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INTRODUCTION

Most of the mathematical objects studied here are algebraic generalizations of tools originally
aimed at understanding geometric problems. Thus, when trying to classify regular polytopes (which
are a generalization of the Platonic solids), one is naturally led to study the groups of isometries
fixing those polytopes; it is in this context that Coxeter found a particularly simple presentation of
those groups, generating a group by some of its involutions and taking the order of the product of
two involutions as the only additional data to describe the group. This presentation can be isolated
and give birth to the concept of a Coxeter group, which by itself yields a flood of intuitive and
natural constructions (such as the Bruhat order on the elements of a Coxeter group), making it an
algebraic object in its own right.

But as always, the abstract and purely algebraic aspect of the theory should not hide the fact
that even the most combinatorial notions were first discovered within their geometric applications.
The fact that the Weyl group of a semisimple Lie algebra is a Coxeter group creates a first link in
a nicely unified classification theory of semisimple Lie algebras, semisimple linear algebraic groups,
crystallographic Coxeter groups, and root systems. The Hecke algebra of a Coxeter group W ,
which is a deformation of the group algebra of W (and whose “twisted” multiplication rule yields
more insight into W than the ordinary group algebra) is a higher-level structure of this algebraic
world, originally discovered in the context of finite Chevalley groups (which are a special case of
linear algebraic groups; see [5]).

Kazhdan-Lusztig polynomials were first introduced in [18] in 1979, as a family of polynomials
appearing naturally as the coordinates of a remarkable basis of the Hecke algebra of a Coxeter
group. More precisely, if (W,S) is a Coxeter system and H is the associated Hecke algebra with
basis (Tw)w∈W , the vectors of the Kahzdan-Lusztig basis (C ′

y)y∈W of H are given by

C ′
y = q−

l(y)
2

∑

x≤y

Px,y(q)Tx

where the l(y) is the length of the element y and Px,y(q) are polynomials in q, called the Kazhdan-
Lusztig polynomials of q. An alternative (and less elementary) definition of Px,y(q) can be made,
defining the coefficients of Px,y(q) as the dimensions of certain cohomological spaces (see [19]); this
is a first result in a deep and not yet fully understood connection between Kazhdan-Lusztig poly-
nomials and algebraic geometry . Those polynomials hold the key to other areas of representation
theory, such as Verma module theory and the singularities of Schubert varieties. We refer the
interested reader to [1],[2], and [3]. Here we just explain two simple examples.

The degree of Px,y(q) is always ≤ l(y)−l(x)−1
2

, and the coefficient corresponding to degree l(y)−l(x)−1
2

in Px,y(q) is an important parameter denoted by µ(x, y). The action of the endomorphisms Ts on
the Hecke algebra H on the Kazhdan-Lusztig yields a new representation of H . It involves the µ
function, as follows: for s ∈ S,w ∈ W ,

TsCw =





−Cw if sw < w

qCw + q
1
2 (Csw +

∑

z<w
sz<z

µ(z,w) 6=0

µ(z, w)Cz) if sw > w
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(here as is customary we have replaced the elements (C ′
w) by their variant (Cw); the families

(Cw) and (C ′
w) are both bases of H . See section I.11 for the details). The advantage of this

new basis (Cw)w∈W over the ordinary one (Tw)w∈W is that the representation defined above can
be canonically decomposed as a direct sum of smaller representations. In fact, there is a canonical
partition of W into the so-called left cells (because here we made s act on the left; there is also a
partition into right and two-sided cells), such that for each part P the subspace spanned by the Cw
for w ∈ P is invariant by this action of H , yielding an (often finite dimensional) subrepresentation.

Consider the case when W is the Weyl group of a semisimple complex Lie algebra g. Let h be
a Cartan subalgebra of g and let b be a Borel subalgebra containing h; call S the associated set of
simple reflections of W . Let ρ be the linear function on h which takes the value 1 on each simple
coroot vector. For w ∈ W , denote by Mw the Verma module with highest weight −w(ρ) − ρ and
let Lw be its unique irreducible quotient. It was conjectured in [18] (and proved in [2]) that

ch(Lw) =
∑

z≤w

(−1)l(w)−l(z)Pz,w(1)ch(My)

ch(Mw) =
∑

z≤w

(−1)l(w)−l(z)Pw0z,w0w(1)ch(Ly)

Those two examples give a first hint at the various fields in which the Kazhdan-Lusztig poly-
nomials play an important role. Despite those applications, their true nature is not yet fully
understood. In particular, the connection between the combinatorics of a Bruhat interval and its
associated Kazhdan-Lusztig polynomial is still unclear. It is this latter problem that we address
here.

Closely related to the family of Kazhdan-Lusztig polynomials is another family of polynomials,
the R-polynomials. They logically precede the Kazhdan-Lusztig polynomials, and the recursion
formulas that define them are simpler; they appear as coordinates of the inverses of the ordinary
basis elements Tw(w ∈ W ). They are also simpler in many other aspects: the degree of the R-
polynomial Rx,y is simply l(y)− l(x), while there is no known easy rule to determine the degree of
Px,y in general. The central question in this book is whether Px,y only depends on the isomorphism
class of the Bruhat interval [x, y]. There is an analogous question with Rx,y instead of Px,y, and
from what we have just said it would seem that this latter question is much simpler than the first
one. However they turn out to be equivalent (proposition I.11.5), so that a first big reduction in
the problem is the replacement of Px,y by Rx,y. As a matter of fact, all our proofs in parts III and
IV only use the R-polynomials.

The “combinatorially invariant” definitions of the R-polynomials that we deal with here proceed
in two steps: first, construct an abstract setting in which Bruhat intervals (or at least a large family
of Bruhat intervals) can appear as a special case (this is the hard and interesting part), and then
define R-polynomials intrisically in this new world (this is the mechanical part, and the proof that
the abstract R-polynomials are correctly defined is usually done by a simple induction). Thus, in
part III, we show that any lower Bruhat interval can be decomposed as a product of three terms: a
“left regular” part, a central ”dihedral” part, and a “right regular” part (see definition III.2.4 and
theorem III.6.2 ). In part IV, we extend this decomposition to a larger class of Bruhat intervals,
those that enjoy an isomorphism onto a lower Bruhat interval which “preserves” the abovemen-
tioned decomposition. In fact, to make things work, some stronger requirements are needed on
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the isomorphism (see definition IV.1.8); this is essentially a problem of finding the good induction
hypothesis.

This report is divided into four parts, the first two dealing with the “old” results and the re-
maining two with the “new” results.

In part I we reconstruct all the miscellaneous parts of the theory of Coxeter groups, Hecke
algebras and Kazhdan-Lusztig polynomials that we need in the sequel. As a result the only prere-
quisites are some familiarity with linear algebra (including diagonalization of endomorphisms) and
with groups defined by generators and relations (our viewpoint is predominantly combinatorial).
On many occasions we make a “minimalist” exposition of small parts of a beautiful theory that we
cannot dwell on (e.g. the geometry of Coxeter groups, the results in Dyer’s thesis, Kazhdan-Lusztig
theory, characterizations of the Bruhat order, etc).

In section I.1 we introduce Coxeter groups in a purely algebraic way, as groups defined by
generators and relations. In section I.2 we explain the standard geometric realization of a Coxeter
group, leading to the fundamental geometric criterion which says that multiplying an element w by
a generator s increases or decreases the length of w according to whether the root αs is “kept on
the same side” or not by w (proposition I.2.2). This implies the dichotomy of roots into positive
and negative roots, and also the fundamental result (corollary I.2.6), that all the combinatorics of
expressions in a Coxeter group can be reduced to the braid relations in dihedral subgroups, i.e.
in subgroups of rank two (note that our presentation differs from the usual ones in that we stress
corollary I.2.6 instead of the “exchange condition”).

This is made more explicit in section I.3, where we explain that the braid relations and the
relations s2 = e for a generator s suffice to reduce any expression in W ; furthermore it may be done
through a sequence of words of decreasing length (proposition I.3.1). Thus Coxeter groups form a
particularly simple subclass of the class of groups defined by generators and relations. Matsumoto’s
theorem (proposition I.3.3) is an elegant formalization of this fact. At the end of section I.2 we
introduce reflections of a Coxeter group (again, from a purely algebraic standpoint, as conjugates of
generators), and explain the canonical bijection between reflections and positive roots (in corollary
I.2.12).

Section I.4 deals with the properties of parabolic subgroups of Coxeter groups. The results are
no surprise and could be guessed even by someone unfamiliar with Coxeter groups: parabolic sub-
groups are also Coxeter groups, and there is a distinguished representative in each coset (the element
of minimal length), yielding a decomposition of W as a direct product. The two-sided decomposi-
tion, which is slightly more involved than the left or right ones, is also explained. When those tools
to decompose W as a product are pushed to their very end, we obtain the “X-decomposition” of
W , which is closely related to the notion of the “Shortlex normal form” of an element w ∈ W ; this
is the subject of section I.7.

Section I.5 is about the basic properties of the Bruhat order on Coxeter groups. The most fun-
damental property, from which everything else derives, is the “special matching” property (called
the Z-property by Deodhar [14]) (proposition 5.1). Note that later (in part III) we study special
matchings in an abstract context, and we could have presented the Bruhat ordering as a special
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case, but that would have made the presentation more artificial. The Bruhat order is Eulerian
(corollary I.5.3) and graded (corollary I.5.5).

In section I.8 we show a link between the notion of algebraic cocycle and Coxeter group. The
result, surprising in its simplicity, states that if (W,S) is a pair where W is a group and S is a set
of elements of order two generating W , then (W,S) is a Coxeter system if and only if it admits
a cocycle (proposition I.8.1). The key idea is to look at the generators s ∈ S as special cases of
reflections t ∈ T ; then the cocycle can be interpreted as a descent set. Then follows lemma I.8.2,
which shows that reflections can always be written in a simple “palindromic” form. Again, this is
very simple compared to the general case in groups defined by generators and relations, where the
set of conjugates of an element can be more complicated. In corollary I.8.3 we connect reflections
to the Bruhat order more precisely, showing that the Bruhat order can be characterized only in
terms of the length function and the set T of all reflections.

Section I.9 is devoted to reflection subgroups, i.e. subgroups of W generated by reflections.
They constitute a generalization of the parabolic subgroups of W , and share some properties with
them: if W ′ is a reflection subgroup of W then it is also a Coxeter group, and it even admits a
canonical system of generators S(W ′). This is shown using the cocycle criterion, as the cocycle
of (W ′, S(W ′)) is simply a restriction of the original cocycle of (W,S). There is a compatibility
with respect to Bruhat order, and an element of minimal length in each coset (proposition I.9.3).
However, the proofs are more delicate than in the parabolic case, involving a careful use of the
interaction between the Bruhat order, the length function and T (the set of reflections). Not all
possible identifications turn out to be true (thus the order on W ′ induced by the Bruhat order of
W is strictly stronger than W ′’s own Bruhat order in general (remark I.9.4)), so that this field
can be somewhat confusing to the novice. A major achievement of the theory in section I.9 is the
“K3,2-avoidance” theorem (I.9.7), which states that in the Bruhat ordering two distinct elements
cannot have three coatoms (or three atoms) in common; thus a purely combinatorial statement
is deduced from a geometric theory. This theorem in turn has two major corollaries: I.9.8 which
states that the dihedral elements are exactly the elements with at most two coatoms, and I.9.9
which states that the coatom set function is injective on the nondihedral elements. Those two
corollaries are fundamental in parts III and IV, the last one typically used to prove properties by
induction on the length of the element.

In section I.10 we construct the Hecke algebra of a Coxeter group W , which is a deformation of
the group algebra of W , and define some low-level tools associated to it, such as the R-polynomials
(proposition I.10.5) and the involutions ι and . We then have all the ingredients to define the
Kazhdan-Lusztig polynomials in section I.11 (proposition I.11.1), and state the central conjecture
of this work (I.11.4), that the Kazhdan-Lusztig polynomial Px,y only depends on the isomorphism
class of the Bruhat interval [x, y], along with equivalent reformulations of this conjecture (I.11.5).

Part II is a complement to part I and contains results of a more technical and “local” nature.

Section II.1 develops properties of the B function defined by

B(s, i) = s(s− 1)(s− 2) . . . (s− (i− 1))
B(s, i, j) = B(s, i)B(s+ 1, i)B(s+ 2, i) . . . B(s+ (j − 1), i)
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The term B(s, i, j) is essentially the elementary block of the normal forms and the X-decom-
position (cf. section I.7) in type A. Proposition II.1.7 says that the left descent set of an element
can be read off from its X-decomposition. Analogous statements could be made in types other
than A, but this is perhaps the only case where such a statement is really useful. Proposition
II.1.9 shows that an element has at most one left descent generator and at most one right descent
generator if and only if it is of the form B(s, i, j) (the other elements will be a product of two or
more B(s, i, j)’s). This is used later in section IV.2, where the strategy to tackle a property that
we cannot show for all elements is to show it for elements with few descent generators.

Section II.2 details what happens when we decrease some of the coefficients of the Coxeter
matrix, passing thus from a Coxeter group W to a “smaller” Coxeter group W ′. In this context
again, the general case is not more complicated than the dihedral case (when W and therefore
W ′ are both dihedral). It turns out that an expression that is reduced in W ′ is also reduced in
W (proposition II.2.1), and for a certain family of expressions which “mean the same thing in W

or W ′” (the “absolute” expressions of definition II.2.3) we have canonical isomorphisms between
[e, aW ] and [e, aW ′ ] (proposition II.2.4) if a is an absolute expression. Reversing the process and
taking an arbitrary w ∈ W , it can be seen that there is an “optimal” W ′ such that the domain of
the canonical isomorphism defined above includes [e, w] (proposition II.2.6). Thus, any w ∈ W has
an “enveloping Coxeter group” W ′ that is “smaller” than W in general.

Part III is devoted to the proof of the main result of this report, the invariance of Kazhdan-
Lusztig polynomials on an interval originating at the identity, which was also discovered indepen-
dently by Brenti, Caselli& Marietti in [8]. The contents of this part have been put into the article
[13].

In order to show an invariance-by-isomorphism result, we naturally seek a purely combinatorial
definition of the R-polynomials; this led Du Cloux and Brenti to introduce the notion of a “special
matching” (or simply “matching” in this book, as we do not use other types of matchings), which
we explain in section III.1. If s is a generator of the Coxeter group, right and left multiplication by s
are fundamental examples of special matchings; we call them multiplication matchings and denote
them by ρs and λs. A reasoning used in both [9, definition 6.5] and [7, corollary 5.3] shows that in
order to prove conjecture I.11.4 it suffices to check the following rules for any special matching φ on
a Bruhat interval starting from the origin [e, v] (which are well-known when φ is a multiplication
matching, cf. (I.10.10)):

∀x, y ∈ [e, v], such that x < φ(x), y < φ(y),{
Rφ(x),φ(y) = Rx,y

Rx,φ(y) = (q − 1)Rx,y + qRφ(x),y

(*)

We eventually prove this in corollary III.6.3.

The basic idea, already contained in [7], is as follows: let (x, y) be as above, and let s ∈ S be
a (left, say) descent generator for y such that φ commutes with (left) multiplication by s. Then
we may deduce formula (*) for (x, y) from all the occurrences of formula (*) corresponding to the
(x′, y′) with l(y′) < l(y), which provides us with an induction argument on l(y) (proposition 2.5).
In general it is not true that any y ∈ W has such a compatible descent generator. However it will
be true for all ”sufficiently large” y. We make this precise in III.2.1 when we make the definition
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that y ∈ W is “full” if [e, y] contains all the dihedral elements of W . Then we show in fine that if
W is not a dihedral Coxeter group, any full element in W admits a reduction as above.

For non-full elements w ∈ W , it was shown in section II.2 that the interval [e, w] is isomorphic
to an interval [e, w′] in a “smaller” (in an appropriate sense) Coxeter group W ′, the isomorphism
preserves R-polynomials, and w′ is full, so that we may argue by induction on the “size” of the
Coxeter group.

In all our proofs the dihedral elements play a crucial role. In section III.1 we show that a
matching is completely determined by its behaviour on dihedral elements; it is even determined by
its restriction to the set P of principal dihedral elements (theorem III.1.9). Conversely any match-
ing φ defined on P can be extended in an unique way to a matching whose domain is maximal.
Similarly, we see in III.3 that commutation between a matching and multiplication by a generator
is something that can be read off from their restriction to P (proposition III.3.1).

If dom(φ) contains a full element, on each principal dihedral subgroup (which is always stable
by φ) φ cannot “differ too much” from a multiplication matching: we shall see in section III.6 that
there is at most one principal dihedral subgroup D such that the restriction of φ to D is not a
multiplication matching, and even on this D, φ must still share some regularity conditions with
multiplication matchings.

Technically, a central idea consists in identifying “obstructions” (minimal elements in the com-
plement set of dom(φ)) whenever φ is not a multiplication matching. For example, if a = φ(e) and
x0 ∈ P is a minimal element such that φ(x0) 6= x0a, we get obstructions by inserting a well-chosen
character in a reduced expression for x0(this is illustrated in lemmas III.5.3.1 and III.5.4.2). As
dom(φ) is a decreasing subset of W , any new obstruction erases out a substantial part of W , so
that eventually when φ is too different from a special matching its domain cannot contain a full
element any more.

It is quite remarkable that all the obstructions we need come from rank three subgroups. In
section III.4 we describe the simplest types of obstructions and the corresponding restriction on the
domain of the matching, appearing in the so-called “mixed” case, which already suffices to treat the
case of simply laced Coxeter groups (cf corollary III.4.3). In section III.5 we gather slightly more
complicated obstructions that show up in rank three; they are the tools to tackle the general case.
The identification of those rank three obstructions was largely guided by computations carried out
with a specialized version of the program Coxeter [10].

As mentioned before, our result was also found independently by Marietti in his Ph.D. thesis
[20], and soon after put into the joint paper [8] by Brenti, Caselli and Marietti, along with other
results. The method of proof in [8] is quite close to ours; the main differences are that 1) Brenti,
Caselli and Marietti focus on a given interval [e, w], while we try to understand each maximal
matching globally; in particular in many cases we are able to determine the domain of a matching,
to a large extent (compare lemma III.4.2 and proposition III.6.1) and deduce that it is often rather
small; and 2) the “K3,2-avoidance” result (theorem I.9.7) allows Brenti, Marietti and Caselli to
circumvent some of the lengthy obstruction computations in our section III.5.

Finally, in part IV we discuss some directions in which the theory of part III is likely to be
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extended; we explain how the original result on interval originating at the identity could perhaps
be stretched to cover all completely compressible intervals, by showing that any completely com-
pressible Bruhat interval is isomorphic to a lower Bruhat interval (as in IV.1.3). To achieve this,
we develop some tools to construct isomorphisms from an arbitrary interval I onto lower Bruhat
intervals. The notion of standard isomorphism (definition IV.1.2), which uniquely defines the image
Coxeter group from data intrisic to I, is a first step. But it does not suffice, as there can still exist
many distinct standard isomorphisms on the same I. So we also introduce the regularity conditions
(definition IV.1.5), which (like the notion of regularity of part III) state that the isomorphism is
compatible with multiplication by generators. Even with this additional condition, the isomor-
phism on I is still nonunique. We then introduce “translations”, which are simply isomorphisms θ
between Bruhat intervals of the form θ(w) = w1ww2 where w1, w2 are fixed elements of W . If we
impose compatibility with translations, we obtain the notion of a “totally left-regular” isomorphism
(definition IV.1.8), which at last turns out to be unique.

Then we are left with the task of constructing a totally left-regular isomorphism of I. The notion
of complete compressibility can be deformed into the notion of “left explicit complete compress-
ibility”, by adding into the definition the condition that the various compressions be “explicit”,
meaning that they must be left multiplications by a generator (up to translation). We prove
that a totally left-regular isomorphism does exist on left explicitly completely compressible in-
tervals (proposition IV.1.17). We conjecture that completely compressible intervals coincide with
explicitly completely compressible intervals in types A,D,E (conjecture IV.1.21). We provide two
different pieces of evidence to support that conjecture: one from massive computations made by
the program Coxeter[10], treating cases up to types A8, D7, E6, and the other from theoretical
results, that we explain in section IV.2.

The main result of that section IV.2 is theorem IV.2.3, which implies that our conjecture is true
when the upper extremity y of the interval I = [x, y] is critical (i.e. is an element whose number
of coatoms is equal to its length). In type A, this includes the case when y has at most one left
descent generator (corollary IV.2.6).
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INDEX OF SPECIAL NOTATIONS

Here we make a list of the notations that are not defined directly in the section or subsection
where they appear.

Latin lowercase letters denote integers, words, indeterminates or elements of a Coxeter group.
The letter e always stands for the identity element of a Coxeter group, and s and t represent gen-
erators or reflections in a Coxeter group. l(w) denotes the length of the element w (or the word
w), as in I.1.5, and ms,t is the coefficient of the Coxeter matrix, as in I.1.1.

Uppercase letters denote sets and/or functions.
Sets: (W,S) denotes a Coxeter system, V a real vector space, Φ(resp. Φ+, Φ−) denotes the set

of (resp. positive, negative) roots, as in I.2.7 and I.2.8, and I stands for a Bruhat interval.
Functions:

B(α, β) invariant bilinear form (as in I.(2.6))
B(s, i, j) as in II.(1.1)
Dl(w) (Dr(w)) left (right) descent set of an element w, as in I.1.8
K(A,B) the complete bipartite graph with vertex set A ∪B and

edge set A×B

Ki,j any K(A,B) with |A| = i, |B| = j

Ms,t the maximal dihedral element in s and t, as in I.(1.5)
N the geometric cocycle (as in I.(2.7)) or the algebraic co-

cycle (as in I.(8.4))
Ps principal dihedral subgroup associated to the generator

s, as in III.1.5
P the union of all the Ps
Px,y (Rx,y) Kazhdan-Lusztig polynomial (R-polynomial), as in pro-

position I.11.1 (I.10.5)
Z(φ,w) the set {w} ∪ {φ(z)|z ⊳ w, z ⊳ φ(z)}

Greek lowercase letters denote mappings (isomorphisms or special matchings). Exceptions: α
and β are used to denote roots or indeterminates, and in section I.2, θ represents an angle and λ a
real constant.
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Other special notations:

[s, t, j〉, 〈j, s, t] dihedral words or elements, as in I.(1.1)
< A > the subgroup generated by the subset A
z = x · y means that z = xy, l(z) = l(x) + l(y)
A ⊆ B A is included in, or equal to, B
A ⊂ B A is strictly included in B
A \B the elements of A that are not in B
|A| the number of elements in A
A∐B disjoint union of A and B
P(A) the set of all subsets of A
S∗ the set of all words with letters in the alphabet S
{a|(...)} or {a; (...)} the set of all a’s satisfying (...)
supp(w) the support of the element w, as in I.(3.3)
[u, v] the closed interval between the poset elements u and v
End(V ) the algebra of linear endomorphisms of the real vector

space V
Ker(f) the kernel of the linear mapping f
x⊳ y, or y ⊲ x x < y and there is no z such that x < z < y

coat(y) the set of coatoms of y, i.e. of x’s satisfying x⊳ y.
dom(φ) domain of the partial special matching φ
I the set of elements of a Coxeter group with a unique reduced

representation, or alternatively the associated set of reduced words
λa the special matching defined by λa(x) = ax

ρa the special matching defined by ρa(x) = xa

x
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Part I

Preliminaries on Coxeter Groups

1





1 Coxeter groups

Definition 1.1 If S is any set, a Coxeter matrix (mst)s,t∈S associated to S is a function
m : S × S → {2, 3, . . .} ∪ {∞} satisfying mss = 1,ms,t = mt,s for any s 6= t in S.

The convention mss = 1 is useful to make statements about s, t hold true even when s = t. To
make our exposition more explicit, however, we will usually discuss whether s = t or not.

Definition 1.2 Let W be a group and S ⊆ W . Denote by e the identity element of W . The
pair (W,S) is called a Coxeter system if there is a Coxeter matrix M associated to S such that
W coincides with the group defined by the generators s ∈ S and the relations

{
s2 = e (s ∈ S)
(st)mst = e (s 6= t, s, t ∈ S)

(when mst = ∞ it is understood that there is no relation imposed on the pair s, t).

In particular, if mst = 2 then s commutes with t.

Definition 1.3 Let W be any group. Then W is said to be a Coxeter group if there is a
subset S ⊆ W such that (W,S) is a Coxeter system.

In all the examples considered here the set will be finite; the integer |S| is then called the rank
of the Coxeter system.

Definition 1.4 Let W be a Coxeter group. We say that W is a dihedral Coxeter group if
there is a subset S ⊆ W such that (W,S) is a Coxeter system and |S| = 2.

Dihedral Coxeter groups are the simplest non-trivial Coxeter groups. They can be simply
described: If S = {s, t}, and if we put

[s, t, n〉 = stst . . .︸ ︷︷ ︸
n terms

(1.1)

〈n, t, s] = . . . tsts︸ ︷︷ ︸
n terms

(1.2)

then

W =

{
{e, s, t, st, ts, sts, tst, . . . , [s, t, j〉, [t, s, j〉(j < m) . . . , [s, t,m〉 = [t, s,m〉} if m = ms,t <∞
{e, s, t, st, ts, sts, tst, . . . , [s, t, j〉, [t, s, j〉(j ∈ N), . . .} if ms,t = ∞

(1.3)
Note also that the relation (st)mst = e can be written in a more symmetrical form

[s, t,m〉 = [t, s,m〉 (with m = ms,t <∞) (1.4)

This is called a braid relation. We will use the notation

Ms,t = [s, t,m〉 = [t, s,m〉 = 〈m, s, t] = 〈m, t, s](when m = ms,t <∞) (1.5)

We now consider the ways to write an arbitrary w ∈ W as a product of generators (i.e. elements
of S). For any positive integer n, put

En(w) = {(s1, s2, . . . , sn) ∈ Sn|w = s1s2 . . . sn}
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Definition 1.5 The smallest n > 0 such that En(w) 6= ∅ is called the length of w and is denoted
by l(w).

Definition 1.6 The elements of El(w)(w) are called the reduced expressions of w.

It is easy to see that for any s ∈ S and w ∈ W , we have l(sw) ≤ l(w) + 1, and hence,
interchanging w and sw, either l(sw) = l(w) + 1 or l(sw) = l(w) − 1. In the latter case there is a
reduced expression of w starting with s.

Definition 1.7 Let s ∈ S and w ∈ W . We say that s is a (left) descent generator for w if
l(sw) = l(w) − 1.

Definition 1.8 The set of the (left) descent generators of w is called the (left) descent set of
w, and is denoted by Dl(w).

The right descent set Dr(w) is defined similarly.

Definition 1.9 Let x1, x2, . . . , xn be words in W . We say that x = x1x2 . . . xn is a reduced
product if l(x) = l(x1) + l(x2) + . . .+ l(xn), and we denote this by x = x1 · x2 · . . . · xn.

Note that when all the xi are in S, a reduced product is simply a reduced expression.

Definition 1.10 Let x, y ∈ W . We say that x is a prefix (resp. suffix) of y if there is an
element z ∈ W such that y = x · z (resp. y = z · x).

Examples. We give two opposite extremal examples of Coxeter groups; a generic Coxeter
group will be somewhere between the two.

When all the coefficients of the Coxeter matrix are equal to ∞ (except those on the diago-
nal), we obtain the free Coxeter group F(S) on S. In this group, an expression (s1, s2, . . . , sn)
is reduced if and only if si+1 6= si for all i, and if (s1, s2, . . . , sn) is reduced then w = s1s2 . . . sn
satisfies Dl(w) = {s1}, Dr(w) = {sn}, and the prefixes of w are the elements s1, s1s2, . . . , s1s2 . . . sn.

If, on the contrary, all the (nondiagonal) coefficients of the Coxeter matrix are equal to 2 we
obtain a commutative Coxeter group, isomorphic to F2

S. In this group, an expression (s1, s2, . . . , sn)
is reduced if and only if all the si are distinct, and if (s1, s2, . . . , sn) is reduced then w = s1s2 . . . sn

satisfies Dl(w) = Dr(w) = {s1, s2, . . . , sn}, and the prefixes of w are the elements of the form
∏

i∈I

si

with I ⊆ [1, n].

2 Geometric representation

One of the nice properties of Coxeter groups is that they enjoy a particularly simple geometric
(linear) representation. Indeed, over a vector space V with basis (αs)s∈S indexed by S, define for
each s ∈ S an endomorphism φs of V by

{
φs(αs) = −αs
φs(αt) = αt − λs,tαs (for t 6= s)

(2.1)
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where the λs,t are positive real constants chosen such that λs,tλt,s = 4cos2( π
ms,t

). It is easily seen

that φ2
s = idV (in geometric terms φs is a reflection) and furthermore, if we put ψ = φsφt(s 6= t)

we have {
ψ(αs) = (λs,tλt,s − 1)αs − λt,sαt
ψ(αt) = λs,tαs − αt

(2.2)

So the subspace V0 = Vect(αs, αt) is invariant by ψ, and the characteristic polynomial of ψ|V0 is

X2 − 4cos2( π
m

)X + 1 = (X − e−
2πi
m )(X − e

2πi
m ) (where m = ms,t). When m is finite, we have m ≥ 2

so ψ|V0 has two distinct eigenvalues and is therefore diagonalizable over V0; there are two vectors β1

and β2 such that ψ(β1) = e−
2πi
m β1 and ψ(β2) = e

2πi
m β2. With respect to the basis β1, β2, (αu)u 6∈{s,t}

of V , the matrix of ψ is upper triangular with e−
2πi
m , e

2πi
m , 1, 1, . . . 1 on the diagonal. Thus ψ is

diagonalizable and its order is exactly m. When m = ∞, the characteristic polynomial of ψ|V0 is
(X − 1)2 so ψ is non-diagonalizable and of infinite order.

In any case, the order of φsφt(s 6= t) in GL(V ) is exactly ms,t. We deduce:

Proposition 2.1 The mapping s 7→ φs defined in (2.1) can be extended into a linear represen-
tation of W in V , i.e. a group homomorphism W → GL(V ).

The next proposition is a strong property linking Coxeter groups and their geometric represen-
tations. Let V+ be the set of the vectors in V that have nonnegative coordinates (with respect to
the basis (αs)s∈S) and V− = −V+.

Proposition 2.2 Let w ∈ W and s ∈ S. Then φw(αs) ∈ V+ if l(ws) = l(w)+1 and φw(αs) ∈ V−
if l(ws) = l(w) − 1.

Proof:
By interchanging w and ws, it suffices to prove the first claim. We achieve this in two steps:

first we show it when w is in the dihedral subgroup generated by s and another generator t, and
we reduce the general case to this situation.

Lemma 2.3 Let s 6= t be two generators in S, and w ∈< s, t >, as in (1.3). Then φw(αs) ∈ V+

if l(ws) = l(w) + 1.

Proof: As l(ws) = l(w) + 1, w must be of the form (st)k or t(st)k for some integer k. But a
simple computation yields





(φsφt)
k(αs) =

sin(
(2k+1)θ

2
)

sin( θ
2
)

αs +
2 sin(kθ) cos( θ

2
)

λ sin( θ
2
)

αt

φt(φsφt)
k(αs) =

sin(
(2k+1)θ

2
)

sin( θ
2
)

αs +
2 sin((k+1)θ) cos( θ

2
)

λ sin( θ
2
)

αt

(2.3)

where θ = 2π
mst

, λ = λs,t. When mst = ∞, we have θ = 0 and those formulas become





(φsφt)
k(αs) = (2k + 1)αs + 4k

λ
αt

φt(φsφt)
k(αs) = (2k + 1)αs + 4(k+1)

λ
αt

(2.4)

so the result follows. Q. E. D.
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Lemma 2.4 Let s 6= t be two generators in S, and w ∈ W . Then there are two words w′ ∈ W

and d ∈< s, t > such that w = w′ · d and neither s nor t are in the right descent set of w′.

Proof: We argue by induction on l(w). Suppose that the result holds for all elements of length
< l(w). If neither s nor t are in the right descent set of w, then we may take w′ = w, d = e

and we are done (this covers the case l(w) = 0). Otherwise, suppose for example that s is in the
right descent set of w. Then we can write w = w0s with l(w0) = l(w) − 1. By the induction
hypothesis, there is a pair (w1, d1) ∈ W× < s, t > such that w0 = w1 · d1 and neither s nor t are in
the right descent set of w1. Then we may take w′ = w1, d

′ = d1s, which concludes the proof. Q. E. D.

Let us now finish the proof of proposition 2.2. We reason by induction on l(w). Clearly we
may assume w 6= e; let t be a generator in the right descent set of w. Then t 6= s, and we can
write w = w1t with l(w1) = l(w) − 1. Using the lemma above (with w1 instead of w), there is
a pair (w′, d1) ∈ W× < s, t > such that w1 = w′ · d1 and Dr(w

′) does not contain s or t. Then
l(d1t) ≥ l(w′d1t)− l(w′) = l(w)− l(w′) = l(w1)− l(w′)+1 = l(d1)+1, so if we put d = d1t, we have
l(d1t) = l(d1)+1 and hence w = w′ ·d. Since Dr(d) ⊆ Dr(w), we see that s 6∈ Dr(d). By lemma 2.3
above, we see that φd(αs) = aαs + bαt with a, b ≥ 0. Since l(w′) < l(w), the induction hypothesis
gives φw′(αs) ∈ V+ and φw′(αt) ∈ V+; eventually φw(αs) = aφw′(αs) + bφw′(αt) ∈ V+. Q. E. D.

Corollary 2.5 The linear representation defined by (2.1) is faithful, i.e. the morphism W →
GL(V ), w 7→ φw is injective.

Indeed, if w ∈ W \ {e} then there is a generator s in the right descent of w; then φw(αs) ∈ V−
whence φw 6= idV .

The next corollary is fundamental.

Corollary 2.6 Let s 6= t ∈ S and w ∈ W . Then s and t are both suffixes (resp. prefixes) of w
if and only if mst <∞, and Mst is a suffix (resp. prefix) of w.

Proof: Note that the left and right versions of this result are equivalent through the involution
w 7→ w−1 of W . Thus, it suffices to show the “suffix” version. The “if” is clear; let us prove the
“only if” part. So suppose that s and t are both suffixes of w. Let us write w = w′d as in lemma 2.4.

Suppose that s 6∈ Dr(d). By lemma 2.4, we have φd(αs) = aαs + bαt with a, b ≥ 0. Note that a
and b cannot both be 0, because the linear map φd is invertible. Then φw(αs) = aφw′(αs)+bφw′(αt) ∈
V+ and φw(αs) 6= 0, whence φw(αs) 6∈ V− which contradicts proposition 2.2.

So s ∈ Dr(d) and similarly t ∈ Dr(d). Since d ∈< s, t >, it is then clear that mst < ∞ and
d = Mst, and the result follows. Q. E. D.

From now on we will restrict ourselves to a particular representation in the family of represen-
tations defined by (2.1); namely we fix the constants λs,t as follows:

λst = λts = 2| cos(
π

mst

)| (2.5)

The immediate consequence of this additional symmetry is that now we have a bilinear sym-
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metric form B on V , defined by (say)

B(αs, αs) = 1
B(αs, αt) = −λst

2
(s 6= t)

(2.6)

which is invariant by the action of W on V .

Definition 2.7 Let (W,S) be a Coxeter system. Let W act on V = Vect(αs)s∈S as in 2.1. The
elements in the orbit of {αs}s∈S for this action of W (in other words, the elements of the form
φw(αs) with s ∈ S,w ∈ W ) are called roots. The set of all the roots is denoted by Φ. The αs are
called simple roots.

Definition 2.8 Let Φ+ = Φ ∩ V+ and Φ− = Φ ∩ V−. The elements of Φ+ (Φ−) are called
positive (resp. negative) roots.

Thus proposition 2.2 tells us that Φ can be partitioned as Φ = Φ+ ∐ Φ−. Note that since B is
W -invariant, all the roots have norm one, i.e. any α ∈ Φ satisfies B(α, α) = 1. A natural question
that arises is: which roots are sent by a given φw “to the other side”, i.e. what are the elements of

N(w) = {α ∈ Φ+| φw(α) ∈ Φ−} (2.7)

This question can be answered completely:

Proposition 2.9 Let w ∈ W , and let w = s1s2 . . . sr be a reduced expression of w. Then

N(w) = {αsr
, φsr

(αsr−1), φsrsr−1(αsr−2), . . . , φsrsr−1...s2(αs1)}

In particular |N(w)| = l(w).

Proof: For j ∈ [1, r] put tj = φsr...sj+2sj+1
(αsj

). Notice that the αsj
coordinate of tk is zero if

k < j, but nonzero if k = j, therefore all the tj’s are distinct. First we show the result for words of
length 1.

Lemma 2.10 If s ∈ S, then N(φs) = {αs}.

Proof: Since φs(αs) = −αs, it is clear that αs ∈ N(φs). Conversely, let x =
∑

t∈S xtαt be in
N(φs). Then φs(x) is of the form φs(x) =

∑
t6=s xtαt + (...)αs. Since x ∈ V+, we have xt ≥ 0 for

all t ∈ S. Since φs(x) ∈ V−, we have xt ≤ 0 for all t 6= s. Consequently x reduces to xsαs, with
xs > 0. Since x has norm 1, we eventually deduce x = αs. Q. E. D.

We now return to the proof of proposition 2.9. Put w′ = s1s2 . . . sr−1. Using the lemma above
and the definition of N , we easily see that

N(w) = N(sr) ∪ φsr
(N(w′)) (2.8)

so the result follows by induction on r. Q. E. D.

Definition 2.11 A reflection in W is a conjugate of a generator, i.e. an element of the form
wsw−1 with w ∈ W and s ∈ S. The generators s ∈ S are called simple reflections. The set of
all reflections of W is denoted by T .
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Corollary 2.12 (i) For each t ∈ T there is a unique α ∈ Φ+ such that t(α) = −α. Conversely,
for each α ∈ Φ+ there is a unique t ∈ T such that t(α) = −α.
Thus, there is a natural bijection between T and Φ+. We denote by αt the root associated to the
reflection t, and by tα the reflection associated to the root α.
(ii) Let α ∈ Φ+. We have tα(x) = x− 2B(x, α)α for all x ∈ V .
(iii) Let s ∈ S and β ∈ Φ+. Then B(αs, β) ≤ 0 if s 6∈ Dr(tβ) and B(αs, β) ≥ 0 if s ∈ Dr(tβ).

Proof: (i) For t ∈ T , define E(t) = {α ∈ Φ|t(α) = −α}. Then it is clear that E(wtw−1) = wE(t)
for any w ∈ W . Now any t ∈ T can be written wsw−1 with w ∈ W and s ∈ S, and lemma 2.10
yields E(s) = {±αs}. Therefore E(wsw−1) = {±φw(αs)}, and (i) follows.

(ii) There is a pair (s, w) ∈ S ×W such that α = w(αs). If w = e then the result is clear by
(2.1). Thus it suffices to show that the result is true for w1w

′ if it is already true for w′ (where
w1 ∈ S). So assume that tβ(x) = x− 2B(x, β)β for all x ∈ V , where β = w′(αs). Put β′ = w1(β).
Then for x ∈ V we have

tβ′(x) = w1tβw1(x)
= w1(w1(x) − 2B(w1(x), β)β)
= x− 2B(w1(x), β)w1(β)
= x− 2B(x,w1(β))w1(β) since B is invariant
= x− 2B(x, β′)β′

as required.

(iii) Interchanging β and βs, it suffices to treat the case when s 6∈ Dr(tβ) (say). We can write β =∑
u∈S buαu where all the bu are nonnegative. If β is a multiple of αs, then B(β, β) = B(αs, αs) = 1

yields β = ±αs, hence β = αs since β ∈ Φ+, and this contradicts s 6∈ Dr(tβ). So β is not a multiple
of αs; then there is a u0 ∈ S \ {s} such that bu0 > 0. By proposition 2.2, we have tβ(αs) ∈ Φ+. But
tβ(αs) = αs − 2B(αs, β)β, so the u0-component of tβ(αs) of tβ(αs) is −2bu0B(αs, β). We deduce
−2bu0B(αs, β) ≥ 0, and B(αs, β) ≤ 0. Q. E. D.

3 Some basic algorithms and combinatorics

Corollary 2.6 alone suffices to answer, and provide algorithms for, most of the elementary and
natural questions that can be asked about Coxeter groups viewed as groups defined with generators
and relations. Those algorithms, albeit impractical for heavy computations, are quite sufficient for
the theoretical or limited-to-simple-examples use we will make of it. We use the standard notation
S∗ to denote the set of words with letters in the alphabet S. We distinguish the words (in S∗) from
the elements (in W ) by using the tuple notation for the former ones.

Proposition 3.1 (i) Two reduced expressions in S∗ represent the same element in W if and
only if we may obtain one from the other using only the braid relations (1.4) as rewriting rules,
through a sequence of words of constant length.
(ii) Let a be any expression in S∗. Then we may obtain from a a reduced expression a′ representing
the same element in W , using only the braid relations (1.4) and the relations s2 = e as rewriting
rules, through a sequence of words of decreasing length.
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Clearly (i) provides an algorithm that enumerates the reduced expressions equivalent to a given
reduced expression, and (ii) tells us how to reduce any expression at all.

Proof: (i) The “if” is clear; let us show the “only if”. So let a = (a1, a2, . . . , ar) and
b = (b1, b2, . . . br) be two reduced expressions such that a1a2 . . . ar = b1b2 . . . br = w holds in W ;
we must show that there is a path from a to b as in the statement of the proposition (we will call
such paths admissible). We argue by induction on r, the result being clear if r = 1. If a1 = b1,
then a2 . . . ar = b2 . . . br, the induction hypothesis provides an admissible path between (a2, . . . , ar)
and (b2, . . . , br), and we are done. Otherwise, by corollary 2.6, ma1b1 < ∞ and Ma1b1 is a prefix
of w. Thus there are generators s1, s2, . . . sl (with l = r − ma1b1) such that w = Ma1b1s1s2 . . . sl.
Then a2a3 . . . ar = [b1, a1,ma1b1 − 1〉s1s2 . . . sl, so by the induction hypothesis there is an admis-
sible path from (a2, a3, . . . ar) to ([b1, a1,ma1b1 − 1〉, s1, s2, . . . sl), whence an admissible path from
a to ([a1, b1,ma1b1〉, s1, s2, . . . , sl). Adding a braid relation, we have an admissible path from a to
c = ([b1, a1,ma1b1〉, s1, s2, . . . sl). So now we only need to find an admissible path between c and b.
But since c and b share the same leftmost character, this case has already been treated.

(ii) Write a = (a1, a2, . . . , ar). We argue by induction on r, the result being clear if r = 1. By
the induction hypothesis, we may assume that (a1, a2, . . . , ar−1) is reduced.

If a is already reduced, there is nothing to be done. If ar = ar−1, using the rule a2
r = e we

delete the two rightmost characters and we are done. So we may assume that a is not reduced and
that ar 6= ar−1. But since l(w′ar) = l(w′) − 1 or l(w′) + 1 (where w′ = a1a2 . . . ar−1, w = w′ar),
this implies l(w) = r− 2. So there are generators s1, s2, . . . , sr−2 such that w = s1s2 . . . sr−2. Then
s1s2 . . . sr−2ar is reduced expression of w′, and we see that ar ∈ Dr(w

′). Then, using (i) we may
transform (a1, a2, . . . , ar−1) into an expression ending with ar, which brings us back to the case
ar = ar−1 that has been dealt with already. Q. E. D.

Corollary 3.2 Let a = (a1, a2, . . . , ar) be an expression such that the subwords (a1, a2, . . . , ar−1)
and (a2, a3, . . . , ar) are both reduced, but a is not. Then a1(a2 . . . ar−1)ar = a2 . . . ar−1. In other
words, if w ∈ W and s, t ∈ S satisfy l(sw) = l(w) + 1 and l(wt) = l(w) + 1 but l(swt) < l(w) + 2,
then sw = wt.

Proof: By (ii) above we can apply braid rewritings a certain number of times and eventually
reach an expression which contains identical successive characters. If one of this braid manipula-
tions involves the whole expression, it means that our initial a was of the form Mst from the start,
and the result is clear in this case. So we may assume that all those braid manipulations involve
only strict subwords of a. But then the expression a′ obtained after all those braid rewritings still
has the property that a′ is nonreduced but becomes reduced if the leftmost or rightmost character
is deleted. Thus we may assume that a′ = a, i.e. that aj = aj+1 for some j. Since (a1, a2, . . . , ar−1)
is reduced we have j = r − 1, and since (a2, a3, . . . , ar) is reduced we have j = 1. Eventually r = 2
and we are done. Q. E. D.

Recall that a monoid is a pair M = (M, ·) such that M is a set and · is an associative operation
on M . Part (i) of proposition 3.1 can be nicely formalized as follows:
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Proposition 3.3 (Matsumoto) Let M = (M, ·) be a monoid. Let f : S → M be a function
such that

[f(s), f(t),mst〉 = [f(t), f(s),mst〉, whenever s 6= t ∈ S,mst <∞ (3.1)

Then f can be extended into a unique map F : W →M such that

F (s1s2s3 . . . sr) = f(s1)f(s2) . . . f(sr) for any reduced expression (s1, s2, . . . sr). (3.2)

Here are some typical applications of this result: if we take M to be (P(S),∪) (the set of
subsets of S, with union) and f(s) = {s} we obtain a function supp : W → P(S) (supp(w) is called
the support of w) such that for any reduced expression (s1, s2, . . . sr),

supp(s1s2s3 . . . sr) = {s1, s2, . . . sr} (3.3)

Also, if we take M to be (P(W ), ⋆) where the star operation is defined as A ⋆ B = {ab| a ∈
A, b ∈ B}, and f(s) = {e, s}, we obtain a function I : W → P(W ) such that for any reduced
expression (s1, s2, . . . sr),

I(s1s2s3 . . . sr) = {si1si2 . . . sik | 1 ≤ i1 < i2 < . . . < ik ≤ r} (3.4)

We then define an ordering on W , called the Bruhat-Chevalley ordering, or simply Bruhat
ordering, by u ≤ v if and only if u ∈ I(v). We develop the properties of this ordering in section 5.

4 Subgroups and cosets of Coxeter groups

Proposition 4.1 Let (W,S) be a Coxeter system, and let J ⊆ S. Then (< J >, J) is again a
Coxeter system.

Proof: Let (W ′, S ′) be the Coxeter system defined by S ′ = J and the Coxeter matrix m′
st = mst

for s, t ∈ J . Clearly, we have a canonical surjection π : W ′ →< J >⊆ W , and we must show that π
is in fact an isomorphism. Proposition 3.1.(ii) shows that there is a way to decide if an expression
is reduced that uses the Coxeter matrix only; therefore s1s2 . . . sr is reduced in W ′ if and only if
π(s1)π(s2) . . . π(sr) is reduced in W , for any s1, s2, . . . , sr ∈ J . Thus π preserves length and is a
isomorphism. Q. E. D.

The subgroups < J > are called parabolic subgroups of W . We define the sets

JW = {w ∈ W | l(jw) = l(w) + 1 for any j ∈ J} (4.1)

Lemma 4.2 If j ∈< J > and w ∈ JW , then l(jw) = l(j) + l(w). Thus

JW = {w ∈ W | w has minimal length in its coset < J > w}

Proof: Let j = j1j2 . . . jr be a reduced expression for j. We argue by induction on r, the result
being clear if r = 1. Put j′ = j2 . . . jr. Define a two-periodic sequence (sk) by s1 = j1 and s2 = j2.
Using lemma 2.4 and changing (j3, . . . , jr) if necessary, we may assume that j3 = s3, j4 = s4 . . . up
to a last index x such that jx = sx and j′′ = jx+1jx+2 . . . jr is such that neither j1 nor j2 are in
the left descent set of j′′. By the induction hypothesis we have l(j′w) = l(j′) + l(w), and hence
l(jw) = l(j) + l(w) − 2 or l(j) + l(w). Suppose by contradiction that l(jw) = l(j) + l(w) − 2.
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Then j1 is in the left descent set of j′w, so by corollary 2.6, mj1j2 is finite and Mj1j2 is a prefix
of j′w. In other words, (putting m = mj1j2) s2s3 . . . sm+1 is a prefix of s2s3s4 . . . sxj

′′w. Thus
sx+1sx+2 . . . sm+1 is a prefix of j′′w, and in particular sx+1 is in the left descent set of j′′w. Then,
if we put j′′′ = sx+1j

′′, we have l(j′′′) = l(j′′) + 1 ≤ l(j) − 1 (since neither j1 nor j2 are in the
left descent set of j′′) and l(j′′′w) = l(j′′w) − 1 < l(j′′′) + l(w), which contradicts the induction
hypothesis. Q. E. D.

Definition 4.3 Let (W,S) be a Coxeter system. A left (resp. right) parabolic coset in W is
a subset of W of the form < J > w (resp. w < J >) with w ∈ W,J ⊆ S.

Proposition 4.4 Let (W,S) be a Coxeter system.
(i) A left parabolic coset in W has a unique element of minimal length.
(ii) Any w ∈ W can be written uniquely j · w′ with j ∈< J > and w′ ∈ JW .

Proof: Clearly (ii) follows immediately from (i) and lemma 4.2, so that we only need to show
(i). Suppose by contradiction that there are two minimal elements w1 and w2 in the same coset.
Then there is a j ∈< J > such that w2 = jw1, whence l(w2) = l(j) + l(w1) by lemma 4.2. But
l(w1) = l(w2) by assumption, so l(j) = 0 and w1 = w2. Q. E. D.

Of course those results can be symmetrized into a “right” version, and we may thus define for
K ⊆ S

WK = {w ∈ W | l(wk) = l(w) + 1 for any k ∈ K} (4.2)

We are now going to expound the analogous results for two-sided actions, which are slightly
more complicated. Let J,K be two subsets of S. Call a subset K ′ of K distinguished (with
respect to J ) if it is of the form (w−1Jw) ∩K for some w ∈ W . Let

JWK = (JW ) ∩ (WK) (4.3)

Then lemma 4.2 becomes

Lemma 4.5 (i) Let j ∈< J > and w ∈ JWK. Let K ′ be the associated distinguished subset:
K ′ = (w−1Jw) ∩K, and let k0 ∈

K′

K. Then l(jwk0) = l(j) + l(w) + l(k0).

(ii) Let j, w,K ′ be as in (i) above and let k ∈< K >. Write k = k′ · k0 with k′ ∈< K ′ >

and k0 ∈ K′

< K >, as in proposition 4.4.(ii). Then the element j′ = wk′w−1 is in < J >,
jwk = jj′wk′ and l(jwk) = l(jj′) + l(w) + l(k′). Thus

JWK = {w ∈ W | w has minimal length in its coset < J > w < K >}

Proof: (i) We must show that for any k ∈ K′

< K >, we have w · k ∈ JW . We do this by
induction on r = l(k), the result being clear if r = 0. Let k = k1k2 . . . kr be a reduced expression
for k; put k− = k1k2 . . . kr−1. Then w · k− ∈ JW , by the induction hypothesis. Suppose, by con-
tradiction, that w · k 6∈ JW . Then there is a j1 ∈ J such that j1 ∈ Dr(wk). But j1 6∈ Dr(wk

−), so
that corollary 3.2 yields wk = j1wk

−. Thus, if we put k′′ = k(k−)−1 ∈< K >, we have j1w = wk′′.
We deduce l(k′′) = 1 and hence k′′ ∈ K ′, which contradicts k ∈ K′

< K >.

(ii) This is now clear, thanks to (i). Q. E. D.
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Definition 4.6 Let (W,S) be a Coxeter system. A two-sided parabolic coset in W is a
subset of W of the form < J > w < K > with w ∈ W,J,K ⊆ S.

And proposition 4.4 becomes

Proposition 4.7 Let (W,S) be a Coxeter system.
(i) A two-sided parabolic coset in W has a unique element of minimal length.
(ii) Any w ∈ W can be written uniquely j · w′ · k with j ∈< J >,w′ ∈ JWK, and k ∈ K′

< K >

(where K ′ is the distinguished subset of K associated to w: K ′ = (w−1Jw) ∩K).

The proof is very similar to the one for proposition 4.4 and we omit it.

5 The Bruhat ordering

The Bruhat-Chevalley ordering on a Coxeter group W was defined at the end of section 3. Note
that x ≤ y ⇒ l(x) ≤ l(y) and that for any y ∈ W , [e, y] = I(y) (in the sense of (3.4)) so that [e, y]
(and hence any interval [x, y] as well) is finite. Here is one of the basic properties of the Bruhat
order (which incidentally provides an algorithm for deciding if two elements are in Bruhat order):

Proposition 5.1 Let x, y ∈ W and s ∈ Dl(y), so that sy < y. Then
(i) If s ∈ Dl(x), then x ≤ y if and only if sx ≤ sy.
(ii) If s 6∈ Dl(x), then x ≤ y if and only if x ≤ sy.

In other words, if x− = min(x, sx), then x ≤ y if and only if x− ≤ sy.

Later we will see that this means that left multiplication by s is a “special matching” with
respect to the Bruhat ordering.

Proof: Let sy = y2 . . . yr be a reduced expression of sy.
(i) Let x′ = sx. Then (x ≤ y) ⇔ ( Some subexpression of (s, y2, . . . , yr) represents s · x′) ⇔ ( Some
subexpression of (y2, . . . , yr) represents x′) ⇔ (x′ ≤ y).
(ii) Since sy < y, the “if” is clear. Conversely, suppose x ≤ y. Putting y1 = s, there is a sequence
1 ≤ i1 < i2 < . . . < ik ≤ r such that x = yi1 . . . yik . Then i1 > 1 since s 6∈ Dl(x). We then deduce
x ≤ y2y3 . . . yr = sy. Q. E. D.

Corollary 5.2 Let x, y, s be as in the proposition above.
(i) If s 6∈ Dl(x), then the interval [x, y] is invariant by left multiplication by s.
(ii) If s ∈ Dl(x), then [sx, y] \ [x, y] = [sx, sy] \ [x, sy].

Proof: (i) Let w ∈ [x, y]. If sw < w, then x < sw by proposition 5.1.(ii). and sw < w < y by
transitivity. If w < sw, then sw < y by proposition 5.1.(ii). and x < w < sw by transitivity. In
both cases we have sw ∈ [x, y].

(ii) Let A = [sx, y] \ [x, y] and B = [sx, sy] \ [x, sy]. Then A = {w ∈ [sx, y]| w 6≥ x} and
B = {w ∈ [sx, sy]| w 6≥ x}. It is clear then that B ⊆ A, and all that remains to be shown is that
w ≤ sy for any w ∈ A. But if w ∈ A we have s 6∈ Dl(w) (otherwise w ≥ x by 5.1.(ii)) and hence,
by 5.1.(ii) again, w ≤ sy. Q. E. D.

Next we show that the Bruhat ordering is “Eulerian”:
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Corollary 5.3 A Bruhat interval has as many elements of odd length as elements of even length.

Proof: We use the notation and results of the corollary above; we must show that [x, y] has
as many elements of odd length as elements of even length. We argue by induction on l(y) − l(x),
the result being clear if l(y) = l(x). If s 6∈ Dl(x), then left multiplication by s provides a bijection
between the elements of odd length and those of even length in [x, y], and we are done. So suppose
s ∈ Dl(x). For any finite X ⊆ W , denote by δ(X) the number of odd elements minus the number
of even elements in X (so that we must show δ([x, y]) = 0). Then

δ([sx, y]) − δ([x, y]) = δ([sx, sy]) − δ([x, sy])

But δ([w, sy]) = 0 for any w ∈ {x, sx} by the induction hypothesis, and δ([sx, y]) = 0 by the
involution argument above. This concludes the proof. Q. E. D.

From this last result we immediately deduce the following:

Corollary 5.4 Let I = [x, y] be a Bruhat interval of length 2, which means that x ≤ y, l(y) =
l(x) + 2. Then there are two elements w1, w2 with l(w1) = l(w2) = l(x) + 1 such that I =
{x,w1, w2, y}.

The Bruhat order is also “graded”:

Proposition 5.5 If x ≤ y ∈ W there is a finite chain x = x1 < x2 . . . < xn−1 < xn = y such
that l(xi+1) = l(xi) + 1 for all i ∈ [1, n].

Proof: We argue by induction on l(x) + l(y) = d. If d = 0 then x = y = e and we are done.
So suppose d > 0; then y > e. Let s ∈ Dl(y).

If s 6∈ Dl(x), then x ≤ sy and by the induction hypothesis there is a finite chain x = x1 <

x2 . . . < xn−1 < xn = sy such that l(xi+1) = l(xi) + 1 for all i ∈ [1, n]. Then all we need to do is
extend that chain with xn+1 = y.

If s ∈ Dl(x), then sx < x ≤ y and by the induction hypothesis there is a finite chain
sx = x1 < x2 . . . < xn−1 < xn = y such that l(xi+1) = l(xi) + 1 for all i ∈ [1, n]. Since s 6∈ Dl(x1)
and s ∈ Dl(xn), there is a smallest i such that s ∈ Dl(xi). In particular, i > 1 and s 6∈ Dl(xi−1).
We deduce xi−1 ≤ sxi, hence xi−1 = sxi since those two words have the same length. If we define
a chain x′ = (x′1, . . . , x

′
n+1) by x′j = sxj for j < i, x′j = xj+1 for i ≤ j ≤ n − 1. Then x′ is a chain

joining x to y as required. Q. E. D.

6 Examples of Coxeter groups

In this very short section we only gather, for completeness’ sake, the definition of some classical Cox-
eter systems that we will use (very briefly), and do not mention the well-known classification results
and properties. The reader is referred to [17]. Below n is a positive integer and S = {1, 2, . . . , n}.
A Coxeter system is uniquely defined by its Coxeter graph, which is a labeled graph with vertex
set S and edge set E = {{s, s′}|s, s′ ∈ S, s 6= s′,ms,s′ ≥ 3}, and each edge {s, s′} ∈ E is labeled
ms,s′ . When mss′ = 3, the most frequent case, the label 3 is omitted on the drawings. We put
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E ′ = {{s, s′} ∈ E|ms,s′ > 3}.

If E = {{j, j + 1}|1 ≤ j ≤ n − 1}, E ′ = ∅ then (W,S) is called a Coxeter system of type An.
The corresponding Coxeter graph is

❡1 ❡2 ❡3. . . . . . . . . ❡n-1 ❡n

If E = {{j, j + 1}|1 ≤ j ≤ n− 1}, E ′ = {{1, 4}} and m1,2 = 4, then (W,S) is called a Coxeter
system of type Bn. The corresponding Coxeter graph is

❡1 4 ❡2 ❡3. . . . . . . . . ❡n-1 ❡n

If n ≥ 3, E = {{1, 3}} ∪ {{j, j + 1}|2 ≤ j ≤ n − 1}, E ′ = ∅, then (W,S) is called a Coxeter
system of type Dn. The corresponding Coxeter graph is

❡1 ❍❍❍

❡✟✟✟
2

❡3 ❡4 ❡5. . . . . . . . . ❡n-1 ❡n

If 6 ≤ n ≤ 8, E = {{1, 3}, {2, 4}} ∪ {{j, j + 1}|3 ≤ j ≤ n − 1}, E ′ = ∅, then (W,S) is called a
Coxeter system of type En. The corresponding Coxeter graph is

❡1 ❡3

❡2

❡4 ❡5. . . . . . . . . ❡n-1 ❡n

If n ≥ 3, E = {{1, n}} ∪ {{j, j + 1}|2 ≤ j ≤ n − 1}, E ′ = ∅, then (W,S) is called a Coxeter
system of type Ãn. The corresponding Coxeter graph is

❡2 ❡3

❡
1

PPPPPPPP ✏✏✏✏✏✏✏✏
❡4 ❡5. . . . . . . . . ❡n-1 ❡n

7 The Shortlex normal form

Consider a Coxeter system (W,S) with S = {1, 2, . . . , n}. Let Yj(1 ≤ j ≤ n) be the parabolic
subgroup of W defined by Yj =< {1, 2, . . . , j} >, and Xj = {w ∈ Yj|Dl(w) ⊆ {j}}. Then by
proposition 4.4, each w ∈ Yj can be uniquely written w = y · x with y ∈ Yj−1, x ∈ Xj. This we
denote by

Yj = Yj−1 ·Xj (7.1)

Since Y1 = X1 = {e, 1}, it follows by induction on j that Yj = X1 ·X2 . . . ·Xj for each j, so that
any w ∈ W can be written uniquely w = x1x2 . . . xn with each xi in Xi. We call this decomposition
the X-decomposition of w (it is of course relative to the numbering of S that we have chosen).

Remember that the Shortlex ordering ≤ShortLex on words with characters in S = {1, 2, . . . , n} is
defined recursively as follows: a = (a1, a2, . . . , ar) ≤ShortLex b = (b1, b2, . . . , bs) if and only if, r = 0,
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or r < s, or a = b, or r = s and ak < bk, where k is the smallest index such that ak 6= bk. The
Shortlex order is a total order on S∗. For each w ∈ W , we define the (Shortlex) normal form of w
(denoted NF (w)) as the smallest expression representing w in the sense of ≤ShortLex (in particular
it is a reduced expression).

There is an interesting compatibility with the X-decomposition. Consider decomposition (7.1)
again: write w ∈ Yj as w = yx, y ∈ Yj−1, x ∈ Xj. Suppose that x 6= e. Then Dl(x) = {j} and
any reduced expression of x starts with a j. Let (w1, w2, . . . , wn) be the normal form of w. Since
w ≤ x ≤ n, the set A = {i ∈ [1, n]|wi = j} is nonempty; call i0 its smallest element. Then
wi < j for i < i0, hence y′ = w1w2 . . . wi0−1 ∈ Yj−1. But we also have x′ = wi0+1wi0+2 . . . wn ∈ Xj

(otherwise there would be a reduced expression a of x′ starting with a generator smaller than n,
and the concatenation of (w1, w2, . . . , wi0−1) and a would be a smaller representant of w than the
normal form, which is impossible). So by the uniqueness in (7.1), we have x′ = x, y′ = y. In other
words, NF (w) = NF (y)NF (x). This clearly remains true when x = e. We deduce the following:

Proposition 7.1 If w = x1x2 . . . xn is the X-decomposition of w ∈ W , then

NF (w) = NF (x1)NF (x2) . . . NF (xn).

8 Cocycles and Coxeter groups

In this section we will briefly use a special representation of W , rather different from the one we
constructed in section 2. Let S be the group of permutations of E = T × {−1, 1} (recall the
definition of reflections and the set T at the end of section 2). For s ∈ S define an element fs ∈ S

as follows:

fs(t, ε) = (sts, (−1)δt,sε) (8.1)

It is easily seen that f 2
s = idE. Furthermore, we have for any reduced expression s1s2 . . . sn of

an element w ∈ W ,

fs1fs2 . . . fsn
(t, ε) = (wtw−1, (−1)dε), with

d = δt,sn
+ δt,snsn−1sn

+ . . .+ δt,snsn−1...s2s1s2...sn−1sn
.

(8.2)

In the particular case when m = ms1,s2 is finite, n = 2ms1,s2 and (si) is two-periodic, we have d =∑n

k=1 δt,uk
where ui = snsn−1 . . . si+1sisi+1 . . . sn−1sn. Note that l(ui) = 2(n− i)+1 = 2(2m− i)+1.

Then, for any k ∈ [1,m], we have um+k = uk(sn−2sn−3)
m = uk so that d = 2(

∑m

k=1 δt,uk
) and

(−1)d = 0. This shows that (fs1fs2)
m = idE. Eventually the mappings fs define an action of W on

E.

Remember that for any set X, its power set may be viewed as a vector space over F2 with basis
indexed by X, indentifying a subset of X with its characteristic function. Then addition of vectors
corresponds to symmetric difference of sets. Thus, we shall use the symbol + to denote symmetric
difference. We define a function N : W → P(T ) by putting for w ∈ W ,

N(w) = {t ∈ T |fw(t, ε) = (wtw−1,−ε) for any ε ∈ {−1, 1}} (8.3)

15



We claim that N is a cocycle on the Coxeter system (W,S), i.e. it satisfies

{
(i) N(s) = {s} for any s ∈ S

(ii) N(xy) = y−1N(x)y +N(y)
(8.4)

Indeed, (i) follows from the definition of fs; this definition also yields (ii) when x ∈ S, the
general case following by induction on l(x). Remarkably, the converse is also true:

Theorem 8.1 Let W be a group and let S be a set of elements of order two generating W . Let
T = {wsw−1|s ∈ S,w ∈ W}. Then (W,S) is a Coxeter system if and only if (W,S) admits a
cocycle, i.e. a function N : W → P(T ) satisfying (8.4).

Proof: The “only if” has been just shown; let us prove the “if”. Thus let (W,S) be a pair
as above, with a cocyle function N . For s, t ∈ S, let mst be the order of st in W ; this Coxeter
matrix defines a Coxeter system (W ′, S), and we have a surjective homomorphism π : W ′ → W . It
remains to be shown that π is in fact an isomorphism.

On W , we may redefine the notion of length, reduced expression, descent sets, prefixes and
suffixes as we did in section 1. It will suffice to show that corollary 2.6 still holds in W , because it
will entail proposition 3.1 for W , showing that π preserves length and reduced expressions.

We have for s1 ∈ S and y ∈ W ,

N(s1y) = s1N(y)s1 + {s1} (8.5)

and using this last formula twice,

N(s1s2y) = s1s2N(y)s2s1 + {s2s1s2} + {s2} (8.6)

continuing this way, taking y = e adding more elements s3, s4, . . . sn ∈ S, and putting w =
s1s2 . . . sn, ti = snsn−1 . . . si+1sisi+1 . . . sn(1 ≤ i ≤ n),

N(w) = {t1} + . . .+ {t2} + {tn} (8.7)

Suppose now that (s1, s2, . . . , sn) is a reduced expression. We have

wti = s1 . . . ŝi . . . sn, so l(wti) < l(w) (8.8)

Moreover, for indices i < j, if ti = tj we deduce sjsj−1 . . . si+1sisi+1 . . . sj−1sj = sj, sisi+1 . . . sj−1sj =
si+1 . . . sj−2sj−1, and hence w = s1 . . . ŝi . . . ŝj . . . sn, contradicting the assumption that (s1, s2, . . . , sn)
is reduced. Therefore the ti are distinct, and (8.7) becomes

N(w) = {t1, t2, t3, . . . , tn}, if (s1, s2, . . . , sn) is reduced (8.9)

Let t ∈ T . We can write t = r1r2 . . . rp−1rprp−1 . . . r1 with each ri ∈ S. Let n = 2p− 1. Define
n elements s1, . . . sn of S by (s1, s2, . . . , sn) = (r1, r2, . . . rp−1, rp, rp−1, . . . r1), so that t = s1s2 . . . sn.
Then (8.7) holds. But ttit = t2p−i(1 ≤ i ≤ p), so that (ti = t) ⇔ (t2p−i = t). Since tp = t, the
number of occurrences of t in t1, t2, . . . , tn is odd, whence t ∈ {t1}+ . . .+ {t2}+ {tn} = N(t). Thus

t ∈ N(t), for all t ∈ T (8.10)
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Let t ∈ T . We claim that (t ∈ N(w)) ⇔ (l(wt) < l(w)). Indeed, if t ∈ N(w) then l(wt) < l(w)
by (8.8) and (8.9), and if t 6∈ N(w) then t ∈ N(t) but t 6∈ tN(w)t, whence t ∈ tN(w)t + N(t) =
N(wt), and by what we have just shown l((wt)t) < l(wt), i.e. l(w) < l(wt). Therefore

{
If t ∈ N(w), then l(wt) < l(w)
If t 6∈ N(w), then t ∈ N(wt), l(w) < l(wt)

(8.11)

In particular, we have Dr(w) = S∩N(w). We are now ready to re-show corollary 2.6 (we use the
“suffix” version here). We argue by induction on l(w), the result being clear if l(w) ≤ 1. So suppose
s, t ∈ Dr(w). Then there is a reduced expression for w ending with an s: w = s1s2 . . . sn−1sn, with
sn = s. Also t ∈ N(w) and by (8.9) there is an index i such that t = snsn−1 . . . si+1sisi+1 . . . sn,
whence sisi+1 . . . sn = si+1 . . . snt. If i > 1, then we may apply the induction hypothesis to
w′ = sisi+1 . . . sn, and we are done. We may therefore assume i = 1. Then we may replace
the original reduced expression (s1 . . . sn−1)s with (s2 . . . sn−1)st. Restarting the reasoning with
that new expression, we obtain w = (s3 . . . sn−2)sts, and continuing this way we eventually see that
ms,t is finite and that Ms,t is a suffix of w, as wished. Q. E. D.

Lemma 8.2 (i) Reflections have odd length.
(ii) Let t be a reflection. Define n ∈ N by l(t) = 2n+1, and let s1s2 . . . s2n+1 be a reduced expression
for t. Then t = s1s2 . . . sn−1snsn−1 . . . s1.

Proof: (i) Let ε : S → {±1} be the map defined by ε(s) = −1 for all s ∈ S. It is easily seen
that ε extends to a homomorphism W → {±1}. Then ε has two fibers, the set of elements of even
length and the set of element of odd length, hence the result.

(ii) Put x = sn . . . s1 and y = sn+2 . . . s2n+1, so that t = x−1sn+1y. Then l(x) = l(y) =
n < n + 1 = l(sn+1x) = l(sn+1y), and sn+1yt = x. By (8.9) and (8.11), there is an index
i ∈ [n + 1, 2n + 1] such that t = s2n+1s2n . . . si+1sisi+1 . . . s2n+1. Then x = sn+1 . . . ŝi . . . s2n+1, and
l(t) ≤ 1 + 2(2n + 1 − i), whence 2n + 1 ≤ 3 + 4n− 2i and 2i ≤ 2n + 2. We deduce i = n + 1 and
x = y, t = x−1sn+1x as desired. Q. E. D.

We now relate reflections to the Bruhat order:

Corollary 8.3 (i) Let x, y ∈ W such that l(y) = l(x) + 1. Then x ≤ y if and only if x−1y ∈ T .
(ii) If w ∈ W and t ∈ T , then w < wt if t ∈ N(w) and wt < w if t 6∈ N(w).
(iii) Let x, y ∈ W . Then x ≤ y if and only if there is a finite chain x = x1 < x2 . . . < xn−1 < xn = y

such that x−1
i xi+1 ∈ T , l(xi+1) = l(xi) + 1, for all i ∈ [1, n− 1].

Proof: Let y = s1 . . . sn be a reduced expression for y, and put t = x−1y. As in (8.7) and (8.8),
put ti = sn+1 . . . si+1sisi+1 . . . sn for each i ∈ [1, n]. If x ≤ y, we must have x = s1s2 . . . ŝi . . . sn for
some i, hence t = ti ∈ T . Conversely, if t ∈ T then t ∈ N(y) by (8.11), hence t = ti for some i by
(8.9), and x = s1s2 . . . ŝi . . . sn ≤ y. This proves (i), and (ii) then follows from (i) and (8.11), while
(iii) follows from (i) and proposition 5.5. Q. E. D.

The attentive reader will have noticed that we used the same letter N to denote a geometric
function in (2.7) and the cocycle of this section. We explain now how the two can be identified:
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Remark 8.4 Let Ngeom be the function defined in (2.7) and Ncocycle the function defined in this
section. Then Ngeom(w) = {αt|t ∈ Ncocycle(w)}.

This follows immediately from the explicit formulas for each “N” function ((2.9) for Ngeom, and
(8.9) for Ncocycle).

9 Reflection subgroups

A subgroup W ′ of W is a reflection subgroup of W if it is generated by reflections, i.e. if
W ′ =< W ′ ∩ T >. One of the main results of this section is that reflection subgroups are Coxeter
groups; we even have a canonical system of generators, defined by

S(W ′) = {t ∈ T |N(t) ∩W ′ = {t}} (9.1)

where N is the cocycle function defined in the previous section. We will use theorem 8.1, by showing
that the function N ′ defined for all w ∈ W by

N ′(w) = N(w) ∩W ′ (9.2)

is a cocycle function on (W ′, S(W ′)).

Lemma 9.1 Let W ′ be a subgroup of W (not necessarily a reflection subgroup). Then:
(i) If s ∈ S \W ′ then S(sW ′s) = sS(W ′)s.
(ii) If t ∈ W ′ ∩ T then there is m ∈ N and t0, . . . , tm ∈ S(W ′) such that t = tm . . . t1t0t1 . . . tm.
(iii) If x ∈ W and y ∈ W ′, then N ′(xy) = y−1N ′(x)y +N ′(y).

Proof: (i) Let u ∈ T ∩ W ′. Then N(sus) = {s} + {susus} + sN(u)s, so sN(sus)s =
{s} + {usu} + N(u). Now s 6∈ W ′ and usu 6∈ W ′, whence (sN(sus)s) ∩ W ′ = N(u) ∩ W ′,
and N(sus) ∩ (sW ′s) = s(N(u) ∩W ′)s. In particular, if u ∈ S(W ′) then sus ∈ S(sW ′s). This
shows sS(W ′)s ⊆ S(sW ′s), and replacing W ′ with sW ′s yields the reverse inequality.

(ii) We argue by induction on l(t). If l(t) = 1 then t ∈ S and we may take m = 0, t0 = t.
Suppose now that the result is true for all pairs (W ′′, t′′) where W ′′ is a subgroup of W and
t′′ ∈ W ′′ ∩ T, l(t′) < l(t). By lemma 8.2, there is a generator s ∈ S such that t = st′′s

with l(t′′) = l(t) − 2. Let W ′′ = sW ′s. By the induction hypothesis, there is a m ∈ N and
t0, . . . , tm ∈ S(W ′′) such that t′′ = tm . . . t1t0t1 . . . tm.

If s ∈ W ′, then W ′′ = W ′. Putting tm+1 = s, we have t = tm+1tm . . . t1t0t1 . . . tmtm+1 and
ti ∈ S(W ′) for all i ∈ [0,m+ 1].

If s 6∈ W ′, then (i) yields S(W ′′) = sS(W ′)s. Putting t′i = stis for i ∈ [0, n], we have
t = stm . . . t1t0t1 . . . tms = t′m . . . t

′
1t

′
0t

′
1 . . . t

′
m and t′i ∈ S(W ′) for all i ∈ [0,m].

(iii) We have

N ′(xy) = N(xy) ∩W ′

= (y−1N(x)y +N(y)) ∩W ′

= (y−1N(x)y ∩W ′) + (N(y) ∩W ′)
= y−1(N(x) ∩W ′)y +N ′(y) (note that W ′ = yW ′y−1 since y ∈ W ′)
= y−1N ′(x)y +N ′(y)
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Q. E. D.

Theorem 9.2 Let W ′ be a reflection subgroup of W ′. Let S ′ = S(W ′). Then
(i) (W ′, S ′) is a Coxeter system.
(ii) W ′ ∩ T = ∪w′∈W ′w′S ′w′−1.
(iii) For w′ ∈ W ′, N(w′)∩W ′ = {t ∈ W ′ ∩ T |l′(w′t) < l′(w′)} where l′ is the length function of the
Coxeter system (W ′, S ′).

Proof: Let W ′′ =< S ′ > and T ′ = ∪w′∈W ′w′S ′w′−1. Since S ′ ⊆ W ′, we have W ′′ ⊆ W ′

and T ′ ⊆ T ∩ W ′. By lemma 9.1(ii), we have T ∩ W ′ ⊆< S ′ >, hence T ′ = T ∩ W ′ and
W ′ =< W ′ ∩ T >=< T ′ >⊆< S ′ >⊆ W ′′. This shows that W ′ =< S ′ > and that (ii) holds.

For s′ ∈ S ′, we have N ′(s′) = {s′} by definition of S ′, and furthermore N ′(x′y′) = y′
−1
N ′(x′)y′+

N ′(y′) for x′, y′ ∈ W ′ by 9.1(iii). Thus N ′ is a cocycle on (W ′, S ′), and by theorem 8.1 we deduce
(i). Eventually, formula (8.11) of the proof of theorem 8.1 yields (iii). Q. E. D.

Now we are compare the Bruhat orders of W and W ′. The Bruhat graph Γ(W,S) of a Coxeter
system (W,S) is the directed graph whose set of vertices is W and whose set of edges is

E(W,S) = {(x, y) ∈ W 2|x−1y ∈ T, l(x) < l(y)} (9.3)

For any X ⊆ W , there is a corresponding induced subgraph ΓX whose set of vertices in X and
whose set of edges is EW,S ∩ (X ×X). Note that the transitive closure of the relation (x, y) ∈ EW,R
is the Bruhat order, according to corollary 8.3(iii).

Proposition 9.3 Let W ′ be a reflection subgroup of W , and let S ′ = S(W ′). Let L = xW be a
left coset of W ′ in W . Then
(i) Γ(W ′,S′) = ΓW ′

(ii) L contains an unique element x0 of minimal length.
(iii) The mapping θ : W ′ → L,w 7→ x0w satisfies N(θ(w)) ∩W ′ = N(w) ∩W ′ for w ∈ W ′.
(iv) θ is an isomorphism of directed graphs ΓW ′ → ΓL.
(v) If we equip W ′ with its own Bruhat order and L with the Bruhat order from W , then θ is an
injective morphism of partially ordered sets W ′ → L.

Proof: We use the notations l′, N ′ and T ′ as in the theorem above.
(i) The graphs Γ(W ′,S′) and ΓW ′ both have vertex set W ′. To show (i), we must also show that the
edges set are equal, i.e. that for (x, y) ∈ W ′ ×W ′ we have (x, y) ∈ E(W,S) ⇔ (x, y) ∈ E(W ′,S′). So
take (x, y) ∈ W ′ ×W ′. Then we have

(x, y) ∈ E(W,S) ⇐⇒ x−1y ∈ T, l(x) < l(y)
⇐⇒ x−1y ∈ T, x−1y 6∈ N(x)by corollary 8.3(ii)
⇐⇒ x−1y ∈ T ′, x−1y 6∈ N(x) by theorem 9.2(ii)
⇐⇒ x−1y ∈ T ′, x−1y 6∈ N ′(x)
⇐⇒ , x−1y ∈ T ′, l′(x) < l′(y) by theorem 9.2(iii)
⇐⇒ (x, y) ∈ E(W ′,S′)

This finishes the proof of (i).
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Let x0 be any element of minimal length in L. We defer the proof of the uniqueness of x0

(which is the content of (ii)) to the end, and prove the other properties first. For any t ∈ T ′ we
have l(x0t) ≤ l(x0), and even l(x0t) > l(x0) by corollary 8.3(ii). Thus N ′(x0) = ∅, and hence
N ′(x0y) = y−1N ′(x0)y + N ′(y) = N ′(y) for y ∈ W ′. This shows (iii). The mapping θ is clearly a
bijection; let us show that it is an isomorphism between ΓW ′ and ΓL. For (x, y) ∈ W ′ ×W ′, we
have θ(x)−1θ(y) = x−1x−1

0 x0y = x−1y

(θ(x), θ(y)) ∈ E(ΓL) ⇐⇒ θ(x)−1θ(y) ∈ T, θ(x)−1θ(y) 6∈ N(θ(x))
⇐⇒ x−1y ∈ T, x−1y 6∈ N(θ(x))
⇐⇒ x−1y ∈ T, x−1y 6∈ N(x) by (iii)
⇐⇒ (x, y) ∈ E(ΓW ′)

which proves (iv). Then (v) follows from (iv) and corollary 8.3(iii).

Finally, let us show (ii). Let w ∈ W ′ \ {e}; we must prove that l(x0w) > l(x0). Let
w = t1t2 . . . tr be a reduced expression for w with respect to the Coxeter system (W ′, S ′). Put
w0 = x,w1 = t1, . . . , wi = t1t2 . . . ti(1 ≤ i ≤ n). Then for each i ≥ 1, (wi, wi+1) ∈ E(ΓW ′), so
(θ(wi), θ(wi+1)) ∈ E(ΓL) by (iv). Thus l(x0wi) < l(x0wi+1), and we deduce l(x0) < l(x0w1) <
. . . l(x0wn) = l(x0w) as required. Q. E. D.

It is important to realize that in (v) the injective morphism θ is not an isomorphism in general.
For example:

Remark 9.4 Suppose that S = {a, b} and ma,b = ∞. Then the reflection subgroup W ′ =<
a, bab > satisfies S(W ′) = {a, bab}, so a is smaller than bab for the Bruhat ordering of W but not
for the Bruhat ordering of W ′.

Lemma 9.5 Let W ′ be a reflection subgroup of W . Let tα, tβ be two distinct reflections of S(W ′),
and let α, β be the corresponding roots in Φ+. Then B(α, β) ≤ 0 (where B is as in (2.6)).

Proof: We use induction on k = l(tα). When k = 1, we have α = αs for some s ∈ S. If
s ∈ Dr(tβ), then {s, tβ} ⊆ N(tβ) ∩W

′, hence tβ = s, contradicting tβ 6= tα. Therefore s 6∈ Dr(tβ),
and by corollary 2.12(iii) we are done.

Now assume k > 1, and that the result holds for all k′ < k. Let u ∈ Dr(tα), and define
α′ = u(α), β′ = u(β),W ′′ = uW ′u. By lemma 8.2(ii), we have l(tα′) = l(tα) − 2. Note that u 6∈ W ′

(otherwise {u, tα} ⊆ N(tα) ∩W
′, whence tα = u contradicting k > 1), so that lemma 9.1(i) yields

{α′, β′} ⊆ S(W ′′). Then we may apply the induction hypothesis: B(α′, β′) ≤ 0. Eventually, since
B is invariant, B(α, β) = B(uα′, uβ′) = B(α′, β′) ≤ 0. Q. E. D.

A reflection subgroup W ′ is called dihedral if |S(W ′)| = 2.

Lemma 9.6 Let t1, t2, . . . , t2n−1, t2n be 2n reflections in W such that

t1t2 = t3t4 = . . . = t2n−1t2n 6= e

Then the reflection subgroup W ′ =< t1, t2, . . . , t2n > is dihedral.
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Proof: For each i, denote by αi the positive root corresponding to ti. We do not change the
problem if we enlarge the Coxeter system (W,S) by adding new elements to S and new coefficients in
the Coxeter matrix accordingly. If we add a new generator s1 along with new coefficients (ms1s)s∈S,
then for a root α ∈ Φ+, α =

∑
s∈S asαs with as ≥ 0, we have

B(αs1 , α) = −
∑

s∈S

as|cos(
π

ms1s

)|

Thus, adding two new generators s1 and s2, we may choose the coefficients ms1s and ms2s so
that the following determinant is nonzero:

B(αs1 , α1) B(αs1 , α2)
B(αs2 , α1) B(αs2 , α2)

6= 0 (9.4)

For i ∈ [1, n] call fi the endomorphism of V defined by fi(x) = x− t2i−1t2i(x) for x ∈ V . Then

fi(x) = 2(B(x, tα2i
(α2i−1))α2i−1 +B(x, α2i)α2i)

so that Im(fi) ⊆ Rα2i−1+Rα2i. When i = 1, this inclusion is in fact an equality by (9.4). But by
assumption we have f1 = f2 = . . . fn, so Rα1 +Rα2 = Rα3 +Rα4 = . . . = Rα2n−1 +Rα2n. Let Γ be
the sets of positive roots corresponding to the reflections in S(W ′). Then Γ ⊆ W ′{α1, α2, . . . , α2n}
by theorem 9.2(ii), whence Γ ⊆< t1, t2, . . . , t2n > {α1, α2, . . . , α2n} ⊆ Rα1 + Rα2 + . . .Rα2n =
Rα1 + Rα2. By lemma 9.5, we have B(γ, γ′) ≤ 0 for any γ 6= γ′ in Γ. And finally, no nontrivial
linear combination with nonnegative coefficients of the elements of Γ equals zero (since Γ ⊆ Φ+).
Those three conditions on Γ impose that |Γ| ≤ 2, so that W ′ is dihedral as required. Q. E. D.

Recall some poset terminology. If x < y and no z satisifies x < z < y, we says that y covers x,
or that x is a coatom of y, or that y is an atom of x, and denote this by x ⊳ y. When there is a
length function (which is the case for the Bruhat order), this amounts to x < y and l(y) = l(x)+1.
Recall that the complete bipartite graph K(A,B) for disjoint sets A,B is the graph with vertex
set A ∐ B and edge set {{a, b}|a ∈ A, b ∈ B}, and that we denote by Ki,j the isomorphism class
of any K(A,B) with |A| = i, |B| = j. Here is a beautiful consequence of the theory of reflection
subgroups:

Theorem 9.7 The directed graph with edge set W and whose edges are the pairs of the form
(x, y) with x⊳y does not have K3,2 or K2,3 as an induced subgraph. In other words, if two elements
in W have three coatoms (or three atoms) in common, they are equal.

Proof: We will show that if a, b have three coatoms x, y, z in common then a = b; the proof
for the “atoms” version is quite similar. Suppose by contradiction that a 6= b. Define six reflections
as follows (remember corollary 8.3(i)):

t1 = a−1x, t2 = x−1b, t3 = a−1y, t4 = y−1b, t5 = a−1z, t6 = z−1b

Then t1t2 = t3t4 = t5t6 = a−1b 6= e. By lemma 9.6 above, W ′ =< t1, t2, t3, t4, t5, t6 > is a dihedral
reflection subgroup of W . By 9.3(v), there is an injective morphism θ : W ′ → aW ′ between the
Bruhat order in W ′ and the induced Bruhat order in aW ′. In particular, θ−1(x), θ−1(y) and θ−1(z)
are three incomparable elements in the dihedral group W ′, and this is a contradiction. Q. E. D.
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A poset is said to be dihedral if it is isomorphic to an interval in a dihedral Coxeter group.
Thus, for each length n, there is exactly one dihedral poset in length n, which has a minimum and
maximum element, and two elements in each intermediate length (see Figure 1).

❡
❡

❡

❡

❡

❡

❡
❡✟✟✟

❍❍❍

❅
❅❅�
�� ❅

❅❅�
��

❍❍❍

✟✟✟

Figure 1: The dihedral poset in length 4

In a poset P with minimum element x, an element y ∈ P is said to be dihedral when the interval
[x, y] (as a subposet of P ) is dihedral. The bud B(P ) of P is defined to be the set of the dihedral
elements of P (cf. e.g. [11]).

There are two main corollaries of the important result in theorem 9.7. First, combining it with
corollary 5.4, we obtain:

Corollary 9.8 Let I be a Bruhat interval. The dihedral elements of I are exactly the elements
of I that have at most two coatoms.

Corollary 9.9 Let I be a Bruhat interval. If two elements in W have the same set of coatoms
and one of them is non-dihedral, then they are equal.

10 The Hecke algebra

The main result of this section is the following:

Theorem 10.1 Let (W,S) be a Coxeter system and q be an indeterminate. Then there is a

unique associative algebra H over the ring Z[q
1
2 , q−

1
2 ], called the Hecke algebra of W , that has

the following properties:
(i) The Z[q

1
2 , q−

1
2 ]-module H has a basis (Tw)w∈W indexed by W .

(ii) The equality TwTw′ = Tww′ holds whenever w,w′ ∈ W, l(ww′) = l(w) + l(w′).
(iii) We have T 2

s = (q − 1)Ts + qTe for all s ∈ S.

We shall actually prove a slightly stronger result, where T 2
s = (q− 1)Ts + qTe in (iii) is replaced

with T 2
s = aTs + bTe for two independent indeterminates a, b. We start with a real vector space

V with basis (Tw)w∈W , and we will progressively define the multiplication V × V that will turn V
into an algebra. For each s ∈ S, define an endomorphism f1(s) of V by

f1(s)(Tw) =

{
Tsw if s 6∈ Dl(w)
aTw + bTsw if s ∈ Dl(w)

(10.1)

and symmetrically, define another endomorphism g1(t)(t ∈ S) by

g1(t)(Tw) =

{
Twt if t 6∈ Dr(w)
aTw + bTwt if t ∈ Dr(w)

(10.2)

22



Lemma 10.2 The endomorphisms f1(s) and g1(t) commute, for any s, t ∈ S.

Proof: Let w ∈ W and s, t ∈ S. Put f = f1(s), g = g1(t). We must show that fg(Tw) = gf(Tw).
By proposition 4.7, the orbit Ω =< s > w < t > has a unique element w0 of minimal length. Then
Ω = {w0, sw0, w0t, sw0t}. Denote V0 the subspace of V spanned by the Tu for u ∈ Ω; then V0 is
invariant by f and g. It will suffice to show that those two endomorphisms commute on V0.

If sw0 = w0t, then Ω = {w0, sw0}, and f and g coincide on V0, so that they certainly commute
in this case.

If sw0 6= w0t, then the four elements w0, sw0, w0t, sw0t are distinct (so that |Ω| = 4) and fur-
thermore t 6∈ Dr(sw0), s 6∈ Dl(w0t) by corollary 3.2. We then enumerate the various cases:

If w = w0, then f(Tw) = Tsw0 , g(Tw) = Tw0t and fg(Tw) = gf(Tw) = Tsw0t.
If w = sw0, then f(Tw) = aTsw0 + bTw0 , g(Tw) = Tsw0t and fg(Tw) = gf(Tw) = aTsw0t + bTw0t.
Symmetrically, if w = w0t then fg(Tw) = gf(Tw) = aTsw0t + bTsw0 .
Eventually, if w = sw0t, then f(Tw) = aTsw0t + bTw0t, g(Tw) = aTsw0t + bTsw0 and fg(Tw) =

gf(Tw) = a2Tsw0t + ab(Tsw0 + Tw0t) + b2Tw0 . Q. E. D.

Lemma 10.3 Let s1 and s2 be two distinct generators in S such that m = ms1s2 is finite. Then
the endomorphisms [f1(s1), f1(s2),m〉 and [f1(s2), f1(s1),m〉 coincide on V .

Proof: Let d = [f1(s1), f1(s2),m〉, d′ = [f1(s2), f1(s1),m〉, and K = Ker(d − d′). Since d and
d′ commute with any g1(t) by the lemma above, K is invariant by all the g1(t) for t ∈ S, and
furthermore K contains Te (since d(Te) = d′(Te) = TMs1,s2

). Therefore K = V as required. Q. E. D.

By Matsumoto’s theorem (3.3), we see that f1 : S → End(V ) can be extended to a map
f2 : W → End(V ), in such a way that

f2(s1s2 . . . sr) = f1(s1)f1(s2) . . . f1(sr), whenever (s1, s2, . . . , sr) is reduced. (10.3)

We then define the multiplication on V by

Tw × Tw′ = f2(w)(Tw′) (w,w′ ∈ W ). (10.4)

Proposition 10.4 The operation defined above is associative on V .

Then theorem 10.1 follows immediately from the construction. The Hecke algebra H has earned
its name.

Proof: Let x, y, z ∈ W ; we must show Tx × (Ty × Tz) = (Tx × Ty) × Tz. Using induction on
l(x), we are reduced to the case l(x) = 1, i.e x = s ∈ S.

If s 6∈ Dl(y), then Tx × (Ty × Tz) = f1(s)(Ty × Tz) = f1(s)(f2(y)(Tz)) by definition. Since
s 6∈ Dl(y), we have f1(s)f2(y) = f2(sy), and hence Tx × (Ty × Tz) = f2(sy)(Tz) = Tsy × Tz =
(Tx × Ty) × Tz as desired.

If s ∈ Dl(y), then we can write y = sy′ with l(y′) = l(y) − 1. Then Tx × (Ty × Tz) =
f1(s)(f2(sy

′)(Tz)) = f1(s)
2(f2(y

′)(Tz)) by definition. Now, using (10.1), we have f1(s)
2 = af1(s) +
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bidV . So Tx × (Ty × Tz) = af1(s)f2(y
′)(Tz) + bf2(y

′)(Tz) = a(Tsy′ × Tz) + b(Ty′ × Tz) = (aTsy′ +
bTy′) × Tz = (Ts × Tsy′) × Tz = (Tx × Ty) × Tz. Q. E. D.

We now derive some formulas for computations inside H . Let h ∈ H , so that h can be written

h =
∑

w∈W

a(w)Tw

where only finitely many of the a(w)’s are nonzero. As in (4.1), we put sW = {w ∈ W |s 6∈ Dl(w)};
then sW ∐ s(sW ) is a partition of W . Then

Ts × h =
∑

w∈W

a(w)TsTw =
∑

w∈sW

a(w)Tsw +
∑

w∈s(sW )

a(w)((q − 1)Tw + qTsw)

and hence

Ts × h =
∑

w∈sW

a(w)Tsw +
∑

w∈s(sW )

(q − 1)a(w)Tw +
∑

w∈s(sW )

qa(w)Tsw

=
∑

w∈s(sW )

a(sw)Tw +
∑

w∈s(sW )

(q − 1)a(w)Tw +
∑

w∈sW

qa(sw)Tw

=
∑

w∈sW

qa(sw)Tw +
∑

w∈s(sW )

(a(sw) + (q − 1)a(w))Tw

So we have shown the following (where a(h,w) denotes the Tw-coordinate of h ∈ H )

a(Ts × h,w) =

{
qa(h, sw) if s 6∈ Dl(w)
a(h, sw) + (q − 1)a(h,w) if s ∈ Dl(w)

(10.5)

Part (iii) of theorem 10.1 shows that for s ∈ S the element Ts is invertible in H , with

T−1
s =

Ts − (q − 1)Te
q

(10.6)

We deduce that

a(T−1
s × h,w) =

{
qa(h,sw)−(q−1)a(h,w)

q
if s 6∈ Dl(w)

a(h,sw)
q

if s ∈ Dl(w)
(10.7)

If w ∈ W and w = s1 . . . sn is a reduced expression for w, we deduce that Tw is invertible also
with Tw−1 = T−1

sn
. . . T−1

s1
. Explicitly, iterating (10.7) and putting b(y, x) = (−1)l(y)−l(x)ql(y)a(T−1

y−1 , x)
for x, y ∈ W , we have whenever s ∈ Dl(y),

b(y, x) =

{
qb(sy, sx) + (q − 1)b(sy, x) if s 6∈ Dl(x)
b(sy, sx) if s ∈ Dl(x)

(10.8)

Note that b(e, e) = 1 and b(e, x) = 0 for x 6= e. Then, using proposition 5.1 and induction
on l(y), we see that b(y, x) = 0 if x 6≤ y. Similarly, we see by induction on l(y) that b(y, x) is a
polynomial in q, of degree l(y) − l(x), and b(x, x) = 1 for all x, and b(y, x) = q if l(y) = l(x) + 1.
Let us gather those results in a single proposition:
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Proposition 10.5 Let y ∈ W . Then there is a family of polynomials (Rx,y(q))x≤y in Z[q] such
that

T−1
y−1 =

1

ql(y)

∑

x≤y

(−1)l(y)−l(x)Rx,y(q)Tx (10.9)

Furthermore, the polynomials Ru,v(q) satisfy

(i) If s ∈ Dl(y),

Rx,y(q) =

{
qRsx,sy + (q − 1)Rx,sy if s 6∈ Dl(x)
Rsx,sy if s ∈ Dl(x)

(10.10)

(ii) The degree of Rx,y(q) is l = l(y) − l(x).
(iii) If l ≤ 2 then Rx,y(q) = (q − 1)l.

Those polynomials are called the R-polynomials associated to the Coxeter system (W,S). There

is a unique involutive automorphism of the ground ring A = Z[q
1
2 , q−

1
2 ] (which we will denote by

¯) such that q
1
2 = q−

1
2 . There is a unique mapping ι : H → H that is antilinear (i.e. such that

ι(
∑

i∈I Pi(q)hi) = (
∑

i∈I Pi(q)ι(hi) if the Pi are polynomials and the hi are in H ) and such that
ι(Tw) = T−1

w−1 for all w ∈ W . Then ι is an involution and is called the canonical involution of
H .

Proposition 10.6 The mapping ι is antilinear, bijective and preserves the multiplication of H .

Proof: We must show that ι(TxTy) = ι(Tx)ι(Ty) for any x, y ∈ W . Using induction on l(x), we
are reduced to the case l(x) = 1, i.e. x = s ∈ S.

Suppose s 6∈ Dl(y). Then ι(TsTy) = ι(Tsy) = T−1
(sy)−1 = T−1

y−1s
= (Ty−1Ts)

−1 = T−1
s T−1

y−1 =

ι(Ts)ι(Ty).

Suppose y = s. Then

ι(Ts)
2 = (Ts−(q−1)Te

q
)2

= T 2
s −2(q−1)Ts+(q−1)2Te

q2

= (1−q)Ts+(q+(q−1)2)Te

q2

= (1−q)(qT−1
s +(q−1)Te)+(q+(q−1)2)Te

q2

= q(1−q)T−1
s +qTe

q2

= (1−q)T−1
s +Te

q

= (1
q
− 1)ι(Ts) + 1

q
ι(Te)

= ι((q − 1)Ts + qTe) = ι(T 2
s ).

Suppose s ∈ Dl(y). Then we can write y = sy′ with l(y′) = l(y) − 1, and ι(TsTy) =
ι(T 2

s Ty′) = ι(((q − 1)Ts + qTe) × Ty′) = ι((q − 1)Tsy′ + qTy′) = (1
q
− 1)ι(Tsy′) + (1

q
)ι(Ty′) =

(1
q
)((1 − q)ι(Tsy′) + ι(Ty′)). But by the first case we have treated, ι(Tsy′) = ι(Ts)ι(Ty′). Therefore

ι(TsTy) = (1
q
)((1− q)ι(Ts)ι(Ty′)+ ι(Ty′)) = ((1

q
− 1)ι(Ts)+ 1

q
ι(Te))ι(Ty′) = ι((q− 1)Ts+ qTe)ι(Ty′) =

ι(T 2
s )ι(Ty′). But by the second case we have treated, ι(T 2

s ) = ι(Ts)
2, so ι(TsTy) = ι(Ts)

2ι(Ty′) =
ι(Ts)ι(Tsy′) = ι(Ts)ι(Ty). Q. E. D.
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Sometimes it is useful to “adjust” the basis (Tw), considering the basis (T ′
w) defined by T ′

w =
1

q
l(w)

2

Tw. It is straightforward to check the following:

Proposition 10.7 Let α = q
1
2 − q−

1
2 . Then the basis T ′

w satisfies
(i)

T ′
sT

′
w =

{
T ′
sw if s 6∈ Dl(w)

(q
1
2 − q−

1
2 )T ′

w + T ′
sw if s ∈ Dl(w)

(10.11)

(ii) ι(T ′
s) = T ′

s
−1 = T ′

s − αT ′
e.

(iii) For y ∈ W ,

ι(T ′
y) =

∑

x≤y

(−1)l(y)−l(x)q
l(x)−l(y)

2 Rx,y(q)T
′
x

(iv) If a′(h,w) denotes the T ′
w-coordinate of h ∈ H , the following analogue of (10.5) holds:

a′(T ′
s × h,w) =

{
a′(h, sw) if s 6∈ Dl(w)
a′(h, sw) + αa′(h,w) if s ∈ Dl(w)

(10.12)

We now consider a second involutive automorphism of the ground ring A = Z[q
1
2 , q−

1
2 ] (which

we will denote by ̂ ) such that q̂
1
2 = −q−

1
2 . In the following section we will need the unique

involution  : H → H that is antilinear with respect to ̂, and satisfies (T ′
w) = T ′

w for all w ∈ W .

Proposition 10.8 (i) The involution  preserves the multiplication of H .
(ii) The mappings ι and  commute on H .

Proof: (i) We must show that (T ′
xT

′
y) = (T ′

x)(T
′
y) for any x, y ∈ W . Using induction on l(x),

we are reduced to the case l(x) = 1, i.e. x = s ∈ S.

Suppose s 6∈ Dl(y). Then (T ′
sT

′
y) = (T ′

sy) = T ′
sy = T ′

sT
′
y = (T ′

s)(T
′
y).

Suppose y = s. Then (T ′
s)

2 = (T ′
s)

2 = αT ′
s + T ′

e = (αT ′
s + T ′

e) = (T ′
s
2).

Suppose s ∈ Dl(y). Then we can write y = sy′ with l(y′) = l(y) − 1, and (T ′
sT

′
y) = (T ′

s
2
T ′
y′) =

((αT ′
s + T ′

e) × T ′
y′) = (αT ′

sy′ + T ′
y′) = α(T ′

sy′) + (T ′
y′). But by the first case we have treated,

(T ′
sy′) = (T ′

s)(T
′
y′). Therefore (T ′

sT
′
y) = α(T ′

s)(Ty′) + (T ′
y′) = (αT ′

s + T ′
e) × (T ′

y′). But by the
second case we have treated, αT ′

s+T
′
e = (T ′

s)
2, so (T ′

sT
′
y) = (T ′

s)
2(T ′

y′) = (T ′
s)(T

′
sy′) = (T ′

s)(T
′
y)

as required.

(ii) It suffices to show that ι((T ′
w)) = (ι(T ′

w)) for all w ∈ W . Since ι and  both preserve multi-
plication, it even suffices to show that ι((T ′

s)) = (ι(T ′
s)) for s ∈ S. But ι((T ′

s)) = ι(T ′
s) = T ′

s−αT
′
e

and (ι(T ′
s)) = (T ′

s − αT ′
e) = T ′

s − αT ′
e, and the result follows. Q. E. D.

11 Kazhdan-Lusztig polynomials

We keep all the notations of the preceding section. The main result of this section is the following:
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Proposition 11.1 Let (W,S) be a Coxeter system, and let H be the associated Hecke algebra.
Then for y ∈ W there is a unique element C ′

y ∈ H such that ι(C ′
y) = C ′

y and

C ′
y =

1

q
l(y)
2

∑

x≤y

Px,y(q)Tx

where Py,y(q) = 1 and Px,y(q) ∈ Z[q] has degree ≤ l(y)−l(x)−1
2

if x < y.

Then (C ′
y)y∈W is clearly a basis of H ; it is called the Kazhdan-Lusztig basis of H , and the

Px,y(q) are called the Kazhdan-Lusztig polynomials of W .

Proposition 11.2 Let (W,S) be a Coxeter system, and let H be the associated Hecke algebra.
Let y ∈ W .

(i) There is a unique element Cy ∈ T ′
y +

∑

x<y

q
1
2 Z[q

1
2 ]T ′

x such that ι(Cy) = Cy.

(ii) There is a unique element C ′
y ∈ T ′

y +
∑

x<y

q−
1
2 Z[q−

1
2 ]T ′

x such that ι(C ′
y) = C ′

y.

Proof: Note that thanks to proposition 10.8, (i) is equivalent to (ii), since C ′
y = (Cy). Thus

it suffices to prove (i). Put β = q
1
2 ,A = βZ[β]. Let (Qx,y(β))x≤y be a family of elements of A

indexed by the lower interval [e, y], with Qy,y = 1, and put

Cy =
∑

x≤y

Qx,y(β)T ′
x. (11.1)

Then we must solve the equation (∗) ι(Cy) = Cy, in the unknowns (Qx,y(β))x≤y. But

ι(Cy) =
∑

u≤y

Qu,y(β)ι(T ′
u)

=
∑

u≤y

Qu,y(β)
∑

x≤u

(−1)l(x)−l(u)q
l(x)−l(u)

2 Rx,u(q)T
′
x

=
∑

x≤y

( ∑

x≤u≤y

(−1)l(x)−l(u)q
l(x)−l(u)

2 Qu,y(β)Rx,u(q)
)
T ′
x

=
∑

x≤y

(
Qx,y(β) +

∑

x<u≤y

(−β)l(x)−l(u)Qu,y(β)Rx,u(β
2)

)
T ′
x

so that

(∗) ⇐⇒ Qx,y(β) −Qx,y(β) =
∑

x<u≤y

(
(−β)l(x)−l(u)Qu,y(β)Rx,u(β

2)
)
, for all x < y. (11.2)

Now for any F the equation Q − Q = F,Q ∈ A, has at most one solution (if F is of the form
n∑

i=1

ai(β
i −

1

βi
) then the unique solution is

n∑

i=1

aiβ
i, and if F is not of that form the equation has

no solution), so that Qx,y(β) is uniquely determined from the values of Qu,y(β) for x < u ≤ y. Thus
each Qx,y(β)(x ≤ y) is unique, and so is Cy.

We now show the existence of Cy, by induction on l(y). Then clearly Ce = Te and a simple
computation yields Cs = T ′

s − βT ′
e. Suppose l(y) ≥ 2, and take s ∈ Dl(y). Then we can write
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y = sy′, with l(y′) = l(y) − 1. By the induction hypothesis, Cy′ exists, along with the family
(Qx,y′(β)). Since Cs and Cy′ are fixed by ι, so is CsCy′ ; this is our first candidate for Cy. The rules
in (10.12) allow us to compute CsCy′ explicitly: if we call I−(I+) the sets of elements x ≤ y that
satisfy s ∈ Dl(x)(s 6∈ Dl(x)), then

T ′
sCy′ =

∑

x∈I+

Qsx,y′(β)T ′
x +

∑

x∈I−

(
Qsx,y′(β) + αQx,y′(β)

)
T ′
x

and hence

CsCy′ =
∑

x∈I+

(
Qsx,y′(β) − βQx,y′(β)

)
T ′
x +

∑

x∈I−

(
Qsx,y′(β) −

Qx,y′(β)

β

)
T ′
x

Note that the coefficient before Ty is Qy′,y′(β)−
Qy,y′ (β)

β
= 1 as expected. So this is almost what

we want: the problem is that in the rightmost sum the polynomial
Qx,y′ (β)

β
need not be in A, i.e.

its constant term q1(x, y
′) need not be zero. Then all we need to do is readjusting as follows:

Cy = CsC
′
y −

∑

x∈I−,x 6=y

q1(x, y
′)Cx (11.3)

Q. E. D.

We now give further properties of the polynomials Qx,y(β):

Proposition 11.3 Let the polynomials Qx,y(β) be as in (11.1). Then
(i) The degree of Qx,y(β) is ≤ l(y) − l(x) − 1.
(ii) The polynomial Qx,y(β) is always even or odd, with the same parity as l(y) − l(x).

Proof: (i) According to (11.2), when x < y we have Qx,y(β) − Qx,y(β) =
∑

x<u≤y

tu where

tu = (−β)l(x)−l(u)Qu,y(β)Rx,u(β
2). Now the degree of tu with respect to the variable β is at most

l(x) − l(u) − 1 + 2deg(Rx,u) = l(u) − l(x) − 1 ≤ l(y) − l(x) − 1, and (i) follows.

(ii) We argue by induction on d = l(y) − l(x). When d = 0, we have Qy,y = 1 which is even as
required. So suppose d > 0. We invoke (11.2) again; by the induction hypothesis, for each u such
that x < u ≤ y we have tu(−β) = tu(β) or tu(−β) = −tu(β) according to whether l(y) − l(x) is
even or odd. So this is also true for Qx,y(β) −Qx,y(β) and for Qx,y(β). Q. E. D.

Proof of proposition 11.1 Since C ′
w = (Cw) in proposition 11.2, we have

C ′
y =

∑

x≤y

Qx,y(−
1

β
)T ′

x.

If l(y) − l(x) is odd, by the preceding proposition we can write Qx,y(β) =
n∑

i=0

aiβ
2i+1 with

2n+ 1 ≤ l(y) − l(x) − 1), and we deduce

C ′
y =

∑

x≤y

1

β2n+1

n∑

i=0

aiβ
2(n−i)T ′

x =
1

q
l(y)
2

∑

x≤y

n∑

i=0

aiβ
l(y)−l(x)−1−2iTx
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so that Px,y =
n∑

i=0

aiq
l(y)−l(x)−1

2
−i in this case.

When l(y) − l(x) is even the computation is similar. Q. E. D.

The central conjecture here, originally a question asked independently by Dyer and Lusztig, can
then be stated as follows:

Conjecture 11.4 The Kazhdan-Lusztig polynomial Px,y only depends on the isomorphism class
of the interval [x, y]. In other words, for any poset isomorphism ψ between two Bruhat intervals
[u, v] and [u′, v′] in possibly distinct Coxeter groups W,W ′ we have

∀x, y ∈ [u, v], Px,y = Pψ(x),ψ(y) (11.4)

Brenti [6] has shown this to be true when [u, v] is adihedral (i.e. when [u, v] does not have a
subinterval isomorphic to the full Coxeter group S3. The second part of this work shall be devoted
to the proof that (11.4) is true when u = u′ = e :

∀x, y ∈ [e, v], Px,y = Pψ(x),ψ(y) (11.5)

Subcases of this particular case have already been dealt with; reference [11] treats the case in

which all the connected components of the Coxeter graph of W are trees or of type Ãn while [7]
treats the case in which W and W ′ are both of type An.

There are several equivalent forms of this conjecture:

Proposition 11.5 Let I, I ′ be two Bruhat intervals, and let ψ : I → I ′ be a poset isomorphism.
Then the following are equivalent:
(i) Px,y = Pψ(x),ψ(y) for all x ≤ y in I.
(ii) Qx,y = Qψ(x),ψ(y) for all x ≤ y in I.
(iii) Rx,y = Rψ(x),ψ(y) for all x ≤ y in I.

Proof: Because of the way the polynomial Px,y is constructed from Qx,y, it is clear that (i) ⇐⇒
(ii). Then it suffices to show that (ii) ⇐⇒ (iii). Recall formula (11.2):

Qx,y(β) −Qx,y(β) =
∑

x<u≤y

(
(−β)l(x)−l(u)Qu,y(β)Rx,u(β

2)
)
, for all x < y.

This shows that (iii) =⇒ (ii), by induction on l(y)− l(x). Symmetrically, we may rewrite the
formula above as (using Qy,y = 1)

Rx,y(β
2) = (−β)l(y)−l(x)(Qx,y(β) −Qx,y(β)) −

∑

x<u<y

(
(−β)l(y)−l(u)Qu,y(β)Rx,u(β

2)
)

yielding (ii) =⇒ (iii), by induction on l(y) − l(x) again. Q. E. D.

The form (iii) is usually the easier to use because the R-polynomials satsify the recurrence
relations (10.10) which are much simpler than the recurrence relations satisfied by the Kazhdan-
Lusztig polynomials (as in (11.3)).
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12 Bibliographical notes

The material in sections 1 to 4 is very classical. On the whole we have followed the modern presen-
tation of Geck&Pfeiffer [16], but from a more combinatorial (as opposed to geometric) standpoint,
hence our larger use of results like 2.6, 3.1. The source for section 5 is Deodhar [14]. Section 7 is as
in du Cloux[12]. All of sections 8 and 9 comes from Dyer’s thesis [15], except for the K3,2-avoidance
result (theorem 9.7) which first appeared in Brenti,Caselli&Marietti [8]. Section 10 is classical and
similar to what is done in Humphreys [17]. The main source for section 11 is of course Kazh-
dan&Lusztig’s fundamental paper [18], although our presentation has been influenced by Dyer’s
(compare e.g. proposition 11.2). Proposition 11.5 comes from Marietti [20].
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Part II

Intermediary Tools
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1 Technical results in type A

This section contains some computations in type A that will be needed only in section IV.2.

Here (W,S) is a standard Coxeter system of type An: S = {1, 2, . . . , n}, mi,j = 3 if |i− j| = 1
and mi,j = 2 if |i− j| > 1. For integers i, j and s ∈ S such that i ≤ s and s+ j − 1 ≤ n, we define

B(s, i) = s(s− 1)(s− 2) . . . (s− (i− 1))
B(s, i, j) = B(s, i)B(s+ 1, i)B(s+ 2, i) . . . B(s+ (j − 1), i)

(1.1)

Note that the word B(s, i) does not contain any braid subword or equal successive characters, so
that by proposition I.3.1 the corresponding element has a unique reduced expression. In particular,
B(s, i) is a normal form (as in section I.7). The fundamental computational result that we shall
use everywhere in this section is the following:

Lemma 1.1 Let s, u ∈ S and i ∈ N, i ≥ 1. Then:
(i) If u ≤ s− i− 1 or u ≥ s+ 2, then B(s, i)u = uB(s, i).
(ii) If u = s− i, then B(s, i)u = B(s, i+ 1).
(iii) If u = s− i+ 1, then B(s, i)u = B(s, i− 1).
(iv) If s− i+ 2 ≤ u ≤ s, then B(s, i)u = (u− 1)B(s, i).

Proof: (i) Under those hypotheses, for any generator g in the word B(s, i) we have |g−u| ≥ 2
so u commutes with g. Hence u commutes with B(s, i).

(ii) and (iii) are trivial.

(iv) Let i′ = s+2−u. Then we may write B(s, i) = B(s, i′)B(s−i′, i−i′) = B(s, i′)B(u−2, i−i′)
and by (i) we have B(u− 2, i− i′)u = uB(u− 2, i, i′) so B(s, i)u = B(s, i′)uB(u− 2, i, i′). So all we
need to show is B(s, i′)u = (u − 1)B(s, i′). In other words, we may replace i with i′ and we must
show that B(s, i)(s+ 2 − i) = (s+ 1 − i)B(s, i) for any i ≥ 2. Now

B(s, i)(s+ 2 − i) = B(s, i− 2)(s+ 2 − i)(s+ 1 − i)(s+ 2 − i)
= B(s, i− 2)(s+ 1 − i)(s+ 2 − i)(s+ 1 − i)
= (s+ 1 − i)B(s, i− 2)(s+ 2 − i)(s+ 1 − i) by (i)
= (s+ 1 − i)B(s, i)

as desired. Q. E. D.

We define the sets Xj, Yj as in section I.7, and compute Xj explicitly:

Proposition 1.2 One has Xj = {e, j, j(j − 1), . . . , j(j − 1) . . . 1} = {B(j, k)|0 ≤ k ≤ j}.

Proof: Clearly each B(j, k) is in Xj. Conversely, let w ∈ Xj, and let w = w1w2 . . . wn be a
reduced expression for w. If n ≤ 1 we are done, so we may assume n ≥ 2. Then w1 = j. Let
I = {u ∈ [1, n]|wu = j + 1 − u}, and suppose by contradiction that I 6= [1, n]. Then there is a
smallest index i0 not in I. Let s = j, i = i0 − 1, u = wi0 . Then w = B(s, i)uwi0+1 . . . wn, and
Dl(B(s, i)u) ⊆ Dl(w) ⊆ {s}. According to lemma 1.1, this is possible only when u = s + 1 or
u = s − i. But since w ∈ Yj, we have u ≤ j. Eventually we obtain u = s − i = j − i0 + 1,
contradicting i0 6∈ I. Q. E. D.

By proposition I.7.1, we deduce:
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Corollary 1.3 Any expression of the form B(s1, i1)B(s2, i2) . . . B(sn, in) with s1 < s2 < . . . < sn
is a normal form.

We also deduce |Xj| = j + 1 and |W | = |X1||X2| . . . |Xn| = (n+ 1)! Consider, in the symmetric
group Sn+1 on n + 1 letters, the transposition ti that exchanges i and i + 1. Then ti commutes
with tj whenever |i − j| > 1, and titi+1 is the 3-cycle i → i + 1 → i + 2 → i, so that (titi+1)

3 is
the identity permutation. Thus, the mapping S → Sn+1, i 7→ ti can be extended into a surjective
group homomorphism π : W → Sn+1. Since those two groups have the same number of elements,
π is in fact an isomorphism.

Lemma 1.4 Let s, s′, l, l′ be nonnegative integers.
(i) If s− l > s′, then B(s, l)B(s′, l′) = B(s′, l′)B(s, l).
(ii) If l > l′, then B(s, l)B(s, l′) = B(s− 1, l′)B(s, l).
(iii) If l − l′ > s− s′ ≥ 0, then B(s, l)B(s′, l′) = B(s′ − 1, l′)B(s, l).

Proof: (i) The smallest generator in B(s, l) is s+1− l, and the largest generator in B(s′, l′) is s′.
Thus if u is a generator in B(s, l) and v a generator in B(s′, l′), we have u ≥ s+1−l ≥ s′+2 ≥ v+2,
so u commutes with v. Then B(s, l) commutes with B(s′, l′).

(ii) We use induction on l′. The case l′ = 0 is trivial. If l′ > 0, then B(s, l)B(s, l′) =
B(s, l)B(s, l′ − 1)(s + 1 − l′) = B(s − 1, l′ − 1)B(s, l)(s + 1 − l′) by the induction assumption.
Now the generator u = s + 2 − l satisfies s + 2 − l ≤ u ≤ s, so that lemma 1.1(iv) yields
B(s, l)u = (u−1)B(s, l), whence B(s, l)B(s, l′) = B(s−1, l′−1)(s− l′)B(s, l) = B(s−1, l′)B(s, l).

(iii) We have s ≥ s′ ≥ s+1−l+l′ ≥ s+1−l, so we can write B(s, l) = B(s, s−s′)B(s′, l−(s−s′))
and hence B(s, l)B(s′, l′) = B(s, s − s′)B(s′, l − (s − s′))B(s′, l′). But B(s′, l − (s − s′))B(s′, l′) =
B(s′ − 1, l′)B(s′, l − (s− s′)) by (ii), and B(s, s− s′)B(s′ − 1, l′) = B(s′ − 1, l′)B(s, s− s′) by (i).
Eventually B(s, l)B(s′, l′) = B(s′− 1, l′)B(s, s− s′)B(s′, l− (s− s′)) = B(s′− 1, l′)B(s, l). Q. E. D.

Lemma 1.5 Let s, i, j, l, l′ be nonnegative integers. Then:

(i) B(s, i, j)−1 = B(s− i+ j, j, i).

(ii) Let r be an index in {1, . . . , i}. Denote by cr he word obtained by deleting the r-th generator
in the normal form B(s, i). Then the normal form of cr is B(s− r, i− r)B(s, r − 1).

(iii) Let q ≥ 2 and r ∈ [1, i]. Then B(s, i, q−1)B(s+q− (r+1), i−r) = B(s−r, i−r)B(s, i, q−1).

(iv) Let a be an index in {1, . . . , ij}. Denote by ca the word obtained by deleting the a-th generator
in the normal form B(s, i, j). We can write a = qi+ r, 1 ≤ r ≤ i. Then the normal form of ca is

B(s− r, i− r)B(s, i, q − 1)B(s+ q − 1, r − 1)B(s+ q, i, j − q)

Proof: (i) Let w = B(s, i, j). We argue by induction on j. If j = 1 then w = B(s, i) = s(s−
1)(s−2) . . . (s−i+1), so w−1 = (s−i+1) . . . (s−2)(s−1)s = B(s−i+1, 1, i) as required. So suppose
j > 1. Then w = B(s, i)B(s+1, i, j−1), w−1 = B(s+1, i, j−1)−1B(s, i)−1 = B(s−i+j, j−1, i)B(s−
i+1, 1, i) by the induction hypothesis. Thus, if we put bk = B(s−i+j+k−1, j−1) and sk = s−i+k
for k ∈ [1, i], we have w−1 = b1b2 . . . bis1s2 . . . si. Now, by lemma 1.1(i) we have bks1 = s1bk for
each k ∈ [2, i], so w−1 = b1s1b2 . . . bis2 . . . si = B(s − i + j, j)b2 . . . bis2 . . . si. Similarly we have
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b2 . . . bis2 . . . si = B(s− i+ j+1, j)b3 . . . bis3 . . . si, whence w−1 = B(s− i+ j, j, 2)b3 . . . bis3 . . . si. It
is now clear by induction that w−1 = B(s − i + j, j, k)bk+1 . . . bisk+1 . . . si for any k ∈ [0, i]. When
k = i we eventually obtain w−1 = B(s− i+ j, j, i) as required.

(ii) By corollary 1.3, c′r = B(s−r, i−r)B(s, r−1) is a normal form. Thus all we need to show is
that cr = c′r. But lemma 1.4(i) shows that B(s−r, i−r) commutes with B(s, r−1) and (ii) follows.

(iii) Let us show by induction that H(q) : B(s, i, q − 1)B(s + q − (r + 1), i− r) = B(s− r, i−
r)B(s, i, q − 1) is true for every q ≥ 2. Statement H(2) says that B(s, i)B(s + 1 − r, i − r) =
B(s − r, i − r)B(s, i), which follows from lemma 1.4(iii). So assume q > 2. Then B(s, i, q − 1) =
B(s, i, q − 2)B(s + q − 2, i). Now, H(2) (used with s + q − 2 in place of s) yields B(s + q −
2, i)B(s + q − (r + 1), i − r) = B(s + q − (r + 2), i − r)B(s + q − 2, i), and H(q − 1) yields
B(s, i, q − 2)B(s + q − (r + 2), i− r) = B(s− r, i− r)B(s, i, q − 2). Combining those two results,
B(s, i, q−1)B(s+q−(r+1), i−r) = B(s−r, i−r)B(s, i, q−2)B(s+q−2, i) = B(s−r, i−r)B(s, i, q−1)
and this is H(q).

(iv) By corollary 1.3, c′a = B(s − r, i − r)B(s, i, q − 1)B(s + q − 1, r − 1)B(s + q, i, j − q) is a
normal form. Thus all we need to show is that ca = c′a. We have B(s, i, j) = B(s, i, q− 1)B(s+ q−
1, i)B(s+q, i, j−q). By (ii), ca = B(s, i, q−1)B(s+q−(r+1), i−r)B(s+q−1, r−1)B(s+q, i, j−q).
And (iii) then yields ca = B(s−r, i−r)B(s, i, q−1)B(s+q−1, r−1)B(s+q, i, j−q) = c′a. Q. E. D.

Lemma 1.6 Let r, j be integers such that 1 ≤ j < r. Let y ∈ W be a word such that r ∈
Dl((r − 1) . . . (r − j) · y). Then we can write y = r(r − 1) . . . (r − j) · z for some z ∈ W .

Proof: We use induction on j. If j = 1 the result follows from mr,r−1 = 3 and corollary 2.6.
Suppose the result is true for all j′ < j, and let y, r, j be as above. If we put y′ = (r − j) · y,
the induction hypothesis yields a z′ such that y′ = r(r − 1) . . . (r − (j − 1)) · z′. Then r − j ∈
Dl(r(r − 1) . . . (r − (j − 1)) · z′). Now all the generators in (r − 1) . . . (r − (j − 1)) commute with
r. except for the last one r− (j − 1). We deduce r− j ∈ Dl((r− (j − 1)) · z′). As mr−j,r−(j−1) = 3,
we have z′ = (r − j)(r − (j − 1)) · z for some z, and

(r − j)y = r(r − 1) . . . (r − (j − 2))(r − (j − 1)) · ((r − j)(r − (j − 1)) · z)
= r(r − 1) . . . (r − (j − 2)) · (r − (j − 1))(r − j)(r − (j − 1)) · z
= r(r − 1) . . . (r − (j − 2)) · (r − j)(r − (j − 1))(r − j) · z
= (r − j) · r(r − 1) . . . (r − (j − 2)) · (r − (j − 1))(r − j) · z

so that
y = r(r − 1) . . . (r − j) · z

which concludes the proof. Q. E. D.

Proposition 1.7 Consider an X-decomposition w = x1 . . . xn. Then for r in [1, n]: (r ∈
Dl(w)) ⇔ (l(xr) > l(xr−1)).

Proof: Suppose r ∈ Dl(w). Write y = x1 . . . xr−2, u = xr−1 . . . xn. Then w = y · u, hence
r ∈ Dl(y · u). But every generator in y commutes with r, so r ∈ Dl(u), and we see that the normal
form of u starts with r−1 or with r. If xr−1 = e, the normal form of u starts with r, so that xr 6= e,
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whence l(xr) = 1 > 0 = l(xr−1) as desired. If xr−1 6= e, there exists an integer j with 1 ≤ j < r and
xr−1 = (r − 1) . . . (r − j). If we put y′ = xrxr+1 . . . xn, the preceding lemma yields a z such that
y′ = r(r − 1) . . . (r − j) · z. Let k = l(xr). Then there is no z such that y′ = r(r − 1) . . . (r − k) · z
(otherwise y′′ = (r − k) · z where y′′ = xr+1 . . . xn, so that the first character in the normal form of
y′′ is both ≤ r − k and ≥ r + 1, which is impossible); this forces k > j, hence l(xr) > l(xr−1).

Conversely, suppose l(xr) > l(xr−1). If we put j = l(xr−1), there is a x such that xr =
r(r − 1) . . . (r − j) · x, so that

w = x1x2 . . . xr−2(r − 1) . . . (r − j)r(r − 1) . . . (r − j)xxr+1xr+2 . . . xn
= x1x2 . . . xr−2(r − 1)r(r − 1)[(r − 2) . . . (r − j)]2xxr+1xr+2 . . . xn
= x1x2 . . . xr−2r(r − 1)r[(r − 2) . . . (r − j)]2xxr+1xr+2 . . . xn
= rx1x2 . . . xr−2(r − 1)r[(r − 2) . . . (r − j)]2xxr+1xr+2 . . . xn

and we see that r ∈ Dl(w). Q. E. D.

Proposition 1.8 Let w ∈ W such that |Dl(w)| ≤ 1. Then |{u < w|l(u) = l(w) − 1}| = l(w).

Proof: If Dl(w) = ∅ there is nothing to prove. So suppose that Dl(w) = {s} for some s ∈ S.
By the preceding proposition, we can write the X-decomposition of w as

w = xsxs+1 . . . xn (*)

with l(xs) ≥ l(xs+1) ≥ . . . ≥ l(xn). What we must show is that the deletion of any character in
the reduced expression above still produces a reduced expression. So let c be the k-th generator
in xj, j ≥ s. Let w′ be the element obtained when we delete c from (*). Put x = B(j, k − 1),
y = B(j − k, lj − k), z = xj+1 . . . xn; thus w′ = xs . . . xj−1xyz.

Iterating lemma 1.4(iii), we have

w′ = xsxs+1 . . . xj−2xj−1xyz

= xsxs+1 . . . xj−2xj−1yxz

= xsxs+1 . . . xj−2y
′xj−1xz (with y′ = B(j − k − 1, lj − k))

= xsxs+1 . . . y
′′xj−2xj−1xz (with y′′ = B(j − k − 2, lj − k))

= . . .

= y(j−s)xsxs+1 . . . xj−2xj−1xz (with y(j−s) = B(s− k, lj − k))
= xs−kxsxs+1 . . . xj−2xj−1x

′
jxj+1 . . . xn

where we put xs−k = y(j−s) and x′j = x. This is clearly the X-decomposition of w′, so
l(w′) = l(w) − 1 which concludes the proof. Q. E. D.

Proposition 1.9 We have:

1) If i > 0, j > 0, then Dl(B(s, i, j)) = {s}, Dr(B(s, i, j)) = {s− i+ j}.

2) Let w ∈ W . Then (|Dl(w)| ≤ 1, |Dr(w)| ≤ 1) if and only if w is of the from B(s, i, j) for some
s, i, j.
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Proof: By proposition 1.7 we have Dl(B(s, i, j)) = {s}, and also

Dr(B(s, i, j)) = Dl(B(s, i, j)−1) = Dl(B(s− i+ j, j, i)) = {s− i+ j}

which yields 1). The “if” part of 2) follows from 1). Conversely, suppose that w ∈ W is such that
(|Dl(w)| ≤ 1, |Dr(w)| ≤ 1). We may assume w 6= e (since e = B(s, 0, j)). Let s be the smallest
left descent generator for w and r the largest generator in the support of w. Then Dl(w) = {s}, so
that the X-decomposition w = xs . . . xr of w satisfies

l(xs) ≥ l(xs+1) ≥ l(xs+2) ≥ . . . ≥ l(xr) > 0.

What we must show is that all those inequalities are in fact equalities. Suppose that this is
not the case, and that ls = ls+1 = . . . = lt > lt+1 for some index t (we put lj = l(xj)). Let
x = xs . . . xt and y = xt+1 . . . xr, so that w = xy. The rightmost generator in x is a = t − lt + 1.
Let j ∈ [t + 1, r]. We have lt > lt+1 ≥ lj, so that the rightmost (and also the smallest) generator
in xj is j − lj + 1 > j − lt + 1 ≥ t + 3 − lt = a + 2. As this is true for any j, all the generators
in y are ≥ a + 2 and hence commute with a. Therefore ay = ya and a ∈ Dr(x), whence a is a
right descent generator for xy = w. Now lt+1 ≥ lr > 0, so y 6= e, and we have at least two right
descent generators for w (a and any element of Dr(y)), contradicting the initial hypothesis. Q. E. D.

2 Decreasing the coefficients of the Coxeter matrix

In all this section we shall be concerned with what happens if, in a Coxeter system (W,S),
we replace the Coxeter matrix (mst) by another matrix (m′

st) such that m′
s,t ≤ ms,t for all

s, t ∈ S, s 6= t. We then obtain a new Coxeter system (W ′, S). For a word w = (w1, . . . , wr)
in S∗, we denote by wW (wW ′) the corresponding element in W (W ′). We say that a word w is
absolutely reduced (with respect to (W,W ′)) if is reduced in both W and W ′, or, in other words,
l(wW ) = l(wW ′) = l(w).

Proposition 2.1 Let u = (u1, u2, . . . , up), v = (v1, v2, . . . , vq), w = (w1, w2, . . . , wr) be words in
S∗.
(i) Suppose that u and v are absolutely reduced, and that uW is a prefix of vW in W . Then there
is an absolutely reduced word z, of length q − p, such that the identity v = uz holds in both W and
W ′ (in particular uW ′ is also a prefix of vW ′ in W ′).
(ii) If w is absolutely reduced, then Dl(wW ) ⊆ Dl(wW ′).
(iii) If w is reduced in W ′ then w is absolutely reduced.
(iv) If u, v are absolutely reduced and uW = vW , then uW ′ = vW ′.

Proof: (i) We argue by induction on l = p+ q, the result being clear if l ≤ 2. We may certainly
assume p > 0. Then u1 is a prefix of v1v2 . . . vq in W .

Suppose first that u1 is a prefix of v1v2 . . . vq−1 in W . Then, by the induction hypothesis, there
is an absolutely reduced word z′ of length q − 2 such that the equality v1v2 . . . vq−1 = u1z

′ holds in
both W and W ′. Then u2u3 . . . up is a prefix of z′vq in both W and W ′. By the induction hypothesis
again, there is an absolutely reduced word z of length q−p such that the identity z′vq = u2u3 . . . upz

holds in both W and W ′ and we are done.

37



Suppose now that u1 is not a prefix of v1v2 . . . vq−1 in W . By corollary I.3.2, we deduce
u1(v1v2 . . . vq−1) = (v1v2 . . . vq−1)vq in W . Then certainly u1 6= v1, and by corollary I.2.6 we see
that the word t = [u1, v1,m − 2〉 (where m = mu1,v1) is a prefix of v2 . . . vq−1 in W . Since v is
absolutely reduced, we deduce m′

u1,v1
≥ m and hence m′

u1,v1
= m. By the induction hypothesis,

there is an absolutely reduced word z′ of length q −m + 1 such that the identity v2 . . . vq−1 = tz′

holds in both W and W ′. Let v′ = [v1, u1,m − 1〉z′. Then v = u1v
′ in both W and W ′, so

l(v′W ′) ≥ l(vW ′) − 1 = l(v) − 1 = l(v′), so v′ is absolutely reduced. By the induction hypothesis
again, there is an absolutely reduced word z of length q− p such that the identity v′ = u2u3 . . . upz

holds in both W and W ′, and we are done. This finishes the proof of (i).

(ii) follows from (i), by taking w = v and u ∈ S. And (iii) follows from (ii), using in-
duction on l(w) and the fact that (w1, w2, . . . , wr) is reduced if and only if (w2, . . . , wr) is and
w1 6∈ Dl(w2 . . . wr). Eventually (iv) follows from (i) and the fact that for elements u, v, u = v if
and only if u is a prefix of v and v is a prefix of u. Q. E. D.

We should now like to strengthen (iv) and construct isomorphisms between lower intervals of
W and W ′. Unfortunenately, if w is absolutely reduced it is not true in general that the intervals
[e, w]W and [e, w′]W ′ are isomorphic, because [e, w]W might contain some large dihedral elements
that do not exist in the “smaller” group W ′. We need to consider another family of words that
avoids this situation :

Definition 2.2 Let s, t be two distinct elements of S. Let u = (u1, . . . , um) be a word in S∗.
We say that u is {s, t}-dihedral if u is two-periodic and either u1 = s, u2 = t or u1 = t, u2 = s.

Definition 2.3 Let w be a word in S∗ (not necessarily reduced in W or W ′). We say that w
is absolute (with respect to the pair (W,W ′)) if for any s 6= t in S such that mst > m′

st, any
{s, t}-dihedral subexpression of w has length at most m′

st.

Note that an absolutely reduced word is not necessarily absolute. Note also that the set of
absolute words is closed under taking subexpressions.

Proposition 2.4 (i) Let a be an absolute expression. There exists an absolutely reduced subex-
pression r of a such that a = r holds in both W and W ′.
(ii) If a and b are absolute and aW = bW , then aW ′ = bW ′.
(iii) If a is reduced in W ′, b is reduced in W , aW = bW , and a is absolute, then b is absolute also.
(iv) Let A(W ) (A(W ′)) denote the set of elements of W (W ′) that can be represented by an absolute
expression. Then there is a canonical map p : A(W ) → A(W ′), defined by p(aW ) = p(aW ′) for any
absolute expression a. The mapping p is surjective and order-preserving. If w ∈ A(W ), p restricts
to an order isomorphism [e, w]W → [e, p(w)]W ′.
(v) Let s ∈ S,w ∈ W such that w and sw are both in A(W ). Then p(sw) = sp(w) (similarly
p(ws) = p(w)s if w and ws are both in A(W )).

Proof : (i) Write a = (a1, . . . , an) ; we argue by induction on n. If n = 0 there is nothing
to prove, so assume n > 0. If a is reduced in W ′, by 2.1.(iii) above a is absolutely reduced so
we may take r = a. So assume that a is not reduced in W ′. Now all we need to do is find
a strict subexpression a′ of a, such that a = a′ holds in both W and W ′. Consider the word
a− = (a2, . . . , an). By the induction hypothesis there is a subexpression b of a− which is absolutely
reduced and such that a− = b holds in both W and W ′. If b is a strict subexpression of a−, taking
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a′ = a1b we are done. So we may assume that a− = b as words, which means that a− is absolutely
reduced. If a2 = a1, taking a′ = (a3, . . . , am) we are done. So we may assume a2 6= a1. Since a is not
reduced in W ′, a1 is a prefix of a2a3a4 . . . an in W ′. By corollary I.2.6 the element [a1, a2,m

′− 1〉W ′

(with m′ = m′
a1a2

) is a prefix of a3 . . . an in W ′. In particular [a1, a2,m
′ − 1〉 is a subexpression of

(a3, . . . , an) and [a1, a2,m
′ + 1〉 is a subexpression of a. Since a is absolute, we deduce

ma1a2 = m′
a1a2

= m′ (1)

Also a1 is a prefix of a3 . . . an in W ′. Using the induction hypothesis on the word (a1, a3, . . . , an),
we see that there is an increasing sequence i1 < i2 < . . . ip with values in {1, 3, 4, . . . , n} such that
the expression (ai1 , ai2 , . . . , aip) is absolutely reduced and a1a3 . . . an = ai1ai2 . . . aip holds in both
W and W ′. If i1 = 1 we would deduce that a3 . . . an is nonreduced in W ′, which is impossible. So
(ai1 , ai2 , . . . , aip) is in fact a subexpression of (a3, . . . , an). Consider the word

a(3) = (a1, a2, a1, ai1 , . . . , aip)

We claim that a(3) is absolute. Indeed, for any pair s, t ∈ S, s 6= t such that ms,t > m′
s,t,

we have {s, t} 6= {a1, a2} by (1), so any {s, t}-dihedral subsequence of a(3) is a subsequence of
(a1, ai1 , . . . , aip) or (a2, ai1 , . . . , aip), both of which are subexpressions of a. We know also that
a = a(3) holds in both W and W ′. Thus we may replace a with a(3) ; in other words, we may
assume a3 = a1. Continuing in this manner, we may even assume that [a1, a2,m

′ + 1〉 is a prefix of
the word a : a = [a1, a2,m

′ + 1〉c for some word c. Then, by (1), the equality a = [a2, a1,m
′ − 1〉c

holds in both W and W ′, so we may take a′ = [a2, a1,m
′ − 1〉c.

(ii) By (i), there are absolutely reduced expressions ra and rb such that the equalities a = ra and
b = rb hold in both W and W ′. By 2.1.(iv), we deduce that (ra)W ′ = (rb)W ′ and hence aW ′ = bW ′ .

(iii) By I.2.6, (ii) above and 2.1.(iv), it suffices to show the result when b is obtained from a by
applying a braid rewriting in W . In this situation, there are words c and d and generators s1, s2

such that a = c[s1, s2,m〉d and b = c[s2, s1,m〉d (where m = ms1s2). Suppose by contradiction
that a is absolute but b is not. Then there are generators s 6= t in S such that mst > m′

st, and a
{s, t}-dihedral subexpression u of b which has length > m′

st. We can write u = u1u2u3, where u1 is
a subexpression of c, u2 is a subexpression of [s2, s1,m〉, and u3 is a subexpression of d. Since a is
absolute, u is not a subexpression of a, so u2 is a subexpression of [s2, s1,m〉 but not of [s1, s2,m〉.
Now u2 is {s, t}-dihedral like u, so this implies u2 = [s2, s1,m〉. Therefore {s1, s2} = {s, t}, hence
ms1,s2 > m′

s1,s2
. But then a cannot be absolute.

(iv) The mapping p is correctly defined by (ii). The other properties of p follow from the fact
that any subexpression of an absolute expression is also absolute.

(v) Interchanging w and sw, we may assume w < sw. By assumption, there is an absolute
expression a such that sw = a in W . We may take a absolutely reduced by (i). Similarly, there
is an absolutely reduced, absolute expression a′ such that w = a′ in W . Consider the expression
b = sa′. This is reduced in W , so that by (iii) b is absolute like a. Therefore p(bW ) = bW ′ , and
hence p(sw) = sa′W ′ = sp(a′W ) = sp(w) as desired. Q. E. D.
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Lemma 2.5 (i) Let J ⊆ S and w ∈ W . Then [e, w]∩ < J > has a largest element mJ(w).
(ii) Furthermore, mJ(w) may be computed by the following recursion: mJ(e) = e and if w1 ∈ Dl(w)
then (putting w′ = w1w)

mJ(w) =

{
mJ(w

′) if w1 6∈ J or w1 ∈ Dl(mJ(w
′))

w1mJ(w
′) if w1 ∈ J, w1 6∈ Dl(mJ(w

′))
(2.1)

Proof: We show (i) and (ii) simultaneously, by induction on l = l(w). If l = 0, then clearly
mJ(w) = e. So assume l ≥ 1. We can write w = w1w

′, with w1 ∈ S and l(w′) = l(w) − 1.
Then [e, w] = [e, w′] ∪ w1[e, w

′] by proposition I.5.1. We even have [e, w] = [e, w′] ∪ A, where
A = {w1v|v ∈ [e, w′], v < w1v}. By the induction hypothesis [e, w′]∩ < J > has a largest element
mJ(w

′).

Suppose w1 6∈ J . Then A∩ < J >= {a ∈ A|supp(a) ⊆ J} = ∅ (see I.(3.3)), so [e, w]∩J = [e, w′]
and mJ(w) = mJ(w

′).

Suppose w1 ∈ J and w1 6∈ Dl(mJ(w
′)). Then for z ∈ [e, w], if we put z′ = min(z, w1z) we have

z′ ∈ [e, w′] and z ≤ w1z
′ ≤ w1mJ(w

′). So mJ(w) = w1mJ(w
′). Furthermore, if the word mJ(w

′) is
absolutely reduced, then the word w1mJ(w

′) will be reduced also.

Eventually, suppose w1 ∈ Dl(mJ(w
′)). Then [e, w′]∩ < J >= [e,mJ(w

′)]. By proposition I.5.1,
we deduce that [e, w′]∩ < J > is invariant by the mapping z 7→ w1z, so A∩ < J >⊆ [e,mJ(w

′)]
and mJ(w) = mJ(w

′). Q. E. D.

In particular, if J is a dihedral subgroup < s, t > then [e, w]∩ < s, t > has a largest element
ms,t(w) (do not mistake this for the coefficients of the Coxeter matrix). Put µs,t(w) = l(ms,t(w)).
The final result of this section then goes as follows :

Corollary 2.6 Let (W,S) be a Coxeter system, and w ∈ W . For s, t ∈ S, define µs,t(w) as
above. Define a new Coxeter matrix (m′

st) on S by putting m′
st = µs,t(w) for s 6= t, and consider

the associated Coxeter system (W ′, S). Then, in the notations and terminology of proposition
2.4, any reduced expression for wW is absolute, so that we have a canonical isomorphism p :
[e, wW ] → [e, wW ′ ] satisfying, for s ∈ S and u ∈ [e, wW ], p(su) = sp(u) whenever su ∈ [e, wW ] and
p(us) = p(u)s whenever us ∈ [e, wW ].

3 Bibliographical notes

Most of the results in section 1 are probably well-known but we do not know of any previous
written exposition of those results. Section 2 is a special case of the results in du Cloux [11], but
the presentation here is simplified and somewhat different.

40



Part III

Special Matchings and the main Result
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1 General results

Let (P,<) be a poset. We write x ⊳ y when we mean that x < y and there is no z such that
x < z < y. In this case x is a coatom of y; we denote by coat(y) the set of all coatoms of an
element y ∈ P . All the posets considered here are graded, i.e. they have a function l P → N such
that l(y) = l(x)+1 whenever x⊳ y. Actually, the first half of this section contains results that hold
for completely general graded posets, while in the rest of the paper we only consider, given a fixed
Coxeter system (W,S), the graded poset arising when we equip W with the Bruhat ordering and
the usual length function.

If u ∈ P and φ is a partial map defined at least on the coatoms of u, we use the abbreviation

Z(φ, u) = {u} ∪ {φ(v)| v ⊳ u, v ⊳ φ(v)}

Now let φ P → P be a map. We say that φ is a special matching when the following
conditions are fullfilled for any u ∈ P :

(i) φ is involutive ( φ(φ(u)) = u )

(ii) u ⊳ φ(u) or φ(u) ⊳ u

(iii) (u ⊳ φ(u)) ⇒ ( coat(φ(u)) = Z(φ, u) ).

Condition (iii) is the most significant, the other two only define the setting. If the terminology
is due to Brenti [7], the choice of the definition (among a certain number of equivalent ones) rather
comes from du Cloux [9]. Parts (i) and (ii) are common to [7] and [9], while (iii) is expressed
explicitly in neither of those two papers, but is easily seen to be equivalent to the versions given in
each.

The following easy consequence of (iii) will be used often in the sequel:

Remark 1.1 Let w ∈ P . If w has at least a coatom u such that φ(u) 6= w, u ⊳ φ(u), then
w ⊳ φ(w).

We will also use the following:

Remark 1.2 Let φ be a special matching on a graded poset P , and let x, y ∈ P such that
x ≤ y, x⊳ φ(x), φ(y) ⊳ y. Then φ restricts to a special matching of the interval [x, y].

Indeed, it suffices to show that under those assumptions we have φ(y) ∈ [x, y]. To see this,
take a path from x to y: x = x0 ⊳ x1 ⊳ x2 ⊳ . . . ⊳ xn = y. Then there is an index i such
that xi ⊳ φ(xi) but xj ⊲ φ(xj) for j > i. Then (iii) implies φ(xi) = xi+1, and hence x ≤ xi =
φ(xi+1) ⊳ φ(xi+2) ⊳ . . . φ(xn) = φ(y) as required.

If Q is a decreasing subset of P (i.e. (x ≤ q) ⇒ (x ∈ Q) for any q ∈ Q, x ∈ P ),
the notion can be relativized as follows: we say that a pair (Q, φ) is a partial special match-
ing if Q is decreasing and φ is a map Q → Q which gives a special matching on Q. We use the
notation Q = dom(φ) (so that we often write just φ instead of (Q, φ) to name the partial matching).

Let I(P ) be the set of all partial matchings of P ; there is a natural partial ordering ≤I on
I(P ), namely (Q1, φ1)≤I(Q2, φ2) if and only if Q1 ⊆ Q2 and φ2 extends φ1. The maximal elements
of ≤I are called maximal matchings. One can introduce the even more specialized notion of
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a Q-maximal matching of P : this is a partial matching φ of P such that ∀φ′ extending φ,
dom(φ) ∩Q = dom(φ′) ∩Q.

If Q is finite, any finite chain φ1, φ2, . . . φr satisfying for each i between 1 and r−1 the condition

φi+1 extends φi, dom(φi) ∩Q ⊂ dom(φi+1) ∩Q

(where ⊂ denotes strict inclusion) necessarily has length ≤ |Q|, and if this chain has maximum
length its last element must be a Q-maximal matching; therefore:

Remark 1.3 Let P be a graded poset, Q a finite decreasing subset of P. Then any partial match-
ing of P can be extended into a Q-maximal matching.

A maximal matching of P is a P -maximal matching of P , i.e. a special matching of P whose
domain is maximal for inclusion. We then have a “local-to-global”-type result:

Theorem 1.4 Let P be a locally finite graded poset (i.e. {x ∈ P | l(x) = k} is finite for each k).
If A is a decreasing subset of P , then any partial matching φ defined on A can be extended into a
maximal matching on P . If in addition the coat function is injective on P \A, then this extension
is unique.

Proof: Existence.

For each k we put Bk = {x ∈ P | l(x) ≤ k}. By remark 1.3, φ has an extension φ0 which is B0-
maximal. Repeteadly using this remark 1.3, we construct a sequence (φn)n≥0 of partial matchings
on P such that

∀n ≥ 1, φn extends φn−1, φn is Bn − maximal.

Now we set Q =
⋃

dom(φn)n≥0, and define ψ : Q→ Q by ∀x ∈ Q,ψ(x) = φn(x) if x ∈ dom(φn).
Then φ is well defined and is a maximal matching extending φ, as required.

Uniqueness (when coat is injective on P \ A).

By contradiction, suppose we have two distinct maximal matchings µ1 and µ2 extending φ.
Take w of minimal length such that µ1 differs from µ2 at point w, i.e. (interchanging µ1 and µ2 if
necessary)

Case 1 : w ∈ dom(µ1), w ∈ dom(µ2), µ1(w) 6= µ2(w), or else
Case 2 : w ∈ dom(µ1), w 6∈ dom(µ2).

Consider case 1. We certainly have w 6∈ A; by minimality of w we necessarily have w⊳µ1(w), w⊳

µ2(w), and hence µ1(w) 6∈ A, µ2(w) 6∈ A. Then condition (iii) gives coat(µ1(w)) = coat(µ2(w)) so
that µ1(w) = µ2(w) which is a contradiction.

Now we treat case 2. As in the preceding case, we see that w 6∈ A,w ⊳ µ1(w), µ1(w) 6∈ A. Also
µ1(w) 6∈ dom(µ2) (because dom(µ2) is decreasing and w 6∈ dom(µ2)). Let Q = dom(µ2)∪{w;µ1(w)}
and φ Q→ Q be defined by φ(x) = µ2(x) if x ∈ dom(µ2) and φ(x) = µ1(x) if x ∈ {w;µ1(w)}. The
mapping φ thus constructed is a partial matching and a nontrivial extension of µ2, contradicting
maximality. Q. E. D.
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We now leave the realm of abstract graded posets to stay till the end of this paper within the
smaller world of posets P arising from Coxeter systems (W,S) as follows: P will be W equipped
with the Bruhat-Chevalley ordering, and the usual (non-weighted) length function, or a decreasing
subset of that graded poset (thus we shall not need the symbol P to denote an abstract poset any
more; note that just below we will use the notation P for an entirely different thing, and keep the
new meaning for P in the sequel).

In this special case, theorem 1.4 can be enunciated in a stronger form. If φ is a maximal
matching, then dom(φ) 6= ∅, so e ∈ dom(φ) and by rule (ii), a = φ(e) is a generator: a ∈ S.
From now on, we will implicitly consider either a fixed maximal matching or a family of maximal
matchings sharing the value a = φ(e) for a fixed a ∈ S. Corollaries I.9.8 and I.9.9 give a first hint
at the importance of dihedral elements. We must also introduce the notion of a principal dihedral
element:

Definition 1.5 A dihedral subgroup of W is a parabolic dihedral subgroup when it is of
the form < s, t > for s 6= t ∈ S. It is a principal dihedral subgroup when it is of the form
Ps =< s, a > for s ∈ S \ {a}. A principal dihedral element is defined as an element of

P =
⋃

s∈S\{a}

Ps.

Let us start by describing how a special matching acts on a parabolic dihedral subgroup:

Proposition 1.6 Let (W,S) be a Coxeter system, φ a maximal matching on W and a = φ(e)
as above. Let D be a parabolic dihedral subgroup of W .
(i) If D is principal, then φ is defined on the whole of D and D is invariant by φ.
(ii) If D is nonprincipal, then for any w ∈ dom(φ) ∩D such that l(w) > 1, we have

w ⊳ φ(w), and φ(w) is not dihedral .

Proof: Let s ∈ S \ {a} and m = mas (integer or infinite coefficient in the Coxeter matrix).
Recall that Ps has a unique element in length 0, one element or no element at all in length m

(depending on whether m is finite or not) and two elements in length j when 0 < j < m. For
w ∈ Ps with 0 < l(w) < m, we denote by w̄ the unique element 6= w in Ps that has the same length
as w.

Let us show (i). We already have φ(e) = a and Z(φ, s) = {s; a}. If s 6∈ dom(φ), we could
extend φ by putting φ(s) = sa, contradicting maximality. So s ∈ dom(φ) and φ(s) ∈ {as; as}. If
m = 2 this reduces to φ(s) = as and we are done. Otherwise set u2 = φ(s), v2 = ū2. We have
Z(φ, v2) = {as; sa} so v2 ∈ dom(φ), φ(v2) ∈ {asa; sas}. If m = 3 this reduces to φ(v2) = asa and
we are done. Otherwise set u3 = φ(v2), v3 = ū3. Continuing this way, it is clear that we eventually
get the required result.

Let w ∈ D ∩ dom(φ) with l(w) > 1. We show (ii) by induction on l(w). Call v and v̄ the
coatoms of w. We have v ⊳ φ(v), v̄ ⊳ φ(v̄) (indeed, if l(w) = 2 this comes from φ(s) ∈ {as; sa}
for s ∈ S, and otherwise this is the induction hypothesis). Then Z(φ,w) = {φ(v);φ(v̄);w}. This
set has cardinality three (indeed, if l(w) = 2 this set is {φ(s);φ(t); st} where we write w = st, and
otherwise w is dihedral while φ(v) and φ(v̄) are not). By remark 1.1, we have w ⊳ φ(w), which
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completes the proof. Q. E. D.

When we consider larger parabolic subgroups, we have the following :

Lemma 1.7 Let (W,S) be a Coxeter system, φ a maximal matching on W and a = φ(e) as
above. Let J be a subset of S and containing a. Then < J > ∩dom(φ) is invariant by φ.

Proof : Put Q =< J > ∩dom(φ). Let us show by induction of l(w) that φ(w) ∈ Q for
all w ∈ Q. If w = e we have φ(w) = a ∈ J ∩ dom(φ) ⊆ Q, so assume l(w) > 0. We may also
assume w ⊳ φ(w). Then coat(φ(w)) = Z(φ,w) ⊆ Q by the induction hypothesis. In particular,
coat(φ(w)) ⊆< J >, hence supp(φ(w)) ⊆ J and φ(w) ∈< J >. Q. E. D.

Proposition 1.8 Let (W,S) be a Coxeter system, φ and ψ be two maximal matchings on W ,
and w ∈ W . Suppose that φ(e) = ψ(e) and that φ coincides with ψ on [e, w] ∩ P .

Then
φ(w) = ψ(w)

(or φ(w) and ψ(w) are both undefined).

Proof: By contradiction, take a minimal counterexample w. Reasoning as in the “uniqueness”
part of theorem 1.4, we may assume that φ(w) and ψ(w) are both defined, that w⊳φ(w), w⊳ψ(w)
and that φ(w) 6= ψ(w), coat(φ(w)) = coat(ψ(w)). By corollary I.9.9, this implies that w, φ(w) and
ψ(w) are all elements of some parabolic dihedral subgroup D. This D cannot be principal because
φ and ψ coincide on P ∩ [e, w]. Also l(w) > 1 since w 6∈ P . But then 1.6.(ii) says that φ(w) is
nondihedral which is a contradiction. Q. E. D.

Putting together the two preceding propositions we get:

Theorem 1.9 Let (W,S) be a Coxeter system and a ∈ S.
(i) For any maximal matching φ on W such that φ(e) = a, each principal dihedral subgroup Ps is
stable by φ, hence an induced matching φs on Ps.
(ii) Conversely, for any family (φs)s 6=a such that φs is a matching on Ps with φs(e) = a, there is a
unique maximal matching φ that extends the union of the φs: φ|Ps

= φs for all s ∈ S.

Proof: Of course (i) is just a repetition of 1.6.(i).
Let us now demonstrate the unique extension result. First, since Ps ∩ Pt = {e; a} when s 6= t,

the various mappings φs may be glued together into a mapping ψ : P → P and ψ will be a partial
matching because

⋃
Ps is decreasing; this already gives the existence of φ by the “existence” part

of theorem 1.4. The uniqueness of φ follows from proposition 1.8. Q. E. D.

2 Descent formulas for R-polynomials

For s in S we set Ls = {w ∈ W |l(sw) > l(w)}. Recall the following formulas from I.(10.10), which
give a method to compute the polynomials Ru,v: if x and y belong to Ls,
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Rsx,sy = Rx,y

Rx,sy = (q − 1)Rx,y + qRsx,y
(2.1)

The basic idea here is to show that these formulas, that hold for left (or right) multiplication
by s, also hold for any special matching. We make the following fundamental definition (recall the
definition of Mst from formula I.(1.5))

Definition 2.1 Let (W,S) be a Coxeter system and w ∈ W , J ⊆ S. We say that w is J-full if
for any s, t ∈ J , we have mst <∞, Mst ≤ w. We say that w is full if it is S-full.

Lemma 2.2 Let (W,S) be a Coxeter system, J ⊆ S, and w ∈ W a J-full element. Then there
is a J-full element v ∈< J > such that v ≤ w.

Proof: We know that [e, w]∩ < J > has a largest element v (this is the element mJ(w) of
lemma II.2.5); this v will do. Plainly, v ≤ w. Furthermore, if s and t are two distinct elements in J
and µ = Mst is the corresponding maximal dihedral element, we have µ ∈ [e, w]∩ < J > so µ ≤ v.
As this holds for any s and t, v is J-full. Q. E. D.

Definition 2.3 If s ∈ S and φ is a matching, we say that s is φ(left)-regular or that φ is
s-(left)-regular if

(i) dom(φ) is stable by (x 7→ sx), and
(ii)φ(sx) = sφ(x) for all x ∈ dom(φ).

Right-regularity is defined similarly. We shall denote by ρs and λs respectively the multiplication
mappings x 7→ xs and x 7→ sx. By an abuse of notation, for a partial mapping f we will write
f = ρs (or λs) when f is a restriction of ρs and f 6= ρs when f is not.

Definition 2.4 Let (W,S) be a Coxeter system and φ a maximal matching on W; let o be an
orbit in dom(φ) for the action of the involution φ. Then o can be written o = {m,M} with
m⊳M, φ(m) = M . The orbit o is said to be full if M is full. We say that o is a left-reducible
orbit if there is a φ-left-regular generator in the left descent set of m. Similarly, we say that o is
a right-reducible orbit if there is a φ-right-regular generator in the right descent set of m. The
orbit o is called a reducible orbit if it is either left- or right- reducible.

Finally, φ is called a reducible matching if |S| ≤ 2 or if any full orbit is reducible.

The usual addition operation and the usual ordering on N = {0; 1; 2; . . .} can be extended to
N ∪ {∞} by putting x ≤ ∞ and x + ∞ = ∞ for x ∈ N ∪ {∞}. The main result of this section is
the following:

Proposition 2.5 Let (W,S) be a Coxeter system with the following property: for any Coxeter
system (W ′, S) associated to a Coxeter matrix M ′ such that m′

st ≤ mst for any two generators
s 6= t, we have that any maximal matching on W ′ is reducible. Let φ be a partial matching on W.
Put Lφ = {w ∈ dom(φ) ; w ⊳ φ(w)}. Then, for (x, y) ∈ Lφ

2, x < y, we have
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Rφ(x),φ(y) = Rx,y (2.5.1)
Rx,φ(y) = (q − 1)Rx,y + qRφ(x),y (2.5.2)

Proof of the proposition. First, notice that when |S| ≤ 2, we have the equivalence (u <

v) ⇔ (l(u) < l(v)), whence we deduce easily that Ru,v only depends on l(v) − l(u) (for example
define the sequence of polynomials (Li(q)) by L0 = 1, L1 = q, ∀n ≥ 2 Ln = (q − 1)Ln−1 + qLn−2;
by induction on l(v) using (2.1) we get Ru,v = Ll(v)−l(u)(q) for u < v). Thus we get the desired
result very quickly when |S| ≤ 2.

In the remaining cases, we argue by induction both on l(y) and on the size of the Coxeter group:
formally, we keep the set S fixed and we show a property of the pair (M, y) by ordinary induction
on the quantity q(M, y) = l(y) + ||M ||, where we set ||M || =

∑
s,t∈Smst (a priori this works only

when q(M, y) is finite; however, it is easily seen that once we are done with the case q(M, y) < ∞
the case q(M, y) = ∞ easily follows, arguing as in the “reduction to the full case” below).

We claim that we may assume w = φ(y) is full without loss of generality. Indeed, consider
the Coxeter matrix M ′ defined by m′

st = the length of the largest element in [e, w]∩ < s, t > for
s, t ∈ S, and consider the Coxeter system (S,W ′) associated to matrix M ′. By proposition II.2.6,
the following mapping (where the s1 . . . sr are reduced words)

α [e, w] → W ′

{s1 . . . sr}W 7→ {s1 . . . sr}W ′

is well defined, strictly increasing with respect to the Bruhat orderings and satisfies

∀x ∈ [e, w], ∀s ∈ S, (xs ∈ [e, w]) ⇒ (α({xs}W ) = {α(x)s}W ′)

From which we easily deduce that α gives an isomorphism of graded posets from [e, w] onto [e, α(w)]
and that

∀u, v ∈ [e, w], RW
u,v = RW ′

α(u),α(v)

(reason by induction on l(v),using 2.5.1. and 2.5.2 for the right multiplication matchings). So that
all the data of the problem on [e, w] ⊆ W are carried isomorphically onto [e, α(w)] ⊆ W ′ and α(w)
is indeed full in that new Coxeter group.

Case l(y) = 0:
In this case y = e and all the Ru,v under consideration are zero except if x = e or φ(e); in each

of those two cases, formulas 2.5.1 and 2.5.2 are checked directly.

Case l(y) > 0 :
Thanks to the well-known equalities Ru,u = 1 and Ru,v = q − 1 if u⊳ v, we may take x < y.
Since φ is reducible and y is full, we know that there is a (left, say) regular generator g in the

(left) descent set of y.

Let v = gy. If m = l(v), we have l(y) = m + 1, l(φ(y)) = m + 2. If p = l(φ(v)), then on one
hand p − l(v) ∈ {−1, 1} and on the other p − l(gφ(v)) ∈ {−1, 1} so p = m + 1, and eventually
v ⊳ gv ⊳ φ(y), v ⊳ φ(v) ⊳ φ(y).

Suppose first that gx ⊳ x. Then, putting x′ = gx, the above reasoning (with x in place of y)
gives x′ ⊳ gx′ ⊳ φ(x), x′ ⊳ φ(x′) ⊳ φ(x). In this case,
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Rφ(x),φ(y) = Rgφ(x′),gφ(v) = Rφ(x′),φ(v)

= Rx′,v (induction hypothesis)

= Rgx′,gv = Rx,y.

and

Rx,φ(y) = Rgx′,gφ(v) = Rx′,φ(v)

= (q − 1)Rx′,v + qRφ(x′),v (induction hypothesis)

= (q − 1)Rgx′,gv + qRgφ(x′),gv = (q − 1)Rx,y + qRφ(x),y.

Now suppose that x⊳ gx. Then, because of coat(φ(x)) = {x} ∪ {φ(z)| z ⊳ x, z ⊳ φ(z)}, we see
that φ(gx) is a coatom of φ(x) only if φ(gx) = x, i.e. if φ(x) = gx; otherwise φ(x) ⊳ φ(gx). Thus
there are two subcases:

x⊳ gx, φ(x) = gx,

x⊳ gx, φ(x) ⊳ φ(gx).

In the first subcase, we have

Rφ(x),φ(y) = Rgx,gφ(v) = Rx,φ(v)

= (q − 1)Rx,v + qRφ(x),v (induction hypothesis)

= (q − 1)Rx,v + qRgx,v = Rx,gv = Rx,y.

and

Rx,φ(y) = Rx,gφ(v) = (q − 1)Rx,φ(v) + qRgx,φ(v) = (q − 1)Rx,φ(v) + qRφ(x),φ(v)

= (q − 1)((q − 1)Rx,v + qRφ(x),v) + qRx,v (induction hypothesis)

= (q − 1)((q − 1)Rx,v + qRgx,v) + qRgx,gv

= (q − 1)Rx,gv + qRgx,gv = (q − 1)Rx,y + qRφ(x),y.

Finally, in the second subcase one has

Rφ(x),φ(y) = Rφ(x),φ(gv) = Rφ(x),gφ(v)

= (q − 1)Rφ(x),φ(v) + qRgφ(x),φ(v)

= (q − 1)Rx,v + qRgx,v (induction hypothesis)

= Rx,gv = Rx,y.

and

Rx,φ(y) = Rx,φ(gv) = Rx,gφ(v)

= (q − 1)Rx,φ(v) + qRgx,φ(v)

= (q − 1){(q − 1)Rx,v + qRφ(x),v} + q{(q − 1)Rgx,v + qRφ(gx),v}

(induction hypothesis)

= (q − 1){(q − 1)Rx,v + qRgx,v} + (q − 1){(q − 1)Rφ(x),v + qRgφ(x),v}
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= (q − 1)Rx,gv + qRφ(x),gv

= (q − 1)Rx,y + qRφ(x),y. Q. E. D.

Now our aim will be to show that all matchings are reducible.

Definition 2.6 Let (W,S) be a Coxeter system and φ a partial matching on W. We say that φ
is full if dom(φ) contains a full element.

Note that a non-full matching is trivially reducible. This will be quite a useful fact in the
following sections.

3 Regularity criteria

Proposition 3.1 Let (W,S) be a Coxeter system, φ a maximal matching on W, a = φ(e). Let
w ∈ dom(φ) and s ∈ S. (recall that for s 6= a we put Ps =< s, a > and P =

⋃
s 6=a Ps)

If s 6= a, and φ commutes with λs on [e, w] ∩ Ps, then sw ∈ dom(φ), and φ(sw) = sφ(w).
If s = a, and φ commutes with λa on [e, w] ∩ P , then sw ∈ dom(φ), and φ(sw) = sφ(w).

Of course, left may be replaced with right in this proposition.

Note: this result is immediately implied by the much stronger statement in [8, lemma 4.3] about
two special matchings on a K3,2-avoiding poset.

Proof: Let us show the first assertion.
We argue by induction on the length of w. The case l(w) = 0 (or even w ∈ Ps) is trivial. Thus we
take w 6∈ Ps. If one of sw or φ(w) (call it v) is ⊳w, then the result is clear by applying the induction
hypothesis to v, so we may assume w ⊳ sw,w ⊳ φ(w), φ(w) ⊳ sφ(w). We compute Z(φ, sw) (using
w < sw on the second line and the induction hypothesis on the fourth line)

Z(φ, sw) = {sw} ∪ {φ(z)| z ⊳ sw, z ⊳ φ(z)}
= {sw} ∪ {φ(z)| (z = w or z = su, u⊳ w, u⊳ su), z ⊳ φ(z)}
= {sw;φ(w)} ∪ {φ(su)| u⊳ w, u⊳ su, su⊳ φ(su)}
= {sw;φ(w)} ∪ {sφ(u)| u⊳ w, u⊳ su, su⊳ sφ(u)}

Now for any u the assertions (u⊳w, u⊳ su, su⊳ sφ(u)) and (u⊳w, u⊳φ(u), φ(u) ⊳ sφ(u)) are
equivalent (for example if u satisfies the first then l(φ(u)) = l(u) + 1 so u satisfies the second) and
so

Z(φ, sw) = {sw;φ(w)} ∪ {sφ(u)| u⊳ w, u⊳ φ(u), φ(u) ⊳ sφ(u)}
= {φ(w)} ∪ {sz| (z = w or z = φ(u), u⊳ w, u⊳ φ(u)), z ⊳ sz}
= {φ(w)} ∪ {sz| z ⊳ φ(w), z ⊳ sz}
= coat(sφ(w))

Now, if φ were not defined at sw, the formula above shows that we could extend φ by putting
φ(sw) = sφ(w), contradicting the maximality of φ. So sw ∈ dom(φ), and x = φ(sw) satisfies
coat(x) = coat(sφ(w)). Moreover, sφ(w) is not dihedral (else there is a dihedral subgroup D such
that sφ(w) ∈ D, so w ∈ D and φ(w) ∈ D. Proposition 1.6 shows that D is principal: for some
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t ∈ S \ {a} we have D = Pt. Then s ∈ Pt, so s = t and we get w ∈ Ps which is impossible) so that
corollary I.9.9 gives x = sφ(w) as required.

The proof of the second assertion is similar : the case w ∈ P is trivial, we show the equality
Z(φ, sw) = coat(sφ(w)), and conclude by arguing that sφ(w) is non-dihedral since w 6∈ P . Q. E. D.

Recalling proposition 1.9, we deduce that

Corollary 3.2 Let (W,S) be a Coxeter system, φ a maximal matching on W, a = φ(e). Let
s ∈ S.

If s 6= a, (φ is s-left-regular ) ⇔ (φ|Ps
is s-left-regular )

If s = a, (φ is a-left-regular ) ⇔ (φ|P is a-left-regular )

Of course, we may replace left with right in this corollary.

Corollary 3.3 Let (W,S) be a Coxeter system. Let φ be a maximal matching on W , a = φ(e),
X and Y two subsets of S such that:

(i) φ|Px
= ρa, for any x ∈ X \ {a}

(ii) φ|Py
is a-left-regular, for any y ∈ Y \ {a}

Then < X > (< Y > ∩dom(φ)) ⊆ dom(φ) and for x ∈< X >, y ∈< Y > ∩dom(φ) we have

φ(xy) = xφ(y).

Of course, we may replace left with right in this corollary.

Proof: Let Q =< X > (< Y > ∩dom(φ)). What we must show is that the restriction of φ to
Q is x-left-regular for all x ∈ X. This is clear from (i) (and the preceding corollary) if x 6= a. And
since

P ∩Q =
⋃

t∈X∪Y \{a}

Pt

it also follows immediately from (i) and (ii) when x = a. Q. E. D.

Finally we give a practical regularity criterion:

Remark 3.4 Let φ be a special matching defined on a dihedral Coxeter group < s, t >. For
i ≤ mst put

di = [t, s, i〉

Then the following are equivalent:

(1) φ is not s-left-regular
(2) ∃i ≤ mst − 3, φ(di) = di+1, φ(sdi) 6= sdi+1(so φ(sdi) = di+2).

Proof: Put Z = {z ∈< s, t > | φ(sz) 6= sφ(z)}. As φ and w 7→ sw are involutive, Z is stabilized
by those two mappings. So any minimal element z0 of Z (if there are any) satisfies z0 ⊳ sz0 and
z0 ⊳ φ(z0) (which implies (2) with z0 = di), and the result follows. Q. E. D.
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4 Restrictions on the domain in the mixed case

Before proceeding further the reader should recall proposition I.3.1. In particular, part (ii) will
implicitly justify all assertions of the form “this element has a unique reduced expression”: if we
denote by I the set of elements in W with a unique reduced expression, (or, alternatively, the
associated set of reduced words in S∗), a reduced word g is in I if and only if no braid relation
can be applied to g i.e. if and only if g does not contain dihedral subwords that represent maximal
dihedral elements. Similarly, we use part (i) of proposition I.3.1 without mention any time we
need to know that a certain word is reduced. Note that the words encountered will never be very
complex (they will differ from a dihedral word by one character only), which justifies our brievity
on that issue.

Given a maximal matching φ on a Coxeter group W , for each s ∈ S we have seen in the
proof of 1.6.(i) that s ∈ dom(φ), φ(s) ∈ {as; sa} (where a = φ(e)). When the restriction of φ to
the generators does not coincide with a left or right multiplication, which amounts to saying that
there are some s, t ∈ S with mas > 2, mat > 2, φ(s) = sa, φ(t) = at, we say that φ is mixed.

Define subsets L and R of S by

L = {l ∈ S| φ(l) = al}
R = {r ∈ S| φ(r) = ra}

and let < L > and < R > be the associated parabolic subgroups. We show that the following
inclusion holds:

Theorem 4.1 dom(φ) ⊆< R >< L >.

Proof: Suppose by contradiction that there is a w in dom(φ)\ < R >< L >; take w minimal,
so that [e, w[⊆< R >< L >. First we note that Dl(w) cannot contain an element of R (otherwise
we could write w = rv with r ∈ R, v < w and then v ∈< R >< L > yields rv ∈< R >< L >, a
contradiction), and because of S = L ∪R, we deduce Dl(w) ⊆ L \R. Similarly, Dr(w) ⊆ R \ L.

Let w1 . . . wm be a reduced expression for w. Thus we have w1 ∈ L \ R, wm ∈ R \ L. Let
x = w1 . . . wm−1. Then Dl(x) ⊆ Dl(w), so Dl(x) ∩ R = ∅. As x ∈< R >< L >, this imposes
x ∈< L >. Thus we have ∀i ≤ m− 1, wi ∈ L. Symmetrically, ∀i ≥ 2, wi ∈ R. So by renaming the
wi,

w = lb1 . . . bnr, with




l ∈ L \R,
∀i bi ∈ L ∩R,
r ∈ R \ L


 (†)

On the one hand Dl(w) ⊆ {l, b1, . . . , bn, r} and on the other Dl(w) ⊆ L \ R, so we deduce that
Dl(w) = {l}, and similarly Dr(w) = {r}. Thus, in any reduced expression for w the characters l
and r appear exactly once, at the beginning and at the end respectively.

Now we will show that, for any pair (l, r) ∈ (L \R) × (R \ L),
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(1) If lr 6= rl, lr 6∈ dom(φ)
(2) In any case, lar 6∈ dom(φ).

For both items we argue by contradiction: if rl 6= lr, lr ∈ dom(φ), by remark 1.1 lr ⊳ φ(lr),
so that coat(φ(lr)) = {lr, al, ra}; now no element of W has this for a coatom set (if coat(z) =
{lr, al, ra} for some z, as lr ∈ I and lr ⊳ z we have z = alr, lar or lra, but then ar and la cannot
both be coatoms of z), hence (1). Now we proceed with the proof of (2), and suppose lar ∈ dom(φ).
By (1) and because dom(φ) is decreasing, we have lr = rl. Then φ(la) ∈ {ala, lal}, φ(ar) ∈
{ara, rar}, φ(lr) = ral. By remark 1.1 lar ⊳ φ(lar); put z = φ(lar). Then both lar and ral (which
are in I) are coatoms of z, and this is a contradiction. So (2) holds.

Going back to our initial reasoning, (1) and (2) give lr = rl, and all the bi are distinct from a

(otherwise lar ≤ w, which is impossible because dom(φ) is decreasing). Thus a 6≤ w, so by remark
1.2 w⊳ φ(w) (indeed if φ(w) ⊳w we deduce that φ restricts to a special matching of [e, w], and in
particular φ(e) ∈ [e, w]), and if g is a reduced expression for φ(w) and g′ is the word obtained by
supressing the unique ocurrence of a in g , then w = g′ holds in W . So the three generators a, l
and r occur exactly once in g. Now φ restricts to a special matching of [ar, w] by remark 1.2, so
ar ≤ φ(ar) ≤ φ(w) and similarly la ≤ φ(w), so lar ≤ φ(w) which is impossible by (2). Q. E. D.

The inclusion we have just shown becomes an equality for an important class of matchings
which contains almost all matchings on finite or affine Coxeter groups:

Corollary 4.2 (Middle multiplication matchings)Suppose that φ is a maximal matching
such that φ = ρa on each Pr(r ∈ R) and φ = λa on each Pl(l ∈ L). Then dom(φ) =< R >< L >,
and for x ∈< R >, y ∈< L > we have the middle multiplication formula

φ(xy) = xay

and φ is reducible.

Proof: The key remark is that under those hypotheses, the elements of R are left-regular
and that the elements of L are right-regular, by corollary 3.2. Then corollary 3.3 makes the in-
clusion become an equality and yields the middle multiplication formula. Moreover, because of
dom(φ) =< R >< L >, all the orbits (except for the orbit {e, a}) are reducible, not just the full
ones, so that φ is a fortiori reducible. Q. E. D.

Middle-multiplication matchings first appeared in Brenti’s study [7] of special matchings in type
A: he found, in fact, that all matchings in type A are right, left, or middle multiplications. This
may be generalized as follows:

Corollary 4.3 Any matching defined on a simply laced Coxeter group is reducible (indeed, it is
a middle multiplication matching).

Proof: Because of the small sizes of the dihedral subgroups we necessarily have φ = ρa for all
r ∈ R and φ = λa for all l ∈ L. Then the above corollary applies. Q. E. D.
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5 Some results on rank three groups.

In all of this section, we consider a Coxeter system (W,S) of rank 3: S = {a, b, b′} and φ is a
maximal matching on W with φ(e) = a. We denote by β the restriction of φ to < a, b >.

5.1 Preliminaries.

Lemma 5.1.1 Let G =< a, b′ >< a, b >. Then:
(i) If (mbb′ > 2 or mab = ∞ or mab′ = ∞), then G does not contain any full element.
(ii) If (mbb′ = 2, mab <∞, mab′ <∞), then G contains exactly two full elements, namely

Mb′,a,b = 〈mab′ − 1, a, b′][b, a,mab − 1〉, and
M ′

b′,a,b = 〈mab′ − 1, a, b′]a[b, a,mab − 1〉.

Proof: Recall that the existence of a full element implies that all the entries of the Coxeter
matrix are finite. Moreover, G is decreasing and we have G∩ < b, b′ >= {e, b, b′, b′b}. This already
proves (i).

Let G satisfy the hypotheses of (ii). Any element g in G can be written xy with x ∈< a, b′ >

, y ∈< a, b >. Putting x′ = min(x, xa) and y′ = min(y, ay) we see that g can be uniquely rewritten
x′εy′ with ε ∈ {e; a}. As x′ ⊳ x′a, there is a j ≤ mab′ − 1 such that x′ = 〈j, a, b′]. Similarly, there
is a k ≤ mab − 1 such that y′ = [b, a, k〉. If g is full, g ≥ Mab′ so j = mab′ − 1. By symmetry
k = mab − 1, which completes the proof of (ii). Q. E. D.

Lemma 5.1.2 Suppose that mab′ ≥ 3, that φ = ρa on [e, ab′a], and that β is not a-left-regular.
By remark 3.4 this forces mab ≥ 4, and there is a minimal i such that φ([b, a, i〉) = [b, a, i +
1〉, φ([a, b, i+ 1〉) = [b, a, i+ 2〉, i ≤ mab− 3. Then ab′[b, a, i〉 is a minimal element in W \ dom(φ).

Proof: Put w = ab′[b, a, i〉. Proposition 3.1 yields:

∀x < [b, a, i〉, φ(b′x) = b′φ(x), φ(ab′x) = ab′φ(x).

In particular φ(b′[b, a, i〉) = b′[b, a, i+ 1〉.
Suppose by contradiction that w ∈ dom(φ). Then by remark 1.1 we have w ⊳ φ(w) so

coat(φ(w)) = Z(φ,w). Let g be a reduced expression for φ(w). As φ([a, b, i+ 1〉) = [b, a, i+ 2〉 ∈ I
and b′ ≤ φ(w), we obtain g by inserting the generator b′ somewhere in the word [b, a, i + 2〉.
Now, b′[b, a, i+ 1〉 ⊳ φ(w) forces b′ to occur before the leftmost a appearing in [b, a, i+ 2〉, so that
φ(w) = b′[b, a, i + 2〉. But w has at most two reduced expressions, ab′[b, a, i〉 and abb′[a, b, i − 1〉
(which reduce to one when mbb′ = 2), neither of which is a subexpression of b′[b, a, i+ 2〉, and this
is a contradiction. Q. E. D.

Lemma 5.1.3 Suppose that mbb′ ≥ 3, that φ = ρa on [e, b′a], and that β is not b-left-regular. By
remark 3.4, this forces mab > 3 and there is a minimal i such that φ([a, b, i〉) = [a, b, i+1〉, φ([b, a, i+
1〉) = [a, b, i+ 2〉, i ≤ mab − 3. Then bb′[a, b, i〉 is a minimal element in W \ dom(φ).
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Proof: Put w = bb′[a, b, i〉. Proposition 3.1. yields that any element < w is in dom(φ) and

∀x < [a, b, i〉, φ(b′x) = b′φ(x), φ(bb′x) = bb′φ(x).

In particular φ(b′[b, a, i〉) = b′[b, a, i+ 1〉.
Suppose by contradiction that w ∈ dom(φ). Then by remark 1.1 we have w ⊳ φ(w) so

coat(φ(w)) = Z(φ,w). Let g be a reduced expression for φ(w). As [a, b, i + 2〉 ∈ I and b′ ≤ φ(w),
we obtain g by inserting character b′ somewhere in the word [a, b, i + 2〉. Now, w ⊳ φ(w) imposes
φ(w) = abb′[a, b, i〉 = abb′a[b, a, i− 1〉. This is incompatible with b′[b, a, i+ 1〉 ⊳ φ(w). Q. E. D.

5.2 Mixed matchings in rank three.

In this subsection, we take S = {a; b; b′}, mab ≥ 3, mab′ ≥ 3, and φ(e) = a, φ(b) = ab, φ(b′) =
b′a (the “mixed” case). We denote by β (β

′

) the restriction of φ to < a, b > (respectively < a, b′ >).

❡ ❡ ❡b a b′

φ(e) = a

φ(b) = ab

φ(b′) = b′a

Figure 1: Mixed case

To give the reader an idea of where we are going to, we formulate at once the main and last-to-
be-proved result of this subsection:

Proposition 5.2.1 The matching φ is full if and only if mbb′ = 2, mab and mab′ are finite, and

(∗)

{
β is a-left-regular and β′ = ρa, or

β
′

is a-right-regular and β′ = λa.

By theorem 4.1. we have dom(φ) ⊆< a, b′ >< a, b >. Then, by lemma 5.1.1, the matching can
be full only if mbb′ = 2,mab <∞,mab′ <∞, which we assume for the remainder of the section.

Whenever we find an obstruction h 6∈ dom(φ) with h ≤ Mb′,a,b we may conclude that φ is not
full. This is the gist of the next three lemmas.

Lemma 5.2.2 Suppose that φ(ab′) = ab′a (this always holds if mab′ = 3) and that β is not a-
left-regular. By remark 3.4 there is a minimal i such that φ([b, a, i〉) = [b, a, i+1〉, φ([a, b, i+1〉) =
[b, a, i+ 2〉, i ≤ mab − 3. Then ab′[b, a, i〉 is a minimal element in W \ dom(φ), so φ is not full.

Proof: This is lemma 5.1.2. Q. E. D.

Lemma 5.2.3 Suppose that mab′ ≥ 4, φ(ab′) = b′ab′, φ(ab′a) = b′ab′a (this always holds if mab′ =
4) and that β 6= λa, so that there is a minimal i such that φ([b, a, i〉) = [b, a, i + 1〉, i ≤ mab − 2.
Then ab′[b, a, i〉 is a minimal element in W \ dom(φ), so φ is not full.
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Proof: Put w = ab′[b, a, i〉. If w ∈ dom(φ), then w ⊳ φ(w) by remark 1.1. Note that
φ(ab′[a, b, i − 1〉) = b′ab′[a, b, i − 1〉 by proposition 3.1 and the hypotheses on φ. If g is a reduced
expression for φ(w) then g can be obtained from a reduced expression of φ([a, b, i+1〉) by inserting
a b′ somewhere. But then we contradict b′ab′[b, a, i− 1〉 ≤ φ(w) (remember ma,b′ ≥ 4). Q. E. D.

Lemma 5.2.4 Suppose ma,b′ ≥ 5, φ(ab′) = b′ab′, φ(ab′a) = ab′ab′. Then ab′ba is a minimal
element in W \ dom(φ), so φ is not full.

Proof: Put w = ab′ba. We have (by proposition 3.1 again):

coat(w) = {b′ba, aba, ab′a, ab′b}
φ(b′ba) = b′φ(ba)
φ(ab′a) = ab′ab′ (by hypothesis)
φ(ab′b) = φ(ab′)b = b′ab′b

By remark 1.1, if w ∈ dom(φ) then w⊳φ(w). If g is a reduced expression for φ(w), as ab′ab′ ∈ I
(remember ma,b′ ≥ 5) we see that g can be obtained by inserting the generator b somewhere in
ab′ab′. So φ(w) ∈ {bab′ab′; abb′ab′; ab′abb′}. Since w ⊳ φ(w) and w has exactly two reduced expres-
sions, ab′ba and abb′a, we deduce φ(w) = abb′ab′. Since w′ = b′ab′b is ≤ φ(w) and w′ has exactly
two reduced expressions, b′ab′b and b′abb′, we deduce φ(w) = ab′abb′. But then abb′ab = ab′abb′, i.e.
ab′(bab) = ab′(abb′) hence bab = abb′ which is a contradiction. Q. E. D.

Lemma 5.2.5 If φ is full, then β is a-left-regular and β
′

is a-right-regular .

Proof: If we put together lemmas 5.2.2, 5.2.3, and 5.2.4, we see that we have proved that if
φ is full, then β is a-left-regular. By symmetry, β

′

in turn is a-right-regular. Q. E. D.

Next we show that in fact one of β, β′ must be a multiplication matching:

Lemma 5.2.6 Suppose that β is a-left-regular, β′ is a-right-regular, that β 6= λa and that β′ 6=
ρa, so that there are minimal i and i′ such that φ(〈i′, a, b′]) = 〈i′+1, a, b′] and φ([b, a, i〉) = [b, a, i+1〉.
Then 〈i′, a, b′][b, a, i〉 is a minimal element in W \ dom(φ), so φ is not full.

Proof: Put w = 〈i′, a, b′][b, a, i〉 (note that i, i′ ≥ 2). We have (repeatedly using proposition 3.1
in the last four lines)

coat(w) = {〈i′ − 1, a, b′][b, a, i〉; 〈i′ − 1, b′, a][b, a, i〉; 〈i′, a, b′][b, a, i− 1〉; 〈i′, a, b′][a, b, i− 1〉}
φ(〈i′ − 1, a, b′][b, a, i〉) = 〈i′ − 1, a, b′]φ([b, a, i〉) = 〈i′ − 1, a, b′][b, a, i+ 1〉,
φ(〈i′ − 1, b′, a][b, a, i〉) = 〈i′ − 1, b′, a]φ([b, a, i〉) = 〈i′ − 1, b′, a][b, a, i+ 1〉,
φ(〈i′, a, b′][b, a, i− 1〉) = φ(〈i′, a, b′])[b, a, i− 1〉 = 〈i′ + 1, a, b′][b, a, i− 1〉,
φ(〈i′, a, b′][a, b, i− 1〉) = φ(〈i′a, b′])[a, b, i− 1〉 = 〈i′ + 1, a, b′][a, b, i− 1〉.

Suppose by contradiction that w ∈ dom(φ). Then, by remark 1.1, w ⊳ φ(w) so coat(φ(w)) =
Z(φ,w). Notice that i′ ≤ mab′ −2 because φ(〈i′, a, b′]) 6= 〈i′, a, b′]a and similarly i ≤ mab−2. Notice
also that w has exactly two reduced expressions, namely 〈i′, a, b′][b, a, i〉 and 〈i′−1, b′, a]bb′[a, b, i−1〉.
Let g be a reduced expression for φ(w); we obtain g by inserting a certain generator s into a reduced
expression for w. Thus, g is of one of the three forms x[b, a, i〉 (where x is obtained by inserting
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s somewhere in 〈i′, a, b′]), 〈i′, a, b′]y (where y is obtained by inserting s somewhere in [b, a, i〉), or
〈i′ − 1, b′, a]bsb′[a, b, i − 1〉. In the first case we do not have φ(w) ≥ [b, a, i + 1〉, in the second we
do not have φ(w) ≥ 〈i′+1, a, b′], and in the third we have neither. So this is a contradiction. Q. E. D.

Proof of Proposition 5.2.1: Putting together lemmas 5.2.5 and 5.2.6 we see that if φ is full
then (*) holds. Conversely, in the (first, say) alternative of (*), corollary 3.3 (with X = {a; b′},
Y = {a; b}) yields for any x ∈< a, b′ >, y ∈< a, b >,

xy ∈ dom(φ), φ(xy) = xφ(y)

In particular, we see that dom(φ) contains the element Mb′,a,b (see lemma 5.1.1) and that ele-
ment is full. Q. E. D.

5.3 Nondegenerate case in rank three.

In this subsection, we suppose S = {a, b, b′},mab ≥ 3, mab′ ≥ 3 (the “nondegenerate” case). As
the mixed case has been taken care of in the preceding subsection, here we take φ(b) = ba, φ(b′) =
b′a. As before, the case mbb′ > 2 is simpler.

❡ ❡ ❡b a b′

φ(e) = a

φ(b) = ba

φ(b′) = b′a

Figure 2: Nondegenerate, nonmixed case

Lemma 5.3.1 Suppose that β 6= ρa. Then there is a minimal i such that φ(〈i, a, b]) = 〈i+1, a, b]
(with mab ≥ i + 2). Let H = {w ∈ W | l(w) = i + 1, b′ ≤ w, 〈i, a, b] ≤ w, w 6= b′〈i, a, b]}, and M ,
M ′ be the elements defined in lemma 5.1.1. Then we have:

(1) If φ(ab′) = ab′a, then for any w ∈ H, w 6∈ dom(φ).
(2) If φ(ab′) 6= ab′a, then abb′ 6∈ dom(φ), ab′b 6∈ dom(φ).
(3) The set dom(φ) does not contain any full element, except (possibly) when φ(ab′) = ab′a,

mbb′ = 2, and i is odd. In that case, any full element in dom(φ) is necessarily equal to M or M ′.

Note: Statement (1) also follows immediately from lemma 6.2 of [8].

Proof: (1) Define a set T of integers by the following:

T =

{
[0, i− 1] if mbb′ > 2
{j ∈ [0, i− 2]| j even} if mbb′ = 2

Then H may be described as follows: any w ∈ H can be written w = xb′〈j, a, b], (where x is
the unique word such that the equality 〈i, a, b] = x〈j, a, b] holds) with j ∈ T . By remark 1.1, if
w ∈ dom(φ) we must have w⊳φ(w). Let y be the word obtained by erasing the rightmost character
in x. The elements w1 = yb′〈j, a, b] and w2 = 〈i, a, b] are coatoms of w, and as w1 ⊳ φ(w1)(= w1a),
w2 ⊳ φ(w2), if w ∈ dom(φ), z = φ(w) satisfies:

yb′〈j + 1, b, a] ⊳ z, 〈i+ 1, a, b] ⊳ z.
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Note that g2 = 〈i+ 1, a, b] ∈ I , so if g is a reduced expression for z, then we obtain g by inserting
the generator b′ somewhere in g2: we can write g = ub′v and g2 = uv for some words u, v. Element
φ(w1) may have several reduced expressions (when mab′ = 3) but among those g1 = yb′〈j + 1, b, a]
is the only one that contains at most one ocurrence of b′. In all cases, g1 must be a subexpression
of g. Therefore u ≥ u′ = y and v ≥ v′ = 〈j + 1, b, a]. In addition, v 6= v′ (the rightmost characters
differ) and because of the length constraints u = u′ and v = v′b. Then the rightmost character in
u coincides with the leftmost character in v, so g2 = uv is not reduced, which is a contradiction.
This finishes the proof of (1).

Let us show (2). The hypotheses imply φ(ab′) = b′ab′, mab′ ≥ 4. Let w1 = abb′; we have (using
proposition 1.8. with the special matching ρa for the last equality)

coat(abb′) = {ab, ab′, bb′}
φ(ab) ∈ {aba, bab}, φ(ab′) = b′ab′, φ(bb′) = bb′a.

So if w1 ∈ dom(φ), we must have w1 ⊳ φ(w1) and if g1 is a reduced expression for φ(w1), g1 can
be obtained by inserting the generator b somewhere in b′ab′(∈ I). Then g1 has exactly two char-
acters in {a; b}. This is not consistent with φ(ab) ⊳ φ(w1). Therefore abb′ 6∈ dom(φ). The proof of
ab′b 6∈ dom(φ) is similar.

Now let us proceed with the proof of (3). Suppose that there is a full element w ∈ dom(φ).

Case φ(ab′) = ab′a:

Intuitively, the setting is clear: the elements of H tell us that in a reduced expression g of w we
cannot have a b′ “inside” a long dihedral subword in a and b (such subwords will exist because w is
full) so that indeed the < a, b >-part and the < a, b′ >-part are (up to a few generators) separated
in g. By lemma 5.1.1, we will be done.

Let w be a full element in dom(φ); set v = min(w, b′w). Then v ≥ Mab and v ≥ b′. Consider
a reduced expression v1 . . . vn for v; for any subset K = {k1 < k2 < . . . < kr} of {1, . . . , n} we put
vK = vk1vk2 . . . vkr

. Thus there is a D ⊆ {1, . . . , n} with cardinality mab such that vD = Mab and
an index j such that vj = b′. By construction v < b′v, so v1 ∈ {a; b} and hence we may assume
1 ∈ D.

If i is even or mbb′ > 2, then some subword of v′ = vD∪{j} belongs to H and v′ ≤ v which is a
contradiction because dom(φ) is decreasing. So i is odd, and mbb′ = 2.

Define a two-periodic sequence (ti) by t1 = a, t2 = b. Considering the occurrences of a or b in a
reduced expression of w, we can find a decomposition of the form

w = (u0)a(u1)b(u2)a(u3)b(u4) . . . tn(un), with
u0 6≥ a, u0 6≥ b, (so u0 ∈ {e, b′})
uj 6≥ tj+1(so uj ∈< tj, b

′ >) for each j ≥ 2
l(w) = n+

∑
j l(uj)

(we could also start with a b: w = (u0)b(u1)a(u2)b(u3)a(u4) . . . tn(un) but this case is similar and
simpler). Because w is full, w ≥ Mab so n ≥ mab ≥ i + 2. If there is a j ≥ 3 such that uj ≥ b′
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then w′ = aba(t3t4 . . . tj−1tj)b
′(tj+1tj+2 . . . ti−1ti) (or w′ = (t1t2 . . . ti−1ti)b

′ if j ≥ i) belongs to H

and w′ ≤ w which is a contradiction because dom(φ) is decreasing. Therefore for those j ≥ 3 we
have uj ∈ {e, tj} whence uj = e. So

w = u0au1bu2a[b, a, n− 3〉
u0 ∈ {e, b′}, u1 ∈< a, b′ >, u2 ∈< b, b′ >,

l(w) = n+ l(u0) + l(u1) + l(u2)

Because of mbb′ = 2 we deduce u2 ∈ {e, b′}. Replacing (u1, u2) with (u1b
′, b′u2) if necessary, we

may assume u2 = e. Then, putting x = u0au1, y = [b, a, n− 1〉 we have w = xy, x ∈< a, b′ >, y ∈<
a, b >. By lemma 5.1.1 we are done with the case when φ(ab′) = ab′a.

Case φ(ab′) 6= ab′a:

As w is full we have w ≥ a. Hence a decomposition w = uav, with u ∈< b, b′ >, l(w) =
l(u) + 1 + l(v). Necessarily v 6= e because w is full. So the first character q of v is in {b, b′}; let q̄
be the element defined by {b, b′} = {q; q̄}. We can write v = qv′ with l(v) = 1 + l(v′). Then, as
w 6≥ aqq̄ (by hypothesis (2)) we deduce v′ 6≥ q̄ and so v′ ∈< a, q >. Hence w = u(aqv′) ∈< b, b′ ><

a, q >=< q, q̄ >< a, q >; as ma,q̄ ≥ 3, w cannot be full with respect to {a, q̄}. Q. E. D.

Using the above lemma twice (interchanging the roles of b′ and b the second time) we see that
when mbb′ > 2, φ can be full only if β and β

′

are both restrictions of ρa; by theorem 1.9 we then
obtain:

Lemma 5.3.2 If mbb′ > 2, φ is full if and only if φ = ρa.

Lemma 5.3.3 If β 6= ρa and β
′

6= ρa, then φ is not full.

Proof: If mbb′ = 2 we are done by the lemma above. Suppose to the contrary that φ is full.
By lemma 5.3.1, dom(φ) contains a unique full element in length mab+mab′ −2 namely F = Mb′,a,b.
Interchanging b and b′, dom(φ) contains a unique full element in length mab + mab′ − 2 namely
F ′ = Mb,a,b′ . As F and F ′ are different, (notice for example that bF ′

⊳ F ′ but F ⊳ bF ) this is a
contradiction. Q. E. D.

Lemma 5.3.4 Suppose that mbb′ = 2, β
′

= ρa and that β is not a-left-regular. Then φ is not
full.

Proof: The condition “β is not a-left-regular” technically means that mab ≥ 4, and that

∃i ≤ mab − 3, β([b, a, i〉) = [b, a, i+ 1〉, β([a, b, i+ 1〉) = [b, a, i+ 2〉

Take a minimal such i. Lemma 5.3.1 says that if φ is full, then dom(φ) contains Mb′,a,b.
In addition, lemma 5.1.2. shows that ab′[b, a, i〉 6∈ dom(φ); as ab′[b, a, i〉 ≤Mb′,a,b, this is impos-

sible because dom(φ) is decreasing. Q. E. D.

Proposition 5.3.5 Suppose mbb′ = 2, and φ 6= ρa. Then φ is full if and only if up to interchange
of b and b′, φ|<a,b′> = ρa and φ|<a,b> is a-left-regular. Then dom(φ) contains exactly two full
elements, namely Mb′,a,b and M ′

b′,a,b.
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Proof: Corollary 3.3 and lemma 5.1.1 give one half of the equivalence. Conversely, suppose
that φ is full. By lemma 5.3.3, β

′

(say) coincides with ρa. Lemma 5.3.4 ensures then that β is
a-left-regular, as required. Eventually, if φ is full, as φ 6= ρa, we must have β 6= ρa, and thus we
can use lemma 5.3.1. to see that the only full elements in dom(φ) are (if they exist) M and M ′.
To see that indeed they are in dom(φ), we invoke < a, b′ >< a, b >⊆ dom(φ), which comes from
corollary 3.3. (with X = {a, b′}, Y = {a, b}) Q. E. D.

Now we are left with the degenerate case, when a commutes with one of b, b′. Interchanging b
and b′ if needed, we may take mab′ = 2.

5.4 Degenerate case in rank three.

The degenerate case involves a more complicated family of obstructions than in the former
cases. In this subsection we simply gather some of those obstructions that are needed in the gen-
eral case (section 6) and do not attempt to make an exhaustive study of the degenerate case in
itself, although a simple characterization of full matchings in the vein of propositions 5.2.1 and
5.3.5 is perfectly feasible.

The case when mbb′ = 2 is quickly taken care of by the following obvious remark:

Remark 5.4.1 Suppose mab′ = mbb′ = 2. Then W =< a, b > ∐b′ < a, b >, and any special
matching is b′-left-regular, and so is defined everywhere and full.

Thus we suppose mbb′ ≥ 3 in the remainder of this section.

❡ ❡ ❡b′ b a
φ(e) = a

φ(b) = ba

Figure 3: Degenerate case

Lemma 5.4.2 Suppose that β 6= ρa. Then there is a minimal i ≥ 2 such that φ(〈i, a, b]) =
〈i + 1, a, b] (so mab ≥ i + 2). Let H = {w ∈ W | l(w) = i + 1, b′ ≤ w, 〈i, a, b] ≤ w, w 6∈
{b′〈i, a, b]; 〈i, a, b]b′}}. Then for any h ∈ H, we have h 6∈ dom(φ).

As in lemma 5.3.1 (1), this result also follows immediately from lemma 6.2 of [8].

Proof: Let w ∈ H. Then, since ab′ = b′a, w can be written w = xb′〈2j, a, b], (where x is the
unique word such that 〈i, a, b] = x〈2j, a, b]) with 0 ≤ 2j ≤ i− 1 (we could have put 2j + 1 in place
of 2j just as well, but the 2j is more convenient in the sequel). By remark 1.1, we have w ⊳ φ(w).

The elements w1 = xb′〈2j−1, a, b] and w2 = 〈i, a, b] are coatoms of w, and as w1⊳φ(w1)(= w1a),
w2 ⊳ φ(w2), if w ∈ dom(φ), y = φ(w) satisfies:

xb′〈2j, b, a] ⊳ y, 〈i+ 1, a, b] ⊳ y.
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Consider the words g1 = xb′〈2j, b, a] and g2 = 〈i + 1, a, b]. If g is a reduced word representing y,
then we obtain g by inserting character b′ somewhere in g2: we can write g = ub′v and g2 = uv for
some words u, v. Now, the element φ(w1) may have several reduced expressions, but there is only
one that has at most one ocurrence of b′, namely g1. Thus u ≥ u′ = x and v ≥ v′ = 〈2j, b, a]. In
addition, v 6= v′ (the rightmost generators differ) and because of the length constraints, u = u′ and
v = v′b. Then the rightmost generator in u coincides with the leftmost generator in v, so g2 = uv

is not reduced, which is a contradiction. Q. E. D.

Lemma 5.4.3 Suppose mbb′ ≥ 4 and φ(ab) = bab, mab ≥ 4. Then abb′b is a (minimal) element
in W \ dom(φ).

Proof: Put w = abb′b. We have:

coat(w) = {bb′b, abb′, ab′b}
φ(bb′b) = bb′bφ(e) = bb′ba

φ(abb′) = φ(ab)b′ = babb′

φ(ab′b) = φ(b′ab) = b′φ(ab) = b′bab

so if w ∈ dom(φ) we must have

coat(φ(w)) = {b′bab, abb′b, bb′ba, babb′}

which is impossible (for example, using the fact that bb′ab ∈ I, abb′b ∈ I it is easy to see that there
is no y such that b′bab⊳ y and abb′b⊳ y both hold). Q. E. D.

Lemma 5.4.4 Suppose mbb′ = 3 and φ(ab) = bab,mab ≥ 4. Then abb′ab is a (minimal) element
in W \ dom(φ).

Proof: Put w = abb′ab. We have:

coat(w) = {bb′ab, abab, abb′b, abb′a}
φ(bb′ab) = bb′φ(ab) = bb′bab

φ(abb′b) = φ(b′abb′) = b′φ(ab)b′ = b′babb′

φ(abb′a) = φ(abab′) = φ(aba)b′

so if w ∈ dom(φ) we must have w ⊳ φ(w) = y and b′babb′ ⊳ y, bb′bab ⊳ y. As b′babb′ ∈ I,
and bb′bab has exactly three reduced expressions (namely bb′bab, b′bb′ab and b′bab′b), we deduce
y = b′bab′bb′ which is not consistent with φ(aba)b′ ⊳ y. Q. E. D.

6 General case.

Now we consider a maximal matching φ on a general Coxeter system (W,S). Little by little,
we will show that φ is reducible in all cases. Naturally we suppose that φ is full (by definition any
non-full matching is reducible). By lemma 2.2, if < J > is a parabolic subgroup stable by φ, then
φ|<J> is full again, which allows us to use the results we obtained in rank three. Put a = φ(e),
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E = {s ∈ S \ {a}| sa = as}
L = {s ∈ S| φ(s) = as}, L′ = L \ (E ∪ {a})
R = {s ∈ S| φ(s) = sa}, R′ = R \ (E ∪ {a})

We start by treating the so-called “mixed” case:

Proposition 6.1 Suppose that φ is a mixed matching (i.e. such that L′ 6= ∅, R′ 6= ∅). Then φ

is reducible. More precisely, up to interchange of left and right, we have:

dom(φ) =< R > (< L > ∩dom(φ))
∀(x, y) ∈< R > ×(< L > ∩dom(φ)), φ(xy) = xφ(y).

Note that the last line above follows from theorem 7.6 of [8].
Proof: We may assume that there is a r ∈ R such that φ 6= ρa on Pr or that there is a l ∈ L

such that φ 6= λa on Pl (otherwise we have a ”middle multiplication” matching, cf. corollary 4.2).
By symmetry we may assume that φ 6= λa on Pl0 for some l0 ∈ L \ {a} (then necessarily l0 ∈ L′).
By lemma 5.2.1, (used on the restriction of φ to < {a, l0, r} >) we see that φ is a-left regular on Pl0
and φ = ρa on Pr for each r ∈ R. By lemma 5.2.1, (used on the restriction of φ to < {a, l, r} >)
we see that φ is a-left-regular on Pl for each l ∈ L.

Then corollary 3.3 and theorem 4.1 give an equality for dom(φ) by double inclusion: theorem
4.1 gives dom(φ) ⊆< R >< L >, hence dom(φ) ⊆< R > (< L > ∩dom(φ)) because dom(φ) is
decreasing, and corollary 3.3 gives < R > (< L > ∩dom(φ)) ⊆ dom(φ), along with the formula
φ(xy) = xφ(y).

Let us explain why this implies that φ is reducible: let o be a full orbit, o = {m,M} with
M = φ(m) and M full. Then there is a (x, y) ∈< R > × < L ∩ dom(φ) > such that m =
xy, M = xφ(y). We may assume l(m) = l(x) + l(y) by the cancellation rule. By lemma 1.7, we
have φ(y) ∈< L ∩ dom(φ) >. As R 6= ∅ and M is full, we deduce x 6= e. Let x1 ∈ Dl(x); then
x1 is left-regular (because x1 ∈ R) and x1 is in the left descent set of m, so that the orbit o is
left-reducible. Q. E. D.

So we may assume that for example L′ = ∅, i.e. φ(s) = sa for any s ∈ S.
Using lemma 5.3.3, we can even assume that for any s ∈ S \ {a} except at most one element,

φ|<s,a> = ρa.
Of course, the non-trivial case arises when there is indeed an element (which we will denote

b) such that φ<b,a> does not coincide with right multiplication by a. Now we slightly change the
notations in order to work with disjoint subsets of S: we put

A = S \ (E ∪ {a, b})
B = {b′ ∈ E| mbb′ ≥ 3}
C = E \B = {s ∈ S| sa = as, sb = bs}

Using lemma 5.3.2, we see that a′b = ba′ for any a′ ∈ A. The commutations are summarized by
the following picture:
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❡ ❡a b

✒✑
✓✏
C

✒✑
✓✏

✒✑
✓✏

A B
❅❅ ��

Figure 4

and we have the following regularity data, by corollary 3.2:

x Is x left-regular? Is x right-regular?
a Yes if A 6= ∅ (proposition 5.3.5) Unknown
b Unknown Unknown

a′ ∈ A Yes No
b′ ∈ B Yes Yes
c ∈ C Yes Yes

Define dj = 〈j, a, b] for each integer j. As φ 6= ρa there is a minimal i such that φ(di) 6= dia, so
i ≤ mab − 2 and φ(di) = di+1. Define, for x ∈ A ∪B,

Hx =





{w| di ⊳ w, a′ ≤ w, w 6= a′di} if x = a′ ∈ A

{w| di ⊳ w, b′ ≤ w, w 6∈ {b′di, dib
′}} if x = b′ ∈ B, i > 2,

{abb′b} if x = b′ ∈ B, i = 2,mbb′ > 3
{abb′ab} if x = b′ ∈ B, i = 2,mbb′ = 3.

Then, by lemmas 5.3.1, 5.4.2, 5.4.3 and 5.4.4:

Hx ∩ dom(φ) = ∅ for any x ∈ A ∪B (1)

Denote by H the union of the Hx. Suppose by contradiction that φ is not reducible. Then
|S| > 2 and there is a nonreducible full orbit, i.e. there is a w ∈ dom(φ) with w ⊳ φ(w), φ(w)
full such that w is irreducible, i.e. such that Dl(w) does not contain any left-regular element,
and Dr(w) does not contain any right-regular element. Since φ(w) is full, φ(w) ≥ Mab and hence
w ≥ φ(Mab).

Note that the subgroup G =< {a, b}∪C > of W is isomorphic to the direct product of < a, b >

and < C >, and that in addition we have that any element of C is right-regular, so φ(xy) = φ(x)y
for all (x, y) ∈< a, b > × < C > and the restriction of φ to G is reducible. In particular w 6∈ G, so
that there is a generator s 6∈ {a, b} ∪ C such that w ≥ s. Thus

w ≥ φ(Mab), w irreducible, w ≥ s, s ∈ S \ ({a, b} ∪ C) (2)

Let g = w1w2 . . . wm be a reduced expression for w. For any subset K = {k1 < k2 < . . . < kr} of
{1, . . . , n} we put wK = wk1wk2 . . . wkr

. Thus there is a J = {j1 < j2 < . . . < jmab−1} ⊆ {1, . . . , n}
with cardinality mab − 1 such that wJ is dihedral in a and b and an index j′ such that wj′ = s.
Because of Dl(w) ⊆ {a, b} we have w1 ∈ {a, b}, and also w2 ∈ {a, b} (else either w1 = a, w2 ∈ A or
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w1 = b, w2 ∈ B; in the first case a is a left-regular element in Dl(w) which is excluded, and in the
second b is not left-regular so that there is a minimal k with φ([a, b, k〉) = [a, b, k+1〉, φ([b, a, k+1〉) =
[a, b, k+ 2〉, and then w ≥ bw2[a, b, k〉 contradicts lemma 5.1.3). Thus we may assume 1 ∈ J, 2 ∈ J .

Suppose s ∈ A. Then a is left-regular, and hence Dl(w) = {b}, so w1 = b, w2 = a. Putting
h = baw{j3,j4,...;ji}∪{j′} if i is odd and h = aw{j3,j4,...;ji,ji+1}∪{j′} if i is even, we get w ≥ h ∈ H which
contradicts (1). So s 6∈ A, i.e. s ∈ B; the above reasoning clearly also implies that supp(w)∩A = ∅.
By reasoning on the right as we did on the left, we see that wm−1 ∈ {a, b}, wm ∈ {a, b}.

Suppose that i > 2 and that we are not in the case (i even, w1 = b). Put

u =





ab if i is even and w1 = a

b if i is odd and w1 = a

ba if i is odd and w1 = b

(so that u is a subword of w1w2 that contains b, that has the same leftmost character as 〈i, a, b]
and is maximal for this property). Similarly, define v = b if wm = a and v = ab if wm = b; then v

is a subword of wm−1wm that contains b, that has the same rightmost character as 〈i, a, b] and is
maximal for this property. Let Jint = J ∩ {3, 4, . . .m− 3,m− 2}. We claim that

|Jint| ≥ i− l(u) − l(v) (*)

Indeed, we always have |Jint| ≥ |J |−4 ≥ mab−5 and i− l(u)− l(v) ≤ i−2 ≤ mab−4. If J does
not contain all of {1, 2,m − 1,m}, then the first inequality may be improved to |Jint| ≥ mab − 4,
and if l(u) = 2 or l(v) = 2 or i 6= mab − 2, then the second inequality may be improved to
i − l(u) − l(v) ≤ mab − 5. Thus (*) holds in any of those cases, and the only case left is
{1, 2,m − 1,m} ⊆ J, l(u) = l(v) = 1, i = mab − 2. From l(v) = 1 we deduce that wm = a,
and from l(u) = 1 we deduce that w1 = a, and that i (and hence mab) is odd. Then wJ is a dihedral
word of even length with identical rightmost and leftmost generators, which is a contradiction.

Let J ′ be the set of the first i − l(u) − l(v) elements in Jint.Then, if h = uwJ ′∪{j′}v we have
w ≥ h ∈ H which contradicts (1).

Suppose that i > 2 and that (i is even, w1 = b). Then b is not left-regular (indeed b ∈ Dl(w))
so that there is a minimal j such that φ([a, b, j〉) = [a, b, j + 1〉, φ([b, a, j + 1〉) = [a, b, j + 2〉 If
w3 = b′ ∈ B, then then w ≥ bb′w{j3,j4,...,ji−1} contradicts lemma 5.1.3. Therefore w3 = b, and the
reasoning above may be readjusted (taking a subword u of w1w2w3 instead of w1w2) so that we get
a contradiction in this case also.

Suppose i = 2 and w1 = a. If wm = b, then w ≥ w{1,2,j′,m−1,m} = absab ∈ H con-
tradicts (1). So we have wm = a. Thus a is not right-regular, so there is a k ≤ mab − 3
such that φ(〈k, a, b]) = 〈k + 1, a, b] and φ(〈k + 1, b, a]) = 〈k + 2, a, b]. Necessarily k ≥ 2,
so mab ≥ 5, hence |J | ≥ 4. In particular, j3 exists and satisfies 2 < j3 < m − 1. Then
w ≥ w{1,2,j3,m−1}∪{j′} = abasb ∈ H contradicts (1).

Finally, suppose i = 2 and w1 = b. Then b is not left-regular, so that there is a mini-
mal k such that φ([a, b, k〉) = [a, b, k + 1〉 and φ([b, a, k + 1〉) = [a, b, k + 2〉. If w3 ∈ B, then
w ≥ w{2,3,j3,...jk+2}∪{j′} = bw3[a, b, k〉 contradicts lemma 5.1.3. Thus w3 = b, and the reasoning
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above may be readjusted (using (w2, w3) = (a, b) instead of (w1, w2) = (a, b)) to get a similar con-
tradiction. This concludes the proof.

So we have finally shown the following:

Theorem 6.2 For any Coxeter system (W,S), any special matching on W is reducible.

Combining this with proposition 2.5, we immediately obtain the following:

Corollary 6.3 Let (W,S) be a Coxeter system, φ a special matching of W , x, y ∈ W such that
x⊳ φ(x), y ⊳ φ(y). Then

Rφ(x),φ(y) = Rx,y (6.3.1)
Rx,φ(y) = (q − 1)Rx,y + qRφ(x),y (6.3.2)

Note that this is exactly theorem 7.8 of [8].
Although we did not need this here, it is interesting to make the following remark (we denote

by M(W ) the set of all maximal matchings of a Coxeter group W and for a ∈ S, Ma(W ) = {φ ∈
M(W ) ; φ(e) = a}):

Proposition 6.4 Let (W,S) be a Coxeter system and a ∈ S. Then the only elements of Ma(W )
that are defined on the whole of W are the left- and right- multiplication-by-a matchings, except in
the degenerate case

S = {a, b} ∐ C, ∀c ∈ C,mac = mbc = 2.

In this case, W is isomorphic to the direct product of the Coxeter groups < C > and < a, b >,
all the elements of Ma(W ) are < C >-regular (i.e. satisfy cx ∈ dom(φ), φ(cx) = cφ(x) for any
c ∈< C >, x ∈ dom(φ)) and hence defined on the whole of W . In addition, the restriction-
to-< a, b > operation provides a bijection between Ma(W ) and Ma(< a, b >).

Proof: Let φ ∈ Ma(W ), φ 6∈ {λa; ρa} be everywhere defined. Put E = {s ∈ S| sa = as, s 6=
a}, R = {s ∈ S| φ(s) = sa}, L = {s ∈ S| φ(s) = as}, R′ = R \ (E ∪ {a}), L′ = L \ (E ∪ {a}). By
theorem 4.1, we have W =< R >< L > and hence L′ = ∅ or R′ = ∅ (otherwise for l ∈ L′, r ∈ R′

we have lar 6∈< R >< L >). Suppose for example that L′ = ∅, i.e. φ(s) = sa for all s ∈ S. By
theorem 1.9, there is a generator b such that φ|Pb

6= ρa, thus ∃i ≤ mab− 2, φ(〈i, a, b]) = 〈i+1, a, b]).
Then if R′ 6= ∅, we have for any r ∈ R′, 〈i, a, b]r 6∈ dom(φ) by lemma 5.3.1. Thus we may assume
R′ = ∅. Then S ⊆ {a, b} ∪ E.

Assume that there is a c ∈ E that does not commute with b. If i > 2, we have 〈i− 1, b, a]cb 6∈
dom(φ) by lemma 5.4.2. If i = 2 and mbc > 3 we have abcb 6∈ dom(φ) by lemma 5.4.3. If i = 2 and
mbc = 3 we have abcab 6∈ dom(φ) by lemma 5.4.4. So in all cases, dom(φ) 6= W .

Thus we may assume that any c ∈ E commutes with b, which means that we are in the degen-
erate case defined above (with C = E). The rest of the proposition is clear. Q. E. D.
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Part IV

Some Extensions of the main Result
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1 Introduction and statement of the conjecture

Here we will show some (minor) extensions of the main result of the preceding part, namely (III.6.3).
Denote by R the set of all the isomorphisms that preserve R-polynomials; for brievity we call them
R-isomorphisms. Then (III.6.3) states that

Any isomorphism φ : [e, y] → [e, y′] is in R. (1.1)

There are certainly several ways in which this result is likely to be extended; we discuss one of
them here. A natural extension of the class of posets isomorphic to a Bruhat interval originating
at the identity is the class of completely compressible posets, i.e. those that can be reduced to
the trivial poset by a sequence of compressions (a compression is simply a special matching φ of
an interval [x, y], that compresses [x, y] onto [x, φ(y)]. See [9] for more about compressions). More
precisely, consider C1, the class of all completely compressible Bruhat intervals and C0 the subclass
of C1 consisting of the Bruhat intervals originating at the identity. Then maybe the following
extension can be deduced from (1.1):

Any isomorphism φ : P → P ′ is in R if P, P ′ ∈ C1. (1.2)

To prove (1.2), it would suffice to show that

For any P ∈ C1, there is a R-isomorphism φ : P → P0,with P0 ∈ C0. (1.3)

Unfortunately, this is false in general; indeed, the interval [3, 3(1212)3] in type B3 (which means
that m12 = 4, m13 = 2, m23 = 3) is completely compressible, but is not isomorphic to any [e, y] (we
explain the reasons for this in the appendix). However, if we restrict our attention to simply laced
finite Coxeter groups, (i.e. to the A,D,E types) then (1.3) seems to hold; in fact, for this realm
we make a much stronger conjecture, which implies that there is a uniquely defined isomorphism
if we impose some additional conditions.

Let us develop some general tools about isomorphisms onto intervals originating at the identity.
In a poset P with minimum element x, an element y ∈ P is said to be dihedral when the interval
[x, y] (as a subposet of P ) is dihedral. The bud B(P ) of P is defined to be the set of the dihedral
elements of P (cf. e.g. [11]). From now on, I = [x, y] will always denote a Bruhat interval.

It is easy to deduce from corollaries I.9.8 and I.9.9 that for any two atoms a, b of I there is a
unique maximal dihedral subposet of I containing {x; a; b}; we call it D(a, b). Note that there are
two possibilities for D(a, b), as shown in figure 2: either it has a maximum element and is a closed
Bruhat interval, or it has two maximal elements.

❡
❡a

❡b
❡

❡

❡

❡
✟✟✟

❍❍❍

❅
❅❅�
�� ❅

❅❅�
��

Two maximal elements

❡
❡a

❡b
❡

❡

❡

❡
❡✟✟✟

❍❍❍

❅
❅❅�
�� ❅

❅❅�
��

❍❍❍

✟✟✟

One maximal element

Figure 2: The two cases for D(a, b)

If I is completely compressible, however, it is easily seen that all the D(a, b) are closed. Define
m(a, b) to be the length of the poset D(a, b). If φ : I → [e, w′] is an isomorphism onto an interval
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originating at the identity (in a possibly different Coxeter sytem (W ′, S ′)), then restricting S ′ if
necessary we may identify S ′ with the set atoms(I) of the atoms of I. Then, because φ(D(a, b)) is
dihedral in W ′, we must have m′

a,b ≥ m(a, b) for any two atoms a, b of I. In addition, we have the
following elementary result from proposition II.2.6:

Proposition 1.1 Let [e, w′] be an interval originating at the identity in some Coxeter system
(W ′, S ′). Let (Wcan, Scan) be a Coxeter system defined as follows: Scan = {s ∈ S ′; s ≤ w′} (the
support of w′), and for s, t ∈ Scan, mcan(s, t) is the size of the closed dihedral interval D(s, t), as
above (in this special case D(s, t) is the intersection of [e, w′] with the dihedral subgroup < s, t >).
Then there is a uniquely defined isomorphism ζ : [e, w′] → [e, wcan] (with wcan ∈ Wcan) satisfying

ζ(su) = sζ(u) (ζ(us) = ζ(u)s) whenever s ∈ Scan, u ∈ [e, w′], su ∈ [e, w′] (us ∈ [e, w′]).

and ζ preserves R-polynomials.

This motivates the following definition:

Definition 1.2 Let I be a completely compressible Bruhat interval. Define a Coxeter system
S = (Wcan, Scan) as follows: Scan = atoms(I) and mcan(a, b) = m(a, b) for a, b ∈ S ′. We call S
the canonical image Coxeter system associated to I. A standard isomorphism φ of I is an
isomorphism from I onto an interval originating at the identity in Wcan, such that φ(a) = a for
any a in atoms(I).

and we may paraphrase now the aforementioned result:

Proposition 1.3 For any isomorphism φ : I → [e, w′] (where the image Coxeter system (W ′, S ′)
may be arbitrary), there is another isomorphism ζ : [e, w′] → [e, w′′] such that ζ ◦ φ is standard.

In other words, any isomorphism onto a [e, w] may be standardized, so that we need only look
for standard isomorphisms. The next proposition (which follows easily from I.9.8 and I.9.9) tells
us just how much choice we have in the definition of a standard isomorphism:

Proposition 1.4 Any standard isomorphism of I is uniquely defined by its restriction to B(I)
(which yields an isomorphism between the buds B(I) and B(Wcan)).

For example, if a, b are two generators in W with ma,b ≥ 3, τ is the transposition which ex-
changes ab and ba, then τ and id (the identity map) yield two distinct standard isomorphisms of
[e, ab]. We now introduce some additional conditions on isomorphisms that will enable us to reject
τ and accept id.

If [x, y] is a Bruhat interval put L[x,y] = {s ∈ S| sx ∈ [x, y]} and R[x,y] = {s ∈ S| xs ∈ [x, y]}.

Definition 1.5 An isomorphism φ between two Bruhat intervals I = [x, y] and I ′ (an interval
originating at the identity in a possibly different Coxeter group W ′) is left-regular if there is a
(necessarily unique) injection λ : L[x,y] → S ′ such that φ(sw) = λ(s)φ(w) holds for any s ∈ L[x,y]

and w ∈ [x, y] such that sw ∈ [x, y]. It is right-regular if there is an injection ρ : R[x,y] → S ′ such
that φ(ws) = φ(w)ρ(s) holds for any s ∈ R[x,y] and w ∈ [x, y] such that ws ∈ [x, y]. It is biregular
if it is both left- and right- regular.

70



Note that λ (or ρ) is “necessarily unique” because we must have φ(sx) = λ(s)φ(x) = λ(s) for
any s ∈ L[x,y]. At this point, we naturally ask the question: does the biregularity requirement
ensure uniqueness for a standard isomorphism? The answer is no. We provide a counterexample in
type A6 (which is minimal in the sense that no counterexample exists in type A5, and no example
with an x of smaller length exists in type A6).

Consider the dihedral interval

I = [wLwR, wL343wR] = {wLwR, wL3wR, wL4wR, wL34wR, wL43wR, wL343wR}

where wL = 215, wR = 265. The atoms of I (which are the same thing as the atoms of
x = wLwR in I) are a = wL3wR and b = wL4wR, so that there are reflections la, ra, lb, rb such that
a = lax = xra, b = lbx = xrb (and for example lax is reduced exactly when la is a generator). A
little computation shows that

la = ra = 232
lb = rb = 454.

None of those reflections is a generator; we deduce LI = RI = ∅, so that any standard isomor-
phism on I is trivially biregular. It is easily seen that there are exactly two standard isomorphisms
of I (as in the diagram below)

w wLwR wL3wR wL4wR wL34wR wL43wR wL343wR
φ1(w)
φ2(w)

e a b
ab

ba

ba

ab
aba = bab

In this special case, we feel inclined to accept φ1 and reject φ2 because “3 corresponds to a and 4
corresponds to b”, but it seems wildly improbable that such a naive approach will be successful with
more complicated counterexamples. Surprisingly, this idea can be nicely formalized and provide a
conjecture that has withstood the test of reasonably large examples by computer.

Until now, we have combined left and right action of the generators (as in the definition of
biregularity). From now on, we shall always act from the left only; the primary reason for this
restriction is to circumvent the complex interaction between left and right (this will become clear
with proposition 1.10, which holds only for a one-sided action). Some propositions like 1.18 are also
valid in a two-sided context, but here we present only the ’left’ version for the sake of simplicity.

We now proceed to the formal definitions. The following proposition follows immediately from
the “special matching” properties of the Bruhat ordering:

Proposition-Definition. 1.6 Let I = [x, y] be a Bruhat interval, and let s ∈ S such that x >
sx, y > sy. Then the following are equivalent:

(i) x 6≤ sy

(ii) Any w ∈ [x, y] satisfies w > sw.

(iii) Left multiplication by s is a poset isomorphism [x, y] → [sx, sy].

In this case, we say that [sx, sy] is a (left) elementary lower translate of [x, y]. We say that
an interval J is a (left) lower translate of I if there is a chain of intervals I0 = I, I1, . . . In = J

such that Ii+1 is a (left) elementary lower translate of Ii; or equivalently if there is an elementt tL
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in W and an isomorphism θ : J → I, which satisfies θ(w) = tLw, l(θ(w)) = l(tL) + l(w) for all
w ∈ I. We call such an isomorphism a (left) translation. If φ : I → I ′ is any isomorphism onto
an interval I ′ into a possibly different Coxeter group, then we have a new isomorphism

ψ = φ ◦ θ : J → I ′. We call ψ a (left) lower translate of φ. If c : I → I is any special
matching of I, then we have a special matching of J : c′ = θ−1 ◦ c ◦ θ : J → J . We call c′ a (left)
lower translate of c.

Clearly, left translations preserve the R-polynomials. Note that the left lower translate of a
left-regular isomorphism is not necessarily left-regular. Indeed, take W to be the free Coxeter
group on the generators l, s1, s2, and consider the intervals

I = [l, ls1s2] = {l, ls1, ls2, ls1s2}
J = [e, s1s2] = {e, s1, s2, s1s2}
I ′ = [e, s2s1] = {e, s1, s2, s2s1}

The interval J is a lower translate of I, with left multiplication by l for a translation. Then
the isomorphism φ : I → I ′ defined by φ(l) = e, φ(lsi) = si, φ(ls1s2) = s2s1 is left-regular, but the
associated ψ is not left-regular.

Definition 1.7 A left-regular isomorphism φ is strongly left-regular if all its left lower
translates are left-regular.

Note that if φ is a strongly left-regular isomorphism, then a lower restriction of φ (i.e. the
restriction of φ to a lower interval of [x, y]) is not necessarily strongly left-regular. To see this, let
φ be the non-strongly-left-regular example isomorphism on I = [l, ls1s2] defined above. Add a new
generator l′, and consider the free Coxeter group on l, l′, s1, s2. Extend φ to a mapping φ′ on the
larger interval I1 = [l, l′ls1s2] by putting φ′(l′w) = l′φ(w) for w ∈ I. Then φ′ is strongly left-regular
(in fact I1 has no left lower translate other than itself) but its lower restriction φ is not.

Definition 1.8 A strongly left-regular isomorphism φ is totally left-regular if all its left
lower restrictions are strongly left-regular.

Trivially, we have:

Remark 1.9 If φ is totally left-regular, then so are its left lower translates and lower restrictions.

Next we show a lattice property:

Proposition 1.10 Let I be a Bruhat interval and let J, J ′ be two left lower translates of I. Then
there is an interval K which is a left lower translate of both J and J ′.

Note that the ’two-sided’ version of this does not hold in general: take I = [12, 121], J =
[e, 1], J ′ = [e, 2] in type A2. Then J is a left lower translate of I and J ′ is a right lower translate of
I, but neither J nor J ′ can be translated further.

Proof We may assume that J and J ′ are elementary lower translates of I, the general case
following by induction. Clearly, we may also assume that J 6= J ′. Thus J = sI, J ′ = s′I with
s, s′ ∈ S, s 6= s′. Then s 6= s′ because J 6= J ′; for any w ∈ I both s and s′ are in the left descent
set of w, so m = ms,s′ is finite, and putting b = ss′ss′ . . . (m terms) = s′ss′s . . . (m terms) we can
write w = bw′, l(w) = l(b) + l(w′) for some w′ ∈ W . Then we can take K = (b−1)I. Q. E. D.
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Corollary 1.11 If I is a Bruhat interval there is a smallest left lower translate of I (we call
it the left core of I and denote it by core(I)). As in 1.6 one can likewise define the left core of an
isomorphism defined on I or the left core of a special matching of I.

As explained above, there is no notion of a ‘two-sided core’: in general there are several minimal
lower translates for a given interval I (e.g. [e, 1] and [e, 2] for [12, 121]). In the cases where our
final conjecture holds, however, unicity ensures that the ’left’ construction yields the same object
as the ’right’ construction, so that the propositions below hold in a two-sided context, with ’any
minimal lower translate’ in place of ’left core’.

The following lemma is fundamental:

Lemma 1.12 Let I = [x, y] be a Bruhat interval, J = core(I) and θ the associated translation
isomorphism I → J . Let s be a generator such that x < sx < sy < y. Then there is a generator s′

such that θ(sx) = s′θ(x) and θ(sy) = s′θ(y).

Proof: We argue by induction on l(y). If l(y) = 0 there is nothing to prove, so suppose
l(y) > 0. Obviously we may assume that J 6= I. Since we reason by induction, it is not necessary
to show the property on J at once, it suffices to show it on an intermediary left lower translate:
in other words, it suffices to find a left lower translate K of I with K 6= I such that for the asso-
ciated translation isomorphism κ : I → K, there is a generator s′ such that κ(sx) = s′κ(x) and
κ(sy) = s′κ(y).

There is an element tL in W such that θ(w) = tLw, l(θ(w)) = l(tL) + l(w) for all w ∈ J . Then
tL 6= e since J 6= I; let t be a generator in the left descent set of tL; clearly t 6= s. Then both s

and t are in the left descent set of y, so m = ms,t is finite, and putting b = stst . . . (m terms) =
tsts . . . (m terms) we can write y = by′, l(y) = l(b) + l(y′) for some y′ ∈ W . Similarly, there is an
element x′ ∈ W such that sx = bx′, l(sx) = l(b) + l(x′).

Consider the interval L = t[x, y] = [tx, ty] = [ (st . . .)︸ ︷︷ ︸
m−2 terms

x′, (st . . .)︸ ︷︷ ︸
m−1 terms

y′]. Then L is a lower trans-

late of I; in particular, no element of L has t in its left descent set. We deduce (ts . . .)︸ ︷︷ ︸
m−2 terms

y′ 6∈ L.

Thus, L′ = sL is a lower translate of L (this is condition (i) of 1.6). Similarly, L′′ = tL′ is
a lower translate of L′. Continuing this way, we eventually obtain a translation decomposition
L = (st . . .)︸ ︷︷ ︸

m−2 terms

[x′, cy′] where c is the last generator in (st . . .)︸ ︷︷ ︸
m−1 terms

(thus c = t if m is odd and c = s

otherwise). Then K = [x′, cy′] is a lower translate of I, and taking s′ = c we are done. Q. E. D.

Here is a typical application of this lemma:

Proposition 1.13 Let φ be an isomorphism from I onto an interval originating at the identity.
Then φ is totally left-regular if and only if core(φ) is.

Proof: Only the “if” part deserves attention, of course. So suppose that core(φ) is totally
left-regular. We must show that φ is totally left-regular, i.e. that for any lower interval I ′ of I, the
restriction of φ to I ′ is strongly left-regular. But if θ is the translation isomorphism I → core(I),
then θ(I ′) is a left lower translate of I ′, so core(I ′) is a left lower translate of θ(I ′). Thus we may
replace I ′ with I, and all we need to show is that φ is strongly left-regular. For any left lower
translate K of I we have core(K) = core(I) so we may replace K with I, and all we need to show
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is that φ is left-regular.

[x, y]
↓
I

→

→

θ[x, y]
↓

core(I)

→
ց
→
φ

ψ
ψ′

core([x, y])
↓

Image of φ

Labelled arrows: poset homorphims
For the other arrows:

Horizontal arrows: translations
Vertical arrows: inclusions

Figure 3

Let us show that φ is left-regular. So suppose that we have x < sx < sy < y where x is the
smallest element of I and y ∈ I. Let θ be the translation isomorphism I → core(I); then core([x, y])
is a lower translate of θ([x, y]), whence a translation isomorphism α : θ([x, y]) → core([x, y]). By
the lemma above there is a generator s′ such that αθ(sx) = s′αθ(x) and αθ(sy) = s′αθ(y). Let ψ be
the restriction of core(φ) to θ([x, y]). Then ψ is totally left-regular, and so is its left lower translate
ψ′ = ψ ◦ α−1. In particular, if we write core([x, y]) = [x′, y′], we have ψ′(sy′) = ψ′(sx′)ψ′(y′). In
terms of φ, it means that φ(sy) = φ(sx)φ(y) as requested. Q. E. D.

Definition 1.14 A special matching c of a Bruhat interval I is explicit if some lower translate
of it is a (left or right) multiplication matching.

Thus if c is an explicit matching of I there is a translation θ : J → I and an s ∈ S such that
c(w) = θ(sθ−1(w)) (say). But θ can be defined by t(w) = tLwtR for some fixed tL, tR ∈ W and all
w ∈ J . Then c(w) = (tLstL

−1)w for any w ∈ W , an explicit formula which justifies the term.

Definition 1.15 Let I and J be two Bruhat intervals. We say that J is a (left) multiplication
compression of I if we can write I = [x, y], J = [x, sy] for some x, y ∈ W and some s ∈ S such
that x < sx, sy < y.

The following notion is fundamental:

Definition 1.16 Let I = [x, y] be a Bruhat interval. We say that I is left explicitly com-
pletely compressible if

(*) there is a chain of intervals I0 = I, I1, . . . In = [z, z] such that Ii+1 is either a left elementary
lower translate of Ii or a left multiplication compression of Ii.

Note that if s1 and s2 are two generators with m(s1, s2) ≥ 4 and I = [s1, s1s2s1] then I has
exactly two special matchings and both are non-explicit. Thus, I is not explicitly completely
compressible.

The following two propositions show the usefulness of the notion of (left) explicit complete
compressibility:

Proposition 1.17 If I is left explicitly completely compressible, then there is a unique totally
left-regular standard isomorphism φ on I.

Proposition 1.18 Let φ : I → [e, y] be an isomorphism, with φ strongly left-regular and I left
explicitly completely compressible. Then φ preserves R-polynomials.

The proof of the second proposition is simpler and we begin by this one.
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Proof of Proposition 1.18 We argue by induction on the length l(I) of I. If l(I) = 0 there is
nothing to prove, so suppose l(I) > 0. Since I is left explicitly completely compressible, there is a
sequence I0, . . . In as in 1.16.(*). Then J = I1 satisfies l(J) = l(I)−1 and J is either an elementary
left lower translate of I or a left elementary compression of I. In the first case, the lower translate
isomorphism ψ = φ ◦ θ : J → [e, y] is in R, and θ ∈ R also, so φ = ψ ◦ θ−1 ∈ R. In the second case,
we can write J = [x, sy], I = [x, y] as in 1.15. By the induction hypothesis, φJ is in R. Let u ≤ v

in I. If v ∈ J , then Ru,v = Rφ(u),φ(v) by the preceding remark. Otherwise v′ = sv < v and v′ ∈ J .
We have φ(v) = λ(s)φ(v′) by left-regularity, and φ(v′) < φ(v) since φ is an isomorphism. Then

Ru,v = Ru,sv′

= qRu,v′ + (q − 1)Rsu,v′

= qRφ(u),φ(v′) + (q − 1)Rφ(su),φ(v′)( because v′ ∈ J)

= qRφ(u),φ(v′) + (q − 1)Rλ(s)φ(u),φ(v′)

= Rφ(u),λ(s)φ(v′)

= Rφ(u),φ(v)

so that in all cases, φ preserves R-polynomials as claimed. Q. E. D.

Proof of Proposition 1.17 Unicity is clear: the ’standard’ condition defines the image Coxeter
group completely, and any sequence sending I to a trivial interval as in 1.16.(*) yields an explicit
formula for φ(w), for each w ∈ I. Also, as standardizing an isomorphism (as explained in 1.1 and
1.3) does not affect the (simple, strong or total) left regularity of it, all we need to show is the
existence of a totally left-regular isomorphism of I. This will follow immediately from the next two
lemmas:

Lemma 1.19 Let I be a Bruhat interval and let J be a left lower translate of I, so there is a
translation isomorphism θ : J → I. If φ is a totally left-regular isomorphism of J , then φ ◦ θ is
again a totally left-regular isomorphism of I.

Lemma 1.20 Let I be a Bruhat interval and let J be a left multiplication compression of I.
If φ is a totally left-regular isomorphism of J , then φ may be extended to a totally left-regular
isomorphism of I.

Proof of Lemma 1.19 Since core(I) = core(J), this is clear by proposition 1.13. Q. E. D.

Proof of Lemma 1.20 There is a generator s such that J = [x, y], I = [x, sy] with x < sx, y <

sy. There are two main cases, according to whether sx is in [x, y] or not. In the first case, the
generator s is “already known” inside J and in the second, we have to add a new generator to our
image Coxeter system. We only explain the first case here, because the second is similar and easier.

So suppose sx ∈ [x, y]; then the left mapping λ associated to the left-regular mapping φ (as in
1.5) is defined at s. We (naturally) extend φ to a mapping defined on [x, sy] as follows:

For w ∈ I, φ′(w) =

{
φ(w) if w ≤ y

λ(s)φ(sw) if w 6≤ y
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Since φ is a left-regular isomorphism, we have for all u ∈ J that s is in the left descent set of u
if and only if λ(s) is in the left descent set of φ(u). We deduce that φ′ is an isomorphism between
two Bruhat intervals.

By proposition 1.13, it suffices to show that core(φ′) is totally left-regular. By lemma 1.12, there
is a generator s′ such that if θ is the translation isomorphism I → core(I), then θ(sx) = s′θ(x′)
and θ(y) = s′θ(sy). Thus we may replace I with core(I); in other words, we may assume core(I) = I.

We must show that φ′ is totally left-regular, i.e. that for any lower interval [x, z] of I, the
restriction of φ′ to [x, z] is strongly left-regular. If z ≤ y this follows from the total left-regularity
of φ, otherwise z is of the form sz′ > z′ with z′ ≤ y, and replacing (z′, z) with (y, sy), all we need
to show is that φ′ is strongly left-regular. But since we have assumed core(I) = I, left-regularity is
equivalent to strong left-regularity for φ′. So all we need to show is that φ′ is left-regular.

Left-regularity with respect to s is obvious from the construction. Let us show left-regularity
with respect to a generator t 6= s. So suppose x < tx < tz < z for some z ∈ I, we must show
φ′(tz) = φ′(tx)φ′(z). We claim that tx ≤ y. Otherwise we could write tx = sx′ for some x′ ≤ y

with x′ < sx′; in particular s would be in the left descent set of tx, and of x also since t 6= s, so
x > sx which is absurd. So tx ∈ [x, y], we deduce that φ is left-regular with respect to both s and
t, and the result follows. Q. E. D.

Conjecture 1.21 If I is a completely compressible Bruhat interval in type A,D or E, then I

is left explicitly completely compressible.

We have checked conjecture 1.21 up to types A8, D7, E6 with a specialized version of the program
Coxeter [10].

Using proposition 1.18 and 1.17, conjecture 1.21 implies that (1.3) (and hence (1.2)) holds in
types A,D,E.

2 Special cases of the conjecture

First we define a reformulation of 1.21 that is easier to handle.

Definition 2.1 Let I = [x, y] be a Bruhat interval and let s be a generator in the (left) descent
set of y (we then say that s is a (left) descent generator for I ). If x < sx (so that [x, y] can
be compressed onto [x, sy]) we say that s is a (left) compression generator for I. If sx < x

and x 6< sy, (so that there is a translation isomorphism [x, y] → [sx, sy]), we say that s is a (left)
translation generator for I. Otherwise sx < x and x < sy; in this last case we say that s is a
(left) nontrivial descent generator for I.

Clearly, in a fixed group W conjecture 1.21 will hold if and only if every completely compressible
interval has a left trivial descent generator.

Definition 2.2 Let W be a Coxeter group and w ∈ W . We say that w ∈ W is critical if
|coat(w)| = l(w).

Our main result is:
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Theorem 2.3 Let I = [x, y] be a Bruhat interval with y critical. If I has at least a nontrivial
generator, then |coat(I)| > l(I) so that I is noncompressible.

Corollary 2.4 If I = [x, y] is a completely compressible Bruhat interval with y critical, then all
the descent generators of I are trivial.

Proof of the theorem. Let s be a (left, say) nontrivial descent generator for I. Then we can
write x = sx′, y = sy′ with x′ < x, y′ < y. Since s is nontrivial we have x < y′. Let a = y1 . . . yn
be a reduced expression of y′. We know that are r indices i1 < i2 < . . . < ir (with r = l(y) − l(x))
such that if we delete the generators yi1 , . . . , yir from a, we obtain a reduced expression for x′. Now
put ck = sy1 . . . ŷik . . . yn for k between 1 and r. Since y is critical, ck is a coatom of y. Then
c1, c2, . . . cr, y

′ are all coatoms of I, which provides at least r + 1 coatoms as desired. Q. E. D.

Corollary 2.5 If [x, y] is a completely compressible interval with y critical, then it is left explic-
itly completely compressible.

Indeed, if s1s2 . . . sm is a reduced expression for y, then there is a sequence of intervals as in
1.16(ii), I0 = [x, y], I1 = [x1, y1] . . . In = [xn, yn] with xn = yn, defined as follows:

xi = min(xi−1, sixi−1)
yi = siyi−1( so that yi = si+1 . . . sm)

This sequence stops at the first n for which xn = yn.
Note that if Dl(y) 6⊆ Dl(x), then [x, y] has a left compression generator. In addition, in type

A we have that if an element’s left descent set is a singleton then it is automatically critical (by
proposition II.1.8). We deduce:

Corollary 2.6 If I = [x, y] is a completely compressible Bruhat interval in type A with |Dl(y)| ≤
1 (or even |Dl(x)| ≤ 1), then I has a left trivial descent generator.

To conclude, let us review to what extent we anwered our original question:

Proposition 2.7 Consider the following classes of Bruhat intervals:

- F1 = {[x, y]|[x, y] is completely compressible, y is critical }

- F2 = { Completely compressible intervals in type A8, D7 or E6}

- F = F1 ∪ F2

Then for each element I in F there is a (standard totally left-regular) isomorphism from I onto
an interval originating at the identity. Any isomorphism between two elements of F preserves
R-polynomials.

Perhaps the ideas explained here could be improved to provide a result that covers all completely
compressible intervals. A better understanding of the counterexample in typeB3 might be a starting
point.
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Appendix: Explanations on the example in type B3

The interval I = [3, 32123] consists of the following elements (non-dihedral elements in boldface):

(12)3
(212)3

23 (21)3
3(12)3

3 13 3(2)3 3(212)3
3(21)3

32 3(12)
3(212)

3(21)

We will show that I is completely compressible by showing it is isomorphic to an interval
originating at the identity (namely, to the interval I ′ = [e, abca] in type A3: ma,b = mb,c = 3,ma,c =
2). Indeed, define two “monoid homomorphisms” α and β by

α(e) = e, α(1) = b, α(2) = a, α(12) = ba, α(21) = ab, α(212) = aba

β(e) = e, β(1) = b, β(2) = c, β(12) = bc, β(21) = cb, β(212) = cbc

and define a mapping f : I → I ′ by f(w3) = α(w), f(3w) = β(w) if w is dihedral in 1 and 2, and
f(3(12)3) = bac, f(3(21)3) = acb, f(3(212)3) = abca. It is readily seen that f is a isomorphism. So
I is completely compressible.

Now, if we put J = [3, 3(1212)3], then left multiplication by 1 compresses J into I: Thus J is
completely compressible.

Suppose that there is an isomorphism φ : J → [e, y] where [e, y] is an interval originating at
the identity in some Coxeter system (W ′, S ′). Then a = φ(23), b = φ(13), c = φ(32) are elements
of S ′. We may suppose that the isomorphism is standard, i.e. that mab = mbc = 4,mac = 2. Then
φ((1212)3) = abab, φ(3(1212)) = bcbc, φ(232) = ac.

Let u ∈ {121, 212}. We have φ(3u) ∈ {aba, bab} and symetrically φ(u3) ∈ {bcb, cbc} whence we
deduce φ(3u3) ∈ {bacb, bcab}, so φ(3u) = bab, φ(u3) = bcb, but this must be true for two distinct
values of u, which contradicts the fact that φ is one-to-one. Q. E. D.
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