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Certains aspects du programme de Langlands géométrique

par Sergey Lysenko

Résumé: Ce rapport présente mes travaux dans la direction du programme de Langlands
géométrique. Ceux-ci abordent plusieurs aspects de ce thème: méthode de Rankin-Selberg locale
et globale, les foncteurs de Whittaker et de Bessel pour GSp4, catégorification et la version
géométrique de la multiplicité un pour les models de Bessel, les faisceaux Théta et programme
de Langlands géométrique pour le groupe métaplectique, correspondance de Howe géométrique.

Abstract: This report presents my work on the geometric Langlands program. The follow-
ing directions of this program are considered: local and global Rankin-Selberg method, Whit-
taker and Bessel functors for GSp4, categorification and geometric version of multiplicity one
for Bessel models, Theta sheaves and geometric Langlands program for the metaplectic group,
geometric Howe correspondence.
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1. Introduction: Geometric Langlands program

1.1 This memoire consists of several papers that all focus on different aspects of the geometric
Langlands program. We start with a breif description of the subject, which is now refered to as
the geometric Langlands program.

The classical Langlands program has emerged in the late 60’s as a series of far-reaching
conjectures tying together seemingly unrelated objects in number theory, algebraic geometry,
and the theory of automorphic forms. It has two related parts, local and global. We restrict
ourself to the totally unramified case.

In the function field case one starts with a smooth projective absolutely irreducible curve
over a finite field k = Fq with q elements. Let F = k(X) be the field of rational functions on
X, A be the adèles ring of F , O ⊂ A the entire adèles. Fix a separable closure F̄ of F . For a
closed point x ∈ X let Fx denote the completion of F at x. Write Ox for the completed local
ring of OX at x, and kx for its residue field. Let qx be the number of elements of kx. Let G be
a connected split reductive group over F . Pick a prime ℓ that does not divide q.

1.2 Local picture Equip G(Fx) with a Haar measure such that G(Ox) has volume one. Let
Hx be the space of compactly supported Q̄ℓ-valued functions on G(Fx), which are G(Ox)-bi-
invariant. This is an algebra with respect to the convolution product, which is called the spherical
Hecke algebra. Let Ǧ denote the Langlands dual group to G, this is a connected reductive group
over Q̄ℓ, whose root datum is dual to that of G. The Satake isomorphism is a statement that
the algebra Hx is canonically isomorphic to the Grothendieck ring Rep(Ǧ) of the category of
Ǧ-representations over Q̄ℓ.

On the automorphic side one is interested in smooth irreducible representations V of G(Fx),
which are unramified (that is, the space V G(Ox) of G(Ox)-invariants in nonzero). For such a
representation the space V G(Ox) is 1-dimensional, and Hx naturally acts on it by some character
χV : Hx → Q̄ℓ.

On the Galois side one looks at continuous homomoprhisms Gal(F̄x/Fx) → Ǧ(Q̄ℓ), which
are unramified. This means that the inertia group Ix acts trivially. Remind the exact sequence
1 → Ix → Gal(F̄x/Fx) → Gal(k̄x/kx) → 1, where k̄x (resp., F̄x) is a separable closure of kx
(resp., of Fx). The geometric Frobenius element Frx ∈ Gal(k̄x/kx) is defined to be the inverse
of the automorphism y 7→ yqx of k̄x. Then Gal(k̄x/kx) is a profinite completion of the free
abelian group generated by Frx. So, a continuous homomorphism σ : Gal(k̄x/kx) → Ǧ(Q̄ℓ) is
completely determined by σ(Frx). An isomorphism class of such σ yields a conjugacy class of
σ(Frx) in Ǧ(Q̄ℓ). Finally, a conjugacy class γ in Ǧ(Q̄ℓ) yields a character χγ : Rep(Ǧ) → Q̄ℓ

sending a representation W to tr(γ,W ), hence a character of Hx. Let us say that a continuous
nonramified homomoprhism σ : Gal(F̄x/Fx) → Ǧ(Q̄ℓ) and a nonramified smooth irreducible
representation V of G(Fx) match if the characters χV : Hx → Q̄ℓ and χσ(Frx) : Hx → Q̄ℓ

coincide.

1.3 Global picture On the Galois side one now considers continuous ℓ-adic homomorphisms
σ : Gal(F̄ /F ) → Ǧ(Q̄ℓ), which are everywhere nonramified. This means that for each closed
point x ∈ X the following holds. Pick a point x̄ of F̄ lying over x. The subgroup of Gal(F̄ /F )
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preserving x̄ is called the decomposition group Dx. If we make a different choice of x̄ then it gets
conjugated in Gal(F̄ /F ). We have Dx →̃ Gal(F̄x/Fx), and it is required that σ is trivial on the
corresponding inertia subgroup Ix ⊂ Dx. Under this assumption σ gives rise to a well-defined
conjugacy class of σ(Frx) in Ǧ(Q̄ℓ).

Equip G(A) with a Haar measure such that G(O) has measure one. The space G(F )\G(A)
has the induced measure, so we can consider the space L2(G(F )\G(A)) of square-integrable
functions, this is a representation of G(A) by right translations. On the automorphic side one
looks at smooth unramified irreducible representations π of G(A). One can show that such a
reprentation decomposes into a (restricted) tensor product

π →̃ ⊗′
x∈|X| πx,

where πx is a smooth irreducible unramified representation of G(Fx). One is interested in such
π satisfying an additional requiment to be an automorphic representation. Roughly speaking,
this means that π ‘appears’ in L2(G(F )\G(A)) (a precise notion is more complecated, as it may
‘appear’ not descretely).

The classical Langlands program proposes a series of conjectures relating such σ and π in a
way compatible with the local correspondence. In particular, for σ and π to match it is required
that for each closed point x of X the corresponding local data σx : Gal(F̄x/Fx) → Ǧ(Q̄ℓ) and
πx match. Here σx is the restriction of σ to the decomposition subgroup at x.

1.4 Geometrization A starting point is Grothendieck’s philosophy that many mathematical
results for functions (for example, formulas for number of points of varieties over Fq) are actually
traces of deeper results that hold in the derived categories of ℓ-adic sheaves on the corresponding
varieties (and maybe in other cohomology theories also). The geometric Langlands program is
a trial to lift the classical theory of automorphic forms and Galois representations to this level.

The first example is the geometric Satake equivalence (cf. [Gi],[MV]). The set G(Fx)/G(Ox)
is naturally the set of k-points of an ind-scheme over k called the affine grassmanian GrG,x of
G at x. Similarly, G(Ox) is the set of k-points of a group scheme over k (denoted by the same
symbol). The geometric counterpart of Hx is the category Sph(GrG,x) of G(Ox)-equivariant
ℓ-adic perverse sheaves on GrG,x. One may equip Sph(GrG,x) with a convolution product (as
well as a commutativity and associativity constraints) making it a tensor category. There is a
canonical equivalence of tensor categories Sph(GrG,x) →̃ Rep(Ǧ), where Rep(Ǧ) is the tensor
category of Q̄ℓ-representations of Ǧ (the Satake equivalence).

Write BunG for the stack of G-bundles on X, it is known to be algebraic. A key observaion
is that (assuming for simplicity that any G-torsor over SpecF is trivial) there is a canonical
bijection

G(F )\G(A)/G(O)←→ {isomorphism classes of G− torsors on X} (1)

The Hecke algebra Hx acts naturally on the space of functions on G(F )\G(A)/G(O). This
phenomenon also can be geometrized as follows. For each object A ∈ Sph(GrG,x) there is a
natural Hecke functor H(A, ·) : D(BunG) → D(BunG). These functors are compatible with
the tensor structure on Sph(GrG,x). Letting x move around X, one similarly introduces Hecke
functors H(A, ·) : D(BunG)→ D(X × BunG).
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If π is a smooth unramified irreducible automorphic representation of G(A), write

π →̃ ⊗′
x∈|X| πx,

the restricted product with respect to the vectors vx ∈ (πx)
G(Ox). Since π appears in the space

of functions on G(F )\G(A), the vector ⊗xvx becomes a function

φπ : G(F )\G(A)/G(O)→ Q̄ℓ

By construction, we have the following Hecke property of φπ. For any closed point x ∈ X and
h ∈ Hx we have an equality of functions on G(F )\G(A)/G(O)

h(φπ) = χπx(h)φπ (2)

The geometric analog of π would be an object Kπ of the derived category of ℓ-agic sheaves
D(BunG) on BunG, whose function ‘trace of Frobenius’ equals φπ. Moreover, one wants it to
satisfy the Hecke property in the following sense.

A geometric analog of a nonramified continuous Galois representation σ : Gal(F̄ /F )→ Ǧ(Q̄ℓ)
is an ℓ-adic Ǧ-local system E = Eσ on X. For each representation V ∈ Rep(Ǧ) write VE for
the local system on X obtained from E by extension of scalars Ǧ→ GL(V ). Then for a closed
point x ∈ X we have

tr(Frx, VE) = tr(σ(Frx), V ) = χσ(Frx)(V )

Let AV ∈ Sph(GrG,x) correspond to V ∈ Rep(Ǧ) and let h ∈ Hx be the trace of Frobenius
function of AV . Then (2) can be written as

tr(Frg,H(AV ,Kπ)) = χπx(V ) tr(Frx,Kπ) = tr(Frx, VE) tr(Frg,Kπ)

for g ∈ G(A). We have assumed here that π and σ match in the sense of 1.3.
The latter formula admits a geometric version, namely, an isomorphism in D(X × BunG)

H(AV ,Kπ) →̃VE ⊠Kπ (3)

A Hecke eigensheaf corresponding to a Ǧ-local system E on X is a complex Kπ equipped with
isomorphisms (3) for each V ∈ Rep(Ǧ) satisfying some compatibility conditions (that we do not
precise).

The geometric Langlands program is an attempt to analyze the spectrum of the tensor
categories Sph(GrG,x) acting on D(BunG), to look for automorphic sheaves or, more generally,
for a kind of spectral decomposition of D(BunG).

One of the major achievements in this field at present is a proof of the classical Langlands
correspondence over function fields for G = GLn by Lafforgue [Laf] (the case n = 1 was earlier
known as the class fields theory, and the case n = 2 was proved by Drinfeld [D]). In the
nonramified geometric setting the corresponding result for GLn has beed recently proved by
Frenkel, Gaitsgory and Vilonen ([FGV], [G]). They attach to each irreducible rank n ℓ-adic
local system E on X a perverse sheaf AutE on BunGLn

that satisfies the Hecke property for E.
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2. Rankin-Selberg convolutions for GLn

2.1 The papers [1] and [2] form a series, in which we propose a geometric version of the classical
Rankin-Selberg method for computation of the scalar product of two cuspidal automorphic forms
on GLn over a function field.

Let us describe briefly the main results. Let X be a smooth, projectice, geometrically
connected curve over k = Fq. Write Bunn for the stack of rank n vector bundles on X. Let
Bundn denote its connected component corresponding to vector bundles of degree d.

For an irreducible rank n local system E on X write AutE for the automorphic sheaf on
Bunn corresponding to E (normalized as in [FGV], in particular, D(AutE) →̃ AutE∗ , here D is
the Verdier duality functor). Write φE : Bunn(k) → Q̄ℓ for the function ‘trace of Frobenius’ of
AutE . Write #(A) for the number of elements of a set A.

The classical Rankin-Selberg result for GLn claims that the sum

∑

L∈Bund
n(k)

1

# AutL
φE∗

1
(L)φE2(L) (4)

vanishes unless E1 →̃E2 →̃E, in the latter case the answer is expressed in terms of the action
of Fr on H1(X ⊗ k̄,EndE). Here Fr denotes the geometric Frobenius automophism for k.

The computation of (4) is based on the equality of formal series

∑

d≥0

∑

(Ωn−1 →֒L)∈ nMd(Fq)

1

# Aut(Ωn−1 →֒ L)
ϕE∗

1
(L)ϕE2(L)td = L(E∗

1 ⊗ E2, q
−1t) (5)

Here nMd(Fq) is the set of isomorphism classes of pairs (Ωn−1 →֒ L), where L is a vector bundle
on X of rank n and degree d + n(n − 1)(g − 1), and Ω is the canonical invertible sheaf on X
(Ωn−1 is embedded in L as a subsheaf, i.e., the quotient is allowed to have torsion). We have
denoted by L(E∗

1 ⊗ E2, t) the L-function attached to the local system E∗
1 ⊗ E2 on X.

Remind that for a local system E on X we have

L(E, t) =
∑

d≥0

∑

D∈X(d)(k)

tr(Fr, E
(d)
D )td =

2∏

r=0

det(1− Fr t,Hr(X ⊗ k̄, E))(−1)r+1
(6)

Here X(d) denotes the d-th symmetric power of X, and E(d) is the d-th symmetric power of E.

Let nMd denote the moduli stack of pairs (Ωn−1 s
→֒ L), where L is a vector bundle of rank

n and degree d + n(n − 1)(g − 1) on X, and s is an inclusion of OX -modules. Geometrizing
a construction due to Shalika and Piatetski-Shapiro, Laumon has defined a complex of Q̄ℓ-
sheaves nK

d
E on nMd, which is a part of the construction of the sheaf AutE . Namely, a theorem

of Frenkel, Gaitsgory and Vilonen ([FGV]) says that, when E is irreducible of rank n, nK
d
E

descends with respect to the projection nMd → Bunn to a perverse sheaf AutE .
Denote by

ϕ̃E : nMd(Fq)→ Q̄ℓ
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the function trace of Frobenius of nK
d
E . So, the restriction of φE to nMd(Fq) equals ϕ̃E .

We prove a geometric version of the equality

∑

(Ωn−1 →֒L)∈ nMd(Fq)

1

# Aut(Ωn−1 →֒ L)
ϕ̃E∗

1
(L)ϕ̃E2(L) = q−d

∑

D∈X(d)(Fq)

tr(Fr, (E∗
1 ⊗ E2)

(d)
D ) (7)

of coefficients in (5). The point is that this equality holds for any local systems E1, E2 of rank
n on X and is local in this sense.

We establish for any smooth Q̄ℓ-sheaves E1, E2 of rank n on X and any d ≥ 0 a canonical
isomorphism

RΓc(nMd , nK
d
E∗

1
⊗ nK

d
E2

)→̃RΓ(X(d), (E∗
1 ⊗ E2)

(d))(d)[2d],

Actually more general results of local nature are proved (cf. Theorems A,B and C in [1]).

2.2 The global part of the Rankin Selberg method appeared first as a calculation of (4) starting
from (5). Namely, rewrite (5) as

∑

d≥0

∑

L∈Bund
n(Fq)

1

# AutL
(qdim Hom(Ωn−1,L) − 1)ϕE∗

1
(L)ϕE2(L)td = L(E∗

1 ⊗ E2, q
−1t) (8)

The cuspidality of ϕE implies that if ϕE(L) 6= 0 and degL is large enough then Ext1(Ωn−1, L) =
0, and dim Hom(Ωn−1, L) = d − n2(g − 1). To conclude, it remains to study the asymptotic
behaviour of the above series when t goes to 1, using the cohomological interpretation of the
L-function (6).

Let us explain another source of motivation for the same calculation coming from the geo-
metric Langlands program.

Remind the following result of Laumon and Rothstein ([Ro]) in the case of GL(1). Assume
for a moment that the ground field is C. Let M ′ be the Picard scheme classifying invertible
OX -modules L of degree zero. Denote by M the coarse moduli space of invertible OX -modules
L with connection ∇ : L → L ⊗OX

ΩX . This is an abelian group scheme over C (for the
tensor product), which has a natural structure of a H0(X,ΩX)-torsor over M ′. In [Ro] a certain
invertible OM×M ′-module Aut with connection (relative to M) is considered as a kernel of two
integral functors

F : Db
qcoh(DM ′)→ Db

qcoh(OM )

and
F ′ : Db

qcoh(OM )→ Db
qcoh(DM ′)

Here DS denotes the sheaf of differential operators on a smooth scheme S over C. The theorem
of Laumon and Rothstein claims that these functors are quasi-inverse to each other.

This result can be obtained as a consequence of two orthogonality relations. One of them
states that the complex

R(pr12)∗(pr∗13 Aut⊗pr∗23 Aut)
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is canonically isomorphic to △∗OM in Db
qcoh(OM×M ) (up to a shift and a sign), where

pr13,pr23 : M ×M ×M ′ →M ×M ′

and pr12 : M ×M ×M ′ → M ×M are the projections, △: M → M ×M is the diagonal, and
the functor R(pr12)∗ is understood in the D-modules sense.

An ℓ-adic analogue of this orthogonality relation is the following. Assume again that k = Fq
(and the genus of X is at least 1). Let E0 be a smooth Q̄ℓ-sheaf on X of rank 1.

The moduli space of ℓ-adic local systems on X is not known to exist. However, E0 admits
a unversal deformation E over Q̄ℓ. Let Spec(R) be the base of this deformation. In fact, R is
isomorphic to the ring of formal power series over Q̄ℓ in 2g variables.

Let PicdX denote the Picard scheme of X parametrizing isomorphism classes of invertible
OX -modules of degree d. The construction of the automorphic local system AE0 of the geometric
abelian class field theory makes sense for deformations also. So, one has a smooth R-sheaf AE
on PicdX. Denote by AE1, AE2 the two liftings of AE to Spec(R ⊗̂Q̄ℓ

R). we show that there
is a canonical isomorphism of R ⊗̂R-modules

H2g(PicdX,Hom(E1, E2))→̃R(−g),

where the R ⊗̂R-module structure on R is given by the diagonal map R ⊗̂R → R. Besides, for
i 6= 2g we have Hi(PicdX,Hom(E1, E2)) = 0.

Applying the base change theorem for the above result, we get the ‘scalar square’ of E0,
namely

RΓ(PicdX, End(Ed0 , E
d
0))→̃R

L
⊗R ⊗̂R Q̄ℓ(−g)[−2g]

As is easy to see, this complex has cohomology groups in all degrees 0, 1, . . . , 2g. The trace of
Frobenius Fr acting on this complex yields a formula for (4) in the case n = 1 (that agrees with
the one obtained from (5)).

Further, we generalize these orthogonality relations for GLn. Namely, let E0 be a smooth
irreducible Q̄ℓ-sheaf on X of rank n. Let (E,R) be a universal deformation of E0 over Q̄ℓ. In
fact, R is isomorphic to the ring of formal power series over Q̄ℓ in 2 + (2g− 2)n2 variables. The
construction of AutE0 also makes sense for deformations, so one has a perverse R-sheaf AutE
on Bunn.

Scalar automorphisms of vector bundles provide an action of Gm on Bunn by 2-automorphisms
of the identity. We introduce a stack Bunn (cf. [2], Sect. 3.5), the quotient of Bunn under this
action. There exists a perverse R-sheaf AutE on Bunn such that the inverse image of AutE [−1]
under the projection Bunn → Bunn is naturally identified with AutE .

Our main global result claims that for any integers i and d there is a canonical isomorphism
of R ⊗̂R-modules

Hi
c(Bundn,pr∗1 AutdE∗ ⊗R ⊗̂R pr∗2 AutdE)→̃

{
R, if i = 0

0, if i 6= 0,
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where the R ⊗̂R-module structure on R is given by the diagonal map R ⊗̂R → R, and pri :
Spec(R ⊗̂R)→ R are the two projections. Again, the classical Rankin-Selberg convolution can
be derived from this by the base change R→ Q̄ℓ.

3. Whittaker and Bessel functors for GSp4

3.1 The papers [3]-[7] are all written in the direction of the geometric Langlands program for
groups different from GLn.

The fundamental tools in the classical theory of automorphic forms and representations are
various models of representations, which satisfy multiplicity one property (such as Whittaker
models for arbitrary group G, Waldspurger models for GL2, Bessel models for SO2n+1). In
geometric setting the theory of Whittaker functors (proposed in [G]) has played an important
role in the proof of the geometric Langlands conjecture ([FGV], [G]).

In our paper [4] we introduce Whittaker and Bessel functors for GSp4 and study their
properties. Our motivation is a further developpement of the geometric Langlands program for
GSp4 (and maybe other groups).

Remind the following facts about automorphic forms on G = Sp4. (Now X is a smooth curve
over k = Fq as above). Let B be a Borel subgroup of G and U ⊂ B its unipotent radical. For a
character ψ : U(F )\U(A)→ C∗ one has a global Whittaker module over G(A)

WMψ = {f : U(F )\G(A)→ C | f(ug) = ψ(u)f(g) for u ∈ U(A), f is smooth}

Let Acusp(G(F )\G(A)) be the space of cusp forms on G(F )\G(A). The usual Whittaker
operator Wψ : Acusp(G(F )\G(A))→WMψ is given by

Wψ(f)(g) =

∫

U(F )\U(A)
f(ug)ψ(u−1)du,

where du is induced from a Haar measure on U(A). Whence for GLn (and generic ψ) the
operator Wψ is an injection, this is not always the case for more general groups. There are
cuspidal automorphic representations of Sp4 that don’t admit a ψ-Whittaker model for any ψ.

The G(A)-module Acusp(G(F )\G(A)) decomposes as a direct sum

Acusp(G(F )\G(A)) = I ⊕ Ihcusp (9)

The decomposition is orthogonal with respect to the scalar product

〈f, h〉 =

∫

G(F )\G(A)
f(x)h(x)dx, (10)

where dx is induced from a Haar measure on G(A).
By definition, Ihcusp are those cuspidal forms on G whose θ-lifting to the groups O(2)(A),

O4(A) and O6(A) vanishes. Here O2r is the orthogonal group defined by the hyperbolic quadratic
form in a 2r-dimensional space.
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The space Ihcusp is also the intersection of kernels of Wψ for all ψ. It is known as the space
of hyper-cuspidal forms on G(F )\G(A). Another description is as follows. Let P1 ⊂ G be the
parabolic preserving a 1-dimensional isotropic subspace in the standard representation V of G,
U1 ⊂ P1 be its unipotent radical, U0 the center of U1. Then f ∈ Acusp(G(F )\G(A)) lies in Ihcusp
if and only if ∫

U0(F )\U0(A)
f(ug)du = 0

for all g ∈ G(A).
Let now G = GSp4. Similarly to the above, we have full triangulated subcategories

Dhcusp(BunG) ⊂ Dcusp(BunG) ⊂ D(BunG)

of hyper-cuspidal (resp., cuspidal) objects of D(BunG). Both they are preserved by Hecke
functors. So, a step in the geometric Langlands program for G would be to analize the action
of Sph(GrG) on the triangulated categories Dhcusp(BunG) and Dcusp(BunG)/Dhcusp(BunG). It
is for the latter category that the machinery of Whittaker functors seems to be appropriate to
apply. The category Dhcusp(BunG) is a geometric analog of the space Ihcusp.

A G-bundle on X is a triple: a rank 4 vector bundle M on X, a line bundle A on X, and
a symplectic form ∧2M → A. Let α : Q̄1 → BunG be the stack over BunG whose fibre over
(M,A) consists of all nonzero maps of coherent sheaves Ω →֒ M , where Ω is the canonical line
bundle on X.

We introduce a notion of cuspidality and hyper-cuspidality on Q̄1, leading to full triangulated
subcategories

Dhcusp(Q̄1) ⊂ Dcusp(Q̄1) ⊂ D(Q̄1)

The theory of Whittaker functors gives a description of Dcusp(Q̄1)/Dhcusp(Q̄1). Namely, let
Q be the Drinfeld partial compactification of the stack of (twisted) U -bundles on X (cf. [4],
Sect. 4). (Here B is a Borel subgroup of G, and U ⊂ B is its unipotent radical. By ‘twisted’
we mean that one rather considers B-bundles with fixed induced T -bundle. The corresponding
T -bundle is picked together with a trivial conductor).

There is a natural full triangulated subcategory DW (Q̄) ⊂ D(Q̄), which is a geometric
analog of the space WMψ. We construct Whittaker functors that give rise to an equivalence of
triangulated categories

W : Dcusp(Q̄1)/Dhcusp(Q̄1) →̃ DW (Q̄)

The Hecke functor H corresponding to the standard representation of the Langlands dual group
Ǧ →̃ GSp4 acts on all these categories, and the above equivalence commutes with H. The
restriction functor

α∗ : Dcusp(BunG)/Dhcusp(BunG)→ Dcusp(Q̄1)/Dhcusp(Q̄1) (11)

also commutes with H. As in the case of GLn ([G], Theorem 7.9), the advantage of Q̄ over
BunG is that the functor H : D(Q̄)→ D(X×Q̄) is right-exact for the perverse t-structures. The
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essential difference with the case of GLn is that the Whittaker functor W : D(Q̄1)→ DW (Q̄) is
not exact for the perverse t-structures.

We also study similar functors for G corresponding to Bessel models. They are closely related
with the Waldspurger models of representations for GL2. In ([4], Sect. 8), we consider a problem
analogous to the main result of ([FGV2]) in the case of Waldspurger models for GL2.

We define the Waldspurger category, which is a geometric counterpart of the Waldspurger
module over the Hecke algebra of GL2. We prove a geometric version of the multiplicity one
result for the Waldspurger models. This kind of problems is further studied in [6].

4. Geometric Bessel models for GSp4 and multiplicity one

4.1 In [6] we study Bessel models of representations of GSp4. These models introduced by
Novodvorsky and Piatetski-Shapiro, satisfy the following multiplicity one property ([NP]).

Set k = Fq and O = k[[t]] ⊂ F = k((t)). Let F̃ be an étale F -algebra with dimF (F̃ ) = 2
such that k is algebraically closed in F̃ . Write Õ for the integral closure of O in F̃ . We have
two cases:

• F̃ →̃ k((t
1
2 )) (nonsplit case)

• F̃ →̃F ⊕ F (split case)

Write L for Õ viewed as O-module, it is equipped with a quadratic form s : Sym2 L→ O given
by the determinant. Write ΩO for the completed module of relative differentials of O over k.

Set M = L ⊕ (L∗ ⊗ Ω−1
O ). This O-module is equipped with a symplectic form ∧2M →

L⊗ L∗ ⊗ Ω−1
O → Ω−1

O . Set G = GSp(M), this is a group scheme over SpecO. Write P ⊂ G for
the Siegel parabolic subgroup preserving the lagrangian submodule L. Its unipotent radical U
has a distinguished character

ev : U →̃ΩO ⊗ Sym2 L
s
→ ΩO

(here we view ΩO as a commutative group scheme over SpecO). Set

R̃ = {p ∈ P | ev(pup−1) = ev(u) for u ∈ U}

View GL(L) as a group scheme over SpecO and Õ∗ as its closed subgroup. Write α for the

composition Õ∗ →֒ GL(L)
det
→ O∗. Fix a section Õ∗ →֒ R̃ given by g 7→ (g, α(g)(g∗)−1). Then

R = Õ∗U ⊂ R̃ is a closed subgroup, and the map R
ξ
→ ΩO × Õ

∗ sending tu to (ev(u), t) is a
homomorphism of group schemes over SpecO.

Let ℓ be a prime invertible in k. Fix a character χ : F̃ ∗/Õ∗ → Q̄∗
ℓ and a nontrivial additive

character ψ : k → Q̄∗
ℓ . Write τ for the composition

R(F )
ξ
→ ΩF × F̃

∗ Res× pr
→ k × F̃ ∗/Õ∗ ψ×χ→ Q̄∗

ℓ

12



The Bessel module is the vector space

BMτ = {f : G(F )/G(O)→ Q̄ℓ | f(rg) = τ(r)f(g) for r ∈ R(F ),

f is of compact support modulo R(F )}

Let χc : F ∗/O∗ → Q̄∗
ℓ denote the restriction of χ. The Hecke algebra

Hχc = {h : G(O)\G(F )/G(O)→ Q̄ℓ | h(zg) = χc(z)h(g) for z ∈ F ∗,

h is of compact support modulo F ∗}

acts on BMτ by convolutions. Then BMτ is a free module of rank one over Hχc . In [6] we prove
a geometric version of this result.

Remind that the affine grassmanian GrG = G(F )/G(O) can be viewed as an ind-scheme
over k. According to ‘fonctions-faisceaux’ philosophy, the space BMτ should have a geometric
counterpart. A natural candidate for that would be the category of ℓ-adic perverse sheaves
on GrG that change under the action of R(F ) by τ . However, the R(F )-orbits on GrG are
infinite-dimensional, and this naive definition does not make sense.

We overcome this diffuculty in a way similar to the one used by Frenkel, Gaitsgory and
Vilonen in [FGV2]. The idea is to replace a local statement by an appropriate global one,
which admits a geometric counterpart leading to a definition of Bessel categories with expected
properties.

4.2 Fix a smooth projective absolutely irreducible curve X over k. Let π : X̃ → X be a two-
sheeted covering ramified at some effective divisor Dπ of X (we assume X̃ smooth over k). The
vector bundle L = π∗OX̃ is equipped with a quadratic form s : Sym2 L→ OX .

Write Ω for the canonical line bundle on X. SetM = L⊕ (L∗ ⊗Ω−1), it is equipped with a
symplectic form

∧2M→ L⊗ L∗ ⊗ Ω−1 → Ω−1

Let G be the group scheme (over X) of automorphisms of M preserving this symplectic form
up to a multiple. Let P ⊂ G denote the Siegel parabolic subgroup preserving L, U ⊂ P its
unipotent radical. Then U is equipped with a homomorphism of group schemes over X

ev : U →̃Ω⊗ Sym2 L
s
→ Ω

Let T be the functor sending a X-scheme S to the group H0(X̃ ×X S,O∗). Then T is a group

scheme over X, a subgroup of GL(L). Write α for the composition T →֒ GL(L)
det
→ Gm. Set

R̃ = {p ∈ P | ev(pup−1) = ev(u) for all u ∈ U}

Fix a section T →֒ R̃ given by g 7→ (g, α(g)(g∗)−1). Then R = TU ⊂ R̃ is a closed subgroup,

and the map R
ξ
→ Ω× T sending tu to (ev(u), t) is a homomorphism of group schemes over X.

13



Let F = k(X), A be the adele ring of F and O ⊂ A the entire adeles. Write Fx for the
completion of F at x ∈ X and Ox ⊂ Fx for its ring of integers. Fix a nonramified character
χ : T (F )\T (A)/T (O)→ Q̄∗

ℓ . Let τ be the composition

R(A)
ξ
→ Ω(A)× T (A)

r×χ
→ Q̄∗

ℓ ,

where r : Ω(A)→ Q̄∗
ℓ is given by

r(ωx) = ψ(
∑

x∈X

trk(x)/k Resωx)

Fix x ∈ X(k). Let Y denote the restricted product G(Fx)/G(Ox) ×
∏′

y 6=x

R(Fy)/R(Oy). Let

Y(k) be the quotient of Y by the diagonal action of R(F ). Set

BMX,τ = {f : Y → Q̄ℓ | f(rg) = τ(r)f(g) for r ∈ R(A),

f is of compact support modulo R(A)}

View elements of BMX,τ as functions on Y(k). Let χc : F ∗
x/O

∗
x → Q̄∗

ℓ be the restriction of χ. The
Hecke algebra Hχc of the pair (G(Fx), G(Ox)) acts on BMX,τ by convolutions. The restriction
under

G(Fx)/G(Ox) →֒ Y

yields an isomorphism of Hχc-modules BMX,τ → BMτ .
We introduce an ind-algebraic stack x,∞ BunR whose set of k-points contains Y(k). We

define the Bessel category PL(x,∞BunR), a category of perverse sheaves on x,∞ BunR with some
equivariance property. This is a geometric version of BMX,τ (cf. [6] for details).

Let Sph(GrG) denote the category of G(Ox)-equivariant perverse sheaves on the affine grass-
manian G(Fx)/G(Ox). By [MV], this is a tensor category equivalent to the category of repre-
sentations of the Langlands dual group Ǧ →̃ GSp4. The category Sph(GrG) acts on the derived
category D(x,∞BunR) by Hecke functors.

The main result of [6] describes the action of Sph(GrG) on the irreducible objects of the
category PL(x,∞BunR). It implies the above multiplicity one. It also implies that the action
of Sph(GrG) on D(x,∞BunR) preserves PL(x,∞BunR). The same phenomenon takes place for
Whittaker and Waldspurger models.

To the difference with the case of Whittaker categories, the Bessel category PL(x,∞BunR) is
not semi-simple.

5. Moduli of metaplectic bundles on curves and Theta-sheaves

5.1 The paper [5], which we consider the most important in this memoire, gives a geometric
interpretation of the Weil representation of the metaplectic group, placing it in the framework
of the geometric Langlands program. The discovery of this representation by A. Weil in his
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celebrated paper [We] has opened a new representation-theoretic approach to the classical the-
ory of θ-series (such as, in one variable,

∑
qn

2
). This is also one of the sources to construct

automorphic forms.
Let k = Fq be a finite field with q odd. Set K = k((t)) and O = k[[t]]. Let Ω denote

the completed module of relative differentials of O over k. Let M be a free O-module of rank
2n given with a nondegenerate symplectic form ∧2M → Ω. It is known that the continuous
H2(Sp(M)(K), {±1}) →̃Z/2Z ([Mo], 10.4). As Sp(M)(K) is a perfect group, the corresponding
metaplectic extension

1→ {±1}
i
→ Ŝp(M)(K)→ Sp(M)(K)→ 1 (12)

is unique up to unique isomorphism. It can be constructed in two essentially different ways.
Recall the classical construction of A. Weil ([We]). The Heisenberg group is H(M) = M ⊕Ω

with operation

(m1, ω1)(m2, ω2) = (m1 +m2, ω1 + ω2 +
1

2
〈m1,m2〉)

Fix a prime ℓ that does not divide q. Let ψ : k → Q̄∗
ℓ be a nontrivial additive character. Let χ :

Ω(K)→ Q̄ℓ be given by χ(ω) = ψ(Resω). By the Stone and Von Neumann theorem ([MVW]),
there is a unique (up to isomorphism) smooth irreducible representation (ρ,Sψ) of H(M)(K)
over Q̄ℓ with central character χ. The group Sp(M) acts on H(M) by group automorphisms

(m,ω)
g
→ (gm, ω) This gives rise to the group

S̃p(M)(K) = {(g,M [g]) | g ∈ Sp(M)(K),M [g] ∈ AutSψ

ρ(gm, ω) ◦M [g] = M [g] ◦ ρ(m,ω) for (m,ω) ∈ H(M)(K)}

The group S̃p(M)(K) is an extension of Sp(M)(K) by Q̄∗
ℓ . Its commutator subgroup is an

extension of Sp(M)(K) by {±1} →֒ Q̄∗
ℓ , uniquely isomorphic to (12).

Another way is via Kac-Moody groups. Namely, view Sp(M)(K) as an ind-scheme over k.
Let

1→ Gm → Sp(M)(K)→ Sp(M)(K)→ 1 (13)

denote the canonical extension, here Sp(M)(K) is an ind-scheme over k (cf. [F]). Passing to
k-points we get an extension of abstract groups 1→ k∗ → Sp(M)(K)→ Sp(M)(K)→ 1. Then
(12) is the push-forward of this extension under k∗ → k∗/(k∗)2.

The second construction underlies one of the main results of [5], the tannakian description
of the Langlands dual to the metaplectic group. Namely, the canonical splitting of (13) over
Sp(M)(O) yields a splitting of (12) over Sp(M)(O). Consider the Hecke algebra

H = {f : Sp(M)(O)\Ŝp(M)(K)/Sp(M)(O)→ Q̄ℓ | f(i(−1)g) = −f(g), g ∈ Ŝp(M)(K);

f is of compact support}

The product is convolution, defined using the Haar measure on Ŝp(M)(K) for which the inverse
image of Sp(M)(O) has volume 1.
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Set G = Sp(M). Let Ǧ denote Sp2n viewed as an algebraic group over Q̄ℓ. Let Rep(Ǧ) denote
the category of finite-dimensional representations of Ǧ. Write K(Rep(Ǧ)) for the Grothendieck
ring of Rep(Ǧ) over Q̄ℓ. There is a canonical isomorphism of Q̄ℓ-algebras

H→̃K(Rep(Ǧ))

Actually, we prove a categorical version of this isomorphism. Consider the affine grassmanian
GrG = G(K)/G(O), viewed as an ind-scheme over k. Let W denote the nontrivial ℓ-adic local
system of rank one on Gm corresponding to the covering Gm → Gm, x 7→ x2. Denote by
Sph(G̃rG) the category of G(O)-equivariant perverse sheaves on G(K)/G(O), which are also

(Gm,W )-equivariant. Here G̃rG denotes the stack quotient of G(K)/G(O) by Gm with respect

to the action g
x
→ x2g, x ∈ Gm, g ∈ G(K). Actually, Sph(G̃rG) is a full subcategory of the

category of perverse sheaves on G̃rG.
Assuming for simplicity k algebraically closed, we equip Sph(G̃rG) with the structure of a

rigid tensor category. We establish a canonical equivalence of tensor categories

Sph(G̃rG) →̃ Rep(Ǧ)

5.2 In the global setting let X be a smooth projective geometrically connected curve over k. Let
G denote the sheaf of automorphisms of OnX ⊕ Ωn (now Ω is the canonical line bundle on X)
preserving the symplectic form ∧2(OnX ⊕ Ωn)→ Ω.

The stack BunG of G-bundles (=G-torsors) on X classifies vector bundles M of rank 2n on
X, given with a nondegenerate symplectic form ∧2M → Ω. We introduce an algebraic stack
B̃unG of metaplectic bundles on X. The stack G̃rG is a local version of B̃unG. The category
Sph(G̃rG) acts on D(B̃unG) by Hecke operators.

We construct a perverse sheaf Aut on B̃unG, a geometric analog of the Weil representation.
We calculate the fibres of Aut and its constant terms for maximal parabolic subgroups of G.
Finally, we argue that Aut is a Hecke eigensheaf on B̃unG with eigenvalue

St = RΓ(P2n−1, Q̄ℓ)⊗ Q̄ℓ[1](
1

2
)⊗2n−1

viewed as a constant complex on X. Note that St is equipped with an action of SL2 of Arthur,
the corresponding representation of SL2 is irreducible of dimension 2n and admits a unique, up to
a multiple, symplectic form. One may imagine that Aut corresponds to a group homomorphism
π1(X)× SL2 → Ǧ trivial on π1(X). This agrees with Arthur’s conjectures.

6. Towards geometric theta-lifting

6.1 The Weil representation has been used by R. Howe who proposed a series of conjectures
([H]) establishing a correspondence between automorphic representations for dual reductive
pairs (now referred to as theta-lifting or Howe correspondence) as well as their local analogs.
These conjectures are now theorems (if the characteristic of the base field is not 2), which are

16



among major achievements in the classical theory of automorphic forms (cf. [MVW], [R], [Pr],
[Wa, Wa1, Wa2, Wa3]).

The paper [7], which is a sequel to [5], is a step towards a version of the Howe correspondence
(or geometric theta-lifting) in the framework of the geometric Langlands program.

As above, letX be a smooth projective geometrically connected curve over k. SetG = GSp2n.
Let π : X̃ → X be an étale two-sheeted covering of X. Let GO0

2m denote the connected
component of unity of the split orthogonal similitude group over Spec k (the corresponding
orthogonal space is 2m-dimensional). Pick an involution σ ∈ O2m(k) with σ /∈ SO2m(k), consider
the corresponding Z/2Z-action on GO0

2m by conjugation. Let H denote the group scheme over
X, the twisting of GO0

2m by the Z/2Z-torsor π : X̃ → X.
Then (H,G) is an (unramified) dual reductive pair over X. Let BunG (resp., BunH) denote

the stack of G-torsors (resp., H-torsors) on X.
For m ≤ n (resp., m > n) we have a natural morphism of the Langlands L-groups HL → GL

(resp., GL → HL). According to the Langlands principle of functoriality, there should exist
some correspondences between the automorphic representations of G(A) and H(A), whose local
Langlands parameters are related by the corresponding maps of L-groups. (In everywhere
nonramified geometric setting we formalize this problem in [7, appendix B]).

Using the theta-sheaf introduced in [5], we define functors FG : D(BunH) → D(BunG) and
FH : D(BunG)→ D(BunH) between the corresponding derived categories, which are geometric
analogs of the theta-lifting operators. These are approximations to the solution of the corre-
sponding functoriality problem.

It turns out that, in general, FG and FH do not commute with Hecke operators. The reason
is that the automorphic representation of G (resp., of H) attached to a given automorphic
representation of H (resp., of G) via the Howe correspondence is not always irreducible (and its
components may correspond to non isomorphic local system eigen-values).

On the positive side, here is a geometric version of a ‘folklore conjecture’ that I found in a
paper of Prasad ([Pr]).

Folklore Conjecture . i) For m ≤ n let K ∈ D(BunH) be a cuspidal automorphic sheaf
such that FG(K) ∈ D(BunG) is cuspidal. Then FG(K) is an automorphic sheaf on BunG and
FH(FG(K)) does not vanish. If, in addition, FH(FG(K)) is cuspidal then it is isomorphic to K.

ii) For m > n let K ∈ D(BunG) be a cuspidal automorphic sheaf such that FH(K) ∈ D(BunH)
is cuspidal. Then FH(K) is an automorphic sheaf on BunH and FG(FH(K)) does not vanish.
If, in addition, FG(FH(K)) is cuspidal then it is isomorphic to K.

One of the main results of [7] is the geometric Langlands functoriality for the dual pair
(GO2,GL2), where GO2 = π∗Gm is a group scheme over X, here π : X̃ → X is a nontrivial
étale two-sheeted covering. In this case the functor FG does commute with Hecke operators (cf.
[7], Corolary 4). If Ẽ is a rank one local system on X̃, let KẼ denote the automorphic sheaf on

Pic X̃ corresponding to Ẽ (constructed via the geometric class field theory). Then FG(KẼ) is

an automorphic sheaf on BunG corresponding to the local system E = (π∗Ẽ)∗. This provides a
new proof of the geometric Laglands conjecture for E independent of the existing proof due to
Frenkel, Gaitsgory and Vilonen ([FGV], [G]).
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We also check that (up to a tensoring by a 1-dimensional vector space) the sheaf FG(KẼ)
coincides with the perverse sheaf AutE constructed via Whittaker models in loc.cit. (this is our
Proposition 6, [7]).

The above results also allow us to calculate the following (global) Rankin-Selberg type con-
volution. Let E be an irreducible rank 2 local system on X, E1 be a rank one local system on
X. We denote by AutE1⊕Q̄ℓ

the corresponding Eisenstein series (cf. [BG]). Theorem 2 from [7]
provides an explicit calculation of FH(AutE1⊕Q̄ℓ

⊗AutE). The method of its proof is inspired
by [1]. Namely, we first note that this global statement can be reduced to some local statement
(which is the corresponding local Rankin-Selberg convolution, a calculation that makes sense
for any, non necessairily irreducible, local system E on X).

6.2 Let us formulate just one consequence of the results of [7], which we find striking.
Assume the ground field k = Fq finite of q elements (with q odd). Set G = GL2. Let E be

a rank 2 irreducible ℓ-adic local system on X. Remind that AutE denotes the corresponding
automorphic sheaf on BunG (cf. [FGV]). Let fE : BunG(k)→ Q̄ℓ denote the function ‘trace of
Frobenius’ of AutE .

Let φ : Y → X be a nontrivial étale two-sheeted covering. Write PicY for the Picard stack of
Y . Let J be a rank one local system on Y equipped with an isomorphism N(J ) →̃ detE, where
N(J ) is the norm of J (cf. [7], appendix A). Write fJ : (PicY )(k)→ Q̄ℓ for the corresponding
character (the trace of Frobenius of the automorphic local system AJ corresponding to J ). The
Waldspurger period of fE is

∫

B∈(PicY )(k)/(PicX)(k)
fE(φ∗B)f−1

J (B)dB

(the function that we integrate do not change when B is tensored by φ∗L, L ∈ PicX), here dB
is a Haar measure. A beautiful theorem of Waldspurger says that the square of this period is
equal (up to an explicit harmless coefficient) to the value of the L-function L(φ∗E⊗J −1, 1

2) (cf.
[Wa]).

Theorem 4 from [7] is a geometric version of this result. The role of the L-function in
geometric setting is played by the complex

⊕d≥0 RΓ(Y (d), (φ∗E ⊗ J ∗)(d))[d] (14)

Here Y (d) is the d-th symmetric power of Y , and V (d) denotes the d-th symmetric power of a
local system V on X. If φ∗E is still irreducible then (14) is bounded.

The geometric Waldspurger period is

RΓc(PicY/PicX,φ∗1 AutE ⊗AJ
−1), (15)

where φ1 : PicY → BunG sends B to φ∗B. The sense of the quotient PicY/PicX is precised
in ([7], 6.3.3), this stack has two connected components (the degree of B modulo two), so that
(15) and its tensor square is naturally Z/2Z-graded.
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We show that the tensor square of (15) is isomorphic (up to a shift and a tensoring by an
explicit 1-dimensional space) to (14). Moreover, this isomrphism is Z/2Z-graded, where the
Z/2Z-grading of (14) is given by the parity of d.

6.3 In [7] we also consider the cases m = 2 and n = 2 (that is, H = GO4 and G = GSp4), but
our results in these cases are only partial.

Assume m = 2. Write Bun2,X̃ for the stack of rank 2 vector bundles on X̃. We have an
exact sequence 1→ Uπ → π∗ GL2 → H → 1 of group schemes on X, where Uπ is the twisting of
Gm by the Z/2Z-torsor π : X̃ → X (the corresponding involution of Gm sends z to z−1). This
yields a natural map ρ : Bun2,X̃ → BunH̃ .

Let Ẽ be an irreducible rank 2 local system on X̃, χ be a rank one local system on X
equipped with det Ẽ →̃π∗χ. The corresponding automorphic sheaf AutẼ descends with respect
to ρ to a perverse sheaf KẼ,χ,H on BunH .

Assume n = 2, so G = GSp4. If Ẽ does not descend to X then we conjecture that

FG(KẼ,χ,H) (16)

is a cuspidal automorphic sheaf on BunG ([7], Conjecture 1). This agrees with the classical Howe
correspondence.

Assume that E is an irreducible rank 2 local system on X equipped with π∗E →̃ Ẽ and
detE →̃χ. For an object K ∈ D(BunG) there is a notion of Bessel periods of K (cf. [BFF]).
Theorem 3 from [7] is essentially a calculation of the Bessel periods of (16). Its proof follows
closely a similar calculation of Waldspurger at the level of functions ([Wa], cf. also [BFF]).

Now assume n = 1. If X̃ splits then we show that FH(AutE∗) is isomorphic to Kπ∗E,detE,H

up to a tensoring by a 1-dimensional space ([7], Proposition 8). This is a geometric version of a
theorem of Shimizu (cf. [Wa]).
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