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INTRODUCTION

Ce mémoire aborde plusieurs domaines auxquels je me suis intéressés depuis quelques années :
le calcul de Lie et en particulier les séries de Lie et leurs applications en théorie du contréle (avec
F. JEAN), en mécanique hamiltonienne et dans I’étude de relations dans des groupes ; I’étude
des déformations de groupes triangulaires discrets dans I’espace PU(2,1) des automorphismes
de la boule unité complexe de dimension 2 (avec E. FALBEL).

J’ai choisi dans ce mémoire, de présenter les résultats de quelques articles significatifs ainsi
qu’un travail en collaboration avec Serge GALAM sur I’étude d’un modele particulier du pro-
bléeme d’Ising triangulaire antiferromagnétique.

***

La caractéristigue commune de ces travaux est le fait que les résultats sont donnés de facon
explicite et constructive, utilisant les outils de calcul formel. A mon sens, c’est le point de vue
algébrique, est plus particulierement effectif, qui a permis d’obtenir les différents résultats que
j’évoque succinctement ici et plus en détails dans la partie suivante.

Ainsi, dans la quasi totalité des références que je propose dans ce mémoire, toutes les solutions
sont explicites et effectives, dans le sens que nous définissons un algorithme pour les calculer.

Séries de Lie

A I’origine, dans ma thése ([13]), je m’étais intéressé aux méthodes de Lie en mécanique hamil-
tonienne. Elles jouent un role tres important dans des domaines aussi variés que la mécanique
céleste, I’optique géométrique, la physique des plasmas, la théorie des accélérateurs de parti-
cules, le transport de neutrons ou I’électricité. Leur essor remonte a la parution de deux articles,
un article du mécanicien céleste André Deprit [110] en 1969 et celui de deux physiciens Alex
Dragt et John Finn [111] en 1976.
Les mécaniciens célestes ont I’habitude de considérer les transformations canoniques comme
des transformations de Lie, c’est-a-dire comme I’application, au temps 1, du flot d’un Hamil-
tonien non-autonome. Pour d’autres, on représente les transformations canoniques comme des
composées d’applications, au temps 1, de flots hamiltoniens autonomes.
En fait, ces deux formalismes ne sont que deux représentations d’éléments du méme groupe.
L’étude (dans ma these) des liens entre ces transformations et I’exponentielle m’a conduit a
développer la possibilité d’exprimer des identités entre les automorphismes des séries de Lie,
dans une algébre de Lie libre, tant d’un point de vue théorique que d’un point de vue effectif.
Les principaux résultats obtenus dans ma these étaient :
— Equivalence des transformations de Deprit, de Dragt-Finn et des exponentielles de dérivations
intérieures
— Méthodes effectives de calcul des relations entre ces transformations et de leur composition
(en particulier, obtention des formules de Campbell-Haussdorf a des ordres élevés).
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— Obtention d’intégrateurs symplectiques : ce sont des schémas d’intégration numérique de
systemes hamiltoniens qui ont la particularité d’étre sans dérive, c’est-a-dire, de conserver des
intégrales premieres proches de celles du systeme. Ces méthodes sont utilisées pour intégrer
a trés long terme des systemes de mécanique céleste.

Développements postérieurs

J’ai poursuivi aprés ma thése dans ce sujet et présenté plusieurs résultats :

— J'ai proposé dans Exhaustive Search of Symplectic Integrators Using Computer Algebra ([5]),
une liste exhaustive d’intégrateurs symplectiques optimaux pour les petits ordres ainsi que
des méthodes pour I’obtention a des ordres elevés. Outre I’intérét de I’obtention de méthodes
explicites d’intégration a trés long terme de systémes de mécanique céleste, I’obtention de
ses résultats a mis en lumiére des isomorphismes particuliers entre diverses composantes de
I’algébre de Lie libre.

— Utilisant des automorphismes des séries de Lie, j’ai mis en évidence (Relations among Lie
Series Transformations and Isomorphisms between free Lie Algebras, [7]) certaines gradua-
tions de I’algebre de Lie libre et certains isomorphismes qui m’ont conduit a démontrer que
les composantes homogeénes de la série de Hausdorff engendraient librement une algébre de
Lie libre (extension d’un résultat de Sirsov et Witt ([141])).

— Avec Frédeéric JEAN (Ensta), considéerant a présent les transformations de Lie, du point de
vue de la théorie du contréle, nous avons donné Elementary Approximation of Exponential of
Lie Polynomials ([6]) une méthode explicite d’approximation a tout ordre de I’exponentielle
d’un polynéme de Lie par un produit de facteurs élémentaires (généralisation de la formule
de Zassenhauss).

Parallélogrammes

Comme je vais I’expliquer dans la partie suivante, les résultats évoqués ci-dessus ont comme
caractéristique commune d’étre des problémes d’approximation dans un groupe de Lie, d’un
élément par des éléments d’un sous-groupe particulier.

Ces méthodes explicites de calcul d’identités dans le groupe des transformations de Lie m’ont
conduit a considérer, avec Elisha FALBEL (Paris 6), la question de la recherche d’identités de
longueur minimale. Nos résultats concernent plus particulierement les identités de longueur
minimale (parallélogrammes) dans le groupe nilpotent libre. L’idée était de construire des tra-
jectoires fermées comme successions d’orbites de champs de vecteurs. Dans (The Number of
Sides of a Parallelogram [8]), nous bornons les longueurs des parallélogrammes et de nombreux
exemples de groupes sont évoqués, soulignant ainsi la grande variété des cas possibles.

Déformation de groupes triangulaires dans PU(2,1)

Une famille de groupes particulierement intéressante est celle des groupes triangulaires. Je me
suis intéressé (avec Elisha FALBEL) au probléme de I’existence de la déformation de groupes
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triangulaires discrets (engendré par 3 réflexions) dans le groupe des automorphismes de la boule
complexe de dimension 2 : PU(2,1).

Nous nous sommes particulierement intéressés au groupe (2,3,) dont SL(2,Z) peut étre vu
comme un sous-groupe d’indice 2.

Notre travail, outre qu’il donne des résultats de flexibilité (existence de familles de déforma-
tion) la ou existaient des résultats de rigidité, est fondé sur I’utilisation des C-sphéres (mis en
évidence par Falbel et Zocca [115]). Ce sont des surfaces qui délimitent des domaines fonda-
mentaux, lesquels permettent de conclure sur le caractere discret du groupe étudié. Une part
importante du travail a été I’étude d’invariants algébriques intervenant dans la construction de
tels objets. Ce sont ces constructions ([9, 10, 12]), qui ont nécessité I’utilisation du calcul for-
mel, qui ont permis de mettre a jour des familles de déformations.

Probleme d’lsing

Avec Serge GALAM (CNRS, Paris 6), nous avons mené ([11]) une étude algébrique et donc
basée sur des méthodes de calcul formel pour le modele d’Ising antiferromagnétique.

Le modéle d’Ising permet d’étudier les transitions de phase des systémes de la physique de la
matiere condensée. Ici nous étudions une nouvelle théorie de champ moyen, proposée par S.
Galam ([118, 119]) qui préserve la symétrie hamiltonienne initiale. Ce modele particulierement
simple est appliqué ici pour résoudre le modele antiferromagnétique triangulaire d’lIsing. Ce
modeéle a ceci d’intéressant que les résultats que nous obtenons ne sont pas numériques. L’exis-
tence des états d’équilibre et leur détermination a pu se démontrer de fagcon exacte (algébrique).
La ou tous les modeéles de champ moyen indiquaient une transition de phase a température non
nulle, nous avons montré qu’il n’en était rien avec ce modele particulier, conformément a la
théorie générale ([151]).

Ce modele simple de champ moyen ouvre une nouvelle maniere d’aborder les systéemes aléa-
toires.

***



Introduction



P-V. Koseleff, HDR 5

PRESENTATION DES RESULTATS OBTENUS

Outre le travail en commun avec S. Galam (Solving the triangular Ising ferromagnet by simple
mean field), qui concerne I’ utilisation de méthodes algébriques simples et classiques dans I’étude
d’un modéle mathématique particulier du probléme d’lIsing antiferromagnétique, on peut sépa-
rer les themes de recherche dans les travaux que je présente en deux grandes parties : les séries
de Lie et la geométrie hyperbolique complexe. Ces deux themes sont liés par le premier travail
que j’ai effectué avec E. Falbel : The Number of Sides of a Parallelogram. Il s’agissait au départ
de construire des trajectoires fermées comme successions d’orbites de champs de vecteurs par-
ticuliers. 1l s’est vite avéré qu’un probleme plus général était celui de la recherche d’identités de
longueur minimale dans un groupe (de Lie) donné ou méme plus généralement le probléme de
I’approximation d’un élément d’un groupe par des éléments d’un sous-groupe. Le cadre dans
lequel nous nous sommes placés dans notre étude est celui du groupe nilpotent libre, ce qui, en
utilisant diverses graduations, peut conduire a des résultats plus généraux d’approximation dans
le cadre des séries formelles de Lie.

Probleme genéral de I’approximation

Soit x,y des éléments d’une algebre de Lie L. Dans le groupe de Lie exp(L), nous savons que

exp(x+Y) =~ exp(x) exp(y), 1 ~ exp(x) exp(y) exp(—x) exp(—y)

dans un sens qu’il convient de préciser. Ce sont la les premiers exemples d’approximations.
Dans le premier cas nous approximons un élément (I’exponentielle d’une somme) par un produit
d’éléments d’un sous groupe et dans le second cas nous recherchons une approximation de 1.
Encore ne s’agit-il ici que d’approximation du premier ordre.

Intégrateurs symplectiques

Les intégrateurs symplectiques sont des schémas d’intégration numérique a long terme, de sys-
temes hamiltoniens. Le probléme est le suivant : étant donné un hamiltonien H = Hy + Ho,
calculer une solution approchée de I’équation

2(0) =29, 2(t) = [H, z].

Formellement, la solution est donnée par z(t) = exp(t[H,-])zo, lorsque H ne dépend pas du
temps. Il est fréquent que exp(t[H,-]) ne se calcule pas facilement alors que exp(t[Hy,-]) et
exp(t[Hz,-]) le peuvent. L’idée est d’essayer d’approximer le flot exp(t[H,-]) par une compo-
sition des flots hamiltoniens exp(t1[H1,-]) de Hi et exp(t2[H2,-]) de Ha. De tels intégrateurs
peuvent se construire en considérant des identités universelles dans les algébres de Lie libres :

exp(T[H ) ]) = exp(rl[Hil, ]) T 'exp(Tk[Hiw ])
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de telle fagcon que I’erreur ne soit pas importante.

L’avantage est double : tout d’abord, les méthodes classiques d’intégrations numériques ne sont
pas sans dérive, c’est-a-dire, I’intégrale premiére H(z), non seulement ne sera pas constante
mais de plus va tendre vers I’infini ; ici, I’approximation ainsi obtenue du flot hamiltonien ap-
parait comme une combinaison de flots hamiltoniens et est enoce un flot hamiltonien.

Cette approche a été introduite en 1988. L’utilisation du formalisme des séries de Lie pour
résoudre cette question est apparue au début des années 1990 [117, 153, 154, 146, 147, 148,
134]. Dans ces travaux, des méthodes de construction pour des petits ordres ou pour des ordres
élevés ne prouvaient pas leur exhaustivité ni méme leur minimalité. Dans ma thése ([13]) et dans
deux articles ([2, 5]) je donne une liste exhaustive de tels intégrateurs pour des petits ordres et
propose des constructions pour des ordres élevés.

Dans le cas général, il s’agit de se placer dans un certain groupe de transformations. Le cadre
le plus général est celui des automorphismes des séries de Lie dans lequel j’avais déja étudié la
représentation des compositions.

Dans le cas particulier de I’intégration de systemes de mécanique céleste, mes résultats, qui
utilisaient le fait que le Hamiltonien du systéme pouvait se ré-écrire, dans les variables hé-
liocentriques canoniques, comme la somme de problémes a deux corps et une perturbation
d’interaction, nous avions de plus une relation de la forme

[HT7V]7V]7V] =0,

due au fait que I’énergie cinétique du systeme est une forme quadratique. Je propose alors dans
Exhaustive Search of Symplectic Integrators Using Computer Algebra, une construction en me
placant dans le cadre d’un quotient d’algébre de Lie libre.

Ces méthodes sont utilisées actuellement en mécanique céleste (Laskar et Robutel [130]), ou
plus généralement en intégration de systéemes “symplectiques” (McLachlan [135]).

Planifications de trajectoires

En théorie du contrble, pour un systéme x = S ; ui(t)X;(x), le probléme classique de la plani-
fication de trajectoires est ([126, 129]) : étant donnés deux états p et q, déterminer une trajec-
toire réalisable (i.e. des contrdles uy(t),...,um(t)) tels que x(0) = p et x(1) soit arbitrairement
proche de q.

Nous obtenons une trajectoire comme une concaténation de trajectoires, chacune étant I’orbite
pendant le temps A, sous I’action du champ X;, .

Soit g un état donné comme exp(X)p, dans lequel X appartient a I’algébre de Lie £ (X1,...,Xm),
engendrée par les champs de vecteurs X;. Nous recherchons des trajectoires, plus simples,
comme composition des flots des X;.

Le point final de la trajectoire est donné alors par exp(A1Xi,) - - -exp(AsXig)p, c’est-a-dire, un
produit de facteurs élémentaires appliqué a I’état p. Ici encore, il s’agit d’écrire

exp(tX) ~ exp(M1Xi,) - - -exp(AsXi,) = exp(tX +o(t)).
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Dans (Elementary Approximation of Exponentials of Lie Polynomials, [6]), nous donnons une
méthode effective qui détermine de telles trajectoires a tout ordre. Ce ne sont pas des identités
minimales. Elles utilisent tout d’abord la décomposition en forme factorisée (prop. 1) puis pour
chaque terme homogéne une méthode sans calculs dans I’algébre de Lie.

Parallélogrammes

Le cas particulier ou les Aj € Z (resp. {—1,1}) et X = 0 a été étudié dans [8]. Nous I’avons
appelé parallélogramme et il est lié au probléme suivant : soit a, b des éléments d’un groupe G.
Un parallélogramme est une relation minimale de la forme

1=a™Mb™...a%p"M

Ici nous cherchons & minimiser la longueur SX_; nj| + |m|.

Dans le cas du groupe nilpotent libre d’ordre m, nous montrons que le probléme est identique a
celui de la recherche d’un élément

exp(nx) exp(may) - - exp(nx) exp(myy) — 1
d’ordre m dans I’algébre associative libre L(x,y), ou de la série rationnelle
(LX) (L 4y)™ - (14+x)™(L+y)™ —1

d’ordre m.

***

Pour ces trois problemes d’approximation, nous nous sommes placés dans la cadre des algebres
de Lie libres ou du groupe nilpotent libre. Les résultats obtenus ont utilisés le formalise des
automorphismes des series de Lie et des relations explicites que nous pouvions obtenir entre
diverses transformations. Les résultats explicites ont été obtenus grace a des outils de calculs
formel que j’ai continué de développer peu aprés ma thése et par des techniques de résolution
de systémes polynomiaux.

Séries de Lie

X étant un alphabet (éventuellement pondeére), L(X),F(X) et & (X) désignent I’algébre de Lie
libre, le groupe libre et I’algebre associative libre sur X. Ils sont classiquement gradués par la
longueur, le poids (longueur pondérée) et le multi-degre.

On définit les séries formelles de Lie L(X) et les séries non commutatives 4 (X ) par complétion.

Nous utilisons aussi Ezp(X) = [Mn>pLn(X), et ﬁzp(X) = [n>pAn(X) ot Ln(X) (resp an(X))
est le sous-module des éléments de longueur n.
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L’ensemble ' (X) =1+ Ezl(X) est appelé le groupe de Magnus.
Exponentielle.— Ayant définit I’exponentielle exp : 2>1(X) — I'(X) nous utilisons de théo-
reme de Campbell-Hausdorff [105, Ch. I, 85]) :

Théoreme 1 (Campbell-Hausdorff).— Pour x,y € L>1(X), la série de Hausdorff H(x,y) =
log [exp(X) exp(y)] appartient & L>1(X).

Une conséquence directe est une variante de la formule de Zassenhauss [141] :

Proposition 1 (Développement en produit).— Pour k € Ezl(X), il existe un unique g €
L>1(X) tel que
exp( D kn) ="---exp(gn)---exp(ga).

n>1

De plus, on peut calculer explicitement g en fonction de k (voir par exemple ma thése [13]).

Probleme général de I’approximation
Le probléeme général de I’approximation est le suivant :

Probléme 1 (Approximation).— Soit X = {X4,..., Xk}, un alphabet. Soit P € L(X). Détermi-
ner A1, ...,As dans un ensemble a préciser (IR,C,Z,{—1,1}), tels que

exp(P) = exp(A1Xi,) - - -exp(AsXis) exp(Rxn)
ol les Xi, € X et Rup € Lonra(X).

Parallélogrammes [8]
Notons F>1(X) = F(X) et posons F>n(X) = (F>1(X), F>n-1(X)) (ensemble des commutateurs),
on obtient la suite centrale descendante.

Considérant les filtrations centrales de F(X) — '(X), u:x € X — (14x) et p' : x € X — exp(x),
Magnus a prouvé le résultat ([105]) : p=2(1 4+ 25n(X)) = WL+ 25n(X)) = Fon(X)
Cette propriété nous permet de considérer les polygones comme des approximants

exp(arx) exp(bay) ---exp(an) exp(bny) € 14 a>m(X),

L4+X)2A+y)P (1021 4+y) e 14 2-m(X).
ce que I’on peut a la fois rapprocher des séries de Lie et des séries rationnelles (voir [102]).
Ici, les a; et les b; sont des entiers non nuls. Un parallélogramme d’ordre m sera un polygone

d’ordre m de longueur minimum Iy, et nous démontrons, utilisant un minorant du rang d’une
série rationnelle : [8]

Théoréme 2— Onam < I, < m2.
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Nous donnons une méthode explicite pour construire des parallélogrammes a tout ordre et étu-
dions divers cas particuliers lorsque le groupe G n’est pas le groupe nilpotent libre.

Intégrateurs symplectiques [4, 5].
Le cas particulier ou P = X1+ - - - + Xk (en particulier k = 2) concerne la théorie des intégrateurs
symplectiques

exp(P) = exp(A1Xi,) - - -exp(AsXis) exp(R=n)

Ici les A; sont des nombres algébriques (réels ou complexes) et il est important de pouvoir esti-
mer I’erreur exp(R~p). Les X; sont des champs de vecteurs hamiltoniens [H;, -]. Nous écrivons

H :H1+"'+Hk7

de telle facon que I’intégration numérique ou exacte des flots des hamiltoniens H; soit connue.

Théorie du contrdle [6].
Nous avons montré : pour tout P € L(X1,...,Xn), pour toutm € IN, il existe A1,. .., Agréels, tels
que

exp(P) = exp(A1Xi,) - - -exp(AsXis) eXp(Rxn).

Les Aj, sont donnés de fagon explicite, sans aucun calcul, si P est un mondme de Lie. Sinon,
nous utilisons la décomposition de la proposition 1 qui est effective.

***

Le probléme général de I’approximation a toujours une solution. Une question intéressante est
également : quel est I’ensemble des solutions A1,...,Asde

exp(P) = exp(A1Xi,) - - -exp(AsXis) eXp(Rxn).

J’ai montré, dans ma thése, que les s-uplets (A1, ...,As) sont les zéros d’un certain idéal poly-
nomial qu’il est possible de déterminer. Celui-ci dépend de la base qui a été fixée dans I’algébre
de Lie et de la facon de représenter les transformations.

En particulier, cherchant des relations entre diverses transformations qui sont des automor-
phismes de E(X), et divers isomorphismes entre sous-modules de cette algebre, j’ai pu montrer
que les composantes homogenes de la série de Hausdorff engendraient librement L(X).

***
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Perspectives

Je me suis écarté depuis 1997 des applications telle que la planification de trajectoires ou la
recherche d’intégrateurs symplectiques. Néanmoins, bien que les numériciens ou les utilisateurs
de tels intégrateurs aient découvert que ceux obtenus avec des valeurs négatives aient de moins
bonnes propriétés de stabilité, une piste n’a pas été explorée avec les intégrateurs utilisant des
valeurs complexes. Il me semble que cette piste pourrait étre étudiée, a condition de donner un
sens a de tels méthodes.

Concernant I’étude des parallélogrammes, les quelques exemples que nous avons illustrés montrent
a I’évidence que certaines propriétés restent a étre découvertes. Peut-étre la longueur des paral-
Iélogrammes nous renseignerait-elle sur la structure des groupes. C’est en tout cas une piste que

je compte bien reprendre.

Groupes triangulaires de PU(2,1)

Un probléme de base en géomeétrie est celui de la déformation. Partant d’un groupe I abstrait
finiment engendré, et d’un groupe de Lie G1, on peut rechercher un plongement pg: ' — G1 et
se demander si celui-ci ne fait partie d’une famille p; de plongements discrets.

Un cas particuliérement intéressant est le groupe triangulaire de type (p,q, o), présenté par

[ =<lp,i5,12:10°=1,12=1,12=1,(1p011)P=1,(1g012)9 =1 > .

Prolongeant le travail initié par Falbel et Zocca [115], nous avons étudié des déformations du
plongement de ce groupe triangulaire dans le groupe des isométries de la boule unité complexe
de dimension 2. Ce sont les applications conformes du compactifié du groupe de Heisenberg H,
lequel peut s’identifier & S2, le bord du plan hyperbolique complexe.

Il était déja connu, qu’un plongement dans d’autres groupes d’isométries d’espaces symé-
triques, tels le disque unité de dimension 1, ou I’espace hyperbolique réel de dimension 3,
est rigide.

Dans le cas auquel nous nous intéressons, nous obtenons des déformations non triviales, pour
des groupes de réflexions I triangulaires (p,q, ). Celles-ci sont construites en exhibant des
domaines fondamentaux comme “polyédres” dont la frontiére est une C-sphére, c’est-a-dire,
est feuilleté par des C-cercles, utilisant un théoréeme de Poincaré modifié (Falbel, Zocca [115]).
Les techniques utilisées par Goldman [121] ou Parker et Goldman [123] ou Parker et Gusevskii
[124] utilisaient des bisecteurs (hypersurfaces feuilletées par des C-cercles), qui offrent moins
de liberté.

Citons quelques résultats significatfs

Théoréme 3 (Goldman [122]).— Si po(IN) laisse invariante une variété totalement géodésique
complexe et si son domaine fondamental, restreint a cette variété, est compact, alors toute
déformation proche de ce plongement est conjuguée a celui-ci.
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Dans Rigidity and Flexibility of triangle groups in complex hyperbolic geometry, nous montrons
le résultat suivant :

Théoreme 4 (Falbel & Koseleff [10]).— Il existe un plongement discret et fidéle du groupe
(p,q,), qui fixe une variété totalement géodésique complexe, et admettant un voisinage (de
dimension 4) de plongements discrets et fidéles.

Dans A circle of modular groups in PU(2,1), nous montrons :

Théoréme 5 (Falbel & Koseleff [12]).— 1l existe une famille a un parameétre p;(I'(2,3,)) de
plongements discrets, telle que po(I") laisse invariante une variété totalement géodésique com-
plxe et p1(I") fixe une variété totalement géodésique réelle. Les groupes pt(I") sont engendrés
par des réflexions reelles.

Construction géomeétriques dans le modele de Heisenberg

Nous nous plagons dans la formalisme du groupe de Heisenberg H (voir [122, 115, 9, 10]). C’est
I’ensemble € x IR que nous identifions au bord de la boule complexe, muni de I’addition (z,t) +
(Zt") = (z+7,t +t' +2ImzZ). H s’identifie a la frontiere du plan hyperbolique complexe
H2c. Dans H%:, il y a deux familles de surfaces totalement géodésiques : ce sont les sous-
variétés totalement réelles (isométriques de H%c N IR?) et les sous-variétés totalement complexes
(isométriques de H%c N C).

Dans le modéle de Heisenberg, nous considérons les intersections de ces plans géodésiques avec
S3 pour obtenir les R-cercles et les C-cercles.

Le groupe PU(2,1) dans lequel nous plongeons I contient des transformations holomorphes et
antiholomorphes. Il y a deux types de réflexions dans ce modele : les réflexions réelles qui sont
toutes conjuguées a I’inversion (anti-involution) standard

-z t
|0: (th) = 2 .. _ 4 )
lz|7 =it |z|"+t2

qui fixe point par point la courbe R : r2 +it = —e—29 laquelle se projette sur le plan C en la
lemniscate de Bernoulli. Rg est le R-cercle standard.

L’autre anti-involution particuliére est 11 : (z,t) — (z, —t), laquelle fixe la droite Ry (I’axe réel).
Dans le modéle de Heisenberg, les R-cercles (intersection entre S° et une sous-variété totale-
ment réelle) sont soit des droites (R-cercles infinis), transformés de R par des similitudes, soit
des transformés de Rg par des similitudes du groupe de Heisenberg (R-cercles finis).

A chaque R-cercle, nous pouvons associer une unique inversion. Les objets laissés globalement
invariants par ces inversions sont des C-cercles. Dans le modele de Heisenberg, les C-cercles
sont soit des droites verticales, soit des ellipses, intersection d’un cylindre vertical a base circu-
laire et d’un plan.




12 Présentation des résultats obtenus

Pour démontrer que la configuration est un groupe discret, nous construisons explicitement un
domaine fondamental dont la frontiére sera une réunion de C-cercles (ellipses), utilisant le théo-
reme de Poincaré [142, 137, 115]. Nous ramenons donc le probleme a celui de la construction
de familles a un parametre de C-cercles, lesquelles doivent s’intersecter suivant des C-cercles
invariants par deux des générateurs.

Nous avons étudié les configurations possibles et proposé plusieurs constructions qui s’ap-
puyaient essentiellement sur les propriétés algébriques de ces ellipses.

***

Mon apport principal a ce travail a été de mettre en évidence des propriétés algébriques des
C-sphéres, permettant ainsi la construction explicite de domaines fondamentaux.

Bien que cela n’apparaissent pas explicitement dans nos travaux, les résultats ont été obtenus
grace a I’utilisation du calcul formel : soit pour montrer qu’une construction était impossible (en
utilisant des techniques de géomeétrie algébrique réelle de dénombrements de zéros), soit pour
donner des formules explicites. En particulier, j’ai développé un paquetage dans le logiciel
MAPLE de factorisation des séries de Poisson (combinaisons linéaires de fonctions trigonomé-
triques).

Perspectives

Sur la déformation des plongements des groupes triangulaires (p,q, ), de nombreuses ques-
tions restent en suspens. Nous savons déja, que pour tous p et g, il existe des voisinages d’une
configuration que nous pouvons déformer non trivialement. Par contre nous ne savons pas mon-
trer (parce que nous ne savons pas construire de domaine fondamental) qu’au dela, certaines
déformations ne sont plus discretes. Il reste néanmoins de nombreuses possibilités d’étude, en
étudiant des invariants algébriques des générateurs, qui s’appuierait sur des techniques de la
théorie des invariants.
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Abstract. We find symplectic integrators using universal exponential
identities or relations among formal Lie series. We give here general
methods to compute such identities in a free Lie algebra. We recover
by these methods all the previously known symplectic integrators and
some new ones. We list all minimal solutions for integrators of low order.
We give some improvement in the case when the Hamiltonian is in form
T(p) + V(q). We give also all reversible fourth-order symplectic integra-
tors for the planetary hamiltonian expressed in canonical heliocentric
coordinates.

1 INTRODUCTION

For very long time integration, there has been recently a development of numeri-
cal methods preserving the symplectic structure (see for example [7, 18, 19, 20]),
which seem to be more efficient with respect to the computational cost.

Symplectic integrators may be seen as the time evolution mapping of a
slightly perturbed Hamiltonian, that is to say as a Lie transformation that can
be represented either by an exponential, a product of increasing order single
exponentials or a proper Lie transformation. Constructing explicit high order
symplectic integrators requires the manipulation of formal identities like expo-
nential identities.

In section 2., we remind first some definitions of the Hamilton formalism. In
section 3., we give some general methods to manipulate formal Lie series and
Lie algebra automorphisms. We remind some theorems related to exponential
identities and give explicit methods to compute them. They make use the Lyndon
basis, which is particularly adapted to this problem. Most of this material has
been published already in [9] but is not necessarily known by the reader.

In section 4., we show how the algorithms described in section 3. provide
symplectic integrators. The idea of such constructions originates in Forest &
Ruth ([7]) or more recently Yoshida ([20]). Our approach in this paper is to

* Published in Integration Algorithms and Classical Mechanics, Fields Institut
communications, 10, pp. 103-120, 1996
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combine the use of proper Lie transforms and exponentials. This avoids many
unnecessary direct calculations of exponential identities. At the end we propose
some improvement in the case when the Hamiltonian is separated into kinetic and
potential energies. We give also some fourth-order integrator for the planetary
Hamiltonian and show that they are minimals.

All the algorithms described in the present paper have been implemented
using AxtoM (NAG) running on IBM-RS/6000-550.

Between the preparation of this paper and its publication, many papers have
been published on the subject and specially [13].

1.1 Symplectic Integrators
Given a phase space E which can be identified to IR*", a set of variables

(qap) = ((11;~~-;Qn;p1;-~~;Pn) - (Zla"';ZZn)a (1)

and an Hamiltonian h = h(p, ¢,t), we consider the system of differential equa-
tions

oh oh

i = —5 4= ) 1<i< ) 2

P ¢ "~ ap; =r=r @

where z = Z—; denotes the total time derivative. Introducing the Poisson bracket
~ 0f 99 09 Of

{fa}=> -5 - (3)

dpi 9q;  Opi Oy
that turns the set of smooth functions on E onto a Lie algebra, (2) becomes
Z'i:{zi,h}I—LhZi, ISZSQH (4)

A transformation on the phase space F is said canonical if it preserves the
Poisson brackets. Such transformations are also called symplectic as their Jaco-
bians belong to the symplectic group. One extends the canonical transformations
on the functions on the phase space by Tf(z) = f(7'(z)). Canonical transfor-
mations act on the Lie algebra of the Lie operators by T'L;T~' = Ly;. Here
Ly :g—{f,g}. Theset of L; is a Lie algebra with [Lf, Ly] = L{; 4.

The time-evolution mapping S, (t) : z — z(t) is a canonical transformation.
From (4), Sx(t) is the solution of the differential equation

d
ZESh(t) = =Sh(®)Ln, Sn(0) = 1. (5)

If h is not time-dependent we have S, (t) = e~*£» and a formal solution of
(4) is given by its Taylor series, called Lie series

2(t) = ()L (6)
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If h is time-dependent, say for example h = >, . t"h,, then S, (t)z may be
written as a Lie series. If B

7 =Sh(t)z =Y 1" Zn,

n>0
we get from (4)

Zo=z, Zn=-Y ‘L 7.,
p=1

More generally, see ([3]), Sh(t) is a series of operators ), 1" (Sh), where

(S)o=1,(Sh)n ==Y LLn,(Sh)n—p.

Let us consider an Hamiltonian h = A+ B, the two time-evolution mappings
Sa(t) = e7tt4 and Sp(t) = e L5 and a given integer k, one seeks a minimal
set of coefficients ¢1,...,¢pn,dy, .. .dy,, such that

SM () = Sa(c1t)Sp(dit) - Sa(cat)Sp(dat) = e7tr 4 o(tF). (7)

S(")(t) is a canonical transformation as composition of canonical transfor-
mations. The above expression may be considered as an equality between trun-
cated Lie series. The aim of our paper is to show how one can solve this general
problem considering the equation (7) as an universal identity between formal
transformations on Lie algebra.

2 LIE ALGEBRAIC FORMALISM

In hamiltonian mechanics, the use of Lie methods or Lie transformations is
efficient when it becomes easy to manipulate Lie polynomials and to express
exponential identities like the Baker-Campbell-Hausdorff formula. Our aim in
this section is to give general methods for the computation of such identities.

These identities are universal Lie algebraic identities, that is to say they do
not depend on the Lie algebra we work in or the Lie bracket we use. We work
in free Lie algebras and with formal Lie series, neglecting all the convergence
problems that can appear with analytical functions for example.

We will use the Lyndon basis for the formal computations but all the iden-
tities can be later evaluated in any Lie algebra.
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2.1 Definitions

X will denote an alphabet, that is to say an ordered set (possibly endless). R is
a ring which contains the rational numbers Q. X* is the free monoid generated
by X and is totally ordered with the lexicographic order. M(X) is the free
magma generated by X. It contains X and is equipped with a composition law :
(z,y) = (z,y).

A(X, R) is the associative algebra, that is to say the R-algebra of X*.

A Lie algebra is an algebra in which the multiplication law [,] is bilinear,
alternate and satisfies the Jacobi identity:

[a, [b, c]] + (b, [e, al] + [¢, [a, 0] = 0. (8)

L(X,R) or L(X) is the free Lie algebra on X. It is defined as the quotient
of the R-algebra of M(X) by the ideal generated by the elements (u,u) and
(1, (v, 0)) + (v, (w, 0)) + (1, (1,0).

An element of M(X) considered as element of L(X) will be called a Lie
monomial. L, (X) is the free module generated by those of length n. Thus L(X)
is graded by the length denoted by |z| for € M(X). If | X| = ¢ < oo we have
Witt’s formula (see [1, 14, 15]):

> ddimLa(X) = ¢ (9)
dq

Given a weighted alphabet X in which each letter a has an integer weight
[la||, we take the weight as graduation for L(X) which is defined as the unique
extension of the weight in X. We denote by L, (X) (resp. A, (X)) the submodule
of L(X) (resp. A(X)) spanned by the elements of weight n.

2.2 Formal Lie series

We define the formal Lie series E(X) and A(X) as
LX) =[] La(X) and AX)=]] An(X). (10)
n>0

n>0

We will write # € L(X) as a series > >0 &n. L(X) is a complete Lie algebra
with the Lie bracket -

([z,y])n = Z (%5, va- (11)
p+g=n
Denoting by E(X)+ (resp. .%I(X)+) the ideal of E(X) (resp. ./i(X)) gener-
ated by the elements of positive weight, we can define the exponential and the
logarithm as
exp: A(X)t = 14+ AX)t log: 14+ A(X)t = A(X)*
z" (1—z)"  (12)

x'_)ZnZOF xH_ZnZl n

They are mutually reciprocal functions and we have (see [1, Ch. II, §5]) the
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Theorem 1 (Campbell-Hausdorff). Ifz,y € E(X)+ then

log [exp(z) exp(y)] € L(X)*. (13)
Using the preceding lemma we deduce (see [4, 16]) the

Proposition2 (Factored product expansion). Given k € i(X)‘*, there is
a unique series g € L(X)t such that

exp(D_,>1kn) = -exp(gn) - - -exp(g1). (14)

2.3 Lie series automorphisms

For z in E(X) we denote the Lie operator Lyy = [2,y] by L(z) or L. From the
Jacobi identity (8) we have [Ly, Ly] = Ly Ly — LyLy = Lz y]. The set of L, is a
Lie algebra that we call the adjoint Lie algebra. For any Lie series automorphisms
T, we have by definition [T'f,Tg] = T[f, g]. The Lie series automorphisms act
on the adjoint Lie algebra by

TL;T™ = Lry. (15)

Let us give now some example of Lie transformations that play an important
role in hamiltonian mechanics.

The exponential. Given z € E(X)+, we consider exp(Ly) defined as
exp(Ly)y = Z% (16)
PlLlz)Y = il Y.

i>0

From the Campbell-Hausdorff theorem (1), the set of all exp(L;) is a group G
that we will call the Lie transformations group.

The Lie transform. For w = ) ., t"w,, we denote by 7}, and 7' the
solution ([3]) of N

d d
—Ty = —=TyL d —=T7'= LTt 1
dt w w c(lj_z;) an dtw (il_léf t (7)

With the notation of (5), we have Ty = Sgy . For ¢ € L(X), we have (see [2, 3])

dt
T g = ano G, where

n

P
Go = go, Go,n = 9n; Gp,q = Z f‘,[’wk: Gp—kyq]’ Gn = Z Gp,n—p~ (18)
k=1 p=0
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We call this transformation the Deprit transform. The composite T' of two Lie
transforms 7, and 7, satisfies

dT  dT, dT,
—=—T, +Ty—=-TyLagT, — T, Ty L a4 19
- @ a du 4 (19)
=-T <TU_1Ld_uTU+Ld_U) (20)
dt dt
=-TL —1du , dv - 21
T, mta (21)
dw du dv
T =1, wh — =Tl =4 —
So where 7 I + 7

The Dragt-Finn transform. The Dragt-Finn transform is the infinite product
of exponential maps (see [4]). Given ¢ = " ., gn, we define M, and Mg‘1 as

My =exp(—Lg,) - -exp(—Lg,) -, Mg_1 =---exp(Ly,) - -exp(Ly,). (22)

Note that this transformation will be used in this paper as a technical support
for proving relations between Lie series.

2.4 Relations between transformations

The three above transformations are totally defined by generating series and are
connected by the following

Proposition3 ([8]). Given w, k,g € E(X)+, there exist
— k' e j}(X t with k!, — w, € L(wy,...wn_1) such that exp(Ly/) = T 1,

L(X)
— g’ e L(X)t with g/, — ky, € L(k1,...kn_1) such that Mg_,1 = exp(Lg),
—w' e E(X)+ with w!, — gn € L(g1, .. .gn_1) such that T, = Mg_l.

w! T

The third part of the above proposition has been already proved by Finn
([6]), but not in terms of Lie polynomials. One proves (see [8, 10]) that T;, = M,
if and only if

1 n Mp—k M1
dw -1 i Lk o Lt -
dt el TR (23)
n>1 k=1 (k4 D)mp g+ k+1: n—k-
+(n—k)m, _p=n—k

or equivalently
n Mp—k Mik41
k Lyn=k
ot RO o mpga!my !
mpy1+

+(n—k)m,_j=n—k

in which G,, € L(g1,...,9n-1).
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Using the proposition (2), one proves the existence of g = >, g» such that

exp(Q_,51Lk,) = exp(Ly,) - exp(Lg,), (25)
in which g, = k, + K,, and K,, € L(k1,...,kn_1). Combining (24) and (25) we

deduce proposition 3.

***

We deduce in passing that any Lie transformation 7' € G may be expressed
as an exponential of a Lie operator or as an infinite product of single exponentials
or as a proper Lie transform. The use of a representation depends deeply on the
result we look for. For example, if we have to compose transformations, it is
much easier to consider Lie transforms because their product is a Lie transform
whose generating function appears easily.

Explicit relations up to any given order may be easily computed, using
the Lyndon basis. For example, given w = ), -, w,, we have at the order 6

exp(Lg) = Tt in which

k=w +ws +ws — % [wy, wa] + wg — % [wi, w3] + ws — 13—0 (w1, wa]
— 15 (w2, ws] + 135 (w1, [wi, wal] + 55 [[wi, wa], wo]
+ 31@ [wi, w1, [w1, wa]]] + we — % [wi, ws] — % [wa, w4
+ 61—0 [wi, [wi, wa]] + 31—0 [wi, [w2, wa]] + 21—4 [[wi, wa], wo]

+ ok [wr, [wi, [wy, ws]]] — 25 [wi, [[wi, wo], ws]]

3 SEARCH OF SYMPLECTIC INTEGRATORS

Let h = A+ B be an Hamiltonian. For given integers n and k, one looks for a
set ¢1,...,¢n,d1,...d,, such that

S () = Sa(e1t)Sp(dit) - Sa(cat)Sp(dnt) = Sh(t) + o(tF). (26)

Let R = Qle1, ..., ¢n,di, ..., dn], Ep({A, B}) be the submodule of E({A, BY})
spanned by elements of weight p, where ||A|| = ||B|| = 1. Using the Witt formula
(9), the dimension I, of L, ({A, B}) satisfies 2 djn dla = 2"

Let Ep{z, A, B} be the submodule oleZ({z, A, B}), spanned by those of weight
p, in which the partial commutative degree in z is 1 (here ||z|| = 0). Using the
Lyndon basis, one proves directly that the dimension of f}p{z, A, B} is 2P,

***

In order to solve equation (26), we have to express exponential identities first.
We first prove the algebraic equalities obtained by representing the integrators
in several ways.
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Proposition4. Let us consider the following problems:

1. Having expressed S (t) as exp(— pr t? Ly, ), solve

Ki= A+ B, Ky= - =Kp=0,
2. Having expressed S (t) as exp(—tLg,) - - -exp(—t'Lg,) - - -, solve
Gi=A+B,Gy=--- =G =0,
3. Having expressed S(”)(t) as Tuw, 4. 4trw,+-.), solve
Wi =A+B Wy =---=W; =0.

4. Having expressed Z = S (t)z, solve
Zoy = (exp(=tLa+B)2)0, ..., Zr = (exp(—tLatB)2)k.

The solutions of these four problems are the zeroes of the same polynomial ideal.

Denoting the Lyndon basis £,({A, B}) by (zp1,...,%;p,,), we have

lP lp lP
Ky, = E :Ap,ixp,iaGp = E :Gp,i”fp,iaWp = E :Wp,ix;ﬂ,i- (27)
i=1 i=1 i=1

For the first three methods, the solutions are the zeroes of the ideals

I = (Kig— 1, Ko — 1)+ (Kij;2< i <k 1< < 1),
I8 = (Gra—1,G1a— 1)+ (Gij;2<i <k 1< <L), (28)
T I(W171—1,W172—1)+(m7j;2§i<k,1§jSli).

%
=

We have to bear in mind that Sy is the Deprit transform associated to fot W (u) du.
We therefore get the relations due to the proposition 3:

K, =W, +RY, RV eL,(Wi,...,W,1),
Z%Wp :Gp+R§, R]f € LP(Gla“':Gp—l)a (29)
Gp,=K,+RE, REelL,(Ki,. .. K1)

We first have K1 = Gy = Wy. For p > 1, each RZV may be expressed in the
Lyndon basis £,({A, B}) and the coefficients are polynomials. Each monomial
contains a W; ; where 1 > 1 and thus belongs to II(;). We therefore deduce that
I}p C Ié{j). On the same way, we deduce I‘(/I}j) C Igc) and Ig) C I}?).

We thus have I}?) = I‘(/I}j) = Igﬂ.

Z, belongs to EP{Z,A,B} which basis is denoted by zp1,...,2p 2. If Z, =

Z;; Zp,q%p,q and (exp(—tLatp)z), = 2511 ap ¢%p g, the solutions of 4. are the

zeroes of

I = (Zij—ai 1S i<k 1<j<?) (30)
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From S(”)(t)z —exp(—tLatsp)z = (S(”)(t) — exp(—tLA+B)) z = o(tk), we
deduce for p=1

Zy—A{2,A+ B} =—(Lg, — LayB)z={2,G1 —(A+ B)} =0, (31)
that is, onto the basis ([z, 4], [z, B]),
Zi1—1=G11—1=0, Z12—1=G1,—1=0. (32)

For 1 < p < k, we have

my 7™M P
Zp— 5L g = S (st La, la, (-1)? Lavn
p la+B N~ my! -y ol
= (_ply)P (L%l — L‘Z-I-B) z — LGPZ _|_ (33)
L. e
Z (_1)m1+'“+mp_1 uz (34)
my4-F(p—1)m,_q =p mp'mll
my <p e
=0. (35)
LpGI — LZHB may be written as
kit +kp ~dit+p [ Ep iy
Z (Gl,l E —1) Ly Lg---LFLE. (36)

Kyt +hp+l 4+ +p=p
A coefficient of (36) may be expressed as

Glf,lGll,2 -1= (Glf,1 - 1)Gl1,2 + (Gll,2 -1 e(Gia—1,Gia—1).  (37)

Each LﬁlL% = ~LZ" LIB" is a sum of z, 4 so any coefficient in (Lg1 - LZH_B)Z be-
longs to (G11—1,G1,2—1) C Ig)). Other terms in (33) and (34) have coefficients
in (Ga1,...,Gp1,...Gpu1,) C Ig). We thus deduce that Zz(p) C Z%..

***

Suppose we have for each m < p, I(Zm) = I(Gm). At the order p, from (35), we

deduce also that

(1) (1)

‘ —1)P —1)?
—Lg,z=2p - . LZX+BZ_ ( p!) (Lgl - LZH-B) =

p!
L. et
Z (—1)ymrtompoy G TCem1 (g

! !
mi+-+mp_1=p,mi<n P 1

(ITT)
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Each term on the r.h.s. of the above equation, has a decomposition onto the
Lyndon basis zp 4. Coefficients of (I) belong to I(Zp), coefficients of (IT) and (III)
belong to (G141 —1,G1o—1) CZ¥ Y c 2PV c 7).

We deduce that the coefficients of the Lg,z decomposition onto the z, 4
belong to I(Zp). As solution of (38), the coefficients of G, onto the z, , belong to

I%D) We thus have I(Gp) C I%D) and eventually Ig) = I%D).

***

In order to obtain symplectic integrators, we can use one of these methods
which are algebraically equivalent. We will not use the Dragt-Finn representation
as its mathematical interpretation in terms of invariants is not clear. Neverthe-
less, composition of Factored Product transformations is widely used in optics

([5])-
Direct method. The problem (26) may be solved, looking for all z
SM ()2 = Sa(eit)Sp(dit) - - - Sa(cat)Sp(dnt)z = Sh(t)z + o(t¥).  (39)
At each order p, we obtain a system of 2?7 polynomial equations.
Invariant function. Problem (39) may be solved by expressing S as an
exponential and looking for ¢q,...,¢y,,d1, .. .d, such that
S (t) = Sa(eit)Sp(dit) - - Sa(cnt)Sp(dat) = et (40)
with K = h + o(t*~!). K is not the Hamiltonian governing the system given by
S but an invariant function. At each order p, there is l, polynomial equa-
tions to solve. In order to get these, we have to compute some Baker-Campbell-
Hausdorff formulas.
Perturbed Hamiltonian. One can also express S(")(t) as a Lie transform
SA(Clt)SB(dlt) N ~SA(Cnt)SB(dnt) = SW (41)

where W = h + o(t*~1). The condition is obtained by writing
dg _ ko1
7 Sw = —Swlw = —=SpLj + O(t ) (42)

W is the Hamiltonian governing the system which time-evolution mapping is
S() | At each order p, there is the same number of equations as previously but
that avoids many unnecessary direct calculations of Baker-Campbell-Hausdorff
formulas.

31
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3.1 First integrators

For a given order k, and for a given method (see table 1) one seeks a minimal n
such that S(”)(t) is a kth-order symplectic integrator. One looks for the zeroes
of a polynomial ideal. We use here algebraic methods like Grobner basis that
we compute using AXIOM (when possible) or MACAULAY that works in a ring
Z [pZ and gives some precious results.

For low orders, these methods furnish symplectic integrators. All the fol-
lowing results have been obtained with algorithms on Lie series and have been
implemented t in AX1om ([8]). We then obtain the polynomials that define the
variety we look at. For low orders, these can be described ([9]).

e The solution for k& = 1 is given by ¢; =d; = 1 and

Si(t) = SP(t) = Sa(t)Sa(t). (43)
e The solution for k = 2 is given by
Salt) = S (1) = Sa ()5 (1)Sa(2) = S (ST (). (44)

This approximant is reversible, that is to say satisfies Sy ' (t) = Sa(—t).
e Solutions for k = 3 are

S3 (t) =S (Ct)SB (Ct)SB (Ct)SA(Ct)SA (5t)SB (Et)SB (Et)SA (Et)
= Sy(ct) S 1) (45)

where ¢? — % c+11—2:0.
e When k = 4, we find two sets of solutions and 5 solutions. The correspond-
ing integrators have 7 factors. If ¢3 — 2¢2 + ¢ = %, we get

Sa(t) = Sa(ct)Sa((1 — 2¢)t)Sa(ct). (46)

These solutions are known and have been given also by Yoshida ([20]).
If ¢ is a root of ¢ — %c + % = 0, we get two other solutions:

Sa(t) = Sa(ct)Sa((c + &)t) Sa(ct). (47)

e For k = 5, one gets exactly 46 solutions as product of 5 approximants S».

e For k = 6, an exhaustive list is still unknown. If we add the condition of
being reversible, we get at most 39 solutions, working in Z/31991Z. All inte-
grators are products of second-order integrators. The real valued integrators for
k = 2 or 4 are reversible, that means S(—t) = S~1(¢).

Annexes



Exhaustive Search of Symplectic Integrators Using Computer Algebra

12 P.-V. Koseleff

3.2 Reversible Integrators

Representing a reversible integrator S(¢) by an exponential exp(—tLx), we de-
duce that K (t) = K(—t). Looking for reversible integrators, we can deduce from
the Campbell-Hausdorff formula the

Lemma 5 ([17]). If Sax(t) is a reversible symplectic integrator of order 2k, then

2k+1/5

S(0) = Su (kg 5o (~5751) Sox (mw3t)
1s a reversible symplectic integrator of order 2k + 2.

This lemma allows us to build reversible symplectic integrators of order 2k as
products of 2.3*~1 4 1 single operators S4 or Sp. With this method we find a

19-factor sixth-order integrator.

***

One can try to find directly reversible integrators looking for reversible prod-
ucts

S (t) = Sa(cat)Sp(dnt) - - Salcrt)Sp(dit)Sa(cot)Sp(dit)Sa(crt) - -
Sp(dnt)Sa(cnt).
Denoting by S(®)(t) the operator

Sa(ent)Sp(dnt) - -Sa(c1t)Sp (dlt)SA(%Dt); (48)

we obtain ng) as S(")(t)S(")_l(—t) that we can express as an exponential or a

Lie transform. Representing Sgl) as an exponential e"*L'¥ has the advantage that
K(t) = K(—t). Moreover we have the following lemma resulting from proposition

Lemma6. Let T4 = (Wiq — 1, Wis — L Was,...,Wk1,...,Wiy,), be the
polynomial ideal defining the solutions of Sﬁn)(t) = Sw) = Sh +o(t*). For each
2p < k, we have

(Wapt,- ooy Wap i } CTSFTY 50 (P = 2371, (49)
Using proposition 4, we get for each 1 < 2p < k,
IV =1 = (K1 g — 1, K10 —1,Ka1,..., Kp1, K1) (50)

where the K; ; are the coefficient of K satisfying exp(—tK(t)) = ﬁn). As Sy
is reversible, we have K5, = 0, for each p, that is Iﬁ{zp) = Iﬁ{zp_l) and I‘(,I%p) =
zir=n,

***
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This lemma proves that there is no need to consider odd terms of the Hamil-
tonian obtained with reversible integrators.

e For k = 4, one finds 3 reversible integrators obtained with the direct
method.

e For k = 6, one proves that there is no solutions for n < 8. For n = 8, one
sees, using the Hilbert function implemented in MACAULAY, that the variety of
solutions in Z /pZ (p = 31991) is constituted of 39 points. There is at most 39
algebraic solutions over @.

***

Another solution has been proposed by Yoshida [20] consisting in the finding
of reversible integrators as reversible product of second-order integrators Sa. We

look for
ST (1) = So(cat) - - - Sa(c1t)Sa(cot)Sa(crt) - - - Salent) = e txm  (51)

o For k = 4, we find the real valued reversible integrator previously found by
the direct method or using the lemma (5).

e For £ = 6, we have four equations with four unknowns ¢, ...,c3. The
solution is obtained after eliminations with

_ 39 38 37 232 36 , 6469 35 , 8108 .34 _ 82144 33
Po(co) = c5” +4 cg° =18 ¢y’ — 5= c” + 27 ¢p” + 55 ¢ — cg® —

3 135

239008 32 , 870652 .31 , 5898416 30 618824 29 5158016 28

135 €0 t e ¢ 1t 2025 % — e €0 — Ta20e5 G0 t
2525372 27 | 32135888 26 _ 1377776 .25 _ 33361568 .24 | 536566 23 |

30375 C0 30375 C0 10125 €0 91125 €0 10125 €0
35651416 (22 _ 19660868 .21 _ 8051504 20 4 5636474 .10 , 11313208 .18 _
255625 C0 1366875 CO 255625 CO 1366875 CO 2100625 €0
17674448 17 _ 8733536 .16 4 1302268 .15 | 87632 .14 _ 624184 .13 |
20503125 €0 20503125 €0 6834375 C0 2460375 €0 20503125 €0

288448 12 | 3333844 11 716752 .10 _ 127664 9 . 14364 .8
922640625 C0 922640625 C0 ~ 522640625 €0 553584375 CO T 522640625 €0
136499 7 _ 10996 6 4 117142 .5 33848 4
7613203125 C0 — 8303765625 C0 T 27518828125 CO — 27518828125 €0

17431 CB_ 9668 02—1—
124556484375 0 622782421875 0 622782421875

% €0 — Tgssaaraeses = s

and ¢; = Pi(co),ca = Pa(co),c3 = Ps(co) where Py, Py, P are polynomials of
degree 38. Py is irreducible over @ and has only three real roots. All the solutions
are reached with this method as there is at most 39 solutions.

e For k = 8, Yoshida ([20]) has found 5 real valued integrators using numerical
methods. These integrators involve 31 single integrators S4 or Sp. We proved,
using standard basis computed with Macaulay, that these integrators are not
products of 5 fourth-order symplectic integrators.

3.3 Special cases

Most of the times, when h = T'(p) + V(g), the kinetic energy is just a quadratic
form in p. That means that {7, V'} is of degree one in p, {{T,V},V} depends
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only on g and {{{T,V},V}, V} = 0. We may find symplectic integrators of order
4 or 6 involving less terms.

Unfortunately, there is no integrator of order 4 using less than 7 terms.

As {{T,V},V} depends only on q, Vi = oV +t?3{{T,V},V} depends only

on ¢q and t for any «a, # and we have
oV
€_tLV1P:P—ta—1 and e vig=gq. (52)
q

Denoting e~t(¢Lv+5t*Litr,vy,vy) by Sa.5(t) we look now for integrators S
as product of

Ser o (1)S7(dnt) - - Sey 2y (0)S7(dot)Ser 2y () -+ Sp(dnt)Se, 2. (1) (53)
Sy (dnt)Se, . (1) -+ Sp(dit)Sey 2o (1) St (drt) - - Se, - (1)Sp(dnt)  (54)

With this method we found a 5-factor fourth-order integrator and an 9-factor
sixth-order integrator (see [9]).

3.4 Decomposition into more terms

One can generalize the search of symplectic integrators to the case of 3 operators
(see for example Suzuki [17]).

In this part, we show how to find minimal symplectic integrators in the case
when h = Ay + As+ As, using the algorithms previously described. Such integra-
tors can be useful for planetary problems written in the canonical heliocentric
variables of Poincaré (see [12]).

We will give an exhaustive list for orders 1, 2 and 4. It is clear that any
permutation on Aj, Az, As will also give an integrator.

The first-order integrator is

S1(t) = Sa, (t)Sa,(t)Sa,(t). (55)

e From Sy(t) = SAZ(%)SAa(t)SAQ(%), we deduce an second-order integrator
for A1 + (A2 + Ag)i

SQ(t) = SAl(%)SA2(%)SA3 (t)SA2(%)SA1(%)
= 51(5)57 (=35) (56)

e Looking for reversible fourth-order integrators, we could deduce from the
7-factor fourth-order integrator Sy for A; 4+ Ag, that

SAa (dzt)54(clt)SA3 (dlt)54(60t)SA3 (dlt)S4(Clt)SA3 (dzt) (57)

is a 25-factor fourth-order integrator for h = (A; + Az) + As.
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Using the lemma 5, one obtains a 13-factor fourth-order symplectic integrator
as a product of 3 reversible second-order integrators:

SAI (%t)SAz (%t)SAa (at)SAz (%t)SAl ( a;_bt)SAz (%t)SAa (bt)SAz (%t)
Sa, (“F2)Sa, (51)Sa,(at)Sa, (51)Sa, (51).  (58)
_ _1 _ &2
where a = o 32,[)_ RN

Let us prove now that these integrators are minimal regards to the number
of factors. For a given order k, a kth-order integrator is an operator of length m:

S (1) = Sa (x1t)Sa, (x9t)Sa, (23t) - - - Sa, (2mt), (59)

where i—1 = m mod 3. A p-factor kth-order integrator is a sequence (21, ..., &)
in which 212, # 0 and m — p of the #;’s are equals to zero. In such a sequence,
there is no 2 consecutive zeroes, otherwise its length would be m — 2. For the
integrator (56), we have

r1 = %,‘172 = %aIE}: 1;:’74: 0;"”5 = %7$6 :0:$7: %
For given m and k the set of sequence (21, ..., z,,) satisfying
Sa, (218)Sa, (22t)Sa, (x5t) - - Sa,, (2mt) = Sh(t) + o(t"), (60)

is an algebraic variety. For a given order k, let us denote by M} the minimal
integer such that each minimal kth-order integrator (up to a permutation of
(A1, Ay, A3)) may be written as S(™) where m < M. Each kth-order integrator
(up to a permutation of A;, Az, A3) will be a sequence that is solution of

S(m)(gjla R ij) = SAl (xlt) o 'SAm('rmt) = SA1+A2+A3 (t) + O(tk), (61)

with m < M.

The second-order example shows that My > 7. Let So be any 5-factor second-
order integrator. Its length is at most 9. If its length is 9 then we have z2 =
4 = 26 = xg = 0. By transposing As and As, the sequence (z1,z3, &5, 27, zg)
gives also a 5-factor integrator.

Ifits length is 8, then there are 3 zeroes in the subsequence z5, ..., z7, because
z128 # 0. There is only two possibilities: 3 = 24 = 26 = 0 or 23 = 25 = 27 = 0.
In the first case, by transposing A, and As, the sequence (21, zs, 25, 27,0, 2g)
gives a 6-factor integrator. In the second case, the same transposition gives also a
b-factor integrator with the sequence (1,0, 32, 24, s, £s). It proves that any 5-
factor operator (e.g. second-order integrator) (up to permutations) has a length
less than 7.

o There is no 5-factor second-order integrator of length 5.

o Looking for integrators of length 6, one finds

So(t) = Sa, (ct)Sa, (ct)Sa, (ct)Sa, (¢t)Sa, (ét)Sa, (ct) = Si(ct)Si(ct)  (62)

where ¢ is a complex root of ¢Z — ¢ + %
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¢ Looking for all possible solution involving 7 variables, we have z127 # 0 so
for a 5-factor integrator we must have zszzxs526 = 0. We thus find

x1:x7:%,m4:0,(;ﬁ2—%)x2:0,x2:1‘3—%:%—mgzl—xs. (63)

If €3 =0 or 3 = 1, we find the integrator (56). That proves that any minimal
real second-order integrator has 5 factors and length 7.

***

Let S be a 7-factor operator. One can suppose that the 2 first factors are
Sa, and Sa,. Let m be its length and express S as

S(t) = Sa, (x1t)Sa, (xat)Sa, (xat) - Sa,, (¥mt) (64)

in which z;222,, # 0. The subsequence (z2,...2n_1) has a length m — 2 and
corresponds to a b-factor operator. We thus deduce that m—2 < 8 because z,,_1
could be zero. So any 7-factor operator may be written as an operator of length

m < 10.

Suppose now that S has length 10 and that zizo210 # 0. There are 3 zeroes
in the subsequence zs, ..., xg and there are not consecutive. The only solutions
are
a)zz=as=a7=0, b)aes=w5=a5=0, c¢)az=uwz5=u1a9=0,

)
)

=zs=25=0, e)rz=x6=29=0, f)rz=27=29=0,

]
w

g =zs=ws=0, h)as=x6=29=0, i) axg=27=2a9=0,

)
)

&
S

5:$7II9:0.

<
]

Let us suppose that S(t)S~!(—t) is a reversible fourth-order integrator. If we
suppose now that A; = 0, then S(¢)S~1(¢) is still a fourth-order integrator for
Aa + As. It implies that we must have at least 2 factors S4, and 2 factors Sa,
in S. So the only cases to consider are a), g), j).

In the first case, suppose that A, = 0, then we obtain

S'(t) = Sa, ((z1 + 4)t)Sa, (26 + 20)t)Sa, (z101).
In the second case, suppose that Az = 0, then we get
S'(t) = Sa, (z1t)Sa, ((z2 + z5)t)Sa, ((z7 + 210)t).
In the third case, suppose that A; = 0, then we obtain
S'(t) = Sa,(@at)Sa, ((23 + 26)t)Sa, (zst).

One of those case would imply that there is 5-factor fourth-order integrator
which is impossible.

It shows that any minimal reversible fourth-order integrator S4 may be found
by looking for a 7 factor operator S(t) of maximal length 9, such that Sy =
S@t)S=t(-1).
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If we look for all possible reversible 13 factor fourth-order integrators we get
a zero dimensional algebraic variety of degree 12 and ¢( satisfies

9 8 L 7,2 6_ 5,2 3_5 2,2 1y(.3 4 .2 1y _
(co—2co+eg+5c—co+5c5—5¢ch+35co—35)(cg+cog—cot+3)=0.

We therefore get 2 sets of solutions:

60:261:2d1,

e _ 3 _ o7 8 8 .7, 9 6, 45 5 4 3,27 2 15

c1_62_d2_27co—7c6+§co+700—1500—960+7c0—7c0+2,
o 1 1

C2—d3—€3——01—500—§;

9 8 .7, 2 .6_ 5,2 .3_5 .2 2 1
co—2cogtegt+5eg—cgt5ch—gc+i5co—5 =0

and

1
€1 = 3¢ + 3,
3, .2 1_
co+cg—co+35=0.

The first set gives 17-factor integrators while the second set gives 13-factor
integrators as product of four S4,, six Sa, and three S4,. As we can exchange
A1, Ay and Aj, we shall take for As the part for which the time-evolution map-
ping has the lowest cost.

3.5 Planetary Hamiltonian

Wisdom and Holman ([18]) have used a symplectic integrator for their integra-
tions of the solar system which allowed them to use a longer step size. They
used an expression of the Planetary Hamiltonian in term of Jacobi coordinates
for which the Hamiltonian is splitted in two parts. Here we prefer to use the
canonical heliocentric variables of Poincaré which provides a more elegant and
symmetrical formulation of the hamiltonian ([12]), which is then expressed in
three integrable parts : Hy, T, Us.

Hy corresponds to the sum of n disjoint Keplerian problems. 7} is the per-
turbation depending only on the actions and U; depends only on the positions.
We are thus led to search for symplectic integrators for Hamiltonians which
decompose in three integrable parts H = A+ B+ C.
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Let us consider O the center of mass of n+ 1 bodies of masses mg, ..., m, in
gravitational interaction. Let u; be the coordinates with respect to O and and
A; j = ||ui — u;]|, the Hamiltonian becomes
n
— _1 L2 im;
H=T+U=141Y mu|’-G¢ Y 5= (65)
i=0 0<i<j<n

Let @; = m;u;, we obtain in canonical coordinates

n ~
3 [l
i=0 ’

Let us consider now the heliocentric coordinates: ro = ug,7; = u; — ug. In
order to have canonical variables, we take

n

Fo=> wi=0,f=1, 1<i<n (67)
i=0
or
ig=—Y iy =7, 1<i<n (68)
i=1
The kinetic energy becomes
n ~ 12 n ~ 2
o P IS .
o) D (69)
= lzn:IIfiIIQ {L + L} + Y Ti Ty (70)
2' m; Mo —~  mg
i=1 0<i<y
and
n
T SELL s )
i=1 ¢ o<i<j<n 0

One can write H = Hq+ Hy with Hqg = Tg + Uy, Hy = 11 + Uy where Hy is the
Hamiltonian of n disjoint two body problems: the planet of mass % around
the sun of mass mg + m;. H; may be considered as an interactive perturbation.

We thus have

n ~ n Momm;
To= 4 IR [ + ] v = -6 0
i=1

r
i=1 t

fi.fj mimj
=3 “n=-c Y (73)
o<i<j 0 o<i<j<n 0

(72)

H, is particularly simple as the kinetic energy and the potential energy depend
on coordinates and momenta respectively.

Writing H = Hy + 711 + Uy where T} is very easy to integrate, we can try to
use the integrator defined in (57). That is what we will do in a near future at
the Bureau des Longitudes.

39
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4 CONCLUSION

We showed in this paper that there are exactly 5 7-factor fourth-order symplectic
integrators. Three of them are known (see [7, 20]). There are exactly 46 11-factor
fifth-order symplectic We showed, that there are exactly 39 15-factor reversible
sixth-order symplectic integrators. All of them are reversible products of second-
order integrators. Three of them were known ([20]). In the case when h = A+ B+
C, we show that minimal second-order integrator have length 5 and reversible
fourth-order integrator have length 13.
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Abstract

We study the subgroup generated by the exponentials of formal Lie series. We show three
different ways to represent elements of this subgroup. These elements induce Lie-series trans-
formations. Relations among these family of transformations furnish algorithms of composition.
Starting from the Lazard elimination theorem and the Witt’s formula, we show isomorphisms be-
tween some submodules of free Lie algebras. Combining different results, we also show that the
homogeneous terms of the Hausdorff series H(a,b) freely generate the free Lie algebra L(a,b)
without a line.

1. Introduction

Lie-series automorphisms or Lie transformations play an important role in classical
mechanics. They can be seen, for example, as the time evolution in a Hamiltonian
system. The product of two such transformations may therefore be seen as the combined
effects of two Hamiltonians.

The use of this formalism becomes efficient when it becomes easy to manipulate
formal Lie series, to compute composition of Lie transformations or to express such
transformations in several ways. They are universal identities in Lie algebras and we
will work in a free Lie algebra. Instead of considering exponentials of Lie series, we
will consider the group of Lie-series automorphisms. Actually after having defined the
Lie transformation, historically introduced by Deprit [3], the factored product transform
introduced by Dragt and Finn [4] and the exponential of an inner derivation, we will
show that these transformations are the same subgroup of the Lie-series automorphisms

* E-mail: koseleffi@math jussieu.fr.
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close to identity. They can be seen as conjugation in the algebra of formal Lie series.
All of them are defined by generating Lie series.

After having reminded some notations in free algebras in Section 2, we will introduce
formal Lie series on a weighted alphabet and define the Lie-series transformations and
their properties in Section 3. In Section 4, we will consider Lie-series automorphisms
they generate and their relations. In the last section, we will show several isomorphisms
between free Lie algebras or subalgebras. We will prove, using combinatorial identities
like the Witt’s formula and a theorem of M. Lazard, that the subalgebra generated by
the homogeneous terms of the Hausdorff series is isomorphic to the free Lie algebra
on an alphabet of two letters without a line.

2. Notations

In this paper X will denote a weighted alphabet, that is to say an ordered set (possibly
endless), in which each letter @ has a non-negative integer weight ||a||.

R is a ring which contains the rational numbers Q.

X* is the free monoid generated by X. X* is totally ordered with the lexicographic
order.

M(X) is the free magma generated by X.

/(X)) is the associative algebra, that is to say the R-algebra of X*.

L(X) is the free Lie algebra on X. It is defined as the quotient of the R-algebra
of M(X) by the ideal generated by the elements (u,u) and (u.(v,w)) + (v, (w,u)) +
(w,(u,v)). Its multiplication law [,] is bilinear, alternate and satisfies the Jacobi
identity

[—",[ysz]]+[}’>[Z’x]]+[2»[X,}’]]=O. (1)

An element of M(X') considered as element of L(X) will be called a Lie monomial.

By posing for a,b€ X, [a,bl=ab — ba, we have L(X)C .&(X).

On L(X) so as on A(X), one considers the following gradations:
— Gradation by the length (the unique morphism that extends the function @ — 1
on X). For x ¢ X™ (resp. M(X)) |x| denotes the length. L,(X) (resp. .(X)) is the
submodule generated by monomials of length ».
— One defines on X™ (resp. M(X)) the weight x — ||x|| as the unique morphism
that extends the weight on X. L,(X) (resp. .,(X)) is the submodule generated by
monomials of weight #.
— The multi-degree is the unique morphism from X™ (resp. M(X)) onto N that
extends @ — 1,, for a€ X. For a given x in N&) L*(X) (resp. ./*(X)) denotes the
submodule generated by monomials of degree =.

Remark. When ||a|| =1 for each a € X, then obviously L,(X)=L,(X) (resp. ., (X )=
Dn(X)).
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For x € L(X), we denote by L, the inner derivation y ~— [x,y]. The set of inner
derivations of X is the adjoint Lie algebra with commutator as Lie bracket and we
have from the Jacobi identity (1)

L[x o= [L.h L\] = L.\‘L‘\' - L_\'Lx- (2)

For x, € L,(X), (see [2]) let Dx, = nx,. For x, € L,(X), let Dx, = nx,. We thus define
two derivations D and D on L(X ). They are not inner derivations.
We define the formal Lie series i(X) and ,Q/(X) as

LX)y=TI LX) and ./(X)= [],(X).

nz0 n=0

We will write x € L(X) as a series 3., %, L(X) is a complete Lie algebra with the
Lie bracket

([x, yDn = Z [xp7 yq]~

ptq=n

3. Some transformations

A transformation 7 : L(X) — L(X) will be called Lie-series automorphism if it is a
Lie-algebra automorphism, that is to say [7f.Tg]l=T[f.g]. The Lie-series automor-
phisms act on the adjoint Lie algebra by

TLyT ' =Ly
We give here three transformations that will give three different ways to build Lie-series

automorphisms.

3.1. The exponential

Denoting by L(X)" (resp. .&/(X)") the ideal of L(X) (resp. ./(X)) generated
by the elements of non-negative weight, one defines the exponential and the logarithm
as

exp L A(X) — 1 +(X)F,

xn
T
nz=0
log: 1 +/(X )" —.o/(X),

e

nzl

Annexes
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They are mutually reciprocal functions and we have (see [1, Ch. II, Section 5]) the
Theorem 1 (Campbell-Hausdorff). For x, y € L(X)*,
H(x, y) = log [exp(x)exp(y)] € L(X)*.
More precisely, we have the following:
Lemma 2. Given x,y € L(X)*, we have for m>0,

HX, PImit = Xmet = Yms1 € Lt (X1 o Xws V1o e V) -

Remark. Here iq(xl,...,xp) denotes the submodule generated by elements of weight
g of the subalgebra generated by {x;,...,x,}.

Given x € L(X)*, we consider exp(L,) defined as

Li
exp(L)y =) =.

iz0

Theorem 3. For x € L(X)*, exp(L,) is a Lie-series automorphism (see [2]). We also
have [1,6] for ye L(X)

exp(x)y exp(—x) = exp(Lx)y.

exp(x) exp(y) exp(—x) = exp(exp(Ly)y).
Proof. We have exp(—L,)exp(L,)=1. From the Jacobi identity (1), we have ([12])
by induction on £ >0, for any f,g,he L(X)*,

k

Lhig.m=Y" (’:) [Lrg, L% h).

i=0

We therefore deduce that

1 e
exp(Lplg. 1= — S (" )1L2g. L "n)
nl Lo\ p

n=0
1 !
= Z (p+q) (P‘:“'I) [L.pg’Lt)]fh]
s (T plg!

= [exp(Ls)g, exp(L p)h]. O

From the Theorem 1 and Eq. (2), the set G = {exp(L,), x € L*(X)} is a group that we
will call the Lie transformations group.
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3.2. Factored product transform

For g € LT(X), let us define
Mg = ---exp(gn)---exp(g1).
Using the preceding lemmas we deduce (see [12]):

Proposition 4 (Factored product expansion). For k€ L(X)", there is a unique
geL(X)" such that

exp ( an) = ---exp(g,)---exp(g:) = Mg.

nzl

Proof. The above proposition is proved by induction, constructing g € L(X) and &») €
L.~ pL~,,(X ) such that, for each p>1,

exp(k)= exp(k'P)exp(g,) - -exp(g1). I

Remark. This fact is also a variant of the Zassenhaus formula (see [9]).

3.3. The transformation T

We also define the transformation 7:.o/(X)" — 1 +.4/(X)" by

n

(Tx) =1, (Tx), = Z_SXP(TX)"_"’ nzl.

p=1

We therefore deduce that D(Tx) = DxTx. Conversely, the series y in 1 +A(X)t given
by

n

E: P
y0:1’ Yn= l;xpyl’l—ps n>1,
P:

is the unique solution of Dy=(Dx)y. From (Tx)"'Tx =1, we deduce that
D((Tx)™' Tx) = (D(Tx)"")Tx + (Tx) "' DxTx =0,

that is to say D(Tx)~' = — (Tx)~'Dx. We thus have

(T =1 (== 2T ™y n21.
p=1

Remark. If [x, Dx]=0, then Tx = exp(x). The Lie transform appears as a generalized
exponential.

Annexes
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3.4. Relations between transformations

Proposition 5. Let ge L(X)*, there is a unique series w e L(X )" such that
Tw=My.

Proof. Let x =x, € L,(X), we have

~ 1~ 1
Dexp(x,)= E —TDx,f’ = E - pnxl = nx, exp(x,) = nexp(x,) x,.
p20 4 p=0

We have, therefore,

D(Mg) = [+ exp(gns1)] [Dlexp(gn)]lexp(gn-1)- - - exp(g:)]

nzl

=Y [--exp(gns1)] [ngn exp(gn)] [exp(gn-1) - - - exp(g1)]
n=l1

= > [~ exp(gns1)] [ngn] [exp(~gus1) - -1 (Mg)
nz1

= Z nf---exp(Ly, ,)ga]| (Mg).

nzl
Let Dw = Y onsi Al exp(Ly,,, )]gn, that is to say

Myt M-
Lgan <L

hn
k Fi+1
w, = — PR I L L ry 3
" ; n Z mk+1!"'mn—k!g1‘ 3

(et g+
+(n—kYm,_,=n—k

we have
D(Mg)=(Dw)(Mg),  D(Tw)=(Dw)(Tw).
We thus deduce that Mg=Tw. I

Eq. (3) shows that w, € L(gy,...,9n) and furthermore that w, — g, € L(g1,...,gn—-1).
These relations may be easily inverted and, combining Propositions 5 and 4, we deduce
the following.

Proposition 6. Given w,k,g € L(X)*, there exist

— k'€ LX)t with k) — w, € L(wi,...wa_,) such that exp(k’) = Tw,
— g e LX) with g, — k€ Lky, ... ky_1) such that Mg’ = exp(k),
— w e LX) with w, — g, €L(g1,...gn_) such that Tw' =Mg.
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4. Lie transformations

We call Lie transformation a Lie automorphism close to the identity, that is to say,
which satisfies for each a € X,

Ta—ac [] La.X).

n> |fall

Using preceding lemmas and Proposition 6, we deduce that for x € L(X)*,

exp(Ly): y+— exp(x)yexp(—x),
T y—(To)p(Tx) ',
M, 2y (Mx)y(Mx)™!

are Lie transformations. We will show now that these three transformations are three
different ways to represent the same transformation.

4.1. The Lie transform
Given w e L(X)*, feL(X), we define T, f =(Tw)f(Tw)"'. We thus have

D(T, )= (DwXTw) f(Tw) ™" + (Tw)Df ) Tw)~' — (Tw)f(Tw)"'Dw
= [Dw,(Tw) f(Tw) ']+ (Tw)(D f )(Tw)~!

:LﬁwTWf + Tw(ﬁf) (4)
Let F= TWf:Zn,mZOF’Lm’ where

Fom=(Twfodnim= 3. (Tw)pfu((TW)™ 1)y € Ly m(X).

ptg=n

Using Eq. (4), we get
- n
DFym=(n+m)Fy =3 pLyFopm+mFym,
p=1

SO

n
Fm=3" §Lw,,F,,_,,,,,,.
p=1

Using this algorithm, we show that F, =>" F,.» may be calculated in O(r?)

Lie-brackets evaluations, by an iterative way.

nt+m==r
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4.2. Composition

Let wi,w, € L(X)" and T =T, T,,. From (4) we deduce that
D(Tf)=Lp,, Tf + T, D(Tw, f)
= Lpw, + TwLpw, Ty VIS + T(DS)
—Lpsr TS + TP
We thus deduce that T, T, = T, where
Dwz[)wl + TW,DWZ. (5)

Composition of two Lie transformations appears clearly as a Lie transformation. Fur-
thermore, the product may be expressed as Lie transformations by an iteration algorithm,
in a polynomial time of Lie-brackets evaluations. Using Lie operators or Lie-series ex-
ponentials, we should have computed the so-called Hausdorff product of w; and w,.

4.3. The Dragt-Finn transform

The Dragt—Finn transform M, is the infinite product of exponential maps (see [4]).
Given g=3_, | gn, we define M, and M, as

My = ---exp(Ly,) - -exp(Ly,), Mg_l =exp(—Lg,) - -exp(—Lg,)---.
4.4. Relations

The three above transformations are totally defined by generating series which satisfy
the following:

Proposition 7. Given w,k,g € L(X)*, the series defined in Proposition 6 satisfy
exp(Ly )= Ty, Ty =M, My =exp(Ly).

Remark. We deduce in passing that the Lie transform is a Lie-series automorphism
close to identity and that any Lie transformation 7 € G may be expressed as an expo-
nential of a Lie operator or as an infinite product of single exponentials or as a proper
Lie transform. The use of a representation depends deeply on the result we look for.
For example, if we have to compose transformations, it is much easier to consider Lie
transforms because their product is a Lie transform whose generating function appears
easily from (5).

We will not explain in this paper how to compute explicitly the relations between
these transformations, but that can be made, using the Lyndon basis and does not
require to go through the associative algebra (see [6]).

Proposition 7 may be turned into:
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Proposition 8. Given w,g,k € L(X)T, such that

exp(Ly) =Ty = My,
then for each ne N, we have

Wo —kn €Li1(X),  Wa—gn€Lai(X), gn ~n € Luoa (X)),
and

Liw,...,w)y=Lk,.... k) =L(g1,...,gn).

5. Free Lie-algebras isomorphisms
Let us first remind the elimination theorem of Lazard [1].

Theorem 9. Let SCX and
T={(81,...,8p,%), 120, 51,...,5, €8, x€X — S}.

— L(X) is the direct sum of L(X — §) and of the ideal & generated by S.
— L(T) and & are isomorphic through (si,...,8p,x)— Lg, -+ Lg, x.

By considering X = {a,b} and S ={a}, we get the following isomorphism
L({a,b}) = L({a}) ® L{LIb, n>0}) =K .a & L({Lb, n >0}). (6)
By posing X = {L*b, k >0} and S = {Lkb, k> p}, we deduce that
L({a,b}) =K .a® L({Ltb, k=0})
=K.a®L{L'b, 0<k<p— 1))@ (Lrb, k= p).
We, therefore, conclude that
L({a, b})/(LEbY = L({a, b})/(Lgh, k> p)
=K.a®L({L'b, 0<k<p - 1}).

That proves that the algebra generated by {a,b, L7b =0} is isomorphic to the weighted
free Lie algebra L({LXb, 0<k < p — 1}) and the line generated by a.

We will show now that these isomorphisms are isomorphisms between homogeneous
submodules.

5.1. Dimension of the homogeneous components

Let us first remind some well-known identities. Given an indexed alphabet X, we
consider the dimension /(a) of L*(X). Using the following identity between formal
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series (see [1]), which results from the Poincaré-Birkhoff-Witt’s theorem

- Y= I -1 (7)

XX 2ENUKI— {0}

we deduce that

_ 1 (|/d])! e
““)‘IIIE;’“d%owdn) or %;IﬂlKﬁ)— .

Let us take now the gradation by the length and calculate /, = Z‘ xj=n 1(20), the dimen-
sion of L,(X). As [1], let us substitute in (7) the same unknown U to T,, we get for
a finite alphabet of cardinality g:

l—qU: H (I_UM)I(O()ZH(I—UV)[" (8)
aeNY —{0} r>0

that is to say, the Witt’s formula [1]: 32, dls=¢".
Let X =14 »>1%p be a weighted alphabet where each letter of X}, has a weight p. Let

I,= ZH&H:n I(2) be the dimension of L,(X). If X; has a cardinality ¢;, let us substitute
in (7) U’ to Ty for x €X;. We thus obtain

- SqU =T II a-ulye®=11a-u)

izl r>0 |laf|=r r>0

In the particular case where g; = p for each i € N, we thus deduce

H(1~U’)i":1—pZUi:—————l_(p+l)U. (9)

, 1-U
r>0 i>0
From identities (8) and (9), we then obtain

Isomorphism 1. Let X = {x,...,x,} and Y =Y, Y, where Card Y; =g —1. We have
dimZ,(X)=gq, dimZ;(Y)=¢q—1, dimL,(X)= dimL,(Y), n=2,
that can be also expressed as

S ddimLy(X)=¢", S ddimIy(Y)=q" - 1.
dln d|n

In the particular case where g = 2, we recover the isomorphism defined in Theorem 9,
by posing Y = {L{b, p=>0}.

5.2. The Hausdorff series

Let us suppose now that X ={a,b} and ||a|| = ||b]] =1. Let H(a,b) the Hausdorff
series of a,b defined in Theorem 1. We have

exp(H(a, b)) =-exp(a)exp(b).
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From the definition in Section 3.3 and the remark in the proof of Proposition 5, we have
Ta= exp(a) and Th= exp(b). Let G(a,b) be the solution of 7G(a,b) = exp(a)exp(b),
we get using relation (5)

DG(a,b)=DG(a,b)=Da + T,Db= Da + exp(L,)Db,

that is to say

I
Glab)y=a+b+ S ———1I"b.
;(nﬂ)!

We can now prove the following result:

Isomorphism 2. Let X = {a,b} and H(a,b)=Y",, | H,. The subalgebra L({H,, n=0})
is isomorphic to the free Lie algebra L({L}a, n>0}).

Proof. Using Proposition 8, we know that for d 21,
La({Gu(a,b), n21}) = La({H(a,b), n=1}).

But G,,(a,b):%LZ“b, and from Isomorphism 1, we know that the subalgebra
L({L7b, n>0}) is free and that

Ly({Lib, n=20})=Ly({a.b}), d=2.

We thus deduce that the subalgebra generated by the homogeneous terms of the
Hausdorff series is free and therefore isomorphic to the free Lie algebra L({a,b})
without a line. ]

Remark. Since Sirsov and Witt (see [11, Theorem 2.5]), it is known that Zd({H,,(a,b),
n>=1}) is free. Here we proved that {H,(a,b)} frecly generate L({L!b, n=0}).

6. Conclusions

We have shown in this in paper how to express any transformation that belongs to
the subgroup of Lie transformations in three different ways. In Hamiltonian mechan-
ics this subgroup is exactly the group of Lie-scries automorphisms close to identity.
These methods have many applications like the search of the so-called symplectic in-
tegrators that are numerical methods to integrate dynamical systems [7,13]. Using this
formalism, one can also compute formal first integral for perturbed hamiltonian sys-
tems [3,6,12]. Regards to the computational cost, these methods have the advantage
that all the series we manipulate are formal Lie series. It avoids calculations in the
associative algebra [14] and the use of the Poincaré—Birkhoff-Witt basis [10].
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Abstract. Let £ = L(z1,...,2,m) be a graded Lie algebra generated by
{z1,...,Zm}. In this paper, we show that for any element P in £ and any
order k, exp(P) may be approximated at the order k by a finite product
of elementary factors exp(Aiz;). We give an explicit construction that
avoids any calculation in the Lie algebra.

0 Introduction

In hamiltonian mechanics, the phase space is governed by an Hamiltonian h and
the equations z; = {z;, h} where {,} is the Poisson bracket. The set of smooth
functions on the phase space is turned into Lie algebra by considering the Poisson
bracket. Integrations of hamiltonian flows by numerical schemes make use of the
so-called symplectic integrators that preserve some invariants (see [8, 12, 13]).
One will try to approximate the flow exp(¢{-, A + B}) by composition of the
hamiltonian flows of exp(¢{-, A}) of A and exp(¢{-, B}) of B. These methods are
used for their stability in very long-time integration problems. Such integrators
may be found by considering universal identities in free Lie algebras (see [4, 5,

13, 14)).

In control theory, for a control system z = >/~ | u;(t) X;(z), the classical problem
of motion planning is the following (see [3, 6, 7]): given two states p and q, find a
feasible trajectory (i.e. the controls uy(t),. .., um(t)) that steers the system from
p to a point arbitrarily close to q.

Let us assume that ¢ is given as exp(X)p, where X belongs to the Lie algebra
generated by the vector fields X;. We are interested in the simplest trajectories,
those obtained as composition of the flows of the X;’s. The end point of such a
trajectory is written exp(A1 X;,) - - -exp(As Xy, )p, that is a product of elementary
factors applied to the state p. A solution of our problem can then be obtained
by approximating the exponential exp(X) by a product of elementary factors
exp(AX;).

In this paper we will see such approximations as universal approximations in
graded Lie algebra. That is why we will work in free Lie algebras and look for

* Proceedings of AAECC’12 Conference, Toulouse, juin 1997, LNCS 1255, 15 p.
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universal identities in free Lie algebras. In Section 1, we will first introduce
some notations and set our result in Part 1.3. In Section 2 we will describe
several independent steps of the algorithm and finally we will discuss in Section
3 the accuracy of our algorithm by considering some examples and giving some
bounds for the complexity. We will finally study the application of our result to
the motion planning problem.

1 Notations and Definitions

In this section we recall some basic results about Lie algebra. To keep the paper
easy to read, we will not go too deeply into the theory and will not present the
results in a classical way. For instance we present Lemma 3 as a consequence of
the Campbell-Hausdorff Theorem and we will not tell about central integer fil-
trations (although our result is based only on the properties of these filtrations).
For a more classical presentation of this theory we refer to [1, Ch. II] and [10].

1.1 Notations

In this paper A will denote an ordered alphabet (possibly endless).

A” is the free monoid generated by A (the set of words). A* is totally ordered
with the lexicographic order.

M (A) is the free magma generated by A (the set of parenthesed words). Having
defined M;(A) as A, we define M, (A) by induction on n:

Mn(A) = ) My(A) x My(A) and M(A) = ] Ma(A).
pt+g=n n>1

A(A) is the associative algebra, that is to say the IR-algebra of A*.

L(A) is the free Lie algebra on A. It is defined as the quotient of the IR-algebra of
M (A) by the ideal generated by the elements (u, u) and (u, (v, w))+ (v, (w, u))+
(w, (u,v)). Tts multiplication law [, ] is bilinear, alternate and satisfies the Jacobi
identity

[z, [y, 2]] + [y, [z, ]} + [z, [, y]] = 0.

An element of M (A) considered as element of L(A) will be called a Lie monomial.
Elements of L(A) will be called Lie polynomials.

By setting [z,y] = 2y — yx for x,y € A, we have L(A) C A(A4). We will also
denote by ad z, the map y — [z, y].

A(A), and hence L(A), are graded by the length (the unique morphism that
extends the function  — 1 on A). For # € A* (resp. M(A)) |z| denotes the

length. L, (A) (resp. A, (A)) is the submodule generated by monomials of length
n.
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We define ﬁ(A) and A(A) as

L(A) = J] Zn(A) and  A(A) = ] Aa(4).

n>1 n>1

We will write z € L(A) as a series Y om0 En- L(A) is a complete Lie algebra with
the Lie bracket B

([z,yD)n = Z [, Y-
ptg=n

We will also use

Lyp(A) = [ La(4) and As,(4) = J] An(4).

n2p n2p

1.2 Exponentials

One defines the exponential and the logarithm as

exp: A(4) = 14+ A(A log: 1+ .A(A) = A(A)

'THETLZO ) "E'_)_EnZI -

]

= |

n

They are mutually reciprocal functions and we have (see [1, Ch. II, §5]):

Theorem 1 (Campbell-Hausdorff). For a,b € A, let H(a,b) such that:
exp(a) exp(b) = exp(H (a, b))
Then H(a,b) € L»1(A) and Hy(a,b) = a+b, Hy(a,b) = 1[a,b].
Therefore, for x,y € ﬁ, we have
exp(H (z,y)) = exp(z) exp(y).

and (H(z,y))s — (zx +yx) € L(z1,.. ., zk—1,41,...,Yk-1), (the free subalgebra
of L(A) generated by {x1,...,2k=1,Y1,-- -, Yk—-1})

Remark. — H(z,y) is the series H(a,b) evaluated at # = @ and y = b. The
Hausdorff series H(z,y) may be explicitly computed (see [4]).
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1.3 Setting of the Main Result

Let us set [ = exp(ﬁ) and FZP(A) = exp(ﬁzp(A)). As exp is bijective, we
deduce from the Campbell-Hausdorff Theorem that the sets F and FZP(A) are
some groups.

As

[exp(Araq) - ~exp()\nan)]_1 = exp(—Anan) - - -exp(—A1a1),

the set G generated by the family {exp(Aa),A € IR,a € A} is a subgroup of F.

We will show that the elements of exp(L(A)) can be approximated by elements
of G. Let us first clarify the meaning of approximation. If P € L(A) is a Lie
polynomial, we say that o = ¢ (P) is a kth-order approximation of exp(P) if:

a =exp(Ara1) - -exp(Amam) € G, (1)
exp(—P)a € F>rp1(A).

Using Theorem 1, we thus have
o1 (P) = exp(P) exp(Rai41) = exp(P + Royyr)

where R>p41 and R’>k+1 € ﬁ2k+1(A). Both characterizations will be used in
the sequel. B

The aim of this paper is to prove the following theorem (Theorem 8):

Theorem. Let P be a Lie polynomial of degree n. Then there exists an approz-
imation of exp(P) at any order k > n.

Furthermore we will give here an explicit construction of an approximation
ok (P). We will use the following steps

1. Define an approximation ¢, (Am) for any A € IR and any Lie monomial
m € My (A). This approximation will have the order n = |m|.

2. For any homogeneous Lie polynomial P of degree n, define an approximation
©n(P) of order n.

3. For any homogeneous Lie polynomial, show how to build a kth-order approx-
imation ¢k (P) from the approximation ¢, (P). This process will depend only
on n and k.

4. For any polynomial P, show how to get a kth-order approximation. This
makes use of the factored product expansion

exp(P) = exp(Py) - - -exp(Px) exp(R>r41),

where P; € L;j(A) and Ri41 € ﬁ2k+1(A). This factorization is not given
explicitly but may be computed using the Hausdorff series that may also be
computed.
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2 Approximations of Exponential of Lie Polynomials

Before going more deeply into the method of approximation, we need some
results on the groups F and G.
2.1 The Groups F and G

Let @ € G. As element of le(A), o is written as exp()_, 5 %n), with z, €
Ly (A), and the inverse of « is: -

a~l= exp(—Znlen).
Given z € L, we consider exp(ad z) defined as

(ad JJ)Z "

il

exp(ad z)y = Z

i>0
Lemma?2. For x € L, we have (see [1])
exp(z) exp(y) exp(—2) = exp(exp(ad z)y).
We thus deduce the well-known lemma
Lemma 3. Given a = exp(z) € FZP(A), B =exp(y) € FZQ(A), we have
afa”p7t = exp(z) € F2p+q(A) and  zp4q = [2p, Yql.
Proof. — Let o = exp(} x5, k), B = exp(3_x5 ,¥k). We have

afa”lp™l = exp(z) exp(y) exp(—z) exp(—y)
= exp(exp(ad z)y) exp(—y) = exp(H (exp(ad z)y, —y)).

But
H(exp(ad z)y, —y) = exp(ad )y —y + Z Hp(exp(ad 2)y, —y))
k>2
n>2 ’ k>2

For each n > 2, (ad )"y € Lynp+q(A) C Lyopiqg(A).

For each k > 2, Hy(exp(ad z)y, —y) = Hi(exp(ad z)y—y, —y). But exp(ad z)y—
Y€ Lypyq(A), so Hy(exp(ad )y — y, —y) € Lypy2q(A4). []
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For t € IR, we define the morphism of algebra
ér  A(A) — A(A)

Z Ty — Z t"z,. (3)

n>1 n>1
If = exp(A1a1) - - -exp(Apan) € GC 1+ .,Zl(A), then we denote by «aft]

aft] = ¢i(a) = exp(tAiar) - - -exp(tinan) € G. (4)

2.2 Approximation at the Order n

Lemma4. Let z be a Lie monomial of length n. Then for each A in IR there
exists an approzimation of exp(Az) at order n.

Proof. — The proof and also the construction of the approximation is given by
induction on |z|.

If © € A, exp(Az) is obviously an approximation of itself at any order. Let us
assume that the result is true for the Lie monomials of length < n and let z be
a monomial of length n + 1. In a canonical way we can write z as [a, b] with a
and b monomials of length p and ¢ < n such that p+ ¢ = n + 1. We have also
Az = [Aa,b] for any A € IR.

By induction hypothesis there exist «, 8 € G such that:
a =exp(Aa + Rypy1), Rypy1 € ﬁ2p+1(A):
B =exp(b+ Ryq41), Rygs1 € Lygy1(A).
We deduce from Lemma 3 that

y=afa"lp7l = exp(Ala,b] + R), R € ﬁ2p+q+1(A) = j}2n+2(A).

Thus v is an approximation of exp(Az) at order n + 1 and the induction is

done. []

Lemma 5. Let P and ) be homogeneous Lie polynomials of degree n > 1 and
assume that ¢, (P) and ¢, (Q) are approzimations of exp(P) and exp(Q) at
order n. Then

en(P+ Q) = on(P)en(Q)

is an approzimation of exp(P + Q) at order n.



Proof. — The approximations ¢, (P) and ¢, (Q) can be written as

@n(P) = exp(P + R), ¢n(Q) =exp(Q+ R'), R, R' € Lyn11(A).
Using the Campbell-Hausdorff Theorem, we get ¢, (P)en(Q) = exp(H(P +
R,Q + R')), where

HP+RQ+R)=P+Q+ (R+R)+>_ Hy(P+RQ+R). (5
k>2

But R+ R € Lyp41(A) and Hy(P 4+ R,Q + R') € Lyn(A) C Lyp41(A) when
k > 2 so there is R € Ly, 41(A) such that
Pn(P)pn(Q) = exp(P +Q + R")

is a nth-order approximation of exp(P + Q). []

Corollary 6. If P is an homogeneous Lie polynomial of degree n > 1, then there
exists an approzimation of exp(P) at order n.

Proof. — Let P € L,(A). One can write P = Zgﬂ A;m;, where the m;’s are
Lie monomials and by induction we get, using Lemma 5

Pn(P) = pa(Mim1) - pn(Aama). [

Note that the m;’s are not unique. That proves only the existence of nth-order
approximants.

2.3 Approximations of Homogeneous Lie Polynomials

Lemma 7. Let P be an homogeneous Lie polynomial of degree n. Then, for any
k > n, there exists a kth-order approzimation of exp(P).

Proof. — For a given polynomial P of degree n, we proceed by induction on
k, following Suzuki’s idea ([12]). The case k& = n has already been done in
Corollary 6. Let us assume that, for some k > n+1, there exists a (k—1)th-order
approximation a = ¢_1(P), that is o« = exp(P + > ;5 Ri) with R; € L;(A4).

We have to distinguish two cases.

o If k is odd, we set v = a[t]a[s]a[t] and we will show that for some ¢ and s,
v is a kth-order approximation of exp(P). From Formula (5) and applying
Theorem 1 twice we get

v = exp((2t" + ") P + (2" + 5" ) Re + sk )

By setting
t= (24 (—1)r2n/ky=tn g = 9tk

we have 2" + 5" = 1 and 2t* +s* = 0 (notice that ¢ is defined since k > n).
With these values, ¥ = ¢x(P) is an approximation of exp(P) at order k.
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-1

o If k is even, we set v = afu]a[v] 'a[u]. In the same way as for the odd case,

we have
7y = exp((2u” —v") P + (2u* — vF) R + P51 BY),
and we obtain 2u”™ — v"™ = 1 and 2u® — v* = 0 by setting

u:(?—?”/k)_l/", v=2"5u ]

2.4 Approximation of any Lie Polynomial

Theorem 8. Let P be a Lie polynomial of degree n. Then there exists an ap-
proxzimation of exp(P) at any order k > n.

Proof. — This theorem will be proved by using the following result ([11])

Lemma9. Let P € L(A). Then for all k > 1 there exists Py € L1(A),..., Py €
Li(A) and a remainder R>py1 € Lyp41(A) such that

exp(P) = exp(Py) - - -exp(Pr) exp(Ry>k41)- (6)

Remark. — This result is also a variant of the Zassenhaus formula (see [9]).

The factorization (6) is constructed by induction on k. If Bspy1 = Repp1+Reya+
---is the (k4 1)th-order remainder, the (k4 2)th-order remainder B>z is given
by

exp(Ryg42) = exp(—Re41) exp(Ryp41).

Theorem 1 ensures that B> 12 belongs to f)zkH(A) and, if we set Pr41 = Rpy1,
the induction is done.

Let us fix now k > n and consider the factorization (6) of P. Each term P; is an
homogeneous Lie polynomial of degree i < k. Lemma 7 can then be applied and
we set

a = @p(PL) ok (Pr)
= exp(P1) exp(RlzkH) -+ -exp(Px) exp(ngH).
From Lemma 2, we have, if R € ﬁ2k+1(A):
exp(—P;) exp(R) exp(P;) = exp(exp(ad (—F;))R)
= exp(R)

where R' € lA}Z;H_l(A) (see Formula (2)). That means that exp(R)exp(F;) =
exp(P;) exp(R') and so, using this identity & times in the expression of «, we
obtain:

a = exp(P1) - -exp(Pg) exp(R')
= exp(P) exp(—R>r41) exp(R),

where R' € [A/Zk+1(A). Thus « is an approximation of exp(P) at order k. []
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2.5 Algorithm

The proof of Theorem 8 is a constructive proof. It allows the construction of
an effective approximation of a Lie polynomial. Let us detail the construction of
¢k (P), kth-order approximation of exp(P). As an input, we shall give Py, ..., Py
such that

exp(P) = exp(Py) - - -exp(Py) exp(R>p41)-

Each P; is given as an explicit combination of Lie monomials. As output we will

have a list {(A;, a;)} such that
ok (P) = exp(Arar) - -exp(Amam).

1. Forae A,A € R and k > 1, we set ¢ (Aa) = exp(Aa).

2. For a monomial ¢ of length n, we write 2 as a bracket [a, b] with |a| = p and
|b] = n — p (this decomposition need not be unique). We thus define ¢, (Az)
by the induction formula (see Lemma 4):

Pn(Ar) = @p(Aa)pn_p(b)pp(Aa) " on_p(b) 7"

3. For an homogeneous polynomial P = Zle Aiz; € Ly (A), we set (see Corol-
lary 6):
QOH(P) = ‘pn(/\lxl) s “,On(/\d,]?d).

4. For an homogeneous polynomial P € L,(A) and k > n + 1, the approxima-
tion is defined by the recursion formulae (see Lemma 7):

if k is odd, then ¢g(P) = ¢x_1(P)[t] wx—1(P)[—2*1] r_1(P)[t],
if k is even, then @i (P) = @r—1(P)[u] gok_l(P)[Ql/ku]_l wr-1(P)[t]

where t = (2 4+ (=1)?27/F)=1/" and u = (2 — 27/k)=1/n,
5. For a polynomial P given by Py, ..., Py such that

exp(P) = exp(Py) - - -exp(Px) exp(R>k41),

we set (see Theorem 8):

ex(P) = er(Pr) - pr(Ps).

2.6 A Short Example

Let P = a+ [b,a]. We have exp(P) = exp(a) exp([b, a]) exp(R>3). Then we find

pa(a) = exp(a), p2([b, al) = @2(b)p2(a)pa(b) ™ pa(a) ™"

and thus
©2(P) = exp(a) exp(b) exp(a) exp(—b) exp(—a).

For the same polynomial P = a — [a, b], we found a shorter solution

w2(P) = exp(b) exp(a) exp(—b).
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3 Estimations and Example

In this section we will discuss the shape of the output of our algorithm. We
will first estimate the number of elementary factors in the approximation (an
elementary factor is a term exp(Aa), with A € IR, a € A). Then we will show
how one can reduce this complexity.

3.1 Complexity

Let P be a Lie polynomial of degree n and an integer & > n. We assume that
we know the decomposition (6)

exp(P) = exp(Py) - - -exp(Pr) exp(R>k41),

where each polynomial P; = Zj’zl)\j z; in L;(A) is given as linear combination
of Lie monomials.

Although Py, ..., Py are unique, their decomposition into sum of monomials is
not. The reader must notice that our algorithm will start with the given of the
d;’s, the z;’s and A;’s as inputs and that it avoids any calculation in the free Lie
algebra. Here we are not concerned with the problem of the decomposition of
Lie polynomials in some particular basis. For instance there is no a priori bound
for the d;’s (an upper bound could have been given by the dimension of L;(A)
that satisfies the Witt formula: 3, d dim(Lq(A)) = |A]").

Under these hypothesis, our algorithm gives a kth-order approximation ¢ (P).
Let I (P) be the number of elementary factors in @i (P). We will give an upper
bound of I (P) with respect to di,...,dg. We give this estimation by following
the step numbers of Part 2.5.

— For a € A and A € IR, we have obviously l;(Aa) = 1 (see step 1).
— If z,, is a monomial of length n, then, with the notations of step 2, we have:

by (Azn) < 2(1p(Aap) + Lg(bg)).
By induction on n we see that

La(Az,) <3 x 2771 -2,

For an homogeneous Lie polynomial P; = Zj’zl Ajz; € Li(A), step 3 implies
that '
ZZ(PZ) < 3d; x 2t 1,

— Therefore, we have, by using step 4:

: : 2\ 1
lk(PZ) < 3k_l+1di 2i—1 — 3k <§> d;. (7)
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— Finally, we get

k

L(P) <3y @ di < 3** max{d;}. (8)

i=1

Remark. — If P = a+ b it is known (see [14, 4]) that I (a + b) = 28+ — 1 for
k < 4, that is an exponential bound.

We know better estimates in some particular cases. If P = 0, it has been shown
([2]) that k& < I, (P) < k?, that is a polynomial bound. It implies that for any k,
there exists a Lie polynomial Py € Lg(A) such that ¢k (Px) is a product of less
than k2 factors. This is also far less than the sum of dimensions Zle dim(L; (A)).

These two examples and example 2.6 show that the minimal number of factors of
¢k (P) depends on the polynomial P and on its decomposition into monomials.
In this paper we will not seek minimal approximants (this question is considered
in [5, 14] and in the remark at the end of Part 3.3).

3.2 Improvements

Our construction is certainly not optimal. We can then improve it a lot. Let us
notice that the steps of the construction are independent of each other. Each
step can then be improved separately. We will discuss now about some possible
modifications (we refer to the step numbers of Part 2.5).

We present first a simple improvement of step 4. When k and n have not the
same parity, the recursion formula for g (P), can be replaced by:

if n is even and k odd, then ¢ (P) = gok_l(P)[Q_l/"] gok_l(P)[—Q_l/"], (9)
if n is odd and k even, then @i (P) = gok_l(P)[Q_l/"] gok_l(P)[—Q_l/"]_l.

This formula allows to reduce the theoretical bound (7) (and then the bound
(8)) for the size of the approximation, since it has two factors instead of three.
When n and & have the same parity, there is no such formula with two factors.

We are now interested in step 2. We have chosen in our algorithm to write Az as
[Aa, b]. The idea was: if A is an integer, then the elementary factors of ¢, (Az) will
use only integer. However we can see on examples that, with this construction,
there are no cancellations between the factors of ¢, (Az) (we call cancellation
the occurrence of a product exp(y) exp(—y)). For example, we get

wa ([, y]) = exp(z) exp(y) exp(—z) exp(—y)

and we will test our algorithm on @4(A[[z, ], [, y]]). For A = 1, algorithm pro-
duces

pa(llz, . [=,0]) =1
and for A = 2, it gives
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ea(2[[z,y], [z, y]]) = exp(2z) exp(y) exp(—z) exp(—y) exp(—z) exp(y)
exp(2z) exp( y) exp(—z) exp(y) exp(—z) exp(—y).
Thus we see that the cancellations are not preserved by the algorithm.

To avoid this kind of problem we can use another method. We first construct
©on (). Then, if z is a Lie monomial of length n, we get

en(1A2) = n () [A[Y7].
Finally we have ¢, (Az) = ¢, (|A|2)?, where ¢ = £1 is such that A = o|A|. This
formula allows to keep cancellations from ¢, (z) to ¢, (Az).

This construction does not give theoretical improvement for the size of the ap-
proximation: it does not reduce the bounds (7) and (8). But in practice, it gives
often an approximation with less factors. On the other hand, it makes use of
algebraic numbers even if A is an integer.

3.3 Example

Let P = a+ [b,a] + [a, [b, a]]. Let us compute the approximation ¢3(P).
We first show how to get the expansion (6) of exp(P) at the order 3.

exp(P) (

exp(—a) exp(P) = exp(

exp(—1[b, a]) exp(—a) exp(P) = exp(

exp(a +[b, a] + [a, [b, a])

b,a] + [a, [b,al] - 3la, [b, a]] + R34)

zla, [b, a]]+ RSy) (10)
We thus deduce that Py = a, Py = [b,a], P3 = £[a, [b,a]].

Algorithm starts now by computing ¢3(F;).

— We get from the previous example (Part 2.6)
w3(P1) = exp(a), p2(P2) = exp(b) exp(a) exp(—b) exp(—a).
From Formula (9) we obtain ¢3(Ps) = pg(Pg)[%]pg(Pg)[\/—l] and then:

1

w3(P2) = exp(%b) exp(%a) exp(_—2b) exp(—ga) exp(\/—lb) exp(—éa)
exp(%b) exp(%a)

— For Ps, we have ¢3(Ps) = 301(%a)902([b, a])gol(%a)_lgog([b, a])~1, that is:
w3(Ps) = exp(% ) exp(b) exp(a) exp(—b) exp(—a) exp(—3 La) exp(a) exp(b)
exp(—a) exp(—b).
Noticing that exp(—a) exp(—%a) exp(a) = exp(—%a) we get:

w3(Ps) = exp(%a) exp(b) exp(a) exp(—b) exp(— %a) exp(b) exp(—a) exp(—b).
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The approximation ¢z (P) is then given by ¢3(P) = ¢3(P1)ps(P2)ps(Ps). Taking
together the end term of ¢3(P2) and the first term of p3(Ps), we get:

v3(P) = exp(a )exp(\%b) exp(%a) exp(T ) exp(S 1a) exp(\_/—%b) exp(\_/—%a)
b) ex (—%a) exp(b) exp(—a) exp(—b).

exp( \}—b) exp( 1'\*'/\—/_ ) exp(b) exp(a) exp(—

Remark. — As pointed out at the end of Part 3.1, we could find a shorter
solution. If we calculate exp(Ab) exp(Ba) exp(Cb) exp(Da) exp(Eb) = exp(P),
we find up to order 3:

P=(D+B) a+(E+C+A) b+

+L((A=C)B= (D+ B)E + (A+C)D) [a, 1]

+ 15 (D+B)*E+ (A+ C)D* + (2AB — 4BC)D + B*C' + AB?) [a, [a, ]
+

L ((B+ D)E? + (—4(A+ C)D + 2BC — 4AB)E + (A + C)*D) [[a, b], b].

We thus find a five-factors third-order approximant for P = a+ [b, a] + [a, [b, a]],
by setting

B=1%(1+ev65), D=1(1-¢eV65),C=—-% E=52% 4=_543

This method makes use of calculations in the free algebra and requires to solve
polynomial system. It could not be so easely generalized to higher orders.

4 Application to Control Theory

The use of our approximations in control theory (in particular for the motion
planning problem) will be discussed in a next paper. We give here an example
of such application.

Let X1,..., X, be vector fields on IR™ and (X) the control system

= Zui(t)X x

i=1
Let £(X1,...,X.) be the Lie algebra generated by X1, ..., X;,,. For a given X
in £(X1,...,Xm), we consider the problem of “approximating” a point lying on

the flow of X. More precisely, the problem is to find a trajectory steering the
system from a point p to a point exp(tX + o(t*))p (o(t*) denotes here a vector
field with a norm in o(t¥)).

Any composition of flows of the X;’s is a trajectory of the system (X). The
end-point of such a trajectory is written exp(A1X;,) - - - exp(As X;, )p. Therefore
sequences A; and X;, such that

exp(A1 Xy, ) - exp(As Xi, )p = exp(t X + o(tk))p (11)
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give a solution to our problem.

We first translate the problem in the context of the free Lie algebras. Let L(A)
be the free Lie algebra generated by an alphabet A of m elements. We denote
by o(t¥) an element t*R(t) in L(A), with R(t) € L(A) for each ¢, and R(0) = 0.
Using the universal Lie algebra morphism ¢ : L(A) = £(X1,..., Xm), ai = X,
any relation in the free Lie algebra like

exp(Aray) - - -exp(Asas) = exp(tP + o(tk)) (12)

will give a relation (11) in £(X71, ..., X).

That is why we will establish universal approximations (12) in L(A). Next ex-
ample shows how it can be done.

4.1 Example

Let P = a + [b,a] + [a, [b, a]] (the same polynomial as in Part 3.3) and let us
try to build an approximation in o(¢). We first compute the expansion (6) of
exp(tP) at order 3. Formula (10) gives

exp(—t[b, a]) exp(—ta) exp(tP) = exp((t — %)[a, [b, a]] + R/24(t))
where R’24(t) = t?R'(t). We thus deduce that

exp(tP) = exp(t a) exp(t [b, a]) exp(t [a, [b, a]]) exp(o(2)).

Thus the expansion (6) at order 3 gives only an approximation “in o(t)”. In
order to get an approximation “in o(t?)”, we should go until sixth-order in de-
composition 6.

We would like to convince the reader that

o = p1(a)[1) @ (16, a) ) o [a, b, ) [/
is an approximation of exp(tP) in the form (12).

This construction could be generalized to any Lie polynomial P. We would have
to refine Lemma 9 and then use the approximations ¢ (P) for the homogeneous
Lie polynomials. This will be detailed in a next paper.

5 References

[1] Bourbaki, N., Groupes et algébres de Lie, Eléments de Mathématiques,
Hermann, Paris, 1972

[2] Falbel, E., Koseleff, P.-V., Parallelograms, Preprint (1996)

[3] Jacob, G., Motion Planning by piecewise constant or polynomial inputs,
Proceedings of the IFAC Nonlinear Control Systems Design Symposium
(1992)



72

[4] Koseleff, P.-V., Relations among Formal Lie Series and Construction
of Symplectic Integrators, AAECC’10 proceedings, Lect. Not. Comp. Sci.
673 (1993)

[5] Koseleff, P.-V., Ezhaustive Search of Symplectic Integrators Using
Computer Algebra, Fields Institute Communications 10 (1996)

[6] Lafferriere, G., Sussmann H., Motion Planning for controllable sys-
tems without drift, Proceedings of the 1991 IEEE International Confer-
ence on Robotics and Automation (1991)

[7] Laumond, J.P., Nonholonomic Motion Planning via Optimal Control,
Algorithmic Foundations of Robotics (1995)

[8] MacLachlan, R. 1., On the numerical integration of ordinary differ-
ential equations by symmetric composition methods, STAM J. Sci. Comp.
16(1) (1995), 151-168

[9] Magnus et al., Combinatorial Group Theory: Presentation of Groups
in Terms of Generators and Relations, J. Wiley & Sons, 1966

[10] Reutenauer, C., Free Lie algebras, Oxford Science Publications, 1993

[11] Steinberg, S., Lie Series, Lie Transformations, and their Applications,
in Lie Methods in Optics, Lec. Notes in Physics 250 (1985)

[12] Suzuki, M., General Theory of higher-order decomposition of exponen-
tial operators and symplectic integrators, Physics Letters A 165 (1992),
387-395

[13] Suzuki, M., General nonsymetric higher-order decompositions of ex-
ponential operators and symplectic integrators, Physic Letters A 165
(1993), 387-395

[14] Yoshida, H., Construction Of Higher Order Symplectic Integrators, Ph.
Letters A 150, (1990), 262-268

This article was processed using the I#TEX macro package with LLNCS style

Annexes



The Number of Sides of a Parallelogram

The Number of Sides of a Parallelogram

FALBEL, E., KOSELEFF, P.-V.
Discrete Mathematics and Theoretical Computer Science (DMTCS) 3 :2 (1999), pp 33-42

73



74

Annexes

Discrete Mathematics and Theoretical Computer Science 3, 1999, 33-42

The Number of Sides of a Parallelogram

Elisha Falbel and Pierre-Vincent Koseleff
Institut de Mathématiques, Université Paris 6, Case 82

4 place Jussieu, F-75252 Paris Cedex 05.

email: {f al bel , kosel ef f }@mat h. j ussieu.fr

received 13 Oct 97, revised 3 Nov 1998, accepted 10 Jan 1999.

We define parallelograms of base a and b in a group. They appear as minimal relators in a presentation of a subgroup
with generators a and b. In a Lie group they are realized as closed polygonal lines, with sides being orbits of left-
invariant vector fields. We estimate the number of sides of parallelograms in a free nilpotent group and point out a
relation to the rank of rational series.

Keywords: Lie algebras, free group, Magnus group, lower central series, Lyndon basis

1 Introduction

In IR? a parallelogram of base a and b can be defined as a closed polygon with the minimum number of
sides parallel to a and b. In that paper we also consider parallelograms defined in more general groups.

In section 1. we first give some definitions and examples of parallelograms in Lie groups. These
examples show the various complex situations occurring in the general case. In this paper we concentrate
our attention on free nilpotent groups. This analysis will give universal properties for parallelograms. We
obtain

Theorem. The number of sides of a parallelogram on a free nilpotent group on two generators of order n
is between n and n?.

We do not know what is the exact number of sides of parallelograms in a free nilpotent group neither
how many non-equivalent parallelograms exist. We hope that an investigation of parallelograms might
help understand general nilpotent groups. In particular it will be interesting to find presentations with
relators of minimal size.

We have chosen in this paper to recall the basic properties and constructions of free Lie algebras in
order to make it self-contained. That is done in section 2. In the last section we then introduce mth-order
parallelograms and prove our result. A connection with rational series is pointed out at the end of the
paper.

Our initial motivation to study parallelograms was the notion of curvature and holonomy of a con-
nection for Riemannian manifolds and the generalization of those notions to sub-Riemannian geometry
(see [FGR] and [BeR]). In classical differential geometry, curvature appears as the quadratic term in
the asymptotic expansion of holonomy around short (four-sided) parallelograms, holonomy being the

1365-8050 (©) 1999 Maison de I’Informatique et des Mathématiques Discrétes (MIMD), Paris, France
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measure of the difference of the vector field by parallel translation around a closed loop. In the case of
sub-Riemannian manifolds, the tangent space is naturally a nilpotent group ([BeR]) and the holonomy as-
sociated to it will be calculated using parallelogramswith many sides. The analog of sectional curvatures
should be the holonomy associated to different parallelograms.

Another motivation is the approximation of a given element of the group by elements of a given sub-
group. This occur for example in the search of symplectic integrators (see [K, Su]) that give numerical
schemes for long-time integration of hamiltonian systems. Namely we try to approximate exp(x+y) by
a product of exp(x) and exp(y). In this frame, minimal length of mth-order approximants are bounded by
approximately 2™.
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focus our attention to the theory of noncommutative series. The first author would like to thank FAPESP
(Fundacdo de Amparo a Pesquisa do Estado de S&o Paulo) for financial support and the Institut de Mathé-
matiques (UMR 7586) for its kind support.

2 Definitions and examples

Definition 2.1 Asegment ina Liegroup isa curve obtained by following the orbit of |eft-invariant vector
field. It hasinitial and end points. Two segments are parallel if they are orbits of two dependent |eft-
invariant vector fields.

Definition 2.2 A polygonal line in a Lie group is a curve obtained by concatenation of segments, two
consecutive segments being not parallel. This is a sequence of segments where the end point of one of
them coincides with the initial point of its successor. Each segment is called a side.

Observe that once we have fixed a left invariant vector field X, a side is of the form y(t) = xo exp(tAX),
where 0 <t < 1. In that case we call |A| the length of the side. y(0) is its initial point and y(1) its end
point.

Definition 2.3 A polygon in a Lie group is a closed polygonal line. Its length is the sum of its sides
lengths.

Definition 2.4 A parallelogram of base X and Y in a Lie group is a polygon with sides of integer length,
obtained fromthe two given left-invariant vector fields X and Y, with minimumlength. Two parallelograms
are equivalent if there exists a group isomor phism which maps one parallelogram onto the other.

In order to describe explicitly a polygonal line with n sides, let 7 = {Xq} be a family of linearly inde-
pendent vectors in the Lie algebra g of the Lie group G. Fix X = 1 € G. We write yj(t) = Xj—1eXp(tAjXq;)
for xj = xj—1 eXp()\jqu), 0<t<1land1l< j<n. Herewe require that qu and Xaj+1 are independent.
Denote by P(A1Xq, ;- -.,AXq,) the polygonal line defined in this way.

Example 2.1 Consider the abelian Lie group IR". A parallelogramin that group is clearly a parallelo-
gram.
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Example 2.2 Consider the Heisenberg group H® with Lie algebra generated by X,Y,Z, with [X,Y] = Z,
all other brackets being null. One can verify, using the Campbell-Hausdorff formula that both

Ps(X,Y) = P(X,Y, =X, =2Y,—X,Y,X) and P4(X,Y) = P(X,Y,=X,-Y,=X,Y,X,Y)

are parallelograms. They are not equivalent as Pg has at |east one side of length two. On the other hand
starting with X, Z we get a parallelogram of 4 sides.

Example 2.3 Let L* be a free nilpotent group of order 4, generated by X and Y. We can verify that
P(X,Y,—2X,-Y,X,Y,X,=Y,—2X,Y, X, -Y) isaparallelogram. It haslength 14. Aninteresting question
would be to know all non-equivalent parallelograms.

Example 2.4 If the group generated by exp(X) and exp(Y) isfree, then thereis no parallelogram of base
Xandy.

We thank the referee for pointing out the two following examples.

00 10
group G =< exp(2X ™), exp(2X~) > isfree (see also [LY)), so there exist no parallelogram of base 2X*
and 2X~. Moreover it isstraightforward that P = (exp(X*) exp(—X~))® = 1isa parallelogramof length
12 with base X+ and X .

Example 2.5 As a result of a theorem by SANov ([S3]), for X+ = (0 1) and X~ = (0 0). the

We could have given a more general definition of a parallelogram in an arbitrary group. Let a and b
be two elements on a group G and G<a,b> be the subgroup generated by a,b. Consider the set of al
relators, i. e., the set of words in a,b,a=1,b=1 which are the identity in G. One should consider only
reduced words in the sense that if a is of order n and a" appears in a word, one should substitute the
identity for a". The same for b. A parallelogram of base a,b is a reduced relator (in the above sense) of
minimal length with letters a,b,a=*,b~1. Of courseif G<a,b> isfreein a, b thereis no parallelogram.

Example 2.6 In the case of the symmetric group
S3 =< 01,02; 02 = 1,010201 = 020102 >

one can verify that a minimal relator with base 01,05 is (0102)3 of length 6. On the other hand we have
also

S3 =< 01,03 = 0201; 02 = 1,05 = 1,0103 = 0307 >
that has a minimal relator of length 4.

In the case of Lie groups we would like to define infinitesimal parallelograms, that is parallelograms
which remain the same in form when their sides are changed by a conformal factor. They will not exist in
general but in the case of graded nilpotent groups their existenceis assured.

Example 2.7 Consider the Lie group with Lie algebra generated by X,Y with [X,Y] = X. Then we can
construct a parallelogramwhich is not infinitesimal. Observe that

exp(tY) exp(uX) exp(—tY) = exp(uexp(—t)X)).
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Soift = —In2 and u = 1, we have exp(tY) exp(uX) exp(—tY) exp(—uexp(—t)X) = 1. Thatisa paralle-
logram of length 5 with base In2 Y and X. It isclear that if we change the sides by a conformal factor
thiswill no longer be a parallelogram. More generally, a polygon is a product

exp(c1Y) exp(diX) - - - exp(cnX) exp(dnY)
such that y; (¥ j<i ¢j) exp(—di) = 0. The previous equation has clearly no integer solutions.

Example2.8 Let us consider in IR?, X =9y and Y = (x)dy for a given analytic function f. The Lie
algebra L(X,Y) is in general infinite dimensional as (ad X)"Y = f("(x)dy and is spanned, as vector
space by X and {(ad X)"Y}. By noticing that exp(Aad X)Y = f(x+ A)dy, we deduce that

exp(tX) exp(uY) exp(—tX) = exp(uf (x+t)dy)

exp(X) exp(Y) exp(—X) exp(Y) exp(X) exp(=Y) exp(—X) exp(=Y) =
exp(f(x+1)dy) exp(f(x)dy) exp(—f(x+1)oy) exp(—f(x)ay) = 1.

This gives a parallelogram of length 8.

3 Magnus Groups and Algebras

Let us first introduce some notations and recall some results about free groups, free associative algebras
and free Lie algebras. All these results can befoundin ([B, La, R]).

Let X be a set (alphabet). We denote by X* the free monoid generated by X, that is, the set of words
including the empty word denoted by 1, with concatenation as a product. X* is totally ordered by the
lexicographic order. The free magma M(X) is the set of words with parentheses, generated by X and
A(X) denotes the free associative algebra, that is to say the Q-algebra of X*. An element P in A(X) will
be written 3 yex« (P, w)w.

We denote by L(X) the free Lie algebraon A. It is the quotient of the Q-algebra of M(X) by the idea
generated by the elements (u,u) and (u, (v,w)) + (v, (w,u)) + (W, (u,v)). The associative algebra A(X)
may be identified to the enveloping algebra of L(X) by considering [v,w] = vw— wv. We denote by ad x
themapy — [Xx,Y].

The free group generated by X is denoted by F (X).

3.1 Gradations

The setsL(X),F(X) so as A(X) are graded by

— the length (the unique homomorphism that extends the function x — 1 on X). For x € X* (resp.
F(X),M(X)) |x| denotes the length. Ln(X) (resp. An(X)) is the submodule generated by monomials of
length n.

— the multi-degree which is the unique homomorphism from X* (resp. F(X),M(X)) onto IN*) that
extends x — 1y. For a given a in IN®), L%(X) (resp. A%(X)) denotes the submodule generated by
monomials of degreea.
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Definition 3.1 Let A,B be subgroups of a group C. We denote by (A,B) the set of all commutators
(a,b) = aba~tb~1. Starting with F>1(X) = F(X) and defining Fon(X) = (F>1(X),Fs>n-1(X)), we get the
so-called lower central series.

As a consequence, we have (F>n(X),F>m(X)) C Fontm(X) and F(X) /F>n(X) is an abelian group.

3.2 Formal series

We define L(X) and A(X X) i

as L(X ) TMhsoLn(X) AXX) = [TasoAn(X). We will write x € L(X) (resp.
A(X)) as a series > n>0%n- L(X) so
(XY)n =

s A(X) are algebras with multiplications law
Z XpYq, ([X,y])n = Z [XP,Yq]- (1)
p+d=n p+g=n

We will also use Lsp(X) = Mn>pLn(X) AZP(X) = [Tn>pAn(X). The setI'(X) = 1+As1(X) is called the
Magnus group. It is a subgroup of the invertible elements of A(X). One defines the exponential and the
logarithm as

exp:Asi(X) = T(X) log:F(X) — Asi(X)
X" (1—x)"
X znzom, X = =31

They are mutually reciprocal functions and we have (see [B, Ch. Il, §5]) the
Theorem 3.1 (Campbell-Hausdorff) For x,y € L1(X),
H(x,y) = log[exp(x) exp(y)] € L>1(X). ¥
Denoting by Esn(X) = exp(Lsn(X)), we get
Corollary 3.1 The set Es1(X) = exp(Ls1(X)) € T'(X) is a group.
E>1(X) acts on itself by conjugacy and we have exp(x) exp(y) exp(—x) = exp(exp(ad x)y).

Definition 3.2 Let us consider the Magnus map p : F(X) — I'(X) as the unique group homomorphism
that extends x — 1+, for x € X. We set Dsn(X) = p~1(1 + Asn(X)). This is Magnus’ n-th dimension
subgroup of F.

Definition 3.3 Letus consider the map ' : F(X) — I'(X) as the unique group homomorphism that extends
X = exp(x), for x € X. We set DS ,(X) = WL+ Asn(X)).

This defines central filtrations of F (X). We have clearly that F>n(X) C Dxn(X) and Fxn(X) C D5 (X).
In fact Magnus proved a stronger result (see [B])

Proposition 3.1 Dn(X) = D5 (X) = Fon(X)
Let Np(X) be the free nilpotent group of class n (or order n+ 1) on X. That is
15 Fons1i(X) = F(X) = Np(X) > 1 3)

We will use the following corollary to establish the lower bound to the number of sides of parallelogram
on the free nilpotent group.

Corollary 3.2 The projection of g in F(X) onto Nn(X) is the identity if and only if /'(g) € Esn(X).

In fact we need only the if part of the corollary for the lower bound, that is not dependent on Magnus
result but on the inclusion Fsn(X) C D»n(X).
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4 mth-order parallelograms

Definition 4.1 The order of g in F(X) is the biggest integer k such that g € F>«(X). An element of order
k will be called kth-order polygon.

Using proposition (3.1), amth-order polygon g satisfies

g = XxyPr..odnyth e By (X), @
W = exp(a1><)exp(b1y)---exp(anX)exp(bny)€1+§zm(x), )
WE) = [@+X)2(L+Y) - (14> (1+y)™ € 1+ Asn(X). (6)

Here none of ajs nor bis isO.

Definition 4.2 The length | : F(X) — IN is the unique homomorphism that extends x 1,x" 11, for x
inX. Ifg= x'll - -x'pp € F(X), we sill say that it is a p-sided polygon. For example xyx~1y—1 is a 4-sided
second-order parallelogram of length 4. In formula (4), we have I(g) = S_, (|ai| + |bi]).

We thus deduce that for any g1,92 in F(X), we have 1(g9192) < 1(g1) +1(g2). The inequdlity is strict
only if terms of g1 cancel terms of g5.

Definition 4.3 For m € IN, we define Iy, as the lowest length of mth-order polygons. A mth-order paral-
lelogram will be a mth-order polygon of minimal length.

Before discussing the lower and upper bounds for the length and the number of factors of mth-order
parallelograms, let us show some transformations that preserve polygons.

Proposition 4.1 Let af3 be a mth-order polygon then so is a.

Corollary 4.1 If gis a (2p+ 1)-sided mth-order polygon then there exists a 2p-sided mth-order polygon.

Proof. — The proposition comes from the fact that F /F>m(X) is abelian.
Let us suppose that g = x3y1 . ..yPpxp+1 js amth-order polygon. Then

X(al+ap+l) ybl .. ybP (7)

has smaller length as |a1 +ap+1| < |a1| + |ap+1| and is aso a mth-order polygon. O
We can now suppose that for any integer m, an mth-order parallelogram has an even number of factors.
We will now discuss lower and upper bound of Iy,.

4.1 Lower bound

Proposition 4.2 For any m € IN we have m < I,.
Proof. — Let us consider the following equality
exp(axx) exp(b1y) - - - exp(anX) exp(bny) = exp(2). ®)
wherez € Lsm(X) and none of the als nor bi’sis 0. Considering the word w = (xy)", we have
(exp(z),w) = |_|?=1aibi #0

and som < 2n < Iy, In fact the number of sidesitself is bigger than m. O
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4.2 Upper bound

First of al, let us show some small-order parallelograms.
Ifm=1g1=xorg; =y isconvenient. If m=2, wefind g> =xyx ly~1thusl, < 4. Infactl, =4
which is a consequence of the following

Lemma4.1 Foranym > 2, I, is even.
Proof. — This s a conseguence of
(@) = (14X (14Y)" - (14X (L+Y)™ = 1+ @1+ +an)X+ (b1 + - +bn)y (A>2(X)).

Soif p(g) belongsto Asm(X) wehave S ai = S by =0thus ¥ |aj| and ¥ |bi| are even. m|

We have seen g» as the commutator of two first-order polygons. We will now build a sequence gm of
mth-order polygons, each gm being constructed as commutator of g, and gm—p for some p. We first use
the following lemma

Lemma4.2 Let g, and gq be two polygons of order p and q respectively, then (gp,dq) has order at least
p+q and has length at most 2(1(gp) + 1(gq))-

Remark. — Thisis also aconsequence of the fact that (F>n(X))n isacentral filtration but we will show
it by using the Hausdorff series.

Proof. — Let uswrite

Pp = 1(gp) = exp(x) = exp(Ti=pXk),Pq = W' (Ga) = exp(y) = XP(Tk>qVk)- ©)
then we have
PoPgP; *Pg* = exp(exp(ad x)y) exp(—y) = exp(H (exp(ad x)y, -Y)). (10)
But
H(exp(adx)y,—y) = Ha(exp(adx)y,-y)+ k;Hk(exp(ad X)y, =) (11)
— explad )y - y+ T Hr(explal gy, —y) (12
= K+ 3 @Y+ T HepEy ), (13)

But (adX)"y € Lokp+q(X) € L>2p+q(X) and Hi(exp(ad x)y, —y) = Hi(exp(ad x)y — ¥, =Y) € Lsp+29(X). In
conclusion, if [Xp,Yq] # 0, then gp+q = (9p,9q) isap+q-thorder polygon and haslength 2(1(gp) +1(9q))-
In order to be sureto obtain a (p + q)-th order polygon let us show that

Lemma4.3 Leta € F>p(X) and B € F>q(X) such that

W (a) = exp(x) = exp(TispXk), ' (B) = exp(y) = eXp(TisqYk)- (14)

If xp and yq are not proportional, then (a, ) has order exactly p +q.
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Proof. — Thisis a consequence of the following lemma.
Lemma4.4 Letxp € Lp(X) andy € Lq(X). If xp and yq are not proportional then [xp,yq] # O.

Proof. — Let uswrite

n n’
Xp = (Xp, W) = S AiWi,Yq = (Yg, W) =y Ajwi. (15)
P w;f; P i;II ‘ we;a‘ ! i;II

Here we have w; < wj if i < j. As[Xp,Yq] = [Xp,Yq — AXp] for some A, one can suppose that wi < wj. In
fact wy and w) are so-called Lyndon words (see [R]), that is to say satisfy wiwj < wjws. In
[Xp.Yal = ArAz(wiwg —wiwz)
+A1 Z)\’J (Wlw’j — leWj) +A] Z)\i(wiw’l —Wiwi) + Z )\i)\’j (Wivv’j — W’J-Wi) (16)
] [ i,]>1

Aswy <W) < W'J- we deduce that wiw) < wjw) < WiW'j for eachi, j > 1. We havealso wiwj < wiwy <
\[/v’lwi ]<7\£v’gjwi S0 wiw; is the smallest word in formula (16). This proves that ([Xp,Yq],W1w7) # 0 and so
XpsYq . O

Remark. — Lemma 4.4 shows that for any not null Lie polynomial P the kernel of ad P is spanned by
P.
We will show that

Proposition 4.3 There exists a sequence of mth-order polygons g, with even length I, < m2.

Proof. — We will prove by induction on m the following P(m) : “there exists a sequence gn, or order
exactly m with even length I, < m?”

If m=1, then gy = x or g1 =y is convenient. If m = 2 then g = (x,y) = xyx~1y~! is convenient
and has length 4. If m = 3 then g3 = (91,02) = x2yx~ty~x~tyxy~1-x~1 is a third-order polygon so as
xyx~ty=Ix—lyxy—?1 that has length 8.

Suppose now P(m).

e Ifm+1=2p+1lisodd, letusconsider g = (gp,dp+1). p and p+ 1 have not same parity so
1(9) < 2(Ip+1p11) < 2(p°+ (p+1)°—1) = (2p+1)*— 1.
We thus deduce that g isa (2p + 1)th-order polygon and so Iop11 < (2p+ 1)% — 1.
o If m+1=4p,letusconsider g = (g2p—1,92p+1)-
1(9) < 2(l2p-1+l2p+1) < 2((2p+ 1)?+ (2p— 1)°— 2) = (4p)?
o Ifm+1=4p+2, letusconsider g = (92p+1,9(92p+1)). Here ¢ istheinvolutionx — y,y — x. If
W (92p+1) = EXP(Tk<p+1%k), We will have

W'(9) = exp([x2p+1, § (X2p+1)] + Fks2p+2Yk)- (17

The degree of xop11 inx isnot the degreeiny so xop4+1 8s2p+ 1isodd and ¢ (x2p+1) have not same
multi-degree thus are not proportional. It followsthat g € F>m41(X). We have

1(g) < Al2pr1 < (4p+2)° -4 < (4p+2)° (18)
We thus deduce that Iy, 1 < (m+ 1)2. Proposition 4.3 is then proved. |
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4.3 Rational series

In fact there is a strong connection with the rank of rational series. The set A(X) is usually denoted by
Q<<X>> and is called the set of formal series.
Consider the following operation of X* on A(X); for u € X*, let

uls = Z (S,uw)w (19)
weX*

We extend it by linearity to obtain A(X) as a right module over A(X).
A combinatorial interpretation of that operation in the case where S = v is a single word says that u=v
vanishes , unless v starts with u, that is, v = uv/, and in that case u=v = v'.

Definition 4.4 A formal series is rational if it is an element of the closure of A(X)

A fundamental theorem due to M.-P. Schiitzenberger assures that the orbits of the action of A(X) are
finite dimensional over @ on rational series. We may then state the following

Definition 4.5 The rank of a rational series S is the dimension of the space So A(X).
We state now corollary 3.6 of [BR].
Proposition 4.4 1f S € 1+ Asn(X) is a rational series, then rankS > m

To obtain a lower bound on the length of a polygon we will compute the rank of the rational series
H(@) = (L)L +Y)P - (1420 (1 4y,

Proposition 4.5 rank[(1 +x)3 (1 +y)P1--- (1 4+x)3 (1 +y)P] < 5 |ai| + |bi| .
Proof. — We first observe that the following properties are easily established [BR]

x1ST) = (x7 19T +(S,1)(x71T) (20)
x1(s*) = x7!s* where S*=(1-9)71 (21)

Observe that x~1(1+x) = 1,x 1 (1+y) =0,y 1 (1+x) =0,y }(1+y)=1.
An easy computation then gives that rank[(1 +x)?] = |a|, and this implies that

rank [(1+X)2(1+Y)?] = |a| + |b|.
From equation 20 we deduce that rank (ST) < rank(S) + rank(T) and that implies that the rank of a
product (1 +x)21(1+y)P1--- (1 4x)3 (1 +y)" can be at most S, |ai| + |bi]. m
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Abstract

We show that the Teichmiiller space of the triangle groups of type (p, g, o0 ) in the automorphism group of
the two-dimensional complex hyperbolic space contains open sets of 0, 1 and two real dimensions. In
particular, we identify the Teichmiiller space near embeddings of the modular group preserving a complex
geodesic. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Let I" be the triangular group of type (p, g, 0 ), that is, the abstract group presented by
Qodl: 3 =L =1L = 1L(igo )’ = 1l o 1,)? = 1),

The fai‘@_lidiscrete embeddings of I' in the isometry group of the one-dimensional complex disc,
that is PU(1,1) (containing the holomorphic and the anti-holomorphic transformations), with
anti-holomorphic embedding of generators and 1, -1, embedded as a parabolic, are rigid.

We consider in this paper faithful discrete embeddings of I" in PU(2,1) (containing the holomor-
phic and the anti-holomorphic transformations), the isometry group of the two-dimensional

* Corresponding author. Fax: + 33-1-44-27-85-51.
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complex ball (with the natural metric invariant under biholomorphisms). Let the Teichmiiller space
denote the space of faithful discrete embeddings modulo conjugation in PU(2,1), with anti-
holomorphic generators and such that 1 o1, is parabolic. We obtain the following description.

Theorem 1.1. The Teichmiiller space of the triangle groups of type (p,q, ), with 2 < p < q, in the
automorphism group of the two-dimensional complex hyperbolic space contains open sets of 0, 1 and
2 real dimensions.

Each open set of Teichmiiller space in the theorem contains a C-Fuchsian embedding, that is, an
embedding which fixes a complex geodesic setwise.

The triangle groups of type (2, p, 0 ) are special. The involution of order 2 cannot be deformed
and we loose one parameter in the deformation space. Observing that the index 2 subgroup of
holomorphic transformations of the triangle group of type (2, 3, c0 ) is the modular group SL(2, Z),
we obtain the following:

Theorem 1.2. The Teichmiiller space of the modular group in the biholomorphic automorphism group
of the two-dimensional complex hyperbolic space around a representation that fixes a complex geodesic
is of dimension 0 or 1.

Of course, we impose the parabolic generator to be represented by parabolics. We will describe
explicitly the embeddings in each case of the theorem.

It is important to contrast that result with the rigidity result of [3,5,12]. If the group has
a C-Fuchsian embedding which is cocompact in the fixed complex geodesic, any nearby deforma-
tion is C-Fuchsian. In our case, the volume is finite. It is interesting that both rigidity and flexibility
occur and depend on the particular C-Fuchsian embedding.

Embeddings of triangle groups of type (oo, 00, 00 ) were previously analyzed in [6,7] and [1]. It
was shown in [ 1] that the Teichmiiller space, in that case, contains an open set of real dimension 4.
Deformations of the modular group were also obtained by Parker [10] independently. The
difficulty in the present case is the appearance of elliptic transformations. The proof is based on
a Poincaré’s polyhedron theorem for complex hyperbolic geometry developed in [2]. We construct
explicitly the fundamental domains. The idea behind it is that anti-holomorphic reflections, which
fix real geodesics are the analog of inversions in classical conformal geometry. Polyhedra are
constructed having faces, foliated by complex geodesics, invariant under those reflections. They are
a generalization of Mostow’s bisectors and we will call them C-spheres. Edges are complex
geodesics in the intersection of two C-spheres.

We hope that the methods of this paper will achieve (see Remark 5.5, p. 17), in the future,
a precise description of Teichmiiller space in the case of embeddings by anti-holomorphic
transformations. On the other hand, it would be interesting to obtain our results using a modifica-
tion of the method of Higgs bundles (see [8]) for non-compact surfaces.

An interesting problem would be to understand the behavior of automorphic forms under the
deformation of modular group.
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2. The complex hyperbolic space and its boundary

In this section and the following, we collect general results about the complex hyperbolic space.
As a reference we use [4,9,1].

2.1. PU(Q,1), the Heisenberg group and the Cayley transform

Let C"*2 denote the complex vector space equipped with the Hermitian form
bz,w) = —zZiwy +ZoWy + -+ Zyra Wi,

Consider the following subspaces in C"* %
Vo = {zeC"* % b(z,z) = 0},
V ={zeC"" 2 b(z,z) < 0}.

Let P:C"*\{0} -» CP"*! be the canonical projection onto the complex projective space. Then
H{'' = P(V) equipped with the Bergman metric is the complex hyperbolic space. The orientation
preserving isometry group of H¢* ! is generated by PU(n + 1,1), the unitary group of b and the
anti-holomorphic transformations. We denote it by PU(n,1). Also, PU(n + 1,1) is the group of
biholomorphic transformations of H¢* . Let $2"*! = P(V,). Then S?"*1 is the boundary of H&" 1.
We may consider H¢*! and §?"*! as the unit ball and the unit sphere in C"* 1.

We restrict our attention to the two-dimensional complex case and in the following we use the
conventions of [9] (see also [4]). The mapping

. _ in _.1—W2
C-(W1,W2)'—’<Z1 _1+w2’22 —11 +W2>

is usually referred to as the Cayley transform. It maps the unit ball
B ={weC?: |wi|* + |wy|* < 1}

biholomorphically onto
V ={zeC?: Im(z;) > |z;|*}.

The Cayley transform leads to a generalized form of the stereographic projection. This mapping
n:S°\{ — e,} > R?, where S? = 0B and e, = (0,1)e C?, is defined as the composition of the Cayley
transform restricted to S*\{ — e, } followed by the projection:

(z1,22) = (z1,Re(z2)).

The stereographic projection m can be extended to a mapping from S* onto the one-point
compactification R® of R3.
The Heisenberg group H is the set of pairs (z,t)e C x R with the product

(zt) (Z,t)Y=(z+z,t +t + 2ImzZ").
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Using the stereographic projection, we can identify S*\{ — e, } with H and S* with the one-point
compactification H of H. The inverse function of the stereographic projection is given by

1.0 —2iz 1 —|z* +it
Z = .
’ L+ )z —it’ 1 +|z)* —it

Observe that the x-axis in the Heisenberg group corresponds to the intersection of S* with the
real plane Re(w;) = 0, Im(w,) = 0. Also, the y-axis corresponds to the intersection of S* with the
real plane Im(w;) = 0, Im(w,) = 0.

The Heisenberg group acts on itself by left translations. Heisenberg translations by (0, t) for te R
are called vertical translations.

Positive scalars AeR, act on H by Heisenberg dilations

d; :(z,t)— (Az,A%1).
If peU(1), then p acts on H by Heisenberg rotation
p(z, )= (pz, 1).
The Heisenberg complex inversion of H is defined on H\{(0,0)} by

—z t
hi(z,t)— —, — .
(1) <|z|2 —it’ |z]* + t2>

Note that h = wojon ™!, where j is the involution

Jiwi,wa)= (—wi, —wy),  (wy,wy)eC2
The map m defined by

m:(z,t)—(z, — 1),
corresponds to

oo m(wy, wa) = (— Wi, Ws).

All these actions extend trivially to the compactification H of H. It is well known that the group
G of transformations of H generated by all Heisenberg translations, dilations, rotations, and
h coincides with ©~'«PU(2,1)on, and the group G = (G,m) is the group of all conformal
transformations of H (see [9,4]).

We need explicit representations of the matrices corresponding to transformations on SU(2,1).

The transformations Ry :(z,t)+— (exp(i0)z,t) and T, :(z',t)+—(z,t).(z/,t') are represented, respec-
tively, by the following matrices in SU(2,1).

exp( — 16/3) 0 0
Ry = 0 exp(2i0/3) 0 \
0 0 exp( — 16/3)
1+ 222 —it)2 iz |z|?/2 —it/2
T.,= —iz 1 — iz

— 2?2 +it)2  —iz 1 —|z]*/2 +it/2



90 Annexes

E. Falbel, P.-V. Koseleff | Topology 41 (2002) 767-786 771

The anti-holomorphic transformations on the ball (z{, z,) > (z{, — Z,) (Which corresponds to the
standard inversion, see the next section) and ©~ ' e#omn:(zy,2,)—( — Z1,Z,) correspond, respec-
tively, to the matrices in SU(2,1)

—1 00 -1 0 0
I, = 0 —1 0] and I, = 0 1 0|
0 0 1 00 -—1

Their action on homogeneous coordinates should be preceded by the conjugation.
We will use the following proposition that characterizes certain elliptic elements of PU(2,1). We
say that a matrix in SU(2,1) is elliptic if it is conjugate to an element of U(2) (see [4]).

Proposition 2.1 (Goldman [4]). Let A, A, eSU(2,1) be elliptic elements. Then they are conjugate if
and only if tr(A,) = tr(4,).

Observe that this implies that they are conjugate in PU(2,1) if and only if the cube of their traces
are equal.

3. R-circles, C-circles and C-spheres

There are two kinds of totally geodesic submanifolds of real dimension 2 in H¢: complex
geodesics (represented by HE < H) and totally real geodesic 2-planes (represented by H3 = H).
Each of these totally geodesic submanifold is a model of the hyperbolic plane.

Consider the complex hyperbolic space H¢ and its boundary dHE = S>. We will call C-circles the
intersections of S* with the boundaries of totally geodesic complex submanifolds H¢ in HE.
Analogously, we will call R-circles the intersections of S* with the boundaries of totally geodesic
totally real submanifolds H3 in HZ.

3.1. R-circles

Definition 3.1. An inversion on an R-circle is a non-trivial conformal transformation which fixes it
pointwise.

Observe that an inversion has invariant R-circles, one of them being pointwise fixed. Moreover,
an R-circle defines a unique inversion. There is, then, a one-to-one correspondence between
inversions and R-circles. For instance, the transformation 1i(z, t) = (z, — t) on the Heisenberg group
is the inversion that fixes pointwise the R-circle Im(z) = 0.

Proposition 3.2 (Falbel and Zocca [2]). Let I, and I, be reflections on the R-circles Ry and R,
(1) Iyo1, is parabolic if and only if Ry and R, intersect at one point.
(i) 14 o1, is loxodromic if and only if Ry and R, do not intersect and are not linked.
(ii1) Iy o1, is elliptic if and only if Ry and R, are linked or intersect at two points. In the first case
there are two (exactly two in most cases) C-circles setwise invariant under both inversions. In the
last case there exists one pointwise invariant C-circle under 1 o I,.
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Proof. See [2] for the proof. Observe that an elliptic element is conjugated to an element of
U(2) which generically has two one-dimensional complex eigenspaces where the action is just
a rotation. [

Definition 3.3. Let I, and I, be reflections on the R-circles Ry and R, linked or intersecting twice.
We say that I, <1, has type (¢1,p,) if it is a rotation of angles ¢; and ¢, on the invariant C-circles.

3.2. C-circles and C-spheres

Proposition 3.4 (see Goldman [4]). In the Heisenberg model, C-circles are either vertical lines or
ellipses, whose projection on the z-plane are circles.

Definition 3.5. The contact plane at M = (a, b, ¢) is the plane P(M):=Z —t + 2aY — 2bX.

The circle of center M = (a, b, ¢) and radius R is the intersection of the contact plane at M and the
cylinder (X — a)* + (Y — b)*> = R~

Let C; and C, be two circles of centers (a;,by,c;), (a5,b,,¢,) and radii Ry and R,. Let d and
h be the horizontal and vertical distances between centers

d=/la; —ay)* +(by —by)%, h=c, —cy, S=%ayhy —ayby).

Proposition 3.6 (Linking of C-circles, Falbel and Koseleff [1]). The C-circles C; and C, are linked
if and only if

(d*> = (Ry + Ry)*)d*> — (Ry — Ry)?) + (h + 45)?
=(d*> — (R3 — R}))* + (h + 4S)* — 4d*R? < 0.
Observe that C; and C, are not linked if their projections are not, that is
(d* —(Ry + Ry)*)d* —(Ry —Ry)*) >0
or if
4d*R} < (h + 45)%,
that is, C; does not intersect the plane defining C, (see also Lemma 6.1).

In the following definition we allow a point to be a (degenerate) C-circle.

Definition 3.7. A C-sphere around an R-circle is an union of C-circles invariant under the inversion
on the R-circle, which is homeomorphic to a sphere. We will call the axis of the C-sphere the set of
centers of these invariant C-circles.

In particular, a C-sphere contains two degenerate C-circles and its axis has starting and ending
points in the R-circle. See also [2].

Definition 3.8. The surface of centers of an R-circle is the set of points which are the centers of
invariant C-circles under the inversion on the R-circle.
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Such C-circles have two points in common with the R-circle. Observe that for finite R-circles this
is a two-dimensional surface but for an infinite R-circle this coincides with the R-circle.

For a finite R-circle the center completely determines the C-circle (Proposition 3.9). But, observe
that for an infinite R-circle, a radius should be specified for each center.

A given axis determines a surface obtained by the union of C-circles defined by the centers. But
that surface might have self-intersections. We will call a good axis an axis whose associated surface
is homeomorphic to the two-dimensional sphere.

We will consider parts of C-spheres as faces of polyhedra. By abuse of language we will also refer
to them as C-spheres. There will be a disjoint union of C-circles between two fixed C-circles in
a C-sphere. Analogously, we will refer to the part of the axis corresponding to that portion of
C-sphere as the corresponding axis.

3.3. Standard R-circle

Consider the following transformation on the Heisenberg group:

—z t
Iy =moh:(z,t)— —, .
0 (1) <|z|2 + it |z|* + t2>

which corresponds to
nloTlon(wy,wy) =n tomohom(wy,wy) = (Wy, — W,).
I, leaves pointwise fixed the standard R-circle Ry (see [4] for details) (Fig. 1)
it = —e 0

where z = re'. In cylindrical coordinates R, is given by

r=./ —cos20, z=sin20.

y-axis

Ry

Fig. 1. Ry top view.
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Proposition 3.9 (Falbel and Koseleff [1]). The surface of centers Sy of the standard R-circle is given,
in cylindrical coordinates, by (r,0,sin20). If r* + cos20 > 0, the radius of a C-circle with center

coordinates 1,0 is /1> + cos 20.

From the above parametrization we see that the surface of centers satisfies the algebraic equation
Z(X* +Y?)=2XY.

The radius of the C-circle is then R* = r? + cos 20. We obtain the standard R-circle for R = 0.

The part of the algebraic set (solution of the equation above) with r* + cos 20 < 0 will be called
surface of imaginary centers. Although it does not correspond to any center of an invariant C-circle,
it is a useful set.

Schwarz (cf. [11]) calls hybrid cones certain surfaces foliated by R-circles. Part of our surface of
centers is a hybrid cone in his sense. We make use of them in this work mainly to parametrize
C-spheres, while his use of them is as boundaries of fundamental domains. One could imagine that
probably a complete description of fundamental domains in complex hyperbolic geometry should
take into account both C-spheres, foliated by C-circles, and surfaces foliated by R-circles, as
Schwarz’s hybrid cones.

3.4. Infinite R-circles

Definition 3.10. R, ,, is the infinite R-circle passing through M = (r, 0,sin 20) whose projection
onto the z-plane is the line of slope tana. It is given by

P(M): Z =sin20 + 2rcos0Y —sin0X, P,(M):sinaX —cosaY = rsin(0 — a).
Observe that R, 5, is horizontal if and only if « = 0 mod =.
Proposition 3.11 (Linking of R-circles). If R* = r? + cos 20 < 0, then R, 4, is horizontal and inter-

sects Rq twice or is linked with R. On the other hand, any R -circle that is linked with R intersects the
surface of imaginary centers once.

Proof. Let R =R, ,, and M = (r, 0,sin 20). Let us consider the intersection of R, with P(M). We
obtain points (p = ./ — cos 2u, u, sin 2u), such that sin(6 — u)(cos(0 + u) + rp) = 0. We get the two
points (4 ./ —co0s20,0,sin20) or (cos(6 +u) +rp)=0, that gives (r* + cos26)cos2u +
sin(0 — u)* = 0, which is impossible. Now the plane P, (M) separates the two pointsif o # O[rn]. [

3.5. Infinite R-circles and surface of centers

Let R be an infinite R-circle passing through Sy at M; = (r1,0,,sin260,) and M, = (r,,0,,sin 26,)
(see Fig. 2). Then we have

Sin(91 — 02)(COS(01 + 62) +rq Vz) = 0.

If sin(@; — 0,) =0, then R is horizontal and intersects S, at r = 0 again.
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Ry

Rr,g,a

Rrﬂ,a

Fig. 2. R,y ,; lateral view (right) and top view (left). The distinguished point is an intersection of the infinite R-circle with

the surface of centers of R.

Proposition 3.12. Let R be an infinite R-circle intersecting Sy twice. Then R intersects Sq in the third

point and we have
1 1 1 sin20; sin26, sin20;
— +—+-—=0 =0
RTRTRTY R TR TR
where M; = (r;,0;,8in 20;) are the intersection points and R} = r? + cos 20;.

Proof. We consider the polynomial equations
Z(X*+YH=2XY, r*=(X*+Y?), TX=Y,
Z = Sin201 =+ 21"1(COS 01 Y — Sin HIX),

Z =sin20, + 2r,(cos0,Y — sin 0, X).

Using different elimination techniques, we get a third-degree polynomial equation that is
satisfied by r?, a third-degree polynomial equation for Z and a third-degree polynomial equation
for T. As we know already two roots of these polynomials, we get (using the fact that

ry{ry + COS(91 + 92) = 0)

Risin20, + R3sin20, , sin(0; — 0,)*
= 1} =— =— ) )
3 R? + R3 >3 R +R: > * y sin6, —r,sinb,

=r; +(1—=T3)/(1+T3)= —RIR3/(R} + R3). O

ry cosl, —r, cosf,

We then obtain R3

Observe that in this case one of the intersection points is an imaginary center and that R is linked

with Ry (Proposition 3.11).
On the other hand, we get (see Proposition 3.2).
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Proposition 3.13. Let R be an infinite non-horizontal R-circle, linked with Ry. Then R intersects the
surface of centers at three points. One is imaginary and the other corresponding C-circles are linked.

Proof. Let R =R, ,,. We have R* = r? + cos20 < 0. Points of R are

1 cosa(Z — sin 20) ) 1 sina(Z — sin 20)
X = - Y = 2
reosd 2 rsinfe—0) rsinf 2 rsin(o — 6)

Looking to the intersection of R and Z(X? + Y?) = 2X Y, one finds a polynomial P of degree 2
whose discriminant is

16sin(o — 0)*( — 4r*sin(o — 0)* + cos(a + 0)* + 4r?sin( — o + 0) sin(xx + 0))

and is positive when 0 < r?> < — cos 20. We thus obtain two other points M; and M,.
Looking to the corresponding radii of C-circles we get P = (R?> — R})(R* — R3) with RiR3 >0
when 0 < 7? < — cos20. It shows that R? and R3 are positive because of Proposition 3.12 and
R3 =7r% 4+ cos20 < 0.
The evaluation of the linking condition (Proposition 3.6) gives — 2(r7 + cos 20, )(r3 + cos 20,)
< 0 so the C-circles at My and M, are linked. [

4. Configurations of a standard and an infinite R-circle

Consider the configuration space of an infinite R-circle R; and the standard R-circle Ry. Using
a description of the configuration space of lines in the plane as a Mobius band (take as coordinates
the angle, between 0 and 7, from the x-axis and the oriented measure of a segment starting from the
origin and arriving perpendicularly to a line) one can clearly obtain, by vertical translations,
that the configuration space is M x R, where M is the Mobius band. One could further use the
dihedral symmetry of the standard R-circle (generated by reflections on the the two horizontal x-
and y-axis) to reduce the configuration space to angles between 0 and /2 and segments of positive
measures.

Observe that the configuration space above is not the configuration space of two R-circles up to
transformations of PU(2,1). As one of the R-circles is infinite, the transformations are in the
isotropy group U(1)><H.

We will deal only with configurations that give elliptic elements. By Proposition 3.2, the infinite
R-circles should be linked with the standard R-circle.

It will be important to identify equivalent configurations under PU(2,1). Before doing that, we
single out some special configurations which will represent each equivalent class (see Fig. 3).

Definition 4.1. The C-standard elliptic (¢;,¢,)-configuration is the one where R; = R, 4, with
r=0,0=mn/4— /2, o =n/4+ @./2 — @,.

Proposition 4.2. The composition 11, ,,) of the two inversions corresponding to R, and the
C-standard elliptic (¢, )-configuration Ry is of type 2¢1,2¢,) (see Definition 3.3).
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Fig. 3. C-standard configurations (r/3, nmt/3), 0 < n < 2; two views showing the invariant C-circle. The configurations
(r/3,0) whose line intersects twice the finite R-circle and (r/3,1t/3) are rigid.

In particular, the C-standard (¢;,0)-configuration corresponds to the horizontal line at height
sin(r/2 — @) intersecting the standard R-circle twice.
The proof of this proposition follows from the following elementary lemma.

Lemma 4.3. The angle of tangency to the standard R-circle Ry at the point with polar coordinate 0 is
30 — /2. The angle from the ray at angle 0 to the tangent to the R-circle Ry at the intersection point
is 20 — m/2.

We will determine those configurations equivalent to a fixed standard one. We start with
a rigidity result.

Theorem 4.4 (Rigidity). The standard (¢,0)-configuration (for n/4 < ¢, < 1/2) is the unique config-
uration corresponding to its conjugacy class.

Proof. Observe that, if the conjugacy class of the composition of inversions is determined by the
angles ¢, and 0, the two R-circles intersect. A simple computation then shows that the only
element in the conjugacy class is the one defined by the standard one. [

To study more general conjugacy classes we consider the subgroup generated by two inversions
that is, I, and MoI,oM~! where M = ToDoR (R is a rotation, D is a dilation and T is
a Heisenberg translation). The corresponding matrix in SU(2,1) is given by 4 = MoR, o M~ ' R,.
One computes

1021 + |2 —it) + 1) idexplioz (221 + |z1> — i) — 1)

M = P iz J.explio) i) ,
12 =z + i) — 1) —idexp(in)z  F(A*(1 — |z|* +it) + 1)
1+ |z]* — it — expRix)z?  i(z — exp(2ix)z) — |z|* + it + exp(2ix)z?
A = exp( — 2/3ix) — i(z — exp(2ia)z) — exp(2ia) i(z — exp(2in)z)

—|z]? + it + exp(in)z?  i(z — expin)z) — 1 + |z? — it — exp(2in)z>2



Rigidity and Flexibility of triangle groups in complex hyperbolic geometry 97

778 E. Falbel, P.-V. Koseleff | Topology 41 (2002) 767-786

When z = re'’ and t = sin 20, we get
tr(A) = e~ @3 — 2isin 20 + 2r* — 2r2e” 207 _ g2l
= /@730 _ 4i(r2 + cos 20)sin(o — ) + @739 — eI 30)
We thus deduce that
Proposition 4.5. When o — 0, # 0 (Which excludes the situation of Theorem 4.4 and the C-standard
(/2, m/2)-configuration), A and A, are in the same conjugacy class, if

Sin((xo — 00)

o —30 =05 — 300, r*+4cos20=(r§ + cos20,) sin(o — 6) ’
or equivalently

1 sin(og + 0y) — sin(o + 6) 2 sin(og — 0g)
2 sin(a — 0) ° sin(e — 0)

o—30 =0y — 30y, r

Observe that in this case we have tr(4)® = tr(4,)>. We also have other solutions considering that
an infinite R-circle R, y, may be given by a« mod « and by three values of (r, 0).
We consider now the family R, 4, of infinite R-circles defined by

o =230+ (0o —300) =30 +1/d+ ¢1/2 — @5 — 3(n/4 — ¢1/2) =30 — /2 + 2¢; — @>
and

» _ Lsin(uo + 0o) —sin(x +6) _ cos(20 + @1 — ¢,) cos(20 + ¢,)

2 sin(oc — 0) B cos(20 + 2¢; — ¢,)

Remark 4.6. The curve defined above has three branches (the three intersection points with the
surface of centers). The intersection with the surface of imaginary centers is a closed curve. Each
component has « — 30 as invariant. As the sign of r? changes at 0 = 0, if r, = 0 one can take

r =r?/\/|r? as continuous parametrization.
Observe that when 0 = /4 — ¢, /2 we obtain precisely the C-standard (¢,p,)-configuration.
Theorem 4.7 (Rigidity). The C-standard (¢,p)-configuration is rigid in its conjugacy class.

Proof. The proof follows from solving the equation tr(4) = — 1. From the solution above,
we obtain that, if ¢, = ¢,, r* = —cos0. That is, the other solution gives a parabolic
configuration. [J

Theorem 4.8 (Flexibility). The family of compositions 11, ,,(0), where 1, ,, (0) denotes the inver-
sion on the R-circle in the family above, parametrized by 0, is in the conjugacy class defined by the
angles 2¢, and 2¢,.

N

Proof. Using the Proposition 4.5, we have in SUQ2,1) tr(Ioc T, o (0) = tr((Ios I, o). O
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We end this section with an observation concerning R-Fuchsian embeddings, that is, embed-
dings which fix an R-circle (see also [2]).

Definition 4.9. The R-standard elliptic ¢-configuration is the one where the infinite R-circle
intersects the y-axis perpendicularly at y = sin(n/2 — ¢,).

In this case, we have R; =R, 4, and r = sin(n/2 — ¢,), 0 = /2, 2« = 0.

Proposition 4.10. The R-standard elliptic ¢,-configuration is in the same conjugacy class as the
C-standard elliptic (@1, — @1)-configuration.

Proof. The only elliptic elements of PU(2,1) which preserve an R-circle are elements of that
form. [

5. Discrete embeddings

Poincaré’s polyhedron theorem is the main tool we use to prove discreteness. A general version,
without parabolics, was proved in [1] and we state a version containing only parabolics in [2].
Here we state an appropriate version with both elliptic and parabolic elements.

Let {R;} be a finite collection of finite R-circles and {S;} be a collection of C-spheres around each
of them. Suppose that, pairwise, the R-circles either intersect at most at one point where the
corresponding C-spheres intersect tangentially or they are linked or intersect twice and the
corresponding C-spheres intersect in one of the invariant C-circles. The intersecting C-circles will
be called edges and the piece of the C-surface between two consecutive edges is called a face (see
Figs. 4 and 5).

Theorem 5.1 (Poincaré polyhedron). Let {R;} be a finite collection of finite R-circles and {S;} be
a collection of C-spheres around each of them with the hypothesis as above. Suppose that

Fig. 4. Four configurations in the family I3 ,,3(0): top view showing invariant C-circles.
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R2

Ro

Ry R,

Ry
Fig. 5. Standard configuration C(r/2,0,n/3,2n/3): lateral view (right) and top view (left) with invariant C-circles.

(i) at each edge the angles are of type (n/q,nn/q), where the rotation m/q fixes pointwise the edge,
(i1) the closure of the unbounded component of the complement of each C-sphere containing a face
contains all other faces.

Then the group generated by inversions on each R-circle is discrete and a fundamental domain is the
unbounded component of the complement of the union of all faces.

The fact that the C-surfaces are unions of C-circles implies that one can extend those surfaces
canonically as hypersurfaces in the complex hyperbolic space where they define a “polyhedron”.
See [1,2] for more details.

5.1. Configurations of the standard and two infinite R-circles

Let I' be the triangular group of type (p, g, o0 ), that is, the abstract group presented by

I' = {1p,1,15: 1(2) = 1al% = 1,1% = Lo 11)f = L(1p0 1) = 1).

We want to determine the subspace of Hom(I" ,P/U(2\,1)) where the image of 1; are inversions and
such that the embedding is injective and discrete. If the image of 1; are inversions, three R-circles
R{.R,,R, are defined. The relations in the presentation imply that R;,R, can be considered as
non-intersecting infinite R-circles and R, a finite one. Moreover, in order to prove discreteness,
R{,R; should be equivalent to the C-standard (w/p, nw/p)-configuration and R,,Ry should be
equivalent to the C-standard (n/q, mn/q)-configuration, where n, m are integers.

5.2. Standard embeddings of the (2,3, oo )-triangle group

In this section, we give examples of standard embeddings in the case of the triangular group of
type (2,3, o0 ). There are six C-Fuchsian embeddings and one R-Fuchsian embedding.

Observe that in the C-Fuchsian case, R, could be embedded as in the (w/3,0)-configuration,
(w/3,m/3)-configuration or (r/3,2n/3)-configuration. R; could be as in the (n/2,0)-configuration or
(w/2,m/2)-configuration.
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The combination of those cases gives us the six C-Fuchsian embeddings. The only R-Fuchsian
embedding is given by the R-standard m/3-configuration together with the R-standard m/2-
configuration.

All those embeddings are discrete and injective. The embeddings will be denoted by their angles.
For instance C(¢1,¢,,¢],05) is the C-standard embedding with R, asin (¢,¢,)-configuration and
R, as in (¢7,¢5)-configuration.

5.3. Teichmuller space
. . .. . . _
Consider the Teichmiiller space of the triangle group of type (p, ¢, oo ) in PU((2,1).

Theorem 5.2.

® FEach embedding C(r/p,0,m/q,0), C(n/p,n/p,n/q,7t/q) or C(n/p,0,7/q,1/q) is isolated in the Teichmiiller
space.

® Fach embedding C(n/p,0,n/q,nn/q) or C(n/p,n/p,n/q,nw/q) with n > 1, is contained in a real
one-dimensional open set of the Teichmiiller space.

® Fach embedding C(n/p, mn/p,n/q,nn/q) (n,m > 1) is contained in a real two-dimensional open set of
the Teichmiiller space.

Proof. We give the idea of the proof, referring to some technical lemmas in the following section.

e A configuration C(n/p,0,1t/q,0) is isolated in Teichmiiller space by applying Theorem 4.4 twice.

e A configuration C(n/p,n/p,n/q,nm/q) can be deformed (if n > 1) only because of the one-
parameter deformation of R,, R; being rigid by Theorem 4.7.

e By Theorem 4.8, we can describe the one parameter family of deformations of
C(n/p,0,n/q,n/q) (n > 1) and the two-parameter family of deformations of
C(n/p,mn/p,n/q,nt/q) (m,n > 1). In the first case, Theorem 4.4 shows the rigidity of R;. In the
last case we have

and

2 cos(20 + @1 — @) cos(20 + @)
cos(20 + 2¢1 — ¢5) ’

where (¢,¢,) = (n/p, mn/p) or (¢1,0,) = (n/q,nm/q) give the coordinates of the infinite R-circle

R; and R; as R, 0.4 Of course, if p = 2 we use those formulas only for R,, R; being rigid (see

Fig. 6).

Using Poincaré’s theorem we should find three C-spheres Sy, S;,S, invariant, respectively, by
Iy,1,(04),1,(0,), the inversions in the three R-circles such that the intersection of S; and S, is the
point at infinity, the intersection of §; and S, is one of the invariant C-circles by I, and I,(6,) and
the intersection of S, and S, is one of the invariant C-circles by I, and I,(0,). The surfaces will
depend continuously on 0; and 0,, but we will not write explicitly the angles in order to simplify
notations.
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Fig. 6. Deformed configuration; lateral view (right) and top view (left) with invariant C-circles.

The C-circle Cy, invariant by I, and I,(0,) is the one with center determined by #(0;) in the
surface of centers. Call that center M; and M, the center of the C-circle C,.

For each one of the three surfaces we need to define the C-circles composing them and that will
be done by describing a curve of centers of C-circles with an appropriate function of those centers
describing their radii.

5.3.1. Standard fundamental domain
The invariant surface for Ry will be given by its axis p(0) with 0; < 0 < 0, (see Lemma 6.3).
In the standard embedding, M is on the vertical axis with height cos(n/p) and the C-circle C; is

a horizontal C-circle with center in M, of radius \/sin(n/p). A fundamental domain in that case is
obtained by defining S; to be the union of concentric C-circles, analogous for S, and S, to be the
union of C-circles with centers on the vertical axis from M, to M.

5.3.2. Deformation of the standard fundamental domain

Let Ny eR; and N, e R, whose projections are the intersection of projections of R; and R, on
the z-plane. For Ry, we will take centers in the segment [ M, N | with appropriate radii. Then we
will complete the surface by a union of C-circles of centers N;. We proceed analogously with R,
(see Lemma 6.4) (see Fig. 7).

1. Chimney. If C; and C, will be near the corresponding C-circle of the standard embedding, we
will be able to choose an axis such that the corresponding C-circles will be above the plane
determined by C,(P(M)) and below the plane determined by C,(P(M,)).

2. Beginning of S1 and S,. We then may choose concentric circles centered on M; and M, with
increasing radii until their projections are large containing the projection of Sy. This assures that
the families S; and S, do not intersect the family S,. If the deformation is small enough we are,
moreover, certain that the families S; and S, do not intersect (see Proposition 6.5).

3. Middle of S{ and S,. We should then move the centers of the C-circles from M, to N; on
R, and from M, to N, on R,. Again, if the deformation is small enough this can be done in such
a way that there will be no intersection between the families S; and S, (see Lemma 6.4).

4. End of S1 and S,. Finally, from the points N; and N, we complete the construction of S; and
S, with concentric C-circles. They are parallel.
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Fig. 7. Two views of the fundamental domain.

The final construction is explicit in Proposition 6.5. Observe that, for the standard case, parts
2 and 3 are empty. [J

Remark 5.3. Figs. 6 and 7 show the deformation of the triangle group corresponding to the
configuration C(r/2,0,n/3,2n/3). That group contains the modular group as an index two subgroup.

Remark 5.4. Analogously, combining present methods and those of [1], a triangle group of type
(p, o0, 00 ) has Teichmiiller neighborhoods of dimension two and three if p > 2. The triangle group
of type (2, 00, c0 ) has Teichmiiller neighborhoods of dimension two.

Remark 5.5. We did not determine explicitly the complete Teichmiiller space. We conjecture that it
contains the points of the configuration space where the C-circles C; and C, are not linked. In
particular, using the methods of this paper one can prove that the R-Fuchsian standard embed-
dings R(m/2,m/3) are in the same component as C(rn/3, — n/3,1/2, — ©/2).

6. Technical Lemmas
Lemma 6.1. Let P(M ) be the contact plan at M| = (r1,01,t1). Let C, be a C-circle of center
M, = (r,,0,,t3) and radius R,. For any point M in C, (see notations in Proposition 3.6)

|h +4S| — 2dR, <. /1 + 4ri d(M,P(M,)) < |h + 4S| + 2dR,.

Proof. For M = (x, y,z), we have d(M, P(M))\/1 + 4r{ = |z — t; + 2r;(cos 0,y — sin 0, x)|. Here
x=r,cosf, + Rcos¢p, y=r,sinf, + Rsing, z =t, + 2r,Rsin(p — 0,) so

d(M,P(Ml))= |t2 _tl + 21"11"2 Sin(02 —91) + 2R(r2 Sin((p — 02)—1"1 Sln((p—Hl))|

1
1+ 4r
But |r, sin(¢p — 6,) — r; sin(gp — 0;)| < d so the announced result. [

Lemma 6.2 (Upper chimney). Let My = (0,0,sin 20,) and M, = (r,,0,,81n260,) with — ©/4 < 6,
<0, <7/4 and let v, = asin(f, — 0y). Then the axis r(0) = asin(@ — Oy), Oy <0 <0, is a good
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axis when r3 < m,(0,,0,). Furthermore, for 0y < 0 # 0’ < 0,, the C-circle C(0) does not intersect the
plane containing the C-circle C(0").
Proof. Let M = (r(0),0,sin 20), M’ = (r(0"), ', sin 20") with r(0) = asin(0 — 0,). We have
4d*R(0)* — (h + 4S)* = 4a? sin(0 — 0')*(a? sin(0 — 04)* + cos 20)
— (2sin(0 — O)(cos(0' + 0) + a*sin(0 — 0y)sin(0’ — 0,)))*
= 4sin(0 — 0)*(a*(a*sin(0 — 0,)* + cos(20)) — (cos(0 + 0)
+ a2sin(0 — 0o)sin(0 — 0,))2).
If a* < a?sin(0' — 0,)* + cos(20') then a” cos(20,) < 1 and
a*(a?sin(0 — 04)* + cos20) — (cos(0 + 0') + a*sin(0 — 0,) sin(0' — 0,))*
< (a?sin(0' — 00)* + cos 20')(a? sin(0 — 04)* + cos20) — (cos(0 + 0)
+ a?sin(0 — 0)sin(0' — 0,))>
= (a* cos 20, — 1)sin(0 — 0')* < 0.
For instance, we must have a? < min(cos20,,cos20,/cos(0, — 04)%) = m,(00,0,)/sin(0, — 0,)>.
O
We thus deduce

Lemma 6.3 (Chimney). Let M, =(ry,0,sin26,) and M, = (ry,0,,sin26,) with
—n/4 <0y <0, <nfd Ifry and r, are small enough then there exists a good axis from M to M 5.
Furthermore, corresponding C-circles are between the contact planes P(M () at M| and P(M ,) at M .

Proof. As in Lemma 6.2, we build a lower chimney from M, =(r,0,,sin20;) and
My =(0,00,sin20,) with — /4 < 0; < 0y < w/4 under the condition:

r? <my(0y,0,) = min(cos 20,, cos 20, /cos(0; — 0,)?)sin(0; — 0y)>.
Let us consider now 0y = 4(0, + 0,). If 17 < m(0y,0,) and r3 < m,(0,,0,) the concatenation of
the lower and upper chimney gives us the announced result. [

Observe that in this case for any C-circle, we have R? = r? + cos 20 < max(ri,r3) + 1.

Lemma 64. Let R; =R, 4, ,, and R, =R, 4 ., be two infinite R-circles and let C;,C, be two
C-circles centered at My and M, with radii Ry and R,. Let d be the horizontal distance between
Ml and Mz. If‘
2d
|sin(o; — o))

2d

2 R{,R P EE——
<|7'1| + Ir2| + 2max(Ry, R,) + ISin(o, — o0y

) < Isin(20, — 20,)|

then there exist an invariant surface Sy of Ry and an invariant surface S, for R, that do not intersect.
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Proof. Let M = (r, 0,0) the intersection point of projections of R; and R,. It is also the projection
of Ny and N,. We have

Vsin(9 — OCl) =T Siﬂ(@l — OCl), ]"Sin(e — OCz) =T Sin(92 — 052).

N 7'2 Sin(92 — 052) — r1 Sin(@l — 052) d

AN1, M) = P < fointa, — o)
N ry Sin(02 — OCl) — T Sin(Ql — O(l) d

ANz, M2) = S, — o3) e P—l

Consider the family of C-circles centered at Q; =(r,0,Z(0)e[M{,Ni] < Ry, of radius
Ry + 21d(Qy, M) < R.If 21 > 1 then this family is not linked because projections of C-circles are
not. For any point Q; of this family of C-circles we have

dR
d(Q1, P(M1)) < 2d(N, M )Ry + A1d(Q1,M,)) < 2m-

Consider the family of C-circles centered at Q, =(r,0,Z(0)e[M,,N,] < R,. of radius
R, + 2,d(Q,,M,) < R with 4, > 1. For any point Q, of this family. We have (in d(Q,, P(M)))

|l — [tz — t1] < 2fr2| [sin(oy — 02)|d(N2, M>),
|4S] < 2| [sin(oty — 01)ld(Q2, M)
SO

(Ir¢| + 2] + R)d

d(QZap(Ml)) = |t2 - t1| -2 |SiIl(OCl _ 052)'

We choose 4; and A, such that A; > 1 and

R = R1 + /lld(Nl,Ml) = R2 + )de(Nz,Mz) < maX(Rl,Rz) + d/|Sin(OC1 — O(z)|.
We then have d(Q, P(M,)) < d(Q,, P(M,)) for any points (Q,,0,)eS; xS,. O
Proposition 6.5 (Non-intersecting invariant surfaces). Let Ry =R, 4 ,, and R, =R, 4 ,. be two
infinite R-circles with sin(o; — a,) # 0. If r1 and r, are small enough then there exist three invariant
surfaces Sy, S1,S, for corresponding inversions Io,1{,1,.
Proof. Let 0, = 3(0; + 0,). Suppose we have r{ < my(00,0,) and r3 < m,(0,,0,).666666

(1) We first build an invariant surface S,, using the chimney lemma. Its axis is given by the
concatenation of the two axis:
sin(0y — 0)
'sin(0, — 0,)’

sin(0 — 0y)

_ <0<
%5in(0, — 0,y 0SSP

r) =r

01<0<90, 7(8)=V

Radii of corresponding C-circle are bounded by . il +r? and /1 + r3, respectively. S, is
inside the cylinder d(M, M) = 1 + 2r; = R, and the cylinder d M, M,) =1 + 2r, = R,.
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(2) We then build a family of concentric C-circles at M, with radius from /r? + cos20; to R;.
This family of C-circle is part of S; and is a subset of P(M;) so does not intersect Sq. In the

same way, we build a family of concentric C-circles with radius from /r3 + cos20, to R,.
If |ryr, sin(0; — 0,) + d(1 + 2max(|r{|,Jr2])) < 3[sin20; — sin 20,|, these family do not intersect.
(3) Using Lemma 6.4, we then build two family of invariant C-circles for I; and I, that do not
intersect if

2d
sin(o; — o)

All the C-circles we have already built are inside the cylinder d(M,, M) = R.
(4) We then consider the two concentric families of C-circle centered at N; and N, with growing
radius from R to infinity. They are lying in the two parallel contact planes at N; and N,. [

<|r1| + |ra| + 2 + 4dmax(|rq|,|r2]) > < |sin(20; — 20,)|.

+—
[sin(ory — o)
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A CIRCLE OF MODULAR GROUPS IN PU(2,1)

E. FALBEL AND P.-V. KOSELEFF

ABSTRACT. We prove that there exists a circle of discrete and faithful embeddings
of the triangle group of type (2,3,00) in the automorphisms group of complex
hyperbolic space. The proof is obtained by a construction of a fundamental domain
using C-spheres.

1. Introduction

Let T' be the triangle group of type (p,q,o00), that is, the abstract group
presented by

L2 1.2 1.2 _ _ _
<tostiyte g =Ly =15 =1,(to0ot)’ =1,(,pot2)? =1>.

—

By an embedding of T' in PU(2,1) (containing the holomorphic and the anti-
holomorphic transformations), the isometry group of the two dimensional com-
plex ball (with the natural metric invariant under biholomorphisms), we will
consider an homomorphism such that ¢; are mapped to anti-holomorphic gener-
ators and such that ¢1 o ¢y is parabolic. In this paper we prove:

Theorem 1.1. There exists a circle of discrete faithful embeddings of the tri-
angle group (2,3,00) in PE(Q\,I). Up to conjugation in Pﬁ(2\,1) the family is
reduced to a quotient by the dihedral group Zg X Zs. Moreover the family con-
tains embeddings fixing a complex geodesic and embeddings fixing a totally real

totally geodesic plane.

Embeddings of triangle groups of type (p, g, 00) in the neighborhood of an
embedding fixing a complex geodesic were analyzed previously in [FK2]. A
family connecting embeddings preserving a real and a complex geodesic for the
triangle modular group was also obtained in [GuP1] independently, but there,
fundamental domains were constructed for a subgroup of the triangle group.
We prove discreteness of the embeddings by constructing explicitly fundamental
domains using C-spheres (see [FZ, FK1]).

Received August 24, 2001.
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The technique used in this paper is also sufficient to prove the same result
for triangle groups (p,gq,00) for p < ¢ < 4. In the case 3 < p,q we obtain
an open neighborhood of a circle in the set of embeddings in Pﬁ(Q\,l). On
the other hand, for other triangle groups the technique proves the existence of
deformations of embeddings fixing either a complex geodesic or a totally real

one.

2. Complex hyperbolic space and its boundary

In this section and the following we collect general results about complex
hyperbolic space. As references, we use [G2], [FK1] and [FK2].
In dimension one, the disc and the half-plane are related by a Cayley trans-
form. In dimension two, complex hyperbolic space
Hé:{wEC2 s w4 we <1}
is biholomorphic to

V={zeC?®: Im(z)>|a? },

using the Cayley transform
iw1 . 1— Wo
C: .
(w, wg) = (1 oy +w2>
The Heisenberg group H is the set of pairs (z,¢) € C x R with the product

(z,0) - (2, )= (2 + 2/, t +t +2Im 2Z").
We identify the boundary of V' with the Heisenberg group via the map
(21,22) — (z1,Re (22)).

The distribution obtained by translating the ¢ = 0 plane at the origin is of
contact type and makes the Heisenberg group a homogeneous contact manifold.
Moreover, a homogeneous conformal structure on the distribution can be defined
by translating the conformal class defined by the flat metric on the ¢ = 0 plane
at the origin.

It is well known that the boundary S® of the complex hyperbolic space can
be identified to the one point compactification H of the Heisenberg group. The
group of all conformal transformations of H is isomorphic to Pﬁ(;l) (see [G2]).

There are two kinds of totally geodesic submanifolds of real dimension 2 in
Hé : complex geodesics (represented by Hé - Hé) and totally real geodesic 2-
planes (represented by Hﬁ CH é) Each of these totally geodesic submanifolds
is a model of the hyperbolic plane.
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We define C-circles to be the intersections of S2 with the boundaries of
totally geodesic complex submanifolds H, é in H é Analogously, we define R-
circles to be the intersections of $% with the boundaries of totally geodesic

totally real submanifolds Hf{ in H é

Definition 2.1. The inversion on an R-circle is the non-trivial element of

PE(Q\,I) that fizes it point-wise.

There is, then, a one-to-one correspondence between inversions and R-circles.
For instance the transformation m(z,t) = (z, —t) on the Heisenberg group is the
inversion that fixes point-wise the R-circle Im (z) = 0.

We will also consider points to be C-circles and refer to them as degenerate C-
circles. Any two points (possibly coincident) in the Heisenberg group determine
a unique C-circle (possibly degenerate) containing them (see [G2]). One can
easily show that the C-circles that are invariant under a given inversion are
precisely those that intersect twice the associated R-circle. As a permutation of
two points gives the same C-circle, the set of invariant C-circles is the Mdbius
band S* x St/Z,.

Given an R-circle, a union of invariant C-circles that is homeomorphic to a
sphere is called a C-sphere (see [FZ]). Fundamental domains in this paper will
be bounded by (pieces of) C-spheres.

2.1. R-circles and C-circles in the Heisenberg model. We denote by I
the inversion on Ry (see [G2] and [FK1] for details)

Ry : r2+iz=—e 2,

Ry is given in cylindrical coordinates by r = y/—cos(26),z = sin(20). The
following lemma describes in cylindrical coordinates the homogeneous contact

distribution in the Heisenberg group.

Lemma 2.2. The contact plane at M = (r,0,z) is : z — Z — 2r (cos(0) Y —
sin(8) X) = 0.

Any infinite R-circle lies in the contact plane at each of its points.

In the Heisenberg model, C-circles are either vertical lines or else ellipses
that belong to the contact plane of their centers and whose projections onto the
z-plane are circles.

The Mobius band of all invariant C-circles described in the previous section
can be parametrized by the surface defined by all their centers. In order to

obtain that surface we need to impose that the C-circle having center (X,Y, Z)

Annexes
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and radius R intersects twice the R-circle Rg. After some calculations, one

obtains:

Lemma 2.3 (see [FK1]). Invariant C-circles under the inversion on Ry are
centered in the surface of centers {z = sin(26)} and have radius R*> = r? +
cos(26). If r? + cos(20) < 0 we say that the C-circle is imaginary.

As a C-sphere around Ry is union of invariant C-circles, one can describe it
by giving a path (called an axis) in the surface of centers. But the condition that
it is homeomorphic to a sphere imposes certain restrictions to that path. One
of the simplest sufficient conditions is to impose that the C-circles in the family
defined by the axis be non-intersecting and non-linked pairwise (see section 3.1).

Definition 2.4. R, g, is the infinite R-circle passing through M = (r, 0, sin(26))

whose projection on the z-plane is the line of slope tan(«).

Observe that R, g o is horizontal if and only if « =6 mod .

R

RO C1

Left: Projection on the z-plane of the

configuration of Ry, Ry and Rs(f) for

the modular group showing the invari- Right: A different projection of
ant C-circles ¢; and cy. In the picture the configuration.

we fixed § = /7. R(f) has polar coor-

dinates p and ¢.

2.2. Configurations. Let ¢g, ¢1 and ¢ be the standard generators of the tri-

—

angle group (2,3,00). Consider an embedding r : (2,3,00) — PU(2,1) such
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that r(¢;) = I; are inversions fixing three R-circles R; and such that Iy o I is
parabolic.

Observe that I; o Iy is an elliptic element of order 2 and I5 o Iy is an elliptic
element of order 3. I o Iy is conjugate to an element in U(2). Its eigenvalues

27/3 ,—2m/3
/3 7/3 . There are

may be +1. Similarly I3 o Iy could have eigenvalues 1, e e
6 possible families of embeddings.

As R-circles are tangent to the contact distribution, one can define an angle
0 between them whenever they intersect. In that case, the eigenvalues of the
composition of inversions will be 1 and 26. If they do not intersect but are
linked one can turn one of them by an angle ¢ around an invariant C-circle
under both inversions until they intersect defining a new angle 6. In that case,
the eigenvalues of the composition will be 2¢ and 260 (see [FZ] for details). In
order to parameterize the configurations one needs to impose for each pair of
R-circles a fixed pair of angles.

In [FK2], the family of embeddings such that I; o Iy have both eigenvalues
+1 and such that I5 o Iy have both eigenvalues e2™/3,e=27/3 are called of type
(r/2,—m/2,7/3,—7/3). It contains two distinguished discrete and faithful rep-

resentations, namely one preserving a complex line and one preserving a real line.

e

A parameterization of those embeddings is given by the following proposition.

Consider in the Heisenberg group Ry to be the standard R-circle, R; to be
the infinite R-circle given by the z-axis and Rg to be the family of infinite
R-circles Ry(6) = R, 9, where

cos(20 — w/3) cos(20 4+ m/3) cos(60)

a cos(26) -  4cos?(20)

for {5 <6 < Z. We denote by Iy the inversion fixing Ry, by /1 the inversion
fixing the Ry and by I2(f) the inversion on the R-circle Ry(6).

a=-—1/2+30,r* =

Theorem 2.5 (FK2). The representations r of the triangle group (2,3, 00) with
(o) = Io, r(t1) = I1 and r(12) = Iz(0) form a connected component of the
representation space up to conjugations in Pﬁ(?l), Moreover if 6 = w/12 the
representation fizes a complex line (a C-fuchsian representation) and if 6 =
/6, the representation fixes a totally real totally geodesic plane (a R-fuchsian
representation).

L —

A circle of representations in PU(2,1) is obtained by conjugating the group
by the inversions fixing the x-axis and the y-axis. The index two subgroup
generated by the order two and order three elements will have, a fortiori, a circle

of representations in PU(2,1). The space of representations modulo conjugation

Annexes
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in PU(2,1) is obtained by the quotient of this circle by a Zs-action (a rotation
by 7).

3. Families of non-linked C-circles

3.1. Non-linking condition. The linking condition can be formulated as
follows.

Let C7 and C5 be two C-circles and My, Ms be their centers with parameters
(r1,01,21) and (rg, 02, 25). Their radius are R;. They are not linked if and only
if

E =d*—2(R} + R3)d*> + (R} — R3)* + (h +45)* > 0,
where h = z3 — 21 and S = 1/2(z1y2 — T2y1), d? = (1 — 22)% + (y1 — y2)? (see
[FK1]).

3.2. Good axis in the surface of centers. Let M (6) be lying on the surface
of centers of Ry, that is M(0) = (r,0,sin(26)). It defines an invariant C-circle
C(0) for Ry with radius R?(6) = r%(0) + cos(20).

Lemma 3.1. Let ro < 1. The curve M(0) = (ro,0,sin(20)) in the surface
of centers defines a family of invariant non-linked C-circles for Ry, when 0 €
[—7/2,7/2].

Proof. Let 11 = 1y = 1o, we get 1/4 E
= —72(cos(261) + cos(262) — 2cos(f; + 62)) + sin(6; — 65)?
= (1 —cos(f —602)) ((005(01 — o) + 72 cos(61 + 02)) + (rd cos(0y + 02) + 1))
= (1 —cos(f; —62)) (cos(6) cos(02) (1 + 2rg) + sin(61) sin(6a) (1 — 2rg) + 1) .
But
cos(61) cos(62) (1 + 2r2) + sin(f;) sin(f) (1 — 2r2) + 1 > min(2r3,2 — 2r2) > 0.
O

We call such a curve a good axis (cf. [FK1]).

3.3. Dilated C-circles. We construct a two parameter family of unlinked C-

circles using dilations Iy : (z,t) — (A2, A?t) in the Heisenberg group.

Lemma 3.2. Let r(0),0 € I be a curve in the surface of centers such that cor-
responding C-circles are not linked (good axis in [FK1]). Let Cx(0) = Ix(C(6))
be the two-parameter family of dilated C-circles C(0) by dilation l. For any
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A, A2 > 0 and (01,63) € I x I. If r(61)r(62) cos(fy + 62) > —1, then Cy,(61)
and Cy,(02) are not linked.

Remark 3.3. Observe that the surfaces C(6) (constant \) are disjoint. More-
over, by the previous lemma, as r(0) = rq < 1 is a good axis, the conclusion of

the lemma is true in that case.

Proof. Let C(0) be a C-circle of center M () and radius R(6), then Cy(#) has
center M (#) and radius AR. Linking formula for Cy,(01) and Cj,(62) is

F o= X 425 —2X202(2r2 cos(261) + 212 cos(2603) + cos(201 — 26,))
+ 4X1 Ao (A2 + A2) cos(0; + 62)

MAE 4 (M — A2)® (A2 + 22+ 20 Ao (1 + 2717 cos(6; + 05))

> 0

when E > 0 and 7179 cos(6y + 02) > —1. O
3.4. Invariant C-circles for an infinite R-circle.

Lemma 3.4. Let C(p), 01 < ¢ < o be a family of C-circle of radius R(p)
centered at M(p) which projects to a line in the the xy-plane . Suppose that
v — R(p) is differentiable and let d(p) be the horizontal distance between M ()

2 2 2

and M(p2). If [d]‘i((p)} > 4R(p)? [ddd(@)} , then the family C(p) has no
P P

links.

Proof. In this case R(p) — d(¢) is monotonic and circles are not linked because

their projections are not. O

4. Construction of a fundamental domain

Theorem 4.1. The embeddings of the triangle group defined by < Iy, I, 12(0) >
are faithful and discrete for all /12 < 6 < /6.

It follows from the following construction.

Theorem 4.2. For each n/12 < 0 <« /6, there exits three surfaces So, S1 and
Sy such that

— each S; is foliated by invariant C-circles under I;,

— ¢1 = Sg NSy is an invariant C-circle under both Iy and I,

— ¢2 = Sg NSz is an invariant C-circle under both Iy and I5(0),

— S1 NSy is the point at infinity.

Annexes
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Remark 4.3. Observe that Sy is homeomorphic to an annulus. On the other
hand, S1 and Sy are homeomorphic to discs. The fundamental domain is homeo-
morphic to the solid of revolution obtained from the classical fundamental domain

for the triangle modular group when it is revolved around the z-axis.

Remark 4.4. Those surfaces (pieces of C-spheres) are called C-surfaces in
[FZ, FK1]. An application of Poincaré’s theorem for complex hyperbolic ge-
ometry [FZ, FK2] states then that the region bounded by the three surfaces in the
Heisenberg group is a fundamental domain for the triangle group. In [FK2] we

proved the theorem for 6 in a neighborhood of m/12.

Proof. We are going to construct 3 surfaces, Sg, S1, and Ss.

— Sp is an annulus,

— S, is a disk,

— Sy is a disk.

For the sake of exposition we're going to break S; into a near part, NS;, and a
far part F'S1. The near part of S; will intersect Sp in a circle. The far part of
S, is unbounded. We break up S, in the same way.

To construct Sp, we need to choose a curve in the surface of centers of Ry.
One endpoint of this curve is determined. It must be the circle cg, which is
fixed by both Iy and I>. Note that the other end of the curve is not determined
because R, lies in the surface of centers of Ry. Given that one endpoint of our
curve is fixed, the simplest thing to do it is to take an arc of the circle, having
this endpoint, and then lift it to the surface of centers. This is the curve - call
it M (4) - which detemines Sy. Here ¢ € [0, 6.

We would like to make F'S; and F'S, as simple as possible. So, let’s make
them each contained in a plane, and also make them translates of each other.
So, F'S; and F'S; will be contained in parallel planes. The plane containing F'S
must contain Ry and also must be parallel to Ry. There is a unique vertical
line V' which intersects both R; and Rs, and any contact plane centered on V'
has the desired property. Thus, we make F'S; by taking expanding concentric
circles, about the point V intersect R,. All these circles lie in the desired plane.
To get F'So we translate F'S; upward until it contains points on Ro.

So far we have not quite pinned down F'S; because we haven’t specified the
smallest circle in it. Note that Cy(0) is centered on R;. Some dilation of Cy(0)
is centered at the point V intersect R;. We take the smallest circle in F'S; to
be this dilation of Cy(0). Once again, we take F'Sy to be the upward translation
of F'S;.
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For NS; note that we already have the two ending C-circles. One of them
is Cp(0) and the other one is a certain dilation of Cy(0). To get the family of
unlinked C-circles interpolating these two C-circles, we take the union of the
dilations of Cy(0) up to the one centered at V intersected with R;.

For NS, note that we already have the two ending C-circles. The small one
is Cy(#). The big one is the translation taking VN R1 to V N Ry of the last
dilated Cy(0) centered in V N R;. That is, the big C-circle is a translation
of a dilation of Cy(0). Note that the small one is a translation of a dilation of
Co(0), where the translation and dilation are trivial. Let’s examine the nontrivial
translation+dilation more carefully, with a view towards interpolation between
the trivial and the nontrivial. Cy(0) is dilated until its center lies exactly below
Rs, and then tanslated up until it lies on Ry. For interpolation, take any
» € ]0,0]. Dilate Cy(p) until its center lies below Ro and then translate until
the center lies on Ry. The union of all these circles is NSs.

— Technical steps —

For each fixed 7/12 < 6 < 7w/6, the R-circle Ry(f) is parametrized by
an angle ¢ such that @ < ¢ < a + 7w, where @« = —n/2 4+ 3. We have

[p(¢) cos(¢), p() sin(p), Z(p)] with

— cos(66)

plp) = r(0)sin(a — ) /sin(a — @) = 2cos(30 — )

and

Z(p) = sin(20) + 2r(0)p(p)sin(d — ¢)
. cos66sin (0 — @)
= sin(26)+ 2 cos 26 cos (30 — )
_ sin(30 + o)
~ 2cos(30 — )

R2 () intersects the surface of centers of Rg for ¢ = 6, and

cos(60)

p*(0) =r*(0) = *m-

This intersection point determines a C-circle co which should be So N Ss.
On the other hand any point in the z-axis is the center of an invariant circle

under both Iy and I;. For instance, the origin is the center of the equator. To

construct Sy we must choose one of those invariant C-circles.

Annexes



A circle of Modular Groups in PU(2,1) 117

10 E. FALBEL AND P.-V. KOSELEFF
— Sy —

For each fixed /12 < 6 < /6, we choose the family of invariant C-circles under
Iy to be the family Cy(¢)), 0 < ¢ < 0, defined by the arc in the surface of centers

(1) M(y) = (r(0),v,sin(2¢))

of constant radius. The endpoint of this arc is the invariant C-circle ¢; under
both Iy and I;. Its center is (r(6),0,0) in the Heisenberg group. By lemma 3.1

this arc defines the surface Sg.
S S —

The C-circle ¢; = Cy(0) will be dilated into the C-circles C;(t) = l;(c1) (where
l; is Heisenberg dilation by ¢) whose centers belong to Ry, and 1 < ¢t < %.
By lemma 3.2 the dilated circles are disjoint and unlinked. Their union does
not intersect Sg, and will be part of the surface S;. We complete the surface Sy
by a union of concentric C-circles centered at the point p (0) of the z-axis with

increasing radii up to infinity: this is F'S;. We have ¢; = So N S;.
S, —

Each C-circle Cy(p), for 0 < ¢ < 6, will be dilated into a C-circle C4(p) =

loe) Co(p) (where [, is Heisenberg dilation by %) whose center belongs to
p(0)

(o
p(0)
the curve

2
R} = [ () cos(), p () sin(g), (Ziﬁ;) sin(20)].

R, and Ry have same projection onto the zy-plane. But the height of RS is

iy (P@N ~ cos?20sin 2
Ze) = (p<9>> S(20) = R B )

We call Sy’ the surface determined by those C-circles.

We translate (by a vertical translation on the Heisenberg group) each C-circle
C%(p) in such a way that its center belongs to Ro. We thus obtain a family S,
of invariant C-circles Cs(¢p) for Ra, for 0 < ¢ < §. We complete the family by
the union of concentric C-circles centered at the point of Ry that projects over
the z-axis: this is F'Ss.
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L Right: A space view of the config-
Left: Projection on the z-plane of

the C-circles of Cy(p) and Ch(p);
the second one is obtained from the

uration. We see the curve Rj(p),
which is a [ o) (M ()) where M (yp)
is defined iri((ge)quation 1. Shown in
the picture, the effect of the dilation
at angle ¢.

first one by a dilation. In this con-

figuration 6 was fixed.

So, S1 and Sy’ have no linked C-circles. Any two of the C-circles of Sg, S1
or Sy’ are not linked because they are all obtained by dilation of C-circles of Sy
(by lemma 3.2).

S; has no linked C-circles. We will apply lemma 3.4 to the family of C-circles

Cs(yp). They all have centers in Ry. Observe that R and Ry project onto the

same line in the xy-plane, so it is sufficient to show that the projections of the

family C4(p) are disjoint. Let py = p(0), we have that C4(p) = l ) Co(p) has
PO

2
radii given by R2(p) = (%) (p2 + cos(2¢)). Using lemma 3.4, we compute

2 o 252

(cos(p + @) + p§ cos(2a) — pgsin(p — a)?)

Annexes
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cos(p + @) + pg cos(2a) — pasin(p — a)? > cos(p + @)? + po? cos(2a)

because cos(2a) = cos(66 — ) > 0 for {5 <0 <

—sin(p — a)?
= cos(2a) (po2 + COS(2SD))
> 0

B}

R, is below Ra. Let Z'(p) and Z(p) be the height of the centers of C(y) and

C(¢). We compute

sin(30 +¢) cos? 20 sin 2¢p
2cos(30 — )  cos?(36 — o)

1
m (2 sin(36 4 ¢) cos(30 — ) — 4 cos? 20 sin 2<p)
1
m (sin 66 + sin 2 — 4 cos? 26 sin 290)
1 (s sin6o . )
T o/an . \sll — sin
4 cos?(360 — @) S sinog " He¥
sin 66

sin 20 — sin 2
48in 26 cos?(30 — ) (sin sin2¢)

We thus deduce that Z'(¢) < Z(¢),0 < p < 6.

So, S1 and S, are disjoint. Sy, S; and Sy’ are disjoint as seen previously. It

remains to show that Sy is disjoint from the other surfaces. As S, is above 52/,

a fortiori So does not intersect Sy and Sj.

O
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Six fundamental domains for 6 between 7/12 and /6. Remark that scaling
is not constant. The completion of the surfaces by concentric C-circles is
partially drawn. The first upper left image corresponds to the embedding

fixing a complex geodesic, while the last one fixes a totally real geodesic.
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Abstract. Few years ago, application of the mean field Bethe scheme on a given system was shown to
produce a systematic change of the system intrinsic symmetry. For instance, once applied on a ferromagnet,
individual spins are no more equivalent. Accordingly a new loopwise mean field theory was designed to both
go beyond the one site Weiss approach and yet preserve the initial Hamitonian symmetry. This loopwise
scheme is applied here to solve the triangular antiferromagnetic Ising model. It is found to yield Wannier’s
exact result of no ordering at non-zero temperature. No adjustable parameter is used. Simultaneously
a non-zero critical temperature is obtained for the triangular Ising ferromagnet. This simple mean field

scheme opens a new way to tackle random systems.

PACS. 75.25.4z Spin arrangements in magnetically ordered materials (including neutron and
spin-polarized electron studies, synchrotron-source X-ray scattering, etc.) — 05.50.4-q Lattice theory and

statistics (Ising, Potts, etc.)

1 Introduction

Collective phenomena are rather difficult to solve exactly.
Up to date, only some one dimensional problems and the
square zero field Ising model allow an exact analytical so-
lution [1]. To compensate this situation, a rich family of
approximate methods has been developed over the last
hundred years. The most powerful one being the renor-
malization group techniques [2].

At start was the Mean Field Theory (MFT). It offers a
very practical and simple tool to solve most collective phe-
nomena [1]. While it is completely universal and generic,
associated quantitative results are unusually poor. In par-
ticular critical temperatures and exponents are rather far
from exact estimates [2]. Sometimes even the order of the
transition may be wrong like for the instance in the Potts
model [3].

The crudest and most simple version of MFT is the
1907 Weiss pioneer model [4]. It reduces the infinite num-
ber of fluctuating degrees of freedom down to one, S;,
which couples to homogeneous mean field degrees of free-
dom m. The thermodynamics is then solved calculating
the associated partition function from which the self-

? e-mail: galam@ccr. jussieu.fr
> Laboratoire associé au CNRS (UMR n° 7603)
¢ Laboratoire associé au CNRS (UMR n° 7586)

75.50.-y Studies of specific magnetic materials

consistent equation (S;) = m (where (...) means thermal
average) is derived.

In the case of Ising systems with ¢ nearest neighbor
interactions, Weiss theory gives (S;) = tanh(K ¢gm) where
K = (J, J is the exchange coupling, 8 = kﬁ” kp is the
Boltzmann constant and 7" is the temperature. Associated
critical temperature is K, = 1At odd with the known
exact result a phase transition is obtained at d =1 (¢ =

2) [1].

From there it took 28 years before Bethe improved
the Weiss model [5]. Instead of just one fluctuating spin,
he considers a cluster of fluctuating spins with a central
one and its nearest neighbors. The main achievement of
the Bethe approximation is to yield the exact result of
no ordering at one dimension. However, critical temper-
atures given by K. = tanlfl(ﬁ), are not much bet-
ter than from Weiss model. Critical exponents stay un-
changed. Latter on, using computer capabilities, larger
size fluctuating clusters have been considered to obtain
better critical temperatures [6].

However, a few years ago the Bethe cluster scheme was
showed to systematically change the system intrinsic sym-
metry [7]. Starting from a system with equivalent sites like
for instance a square Ising Ferromagnet, it ends up mak-
ing individual sites inequivalent. At this stage it is worth
to stress that an approximation can be very crude and yet
not wrong as long as it preserves the intrinsic symmetry of
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Fig. 1. The loopwise scheme in the square case: sl, s2, s3, s4 are the fluctuating spins while m1, m2, m3, m4 are mean field

averages.

the problem. Otherwise it does change its physics. We are
not talking here about a symmetry breaking of the higher
phase symmetry as it occurs in a usual phase transition
but of a change of the symmetry of the disorder phase
itself.

On this basis the challenge was to find out if it is indeed
possible to build a MFT which considers more than two
fluctuating spins, yet preserving the initial lattice sym-
metry. Indeed, Galam showed it is possible using a loop-
wise scheme (LWS) which articulates on finite-size one-
dimensional closed loops [7]. Paving the whole lattice with
these loops, half of them are kept fluctuating while the
other half is averaged out with mean field degrees of free-
dom. The scheme is illustrated in Figure 1 for the square
lattice.

The LWS is a generic model. It was applied to a large
class of ferromagnetic systems on Bravais lattices [7,8]. It
reproduces the exact result of no ordering at one dimen-
sion. Moreover, for Ising hypercubes, it exhibits a lower
critical dimension d; for long range ordering which is equal
to the Golden number d; = 1+2\/g. However critical expo-
nents are unchanged from Weiss model.

On this basis, to determine the range of validity of this
new LWS, it is of interest to check if it can yield new prop-
erties which are out of reach of previous mean field theories
like frustration. For instance, when applied to the fully-
frustrated triangular Ising antiferromagnet (TIA) most
MFT predict a transition at a non-zero temperature while

an earlier exact argument by Wannier proved no symme-
try breaking occurs at any non-zero temperature [9].

Few years ago, to bridge this difficulty Netz and Berker
introduced the hard spin recipe [10]. It combines a mean
field calculation with some Monte Carlo sampling. When
applied to the TIA, it yields the correct result of no or-
dering at T # 0. Later Banavar et al. suggested that the
Monte Carlo sampling could be reproduced by expanding
all possible products of the 6 nearest neighbors spins of
the “exact spin” but it was then disproved by Netz and
Berker [11].

More recently focusing on the TIA, Monroe approxi-
mated the triangular lattice with a Husimi tree built up of
triangles [12]. It then allows to include properly frustra-
tion to get a correct phase diagram. However an Huzimi
tree is not a triangular lattice.

In this paper we apply the very simple LWS to the
fully frustrated triangular Ising antiferromagnet (TIA).
The Wannier exact result is recovered [10] and a transition
is found at 7" = 0. The following of the paper is organized
as follows. Section 2 deals with the frustration effect. In
Section 3 the LWS is presented. The TIA is solved analyt-
ically in Section 4 using the LWS. In Section 5 using the
same equations, the triangular Ising ferromagnet (TIF) is
also solved. Some possible applications are mentioned in
the last section.
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Fig. 2. The loopwise scheme in the triangular case: s1, s2, s3 are the fluctuating spins while 1, 2, 3 represent mean field averages

ml, m2, m3.

2 The frustration effect

Frustration is a major ingredient of many physical sys-
tems. It results from the impossibility to minimize simul-
taneously all pair interactions. In turn it makes the ground
state highly degenerate [9]. Frustration effects may arise
from either quenched disorder or topological constraints.

Random bond spin glasses are the archetype of frus-
tration produced by disorder. The random distribution of
quenched competing interactions generates analytical dif-
ficulties in calculating the thermodynamic functions. In
particular to average the disorder over the logarithm of
the partition function is yet a real theoretical challenge.
Usual mean field treatments failed to incorporate simul-
taneously frustration and quenched randomness.

On this basis the TIA has the advantage of being
fully frustrated without any disorder making the study
of frustration itself more easy. It is therefore the perfect
candidate to check the ability of a new scheme to deal
with frustration. In addition an earlier exact argument by
Wannier [10] has proved the absence of symmetry breaking
at any non-zero temperature for this system. At contrast
most mean field like approaches produce wrongly some
non-zero critical temperature. Along this line, Netz and
Berker recipe [10] with Banavar et al. reformulation [11]
stand at odd.

3 The loopwise scheme (LWS)

The LWS was introduced few years ago to overpass the
symmetry inconsistency of the Bethe scheme, yet retaining
its physical feature of including several fluctuating degrees
of freedom [7].

To implement the LWS on any lattice requires to sin-
gle out two identical interpenetrating sublattices. Each el-
ement being composed from a closed compact loop of de-
grees of freedom. The shape and number of these degrees
of freedom are determined by the lattice topology. It is
the smallest closed linear loop. For instance in the square
case (Fig. 1) it includes 4 spins while for the triangular
lattice (Fig. 2) 3 spins are involved. One of the sublattice
is fluctuating and the other one is mean field.

Both sublattices are coupled wvia nearest neighbor in-
teractions. The problem is thus mapped onto decou-
pled one-dimensional closed fluctuating chains in external
fields. The fields originate from the coupling to the mean
field loops. At this stage an exact analytical calculation
can be performed whatever the chain size is. It is worth
to note no adjustable parameter is used.

The LWS is a generic model. It was applied to a large
class of ferromagnetic systems [7,8]. Being built on using
closed linear loops it should be well adapted to embody
frustration effects [9].



152

4 Solving the triangular Ising antiferromagnet

We now apply the LWS to the fully frustrated TTA. We
first partition the triangular lattice into two interpene-
trated triangular sublattices A and B. Thermal fluctua-
tions are then ignored on the B-sublattice while preserved
within the A-sublattice. These triangles are closed loops
with no center (see Fig. 2).

All nearest neighbor (nn) plaquettes of a A-plaquette
are B plaquettes, and vice versa. Therefore, on a given
plaquette each spin has two nn spins of the same species
(within the same plaquette), and four nn spins of the other
species (belong respectively to three different nn plaque-
ttes).

Above breaking of the initial lattice symmetry makes
the partition function calculable by decoupling the fluctu-
ating triangles. The A-sublattice degrees of freedom can
thus be integrated out in the partition function. The ini-
tial lattice symmetry will be restored latter using the usual
mean field self-consistent constraint (Eq. (4) below).

4.1 Setting the equations

Given an A plaquette, we label the 3 fluctuating

spins S7, So, S3. We then introduce 3 magnetizations

m1, mg, mg for corresponding B plaquettes (Fig. 2). The

Hamiltonian then writes

H = 7J(Slsz + 5953 + 5351) —0J (Sl(mz + m3)
+S2(m3 +m1) + Sz(m1 +m2)), (1)

where § = 2 accounts for the coupling to the B mean field
plaquettes. From equation (1) the partition function is

Z=Y exp{-pH), (2)

Si=+1
where ¢ = 1, 2, 3. The three thermal averages of
S1, Sa, S3 are given by
1
(i) = A Z Siexp{—BH} - ®3)

Sj=+1

We can thus write the associated three self-consistent
equations

(i) = ma. (4)

4.2 Looking for minima

Indeed we are looking for minima of the free-energy which
results from the partition function Z. It is then worth to
stress not all solutions of equation (4) are minima. A cri-
terium to make equation (4) a derivative of a function is
to require its cross derivatives with respect to the m; to
be equal, i.e.,

0 d
(Si) = o,

(S), (5)

é)m]-

fori, j=1, 2, 3.
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Writing S = ((S1), (S2), (S3)),and m = (mq,mz, m3),
the problem is now to find a set S = {m € R?; S(m) =
m}, such that there exists a function F' obeying to

(m—S(m)) =dF(m)=0. (6)

To solve it, we rewrite thermal averages (S;) as

(Si)=— > sif(s1,52,83) , (M

s;==+1

where

f(s1,82,83) = exp{K (5152 + 183 + S253)
+0K (mq(s2 + s3) +ma(s1 + s3) + ms(s1 +s2))} - (8)

Let ¢ € X3 be a permutation. Considering o(m) =
(7”/0(1)7 Mg (2), ma(:s)) we have

Writing X = exp K and x; = exp dKm;, (S;) are rational
fractions in (x;, X) and we have

D

_ 10
D=1+THX"+ Ty + W T3, (11)

(T4 T3 — z) + X*
(5 =1t B—a) + X7 g

D
where
Ty =21+ x2 + 23,

T = 2129 + 2123 + ToT3, (13)

T3 = z12973,

are the elementary symmetric functions. Note D > 0, X >
0, z; >0 and [(S;)| < 1.

Solving first the K = 0 case, we get immediately
(Si) = 0 and the solution is m; = 0. We can then pro-
ceed assuming K # 0.

4.3 The most general solution m; # my # m3

We can now solve the equations, starting with the most
general case my; # mo # ms. Equation (5) is equivalent
to

o(sy) dr;

— 14
ox; Omy;’ (14)

Bx]- é)m]-
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that is
(xl — xg) (X%U%:r%:r‘;’ — 2?23+ 2X " wtadad + wdraxy
— 29Xz g — X4) —0,
(xl — xg) (XA‘:E;T%I:{ — xiz?+ 2X4xfx§x§ + 252371
— X gy — X4) -0,
(m — xg) (XA‘:E?‘/Z‘%I% — xizl + 2X4xfx§x§ + 232379
— 92X %2y, — X4) —0. (15
Suppose first, three different values of m;. It makes
1 # To # w3 since K # 0, which in turn, solving equa-
tion (15) implies

T, 272 —1

T =—-2 1
YT 122 (16)
and,
T
X4 = . 1
73 an
In conclusion
D=(0+THX" "+ Ty +T1T3,=0 (18)

which is impossible since D > 0. Therefore, we can con-
clude that out of the three m;, two must be equal. We
then suppose my = ms # ms.

4.4 The solution exhibits the symmetry
m; =my #m3

From the above calculation we restrict the minima search
to the subspace of solution m; = ms # ms. It implies
r1 = r9 and

1‘2(1 + 1‘11‘3)

(S1) — (S3) = —2 D

(x1—w3),  (19)

so it makes

exp(0Kmq) — exp(dKms)
mip —Mms

<0, (20)

which in turn makes K < 0. Let us define P = zox3 and
N = 23z3, it gives

P3 _ N2
4 _
X= P(N2P +2N2-2P —1)’ (21)
and
P—-1
(S1) + (S2) + (S3) = il (22)

If P=1or N =1 then m; = mo = mg = 0 which is
not possible since we assumed above m; = mgy # ms. So

Annexes
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(P —1)(N —1) # 0. On the other hand, as K < 0, we
must have
1-N

— >0, (23)
mi +mo +ms3

which makes (P — 1)(IN — 1) < 0 but equation (21) gives

i L P3— N?
T PO-P)+2+P)(N2-1)

<0, (24)
which is impossible. In conclusion all the three m; must be
equal. On this basis we now assume m; = mg = mz = m.

4.5 The solution is fully symmetrical
withm; =my =m3 =m

‘We have now proved the minima belong to the solution
subspace defined by the symmetry condition mq = mg =
ms = m. On this basis, writing Y = exp(6Km), equa-
tion (4) becomes

(Y*=1) ((Y8+Y*+1) X*+Y?)

m =Sk = ) (VS YT 1) XA+ 3Y0)
(25)
so we have either m = 0, or both
Y4 —1 46Km __ 1
=L s, (26)
m m
and K > 0. We also deduce that |fx(m)| < 1.
As fx(—m) = — fx(m) it is enough to solve the case

m > 0. We thus obtain X > 1,Y > 1, K > 0, or m = 0.
Computing the derivative gives

fic(m) =

Y4(BYSXS+ (Y10 +4Y2 44y +1) X* +3Y¥)

80K 5 5 ,
Y4+1) (Y8 —Y4++1)X*4+3Y4)
(27)
K(m) =
— 326%2K2 = Vit - 1) 3 gk (M),
Y++1)° (Y8 —Y*+1)X44+3Y4)

(28)

where

gr(m) =Y+ 15+ QY3 +7Y* +2) (Y + DY(X* - 1)
F VY2 Y Lyt (Y 4 1)?

X (X124 9Y8(YE Y+ (Xt - 1) > 0. (29)

Therefore when m > 0, in addition to 0 < fx(m) < 1,
we have fj.(m) > 0 and fj;(m) < 0. These properties
allow to conclude that:

1. If f5(0) <1, 0 is the only fixed point of fx;

2. If f7.(0) > 1, fk has exactly three fixed points, 0,b, —b
where —1 < b < 1.
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Computing then

3exp(4K) +1

[ (0) = 26K W7

(30)

it appears to be an increasing function of K. It makes

fr(0) =1,

to have a unique solution K. Moreover, if K < K{ then
f1c(0) <1 and if K > K, then fj(0) > 1.

(31)

4.6 The actual minima

Looking for minima of Fx where

dFk (m) =m— fx(m),

dm (32)

depending on the value of K, two cases appear quite nat-
urally for K > Ky and K < Kj. It shows the triangular
Ising both anti and ferromagnets are solved simultane-
ously.

4.6.1 First case: K > Kg

In this case, fx(m) = m has 2 solutions m = 0 and m? = a
where a is a positive function of K. Having

Fii(m=0)=1- fre(m=0)<0, (33)

m = 0 is a maximum for Ff. In parallel

Fit(m = v/a) = Fit(m = —v/a) = 1 - fie(m) > 0.
(34)

Therefore m = y/a and m = —/a are minima of Fx. They
correspond to the triangular Ising ferromagnet symmetry
breaking at low temperatures where K is the associated
critical temperature.

4.6.2 Second case: K < K
Then the unique solution of fx(m) = m is m = 0. There,

Fg(0) = 1= fx(0) >0, (35)
S0 it is a minimum for Fg. This case embodies indeed two
different physical situations.

1. The first range of positive K, 0 < K < K, corre-
sponds to the disordered phase of above triangular
Ising ferromagnet.

2. At the same time, the range of negative K (K < 0) cor-
responds to the triangular Ising antiferromagnet. For
this system the unique solution is always m = 0 for the
whole range of temperatures 7' > 0. It means no order-
ing occurs for the TIA at any non zero temperature.
The Wannier argument is thus recovered [10].
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4.7 A transition at T =10

From the exact Wannier solution the triangular Ising an-
tiferromagnet is known to exhibit a phase transition at
T =0 to an ordered phase with broken symmetry among
the three sublattices. Accordingly we now examine what
our scheme yields in the case K — oco. To solve the equa-
tions it is more convenient to rewrite Z and (S;) in terms
of T = tanh(K) and ¢; = tanh(0Km;). We first note
[(S;)| < 1 since [sinh(z)| < cosh(x). Then, once the m;
are fixed within [—1, 1], the condition K — oo makes the
t; to go to either one of the three values —1,0, 1.

Computing < S; > in terms of ¢; and K for each one of
the 27 possible limit values of the ¢; set, we find 7 solutions
for the m; which are respectively

m;=0,i1=1,2,3 (36)

and
m; =mj = —my, = £1. (37)
To determine the actual minimum at 7' = 0 we

compute the associated values for free energy F =
—kpTlog Z. The first solution m; = my = mz = 0 yields

J
F =——log((6 +2exp(4K))exp(—K)) — 1 (38)
K K——oc0
and for m; = my = 1,m3 = —1 we get
J
F= % log (2 exp(—K) cos(26K)(3 + exp(4K)))
— 1-24, (39)
K——oc0
making the solution m; = mg = 1,m3 = —1 the mini-

mum. However from equations (38, 39) the two free en-
ergies of the ordered/disordered phases are expected to
become equal only at some non zero temperature, a little
bit above zero temperature, that is quite close to a critical
point. It is coherent to the known result of a phase tran-
sition for the triangular Ising antiferromagnet at 7= 0 in
agreement with the previous improved mean field theory
by Netz and Berker [10].

5 The triangular Ising ferromagnet

Coming back to the TIF, we can go further and evaluate
the value of the critical temperature K. At this stage it is
worth to notice that all the above results are independent
of the value of § which accounts for the coupling to the
mean field loops.

. 3exp(4K)+1
Since 1 = exp(4K) +3
equation (31) we obtain

< 3, when K > 0, from

1 1
< < .
o S Hosg; (40)
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In addition, in the limit of large §, we get

1 2 3 29 1 1
Ko=35- *rss*m—ﬁ@(a?)

26 62
To get a numerical estimate of the ferromagnetic critical
temperature Ky requires to have the § value.

From equation (1) a straightforward arithmetic leads
to d = %2 = 2 since 2 nn are treated exactly within the
fluctuating loop out of the 6 triangular nn. Plugging then,
0 = 2 into equation (31) yields Ko = 0.1772. It is rather
far from the exact numerical estimate K¢ = 0.2746 [14].
In comparison, a usual mean field gives Ky = % = 0.1667,
while for Bethe it is Ko = tanh™" (1) = 0.2027.

(41)

6 Conclusion

In conclusion, we have showed that the very simple
and generic mean field loopwise scheme, proposed by
Galam [7], is able to solve exactly the triangular Ising anti-
ferromagnet. Without any adjustable parameter it recov-
ers the exact Wannier argument of no ordering at T # 0
and a transition at 7' = 0 [10]. From the same equations
the triangular Ising ferromagnet is also solved simultane-
ously. A phase transition is obtained into a ferromagnetic
phase at a non-zero critical temperature.

Moreover, contrary to the Bethe scheme, it preserves
the initial lattice symmetry, yet going beyond the one-
site Weiss approach. It also yields no transition for Ising
hypercubes at d = 1 with a lower critical dimension of
dy = 1575
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The loopwise scheme should allow a new solving of a

very large class of physical systems, in particular random
systems with frustration. For future work we consider to
apply it first to the triangular Ising antiferromagnet in
a finite field and then on the stacked 3D version of it.
Application to the Random Field Ising model should also
be done.

‘We would like to thank Y. Shapir and R. Netz for stimulating
discussion on the manuscript.
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