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ABSTRACT
This thesis proposes an approach to the specification and proof of liveness properties

under fairness assumptions in B event system and presents a semantics for these properties
founded on fixpoints of set transformers. The proposal uses a unity-like logic to specify and
verify liveness properties under minimal progress and weak fairness assumptions and presents
rules to preserve these properties under refinement. The fixpoint semantics allows us to make
the notion of reachability under fairness assumptions equivalent to the one of termination
of iteration of events. Soundness and completeness of rules to derive liveness properties are
proved, thanks to this equivalence. Moreover, the fixpoint semantics provides the foundations
to prove soundness of both the rules for verification of liveness properties and the rules for
the preservation of liveness under refinement.

RÉSUMÉ
Cette thèse propose une approche à la spécification et preuve des propriétés de vivacité

avec hypothèses d’équité en B événementiel et présente une sémantique pour ces propriétés
fondée sur de points fixes de transformateurs d’ensembles. La proposition utilise une logique
de programmation issue de la logique unity pour spécifier et vérifier des propriétés de vivacité
sous des hypothèses de progrès minimal et d’équité faible et présente des règles pour préserver
ces propriétés dans les raffinements. La sémantique de points fixes nous permet de faire
équivalentes les notions d’atteignabilité sous les hypothèses d’équité et de terminaison de
l’itération d’événements. Cela nous permet de prouver la correction et la complétude des
règles permettant la dérivation des propriétés de vivacité. En outre, cela donne les fondements
pour prouver la correction des règles permettant la vérification des propriétés de vivacité et
des règles permettant la préservation de la vivacité sous raffinement.
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Chapter 1

Introduction

1.1 Version française

Les systèmes d’actions ou d’événements sont des abstractions utiles pour modéliser des systèmes
discrets. Le modèle de calcul de ces abstractions considère une collection d’événements (ac-
tions) qui transforment l’état d’une manière atomique et non déterministe. Afin d’assurer
l’exécution de certains événements, malgré le non déterminisme, quelques formalismes intro-
duisent des hypothèses d’équité qui aident à élever le niveau d’abstraction d’une spécification
parallèle ou distribuée. Dans ce contexte, l’équité signifie que si une certaine opération est
possible, alors le système doit fatalement l’exécuter [41]. La transformation de l’état peut
être observée par les traces d’états, qui décrivent le comportement du système ; cela permet
la spécification d’un système à un haut niveau d’abstraction. La mise en œuvre d’un système
d’actions se fonde dans la notion de pas de raffinement. Dans cette notion, les structures
de données abstraites sont mises en œuvre par des structures qui sont souvent utilisées dans
les langages de programmation, et les transformations atomiques de l’état sont faites par des
algorithmes (séquence d’instructions) qui travaillent à un bas niveau de granularité.

Plusieurs formalismes, avec différentes approches, ont été proposé pour modéliser des
systèmes d’actions. Cependant, nous pouvons approximativement classer ces approches en
trois catégories : logiques, algorithmiques et hybrides.

Dans l’approche logique, la spécification et le raffinement d’un système est énoncé en ter-
mes de formules, dans une certaine logique, qui spécifient deux classes de propriétés : sécurité
et vivacité. Les propriétés de vivacité énoncent que quelque chose de mauvais n’arrive jamais,
c’est-à-dire que le programme n’entre jamais dans un état inacceptable, tandis que les pro-
priétés de vivacité affirment que quelque chose de bien arrive fatalement, c’est à dire que
le programme entre fatalement dans un état souhaitable. Les propriétés de vivacité sont
spécifiées par les différentes hypothèses d’équité. Le système de preuve de la logique est
utilisé pour démontrer la correction du modèle. Comme un exemple de formalisme dans
cette catégorie, nous pouvons citer tla [41].

Dans l’approche algorithmique, la spécification et le raffinement d’un système est donné
comme une notation de programmation. Les propriétés de vivacité sont implicitement spécifiées
par le comportement du système d’actions, qui est décrit par ses traces d’états. Comme un ex-
emple de cette classe d’approches, nous pouvons citer le Système d’Actions de Back [10]. Dans
ce formalisme, l’équité dans l’exécution d’actions est spécifiée par des itérations équitables.
Le calcul de raffinements est utilisé pour assurer la correction des raffinements.

1
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Dans l’approche hybride, l’aspect algorithmique d’un système est donné comme une nota-
tion de programmation, et ses propriétés sont décrites dans une certaine logique. Cependant,
dans quelle mesure appliquons nous ces approches dans un développement ? Cela dépend de la
méthode formelle. En unity [21], par exemple, la spécification et le raffinement d’un système
sont faits d’une manière purement logique, par la spécification de propriétés de sûreté et de
vivacité dans une logique temporelle. La correction des raffinements, comme dans tla, est
prouvée par l’implication logique entre une spécification et son raffinement. Le dernier pas
d’un raffinement permet la dérivation d’un programme, dans un langage de programmation
non déterministe, qui peut être mis en œuvre par un traduction informelle, dans différentes
architectures parallèles. D’autre part, dans le B événementiel [7], la spécification et le raffine-
ment de systèmes sont données comme une notation de programmation, alors que certaines
formes des propriétés de vivacité peuvent être explicitement énoncées dans les spécifications
et raffinements. La correction des raffinements est prouvée par des règles qui peuvent être
comparées à celles du calcul des raffinements.

Par notre expérience, nous pensons que les approches logiques et algorithmiques ont besoin
de quelques étapes qui ne sont pas incluses dans ses méthodologies. Les systèmes au niveau de
mise en œuvre ne sont pas nécessairement des formules logiques, et l’approche logique, telle
qu’elle est pratiquée par tla, a besoin des quelques pas pour traduire la description logique
d’un système dans une notation pratique, qui permet sa mise en œuvre dans des ordinateurs
conventionnels. D’autre part, l’approche algorithmique dans le style des Système d’Actions
de Back, n’a pas des moyens de spécifier des propriétés de sûreté ou de vivacité, souvent
énoncées en logique temporelle, qui permettent de faire des raisonnements sur les propriétés
du système. Pour ces raisons, nous sommes intéressés dans les approches hybrides où l’aspect
algorithmique d’un système et ses propriétés sont développées en même temps ; cependant,
les approches proposées par unity ou B événementiel peuvent être améliorées.

Dans l’approche unity, la dérivation de programmes après le dernier pas de raffinement
n’est pas systématique. Pour cette raison, la mise en œuvre d’un système perd son traitement
rigoureux. Dans le B événementiel, des systèmes peuvent être développés d’une manière stricte
de la spécification à la mise en œuvre. Cependant, la spécification et preuve de propriétés de
vivacité nous semble restrictive : la construction utilisée pour la spécification des propriétés
de vivacité ne prend pas en compte des hypothèses d’équité, et la seule manière de vérifier ces
propriétés est par des règles qui ressemblent à des règles de terminaison d’itération.

La première contribution principale de cette thèse est une proposition pour la conception
de systèmes d’actions fondée sur le B événementiel. La proposition prend en compte des
hypothèses d’équité et utilise une logique comme celle d’unity pour spécifier et prouver des
propriétés de vivacité. Dans notre travail, nous considérons des modalités du type P leads-to
Q, où P et Q sont des prédicats dans l’espace d’état du système, avec la signification informelle
suivante : “lorsque le système arrive dans un état qui satisfait P , il atteint fatalement un
état qui satisfait Q”. Nous proposons des règles de preuve pour vérifier des modalités sous les
hypothèses de progrès minimal et d’équité faible, qui sont fondées sur le calcul des plus faibles
préconditions. En outre, nous proposons des règles de preuve pour garantir que les propriétés
de vivacité sont préservées par raffinement.

La sémantique des systèmes d’actions est en général énoncé par des traces d’états. Les
traces d’états des systèmes de transitions imposent un raisonnement opérationnel sur le com-
portement d’un système. Cependant, ce comportement opérationnel peut être caché par l’utili-
sation de la logique temporelle pour spécifier des propriétés de vivacité et de sûreté. La
sémantique des formules temporelles est donnée par des traces d’états du système de transi-
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tions. Le système de preuve de ces logiques permet la dérivation d’autres propriétés à partir des
propriétés déjà prouvées, uniquement par des calculs symboliques. La cohérence et complétude
de la logique sont établies par des preuves qui mettent en relation des formules logiques avec
des assertions sur les traces d’états. A ce point, nous revenons au raisonnement opérationnel
sur le système de transitions.

Dans cette thèse nous proposons une possibilité plus abstraite de la sémantique des systèmes
d’actions fondée sur les points fixes de transformateurs d’ensembles (ou prédicats). Ces points
fixes dénotent le plus grand sous-ensemble d´états où l’itération d’événements termine sous les
hypothèses d’équité considérées. Notre approche n’est pas une question de goût ou d’habitude,
mais cela nous permet de montrer que les notions d’atteignabilité sous des hypothèses d’équité
et de terminaison d’itération d’événements sont équivalentes. L’équivalence nous permet de
prouver la cohérence et la complétude des règles proposées pour dériver des propriétés leads-
to, et en outre, elle nous donne les fondements pour prouver la cohérence des règles pour la
préservation de la vivacité dans les raffinements. Cela est la deuxième contribution princi-
pale de cette thèse, dans la ligne des travaux sur la sémantique dénotationnelle développée
dans les années 60. Nous pensons qu’il est important de donner des bases communes aux
différentes branches de l’informatique, afin de unifier les fondations et la compréhension de
notre discipline.

La thèse est divisée en sept chapitres. Dans le chapitre 2, nous donnons un aperçu des
formalismes classiques pour la spécification des systèmes d’actions : unity, tla, systèmes
d’actions de Back et B événementiel. Afin de mieux comprendre les similarités et les différences
entre ces formalismes, nous traitons un exemple de spécification et raffinement d’un système
abstrait producteur-consommateur dans tous ces formalismes.

Le chapitre 3 présente notre approche de l’intégration d’une logique au style unity pour
la spécification et preuve des propriétés de vivacité sous les hypothèses de progrès mini-
mal et d’équité faible. Nous présentons des règles de preuve pour la vérification et pour
la préservation dans les raffinements des propriétés de vivacité. L’application de ces règles
est illustrée par plusieurs exemples qui modèlent différents algorithmes d’exclusion mutuelle.

Le chapitre 4 introduit la sémantique de nos formules en termes des points fixes de trans-
formateurs d’ensembles. Dans ce chapitre nous définissons des transformateurs d’ensembles
qui modélisent l’itération d’événements sous les hypothèses de progrès minimal et d’équité
faible. Ces transformateurs d’ensembles permettent la définition de la relation de terminai-
son qui est utilisée pour interpréter des propriétés leads-to. D’autre part, l’ensemble des
propriétés de vivacité d’un système est dénotée par une autre relation entre sous-ensembles
d’états nommée atteignabilité. La cohérence et la complétude relative des règles pour leads-to
sont prouvées par l’utilisation de l’égalité entre ces relations.

Dans le chapitre 5 nous prouvons la cohérence des règles présentées dans le chapitre 3
pour garantir la préservation des propriétés de vivacité dans les raffinements de systèmes B

événementiel. Dans le chapitre 6 nous développons un exemple plus important d’exclusion
mutuelle, sous l’hypothèse d’équité faible, dont les raffinements sont prévus pour être mis en
œuvre sur des environnements centralisés ou distribués.

Finalement, dans la chapitre 7 nous donnons nos conclusions, nous comparons notre tra-
vail et nous analysons le travail futur.
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1.2 English Version

Action or event systems are useful abstractions to model discrete systems. The computational
model of these abstractions considers a collection of events (actions) transforming the state in
an atomic and nondeterministic way. In order to ensure the execution of certain events, in spite
of nondeterminism, some formalisms introduce fairness assumptions which help to increase
the abstraction level of a parallel or distributed system specification. In this context, fairness
means that if a certain operation is possible, then the system must eventually execute it [41].
The transformation of the state can be observed by state traces, describing the behavior of the
system, allowing its specification at a high level of abstraction. The implementation of action
systems is founded on stepwise refinements where abstract data structures are implemented
by structures commonly used in programming languages and the atomic transformations of
the state are made by algorithms (statement sequences) working at low level of granularity.

Many formalisms, with different approaches, have been proposed to model action systems.
However, we can roughly classify the approaches of these formalisms in three categories:
logical, algorithmic and hybrid.

In the logical approach, the specification and refinement of a system is stated in terms
of formulas in a certain logic specifying two kinds of properties: safety and liveness. Safety
properties state that something bad never happens –that is, that the program never enters an
unacceptable state and liveness properties assert that something good eventually does happen
– that is, that the program eventually enters a desirable state. Liveness is specified by different
fairness assumptions. The associated proof system of the logic is used to demonstrate the
correctness of the design. As an example of formalism in this category, we can cite tla [41].

In the algorithmic approach, the specification and refinement of a system is expressed in
a programming-like notation. Safety and liveness properties are implicitly specified by the
behavior of the action system, described by its state traces. As an example of this kind of
approach, we can cite Back’s Action System formalism [10]. In this formalism, fairness in the
execution of actions is specified by fair iteration. The refinement calculus is used to ensure
the correctness of refinements.

In the hybrid approach, a programming-like notation is used to describe the algorithmic
aspect of the system and its properties are described in a certain logic. However, to what
extent one applies these approaches in a development? It depends on the formal method. In
unity [21], for example, the specification and refinement of a system is made in purely logical
way, specifying safety and liveness properties in a temporal logic. Correctness of refinements,
as in tla, is proved by logical implication between a specification and its refinement. The last
step of a refinement allows the derivation of a program in a nondeterministic programming
language which can be implemented, by an informal translation, in several types of parallel
architectures. On another hand, in the event B formalism [7], the specification and refinement
of systems are expressed in a programming-like notation whereas certain forms of safety and
liveness properties can be explicitly stated in these specifications or refinements. Correctness
of refinements is proved by rules which can be compared to those in the refinement calculus.

In our opinion, based in our experience, the algorithmic and logical approaches need
some steps not included in their methodologies. Systems, at the implementation level, are
not necessarily logical formulas, and the logical approach, as practiced by tla, needs some
steps to translate the logical description of a system into a practical notation, allowing its
implementation in conventional computers. On another hand, the algorithmic approach in
the style of Back’s Action System, has no means to assert safety or liveness properties often



1.2. ENGLISH VERSION 5

specified in temporal logic and then deduce facts about the system. For these reasons, we are
interested in the hybrid approach to action or event systems, where the algorithmic aspect
of a system and its properties are developed at the same time; however, the approaches of
unity and event B may be improved.

In the unity approach, the derivation of programs after the last refinement step is not
systematic. Therefore, the implementation of a system looses its rigorous treatment. In event
B, some systems can be developed in a rigorous way from the specification to its implementa-
tion; nevertheless, the specification and proof of liveness properties seem to us restrictive: The
construct used to specify liveness properties does not take into account fairness assumptions
and the only way to verify these properties is by rules looking like termination of iteration.

The first main contribution of this thesis is a proposal to design action systems founded
on the event B formalism, where we take into account fairness assumptions and we use an
unity-like logic to specify and prove liveness properties. In our work, we consider modalities
of type P leads-to Q, where P and Q are predicates on the state space of a system, with the
informal meaning: “when the system arrives into a state satisfying P , eventually it reaches
a state satisfying Q”. We propose proof rules to verify modalities under minimal progress
and weak fairness assumptions, founded in the weakest precondition calculus. Moreover, we
propose proof rules to guarantee that liveness properties are preserved under refinement.

Semantics of action systems is generally stated by state traces. State traces of transi-
tions systems impose an operational reasoning about the behavior of a system. However this
operational behavior can be hidden by using temporal logic to specify safety and liveness
properties. Semantics of temporal formulas is given by state-traces of transition systems. A
proof system is a way to derive properties from other proved properties without operational
reasoning, only by symbolic calculations. Soundness and completeness of the logic are estab-
lished by proofs relating logical formulas with assertions about state traces. So at this point,
we come back to operational reasoning about the transition systems.

In this thesis we propose a more abstract possibility to define the semantics of action
systems founded on fixpoints of set (or predicates) transformers. These fixpoints denote the
largest subset of states where the iteration of events terminates under the considered fairness
assumptions. Our approach is not a matter of predilection or habits, it allows us to make
the notion of reachability under fairness assumptions equivalent to the one of termination of
iteration of events. This allows us to prove soundness and completeness of rules proposed to
derive leads-to properties and it gives the foundations to prove soundness of the rules for the
preservation of liveness under refinement. This is the second main contribution of this thesis,
in the line of works on denotational semantics as developed in the 60’s. We think that it is
important to give a common basis to different branches of computer Science, in order to unify
the foundation and understanding of our discipline.

This thesis is divided in seven chapters. In Chapter 2 we give an overview of classical
formalisms used to specify action systems: unity, tla, Back’s action system and event B.
In order to better understand similarities and differences among these formalisms, we treat
an example of specification and refinement of an abstract producer-consumer system in all of
these formalisms.

Chapter 3 presents our approach to the integration of a unity-like logic in the specification
and proof of liveness properties under minimal progress and weak fairness assumptions. We
present proof rules for both the verification and the preservation under refinement of liveness
properties. The application of these rules is illustrated in several examples modeling different
algorithms of mutual exclusion.
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Chapter 4 introduces the semantics of our temporal formulas in terms of fixpoints of set
transformers. In this chapter, we define set transformers modeling the iteration of events
under minimal progress and weak fairness assumptions. These set transformers allow the
definition of a termination relation which is used to interpret leads-to properties. On another
hand, liveness properties holding in a system are denoted by another relation on subsets of
states named reachability. Soundness and relative completeness of the rules for leads-to are
proved by showing the equality between these relations.

In Chapter 5 we prove soundness of the rules presented in Chapter 3 to guarantee the
preservation of liveness properties in the refinement of event B systems. In Chapter 6 we
develop a larger example of mutual exclusion algorithms, under a weak fairness assumption,
the refinements of which are intended to be implemented in a centralized or distributed
environment.

Finally, in Chapter 7 we draw some conclusions of our work, compare with related works
and analyze future work.



Chapter 2

Action and Event Systems

Résumé

Dans ce chapitre nous présentons quatre formalismes qui ont influencé nos
recherches : unity, tla, systèmes d’actions et B événementiel. Afin de mieux les
comparer, nous traitons un exemple simple d’un système producteur-consomateur
dans ces formalismes. Ensuite nous synthétisons quelques travaux qui portent sur
l’équité de systèmes. Ces travaux traitent des différents aspects tels que la vérification
et le développement de programmes et de la sémantique ou mise en œuvre de par-
allélisme. Finalement, nous faisons une analyse critique de ces travaux et nous
proposons notre thèse.

2.1 UNITY

unity [21] is proposed as a theory of parallel programming. It is made up of a computational
model and a programming logic. The approach proposes the development of programs in two
main steps: first, the solution to a given problem is presented by a unity program, which
is independent of the architecture and the programming language where the program will be
implemented. The second step maps the unity program to a particular architecture, which
can be a shared memory or message transfer machine. The first step is performed in a rigorous
way, by a programming logic. The second step is stated by informal rules indicating how to
map the statements of unity programs to different architectures. The following subsections
give a summary of the derivation of unity programs.

2.1.1 unity Programs

Mainly, a unity program is made up of a declare section, where the variables of a program
are declared, an initially section where initial values are given to the variables and an assign
section, containing the statements of the program.

The assign section is made up of a fix collection of statements si separated by the choice
operator []:

〈s1 [] s2 [] . . . sn〉

each si can be either an assignment statement or a list of quantified statements.

7
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Statements are executed under an unconditional fairness assumption: any statement is
supposed to be infinitely often executed. Termination of programs is considered when they
reach a fixpoint: a state where execution of any statement does not change the value of
variables.

A statement can be single assignment:

〈var〉 := 〈expression〉

or multiple assignment:

〈var-list〉 := 〈expression-list〉

Assignment statements can be conditioned by boolean expressions:

〈var-list〉 := 〈exp-list1〉 if 〈bool-exp1〉 ∼

...

〈exp-listm〉 if 〈bool-expm〉 ∼

An alternative way to write multiple assignments is by the use of the parallel ‖ operator.
In this way, the statement:

x1, . . . , xn := e1 . . . en

can be written as:

x1 := e1 ‖ x2 := e2 ‖ . . . xn := en

Quantified statements allow writing list of statements with a regular pattern. They take
the general form:

〈op var-list : range : statement-list〉

where op denotes the parallel (‖) or choice ([]) operator and range is a predicate describing
the range of the variables. This construction denotes a list of statements, separated by the
operator [] or ‖, and each statement corresponds to the instantiation of statement-list to values
of the var-list in the range range.

Example 2.1
The following examples show some assignment statements:

• x takes the value of 1 if p holds or 0 if p does not hold:

x := 1 if p ∼ 0 if ¬p

• the values of x and y are exchanged:

x := y ‖ y := x

• The integer array A[1..n] is initialized to zero:

〈‖ i : 0 ≤ i ≤ n : A[i] := 0〉
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• A program to sort the integer array A[1..n]:

program sort
assign
〈[] i : 0 ≤ i ≤ n : A[i], A[i + 1] := A[i + 1], A[i] if A[i] > A[i + 1]〉

end

✷

2.1.2 Logic Programming

The logic programming of unity is founded around three relations on state predicates: unless,
ensures and leads-to 1. The unless relation is used to specify safety properties; liveness
properties are specified by ensures and leads-to relations. These relations are defined by
Hoare triplets, universally or existentially quantified over the statements of unity programs.

In [21] several theorems about the fundamental relations are presented. These theorems
give a formal framework to reason about properties of unity programs and they play a
fundamental role in the correctness of refinement of unity programs.

unless Relation

A property P unless Q holds in a unity program F if at some point in the computation,
predicate P becomes true, then either Q never holds and P holds forever from this point on,
or Q holds eventually and P continues to hold until Q holds. Formally, the unless relation is
defined by the following inference rule:

∀s.(s inF ⇒ {P ∧ ¬Q} s {P ∨ Q})

P unless Q

Example 2.2
Some examples of safety properties:

• The value of x never decreases:

∀k · (k ∈ N⇒ x = k unless x > k)

• Any process p is in state Idle until it goes to state Waiting :

∀p · (p ∈ Proc ⇒ p ∈ Idle unless p ∈Waiting)

✷

stable

A special case in the definition of unless is the case when the predicate Q is equivalent to
false. It allows the definition of stable predicates. Formally, the definition of stable predicates
is given by the following inference rule:

stable P ≡ P unless false

Therefore, P is stable if execution of any statement in a state where P holds terminates into
a state where P continues to hold.

1Traditionally, the leads-to relation in unity is denoted by the symbol 7→. In order to prevent any confusion
with the B notation, the leads-to relation is denoted by the symbol ❀.
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invariant

If a predicate P is stable, and it is implied by the initial conditions (IC ) of a unity program,
then it is an invariant predicate. That is, an invariant predicate is defined as follows:

invariant P ≡ (IC ⇒ P ) ∧ stable P

Invariant predicates allow the application of the substitution axiom, which states that any
invariant predicate in a property can be replaced by the predicate true and vice-versa.

ensures Relation

ensures properties allows the specification of basic liveness properties. A property P ensures Q

holds in a program F , if P unless Q holds in F , and moreover there is a helpful statement
in F able to establish Q when it is executed in a state where P ∧ ¬Q holds. Formally, this
relation is defined by the following rule:

(P unless Q) ∧ ∃s · (s in F ∧ {P ∧ ¬Q}s{Q})

P ensures Q

In the definition of ensures properties, the unconditional fairness assumption plays a funda-
mental role. In fact, it is the only guarantee to expect the helpful statement will be eventually
executed.

leads-to Relation

General liveness properties are specified by the leads-to relation. If P ❀ Q holds in a program,
then when P becomes true, eventually Q becomes true. Formally, the leads-to relation is
defined as the strongest relation satisfying the following rules:

• P ensures Q ⊢ P ❀ Q

• (P ❀ R) ∧ (R ❀ Q) ⊢ P ❀ Q

• For any set W , ∀m · (m ∈W ⇒ P (m) ❀ Q) ⊢ ∃m · (m ∈W ∧ P (m)) ❀ Q

Unlike P ensures Q, a property P ❀ Q cannot assert that P will remain true as long as Q is
false.

Example 2.3
Two examples of leads-to properties:

• A process in state waiting eventually becomes active in the critical section:

∀p · (p ∈ Proc ⇒ p ∈Waiting ❀ p ∈ Active)

• In program sort, from example 2.2, A[n] eventually gets the maximum value of the
array:

true ❀ A[n] = max(ran(A))

✷
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Program Termination

From the unconditional fairness assumption, statements in unity programs are infinitely
often executed. However, termination of programs can be considered when they reach a
state which is stable under the execution of every statement. This state is named a fixpoint
and it is denoted by a predicate FP . The fixpoint is obtained by replacing the assignment
statement symbol := by the equality symbol = in every statement of the program and taking
the conjunction over all such predicates.

Example 2.4

• The fixpoint of program sort in example 2.2 is:

FP ≡ ∀i · (1 ≤ i ≤ n⇒ A[i] ≤ A[i− 1])

• Termination of program sort :

true ❀ FP

✷

2.1.3 Program Development

unity programs are derived from its specification which is made up of safety and liveness
properties. Development process proceeds by stepwise refinements. unless and leads-to rela-
tions are used to specify properties of an abstract program. The abstract specification is then
gradually refined to concrete properties which are used to derive a program. Statements of
the program are often suggested by ensures properties which appear in the last refinement
steps.

In each refinement step, abstract properties are replaced by concrete ones. The refinement
step can be data or algorithmic refinement, and concrete properties specify the behavior of
the program in the refined state.

Example 2.5
Let P and C be two variables of type P(D), where D is any data set. A possible abstract
specification considers the liveness property:

∀d · (d ∈ D ⇒ d ∈ P ❀ d ∈ C)

which states that any produced data will be eventually consumed.
A common way to synchronize the producer and consumer, is to introduce a buffer which

is written by the producer and read by the consumer. The buffer is introduced in a refinement
and it is modeled by a variable buf of type P(D). Therefore, the abstract liveness property
can disappear in this refinement, and two new properties are introduced:

d ∈ P ❀ d ∈ buf

d ∈ buf ❀ d ∈ C

where d is universally quantified over D. Correctness of this refinement is simply proved by
the transitive property of the leads-to relation.
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If P , C and buf are implemented by injective sequences SP , SC and SB respectively, and
P = ran(SP) ∧ C = ran(SC ) ∧ buf = ran(SB), the previous specification can be replaced by
two basic properties:

d ∈ ran(SP) ∧ SP−1(d) = N ensures d ∈ ran(SP) ∧ SP−1(d) < N ∨ d ∈ ran(SB) (2.1)

d ∈ ran(SB) ∧ SB−1(d) = N ensures d ∈ ran(SB) ∧ SB−1(d) < N ∨ d ∈ ran(SC ) (2.2)

where d and N are universally quantified over D and N respectively. In order to prove the
correctness of this refinement, the induction theorem for leads-to properties is used:

P ∧ V = n ❀ P ∧ V < n ∨ Q ⊢ P ❀ Q

where V is a variant function over a well founded set, and n is universally quantified over
that set. Taking SP−1 as a variant function, P ≡ d ∈ ran(SP) and Q ≡ d ∈ ran(SB),
the induction theorem can be applied to the leads-to property derived from (2.1), which
gives as result: d ∈ ran(SP) ❀ d ∈ ran(SB). In a similar way, from (2.2) can be derived
d ∈ ran(SB) ❀ d ∈ ran(SC ). Finally, the correctness of the refinement follows from the
equivalence between the abstract and concrete data.

Properties (2.1) and (2.2) suggest two helpful statements to access the main data struc-
tures. The following statements can be part of a unity program which implements the
producer-consumer system:

〈SB ,SP := SB ← first(SP), tail(SP) if SP 6= [ ] []

SC ,SB := SC ← first(SB), tail(SB) if SB 6= [ ]〉

✷

2.1.4 New Unity

In [48, 49] the logic programming of unity has been revisited. Fundamental relations unless
is replaced by a new relation named constrains (co) and the ensures relation is defined by
the notion of transient predicate. The new logic is intended to be applied not only to unity

programs, but to any action system in general. The only imposed restriction is that there is
an skip statement in the system that may be applied in any program state.

constrains relation becomes the fundamental relation to specify safety properties. For any
predicate P and Q, P co Q specifies that whenever P holds, Q holds after execution of any
statement. Formally, the definition of the relation constrains for any action system A is:

P co Q =̂ ∀s · (s inA ∧ P ⇒ wlp(s,Q))

From this definition, from P co Q follows P ⇒ Q, because skip is in A. Moreover, if P holds,
it continues to hold until ¬P ∧ Q holds.

The unless relation can be defined by the constrains relation:

P unless Q ≡ P ∧ ¬Q co P ∨ Q

Therefore, a stable predicate becomes:

stable P ≡ P co P
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In [48] another series of theorems for the constrains relation can be found.
transient predicates are predicates which are guaranteed to be falsified by execution of a

single atomic action. The formal definition of transient predicates depends on the fairness
assumption taken in the action system. In [49], transient predicates are defined for systems
with minimal progress and weak fairness assumptions.

For minimal progress, definition of transient predicates consider action systems which take
the form of guarded commands:

〈[] i :: gi → si〉

Considering that execution of particular actions cannot be guaranteed under this assumption,
a predicate is transient if it is falsified by any action in the system. However, in order to be
executed, at least one action need to be enabled. The formal definition of transient predicates
under minimal progress assumption is given by the following rule:

(P ⇒ ∃i · (gi)) ∧ ∀i · (P ∧ gi ⇒ wlp(si,¬P )) ⊢ transientP

For weak fairness assumptions, a predicate is transient if it is falsified by an action of the
system. Formally, for any action system A, the definition is:

transientP =̂ ∃s · (s in A ∧ P ⇒ wlp(s,¬P ))

The ensures relation can now be defined by transient predicates:

P ensures Q ≡ (P ∧ ¬Q co P ∨ Q) ∧ (P ∧ ¬Q transient)

This definition allows one to apply the previous rules for leads-to, and then derive general
liveness properties.

2.2 TLA

TLA [41] is a logic to reason about concurrent algorithms. It combines two logics: a logic
of actions and a standard linear temporal logic. The logic of actions allows the specification
of state changes by a before-after relation between state variables. The same logic is used to
specify an algorithm and its properties, simplifying the proof that an implementation satisfies
its specification.

2.2.1 The Logic of Actions

The logic considers an infinite set of variables Var and a collection of values Val. Variables
have no type, and they can assume any value. Type correctness is a provable property in a
specification and it is not a syntactic requirement. Semantics is defined in terms of states,
which are functions from Var to Val. The set of states is denoted by St. Predicates P are
boolean expressions built from variables and constants, and its meaning JP K is a mapping
from states to booleans.

Actions are boolean expressions formed from variables, primed variables and constant
symbols. Actions represent a relation between old states and new states, where the unprimed
variables refer to the old state and the primed variables refer to the new state.

Example 2.6
Some examples of actions:
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• This action asserts that the value of y in the old state is one greater than the value of
x in the new state:

y = x′ + 1

• This action asserts that a belongs to the set Data, that the size of variable buf in the
old state is lower than N and that the new value of the buffer buf is equal to the
concatenation of its old value with the list 〈a〉:

a ∈ Data ∧ size(buf ) < N ∧ buf ′ = buf ◦ 〈a〉

✷

Formally, the meaning JAK of an action A is a relation between old and new states.
Therefore, for any states s and t, sJAKt holds if and only if execution of the operation denoted
by action A in state s, terminates in a state t; in this case, the pair of states s and t is called
an “A step”. Predicates can be seen as actions with no primed variables. Therefore, for any
predicate P , and states s and t, the boolean sJP Kt is equivalent to sJP K.

Each action A has associated a predicate Enabled A which holds in state s if and only if
it is possible to take an A step starting in s. That is:

sJEnabled AK =̂ ∃t ∈ St : sJAKt

2.2.2 Simple Temporal Logic

Temporal formulas are made up of elementary formulas, boolean operators and the always
operator ✷. TLA is defined as a special case of the simple temporal logic, by specifying its
elementary formulas.

Semantics of temporal formulas is defined in terms of behaviors, which are infinite se-
quences of states. Thus, the meaning JF K of a temporal formula F , is a mapping from behav-
iors to booleans. Since boolean operators can be defined in terms of conjunction and negation
of formulas, it suffices to give the following definitions for any behavior σ = 〈s0, s1, s2, . . .〉
and states si:

σ JF ∧ GK =̂ σ JF K ∧ σJGK

σ J¬F K =̂ ¬σ JF K

σ J✷F K =̂ ∀n ∈ N : 〈sn, sn+1, sn+2, . . .〉JF K

From the semantics of the always operator, it follows that ✷ F asserts that F is always true.
From the always operator, the eventually operator ✸ is defined, for any temporal formula

F :

✸F =̂ ¬✷¬F

Thus, from the meaning of the always operator, the semantics of the eventually operator is:

〈s0, s1, s2, . . .〉J✸F K ≡ ∃n ∈ N : 〈sn, sn+1, sn+2, . . .〉JF K

For temporal formulas F and G, the leads-to operator is defined as follows:

F ❀ G =̂ ✷(F ⇒ ✸G)

It asserts that any time F is true, G is true then or at some later time.
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2.2.3 The Raw Temporal Logic

The raw temporal logic is obtained from the simple temporal logic by letting the elementary
temporal formulas be actions. An action A holds in a behavior if and only if the first pair of
states is an A step:

〈s0, s1, s2, . . .〉JAK =̂ s0JAKs1

From the previous definitions follows that a behavior satisfies ✷A if and only if every step of
the behavior is an A step:

〈s0, s1, s2, . . .〉J✷AK ≡ ∀n ∈ N : snJAKsn+1

As indicated above, a predicate P can be seen as an action without primed variables.
Therefore, a behavior satisfies P if and only if the first state of the behavior satisfies P , and
it satisfies ✷P if and only if all sates of the behavior satisfy P :

〈s0, s1, s2, . . .〉JP K ≡ s0JP K

〈s0, s1, s2, . . .〉J✷P K ≡ ∀n ∈ N : snJP K

Example 2.7
In the following example an abstract producer-consumer system is specified by a formula of
the raw temporal logic. The specification uses a constant set (rigid variable) D and variables
P and C. Predicate Init specifies the initial values of these variables:

Init =̂ P = D ∧ C = ∅

The system is made out of two actions: pc(d) which models production and consumption of
item d and env which models the environment. Action pc transfers data from P to C and
env resets P and C to their original values:

pc(d) =̂ d ∈ P ∧ P ′ = P \ {d} ∧ C ′ = C ∪ {d}

env =̂ P = ∅ ∧ P ′ = D ∧ C ′ = ∅

The following raw temporal formula Φ0 holds in a behavior 〈s0, s1, s2, . . .〉 if and only if Init
holds in s0 and any step of the behavior (si, si+1), for any i in N, is a step where pc or env
holds:

Φ0 =̂ Init ∧ ✷(∃d ∈ D : pc(d) ∨ env)

✷

2.2.4 Including Stuttering Steps

A stuttering step is a pair of consecutive states in a behavior where (state) variables do not
change their values. TLA is defined as a subset of the raw temporal logic where formulas are
invariant under stuttering steps. It means that adding or removing stuttering steps from a
behavior does not affect whether the behavior satisfies the temporal formulas.

In order to ensure that a formula is invariant under stuttering steps, the square A sub f

notation is introduced:

[A]f =̂ A ∨ f = f ′
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where A is an action and f a term (state function). In general f denotes a tuple 〈v1, v2, . . . vn〉
of variables vi, f ′ represents the same tuple with primed variables and the equality f = f ′ is:
v1 = v′1 ∧ v2 = v′2 ∧ . . . vn = v′n.

In this way, the elementary formulas of TLA are predicates and formulas of the form
✷[A]f , where A is an action and f a state function.

Example 2.8
The specification Φ0 of the producer-consumer system in the example 2.7 can be rewritten as
the following TLA formula:

Φ1 =̂ Init ∧ ✷[∃d ∈ D : pc(d) ∨ env ]〈P,C〉

Behaviors satisfying Φ0 fulfill the requirements of Φ1. Moreover, the TLA specification allows
stuttering steps, where the variables P and C do not change their values. ✷

2.2.5 Considering Fairness Conditions

TLA formulas specifying safety properties as Init ∧ ✷[A]f , where Init is a predicate indicating
the initial values of the state function f and A an action or disjunction of actions, can be
satisfied by behaviors made out of solely stuttering steps. These behaviors do not allow the
dynamic evolution of the specified system and they must be disallowed. In order to restrict
stuttering steps in a behavior, TLA formulas must be strengthened by fairness assumptions
which allow the expression of liveness properties. TLA considers weak and strong fairness
assumptions.

In order to specify fairness assumptions, the angle A sub f notation is introduced:

〈A〉f =̂ A ∧ (f 6= f ′)

This notation species the execution of the operation modeled by the action A, which modifies
the value of the state function f . A simple calculation can show that the following equivalence
holds:

✸〈A〉f ≡ ¬✷[¬A]f

which proofs that 〈A〉f is a TLA formula.

A weak fairness assumption asserts that an operation, modeled by an actionA, is infinitely
often executed if it is continuously enabled. Formally, the weak fair execution of the operation
modeled by A (WFf (A)) is defined as follows:

WFf (A) =̂ ✷(✷Enabled〈A〉f ⇒ ✸〈A〉f )

A strong fairness assumption asserts that an operation, modeled by an action A, is in-
finitely often executed if it is infinitely often enabled. Formally, the strong fair execution of
the operation modeled by A (SFf (A)) is defined as follows:

SFf (A) =̂ ✷✸Enabled〈A〉f ⇒ ✷✸〈A〉f

Example 2.9
In order to limit the stuttering steps in the behaviors satisfying specification Φ1 of example
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2.8, the specification of the producer-consumer system can be strengthened by a weak fair
condition on actions pc(d) and env :

Φ2 =̂ Init ∧ ✷[∃d ∈ D : pc(d) ∨ env ]〈P,C〉 ∧ ∀d ∈ D : WF〈P,C〉(pc(d)) ∧WF〈P,C〉(env)

Behaviors satisfying Φ2 contain infinitely many steps where a data d is transfered from P to
C. ✷

Sometimes it is possible to specify a conjunction of weak fairness conditions WFv(A0) ∧
WFv(A1) ∧ . . .WFv(An), by an equivalent condition on the disjunction of actions WFv(A0 ∨
A1 ∨ . . .A1). The equivalence depends on the WF Conjunction Rule, stated as follows:

WF Conjunction Rule If A1, . . . ,An are actions such that, for any distinct i

and j, whenever 〈Ai〉v is enabled, 〈Aj〉v cannot become enabled unless an 〈Ai〉v
step occurs, then WFv(A0) ∧WFv(A1) ∧ . . .WFv(An) is equivalent to WFv(A0 ∨
A1 ∨ . . .An).

An analogous conjunction rule exists for strong fairness.

Example 2.10
The weak fairness conditions on actions pc(d) and env , in the formula Φ2 of example 2.9, can
be rewritten in an equivalent way, as the following formula shows:

Φ2 =̂ Init ∧ ✷[∃d ∈ D : pc(d) ∨ env ]〈P,C〉 ∧ ∀d ∈ D : WF〈P,C〉(pc(d) ∨ env)

The equivalence follows from the WF conjunction rule and two facts:

• For any d in D, the action pc(d) is not enabled when the action env is enabled and

• For any d in D, the action env is not enabled when action pc(d) is enabled.

✷

2.2.6 Hiding Variables

Apart from traditional quantification over constants (rigid variables), TLA allows existential
quantification over (state) variables (flexible variables). This kind of quantification permits
hiding of variables in temporal formulas.

Informally, a temporal formula ∃∃∃∃∃∃∃∃x : F , where x is a state variable and F a temporal
formula where x is free, asserts that any state of any behavior satisfying the quantified formula,
contains a value of x, such that F holds. Therefore ∃∃∃∃∃∃∃∃x : F asserts the existence of infinitely
many values of x satisfying F .

Formally, the meaning of the quantifier ∃∃∃∃∃∃∃∃ is defined as comes next:

σJ∃∃∃∃∃∃∃∃x : F K =̂ ∃ρ, τ : St∞ : (♮σ = ♮ρ) ∧ (ρ =x τ) ∧ τJF K

where St∞ is the set of behaviors, the equality ρ =x τ states that any states2 τi and σi assign
the same value to all other variables except x, and ♮ is a function over behaviors where ♮σ, for
any behavior σ, is the behavior obtained from σ by removing all stuttering steps except the
final ones. The quantifier ∃∃∃∃∃∃∃∃ obeys the ordinary laws of existential quantification, in particular
it distributes over disjunction of temporal formulas: (∃∃∃∃∃∃∃∃x : F ∨ G) ≡ (∃∃∃∃∃∃∃∃x : F ) ∨ (∃∃∃∃∃∃∃∃x : G).

2For any behavior 〈s0, s1, . . .〉, 〈s0, s1, . . .〉i denotes si.
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Example 2.11
From the example 2.9, the variable C can be hidden from the formula Φ2:

Φ3 =̂ ∃∃∃∃∃∃∃∃C : Init ∧ ✷[∃d ∈ D : pc(d) ∨ env ]〈P,C〉 ∧ ∀d ∈ D : WF〈P,C〉(pc(d)) ∧WF〈P,C〉(env)

In Φ3 it does not matter the value of the variable C. The formula only asserts the existence
of certain values that C can assume for which Φ2 holds ✷

2.2.7 Refinement of Specifications

Specifications of systems in TLA are written as a conjunction of tree formulas:

Φ =̂ I ∧ ✷[N ]f ∧ F

where :

• I is a predicate specifying the initial values of variables,

• N is the disjunction of actions in the system; generally N is known as the next state
relation,

• f is a tuple made up of all variables in the system and

• F is a conjunction of formulas of the form WF(A) and/or SF(A) and A is an action or
disjunction of actions.

In general, some variables x1, . . . , xm of Φ are hidden: ∃∃∃∃∃∃∃∃x1, . . . , xm : Φ. Development of
systems specified in this way is made by stepwise refinements. Refinements are again tempo-
ral formulas, analogous to specifications, where refined actions transform the concrete state
variables.

Considering the formula ∃∃∃∃∃∃∃∃y1, . . . , yn : Ψ as a refinement of the system specified by
∃∃∃∃∃∃∃∃x1, . . . , xm : Φ, correctness of such a refinement is proved by logical implication:

∃∃∃∃∃∃∃∃x1, . . . , xm : Φ⇒ ∃∃∃∃∃∃∃∃y1, . . . , yn : Ψ

In order to prove this theorem, a series of state functions y1, . . . , yn must be defined in terms
of the variables that occur in Ψ and prove Ψ⇒ Φ, where Φ denotes the formula Φ where each
occurrence of variable yi is replaced by yi, for all i in 1..n. The set of state functions is called
a refinement mapping, and each yi denotes the concrete variable with which Ψ implements
yi.

TLA disposes of a set of proof rules to prove TLA theorems. As an example the rules
TLA2 and WF2 are presented:

TLA2

P ∧ [A]f ⇒ Q ∧ [B]g
✷P ∧ ✷[A]f ⇒ ✷Q ∧ ✷[B]g

WF2

〈N ∧ B〉f ⇒ 〈M〉g
P ∧ P ′ ∧ 〈N ∧ A〉f ∧ Enabled〈M〉g ⇒ B

P ∧ Enabled〈M〉g ⇒ Enabled〈A〉f
✷[N ∧ ¬B]f ∧WFf (A) ∧ ✷F ∧

✸✷Enabled〈M〉g ⇒ ✸✷F

✷[N ]f ∧WFf (A) ∧ ✷F ⇒WFg(M)
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TLA2 is useful to prove step simulations when A and B denote the next state relation of the
abstraction and the refinement of a system respectively. WF2 is used to deduce the weak
fairness condition of an action in the refinement, from the weak fairness condition of another
action in the abstraction. The following example shows how to use these rules.

Example 2.12
In this example the producer-consumer system, introduced in the example 2.7 and specified by
the formula Φ3 of example 2.11 is refined. In this refinement, the producer and the consumer
communicate by an infinite shared buffer. The rigid variable D is conserved as well as the
variable P . Two new variables are introduced Cc and buf . Initially, the values of these
variables are specified by following formula:

Initc =̂ P = D ∧ Cc = ∅ ∧ buf = 〈〉

The behavior of the system in the refinement is modeled by three actions: prod(d), cons
and env . Action prod(d) models the production of item d by a transfer of d from P to buf .
Action cons models consumption of an item by transferring it from buf to Cc. Finally, action
env , as in the abstract specification, models the environment which restart a new cycle of
production-consumption of items, by reseting the variables to their initial values. Formally,
the actions are:

prod(d) =̂ d ∈ P ∧ P ′ = P − {d} ∧ buf ′ = buf ◦ 〈d〉 ∧ C ′
c = Cc

cons =̂ buf 6= 〈〉 ∧ C ′
c = Cc ∪ {first(buf )} ∧ buf ′ = tail(buf ) ∧ P ′ = P

env c =̂ P = ∅ ∧ buf = 〈〉 ∧ P ′ = D ∧ C ′
c = ∅ ∧ buf ′ = buf

The refinement is specified by the following formula:

Ψ =̂ Initc ∧ ✷[Nc]w ∧ ∀d ∈ D : WFw(prod(d)) ∧WFw(cons) ∧WFw(env c)

where

Nc =̂ ∃d ∈ D : prod(d) ∨ cons ∨ env

w =̂ 〈P,Cc, buf 〉

In order to prove that Ψ implements the abstract producer-consumer system, specified by
Φ3, the following implication must be proved:

Ψ⇒ ∃∃∃∃∃∃∃∃C : Φ2

where Φ2 is defined in the example 2.9 on page 16. The proof requires the definitions of the
following refinement mapping:

C = Cc ∪ ran(buf )

which states that the set C, used in the abstraction, is implemented by the union of the
concrete set Cc and the buffer buf . Therefore, the correctness of the refinement follows from:

Ψ⇒ Φ2

where Φ2 is Φ2 with each occurrence of C replaced by C:

Φ2 =̂ Init ∧ ✷[∃d ∈ D : pc(d) ∨ env ]〈P,C〉 ∧ ∀d ∈ D : WF〈P,C〉(pc(d)) ∧WF〈P,C〉(env)
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Init , pc(d) and env are Init , pc(d) and env respectively, with each occurrence of C replaced
by C:

Init =̂ P = D ∧ C = ∅

pc(d) =̂ d ∈ P ∧ P ′ = P \ {d} ∧ C
′
= C ∪ {d}

env =̂ P = ∅ ∧ P ′ = D ∧ C
′
= ∅

The proof follows from the following implications:

• Initc ⇒ Init

• ✷[Nc]w ⇒ ✷[∃d ∈ D : pc(d) ∨ env ]〈P,C〉 and

• ∀d ∈ D : WFw(prod(d)) ∧WFw(cons) ∧WFw(env c)⇒
∀d ∈ D : WF〈P,C〉(pc(d)) ∧WF〈P,C〉(env)

The first implication follows directly from definitions of Initc, C and Init .
The second implication follows by applying the rule TLA2. Instantiating P and Q to true,

the premise to that rule requires to prove:

[Nc]w ⇒ [∃d ∈ D : pc(d) ∨ env ]〈C〉

This premise follows from the following implication which are proved from definitions:

prod(d)⇒ pc(d)

cons ⇒ 〈P ′, C
′
〉 = 〈P,C〉

env ⇒ env

w′ = w ⇒ 〈P ′, C
′
〉 = 〈P,C〉

The last implication follows by applying twice the rule WF2: one to deduce WF〈P,C〉(pc(d))

and another one to prove WF〈P,C〉(env). In this example, only the proof of WF〈P,C〉(pc(d))
is outlined. Instantiating WF2 with the following substitutions:

N ← true B ← prod(d) A ← prod(d) P ← true F ← true M← pc(d) f ← w g ← 〈P,C〉

gives the following rule:

〈prod(d)〉w ⇒ 〈pc(d)〉〈P,C〉

Enabled〈pc(d)〉〈P,C〉 ⇒ Enabled〈prod(d)〉w

WFw(prod(d))⇒WF〈P,C〉(pc(d))

The premise of this rule is easily derived from definitions, which allows the proof of the goal.
✷

2.3 The Action System Formalism

Action systems were introduced in [10] as an execution model, intended to replace the conven-
tional process-oriented execution model by an action-oriented model, where atomic actions
can be executed whenever they are enabled, and the selection among them is nondeterministic.
Subsequent work [13, 15, 12] led to formalizing actions systems in the refinement calculus.
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2.3.1 The Refinement Calculus

The refinement calculus is the mathematical foundation of the stepwise refinement method of
program construction. The basic domains of this calculus are obtained by pointwise extension
of the boolean lattice.

The set of booleans Bool, Bool = {T,F}, forms a complete lattice under the implication
order : F ≤ T, T ≤ T and F ≤ F. The complement, meet and join of this lattice are ¬, ∧ and
∨ respectively.

Predicates are defined as functions from the state space Σ to the booleans: Pred(Σ) =̂
Σ→ Bool. This set forms a complete lattice under the order obtained from logical implication
by pointwise extension. That is, for any P and Q in Pred(Σ), P ≤ Q ≡ (∀σ ∈ Σ ·P σ ≤ Qσ).
Complement, meet and join are defined by pointwise extension too. The bottom in this lattice
is false and the top true.

Semantics of program statements in the calculus are given in terms of predicates trans-
formers. Predicate transformers are defined by pointwise extension of predicates. For any
state spaces Σ and Γ, the set of predicate transformers Ptran(Σ,Γ) is defined as the set of
functions from predicates on Γ to predicates on Σ: Ptran(Σ,Γ) =̂ Pred(Γ) → Pred(Σ). For
any predicate transformer A in Ptran(Σ,Γ) and predicate P on Γ, the predicate A P on Σ
denotes the weakest precondition where the statement modeled by A can start execution and
terminates into a state satisfying P .

Refinement The refinement order for any T and S in Ptran(Σ,Γ) is defined by

S ≤ T ≡ ∀Q ∈ Pred(Γ) · S Q ≤ T Q

This order means that S refines T if and only if S establishes any postcondition that T does.
Under this order, predicate transformer form a lattice with bottom abort and top magic.
abort maps any predicate to false and magic to true. Meet models demonic (internal) choice
and join (external) angelic choice. Meet and join are defined by pointwise extension e.g.
(S ∧ T ) Q =̂ S Q ∧ T Q.

The non miraculous domain or guard of a predicate transformer A is defined by

gA =̂ ¬A false

and the termination domain of A is

tA =̂ A true

The statement modeled by A is enabled in any state where gA holds, and its termination is
guaranteed in any state where tA holds.

Data Refinement Stepwise refinement of statements often leads to changes in the state
space of the refined statement. In this case, the refinement involves replacing the abstract
variables a with concrete variables c which are more easily implemented. However, both the
abstract and concrete states, have a common variable x which is not modified by refinement.
In this way the abstract state space becomes Ψ × ΣS where Ψ is the state space of x and
ΣS the state space of the abstract variable a. In a similar way, the concrete state becomes
Ψ× ΓT where ΓT is the state space of the concrete variable c. The correctness proof of data
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refinement requires to define the abstract relation R(x, a, c) which relates the concrete variable
with the abstract and common variables. In this way, the refinement of an abstract predicate
transformer S in Ptran(Σ,Σ), where Σ = Ψ × ΣS , by a concrete predicate transformer T in
Ptran(Γ,Γ), where Γ = Ψ× ΓT , is defined as follows

S ≤R T =̂ R(x, a, c) ∧

S Q(x, a) ≤ T (λ(x, c) · (∃a′ ∈ ΣS ·R(x, a′, c) ∧ Q(x, a′)))(x, c) (2.3)

where Q is universally quantified over Pred(Σ), and the variables x, a and c are universally
quantified over their respective state spaces. In this definition it must be remarked that
λ(x, c) · (∃a′ ∈ ΣS · R(x, a′, c) ∧ Q(x, a′)), and T (λ(x, c) · (∃a′ ∈ ΣS · R(x, a′, c) ∧ Q(x, a′)))
are predicates over Γ while S Q is a predicate over Σ. Moreover, the order relation in the
definition corresponds to the implication order in the boolean lattice.

2.3.2 Action System

Action systems allows the extension of development methods for sequential programs to the
design and implementation of parallel and reactive systems. They are able to model termi-
nating, possibly aborting and infinitely repeating system.

An action system A is a statement in the command language of the refinement calculus
taking the form:

A =̂ |[varx •Q ; doA1 [] A2 [] . . . An od]| : z

where x and z are tuples of local and global variables respectively, Q is the initialization
condition and each Ai is an action taking the guarded command form:

Ai =̂ gi → Si

where gi is the guard of the action and Si its body. The body of Ai is supposed to be non
miraculous (Si false ≡ false) and universally conjunctive (Si

∧
j qj ≡

∧
j Si qj for any subset

of predicates qj).

Local and global variables are assumed to be distinct and they determine the state space
of the system. After initialization, the state of the action system satisfies the initial condition.
The iteration of actions determines what can happen in the system during an execution. The
body of any action can transform the state if it is executed in any state where the guard of
the action holds. The iteration of actions terminates when no action is enabled, that is, when
the action system arrives into a state where the guard of every action does not hold.

Example 2.13
In this example the abstract producer-consumer system, treated in the previous examples, is
specified as an action system. The variables P and C, of type P(D), are considered as global
and local variables respectively. The initial state must satisfy the condition P = D ∧ C = ∅.
The goal of the system is to transfer data from P to C. This is achieved by the action system
PC :

PC =̂ |[varC • P = D ∧ C = ∅ ; do pc [] env od]| : P
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where the actions pc and env are 3:

pc =̂ P 6= ∅→ P,C := P − {d}, C ∪ {d} · d ∈ P

env =̂ P = ∅→ P,C := D, ∅

✷

Action system can be composed by a parallel operator ‖. Two or more action systems
can be composed if their global variables are the same and their local variables are disjoints.
Therefore, if the action system Ai is defined by

Ai =̂ |[varxi • pi ; doAi od]| : z

the parallel composition A1 ‖ A2 is defined as follows

A1 ‖ A2 =̂ |[varx1, x2 • p1 ∧ p2 ; doA1 [] A2 od]| : z

2.3.3 Behavioral Semantics

A behavior or computation σ of an action system |[varx •p ; doA od]| : z is a finite or infinite
sequence of states generated by an execution of the action system:

σ = 〈s0, s1, . . .〉

Each state si in the behavior is a pair of values (ai, ui), where ai denotes the value of the
local variables x and ui the value of the global variables z.

An infinite computation σ is an infinite sequence of states 〈s0, s1, . . .〉 where s0 satisfies
the initial condition p of the action system, and the next state relation associated to A holds
for any consecutive states si and si+1 of σ. A terminated computation is a finite sequence
where no action is enabled in the last state and an aborted computation is a finite sequence
where termination of the action system is not guaranteed in the last state.

Traces of global states are obtained from computations by deleting local states and stut-
tering transitions. Stuttering transitions are steps that do not change global states. When an
infinite computation contains only stuttering steps from certain point onwards, the resulting
trace is considered to be aborted. Moreover, aborted computations induce aborted traces.

The semantics of an actions system A is defined as the set of its traces tr(A), which
captures the observable behaviors of the system. The set tr(A) can be considered as the
disjoint union of infinite, terminated and aborted traces.

2.3.4 Refinement of Unfair Action Systems

A system is defined to implement a specification if every observable behavior of the system is
allowed by the specification. Considering that the specification and the implementation of a
system can be given as action systems A and C respectively, the implementation relation be-
comes a refinement relation between action systems. So, the system C refines the specification
A, noted A ⊑ C, if and only if the traces of C can be observed in A.

The formal definition of the refinement relation between action systems is given in terms
of the prefix relation � between traces. Therefore, A ⊑ C if and only if, for any trace σ of

3The statement x := y · Q denotes a nondeterministic assignment, where x is updated with any value y

satisfying Q.
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the concrete system C, there exists a trace σ′ which approximates σ in the abstract system,
that is, σ′ is either, a prefix of σ and σ′ is aborted or σ = σ′ and they are not aborted:

A ⊑ C ≡ ∀σ ∈ tr(C) · ∃σ′ ∈ tr(A) · (σ′ � σ ∧ aborted(σ′)) ∨ (σ′ = σ ∧ ¬aborted(σ))

In practice, the semantical definition of refinement between systems is not used. Refine-
ment verification of actions systems A and C is reduced to that of individual actions by a
technique known as simulation. Considering a and c as the local variables of A and C re-
spectively, x their common variables and R(a, c, x) a data refinement relation, the forward
simulation between actions A of A and C of C is defined as the data refinement A ≤R C.
Given that actions take the form of guarded commands b→ S and d→ T respectively, where
S and T are non miraculous, b→ S is forward simulated by d→ T if and only if the following
conditions hold:

d(x, c)) ∧ R(a, c, x) ≤ b(x, a) (2.4)

R(a, c, x) ∧ d(x, c) ∧ S Q(x, a) ≤ T (λ(x, c) · (∃a′ ·R(a′, c, x) ∧ Q(x, a′)))(x, c) (2.5)

A very common situation in refinement is when actions of the refined system C can be
divided in two groups: one corresponding to the refinement of abstract actions, and another
one to actions refining stuttering steps. Let C and H denote the demonic choice of these
group of actions and A the demonic choice of abstract actions. Considering A and C as the
following action systems

A =̂ |[var a • P ; doA od]| : x

C =̂ |[var c •Q ; doC [] H od]| : x

the forward simulation of A by C under the refinement relation R (A ≤R C) is said to hold if
the following conditions are verified:

1. Q(x, c) ≤ (∃a′ ·R(a′, c, x) ∧ P (x, a))

2. A ≤R C

3. skip ≤R H

4. R ∧ ¬(gC ∨ gH) ≤ ¬tA ∨ ¬gA

5. R ∧ tA ≤ t(doHod)

Condition one states the existence of an abstract state satisfying the initialization of A, which
is linked by R to a concrete state where the initialization of C holds. Condition two and three
indicate that the choice of abstract actions A must be data refined by C and that H must
refine stuttering actions respectively. Condition four asserts that termination of C implies
terminated or aborted computations of A. Finally, condition five states that termination of
A must guarantee that iteration of H terminates.

Example 2.14
In this example the action system PC of example 2.13 is refined. As the example 2.12 of TLA
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refinement, a buffer and a new action cons are introduced. The refined produced-consumer
system becomes

PC1 =̂ |[varCc, buf • P = D ∧ Cc = ∅ ∧ buf = 〈〉 ; do prod [] cons [] env od]| : P

where

prod =̂ P 6= ∅→ P, buf := P − {d}, buf ◦ 〈d〉 · d ∈ P

cons =̂ buf 6= 〈〉 → Cc, buf := Cc ∪ {first(buf )}, tail(buf )

envc =̂ P = ∅ ∧ buf = 〈〉 → P,Cc, buf := D, ∅, 〈〉

In order to prove the correctness of this refinement, that is, that PC is forward simulated
by PC1 , the five conditions previously stated must be proved. To do that, the refinement
relation is defined:

R =̂ C = Cc ∪ ran(buf )

Therefore, PC ≤R PC1 follows from:

• Initialization: P = D ∧ Cc = ∅ ∧ buf = 〈〉 ≤ ∃C · (C = Cc ∪ ran(buf ) ∧ C = ∅ ∧ P =
D).
This implication follows directly from the premise.

• Main actions: pc ≤R prod and env ≤R env c

Applying (2.4) and (2.5), the proof of pc ≤R prod follows from 4

R ∧ P 6= ∅ ≤ P 6= ∅ (2.6)

R ∧ P 6= ∅ ∧ ∀d ∈ P · ([P,C := P − {d}, C ∪ {d}]Q(P,C)) ≤ ∀d ∈ P ·

([P, buf := P − {d}, buf ◦ 〈d〉]∃C ′ · (C ′ = Cc ∪ ran(buf ) ∧ Q(P,C ′))) (2.7)

(2.6) follows trivially. (2.7) is equivalent to

R ∧ d ∈ P ∧ Q(P −{d}, C ∪{d}) ≤ ∃C ′ ·C ′ = Cc ∪ ran(buf ◦ 〈d〉) ∧ Q(P −{d}, C ′)

This implication follows from the premise considering that Q(P−{d}, Cc∪ran(buf )∪{d})
holds, which is equivalent to the conclusion.

In a similar way, the proof of env ≤R env c follows directly from:

R ∧ P = ∅ ∧ buf = 〈〉 ≤ P = ∅ (2.8)

R ∧ P = ∅ ∧ buf = 〈〉 ∧ [P,C := D, ∅]Q(P,C) ≤

[P,Cc, buf := D, ∅, 〈〉]∃C ′ · (C ′ = Cc ∪ ran(buf ) ∧ Q(P,C ′)) (2.9)

• Stuttering actions skip ≤R cons
Applying the forward refinement definition (2.3), this proof follows from:

R ∧ Q(P,C) ∧ buf 6= 〈〉 ≤

[Cc, buf := Cc ∪ {first(buf )}, tail(buf )]∃C ′ · (C ′ = Cc ∪ ran(buf ) ∧ Q(P,C ′))

4The notation [x := e] Q, where x and e are lists of the same length of variables and expressions respectively,
denotes the predicate Q where all free occurrences of x are replaced by e.
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The conclusion of this implication can be rewritten as ∃C ′ · (C ′ = Cc ∪ {first(buf )} ∪
ran(tail(buf )) ∧ Q(P,C ′)) which holds directly from the premise and the definition of
R.

• Exit condition: R ∧ ¬g(prod [] env c) ∧ ¬g(cons) ≤ ¬t(pc [] env) ∨ ¬g(pc [] env)
This implication holds trivially, remarking that the premise is equivalent to false:

¬g(prod [] env c) ∧ ¬g(cons) ≡ ¬gprod ∧ ¬genv c ∧ ¬gcons ≡ P = ∅ ∧ buf 6= 〈〉 ∧ buf = 〈〉

• Internal convergence: R ∧ t(pc [] env) ≤ t do cons od

This proof follows from a well founded argument. In fact, action cons decreases the
variant card(buf ) which ensures that it cannot be indefinitely executed.

✷

2.3.5 Refinement of Fair Action Systems

In [12] the simulation technique of unfair actions systems is extended to consider weak and
strong fairness assumptions in the execution of actions. In this section a summary of the
weak fairness technique is presented.

Fair Action Systems

A fair action system A is like an unfair action system where weak or strong fairness assump-
tions can be associated with each action. Moreover, actions can be nondeterministic. The
set of actions associated with weak fairness and strong fairness are denoted by WF (A) and
SF (A) respectively; they form a disjoint set of actions. Fair computations 〈s0, s1, . . .〉 satisfy
two conditions:

1. If any action of WF (A) is continuously enabled from some state si onwards, then it
must be a state sj , i ≤ j, where it is executed afterwards.

2. If any action of SF (A) is infinitely often enabled from some state si onwards, then it
must be a states sj , i ≤ j, where it is executed afterwards.

In order to distinguish the actions in A, the labels wf and sf are put before the actions in
WF (A) and SF (A) respectively. Actions without labels are executed under minimal progress
assumptions: if two or more actions simultaneously are enabled, one of them is nondetermin-
istically chosen and executed. The label of an action A is denoted by lA.

Fairness is only associated with top level choice; if action Ai is nondeterministic, the
fairness assumptions do not apply in the internal choice.

The set of fair computations induce the set of traces tr(A). The semantic definition of
refinement is the same that the one used for unfair action systems.

Definition of forward refinement rules for unfair action system requires the notions of
termination of weak fair iteration of actions.
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Weak Fair Termination

Rules for simulation of fair action systems require notions of termination iteration. Let A be
the fair iteration statement

doA1 [] A2 [] . . . [] An od

To prove the termination of A, a well founded set W and a family of predicates I = {Iw |w ∈
W} must be found. Then, it must be proved that all actions of A, executed in a state where
Iw holds, do not terminate in a state satisfying Iv where w < v and that some (fair) actions,
terminate in a state where Iu holds and u < w. The formal definition of termination requires
two definitions:

• helpful: helpful(Iw, r, A) =̂ {Iw ∧ r ∧ tA}A {∃v · v < w ∧ Iv}.

• helpful or stay: helpful or stay(Iw, r, A) =̂ {Iw ∧ r ∧ tA}A {∃v · (v < w ∧ Iv) ∨ (Iw ∧
r)}.

where r is a predicate characterizing the set of states where A is helpful. Therefore an action
A is “helpful” if its execution decreases the index and “helpful or stay” if its execution does
not increment it.

Termination under a Precondition An iteration statement A, with weak fair actions set
WF (A) = {Aj1 , Aj2 , . . . Ajk

} terminates under the precondition P if there exists predicates
r1, r2, . . . rk such that the following conditions hold:

1. P ≤ ∃w · Iw

2. helpful or stay(Iw, ri, Aj) for any i = 1, . . . , k and any j 6= Ji.

3. helpful(Iw, ri, AJi
) and Iw ∧ ri ≤ gAJi

for any i = 1, . . . , k.

4. helpful(Iw,¬(r1 ∨ r2 ∨ . . . ∨ rk), Ai) for any i = 1, . . . , n.

The soundness of these rules is argued by showing that any state of any computation where
Iw holds, for a certain w in W , will eventually lead to a state where Iv holds and v < w.
From rule one, any initial state where P holds satisfy Iw for a certain w. In any state of any
computation where Iw holds, ∃i · (1 ≤ i ≤ k ∧ ri) holds or its negation holds. If the negation
holds, from rule four, any action of A is helpful, and therefore decreases the index to establish
Iv and v < w. If ri holds, for a certain i in the interval 1..k, from rule two, execution of any
action other than AJi

, does not increment the index and from rule three and the weak fairness
assumption, the helpful action AJi

, continually enabled, will be eventually executed and the
index w will be decremented.

Commands in A may contain exit statements which causes the iteration to stop immedi-
ately. exit commands can occur at the end of an action or at the end of a branch in an internal
choice. To take into account the exit commands in the previous rules, only the definitions of
helpful and helpful or stay need to be modified:

• helpful(Iw, r, A ; exit) =̂ helpful or stay(Iw, r, A ; exit) =̂ true

• helpful(Iw, r, A ; exit [] A′) =̂ helpful(Iw, r, A′)

• helpful or stay(Iw, r, A ; exit [] A′) =̂ helpful or stay(Iw, r, A′)
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Termination under Continuous Condition An iteration statement A terminates under
a continuous condition P , denoted [P ]A , if and only if there are no infinite computations from
A such that P always holds. It must be noted that if A terminates under the precondition
P , that is {P}A holds, then [P ]A follows.

The proof of [P ]A can be reduced to an ordinary fair termination. If A is the iteration
statement doA1 [] A2 [] . . . [] An od then

[P ]A ≡ {true} doP → A1 [] P → A2 [] . . . [] P → An od

Forward Simulation of Weakly Fair Action Systems

The forward simulation rules consider action systems A and C of the form

A =̂ |[vara · P ; doA od]| : z

C =̂ |[varc ·Q ; doC [] H od]| : z

where

A =̂ A1 [] A2 [] . . . [] An

C =̂ C1 [] C2 [] . . . [] Cm

H =̂ H1 [] H2 [] . . . [] Hm

Any Ai, Ci or Hi can be associated with fairness. In order to apply the simulation rules, each
concrete action Ci must be decomposed into n internal choices

Ci = Ci,1 [] Ci,2 [] . . . [] Ci,n

such that each abstract action Aj of A is forward simulated by Ci,j

Aj ≤R Ci,j

This decomposition results in the following matrix, where every lower level action simulates
the higher level action in the same column:

A1 A2 . . . An

C1 C1,1 C1,2 · · · C1,n

C2 C2,1 C2,2 · · · C2,n

...
Cm Cm,1 Cm,2 · · · Cm,n

It must be noted that the decomposition Ci = Ci,1 [] Ci,2 [] . . . [] Ci,n can be verified by
refinement calculus. Moreover, some Ci,j in the decomposition can be the magic command,
because it is the top element in the command lattice and therefore, for any command S,
S = magic [] S.

The goal of the forward simulation rules for weak fair action systems is to ensure that,
if a higher level action Ai is executed by a fairness assumption, then a subaction Cj,i will
also be executed in the lower level system. However, as fairness assumptions do not apply
to the internal choices, it must be proved that all the subactions will not be infinitely and
exclusively executed.

The forward simulation between A and C, by the data refinement relation R(a, c, z) (A ≤R

C) follows from the following rules:
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1. Initialization: Q(c, z) ≤ ∃a · (R(a, c, z) ∧ P (a, z)).

2. Main actions: Ai ≤R Cj,i for any i in 1..n and j in 1..m.

3. Stuttering actions: skip ≤R Hi for any i in 1..k.

4. Exit condition: R ∧ ¬(gC ∨ gH) ≤ ¬tA ∨ ¬gA.

5. Internal convergence: {∃a ·R(a, c, z) ∧ tA(c, z)}D where

D = do lC1
: C1 ; exit [] lC2

: C2 ; exit [] · · · [] lCn : Cn ; exit [] H1 [] · · · [] Hk od

6. Fairness condition: [∃a ·R(a, c, z) ∧ gAi(a, z)] Ci for any Ai ∈WF (A), where

Ci = doCi
1 [] Ci

2 [] · · · [] Ci
n [] H1 [] · · · [] Hk od and

Ci
j = lCj

: (Cj,1 [] · · · [] Cj,i−1 [] Cj,i ; exit [] Cj,i+1 [] · · · [] Cj,n)

The first four rules are similar to the corresponding conditions of unfair systems. The internal
convergence condition ensures that the number of stuttering steps in the traces of C are finite
unless A is aborting. Finally, the fairness condition guarantees that the low level computations
are finite or that a subaction Cj,i is executed when a higher level action Ai in WF (A) is
continuously enabled.

Strong Fairness The technique to prove the forward simulation of action systems under
strong fairness assumptions is similar. However the notion of termination under infinitely
often condition is introduced. An iteration statement A terminates under the infinitely often
condition P if and only if there are not infinite computations from A such that P holds
initially and infinitely often after. The proof of this kind of termination is given in terms of
Hoare logic by the use of helpful and helpful or stay assertions.

2.4 Event B

The event B formal method is an extension of the B method [2], aimed to specify and develop
discrete systems. This approach was first published in [7], where the main notion of event
system and its methodological guidelines for system development were presented. Subsequent
work in [34] proposes a new approach to refinement of event systems closely related to the
notion of reachability.

2.4.1 Event B Models

An event B model S, or abstract model, is a state based model which can be defined by the
following structure:

〈D,x, I(x), U, E〉 where

• D is a list of declarations,

• x is vector of state variables,
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• I(x) is a conjunction of predicates known as the invariant,

• U is an initialization statement and

• E is a set of events.

The semantics of S can be explained by a do od construction [24] where events are guarded
commands transforming the state variables. Only events with enabled guards are selected for
execution, and when two or more events are simultaneously enabled, the choice is done in a
non deterministic way.

Events are generalized substitutions borrowed from the B notation. In this section, two
forms of events are used:

select P (x) then S end

any z where Q(x, z) then S end

where P (x) and Q(x, z) are predicates, z is a list of fresh variables and S is a non miraculously
statement, which can be skip, single or simultaneous assignment. The statement S, in an
event of type select, can be executed in any state where P (x) holds, while in a statement
of type any, it can be executed in any state where there exists a value z, such that Q(x, z)
holds. These conditions in the execution of S are formalized by the notion of guard, which is a
predicate associated with any generalized substitution T , indicating the states where execution
of T is feasible. Formally, the guard associated with T is given by grd(T ) ≡ ¬[T ] false, where
[T ] R, for any predicate R, denotes the weakest precondition of T to establish R. So, the
guard of events of type select and any is as comes next:

grd(select P (x) then S end) ≡ P (x)
grd(any z where Q(x, z) then S end) ≡ ∃z · (Q(x, z))

The semantics of events is given by their weakest preconditions:

[select P (x) then S end] R ≡ P ⇒ [S] R

[any z where Q(x, z) then S end] R ≡ ∀z · (Q⇒ [S] R)

where z is not free in the postcondition R of the second line, and the weakest precondition
[S] R depends on the statement S:

• If S is skip, [S] R is equivalent to R.

• If S is a single assignment x := e, [S] R is equivalent to R where any occurrence of x is
replaced by e.

• If S is a multiple assignment x1, . . . xn := e1 . . . en, [S] R is equivalent to R where all
occurrences of the variables in the list x1, . . . xn are simultaneously replaced by the
corresponding expressions in the list e1, . . . en.

An abstract model S is well formed if it fulfills two conditions:

• The initialization statement establishes the invariant: D ⇒ [U ] I.

• Execution of any event e in E always terminates and it preserves the invariant: D ∧
I ⇒ [e] I.
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For ever running systems, an extra condition is deadlock-freeness: D ∧ I ⇒ ∃e · (e ∈ E ∧
grd(e)). However, this condition obviously does not hold in the last state of a terminating
system.

Example 2.15
In this example the abstract producer-consumer system, treated in examples 2.5, 2.7 and
2.13 with other formalisms, is specified in the event B notation. The goal of this system is to
transfer any data from the producer set P to the consumer set C; this behavior is achieved
by the event pc. Event env resets the variables to their initial values to model another
production-consumption cycle. In this example, the invariant only specifies the type of the
variables.

system

PC
sets

D

variables

P,C

invariant

C ⊆ D ∧ P ⊆ D

initialisation

P,C := D, ∅

events

pc =̂
any d where

d ∈ P

then

C,P := C ∪ {d}, P − {d}
end ;

env =̂
select

P = ∅

then

P,C := D, ∅

end

✷

2.4.2 Modalities

Invariant preservation allows the specification of safety properties in abstract models. How-
ever, a new notation is required to specify liveness properties in event B along with the
corresponding proof obligations for their verification.

In [7] news constructs are introduced to specify liveness properties or modalities. The
main construct to specify liveness properties is presented in two forms:

select

P

leadsto

Q

while

E1 or · · ·or En

invariant

J

variant

V

end

any y where

P

leadsto

Q

while

E1 or · · ·or En

invariant

J

variant

V

end

where P , Q and J are predicates, V is a variant function and E1, . . . , En are events of the
system. The construct with the keyword any allows a nondeterministic choice by the variable
y, it generalizes the construct with the keyword select . Informally, this kind of modality
specifies that iteration of the statement E1 [] . . . [] En in a state where P holds, terminates
into a state where Q holds. Moreover, it also states that J is invariant in the iteration of
events and that execution of any event Ei decrements the variant V . In other words, in a
TLA style, this construct specifies the liveness property P ❀ Q and it gives information to
verify it.
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The proof obligations required to verify the construct with the keyword any are as follows:

∀y · (P ⇒ J)) (2.10)

∀y · (P ⇒ ∀z · (I ∧ J ⇒ V ∈ N)) (2.11)

∀y · (P ⇒ ∀z · (I ∧ J ∧ ¬Q⇒ [Ei]J)) (2.12)

∀y · (P ⇒ ∀z · (I ∧ J ∧ ¬Q⇒ [v := V ] [Ei] (V < v))) (2.13)

∀y · (P ⇒ ∀z · (I ∧ J ∧ ¬Q⇒ grd(E1) ∨ · · · ∨ grd(En))) (2.14)

In these proof obligations, the quantified variable z denotes the state variables modified in
the iteration. The first four conditions are in fact the proof that the iteration of E1 [] . . . [] En

terminates when its execution starts in a state satisfying P . The last proof obligation ensures
that upon termination, the iteration of events establishes Q. The proof obligations to verify
the construct with the keyword select are similar, only the universal quantification over y

disappears.
It must be noted that the set of natural numbers N is only one possibility. In fact, any

well founded set can be used in these proof obligations with its corresponding order relation.

Example 2.16
This example presents the specification and proof of a dynamic property holding in the
producer-consumer system of example 2.15. The property states that any data d in the
producer set P will be eventually transfered to the consumer set C.

any d where

d ∈ P

leadsto

d ∈ C

while

pc or env
invariant

true
variant

card(P )
end

The invariant J of this modality is the predicate true and the variant V is
the number of elements in P . Taking invariant I and events pc and env of
system PC in example 2.15, the proof obligations verifying this property
are:

d ∈ P ⇒ true

P ⊆ D ∧ C ⊆ D ∧ d ∈ P ⇒ card(P ) ∈ N

P ⊆ D ∧ C ⊆ D ∧ d ∈ P ⇒ [pc [] env ] true

P ⊆ D ∧ C ⊆ D ∧ d ∈ P ∧ d 6∈ C ∧ card(P ) = v ⇒ [pc [] env ] card(P ) < v

P ⊆ D ∧ C ⊆ D ∧ d ∈ P ∧ d 6∈ C ∧ card(P ) = v ⇒ grd(pc) ∨ grd(env)

The first two proof obligations hold trivially. Given that pc and env are
always terminating events, preservation of the invariant follows. Consid-
ering that event pc removes elements from P , the decrement of the variant

follows for this event. On the other hand, under the premise d ∈ P , the guard of event env
does not hold, and therefore it becomes miraculous under this condition and the fourth proof
obligation holds. Finally, the last proof obligation follows from the fact that d ∈ P imply the
guard of event pc.

✷

2.4.3 Refining Event B Models

In event B, abstract models are gradually implemented by a sequence of refinement steps.
In each refinement step, a new concrete model is developed, which simulates the abstract
one. The concrete model reduces nondeterminism of the abstract model by strengthening the
guard of the concrete events. Moreover, it allows the implementation of abstract structures
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into concrete variables, and makes possible the introduction of new events. The concrete,
or refined model, is a structure similar to the abstract one, with list of declaration D′, state
variable(s) y, invariant J and set of events E′ which is the union of two disjoint sets: the set
of refined events R and the set of new events H.

In order to guarantee the correctness of a refinement, the invariant J , or gluing invariant,
must relate the variable x of the abstract model with the concrete one y. Moreover, the
initialization statement and events in E′ must satisfy the following conditions:

• Initialization: D ∧ D ′ ⇒ [U ′]¬[U ]¬J .

• Refined Events: ∀e · (e ∈ E ∧ I ∧ J ⇒ [e ′]¬[e]¬J) where e′ denotes the refinement of
e in R.

• New events: ∀h · (h ∈ H ∧ I ∧ J ⇒ [h]J).

• Bounded skip: ∀h · (h ∈ H ∧ I ∧ J ∧ V = n⇒ [h]V < n).

• Deadlock-freeness: I ∧ J ∧ ∃e · (e ∈ E ∧ grd(e))⇒ ∃e ′ · (e ′ ∈ E ′ ∧ grd(e ′))

The initialization condition states that U , the initialization statement, establishes the exis-
tence of an abstract value x satisfying I(x), which is related to the concrete variable y by the
gluing invariant J(y, x). The refined events condition ensures that any postcondition estab-
lished by any abstract event e, is established by the corresponding refined event e′ as well.
The new events condition guarantees that any new event refines skip; it allows the refinement
of stuttering steps in the abstraction. The bounded skip condition ensures that iteration of
new events is finite and therefore the refined system executes eventually a refined event. Fi-
nally, the deadlock-freeness condition states that the concrete model does not introduce more
deadlocks than the abstract one.

Refining Modalities

In order to guarantee the preservation of modalities in the refined system, all proof obligations
concerning the verification of modalities must be preserved. Proof obligations (2.10) and
(2.11) are not concerned by refinement. Proof obligations (2.12) and (2.13) are preserved by
the very definition of refinement. However, there is no guarantee that (2.14) holds in the
refinement, because the concrete guards are stronger than the abstract ones.

The main goal of proof obligations (2.10–2.14) is to guarantee that iteration of abstract
events terminates. Nevertheless, the concrete system contains not only refined events, but
new events as well. Refined events cannot take the control for ever because (2.13) is preserved
and therefore their iteration terminates. New events, by the bounded skip condition in the
refinement, do not run for ever either. In this way, only must be ensured that the iteration of
refined and new events does not terminate before its normal abstract end. However, this is
guaranteed by the deadlock-freeness condition of the refinement. In fact, the bounded skip and
deadlock-freeness conditions in the refinement are introduced to guarantee the preservation
of liveness properties from the abstract model.

Example 2.17
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A refinement of the abstract producer-consumer system PC from example 2.16 is 5:

system

PC1

refines

PC

variables

P,Cc, buf

invariant

Cc ⊆ D ∧ buf ⊆ D ∧
C = Cc ∪ buf

initialisation

P,Cc, buf := D, ∅, ∅

events

prod =̂
select

d ∈ P

then

P, buf := P − {d}, buf ∪ {d}
end ;

cons =̂
any d where

d ∈ buf
then

Cc, buf := Cc ∪ {d}, buf − {d}
end ;

env c =̂
select

P = ∅ ∧ buf = ∅

then

P,Cc, buf := D, ∅, ∅

end

As in examples 2.5, 2.12 and 2.14, a buffer is introduced between the producer and the
consumer; however in this example, the buffer is simply modeled by a set and it is not a
sequence as in the previous examples. The abstract consumer set C is implemented as the
union of the concrete set Cc and the buffer buf ; this is specified by the gluing invariant
C = Cc ∪ buf .

In order to prove the correctness of this refinement, the five proof obligations stated in
the section 2.4.3 must be proved. Given that the initialization condition is easily discharged,
only the last four proof obligations are commented 6.

Refined events The proof of the refinement of env by env c is trivial. The refinement of
pc by prod follows from

C = Cc ∪ buf ∧ d ∈ P ⇒ ∃d′ · (d′ ∈ P ∧ C ∪ {d} = Cc ∪ buf ∪ {d′})

New events The refinement of skip by cons follows from

C = Cc ∪ buf ∧ d ∈ buf ⇒ C = (Cc ∪ {d}) ∪ (buf − {d})

Bounded skip cons decrements the number of elements in buf . It follows from

card(buf ) = v ∧ d ∈ buf ⇒ card(buf − {d}) < v

5For the sake of simplicity, the events pc and env in the abstraction are renamed to prod and envc respec-
tively in this refinement.

6All of this proof obligations are under the assumption of the abstract invariant P ⊆ D ∧ C ⊆ D.
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Deadlock-freeness This condition follows from the calculations of guards:

grd(pc) ≡ grd(prod) ≡ ∃d · (d ∈ P )

(grd(env) ≡ P = ∅) ∧ grd(env c) ≡ (P = ∅ ∧ buf = ∅)

Finally, the bounded skip and the deadlock-freeness condition guarantee preservation of
the modality specified in the example 2.16. ✷

2.4.4 Refinement and Reachability

In [34] a new approach to verification of modalities is proposed which is closely related to
refinement. The approach does not use particular constructs to state explicitly modalities
and they are implicitly specified by the set of system behaviors.

In the approach, behaviors of abstract models are partially specified. Events of the ab-
stract model only generate selected behaviors describing a main task, performed in one shot.
Behaviors which are not of interest are ignored at this stage. Refinements of the abstract
model gradually introduce new events, called anticipating events, generating complementary
behaviors. Anticipating events modify abstract variables and therefore do not refine skip.
However, in order to ensure that anticipating events do not take the control forever, they
must decrement a variant. Moreover, anticipating events must not modify variants associated
with anticipating events introduced in early refinement stages. Events generating comple-
mentary behaviors can be merged to conform to the final model. The technique is illustrated
in the following example.

Example 2.18
The goal of this example is to show that refinement PC1 in example 2.17 respects the

dynamic property:

Any data d in the buffer buf is eventually transfered to the consumer set Cc.

The argument to verify this property is as comes next.
The first step is to consider any data d in D. The abstract model only considers the

following five events:

prod1 =̂
select

d ∈ P

then

P := P − {d} ‖
buf := buf ∪ {d}

end ;
prod2 =̂
any d′ where

d′ ∈ P ∧ d 6∈ buf ∧ d′ 6= d

then

P := P − {d′} ‖
buf := buf ∪ {d′}

end ;

cons1 =̂
select

d ∈ buf
then

Cc := Cc ∪ {d} ‖
buf := buf − {d}

end ;
cons2 =̂
any d′ where

d′ ∈ buf ∧ d 6∈ buf
then

Cc := Cc ∪ {d
′}

buf := buf − {d′}
end ;

env =̂
select

P = ∅ ∧ buf = ∅

then

P,Cc, buf := D, ∅, ∅

end
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Event env c, as before, is used to reset the variables to their initial values. Event prod1
specifies a behavior where the data d is transfered from P to buf and event prod2 transfers,
in the same way, any other data d′ different from d only when d is not in the buffer. On
another hand, when the data d is in the buffer, event cons1 ensures that d will be transfered
from buf to Cc and event cons2 ensures a similar transfer for any other d′ only when d is not
in the buffer. In this way, when d arrives to the buffer, cons1 is the only enabled event and it
guarantees the transfer of d from buf to Cc in one shot. When d is not in the buffer, events
prod2 and cons2 transfer from P to Cc any other data d′ distinct from d. In the following
refinements, two more events are added to the model to consider complementary behaviors.

prod3 =̂
any d′ where

d′ ∈ P ∧ d ∈ buf
then

P, buf := P − {d′}, buf ∪ {d′}
end ;

In the following refinement, prod3 is introduced as
a new anticipating event. It transfers data from P

to buf when d is already in the buffer. This event
cannot take the control forever because its execution
is bounded by the number of elements in P . That is,
the variant associated with prod3 is card(P ).

The last refinement introduces the new anticipat-
ing event cons3 . The goal of this event is to allow
behaviors where any data d′, distinct from d, is trans-
fered from buf to Cc when the data d is in the buffer. Execution of cons3 is bounded by the
variant card(buf ) guarantee that this event does not take the control forever.

cons3 =̂
any d′ where

d′ ∈ buf ∧ d ∈ buf ∧ d′ 6= d

then

Cc, buf := Cc ∪ {d
′}, buf − {d′}

end

The last step is to merge events to get the final
model. The merge of events prod1 , prod2 and prod3
gives as result the event prod of system PC1 , and from
the merge of events cons1 , cons2 and cons3 , the event
cons is obtained.

✷

2.5 Fairness

In this section we review some related works having studied fairness in the context of program
verification, program development, semantics or implementation of parallelism.

In [8, 9] an approach to program transformation is proposed, where weak or strong fair
parallelism is reduced to ordinary parallelism. Apart from giving insight on fairness implemen-
tation, the transformation allows applying an extension of the proof system of Owicki-Gries
[51] to the verification of programs. The transformation embeds a scheduler in the program,
modeled by random assignment, which guarantees fair computations. Implementation of
random assignment can provide concrete scheduling policies as round robin or queuing.

A classical study on fairness is presented in [28]. The main concern of this work is the fair
termination of iteration of guarded commands under unconditional, weak or strong fairness
assumptions. Ideas coming from different sources are uniformly presented. Several rules
are presented to prove total correctness of loops by using Hoare’s triplets. Soundness and
relative completeness of that rules are proved. Apart from traditional fairness assumptions,
the notions of equifairness and extreme fairness are introduced. Equifair schedulers try to give
an equally fair chance to each guard in a group of jointly enabled guards. Extreme fairness
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deals with loops where probabilities are attached to its guarded commands. A predicate
transformer for strong fair termination of loops is presented and it is related to the rules for
proving the total correctness of loops under strong fairness.

Fairness has been clearly defined in temporal logic, as well as different sorts of safety
and liveness properties [44]. In [43] a proof system, founded on an assertional reasoning, is
proposed to verify reactive or concurrent programs. In the context of verification of temporal
properties, model checking is a useful technique that can be applied in the case of finite-state
systems. In [27] fairness assumptions are used to reduce the combinatorial explosion in the
verification of abstract transition systems by model checking.

Computational models, for concurrent program development, can be represented by the
do od construction of guarded commands. Different works can be distinguished according
to the guards of the commands. The following paragraphs give a brief survey of formalisms
where fairness plays a fundamental role.

The computational model of unity [21] can be modeled by a do od construction where
the guard of the commands is always true. These statements are executed according to an
“unconditional fairness” assumption, which indicates that in any computation any statement
is infinitely often executed. Liveness properties are specified and proved by two relations
on state predicates known as ensures and leads-to. ensures relation is defined by the Hoare
triplets quantified over the statements of a program; the fairness assumption guarantees the
execution of the helpful statement performing the basic progress specified by this relation.
leads-to is defined as the transitive and disjunctive closure of ensures.

Following the computational model of unity, in [22] a calculus of predicate transformers
is proposed to reason about safety and liveness properties. A program is a set of variables and
a set of predicate transformers denoting the weakest precondition of non miraculous, always
terminating and bounded nondeterministic statements. Progress properties are defined by
a predicate transformer defined in [39] which is the strongest solution of a set of equations
where the ensures relation forms the base case. In [46], the study of composition of leads-
to properties is pursued. In this approach, the predicate transformers defining ensures and
leads-to properties proposed in [36] are used to develop a general theory of composition of
leads-to. These predicate transformers are defined by the fixpoints of equations relating the
weakest precondition of statements in a program.

More general computation models, like those of TLA or Action Systems, where the guards
of commands in the do od construction are state predicates, allow different definitions of
fairness like weak or strong fairness. An early proposal of a predicate transformer, defined
by fixpoint equations, characterizing the weakest precondition of do od constructions under
weak fairness assumptions is presented in [52].

In [37], a methodology for designing proof systems for leads-to properties under various
fairness assumptions is proposed. This work shows how the specification and proof of liveness
properties in unity can be adapted to reason about different kinds of fairness. The method-
ology characterizes different kinds of fairness by CTL∗ formulae. These formulae are then
characterized by fixpoint in the µ-calculus. Finally these fixpoint characterizations are used
to propose various definitions of the ensures relation according to fairness assumptions.
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2.6 Conclusion

We have reviewed the main approaches to specification and refinement of systems in state
based formalisms. The approaches emphasizes two complementary views of a system:

• one considering the system as a set of properties in a particular logic and

• another one regarding the system as an algorithm in a programming-like notation.

TLA is a classical example where a system is considered as a set of safety and liveness
properties and Action System illustrates the view of a system in a programming like notation.
unity propose integration of these views in the system development. However, the algorithmic
aspect, that is the unity program, appears in the last step of the development in a sudden
way and it is not the result of a calculus as in Action System. In event B, systems are
developed by a refinement calculus and, moreover, certain safety and liveness properties can
be specified and proved.

On another hand, from the previous section, we can observe two main approaches where
fairness is considered in the formal reasoning of systems:

• fair termination of iteration of actions and

• temporal reasoning characterizing fair computation sequences.

Approaches like [8, 9, 28, 10], where the notion of fair termination of iteration is used to
reason about fairness, provide proof rules which can be directly applied in the code of models.
These rules take advantage of the decrement of variants to ensures termination and they are
difficult to apply in practice, due to the lack of modularity. This situation contrasts with the
approaches using temporal logic, like TLA or temporal logic as in [43, 45], which provides more
flexible rules to reason about liveness under fairness constraints. However, the application
of these rules in the verification of algorithms, at the implementation level, as it is often the
case, becomes very difficult; as an example of theses difficulties we can cite the verification of
the Ricart-Agrawala mutual exclusion algorithm [66].

In this thesis we are interested in state based formalisms from a practical point of view.
Therefore we are interested in the algorithmic approach of systems as it is done in Action
Systems or event B. From our practical point of view, the main advantage of event B over
Action Systems is the existence of automatic tools for the development of models; for this
reason we use event B as the framework of our study. However, as we have already explained,
the specification and proof of liveness properties in event B is not as flexible as those of the
logical approaches. For this reason we propose the incorporation of temporal logic in the
specification and proof of liveness properties in event B. We are aware that the logical system
of TLA is more flexible than that of unity, but the logic programming of unity is more
suited to our purpose for following reasons:

• Liveness properties are inductively defined from a basic relation.

• The basic relation is defined by quantification of triplets.

• The definition of the basic relation isolates fairness assumptions.
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The inductive definition of liveness properties allows modular proofs by application of a
reduced number of rules. Defining the basic relation by triplets admits simple redefinitions to
adapt it to the particularities of event B and allows the verification of basic properties by the
“Click’n Prove” prover [4]. Moreover, the isolation of fairness in the definition of the basic
relation gives the possibility of accommodate different fairness assumptions in the reasoning
of liveness properties.

We take advantage of temporal logic to specify and prove liveness properties under fairness
assumptions, but we do not interpret temporal formulas by state sequences as it is traditionally
done. Instead, we use the notion of termination of iteration advocated above. In this way, we
formally relate the notion of reachability, as specified by temporal formulas with the notion
of termination of iteration under minimal progress and weak fairness assumptions.

In the following chapters of this thesis we develop our approach: we propose proof rules
to verify basic properties in a unity-like style under minimal progress and weak fairness
assumptions in event B models. That allows the specification and proof of general liveness
properties under these constraints. Then, we propose rules to demonstrate the preservation
of liveness properties under refinement with minimal progress and weak fairness assumptions.
The semantics of liveness properties is given in a set theoretical framework. It provides the
proof of soundness of our rules. The approach is illustrated by a series of examples.
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Chapter 3

Liveness Properties in Event B

Résumé

Dans ce chapitre nous présentons les aspect pratiques de notre recherche. Nous
montrons comment spécifier et prouver des propriétés de vivacité dans le style
unity sous les hypothèses de progrès minimal et d’équité faible. Nous donnons
des obligations de preuve pour prouver des propriétés de base sous ces hypothèses
d’équité. Par différents exemples nous montrons comment prouver des propriétés
de vivacité générales. Nous présentons des règles qui sont des conditions suffisantes
pour préserver dans les raffinements les propriétés de vivacité sous les hypothèses de
progrès minimal et d’équité faible. L’application de ces règles est aussi illustrée par
des exemples.

In this chapter we present the specification, proof and refinement of liveness properties
in event B systems. The properties are specified in a notation borrowed from the unity

logic. The proofs of these properties and their preservation are given by unity theorems
and by proof obligations, in the predicate transformer calculus, specially designed for event
B systems, under weak fairness and minimal progress assumptions.

This chapter is structured in four sections. The first section gives general notions of
liveness properties in an unity-like style, where liveness properties are separated in basic and
general properties. Section two and three present proof obligations for verification of basic
properties under a minimal progress and weak fairness assumptions respectively. Section
four proposes rules for the preservation under refinement of basic properties considering the
minimal progress and weak fairness assumptions. These sections present some examples to
illustrate the approach; these examples are entirely proved with the “Click’n Prove” prover
[4].

3.1 Liveness Properties in a unity-like Style

Liveness properties are separated in two classes: basic and general properties. These proper-
ties are specified by ensures and leads-to state predicates relations respectively.

41
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3.1.1 Basic Liveness Properties

Basic properties specify transitions made by the execution of an atomic event. A basic
property is specified by an ensures relation, denoted by ≫ in this thesis.

Informally, for any state predicates P and Q, a system satisfies the property P ≫ Q, if
the execution of one event eventually makes a transition from a state where P holds into
another one where Q holds and while Q is false, P is true. Given the nondeterministic
computation model of systems, the execution of a particular event cannot be guaranteed
if fairness assumptions are not adopted. Therefore, the definition of the ensures relation
takes into account fairness assumptions, and the symbols ≫w and ≫m are used in this thesis
to stand for the ensures relation under weak fairness and minimal progress assumptions
respectively.

On another hand, inspired from [62], definitions of ensures relations take into account the
notion of strongest invariant. It is defined as the strongest predicate which is both preserved
by all events and implied by the initial conditions of the system. Incorporating the strongest
invariant in definitions of basic properties, allows the elimination of the substitution axiom
from the programming logic, while the substitutions of invariants by true continue to apply
[53]. Formally, the strongest invariant is defined as comes next:

Definition 3.1 (Strongest Invariant)
For event system S with state variable x, initialization statement U and set of events E, the
strongest invariant SI is defined as the strongest predicate X satisfying

(X ⇒ [S]X) ∧ (([x′ := x] prd(U))⇒ X)

where S is the bounded choice of events []e∈E e and prd(U) is the after-before relation associated
with U .

In sections 3.3 and 3.2, the strongest invariant SI is used to formally define the ensures
relations in event B systems under weak fairness and minimal progress assumptions

3.1.2 General Liveness Properties

General liveness properties are specified by the leads-to relation denoted by the symbol ❀.
Informally a property P ❀ Q specifies that the system eventually reaches a state satisfying
Q whenever it reaches any state in P . There are three basic differences between a ❀ relation
and a ≫ relation. The first difference is the number of steps involved in the transition from
P to Q. With ≫, the transition is done by the execution of an atomic event. However, with
❀, the number of atomic transitions is not specified. The second difference is that P ≫ Q

asserts that the system maintains P as long as Q is not established, while this assertion is
not guaranteed by the property P ❀ Q. Finally, the third difference is that a general liveness
property does not depend directly on any fairness assumption as a basic liveness property
does. Fairness assumptions are isolated in the definition of the basic relation, and other
fairness assumptions can be taken into account in the definition of the ensures relation, as it
is done in [37].

A property P ❀ Q holds in a event B system, if it is derived by a finite number of
applications of the rules defined by the unity theory:
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ANTECEDENT CONSEQUENT

BRL P ≫ Q P ❀ Q

TRA P ❀ R, R ❀ Q P ❀ Q

DSJ ∀m · (m ∈M ⇒ P (m) ❀ Q) ∃m · (m ∈M ∧ P (m)) ❀ Q

where M in the disjunction rule DSJ is any index set. It is remarked that the ensures
relation ≫ in the basic rule BRL, must be instantiated to ≫w or ≫m to derive general
liveness properties under weak fairness or minimal progress assumptions.

So as to reason about liveness properties, the proof system of unity is incorporated in the
framework of B event systems. Moreover, all theorems in [21] concerning ensures and leads
to relations, can be used in the proof of several properties of B event systems. In this thesis,
the following theorems of unity are widely used:

ANTECEDENT CONSEQUENT

IND ∀v · (P ∧ V = v ❀ P ∧ V < v ∨ Q) P ❀ Q

CAN P ❀ O ∨ Q,O ❀ R P ❀ R ∨ Q

SCJ P ❀ Q, R is a boolean constant expression P ∧ R ❀ Q ∧ R

In IND, the “induction rule”, V is a variant function over a well founded set, and v is
universally quantified over that set. IND rule indicates that in any state where P holds and
the variant value is v, if the execution of a program changes into a state where P holds but the
value of the variant is lower than v or Q holds, then the property P ❀ Q holds in the system.
The CAN rule is named the “cancellation theorem”. In SCJ, the “stable conjunction” rule,
the boolean constant expression R is any constant expression containing constants and free
variables.

It must be noted that specifications and proofs of liveness properties with the leads-to
relation are given in the framework of the proof system of unity, while the proof of properties
with the ensures relation are given in a B framework as it is indicated in the following sections.

3.2 Specification under Minimal Progress

A minimal progress assumption in a nondeterministic B event system does not guarantee the
execution of a particular event. In fact, if two or more events are simultaneously enabled, one
of them is selected for execution in a nondeterministic way. When an abstract model needs to
specify execution of a particular event, the system must code abstract schedulers [9] in order
to guarantee its execution.

A basic liveness property under a minimal progress assumption takes the general form
P ≫m Q. In order to satisfy this kind of property, a B event system must guarantee that Q

eventually holds by the execution of one event when the system reaches a state where P ∧ ¬Q

holds. However, under a minimal progress assumption, the only one possibility to satisfy this
property is to impose that any event must be able to establish Q and that, at least, one of
them must be enabled when the system reaches a state where P ∧ ¬Q holds. This reasoning
allows the definition of basic properties under minimal progress assumptions:

Definition 3.2 (ensures under minimal progress)
For any B event system S with set of events E and state predicates P and Q,

P ≫m Q =̂ SI ∧ P ∧ ¬Q⇒ (([S] Q) ∧ grd(S))
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where S is the bounded choice []e∈E e.

It must be remarked in definition 3.2 that [S] Q is equivalent to the conjunction of weakest
preconditions ∀e · (e ∈ E ⇒ [e] Q) and grd(S) is equivalent to the disjunction of guards
∃e · (e ∈ E ∧ grd(e)).

In practice, definition 3.2 is difficult to apply in the verification of basic liveness properties,
because the strongest invariant needs to be calculated. However, in order to dispose of proof
rules which can be used in practice, the invariant I of the event system S can be used instead
of the strongest invariant SI . Therefore the following rules are sufficient to prove basic
liveness properties under minimal progress assumptions, taking into account the declarations
of definition 3.2:

ANTECEDENT CONSEQUENT

MP0 I ∧ P ∧ ¬Q⇒ [S]Q P ≫m Q

MP1 I ∧ P ∧ ¬Q⇒ grd(S)

In order to demonstrate that MP0 and MP1 are sufficient conditions to guarantee basic
liveness properties, it suffices to note that SI ⇒ I.

In spite of the fact that MP0 rule states that any event in a system must be able to
establish the predicate Q, it must be noticed that under the assumption P ∧ ¬Q of that
rule, some events can be miraculous. That is, miraculous events are able to establish any
postcondition. In the following example a miraculous event is presented in the proof of a
basic liveness property.

Example 3.1
In a unity-like style, the producer-consumer system PC of example 2.15, in page 31, satisfies
for any data item d in D, the general liveness property

d ∈ P ❀ d ∈ C

stating that any data d in the producer set P will eventually be transferred to the consumer
set C. In order to prove this property under a minimal progress assumption, it must be
remarked that any data d will be eventually in the consumer set C because system PC
cannot indefinitely stay in a state where both d remains in P and the cardinality of P does
not decrease. This fact can be specified by:

d ∈ P ∧ card(P ) = n ❀ (d ∈ P ∧ card(P ) < n) ∨ d ∈ C (3.1)

Then d ∈ P ❀ d ∈ C follows by application of the induction rule IND to (3.1) where the
variant V of the rule is card(P ). Finally, this last modality is derived from the following basic
liveness property, by application of the BRL rule:

d ∈ P ∧ card(P ) = n≫m (d ∈ P ∧ card(P ) < n) ∨ d ∈ C

Under a minimal progress assumption, this property states that execution of any event of PC
when d is in P , terminates into a state where d continues to stay in P but the cardinality of
P decreases or d is transferred to C. The basic property is proved by rules MP0 and MP1.
In order to verify MP0, two proofs are required:

d ∈ P ∧ card(P ) = n⇒ [pc] (d ∈ P ∧ card(P ) < n) ∨ d ∈ C

d ∈ P ∧ card(P ) = n⇒ [env ] (d ∈ P ∧ card(P ) < n) ∨ d ∈ C
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The first implication follows directly by calculating the weakest precondition of event pc:

∀e · (e ∈ P ∧ d ∈ P ∧ card(P ) = n⇒ (d ∈ P − {e} ∧ card(P − {e}) < n) ∨ d ∈ C ∪ {e})

The second implication holds trivially considering that event env is miraculous under the
assumption d ∈ P ; in fact, the guard of event env is P = ∅ and its conjunction with d ∈ P

is false. On another hand, the proof of WF1 follows from:

d ∈ P ∧ card(P ) = n⇒ (grd(pc) ∨ grd(env))

The proof follows by considering that d ∈ P implies ∃d · (d ∈ P ), which is the guard of pc.
✷

The proof of general liveness properties does not necessarily requires the use of variant
functions. In the following example a simple system is specified where the liveness proof does
not require a variant function.

Example 3.2
In this example, a simple mutual exclusion system MutexSeq is presented. The system is
made up of set of processes PR which access a critical section. Each process can be in one
of three states: idle (ID), waiting (WT ) or active (AC ). Processes in state idle do not ask
for access to the critical section. When a process request access, its state changes to waiting.
A waiting process changes to state active when it accesses the critical section. Finally, an
active process returns to the state idle when it leaves the critical section. System MutexSeq
is specified as follows:

system

MutexSeq
sets

PR;
ST = {ID ,WT ,AC}

constants

pid
properties

pid ∈ PR ։ 0..card(PR)− 1 ∧
card(PR) > 1

definitions

Idl =̂ st−1[{ID}] ;
Wtg =̂ st−1[{WT}] ;
Act =̂ st−1[{AC}] ;

variables

st , pt
invariant

st ∈ PR → ST ∧
pt ∈ 0..card(PR)− 1 ∧
card(Act) ≤ 1 ∧
∀p · (p ∈ PR ∧ p 6∈ Act ∧ pid(p) = pt
⇒ Act = ∅) ∧
∀p · (p ∈ Act ⇒ pid(p) = pt)

initialisation

st , pt := PR× {ID}, 0

events

req =̂
any p where

p ∈ Idl ∧ pid(p) = pt
then

st(p), pt := WT , (pt + 1) mod card(PR)
end ;

ent =̂
any p where

p ∈Wtg ∧ pid(p) = pt
then

st(p) := AC
end ;

rel =̂
any p where

p ∈ Act
then

st(p), pt := ID , (pt + 1) mod card(PR)
end ;
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The state of each process is recorded in the variable st , which is a total function from the
set of processes PR to the set of states ST . A pointer pt is used to select the process which
changes its state. The pointer is incremented when a process requests access for the critical
section or when a process releases the critical section. The pointer is incremented modulo
card(PR), giving in this way a sequential behavior to the system. Processes are selected in the
order determined by the constant function pid , which is a bijection from PR to the interval
0..card(PR)− 1.

The safety properties of this system are specified by invariant predicates. The mutual
exclusion property is specified as the invariant card(Act) ≤ 1, which states that there is at
most one process in the critical section. On another hand, the invariant states that the critical
section is empty when the pointer selects a process in state idle or waiting. Finally, the last
invariant specifies that any process in the critical section is pointed by pt .

When the pointer selects a process q which is already waiting for the critical section, q

will eventually enter into it. This is specified by q ∈ Wtg ∧ pid(q) = pt ❀ q ∈ Act , which
follows from the BRL basic rule and the property

q ∈Wtg ∧ pid(q) = pt ≫m q ∈ Act

In order to verify this ensures relation, the MP0 and MP1 rules must be proved 1:

MP0: q ∈Wtg ∧ pid(q) = pt ⇒ [req [] ent [] rel ] q ∈ Act

MP1: q ∈Wtg ∧ pid(q) = pt ⇒ (grd(req) ∨ grd(ent) ∨ grd(rel))

Calculating the weakest precondition of events req , ent and rel , MP0 follows from the
following implications:

∀p · (q ∈Wtg ∧ pid(q) = pt ∧ p ∈ Idl ∧ pid(p) = pt ⇒ q ∈ Act) (3.2)

∀p · (q ∈Wtg ∧ pid(q) = pt ∧ p ∈Wtg ∧ pid(p) = pt ⇒ q ∈ Act ∪ {p}) (3.3)

∀p · (q ∈Wtg ∧ pid(q) = pt ∧ p ∈ Act ⇒ q ∈ Act − {p}) (3.4)

(3.2) and (3.4) hold trivially because req and rel are miraculous events in a state satisfying
q ∈ Wtg ∧ pid(q) = pt . In fact pid(q) = pt and pid(p) = pt in both premises allow to
conclude that p = q (in (3.4), pid(p) = pt follows from p ∈ Act and the invariant ∀p · (p ∈
Act ⇒ pid(p) = pt)). Therefore q ∈Wtg ∧ p ∈ Idl of q ∈Wtg ∧ p ∈ Act are both equivalent
to false when p = q. In the same way, p = q follows from the premise of (3.3), which easily
proves its conclusion. Finally, MP1 follows directly from the premise q ∈Wtg ∧ pid(p) = pt
which implies the guard of event ent .

✷

In spite of the fact that certain liveness properties can be proved without need for variant
functions, the induction rule IND for leads-to is still fundamental in the proof of general live-
ness properties. The following examples show specifications and proofs of liveness properties
where the variant functions are widely used.

Example 3.3
In this example, we prove that MutexSeq , specified in the example 3.2, satisfies a stronger
property: any process requesting access to the critical section eventually gets access to it:

q ∈Wtg ❀ q ∈ Act

1From now on, instead of giving the premise of proof obligations MP0 and MP1 as I ∧ P ∧ ¬Q, they are
given as P , considering I ∧ ¬Q as assumptions.
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So as to prove this property, the induction rule must be applied and a variant function must
be defined. The first consideration is to define a function calculating the “distance” between
q, the process requesting access, and the pointer pt . Formally, it is defined as follows:

V (pt , q) =






0 if pt = pid(q)
pid(q)− pt if pt < pid(q)
card(PR)− pt + pid(q) if pt > pid(q)

It can be proved that execution of events req and rel decrements V (pt , q) while q is waiting
for the critical section. However, the distance is not modified by execution of event ent ; this
event only decrements the number of processes in state waiting. Therefore, the variant must
be a lexicographic one:

W (pt , q, st) =̂ [V (pt , q), card(st−1[{WT}])]

Using the variant function W , the following basic liveness property can be proved in
MutexSeq under a minimal progress assumption:

q ∈Wtg ∧W (pid , q, st) = [m,n]≫m (q ∈Wtg ∧W (pid , q, st) ≺ [m,n]) ∨ q ∈ Act

Now, by applying the basic and induction rules for leads-to, the property q ∈Wtg ❀ q ∈ Act
is proved.

Verification of the basic liveness property follows from the MP0 and MP1 rules:

MP0: q ∈Wtg ∧W (pt , q, st) = [m,n]⇒
[req [] ent [] rel ] ((q ∈Wtg ∧W (pt , q, st) ≺ [m,n]) ∨ q ∈ Act)

MP1: q ∈Wtg ∧W (pt , q, st) = [m,n]⇒ (grd(req) ∨ grd(rel) ∨ grd(rel)).

Calculating the weakest preconditions of events req , ent and rel , MP0 follows from the fol-
lowing implications:

q ∈Wtg ∧W (pt , q, st) = [m,n] ∧ p ∈ Idl ∧ pid(p) = pt

⇒ ((q ∈Wtg ∪ {p} ∧W (pt ⊕ 1, q, st ✁− {p 7→WT}) ≺ [m,n]) ∨ q ∈ Act) (3.5)

q ∈Wtg ∧W (pt , q, st) = [m,n] ∧ p ∈Wtg ∧ pid(p) = pt

⇒ ((q ∈Wtg − {p} ∧W (pt , q, st ✁− {p 7→ AC}) ≺ [m,n]) ∨ q ∈ Act ∪ {p}) (3.6)

q ∈Wtg ∧W (pt , q, st) = [m,n] ∧ p ∈ Act

⇒ ((q ∈Wtg ∧W (pt ⊕ 1, q, st ✁− {p 7→ ID}) ≺ [m,n]) ∨ q ∈ Act − {p}) (3.7)

where pt⊕1 is pt+1 mod card(PR). (3.5) and (3.7) are proved in a similar way; only the proof
of (3.5) is commented. When pid(q) = pt , (3.5) holds trivially, because from pid(p) = pt
follows that p = q and the premise becomes false. On another hand, when pid(q) 6= pt ,
it must be remarked from the definition of V , that V (pt ⊕ 1, q) < V (pt , q) . Now, from
definition of W and V (pt , q) = m follows V (pt ⊕ 1, q) < n, which proves the decrement of
W in the lexicographic order. Moreover, q ∈ Wtg continues to hold when p is added to
Wtg , which gives the proof of (3.5). A similar case analysis allows the proof of (3.6). When
pid(q) = pt , it follows that p = q and the conclusion q ∈ Act ∪ {p} holds. When pid(q) 6= pt ,
q ∈Wtg − {p} holds and the cardinality of Wtg decreases, which entails the decrement of W

in the lexicographic order, considering that pt does not change; this fact gives the proof of
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(3.6). WF1 is proved by case analysis as well. When Act 6= ∅ the guard of rel holds. In the
contrary case, pt selects a process in state idle or waiting , which implies the guard of events
req or ent respectively. Hence, MP1 holds.

✷

The proofs of general liveness properties in the previous examples take a regular pattern :

• identification of a variant function,

• proof of a basic liveness property containing the variant and

• application of the basic (BRL) and induction (IND) rules to derive the goal.

Depending on both the complexity of the system and the property to verify, it is very com-
mon to need a variant in a lexicographic order and it may be difficult to find one, which
is decremented by any event in the system. This problem is addressed in [34] and briefly
described in section 2.4.4. The proposal states that variants must be associated with (new)
events instead of variables. In this way, a kind of refinement is proposed where “new events”
do not refine skip, they are bounded by a variant and do not modify the variants associated
with others events in previous refinements. In this way, the verification of modalities proceeds
in a stepwise approach. The initial model presents a reduced set of behaviors where a liveness
property is proved by the execution of an event. Complementary behaviors are introduced in
a series of refinements which terminates when all behaviors are considered. Constraints in the
introduction of new events give the proof of the modality. The approach to the specification
and proof of liveness in B events systems presented in this thesis, allows modular proofs where
case analysis is directly supported by the logic and there is no need to develop a system by
the kind of refinements proposed in [34]. The following example illustrates this fact.

Example 3.4
System MutexSeq , presented in example 3.2, imposes strong constraints in the specification.
The variable pt has the role of a scheduler which selects the next process to execute. All
processes change their state in a sequential way, defined by its order in the function pid .
This specification allows simple liveness proofs. Now, a little different system is presented, it
enables execution of events req among the processes in any interleaved way, but it continues
to impose a sequential execution of event ent among the processes. This system is named
MutexSeqP , it contains the same variables, constants, properties and invariants of system
MutexSeq . Events ent and rel do not change. Event req does not verify the value of the
pointer and it does not modify its value. Events of MutexSeqP are

req =̂
any p where

p ∈ Idl
then

st(p) := WT
end ;

ent =̂
any p where

p ∈Wtg ∧ pid(p) = pt
then

st(p) := AC
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ‖
pt := (pt + 1) mod card(PR)

end ;

Any process q waiting for the critical section in system MutexSeqP eventually gets access
to it. This property, formally specified by

q ∈Wtg ❀ q ∈ Act
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can be proved in many ways, using the rules for the leads-to relation.
A way, similar to the approach taken in [7], is to find a variant which is decremented by

all events in the system when q is waiting. It allows specification of the property

q ∈Wtg ∧ V(q) = v ≫m (q ∈Wtg ∧ V(q) ≺ v) ∨ q ∈ Act

where V(q) is the lexicographic variant [V (pt , q), card(Idl), card(Wtg)], v is the list [l,m, n]
with l, m and n universally quantified over N, ≺ is the order relation in the lexicographic
order and V (pt , q) is the distance between the pointer and pid(q), defined in example 3.3.

The basic property can be proved by the MP0 and MP1 rules. MP0 states that any event
decrements the variant while q waits for the critical section or q becomes active. Execution
of req preserves q ∈ Wtg and decrements the number of processes in state idle while the
pointer is not modified, which leads to the decrement of W . When event ent is executed,
if q is selected, it becomes active. If q is not selected, q remains waiting and the variant is
decremented because the number of processes in state waiting decrements and the pointer
is not modified. Finally, when rel is executed, q remains waiting for the critical section and
the distance between pid(q) and pt is reduced. These reasonings give the proof of MP0. On
another hand, MP1 follows by case analysis. If there is an active process, the guard of rel
holds. In the contrary case, the pointer selects a process in state idle and the guard of req
holds, or the pointer selects a process in state waiting and the guard of ent holds. It proves
MP1. The main liveness property q ∈ Wtg ❀ q ∈ Act follows from the basic property by
application of BRL and IND rules.

The rules for the leads-to relation allow one to make modular proofs structured by case
analysis, simplifying the variant functions. The following paragraphs show a proof illustrating
this fact.

When q waits for the critical section and the pointer selects it, q eventually becomes active.
On another hand, if q is not selected by the pointer, it will eventually be. This reasoning can
be formalized by the following properties::

q ∈Wtg ∧ pid(q) = pt ❀ q ∈ Act (3.8)

q ∈Wtg ∧ pid(q) 6= pt ❀ q ∈Wtg ∧ pid(q) = pt (3.9)

Now, from these properties and the rules TRA and DSJ, follows that q becomes eventually
active when it waits for the critical section. The proof is as comes next: The property
q ∈ Wtg ∧ pid(q) 6= pt ❀ q ∈ Act follows from (3.9) and transitivity with (3.8). The goal
q ∈Wtg ❀ q ∈ Act is proved from this last derivation and (3.8) by the disjunction rule DSJ.

When q is waiting for the critical section and pt selects it, system MutexSeqP only can
execute event act which ensures that q becomes active or it can execute several times event
req . The number of executions of req is bounded by the cardinality of Idl , the set of processes
in state idle. This reasoning allows specification of the following basic property:

q ∈Wtg ∧ pid(q) = pt ∧ card(Idl) = m≫m

(q ∈Wtg ∧ pid(q) = pt ∧ card(Idl) < m) ∨ q ∈ Act (3.10)

which proves, by application of BRL rule, the property (3.8). In order to verify that (3.10)
holds in MutexSeqP , MP0 and MP1 rules must be verified:

q ∈Wtg ∧ pid(q) = pt ∧ card(Idl) = m⇒

[req [] ent [] rel ] (q ∈Wtg ∧ pid(q) = pt ∧ card(Idl) < m) ∨ q ∈ Act

q ∈Wtg ∧ pid(q) = pt ∧ card(Idl) = m⇒ (grd(req) ∨ grd(ent) ∨ grd(rel))
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When q is waiting and it is selected by pt , from the invariant follows that event rel is not
enabled and it establishes any postcondition. Event req decrements the variant while q is
selected and execution of act allows that q becomes active. This proves MP0 and gives
arguments to verify MP1.

The proof of (3.9) considers the cases when a process is active or the critical section is
empty. These cases are specified by properties (3.11) and (3.12) below. In the first case,
property (3.11), event ent is not enabled and execution of rel reduces the distance between
the selected process and q. The execution of req is bounded by the cardinality of Idl and its
execution does not modify the pointer. Therefore, the execution of rel eventually leads to a
state where q is selected. In the second case, property (3.12), when there is no active process,
the event rel is not enabled, the execution of req is bounded by card(Idl) and execution of
both req and ent do not modify pt . For that reason, the distances among the processes and
the pointer do not change when the critical section is empty and a process eventually enters
the critical section. This reasoning allows the proof of the following properties:

P ∧ ¬R ∧ card(Idl) = m≫m (P ∧ ¬R ∧ card(Idl) < m) ∨ Q (3.11)

P ∧ R ∧ card(Idl) = m≫m (P ∧ R ∧ card(Idl) < m) ∨ (P ∧ ¬R) (3.12)

where

P ≡ P ∧ V (pt , q) = n P ≡ q ∈Wtg ∧ pid(q) 6= pt
Q ≡ (P ∧ V (pt , q) < n) ∨ Q Q ≡ q ∈Wtg ∧ pid(q) = pt

R ≡ Act = ∅

(3.11) and (3.12) are proved by MP0 and MP1 rules, using the arguments explained above.
Finally, property (3.9) is derived as comes next:

1. P ∧ ¬R ❀ Q ; (3.11), BRL and IND
2. P ∧ R ❀ P ∧ ¬R ; (3.12), BRL and IND
3. P ∧ R ❀ Q ; 2, 1 and TRA
4. P ❀ Q ; 3, 1 and DSJ
5. P ∧ V (pt , q) = n ❀ (P ∧ V (pt , q) < n) ∨ Q ; 4 and def. P and Q
6. P ❀ Q ; 5 and IND
7. q ∈Wtg ∧ pid(q) 6= pt ❀ q ∈Wtg ∧ pid(q) = pt ; 7 and def. P and Q

✷

3.3 Weak Fairness

3.3.1 Specification of Liveness Properties

A weak fairness assumption in a B event system states that any event, continuously enabled,
is infinitely often executed. This supposition guarantees the execution of events making the
transitions specified by basic liveness properties. These events are known as helpful events and
they are explicitly noted in basic liveness properties, which takes the general form G·P ≫w Q,
where G is the helpful event; this property must be pronounced as follows: “by event G, P

ensures Q”.
Informally, the property G · P ≫w Q holds in a system if execution of any event in

a reachable state where P and ¬Q holds, preserves P or establishes Q, G is enabled and
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establishes Q. Formally, basic liveness properties under weak fairness assumptions are defined
as follows

Definition 3.3 (ensures under weak fairness)
For any B event system S with set of events E, helpful event G in E and state predicates P

and Q,

G · P ≫w Q =̂ SI ∧ P ∧ ¬Q⇒ (([S] (P ∨ Q)) ∧ grd(G) ∧ [G] Q)

where S is the bounded choice []e∈E e.

From this definition follows that execution of any event of S in a reachable state where P ∧ ¬Q

holds, terminates in a state where P ∨ Q holds. Moreover, it states that the helpful event
establishes Q and is enabled while P ∧ ¬Q holds. Therefore, given that G is continuously
enabled when Q is not true, by the weak fairness assumption, G will be eventually executed
and Q will be true.

As in definition 3.2, the calculation of SI makes difficult the practical application of
definition 3.3 to verify basic liveness properties. Therefore, the invariant I of the event
system S is used to propose the following rules which are sufficient to prove basic liveness
properties under weak fairness assumptions:

ANTECEDENT CONSEQUENT

WF0 I ∧ P ∧ ¬Q⇒ [S] (P ∨ Q) G · P ≫w Q

WF1 I ∧ P ∧ ¬Q⇒ grd(G) ∧ [G]Q

where S, as in definition 3.3, stands for the bounded choice of events []e∈E e and G is a helpful
event in E. WFO and WF1 proof obligations are sufficient to prove basic liveness properties
because SI ⇒ I and therefore, by definition 3.3, the basic property follows from these rules.

Proof obligations of basic liveness properties under weak fairness assumptions are simpler
than the ones for minimal progress. The proof of a property P ≫ Q under minimal progress
requires that any event establishes Q, while under minimal progress, only the helpful event
establishes Q and the rest maintains P or establishes Q. This fact, allows simple variants in
proofs by induction, as it can be seen in the following examples.

Example 3.5
The example 3.4 shows the proof of the property q ∈Wtg ❀ q ∈ Act under a minimal progress
assumption in the system MutexSeqP . The proof follows from the following properties:

q ∈Wtg ∧ pid(q) = pt ❀ q ∈ Act (3.8)

q ∈Wtg ∧ pid(q) 6= pt ❀ q ∈Wtg ∧ pid(q) = pt (3.9)

In this example, (3.8) and (3.9) are proved by basic liveness properties under the weak fairness
assumption.

Property (3.8) was proved by the basic property (3.10) under minimal progress. As can
be checked, that proof uses the cardinality of Idl to bound the execution of event req and
then ensures that execution of ent establishes the goal. Under a weak fairness assumption,
the variant is not needed in this case. (3.8) follows simply by application of the BRL rule to

ent · q ∈Wtg ∧ pid(q) = pt ≫w q ∈ Act
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According to WF0 and WF1 proof obligations, this property is derived from the following
implications which are easily proved:

q ∈Wtg ∧ pid(q) = pt ⇒ [req [] ent [] rel ] (q ∈Wtg ∧ pid(q) = pt) ∨ q ∈ Act

q ∈Wtg ∧ pid(q) = pt ⇒ ([ent ] q ∈ Act) ∧ grd(ent)

In example 3.4, property (3.9) was proved by basic properties (3.11) and (3.12). Under
weak fairness assumptions (3.9) follows from the following properties:

req · P ∧¬grd(ent)∧card(Idl) = m≫w

(P∧¬grd(ent)∧card(Idl) < m)∨(P∧grd(ent)) (3.13)

ent · P ∧ V (pt , q) = n ∧ Act = ∅ ∧ grd(ent)≫w P ∧ V (pt , q) = n ∧ Act 6= ∅ (3.14)

rel · P ∧ V (pt , q) = n ∧ Act 6= ∅≫w (P ∧ V (pt , q) < n) ∨ Q (3.15)

where

P ≡ P ∧ V (pt , q) = n ∧ Act = ∅ P ≡ q ∈Wtg ∧ pid(q) 6= pt
Q ≡ q ∈Wtg ∧ pid(q) = pt

The basic properties are verified by the WF0 and WF1 proof obligations. These proofs follow
from the arguments used in the verification of properties (3.11) and (3.12) in the example
3.4. The proof of (3.9) under weak fairness assumptions is as follows:

1. P ∧ ¬grd(ent) ❀ P ∧ grd(ent) ; (3.13) and IND
2. P ∧ grd(ent) ❀ P ∧ V (pt , q) = n ∧ Act 6= ∅ ; (3.14) and IND
3. P ∧ ¬grd(ent) ❀ P ∧ V (pt , q) = n ∧ Act 6= ∅ ; 1, 2 and TRA
4. P ∧ V (pt , q) = n ∧ Act = ∅ ❀ P ∧ V (pt , q) = n ∧ Act 6= ∅ ; 3, 2, and DSJ def. P
5. P ∧ V (pt , q) = n ∧ Act 6= ∅ ❀ (P ∧ V (pt , q) < n) ∨ Q ; (3.15) and IND
6. P ∧ V (pt , q) = n ∧ Act = ∅ ❀ (P ∧ V (pt , q) < n) ∨ Q ; 4, 5 and TRA
7. P ∧ V (pt , q) = n ❀ (P ∧ V (pt , q) < n) ∨ Q ; 5, 6 and DSJ
8. q ∈Wtg ∧ pid(q) 6= pt ❀ q ∈Wtg ∧ pid(q) = pt ; 7, IND and def. P, Q

✷

Example 3.6
This example presents a classical solution to the mutual exclusion problem. The solution
is given by an abstract model where processes waiting for the critical section are served in
first input first output basis. The model considers a log where waiting processes are recorded
with a number denoting their time of request. The log is represented by a partial injection lg
from the set of processes PR to N. If the log is empty, a requesting process is recorded in lg
with any natural number. If the log is not empty, the requesting time of a process must be
greater than the maximum of the times recorded in lg . The requesting process with the lowest
requesting time can access the critical section if it is empty. When a process enters the critical
section, its record is removed from lg . The main safety property of this system states that
there is at most one process in the critical section. It is stated as the invariant card(Act) ≤ 1
in Mutex system. The auxiliary invariant dom(lg) = Wtg states that all waiting process are
recorded in the log. The invariant ∀p · (p ∈ Wtg ⇒ ∃n · (n ∈ N ∧ lg(p) −min(ran(lg)) = n))
states that the waiting period of any waiting process is a natural number. This invariant is
needed in the liveness proof. The specification of system Mutex is as follows:
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system
Mutex

sets

PR;
ST = {ID ,WT ,AC}

properties

card(PR) > 1
definitions

Idl =̂ st−1[{ID}] ;
Wtg =̂ st−1[{WT}] ;
Act =̂ st−1[{AC}] ;

variables

st , lg
invariant

st ∈ PR → ST ∧
lg ∈ PR 7 N ∧
dom(lg) = Wtg ∧
card(Act) ≤ 1

initialisation

st , lg := PR× {ID}, ∅

events

req =̂
any p, t where

p ∈ Idl ∧ t ∈ N ∧ (lg 6= ∅⇒ t > max(ran(lg)))
then

st(p), lg := WT , lg ∪ {p 7→ t}
end ;

ent =̂
any p where

p ∈Wtg ∧ Act = ∅ ∧ lg(p) = min(ran(lg))
then

st(p), lg := AC , {p}✁− lg
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID
end ;

The main liveness property of Mutex states that any requesting process eventually gets
access to the critical section: q ∈Wtg ❀ q ∈ Act . The proof uses the following predicates:

O ≡ Act = ∅ P ≡ q ∈Wtg
Q ≡ q ∈ Act R ≡ lg(q) = minran(lg))

The proof needs a variant which calculates the time that q has to wait until it can access the
critical section:

V = lg(q)−min(ran(lg))

The liveness property is derived from the following lemmas:

P ∧ O ∧ R ❀ Q (3.16)

P ∧ O ∧ ¬R ∧ V = n ❀ (P ∧ ¬O ∧ R) ∨ (P ∧ ¬O ∧ ¬R ∧ V < n) ∨ Q (3.17)

P ∧ ¬O ∧ R ❀ P ∧ O ∧ R (3.18)

P ∧ ¬O ∧ ¬R ∧ V = m ❀ P ∧ O ∧ ¬R ∧ V = m (3.19)

(3.16) states that q eventually enters the critical section when it is the oldest waiting process
and there is no process in state active. (3.17) specifies that the variant is decremented when
q is not the oldest process in the log or the request of q eventually becomes the oldest. (3.18)
and (3.19) express that neither R nor V is modified when the critical section is released. The
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proof of q ∈Wtg ❀ q ∈ Act is as follows:

1. P ∧ ¬O ∧ R ❀ Q ; (3.18), (3.16) and TRA
2. P ∧ O ∧ ¬R ∧ V = n ❀ (P ∧ ¬O ∧ ¬R ∧ V < n) ∨ Q ; (3.17), 1 and CAN
3. P ∧ O ∧ ¬R ∧ V = n ❀ (P ∧ O ∧ ¬R ∧ V < n) ∨ Q ; 2, (3.19) and CAN
4. P ∧ O ∧ ¬R ❀ Q ; 3 and IND
5. P ∧ ¬O ∧ ¬R ∧ V = n ❀ Q ; (3.19), 4 and TRA
6. P ⇒ ∃n · (n ∈ N ∧ V = n) ; invariant
7. P ∧ ¬O ∧ ¬R ❀ Q ; 5, DSJ, 6 and replacement
8. P ∧ ¬O ❀ Q ; 7, 1 and TRA
9. P ∧ ¬(O ∧ R) ❀ Q ; 4, 8 and DSJ

10. q ∈Wtg ❀ q ∈ Act ; 9, (3.16) and DSJ

Lemmas (3.16)–(3.19) are derived from the following basic properties:

ent · q ∈Wtg ∧ Act = ∅ ∧ min(ran(lg)) = k ∧ lg(q) = l (3.20)

≫w (q ∈Wtg ∧ Act 6= ∅ ∧ min(ran(lg)) > k ∧ lg(q) = l) ∨ q ∈ Act

rel · q ∈Wtg ∧ Act 6= ∅ ∧ min(ran(lg)) = k ∧ lg(q) = l (3.21)

≫w q ∈Wtg ∧ Act = ∅ ∧ min(ran(lg)) = k ∧ lg(q) = l

The proof of lemmas (3.16)–(3.19) uses the predicates O, P , Q and R defined above. More-
over, m(lg) denotes min(ran(lg))

Proof of (3.16)

(3.20)
⇒ { BRL }

P ∧ O ∧ m(lg) = k ∧ lg(q) = l ❀ (P ∧ ¬O ∧ m(lg) > k ∧ lg(q) = l) ∨ Q

⇒ { k = l is a boolean constant expression and SCJ }
P ∧ O ∧ m(lg) = k ∧ lg(q) = l ∧ k = l ❀ (P ∧ ¬O ∧ m(lg) > k ∧ lg(q) = l ∧ k =
l) ∨ Q

⇒ { m(lg) > lg(q) ≡ false }
P ∧ O ∧ m(lg) = k ∧ lg(q) = l ∧ k = l ❀ Q

⇒ { DSJ over k and l }
∃(k, l) · (P ∧ O ∧ m(lg) = k ∧ lg(q) = l ∧ k = l) ❀ Q

⇒ { one point rule and def. R }
P ∧ O ∧ R ❀ Q

Proof of (3.17)

Let P ≡ P ∧ O ∧ m(lg) = k ∧ lg(q) = l and Q ≡ P ∧ ¬O ∧ m(lg) > k ∧ lg(q) = l in the
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following proofs:

(3.20)
⇒ { BRL and def. P and Q }
P ❀ Q ∨ Q

⇒ { SCJ and weakening the right hand side }
P ∧ l − k = n ∧ k < l ❀ (Q ∧ l − k = n ∧ k < l) ∨ Q

⇒{ Q ∧ l − k = n ∧ k < l ⇒ P ∧ ¬O ∧ (m(lg) = lg(q) ∨ (m(lg) 6= lg(q) ∧ lg(q) − m(lg) < n)), R and V }
P ∧ l − k = n ∧ k < l ❀ (P ∧ ¬O ∧ R) ∨ (P ∧ ¬O ∧ ¬R ∧ V < n) ∨ Q

⇒ { DSJ over k and l }
∃(k, l) · (P ∧ l − k = n ∧ k < l) ❀ (P ∧ ¬O ∧ R) ∨ (P ∧ ¬O ∧ ¬R ∧ V < n) ∨ Q

≡ { def. P and one point rule }
P ∧O∧ lg(q)−m(lg) = n∧m(lg) < lg(q) ❀ (P ∧¬O∧R)∨(P ∧¬O∧¬R∧V < n) ∨
Q

≡ { ¬(m(lg) > lg(q)), def. R and V }
P ∧ O ∧ ¬R ∧ V = n ❀ (P ∧ ¬O ∧ R) ∨ (P ∧ ¬O ∧ ¬R ∧ V < n) ∨ Q

Proof of (3.18)

(3.21)
⇒ { BRL }

P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ❀ P ∧ O ∧ m(lg) = k ∧ lg(q) = l

⇒ { SCJ }
P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ∧ k = l ❀ P ∧ O ∧ m(lg) = k ∧ lg(q) = l ∧ k = l

⇒ { weakening RHS and def. R }
P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ∧ k = l ❀ P ∧ O ∧ R

⇒ { DSJ over k and l }
∃(k, l) · (P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l) ❀ P ∧ O ∧ R

≡ { one point rule and def. R }
P ∧ ¬O ∧ R ❀ P ∧ O ∧ R

Proof of (3.19)

(3.21)
⇒ { BRL }

P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ❀ P ∧ O ∧ m(lg) = k ∧ lg(q) = l

⇒ { SCJ }
P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ∧ k 6= l ∧ l − k = m ❀ P ∧ O ∧ m(lg) = k ∧
lg(q) = l ∧ k 6= l ∧ l − k = m

⇒ { weakening RHS, def. R and V }
P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ∧ k 6= l ∧ l − k = m ❀ P ∧ O ∧ ¬R ∧ V = m

⇒ { disjunction over k and l }
∃(k, l) · (P ∧ ¬O ∧ m(lg) = k ∧ lg(q) = l ∧ k 6= l ∧ l − k = m) ❀ P ∧ O ∧ ¬R ∧
V = m

≡ { one point rule, def. R and V }
P ∧ ¬O ∧ ¬R ∧ V = m ❀ P ∧ O ∧ ¬R ∧ V = m

Finally, the basic properties (3.20) and (3.21) are proved by the WF0 and WF1 rules. ✷
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3.3.2 Bounded Nondeterminism

Events specified by the any construct, introducing a bounded nondeterministic choice, can
be considered as a family of deterministic events. Therefore, an event e specified by

e =̂ any z where Pz then Sz end

where Pz implies that z belongs to the set of values z1, . . . , zn, for a certain value n, can be
considered equal to the bounded choice of deterministic events:

e = e1 [] . . . [] en

where

ei =̂ select Pi then Si end for i ∈ z1 . . . zn

This equality is justified by the equality of generalized substitutions defined in [2], where two
substitutions are equal if and only if they have the same weakest precondition:

[e]R ≡ [e1 [] . . . [] en]R

for any postcondition R.
Let S be a system including e and S ′ a similar system which distinguishes itself from S

by including the deterministic events e1 . . . en instead of e. The equality between e and the
bounded choice e1 [] . . . [] en guarantees that S and S ′ satisfy the same invariants (safety
properties). On another hand, S and S ′ satisfy the same liveness properties under mini-
mal progress assumptions. This assertion comes from the fact that MP0 and MP1 proof
obligations for basic properties are equivalent for S and S ′. Unfortunately, under weak fair-
ness assumptions, the liveness properties of S and S ′ are not the same. Any basic property
ei · P (zi)≫w Q(zi) in S ′ proved by WF0 and WF1 proof obligations, cannot be satisfied by
system S. In fact, WF0 is satisfied by S, but WF1 cannot be proved. In other words, S
cannot guarantee that event e establishes Q(zi) when it is executed in any reachable state
satisfying P (zi) ∧ ¬Q(zi).

In this thesis, bounded nondeterministic events like e are considered as a syntactical short-
hand for the family of events e1, . . . , en. It allows for using any deterministic event ei as a
helpful event in the proof of basic liveness properties under weak fairness assumptions. More-
over, it is advisable to reduce the nondeterminism of e only at a certain level by considering
a particular condition R(z). That is, e can be seen as shorthand for the choice e1 [] e2 where:

e1 =̂ any z where Pz ∧ R(z) then Sz end

e2 =̂ any z where Pz ∧ ¬R(z) then Sz end

These considerations simplify the proof of basic liveness properties under weak fairness as-
sumptions, as it is illustrated in the following example.

Example 3.7
The example 3.1 shows that system PC , specified in example 2.15, satisfies property d ∈ P ❀

d ∈ C under a minimal progress assumption. Under a weak fairness assumption the proof is
very similar; it follows from the induction (IND) and basic (BRL) rules applied to:

pc · d ∈ P ∧ card(P ) = n≫w d ∈ P ∧ card(P ) < n ∨ d ∈ C
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Nondeterminism in event pc requires a variant function to guarantee that any data d will
eventually be transferred from P to C. Considering D as a finite set and taking pc as a
shorthand for events pc1 and pc2 defined as comes next:

pc1 =̂
any d′ where

d′ ∈ P ∧ d′ = d

then

C,P := C ∪ {d′}, P − {d′}
end ;

pc2 =̂
any d′ where

d′ ∈ P ∧ d′ 6= d

then

C,P := C ∪ {d′}, P − {d′}
end

the property d ∈ P ❀ d ∈ C follows directly from

pc1 · d ∈ P ≫w d ∈ C

by application of the BRL rule. WF0 and WF1 allows the proof of this basic property:

WF0: d ∈ P ⇒ [pc1 [] pc2 [] env ] d ∈ P ∨ d ∈ C.

WF1: d ∈ P ⇒ ([pc1] d ∈ C) ∧ grd(pc1)

WF0 is easily proved considering that pc = pc1 [] pc2. WF1 follows from the calculations of
the guard and weakest precondition of pc1: [pc1] d ∈ C ≡ d ∈ C ∪ {d} and grd(pc1) ≡ d ∈ P .

✷

3.4 Preserving Liveness Properties

The implementation of abstract B models is made by stepwise refinement, as indicated in
section 2.4.3 of chapter 2. The classical approach to prove correctness of a refinement step is
the verification of five conditions:

1. Initialization. The initialization statement must establish the concrete invariant.

2. Refined events. Concrete events must refine the abstract ones.

3. New events. New events must refine skip.

4. Bounded skip. New events must decrement a variant.

5. Deadlock-freeness. The refinement does not introduce more deadlocks than the abstraction.

Condition 1–3 allows preservation of safety properties, while conditions 4 and 5 guarantees
that modalities, specified under minimal progress assumptions, are preserved.

The main concern of this section is the proposal of proof rules for preserving general
liveness properties in the refinement of abstract models. Considering that general liveness
properties are derived from basic properties, it suffices to prove the preservation of basic
liveness properties. Therefore, the approach taken in this thesis to prove the correctness of
a refinement step is to guarantee that safety properties are preserved, by conditions 1–3 of
the classical approach, and then verify that basic liveness properties are preserved. However,
the conditions to preserve basic liveness properties depend on the fairness assumption taken
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in the specification of the basic properties. For this reason, the conditions to preserve these
properties are grouped in proof rules for minimal progress and weak fairness assumptions
respectively.

We suppose that a certain property P ≫ Q holds in an abstract model S. This model
has a state variable x, invariant I and set of events E. The bounded choice of events in E

is denoted by S. We consider a refinement of S denoted by T , with state variable y and
gluing invariant J . The set of events in T is made up of concrete events, refining the abstract
ones, and new events refining skip. The bounded choice of concrete events is denoted by T

(S ⊑J T ) and the bounded choice of new events is denoted by H (skip ⊑ H). In the following
sections, we propose sufficient conditions to prove that the basic property P ≫ Q, proved in
S under minimal progress or weak fairness assumptions, is preserved in the refinement T .

3.4.1 Preservation under Minimal Progress

The proof of the basic property P ≫m Q in S needs the verification of rules MP0 and MP1:

MP0 I ∧ P ∧ ¬Q⇒ [S]Q.

MP1 I ∧ P ∧ ¬Q⇒ grd(S).

These rules guarantee that in any state of S where P ∧ ¬Q holds, an event is enabled and its
execution establish Q. In order to guarantee the preservation of P ≫m Q in T , the refined
system must guarantee that any concrete event establishes Q′ when it is executed in any state
where P ′ ∧ ¬Q′ holds, where P ′ and Q′ are predicates on the refined state where there exists
an abstract state satisfying both the gluing invariant and P or Q respectively:

P ′ ≡ ∃x · (I(x) ∧ J(y, x) ∧ P )

Q ′ ≡ ∃x · (I(x) ∧ J(y, x) ∧ Q)

Considering that concrete events T refine S, and by the very definition of refinement, the
establishment of Q′ by T can be asserted; for this reason, the MP0 rule continues to hold in
T . On another hand, as a result of refinement, the guard of T becomes stronger than the
guard of S. Therefore, rule MP1 does not hold in T , and the execution of concrete events
cannot be ensured.

In order to guarantee execution of concrete events, the “bounded skip” and “deadlock-
freeness” conditions of the classical approach to verify refinements are used:

BMP I ∧ J ∧ V = n⇒ [H] V ≺ n

LMP I ∧ J ∧ grd(S)⇒ grd(T ) ∨ grd(H))

In fact, the refinement of skip by new events guarantees that the predicate ∃x·(I(x) ∧ J(y, x) ∧
P ∧ ¬Q) is invariant under H. This fact guarantees that P ′ holds while Q′ is not established.
However, it does not allow necessary the execution of concrete events because new events can
take control forever. The rule BMP prevents this anomalous behavior by demanding that new
events decrement a variant over a well founded set. Moreover, the LMP rule guarantees that
some event in the refinement T is enabled whenever any abstract event is enabled. In this
way, when P ′ ∧ ¬Q′ holds in the refinement T , the execution of any concrete event eventually
reaches a state where Q′ holds. The following examples show the application of these rules
to verify the preservation of liveness properties under minimal progress assumptions.
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Example 3.8
In example 3.1, we prove that the producer-consumer system PC , specified in the example
2.15, satisfies under the minimal progress assumption the property d ∈ P ❀ d ∈ C, stating
that any data d in the producer set, is eventually transferred to the consumer set. The liveness
property is derived from the basic liveness property

d ∈ P ∧ card(P ) = n≫m (d ∈ P ∧ card(P ) < n) ∨ d ∈ C

In example 2.17, the refined producer-consumer system PC1 is presented. This refinement
introduces a new variable, buf , which models a buffer between the producer and consumer,
and a new event cons. The gluing invariant C = Cc ∪ buf relates the abstract consumer set
with the concrete one and the buffer. For the sake of simplicity, the events of PC and PC1
are presented again:

pc =̂
any d where

d ∈ P

then

P,C := P − {d}, C ∪ {d}
end ;

env =̂
select

P = ∅

then

P,C, := D, ∅

end

Events of system PC

prod =̂
any d where

d ∈ P

then

P := P − {d} ‖
buf := buf ∪ {d}

end ;

cons =̂
any d where

d ∈ buf
then

Cc := Cc ∪ {d} ‖
buf := buf − {d}

end ;

env c =̂
select

P = ∅ ∧ buf = ∅

then

P,Cc, buf := D, ∅, ∅

end

Events of system PC1

According to BMP and LMP rules, the abstract property p ∈ P ❀ p ∈ C is preserved
in the refinement PC1 if the new event cons decrements a variant and grd(pc [] env) ⇒
grd(prod [] cons [] env). Considering that execution of the event cons removes elements from
buf , the obvious variant in this case is the cardinality of buf . Now it is easy to prove the
following implication:

card(buf ) = n ∧ d ∈ buf ⇒ card(buf − {d}) < n

which proves the BMP rule. On another hand, if the abstract event pc is enabled, the producer
set is not empty, therefore the concrete event prod is enabled. When the producer set is empty
in the abstraction, two cases must be considered: the buffer in the refined system is empty
or not. When the producer set and the buffer are both empty, the guard of the event env c,
which models the environment in the refined system, is enabled. However, if the buffer is not
empty, the guard of event cons, which models the consumer, is enabled. This reasoning can
be concluded by the following implications, which allow the proof of the LMP condition:

grd(pc)⇒ grd(prod)

grd(env) ∧ buf = ∅⇒ grd(env c)

grd(env) ∧ buf 6= ∅⇒ grd(cons)

✷
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Example 3.9
This example presents MutexSeqPT , a refinement of system MutexSeqP , specified in the
example 3.4. Moreover, it gives the proof of the preservation of the liveness property q ∈
Wtg ❀ q ∈ Act which holds in MutexSeqP .

The refinement changes the pointer pt of MutexSeqP , which selects the process that access
the critical section, by a token. As in MutexSeqP , processes access the critical section in the
order defined by their pid . The variable tk , a total function from PR to the booleans, records
which process has assigned the token. Initially, the token is assigned to the process with pid
zero. There is always a process with the token (card(tk−1[{true}]) = 1). A requesting process
p enters the critical section when the token is assigned to it (p ∈ st−1[{WT}]∩ tk−1[{true}]);
therefore, any process in state active has the token (st−1[{AC}] ⊆ tk−1[{true}]). The token is
assigned by a server which uses a mailbox to communicate with the processes. The mailbox is
modeled by a sequence of processes ch of size equal or lower than one. When a process p leaves
the critical section, p is stored in the mailbox. Any process in the mailbox is in state idle and
has assigned the token (ran(ch) ⊆ st−1[{ID}] ∩ tk−1[{true}]). The gluing invariant considers
two cases. First, when the mailbox is not empty, the pointer pt is the identifier of the process
in the mailbox plus one, modulo card(PR) ((ch 6= ∅⇒ pt = (pid(ch(1))+1) mod card(PR))).
Second, when the mailbox is empty, the pointer corresponds to the identifier of the process
which holds the token (∀p · (p ∈ tk−1[{true}] ∧ ch = ∅ ⇒ pt = idx (p))). The complete
specification of the refinement MutexSeqPT is as follows:

refinement

MutexSeqPT

refines

MutexSeqP

variables

st , ch, tk

invariant

ch ∈ seq(PR) ∧

tk ∈ PR → BOOL ∧

size(ch) ≤ 1 ∧

card(tk−1[{true}]) = 1 ∧

(ch 6= ∅⇒ pt =

(pid(ch(1)) + 1) mod card(PR)) ∧

∀p · (p ∈ tk−1[{true}] ∧ ch = ∅⇒

pt = pid(p)) ∧

ran(ch) ⊆ st−1[{ID}] ∩ tk−1[{true}] ∧

st−1[{AC}] ⊆ tk−1[{true}]

initialisation

st := PR× {ID} ‖

ch := ∅ ‖

tk := (PR × false) ✁− {pid−1(0) 7→ true}

events

req =̂
any p where

p ∈ st−1[{ID}] ∧ ch = ∅

then

st(p) := WT
end ;

ent =̂
any p where

p ∈ st−1[{WT}] ∩ tk−1[{true}]
then

st(p) := AC
end ;

rel =̂
any p where

p ∈ st−1[{AC}]
then

st(p), ch := ID , ch ← p

end ;
srv =̂

select

ch 6= ∅

then

ch := ∅ ‖ tk := tk ✁− {ch(1) 7→ false,
pid−1((pid(ch(1)) + 1) mod card(PR))
7→ true}

end ;
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Processes in state idle must verify that the mailbox is empty before changing its state
to waiting. If the mailbox is not empty, the server has not yet assigned the token to the
next process, and a process in state idle can access the critical section again. The server is
modeled by a new event named srv , which is enabled when the mailbox is not empty. When
srv is executed, the mailbox is cleared and the token is assigned to the next processes in the
order stated by pid .

Apart from safety properties specified as invariants and commented above, this system
satisfies the liveness property q ∈Wtg ❀ q ∈ Act , which is preserved from the abstraction. In
order to demonstrate this fact, the BMP and LMP rules must be proved. The new event srv
is enabled when the mailbox ch is not empty, and its execution removes an element from ch.
Therefore, the variant decremented by srv in this case is the cardinality of ch. The following
implication, which follows from the weakest precondition of srv proves the BMP rule:

card(ch) = n ∧ ch 6= ∅⇒ card(ch) < n

When the mailbox is not empty, it means that a process has left the critical section and the
guard on srv becomes enabled. Let reqc, actc and rel c be the guards of req , act and rel in
the refinement respectively. If the mailbox is empty, and there is a process in state idle (the
guard of req in MutexSeqP holds), then the guard of reqc is enabled. When a waiting process
is pointed by pt in the abstraction (the guard of act in MutexSeqP is enabled) there is no
direct information about the token. If the token is assigned to a process in state idle, then
the guard of reqc is enabled when the mailbox is empty. If the token is assigned to an active
process, then the guard of rel c is enabled. Finally, if a waiting process has assigned the token,
then the guard of actc holds. This reasoning allows the proof of the following formulas:

grd(req [] ent [] rel) ∧ ch 6= ∅⇒ grd(srv)

grd(req) ∧ ch = ∅⇒ grd(reqc)

grd(act) ∧ tk−1[{true}] ⊆ Idl ∧ ch = ∅⇒ grd(reqc)

grd(act) ∧ tk−1[{true}] ⊆ Act ⇒ grd(rel c)

grd(act) ∧ tk−1[{true}] ⊆Wtg ⇒ grd(actc)

grd(rel)⇒ grd(rel c)

It must be remarked that ch = ∅ follows from grd(rel) or tk−1[{true}] ⊆ Idl under the
assumptions of the invariant. These implications allows the proof of the LMP rule. Finally,
the proofs of BMP and LMP rules guarantee that q ∈Wtg ❀ q ∈ Act holds in the refinement.

✷

3.4.2 Preservation under Weak Fairness

A basic liveness property G ·P ≫w Q holds in the model S under a weak fairness assumption,
if the WF0 and WF1 rules hold:

WF0 P ∧ ¬Q⇒ [S] (P ∨ Q)

WF1 P ∧ ¬Q⇒ ([G]Q) ∧ grd(G)

These rules guarantee that execution of any event preserves P or establishes Q. Moreover,
the helpful event is enabled and its execution establishes Q. The weak fairness assumption
ensures that G will be eventually executed.
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The choice of abstract events S can be considered as F [] G, where G is a helpful event in
E, the set of events in S, and F is the bounded choice of events in E − {G}. In the refined
system T , the concrete events become F ′ and G′, where F ′ is the refinement of F and G′

the refinement of G. New events refining skip are denoted by H. By the very definition of
refinement, the following predicates hold in T :

I ∧ J ∧ P ∧ ¬Q⇒ [F ′ [] H]∃x · (I ∧ J ∧ (P ∨ Q))

I ∧ J ∧ P ∧ ¬Q⇒ [G ′]∃x · (I ∧ J ∧ Q)

However the implication I ∧ J ∧ P ∧ ¬Q ⇒ grd(G′) does not hold under the same as-
sumptions, because the refined event G′ has a guard stronger than grd(G). Then, in order
to guarantee the preservation of the basic property, refinement T must reach a state in the
guard of G′ when it arrives in a state out of the guard (rule LIP: Liveness Preservation),
and that the guard of G′ must be preserved by F ′ and H (rule SAP: Safety Preservation).
Formally the proof obligations in T to preserve G · P ≫ Q are:

LIP I ∧ J ∧ P ∧ ¬Q ∧ ¬grd(G′) ❀ grd(G′)

SAP I ∧ J ∧ P ∧ ¬Q ∧ grd(G′)⇒ [F ′ [] H] grd(G′)

These proof obligations must be proved in all refinements of the abstract system, for each
basic property, required in the derivation a leads-to property. However, in certain special cases,
the basic property can be preserved trivially, or LIP and SAP can be proved by preservation
of basic liveness properties, from which LIP follows. These two conditions are stated as two
rules which can be applied in the proof of preservation of liveness. In these rules, the predicate
Ji, for i ∈ N1, denotes the conjunction of gluing invariants:

Ji ≡ J1 ∧ J2 ∧ . . . ∧ Ji (3.22)

where Jj , for j ∈ 1..i, denotes the gluing invariant in refinement j. The rules are:

R1.- Let Gi · P ≫ Q be a property of the abstract model, or a property in a refinement
i, derived from WF0 and WF1 proof obligations, and Gi+1 the helpful event of the
property in a refinement i + 1. If the following implication holds in that refinement:

I ∧ Ji+1 ∧ P ∧ ¬Q⇒ grd(Gi+1 )

then, the basic property is preserved trivially.

R2.- Let i be a refinement where the LIP and SAP proof obligations hold:

I ∧ Ji ∧ P ∧ ¬Q ∧ ¬grd(Gi) ❀ grd(Gi)

I ∧ Ji ∧ P ∧ ¬Q ∧ grd(Gi)⇒ [e] grd(Gi)

where e is universally quantified over the set Ei − {Gi}, and Ei is the set of events in
refinement i. Let β be the set of basic liveness properties, sufficient to derive the LIP
proof obligation in refinement i. If the following implication holds in refinement i + 1:

I ∧ Ji ∧ Ji+1 ∧ grd(Gi)⇒ grd(Gi+1)

where Ji+1 is the gluing invariant in refinement i+1, and if all basic properties in β are
preserved in refinement i + 1, then LIP and SAP proof obligations hold in refinement
i + 1.



3.4. PRESERVING LIVENESS PROPERTIES 63

Application of rule R1 happens when the guard of the helpful event is not modified, or it is
modified but, it is still implied by the gluing invariant. Rule R2 is applied when the helpful
event is not modified any more, or its guard becomes weaker, and the refinement process
proceeds with other events in the system.

The following examples show the application of the R1 rule in the proof of preservation
of basic liveness properties. The application of R2 rule is presented in a larger example of
chapter 6. Soundness of R1 and R2 rules is proved in appendix E.

Example 3.10
In example 3.7 we prove that the producer-consumer system PC , specified in the example
2.15, satisfies the property d ∈ P ❀ d ∈ C under a weak fairness assumption, stating that
any data d in the producer set, is eventually transferred to the consumer set. The proof is
given in two forms. The first one uses a nondeterministic helpful event and a variant. The
second form does not need a variant and the helpful event is deterministic. In this example
we prove that the liveness property is preserved in the refinement PC1 , presented in example
2.17, under the weak fairness assumption. Events in both the specification (PC ) and the
refinement (PC1 ), can be seen in page 59.

The first form of the proof uses the event pc to guarantee the basic property in PC

pc · d ∈ P ∧ card(P ) = n≫w d ∈ P ∧ card(P ) < n ∨ d ∈ C

This property is trivially preserved in PC1 , considering that the guard of pc in the abstraction
and the guard of prod in the refinement, are the same. Therefore, the implication d ∈ P ⇒
grd(prod) holds and, by the R1 rule, the basic properitty is preserved in PC1 .

The second form of the proof uses the deterministic event pc1 to prove the property

pc1 · d ∈ P ≫w d ∈ C

In the refinement PC1 , a corresponding refined event prod1 can be obtained by considering
the equality prod = prod1 [] prod2, where prod1 and prod2 are defined as follows:

prod1 =̂
any d′ where

d′ ∈ P ∧ d′ = d

then

buf , P := buf ∪ {d′}, P − {d′}
end ;

prod2 =̂
any d′ where

d′ ∈ P ∧ d′ 6= d

then

buf , P := buf ∪ {d′}, P − {d′}
end ;

It must be remarked that prod1 refines pc1. Therefore, the basic property is trivially preserved
in PC1 by the R1 rule, because the implication d ∈ P ⇒ grd(prod1) holds.

We note that in this example, and in example 3.8, the preservation of the general liveness
property d ∈ P ❀ d ∈ C implies that the refined system PC1 must satisfy the property:

d ∈ P ❀ d ∈ Cc ∪ buf

However, this property does not guarantee that any data d in P will be eventually in the
concrete store Cc. In order to guarantee this transfert, the following property must be proved:

d ∈ buf ❀ d ∈ Cc
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Taking the considerations of the section 3.3.2, and remarking the equality of events cons =
cons1 [] cons2, where cons1 and cons2 are as follows:

cons1 =̂
any d′ where

d′ = d ∧ d′ ∈ buf
then

Cc := Cc ∪ {d
′} ‖

buf := buf − {d′}
end ;

cons2 =̂
any d′ where

d′ 6= d ∧ d′ ∈ buf
then

Cc := Cc ∪ {d
′} ‖

buf := buf − {d′}
end

the following basic property holds in system PC1 :

cons1 · d ∈ buf ≫w d ∈ Cc

From this basic property, and the preserved general liveness property, the property

d ∈ P ❀ d ∈ Cc

is derived as follows:

1. cons1 · d ∈ buf ≫w d ∈ Cc ; basic property
2. d ∈ P ❀ d ∈ Cc ∪ buf ; preserved property
3. d ∈ buf ❀ d ∈ Cc ; 1 and BRL
4. d ∈ P ❀ d ∈ Cc ∨ d ∈ buf ; 2
5. d ∈ P ❀ d ∈ Cc ; 4, 3 and CAN

✷

Example 3.11
In this example we present a refinement of system Mutex presented in example 3.6. This
refinement, named Mutex2 , implements the log lg of Mutex by an injective sequence qu where
requesting processes are served in a first input first output basis. qu is initialized to the empty
sequence; the range of qu corresponds to the set of waiting processes (Wtg = ran(qu)). A
new event srv is introduced, modeling a server which assigns a token to the first process in
qu. The token is represented by a boolean; the variable tk , a total function from PR to
BOOL, records the process which has assigned the token. Initially, for any process p, tk(p) is
false. At most, there is a process which has assigned the token (card(Tk) ≤ 1). If a waiting
process has assigned the token, then it is the first process in qu (Wtg ∩ Tk ⊆ {first(qu)}).
Any process in the critical section has assigned the token (Act ⊆ Tk); therefore the token
is not assigned to processes in state idle (Tk ⊆ PR − Idl). The gluing invariant relating
the log lg with the sequence qu states that for any waiting process p, its position qu−1(p) is
lg(p)−min(ran(lg)) + 1. The refined system is as comes next:
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refinement

Mutex2

refines

Mutex
definitions

Idl =̂ st−1[{ID}] ;
Wtg =̂ st−1[{WT}] ;
Act =̂ st−1[{AC}] ;
Tk =̂ tk−1[{true}] ;

constants

sh
properties

sh = λl · (l ∈ ST →p N |
λx · (x ∈ N ∧ x ∈ ran(l) |

(x−min(ran(l))) + 1))
variables

st , qu, tk
invariant

qu ∈ iseq(PR) ∧
tk ∈ PR → BOOL ∧
Wtg = ran(qu) ∧
card(Tk) ≤ 1 ∧
Wtg ∩ Tk ⊆ {first(qu)} ∧
Act ⊆ Tk ∧
Tk ⊆ PR − Idl ∧
(lg ; sh(lg))−1 = qu ∧

initialisation

st := PR× {ID} ‖
qu := ∅ ‖
tk := (PR × {false})

events

req =̂
any p where

p ∈ Idl
then

st(p) := WT ‖
qu := qu ← p

end ;

ent =̂
any p where

p ∈Wtg ∩ Tk
then

st(p) := AC ‖
qu := tail(qu)

end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ‖
tk(p) := false

end ;

srv =̂
select

qu 6= ∅ ∧ Tk = ∅

then

tk(first(qu)) := true
end

Apart from safety properties stated as invariants, Mutex2 preserves the liveness property
q ∈ Wtg ❀ q ∈ Act specified in the abstraction Mutex . This property is derived from the
following basic properties holding in Mutex :

ent ·q ∈Wtg ∧ Act = ∅ ∧ min(ran(lg)) = k ∧ lg(q) = l

≫w (q ∈Wtg ∧ Act 6= ∅ ∧ min(ran(lg)) > k ∧ lg(q) = l) ∨ q ∈ Act
(3.20)

rel ·q ∈Wtg ∧ Act 6= ∅ ∧ min(ran(lg)) = k ∧ lg(q) = l

≫w q ∈Wtg ∧ Act = ∅ ∧ min(ran(lg)) = k ∧ lg(q) = l
(3.21)

In order to guarantee the preservation of q ∈ Wtg ❀ q ∈ Act , (3.20) and (3.21) must be
preserved in Mutex2 .

The guard of rel , the helpful event of (3.21) in both the abstraction and the refinement,
is the same. Therefore, the implication Act 6= ∅⇒ grd(rel) holds, and by the R1 rule, (3.21)
is trivially preserved.

Considering that the guard of act , the helpful event in (3.20), is equivalent to (Wtg∩Tk 6=
∅) and replacing G′ with the helpful event act in LIP, and F ′ [] H with req [] rel [] srv in the
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SAP rule, the sufficient conditions to guarantee the preservation of (3.20) are:

q ∈Wtg ∧Wtg ∩ Tk = ∅ ❀ Wtg ∩ Tk 6= ∅ (3.23)

q ∈Wtg ∧Wtg ∩ Tk 6= ∅⇒ [req [] rel [] srv ]Wtg ∩ Tk 6= ∅ (3.24)

When the token is not assigned to a waiting process, and q is still waiting for the critical
section, it means that the set of processes holding the token is empty (Tk = ∅) and that
the sequence qu is not empty. Therefore the guard of event srv is enabled and its execution
assigns the token to a waiting process, enabling the guard of event act . This reasoning and
the WF0 and WF1 proof obligations guarantee that the following basic property holds:

srv · q ∈Wtg ∧Wtg ∩ Tk = ∅≫w Wtg ∩ Tk 6= ∅

Then, the proof obligation (3.23) follows from this basic property applying the BRL rule.
The proof of (3.24) can be argued as follows. When the guard of act is established, that is,

the token has been assigned to a waiting process, the execution of event req does not modify
this condition. On another hand, under this same condition, the events rel and srv are not
enabled. In fact, when the token is assigned to a waiting process, it means that the critical
section is empty (Act = ∅), and that the set of processes holding the token is not empty
(Tk 6= ∅). Therefore, when the guard of act is enabled, the events rel and srv are miraculous
and they establish any postcondition.

✷

3.5 Conclusion

In this chapter we present the main practical aspects of our approach. We illustrate by
examples how to specify and prove liveness properties in abstract models and then how to
preserve them in refinements. We explain how to derive general liveness properties from basic
liveness properties by application of three rules without fairness considerations.

Basic liveness properties are defined considering two fairness assumptions: minimal progress
and weak fairness; these definitions consider the strongest invariant. Then we propose the
proof obligations MP0 and MP1 which are sufficient conditions to verify a basic properties
P ≫m Q under minimal progress assumptions. Under the assumption of the invariant, these
rules state that all events establish Q when they are executed in a state satisfying P ∧ ¬Q
(MP0) and that at least, one event is enable (MP1). The verification of a basic properties
G ·P ≫w Q, where G denotes the helpful event of the property, under weak fairness assump-
tions, is done by the rules WF0 and WF1. These rules state that under the assumption of the
invariant, the execution of any event in a state where P ∧ ¬Q terminates in a state where P or
Q holds (WF0) and that the helpful event is enabled and its execution establishes Q (WF1).
Events defined by any constructs introducing bounded nondeterminism, are considered as a
finite family of deterministic events which can be used as helpful events in basic properties
under weak fairness assumptions.

Preservation of liveness properties depends on fairness assumptions. We state that in
order to preserve general liveness properties, it suffices to preserve the basic ones. In the
case of minimal progress, the rules BMP and LMP, which do not depend on a particular
basic property, are proposed. The rule BMP states that any new event in a refinement must
decrement a variant function, and the LMP rule indicates that under the assumption of the
gluing invariant and the invariant of the abstraction, the guards of concrete and new events
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must be implied by the guards of the abstraction. In the case of weak fairness, the proposed
rules LIP and SAP are sufficient conditions to preserve a basic property G · P ≫w Q. The
LIP rule states that we need to guarantee that the refined system reaches a state where the
guard of G′, the refined helpful event, holds whenever it arrives in a state where ¬grd(G′)
holds. The SAP rule indicates that the guard of G′ must be preserved by all events in the
refinement. Considering that the proof of the LIP rule depends on another basic properties,
these properties must be preserved in the refinement steps. We proposed rules R1 and R2
which are used to provide trivial proofs in the preservation of basic properties under weak
fairness assumptions.

In [56] we proposed the first time our approach to the specification and proof of liveness
properties in B event systems in a unity-like style considering minimal progress and weak
fairness assumptions. The proof obligation WF1 was less general that the version presented
in this thesis: it was only valid for deterministic events. In [60] we reviewed our rules for the
verification of basic liveness properties under weak fairness assumptions and we proposed the
rules for their preservation under refinement. The approach was illustrated by the specification
and refinement of a mutual exclusion algorithm similar to system Mutex2 in example 3.11. In
[17] we presented the rules for verification and preservation of basic properties under minimal
progress assumptions and we applied these rules in the liveness proofs of the Ricart-Agrawala
mutual exclusion algorithm.
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Chapter 4

A Semantics for leads-to

Résumé

Dans ce chapitre, nous donnons les justifications théoriques de notre travail. Nous
présentons un cadre ensembliste théorique, où les événements d’un système et son
itération sont modélisés comme des transformateurs d’ensembles. Afin de don-
ner une interprétation aux propriétés de type leads-to, nous introduisons la rela-
tion de terminaison. D’autre part, la relation leads-to est présentée sous la forme
d’une relation entre sous-ensembles d’états, nommée relation d’atteignabilité, qui est
définie d’une manière inductive. Ces définitions sont données sans aucune hypothèse
d’équité dans l’itération des événements. Nous montrons, par un théorème, que ces
relations sont équivalentes. Ensuite, les relations de terminaison et d’atteignabilité
sont instanciées afin de considérer les hypothèses d’équité de progrès minimal ou
d’équité faible. Nous prouvons que ces instanciations vérifient toujours l’équivalence
entre les relations de terminaison et d’atteignabilité. Nous donnons des exemples
de dérivation de règles permettant la preuve des propriétés de vivacité en utilisant
notre analyse sémantique.

In action or event systems, such as unity, TLA or actions systems, the behavior of a
system is described in terms of observations about its state, and they are known as state
based formalisms. All of these formalisms have a common aspect: their semantics is founded
on state-traces of transition systems.

State traces of transition systems impose an operational reasoning about the behavior of a
system. However, this operational behavior can be hidden by using temporal logic to specify
safety and liveness properties. Semantics of temporal formulas is given by state-traces of tran-
sition systems. A proof system allows derivation of properties from other proved properties
without an operational reasoning, only by symbolic calculations. Soundness and complete-
ness of the logic are established by proofs relating logical formulas with assertions about
state-traces. So, at this point we come back to operational reasoning about the transition
systems.

A more abstract possibility to define the semantics of action systems is to found it on
fixpoints of set (or predicates) transformers. Inspired from [7] and [37], we characterize certain
liveness properties as fixpoints of set transformers modeling iteration of events, under minimal
progress or weak fairness assumptions. We are only interested in properties of type P leads-to
Q, where P and Q are predicates on the state space of a system, with the informal meaning:

69
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“the system eventually reaches a state satisfying Q when its execution arrives at any state in
P”. The fixpoint characterizing this property denotes the largest subset of states, containing
all states satisfying P , where iteration of events in the system, is guaranteed to terminate in a
state satisfying Q. In this chapter, soundness and completeness of rules allowing derivation of
leads-to properties are proved by demonstrating that notions of reachability and termination
are equal under minimal progress or weak fairness assumptions. Aside from soundness and
completeness, two examples of applications of these results are presented. The first one is a
proof of sufficient conditions for liveness properties under minimal progress given in [7]. The
second one is an original result which give sufficient conditions to derive a liveness property
under minimal progress when the given property holds under weak fairness.

The chapter is structured as follows. In Section 4.1, the mathematical notation of set
transformer is introduced. Set transformers are used to model the weakest or liberal weak-
est precondition of events in a set theoretical framework. In Section 4.2, the semantics is
developed and equality (soundness and completeness) between notions of termination and
reachability is proved. A formal link between the fixpoint semantics and a state-traces se-
mantics is presented in the subsection 4.2.2. The semantics is instantiated to minimal progress
or weak fairness assumptions in subsections 4.2.3 and 4.2.4. In Section 4.3 we prove soundness
of the rules for basic liveness properties. Finally, Section 4.4 presents examples of sufficient
conditions to derive liveness properties using the results of the previous section.

4.1 Set Transformers

This section is divided in two parts. The first part presents an event system as a set trans-
former and gives the notion of liberal set transformer. The second part presents the dovetail
operator that is used to model a weak fairness assumption.

4.1.1 Set Transformers

A set transformer is a total function of type P(U) → P(U) for a certain set U . In [2], each
generalized substitution F has associated a set transformer str(F ) of type P(u)→ P(u), where
u is the state space of a model or refinement with state variable x and invariant I:

u = {z | I(z)}

For any r in P(u), str(F )(r) denotes the largest subset of states satisfying the weakest pre-
condition of F , that is, the set of states where the execution of F must begin in order for
the substitution F to terminate in a state belonging to r. In [7], the events of a B system
are formalized by conjunctive set transformers, but instead of identifying the set transformer
associated with an event F by str(F ), it is denoted by its name F . In this way F (r) denotes
the set str(F )(r), where F is an event of a B system and r a subset of the state space u. In
what follows, this notation is used in this thesis.

Events in a system are modeled by conjunctive set transformers Ei of type P(u)→ P(u),
where i belongs to a given finite index set L. Consequently, the system is modeled by a
conjunctive set transformer S which is the bounded choice of events Ei:

S =[]i∈L Ei
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The set of events in a system is denoted by E:

E = {Ei | i ∈ L}

In order to deal with the notion of the weakest liberal precondition of an event F (wlp(F, )),
the liberal set transformer of an event F , L(F ), is defined:

Definition 4.1 The Liberal Set Transformer

L(F ) = λr · (r ∈ P(u) | {x |x ∈ u ∧ wlp(F, x ∈ r)})

The set L(F )(r) denotes the largest subset of states where the execution of event F must
begin in order for F to terminate in a state belonging to r or loop. The liberal set transformer
of primitive operators are defined as follows:

L(skip)(r) = r

L(F [] G)(r) = L(F )(r) ∩ L(G)(r)
L(F ; G)(r) = L(F )(L(G)(r))
L(p =⇒ F )(r) = p ∪ L(F )(r)

where r and p are subsets of u and p is u − p. In order to satisfy the healthiness condition
L(F )(u) = u of conjunctive set transformers, the liberal set transformer of the preconditioned
event is defined by cases:

L(p | F )(r) =

{
p ∩ L(F )(r) if r 6= u

L(F )(r) if r = u

Definitions of liberal set transformers presented here are the set counterpart of definitions in
[26].

Aside from the liberal set transformer, we use the set transformers denoting the weakest
precondition of classical operators as defined in [7]:

skip(r) = r

(F [] G)(r) = F (r) ∩G(r)
(F ; G)(r) = F (G(r))

(p =⇒ F )(r) = p ∪ F (r)
(p | F )(r) = p ∩ F (r)

The set transformers F (r) and L(F )(r) for event F and postcondition r are related by
the pairing condition:

F (r) = L(F )(r) ∩ pre(F ) (4.1)

where pre(F ), the termination set of F , is equal to F (u). From the pairing condition follows:

F (u) = u⇒ F (r) = L(F )(r)

A set transformer F is strict when it respects the excluded miracle law:

F (∅) = ∅

For any set transformer F , when F (r) or L(F )(r) are recursively defined:

F (r) = F(F (r)) or L(F )(r) = G(L(F )(r))

for monotonic functions F and G, according to [30], F (r) is taken as the strongest solution
of the equation X = F(X) and L(F )(r) as the weakest solution of the equation X = G(X).
Considering that these solutions are fixpoints, F (r) is taken as the least fixpoint of F (fix(F))
and L(F )(r) as the greatest fixpoint of G (FIX(G)).
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4.1.2 The Dovetail Operator

To model a weak fairness assumption, we use the dovetail operator ▽ [18], which is a fair
nondeterministic choice operator. The dovetail operator is used to model the notion of fair
scheduling of two activities. Let A and B be these activities, then the operational meaning
of the construct A ▽ B denotes the execution of commands A and B fairly in parallel, on
separate copies of the state, accepting as an outcome any proper, nonlooping, outcome of
either A or B. The fair execution of A and B means that neither computation is permanently
neglected if favor of the other.

A motivating example of the use of the dovetail operator is given in [18]. In that example
the recursive definition:

X = (n := 0 ▽ (X ; n := n + 1))

which has as solution “set n to any natural number”, is contrasted with the recursion Y =
(n := 0 [] (Y ; n := n + 1)) which has as solution “set n to any natural number or loop”.
The possibility of loop in X is excluded with the dovetail operator because the fair choice of
statement n := 0 will certainly occur. In Y the execution of that statement is not ensured.

The semantic definition for dovetail operator in [18] is given by definition of its weak-
est liberal precondition predicate transformer (wlp) and its termination predicate hlt . An
equivalent definition using the weakest liberal set transformer L and its termination set pre

is given:

Definition 4.2 The Dovetail Operator

L(F ▽ G)(r) = L(F )(r) ∩ L(G)(r)

pre(F ▽ G) = (F (u) ∪G(u)) ∩ (F (∅) ∪G(u)) ∩ (G(∅) ∪ F (u))

pre(F ▽ G) = (F (u) ∩G(u)) ∪ (F (∅) ∩ F (u)) ∪ (G(∅) ∩G(u))

The two definitions of the termination set pre(F ▽ G) are equivalent; it can be proved by
distribution of union over intersection. On another hand, we recall that grd(F ) = F (∅).

The set transformer (F ▽ G)(r), for any r in P(u) associated with the dovetail operator
is obtained from the pairing condition (4.1):

(F ▽ G)(r) = L(F ▽ G)(r) ∩ pre(F ▽ G) (4.2)

It must be noted that as far as the liberal set transformer is concerned, the dovetail
operator is equal to the choice operator. It differs by having a more liberal pairing condition:
to ensures that F ▽ G halts, it suffices to forbid F and G from both looping and to forbid
either from looping in a state where the other fails.

As in [18], we prove that the guard of F ▽ G is equivalent to the disjunction of the guards
of F and G. In terms of sets transformers, the guard of F ▽ G is stated as follows:

(F ▽ G)(∅) = F (∅) ∪G(∅) (4.3)
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The proof of this equality is shorter than [18]:

F (∅) ∪G(∅)
=

F (∅) ∩G(∅)
= { Pairing Condition }

L(F )(∅) ∩ L(G)(∅) ∩ F (u) ∩G(u)

= { F (∅) ∩ F (∅) = ∅ }

L(F )(∅) ∩ L(G)(∅) ∩ (F (u) ∩G(u) ∪ F (∅) ∩ F (∅))
= { L(F )(∅) ∩ F (∅) = L(F )(∅) ∩ F (u) See note below }

L(F )(∅) ∩ L(G)(∅) ∩ (F (u) ∩G(u) ∪ F (u) ∩ F (∅))
= { Similar to two last steps }

L(F )(∅) ∩ L(G)(∅) ∩ (F (u) ∩G(u) ∪ F (u) ∩ F (∅) ∪G(u) ∩G(∅))
= { Definition of (F ▽ G)(∅) (4.2) and (4.2) }

(F ▽ G)(∅)

✷

Note In [18] this step requires the proof of wlp.F.false⇒ grd .F = ¬hlt .F . We denote this
implication as a set expression: L(F )(∅) ∩ F (∅) = L(F )(∅) ∩ F (u). However the proof of
this expression is easily given by the pairing condition. We finally note that the sets F (∅)
and F (u) are not equal as we can think from the given equality; only the intersection of these
sets with L(F )(∅) is equal.

The dovetail operator is in general non monotonic for the approximation order in com-
mands as defined in [18]. Therefore the existence of least fixed points of recursive equations
cannot be proved generally. However, the existence of least fixed points in a restricted class
of recursive definitions containing the dovetail operator, is proved in [18]. In this report we
only use the dovetail operator to model fair iteration of events. We do not propose the use of
this operator to model or refine B event systems. The set transformer modeling fair iteration
of events with the dovetail operator is monotonic in the set inclusion order.

4.2 Reachability and Termination

This section proves soundness and (relative) completeness of rules BRL, TRA and DSJ for
general liveness properties under minimal progress and weak fairness assumptions in event
systems. These rules are sound if for any property P ❀ Q, iteration of events, under minimal
progress or weak fairness assumptions, starting in a state satisfying P , leads to a state in
the system where Q holds. Completeness of these rules is proved by showing that P ❀ Q

can be derived from the fact that any iteration of events, starting in a state where P holds,
terminates into a state satisfying Q.

We do not expect that any iteration of events in a system terminates into a state where
the guards of every event are disabled. However, an always terminating iteration can be
modeled by supposing, just for the reasoning, that events in the system are embedded in
a certain guarded command which models the iteration under a fairness assumption. The
iteration only proceeds when the guard of that command is enabled. Termination of the
iteration will be in a state where the guard does not hold. In this way, if the guard of the
iteration is ¬Q, and the iteration starts in a state where P holds, the system reaches a state
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where Q holds. Reachability from P to Q is then associated to termination of the iteration of
events. In the following subsection, we formalize our claims in a general framework without
concerns of fairness, and then these results are particularized to minimal progress or weak
fairness assumptions in other two subsections.

To simplify matters, the strongest invariant [62] is not considered in definitions of this
section. In appendix B we restate the results given in this section to consider the strongest
invariant.

4.2.1 A General Framework

In this subsection we define a set transformer to model iteration of events and we state its
main characteristics. We use this set transformer to define the termination relation. Then
we give a representation of leads to relation in unity logic as a relation between subsets of u

and we use it to define the reachability relation. Finally we prove that the termination and
the reachability relations are equal.

Termination

Let W be a set transformer which models a step of the iteration of events S in a system. At
this time, the meaning of such a step cannot be defined, however, two properties of W are
stated: it must be monotonic and strict. When the step will be instantiated to a particular
fairness assumption, the meaning of W will be given in terms of S. For any r in P(u), W (r)
denotes the largest subset of states where the execution of W must begin in order for W to
terminate in a state belonging to r.

To model the iteration of events until the system reaches a state in a certain set r in P(u),
the guarded event F(r) is defined:

F(r) = (r =⇒W ) (4.4)

for any r ∈ P(u), which allows iteration of W when the system stays in any state in r.
Iteration of F(r) is modeled by the opening operator F(r)̂. As this operator has a recursive
definition:

F(r)̂ = (F(r) ; F(r)̂) [] skip

the set where termination of F(r)̂ is guaranteed (pre(F(r)̂)) is given by fix(F(r)) [2].

As W may model an unbounded non determinist set transformer, we use the Generalized
Limit Theorem to formally justify that any iteration of F(r) starting in pre(F(r)̂) terminates
in some state of r. This theorem characterizes the least fixpoint of monotonic functions as an
infinite join. We use the version presented in [50], particularizing the theorem to monotonic
set transformers. The theorem is as follows:

Theorem 1 (Generalized Limit Theorem)
Let f be a monotonic set transformer, and let fα, for ordinal α, be defined inductively by

fα =
⋃

β · (β < α | f(fβ)) (4.5)

Then fix(f) = fα for some ordinal α.
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The proof of this theorem is given in [50]. It states that we can choose any ordinal γ, such
that γ > card(dom(f)), and then we must have fα = fβ for some α < β < γ. Then it is
proved that the common value of fα and fβ is the least fixpoint of f .

As W is a monotonic function, F(r) is monotonic, and theorem 1 can be applied to
calculate the least fixpoint of F(r). According to the theorem, it follows that F(r)0 = ∅ and
F(r)1 = r because W is strict. Moreover, for any ordinal α, F(r)α+1 = F(r)(F(r)α) and
F(r)α ⊆ F(r)α+1. This fact formally supports our claim that the termination set of F(r)̂ ,
contains states where any iteration of F(r) terminates in a state into r. Now, the termination
relation T can be defined as follows:

Definition 4.3 (Termination Relation)

T = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ a ⊆ fix(F(b)) } (4.6)

Reachability

As presented in section 3.1.2, the leads-to relation of unity logic is defined as a relation
between predicates on the state of programs. In this section, an equivalent relation, LE , is
defined, but instead of predicates, it is defined as a relation between subsets of states in u

(LE ⊆ P(u) × P(u)). Any pair a 7→ b in LE indicates that the system reaches a state in b,
when its execution arrives at any state in a. For this reason LE is named the reachability
relation.

The definition of LE is given by induction. The base case needs the definition of the
basic relation E . At this time E cannot be defined. As indicated in section 3.1.1, basic
liveness properties depends on fairness assumptions. E will be defined in the following sections
according to minimal progress or weak fairness assumptions. However, these definitions must
satisfy two requirements. The first requirement is as follows: If a ⊆ b, for any a and b in
P(u), then a 7→ b ∈ E must hold. The second requirement relates E with the set transformer
W : For any ordered pair a 7→ b ∈ E , the inclusion a ∩ b ⊆ W (b) must hold. This inclusion
indicates that any execution of W starting in a ∩ b, terminates into a state of b.

Definition 4.4 (Reachability Relation)
The reachability relation LE , LE ∈ P(u)↔ P(u), is defined by the following induction scheme:

(SBR): E ⊆ LE

(STR): LE ; LE ⊆ LE

(SDR): ∀(q, l) · (q ∈ P(u) ∧ l ⊆ P(u)⇒ (l × {q} ⊆ LE ⇒
⋃

(l) 7→ q ∈ LE))

Closure: ∀l ′ · (l′ ∈ u↔ u ∧ E ⊆ l ′ ∧ l ′ ; l ′ ⊆ l ′ ∧
∀(q, l) · (q ∈ P(u) ∧ l ⊆ P(u) ∧ l × {q} ⊆ l ′ ⇒

⋃
(l) 7→ q ∈ l ′)⇒ LE ⊆ l ′)

⋃
(l) in the SDR rule and the closure clause, denotes the generalized union of subsets in

l. Rules SBR, STR and SDR are the set counterparts of the basic rule for leads-to BRL,
transitivity rule TRA and disjunction rule DSJ respectively, as defined in section 3.1.2.

The following equivalence connects the reachability relation LE with the leads-to relation
of unity logic:

P (x) ❀ Q(x) ≡ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE (4.7)

The proof of this equivalence is given in appendix A; the proof uses the fact that the property
P ❀ Q in unity is equivalent to P ∧ I ❀ Q∧ I, considering I as an invariant of S, because
the leads-to relation is defined in states reachable from the initial conditions [62].
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Soundness and Completeness

We are now ready to state our main theorem, formally indicating that termination and
reachability relations are equal:

Theorem 2 (Soundness and Completeness)
Let W be a monotonic and strict set transformer and F(r) = (r =⇒ W ) for any r in P(u).
Let relations T and LE be defined as definitions 4.3 and 4.4 respectively. Considering (a)
a 7→ b ∈ E ⇒ a∩ b ⊆W (b), (b) a ⊆ b⇒ a 7→ b ∈ E and (c) W (r) 7→ r ∈ LE , for any a, b and
r in P(u), the following equality holds:

LE = T

Premise (a) and (b) were commented in the previous section. Premise (c) asserts that any
set r is reached from the set W (r) which is the largest subset of states where a step of the
iteration terminates in r.

The proof of this theorem is given in two parts: first we prove the inclusion LE ⊆ T and
then T ⊆ LE .

Proof of LE ⊆ T The proof of this inclusion follows from the closure clause in definition
4.4, particularizing the quantified variable l′ to relation T. Then LE ⊆ T follows from E ⊆ T,
T;T ⊆ T and l × {q} ⊆ T ⇒

⋃
(l) 7→ q ∈ T for any l in P(P(u)) and q in P(u).

The proof of E ⊆ T uses the following property for monotonic function f and iteration
defined in (4.5):

∀α · (fα ⊆ fix(f)) (4.8)

which is easily proved by transfinite induction; the proof is given in appendix (C.1). The
proof of E ⊆ T is given by the proof of a 7→ b ∈ E ⇒ a 7→ b ∈ T:

1. a 7→ b ∈ E ; premise

2. a ∩ b ⊆W (b) ; 1 and hyp. (a)
3. a ⊆ F(b)(b) ; 2 and def. (4.4)
4. a ⊆ F(b)2 ; 3 and iterate (4.5)
5. a ⊆ fix(F(b)) ; 4 and (4.8)
6. a 7→ b ∈ T ; 5 and def. (4.6)

The following property is needed in the proof of transitivity of T:

a 7→ b ∈ T ⇒ fix(F(a)) ⊆ fix(F(b)) (4.9)

for any a and b in P(u). Taking a 7→ b ∈ T as a premise, and considering fix(F(a)) as the
least fixpoint of F(a), in order to prove property (4.9) it suffices to prove

F(a)(fix(F(b))) ⊆ fix(F(b))

which follows directly from a 7→ b ∈ T and F(b)(fix(F(b))) = fix(F(b)). Now the proof of
T ; T ⊆ T is equivalent to prove a 7→ b ∈ T ; T ⇒ a 7→ b ∈ T for any a and b in P(u):

1. ∃c · (a 7→ c ∈ T ∧ c 7→ b ∈ T) ; from a 7→ b ∈ T;T
2. ∃c · (a ⊆ fix(F(c)) ∧ c 7→ b ∈ T) ; 1 and def. T

3. ∃c · (a ⊆ fix(F(c)) ∧ fix(F(c)) ⊆ fix(F(b))) ; 2 and (4.9)
4. a ⊆ fix(F(b)) ; 3
5. a 7→ b ∈ T ; 6 and def. T
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Finally, the proof of l × {q} ⊆ T ⇒
⋃

(l) 7→ q ∈ T is as follows:

1. l × {q} ⊆ T ; premise
2. ∀p · (p ∈ l⇒ p 7→ q ∈ T) ; 1
3. ∀p · (p ∈ l⇒ p ⊆ fix(F(q))) ; 2 and def. T

4.
⋃

(l) ⊆ fix(F(q)) ; 3
5.

⋃
(l) 7→ q ∈ T ; 4 and def. T

This last deduction concludes the proof of LE ⊆ T.

Proof of T ⊆ LE The proof of this inclusion requires the following property:

∀r · (r ∈ P(u)⇒ F(r)α 7→ r ∈ LE) for any ordinal α (4.10)

The proof of (4.10) is done by transfinite induction. For a successor ordinal, the following
implication must be proved:

F(r)α 7→ r ∈ LE ⇒ F(r)α+1 7→ r ∈ LE

the proof for this case is given in appendix C.1. For a limit ordinal, the following implication
must be proved:

∀β · (β < α⇒ F(r)β 7→ r ∈ LE)⇒ F(r)α 7→ r ∈ LE

The proof is as given next:

1. ∀β · (β < α⇒ F(r)β 7→ r ∈ LE) ; ind. hyp.
2. ∀β · (β < α⇒W (F(r)β) 7→ F(r)β ∈ LE) ; from hyp. (c)
3. ∀β · (β < α⇒W (F(r)β) 7→ r ∈ LE) ; 2, 1 and STR
4. r 7→ r ∈ LE ; hyp. (b) and SBR
5. ∀β · (β < α⇒ r ∪W (F(r)β) 7→ r ∈ LE) ; 4, 3 and SDR
6. ∀β · (β < α⇒ F(r)(F(r)β) 7→ r ∈ LE) ; def. F(r) and 5
7.

⋃
β · (β < α | F(r)(F(r)β)) 7→ r ∈ LE ; 6 and SDR

8. F(r)α 7→ r ∈ LE ; 7 and def. iterate

Using (4.10), the inclusion T ⊆ LE is demonstrated by the proof of a 7→ b ∈ T ⇒ a 7→ b ∈ LE

for any a and b in P(u) as follows:

1. a ⊆ fix(F(b)) ; from a 7→ b ∈ T

2. ∃α · (a ⊆ F(b)α) ; 1 and theorem 1
3. ∃α · (a 7→ F(b)α ∈ LE) ; 2, (b) and SBR
4. ∃α · (a 7→ F(b)α ∈ LE ∧ F(b)α 7→ b ∈ LE) ; 3 and (4.10)
5. a 7→ b ∈ LE ; 4 and STR

This deduction concludes the proof of theorem 2.
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4.2.2 Link with Traces Semantics

At this point, the meaning of leads-to properties is given in terms of the least fixpoint of the
set transformer F(b) for certain subset b of u. This set transformer denotes a step in the
computations of the system if it is executed in a state where b holds. Therefore, fix(F(b))
denotes the set of states where any computation can start and terminates in a state where b

holds.
For any set transformer F , the associated before-after relation can be defined as in [7], for

any subset p of u, by:

rel(F )−1[p] = F (p)

Any pair σ 7→ τ in this relation, indicates that execution of F in a state σ can reach the
state τ . In the special case where p = u in the above definition, we note that the guard of F

corresponds to the domain of rel(F ), that is, to the set of states where F is enabled. Therefore
rel(F )∗, the transitive and reflexive closure of rel(F ), contains all pairs σ 7→ τ , where τ can
be reached from a repeated execution of F starting in σ. Moreover, from [2], the before-after
relation of the iteration operator is given by:

rel(F ̂) = pre(F ̂)× u ∪ rel(F )∗

, where pre(F ̂ ), the set where termination of the iteration of F is guaranteed, is equal to
fix(F ). From this equality, we can observe that the before-after relation of F ̂ contains the
transitive and reflexive closure of rel(F ), as well as the Cartesian product {δ} × u, for any
set δ where the iteration does not terminate. If for any different states σ and τ , such that
σ 7→ τ ∈ rel(F )∗ holds, we can conclude that there is a sequence of states, or state traces,
σ0, σ1, . . . , σn where σ0 = σ, σn = τ and for any i ≥ 0, σi 7→ σi+1 ∈ rel(F ) holds. Any state
sequence starting in a state in pre(F ̂), is a divergent sequence. On the other hand, if the
sequence starts in a state in pre(F ̂), the sequence is finite and its last state is in dom(rel(F )).

From the above discussion, in a way similar to [9], a semantic function in terms of state
traces can be associated to F(b), for any σ in u, as follows:

MJF(b)K(σ) = {τ | τ ∈ b ∧ σ 7→ τ ∈ rel(F(b))∗} ∪ {⊥ | σ ∈ fix(F(b))}

where the symbol ⊥ is a special state denoting divergence. Now, if for any subset a of u,
the inclusion MJF(b)K(a) ⊆ b holds 1, that means that the iteration of events in the system
leads to a state into b when its execution starts in a state in a. This interpretation of the
inclusion allows us to define the truth value of a leads-to property: for any predicate P and
Q, a liveness property P ❀ Q holds in a system (|= P ❀ Q) if MJF(b)K(set(P )) ⊆ set(Q)
holds.

Considering the set of pairs a 7→ b satisfying MJF(b)K(a) ⊆ b, allow us to obtain an
equivalent definition of the termination relation T presented in section 4.2.1. In this way,
soundness of the rules BRL, TRA and DSJ, means that if P ❀ Q is derived from these rules
(⊢ set(P ) 7→ set(Q) ∈ LE), then |= P ❀ Q holds. Relative completeness of these rules is
proved by the implication |= P ❀ Q ⇒ ⊢ set(P ) 7→ set(Q) ∈ LE . These results are stated
and proved in theorem 2 by the equality LE = T.

Finally we note that the instantiation of F(b) to Fm(b) or Fw(b), as it will be done in
the following sections, allows a rigorous definition of the semantic function under minimal
progress or weak fairness assumptions respectively.

1For any subset t of u, MJF(b)K(t) =
S

σ∈t
MJF(b)K(σ).
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4.2.3 Minimal Progress

In this paragraph the termination and reachability relations under minimal progress are de-
fined and it is proved that they satisfy the premises of theorem 2. Therefore we prove that
relations T and LE are equal in the case of minimal progress.

Termination under MP

To model a step of the iteration of events of system S under minimal progress assumptions,
we note that if we need to establish a certain postcondition when this step is achieved, any
event in S must be able to establish the postcondition. Moreover, as we are interested in the
execution of any event, we need to start the execution step in a state satisfying the guard
of at least one event. Therefore, taking into account these considerations, we propose the
following preconditioned set transformer:

Wm = grd(S) | S (4.11)

From the definition of the preconditioned set transformer in section 4.1.1 follows Wm(r) =
grd(S) ∩ S(r). From this derivation, the strictness of Wm is proved: Wm(∅) = (grd(S) ∩
S(∅)) = ∅. On another hand, the monotonicity of Wm is proved from the monotonicity of
S.

The body of the iteration of events under minimal progress is the guarded event Fm(r)
defined as follows:

Fm(r) = r =⇒Wm (4.12)

Definition of the termination relation under minimal progress is given by all ordered pairs
a 7→ b satisfying a ⊆ pre(Fm(b)̂):

Tm = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ a ⊆ fix(Fm(b)) } (4.13)

Reachability under MP

Recalling that x is the state variable transformed by S, the basic relation under minimal
progress is defined as the relation containing all ordered pairs a 7→ b from which the property
x ∈ a≫m x ∈ b can be derived:

Em = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ a ∩ b ⊆ S(b) ∩ grd(S) } (4.14)

From definitions of Em and Wm follows the proof of premise (a) of theorem 2 for the case
of minimal progress a 7→ b ∈ Em ⇒ a ∩ b ⊆Wm(b):

1. a 7→ b ∈ Em ; premise

2. a ∩ b ⊆ grd(S) ∩ S(b) ; 1 and def. (4.14)

3. a ∩ b ⊆ (grd(S) | S)(b) ; 2 and set transf.

4. a ∩ b ⊆W (b) ; 3 and def. (4.11)

From definition of Em, the implication a ⊆ b ⇒ a 7→ b ∈ Em follows immediately because
a ∩ b = ∅. It proves premise (b) of theorem 2 for the case of minimal progress.
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Now, we use an induction scheme to define the reachability relation under minimal progress
LEm similar to definition 4.4. Therefore LEm is the smallest relation containing the base
relation Em and it is both, transitive and disjunctive.

Finally we prove that the weakest precondition Wm(r), for any r ∈ P(u) leads to r:
Wm(r) 7→ r ∈ LEm

1. grd(S) ∩ S(r) ∩ r ⊆ grd(S) ∩ S(r) ; trivial
2. grd(S) ∩ S(r) 7→ r ∈ Em ; 1 and def. Em
3. Wm(r) 7→ r ∈ Em ; 2 and (4.11)
4. Wm(r) 7→ r ∈ LEm ; 3 and def. LEm

It proves premise (c) of theorem 2 for the case of minimal progress.

At this time, monotonicity and strictness of Wm and premises (a), (b) and (c) of theorem
2 instantiated to the case of minimal progress have been proved. Therefore the equality
between termination and reachability relations is stated:

Tm = LEm (4.15)

4.2.4 Weak Fairness

In this subsection, the termination and reachability relations are defined for weak fairness
assumptions. We prove that premises of theorem 2, instantiated to the case of weak fair-
ness assumptions, are satisfied with these definitions. Therefore the equality between these
relations is proved.

Termination under WF

The dovetail operator, presented in section 4.1.1, is used to model a fair loop for a certain
event G in E:

Y (q)(G) = q =⇒ ((S ; Y (q)(G)) ▽ (grd(G) | G)) (4.16)

The guard q of this loop prevents iteration of the fair choice in any state belonging to q.
Informally, we expect that any execution of Y (G)(q) in any state in q ∪ grd(G) terminates.
Execution of Y (q)(G) in q∩grd(G) cannot loop forever because the dovetail operator prevents
unlimited execution of the branch S ; Y (q)(G). Moreover, the set transformer grd(G) | G

is always enabled (grd(grd(G) | G) = u) and therefore it will be eventually executed. All
our claims are formally justified by the calculi of termination set and the liberal weakest
precondition of Y (q)(G), for any q and r, r 6= u in P(u):

pre(Y (q)(G)) = fix(q ∩G(∅) =⇒ S(q) | S) (4.17)

L(Y (q)(G))(r) = FIX(q =⇒ (grd(G) ∩G(r) | S)) (4.18)

These calculi follow from definitions of set transformers given in section 4.1.1 and the extreme
solutions of the recursive equations generated. The proof of ( 4.17) and (4.18) are given in
appendices C.2.1 and C.2.2 respectively. Moreover, in appendix C.2.3 appears the proof of
the following inclusion, for any q and r in P(u):

L(Y (q)(G))(r) ⊆ pre(Y (q)(G)) (4.19)
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(4.19), and the pairing conditions, give us the set transformer associated with the fair loop:

Y (q)(G)(r) = FIX(q =⇒ (grd(G) ∩G(r) | S)) (4.20)

From this definition follows the monotonicity of Y (q)(G), which is proved in appendix C.2.

The fair loop Y (q)(G) models a fair G-step in the iteration of events under weak fairness
assumptions. We say that G is the helpful event in this G-step. A fair step in the iteration
of events is modeled by the following set transformer:

Ww = λr · (r ⊆ u |
⋃

G · (G ∈ E | Y (r)(G)(r))) (4.21)

From (4.20) follows grd(Y (q)(G)) = q for any G in E and q ∈ P(u), therefore the strictness
of Ww follows. On the other hand, from monotonicity of Y (q)(G) follows the monotonicity
of Ww. These three proofs are given in appendix C.2.

The body of the iteration of events under weak fairness is the guarded event Fw(r) defined
as follows:

Fw(r) = r =⇒Ww (4.22)

Definition of the termination relation under weak fairness is:

Tw = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ a ⊆ fix(Fw(b)) } (4.23)

Reachability under WF

The basic relation E(G), for a helpful event G, is defined as the set of pairs a 7→ b from which
a property G · x ∈ a≫w x ∈ b can be defined:

E(G) = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ a ∩ b ⊆ S(a ∪ b) ∩G(∅) ∩G(b) } (4.24)

Now, the basic relation for weak fairness is:

Ew =
⋃

G · (G ∈ E | E(G)) (4.25)

The proof of premise (a) of theorem 2 instantiated to weak fairness requires the following
property which is proved in appendix C.2.8:

∀G · (G ∈ E ∧ a 7→ b ∈ E(G)⇒ a ⊆ Y (b)(G)(b)) (4.26)

Using (4.26), the proof of a 7→ b ∈ Ew ⇒ a ∩ b ⊆Ww(b) is:

1. ∀G · (G ∈ E ⇒ (a 7→ b ∈ E(G)⇒ a ⊆ Y (b)(G)(b))) ; (4.26)
2. ∃G · (G ∈ E ∧ a 7→ b ∈ E(G))⇒ a ⊆Ww(b) ; 1 and (4.21).
3. a 7→ b ∈

⋃
G · (G ∈ E | E(G))⇒ a ⊆Ww(b) ; 2

4. a 7→ b ∈ Ew ⇒ a ⊆Ww(b) ; 3 and (4.25)

5. a 7→ b ∈ Ew ⇒ a ∩ b ⊆Ww(b) ; 4 and b ⊆Ww(b)

From (4.24) immediately follows a 7→ b ∈ E(G), for any G in E if a ⊆ b holds, and from
(4.25) follows a ⊆ b⇒ a 7→ b ∈ Ew. It proves premise (b) of theorem 2.
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We use an induction scheme to define the reachability relation under weak fairness LEw

similar to definition 4.4. Therefore LEw is the smallest relation containing the base relation
Ew and it is both, transitive and disjunctive.

From (4.20) and (4.24) follows the following property proved in appendix C.2.9:

∀(G, r) · (G ∈ E ∧ r ⊆ u⇒ Y (r)(G)(r) 7→ r ∈ E(G)) (4.27)

This property is used to prove the premise (c) of theorem 2: Ww(r) 7→ r ∈ LEw as follows:

1. ∀G · (G ∈ E ⇒ Y (r)(G)(r) 7→ r ∈ E(G)) ; from (4.27)
2. ∀G · (G ∈ E ⇒ E(G) ⊆ Ew) ; def. Ew
3. ∀G · (G ∈ E ⇒ Y (r)(G)(r) 7→ r ∈ Ew) ; 2 and 1
4. ∀G · (G ∈ E ⇒ Y (r)(G)(r) 7→ r ∈ LEw) ; def. LEw

5. {Y (r)(G)(r) |G ∈ E } × {r} ⊆ LEw ; 4
6.

⋃
({Y (r)(G)(r) |G ∈ E }) 7→ r ∈ LEw ; 5 and SDR

7.
⋃

G · (G ∈ E | Y (r)(G)(r)) 7→ r ∈ LEw ; 6
8. Ww(r) 7→ r ∈ LEw ; 7 and def. F

At this time termination (Tw), basic relation (Ew) and reachability (LEm) relations for weak
fairness assumptions have been defined. Monotonicity and strictness of the set transformer
Ww, and premises (a), (b) and (c) of theorem 2 instantiated to the case of weak fairness have
been proved. Therefore, the equality between termination and reachability relations under
weak fairness is stated:

Tw = LEw (4.28)

4.3 Soundness of Rules for Basic Properties

In this section we prove soundness of the rules for basic liveness properties under minimal
progress and weak fairness assumptions. Soundness of these rules are proved if the sufficient
conditions for a basic liveness property P ≫ Q guarantee that iteration of events, under a
certain fairness assumption, in a state satisfying the invariant and P , terminates into a state
of Q.

Soundness for Minimal Progress

In fact, soundness of proof obligations for basic properties under minimal progress has been
already proved. In the previous section, the inclusion LEm ⊆ Tm is proved. This inclusion
demonstrates soundness of the rules for the leads-to relation. Now, by the inductive definition
of LEm follows that the reachability relation contains the basic relation: Em ⊆ LEm . Then
by transitivity of set inclusion follows that the basic relation is contained in the termination
relation: Em ⊆ Tm. In the following paragraphs we show how this inclusion is related to the
proof of soundness of MP0 and MP1.

From definitions of the basic (4.14) and termination (4.13) relations under minimal progress
assumption and the inclusion Em ⊆ Tm follows:

∀(p, q) · (p ∈ P(u) ∧ q ∈ P(u) ∧ p ∩ q ⊆ S(q) ∩ grd(S)⇒

p ⊆ pre((q =⇒ grd(S) | S)̂)) (4.29)
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This implication states that iteration of S in any state satisfying p terminates into a state of
q, for any subset p and q of u, satisfying the premises of (4.29). Moreover, from p ∩ q ⊆ S(q)
in the premise, follows that only one step is needed to terminate the iteration of events
under a minimal progress assumption, which is the intended meaning of a basic property
x ∈ p≫m x ∈ q under a weak fairness assumption.

In order to demonstrate soundness of the rules MP0 and MP1, proposed in section 3.2, it
suffices to note that the sets p and q satisfying the premise of (4.29) are the sets satisfying
both predicates I ∧ P and I ∧ Q respectively, where P and Q are the predicates satisfying
MP0 and MP1 rules. The formal proof of this fact requires to define:

p = { z | I(z) ∧ P (z) } and q = { z | I(z) ∧ Q(z) }

Now, we prove that the conjunction of MP0 and MP1 is equivalent to the premise of (4.29):

MP0 ∧ MP1
≡
∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ ([S]Q(x)) ∧ grd(S))
≡ { I ⇒ [S] I, conjunctive S and def. grd }
∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ ([S]Q(x) ∧ I(x)) ∧ ¬[S] false)

≡ { def. of p and q }
∀x · (x ∈ p ∩ q ⇒ ([S]x ∈ q) ∧ ¬[S]x ∈ ∅)

≡ { def. of set transformer }

∀x · (x ∈ p ∩ q ⇒ x ∈ S(q) ∩ S(∅))
≡

p ∩ q ⊆ S(q) ∩ grd(S)

Soundness for Weak Fairness

As for minimal progress, soundness of the rules for basic liveness properties under weak
fairness has been already proved. However, the proof is not as explicit as the case of minimal
progress. The following paragraphs gives more insight into that proof.

The previous section proves that the basic relation under weak fairness assumptions is
contained in the termination relation: Ew ⊆ Tw. On another hand, for a helpful event G of
E, the basic relation E(G) is contained in Ew; therefore E(G) is contained in the termination
relation Tw: E(G) ⊆ Tw. From this last inclusion and the definition of Tw (4.23) follows:

∀(p, q) · (p 7→ q ∈ E(G)⇒ p ⊆ fix(Fw(q)))

This implication states that if the pair p 7→ q is included in the basic relation E(G), then any
state of p guarantees that iteration of fair loops Y (q)(G′), for any event G′ of E, terminates
into a state in q. This interpretation does not give information about the number of iterations
for a particular loop Y (q)(G). This is the intended meaning for the leads-to relation. However,
the intended meaning of ensures under a weak fairness assumption, requires only one iteration
of the fair loop Y (q)(G). In fact, this has been already proved with the implication (4.26) in
page 81:

∀G · (G ∈ E ∧ p 7→ q ∈ E(G)⇒ p ⊆ Y (q)(G)(q)) (4.26)
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This implication states that for any pair p 7→ q in the basic relation E(G), the fair loop,
starting its execution in any state of p, terminates into a state of q by the execution of G.

In order to prove soundness of the rules WF0 and WF1 for basic properties under a
weak fairness assumption, it suffices to note that the sets p and q, satisfying the premise
p 7→ q ∈ E(G) of (4.26), are the sets containing the states satisfying the invariant, and the
predicates P and Q respectively of WF0 and WF1. The formal proof requires the definition
of p and q as before:

p = { z | I(z) ∧ P (z) } and q = { z | I(z) ∧ Q(z) }

and the definition of the basic relation E(G) (4.24):

WF0 ∧WF1
≡
∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ ([S] (P ∨ Q)) ∧ grd(G) ∧ [G]Q)

≡ { I ⇒ [S] I, def. grd and conjunctive S and G }
∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ ([S] ((P ∨ Q) ∧ I)) ∧ ¬[G] false ∧ [G] (Q ∧ I))

≡ { def. of p and q }
∀x · (x ∈ p ∩ q ⇒ ([S]x ∈ p ∪ q) ∧ ¬[G]x ∈ ∅ ∧ [G]x ∈ q)
≡ { def. of set transformer }

∀x · (x ∈ p ∩ q ⇒ x ∈ S(p ∪ q) ∩G(∅) ∩G(q))
≡

p ∩ q ⊆ S(p ∪ q) ∩ grd(G) ∩G(q)

4.4 Deriving Liveness Properties

In this section we present two examples where we show practical usefulness of equalities
between termination and reachability relations under minimal progress and weak fairness as-
sumptions. This section is divided in three parts. In the first part, we state and prove the
Variant Theorem, which allows us to prove termination of iterations over a set transformer
if a variant decreases. In the second part, we use this theorem to prove a sufficient condition
allowing derivation of liveness properties under minimal progress. Finally, we give another
sufficient condition to derive a liveness property under minimal progress when a similar prop-
erty holds in weak fairness assumptions

4.4.1 The Variant Theorem

The variant theorem allows us to prove termination of iteration of conjunctive set transform-
ers. This theorem considers a total function which maps each element of the state space to an
element of a well founded order and a set which is invariant at each iteration of the set trans-
former. The theorem states that if any execution of the set transformer starting in a state in
the invariant set and a certain value of the variant function, terminates in a state where the
value of the variant is decremented, then the invariant set is contained in the termination set
of the iteration of the set transformer. Formally, the theorem is stated as follows:

Theorem 3 (Variant Theorem)
Let V ∈ u→ N, v = λn · (n ∈ N | { z | z ∈ u ∧ V (z) = n }) and v ′ = λn · (n ∈ N | { z | z ∈ u ∧
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V (z) < n }). For any conjunctive set transformer f in P(u)→ P(u) and p in P(u), such that
v(n) ∩ p ⊆ f(v ′(n)) and p ⊆ f(p) , for any n in N, the following inclusion holds:

p ⊆ fix(f)

The proof of this theorem uses the following equalities:

∀n · (n ∈ N⇒ v ′(n) =
⋃

i · (i ∈ N ∧ i < n | v(i))) (4.30)
⋃

i · (i ∈ N | v ′(i + 1)) =
⋃

i · (i ∈ N | v(i)) (4.31)
⋃

i · (i ∈ N | v(i)) = u (4.32)

and the following property:

∀n · (n ∈ N⇒
⋃

i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ⊆ fn+1) (4.33)

which are proved, under the assumptions of the theorem 3, in appendix C.3. The proof of
theorem 3 is as follows:

1. ∀n · (n ∈ N⇒
⋃

i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ⊆ fix(f)) ; (4.33) and (4.8)
2. ∀n · (n ∈ N⇒ v ′(n + 1) ∩ p ⊆ fix(f)) ; from (4.30) and 1
3.

⋃
i · (i ∈ N | v ′(i + 1)) ∩ p ⊆ fix(f) ; 2

4.
⋃

i · (i ∈ N | v(i)) ∩ p ⊆ fix(f) ; 3 and (4.31)
5. u ∩ p ⊆ fix(f) ; 4 and (4.32)
6. p ⊆ fix(p) ; 5 and p ⊆ u

4.4.2 A Sufficient Condition for Minimal Progress

A system reaches a certain set from any set of starting states under minimal progress, if the
set of depart is invariant in the system, it is contained in the guard of the system and each
execution of the system decrements a variant. Formally, these conditions are stated as follows:

ANTECEDENT CONSEQUENT

∀n · (n ∈ N⇒ a ∩ b ∩ v(n) ⊆ S(v ′(n))) a 7→ b ∈ LEm

a ∩ b ⊆ grd(S) ∩ S(a)

We remark from definition (4.12), that Fm(b) is a conjunctive set transformer. From this
remark the proof of the rule is as follows:

1. ∀n · (n ∈ N⇒ a ∩ b ∩ v(n) ⊆ S(v ′(n)) ∩ grd(S)) ; from premises
2. ∀n · (n ∈ N⇒ a ∩ v(n) ⊆ Fm(b)(v ′(n))) ; 1 and (4.12)
3. a ⊆ Fm(b)(a) ; premise and (4.12)
4. a ⊆ fix(Fm(b)) ; 3, 2, theorem 3
5. a 7→ b ∈ Tm ; 4 and (4.13)
6. a 7→ b ∈ LEm ; 5, equality (4.15)

Antecedent of this rule corresponds to sufficient conditions in [7] to prove liveness proper-
ties and it is the only rule concerning the proof of liveness properties. Soundness of this rule
is proved here in a more direct way.

Soundness of this rule is given without reasoning over state-traces, taking advantage of
the fixpoint semantics approach.
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4.4.3 From Weak Fairness to Minimal Progress

Using the variant theorem, we prove a sufficient condition to establish that a liveness property
under minimal progress, follows from a corresponding property proved under weak fairness
and from the decrement of a variant:

ANTECEDENT CONSEQUENT

∀n · (n ∈ N⇒ b ∩ v(n) ⊆ S(v ′(n))) a 7→ b ∈ LEm

a 7→ b ∈ LEw

The proof of these conditions is given by the Variant Theorem. In order to apply the theorem,
we need to identify an invariant set under Fm(b). However, as the sets a and b cannot be
proved as invariants, we prove that the least fixpoint of Fw(b) is invariant under Fm(b), that
is fix(Fw(b)) ⊆ Fm(b)(fix(Fw(b))). This proof requires the following lemma:

∀α · (Fw(b)α ⊆ b ∪ (grd(S) ∩ S(fix(Fw(b)))) (4.34)

The proof of (4.34) is done by transfinite induction; it is presented in appendix C.3.5. Using
(4.34), the proof of sufficient conditions are as follows:

1. fix(Fw(b)) ⊆ b ∪ (grd(S) ∩ S(fix(Fw(b)))) ; Theorem 1, (4.34)
2. fix(Fw(b)) ⊆ Fm(b)(fix(Fw(b))) ; 1 and (4.12)
3. ∀n · (n ∈ N⇒ fix(Fw(b)) ∩ v(n) ⊆ b ∪ grd(S) ∩ S(v ′(n))) ; 2 and premise
4. ∀n · (n ∈ N⇒ fix(Fw(b)) ∩ v(n) ⊆ Fm(b)(v ′(n))) ; 3 and (4.12)
5. fix(Fw(b)) ⊆ fix(Fm(b)) ; 4,2 and th. 3
6. a 7→ b ∈ Tw ; premise, eq. (4.28)
7. a ⊆ fix(Fw(b)) ; 6 and def. Tw

8. a ⊆ fix(Fm(b)) ; 7 and 5
9. a 7→ b ∈ LEm ; 8, def. Tm, eq. (4.15)

Example 4.1
The example 3.7 proves that the producer-consumer system PC , specified in the example

2.15, satisfies the property d ∈ P ❀ d ∈ C under a weak fairness assumption, stating that
any data d in the producer set, is eventually transferred to the consumer set.

The example 3.10 shows that the refinement PC1 of the abstract system PC preserves
the property

d ∈ P ❀ d ∈ Cc

under a weak fairness assumption. If the invariant of PC1 is strengthened with the equality
D = P ∪ buf ∪ Cc, the lexicographic variant [cardP, cardbuf ] is decremented by all events in
PC1 under the assumption d 6∈ Cc, that is:

d 6∈ Cc ∧ [cardP, cardbuf ] = [m,n]⇒ [prod [] cons [] env c] [cardP, cardbuf ] ≺ [m,n]

holds in PC1 . This fact, and the rule presented in this section, allows us to conclude that

d ∈ P ❀ d ∈ Cc

holds in PC1 under a minimal progress assumption.
✷
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4.5 Conclusion

In this chapter we presented the main theoretical results concerning the semantics of liveness
properties. The semantics is presented in a set theoretical framework where events and
iteration of events under minimal progress or weak fairness assumptions are modeled by set
transformers. Liveness properties and the sets where termination of iteration is guaranteed
are characterized by binary relations on subsets of states.

We start by introducing set transformers which model the weakest precondition and liberal
weakest precondition of events. A special set transformer, named “dovetail”, is presented to
model a fair choice. Moreover, extreme solutions for equations with set transformers are
defined as least and greatest fixpoints.

The semantics for leadsto is presented in a structured way. First the semantics is presented
without concerns of fairness. The interpretation domain of leadsto properties is defined by a
termination relation T. Any pair of subsets of states p 7→ q in this relation denotes that the
iteration of events, under a certain fairness assumption, starting in any state of p, terminates
into a state in q. The opening operator ̂ is used to model iteration of events. The body of
the iteration is a guarded command F(q) with guard q and body W . W denotes the weakest
precondition of a step in the iteration and it is not defined at this point; it is only stated that
W must be monotonic and strict. The intended meaning of the iteration F(q)̂ is that the
system executes one or many steps W until it arrives into a state where q holds, and then the
iteration terminates. Formally, the termination set of F(q)̂ is given by the least fixpoint of
the set transformer q =⇒ W . The reachability relation LE is defined as a binary relation on
subsets of states in order to characterize general liveness properties. LE is inductively defined:
it contains the base relation E , it is transitive and disjunctive. The base relation characterizes
basic liveness properties under some fairness assumption. At this time, E is not defined, only
few properties relating E to the step W are required. After having defined the termination
and reachability relations, the theorem asserting the equality between LE and T is stated. In
another words, the theorem asserts that the rules used to derive leadsto properties are sound
(LE ⊆ T) and relatively complete (T ⊆ LE).

The next step is the instantiation of the termination and reachability relation to consider
minimal progress and weak fairness assumptions. For the case of minimal progress, the step
of the iteration of events Wm is defined as preconditioned set transformer grd(S) | S which
models the nondeterministic choice of events when an event is enabled. The basic relation
under minimal progress assumptions Em is defined as the pairs {x | I ∧ P} 7→ {x | I ∧ Q}
where P and Q satisfy the MP0 and MP1 rules. These definitions satisfy the hypothesis of
the soundness and completeness theorem which allow us to assert that the reachability and
termination relation under minimal progress assumptions are equal (LEm = Tm).

The instantiation of the termination relation to the weak fairness assumption needs the
dovetail operator. Using this operator, a fair loop Y (q)(G) is defined which models the
iteration of the helpful event G under the weak fairness assumption. The weakest precondition
of the step Ww to establish q is defined as the union, over all helpful events G in the system,
of the weakest precondition of fair loops to establish q (Y (q)(G)(q)). The definition of the
basic relation under weak fairness needs the definition of the basic relation E(G), for a helpful
event G. It is defined as the pairs {x | I ∧ P} 7→ {x | I ∧ Q}, where P and Q satisfy the
WF0 and WF1 rules. The basic relation under weak fairness assumptions Ew is defined as the
union, over all helpful events G in the system, of basic relations for helpful events E(G).These
definitions satisfy the hypothesis of the soundness and completeness theorem which allow us
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to assert that the reachability and termination relation under weak fairness assumptions are
equal (LEw = Tw).

The chapter terminates with a section illustrating the derivation of liveness properties
as an example of the utility of our semantical work. The first example (subsection 4.4.2)
shows how we relate the proof rules for modalities of Abrial and Mussat ([7]) to our leadsto
properties. In fact, these rules are a particular case in our framework. The second example
(subsection 4.4.3) is an attempt to provide a rule to verify the “implementation” of weak
fairness assumptions in systems with minimal progress assumptions. The rule states that any
leadsto property proved under a weak fairness assumption holds in a system with minimal
progress assumptions if a variant is decremented by any event in the system.

The work reported in this chapter has been published as a research rapport in [58] and as
a paper in [61].



Chapter 5

Soundness of Rules for Preserving
Liveness Properties

Résumé

Dans ce chapitre, nous abordons la cohérence des règles permettant la préservation
des propriétés de base, sous les hypothèses de progrès minimal et d’équité faible.
Nous avons supposé dans le chapitre 3 que la préservation des propriétés de base
est une condition suffisante pour de même la préservation des propriétés de vivacité
générale. Dans ce chapitre, nous l´enonçons comme un théorème, que nous prouvons
dans le cadre ensembliste introduit au chapitre 4. À partir de ce théorème, nous
montrons la cohérence d’une part des règles BMP et LMP pour la préservation des
propriétés de base sous l’hypothèse d’équité faible, et d’autre part, des règles SAP et
LIP pour la préservation des propriétés de base sous l’hypothèse d’équité faible.

In section 3.4, rules for preserving basic liveness properties under refinement are proposed.
We claim that the preservation of these properties guarantees the preservation of general
liveness properties. In this chapter, a formal proof of this claim is presented and we prove
soundness of the rules for preserving basic properties under minimal progress and weak fairness
assumptions.

This chapter is divided in three sections. The first one presents general characteristics
of refinements of B event systems in a set theoretical framework. Moreover, it proves that
preserving basic properties is a sufficient condition for preservation of general liveness prop-
erties. Soundness of the rules for preserving basic liveness properties under minimal progress
and weak fairness assumptions is proved in sections two and three respectively.

5.1 Refinement in a Set Theoretical Framework

In chapter 4 we consider a system S with state variable x, invariant I, set of events E

and bounded choice of events in E denoted by S. In this chapter a refinement T of S is
considered. This refinement is made up of a state variable y, gluing invariant J and set of
events E′ containing two disjoint subsets: the set of concrete events and the set of new events.
Each concrete event F ′ of T is a refinement of an abstract event F in S. New events refine
skip.

89
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In a set theoretical framework, the refinement T transforms a concrete state v which
contains all values of the concrete variable satisfying the gluing invariant and related to
abstract states:

v = {y | ∃x · (I(x) ∧ J(x, y))}

In this way, any event in T can be modeled by a set transformer of type P(v) → P(v).
The refinement relation r is defined as a total relation between the concrete state space and
the abstract one which contains all pairs of values satisfying both the abstract and gluing
invariants:

r = {y 7→ x | I(x) ∧ J(x, y)}

For each abstract event F in the model S there exists a concrete event F ′ in the refinement
T satisfying the following inclusion [2]:

∀t · (t ∈ P(v)⇒ F (r[t]) ⊆ r[F ′(t)]) (5.1)

From this inclusion follows that for any subset s of u, the inverse image under r of the
weakest precondition for F to establish s is included in the weakest precondition for F ′ to
establish the inverse image of s under r:

∀s · (s ∈ P(u)⇒ r−1[F (s)] ⊆ F ′(r−1[s])) (5.2)

The proof of this inclusion is based on equivalence r[a] ⊆ b ≡ r−1[b] ⊆ a, where a and b are
universally quantified over P(v) and P(u) respectively. The reference to this equivalence in
the proof is given as “(Equ)”. The proof of (5.2) is:

1. F (r[r−1[s]]) ⊆ r[F ′(r−1[s])] ; From (5.1)

2. r[F ′(r−1[s])] ⊆ F (r[r−1[s]]) ; 1

3. r−1[F (r[r−1[s]])] ⊆ F ′(r−1[s]) ; 2 and Equ
4. r−1[s] ⊆ r−1[s] ; trivial

5. r[r−1[s]] ⊆ s ; 4 and Equ

6. s ⊆ r[r−1[s]] ; 5

7. r−1[F (s)] ⊆ r−1[F (r[r−1[s]])] ; 6 and monotony
8. r−1[F (s)] ⊆ F ′(r−1[s]) ; 7 and 3

✷

Denoting by H the bounded choice of new events in T and considering that skip(s) = s,
for any s in P(u), from (5.2) follows:

∀s · (s ∈ P(u)⇒ r−1[s] ⊆ H(r−1[s])) (5.3)

which states that the new events do not modify concrete states, related by r to abstract ones.
Apart from safety properties specified as invariants in an event B model S, we consider

liveness properties specified by the leads-to relation. In a set theoretical framework, in chapter
4, we give an equivalent definition of the leads-to relation in term of the reachability relation
LE stated in definition 4.4, which is a subset of P(u)× P(u). We recall that the base relation
E in definition 4.4 must be instantiated to the basic relation Em or Ew to get the definitions of
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the reachability relation under minimal progress or weak fairness assumptions. In appendix
A we prove that for any subsets p and q of u, containing states satisfying the predicates P

and Q respectively, if the pair p 7→ q is contained in LE , then it is equivalent to assert that
the property P ❀ Q holds in S.

In the refinement T , the reachability relation is denoted by LE ′ , which is a subset of
P(v) × P(v). In LE ′ , the base relation E ′ must be instantiated to the base relations under
minimal progress (E ′m) or weak fairness (E ′w) to get the reachability relation under minimal
progress or weak fairness assumptions in the refinement T .

In section 3.4 we claim that preserving in T basic liveness properties proved in S, is a
sufficient condition to assert the preservation of general liveness properties. To express this
claim in a more precise way, a subset β of E is considered. Taking the induction scheme of
definition 4.4, the reachability relation Lβ can be defined and it denotes all general liveness
properties which can be generated from the set of basic properties β. From the closure clause
in the definition of Lβ and the inductive definition of LE follows that any property in Lβ is
as well a property of LE , that is Lβ ⊆ LE . Now we can state the following theorem:

Theorem 4 (Preservation of General Liveness Properties)
Let S be an abstract model, T a refinement of S with refinement relation r and β a subset of
E, the set of basic properties in S. If any property in β is preserved in T :

∀(p, q) · (p 7→ q ∈ β ⇒ r−1[p] 7→ r−1[q] ∈ LE ′)

where LE ′ denotes the reachability relation in T , then any general liveness property in Lβ is
preserved in T :

∀(p, q) · (p 7→ q ∈ Lβ ⇒ r−1[p] 7→ r−1[q] ∈ LE ′)

The proof of this theorem proceeds by induction on the structure of Lβ. For any p and q

in P(u), let P (p, q) be the property:

P (p, q) ≡ r−1[p] 7→ r−1[q] ∈ LE ′

Three proofs are required:

• Base: If p 7→ q ∈ β then P (p, q).

• Transitivity: If the pairs o 7→ p and p 7→ q are in Lβ and they satisfy the inductive
hypothesis P (o, p) and P (p, q) , then P (o, q) holds.

• Disjunction: If l × {q} ⊆ Lβ and P (p, q) holds for any p in l, then P (
⋃

(l), q) holds.

The base case follows from the premise stating the preservation of basic liveness properties.
Transitivity and disjunction cases follow from the inductive definitions of Lβ and LE ′ .

✷

The following sections show how the premise of theorem 4 is satisfied in the case of a
minimal progress and weak fairness assumptions.
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5.2 Preserving Liveness under Minimal Progress

The goal of this section is to prove that the BMP and LMP rules, stated in section 3.4.1 as
sufficient conditions to preserve basic liveness properties under a minimal progress assumption,
allow the proof of the premise of theorem 4, when the basic relation E is instantiated to the
basic relation under minimal progress Em. The proof lies in the fact that refinement conditions
and the BMP and LMP rules can be used to derive a basic liveness property holding in T ,
and then the induction theorem IND can be used to prove the premise.

In the set theoretical framework, the BMP and LMP rules can be stated in an equivalent
way as the following inclusions:

∀n · (n ∈W ⇒ w(n) ⊆ H(w ′(n))) (5.4)

r−1[S(∅)] ⊆ (T [] H)(∅) (5.5)

where W is a well founded set and the functions w and w′ are defined as follows:

w = λn · (n ∈ N | { z | z ∈ v ∧ V (z) = n }) (5.6)

w ′ = λn · (n ∈ N | { z | z ∈ v ∧ V (z) < n }) (5.7)

In appendices D.1.1 and D.1.1 can be found the proofs of the equivalence between the BMP
and LMP rules and the inclusions (5.4) and (5.5).

In order to prove the hypothesis of the theorem 4 when the basic relation E is instantiated
to the basic relation under a minimal progress assumption Em, and therefore β ⊆ Em, we take
as assumption the antecedent of the implication in the hypothesis of the theorem

p 7→ q ∈ β

and we prove

r−1[p] 7→ r−1[q] ∈ LE ′
m

where E ′m denotes the basic relation under minimal progress in the refinement T :

E ′m = { a 7→ b | a ⊆ v ∧ b ⊆ v ∧ a ∩ b ⊆ (T [] H)(b) ∩ grd(T [] H) } (5.8)

In the proof, for the sake of simplicity, p′ and q′ denote the inverse image under r of the sets
p and q respectively:

p ′ = r−1[p] and q ′ = r−1[q]

The proof needs the following inclusion which is proved in appendix D.1.3:

p ′ ∩ q ′ ⊆ r−1[p ∩ q] (5.9)

The proof of p′ 7→ q′ ∈ LE ′
m

is as comes next.
From the antecedents p 7→ q ∈ β and β ⊆ Em and the definition of Em follows:

p ∩ q ⊆ S(q) ∩ grd(S) (5.10)

The inclusion r−1[S(q)] ⊆ T (r−1[q]) follows by instantiating F to S, F ′ to T and s to q in (5.2).
Weakening the postcondition of T in this last inclusion and using (5.10) and monotonicity of
image we derive:

r−1[p ∩ q] ⊆ T (q ′ ∪ (r−1[p ∩ q] ∩ w ′(n))) (5.11)
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Instantiating s to p∩ q in (5.3) allows the derivation of r−1[p∩ q] ⊆ H(r−1[p∩ q]). Weakening
the conjunction of this last inclusion and (5.4) gives as outcome:

r−1[p ∩ q] ∩ w(n) ⊆ H((r−1[p ∩ q] ∩ w ′(n)) ∪ q′) (5.12)

Using the inclusion (5.9) and weakening the conjunction of (5.11) and (5.12) allows the deriva-
tion of

p ′ ∩ q ′ ∩ w(n) ⊆ (T [] H)(p ′ ∩ w ′(n) ∪ q ′) (5.13)

On another hand, from (5.10) follows r−1[p ∩ q] ⊆ r−1[grd(S)]. This last inclusion, (5.9)
and the rule (5.5), by transitivity, allows the derivation of

p ′ ∩ q ′ ∩ w(n) ⊆ grd(T [] H) (5.14)

The conjunction of (5.13) and (5.14) is a sufficient condition to guarantee, by the definition
of E ′m, that the pair p′ ∩ w(n) 7→ p′ ∩ w′(n) ∪ q′ belongs to E ′m. By the equivalence (A.3) of
appendix A, instantiated to the refined state space v, we derive:

y ∈ p ′ ∩ w(n)≫m y ∈ p ′ ∩ w ′(n) ∨ y ∈ q ′

Considering that y ∈ w(n) and y ∈ w′(n), from definitions (5.6) and (5.7), are equivalent to
y ∈ v ∧ V = n and y ∈ v ∧ V < n respectively, and by application of the BRL rule to the
derived basic property we get:

y ∈ p ′ ∧ V = n ❀ y ∈ p ′ ∧ V < n ∨ y ∈ q ′

Then, the property y ∈ p′ ❀ y ∈ q′ can be derived by the induction theorem IND of leads-
to. Finally, from this leads-to property and the instantiation of the equivalence (4.7) to the
refined state of T , we derive the goal:

p ′ 7→ q ′ ∈ LE ′
m

5.3 Preserving Liveness under Weak Fairness

The proof of the hypothesis of theorem 4, instantiating E to the basic relation under weak
fairness assumption Ew, follows the same steps as the previous proof under the minimal
progress condition. That is, taking the antecedent of the hypothesis of theorem 4 as a local
hypothesis p 7→ q ∈ β, we derive the leads-to property y ∈ r−1[p] ❀ y ∈ r−1[q] holding in the
refinement T and therefore, we prove the goal of theorem 4.

In this section, β is a subset of Ew, the basic relation under weak fairness assumptions. As
stated in (4.24), Ew is the union of basic relations for helpful events: Ew =

⋃
G·(G ∈ E | E(G)).

Therefore, from the antecedent of the hypothesis of theorem 4, p 7→ q ∈ β, it follows that
there exists a helpful event G in E such that:

p 7→ q ∈ E(G) (5.15)

In the following paragraphs we prove that the LIP and SAP proof obligations are sufficient
conditions to guarantee that (5.15) under the refinement conditions, implies

p′ 7→ q′ ∈ LE ′
w
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where p′ and q′ are, as in the previous section, the inverse image under r of the sets p

and q respectively and E ′w denotes the basic relation under weak fairness assumptions in the
refinement T . As in the definition of Ew in S, the basic relation E ′w is defined as the union of
basic relations for helpful events in E′, the set of events in the refinement T :

E ′w =
⋃

G′ · (G′ ∈ E ′ | E′(G′))

where E
′(G′) is the basic relation for any helpful event G′ in E′, defined like E(G) (4.24):

E
′(G ′) = { a 7→ b | a ⊆ v ∧ b ⊆ v ∧ a ∩ b ⊆ (T [] H)(a ∪ b) ∩ (G ′)(b) ∩ grd(G ′) }

We recall that T is the choice of concrete events refining S and H are new events refining
skip.

Following the notation in section 3.4.2, where S is considered as the choice of events F

and G:

S = F [] G

with G denoting a helpful event and F the choice of events in E − {G}, the concrete events
T in the refinement T is made up of the choice of events F ′ and G′:

T = F ′ [] G′

where F ′ is the refinement of F and G′ the refinement of G.
The proof uses the PSP theorem for the leads-to relation. This theorem is stated as follows

in our set theoretical framework:

Theorem 5 (PSP Theorem under Weak Fairness)
Let S be any model with state space u, choice of events S and basic relation Ew. Let p, q, a

and b be any subset of u such that the following holds:

p 7→ q ∈ LEw and a ∩ b ⊆ S(a ∪ b)

Then it follows:

p ∩ a 7→ q ∩ a ∪ b ∈ LEw

This theorem is proved in appendix D.2.1 by induction on the structure of LEw .
Considering the sets p and q in (5.15) as the subsets of states in u satisfying the predicates

P and Q respectively:

p = { z | z ∈ u ∧ P (z) } and q = { z | z ∈ u ∧ Q(z) }

the LIP and SAP proof obligations can be stated in an equivalent form in our set theoretical
framework:

r−1[p ∩ q] ∩ grd(G ′) ⊆ (F ′ [] H)(grd(G ′)) (5.16)

r−1[p ∩ q] ∩ grd(G ′) 7→ grd(G ′) ∈ LE ′
w

(5.17)

The proof of these equivalences is given in appendices D.2.2 and D.2.3. The proof of the goal
p′ 7→ q′ ∈ LE ′

w
is as comes next.
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From (5.15) and definition of E(G) follows:

p ∩ q ⊆ S(p ∪ q) ∩G(q) ∩ grd(G) (5.18)

Considering S as the choice F [] G, from (5.18), by monotonicity of the image operator, we
derive:

r−1[p ∩ q] ⊆ r−1[F (p ∪ q)] ∩ r−1[G(q)] (5.19)

As F ′ is a refinement of F and G′ a refinement of G, by application of (5.2) we get r−1[F (p∪
q)] ⊆ F ′(r−1[p ∪ q]) and r−1[G(q)] ⊆ G ′(r−1[q]). Therefore, from these last derivations and
(5.19) we conclude by transitivity:

r−1[p ∩ q] ⊆ F ′(p ′ ∪ q ′) ∩G ′(q ′) (5.20)

From (5.3) we conclude r−1[p ∩ q] ⊆ H(r−1[p ∩ q]). By weakening the conjunction between
this last inclusion and (5.16) we derive: r−1[p∩ q]∩grd(G ′) ⊆ H(p ′∩grd(G ′)). By weakening
the conjunction of this inclusion and (5.20) we obtain:

r−1[p ∩ q] ∩ grd(G ′) ⊆ (F ′ [] H)(p ′ ∩ grd(G ′) ∪ q ′) (5.21)

Weakening (5.20) allows the derivation of the following inclusion:

r−1[p ∩ q] ⊆ G ′(p ′ ∩ grd(G ′) ∪ q ′) (5.22)

The conjunction of (5.22) with (5.21), considering that T = F ′ [] G′, gives as result:

r−1[p ∩ q] ∩ grd(G ′) ⊆ (T [] H)(p ′ ∩ grd(G ′) ∪ q ′) (5.23)

From (5.20) follows

r−1[p ∩ q] ∩ grd(G ′) ⊆ G ′(q ′) ∩ grd(G ′) (5.24)

Considering the definition of E
′(G ′) above and the inclusion (5.9), the conjunction of (5.24)

and (5.23) allows us to conclude p ′ ∩ grd(G ′) 7→ q ′ ∈ E
′(G ′) and therefore

p ′ ∩ grd(G ′) 7→ q ′ ∈ LE ′
w

(5.25)

Let a and b be the following sets:

a = p ′ ∩ q ′ ∩ grd(G ′)

b = p ′ ∩ q ′ ∩ grd(G ′) ∪ q ′

By remarking that a∪ b is equal to p′ ∪ q′ and by application of (5.9), from (5.20), (5.22) and
(5.3) we conclude:

a ∩ b ⊆ (T [] H)(a ∪ b) (5.26)

Applying the PSP theorem to (5.17) and (5.26) we get

p′ ∩ q′ ∩ grd(G ′) 7→ p ′ ∩ grd(G ′) ∪ q ′ ∈ LE ′
w

(5.27)

The property q ′ 7→ q ′ ∈ LE ′
w

holds trivially. Applying SDR rule to this last property and
(5.25) allows us to conclude:

p ′ ∩ grd(G ′) ∪ q ′ 7→ q ′ ∈ LE ′
w

(5.28)
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From (5.28) and (5.27) by transitivity follows:

p ′ ∩ q ′ ∩ grd(G ′) 7→ q ′ ∈ LE ′
w

(5.29)

From (5.25) follows p ′ ∩ q ′ ∩ grd(G ′) 7→ q ′ ∈ LE ′
w
. Applying the disjunction rule to this

property and (5.29) gives as result:

p ′ ∩ q ′ 7→ q ′ ∈ LE ′
w

(5.30)

The property p ′ ∩ q ′ 7→ q ′ ∈ LE ′
w

holds trivially. Finally, the goal p′ 7→ q′ ∈ LE ′
w

follows from
this last derivation and (5.30) by application of the disjunction rule.

✷

5.4 Conclusion

In this chapter we prove soundness of the rules for liveness preservation under refinement.
The proof is carried out in the set theoretical framework of the previous chapter. Soundness
of these rules is founded on the fact that preserving basic liveness properties guarantees the
preservation of general liveness properties.

We consider a refinement T of an abstract system S. The state variable of the refinement
is denoted by y and its state space by v, which contains those concrete states related to the
abstract ones by the refinement relation r. Under this framework, we state that a property
p 7→ q ∈ LE of the abstract system S, is preserved in the refined system T , if the property
r−1[p] 7→ r−1[q] ∈ LE ′ holds, where E ′ is a binary relation of subsets of v and LE ′ the
reachability relation in the refinement. Moreover, a basic liveness property p 7→ q ∈ E is
preserved in T , if the property r−1[p] 7→ r−1[q] ∈ LE ′ holds in the refined system.

Theorem 4 states that the preservation of general liveness properties depends on the
preservation of basic liveness properties. That is, considering any subset β of basic properties,
β ⊆ E , if all the basic properties in β are preserved, then any general liveness property
generated from β, is preserved in the refinement. Therefore, soundness of rules preserving
general liveness properties, is reduced to prove soundness of rules for the preservation of basic
liveness properties.

Soundness proofs for basic liveness properties take advantage of the refinement relation
between abstract and concrete events and between skip and new events. From these relations,
and the proof obligations BMP and LMP for minimal progress, or LIP and SAP for weak
fairness assumptions, we prove that basic liveness properties are preserved in the refinement.

We stress the fact that our proofs for preserving liveness properties are carried out by
reasoning in the reachability relation only. We take advantage of the inductive definition
of that relation. From Theorem 2, which states the equality between the reachability and
termination relations, another kind of proof could be done, reasoning on the least fixpoints
of set transformers. However, this kind of proofs seems to us more complicated. In order to
argument our claim, we can compare our proof for the preservation of basic liveness properties
under minimal progress assumption and the proof for liveness preservation in [7].

In [59] we reported the first version of the soundness proof for the LIP and SAP rules and
the soundness proofs for BMP and LMP were published in [17].



Chapter 6

An example: Mutual Exclusion

Résumé

Dans ce chapitre, nous faisons une étude de cas qui montre notre approche pour la
construction d’algorithmes. L’objectif principal de cette étude de cas est de mon-
trer la spécification et la preuve des propriétés de vivacité dans le style unity sous
l’hypothèse d’équité faible. Nous commençons par la spécification d’un modèle ab-
strait ayant un haut niveau de non déterminisme et nous prouvons ses propriétés
de sûreté et de vivacité. Ensuite, nous procédons au raffinement de ce modèle afin
d’aboutir à deux types de mises en œuvre : une centralisée et une autre distribuée.
La mise en œuvre centralisée modélise un serveur qui donne accès selon un ordre fifo.
La mise en œuvre distribuée conduit à l’algorithme d’exclusion mutuelle de Ricart
et Agrawala selon lequel les processus coopèrent pour accéder à la section critique.

In this chapter, the approach to the development of systems under weak fairness assump-
tions is illustrated by two examples. These examples implement an algorithm to manage the
mutual exclusion problem, under two supposed environments: a centralized and a distributed
one. First, an abstract model is presented, which gives a highly non deterministic solution to
the mutual exclusion problem. Two main properties are proved in this model: safety and live-
ness. The safety property indicates that there is at most, one process in the critical section.
The liveness property states that any process requesting access to the critical section, even-
tually gets it. The first example refines the abstract model in an algorithm which implements
a first input first output policy in the access to the critical section. The management of this
policy is made by a server, which grants access rights to requesting processes. On the other
hand, the second example refines the abstract model in a distributed algorithm, where each
process is aware of requests made by other processes. Access to the critical section is given to
a process with the oldest request. As these examples are refinements of the abstract model,
satisfying the proof obligations for safety and liveness preservation, the two main properties
of the abstract model are preserved in the centralized and distributed implementations of the
mutual exclusion algorithm. The abstract model, its refinements and proof obligations for
basic liveness properties have been entirely verified with the “Click’n Prove” prover [4].

This chapter is structured in three sections. The first section presents the abstract model of
the algorithm. The second one shows two refinements where the first input first output policy
is implemented and the third section illustrates four refinements that give the distributed
implementation of the mutual exclusion algorithm.

97
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6.1 The Abstract Model

The abstract model, named Mutex, considers a set of processes PR with cardinality greater
than one. Each process can be in one of three states: idle, waiting or active. A process in
state idle is out of the critical section, and it has no pending request to enter the critical
section. When a process requests access, it passes to state waiting. Finally, when a process
gets access to the critical section, its state becomes active. In the initial state of the system,
the state of any process is idle. In order to decide which process gets access to the critical
section, a logical clock is associated with each process. A logical clock is a variable of type
N, and its value is referenced as logical time, or simply time; the initial value of the clock,
for any process, is zero. When a process asks for access to the critical section, the clock is
updated; the new value of the clock must be greater than its current time. In this model, any
process in state waiting with the lowest time in its clock, can be chosen to enter the critical
section. When a process leaves the critical section, its state becomes idle again.

The formal definition of the abstract model needs variables st and t with the following
type:

st ∈ PR → ST ,

t ∈ PR → N

where ST = {ID ,WT ,AC}, which denotes the set of states: idle (ID), waiting (WT ) or
active (AC ). st assigns a state to each process, and t associates a logical clock with each
process. In the initial state of the abstract model, all processes have an idle state, and its
time stamp is zero.

For the sake of simplicity, the sets of processes in state idle (Idl), waiting (Wtg) and
active (Act) are defined by the relational image:

Idl = st−1[{ID}], Wtg = st−1[{WT}] and Act = st−1[{AC}]

The main safety property in this model states that there is at most, one process in the critical
section at any time. Formally it is specified by the following predicate

card(Act) ≤ 1

which is invariant in the abstract model.
Events in the abstract model are presented in figure 6.1; they code the informal behavior

presented above. Event req (request) can be executed by any process p in state idle. When it
is executed, the state of the process changes to waiting , and its new time becomes n, where
n is greater than the current value of the clock t(p). Event ent (enter) can be executed when
the set of processes Wtg is not empty, and the critical section is not busy. Any process p,
whose state is waiting , and its time is one of the lowest among the process in state waiting,
can access the critical section if it is empty. When a process p leaves the critical section, event
rel (release) is executed, and the state of p changes to idle.

The abstract model is a highly non deterministic specification to the mutual exclusion
problem, and therefore, it is a unfair solution for processes waiting for the critical section.
The cause for this nondeterminism, is that t is only a total function, and the set of processes
with the lowest time m, equal to min(t[Wtg ]), is not necessary a singleton. Therefore, any
process with time m can be chosen to enter the critical section, when event ent is executed.
Process with time m which are not chosen, must wait another execution of event ent , to
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req =̂
any p, n where

p ∈ Idl ∧ n ∈ N ∧ t(p) < n

then

st(p) := WT ‖ t(p) := n

end ;
rel =̂
any p where

p ∈ Act
then

st(p) := ID
end

ent =̂
any p where

p ∈Wtg ∧ Act = ∅ ∧
p ∈ t−1[{min(t[Wtg ])}]

then

st(p) := AC
end ;

Figure 6.1: The Abstract Model: Mutex

possibly enter into the critical section. However, execution of event req , can add a new
process to the set Wtg , with a time n lower than m. In this new state of the system, another
execution of event ent , chooses the process with time n, and the processes with time m must
wait again. From the fact that clocks are incremented each time that a process requests access
to the critical section, any process in state waiting eventually accesses the critical section.
This informal reasoning is formalized in the next paragraphs.

Liveness

The main liveness property of this algorithm is stated as follows: any process q from PR,
requesting access to the critical section, eventually gets it. Formally this property is specified
in the following way:

q ∈Wtg ❀ q ∈ Act (6.1)

The main idea in the proof of this property is the notion of “distance”. For any two
processes o and p from PR, the value t(o)− t(p) denotes the distance between these processes.
As event ent grants access to one process with lower time, only the distances between q and
any other process with lower time is of interest. When a process requests access, the sum
of these distances is not incremented. However, that sum is decremented when a process
goes into the critical section. It ensures that any requesting process goes eventually into the
critical section. In order to formalize this reasoning, the following definitions are given:

lt(q) = { z | z ∈ PR ∧ t(z) < t(q) } (6.2)

V1 = Σz · (z ∈ lt(q) | t(q)− t(z)) (6.3)

V2 = Σz · (z ∈ lt(q) ∩Wtg | t(q)− t(z)) + card(Wtg ∩ t−1[{t(q)}]) (6.4)

V3 = card(Act) (6.5)

lt(q) denotes the set of processes with a time lower than t(q). V1 represents the sum of
distances between q and p, for any p with time lower than t(q). V2 stands for the sum of
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two quantities: the sum of distances between q and requesting processes with lower time, and
the number of requesting processes with time equal to t(q). Finally, V3 is the number of
processes in the critical section.

When event req is executed, if the time of p is lower than t(q), V1 is decremented. If
t(q) ≤ t(p), the values of V1 and the sum of distances from processes in Wtg do not change.
On another hand, the number of processes in Wtg , with time equal to t(q), stays constant.
Thus, the global variant is not incremented. When event ent is executed, the clocks are not
modified, and V1 does not change. If q does not changes to the active state, and t(p) < t(q),
the sum of distances from processes in Wtg decrements. If t(p) = t(q) the number of processes
waiting for the critical section decreases. Therefore, the global variant is decremented by the
execution of ent or q goes into the critical section. Finally, execution of rel decrements the
number of processes in the critical section. These arguments, allow the proof of the following
basic liveness properties:

ent · q ∈Wtg ∧ Act = ∅ ∧ V = v ≫ (q ∈Wtg ∧ V ≺ v) ∨ q ∈ Act (6.6)

rel · q ∈Wtg ∧ Act 6= ∅ ∧ V = v ≫ q ∈Wtg ∧ V ≺ v (6.7)

where the variant V is defined as follows:

V = [V1 ,V2 ,V3 ] (6.8)

and v denotes the list [k, l,m], for k, l and m universally quantified over the natural num-
bers, and ≺ is the lower than relation over a lexicographic order. Property (6.6) states that
execution of ent decrements the variant while q is waiting for the critical section, or q goes
into the critical section. Moreover, it states that any other event does not increment the
variant. Property (6.7) specifies that execution of rel decrements the variant maintaining q in
state waiting, while req and ent do not increment it. These properties are proved with proof
obligations WF0 and WF1 presented in section 3.3.

Applications of the basic rule BRL to (6.6) and (6.7), and then disjunction rule DSJ, give
the property:

q ∈Wtg ∧ [V1 ,V2 ,V3 ] = [k, l,m] ❀ (q ∈Wtg ∧ [V1 ,V2 ,V3 ] ≺ [k, l,m]) ∨ q ∈ Act

Finally, application of the induction rule IND allows derivation of the goal: q ∈ Wtg ❀ q ∈
Act .

Events in the abstract model represent a closed system with two entities: the process
asking for access to the critical section, and the access mechanism. Events which model the
request (req), and the release (rel) of the critical section, are executed when a process asks
for access, or leaves the critical section. However, when the access mechanism decides that
a waiting process must enter the critical section, event ent is executed. The validity of the
main liveness property (6.1), as described by properties (6.6) and (6.7), needs to execute
events ent and rel under a weak fairness assumption, however, there is not a weak fairness
assumption about the execution of event req . This means that access to the critical section,
for any process in state waiting , depends only on the weak fair execution of events ent and
rel . Moreover, property (6.6) specifies the main liveness property which must be satisfied
by the access mechanism, while (6.7) specifies the liveness property guaranteed by processes.
The algorithms derived in this section, give two possible implementations of the access mech-
anism, whose main liveness property, is specified by property (6.6). Of course, preservation
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of property (6.7) must be proved, in order to claim that the main liveness property of the ab-
stract model holds in the implementations. On the other hand, as safety properties, specified
by invariants in the model, are preserved by the very definition of refinement, in this paper
only the preservation of liveness properties is considered.

Proof Obligations for Mutex

In this paragraph we show the number of proof obligations generated by the “Click’n Prove”
prover in the verification of the Mutex model. The number of proofs is presented by a table
containing four columns. The columns are labeled as follows:

NbObv Number of obvious proof obligations. They are simple proofs which are automati-
cally removed by the proof obligations generator.

NbPO Number of no obvious proof obligations.

NbPRi Number of proof obligations proved with the interactive prover.

NbPRa Number of proof obligations proved with the automatic prover.

The rows of the table are labeled as follows:

Init Number of proof obligations generated by the initialization in the model.

events One row for each event in the model shows the number of proof obligations generated
by the event.

Total Model The sum of proof obligations in rows “Lemmas”, “Init” and “events”.

Total Liveness The number of assertions generated by the WF0 and WF1 rules, required
in the proof of the basic properties (6.6) and (6.7).

Total The sum of proof obligations in rows “Total Model” and “Total Liveness”.

The table containing the number of proof obligations for the model Mutex is the following:

NbObv NbP0 NbPRi NbPRa

Init 0 5 0 5

req 1 5 0 5

ent 3 3 0 3

rel 3 3 0 3

Total Model 7 16 0 16

Total Liveness 2 9 7 2

Total 9 25 7 18
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6.2 A Centralized Implementation

In this section, a centralized algorithm is refined from the abstract model. The derivation is
made by two refinements. In the first refinement, an infinite sequence is introduced which
records the order of access requests, made by the processes. The sequence allows implemen-
tation of a first input first output policy in the access to the critical section. The second
refinement introduces a new event which models a server. The server centralizes the requests,
and assigns a token to the process which generated the oldest request; the token grants access
to the critical section. The two refinements are presented in the following paragraphs.

6.2.1 A First Input First Output Policy

The main concern of this refinement, named Fifo 1, is the reduction of nondeterminism in
the access mechanism. So, the total function, which models logical clocks for processes in
the abstract model, is refined by a infinite sequence of processes, which gives basically the
same information, but in a deterministic way. When a process asks for access to the critical
section, it is simply appended to the sequence. A new variable is introduced, which is used as
a pointer to the oldest request in the sequence. In this way, when the set of processes in state
waiting is not empty, and the critical section is free, the process in the sequence, referenced
by the pointer, can access the critical section.

The sequence and the pointer are denoted by two new variables qu and i, defined as
follows:

qu ∈ seq(PR),

i ∈ N

In the initial state, qu is empty, and i is zero. The gluing invariant, which relates the function
t of the abstract model with the new variable, is given by the following relation:

t = (ran(qu)× {0}) ∪ (qu−1 ; M(qu))

where ran(qu) is equal to PR − ran(qu), and M(qu) is a function of type N1 → N, defined as
follows, for any non empty sequence se of processes, and any natural number n greater than
zero:

M(se)(n) = max(se−1[{se(n)}])

M(se)(n) denotes the greatest position in se of the process se(n). In fact, from the definitions
follows that (qu−1 ; M(qu)) is a partial function of type PR → N1. The gluing invariant states
that any process that is not in the sequence has time zero, and that the time of any process
in the position n of the sequence is equal to max(qu−1[{qu(n)}]).

The proof of the gluing invariant needs the following invariants:

i ≤ size(qu),

st−1[{WT}] = qu[i + 1..size(qu)],

(i + 1..size(qu) ✁ qu)−1 ∈ PR →p i + 1..size(qu)

The first invariant indicates that the pointer i is not greater than the size of qu, the second
one states that Wtg , the set of processes in state waiting, is equal to the set of processes
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in the interval i + 1..size(qu) of the sequence qu, and the third invariant asserts that qu, in
the interval i + 1..size(qu), is an injective sequence, that is, its inverse is a partial function
from PR to i + 1..size(qu). From this last invariant follows that, any process cannot make a
request, if its previous one is not served.

Events for system Fifo 1 are presented in figure 6.2. Event rel remains the same as the
abstract model one. Events req and ent are simplified, because the updates of logical clocks
are not used any more. When a process asks for access to the critical section, it is simply
appended to end of the sequence. When the pointer i is lower than the size of qu, which
means that Wtg 6= ∅, and the critical section is empty, the process, pointed by i + 1 in the
sequence, accesses the critical section, and the pointer is updated to its new value i + 1.

req =̂
any p where

p ∈ Idl
then

st(p) := WT ‖ qu := qu ← p

end ;
rel =̂
any p where

p ∈ Act
then

st(p) := ID
end

ent =̂
select

i < size(qu) ∧ Act = ∅

then

st(qu(i + 1)) := AC ‖ i := i + 1
end ;

Figure 6.2: System Fifo 1

Preserving Liveness
This refinement must guarantee the preservation of properties (6.6) and (6.7), in order to
claim that the main property (6.1) is preserved, as stated in section 3.4. However, by rule R1,
preservation of (6.7) holds trivially, because the guard of event rel does not change in this
refinement, so Act 6= ∅ ⇒ grd(rel). As we are interested in the development of the access
mechanism, from now on, the guard of rel is not modified in the next refinements, which
guarantees preservation of (6.7).

On another hand, from q ∈ Wtg ∧ Act = ∅ and the invariant Wtg = qu[i + 1..size(qu)]
follows i < size(qu) ∧ Act = ∅, which is equivalent to the guard of event ent in this refinement.
Therefore by the rule R1, the preservation of the basic property (6.6) holds.

The trivial proofs in the preservation of the main liveness property, comes from the fact
that qu gives one of the possible orders, of processes in the set Wtg , accepted by the abstract
model. However, in Fifo 1, the access mechanism satisfying liveness property (6.6), is not yet
developed. This issue is treated in the next refinement.

Proof Obligations for Fifo 1

As in the abstract model, we present a table containing the number of proof obligations



104 CHAPTER 6. AN EXAMPLE: MUTUAL EXCLUSION

generated by the refinement Fifo 1. The information in the table is interpreted as the table
of the Mutex model. The row labeled “Lemmas” contains the number of proof obligations
generated by some lemmas required in this refinement. The row labeled “Total Liveness”
indicates the proof of the implication proving rule R1 in the preservation of (6.6). The table
is as follows:

NbObv NbP0 NbPRi NbPRa

Lemmas 0 3 3 0

Init 4 5 0 5

req 4 5 3 2

ent 6 5 3 2

rel 8 2 2 0

Total Refinement 22 20 11 9

Total Liveness 1 1 1 0

Total 23 21 12 9

6.2.2 A Token to Grant Access Rights

In this refinement, named Fifo 2, the access mechanism for the first input first output policy
is developed. The infinite sequence in the previous refinement, is refined by an injective
sequence, which only records the order of processes in state waiting. In this way, the access
mechanism assigns a token to the first process in the sequence, which allows access to the
critical section to that process.

In Fifo 2, the sequence qu and the pointer i of the previous refinement disappear. These
variables are refined by a sequence sq , which records the order of requests. A new variable
tk is introduced to manage the assignment of the token. The type of these variables is as
follows:

sq ∈ iseq(PR),

tk ∈ PR → BOOL

For any process p, tk(p) holds if the token is assigned to p. In the initial state of the system,
tk(p) is false for any process p, and the sequence sq is empty. The gluing invariant, relating
the sequence sq with the variables qu and i of refinement Fifo 1, is as comes next:

sq = (a(i) ; (i + 1..size(qu) ✁ qu))

where a(n), for n ∈ N, is a total function of type N → N, defined for any x ∈ N as the sum
x + n. This relation states that the process in the position j of sq , is the same as the process
in the position j + i of qu.

The following invariants are needed in the proof of the gluing invariant, which state
properties in the management of the token:

card(Tk) ≤ 1,

Wtg ∩ Tk ⊆ {first(sq)},

Act ⊆ Tk ,

Tk ⊆ Idl



6.2. A CENTRALIZED IMPLEMENTATION 105

where Tk = tk−1[{true}]. The first invariant states that at most, one process can have
assigned the token. The second invariant indicates that any process in state waiting , which
has assigned the token, is the first process in the sequence. The third invariant specifies that
any process in state active, has assigned the token. Finally, the fourth invariant indicates
that a process in state idle does not have assigned the token.

req =̂
any p where

p ∈ Idl
then

st(p) := WT ‖ sq := sq ← p

end ;

ent =̂
any p where

p ∈Wtg ∩ Tk
then

st(p) := AC ‖ sq := tail(sq)
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ‖ tk(p) := false
end ;

srv =̂
select

sq 6= [ ] ∧ Tk = ∅

then

tk(first(sq)) := true
end

Figure 6.3: System Fifo 2

Events in the system Fifo 2 are presented in figure 6.3. A new event srv (server) is
introduced. It models a server which implements the access mechanism. When the sequence
sq is not empty, and the token is not assigned to any process, the execution of srv assigns
the token to the first process in the sequence. In this way, any process in state waiting, that
has the token assigned, can access the critical section, as specified by event ent . Events req
and rel have not practically changed with respect to system Fifo 1 ; in event req , only qu is
replaced by sq , and in event rel , the release of the token is added.

Preserving Liveness
In the previous refinement, property (6.6), needed in the proof of the main liveness property,
is trivially preserved. In this refinement, the access mechanism is introduced, and we prove
that this mechanism and the processes preserve property (6.6).

Preserving property (6.6), requires the demonstration of the following properties, which
are sufficient to prove LIP and SAP proof obligations:

q ∈Wtg ∧ Act = ∅ ∧ ¬grd(ent2) ❀ grd(ent2) (6.9)

q ∈Wtg ∧ Act = ∅ ∧ grd(ent2)⇒ [e] grd(ent2) (6.10)

where grd(ent2) is the guard of event ent in system Fifo 2, and e is universally quantified
over the set of events {req , rel , srv}.

In fact, considering that the guard of event ent is equivalent to Wtg ∩ Tk 6= ∅, property
(6.9) follows by application of the BRL rule to the following basic property:

srv · q ∈Wtg ∧ Act = ∅ ∧Wtg ∩ Tk = ∅≫Wtg ∩ Tk 6= ∅ (6.11)
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This property specifies that the execution of event srv ensures that the token is assigned to
a waiting process when srv is executed in a state where q is waiting for the critical section,
the critical section is empty and the token is not assigned. In other words, this property
simply specifies that execution of the access mechanism guarantees that the guard of event
ent becomes enabled.

(6.11) is proved by the WF0 and WF1 proof obligations. On the other hand, (6.10) is
easily demonstrated by weakest precondition and predicate calculus.

The sequence sq , shared between the event req , which models access requests to the critical
section, and event srv , which models the server, can be refined in an abstract communication
channel. In this way, a new event, that models a communication system, can be introduced
to manage communications between the server and client processes. This approach has been
taken in [60].

In the next example, a distributed implementation of the mutual exclusion problem, the
refinement of abstract structures in communication channels is showed.

Proof Obligations for Fifo 2

In this table, we present the number of proof obligations for this refinement. The row labeled
“Total Liveness” indicates the number of assertions generated by the WF0 and WF1 rules,
needed in the proof of the property (6.11) and the assertions generated by the SAP rule (6.10).
The table is as follows:

NbObv NbP0 NbPRi NbPRa

Lemmas 0 2 2 0

Init 2 11 0 11

req 5 8 5 3

ent 5 11 7 4

rel 5 9 5 4

srv 9 6 4 2

Total Refinement 26 47 23 24

Total Liveness 1 10 5 5

Total 27 57 28 29

6.3 A Distributed Implementation

In this section, a distributed solution to the mutual exclusion problem, known as the Ricart-
Agrawala algorithm [55], is derived from the abstract model. Informally, this algorithm is
explained as follows. A process in state idle, asking for access to the critical section, sends
a request message to all the processes in the system, and then it passes to state waiting.
The request message contains the identifier of the process which sends the message, and a
time stamp, which corresponds to the time of its local clock when the request is generated.
The couples made up of time stamp and identifier of process, form a total order that is used
to decide which process accesses the critical section. Any process in state waiting, which
receives a reply message from all processes in the system, can access the critical section.
When a process p receives a request message, it compares its local clock and the time stamp
in the message; the maximum of these values is recorded to update its local clock when a new
request is generated. The next action of the process, depends on its state and the outcome
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of the comparison. If p is the state idle, or its clock and its identifier are, in the total order,
greater than the time stamp and the identifier in the request message, then p sends a reply
message to the process that sends the request message. In the opposite case, the process p

defers the reply message. Finally, when a process releases the critical section, it must send a
reply message to any process with a deferred request.

The Ricart-Agrawala algorithm is derived after four refinements of the abstract model.
In the first refinement, a model to request access to the critical section is developed. This
model is less nondeterministic that the abstract model, but it is still unfair for processes with
the same time stamp. The second refinement introduces a total order among the process in
state waiting, which allows a fair solution to process with the same time stamp. The first
two refinements implement the main ideas of the Ricart-Agrawala algorithm, but all state
variables are shared data structures, accessed by all the processes in the system. The goal of
the next refinements is to distribute these data structures among the processes, in a way that
processes only access local variables, and communication channels are introduced to share
information. So, the third refinement introduces the reply messages to grant access to the
critical section. Finally, in the fourth refinement, the request messages are introduced, and
the Ricart-Agrawala algorithm is derived. The following sections present these refinements.

6.3.1 Requesting Access to the Critical Section

In this refinement, named Ricart-Agrawala 1, two issues are considered: the requests produced
when processes ask for access to the critical section, and the nondeterminism in the access. In
this refinement, there is no request messages and therefore, there is no time stamps associated
with request messages. Instead of request messages, a relation is introduced, which models
the requests for access to the critical section. If a process p requests access, it is related to all
the processes in the system, and a new relation {p} × {p} is added to the relation. When a
process o allows p to enter the critical section, the pair p 7→ o is removed from the relation.
So, a process, waiting for access to the critical section, which is not related any more to other
processes, can access the critical section. The time stamp associated with any pair p 7→ o

in the request relation is the time t(p). In this refinement, the updates of logical clocks are
constrained to guarantee the access to the critical section in a fair way.

When a process p asks for access to the critical section, the new value assigned to its logical
clock depends on the relation among p, and the processes in state waiting. If all processes in
Wtg are related to p, the new value of its clock must be only greater than its current value.
However, if there is a strict subset s of Wtg , such that, all processes in s are not related to
p, then, the new value of the logical clock must be greater than the maximum of the time of
processes in s. The choice of the new value, allows p to enter the critical section after process
in state waiting, whose time is lower than the logical clock of p. In other words, any request
from a process with a time lower than t(p), is honored before the request of p.

If a process o is related to another one p in the aforementioned relation, p must compare
its logical clock with the time of o, to decide if p allows or not, the access of o to the critical
section. If p is in state idle, or the time of p is greater than or equal to the time of o, the
process p must grant access to o. In this case, the couple o 7→ p must disappear from the
relation. However, if p is not in the state idle, and its time is lower than or equal to the time
of o, then p must defer the access of o. In this case, the request of o must be recorded in a
set of deferred requests. This set is used by p, when it leaves the critical section, to remove
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any relation among the processes in the deferred set and p.
Two new variables are introduced in this refinement: rq , the relation used to model the

requests for access, and df , a function used to record the deferred requests of any process.
The type of these variables is as follows:

rq ∈ PR ↔ PR

df ∈ PR → P(PR)

In the initial state, rq is assigned the empty relation, and for any process p, df (p) is given
the empty set. The following properties, stated as invariants in this refinement, give more
information about these variables:

rq ∩ id(PR) = ∅,

dom(rq) ⊆Wtg ,

∀(p, q) · (p ∈Wtg ∧ q ∈Wtg − rq−1[{p}]⇒ t(q) ≤ t(p)),

∀p · (p ∈ Idl ⇒ df (p) = ∅),

∀p · (p ∈ PR ⇒ p 6∈ df (p))

The first invariant indicates that the request relation is not reflexive. The second invariant
specifies that processes which are not in state waiting are not in the domain of rq . The third
invariant gives the order of time for processes in state waiting. It states that if processes p

and q are in state waiting, and q is not related to p (q 7→ p 6∈ rq), then the time of q is lower
than or equal to the time of p. The fourth invariant indicates that, for any process p, if the
deferred set of p is not empty, then p is not in state idle. The last invariant states that any
process p is not in its deferred set.

Events of the refinement Ricart-Agrawala 1 are presented in figure 6.4. They code the
informal behavior of the refinement presented above. The guard of event req tests the set
Wtg − rq−1[{p}]; if it is empty (Wtg ⊆ rq−1[{p}]), the new value of the clock must be only
greater than t(p), otherwise, the new value must be greater than the greatest time of processes
in the set Wtg − rq−1[{p}]. When event req is executed, the relation p × p is added to the
relation rq , which means that process p requests access to all processes in the system. The
guard of event ent is enabled when there is a process in state waiting, which is not in the
domain of rq , and the critical section is empty. In this case, the request of that process has
been granted by all processes in the system, and it can access the critical section. When a
process p leaves the critical section, event rel is executed, and any pair o 7→ p in rq , for any
o in the deferred set of p, is removed from rq . It means that p does not block any more, the
access of processes in df (p).

Two new events appears in this refinement: reql (request low) and reqh (request high).
These events implement, in an abstract way, the access mechanism to the critical section. reql
is enabled when a process p, grants the request made by a process o. This event is enabled
when p is in state idle, or its time is greater than or equal to the time of o. When reql is
executed, the pair o 7→ p is removed from rq . On the other hand, reqh is executed when a
process p defers the request of a process o. This event is enabled when p is not in state idle,
and its time is lower than, or equal to the time of o. When this event is executed, process o

is added to the deferred set of p. It must be remarked that Ricart-Agrawala 1 behaves not
deterministically when p is not in state idle, and the time stamps of p and o are equal. In
this case, the request of o can be granted or deferred. This issue is considered in the next
refinement.
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req =̂
any p, n where

p ∈ Idl ∧ n ∈ N ∧ t(p) < n ∧
(Wtg 6⊆ rq−1[{p}]
⇒ n > max(t[Wtg − rq−1[{p}]]))

then

st(p) := WT ‖ t(p) := n ‖

rq := rq ∪ {p} × {p}
end ;

ent =̂
any p where

p ∈Wtg ∧ Act = ∅ ∧ p 6∈ dom(rq)
then

st(p) := AC
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ‖ df (p) := ∅ ‖
rq := rq − (df (p)× {p})

end ;

reql =̂
any o, p where

o 7→ p ∈ rq ∧ (p ∈ Idl ∨ t(o) ≤ t(p))
then

rq := rq − {o 7→ p}
end ;

reqh =̂
any o, p where

o 7→ p ∈ rq ∧ ¬(p ∈ Idl ∨ t(o) < t(p))
∧ o 6∈ df (p)

then

df (p) := df (p) ∪ {o}
end

Figure 6.4: System Ricart-Agrawala 1

Preserving Liveness
In this section the preservation of the main liveness property (6.1) in the refinement Ricart-
Agrawala 1 is proved. As it has been stated, the proof of this property depends on the
preservation of properties (6.6) and (6.7). However, as the guard of event rel , which is the
helpful event in the property (6.7), does not change in this refinement, the preservation of
(6.7) holds trivially, as stated by rule R1. Therefore, only the preservation of (6.6) must be
proved.

According to LIP and SAP proof obligations, the following properties are sufficinet to
prove the preservation of property (6.6):

q ∈Wtg ∧ Act = ∅ ∧ ¬grd(ent1) ❀ grd(ent1) (6.12)

q ∈Wtg ∧ Act = ∅ ∧ grd(ent1)⇒ [e] grd(ent1) (6.13)

where e in (6.13) is universally quantified over the set of events {req , rel , reql , reqh} and
grd(ent1) denotes the guard of event ent in this refinement, and it is equivalent to Act = ∅ ∧
Wtg 6⊆ dom(rq). Informally, this guard indicates that execution of ent is only possible if the
critical section is empty and at least, one requesting process must have access rights from all
the processes in the system.

As (6.13) is easily proved using predicate and substitution calculus, only the proof of (6.12)
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is considered here. In fact, (6.12) specifies the main liveness property of the access mechanism
in this refinement: a requesting process eventually gets access rights from all the processes
when the system arrives into a state where the critical section is empty. This behavior is
ensured by two facts: the number of requests in rq is decremented by executions of event
reql , and only the execution of req increments the number of requests, but this increment
is bounded by the number of process in state idle. In this way, the repeated execution of
reql, eventually leads to an state where a process gets access rights from all the processes
in the system. The formalization of this argument requires the definition of a variant in a
lexicographic order:

W = [card(Idl), card(rq)] (6.14)

where card(Idl) is the number of processes in state idle, and card(rq) is the number of couples
in rq . Using this variant, the following basic liveness property is sufficient to prove (6.12):

reql · q ∈Wtg ∧ Act = ∅ ∧Wtg ⊆ dom(rq) ∧W = w ≫

(q ∈Wtg ∧ Act = ∅ ∧Wtg ⊆ dom(rq) ∧W ≺ w) ∨

(Act = ∅ ∧Wtg 6⊆ dom(rq)) (6.15)

where w stands for the list [k, l], and k and l are universally quantified over the natural
numbers. Property (6.15) specifies that execution of reql eventually reaches a state where a
waiting process gets access rights from all processes in the system and the critical section is
empty. Property (6.15) is proved by the WF0 and WF1 proof obligations, and by application
of the basic and induction rules, the following property is derived:

q ∈Wtg ∧ Act = ∅ ∧Wtg ⊆ dom(rq) ❀ Act = ∅ ∧Wtg 6⊆ dom(rq)

which is equivalent to (6.12), given the definition of grd(act1).

Proof Obligations for Ricart-Agrawala 1

In this table, we present the number of proof obligations of refinement Ricart-Agrawala 1.
The row labeled “Total Liveness” indicates the number of assertions generated by WF0 and
WF1 rules, required in the proof of the property (6.15) and the SAP proof (6.13). The table
is as follows:

NbObv NbP0 NbPRi NbPRa

Lemmas 0 1 0 1

Init 3 8 0 8

req 5 6 5 1

ent 9 4 3 1

rel 3 9 6 3

reql 16 8 3 5

reqh 9 4 3 1

Total Refinement 45 40 20 20

Total Liveness 11 23 18 5

Total 56 63 38 25
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6.3.2 A Total Order among the Time Stamps

In this refinement, Ricart-Agrawala 2, the main concern is the non determinism generated by
the time stamps associated with requests. As explained above, this issue generates an unfair
choice for processes with the same time stamp, when they can enter the critical section. In
order to resolve the non determinism, a total order among the time stamps is introduced. In
this order, each process has associated an unique identifier, which is a natural number. So,
the couples made up of the time stamps and identifiers of processes, form a total ordered set.
On another hand, to simplify the choice of time stamps when a process requests access to the
critical section, a new variable is introduced for each process, which records the greatest time
stamp known by that process.

A constant function i, of type PR ։ 0..card(PR) − 1, associates an identifier with each
process; therefore, for each process p, i(p) is a natural number, which denotes the identifier
of p. For each process, a new variable records the value of the highest time stamp, associated
with the requests treated by p. This new variable is denoted by ht and it is of type PR → N.
For each process p, ht(p) has assigned zero as initial value. ht(p) is updated each time that p

compares the time stamp of requests with its highest time stamp; after the comparison, the
maximum of these values is stored in ht(p). Therefore, when p requests access to the critical
section, its request is stamped with the value ht(p) + 1, to ensures that p accesses the critical
section after any process, known by p, with early time stamps.

For any process p, the highest time stamp recorded in ht(p) is always equal or greater
than its local clock. If any process o has granted access rights to p, then the time stamp of p

is equal or lower than the highest time stamp of o. When process p is in the critical section,
the highest time stamp of any process o is equal or greater than the time stamp of p. These
facts are specified as the following invariants:

∀p · (p ∈ PR ⇒ t(p) ≤ ht(p))

∀(o, p) · (o ∈ PR ∧ p ∈Wtg − rq−1[{o}]⇒ t(p) ≤ ht(o))

∀(o, p) · (o ∈ PR ∧ p ∈ Act ⇒ t(p) ≤ ht(o))

The unfair choice of process with the same time stamp is eliminated with the total order. So,
the process which accesses the critical section, compared with any other requesting process,
is the least process in the order. On another hand, if a requesting process o grants access
rights to another one p, then p is lower than q in the total order. These conditions are given
as the following invariants:

∀(o, p) · (o ∈ PR ∧ o 6∈ Idl ∧ p ∈ Act ∧ o 6= p⇒ [t(p), i(p)] ≺ [t(o), i(o)])

∀(o, p) · (o ∈ PR ∧ o 6∈ Idl ∧ p ∈Wtg − rq−1[{o}]⇒ [t(p), i(p)] ≺ [t(o), i(o)])

When a request of process p is deferred by process o, then the time stamp of p is equal or
lower than the highest time stamp recorded by o. Moreover, the request of o is smaller than
the request of p in the total order. Under these constraints of order, any deferred request
belongs to processes in state waiting. The invariants specifying these properties are:

∀(o, p) · (o ∈ PR ∧ p ∈ PR ∧ p ∈ df (o)⇒ t(p) ≤ ht(o))

∀(o, p) · (o ∈ PR ∧ p ∈ PR ∧ p ∈ df (o)⇒ [t(o), i(o)] ≺ [t(p), i(p)])

∀p · (p ∈ PR ⇒ df (p) ⊆Wtg)
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Events in the Ricart-Agrawala 2 refinement are presented in figure 6.5. There is no new
events in this refinement, and the state variables of the previous refinement are conserved.
The guards of events req and ent , become simpler than the corresponding guards in the
previous refinement. Variable ht in event rq simplifies the new values of the clocks, which are
used as time stamps in the requests, while the total order guarantees that the critical section
is empty when a requesting process has received access rights from any other process. On
another hand, the modification of events reql and reqh includes the update of the variable
ht(p), for a process p who receives a request from process o. The new value corresponds to
the maximum between the highest time stamps of p and the time stamp of o.

req =̂
any p where

p ∈ Idl
then

st(p) := WT ‖ t(p) := ht(p) + 1 ‖
ht(p) := ht(p) + 1 ‖

rq := rq ∪ {p} × {p}
end ;

ent =̂
any p where

p ∈Wtg ∧ p 6∈ dom(rq)
then

st(p) := AC
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ‖ df (p) := ∅ ‖
rq := rq − (df (p)× {p})

end ;

reql =̂
any o, p where

o 7→ p ∈ rq ∧ (p ∈ Idl ∨
[t(o), i(o)] ≺ [t(p), i(p)])

then

rq := rq − {o 7→ p} ‖
ht(p) := max({ht(p), t(o)})

end ;

reqh =̂
any o, p where

o 7→ p ∈ rq ∧ ¬(p ∈ Idl ∨
[t(o), i(o)] ≺ [t(p), i(p)])
∧ o 6∈ df (p)

then

df (p) := df (p) ∪ {o} ‖
ht(p) := max({ht(p), t(o)})

end

Figure 6.5: System Ricart-Agrawala 2

At this time, the access mechanism is completly deterministc: Always the least requesting
process in the total order of time stamps accesses the critical section. The following section
shows that the main liveness property is preserved in this refinement.

Preserving Liveness
The guard of event ent in this refinement is weaker than the guard of ent in refinement Ricart-
Agrawala 1. Therefore, according to rule R2, only the preservation of the basic property (6.15)
is required in the preservation of the basic property (6.6) in refinement Ricart-Agrawala 2.
However, since the guard of event reql in this refinement is implied by the left hand side of
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property (6.15), proved with the least process in state waiting as witness:

q ∈Wtg ∧ Act = ∅ ∧Wtg ⊆ dom(rq)⇒ grd(reql2) (6.16)

according to rule R1, basic property (6.15) is preserved in this refinement, and so, (6.6) is
preserved.

Proof Obligations for Ricart-Agrawala 2

In this table, we present the number of proof obligations of refinement Ricart-Agrawala 2.
The row labeled “Total Liveness” indicates the proof of the implication (6.16). The table is
as follows:

NbObv NbP0 NbPRi NbPRa

Lemmas 0 5 2 3

Init 5 10 1 9

req 3 11 7 4

ent 9 8 8 0

rel 6 8 8 0

reql 20 24 21 3

reqh 7 9 8 1

Total Refinement 50 75 55 20

Total Liveness 0 1 1 0

Total 50 76 56 20

6.3.3 Reply Messages to Grant Access Rights

At this time in the development, the main concepts of the Ricart et Agrawala algorithm have
been introduced. The main concern of this refinement and the last one, is the distribution
of information among the process in the system. In this third refinement, named Ricart-
Agrawala 3, a channel is introduced which carries the replies of processes when they grant
access rights. Moreover, a new variable is introduced for each process, which determines the
number of reply messages that a process receives. In this way, any requesting process can
access the critical section, when the number of pending requests is zero.

A reply channel is modeled by a subset of processes. Each process has assigned a reply
channel. Reply channels are modeled by a new variable chp of type PR → P(PR). Initially,
the reply channel of any process is empty. A constant function snp, of type PR → (P(PR)→
P(PR)), is used to model the transmission of reply messages. A reply message is simply a
value of type PR, which denotes the process which grants access rights. So, for any process
p and reply channel ch, which is a subset of PR, sdp(p)(ch) denotes the channel ch ∪ {p}. A
reply messages is sent in three circumstances: when a process in state idle receives a request,
or it is not in state idle, but the time stamp of the request is smaller than the local clock, or
a process leaves the critical section, and has deferred requests. The reply channel of processes
which are not in state waiting is empty. On another hand, any reply o, in the reply channel
of p, means that p is not requesting access to o any more. These two properties of the request
channels are specified as two invariants:

∀p · (p ∈ PR ∧ p 6∈Wtg ⇒ chp(p) = ∅)

∀p · (p ∈ PR ⇒ rq [{p}] ⊆ PR − chp(p))
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The number of pending requests in each process is recorded in a new variable orc. It is a
variable of type PR → N. Initially, the pending request count of any process is card(PR)− 1,
which means that any process asking for access to the critical section, must wait for card(PR)−
1 reply messages. A new event, named rpl (reply), is introduced, which updates orc(p) when
process p receives a reply message; moreover the execution of rpl removes the message from
the reply channel, which models the reception of reply messages. Therefore, the guard of
event ent , executed when a process enters the critical section, is enabled when the pending
request count, of any requesting process, is zero. This test is done only with local variables,
and it does not access a shared variable, as in the previous refinement. On another hand, in
this refinement the deferred set is implemented by a boolean array. So, a new variable rd ,
of type PR → (PR → BOOL) is introduced. For any process o and p, rd(p)(o) is true if the
access request from o is deferred by p. In the initial state, the array of any process is false.
The gluing invariant which relates df with the variable rd is:

∀p · (p ∈ PR ⇒ df (p) = rd(p)−1[{true}])

The following invariants give more information among the new variables introduced:

∀p · (p ∈ PR ⇒ rd(p)−1[{TRUE}] ⊆Wtg ∩ orc−1[N1])

∀p · (p ∈Wtg ∧ orc(p) = 0⇒ chp(p) = ∅)

∀p · (p ∈Wtg ⇒ card(rq [{p}]) = orc(p)− card(chp(p)))

The first invariant states that deferred requests belongs to processes in state waiting with
pending requests. The second one specifies that any process, with a non empty reply channel,
has pending requests. Finally, the third invariant relates, for any process in state waiting, the
number of requests not yet granted with the number of pending requests and the number of
reply messages.

Events in the Ricart-Agrawala 3 refinement are presented in figure 6.6. The transmission
of reply messages in events reql and rel is specified by statements of the form chp := chp ✁−
chp ′, which means that only the reply channel of process in the set chp ′ are modified. chp ′ is
in fact a function taking the form (s✁ chp ; snp(p)), where s is a subset of PR. chp ′ specifies
that the reply message p is sent to the reply channel of each process in s. In event reql , only
the reply channel of o is modified, while in event rel , the reply channels of all processes in
the deferred set are modified, if it is not empty.

Events reql and reqh, which implement a part of the access mechanism, read and write the
request relation rq . It is the only variable which is shared among the process in the system.
Events ent and rpl , which implement other parts of the access mechanism, only require the
access to local variables. Therefore, the access mechanism is not yet completely distributed
among the processes. However, the next section gives the proof that the access mechanism
preserves the main liveness property of the abstract model.

Preserving Liveness
In this refinement, the guard of event ent is strengthened, for this reason, the preservation of
property (6.6) must be proved. In fact, the guard of event ent is Wtg 6⊆ orc−1[N1], indicating
that the execution of ent is enabled only when a process in state waiting does not have
pending requests, and under the assumptions of the invariant, it implies the guard of ent in
the previous refinement. Therefore, according to LIP and SAP proof obligations, the following
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req =̂
any p where

p ∈ Idl
then

st(p) := WT ‖ t(p) := ht(p) + 1 ‖
ht(p) := ht(p) + 1 ‖
orc(p) = card(PR)− 1 ‖

rq := rq ∪ {p} × {p}
end ;

ent =̂
any p where

p ∈Wtg ∧ orc(p) = 0
then

st(p) := AC
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ‖
rq := rq − (rd(p)−1[{true}]× {p}) ‖
rd(p) := PR × {false} ‖
chp := chp ✁− (rd(p)−1[{true}]✁
chp ; snp(p))

end ;

reql =̂
any o, p where

o 7→ p ∈ rq ∧ (p ∈ Idl ∨
[t(o), i(o)] ≺ [t(p), i(p)])

then

rq := rq − {o 7→ p} ‖
ht(p) := max({ht(p), t(o)}) ‖
chp := chp ✁− ({o}✁ chp ; snp(p))

end ;
reqh =̂
any o, p where

o 7→ p ∈ rq ∧ ¬(p ∈ Idl ∨
[t(o), i(o)] ≺ [t(p), i(p)])
∧ rd(p)(o) = false

then

rd(p)(o) := true ‖
ht(p) := max({ht(p), t(o)})

end ;
rpl =̂
any p where

p ∈ PR ∧ chp(p) 6= ∅

then

any o where

o ∈ chp(p)
then

chp(p) := chp(p)− {o} ‖
orc(p) := orc(p)− 1

end

end

Figure 6.6: System Ricart-Agrawala 3
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properties are sufficient to prove the preservation of (6.6):

q ∈Wtg ∧ Act = ∅ ∧Wtg ⊆ orc−1[N1] ❀ Wtg 6⊆ orc−1[N1] (6.17)

q ∈Wtg ∧ Act = ∅ ∧Wtg 6⊆ orc−1[N1]⇒ [ev ]Wtg 6⊆ orc−1[N1] (6.18)

where ev in (6.18) is universally quantified over the set of events {req , rel , reql , reqh, rpl}. As
before, (6.18) is easily proved, and only the proof of (6.17) is given.

The main argument to use in the proof of (6.17), is the decrement of the pending request
count of processes in state waiting, when event rpl is executed in any state where q ∈Wtg ∧
Act = ∅ holds. However, in these states, when event req is executed, the pending request
count of requesting processes is set to the maximum value, and it may appear as an increment
to orc(p) for some processes p. In spite of it, the increment is bounded by the number of
processes in state idle and this quantity, together with the sum of the pending requests count
of all the processes in state waiting , forms a variant in a lexicographic order. On the other
hand, event rpl is executed only when its reply channel is not empty. The execution of this
event removes a message from this channel, and it may become empty, disabling its guard.
For this reason, the proof of (6.17) must consider reql as a helpful event, which is able to
send messages to the reply channel of requesting processes. In this way, the decrement of the
variant guarantees that a requesting process p eventually reaches a state where there is no
more pending requests.

Formalizing the previous reasoning requires the definition of the following variant:

W ′ = [card(Idl),Σp · (p ∈Wtg | orc(p))] (6.19)

where card(Idl) denotes the number of process in state idle, and Σp · (p ∈ Wtg | orc(p)) is
the sum of pending requests counts of processes in state waiting. The following predicates
are used in the liveness properties:

P ≡ q ∈Wtg ∧ Act = ∅ (6.20)

Q ≡Wtg 6⊆ orc−1[N1] (6.21)

R ≡
⋃

p · (p ∈Wtg | chp(p)) = ∅ (6.22)

P denotes the states where q is waiting and there is no processes in the critical section, Q

stands for the guard of event ent , and R holds when the union of reply channels of requesting
processes is empty. The following basic liveness properties hold in this third refinement:

reql · P ∧ ¬Q ∧ R ∧W ′ = w ≫ P ∧ ¬Q ∧ ((¬R ∧W ′ = w) ∨ (R ∧W ′ ≺ w)) (6.23)

rpl · P ∧ ¬Q ∧ ¬R ∧W ′ = w ≫ (P ∧ ¬Q ∧W ′ ≺ w) ∨ Q (6.24)

where w stands for the list [k, l], and k and l are universally quantified over the natural
numbers. (6.23) specifies that the execution of the event reql , in a state where q is waiting,
the critical section is empty, the guard of ent does not hold and the reply channels are empty,
ensures that either the variant is unchanged while a waiting process receives a reply message
or the variant is decremented. In the case where the variant is unchanged and there exists
a reply message in the channel of a waiting process, the property (6.24) ensures that the
execution of event rpl decrements the variant or event ent becomes enabled.
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From these basic properties, the proof of (6.17), which guarantees the preservation of
(6.6), is as follows:

1. P ∧¬Q∧R∧W ′ = w❀P ∧¬Q∧((¬R∧W ′ = w)∨(R∧W ′ ≺ w)); (6.23) and BRL
2. P ∧ ¬Q ∧ ¬R ∧W ′ = w ❀ (P ∧ ¬Q ∧W ′ ≺ w) ∨ Q ; (6.24) and BRL
3. P ∧¬Q∧R∧W ′ = w❀((P ∧¬Q∧W ′ ≺ w)∨Q)∨(P∧¬Q∧R∧W ′ ≺ w) ; CAN 1, 2
4. P ∧ ¬Q ∧ R ∧W ′ = w ❀ (P ∧ ¬Q ∧W ′ ≺ w) ∨ Q ; 3, weakening lhs
5. P ∧ ¬Q ∧W ′ = w ❀ (P ∧ ¬Q ∧W ′ ≺ w) ∨ Q ; DSJ, 4 and 2
6. P ∧ ¬Q ❀ Q ; IND 5

Proof Obligations for Ricart-Agrawala 3

In this table, we present the number of proof obligations of refinement Ricart-Agrawala 3.
The row labeled as “Total Liveness” indicates the number of assertions generated by WF0
and WF1 rules, required in the proof of the property (6.23 and (6.24) and the SAP proof
(6.18). The table is as follows:

NbObv NbP0 NbPRi NbPRa

Lemmas 0 1 1 0

Init 4 12 0 12

req 7 8 6 2

ent 13 5 5 0

rel 6 10 8 2

reql 26 21 18 3

reqh 13 4 4 0

rpl 10 9 6 3

Total Refinement 50 75 55 20

Total Liveness 11 23 23 0

Total 90 93 71 22

6.3.4 Request Messages Requesting for Access Rights

In this last refinement, named Ricart-Agrawala 4, the distribution of the access mechanism
is achieved by the introduction of request channels, which replace the request relation of the
previous refinements. Moreover, statements in the specification are ordered by sequential
composition, and the parallel composition disappears from the specification. Finally, the
name of certain variables are changed, to use the names of the original paper where the
Ricart and Agrawala algorithm was presented [55].

When processes ask for access to the critical section, they send request messages to all
processes. A request message is a couple of values of type PR×N, which denotes the process
who makes the request, and the time stamp associated with it. Therefore, request channels
are modeled by a variable chq of type PR → P(PR ×N). In order to model the transmission
of request messages, a constant function snq , of type (PR×N)→ (P(PR×N)→ P(PR×N)),
is used. For a request channel ch, process p and time stamp n, snq(p, n)(ch) denotes the
channel ch ∪ {p 7→ n}, which models the transmission of the message p 7→ n over the channel
ch.
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Reply channels replace the request relation from the previous refinements. The gluing
invariant relating the variable chq with rq is as follows:

rq =
⋃

p · (p ∈ PR | (dom(chq(p)) ∪ rd(p)−1[{true}])× {p})

This invariant states that for any pair of processes o 7→ p in rq , the request from o is either
deferred by p, or it is still in the request channel of p. On another hand, the variables t and ht ,
which denote time stamps, and highest time stamps respectively, are renamed to osn (“our
sequence number”) and hsn (“highest sequence number”) in this last refinement; this change
is specified by the following gluing invariants:

t = osn ∧ ht = hsn

The following invariants are needed to achieve the correctness proof of this refinement:

∀p · (p ∈ PR ⇒ chq(p) ∈ PR →p N)

∀(o, p, n) · (o ∈ PR ∧ p ∈ PR ∧ n ∈ N ∧ p 6= o ∧ p 7→ n ∈ chq(o)⇒ rd(o)(p) = false)

∀(o, p, n) · (o ∈ PR ∧ p ∈Wtg ∧ n ∈ N ∧ p 6= o ∧ p 7→ n ∈ chq(o)⇒ n = osn(p))

The first invariant specifies that each reply channel is in fact a partial function. This constraint
prevents two or more request messages, from the same process, in a request channel at the
same time. The second invariant states that a request cannot be deferred if it is still in the
request channel. Finally, the third invariant indicates that the sequence number in a request
message sent by p, is indeed the time stamp in osn(p).

Events of the Ricart-Agrawala 4 refinement are presented in figure 6.7. The transmission
of request messages in event req is specified in a similar way as the transmission of reply
messages, but instead of use the function snp, the function snq is used. The request message
is sent to any process in the system, except the source of the message ({p} in the specification).
Events reql and reqh are enable when request channels are not empty, and they do not access
directly the variable osn of the process who sends the request, as in the previous refinement;
the sequence number is accessed from the message in the request channel of each process. At
this time, the access mechanism is completely distributed among the process of the system,
and the concerned events access only local variables.

It must be remarked that guards of events reql and reqh take the form A ∧ B and
A ∧ ¬B and that some statements are common to the two events. Therefore, these events
can be merged to form a single event for the reception of request messages, with a if-then-else

statement, as it is done in [3]. The figure 6.8 shows the merge of these events in a single event
rec req .

The following section gives the proof that the main liveness property is preserved in this
last refinement.

Preserving Liveness
In this last refinement, the guard of event ent does not change. Therefore, by R2, the
preservation of property (6.6) depends on the preservation of properties (6.23) and (6.24). As
the guards of events reql and reqh are the only ones modified in this refinement, by R1, the
preservation of property (6.24) holds trivially. However, the preservation of (6.23) must be
proved in this refinement.
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req =̂
any p where

p ∈ Idl
then

st(p) := WT ;
osn(p) := hsn(p) + 1;
hsn(p) := hsn(p) + 1;
orc(p) := card(PR)− 1;

chq := chq ✁− ({p}✁ chq ; snq(p, osn(p)))
end ;

rel =̂
any p where

p ∈ Act
then

st(p) := ID ;
chp := chp ✁− (rd(p)−1[{true}] ✁ chp ; snp(p));
rd(p) := PR × {false}

end ;
reql =̂
any p where

p ∈ PR ∧ chq(p) 6= ∅

then

any o, n where

o 7→ n ∈ chq(p) ∧
(p ∈ Idl ∨ (n < osn(p) ∨
(n = osn(p) ∧ i(o) < i(p))))

then

chq(p) := chq(p)− {o 7→ n};
hsn(p) := max({hsn(p), n});
chp := chp ✁− ({o}✁ chp ; snp(p))

end

end ;

ent =̂
any p where

p ∈Wtg ∧ orc(p) = 0
then

st(p) := AC
end ;

reqh =̂
any p where

p ∈ PR ∧ chq(p) 6= ∅

then

any o, n where

o 7→ n ∈ chq(p) ∧
¬(p ∈ Idl ∨ (n < osn(p) ∨
(n = osn(p) ∧ i(o) < i(p))))

then

chq(p) := chq(p)− {o 7→ n};
hsn(p) := max({hsn(p), n});
rd(p)(o) := true

end

end ;

rpl =̂
any p where

p ∈ PR ∧ chp(p) 6= ∅

then

any o where

o ∈ chp(p)
then

chp(p) := chp(p)− {o};
orc(p) := orc(p)− 1

end

end

Figure 6.7: System Ricart-Agrawala 4
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rec req =̂
any p where

p ∈ PR ∧ chq(p) 6= ∅

then

any o, n where

o 7→ n ∈ chq(p)
then

chq(p) := chq(p)− {o 7→ n};
hsn(p) := max({hsn(p), n});
if

(p ∈ Idl ∨ (n < osn(p) ∨
(n = osn(p) ∧ i(o) < i(p))))

then

chp := chp ✁− ({o}✁ chp ; snp(p))
else

rd(p)(o) := true
end

end

end

Figure 6.8: Merge of events reql and reqh

The guard of event reql in this refinement is:

grd(reql)≡∃(o, p, n) · (p∈PR∧o 7→ n∈chq(p)∧(p ∈Idl ∨ [n, i(o)]≺ [osn(p), i(p)]))(6.25)

In fact, it is proved that grd(reql) follows from P ∧ ¬Q ∧ R, where the predicates P , Q and
R are defined in (6.20), (6.21) and (6.22) respectively. This implication is demonstrated as
follows: when all reply channels are empty, and all processes in state waiting have pending
requests, the least requesting process o, in the total order, cannot have a deferred request.
On the other hand, another process p, has at least the request of o in its request channel,
because orc(o) 6= 0. If p is in state idle, the guard of reql follows. If p is not in state idle,
it must be in state waiting , but it must be greater than o in the total order of requesting
processes, and grd(reql) follows again. Therefore, o can be taken as a witness in the proof of
P ∧ ¬Q ∧ R⇒ grd(reql). Now, from this implication, and rule R1, follows the preserevation
of the basic property (6.23).

Proof Obligations for Ricart-Agrawala 4

In this table, we present the number of proof obligations of refinement Ricart-Agrawala 4.
The row labeled as “Total Liveness” indicates the number of assertions required to prove the
implication P ∧ ¬Q ∧ R⇒ grd(reql), needed in the preservation proof of the property (6.23).
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The table is as follows:

NbObv NbP0 NbPRi NbPRa

Lemmas 0 2 2 0

Init 6 8 1 7

req 4 10 5 5

ent 16 2 2 0

rel 12 3 3 0

reql 20 24 9 15

reqh 8 9 4 5

rpl 16 1 1 0

Total Refinement 82 59 27 32

Total Liveness 0 6 6 0

Total 82 65 33 32

6.4 Conclusion

In this chapter, we illustrate the development by refinement of two classical mutual exclusion
algorithms. Moreover, apart from safety properties stated by invariants, we prove liveness
properties under weak fairness assumptions, using the rules presented in the chapter 3. The
abstract model and its refinements have been completely verified with the “Click’n Prove”
prover [4]. Moreover, the WF0 and WF1 proof obligations for basic liveness properties, and
the SAP rules for verifying the preservation of basic liveness properties, have been automati-
cally generated, and proved as assertions in the model or refinements.

We start by specifying a highly nondeterministic abstract model satisfying two main prop-
erties:

• Safety: there is at most one process in the critical section.

• Liveness: any process requesting access to the critical section eventually gets it.

From the abstract model, we show two streams of refinements. In the first one, we derive
a centralized algorithm implementing a first input first output policy in the access to the
critical section. In the second one, we derive the distributed mutual exclusion algorithm of
Ricart-Agrawala.

The abstraction Mutex, considers a system with three events modeling requests, accesses
and releases of the critical section. The processes use a time stamp to order their access
requests. The requesting process with the lowest time stamp gets access to the critical section.

The first flow of refinements is made up of two refinements. The first refinement, Fifo 1,
introduces an infinite sequence which replaces the time stamps of processes. In this way,
processes enter the critical section in a first input first output basis. The second refinement,
Fifo 2, introduces a fourth event to model a server and the infinite sequence is replace by
a finite one. Waiting processes are queued in the sequence. The server allocates a token
to the first process in the sequence; it grants access to the critical section. When a process
leaves the critical section, it releases the token. The following table gives the number of proof
obligations for safety (“Total Safety”) and liveness (“Total Liveness”) properties generated
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in this stream:

NbObv NbP0 NbPRi NbPRa

Total Safety 48 67 34 33

Total Liveness 2 11 6 5

Total 50 78 40 38

The second stream is made up four refinements. The first refinement, Ricart-Agrawala 1,
introduces a relation to model the broadcast of messages requesting access for the critical
action. A process enters into the critical section if it is empty and if all processes have
acknowledged its request. Two new events are introduced in this refinement for treating the
access requests. The second refinement, Ricart-Agrawala 2, introduces a total ordering among
the time stamps. This ordering removes the nondeterminism of the previous refinement and
allows the access to the critical section to the process with the lowest time stamp. In this
refinement, processes still verify the relation modeling the broadcast of request messages
before entering the critical section. The third refinement, Ricart-Agrawala 3, introduces a
new event to model the transmission of reply messages to grant access rights to processes
waiting for the critical section. In this way, when a process receives a reply message from all
processes, it can access the critical section. Finally, in the last refinement, Ricart-Agrawala 4,
the relation modeling the broadcast of request messages is removed from the refinement, and
an explicit transmission of request messages is introduced. In this refinement, memory is
localized to each process. Apart from data structures modeling communication channels,
there is no shared data structures and the algorithm can be implemented as network of
communicating processes. The following table gives the number of proof obligations for safety
and liveness properties generated in this stream:

NbObv NbP0 NbPRi NbPRa

Total Safety 256 244 150 94

Total Liveness 22 53 48 5

Total 278 297 198 99

From the two previous tables, and the table for the Mutex model, we obtain the total
number of proofs in this development:

NbObv NbP0 NbPRi NbPRa

Total Safety 311 327 184 143

Total Liveness 26 73 61 12

Total 337 400 245 155



Chapter 7

Conclusions and Future Work

7.1 Version française

7.1.1 Résumé

Nous proposons une approche pour la spécification et développement de systèmes d’actions
fondée sur le formalisme du B événementiel. L’approche incorpore une logique temporelle,
dans le style unity, pour spécifier et vérifier des propriétés de vivacité dans un modèle abstrait
et ses raffinements, sous les hypothèses de progrès minimal et d’équité faible. La sémantique
des opérateurs logiques est définie en termes d’itérations de transformateurs d’état. La
vérification des propriétés de vivacité joue un rôle fondamental dans notre approche. Nous
proposons des règles de preuve pour vérifier des propriétés de vivacité et pour les préserver
dans les raffinements, et nous prouvons la cohérence de ces règles. Afin d’atteindre nos ob-
jectifs, dans cette thèse, nous procédons de la manière suivante.

Dans le chapitre 3, nous commençons par la proposition de règles de preuve pour vérifier
des propriétés de vivacité de base sous les hypothèses de progrès minimal (MP0 et MP1)
et d’équité faible (WF0 et WF1). Ces règles sont fondées sur le calcul des plus faibles
préconditions et elles peuvent être vérifiées par le prouveur Click’n Prove. Des propriétés
de vivacité générales sont alors dérivées à partir des propriétés de base par l’application des
règles issues de la logique de programmation unity. L’approche de la spécification et preuve
des propriétés de vivacité est illustrée par une série d’exemples. Afin de garantir que les
propriétés de vivacité, prouvées dans l’abstraction, continuent à être vraies dans un raffine-
ment, les règles BMP et LMP sont proposées pour préserver les propriétés de vivacité de base
sous la condition de progrès minimal, et les règles LIP et SAP, pour préserver ces propriétés
sous la condition d’équité faible. L’application de ces règles est illustrée dans une autre série
d’exemples. Tous ces exemples sont vérifiés avec le prouveur Click’n Prove. Les obligations de
preuve pour la vérification des propriétés de vivacité de base sont automatiquement générées
par une boite à outils, et elles sont placées en tant qu’assertions dans des machines B, afin
d’être vérifiées par le prouveur. Dans ce chapitre nous faisons l’hypothèse que la préservation
des propriétés de vivacité de base est une condition suffisante pour préserver des propriétés
de vivacité générales. Cette hypothèse est prouvée dans l’annexe D.

Dans le chapitre 4, nous donnons des arguments formels de notre approche. Le traitement
est présentée dans un cadre ensembliste théorique qui utilise des transformateurs d’ensembles
pour dénoter la plus faible précondition et la plus faible précondition libérale des événements.

123
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Un transformateur d’état non classique, nommée l’opérateur dovetail est introduit pour modé-
liser un choix équitable sous l’hypothèse d’équité faible. En utilisant ces notions, nous intro-
duisons la sémantique de nos formules temporelles en termes de points fixes de transforma-
teurs d’ensembles qui dénotent des itérations d’événements. Ces transformateurs d’ensembles
permettent la définition d’une relation de terminaison qui est utilisée pour interpréter des
propriétés leads-to. D’autre part, les propriétés de vivacité satisfaites par un système sont
dénotées par une autre relation entre sous-ensembles d’états nommée relation d’atteigna-
bilité. Afin de prouver la cohérence des règles pour leads-to, nous prouvons que la rela-
tion d’atteignabilité est contenue dans la relation de terminaison. D’autre part, la preuve
de la complétude relative est donnée par la démonstration de l’inclusion dans le sens con-
traire. Dans un premier temps, ces preuves ne considèrent pas des hypothèses d’équité. Le
théorème 2, qui énonce la cohérence et la complétude des règles leads-to, énonce uniquement
les prémisses qui doivent être satisfaites par les transformateurs d’ensembles qui modèlent
l’itération d’événements. Ce théorème est alors instancié pour considérer des hypothèses
d’équité. Finalement, dans ce chapitre nous prouvons que les règles utilisées pour vérifier
les propriétés de vivacité de base sont cohérentes dans notre cadre. Dans l’annexe B, nous
énonçons à nouveau notre sémantique afin de considérer le plus fort invariante [62]. Dans
l’annexe C nous montrons certaines preuves qui ne sont pas présentées dans le chapitre 4.
Nous remarquons le fait que quelques preuves ont été mécaniquement prouvées par le prou-
veur Click’n Prove. En effet, notre cadre ensembliste théorique peut être codé directement
en tant que formules dans la notation B, et alors nous pouvons prouver des théorèmes dans
une machine abstraite. Nous utilisons la clause constants pour déclarer des noms et la
clause properties pour déclarer des informations de typage et quelques axiomes. Alors,
nous énonçons nos lemmes dans la clause assertions et nous procédons à la preuve avec le
prouveur. L’annexe F montre les machines B d’une de ces preuves.

Le principal résultat du chapitre 4 est la preuve que les notions d’atteignabilité et de ter-
minaison sont des notions équivalentes. Cela signifie que nous pouvons prouver une propriété
p 7→ q ∈ LE par la preuve de l’inclusion de p dans l’ensemble de terminaison de l’itération
d’événements qui termine dans q sous une certaine condition d’équité et vice versa. Pour cette
raison, afin de prouver qu’une propriété leads-to p 7→ q ∈ LE est préservée dans un raffine-
ment, nous pouvons prendre l’approche dans [7], où les auteurs prouvent que r−1[p] est inclus
dans l’ensemble de terminaison de l’itération d’événements dans le raffinement qui terminent
dans r−1[q]. Cependant, comme nous pouvons le constater, la preuve est longue et difficile.
En considérant nos résultats, une preuve plus courte peut être obtenue par la considération de
la définition inductive de la relation d’atteignabilité LE . Dans le chapitre 5, nous prouvons
par induction structurelle que BMP and LMP sont des conditions suffisantes pour garantir
la préservation des propriétés de vivacité sous la condition de progrès minimal et que LIP et
SAP permettent la préservation de la vivacité sous l’hypothèse d’équité faible. Les annexes D
et E présentent les preuves concernant la préservation des propriétés de vivacité.

Finalement, dans le chapitre 6, nous développons un exemple plus important d’un al-
gorithme d’exclusion mutuelle sous l’hypothèse d’équité faible. Le premier objectif de cet
exemple est de montrer comment nous appliquons les règles de preuve pour la vérification
des propriétés de vivacité dans la spécification et les raffinements. Le deuxième objectif est
d’expliquer, par des exemples, comment nous concevons le développement des algorithmes dis-
tribués. En effet, notre modèle permet un haut niveau de non déterminisme ; les propriétés
de vivacité sont prouvées dans ce modèle abstrait. Par une restriction du non déterminisme,
nous proposons deux classes de raffinements. La première classe est appropriée pour une
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mise en œuvre du modèle dans un environnement centralisé : un serveur donne accès dans
un ordre fifo. La seconde classe de raffinements est adaptée à une mise en œuvre dans un
environnement distribué. Nous développons l’algorithme proposé par Ricart et Agrawala, où
il n’y a pas un serveur central et où tous les processus dans le système coopèrent pour donner
les droits d’accès. Dans ces raffinements, nous prouvons, par les règles proposées, que les
propriétés de vivacité dans l’abstraction sont préservées dans les raffinements. Ces exemples
sont complètement prouvés avec le prouveur Click’n Prove.

7.1.2 Positionnement de notre travail

Notre travail est placé dans le contexte du développement de programmes par des pas de
raffinement en utilisant le formalisme du B événementiel. L’approche originale des modalités
dans [7] est très restreint. La spécification des modalités a besoin de la définition d’invariants
et de fonctions variantes. La raison de ces restrictions est que le modèle de calcul, utilisé
pour raisonner sur les modalités, est une construction du type do od sans hypothèses d’équité.
Pour cette raison, la preuve des modalités devient une preuve de correction totale de cette
construction.

Notre travail améliore l’approche originale des modalités du B événementiel proposée dans
[7], par l’utilisation d’une logique similaire à celle d’unity, dans la spécification et preuve des
propriétés de vivacité, sous les hypothèses de progrès minimal et d’équité faible. Comme cela
est illustré par des exemples du chapitre 3, nous avons plus de flexibilité dans la spécification
et la preuve des propriétés de vivacité. L’approche de spécification et de preuve des propriétés
de vivacité dans les systèmes B événementiels présenté dans cette thèse, permet des preuves
modulaires où des analyses par cas sont directement supportés par la logique et il n’est pas
nécessaire de développer un système par la classe de raffinements comme proposés dans [34].

Le modèle de calcul dans notre cadre ne correspond pas au modèle de unity, car le
gardes des événements ne sont pas toujours habilitées. Pour cette raison, les résultats de
la logique unity dans [21, 22, 39, 46, 36], ne s’appliquent pas directement dans notre cadre
si la définition de la relation de base ensures ne change pas. Notre définition de la relation
ensures, dans un modèle plus général où les gardes des actions sont des prédicats, est inspirée
de [37]. Cette référence nous a aussi suggéré l’idée de dénoter les propriétés leads-to par des
transformateurs d’ensembles.

Nos transformateurs d’ensembles pour les hypothèses de progrès minimal ou équité faible
sont définies d’une manière originale. Nos définitions approfondissent et clarifient l’idée de [7]
et [12], à propos de la relation entre terminaison d’itération d’événements et d’atteignabilité,
comme celle reflétée par des propriétés leads-to. Mis à part les transformateurs d’états qui
dénotent les actions d’un système, nos transformateurs d’états pour leads-to sont donnés
d’une manière constructive et utilisent des transformateurs d’états primitifs tels que l’itération,
le choix, le choix équitable, la séquence, la garde et la précondition, et ne sont pas uniquement
une équation de points fixes, comme les transformateurs de prédicats qui ont été décrit dans
les paragraphes précédents. Nous prouvons que nos définitions satisfont les exigences d’un
système cohérent et relativement complet pour les propriétés leads-to, comme cela a été faite
dans [37].

Le choix des définitions des propriétés leads-to sous les hypothèses de progrès minimal
ou d’équité faible, est le résultat de notre approche au développement de programmes par
pas de raffinements. En effet, nous espérons que des systèmes sous des conditions d’équité
faible seront mis en œuvre par des raffinements où les événements itèrent sous l’hypothèse de
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progrès minimal. Pour cette raison, nous avons été intéressé dans la définition de transforma-
teurs d’ensembles en relation avec l’itération d’événements. De cette manière, le raffinement
d’événements nous donne des renseignements sur les conditions suffisants pour garantir le
raffinement des propriétés de vivacité [59]. En outre, lorsque une propriété leads-to est sat-
isfaite sous la condition d’équité faible, et que le raffinement contient quelques mécanismes
pour assurer un entrelacement équitable d’actions, nous garantissons que, par des conditions
imposées aux événements dans le raffinement, les propriétés leads-to sont encore satisfaites
sous la condition de progrès minimal. Dans cette thèse nous avons énoncé formellement ces
faits par un règle de preuve qui place les idées de transformation de programmes pour la mise
en œuvre d’équité faible, présentées dans [8], dans le cadre du raffinement.

7.1.3 Travail futur

Les propriétés de vivacité sous l’hypothèse d’équité forte manque manifestement dans notre
travail. En suivant notre approche, nous avons besoin d’un opérateur de choix similaire à
l’opérateur dovetail, qui permet un choix fortement équitable d’événements utiles. Il doit
permettre la définition d’une relation de terminaison et de cette manière nous devions définir
la relation de base avec cette hypothèse d’équité. Nous avons besoin de chercher la plus
faible précondition libérale et l’ensemble de terminaison de cet opérateur afin de déterminer
le transformateur d’état associé à sa plus faible précondition.

En permettant des hypothèses d’équité différentes dans le développement des systèmes B

événementiels, nous donnons la possibilité de faire des raffinements où les hypothèses d’équité
changent entre deux pas de raffinement. C’est-à-dire, une certaine hypothèse d’équité peut
être mise en œuvre dans un raffinement par un ordonnanceur particulier, comme cela est fait
dans [8, 9]. Dans ce cas, nous avons besoin de quelques règles pour garantir que les propriétés
de vivacité prouvées sous une certaine hypothèse d’équité, sont préservées lorsqu’on change
ces hypothèses dans un autre raffinement. Dans la section 4.4.3 nous proposons une règle
qui affirme qu’une propriété P ❀ Q, prouvée sous l’hypothèse d’équité faible, est toujours
satisfaite par le système lorsqu’on la change par une hypothèse de progrès minimal, et tous
les événements du système diminuent un variant dans un état où ¬Q est vrai. Malgré le fait
que la cohérence de cette règle est prouvée, il y a des cas où il n’est pas possible de trouver un
variant pour satisfaire les conditions de cette règle. Par exemple, dans le cas de la propriété
q ∈ Wtg ❀ q ∈ Act, spécifiée dans les exemples du chapitre 3, nous ne pouvons pas trouver
un variant qui décrôıt dans le système raffiné dans un état où q 6∈ Act. Nous avons besoin de
chercher des règles plus pratiques afin de garantir la mise en œuvre facile d’ordonnanceurs.

Les exemples traités dans cette thèse, et beaucoup d’autres sont des exemples de systèmes
ouvertes : collection de logiciels communicants, matériel et des composants humains. Dans ces
exemples, les actions de ces composants son modélisés par des événements atomiques. Le raf-
finement de ces systèmes incorpore des nouveaux événements et modifie l’espace d’états, mais
le système continue à être modélisé d’une manière monolithique : une collection d’événements
partageant des variables d’état. Afin d’assurer une mise en œuvre correcte de ces systèmes
dans le monde réel, nous avons besoin de faire des raffinements modulaires qui préservent les
propriétés de sûreté et de vivacité. Cela est un domaine de recherche ouvert dans lequel nous
sommes intéressés.
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7.2 English Version

7.2.1 Summary of the Thesis

We propose an approach to the specification and development of action systems founded on
the event B formalism. The approach incorporates a temporal logic, in a unity-like style, to
specify and verify liveness properties in abstract models and their refinements under minimal
progress and weak fairness assumptions. The semantics of the logical operators is defined
in terms of iterations of set transformers. The verification of liveness properties plays a
fundamental role in our approach. We propose proof rules to verify both the basic liveness
properties and their preservation under refinement, and we prove soundness of these rules. In
order to reach our goals, in this thesis, we proceed as follows.

In Chapter 3, we start with the proposal of proof rules to verify basic liveness properties
under minimal progress (MP0 and MP1) and weak fairness (WF0 and WF1) assumptions.
These rules are founded on the weakest precondition calculus and can be verified by a tool
like Click’n Prove prover. General liveness properties are then derived from basic properties
by applying rules issued from the logic programming of unity. The approach of specification
and verification of liveness properties is illustrated by a series of examples. So as to guarantee
that liveness properties proved in the abstraction continue to hold in a refinement, the BMP
and LMP rules are proposed to preserve basic liveness properties under a minimal progress
condition and the LIP and SAP rules to preserve basic properties under a weak fairness
assumption. The applications of these rules are illustrated in another series of examples. All
examples are verified with the Click’n Prove prover. The proof obligations for the verification
of basic liveness properties are automatically generated by a toolbox and they are placed
as assertions in B machines in order to be verified by the prover. In this chapter we claim
that preserving basic liveness properties is a sufficient condition to preserve general liveness
properties. This claim is proved in appendix D.

In Chapter 4 we give formal arguments about our approach. The treatment is presented
in a set theoretical framework using set transformers to denote weakest preconditions and
weakest liberal preconditions of events. A non classical set transformer, named the dovetail
operator, is introduced to model a fair choice of events under a weak fairness assumption.
Using these notions, we introduce the semantics of our temporal formulas in terms of fixpoints
of set transformers denoting iteration of events. These set transformers allow the definition
of a termination relation which is used to interpret leads-to properties. On another hand,
liveness properties holding in a system are denoted by another relation on subsets of states
named reachability. This relation is inductively defined and we prove in appendix A that this
relation is equivalent to the leads-to relation. In order to prove soundness of the leads-to rules,
we prove that the reachability relation is contained in the termination relation. On another
hand, the relative completeness proof is given by demonstrating the inclusion in the converse
direction. In a first time, these proofs do not consider fairness assumptions. Theorem 2,
asserting soundness and completeness of the rules for leads-to, only states the premises which
must be satisfied by set transformer modeling the iteration of events. This theorem is then
instantiated to consider fairness assumptions. Finally, in this chapter we prove that the rules
used to verify basic liveness properties are sound in our framework. In Appendix B, we restate
our semantics by considering the strongest invariant [62]. Appendix C shows certain proofs
that are not presented in Chapter 4. We stress the fact that some proofs were mechanically
verified with the Click’n Prove prover. In fact, our set theoretical framework can be encoded
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directly as formulas in the B notation and then theorems can be proved in a B abstract
machine. We use the clause constants to declare names and the clause properties to
give type information and declare some axioms. Then we state our lemmas in the clause
assertions and we proceed to prove them with the prover. In Appendix F, we show the B

machines of some proofs.

The main result of Chapter 4 is the proof that reachability and termination are equivalent
notions. It means that we can prove a liveness property p 7→ q ∈ LE by proving that p is
included in the termination set of the iteration of events terminating in q under a certain
fairness assumption and vice versa. Therefore, in order to prove that a leads-to property
p 7→ q ∈ LE is preserved in a refinement, we can take the approach in [7], where the authors
prove that r−1[p] is included in the termination set of the iteration of refined and new events
terminating in r−1[q]. However, as we can see, the proof is long and difficult. Considering
our results, a shorter proof can be achieved by considering the inductive definition of the
reachability relation LE . In Chapter 5 we prove, by structural induction, that BMP and
LMP are sufficient conditions to guarantee the preservation of liveness properties under a
minimal progress assumption and that LIP and SAP allow the preservation of liveness under
a weak fairness assumption. The appendices D and E present the proofs concerning the
preservation of liveness properties.

Finally in Chapter 6, we develop a larger example of mutual exclusion algorithms, under
a weak fairness assumption. The first goal of this example is to show how we apply the proof
rules for verifying liveness properties in the specification and refinement. The second goal is
to explain, by examples, how we understand the development of distributed algorithms. In
fact, our initial model allows a high level of nondeterminism; safety and liveness properties
are proved in this abstract model. By constraining the nondeterminism, we propose two
kinds of refinements. The first kind is suitable for an implementation of the model in an
centralized environment: a server which grants access in a first input first output basis. The
second kind of refinement is adapted to an implementation in a distributed environment. We
develop the algorithm proposed by Ricart and Agrawala, where there is not a central server
and all processes in the system are cooperating to grant access rights. In these refinements,
we prove by the proposed rules, that the liveness property in the abstraction is preserved in
the refinement. These examples are completely proved with the Click’n Prove prover.

7.2.2 Positioning of Our Work

Our work is placed in the context of program development by stepwise refinement using the
event B formalism. The original approach of modalities in [7] is very restricted. Specification
of modalities requires definition of invariant predicates and variant functions. The reason of
this restrictions is that the computational model, used to reason about modalities, is a do od

construction without fairness assumptions. So, the proof of modalities becomes a proof of
total correctness of a do od construction.

Our work improves the original approach of modalities in event B proposed in [7], by
using a unity-like logic in the specification and proof of liveness properties, under weak
fairness or minimal progress assumptions. As illustrated in examples of Chapter 3, it gives
more flexibility to the specification and proof of liveness properties. The approach to the
specification and proof of liveness in B events systems presented in this thesis, allows modular
proofs where cases analysis are directly supported by the logic and there is no need to develop
a system by the kind of refinements proposed in [34].
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The computational model in our framework does not correspond to the model of unity,
because the guards of events are not always enabled. Therefore, results of unity logic in
[21, 22, 39, 46, 36], do not apply directly to our framework if the definition of the basic relation
ensures is not changed. Our definition of ensures relation, in a more general computational
model where the guards of actions are state predicates, is inspired from [37]. From this work,
we get as well the idea of set transformers to denote leads-to properties.

Our set transformers for minimal progress (unfair) or weak fairness assumptions are de-
fined in an original way. Our definition deepens and clarifies the idea of [7] and [12], about
the relation between (unfair or weak fair) termination of iteration of events and reachability,
as reflected by leads-to properties. Apart from set transformers denoting the actions of the
system, our set transformers for leads-to are constructively built and use primitive set trans-
formers such as iteration, unfair choice, fair choice, sequencing, guard and precondition, and
it is not only a fixpoint equation, as the predicate transformers described above. We prove
that our definitions fulfill the requirement of a sound and relative complete proof system for
leads-to properties, as it was done in [37].

The choice of definitions of leads-to properties, under minimal progress and weak fairness
assumptions, is a result of our approach to program development by stepwise refinement.
In fact, we expect that systems under weak fairness assumptions would be implemented, by
refinements into concrete systems, where events are iterated under minimal progress assump-
tions. For this reason, we were interested in defining set transformers for leads-to properties
in close relation with iteration of events. In this way, refining events gives insight in the
sufficient conditions to guarantee the refinement of liveness properties [59]. Moreover, when a
leads-to property holds in a refinement under weak fairness assumptions, and the refinement
contains some mechanisms to ensure a fair interleaving of actions, we can guarantee, by con-
ditions imposed to the events in the refinement, that the leads-to property yet holds under
minimal progress assumptions. In this thesis we stated formally these facts by a proof rule
which replace the ideas of program transformation to implement weak fairness, presented in
[8], in the framework of refinement.

7.2.3 Future Work

Liveness properties under strong fairness assumption lack obviously in our work. Following our
approach, we need a choice operator, similar to the dovetail operator, allowing a strong fairness
choice of helpful events. It would allow the definition of a termination relation and then
we would define the basic relation under this fairness assumption. We need investigate the
weakest liberal precondition and the termination set in order to determine the set transformer
associate with its weakest precondition.

Allowing different fairness assumptions in the development of event B systems increases
the probability of doing refinements where fairness assumptions change between two steps
of refinement. In other words, a certain fairness assumption would be implemented in a
refinement by a particular scheduler, as stated in [8, 9]. In this case we need some rules to
guarantee that liveness properties proved under a fairness assumption are preserved in the
refinement when the fairness assumption change. In section 4.4.3 we propose a rule asserting
that a property P ❀ Q, proved under a weak fairness assumption, holds under a minimal
progress assumption if all events in the system decrement a variant in a state where ¬Q holds.
In spite that soundness of this rule is proved, there exists cases where it is not possible to
find a variant satisfying the conditions of the rule. For example, in the case of the property
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q ∈ Wtg ❀ q ∈ Act , specified in the examples of the chapter 3, we cannot find a variant
which is decremented in the refined systems in a state where q 6∈ Act . We need to investigate
practical rules to guarantee the correct implementation of schedulers.

The examples treated in this thesis an many others are examples corresponding to open
systems: collection of interacting software, hardware, and human components. In these
examples the actions of these components are modeled by atomic events. The refinement
of these systems adds new events and modifies the state space, but the system continues to
be modeled in a monolithic way: a collection of events sharing state variables. In order to
ensures a correct implementation of these systems in a real world, we need to make modular
refinements preserving safety and liveness properties. This is an open subject of research
where we are interested.
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Appendix A

Reachability Relation between
Predicates or Sets

A.1 Relation leads-to

In order to guarantee that leads-to (❀), as a relation between predicates on the system
state, and the relation LE between subsets of u are equivalent, we supposed the following
equivalence:

P (x) ❀ Q(x) ≡ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE (4.7)

In the following paragraphs we give the proof of this equivalence. It is founded on the fact that
leads-to relation of unity logic, as pointed in [37], can be defined by an induction scheme,
similar to definition 4.4. That is, ❀ as a relation between predicates, ❀ ⊆ Pred × Pred,
where Pred is the set of predicates on the space of the state variable x, is the smallest relation
satisfying rules BRL, TRA and DSJ given in section 3.1.21:

BRL: B ⊆❀

TRA: ❀
2 ⊆❀

DSJ: ∀m · (m ∈M ⇒ P (m) ❀ Q)⇒ ∃m · (m ∈M ∧ P (m)) ❀ Q

where B is the set of couples of predicates satisfying the ensures relation:

B = {P 7→ Q |P ≫ Q } (A.1)

We recall that ≫ relation must be instantiated to ≫m relation under minimal progress
hypothesis or≫w relation under weak fairness assumptions, in similar way to the instantiation
of the basic relation E . In order to give the proof of equivalence (4.7), at this time we suppose
that B and E satisfy the following properties:

∀(P,Q) · (P ∈ Pred ∧ Q ∈ Pred⇒

P (x)≫ Q(x) ≡ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E) (A.2)

∀(p, q) · (p ⊆ u ∧ q ⊆ u⇒ p 7→ q ∈ E ≡ x ∈ p≫ x ∈ q) (A.3)

1The infix notation P ❀ Q is used to state that P 7→ Q ∈ ❀, for any predicate P and Q in Pred.
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We give below the proof of these properties, instantiated to weak fairness or minimal progress
assumptions.

The proof of (4.7) is given in two parts:

P (x) ❀ Q(x)⇒ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE (A.4)

{ z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE ⇒ P (x) ❀ Q(x) (A.5)

Proof of (A.4)

Let P be the following set:

P = {P 7→ Q | (P ❀ Q) ∧ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE }

From this definition follows P ⊆❀. Inclusion ❀ ⊆ P is proved below by structural induction.
From these inclusions, follows the equality P = ❀. Finally, from this equality follows (A.4):

P = ❀

≡ { P = ❀ ∩ {P 7→ Q | { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE } }
❀ ⊆ {P 7→ Q | { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE }

≡
∀(P,Q) · (P ❀ Q⇒ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE)

✷

In order to proof ❀ ⊆ P, the following proofs are required:

• B ⊆ P.

• P2 ⊆ P.

• ∀m · (m ∈M ⇒ P (m) 7→ Q ∈ P)⇒ ∃m · (m ∈M ∧ P (m)) 7→ Q ∈ P

Proof of Base Case

1. P ≫ Q⇒ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E ; from (A.2)
2. P ≫ Q⇒ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE ; 1 and def. 4.4
3. P ≫ Q⇒ P ❀ Q ; BRA
4. P 7→ Q ∈ B ⇒ P 7→ Q ∈ P ; 3, 2 and (A.1)
5. B ⊆ P ; 4

✷

Proof of Transitivity
It follows from P 7→ Q ∈ P ∧ Q 7→ R ∈ P ⇒ P 7→ R ∈ P:

1. P 7→ Q ∈ P ∧ Q 7→ r ∈ P ; premise
2. P ❀ R ; 1, def. P, TRA
3. { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ R(z) } ∈ LE ; 1, def. P, STR
4. P 7→ R ∈ P ; 3, 2 and def. P

✷
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Proof of Disjunction

1. ∀m · (m ∈M ⇒ P (m) 7→ Q ∈ P) ; premise
2. ∃m · (m ∈M ∧ P (m)) ❀ Q ; 1, def. P, DSJ
3. ∀m · (m ∈M ⇒ { z | z ∈ u ∧ P (m)(z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE) ; 1, def. P
4. { { z | z ∈ u ∧ P (m)(z) } |m ∈M } × { z | z ∈ u ∧ Q(z) } ⊆ LE ; 3
5.

⋃
({ { z | z ∈ u ∧ P (m)(z) } |m ∈M }) 7→ { z | z ∈ u ∧ Q(z) } ∈ LE ; 4, SDJ

6. { z | z ∈ u ∧ ∃m · (m ∈M ∧ P (m)(z)) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE ; 5
7. ∃m · (m ∈M ∧ P (m)) 7→ Q ∈ P ; 6, 2 and def. P

✷

Proof of (A.5)

This proof is similar to the proof of (A.4). Let Q be the following set:

Q = { p 7→ q | p 7→ q ∈ LE ∧ x ∈ p ❀ x ∈ q }

From this definition follows Q ⊆ LE . Inclusion LE ⊆ Q is proved below by structural
induction. From these inclusions follows equality Q = LE . Now, from this equality follows
inclusion LE ⊆ { p 7→ q | p 7→ q ∈ LE ∧ x ∈ p ❀ x ∈ q }:

Q = LE

≡ { Q = LE ∩ { p 7→ q | p ⊆ u ∧ q ⊆ u ∧ x ∈ p ❀ x ∈ q } }
LE ⊆ { p 7→ q | p ⊆ u ∧ q ⊆ u ∧ x ∈ p ❀ x ∈ q }

Finally, from this inclusion, and taking { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ LE as a
premise, the conclusion P ❀ Q of (A.5) follows.

✷

In order to prove LE ⊆ Q the following proofs are required:

• E ⊆ Q.

• Q2 ⊆ Q.

• l × {q} ⊆ Q ⇒
⋃

(l) 7→ q ∈ Q

Proof of Base Case

1. p 7→ q ∈ E ⇒ x ∈ p≫ x ∈ q ; from (A.3)
2. p 7→ q ∈ E ⇒ x ∈ p ❀ x ∈ q ; 1 and BRL
3. p 7→ q ∈ E ⇒ p 7→ q ∈ LE ; SBR
4. p 7→ q ∈ E ⇒ p 7→ q ∈ Q ; 3, 2, def. Q
5. E ⊆ Q ; 4

✷

Proof of Transitivity

1. p 7→ q ∈ Q ∧ q 7→ r ∈ Q ; premise
2. p 7→ q ∈ LE ∧ q 7→ r ∈ LE ; 1, def Q
3. (x ∈ p ❀ x ∈ q) ∧ (x ∈ q ❀ x ∈ r) ; 1, def Q

4. p 7→ r ∈ LE ∧ x ∈ p ❀ x ∈ r ; 2, 3, TRA,STR
5. p 7→ r ∈ Q ; 4, def. Q
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✷

Proof of Disjunction

1. l × {q} ⊆ Q ; premise
2. l × {q} ⊆ LE ; 1, def. Q
3.

⋃
(l) 7→ q ∈ LE ; 2, SDR

4. l × {q} ⊆ { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ x ∈ a ❀ x ∈ b } ; 1, def. Q
5. ∀s · (s ∈ l⇒ x ∈ s ❀ x ∈ q) ; l ⊆ P(u), 4
6. ∃s · (s ∈ l ∧ x ∈ s) ❀ x ∈ q ; 5, DSJ
7. x ∈

⋃
(l) ❀ x ∈ q ; 6

8.
⋃

(l) 7→ q ∈ Q ; 7, 3, def. Q

✷

A.2 Instantiation of ensures to Minimal Progress

In this section, properties (A.2) and (A.3) are proved when the ensures relation is instantiated
to a minimal progress assumption.

Definition of ensures relation under minimal progress assumptions (≫m), without consid-
ering the strongest invariant, is given by the following definition:

∀(P,Q) · (P ∈ Pred ∧ Q ∈ Pred⇒ P (x)≫m Q(x) ≡

∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ grd(sub(S)) ∧ [sub(S)]Q(x)))

where sub(S) denotes the generalized substitution associated with set transformer S.

Proof of (A.2)

P (x)≫m Q(x)
≡ { def. ≫m }
∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ grd(sub(S)) ∧ [sub(S)]Q(x))

≡ { set theory }
∀x · (x ∈ { z | I(z) ∧ P (z) } ∩ { z | I(z) ∧ ¬Q(z) } ⇒ I(x) ∧ grd(sub(S)) ∧
[sub(S)]Q(x))

≡ { I(x)⇒ [sub(S)] I(x), conjunctive S }
∀x · (x ∈ { z | I(z) ∧ P (z) } ∩ { z | I(z) ∧ ¬Q(z) } ⇒ I(x) ∧ grd(sub(S)) ∧
[sub(S)] I(x) ∧ Q(x))
≡ { set transformers }
∀x·(x ∈ { z | I(z) ∧ P (z) }∩{ z | I(z) ∧ ¬Q(z) } ⇒ x ∈ grd(S)∩S({ z | I(z) ∧ Q(z) }))

≡ { set theory, u = { z | I(z) } }

{ z | z ∈ u ∧ P (z) } ∩ { z | z ∈ u ∧ Q(z) } ⊆ grd(S) ∩ S({ z | z ∈ u ∧ Q(z) })
≡ { def. Em }
{ z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ Em

✷
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Proof of (A.3)

p 7→ q ∈ Em
≡ { def. Em }

p ∩ q ⊆ S(q) ∩ grd(S)
≡
∀x · (x ∈ p ∩ q ⇒ x ∈ S(q) ∩ grd(S))

≡ { x ∈ p⇒ I(x) }
∀x · (I(x) ∧ x ∈ p ∧ ¬x ∈ q ⇒ x ∈ S(q) ∩ grd(S))
≡ { set transformers }
∀x · (I(x) ∧ x ∈ p ∧ ¬x ∈ q ⇒ [sub(S)]x ∈ q ∧ grd(S))
≡ { def. ≫m }

x ∈ p≫m x ∈ q

✷

A.3 Instantiation of ensures to Weak Fairness

In this section, properties (A.2) and (A.3) are proved when the ensures relation (≫) is instan-
tiated to a weak fairness assumption relation (≫w). The instantiation under this condition
is given by the following equivalence:

P (x)≫ Q(x) ≡ ∃G · (G ∈ E ∧ G · P (x)≫w Q(x))

Definition of ensures relation under weak fairness assumptions (≫w), without considering the
strongest invariant, is given by the following definition:

∀(P,Q) · (P ∈ Pred ∧ Q ∈ Pred⇒ G · P (x)≫w Q(x) ≡

∀x · (I(x) ∧ P (x) ∧ ¬Q(x)⇒ ([sub(S)] (P (x) ∨ Q(x))) ∧ grd(sub(G)) ∧ [sub(G)]Q(x)))

where sub(S) and sub(G) denote the generalized substitutions associated with set transformers
S and G.

The proof follows from the following equivalences which are proved below:

G · P (x)≫w Q(x) ≡ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E(G) (A.6)

p 7→ q ∈ E(G) ≡ G · x ∈ p≫w x ∈ q (A.7)

Proof of (A.2)
Implication from left to right follows from (A.6)

G · P (x)≫w Q(x) ≡ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E(G)
⇒ { Ew =

⋃
G · (G ∈ E | E(G)) }

G · P (x)≫w Q(x)⇒ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ Ew
⇒
∃G · (G ∈ E ∧ G · P (x)≫w Q(x))⇒ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ Ew
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Implication from right to left follows from (A.6)

G · P (x)≫w Q(x) ≡ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E(G)
⇒
{ z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E(G) ⇒ ∃G · (G ∈ E ∧ G · P (x) ≫w

Q(x))
⇒
∃G · (G ∈ E ∧ { z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ E(G)) ⇒ ∃G · (G ∈ E ∧
G · P (x)≫w Q(x))

⇒
{ z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈

⋃
G · (G ∈ E | E(G)) ⇒ ∃G · (G ∈ E ∧

G · P (x)≫w Q(x))
≡ { def. E }
{ z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(z) } ∈ Ew ⇒ ∃G · (G ∈ E ∧ G · P (x)≫w Q(x))

✷

Proof of (A.3)
Implication from left to right follows from (A.7)

p 7→ q ∈ E(G) ≡ G · x ∈ p≫w x ∈ q

⇒
p 7→ q ∈ E(G)⇒ ∃G · (G ∈ E ∧ G · x ∈ p≫w x ∈ q)
⇒
∃G · (G ∈ E ∧ p 7→ q ∈ E(G))⇒ ∃G · (G ∈ E ∧ G · x ∈ p≫w x ∈ q)

⇒ { Ew =
⋃

G · (G ∈ E | E(G)) }
p 7→ q ∈ Ew ⇒ ∃G · (G ∈ E ∧ G · x ∈ p≫w x ∈ q)

Implication from right to left follows from (A.7)

p 7→ q ∈ E(G) ≡ G · x ∈ p≫w x ∈ q

⇒
G · x ∈ p≫w x ∈ q ⇒ p 7→ q ∈ E(G)

⇒ { Ew =
⋃

G · (G ∈ E | E(G)) }
G · x ∈ p≫w x ∈ q ⇒ p 7→ q ∈ Ew
≡
∃G · (G ∈ E ∧ G · x ∈ p≫w x ∈ q)⇒ p 7→ q ∈ Ew

✷
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Proof of (A.6)

G · P (x)≫w Q(x)
≡ { def. ≫w }
∀x · (I(x) ∧ P (x) ∧ ¬Q(x) ⇒ ([sub(S)] (P (x) ∨ Q(x))) ∧ grd(sub(G)) ∧
[sub(G)]Q(x))

≡ { set theory }
∀x · (x ∈ { z | I(z) ∧ P (z) } ∩ { z | I(z) ∧ ¬Q(x) } ⇒ ([sub(S)] (P (x) ∨ Q(x))) ∧
grd(sub(G)) ∧ [sub(G)]Q(x))

≡ { I(x)⇒ [sub(S)] I(x), conjunctive S and G }
∀x · (x ∈ { z | I(z) ∧ P (z) } ∩ { z | I(z) ∧ ¬Q(x) } ⇒ ([sub(S)] (I(x) ∧ P (x) ∨ I(x) ∧
Q(x))) ∧ grd(sub(G)) ∧ [sub(G)] I(x) ∧ Q(x))

≡ { set transformers }
∀x · (x ∈ { z | I(z) ∧ P (z) } ∩ { z | I(z) ∧ ¬Q(x) } ⇒ x ∈ S({ z | z ∈ u ∧ P (z) } ∪
{ z | z ∈ u ∧ Q(x) }) ∧ x ∈ grd(G) ∧ x ∈ G({ z | z ∈ u ∧ Q(x) }))
≡ { set theory, u = { z | I(z) } }

{ z | z ∈ u ∧ P (z) } ∩ { z | z ∈ u ∧ Q(x) } ⊆ S({ z | z ∈ u ∧ P (z) } ∪ { z | z ∈ u ∧
Q(x) }) ∩ grd(G) ∩G({ z | z ∈ u ∧ Q(x) })
≡ { def. E(G) }
{ z | z ∈ u ∧ P (z) } 7→ { z | z ∈ u ∧ Q(x) } ∈ E(G)

✷

Proof of (A.7)

p 7→ q ∈ E(G)
≡ { def. Ew }

p ∩ q ⊆ S(p ∪ q) ∩ grd(G) ∩G(q)
≡
∀x · (x ∈ p ∩ q ⇒ x ∈ S(p ∪ q) ∩ grd(G) ∩G(q))

≡ { x ∈ p⇒ I(x) }
∀x · (I(x) ∧ x ∈ p ∧ ¬x ∈ q ⇒ x ∈ S(p ∪ q) ∩ grd(G) ∩G(q))

≡ { set transformers }
∀x · (I(x) ∧ x ∈ p ∧ ¬x ∈ q ⇒ ([sub(S)] (x ∈ p ∨ x ∈ q)) ∧ grd(G) ∧ [sub(G)]x ∈ q)

≡ { def. ≫w }
G · x ∈ p≫w x ∈ q

✷
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Appendix B

Extending the Semantics to
Consider the Strongest Invariant

In this appendix, the strongest invariant is considered in definitions of termination and reach-
ability relations. It allows us to preserve soundness of unity logic. Certain definitions and
proofs are independent of the strongest invariant and they remain unchanged. New definitions
and proofs are only considered in this appendix. It is structured in four parts. In section B.1,
the strongest invariant is presented. In section B.2, the general theorem about soundness
and completeness is restated and proved. In section B.4, termination and basic relation for
leads-to are redefined to consider a minimal progress assumption, and the hypothesis of the
theorem of soundness and completeness are proved. In section B.5 an similar treatment is
considered to the case of a weak fairness assumption.

B.1 Strongest Invariant

Original definitions of the fundamental relations unless and ensures in unity logic [21], do
not consider initial conditions. On another hand, in order to give the possibility to prove
valid properties (completeness), in [21] the Substitution Axiom is proposed. Basically, this
axiom states that any invariant predicate can be replaced by true and vice versa.

Original definitions of the fundamental relations in [21], along with the substitution axiom,
give an unsound proof system as it is reported in [62]. To fix this problem, the relation unless
and ensures are redefined to consider initial conditions. The new definitions in [62] consider
the strongest invariant, which holds in the reachable states. Moreover, the substitution axiom
is replaced by a substitution rule, which becomes a theorem in the new logic. However, in
[53], a problem with the new rule is reported and another substitution rule is proposed. In
this report we do not consider this last issue.

Following the proposal in [62], and adapting the definition to our framework, the strongest
invariant is defined as follows:

Definition B.1 Strongest Invariant

Let SS be a B event system with state variable x, initialization U and choice of events
S.The strongest invariant SI of SS is the strongest predicate X satisfying:

∀x · ((X ⇒ [S]X) ∧ (([x′ := x] prd(U))⇒ X))
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where prd(U) denotes the before-after relation associated with the initilization U [2]. Using the
strongest invariant, the definition of the ensures relation, to specify basic liveness properties,
under our two fairness assumptions is as follows:

Definition B.2 Ensures under Minimal Progress

Let SS be a B event system with state variable x, initialization U and choice of events S.
For any predicate P and Q over x, the basic liveness relation ≫m is defined as follows:

P ≫m Q ≡ SI ∧ P ∧ ¬Q⇒ (([S] Q) ∧ grd(S))

Definition B.3 Ensures under Weak Fairness

Let SS be a B event system with state variable x, initialization U , choice of events S

and G an event of SS. For any predicate P and Q over x, the basic liveness relation ≫w is
defined as follows:

G · P ≫w Q ≡ SI ∧ P ∧ ¬Q⇒ (([S] P ∨ Q) ∧ ([G] Q) ∧ grd(S))

Finally si , the set counterpart of the strongest invariant, is given by the following definition

si = {z | SI (z)}

B.2 General Framework

The body of iteration in the general framework does not change:

F(r) = (r =⇒W ) (4.4)

The termination relation is redefined to consider the strongest invariant as follows:

Definition B.4 (Termination Relation)

T = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ si ∩ a ⊆ fix(F(si ∩ b)) } (B.1)

The reachability relation is not modified directly:

Definition B.5 (Reachability Relation)
The reachability relation LE , LE ∈ P(u)↔ P(u), is defined by the following induction scheme:

(SBR): E ⊆ LE

(STR): LE ; LE ⊆ LE

(SDR): ∀(q, l) · (q ∈ P(u) ∧ l ⊆ P(u)⇒ (l × {q} ⊆ LE ⇒
⋃

(l) 7→ q ∈ LE))

Closure: ∀l ′ · (l′ ∈ u↔ u ∧ E ⊆ l ′ ∧ l ′ ; l ′ ⊆ l ′ ∧
∀(q, l) · (q ∈ P(u) ∧ l ⊆ P(u) ∧ l × {q} ⊆ l ′ ⇒

⋃
(l) 7→ q ∈ l ′)⇒ LE ⊆ l ′)

However, when LE is instantiated to minimal or weak fairness assumptions, the strongest
invariant is considered in definition of the base relation.

The theorem of soundness and completeness, taking into account new definitions of T and
LE remains basically unchanged. Only hypothesis concerning the strongest invariant and the
basic relation, are modified with respect to the precedent version.
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Theorem 6 (Soundness and Completeness)
Let W be a monotonic and strict set transformer and F(r) = (r =⇒ W ) for any r in P(u).
Let relations T and LE be defined as definitions B.4 and B.5 respectively. Considering (a)
a 7→ b ∈ E ⇒ si ∩ a ∩ b ⊆W (si ∩ b), (b) a ⊆ b⇒ a 7→ b ∈ E, (c) si ∩ a ⊆ b⇒ a 7→ b ∈ E and
(d) W (r) 7→ r ∈ LE , for any a, b and r in P(u), the following equality holds:

LE = T

The prove is given in the following section.

In appendix A, the equivalence between the reachability relation LE and the definition of
the leads-to relation ❀ is proved. That proof does not consider the strongest invariant in the
given definitions. In order to connect the definition of the reachability relation, considering
the strongest invariant, a demonstration similar to the proof of (4.7), can be given to prove
the following equivalence:

P (x) ❀ Q(x) ≡ { z | z ∈ si ∧ P (z) } 7→ { z | z ∈ si ∧ Q(z) } ∈ LE

which relates the definition of the leads-to relation with the reachability relation considering
the strongest invariant.

B.3 Proof of Soundness and Completeness

As before, the proof is divided in LE ⊆ T and T ⊆ LE .

B.3.1 Proof of LE ⊆ T

The proof of LE ⊆ T follows from the closure clause in definition of LE . According to this
clause, T must contain the base relation E , and it must be transitive and disjunctive. The
following paragraphs present the proof of these cases.

Base Case

a 7→ b ∈ E ⇒ a 7→ b ∈ T (B.2)

1. a 7→ b ∈ E ; premise

2. si ∩ a ∩ b ⊆W (b ∩ si) ; 1 and hyp. (a)
3. si ∩ a ⊆ b ∪W (b ∩ si) ; 2
4. si ∩ a ⊆ si ∩ b ∪W (b ∩ si) ; 3
5. si ∩ a ⊆ F(si ∩ b)(b ∩ si) ; 4 and def. (4.4)
6. si ∩ a ⊆ F(si ∩ b)2 ; 5 and iterate (4.5)
7. si ∩ a ⊆ fix(F(si ∩ b)) ; 6 and (4.8)
8. a 7→ b ∈ T ; 7 and def. (B.1)

✷
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Transitivity

∀(a, b) · (a 7→ b ∈ (T ; T)⇒ a 7→ b ∈ T) (B.3)

The proof of (B.3) requires the following property:

∀(a, b) · (a 7→ b ∈ T ⇒ fix(F(si ∩ a)) ⊆ fix(F(si ∩ b))) (B.4)

Taking a 7→ b ∈ T as a premise, and considering fix(F(si∩a)) as the least fixpoint of F(si∩a),
(B.4) follows from F(si ∩ a)(fix(F(si ∩ b))) ⊆ fix(F(si ∩ b)) as follows:

1. si ∩ a ⊆ fix(F(si ∩ b)) ; from a 7→ b ∈ T

2. F(si ∩ b)(fix(F(si ∩ b))) = fix(F(si ∩ b)) ; fixpoint definition
3. W (fix(F(si ∩ b))) ⊆ fix(F(si ∩ b)) ; 2 and (4.4)
4. F(si ∩ a)(fix(F(si ∩ b))) ⊆ fix(F(si ∩ b)) ; 3, 1 and (4.4)

✷

Proof of (B.3)

1. ∃c · (a 7→ c ∈ T ∧ c 7→ b ∈ T) ; from a 7→ b ∈ T;T
2. ∃c · (si ∩ a ⊆ fix(F(si ∩ c)) ∧ c 7→ b ∈ T) ; 3 and def. T

3. ∃c · (si ∩ a ⊆ fix(F(si ∩ c)) ∧ fix(F(si ∩ c)) ⊆ fix(F(si ∩ b))) ; 2 and (B.4)
4. si ∩ a ⊆ fix(F(si ∩ b)) ; 3
5. a 7→ b ∈ T ; 6 and def. T

✷

Disjunction

∀(l, q) · (l × {q} ⊆ T ⇒
⋃

(l) 7→ q ∈ T) (B.5)

1. l × {q} ⊆ T ; premise
2. ∀p · (p ∈ l⇒ p 7→ q ∈ T) ; 1
3. ∀p · (p ∈ l⇒ si ∩ p ⊆ fix(F(si ∩ q))) ; 2 and def. Tm

4.
⋃

p · (p ∈ l | si ∩ p) ⊆ fix(F(si ∩ q)) ; 3
5. si ∩

⋃
p · (p ∈ l | p) ⊆ fix(F(si ∩ q)) ; 4

6. si ∩
⋃

(l) ⊆ fix(F(si ∩ q)) ; 5
7.

⋃
(l) 7→ q ∈ T ; 4 and def. Tm

✷

B.3.2 Proof of T ⊆ LE

The proof of this inclusion requires the following property which is already proved:

∀r · (r ∈ P(u)⇒ F(r)α 7→ r ∈ LE (4.10)
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Proof of T ⊆ LE

1. si ∩ a ⊆ fix(F(si ∩ b)) ; from a 7→ b ∈ T

2. ∃α · (si ∩ a ⊆ F(si ∩ b)α) ; 1 and theorem 1
3. ∃α · (a 7→ F(si ∩ b)α ∈ E) ; 2 and hyp. (c)
4. ∃α · (a 7→ F(si ∩ b)α ∈ LE) ; 3 and STR
5. a 7→ si ∩ b ∈ LE ; 4 and (4.10)
6. a 7→ b ∈ LE ; 5, si ∩ b 7→ b ∈ LE ,

STR

✷

B.4 Minimal Progress

The body of iteration under a minimal progress assumption does not change:

Fm(r) = (r =⇒Wm)

where Wm remains defined as before:

Wm = grd(S) | S (4.11)

termination relation under weak fairness assumption is defined as follows:

Tm = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ si ∩ a ⊆ fix(Fm(si ∩ b)) } (B.6)

Basic relation Em for reachability relation LEm under minimal progress assumptions is
defined as follows:

Em = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ si ∩ a ∩ b ⊆ S(b) ∩ grd(S) } (B.7)

Relation LEm is defined by an induction scheme, according to definition 4.4.

The following proofs of hypothesis in theorem 6 allow us to conclude the equality between
reachability and termination relations under a minimal progress assumption:

Tm = LEm

B.4.1 Proof of Premise (a)

a 7→ b ∈ Em ⇒ si ∩ a ∩ b ⊆Wm(si ∩ b) (B.8)

a 7→ b ∈ Em
≡ { (B.7) }

si ∩ a ∩ b ⊆ S(b) ∩ grd(S)
⇒ { si ⊆ S(si), conjunctive S }

si ∩ a ∩ b ⊆ S(si ∩ b) ∩ grd(S)
≡ { (4.11) }

si ∩ a ∩ b ⊆Wm(si ∩ b)

✷
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B.4.2 Proof of Premise (b)

a ⊆ b⇒ a 7→ b ∈ Em (B.9)

1. a ⊆ b ; premise

2. si ∩ a ∩ b = ∅ ; 1

3. si ∩ a ∩ b ⊆ grd(S) ∩ S(b) ; 2
4. a 7→ b ∈ Em ; 3 and (B.7)

✷

B.4.3 Proof of Premise (c)

si ∩ a ⊆ b⇒ a 7→ b ∈ Em (B.10)

1. si ∩ a ⊆ b ; premise

2. si ∩ b ∩ b = ∅ ; 1

3. si ∩ a ∩ b ⊆ grd(S) ∩ S(b) ; 2
4. a 7→ b ∈ Em ; 3 and (B.7)

✷

B.4.4 Proof of Premise (d)

Wm(r) 7→ r ∈ LEm (B.11)

1. si ∩ grd(S) ∩ S(r) ∩ r ⊆ grd(S) ∩ S(r) ; trivial
2. grd(S) ∩ S(r) 7→ r ∈ Em ; 1 and def. Em
3. Wm(r) 7→ r ∈ Em ; 2 and (4.11)
4. Wm(r) 7→ r ∈ LEm ; 3 and def. LEm

✷

B.5 Weak Fairness

The body of iteration under weak fairness assumption does not change:

Fw(r) = r =⇒Ww (4.22)

where Ww is defined as follows:

Ww = λr · (r ⊆ u |
⋃

G · (G ∈ E | Y (r)(G)(r))) (4.21)

and Y (r)(G)(r) is defined by:

Y (q)(G)(r) = FIX(q =⇒ (grd(G) ∩G(r) | S)) (4.20)

termination relation under weak fairness assumption is defined as follows:

Tw = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ si ∩ a ⊆ fix(Fw(si ∩ b)) } (B.12)
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Basic relation Ew for reachability relation LEw under weak fairness assumption is not
changed directly:

Ew =
⋃

G · (G ∈ E | E(G)) (4.25)

However, E(G) is redefined to consider the strongest invariant:

E(G) = { a 7→ b | a ⊆ u ∧ b ⊆ u ∧ si ∩ a ∩ b ⊆ S(a ∪ b) ∩G(∅) ∩G(b) } (B.13)

Relation LEw is defined by an induction scheme, according to definition 4.4.
The following proofs of hypothesis in theorem 6 allow us to conclude the equality between

reachability and termination relations under a weak fairness assumption:

Tw = LEw

B.5.1 Proof of Premise (a)

a 7→ b ∈ Ew ⇒ si ∩ a ∩ b ⊆Ww(si ∩ b) (B.14)

The proof requires the following property:

∀G · (G ∈ E ∧ a 7→ b ∈ E(G)⇒ si ∩ a ⊆ Y (si ∩ b)(G)(si ∩ b)) (B.15)

a 7→ b ∈ E(G)
≡ { (B.13) }

si ∩ a ∩ b ⊆ S(a ∪ b) ∩G(∅) ∩G(b)
⇒ { si ⊆ S(si), conjunctive S and G }

si ∩ a ∩ b ⊆ S(si ∩ a ∪ si ∩ b) ∩G(∅) ∩G(si ∩ b)
⇒

si ∩ a ⊆ si ∩ b ∪ S(si ∩ a ∪ si ∩ b) ∩G(∅) ∩G(si ∩ b)
⇒

si ∩ a ∪ si ∩ b ⊆ si ∩ b ∪ S(si ∩ a ∪ si ∩ b) ∩G(∅) ∩G(si ∩ b)
≡ { set transformers }

si ∩ a ∪ si ∩ b ⊆ (si ∩ b =⇒ grd(G) ∩G(si ∩ b) | S)(si ∩ a ∪ si ∩ b)
⇒ { greatest fixpoint property }

si ∩ a ⊆ FIX(si ∩ b =⇒ grd(G) ∩G(si ∩ b) | S)
≡ { (4.20) }

si ∩ a ⊆ Y (si ∩ b)(G)(si ∩ b)

✷

Proof of (B.14)

1. ∀G · (G ∈ E ⇒ (a 7→ b ∈ E(G)⇒ si ∩a ⊆ Y (si ∩b)(G)(si ∩b))) ; (B.15)
2. ∃G · (G ∈ E ∧ a 7→ b ∈ E(G))⇒ si ∩ a ⊆Ww(si ∩ b) ; 1 and (4.21).
3. a 7→ b ∈

⋃
G · (G ∈ E | E(G))⇒ si ∩ a ⊆Ww(si ∩ b) ; 2

4. a 7→ b ∈ Ew ⇒ si ∩ a ⊆Ww(si ∩ b) ; 3 and (4.25)
5. a 7→ b ∈ Ew ⇒ si ∩ a ⊆ si ∩ b ∪Ww(si ∩ b) ; 4 and si∩b⊆Ww(si∩b)
6. a 7→ b ∈ Ew ⇒ si ∩ a ∩ b ⊆Ww(si ∩ b) ; 5

✷
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B.5.2 Proof of Premise (b)

a ⊆ b⇒ a 7→ b ∈ Ew (B.16)

1. a ⊆ b ; premise

2. si ∩ a ∩ b = ∅ ; 1

3. ∀G · (G ∈ E ⇒ si ∩ a ∩ b ⊆ S(a ∪ b) ∩G(∅) ∩G(b)) ; 2
4. ∀G · (G ∈ E ⇒ a 7→ b ∈ E(G)) ; 3 and (B.13)
5. a 7→ b ∈

⋃
G · (G ∈ E | E(G)) ; 4

6. a 7→ b ∈ Ew ; 5 (4.25)

✷

B.5.3 Proof of Premise (c)

si ∩ a ⊆ b⇒ a 7→ b ∈ Ew (B.17)

1. si ∩ a ⊆ b ; premise

2. si ∩ a ∩ b = ∅ ; 1

3. ∀G · (G ∈ E ⇒ si ∩ a ∩ b ⊆ S(a ∪ b) ∩G(∅) ∩G(b)) ; 2
4. ∀G · (G ∈ E ⇒ a 7→ b ∈ E(G)) ; 3 and (B.13)
5. a 7→ b ∈

⋃
G · (G ∈ E | E(G)) ; 4

6. a 7→ b ∈ Ew ; 5 (4.25)

✷

B.5.4 Proof of Premise (d)

∀r · (r ⊆ u⇒Ww(r) 7→ r ∈ LEw) (B.18)

The proof requires the following property:

∀(G, r) · (G ∈ E ∧ r ⊆ u⇒ Y (r)(G)(r) 7→ r ∈ E(G)) (B.19)

1. S(Y (r)(G)(r)) ⊆ S(Y (r)(G)(r) ∪ r) ; monotony of S

2. Y (r)(G)(r) = r ∪ grd(G) ∩G(r) ∩ S(Y (r)(G)(r)) ; (4.20)
3. Y (r)(G)(r) ∩ r ⊆ grd(G) ∩G(r) ∩ S(Y (r)(G)(r) ∪ r) ; 2, 1
4. si ∩ Y (r)(G)(r) ∩ r ⊆ Y (r)(G)(r) ∩ r ; trivial
5. Y (r)(G)(r) 7→ r ∈ E(G) ; 4, 3 and (4.25)

✷

Proof of (B.18)

1. ∀G · (G ∈ E ⇒ Y (r)(G)(r) 7→ r ∈ E(G)) ; from (B.19)
2. ∀G · (G ∈ E ⇒ E(G) ⊆ Ew) ; def. Ew
3. ∀G · (G ∈ E ⇒ Y (r)(G)(r) 7→ r ∈ Ew) ; 2 and 1
4. ∀G · (G ∈ E ⇒ Y (r)(G)(r) 7→ r ∈ LEw) ; def. LEw

5. {Y (r)(G)(r) |G ∈ E } × {r} ⊆ LEw ; 4
6.

⋃
({Y (r)(G)(r) |G ∈ E }) 7→ r ∈ LEw ; 5 and SDR

7.
⋃

G · (G ∈ E | Y (r)(G)(r)) 7→ r ∈ LEw ; 6
8. Ww(r) 7→ r ∈ LEw ; 7 and def. F

✷
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Proofs of Chapter 4

C.1 Proofs of the General Framework

C.1.1 Proof of (4.8): ∀α · (fα ⊆ fix(f))

successor ordinal:

fα ⊆ fix(f)
⇒

f(fα) ⊆ f(fix(f))
⇒

fα+1 ⊆ fix(f)

limit ordinal:

∀β · (β < α⇒ fβ ⊆ fix(f))
⇒ { monotony }
∀β · (β < α⇒ f(fβ) ⊆ f(fix(f)))
⇒ { fixpoint def. }
∀β · (β < α⇒ f(fβ) ⊆ fix(f))
⇒⋃

β · (β < α | f(fβ)) ⊆ fix(f)
≡ { def. iterate }

fα ⊆ fix(f)

✷

C.1.2 Proof of (4.10): F(r)α 7→ r ∈ LE ⇒ F(r)α+1 7→ r ∈ LE

Successor ordinal

1. F(r)α 7→ r ∈ L ; ind. hyp.
2. W (F(r)α) 7→ F(r)α ∈ L ; from hyp. (c) th. 2
3. r 7→ r ∈ L ; hyp. (b) th. 2, SBR
4. r ∪W (F(r)α) 7→ r ∈ L ; 3, 2 and SDR
6. F(r)(F(r)α) 7→ r ∈ L ; 5 and (4.4)
7. F(r)α+1 7→ r ∈ L ; 6 and def. iterate

✷
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C.2 Proofs Concerning Weak Fairness

C.2.1 Termination Set of Fair Loop: pre(Y (q)(G)) = fix(q∩G(∅) =⇒ (S(q) | S))

pre(Y (q)(G))
= { def. of pre }

Y (q)(G)(u)
= { (4.16) }

q ∪ ((S ; Y (q)(G)) ▽ (grd(G) | G))(u)
= { (4.2), X = (S ; Y (q)(G)), Z = (grd(G) | G) }

q ∪ ((X(u) ∪ Z(u)) ∩ (X(∅) ∪ Z(u)) ∩ (X(u) ∪ Z(∅)))

= { G(u) = u, Z(u) = grd(G), Z(∅) = u }

q ∪ ((X(u) ∪ grd(G)) ∩ (X(∅) ∪ grd(G)))
= { distributivity }

q ∪ grd(G) ∪ (X(u) ∩X(∅))
= { X = (S ; Y (q)(G)), set transformer }

q ∪ grd(G) ∪ (S(Y (q)(G)(u)) ∩ S(Y (q)(G)(∅)))
= { def. grd(Y (q)(G)), grd(G) and set transformer }

(q ∩G(∅) =⇒ (S(q) | S))(Y (q)(G)(u))
= { extreme solution of recursive equation }

fix(q ∩G(∅) =⇒ (S(q) | S))

✷

C.2.2 Liberal of Y (q)(G): L(Y (q)(G))(r) = FIX(q =⇒ (grd(G) ∩G(r) | S))

For r ⊆ u ∧ r 6= u:

L(Y (q)(G))(r)
= { (4.16), Liberal set transformer of guard and dovetail }

q ∪ L(S ; Y (q))(r) ∩ L(grd(G) | G)(r)
= { r 6= u, L(grd(G) | G)(r) = grd(G) ∩ L(G)(r),L(G)(r) = G(r) }

q ∪ L(S ; Y (q))(r) ∩ grd(G) ∩G(r)
= { Liberal set transformer of sequencing, L(S)(r) = S(r) }

q ∪ S(L(Y (q))(r)) ∩ grd(G) ∩G(r)
= { Liberal set transformer of guarded and preconditioned events }

(q =⇒ grd(G) ∩G(r) | S)(L(Y (q)(G))(r))
= { extreme solution of recursive equation }

FIX(q =⇒ grd(G) ∩G(r) | S)

For r = u: L(X(q)(G))(u) = u First, we note that equality L(Y (q)(G))(u) = FIX(q =⇒ S)
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holds:

L(Y (q)(G))(u)
= { (4.16), Liberal set transformer of guard and dovetail }

q ∪ L(S ; Y (q))(u) ∩ L(grd(G) | G)(u)
= { L(grd(G) | G)(u) = u }

q ∪ L(S ; Y (q))(u)
= { S(u) = u, set transformers }

(q =⇒ S)(L(Y (q)(G))(u))
= { extreme solution }

FIX(q =⇒ S)

As (q =⇒ S)(u) = u holds, it follows: u ⊆ FIX(q =⇒ S). Therefore, L(Y (q)(G))(u) = u

follows from u ⊆ FIX(q =⇒ S) and equality.

C.2.3 Proof of (4.19): L(Y (q)(G))(r) ⊆ pre(Y (q)(G))

L(Y (q)(G))(r)
= { (4.18) and fixpoint property }

q ∪ grd(G) ∩G(r) ∩ S(L(Y (q)(G))(r))
⊆ { set theory }

q ∪ grd(G)
⊆ { set theory }

q ∪ grd(G) ∪ S(q) ∩ S(pre(Y (q)(G)))
= { set transformers }

(q ∩G(∅) =⇒ (S(q) | S))(pre(Y (q)(G)))
= { (4.17) and fixpoint property }

pre(Y (q)(G))

✷

C.2.4 Monotonicity of Fair Loop: a ⊆ b⇒ Y (q)(G)(a) ⊆ Y (q)(G)(b))

Let a and b be two subsets of u, F (q)(a) and F (q)(b) be the following set transformers:

F (q)(a) = (q =⇒ G(a) ∩ grd(G) | S)

F (q)(b) = (q =⇒ G(b) ∩ grd(G) | S)



156 APPENDIX C. PROOFS OF CHAPTER 4

a ⊆ b

⇒ { Monotonicity of G }
G(a) ⊆ G(b)

⇒ { set theory }
∀r · (r ⊆ u⇒ (q ∪G(a) ∩ grd(G) ∩ S(r)) ⊆ (q ∪G(b) ∩ grd(G) ∩ S(r)))

≡ { set transformers }
∀r · (r ⊆ u⇒ (q =⇒ G(a) ∩ grd(G) | S)(r) ⊆ (q =⇒ G(b) ∩ grd(G) | S)(r))
≡ { def. F (q)(a) and F (q)(b) }
∀r · (r ⊆ u⇒ F (q)(a)(r) ⊆ F (q)(b)(r))

⇒ { set theory }
∀r · (r ⊆ u⇒ (r ⊆ F (q)(a)(r))⇒ r ⊆ F (q)(b)(r))

⇒ { set theory }
{ r | r ⊆ u ∧ r ⊆ F (q)(a)(r) } ⊆ { r | r ⊆ u ∧ r ⊆ F (q)(b)(r) }

⇒ { set theory }⋃
({ r | r ⊆ u ∧ r ⊆ F (q)(a)(r) }) ⊆

⋃
({ r | r ⊆ u ∧ r ⊆ F (q)(b)(r) })

⇒ { def. FIX(f), F (q)(a) and F (q)(b) }
FIX(q =⇒ G(a) ∩ grd(G) | S) ⊆ FIX(q =⇒ G(b) ∩ grd(G) | S)
≡ { (4.20) }

Y (q)(G)(a) ⊆ Y (q)(G)(b)

✷

C.2.5 Guard of Fair Loop: grd(Y (q)(G)) = q

grd(Y (q)(G))
= { def. guard }

Y (q)(G)(∅)
= { (4.16) }

q ∪ ((S ; Y (q)(G)) ▽ (grd(G) | G))(∅)
= { set theory }

q ∩ ((S ; Y (q)(G)) ▽ (grd(G) | G))(∅)
= { def. guard dovetail }

q ∩ (grd(S ; Y (q)(G)) ∪ grd(grd(G) | G))
= { grd(grd(G) | G) = u }

q

✷
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C.2.6 Strictness of Ww: Ww(∅) = ∅

Ww(∅)
= { (4.21) }⋃

G · (G ∈ E | Y (∅)(G)(∅))
= { def. of grd }⋃

G · (G ∈ E | grd(Y (∅)(G)))
= { grd(Y (∅)(G)) = ∅ }⋃

G · (G ∈ E | ∅)
=

∅

✷

C.2.7 Monotonicity of Ww: a ⊆ b⇒ Ww(a) ⊆ Ww(b)

First we prove, for any subset a and b of u, a ⊆ b⇒ Y (a)(G)(b) ⊆ Y (b)(G)(b).

Let T (a) = FIX(a =⇒ (grd(G) ∧ G(b) | S)):

a ⊆ b

⇒ { for any G ∈ E }
a ∪ grd(G) ∩G(b) ∩ S(T (a)) ⊆ b ∪ grd(G) ∩G(b) ∩ S(T (a))

≡ { prop. FIX }
T (a) ⊆ b ∪ grd(G) ∩G(b) ∩ S(T (a))
≡ { guarded set transformer }

T (a) ⊆ (b =⇒ grd(G) ∩G(b) | S)(T (a))
⇒ { prop. FIX }

T (a) ⊆ FIX(b =⇒ grd(G) ∩G(b) | S)
≡ { (4.20) }

Y (a)(G)(b) ⊆ Y (b)(G)(b)

Now, the proof of monotonicity is:

a ⊆ b

⇒ { monotonicity of Y (q)(G) for q = a and G ∈ E }
Y (a)(G)(a) ⊆ Y (a)(G)(b)
⇒ { Y (a)(G)(b) ⊆ Y (b)(G)(b) }

Y (a)(G)(a) ⊆ Y (b)(G)(b)
⇒

Y (a)(G)(a) ⊆
⋃

G ′ · (G ′ ∈ E | Y (b)(G ′)(b))
⇒⋃

G · (G ∈ E | Y (a)(G)(a)) ⊆
⋃

G ′ · (G ′ ∈ E | Y (b)(G ′)(b))
≡ { (4.21) }

Ww(a) ⊆Ww(b)

✷
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C.2.8 Proof of (4.26): ∀G · (G ∈ E ∧ a 7→ b ∈ E(G)⇒ a ⊆ Y (b)(G)(b))

1. a 7→ b ∈ E(G) ; premise

2. a ∩ b ⊆ grd(G) ∩G(b) ∩ S(a ∪ b) ; 1 and (4.24)
3. a ⊆ b ∪ grd(G) ∩G(b) ∩ S(a ∪ b) ; 2
4. b ⊆ b ; trivial
5. a ∪ b ⊆ b ∪ grd(G) ∩G(b) ∩ S(a ∪ b) ; 4 and 3

6. a ∪ b ⊆ (b =⇒ grd(G) ∩G(b) | S)(a ∪ b) ; 5 and set. transf.

7. a ∪ b ⊆ FIX(b =⇒ grd(G) ∩G(b) | S) ; 6 and prop.FIX

8. a ∪ b ⊆ Y (b)(G)(b) ; 7 and (4.20)

✷

C.2.9 Proof of (4.27): ∀(G, r) · (G ∈ E ∧ r ⊆ u⇒ Y (r)(G)(r) 7→ r ∈ E(G))

1. S(Y (r)(G)(r)) ⊆ S(Y (r)(G)(r) ∪ r) ; monotony of S

2. Y (r)(G)(r) = r ∪ grd(G) ∩G(r) ∩ S(Y (r)(G)(r)) ; (4.20)
3. Y (r)(G)(r) ∩ r ⊆ grd(G) ∩G(r) ∩ S(Y (r)(G)(r) ∪ r) ; 2, 1
4. Y (r)(G)(r) 7→ r ∈ E(G) ; 3 and (4.24)

✷

C.3 Proofs Concerning the Derivation of Liveness Properties

C.3.1 Proof of (4.30): ∀n · (n ∈ N⇒ v ′(n) =
⋃

i · (i ∈ N ∧ i < n | v(i)))

The proof is by induction over N. The base case:

v ′(0)
= { def. v′ }
{ z | z ∈ u ∧ V (z) < 0 }

= { V ∈ u→ N }
∅

= { empty range }⋃
i · (i ∈ N ∧ i < 0 | v(i))

Inductive step:

v ′(n) =
⋃

i · (i ∈ N ∧ i < n | v(i))
⇒

v ′(n) ∪ v(n) =
⋃

i · (i ∈ N ∧ i < n | v(i)) ∪ v(n)
⇒ { def. v and v′ }

v ′(n + 1) =
⋃

i · (i ∈ N ∧ i < n + 1 | v(i))

✷
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C.3.2 Proof of (4.31):
⋃

i · (i ∈ N | v ′(i + 1)) =
⋃

i · (i ∈ N | v(i))

⋃
i · (i ∈ N | v ′(i + 1))

= { def. v′ }⋃
i · (i ∈ N | { z | z ∈ u ∧ V (z) < i + 1 })

= ⋃
i · (i ∈ N | { z | z ∈ u ∧ V (z) ≤ i })

= ⋃
i · (i ∈ N | { z | z ∈ u ∧ V (z) = i })

= { def. v }⋃
i · (i ∈ N | v(i))

✷

C.3.3 Proof of (4.32):
⋃

i · (i ∈ N | v(i)) = u

u ⊆
⋃

i · (i ∈ N | v(i))
⇐ { set. theory }
∀x · (x ∈ u⇒ x ∈

⋃
i · (i ∈ N | v(i)))

≡
∀x · (x ∈ u⇒ ∃i · (i ∈ N ∧ x ∈ v(i)))
≡ { def. v }
∀x · (x ∈ u⇒ ∃i · (i ∈ N ∧ V (x) = i))
⇐

V ∈ u→ N

✷

C.3.4 Proof of (4.33): ∀n · (n ∈ N⇒
⋃

i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ⊆ fn+1)

The proof is by induction. Base case:

1. ∀n · (n ∈ N⇒ v(n) ∩ p ⊆ f(v ′(n))) ; premise
2. v(0) ∩ p ⊆ f(v ′(0)) ; 1
3. v(0) ∩ p ⊆ f(∅) ; 2 and def v′

4. v(0) ∩ p ⊆ f1 ; f(∅) = f1 (4.5)
5.

⋃
i · (i ∈ N ∧ i ≤ 0 | v(i)) ∩ p ⊆ f0+1 ; 4
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Inductive step:

1.
⋃

i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ⊆ fn+1 ; Inductive hyp.
2. f(

⋃
i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p) ⊆ f(fn+1) ; 1 and monotonic f

3. ∀n · (n ∈ N⇒ v(n) ∩ p ⊆ f(v ′(n))) ; premise
4. v(n + 1) ∩ p ⊆ f(v ′(n + 1)) ; 3
5. v ′(n + 1) =

⋃
i · (i ∈ N ∧ i ≤ n | v(i)) ; from (4.30)

6. p ⊆ f(p) ; premise
7. v(n + 1) ∩ p ⊆ f(v ′(n + 1)) ∩ f(p) ; 6 and 4
8. v(n + 1) ∩ p ⊆ f(v ′(n + 1) ∩ p) ; 7 and conjunct. f

9. v(n + 1) ∩ p ⊆ f(fn+1) ; 8, 5 and 2
10. fn+1 ⊆ fn+2 ; from (4.5)
11.

⋃
i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ⊆ fn+2 ; 10 and 1

12.
⋃

i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ∪ v(n + 1) ∩ p ⊆ fn+2 ; 11, 9 and (4.5)
13.

⋃
i · (i ∈ N ∧ i ≤ n + 1 | v(i)) ∩ p ⊆ fn+2 ; 12

✷

C.3.5 Proof of (4.34): ∀α · (Fw(b)α ⊆ b ∪ (grd(S) ∩ S(fix(Fw(b))))

The proof is given by transfinite induction considering the following abbreviations:

B = fix(Fw(b)) (C.1)

F = Fw(b) (C.2)

Successor ordinal:

1. Fw(b)α ⊆ b ∪ (grd(S) ∩ S(B)) ; Ind. Hyp.
2. Fw(b)(Fα) = b ∪Ww(Fα) ; (4.22)
3. Fw(b)(Fα) = b ∪

⋃
G · (G ∈ E | Y (Fα)(G)(Fα)) ; 2 and (4.21)

4. Fw(b)(Fα) = b ∪
⋃

G · (G ∈ E | FIX(Fα =⇒ grd(G) ∩G(Fα) | S)) ; 3 and (4.20)
5. Fw(b)(Fα) = b ∪

⋃
G · (G ∈ E | Fα ∪ (grd(G) ∩G(Fα) ∩ S(Y (Fα)(G)(Fα)))) ; 4

6. Fw(b)(Fα) ⊆ b ∪
⋃

G · (G ∈ E | Fα ∪ (grd(G) ∩ S(Y (Fα)(G)(Fα)))) ; 5
7. Fw(b)(Fα) ⊆ b ∪

⋃
G · (G ∈ E | Fα ∪ (grd(G) ∩ S(Ww(Fα)))) ; 6 and (4.21)

8. Fw(b)(Fα) ⊆ b ∪
⋃

G · (G ∈ E | Fα ∪ (grd(S) ∩ S(Ww(Fα)))) ; 7 grd(G) ⊆ grd(S)
9. Fw(b)(Fα) ⊆ b∪

⋃
G · (G ∈ E | Fα∪ (grd(S)∩S(Fw(b)(Fα)))) ; 8 and (4.22)

10. Fw(b)α+1 ⊆ b ∪ Fα ∪ (grd(S) ∩ S(Fw(b)α+1)) ; 9 and (4.5)
11. Fw(b)α+1 ⊆ b ∪ Fα ∪ (grd(S) ∩ S(B)) ; 10 and (4.5)
12. Fw(b)α+1 ⊆ b ∪ (grd(S) ∩ S(B)) ; 11 and 1

Limit ordinal:

1. ∀β · (β < α⇒ Fβ ⊆ b ∪ grd(S) ∩ S(B)) ; Ind. Hyp

2. F(Fβ) = b ∪Ww(Fβ) ; (4.22), β < α

3. F(Fβ) = b ∪
⋃

G · (G ∈ E | Y (Fβ)(G)(Fβ)) ; (4.21)

4. F(Fβ) = b ∪
⋃

G · (G ∈ E | FIX(Fβ =⇒ grd(G) ∩G(Fβ) | S)) ; 3, (4.20)

5. F(Fβ) = b ∪
⋃

G · (G ∈ E | Fβ ∪ (grd(G) ∩G(Fβ) ∩ S(Y (Fβ)(G)(Fβ)))) ; 4

6. F(Fβ) ⊆ b ∪ Fβ ∪ (grd(S) ∩ S(F(Fβ))) ; 5, (4.21) and (4.22)

7. F(Fβ) ⊆ b ∪ Fβ ∪ (grd(S) ∩ S(B)) ; 6 and (4.8)

8. F(Fβ) ⊆ b ∪ (grd(S) ∩ S(B)) ; 7, 1 β < α

9.
⋃

β · (b < α | F(Fβ)) ⊆ b ∪ (grd(S) ∩ S(B)) ; 8
10. Fα ⊆ b ∪ (grd(S) ∩ S(B)) ; 9 and (4.5)
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Using (4.34), the proof of sufficient conditions is as follows:

1. ∀n · (n ∈ N⇒ b ∩ v(n) ⊆ S(v ′(n))) ; premise
2. a 7→ b ∈ LEw ; premise

3. ∀α′ · (Fw(b)α′

⊆ b ∪ (grd(S) ∩ S(fix(Fw(b))))) ; (4.34)
4. ∃α · (fix(Fw(b)) = Fw(b)α) ; Theorem 1
5. fix(Fw(b)) ⊆ b ∪ (grd(S) ∩ S(fix(Fw(b)))) ; 4 and 3
6. fix(Fw(b)) ⊆ Fm(b)(fix(Fw(b))) ; 5 and (4.12)
7. a 7→ b ∈ Tw ; 2, equality (4.28)
8. a ⊆ fix(Fw(b)) ; 7 and def. Tw

9. fix(Fw(b)) ∩ b ⊆ grd(S) ; 5

10. ∀n · (n ∈ N⇒ b ∩ fix(Fw(b)) ∩ v(n) ⊆ grd(S) ∩ S(v ′(n))) ; 9 and 1
11. ∀n · (n ∈ N⇒ fix(Fw(b)) ∩ v(n) ⊆ b ∪ grd(S) ∩ S(v ′(n))) ; 10
12. ∀n · (n ∈ N⇒ fix(Fw(b)) ∩ v(n) ⊆ Fm(b)(v ′(n))) ; 11 and (4.12)
13. fix(Fw(b)) ⊆ fix(Fm(b)) ; 12, 6 and th. 3
14. a ⊆ fix(Fm(b)) ; 13 and 8
15. a 7→ b ∈ Tm ; 14 and def. Tm

16. a 7→ b ∈ LEm ; 15, equality (4.15)

✷
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Appendix D

Proofs of Chapter 5

D.1 Proofs Concerning Minimal Progress

D.1.1 Proof of the Equivalence between BMP and (5.4)

∀n · (n ∈W ⇒ w(n) ⊆ H(w ′(n)))
≡
∀(n, y) · (n ∈W ∧ y ∈ w(n)⇒ y ∈ H(w ′(n)))
≡ { def. w(n) }
∀(n, y) · (n ∈W ∧ y ∈ v ∧ V (y) = n⇒ y ∈ H(w ′(n)))
≡ { def. of set transformer and w′ }
∀(n, y) · (n ∈W ∧ y ∈ v ∧ V (y) = n⇒ [H] y ∈ v ∧ V (y) < n)
≡ { def. of v and y ∈ v ⇒ [H] y ∈ v }
∀(n, y) · (n ∈W ∧ I ∧ J ∧ V (y) = n⇒ [H]V (y) < n)

✷

D.1.2 Proof of the Equivalence between LMP and (5.5)

r−1[S(∅)] ⊆ (T [] H)(∅)
≡

∀y · (y ∈ r−1[S(∅)]⇒ y ∈ (T [] H)(∅))
≡ { def. set transformer }

∀y · (y ∈ r−1[S(∅)]⇒ y ∈ { z | z ∈ v ∧ [T [] H] z ∈ ∅ })
≡ { fact of sets }

∀y · (y ∈ r−1[S(∅)]⇒ y ∈ { z | z ∈ v ∧ ¬[T [] H] false })
≡ { def. of grd }

∀y · (y ∈ r−1[S(∅)]⇒ y ∈ v ∧ (grd(T ) ∨ grd(H)))

≡ { y ∈ r−1[S(∅)]⇒ y ∈ v }

∀y · (y ∈ r−1[S(∅)]⇒ grd(T ) ∨ grd(H))

≡ { x ∈ S(∅)⇒ x ∈ u ∧ grd(S) }
∀y · (∃x · (x ∈ u ∧ grd(S) ∧ y 7→ x ∈ r)⇒ grd(T ) ∨ grd(H))

≡ { def r and pred. calc. }
∀(y, x) · (I ∧ J ∧ grd(S)⇒ grd(T ) ∨ grd(H))

✷

163
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D.1.3 Proof of (5.9): p ′ ∩ q ′ ⊆ r−1[p ∩ q]

1. y ∈ p ′ ∩ q ′ ; premise
2. y ∈ p ′ ∧ ¬(y ∈ q ′) ; 1
3. y ∈ r−1[p] ∧ ¬(y ∈ r−1[q]) ; 2 and def p′ and q′

4. ∃x · (x ∈ p ∧ x 7→ y ∈ r−1) ∧ ¬(∃x · (x ∈ q ∧ x 7→ y ∈ r−1)) ; 3
5. ∃x · (x ∈ p ∧ x 7→ y ∈ r−1) ∧ ∀x · (x 7→ y ∈ r−1 ⇒ x 6∈ q) ; 4
6. ∃x · (x ∈ p ∧ x 6∈ q ∧ x 7→ y ∈ r−1) ; 5
7. y ∈ r−1[p ∩ q] ; 6

✷

D.2 Proofs Concerning Weak Fairness

D.2.1 Proof of the PSP Theorem

PSP Theorem under Weak Fairness:

p 7→ q ∈ LEw , a ∩ b ⊆ S(a ∪ b)

p ∩ a 7→ q ∩ a ∪ b ∈ LEw

The proof is given by structural induction in the definition of LEw . Let P (p, q, a, b) be a short
hand for the conclusion of the PSP theorem:

P (p, q, a, b) ≡ p ∩ a 7→ q ∩ a ∪ b ∈ LEw

Three proofs are required:

Base If p 7→ q ∈ Ew and a ∩ b ⊆ S(a ∪ b) holds then P (p, q, a, b) follows.

Transitivity If a ∩ b ⊆ S(a ∪ b), {p 7→ o, o 7→ q} ⊆ LEw , P (p, o, a, b) and P (o, q, a, b) holds
then P (p, q, a, b) follows.

Disjunction If a ∩ b ⊆ S(a ∪ b), l × {q} ⊆ LEw and ∀p · (p ∈ l ⇒ P (p, q, a, b)) holds then
P (

⋃
(l), q, a, b) follows.

Proof of the Base Case

From p 7→ q ∈ Ew and definition of Ew follows:

p ∩ q ⊆ S(p ∪ q) ∩G(q) ∩ grd(G)

for some helpful event G. Taking the conjunction of this derivation with the premise a ∩ b ⊆
S(a ∪ b) allows the derivation of:

p ∩ q ∩ a ∩ b ⊆ S(p ∩ a ∪ q ∩ a ∪ b) ∩G(q ∩ a ∪ b) ∩ grd(G)

From this inclusion and the definition of Ew follows: p ∩ a 7→ q ∩ a ∪ b ∈ Ew which allows the
proof of the goal P (p, q, a, b).
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Proof of the Transitivity Case

b 7→ q ∩ a ∪ b ∈ LEw holds trivially. From this derivation and the hypothesis P (o, q, a, b), by
application of the SDR rule of definition 4.4, follows:

o ∩ a ∪ b 7→ q ∩ a ∪ b ∈ LEw

Finally, from this derivation and the hypothesis P (p, o, a, b) follows the goal P (p, q, a, b) by
application of the STR rule of definition 4.4.

Proof of the Disjunction Case

The goal P (
⋃

(l), q, a, b) follows directly from the hypothesis ∀p · (p ∈ l ⇒ P (p, q, a, b)) by
application of the SDR rule of definition 4.4.

✷

D.2.2 Proof of (5.16): r−1[p ∩ q] ∩ grd(G ′) ⊆ (F ′ [] H)(grd(G ′))

r−1[p ∩ q] ∩ grd(G ′) ⊆ (F ′ [] H)(grd(G ′))
≡
∀y · (y ∈ r−1[p ∩ q] ∧ y ∈ grd(G ′)⇒ y ∈ (F ′ [] H)(grd(G ′)))

≡ { set transformers }
∀y · (y ∈ r−1[p ∩ q] ∧ y ∈ v ∧ grd(G ′)⇒ [F ′ [] H] (y ∈ v ∧ grd(G ′)))
≡ { y ∈ v ⇒ [F ′ [] H] y ∈ v }
∀y · (y ∈ r−1[p ∩ q] ∧ y ∈ v ∧ grd(G ′)⇒ [F ′ [] H] grd(G ′))

≡ { def. of p and q }
∀y · (y ∈ v ∧ ∃x · (I(x) ∧ J(x, y) ∧ P (x) ∧ ¬Q(x)) ∧ grd(G ′)⇒ [F ′ [] H] grd(G ′))

≡ { ∃x · (I ∧ J ∧ P ∧ ¬Q)⇒ y ∈ v and pred. calc. }
∀(x, y) · (I(x) ∧ J(x, y) ∧ P (x) ∧ ¬Q(x) ∧ grd(G ′)⇒ [F ′ [] H] grd(G ′))

D.2.3 Proof of (5.17): r−1[p ∩ q] ∩ grd(G ′) 7→ grd(G ′) ∈ LE ′
w

In order to prove the equivalence between (5.17) and LIP proof obligation, we need the
following theorem about leads to

(∃x · (P (x)) ∧ Q) ❀ R , x\Q , x\R

(P (x) ∧ Q) ❀ R
(D.1)

which is proved as follows:

1. (∃x · (P (x)) ∧ Q) ❀ R ; premise
2. (∃y · (P (y)) ∧ Q) ❀ R ; 1
3. P (x)⇒ ∃y · (P (y)) ; for any x

4. P (x) ∧ Q⇒ (∃y · (P (y)) ∧ Q) ; 3
5. (P (x) ∧ Q) ❀ (∃y · (P (y)) ∧ Q) ; 4 and BRL
6. (P (x) ∧ Q) ❀ R ; TRA 5 and 2
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Now, the equivalence between (5.17) and LIP proof obligation is as follows:

r−1[p ∩ q] ∩ grd(G ′) 7→ grd(G ′) ∈ LE ′
w

≡ { equivalence (4.7) instantiated to the refinement T }

y ∈ r−1[p ∩ q] ∩ grd(G ′) ❀ y ∈ grd(G ′)
≡ { y ∈ grd(G ′) ≡ y ∈ v ∧ grd(G ′) and y ∈ v is invariant }

y ∈ r−1[p ∩ q] ∧ ¬grd(G ′) ❀ grd(G ′)
≡ { def. r, p and q }
∃x · (P (x) ∧ ¬Q(x) ∧ I(x) ∧ J(y, x)) ∧ ¬grd(G ′) ❀ grd(G ′)

≡ { DSJ rule, x\grd(G′) and (D.1) }
P (x) ∧ ¬Q(x) ∧ I(x) ∧ J(y, x) ∧ ¬grd(G ′) ❀ grd(G ′)

✷
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Proof of Rules R1 and R2

The proof of rules R1 and R2 needs a generalization of both the state space of a refinement,
and the refinement relation. Refinements are numbered from 1 to n, where n ∈ N1. The state
space and the refinement relation in refinement i are denoted by vi and ri, defined as comes
next:

vi = { d ′ | ∃d · (d ∈ vi−1 ∧ Ji(d
′, d)) } (E.1)

ri = { d ′ 7→ d | d ∈ vi−1 ∧ Ji(d
′, d) } (E.2)

It is assumed that v0 is the state space of the abstract model, and it is equal to u, that is,
the set of states satisfying the invariant I. Moreover, in refinement i, the state variable is
denoted by yi and the gluing invariant is Ji. This invariant relates the state variable yi with
yi−1; y0 is equal to x, the state variable of the abstract model. Ri denotes the sequential
composition of refinement relations ri until r1:

Ri = (ri ; ri−1 ; . . . r1) (E.3)

E.1 Proof of Rule R1

From the premise or rule R1, Gi · P ≫ Q follows from the WF0 and WF1 proof obligations,
which are equivalent, in a set theoretical framework to:

p ∩ q ⊆ Si(p ∪ q) (E.4)

p ∩ q ⊆ Gi(q) ∩ grd(Gi) (E.5)

where Si is the choice of events in refinement i, and p and q the subsets of vi where P and Q

hold respectively. From (E.4) and (E.5), with a calculus similar to the proofs of the inclusion
5.21 in section 5.3, the following inclusions are derived:

p ′ ∩ q ′ ⊆ Si+1(p
′ ∪ q ′) (E.6)

p ′ ∩ q ′ ⊆ Gi+1(q
′) (E.7)

where Si+1 and Gi are the choice of events and the helpful event in refinement i+1 respectively,
and the sets p ′ = r−1

i+1
[p] and q ′ = r−1

i+1
[q]. Now, from the premise of rule R1, the ensuing

inclusion holds:

r−1

i+1
[p ∩ q] ⊆ grd(Gi+1) (E.8)

167
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Finally, from (E.6), (E.7) and (E.8) follows: Gi+1 · yi+1 ∈ p ′ ≫ yi+1 ∈ q ′, which guarantees
the preservation of the basic property in refinement i + 1.

E.2 Proof of Rule R2 (LIP)

Using (E.3), the set theoretical counterpart of the LIP property in refinement i is:

yi ∈ R
−1

i [p ∩ q] ∩Gi(∅) ❀ yi ∈ Gi(∅) (E.9)

where Gi denotes the refinement of the helpful event G. According to the premise of rule R2,
(E.9) follows from a set of basic liveness properties β, and any b in β is preserved in refinement
i+1. Therefore, the property (E.9), considered as a general liveness property, is preserved in
refinement i + 1, which allows the derivation of the following property in refinement i + 1:

yi+1 ∈ r−1

i+1
[R−1

i [p ∩ q] ∩Gi(∅)] ❀ yi+1 ∈ r−1

i+1
[Gi(∅)] (E.10)

Now, using the following inclusions:

r−1

i+1
[Gi(∅)] ⊆ Gi+1(∅) (E.11)

R−1

i+1
[p ∩ q] ∩Gi+1(∅) ⊆ r−1

i+1
[R−1

i [p ∩ q] ∩Gi(∅)] (E.12)

along with the rules BRL and TRA, the following property is proved:

yi+1 ∈ R
−1

i+1
[p ∩ q] ∩Gi+1(∅) ❀ yi+1 ∈ Gi+1(∅) (E.13)

which is equivalent to LIP proof obligation in refinement i + 1:

yi+1 ∈ R
−1

i+1
[p ∩ q] ∧ ¬grd(Gi+1) ❀ grd(Gi+1) (E.14)

Inclusion (E.11) is the set theoretical counterpart of the premise I ∧ Ji ∧ Ji+1 ∧
grd(Gi)⇒ grd(Gi+1), and (E.12) follows from (E.11).

E.3 Proof of Rule R2 (SAP)

The calculations in this proof are similar to those which are presented in section 5.3. The set
theoretical counterpart of SAP proof obligation in refinement i is:

Ri[p ∩ q] ∩Gi(∅) ⊆ e(Gi(∅)) (E.15)

Let Ei+1 be the set of events in refinement i+1, and Gi+1 the refinement of Gi. Ei+1 is made
up of two disjoint subsets of events: E′

i+1, containing the refined events, and Hi+1, which
includes the new events in refinement i + 1. Each refined event e′ of E′

i+1, associated with an
event e of Ei, and each new event h of Hi+1, satisfy the refinement relations:

e(ri+1[s]) ⊆ ri+1[e ′(s)] (E.16)

skip(ri+1[s]) ⊆ ri+1[h(s)] (E.17)
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where s is universally quantified over P(vi+1). From refinement relations follow:

r−1

i+1
[Gi(∅)] ⊆ Gi+1(∅) (E.18)

Gi+1(∅) ⊆ r−1

i+1
[Gi(∅)] (E.19)

∀h · (h ∈ Hi+1 ⇒ r−1

i+1
[Gi(∅)] ⊆ h(r−1

i+1
[Gi(∅)])) (E.20)

and from (E.15) and (E.16) follows:

∀e ′ · (e ′ ∈ E ′
i+1 − {Gi+1} ⇒ (r−1

i+1
[Ri[p ∩ q] ∩Gi(∅)] ⊆ e ′(r−1

i+1
[Gi(∅)]))) (E.21)

Now, from (E.18), follows:

R−1

i+1
[p ∩ q] ∩Gi+1(∅) ⊆ r−1

i+1
[R−1

i [p ∩ q] ∩Gi(∅)] (E.22)

From (E.11), (E.21) and (E.22), follows that concrete events in refinement i + 1 preserve the
guard of Gi+1:

∀e ′ · (e ′ ∈ E ′
i+1 − {Gi+1} ⇒ R

−1

i+1
[p ∩ q] ∩Gi+1(∅) ⊆ e ′(Gi+1(∅))) (E.23)

New events in refinement i + 1 do not modify the state variable in refinement i, therefore,
from (E.11), (E.20) and (E.22) follows:

∀h · (h ∈ Hi+1 ⇒ R
−1

i+1
[p ∩ q] ∩Gi+1(∅) ⊆ h(Gi+1(∅))) (E.24)

Finally, from (E.23) and (E.24), follows the following property:

∀e ′ · (e ′ ∈ Ei+1 − {Gi+1} ⇒ R
−1

i+1
[p ∩ q] ∩Gi+1(∅) ⊆ e ′(Gi+1(∅)))

which is equivalent to SAP proof obligation in refinement i + 1.
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Appendix F

Verifying Semantic Proofs

In this appendix, we present some abstract machines used to verify some proofs in the set
theoretical framework of Chapter 4. The general idea in these abstract machines is to define
sets and set transformers as constants then, we define different properties (axioms) of these
constants and finally, we state theorems about these constants to be proved.

We present five machines. The first machine, dovetail, defines the dovetail operator and
it is used to prove the alternative definition of its termination set and its guard. The second
machine, fairloop, defines the fair loop used in the section 4.2.4 and proves the recursive
definition of its liberal set transformer; this proof gives as outcome the definition (4.18).
Machine propfair defines the greatest fixpoint as a generalized union of sets and it is mainly
used to prove the monotonicity of the fair loop. Machine guardfair is used to prove the guard
of the fair loop. Finally, Machine loopterm is used to prove the total correctness of the fair
loop (C.2.8).

Machine dovetail

The dovetail operator is denoted by the function Dtl . Therefore, if S and T are set trans-
formers, the set transformer S ▽ T , is denoted as Dtl(S, T ).

MACHINE

dovetail

SETS

uu

CONSTANTS

St ,Dtl ,Li , cpl

PROPERTIES

/* The set of set transformers */
St = {SS |SS ∈ P(uu)→ P(uu) } ∧

/* Type of Dovetail */
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Dtl ∈ St × St → St ∧

/* Type of Liberal set transformer */
Li ∈ St → St ∧

/* Liberal set transformer for dovetail */
∀(SS ,TT ) · (SS ∈ St ∧ TT ∈ St ⇒ ∀rr · (rr ∈ P(uu)⇒

Li(Dtl(SS ,TT ))(rr) = Li(SS )(rr) ∩ Li(TT )(rr))) ∧

/* Complement of any set */
cpl = λrr · (rr ∈ P(uu) | uu − rr) ∧

/* Termination set for dovetail */
∀(SS ,TT ) · (SS ∈ St ∧ TT ∈ St ⇒ Dtl(SS ,TT )(uu) =

((SS (uu) ∪ TT (uu)) ∩ (cpl(SS (∅)) ∪ TT (uu)) ∩ (cpl(TT (∅)) ∪ SS (uu)))) ∧

/* Set transformer for dovetail */
∀(SS ,TT ) · (SS ∈ St ∧ TT ∈ St ⇒ ∀rr · (rr ∈ P(uu)⇒

Dtl(SS ,TT )(rr) = Li(Dtl(SS ,TT ))(rr) ∩Dtl(SS ,TT )(uu))) ∧

/* Pairing condition */
∀(SS , rr) · (SS ∈ St ∧ rr ∈ P(uu)⇒ SS (rr) = Li(SS )(rr) ∩ SS (uu))

ASSERTIONS

/* Alternative definition of the termination set */
∀(SS ,TT ) · (SS ∈ St ∧ TT ∈ St ⇒ Dtl(SS ,TT )(uu) =

((SS (uu) ∩ TT (uu)) ∪ (cpl(SS (∅)) ∩ SS (uu)) ∪ (cpl(TT (∅)) ∩ TT (uu)))) ;

/* Guard */
∀(SS ,TT ) · (SS ∈ St ∧ TT ∈ St ⇒ cpl(Dtl(SS ,TT )(∅)) = cpl(SS (∅)) ∪ cpl(TT (∅)))

END

Machine fairloop

In this machine the fair loop is defined. Sequential composition of set transformers S ; T is
noted as Seq(S, T ). A guarded set transformer p =⇒ S is noted as Grd(p, S).

In section 4.2.4, the fair loop is noted Y (q)(G). In this machine it is denoted as XX (oo).
The set transformer S in the definition of the fair loop (4.16) is denoted by FF in this machine.
The non recursive branch grd(G) | G in Y (q)(G) is simply denoted by GG .

MACHINE

fairloop

SEES

dovetail
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CONSTANTS

Seq ,Grd ,Mn,FF ,GG ,XX

PROPERTIES

/* Sequencing set transformer */
Seq ∈ St × St → St ∧

/* Guarding set transformer */
Grd ∈ P(uu)× St → St ∧

/* Set Monotonic Set Transformers */
Mn = {SS |SS ∈ St ∧ ∀(ss, tt) · (

ss ∈ P(uu) ∧ tt ∈ P(uu) ∧ ss ⊆ tt ⇒ SS (ss) ⊆ SS (tt)) } ∧

/* Two monotonic set transformers */
FF ∈ Mn ∧
GG ∈ Mn ∧
FF (uu) = uu ∧
GG(uu) = uu ∧

/* The fair loop */
XX ∈ P(uu)→ St ∧
XX = λoo · (oo ∈ P(uu) | λrr · (rr ∈ P(uu) |

Grd(cpl(oo),Dtl(Seq(FF ,XX (oo)),GG))(rr))) ∧

/* Liberal set transformer of sequencing */
∀(SS ,TT , rr) · (SS ∈ St ∧ TT ∈ St ∧ rr ∈ P(uu)⇒

Li(Seq(SS ,TT ))(rr) = Li(SS )(Li(TT )(rr))) ∧

/* Liberal set transformer of guarding */
∀(oo,SS , rr) · (oo ∈ P(uu) ∧ SS ∈ St ∧ rr ∈ P(uu)⇒

Li(Grd(oo,SS ))(rr) = cpl(oo) ∪ Li(SS )(rr)) ∧

/* Liberal set transformer of lambda */
∀(SS, rr) · (SS ∈ St ∧ rr ∈ P(uu)⇒ Li(λss · (ss ∈ P(uu) | SS (ss)))(rr) = Li(SS )(rr))

ASSERTIONS

/* Recursive definition */
∀(oo, rr) · (oo ∈ P(uu) ∧ rr ∈ P(uu)⇒

Li(XX (oo))(rr) = oo ∪ (Li(FF )(Li(XX (oo))(rr)) ∩ Li(GG)(rr)))

END
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Machine propfair

MACHINE

propfair

SEES

dovetail , fairloop

CONSTANTS

FIX , ff

PROPERTIES

/* Definition of greatest fixpoint */
FIX = λSS · (SS ∈ Mn | union({ xx | xx ∈ P(uu) ∧ xx ⊆ SS (xx ) })) ∧

/* Definition of Liberal Set Transformer for recursive functions */
∀(SS ,TT , rr) · (SS ∈ St ∧ TT ∈ Mn ∧ rr ∈ P(uu) ∧ Li(SS )(rr) = TT (Li(SS )(rr))⇒

Li(SS )(rr) = FIX(TT )) ∧

/* Property of Liberal Set Transformers */
∀(SS , rr) · (SS ∈ Mn ∧ rr ∈ P(uu) ∧ SS (uu) = uu ⇒ Li(SS )(rr) = SS (rr)) ∧

/* Set Transformer of the Fair Loop XX(oo) */
∀(rr , oo) · (rr ∈ P(uu) ∧ oo ∈ P(uu)⇒ XX (oo)(rr) = Li(XX (oo))(rr) ∩XX (oo)(uu)) ∧

/* Auxiliary Function */
ff = λss · (ss ∈ P(uu) | λtt · (tt ∈ P(uu) | λrr · (rr ∈ P(uu) | ss ∪ (GG(tt) ∩ FF (rr)))))

ASSERTIONS

/* For any rr in P(uu), ff (oo)(rr) is monotone */
∀(rr , oo) · (rr ∈ P(uu) ∧ oo ∈ P(uu)⇒ ff (oo)(rr) ∈ Mn) ;

/* The Liberal Set Transformer of XX (oo) */
∀(rr , oo) · (rr ∈ P(uu) ∧ oo ∈ P(uu)⇒ Li(XX (oo))(rr) = FIX(ff (oo)(rr))) ;

/* The Liberal Set Transformer of XX(oo) is monotone */
∀oo · (oo ∈ P(uu)⇒ Li(XX (oo)) ∈ Mn) ;

/* The Set Transformer of XX(oo) is monotone */
∀oo · (oo ∈ P(uu)⇒ XX (oo) ∈ Mn)

END
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Machine guardfair

In this machine we prove that the guard of the fair loop XX (oo) is the least fixpoint of the
function ff (oo)(∅). In Section 4.2.4, we prove that the guard of the fair loop Y (q)(G) is
equal to q. We remark that changing the set transformer GG , in the definition of XX (oo),
by the preconditioned set transformer grd(GG) | GG , as it is done in Y (q)(G), we obtain
that the guard of XX (oo) is equal to the complement of oo. This result follows by remarking
that XX (oo)(∅) = ff (oo)(∅)(fix(ff (oo)(∅))) and by replacing GG by grd(GG) | GG in the
definition of ff .

MACHINE

guardfair

SEES

dovetail , fairloop, propfair

CONSTANTS

fix

PROPERTIES

/* Type of least fixpoint */
fix ∈ Mn → P(uu) ∧

/* Definition of Set Transformer for recursive functions */
∀(SS ,TT , rr) · (SS ∈ St ∧ TT ∈ Mn ∧ rr ∈ P(uu) ∧ SS (rr) = TT (SS (rr))⇒ SS (rr) = fix(TT )) ∧

/* Set transformer of guarding */
∀(oo,SS , rr) · (oo ∈ P(uu) ∧ SS ∈ St ∧ rr ∈ P(uu)⇒ Grd(oo,SS )(rr) = oo ∪ SS (rr)) ∧

/* Set transformer of sequencing */
∀(SS ,TT , rr) · (SS ∈ St ∧ TT ∈ St ∧ rr ∈ P(uu)⇒ Seq(SS ,TT )(rr) = SS (TT (rr)))

ASSERTIONS

∀oo · (oo ∈ P(uu)⇒ XX (oo)(∅) = fix(ff (oo)(∅)))

END
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The Machine loopterm

MACHINE

loopterm

SEES

dovetail , fairloop, propfair , guardfair

CONSTANTS

pp, oo

PROPERTIES

pp ⊆ uu ∧
oo ⊆ uu ∧

/* WF0 */
pp ∩ cpl(oo) ⊆ FF (pp ∪ oo) ∧

/* WF1 */
pp ∩ cpl(oo) ⊆ cpl(GG(∅)) ∧
pp ∩ cpl(oo) ⊆ GG(oo)

ASSERTIONS

/* termination of the fair loop */
oo ∪ cpl(GG(∅)) ⊆ XX (oo)(uu) ;

/* total correctness of the fair loop */
pp ∪ oo ⊆ Li(XX (oo))(oo) ;
pp ∪ oo ⊆ XX (oo)(uu)

END


