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étrangers.

Je voudrais également remercier ici le professeur Hiroshi Matano de l’université de Tokyo.
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et Equations aux Dérivées Partielles de l’Université de Paris-Sud.
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Systèmes de convection-réaction-diffusion et dynamique d’interface

Résumé

Le sujet de cette thèse est la limite singulière d’équations et de systèmes d’équations para-
boliques non-linéaires de type bistable, où intervient un petit paramètre ε, avec des conditions
initiales générales. Nous obtenons une estimation nouvelle et optimale de l’épaisseur et de la
localisation de la zone de transition.

Au Chapitre 1, nous étudions une équation d’Allen-Cahn ainsi qu’une famille de systèmes
de réaction-diffusion, notamment le système de FitzHugh-Nagumo et certains systèmes pré-
dateur-proie. Nous considérons d’abord l’équation d’Allen-Cahn. Nous montrons qu’à partir
d’une condition initiale arbitraire, la solution devient rapidement proche d’une fonction en
escalier, sauf dans un petit voisinage de l’interface initiale, créant ainsi une zone de transition
abrupte (génération de l’interface). Notre estimation du temps nécessaire au développement
de cette zone est optimale. Dans un deuxième temps, l’interface se déplace et la solution reste
proche de la fonction en escalier (déplacement de l’interface). Le déplacement de l’interface,
solution de la limite singulière du problème parabolique bistable, est induit par sa courbure
moyenne et par un terme de pression. Pour obtenir ces résultats, nous construisons deux
paires distinctes de sous- et sur-solutions : l’une pour démontrer la propriété de génération de
l’interface, et l’autre pour analyser le déplacement de l’interface. En imbriquant ces paires de
sous- et sur-solutions, nous estimons de façon optimale, d’une part l’épaisseur de la zone de
transition, et d’autre part sa localisation. Ensuite, nous étendons nos résultats à une classe
assez large de systèmes de réaction-diffusion : comme nos preuves ne s’appuyent pas sur le
principe de comparaison, nous ne faisons pas d’hypothèse de monotonie sur les termes de
réaction. L’idée est de considérer la première équation du système comme une perturbation
de l’équation d’Allen-Cahn ; les preuves s’appuient sur une légère modification des résultats
pour l’équation seule, sur une étude de la dépendance du déplacement de l’interface vis-à-vis
de différents paramètres, et sur de fines estimations a priori.

Le Chapitre 2 est consacré à l’étude d’un système chimiotactique, dont la première équation
est parabolique et non-linéaire, alors que la seconde équation est elliptique et linéaire. Il s’agit
d’un modèle pour une agrégation d’amibes soumises à trois effets : la diffusion, la croissance
et le chimiotactisme. Ce dernier phénomène est une propension de certaines espèces à se
déplacer vers les plus forts gradients de substances chimiques, souvent produites par ces espèces
elles-mêmes. En étudiant successivement la génération et le déplacement de l’interface, nous
obtenons des estimations optimales de l’épaisseur de la zone de transition et de sa localisation.

Enfin, au Chapitre 3, nous considérons une équation quasi-linéaire anisotrope de type Allen-
Cahn, qui intervient en science des matériaux et dont le terme de diffusion est inhomogène
et singulier aux points où le gradient de la solution s’annule. Nous définissons une notion de
solution faible et prouvons un principe de comparaison. Le déplacement de l’interface limite
est induit par une version anisotrope de sa courbure moyenne. Nous effectuons l’analyse en
utilisant la distance associée à une métrique de Finsler. Nous étudions la génération et le
déplacement de l’interface, obtenant une estimation optimale de l’épaisseur de la zone de
transition.

Mots clés : Systèmes de convection-réaction-diffusion – Equation d’Allen-Cahn – Système
de FitzHugh-Nagumo – Chimiotactisme – Anisotropie – Génération d’interface – Propagation
d’interface – Epaisseur d’interface.

AMS subject classifications : 35K57, 35K60, 35K50, 35K20, 35R35, 35B20.



Convection-reaction-diffusion systems and interface dynamics

Abstract

This thesis deals with the singular limit of systems of parabolic partial differential equations
involving a small parameter ε, with bistable nonlinear reaction terms and general initial data.
We obtain a new and optimal estimate of the thickness and the location of the transition layer
that develops.

In Chapter 1, we study a perturbed Allen-Cahn equation and a class of reaction-diffusion
systems, which includes the FitzHugh-Nagumo system and some prey-predator systems. We
first consider the case of the single equation. We show that, leaving from arbitrary initial data,
the solution quickly becomes close to a step function, except in a small neighborhood of the
initial interface, creating a steep transition layer (generation of interface). Our estimation of
the time needed to develop such a transition layer is optimal. In the second stage, the interface
starts to move, and the solution remains close to the step function (motion of interface). The
motion of the interface, solution of the singular limit of the original problem, is driven by its
mean curvature and a pressure term. To prove these results, we construct two completely
different pairs of sub- and super-solutions: one for the generation of interface, and the other
for the motion of interface. Fitting these pairs of sub- and super-solutions into each other, we
estimate, in an optimal way, the thickness of the transition layer, and its location. Then, we
extend our results to a large class of reaction-diffusion systems: since our proofs do not rely on
the comparison principle, we do not make any monotony assumptions on the reaction terms.
The idea is to regard the first equation of the system as a perturbed Allen-Cahn equation;
the proofs rely on a slight modification of the results for the single equation, a study of the
dependence of the interface motion on various parameters together with some refined a priori
estimates.

Chapter 2 is devoted to the study of a chemotaxis system, where the first equation is
parabolic and nonlinear, whereas the second equation is elliptic and linear. This is a model
for an aggregation of amoebae which are subjected to three effects: diffusion, growth and
chemotaxis. This last phenomenon is a tendency of some species to move towards higher gra-
dients of chemical substances which they often produce themselves. By successively studying
the generation and the motion of interface, we obtain here as well optimal estimates of the
thickness of the transition layer and of its location.

Finally, in Chapter 3, we consider a quasi-linear anisotropic Allen-Cahn equation, which
arises for instance in material sciences, and whose diffusion term is spatially inhomogeneous
and singular in the points where the gradient of the solution vanishes. We define a notion of
weak solution and prove a comparison principle. The motion of the limit interface is driven by
its anisotropic mean curvature. We perform the analysis using the distance function associated
with a Finsler metric related to the anisotropic diffusion term. We study both the generation
and the motion of interface and obtain an optimal estimate of the thickness of the transition
layer.

Key words: Convection-reaction-diffusion systems – Allen-Cahn equation – FitzHugh-Nagu-
mo system– Chemotaxis – Anisotropy – Generation of interface – Motion of interface – Thick-
ness of interface.

AMS subject classifications: 35K57, 35K60, 35K50, 35K20, 35R35, 35B20.
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Introduction

L’objet de cette thèse est l’étude d’équations aux dérivées partielles paraboliques non-
linéaires qui interviennent, par exemple, en biologie et en sciences des matériaux. Lorsque le
coefficient du terme de diffusion est petit ou lorsque celui du terme de réaction est grand, ces
problèmes peuvent donner lieu à des zones de transition abruptes, aussi appelées interfaces,
entre les différents états que peut atteindre la solution. Une équation modèle est donnée par
l’équation d’Allen-Cahn :

ut = ∆u +
1

ε2
(u − u3),

où intervient le petit paramètre ε > 0. Dans un premier temps, dit de génération de l’interface,
le terme de diffusion ∆u peut être négligé devant le terme de réaction ε−2(u−u3). Dans l’échelle
de temps τ = t/ε2, la solution de l’équation d’Allen-Cahn uε se comporte comme la solution
de l’équation différentielle ordinaire uτ = f(u) ; ainsi, les valeurs de uε deviennent rapidement
proches de l’un des deux équilibres stables 1 ou −1 et une zone de transition se développe entre
les deux régions {uε ≈ 1} et {uε ≈ −1}. A son voisinage, le terme de diffusion ne peut plus
être négligé et sa combinaison avec le terme de réaction induit, dans un deuxième temps, un
déplacement de l’interface. On sait que l’épaisseur de la zone de transition est liée au paramètre
ε.

De nombreux travaux ont porté sur le comportement asymptotique de l’équation d’Allen-
Cahn. En 1979, les physiciens Allen et Cahn [2] obtiennent, par analyse formelle, l’équation
du problème à frontière libre limite : l’interface se déplace selon sa courbure moyenne. Nous
renvoyons également aux travaux de Kawasaki et Ohta [52], en 1982.

Sous l’hypothèse que l’interface initiale est une hypersurface, il y a existence et unicité,
locales en temps, de la solution du problème à frontière libre associé. La convergence vers la
solution classique sur son intervalle de temps d’existence est démontrée au début des années
90. Citons, par exemple, les résultats de Bronsard et Kohn [18], dans le cas de la symétrie
sphérique, de de Mottoni et Schatzman [59, 60] et de X. Chen [20, 21].

En général, la solution du problème limite devient singulière en temps fini et il est nécessaire
de considérer des solutions faibles. Dans les années 90, la notion de solution de viscosité est
introduite, notamment par Y.G. Chen, Giga et Goto [25]. Puis, la convergence vers la solution
de viscosité est démontrée, notamment par Barles, Soner et Souganidis [6], Evans, Soner et
Souganidis [33], Ilmanen [48] et Barles et Souganidis [7].

Notons que l’intégrale de la fonction non-linéaire f(u) = u − u3 entre les deux équilibres
stables 1 et −1 est nulle. Si l’on perturbe cette fonction non-linéaire par un terme d’ordre ε,
dépendant des variables d’espace, de temps et de la fonction u, alors un terme supplémentaire
intervient dans l’équation du problème à frontière libre associé. Ce résultat a été obtenu de
manière formelle par Rubinstein, Sternberg et Keller [66] dès 1989. En 1997, Ei, Iida et Ya-
nagida [30], démontrent la convergence vers la solution du problème à frontière libre limite en
supposant que la condition initiale a une zone de transition déjà bien développée dont le profil
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dépend de ε.
Cette thèse porte sur la limite singulière d’équations ou systèmes de convection-réaction-

diffusion qui font intervenir des termes inhomogènes et anisotropes, et qui étendent l’équation
d’Allen-Cahn. Nous démontrons des propriétés de génération et de déplacement de l’interface ;
l’étude de la génération permet de considérer une condition initiale très générale. D’autre part,
nous montrons que l’épaisseur de la zone de transition est d’ordre ε. Nous localisons également
de manière optimale l’ensemble des points où la solution a pour valeur l’équilibre instable
du terme non-linéaire ; plus précisément, nous démontrons que sa distance de Hausdorff à
l’interface solution du problème à frontière libre limite est également d’ordre ε.

Chapitre 1 : Limite singulière de l’équation d’Allen-Cahn et du

système de FitzHugh-Nagumo

Ce Chapitre fait l’objet d’un article écrit en collaboration avec D. Hilhorst (Université
de Paris-Sud) et H. Matano (Université de Tokyo), soumis prochainement pour publication
dans Journal of Differential Equations.

Il comporte deux parties. D’abord nous étudions une équation d’Allen-Cahn dont le terme
non-linéaire est perturbé. Ensuite, en exploitant notre étude de cette équation, ainsi que des
estimations a priori supplémentaires, nous étendons nos résultats à des systèmes de réaction-
diffusion, notamment au système de FitzHugh-Nagumo et à certains systèmes de type préda-
teur-proie.

L’équation d’Allen-Cahn perturbée

Nous considérons le problème parabolique non-linéaire





ut = ∆u +
1

ε2
(f(u) − εgε(x, t, u)) dans Ω × (0, +∞),

∂u

∂ν
= 0 sur ∂Ω × (0, +∞),

u(x, 0) = u0(x) dans Ω,

(1)

où Ω est un ouvert borné et régulier de R
N , N ≥ 2. La fonction non-linéaire f admet exacte-

ment trois zéros α− < a < α+, le caractère bistable étant assuré par des pentes strictement
négatives aux équilibres stables u = α−, α+, et strictement positive à l’équilibre instable u = a ;
d’autre part, nous supposons que l’intégrale de f entre α− et α+ s’annule et que la fonction
gε est de la forme

gε(x, t, u) = g(x, t, u) + O(ε). (2)

Le problème à frontière libre limite est donné par





Vn = −(N − 1)κ + c0

∫ α+

α−

g(x, t, r)dr sur Γt,

Γt

∣∣
t=0

= Γ0,

(3)

où l’interface initiale Γ0, définie par Γ0 := {x ∈ Ω, u0(x) = a}, est une hypersurface sans
bords régulière ; Vn désigne la vitesse de déplacement de l’interface le long de la normale, κ
la courbure moyenne de l’interface et c0 une constante liée à la fonction non-linéaire f . Ce
problème possède une solution classique unique Γt sur un intervalle de temps [0, T ].
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Les résultats essentiels de cette partie sont les suivants. Lorsque ε → 0, la solution clas-
sique uε du problème (1) converge vers α− ou α+, selon que l’on se trouve à l’intérieur ou
à l’extérieur de l’interface, sur l’intervalle de temps (0, T ]. De plus, l’épaisseur de la zone
de transition est d’ordre ε, ainsi que la distance de Hausdorff entre l’ensemble des points
Γε

t := {x ∈ Ω, uε(x, t) = a}, et l’interface Γt, solution du problème à frontière libre limite (3).
Ces estimations sont optimales.

Concernant la condition initiale, nos hypothèses sont peu restrictives. Nous démontrons
d’abord une propriété de génération d’interface. Dans ce but, nous construisons une paire
de sous- et sur-solutions basées sur la solution d’une équation différentielle de la forme Yτ =
f(Y )+O(ε), obtenue en négligeant la diffusion et en travaillant dans l’échelle de temps τ = t/ε2.
Par le principe de comparaison, nous démontrons alors que, après un temps tε d’ordre ε2| ln ε|,
la solution a déjà développé une zone de transition très abrupte, autour de l’interface initiale.
Nous montrons également que ce temps de génération tε est optimal, c’est-à-dire qu’une zone
de transition escarpée ne peut s’être développée avant.

Dans un deuxième temps, pour démontrer une propriété de déplacement d’interface, nous
construisons des sous- et sur-solutions basées, cette fois, sur les deux premiers termes du
développement asymptotique formel de la solution, qui sont les solutions d’un problème sta-
tionnaire unidimensionnel associé et de sa version linéarisée.

Par imbrication des deux paires de sous- et sur-solutions construites, nous obtenons nos
principaux résultats.

Systèmes de réaction-diffusion

Nous étendons ensuite les résultats que nous avons obtenus pour l’équation seule à des
systèmes de réaction-diffusion de la forme





ut = ∆u +
1

ε2
fε(u, v) dans Ω × (0, +∞),

vt = D∆v + h(u, v) dans Ω × (0, +∞),
(4)

où le terme de réaction fε est donné par

fε(u, v) = f(u) + εf1(u, v) + ε2f ε
2 (u, v),

avec des conditions aux limites de Neumann homogènes et des conditions initiales. Nos preuves
ne s’appuyant pas sur un principe de comparaison, nous ne faisons aucune hypothèse de mo-
notonie sur les termes de réaction non-linéaires fε et h. A l’aide de la méthode des rectangles
invariants, nous démontrons que la solution (uε, vε) existe pour t ≥ 0.

Ce système contient deux cas particuliers importants, à savoir le système de FitzHugh-
Nagumo qui modélise la transmission nerveuse :





ut = ∆u +
1

ε2
(f(u) − εv),

vt = D∆v + αu − βv,

(5)

et certains systèmes prédateur-proie intervenant en écologie :





ut = ∆u +
1

ε2

(
(1 − u)(u − 1/2) − εv

)
u,

vt = D∆v + (αu − βv)v.
(6)
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Le problème à frontière libre limite est constitué d’une équation de déplacement d’interface
couplée à une équation parabolique :

Vn = −(N − 1)κ − c0

∫ α+

α−

f1(r, ṽ(x, t))dr sur Γt, (7a)

ṽt = D∆ṽ + h(ũ, ṽ) dans Ω × (0, T ], (7b)

où la fonction en escalier ũ, valant α− à l’intérieur de l’interface et α+ à l’extérieur, est complè-
tement déterminée par l’interface Γt. Ce problème admet une solution classique unique (Γ, ṽ)
sur un intervalle de temps [0, T ].

Nous démontrons que nos estimations de l’épaisseur et de la localisation de la zone de
transition de la solution uε restent vraies pour les systèmes de réaction-diffusion considérés.
Pour cela, nous considérons la première équation du système (4) comme une équation d’Allen-
Cahn perturbée et cherchons à appliquer les résultats obtenus pour l’équation seule. Ceci
nécessite de prouver l’analogue de (2), c’est-à-dire l’estimation a priori

vε(x, t) = ṽ(x, t) + O(ε). (8)

La difficulté tient au fait qu’ici, le terme de perturbation dépend de la fonction vε, dont le
comportement n’est pas parfaitement connu. De plus, la solution uε convergeant vers la fonction
discontinue ũ, la fonction ṽ présente un déficit de régularité face à vε ; plus précisément, par
les estimations paraboliques, vε est au moins de classe C2,1 alors que ṽ est seulement de classe

C1+ϑ, 1+ϑ
2 . L’idée de la démonstration est la suivante : on réexamine d’abord l’équation pour le

déplacement de l’interface (3) en perturbant le terme non-linéaire g ainsi que l’interface initiale
Γ0. Ensuite, tout en accordant une certaine liberté aux conditions initiales, on construit une
application Φ comme suit : à tout v, on fait correspondre un terme f1 de perturbation du
terme non-linéaire, et donc une interface solution d’une équation de la forme (7a) ; à cette
interface, on associe une fonction en escalier, et donc une solution d’une équation de la forme
(7b), notée Φ[v]. Par construction, la solution (Γ, ṽ) du système (7a)—(7b) est telle que ṽ est
un point fixe de Φ. En se basant sur des estimations de la solution fondamentale de l’équation
de la chaleur vt = D∆v, et sur le fait que uε varie peu en dehors d’un voisinage d’ordre ε de
l’interface Γt, on démontre que Φ[vε] = vε + O(ε), ou encore que la fonction vε est presque un
point fixe de Φ. Ceci, combiné au fait que Φ est contractante, nous permet alors de démontrer
l’estimation essentielle (8), de laquelle découlent les résultats pour les systèmes.

Chapitre 2 : Limite singulière d’un système de chimiotactisme-

croissance avec condition initiale quelconque

Cette partie fait l’objet d’un article soumis pour publication dans Advances in Differential
Equations.

Les Dictyostelides sont des organismes pouvant prendre alternativement une forme uni-
cellulaire (amibe) ou une forme pluricellulaire. On les trouve dans les tapis de feuilles en
décomposition. On a observé chez eux un cycle de vie assez complexe. Dans un premier temps,
les amibes se dispersent et se nourrissent de bactéries. Lorsque ces dernières ont toutes été
consommées, les amibes émettent un attracteur, dit chimiotactique, de façon à attirer les
amibes voisines. Par agrégation, il se forme un organisme pluricellulaire de centaines de mil-
liers de cellules, sorte de limace de quelques millimètres de longueur. Cet organisme est composé
de trois parties, un disque basal, un pied et une masse de spores qui donnent naissance à de
nouvelles amibes.
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L’étude des méchanismes qui sous-tendent de tels phénomènes générant un organisme plu-
ricellulaire est d’un grand intérêt en biologie. En 1970, Keller et Segel [53] ont proposé le
système d’équations paraboliques

{
ut = du∆u −∇ · (u∇χ(v)),

τvt = dv∆v + u − γv,
(9)

pour la modélisation mathématique de ce processus d’agrégation ; la fonction u représente la
concentration d’amibes et v celle de l’attracteur chimiotactique, dont le taux de dégradation est
donné par la constante positive γ ; du et dv sont des coefficients de diffusion supposés constants ;
τ est une constante positive ; la fonction strictement croissante χ exprime l’attraction des
amibes par la substance chimiotactique. Les amibes sont ainsi soumises à deux phénomènes :
la diffusion et le chimiotactisme, c’est-à-dire une propension à se diriger vers la substance
attractrice qu’elles ont elles-mêmes sécrétée. Le problème est complété par des conditions
initiales ainsi que des conditions aux limites de Neumann homogènes.

De nombreuses analyses mathématiques de ce modèle ont été faites. Il s’avère que l’agréga-
tion, qui se traduit mathématiquement par un phénomène d’explosion en temps fini, n’est pas
systématique. Par exemple, elle ne se produit jamais en dimension un d’espace alors qu’en
dimension deux elle ne se produit que si le nombre initial d’amibes est suffisamment élevé.

Dans ce Chapitre, nous étudions un système d’équations proposé par Mimura et Tsujikawa
[57], où interviennent un terme de diffusion, un terme de couplage lié au chimiotactisme ainsi
qu’un terme de croissance. Plus précisément, on pose τ = 0 et on étudie le problème de
Neumann homogène





ut = ∆u −∇ · (u∇χ(v)) +
1

ε2
fε(u) dans Ω × (0,+∞),

0 = ∆v + u − γv dans Ω × (0,+∞),

∂u

∂ν
=

∂v

∂ν
= 0 sur ∂Ω × (0, +∞),

u(x, 0) = u0(x) dans Ω,

(10)

où ε > 0 est un petit paramètre ; le terme de réaction non-linéaire est donné par

fε(u) = u(1 − u)(u − 1

2
) + εαu(1 − u),

avec α constante positive.

Le processus d’agrégation sous-jacent est alors différent de celui du modèle sans terme
de croissance. Sous l’hypothèse d’une condition initiale bien préparée, c’est-à-dire présentant
déjà une interface, Bonami, Hilhorst, Logak et Mimura [17] ont montré que, lorsque ε → 0, la
solution (uε, vε) converge vers (u0, v0), où u0 est une fonction en escalier prenant les valeurs 1
et 0. Le problème à frontière libre limite est donné par les équations couplées :





Vn = −(N − 1)κ +
∂χ(v0)

∂n
+
√

2α sur Γt,

Γt

∣∣
t=0

= Γ0

0 = ∆v0 + u0 − γv0 dans Ω × (0, T ],

∂v0

∂ν
= 0 sur ∂Ω × (0, T ],

(11)
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où l’interface initiale Γ0, définie par Γ0 := {x ∈ Ω, u0(x) = 1/2}, est une hypersurface
sans bords régulière ; n désigne le vecteur normal, unitaire, extérieur à Γt, Vn la vitesse de
déplacement de l’interface le long de la normale et κ la courbure moyenne de l’interface. La
première équation traduit le déplacement de la frontière libre séparant les régions {u0 = 1} et
{u0 = 0}. Ce problème admet une solution classique unique (Γ, v0) sur un intervalle [0, T ].

Dans ce Chapitre, nous étendons les résultats de [17] en supposant la condition initiale u0

très générale. Après avoir rappelé le principe de comparaison utilisé dans [17], nous démontrons
une propriété de génération d’interface. Nous nous appuyons pour cela sur une paire de sous-
et sur-solutions construites à l’aide de la solution de l’équation différentielle ordinaire ut =
ε−2f(u), obtenue en négligeant la diffusion et le chimiotactisme. Nous étudions ensuite le
déplacement de l’interface, en nous appuyant sur des sous- et sur-solutions construites à l’aide
de la solution d’un problème stationnaire unidimensionnel associé ; la démonstration s’appuie
sur des estimations de la fonction de Green associée au problème de Neumann homogène sur Ω
pour l’opérateur −∆ + γ. En imbriquant les deux paires de sous- et sur-solutions construites,
on démontre que l’épaisseur de la zone de transition développée par la solution uε est d’ordre
ε, ainsi que la distance de Hausdorff entre l’ensemble des points Γε

t := {x ∈ Ω, uε(x, t) = 1/2}
et l’interface Γt, solution du problème à frontière libre limite (11). Ces résultats sont optimaux.

Chapitre 3 : Limite singulière d’une equation d’Allen-Cahn in-

homogène et anisotrope

Cette partie de la thèse correspond à des travaux réalisés en collaboration avec H. Garcke
(Université de Regensburg), D. Hilhorst (Université de Paris-Sud), H. Matano (Université de
Tokyo) et R. Schätzle (Université de Tübingen).

Le contexte de cette étude est la modélisation de mouvements d’interfaces en science des
matériaux, où la vitesse normale de déplacement de l’interface dépend de l’angle du vecteur
normal avec une direction fixe. On parle de mouvement anisotrope d’interface.

Nous étudions le problème de Neumann homogène pour une équation d’Allen-Cahn aniso-
trope et inhomogène :





ut = ∇ · ap(x,∇u) +
1

ε2
f(u) dans Ω × (0, +∞),

ap(x,∇u) · ν = 0 sur ∂Ω × (0, +∞),

u(x, 0) = u0(x) dans Ω,

(12)

où ε > 0 est un petit paramètre. On suppose que le terme non-linéaire f possède exactement
trois zéros 0 < a < 1, que sa pente est strictement négative aux équilibres u = 0 et u = 1,
strictement positive à l’équilibre u = a, ce qui assure son caractère bistable ; nous supposons
également que f satisfait la condition intégrale

∫ 1

0
f(u)du = 0.

L’anisotropie intervient dans le terme ∇ · ap(x,∇u), où nous supposons la fonction a(x, p)
strictement positive, strictement convexe et 2 homogène (en la variable p) sur Ω×R

N\{0}. Nous

utilisons la notation ap(x, p) pour le vecteur gradient (
∂a

∂p1
, · · · ,

∂a

∂pN
)(x, p) et nous supposons

que la fonction a(x, p) est de classe C3+ϑ
loc seulement sur Ω × R

N \ {0}, autrement dit que le
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terme de diffusion ∇ · ap(x,∇u) est singulier aux points où le gradient de la solution s’annule.
Il nous faut donc utiliser une notion de solution faible, pour laquelle nous démontrons un
principe de comparaison.

L’équation parabolique dans le problème (12) contient, en particulier, l’équation inho-
mogène

ut = div(A(x)∇u) +
1

ε2
f(u), (13)

où A(x) est une matrice symétrique définie positive, et l’équation anisotrope

ut = div
(
A(∇u)

)
+

1

ε2
f(u), (14)

où les coefficients de la matrice ∇p ⊗A = ∇p
tA peuvent être singuliers au point p = 0.

Nous commençons par construire une métrique adaptée au problème anisotrope, en nous
inspirant de résultats de Bellettini, Paolini and Venturini sur une métrique de Finsler, [9] et
[10].

Nous démontrons que, lorsque ε → 0, la solution uε converge presque partout vers ũ, où
ũ est une fonction en escalier prenant les valeurs 0 et 1, les régions {ũ = 0} et {ũ = 1} étant
séparées par une interface limite qui se déplace. Le problème à frontière libre limite est donné
par : 




Vn,φ = −(N − 1)κφ sur Γt,

Γt

∣∣∣
t=0

= Γ0,
(15)

où l’interface initiale Γ0 est définie par Γ0 := {x ∈ Ω, u0(x) = a}, où Vn,φ désigne la vitesse de
déplacement anisotrope de l’interface le long de la normale anisotrope à Γt et κφ une version
anisotrope de la courbure moyenne de l’interface. L’écriture du problème limite se complique
sensiblement en géométrie euclidienne :





1√
2a(x, n)

Vn = −∇ ·
[ 1√

2a(x, n)
ap(x, n)

]
sur Γt,

Γt

∣∣∣
t=0

= Γ0.

(16)

Si Γ0 est assez régulière, le problème limite admet une unique solution classique sur un intervalle
de temps [0, T ].

Avec des hypothèses faibles sur le profil de la condition initiale, nous effectuons une analyse
rigoureuse de la génération et du déplacement de l’interface. Nous nous appuyons pour cela sur
deux paires distinctes de sous- et sur-solutions. Pour l’étude de la génération de l’interface, on
perturbe la solution de l’équation différentielle ordinaire ut = ε−2f(u), obtenue en négligeant
la diffusion anisotrope. Pour l’étude du déplacement de l’interface, on utilise la solution d’un
problème stationnaire unidimensionnel associé. En imbriquant ces deux paires de sous- et sur-
solutions, on démontre que l’épaisseur de la zone de transition développée par la solution est
d’ordre ε, améliorant ainsi des résultats connus [13], [70].





Chapter 1

The singular limit of the

Allen-Cahn equation and the

FitzHugh-Nagumo system

We consider an Allen-Cahn type equation of the form ut = ∆u + ε−2f ε(x, t, u), where ε > 0 is
a small parameter and fε a bistable nonlinearity associated with a double-well potential whose
well-depths are slightly unbalanced by order ε. Given a rather general initial datum u0 that
is independent of ε, we perform a rigorous analysis of both the generation and the motion of
interface. More precisely we show that the solution develops a steep transition layer within the
time scale of order ε2| ln ε|, and that the layer obeys the law of motion that coincides with the
formal asymptotic limit within an error margin of order ε. This is an optimal estimate that
has not been known before for solutions with general initial datum, even in the case where
fε(x, t, u) = f(u).

Next we consider systems of reaction-diffusion equations of the form

{
ut = ∆u + ε−2 f ε(u, v),

vt = D∆v + h(u, v),

which include the FitzHugh-Nagumo system as a special case. Given a rather general initial
datum (u0, v0), we show that the component u develops a steep transition layer and that all
the above-mentioned results remain true for the u-component of these systems.
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1.1 Introduction

1.1.1 Perturbed Allen-Cahn equation

In some classes of nonlinear diffusion equations, solutions often develop sharp internal layers —
or “interfaces” — that separate the spatial domain into different phase regions. This happens,
in particular, when the diffusion coefficient is very small or the reaction term is very large.
The motion of such interfaces is often driven by their curvature. A typical example is the
Allen-Cahn equation ut = ∆u + ε−2f(u), where ε > 0 is a small parameter and f(u) is a
bistable nonlinearity, whose meaning is explained below. A usual strategy for studying such
phenomena is to first derive the “sharp interface limit” as ε → 0 by a formal analysis, then to
check if this limit gives good approximation of the behavior of actual layers.

In this Chapter we consider a perturbed Allen-Cahn type equation of the form

(P ε)





ut = ∆u +
1

ε2
(f(u) − εgε(x, t, u)) in Ω × (0, +∞),

∂u

∂ν
= 0 on ∂Ω × (0, +∞),

u(x, 0) = u0(x) in Ω,

and study the behavior of layers near the sharp interface limit as ε → 0. Here, Ω is a smooth
bounded domain in R

N (N ≥ 2) and ν is the Euclidian unit normal vector exterior to ∂Ω. The
nonlinearity is given by f(u) := −W ′(u), where W (u) is a double-well potential with equal
well-depth, taking its global minimum value at u = α−, α+. More precisely we assume that f
is of class C2 on R and has exactly three zeros α− < a < α+ such that

f ′(α±) < 0, f ′(a) > 0 (bistable nonlinearity), (1.1)

and that ∫ α+

α−

f(u) du = 0. (1.2)

The condition (1.1) implies that the potential W (u) attains its local minima at u = α−, α+,
and (1.2) implies that W (α−) = W (α+). In other words, the two stable zeros of f , namely
α− and α+, have “balanced” stability. A typical example is given by the cubic nonlinearity
f(u) = u(1 − u2).

The term εgε represents a small perturbation, where gε(x, t, u) is a function defined on
Ω× [0, +∞)×R. This has the role of breaking the balance of the two stable zeros slightly. In
the special case where gε ≡ 0, Problem (P ε) reduces to the usual Allen-Cahn equation. As we
will explain later, our main results are new even for this special case.

We assume that gε is C2 in x and C1 in t, u, and that, for any T > 0, there exist ϑ ∈ (0, 1)
and C > 0 such that, for all (x, t, u) ∈ Ω × [0, T ] × R,

|∆xgε(x, t, u)| ≤ Cε−1 and |gε
t (x, t, u)| ≤ Cε−1, (1.3)

|gε
u(x, t, u)| ≤ C, (1.4)

‖gε(·, ·, u)‖
C1+ϑ,

1+ϑ
2 (Ω×[0,T ])

≤ C. (1.5)

Moreover, we assume that there exists a function g(x, t, u) and a constant, which we denote
again by C, such that

|gε(x, t, u) − g(x, t, u)| ≤ Cε, (1.6)
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for all small ε > 0. Note that the estimate (1.5) and the pointwise convergence gε → g (as ε →
0) imply that g satisfies the same estimate as (1.5).

For technical reasons we also assume that

∂gε

∂ν
= 0 on ∂Ω × [0, T ] × R, (1.7)

which, in turn, implies the same Neumann boundary condition for g. Apart from these bounds
and regularity requirements, we do not make any specific assumptions on the perturbation term
gε.

Remark 1.1.1. Since we will consider only bounded solutions in this Chapter, it is sufficient
to assume (1.3)—(1.5) to hold in some bounded interval −M ≤ u ≤ M . Note that if gε does
not depend on ε, then assumptions (1.3)—(1.5) are automatically satisfied on any bounded
interval −M ≤ u ≤ M . ¤

Remark 1.1.2. The reason why we do not assume more smoothness on g is that we will later
apply our results to systems of equations, including the FitzHugh-Nagumo system, in which
gε = gε(x, t) loses C2,1-smoothness as ε → 0. ¤

Remark 1.1.3. The equation in (P ε) can be expressed in the form

ut = ∆u +
1

ε2
fε(x, t, u),

where fε is C2 in x, ε and C1 in t, u. Conversely, by setting

gε(x, t, u) = −fε(x, t, u) − f(u)

ε
, g(x, t, u) = − ∂fε

∂ε
(x, t, u)

∣∣∣∣
ε=0

,

the above equation is reduced to that in (P ε). The conditions (1.3) and (1.6) then follow
automatically from the above regularity assumptions on fε. The condition (1.5) holds if we
impose slightly stronger regularity on f ε. ¤

As for the initial datum u0(x), we assume u0 ∈ C2(Ω). Throughout the present Chapter
the constant C0 will stand for the following quantity:

C0 := ‖u0‖C0(Ω) + ‖∇u0‖C0(Ω) + ‖∆u0‖C0(Ω). (1.8)

Furthermore we define the “initial interface” Γ0 by

Γ0 := {x ∈ Ω, u0(x) = a}, (1.9)

and suppose that Γ0 is a C3+ϑ hypersurface without boundary such that, n being the outward
unit normal vector to Γ0,

Γ0 ⊂⊂ Ω and ∇u0(x) · n(x) 6= 0 if x ∈ Γ0, (1.10)

u0 > a in Ω+
0 , u0 < a in Ω−

0 , (1.11)

where Ω−
0 denotes the region enclosed by the hypersurface Γ0 and Ω+

0 the region enclosed
between the boundary of the domain ∂Ω and the hypersurface Γ0.
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It is standard that Problem (P ε) has a unique smooth solution, which we denote by uε. As
ε → 0, a formal asymptotic analysis shows the following: in the very early stage, the diffusion
term ∆u is negligible compared with the reaction term ε−2(f(u) − εgε(x, t, u)); it follows
that, in the rescaled time scale τ = t/ε2, the equation is well approximated by the ordinary
differential equation uτ = f(u) + O(ε). Hence, f being a bistable nonlinearity, the value of
uε quickly becomes close to either α+ or α− in most part of Ω, creating a steep interface
(transition layer) between the regions {uε ≈ α−} and {uε ≈ α+}. Once such an interface
develops, the diffusion term becomes large near the interface, and comes to balance with the
reaction term. As a result, the interface ceases rapid development and starts to propagate in
a much slower time scale.

To study such interfacial behavior, it is useful to consider a formal asymptotic limit of
Problem (P ε) as ε → 0. Then the limit solution ũ(x, t) will be a step function taking the value
α+ on one side of the interface, and α− on the other side. This sharp interface, which we will
denote by Γt, obeys a certain law of motion, which is expressed as follows (see Section 1.2 for
details):

(P 0)





Vn = −(N − 1)κ + c0

∫ α+

α−

g(x, t, r)dr on Γt,

Γt

∣∣
t=0

= Γ0,

where Vn is the normal velocity of Γt in the exterior direction, κ the mean curvature at each
point of Γt, c0 the constant defined by

c0 =
[√

2

∫ α+

α−

(W (s) − W (α−))1/2ds
]−1

, (1.12)

with W the double-well potential associated with f :

W (s) = −
∫ s

a
f(r)dr.

In the sequel, γ will stand for:

γ(x, t) = c0

∫ α+

α−

g(x, t, r)dr. (1.13)

It is well known that Problem (P 0) possesses locally in time a unique smooth solution, say

Γ =
⋃

0≤t≤T (Γt × {t}), for some T > 0. More precisely, so as g, the function γ is in C1+ϑ, 1+ϑ
2 ,

which implies, by the standard theory of parabolic equations, that Γ is of class C3+ϑ, 3+ϑ
2 . For

more details, we refer to [23], Lemma 2.1.
Next we set

QT := Ω × [0, T ],

and for each t ∈ [0, T ], we denote by Ω−
t the region enclosed by Γt, and by Ω+

t the region
enclosed between ∂Ω and Γt. We define a step function ũ(x, t) by

ũ(x, t) =

{
α+ in Ω+

t

α− in Ω−
t

for t ∈ [0, T ], (1.14)

which represents the formal asymptotic limit of uε (or the sharp interface limit) as ε → 0.
The aim of the present Chapter is to make a rigorous and detailed study of the limiting

behavior of the solution uε of Problem (P ε) as ε → 0. Our first main result, Theorem 1.1.4,



1.1 Introduction 21

describes the profile of the solution after a very short initial period. It asserts that: given a
virtually arbitrary initial datum u0, the solution uε quickly becomes close to α±, except in
a small neighborhood of the initial interface Γ0, creating a steep transition layer around Γ0

(generation of interface). The time needed to develop such a transition layer, which we will
denote by tε, is of order ε2| ln ε|. The theorem then states that the solution uε remains close
to the step function ũ on the time interval [tε, T ] (motion of interface); in other words, the
motion of the transition layer is well approximated by the limit interface equation (P 0).

Theorem 1.1.4 (Generation and motion of interface). Let η be an arbitrary constant
satisfying 0 < η < 1

2 min(a − α−, α+ − a) and set

µ = f ′(a).

Then there exist positive constants ε0 and C such that, for all ε ∈ (0, ε0) and for all tε ≤ t ≤ T ,
where tε := µ−1ε2| ln ε|, we have

uε(x, t) ∈





[α− − η, α+ + η] if x ∈ NCε(Γt)

[α− − η, α− + η] if x ∈ Ω−
t \ NCε(Γt)

[α+ − η, α+ + η] if x ∈ Ω+
t \ NCε(Γt),

(1.15)

where Nr(Γt) := {x ∈ Ω, dist(x,Γt) < r} denotes the r-neighborhood of Γt.

Corollary 1.1.5 (Convergence). As ε → 0, the solution uε converges to ũ everywhere in⋃
0<t≤T (Ω±

t × {t}).

The next theorem is concerned with the relation between the actual interface Γε
t := {x ∈

Ω, uε(x, t) = a} and the formal asymptotic limit Γt, which is given as the solution of Problem
(P 0).

Theorem 1.1.6 (Error estimate). There exists C > 0 such that

Γε
t ⊂ NCε(Γt) for 0 ≤ t ≤ T. (1.16)

Corollary 1.1.7 (Convergence of interface). There exists C > 0 such that

dH(Γε
t ,Γt) ≤ Cε for 0 ≤ t ≤ T, (1.17)

where

dH(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

denotes the Hausdorff distance between two compact sets A and B. Consequently, Γε
t → Γt as

ε → 0, uniformly in 0 ≤ t ≤ T , in the sense of Hausdorff distance.

Note that the estimates (1.16) and (1.17) follow from Theorem 1.1.4 in the range tε ≤ t ≤ T ,
but the range 0 ≤ t ≤ tε has to be treated by a separate argument. In fact, this is the time
range in which a clear transition layer is formed rapidly from an arbitrarily given initial
datum, therefore the behavior of the solution is quite different from that in the later time
range tε ≤ t ≤ T , where things move more slowly.



22 Chapitre 1. The Allen-Cahn equation and the FitzHugh-Nagumo system

The estimate (1.15) in our Theorem 1.1.4 implies that, once a transition layer is formed,
its thickness remains within order ε for the rest of time. Here, by “thickness of interface” we
mean the smallest r > 0 satisfying

{x ∈ Ω, uε(x, t) 6∈ [α− − η, α− + η] ∪ [α+ − η, α+ + η] } ⊂ Nr(Γ
ε
t ).

Naturally this quantity depends on η, but the estimates (1.15) and (1.17) assert that it is
bounded by 2Cε (with the constant C depending on η), hence it remains within O(ε) regardless
of the choice of η > 0.

Remark 1.1.8 (Optimality of the thickness estimate). The above O(ε) estimate is
optimal, i.e., the interface cannot be thinner than this order. In fact, rescaling time and space
as τ := t/ε2, y := x/ε, the equation reads as

uτ = ∆yu + f(u) − ε gε.

Thus, by the uniform boundedness of u and by standard parabolic estimates, we have |∇yu| ≤ M

for some constant M > 0, which implies

|∇xu(x, t)| ≤ M

ε
.

From this bound it is clear that the thickness of interface cannot be smaller than M−1(α+ −
α−) ε, hence, by (1.15), it has to be exactly of order ε. Intuitively, the order ε estimate follows
also from the formal asymptotic expansion (1.24), but the validity of such an expansion is far
from obvious for solutions with arbitrary initial datum. ¤

As far as we know, our O(ε) estimate is new, even in the special case where gε ≡ 0,
provided that N ≥ 2. Previously, the best thickness estimate in the literature was of order
ε| ln ε| (see [20]), except that Xinfu Chen has recently obtained an order ε estimate for the case
N = 1 by a different argument (private communication). We also refer to a forthcoming article
[51] by Karali, Nakashima, Hilhorst and Matano, in which an order ε estimate is established
for a Lotka-Volterra competition-diffusion system, with large spatial inhomogeneity, whose
nonlinearity is of the balanced bistable type.

Remark 1.1.9 (Optimality of the generation time). The estimate (1.15) also implies
that the generation of interface takes place within the time span of tε. This estimate is optimal.
In other words, a well-developed interface cannot appear much earlier; see Proposition 1.3.10
for details. ¤

The singular limit of Allen-Cahn equation was first studied in the pioneering work of Allen
and Cahn [2] and, slightly later, in Kawasaki and Ohta [52] from the point of view of physicists.
They derived the interface equation by formal asymptotic analysis, thereby revealing that the
interface moves by the mean curvature. Triggered by these early observations, this problem
has become a subject of extensive mathematical studies.

Let us mention for instance the results of Bronsard and Kohn [18] in the case of spherical
symmetry, the articles of de Mottoni and Schatzman [59, 60] and those of Chen [20, 21]. These
results prove convergence to the limit interface equation in a classical framework; that is, under
the assumption that the limit interface Γt is a smooth hypersurface. As for the case where
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Γt is a viscosity or a weak solution of the limit interface equation, we refer to the work of
Barles, Soner and Souganidis [6], Evans, Soner and Souganidis [33], Ilmanen [48] and Barles
and Souganidis [7].

As for Problem (P ε), whose nonlinearity is slightly unbalanced, the limit interface equation
involves a pressure term as well as the curvature term as indicated in (P 0). This fact has been
long known on a formal level; see e.g. Rubinstein, Sternberg and Keller [66]. However, not
much rigorous study has been made. Ei, Iida and Yanagida [30] proved rigorously that the
motion of the layers of Problem (P ε) is well approximated by the limit interface equation
(P 0), on the condition that the initial datum has already a well developed transition layer
whose profile depends on ε. In other words, they studied the motion of interface, but not the
generation of interface.

1.1.2 Singular limit of reaction-diffusion systems

As a matter of fact, our results for the single equation can be extended to a important class of
reaction-diffusion systems. More precisely, we consider systems of parabolic equations of the
form:

(RD ε)





ut = ∆u +
1

ε2
fε(u, v) in Ω × (0,+∞),

vt = D∆v + h(u, v) in Ω × (0,+∞),

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω × (0,+∞),

u(x, 0) = u0(x) in Ω,

v(x, 0) = v0(x) in Ω,

where D is a positive constant, and fε, h are C2 functions such that

(F) there exist C2 functions f1(u, v), f ε
2 (u, v) such that

fε(u, v) = f(u) + εf1(u, v) + ε2f ε
2 (u, v), (1.18)

where f(u) is a bistable nonlinearity satisfying (1.1), (1.2), and f ε
2 , along with its deriva-

tives in u, v, remain bounded as ε → 0;

(H) for any constant L,M > 0 there exists a constant M1 ≥ M such that

h(u,−M1) ≥ 0 ≥ h(u,M1) for |u| ≤ L. (1.19)

The conditions (F) and (H) imply that the system of ordinary differential equations

u̇ =
1

ε2
fε(u, v), v̇ = h(u, v),

has a family of invariant rectangles of the form {|u| ≤ L, |v| ≤ M}, provided that ε is
sufficiently small. The maximum principle and standard parabolic estimates then guarantee
that the solution (uε, vε) of (RD ε) exists globally for t ≥ 0 and remains bounded as t → ∞
(see subsection 1.7.1 for details). Apart from (1.19), we do not make any specific assumptions
on the function h.
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Problem (RD ε) represents a large class of important reaction-diffusion systems including
the FitzHugh-Nagumo system





ut = ∆u +
1

ε2
(f(u) − εv),

vt = D∆v + αu − βv,
(1.20)

which is a simplified model for nervous transmission, and the following type of prey-predator
system that appears in mathematical ecology:





ut = ∆u +
1

ε2

(
(1 − u)(u − 1/2) − εv

)
u,

vt = D∆v + (αu − βv)v.
(1.21)

Remark 1.1.10. In some equations such as the prey-predator system (1.21), only nonnegative
solutions are to be considered. In such a case, we replace the condition (1.19) by

h(u, 0) ≥ 0 ≥ h(u,M1) for 0 ≤ u ≤ L,

and assume fε(0, v) ≥ 0. The rest of the argument remains the same. ¤

Now the same formal analysis as is used to derive (P 0) in Section 1.2 shows that the
singular limit of (RD ε), as ε → 0, is the following moving boundary problem:

(RD0)





Vn = −(N − 1)κ − c0 F1(ṽ(x, t)) on Γt,

ṽt = D∆ṽ + h(ũ, ṽ) in Ω × (0, T ],

∂ṽ

∂ν
= 0 on ∂Ω × (0, T ],

Γt

∣∣
t=0

= Γ0

ṽ(x, 0) = v0(x) in Ω,

where ũ is the step function defined in (1.14) and

F1(v) =

∫ α+

α−

f1(r, v) dr.

This is a system consisting of an equation of surface motion and a partial differential equation.
Since ũ is determined straightforwardly from Γt, in what follows, by a solution of (RD0) we
mean the pair (Γ, ṽ) := (Γt, ṽ(x, t)). In the case of the FitzHugh-Nagumo system (1.20), the
interface equation in (RD0) reduces to





Vn = −(N − 1)κ + c0 (α+ − α−)ṽ(x, t),

ṽt = D∆ṽ + αũ − βṽ,

while in the prey-predator system (1.21), (RD0) reduces to




Vn = −(N − 1)κ + c0 ṽ(x, t)/2,

ṽt = D∆ṽ + (αũ − βṽ)ũ.

Note that the positive sign in front of the term c0ṽ(x, t) in the interface equation implies
an inhibitory effect on ũ, since the velocity Vn is measured in the exterior normal direction,
toward which ũ decreases.
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Lemma 1.1.11 (Local existence). Assume that v0 ∈ C2(Ω) and that Γ0 is a C2+ϑ hyper-
surface which is the boundary of a domain D0 ⊂⊂ Ω. Then there exists T > 0 such that the
limit free boundary Problem (RD0) has a unique solution (Γ, ṽ) in the interval [0, T ]. By the

standard theory of parabolic equations, Γ is of class C2+ϑ, 2+ϑ
2 and ṽ is of class C1+ϑ, 1+ϑ

2 .

The existence result was established in [24], Theorem 3.2 and following lemmas. The
uniqueness can be obtained by using Theorem 2 in [21].

Our main results for the system (RD ε) are the following:

Theorem 1.1.12 (Thickness of interface). Let (1.18) and (1.19) hold (or let the assump-
tions in Remark 1.1.10 hold). Assume also that u0 satisfies (1.10) and (1.11). Then the same
conclusion as in Theorem 1.1.4 holds for (RD ε).

Corollary 1.1.13 (Convergence). Under the assumptions of Theorem 1.1.12, the same
conclusion as in Corollary 1.1.5 holds for (RD ε).

Theorem 1.1.14 (Error estimate). Let the assumptions of Theorem 1.1.12 hold. Then
the same conclusion as in Theorem 1.1.6 holds for (RD ε). Moreover, there exists a constant
C > 0 such that

‖vε − ṽ‖L∞(Ω×(0,T )) ≤ Cε.

Corollary 1.1.15 (Convergence of interface). Under the assumptions of Theorem 1.1.12,
the same conclusion as in Corollary 1.1.7 holds for (RD ε).

The organization of this Chapter is as follows. In Section 1.2, we derive the interface
equation (P 0) from (P ε) by formal asymptotic expansions which involve the so-called signed
distance function. In Sections 1.3 and 1.4, we present basic estimates concerning the generation
of interface for (P ε). For the clarity of underlying ideas, we first consider the special case
where gε ≡ 0 in Section 1.3, and deal with the general case in Section 1.4. In Section 1.5
we prove a preliminary result on the motion of interface (Lemma 1.5.1), which implies that
if the initial datum has already a well-developed transition layer, then the layer remains to
exist for 0 ≤ t ≤ T and its motion is well approximated by the interface equation (P 0). Our
approach in Sections 1.3 to 1.5 is based on the sub- and super-solutions method, but we use
two completely different sets of sub- and super-solutions. More precisely, the sub- and super-
solutions for the motion of interface are constructed by using the first two terms of the formal
asymptotic expansion (1.24), while those for the generation of interface are constructed by
modifying the solution of the equation in the absence of diffusion: ut = ε−2f(u). In Section
1.6, we prove our main results for Problem (P ε): Theorems 1.1.4, 1.1.6 and their respective
corollaries.

In the final section, we study the reaction-diffusion system (RD ε) and prove Theorems
1.1.12, 1.1.14 and their corollaries. These results are obtained by applying a slightly modified
version of the results for (P ε). The strategy is to regard fε(u, v) as a perturbation of f(u).
Indeed, the equation for u in (RD ε) is identical to that in (P ε) if we set gε = −f1 − εf ε

2 .
However, what makes the analysis difficult is the fact that gε is no longer a given function
but a quantity that depends on the unknown function vε. In particular, the existence of the
limit gε → g (ε → 0) is not a priori guaranteed, and the estimate (1.6) is far from obvious.
As it turns out, the standard Lp or Schauder estimates for vε would not yield (1.6), because
of the fact that uε converges to a discontinuous function as ε → 0. In order to overcome this
difficulty, we derive a fine estimate of vε that is based on estimates of the heat kernel and
the fact that uε remains uniformly smooth outside of an O(ε) neighborhood of the smooth
hypersurface Γt.
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1.2 Formal derivation of the interface motion equation

In this section we derive the equation of interface motion corresponding to Problem (P ε) by
using a formal asymptotic expansion. The resulting interface equation can be regarded as the
singular limit of (P ε) as ε → 0. Our argument is basically along the same lines with the formal
derivation given by Nakamura, Matano, Hilhorst and Schätzle [63], who studied a similar but
slightly different type of spatially inhomogeneous equations by formal analysis. Let us also
mention some earlier papers [1], [36] and [66] involving the method of matched asymptotic
expansions for problems that are related to ours.

As in [63], the first two terms of the asymptotic expansion determine the interface equation.
Though our analysis in this section is for the most part formal, the observations we make here
will help the rigorous analysis in later sections.

Let uε be the solution of Problem (P ε). We recall that Γε
t := {x ∈ Ω, uε(x, t) = a} is the

interface at time t and call Γε :=
⋃

t≥0(Γ
ε
t × {t}) the interface. Let Γ =

⋃
0≤t≤T (Γt × {t}) be

the solution of the limit geometric motion problem and let d̃ be the signed distance function
to Γ defined by:

d̃(x, t) =

{
dist(x,Γt) for x ∈ Ω+

t

−dist(x,Γt) for x ∈ Ω−
t ,

(1.22)

where dist(x,Γt) is the distance from x to the hypersurface Γt in Ω. We remark that d̃ = 0 on
Γ and that |∇d̃| = 1 in a neighborhood of Γ. We then define

Q+
T =

⋃

0<t≤T

(Ω+
t × {t}), Q−

T =
⋃

0<t≤T

(Ω−
t × {t}).

We also assume that the solution uε has the expansions

uε(x, t) = α± + εu1(x, t) + ε2u2(x, t) + · · · (1.23)

away from the interface Γ (the outer expansion) and

uε(x, t) = U0(x, t, ξ) + εU1(x, t, ξ) + ε2U2(x, t, ξ) + · · · (1.24)

near Γ (the inner expansion). Here, the functions Uk(x, t, z), k = 0, 1, 2, · · · , are defined for
x ∈ Ω, t ≥ 0, z ∈ R and, by definition, ξ := d̃(x, t)/ε. The stretched space variable ξ gives
exactly the right spatial scaling to describe the rapid transition between the regions {uε ≈ α−}
and {uε ≈ α+}. We normalize Uk in such a way that

U0(x, t, 0) = a, Uk(x, t, 0) = 0,

for all k ≥ 1 (normalization conditions). To make the inner and outer expansions consistent,
we require that

U0(x, t,+∞) = α+, Uk(x, t,+∞) = 0,

U0(x, t,−∞) = α−, Uk(x, t,−∞) = 0,
(1.25)

for all k ≥ 1 (matching conditions).

In what follows we will substitute the inner expansion (1.24) into the parabolic equation
of Problem (P ε) and collect the ε−2 and ε−1 terms. To that purpose we compute the needed
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terms and get

uε
t = U0t + U0z

d̃t

ε
+ εU1t + U1zd̃t + · · ·

∇uε = ∇U0 + U0z
∇d̃

ε
+ ε∇U1 + U1z∇d̃ + · · ·

∆uε = ∆U0 + 2
∇d̃

ε
· ∇U0z + U0z

∆d̃

ε
+ U0zz

|∇d̃|2
ε2

+ ε∆U1

+2∇d̃ · ∇U1z + U1z∆d̃ + U1zz
|∇d̃|2

ε
+ · · ·

where the functions Ui (i = 0, 1), as well as their derivatives, are taken at point (x, t, d̃(x, t)/ε).
Here, ∇U0 denotes the derivative with respect to x whenever we regard U0(x, t, z) as a function
of three variables x, t and z. The symbol ∆U0 is defined similarly and this convention applies
to U0z and U1zz as well. We also use the expansions

f(uε) = f(U0) + εf ′(U0)U1 + O(ε2),

gε(x, t, uε) = g(x, t, uε) + O(ε)
(
← in view of (1.6)

)

= g(x, t, U0) + O(ε).

Next, we substitute the expressions above in the partial differential equation in Problem (P ε).
Collecting the ε−2 terms yields

U0zz + f(U0) = 0.

In view of the normalization and matching conditions, we can now assert that U0(x, t, z) =
U0(z), where U0(z) is the unique solution of the stationary problem

{
U0

′′ + f(U0) = 0,

U0(−∞) = α−, U0(0) = a, U0(+∞) = α+.
(1.26)

This solution represents the first approximation of the profile of a transition layer around
the interface observed in the stretched coordinates. For example, in the special case where
f(u) = u(1 − u2), we have U0(z) = tanh(z/

√
2). In the general case, the following standard

estimates hold.

Lemma 1.2.1. There exist positive constants C and λ such that the following estimates hold.

0 < α+ − U0(z) ≤ Ce−λ|z| for z ≥ 0,

0 < U0(z) − α− ≤ Ce−λ|z| for z ≤ 0.

In addition, U0 is a strictly increasing function and, for j = 1, 2,

|DjU0(z)| ≤ Ce−λ|z| for z ∈ R. (1.27)

Proof. We only give an outline. Rewriting the equation in (1.26) as

u̇ = v, v̇ = −f(u),



28 Chapitre 1. The Allen-Cahn equation and the FitzHugh-Nagumo system

we see that (U0(z), U ′
0(z)) is a heteroclinic orbit of the above system connecting the equilib-

ria (α−, 0) and (α+, 0). These equilibria are saddle points, with the linearized eigenvalues
{λ−, −λ−} and {λ+, −λ+}, respectively, where

λ− =
√

−f ′(α−), λ+ =
√
−f ′(α+).

Consequently, we have

U0(z) =

{
α− + C1 eλ−z + o(eλ−z) as z → −∞,
α+ + C2 e−λ+z + o(e−λ+z) as z → +∞ (1.28)

for some constants C1, C2. The desired estimates now follow by setting λ = min(λ+, λ−).

Next we collect the ε−1 terms. Since U0 depends only on the variable z, we have ∇U0z = 0
which, combined with the fact that |∇d̃| = 1 near Γt, yields

U1zz + f ′(U0)U1 = U0
′(d̃t − ∆d̃) + g(x, t, U0). (1.29)

This equation can be seen as a linearized problem for (1.26) with an inhomogeneous term. As
is well known (see, for instance, [63]), the solvability condition for the above equation plays
the key role in determining the equation of interface motion. The following lemma is rather
standard, but we give an outline of the proof for the convenience of the reader.

Lemma 1.2.2 (Solvability condition). Let A(z) be a bounded function on −∞ < z < ∞.
Then the problem {

ψzz + f ′(U0(z))ψ = A(z) z ∈ R,

ψ(0) = 0, ψ ∈ L∞(R),
(1.30)

has a solution if and only if ∫

R

A(z)U0
′(z)dz = 0. (1.31)

Moreover the solution, if it exists, is unique and satisfies, for some constant C > 0,

|ψ(z)| ≤ C‖A‖L∞ , (1.32)

for all z ∈ R.

Proof. Multiplying the equation by U0
′ and integrating it by parts, we easily see that the

condition (1.31) is necessary. Conversely, suppose that this condition is satisfied. Then, since
U0

′ is a bounded positive solution to the homogeneous equation ψzz + f ′(U0(z))ψ = 0, one
can use the method of variation of constants to find the above solution ψ explicitly. More
precisely,

ψ(z) = ϕ(z)

∫ z

0

(
ϕ−2(ζ)

∫ ζ

−∞
A(ξ)ϕ(ξ) dξ

)
dζ

= −ϕ(z)

∫ z

0

(
ϕ−2(ζ)

∫ ∞

ζ
A(ξ)ϕ(ξ) dξ

)
dζ,

(1.33)

where ϕ := U0
′. The estimate (1.32) now follows from the above expression and (1.28).

From the above lemma, the solvability condition for (1.29) is given by

∫

R

[
U0

′2(z)(d̃t − ∆d̃)(x, t) + g(x, t, U0(z))U0
′(z)

]
dz = 0
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for all (x, t) ∈ QT . Hence we get

d̃t − ∆d̃ = −

∫

R

g(x, t, U0(z))U0
′(z) dz

∫

R

U0
′2(z) dz

,

which gives

d̃t = ∆d̃ −

∫ α+

α−

g(x, t, r)dr

∫

R

U0
′2(z) dz

.

Moreover, multiplying equation (1.26) by U0
′ and integrating it from −∞ to z, we obtain

0 =

∫ z

−∞
(U0

′′U0
′ + f(U0)U0

′)(s)ds

=
1

2
U0

′2(z) − W (U0(z)) + W (α−),

where we have also used the fact that U0(−∞) = α− and U0
′(−∞) = 0. This implies that

U0
′(z) =

√
2(W (U0(z)) − W (α−))1/2,

and therefore
∫

R

U0
′2(z)dz =

∫

R

U0
′(z)

√
2
(
W (U0(z)) − W (α−)

)1/2
dz

=
√

2

∫ α+

α−

(W (s) − W (α−))1/2ds.

(1.34)

It then follows, in view of the definition of c0 in (1.12), that

d̃t = ∆d̃ − c0

∫ α+

α−

g(x, t, r)dr. (1.35)

We are now ready to derive the equation of interface motion. Since ∇d̃ (= ∇x d̃(x, t)) coincides
with the outward normal unit vector to the hypersurface Γt, we have d̃t(x, t) = −Vn, where
Vn is the normal velocity of the interface Γt. It is also known that the mean curvature κ of
the interface is equal to ∆d̃/(N − 1). Thus the equation of interface motion is given by:

Vn = −(N − 1)κ + c0

∫ α+

α−

g(x, t, r)dr on Γt. (1.36)

Summarizing, under the assumption that the solution uε of Problem (P ε) satisfies

uε →
{

α+ in Q+
T

α− in Q−
T

as ε → 0,

we have formally proved that the boundary Γt between Ω−
t and Ω+

t moves according to the
law (1.36).
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To conclude this section, we give basic estimates for U1(x, t, z), which we will need in
Section 1.5 to study the motion of interface. Substituting (1.35) into (1.29) gives

{
U1zz + f ′(U0(z))U1 = g(x, t, U0(z)) − γ(x, t)U0

′(z),

U1(x, t, 0) = 0, U1(x, t, ·) ∈ L∞(R),
(1.37)

where γ has been defined in (1.13). Thus U1(x, t, z) is a solution of (1.30) with

A = A0(x, t, z) := g(x, t, U0(z)) − γ(x, t)U0
′(z), (1.38)

where the variables x, t are considered parameters. The problem (1.37) has a unique solution
by virtue of Lemma 1.2.2. Moreover, since A0(x, t, z) remains bounded as (x, t, z) varies in
Ω × [0, T ] × R, the estimate (1.32) implies

|U1(x, t, z)| ≤ M for x ∈ Ω, t ∈ [0, T ], z ∈ R, (1.39)

for some constant M > 0. Similarly, since ∇U1 is a solution of (1.30) with

A = ∇xA0(x, t, z)
(

= ∇x

(
g(x, t, U0(z)) − γ(x, t)U0

′(z)
) )

,

and since g is assumed to be C1 in x, we obtain

|∇xU1(x, t, z)| ≤ M for x ∈ Ω, t ∈ [0, T ], z ∈ R, (1.40)

for some constant M > 0.

To obtain estimates as z → ±∞, we first observe that (1.28) implies

A0(x, t, z) − g(x, t, α±) = O(e−λ|z|) as z → ±∞, (1.41)

uniformly in x ∈ Ω, t ∈ [0, T ]. We then apply the following general estimates.

Lemma 1.2.3. Let the assumptions of Lemma 1.2.2 hold, and assume further that A(z)−A± =
O(e−δ|z|) as z → ±∞ for some constants A+, A− and δ > 0. Then there exists a constant
λ > 0 such that

ψ(z) − A±

f ′(α±)
= O(e−λ|z|), |ψ′(z)| + |ψ′′(z)| = O(e−λ|z|), (1.42)

as z → ±∞.

Proof. We only state the outline. To derive the former estimate, we need a slightly more
elaborate version of (1.28). Since f(u) is C2, we have f(u) = (u−α±)f ′(α±) + O

(
(u−α±)2

)
.

Consequently,

U0(z) =

{
α− + C1 eλ−z + O(e 2λ−z) as z → −∞,
α+ + C2 e−λ+z + O(e−2λ+z) as z → +∞.

(1.43)

Using the expression (1.33) along with the estimate A(z)−A± = O(e−δ|z|) and (1.43), we see
that

ψ(z) = − A±

(λ±)2
+ O

(
|z|e−λ±|z| ) + O

(
e−min(δ,λ±)|z| ) as z → ±∞.
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This implies the former estimate in (1.42), where λ can be any constant satisfying 0 < λ <
min(λ−, λ+, δ). Substituting this into equation (1.30) gives the estimate for ψzz. Finally, the
estimate for ψz follows by integrating ψzz from ±∞ to z.

From the above lemma and (1.41) we obtain the estimate

|U1z(x, t, z)| + |U1zz(x, t, z)| ≤ Ce−λ|z|, (1.44)

for x ∈ Ω, t ∈ [0, T ], z ∈ R. Similarly, since the definition of A0 (1.38) and estimate (1.27)
imply

(∇xA0)(x, t, z) − (∇xg)(x, t, α±) = O(e−λ|z|) as z → ±∞,

we can apply Lemma 1.2.3 to ψ = ∇xU1, to obtain

|∇xU1z(x, t, z)| + |∇xU1zz(x, t, z)| ≤ Ce−λ|z|,

for x ∈ Ω, t ∈ [0, T ], z ∈ R. As a consequence, there is a constant, which we denote again by
M , such that

|∇xU1z(x, t, z)| ≤ M. (1.45)

Finally we consider the boundary condition. Note that (1.7) implies

∂

∂ν
A0 =

∂

∂ν

[
g(x, t, U0(z)) − γ(x, t)U0

′(z)
]

= 0 on ∂Ω × [0, T ] × R. (1.46)

Consequently, from the expression (1.33), or equivalently the expression

U1(x, t, z) = U0
′(z)

∫ z

0

((
U0

′(ζ)
)−2

∫ ζ

−∞
A0(x, t, ξ)U0

′(ξ) dξ
)
dζ,

we see that
∂U1

∂ν
= 0 on ∂Ω × [0, T ] × R. (1.47)

1.3 Generation of interface: the case g
ε ≡ 0

This section deals with the generation of interface, namely the rapid formation of internal
layers that takes place in a neighborhood of Γ0 = {x ∈ Ω, u0(x) = a} within the time span of
order ε2| ln ε|. For the time being we focus on the special case where gε ≡ 0. We will discuss
the general case in Section 1.4. In the sequel, η0 will stand for the following quantity:

η0 :=
1

2
min(a − α−, α+ − a).

Our main result in this section is the following.

Theorem 1.3.1. Let η ∈ (0, η0) be arbitrary and define µ as the derivative of f(u) at the
unstable equilibrium u = a, that is

µ = f ′(a). (1.48)

Then there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0),

• for all x ∈ Ω,

α− − η ≤ uε(x, µ−1ε2| ln ε|) ≤ α+ + η, (1.49)
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• for all x ∈ Ω such that |u0(x) − a| ≥ M0ε, we have that

if u0(x) ≥ a + M0ε then uε(x, µ−1ε2| ln ε|) ≥ α+ − η, (1.50)

if u0(x) ≤ a − M0ε then uε(x, µ−1ε2| ln ε|) ≤ α− + η. (1.51)

The above theorem will be proved by constructing a suitable pair of sub- and super-
solutions.

1.3.1 The bistable ordinary differential equation

As mentioned in Section 1.1, the above sub- and super-solutions are constructed by modifying
the solution of the problem without diffusion:

ūt =
1

ε2
f(ū), ū(x, 0) = u0(x).

This solution is written in the form

ū(x, t) = Y
( t

ε2
, u0(x)

)
,

where Y (τ, ξ) denotes the solution of the ordinary differential equation
{

Yτ (τ, ξ) = f(Y (τ, ξ)) for τ > 0,

Y (0, ξ) = ξ.
(1.52)

Here ξ ranges over the interval (−2C0, 2C0), with C0 being the constant defined in (1.8). We
first study basic properties of Y .

Lemma 1.3.2. We have Yξ > 0, for all ξ ∈ (−2C0, 2C0) \ {α−, a, α+} and all τ > 0. Fur-
thermore,

Yξ(τ, ξ) =
f(Y (τ, ξ))

f(ξ)
.

Proof. First, differentiating equation (1.52) with respect to ξ, we obtain
{

Yξτ = Yξf
′(Y ),

Yξ(0, ξ) = 1,

which can be integrated as follows:

Yξ(τ, ξ) = exp
[ ∫ τ

0
f ′(Y (s, ξ))ds

]
> 0. (1.53)

We then differentiate equation (1.52) with respect to τ and obtain
{

Yττ = Yτf
′(Y ),

Yτ (0, ξ) = f(ξ),

which in turn implies

Yτ (τ, ξ) = f(ξ) exp
[∫ τ

0
f ′(Y (s, ξ))ds

]

= f(ξ)Yξ(τ, ξ).
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This last equality, in view of (1.52), completes the proof of Lemma 1.3.2.

We define a function A(τ, ξ) by

A(τ, ξ) =
f ′(Y (τ, ξ)) − f ′(ξ)

f(ξ)
. (1.54)

Lemma 1.3.3. We have, for all ξ ∈ (−2C0, 2C0) \ {α−, a, α+} and all τ > 0,

A(τ, ξ) =

∫ τ

0
f ′′(Y (s, ξ))Yξ(s, ξ)ds.

Proof. Differentiating the equality of Lemma 1.3.2 with respect to ξ leads to

Yξξ = A(τ, ξ)Yξ, (1.55)

whereas differentiating (1.53) with respect to ξ yields

Yξξ = Yξ

∫ τ

0
f ′′(Y (s, ξ))Yξ(s, ξ)ds.

These two last results complete the proof of Lemma 1.3.3.

Next we need some estimates on the growth of Y , A and theirs derivatives. We first consider
the case where the initial value ξ is far from the stable equilibria, more precisely when it lies
between α− + η and α+ − η.

Lemma 1.3.4. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants C̃1 = C̃1(η),
C̃2 = C̃2(η) and C3 = C3(η) such that, for all τ > 0,

• if ξ ∈ (a, α+−η) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (a, α+−η),
we have

C̃1e
µτ ≤ Yξ(τ, ξ) ≤ C̃2e

µτ , (1.56)

and
|A(τ, ξ)| ≤ C3(e

µτ − 1); (1.57)

• if ξ ∈ (α−+η, a) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (α−+η, a),
(1.56) and (1.57) hold as well,

where µ is the constant defined in (1.48).

Proof. We take ξ ∈ (a, α+−η) and suppose that for s ∈ (0, τ), Y (s, ξ) remains in the interval
(a, α+ − η). Integrating the equality

Yτ (s, ξ)

f(Y (s, ξ))
= 1

from 0 to τ yields ∫ τ

0

Yτ (s, ξ)

f(Y (s, ξ))
ds = τ. (1.58)

Hence by the change of variable q = Y (s, ξ) we get

∫ Y (τ,ξ)

ξ

dq

f(q)
= τ. (1.59)
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Moreover, the equality of Lemma 1.3.2 leads to

lnYξ(τ, ξ) =

∫ Y (τ,ξ)

ξ

f ′(q)
f(q)

dq

=

∫ Y (τ,ξ)

ξ

[f ′(a)

f(q)
+

f ′(q) − f ′(a)

f(q)

]
dq

= µτ +

∫ Y (τ,ξ)

ξ
h(q)dq,

(1.60)

where
h(q) = (f ′(q) − µ)/f(q).

Since
h(q) → f ′′(a)/f ′(a) as q → a,

h is continuous on [a, α+ − η]. Hence we can define

H = H(η) := ‖h‖L∞(a,α+−η).

Since |Y (τ, ξ) − ξ| takes its values in the interval [0, α+ − a − η] ⊂ [0, α+ − a], it follows from
(1.60) that

µτ − H(α+ − a) ≤ lnYξ(τ, ξ) ≤ µτ + H(α+ − a),

which, in turn, proves (1.56). Next Lemma 1.3.3 and (1.56) yield

|A(τ, ξ)| ≤ supz∈[α−,α+] |f ′′(z)|
∫ τ

0
C̃2e

µsds

≤ C3(e
µτ − 1),

which completes the proof of (1.57). The case where ξ and Y (τ, ξ) are in (α− + η, a) is similar
and omitted.

Corollary 1.3.5. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants C1 = C1(η)
and C2 = C2(η) such that, for all τ > 0,

• if ξ ∈ (a, α+−η) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (a, α+−η),
we have

C1e
µτ (ξ − a) ≤ Y (τ, ξ) − a ≤ C2e

µτ (ξ − a); (1.61)

• if ξ ∈ (α−+η, a) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (α−+η, a),
we have

C2e
µτ (ξ − a) ≤ Y (τ, ξ) − a ≤ C1e

µτ (ξ − a). (1.62)

Proof. Since
f(q)/(q − a) → f ′(a) = µ as q → a,

it is possible to find constants B1 = B1(η) > 0 and B2 = B2(η) > 0 such that, for all
q ∈ (a, α+ − η),

B1(q − a) ≤ f(q) ≤ B2(q − a). (1.63)

We write this inequality for a < Y (τ, ξ) < α+ − η to obtain

B1(Y (τ, ξ) − a) ≤ f(Y (τ, ξ)) ≤ B2(Y (τ, ξ) − a).
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We also write this inequality for a < ξ < α+ − η to obtain

B1(ξ − a) ≤ f(ξ) ≤ B2(ξ − a).

Next we use the equality Yξ = f(Y )/f(ξ) of Lemma 1.3.2 to deduce that

B1

B2
(Y (τ, ξ) − a) ≤ (ξ − a)Yξ(τ, ξ) ≤

B2

B1
(Y (τ, ξ) − a),

which, in view of (1.56), implies that

B1

B2
C̃1e

µτ (ξ − a) ≤ Y (τ, ξ) − a ≤ B2

B1
C̃2e

µτ (ξ − a).

This proves (1.61). The proof of (1.62) is similar and omitted.

We now present estimates in the case where the initial value ξ is smaller than α− + η or
larger than α+ − η.

Lemma 1.3.6. Let η ∈ (0, η0) and M > 0 be arbitrary. Then there exists a positive constant
C4 = C4(η, M) such that

• if ξ ∈ [α+−η, α++M ], then, for all τ > 0, Y (τ, ξ) remains in the interval [α+−η, α++M ]
and

|A(τ, ξ)| ≤ C4τ for τ > 0 ; (1.64)

• if ξ ∈ [α−−M, α−+η], then, for all τ > 0, Y (τ, ξ) remains in the interval [α−−M,α−+η]
and (1.64) holds as well.

Proof. Since the two cases can be treated in the same way, we will only prove the former.
The fact that Y (τ, ξ), the solution of the ordinary differential equation (1.52), remains in the
interval [α+ − η, α+ + M ] directly follows from the bistable properties of f , or, more precisely,
from the sign conditions f(α+ − η) > 0, f(α+ + M) < 0.

To prove (1.64), suppose first that ξ ∈ [α+, α++M ]. In view of (1.1), f ′ is strictly negative
in an interval of the form [α+, α+ + c] and f is negative in [α+,∞). We denote by −m < 0
the maximum of f on [α+ + c, α+ + M ]. Then, as long as Y (τ, ξ) remains in the interval
[α+ + c, α+ + M ], the ordinary differential equation (1.52) implies

Yτ ≤ −m.

By integration, this means that, for any ξ ∈ [α+, α+ + M ], we have

Y (τ, ξ) ∈ [α+, α+ + c] for τ ≥ τ :=
M − c

m
.

In view of this, and considering that f ′(Y ) < 0 for Y ∈ [α+, α++c], we see from the expression
(1.53) that

Yξ(τ, ξ) = exp
[ ∫ τ

0
f ′(Y (s, ξ))ds

]
exp

[ ∫ τ

τ
f ′(Y (s, ξ))ds

]

≤ exp
[ ∫ τ

0
f ′(Y (s, ξ))ds

]

≤ exp
[ ∫ τ

0
sup

z∈[α−−M,α++M ]
|f ′(z)|ds

]
=: C̃4 = C̃4(M),



36 Chapitre 1. The Allen-Cahn equation and the FitzHugh-Nagumo system

for all τ ≥ τ . It is clear from the same expression (1.53) that Yξ ≤ C̃4 holds also for 0 ≤ τ ≤ τ .
We can then use Lemma 1.3.3 to deduce that

|A(τ, ξ)| ≤ C̃4

∫ τ

0
|f ′′(Y (s, ξ))|ds

≤ C̃4

(
supz∈[α−−M,α++M ] |f ′′(z)|

)
τ =: C4τ.

The case ξ ∈ [α+ − η, α+] can be treated in the same way. This completes the proof of the
lemma.

Now we choose the constant M in the above lemma sufficiently large so that [−2C0, 2C0] ⊂
[α− − M, α+ + M ], and fix M hereafter. Then C4 only depends on η. Using the fact that
τ = O(eµτ − 1) for τ > 0, one can easily deduce from (1.57) and (1.64) the following general
estimate.

Lemma 1.3.7. Let η ∈ (0, η0) be arbitrary and let C0 be the constant defined in (1.8). Then
there exists a positive constant C5 = C5(η) such that, for all ξ ∈ (−2C0, 2C0) and all τ > 0,

|A(τ, ξ)| ≤ C5(e
µτ − 1).

1.3.2 Construction of sub- and super-solutions

We are now ready to construct the sub- and super-solutions for the study of generation of
interface. For simplicity, we first consider the case where

∂u0

∂ν
= 0 on ∂Ω. (1.65)

In this case, our sub- and super-solutions are given by

w±
ε (x, t) = Y

( t

ε2
, u0(x) ± ε2C6(e

µt/ε2 − 1)
)
. (1.66)

In the general case where (1.65) does not necessarily hold, we have to slightly modify w±
ε (x, t)

near the boundary ∂Ω. This will be discussed later.

Lemma 1.3.8. Assume (1.65). Then there exist positive constants ε0 and C6 such that, for
all ε ∈ (0, ε0), (w−

ε , w+
ε ) is a pair of sub- and super-solutions for Problem (P ε), in the domain

{
(x, t) ∈ QT , x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|

}
,

satisfying w−
ε (x, 0) = w+

ε (x, 0) = u0(x). Consequently

w−
ε (x, t) ≤ uε(x, t) ≤ w+

ε (x, t) for x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|. (1.67)

Proof. The assumption (1.65) implies

∂w±
ε

∂ν
= 0 on ∂Ω × (0, +∞).

Now we define the operator L0 by

L0u := ut − ∆u − 1

ε2
f(u),
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and prove that L0w
+
ε ≥ 0 . Straightforward computations yield

L0w
+
ε =

1

ε2
Yτ + C6 µ eµt/ε2

Yξ − ∆u0Yξ − |∇u0|2Yξξ −
1

ε2
f(Y ),

therefore, in view of the ordinary differential equation (1.52),

L0w
+
ε =

[
C6 µ eµt/ε2 − ∆u0 −

Yξξ

Yξ
|∇u0|2

]
Yξ.

We note that, in the range 0 ≤ t ≤ µ−1ε2| ln ε|, we have, for ε0 sufficiently small,

0 ≤ ε2C6(e
µt/ε2 − 1) ≤ ε2C6(ε

−1 − 1) ≤ C0,

where C0 is the constant defined in (1.8). Hence

ξ := u0(x) ± C6(e
µt/ε2 − 1) ∈ (−2C0, 2C0),

so that we can use the estimate of A = Yξξ/Yξ in Lemma 1.3.7 and obtain

L0w
+
ε ≥

[
C6 µeµt/ε2 − |∆u0| − C5(e

µt/ε2 − 1)|∇u0|2
]
Yξ

≥
[
(C6 µ − C5|∇u0|2)eµt/ε2 − |∆u0| + C5|∇u0|2

]
Yξ.

Since Yξ > 0, this inequality implies that, for C6 large enough,

L0w
+
ε ≥

[
C6µ − C5C0

2 − C0

]
Yξ ≥ 0.

Hence w+
ε is a super-solution for Problem (P ε). Similarly w−

ε is a sub-solution. Obviously
w−

ε (x, 0) = w+
ε (x, 0) = Y

(
0, u0(x)

)
= u0(x). Lemma 1.3.8 is proved.

In the more general case where (1.65) is not necessarily valid, one can proceed as follows:
in view of (1.10) and (1.11) there exist positive constants d1, ρ such that u0(x) ≥ a + ρ if
d(x, ∂Ω) ≤ d1. Let χ be a smooth cut-off function defined on [0, +∞) such that 0 ≤ χ ≤ 1,
χ(0) = χ′(0) = 0 and χ(z) = 1 for z ≥ d1. Then we define

u+
0 (x) = χ(d(x, ∂Ω))u0(x) +

[
1 − χ(d(x, ∂Ω))

]
max
x∈Ω

u0(x),

u−
0 (x) = χ(d(x, ∂Ω))u0(x) +

[
1 − χ(d(x, ∂Ω))

]
(a + ρ).

(1.68)

Clearly, u−
0 ≤ u0 ≤ u+

0 , and both u+
0 and u+

0 satisfy (1.65). Now we set

w̃±
ε (x, t) = Y

( t

ε2
, u±

0 (x) ± ε2C6(e
µt/ε2 − 1)

)
.

Then the same argument as in Lemma 1.3.8 shows that (w̃−
ε , w̃+

ε ) is a pair of sub- and super-
solutions for Problem (P ε). Furthermore, since w̃−

ε (x, 0) = u−
0 (x) ≤ u0(x) ≤ u+

0 (x) =
w̃+

ε (x, 0), the comparison principle asserts that

w̃−
ε (x, t) ≤ uε(x, t) ≤ w̃+

ε (x, t) for x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|. (1.69)
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1.3.3 Proof of Theorem 1.3.1

In order to prove Theorem 1.3.1 we first present a key estimate on the function Y (τ, ξ) after
a time interval of order τ ∼ | ln ε|.

Lemma 1.3.9. Let η ∈ (0, η0) be arbitrary; there exist positive constants ε0 and C7 such that,
for all ε ∈ (0, ε0),

• for all ξ ∈ (−2C0, 2C0),

α− − η ≤ Y (µ−1| ln ε|, ξ) ≤ α+ + η, (1.70)

• for all ξ ∈ (−2C0, 2C0) such that |ξ − a| ≥ C7ε, we have that

if ξ ≥ a + C7ε then Y (µ−1| ln ε|, ξ) ≥ α+ − η, (1.71)

if ξ ≤ a − C7ε then Y (µ−1| ln ε|, ξ) ≤ α− + η. (1.72)

Proof. We first prove (1.71). For ξ ≥ a + C7ε, as long as Y (τ, ξ) has not reached α+ − η, we
can use (1.61) to deduce that

Y (τ, ξ) ≥ a + C1e
µτ (ξ − a)

≥ a + C1C7e
µτε

≥ α+ − η

provided that τ satisfies

τ ≥ τ ε =: µ−1 ln
α+ − a − η

C1C7ε
.

Choosing

C7 =
max(a − α−, α+ − a) − η

C1
,

we see that µ−1| ln ε| ≥ τ ε, which completes the proof of (1.71). Using (1.62), one easily proves
(1.72).

Next we prove (1.70). First, by the bistable assumptions on f , if we leave from a initial
value ξ ∈ [α− − η, α+ + η] then Y (τ, ξ) will remain in [α− − η, α+ + η]. Now suppose that
α+ + η ≤ ξ ≤ 2C0. We check below that Y (µ−1| ln ε|, ξ) ≤ α+ + η. First, in view of (1.1), we
can find p > 0 such that

if α+ ≤ u ≤ 2C0 then f(u) ≤ p(α+ − u)
if − 2C0 ≤ u ≤ α− then f(u) ≥ −p(u − α−).

(1.73)

We then use the ordinary differential equation to obtain, as long as α+ + η ≤ Y ≤ 2C0, the
inequality Yτ ≤ p(α+ − Y ). It follows that

Yτ

Y − α+
≤ −p.

Integrating this inequality from 0 to τ leads to

Y (τ, ξ) ≤ α+ + (ξ − α+)e−pτ

≤ α+ + (2C0 − α+)e−pτ .
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Since (2C0 − α+)e−pµ−1| ln ε| → 0 as ε → 0, the above inequality proves that, for ε ∈ (0, ε0),
with ε0 = ε0(η) sufficiently small, Y (µ−1| ln ε|, ξ) ≤ α+ + η, which completes the proof of
(1.70).

We are now ready to prove Theorem 1.3.1. By setting t = µ−1ε2| ln ε| in (1.69), we obtain

Y
(
µ−1| ln ε|, u−

0 (x) − (C6ε − C6ε
2)

)

≤ uε(x, µ−1ε2| ln ε|) ≤ Y
(
µ−1| ln ε|, u+

0 (x) + C6ε − C6ε
2
)
. (1.74)

Furthermore, by the definition of C0 in (1.8), we have, for ε0 small enough,

−2C0 ≤ u±
0 (x) ± (C6ε − C6ε

2) ≤ 2C0,

for x ∈ Ω. Thus the assertion (1.49) of Theorem 1.3.1 is a direct consequence of (1.70) and
(1.74).

Next we prove (1.50). We choose M0 large enough so that M0ε−C6ε+C6ε
2 ≥ C7ε. Then,

for any x ∈ Ω such that u−
0 (x) ≥ a + M0ε, we have

u−
0 (x) − (C6ε − C6ε

2) ≥ a + M0ε − C6ε + C6ε
2 ≥ a + C7ε.

Combining this, (1.74) and (1.71), we see that

uε(x, µ−1ε2| ln ε|) ≥ α+ − η,

for any x ∈ Ω that satisfies u−
0 (x) ≥ a + M0ε. From the definition of u−

0 in (1.68), it is clear
that

u−
0 (x) ≥ a + M0ε if and only if u0(x) ≥ a + M0ε,

provided that ε is small enough. This proves (1.50). The inequality (1.51) can be shown the
same way. This completes the proof of Theorem 1.3.1.

1.3.4 Optimality of the generation time

To conclude this section we show that the generation time t ε := µ−1ε2| ln ε| that appears in
Theorem 1.3.1 is optimal. In other words, the interface will not be fully developed much before
t ε.

Proposition 1.3.10. Denote by t ε
min the smallest time such that (1.15) holds for all t ∈

[ t ε
min, T ]. Then there exists a constant b = b(C) such that

t ε
min ≥ µ−1ε2(| ln ε| − b)

for all ε ∈ (0, ε0).

Proof. For simplicity, we deal with the case where (1.65) is valid. In that case, (1.67) holds
for all small ε > 0. For each b > 0, we set

tε(b) := µ−1ε2(| ln ε| − b),

and evaluate uε(x, tε(b)) at a point x ∈ Ω+
0 where dist(x,Γ0) = Cε. Since u0 = a on Γt and

since |∇u0| ≤ C0 by (1.8), we have

u0(x) ≤ a + C0Cε. (1.75)
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It follows from this and (1.61) that

w+
ε (x, tε(b)) = Y

(
µ−1(| ln ε| − b), u0(x) + εC6e

−b − ε2C6

)

≤ a + C2e
| ln ε|−b

(
u0(x) + εC6e

−b − ε2C6 − a)

≤ a + C2ε
−1e−b(C0Cε + εC6e

−b)

= a + C2e
−b(C0C + C6e

−b).

Now we choose b to be sufficiently large, so that

a + C2e
−b(C0C + C6e

−b) < α+ − η.

Then the above estimate and (1.67) yield

uε(x, tε(b)) ≤ w+
ε (x, tε(b)) < α+ − η.

This implies that (1.15) does not hold at t = tε(b), hence tε(b) < tεmin. The lemma is proved.

1.4 Generation of interface in the general case

In this section we extend Theorem 1.3.1 to the case where gε 6≡ 0. The proof is more technical
than the case gε ≡ 0, but the underlying ideas are the same. Hence we will basically follow
the argument of Section 1.3, simply pointing out the main differences.

1.4.1 The perturbed bistable ordinary differential equation

We first consider a slightly perturbed nonlinearity:

fδ(u) = f(u) + δ,

where δ is any constant. For |δ| small enough, this function is still bistable. More precisely,
we claim that fδ has the following properties.

Lemma 1.4.1. Let δ0 be small enough. Then, for all δ ∈ (−δ0, δ0),

• fδ has exactly three zeros, namely α−(δ) < a(δ) < α+(δ) and there exists a positive
constant C such that

|α−(δ) − α−| + |a(δ) − a| + |α+(δ) − α+| ≤ C|δ|. (1.76)

• We have that

fδ is strictly positive in (−∞, α−(δ)) ∪ (a(δ), α+(δ)),

fδ is strictly negative in (α−(δ), a(δ)) ∪ (α+(δ),+∞).
(1.77)

• Set
µ(δ) := f ′

δ(a(δ)) = f ′(a(δ)),

then there exists a positive constant, which we denote again by C, such that

|µ(δ) − µ| ≤ C|δ|. (1.78)
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Now, for each δ ∈ (−δ0, δ0), we define Y (τ, ξ; δ) as the solution of the following ordinary
differential equation:

{
Yτ (τ, ξ; δ) = fδ(Y (τ, ξ; δ)) for τ > 0,

Y (0, ξ; δ) = ξ,
(1.79)

where ξ varies in (−2C0, 2C0) with C0 being the constant in (1.8).
To prove Theorem 1.3.1, we will construct a pair of sub- and super-solutions for (P ε) by

simply replacing the function Y (τ, ξ) in (1.66) by Y (τ, ξ; δ), with an appropriate choice of δ.
For this strategy to work, we have to check that the basic properties of Y (τ, ξ) in subsection
1.3.1 carry over to Y (τ, ξ; δ).

First, it is clear that all the differential and integral identities in subsection 1.3.1 that follow
directly from (1.52) are still valid for (1.79). In particular, Lemmas 1.3.2 and 1.3.3 remain to
hold if we replace Y (τ, ξ) by Y (τ, ξ; δ), f by fδ and A(τ, ξ) by A(τ, ξ; δ), where

A(τ, ξ, δ) =
f ′

δ(Y (τ, ξ; δ)) − f ′
δ(ξ)

fδ(ξ)
.

Next let us show that the basic estimates which we have established in subsection 1.3.1 are
also valid for the function Y (τ, ξ; δ). The following lemma, which is an analogue of Lemma
1.3.4, is fundamental.

Lemma 1.4.2. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants δ0 = δ0(η),
C̃1 = C̃1(η), C̃2 = C̃2(η) and C3 = C3(η) such that, for all δ ∈ (−δ0, δ0), for all τ > 0,

• if ξ ∈ (a(δ), α+ − η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval
(a(δ), α+ − η), we have

C̃1e
µ(δ)τ ≤ Yξ(τ, ξ; δ) ≤ C̃2e

µ(δ)τ , (1.80)

and
|A(τ, ξ; δ)| ≤ C3(e

µ(δ)τ − 1); (1.81)

• if ξ ∈ (α− + η, a(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval
(α− + η, a(δ)), (1.80) and (1.81) hold as well.

Proof. In view of (1.76), we can choose a small constant δ0 = δ0(η) > 0 such that (a(δ), α+ −
η) ⊂ (a(δ), α+(δ)) for every δ ∈ [−δ0, δ0]. Therefore fδ(q) does not change sign in the interval
(a(δ), α+ − η). Thus, in order to prove the lemma, we just have to write again the proof of
Lemma 1.3.4, simply replacing Y (τ, ξ) by Y (τ, ξ; δ). We do not repeat the entire proof here.
Instead, let us explain why C̃1, C̃2 and C3 are independent of δ; in view of the proof of Lemma
1.3.4, it is sufficient to estimate, for q ∈ [a(δ), α+ − η], the modulus of the quantity

hδ(q) =
f ′

δ(q) − f ′
δ(a(δ))

fδ(q)

by a constant depending on η but not on δ ∈ [−δ0, δ0]. Since

hδ(q) →
f ′′

δ (a(δ))

f ′
δ(a(δ))

=
f ′′(a(δ))

f ′(a(δ))
as q → a(δ),

we see that the function (q, δ) 7→ hδ(q) is continuous in the compact region { |δ| ≤ δ0, a(δ) ≤
q ≤ α+ − η }. It follows that |hδ(q)| is bounded as (q, δ) varies in this region. This completes
the proof of Lemma 1.4.2.
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Corollary 1.4.3. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants δ0 = δ0(η),
C1 = C1(η) and C2 = C2(η) such that, for all δ ∈ (−δ0, δ0), for all τ > 0,

• if ξ ∈ (a(δ), α+ − η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval
(a(δ), α+ − η), we have

C1e
µ(δ)τ (ξ − a(δ)) ≤ Y (τ, ξ; δ) − a(δ) ≤ C2e

µ(δ)τ (ξ − a(δ)), (1.82)

• if ξ ∈ (α− + η, a(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval
(α− + η, a(δ)), we have

C2e
µ(δ)τ (ξ − a(δ)) ≤ Y (τ, ξ; δ) − a(δ) ≤ C1e

µ(δ)τ (ξ − a(δ)). (1.83)

Proof. We can simply follow the proof of Corollary 1.3.5. In order to prove that C1 and C2 are
independent of δ, all we have to do is to find constants B1 = B1(η) > 0 and B2 = B2(η) > 0
such that, for all δ ∈ [−δ0, δ0] and all q ∈ (a(δ), α+ − η),

B1(q − a(δ)) ≤ fδ(q) ≤ B2(q − a(δ)). (1.84)

In view of (1.78), we can choose δ0 > 0 small enough so that, for all δ ∈ [−δ0, δ0], we have
µ(δ) ≥ µ/2 > 0. Since

fδ(q)

q − a(δ)
→ µ(δ) as q → a(δ),

it follows that (q, δ) 7→ fδ(q)/(q − a(δ)) is a strictly positive and continuous function on the
compact region { |δ| ≤ δ0, a(δ) ≤ q ≤ α+ − η }, which insures the existence of the constants
B1 and B2. This completes the proof of the corollary.

Now, it is no trouble to establish an analogue of Lemmas 1.3.6 and 1.3.7 with constants
independent of δ. We claim, without proof, that:

Lemma 1.4.4. Let η ∈ (0, η0) and M > 0 be arbitrary. Then there exist positive constants
δ0 = δ0(η, M) and C4 = C4(η, M) such that, for all δ ∈ (−δ0, δ0),

• if ξ ∈ [α+ − η, α+ + M ], then, for all τ > 0, Y (τ, ξ; δ) remains in the interval [α+ −
η, α+ + M ] and

|A(τ, ξ; δ)| ≤ C4τ for τ > 0 ; (1.85)

• if ξ ∈ [α− − M,α− + η], then, for all τ > 0, Y (τ, ξ; δ) remains in the interval [α− −
M, α− + η] and (1.85) holds as well.

Lemma 1.4.5. Let η ∈ (0, η0) be arbitrary and let C0 be the constant defined in (1.8). Then
there exist positive constants δ0 = δ0(η), C5 = C5(η) such that, for all δ ∈ (−δ0, δ0), for all
τ > 0 and all ξ ∈ (−2C0, 2C0),

|A(τ, ξ; δ)| ≤ C5(e
µ(δ)τ − 1).



1.4 Generation of interface in the general case 43

1.4.2 Construction of sub- and super-solutions

We now use Y (τ, ξ; δ), the solution of the ordinary differential equation (1.79), to construct a
pair of sub- and super-solutions. The same cut-off argument as in subsection 1.3.2 enables us
to assume (1.65) for simplicity. We set

w±
ε (x, t) = Y

( t

ε2
, u0(x) ± ε2r(±εG,

t

ε2
);±εG

)
, (1.86)

where the function r(δ, τ) is given by

r(δ, τ) = C6(e
µ(δ)τ − 1),

and the constant G is chosen such that, for all small ε > 0,

|gε(x, t, u)| ≤ G for all (x, t, u) ∈ Ω × [0, T ] × R,

which, in view of (1.5), is clearly possible.

Lemma 1.4.6. There exist positive constants ε0 and C6 such that for all ε ∈ (0, ε0), (w−
ε , w+

ε )
is a pair of sub- and super-solutions for Problem (P ε), in the domain

{
(x, t) ∈ QT , x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|

}
,

satisfying w−
ε (x, 0) = w+

ε (x, 0) = u0(x). Consequently

w−
ε (x, t) ≤ uε(x, t) ≤ w+

ε (x, t) for x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|. (1.87)

Proof. First, in view of (1.65), w±
ε satisfy the homogeneous Neumann boundary condition.

We define the operator L by

Lu := ut − ∆u − ε−2(f(u) − εgε(x, t, u)),

and prove below that Lw+
ε ≥ 0 by slightly modifying the argument which we have used to

prove L0w
+
ε ≥ 0 in subsection 1.3.2. A straightforward calculation yields

Lw+
ε =

1

ε2
Yτ + Yξ

[
C6µ(εG)eµ(εG)t/ε2 − ∆u0 −

Yξξ

Yξ
|∇u0|2

]
− 1

ε2
f(Y ) +

1

ε
gε(x, t, Y ).

If ε0 is sufficiently small, we note that ±εG ∈ (−δ0, δ0) and that, in the range 0 ≤ t ≤
µ−1ε2| ln ε|,

|ε2C6(e
µ(±εG)t/ε2 − 1)| ≤ ε2C6(ε

−µ(±εG)/µ − 1) ≤ C0,

which implies that

u0(x) ± ε2r(±εG,
t

ε2
) ∈ (−2C0, 2C0).

These observations allow us to use the results of the previous subsection with τ = t/ε2,
ξ = u0(x) + ε2r(εG, t/ε2) and δ = εG. In particular, the ordinary differential equation (1.79)
yields Yτ = f(Y ) + εG, which implies that

Lw+
ε =

1

ε

[
G + gε(x, t, Y )

]
+ Yξ

[
C6µ(εG)eµ(εG)t/ε2 − ∆u0 −

Yξξ

Yξ
|∇u0|2

]
.
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By the choice of G the first term is positive. Using the estimate of A = Yξξ/Yξ in Lemma
1.4.5, we obtain, for a constant C5 that is independent of ε,

Lw+
ε ≥ Yξ

[
C6µ(εG)eµ(εG)t/ε2 − |∆u0| − C5(e

µ(εG)t/ε2 − 1)|∇u0|2
]

≥ Yξ

[
(C6µ(εG) − C5|∇u0|2)eµ(εG)t/ε2 − |∆u0| + C5|∇u0|2

]
.

In view of (1.78), this inequality implies that, for ε ∈ (0, ε0), with ε0 small enough, and for C6

large enough,

Lw+
ε ≥ Yξ

[
C6

1

2
µ − C5C0

2 − C0

]
≥ 0.

Hence w+
ε is a super-solution for Problem (P ε). Similarly w−

ε is a sub-solution. Obviously
w+

ε (x, 0) = w−
ε (x, 0) = Y

(
0, u0(x);±εG

)
= u0(x). Lemma 1.3.8 is proved.

1.4.3 Proof of Theorem 1.3.1 for the general case

As in subsection 1.3.3, we first present a key estimate on the function Y (τ, ξ; δ) after a time
interval of order τ ∼ | ln ε|. Roughly speaking, a perturbation δ of order ε does not affect the
result of Lemma 1.3.9.

Lemma 1.4.7. Let η ∈ (0, η0) be arbitrary; there exist positive constants ε0 and C7 such that,
for all ε ∈ (0, ε0),

• for all ξ ∈ (−2C0, 2C0),

α− − η ≤ Y (µ−1| ln ε|, ξ;±εG) ≤ α+ + η, (1.88)

• for all ξ ∈ (−2C0, 2C0) such that |ξ − a| ≥ C7ε, we have that

if ξ ≥ a + C7ε then Y (µ−1| ln ε|, ξ;±εG) ≥ α+ − η, (1.89)

if ξ ≤ a − C7ε then Y (µ−1| ln ε|, ξ;±εG) ≤ α− + η. (1.90)

Proof. In view of (1.76), we have, for C7 large enough, a + C7ε ≥ a(±εG) + 1
2C7ε, for all

ε ∈ (0, ε0), with ε0 sufficiently small. Hence for ξ ≥ a + C7ε, as long as Y (τ, ξ;±εG) has not
reached α+ − η, we can use (1.82) to deduce, as done in the proof of Lemma 1.3.9, that

Y (τ, ξ;±εG) ≥ a(±εG) + C1e
µ(±εG)τ (ξ − a(±εG))

≥ a − εCG + 1
2C1C7e

µ(±εG)τε

≥ α+ − η

provided that τ satisfies

τ ≥ 1

µ(±εG)
ln

m0 − η + CGε
1
2C1C7ε

=: µ−1(ε)| ln ε|,

where m0 = max(a−α−, α+ − a). To complete the proof of (1.89) we must choose C7 so that
µ−1| ln ε| − µ−1(ε)| ln ε| ≥ 0. A simple computation shows that

µ−1| ln ε| − µ−1(ε)| ln ε| =
µ(±εG) − µ

µ(±εG)µ
| ln ε| − 1

µ(±εG)
ln

m0 − η + CGε
1
2C1

+
1

µ(±εG)
lnC7.
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Thanks to (1.78), as ε → 0, the first term above is of order ε| ln ε| and the second one of
order 1. Hence, for C7 large enough, the upper quantity is positive for all ε ∈ (0, ε0), with ε0

sufficiently small. The proof of (1.90) is similar and omitted.

Next we prove (1.88). First, by taking ε0 sufficiently small, we can assume that the stable
equilibria of f±εG , namely α−(±εG) and α+(±εG), are in [α− − η, α+ + η]. Hence, f±εG
being a bistable function, if we leave from a ξ ∈ [α− − η, α+ + η] then Y (τ, ξ;±εG) will
remain in the interval [α− − η, α+ + η]. Now suppose that α+ + η ≤ ξ ≤ 2C0. We check
below that Y (µ−1| ln ε|, ξ;±εG) ≤ α+ + η. As done in the proof of Lemma 1.3.9, as long as
α+ + η ≤ Y ≤ 2C0, (1.73) leads to the inequality Yτ ≤ p(α+ − Y ) + εG. It follows that

Yτ

Y − α+
≤ −p + ε

G
η

,

which implies, by integration from 0 to τ , that

Y (τ, ξ;±εG) ≤ α+ + (2C0 − α+)e
(−p+εG

η
)τ

.

Since (2C0 − α+)e(−p+εGη−1)µ−1| ln ε| → 0 as ε → 0, the above inequality proves that, for
ε ∈ (0, ε0), with ε0 = ε0(η) sufficiently small, Y (µ−1| ln ε|, ξ;±εG) ≤ α+ + η, which completes
the proof of (1.88).

We are now ready to prove Theorem 1.3.1 in the general case. By setting t = µ−1ε2| ln ε|
in (1.87), we get

Y
(
µ−1| ln ε|, u0(x) − ε2r(−εG, µ−1| ln ε|);−εG

)

≤ uε(x, µ−1ε2| ln ε|) ≤ Y
(
µ−1| ln ε|, u0(x) + ε2r(εG, µ−1| ln ε|); +εG

)
. (1.91)

The point is that, in view of (1.78),

lim
ε→0

µ − µ(±εG)

µ
ln ε = 0. (1.92)

Hence we have, for ε0 small enough,

ε2r(±εG, µ−1| ln ε|) = C6ε(ε
(µ−µ(±εG))/µ − ε) ∈ (

1

2
C6ε,

3

2
C6ε).

Hence, as in subsection 1.3.3, the result (1.49) of Theorem 1.3.1 is a direct consequence of
(1.88) and (1.91).

Next we prove (1.50). We take x ∈ Ω such that u0(x) ≥ a + M0ε so that

u0(x) − ε2r(−εG, µ−1| ln ε|) ≥ a + M0ε − 3
2C6ε

≥ a + C7ε,

if we choose M0 large enough. Using (1.91) and (1.89) we obtain (1.50), which completes the
proof of Theorem 1.3.1.
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1.5 Motion of interface

In Sections 1.3 and 1.4, we proved that the solution uε develops a clear transition layer within
a very short time. The aim of the present section is to show that, once such a clear transition
layer is formed, it persists for the rest of time and that its law of motion is well approximated
by the interface equation (P 0).

Let us formulate the above assertion more clearly. By taking the first two terms of the
formal asymptotic expansion (1.24), we get a formal approximation of the solution uε up to
order ε:

uε(x, t) ≈ ũε(x, t) := U0

( d̃(x, t)

ε

)
+ εU1

(
x, t,

d̃(x, t)

ε

)
. (1.93)

Here U0, U1 are as defined in (1.26) and (1.37). The right-hand side has a clear transition
layer which lies exactly on Γt. Our goal is to show that this function is a good approximation
of the real solution; more precisely:

If uε becomes rather close to ũε at some time moment t = t0, then it stays close to
ũε for the rest of time. Consequently, Γε

t evolves roughly like Γt.

In order to prove such a result, we will construct a pair of sub- and super-solutions u−
ε and

u+
ε for Problem (P ε) by slightly modifying the above function ũε. It then follows that, if the

solution uε satisfies

u−
ε (x, t0) ≤ uε(x, t0) ≤ u+

ε (x, t0),

for some t0 ≥ 0, then

u−
ε (x, t) ≤ uε(x, t) ≤ u+

ε (x, t),

for t0 ≤ t ≤ T . As a result, since both u+
ε , u−

ε stay close to ũε, the solution uε also stays close
to ũε for t0 ≤ t ≤ T .

The rest of this section is devoted to the construction of these sub- and super-solutions.
We begin with some preparations.

1.5.1 A modified signed distance function

Rather than working with the usual signed distance function d̃ that was introduced in (1.22),
we define a “cut-off signed distance function” d as follows. First, choose d0 > 0 small enough
so that d̃(·, ·) is smooth in the tubular neighborhood of Γ

{(x, t) ∈ QT , |d̃(x, t)| < 3d0},

and such that

dist(Γt, ∂Ω) ≥ 3d0 for all t ∈ [0, T ]. (1.94)

Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =





s if |s| ≤ d0

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0.

We then define the cut-off signed distance function d by

d(x, t) = ζ
(
d̃(x, t)

)
. (1.95)
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Note that |∇d| = 1 in the region {(x, t) ∈ QT , |d̃(x, t)| < d0} and that, in view of (1.94) and
the above definition, ∇d = 0 in a neighborhood of ∂Ω. Note also that the equation of motion
(P 0), which is equivalent to (1.35), is now written as

dt = ∆d − γ(x, t) on Γt, (1.96)

where we recall that

γ(x, t) = c0

∫ α+

α−

g(x, t, r)dr. (1.97)

1.5.2 Construction of sub- and super-solutions

As we stated earlier, we now construct sub- and super-solutions by modifying the function ũε

in (1.93). Concerning the second term U1, which is defined in (1.37), the terms ∆U1 and U1t

do not make sense as we only assume that g(·, ·, u) ∈ C1+ϑ, 1+ϑ
2 . In order to cope with this

lack of smoothness, as gε(·, ·, u) ∈ C2,1, we replace U1 by a more smooth function U ε
1 , which

is defined by {
U ε

1zz + f ′(U0(z))U ε
1 = gε(x, t, U0(z)) − γε(x, t)U0

′(z),

U ε
1 (x, t, 0) = 0, Uε

1 (x, t, ·) ∈ L∞(R),
(1.98)

where

γε(x, t) = c0

∫ α+

α−

gε(x, t, r)dr. (1.99)

Thus U ε
1 (x, t, z) is a solution of (1.30) with

A = Aε
0(x, t, z) := gε(x, t, U0(z)) − γε(x, t)U0

′(z), (1.100)

where the variables x, t, ε are considered parameters. Using (1.5) and the same arguments as
in the end of Section 1.2, we obtain estimates analogous to (1.39) and (1.40), with a constant
M independent of ε:

|U ε
1 (x, t, z)| ≤ M, |∇xU ε

1 (x, t, z)| ≤ M. (1.101)

Moreover, gε being C2 in x and C1 in t, ∆xU ε
1 and U ε

1t are solutions of (1.30) with A = ∆xAε
0

and A = Aε
0t, respectively. Thus, in view of (1.3), we obtain

|∆xU ε
1 (x, t, z)| ≤ C/ε, |U ε

1t(x, t, z)| ≤ C/ε, (1.102)

for a constant C independent of ε. Similarly, (1.4), (1.5) and Lemma 1.2.3 yield estimates
analogous to (1.44) and (1.45) for U ε

1 , for constants C and M independent of ε:

|U ε
1z(x, t, z)| + |U ε

1zz(x, t, z)| ≤ Ce−λ|z|, (1.103)

|∇xU ε
1z(x, t, z)| ≤ M. (1.104)

In the rest of this section, C and M will stand for the constants that appear in inequalities
(1.101)—(1.104). Note also that, by the same arguments used to obtain (1.47), we see that
(1.7) implies the homogeneous Neumann boundary condition for U ε

1 :

∂U ε
1

∂ν
= 0 on ∂Ω × [0, T ] × R. (1.105)
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We look for a pair of sub- and super-solutions u±
ε for (P ε) of the form

u±
ε (x, t) = U0

(d(x, t) ± εp(t)

ε

)
+ εU ε

1

(
x, t,

d(x, t) ± εp(t)

ε

)
± q(t), (1.106)

where
p(t) = −e−βt/ε2

+ eLt + K,

q(t) = σ
(
βe−βt/ε2

+ ε2LeLt
)
.

(1.107)

Note that q = σε2 pt. It is clear from the definition of u±
ε that

lim
ε→0

u±
ε (x, t) =

{
α+ for all (x, t) ∈ Q+

T

α− for all (x, t) ∈ Q−
T .

(1.108)

The main result of this section is the following.

Lemma 1.5.1. Choose β, σ > 0 appropriately. For any K > 1, we can find positive constants
ε0 and L such that, for any ε ∈ (0, ε0), the functions (u−

ε , u+
ε ) are a pair of sub- and super-

solutions for Problem (P ε) in the range x ∈ Ω, 0 ≤ t ≤ T . In other words, u−
ε and u+

ε satisfy
the homogeneous Neumann boundary condition and

Lu−
ε ≤ 0 ≤ Lu+

ε ,

in the range x ∈ Ω, 0 ≤ t ≤ T , where we recall that the operator L is defined by

Lu := ut − ∆u − ε−2(f(u) − εgε(x, t, u)).

1.5.3 Proof of Lemma 1.5.1

By virtue of (1.105) and the fact that ∇d = 0 near ∂Ω, we have

∂u±
ε

∂ν
= 0 on ∂Ω × [0, T ].

In the following we prove inequality Lu+
ε ≥ 0, the inequality Lu−

ε ≤ 0 following by the same
argument.

Computation of Lu+
ε

Straightforward computations yield

(u+
ε )t = U0

′(
dt

ε
+ pt) + εU ε

1t + U ε
1z(dt + εpt) + qt,

∇u+
ε = U0

′∇d

ε
+ ε∇U ε

1 + U ε
1z∇d,

∆u+
ε = U0

′′ |∇d|2
ε2

+ U0
′∆d

ε
+ ε∆U ε

1 + 2∇U ε
1z · ∇d + U ε

1zz

|∇d|2
ε

+ U ε
1z∆d,

where the function U0, as well as its derivatives, is evaluated at
(
d(x, t) + εp(t)

)
/ε, whereas

the function U ε
1 , as well as its derivatives, is evaluated at

(
x, t,

(
d(x, t)+εp(t)

)
/ε

)
. Here, ∇U ε

1

denotes the derivative with respect to x whenever we regard U ε
1 (x, t, z) as a function of three
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variables x, t and z. The symbol ∆U ε
1 is defined similarly. We also expand the reaction terms

as follows.

f(u+
ε ) = f(U0) + (εU ε

1 + q)f ′(U0) +
1

2
(εU ε

1 + q)2f ′′(θ),

g(x, t, u+
ε ) = g(x, t, U0) + (εU ε

1 + q)gu(x, t, ω),

where θ(x, t) and ω(x, t) are some functions satisfying U0 < θ < u+
ε , U0 < ω < u+

ε . Writing
gε = g + gε − g and combining the above expressions with equations (1.26) and (1.98), we
obtain

Lu+
ε = E1 + · · · + E7,

where:

E1 = − 1

ε2
q
(
f ′(U0) +

1

2
qf ′′(θ)

)
+ U0

′pt + qt,

E2 =
(U0

′′

ε2
+

U ε
1zz

ε

)
(1 − |∇d|2),

E3 =
(U0

′

ε
+ U ε

1z

)
(dt − ∆d + γ),

E4 = εU ε
1z pt +

1

ε
q
(
gu(x, t, ω) − U ε

1f ′′(θ)
)
,

E5 = −γ U ε
1z −

1

2
(U ε

1 )2f ′′(θ) + U ε
1gu(x, t, ω) − 2∇U ε

1z · ∇d,

E6 = εU ε
1t − ε∆U ε

1 ,

E7 =
1

ε
(gε − g)(x, t, u+

ε ) − 1

ε
(gε − g)(x, t, U0) +

1

ε
(γε − γ)(x, t)U0

′ .

Before starting to estimate each of the above terms, let us present some useful inequalities.
First, by the bistability assumption (1.1), there exist positive constants b, m such that

f ′(U0(z)) ≤ −m if U0(z) ∈ [α−, α− + b] ∪ [α+ − b, α+]. (1.109)

On the other hand, since the region {z ∈ R |U0(z) ∈ [α− + b, α+ − b] } is compact and since
U0

′ > 0 on R, there exists a constant a1 > 0 such that

U0
′(z) ≥ a1 if U0(z) ∈ [α− + b, α+ − b]. (1.110)

We set

β =
m

4
, (1.111)

and choose σ that satisfies

0 < σ ≤ min (σ0, σ1, σ2), (1.112)

where

σ0 :=
a1

m + F1
, σ1 :=

1

β + 1
, σ2 :=

4β

F2(β + 1)
,

with the constant F1 and F2 defined by

F1 := max
α−≤u≤α+

|f ′(u)|, F2 := max
α−−2≤u≤α++2

|f ′′(u)|.
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Combining (1.109) and (1.110), and considering that σ ≤ σ0, we obtain

U0
′(z) − σf ′(U0(z)) ≥ σm for −∞ < z < ∞. (1.113)

Now let K > 1 be arbitrary. In what follows we will show that Lu+
ε ≥ 0 provided that the

constants ε0 and L are appropriately chosen. We recall that α− < U0 < α+. We go on under
the following assumptions

ε0M ≤ 1, ε2
0LeLT ≤ 1 . (1.114)

It follows from (1.101) that, for all ε ∈ (0, ε0), we have ε|U ε
1 (x, t, z)| ≤ 1. Moreover, σ ≤ σ1

implies that 0 ≤ q(t) ≤ 1, so that, in view of (1.106),

α− − 2 ≤ u±
ε (x, t) ≤ α+ + 2 . (1.115)

The term E1

A straightforward computation gives

E1 =
β

ε2
e−βt/ε2

(I − σβ) + LeLt(I + ε2σL),

where

I = U0
′ − σf ′(U0) −

σ2

2
f ′′(θ)(βe−βt/ε2

+ ε2LeLt).

In virtue of (1.113) and (1.115), we have

I ≥ σm − σ2

2
F2(β + ε2LeLT ).

Combining this, (1.114) and the inequality σ ≤ σ2, we obtain

I ≥ 2σβ.

Consequently, we have

E1 ≥ σβ2

ε2
e−βt/ε2

+ 2σβLeLt.

The term E2

First, in the region where |d| < d0, we have |∇d| = 1, hence E2 = 0. Next we consider the
region where |d| ≥ d0. We deduce from Lemma 1.2.1 and from (1.103) that:

|E2| ≤ C(
1

ε2
+

1

ε
)(1 + ‖∇d‖2

∞)e−λ|d+εp|/ε

≤ 2C

ε2
(1 + ‖∇d‖2

∞)e−λ(d0/ε−|p|).

By the definition of p in (1.107), we have that 0 < K − 1 ≤ p ≤ eLT + K. Consequently, if we
assume

eLT + K ≤ d0

2ε0
, (1.116)

then
d0

ε
− |p| ≥ d0

2ε
, so that

|E2| ≤ 2C

ε2
(1 + ‖∇d‖2

∞)e−λd0/(2ε)

≤ C2 :=
32C

(eλd0)2
(1 + ‖∇d‖2

∞).
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The term E3

We recall that

(dt − ∆d + γ)(x, t) = 0 on Γt = {x ∈ Ω, d(x, t) = 0}.

By equality (1.97) and assumption (1.5), we see that γ is in C1+ϑ, 1+ϑ
2 so that the interface Γ is

of class C3+ϑ, 3+ϑ
2 . Therefore both ∆d and dt are Lipschitz continuous near Γt. It follows, from

the mean value theorem applied separately on both sides of Γt, that there exists a constant
N0 > 0 such that:

|(dt − ∆d + γ)(x, t)| ≤ N0|d(x, t)| for all (x, t) ∈ QT .

Applying Lemma 1.2.1 and estimate (1.103) we deduce that

|E3| ≤ 2N0C
|d(x, t)|

ε
e−λ|d(x,t)/ε+p(t)|

≤ 2N0C maxy∈R |y|e−λ|y+p(t)|

≤ 2N0C max
(
|p(t)|, 1

λ

)

≤ 2N0C
(
|p(t)| + 1

λ

)
.

Thus, recalling that |p(t)| ≤ eLt + K, we obtain

|E3| ≤ C3(e
Lt + K) + C3

′,

where C3 := 2N0C and C3
′ := 2N0C/λ.

The term E4

In view of (1.4) and (1.103), both gu and |U ε
1z| are bounded by some constant C. Hence,

substituting the expression for pt and q, we obtain

|E4| ≤ C4

(1

ε
βe−βt/ε2

+ εLeLt
)
,

where C4 := C + σ(C + MF2).

The term E5

In view of (1.97), the term |γ| is bounded by c0(α+ − α−)C on Ω × [0, T ]. Using successively
(1.103), (1.101), (1.4) and (1.104), we obtain

|E5| ≤ c0(α+ − α−)CM +
1

2
M2F2 + MC + 2M‖∇d‖2

∞ =: C5.

The term E6

We use (1.102) to deduce that

|E6| ≤ 2C =: C6.
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Finally the term E7

We recall that |gε − g| ≤ Cε so that |γε − γ| ≤ c0(α+ − α−)Cε. It then follows, in view of
(1.27), that

|E7| ≤ 2C + c0(α+ − α−)C2 =: C7.

Completion of the proof

Collecting the above estimates of E1—E7 gives

Lu+
ε ≥ (

σβ2

ε2
− C4β

ε
)e−βt/ε2

+ (2σβL − C3 − εC4L)eLt − C8, (1.117)

where C8 := C2 + KC3 + C3
′ + C5 + C6 + C7. Now we set

L :=
1

T
ln

d0

4ε0
,

which, for ε0 small enough, validates assumptions (1.114) and (1.116). If ε0 is chosen suffi-
ciently small (i.e. L large enough), we have, for all 0 < ε < ε0, that the first term of the
right-hand side of (1.117) is positive, and that

Lu+
ε ≥

[
σβL − C3]e

Lt − C8

≥ 1
2σβL − C8

≥ 0.

The proof of Lemma 1.5.1 is now complete, with the choice of the constants β, σ as in (1.111),
(1.112).

1.6 Proof of the main results

In this section, we prove our main results by fitting the two pairs of sub- and super-solutions,
constructed for the study of the generation and the motion of interface, into each other.

1.6.1 Proof of Theorem 1.1.4

Let η ∈ (0, η0) be arbitrary. Choose β and σ that satisfy (1.111), (1.112) and

σβ ≤ η

3
. (1.118)

By the generation of interface Theorem 1.3.1, there exist positive constants ε0 and M0 such
that (1.49), (1.50) and (1.51) hold with the constant η replaced by σβ/2. Since ∇u0 · n 6= 0
everywhere on the initial interface Γ0 = {x ∈ Ω, u0(x) = a} and since Γ0 is a compact
hypersurface, we can find a positive constant M1 such that

if d0(x) ≥ M1ε then u0(x) ≥ a + M0ε,

if d0(x) ≤ −M1ε then u0(x) ≤ a − M0ε.
(1.119)
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Here d0(x) := d(x, 0) denotes the cut-off signed distance function associated with the hyper-
surface Γ0. Now we define functions H+(x),H−(x) by

H+(x) =

{
α+ + σβ/2 if d0(x) > −M1ε
α− + σβ/2 if d0(x) ≤ −M1ε,

H−(x) =

{
α+ − σβ/2 if d0(x) ≥ M1ε
α− − σβ/2 if d0(x) < M1ε.

Then from the above observation we see that

H−(x) ≤ uε(x, µ−1ε2| ln ε|) ≤ H+(x) for x ∈ Ω. (1.120)

Next we fix a sufficiently large constant K > 1 such that

U0(−M1 + K) ≥ α+ − σβ

3
and U0(M1 − K) ≤ α− +

σβ

3
. (1.121)

For this K, we choose ε0 and L as in Lemma 1.5.1. We claim that

u−
ε (x, 0) ≤ H−(x), H+(x) ≤ u+

ε (x, 0) for x ∈ Ω. (1.122)

We only prove the former inequality, as the proof of the latter is virtually the same. Then it
amounts to showing that

u−
ε (x, 0) = U0

(d0(x)

ε
− K

)
+ εU ε

1

(
x, 0,

d0(x)

ε
− K

)
− σ(β + ε2L) ≤ H−(x). (1.123)

By (1.101) we have |U ε
1 | ≤ M . Therefore, by choosing ε0 small enough so that ε0M ≤ σβ/6,

we see that

u−
ε (x, 0) ≤ U0

(d0(x)

ε
− K

)
+ εM − σ(β + ε2L)

≤ U0

(d0(x)

ε
− K

)
− 5

6
σβ.

In the range where d0(x) < M1ε, the second inequality in (1.121) and the fact that U0 is an
increasing function imply

U0

(d0(x)

ε
− K

)
− 5

6
σβ ≤ α− − σβ

2
= H−(x).

On the other hand, in the range where d0(x) ≥ M1ε, we have

U0

(d0(x)

ε
− K

)
− 5

6
σβ ≤ α+ − 5

6
σβ ≤ H−(x).

This proves (1.123), hence (1.122) is established.
Combining (1.120) and (1.122), we obtain

u−
ε (x, 0) ≤ uε(x, µ−1ε2| ln ε|) ≤ u+

ε (x, 0).

Since u−
ε and u+

ε are sub- and super-solutions for Problem (P ε) thanks to Lemma 1.5.1, the
comparison principle yields

u−
ε (x, t) ≤ uε(x, t + tε) ≤ u+

ε (x, t) for 0 ≤ t ≤ T − tε, (1.124)
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where tε = µ−1ε2| ln ε|. Note that, in view of (1.108), this is enough to prove Corollary 1.1.5.
Now let C be a positive constant such that

U0(C − eLT − K) ≥ α+ − η

2
and U0(−C + eLT + K) ≤ α− +

η

2
. (1.125)

One then easily checks, using successively (1.124), (1.106), (1.125) and (1.118), that, for ε0

small enough, for 0 ≤ t ≤ T − tε, we have

if d(x, t) ≥ Cε then uε(x, t + tε) ≥ α+ − η,

if d(x, t) ≤ −Cε then uε(x, t + tε) ≤ α− + η,
(1.126)

and

uε(x, t + tε) ∈ [α− − η, α+ + η],

which completes the proof of Theorem 1.1.4.

1.6.2 Proof of Theorem 1.1.6

In the case where µ−1ε2| ln ε| ≤ t ≤ T , the assertion of the theorem is a direct consequence of
Theorem 1.1.4. All we have to consider is the case where 0 ≤ t ≤ µ−1ε2| ln ε|. We shall use
the sub- and super-solutions constructed for the study of the generation of interface in Section
1.4. To that purpose, we first prove the following lemma concerning Y (τ, ξ; δ), the solution of
the ordinary differential equation (1.79), in the initial time interval.

Lemma 1.6.1. There exists a constant C8 > 0 such that

if ξ ≥ a + C8ε then Y (τ, ξ;±εG) > a for 0 ≤ τ ≤ µ−1| ln ε|,
if ξ ≤ a − C8ε then Y (τ, ξ;±εG) < a for 0 ≤ τ ≤ µ−1| ln ε|. (1.127)

Proof. We only prove the first inequality. Assume ξ ≥ a + C8ε. By (1.76), for C8 ≥ CG, we
have that ξ ≥ a + C8ε ≥ a(±εG). It then follows from (1.82) that

Y (τ, ξ;±εG) ≥ a(±εG) + C1e
µ(±εG)τ (a + C8ε − a(±εG))

≥ a − CGε + C1(−CGε + C8ε)

≥ a + ε(C1C8 − CG(C1 + 1))

> a,

provided that C8 is sufficiently large.

Now we turn to the proof of Theorem 1.1.6. We first claim that there exists a positive
constant M2 such that for all t ∈ [0, µ−1ε2| ln ε|],

Γε
t ⊂ NM2ε(Γ0). (1.128)

To see this, we choose M0
′ large enough, so that M0

′ ≥ C8 + 2C6, where C6 is as in Lemma
1.4.6. As is done for (1.119), there is a positive constant M2 such that

if d0(x) ≥ M2ε then u0(x) ≥ a + M0
′ε,

if d0(x) ≤ −M2ε then u0(x) ≤ a − M0
′ε.

(1.129)
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In view of this last condition, we see that, if ε0 is small enough and if d0(x) ≥ M2ε, then for
0 ≤ t ≤ µ−1ε2| ln ε|,

u0(x) − ε2r(−εG,
t

ε2
) ≥ a + M0

′ε − ε2C6

[
eµ(−εG)| ln ε|/µ − 1

]

≥ a + ε
[
M0

′ − C6ε
(µ−µ(±εG))/µ + εC6

]

≥ a + ε(M0
′ − 2C6)

(
← thanks to (1.92)

)

≥ a + C8ε.

This inequality and Lemma 1.6.1 imply w−
ε (x, t) > a, where w−

ε is the sub-solution defined in
(1.86). Consequently, by (1.87),

uε(x, t) > a if d0(x) ≥ M2ε.

In the case where d0(x) ≤ −M2ε, similar arguments lead to uε(x, t) < a. This completes the
proof of (1.128). Note that we have proved that, for all 0 ≤ t ≤ µ−1ε2| ln ε|,

uε(x, t) > a if x ∈ Ω+
0 \ NM2ε(Γ0),

uε(x, t) < a if x ∈ Ω−
0 \ NM2ε(Γ0).

(1.130)

Next, since Γt depends on t smoothly, there is a constant C̃ > 0 such that, for all t ∈
[0, µ−1ε2| ln ε|],

Γ0 ⊂ NC̃ε2| ln ε|(Γt), (1.131)

and
Ω+

t \ NC̃ε(Γt) ⊂ Ω+
0 \ NM2ε(Γ0),

Ω−
t \ NC̃ε(Γt) ⊂ Ω−

0 \ NM2ε(Γ0).
(1.132)

As a consequence of (1.128) and (1.131) we get

Γε
t ⊂ NM2ε+C̃ε2| ln ε|(Γt) ⊂ NCε(Γt),

which completes the proof of Theorem 1.1.6.

Proof of Corollary 1.1.7. In view of Theorem 1.1.6 and the definition of the Hausdorff
distance, to prove this corollary we only need to show the reverse inclusion, that is

Γt ⊂ NC′ε(Γ
ε
t ) for 0 ≤ t ≤ T, (1.133)

for some constant C ′ > 0. To that purpose let C ′ be a constant satisfying C ′ > max(C̃, C),
where C is as in Theorem 1.1.4 and C̃ as in (1.132). Choose t ∈ [0, T ], x0 ∈ Γt arbitrarily and,
n being the Euclidian normal vector exterior to Γt at point x0, define a pair of points:

x+ := x0 + C ′εn and x− := x0 − C ′εn.

Since C ′ > C and since the curvature of Γt is uniformly bounded as t varies over [0, T ], we see
that

x+ ∈ Ω+
t \ NCε(Γt) and x− ∈ Ω−

t \ NCε(Γt),

if ε is sufficiently small. Therefore, if t ∈ [µ−1ε2| ln ε|, T ], then, by Theorem 1.1.4, we have

uε(x−, t) < a < uε(x+, t). (1.134)
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On the other hand, if t ∈ [0, µ−1ε2| ln ε|], then from (1.130), (1.132) and the fact that C ′ > C̃,
we again obtain (1.134). Thus (1.134) holds for all t ∈ [0, T ]. Now, by the mean value theorem,
we see that for each t ∈ [0, T ] there exists a point x1 such that

x1 ∈ [x−, x+] and uε(x1, t) = a.

This implies x1 ∈ Γε
t . Furthermore we have |x0 − x1| ≤ C ′ε, since x1 lies on the line segment

[x−, x+]. This proves (1.133).

1.7 Application to reaction-diffusion systems

In this section we discuss the singular limit of the reaction-diffusion system (RD ε) and prove
Theorems 1.1.12, 1.1.14 and their corollaries. Our strategy is to regard the first equation of
(RD ε) as a perturbed Allen-Cahn equation and apply what we have already proved for this
equation. In order to make this strategy work, we will modify our former arguments slightly.

1.7.1 Preliminaries: global existence

Before studying the singular limit of (RD ε), we first show that the solution of this system
exists globally for t ≥ 0, provided that ε is sufficiently small. Recall that the system (RD ε) is
written in the form





ut = ∆u +
1

ε2

(
f(u) + ε f1(u, v) + O(ε2)

)
,

vt = D∆v + h(u, v),

where h(u, v) satisfies the hypothesis (H). The standard parabolic theory guarantees the exis-
tence of local solutions for (RD ε). In order to prove that the solution exists globally for t ≥ 0,
it suffices to show that the solution remains uniformly bounded. This will be done by using
the method of invariant rectangles.

Given arbitrary u0, v0 ∈ C(Ω), we choose a constant L > 0 such that

f(−L) > 0 > f(L), −L ≤ u0(x) ≤ L for x ∈ Ω. (1.135)

Such a constant L exists since f(u) > 0 for u < α−, and f(u) < 0 for u > α+. By the
hypothesis (H), we can choose a constant M1 satisfying

M1 ≥ ‖v0‖L∞(Ω),

along with the condition (1.19), namely

h(u,−M1) ≥ 0 ≥ h(u, M1) for |u| ≤ L. (1.136)

Now we consider the rectangle

R := { (u, v) ∈ R
2
∣∣ |u| ≤ L, |v| ≤ M1 }.

It follows from (1.135) that, for all sufficiently small ε > 0,

fε(−L, v) > 0 > fε(L, v) for |v| ≤ M1. (1.137)
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The inequalities (1.136) and (1.137) imply that the rectangle R is a positively invariant region
for the system of ordinary differential equations:





ut =
1

ε2
fε(u, v),

vt = h(u, v),

since the vector field (ε−2fε(u, v), h(u, v)) points inwards everywhere on the boundary of R.
The maximum principle then implies that R is also positively invariant for the system (RD ε).
Consequently, since (u0(x), v0(x)) ∈ R for x ∈ Ω, we have

(u(x, t), v(x, t)) ∈ R for x ∈ Ω, t ≥ 0,

as long as the solution is defined. This uniform bound then implies that the solution exists
globally for t ≥ 0.

In the case of equations for which only nonnegative solutions are to be considered (see
Remark 1.1.10), we can argue just similarly, by replacing R by the rectangle R+ := {(u, v) | 0 ≤
u ≤ L, 0 ≤ v ≤ M1}. Summarizing, we have proved the following proposition:

Proposition 1.7.1. Let (u0, v0) ∈ C(Ω)×C(Ω). In the case where the conditions of Remark
1.1.10 apply, assume further that u0, v0 ≥ 0. Then there exists ε0 > 0 such that for any
ε ∈ (0, ε0), the solution (uε, vε) of (RD ε) exists globally for t ≥ 0 and is uniformly bounded.

Remark 1.7.2. For the details of the method of invariant rectangles, we refer the reader to the
book [68], Chapter 14, Corollary 14.8. See also [28] and [27]. It should be noted that [50] makes
a much earlier study of invariant rectangles for a finite-difference scheme for reaction-diffusion
systems.

1.7.2 Re-examination of the Allen-Cahn equation

Now we turn to the singular limit of (RD ε). As we have mentioned earlier, our strategy
is to regard the first equation of (RD ε) as a perturbed Allen-Cahn equation of the form
(P ε). However, our results for Problem (P ε), Theorems 1.1.4 and 1.1.6, do not apply to the
system (RD ε) directly, because of the assumption (1.6), which requires |gε − g| to be of order
ε. Naturally, such an assumption cannot be made a priori for the system (RD ε), since the
perturbation term gε := −f1(u, vε(x, t)) + O(ε) depends on the unknown function vε.

In view of this, we will first re-examine our previous argument for the single equation (P ε)
and see what we can say without the assumption (1.6).

We begin with some notation. Given any function ḡ(x, t, u) satisfying the conditions (1.3)
and (1.5), and any smooth hypersurface without boundary Γ̄0 such that Γ̄0 ⊂⊂ Ω, we can define
the classical solution of the interface equation (P 0) on some time interval 0 ≤ t < T (ḡ; Γ̄0).
We denote this solution by Γt[ ḡ; Γ̄0] in order to clarify its dependence on ḡ and Γ̄0. More
specifically, Γt[ ḡ; Γ̄0] is the solution of the problem

(P 0
ḡ,Γ̄0

)





Vn = −(N − 1)κ + c0

∫ α+

α−

ḡ(x, t, r)dr on Γt,

Γt

∣∣
t=0

= Γ̄0.
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Also, we denote by uε[ ḡ; ū0](x, t) the solution of the problem

(P ε
ḡ,ū0

)





ut = ∆u +
1

ε2
(f(u) − εḡ(x, t, u)) in Ω × (0,+∞),

∂u

∂ν
= 0 on ∂Ω × (0,+∞),

u(x, 0) = ū0(x) in Ω,

and define
Γε

t [ ḡ; ū0] := {x ∈ Ω, uε[ ḡ; ū0](x, t) = a}.
Once the interface Γt[ ḡ; Γ̄0] is given, we denote by Ω−

t [ ḡ; Γ̄0], Ω+
t [ ḡ; Γ̄0] the region enclosed

by Γt[ ḡ; Γ̄0] and the one enclosed between ∂Ω and Γt[ ḡ; Γ̄0], respectively. As in (1.14), we
define the step function ũ[ ḡ; Γ̄0](x, t) by

ũ[ ḡ; Γ̄0](x, t) =

{
α+ in Ω+

t [ ḡ; Γ̄0]

α− in Ω−
t [ ḡ; Γ̄0]

for t ∈ [0, T (ḡ; Γ̄0)). (1.138)

With these notations, the solution uε, the interfaces Γε
t , Γt and the step function ũ which

we have defined in Section 1.1, can be expressed as follows:

uε = uε[gε; u0], Γε
t = Γε

t [g
ε; u0], Γt = Γt[g; Γ0], ũ = ũ[g; Γ0].

Henceforth we will fix the initial datum u0 (hence Γ0) throughout this subsection.
Now let us consider what happens if we do not assume (1.6), i.e. |g − gε| = O(ε). Sections

1.3 and 1.4, which deal with the generation of interface, remain unchanged since the assumption
(1.6) is not used. The only places where this assumption has been used are the following.

• In the formal derivation of the interface equation in Section 1.2, the assumption (1.6) is
used while collecting the O(ε−1) terms, leading to the conclusion that the second term
U1 of the inner asymptotic expansion is given by a solution of equation (1.29);

• In subsection 1.5.3, the assumption (1.6) is used to show the boundedness of the term
E7.

Note that the term E7 appears, so to say, as a result of discrepancy between the term U ε
1 and

the distance function d that are used to define u±
ε in (1.106). More precisely, the distance

function d(x, t) is associated with the interface Γt[g; Γ0], whose law of motion is (P 0
g,Γ0

), while

U ε
1 is associated with gε via (1.98). Therefore, when we calculate Lu±

ε , both g and gε appear
without cancelling each other.

On the other hand, if we replace d by the signed distance function d ε associated with the
interface Γt[g

ε; Γ0], and define û±
ε by

û±
ε (x, t) = U0

(d ε(x, t) ± εp(t)

ε

)
+ εU ε

1

(
x, t,

d ε(x, t) ± εp(t)

ε

)
± q(t), (1.139)

then the term E7 does not appear in the calculation of Lû±
ε . Moreover the remaining terms E1

to E6 are virtually the same as those in subsection 1.5.3. Consequently, the new functions û±
ε

are sub- and super-solutions even without the assumption (1.6). Thus, arguing as in subsection
1.6.1, we obtain the following analogue of (1.124):

û−
ε (x, t) ≤ uε(x, t + tε) ≤ û+

ε (x, t) for 0 ≤ t ≤ T ′ − tε, (1.140)

where tε = µ−1ε2| ln ε| and T ′ is a constant such that 0 < T ′ < T (gε; Γ0).
Summarizing, the following proposition holds.
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Proposition 1.7.3. The conclusions of Theorems 1.1.4 and 1.1.6 hold without assuming (1.6),
provided that Γt[g; Γ0] is replaced by Γt[g

ε; Γ0]. In particular,

dH(Γε
t [g

ε;u0], Γt[g
ε; Γ0]) ≤ Cε for 0 ≤ t ≤ T ′, (1.141)

where dH denotes the Hausdorff distance.

1.7.3 Interface motion under various perturbations

Next we show that Γt[ ḡ; Γ̄0] depends on ḡ and Γ̄0 continuously. To this end, we first fix
constants C∗ > 0, T ′ > 0, ϑ ∈ (0, 1), and denote by Y the set of functions ḡ(x, t, u) on
Ω × [0, T ′] × R satisfying

sup
u∈ [α−,α+]

‖ḡ(·, ·, u)‖
C1+ϑ,

1+ϑ
2 (Ω×[0,T ′])

≤ C∗. (1.142)

We also fix M a N − 1 dimensional manifold without boundaries. We denote by Z the set of
C3+ϑ hypersurfaces without boundary Γ̄0 satisfying Γ̄0 ⊂⊂ Ω and such that

‖Λ̄0‖C3+ϑ(M) ≤ C∗, (1.143)

where the function Λ̄0 : M 7→ [−L,L] is a parametrization of Γ̄0. For more details we refer to
[23].

Proposition 1.7.4. Let ḡ ∈ Y and Γ̄0 ∈ Z. Let T ∈ (0, T (ḡ; Γ̄0)). Then there exist positive
constants δ, K, M such that, for any g̃ ∈ Y and any Γ̃0 ∈ Z satisfying

‖g̃ − ḡ‖L∞(Ω×[0,T ]×[α−,α+]) ≤ δ and dH(Γ̃0, Γ̄0) ≤ δ,

there holds that T (g̃; Γ̃0) > T , where we recall that T (g̃; Γ̃0) is the maximum time of existence
of a classical solution of Problem (P 0

g̃,Γ̃0

). Furthermore, for each t ∈ [0, T ],

dH( Γt[g̃; Γ̃0], Γt[ ḡ; Γ̄0] ) ≤ K(eMt − 1) ‖g̃ − ḡ‖L∞ + eMtdH(Γ̃0, Γ̄0) , (1.144)

where the L∞ norm on the right-hand side is taken in Ω × [0, t] × [α−, α+].

Proof. By using the local coordinates, one can express Γt[ḡ, Γ̄0], respectively Γt[g̃, Γ̃0], as a
graph over M and transfer the motion equation (P 0

ḡ,Γ̄0
), respectively (P 0

g̃,Γ̃0

), into a quasi-linear

parabolic equation on the manifold M× [0, T (ḡ, Γ̄0)], respectively M× [0, T (g̃, Γ̃0)]. Since ḡ
and g̃ satisfy (1.142), and since the embedding

C1+ϑ, 1+ϑ
2 →֒ C1+ϑ′, 1+ϑ′

2

is compact if 0 < ϑ′ < ϑ, the assumption ‖g̃ − ḡ‖L∞ ≤ δ implies

‖g̃(·, ·, u) − ḡ(·, ·, u)‖
C1+ϑ′,

1+ϑ′

2

≤ C(δ),

where C(δ) is a constant satisfying C(δ) → 0, as δ → 0. Consequently,

∥∥
∫ α+

α−

g̃(·, ·, r)dr −
∫ α+

α−

ḡ(·, ·, r)dr
∥∥

C1+ϑ′,
1+ϑ′

2

≤ (α+ − α−)C(δ).
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By a similar argument, the assumption dH(Γ̃0, Γ̄0) ≤ δ implies

‖Λ̄0 − Λ̃0‖C3+ϑ′ (M) ≤ C ′(δ),

where C ′(δ) is a constant satisfying C ′(δ) → 0, as δ → 0. The assertion that T (g̃, Γ̃0) > T then
follows from the standard local existence theory. For more details, we refer to [3] Theorem 7.1
and its corollary, which are concerned with smooth curvature flows with slightly perturbations
of the velocities and the initial data.

Next we prove the estimate (1.144). This will be done by using the maximum principle.
Let us introduce some notation. For each ḡ ∈ Y and each Γ̄0 ∈ Z, we denote by d(x, t; ḡ; Γ̄0)
the signed distance function associated with the interface Γt[ ḡ; Γ̄0]. By Γ̄t ¹ Γ̃t we mean that
Γ̄t lies inside of Γ̃t. Clearly we have

Γt[ ḡ; Γ̄0] ¹ Γt[ g̃; Γ̃0] ⇐⇒ d(x, t; ḡ; Γ̄0) ≥ d(x, t; g̃; Γ̃0) for x ∈ Ω. (1.145)

Now we choose t0 ∈ [0, T ] arbitrarily and put

η0 := ‖g̃ − ḡ‖L∞(Ω×[0,t0]×[α−,α+]) and η1 := dH(Γ̃0, Γ̄0).

Then
ḡ(x, t, u) − η0 ≤ g̃(x, t, u) ≤ ḡ(x, t, u) + η0,

for x ∈ Ω, 0 ≤ t ≤ t0, α− ≤ u ≤ α+, and

Γ̄0 − η1 ¹ Γ̃0 ¹ Γ̄0 + η1,

where, by definition
Γ̄0 ± η1 := {x ± η1n; x ∈ Γ̄0},

n being the outward unit normal to Γ̄0. The comparison principle then yields

Γt[ ḡ − η0; Γ̄0 − η1] ¹ Γt[ g̃; Γ̃0] ¹ Γt[ ḡ + η0; Γ̄0 + η1] for 0 ≤ t ≤ t0.

Thus, in order to prove (1.144), it suffices to show that there exists constants K, M > 0 such
that, for all small η0 > 0, η1 > 0,

{
dH(Γt[ ḡ − η0; Γ̄0 − η1], Γt[ ḡ; Γ̄0]) ≤ Kη0 (eMt − 1) + η1 eMt,

dH(Γt[ ḡ + η0; Γ̄0 + η1], Γt[ ḡ; Γ̄0]) ≤ Kη0 (eMt − 1) + η1 eMt,
(1.146)

for 0 ≤ t ≤ t0. We will only show the latter inequality for Γt[ ḡ + η0; Γ̄0 + η1] since the former
can be shown in the same manner.

Recall that d(x, t; ḡ; Γ̄0) satisfies the equation (1.96), namely

dt = ∆d − c0

∫ α+

α−

ḡ(x, t, r)dr on Γt[ ḡ; Γ̄0]. (1.147)

Choose a constant d0 > 0 such that d(x, t; ḡ; Γ̄0) is smooth — say, C3 in x and C3/2 in t — in
the neighborhood Nd0

(Γt[ ḡ; Γ̄0]), 0 ≤ t ≤ T . By equality (1.147) and the mean value theorem
applied separately on both sides of the interface, there exists a constant N0 > 0 such that

∣∣dt − ∆d + c0

∫ α+

α−

ḡ(x, t, r)dr
∣∣ ≤ N0|d| in Nd0/2(Γt[ ḡ; Γ̄0]).
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Now we put
dnew(x, t) := d(x, t; ḡ; Γ̄0) − Kη0 (e2N0t − 1) − η1 e2N0t,

Γ̃t := {x ∈ Ω | dnew(x, t) = 0},
where the constant K is to be determined later. If

η0 ≤ η∗0 :=
e−2N0T d0

4
K−1 and η1 ≤ η∗1 :=

e−2N0T d0

4
,

then Γ̃t lies within the neighborhood Nd0/2(Γt[ ḡ; Γ̄0]). Observe that

(dnew)t − ∆dnew = dt − 2N0Kη0 e2N0t − 2N0η1 e2N0t − ∆d

≤ −c0

∫ α+

α−

ḡ(x, t, r)dr + N0|d| − 2N0Kη0 e2N0t − 2N0η1 e2N0t.

Since d = Kη0 (e2N0t − 1) + η1 e2N0t on Γ̃t, we obtain

(dnew)t − ∆dnew ≤ −c0

∫ α+

α−

ḡ(x, t, r)dr − N0Kη0 e2N0t − N0η1e
2N0t on Γ̃t

≤ −c0

∫ α+

α−

ḡ(x, t, r)dr − N0Kη0 on Γ̃t.

Now we set
K = (α+ − α−)c0N0

−1.

Then it follows from the above inequality that

(dnew)t ≤ ∆dnew − c0

∫ α+

α−

ḡ(x, t, r)dr − (α+ − α−)c0η0 on Γ̃t.

This inequality and the fact that dnew(x, 0) = d(x, 0 ; ḡ; Γ̄0) − η1 imply that Γ̃t satisfies




Vn ≥ −(N − 1)κ + c0

∫ α+

α−

(
ḡ(x, t, r) + η0

)
dr on Γ̃t,

Γ̃t

∣∣
t=0

= Γ̄0 + η1.

On the other hand, Γt[ḡ + η0; Γ̄0 + η1] satisfies




Vn = −(N − 1)κ + c0

∫ α+

α−

(
ḡ(x, t, r) + η0

)
dr on Γt[ḡ + η0; Γ̄0 + η1],

Γt[ḡ + η0; Γ̄0 + η1]
∣∣
t=0

= Γ̄0 + η1.

By the comparison principle, we obtain

Γt[ ḡ; Γ̄0] ¹ Γt[ḡ + η0; Γ̄0 + η1] ¹ Γ̃t for 0 ≤ t ≤ t0.

Consequently,

dH(Γt[ḡ + η0; Γ̄0 + η1], Γt[ ḡ; Γ̄0]) ≤ dH(Γ̃t, Γt[ ḡ; Γ̄0]) ≤ Kη0 (e2N0t − 1) + η1 e2N0t,

for 0 ≤ t ≤ t0. The proposition is proved.

Before closing this subsection, we remark that our main results for the Allen-Cahn equation
— Theorems 1.1.4 and 1.1.6 — can also be derived from Propositions 1.7.3 and 1.7.4.
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1.7.4 Proof of the main results

Now we turn to the reaction-diffusion system (RD ε). In what follows, we fix the initial datum
(u0, v0) and denote the solution of this system by (uε, vε). We need some more notation; given
a function v(x, t) on Ω × [0,∞), we set

gε[v](x, t, u) := −f1(u, v(x, t)) − ε f ε
2 (u, v(x, t)),

g[v](x, t, u) := −f1(u, v(x, t)),
(1.148)

where f1, f ε
2 are as in (1.18). The first equation of (RD ε) is then written in the form

ut = ∆u +
1

ε2

(
f(u) − ε gε[vε](x, t, u)

)
. (1.149)

The limit Problem (RD0) is decomposed into two parts:




Vn = −(N − 1)κ + c0

∫ α+

α−

g[ṽ](x, t, r) dr on Γt,

Γt

∣∣
t=0

= Γ0,

(1.150)

and 



ṽt = D∆ṽ + h(ũ, ṽ) in Ω × (0, T ],

∂ṽ

∂ν
= 0 on ∂Ω × (0, T ],

ṽ(x, 0) = v0(x) in Ω,

(1.151)

where ũ is the step function associated with the interface Γt. Using the notation given in
subsection 1.7.2, the above interface Γt in (1.150) can be written as Γt[g[ṽ]; Γ0].

In order for Theorems 1.1.4 and 1.1.6 to be applicable to Problem (RDε), we have to verify
the conditions (1.3) to (1.6). More precisely, we have to show that, for all small ε > 0,

|∆xgε[vε](x, t, u)| ≤ Cε−1 and |∂t gε[vε](x, t, u)| ≤ Cε−1,

|∂u gε[vε](x, t, u)| ≤ C,

‖gε[vε](·, ·, u)‖
C1+ϑ,

1+ϑ
2 (Ω×[0,T ])

≤ C,

∣∣gε[vε](x, t, u) − g[ṽ](x, t, u)
∣∣ ≤ Cε.

Since g[v], gε[v] are defined by (1.148) and since f1, f ε
2 are smooth (see assumption (F) in

subsection 1.1.2), it suffices to prove the following estimates for some C > 0 and for all small
ε > 0:

|∆xvε(x, t)| ≤ Cε−1 and |∂tv
ε(x, t)| ≤ Cε−1, (1.152)

‖vε‖
C1+ϑ,

1+ϑ
2 (Ω×[0,T ])

≤ C, (1.153)

|vε(x, t) − ṽ(x, t)| ≤ Cε. (1.154)

The first two estimates are elementary. In fact, since vε satisfies

vε
t = D∆vε + h(uε, vε) in Ω × (0, T ] (1.155)

along with the homogeneous Neumann boundary condition, it can be expressed as

vε(x, t) = I1 + I2, (1.156)
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where

I1 :=

∫

Ω
G(x, y, t)v0(y)dy,

I2 :=

∫ t

0

∫

Ω
G(x, y, t − s)h(uε(y, s), vε(y, s)) dyds,

with G(x, y, t) being the fundamental solution for equation vt = D∆v under the homogeneous
Neumann boundary condition. Since h(uε, vε) is uniformly bounded, standard estimates of
G(x, y, t) imply (1.153) for any ϑ ∈ (0, 1). In the meanwhile, the same rescaling argument as
in Remark 1.1.8 yields

‖uε‖
Cϑ, ϑ

2 (Ω×[0,T ])
≤ Cε−ϑ. (1.157)

Indeed, since ∇yu
ε, uε

τ are bounded, where y = x/ε, τ = t/ε2, we have ∇xuε = O(1/ε),
uε

t = O(1/ε2). Consequently we have

|uε(x, t) − uε(x′, t′)|
|x − x′|ϑ + |t − t′|ϑ/2

≤ |uε(x, t) − uε(x′, t)|
|x − x′|ϑ +

|uε(x′, t) − uε(x′, t′)|
|t − t′|ϑ/2

≤ |uε(x, t) − uε(x′, t)|1−ϑ |uε(x, t) − uε(x′, t)|ϑ
|x − x′|ϑ

+|uε(x′, t) − uε(x′, t′)|1−ϑ/2 |uε(x′, t) − uε(x′, t′)|ϑ/2

|t − t′|ϑ/2

≤ (2‖uε‖L∞)1−ϑ‖∇xuε‖ϑ
L∞ + (2‖uε‖L∞)1−ϑ/2‖uε

t‖ϑ/2
L∞

≤ Cε−ϑ.

Combining (1.157) and (1.153), we see that ‖h(uε, vε)‖
Cϑ, ϑ

2 (Ω×[0,T ])
≤ Cε−ϑ, hence, by the

Schauder estimate,
‖I2‖

C2+ϑ,1+ ϑ
2 (Ω×[0,T ])

≤ Cε−ϑ.

Here the constant C may depend on the choice of ϑ ∈ (0, 1). On the other hand, I1 is bounded
in C2,1(Ω × [0, T ]) since v0 ∈ C2(Ω). Combining these, we obtain that |∆xvε(x, t)| = O(ε−ϑ),
hence O(ε−1). By a similar argument, we obtain that |∂tv

ε(x, t)| = O(ε−1).
It remains to prove (1.154). This requires more elaborate analysis. Let us introduce some

more notation. Given functions u(x, t) and v̄0(x) on Ω× [0,∞), we denote by V [u; v̄0](x, t) the
solution of the problem





Vt = D∆V + h(u(x, t), V ) in Ω × (0, T ],

∂V

∂ν
= 0 on ∂Ω × (0, T ],

V (x, 0) = v̄0(x) in Ω.

(1.158)

The solution vε of (RD ε) and ṽ of (RD0) can then be expressed as

vε = V [uε; v0], ṽ = V [ũ; v0].

Recall also that, with the notation defined in subsection 1.7.2 and in (1.148), the solution uε

of (RD ε) and the step function ũ in (RD0) are expressed as

uε = uε[gε[vε]; u0], ũ = ũ[g[ṽ]; Γ0].
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First estimate. Let us compare uε := uε[gε[vε]; ū0] with the step function ũε := ũ[gε[vε]; Γ̄0].
By (1.140), we have

û−
ε (x, t) ≤ uε(x, t + tε) ≤ û+

ε (x, t) for 0 ≤ t ≤ T − tε,

where û±
ε are as in (1.139), dε being the signed distance function associated with the interface

Γt[g
ε[vε]; Γ̄0]. Since the term e−βt/ε2

in q(t), see (1.107), quickly becomes small,

|uε(x, t) − ũε(x, t)| ≤ α+ − U0

(d ε(x, t) − εp(t)

ε

)
+ O(ε) in Ω+

t [gε[vε]; Γ̄0],

|uε(x, t) − ũε(x, t)| ≤ U0

(d ε(x, t) + εp(t)

ε

)
− α− + O(ε) in Ω−

t [gε[vε]; Γ̄0],

for µ1ε
2| ln ε| ≤ t ≤ T , provided that we choose the constant µ1 large enough. Consequently,

by Lemma 1.2.1, there exist constants B, C > 0 such that

|uε(x, t) − ũε(x, t)| ≤ B exp
(
− λ

|d ε(x, t)|
ε

)
+ Cε, (1.159)

for (x, t) ∈ Ω × [µ1ε
2| ln ε|, T ].

Second estimate. Next we compare vε := V [uε; v̄0] and ṽε := V [ũε; ṽ0]. Set w := vε − ṽε.
Then

wt = D∆w +
(
h(uε, vε) − h(ũε, ṽε)

)
.

Since

|h(uε, vε) − h(ũε, ṽε)| ≤ C|w| + C|uε(x, t) − ũε(x, t)|,
for some constant C > 0, the function w̃ := e−Ctw satisfies

w̃t ≤ D∆w̃ + Ce−Ct|uε(x, t) − ũε(x, t)| + C(|w̃| − w̃),

hence
w̃t ≤ D∆w̃ + C|uε(x, t) − ũε(x, t)| + C(|w̃| − w̃). (1.160)

Now let W (x, t) be the solution of the equation

Wt = D∆W + C|uε(x, t) − ũε(x, t)| + C(|W | − W ),

with initial datum W (x, 0) = |v̄0(x)−ṽ0(x)|. Then since (1.160) implies that w̃ is a sub-solution
of the above equation, and since

w̃(x, 0) ≤ |w̃(x, 0)| = |v̄0(x) − ṽ0(x)| = W (x, 0),

we have

w̃(x, t) ≤ W (x, t) for x ∈ Ω, t ≥ 0. (1.161)

Moreover, since W ≥ 0, the above equation for W can be reduced to

Wt = D∆W + C|uε(x, t) − ũε(x, t)|.

In view of this and W (x, 0) = |v̄0(x) − ṽ0(x)|, we see that

W (x, t) = C

∫ t

0

∫

Ω
G(x, y, t − s)|uε(y, s) − ũε(y, s)| dyds +

∫

Ω
G(x, y, t)|v̄0(y) − ṽ0(y)|dy,
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G(x, y, t) being the fundamental solution that appears in (1.156). This and (1.161) yield

|w(x, t)| ≤ CeCt

∫ t

0

∫

Ω
G(x, y, t − s)|uε(y, s) − ũε(y, s)| dyds

+ eCt

∫

Ω
G(x, y, t)|v̄0(y) − ṽ0(y)|dy. (1.162)

Combining this and (1.159), we obtain

|w(x, t)| ≤ BCeCt

∫ t

0

∫

Ω
G(x, y, t − s) exp

(
− λ

|d ε(y, s)|
ε

)
dyds

+ O(ε) + C ′‖v̄0 − ṽ0‖L∞(Ω), (1.163)

for some constant C ′ > 0. In order to estimate the above integral, we need the following
lemma.

Lemma 1.7.5. Let Γ be a smooth closed hypersurface in Ω and denote by d(x) the signed
distance function associated with Γ. Then there exist constants C, r0 > 0 such that for any
function η(r) ≥ 0 on R, it holds that

∫

|d|≤r0

G(x, y, t)η(d(y)) dy ≤ C√
t

∫ r0

−r0

η(r) dr for 0 < t ≤ T. (1.164)

The proof of this lemma will be given in the next subsection. As is easily seen from its proof,
the above estimate remains to hold if Γ depends on t smoothly; in other words, the constant C
can be chosen uniformly as Γ varies. Applying the above estimate to Γt[g

ε[vε]; Γ̄0], 0 < t ≤ T ,
we obtain

∫

Ω
G(x, y, t − s) exp

(
− λ

|d ε(y, s)|
ε

)
dy

=

∫

|d ε|<r0

+

∫

|d ε|≥r0

G(x, y, t − s) exp
(
− λ

|d ε(y, s)|
ε

)
dy

= O
( ε√

t − s

)
+ O

(
e−λr0/ε

)

= O
( ε√

t − s

)
.

It follows from this and (1.163) that

|w(x, t)| = O
(
ε

∫ t

0

1√
t − s

ds
)

+ O(ε) + C ′‖v̄0 − ṽ0‖L∞(Ω), (1.165)

hence
vε(x, t) − ṽε(x, t) = O(ε) + O(‖v̄0 − ṽ0‖L∞(Ω)). (1.166)

Key estimate. Finally we compare the two step functions ũε := ũ[gε[vε]; Γ̄0] and ũ[g[vε]; Γ̃0].
By (1.148), we have ‖gε[vε]− g[vε]‖L∞ = O(ε). In the following we assume dH(Γ̃0, Γ̄0) ≤ δ, so
that, by Proposition 1.7.4, we have

sup
0≤t≤T

dH(Γt[g
ε[vε]; Γ̄0], Γt[g[vε]; Γ̃0]) = O(ε) + O(dH(Γ̃0, Γ̄0)).
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This means that ũ[gε[vε]; Γ̄0] and ũ[g[vε]; Γ̃0] differ only in a thin neighborhood of Γt[g[vε]; Γ̃0]
of thickness O(ε) + O(dH(Γ̃0, Γ̄0)). Arguing as above and applying Lemma 1.7.5 again, we see
that

‖V
[
ũ[gε[vε]; Γ̄0]; ṽ0

]
− V

[
ũ[g[vε]; Γ̃0]; ṽ0

]
‖L∞(Ω×[0,T ]) = O(ε) + O(dH(Γ̃0, Γ̄0)).

Combining this and (1.166), we obtain

‖ vε − V
[
ũ[g[vε]; Γ̃0]; ṽ0

]
‖L∞(Ω×[0,T ]) = O(ε) + O(dH(Γ̃0, Γ̄0)) + O(‖v̄0 − ṽ0‖L∞(Ω)). (1.167)

Conclusion. In what follows we will show that (1.167) implies our desired estimate (1.154).
Our proof is based on a contraction mapping argument, but this argument applies only to a
certain time interval [0, T1] ⊂ [0, T ]. Once we obtain (1.154) for the interval [0, T1], we will
repeat the same argument to derive (1.154) on an interval [T1, 2T1], and this “step by step”
procedure eventually yields (1.154) on the whole interval [0, T ]. To make the above strategy
work, we first introduce some notation. Choose a constant C∗ > 0 sufficiently large so that
the estimate (1.153) holds with C = C∗ for all small ε > 0, and that ‖ṽ‖

C1+ϑ,
1+ϑ

2
≤ C∗. We

fix such C∗ > 0 and define

U := { v ∈ C1+ϑ, 1+ϑ
2 (Ω × [0, T ]), ‖v‖

C1+ϑ,
1+ϑ

2
≤ C∗ },

Uδ := { v ∈ U , ‖v − ṽ‖L∞ ≤ δ }.

Also we choose C∗ > 0 large enough so that v ∈ U implies that g[v](x, t, u) satisfies (1.142).
We remark that Uδ is a closed subset of L∞(Ω × [0, T ]), since ‖vn‖

C1+ϑ,
1+ϑ

2
≤ C∗ and vn → v

in L∞ implies ‖v‖
C1+ϑ,

1+ϑ
2

≤ C∗. Consequently Uδ is a complete metric space with respect to

the L∞ topology.
Fix ṽ0 and Γ̃0. If δ > 0 is chosen small enough, then by Proposition 1.7.4 the classical

solution of (P 0
g,Γ̃0

) with g = g[v] exists on the entire interval [0, T ]; we denote it by Γt[g[v]; Γ̃0] as

before. This determines the step function ũ[g[v]; Γ̃0], which then determines V
[
ũ[g[v]; Γ̃0]; ṽ0

]
.

Combining these, we can define a mapping

Φ : v 7→ V
[
ũ[g[v]; Γ̃0]; ṽ0

]

from Uδ into L∞(Ω× [0, T ]). Roughly speaking, Φ is a contraction mapping on a time interval
[0, T1]. More precisely, the following result holds.

Lemma 1.7.6. Φ is a Lipschitz continuous map from Uδ into L∞(Ω× [0, T ]). Moreover, there
exist constants T1 > 0 and θ ∈ (0, 1) such that

‖Φ[v1] − Φ[v2]‖L∞(QT1
) ≤ θ ‖v1 − v2‖L∞(QT1

), (1.168)

for any v1, v2 ∈ Uδ.

The proof of this lemma will be given in the next subsection. We are now ready to prove the
key estimate (1.154).

• 1st step: We first put ū0 = u0, v̄0 = ṽ0 = v0, Γ̄0 = Γ̃0 = Γ0. It follows that

uε := uε[gε[vε]; ū0] = uε[gε[vε];u0] = uε,

vε := V [uε; v̄0] = V [uε; v0] = vε,
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so that (1.167) yields
‖vε − Φ[vε]‖L∞(Ω×[0,T1]) = O(ε). (1.169)

In other words, vε is almost a fixed point of the mapping Φ by an error margin of O(ε).
Note that ṽ is a fixed point of the map Φ:

ṽ = Φ[ ṽ ].

These two observations are sufficient to conclude that ṽ and vε are close to each other,
by O(ε), until time T1. Indeed, by the above lemma, we have, working on QT1

,

‖Φ[vε] − ṽ‖L∞ = ‖Φ[vε] − Φ[ṽ]‖L∞ ≤ θ‖vε − ṽ‖L∞ .

On the other hand,

‖Φ[vε] − ṽ‖L∞ ≥ ‖vε − ṽ‖L∞ − ‖vε − Φ[vε]‖L∞ .

Combining these, we obtain

‖vε − ṽ‖L∞ ≤ 1

1 − θ
‖vε − Φ[vε] ‖L∞ . (1.170)

In view of (1.169), this proves (1.154) on Ω× [0, T1]. Hence, conditions (1.152) to (1.154)
are satisfied, at least until time t = T1; we can then apply our results for the single
equation to system (RD ε) and obtain, by Corollary 1.1.7,

dH(ΓT1
, Γε

T1
) = O(ε). (1.171)

• 2nd step: We take T1 as a new initial moment and put ū0 = uε(·, T1), v̄0 = vε(·, T1),

ṽ0 = ṽ(·, T1), Γ̄0 = Γε
T1

:= {x ∈ Ω, uε(x, T1) = a}, Γ̃0 = ΓT1
. It follows that

uε := uε[gε[vε]; ū0] = uε[gε[vε];uε(·, T1)] = uε,

vε := V [uε; v̄0] = V [uε; vε(·, T1)] = vε.

By the result of the first step, we have

‖v̄0 − ṽ0‖L∞(Ω) = ‖vε(·, T1) − ṽ(·, T1)‖L∞(Ω) = O(ε).

Moreover, by (1.171),
dH(Γ̃0, Γ̄0) = dH(ΓT1

, Γε
T1

) = O(ε),

so that (1.167) leads to

‖vε − Φ[vε]‖L∞(Ω×[T1,2T1]) = O(ε).

Then, using the same arguments as in the first step, we obtain estimate (1.154) on
Ω × [T1, 2T1], and also an analogue of estimate (1.171) at time t = 2T1; repeating this
procedure a finite number of times we obtain estimate (1.154) on Ω × [0, T ].

Hence, all the conditions (1.152) to (1.154) are verified so that Theorems 1.1.12 and 1.1.14,
along with their corollaries, follow directly from Theorems 1.1.4, 1.1.6 and their corollaries.
This completes the proof of the main results for (RD ε).
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1.7.5 Proof of Lemmas 1.7.5 and 1.7.6

Proof of Lemma 1.7.5. We first show that
∫

Γ
G(x, y, t) dSy ≤ C√

t
for x ∈ Ω, 0 < t ≤ T. (1.172)

It suffices to prove this estimate on a small interval [0, t0], since the estimate for the remaining
interval [t0, T ] will follow by simply choosing a large constant C. Note also that, for t suffi-
ciently small, G(x, y, t) is well approximated by the fundamental solution on the entire space
R

N :

G0(x, y, t) :=
1

(4πDt)N/2
exp

(
− |x − y|2

4Dt

)
.

In particular, there exists a constant C∗ > 0 such that

0 < G(x, y, t) ≤ C∗ G0(x, y, t) for x, y ∈ Ω, 0 < t ≤ t0;

for this result, we refer to [35], Chapter I, Section IV.2. Thus it suffices to prove (1.172) for
G0 instead of G.

Given x ∈ Ω, let x0 be the point on Γ that is closest to x, and let ν(x0) be the outward
normal to Γ at x0. Then x − x0 = d(x)ν(x0). Define

Ỹ := { y ∈ R
N , y · ν(x0) = 0 }, Y0 := span〈ν(x0)〉,

where · denotes the Euclidean inner product in R
N and span〈w〉 the line spanned by the vector

w. This gives an orthogonal decomposition R
N = Ỹ ⊕Y0, and x0+Ỹ is the tangent hyperplane

of Γ at x0. Since Γ is smooth, it is expressed locally as the graph of a map defined on a subset
of Ỹ . More precisely, there exist a smooth map

h : Ỹ → Y0,

and a constant δ > 0 such that h(0) = 0, ∇h(0) = 0, and that

S := {x0 + ỹ + h(ỹ) , ỹ ∈ Ỹ , |ỹ| < δ } ⊂ Γ,

dist(x0, Γ \ S) ≥ δ.
(1.173)

Now we decompose the integral (1.172) for G0 as

∫

Γ
G0(x, y, t) dSy =

1

(4πDt)N/2

(∫

S
+

∫

Γ\S
exp

(
− |x − y|2

4Dt

)
dSy

)
.

Since |x − y| ≥ |d(x)| for every y ∈ Γ and since

|x − y| ≥
∣∣ |x − x0| − |y − x0|

∣∣ =
∣∣ |d(x)| − |y − x0|

∣∣,

we have

|x − y| ≥ |d(x)| +
∣∣ |d(x)| − |y − x0|

∣∣
2

≥ |y − x0|
2

.

This and (1.173) yield

|x − y| ≥ δ

2
for y ∈ Γ \ S.
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Consequently, ∫

Γ\S
exp

(
− |x − y|2

4Dt

)
dSy ≤ e−δ2/16Dt |Γ|, (1.174)

where |Γ| denotes the total area of Γ.
On the other hand, for each y ∈ S, we can express y − x0 as

y − x0 = ỹ + h(ỹ) (ỹ ∈ Ỹ , h(ỹ) ∈ Y0),

and Ỹ can be identified with R
N−1. Thus

∫

S
exp

(
− |x − y|2

4Dt

)
dSy

=

∫

|ỹ|<δ
exp

(
− |x − x0 − ỹ − h(ỹ)|2

4Dt

)√
1 + |∇h(ỹ)|2 dỹ.

Since h(0) = 0 and ∇h(0) = 0, there exists a constant C1 > 0 such that

|∇h(ỹ)| ≤ C1|ỹ| for |ỹ| < δ. (1.175)

Note also that the orthogonality (x − x0 − h(ỹ))⊥ ỹ implies

|x − x0 − ỹ − h(ỹ)|2 = |x − x0 − h(ỹ)|2 + |ỹ|2 ≥ |ỹ|2.

Combining these, we obtain

∫

S
exp

(
− |x − y|2

4Dt

)
dSy ≤

∫

|ỹ|<δ
exp

(
− |ỹ|2

4Dt

)√
1 + C2

1 |ỹ|2 dỹ

= t(N−1)/2

∫

|z|<
√

t
−1

δ
e−|z|2/4D

√
1 + t C2

1 |z|2 dz,

where z := ỹ/
√

t. Observe that, as t → 0,
∫

|z|<
√

t
−1

δ
e−|z|2/4D

√
1 + t C2

1 |z|2 dz →
∫

RN−1

e−|z|2/4D dz = (4Dπ)(N−1)/2.

Consequently,

1

(4πDt)N/2

∫

S
exp

(
− |x − y|2

4Dt

)
dSy ≤ 1√

4πDt
+ o

( 1√
t

)
.

Combining this and (1.174), we obtain
∫

Γ
G0(x, y, t) dSy = O

( 1√
t

)
+ O

( 1

(
√

t )N
e−δ2/16Dt

)
= O

( 1√
t

)
.

Since Γ is a smooth compact hypersurface, its curvatures are bounded. Therefore, the constants
δ and C1 that appear in (1.174), (1.175) can be chosen independent of the choice of x0 ∈ Γ.
Hence the above O(1/

√
t) estimate is uniform with respect to the choice of x ∈ Ω. This proves

the estimate (1.172).
Now, choose a sufficiently small constant r0 > 0 such that the signed distance function

d(x) is smooth in the region { d(x) < 2r0 }. For each r ∈ [−r0, r0], we define a hypersurface
Γ(r) by

Γ(r) := {x ∈ Ω, d(x) = r }.
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Then the curvatures of Γ(r) are uniformly bounded as r varies, which implies that there exists
some constant C > 0 such that

∫

Γ(r)
G(x, y, t) dSy ≤ C√

t
for 0 < t ≤ T, r ∈ [−r0, r0].

The estimate (1.164) now follows by integrating in r.

Proof of Lemma 1.7.6. For each t ∈ [0, T ], we put Qt := Ω × [0, t]. Given v1, v2 ∈ Uδ, we
have, in view of (1.148),

‖g[v1] − g[v2]‖L∞(Qt×[α−,α+]) ≤ K1‖v1 − v2‖L∞(Qt),

where
K1 = max

(u,v)∈R
|∂vf1(u, v)|,

with R being the rectangle defined in subsection 1.7.1. By Proposition 1.7.4,

dH( Γt[g[v1]; Γ̃0], Γt[g[v2]; Γ̃0] ) ≤ K(eMt − 1) ‖g[v1] − g[v2]‖L∞(Qt×[α−,α+]).

Combining these, we obtain

dH( Γt[g[v1]; Γ̃0], Γt[g[v2]; Γ̃0] ) ≤ KK1(e
Mt − 1) ‖v1 − v2‖L∞(Qt) . (1.176)

Now we define the step functions ũ1 := ũ[g[v1]; Γ̃0] and ũ2 := ũ[g[v2]; Γ̃0]. Since

|ũ1 − ũ2| ≤ α+ − α−,

and since the two step functions differ only in the region enclosed between the two surfaces
Γt[ g[v1]; Γ̃0] and Γt[ g[v2]; Γ̃0], the estimates (1.162) and (1.164) imply that there exists a
constant B1 > 0 such that

‖V [ũ1; ṽ0] − V [ũ2; ṽ0]‖L∞(Qt) ≤ B1

∫ t

0

dH( Γs[g[v1]; Γ̃0], Γs[g[v2]; Γ̃0] )√
t − s

ds.

Combining this and (1.176), we obtain

‖Φ[v1] − Φ[v2]‖L∞(Qt) ≤ C1

∫ t

0

‖v1 − v2‖L∞(Qs)√
t − s

ds, (1.177)

where C1 = B1KK1(e
MT − 1). In particular,

‖Φ[v1] − Φ[v2]‖L∞(QT1
) ≤ C1

∫ T1

0

1√
T1 − s

ds ‖v1 − v2‖L∞(QT1
)

= θ ‖v1 − v2‖L∞(QT1
),

where θ := 2C1

√
T1 < 1 for T1 small enough. This proves Lemma 1.7.6.



Chapter 2

The singular limit of a

chemotaxis-growth system with

general initial data

We consider a system of partial differential equations which is a model for an aggregation of
amoebae subjected to three competitive effects: diffusion, growth and chemotaxis, i.e. the
tendency of the specie to move towards higher gradients of a chemical substance. The system
involves a small parameter ε > 0 and a cubic nonlinearity whose stable equilibria are 0 and 1.
We consider rather general initial data u0 that are independent of ε. We denote by (uε, vε)
the solution. First we prove a generation of interface result namely that, after a time of order
ε2| ln ε| , uε develops a thin transition layer that separates the regions {uε ≈ 1} and {uε ≈ 0}.
Then, we make an analysis of the motion of interface: in a much slower time scale, the layer

starts to propagate. As a consequence, as ε → 0, the solution uε converges to 0 in Ω
(0)
t and

to 1 in Ω
(1)
t , where Ω

(0)
t and Ω

(1)
t are sub-domains separated by an interface Γt, whose motion

is driven by its mean curvature and a nonlocal drift term. We also show that the thickness of
the transition layer is of order ε.
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2.1 Introduction

Let us start by a short description of life-cycles of the cellular slime molds (amoebae). The
cells feed and divide until exhaustion of food supply. Then, the amoebae aggregate to form a
multicellular assembly called a slug. It migrates to a new location, then forms into a fruiting
body, consisting of a stalk formed from dead amoebae and spores on the top (fruiting bodies
that are visible to the naked eye are often referred to as mushrooms). Under suitable conditions
of moisture, temperature, spores release new amoebae. The cycle then repeats itself.

It is known that the aggregation stage is mediated by chemotaxis, i.e. the tendency of
biological individuals to direct their movements according to certain chemicals in their envi-
ronment. The chemotactant (acrasin) is produced by the amoebae themselves and degraded
by an extracellular enzyme (acrasinase). Moreover, acrasin and acrasinase react to form a
complex whose concentration is assumed to be at a steady state. For more details on the
biological background, we refer to [53], [62] or [38].

So the amoebae have a random motion analogous to diffusion coupled with an oriented
chemotactic motion in the direction of a positive gradient of acrasin. In 1970, Keller and Segel
[53] proposed the following system as a model to describe such movements leading to slime
mold aggregation:

(KS)

{
ut = ∇ · (D2∇u) −∇ · (D1∇v),

vt = Dv∆v + f(v)u − k(v)v,

inside a closed region Ω. Here, u, respectively v, denotes the concentration of amoebae,
respectively of acrasin; f(v) is the production rate of acrasin, and k(v) the degradation rate
of acrasin (due to acrasinase); D2 = D2(u, v), respectively D1 = D1(u, v), measures the
vigor of the random motion of the amoebae, respectively the strength of the influence of the
acrasin gradient on the flow of amoebae; Dv is a positive and constant diffusion coefficient.
The problem is completed by initial data u0 and v0 and, assuming that there is now flow of
the amoebae or the acrasin across the boundary ∂Ω, by homogeneous Neumann boundary
conditions

∇u · ν = ∇v · ν = 0 on ∂Ω × (0,+∞),

ν being the unit outward normal to ∂Ω.
An often used simplified model is obtained as follows. By some receptor mechanism, cells

do not measure the gradient of v but of some χ(v), with a sensitive function χ satisfying
χ′ > 0, so that D1(u, v) = uχ′(v). By taking D2, f and k as constant functions and using
some rescaling arguments, the system reduces to

(KS ′)

{
ut = du∆u −∇ · (u∇χ(v)),

τvt = dv∆v + u − γv,

with du, dv, τ and γ some positive constants.
Many analysis of the Keller-Segel model for the aggregation process were proposed. Chemo-

taxis having some features of “negative diffusion”, Nanjundiah [62] suggests that the whole
population concentrates in a single point; we refer to this phenomenon as the chemotactic
collapse. In mathematical terms, this means formation of a Dirac delta-type singularity in
finite time. As a matter of fact, it turns out that the possibility of collapse depends upon the
space dimension. In particular it never happens in the one-dimensional case whereas in two
space dimensions, assuming radially symmetric situations, it only occurs if the total amoebae
number is sufficiently large. The problem of global existence and blow up of solutions has been
intensively studied; we refer in particular to [26], [67], [55], [49], [61], [43], [44].
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In a different framework, Mimura and Tsujikawa [57], consider aggregating pattern-dyna-
mics arising in the following chemotaxis model with growth:

(MT ε)

{
ut = ε2∆u − ε∇ · (u∇χ(v)) + f(u),

τvt = ∆v + u − γv,

where ε > 0 is a small parameter. The function f is cubic, 0 and 1 being its stable zeros,
and satisfies

∫ 1
0 f > 0. In this model, the population is subjected to three competing effects:

diffusion, growth and chemotaxis. The diffusion rate and the chemotactic rate are both very
small compared with the growth rate. They observe that, in a first stage, internal layers —
which describe the boundaries of aggregating regions — develop; in a second stage, the motion
of the aggregating regions — which can be described by that of internal layers — takes place.
The balance of the three effects (diffusion, growth and chemotaxis) makes the aggregation
mechanism possible. Taking the limit ε → 0, they formally derive the equation for the motion
of the limit interface and study the stability of radially symmetric equilibrium solutions.

The purpose of this Chapter is to extend some of the results obtained by Bonami, Hilhorst,
Logak and Mimura [17] about the singular limit of a variant of system (MT ε), where the second
equation is elliptic (τ = 0):

(P ε)





ut = ∆u −∇ · (u∇χ(v)) +
1

ε2
fε(u) in Ω × (0, +∞),

0 = ∆v + u − γv in Ω × (0, +∞),

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω × (0, +∞),

u(x, 0) = u0(x) in Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 2), ν is the Euclidian unit normal vector

exterior to ∂Ω. We assume that γ is a positive constant and that the nonlinearityfε is given
by

fε(u) = u(1 − u)(u − 1

2
) + εαu(1 − u)

=: f(u) + εg(u),

(2.1)

with α > 0. The role of the function g is to slightly break the balance of the two stable zeros.
The sensitive function χ is smooth and satisfies χ′(v) > 0 for v > 0.

We also assume that the initial datum satisfies u0 ∈ C2(Ω) and u0 ≥ 0. Throughout the
present Chapter, we fix a constant C0 > 1 that satisfies

‖u0‖C0(Ω) + ‖∇u0‖C0(Ω) + ‖∆u0‖C0(Ω) ≤ C0. (2.2)

Furthermore we define the “initial interface” Γ0 by

Γ0 := {x ∈ Ω, u0(x) = 1/2}.

We suppose that Γ0 is a C2+ϑ hypersurface without boundary, for a ϑ ∈ (0, 1), such that, n
being the Euclidian unit normal vector exterior to Γ0,

Γ0 ⊂⊂ Ω and ∇u0(x) · n(x) 6= 0 if x ∈ Γ0, (2.3)

u0 > 1/2 in Ω
(1)
0 , u0 < 1/2 in Ω

(0)
0 , (2.4)

where Ω
(1)
0 denotes the region enclosed by Γ0 and Ω

(0)
0 the region enclosed between ∂Ω and Γ0.

The existence of a unique smooth solution to Problem (P ε) is proved in [17], Lemma 4.2:
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Lemma 2.1.1. There exists ε0 > 0 such that, for all ε ∈ (0, ε0), there exists a unique solution
(uε, vε) to Problem (P ε) on Ω × [0,+∞), with 0 ≤ uε ≤ C0 on QT .

To study the interfacial behavior associated with this model, it is useful to consider a
formal asymptotic limit of Problem (P ε) as ε → 0. Then the limit solution u0(x, t) will be a
step function taking the value 1 on one side of the interface, and 0 on the other side. This
sharp interface, which we will denote by Γt, obeys a law of motion, which can be obtained by
formal analysis (see Section 2.2):

(P 0)





Vn = −(N − 1)κ +
∂χ(v0)

∂n
+

√
2α on Γt,

Γt

∣∣
t=0

= Γ0

−∆v0 + γv0 = u0 in Ω × (0, T ],

∂v0

∂ν
= 0 on ∂Ω × (0, T ],

where Vn is the normal velocity of Γt in the exterior direction, κ the mean curvature at each

point of Γt. We set QT := Ω × [0, T ] and for each t ∈ [0, T ], we define Ω
(1)
t as the region

enclosed by the hypersurface Γt and Ω
(0)
t as the region enclosed between ∂Ω and Γt. The step

function u0 is determined straightforwardly from Γt by

u0(x, t) =

{
1 in Ω

(1)
t

0 in Ω
(0)
t

for t ∈ [0, T ]. (2.5)

By a contraction fixed-point argument in suitable Hölder spaces, the well-posedness, locally in
time, of the free boundary Problem (P 0) is proved in [17], Theorem 2.1:

Lemma 2.1.2. There exists a time T > 0 such that (P 0) has a unique solution (v0, Γ) on
[0, T ], with

Γ =
⋃

0≤t≤T

(Γt × {t}) ∈ C2+ϑ, 2+ϑ
2 ,

and v0|Γ ∈ C2+ϑ, 2+ϑ
2 .

Bonami, Hilhorst, Logak and Mimura [17] have proved a motion of interface property;
more precisely, for some prepared initial data, they show that (uε, vε) converges to (u0, v0)
as ε → 0, on the interval (0, T ). So the evolution of Γt determines the aggregating patterns
of the individuals. Here we consider the case of arbitrary initial data. Our first main result,
Theorem 2.1.3, describes the profile of the solution after a very short initial period. It asserts
that, given a virtually arbitrary initial datum u0, the solution uε quickly becomes close to 1 or
0, except in a small neighborhood of the initial interface Γ0, creating a steep transition layer
around Γ0 (generation of interface). The time needed to develop such a transition layer, which
we will denote by tε, is of order ε2| ln ε|. The theorem then states that the solution uε remains
close to the step function u0 on the time interval [tε, T ] (motion of interface). Moreover, as is
clear from the estimates in the theorem, the “thickness” of the transition layer is of order ε.

Theorem 2.1.3 (Generation and motion of interface). Let η ∈ (0, 1/4) be arbitrary and
set

µ = f ′(1/2) = 1/4.
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Then there exist positive constants ε0 and C such that, for all ε ∈ (0, ε0), for all tε ≤ t ≤ T ,
where tε = µ−1ε2| ln ε|, we have

uε(x, t) ∈





[−η, 1 + η] if x ∈ NCε(Γt)

[−η, η] if x ∈ Ω
(0)
t \ NCε(Γt)

[1 − η, 1 + η] if x ∈ Ω
(1)
t \ NCε(Γt),

(2.6)

where Nr(Γt) := {x ∈ Ω, dist(x,Γt) < r} denotes the r-neighborhood of Γt.

Corollary 2.1.4 (Convergence). As ε → 0, the solution (uε, vε) converges to (u0, v0) ev-

erywhere in
⋃

0<t≤T (Ω
(0 or 1)
t × {t}).

The next theorem deals with the relation between the set Γε
t := {x ∈ Ω, uε(x, t) = 1/2}

and the solution Γt of Problem (P 0).

Theorem 2.1.5 (Error estimate). There exists C > 0 such that

Γε
t ⊂ NCε(Γt) for 0 ≤ t ≤ T. (2.7)

Corollary 2.1.6 (Convergence of interface). There exists C > 0 such that

dH(Γε
t ,Γt) ≤ Cε for 0 ≤ t ≤ T, (2.8)

where
dH(A,B) := max{sup

a∈A
d(a,B), sup

b∈B
d(b, A)}

denotes the Hausdorff distance between two compact sets A and B. Consequently, Γε
t → Γt as

ε → 0, uniformly in 0 ≤ t ≤ T , in the sense of Hausdorff distance.

As far as we know, the best thickness estimate in the literature was of order ε| ln ε| (see
[20], [21]). We refer to a forthcoming article [51] in which an order ε estimate is established
for a Lotka-Volterra competition-diffusion system.

The organization of this Chapter is as follows. Section 2.2 is devoted to preliminaries: we
recall the method of asymptotic expansions to derive the equation of the interface motion; we
also recall a relaxed comparison principle used in [17]. In Section 2.3, we prove a generation of
interface property. The corresponding sub- and super-solutions are constructed by modifying
the solution of the ordinary differential equation ut = ε−2f(u), obtained by neglecting diffusion
and chemotaxis. In Section 2.4, in order to study the motion of interface, we construct a pair
of sub- and super-solutions that rely on a related one-dimensional stationary problem. Finally,
in Section 2.5, by fitting the two pairs of sub- and super-solutions into each other, we prove
Theorem 2.1.3, Theorem 2.1.5 and theirs corollaries.

2.2 Some preliminaries

2.2.1 Formal derivation

A formal derivation of the equation of interface motion was given in [16]. Nevertheless we
briefly present it in a slightly different way: we use arguments similar to those in [63] where
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the first two terms of the asymptotic expansion determine the interface equation in (P 0),
which can be regarded as the singular limit of (P ε) as ε → 0. The observations we make here
will help the rigorous analysis in later sections, in particular for the construction of sub- and
super-solutions for the study of the motion of interface in Section 2.4.

Let (uε, vε) be the solution of Problem (P ε). We recall that Γε
t := {x ∈ Ω, uε(x, t) = 1/2}

is the interface at time t and call Γε :=
⋃

t≥0(Γ
ε
t ×{t}) the interface. Let Γ =

⋃
0≤t≤T (Γt×{t})

be the solution of the limit geometric motion problem and let d̃ be the signed distance function
to Γ defined by:

d̃(x, t) =

{
dist(x,Γt) for x ∈ Ω

(0)
t

− dist(x,Γt) for x ∈ Ω
(1)
t ,

(2.9)

where dist(x,Γt) is the distance from x to the hypersurface Γt in Ω. We remark that d̃ = 0 on
Γ and that |∇d̃| = 1 in a neighborhood of Γ. We then define

Q
(1)
T =

⋃

0<t≤T

(Ω
(1)
t × {t}), Q

(0)
T =

⋃

0<t≤T

(Ω
(0)
t × {t}).

We assume that the solution uε has the expansions

uε(x, t) = {0 or 1} + εu1(x, t) + · · · (2.10)

away from the interface Γ (the outer expansion) and

uε(x, t) = U0(x, t,
d̃(x, t)

ε
) + εU1(x, t,

d̃(x, t)

ε
) + · · · (2.11)

near Γ (the inner expansion). Here, the functions Uk(x, t, z), k = 0, 1, · · · , are defined for
x ∈ Ω, t ≥ 0, z ∈ R. The stretched space variable ξ := d̃(x, t)/ε gives exactly the right spatial
scaling to describe the rapid transition between the regions {uε ≈ 1} and {uε ≈ 0}. We use
the normalization conditions

U0(x, t, 0) = 1/2, Uk(x, t, 0) = 0,

for all k ≥ 1. The matching conditions between the outer and the inner expansion are given
by

U0(x, t,+∞) = 0, Uk(x, t,+∞) = 0,

U0(x, t,−∞) = 1, Uk(x, t,−∞) = 0,
(2.12)

for all k ≥ 1. We also assume that the solution vε has the expansion

vε(x, t) = v0(x, t) + εv1(x, t) + · · · (2.13)

in Ω × (0, T ).

We now substitute the inner expansion (2.11) and the expansion (2.13) into the parabolic
equation of (P ε) and collect the ε−2 terms. We omit the calculations and, using |∇d̃| = 1
near Γt, the normalization and matching conditions, we deduce that U0(x, t, z) = U0(z) is the
unique solution of the stationary problem

{
U0

′′ + f(U0) = 0

U0(−∞) = 1, U0(0) = 1/2, U0(+∞) = 0.
(2.14)
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This solution represents the first approximation of the profile of a transition layer around the
interface observed in the stretched coordinates. Recalling that the nonlinearity is given by
f(u) = u(1 − u)(u − 1/2), we have

U0(z) =
1

2

(
1 − tanh

z

2
√

2

)
=

e−z/
√

2

1 + e−z/
√

2
. (2.15)

We claim that U0 has the following properties.

Lemma 2.2.1. There exist positive constants C and λ such that the following estimates hold.

0 < U0(z) ≤ Ce−λ|z| for z ≥ 0,

0 < 1 − U0(z) ≤ Ce−λ|z| for z ≤ 0.

In addition, U0 is a strictly decreasing function and

|U0
′(z)| + |U0

′′(z)| ≤ Ce−λ|z| for z ∈ R.

Next we collect the ε−1 terms. Since U0 depends only on the variable z, we have ∇U0z = 0
which, combined with the fact that |∇d̃| = 1 near Γt, yields

U1zz + f ′(U0)U1 = U0
′(d̃t − ∆d̃ + ∇d̃ · ∇χ(v0)) − g(U0), (2.16)

a linearized problem for (2.14). The solvability condition for the above equation, which can
be seen as a variant of the Fredholm alternative, plays the key role for deriving the equation
of interface motion. It is is given by

∫

R

[
U0

′2(z)(d̃t − ∆d̃ + ∇d̃ · ∇χ(v0))(x, t) − g(U0(z))U0
′(z)

]
dz = 0,

for all (x, t) ∈ QT . By the definition of g in (2.1), we compute

∫

R

g(U0(z))U0
′(z)dz = −

∫ 1

0
g(u)du = −α/6,

whereas the equality (2.15) yields

∫

R

U0
′2(z)dz =

1√
2

∫ +∞

0

u

1 + u4
du = 1/6

√
2.

Combining the above expressions, we obtain

(
d̃t − ∆d̃ + ∇d̃ · ∇χ(v0)

)
(x, t) = −

√
2α. (2.17)

Since ∇d̃ (= ∇x d̃(x, t)) coincides with the outward normal unit vector to the hypersurface Γt,
we have d̃t(x, t) = −Vn, where Vn is the normal velocity of the interface Γt. It is also known
that the mean curvature κ of the interface is equal to ∆d̃/(N − 1). Thus the above equation
reads as

Vn = −(N − 1)κ +
∂χ(v0)

∂n
+
√

2α on Γt, (2.18)
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that is the equation of interface motion in (P 0). Summarizing, under the assumption that the
solution uε of Problem (P ε) satisfies

uε →
{

1 in Q
(1)
T

0 in Q
(0)
T

as ε → 0,

we have formally showed that the boundary Γt between Ω
(0)
t and Ω

(1)
t moves according to the

law (2.18).

One can note that, using the equality (2.15), we clearly have
√

2αU0
′ + g(U0) ≡ 0 so that,

substituting (2.17) into (2.16) yields U1 ≡ 0.

2.2.2 A comparison principle

The definition of sub- and super-solutions is the one proposed in [17].

Definition 2.2.2. Let (u−
ε , u+

ε ) be two smooth functions with u−
ε ≤ u+

ε on QT and

∂u−
ε

∂ν
≤ 0 ≤ ∂u+

ε

∂ν
on ∂Ω × (0, T ).

By definition, (u−
ε , u+

ε ) is a pair of sub- and super-solutions if, for any vε which satisfies





u−
ε ≤ −∆vε + γvε ≤ u+

ε on QT ,

∂vε

∂ν
= 0 on ∂Ω × (0, T ),

(2.19)

we have

Lvε [u−
ε ] ≤ 0 ≤ Lvε [u+

ε ],

where the operator Lvε is defined by

Lvε [φ] = φt − ∆φ + ∇ · (φ∇χ(vε)) − 1

ε2
fε(φ).

As proved in [17], the following comparison principle holds.

Proposition 2.2.3. Let a pair of sub- and super-solutions be given. Assume that, for all
x ∈ Ω,

u−
ε (x, 0) ≤ u0(x) ≤ u+

ε (x, 0).

Then, if we denote by (uε, vε) the solution of Problem (P ε), the function uε satisfies, for all
(x, t) ∈ QT ,

u−
ε (x, t) ≤ uε(x, t) ≤ u+

ε (x, t).

2.3 Generation of interface

In this section we study the rapid formation of internal layers in a neighborhood of Γ0 = {x ∈
Ω, u0(x) = 1/2} within a very short time interval of order ε2| ln ε|. In the sequel, we shall
always assume that 0 < η < 1/4. The main result of this section is the following.
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Theorem 2.3.1. Let η be arbitrary and define µ as the derivative of f(u) at the unstable
equilibrium u = 1/2, that is

µ = f ′(1/2) = 1/4. (2.20)

Then there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0),

• for all x ∈ Ω,
− η ≤ uε(x, µ−1ε2| ln ε|) ≤ 1 + η, (2.21)

• for all x ∈ Ω such that |u0(x) − 1
2 | ≥ M0ε, we have that

if u0(x) ≥ 1/2 + M0ε then uε(x, µ−1ε2| ln ε|) ≥ 1 − η, (2.22)

if u0(x) ≤ 1/2 − M0ε then uε(x, µ−1ε2| ln ε|) ≤ η. (2.23)

The above theorem will be proved by constructing a suitable pair of sub and super-solutions.

2.3.1 The perturbed bistable ordinary differential equation

We first consider a slightly perturbed nonlinearity:

fδ(u) = f(u) + δ,

where δ is any constant. For |δ| small enough, this function is still cubic and bistable; more
precisely, we claim that it has the following properties.

Lemma 2.3.2. Let δ0 > 0 be small enough. Then, for all δ ∈ (−δ0, δ0),

• fδ has exactly three zeros, namely α−(δ) < a(δ) < α+(δ). More precisely,

fδ(u) = (u − α−(δ))(α+(δ) − u)(u − a(δ)), (2.24)

and there exists a positive constant C such that

|α−(δ)| + |a(δ) − 1/2| + |α+(δ) − 1| ≤ C|δ|. (2.25)

• We have that

fδ is strictly positive in (−∞, α−(δ)) ∪ (a(δ), α+(δ)),

fδ is strictly negative in (α−(δ), a(δ)) ∪ (α+(δ), +∞).
(2.26)

• Set
µ(δ) := f ′

δ(a(δ)) = f ′(a(δ)),

then there exists a positive constant, which we denote again by C, such that

|µ(δ) − µ| ≤ C|δ|. (2.27)

In order to construct a pair of sub and super-solutions for Problem (P ε) we define Y (τ, ξ; δ)
as the solution of the ordinary differential equation

{
Yτ (τ, ξ; δ) = fδ(Y (τ, ξ; δ)) for τ > 0,

Y (0, ξ; δ) = ξ,
(2.28)

for δ ∈ (−δ0, δ0) and ξ ∈ (−2C0, 2C0), where C0 has been chosen in (2.2). We present below
basic properties of Y .
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Lemma 2.3.3. We have Yξ > 0, for all ξ ∈ (−2C0, 2C0) \ {α−(δ), a(δ), α+(δ)}, all δ ∈
(−δ0, δ0) and all τ > 0. Furthermore,

Yξ(τ, ξ; δ) =
fδ(Y (τ, ξ; δ))

fδ(ξ)
.

Proof. We differentiate (2.28) with respect to ξ to obtain

{
Yξτ = Yξf

′(Y ),

Yξ(0, ξ; δ) = 1,

which is integrated as follows:

Yξ(τ, ξ; δ) = exp
[ ∫ τ

0
f ′(Y (s, ξ; δ))ds

]
> 0. (2.29)

Then differentiating (2.28) with respect to τ , we obtain

{
Yττ = Yτf

′(Y ),

Yτ (0, ξ; δ) = fδ(ξ),

which in turn implies

Yτ (τ, ξ; δ) = fδ(ξ) exp
[ ∫ τ

0
f ′(Y (s, ξ; δ))ds

]
,

which enables to conclude.

We define a function A(τ, ξ; δ) by

A(τ, ξ; δ) =
f ′(Y (τ, ξ; δ)) − f ′(ξ)

fδ(ξ)
. (2.30)

Lemma 2.3.4. We have, for all ξ ∈ (−2C0, 2C0) \ {α−(δ), a(δ), α+(δ)}, all δ ∈ (−δ0, δ0) and
all τ > 0,

A(τ, ξ; δ) =

∫ τ

0
f ′′(Y (s, ξ; δ))Yξ(s, ξ; δ)ds.

Proof. We differentiate the equality of Lemma 2.3.3 with respect to ξ to obtain

Yξξ(τ, ξ; δ) = A(τ, ξ; δ)Yξ(τ, ξ; δ). (2.31)

Then differentiating (2.29) with respect to ξ yields

Yξξ = Yξ

∫ τ

0
f ′′(Y (s, ξ; δ))Yξ(s, ξ; δ)ds.

These two last results complete the proof of Lemma 2.3.4.

Next we prove estimates on the growth of Y , A and theirs derivatives. We first consider
the case where the initial value ξ is far from the stable equilibria, more precisely when it lies
between η and 1 − η.

Lemma 2.3.5. Let η be arbitrary. Then there exist positive constants δ0 = δ0(η), C̃1 = C̃1(η),
C̃2 = C̃2(η) and C3 = C3(η) such that, for all δ ∈ (−δ0, δ0), for all τ > 0,
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• if ξ ∈ (a(δ), 1 − η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval
(a(δ), 1 − η), we have

C̃1e
µ(δ)τ ≤ Yξ(τ, ξ; δ) ≤ C̃2e

µ(δ)τ , (2.32)

and
|A(τ, ξ; δ)| ≤ C3(e

µ(δ)τ − 1); (2.33)

• if ξ ∈ (η, a(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval (η, a(δ)),
(2.32) and (2.33) hold as well.

Proof. We take ξ ∈ (a(δ), 1 − η) and suppose that for s ∈ (0, τ), Y (s, ξ; δ) remains in the
interval (a(δ), 1 − η). Integrating the equality

Yτ (s, ξ; δ)

fδ(Y (s, ξ; δ))
= 1

from 0 to τ and using the change of variable q = Y (s, ξ; δ) leads to
∫ Y (τ,ξ;δ)

ξ

dq

fδ(q)
= τ. (2.34)

Moreover, the equality in Lemma 2.3.3 enables to write

lnYξ(τ, ξ; δ) =

∫ Y (τ,ξ;δ)

ξ

f ′(q)
fδ(q)

dq

=

∫ Y (τ,ξ;δ)

ξ

[f ′(a(δ))

fδ(q)
+

f ′(q) − f ′(a(δ))

fδ(q)

]
dq

= µ(δ)τ +

∫ Y (τ,ξ;δ)

ξ
hδ(q)dq,

(2.35)

where

hδ(q) =
f ′(q) − f ′(a(δ))

fδ(q)
.

In view of (2.27), respectively (2.25), we can choose δ0 = δ0(η) > 0 small enough so that, for
all δ ∈ [−δ0, δ0], we have µ(δ) ≥ µ/2 > 0, respectively (a(δ), 1 − η] ⊂ (a(δ), α+(δ)). Since

hδ(q) →
f ′′

δ (a(δ))

f ′
δ(a(δ))

=
f ′′(a(δ))

f ′(a(δ))
as q → a(δ),

we see that the function (q, δ) 7→ hδ(q) is continuous in the compact region { |δ| ≤ δ0, a(δ) ≤
q ≤ 1 − η }. It follows that |hδ(q)| is bounded by a constant H = H(η) as (q, δ) varies in this
region. Since |Y (τ, ξ; δ) − ξ| takes its values in the interval [0, 1 − η − a(δ)] ⊂ [0, 1], it follows
from (2.35) that

µ(δ)τ − H ≤ lnYξ(τ, ξ; δ) ≤ µ(δ)τ + H,

which, in turn, proves (2.32). Next Lemma 2.3.4 and (2.32) yield

|A(τ, ξ; δ)| ≤ ‖f ′′‖L∞(0,1)

∫ τ

0
C̃2e

µ(δ)sds

≤
‖f ′′‖L∞(0,1)C̃2

µ(δ)
(eµ(δ)τ − 1)

≤ 2

µ
‖f ′′‖L∞(0,1)C̃2(e

µ(δ)τ − 1),
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which completes the proof of (2.33). The case where ξ and Y (τ, ξ; δ) are in (η, a(δ)) is similar
and omitted.

Corollary 2.3.6. Let η be arbitrary. Then there exist positive constants δ0 = δ0(η), C1 =
C1(η) and C2 = C2(η) such that, for all δ ∈ (−δ0, δ0), for all τ > 0,

• if ξ ∈ (a(δ), 1 − η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval
(a(δ), 1 − η), we have

C1e
µ(δ)τ (ξ − a(δ)) ≤ Y (τ, ξ; δ) − a(δ) ≤ C2e

µ(δ)τ (ξ − a(δ)), (2.36)

• if ξ ∈ (η, a(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval (η, a(δ)),
we have

C2e
µ(δ)τ (ξ − a(δ)) ≤ Y (τ, ξ; δ) − a(δ) ≤ C1e

µ(δ)τ (ξ − a(δ)). (2.37)

Proof. In view of (2.27), respectively (2.25), we can choose δ0 = δ0(η) > 0 small enough so
that, for all δ ∈ [−δ0, δ0], we have µ(δ) ≥ µ/2 > 0, respectively (a(δ), 1 − η] ⊂ (a(δ), α+(δ)).
Since

fδ(q)

q − a(δ)
→ µ(δ) as q → a(δ),

it follows that (q, δ) 7→ fδ(q)/(q − a(δ)) is a strictly positive and continuous function in the
compact region { |δ| ≤ δ0, a(δ) ≤ q ≤ 1 − η }, which insures the existence of constants
B1 = B1(η) > 0 and B2 = B2(η) > 0 such that, for all q ∈ (a(δ), 1 − η), all δ ∈ (−δ0, δ0),

B1(q − a(δ)) ≤ fδ(q) ≤ B2(q − a(δ)). (2.38)

We write the inequalities (2.38) for q = Y (τ, ξ; δ) ∈ (a(δ), 1 − η) and then for q = ξ ∈
(a(δ), 1 − η), which, together with Lemma 2.3.3, implies that

B1

B2
(Y (τ, ξ; δ) − a(δ)) ≤ (ξ − a(δ))Yξ(τ, ξ; δ) ≤

B2

B1
(Y (τ, ξ; δ) − a(δ)).

In view of (2.32), this completes the proof of inequalities (2.36). The proof of (2.37) is similar
and omitted.

We now present estimates in the case that the initial value ξ is smaller than η or larger
than 1 − η.

Lemma 2.3.7. Let η and M > 0 be arbitrary. Then there exist positive constants δ0 =
δ0(η, M) and C4 = C4(M) such that, for all δ ∈ (−δ0, δ0),

• if ξ ∈ [1− η, 1 + M ], then, for all τ > 0, Y (τ, ξ; δ) remains in the interval [1− η, 1 + M ]
and

|A(τ, ξ; δ)| ≤ C4τ for τ > 0 ; (2.39)

• if ξ ∈ [−M, η], then, for all τ > 0, Y (τ, ξ; δ) remains in the interval [−M, η] and (2.39)
holds as well.

Proof. Since the two statements can be treated in the same way, we will only prove the former.
The fact that Y (τ, ξ; δ), the solution of the ordinary differential equation (2.28), remains in
the interval [1−η, 1+M ] directly follows from the bistable properties of fδ, or, more precisely,
from the sign conditions fδ(1 − η) > 0, fδ(1 + M) < 0 valid if δ0 = δ0(η, M) is small enough.
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To prove (2.39), suppose first that ξ ∈ [α+(δ), 1 + M ]. By the above arguments, Y (τ, ξ; δ)
remains in this interval. Moreover f ′ is negative in this interval. Hence, it follows from (2.29)
that Yξ(τ, ξ; δ) ≤ 1. We then use Lemma 2.3.4 to deduce that

|A(τ, ξ; δ)| ≤ ‖f ′′‖L∞(−M,1+M)τ =: C4τ.

The case ξ ∈ [1 − η, α+(δ)] being similar, this completes the proof of the lemma.

Now we choose the constant M in the above lemma sufficiently large so that [−2C0, 2C0] ⊂
[−M, 1 + M ], and fix M hereafter. Therefore the constant C4 is fixed as well. Using the fact
that τ 7→ τ(eµ(δ)τ − 1)−1 is uniformly bounded for δ ∈ (−δ0, δ0), with δ0 small enough (see
(2.27)), and for τ > 0, one can easily deduce from (2.33) and (2.39) the following general
estimate.

Lemma 2.3.8. Let η be arbitrary and let C0 be the constant defined in (2.2). Then there exist
positive constants δ0 = δ0(η), C5 = C5(η) such that, for all δ ∈ (−δ0, δ0), all ξ ∈ (−2C0, 2C0)
and all τ > 0,

|A(τ, ξ; δ)| ≤ C5(e
µ(δ)τ − 1).

2.3.2 Construction of sub and super-solutions

We now use Y to construct a pair of sub- and super-solutions for the proof of the generation
of interface theorem. We set

w±
ε (x, t) = Y

( t

ε2
, u0(x) ± ε2r(±εG,

t

ε2
);±εG

)
, (2.40)

where the constant G is defined by

G = sup
u∈[−2C0,2C0]

|g(u)|,

and the function r(δ, τ) is given by

r(δ, τ) = C6(e
µ(δ)τ − 1).

For simplicity, we make the following additional assumption:

∂u0

∂ν
= 0 on ∂Ω. (2.41)

In the general case where (2.41) does not necessary hold, we have to slightly modify w±
ε near

the boundary ∂Ω. This will be discussed in the next remark.

Lemma 2.3.9. There exist positive constants ε0 and C6 such that for all ε ∈ (0, ε0), the
functions w−

ε and w+
ε are respectively sub- and super-solutions for Problem (P ε), in the domain

{
(x, t) ∈ QT , x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|

}
.

Proof. First, (2.41) implies the homogeneous Neumann boundary condition

∂w±
ε

∂ν
= 0 on ∂Ω × (0, +∞).
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Let vε be such that 



w−
ε ≤ −∆vε + γvε ≤ w+

ε

∂vε

∂ν
= 0.

(2.42)

According to Definition 2.2.2, what we have to show is

Lvε [w+
ε ] := (w+

ε )t − ∆w+
ε + ∇ · (w+

ε ∇χ(vε)) − 1

ε2
fε(w

+
ε ) ≥ 0.

Let C6 be a positive constant which does not depend on ε. If ε0 is sufficiently small, we note
that ±εG ∈ (−δ0, δ0) and that, in the range 0 ≤ t ≤ µ−1ε2| ln ε|,

|ε2C6(e
µ(±εG)t/ε2 − 1)| ≤ ε2C6(ε

−µ(±εG)/µ − 1) ≤ C0,

which implies that
u0(x) ± ε2r(±εG, t/ε2) ∈ (−2C0, 2C0).

These observations allow us to use the results of the previous subsection with τ = t/ε2,
ξ = u0(x) + ε2r(εG, t/ε2) and δ = εG. In particular, setting F1 := ‖f ′‖L∞(−2C0,2C0), this
implies, using (2.29), that

e−F1T ≤ Yξ ≤ eF1T .

Straightforward computations yield

Lvε [w+
ε ] =

1

ε2
Yτ + C6µ(εG)eµ(εG)t/ε2

Yξ − ∆u0Yξ − |∇u0|2Yξξ

+ Yξ∇u0 · ∇χ(vε) + Y ∆χ(vε) − 1

ε2
f(Y ) − 1

ε
g(Y ),

and then, in view of the ordinary differential equation (2.28), εG playing the role of δ,

Lvε [w+
ε ] =

1

ε

[
G − g(Y )

]
+ Yξ

[
C6µ(εG)eµ(εG)t/ε2 − ∆u0

−Yξξ

Yξ
|∇u0|2 + ∇u0 · ∇χ(vε) +

Y

Yξ
∆χ(vε)

]
.

By the definition of G the first term is positive. Now, using the choice of C0 in (2.2), the fact
that Yξξ/Yξ = A and Lemma 2.3.8, we obtain, for a C5 independent of ε,

Lvε [w+
ε ] ≥ Yξ

[
C6µ(εG)eµ(εG)t/ε2 − C0 − C5(e

µ(εG)t/ε2 − 1)C2
0

− C0|∇χ(vε)| − 2C0e
F1T |∆χ(vε)|

]
.

Moreover, the inequalities in (2.42) can be written as −∆vε+γvε = hε, with −2C0 ≤ hε ≤ 2C0,
so that the standard theory of elliptic equations gives a uniform bound M for |vε|, |∇vε| and
|∆vε|. Hence, using the smoothness of χ, we have a uniform bound M ′ for |∇χ(vε)| and
|∆χ(vε)|. It follows that

Lvε [w+
ε ] ≥ Yξ

[
(C6µ(εG) − C5C

2
0 )eµ(εG)t/ε2 − C0 + C5C

2
0 − C0M

′ − 2C0e
F1T M ′

]
.

Hence, in view of (2.27), we have, for ε0 small enough (recall that Yξ > 0),

Lw+
ε ≥ Yξ

[
(C6

1

2
µ − C5C

2
0 ) − C0 − C0M

′ − 2C0e
F1T M ′

]
≥ 0,
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for C6 large enough, so that w+
ε is a super-solution for Problem (P ε). We omit the proof that

w−
ε is a sub-solution.

Now, since w±
ε (x, 0) = Y (0, u0(x);±εG) = u0(x), the comparison principle set in Proposi-

tion 2.2.3 asserts that, for all x ∈ Ω, for all 0 ≤ t ≤ µ−1ε2| ln ε|,

w−
ε (x, t) ≤ uε(x, t) ≤ w+

ε (x, t). (2.43)

Remark 2.3.10. In the more general case where (2.41) is not necessarily valid, one can
proceed in the following way: in view of (2.3) and (2.4) there exist positive constants d1 and
ρ such that u0(x) ≤ 1/2 − ρ if d(x, ∂Ω) ≤ d1. Let χ be a smooth cut-off function defined on
[0,+∞) such that 0 ≤ χ ≤ 1, χ(0) = χ′(0) = 0 and χ(z) = 1 for z ≥ d1. Then define

u+
0 (x) = χ(d(x, ∂Ω))u0(x) + (1 − χ(d(x, ∂Ω))(1/2 − ρ),

u−
0 (x) = χ(d(x, ∂Ω))u0(x) + (1 − χ(d(x, ∂Ω))min

x∈Ω
u0(x).

Clearly, u−
0 ≤ u0 ≤ u+

0 , and both u±
0 satisfy (2.41). Now we set

w̃±
ε (x, t) = Y

( t

ε2
, u±

0 (x) ± ε2r(±εG,
t

ε2
);±εG

)
.

Then the same argument as in Lemma 2.3.9 shows that (w̃−
ε , w̃+

ε ) is a pair of sub and super-
solutions for Problem (P ε). Furthermore, since w̃−

ε (x, 0) = u−
0 (x) ≤ u0(x) ≤ u+

0 (x) =
w̃+

ε (x, 0), Proposition 2.2.3 asserts that, for all x ∈ Ω, for all 0 ≤ t ≤ µ−1ε2| ln ε|, we have
w̃−

ε (x, t) ≤ uε(x, t) ≤ w̃+
ε (x, t). ¤

2.3.3 Proof of Theorem 2.3.1

In order to prove Theorem 2.3.1 we first present a key estimate on the function Y after a time
of order τ ∼ | ln ε|.
Lemma 2.3.11. Let η be arbitrary; there exist positive constants ε0 = ε0(η) and C7 = C7(η)
such that, for all ε ∈ (0, ε0),

• for all ξ ∈ (−2C0, 2C0),

− η ≤ Y (µ−1| ln ε|, ξ;±εG) ≤ 1 + η, (2.44)

• for all ξ ∈ (−2C0, 2C0) such that |ξ − 1
2 | ≥ C7ε, we have that

if ξ ≥ 1/2 + C7ε then Y (µ−1| ln ε|, ξ;±εG) ≥ 1 − η, (2.45)

if ξ ≤ 1/2 − C7ε then Y (µ−1| ln ε|, ξ;±εG) ≤ η. (2.46)

Proof. We first prove (2.45). In view of (2.25), we have, for C7 large enough, 1/2 + C7ε ≥
a(±εG) + 1

2C7ε, for all ε ∈ (0, ε0), with ε0 small enough. Hence for ξ ≥ 1/2 + C7ε, as long as
Y (τ, ξ;±εG) has not reached 1 − η, we can use (2.36) to deduce that

Y (τ, ξ;±εG) ≥ a(±εG) + C1e
µ(±εG)τ (ξ − a(±εG))

≥ a(±εG) + 1
2C1C7εe

µ(±εG)τ

≥ 1
2 − εCG + 1

2C1C7εe
µ(±εG)τ

≥ 1 − η
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provided that

τ ≥ τ ε :=
1

µ(±εG)
ln

1/2 − η + CGε

C1C7ε/2
.

To complete the proof of (2.45) we must choose C7 so that µ−1| ln ε| − τ ε ≥ 0. A simple
computation shows that

µ−1| ln ε| − τ ε =
µ(±εG) − µ

µ(±εG)µ
| ln ε| − 1

µ(±εG)
ln

1/2 − η + CGε

C1/2

+
1

µ(±εG)
lnC7.

Thanks to (2.27), as ε → 0, the first term above is of order ε| ln ε| and the second one of order
1. Hence, for C7 large enough, the quantity µ−1| ln ε| − τ ε is positive, for all ε ∈ (0, ε0), with
ε0 small enough. The proof of (2.46) is similar and omitted.

Next we prove (2.44). First note that, by taking ε0 small enough, the stable equilibria of
f±εG, namely α−(±εG) and α+(±εG), are in [−η, 1+η]. Hence, f±εG being a bistable function,
if we leave from a ξ ∈ [−η, 1+η] then Y (τ, ξ;±εG) will remain in the interval [−η, 1+η]. Now
suppose that 1 + η ≤ ξ ≤ 2C0 (note that this work is useless if 2C0 < 1 + η). We check below
that Y (µ−1| ln ε|, ξ;±εG) ≤ 1 + η. As long as 1 + η ≤ Y ≤ 2C0, (2.28) leads to the inequality
Yτ ≤ f(1 + η) + εG ≤ 1

2f(1 + η) < 0, for ε0 = ε0(η) small enough. By integration from 0 to τ ,
it follows that

Y (τ, ξ;±εG) ≤ ξ + 1
2f(1 + η)τ

≤ 2C0 + 1
2f(1 + η)τ

≤ 1 + η,

provided that

τ ≥ 2C0 − 1 − η

−f(1 + η)/2
,

and a fortiori for τ = µ−1| ln ε|, which completes the proof of (2.44).

We are now ready to prove Theorem 2.3.1. By setting t = µ−1ε2| ln ε| in (2.43), we obtain

Y
(
µ−1| ln ε|, u0(x) − ε2r(−εG, µ−1| ln ε|);−εG

)

≤ uε(x, µ−1ε2| ln ε|) ≤ Y
(
µ−1| ln ε|, u0(x) + ε2r(εG, µ−1| ln ε|);+εG

)
. (2.47)

In view of (2.27),

lim
ε→0

µ − µ(±εG)

µ
ln ε = 0, (2.48)

so that, for ε0 small enough, we have

ε2r(±εG, µ−1| ln ε|) = C6ε(ε
(µ−µ(±εG))/µ − ε) ∈ (

1

2
C6ε,

3

2
C6ε).

It follows that u0(x)± ε2r(±εG, µ−1| ln ε|) ∈ (−2C0, 2C0). Hence the result (2.21) of Theorem
2.3.1 is a direct consequence of (2.44) and (2.47).

Next we prove (2.22). We take x ∈ Ω such that u0(x) ≥ 1/2 + M0ε so that

u0(x) − ε2r(−εG, µ−1| ln ε|) ≥ 1/2 + M0ε − 3
2C6ε

≥ 1/2 + C7ε,
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if we choose M0 large enough. Using (2.47) and (2.45) we obtain (2.22), which completes the
proof of Theorem 2.3.1.

2.4 Motion of interface

We have seen in Section 2.3 that, after a very short time, the solution uε develops a clear
transition layer. In the present section, we show that it persists and that its law of motion is
well approximated by the interface equation in (P 0) obtained by formal asymptotic expansions
in subsection 2.2.1.

More precisely, take the first term of the formal asymptotic expansion (2.11) as a formal
expansion of the solution:

uε(x, t) ≈ ũε(x, t) := U0

( d̃(x, t)

ε

)
, (2.49)

where U0 is defined in (2.14). The right-hand side is a function having a well-developed
transition layer, and its interface lies exactly on Γt. We show that this function is a very good
approximation of the solution; more precisely:

If uε becomes very close to ũε at some time moment t = t0, then it stays close to
ũε for the rest of time. Consequently, Γε

t evolves roughly like Γt.

To that purpose, we will construct a pair of sub- and super-solutions u−
ε and u+

ε for Problem
(P ε) by slightly modifying ũε. It then follows that, if the solution uε satisfies

u−
ε (x, t0) ≤ uε(x, t0) ≤ u+

ε (x, t0),

for some t0 ≥ 0, then
u−

ε (x, t) ≤ uε(x, t) ≤ u+
ε (x, t),

for t0 ≤ t ≤ T . As a result, since both u+
ε , u−

ε stay close to ũε, the solution uε also stays close
to ũε for t0 ≤ t ≤ T .

2.4.1 Construction of sub- and super-solutions

To begin with we present mathematical tools which are essential for the construction of sub
and super-solutions.

A modified signed distance function. Rather than working with the usual signed distance
function d̃, defined in (2.9), we define a “cut-off signed distance function” d as follows. Choose
d0 > 0 small enough so that d̃(·, ·) is smooth in the tubular neighborhood of Γ

{(x, t) ∈ QT , |d̃(x, t)| < 3d0},

and such that
dist(Γt, ∂Ω) > 4d0 for all t ∈ [0, T ]. (2.50)

Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =





s if |s| ≤ 2d0

−3d0 if s ≤ −3d0

3d0 if s ≥ 3d0.
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We define the cut-off signed distance function d by

d(x, t) = ζ
(
d̃(x, t)

)
. (2.51)

Note that |∇d| = 1 in the region {(x, t) ∈ QT , |d(x, t)| < 2d0} and that, in view of the above
definition, ∇d = 0 in a neighborhood of ∂Ω. Note also that the equation of motion interface
in (P 0), which is equivalent to (2.17), is now written as

dt = ∆d −∇d · ∇χ(v0) −
√

2α on Γt. (2.52)

Construction. We look for a pair of sub- and super-solutions u±
ε for Problem (P ε) of the

form

u±
ε (x, t) = U0

(d(x, t) ∓ εp(t)

ε

)
± q(t), (2.53)

where U0 is the solution of (2.14), and where

p(t) = −e−βt/ε2

+ eLt + K,

q(t) = σ(βe−βt/ε2

+ ε2LeLt).
(2.54)

Note that q = σε2 pt. Let us remark that the construction (2.53) is more precise than the
several procedure of only taking a zeroth order term of the form U0, since we have shown
in the formal derivation that the first order term U1 vanishes in (2.11). It is clear from the
definition of u±

ε that

lim
ε→0

u±
ε (x, t) =

{
1 for all (x, t) ∈ Q

(1)
T

0 for all (x, t) ∈ Q
(0)
T .

(2.55)

The main result of this section is the following.

Lemma 2.4.1. There exist positive constants β, σ with the following properties. For any
K > 1, we can find positive constants ε0 and L such that, for any ε ∈ (0, ε0), the functions
u−

ε and u+
ε are respectively sub- and super-solutions for Problem (P ε) in the range x ∈ Ω,

0 ≤ t ≤ T .

2.4.2 Proof of Lemma 2.4.1

First, since ∇d = 0 in a neighborhood of ∂Ω, we have the homogeneous Neumann boundary
condition

∂u±
ε

∂ν
= 0 on ∂Ω × [0, T ].

Let vε be such that (2.19) holds. We have to show that

Lvε [u+
ε ] := (u+

ε )t − ∆u+
ε + ∇u+

ε · ∇χ(vε) + u+
ε ∆χ(vε) − 1

ε2
fε(u

+
ε ) ≥ 0,

the proof of inequality Lvε [u−
ε ] ≤ 0 following by the same arguments.
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Computation of Lvε [u+
ε ]

By straightforward computations we obtain the following terms:

(u+
ε )t = U0

′(
dt

ε
− pt) + qt,

∇u+
ε = U0

′∇d

ε
,

∆u+
ε = U0

′′ |∇d|2
ε2

+ U0
′∆d

ε
,

where the function U0, as well as its derivatives, is taken at the point
(
d(x, t) − εp(t)

)
/ε. We

also use expansions of the reaction terms:

f(u+
ε ) = f(U0) + qf ′(U0) +

1

2
q2f ′′(θ),

g(u+
ε ) = g(U0) + qg′(ω),

where θ(x, t) and ω(x, t) are some functions satisfying U0 < θ < u+
ε , U0 < ω < u+

ε . Combining
the above expressions with equation (2.14) and the fact that

√
2αU0

′ + g(U0) ≡ 0, we obtain

Lvε [u+
ε ] = E1 + · · · + E5,

where:

E1 = − 1

ε2
q[f ′(U0) +

1

2
qf ′′(θ)] − U0

′pt + qt,

E2 =
U0

′′

ε2
(1 − |∇d|2),

E3 =
U0

′

ε
(dt − ∆d + ∇d · ∇χ(v0) +

√
2α),

E4 = −1

ε
qg′(ω),

E5 =
U0

′

ε
∇d · ∇(χ(vε) − χ(v0)) + u+

ε ∆χ(vε).

In order to estimate the terms above, we first present some useful inequalities. As f ′(0) =
f ′(1) = −1/2, we can find strictly positive constants b and m such that

if U0(z) ∈ [0, b] ∪ [1 − b, 1] then f ′(U0(z)) ≤ −m. (2.56)

On the other hand, since the region {z ∈ R |U0(z) ∈ [b, 1 − b] } is compact and since U0
′ < 0

on R, there exists a constant a1 > 0 such that

if U0(z) ∈ [b, 1 − b] then U0
′(z) ≤ −a1. (2.57)

We then define
F = sup

−1≤z≤2
|f(z)| + |f ′(z)| + |f ′′(z)|, (2.58)

β =
m

4
, (2.59)
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and choose σ that satisfies

0 < σ ≤ min (σ0, σ1, σ2), (2.60)

where

σ0 :=
a1

m + F
, σ1 :=

1

β + 1
, σ2 :=

4β

F (β + 1)
.

Hence, combining (2.56) and (2.57), we obtain, using that σ ≤ σ0,

− U0
′(z) − σf ′(U0(z)) ≥ 4σβ for −∞ < z < ∞. (2.61)

Now let K > 1 be arbitrary. In what follows we will show that Lvε [u+
ε ] ≥ 0 provided that

the constants ε0 and L are appropriately chosen. From now on, we suppose that the following
inequality is satisfied:

ε2
0LeLT ≤ 1 . (2.62)

Then, given any ε ∈ (0, ε0), since σ ≤ σ1, we have 0 ≤ q(t) ≤ 1, hence, recalling that
0 < U0 < 1,

− 1 ≤ u±
ε (x, t) ≤ 2 . (2.63)

We first estimate the term E1

A direct computation gives

E1 =
β

ε2
e−βt/ε2

(I − σβ) + LeLt(I + ε2σL),

where

I = −U0
′ − σf ′(U0) −

σ2

2
f ′′(θ)(βe−βt/ε2

+ ε2LeLt).

In virtue of (2.61) and (2.63), we obtain

I ≥ 4σβ − σ2

2
F (β + ε2LeLT ).

Then, in view of (2.62), using that σ ≤ σ2, we have

I ≥ 2σβ.

Consequently, the following inequality holds.

E1 ≥ σβ2

ε2
e−βt/ε2

+ 2σβLeLt =:
C1

ε2
e−βt/ε2

+ C1
′LeLt.

As for the term E2

First, in the points where where |d(x, t)| < d0, we have that |∇d| = 1 so that E2 = 0. Next
we consider the points where |d(x, t)| ≥ d0. We deduce from Lemma 2.2.1 that:

|E2| ≤ C

ε2
(1 + ‖∇d‖2

∞)e−λ|d+εp|/ε

≤ C

ε2
(1 + ‖∇d‖2

∞)e−λ(d0/ε−|p|).
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In view of the definition of p in (2.54), we have that 0 < K − 1 ≤ p ≤ eLT + K, and suppose
from now that the following assumption holds:

eLT + K ≤ d0

2ε0
. (2.64)

Then
d0

ε
− |p| ≥ d0

2ε
, so that

|E2| ≤ C

ε2
(1 + ‖∇d‖2

∞)e−λd0/(2ε)

≤ C2 :=
16C

(eλd0)2
(1 + ‖∇d‖2

∞).

Next we consider the term E3

We recall that

dt − ∆d + ∇d · ∇χ(v0) +
√

2α = 0 on Γt = {x ∈ Ω, d(x, t) = 0}.

Since v0 is of class C1+ϑ′, 1+ϑ′

2 , for any ϑ′ ∈ (0, 1), and since the interface Γt is of class C2+ϑ, 2+ϑ
2 ,

the functions ∇d, ∆d, dt and ∇χ(v0) are Lipschitz continuous near Γt. It then follows, from
the mean value theorem applied separately on both sides of Γt, that there exists N0 > 0 such
that:

|(dt − ∆d + ∇d · ∇χ(v0) +
√

2α)(x, t)| ≤ N0|d(x, t)| for all (x, t) ∈ QT .

Applying Lemma 2.2.1 we deduce that

|E3| ≤ N0C
|d(x, t)|

ε
e−λ|d(x,t)/ε+p(t)|

≤ N0C maxy∈R |y|e−λ|y+p(t)|

≤ N0C max
(
|p(t)|, 1

λ

)

≤ N0C
(
|p(t)| + 1

λ

)
.

Taking the expression of p into account, we see that |p(t)| ≤ eLt + K, which implies

|E3| ≤ C3(e
Lt + K) + C3

′,

where C3 := N0C and C3
′ := N0C/λ.

The term E4

Substituting the expression for q and setting G1 := sup{|g′(z)|;−1 ≤ z ≤ 2} leads to

|E4| ≤ σG1

(β

ε
e−βt/ε2

+ εLeLt
)

≤ C4

ε
e−βt/ε2

+ C4
′εLeLt.
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We continue with the term E5

This term requires a more delicate analysis. We need a precise estimate of vε − v0. We recall
that v0 satisfies −∆v0 + γv0 = u0, with u0 a step function discontinuous when crossing the
interface.

Lemma 2.4.2. There exists a positive constant CG such that, for all (x, t) ∈ QT ,

(
|vε| + |∇vε| + |∆vε|

)
(x, t) ≤ CG, (2.65)

(
|vε − v0| + |∇d · ∇(vε − v0)|

)
(x, t) ≤ CG(εp(t) + q(t)). (2.66)

We postpone the proof of this lemma and pursue the proof of Lemma 2.4.1. Using the smooth-
ness of χ and (2.65), we obtain a uniform bound CG

′ for ∆χ(vε). Moreover, we can write

∇d · ∇
(
χ(vε) − χ(v0)

)
= χ′(vε)∇d · ∇(vε − v0) +

(
χ′(vε) − χ′(v0)

)
∇d · ∇v0. (2.67)

Since v0 is of class C1+ϑ′, 1+ϑ′

2 , for any ϑ′ ∈ (0, 1), there exists a constant, which we denote
again by CG, such that

‖v0‖L∞(QT ) + ‖∇v0‖L∞(QT ) ≤ CG,

which, combined with (2.67), yields

|∇d · ∇
(
χ(vε) − χ(v0)

)
| ≤ ‖χ′‖∞|∇d · ∇(vε − v0)| + |vε − v0| ‖χ′′‖∞‖∇d‖∞CG,

where the L∞-norms of χ′ and χ′′ are considered on the interval (−CG, CG). It follows from
the above inequality and (2.66) that there exists a constant CG

′′ such that, for all (x, t) ∈ QT ,

|∇d · ∇
(
χ(vε) − χ(v0)

)
|(x, t) ≤ CG

′′(εp(t) + q(t)).

Hence, using (2.63) and the above estimates, we obtain,

|E5| ≤
C

ε
CG

′′(εp(t) + q(t)) + 2CG
′.

Then, substituting the expressions for p and q, we easily obtain positive constants C5, C5
′ and

C5
′′ such that

|E5| ≤ C5 +
C5

′

ε
e−βt/ε2

+ C5
′′(1 + εL)eLt.

Completion of the proof

Collecting the above estimates of E1—E5 yields

Lvε [u+
ε ] ≥

(C1

ε2
− C4 + C5

′

ε

)
e−βt/ε2

+
(
L(C1

′ − εC4
′ − εC5

′′) − C3 − C5
′′
)
eLt − C7,

where C7 := C2 + KC3 + C3
′ + C5. Now, we set

L :=
1

T
ln

d0

4ε0
,
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which, for ε0 small enough, validates assumptions (2.62) and (2.64). If ε0 is chosen sufficiently
small (i.e. L large enough), C1/ε2 − (C4 + C5

′)/ε is positive, C1
′ − εC4

′ − εC5
′′ ≥ 1

2C1
′, and

Lvε [u+
ε ] ≥

[
1
2LC1

′ − C3 − C5
′′]eLt − C7

≥ 1
4LC1

′ − C7

≥ 0.

The proof of Lemma 2.4.1 is now completed, with the choice of the constants β, σ as in (2.59),
(2.60).

2.4.3 Proof of Lemma 2.4.2

Lemma 2.4.2 is very inspired by Lemma 4.9 in [17]. We present the proof for the convenience
of the reader. Since our pair of sub- and super-solutions is different from the one in [17], we
need to perform some minor changes. First we give a useful estimate on “shifted U0”.

Lemma 2.4.3. For all a ∈ R, all z ∈ R, we have

|U0(z + a) − χ]−∞,0](z)| ≤ Ce−λ|z+a| + χ[−a,a](z)

Proof. Let us give the proof for a > 0. We distinguish three cases and use the estimates of
Lemma 2.2.1. For z ≤ −a, we have |U0(z + a) − 1| ≤ Ce−λ|z+a|. For −a < z ≤ 0, we have
|U0(z + a)− 1| ≤ |U0(z + a)|+ 1 ≤ Ce−λ|z+a| + 1. For z > 0, we have |U0(z + a)| ≤ Ce−λ|z+a|.
We proceed in the same way for a < 0.

We turn to the proof of Lemma 2.4.2. First, we recall that vε is such that (2.19) holds;
hence, in view of (2.63), the estimate (2.65) is a direct consequence of the standard theory of
elliptic equations. Next we prove (2.66). The function w = wε := vε − v0 is solution of





−∆w + γw = h on QT ,

∂w

∂ν
= 0 on ∂Ω × (0, T ),

(2.68)

with u−
ε − u0 ≤ h = hε ≤ u+

ε − u0, where u0 is the step function defined by u0(x, t) =
χ{d(x,t)≤0}. The key idea of the proof is the fact that h is exponentially small with respect to
ε, except possibly in a thin neighborhood of Γt of width of order εp(t). More precisely, from
the definitions of u±

ε in (2.53) and from the above lemma for z = d(x, t)/ε and a = ±p(t), we
deduce that

|h(x, t)| ≤ C(e−λ|d(x,t)/ε+p(t)| + e−λ|d(x,t)/ε−p(t)|) + χ{|d(x,t)|≤εp(t)} + q(t). (2.69)

By linearity, we successively consider equation (2.68) with the various terms appearing in the
right-hand side of (2.69). By the standard elliptic estimates, the solution w of (2.68) satisfies

|w(x, t)| + |∇w(x, t)| ≤ C ′ sup
y∈Ω

|h(y, t)|, (2.70)

which gives the term CGq(t) that appears in the right-hand side of inequality (2.66) for h(y, t) =
q(t). We now suppose that the function h satisfies one of the three following assumptions:

(H1) |h(y, t)| ≤ χ{|d(y, t)| ≤ εp(t)}

(H±
2 ) |h(y, t)| ≤ exp

(
− λ|d(y, t)

ε
± p(t)|

)
,
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and write

h(y, t) = h(y, t)χ{|d(y,t)|≤d0} + h(y, t)χ{|d(y,t)|>d0}.

We first consider the term h(y, t)χ{|d(y,t)|>d0}. In virtue of (2.64), we have

0 < K − 1 ≤ p(t) ≤ d0/2ε0. (2.71)

Under assumption (H1), it follows that h is supported in {|d(y, t)| ≤ d0/2}, which implies
h(y, t)χ{|d(y,t)|>d0} = 0. Moreover, under assumption (H±

2 ), using again (2.71),

|h(y, t)|χ{|d(y,t)|>d0} ≤ exp
[
− λ(d0/ε − p(t))

]

≤ exp(−λd0/2ε)

≤ 2

λd0e
ε

≤ 2

λd0e

1

K − 1
εp(t).

Thus, under either of the assumptions (H1) or (H±
2 ), the estimate (2.66) — for the term

h(y, t)χ{|d(y,t)|>d0} — directly follows from inequality (2.70).

From now on, we assume that h is supported in {|d(y, t)| ≤ d0}. We have that

w(x, t) =

∫

|d(y,t)|≤d0

G(x, y)h(y, t)dy,

and

∇d(x, t) · ∇w(x, t) =

∫

|d(y,t)|≤d0

(∇xG(x, y) · ∇d(x, t))h(y, t)dy,

where G is the Green’s function associated to the homogeneous Neumann boundary value
problem on Ω for the operator −∆ + γ. More precisely, G(x, y) = gγ(|x − y|) + Hγ(x, y),
where gγ(|x− y|) is the Green’s function associated to the operator −∆ + γ on R

N and where
Hγ(x, y) is smooth for x and y far away from ∂Ω. It is known that gγ is the Bessel function
defined by

gγ(r) = cN

∫ +∞

0
e−

r2

2s e−γ s
2 s

−N+2

2
ds

s
,

with cN > 0 a normalization constant. We use the following estimates (see [17]):

|G(x, y)| ≤





C

|y − x|N−2
for N ≥ 3

C| ln |y − x|| for N = 2,

(2.72)

|∇xG(x, y) · ∇d(x, t)| ≤ C|d(y, t) − d(x, t)|
|y − x|N +

C

|y − x|N−2
for N ≥ 2. (2.73)

This last inequality follows from

|∇xG(x, y) · ∇d(x, t)| ≤ C|∇d(x, t) · (y − x)|
|y − x|N ,
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and from d(y, t)−d(x, t) = ∇d(x, t) ·(y−x)+O(|y−x|2). Now, under respectively assumptions
(H1), (H±

2 ), we define a function h̃ = h̃ε on R × [0, T ], respectively by

h̃(r, t) :=





χ{|r| ≤ εp(t)}

exp
(
− λ|r

ε
± p(t)|

)
.

(2.74)

Note that |h(y, t)| ≤ h̃
(
d(y, t), t

)
. Moreover, recalling (2.71), straightforward computations

show that, under either of the assumptions (H1) or (H±
2 ), there exists C̃ > 0 such that

0 ≤
∫ d0

−d0

h̃(r, t)dr ≤ C̃εp(t). (2.75)

Finally we have

|w(x, t)| + |∇d(x, t) · ∇w(x, t)| ≤ C[A(x, t) + B(x, t)], (2.76)

with

A(x, t) =





∫

|d(y,t)|≤d0

2h̃
(
d(y, t), t

)

|y − x|N−2
dy if N ≥ 3

∫

|d(y,t)|≤d0

h̃
(
d(y, t), t

)[
1 + | ln |y − x||

]
dy if N = 2,

and

B(x, t) =

∫

|d(y,t)|≤d0

|d(y, t) − d(x, t)|h̃
(
d(y, t), t

)

|y − x|N dy.

We now distinguish two cases according to the distance from x to the interface.

• If dist(x,Γt) ≥ 2d0, then |y − x| ≥ d0 for all y with |d(y, t)| ≤ d0 so that

A(x, t) + B(x, t) ≤ C

∫

|d(y,t)|≤d0

h̃
(
d(y, t), t

)
dy,

for a constant C = C(d0). Taking d as one of the coordinates in {|d(y, t)| ≤ d0}, we get

A(x, t) + B(x, t) ≤ C

∫ d0

−d0

h̃(r, t)dr,

and the estimate (2.66) follows from (2.76) and (2.75).

• If dist(x,Γt) ≤ 2d0, then we can make, for any fixed t ∈ [0, T ], the change of variables

{y ∈ Ω, |d(y, t)| ≤ 2d0} → Γt × [−2d0, 2d0]

y 7→ (s, r),

where s = s(y, t) is the projection of y on Γt along the normal of Γt, and r = d(y, t) is the
signed distance function from y to Γt. We write this change of variables as y = X(s, r).
In the case N ≥ 3, we have

A(x, t) ≤ C

∫ d0

−d0

drh̃(r, t)

∫

Γt

ds

|X(s, r) − X(s0, r0)|N−2
,
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with x = X(s0, r0). Since X is a smooth diffeomorphism, there exists C > 0 such that
for all (s, r) ∈ Γt × [−2d0, 2d0], we have

|X(s, r) − X(s0, r0)| ≥ C(|s − s0| + |r − r0|) ≥ C|s − s0|.

Hence

A(x, t) ≤ C

∫ d0

−d0

drh̃(r, t)

∫

Γt

ds

|s − s0|N−2
.

Since the singularity in 1/|s|N−2 is integrable on the (N − 1)-dimensional hypersurface
Γt, we have ∫

Γt

ds

|s − s0|N−2
≤ C,

for some C > 0 which does not depend on t ∈ [0, T ] and s0 ∈ Γt. Therefore,

A(x, t) ≤ C

∫ d0

−d0

h̃(r, t)dr. (2.77)

The same estimate is obtained in the case where N = 2, using the fact that ln |s| is
integrable on a finite line.

As for B, we have

B(x, t) ≤ C

∫ d0

−d0

drh̃(r, t)

∫

Γt

|r − r0|[
|s − s0| + |r − r0|

]N
ds.

Making the change of variables s − s0 = |r − r0|s′, we get

∫

Γt

|r − r0|
[|s − s0| + |r − r0|]N

ds ≤
∫

Γ′
t

ds′

[|s′| + 1]N
≤ C,

where Γ′
t is the image of Γt by the mapping s 7→ s′ and where C > 0 does not depend

on |r| ≤ d0, s0 ∈ Γt, |r0| ≤ 2d0 and t ∈ [0, T ]. Thus

B(x, t) ≤ C

∫ d0

−d0

h̃(r, t)dr. (2.78)

Then the estimate (2.66) follows from inequalities (2.76), (2.77), (2.78) and (2.75).

The proof of Lemma 2.4.2 is now complete.

2.5 Proof of the main results

In this section, we prove our main results by fitting the two pairs of sub- and super-solutions,
constructed for the study of the generation and the motion of interface, into each other.
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2.5.1 Proof of Theorem 2.1.3

Let η ∈ (0, 1/4) be arbitrary. Choose β and σ that satisfy (2.59), (2.60) and

σβ ≤ η

3
. (2.79)

By the generation of interface Theorem 2.3.1, there exist positive constants ε0 and M0 such
that (2.21), (2.22) and (2.23) hold with the constant η replaced by σβ/2. Since ∇u0 · n 6= 0
everywhere on the initial interface Γ0 = {x ∈ Ω, u0(x) = 1/2} and since Γ0 is a compact
hypersurface, we can find a positive constant M1 such that

if d0(x) ≥ M1ε then u0(x) ≤ 1/2 − M0ε,

if d0(x) ≤ −M1ε then u0(x) ≥ 1/2 + M0ε.
(2.80)

Here d0(x) := d(x, 0) denotes the cut-off signed distance function associated with the hyper-
surface Γ0. Now we define functions H+(x),H−(x) by

H+(x) =

{
1 + 1

2σβ if d0(x) < M1ε

1
2σβ if d0(x) ≥ M1ε,

H−(x) =

{
1 − 1

2σβ if d0(x) ≤ −M1ε

−1
2σβ if d0(x) > −M1ε.

Then from the above observation we see that

H−(x) ≤ uε(x, µ−1ε2| ln ε|) ≤ H+(x) for x ∈ Ω. (2.81)

Next we fix a sufficiently large constant K > 1 such that

U0(M1 − K) ≥ 1 − σβ

3
and U0(−M1 + K) ≤ σβ

3
. (2.82)

For this K, we choose ε0 and L as in Lemma 2.4.1. We claim that

u−
ε (x, 0) ≤ H−(x), H+(x) ≤ u+

ε (x, 0) for x ∈ Ω. (2.83)

We only prove the former inequality, as the proof of the latter is virtually the same. Then it
amounts to showing that

u−
ε (x, 0) = U0

(d0(x)

ε
+ K

)
− σ(β + ε2L) ≤ H−(x). (2.84)

In the range where d0(x) > −M1ε, the second inequality in (2.82) and the fact that U0 is a
decreasing function imply

U0

(d0(x)

ε
+ K

)
− σ(β + ε2L) ≤ 1

3
σβ − σβ ≤ H−(x).

On the other hand, in the range where d0(x) ≤ −M1ε, we have

U0

(d0(x)

ε
+ K

)
− σ(β + ε2L) ≤ 1 − σβ ≤ H−(x).

This proves (2.84), hence (2.83) is established.
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Combining (2.81) and (2.83), we obtain

u−
ε (x, 0) ≤ uε(x, µ−1ε2| ln ε|) ≤ u+

ε (x, 0).

Since u−
ε and u+

ε are sub- and super-solutions for Problem (P ε) thanks to Lemma 2.4.1, the
comparison principle yields

u−
ε (x, t) ≤ uε(x, t + tε) ≤ u+

ε (x, t) for 0 ≤ t ≤ T − tε, (2.85)

where tε = µ−1ε2| ln ε|. Note that, in view of (2.55), this is enough to prove Corollary 2.1.4.
Now let C be a positive constant such that

U0(−C + eLT + K) ≥ 1 − η

2
and U0(C − eLT − K) ≤ η

2
. (2.86)

One then easily checks, using successively (2.85), (2.53), (2.86) and (2.79), that, for ε0 small
enough, for 0 ≤ t ≤ T − tε, we have

if d(x, t) ≥ Cε then uε(x, t + tε) ≤ η,

if d(x, t) ≤ −Cε then uε(x, t + tε) ≥ 1 − η,
(2.87)

and
uε(x, t + tε) ∈ [−η, 1 + η],

which completes the proof of Theorem 2.1.3.

2.5.2 Proof of Theorem 2.1.5

In the case where µ−1ε2| ln ε| ≤ t ≤ T , the assertion of the theorem is a direct consequence of
Theorem 2.1.3. All we have to consider is the case where 0 ≤ t ≤ µ−1ε2| ln ε|. We shall use
the sub- and super-solutions constructed for the study of the generation of interface in Section
2.3. To that purpose, we first prove the following lemma concerning Y (τ, ξ; δ), the solution of
the ordinary differential equation (2.28), in the initial time interval.

Lemma 2.5.1. There exist constants C8 > 0 and ε0 > 0 such that, for all ε ∈ (0, ε0),

if ξ ≥ 1/2 + C8ε then Y (τ, ξ;±εG) > 1/2 for 0 ≤ τ ≤ µ−1| ln ε|,
if ξ ≤ 1/2 − C8ε then Y (τ, ξ;±εG) < 1/2 for 0 ≤ τ ≤ µ−1| ln ε|. (2.88)

Proof. We only prove the first inequality. Assume ξ ≥ 1/2 + C8ε. By (2.25), for C8 ≥ CG,
we have that ξ ≥ 1/2 + C8ε ≥ a(±εG). It then follows from (2.36) that

Y (τ, ξ;±εG) ≥ a(±εG) + C1e
µ(±εG)τ (1/2 + C8ε − a(±εG))

≥ 1/2 − CGε + C1(−CGε + C8ε)

≥ 1/2 + ε(C1C8 − CG(C1 + 1))

> 1/2,

provided that C8 is sufficiently large.

Now we turn to the proof of Theorem 2.1.5. We first claim that there exists a positive
constant M2 such that for all t ∈ [0, µ−1ε2| ln ε|],

Γε
t ⊂ NM2ε(Γ0). (2.89)
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To see this, we choose M0
′ large enough, so that M0

′ ≥ C8 + 2C6, where C6 is as in Lemma
2.3.9. As is done for (2.80), there is a positive constant M2 such that

if d0(x) ≥ M2ε then u0(x) ≤ 1/2 − M0
′ε,

if d0(x) ≤ −M2ε then u0(x) ≥ 1/2 + M0
′ε.

(2.90)

In view of this last condition, we see that, if ε0 is small enough, if d0(x) ≥ M2ε, then for all
0 ≤ t ≤ µ−1ε2| ln ε|,

u0(x) + ε2r(εG,
t

ε2
) ≤ 1/2 − M0

′ε + ε2C6

[
eµ(εG)| ln ε|/µ − 1

]

≤ 1/2 + ε
[
− M0

′ + C6ε
(µ−µ(±εG))/µ − εC6

]

≤ 1/2 + ε(−M0
′ + 2C6) ← thanks to (2.48)

≤ 1/2 − C8ε.

This inequality and Lemma 2.5.1 imply w+
ε (x, t) < 1/2, where w+

ε is the sub-solution defined
in (2.40). Consequently, by (2.43),

uε(x, t) < 1/2 if d0(x) ≥ M2ε.

In the case where d0(x) ≤ −M2ε, similar arguments lead to uε(x, t) > 1/2. This completes
the proof of (2.89). Note that we have proved that, for all 0 ≤ t ≤ µ−1ε2| ln ε|,

uε(x, t) > 1/2 if x ∈ Ω
(1)
0 \ NM2ε(Γ0),

uε(x, t) < 1/2 if x ∈ Ω
(0)
0 \ NM2ε(Γ0).

(2.91)

Next, since Γt depends on t smoothly, there is a constant C̃ > 0 such that, for all t ∈
[0, µ−1ε2| ln ε|],

Γ0 ⊂ NC̃ε2| ln ε|(Γt), (2.92)

and
Ω

(1)
t \ NC̃ε(Γt) ⊂ Ω

(1)
0 \ NM2ε(Γ0),

Ω
(0)
t \ NC̃ε(Γt) ⊂ Ω

(0)
0 \ NM2ε(Γ0).

(2.93)

As a consequence of (2.89) and (2.92) we get

Γε
t ⊂ NM2ε+C̃ε2| ln ε|(Γt) ⊂ NCε(Γt),

which completes the proof of Theorem 2.1.5.

Proof of Corollary 2.1.6. In view of Theorem 2.1.5 and the definition of the Hausdorff
distance, to prove this corollary we only need to show the reverse inclusion, that is

Γt ⊂ NC′ε(Γ
ε
t ) for 0 ≤ t ≤ T, (2.94)

for some constant C ′ > 0. To that purpose let C ′ be a constant satisfying C ′ > max(C̃, C),
where C is as in Theorem 2.1.3 and C̃ as in (2.93). Choose t ∈ [0, T ], x0 ∈ Γt arbitrarily and,
n being the Euclidian normal vector exterior to Γt at point x0, define a pair of points:

x(0) := x0 + C ′εn and x(1) := x0 − C ′εn.
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Since C ′ > C and since the curvature of Γt is uniformly bounded as t varies over [0, T ], we see
that, if ε0 is sufficiently small,

x(0) ∈ Ω
(0)
t \ NCε(Γt) and x(1) ∈ Ω

(1)
t \ NCε(Γt).

Therefore, if t ∈ [µ−1ε2| ln ε|, T ], then, by Theorem 2.1.3, we have

uε(x(0), t) < 1/2 < uε(x(1), t). (2.95)

On the other hand, if t ∈ [0, µ−1ε2| ln ε|], then from (2.91), (2.93) and the fact that C ′ > C̃,
we again obtain (2.95). Thus (2.95) holds for all t ∈ [0, T ]. Now, by the mean value theorem,
we see that for each t ∈ [0, T ] there exists a point x̃ such that

x̃ ∈ [x(0), x(1)] and uε(x̃, t) = 1/2.

This implies x̃ ∈ Γε
t . Furthermore we have |x0 − x̃| ≤ C ′ε, since x̃ lies on the line segment

[x(0), x(1)]. This proves (2.94).



Chapter 3

The singular limit of a spatially

inhomogeneous and anisotropic

Allen-Cahn equation

We consider a spatially inhomogeneous and anisotropic reaction-diffusion equation, involving
a small parameter ε > 0 and a bistable nonlinear term whose stable equilibria are 0 and 1,
which arises for instance in material sciences. The diffusion term may be singular in the points
where the gradient of the solution vanishes. We define a notion of weak solution and prove
a comparison principle. We perform the analysis using the distance function associated with
a Finsler metric. We consider rather general initial data u0 that are independent of ε. We
perform a rigorous analysis of both the generation and the motion of interface. More precisely,
we show that, within the time scale of order ε2| ln ε|, the solution uε develops a steep transition
layer that separates the regions {uε ≈ 0} and {uε ≈ 1}. Then, in a much slower time scale,
the layer starts to propagate. As a consequence, as ε → 0, the solution uε converges almost
everywhere to 0 in Ω−

t and 1 in Ω+
t , where Ω−

t and Ω+
t are sub-domains of Ω separated by an

interface Γt, whose motion is driven by its anisotropic mean curvature. We also prove that
the thickness of the transition layer is of order ε.
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3.1 Introduction

The background of our study is the modelling of anisotropic interface motion, where the normal
velocity of displacement of the interface depends on the angle of the normal vector with a fixed
direction [4], [65]. Related nonlinear reaction-diffusion equations give rise to sharp internal
layers, or interfaces, when the coefficient of the diffusion term is very small or the one of
the reaction term very large. In this Chapter we consider the following anisotropic parabolic
problem involving a spatially inhomogeneous reaction-diffusion equation:

(P ε)





ut = ∇ · ap(x,∇u) +
1

ε2
f(u) in Ω × (0, +∞),

ap(x,∇u) · ν = 0 on ∂Ω × (0, +∞),

u(x, 0) = u0(x) in Ω,

where Ω is a smooth bounded domain of R
N (N ≥ 2) and ν the Euclidian unit normal vector

exterior to ∂Ω.
The parabolic equation in Problem (P ε) contains, on the one hand, the inhomogeneous

partial differential equation

ut = div(A(x)∇u) +
1

ε2
f(u), (3.1)

where A(x) is a positively definite symmetric matrix depending on the spatial location, and,
on the other hand, the anisotropic equation

ut = div
(
A(∇u)

)
+

1

ε2
f(u), (3.2)

where the coefficients of the matrix ∇p ⊗A = ∇p
tA may be singular in the point p = 0.

We suppose that the nonlinear reaction function f is such that f(u) = −W ′(u), where
W (u) is a double-well potential with equal well-depth, taking its global minimum value at
u = 0 and u = 1. More precisely we assume that f is smooth and has exactly three zeros
0 < a < 1 such that

f ′(0) < 0, f ′(a) > 0, f ′(1) < 0, (3.3)

and that ∫ 1

0
f(u)du = 0. (3.4)

The assumptions concerning the anisotropic term are the following.

1. a(x, p) is a real valued function, of class C3+ϑ
loc (for some 0 < ϑ < 1) on Ω × R

N\{0};

2. a(x, p) > 0 for all (x, p) ∈ Ω × R
N\{0};

3. a(x, ·) is strictly convex for all x ∈ Ω;

4. a(x, p) is 2 homogeneous in the p variable, i.e.

a(x, αp) = α2a(x, p) for all (x, p) ∈ Ω × R
N\{0}, all α 6= 0. (3.5)

If p is given by p = (p1, · · · , pN ), the vector valued function ap is defined by

ap(x, p) =
( ∂a

∂p1
(x, p), · · · ,

∂a

∂pN
(x, p)

)
,
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and the matrix valued function app by

app(x, p) =
( ∂2a

∂pj∂pi
(x, p)

)
1≤i,j≤N

,

for all (x, p) ∈ Ω × (RN \ {0}). Moreover, for a vector p = (p1, · · · , pN ) and a matrix A =
(aij)1≤i,j≤N , we use the notations

|p| = max
i

|pi| and |A| = max
i,j

|aij |.

The special case (3.1) is obtained by taking a(x, p) = 1
2A(x)p ·p, where A(x) is a positively

definite symmetric matrix; here, a(x, p) is of class C3+ϑ
loc on the whole Ω×R

N , ap(x, p) = A(x)p
and app(x, p) = A(x). Setting A(x) = I leads to the classical Allen-Cahn equation. The special
case (3.2) is obtained by assuming that a(x, p) = a(p) and defining A(p) = ap(p).

Remark 3.1.1. By differentiating (3.5) with respect to p and to α, we see that, for all (x, p) ∈
Ω × R

N\{0}, all α 6= 0,

ap(x, αp) = αap(x, p),

ap(x, αp) · p = 2αa(x, p),

app(x, αp) = app(x, p),

app(x, αp)p = ap(x, p),

app(x, αp)p · p = 2a(x, p).

We may define a(x, 0) = 0 and ap(x, 0) = 0, which implies, in view of (3.5) — i.e. a(x, ·) is
2 homogeneous — and the first equality above — i.e. ap(x, ·) is 1 homogeneous — that a(x, p)
is of class C1 on the whole Ω × R

N .

We also assume that the initial datum u0 ∈ C2(Ω), and define C0 as

C0 := ‖u0‖C0(Ω) + ‖∇u0‖C0(Ω) + ‖D2u0‖C0(Ω), (3.6)

where D2u0(x) =
( ∂2u0

∂xj∂xi
(x)

)
1≤i,j≤N

. Furthermore we define the “initial interface” Γ0 by

Γ0 := {x ∈ Ω, u0(x) = a},

and suppose that Γ0 is a C4+ϑ hypersurface without boundary such that, n being the Euclidian
unit normal vector exterior to Γ0,

Γ0 ⊂⊂ Ω and ∇u0(x) · ap(x, n(x)) 6= 0 if x ∈ Γ0, (3.7)

u0 > a in Ω+
0 , u0 < a in Ω−

0 , (3.8)

where Ω−
0 denotes the region enclosed by Γ0 and Ω+

0 the region enclosed between ∂Ω and Γ0.
For T > 0, we set QT = Ω× (0, T ). We define below a notion of weak solution for Problem

(P ε). For this definition, it is sufficient to only suppose that u0 ∈ H1(Ω) ∩ L∞(Ω).

Definition 3.1.2. A function uε ∈ L2(0, T ; H1(Ω)) ∩ L∞(QT ) is a weak solution of Problem
(P ε), if
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• uε
t ∈ L2(QT ),

• ap(x,∇uε(x, t)) ∈ L∞(0, T ;L2(Ω)),

• uε(x, 0) = u0(x) for almost all x ∈ Ω,

• uε satisfies the integral equality

∫ t

0

∫

Ω

[
uε

tϕ + ap(x,∇uε) · ∇ϕ − 1

ε2
f(uε)ϕ

]
= 0, (3.9)

for all nonnegative function ϕ ∈ L2(0, T ; H1(Ω)) ∩ L∞(QT ) and for all t ∈ [0, T ].

One may prove, using monotonicity and compactness arguments as is done in [12] and [14],
that Problem (P ε) possesses a unique weak solution which we denote by uε. As ε → 0, the
qualitative behavior of this solution is the following. In the very early stage, the anisotropic
diffusion term is negligible compared with the reaction term ε−2f(u). Hence, rescaling time by
τ = t/ε2, the equation is well approximated by the ordinary differential equation uτ = f(u).
Since f is a bistable function, uε quickly approaches the values 0 or 1, the stable equilibria
of f , and an interface is formed between the regions {uε ≈ 0} and {uε ≈ 1}. Once such an
interface is developed, the anisotropic diffusion term becomes large near the interface, and
comes to balance with the reaction term so that the interface starts to propagate, in a much
slower time scale.

To understand such interfacial behavior, we have to study the singular limit of (P ε) as
ε → 0. Then the limit solution ũ(x, t) is a step function taking the values 0 and 1 on the sides
of the moving interface Γt. In the case of the usual Allen-Cahn equation, it is well known that
Γt evolves according to the mean curvature flow Vn = −(N − 1)κ. Here we will prove that the
interface evolves according to the law

(P 0)





1√
2a(x, n)

Vn = −∇ ·
[ 1√

2a(x, n)
ap(x, n)

]
on Γt,

Γt

∣∣∣
t=0

= Γ0.

where n is the Euclidian unit normal vector exterior to Γt and Vn the normal velocity of Γt.
We will show below that this equation can be rewritten in the relative geometry associated
with a Finsler metric; it then has the form

(P 0)





Vn,φ = −(N − 1)κφ on Γt,

Γt

∣∣∣
t=0

= Γ0.

where Vn,φ is the anisotropic normal velocity of Γt in the anisotropic exterior direction, and
κφ an analogue of the anisotropic mean curvature at each point of Γt.

Almgren, Taylor and Wang [3] have proved that a problem related to the limit Problem
(P 0) possesses locally in time a unique smooth solution. Here we will suppose that there
exists T > 0 such that Problem (P 0) has a unique solution Γ =

⋃
0≤t≤T (Γt × {t}) which

satisfies Γ ∈ C3+ϑ,(3+ϑ)/2. For proofs of the local in time existence of solutions of related limit
problems, we also refer to [41].
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For each t ∈ (0, T ), we define Ω−
t as the region enclosed by the hypersurface Γt and Ω+

t as
the region enclosed between ∂Ω and Γt. Further we define a function ũ(x, t) by

ũ(x, t) =

{
1 in Ω+

t

0 in Ω−
t

for t ∈ (0, T ). (3.10)

The aim of this Chapter is to study the limiting behavior of the solution uε of Problem (P ε)
as ε → 0. We extend previous studies [13], [70] about a related anisotropic parabolic equation.
It is convenient to present our main result, Theorem 3.1.3, in the form of a convergence
theorem, mixing generation and propagation of interface. It describes the profile of the solution
after a very short initial period. It asserts that: given a virtually arbitrary initial datum u0,
the solution uε quickly becomes close to 0 or 1, except in a small neighborhood of the initial
interface Γ0, creating a steep transition layer around Γ0 (generation of interface). The time tε

for the generation of interface is of order ε2| ln ε|. The theorem then states that the solution
uε remains close to the step function ũ on the time interval (tε, T ) (motion of interface).
Moreover, as is clear from the estimates in the theorem, the thickness of the transition layer
is of order ε.

Theorem 3.1.3 (Generation and motion of interface). Let η be an arbitrary constant
satisfying 0 < η < 1

2 min(a, 1 − a) and set

µ = f ′(a).

Then there exist positive constants ε0 and C such that, for all ε ∈ (0, ε0), for almost all (x, t)
such that tε ≤ t ≤ T , where

tε := µ−1ε2| ln ε|, (3.11)

we have,

uε(x, t) ∈





[−η, 1 + η] if x ∈ NCε(Γt)

[−η, η] if x ∈ Ω−
t \ NCε(Γt)

[1 − η, 1 + η] if x ∈ Ω+
t \ NCε(Γt),

(3.12)

where Nr(Γt) := {x ∈ Ω, distφ(x,Γt) < r} denotes the r-neighborhood of Γt; by distφ(x,Γt),
we mean the δφ distance to the set Γt, where δφ is the distance associated to a Finsler metric,
whose definition is given in Section 3.2.

Corollary 3.1.4 (Convergence). As ε → 0, the solution uε converges to ũ almost everywhere
in

⋃
0<t≤T (Ω±

t × {t}).

The organization of this Chapter is as follows. In Section 3.2, we recall notations and
results concerning the Finsler metrics that turn out to be very efficient in the anisotropic
context. In Section 3.3, we perform asymptotic expansions in order to derive the equation of
the interface motion. In Section 3.4 we prove a weak comparison principle for Problem (P ε).
In Section 3.5, we prove a generation of interface property. The sub- and super-solutions for
this time range are constructed by modifying the solution of the ordinary differential equation
ut = ε−2f(u). In Section 3.6, we construct a pair of sub- and super-solutions for the study
of the motion of interface, by using a related one-dimensional stationary problem. In Section
3.7, by fitting these two pairs of sub- and super-solutions into each other, we prove our main
results for (P ε): Theorem 3.1.3 and its corollary.
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For the proof of a propagation of interface property in the case of a related problem we
refer to Bellettini, Colli Franzone and Paolini [8], who also give a precise approximation of
the moving interface. We also refer to articles about the convergence to classical and viscosity
solutions, in the case of well prepared initial data, by Elliott and Schätzle [31], [32], for a
homogeneous function a = a(p).

3.2 Finsler metrics and the anisotropic context

For the convenience of the reader, we first recall properties stated by Bellettini, Paolini and
Venturini, [9] and [10]. For more details and proofs, see these references where the idea is to
endow R

N with the distance obtained by integrating the Finsler metric and to work in relative
geometry.

3.2.1 Finsler metrics

Suppose that φ : Ω × R
N → [0, +∞[ is a continuous function satisfying the properties

φ(x, αξ) = |α|φ(x, ξ) for all (x, ξ) ∈ Ω × R
N and all α ∈ R, (3.13)

λ0|ξ| ≤ φ(x, ξ) ≤ Λ0|ξ| for all (x, ξ) ∈ Ω × R
N , (3.14)

for two suitable constants 0 < λ0 ≤ Λ0 < +∞. We say that φ is strictly convex if, for any
x ∈ Ω, the map ξ 7→ φ2(x, ξ) is strictly convex on R

N . We shall indicate by

Bφ(x) = {ξ ∈ R
N , φ(x, ξ) ≤ 1}

the unit sphere of φ at x ∈ Ω.
The dual function φ0 : Ω × R

N → [0, +∞[ of φ is defined by

φ0(x, ξ∗) = sup
{
ξ∗ · ξ, ξ ∈ Bφ(x)

}
(3.15)

for any (x, ξ) ∈ Ω × R
N . One can prove that φ0 is continuous, convex, satisfies properties

(3.13) and (3.14), and that φ00, the dual function of φ0, coincides with the convex envelope of
φ with respect to ξ.

We say that φ is a (strictly convex smooth) Finsler metric, and we shall write φ ∈ M(Ω)
if, in addition to properties (3.13) and (3.14), φ and φ0 are strictly convex and of class C2 on
Ω × (RN \ {0}). In particular φ00 = φ.

We denote by δφ the integrated distance associated to φ ∈ M(Ω), that is, for any (x, y) ∈ Ω,
we set

δφ(x, y) = inf
{∫ 1

0
φ(γ(t), γ̇(t))dt , γ ∈ W 1,1

(
[0, 1]; Ω

)
, γ(0) = x , γ(1) = y

}
. (3.16)

In the special case of the Euclidian metric, the function φ is given by φ(x, p) = φ(p) =
(p1

2 + · · · + pN
2)1/2, so that δφ reduces to the usual distance.

Given φ ∈ M(Ω) and x ∈ Ω, let T 0(x, ·) : R
N → R

N be the map defined by

T 0(x, ξ∗) =

{
φ0(x, ξ∗)φ0

p(x, ξ∗) if ξ∗ ∈ R
N \ {0}

0 if ξ∗ = 0.
(3.17)

Here, φ0
p denotes the gradient with respect to p whenever we regard φ0(x, p) as a function

of two variables x and p. In the following, for better readability, some x and t dependencies
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are omitted. If u : Ω → R is a smooth function with non vanishing gradient, we define the
anisotropic gradient by

∇φu = T 0(x,∇u) = φ0(x,∇u)φ0
p(x,∇u). (3.18)

In a similar way as in the isotropic case, if Γt is a smooth hypersurface of Ω at time t, and
n the outer normal vector to Γt (in the Euclidian sense), we define nφ the φ-normal vector to
Γt and κφ, an analogue of the φ-mean curvature of Γt — which differs from κφ defined in [9],
[10] — by

nφ = φ0
p(x, n), κφ =

1

N − 1
div nφ. (3.19)

Furthermore, we have the following formulas: if ψ is a smooth function with non vanishing
gradient such that Γt = {x ∈ Ω, ψ(x, t) = 0}, and ψ is positive outside Γt and negative inside,
then

n =
∇ψ

|∇ψ| , nφ = φ0
p(x,∇ψ), (3.20)

κ =
1

N − 1
div

∇ψ

|∇ψ| , κφ =
1

N − 1
div φ0

p(x,∇ψ), (3.21)

on Γt. We also define the normal velocity of Γt and the φ-normal velocity of Γt by

Vn = − ψt

|∇ψ| , Vn,φ = − ψt

φ0(x,∇ψ)
. (3.22)

To conclude these preliminaries, we quote a theorem proved in [10].

Theorem 3.2.1. Let Ω be connected, and let φ ∈ M(Ω). Let δφ be the integrated distance
associated to φ. Let C ⊆ Ω be a closed set, and let distφ(x,C) be the δφ distance to the set C
defined by

distφ(x,C) = inf
{
δφ(x, y) , y ∈ C

}
. (3.23)

Then

φ0(x,∇distφ(x,C)) = 1, (3.24)

at each point x ∈ Ω \ C where distφ(·, C) is differentiable.

In the special case of the Euclidian metric, (3.24) reduces to the property that |∇d| = 1.

3.2.2 Application to the anisotropic Allen-Cahn equation

We set, for all (x, p) ∈ Ω × R
N ,

φ0(x, p) =
√

2a(x, p). (3.25)

First, since a(x, ·) is 2 homogeneous, φ0 satisfies assumptions (3.13) and (3.14) with the con-
stants

λ0 = [2 min
x∈Ω,|p|=1

a(x, p)]1/2 > 0 and Λ0 = [2 max
x∈Ω,|p|=1

a(x, p)]1/2 > 0, (3.26)

also using that a is continuous and strictly positive on the compact set Ω× SN−1, with SN−1

the unit sphere of R
N . By the hypotheses on a(x, p), we see that φ0 is strictly convex and of
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class C2 on Ω× (RN \{0}); moreover, by Remark 3.1.1, φ0 is continuous on Ω×R
N . It follows

that φ is a Finsler metric and the theory of the above subsection applies. We have

T 0(x, p) =

{
ap(x, p) if p ∈ R

N \ {0}
0 if p = 0.

(3.27)

Let Γ =
⋃

0≤t≤T (Γt × {t}) be the unique solution of the limit geometric motion Problem (P 0)

and let d̃ be the signed distance function to Γ defined by

d̃(x, t) =

{
dist(x,Γt) for x ∈ Ω+

t ,

− dist(x,Γt) for x ∈ Ω−
t ,

(3.28)

where dist(x,Γt) is the distance from x to the hypersurface Γt in Ω. Let d̃φ be the anisotropic
signed distance function to Γ defined by

d̃φ(x, t) =

{
distφ(x,Γt) for x ∈ Ω+

t ,

− distφ(x,Γt) for x ∈ Ω−
t ,

(3.29)

where distφ(x,Γt) denotes the δφ distance to the set Γt defined in (3.23). By Theorem 3.2.1,
the following equality holds

2a(x,∇d̃φ(x, t)) = 1 in a neighborhood of Γt. (3.30)

We then write the second equalities in (3.20), (3.21), (3.22), once with ψ = d̃ and once with
ψ = d̃φ to obtain two formulas to express the φ-normal vector nφ, the analogue of the φ-mean
curvature κφ and the φ-normal velocity Vn,φ:

nφ =
1√

2a(x,∇d̃)
ap(x,∇d̃) = ap(x,∇d̃φ), (3.31)

κφ =
1

N − 1
div

[
1√

2a(x,∇d̃)
ap(x,∇d̃)

]
=

1

N − 1
div

[
ap(x,∇d̃φ)

]
, (3.32)

Vn,φ = − 1√
2a(x,∇d̃)

d̃t = −(d̃φ)t. (3.33)

The end of this section is devoted to the operator

div∇φu = div T 0(x,∇u) = ∇ · ap(x,∇u), (3.34)

which differs from the anisotropic Laplacian ∆φu defined in [9], [10]. In the case of the Finsler
metric, it turns out that the term div∇φu may be less regular than ∆u. Nevertheless, we
show below a boundedness property.

Lemma 3.2.2. There exists a positive constant CL such that, for all u ∈ C2,1(Ω× [0, T ]), the
following inequality holds.

∣∣∇ · ap(x,∇u(x, t))
∣∣ ≤ CL(|∇u(x, t)| + |D2u(x, t)|) for all (x, t) ∈ QT . (3.35)
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Proof. We can, with no loss of generality, ignore the dependence in time. First, assume that x
is such that ∇u(x) 6= 0. Regarding a(x, p) as a function of two variables x and p = (p1, · · · , pn),
we obtain, by a straightforward calculation, that

∇ · ap(x,∇u(x)) =
∑

j

∂2a

∂xj∂pj
(x,∇u(x)) +

∑

i,j

∂2a

∂pi∂pj
(x,∇u(x))

∂2u

∂xi∂xj
(x). (3.36)

We recall that ap(x, ·) is 1 homogeneous, and therefore ∂2a
∂xj∂pj

(x, ·) is 1 homogeneous as well,

and that app(x, ·) is 0 homogeneous. It follows that

|∇ · ap(x,∇u(x))| ≤ |∇u(x)|
∑

j

∣∣∣
∂2a

∂xj∂pj
(x,

∇u(x)

|∇u(x)|)
∣∣∣

+ |D2u(x)|
∑

i,j

∣∣∣
∂2a

∂pi∂pj
(x,

∇u(x)

|∇u(x)|)
∣∣∣

≤ |∇u(x)|
∑

j

max
y∈Ω,|p|=1

∣∣∣
∂2a

∂xj∂pj
(y, p)

∣∣∣

+ |D2u(x)|
∑

i,j

max
y∈Ω,|p|=1

∣∣∣
∂2a

∂pi∂pj
(y, p)

∣∣∣,

where we have used that a ∈ C3+ϑ
(
Ω×R

N \ {0}
)
⊂ C2

(
Ω×SN−1

)
. This proves (3.35) under

the assumption ∇u(x) 6= 0.
Now assume that x is such that ∇u(x) = 0. We have to proceed in a slightly different way

since app(x, 0) does not make sense. The operator ap(x, ·) is 1 homogeneous so that, for any
direction ζ,

t−1(ap(x, tζ) − ap(x, 0)) = ap(x, ζ).

We denote by (e1, · · · , eN ) the Euclidian basis of R
N . It follows from the above equality that

ap(x, ·) admits at the point 0 partial derivatives in any direction ei and

∂ap(x, ·)
∂pi

(0) = ap(x, ei), (3.37)

which, in turn, implies that
∂

∂pi

∂a

∂pj
(x, 0) =

∂a

∂pj
(x, ei). (3.38)

Note that, since ap(x, ·) is 1 homogeneous, and therefore ∂2a
∂xj∂pj

(x, ·) is 1 homogeneous as well,

the first term in (3.36) vanishes at point (x, 0). It follows, from (3.36) and (3.38) that, in the
case where ∇u(x) = 0,

|∇ · ap(x,∇u(x))| =
∣∣∣
∑

i,j

∂a

∂pj
(x, ei)

∂2u

∂xi∂xj
(x)

∣∣∣

≤ |D2u(x)|
∑

i,j

max
y∈Ω,|p|=1

∣∣∣
∂a

∂pj
(y, p)

∣∣∣,

which gives (3.35) in this case as well.

Remark 3.2.3. By similar arguments, one can obtain a positive constant CT such that, for
all u ∈ C2,1(Ω × [0, T ]),

∣∣∣
∂

∂t

[
ap(x,∇u(x, t))

]∣∣∣ ≤ CT

∣∣D1
xD1

t u(x, t)
∣∣ for all (x, t) ∈ QT . (3.39)
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3.3 Formal derivation of the interface motion equation

In this section we derive the equation of interface motion corresponding to Problem (P ε) by
using a formal asymptotic expansion. The resulting interface equation can be regarded as the
singular limit of (P ε) as ε → 0. Our argument goes basically along the same lines with the
formal derivation given by Nakamura, Matano, Hilhorst and Schätzle [63]: the first two terms
of the asymptotic expansion determine the interface equation. Though our analysis in this
section is for the most part formal, the results we obtain will help the rigorous analysis in later
sections.

Let uε be the solution of (P ε). Let Γ =
⋃

0≤t≤T (Γt × {t}) be the solution of the limit

geometric motion problem and let d̃φ be the anisotropic signed distance function to Γ defined
in (3.29). We then define

Q+
T =

⋃

0<t≤T

(Ω+
t × {t}), Q−

T =
⋃

0<t≤T

(Ω−
t × {t}).

We also assume that the solution uε has the expansions

uε(x, t) = 0 or 1 + εu1(x, t) + · · · , (3.40)

away from the interface Γ (the outer expansion) and

uε(x, t) = U0(x, t, ξ) + εU1(x, t, ξ) + ε2U2(x, t, ξ) + · · · , (3.41)

near Γ (the inner expansion), where Uj(x, t, z), j = 0, 1, 2, · · · , are defined for x ∈ Ω, t ≥ 0,

z ∈ R and ξ := d̃φ(x, t)/ε. The stretched space variable ξ gives exactly the right spatial scaling
to describe the sharp transition between the regions {uε ≈ 0} and {uε ≈ 1}. We normalize Uk

in such a way that
U0(x, t, 0) = a, Uk(x, t, 0) = 0,

for all k ≥ 1 (normalization conditions). To make the inner and outer expansions consistent,
we require that

U0(x, t,+∞) = 1, Uk(x, t,+∞) = 0,
U0(x, t,−∞) = 0, Uk(x, t,−∞) = 0,

(3.42)

for all k ≥ 1 (matching conditions).
In what follows we will substitute the inner expansion (3.41) into the parabolic equation of

Problem (P ε) and collect the ε−2 and ε−1 terms. To that purpose, note that if V = V (x, t, z)
and v(x, t) = V (x, t, ξ) are real valued functions then we have ∇v = 1

εVz∇d̃φ + ∇xV and

vt = 1
ε (d̃φ)tVz +Vt; if v and V are vector valued functions we obtain ∇·v = 1

ε∇d̃φ ·Vz +∇x ·V .
A straightforward computation yields

uε
t =

1

ε
(d̃φ)tU0z + U0t + (d̃φ)tU1z + εU1t + · · ·

∇uε =
1

ε
U0z∇d̃φ + ∇xU0 + U1z∇d̃φ + ε∇xU1 + · · ·

ap(x,∇uε) =
1

ε
ap(x,U0z∇d̃φ + ε∇xU0 + εU1z∇d̃φ + ε2∇xU1 + · · · )

=
1

ε
ap(x,U0z∇d̃φ) + app(x,U0z∇d̃φ)(∇xU0 + U1z∇d̃φ) + · · ·

=
1

ε
U0zap(x,∇d̃φ) + app(x,∇d̃φ)(∇xU0 + U1z∇d̃φ) + · · · ,



3.3 Formal derivation of the interface motion equation 111

where we have used the various homogeneity properties of a and its derivatives. It follows that

∇ · ap(x,∇uε) =
1

ε
∇d̃φ · ∂z(ap(x,∇uε)) + ∇x · (ap(x,∇uε))

=
1

ε
∇d̃φ ·

[1

ε
U0zzap(x,∇d̃φ) + app(x,∇d̃φ)(∇xU0z + U1zz∇d̃φ)

]

+
1

ε

[
∇xU0z · ap(x,∇d̃φ) + U0z∇ · ap(x,∇d̃φ)

]
+ · · ·

=
1

ε2
U0zz2a(x,∇d̃φ) +

1

ε

[
2a(x,∇d̃φ)U1zz + 2∇xU0z · ap(x,∇d̃φ)

+ U0z∇ · ap(x,∇d̃φ)
]

+ · · · ,

where we have used Remark 3.1.1 and where the functions Ui (i = 0, 1), as well as their

derivatives, are taken at the point (x, t,
d̃φ(x, t)

ε
). Hence, in view of (3.30), we obtain, in a

neighborhood of Γt,

∇ · ap(x,∇uε) =
1

ε2
U0zz +

1

ε

[
U1zz + 2∇xU0z · ap(x,∇d̃φ) + U0z∇ · ap(x,∇d̃φ)

]
+ · · ·

We also use the expansion

f(uε) = f(U0) + εU1f
′(U0) + · · · .

Next, we substitute the expressions above in the partial differential equation in Problem (P ε).
Collecting the ε−2 terms yields

U0zz + f(U0) = 0. (3.43)

In view of the normalization and matching conditions, we can now assert that U0(x, t, z) =
U0(z), where U0 is the unique solution of the one-dimensional stationary problem

{
U0

′′ + f(U0) = 0,

U0(−∞) = 0, U0(0) = a, U0(+∞) = 1.
(3.44)

This solution represents the first approximation of the profile of a transition layer around
the interface observed in the stretched coordinates. We recall standard estimates on U0, see
Chapter 1 for more details.

Lemma 3.3.1. There exist positive constants C and λ such that the following estimates hold.

0 < 1 − U0(z) ≤ Ce−λ|z| for z ≥ 0,

0 < U0(z) ≤ Ce−λ|z| for z ≤ 0.

In addition to this U0
′ > 0 and, for all j = 1, 2,

|DjU0(z)| ≤ Ce−λ|z| for z ∈ R.

Since U0 depends only on the variable z, we have ∇xU0
′ = 0. Then, by collecting the ε−1

terms, we obtain

U1zz + f ′(U0)U1 = (d̃φ)tU0
′ −∇ · ap(x,∇d̃φ)U0

′, (3.45)
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which can be seen as a linearized problem for (3.43). The solvability condition for the above
equation plays the key role in deriving the equation of interface motion. By Lemma 1.2.2 in
Chapter 1, which is a variant of the Fredholm alternative, it is given by

∫

R

[
(d̃φ)t(x, t)U0

′(z) −∇ · ap(x,∇d̃φ(x, t))U0
′(z)

]
U0

′(z)dz = 0,

for all (x, t) ∈ QT . Since
∫
R

(U0
′)2 > 0, it follows that

(d̃φ)t = ∇ · ap(x,∇d̃φ). (3.46)

In virtue of the expressions of κφ and Vn,φ in (3.32) and (3.33), the above equation, written in
relative geometry, reads as

Vn,φ = −(N − 1)κφ on Γt, (3.47)

that is the interface motion equation (P 0). Using again the formulas (3.32) and (3.33), one
can come back to the Euclidian geometry and obtain the equivalent interface motion equation

1√
2a(x, n)

Vn = −∇ ·
[ 1√

2a(x, n)
ap(x, n)

]
on Γt. (3.48)

Summarizing, under the assumption that the solution uε of Problem (P ε) satisfies

uε →
{

1 in Q+
T

0 in Q−
T

as ε → 0, almost everywhere,

we have formally proved that the boundary Γt between Ω−
t and Ω+

t moves according to the
law (3.47) or (3.48).

Remark 3.3.2. To conclude this section, note that combining (3.46) with (3.45) yields U1 = 0.
In fact, the second term of the asymptotic expansion vanishes because the two stable zeros
of the nonlinearity f have “balanced” stability, or more precisely because of the assumption∫ 1
0 f(u)du = 0. If we perturb the non linearity by order ε, say f(u) ←− f(u) − εg(u), the

equation of the free boundary problem contains an additional term and U1 no longer vanishes.

3.4 A comparison principle

In this section, we prove a comparison principle for Problem (P ε). To begin with, we define
a notion of sub- and super-solution for Problem (P ε). To that purpose, we suppose that
u0 ∈ H1(Ω) ∩ L∞(Ω).

Definition 3.4.1. A function u+
ε ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ) is a weak super-solution for

Problem (P ε), if

• (u+
ε )t ∈ L2(QT ),

• ∇φu+
ε (x, t) = ap(x,∇u+

ε (x, t)) ∈ L∞(0, T ; L2(Ω)),

• u+
ε (x, 0) ≥ u0(x) for almost all x ∈ Ω,

• uε satisfies the integral inequality
∫ t

0

∫

Ω

[
(u+

ε )tϕ + ap(x,∇u+
ε ) · ∇ϕ − 1

ε2
f(u+

ε )ϕ
]
≥ 0, (3.49)

for all nonnegative function ϕ ∈ L2(0, T ; H1(Ω)) ∩ L∞(QT ) and for all t ∈ [0, T ].
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We define a weak sub-solution u−
ε in a similar way, by changing ≥ in (3.49) by ≤, and

with the condition u−
ε (x, 0) ≤ u0(x), for almost all x ∈ Ω.

The following remark will reveal efficient when constructing our smooth sub- and super-
solutions in later sections.

Remark 3.4.2. Note that, by Lemma 3.2.2, if u ∈ C2,1(QT ), then the function

L0u := ut −∇ · ap(x,∇u) − 1

ε2
f(u),

is well-defined in QT . Also, using Lemma 3.2.2, we deduce that ∇ · ap(x,∇u) ∈ L∞(QT ).

Integrating by parts, we deduce that if u+
ε ∈ C2,1(QT ) satisfies L0u

+
ε ≥ 0 almost everywhere,

the anisotropic Neumann boundary condition ap(x,∇u+
ε ) ·ν = 0 on ∂Ω×(0, T ), and u+

ε (x, 0) ≥
u0(x) for almost all x ∈ Ω, then u+

ε is a super-solution for Problem (P ε); an analogous remark
stands for a sub-solution u−

ε ∈ C2,1(QT ).

We prove below an inequality which expresses the strong monotonicity of the function
T 0(x, p) = ap(x, p).

Lemma 3.4.3. There exists a constant β > 0 such that, for all x ∈ Ω, for all p1, p2 ∈ R
N ,

(ap(x, p2) − ap(x, p1)) · (p2 − p1) ≥ β|p2 − p1|2. (3.50)

Proof. First we consider the case that sp1 +(1−s)p2 6= 0 for all s ∈ [0, 1]. Then, the function
s 7→ a(x, sp1 + (1 − s)p2) is of class C2 on [0, 1] and there exist s1, s2 such that

a(x, p2) − a(x, p1) = ap(x, p1) · (p2 − p1) +
1

2
(p2 − p1) · app(x, s1p1 + (1 − s1)p2)(p2 − p1),

and

a(x, p1) − a(x, p2) = ap(x, p2) · (p1 − p2) +
1

2
(p1 − p2) · app(x, s2p1 + (1 − s2)p2)(p1 − p2).

We claim that there exist 0 < λ2 ≤ Λ2 such that, for all x ∈ Ω, all p ∈ R
N \ {0}, all p̄ ∈ R

N ,

λ2|p̄|2 ≤ app(x, p)p̄ · p̄ ≤ Λ2|p̄|2. (3.51)

Indeed, it follows from the strict convexity of a(x, ·) that app(x, p) is a positively definite
symmetric matrix. Hence the function (x, p, p̄) 7→ app(x, p)p̄ · p̄ is strictly positive and contin-
uous on the compact set Ω × SN−1 × SN−1 which, combined with the fact that app(x, ·) is 0
homogeneous, proves (3.51). It then follows that

a(x, p2) − a(x, p1) ≥ ap(x, p1) · (p2 − p1) +
λ2

2
|p2 − p1|2, (3.52)

a(x, p1) − a(x, p2) ≥ ap(x, p2) · (p1 − p2) +
λ2

2
|p2 − p1|2. (3.53)

Adding up inequalities (3.52) and (3.53) yields the desired inequality, with the constant β = λ2.
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In the case that sp1 + (1− s)p2 = 0 for some s ∈ [0, 1], p1 and p2 are colinear and we may
suppose that there exists l ∈ R such that p2 = lp1. We can assume l 6= 0, l 6= 1 and p1 6= 0.
By using the different homogeneity properties in Remark 3.1.1, we obtain that

(ap(x, p2) − ap(x, p1)) · (p2 − p1) = (l − 1)2ap(x, p1) · p1

= 2(l − 1)2a(x, p1)

= 2a(x, (l − 1)p1)

≥ λ0
2|(l − 1)p1|2 = λ0

2|p2 − p1|2,

where λ0 has been defined in (3.26). The proof is now completed.

We are now ready to prove the following comparison principle.

Lemma 3.4.4. Suppose that u+
ε , respectively u−

ε , is a super-solution, respectively a sub-
solution, for Problem (P ε); we have that

u−
ε ≤ uε ≤ u+

ε almost everywhere in QT .

Proof. By subtracting equality (3.9) for the solution uε and inequality (3.49) for the super-
solution u+

ε , we obtain that, for all ϕ ∈ L2(0, T ; H1(Ω)) ∩ L∞(QT ) such that ϕ ≥ 0, and for
all t ∈ [0, T ],

∫ t

0

∫

Ω

[
(uε − u+

ε )tϕ + (ap(x,∇uε) − ap(x,∇u+
ε )) · ∇ϕ

]

≤
∫ t

0

∫

Ω

1

ε2

(
f(uε) − f(u+

ε )
)
ϕ

≤ C1

∫ t

0

∫

Ω
|uε − u+

ε |ϕ, (3.54)

where C1 is the positive constant defined by

C1 = ε−2‖f ′‖
L∞

(
−max(‖uε‖∞,‖u+

ε ‖∞),max(‖uε‖∞,‖u+
ε ‖∞)

).

Next we set ϕ = (uε − u+
ε )+, which belongs to L2(0, T ; H1(Ω)) ∩ L∞(QT ); it follows from

(3.50) that

∫ t

0

∫

Ω
(ap(x,∇uε) − ap(x,∇u+

ε )) · ∇ϕ

=

∫ t

0

∫

{uε−u+
ε ≥0}

(ap(x,∇uε) − ap(x,∇u+
ε )) · (∇uε −∇u+

ε )

≥ β

∫ t

0

∫

{uε−u+
ε ≥0}

|∇uε −∇u+
ε |2.

Then, substituting this inequality into (3.54) yields

1

2

∫ t

0

d

dt

∫

Ω

(
(uε − u+

ε )+
)2

+ β

∫ t

0

∫

{uε−u+
ε ≥0}

|∇uε −∇u+
ε |2 ≤ C1

∫ t

0

∫

{uε−u+
ε ≥0}

(uε − u+
ε )2,

and therefore
∫

Ω

(
(uε − u+

ε )+
)2

(t) ≤ 2C1

∫ t

0

∫

Ω

(
(uε − u+

ε )+
)2

+

∫

Ω

(
(uε − u+

ε )+
)2

(0).
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Using Gronwall’s Lemma, we find that

∫

Ω

(
(uε − u+

ε )+
)2

(t) ≤ e2C1t

∫

Ω

(
(uε − u+

ε )+
)2

(0),

Since uε(x, 0) ≤ u+
ε (x, 0) for almost all x ∈ Ω, it follows that

uε ≤ u+
ε a.e. in QT .

Similarly one can show that u−
ε ≤ uε a.e. in QT .

Lemma 3.4.5. Let uε be a solution of Problem (P ε). Then

−‖u0‖L∞(Ω) ≤ uε ≤ max(1, ‖u0‖L∞(Ω)) a.e. in QT .

Proof. We remark that −‖u0‖L∞(Ω) and that max(1, ‖u0‖L∞(Ω)) are sub- and super-solutions
for Problem (P ε).

3.5 Generation of interface

This section deals with the generation of interface, namely the rapid formation of internal
layers that takes place in a neighborhood of Γ0 = {x ∈ Ω, u0(x) = a} within the time span of
order ε2| ln ε|. In the sequel, η0 will stand for the quantity

η0 :=
1

2
min(a, 1 − a).

Our main result in this section is the following.

Theorem 3.5.1. Let η ∈ (0, η0) be arbitrary and define µ as the derivative of f(u) at the
unstable equilibrium u = a, that is

µ = f ′(a). (3.55)

Then there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0),

• for almost all x ∈ Ω,

− η ≤ uε(x, µ−1ε2| ln ε|) ≤ 1 + η, (3.56)

• for almost all x ∈ Ω such that |u0(x) − a| ≥ M0ε, we have that

if u0(x) ≥ a + M0ε then uε(x, µ−1ε2| ln ε|) ≥ 1 − η, (3.57)

if u0(x) ≤ a − M0ε then uε(x, µ−1ε2| ln ε|) ≤ η. (3.58)

We will prove this result by constructing a suitable pair of sub and super-solutions.

3.5.1 The bistable ordinary differential equation

The sub- and super-solutions mentioned above will be constructed by modifying the solution
of the problem without diffusion:

ūt =
1

ε2
f(ū), ū(x, 0) = u0(x).
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This solution is written in the form

ū(x, t) = Y
( t

ε2
, u0(x)

)
,

where Y (τ, ξ) denotes the solution of the ordinary differential equation

{
Yτ (τ, ξ) = f(Y (τ, ξ)) for τ > 0,

Y (0, ξ) = ξ.
(3.59)

Here ξ ranges over the interval (−2C0, 2C0), with C0 being the constant defined in (3.6). We
first collect basic properties of Y .

Lemma 3.5.2. We have Yξ > 0, for all ξ ∈ (−2C0, 2C0)\{0, a, 1} and all τ > 0. Furthermore,

Yξ(τ, ξ) =
f(Y (τ, ξ))

f(ξ)
.

Proof. First, differentiating equation (3.59) with respect to ξ, we obtain

{
Yξτ = Yξf

′(Y ),

Yξ(0, ξ) = 1,
(3.60)

which can be integrated as follows:

Yξ(τ, ξ) = exp
[ ∫ τ

0
f ′(Y (s, ξ))ds

]
> 0. (3.61)

We then differentiate equation (3.59) with respect to τ and obtain

{
Yττ = Yτf

′(Y ),

Yτ (0, ξ) = f(ξ),
(3.62)

which in turn implies

Yτ (τ, ξ) = f(ξ) exp
[∫ τ

0
f ′(Y (s, ξ))ds

]

= f(ξ)Yξ(τ, ξ).

(3.63)

This last equality, in view of (3.59), completes the proof of Lemma 3.5.2.

We define a function A(τ, ξ) by

A(τ, ξ) =
f ′(Y (τ, ξ)) − f ′(ξ)

f(ξ)
. (3.64)

Lemma 3.5.3. We have, for all ξ ∈ (−2C0, 2C0) \ {0, a, 1} and all τ > 0,

A(τ, ξ) =

∫ τ

0
f ′′(Y (s, ξ))Yξ(s, ξ)ds.
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Proof. Differentiating the equality of Lemma 3.5.2 with respect to ξ leads to

Yξξ = A(τ, ξ)Yξ, (3.65)

whereas differentiating (3.61) with respect to ξ yields

Yξξ = Yξ

∫ τ

0
f ′′(Y (s, ξ))Yξ(s, ξ)ds.

These two last results complete the proof of Lemma 3.5.3.

Next we need some estimates on Y and its derivatives. First, we perform some estimates
when the initial value ξ lies between η and 1 − η.

Lemma 3.5.4. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants C̃1 = C̃1(η),
C̃2 = C̃2(η) and C3 = C3(η) such that, for all τ > 0,

• if ξ ∈ (a, 1− η) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (a, 1− η),
we have

C̃1e
µτ ≤ Yξ(τ, ξ) ≤ C̃2e

µτ , (3.66)

and
|A(τ, ξ)| ≤ C3(e

µτ − 1); (3.67)

• if ξ ∈ (η, a) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (η, a), (3.66)
and (3.67) hold as well,

where µ is the constant defined in (3.55).

Proof. We take ξ ∈ (a, 1 − η) and suppose that for s ∈ (0, τ), Y (s, ξ) remains in the interval
(a, 1 − η). Integrating the equality

Yτ (s, ξ)

f(Y (s, ξ))
= 1

from 0 to τ yields ∫ τ

0

Yτ (s, ξ)

f(Y (s, ξ))
ds = τ. (3.68)

Hence by the change of variable q = Y (s, ξ) we get

∫ Y (τ,ξ)

ξ

dq

f(q)
= τ. (3.69)

Moreover, the equality of Lemma 3.5.2 leads to

lnYξ(τ, ξ) =

∫ Y (τ,ξ)

ξ

f ′(q)
f(q)

dq

=

∫ Y (τ,ξ)

ξ

[f ′(a)

f(q)
+

f ′(q) − f ′(a)

f(q)

]
dq

= µτ +

∫ Y (τ,ξ)

ξ
h(q)dq,

(3.70)

where
h(q) = (f ′(q) − µ)/f(q).
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Since

h(q) → f ′′(a)

f ′(a)
as q → a,

the function h is continuous on [a, 1 − η]. Hence we can define

H = H(η) := ‖h‖L∞(a,1−η).

Since |Y (τ, ξ)−ξ| takes its values in the interval [0, 1−a−η] ⊂ [0, 1−a], it follows from (3.70)
that

µτ − H(1 − a) ≤ lnYξ(τ, ξ) ≤ µτ + H(1 − a),

which, in turn, proves (3.66). Lemma 3.5.3 and (3.66) yield

|A(τ, ξ)| ≤ supz∈[0,1] |f ′′(z)|
∫ τ

0
C̃2e

µsds

≤ C3(e
µτ − 1),

which completes the proof of (3.67). The case where ξ and Y (τ, ξ) are in (η, a) is similar and
omitted.

Corollary 3.5.5. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants C1 = C1(η)
and C2 = C2(η) such that, for all τ > 0,

• if ξ ∈ (a, 1− η) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (a, 1− η),
we have

C1e
µτ (ξ − a) ≤ Y (τ, ξ) − a ≤ C2e

µτ (ξ − a); (3.71)

• if ξ ∈ (η, a) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (η, a), we
have

C2e
µτ (ξ − a) ≤ Y (τ, ξ) − a ≤ C1e

µτ (ξ − a). (3.72)

Proof. Since
f(q)/(q − a) → f ′(a) = µ as q → a,

it is possible to find B1 = B1(η) > 0 and B2 = B2(η) > 0 such that, for all q ∈ (a, 1 − η),

B1(q − a) ≤ f(q) ≤ B2(q − a). (3.73)

We write this inequality for a < Y (τ, ξ) < 1 − η to obtain

B1(Y (τ, ξ) − a) ≤ f(Y (τ, ξ)) ≤ B2(Y (τ, ξ) − a).

We also write this inequality for a < ξ < 1 − η to obtain

B1(ξ − a) ≤ f(ξ) ≤ B2(ξ − a).

Next we use the equality Yξ = f(Y )/f(ξ) of Lemma 3.5.2 to deduce that

B1

B2
(Y (τ, ξ) − a) ≤ (ξ − a)Yξ(τ, ξ) ≤

B2

B1
(Y (τ, ξ) − a),

which, in view of (3.66), implies that

B1

B2
C̃1e

µτ (ξ − a) ≤ Y (τ, ξ) − a ≤ B2

B1
C̃2e

µτ (ξ − a).

This proves (3.71). The proof of (3.72) is similar and omitted.

Next we present estimates in the case where the initial value ξ is smaller than η or larger
than 1 − η.
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Lemma 3.5.6. Let η ∈ (0, η0) and M > 0 be arbitrary. Then there exists a positive constant
C4 = C4(η, M) such that

• if ξ ∈ [1 − η, 1 + M ], then, for all τ > 0, Y (τ, ξ) remains in the interval [1 − η, 1 + M ]
and

|A(τ, ξ)| ≤ C4τ for τ > 0 ; (3.74)

• if ξ ∈ [−M, η], then, for all τ > 0, Y (τ, ξ) remains in the interval [−M, η] and (3.74)
holds as well.

Proof. Since the two statements can be treated in the same way, we will only prove the former.
The fact that Y (τ, ξ), the solution of the ordinary differential equation (3.59), remains in the
interval [1 − η, 1 + M ] directly follows from the bistable properties of f , or, more precisely,
from the sign conditions f(1 − η) > 0, f(1 + M) < 0.

To prove (3.74), suppose first that ξ ∈ [1, 1 + M ]. In view of (3.3), f ′ is strictly negative
in an interval of the form [1, 1 + c] and f is negative in [1,∞). We denote by −m < 0 the
maximum of f on [1+c, 1+M ]. Then, as long as Y (τ, ξ) remains in the interval [1+c, 1+M ],
the ordinary differential equation (3.59) implies

Yτ ≤ −m.

By integration, this means that, for any ξ ∈ [1, 1 + M ], we have

Y (τ, ξ) ∈ [1, 1 + c] for τ ≥ τ :=
M − c

m
.

In view of this, and considering that f ′(Y ) < 0 for Y ∈ [1, 1 + c], we see from the expression
(3.61) that

Yξ(τ, ξ) = exp
[ ∫ τ

0
f ′(Y (s, ξ))ds

]
exp

[ ∫ τ

τ
f ′(Y (s, ξ))ds

]

≤ exp
[ ∫ τ

0
f ′(Y (s, ξ))ds

]

≤ exp
[ ∫ τ

0
sup

z∈[−M,1+M ]
|f ′(z)|ds

]
=: C̃4 = C̃4(M),

for all τ ≥ τ . It is clear from the same expression (3.61) that Yξ ≤ C̃4 holds also for 0 ≤ τ ≤ τ .
We can then use Lemma 3.5.3 to deduce that

|A(τ, ξ)| ≤ C̃4

∫ τ

0
|f ′′(Y (s, ξ))|ds

≤ C̃4

(
supz∈[−M,1+M ] |f ′′(z)|

)
τ =: C4τ.

The case ξ ∈ [1 − η, 1] can be treated in the same way. This completes the proof of the
lemma.

Now we choose the constant M in the above lemma sufficiently large so that [−2C0, 2C0] ⊂
[−M, 1 + M ], and fix M hereafter. Then C4 only depends on η. Using the fact that τ =
O(eµτ − 1) for τ > 0, one can easily deduce from (3.67) and (3.74) the following general
estimate.

Lemma 3.5.7. Let η ∈ (0, η0) be arbitrary and let C0 be the constant defined in (3.6). Then
there exists a positive constant C5 = C5(η) such that, for all ξ ∈ (−2C0, 2C0) and all τ > 0,

|A(τ, ξ)| ≤ C5(e
µτ − 1).
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3.5.2 Construction of sub- and super-solutions

We are now ready to construct the sub- and super-solutions for the study of generation of
interface. To make the proof less technical, we make the additional assumption

ap(x,∇u0(x)) · ν = 0 on ∂Ω. (3.75)

In this case, our sub- and super-solutions are given by

w±
ε (x, t) = Y

( t

ε2
, u0(x) ± ε2C6(e

µt/ε2 − 1)
)
. (3.76)

In the general case where (3.75) does not necessarily hold, we have to slightly modify w±
ε (x, t)

near the boundary ∂Ω. This can be done by using some cut-off initial data u±
0 (see Chapter

1, Section 1.3).

Lemma 3.5.8. There exist positive constants ε0 and C6 such that, for all ε ∈ (0, ε0), (w−
ε , w+

ε )
is a pair of sub- and super-solutions for Problem (P ε), in the domain

{
(x, t) ∈ QT , x ∈ Ω, 0 ≤ t ≤ µ−1ε2| ln ε|

}
.

Proof. First, we remark that w±(x, 0) = Y
( t

ε2
, u0(x)

)
= u0(x). Next we define the operator

L0 by

L0u := ut −∇ · ap(x,∇u) − 1

ε2
f(u), (3.77)

and prove that L0w
+
ε ≥ 0. Straightforward calculations yield

(wε
+)t =

1

ε2
Yτ + µC6e

µt/ε2

Yξ,

∇w+
ε = ∇u0(x)Yξ.

First, using (3.75) and the fact that ap(x, ·) is 1 homogeneous, we see that w±
ε satisfy the

anisotropic Neumann boundary condition

ap(x,∇w±
ε ) · ν = 0 on ∂Ω × (0,+∞).

In view of the ordinary differential equation (3.59), we obtain

L0w
+
ε = µC6e

µt/ε2

Yξ −∇ · ap(x,∇w+
ε ).

By the estimate in Lemma 3.2.2, it follows that

L0w
+
ε ≥ µC6e

µt/ε2

Yξ − CL(|∇w+
ε (x, t)| + |D2w+

ε (x, t)|), (3.78)

where we recall that
|D2w+

ε (x, t)| = max
i,j

|∂i∂jw
+
ε (x, t)|.

A straightforward calculation yields

∂i∂jw
+
ε (x, t) = (∂i∂ju0)Yξ + (∂iu0∂ju0)Yξξ.

Recalling that Yξ > 0, we now combine the expression of ∇w+
ε , the above expression and

inequality (3.78) to obtain

L0w
+
ε /Yξ ≥ µC6e

µt/ε2 − CLC0 − C0 − C0
2 |Yξξ|

Yξ
, (3.79)
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where C0 is the constant defined in (3.6). We note that, in the range 0 ≤ t ≤ µ−1ε2| ln ε|, we
have

0 ≤ ε2C6(e
µt/ε2 − 1) ≤ ε2C6(ε

−1 − 1) ≤ C0,

if ε0 is sufficiently small. Hence

ξ := u0(x) + C6(e
µt/ε2 − 1) ∈ (−2C0, 2C0),

so that, by the results of the previous subsection, Y remains in (−2C0, 2C0). In view of (3.65),
Yξξ/Yξ is equal to A so that, combining the estimate of A in Lemma 3.5.7 and (3.79) yield

L0w
+
ε /Yξ ≥ (µC6 − C0

2C5)e
µt/ε2 − CLC0 − C0.

Now, choosing

C6 ≥ 2

µ
max

(
C0

2C5, C0(CL + 1)
)

proves L0w
+
ε /Yξ ≥ 0. Since Yξ > 0, it follows that L0w

+
ε ≥ 0. Hence, by Remark 3.4.2, w+

ε is
a super-solution for Problem (P ε). Similarly w−

ε is a sub-solution. Lemma 3.5.8 is proved.

Consequently, by the comparison principle proved in Lemma 3.4.4,

w−
ε (x, t) ≤ uε(x, t) ≤ w+

ε (x, t), (3.80)

for almost all (x, t) ∈ QT that satisfies 0 ≤ t ≤ µ−1ε2| ln ε|.

3.5.3 Proof of Theorem 3.5.1

In order to prove Theorem 3.5.1 we first present a key estimate on the function Y after a time
interval of order τ ∼ | ln ε|.

Lemma 3.5.9. Let η ∈ (0, η0) be arbitrary; there exist positive constants ε0 and C7 such that,
for all ε ∈ (0, ε0),

• for all ξ ∈ (−2C0, 2C0),
− η ≤ Y (µ−1| ln ε|, ξ) ≤ 1 + η, (3.81)

• for all ξ ∈ (−2C0, 2C0) such that |ξ − a| ≥ C7ε, we have that

if ξ ≥ a + C7ε then Y (µ−1| ln ε|, ξ) ≥ 1 − η, (3.82)

if ξ ≤ a − C7ε then Y (µ−1| ln ε|, ξ) ≤ η. (3.83)

Proof. We first prove (3.82). For ξ ≥ a + C7ε, as long as Y (τ, ξ) has not reached 1 − η, we
can use (3.71) to deduce that

Y (τ, ξ) ≥ a + C1e
µτ (ξ − a)

≥ a + C1C7e
µτε

≥ 1 − η,

provided that τ satisfies

τ ≥ µ−1 ln
1 − a − η

C1C7ε
=: τ ε.
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Choosing

C7 =
max(a, 1 − a) − η

C1
,

we see that µ−1| ln ε| ≥ τ ε, which completes the proof of (3.82). Using (3.72), one easily proves
(3.83).

Next we prove (3.81). First, by the bistable assumptions on f , if we leave from a ξ ∈
[−η, 1 + η] then Y (τ, ξ) will remain in [−η, 1 + η]. Now suppose that 1 + η ≤ ξ ≤ 2C0. We
check below that Y (µ−1| ln ε|, ξ) ≤ 1 + η. First, in view of (3.3), we can find p > 0 such that

if 1 ≤ u ≤ 2C0 then f(u) ≤ p(1 − u)

if − 2C0 ≤ u ≤ 0 then f(u) ≥ −pu.
(3.84)

We then use the ordinary differential equation (3.59) to obtain, as long as 1 + η ≤ Y ≤ 2C0,
the inequality Yτ ≤ p(1 − Y ). It follows that

Yτ

Y − 1
≤ −p.

Integrating this inequality from 0 to τ leads to

Y (τ, ξ) ≤ 1 + (ξ − 1)e−pτ

≤ 1 + (2C0 − 1)e−pτ .

Since (2C0 − 1)e−pµ−1| ln ε| → 0 as ε → 0, the above inequality proves that, for ε ∈ (0, ε0), with
ε0 = ε0(η) sufficiently small, Y (µ−1| ln ε|, ξ) ≤ 1 + η, which completes the proof of (3.81).

We are now ready to prove Theorem 3.5.1. By setting t = µ−1ε2| ln ε| in (3.80), we obtain,
for almost all x ∈ Ω,

Y
(
µ−1| ln ε|, u0(x) − (C6ε − C6ε

2)
)

≤ uε(x, µ−1ε2| ln ε|) ≤ Y
(
µ−1| ln ε|, u0(x) + C6ε − C6ε

2
)
. (3.85)

Furthermore, by the definition of C0 in (3.6), we have, for ε0 small enough,

−2C0 ≤ u0(x) ± (C6ε − C6ε
2) ≤ 2C0,

for x ∈ Ω. Thus the assertion (3.56) of Theorem 3.5.1 is a direct consequence of (3.81) and
(3.85).

Next we prove (3.57). We choose M0 large enough so that M0ε−C6ε+C6ε
2 ≥ C7ε. Then,

for any x ∈ Ω such that u0(x) ≥ a + M0ε, we have

u0(x) − (C6ε − C6ε
2) ≥ a + M0ε − C6ε + C6ε

2 ≥ a + C7ε.

Combining this, (3.85) and (3.82), we see that

uε(x, µ−1ε2| ln ε|) ≥ 1 − η,

for almost all x ∈ Ω that satisfies u0(x) ≥ a + M0ε. This proves (3.57). The inequality (3.58)
can be shown the same way. This completes the proof of Theorem 3.5.1.



3.6 Motion of interface 123

3.6 Motion of interface

We have seen in Section 3.5 that, after a very short time, the solution uε develops a clear
transition layer. In the present section, we show that it persists and that its law of motion is
well approximated by the interface equation (P 0).

More precisely, take the first term of the formal asymptotic expansion (3.41) as a formal
expansion of the solution:

uε(x, t) ≈ ũε(x, t) := U0

( d̃φ(x, t)

ε

)
. (3.86)

The right-hand side of (3.86) is a function having a well-developed transition layer, and its
interface lies exactly on Γt. We show that this function is a very good approximation of the
solution; therefore the following holds:

If uε becomes rather close to ũε at some time moment, then it stays close to ũε for
the rest of time.

To that purpose, we will construct a pair of sub- and super-solutions u−
ε and u+

ε for Problem
(P ε) by slightly modifying ũε. It then follows that, if the solution uε satisfies

u−
ε (x, t0) ≤ uε(x, t0) ≤ u+

ε (x, t0),

for some t0 ≥ 0 and for almost all x ∈ Ω, then

u−
ε (x, t) ≤ uε(x, t) ≤ u+

ε (x, t),

for almost (x, t) ∈ QT that satisfies t0 ≤ t ≤ T . As a result, since both u+
ε , u−

ε stay close to
ũε, the solution uε also stays close to ũε for t0 ≤ t ≤ T .

3.6.1 Construction of sub and super-solutions

To begin with we present mathematical tools which are essential for the construction of sub
and super-solutions.

A modified anisotropic signed distance function. Rather than working with the aniso-
tropic signed distance function d̃φ, defined in (3.29), we define a “cut-off anisotropic signed

distance function” dφ as follows. Choose d0 > 0 small enough so that d̃φ(·, ·) is smooth in the
tubular neighborhood of Γ

{(x, t) ∈ QT , |d̃φ(x, t)| < 3d0},
and that

distφ(Γt, ∂Ω) > 3d0 for all t ∈ [0, T ]. (3.87)

Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =





s if |s| ≤ d0

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0.

We define the cut-off anisotropic signed distance function dφ by

dφ(x, t) = ζ
(
d̃φ(x, t)

)
. (3.88)
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Note that, in view of (3.30),

2a(x,∇dφ(x, t)) = 1 in a neighborhood of Γt, (3.89)

more precisely in the region {(x, t) ∈ QT , |dφ(x, t)| < d0}. Moreover, in view of (3.87), we
have

2a(x,∇dφ(x, t)) = 0 far away from Γt, (3.90)

i.e. in the region {(x, t) ∈ QT , |dφ(x, t)| ≥ 2d0}. Furthermore, we recall, see (3.46), that an
equation for Γ is given by

(dφ)t = ∇ · ap(x,∇dφ) on Γt. (3.91)

Construction. We look for a pair of sub- and super-solutions u±
ε for (P ε) of the form

u±
ε (x, t) = U0

(dφ(x, t) ± εp(t)

ε

)
± q(t), (3.92)

where U0 is the solution of (3.43), and where

p(t) = −e−βt/ε2

+ eLt + K,

q(t) = σ(βe−βt/ε2

+ ε2LeLt).
(3.93)

Note that q = σε2 pt. It is clear from the definition of u±
ε that

lim
ε→0

u±
ε (x, t) =

{
1 for all (x, t) ∈ Q+

T

0 for all (x, t) ∈ Q−
T .

(3.94)

The main result of this section is the following.

Lemma 3.6.1. There exist positive constants β, σ with the following properties. For any
K > 1, we can find positive constants ε0 and L such that, for any ε ∈ (0, ε0), the functions u−

ε

and u+
ε satisfy the homogeneous anisotropic Neumann boundary condition and

L0u
−
ε ≤ 0 ≤ L0u

+
ε in Ω × [0, T ],

where the operator L0 has been defined in (3.77).

3.6.2 Proof of Lemma 3.6.1

We show below that L0u
+
ε := (u+

ε )t − ∇ · ap(x,∇u+
ε ) − 1

ε2
f(u+

ε ) ≥ 0, the proof of inequality

L0u
−
ε ≤ 0 following by the same arguments.

Computation of L0u
+
ε

In the sequel, the function U0 and its derivatives are taken at the point (dφ(x, t) + εp(t))/ε.
Straightforward computations yield

(u+
ε )t = (

1

ε
(dφ)t + pt)U0

′ + qt,

∇u+
ε =

1

ε
U0

′∇dφ,

∇ · ap(x,∇u+
ε ) =

1

ε2
U0

′′∇dφ · ap(x,∇dφ) +
1

ε
U0

′∇ · ap(x,∇dφ)

=
1

ε2
U0

′′2a(x,∇dφ) +
1

ε
U0

′∇ · ap(x,∇dφ),
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where we have used properties from Remark 3.1.1. Note that, dφ being constant in a neigh-
borhood of ∂Ω, we have that ∇u+

ε = 0 on ∂Ω × (0, T ) and u+
ε satisfies the homogeneous

anisotropic Neumann boundary condition

ap(x,∇u+
ε ) · ν = 0 on ∂Ω × (0, T ).

Further, we use the expansion

f(u+
ε ) = f(U0) + qf ′(U0) +

1

2
q2f ′′(θ),

for some function θ(x, t) satisfying U0 < θ < u+
ε .

Combining the above expressions with equation (3.43), we obtain

L0u
+
ε = E1 + E2 + E3,

where:

E1 = − 1

ε2
q
(
f ′(U0) +

1

2
qf ′′(θ)

)
+ U0

′pt + qt,

E2 =
U0

′′

ε2

(
1 − 2a(x,∇dφ)

)
,

E3 =
U0

′

ε

(
(dφ)t −∇ · ap(x,∇dφ)

)
.

In order to estimate the above terms, we first present some useful inequalities. As f ′(0)
and f ′(1) are strictly negative, we can find strictly positive constants b and m such that

if U0(z) ∈ [0, b] ∪ [1 − b, 1] then f ′(U0(z)) ≤ −m. (3.95)

On the other hand, since the region {(x, z) ∈ Ω × R |U0(z) ∈ [b, 1 − b] } is compact and since
U0

′ > 0 on R, there exists a constant a1 > 0 such that

if U0(z) ∈ [b, 1 − b] then U0
′(z) ≥ a1. (3.96)

We define
F = sup

−1≤z≤2
|f(z)| + |f ′(z)| + |f ′′(z)|, (3.97)

β =
m

4
, (3.98)

and choose σ that satisfies
0 < σ ≤ min(σ0, σ1, σ2), (3.99)

where

σ0 :=
a1

4β + F
, σ1 :=

1

β + 1
, σ2 :=

4β

F (β + 1)
.

Hence, combining (3.95) and (3.96), we obtain, using that σ ≤ σ0,

U0
′(z) − σf ′(U0(z)) ≥ 4σβ for z ∈ R. (3.100)

Now let K > 1 be arbitrary. In what follows we will show that L0u
+
ε ≥ 0 provided that

the constants ε0 and L are appropriately chosen. From now on, we suppose that the following
inequality is satisfied:

ε2
0LeLT ≤ 1 . (3.101)

Then, given any ε ∈ (0, ε0), since σ ≤ σ1, we have 0 ≤ q(t) ≤ 1, hence, recalling that
0 < U0 < 1,

− 1 ≤ u±
ε (x, t) ≤ 2 . (3.102)
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We first estimate the term E1

A direct computation gives

E1 =
β

ε2
e−βt/ε2

(I − σβ) + LeLt(I + ε2σL),

where

I = U0
′ − σf ′(U0) −

σ2

2
f ′′(θ)(βe−βt/ε2

+ ε2LeLt).

In virtue of (3.100) and (3.102), we obtain

I ≥ 4σβ − σ2

2
F (β + ε2LeLT ).

Then, in view of (3.101), using that σ ≤ σ2, we have

I ≥ 2σβ.

Consequently, we have

E1 ≥ σβ2

ε2
e−βt/ε2

+ 2σβLeLt =:
C1

ε2
e−βt/ε2

+ C1
′LeLt.

As for the term E2

First, in the points where |dφ| < d0, by (3.89), we have E2 = 0. Next we consider the points
where |dφ| ≥ d0. We deduce from the definition of Λ0 in (3.26) that

0 ≤ 2a(x,∇dφ(x, t)) ≤ (Λ0)2|∇dφ(x, t)|2

≤ (Λ0)2‖∇dφ‖2
∞ := D < ∞.

Applying Lemma 3.3.1 yields

|E2| ≤ C

ε2
(1 + D)e−λ|dφ+εp|/ε

≤ C

ε2
(1 + D)e−λ(d0/ε−|p|).

By the definition of p in (3.93) we have that 0 < K − 1 ≤ p ≤ eLT + K; we suppose from now
that the following assumption holds:

eLT + K ≤ d0

2ε0
. (3.103)

Then
d0

ε
− |p| ≥ d0

2ε
so that, defining C ′ := C(1 + D),

|E2| ≤ C ′

ε2
e−λd0/(2ε)

≤ C2 :=
16C ′

(eλd0)2
.
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Next we consider the term E3

We set
F(x, t) = (dφ)t(x, t) −∇ · ap(x,∇dφ(x, t)).

We recall that dφ ∈ C3+ϑ,(3+ϑ)/2 in a neighborhood V of Γ, say

V = {(x, t) ∈ QT , |dφ(x, t)| < d0}.

Combining the fact that
2a(x,∇dφ(x, t)) = 1 in V,

with the definition of Λ0 in (3.26), we see that

|∇dφ| ≥
1

Λ0
in V. (3.104)

We also recall that (x, p) 7→ a(x, p) is of class C3+ϑ on Ω × R
N \ {0}. Since by (3.104) |∇dφ|

is bounded away from zero, it follows that x 7→ ∇ · ap(x,∇dφ(x, t)) is in C1+ϑ(Vt), where

Vt := {x ∈ Ω, (x, t) ∈ V}.

Moreover the function x 7→ (dφ)t(x, t) is in C1+ϑ(Vt). Therefore the function x 7→ F(x, t) is
Lipschitz continuous on Vt. By equation (3.91), we have that

F(x, t) = 0 on Γt = {x ∈ Ω, dφ(x, t) = 0},

and it follows from the mean value theorem applied separately on both sides of Γt that there
exists a constant N1 such that

|F(x, t)| ≤ N1|dφ(x, t)| for all (x, t) ∈ V. (3.105)

Next, using Lemma 3.2.2, we remark that F is bounded on Ω × [0, T ]\V so that there exists
a constant N2 such that

sup
Ω×[0,T ]\V

|F(x, t)| ≤ N2. (3.106)

By the inequalities (3.105) and (3.106), we deduce that

|F(x, t)| = |(dφ)t(x, t) −∇ · ap(x,∇dφ(x, t))| ≤ N0|dφ(x, t)| in QT ,

with N0 := max(N1, N2/d0). Applying Lemma 3.3.1 we deduce that

|E3| ≤ N0C
|dφ(x, t)|

ε
e−λ|dφ(x,t)/ε+p(t)|

≤ N0C maxy∈R |y|e−λ|y+p(t)|

≤ N0C max
(
|p(t)|, 1

λ

)

≤ N0C
(
|p(t)| + 1

λ

)
.

Thus, recalling that |p(t)| ≤ eLt + K, we obtain

|E3| ≤ C3(e
Lt + K) + C3

′,

where C3 := N0C and C3
′ := N0C/λ.
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Completion of the proof

Collecting the above estimates of E1, E2 and E3 yields

L0u
+
ε ≥ C1

ε2
e−βt/ε2

+ (LC1
′ − C3)e

Lt − C4,

where C4 := C2 + KC3 + C3
′. Now, we set

L :=
1

T
ln

d0

4ε0
,

which, for ε0 small enough, validates assumptions (3.101) and (3.103). If ε0 is chosen suffi-
ciently small (i.e. L sufficiently large), we obtain, for all ε ∈ (0, ε0),

L0u
+
ε ≥ (LC1

′ − C3)e
Lt − C4

≥ 1
2LC1

′ − C4

≥ 0.

The proof of Lemma 3.6.1 is now completed.

3.7 Proof of the main results

In this section, we prove Theorem 3.1.3 and Corollary 3.1.4 by fitting the two pairs of sub-
and super-solutions, constructed for the study of the generation and the motion of interface,
into each other.

Let η ∈ (0, η0) be arbitrary. Choose β and σ that satisfy (3.98), (3.99) and

σβ ≤ η

3
. (3.107)

By the generation of interface Theorem 3.5.1, there exist positive constants ε0 and M0 such
that (3.56), (3.57) and (3.58) hold with the constant η replaced by σβ/2. Since, by the
hypothesis (3.7) and the equality (3.31), ∇u0(x) ·nφ(x) 6= 0 everywhere on the initial interface
Γ0 = {x ∈ Ω, u0(x) = a} and since Γ0 is a compact hypersurface, we can find a positive
constant M1 such that

if dφ(x, 0) ≥ M1ε then u0(x) ≥ a + M0ε,

if dφ(x, 0) ≤ −M1ε then u0(x) ≤ a − M0ε.
(3.108)

Now we define functions H+(x),H−(x) by

H+(x) =

{
1 + σβ/2 if dφ(x, 0) > −M1ε

σβ/2 if dφ(x, 0) ≤ −M1ε,

H−(x) =

{
1 − σβ/2 if dφ(x, 0) ≥ M1ε
−σβ/2 if dφ(x, 0) < M1ε.

Then from the above observation we see that

H−(x) ≤ uε(x, µ−1ε2| ln ε|) ≤ H+(x), (3.109)

for almost all x ∈ Ω.
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Next we fix a sufficiently large constant K > 1 such that

U0(−M1 + K) ≥ 1 − σβ

3
and U0(M1 − K) ≤ σβ

3
. (3.110)

For this K, we choose ε0 and L as in Lemma 3.6.1. We claim that

u−
ε (x, 0) ≤ H−(x), H+(x) ≤ u+

ε (x, 0), (3.111)

for all x ∈ Ω. We only prove the former inequality, as the proof of the latter is virtually the
same. Then it amounts to showing that

u−
ε (x, 0) = U0

(dφ(x, 0)

ε
− K

)
− σ(β + ε2L) ≤ H−(x). (3.112)

In the range where dφ(x, 0) < M1ε, the second inequality in (3.110) and the fact that U0 is an
increasing function imply

U0

(dφ(x, 0)

ε
− K

)
− σ(β + ε2L) ≤ U0(M1 − K) − σβ − σε2L

≤ σβ

3
− σβ

≤ H−(x).

On the other hand, in the range where dφ(x, 0) ≥ M1ε, we have

U0

(dφ(x, 0)

ε
− K

)
− σ(β + ε2L) ≤ 1 − σβ

≤ H−(x).

This proves (3.112), so that (3.111) is established.
Combining (3.109) and (3.111), we obtain

u−
ε (x, 0) ≤ uε(x, µ−1ε2| ln ε|) ≤ u+

ε (x, 0),

for almost all x ∈ Ω. Since, by Lemma 3.6.1, u−
ε and u+

ε are sub- and super-solutions for
Problem (P ε), the comparison principle yields

u−
ε (x, t) ≤ uε(x, t + tε) ≤ u+

ε (x, t), (3.113)

for almost all (x, t) ∈ QT that satisfies 0 ≤ t ≤ T − tε, where we recall that tε = µ−1ε2| ln ε|.
Note that, in view of (3.94), this is sufficient to prove Corollary 3.1.4. Now let C be a positive
constant such that

U0(C − eLT − K) ≥ 1 − η

2
and U0(−C + eLT + K) ≤ η

2
. (3.114)

One then easily checks, using (3.113), (3.92) and (3.107), that, for ε0 small enough, for almost
all (x, t) ∈ QT with 0 ≤ t ≤ T − tε, we have

if dφ(x, t) ≥ Cε then uε(x, t + tε) ≥ 1 − η

if dφ(x, t) ≤ −Cε then uε(x, t + tε) ≤ η,
(3.115)

and
uε(x, t + tε) ∈ [−η, 1 + η],

which completes the proof of Theorem 3.1.3.
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Systèmes de convection-réaction-diffusion et dynamique d’interface

Cette thèse porte sur la limite singulière d’équations et de systèmes d’équations parabo-
liques non-linéaires de type bistable, avec des conditions initiales générales. Nous prouvons des
propriétés de génération d’interface et analysons le déplacement d’interface. Nous obtenons
une estimation nouvelle et optimale de l’épaisseur et de la localisation de la zone de transition,
améliorant ainsi des résultats connus pour différents problèmes modèles.

Au Chapitre 1, nous considérons d’abord une équation d’Allen-Cahn. Le déplacement de
l’interface limite est induit par sa courbure moyenne et par un terme de pression. Nous étendons
ensuite nos résultats à une classe assez large de systèmes de réaction-diffusion. Pour cela, nous
considérons la première équation du système comme une perturbation de l’équation d’Allen-
Cahn, étudions la dépendance du déplacement de l’interface vis-à-vis de différents paramètres,
et prouvons de fines estimations a priori. Le Chapitre 2 est consacré à l’étude d’un système qui
modèlise une agrégation d’amibes soumises à la diffusion, à la croissance et au chimiotactisme.
Ce dernier phénomène est une propension de certaines espèces à se déplacer vers les plus forts
gradients de substances chimiques, souvent produites par ces espèces elles-mêmes. Enfin, au
Chapitre 3, nous considérons une équation anisotrope, qui intervient en science des matériaux
et dont le terme de diffusion est inhomogène et singulier aux points où le gradient de la
solution s’annule. Nous définissons une notion de solution faible et prouvons un principe de
comparaison. Le déplacement de l’interface limite est induit par une version anisotrope de sa
courbure moyenne. Nous utilisons la distance associée à une métrique de Finsler.

Mots clés : Systèmes de convection-réaction-diffusion – Equation d’Allen-Cahn – Système
de FitzHugh-Nagumo – Chimiotactisme – Anisotropie – Génération d’interface – Propagation
d’interface – Epaisseur d’interface.

Convection-reaction-diffusion systems and interface dynamics

This thesis deals with the singular limit of systems of parabolic partial differential equations,
with bistable nonlinear reaction terms and general initial data. We prove some generation of
interface properties and study the motion of interface. We revisit a variety of model problems
and obtain a new and optimal estimate of the thickness and the location of the transition layer
that develops.

In Chapter 1, we first consider a perturbed Allen-Cahn equation. The motion of the limit
interface is driven by its mean curvature and a pressure term. Then, we extend our results to a
large class of reaction-diffusion systems. The idea is to regard the first equation of the system
as a perturbed Allen-Cahn equation ; the proofs are based upon a study of the dependence
of the interface motion on various parameters together with some refined a priori estimates.
Chapter 2 is devoted to the study of a chemotaxis system. This is a model for the aggregation
of amoebae in the presence of diffusion, growth and chemotaxis. This last phenomenon is a
tendency of some species to move towards higher gradients of chemical substances which they
often produce themselves. Finally, in Chapter 3, we consider an anisotropic equation, which
arises for instance in material sciences, and whose diffusion term is spatially inhomogeneous
and singular in the points where the gradient of the solution vanishes. We define a notion of
weak solution and prove a comparison principle. The motion of the limit interface is driven by
its anisotropic mean curvature. We use the distance function associated with a Finsler metric.

Key words : Convection-reaction-diffusion systems – Allen-Cahn equation – FitzHugh-
Nagumo system– Chemotaxis – Anisotropy – Generation of interface – Motion of interface –
Thickness of interface.
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