\mathit{ent} \cdot \mathit{q} \in \mathit{Wtg} \wedge \mathit{pid}(\mathit{q}) = \mathit{pt} \gg_{\mathit{w}} \mathit{q} \in \mathit{Act}$$

- La préservation est garanti par :
 - q ∈ Wtg ∧ pid(q) = pt ∧ grd(ent) ⇒
 [req [rel [srv] grd(ent)
 - q ∈ Wtg ∧ pid(q) = pt ∧ ¬grd(ent)
 → grd(ent)

Conclusions et travail future

- Une approche à la spécification, preuve et raffinement de propriétés de vivacité.
- L'approche est justifiée dans un cadre formel.
- L'approche est illustrée par des exemples.
- Le document contient :
 - Sémantique avec le plus fort invariant.
 - Comparaison avec le style de preuves de B.
 - Une règle pour vérifier le passage de WF à MP.
- Vérification de preuves :
 - Invariants et propriétés de base.
 - Certains preuves au niveau meta.

- Une approche à la spécification, preuve et raffinement de propriétés de vivacité.
- L'approche est justifiée dans un cadre formel.
- L'approche est illustrée par des exemples.
- Le document contient :
 - Sémantique avec le plus fort invariant.
 - Comparaison avec le style de preuves de B.
 - Une règle pour vérifier le passage de WF à MP.
- Vérification de preuves :
 - Invariants et propriétés de base.
 - Certains preuves au niveau meta.

- Une approche à la spécification, preuve et raffinement de propriétés de vivacité.
- L'approche est justifiée dans un cadre formel.
- L'approche est illustrée par des exemples.
- Le document contient
 - Sémantique avec le plus fort invariant.
 - Comparaison avec le style de preuves de B.
 - Une règle pour vérifier le passage de WF à MP.
- Vérification de preuves :
 - Invariants et propriétés de base.
 - Certains preuves au niveau meta.

- Une approche à la spécification, preuve et raffinement de propriétés de vivacité.
- L'approche est justifiée dans un cadre formel.
- L'approche est illustrée par des exemples.
- · Le document contient :
 - Sémantique avec le plus fort invariant.
 - Comparaison avec le style de preuves de B.
 - Une règle pour vérifier le passage de WF à MP.
- Vérification de preuves :
 - Invariants et propriétés de base.
 - Certains preuves au niveau meta.

- Une approche à la spécification, preuve et raffinement de propriétés de vivacité.
- L'approche est justifiée dans un cadre formel.
- L'approche est illustrée par des exemples.
- Le document contient :
 - Sémantique avec le plus fort invariant.
 - Comparaison avec le style de preuves de B.
 - Une règle pour vérifier le passage de WF à MP.
- · Vérification de preuves :
 - Invariants et propriétés de base.
 - Certains preuves au niveau meta.

Publications

H. Ruíz-Barradas and D. Bert.

Proof Obligations for Specification and Refinement of Liveness Properties under Weak Fairness.

Technical Report 1071-I LSR 20, LSR-IMAG, Grenoble, 2005.

H. Ruíz-Barradas and D. Bert.

A Fixpoint Semantics of Event Systems with and without Fairness Assumptions.

Technical Report 1081-I LSR 21, LSR-IMAG, Grenoble, 2005.

H. Ruíz-Barradas and D. Bert.

Specification and Proof of Liveness Properties under Fairness Assumptions in B Event Systems.

In Integrated Formal Methods, Third International Conference IFM 2002, LNCS 2335, pages 360–379. Springer-Verlag, May 2002.

Publications (cont.)

A Fixpoint Semantics of Event Systems with and without Fairness Assumptions.

In Fifth International Conference on Integrated Formal Methods IFM 2005, LNCS 3771. Springer-Verlag, 2005.

H. Ruíz-Barradas and D. Bert.

Propriétés dynamiques avec hypothèses d'équité en B événementiel.

Technique et science informatique, RSTI, série TSI, 25(1):73–102, 2006.

D. Bert and H. Ruíz-Barradas.

Développement et preuve de vivacité de l'algorithme distribué de Ricart-Agrawala.

In Actes de la Conférence AFADL'06 : Approches Formelles dans l'Assistance au Développement de Logiciels, pages 161–178. ENST, Paris, France, 2006.

Travail futur

- Inclusion de l'équité forte.
- Améliorer l'étude du passage de WF à MP.
- Etude sur la distribution.