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Chapter 1

Introduction

In this chapter, we give a general introduction of the thesis. First, we provide a

background about the call center industry. Second, we highlight some issues related

to the design and management of call centers. Third, we describe the work of the

thesis and present its main contributions. Finally, we present the structure of the

manuscript.

1



2 Introduction

1.1 Background

Call centers have emerged as the primary vehicle for �rms to interact with consumers, transform-

ing consumer service jobs once characterized by variety and personal relationships into routinized

and high speed operations. Call centers are used to provide services in many areas and industries:

banks, insurance companies, emergency centers, information centers, help-desks, tele-marketing

and more. Technological development has allowed remote service delivery using various channels

of telecommunication. The de�nition of a call center is continuously changing, but the core

fundamentals of a customer making a call (via a phone, email, web site, fax or Interactive Voice

Response) to a center (collection of resources) will remain constant. Call center, contact cen-

ter or customer interaction center operate on identical principals of meeting customer needs in

real-time or near real-time.

In 1972, Continental Airlines asked the Rockwell Collins division of Rockwell International

(now Rockwell Automation) to develop the �rst automated call distributor, thus launching the

contact center industry. Initially, little thought was given to the use of contact centers to acquire

and retain business. The change came in the 1990s, with the advent of software-based routing

and Customer Relationship Management (CRM) applications, which increased the marketing

possibilities of contact centers. Today, all Fortune 500 companies have at least one contact

center. They employ an average of 4,500 agents across their sites. More than $300 billion is

spent annually on contact centers around the world, see McKinsey Quarterly [1]. In North

America, 2.9 million agents are employed at 55,000 facilities. The number of agents in the rest

of the world is predicted to increase by 10% a year from its current position of 3 million.

The current success of call centers is due to the technological advances in information and

communications systems, see Pinedo et al. [110]. The most important call centers equipments

are the Interactive Voice Response (IVR), the Automated Call Distribution (ACD), and the

Computer Telephone Integration (CTI).

The IVR is a menu system that a customer accesses when connecting to a call center. The

IVR routes a call to the most appropriate person or desk. The structure of the menu system can

be a simple list of two or three items, or a more elaborate decision tree. This tool enables the

system and the operator to provide the service in minimum time. The technology is relatively

inexpensive when compared to the time wasted in the transfers of customers via live operators.

Large banks spend between $1.75 to $2.00 for an operator handled call center transaction and

between $0.25 to $0.75 for an IVR transaction, see NACCS [2]. The Automated Call Distribution

(ACD) is a service provided by telephone companies that makes physically dispersed operators

appear to a caller as residing at one location. The phone company handles the necessary switching
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in order to make this happen. Finally, the Computer Telephone Integration (CTI) refers to the

combination of computers and telephone systems. Most of modern call centers today are using

some form of CTI technology. The CTI allows for example for the Intelligent Call Routing.

The Intelligent Call Routing is an application that reads the phone number of an incoming call,

retrieves information concerning the caller from a database, and presents it to the operator when

he takes the call.

The large-scale emergence of call centers has been also enabled by the development of con-

sulting services and softwares such as routing devices and databases. Naturally, the growth of the

call center industry has created a fertile source of management issues. From the cost perspective,

the capacity management is the most critical issue. In call centers, human resource costs account

between 60% to 70% of operating expenses. This feature explains the huge body of operations

management papers dealing with capacity management. The �nancial importance makes the

running of call centers a challenge. The managers have to reduce the labor cost, but not to the

detriment of the customers. We should not forget that call centers were born for a basic need: to

answer customers in an e�cient way so as they do not switch to the concurrence. An extra layer

of complexity comes from the human resource management. Agents are indeed human beings.

Hence, they need to feel strongly supported by the company so that undesirable and costly issues

such as turnover are as low as possible. In most call centers, the lack of motivation and the bad

conditions of work makes workforce turnover recurrent.

The goal of the present thesis is to contribute to the operations management research of

call centers. We aim to enhance our understanding of such complex systems, so as we gain

useful guidelines for the practitioners. This thesis is in part the result of a collaboration with

Bouygues Telecom. Bouygues Telecom is a mobile telephony service provider based in France,

operating one of the largest call center operations in France, and answering around 60,000 calls

daily at 6 internal call centers with a total number of 2500 service representatives.

1.2 Context

The continued growth of both importance and complexity of modern call centers has been came

along an extensive and growing literature. Numerous related academic surveys focusing on var-

ious disciplines were published. The main disciplines related to call centers are Mathematics

and Statistics, Operations Research, Industrial Engineering, Information Technology, Human

Resource Management, as well as Psychology and Sociology. This thesis is pertaining to opera-

tional issues and mathematical models. We refer the reader to Pinedo et al. [110] for the basics

of call centers management. Important surveys are the paper of Koole and Mandelbaum [85] and
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its extended version Gans et al. [40] where the authors survey in particular the literature dealing

with queueing models that support the operations management of call centers. In addition, we

recommend the overview of Whitt [138], and that of Mandelbaum [95] where the author provides

a large number of research papers devoted to call centers issues.

Decisions Levels

We distinguish three main issues dealing with the operations management in call centers.

The �rst issue involves strategic or long-term decisions for the design of the facility. The second

issue is related to medium-term aggregate planning of services. The third issue deals, in turn,

with short-term decisions made on a daily or weekly basis.

The strategic decisions involve the allocation of resources (equipments) as well as the layout

and location of the facilities. Included in this category of decisions are those speci�cating how

to partition customers into classes and how the di�erent communication channels are to be

used for serving the customers: for example, which types of customers are to be answered

by automates, internal agents, external agents (outsourcing), etc. The medium-term decisions

involve the development of a semi-annual or annual manpower plan. The plan will have as inputs

the anticipated demand for di�erent skill sets over the planning horizon, the costs of training,

and the time to train. Forecasts are usually made monthly and mathematical models are used to

determine the appropriate sta�ng levels on an aggregate basis. Thereafter, we address the shift

scheduling problem of servers. The short-term decisions deal with re�nements and adjustments

that are executed within a short time period and trigged by external factors. One may clearly

see that all decision levels are correlated and should be addressed simultaneously. Unfortunately,

such an analysis is too complex. The research projects have often investigated them separately.

Call Centers Modeling

Due to the uncertainty governing the call center environment (customers and agents behav-

iors), the literature has standardly addressed its issues using stochastic models, and in partic-

ular queueing models. The most existing work deals with simple queueing models. Although,

researchers have started recently investigating important phenomena such as abandonments, re-

trials and non-Markovian processing times, several questions are still open and much remains to

be done. In the natural way, some research projects rely on simulation to analyze complex sto-

chastic models of call centers, see Wallace and Whitt [128]. Other papers resort to heavy-tra�c

approximations. By heavy-tra�c, we mean that the system approaches saturation, so that the

queues are non-empty most of the time. Thereafter, di�usion approximations can be used to

analyze the system behavior. The asymptotic analysis is motivated by large call centers where

the number of agents and the arrival rate are very large. Guided by the asymptotic behavior,
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several useful insights for practical management could be derived. We refer the reader to the

original work of Hal�n and Whitt [52] for a background on the subject. For more recent works

focusing on call centers, interesting papers are those of Garnett et al. [44], Armony and Maglaras

[12] and [13], Borst et al. [28], and references therein.

Call centers can be broadly classi�ed into two contexts: multi-skill call centers and full-

�exible call centers. A multi-skill call center handles several types of calls, and agents may have

di�erent skills. The typical example, see Gans et al. [40], is an international call center where

incoming calls are in di�erent languages. We distinguish some important issues dealing with

multi-skill call centers: are all agents cross-trained with all skills or are the agents only trained

for a subset of skills? In the later case, what are the subsets of skills that will be considered and

how many agents will have each subset of skills? Another central issue is the skill-based-routing

(SBR) algorithms: how to do the routing of calls to agents in an e�ective manner? Related

studies include those by Garnett and Mandelbaum [43], Ak³in and Karaesmen [8], Ak³in et al.

[9], Hopp and van Oyen [57], and references therein. At the same time, addressing such problems

is complex and of great interest for practitioners. In modern call centers, it is indeed common

to have multiple types of calls and multiple types of agents. These topics are out of the scope

of this thesis. The second context is call centers where all agents are able to handle all types of

calls, referred to as full-�exible call centers.

Our concern in this thesis is full-�exible call centers. Therefore assistance to customers can

be provided by any agent. This would be a plausible assumption for many real cases, especially

for unilingual call centers where the complete �exibility is not as di�cult as in multilingual

call centers. Furthermore, we assume for the models we consider in this thesis that all agents

are totally identical statistically. In other words, they can answer all questions coming from

customers with the same e�ciency, both quantitatively and qualitatively, even in case of di�erent

types of customers. There are two reasons for that. The �rst reason is related to the nature

of the call centers we are considering here, and which is the case for many other call centers

applications. The di�erence between customer types is only qualitative, i.e., it is not related to

the statistical behavior of customers but to their importance for the company. Let us give an

illustration of a manager who partitions customers into two di�erent classes: If the company

owns every month from one customer an amount of money crossing a given threshold, then that

customer is �VIP", otherwise he is considered to be less important. In concrete terms, we assume

for our models that the queries asked by customers do not di�er from one type of customers to

another. Therefore, it would be credible to assume common requirements for service. The second

reason is due to the complexity of the analysis when assuming di�erent behaviors in the statistical
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sense. Our main objective in this thesis is to investigate simple but at the same time interesting

models that allow us to better understand the system behavior and gain practical guidelines.

Call centers are characterized to handle either inbound calls, or outbound calls, or a mix of

both types. Inbound call centers handle incoming calls that are initiated by customers, as help

desk and reservation services. However, outbound call centers handle outgoing calls that are

initiated by agents. In our models, we deal with inbound call centers.

Motivation

In the following, we highlight some motivations with regard to the models under consid-

eration. Until 2004, the organization of the Bouygues Telecom's call center was a common

pooled organization where any call could be addressed by any agent. In 2004, the managers of

Bouygues Telecom decided to move to a new organization known as customer portfolio manage-

ment. Since Human Resources (HR) represent a large part of the cost of operating a call center,

managing e�ciently the HR is a key issue. In particular, we deal with the issue of partitioning

the HR of a large call center into a set of independently managed teams. The advantage of

this new organization pertains to the better management of the team organization which leads

to a higher motivation of the customer representatives and a reduction in the turnover of the

workforce.

In the most of our models, we incorporate an important feature which is the reneging (aban-

donment) phenomenon. The time before reneging (the patience) is de�ned as the maximal

amount of time that a customer is willing to wait for service. If service has not begun within

that time, the customer abandons (leaves the system.) Incorporating reneging in theoretical

models is of value. In reality, it is natural that a waiting customer will wait for only a limited

time, and will hang up within that time. Ignoring reneging leads to oversta�ng and pessimistic

estimation of queueing delays. Garnett et al. [44] show using numerical examples that models

with and without abandonment tend to give very di�erent performance measures even if the

abandonment rate is small. Models including reneging are therefore more close to reality, and

necessary to obtain more accurate managerial insights. In our models, we assume that times

before reneging are identically distributed, independently from their position in queue. The mo-

tivation of this assumption was reported in Gans et al. [40]. In call centers, the tele-queueing

experience is, indeed, fundamentally di�erent from that of a physical queue, in the sense that

customers do not see others waiting and need not be aware of their �progress" (position in the

queue.)

In this thesis, we also discuss various scheduling policies subject to satisfying some given

service levels. Randolph [113] classi�es scheduling policies into those using dynamic scheduling
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rules and those using static schedule rules. A dynamic schedule is a discipline that is continuously

updated as customers arrive and are processed. However, a static schedule is independent of the

state of the system, it is beforehand de�ned and never altered. Each one of the above classes of

policies can be further classi�ed into two major types: agent scheduling and customer routing.

As de�ned in Garnett and Mandelbaum [43], agent scheduling is described by a control decision

taken whenever an agent turns idle and there are queued customers: which customer, if any,

should be routed to this agent. Whereas, a scheduling policy based on a customer routing rule,

is de�ned by a control decision taken whenever a customer arrives: which idle agent, if any,

should serve this customer, if not, to which queue should the customer of interest be routed.

In our analysis, we consider dynamic scheduling policies based on the second type of control

decision, i.e., dynamic assignment rules of new arrivals to queues. In addition, our policies are

based on priority schemes. In general, the provision of di�erentiated service levels relies on the

use of priority queues. Schrage and Miller [117] have shown that scheduling policies similar to

multiclass priority queues allow to achieve high performances, often nearly as good as those

under optimal policies. Also, the priority schemes are easy to implement, which explain their

prevalence in practice.

Recently, call centers have started experimenting by informing arriving customers about

anticipated delays. The main reason of the experience is to alleviate congestion and reduce cus-

tomer dissatisfaction with waiting. Information about anticipated delays is especially important

in service systems with invisible queues (tele-queue) such as call centers. In such systems, the

uncertainty involved in waiting is higher than that in systems with visible queues. Upon arrival

and during their waiting, customers have no means to estimate queue lengths or progress rate.

So, the feelings of frustration and anxiety increase over their sojourn in queue. In addition, we

point out a particular vicious circle. When a new arrival customer perceives that his anticipated

delay is too long, he may balk upon arrival without joining the system. This feature would con-

siderably reduce customers reneging in queue, which allows to make the system more stable in

the sense that the variability of queueing delays is reduced. The latter would in turn improve the

quality of delays information we give to customers, which reduces even more customers reneging,

and so on.

As mentioned above, stochastic processes and queueing models are helpful for the quantitative

analysis of call centers. Birth-death processes and in general Markov chains are a rich and

important class in modeling numerous phenomena in queueing systems. For instance, they allow

to account for customers balking and reneging in call centers. The analytical studies in the

literature were intended to obtain useful information for the decision making process, basically
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related to the design, the control, and the measurement of e�ectiveness of the systems. With an

equal interest, we underline the usefulness of monotonicity properties of performance measures.

They are important for understanding and solving optimization problems of queueing systems.

Optimization models are being used increasingly in the design of a variety of systems where

queueing phenomena arise. Examples include �exible manufacturing systems, as well as service

systems and telecommunications networks. For such problems, it is important to know the

convexity properties of the performance measures with respect to the design variables. In call

centers, the design variables on which the service provider could act are essentially the sta�ng

level, the arrival rate (outsourcing) and the bu�er size. In some cases, it could be possible for

him to act on processing times (for example by increasing or decreasing the training quality of

the agents.)

1.3 Description and Main Contributions

The current thesis can be divided into two parts. The �rst part directly addresses issues of the

operations management in call centers. The second part is rather focusing on stochastic models

while having useful applications for the quantitative analysis of call centers.

The �rst part
In the �rst part of the thesis, we focus on two di�erent decision levels: long-term and op-

erational decisions. The long-term issue is addressed in the second chapter. In the third and

fourth chapters, we focus on two di�erent operational decisions given a call center structure and

sta�ng level.

In the second chapter, we study a call center design problem where a transition occurs

from a completely pooled structure to a dedicated team-based organization. As one would not

expect, we show using simple queueing models that the new organization may be more e�cient

by outweighing the economies of scale associated to the original organization. The e�ciency

is in terms of both speed and quality of the answer we provide to customers. We incorporate

in our analysis the most attractive feature of call centers, which is the human element. We

show how a better human resource management may lead to various bene�ts up to contradict a

classical result of queueing theory (in favor of pooled systems). In addition, we slightly modify

the new organization by pro�ting from a �ow of customers that can be addressed by any team

of agents (out-portfolio �ow.) We show how this new element makes the organization even more

e�cient. In practice, several other call center cases may be characterized by a kind of an out-

portfolio �ow. For example in a bank call center, an out-portfolio �ow may be seen as that of the

customers who ask general questions about their bank account or to order some simple service
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operations, etc. The application of the team-based organization had very signi�cant e�ects at

the Bouygues Telecom's call center. The quality of answers has improved thereby reducing call

backs by 25%. The proportion of disconnected calls (because of a full queue) was divided by

2 (in our work we assumed an in�nite queue for simplicity.) Finally, no supplementary agents

were hired in spite of the increase of the total number of customers by 15% (equivalent labor

cost savings of about 5 million euros per year.)

In the third chapter, we consider a two-class call center model. We discuss various scheduling

policies subject to satisfying di�erentiated service levels. The service levels are related to the

probability of being lost and the variance of the waiting time in queue. The nature of the

constraints we consider are characterized to be of value in practice, however they are not too

much addressed in the literature. We aim even in case of unfavorable situations that may occur,

to reach a �xed balance between customer types service levels, independently of the available

service capacity. Worrying about the fairness with regard to customers, we also focus on achieving

low values of the variance of waiting times. The interesting side of the policies we suggest comes

from their simplicity, they are predictable, easy to implement, and do not require information

about the workload process. Several studies as in Jongbloed and Koole [63] and Avramidis et

al. [18] have shown that the workload process is hard to predict in call centers. Thereby, such

policies would be of great value. Our analysis yields to quantitative insights, as well as useful

principles for the control problem. To support our analysis, we derived various structural results

that investigate the relationship of scheduling policies with the achieved performance measures.

To the best of our knowledge, the results are not given beforehand.

In the fourth chapter, we consider call centers models not too far from those of the third

chapter, whereas we tackle a di�erent issue of operations management. A central outcome of

the fourth chapter deals with the critical issue of the impact of delays information on customers

behavior. This is at the same time interesting and di�cult due to the attractive human element

governing the call center environment. Starting from each model (single and multiclass), we

detail and justify the quantitative building of the new model with delays information. In our

models, customers have the opportunity to balk in response to their anticipated delay. We

model that e�ect for the simple single class call center. We then extend the model of Whitt

[135] by letting already informed customers renege even after having chosen to join the queue.

We propose a method for approximating the new reneging experience by pertaining it to the

quality of the delay information. We describe how balking in the second model may reduce

customers reneging. In practice, this feature would tip the scales in favor of the second model,

because reneging customers are the costliest. For example, a customer who balks has a higher
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probability to call back than that of a customer who reneges. A reneging customer leaves the

system with frustration and loosing trust in the service provider. However, a balking customer

leaves the system based on the information we communicate to him. This information would

avoid to loose business because it is perceived by balking customers as an invitation to call back

when the system will be able to serve them within a reasonable delay. As extension, we turn

to analyze a quite complex multiclass priority system where the anticipated delay for a given

type of a customer may be a�ected by future arrivals of other types. To our knowledge, the

computation of the state-dependent virtual delays for the low priority customers is new. We use

a two-dimensional Markov chain in order to derive them.

The second part

In the second part of the thesis, we focus on the analysis of stochastic processes and queueing

theory. The analysis does not address in a direct manner a given issue of call center operations.

However, it is an upstream stage which provides useful applications for the quantitative analysis

of call centers.

The topic addressed in the �fth chapter is of interest in the �elds of birth-death processes and

Markovian queues. We give closed-form expressions for the moments of the so-called upcrossing

and downcrossing times as well as conditional versions of these. Our approach is di�erent from

that in some classical works in the sense that we are not considering the correspondence between

continuous birth-death processes and continued fractions. Based on the Chapman-Kolmogorov

equations and via Laplace transforms, several new expressions are derived. Also, we discuss

various straightforward applications for the quantitative analysis of Markovian queues. The

results are in particular of value when characterizing state-dependent queueing delays in call

centers.

In the sixth chapter, we derive some monotonicity properties for the probability of being

served in an M/M/s/K + M queue. Such results are helpful for the optimization problem

of queueing systems. We use both sample path as well as analytical approaches to derive our

results. The model we consider allows for reneging, which makes it to be relevant for call centers

applications. As we already mentioned, a major drawback in many call center models is assuming

customers to be in�nitely patient. In this chapter, we analyze the simplest abandonment model,

assuming that service times and times before reneging are exponentially distributed. Although

such assumptions may be violated (see Zohar et al. [146]) and an appropriate model should be

the M/GI/s + GI queue, our model is still of interest in practice as mentioned by Whitt [139],

and Pierson and Whitt [109]. The authors have shown, using various simulation experiments,

that the M/M/s + M model provides a good approximation of the M/GI/s + GI model.
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1.4 Structure of the Manuscript

In this section, we present the structure of the manuscript. We brie�y describe the di�erent

chapters separately and give their corresponding published or working papers.

In Chapter 2, we investigate the bene�ts of migrating from a call center where all agents

are pooled and customers are treated indi�erently by any agent, towards a call center where

customers are grouped into clusters with dedicated teams of agents. This Chapter is based on

Jouini, Dallery and Nait-Abdallah [69].

In Chapter 3, we consider a priority call center model with two impatient classes of customers,

VIP and less important ones. We focus on developing scheduling policies that assign customers

upon arrival to parallel queues, high and low priority queues. The performance measures of

interest are the probability of being lost (due to reneging) and the variance of the waiting time

for the customers who are served. An extended version of this chapter is the working paper

Jouini, Pot, Dallery and Koole [70].

In Chapter 4, we study the e�ect of informing customers about their anticipated delays. We

propose a method for modeling the customer reaction with regard to delays information. Then,

we conduct comparison analysis between performance measures of both models with and without

information. This chapter is based on the working paper Jouini, Dallery and Ak³in [68].

In Chapter 5, we consider ordinary and conditional �rst passage times between pairs of

states in general birth-death processes. By adopting classical methodologies, we derive closed-

form expressions for the moment of the de�ned random variables. This chapter is based on the

paper Jouini and Dallery [65] (submitted for publication).

In Chapter 6, we consider a Markovian multiserver queue with a �nite waiting line in which

customers may renege. We focus on a performance measure similar to that considered in Chapter

3, namely the probability for a new customer to enter service. We investigate monotonicity

properties of �rst and second order of this performance with respect to the bu�er size. The

paper version of this chapter is Jouini and Dallery [66].

In Chapter 7, we close the thesis by giving general concluding remarks and highlighting

directions for future research.
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Chapter 2

Analysis of the Impact of Team-Based
Organizations in Call Centers
Management

In this chapter, we address a design issue related to long-terms decisions in call cen-

ters. We investigate the bene�ts of migrating from a call center where all agents are

pooled and customers are treated indi�erently by any agent, towards a call center

where customers are grouped into clusters with dedicated teams of agents. Each clus-

ter is referred to as a portfolio. The purpose of this chapter is to examine how the

bene�ts of moving to this new organization can outweigh its drawback. The draw-

back comes from the fact that there is less pooling e�ect in the new organization than

in the original one. The bene�t comes from the better human resource management

that results in a higher e�ciency of the agents, both in terms of speed and in terms

of the quality of the answer they provide to customers. Also, we extend the analysis

to the case where there is an additional �ow of calls called out-portfolio �ow. It is

shown that this feature makes the new organization even more e�cient.

The paper version of this chapter is Oualid Jouini, Yves Dallery and Rabie Nait-

Abdallah [69]. It was accepted for publication in Management Science.

13
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2.1 Introduction

The work in this chapter is the result of a collaboration with the French mobile phone company

Bouygues Telecom. Our purpose is to provide some insights into the impact of internal orga-

nization of call centers on their performances. The Bouygues Telecom call center handles an

average of 100,000 phone calls daily. Some of the calls are treated by an automated operator.

Agents, also called customer representatives, deal with about 60% of these contacts. There are

also about one million contacts per year handled by mail, e-mail and fax. Here, we investigate the

adequacy of migrating from a call center where all agents are pooled and customers are treated

indi�erently, towards a call center where customers are grouped into clusters with dedicated

agents. In our terminology, each cluster will be called a portfolio. Customers that do not �t into

a precise portfolio generate the so-called out-portfolio �ow, and must wait in a lower priority

out-portfolio �ow queue. Managers of Bouygues Telecom believe that the challenge is not only

to answer quickly but also to answer customers correctly. In this sector (mobile telephony), it

is not rare to see customers switching from one company to another as a consequence of low

quality responses provided by customer representatives. Agents are the interface between the

company and the customers; hence, customer satisfaction is closely linked to agents performance.

Managers need to motivate their employees so that the assistance they provide to customers is

e�cient, both in terms of speed and quality of answers. On the other hand, employees need

to feel strongly supported by the company so that the turnover is as low as possible. In fact,

turnover means training new employees, and it implies more costs.

The aim of Bouygues Telecom through migrating into customer portfolio management is to

better manage their employees and as a consequence to satisfy customers more e�ciently. This

management approach makes agents more responsible towards their own customers. Moreover,

partitioning agents into groups creates competition, which increases agents motivation. These

factors result in overall agents e�ciency improvement, both quantitatively and qualitatively. By

quantitative e�ciency, we mean the speed (processing time) in providing assistance to the cus-

tomers. By qualitative e�ciency, we mean the quality provided by the agents when addressing

the customers request. In the present chapter, we argue that these advantages may outweigh the

variability that results from the loss in economy of scale originally associated with the pooled

system. In addition, in the proposed organization, all portfolios and corresponding sets of ded-

icated agents are identical (statistically.) Therefore, issues such as training and forecasting can

be done in a homogeneous manner. Also, having homogeneous teams yields a more e�cient

human resource management. In fact, it allows the call center manager to compare the teams

performances, which results in a �global competition".



Literature Review 15

Such a managerial approach has been widely and successfully used in industry and is also

likely to be of interest in service activities such as call center operations. It is, indeed, one of

the key success factors of the so-called World Class Manufacturing. For example, Schonberger

[116] refers to it as cellular manufacturing and describes its bene�ts as follows: �Cells create

responsibility centers where non existed before. The cell leader and the work group may be

charged with making improvements in quality, cost, delays, etc."

The remainder of this chapter is structured as follows. In Section 2.2, we review two kinds of

literature closely related to our work. The �rst one is on pooling, and the second is on integrating

human factors in queueing systems, and in particular in call centers. In Section 2.3, we give a

comprehensive presentation of the problem we study in this chapter. In Section 2.4, we develop a

simple queueing model that is then used to address the issue of bene�ts versus costs of migrating

from the pooled organization to the dedicated organization when there is no out-portfolio �ow.

We provide some interesting insights on the tradeo� between reduction of the pooling e�ect and

agents e�ciency improvement, both quantitatively and qualitatively. In Section 2.5, we extend

this analysis to the situation where there is an out-portfolio �ow. To do that, we �rst develop

some approximate queueing models of the call center operating with a mix of portfolio and out-

portfolio �ows. One additional insight is that the drawback of not having a totally pooled system

is less important in this context. Finally, we conclude and propose some directions for future

research.

2.2 Literature Review

In this section, we review some papers related to the work of this chapter. Our work is pertaining

to two areas of literature, one dealing with pooling and the other with human factors in queueing

systems. The literature dealing with pooling falls mainly into two categories: pool queues or

pool servers, see Mandelbaum and Reiman [97]. Kleinrock [82] is one of the �rst researchers who

gave a depiction of these alternative structures of pooling. He began by considering a collection

of m identical G/G/1 queues, each of which has a single server with service rate µ and faces a job

stream at rate λ. Pooling only queues would change this collection into a G/G/m queue, which

has m servers, each server with service rate µ and a job stream at rate mλ. Pooling only servers

would change the last G/G/m queue into a G/G/1 queue with arrival rate mλ and service rate

mµ. In this chapter we only deal with queue pooling issues.

As mentioned in the introduction of this thesis, we are not dealing with multi-skill call centers.

Our concern in this chapter, as well as in the following ones, is full-�exible call centers. We only

consider queueing models in which all agents (servers) have all skills, i.e., all agents are �exible
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enough to answer all requirements of service. It is a plausible assumption for Bouygues Telecom

as for many other call centers. Often, it is the case for unilingual call centers where the complete

�exibility is not as di�cult as in multilingual call centers. In this chapter, we deal with the

issue of the level of pooling in full-�exible call centers, i.e., are the agents all gathered into a

single large team or are they partitioned into a set of independent teams? Several papers dis-

cuss the e�ectiveness of pooling in call centers, see for example Tekin et al. [125] and references

therein. Beyond service systems, pooling e�ect problems arise in various applications, such as

manufacturing, and computer network systems. Pooled systems are usually preferred. The stan-

dard argument for combining queues is due to the economies of scale, which absorbs stochastic

variability (Borst et al. [28].)

While it is easy to see that pooled systems are more e�ective than independent ones, this

intuition was for a long time based on experience and numerical data rather than rigorous math-

ematical proof. Smith and Whitt [120] were the �rst to formally prove this result, when com-

bining systems with identical service time distributions. They applied analytic methods for the

M/M/C/C loss systems (Erlang-B, no waiting room) and the M/M/C delay systems (Erlang-

C, in�nite waiting room.) By using sample-path methods, they also showed that e�ciency

increases through combining queues in systems with general arrival processes and general service

time distributions. Benjaafar [24] extended theses results by providing performance bounds on

the e�ectiveness of several pooling scenarios. When we allow service rates in separate systems

to become di�erent, combining queues can be counterproductive (Smith and Whitt [120], Ben-

jaafar [24].) Van Dijk and van der Sluis [127] presented a case-study simulation supporting this

outcome. Using approximations for M/G/C performance measures, Whitt [136] explored the

tradeo� between economies of scale associated with larger systems and the bene�t of having

customers with shorter service times separated from customers with longer service times.

All of the above results do, in no way, take into account the human element. This takes us to

the second area of literature close to our work. Human element is the main characteristic of call

centers and contact centers. Both customers and agents are people. Even though it is natural to

focus on understanding human behavior, few papers integrate this aspect to analyze call centers

and, in general, queueing systems. We refer the reader to the survey of Gans et al. [40] where

we �nd some references examining queueing models of call centers that incorporate customers

behaviors, such as, abandonments and retrials. Some other models include the link between

agents and customers experiences. In 1987, two papers have launched discussions about human

factors in queueing systems. The �rst is Larson's [90] paper which goes beyond the classical

interest on delays and points out the psychological experiences of people in queues. He argues
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the importance of perceptions of fairness, and shows for instance how the violation of the �rst

come, �rst served order may contribute to customers dissatisfaction. The second is Rothkopf

and Rech's [115] paper, which deals with the question of combining queues. The authors in

that paper discuss the tradeo� between pooled and separated systems by including customers

reactions and jockeying between separate queues (a customer can change to one queue while he

was waiting in another.) Moreover, they show how separate systems may lead to servers that

are more responsible towards their own customers. It may also allow for a faster service due to

the degree of specialization gained through experience. To our knowledge, they were the �rst to

emphasize this issue.

Fischer et al. [38] conclude that call center management requires a mix of disciplines that are

not typically found in organizations. The review of Boudreau et al. [30] follows through this new

area. They propose a framework which is a fertile source of research opportunities. They justify

by real examples that operations management itself, without human resource management, can

not well analyze systems such as those we are dealing with, and vice versa. In others words,

there is a mutual impact between the two �elds, and taking into account this fact yields to more

realistic and precise insights. In particular, Boudreau et al. [30] consider that more realistic

operations management models need to integrate human factors, such as; turnover, motivation

and team structure. In fact, a team setting allows for better communication, and may allow for

more responsible and motivated agents. In a recent paper, Boudreau [29] underlines once again

the signi�cant opportunities for fruitful research at the boundaries between the traditional topics

of operations management and human resource management. The present chapter addresses this

issue in a call center context. We explore how managing agents by creating separate pools might

lead the agents performing more e�ciently.

2.3 Problem Setting

In this section, we present the general problem under consideration in this chapter. Consider a

company operating a fairly large call center. The call center provides assistance to the customers

of the company. Customers call the company whenever they need assistance and their request

is addressed by a set of agents. Recall that in the setting of this work, we assume that the

call center is operated in such a way that all agents have the same skill. Therefore assistance

to the customers can be provided by any agent. In other words, all agents are totally identical

(statistically) in the sense that they can answer all questions coming from the customers with

the same e�ciency, both quantitatively and qualitatively.
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2.3.1 Current Organization Mode

Let us describe the behavior of the call center under the current organization mode. The call

center is operated in such a way that at any time, any call can be addressed by any agent. So,

whenever a call arrives, it is addressed by one of the available agents, if any. If not, the call is

placed into a queue and will be addressed as soon as possible. There is a single queue and waiting

calls are answered on a �rst come, �rst served (FCFS) basis. For simplicity, we assume that the

queue has no capacity constraint and that customers do not abandon while waiting. Under this

organization, the agents have a given e�ciency. The quantitative e�ciency is measured by the

distribution of the processing times, which represents the time it takes for an agent to answer

a call. Note that the randomness of the processing times comes in particular from the variety

of questions asked by the customers. The qualitative e�ciency is measured by the probability

of successfully answering the question of the customer. We assume that if the call has not been

addressed in an adequate manner, the customer will call back to get assistance from another

agent. This concept of call resolution probability was argued by de Véricourt and Zhou [36] in a

call routing problem. As for the global e�ciency of the call center under the current organization,

its positive side comes from the pooling e�ect. Its negative side is in terms of human resource

(HR) management, given that, it is usually very di�cult to have an e�cient management of a

large set of agents in a large call center.

2.3.2 New Organization Mode

Let us describe the following new organization mode. The set of agents is split into a set of

independent teams. The teams are homogeneous in the sense that they have the same number

of agents and that all agents have the same skills. In other words, there is no specialization. Let

n be the number of independent teams.

In the new organization, in addition to the partitioning of the total number of agents in a

set of autonomous teams of agents, there is also a partitioning of the customers into a set of

n customer portfolios. Again, this partitioning is done in such a way that the portfolios are

homogeneous. In other words, the overall request coming from the di�erent customer portfolios

are statistically identical. So, whenever a call arrives from a customer of a given portfolio, it is

routed to the corresponding team. The behavior at the team level is then exactly identical to

that described above for the original large call center. This new organization is equivalent to

operating independently n smaller call centers with each call center having its own customers

portfolio. Again, it is important to emphasize that under this new organization, all teams and

customer portfolios have the same behavior (statistically.)
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In the research study we performed with Bouygues Telecom, the size of the original call

centers (total number of agents) was in the order of 2000, and they were considering team sizes

ranging from 40 to 100 agents. Because all agents are not always present, this would mean

that the number of agents simultaneously present in the call center would be in the order of

1000 and the corresponding number of agents present in each team would be ranging from 20

to 50. The reason advocated for moving to this new organization was along the line of the

World Class Manufacturing literature. Namely, that the human resource management could be

performed in a much better way at a small team level rather than at the global call center level.

Agents motivation and responsibility would increase. Performance measures, both quantitative

(processing times) and qualitative (rate of calls successfully addressed), could be examined more

appropriately and could be used for internal team management. Due to the team/portfolio

one-to-one link, a customer not satis�ed with the answer he got from the agent would call

back and the additional burden would fall on the same team. Also, the fact that all teams are

homogeneous would allow for performance comparisons between the di�erent teams resulting in

a �global competition". Incentives could be given to agents based on the global performance of

the team.

2.3.3 Research Objectives

In this research project, our goal is to study the tradeo� between the pros and cons of moving

from the original organization to the team-based organization, also referred to as the portfolio

organization. To do that, we consider a simple stochastic model of the original pooled organi-

zation. This model captures the original behavior of the call center when all agents are pooled.

Under this situation, the call center has a nominal behavior in terms of e�ciency (quantitative

and qualitative e�ciencies.) It achieves a given quality of service (QoS). We actually consider

two di�erent QoS measures: the average waiting time and the 80/20 rule, which is an industry

standard for telephone service, see Gans et al. [40]. Under the 80/20 rule, at least 80% of

customers must wait no longer than 20 sec.

In this work, we study the increase of e�ciency required so that the team-based organization

achieves the same QoS as the pooled system with the same total number of agents, i.e., no

cost increase. We successively consider the case where the improvement comes only from the

increase of the quantitative e�ciency (decrease of the average processing time) and then the case

where the improvement comes only from the increase of the qualitative e�ciency (increase of

the average rate of successful answer.) To perform the di�erent analyzes described above, we

consider a generic model that captures the important features needed for the comparison between
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the pooled organization and the team-based organization. As it is often the case in call center

modeling, our analysis is based on the use of a stationary queueing model (Gans et al. [40].) We

use standard assumptions on the nature of the underlying processes: Poisson arrival processes,

and exponential service time. These assumptions are plausible for Bouygues Telecom as for

many other cases of call centers, especially for the arrival processes. In addition, we assume

that calls not satis�ed successfully occur randomly and therefore the splitting of the output

�ow follows a Bernoulli process. Moreover, delays before customers call back are assumed to

be i.i.d. random variables. This allows us to use simple results from standard queueing theory.

The generic model under consideration (for both the pooled organization and the team-based

organization) is illustrated on Figure 2.1. The results of our study are presented in Section 2.4.

 

Arrival processof new calls Departure process of calls successfullyansweredWaiting lineArrival processof calls notsuccessfullyanswered
Team of agents

Delay before calling back
Departure process of calls not successfullyanswered

Arrival processof new calls Departure process of calls successfullyansweredWaiting lineArrival processof calls notsuccessfullyanswered
Team of agents

Delay before calling back
Departure process of calls not successfullyanswered

Figure 2.1: The generic model

2.3.4 Out-Portfolio Flow

There was another important feature in the Bouygues Telecom call center. Not all the calls

received at the call center could be identi�ed as belonging to a given portfolio of customers.

Therefore, the actual situation was that in addition to the �ow of calls coming in for each

portfolio, there was an additional �ow of independent calls, referred to as out-portfolio calls. In

the original pooled organization, the calls were treated with lower priority. For the team-based

organization, all out-portfolio calls are sent to a single queue. These calls can be served by

any agent of any team, but portfolio calls have (non-preemptive) priority over out-portfolio calls.

This means that when an agent becomes available, he deals with a call from his portfolio �rst (the

�rst call in line.) If the queue is empty, this agent provides service to a call from the out-portfolio

queue (the �rst in line.) Under this more general setting, we also investigate the improvement

in either quantitative or qualitative e�ciency that would be required to counterbalance the

unpooling e�ect. The results of our study are presented in Section 2.5.
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Figure 2.3: Dedicated System

2.4 Analysis of the E�ciency of the Team-Based Organization

In this section, we restrict our attention to the situation where there is no out-portfolio �ow. In

Section 2.4.1, we present the relevant queueing models and determine the performance measures

of interest. In Sections 2.4.2 and 2.4.3, we analyze the required increase in terms of quantitative

or qualitative e�ciency that must be achieved in order to counterbalance the reduction of the

pooling e�ect. Finally, in Section 2.4.4, we provide some further insights on the advantages of

the team-based organization.

2.4.1 Modeling and Performance Analysis

Consider �rst the queueing model of the original call center. The model consists of a single

in�nite queue and a set of s identical servers representing the agents. Service times are assumed

to be exponentially distributed with rate µ. The arrival process of �rst-attempt calls (primary

calls) is assumed to be Poisson with an arrival rate of λa. There is a probability α that the

customer is not satis�ed with the answer he got and therefore will call again. Thus, (1 − α)

represents the probability that a call is successfully answered. Delays before customers call back

are assumed to be i.i.d. random variables with a general distribution. For tractability purposes,

we assume independence between successive calls, both in terms of service times and probability

of success. Let λ be the overall arrival rate to the queue, i.e., the sum of the primary calls and

the feed-back calls. Under stability conditions, λ = λa/(1 − α). This simple model falls into

the class of product-form networks analyzed by Baskett et al. [22]. As a result, the stationary

behavior of this queueing model does not depend on the distribution of the call-back delays.

They can thus be ignored. The resulting model is shown on Figure 2.2. It is equivalent to a

simple M/M/C queue with C = s servers, a Poisson arrival rate λ = λa/(1 − α) and a service

rate µ. This model will be referred to as the Pooled System.

Consider now the modeling of the team-based organization with a partitioning of the original

call center into n autonomous teams, each one being associated with a customer portfolio. It is

assumed that n is such that s is a multiple of n. Recall that all teams and all customer portfolios
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are statistically identical. Under this organization, the call center can be modelled as a set of

n independent and identical queueing models. In the following, we focus our attention on the

generic model of any portfolio/team subsystem. The assumptions are similar to those above.

The model consists of a single in�nite queue and a set of sn identical servers. Service times

are assumed to be exponentially distributed with rate µn. The arrival process of �rst-attempt

calls (primary calls) is Poisson with an arrival rate of λa
n = λa/n. The probability that a call

is not successfully answered is given by αn. The resulting model is shown on Figure 2.3. It

is equivalent to multiple simple M/M/C queues, with C = sn servers, a Poisson arrival rate

λn = λa
n/(1−αn) and a service rate µn. This model will be referred to as the Dedicated System.

Note that the Pooled System can be viewed as the particular case of the Dedicated System for

n = 1. In the Bouygues Telecom call center, like in most call centers, the arrival rate of calls

varies over time. Therefore, we use queueing models to estimate stationary system performance

of half-hour intervals. We assume constant number of agents, and constant arrival and service

rates, as well as a system that achieves a steady-state quickly within each half-hour interval of

time, see Gans et al. [40].

Consider the Dedicated System. Let Wn(t) be the Probability Distribution Function (PDF)

of the waiting time in the queue. Let rn = λn/µn = λa
n/(1 − αn)µn be the tra�c intensity,

and ρn = rn/sn the server utilization (proportion of time each server is busy.) Note that the

condition for existence of a steady-state solution is ρn < 1; that is, the mean total arrival rate

must be less than the mean maximal service rate of the system. As in Gross and Harris [47],

Equation (2.1) gives the probability that the waiting time in the queue is less than t.

Wn(t) = 1− rsn
n p0

n

sn! (1− ρn)
e−(snµn−λn) t. (2.1)

Equation (2.2) gives the expression of the average waiting time in the queue.

Wn =
(

rsn
n

sn! (snµn) (1− ρn)2

)
p0

n. (2.2)

Equation (2.3) gives the expression of p0
n, which is the stationary probability of �nding no

customers in the system.

p0
n =

(
sn−1∑

i=0

ri
n

i!
+

rsn
n

sn! (1− ρn)

)−1

. (2.3)

The above equations give performance measures of the Dedicated System with n teams. The

Pooled System is a special case of the Dedicated System. Performance measures of the Pooled

System are obtained by using n = 1, s1 = s, µ1 = µ, and λa
1 = λa in Equations (2.1), (2.2) and
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(2.3).

Due to the variability e�ect in the arrival and service processes, the comparison between the

Pooled System and the Dedicated System will always show that, for any positive integer n ≥ 2,

the Pooled System outperforms the Dedicated System under the same situation, i.e., sn = s/n,

µn = µ, λa
n = λa/n, and αn = α. Under these conditions, it is intuitively clear that the Dedicated

System is less e�cient because a call may wait for one server (of one team) while another server

(of another team) is idle; such a situation does not occur in the Pooled System.

In this section as in the next one, we perform the study of the quantities of interest as a

function of the number of dedicated pools, n. Alternatively, we could have chosen to perform

this study according to the size of the dedicated pools, s/n. However, because the total sta�ng

level s is �xed in our study, the two analyzes are totally equivalent and the conclusions drawn

in terms of n can readily be interpreted in terms of s/n.

2.4.2 Evaluation of Service Rate Percentage Increase

We start from a Pooled System with a given QoS (W (t) or W ), and our purpose is to evaluate

the required service rate in a Dedicated System with n pools in order to ensure the same QoS

(Wn(t) = W (t) or Wn = W .) The total sta�ng level, the total arrival rate of �rst-attempt calls,

and the call back proportion are all held constant.

In the Pooled System, the arrival rate of �rst-attempt calls is λa = 177.36 calls per min,

the call back proportion is α = 10%, the service rate is µ = 0.2 calls per min, and the number

of agents is s = 1000. In this system, 80% of customers wait no more than 20 sec, and the

corresponding average waiting time is W = 0.18 min. In the Dedicated System, each call center

has a sta�ng level sn = s/n, an arrival rate of �rst-attempt calls of λa
n = λa/n, and a call back

proportion of αn = α = 10%. We vary n from 1 to 50. For each number n of separated call

centers, we calculate the service rate µn, so that, the average waiting time is Wn = 0.18 min.

We repeat the same analysis for the QoS in terms of the 80/20 rule. The results are presented

in Table 2.1.

Figure 2.4 shows the curves of the required percentage of service rate increase, calculated as

100 × (µn − µ)/µ, according to the number of pools n in order to reach Wn = 0.18 min and

Wn(20sec) = 80%, respectively. Figure 2.4 shows that, for both types of QoS, the required

increase of service rate does not grow in a dramatic fashion. We notice that for a Dedicated

System with n = 20 separate teams, the required mean service time is about 4 min and 25

sec in order to reach Wn = 0.18 min, and it is about 4 min and 30 sec in order to reach

Wn(20sec) = 80%. In a Dedicated System with n = 10 separate call centers, the required mean
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Wn = 0.18 Wn(20sec) = 80%
n µn ρn µn ρn

1 0.200 98.53% 0.200 98.53%
2 0.202 97.49% 0.202 97.51%
4 0.206 95.80% 0.205 95.91%
5 0.207 95.07% 0.207 95.24%
8 0.212 93.13% 0.211 93.51%
10 0.214 91.99% 0.213 92.51%
20 0.226 87.30% 0.222 88.57%
25 0.231 85.35% 0.227 86.98%
40 0.245 80.40% 0.237 82.99%
50 0.254 77.60% 0.244 80.76%

Table 2.1: Required service rates in a Dedicated System in order to achieve Wn = 0.18 min and
Wn(20sec) = 80%

service time is only about 4 min and 40 sec for both types of QoS. All these values are not

too far from the actual mean service time (5 min.) In conclusion, it is possible to even up the

performances of a Pooled System by slightly increasing the service rate. In practice, an increase

in service rate e�ciency in the order of 10% seems very reasonable to achieve because of the

competition created by the team-based organization.

Percentages of Service Rate Increase

0%5%
10%15%20%25%30%

0 5 10 15 20 25 30 35 40 45 50 n
Wn=0.18 min

Wn(20sec)=80%

Figure 2.4: Percentages of service rate increase according to number of pools n in a Dedicated
System in order to achieve Wn = 0.18 min and Wn(20sec) = 80%

2.4.3 Evaluation of Percentage of Call Back proportion Decrease

Now, we focus on evaluating the required decrease of the call back proportion in a Dedicated

System with n separated call centers, in order to ensure the same QoS (Wn(t) = Wn(t) or

Wn = W ) as in the corresponding pooled con�guration.

We consider again the same example of the Pooled System (with the same parameters s, λa,

α and µ) as in the previous subsection. Each one of the n separated call centers of the Dedicated

System has an arrival rate of �rst-attempt calls of λa
n = λa/n, a service rate µn = µ = 0.2 calls
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per min, and a sta�ng level sn = s/n. For each n, we calculate the required call back proportion

αn, so that, the average waiting time is Wn = 0.18 min. We repeat the same analysis for the

QoS in terms of the 80/20 rule. The corresponding results are presented in Table 2.2. We choose

to vary n only from 1 to 10, so that, αn stays positive.

Wn = 0.18 Wn(20sec) = 80%
n αn ρn αn ρn

1 10.00% 98.53% 10.00% 98.53%
2 9.02% 97.47% 9.04% 97.49%
4 7.38% 95.74% 7.50% 95.87%
5 6.64% 94.98% 6.83% 95.18%
8 4.61% 92.96% 5.06% 93.40%
10 3.36% 91.76% 4.00% 92.38%

Table 2.2: Required call back proportions in a Dedicated System in order to achieve Wn = 0.18
min and Wn(20sec) = 80%

In Figure 2.5, we plot the required percentages of the call back proportion decrease, calculated

as 100 × (α − αn)/α, versus the number of pools n in order to reach Wn = 0.18 min and

Wn(20sec) = 80%, respectively. Once again, we see from Figure 2.5 that the required percentage

decrease of the call back proportion grows with the number of pools n in a not so strong way,

and that the curves for each type of QoS are similar. For example, in a Dedicated System

with 10 pools, we have to decrease the call back proportion αn by about 60% with regard to

α = 10% in order to reach Wn(20sec) = 80%. Note that it is possible to achieve this required

decrease in practice, especially when the quality of response within the pooled con�guration is

quite poor. The reason of the improvement is that the agents in the team-based organization are

more responsible for their own customers than in the case of the pooled organization. Agents

will try to provide answers that are as good as possible, in order to diminish the call back �ow,

and as a consequence, improve the performance of their team.

2.4.4 Synthesis

The results of the previous sections have shown that migrating towards separated call centers may

not be as bad an idea as it seems. In addition to the analysis reported above, we have performed

a more systematic analysis to con�rm the robustness of our conclusions. This analysis is reported

in Appendix A.1. It shows that the qualitative results discussed above are valid for a large range

of parameters typical of those that would be encountered in real situations.

In addition, it would be realistic to assume that the better team management enabled by the

new organization implies an improvement of both parameters, i.e., an increase of the service rate

and a decrease of the call back proportion. To see the combined improvement of the two factors,
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Percentages of Calls Back Proportion Decrease
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Figure 2.5: Percentages of call back proportion decrease according to number of pools n in a
Dedicated System in order to achieve Wn = 0.18 min and Wn(20sec) = 80%

we perform the same analysis as that of Section 2.4.2 by also incorporating an improvement on

the call back proportion. We consider two cases corresponding to two values of α: α = 8% and

α = 5%, corresponding to a 20% and 50% improvement in the call back proportion with respect

to the initial value of α = 10%, respectively. The results are provided in Tables 2.3 and 2.4 for

the range of values of n of interest, i.e., n from 20 to 50. The results show that by having an

improvement on both e�ciencies, the required performance improvement on each one is not as

high as when focusing on each one separately.

Wn = 0.18 Wn(20sec) = 80%
n µn % of improvement ρn µn % of improvement ρn

20 0.221 10.53% 87.20% 0.218 8.90% 88.52%
25 0.226 13.08% 85.24% 0.222 10.90% 86.92%
40 0.240 20.09% 80.26% 0.232 16.23% 82.93%
50 0.249 24.45% 77.45% 0.239 19.44% 80.70%

Table 2.3: Assuming an improvement of the call back proportion by 20% (α = 8%)

Wn = 0.18 Wn(20sec) = 80%
n µn % of improvement ρn µn % of improvement ρn

20 0.214 7.22% 87.06% 0.211 5.55% 88.44%
25 0.219 9.71% 85.08% 0.215 7.50% 86.83%
40 0.233 16.58% 80.07% 0.225 12.69% 82.84%
50 0.242 20.85% 77.24% 0.232 15.81% 80.60%

Table 2.4: Assuming an improvement of the call back proportion by 50% (α = 5%)

Let us now focus on the mix of e�ciency improvements for a given value of n. Table 2.5

presents the results pertaining to the case n = 10. When we migrate to a Dedicated System with

n = 10 separated call centers, we need either to increase the service rate µn by about 7.11% with
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regard to µ = 0.2 call per min, or to decrease the call back proportion αn by about 66% with

regard to the initial α = 10% in order to achieve Wn = 0.18 min. Another solution is to increase

µn by 3% and decrease αn by about 37% at the same time. In such a case, it should come as

no surprise that we improve the performances in the dedicated systems rather than deteriorate

them. Team management e�ects may change both parameters and may go beyond the simple

fact of outweighing the increase of variability.

µn Percentage Increase αn Percentage Decrease

0.00% 66.43%
1.00% 56.51%
2.00% 46.79%
3.00% 37.26%
4.00% 27.92%
5.00% 18.76%
6.00% 9.78%
7.00% 0.97%
7.11% 0.00%

Table 2.5: Percentages of call back proportion decrease according to percentages of service rate
increase in a Dedicated System with n = 10 in order to achieve Wn = 0.18 min

Figure 2.6 shows the variation of the percentage decrease of αn according to the percentage

increase of µn. The graph suggests that improving αn is linear according to improving µn.

However it is not the case in general. In fact, let us take the particular case of a Dedicated

System with a collection of n separated M/M/1 queues (sn = 1.) In this case, the average

waiting time is given by

Wn =
ρn

µn(1− ρn)
, (2.4)

where ρn is the server utilization, ρn = λn/µn. Since λn = λa
n/(1−αn), we deduce from Equation

(2.4) that

αn = 1− µnWn + 1
µ2

nWn
λa

n. (2.5)

If Wn and λa
n are held constant, Equation (2.5) shows that αn is not linear according to µn.

However, we obtain an almost linear behavior when the number of pools n is not very large and

therefore the number of servers per pool sn is not very small, which is the case in our call center.

It is an interesting result, since, if we can assume linearity between these two parameters, we are

able to approximate them through simple formulas.

Another advantage of the team-based organization is its robustness with respect to errors

in the estimation of the arrival rate of primary calls. For example, consider again the Pooled

System, n = 1, described in Section 2.4.2 and the Dedicated System, n = 10, obtained by

increasing the service rate in order to ensure the same QoS as in the Pooled System. We denote
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Figure 2.6: Percentages of call back proportion decrease according to percentages of service rate
increase in a Dedicated System with n = 10 in order to achieve Wn = 0.18 min

by λa,real the real �rst-attempt arrival rate. Figure 2.7 plots the average waiting time Wn versus

λa,real for the Pooled System, n = 1, and for the Dedicated System, n = 10. We observe that

the QoS of the Pooled System is much more a�ected than the one of the Dedicated System by

an underestimation of the �rst-attempt calls arrival rate. Let us give an explanation. Under the

original expected �rst-attempt arrival rate, the server utilization in the Pooled System, 98.53%, is

much closer to 1 than the one in the Dedicated System, 91.99%. If the �rst-attempt calls arrival

rate is underestimated, the deterioration of the quality of service is increasing faster when the

server utilization is closer to 1, since the queue becomes less and less stable. For example, assume

that we underestimate the total arrival rate of �rst-attempt calls (which is now λa = 177.36 calls

per min for both systems) by only 1.41%. Then the real server utilization of the Pooled System

becomes 99.92% and the one of the Dedicated System becomes 93.28%. As a consequence, the

average waiting time of the �rst system goes beyond 5 min and the one of the second system

is only 0.27 min. This shows that the team-based organization is more robust than the original

pooled organization. This is a very attractive feature that gives another strong argument in favor

of the team-based organization.

Figure 2.7: Average waiting time of a Pooled System (n = 1) and a Dedicated System (n = 10)
according to the total arrival rate of �rst-attempt calls
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2.5 Call Center Models with Out-Portfolio Flow

In this section, we address the same issues as in Section 2.4 by considering two new models (a

pooled model and a dedicated model) of call centers. They di�er from the above models by tak-

ing an anonymous �ow (out-portfolio �ow) of calls into account. The latter consists of calls for

which one cannot associate a portfolio when they enter the call center. An anonymous call can be

a call of a customer of Bouygues Telecom who does not communicate his phone number to the

Computer-Telephone Integration (CTI), a person who is not a customer of Bouygues Telecom,

etc. In Section 2.5.1, we present the models and we develop approximations to estimate the

performance measures of interest. In Sections 2.5.2 and 2.5.3, we analyze the required improve-

ment in terms of quantitative or qualitative e�ciency that must be achieved in order to outweigh

the loss in economy of scale. Finally, in Section 2.5.4, we further investigate the consequence of

having an out-portfolio �ow on the behavior of the Dedicated System.

2.5.1 Modeling and Performance Analysis

Consider �rst the queueing model of the original large call center with two types of customers:

identi�ed customers (portfolio or PTF customers) and non-identi�ed (anonymous) customers

(out-portfolio or OPTF customers.) PTF customers have priority over OPTF customers in the

sense that agents are providing assistance to PTF customers �rst. The priority rule is non-

preemptive, which simply means that an agent currently serving an OPTF customer while a

PTF customer joins the waiting queue will complete this service before turning to the PTF

customer. Note that the priority rule in call centers is non-preemptive. It is not common to

interrupt the service of a customer to let another one with higher priority start service. The

model consists of two in�nite queues and a set of s identical servers representing the set of

agents. All agents are able to answer all types of customers. Each type of customer has its own

queue. Service times are assumed to be exponentially distributed and independent of each other

with rate µ for both types of customers. The arrival process of �rst-attempt calls (primary calls)

is assumed to be Poisson with a total arrival rate of λa. The proportion of OPTF �rst-attempt

calls is p. So, the total arrival rate of �rst-attempt PTF calls is λa,PTF = (1 − p)λa, and that

of the OPTF calls is λa,OPTF = pλa. There is a probability α that the customer is not satis�ed

with the answer he got and therefore will call again. We assume that α is the same for both

types of customers. We make the same detailed assumptions as those presented in Section 2.4.1.

Following similar arguments, the behavior of this call center can be approximated by a simple

M/M/C queue with two classes of customers (PTF and OPTF), C = s servers, a Poisson arrival

rate of PTF customers λPTF = (1 − p)λa/(1 − α), a Poisson arrival rate of OPTF customers
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Figure 2.8: Portfolio Pooled System
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Figure 2.9: Portfolio Dedicated System

λOPTF = pλa/(1− α) and a service rate µ. PTF customers have non-preemptive (head-of-line)

priority over OPTF customers. Within each queue, the discipline is FCFS. This model, referred

to as the Portfolio Pooled System, is illustrated on Figure 2.8. Note however that in this more

general situation, this model is only an approximation of the behavior of the Portfolio Pooled

System. This is due to the fact that the model does no longer belong to the class of product-form

networks analyzed by Baskett et al. [22], because of the priority of the PTF customers over the

OPTF ones. Note also that the Portfolio Pooled System reduces to the Pooled System studied

in Section 2.4 when p = 0%.

Consider now the modeling of the team-based organization with a partitioning of the original

call center (with out-portfolio customers) into n autonomous teams, each one being associated

with a customer portfolio. It is assumed that n is such that s is a multiple of n. All teams and

all customer portfolios are statistically identical. Each team has sn identical servers, and has

its own in�nite queue for its own PTF customers. There is a single in�nite queue for all OPTF

customers. An OPTF customer is served only when at least one of the agents (of any team) is

idle and no PTF customers are waiting in the corresponding portfolio queue. The assumptions

are similar to those above. The arrival process of PTF �rst-attempt calls to each PTF queue is

Poisson with an arrival rate of λa,PTF
n = (1−p)λa/n. The arrival process of OPTF �rst-attempt

calls to the OPTF queue is Poisson with an arrival rate λa,OPTF = pλa.

The behavior of this call center can be approximated by a set of n identical parallel M/M/C

systems with C = sn servers. Each M/M/C system has its own arrival process corresponding to

its PTF customers. This arrival process is Poisson with a rate λPTF
n = λa,PTF

n /(1−αn) = ((1−
p)/n)(λa/(1−αn)). In addition, there is an additional queue for the OPTF customers. The arrival

process to this queue is Poisson with a rate λOPTF = λa,OPTF /(1− αn) = p(λa/(1− αn)). The

OPTF customers can be served by any server of any of the parallel M/M/C queues. However,

PTF customers have non-preemptive (head-of-line) priority over OPTF customers. The resulting
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model is shown on Figure 2.9. This model will be referred to as the Portfolio Dedicated System.

Note that the Portfolio Dedicated System reduces to the Portfolio Pooled System when n = 1,

and to the Dedicated System when p = 0%.

We now focus on evaluating the stationary performances of the two above models. Exact per-

formance measures of the Portfolio Pooled System (viewed as a non-preemptive priority M/M/C

queue) in terms of the waiting time distribution can be found in Kella and Yechiali [78]. However,

the exact quantitative analysis of the Portfolio Dedicated System is complicated. For that, we

developed a set of models which allow us to approximate its performance measures.

In the following, we present two approximations for the Portfolio Dedicated System. The �rst

enables us to calculate a pessimistic estimate (upper bound) of the waiting times of the PTF

customers, while the second one enables us to calculate a pessimistic estimate (upper bound) of

the waiting times of the OPTF customers. The reason for choosing pessimistic estimates is such

that the improvements in e�ciency that will follow from our analysis can be viewed as a lower

bound on the improvements in e�ciency that will actually be required in the exact analysis.

These approximate models are of the same nature as that of the Portfolio Pooled Model. Their

performance measures can then be exactly calculated in the same way. Validations of these

approximations are presented in Appendix A.2.

Pessimistic Model for PTF customers The pessimistic model for PTF customers is ob-

tained from the Portfolio Dedicated model by splitting the �ow of OPTF into a set of n inde-

pendent �ows. The resulting model consists of a set of n independent and identical M/M/C

systems with C = sn servers and a service rate µn. As in the original model, the arrival process

of PTF customers is a Poisson process with rate λPTF
n = ((1− p)/n)(λa/(1− αn)). The arrival

process of OPTF customers is a Poisson process with rate λPTF
n = (p/n)(λa/(1 − αn)). The

OPTF customers can be served by any of the sn servers from the corresponding team. However,

PTF customers have non-preemptive (head-of-line) priority over OPTF customers. The model

is shown on Figure 2.10.

In this model, there is not a single OPTF queue as opposed to the Portfolio Dedicated System.

The OPTF �ow is equally divided and assigned to each one of the separate OPTF queues. Thus,

it may happen that an OPTF customer is delayed to access a server, while a server of another

team is available. This delay may later on delay the access of a PTF customer to a server because

the OPTF customer will now be served and the priority is non-preemptive. Another way to look

at this approximate model is to see it as an unpooling of the OPTF �ow, which indirectly causes

additional delays to the PTF customers. Thus this model provides a pessimistic estimate of the

waiting times of the PTF customers.
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Figure 2.11: Pessimistic model for the OPTF
customers

Pessimistic Model for OPTF customers The pessimistic model for OPTF customers is

obtained from the Portfolio Dedicated System by merging the �ow of PTF into a single �ow and

simultaneously merging all the servers into a single pool of nsn servers. This model is similar to

the Portfolio Pooled System. The arrival process to the single PTF queue is Poisson with rate

λPTF
n = (1−p)(λa/(1−αn)). The arrival process to the single OPTF queue is a Poisson process

with rate λPTF
n = p(λa/(1 − αn)). PTF customers have non-preemptive priorities over OPTF

customers. The model is shown on Figure 2.11.

Because of the pooling e�ect of the PTF customers, the average waiting time of OPTF cus-

tomers will be higher. In the Portfolio Dedicated System, it may happen that an OPTF customer

gets access to a server while a PTF customer is waiting in a queue (not served by this server),

which reduces the waiting time of the OPTF customer. In the pessimistic model, this will never

occur due to the pooling of all PTF queues and all servers. Thus this model provides a pes-

simistic estimate of the waiting time of OPTF customers.

In the following subsections, we evaluate the impact of migrating from a Portfolio Pooled

System towards a Portfolio Dedicated System. We concentrate on the evaluation of e�ciency

improvement (both qualitative and quantitative) required to counterbalance the reduction of the

pooling e�ect of the team-based organization. We de�ne a global quality of service QoSglobal

for all types of customers as QoSglobal = (1 − p) QoSPTF + p QoSOPTF . In what follows, we

only focus on the QoS measured in terms of the average waiting time. Similar results could be

obtained for the 80/20 rule.

2.5.2 Evaluation of Service Rate Percentage Increase

We start from a Portfolio Pooled System with a given quality of service W global, and our purpose

is to evaluate the required service rate µn in a Portfolio Dedicated System with n identical

teams in order to ensure the same global average waiting time W global
n = W global. The total

sta�ng level, the total arrival rate of �rst-attempt calls, and the call back proportion are all held

constant.

In the Portfolio Pooled System, the arrival rate of �rst-attempt calls is λa = 177.36 calls per



Call Center Models with Out-Portfolio Flow 33

min, the call back proportion is α = 10%, the service rate is µ = 0.2 calls per min, and the number

of servers is s = 1000. The server utilization is then ρ = 98.53%. We choose the same parameters

as in the Pooled System that we studied in Section 2.4. In addition, we vary the proportion of

OPTF customers, p = 0%, p = 5%, p = 10%, or p = 20%. As expected, W global does not depend

on p. In fact, the Portfolio Pooled System is a workconserving system. It is not the case that one

server is idle while a customer (PTF or OPTF) is waiting for service. If we vary p, the order of

service of a given customer may change, but the overall average waiting time remains unchanged.

We give the mathematical explanation in Appendix A.3. More discussions about this result for

more general models will be addressed in Chapters 3 and 6. Here, W global = 0.18 min for all

values of p. For each value of p, we now consider the corresponding Portfolio Dedicated System.

We vary n from 1 to 50. For each n, we evaluate the required service rate µn (using pessimistic

models), so that, the global average waiting time is W global
n = W global = 0.18 min. We present

the results in Table 2.6.

p = 0% p = 5% p = 10% p = 20%
n µn ρn µn ρn µn ρn µn ρn

1 0.2 98.53% 0.2 98.53% 0.2 98.53% 0.2 98.53%
2 0.202 97.49% 0.201 98.23% 0.2 98.36% 0.2 98.39%
4 0.206 95.80% 0.202 97.38% 0.201 97.95% 0.201 98.23%
5 0.207 95.07% 0.203 96.84% 0.202 97.67% 0.201 98.13%
8 0.212 93.13% 0.207 95.08% 0.204 96.54% 0.202 97.74%

10 0.214 91.99% 0.21 93.92% 0.206 95.60% 0.202 97.39%
20 0.226 87.30% 0.221 89.06% 0.217 90.80% 0.209 94.16%
25 0.231 85.35% 0.226 87.05% 0.222 88.74% 0.214 92.13%
40 0.245 80.40% 0.24 81.96% 0.236 83.54% 0.227 86.81%
50 0.254 77.60% 0.249 79.09% 0.244 80.62% 0.235 83.81%

Table 2.6: Required service rate increase in a Portfolio Dedicated System in order to achieve
W global

n = 0.18 min

Moreover, we calculate by simulation the exact values of µ20 for p = 5%, 10% and 20%,

in order to get some indications of their deviations regarding the values given by the proposed

models. Recall that for p = 0%, the Portfolio Dedicated System behaves like separate Erlang-C

models. So, the corresponding µ20 is obtained by an exact numerical result. For p = 5%, the

required service rate given by simulation is µ20 = 0.217 instead of 0.221 given by our approxima-

tion models, for p = 10% it is 0.210 instead of 0.217, and for p = 20% it is 0.202 instead of 0.209.

This shows us that the costs of partitioning given by our models are not too far from those given

by simulation, at least for the reasonable parameters of the Portfolio Dedicated System we have

chosen. In Figure 2.12, we plot for each value of p, the curve of the percentage of required service

rate increase, calculated as 100 × (µn − µ)/µ, in the Portfolio Dedicated System according to
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Figure 2.12: Percentages of required service rate increase according to number of pools n in a
Portfolio Dedicated System in order to achieve W global

n = 0.18 min

the number of pools n, in order to reach a global quality of service of W global
n = 0.18 min. We

notice that for a given p, we have the same qualitative results as in Section 2.4.2. The required

increase of the service rate is not very important and it is feasible to reach in practice. This is

due to the competition element of the team-based organization.

The new interesting insight here is that the necessary increase of the service rate to com-

pensate the loss of pooling e�ect decreases when the proportion of OPTF customers increases.

Particulary, migrating towards a Portfolio Dedicated System (with any p > 0%) is always less

costly than migrating towards a Dedicated System (p = 0%). For example, consider a Portfolio

Dedicated System with n = 10. If the OPTF proportion is p = 5%, we need to increase the

service rate by 4.91%. However, with a proportion p = 20% we only need to increase the service

rate by 1.17%. We explain this advantage by the fact that the OPTF �ow is used to reduce

idle periods of servers while customers are waiting in the Portfolio Dedicated System. Idle times

would not exist in the case of p = 100% (Pooled System.) This will be explained with more

details in Section 2.5.4.

2.5.3 Evaluation of Percentage of Call Back proportion Decrease

Let us again start from the Portfolio Pooled System of Section 2.5.2. We aim to evaluate the

call back proportion αn for a Portfolio Dedicated System with n identical teams, in order to get

W global
n = W global = 0.18 min as in the Portfolio Pooled System. We again vary p (p = 0%,

p = 5%, p = 10%, or p = 20%.) For each p, we vary n from 1 to 10. We choose to vary n only

from 1 to 10, so that, αn stays positive. We present the results in Table 2.7.

In Figure 2.13, we plot for each value of p, the curve of the required percentage of call back

proportion decrease, calculated as 100×(α−αn)/α, in the Portfolio Dedicated System according

to n, in order to reach a global quality of service of W global
n = 0.18 min. Again, we get the same



Call Center Models with Out-Portfolio Flow 35

p = 0% p = 5% p = 10% p = 20%
n αn ρn αn ρn αn ρn αn ρn

1 10.00% 98.53% 10.00% 98.53% 10.00% 98.53% 10.00% 98.53%
2 9.02% 97.47% 9.72% 98.23% 9.86% 98.37% 9.93% 98.46%
4 7.38% 95.74% 8.91% 97.35% 9.46% 97.94% 9.77% 98.28%
5 6.64% 94.98% 8.39% 96.80% 9.20% 97.66% 9.67% 98.17%
8 4.61% 92.96% 6.61% 94.95% 8.09% 96.48% 9.29% 97.76%

10 3.36% 91.76% 5.39% 93.73% 7.12% 95.47% 8.94% 97.39%

Table 2.7: Required call back proportion decrease in a Portfolio Dedicated System in order to
achieve W global

n = 0.18 min

qualitative results as in Section 2.4.3. In addition, we notice that the cost in terms of the required

decrease of call back proportion is decreasing according to p. It is due again to the OPTF �ow.

When p increases, the variability in the Portfolio Dedicated System decreases. For instance,

consider a Portfolio Dedicated System with n = 10. If the OPTF proportion is p = 5%, we need

to decrease the call back proportion by 46.07%. However, with a proportion of p = 20% we need

to decrease the call back proportion by only 10.57%.

Figure 2.13: Percentages of call back proportion decrease according to number of pools n in a
Portfolio Dedicated System in order to achieve W global

n = 0.18 min

2.5.4 Synthesis

In the previous sections, we showed that the reduction of pooling e�ect when migrating from a

Pooled System to a Dedicated System could be outweighed by team management bene�ts. The

discussion and insights presented in Section 2.4.4 are still valid in the more general setting of

a call center with an out-portfolio �ow. However, there is a new important insight. It clearly

appears that having an out-portfolio �ow may reduce the drawback of migrating from the Pooled

System to the Dedicated System. This is due to the fact that as opposed to the PTF �ows, the

OPTF �ow is not decomposed into several independent �ows, each one being associated with a
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speci�c team. Thus the OPTF �ow maintains the bene�ts of the pooling e�ect. The out-portfolio

�ow can then be seen as an �idle time killer" in a Portfolio Dedicated System: an out-portfolio

call is distributed only when an agent is idle and no customer of his portfolio is waiting. As out-

portfolio calls have less priority, this allows reducing idle time without signi�cantly penalizing

the QoS of portfolio calls.

The Portfolio Dedicated System can thus be considered as a particular case of partial pooling.

We call this con�guration �partial calls pooling" because a proportion p of incoming calls (pooled

calls or out-portfolio calls in the Bouygues Telecom case) can be served by any agent while the

remaining calls (1− p) are dedicated to speci�c agents. It clearly appears from the graphs pre-

sented in Sections 2.5.2 and 2.5.3 that this improvement in e�ciency required to counterbalance

the reduction of pooling e�ect decreases as p increases. Now, one additional very attractive fea-

ture is that this decrease is not linear in p. Let us, for instance, consider the case of quantitative

e�ciency improvement (service rate increase) discussed in Section 2.5.2 (a similar analysis could

be done for the qualitative e�ciency improvement discussed in Section 2.5.3.)

In order to illustrate this behavior, let us again consider the same basic example of the

Portfolio Pooled System (1000 servers, λa = 177.36 calls per minute, µ = 0.2 calls per min,

and 10% of call back proportion.) In Figure 2.14, we plot the required percentage of service rate

increase in the Portfolio Dedicated System to reach the same performance as the Portfolio Pooled

System, as a function of the proportion of out-portfolio �ow p (p ranges from 0% to 100%.) There

are three graphs corresponding to three Portfolio Dedicated System con�gurations: n = 10, 20,

and 40. The graphs con�rm the non-linear shape of the curve. This means that with a fairly

small percentage of out-portfolio �ow, the required e�ciency improvement is much smaller than

that of the system without out-portfolio �ow (corresponding to the case where p = 0%.) In other

words, a rather small out-portfolio �ow signi�cantly reduces the drawback of the unpooling e�ect

of the PTF customers. Recall also that since we are using pessimistic approximations, the actual

curves would be sti�er.

For this case, we also performed an extensive numerical study to validate that the conclusions

discussed above remain valid for a large set of parameters, thereby con�rming the robustness of

our analysis.

2.6 Conclusions and Perspectives

We focused on a fundamental problem in the design and management of stochastic service sys-

tems. We investigated the impact of team-based organizations in call centers management.

Agents of call centers are the interface between the company and the customers. Thus, man-
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Figure 2.14: Percentages of required service rate increase according to OPTF proportion p in a
Portfolio Dedicated System in order to achieve W global

n = 0.18 min

agers have to support and motivate their employees, so that, the assistance they provide to the

customers is e�cient. Partitioning agents into groups creates competition and makes agents

more responsible, which motivates them to provide both rapid and improved responses.

In this chapter, we argued how team management bene�ts, that come from the portfolio/team

one-to-one link, may outweigh the economy of scale associated with the pooled organization.

First, we study partitioning of a large call center into identical and separated call centers, where

agents of a same team are dedicated to one portfolio of customers. Queueing models involved

in this part of the study are simple. They give us important insights and help us understand

the behavior of more complicated systems. We show that the costs of migrating towards a

Dedicated System are not as important as it may appear. In practice, combining the bene�ts of

the team-based organization in terms of both improved service rate e�ciency and reduced call

back proportion can easily outweigh the loss of the economy of scale. We also present further

insights, such as robustness of the Dedicated System regarding errors in the estimation of the

arrival rate.

In the second part of the chapter, we extend our analysis to the more general situation

with an additional out-portfolio �ow. We develop a set of models that give us lower bounds of

performance measures. We verify the same qualitative results as in the �rst part. In addition, we

present an interesting insight, that is, a small proportion of out-portfolio calls may be su�cient

to approximately attain the same performances as in the Pooled System. This property �ts into

a general idea in queueing theory. It is like saying that with a small amount of �exibility, an

SBR call center may yield most of the bene�ts of full-�exibility (Chevalier et al. [34].)

The application of customer portfolio management had very signi�cant e�ects in the Bouygues

Telecom call center. The quality of answers has been improved reducing callbacks by 25%. The

proportion of disconnected calls (because of a full queue) was divided by 2 (in our work we
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assumed an in�nite queue for simplicity.) In addition, no supplementary agents were hired in

spite of the increase of the total number of customers by 15%. This provides an experimental

con�rmation of the results and insights presented in this chapter.

In a future study, it would be interesting to extend our models by considering abandonments

and limited waiting lines and more general service time distributions. We will also try to im-

prove the approximation models discussed here to get more accurate analyzes. Finally, a more

ambitious extension would be to investigate the introduction of team-based organization in an

SBR call center where agents have speci�c skills.



Chapter 3

Real-Time Scheduling Policies for
Multiclass Call Centers

In this chapter, we address an issue related to the real-time management of call cen-

ters. We consider a call center model with two classes of impatient customers, VIP

and less important ones. We focus on developing scheduling policies that assign cus-

tomers upon arrival to parallel queues, high and low priority queues. The policies are

developed subject to satisfying constraints on performances related to the ratio of

the probabilities of being lost, as well as the variance of waiting times in queue. We

propose and compare several real-time scheduling policies in order to reach our ob-

jective. The policies are characterized to be simple and easy to implement in practice.

An extended version of this chapter is the working paper Jouini, Pot, Dallery and

Koole [70].
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3.1 Introduction

This chapter deals with a real-time problem of call centers, namely customer routing and server

scheduling. The issue of this chapter is conceptually di�erent of that analyzed in Chapter 2 in

the sense that we are not focusing on a design problem. Given a system structure and sta�ng

level, our purpose is to develop routing schemes for arriving calls subject to satisfying some given

quality of service constraints.

As in Chapter 2, our concern here is a full-�exible call center. We assume that all agents are

�exible enough (polyvalent) to answer all requirements of service. However, we divide customers

into two di�erent classes according to their importance, VIP and ordinary customers. The re-

sulting model for our call center here has a V-design according to the canonical designs presented

in Garnett and Mandelbaum [43]. In addition, we let customers to be impatient. Incorporating

reneging in theoretical models is of value. In reality, it is natural that a waiting customer will

wait for only a limited time, and will hang up within that time. Ignoring reneging leads to over-

sta�ng and pessimistic estimation of queueing delays. Garnett et al. [44] show using numerical

examples that models with and without abandonment tend to give very di�erent performance

measures even if the abandonment rate is small. Models including reneging are therefore more

close to reality, and necessary to obtain more accurate managerial insights.

In this chapter, we discuss various real-time (online) scheduling policies subject to satisfying

di�erentiated service levels related to the probabilities of being lost. The target consists on a

balance between the achieved service levels of customer classes. This objective is motivated by

a situation that often occurs in practice due to the uncertain environment of call centers. It

happens when the workload prediction step is incorrectly done. Several studies as in Jongbloed

and Koole [63] and Avramidis et al. [18] have shown that the arrival process and the workload are

hard to predict in call centers. We show in this chapter that using online scheduling policies is

an e�ective way to compensate workforce for mismatches between di�erent customer classes, and

meet targets on service levels. The main advantage of our control policies is that they require

no information about the arrival processes in advance. If �uctuations in workload occur, the

policies are adapted such that targets on the service levels are met.

In general, the provision of di�erentiated service levels relies on the use of priority queues.

Schrage and Miller [117] have shown that scheduling policies similar to multiclass priority queues

allow to achieve high performances, often nearly as good as those under optimal policies. Note,

in addition, that the priority schemes are easy to implement, which explain their prevalence in

practice. However, it is well known that �xed strict priority policies result either in satisfying

target performances for lower priority customers and an over service level for higher priority
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ones, or in satisfying the target for high priority customers while having heavily penalized lower

priority customers.

Our purpose here is to develop simple and useful dynamic routing policies that are based

on priority schemes. On the one hand, optimal routing policies are very complex to obtain

because of the mathematical di�culties. On the other hand, they are usually not interesting

to implement in practice due to their several requirements about real-time system information,

see Koole and Pot [88]. Hence, it might be more bene�cial to use simple scheduling policies

instead of attempting to use optimal ones. We derive various schemes for dynamic assignment of

customers to queues in order to meet our target. The policies we propose are characterized to be

workconserving (non-idling.) A policy is de�ned to be workconserving if there can be no idling

servers when there are waiting customers, which is natural for large service systems such as call

centers. Through the analysis below, we also focus our interest on the achieved variance of the

waiting time in order to di�erentiate the proposed policies. We do not focus on the achieved �rst

moment of the waiting time. In fact, our proposed policies allow to achieve not very di�erent

values of mean waiting times. We thereafter prefer a system with low waiting time variance than

a system that is faster on average but highly variable. A further advantage of minimizing the

variance of the waiting time is related to the announcement of anticipated delays to customers.

Computing the full distribution of the state-dependent waiting time is a very complex task. So,

we aim to minimize its variance such that announcing the state-dependent mean waiting time

will not be a bad prediction. Further details on call centers with delays announcement will be

addressed in Chapter 4.

The interesting side of the policies we suggest comes from their simplicity, they do not require

information about the workload process. The analysis yields to quantitative insights, as well as

useful principles and guidelines for the control problem. Note that non-workconserving policies,

such as thresholds or reservations of agents for important customers, are not considered in this

chapter. In our opinion, the restriction does not decrease the usefulness of the analysis because

we conjecture that the larger the call centers, the more e�ective are workconserving policies, see

Pot [112]. A further reason is that we want to prevent our analysis from being too complicated

and therefore not interesting for practitioners.

Here is how the rest of the chapter is structured. In Section 3.2, we review two kinds of

literature close to our work. The �rst one deals with queueing models incorporating reneging,

and the second deals with results about optimal scheduling policies. In Section 3.3, we give a

comprehensive presentation of the problem we study in this chapter: Section 3.3.1 is devoted to

formulate the queueing model of the call center, Section 3.3.2 gives some preliminary results, and
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Section 3.3.3 concretely expresses our objective. In Section 3.4, we develop dynamic scheduling

policies that allow to meet our objective. In Section 3.5, we present and discuss simulation

results of the proposed policies. In Section 3.6, we investigate some extensions. In Section 3.6.1,

we focus on extending our analysis to the case of three customer classes. The main analysis in

this chapter focuses on a period of the day, where the system parameters are assumed to be

stationary. From a practical side, it would be interesting to extend the analysis to the whole

day. In Section 3.6.2, we investigate the conservation of the proportionality between the service

levels for a call center working day. In Section 3.7, we give some concluding remarks and future

research directions.

3.2 Literature Review

The literature related to this chapter spans into two main areas. The �rst deals with queueing

systems with impatient customers. The second area deals with the control of queueing systems,

speci�cally, the problem of customer routing and server scheduling.

In the following, we highlight some of the literature with regard to the �rst area. Queueing

models incorporating impatient customers have received a lot of attention in the literature. Gross

and Harris [47] de�ne the impatience through three di�erent forms. The �rst is balking, that

is, the reluctance of a customer to join a queue upon arrival. The second is reneging, which

means the reluctance to remain in queue after joining and waiting. Finally, the third is jockeying

between separate queues. Jockeying means that one customer has the possibility to change

to one queue while he was waiting in another. In this thesis, we consider the second form of

impatience. The other forms are not allowed. To underline the importance of the abandonment

modeling in the call center �eld, the authors in Gans et al. [40] and in Mandelbaum and Zeltyn

[98] gave some numerical examples that point out the e�ect of abandonment on performances.

The literature on queueing models with reneging focus especially on performance evaluation.

We refer the reader to Ancker and Gafarian [10], Garnett et al. [44], and references therein for

simple models assuming exponential reneging times. In Garnett et al. [44], the authors study

the subject of Markovian abandonments. They suggest an asymptotic analysis of their model

under the heavy-tra�c regime. Their main result is to characterize the relation between the

number of agents, the o�ered load and system performances such as the probability of delay and

the probability to abandon. This can be seen as an extension of the results of Hal�n and Whitt

[52] by adding abandonments. Zohar et al. [146] investigate in their work the relation between

customers reneging and the experience of waiting in queue. Other papers have allowed reneging

to follow a general distribution. Related studies include those by Baccelli and Hebuterne [19],
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Brandt and Brandt [31], Ward and Glynn [130], Pla et al. [111] and Zeltyn and Mandelbaum

[145]. Moreover, one should mention results about monotonicity and convexity properties. These

results are especially relevant for practical guidelines, as well as for obtaining useful structures

of control policies. Some related literature to this subject is given in Section 6.1 of Chapter 6.

Let us now focus on the second area of literature closed to our work, that is, the control

of queueing systems. Scheduling policies has been studied in great depth within the context

of queueing systems. A scheduling policy, or a discipline of service, prescribes the order in

which customers are served. It is tied to identi�able characteristics of customers. Arrival time

is certainly one of these characteristics, it is the basis for the most familiar disciplines as the

�rst come, �rst served (FCFS) discipline and the last come, �rst served (LCFS) discipline.

Several other characteristics are the bases for queue disciplines. Customers may be processed

according to service times, which may lead to the well known Shortest Remaining Processing

Time discipline (SRPT.) The queue discipline may also be based on the customer type, for

example, VIP customers are scheduled �rst. Or the queue discipline may be an hybrid strategy

that accounts for more than one characteristic. The focus in control problems is on determining

the form of the optimal policy so as to optimize system performance. Randolph [113] classi�es

scheduling policies into those using dynamic schedule rules and those using static schedule rules.

A dynamic schedule is a discipline that is continuously updated as customers arrive and are

processed. However, a static schedule is state of system independent, it is beforehand de�ned

and never altered. Each one of the above classes of policies can be further classi�ed into two

major types: agent scheduling and customer routing. As de�ned in Garnett and Mandelbaum

[43], agent scheduling is described by a control decision taken whenever an agent turns idle and

there are queued customers: which customer, if any, should be routed to this agent. However,

a scheduling policy based on a customer routing rule, is de�ned by a control decision taken

whenever a customer arrives: which idle agent, if any, should serve this customer, if not, to

which queue should the customer of interest be routed.

In this chapter, under some given performance constraints, we develop dynamic scheduling

policies based on the second type of control decision, i.e., the assignment rule of new arrivals to

queues. Our basic call center model has a V-design, with two in�nite queues. A high priority

queue and a lower priority one. We focus on policies that assign a priority level to customers upon

arrival. We should note that there are two further possible re�nements in priority situations,

namely preemption and non-preemption. In preemptive cases, a customer with high priority is

allowed to enter service immediately even if another one with lower priority is already present in

service at its arrival epoch. However, a priority discipline is said to be non-preemptive if there is
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no interruption. A customer with higher priority just goes to the head of the queue and wait his

turn. The scheduling policies analyzed in this work are characterized to follow a non-preemptive

priority schemes. In addition, we focus on policies that are workconserving, that is, we do not

allow agents to be idle while there are waiting customers.

In the following, we present some known results about optimal scheduling policies. Note that

due to the complexity of such studies, most of the existing research considers simple queueing

models. Moreover, the literature illustrates that optimal results are di�cult to obtain. The

structure of optimal policies are model dependent and often di�cult to generalize to more com-

plicated cases. Schrage and Miller [117] proves that the SRPT policy, which schedules in a

preemptive manner the customer with the smallest remaining processing time at every point in

time, is optimal with respect to minimizing mean sojourn times in an M/G/1 system. Pekoz

[108] addresses the analysis of a multiserver non-preemptive priority queue with exponentially

distributed interarrival and service times. He �nds and evaluates the performance of an asymp-

totically optimal policy that minimizes the expected queueing delay for high priority customers.

Guérin [48] presents a model without waiting queues. It contains a multi-server station, which

receives low and high priority arrivals. He develops an admission policy for the low priority cus-

tomers such that the fraction of blocked high priority customers is bounded and he analyzes the

system under that policy. Örmeci [105] considers a Markovian call center model with two classes

of customers, one pool of generalists, two pools of specialists, and no waiting rooms. Then,

the author derives the structure of dynamic admission policies that maximizes, in the long-run,

the total expected discounted revenue. Aguir et al. [7] present an optimization problem for an

M/M/1 queue with two classes of customers. They prove and characterize a class of optimal

static scheduling policies subject to satisfying di�erentiated performances for customer classes.

The proposed policies are based on strict priority rules, and the performances are measured in

terms of the mean waiting time and the 80/20 rule. The authors investigate extensions to the

multiserver queue, and analyze a dual class of static policies based on agent scheduling. We also

refer the readers to Xu et al. [142], Huang [58], Bhulai and Koole [27], and Gans and Zhou [42]

for more results. Other papers, related to scheduling problem for multiserver systems under the

asymptotic heavy-tra�c regime, include those by Gans and van Ryzin [41], Bassamboo et al.

[23], Atar et al. [16], Armony [11] and references therein.

3.3 Framework

In this section, we �rst describe the basic model of our call center. Second, we present notations

related to the performances we consider in this chapter, and develop some preliminary results.
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Finally based on the preliminary study, we concretely specify our motivation and objective with

regard to the scheduling policies we aim to develop.

3.3.1 Model Formulation

We model our call center as a queueing model with two classes of customers; important customers

type A, and less important ones type B. The model consists of two in�nite queues type 1 and

2, and a set of s identical servers representing the set of agents. All agents are able to answer

all types of customers. The call center is operated in such a way that at any time, any call can

be addressed by any agent. So upon arrival, a call is addressed by one of the available agents, if

any. If not, the call must join one of the queues. Customers are assigned to queues according to

the selected scheduling policy, as we shall detail later. Customers in queue 1 have priority over

customers in queue 2 in the sense that agents are providing assistance to customers belonging

to queue 1 �rst. The priority rule is non-preemptive (see the motivation in Section 2.5.1 of

Chapter 2), which simply means that an agent currently serving a customer pulled from queue

2, while a new arrival customer joins queue 1, will complete this service before turning to queue

1 customer. Within each queue, customers are served in order of their arrivals, i.e., under the

FCFS discipline. Interarrival times and service times are assumed to be i.i.d., and follow general

distributions. In certain cases, we shall in particular consider the exponential distribution for

successive service times. Then, a customer is served with rate µ, independent of the customer

type.

In addition, we assume that the customers are impatient. After entering the queue, a customer

will wait a random length of time for service to begin. If service has not begun by this time

he will renege (leaves the queue.) Times before reneging, for type A and B customers, are

assumed to be i.i.d. and exponentially distributed with rate γ. Assuming identical distribution

of patience within each class, independently from their position in queue, seems to be a plausible

assumption for call centers, see Gans et al. [40]. Indeed, the tele-queueing experience in call

centers is fundamentally di�erent from that of a physical queue, in the sense that customers do

not see others waiting and need not be aware of their �progress" (position in the queue) if the

call center does not provide information about queueing delays. The system is workconserving,

i.e., a server is never forced to be idle with customers waiting. Finally, retrials are ignored, and

reneging is not allowed once one customer starts his service. We do not allow also jockeying

between separate queues. Following similar arguments, the behavior of this call center can

be viewed as a variety of a GI/GI/s + M queueing system. The symbol M after the + is to

indicate the Markovian assumption for times before reneging. Note that owing to abandonments,
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Figure 3.1: The basic model

the system is unconditionally ergodic. The resulting model is shown on Figure 3.1.

In this chapter, the main results concerns the case when service times, as well as times before

reneging, are identically distributed for both customer types. There are two reasons for that.

The �rst reason is related to the nature of the call center we consider here, and which is the case

in many other call centers applications. In fact, the di�erence making a type A customer more

important for the company than a type B customer is that the �rst pays more money than the

second one. In concrete terms, if our call center owns every month from one customer an amount

of money crossing a given threshold, then that customer is of type A, else he is of type B. We

consider that the queries asked by customers, as well as the patience experiences do not di�er

from one type of customers to another. Therefore, it would be credible to assume a common

distribution. The second reason is due to the complexity of the analysis when assuming di�erent

service and reneging time distributions. Our objective here is to investigate simple models that

allow us to better understand the system behavior and to gain general useful guidelines and

insights.

Finally, note that assuming exponential distribution for service times and times before reneg-

ing is not that bad approximation. It is true that in real call centers cases, impatience times

need not be exponential, and they can vary signi�cantly with the type of service, the information

provided during waiting, etc. We refer the reader to Zohar et al. [146] and Mandelbaum et al.

[96] who show how such assumptions may be violated. However, our model is still of interest in

practice as mentioned by Whitt [139], and Pierson and Whitt [109]. The authors have shown,

using various simulation experiments, that the M/M/s + M (Erlang-A) model provides a good

approximation of the M/GI/s + GI model.

3.3.2 Preliminaries

In this section, we �rst present notations and de�nitions about the performances we are interested

on. The performances are de�ned in terms of the fraction of customers who abandon, the mean

and the variance of the waiting time in queue. Second, we develop some structural results related
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to these performances.

We denote by m the type of one customer, m ∈ {A, B}. We assume that at time t = 0, the

system starts empty. Under some given scheduling policy π, let nm(t) be the number of type m

arrivals during the interval of time [0, t], t > 0. Let am
π (t) be the number of type m customers

who abandon the queue, and bm
π (t) the number of those who get service. We de�ne a �rst service

level in terms of the fraction of customers who abandon within each type, as well as for all types

of customers. The fraction of type m customers who abandon, say Qm
π (t), during [0, t] is de�ned

by

Qm
π (t) =

am
π (t)

nm(t)
. (3.1)

As for the overall service level, it is de�ned by

Qπ(t) =
aA

π (t) + aB
π (t)

nA
π (t) + nB

π (t)
. (3.2)

During the stationary regime, the service level for type m customers, say Qm
π , and the overall

service level for all types, say Qπ, are given by

Qm
π = lim

t→∞Qm
π (t), and Qπ = lim

t→∞Qπ(t). (3.3)

Recall that due to abandonments, the system is ergodic so that the latter limits exist. Let us

now de�ne the ratio, cπ, of the stationary service level of customers A over that of customers B.

It is given by

cπ =
QA

π

QB
π

. (3.4)

Similarly, we de�ne the mean waiting time in queue for class m and the overall mean waiting

time in queue for all customer types. Note that we only de�ne these quantities for the customers

who enter service. Under a given scheduling policy π, let wm
q,π(i, t) be the waiting time in queue

of the ith type m customer who enters service, 0 ≤ i ≤ bm
π (t). As in the usual way, the mean

waiting time in queue Wm
q,π(t) for type m customers during [0, t] is de�ned by

Wm
q,π(t) =

1
bm
π (t)

bm
π (t)∑

i=1

wm
q,π(i, t). (3.5)

Also, we de�ne the overall mean waiting time in queue, during the interval [0, t] by

Wq,π(t) =
1

bA
π (t) + bB

π (t)




bA
π (t)∑

i=1

wA
q,π(i, t) +

bB
π (t)∑

i=1

wB
q,π(i, t)


 . (3.6)
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During the stationary regime, the mean waiting time in queue for type m customers, say Wm
q,π,

and the overall mean waiting time in queue for all customers, say Wq,π, are given by

Wm
q,π = lim

t→∞Wm
q,π(t), and Wq,π = lim

t→∞Wq,π(t). (3.7)

Now, we are going to underline one important property of performance measures. It is the

variance of the waiting time. Minimizing the number of customers lost, or minimizing the mean

waiting time in queue are only some important properties among many others. It often has been

argued that a system with reasonable and predictable waiting time may be more desirable than

a system with lower mean waiting but highly variable. We refer the reader to Lu and Squillante

[93] for more details.

As above, we de�ne the variance of the waiting time for type m customers and an overall

variance for all types, in both transient and stationary regimes. The variance V arm
π (t) for type

m customers during [0, t] is de�ned by

V arm
π (t) =

∑bm
π (t)

i=1

(
wm

q,π(i, t)−Wm
q,π(t)

)2

bm
π (t)

. (3.8)

We de�ne the overall variance of the waiting time in queue for the customers who enter service

during the interval of time [0, t] by

V arπ(t) =

∑
m∈{A,B}

∑bm
π (t)

i=1

(
wm

q,π(i, t)−Wq,π(t)
)2

∑
m∈{A,B} bm

π (t)
. (3.9)

During the stationary regime, the variance for type m customers, say V arm
π , and the overall

variance for all types, say V arπ, are given by

V arm
π = lim

t→∞V arm
π (t), and V arπ = lim

t→∞V arπ(t). (3.10)

Finally, we de�ne the standard deviation, in transient and stationary regimes, for each type and

for all types by taking the square root of the variances de�ned above. We denote these quantities

by σm
π (t), σπ(t), σm

π and σπ, respectively.

In what follows, we present some results about the relation between the performance measures

of interest and the discipline of service. Let us recall a known result for queueing system with

in�nitely patient customers, that is, a customer never leaves the queue before beginning service.

It is well known that the expected time in system and expected time in queue are independent of

the queue discipline. We only need to assume that the remaining total service or work required
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at any point during an arbitrary busy period is order-of-service independent. In other words, no

service needs are created or destroyed within the system: no renege in the midst of service, no

preemption when service times are not exponentially distributed, no forced idleness of servers,

and so on. The proof can be easily done by comparing the diagrams of the cumulative work for

two di�erent queue disciplines during the busy period, elsewhere both systems behaves identically

owing to the workconserving property.

We should note that one may �nd counterexamples for the above result if service times are not

assigned when service begins, see Whitt [134]. However, it is common that service times are

associated upon customer arrivals. In such cases, one may still assume that service times are

i.i.d. and independent of the arrival process to get the result. We refer the reader to Berger and

Whitt [25] for more discussion.

We investigate below some conservation results in a more general queueing system including

reneging. By means of Theorem (3.1) already derived in Pot [112], we motivate our consider-

ation for only workconserving policies. Theorem (3.1) concerns a GI/M/s + M system, which

has an i.i.d. and generally distributed interarrivals, exponential service times, s servers, and

exponentially distributed patience times.

Theorem 3.1 (Pot [112]) Consider a GI/M/s + M system with non-preemptive service dis-

cipline. The average abandonment rate is equal or higher under non-workconserving policies in

comparison to workconserving policies.

In what follows, we emphasize a number of theorems concerning workconserving policies. In

Theorems (3.2) and (3.3), we investigate the conservation of the fraction of abandoning customers

and the average waiting time in queue with respect to the scheduling policies, respectively. Some

consequences are next derived in Corollaries (3.1) and (3.2).

Theorem 3.2 Consider a GI/GI/s + M queue. Times before reneging are assumed to be i.i.d.

and exponentially distributed. Then, the service level Q is constant for any workconserving non-

preemptive scheduling policy.

Proof. We prove the result by coupling arguments. Consider two identical GI/GI/s + M

models, say Model 1 and Model 2. The discipline of service in Model 1 (Model 2) is de�ned

by the workconserving non-preemptive policy π1 (π2.) We assume that policies π1 and π2 are

di�erent. Our approach is based on a single sample path. In both models, we create identical

successive arrival epochs, as well as identical successive service times. Service times are assigned

to servers and not to arrivals. Since times before reneging are exponentially distributed, then the

decision for one customer to abandon the queue is not a�ected by his elapsed waiting time. This
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enables us to create randomly, for each customer in queue, a new maximum time of patience at

each selection for service (or equivalently successful departure epoch.) Assume that at time t = 0

both systems are empty, and let work begins. We denote by Dk the epoch of the kth departure,

k = 1, 2, ...,∞.

Both models behave identically until a busy period starts and the following situation occurs: a

server becomes idle (service completion) and more than one customer are waiting in queue. Let

Di be the epoch of that service completion (which occur simultaneously in Model 1 and 2.) For

both models, let n be the number of waiting customers in queue just before Di, n ≥ 2. At Di,

the idle server in Model 1 selects one customer from the queue that can be di�erent from the one

selected by the idle server in Model 2. However, the number of customers in queue goes down

by 1 for both models, it becomes n − 1. Note that the number of customers who abandon the

queue is until now identical for both models.

In Model 1, we create for each customer waiting in queue a new maximum patience time. Without

altering distributions, since times before reneging are identically distributed, we create the same

set of n− 1 maximum patience times, and we assign them arbitrary to the customers waiting in

Model 2. After Di, three events are possible: one customer reneges, or a new customer enters the

system, or a server becomes idle. Recall that by construction, these events occur simultaneously

in both models. Assume that the �rst event occurs, then the number of customers who abandon

the queue goes up by 1 in both models and as a consequence is still identical for them. It is still

identical also if another customer abandons the queue. It is the case as long as the number of

customers in queue is larger or equal to 1. Assume now that one customer enters the system.

Hence, the number of customers in queue goes up by 1 in both models. Note that if another

arrival occurs or that one customer abandons the queue, then, the number of customers in queue

will increase by 1 or decrease by one, respectively. Thus, the number of customers who abandon

the queue vary identically from one model to another. Assume now that one server becomes

idle. If the number of customers in queue is less or equal to 1, it is obvious to see owing to

the workconserving property, that policies π1 and π2 will select the unique available customer, if

any. Otherwise, the busy period ends in both models, hence, both policies will select identically

new arrivals for service until the beginning of the next busy period. However, if the number of

customers in queue is greater or equal to 2, the selected customer for service may be di�erent in

both models. As above, we create for the remaining waiting customers in both models, the same

set of maximum patience times. Recall that until now, the number of customers who abandon

the queue is still identical for both models.

Continuing with the same arguments, we state that during the steady state, the number of
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customers who abandon the queue in Model 1 coincides with the one in Model 2. Since by

construction of the sample path the number of arrivals are also equal for both models, hence, we

conclude that the fraction of abandoning customers is unchanged, Qπ1 = Qπ2. This completes

the proof of the theorem. 2

Note that the result in Theorem (3.2) does not hold if service times are order of service

dependent, or if we allow preemption when service times are not exponentially distributed, or

if times before reneging are not identically and exponentially distributed. The proof of the

conservation of Q for any workconserving policy (with or without preemption) can be easily

obtained from Lemma (2) in Jouini and Dallery [66]. In the latter, the authors prove the result

for a GI/M/s/K + M queue with limited waiting space. Further details about that result will

be given in Chapter 6.

In Theorem (3.3), we focus on the conservation of the waiting time in queue with respect to

workconserving non-preemptive scheduling policies. We consider again a GI/GI/s + M queue,

and we focus on three di�erent de�nitions of the average waiting time. Let Wq be the average

waiting time in queue for served customers. Let W ab
q be the one for abandoning customers, i.e.,

the average spending time in queue before leaving the system without being served. Finally,

we de�ne W tot
q as the overall waiting time in queue for all customers, i.e., served as well as

abandoning customers. In Theorem (3.3), we prove an intuitive result for the conservation of

W tot
q . In addition, we show a counterintuitive result for Wq and W ab

q . Although the number of

abandonments as shown in Theorem (3.2) does not vary for any workconserving non-preemptive

scheduling policy, Wq and W ab
q do vary.

Theorem 3.3 Consider a GI/GI/s + M queue. Times before reneging are assumed to be i.i.d.

and exponentially distributed. When considering the class of workconserving non-preemptive

scheduling policies, the following holds

1. W tot
q does not depend on the scheduling policy.

2. Wq and W ab
q depend on the scheduling policy.

3. The upper (lower) bound of Wq is achieved under the FCFS (LCLS) discipline of service.

4. The upper (lower) bound of W ab
q is achieved under the LCLS (FCFS) discipline of service.

Proof. We prove the �rst statement by coupling arguments. Using the same notations as in the

proof of Theorem (3.2), we couple Model 1 and 2 using a single sample path. We showed that

the number of waiting customers in queue is identically distributed for both models. Then, the
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mean number of customers in queue, say Ltot
q , does not depend on the scheduling policy. Let λ

be the average rate of arrivals. So, we state from the Little's Law that λ W tot
q = Ltot

q . Then,

we easily deduce that W tot
q is independent of the scheduling policy, which completes the proof of

the �rst statement.

We use a simple counterexample to prove the second statement. Let us couple Model 1 and 2.

Model 1 is working under the FCFS discipline, and Model 2 is working under a workconserving

non-preemptive policy di�erent of the FCFS discipline, say π. The policy π works identically

as the FCFS discipline except when 2 customers are waiting in queue and a service completion

occurs. At that moment, π selects the younger customer (the second one), whereas the FCFS

discipline chooses of course the one in the head of the queue (the older customer.) Using a single

sample path, both models behave identically until the �rst time when two customers are waiting

in queue and a service completion occurs. Let us stop our clock temporarily. Let D be the epoch

of that event. We denote by A1 and A2 the �rst and the second waiting customers in the queue

of Model 1, respectively. The same customers are also waiting in the queue of Model 2. Let w1

and w2 be the ages in queue of customers A1 and A2, respectively. Since A1 entered in system

before A2, then w1 > w2. Also, let wFCFS
q and wπ

q be the cumulative waiting times in queue

for served customers in Model 1 and Model 2, respectively. Up to now, we have wFCFS
q = wπ

q .

Let our clock resumes ticking. The idle server in Model 1 selects the customer waiting in the

head of the queue, namely A1. However, the same server in Model 2 selects A2. Updating the

cumulative waiting times for the served customers leads to wFCFS
q = wπ

q + (w1 − w2), hence,

wFCFS
q > wπ

q . From the memoryless property of the distribution of times before reneging, we

generate a new time before reneging and a�ect it twice: to A2 (the unique customer waiting in

Model 1) and to A1 (the unique customer waiting in Model 2.) Only three non-zero probability

events are possible: either a service completion occurs, or a customer abandons the queue, or a

new customer joins the queue. Note that these events occur simultaneously for both models. If

a service completion occurs �rst, then the idle server will select the unique available customer

in queue, which allows wFCFS
q to coincide again with wπ

q . If A2 abandons in Model 1 and A1

abandons in Model 2, then wFCFS
q is still greater than wπ

q . Both quantities will never coincide

thereafter. Assume now that a new arrival occurs. From the structure of both policies, we see

that future events lead to: either A1 in Model 2 and A2 in Model 1 enter service, or A1 and A2

abandon before being served, or A1 abandons and A2 gets service. The event A1 gets service

and A2 abandons is not possible. Thereafter, if A1 abandons, then wFCFS
q and wπ

q will never

coincides again. Otherwise, we see that these quantities coincide again (in the best case) further

to a given combination of events. A central statement is that there is no possible combination,
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in any point of the sample path, which may make wFCFS
q strictly lower than wπ

q . Following the

same explanation until the stationary regime and knowing from Theorem (3.2) that the number

of served customers is the same for both models, we �nally state that the stationary average

waiting time WFCFS
q will be strictly greater than the stationary average waiting time W π

q . This

completes the proof of the second statement.

To prove the third statement, we again couple Model 1 and Model 2. The scheduling policy

for Model 1 is the FCFS policy. The one for Model 2 is di�erent of FCFS and is denoted by

π′. Then, at least for some situations, the oldest customer (waiting in the head of the queue of

Model 2) looses the higher priority for service. Taking a single sample path, let us now compare

the cumulative waiting times for served customers in Model 1, say wFCFS
q with that in Model

2, say wπ′
q . Initially and as long as both policies (FCFS and π′) select identically the waiting

customers, wFCFS
q equals wπ′

q . The �rst time when π′ selects a customer in a di�erent manner as

that in the FCFS discipline, wFCFS
q is no longer equal to wπ′

q . Since the FCFS discipline selects

the oldest customer, hence, wFCFS
q becomes strictly larger than wπ′

q . Each time FCFS and π′

select customers for service di�erently, wFCFS
q becomes more and more larger wπ′

q . In a distant

future, knowing that the number of served customers is unchanged under both policies, we state

that the largest expected waiting time of served customers, Wq, is achieved under the FCFS

policy. Applying above arguments by considering the LCLS discipline and a workconserving

non-preemptive policy di�erent of LCLS, we state that the LCLS policy is optimal subject to

minimizing the average waiting time of served customers, which �nishes the proof of the third

statement.

The fourth statement is a direct consequence of the third one. It su�ces to recall that the

overall cumulative waiting time, de�ned as wtot
q = wq + wab

q , is unchanged under both policies.

Hence, the policy that maximizes Wq will minimize W ab
q , and vice versa. This completes the

proof of the fourth statement and the theorem. 2

Note also that although the �rst moment W tot
q does not depend on the discipline of service,

the second moment of the overall waiting time and thus the full distribution does depend on the

discipline of service. As shown in Theorem (3.3), the maximum of the average waiting time for

served customers, Wq, is achieved under FCFS discipline. However, we conjecture, based on a

well known property in queueing literature, that the minimum of its variance is also achieved

under the FCFS policy. In practice, if the value of Wq under the FCFS policy is not too far from

that under another policy, thereafter, a call center manager will usually prefer the FCFS policy

owing to its fairness. We refer the reader to Avi-Itzhak and Levy [17] for more details on the
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fairness property in queueing systems.

We �nally comment that the result in Theorem (3.3) is still valid when considering also

preemptive scheduling policies, however, service times have to be exponentially distributed.

Corollary 3.1 Consider a GI/GI/s+M queue with two classes of customers A and B. Service

times and times before reneging are identically distributed for both types of customers. Then, the

overall service level Q and the overall expected waiting time W tot
q are constant for any workcon-

serving non-preemptive scheduling policy.

Proof. This is an immediate consequence of Theorem (3.2) and the �rst statement of Theorem

(3.3). It su�ces to divide arrivals into two streams of customers to get the result. 2

Denoting by cπA and cπB the respective achieved stationary service level ratios under policies

πA and πB, the following result holds.

Corollary 3.2 Consider a GI/GI/s+M queue with two classes of customers A and B. Service

times and times before reneging are identically distributed for both types of customers. Let πA

(πB) be the policy that gives strict non-preemptive priority to customers A (B.) Then, for any

workconserving non-preemptive policy, π, the achieved service level ratio in the stationary regime,

cπ, satis�es the following relation

cπA ≤ cπ ≤ cπB . (3.11)

Proof. Consider a workconserving non-preemptive scheduling policy, say π, di�erent from πA.

Then, in some situations under π, we �rst select a customer B from the queue whereas there

is at least one waiting customer A. A sample path comparison of the system working under π

with an identical one working under πA may easily show that the distribution of the number of

customers A waiting in the queue of the �rst system is greater than that for the second system.

Subsequently, the number of customers A who abandon the queue is strictly greater in the �rst

system, and equivalently, QA
π > QA

πA
. From that, one can state that

min
π∈Π

{QA
π } = QA

πA
, (3.12)

where Π denotes the class of workconserving non-preemptive policies. As shown in Theorem

(3.2), the overall fraction of customers who abandon, in the stationary regime, held constant

under any workconserving non-preemptive policy. Thus, Equation (3.12) leads to

max
π∈Π

{QB
π } = QB

πA
. (3.13)
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From Equations (3.12) and (3.13), we thereafter deduce that cπ ≥ cπA , which completes the

proof of the �rst part of the corollary. For the second part, it su�ces to follow the same argu-

ments as above to state that maxπ∈Π{QA
π } = QA

πB
, and minπ∈Π{QB

π } = QB
πB

. Thus, cπ ≤ cπB ,

which �nishes the proof of the corollary. 2

Note that values of cπ ranging out of the interval [cπA , cπB ] may be achieved through non-

workconserving policies, such as thresholds or reservations policies. These policies are indeed

useful to discriminate between customer classes. Under such policies, the lower bound for QA

(QB) is equal to that achieved under the policy that gives strict preemptive priority to type A

(B) customers. Obviously, the upper bound for QA or QB is 1. It is reached for a given type by

simply refusing service for all customers of that type.

3.3.3 Objective and Motivation

In this section, we motivate our objective with regard to the scheduling policies we aim to �nd.

Before that, we highlight some known limits of the �xed strict priority policy. Consider the policy

that assigns customers A to the high priority queue 1 and customers B to the low priority queue 2.

It is well known that this policy makes the system highly unbalanced, and the QoS of customers

B tends to be very low. Such behavior is undesirable for a call center manager. Unfortunately

as mentioned before, it is very often in practice due to the highly uncertain environment of call

centers that the workload is either underestimated, or overestimated. In both cases, the sta�ng

step is incorrectly done, and as a consequence, service levels will be much more a�ected. Let us

give an explanation. When the workload is underestimated, the QoS of customers B deteriorates

even more. The system becomes less and less stable for that class, since most of the time, the

service capacity will be assigned to handle type A customers. The unfairness is still valid when

the workload is overestimated. Customers A get a service level that approaches the maximum

while there is really no need for that. In such cases, a policy providing a slightly lower service

level for customers A and a higher level for customers B would be of interest.

Having in mind above arguments, we are now ready to formulate our objective. We assume

that scheduling of agents has already taken place, such that the number of available agents is

known in advance. We aim to develop scheduling policies allowing, even in the case of unfavorable

situations, to reach a �xed balance, during the stationary regime, for both service levels indepen-

dently of the available service capacity. We should note that such policies need no information

about the arrival process. The service level we consider here is the fraction of abandoning calls.

We also keep in mind the advantages of having lower variances of waiting times. In addition,
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we focus on studying simple policies that are easy to implement in practice, namely, priority

scheduling policies. From practical reasons, we apply some simpli�cations to the general model.

We assume that for each class of customers, interarrivals are i.i.d. and exponentially distributed.

We assume also that service times are i.i.d. and exponentially distributed. We will not focus

on the overall achieved fraction of abandoning customers, because anyway, this quantity is un-

changed for any workconserving policy. In concrete terms, we specify our objective as follows.

We aim to develop simple scheduling policies that minimizes the variance of the waiting time

in queue of VIP customers, subject to satisfying a target ratio, c∗, of customer classes service

levels.

3.4 Real-Time Scheduling Policies

The call center we consider here allows for �exible scheduling through dynamic alternate routing

and sequencing, hereafter referred to as dynamic scheduling. Actually, this is easily possible for

most call centers due to the technology development of their equipments. However, an interesting

and challenging problem is to design scheduling policies that are simple to implement and their

performances are acceptable for a call center manager. In this section, we restrict ourselves to

develop simple online scheduling policies allowing to achieve an objective ratio, c∗. We consider

several techniques that do take transient service levels into account and, hence, can be classi�ed

as online updating methods and real-time routing. The principle of our policies is that we adjust

them during the evolution of the process. The adjustments depend on the history of the process.

Without loss of generality, we only consider an objective ratio, such that, c∗ < 1. In fact,

as we shall explain in the proof of Theorem (3.4), the case c∗ = 1 reduces to the case of the

FCFS discipline of service. As for the case c∗ > 1, it is on the one hand not relevant for our

analysis because we must keep in mind that type A customers are VIP. On the other hand, even

if we would like to investigate that case, it su�ces to apply the analysis for the case c∗ < 1 by

exchanging customers A by customers B and vice versa.

We propose three scheduling policies, say π1, π2 and π3. The policies are belonging to the

class of queue joining policies, which consists in assigning arriving customers to one of the queues,

i.e., customer routing rules. The policies are dynamic, i.e., state-dependent, in the sense that

upon arrival, a policy determines a rule for the queue assignment. Our policies do not anticipate

on future events. They just react to the realization of the ratio that is determined by the his-

tory of the process. In addition, the proposed policies are easy to understand and implement in

practice. Based on simulation experiments, a comparison analysis with regard to the variance of

the waiting time is thereafter addressed in Section 3.5.
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Scheduling Policy π1

The scheduling policy π1 starts work identically as a strict priority policy giving the higher

priority to customers A. After the epoch when the �rst type B customer �nishes his service, we

apply the following assignment rule for any new arrival, which we denote by the kth arrival. Let

Dk be the epoch of that arrival. Let QA
k (QB

k ) be the achieved service level from t = 0 until Dk

for customers A (B.) Let ck be the achieved ratio from t = 0 until Dk, ck = QA
k /QB

k . If ck < c∗,

then we give high priority to customers B, that is, if the new arrival is type A, it is routed to

queue 2, otherwise, it is routed to queue 1. However if ck ≥ c∗, we give high priority to type A

customers, that is, if the new arrival is type A, it is routed to queue 1, and if it is type B, it is

routed to queue 2. The scheduling policy π1 is shown on Figure 3.2.

Scheduling Policy π2

The scheduling policy π2 starts work identically as π1 until the �rst customer B �nishes

service. Following the same notations as in the last paragraph, let a new arrival enter system.

Under π2, a customer A is always routed to queue 1. However, the assignment rule of customers

B is as follows. If ck < c∗, then a new type B arrival is routed to queue 1, otherwise if ck ≥ c∗,

it is routed to queue 2. The scheduling policy π2 is shown on Figure 3.3.

Scheduling Policy π3

The scheduling policy π3 starts work identically as the policy π1 and π2 until the �rst customer

B �nishes service. Again, following the same notations, let a new arrival enter system. Under

π3, a customer B is always routed to queue 2. However, the assignment rule of customers A is

as follows. If ck ≥ c∗, then a new type A arrival is routed to queue 1, otherwise if ck < c∗, it is

routed to queue 2. The scheduling policy π3 is shown on Figure 3.4.

The scheduling policy π1 can be immediately obtained intuitively. It allows the achieved ratio

to be updated upon each arrival such that it converges in the long-run to the objective. The

idea behind policy π2 is that we keep always customers A in the high priority queue, however

when it is necessary, we assign customers B to this queue to improve their service level (which

deteriorates the service level of customers A.) Such a rule allows to increase the transient ratio

and to keep it close to the objective. As a consequence, the ratio would converge in a distant

future to the desired value. The policy π3 can be viewed as another variant. It allows some

times to penalize customers A by assigning them to the low priority queue, which again allows

to increase the transient ratio. Our choice for policies π2 and π3 comes from the assumption,

c∗ < 1.
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Figure 3.2: Scheduling policy π1
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Figure 3.3: Scheduling policy π2
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Figure 3.4: Scheduling policy π3

Theorem 3.4 Using the above notations, the following holds.

1. π1 reaches c∗ if and only if cπA ≤ c∗ ≤ cπB .

2. π2 reaches c∗ if and only if cπA ≤ c∗ ≤ 1.

3. π3 reaches c∗ if and only if cπA ≤ c∗ ≤ 1.

Proof. We start by proving the �rst statement. Let us take our basic model working under the

scheduling policy π1. First, it is easy to see that there are two bounds for achievable ratios,

namely cπA and cπB . The reason comes from the fact that we are considering workconserving

non-preemptive policies. The lower (upper) bound, cπA (cπB ), is achieved when we give strict

priority to customers A (B.) In addition, assigning dynamically customers to the high or the

low priority queue, as under policy π1, will a�ect the quantities QA
π1

and QB
π1

in the stationary

regime, and equivalently the ratio cπ1 = QA
π1

/QB
π1
. Consider a given objective c∗ ranging between

cπA and cπB . During the transient regime, if it happens that the achieved ratio is strictly lower

than c∗, then giving the priority to customers B (which is possible under π1) allows necessarily to

go beyond c∗ after a given duration of time. Continuing in doing this, the ratio converges to cπB .

Otherwise during the stationary regime, if it happens that the achieved ratio is strictly greater

than c∗, then giving the priority to customers A (which is possible under π1) allows necessarily

to go below c∗ after a given duration of time. Continuing in doing this, the ratio converges to
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cπA . As the number of arrivals grows, these manipulations would make the di�erence between

the achieved ratios and the objective less and less low. This would allow the stationary ratio to

coincide with c∗.

Let us now focus on proving the second statement. Let cFCFS be the achieved ratio under the

FCFS policy. With the same explanation as above, one easily states that any ratio ranging from

cπA and cFCFS can be reached by the policy π2. On the one hand, The lower bound for QA is

achieved when we give strict priority to A customers. In addition at the same time, the upper

bound for QB is reached. Thus, the minimum possible achievable target ratio corresponds to

the policy cπA . On the other hand, the lower bound for QB is achieved by assigning all type B

arrivals to queue 1, which also allows to achieve the upper bound for QA. This corresponds to

the FCFS policy for all arrival types. Hence, the achieved ratio could not be worse than that

under the cFCFS policy. One may easily see that cFCFS = 1. In fact, our model working under

the FCFS manner, for each customer type and for both customer types, is simply equivalent to

a single class model working under the FCFS manner.

Finally, we note that the proof of the third statement is similar to that of the second state-

ment. This completes the proof of the theorem. 2

One may construct several auxiliary policies similar to the above ones. For example instead

of changing the priority rule at each new arrival epoch, we only change it at the arrival epoch of

the customer who �nds all servers busy and both queues empty. Then, we keep that rule until

the end of the current busy period. With regard to reaching the stationary target ratio, the latter

class of policies has the same properties as those for the class of policies π1, π2 and π3. One

drawback could be that they are less reactive to correct the transient ratio. A further possibility

is to construct similar policies by changing the priority rule cyclically; at a given arrival and

based on the transient ratio, we determine the priority rule and we keep it for a given �xed

number of the next following arrivals. Once the cycle �nishes, we determine the priority rule at

the epoch of the arrival that follows the cycle. Again, we keep that rule for the same given �xed

number of new arrivals, and so on.

In the following few sentences, we brie�y describe an interesting dual class of policies, namely

a class of call-selection policies. Whenever a server becomes idle, the policy has to decide which

customer from the queue, if any, should be selected for service. It consists to select waiting calls

by using so-called waiting time factors. When selecting a call, the idle agent considers the longest

waiting customer in each queue. From this set of customers, he chooses the customer of which

the product of the waiting time and the waiting time factor is the highest. The factor of a queue
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is the same for all agents.

The idea behind these policies was introduced by Lu and Squillante [93], and addressed in

details within our context by Pot [112] and Jouini et al. [70]. An advantage of waiting time

factors is its �exibility with regard to several di�erent routing policies that are possible. Setting

both waiting time factors equal will result in a policy that serves customers from both classes in

a FCFS order. Taking one waiting time factor equal to zero will give one of both types the full

priority over the other. Waiting time factors between 0 and 1 may lead to the target ratio while

giving low variability in the waiting time.

3.5 Simulation Results

Even though the workconserving scheduling policies we present here, lead to the target ratio and

does not a�ect the overall fraction of abandoning calls, it will a�ect the waiting time variance.

Because certainty is usually preferred to uncertainty, minimizing the variance is a logical basis

for selecting the appropriate policy. A low variance is very useful when we want to estimate

and inform customers about their queueing delays, see Armony et al. [15]. In fact, deriving

the state-dependent estimation is too complicate, even more for our context here. The best we

can do could be computing the mean value of the state-dependent waiting time. Then, a lower

variance will give more credibility to the anticipated mean waiting times, see Jouini et al. [68].

More details about predicting and announcing queueing delays are given in the next chapter. A

further advantage for a system with a low waiting time variance is related to its inherent fairness

with regard to customers delays. Serving customers within comparable delays represents indeed

an important issue for both the manager and the customer.

Both analytic and numeric methods are too complex for a direct analysis of the policies

comparison. Thus, we resort to simulation experiments to prove their e�ciency and gain useful

guidelines. We consider six systems, denoted by System 1, ..., System 6. Systems parameters

are chosen so as we get realistic scenarios. The number of servers is s = 50. The common service

rate is µ = 0.2, i.e., the mean service time for one customer is 5 min. The common reneging rate

is γ = 0.33. From one system to another, we vary the total arrival rate so as we get di�erent

�service utilizations", λA+λB
sµ . We choose, λA = λB = 4.5, 4.75, 4.9, 4.95, 5, and 6, respectively.

The �service utilization" is increasing (starting from 90% in system 1 until 120% in system 6.)

We choose balanced cases for both arrival processes so that we facilitate the comment of the

simulation results. Recall that abandonments make our systems unconditionally stable. The

simulations are done for the target ratios c∗ = 0.5, 0.7 and 0.9. We determined for each system

the interval [cπA , cπB ], and we checked that the values c∗ = 0.5, 0.7 and 0.9 are ranging in all of
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these intervals. For each system, we give the performance measures under policies π1, π2 and π3,

as well as those under policy πA (high priority for type A customers.) The simulations results

are presented in Table 3.1 below for c∗ = 0.7, and in Tables B.1 and B.2 of Appendix B for

c∗ = 0.5 and 0.9, respectively. The rows corresponding to the quantity c are to indicate the

achieved stationary ratio under each scheduling policy.

The end of section is devoted to a discussion of the simulation results. As expected, the total

fraction of abandoning calls, Q, is independent of the scheduling policy. The negligible deviations

in the values presented in Tables 3.1, B.1 and B.2 are due to the simulation duration. These

quantities will necessarily coincide when running the simulations for a very long duration. We

check from the experiments that the target ratio is always met by policies π1, π2 and π3, which

agrees with Theorem (3.4). For each system, the value of the ratio under policy πA represents a

lower bound for the achievable ratio under any workconserving non-preemptive scheduling policy.

We can not do better when considering that class of policies.

In what follows, we address a comparison analysis with regard to the standard deviation of

the waiting time in queue. We do not conduct a rigorous analysis in the sense that we do not

prove our statements. Such a work is of great value. We leave it for a future research. However,

we give here some general ideas and intuitive explanations to support the claims we derive.

For type A customers, starting from the lower value, most experiments show that the standard

deviation values are structured in turn for policies πA, π2, π3 and π1. Let us give an intuitive

explanation. The reason is basically related to the well known property in queueing theory which

claims that the FCFS discipline minimizes waiting time variance (time in queue and in system)

when the queue discipline is service time independent. We refer the reader to Randolph [113] for

more discussion. The best we can do for customers A under a workconserving non-preemptive

policy is to not give at any time the higher priority to customers B. Such situation allows

customers A waiting times to be as low as possible. This is the case for policy πA. Next, since

the discipline of service within queue 1 is FCFS, then πA should lead to the lower variance. With

regard to the order of service of customers A, policy π1 deviates more than π2 and π3 from the

FCFS discipline. This tells us that π1 has the higher variance. When comparing policies π2 and

π3, one may see that on the contrary of π3, policy π2 respects the FCFS order for customers A,

which allows it to ensure a lower variance than that under π3.

For type B customers, starting from the lower value, we conclude from the majority of the

experiments that the standard deviation values are structured in turn for policies π3, π2, π1 and

πA. When comparing policies π1, π2 and π3, the explanation is identical to that conducted for

the �rst comment. As for policy πA, the only explanation we have is related to the waiting
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πA π1 π2 π3

c 0.302 0.700 0.700 0.700
QA 1.336% 2.057% 2.056% 2.203%
QB 4.430% 2.938% 2.937% 3.146%

System 1: Q 2.883% 2.497% 2.496% 2.675%
λA = λB = 4.5 WA 0.039 0.055 0.057 0.061

WB 0.114 0.077 0.078 0.085
W 0.076 0.066 0.068 0.073
σA 0.104 0.194 0.164 0.174
σB 0.332 0.255 0.244 0.244
σ 0.247 0.227 0.207 0.212

c 0.282 0.700 0.700 0.700
QA 1.840% 3.446% 3.445% 3.449%
QB 6.518% 4.922% 4.922% 4.927%

System 2: Q 4.180% 4.184% 4.184% 4.188%
λA = λB = 4.75 WA 0.053 0.092 0.097 0.096

WB 0.170 0.128 0.131 0.134
W 0.110 0.110 0.114 0.115
σA 0.119 0.260 0.215 0.220
σB 0.407 0.339 0.318 0.308
σ 0.303 0.303 0.272 0.268

c 0.267 0.700 0.700 0.700
QA 2.290% 4.465% 4.469% 4.464%
QB 8.564% 6.378% 6.385% 6.377%

System 3: Q 5.427% 5.421% 5.427% 5.420%
λA = λB = 4.9 WA 0.067 0.119 0.126 0.125

WB 0.225 0.167 0.170 0.174
W 0.143 0.143 0.148 0.150
σA 0.131 0.302 0.246 0.252
σB 0.472 0.392 0.365 0.351
σ 0.351 0.350 0.311 0.306

c 0.258 0.700 0.700 0.700
QA 2.731% 4.845% 4.874% 4.837%
QB 10.597% 6.921% 6.963% 6.910%

System 4: Q 6.664% 5.883% 5.918% 5.874%
λA = λB = 4.95 WA 0.080 0.129 0.138 0.136

WB 0.280 0.182 0.186 0.190
W 0.176 0.155 0.162 0.163
σA 0.143 0.317 0.257 0.263
σB 0.533 0.411 0.383 0.366
σ 0.396 0.367 0.326 0.319

c 0.254 0.700 0.700 0.700
QA 2.611% 5.216% 5.225% 5.222%
QB 10.076% 7.452% 7.464% 7.460%

System 5: Q 6.343% 6.334% 6.344% 6.341%
λA = λB = 5 WA 0.076 0.139 0.148 0.147

WB 0.266 0.196 0.199 0.205
W 0.167 0.167 0.174 0.176
σA 0.139 0.331 0.266 0.274
σB 0.516 0.428 0.397 0.380
σ 0.383 0.383 0.338 0.332
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πA π1 π2 π3

c 0.189 0.700 0.700 0.700
QA 5.598% 14.597% 14.516% 14.516%
QB 29.649% 20.853% 20.737% 20.737%

System 6: Q 17.623% 17.724% 17.626% 17.626%
λA = λB = 6 WA 0.167 0.389 0.438 0.432

WB 0.889 0.574 0.577 0.624
W 0.475 0.478 0.505 0.524
σA 0.187 0.634 0.428 0.463
σB 0.928 0.793 0.679 0.622
σ 0.718 0.721 0.567 0.554

Table 3.1: Simulation experiments for c∗ = 0.7

time values. The larger waiting times of type B customers are achieved under πA, because of

their lower priority. However due to uncertainty in arrivals, reneging and service times, there is

a non-zero probability that some customers B enter service without waiting or within a short

delay. This allows their waiting times variance to be as a consequence the higher.

Recall that a further investigation is required. We only gave some directions to compare the

achieved values of variances. For instance, the comparison should lie in the values of λA and λB,

also in the objective c∗. An objective close to 1 would make our policies work in a similar manner

than that of the FCFS discipline, whereas an objective far from 1 (being under or beyond) would

make the policies similar to the strict priority policy. Based on the analysis here, we can not

distinguish a best policy. However, one may recommend policy π2. First, it reaches the objective

ratio. Second, it gives (in most cases) the lower variance of VIP customers waiting times. Third,

it allows to have a �good" variance for customers B, as well as for all customer types.

3.6 Extensions

In this section, we discuss some extensions of the analysis of this work. In Section 3.6.1, we

investigate the extension of our online policies to the case of three customer classes. In Section

3.6.2, we focus on a call center working day. We assume that the objective ratio is achieved for

every period of the day, and we investigate whether a balance is also reached for the whole day.

3.6.1 Extension to Three Customer Classes

In this section, we tackle the extension of the proposed scheduling policies to the case of three

customer classes. We consider a generalization of our call center queueing model with three

customer types A, B and C. In addition, the queueing model has three in�nite queues denoted

by queue 1, 2 and 3. Our basic goal here is to discuss the usefulness of our online policies
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subject to reaching a proportionality on the service levels. We denote the stationary fractions

of abandoning calls of type A, B and C by QA, QB and QC , respectively. In the case of three

classes, we have to de�ne two objective ratios. Without loss of generality, the �rst objective

ratio, say c∗1, is de�ned for types A and B by c∗1 = QA/QB. The second, say c∗2, is de�ned for

types B and C by c∗2 = QB/QC . As a consequence, the ratio QA/QC will be equal to c∗1 × c∗2,

which we denote by c∗3.

For workconserving non-preemptive policies, let S be the set of all feasible couples of ratios

(QA

QB , QB

QC ). Thus the following policy, say π′1, allows to reach any objective (c∗1, c
∗
2), such that

(c∗1, c
∗
2) ∈ S.

Scheduling Policy π′1

The scheduling policy π′1 is an extension of the policy π1. For its initialization, it starts work

identically as a strict non-preemptive policy giving the higher priority to customers A, then B,

and customers C have the lower priority. After the epoch when at least one type B customer and

one type C customer have �nished their service, we apply the following assignment rule for any

new arrival, denoted by the kth arrival. Let Dk be the epoch of that arrival. Let QA
k , QB

k and

QC
k be the achieved service levels from t = 0 until Dk for customers A, B and C, respectively.

Let c1,k, c2,k and c3,k be the achieved ratios from t = 0 until Dk, i.e., QA
k /QB

k , QB
k /QC

k and

QA
k /QC

k , respectively.

• If c1,k ≥ c∗1, then we give the priority to type A over type B. Otherwise, we give the

priority to type B over type A.

• If c2,k ≥ c∗2, then we give the priority to type B over type C. Otherwise, we give the

priority to type C over type B.

• If c3,k ≥ c∗3, then we give the priority to type A over type C. Otherwise, we give the priority

to type C over type A.

From the previous tests, we therefore determine a strict priority level for each customer type.

So, customers with the highest priority are assigned to queue 1. Those with the second higher

priority are assigned to queue 2. Finally, those with the lower priority are assigned to queue 3.

Thereafter based on its type, the new arrival is treated under this queue joining rule. The queue

joining rule is updated for every new arrival. The scheduling policy π′1 is shown on Figure 3.5.

For example, let a new arrival occurs. Based on the history of the process, assume that we have

c1,k < c∗1, c2,k ≥ c∗2 and c3,k < c∗3. Thus, starting from the highest priority, the priority levels are

structured in turn for type B, C and A. Hence for the next arrival, types B, C and A have to

be assigned to queues 1, 2 and 3, respectively.
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Figure 3.5: Scheduling policy π′1
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Figure 3.6: Scheduling policy π′2
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Figure 3.7: Scheduling policy π′3
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Figure 3.8: Scheduling policy π′4

Let us remember that type A customers are more valuable for the company than type B

ones, who are however more valuable than type C customers. Then, both objective ratios c∗1 and

c∗2 should be in practice strictly lower than 1. In such a case, the scheduling policy π′2, shown

on Figure 3.6, should perform better with regard to the variance of the waiting time in queue.

However, it could not achieve any objective in S (c∗1 > 1 or c∗2 > 1.) One may also propose

additional alternative policies, namely π′3 (Figure 3.7) and π′4 (Figure 3.8.) The latter policies

are di�erent of π′2 in the sense that they allow to achieve values beyond 1 for c∗2. Note that it

would be interesting to investigate similar policies for models with only two queues instead of

three. It would be also interesting to compare the proposed policies in this section with regard

to the variance of the waiting time and the region of feasible objectives. We leave this work for

a future research.

3.6.2 Objective Ratio for the Whole Day

The origin of our optimization problem, i.e., satisfying a giving objective ratio, is as follows. In

practice, a call center manager aims initially to reach some giving di�erentiated service levels,

for example QA∗ and QB∗ for types A and B, respectively. As mentioned before, the sta�ng

level or the service capacity are not a decision variables for our problem. As a consequence, the

objective service levels may not be reached exactly. For that reason, the purpose of our call

center manager becomes reaching a ratio of the achieved service levels which equals that of the
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objective ones, QA∗/QB∗ = QA/QB. The value of the objective ratio c∗ de�ned in the beginning

of this chapter is, indeed, the ratio QA∗/QB∗.

Let us now consider the general case of a call center with m customer types. For 1 ≤ i ≤ m,

Qi∗ denotes the objective service level for type i customers, and under a giving scheduling policy,

Qi denotes the achieved one. Based on the previous remark, the constraint analyzed in this

chapter, with regard to the ratio of the service levels is equivalent to

Qi

Qi∗ = δ, for i = 1..m, (3.14)

where δ is the new objective ratio. The quantity δ translates an objective of proportionality

between achieved and target service levels.

After this brief development, we are now ready to tackle the major question of this section.

It is well known that in most call centers, the arrival rate is time varying (according to the period

of day, day of the week, holidays, etc.) The number of agents is also �uctuating over the day. In

practice, the change in these parameters are small enough, and are slow relative to the speed at

which the call center reaches the steady state. It is a plausible assumption to consider constant

parameters within each half-hour interval of time. We refer the reader to Gans et al. [40] and

Garnett et al. [44] for more details. Note that the analysis in the core of this chapter focuses on a

giving period of the day where the parameters of the system are assumed to be constant. In this

context, it would be interesting to wonder whether there is a conservation of the proportionality

during the whole day, knowing that we have reached that proportionality for each period of the

day.

In mathematical terms, let us divide the day to n distinct periods. Let us assume that
Qi

t

Qi∗
t

= δt for i = 1..m and t = 1..n, where Qi
t and Qi∗

t denote, respectively, achieved and objective

service levels for type i customers during the period t. For simplicity, we assume that Qi∗
t is held

constant for all periods, Qi∗
t = Qi∗. Thereafter, what is the condition under which we have for

all customer types Qi

Qi∗ = δ, where δ is a given constant? We give Proposition (3.1) to answer

this question.

Proposition 3.1 Assume that Qi
t

Qi∗ = δt for all i, t ∈ [1..m] × [1..n]. Let λi
t be the mean arrival

rate during the period t for type i customers, and λt that for all types. If λi
t

λt
= βi, where βi is a

given constant for i = 1..m. Then,

Qi

Qi∗ = δ, for all i = 1..m, (3.15)

where δ is a given constant.
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Proof. Let i, t ∈ [1..m] × [1..n]. Let N tot,i
t be the total number of type i arrivals during the

period t. Let Nab,i
t be the number of type i abandoning customers during t. Then, one may

write Qi
t = Nab,i

t

Ntot,i
t

, and for the whole day, one has

Qi =
∑n

t=1 Nab,i
t∑n

t=1 N tot,i
t

. (3.16)

Thereafter,

Qi

Qi∗ =
Nab,i

1 + Nab,i
2 + ... + Nab,i

n

Qi∗ ·∑n
t=1 N tot,i

t

=
∏n

t=1 N tot,i
t∑n

t=1 N tot,i
t

·
(

Nab,i
1

Qi∗ ·∏n
t=1 N tot,i

t

+
Nab,i

2

Qi∗ ·∏n
t=1 N tot,i

t

+ ... +
Nab,i

n

Qi∗ ·∏n
t=1 N tot,i

t

)

=
∏n

t=1 N tot,i
t∑n

t=1 N tot,i
t

·
(

δ1∏n
t=1, t6=1 N tot,i

t

+
δ2∏n

t=1, t 6=2 N tot,i
t

+ ... +
δn∏n

t=1, t 6=n N tot,i
t

)
. (3.17)

Assume that λi
t

λt
= βi, or equivalently, Ntot,i

t

Ntot
t

= βi, where N tot
t denotes the total number of arrivals

for all types during t. Hence, we get for i, j ∈ [1..m]

N tot,i
t =

βi

βj
·N tot,j

t . (3.18)

For i, j ∈ [1..m], applying Equation (3.18) in Equation (3.17) leads to

Qi

Qi∗ =

∏n
t=1

βi

βj ·N tot,j
t

βi

βj ·
∑n

t=1 N tot,j
t

·

 δ1∏n

t=1, t 6=1
βi

βj ·N tot,j
t

+
δ2∏n

t=1, t 6=2
βi

βj ·N tot,j
t

+ ... +
δn∏n

t=1, t6=n
βi

βj ·N tot,j
t




=
∏n

t=1 N tot,j
t∑n

t=1 N tot,j
t

·
(

δ1∏n
t=1, t6=1 N tot,j

t

+
δ2∏n

t=1, t6=2 N tot,j
t

+ ... +
δn∏n

t=1, t 6=n N tot,j
t

)
. (3.19)

Using Equation (3.17), Equation (3.19) implies the following relation

Qi

Qi∗ =
Qj

Qj∗ , for any i, j ∈ [1..m]. (3.20)

Finally, we conclude that the proportionality of the achieved and the objective service levels is

conserved for the whole day. This completes the proof of the proposition. 2

In a real call center case, arrivals are divided into two types. The �rst type is �rst-attempt

calls, also referred to as fresh calls. The second type represents retrial calls. In most cases, the

required condition in Proposition (3.1) holds roughly for fresh calls and not necessarily for both
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types, i.e., observed calls.

3.7 Conclusions and Further Research

We focused on a fundamental short-term problem for the management of call centers. We

considered a two-class call center and developed real-time scheduling policies that determine the

rule of assignment of customers, upon arrival, to waiting lines. We focused on service levels

criteria related to the fraction of abandoning customers and the variance of the queueing delay.

These policies are characterized to be relevant in practice. They are easy to understand for

managers, predictable and easy to implement. Addressing exact analyzes for such problems is

often too complex, and a challenging issue is to design dynamic scheduling policies that are

simple, predictable and whose performance is good in an appropriate sense.

First, we gave some structural results in order to better understand the impact of scheduling

policies on the performance measures of interest. Second, we proposed several dynamic scheduling

policies allowing to meet a target ratio between the fractions of abandoning calls. Thereafter,

we conducted a simulation study to compare the proposed policies with regard to the achieved

variances of waiting times. Finally, we presented two possible extensions. In the �rst extension,

we focused on a call center model with three customer types. In the second extension, we

addressed one issue dealing with our objective for the whole call center day, and not only one

period of the day.

An interesting subject for future research would be to investigate static scheduling policies

analogous to those proposed in the core of this chapter. Let us give further details. The idea

behind static policies comes from Aguir et al. [7]. In their work, the authors consider an

identical model to that described in Section 3.3.1, whereas they do not allow customers to

renege while waiting in queue. They characterize a class of optimal static policies subject to

satisfying di�erentiated performances for customer classes. The proposed policies are based on

two parameters pA and pB. The quantity pA (pB) represents the static probability to assign new

type A (B) arrivals to the queue with the highest priority, i.e., queue 1. Hence a new type A

arrival is routed to queue 2 with probability 1− pA, and a new type B arrival is routed to queue

2 with probability 1−pB. Unfortunately, such analysis is untractable when considering reneging.

Closed-form expressions for the quantities QA and QB are not indeed not available. Even an

exact numerical computation is no possible. Here we only give an alternative idea to tackle the

problem and leave a rigorous analysis for future research.

Given an objective c∗, a possible method to get the probabilities pA and pB would be as

follows. We simulate our system under a dynamic policy that achieves the objective ratio, as
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those proposed in Section 3.4. At the end of the simulation run, we take the proportions of types

A and B customers assigned to queue 1. These quantities are thereafter assigned to pA and pB,

respectively. It is easy to see for example that for policy π2, pA = 1, and for policy π3, pB = 0.

One would expect that the static policies yield to higher variances of the waiting times than

those achieved under their corresponding online policies. This may be due to a known property

in queueing theory. The general idea is that dynamic policies achieve the lower variance of

the waiting time, then cyclic policies, and �nally static policies (based on random assignment)

achieve the higher values. However, we should note that static policies are easier to implement

in practice.
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Chapter 4

Modeling Call Centers with Delays
Information

In this chapter, we study the e�ect of informing customers about their anticipated

delays in a call center with impatient customers. First, we consider a single class call

center model. We propose a method for modeling the customer reaction with regard

to delays information. Thereafter, we conduct a numerical comparison between per-

formance measures of both models with and without information. The experiments

show how the expected customer satisfaction in the model with information would

tip the scales in favor of that model. Second, we extend the analysis to the case of a

two-class call center with strict priority. Finally, some practical issues are discussed.

In particular, we propose a method of delays announcement referred to as announce-

ment by increments. We shown how this method would improve the system behavior

through reducing errors approximations.

An extended version of this chapter is the working paper Jouini, Dallery and Ak³in

[68].

71
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4.1 Introduction

As in Chapter 3, this chapter deals with a real-time issue related to operations management

in call centers. We focus on analyzing call centers where the service provider communicates

anticipated delays to customers upon their arrival. The main reason of informing customers

about their queueing delays is to alleviate congestion and reduce customer dissatisfaction with

waiting.

Information about anticipated delays is specially important in service systems with invisible

queues (tele-queue) such as call centers. In such systems, the uncertainty involved in waiting is

higher than that in systems with visible queues. Upon arrival and during their waiting, customers

have no means to estimate queue lengths or progress rate. So, the feelings of frustration and

anxiety increase over their sojourn in queue. We expect that delays information would avoid

such situations, and make the waiting experience more acceptable. Zakay [144] stipulates that

waiting information may distract customers attention from the passage of time. Hence, they

may perceive the length of the wait as shorter. Furthermore, we point out a vicious circle in

call centers. When a new arrival customer perceives that his anticipated delay is too long, he

could balk upon arrival without joining the system. This feature would considerably reduce

customers reneging in queue, which allows to make the system more stable in the sense that the

variability of queueing delays is reduced. The latter would in turn improve the quality of delays

information we give to customers, which even more reduces customers reneging, and so on. A

further argument for predicting delays may be to help managers in reorganizing their facility.

For instance in case of large predicted delays, the manager recognizes the need of increasing the

sta�ng level.

Predicting delays for arrival customers is state of the system dependent. This is di�erent from

estimating stationary performances and usually makes the analysis untractable. In the context

of prediction and announcement of delays, an extra layer of complexity should be noted. The

analysis becomes more di�cult since we have to take into account the description of the system

in addition to the announcements given to each waiting customer in queue. Existing research

projects often look for approximations, as announcing the stationary mean waiting time, or

announcing the actual delay of the last customer (motivated by large systems in an overload

regime, see Armony et al. [15].) In this work, we basically use exact methods. Paralleling

to the relevant Whitt's [135] paper, we �rst consider a single call center model with impatient

customers and working under the FCFS discipline. We derive our main insights from analyzing

this simple model. Next, we turn to extend the results to a quite complex multiclass priority

system where the anticipated delay for a given type of a new customer may be a�ected by
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future arrivals of other types. The performance evaluation of this work is basically related to the

transient analysis of birth-death processes. The analysis is somewhat straightforward, whereas

we use some results derived from Chapter 5 when addressing the multiclass call center case. Note

that the Markovian assumptions required for the use of birth-death processes are not necessarily

valid for all call centers cases, especially for service times and times before reneging. However

as already mentioned in Chapter 3, they provide a good approximation of the general model

performances. These assumptions are in addition helpful to gain practical insights.

A central outcome of this work deals with the critical issue of the impact of delays information

on customers behavior. This is at the same time interesting and di�cult due to the attractive

human element governing the call center environment. Starting from each model (single and

multiclass), we detail and justify the quantitative building of the new model with delays infor-

mation. In our models, customers has the opportunity to balk in response to their anticipated

delay. Further to the balking reaction, it has been shown in a real experience that the reneging

experience may also change in response to delays information, see Feigin [37]. We model that

e�ect for the simple single class call center. We then extend the model of Whitt [135] by letting

already informed customers renege even after having chosen to join the queue. We propose a

method for approximating the new reneging experience by pertaining it to the quality of the

delay information. To show the bene�ts of moving to a call center with delays information,

we conduct a quantitative comparison between both models with and without announcement.

We describe how balking in the second model may reduce customers reneging. In practice, this

feature makes the second model preferable because reneging customers are the costliest. For

example, a customers who balks has a higher probability to call back that that of a customer

who reneges. A reneging customer leaves the system with frustration and loosing trust in the

service provider. However, a balking customer leaves the system based on an information. This

information would avoid to loose business because it is perceived by balking customers as an

invitation to call back when the system will be able to serve them within a reasonable delay.

In this chapter, we try to be as near as possible to reality in order to get useful guidelines

for practitioners. Once we get in hand the predicted waiting time distribution of a new arrival,

we investigate how the service manager should pro�t from that information to make the an-

nouncement. For instance, he may decide to provide the mean or any other percentile of the

distribution. However, we should be careful: From the one side, informing a short waiting time,

which is likely to underestimate the actual waiting, might reduce the reliability of the service

provider in the eyes of the customers. On the other side, informing large waiting times increases

the number of balking customers while having a system that might allow to serve customers
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within shorter and reasonable delays.

The remainder of this chapter is structured as follows. In Section 4.2, we give a literature

review related to the present work. In Section 4.3, we develop the main analysis for a single

class call center. In Sections 4.3.1 and 4.3.2, we describe the basic model and compute the

performance measures of interest, respectively. In Section 4.3.3, we build the new call center

model by incorporating delays announcement. The performance measures of the new model are

thereafter derived in Section 4.3.4. Next, we conduct in Section 4.3.5 a numerical comparison

of both models with and without delays information. In Section 4.4, we tackle the extension of

the analysis to a two-class priority call center. We specify both models with and without delays

announcement in Sections 4.4.1 and 4.4.2, respectively. To characterize the two-class model with

announcement, we explicitly derive in Section 4.4.3 the �rst two moments of virtual delays for

each customer type. In Section 4.5, we move to investigate some practical issues. In Section

4.5.1, we give a helpful approximation for virtual delays which may reduce numerical di�culties

in practice. In Section 4.5.2, we propose a method for announcing delays, namely announcing

delays by increments. In Section 4.6, we give some concluding remarks and discuss extensions.

4.2 Literature Review

The literature close to the work in this chapter spans two main areas. The �rst one deals with

the prediction and announcement of delays seen under a queueing problem perspective. The

second area is related to the psychology of waiting and the qualitative impact of announcing

delays on the customer behavior.

As for the �rst area, we refer the reader to the relevant work of Whitt [137]. The author

focuses on estimating state-dependent delays. He presents both accurate methods and approxi-

mations of waiting times in di�erent situations. Models under consideration are queueing systems

with di�erent customer classes, exponential and non-exponential service times. Nakibly [103] re-

views several classical results, and extends the analysis to some other complex models with

priorities. As already mentioned, addressing such problems is known to be di�cult. It is often

related to the transient analysis of birth-death processes, and in general to Markov chains. The

literature dealing with birth-death processes is extensive and growing. We refer the reader to

Section 5.1 of Chapter 5 for further details. The problem of predicting and announcing delays

have recently received a lot of attention in the �eld of call centers. Letting customers renege is

a central feature that makes the study of value in practice. The reader is referred to Section

3.2 of Chapter 3 for a review of papers about queueing models, and in particular call centers

models, with impatient customers. Let us now give some literature on call centers with delays
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information. Whitt [135] models and quanti�es the e�ect upon performance, in a Markovian call

center model, of giving state information to customers. Taking general distributions for service

times and times before reneging, the authors in Armony et al. [15] develop methods to study

that e�ect. The methods are based on �uid approximations. Guo and Zipkin [51] consider a

simple queueing model where three levels of information can be provided to customers, namely

no information, partial information and full information (the exact waiting time). Under di�er-

ent assumptions of parameters distributions, the authors thereafter investigate how information

about delays can enhance system performances. Armony and Maglaras [13] consider a slightly

di�erent model. Based on his anticipated delay information, one customer may balk, elect to

wait, or leave a message. When a message is left, the service provider calls back the customer

within a guaranteed time. The authors estimate the guaranteed time under heavy-tra�c regimes.

Further references on the subject include those by Ward and Whitt [129], Salah [5], Armony and

Maglaras [13] and references therein. We should note that although the modeling approach

in the literature di�ers from one work to another, the �ndings usually con�rm the bene�ts of

communicating delays to customers.

The second area of literature close to this chapter is related to psychology of waiting. The

literature on customers in�uenced by delay information begins with Naor [104]. An overview of

customer psychology in waiting situations, including the impact of uncertainty, can be found in

Maister [94]. Taylor [124] considers the relationship between delays and evaluation of service. He

shows how the delay may lead to lower evaluation of service by creating both feelings of anger

and uncertainty. Providing information about anticipated delays a�ects both customer satisfac-

tion and customer behavior. A survey on the relationship between information and customer

satisfaction can be found in Hui and Tse [59]. In Katz et al. [73], the authors describes an

empirical study conducted in a bank. They show that informing about anticipated delays results

in shorter perceived waiting times. A similar result was also found in the work of Carmon and

Kahenman [32]. Hui and Zhou [60] show in their experience that informed customers appear to

maintain a sense of control during the wait, which in turn a�ects the quality of service evaluation

through the perceived waiting duration.

4.3 Single Class Call Center

In this section, we address the analysis of a call center with a single group of agents, serving a

single class of customers. In Section 4.3.1, we describe the basic model of the call center without

delay information. In Section 4.3.2, we derive its performance measures expressions. Note that

some performance measures of that basic model were already derived by Whitt [135]. In Section
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4.3.3, we propose a new model to incorporate the change of customers behavior with respect to

announcing delays. In particular, we let customers balk upon arrival based on the information we

provide to them. In addition, we let them renege even they already elect to wait, and we propose

a method to model that feature. The performance measures of the new model are thereafter

derived in Section 4.3.4. Finally, we conduct in Section 4.3.5 a numerical comparison between

both models with and without delays information.

4.3.1 Basic Model

Consider the queueing model of the call center with a single class of customers. The model

consists of one in�nite queue, and a set of s parallel, identical servers representing the set of

agents. All agents are able to answer all customers. The call center is operated in such a way

that at any time, any call can be addressed by any agent. So upon arrival, a call is addressed

by one of the available agents, if any. If not, the call must join the queue. Customers waiting

in queue are served in order of their arrival, i.e., under the FCFS discipline. Interarrival times

as well as successive service times are assumed to be i.i.d. and exponentially distributed. The

arrival rate is λ, and the service rate is µ. In the same manner as in Chapter 3, we let customers

be impatient. Recall that abandonments make the system unconditionally ergodic. Times before

reneging are assumed to be i.i.d. and exponentially distributed with rate γ. We refer the reader

to Section 3.3.1 of Chapter 3 to explain our motivation of assuming identical distribution of

patience for all waiting customers independently of their position in queue. Finally, retrials are

ignored, and reneging is not allowed once one customer starts his service. Following similar

arguments, the call center can be viewed as an M/M/s + M queueing system. The model is

referred to as Model 1.

4.3.2 Performance Measures without Announcement

In this section, we tackle the analysis of the original call center model presented in Section 4.3.1.

Most of the quantitative analysis are inspired from Whitt [135]. Our approach is based on system

states probabilities seen by a randomly chosen new arrival. From the PASTA property (Poisson

Arrivals See Time Averages), these probabilities coincide with those seen by an outside random

observer, that is simply the probabilities that the system is in a given state at a random instant.

The PASTA property is based on the memoryless property of the Poisson process, which allows

to generate a sequence of arrivals that take a random look at the system. We refer the reader to

Kleinrock [81] for further explanation, and Wol� [141] for a rigorous proof.

We denote the system state by a random variable taking non-negative integer values rep-
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resenting the number of customers in system at a given instant. Let p1(i) be the steady state

probability that i customers are present in Model 1 at a random instant, i ≥ 0. To compute the

steady state probabilities, we de�ne a birth-death model as shown on Figure 4.1. The birth rate

is constant, it represents the arrival intensity λ. When the number of customers present in sys-

tem is less than or equal to s, all departures are only service completions. Otherwise, departures

may be service completions or abandonments. Thereby, the death rate is iµ for 0 ≤ i ≤ s, and

sµ + (i− s)γ for i > s.

 

sµ + γ 2µ µ 

λ 0 1 2 s-1 s … … 

sµ 

s+1 s+2 
sµ + 2γ λ λ λ λ 

Figure 4.1: Birth-death process for Model 1

In a distant future, one has a set of in�nite recursive relations relating the steady state

probabilities. By adding the ergodicity condition which holds for any γ > 0, we go on to solve

by iteration and get the following solutions

p1(i) =
λi

i! µi
· p1(0) for 0 ≤ i ≤ s, and p1(i) =

λi

s!µs
∏i−s

j=1(s µ + j γ)
p1(0) for i > s, (4.1)

where p1(0) is the stationary probability to have no customers in system. It is given by

p1(0) =

(
s∑

i=0

λi

i! µi
+

1
s!µs

∞∑

i=s+1

λi

∏i−s
j=1(s µ + j γ)

)−1

, (4.2)

which enables us to compute all system states stationary probabilities. Thus, the probability of

immediate service, say Pis,1, the mean number of customers in queue, say Lq,1, and the mean

number of customers in Model 1, say Ls,1, can be calculated as

Pis,1 =
s−1∑

n=0

p1(n), Lq,1 =
∞∑

n=1

n · p1(s + n), and Ls,1 =
∞∑

n=1

n · p1(n). (4.3)

Let us proceed to compute the probability for a new arrival to enter service, the �rst and

second moments of its conditional waiting time in queue given that service is completed. We

denote by P1(S) the probability of being served. When a new customer �nds less than s customers

in system, he gets service immediately. This is equivalent to �nd at least one server idle, and it

occurs with the probability Pis,1 given in Equation 4.3. Let us now consider the complementary



78 Modeling Call Centers with Delays Information

event, i.e., assume that a new customer �nds all servers busy and n waiting customers in queue,

n ≥ 0. To analyze such situation, we de�ne a pure-death process with a state-dependent death

rates, see Figure 4.2. The process is derived from that in Figure 4.1, whereas we only consider

states ranging from s to s + n + 1 (the n + s already existing customers plus the new arrival.)

We do not consider birth rates because all future arrivals have no priority over the customer of

interest (the discipline of service is FCFS.)

 
s s+1 s+n+1 

sµ + 2 γ sµ + (n+1) γ s+n … 

sµ + γ sµ + n γ 
Figure 4.2: The customer s + n + 1

The process starts from state s + n + 1, i.e., all servers are busy and n + 1 customers are

waiting in queue (including the new arrival of interest.) The process moves from state s + i

to state s + i − 1, 1 ≤ i ≤ n + 1, further to either a service completion with rate sµ, or an

abandonment with a rate equals to the number of waiting customers times the reneging rate,

iγ. Consider the nth customer waiting in queue, and let ψn,1 be the probability that the process

state moves down due to the reneging of that customer. One may see that

ψn,1 =
γ

sµ + nγ
. (4.4)

Let Ψn,1 be the probability that the customer n in queue enters service. This event means that

the customer does not renege in all positions in queue, starting from position n, until being

served. Hence, the following holds

Ψn,1 =
n∏

i=1

(1− ψi,1) . (4.5)

Conditioning on a state seen by a new arrival and averaging thereafter over all possibilities, the

probability of being served is given by

P1(S) =
s−1∑

n=0

p1(n) +
∞∑

n=0

p1(s + n) ·Ψn+1,1. (4.6)

As for computing the probability of reneging, say P1(R), it su�ces to take the complementary

probability, P1(R) = 1− P1(S).

Let us now compute the �rst and second moments of the conditional waiting time given

that service is completed. To do so, a direct method is quite complicated. We make a small
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roundabout as in Whitt [135]. We de�ne the random variable, say X1, of the stationary waiting

time in queue. We let X1 be 0 if the customer reneges. The quantities we are looking for are

thereafter E(X1 | S) and E(X2
1 | S). To compute the moments of X1, we de�ne a further

random variable Xn,1 measuring the state-dependent duration to empty the queue of n waiting

customers. Denoting by E(Xn,1) and E(X2
n,1) the respective �rst two moments of Xn,1, the

mean of X1 say E(X1), and its second moment say E(X2
1 ), are thereby given by E(X1) =

∑∞
n=0 p1(s + n)×Ψn+1,1 × E(Xn+1,1), and E(X2

1 ) =
∑∞

n=0 p1(s + n)×Ψn+1,1 × E(X2
n+1,1).

Consider a new arrival �nding himself in the nth place in queue. The distribution of Xn,1 is

the convolution of n independent exponential distributions with parameters sµ + γ, sµ + 2γ, ...,

and sµ + nγ, which is an hypoexponential distribution. Hence, the �rst and second moments of

Xn,1 are
∑n

i=1
1

sµ+iγ and
∑n

i=1
2

(sµ+iγ)2
, respectively. We then deduce that

E(X1) =
∞∑

n=0

p1(s + n) ·Ψn+1,1 ·
(

n+1∑

i=1

1
sµ + iγ

)
, (4.7)

E(X2
1 ) =

∞∑

n=0

p1(s + n) ·Ψn+1,1 ·
(

n+1∑

i=1

2
(sµ + iγ)2

)
. (4.8)

Now, we are ready to get the �rst and second moments of the conditional waiting time given

that service is completed. Let E(X1 | R) and E(X2
1 | R) be the �rst and second moments of

the conditional waiting time in queue given that service is not completed (customers renege),

respectively. Since by construction of X1 we have E(X1 | R) = E(X2
1 | R) = 0, we thereafter

deduce that

E(X1 | S) =
E(X1)
P1(S)

, and E(X2
1 | S) =

E(X2
1 )

P1(S)
. (4.9)

As for its variance and standard deviation, they are given by V ar(X1 | S) = E(X2
1 | S)−E(X1 |

S)2 and σ(X1 | S) =
√

V ar(X1 | S), respectively.

The performance measures we derive in this section are used in Section 4.3.5 when addressing

the comparison study between both models with and without announcement.

4.3.3 Impact of Announcing Delays

There is a modeling complexity when we give delay information to customers. The complexity

comes from the change of customers behavior that may occur. In this section, we investigate

the impact of announcing delays on the customer abandonment experience. When we inform

one customer about his anticipated delay, he will decide from the beginning, either to hang up

immediately because he estimates that his delay is too long, or to start waiting in queue. In the

latter case, there are two further possibilities. The �rst is that all customers do never abandon
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thereafter. The second possibility is that the customer patience will change, i.e., customers

may abandon even if they had chosen to start waiting. It is natural to consider that customers

would abandon under a di�erent fashion of that in the original system (without announcement),

depending on the information we provide to them. We refer the reader to Armony et al. [15]

and Guo and Zipkin [51] for further details on the subject.

In concrete terms, we basically distinguish two new models that capture the change of cus-

tomers behavior with respect to delays information. In the �rst model, a customer balks imme-

diately upon arrival with probability pbk(n) depending on his anticipated delay or equivalently

on the number n of customers ahead of him in queue. Once he decides to join the queue (with

probability 1− pbk(n)), he does never abandon thereafter. The second model is identical to the

�rst one, however, we allow customers to renege even after having chosen to join the waiting line.

It is rather complicated to specify the appropriate model, because the information delay may

have several di�erent forms. So, we have to discern the human response for each possible kind of

information. Whitt [135] considers the �rst model (no allowance for reneging in queue.) Assume

a new arrival �nding n customers in queue. He computes the quantity pbk(n) as the probability

that the customer would abandon before a server becomes free for him (his virtual waiting time

assuming he decides to join the queue.) Let T be the random variable measuring the random

patience threshold of customers. If we denote by Sn the random variable of the virtual waiting

time of the customer of interest, Whitt [135] stipulates that pbk(n) = P (T < Sn).

Recall that times before reneging are exponentially distributed with mean 1/γ. Next, assum-

ing that balking decisions of successive customers are independent, and denoting by gn(t) the

probability density function (pdf) of Sn, we get

pbk(n) =
∫ ∞

0
gn(t) · (1− e−γt) dt. (4.10)

Since in the Whitt's Model there is no longer reneging in queue, then Sn has an n + 1-Erlang

distribution with parameter sµ. Using the Laplace transform of that distribution with respect

to the variable γ, Equation (4.9) becomes

pbk(n) = 1−
(

sµ

sµ + γ

)n+1

. (4.11)

Although the Whitt's model seems in the conceptual sense to be unfailing, it is at odds with

reality. It is indeed not common to give one customer the distribution function of his anticipated

delay so that he may decide to balk or not! For that reason, Salah et al. [6] and Whitt [135]

propose (keeping no allowance for reneging) to communicate the expected delay E(Sn), hence,
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we would use the approximation pbk(n) ≈ 1− e−γ·E(Sn). From the Law of Large Numbers, this

approximation should work well for large values of n. A further alternative is to communicate

any other percentile, say β, of the distribution of Sn. Again, this is only exact when we stipulate

that the customer acts as if the delay information was the actual delay, which is not the case. We

should be careful when choosing the value of β. On the one hand, if β is too low, then arrivals

tend to join the queue and it so happens that many of them must wait more than they were

willing to do initially. On the other hand, if β is close to 100%, many customers balk while their

delays do not exceed their patience threshold. As we shall see later in the numerical experiments,

a value of β in the order of 90% or 95% should be a conceivable choice to preserve the reliability

of the service provider.

To build an appropriate practical model, we should consider the second model in which we let

customers abandon even they had elected to wait upon their arrival. In the following, we model

that e�ect. In practice, the probability to renege should vary as a function of the announced

delay. For a customer who joins the queue, the probability that he reneges is very low as long as

his spending time in queue does not exceed the announced delay. However once the announced

delay is no longer satis�ed, customers become frustrated and loose their patience, which lead to a

higher probability of reneging. For simplicity, we assume that times before reneging for customers

who do not balk are i.i.d. and exponentially distributed with a new rate γ′. The system behaves

as follows. Upon arrival, if less than s customers are in system, we do not do anything because

the new customer gets service immediately. Otherwise, i.e., if all servers are busy and n waiting

customers are ahead of the new customer, we derive the distribution of his virtual delay Sn,

and we communicate him the delay which corresponds to a given coverage probability β. The

distribution of Sn is no longer Erlang because of the reneging phenomenon. The time until a

new arrival is scheduled to start service is the time it takes for the n customer ahead to leave the

queue (either abandon or enter service) plus the time required for a service completion (when

all servers are busy.) So, the virtual delay Sn can be characterized by a pure-death process as

shown on Figure 4.3.

 
s-1 s s+n 

sµ + γ’ sµ+ n γ’ s+n-1 … 

sµ sµ+ (n-1) γ’ 
Figure 4.3: The random variable Sn

The random variable Sn represents the downcrossing time from state n + s until absorption

in state s − 1. Thus, the distribution of Sn is the convolution of n + 1 independent exponen-
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tial distributions with parameters sµ, sµ + γ′, ..., and sµ + nγ′, which is an hypoexponential

distribution. Hence, the probability density function (pdf), gn(t), of Sn is given by

gn(t) =
n∑

i=0




n∏

j=0, j 6=i

sµ + jγ′

(j − i)γ′


 · (sµ + iγ′

) · e−(sµ+iγ′)t, t > 0, (4.12)

and its Probability Distribution Function (PDF), Gn(t), is as follows

Gn(t) =
n∑

i=0




n∏

j=0, j 6=i

sµ + jγ′

(j − i)γ′


 ·

(
1− e−(sµ+iγ′)t

)
, t > 0. (4.13)

Let Dn be the delay we communicate to the customer, Dn = G−1
n (β). As mentioned before,

a reasonable value for β would be 95%. It means that the queueing delay of the new customer

does not exceed Dn with 95% of chance. Whenever a new customer �nds all servers busy and

n waiting customers in queue, we stipulate that he decides to balk with the probability that his

random patience threshold, T , would not exceed his anticipated delay Dn

pbk(n) = P (T < Dn) = 1− e−γDn . (4.14)

In practice, we should note that Relation (4.14) is an approximation of the customer behavior.

It may happen that a new customer does not respect his patience threshold. For example, if

he is willing to wait 1 min and we announce to him 1 min 2 sec, then he may join the queue

because he estimates that 2 sec is a negligible duration. On the other hand, it may occur that if

we announce to him 59 sec, he may be not logical so as he changes his mind and balks. Modeling

the customer reaction is a di�cult problem. We try here to be as near as possible to reality while

still having tractable analysis so as we gain some useful guidelines.

Once the customer of interest elects to wait with probability 1−pbk(n), he may renege within

a random delay. As already assumed in Section 4.3.1, this random threshold is exponentially

distributed with rate γ′. The resulting model referred to as Model 2 is shown on Figure 4.4

 n s 
λ  µ  'γ  ( )p nbk  

Figure 4.4: The new model incorporating delays announcement, Model 2
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The remaining question now is how to compute the new reneging rate γ′. To answer this

question, it is natural to relate the customer patience to the announced delay. To do so, we

introduce the probability rn for the customer in question. The quantity rn is de�ned as the

conditional probability that the queueing delay, Sn, exceeds the random patience, T , given that

the customer joins the queue, i.e., given that the random patience exceeds the announced delay,

Dn. For a given β < 1, rn is seen as the non-zero probability that the customer of interest

reneges.

rn = P (T < Sn | T ≥ Dn). (4.15)

We present necessary details for calculating rn in Section 4.3.4. Whenever we announce Dn

based on a given coverage probability β, we shall make at worst a mistake with a chance of 1−β.

Let us give an explanation. Consider a new arrival �nding n customers in queue. Assume that

the customer is willing to wait Tn for service to begin. The duration Tn is a random realization

of the random variable T . If Tn > Dn, then the customer joins the waiting line. After joining

the queue, the probability that the time it takes for a server to become free (for the customer

of interest) exceeds Dn is 1 − β. Since the customer is initially willing to wait up to Tn, hence

knowing that Tn > Dn, the probability that the duration Tn passes before a server becomes free

for our customer is less than 1− β.

Assume we reach the stationary regime, and let λab be the mean rate of abandoning customers.

From the one hand, we have

λab =
∞∑

n=0

λ · p2(s + n) · (1− pbk(n)) · rn, (4.16)

where p2(i) is the stationary probability to have i customers present in Model 2 (in queue and in

service), for i ≥ 0. From the other hand, if we denote by Lq,2 the expected number of customers

in queue, we can write

λab = Lq,2 · γ′. (4.17)

We shall give the expression of Lq,2 in Section 4.3.4. Next, combining Equations (4.16) and

(4.17) would imply

γ′ =
λ

Lq,2
·
∞∑

n=0

p2(s + n) · (1− pbk(n)) · rn. (4.18)

The quantities Lq,2, p2(s + n) and rn are functions of γ′. So, denoting the right hand side in

Equation (4.17) by a continuous function f in γ′, we may write γ′ = f(γ′). As a consequence,

we state that γ′ is a point mapped to itself by the function f . In mathematical terms, γ′ is said

to be a �xed point of f .
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There are numerous �xed point theorems in di�erent parts of mathematics that describe the

circumstances under which functions must have one or more �xed points. In this work, we do

not discuss the existence of such solutions for f . We conjecture as it is often the case for similar

problems of queueing theory that f has the necessary nice properties that guarantee the existence

of a �xed point. This conjecture is experienced thereafter by several numerical experiments in

Section 4.3.5. To compute numerically γ′, we propose the following �xed point algorithm.

Fixed point algorithm()

Initialization: γ′(0) ← γ, i ← 0, ε

Do

i ← i + 1

λab (i) ← λ×∑∞
n=0 p2(s + n)(γ′(i−1))× (1− pbk(n))× rn(γ′(i−1))

L
(i)
q,2 ← γ′(i−1) ×∑∞

n=1 n · p2(s + n)(γ′(i−1))

γ′(i) ← λab (i)/L
(i)
q,2

While | γ′(i) − γ′(i−1) |> ε

γ′ ← γ′(i)

End Algorithm.

4.3.4 Performance Measures with Announcement

In this section, we focus on deriving the performance measures for Model 2. To do so, we de�ne

a birth-death process as shown on Figure 4.5. Birth and death rates are both state-dependent.

The new element here is that we have to take into account balking decisions when the process

moves from state i to state i + 1, for i ≥ s, i.e., all servers are busy.

 

sµ+2 γ’ sµ+ γ’ 2µ µ 

λ 0 1 2 s-1 s … … 

sµ 

s+1 s+2 

λ (1 (0))pbkλ ⋅ −λ (1 (1))pbkλ ⋅ −

Figure 4.5: Birth-death process for Model 2

During the stationary regime, we get the following steady state probabilities

p2(i) =
λi

i! µi
· p2(0) for 0 ≤ i ≤ s, and p2(i) =




i−s∏

j=1

(1− pbk(j − 1))
s µ + j γ′


 · λi

s!µs
· p2(0) for i > s,

(4.19)
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where p2(0) is the stationary probability to have no customers in system. It is given by

p2(0) =




s∑

i=0

λi

i!µi
+

1
s!µs

∞∑

i=s+1




i−s∏

j=1

(1− pbk(j − 1))
s µ + j γ′


 · λi



−1

. (4.20)

Hence, the probability of immediate service, Pis,2, the mean number of customers in queue, Lq,2,

and the mean number of customers in system, Ls,2, can be calculated as provided by Equation

(4.21).

Pis,2 =
s−1∑

n=0

p2(n), Lq,2 =
∞∑

n=1

n · p2(s + n), and Ls,2 =
∞∑

n=1

n · p2(n). (4.21)

Having the expression of Lq,2, it only remains for us to compute the quantity rn so as we can

apply the �xed point algorithm to get γ′. In what follows, we give a closed-form expression of

rn. By de�nition, Equation (4.15) may be rewritten as

rn =
P (Dn ≤ T < Sn)

P (T ≥ Dn)
. (4.22)

Since T is exponentially distributed with rate γ, the denominator in the right hand side of

Equation (4.22) is simply

P (T ≥ Dn) = e−γDn . (4.23)

As for the numerator, it is provided by

P (Dn ≤ T < Sn) =
∫ ∞

Dn

gn(t) · P (Dn ≤ T < t) dt (4.24)

=
∫ ∞

Dn

gn(t) · (e−γDn − e−γt
)

dt.

Calculating further, we get

P (Dn ≤ T < Sn) =
(∫ ∞

Dn

gn(t) dt

)
· e−γDn −

∫ ∞

Dn

gn(t) · e−γt dt (4.25)

= (1−Gn(Dn)) · e−γDn −
∫ ∞

Dn

gn(t) · e−γt dt.

Next, observing that

∫ ∞

Dn

gn(t) · e−γt dt =
n∑

i=0




n∏

j=0, j 6=i

sµ + jγ′

(j − i)γ′


 · (sµ + iγ′

) ·
∫ ∞

Dn

e−(sµ+γ+iγ′)t dt (4.26)

=
n∑

i=0




n∏

j=0, j 6=i

sµ + jγ′

(j − i)γ′


 · sµ + iγ′

sµ + γ + iγ′
· e−(sµ+γ+iγ′)Dn ,
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and coming back to Equation (4.22), we deduce that

rn = 1−Gn(Dn)−
n∑

i=0




n∏

j=0, j 6=i

sµ + jγ′

(j − i)γ′


 · sµ + iγ′

sµ + γ + iγ′
· e−(sµ+iγ′)Dn . (4.27)

Finally, using Equation (4.13) and simplifying further Equation (4.27) lead to

rn = 1−
n∑

i=0




n∏

j=0, j 6=i

sµ + jγ′

(j − i)γ′


 ·

(
1− γ

sµ + γ + iγ′
· e−(sµ+iγ′)Dn

)
. (4.28)

Similarly to Section 4.3.2, the probability of being served, P2(S), is given by

P2(S) =
s−1∑

n=0

p2(n) +
∞∑

n=0

p2(s + n) · (1− pbk(n)) ·Ψn+1,2, (4.29)

where

Ψn,2 =
n∏

i=1

(
1− γ′

sµ + iγ′

)
. (4.30)

As for the probability of reneging, it is

P2(R) =
∞∑

n=0

p2(s + n) · (1− pbk(n)) · (1−Ψn+1,2). (4.31)

Thereby, the probability of balking is simply

P2(balking) = 1− P2(S)− P2(R). (4.32)

Now, we move on to compute the performance measures of interest. Following again a similar

analysis as that in Section 4.3.2, we denote by X2 the random variable of the stationary waiting

time in queue. We let X2 be 0 if the customer reneges. The �rst moment E(X2) and the second

moment E(X2
2 ) of X2 are given by

E(X2) =
∞∑

n=0

p2(s + n) · (1− pbk(n)) ·Ψn+1,2 ·
(

n+1∑

i=1

1
sµ + iγ′

)
, (4.33)

E(X2
2 ) =

∞∑

n=0

p2(s + n) · (1− pbk(n)) ·Ψn+1,2 ·
(

n+1∑

i=1

2
(sµ + iγ′)2

)
. (4.34)

Thus, the �rst moment, second moment, variance and standard deviation of the conditional
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waiting time given that service is completed are

E(X2 | S) =
E(X2)
P (S)

, E(X2
2 | S) =

E(X2
2 )

P (S)
,

V ar(X2 | S) = E(X2
2 | S)− E(X2 | S)2, and σ(X2 | S) =

√
V ar(X2 | S), respectively.

(4.35)

Note that the analysis reported in Sections 4.3.2, 4.3.3 and 4.3.4 can be easily extended to the

case of a call center with a �nite waiting line. A further easy extension is also a model in which a

new customer may balk upon arrival whenever he has to wait (because all servers are busy.) For

practical reasons, the �rst extension is not useful because queues capacities in call centers are

usually large so as assuming in�nite queues is a reasonable approximation. However, modeling

the initial balking is of value in practice. It is recurrent in several call centers applications, and

ignoring it may deviate the performance measures. In our work, we ignore that phenomenon

because our purpose is speci�cally the investigation of advantages of delays information. So,

including it would not a�ect our results in the qualitative sense.

4.3.5 Numerical Comparison

In this section, we conduct a comparison study for both models, with and without information

about delays. We perform numerical experiments for various examples of call centers. The

parameters of Model 1 are λ, s, µ and γ. Those of Model 2 are λ, s, µ, β and γ′ (computed from

γ).

It should be clear that a call center with delays information would improve customers sat-

isfaction, and lead to concrete consequences. Hence, it would be incoherent to compare both

models performances by ignoring the change on customers behavior (balking and reneging.) For

instance, a high value of β (close to 1) may lead to a very good (low) waiting time in queue for

Model 2 comparing to Model 1. The reason behind is not that Model 2 performs better, but it

is due to the over-announcing in Model 2. The latter implies less accepted customers but more

happy served customers. Thus, a comparison with regard to the throughput would on the con-

trary prefer Model 1 instead of Model 2. Alternatively, decreasing β should lead to less balking

but more reneging. In the limit case (β close to 0), Model 2 would be the worst. Firstly, we will

come back to the original drawback of Model 1, i.e., reneging due to frustration. Secondly, we

will reduce the reliability of the company with regard to the correctness of the information it

provides to customers.

To make a coherent comparison, we introduce penalty costs for lost customers. We de�ne

two di�erent penalty costs C1 and C2. For each balking customer, the service provider pays C1,
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whereas a reneging customer does cost C2. It is intuitively clear that C1 < C2. A customer

who balks should have a higher probability to call back than that of a customer who reneges. A

reneging customer leaves the system with frustration and loosing trust in the service provider.

However, a balking customer leaves the system based on an information. This information would

avoid to loose business because it is perceived by balking customers as an invitation to call back

when the system will be able to serve them within a reasonable delay. Thereafter, introducing

di�erent costs for lost customers may be a way to translate this important issue. This method

of comparison is a simpli�cation of the reality so as we may illustrate the bene�ts of having a

system with delays announcement. In practice, we may have for example a di�erent cost for

a customer who reneges in Model 1 from that in Model 2. We should note in addition that

quantifying the costs parameters is a hard task.

We performed 20 numerical comparisons. We considered several sets of parameters to make

sure of the robustness of the conclusions. For all cases, µ, γ, C1 and C2 are held constant. We

let µ = 0.2 and γ = 1. The abandoning cost is chosen to be twice greater than the balking cost,

C1 = 1 and C2 = 2. To vary the sta�ng level, we consider models with s = 5, 10, 20, 50 and

100. The corresponding arrival rates are chosen so as the �service utilization", λ/sµ, is 100%.

Furthermore for each couple (λ, s), we vary the coverage probability β. We let β = 50%, 70%,

90%, and 95%. Finally, the reneging rate for Model 2 is computed each time as we reported in

Section 4.3.3 (as a function of β.) Numerical experiments for (λ, s) =(1,5), (2,10), (4,20), (10,50),

and (20,100) are displayed in Tables 4.1, 4.2, 4.3 and 4.4, respectively. The line �Balking" is to

indicate the stationary cost per unit of time (u.t) due to balking customers. It only concerns

Model 2 (no balking in Model 1), and is calculated as C1×λ×P2(balking). The line �Reneging"

is to indicate the cost per u.t for reneging customers. For Model 1 (Model 2), it is calculated as

C2 × γ × Lq,1 (C2 × γ′ × Lq,2).

Model 2
Model 1 β = 50% β = 70% β = 90% β = 95%

γ′ = 0.271 γ′ = 0.128 γ′ = 0.033 γ′ = 0.015
Pis 0.594 0.666 0.681 0.697 0.702
Lq 0.236 0.076 0.050 0.026 0.018
Ls 4.054 3.750 3.694 3.638 3.620
P (S) 0.764 0.735 0.729 0.722 0.720
P (R) 0.236 0.021 0.006 0.001 0.000
P (balking) � 0.245 0.265 0.277 0.279
E(X | S) 0.124 0.048 0.033 0.018 0.013
σ(X | S) 0.301 0.210 0.178 0.131 0.112
Balking � 0.245 0.265 0.277 0.279
Reneging 0.473 0.041 0.013 0.002 0.001
Total cost 0.473 0.286 0.278 0.278 0.280

Table 4.1: Numerical comparison for s = 5 and λ = 1
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Model 2
Model 1 β = 50% β = 70% β = 90% β = 95%

γ′ = 0.275 γ′ = 0.135 γ′ = 0.036 γ′ = 0.016
Pis 0.625 0.689 0.708 0.731 0.740
Lq 0.342 0.159 0.121 0.079 0.064
Ls 8.634 8.276 8.187 8.081 8.041
P (S) 0.829 0.812 0.807 0.800 0.798
P (R) 0.171 0.022 0.008 0.001 0.001
P (balking) � 0.166 0.185 0.198 0.202
E(X | S) 0.105 0.057 0.045 0.031 0.025
σ(X | S) 0.214 0.177 0.161 0.136 0.125
Balking � 0.333 0.370 0.397 0.404
Reneging 0.683 0.088 0.033 0.006 0.002
Total cost 0.683 0.421 0.403 0.402 0.406

Table 4.2: Numerical comparison for s = 10 and λ = 2

Model 2
Model 1 β = 50% β = 70% β = 90% β = 95%

γ′ = 0.256 γ′ = 0.127 γ′ = 0.034 γ′ = 0.015
Pis 0.646 0.700 0.718 0.744 0.755
Lq 0.488 0.283 0.230 0.164 0.140
Ls 18.047 17.639 17.516 17.352 17.287
P (S) 0.878 0.868 0.864 0.859 0.857
P (R) 0.122 0.018 0.007 0.001 0.001
P (balking) � 0.114 0.128 0.139 0.142
E(X | S) 0.085 0.054 0.045 0.034 0.029
σ(X | S) 0.140 0.125 0.118 0.105 0.099
Balking � 0.456 0.514 0.557 0.568
Reneging 0.976 0.145 0.058 0.011 0.004
Total cost 0.976 0.601 0.572 0.568 0.573

Table 4.3: Numerical comparison for s = 20 and λ = 4

The end of this section is devoted to discuss the numerical results. We see that for each set

of parameters, the probability of immediate service and that of reneging are better for Model 2.

The reason is that Model 2, as it were, �refuses" entry for customers who potentially may renege.

On the contrary, Model 1 does not care about them.

Some of the customers, who balk in Model 2, might wait in Model 1 until service begins

without reneging. This implies that the probability of being served for a new arrival is better

in Model 1, which agrees with the experiments. Less accepted customers in Model 2 makes

the excepted numbers of customers in queue and in system larger for Model 1 than those for

Model 2. In addition since we let reneging in Model 2, less customers enter service in the latter.

As a consequence, the conditional mean waiting time given service is lower in Model 2. From

experiments, we deduce that the conditional standard deviation of the waiting time given service

is also lower in Model 2. One possible explanation may be related to the fact that realizations

of waiting time values are the lower for Model 2. Note that the probability of being served also
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Model 2
Model 1 β = 50% β = 70% β = 90% β = 95%

γ′ = 0.220 γ′ = 0.109 γ′ = 0.029 γ′ = 0.013
Pis 0.663 0.704 0.721 0.746 0.758
Lq 0.777 0.535 0.458 0.354 0.313
Ls 46.893 46.416 46.239 45.986 45.879
P (S) 0.922 0.918 0.916 0.913 0.911
P (R) 0.078 0.012 0.005 0.001 0.000
P (balking) � 0.071 0.079 0.086 0.088
E(X | S) 0.060 0.044 0.038 0.030 0.027
σ(X | S) 0.072 0.069 0.067 0.063 0.060
Balking � 0.706 0.794 0.863 0.883
Reneging 1.553 0.235 0.100 0.020 0.008
Total cost 1.553 0.941 0.894 0.884 0.891

Table 4.4: Numerical comparison for s = 50 and λ = 10

Model 2
Model 1 β = 50% β = 70% β = 90% β = 95%

γ′ = 0.191 γ′ = 0.094 γ′ = 0.025 γ′ = 0.011
Pis 0.672 0.704 0.719 0.743 0.754
Lq 1.101 0.828 0.729 0.587 0.527
Ls 95.598 95.062 94.837 94.501 94.353
P (S) 0.945 0.942 0.941 0.939 0.938
P (R) 0.055 0.008 0.003 0.001 0.000
P (balking) � 0.050 0.055 0.060 0.061
E(X | S) 0.046 0.035 0.032 0.026 0.023
σ(X | S) 0.039 0.040 0.040 0.039 0.038
Balking � 0.995 1.110 1.203 1.229
Reneging 2.201 0.316 0.137 0.029 0.012
Total cost 2.201 1.311 1.247 1.232 1.241

Table 4.5: Numerical comparison for s = 100 and λ = 20

indicates the throughput of both systems. Although more customers are lost in Model 2 than in

Model 1, the di�erence is not signi�cant, but only a bit worse for Model 2. From the experiments,

the relative di�erences of the throughput are ranging from less than 1% up to 5%. Calculating

thereafter the costs due to lost customers based on the parameters C1 and C2, makes Model 2

better than Model 1.

Consider now Model 2 by varying the coverage probability β. As we would expect, increasing

β leads to more balking. Such change would better satisfy customers who elect to wait. The

numerical results con�rm that intuition; Pis, P (R), E(X | S) and σ(X | S) improve, and P (S)

deteriorates as β increases. Increasing β leads to more lost customers because customers who

balk in Model 2 may not renege when joining the queue (which happens for low values of β).

The �ow of lost customers does not di�er much by varying β. Based on the parameters C1 and

C2 we chosen, better costs are reached for β = 90%.

Let us now focus on the comparison of both models as λ and s grow (keeping the load



Two-Class Call Center with Priority 91

constant.) We see that the conclusions are pretty much of the same quality. In addition, per-

formances of both models improve. It is expected due to the idea of resource sharing discussed

by Smith and Whitt [120]. We also notice from experiments that the relative decrease of cost,

when moving from Model 1 to Model 2, increases in the system size.

4.4 Two-Class Call Center with Priority

In this section, we investigate the extension of the analysis to the case of a call center with two

customer classes. We consider a call center model with two impatient customer classes, high and

low priority classes. The priority rule is strict and non-preemptive. We believe that qualitative

results should not di�er from those derived in Section 4.3. Thereafter, we do not repeat the

comparison analysis between models with and without announcement. However, we focus on

building quantitatively the call center model when incorporating delays announcement. This

step is particularly complex in the multiclass case because of the priority rule.

In Section 4.4.1, we present the original call center model without announcement. In Section

4.4.2, we specify the new model by including delays information. In a similar fashion to that

in Section 4.3, we announce to each new arrival his virtual delay based on a given coverage

probability β. The distribution of the waiting time for low customers is not straightforward. For

simplicity issues, we assume no reneging once customers elect to wait. This simpli�cation would

work well when choosing high values of β (in the order of 90%.) In Section 4.4.3, we compute the

�rst two moments of the virtual delays distributions for new arrivals. By doing so, we complete

speci�cating the new model with announcement.

4.4.1 Two-Class Model without Announcement

Consider the queueing model of a call center with two classes of customers; important customers

type A, and less important ones type B. The model consists of two in�nite priority queues type

A and B, and a set of s parallel, identical servers representing the set of agents. All agents are

able to answer all types of customers. The call center is operated in such a way that at any

time, any call can be addressed by any agent. So upon arrival, a call is addressed by one of

the available agents, if any. If not, the call must join one of the queues. The scheduling policy

of service assigns customers A (B) to queue A (B). Customers in queue A have priority over

customers in queue B in the sense that agents are providing assistance to customers belonging to

queue A �rst. The priority rule is non-preemptive, which simply means that an agent currently

serving a customer pulled from queue B, while a new arrival joins queue A, will complete this

service before turning to queue A customer. Within each queue, customers are served in FCFS
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manner.

Arrival processes of type A and B customers follow a Poisson process with rates λA and

λB, respectively. Let λT be the total arrival rate, λT = λA + λB. Successive service times are

assumed to be i.i.d., and follow a common exponential distribution with rate µ for both types of

customers. The motivation for considering a common service time distribution is similar to that

reported for the models of Chapter 3. We let customers be impatient. Times before reneging for

both types are assumed to be i.i.d., and exponentially distributed with a common rate γ for both

customers types. Again, we note that abandonments make our system unconditionally stable.

The resulting model, referred to as Model 3, is shown on Figure 4.6.

 nA nB 
γ  

γ  s 

Aλ  
Bλ  µ  

Figure 4.6: The original two-class model, Model 3

4.4.2 Two-Class Model with Announcement

Assume moving from the call center described in Section 4.4.1 to a call center with delays

announcement. For each new arrival (type A or B), the service provider gives a percentile β of

the distribution of the state-dependent virtual delay. The state-dependent virtual delay is the

time it takes for a server to become free for the customer of interest. In other words, it is the

time until all higher priority customers ahead of the arrival leave the queue plus the duration

of a service completion. Paralleling to Section 4.3.3, we stipulate that a new customer elects to

join the queue with the probability that a server becomes free for him before he would renege.

For simplicity sake, we do not let customers renege once they join the waiting line. This is

reasonable for high values of β provided that the estimation of the anticipated delay should be

fairly accurate in that case, so that ignoring reneging would be valid. Assume that a new arrival

�nds nA waiting type A customers in queue A, and nB waiting type B customers in queue B.

Note that implicitly we are focusing on new arrivals �nding all servers busy. If the number seen

by an arrival is less than s, then the new arrival does never balk and enters service immediately.

Let us come back to a new arrival �nding all servers busy. It should be clear that the probability

of balking for a type A new arrival does depend only on nA (due to the priority rule), pA
bk(nA).
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However, the probability of balking for a new type B arrival does depend on the couple (nA, nB),

pB
bk(nA, nB). Furthermore, we should not fall in the confusion of only considering it as a function

of nT = nA + nB. Having di�erent values of nA and nB, so as nT = nA + nB is held constant,

would a�ect the virtual delay distribution of the customer of interest. The reason is that, under

the model with announcement, the arrival rate of type A customers seen by our new type B

customer, is state of queue A dependent. As a consequence, not considering the couple (nA, nB)

to compute the balking probability of that customer would lead to a wrong result.

Let Y A
nA

be the random variable measuring the state-dependent virtual delay for a new type A

arrival �nding nA waiting customers ahead of him. Let Y B
(nA,nB) be that for a new type B arrival

�nding nA and nB waiting customers ahead of him in queues A and B, respectively. Furthermore,

let GA
nA

(t) and GB
(nA,nB)(t) for t > 0 be the PDF of Y A

nA
and Y B

(nA,nB), respectively. Then, the

call center provides upon arrival the values DA
nA

= (GA
nA

)−1(β) and DB
(nA,nB) = (GB

(nA,nB))
−1(β)

to type A and B customers, respectively. We calculate the balking probabilities as explained

in Section 4.3.3. Hence, denoting again by T the random threshold patience for both types

(exponentially distributed with rate γ), we have pA
bk(nA) = P (T < DA

nA
) and pB

bk((nA, nB)) =

P (T < DB
(nA,nB)). Next, the following holds

pA
bk(nA) = 1− e−γ·DA

nA , and pB
bk((nA, nB)) = 1− e

−γ·DB
(nA,nB) . (4.36)

The resulting model is shown on Figure 4.7, and is referred to as Model 4.

 

nB nA s 

(1 ( ))A
bk A Ap n λ− ⋅  µ  

(1 ( , ))B
bk A B Bp n n λ− ⋅  

Figure 4.7: The new two-class model incorporating announcing, Model 4

What remains to be done in order to characterize Model 4 is to compute state-dependent

arrival rates for each customer type, which in turn reduces to characterize the distribution func-

tions of Y A
nA

and Y B
(nA,nB). In the next section, we give closed-form expressions for their �rst two

moments. Based on these results, we thereafter propose in Section 4.5.1, a helpful approximation

of their whole distributions.
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4.4.3 Estimating Virtual Delays

In Sections 4.3.2 and 4.3.4, we assume that the equipment technology of our call center enables

us to know when queues are empty, whether there is one available agent or not for an upcoming

customer.

If less than s customers are present in system, the customer of interest gets service immedi-

ately. If not, he has to wait in his corresponding queue for service to begin. Knowing that all

servers are busy, we focus on the random variables Y A
nA

and Y B
(nA,nB), nA, nB ≥ 0. We separate

the analysis depending on whether the arrival call is of type A or B. Type A customers observe

a regular queue without priority. So, estimating their waiting time is easy to obtain. However

that of type B customers is more complicated to compute because it is a�ected by future type

A arrivals (with higher priority.)

Let us recall that we are calculating virtual delays which will be used within a second step

in order to compute balking probabilities. In other words, we are calculating the time it takes

until a server becomes free for the customer of interest in case he elects to wait (does not balk.)

Virtual Delays for Type A Customers

Consider a new type A arrival who �nds all servers busy, nA waiting customers in queue A and

nB waiting customers in queue B. Owing to his higher priority, the virtual delay of a new type

A arrival does not depend on the number of type B customers already present in system, see

Figure 4.8. The customer has to wait until the nA waiting customers leave the queue plus the

time it takes for a service completion (when all servers are busy.) By a customer who leaves the

queue, we only mean a customer who enters service. In Model 4, there is no longer possibility

for customers to renege once they join the queue.

 

nB nA s 

µ  New type A arrival 
      

Figure 4.8: Virtual delay for a new type A arrival

Hence, the pdf of Y A
nA

is simply the convolution of the pdfs of nA+1 i.i.d. exponential random

variables each with parameter sµ. So, Y A
nA

has an nA +1-Erlang distribution with parameter sµ.
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The mean and variance of Y A
nA

are, respectively, given by

E(Y A
nA

) =
nA + 1

sµ
, and V ar(Y A

nA
) =

nA + 1
s2µ2

. (4.37)

Having in hand the PDF of Y A
nA

, it only remains to come back to Equation (4.36) in order

to compute the balking probability pA
bk(nA). De�ne now the standard deviation of Y A

nA
by

σ(Y A
nA

) =
√

V ar(Y A
nA

), and the coe�cient of variation by the ratio of the standard deviation

over the mean, cv(Y A
nA

) = σ(Y A
nA

)/E(Y A
nA

). As shown on Equation (4.38), the ratio cv(Y A
nA

) is

characterized to have simple form independent of µ and s.

cv(Y A
nA

) =
1√

nA + 1
(4.38)

From Equation (4.38), we deduce that for large values of nA, the virtual delay of Y A
nA

is very

concentrated about its mean. This implies that for large values of nA, the mean value of Y A
nA

should provide a good approximation of the virtual delay.

Virtual Delays for Type B Customers

Knowing that all servers are busy, let nA and nB be the number of type A and B waiting

customers seen by a new type B arrival, in queues A and B, respectively.

The random variable Y B
(nA,nB) is the time until the nT = nA + nB waiting customers start

service, plus the time it takes for all future type A arrivals (during the waiting of the customer of

interest) to enter service, plus the duration for a service completion (when all servers are busy),

see Figure 4.9.

 

New type B arrival nB nA s 

µ  Future type A arrivals 
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Figure 4.9: Virtual delay for a new type B arrival

To characterize Y B
(nA,nB), we ignore all future type B arrivals because the discipline of service

within queue B is FCFS. However, all future type A arrivals have to be considered because of
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their higher priority against the customer of interest. Recall that reneging is no longer possible.

We only consider events of type A arrivals and service completions. Thereby, changes of queues

states seen by our customer are as follows. As long as type A customers are waiting in queue,

the number of type B waiting customers does not change, however that of type A customers

increases by 1 further to a type A arrival or decreases by 1 further to a service completion. The

number of type B waiting customer can not increase. It only decreases by 1 further to a service

completion when no type A customers are waiting in queue. We should be careful to not forget

that type A arrivals are state-dependent due to balking decisions of customers upon arrival.

Based on the above explanation, we move on to employ the following two-dimensional Markov

chain. Let the system state at a given random instant be (mA,mB) where mA (mB) is the number

of type A (B) customers in queue A (B), mA,mB ≥ 0. In addition, the Markov chain has an

absorbing state denoted by (−1). The system moves to (−1) further to a service completion

when both queues are empty. Being in the latter state means that a server is available for the

customer of interest. When mA customers are waiting in queue A, we denote the state-dependent

arrival rate of type A arrivals by λA(mA) = (1− pA
bk(mA))× λA. The non-zero transition rates

are q(mA,mB)(mA+1,mB) = λA(mA), for mA,mB ≥ 0, q(mA,mB)(mA−1,mB) = sµ, for mA,mB > 0,

q(0,mB)(0,mB−1) = sµ, for mB ≥ 0, and q(0,0)(−1) = sµ. As shown on Figure 4.10, measuring

Y B
(nA,nB) may be formulated as to calculate the downcrossing time until absorption in state (−1),

starting from state (nA, nB).
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Figure 4.10: The random variable Y B
(nA,nB)
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The Markov chain we consider has a special structure allowing analytical solutions. Let us

give an explanation. From Figure 4.10, the random variable Y B
(nA,nB) may be rewritten as

Y B
(nA,nB) = U(nA) + VnB−1 + ... + V0, (4.39)

where U(nA) is the random variable measuring the downcrossing time until �rst passage at state

(0, nB − 1) starting from state (nA, nB), Vi is the random variable measuring the downcrossing

time until �rst passage time at state (0, i−1) starting from state (0, i) for 1 ≤ i ≤ nB−1, and V0

is the random variable measuring the downcrossing time until absorption in state (−1) starting

from state (0, 0).

The Markovian assumptions allow us to state that the random variables U(nA), V0, ...,

and VnB−1 are independent. From Figure 4.10, we see that V0, ..., and VnB−1 are identically

distributed. Let E(Y B
(nA,nB)) and V ar(Y B

(nA,nB)) be the mean and variance of the random variable

Y B
(nA,nB), respectively. Then, using the linearity property of expectations, we get

E(Y B
(nA,nB)) = E(U(nA)) + nB × E(V0), (4.40)

and from the independence, the following holds

V ar(Y B
(nA,nB)) = V ar(U(nA)) + nB × V ar(V0). (4.41)

Let us now focus on computing means and variances of U(nA), V0, ..., and VnB−1. To do so, we

de�ne an intermediate birth-death process with discrete state space taking non-negative integer

values {0, 1, 2, 3, ...}. The transition rates of the process are denoted by

q0,1 = λA, qm,m+1 = λA(m− 1) and qm,m−1 = sµ for m ≥ 1, and qm,n = 0 otherwise. (4.42)

The birth-death process is derived from the previous Markov chain and is shown on Figure 4.11.

One may see that U(nA), V0, ..., and VnB−1 may be de�ned on the intermediate birth-death

process. The random variable U(nA) is the downcrossing time until �rst passage at state 0,

starting from state nA + 1. As for the random variable Vi, 0 ≤ i ≤ nB − 1, it is only the �rst

passage time at state 0, starting from state 1. Note that since we are calculating �rst passage

times at state 0, the analysis is independent of the birth rate when the system is in that state,

i.e., q0,1 = λA.

By considering a general birth-death process, the authors in Jouini and Dallery [65] give

closed-form expressions for any moment of order k ≥ 1 of several random variables related to
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 λA 0 1 2 nA-1 … … 

sµ 

λA(0) λA(nA -2) λA(nA -1) 
 

sµ sµ sµ 

nA nA+1 

Figure 4.11: Intermediate birth-death process

�rst passage times. Further details about this analysis is given in Chapter 5. We use their results

in our context here. To simplify the presentation, we introduce the quantities δm for m ≥ 0. For

m = 0 we let δ0 = λA, and for m ≥ 1 we let δm = λA(m − 1). Let us now de�ne the potential

coe�cients of the intermediate birth-death process, say φm, as follows.

φ0 = 1, and φm =

∏m−1
j=0 δj

smµm
, for m ≥ 1. (4.43)

Thereafter, the mean E(U(nA)) and variance V ar(U(nA)) of U(nA) are given by

E(U(nA)) =
nA+1∑

m=1

1
δm−1φm−1

∞∑

j=m

φj , (4.44)

V ar(U(nA)) =
nA+1∑

m=1

2
δm−1φm−1

∞∑

j=m+1

1
δj−1φj−1




∞∑

l=j

φl




2

+
nA+1∑

m=1

1
δ2
m−1φ

2
m−1




∞∑

j=m

φj




2

.

(4.45)

It goes without saying that δ0 (that is λA) could be eliminated from Equations (4.44) and (4.45),

which agrees with our above claim. We only keep them here for presentation issues.

Concerning the mean E(V0) and variance V ar(V0) of the random variable V0, they are given

by

E(V0) =
1
δ0

∞∑

m=1

φm, (4.46)

V ar(V0) =
2
δ0

∞∑

m=2

1
δm−1φm−1




∞∑

j=m

φj




2

+
1
δ2
0

( ∞∑

m=1

φm

)2

. (4.47)

Substituting Equations (4.44), (4.45), (4.46) and (4.47) back into Equations (4.40) and (4.41)

leads to the expressions of the mean and variance of the random variable Y B
(nA,nB). Finally, using

the results of Section 4.4.3 to compute the balking probabilities for type A arrivals, the mean

and variance of Y B
(nA,nB) are thereafter fully characterized.

Note that one may derive all higher order moments of the virtual delay for both customer

types, which allows us to derive their full distributions. However, the analysis would be cum-



Some Practical Issues 99

bersome and numerically time consumer. We thereafter content ourself with only the �rst two

moments. By way of compensation, we propose a useful approximation of distributions as we

shall explain later in Section 4.5.1.

4.5 Some Practical Issues

In this section, we investigate some practical issues for an eventual implementation of delays

information. We distinguish two points that may help practitioners. The �rst is discussed in

Section 4.5.1, and concerns an approximation for computing the anticipated delay we communi-

cate to each new arrival. The second is discussed in Section 4.5.2, and is related to the way of

communicating that virtual delay.

4.5.1 Normal Approximation of Virtual Delays

Given the system state upon each arrival and given a coverage probability β, the service provider

has to compute the value of the anticipated delay. This numerical computation operation is

characterized to be too heavy. In fact in the case of a single class call center, the virtual

delay distribution (hypoexponential) has an alternate summation of terms with di�erent signs.

As for the low priority type in the two-class case, exact moments expressions for the virtual

delay distribution involve in�nite summations. This would imply several numerical di�culties

especially that we are asked to conduct such real-time operations for each arrival!

From a practical point of view, a normal distribution provides a satisfactory approximation

of virtual delays. Since the random variables of virtual delays we consider here deal with summa-

tions of independent random variables, the Normal approximation should works well, see Whitt

[137] and Ward and Whitt [129]. This claim is supported by theoretical results based on the Law

of Large Numbers and the Central Limit Theorem. The normal approximation should work well

especially for new arrivals who �nd large number of waiting customers in queue.

We only need the mean and standard deviation of the state-dependent virtual delay in order

to get its full distribution (approximately.) Thus, we propose to use the normal distribution by

only picking up the means and variances we derived in Sections 4.3 and 4.4. We should however

point out that for small values of β, such distributions may lead to negative values of anticipated

delays. To be judicious, we may adapt a given normal distribution by truncated it so as it

becomes no longer de�ned for negative values. For instance, let h(t) and H(t), −∞ < t < +∞,

be the pdf and PDF of the original normal distribution, respectively. Also, let htr(t) and Htr(t),

0 < t < +∞, be those for the truncated normal distribution. The pdf of htr(t) is calculated as

htr(t) = h(t)
1−H(0) . By doing so, we even out the area of the negative region (t < 0) over that of the
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positive region, so that we build a correct distribution. Note that this transformation should not

really a�ect the original normal distribution. The reason is that the quantity 1−H(0) is low for

very small numbers of waiting customers in queue, and may be reasonably neglected otherwise.

4.5.2 Announcing About Anticipated Delays by Increments

Once the anticipated delay is computed, the next natural question is how we should pro�t from

that information? In what follows, we brie�y discuss some elements addressing this issue.

There is not a single best method for all circumstances. In practice, we do not think that

it is interesting for the customer to get a high accuracy of his anticipated delay. Regarding to

the customer reaction, we believe that there is no real di�erence for him between being informed

about for example a delay of 1.64 min or 1.79 min. Furthermore, in most call centers cases, there

is no need to tell customers large delays. If the anticipated delay is for example greater than 5

min, we should just inform the customer that he will wait more than 5 min for service to begin.

A delay beyond 5 min seems to be excessive in most call centers cases. So, any value in this

range will be perceived by customers in the same fashion.

The idea we propose here is to inform about delays by increments. For instance, we de�ne

the following increments: < 30 sec (we tell the customer that his delay will be less than 30 sec),

< 1 min, < 2 min, < 3 min, < 4 min, < 5 min, and a �nal increment > 5 min. Hence for each

new arrival we look, among the prede�ned intervals, for the increment in which the computed

value of the virtual delay is belonging. The obtained increment is thereafter communicated to

the customer so as he makes the decision to balk or not.

A major advantage of this method should be noted. In cases when the estimated delay and

the real one are in the same interval of time, the error do not exist. This often happens since

the coverage probability β is high. For example, if the �rst is 1.21 min and the second is 1.85

min, then we will announce that the delay is less than 2 min. So, the approximated delay and

the real one coincide regarding to the increment we communicate to the customer. We expect

that this e�ect would considerably reduce customers reneging.

An other idea would be to announce a lower bound and an upper bound of the estimated

delay, instead of only an upper bound. The idea is of value when the PDF of the conditional

waiting time is too close to zero for small times values. This case often happens for a new arrival

call who �nds a large number of customers in queues.
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4.6 Conclusions and Further Extensions

We focused on a fundamental problem in the operations management of call centers, namely

the issue of informing customers about their queueing delays. Predicting delays is especially

important when customers do not have direct access to information about the state of the system.

In such a case, it has been indeed recognized that customers become dissatis�ed with the service

provider when they are forced to wait for an unknown delay. Announcing delays would reduce the

undesirable phenomenon of customers reneging in queue, which allows to decrease the variability

of waiting times. As a consequence, we improve the quality of delays information we give to

customers, which in turn reduces even more customers reneging, and so on.

A central feature of this work is the way we model a call center with impatient customers

and incorporating delays information. We proposed an extension of the model in Whitt [135]. In

the latter, the author assumes no reneging once a new arrival elects to join the queue. This may

not be the case since the communicated delay based on which the customer makes his balking

decision is estimated with a percentage error. We gave a method to estimate the new reneging

behavior even if customers decide not to balk upon arrival.

In the �rst part of the chapter, we investigated the e�ect of giving anticipated delays to

customers in a single class call center. We computed several performance measures for both

models, with and without information about queueing delays. A numerical comparison is there-

after conducted in order to prove how customers satisfaction would make the model with delays

information preferable. In the second part of the chapter, we tackled the extension of the analysis

to an interesting case in practice, namely a two-class call center with priority. We focused for that

case on building the new model incorporating delays information. We speci�cally characterized

the distributions of new arrivals virtual delays. Finally, we discussed some practical issues that

would help practitioners for the implementation step. We proposed a useful approximation for

virtual delays. Next, we discussed a practical way for communicating anticipated delays. The

method of announcement is referred to as announcement by increments. It has also been shown

that this method would improve the system behavior through reducing errors approximations.

In a future study, it would be interesting to describe empirically customers reaction in re-

sponse to delays announcement, in order to validate our stipulation here for modeling that

reaction. It would also be of value to assess in a real call center case our claim regarding to

the advantages of announcing delays by increments. An ambitious extension is to consider non-

stationary arrivals which would be helpful in practice. A further direction is analyzing more

complex systems: more than two customer classes, general distributions for service times and

times before reneging, etc.



102 Modeling Call Centers with Delays Information

To make a coherent comparison between both models performances, we introduced di�erent

costs for di�erent kinds of lost customers (due to balking or reneging.) Another way of value for

comparison is to model the changes that may occur on system parameters. It should be clear that

incorporating delays information would increase business. Thereafter, one may let lost customers

call back. However, it is natural to consider di�erent behaviors of retrials for di�erent kinds of

lost customers. Concretely, we may assume that balking customers have a higher probability to

call back than that of reneging customers. We leave this work for a future research.



Chapter 5

Moments of First Passage Times in
General Birth-Death Processes

The topic addressed in this chapter is related to the �eld of birth-death processes. We

consider ordinary and conditional �rst passage times in a general birth-death process.

Under existence conditions, we derive closed-form expressions for the kth order mo-

ment of the de�ned random variables, k ≥ 1. We also give an explicit condition for

a birth-death process to be ergodic degree 3. To the best of our knowledge, several

results of this chapter are not given beforehand. Based on the obtained results, we

next analyze some interesting applications for markovian queueing systems such as

call centers models.

The paper version of this chapter, Jouini and Dallery [65], was submitted for publi-

cation.

103
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5.1 Introduction

This chapter deals with the analysis of birth-death processes. It does not directly address some

call centers issues as in the previous chapters. However, it provides useful applications for the

performance analysis of call center queueing models. Some of these applications was already

used for example in Chapter 4 in order to compute state-dependent queueing delays.

Birth-death processes, and in general Markov chains, are broadly used in the �eld of queueing

theory. They are a rich and important class in modeling numerous phenomena in queueing

systems. For instance, birth-death processes allow to account for customers balking and reneging.

The analytical studies were intended to obtain useful information for the decision making process,

basically related to the design, the control, and the measurement of e�ectiveness of the systems.

Whitt [133] and Kelly [79] have used birth-death processes to study complex networks of service

facilities. In the present chapter, we are dealing with the transient (time-dependent) analysis

of birth-death processes. The characteristics of interest are the ordinary and conditional �rst

passage times. These characteristics are known to be of value for the performance evaluation of

several queueing systems. Analyzing either transient or stationary queueing delays and response

times, for example, may be addressed by means of ordinary and conditional �rst passage times.

For the time-dependent solutions, advanced mathematical techniques are necessary. The well

studied systems are the simple ones, namely, M/M/1/K, M/M/1, and M/M/∞, see Kleinrock

[81], and Gross and Harris [46]. Such solutions are due �rst to Bailey [20]'s work where the author

has solved the partial di�erential equations governing the underlying birth-death process via

generating functions. Another interesting approach, based on advanced combinatorial methods,

was done by Champernowne [33]. In general, most of the popular procedures derive the transient

expressions using a combination of generating probability functions and Laplace transforms, see

Abate and Whitt [3], Parthasarathy [107], and Abate and Whitt [4] for an overview. In these

papers, the numerical solutions are complex due to the use of the Bessel functions. Some other

approaches were proposed as a method based on the Taylor series in Krinik and Sourouri [89],

and a new method based on the uniformization technique and on generating functions proposed

by Leguesdron et al. [92]. The last method is of interest in the sense that it leads to quite

simple expressions for the transient probabilities. For the the M/M/1/K, Tarabia [123] gave an

alternative simple approach to the procedure of Takâcs [122]. He showed that the measures of

e�ectiveness such as the �rst and the second order moments of the queue length can be easily

obtained in a new and elegant closed-form. The result was also derived for the M/M/1 case by

taking the limit as K →∞.

The literature speci�cally related to birth-death processes is extensive and growing, see Karlin
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and McGregor [71] and [72], Keilson [76] and [77], Sumita [121], Mao [99], Guillemin [49], and

Coolen-Schrijner and van Doorn [35]. We refer the reader to Keilson [74] and [75], and Kijima [80]

for an overview on the subject. In Guillemin and Pinchon [50], the authors revisited the resolution

of the forward Chapman-Kolmogorov equations associated with a birth-death process through

the spectral theory. Their work was based on the connection between probability theory and

continued fractions addressed �rst by Karlin and McGregor [72]. They investigated, speci�cally,

how the Laplace Transforms of di�erent transient characteristics related to excursions in a general

birth-death process can be expressed by means of the basic orthogonal polynomials system and

the spectral measure. Flajolet and Guillemin [39] have developed a formal calculus of basic

events described by lattice paths associated with birth-death processes. They expressed several

basic events in terms of continued fractions and their associated orthogonal polynomials. An

extension of the latter paper was developed in Ball and Stefanov [21], where the authors have

used an approach based on viewing birth-death processes as exponential families.

In this chapter, we consider the transient behavior of general birth-death processes. We mean

by �general" that transition rates are arbitrary and need not have some special structure. Using

the associated Chapman-Kolmogorov equations, and via Laplace transforms we derive closed-

form expressions for the moments of downcrossing and upcrossing times between pairs of states.

Further interesting characteristics are sojourn times in states. This topic is out of the scope of

this chapter. By addressing some applications, we show the equivalence between the analysis of

various characteristics in queueing systems and that of hitting and return time random variables.

Also, we recover in a simple way classical results such as the busy period and busy cycle durations

in some basic Markovian systems.

The rest of the chapter is organized as follows. In Section 5.2, we specify the general birth-

death process we consider. In Sections 5.2.1 and 5.2.2, we de�ne two families of random variables;

the ordinary �rst passage times and the conditional �rst passage times, respectively. In Section

5.3, we derive the moments for the de�ned ordinary random variables. In Section 5.4, we apply

the same analysis for the conditional random variables. In Section 5.5, we investigate various

applications of the analysis of the ordinary �rst passage times. In Section 5.6, we close the

chapter by some concluding remarks and possible future research directions.

5.2 Model Description and Notations

We consider a continuous-time birth-death process {E(t), t ≥ 0} with discrete state space taking

non-negative integer values {0, 1, 2, 3, ...} de�ned on a probability space. The transition rates of
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the process {E(t), t ≥ 0} are denoted by

qm,m+1 = λm > 0, qm,m−1 = µm, qm,m = −(λm+µm) for m ≥ 0, and qm,n = 0 otherwise. (5.1)

The rate µ0 is equal to 0, and µm > 0 for m > 0. For m ≥ 0, we de�ne the quantities πm by

π0 = 1, and πm =
λ0...λm−1

µ1...µm
for m ≥ 1. (5.2)

The quantities πm are called the potential coe�cients of the birth-death process {E(t), t ≥ 0}.
Starting from a given initial state, let the transient probabilities be {pm(t), t ≥ 0}, m ≥ 0. The

quantity pm(t) represents the probability that at an arbitrary time t, the system is in state m,

m ≥ 0. Under the ergodicity assumption, the stationary distribution of the process {E(t), t ≥ 0}
de�ned for m ≥ 0 by the quantities pm = limt→∞ pm(t) can be easily solved through recursion.

They are given by

p0 =
1∑∞

m=0 πm
> 0, and pm =

πm∑∞
m=0 πm

> 0, for m ≥ 1. (5.3)

5.2.1 First Passage Times

In this section, we de�ne the random variables associated with �rst passage times in birth-death

processes. Let us consider the random variable θm representing the duration of an excursion by

the process {E(t), t ≥ 0} above the level m− 1, m ≥ 1. In other words, θm represents the �rst

passage time from state m to state m− 1. We de�ne θm by

θm = Inf{t > 0 : E(t) = m− 1 | E(0) = m}. (5.4)

Also, let τm be the �rst passage time from state m− 1 to state m, de�ned by

τm = Inf{t > 0 : E(t) = m | E(0) = m− 1}. (5.5)

In general concerning the �rst passage time from a given state to another, we de�ne the random

variables Dm,m−i and Um,m+i representing the downcrossing time from state m to state m − i,

1 ≤ i ≤ m, and the upcrossing time from state m to state m + i, i ≥ 1 and m ≥ 0, respectively.

These random variables are given by

Dm,m−i = Inf{t > 0 : E(t) = m− i | E(0) = m}, (5.6)
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and, Um,m+i = Inf{t > 0 : E(t) = m + i | E(0) = m}. (5.7)

0ne can easily see that

Dm,m−i
.=

m∑

n=m−i+1

θn, for 1 ≤ i ≤ m, (5.8)

and, Um,m+i
.=

m+i∑

n=m+1

τn, for i ≥ 1, (5.9)

where .= denotes equality in terms of distributions. In particular, let us introduce the random

variables Dm and Um representing the downcrossing time from state m to the empty state 0 and

the upcrossing time from state 0 to state m, respectively. Hence, Dm
.= Dm,0

.=
∑m

n=1 θn and

Um
.= U0,m

.=
∑m

n=1 τn. Finally, let Cm be the random variable denoting the time between two

visits by the process E(t) at state 0, giving that the process E(t) hits the state m. Then, we

state that Cm
.= Um + Dm

.=
∑m

n=1 θn + τn.

The analysis of the random variables de�ned above is useful for various problems in Markovian

queueing systems. For instance, it would be helpful for the busy period analysis of queueing

systems with state-dependent arrival and service rates. Also, for computing the characteristics

of the state-dependent waiting time distribution in complex service systems. We shall give further

details of these applications in Section 5.5.

5.2.2 Conditional First Passage Times

The random variables of �rst passage times, we de�ned above, have great importance in Markov-

ian queueing systems applications. An equally great interest is in the conditional �rst passage

times. In what follows, we de�ne their associated random variables.

Let rθm be the �rst passage time of the process {E(t), t ≥ 0} from state m to state m− 1 given

that the process does not visit state r in between, 1 ≤ m < r, de�ned by

rθm = Inf{t > 0 : E(t) = m− 1 | E(0) = m and no visit to r}. (5.10)

Similarly, let rτm be the �rst passage time from state m − 1 to state m given no visit to r,

0 ≤ r < m− 1, de�ned by

rτm = Inf{t > 0 : E(t) = m | E(0) = m− 1 and no visit to r}. (5.11)

As above, we also consider the conditional �rst passage times from a given state to another. We

de�ne the random variables rDm,m−i and rUm,m+i to represent the duration of the downcrossing

time from state m to state m− i given no visit to state r, 1 ≤ m < r, and the upcrossing time
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from state m to state m + i given no visit to r, 0 ≤ r < m− 1, respectively. One has

rDm,m−i
.=

m∑

n=m−i+1

rθn, for 1 ≤ i ≤ m < r, (5.12)

and, rUm,m+i
.=

m+i∑

n=m+1

rτn, for 0 ≤ r < m, i ≥ 1. (5.13)

An interesting application of the conditional �rst passage times would be as follows. Consider

a birth-death process that models a Markovian queueing system with a limited system capacity,

say K. In practice, It is useful to determine the time from a system with one customer until the

system saturation given no idleness, namely the random variable 0U1,K+1. A dual interesting

random variable is the duration from a full system until idleness given no lost customers, namely

the random variable K+1DK,0. We state from Sumita [121] that both of these random variables

are identically distributed.

5.3 Moments of First Passage Times

In this section, we focus on calculating the kth order moment, k ≥ 1, for the ordinary �rst passage

times de�ned in Section 5.2.1. Before moving on to the moments computation, we should �rst

discuss their conditions of existence. For the upcrossing times, τm, Um,m+i, and Um, it is clear

that no speci�c conditions are required. However, it is not the case for the downcrossing times,

θm, Dm,m−i, Dm, as well as for Cm. To guaranty the moments existence of these return times,

we shall use the following set of conditions.

Condition Ck (k ≥ 1): the birth-death process {E(t), t ≥ 0} has ergodic degree k.

Roughly speaking, the ergodic degree gives the number of �nite moments possessed by the time

of the �rst passage at a given state i starting from any state j 6= i. We refer the reader to

Mao [99] for more details. In particular, Condition (C1) simply re�ects the classical ergodicity

assumption. It is the necessary and su�cient condition for the mean of the �rst passage time

from any state i to any state j 6= i (Di,j and Ui,j) to be �nite. From Karlin and McGregor [71],

Condition (C1) holds if and only if

∞∑

m=0

πm < ∞ and
∞∑

m=0

1
λmπm

= ∞, (5.14)

see also Keilson [75]. As for the special case of Condition (C2), it means that the birth-death

process has ergodic degree 2. From Theorem (6.1) in Coolen-Schrijner and van Doorn [35], this
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condition holds if and only if




∞∑

j=0

πj



−1 


∞∑

m=0

1
λmπm




∞∑

j=m+1

πj




2
 < ∞. (5.15)

An equivalent expression was also found in Theorem (4) of Karlin and McGregor [71]. To the

best of our knowledge, no explicit expressions, for k ≥ 3, exist in the literature. We give further

details on Conditions (Ck) with higher orders at the end of this section. In addition, we derive

a new result by giving Condition (C3) in an explicit form.

In Theorem (5.1), we give the kth order moment expression of the random variable θm.

Thereafter, we deduce the mean and the variance of θm in Corollaries (5.1) and (5.2), respectively.

In Theorem (5.2), Corollaries (5.3) and (5.4), a similar analysis is given for the random variable

τm. Note that the latter results are new except for the expressions of the expected values of θm

and τm.

For the rest of the chapter, an empty sum is being interpreted as zero, and an empty product

is being interpreted as one.

Theorem 5.1 Under Condition (Ck), the kth order moment E(θk
m), k ≥ 1, of the random

variable θm, m ≥ 1, is given by

E(θk
m) =

1
λm−1πm−1

∞∑
n=m

λn−1πn−1 Vn,k, (5.16)

where

Vn,k =
k

µn
E(θk−1

n ) +
λn

µn

k−1∑

j=1

Cj
k E(θj

n) E(θk−j
n+1), for n ≥ 1, k ≥ 1,

and

Cj
k =

k!
j! (k − j)!

, for k ≥ j ≥ 1.

Proof. From the Strong Markov Property, we can write, for m ≥ 1





θm
.= ελm+µm , with probability µm

λm+µm

θm
.= ελm+µm + θm+1 + θ̂m , with probability λm

λm+µm
.

(5.17)

where ελm+µm is a random variable exponentially distributed with parameter λm + µm. The

random variables θm, θm+1 and θ̂m are independent. In addition, the random variables θm and

θ̂m are identically distributed.
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Let θ̃m(s) be the Laplace transform of the random variable θm. Then, Equation (5.17) yields

(λm + µm + s) θ̃m(s) = µm + λm θ̃m+1(s) θ̃m(s), for m ≥ 1. (5.18)

Let θ̃
(k)
m (s) be the kth derivative in s of θ̃m(s). Taking the kth derivative in s of both sides in

Equation (5.18) using the Leibnitz's di�erentiation formula, we get for m ≥ 1, k ≥ 1

(λm + µm + s) θ̃(k)
m (s) + k θ̃(k−1)

m (s) = λm

k∑

j=0

Cj
k θ̃(j)

m (s) θ̃
(k−j)
m+1 (s), (5.19)

or equivalently

(λm + µm + s) θ̃(k)
m (s) + k θ̃(k−1)

m (s) = λm θ̃m(s) θ̃
(k)
m+1(s) + λm

k−1∑

j=1

Cj
k θ̃(j)

m (s) θ̃
(k−j)
m+1 (s) (5.20)

+ λm θ̃(k)
m (s) θ̃m+1(s).

For m ≥ 1 and j = 0, θ̃
(j)
m (0) = 1. For m ≥ 1 and j ≥ 1, θ̃

(j)
m (0) = (−1)jE(θj

m). Hence, Equation

(5.20) becomes for s = 0

(λm + µm) (−1)k E(θk
m) + k (−1)k−1E(θk−1

m ) = λm (−1)k E(θk
m+1) + λm (−1)k E(θk

m)

+ λm

k−1∑

j=1

Cj
k (−1)k E(θj

m) E(θk−j
m+1). (5.21)

Simplifying by (−1)k and dividing by (λm + µm) leads to

E(θk
m) =

λm

µm
E(θk

m+1) +
k

µm
E(θk−1

m ) +
λm

µm

k−1∑

j=1

Cj
k E(θj

m) E(θk−j
m+1). (5.22)

Let us introduce the sequence Vm,k, for m ≥ 1 and k ≥ 1, de�ned by

Vm,k =
k

µm
E(θk−1

m ) +
λm

µm

k−1∑

j=1

Cj
k E(θj

m) E(θk−j
m+1). (5.23)

Thus, we get the following recurrence relation

E(θk
m) =

λm

µm
E(θk

m+1) + Vm,k, m ≥ 1, k ≥ 1. (5.24)

With straightforward manipulations in Equation (5.24), we state that for m ≥ 1, i ≥ 1, and
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k ≥ 1

E(θk
m) = Vm,k +

λm

µm
Vm+1,k + ... +




i−1∏

j=0

λm+j

µm+j


Vm+i,k +




i∏

j=0

λm+j

µm+j


E(θk

m+i+1). (5.25)

For a given k ≥ 1 and under the Condition (Ck), we deduce that E(θk
m) is bounded for m ≥ 1.

Moreover, the birth-death process has, in particular, ergodic degree 1. Then limi→∞ πi = 0, also,

limi→∞
∏i

j=0
λm+j

µm+j
= 0, for m ≥ 1. Hence, it follows that limi→∞

(∏i
j=0

λm+j

µm+j

)
E(θk

m+i+1) = 0,

for m ≥ 1, k ≥ 1.

Continuing forward manipulations in Equation (5.25) until i goes to ∞ implies

E(θk
m) =

∞∑

i=0




i−1∏

j=0

λm+j

µm+j


 Vm+i,k , m ≥ 1, k ≥ 1. (5.26)

Finally, observing that 1
λn

∏n
j=m

λj

µj
= πn

λm−1πm−1
, for n ≥ m ≥ 1, and through a change in the

subscripts we get

E(θk
m) =

1
λm−1πm−1

∞∑
n=m

λn−1πn−1 Vn,k, m ≥ 1, k ≥ 1, (5.27)

which completes the proof. 2

Corollary 5.1 Under Condition (C1) given in Expression (5.14), the mean value θm of the

random variable θm is given by

θm =
1

λm−1πm−1

∞∑
n=m

πn, for m ≥ 1. (5.28)

Proof. For n ≥ 1 and k = 1, we have Vn,k = 1
µn

. Then, applying Theorem (5.1) leads easily to

the desired result. 2

The result in Corollary (5.1) can be found in Keilson [75], Kijima [80], and in Lemma (1)

of Guillemin and Pinchon [50]. Note however that in the latter, the authors have proved their

result through a totally di�erent approach based on counting processes and the Strong Law of

Large Numbers.

Corollary 5.2 Under Condition (C2) given in expression (5.15), the variance V ar(θm) of the

random variable θm is given, for m ≥ 1, by

V ar(θm) =
2

λm−1πm−1

∞∑

n=m+1

1
λn−1πn−1

( ∞∑

i=n

πi

)2

+
1

λ2
m−1π

2
m−1

( ∞∑

i=m

πi

)2

. (5.29)
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Proof. The result here concerns the special case, k = 2, of Theorem (5.1). For n ≥ 1 and

k = 2, Vn,k = 2
(
θn

)2. Next, using Corollary (5.1), we get the second order moment E(θ2
m) of

the random variable θm as follows

E(θ2
m) =

2
λm−1πm−1

∞∑
n=m

1
λn−1πn−1

( ∞∑

i=n

πi

)2

, for m ≥ 1. (5.30)

Finally, knowing that V ar(θm) = E(θ2
m)−(θm)2, the result holds immediately. 2

Up to now, we computed the moments of the random variable θm. In what follows, we go on

to �nd explicit expressions for the moments of the random variable τm. Recall that τm represents

the upcrossing time from state m− 1 to state m.

Theorem 5.2 The kth order moment E(τk
m), k ≥ 1, of the random variable τm, m ≥ 1, is given

by

E(τk
m) =

1
λm−1πm−1

m∑

n=1

λn−1πn−1 Wn,k, (5.31)

where

Wn,k =





k!
λk
0
, for n = 1, k ≥ 1,

k
λn−1

E(τk−1
n ) + µn−1

λn−1

∑k−1
j=1 Cj

k E(τ j
n−1) E(τk−j

n ), for n ≥ 2, k ≥ 1,

and

Cj
k =

k!
j! (k − j)!

, for k ≥ j ≥ 1.

Proof. From the Strong Markov Property, we can write, for m ≥ 2





τm
.= ελm−1+µm−1 , with probability λm−1

λm−1+µm−1

τm
.= ελm−1+µm−1 + τm−1 + τ̂m , with probability µm−1

λm−1+µm−1
.

(5.32)

where ελm−1+µm−1 is a random variable exponentially distributed with parameter λm−1 + µm−1.

The random variables τm, τm−1 and τ̂m are independent. In addition, the random variables τm

and τ̂m are identically distributed.

Let τ̃m(s) be the Laplace transform of the random variable τm. Then, Equation (5.32) yields

(λm + µm + s) τ̃m+1(s) = λm + µm τ̃m(s) τ̃m+1(s), for m ≥ 1. (5.33)

Let τ̃
(k)
m (s) be the kth derivative in s of τ̃m(s). Taking the kth derivative in s of both sides in
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Equation (5.33) using the Leibnitz's di�erentiation formula, we get for m ≥ 1, k ≥ 1

(λm + µm + s) τ̃
(k)
m+1(s) + k τ̃

(k−1)
m+1 (s) = µm

k∑

j=0

Cj
k τ̃ (j)

m (s) τ̃
(k−j)
m+1 (s). (5.34)

Let us introduce the sequence Wm,k, m ≥ 1 and k ≥ 1. For m = 1 and k ≥ 1, Wm,k = k!
λk
0
, and

for m ≥ 2, k ≥ 1, it is de�ned by

Wm,k =
k

λm−1
E(τk−1

m ) +
µm−1

λm−1

k−1∑

j=1

Cj
k E(τ j

m−1) E(τk−j
m ). (5.35)

For m ≥ 1 and j = 0, τ̃
(j)
m (0) = 1. For m ≥ 1 and j ≥ 1, τ̃

(j)
m (0) = (−1)jE(τ j

m). Next, with some

algebra, Equation (5.34) becomes for s = 0

E(τk
m+1) =

µm

λm
E(τk

m) + Wm+1,k, m ≥ 1, k ≥ 1. (5.36)

Since the random variable τ1 is exponentially distributed with rate λ0, so E(τk
1 ) = k!

λk
0
. Then,

E(τk
1 ) = W1,k, and backward manipulations in Relation (5.36) imply

E(τk
m) =

m∑

i=1




m−1∏

j=i

µj

λj


Wi,k, for m ≥ 1, k ≥ 1. (5.37)

Observing again that 1
µn

∏m−1
j=n

µj

λj
= πn

λm−1πm−1
, for m ≥ n ≥ 1, we state �nally that

E(τk
m) =

1
λm−1πm−1

m∑

n=1

λn−1πn−1 Wn,k, for m ≥ 1, k ≥ 1. (5.38)

This completes the proof. 2

Corollary 5.3 The mean value τm of the random variable τm is given by

τm =
1

λm−1πm−1

m−1∑

n=0

πn, for m ≥ 1. (5.39)

Proof. For n ≥ 1 and k = 1, we have Wn,k = 1
λn−1

. Then, applying Theorem (5.2) completes the

proof. 2

The result of Corollary (5.3) can be found in Keilson [75], Keilson [76], Sumita [121], and

also in Lemma 1 of Guillemin and Pinchon [50].
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Corollary 5.4 The variance V ar(τm) of the random variable τm is given by

V ar(τm) =
2

λm−1πm−1

m−1∑

n=1

1
λn−1πn−1

(
n−1∑

i=0

πi

)2

+
1

λ2
m−1π

2
m−1

(
m−1∑

i=0

πi

)2

, for m ≥ 1. (5.40)

Proof. For n ≥ 1 and k = 2, we have Wn,k = 2 (τn)2. Using Corollary (5.3) for the expression of

τn, n ≥ 1, and then applying Theorem (5.2), we get the the second order moment E(τ2
m) of τm

as follows

E(τ2
m) =

2
λm−1πm−1

m∑

n=1

1
λn−1πn−1

(
n−1∑

i=0

πi

)2

, for m ≥ 1. (5.41)

Again, knowing that V ar(τm) = E(τ2
m)−(τm)2, we complete the proof. 2

In what follows, we use the results obtained above to get the moments for the remaining

transient characteristics de�ned in Section 5.2.1. Using the independence between the random

variables θi and θj for i, j ≥ 1, and the Newton's binomial formula, we can get the closed-

form expressions of the moments of Dm,m−i. With the same approach, we can compute all the

moments of Um,m+i too. For presentation issues, we only explicitly derive the expectations and

the variances of the random variables Dm and Um. The expectation expressions can be found in

Kijima [80], whereas the variance expressions we give below are to our knowledge new.

Under Condition (C1), let Dm (Um) be the mean of the random variable Dm (Um), and under

Condition (C2), let V ar(Dm) (V ar(Um)) be its variance. From Corollaries (5.1) and (5.3), we

have respectively for m ≥ 1,

Dm =
m∑

l=1

1
λl−1πl−1

∞∑

n=l

πn, (5.42)

Um =
m∑

l=1

1
λl−1πl−1

l−1∑

n=0

πn. (5.43)

Now, using the independence, for any i, j ≥ 1, between the random variables θi and θj on the one

hand, and τi and τj on the other hand, we deduce respectively that V ar(Dm) =
∑m

l=1 V ar(θl),

and V ar(Um) =
∑m

l=1 V ar(τl). So, from Corollaries (5.2) and (5.4), we state respectively that,

for m ≥ 1,

V ar(Dm) =
m∑

l=1


 2

λl−1πl−1

∞∑

n=l+1

1
λn−1πn−1

( ∞∑

i=n

πi

)2

+
1

λ2
l−1π

2
l−1

( ∞∑

i=l

πi

)2

 , (5.44)

V ar(Um) =
m∑

l=1


 2

λl−1πl−1

l−1∑

n=1

1
λn−1πn−1

(
n−1∑

i=0

πi

)2

+
1

λ2
l−1π

2
l−1

(
l−1∑

i=0

πi

)2

 . (5.45)
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Finally with some algebra, the mean Cm under Condition (C1) and the variance V ar(Cm) under

Condition (C2) of the random variable Cm, for m ≥ 1, are given by

Cm =

( ∞∑

n=0

πn

)
×

(
m∑

l=1

1
λl−1πl−1

)
, (5.46)

V ar(Cm) =

(
m∑

l=1

2
λl−1πl−1

)
×




∞∑

n=1

1
λn−1πn−1




(
n−1∑

i=0

πi

)2

+

( ∞∑

i=n

πi

)2




 (5.47)

+
m∑

l=1

1
λ2

l−1π
2
l−1




(
l−1∑

i=0

πi

)2

+

( ∞∑

i=l

πi

)2

 .

Let us come back to investigate the condition under which a birth-death has ergodic degree

k, k ≥ 1. The quantities Dm, m ≥ 1, play a key role to derive explicitly the Conditions (Ck) for

higher order moments, k ≥ 3, which to the best of our knowledge do not exist in the literature.

Let the random variable De,j be the �rst passage time from the ergodic distribution to state j,

j ≥ 0. In accordance with the notations in Section 5.2.1, the random variable De denotes the

�rst passage time from the ergodic distribution to state 0. It is clear that the kth order moment

of De, for k ≥ 1, is given by

E(Dk
e ) =

∞∑

s=0

ps E(Dk
s ). (5.48)

Recall that the quantities {ps, s ≥ 0} are the stationary probabilities already given in Expression

(5.3). Collecting thereafter some developments in Coolen-Schrijner and van Doorn [35], we state

the following theorem.

Theorem 5.3 Condition (Ck), k ≥ 1, holds if and only if

∞∑

s=0

ps E(Dk−1
s ) < ∞, (5.49)

Proof. From Theorem (3.1) in Coolen-Schrijner and van Doorn [35], we state on the one hand

that the kth order moment of the �rst passage time from any state i to any state j is �nite, if

and only if, the (k − 1)th order moment of the �rst passage time from the ergodic distribution

to any state j is �nite. On the other hand, the latter condition is su�cient and necessary for

the (k− 1)th order moment of the �rst passage time from the ergodic distribution to some state

j to be �nite. Applying this statement to the particular case, j = 0, and using Equation (5.48)

complete the proof.

As application, we give in Corollary (5.5) an explicit expression for Condition (C3).
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Corollary 5.5 Condition (C3) holds if and only if

∞∑

s=0

s∑

l=1

2 πs

λl−1πl−1
∑∞

j=0 πj

∞∑

n=l

1
λn−1πn−1

( ∞∑
r=n

πr

)2

(5.50)

+
∞∑

s=0

s∑

i,j=1, j>i

2 πs

λi−1λj−1πi−1πj−1
∑∞

j=0 πj

( ∞∑

n=i

πn

)


∞∑

n=j

πn


 < ∞.

Proof. From the independence between the random variables θi and θj , for i, j ≥ 1 and i 6= j,

we have

E(D2
s) =

s∑

l=1

E(θ2
l ) + 2

s∑

i=1

s∑

j=1, j>i

E(θi)E(θj). (5.51)

Using the above relation in Equation (5.48), and applying next Corollary (5.1) and Equation

(5.30) lead to the desired result. 2

We close the analysis for ordinary �rst passage times and turn to that of conditional �rst

passage times in Section 5.4.

5.4 Moments of Conditional First Passage Times

In this section, we focus on calculating the kth order moment, k ≥ 1, of the conditional �rst

passage times de�ned in Section 5.2.2 , rθm, rτm, rDm,m−i and rUm,m+i. The results we derive

here has not been done before in the literature, except as we shall mention later, for a special case

for rτm. Note that no existence conditions are required for the computation of their moments.

Before giving the results for the conditional random variables, we need to introduce some

notations. These preliminaries are speci�cally related to the notion of ruin probabilities. Consider

again the birth-death de�ned in Section 5.2. Let rηm be the ruin probability that the particle,

starting at m, reaches m − 1 �rst before r, 1 ≤ m < r. It is clear that the ruin probability
rηr−1 to reach r − 2 starting at r − 1, without visiting r, is given by µr−1

λr−1+µr−1
. For a given m,

1 ≤ m < r − 1, we de�ne the event rAm that the particle reaches �rst m − 1 starting from m,

without visiting r. Let us calculate now the probability that rAm occurs, namely rηm. In state

m, two events can occur: either the process goes down to m− 1, say event rBm, or the process

goes up to m + 1 which is the complementary event of rBm, say rBc
m. Hence, we can write

Pr(rAm) = Pr(rAm | rBm)× Pr(rBm) + Pr(rAm | rBc
m)× Pr(rBc

m). (5.52)

The event rAm | rBm is to reach m− 1 starting from m− 1 without visiting r, which obviously
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occurs with probability 1 since the process is already in state m − 1. The event rAm | rBc
m is

to reach m − 1 �rst before r, starting at m + 1, which is equivalent to the following: starting

at m + 1, the process reaches m without visiting r, then starting from m, it reaches m − 1

without visiting r. So, Pr(rAm | rBc
m) = rηm+1

rηm. Furthermore, the event rBm occurs with

probability µm

λm+µm
, and the event rBc

m with probability λm
λm+µm

. These arguments lead to the

following recursive relation

rηm =
µm

λm + µm
+

λm

λm + µm

rηm+1
rηm, for 1 ≤ m < r − 1, (5.53)

or equivalently
rηm =

µm

µm + λm(1− rηm+1)
, for 1 ≤ m < r − 1, (5.54)

starting with rηr−1 = µr−1

λr−1+µr−1
.

For 1 ≤ m < r − 1, we de�ne the quantities δm by

δm = µm + λm(1− rηm+1), (5.55)

and for 0 ≤ m < r − 1, we introduce the quantities χm as follows

χ0 = 1, and χm =
(λ0

rη1) (λ1
rη2)...(λm−1

rηm)
δ1 δ2...δm

, for 1 ≤ m < r − 1. (5.56)

Theorem 5.4 The kth order moment E(rθk
m), k ≥ 1, of the random variable rθm, 1 ≤ m ≤ r−1,

is given by

E(rθk
r−1) =

k!
(λr−1 + µr−1)k

, (5.57)

and

E(rθk
m) =

1
λm−1

rηm χm−1

r−1∑
n=m

λn−1
rηn χn−1

rVn,k, for 1 ≤ m < r − 1, (5.58)

where

rVn,k =
k

δn
E(rθk−1

n ) +
λn

rηn+1

δn

k−1∑

j=1

Cj
k E(rθj

n) E(rθk−j
n+1), for 1 ≤ m < r − 1,

and

Cj
k =

k!
j! (k − j)!

, for k ≥ j ≥ 1.

Proof. One can easily see that the random variable rθr−1 is exponentially distributed with rate

λr−1 + µr−1. Then, its kth order moment is given by E(rθk
r−1) = k!

(λr−1+µr−1)k , k ≥ 1. For
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1 ≤ m < r − 1, we can write using the Strong Markov Property





rθm
.= ελm+µm , with probability 1−r ωm

rθm
.= ελm+µm + rθm+1 + rθ̂m , with probability rωm.

(5.59)

where ελm+µm is a random variable exponentially distributed with parameter λm + µm. The

random variables rθm, rθm+1 and rθ̂m are independent. In addition, the random variables rθm

and rθ̂m are identically distributed. The quantity rωm is the probability that the process goes

up to state m + 1 and subsequently comes back to m without visiting r, rωm = λm
λm+µm

rηm+1.

Let rθ̃m(s) be the Laplace transform of the random variable rθm. Then, Equation (5.59) yields

(λm + µm + s) rθ̃m(s) = δm + λm
rηm+1

rθ̃m+1(s) rθ̃m(s), for 1 ≤ m < r − 1. (5.60)

As in the proof of Theorem (5.1), using the Leibnitz's di�erentiation formula, we get the following

recursive relation, for 1 ≤ m < r − 1, k ≥ 1

E(rθk
m) =

λm
rηm+1

δm
E(rθk

m+1) +r Vm,k. (5.61)

Finally, with straightforward manipulations we complete the proof. 2

Corollary 5.6 The mean value rθm of the random variable rθm is given by

rθr−1 =
1

λr−1 + µr−1
, and, rθm =

1
λm−1

rηm χm−1

r−1∑
n=m

χn, for 1 ≤ m < r − 1. (5.62)

Proof. The �rst part of the corollary is immediately obtained from the special case, k = 1, of

Theorem (5.4). As for the second part, one has rVn,1 = 1
δn

for 1 ≤ n < r−1, next observing that

λn−1
rηnχn−1 = δnχn and again applying Theorem (5.4), for k = 1, complete the proof. 2

Corollary 5.7 The variance V ar(rθm) of the random variable rθm is given by

V ar(rθr−1) =
1

(λr−1 + µr−1)2
, and, for 1 ≤ m < r − 1, (5.63)

V ar(rθm) =
2

λm−1
rηm χm−1

r−1∑

n=m+1

1
λn−1

rηn χn−1

(
r−1∑

i=n

χi

)2

+
1

λ2
m−1

rη2
m χ2

m−1

(
r−1∑

i=m

χi

)2

.

(5.64)

Proof. The �rst part of the corollary is a direct consequence (special case, k = 2) of Theorem

(5.4). For the second part, it su�ces to see that rVn,2 = 2
(
rθn

)2, 1 ≤ m < r − 1. Next, by
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simply applying Corollary (5.6) and again Theorem (5.4), for k = 2, we get the second order

moment E(rθ2
m) of rθm as follows.

E(rθ2
m) =

2
λm−1

rηm χm−1

r−1∑
n=m

1
λn−1

rηn χn−1

(
r−1∑

i=n

χi

)2

, for 1 ≤ m < r − 1. (5.65)

Finally, the result holds using the de�nition, V ar(rθm) = E(rθ2
m)−(rθm)2. 2

In what follows, we focus on the moments computation of the random variable rτm. As above,

we �rst introduce some notations. Let rνm be the ruin probability that the process, starting at

m − 1, reaches m �rst before r, m ≥ r + 2. It is clear that rνr+2 = λr+1

λr+1+µr+1
. With a similar

explanation as for the ruin probability rηm, we give the following recursive relation, for m > r+2,

rνm =
λm−1

λm−1 + µm−1(1− rνm−1)
. (5.66)

For m ≥ r + 1, we de�ne the quantities βm by

βr+1 = λr+1 + µr+1, and, βm = λm + µm(1− rνm), for m > r + 1, (5.67)

and for m ≥ r + 1, we introduce the quantities φm as

φr+1 = 1, and φm =
βr+1 βr+2...βm−1

(µr+2
rνr+2) (µr+3

rνr+3)...(µm
rνm)

, for m > r + 1. (5.68)

Theorem 5.5 The kth order moment E(rτk
m), k ≥ 1, of the random variable rτm, m ≥ r + 2,

is given by

E(rτk
r+2) =

k!
(λr+1 + µr+1)k

(5.69)

and

E(rτk
m) =

1
βm−1φm−1

m∑

n=r+2

βn−1φn−1
rWn,k, for m > r + 2 (5.70)

where

Wn,k =
k

βn−1
E(rτk−1

n ) +
µn−1

rνn−1

βn−1

k−1∑

j=1

Cj
k E(rτ j

n−1) E(rτk−j
n ), for n > r + 2, k ≥ 1,

and

Cj
k =

k!
j! (k − j)!

, for k ≥ j ≥ 1.

Proof. It is easy to see that the kth order moment of the random variable rτr+2 is given by
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E(rτk
r+1) = k!

(λr+1+µr+1)k , k ≥ 1. For m > r + 2, we can write from the Strong Markov Property





rτm
.= ελm−1+µm−1 , with probability 1−r αm−1

rτm
.= ελm−1+µm−1 + rτm−1 + r τ̂m , with probability rαm−1.

(5.71)

where ελm−1+µm−1 is a random variable exponentially distributed with parameter λm−1 + µm−1.

The random variables rτm, rτm−1 and r τ̂m are independent. In addition, the random variables
rτm and r τ̂m are identically distributed. The quantity rαm is the probability that the process

goes down from state m to state m − 1 and subsequently comes back to m without visiting r,
rαm = µm

λm+µm

rνm.

As above, we use the Laplace transform and the Leibnitz's di�erentiation formula to get

E(rτk
m+1) =

µm
rνm

βm
E(rτk

m) + rWm+1,k, m > r + 2, k ≥ 1. (5.72)

Using the latter recursive relation, the result of the theorem follows. 2

Note that the general recursive relation, given in Equation (5.72), can be found in Sumita

[121] in the special cases, k = 1 and k = 2.

Corollary 5.8 The mean value rτm of the random variable rτm is given by

rτm =
1

βm−1φm−1

m−1∑

n=r+1

φn, for m ≥ r + 2. (5.73)

Proof. Observing that rWn,1 = 1
βn−1

, for n ≥ r +2, the result holds from the special case, k = 1,

of Theorem (5.5). 2

Corollary 5.9 The variance V ar(rτm) of the random variable rτm is given, for m ≥ r + 2, by

V ar(rτm) =
2

βm−1φm−1

m−1∑

n=r+2

1
βn−1φn−1

(
n−1∑

i=r+1

φi

)2

+
1

β2
m−1φ

2
m−1

(
m−1∑

i=r+1

φi

)2

. (5.74)

Proof. For n ≥ r + 2 and k = 2, we have rWn,k = 2 (rτn)2. Next, using Corollary (5.8) and

applying Theorem (5.5) for the special case, k = 2, give us the second order moment E(rτ2
m) of

rτm as follows.

E(rτ2
m) =

2
βm−1φm−1

m∑

n=r+2

1
βn−1φn−1

(
n−1∑

i=r+1

φi

)2

, for m ≥ r + 2, (5.75)
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which leads to the desired result. 2

From the above analysis of this section, we can obtain characteristics of several random

variable of conditional �rst passage times. For instance, let rDm,m−i and V ar(rDm,m−i) be the

mean and variance of the random variable rDm,m−i, respectively. From Corollaries (5.6) and

(5.7), we have respectively, for 1 ≤ i ≤ m < r,

rDm,m−i =
m∑

n=m−i+1

1
λn−1

rηnχn−1

r−1∑

j=n

χj , (5.76)

V ar(rDm,m−i) =
m∑

n=m−i+1

2
λn−1

rηnχn−1

r−1∑

j=n+1

1
λj−1

rηjχj−1




r−1∑

l=j

χl




2

(5.77)

+
m∑

n=m−i+1

1
λ2

n−1
rη2

nχ2
n−1

(
r−1∑

l=n

χl

)2

.

Similarly, we denote by rUm,m+i and V ar(rUm,m+i) the mean and variance of rUm,m+i, respec-

tively. From Corollaries (5.8) and (5.9), we have respectively, for 0 ≤ r < m, i ≥ 1,

rUm,m+i =
m+i∑

n=m+1

1
βn−1φn−1

n−1∑

j=r+1

φj , (5.78)

V ar(rUm,m+i) =
m+i∑

n=m+1


 2

βn−1φn−1

n−1∑

j=r+2

1
βj−1φj−1

(
j−1∑

l=r+1

φl

)2

+
1

β2
n−1φ

2
n−1

(
n−1∑

l=r+1

φl

)2

 .

(5.79)

5.5 Applications

In this section, we give indications about some applications of the obtained theoretical results

of this chapter. First, we revisit the important concepts of busy period and busy cycle in

queueing systems. Second, we address another important application, which is the prediction

of state-dependent queueing delays in non-standard queueing systems; systems with impatient

customers (linear growth death rates), or state-dependent arrival rates, or in general, systems

with state-dependent transition rates.
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5.5.1 Busy Period Analysis for the M/M/1 and M/M/s Queues

In this section, we apply some special cases of the results of Section 5.3 to retrieve known results

for the simple M/M/1 and M/M/s queues.

First, let us consider an M/M/1 queue. Customers arrive according to a Poisson process

with rate λ. The time it takes to serve every customer is exponential with rate µ. Service times

are assumed to be mutually independent and further independent from the interarrival times.

When a customer enters an empty system his service starts at once. If the unique server is busy,

a new customer joins the queue which has in�nite capacity. When a service completion occurs,

a customer from the queue (we do not need here to specify which one of the customers), if any,

enters the service facility at once to start service. Let ρ be the server utilization, ρ = λ/µ. Under

stability conditions, ρ < 1. This is equivalent to Condition (C1) de�ned in Section 5.3.

Let E(t) be the number of customers in system at a random instant t. The process {E(t), t ≥
0} is a particular case of the birth-death process we present in Section 5.2. The transition rates

are constants. The birth rate is λm = λ for m ≥ 0, and the death rate is µm = µ for m ≥ 1.

The busy period for the M/M/1 system is de�ned to begin with the arrival of a customer to an

idle server and to end when the server next becomes idle. Hence, the busy period length of an

M/M/1 queue is represented by the random variable measuring the �rst passage time from state

1 (one customer in system) to state 0 (no customers in system), namely the random variable θ1

de�ned in Section 5.2.1. Let us now check the results obtained in Section 5.3 in the particular

case we present here.

On the one hand, we use the expressions found in Section 5.3 to compute the �rst �ve order

moments of the random variable θ1. For our model, transition rates above one state do not

depend on the state itself. Then, one should simplify the algebra using the fact that the random

variables θi and θj are identically distributed, for i, j ≥ 1. Next, by simply observing that
∑∞

i=1(
λ
µ)i = λ

µ−λ (for λ
µ < 1), we deduce from Theorem (5.1) that the �rst �ve order moments

are 1
µ−λ ,

2µ
(µ−λ)3

, 6µ(λ+µ)
(µ−λ)5

, 24µ(λµ+(λ+µ)2)
(µ−λ)7

, and 120µ(λ+µ)(3λµ+(λ+µ)2)
(µ−λ)9

, respectively.

On the other hand, it is known from classical results, as in Gross and Harris [46], that

the Laplace transform in t, θ̃1(s), of the probability density function (pdf) of the busy period

duration of the M/M/1 queue is given by θ̃1(s) = 2µ

λ+µ+s+
√

(λ+µ+s)2−4λµ
, for s ≥ 0. Then, using

the relation E(θk
1) = (−1)kθ̃

(k)
1 (0), for k ≥ 1, one can again �nd the expressions derived from

our results.

The busy period results are of value when addressing the busy cycle analysis for the M/M/1

queue. A busy cycle is de�ned as the sum of a busy period and an adjacent idle period, or equiv-

alently, the time between two successive departures leaving an empty system, or two successive
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arrivals to an empty system. Since the arrivals here are assumed to follow a Poisson process,

the probability density function (pdf) of the idle period is exponential with parameter λ; hence

the pdf of the busy cycle for the M/M/1 queue is the convolution of this negative exponential

with the pdf of the busy period itself. Following the notations in Section 5.2.1, the busy cycle

duration is clearly τ1 + θ1, namely C1. In particular, we deduce from Equation (5.46) that the

busy cycle expectation is C1 = µ
λ(µ−λ) , which agrees with a classical result in queueing literature,

see for example Gross and Harris [46].

Let us now address the previous analysis for an M/M/s queue. We consider an M/M/s queue

with s identical and independent servers. We consider the same assumptions for the arrival and

service processes as those for the M/M/1 queue. Again, we do not need to specify the service

discipline, except to be non-idling. Finally, let ρ be the server utilization, ρ = λ/sµ. Under

stability condition, (C1), we have ρ < 1.

The process {E(t), t ≥ 0} counting the number of customers in system is a birth-death

process, and it is a particular case of the one we present in Section 5.2. The birth rate is λm = λ

for m ≥ 0, and the death rate is µm = mµ for 1 ≤ m ≤ s, and µm = sµ for m > s. The busy

period of the M/M/s system is de�ned as the time from an arrival of a customer to a system

with only one idle server until the �rst time one of the servers becomes idle. Thus, it represents

the duration of an excursion by the process {E(t), t ≥ 0} above the level s − 1, namely θs.

With a little thought it should be clear that the busy period pdf of the M/M/s queue can be

obtained by taking its expression in the case of an M/M/1 queue and substituting µ (capacity of

service in the M/M/1 queue) with sµ (capacity of service in the M/M/s queue.) One can easily

validate this intuitive result by considering the state-transition-rate diagrams for both processes.

In fact, transition rates, above any state m ≥ s − 1, of the birth-death process associated with

the M/M/s queue are constant. In addition, they reduce to the ones for the M/M/1 case if

we substitute sµ by µ. In this con�guration, both of the processes behaves equivalently when

calculating an excursion duration from state m to state m−1, such that m ≥ s, and in particular

when calculating the busy period duration. Next, one may again check with some algebra that

the expressions of the moments obtained from the results of Section 5.3 coincide with those

already known from the literature.

5.5.2 Busy Period Analysis for the M/M/1 + M and M/M/s + M Queues

In this section, we address the analysis of the busy period for some special cases of queueing

systems with reneging. Incorporating reneging in queueing models is well known to be of interest.

It has an important e�ect on the performance measures as we have shown in Chapters 3 and
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4. For instance, reneging is of special interest in manufacturing systems dealing with perishable

products, also in call centers where customers may hang up once they feel that their waiting

time before getting service is too long, etc.

To the best of our knowledge, the results below are not given beforehand. First, let us

consider an M/M/1 + M queue. The model is identical to the M/M/1 queue described in

Section 5.5.1. However, the customers here are impatient (symbol M after the +.) Times before

reneging are assumed to be mutually independent of each other and identically distributed with

an exponential rate σ > 0. We consider a di�erent notation for the reneging rate (σ instead of γ

as Chapters 3 and 4) in order to avoid any confusion with the Incomplete Gamma Function we

are using below. Again, we do not need for our analysis to specify the service discipline, except

to be non-idling. Finally, recall that abandonments make the system unconditionally stable. In

concrete terms, Condition (C1) holds for any set of parameters such that σ > 0.

For our M/M/1+M model, the corresponding in�nitesimal transition rates in the generalized

birth-death process are given by λm = λ for m ≥ 0, and µm = µ+(m−1)σ for m ≥ 1. The busy

period duration is given by the random variable θ1. To get any moment of order k, for k ≥ 1,

it su�ces to use the obtained relations from Theorem (5.1). In what follows, we only give the

mean θ1 and variance V ar(θ1). From Corollary (5.1), one state that

θ1 =
1
λ

∞∑

n=1

λn

∏n−1
j=0 (µ + jσ)

. (5.80)

Consider the Gamma Function Γ(x) de�ned for x ≥ 0, Γ(x) =
∫∞
0 tx−1e−tdt. It is known

that
∏n−1

j=0 µ + jσ = σnΓ(µ/σ+n)
Γ(µ/σ) , see Ancker and Gafarian [10]. So, from the relation γ(x, a) =

e−xxa
∑∞

n=0
Γ(a)

Γ(a+n+1)x
n where γ(x, a) =

∫ x
0 ta−1e−tdt is the Incomplete Gamma Function de�ned

for a, x ≥ 0, we deduce with some algebra that

θ1 =
1
λ
· (λ

σ
)1−

µ
σ · eλ

σ · γ(
λ

σ
,
µ

σ
). (5.81)

Note that Equation (5.81) can be useful for numerical computation since the Incomplete Gamma

Function is extensively tabulated. Concerning the variance V ar(θ1), we have not found a simpler

expression. It is given by

V ar(θ1) = (θ1)2 +
2
λ2

∞∑

n=2

∏n−2
j=0 (µ + jσ)

λn−1

∞∑

i=n

λi

∏i−1
j=0(µ + jσ)

. (5.82)

To get some numerical illustrations, we consider 3 cases by varying the system parameters. The

parameters of the �rst M/M/1 + M system are λ = 0.2, µ = 0.3 and σ = 0.2. Those for the



Applications 125

second system are λ = 0.3, µ = 0.5 and σ = 0.2. Finally, we have for the third system λ = 0.8,

µ = 0.5 and σ = 0.4. The results are shown in Table 5.1.

System 1 System 2 System 3
k Numer Simu Numer Simu Numer Simu
1 5.15 5.15 3.24 3.24 5.66 5.66
2 65.03 65.04 27.63 27.63 88.05 88.04
3 1,319.64 1,319.51 392.12 392.14 2,157.46 2,157.20

Table 5.1: kth order moments of the busy period duration for the M/M/1 + M queue, k = 1..3

As one would expect, the busy period duration for the special case without abandonments

(σ = 0) gives an upper bound of that we consider here. The reason is that reneging leads to fewer

customers in the last system. In Table 5.2, we give numerical examples for the �rst three order

moments associated with the �rst two systems we consider above but without abandonments,

σ = 0. We omit the computation for the third system because it becomes unstable when assuming

no abandonments.

E(θk
1)

k System 1 System 2
1 10 3.33
2 600 37.03
3 90,000 864.19

Table 5.2: kth order moments of the busy period duration for the M/M/1 queue without aban-
donments, k = 1..3

We notice that the analysis above can be easily extended to the case when the reneging rate

depend on the position of the customer in the queue. Also, as we have explained for the M/M/s

queue, the busy period moments for the M/M/s + M queue can be obtained simply by taking

those of the M/M/1 + M queue and substituting the service capacity, µ, in the �rst model by

that, sµ, in the second model.

5.5.3 Estimating State-Dependent Waiting Times

In this section, we continue on showing the usefulness of the results of this chapter. We present

an application related to the distribution of state-dependent queueing delays in a multiclass

Markovian queueing system. The motivation of such application deals with the usefulness of the

prediction of queueing delays, as we have discussed in Chapter 4. Many prediction methods have

been done, see for example Whitt [137], Jouini and Dallery [64] and [67], Nakibly [103], Rosenlund

[114], and Koole [84] where the author has developed one simple algorithm for calculating tail
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probabilities of Cox distributions.

In Section 4.4 of the previous chapter, we considered a two-class Markovian queueing system

with reneging. We focused on estimating virtual delays for a new arrival given that the call

center provides to him information about anticipated delays. In particular for a new type B

customer, we derived the analysis using the results of Section 5.3 of the present chapter. In what

follows, we consider a slightly di�erent model in the sense that we let customers renege, whereas

we do not give delays information to them. We again show how the obtained results may help

us to predict state-dependent delays for new arrivals.

We use the same notations as in Chapter 4, except for the common reneging rate (σ instead

of γ) in order to be coherent with the notations of the present chapter. We consider a new

arrival who �nds all the servers busy, nA type A waiting customers in queue A and nB type B

customers in queue B. We separate the study depending on whether the call of interest is of

type A or B. Type A customers observe a regular queue without priority. Then, the conditional

waiting time distribution of a new customer A is easy to derive. It follows an hypoexponential

distribution, which is the convolution of (nA + 1) exponential distributions with parameters sµ,

sµ + σ, sµ + 2σ, ..., and sµ + nAσ.

As for the conditional waiting time for a new type B arrival, the analysis is more complicated

because it is a�ected by future type A arrivals. In the following, we revisit Section 5.3 to address

that issue. Consider a new type B arrival, and let nT be the total number of customers in queues,

nT = nA + nB. We denote by XB
nT

the random variable representing his state-dependent virtual

delay in queue. The latter is the time it takes for a server to become free for the customer of

interest. In other words, it is the time until the nA+nB waiting customers leave the queue (either

start service or abandon the queue), plus the time for future type A arrivals to either start service

or abandon the queue, plus the duration for a service completion (when all servers are busy).

On the contrary to the case with delays information, XB
nT

is no longer dependent on the couple

(nA, nB) but only on nT . The reason is that the rate of future type A arrivals is constant (λA)

and does not depend on the number of type A waiting customers in queue. Furthermore, the

discipline of service is workconserving, and type A and B are statistically identical with respect

to the memoryless service times and times before reneging. Hence, varying the quantities nA and

nB so as nA + nB is held constant, do not a�ect the waiting time distribution of the customer

of interest.

To characterize XB
nT

, one may formulate the problem as to calculate the downcrossing time

until the �rst passage at state 0, starting from state nT , in a birth-death process with a constant

birth rate, λm = λA for m ≥ 0, which represents future type A arrivals during the waiting of the
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customer of interest, and with a death rate µm = sµ + (m− 1)σ for m ≥ 1. We do not consider

future type B arrivals because the discipline of service within queue B is FCFS. Thereafter using

Equations (5.42) and (5.44), we give the expressions of the mean, E(XB
nT

), and the variance,

V ar(XB
nT

), of XB
nT

as follows

E(XB
nT

) =
1

λA




nT +1∑

i=1

1
πi−1

∞∑

j=i

πj


 , (5.83)

V ar(XB
nT

) =
1

λ2
A


2

nT +1∑

i=1

1
πi−1

∞∑

j=i+1

1
πj−1




∞∑

l=j

πl




2

+
nT +1∑

i=1

1
π2

i−1




∞∑

j=i

πj




2
 , (5.84)

where the quantities πi are de�ned as

π0 = 1, and πi =
λi

A∏i−1
j=0(sµ + jσ)

, for i ≥ 1. (5.85)

Also, the analysis can be extended to the case of more than 2 customer classes (types) with

non-preemptive strict priority. Consider the previous model but with k customer classes, k ≥ 3.

Without loss of generality, we denote each class by the rank i, 1 ≤ i ≤ k, according to its priority

level (the lower rank for the higher priority.) To get the conditional waiting time characteristics

for a new type k arrival (k ≥ 3), we aggregate all the classes i having the priority over the one

of interest (all i such that 1 ≤ i < k) into one class, next we pick up the same analysis as that

for type B. The classes aggregation is justi�ed by the fact that the waiting time distribution of

the customer of interest is not a�ected by the order of service of the customers having higher

priority.

5.6 Conclusions and Perspectives

We focused on the transient behavior analysis of a general birth-death process. We gave closed-

form expressions for the moments of important state-dependent characteristics. The character-

istics deal with the random variables of ordinary and conditional �rst passage times. We derived

several new expressions of the moments of the de�ned hitting and return times. Furthermore,

we retrieved some known results as special cases. We also discussed the condition under which a

birth-death process is said to be ergodic degree k. In particular, we gave a new explicit expres-

sion for the condition of ergodicity degree 3. In the second part of the chapter, we investigated

possible applications of the results for Markovian queueing models.

Several further applications could be also possible. For instance, deriving the stationary wait-
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ing time moments for some Markovian model where the arrival rate depend on the system state.

Concretely, for example in a system where a new customer has a state-dependent probability

to join the queue, which is the case for many systems in practice. To do so, we may compute

the state-dependent waiting times as shown in this work. Then, we compute the stationary

probabilities of the system state using the associated birth-death process. Thereafter, we de-

rive the desired stationary kth order moment of queueing delays, by summing the products of

each stationary probability and its corresponding state-dependent kth order moment. Further

investigations of these issues should be of value. It would be also interesting to investigate ap-

proximations or numerical methods for computing the di�erent quantities. This would be helpful

to avoid computation di�culties given that the closed-form expressions of interest are somewhat

cumbersome.



Chapter 6

Monotonicity Properties for
Multiserver Queues with Finite Waiting
Lines

We focus on deriving monotonicity properties for queueing systems. The latter are

known to be useful for the modeling and analysis of manufacturing and service sys-

tems such as call centers. We consider a markovian multiserver queue with a �nite

waiting line in which a customer may decide to leave and give up service if its waiting

time in queue exceeds its random deadline. We focus on the performance measure in

terms of the probability of being served under both transient and stationary regimes.

We investigate monotonicity properties of �rst and second order of this performance

with respect to the bu�er size, say k. Under the stationary regime, we prove that

our service level is strictly increasing and concave in k, whereas we prove under the

transient regime that it is only increasing in k. Such results are helpful for optimal

design issues.

The paper version of this chapter, Jouini and Dallery [66], is to appear in Probability

in the Engineering and Informational Sciences.

129
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6.1 Introduction

In this chapter, we derive some monotonicity properties in a queueing system with reneging. We

do not address in a direct manner an issue related operations management of call centers. The

issue here is di�erent from that in Chapter 5, however in the same sense, we are investigating

useful results in an upstream stage above the quantitative analysis of call centers.

Monotonicity properties of performance measures are useful for understanding and solving

optimization problems of queueing systems. Optimization models are being used increasingly in

the design of a variety of systems where queueing phenomena arise. Examples include �exible

manufacturing systems, as well as service systems and telecommunications networks. For such

problems, it is important to know the convexity properties of the performance measures with

respect to the design variables. For call centers issues, the design variables on which the service

provider could act are essentially the sta�ng level, the arrival rate and the bu�er size. In some

cases, it could be possible for him to act on processing times (for example by increasing or

decreasing the training quality of the agents).

Monotonicity properties may enable us to reduce the performance optimization problem to

a convex programming problem which is easier to solve. Using a convexity result, Yao and

Shanthikumar [143] accelerate their computation procedure to design a loss queueing system

subject to constraints on the loss probability. Koole and Pot [87] consider an optimization

problem for an M/M/s/K +M queue. The objective function is a pro�t function of the number

of servers and the bu�er size. They derive some monotonicity properties about the de�ned

performance measure. Based on these properties, they develop a fast algorithm which avoids the

research of all possible solutions to get the global optimum.

Several convexity properties about various performance measures have been investigated in

the queueing literature. The major performance measures for delay systems are the average

waiting time, the average queue length and the probability of delay. Those for pure loss systems

include basically the probability for a new arrival to be lost. In general, the loss probability is

related to systems involving �nite bu�ers or systems with reneging. In this chapter, we consider

a queueing system with impatient customers and �nite waiting line. The performance measure

of interest is the probability for a new arrival customer to enter service. Or equivalently, the

probability to not be lost. We investigate �rst and second order monotonicity properties of our

performance measure as a function of the queue size. Note that the design of the bu�er size is an

important issue in practice. Koole et al. [86] address this problem by investigating the maximum

queue length during a busy period for an in�nite bu�er size.

Another central feature in many practical queueing systems is the reneging phenomenon, i.e.,
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one customer may decide to leave the queue (abandons) before starting service. For instance,

call abandonment is not negligible in call centers operations. A major drawback in many call

center models is assuming customers to be in�nitely patient. Garnett et al. [44] show using

numerical examples that models with and without abandonment tend to give very di�erent

performance measures even if the abandonment rate is small. In this work, we analyze the

simplest abandonment model, assuming that the customers patience is exponentially distributed.

However, the model is still of interest in practice (especially for call centers) as we have explained

in Chapters 3 and 4.

Here is how the rest of the chapter is organized. In Section 6.2, we review the literature close

to our work. In Section 6.3, we present the framework of the work: Section 6.3.1 is devoted to

formulate the queueing model, and Section 6.3.2 gives de�nitions and some preliminary results.

In Section 6.4, we focus on the �rst order monotonicity results. In Section 6.4.1, we start by

proving two helpful lemmae before proceeding to the main result. Next, we establish using

coupling arguments that the transient and stationary probabilities of being served are increasing

in the bu�er size. In Section 6.4.2, we prove the result for the stationary performance measure

using an analytical approach. In Section 6.5, we prove that the stationary probability of being

served is strictly concave in the bu�er size. Some numerical illustrations of the results are also

presented. In Section 6.6, we conclude and propose some directions for future research.

6.2 Literature Review

In this section, we review the literature related to this chapter. We start by presenting some

papers investigating monotonicity results for models without reneging. Second, we focus on those

for models incorporating reneging.

We classify the results for models with in�nitely patient customers into three classes: pure

loss, limited bu�er and in�nite bu�er models. For pure loss systems, Harel [53] proves that the

throughput of an M/G/s/s is concave in the arrival and service rates. He also characterizes the

tra�c intensity below which the Erlang loss formula is convex in the arrival rate, and above which

it is concave. Furthermore, he shows that the Erlang loss formula is convex in the service rate.

For the same model, Messerli [101] proves that the loss probability is a convex function of the

number of servers. Additional properties of the loss probability are also discussed by Jagerman

[61].

As for systems with limited bu�er, Nagarajan and Towsley [102] investigate the convexity of

the loss probability in the M/M/1/K queue with respect to the tra�c intensity and the service

rate. They show that the loss probability is convex in the service rate. However, they prove that
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there is a value of the tra�c intensity which exactly delineates the convex and concave regions

of the loss probability as a function of the tra�c intensity. Pacheco [106] considers for his part

a more general model with many servers, namely the M/M/s/K queue. He proves that the

loss probability is convex in the queue capacity. Meister and Shanthikumar [100] prove many

convexity results for tandem queueing systems. Several interesting stochastic comparisons of

various variants of multiserver queues with limited bu�er are also derived by Berger and Whitt

[25].

In what follows, we review some monotonicity results for models with in�nite queue capacity.

Tu and Kumin [126] prove that the expected number of customers in a G/G/1 queue is convex in

the service rate. They also show that the result does not hold for a GI/GI/2 queue. Surprisingly,

Harel [54] show that the expected number of customers in an M/D/s queue is convex in both

arrival and service rates. For the M/M/s queue, Lee and Cohen [91] show that the average queue

length and the probability of delay, are both convex in the arrival rate. For the same model,

Harel and Zipkin [56] establish that the average sojourn time, as well as its standard deviation

are convex in arrival and service rates. Again about the M/M/s queue, Jagers and van Doorn

[62] focus on the performance measure in terms of the probability for a customer to wait no

longer than a given threshold. Note that this service level is widely used in call centers. The

authors show that the probability of interest is concave as a function of the number of servers,

if the latter is strictly greater than the o�ered load. We refer the reader for further convexity

properties to Weber [131] and [132], Grassmann [45], Shanthikumar [119], Harel and Zipkin [55],

Shaked and Shanthikumar [118] and Koole [83].

Let us now turn to the second area of literature related to this chapter. Queues with impatient

customers have received a lot of attention in the queueing literature. The results focus especially

on performance evaluation. We refer the reader to Chapter 3 for a review of the literature

related to that subject. Concerning monotonicity properties, few results were derived. This

is due to the mathematical complexities of such problems. Bhattacharya and Ephremides [26]

consider multiserver queues with impatient customers. They show that the transient number

of lost customers is a monotone function with respect to the arrival rate, the service rate, as

well as the reneging rate. Armony et al. [14] consider a holding cost in an M/M/s queue with

impatient customers. They prove that this function is decreasing and convex in the service rate

and the number of customers. Some sensitivity results for the Erlang-A model can also be found

in Whitt [140].

In the present work, we consider an M/M/s/K + M queue. The performance measures

of interest are the transient and stationary probabilities of being served. We investigate the
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monotonicity properties of �rst and second order of these service levels with respect to the bu�er

size. Under the stationary regime, we prove using an analytical approach that the service level is

strictly increasing and concave in the bu�er size, whereas under the transient regime, we prove

that it is only an increasing function. Furthermore, we prove the latter intuitive result using

coupling arguments for a more general model, namely the GI/M/s/K + M queue.

6.3 Framework

This section is devoted to formulate the general framework of the research project. First, we

describe the queueing system and detail the processes assumptions. Second, we de�ne the per-

formance measures of interest, namely, the fraction of customers who get service under both

transient and stationary regimes. We next develop some preliminary results.

6.3.1 Model Formulation

Consider a multiserver queueing system with a single class of customers. The model consists

of a set of s parallel, identical servers and a �nite queue (waiting line.) There is a maximum

number of customers that may be simultaneously present, we assume that the system can hold

at most a total of K customers including those in service. Clearly K ≥ s, and we denote the

queue capacity by k = K − s, k ≥ 0. The system is operated in such a way that at any time,

any customer can be addressed by any server. So upon arrival, a customer is addressed by one

of the available servers, if any. If not, the customer joins the queue if less than K customers are

present in system. If not, the customer is refused entry and departs immediately without service.

He is blocked and considered lost. In addition, we assume that customers are impatient. After

entering the queue, a customer will wait a random length of time for service to begin. If service

has not begun by this time, he will renege (abandon), and again considered to be lost. Finally,

retrials are ignored, and reneging is not allowed once a customer starts his service.

The arrival of customers is assumed to follow a Poisson process. Interarrival times are i.i.d.

and exponentially distributed with rate λ. Successive service times are assumed to be i.i.d.,

independent from the arrival process, and follow an exponential distribution with rate µ. Times

before reneging are assumed to be i.i.d., and exponentially distributed with rate γ. Following

similar arguments, the system can be modeled as an M/M/s/K + M queue. Note that owing

to reneging, the system is always ergodic even if the queue has in�nite capacity. Also, ergodicity

would always be assured for our system because of its limited capacity, even if the customers were

assumed to be in�nitely patient. In conclusion, the system we consider here is unconditionally

ergodic.
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6.3.2 Preliminaries

In this section, we focus on characterizing the performance measure of interest. It is de�ned in

terms of the fraction of customers who get service, i.e., the fraction of customers who are not

blocked and who do not renege.

Let us consider an interval of time [0, t], t > 0. We initially assume that the system starts

empty. Given that t units of time have elapsed, let n(t), and s(t) be the total number of arrivals

(including blocked customers), and the number of those who enter service, respectively. We

de�ne the transient fraction of customers who enter service, Q(t), during [0, t] as Q(t) = s(t)
n(t) .

The reader should not confuse the notation Q here with that of the probability of being lost

analyzed in Chapter 3. Taking the limit as t →∞ of Q(t) leads to the stationary fraction Q of

successful departures, Q = limt→∞Q(t). Let b(t) and r(t) be the number of blocked customers,

and that of those who renege, respectively. Since the quantities s(t) and n(t)−b(t)−r(t) coincide

in the long-run, then Q can be rewritten as

Q = lim
t→∞

n(t)− b(t)− r(t)
n(t)

. (6.1)

In what follows, we derive a closed-form expression for Q. We denote the system state by a

random variable taking non-negative integer values representing the total number of customers

in system (including those in service.) The quantity Q represents the probability in the in�nite

horizon for a new arrival customer to enter service, which involves system states stationary

probabilities seen by that arrival. From the PASTA property which holds for our system, it

is equivalent to consider the system states stationary probabilities seen by an outside random

observer (at a random instant.)

Let us now come back to Equation (6.1) by dividing both the numerator and the denominator

in the right hand side over t. Computing Q may be reduced thereafter to computing separately

the ratios n(t)/t, b(t)/t and r(t)/t as t goes to∞. Recall that the mean number of customers per

unit of time is λ. Hence in the long-run (as t →∞), the ratio n(t)/t converges by construction

to λ. As for the limit of b(t)/t as t →∞, we may recognize it as the probability for a new arrival

to be blocked times the mean arrival rate λ. So, it is the probability that a new arrival �nds a

full system times λ, namely the quantity λp(K). Let us now focus on the limit of r(t)/t as t goes

to in�nity. One may recognize this quantity as the mean number of reneging per unit of time

seen by a random outside observer. Since it takes in average 1/γ units of time for one customer

waiting in queue to renege. Thus as t →∞, r(t)/t converges to the mean number of customers

in queue (in the distant future) times γ. Based on the previous analysis, Q can be rewritten as
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follows.

Q = 1− p(K)− γ

λ

K∑

i=s+1

(i− s)p(i). (6.2)

To get explicitly the expression of Q, we move on to compute the stationary probabilities p(i),

for 0 ≤ i ≤ K. In the usual way, we model our system as a �nite continuous-time birth-death

process with discrete state space taking non-negative integer values ranging from 0 to K and

de�ned on a probability space. The birth rates are constant and equal to λ. The death rates are

state-dependent; when moving from state i to state i− 1, the death rate is iµ for 1 ≤ i ≤ s, and

it is sµ + (i− s)γ for s < i ≤ K. Under the stationary regime, we easily get a set of K recursive

equations relating p(i) and p(i + 1) for 0 ≤ i ≤ K − 1. Proceeding to solve by iteration leads to

p(i) =
λi

i!µi
p(0) for 0 ≤ i ≤ s, and p(i) =

λi

s!µs
∏i−s

j=1(s µ + j γ)
p(0) for s < i ≤ K, (6.3)

where p(0) is the steady state probability to have no customers in system, and obviously, p(i) = 0

for i > K. Then, we couple the last set of equations with the probability conservation relation,

i.e.,
∑∞

i=0 p(i) = 1, to get

p(0) =

(
s∑

i=0

λi

i! µi
+

λs

s! µs

K∑

i=s+1

λi−s

∏i−s
j=1(s µ + j γ)

)−1

, (6.4)

which determines all stationary probabilities. We still have to substitute them into Equations

(6.2) to obtain Q.

6.4 Proof of First Order Monotonicity Property

One may intuitively state that the performance measures Q(t) and Q increase with respect to

the queue capacity k, keeping the parameters λ, µ, γ and s constant. The idea is that, although

adding more places in the waiting line may increase abandonments, it is clear that it could not

deteriorate the performances we consider here. On the contrary, it allows for more customers to

enter service. If not, it will at worst achieve an equal fraction of successful departures comparing

to a system with less queue capacity. In this section, we rigorously prove these results using

two di�erent approaches. In Section 6.4.1, we prove using coupling arguments that Q(t) and Q

increase in k for a more general case, namely for a GI/M/s/K + M queue. In Section 6.4.2, we

consider our original system (the M/M/s/K +M queue) and prove using an analytical approach

that Q increases in k.
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6.4.1 Sample Path Approach

We start with a tangential development that will be of a great help to prove our main result.

Let us relax some assumptions in our original system by considering a GI/GI/s/K + M queue.

We assume that interarrivals and service times are i.i.d., but we allow them to follow a general

distribution. In Lemma (6.1), we present an interesting result about the relation between the

performance measures of interest and the scheduling policy under which the system is working.

For the rest of the chapter, we denote by Π the set of workconserving non-preemptive scheduling

policies.

The following result in Lemma (6.1) can be seen as an extension of that in Theorem (3.2)

of Chapter 3. In the latter, we proved a conservation result for the probability of being lost.

Here, we prove the conservation result for the probability of being served by adding blocking

(whenever the system is full).

Lemma 6.1 Consider a GI/GI/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, the probability of being served Q is constant for any

workconserving non-preemptive scheduling policy.

Proof. The result is trivial for a queue with no capacity or with capacity 1. In such cases,

it is clear that the system behaves identically for any policy π ∈ Π, and as a consequence, Q

remains constant. Otherwise, for k ≥ 2, we prove the result by coupling arguments. Consider

two GI/GI/s/K + M models, say Model 1 and Model 2. We assume that Model 1 and Model 2

have identical parameters except for the scheduling policies. Model 1 and Model 2 are working

under the policies π1 and π2, respectively, such that π1 ∈ Π, π2 ∈ Π, and π1 6= π2. Our approach

is based on a single sample path. In both models, we create identical successive arrival epochs, as

well as identical successive service times. However, since times before reneging are exponentially

distributed, the decision for one customer to abandon the queue is not a�ected by his elapsed

waiting time. This is stochastically equivalent to create randomly, for our sample path, a new

maximum time of patience for each customer in queue after each selection for service epoch (or

equivalently after each successful departure epoch.) Assume that at time t = 0 both systems are

empty, and let work begins.

Both models behave identically until a busy period starts and the following situation occurs:

a server becomes idle (after a service completion) and more than one customer are waiting in

queue. Let Di be the epoch of that service completion (which occurs simultaneously in Model 1

and 2.) For both models, let n be the number of customers in queue just before Di, 2 ≤ n ≤ k.

At Di, the idle server in Model 1 selects one customer from the queue who can be di�erent from
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that selected by the same idle server in Model 2. However, the number of customers in queue

goes down by 1 for both models, it becomes n−1. Recall that up to now, the number of blocked

customers, as well as that of those who abandoned the queue, are identical for both models.

At the epoch Di, we create for each customer, waiting in the queue of Model 1, a new patience

time. Without altering distributions, since times before reneging are identically distributed, we

create the same set of n−1 maximum patience times as in Model 1, and we assign them arbitrary

to the customers waiting in Model 2. After Di, three events are possible: one customer reneges,

or a new arrival occurs, or a server becomes idle (service completion.) Recall that by construction

of our single sample path, these events occur simultaneously in both models. Assume now that

the �rst event occurs, then the number of customers who abandon the queue goes up by 1 in

both models and as a consequence remains identical for them. It is still also identical if another

customer abandons the queue. In general, it is the case as long as there are customers waiting

in queue. If not, both models will behave identically, anyway. Assume now that a new arrival

occurs. Note that the number of customers in queue is the same in both models. If the queues

are currently full, i.e., k are waiting for service, then the new arrival will be blocked, and systems

states remain unchanged. However, if at least there is one available space, hence, the number

of customers in queue goes up by 1 in both models. Note that if another arrival occurs or that

one customer abandons the queue, then, the number of customers in queue will increase by 1 (or

remains unchanged if the system is full) or will decrease by 1, respectively. The main conclusion

is that the number of blocked customers, as well as that of those who abandon the queue will

vary identically in both models.

Assume now that one server becomes idle. If the number of customers in queue is currently

less or equal to 1, it is obvious to see that policies π1 and π2 will select at the same time the

unique available customer, if any. Otherwise, the busy period ends in both models, so both

policies will again select identically new arrivals for service until the beginning of the next busy

period. However, if the number of customers in queue is greater or equal to 2, the selected

customer for service may be di�erent from one model to another. As above, we create for the

remaining set of waiting customers, the same set of patience time. Again, we can state that the

number of blocked customers, as well as that of those who abandon the queue remains the same

for both models.

Carrying on using the same arguments, we state that in a distant future, the number of

blocked customers and that of those who renege in Model 1 coincide with those in Model 2. Since

the number of arrivals are also equal for both models, the service level in terms of the fraction of

successful departures is unchanged, Qπ1 = Qπ2. This completes the proof. 2
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Although the probability of being served is independent of the scheduling policy, the mean

waiting time in queue for the served customers does depend on the scheduling policy. We have

proved the latter result in Theorem (3.3) of Chapter 3 by considering the particular case of a

GI/GI/s + M queue. We have also characterized the policies under which upper and lower

bounds of the mean waiting time are achieved.

We should note however that the result in Lemma (6.1) does not hold if times before reneging

are not i.i.d. and exponentially distributed, or if service times at any point during an arbitrary

busy period are order of service dependent, we need to assume that no service needs are created

or destroyed within the system: no renege in the midst of service, no forced idleness of servers,

and so on.

In Lemma (6.2), we show that Q is still unchanged for any workconserving scheduling policy

(with preemption or not) if we further assume that service times are i.i.d. and exponentially

distributed.

Lemma 6.2 Consider a GI/M/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, the probability of being served Q is constant for any

workconserving scheduling policy.

Proof. We again show the result using coupling arguments. Based on a single sample path, we

compare the quantity Q for two identical GI/M/s/K + M models, say Model 1 and Model 2,

working under two di�erent scheduling policies π1 and π2, respectively. We assume that π1 and

π2 are workconserving, and do not restrict them to be non-preemptive. We use a similar approach

to that for Lemma (6.1). The only di�erence is only when an interruption of service occurs in

one of the models. Note that just before the epoch of that event, both models are identical:

all servers are busy, same number n of customers in queue, same remaining service times, and

same set of remaining times before reneging for waiting customers in queue. Without loss of

generality, assume that in Model 1, a new arrival interrupts the service of a customer currently

in service. Since service times are assumed to be exponentially distributed, then the remaining

time for a service completion is not a�ected by the elapsed time in service. This allows us to

create randomly, for our sample path, a new set of remaining service times for the customers

currently in service (s customers in both models), and also a new set of patience time for waiting

customers in queue (n customers in both models.) Continuing the sample path comparison in

the long run will subsequently show that Q coincides for both models. This completes the proof

of the lemma. 2
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In Theorem (6.1), we show the main result of �rst order monotonicity for a GI/M/s/K +M

queue. The analysis resorts in part to the previous preliminary results of this section.

Theorem 6.1 Consider a GI/M/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, probability of being served Q is strictly increasing in

the bu�er size k.

Proof. To prove the result of the theorem, it su�ces to compare the achieved Q for the two

following systems. The �rst, say Model 1, is a GI/M/s/K + M queue with k waiting spaces.

From Lemma (6.1), it does not restrict generality to assume that Model 1 works under the FCFS

discipline of service. The second model is identical to the �rst in all parameters except that it

has k + 1 waiting spaces. From Lemma (6.2), the latter is equivalent, in terms of the achieved

Q, to a GI/M/s/K + M queue, say Model 2, with k + 1 waiting spaces and working under

any preemptive workconserving policy. In summary, it is left to establish that the stationary

probability of being served in Model 2, say Q2, is strictly greater than that in Model 1, say Q1.

The proof follows the sample path approach. Before proceeding to the details, let us charac-

terize a speci�c preemptive workconserving policy, say π, under which Model 2 is operated. We

divide the queue in Model 2 (with capacity k + 1) into two virtual queues. The �rst, say queue

1, has capacity k. The second, say queue 2, has the remaining capacity, i.e., 1. Upon arrival, a

customer is addressed by one of the available servers, if any. If not, the customer must join one

of the queues. We will specify the queue joining policy later. Customers in queue 1 have priority

over customers in queue 2 in the sense that servers are handling customers belonging to queue

1 �rst. The priority rule is preemptive, which simply means that a server currently serving a

customer pulled from queue 2, while a new arrival customer joins queue 1, will interrupt this

service and turn to queue 1 customer. Within each queue, customers are served in order of their

arrival, that is, under the FCFS discipline.

Let us now couple Model 1 and 2 and let work begins. Both models behaves identically until

the situation where in Model 1 all servers are busy, k customers are waiting in queue and a

new arrival occurs. Let us stop our clock temporarily. We denote that customer by the �low

customer". Clearly, the �low customer" is blocked in Model 1 because the system is currently

full, however, he joins the waiting line in Model 2. We assign him to queue 2 (with lower

priority.) Recall that up to now the number of customers served is identical in both models. Let

our clock resumes ticking: arrivals, blocking, abandonments, as well as service completions will

occur at the same epochs in both models until the busy period in system 1 ends (which occurs

with probability 1 due to the ergodicity condition.) We distingue two possible cases for the �low

customer": either he has meanwhile abandoned, or he is still waiting in queue 2. In the �rst case,
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both systems states become again identical. In the second case, i.e., if the �low customer" is still

waiting, then we assign him to the server currently idle in Model 2. As long as the current idle

period in Model 1 does not �nish, we let the �low customer" stay in service. If the �low customer"

�nishes his service before that a new arrival occurs (at the same epoch in both models), therefore

Model 2 will have one more service completion comparing to Model 1, and all events in both

models become again identical. If not, that is if the idle period in Model 1 ends and the �low

customer" has not successfully leaved Model 2, then we interrupt his service and we put him

back in queue 2. The idea here from choosing the policy π is to ensure an identical behavior, in

both models, with regard to all customers except for the �low customers". Such customers are

blocked (lost) in Model 1, however, they join queue 2 in Model 2.

From the previous arguments, one may easily deduce that Q1 ≤ Q2. Let us now proceed to

establish that Q1 < Q2. It is clear that one �low customer" at most may be present in Model 2 at

a given observation moment. Let us further de�ne a particular cycle duration referred to as the

�low cycle". The �low cycle" starts when a �low customer" enters Model 2, and terminates upon

the arrival of the next �low customer". The latter allows the following �low cycle" to start, and

so on. The duration of a �low cycle" is given by the time it takes so that the �low customer" who

starts the cycle either reneges or successfully �nishes his service plus the time it takes starting

from that epoch until the next �low customer" arrival epoch. Since the systems we consider here

are stable, hence, any busy period in Model 1 ends with probability 1, i.e., its duration is �nite

(< ∞). In addition, knowing that times before reneging are �nite, we state that the �low cycle"

duration is also �nite. Furthermore, since interarrival times, times before reneging, as well as

service times are i.i.d. and further independent of each others, it then follows that �low cycles"

durations are also independent and identically distributed. Next, assuming the stationary regime

and observing that there is a non-zero probability that a �low customer" �nishes successfully his

service within its corresponding �low cycle", it yields from the Law of Large Numbers that there

is a non-zero proportion of �low customers" that will �nish successfully their service. So, we state

that the number of customers being served in Model 2 is strictly greater than that in Model 1.

Finally, it is implied that the stationary probability of being served Q is strictly increasing in the

bu�er size k. This completes the proof. 2

In a parallel to the proof of Theorem (6.1), we also state that the probability of being served

under the transient regime, Q(t), is an increasing function of k. Note that it is not necessarily

strictly increasing in k as it is the case for the quantity Q.
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6.4.2 Analytical Approach

In this section, we again consider our original M/M/s/K + M queue described in Section 6.3.1.

As shown in Section 6.3.2, a closed-form expression of the quantity Q may be derived. This

allows us to again prove the result of Theorem (6.1) using an analytical approach. The analysis

we address in this section is in particular useful for the proof of the convexity result in Section

6.5. Before giving the details of the proof of the monotonicity property, we begin with some

preliminary results by means of Properties 6.1 and 6.2. For the rest of the chapter, an empty

sum is being interpreted as zero, and an empty product is being interpreted as one.

Our objective is to show that Q is strictly increasing in k for an M/M/s/K+M queue. To do

so, we consider two models. The �rst is an M/M/s/K+M queue with parameters λ, γ, µ, s, and

k waiting spaces, k ≥ 0. The second model is identical to the �rst however it has a larger bu�er

with k + 1 waiting spaces. Recall that for our analysis, we do not need to specify the scheduling

policy except that it is workconserving. Next, it su�ces to show that the stationary probability

of being served in the �rst model, say Qk, is strictly lower than that in the second model, say

Qk+1. Or equivalently, if we introduce the sequence {Uk, k ≥ 0} de�ned as Uk = Qk+1 −Qk, it

remains for us to establish that Uk > 0 for all k ≥ 0. From Equation (6.2), Uk can be rewritten

as

Uk = pk(k + s)− pk+1(k + s + 1) +
γ

λ

(
k+s∑

i=s+1

(i− s)pk(i)−
k+s+1∑

i=s+1

(i− s)pk+1(i)

)
. (6.5)

The stationary probabilities are given by Equations (6.3) and (6.4). The subscripts are to

indicate to which system the stationary probabilities are corresponding, either for the one with

queue capacity k, or for that with queue capacity k + 1. In Property (6.1), we state a useful

relation between Uk and Uk+1 for any non-negative integer k.

Property 6.1 For all k ≥ 0, the following holds

Uk+1 =
s!µs

∑s
i=0 φi +

∑k+s
i=s+1 ρi

s!µs
∑s

i=0 φi +
∑k+s+2

i=s+1 ρi

· λ

sµ + (k + 2)γ
· Uk, (6.6)

where

φi =
λi

i!µi
, for i ≥ 0, and, ρi =

λi

∏i−s
j=1(sµ + jγ)

, for i ≥ s + 1. (6.7)

Proof. The proof is provided in Appendix C.1.

Note that proving Property (6.1) represents the �hard" part of the proof of the monotonicity

result as well as that of the convexity result. One may verify that Equation (6.6) holds for

di�erent special cases. For instance, let us consider an in�nite-server queue M/M/s/K + M
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(s → ∞). Taking the limit in Relation (6.6) as s goes to ∞ implies that Uk = 0 for all non-

negative integer k ≥ 1 (in addition from Equation (C.4) for example, we have U0 = 0), which

obviously agrees with the classical queueing results. The result also holds for an M/M/s/K +M

queue with in�nitely impatient customers (γ = ∞). In that case, the M/M/s/K + M queue is

equivalent to a loss system (without waiting space.) Thus, it is easy to see that the quantity Qk

does not depend on the bu�er size k. So, Uk = 0 for any k ≥ 0, which agrees with Equation

(6.6).

Although we present in Property (6.2) an inequality that directly seems to be of independent

interest, it is useful for forthcoming proofs of our results.

Property 6.2 Let λ and µ be strictly positive reals and let {Ns, s ≥ 1} be a sequence de�ned as

Ns = sµ
s∑

i=0

λi

i!µi
− λ

s−1∑

i=0

λi

i!µi
. (6.8)

Then, Ns > 0 for all s ≥ 1.

Proof. The inequality holds by induction. We have N1 = µ > 0, then Property (6.2) holds for

s = 1. Assume now that Ns > 0 for a given s ≥ 1, and let us show that Ns+1 > 0. From

Equation (6.8), Ns+1 can be written as

Ns+1 = (s + 1)µ
s+1∑

i=0

λi

i!µi
− λ

s∑

i=0

λi

i!µi
(6.9)

= sµ
s∑

i=0

λi

i!µi
+ sµ

λs+1

(s + 1)!µs+1
+ µ

s+1∑

i=0

λi

i!µi
− λ

s−1∑

i=0

λi

i!µi
− λs+1

s!µs

= Ns +
s λs+1

(s + 1)!µs
− λs+1

s!µs
+ µ

s+1∑

i=0

λi

i!µi

= Ns − λs+1

(s + 1)!µs
+ µ

s∑

i=0

λi

i!µi
+

λs+1

(s + 1)!µs

= Ns + µ
s∑

i=0

λi

i!µi
.

Using the induction assumption, it thus follows that Ns+1 > 0. Finally, we conclude that Ns > 0

for all s ≥ 1. This completes the proof. 2

In Theorem 6.2, we state the main result of this section. Having Properties (6.1) and (6.2),

we are now ready to establish the �rst order monotonicity property of the probability of being

served, Q, with respect to the bu�er size k.
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Theorem 6.2 Consider an M/M/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, Q is strictly increasing in the bu�er size k.

Proof. As explained in the beginning of this section, proving the theorem is equivalent to proving

that Uk is strictly positive for k ≥ 0. Keeping the parameters λ, µ, s and γ constant, the result

holds by induction on k.

Let us establish our claim for the �rst rank, k = 0. The quantity U0 is given by U0 = Q1−Q0,

where Q0 and Q1 are the probabilities of being served for the M/M/s/s+M (no waiting space)

and M/M/s/s + 1 + M (single waiting space) systems, respectively. Using Equation (6.2), the

probability Q0 is given by Q0 = 1 − p0(s), where p0(s) is the stationary probability to have s

customers in the M/M/s/s +M system. As for Q1, it is given by Q1 = 1− λ+γ
λ p1(s+1), where

p1(s+1) is the stationary probability to have s+1 customers in the M/M/s/s+1 +M system.

From Equations (6.3) and (6.4), we get

Q0 = 1−
λs

s! µs∑s
i=0

λi

i! µi

, (6.10)

and,

Q1 = 1− λ + γ

sµ + γ

λs

s! µs∑s
i=0

λi

i! µi + λs

s! µs
λ

s µ+γ

. (6.11)

Therefore,

U0 =
λs

s!µs
∑s

i=0
λi

i! µi

− λs+1 + λs γ

s! µs (s µ + γ)
∑s

i=0
λi

i! µi + λs+1
. (6.12)

To prove that U0 > 0, we consider U0 as a real function of γ, for γ ≥ 0, and we study the sign

of U0(γ). It is clear that U0 has the property to be continuous and derivable in γ. Taking the

derivative, U ′
0, of U0 in γ leads to

U ′
0(γ) = −

s!µssµ
∑s

i=0
λi

i!µi + s!µsγ
∑s

i=0
λi

i!µi + λs+1 − (λ + γ)s!µs
∑s

i=0
λi

i!µi

(s!µs(sµ + γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs

= −
s!µssµ

∑s
i=0

λi

i!µi + s!µsγ
∑s

i=0
λi

i!µi + λs+1 − (λ + γ)(s!µs
∑s−1

i=0
λi

i!µi + λs)

(s!µs(sµ + γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs

= −
s!µssµ

∑s
i=0

λi

i!µi + s!µsγ
∑s−1

i=0
λi

i!µi + λsγ + λs+1

(s!µs(sµ + γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs

+
λs+1 + λs!µs

∑s−1
i=0

λi

i!µi + λsγ + s!µsγ
∑s−1

i=0
λi

i!µi

(s!µs(sµ + γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs (6.13)

= −λss!µs
sµ

∑s
i=0

λi

i!µi − λ
∑s−1

i=0
λi

i!µi

(s!µs(sµ + γ)
∑s

i=0
λi

i!µi + λs+1)2
.
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Using the notation in Equation (6.8), U ′
0(γ) can be rewritten as

U ′
0(γ) =

−λss!µs

(s!µs(sµ + γ)
∑s

i=0
λi

i!µi + λs+1)2
·Ns. (6.14)

Applying now Property (6.2) for s strictly positive integer, and, for λ and µ strictly positive

reals, we easily see that U ′
0(γ) < 0. Then, U0 is a strictly decreasing function in γ, for γ ≥ 0.

Hence, it follows that

U0(γ) > lim
γ→+∞U0(γ), for γ ≥ 0. (6.15)

Observing that

lim
γ→+∞U0(γ) =

λs

s! µs
∑s

i=0
λi

i! µi

− λs+1 + λs γ

s! µs (s µ + γ)
∑s

i=0
λi

i! µi + λs+1
= 0, (6.16)

we deduce that U0(γ) > 0 for γ ≥ 0. Thereafter, our claim is true for the �rst rank k = 0.

Let us consider k ≥ 0 and assume that our claim is true for the rank k, i.e., Uk > 0. Let us

now prove that our claim is true for the rank k +1. This is a direct consequence of Property 6.1.

For s ≥ 1, λ, µ > 0 and γ ≥ 0, we state using Property 6.1 that Uk+1 is the product of Uk and a

strictly positive real. So, Uk+1 > 0. Finally, we conclude that Uk > 0 for k ≥ 0, which completes

the proof of the theorem. 2

6.5 Proof of Second Order Monotonicity Property

In this section, we investigate the second order property of monotonicity (of the probability of

being served) in the queue capacity. First, we prove using a simple counterexample that the

transient probability of being served, Q(t), is not concave in k. Second, we state our main result

in Theorem (6.3) about the concavity property. Finally, we present some numerical illustrations

of that result.

To prove the non-concavity of Q(t) as a function of k, we consider three M/M/1/K + M

queues denoted by Model 1, Model 2 and Model 3. Assume the discipline of service to be FCFS.

The models are identical in all parameters except for the bu�er size. Speci�cally, Models 1, 2

and 3 contain 1, 2 and 3 waiting spaces, respectively. During an interval of time [0, t], we denote

the transient probability of being served for Model 1 by Q1(t). We denote those for Model 2

and 3 by Q2(t) and Q3(t), respectively. In what follows, we construct one possible sample path

which shows that the transient probability of being served is not concave in k. In mathematical

terms, it consists to �nd an instant t such that Q3(t)−Q2(t) > Q2(t)−Q1(t).

Initially, the models are empty. Now, let work begins. All models behave identically until
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the situation where in each model the unique available server is busy and there is one waiting

customer in queue, say A1. Thereafter, assume that one arrival, say A2, occurs before a service

completion or an abandonment. Note that this event occurs with a non-zero probability. The

customer A2 is blocked in Model 1, whereas he joins the queue in Models 2 and 3. Assume also

that the next event is an arrival denoted by A3. The customer A3 is blocked in Models 1 and

2, however he joins the queue in Model 3. Next, assume that A2 abandons the queue, which

occurs simultaneously in Models 2 and 3. Then, assume that A1 in all models and A3 in Model

3 �nish their service and successfully leave the systems. Let tA3 be the epoch of the departure

of A3. So, we state that during [0, tA3 ], the number of served customers in Model 1 is equal to

that in Model 2. However, there is one served customer in more in Model 3 compared to the

other models. In other words, Q3(t) > Q2(t) and Q1(t) = Q2(t), which leads to the inequality

Q3(t)−Q2(t) > Q2(t)−Q1(t) and closes the discussion.

Turning now to the concavity of the stationary quantity Q as a function of k, we present the

following theorem.

Theorem 6.3 Consider an M/M/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, Q is a strictly concave function in the bu�er size k.

Proof. Let us again consider three M/M/s/K + M queues denoted by Model 1, 2 and 3. All

models are identical in all parameters except in the bu�er size. In Model 1, there are k waiting

spaces. However, Model 2 and Model 3 have k + 1 and k + 2 waiting spaces, respectively. We do

not need here to specify the scheduling policy except that it is workconserving. For Model 1, 2

and 3, we denote by Qk, Qk+1 and Qk+2 the stationary probabilities of being served, respectively.

Following this introduction, one may easily see that proving our theorem is equivalent to proving

that Uk = Qk+1 − Qk is strictly greater than Uk+1 = Qk+2 − Qk+1, for all k ≥ 0. In other

terms, it remains to prove that the sequence {Uk, k ≥ 0} is strictly decreasing. Knowing from

Theorem (6.2) that Uk > 0, for k ≥ 0, it su�ces thereafter to show that Uk+1

Uk
< 1, for k ≥ 0.

From Equation (6.6), we have

Uk+1

Uk
=

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

s!µs
∑s

i=0 φi +
∑k+s+2

i=s+1 ρi

· λ

sµ + (k + 2)γ
, for k ≥ 0, (6.17)

which may be rewritten, for k ≥ 0, as

Uk+1

Uk
=

(
(s!µs

∑s−1
i=0 φi)× λ

sµ+(k+2)γ

)
+

(
(λs +

∑k+s
i=s+1 ρi)× λ

sµ+(k+2)γ

)

s!µs
∑s

i=0 φi +
∑k+s+2

i=s+1 ρi

. (6.18)
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From the one hand, Property (6.2) leads to

λ

s−1∑

i=0

φi < (sµ + (k + 1)γ)
s∑

i=0

φi. (6.19)

Hence,

(s!µs
s−1∑

i=0

φi)× λ

sµ + (k + 1)γ
< s!µs

s∑

i=0

φi. (6.20)

From the other hand, we have for all i, such that i < k + s + 1,

λ

sµ + (k + 2)γ
<

λ

sµ + (i− s + 1)γ
, (6.21)

which implies
λ

sµ + (k + 2)γ
ρi <

λ

sµ + (i− s + 1)γ
ρi = ρi+1. (6.22)

Summing Equation (6.22) on all i, s + 1 ≤ i ≤ k + s, we get

λ

sµ + (k + 2)γ

k+s∑

i=s+1

ρi <
k+s∑

i=s+1

ρi+1 =
k+s+1∑

i=s+2

ρi. (6.23)

Next, observing that
λs+1

sµ + (k + 2)γ
<

λs+1

sµ + γ
= ρs+1, for k ≥ 0, (6.24)

the summation of both Inequalities (6.23) and (6.24) leads to

(λs +
k+s∑

i=s+1

ρi)× λ

sµ + (k + 2)γ
<

k+s+1∑

i=s+1

ρi <
k+s+2∑

i=s+1

ρi. (6.25)

Finally, it remains to apply Relations (6.20) and (6.25) back into Relation (6.18), to state that
Uk+1

Uk
< 1. This completes the proof of the theorem. 2

In simple words, one rule of thumb of the current chapter would be as follows. Consider a

system that could be modeled as an M/M/s/K + M . Assume that the manager has to design

the queue capacity subject to maximizing the throughput of the system. Then, there is no need

to choose a very large queue capacity. Most of the bene�ts are, indeed, achieved with a small

queue size.

To get some numerical illustrations of our results, we consider various M/M/s/K+M models

by taking a broad range of parameters values. The service rate is unchanged for all chosen

examples, µ = 1. The values of the reneging rate are 0.5, 1 and 2. The number of servers are 1,
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2, 3, 5, 10, 15, 50, 70 and 100. To vary the �servers utilization" calculated as λ/sµ, we consider

λ = 1.8 for s = 1, 2 and 3; λ = 8 for s = 5, 10 and 15; λ = 60 for s = 50, 70 and 100. For

each set of the previous values, the bu�er size is ranging from 0 to 30. The detailed results are

presented in Tables C.1, C.2 and C.3 of Appendix C.2.

From the numerical results, we underline the following comments. As expected from Theo-

rems (6.2) and (6.3), Q is increasing and concave in k keeping all remaining parameters constant.

One may see that there is no need to go beyond a bu�er size around 10 to approximately reach

the maximum of the probability of being served (reached within an in�nite bu�er size.) Starting

from a system with no waiting space, most of the improvements are achieved by adding two

places in the bu�er. Obviously, we also see that Q is decreasing with respect to the abandon-

ment rate γ. The reason is simply that the probability to abandon the queue is increasing in

the abandonment rate. Furthermore, for a �xed server utilization, large systems allow to achieve

higher service levels. This does not seem at odds with known results, it is due to the pooling

e�ect. We refer the reader to Chapter 2 for further details on the subject.

6.6 Conclusions and Further Research

In this chapter, we considered a queueing system with reneging and �nite bu�er size. The model

is of interest for the modeling in practice of several systems with impatient customers, such as

call centers. We investigated monotonicity results of the probability of being served with respect

to the bu�er size. These results are helpful when addressing optimizations issues. We considered

both transient and stationary quantities of the performance of interest. Under the transient

regime, we proved that it is an increasing and non-concave function of the bu�er size. Under the

stationary regime, we proved that it is strictly increasing and concave in the bu�er size.

As a topic for future research, it would be interesting to investigate in a similar fashion as

here, the convexity properties of the performance measure as a function of other parameters

such as the arrival rate, service rate, reneging rate, and number of servers. The interest on some

design variables instead of others should depend on the application. For instance, a call center

manager would be more interested by the analysis with respect to the arrival rate and the number

of servers. In most practical cases, he could be able to increase or decrease the sta�ng level,

and also to act on the arrival rate (over�ows of customers). In a manufacturing application, the

manager could be however able to act on the processing time of servers (facilities), which is kind

of di�cult for a call center manager.
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Chapter 7

Conclusion and Perspectives

In this chapter, we give general concluding remarks and present directions for future

research. For further details, we refer the reader to the concluding sections of the

previous chapters.
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7.1 Conclusions

A call center, or in general a contact center, is de�ned as a service system in which agents serve

customers, over telephone, fax, email, etc. The call center industry has been steadily growing

and it had been observed worldwide. In the past few years, call centers have been introduced

with great success by many service-oriented companies such as banks and insurance companies.

They become the main point of contact with the customer, and an integral part of the majority of

corporations. The large-scale emergence of call centers has created a fertile source of management

issues. In this thesis, we focused on various operations management issues of call centers. Our

analyzes leaded to both qualitative and quantitative results for practical management. We used

approaches that are based on stochastic models and in particular queueing models.

We investigated the impact of team-based organizations in call centers management. Agents

of call centers are the interface between the company and the customers. Thus, managers have

to support and motivate their employees, so that, the assistance they provide to customers is

e�cient. Partitioning agents into groups creates competition and makes agents more responsible,

which motivates them to provide both rapid and improved responses. We developed queueing

models that show that the bene�ts of the team based organization in providing more e�cient

answers to customers very often outweigh its drawback coming from the loss of pooling e�ects.

In addition, we focused on real-time issues of call centers. In the third chapter, We considered

a two-class call center and developed real-time scheduling policies that determine the rule of

assignment of new arrivals to the waiting lines. We focused on service levels criteria related to

the fraction of abandoning customers and the variance of queueing delays. In the fourth chapter,

we proposed a call center model in which we provide information about delays to customers, and

we quanti�ed its e�ect upon performance.

Next, we tackled the transient analysis of general birth-death processes. We computed several

closed-form expressions of the moments of �rst passage times, and pointed out their applications

for the quantitative analysis of some queueing systems, such as call centers. Finally, we derived

monotonicity results for Markovian queueing systems with impatient customers.

7.2 Future Research

Worrying about accurate and practical results, much is left to be done. As detailed in the

concluding sections of the previous chapters, several interesting areas of future research arise. In

what follows, we point out some of these research directions.

One may continue our work by incorporating customers reneging in the team-based organiza-
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tion analysis. A more ambitious extension would be to investigate the introduction of team-based

organization in an SBR call center where agents have speci�c skills.

An interesting direction, for the real-time policies we developed, lies in investigating accurate

analyzes in order to better understand the behavior of the variance of queueing delays with

respect to these policies. In practice, it should be also of value to extend the research in case of

di�erent statistical behaviors for di�erent customer types. In other words, service times as well

as times before reneging are not equal for both customer types.

One important extension from a practical point of view is to describe empirically customers

reaction in response to delays announcement. This would validate in a real call center case our

claim regarding to the advantages of announcing delays. A further study to quantify the relation

between costs of reneging and balking would be of great value.

We want to develop simple approximations or numerical methods for computing the moments

of �rst passage times in birth-death processes. This would be helpful to avoid computation

di�culties given that the closed-form expressions of interest are somewhat cumbersome. Further

useful applications should be also pointed out.

As a topic for future research, one would investigate more convexity results by considering

more complex systems with general distributions for service times and times before reneging. In

our opinion, further results with regard to other design variables would be important for the call

center industry.
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Appendix A

Appendix of Chapter 2

This appendix deals with the analysis of Chapter 2. In Appendix A.1, we performed a more

systematic analysis than that reported in Section 2.4 in order to con�rm the robustness of our

conclusions. Using simulation experiments, we validate in Appendix A.2 the approximations for

the Portfolio Dedicated System already developed in Section 2.5.1. Finally, Appendix A.3 is

devoted to the proof of a result used in Section 2.5.2.

A.1 Extension of the Quantitative Analysis

The numerical study in Section 2.4 was based on a set of basic data for the initial Pooled System:

µ = 0.2, α = 10%, W (20sec) = 80%, and s = 1000. These basic data are representative of typical

parameters encountered in the Bouygues Telecom call center. However, to make sure that the

conclusions drawn from this set of data are robust, we have performed a large set of experiments,

some of which are reported in this appendix. The study is divided into four steps. In each step,

we �rst vary one parameter (µ, α, W (20sec) or s), then we deduce λa and λ to get di�erent

initial pooled systems which cover many realistic call center cases. Next, we consider each case

and we compute the required increase in the service rate or decrease in the call back proportion,

in order to reach the same performance as in the fully pooled system, for di�erent numbers of

separated teams in the corresponding dedicated systems.

Varying the Service Rate µ

We consider four pooled systems: s = 1000, α = 10%, W (20sec) = 80%, and µ = 0.1, 0.2, 0.5,

and 1, respectively. Then, λa = 88.14, 177.35, 446.52, and 896.12, and λ = 97.93, 197.06, 496.13,

and 995.69, respectively. In Figure A.1, we plot the curves of the required service rate increase

versus the number of pools in the dedicated systems. In Figure A.2, we plot the curves of the
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required call back proportion decrease versus the number of pools. We vary n only from 1 to 10,

so that, αn stays positive.

Figure A.1: Percentages of service rate in-
crease according to number of pools n in
a Dedicated System in order to achieve
Wn(20sec) = 80%, for a di�erent initial ser-
vice rates

Figure A.2: Percentages of call back propor-
tion decrease according to number of pools
n in a Dedicated System in order to achieve
Wn(20sec) = 80%, for a di�erent initial ser-
vice rates

For every value of µ, the results are pretty much of the same quality as in Section 2.4.

Furthermore, an additional insight is that the costs of migrating to the team-based organization

((µn − µ)/µ or (α− αn)/α) are decreasing as the initial service rate is increasing. One intuitive

explanation is as follows. Consider two pooled systems. The parameters of the �rst are s,

λ(1), µ(1), and W (t). The parameters of the second are s, λ(2), µ(2), and W (t). We assume

that µ(1) < µ(2), then λ(1) must be less than λ(2) in order to match the same performance

W (t) in the two systems. Besides, since the servers are slower in the �rst system, the server

utilization of the last is less than the one in the second system, else W (t) will be higher in

the second system. Hence, the second system has more pooling e�ect than the �rst one. Now,

let us divide each system to n identical unpooled systems, so that, s is a multiple of n. The

parameters of one of the �rst unpooled models are s/n, λ(1)/n, and the service rate is µ
(1)
n such

that Wn(t) = W (t). The parameters of one of the second unpooled models are s/n, λ(2)/n,

and µ
(2)
n such that Wn(t) = W (t). Thanks to the pooling e�ect that is more present in the

second pooled system than in the �rst one, the second unpooled system will need an increase

in the service rate regarding µ2 being less than the one regarding µ(1) in the �rst unpooled

system, (µ(2)
n − µ(2))/µ2 < (µ(1)

n − µ(1))/µ(1). An additional insight is that it appears that when

µ decreases, the set of curves (for di�erent values of µ) converges towards an asymptotic curve.

Indeed, we have checked that the curves for µ = 0.001 almost coincide with those for µ = 0.01

in Figures A.1 and A.2.
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Figure A.3: Percentages of service rate in-
crease according to number of pools n in
a Dedicated System in order to achieve
Wn(20sec) = 80%, for a di�erent initial call
back proportions

Figure A.4: Percentages of call back propor-
tion decrease according to number of pools
n in a Dedicated System in order to achieve
Wn(20sec) = 80%, for a di�erent initial call
back proportions

Varying the Call Back Proportion α

Here, we vary the call back proportion with regard to the Pooled System of Section 2.4. We

consider four pooled systems: s = 1000, µ = 0.2, W (20sec) = 80%, and α = 5%, 10%, 15%,

and 20%, respectively. Then, λa = 187.21, 177.36, 167.5, and 157.65, respectively, and λ =

197.06, for the four systems. Figures A.3 and A.4 show, respectively, the required quantitative

(service times) and qualitative (rate of calls successfully addressed) improvements according to

the number of pools.

Again, we have the same qualitative results as in Section 2.4. In Figure A.3, the curves are

identical. The explanation is as follows. Let us consider two pooled systems with the same

parameters except for the dissatisfaction probability α. The required total arrival rates, to meet

a given QoS, are identical in the two systems because they do not depend on α. Therefore,

the two systems are equivalent to the same Erlang-C model. The required service rate µn and

increase in the service rate (µn − µ)/µ, for the corresponding dedicated systems, do not change

for a �xed number of pools n.

Figure A.4 shows that the required improvement in the dissatisfaction probability (α−αn)/α

is decreasing with the initial call back proportion α. The proof of this result is as follows. Consider

two pooled systems with the same parameters s, λ, µ, and W (t). The arrival rate of �rst-attempt

calls and the call back proportion for the �rst system are λa,1 and α(1), respectively. The ones

for the second system are λa,2 and α(2), respectively. We assume that α(1) < α(2). Now, let us

divide each pooled system to n identical unpooled systems, while leaving unchanged the total

number of servers s, the service rate µ, and the quality of service Wn(t) = W (t). So, the total

arrival rate, the number of servers, and the service rate for each type of unpooled system are
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λ/n, s/n, and µ, respectively. The arrival rate of �rst-attempt calls and the call back proportion

for the �rst unpooled systems are λa,1
n = λa,1/n and α

(1)
n , respectively. The ones for the second

unpooled systems are λa,2
n = λa,2/n and α

(2)
n , respectively. Clearly, we have α

(1)
n < α(1) and

α
(2)
n < α(2) because of the loss of the pooling e�ect. From the pooled systems, we deduce

that λ = λa,1/(1 − α(1)) = λa,2/(1 − α(2)), and from the unpooled systems, we deduce that

λ/n = λa,1
n /(1− α

(1)
n ) = λa,2

n /(1− α
(2)
n ). The two last relations give Equation (A.1) below.

1− α
(1)
n

1− α(1)
=

1− α
(2)
n

1− α(2)
. (A.1)

Since α(1) < α(2), then λa,1 > λa,2, and equivalently λa,1
n > λa,2

n , so α
(1)
n < α

(2)
n . Moreover, α

(1)
n <

α(1), we deduce then from Equation (A.1) that α
(1)
n /α(1) < α

(2)
n /α(2). Hence, 1 − (α(1)

n /α(1)) >

1− (α(2)
n /α(2)), and �nally (α(1) − α

(1)
n )/α(1) > (α(2) − α

(2)
n )/α(2).

Varying the Quality of Service W (20sec)

Now, we vary the quality of service W (20sec) with regard to the Pooled System of Section

2.4. We consider �ve pooled systems: s = 1000, µ = 0.2, α = 10%, and W (20sec) = 60%,

80%, 90%, 95%, and 99%, respectively. Then, λa = 178.47, 177.36, 176.27, 175.22, and 172.90,

and λ = 198.30, 197.06, 195.86, 194.69, and 192.11, respectively. Figures A.5 and A.6 show,

respectively, the required quantitative and qualitative improvements according to the number of

pools.

Figure A.5: Percentages of service rate in-
crease according to number of pools n in
a Dedicated System in order to achieve the
same Wn(20sec) as in the Pooled System, for
a di�erent values of Wn(20sec)

Figure A.6: Percentages of call back propor-
tion decrease according to number of pools
n in a Dedicated System in order to achieve
the same Wn(20sec) as in the Pooled Sys-
tem, for a di�erent values of Wn(20sec)

Once again, we underline the qualitative similarity of the results as in Section 2.4. The

additional insight here is that the costs of partitioning the big call center ((µn − µ)/µ or (α −
αn)/α) are increasing as the chosen quality of service is increasing. For instance, let us partition
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two pooled systems into n identical unpooled systems. The two pooled systems have the same

number of servers and the same service rate. However, the �rst pooled system has a quality of

service lower than the one in the second. Both of the unpooled systems will need an increase

in the service rate, because of the loss of the pooling e�ect. Moreover, since we have to reach a

higher QoS in the second unpooled systems, then we will need for them a higher increase in the

service rate. We notice again from the curves that the costs of migrating do not roughly increase

with the chosen quality of service.

Varying the Number of Servers s

Up to now, all our analyzes were performed as a function of n, the number of dedicated pools.

As stated in Chapter 2, as long as the total number of servers s is �xed, the results obtained can

alternatively be reinterpreted in terms of s/n. Indeed, specifying n is equivalent to specifying

s/n. In this section however, we want to perform our analyzes for di�erent values of s. In that

case, it seems more consistent to compare con�gurations having the same number of servers in

each pool. Therefore, the analyzes will be performed as a function of the number of dedicated

servers in each pool, s/n, for di�erent values of the total number of servers, s.

Consider now �ve pooled systems: µ = 0.2, α = 10%, W (20sec) = 80%, and s = 100,

200, 500, 1000, and 5000, respectively. Then, λa = 16.63, 34.26, 87.74, 177.36, and 896.60, and

λ = 18.48, 38.07, 97.49, 197.06, and 996.22, respectively. In Figure A.7, we plot the curves of the

required service rate improvement, when we partition the pooled systems chosen here, according

to the size of the generated teams s/n. We notice from Figure A.7 that the costs, for a �xed size

of pools, are increasing with the initial number of servers. One explanation may be as follows.

Consider once again two pooled systems. The parameters of the �rst are s(1), λ(1), µ, and W (t).

Those of the second are s(2), λ(2), µ, and W (t). We assume that s(1) < s(2). Let us now migrate

to the corresponding unpooled systems such that the size of each type of unpooled system is s(p),

s(1) = n1s
(p) and s(2) = n2s

(p). It goes without saying that n1 < n2. The parameters of the �rst

unpooled systems are s(p), λ(1)/n1, and µ
(1)
n such that the quality of service is Wn(t) = W (t).

The ones of the second unpooled systems are s(p), λ(2)/n2, and µ
(2)
n such that the quality of

service is Wn(t) = W (t) too. Due to the pooling e�ect that is more present in the second pooled

system than in the �rst, λ(2)/n2 is larger than λ(1)/n1. Else, the �rst pooled system will match a

quality of service that is lower than the second. To do a summary for the unpooled systems, we

have the same number of servers s(p), the same quality of service W (t), and a larger arrival rate

for the second unpooled systems. Thus, we easily deduce that the servers in the latter cases must

be faster so as to match the same performance in both types of dedicated systems, µ
(1)
n < µ

(2)
n .
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Finally, (µ(1)
n − µ)/µ < (µ(2)

n − µ)/µ.

Figure A.7: Percentages of service rate increase according to size of pools s/n in a Dedicated
System in order to achieve Wn(20sec) = 80%, for a di�erent initial number of servers

In addition, we see from Figure A.7 that the gap between the curves is decreasing when s

increases. Then, we can deduce that the unpooling of two pooled systems with di�erent large

number of servers, namely greater than 500, will need quite the same increase in the service

rates. This is due to the fact that a �large" Pooled System does not gain too much in pooling

e�ect by adding more servers.

A.2 Validation of the Approximation Models

The analysis of the Portfolio Dedicated System is to be used to design our call center; calculating

sta�ng level, required total arrival rate (or required call back proportion), or required service

rate in order to achieve a given QoS. To examine the accuracy of the approximation models, we

propose two di�erent formulations:

• QoS, s ⇒ λ: formulation 1 consists of calculating the required total arrival rate λ given a

�xed QoS and a �xed sta�ng level s.

• QoS, λ ⇒ s: formulation 2 consists of calculating the required sta�ng level s given a �xed

QoS and a �xed total arrival rate λ.

We compare performances given from pessimistic models with those from simulation. We

simulated 30 cases: the number of pools is n = 10, the OPTF customers proportion is p = 5%

or 10%, and for each p, n sn = 250, 350 or 500, and for each p and s we chose 5 values of λa (in

order to vary the server utilization). The mean service time, and the call back proportion are

kept constant (1/µn = 5 min, and αn = 10%).



Proof of the Result: W global does not depend on p 159

Deviations between performance measures given by pessimistic models and those given by

simulation are presented in Table A.1. For each pessimistic model (PTF or OPTF), deviations

for one parameter are calculated as performance(model)−performance(simulation)
performance(simulation) .

Total Arrival Rate,
λa/(1− αn)

Total Sta�ng Level,
n sn

Wn(20sec) Wn Wn(20sec) Wn

PTF Pessimistic Model -2.84% -2.92% 4.00% 4.00%
OPTF Pessimistic Model -5.65% -5.61% 4.43% 4.43%

Table A.1: Deviations between pessimistic models and simulation

A.3 Proof of the Result: W global does not depend on p

First, consider an M/M/s queue with a single class of customers. The arrival rate is λ, the

number of servers s, and the service rate is µ. Hence, the stationary mean waiting time in queue

is given by

W =
PD

sµ− λ
, (A.2)

where PD is the probability of delay, that is, the probability that an incoming customer waits for

service. Second, consider a non-preemptive priority M/M/s queue with two types of customers,

say A and B. Type A customers have priority over type B ones. The total arrival rate is λ, the

number of servers is s, and the service rate to handle any type of customers is µ, as in the �rst

M/M/s model. The arrival rate of type A customers is λA, and that of type B customers is

λB, λA + λB = λ. Let p be the proportion of type B customers. Then, λA = (1 − p)λ. As in

Kella and Yechiali [78], the average waiting times in queue of customers A (WA) and customers

B (WB) are respectively given as follows

WA =
PD

sµ− λA
, and WB =

PD

(sµ− λA)(1− λ
sµ)

, (A.3)
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where the probability of delay PD is identical to that in the �rst model. For any proportion p

∈ [0, 1], we have

W global = (1− p) WA + p WB (A.4)

= (1− p)
PD

sµ− λA
+ p

PD

(sµ− λA)(1− λ
sµ)

=
PD

sµ− (1− p)λ
× sµ− (1− p)λ

sµ− λ

=
PD

sµ− λ

= W,

which completes the proof. 2
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Appendix of Chapter 3

In this appendix, we present supporting simulation experiments for the analysis of Section 3.5

of Chapter 3. We consider the systems already chosen in Section 3.5, and we simulate them

working under scheduling policies πA, π1, π2 and π3 . In Tables B.1 and B.2, we show the results

for the target ratios c∗ = 0.5 and c∗ = 0.9, respectively.

πA π1 π2 π3

c 0.305 0.500 0.500 0.500
QA 1.211% 2.291% 1.727% 2.559%
QB 3.966% 4.582% 3.453% 5.118%

System 1: Q 2.589% 3.436% 2.590% 3.838%
λA = λB = 4.5 WA 0.035 0.062 0.049 0.072

WB 0.102 0.119 0.090 0.135
W 0.068 0.090 0.069 0.103
σA 0.098 0.192 0.141 0.184
σB 0.311 0.334 0.280 0.343
σ 0.232 0.273 0.222 0.276

c 0.282 0.500 0.500 0.500
QA 1.838% 2.917% 2.786% 2.919%
QB 6.526% 5.834% 5.573% 5.839%

System 2: Q 4.182% 4.376% 4.179% 4.379%
λA = λB = 4.75 WA 0.053 0.079 0.079 0.082

WB 0.170 0.152 0.145 0.155
W 0.110 0.115 0.111 0.118
σA 0.119 0.221 0.182 0.194
σB 0.407 0.379 0.363 0.361
σ 0.303 0.311 0.288 0.291
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πA π1 π2 π3

c 0.258 0.500 0.500 0.500
QA 2.737% 4.036% 4.794% 3.757%
QB 10.605% 8.073% 9.587% 7.514%

System 3: Q 6.671% 6.054% 7.190% 5.636%
λA = λB = 4.9 WA 0.080 0.109 0.137 0.106

WB 0.279 0.212 0.250 0.202
W 0.175 0.159 0.192 0.153
σA 0.144 0.268 0.245 0.223
σB 0.537 0.454 0.494 0.411
σ 0.399 0.375 0.391 0.332

c 0.258 0.500 0.500 0.500
QA 2.692% 4.303% 5.542% 4.819%
QB 10.427% 8.606% 11.083% 9.639%

System 4: Q 6.556% 6.455% 8.313% 7.229%
λA = λB = 4.95 WA 0.078 0.117 0.158 0.136

WB 0.275 0.226 0.288 0.261
W 0.173 0.170 0.221 0.197
σA 0.142 0.279 0.267 0.257
σB 0.528 0.471 0.540 0.472
σ 0.392 0.389 0.427 0.383

c 0.253 0.500 0.500 0.500
QA 2.889% 4.349% 5.010% 4.270%
QB 11.414% 8.699% 10.020% 8.541%

System 5: Q 7.152% 6.524% 7.515% 6.406%
λA = λB = 5 WA 0.084 0.118 0.143 0.121

WB 0.303 0.229 0.263 0.231
W 0.188 0.172 0.201 0.174
σA 0.147 0.280 0.248 0.238
σB 0.556 0.472 0.504 0.439
σ 0.413 0.390 0.398 0.355

c 0.180 0.500 0.500 0.500
QA 6.655% 12.281% 11.750% 11.973%
QB 36.871% 24.562% 23.501% 23.946%

System 6: Q 21.763% 18.421% 17.626% 17.960%
λA = λB = 6 WA 0.199 0.327 0.350 0.348

WB 1.149 0.693 0.639 0.716
W 0.582 0.496 0.484 0.518
σA 0.210 0.557 0.376 0.431
σB 1.085 0.872 0.816 0.739
σ 0.848 0.742 0.637 0.621

Table B.1: Simulation experiments for c∗ = 0.5
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πA π1 π2 π3

c 0.296 0.900 0.900 0.900
QA 1.553% 2.876% 2.895% 2.555%
QB 5.247% 3.195% 3.217% 2.839%

System 1: Q 3.400% 3.036% 3.056% 2.697%
λA = λB = 4.5 WA 0.045 0.076 0.081 0.071

WB 0.136 0.084 0.088 0.078
W 0.089 0.080 0.084 0.075
σA 0.112 0.246 0.205 0.192
σB 0.365 0.266 0.232 0.214
σ 0.271 0.256 0.219 0.203

c 0.270 0.900 0.900 0.900
QA 2.331% 4.643% 4.521% 4.889%
QB 8.643% 5.159% 5.023% 5.433%

System 2: Q 5.487% 4.901% 4.772% 5.161%
λA = λB = 4.75 WA 0.068 0.122 0.127 0.137

WB 0.225 0.135 0.138 0.151
W 0.144 0.129 0.133 0.144
σA 0.135 0.319 0.256 0.270
σB 0.482 0.345 0.301 0.300
σ 0.358 0.332 0.278 0.286

c 0.253 0.900 0.900 0.900
QA 2.997% 5.931% 5.141% 7.381%
QB 11.846% 6.590% 5.713% 8.201%

System 3: Q 7.422% 6.261% 5.427% 7.791%
λA = λB = 4.9 WA 0.087 0.156 0.145 0.210

WB 0.312 0.173 0.158 0.232
W 0.194 0.165 0.151 0.221
σA 0.152 0.368 0.272 0.333
σB 0.575 0.397 0.311 0.369
σ 0.427 0.383 0.292 0.352

c 0.261 0.900 0.900 0.900
QA 2.551% 6.008% 7.779% 7.189%
QB 9.774% 6.675% 8.644% 7.987%

System 4: Q 6.163% 6.312% 8.211% 7.588%
λA = λB = 4.95 WA 0.074 0.159 0.222 0.204

WB 0.258 0.175 0.241 0.225
W 0.162 0.167 0.232 0.215
σA 0.138 0.370 0.338 0.330
σB 0.508 0.399 0.388 0.365
σ 0.378 0.385 0.364 0.348

c 0.257 0.900 0.900 0.900
QA 2.702% 7.363% 7.291% 7.533%
QB 10.529% 8.181% 8.101% 8.370%

System 5: Q 6.616% 7.772% 7.696% 7.952%
λA = λB = 5 WA 0.079 0.194 0.208 0.215

WB 0.279 0.216 0.226 0.237
W 0.175 0.205 0.217 0.226
σA 0.141 0.417 0.325 0.337
σB 0.529 0.450 0.374 0.374
σ 0.393 0.434 0.350 0.356
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πA π1 π2 π3

c 0.188 0.900 0.900 0.900
QA 5.686% 16.697% 18.299% 19.256%
QB 30.241% 18.552% 20.332% 21.396%

System 6: Q 17.964% 17.624% 19.315% 20.326%
λA = λB = 6 WA 0.170 0.448 0.566 0.597

WB 0.910 0.503 0.609 0.665
W 0.484 0.475 0.587 0.630
σA 0.189 0.694 0.480 0.512
σB 0.941 0.741 0.563 0.563
σ 0.729 0.718 0.523 0.539

Table B.2: Simulation experiments for c∗ = 0.9
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Appendix of Chapter 6

This appendix deals with the analysis of Chapter 6. In Appendix C.1, we give the proof of the

result in Property 6.1. In Appendix C.2, we present some numerical experiments in order to

illustrate the concavity results already derived in Chapter 6.

C.1 Proof of Property 6.1

Using the notations in Equation (6.7), the stationary probabilities for an M/M/s/s + k + M

queue (k extra waiting lines) given in Equations (6.3) and (6.4) may be rewritten as

pk(i) = φi × p(0), for 0 ≤ i ≤ s, (C.1)

pk(i) = ρi × p(0), for s < i ≤ s + k, (C.2)

and

pk(0) =
s! µs

s!µs
∑s

i=0 φi +
∑s+k

i=s+1 ρi

. (C.3)

Substituting them into Equation (6.5) yields, for k ≥ 0, to

Uk =

(
ρk+s

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

− ρk+s+1

s!µs
∑s

i=0 φi +
∑k+s+1

i=s+1 ρi

)
(C.4)

+
γ

λ

( ∑k+s
i=s+1(i− s)ρi

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

−
∑k+s+1

i=s+1 (i− s)ρi

s!µs
∑s

i=0 φi +
∑k+s+1

i=s+1 ρi

)
.
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Or equivalently with some algebra

Uk(s!µs
s∑

i=0

φi +
k+s+1∑

i=s+1

ρi) = ρk+s(1 +
ρk+s+1

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

)− ρk+s+1 (C.5)

+
γ

λ

(
k+s∑

i=s+1

(i− s)ρi(1 +
ρk+s+1

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

)−
k+s+1∑

i=s+1

(i− s)ρi

)

= ρk+s +
ρk+s ρk+s+1

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

− ρk+s+1

+
γ

λ

(
−(k + 1)ρk+s+1 +

ρk+s+1

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

k+s∑

i=s+1

(i− s)ρi

)

= ρk+s + ρk+s+1(−1 +
ρk+s

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

− (k + 1)γ
λ

+
γ

λ

∑k+s
i=s+1(i− s)ρi

s!µs
∑s

i=0 φi +
∑k+s

i=s+1 ρi

).

Calculating further gives

Uk(s!µs
s∑

i=0

φi +
k+s+1∑

i=s+1

ρi)(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi) = ρk+s(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi) (C.6)

+ ρk+s+1

(
ρk+s − (s!µs

s∑

i=0

φi +
k+s∑

i=s+1

ρi)− (k + 1)γ
λ

(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi) +
γ

λ

k+s∑

i=s+1

(i− s)ρi

)

= ρk+s(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi) + ρk+s+1

(
ρk+s − (1 +

(k + 1)γ
λ

)(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi) +
γ

λ

k+s∑

i=s+1

(i− s)ρi

)
.

Observing that ρk+s+1 = λ
sµ+(k+1)γ ρk+s, for k ≥ 0, we may write

Uk(s!µs
s∑

i=0

φi +
k+s+1∑

i=s+1

ρi)(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi)
1

ρk+s
(C.7)

= (s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi + ρk+s+1)− λ + (k + 1)γ
sµ + (k + 1)γ

(s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi) +
γ

sµ + (k + 1)γ

k+s∑

i=s+1

(i− s)ρi

= (s!µs
s∑

i=0

φi +
k+s+1∑

i=s+1

ρi)− (s!µs
s∑

i=0

φi +
k+s∑

i=s+1

ρi)

− λ− sµ

sµ + (k + 1)γ
(s!µs

s∑

i=0

φi +
k+s∑
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Simplifying Equation (C.7) implies the following relation

Uk(s!µs
s∑

i=0

φi +
k+s+1∑

i=s+1

ρi)(s!µs
s∑

i=0

φi +
k+s∑
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ρi)
1

ρk+s
(C.8)

= ρk+s+1 − λ− sµ

sµ + (k + 1)γ
(s!µs

s∑

i=0

φi +
k+s∑

i=s+1

ρi) +
γ

sµ + (k + 1)γ

k+s∑

i=s+1

(i− s)ρi.
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For the rank k + 1, Relation (C.8) becomes

Uk+1(s!µs
s∑

i=0
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i=s+1

ρi)(s!µs
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(C.9)

= ρk+s+2 − λ− sµ

sµ + (k + 2)γ
(s!µs

s∑

i=0

φi +
k+s+1∑

i=s+1

ρi) +
γ

sµ + (k + 2)γ
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i=s+1

(i− s)ρi +
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Hence,
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i=0
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i=s+1

ρi)(s!µs
s∑

i=0

φi +
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1
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(C.10)

=
sµ + (k + 1)γ
sµ + (k + 2)γ
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Multiplying both sides in Equation (C.10) by sµ+(k+2)γ
sµ+(k+1)γ implies
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(C.11)
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From Equations (C.8) and (C.11), we next deduce that
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.

Finally, simplifying Equation (C.12) and again observing that ρk+s+1

ρk+s
= λ

sµ+(k+1)γ , we get for all

k ≥ 0,

Uk+1 =
s!µs

∑s
i=0 φi +

∑k+s
i=s+1 ρi
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∑s

i=0 φi +
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· λ
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· Uk, (C.13)

which completes the proof of the property. 2
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C.2 Numerical illustrations

In this appendix, we present numerical examples to illustrate the convexity results. We compute

the probability of being served as a function of the queue capacity for several systems chosen so

as to cover a broad range of parameters values. Systems parameters are presented in Section 6.5.

λ = 1.8 λ = 8 λ = 60
k s = 1 s = 2 s = 3 s = 5 s = 10 s = 15 s = 50 s = 70 s = 100

0 35.7143 63.3484 81.9733 52.0992 87.8339 99.0899 78.3881 97.6256 99.9999
1 44.3548 73.3209 89.1589 56.3701 90.9867 99.5033 79.3985 98.0027 100.0000
2 47.5087 77.5281 92.0093 58.5389 92.9632 99.7085 80.1610 98.3100 100.0000
3 48.8651 79.3467 93.0916 59.7405 94.2080 99.8076 80.7453 98.5601 100.0000
4 49.4796 80.1024 93.4736 60.4509 94.9854 99.8542 81.1989 98.7634 100.0000
5 49.7536 80.3947 93.5977 60.8924 95.4627 99.8755 81.5551 98.9283 100.0000
6 49.8691 80.4986 93.6349 61.1773 95.7490 99.8850 81.8377 99.0615 100.0000
7 49.9140 80.5324 93.6452 61.3664 95.9160 99.8890 82.0639 99.1688 100.0000
8 49.9299 80.5425 93.6478 61.4942 96.0106 99.8908 82.2466 99.2548 100.0000
9 49.9352 80.5454 93.6485 61.5815 96.0625 99.8915 82.3952 99.3235 100.0000
10 49.9367 80.5461 93.6486 61.6411 96.0901 99.8918 82.5169 99.3780 100.0000
11 49.9372 80.5463 93.6487 61.6815 96.1044 99.8919 82.6174 99.4211 100.0000
12 49.9373 80.5463 93.6487 61.7086 96.1115 99.8919 82.7008 99.4550 100.0000
13 49.9373 80.5463 93.6487 61.7264 96.1149 99.8919 82.7704 99.4815 100.0000
14 49.9373 80.5463 93.6487 61.7379 96.1165 99.8919 82.8289 99.5021 100.0000
15 49.9373 80.5463 93.6487 61.7450 96.1173 99.8919 82.8782 99.5180 100.0000
16 49.9373 80.5463 93.6487 61.7494 96.1176 99.8919 82.9200 99.5302 100.0000
17 49.9373 80.5463 93.6487 61.7519 96.1178 99.8919 82.9556 99.5395 100.0000
18 49.9373 80.5463 93.6487 61.7534 96.1178 99.8919 82.9860 99.5466 100.0000
19 49.9373 80.5463 93.6487 61.7542 96.1178 99.8919 83.0121 99.5519 100.0000
20 49.9373 80.5463 93.6487 61.7546 96.1179 99.8919 83.0345 99.5559 100.0000
21 49.9373 80.5463 93.6487 61.7548 96.1179 99.8919 83.0539 99.5589 100.0000
22 49.9373 80.5463 93.6487 61.7549 96.1179 99.8919 83.0706 99.5611 100.0000
23 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.0851 99.5627 100.0000
24 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.0977 99.5639 100.0000
25 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1087 99.5648 100.0000
26 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1182 99.5654 100.0000
27 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1265 99.5658 100.0000
28 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1337 99.5662 100.0000
29 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1399 99.5664 100.0000
30 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1454 99.5665 100.0000

Table C.1: Values of Qk (in %) for γ = 0.5
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λ = 1.8 λ = 8 λ = 60
k s = 1 s = 2 s = 3 s = 5 s = 10 s = 15 s = 50 s = 70 s = 100

0 35.7143 63.3484 81.9733 52.0992 87.8339 99.0899 78.3881 97.6256 99.9999
1 42.9864 71.9585 88.3281 56.1529 90.8551 99.4904 79.3906 98.0001 100.0000
2 45.2522 74.8962 90.3886 58.1089 92.6103 99.6776 80.1380 98.3012 100.0000
3 46.0253 75.8487 90.9857 59.1433 93.6035 99.7606 80.7026 98.5414 100.0000
4 46.2760 76.1248 91.1378 59.7245 94.1442 99.7954 81.1343 98.7317 100.0000
5 46.3486 76.1951 91.1719 60.0621 94.4250 99.8094 81.4682 98.8810 100.0000
6 46.3671 76.2108 91.1787 60.2603 94.5635 99.8147 81.7291 98.9972 100.0000
7 46.3713 76.2140 91.1799 60.3754 94.6283 99.8166 81.9351 99.0867 100.0000
8 46.3721 76.2146 91.1801 60.4406 94.6570 99.8173 82.0990 99.1549 100.0000
9 46.3723 76.2147 91.1802 60.4761 94.6690 99.8175 82.2305 99.2063 100.0000
10 46.3723 76.2147 91.1802 60.4945 94.6739 99.8176 82.3367 99.2447 100.0000
11 46.3723 76.2147 91.1802 60.5036 94.6757 99.8176 82.4229 99.2730 100.0000
12 46.3723 76.2147 91.1802 60.5078 94.6764 99.8176 82.4932 99.2937 100.0000
13 46.3723 76.2147 91.1802 60.5097 94.6766 99.8176 82.5508 99.3086 100.0000
14 46.3723 76.2147 91.1802 60.5105 94.6767 99.8176 82.5980 99.3192 100.0000
15 46.3723 76.2147 91.1802 60.5108 94.6767 99.8176 82.6368 99.3267 100.0000
16 46.3723 76.2147 91.1802 60.5109 94.6767 99.8176 82.6687 99.3320 100.0000
17 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.6949 99.3356 100.0000
18 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7163 99.3380 100.0000
19 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7338 99.3397 100.0000
20 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7481 99.3408 100.0000
21 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7596 99.3415 100.0000
22 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7688 99.3420 100.0000
23 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7762 99.3423 100.0000
24 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7821 99.3425 100.0000
25 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7867 99.3426 100.0000
26 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7902 99.3427 100.0000
27 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7930 99.3427 100.0000
28 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7951 99.3428 100.0000
29 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7966 99.3428 100.0000
30 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7978 99.3428 100.0000

Table C.2: Values of Qk (in %) for γ = 1
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λ = 1.8 λ = 8 λ = 60
k s = 1 s = 2 s = 3 s = 5 s = 10 s = 15 s = 50 s = 70 s = 100

0 35.7143 63.3484 81.9733 52.0992 87.8339 99.0899 78.3881 97.6256 99.9999
1 41.2371 70.1107 87.1346 55.7787 90.6222 99.4669 79.3752 97.9950 100.0000
2 42.5412 71.7812 88.3617 57.3866 92.0354 99.6247 80.0936 98.2842 100.0000
3 42.8391 72.1385 88.6026 58.1445 92.6993 99.6847 80.6211 98.5063 100.0000
4 42.8970 72.2021 88.6419 58.5085 92.9858 99.7055 81.0121 98.6735 100.0000
5 42.9064 72.2116 88.6473 58.6788 93.0991 99.7122 81.3045 98.7969 100.0000
6 42.9077 72.2129 88.6480 58.7540 93.1400 99.7142 81.5250 98.8861 100.0000
7 42.9079 72.2130 88.6480 58.7848 93.1537 99.7147 81.6922 98.9493 100.0000
8 42.9079 72.2130 88.6480 58.7964 93.1578 99.7148 81.8195 98.9931 100.0000
9 42.9079 72.2130 88.6480 58.8004 93.1590 99.7149 81.9164 99.0228 100.0000
10 42.9079 72.2130 88.6480 58.8017 93.1594 99.7149 81.9901 99.0426 100.0000
11 42.9079 72.2130 88.6480 58.8021 93.1594 99.7149 82.0460 99.0555 100.0000
12 42.9079 72.2130 88.6480 58.8022 93.1595 99.7149 82.0879 99.0637 100.0000
13 42.9079 72.2130 88.6480 58.8022 93.1595 99.7149 82.1192 99.0688 100.0000
14 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1422 99.0720 100.0000
15 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1588 99.0739 100.0000
16 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1708 99.0750 100.0000
17 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1791 99.0756 100.0000
18 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1849 99.0760 100.0000
19 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1888 99.0762 100.0000
20 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1914 99.0763 100.0000
21 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1930 99.0763 100.0000
22 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1941 99.0764 100.0000
23 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1948 99.0764 100.0000
24 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1952 99.0764 100.0000
25 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1954 99.0764 100.0000
26 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1956 99.0764 100.0000
27 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1956 99.0764 100.0000
28 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1957 99.0764 100.0000
29 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1957 99.0764 100.0000
30 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1957 99.0764 100.0000

Table C.3: Values of Qk (in %) for γ = 2
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Résumé Depuis quelques années, les centres dʹappels enregistrent une forte croissance dans le monde. 
Les entreprises sʹorientent de plus en plus vers ce choix qui  leur offre une  relation privilégiée avec 
leurs clients. Ainsi, ils disposent dʹun moyen convivial et peu coûteux pour fidéliser leurs clients tout 
en essayant dʹen acquérir de nouveaux. Le sujet de cette thèse porte sur le développement et l’analyse 
de modèles stochastiques pour l’aide à la décision dans les centres d’appels.  

Dans la première partie, nous considérons un centre d’appels où tous les agents sont groupés 
dans un même pool et  les clients  sont  traités  indifféremment par un des agents. Nous étudions  les 
bénéfices de la migration depuis cette configuration vers un centre d’appels où les clients sont divisés 
en classes  (appelées portefeuilles de clients). Chaque portefeuille de clients est servi par un pool de 
conseillers qui  lui est exclusivement dédié. Ensuite, nous considérons un centre d’appels avec deux 
classes  de  clients  impatients. Nous  développons  des  politiques  dynamiques  pour  lʹaffectation  des 
clients  (selon  leurs  types)  aux  différentes  files  dʹattente.  Lʹobjectif  étant  lié  aux  qualités  de  service 
différentiées exprimées en terme du pourcentage des clients perdus, ainsi quʹen terme de la variance 
du  temps dʹattente. Enfin, nous étudions un centre d’appels qui annonce  le délai d’attente à chaque 
nouveau client. Nous montrons les avantages de l’annonce sur les performances du centre d’appels. 

Dans  la deuxième partie, nous  considérons un processus de naissance et de mort de  forme 
générale. Nous  calculons  ensuite  les moments de plusieurs  variables  aléatoires  liées  aux  temps de 
premiers passages (ordinaires et conditionnels). Ensuite, nous montrons un résultat de concavité dans 
une file d’attente avec capacité limitée et avec une seule classe de clients impatients. Nous démontrons 
que la probabilité d’entrer en service est strictement croissante et concave en fonction de la taille de la 
file d’attente. 
 
Mots‐clefs centres  d’appels, modèles  stochastiques,  files  d’attente,  chaînes  de Markov,  simulation, 
politique de routage, qualité de service, analyse transitoire, abandons, priorité non‐préemptive 
 
 
 
 
Abstract In the past few years, call centers have been introduced with great success by many service‐
oriented companies such as banks and insurance companies. They become the main point of contact 
with the customer, and an integral part of the majority of corporations. The large‐scale emergence of 
call  centers  has  created  a  fertile  source  of management  issues.  In  this  thesis, we  focus  on  various 
operations management issues of call centers. The objective of our work is to derive, both qualitative 
and quantitative, results for practical management. 

 In  the  first part of  the  thesis, we  investigate  the  impact of  team‐based organizations  in call 
centers management. We develop  queueing models  that  show  that  the  benefits  of  the  team  based 
organization  in  providing more  efficient  answers  to  customers  very  often  outweigh  its  drawback 
coming  from  the  loss  of  pooling. Next, we  consider  a  two‐class  call  center  and  develop  real‐time 
scheduling policies  that determine  the  rule of  assignment of new  arrivals  to  the waiting  lines. We 
focus on  service  levels  criteria  related  to  the  fraction of abandoning  customers and  the variance of 
queueing  delays.  Finally, we  propose  a  call  center model  in which we  provide  information  about 
delays to customers, and we quantify its effect upon performance. 

In  the  second part of  the  thesis, we  tackled  the quantitative analysis of  stochastic processes 
and queueing models. First, we derive several closed‐form expressions of the moments of first passage 
times  in general birth‐death processes,  and we point out  their  applications. Second, we  investigate 
some monotonicity  results  for  the probability of being served  in markovian queueing systems with 
impatient customers. 
 
Keywords call  centers,  stochastic models,  queueing  theory, Markov  chains,  simulation,  scheduling 
policies, quality of service, transient analysis, reneging, non‐preemptive priority. 




