

Jean-Baptiste Juin Dapnia/SPP

Sous la direction de U. Goerlach et D. Yvon

Plan de l'exposé

I Contexte physique

Cosmologie et amas de galaxies Observations grand-champ d'amas SZ Exemple Olimpo

II Effets de sélection des sondages SZ

Outils d'étude des effets de sélection

Simulation du ciel observé Détection des amas de galaxies SZ **Modéliser les effets de sélection**

Complétude, photométrie, contamination

Prospective cosmologique

de physique interne des amas Effets de sélection et systématiques

Cosmologie

Formation de structure

Observations grand champ d'amas Sunyeav Zel'Dovich

Des observations concordantes

Modèle cosmologique de concordance

Les amas de galaxies

Revue: Tegmark (2003), Seljak (2004), Hupadhye (2004), Yeche (2005)

L'effet Sunyaev Zel'Dovich thermique 7

Diffusion Compton

Revue: Birkinshaw (1999)

Olimpo: objectifs scientifiques

Observer Fond Diffus Cosmologique à haute résolution

Objectifs Scientifiques

Anisotropies du CMB: Spectres Cl – Cosmologie primordiale Amas de galaxie SZ

Grandes structures - Cosmologie

Structure interne d'amas résolus Galaxies IR

Suite de BOOMeranG/Archeops

Ballon stratosphérique

Collaboration

Université « la sapienza », Rome, Italie Cardiff, Angleterre Dapnia/SPP + CSNSM, France

Observations grands-champs d'amas SZ 9

•	2006		2007
Expérience	Olimpo	APEX	Planck
Fréq [Ghz]	143; 217; 385; 600	143; 217	100; 143; 217; 353; 545; 857
FWHM [arcmin]	3; 2; 2; 2	0.7; 0.7	?; 7.1; 5; 5; 5; ?
Bruit [muK s ^{1/2}]	150; 200; 500; 5000	280; 280	?; 70; 100; 300; 2200; ?
Nbolo	19; 35; 35; 35	162; 162	?; 12; 12; 12; 12; ?
Surface [deg ²]	300	170	43000
Durée	10 jours	2 ans	1an

Les données arrivent bientôt !

Deux nécessités pour analyser les données 12

1

Pires, Juin et al. (2005)

Chaîne cohérente d'étude

Observations — **Estimation des paramètres**

Outils

Simulation de ciel millimétrique observé Détection des amas SZ

Modèle des effets de sélection

Simulation de cartes SZ

Elliptiques Cooray (2001)

10

[deg]

8

2

Positions aléatoires

14

Catalogue d'amas vrai

Simulation des contaminants astrophysiques 15

Galaxies IR

SCUBA : dN (>S) / dS Borys et al. (1999) Corrélation possible avec les amas Mais: placement aléatoire Corps gris $v^{\alpha} Planck(v, 30 K)$ alpha = 1.5 - 2

Poussière galactique

Emission chermiqueouchet et al. (1995)

Génération aléatoire

Corps gris $v^{\alpha} Planck(v, 20 K)$ alpha = 2

Simulation de ciel observé

Mélange des sources astrophysiques à la fréquence ν

 $Ciel_{phys}(v) = a_{SZ}(v)S_{SZ} + a_{CMB}(v)S_{CMB} + a_{pouss.}(v)S_{pouss.}$

$$+\sum^{galax. IR} b(i, v) S(i)$$

$Ciel_{obs.}(v) = Ciel_{phys.}(v)$ + Instrument / fréquence d'observation

Lobe d'antenne symétrique Bruit non-corrélé Nombre de détecteurs

Catalogue d'amas détectés

Critères de

qualité Maximum d'amas: efficacité de détection Attention fausses détections (**Galaxies IR !**) Photométrie: Reconstruire Y

Minimum d'a priori

Séparation en composantes indépendantes (FastICA, JADE, etc)

Hypothèse:

Il existe 4 sources physiques <u>indépendantes</u>

$$Ciel_{observe}(v) = a_1(v)S_1 + a_2(v)S_2 + a_3(v)S_3 + a_4(v)S_4$$

Cohérence spatiale des sources entre canaux

Estimation des spectres d'émission

JADE Cardoso (1999)

+ décomposition en ondelettes multi-échelles du signal

On isole le signal SZ Il reste du bruit

2 - Débruiter la carte

Filtrage non-linéaire moderne: « ME-FDR Stärck (2005)

- 1. Décomposition en ondelettes multi-échelles du signal
- 2. Isoler les pixels contenant le signal brillant
- 3. Filtrer en dehors de ce signal

Décomposition par échelle

~1 deg

SExtractor + Choix d'un seuil de détection

Bertin & Arnouts (1996)

- Superposition des sources
- Photométrie intégrale: Y

Classer les sources détectées

Amas ou contamination

Association des sources détectées / simulées

Critères de distance et de photométrie

Si association: la source est un amas Sinon: la source est une contamination

Qualité du catalogue reconstruit

Complétude (> seuil de détection)

Nombre amas détectés (>seuil) Nombre amas simulés total $Y>3.5\times10^{-5} arcmin^{2}$

Pureté (> seuil de détection)

Nombre amas détectés (>seuil) Nombre sources détectés (>seuil)

Pierpaoli (2005)

- Performante + sans a priori !
- Bonne pureté: rejette efficacement les galaxies IR

Les outils mis en place

Simulation de ciel millimétrique observé

Phénomènes astrophysiques dominants Premier ordre des effets intrumentaux

Algorithmes de détection d'amas SZ

Performants Rejette les galaxies IR

Comprendre les effets de sélection

Calculer pour une cosmologie et une chaine de détection d'amas la distribution des sources détectées attendue Essentiel pour estimer les paramètres cosmologiques

Distribution « vraie » I

Distribution observable

 $dN^{détection\ effectif}_{observe}$ _Tamas moyen vraie $d z_{vraie} dY_{vraie}$ $d z_{observe} dY_{observe}$

1. Calcul de la complétude

Monte-Carlo

2. Erreurs photométriques Y

 $N_{observe}^{amas}(z_{vrai}, Y_{vrai}) \longrightarrow N_{observe}^{amas}(z_{vrai}, Y_{observe})$

Sources non pointées

Source ? **On en tient compte dans le modèle**

 $N_{observ\acute{e}}^{amas}(z_{vrai}, Y_{observ\acute{e}}) \longrightarrow N_{observ\acute{e}}^{amas}(z_{observ\acute{e}}, Y_{observ\acute{e}})$

3. Les contaminations

 $ar{N}^{\it détection}_{\it observé}$

 $N^{d {\it \acute{e}tection} {\it effectif}}_{observ {\it \acute{e}}}$

Rôle du modèle

Comparaison Modèle/Monte-Carlo 33

Complétude + Erreurs photométriques

Distribution observée

N estimation de paramètres avec le modèle statistique complet

On reconstruit:

$$\sigma_8 = 0.844$$

 $\Omega_m = 0.24$

Biais << incertitudes statistiques

Le modèle d'obs. est un estimateur faiblement biaisé des paramètres cosmo. Hypothèse: non biaisé

Indépendance modèle d'obs./Cosmologie 35

Effets de sélection:

Instrumentaux - Bruit de mesure... Algorithmiques - Photométrie des petits amas... Astrophysiques - Avant-plan, Confusion entre amas: introduit un « bruit »

Elle dépend de la cosmologie via la densité d'amas

Indépendance modèle d'obs./Cosmologie 36

1.0

Systématique << Statistique à 1 sigma: <u>une cosmologie reconstruite</u>

Hypothèse: Le modèle d'observation est indépendant de la cosmologie

0.2

0.4

0.6

0.8

1.0

III - Contraintes et systématiques

Outils d'analyse statistique adaptés

Prospective Olimpo

Systématiques liées au modèle d'observation

Tests d'hypothèse:

« L'observation est une génération aléatoire du modèle considéré »

Calcul de la probabilité que cette hypothèse soit vraie **Exemple:** Données S&T Modèle P&S choisir la fonction de masse 1.0 1. Données (simulées S&T) 2. Hyp.: 0.8 « C'est une génération aléatoire d'un modèle utilisant ^orobabilite 0.6 la f. de masse de P&S » 0.4 P&S: incompatible (>5 sigmas) S&T: compatible (>80%)

Trouver une classe de modèle compatibles avec l'observation

39

Estimer les paramètres

- 1. Classe de modèles compatibles
- 2. Estimer les meilleurs paramètres maximum de vraisemblance

3. Calcul des niveaux de confiance par Monte-Carlo

On doit faire ce calcul

- Trouver une classe de modèles compatibles avec les données
- Estimer les paramètres des modèles et calculer les erreurs sur cette estimation

Peu de statistique Distributions non gaussiennes

Physique interne des amas:

Données SZ

Marginalisé sur OmegaM

42

Simulation Olimpo vol scientifique: 400 deg2, 10 jours 520 sources dont 500 amas pointés et 20 contaminations

• Sigma 8 ~ indépendant de Tstar: Cosmo

Combine les données

WMAP: matrice de Fisher

CFHTLS-wide, prospective *weak-shear:* matrice de Fisher HST: matrice de Fisher

Cosmologie:

Données SZ

400 deg2, 10 jours ~500 amas (avec mesure de z)

> Potentiel cosmologique d'un vol nominal Olimpo

Pas de marginalisation

Hypothèse: Tstar connu

Contraintes de référence pour l'étude des systématiques

Impact de la variance des comptages en cosmologie 44

Données SZ

On considère l'information sur le nombre de détection

Impact des observations d'amas de faible flux45

Physique des amas de basse masse est incertaine: On ne considère que les sources brillantes pour une estimation robuste

Augmentation significative des erreurs **Comprendre les amas de basse masse** Préparation à l'analyse des données SZ de 2006-2008

1 Détection performante d'amas SZ

Chaîne cohérente d'étude des effets de sélection

3 Phénomènologie de la détection des amas SZ

A retenir

- 1. Il faut des outils d'analyse adaptés: détection et estimation des paramètres
- 2. Indépendance, au premier ordre, du modèle d'observation avec la cosmologie
- 3. Attention au nombre effectif de détections
- 4. Champ commun d'observation SZ-X (Physique interne et cosmo.)
- 5. Un modèle complet permet d'exploiter l'information des amas de bas flux

Extraire l'information cosmologique de la corrélation amas-amas

Mei & Bartlett (2004)

2 Co-analyse d'observations grand champ SZ-X-weak shear

Simulation d'instrument

TOD (bruit 1/f, bruit non-uniforme, lobe asymétrique)

Détection d'amas

Améliorer les méthodes

Robustesse vis-a-vis de la corrélation amas-amas et amas-galaxies IR Photométrie avec *a priori* sur la forme des amas

Je remercie toutes les personnes qui, de près ou de loin, ont participé à cette étude !