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Abstract

This thesis describes the design of a field-portable heterodyned holographic
spectrometer for spectral measurements in the visible and very near infrared
from natural targets such as vegetation and the atmosphere. The instrument is
a non-scanning version of the Fourier transform spectrometer (FTS) where the
moving mirror is replaced by either a fixed, tilted mirror (holographic FTS) or
a fixed, Littrow-mounted grating (heterodyned holographic FTS). This allows
for a simpler and more rugged mechanical design than that of classical FTS
instruments as well as a greatly reduced power consumption, all important
advantages for a portable instrument for field use.

Spectral information is produced by interfering two mutually inclined wave-
fronts in a Michelson interferometer. From the resuiting intensity patter or
interferogram, the spectrum of the interfering beams may be found by Fourier
transformation. The interferogram is spatially localized inside the interferom-
eter and to be measured it must be imaged onto a light sensitive surface. A
purpose-built, all-reflective lens is employed to image the pattern onto a pho-
tosensitive diode array. Built-in electronic circuitry controls the detection and
digitizes the measured signal, and a portable PC performs the signal processing
and serves as human interface.

The thesis presents a study of the requirements for a field portable in-
strument and gives a review of available spectroscopic techniques. On the
background of this study the choice of the holographic FTS method is jus-
tified by its combination of high optical throughput and simple and rugged
design. After a review of the literature concerning this spectroscopic method
and a theoretical account of 1ts operation, the instrument’s design is described.
Tests of individual components as well as the entire instrument are presented.
Finally, some results from field applications of the instrument are reported, -

accompanied by an assessment of its practical value.
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Chapter 1

Introduction

Warned by a couple of well-publicised phenomena, the general public is get-
ting increasingly aware of the environmental effects of excessive pollution. One
phenomenon relates a ‘hole’ in the stratospheric layer of ozone discovered over
Antarctica a few years ago to an excessive release of certain gases used in
spray bottles and refrigerators. At the same time, the increasing atmospheric
density of these and other pollution gases are said to affect the radiation trans-
mission characteristics of the atmosphere, causing a general increase in world
temperature—the infamous ‘green house effect’. Several other phenomena are,
although less vividly described in the press, also probably related to pollution,
such as fish and forest deaths and over-development of certain species of sea
algae.

Much research is currently being expended on understanding scientifically
the various effects of pollution. This activity leads to a demand for exten-
sive environmental surveillance {16} whereby pollutants may be measured and
their effects quantified. Environmental surveillance may be based on direct,
in stty analysis of objects and their processes by visual observation, chemical
analysis, or other methods, but for such large scale observations as are often
required in environmental research, this becomes impractical. Instead, the task
is increasingly being performed by the aid of electromagnelic remole sensing
where objects and processes are characterized by their interactions with elec-
tromagnetic radiation. This can be done from a distance, often of thousands
of kilometres from a satellite in earth orbit.

Optimal collection and analysis of remotely sensed data requires a knowl-
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edge of the way natural processes interact with radiation. One important
tool for obtaining such knowledge is field spectroscopy [25], where the ‘remote’
sensing is performed in situ in parallel with direct analytical measurements.
This allows building models relating directly measured, physical attributes to
remotely sensed attributes. It also allows prediction of optimal measurement
conditions (specifying spectral requirements, illumination and looking angles,
season of the year, etc.) as well as providing calibrations by reference to well-

specified ground targets.

1.1 Remote Sensing

Historically, remote sensing started in 1858 when the first aerial photograph
was taken from a balloon [23]. Since then, impressive technological develop-
ments have given improvements in the design of both platforms and sensors.
While the former is dominated by the advent of aeroplanes and earth orbiting
satellites, the Jatter is characterized by a formidable increase in the amount of
information collected by modern instrumentation. Instead of measurements in
one single spectral band as a black and white photograph is limited to, sen-
sors are now available with several, sometimes hundreds of bands ranging from
optical radiation including the ultra violet (UV) and infrared (IR), to radar.
Although radar imaging is reaching maturity, partiéularl-y by the resent launch
of the ERS 1 satellite, optical remote sensing still has an important position
because of the high spectral resolution attainable and the existence of many
characteristic spectral features within its bounds. The comfortable existence
of the sun as a powerful source of optical radiation is another of its raisons
d’étre. |

Modern remote sensing started in 1972 with the launch of the Landsat 1
satellite {23]. Providing consistent and high quality images of the entire earth
in four spectral bands, it had a great impact on the remote sensing community.
The current ‘state of the art’ in space based optical remote sensing is offered by
the last member of the Landsat family carrying the “Thematic Mapper’ sensor.
It offers imaging in seven spectral channels ranging from the visible at 0.45 pn

out to 12.5 pm in the thermal infrared. A major drawback of Landsat images
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is their coarse spectral resolution, and to improve on this and other deficiencies
a new series of satellites are under development, scheduled for launch in 1995
[26]. Named picturesquely Mission to Planet Earth it will constitute an ‘Earth
Observation System’ (EOS). Sensors of various spectral and spatial resolutions
are previewed, notably one with a continuous covera,gé of 10 nm wide spectral
samples from 0.4 pm to 2.5 ym and a spatial picture element (pixel) size of 30
m. Clearly, this represents a quantum leap in sophistication which calls for a
similar improvement in instrumentation for field spectroscopy.

It is the increased requirements for field spectroscopy that we address in
this thesis. A study has been made of possibilities and limitations offered by
novel spectroscopic techniques, with particular attention to miniaturization
and throughput optimization. The most favourable method has been chosen
and a working prototype instrument has been built. Acting as a stand-alone,
local environment sensor it may provide non-destructive and unobtrusive anal-
ysis of a variety of targetsincluding agricultural crops and atmospheric pollu-
tants, as well as immersed objects like sub-surface algae. It may also find

applications in industrial process control and quality assurance [28).

1.2 Guide to the Thesis

Chapter 2 presents a radiation budget where available radiation may be
sees as ‘income’, losses in the optical path as ‘expenses’, and the instrument
throughput as an ‘asset’. A comparison between the performance of dispersive
specfrometers (using a prism or a grating) and interferometric spectrometers
(using a Michelson or a Fabry-Perot interferometer) based on the radiation
budget is then made which culminates in the preference for interferometric
spectroscopy due to its throughput advantage. This preference is answered by
a novel implementation of the Michelson interferometer in a non-scanning or
holographic Fourier transform spectrometer (HFTS) where the interferogram is
presented as a spatial rather than temporal intensity pattern. Sa,mpled by an
array detector, the interferogram is Fourier transformed to yield the spectral
information. Its merits include good mechanical stability, small size, and low

power consumption. Thanks to a heterodyning capability, a flexible imple-
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mentation is possible, allowing freely adjustable resolving power over a large
range within the entire visible and immediate near infrared spectrum (0.4 gm
to 1.0 gm).

Chapter 3 presents the theoretic basis for the instrument giving an expla-
nation of how the ideal instrument yield spectral estimates. Spectral degra-
dation due to manufacturing inaccuracies and measurement noise is then dis-
cussed, notably treating the effects of interferogram phase and apparent errors
in the sampling grid.

In Chapter 4, the design of the instrument is described. Particular atten-
tion has been given to critical components such as the interferometer and its
centre piece, the beam splitter. Another important part of the design is the
fringe imaging lens which transfers the interferogram from within the interfer-
ometer onto the detector array. Signal processing is also given a comprehensive
coverage; this is the means by which an optimal spectral estimate is obtained
from the measured data. Mechanical and electronic design is also described
although only in the form of a summary.

Chapter 5 comments upon operating practices and presents demonstra-
tions of the instrument including a measurement of th red edge in vegetation
spectra and absorption due to atmospheric NO,, an important air pollutant.
In the red-edge measurement we observe the characteristic double inflection,
and in observing scattered sunlight at a high resolution we detect the blue
NQO, absorption.

Finally, Chapter 6 gives overall conclusions and recommendations for fu-

ture work.

1.3 Units

SI units are used throughout apart from in a few cases where other units are
found more illustrative. In particular, we measure distance along the inter-
ferogram in units of “photodiode elements”, denoted Elements, and spatial
frequencies in the interferogram in units of “cycles pef photodiode element”,
denoted Elements™!.

Optical throughput has SI unit “square metre steradian” (m? sr}. We find
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this somewhat opaque and prefer instead the unit “square centimetre-degree”
(cm? deg?) which is more easily envisaged. -

In discussing absorption by atmospheric constituents, the product of ab-
sorption path length and the constituent’s partial pressure is an important
parameter. Its SI unit is “pascal meters” (Pa m), but we have used instead
“atmosphere centimeters” (Atm cm). The advantage of using the atmosphere
unit is that if the absolute pressure of the gas mixture is one atmosphere, then
the partial pressure of a constituent measured in atmospheres equals the con-
centration of that gas in the mixture. A partial pressure of 103 Atm is thus
equal to a concentration of 1 ppt (part per thousand). Similarly 107® Atm
corresponds to 1 ppm {million), and 10~° Atm corresponds to 1 ppb (billion).

Finally, we have chosen to use wavelength measured in microns (um) or

! as the predom-

nanometres (nm) rather than wavenumber measured in cm™
inant spectral unit. Rooted in our own lack of spectioscopic background, we
hope that this will not annoy the spectroscopist and that it will instead enhance
the readability of the Thesis for the non-spectroscopist. Having said that, we
must of course admit that since the instrument is interferometric and therefm:e
has a spectral axis linear in wavenumbers rather than wavelengths, the conver-
sion is not always practical. In those cases we will (again begging forgiveness
from the spectroscopist) use the unit reciprocal micron (um=') which, in the
1

present context, appears more intuitive than the cm™! unit.
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Chapter 2

Concept Study

This chapter presents a study of the requirements for remote sensing spec-
troscopy and how these are met with different types of spectroscopic instru-
ments. On the basis of the study a prototype instrument has been built, the
design of which is the subject of the remainder of the Thesis.

A large part of the chapter is given to the construction of a Radiation Bud-
get where output signal is expressed in terms of available energy, instrument
throughput, and transmission losses. In analogy with an economic budget, in-
put energy may be seen as ‘income’, instrument throughput is an ‘asset’, and
transmission losses including detector efficiency as ‘expenses’. Output energy
in the form of an electric current thus represents the ‘balance’ of the budget.

One important limitation for the construction of an instrument has been
given based on practical arguments: the instrument will employ silicon pho-
todiode detectors. This is because they are easily available in many different
forms and their sensitivity covers a spectral region {the visible and very near
infrared, 0.4-1.0 ym) where optical glasses also have good transmission and
dispersion characteristics, and where the sun provides a good source of radia-
tion. These advantages simplify the design of a working prototype to the point
where its construction is conceivable within the span of a Ph.D. project. The
spectral region of silicon detectors is of importance in remote sensing, par-
ticularly for studies of vegetation where it covers the chlorophyll absorptions,
and atmospheric pollution, represented in an example by the NO, absorption

at 490 nm.



2.1 Elements of Radiometry

We will keep the radiometric discussion at a fairly basic level by avoiding
the full vocabulary of terms and by making some simplifying assumptions
with respect to radiation transfer and bidirectional reflectance characteristics.
Hence the treatment is limited to the notions of radient power, irradiance,
and radiance. Radiant power equals the power contaiﬁed within the radiation
hitting a surface, irradiance is the amount of radiant power hitting one unit
area of the surface, and radiance is the radiant power leaving the surface per

unit projected area into a unit solid angle. Figure 2.1 illustrates these concepts,

Radiant power, @

Radiant power, ©

Unit area, A Unit area, A

(a) - (b)

FigurE 2.1: Illustration of the concepts of (a) irradiance, £ = —g% and (b)
AL

ra.dla.nce, L= m

Unit solid angle, Q

and definitions of the terms and their symbols are given in Table 2.1. All the
terms may be spectral, i.e. measured either per unit wavelength or per unit

wavenumber interval, denoted by subscript A and o, respectively.

2.1.1 Radiation transfer

Radiation transfer calculations specify how much of the power radiated by an
object (the source) is received by another object (the target). To illustrate this
and present the first of our assumptions we consider the source-target geometry
of Figure 2.2. By assuming both source and target to be small compared with
their separation, we remove the differentials in the expressions for irradiance

and radiance. The radiation transfer calculation may then proceed simply by
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TABLE 2.1: Radiometric quantities, their symbols; definitions, and units®.

Quantity Symbol and definition Unit
Radiant power ) W
Irradiance E= oo W m™?
84
2
Radiance L= ﬁ% w m~2 sr~!
. _ B(I’ -1
Spectral radiant power P, = 7Y W um
o
or g, = -'5; W Him
. . _6E —s -1
Spectral irradiance Ey= a Wm™ pm
or E, = ?E W m™? um
o fod
. _ 0L -2 gl -l
Spectral radiance L, = a Wm™* sr™t pm
or L, = %ﬁ— Wm?sr~! ym

>Adapted from references [19] and [20].

measuring the radiance {L) of the source and multiplying it by the (projected)

source area (Agcosfls) and the solid angle subtended by the target (£2r):

= LQTAS cos 95. : (21)

FicUre 2.2: Geometry of radiation transfer calculations.
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Seeing that Q7 = Ar cosfr/r* where Ay cosfr is the projected area of the

target and r is the distance between the objects, this may be rewritten as:

Arcosbp
r2

= LﬂsAT COs QT,

¢ = L Ascosfg (2:2)

where {35 is the solid angle subtended by the source at the target.

2.1.2 Directional reflectance

The second assumption concerns the directional distribution of the source ra-
diance. In general a radiating object has one or more preferred directions
of radiation. For objects which are not self luminous but merely reflect in-
cident light, preferred directions are usually found due to specular reflection
and/or retro-reflection (enhanced back-scatter). The radiance of a target must
therefore be considered as a function of the directional coordinates 4 and ¢,

see Figure 2.3, both of the observer and of the source. This gives rise to

X

FIGURE 2.3: The spherical coordinate system used for characterizing direc-

tional radiance and irradiance. The elemental solid angle is also shown.

the bidirectional reflectance-distribution factor, f,(0;, ¢:;80,, $,) [20], obviously
a difficult function to measure but of critical importance for the interpreta-
tion of r_emotely.sensed data [25]. For the purpose of the present study we
will ignore this function however, and assume all targets to act as Lambertian

radiators, radiating equally in all directions.
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Rewriting the definition of radiance from Table 2.1 in an integral form
it is possible to calculate the relationship between the total power radiated
from a Lambertian radiator and its radiance. Seeing from Figure 2.3 that the

elemental solid angle is d{? = sin 0 df d¢ the integral becomes:

o = j dA Lcos 6 dQ
A Hemisphere -
27 nf2
— 1A f dé / cos 0sin 0 do
=0} 8=0
1
= 2nxLA / u du
0

with the change of variable u = sin §. Hence:

¢

(2.4)

If the target acts as a Lambertian radiator, its radiance due to an irradiance

F is therefore:

L=== (2.5)

where R 1s the dimensionless reflectance factor of the target. IHuminated by
a source of radiance Lg subtending a solid angle {}g, the target irradiance is

E = LsQg, hence:

L= RLS%. (2.6)

As a third assumptions we will take the spectral power (®,) to be constant
across a spectral channel. We thus avoid a spectral integral and are allowed

to say:

3 =2a,A), (2.7)

where AM is the width of a spectral channel.

2.1.3 Conservation of throughput

An important feature of optical imaging systems is their conservation of radi-
ance. To demonstrate this, consider the imaging properties of a perfect lens
as illustrated in Figure 2.4. An object of projected area A is imaged onto an

area A'. The lens subtends solid angle 2 seen from the object and ¥ seen
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FIGURE 2.4: Construction of the imaging properties of a perfect lens.

from the image. Geometric construction then shows that A/s? = A’/s”? and

1s? = (V's’? where s and s’ are object and image distance, respectively. Hence
AQ =AY =G, (2.8)

an invariant of the system known as optical throughput and recognized as the
two-dimensional equivalent of the Smith-Helmoltz invariant [6, page 165]. In-
variance of radiance follows from this by conservation of energy. Let the ob jec-t
have radiance I and area A so that the power radiated from it into solid angle
Qis & = LAQ = LG. If no losses are suffered then the power radiated into
the image must also be @, hence the image radiance is &/(A'QY) =@/G =L,

as required.’

2.2 Radiation Budget

The Radiation Budget relates the output from a radiation collecting instrument
to the level of radiation that it collects. Three basic components are involved in
its calculation: the source (including losses in the radiation transfer between it
and the target), the target, and the receptor. We consider these in two transfer

processes: source-target and target-receptor.

2.2.1 Target to sensor transfer

Detector output current is proportional to the absorbed power with a propor-

tionality factor called detector responsivity, p. Ideally one electron of charge is
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produced per photon incident on the detector, but practical devices only con-
vert a fraction of the incident power. Denoting this fraction by the guantum

efficiency, n, detector responsivity may be expressed as:

R
g"_hc//\

n = 807 An [mA /W] (2.9)

where e is the electron charge, h is Plank’s constant, ¢ is the speed of light,
and ) is measured in microns. Hence output current of a detector irradiated

by spectral power ®, collected within a narrow bandwidth A is:

Figure 2.5 shows the responstivity for the detector we have used in our instru-

ment.

200

150 ~
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|

Detector responsivity, p
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Wavelength (pm)

FirGUure 2.5: Responsivity of the silicon detector used in our instrument as
measured by the manufacturer. Broken lines show responsivities of ideal photo

electric detectors with given quantum efficiencies.

By the arguments of the preceding section, the spectral radiant power in-
cident on the detector equals the product of target spectral radiance L, and
throughput & of the optical system. In any real system there is a loss of power
due to absorption and scattering in the optical components accounted for by
the transmission factor Tp. The detector current in terms of target radiance

is thus:

1= L,\GToQA/\. (2.11)
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Before going on to consider the radiation transfer between source and tar-
get, we will have a look at a commonly used source in optical remote sensing:

the sun.

2.2.2 The sun

Measured at the top of the earths atmosphere the sun has a spectrum that
resembles that of a blackbody at an absolute temperature of 5800 K (see Fig-
ure 2.6). A blackbody is an ideal absorber [4, page 323], and its spectral

2000 —
o
G 1500 —
et
o g
e
ey —
S 1000
BZ
g =
8 500 —
%)

0
0.4 0.6 0.8 1.0 1.2
Wavelength (ym)

Figurg 2.6: The solar spectral irradiance at the top of the atmosphere (full
line) compared with the irradiance of a ‘perfect sun’ represented by a blackbody
at 5800 K (broken line}.

(The solar spectrum is based on reference [21].)

C
radiance is uniquely defined by its temperature according to Plak's law i3,

page 448]:
2hc? 1

L= N5 ghe/MT _1°

(2.12)

where k& is Bolzmann’s constant, T is the absolute temperature of the body,
and the other symbols are as defined earlier.

Objects which are not ideal absorbers also radiate although their radiance
is always inferior to that of a blackbody. The total power radiated from an
illuminated object is therefore the sum of that reflected and that emitted.

Knowing the balance between solar reflection and thermal emission for a tar-
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get is important in remote sensing [17]. To compare these, consider first the
radiance from two different objects, one an ideal absorber at ‘room tempera-
ture’ (1" = 300 K), the other a non-absorbing Lambertian reflector illuminated
by the sun. The radiance of the fgl}fner is given by Equation 2.12, that of the
latter by Equation 2.6 by taking"{ls = 6.8 x 10™3 sr as the solid angle sub-
tended by the sun,and Ls to be the radiance of a blackbody at 5800 K. Ignoring
atmospheric absorption, the two radiances are plotted in Figure 2.7. It is the

intersection point between these graphs which is important. A real, partly ab-

1000 ' ! ‘ *
Solar reflection

«  100— -
~ -~
= Thermal emission
& 10— —
B,
T w
Be 15 -
H
» 0.1 -

0 2 4 6 8 10

Wavelength (urm)

F1GURE 2.7: Comparison between the solar reflection from a perfectly diffuse,
perfectly reflecting surface and the thermal emission from a perfect absorber

at 300 K. The sun is assumed a 5800 K blackbeody and atmospheric absorption

is ignored.

sorbing, partly reflecting object has both reflection and emission curves. They
are similar but inferior to those in the figure and their intersection points are
at shorter wavelengths for highly absorbing objects and at longer “ravelengtlls
for highly reflecting objects. By considering the crossover points for naturally
occurring reflectances two extremes materialize, marking the limits for where
solar reflectance and thermal emission dominate [17]. Usually, solar reflection
is said to dominate up to 2.5 pm and thermal emission above 6 pm. Since we
have confined ourselves to wavelengths below 1 pm, we may therefore safely

assume solar reflection to be the dominant source of radiation.
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2.2.3 Source—target transfer

We distinguish between two different target types: reflective targets and trans-
missive targets. The reflective target is assumed to act as a Lambertian
radiator with a reflectance factor R, illuminated by an ‘ideal’ sun represented
by a 5800 K blackbody. Atmospheric absorption {Figure 2.8) is accounted for
by the transmission factor T4 which also accounts for the effects of solar alti-

L I ; l 1 ]
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FIGURE 2.8: Atmospheric transmittance along the zenith measured at sea level
under ‘excellent’ visibility conditions (more than 80 kmy).

(Adapted from reference [15].)

tude and meteorological conditions whose approximate attenuation factors are
summarized in Table 2.2. Combining Equation 2.5 with Equation 2.11 now

allows the Radiation Budget for reflective targets to be written in full as:

. BAT4RGToo A

s

(2.13)

The transmissive target is one we study by lool&ing at light transmitted
through it from a source behind it, see Figure 2.9. Although such targets in
general both transmit and scatter light, we will here only consider transparent
gases assumed to be non-scattering fluids characterized by their transmission
coefficient T'. If the source or background against which the target is observed
has spectral radiance Ly and the atmosphere has transmission coefficient T,

the Radiation Budget for such targets becomes:
?‘. = LATATGT()Q A)\ (214)

Typical backgrounds include the sun, the moon, and the blue sky. Idealized

radiance spectra for these are drawn in Figure 2.10 with the sun represented
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TapLe 2.2: Approximate ratios between direct sunlight and other forms of
natural ilumination in the visible based on human eye response®. The column
marked ‘Exposure steps’ shows log, of the ratios corresponding to ‘aperture

steps’ in photography.

Source type Attenuation factor Exposure steps (£)
Direct sunlight 1 0
Full daylight (not direct sunlight) 107t -3
Overcast day 1072 -7
Very dark day 10-3 ~10
Twilight 10—* -13
Deep twilight 1078 -17
Full moon 10-8 -20
Quarter moon 10-7 ~23
Starlight 108 -26
Overcast starlight 10-° -30

2Adapted from reference [13].

by a 5800 K blackbody and the moon by a Lambertian reflector illuminated by
the ideal sun. Sky light is assumed to be entirely due to Rayleigh scattering
of ideal sunlight [3, page 469] and its radiance curve is adopted from [13].
Note that the sun and the moon are sources of limited extent, both having
an angular diameter of about 0.5 degrees. A sensor with field of view larger
than this will therefore not achieve full throughput performance unless it is

equipped with a telescope: by the conservation of throughput, field of view can
then be reduced in return for a larger aperture, see Figure 2.11. Without such
equipment, throughput G must be calculated using the solid angular extent of
the source rather than the instrument’s field of view. With a two degree field

of view this represents a 16 times loss in throughput.

2.2.4 Signal criterion

The ultimate criterion for an instrument is the clarity of its output, often

measured in terms of the signal to noise ratio, SNR. The various noise sources

encountered in our instrument uf,nd their effects on the output spectra will
e

be discussed in Chapter 3. Hel'gqust mention the fundamental limit to noise
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F1GURE 2.11: The telescope lens reduces field of view while conserving through-

put.

performance given by the statistical uncertainty of a measurement of individual
events such as photon to electron conversions. If a signal S is measured in
number of electrons then its uncertainty, or noise, N equals the square root
of 5. Theoretically it is therefore possible to achieve any SNR by collecting
sufficiently many photons.

Apa.r‘p from the practical difficulties posed by target lifetimes etc. this tech-

nique is limited by detector saturafion and dark current. Saturation occurs
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when the number of electrons output from the detector exceeds the detector’s
storage capacity. In our detector the storage is limited to 20 pC or 1.24x10°
electrons giving a theoretical maximum SNR per exposure of 11 000.

Dark current (ip) is caused by leakage of charge across the detector diode.
For very low signal levels, dark current will dominate and seriously reduce the

SNR. It is therefore sensible to require
) D (215)

as a practical criterion for the signal current. Dark current in our detector

is plotted against temperature in Figure 2.12. Note the strong temperature
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FIGURE 2.12: Dark current plotted against temperature for the detector used

i our instrument as measured by the manufacturer.

dependence of this effect. At an ambient temperature of 20°C, :p = 0.046 pA.

We use this value to calculate instrument requirements in the examples below.

2.2.5 Examples

To illustrate the use of our Radiation Budget and set performance criteria for
the subsequence analysis of instrumentation possibilities we consider two prac-
tical examples representing typical applications for spectral remote sensing in
the visible: reflectance measurement of vegetation and fransmission measure-
ments of the atmosphere. In each example a minimum throughput requirement

is specified and used to assess instrument performances in the next section.
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A reflective target: the vegetation red edge. Several workers have
measured the reflectance of vegetation in the visible, see Figure 2.13, with
particular attention to the long-wavelength edge of chlorophyll absorption at

about 700 nm, called the “red edge”. Gates et al. [18] describes how growing

1.0 — '

0.8 + —

0.4 - -

Reflectance

0.2 _ -

0.0 —t—my T T ; I
05 0.6 0.7 0.8 0.9 1.0
Wavelength (um)

FiGURE 2.13: Reflectance spectrum of green grass as measured by the author.

oak leaves exhibit a systematic shift of this edge towards longer wavelengths
and suggest its position to be a good indicator of chlorophyll content. Horler
et al. [24] point out the advantages of using high resolution measurement of
the red edge rather than the more commonly used ratio of two broad bands
on either side of the edge for chlorophyll measurements, claiming an ability to
eliminate effects of varying ground cover. More recently, Boochs et al. [27]
extend the study of the red edge to more than just its position by considering
first derivative spectra. They record spectra with 2 nm wide spectral channels
whose first derivative displays a double rather than a single inflection peak.
Having found good correlations between these features and circumstantial fac-
tors such as sowing date and nitrogen treatment, they predict a great future
for plant vitality analysis by remote sensing.

Our first case study considers the Radiation Budget applied to such mea-
surements by demanding a spectral channel width of 1 nm in the region around
700 nm. With two channels per resolution element as demanded by sampling

theory, this corresponds to a resolving power of 350. The typical vegetation
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reflectance spectrum of Figure 2.13 shows clearly the red edge in addition to
the more familiar although rather less prominent green peak. Let us use the
reflectance of the low reflectance part of the spectrum, about 10 %, as target
reflectance in the budget. From curves shown earlier in the chapter we pick

typical values for the other quantities required, thus:

E, = 1500 W/m?/pm(from Figure_?.ﬁ)

T4, = 0.8 in full sunshine (from Figure 2.8)
B = 0.1 (from Figure 2.13)
o = 183mA/W (from Figure 2.5)

AX = 1lnm

The ‘balance’ of the Radiation Budget of Equation 2.13 then becomes:
t = 7.0GTo [mA]. (2.16)

Demanding ¢ > ip = 0.046 pA as discussed above now gives the following

requirement for instrument performance:
GTo > 6.6 x 107 m? sr. (2.17)

The SI unit “m? sr” is somewhat opaque so let us instead introduce the more

illustrative unit “square centimetre-degree”: 1cm? deg? = 3.05x10"%m? sr.

Then:
GTp > 2.2 x 107" cm?® deg?. - (2.18)

It may be interesting to perform measurements under less favourable con-
ditions than full sunshine. From Table 2.2 it is seen that a ‘very dark day’
requires a throughput three magnitudes higher than under optimal conditions.
Increasing throughput further will allow observations even under twilight con-
ditions. This may be found interesting for measurements performed in polar
regions. Note that under such conditions the ambient temperature is probably
significantly lower than 20°C. Dark current is then also reduced as shown in
Figure 2.12, and hence the throughput requirement: at freezing (0°C) dark

current is down by one order of magnitude.
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A transmissive target: atmospheric NO,. For our second cé,se study,
we consider the blue absorption of NO; centred at about 490 nm. This gas
is of much concern with respect to atmospheric chemistry, vegetation damage,
and respiratory problems. Its various sources and sinks are not clearly under-
stood, and the development of better chemical understanding depends upon
observational campaigns possibly based on remote sensing techniques [29].
Although the blue NO, absorption is a complex combination of very fine
bands fully resolvable only with resolving powers of the order of 150 000,
significantly lower resolving powers allow the study of its outline as seen in

Figure 2.14. The absorption shows up in atmospheric transmission spectra as
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FI1GURE 2.14: Absorption coefficient for NOy around 490 nm. The points are
picked off a published curve® while the full line represents a measurement taken
with our instrument.

2 Reference [22].

a “hole” whose depth depends upon the concentration of the gas and the path
length through it. Estimates of detection limits are given in Chapter 5.
Taking background spectral radiance values from Figure 2.10, atmospheric
transmittance from Figure 2.8, detector detector responsivity from Figure 2.5,
and assuming that the transmittance of the atmosphere due to its content of

NO; and other pollutions is reduced by 0.5, we may furnish the Radiation
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Budget of Equation 2.14 with the following values:

2.8 x 10" W/m?/sr/um for the sun
Ly = { 5TW/m?/sr/um for the moon
2.2W/m?/sr/pum for the blue sky
Ta = 0.75 for a clear sky
T = 0.5
o = 179mA/W
AXx = 0.l1nm
ip = 0.046pA at 20 °C

Following the same criterion as above for detector current, the instrumental

demands can then be summarized as:

2.5x1071%m? st = 8.2x107%cm? deg® for the sun,
GTo » ¢ 1.2x107%m? st = 3.9x10">cm?® deg® for the moon, and
- 3.1x107%m? st = 0.10 cm? deg? for the blue sky.

2.2.6 Spectroscopic techniques

The purpose of spectroscopic instruments is to disperse light along a wave-
length or frequency axis so as to display its spectral content. The simplest
method of dispersion is to let the light through different narrow band filters
and measure the transmitted power for each filter. This is a technique which
has been much employed in remote sensing, but it becomes unpractical when
continuous coverage at high resolution is desired. For such work dispersion
either by a prism, a grating, or an interferometer is more appropriate. Grat-
ings outperform prisms with respect to resolving power: due to constrained
availability of optical materials, it is difficult to push prisms beyond 30 000 [5,
page 141]. Gratings push this limit about an order of magnitude further, and
interferometers yet another. For our i)resent purposes resolving power is not a
limiting factor for any of these spectroscopic techniques however.

Prism and grating instruments have many things in common, in particu-
lar throughput. We will therefore discuss only one of them here, and since

grating instruments give more freedom in the choice of dispersion and other
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characterist.ics, they are the ones chosen. We refer to this type of instrument
as classical grating spectrometers (CGS), the word classical is added to avoid
confusion with an interferometric construction which also uses a grating.

There are two different types of interferometric spectrometers: the Fabry-
Perot spectrometer and the Fourier transform spectrometer (FTS). The former
is primarily used to achieve extremely high resolving powers over short spectral
ranges and requires very high precision optics (A/50) [5, page 182]. We will
therefore not consider it here. The FTS principle is far more versatile and
lends itself well to field remote sensing in its non-scanning form, known as
holographic FTS (HFTS).

F'TS has a series of advantages over CGS. Apart from the higher resolving

power attainable, these include:
o Much reduced size at high resolving powers,

o Increased flexibility with respect to resolution and throughput for a given

instrument,
e Noise advantage in the infrared (the ‘Fellgett advantage’), and
o Considerably higher throughput (the ‘Jacquinot advantage’).

Since we are only interested in low resolution work in the visible {where statis-
tical photon noise is predominant}, only the latter advantage is of importance.
This is also the one we are considering via the Radiation Budget.

Other factors of importance for our instrument are those related to me-
chanical construction and operational ease. We will therefore only consider
non-scanning instruments where the spectral information is presented as a
spatial intensity pattern rather than as a temporal intensity variation as in
scanning instruments. This allows for much simplified mechanical construc-
tions and avoids power consuming motors driving the scanning mechanisms
because the information may be extracted by the use of an array detector. We
will in the following two sections consider basic design parameters for non-
scanning versions of both CGS and FTS type instruments and give examples

relevant for the Radiation Budget.
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2-.3 Classical Grating Spectrometers

This spectroscopic technique achieves dispersion by a wavelength dependent
deviation of the light. A grating deviates the light from its original direction by
the phenomenon of diffraction; the simple construction based on the Fermat

principle shown in Figure 2.15 uncovers the wavelength dependence of this

Grating

FiGure 2.15: Construction based on the Fermat principle for diffraction by a

grating: d(sin « + sin v) = mA, where m is a whole number.

process. The spectral information emerging from the grating is thus angularly
encoded, but for the angular code to be unambiguous, all the light ‘rays’ input
to the grating must be parallel. This is assured by spatial filtering: the light
analysed passes through an aperture slit followed by a lens (the ‘collimator’)
before it enters the grating. In order to decode the spectrum, an ‘angular
decoder’ in the form of a second lens (the ‘camera’) is placed in the output
beam. The spectrum is now presented as a spatial intensity variation in the

focal plane of the camera.

2.3.1 Practical instrument constructions

A schematic drawing of this system is given in Figure 2.16(a). Although per-
fectly feasible as a spectrometer design, more typical systems use refl ective
gratings in the ‘Littrow mode’ where the light is retro-reflected (for one wave-
length) back along its path. The collimator and camera functions are then

both taken by the same lens and the spectrum is located at or close to the
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FIGURE 2.16: Principle components of a grating spectrometer (a) and two com-
mon practical implementations: the Littrow configuration (b) and the concave

grating configuration (c).

entrance aperture. A flat mirror is often used to separate the two, see Fig-
ure 2.16(b). Another much used construction is the concave grating where
the functions of collimator and camera are performed by the grating substrate

(Figure 2.16(c¢)).

2.3.2 Focal ratio

A relationship between the width of the aperture slit and spectral resolu-
tion may be found by seeing that the spectral intensity distribution due to a
monochromatic input beam is an image of the slit. In"polychromatic illumina-

tion each wavelength produces an independent slit image slightly shifted with
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respect to neighbouring wavelengths. Two spectral lines can therefore only
be resolved if the aperture is sufficiently narrow that its two images do not
overlap. This does not mean that infinitely fine features may be resolved just
by narrowing the aperture; diffra;ction.in the camera lens ensures the slit im-
age never to be narrower than about Af/D = AF, where f is the focal length

of the camera, D its aperture diameter, and F' = f/D its focal ratio.

Zef't‘r'tqj ax dencte fhe

separation between samples, this gives rise to a focal ratio requirement:

Az
F< ==
-

(2.19)
For visible light (A ~ 0.5 pm) with a detector of width 25 pum, the focal ratio
must therefore be kept below 100.

Reducing F'improves the throughput of the instrument. To which degree ¥
may be reduced depends upon practical considerations: production techniques
limit grating widths to about 100 mm, and aberrations make focal ratios of less
than unity difficult to achieve. For high resolving powers, long focal lengths are
required [3, page 152] making grating size the limiting factor, but for resolving
powers lower than about 10 000, focal lengths may be short enough to make

aberrations the limiting factor for optical throughput.

2.3.3 Slit height

So far no mention has been made of the direction perpendicular to the dis-
persion. Since no spectral coding is present in this direction a much larger
spread of angles can be tolerated, hence the name ‘slit’ for the spatial filter
aperture. The slit cannot be infinitely long however: considering again as in
Figure 2.15 the Fermat principle we see in Figure 2.17 that for off-axis rays
the path difference between adjacent grating apertures is longer than for axial
rays. The image of a long slit is therefore curved towards shorter wavelengths.
Demanding that the position of a ray at the edge of the slit image should not
deviate more than one resolution element from the position of a ray at the

centre of the slit image, it may be shown that the angular deviation at the
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Y/ Axis

Grating

FiGure 2.17: Top view of the grating shown in Figure 2.15 with light entering
at angle # from the axis. If points A, B, and C correspond to those in the other

figure, then the grating equation now becomes d(sin u 4 sinv)/cos 3 = ma.

grating in the non-spectral direction must be kept less than \/2775 radians,
where R = A/} denotes resolving power. This result is interesting because
it is identical to the field of view of interferometric spectrometers, as will be
seen later. Lor low resolution grating instruments, aberrations and detector

sizes tend to limit the slit length to less than this optimum, however.

2.3.4 Instrument transmission factor

Concerning the instrumental transmission factor (Tp), diffraction efficiency
of the grating is the main loss factor. Diffraction efficiency is wavelength
dependent, and for low resolutions, assuming scalar blaze theory [10], the
spectral transmission curve for a perfectly blazed grating is approximately as
shown in Figure 2.18. Losses due to reflection and scattering at optical surfaces
reduce transmission further. Although it is impossible to give a universal value
for the transmission factor, an average of 7o = 0.5 will be used as an optimistic

estimate.

2.3.5 Example: the concave holographic grating

A type of grating well suited for compact, non-scanning instruments is the con-
cave interference or concave holographic grating. It is produced by exposing
a layer of photosensitive material (‘photoresist’) deposited on a curved sub-

strate to the interference between two laser beams. As pointed out earlier, the
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FIGURE 2.18: Idealized efficiency curve for a grating with blaze wavelength
0.5 um.
(After reference [10}.)

concave grating disposes of both collimator and camera and gives therefore a
very simple optical system, see Figure 2.16(c). Producing the grating grooves
by interference rather than traditional ruling allows non-straight grooves to
be made by playing with the shapes of the interfering wave fronts. This al-
lows correction of certain aberrations, exemplified by the so-called ‘Type IIT’
grating formed by two spherical wave fronts originating from certain geomet-
rically constructed points [12]. The spectrum formed -by such a grating is well
focussed onto a nearly flat field and is therefore ideally suited for diode array
detectors.

A typical system [11] bas a focal length of 200 mm and a groove density
at the centre of the grating of 300 per mm. It spreads the 400-800 nm range
over 25.4 mm which, when sampled at 25 pm intervals, gives a resolution
of approximately 1 nm (R ~ 600). The maximum allowable slit height is,
according to the foregoing discussion, about 20 mm but off-axis aberrations in
the grating limits its useful length to about 2 mm. This corresponds well with
the 2.5 mm detector length in the one-dimensional array we have used. The
grating is circular with a diameter of 70 mm and a focal ratio F = 3. Since the

solid angle of the converging beam to a good approximation is Qg = 7/(2F)?,
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the throughput calculated at the detector surface for a single channel is:

G = Apfg
T
= lD ACE Zﬁ (220)
= 5.5x10° m?sr

where Ap = Ip Az is area and Ip and zp are length and width respectively
of each detector element. Using the estimated instrument transmission of

To = 0.5 gives a throughput-transmission figure of
GTo = 2.7x107% m? sr = 0.090 cm® deg® (2.21)

This systém can be adapted to different resolving powers by changing the
grating, assuming appropriate gratings to be available. Throughput is not
affected by such a change as long as the same detector is employed and the

new grating has the same focal ratio.

2.4 Fourier transform spectrometers

Fourier transform spectrometers (FTS) present the spectral information in a
radically different form from that of classical grating instruments. The FT5
output is an énterferogram which can only be fully interpreted after it has been
mathematically Fourier transformed. This method of spectroscopic analysis
was first suggested by Michelson [6, page 316] in the end of the last century,
but it is only during the last few decades that it has it become useful for general
spectroscopic tasks thanks mainly to developments in digital computing.

The interferogram is formed in a two-beam interferometer where the inci-
dent light is split into two parts and recombined after having travelled unequal
optical paths, see Figure 2.19. On recombination, the two beams interfere, and
according to their relative phase, they interfere constructively or destructively.
Phase difference is proportional to the ratic between optical path difference
(OPD) and wavelength, and so, if OPD and hence phase is varied linearly,
the output intensity for a monochromatic input beam varies sinusoidially. The
frequency of this oscillation is inversely proportional to the wavelength of the

light; hence it is proportional to the optical frequency. When polychromatic
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FiGUure 2.19: The Michelson interferometer.

light is fed into the interferometer, each spectral component produces its own

sinusoid and the output is the incoherent sum of all these patterns.

This

complicated—and in white light colourful—pattern is the interferogram, see

Figure 2.20.

Intensity (x10° digital units)

FIGURE 2.20: The central part of a typical interferogram measured with our

instrument.

E—

-40

[

-20
Disiance along interferogram (samples)

[ | | {
0 20 40 60

A signal can, according to Fourier theory, be represented uniquely as a sum

of appropriately weighted sinusoids and the signal 1s therefore fully defined by

the weighting factors (and the phases) of these sinusoids. Conversion from one

of these representations to the other is performed by Fourier transformation. It

follows from the preceding paragraph that the spectrum of the interfering light
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represents the weighting factor signal for the interferogram; the spectrum is
therefore the Fourier transform of the interferogram. Spectra obtained by this
method are different from those obtained by classical grating spectrometers

since they are linear in wavenumber (or frequency) rather than wavelength.

2.4.1 Classical and holographic FTS

Changing the OPD may be done either temporally by moving (scanning) one
or both of the mirrors, or spatially by tilting one of the mirrors. Instruments
based on the the former method (referred to as scanning or classical FTS)
are usually preferred for laboratory based work since they offer both high
resolution and wide spectral coverage. Those based on the latter (called non-
scanning or holographic FTS, HFTS) are more suitable for our purpose where
extreme resolving powers are not demanded, since they can be realized without
moving parts. Like in the non-scanning grating instrument, an array detector
collects the spatially distributed information.

Classical and holographic FTS offer identical instrumental throughputs,
but while scanning systems collect all the power by a single detector, holo-
graphic systems divide it between the detectors in the array. In terms of
energy per sample, however, the balance is regained since classical systems di-
vides the observation fime between all the samples wilile holographic systems
allows all samples to be measured all the time.

The Michelson interferometer with a tilted mirror presents the inferfero-
gram as a ‘fringe pattern’, a series of bright and dark lines. These are fringes
of equal thickness [6, page 301] parallel with the apex of the wedge formed be-
tween the mirrors. The fringes are virtual, localized near the mirror surfaces,
and in order to be measured, they must be imaged onto the detector array by

a ‘fringe imaging lens’, see Figure 2,21,

2.4.2 Spectral resolution

Spectral resolution of FTS instruments 1s, as shown below, equal to the recip-
rocal of the maximum optical path difference (OPD) between the two beamns in

the interferometer. This follows from the uncertainty involved in decomposing
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FIGURE 2.21: Sketch showing the principle of holographic FTS.

the interferogram signal into sinusoidal (Fourier) components. Like a guitar
string only vibrates at frequencies corresponding to integral numbers of nodes
~along the string, a Fourier component can only be computed if it corresponds
to an integral number of cycles, i.e. fringes, along the interferogram. Two
neighbouring Fourier components ¢ and ¢ — Ao, where ¢ = 1/, are therefore
represented by N and N — 1 fringes respectively where N is an integer. Since
one fringe represents an OPD equal to one wavelength, the total OPD across

the interferogram may be written as:

N _ N-1

¢= S =5 ThAs (2:22)

when N is the total number of fringes in the interferogram. Eliminating N

from the equations yield the spectral resolution:

Ao=1 (2.23)
€
as required. Eliminating £ instead from Equation 2.22 gives the resolving
power:
R=—=N 2.24)
=x; =N (2.2

2.4.3 Heterodyned holographic FTS

The sampling theorem requires the finest fringes in the interferogram to be
sampled twice per period. With a detector array of Np detectors, the max-

imum number of fringes, and hence, by Equation 2.24, maximum resolving
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power, is therefore Np/2, i.e. typically of the order of a few hundred and
about a thousand at best. This limitation may be overcome by the technique
of heterodyning. The term is borrowed from radio theory and signifies the fre-
quency shift seen when two signals of similar frequencies are multiplied. Such
“an effect is achieved in HFTS by replacing the tilted mirror with a grating,
giving fringes that have spatial frequencies equal to the difference between
the unheterodyned fringe frequency and the grating ruling frequency (see Sec-
tion 3.2.3). Physically, this may be understood by seeing that diffracted wave
fronts emerge from a grating in different directions according to their wave-
length. The grating is arranged such that a wave front belonging to one end
of the spectral range of interest is “retro-diffracted”, i.e. it fulfils the grating’s
“‘Littrow condition’. This wave front is therefore parallel to the reference wave
front which returns from the mirror: their interference fringes are infinitely
separated and have thus zero spatial frequency. At a neighbouring wavelength
the diffracted wave front is no longer parallel with the reference and fringes
of finite frequency are therefore produced. If the grating is well chosen, the
fringes representing the other end of the spectral range equals the Nyquist
frequency (half the sampling frequency) of the detector array.

There is of course an ambiguity problem involved with this method since
wavelengths on either side of the Littrow wavelength may produce fringes of
the same frequency. This together with the problems of aliasing posed by
breaking the sampling condition, sets the following optical filtering condition:
Only light corresponding to an unambiguous spectral range must be allowed to
contribute to the interferogram. A formal expression of this condition is given

in Section 3.2.4.

2.4.4 The throughput advantage

Heterodyned HFTS (usually shortened here and elsewhere HHS) can thus
achieve high resolving powers at the expense of a limited spectral range. Al-
though the maximum resolving power attainable with a given grating is the
same as the diffraction limited resolving power offered by the same grating in a

CGS system (see Section 3.2.7), HHS tends to be more efficient hoth in terms
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of throughput and instrumental dimensions. HHS also offers diffraction limited
resolution of the grating as a matter of course. These points are exempliﬁt_:d
by a project proposing an HHS spectrometer of resolving power 10° for the
16 metres ESO telescope [62]. Due to atmospheric ‘seeing’, a CGS instrument
utilizing the entire telescope throughput is estimated to require a grating of
diameter 2.4 m while the proposed HHS system only needs 10 cm.

The main reason for this big difference is the FTS throughput advantage.
In FTS the throughput is limited because of the variation in OPD with input

ray angle as illustrated in Figure 2.22. For a ray inclined at an angle g to the

S of 3 » S

0

FiGure 2.22: Construction of path difference for off-axis rays. The

source S is imaged into 8 and §” by mirrors My and M, respectively.

axis the OPD is
§ =2lcos 3, (2.25)

where [ is the separation between the mirror {or mirror and grating) images.
Hence, if a fringe pattern of an off-axis wave front with wavenumber ¢ has N
fringes, it will be confused with the fringe pattern of an axial wave front of

wavenumber o — Ao which also has N fringes:
N =2locos B = 2l(c — Aog), (2.26)
giving:
gcos =0 — Ag. (2.27)

Since 4 is always small enough that its cosine may he represented by the two

first terms of its Taylor expansion, this may be approximated to:

ol — %2-) =0 — Ao, (2.28)
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and so:
2 Ao 2
= — =4/ =. 2.29
=120 =/2 (2.29)
Note the correspondence between this result and that quoted for maximum slit
height in CGS instruments. Since this limit must be respected in all directions,
FTS instruments have a circular field-of-view of solid angle:

. 2%
Q= - =7 2.30
mp R ( )

2.4.5 Throughput optimization .
]

In HFTS instruments the interferogram is presented as a pa,tter-ﬁ‘rs’traight,
parallel lines. It is therefore essentially one dimensional and lends itself well
to the use of a one dimensional array detector. For a large throughput, the
fringes should be as long as possible, however, and this fits badly with the
typical shape of array detectors. Although spectroscopic grade arrays tend to
have elongated detectors (our array has elements of 25 pm by 2.5 mm), the
fringes could be much longer, typically as long as the width of the fringe field.
A cylindrical lens can then be used to collapse the fringes, see Figure 2.23.
Optimally this lens is chosen so as to image the target onto the detector plane
in the along-fringe direction.

Assuming properly collaj)sed fringes, it is easiest to calculate the instrument
throughput at the interferometer mirrors whe~e ite |- f"'.?es gre located .

2
G =0AF = ﬁ—mpyp, | (2.31)

where Ap = xpyr is the area of the fringe field and 2f and yp its ‘across-fringe’
and ‘along-fringe’ dimensions, respectively. I (as in our case} the across-fringe

dimension is imaged at unit magnification onto the detectors then:

27
G = %—ND Ax Yr, (232)

where Az is the width of each detector element.

2.4.6 HFTS versus CGS

Each detector in an HFTS instrument “sees” the entire transmitted spectral

range but only 1/Np of the instrumental throughput (Equation 2.32). In CGS
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FIGURE 2.23: Two views of a simplified optical design for HFTS with a cylin-

drical fringe-collapsing lens. In (a) the fringes are perpendicular to the paper,
in (b} they are parallel with the paper. F is the fringe field, a virtual object
within the interferometer, L is the fringe imaging lens, A is the field limiting

aperture, C s the cylindrical lens, and D is the detector array.

instruments, on the other hand, each detector benefits from the entire instru-
mental throughput (Equation 2.20), but sees only 1/Np of the spectral range.
To compare detector outputs, an assumption about the spectral distribution is
therefore necessary: when the spectrum is quasi-continous so that all spectral
channels are more or less equally filled, the two throughput expressions may
be compared directly. Figure 2.24 plots throughput a,ga,ien,?t resolving power
for this situation assuming an HHS system using an a.1ﬁra3?’.[?)12 detectors with
Az = 25pum and a serror height of yr = 12 mm, and a CGS system as
described in the example /n Section 2.3.5. The HHS instrument is seen

to have a comfortable throughput advantage over its CGS counterpart, partic-
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FIGURE 2.24: Comparison between optical throughput of the heterodyned
holographic FTS (HHS) and the classical grating spectrometer (CGS) discussed
in the text. The broken line for GCS at high resolving powers estimate the

effects of grating size limitation and slit height restriction.

ularly at low resolving powers, representing a factor of 200 at R = 1000 and

of 2000 at R =100. [See p- 515‘-]

2.4.7 Instrument transmission factor

Instrument transmission factor for HHS instruments is limited by the diffrac-
tion efficiency of the grating as in the CGS case. In addition comes a serious
loss due to the beam splitter: half of the light entering the interferometer is
reflected back out through the input port. Some interferometer constructions
allow this light to be recuperated, but this adds a complexity to the design
which has not been found worthwhile for our instrument. There are also losses
due to spurious reflections at the outer surfaces of transmissive components,
and if the beam splitter is metallic then there is also a loss due to absorption.
Estimating the total transmission factor to Tp = 0.2, gives a throughput-

transmission product of

. 101
aT, = %ﬁm [m? s1]

6.3x103
= 3—;;9— [cm? deg?]. (2.33)

For resolving powers of 350 and 2500 as used in our Radiation Budget ex-
amples, the proposed HHS design offers throughput-transmission figures of 18

cm? deg?® and 2.5 cm? deg? respectively.
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To compare the two instruments when the spectrum is not quasi-continous,
we may consider the signal collected per detector element. In HHS, the mea-
sured interferogram fluctuates around a certain level Iy which for resolved
spectra equals the average interferogram signal (see Figure 3.12). Since I is
proportional to the total spectral signal transmitted by the instrument (3} B,

say), the average detector signal is:
o= I, % S B=Gy5, (2.322)

where (G is instrumental throughput (equal to G in Equation 2.32), Np is the
number of detector elements, and B = 3~ B/Np is the average spectral value
in the measured (discrete) spectrum.

In CGS, the detector signal is proportional to the local spectral value B:
Iz « G B, (2.32b)

where (¢ is the instrumental throughput given by Equation 2.20.
Ratioing Equations 2.32a and 2.32b and substituting from Equations 2.20
and 2.32 gives:
Iy Gy B 2 YF
HoZHZ g D2 2.32
I GeB L L, RB (2-32¢)

The two first factors are system-related: in a grating instrument signal is
improved by reducing focal ratio (F) of the camera lens or by increasing slit
height (i.e. detector length, Ip). In an HHS instrument signal is improved by
increasing mirror height, yr.

The third factor shows the effects of detector array size and resolving power.
Note that although Np, enters the expression because of its connection with the
mirror area, it may here be taken to represent the maximum wunheterodyned
resolving power (Equation 2.24). The ratio Np/R may therefore be seen as a
“heterodyning factor”.

The ratio /B = f is often referred to as the “spectral fill factor” and
will be encountered later in noise calculations (Section 3.4.4). Quasi-contious
spectra have B ~ B, hence f = 1.

When F = 3, yr = 12 mm, Ip = 2.5 mm, and Np = 512, we find Iy /I =
1.8x10°f/R. For a spectrum with unit fill factor measured at a resolving

power of 100 the ratio is about 2000 as estimated from Figure 2.24.
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2.5 Conclusion

Table 2.3 summarizes the results of this concept study showing both instrumen-

tal requirements for some specific measuring tasks, and expected performances

TABLE 2.3: Summary of the radiation budget calculations showing required
and estimated instrument performances as calculated in the text. (a) repre-
sents the vegetation reflectance example and (b) represents the atmospheric
transmittance example. ¢ is signal current, ip is dark current, and 7z is an

estimate of the exposure time.

Required Classical grating: Holographic FTS:
GTp product | GTy = 0.090 em? deg? | GTp = 18 cmn? deg?®
Numination (cm? deg?) i/ip TE 1o /ip TE
Direct sunlight 2.2x10~* 410 1 sec 8.2x104 5 ms
Overcast day 0.022 4.1 2 min 820 0.5 sec
Very dark day 22 0.41 - 82 5 sec
Twilight 2.2 0.041 - 8.2 1 min
(a)
Required Classical grating: Holographic FTS:
GTp product | GTp = 0.090 cm? deg? | GTh = 2.5 cm? deg?
lllumination | (em? deg?) i/ip TE ilip TE
Sun 8.2x10% | 1.1x107 40 ps 3.8x10% 1 s
Moon 3.9x10-8 23 20 sec 640 0.7 sec
Blue sky 10 0.9 9 min 25 20 sec
(b)

of two different instruments, one based on classical grating spectroscopy (CGS)
and the other on heterodyned holographic Fourier transform spectroscopy
(HHS). A performance criterion has been obtained by requiring that the de-
tector signal current should be greater than detector dark current. Although
not very rigorous, this is a practical and operationally sound criterion.

As seen from the table, both instruments may be used with well lit targets.
Using the blue sky as background for atmospheric transmission measurements
pushes the CGS instrument to its limit, however, and when it comes to mea-

suring vegetation reflectance under poor daylight conditions, this instrument



cannot cope unless some means of reducing its dark current (i.e. cooling) is
employed.

The less conventional HHS design with a throughput-transmission figure
almost 30 times superior to the CGS for the high resolution example, is seen
to tackle the sky lit transmission measurement with a good margin. It also
promises successful operation for reflectance measurements on a ‘very dark
day’ as well as during twilight. Aided by natural cooling assuming an ambient
temperature of 0°C which reduces the dark current by an order of magnitude
it may even be expected to perform to specifications under ‘deep twilight’
condition, e.g. during polar winter.

Convinced by these possibilities and intrigued by the novelty of HHS in
remote sensing, we have decided to build a spectrometer based on that princi-
ple. In the following chapters theory and design of the instrument is presented,

culminating in a demonstration of its capabilities.
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Chapter 3

Theory of holographic FTS

After a brief review of the literature concerning holographic and heterodyned
holographic FTS, the theory for these types of instruments is presented. Basic
theory is given in terms of electromagnetic interference and geometrical con-
struction, and the Fourier transformation is introduced to explain and analyze
the interference of white light. The effects of finite and sampled measurements
are discussed in terms of Fourier theory.

In FTS instruments spectral information is measured in the form of an
interferogram as seen in Figure 2.20. Ideally this interferogi‘am is symmetri-
cal, but in most practical cases it is asymmetrical due to the phenomenon of
spectral phase. Correction for this effect is an important part of the signal
processing of FTS data. After a presentation of the main sources of phase
encountered in our mstrument, we present their effects on spectral estimates
and explain how to minimize them. The possibility of ‘single-sided’ interfero-
grams 1s also discussed; such measurements offer potentially twice the spectral
resolution of normal ‘double sided’ interferograms with the same number of
samples. Such a prospect is obviously interesting for our system where the
number of samples is restricted. We summarize the requirements to see under
which conditions gains are to be made from this kind of operation.

The final subject to be treated is that of noise and other measurement
related deficiencies. Some important sources of noise are presented together
with a discussion of how to optimize the instrument’s performance. Since
the spectrum is obtained as a result of a mathematical transformation, the

relationship between measured and spectral noise is not straight forward. We
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show how the spectral estimate is affected by “white” intensity noise. Another
important deficiency of the interferograms measured with our instrument is
caused by aberrations in the interferometer. We show that this effect is similar
to an error in the sampling grid and discuss the possibilities for correction by

resampling of the interferogram.

3.1 Literature review

Holographic Fourier transform spectroscopy (HFTS) was first demonstrated
in 1965 by G. W. Stroke and A. T. Funkhauser [47]. Inspired by the recent
advances in holography they proposed the recording of a white light Fourier
transform hologram on photographic film which, when illuminated by laser
light, would yield a diffraction pattern proportional-to the spectrum of the
light source. One of the main advantages of the method over classical FTS
at the time was that no computation was needed: the method was totally
analogue.

With the revolutionary developmeﬁts in computers and software algorithms
the ‘computational’ advantage of HFTS was soon lost, leaving it with time
consuming wet processing and cumbersome Fourier optical methods of spectral
interrogation. The technique was to be revifalized by another technological
advance however. With the advent of high quality solid state diode arrays the
photographic plate could be avoided, opening up the possibility for real-time
operation and compact and rugged instrument designs [54,55,58,59].

A major disadvantage of HFTS is its limited number of interferogram
samples—a disadvantage that was further aggravated when diode arrays re-
placed high resolution photographic plates. As was demonstrated by T. Dohi
-and T. Suzuki in 1971 however, it is possible to heterodyne the interferogram
by replacing one (or both) of the mirrors in the Michelson interferometer by
a grating [50]. Other heterodyning schemes have since been published {51,57],
but the original method is the one offering the greatest flexibility in choice of
resolving power.

The first demonstration of HFTS was made using a Michelson interferom-

eter, but other two-beam interferometers have since been used [48,49,53,63].
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Of particular interest from a portability point of view is the polarization in-
terferometer [53,60], offering very compact and rugged sensor designs. No
heterodyning is available by this method however, so the resolving power is
limited. For the present application where relatively high resolving powers
(~ 5000) are wanted, we have chosen a standard Michelson interferometer

heterodyned by a grating.

3.2 Basic theory

We start off this discussion with a presentation of the theory of interference,
showing how the combined intensity of two coherent beams depends upon
their relative phase. By geometric construction we then calculate the spatial
variation in phase difference produced in holographic FTS and hence the inten-
sity variation in the interference pattern produced. Resorting to the Fourier
transform, we show how spectral information may be extracted from such in-
terferograms, and by elaborating the Fourier theory we predict the shape of the
spectral instrument function due to finite measurements. Finally, the effects

of sampling are considered mathematically.

3.2.1 Interference

Fourier transform spectrometers use a two-beam interferometer—usually the
Michelson or a variation of it—to superpose two mutually coherent light beams.
It follows from electro-magnetic theory that such superposition creates inter-
ference: as the phase between the beams varies, their combined intensity goes
through maxima which exceed the sum of their individual intensities and min-
ima which may reach zero [6, page 256].

The process of interference may be shown in general by considering an

oscillating signal described by:
A = acos(wt + §), (3.1)

where a is its amplitude, w its angular frequency of oscillation, § its phase,

and where ¢ represents time. The power carried by this wave (corresponding
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to the intensity of a light wave) is found by time averaging the square of the

signal:
0.2

I =<A’>=24d? <cosz(wt+6)>:—2—. (3.2)

When two signals of equal frequencies but different phase and amplitude are

brought together, the resulting signal is A; + A,, giving intensity:

I = <(A1+A2)2>

= L+L+J . (3.3)

where I, and I, are the intensities of the two waves separately and J 1s the

cross term given by:

J = 2 <ajazcos{wt + 6;) cos(wt + §2) >
= aqazcos(b; — 63),

= 2411 cos Aé, | (3.4)

where Ad = & — §; is the phase difference between the two signals. The
intensity therefore varies sinusoidally with the phase difference, a variation
which is often referred to as an interference or fringe pattern.

In the special case when I} = I3, the total intensity reduces to:
I = Ig(1 + cos Aé), - (3.5)

where Iy = I, + I, is equal to the incident intensity if the interferometer is loss-
less. The fringe pattern then varies between zero and twice Iy, representing

optimal or 100% contrast. If instead I, = ¢ I, the interference pattern is given

by:

I = Il+.[2+2.[1\/c— cos Ad

= I(1+ ff cos Ad)

c

= Ip(1 + kcos Ad), (3.6)

where k is the fringe contrast, see Figure 3.1. Contrast is an important instru-

ment characteristic which also depends upon instrumental properties other
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FiGuRE 3.1: The contrast k of a sinusoidal intensity signal describes its depth
of modulation: a fully modulated signal (£ = 1) reaches zero at its minima. It
is defined as the ratio between the sinusoidal amplitude, AT = (Ipax — IMin)/2,

and the mean signal, Iy, hence: k = AI/Iy = (IMax — Imin)/(IMax + IMin)-

than the interferometer balance alone as will be seen in Section 4.2.1.
Electro-magnetic theory models light as a transverse oscillation with two
orthogonal modes or pelarizations which do not interfere with each other. They
may therefore be treated separately and the total intensity is given by their sum
[6, page 259]. Polarization effects encountered in our instrument are discussed

in the next chapter.

3.2.2 Fringe formation

Analogy with two classical experiments is found useful in describing the forma-
tion of fringes in holographic FTS: Young’s double slit experiment provides a
good qualitative explanation, and the Newton’s rings experiment gives a basis

for quantitative considerations.

Young’s double slit. Consider, as in Figure 3.2(a), the Michelson inter-
ferometer illuminated by a point source. An observer looking into the instru-
ment sees two coherent images of the source, slightly displaced from each other
since one of the mirrors is tilted. The setup is therefore equivalent to that of
Young’s double sht experiment, and fringes are formed on the observers retina
with fringe frequency proportional to the optical frequency of the light and the
separation between the source images.

When the tilted mirror is replaced with a grating (Figure 3.2(b)), one of the
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Ficure 3.2: Qualitative understanding of .the fringe formation in a Michelson
interferometer with one of its mirrors (M5) tilted may be obtained by compari-
son with the Young’s double slit experiment (a). The analogy is also helpful to
understand the effect of replacing the tilted mirror by a grating () as shown in
(b). M; = fixed mirror, M> = tilted, adjustable mirror, G == tilted, adjustable
grating, B?S = beam splitter, § = source, S’ = image of 5 in My, and §” =

image of S in M» or G.

source images takes on the éhape of a spectrum. This means that each spectral
component of the light from the source is represented by a separate image,
and each image has a different separation from the reference image reflected
from the mirror. While the fringe frequencies are still proportional to optical
frequency and 1mage separation, the relationship is now more complicated since
the separation has itself become dependent npon optical frequency. As will be
seen shortly, the spatial frequency of a fringe pattern is now proportional to
the difference between its optical frequency and the Littrow {requency of the

grating.

Newton’s rings. If our observer instead of focussing on the source focuses
inside the interferometer, he will notice that the two mirrors (or the mirror and

the grating in the heterodyned situation) are effectively superimposed so as to
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form a wedge-shaped air gap. A similar effect is seen when two irregular glass
plates are brought close together, such as the cover plates of a photographic
transparency. The colourful pattern often observed during slide shows known
as ‘Newton’s rings’ 1s exactly analogous to the interference pattern upon which
our instrument is based.

Like Newton’s rings, the fringes formed in our interferometer are localized
near the air gap, so in order to measure them, they must be imaged onto a light
sensitive surface such as a diode array. Characteristics of the fringe pattern
are predicted by considering the two interfering wave fronts at the detector
surface where an image of the wedge is formed as illustrated in Figure 3.3.

The phase difference Aé between the wave fronts is given by the wedge angle

NY

Ficure 3.3: The wave fronts £, and L, returning from the interferometer
form a wedge when superimposed. The wedge is shown here imaged onto the
detector (represented by the z-axis). The dotted line joining the two wave

fronts traces out the extra optical path travelled by Xo compared with £,.

Ab =270z |sin a|, (3.7)
where z i1s distance along the mirrors and the wavenumber o = 1/ is propor-
tional to the optical frequency of the light. Substituted into Equation 3.6, this
gives:

I = Ll +kcos(2roz|sin )

= Io{1 + kcos2rvz), (3.8)
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where
v = o lsin ¢| (3.9)
is the spatial frequency of the fringe pattern, referred to as the fringe frequency.

By the sampling theorem we require v < v, /2, where v, = 1/Az is the spa-
tial frequency of the sampling grid and Az is the separation between samples.
Therefore, |sina| < v,/(20) = 0.01 at a wavelength of 0.5 yum with 25 ym
sample separation, and at such small angles the approximation sina = o is
good to about 2x1077. We will hence adopt a simplified expression for fringe
frequency:

v = olal. (3.10)
We also adopt the approximations cos« =~ 1 and tan o & a.

The dimensions of v is m™!, but since we tend to measure z in terms of a
number of photodiode elements along the detector array, denoted by the unit
“Elements”, v is conveniently measured in the reciprocal unit “Elements™!”,
denoting “cycles per photodiode element” (see Section 1.3). Note that in this
unit the sampling frequency becomes v, = 1.0 Elements™! and so, by the

sampling theorem, the maximum allowable fringe frequency is 0.5 Elements™!.

3.2.3 Expressions for fringe frequency

In the unheterodyned case the angle o between the interfering wave fronts
equals twice the tilt angle of the mirror according to the law of reflection. In
the heterodyned situation, o is found by the law of diffraction, described in

Figure 2.15. For the present setup it may be written on the form:
d[sin @ + sin(# — a)] = mA, (3.11)
where 0 is the angle between the grating normal and the incoming light and

¢ — «a is the diffraction angle. Manipulating this equation by well known

trigonometric relations and using the above stated approximations, we find:

m

a=2tanf — (3.12)

odcosf’

Noting that 1/d is the spatial frequency of the grating rulings, we may
define the effective grating frequency as:

vg = m/(dcos8). (3.13)
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We define furthermore the unheterodyned fringe frequency as:
vo = 20 tané, (3.14)

‘which for small tilt angles becomes equal to the fringe frequency that would be
observed were the grating to be replaced by a mirror. Using these definitions
in Equation 3.12 and combining it with Equation 3.10 we obtain a general

expression for the fringe frequency:
v = |y —vgl (3.15)

This expression is valid both with and without heterodyning since in the un-
heterodyned case v = 0. For the heterodyned case, it demonstrates the
frequency translating or heterodyning property of the grating.

A relationship between fringe frequency and wavenumber for the hetero-
dyned instrument is obtained by studying the special case when o = 0. This
is known as the Littrow condition and occurs at a certain wavenumber o, the
Littrow wavenumber. This condition occurs when the light of wavenumber oy,
is “retro-diffracted” and returned exactly along its incoming path, with no de-
viation. At this wavenumber v = 0 by Equation 3.10 and so, by Equation 3.15,

Vg = vg. Hence, by Equation 3.14:

Vo = ve —. (3.16)
agr, )

Substituted into Equation 3.15 this allows the heterodyned fringe frequency
to be expressed as:

v =y ——. (3.17)

The frequency of a heterodyned fringe pattern is thus proportional to the
difference between the wavenumber of the light and the Littrow wavenumber

of the grating.

3.2.4 Filtering prescriptions

As pointed out in Section 2.4.3, heterodyned holographic FTS has an ambigu-
ity problem since optical frequencies above and below the Littrow frequency

produce identical fringe frequencies. This is manifested by the absolute value
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in Equation 3.17. A second ambiguity problem arises due to aliasing: spa-
tial frequencies higher than half the sampling frequency appear as frequencies
lower than half the sampling frequency. To avoid ambiguous spectra,. these
problems must be met with an optical filter inserted into the light path with

transmission Tr such that Tp = 0 outside the range of either
oL < o < op[l + v f(2vg)]

or

O'L[l — I/s/(QI/G)] <o <o,

The two options signify the possibility of measuring the spectrum either above
or below the Littrow wavenumber. Note that for unheterodyned instruments,
only the aliasing ambiguity exists, requiring therefore only that T = 0 when

v > 0.5 Elements™1,

3.2.5 White light: the Fourier integral

The ‘magic’ of Fourier transform spectroscopy appears when light of more than
a single frequency is analyzed. The interferogram is then no longer described
by the simple sinusoid of Equation 3.8, but as a sum of sinusoids of different
{requencies, each representing a spectral component of the incident light. At
the centre of the interferogram where z = 0, all the sinusoids are ideally in
phase and add up to give a high contrast fringe. As one moves towards the
edges, the sinusoids become increasingly out of phase resulting in a reduction
in visibility or contrast of the fringes: for a wide-band source the contrast is
lost sooner than for a narrow-band source.

Mathematically, the summation may be represented by an integral, thus for
properly filtered (according to the filtering prescriptions given above) broad-

band light the interferogram becomes:

vef2
Iz} = /o Su(¥)[1 + k(v) cos 27vz] dv,
= fm S,Tr(1 + kcos 2nvz) dv
0

= IO-F/ S Trk cos2rva du, (3.18)
0
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where 5,{v) is the spectral intensity of each sinusoid, Tr(v) represents the
transmittance of an appropriate filter and Iy = f;° S.Tr dv is the total in-
tensity collected. The remaining integral may now be recognized as a reverse

Fourier cosine integral* denoted by F! {}:
Iz)=Io+ F L {S,Trk} . (3.19)

Although the ideal case is well described by the cosine transformation, it
will be seen in Section 3.3 that in order to account for certain instrumental
effects, it is necessary to use the complex Fourier transformation. Denoted
by F{} and F~'{} respectively, the forward and reverse complex Fourier

transforms are written as:

F{f(2)} = f_ °:O f(e)e 2" dz = F(v) (3.20)
and
FUFW)) = /_ Z F(u)et 2 dy = £(2), (3.21)

where F is the Fourier transform of f and ¢ = /=1 is the imaginary unit. The
complex transformation becomes equivalent to the cosine transformation if and
only if both f and F are real and even (i.e. symmetrical about the ordirate
axis).

The complex transformation uses both positive and negative frequencies.
We therefore define a real and even spectral intensity B, such that:

S.(v)Tr(v)k(v)
2 (3.22)

B,(v) =
B.(—-v) = B,(v)
Since filter and instrument characteristics are lumped together with the source

spectrum, B, represents the “coloured” spectrum as seen by the detectors. The

interferogram may now be written on the form:

I(z) = I + F* {B,(v)}, (3.23)

*It is of course equally well recognized as the forward cosine transform which is exactly

equivalent to the reverse transformation. We prefer the reverse notation because it reflects
the usual relationship between a measured signal—here the interferogram-—and its Fourier

spectrum—here equal to the optical spectrum.
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which is equivalent to:
Bu(v) = F{I(s) - I} = F{Z(@)}, (3.24)

where Z(x) is the ‘active’ interferogram. Iy is a constant factor and carries no
useful information; we will therefore tend to ignore it and refer to Z(z) as ‘the

interferogram’.

3.2.6 Finite instrument function and apodization

Although the theoretical interferogram is infinitely long, the practically mea-
surable interferogram has a finite length. Mathematically, this truncation may
be represented by the multiplication with a rectangle or ‘top hat’ function,
II(x/L), a rectangular window function of length L centered at the origin as

llustrated in Figure 3.4(a):

I for —L/2 <z < Lf2
M(e/L) & orobp<zslf

0 otherwise,

Hence themeasured (dctive) interferogram is Z(z)II(z/L).

Modified in this way the interferogram can not yield a true representation
of the optical spectrum. Instead its Fourier transform gives a spectral estimate
equal to the true spectrum convolved with an instrument function, A(v), equal
to the Fourier transform of the truncation function. This follows from the

Fourier convolution theorem:

Flg(@)h(z)} = F{g(2)} * F {h(z)}, (3.25)

where +« denotes convolution. The instrument function is therefore:

A(v) = F{Il{z/L)} = Lsincvl, (3.26)
where the function sincu & sin(nu)/(xu), see Figure 3.4(b). The charac-
teristic feature of this function is its undulating ‘wihgs’ with zero crossings
at v = n/L with |n|] = 1,2,3,--.. This causes interactions between spectral
components whose separation is different from n/L and so certain knowledge

can only be had of components separated by
Av =1/L, (3.27)
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FIGURE 3.4: Normal {a) and apodized (c) truncation functions with spectral
instrument functions, (b) and {c) respectively. (b) is the sinc function. The
unit in the spectral domain equals the separation between independent spectral

samples, Av = 1/L.

the distance between independent spectral samples.

For visual inspection, FTS spectra tend to be confusing since the wings
of the sinc function may appear like weak spectral features. To remedy this,
interferograms are often apodized before transformation. This involves using
a modified truncation function which smoothly tapers off the interferogram
towards the edges. Note that the apodized instrument function is always
broader than the unapodized one and that its zero crossings are in general
no longer regularly spaced. The orthogonal properties of FTS spectra are
therefore to a greater or lesser extent lost by apodization [44].

One much used apodization function is the Hann window, also called the
“cosine bell”, which is simply a cycle of the cosine function raised to the axis,
see Figure 3.4(c). Apart from its simple functional form and high degree of
“smoothness” (discontinuities occur first in the second derivative), the inter-
est of this apodization function lies in the good orthogonal properties of the

resulting instrument function.
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3.2.7 Resolving power

Spectroscopic instruments are often specified in terms of their resolving power:

A o

def A _ 9
R = AN Ag’

(3.28)

where AX or Ao usually designates the spectral distance between two ‘just
resolved’ spectral features [6, page 333] but for FTS instruments commonly
is taken to represent the distance between independent spectral samples. For
HFTS instruments this distance is given in terms of spatial frequencies by
Equation 3.27. Differentiating Equation 3.15 gives a relationship between small

increments in ¥ and o, viz:

_@_ dI/o

4]
= — =92 = — 2
o= do tan ¢ p (3.29)

and hence Equation 3.28 may be written as:

R = % _— (3.30)

In the unheterodyned mode where v = vy, R varies through the spectrum
with its maximum value at the maximum fringe frequency, M., = v,/2 =

1/(2Az):

VSL N D
RMax = o T 5o (3.31)
where Np is the number of detector elements in the array of length L.
In the heterodyned case, by Equation 3.15:
R={(vgtv)L mvgl (3.32)

when the effective grating frequency is much greater than the sampling fre-
quency. By the definition of the effective grating frequency (Equation 3.13),
letting N denote number of grating rulings:

L

vel = dcos8

L =mNg. (3.33)

Note that this expression equals the resolving power Rg of the grating when

used in a classical rating spectrometer [3, page 127].
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3.2.8 Sampling and discreteness

Since the interferogram is in our system measured by means of a detector
array, its value is only known at discrete points corresponding to each of the
detectors in the array. This discreteness is usually referred to as sampling,
and is represented mathematically by multiplication with a comb function,
i.e. a regular series of infinitely sharp spikes or delta functions. This is not
the whole story, however. Each detector element has a certain width over
which the interferogram is averaged as illustrated in Figure 3.5. Clearly, this

has the effect of low-pass filtering the interferogram, reducing the strength of

Signal

Detectors

Sampled
signal

Ficure 3.5: Sampling of a the continuous signal shown at the top of the
figure by an array of detectors yields a signal which is discrete (one ‘sample’
per detector), but also low-pass filtered since each detector averages a certain

length of the signal.

high-frequency components.

The effect of finite detector width will be discussed further in the next
chapter, but for now we will ignore it and simply represent the sampling by a
multiplication with a comb function, defined as:

IM(u) % }Of §(u ~ n), (3.34)

n=—co
where 1 is a whole number and é{u) is the Dirac delta function, a spike located
at the origin with infinitesimal width and infinite height so that [°2_ §(x) du =

1. Ignoring the finite length of the measurement, the sampling may be ex-
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pressed as:
oo

> &z —nAz) Z 6 (-—-— - 'n) (3.35)

n=—co ﬂ"‘—OO

sincet §(az) = &(z)/a. Seeing that the reciprocal of the sample separation
equals the sampling frequency (1/Az = v,) and using the definition of the

comb function (Equation 3.34), Equation 3.35 may be rewritten as:
ve 3 b(zv, —n) = y,l(zv,). (3.36)

Fourier transforming a comb with unit spike separation gives another comb
with unit spike separation: F {IlI(z)} = II(»). Applying the Fourier similar-

ity theorem therefore gives:

F v zv,)} = I(v/v,), (3.37)

a comb with spike separation equal to the sampling frequency. By the Fourier
convolution theorem, the spectral estimate found from an interferogram sam-
pled (i.e. multiplied) with Equation 3.36 equals the actual spectrum convolved
with the comb of Equation 3.37. The spectral estimate is therefore infinitely

repeated along the frequency axis as shown in Figure 3.6.

N AN AN

—vg/2 vel2 3vs/2

FIGURE 3.6: Sampling of the interferogram causes the spectrum to be infinitely
repeated along the frequency axis. If insufficient optical filtering is employed
this may cause a problem of “leakage” of spectral information into neighbouring
copies or aliases. The leaked information adds mto a different part of the

spectrum producing the effect known as aliasing.

Sampling in the interferogram domain is seen to limit the extent of the
spectrum. By inverting this argument we may expect a limitation of the in-
terferogram length to correspond to a sampled spectrum. Since the Fourier

transformation is defined only for infinitely extended signals (see Equation 3.20

1f &(ax)dz = [ 6(u)dufa by the ::hange of variables v = az. Using x instead of u on the

right hand side and removing the integral signs on both sides give the required relationship.
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and Equation’ 3.21), its computational implementations of the transformation
(such as the fast Fourier transform, FFT), which pretend to transform finite
length signals, assume in fact that the signal is repeated ad infinitum. The
finite interferogram is therefore convolved with a comb of period L which,
when applying the convolution theorem, is equivalent to a multiplication of
the spectral estimate with a comb of period 1/L. Note that this gives a spec-
tral sample separation equal to the distance between the zero crossings in the

sinc function, hence each sample represents an independent spectral point.

3.3 Phase correction

In the ideal instrument the optical path difference (OPD) is the same for
all wavelengths. Generally this is not true in real instruments, mainly due
to frequency dependent refractive index variations (dispersion) of optical ma-
terials used in the interferometer. When the OPD varies from one spectral
component to another, their sinusoidal interference patterns no longer have a
common origin and so the total interferogram is no longer symmetric. Hence
the Fourier transform is no longer real but is accompanied by a phase. Ob-
taining an acceptable, real spectral estimate from this complex function is one
of the most important tasks of FTS signal processing procedures known as
‘phase correction’.

Variation in OPD due to dispersion is one of several sources of spectral
phase. We start off this discussion with a presentation of the main phase mech-
anisms encountered in our instrument. We then present the general theory of
phase correction and estimate limitations in view of the present application.
We also present the concept of the ‘single sided’ measurement and consider

the extent to which it may be applicable with our instrument.

3.3.1 Dispersive phase

When hght 1s transmitted through optically dense media, i.e. media with re-
fractive index greater than one, the ‘optical path length’ ({) is no longer equal
to the physical path length (s) travelled by the light. If the material traversed

has a constant refractive index (n} throughout the material, then I = ns. Since
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optical materials in general are dispersive, n, and hence {, are wavelength-

dependent.

Figure 3.7(a) shows a simple Michelson interferometer based on a beam

Beam splitter

substrate

Beam splitter

substrate

AN

Compensator
piate

\

Mirrors

N

() ®)

FiGUuRE 3.7: Uncompensated {a) and compensated (b) Michelson interferometers.

\

Mirrors —>

splitter supported by a substrate. The incoming light is divided in two and
recombined after reflection off the mirrors in each arm. Since one of the recom-
bined beams has passed twice through the beam splitter substrate its optical
path length is different from that traversed by the other beam. By adjusting
the mirrors, the OPD may be reduced to zero at one wavelength, but because
of the dispersion in the substrate, other wavelengths will still have a finite
OPD.

Theoretically, the effects of dispersion may be removed by ensuring that
the two interferometer arms contain exactly equal amounts of dense materials
as shown in Figure 3.7(b). The interferometer is then said to be compensated.
In practice, we can only achieve a certain degree of compensation depending
upon the accuracy with which the substrate and its compensator are matched.
As will be described in the following chapter we have not achieved complete
compensation in our instrument. This has resulted in a curved phase function
which, as is shown later in the present section, tightens the tolerances for phase

correction.
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3.3.2 Misalignment phase

Another source of phase is the misalignment of interferogram and sampling
grid. The mathematical Fourier transformation process assumes an origin
which ideally should coincide with the point of zero OPD in the interferogram.
When digital transformation is used, the origin must necessarily be chosen at
one of the sampling points however, and a difference in the position of zero
OPD and the closest point in the sampling grid shows up as spectral phase. If
the difference is 6« then the phase is ¢ = 27v 8z; grid misalignment is therefore

characterized by a phase function which is linear in frequency.

3.3.3 Grating phase

Heterodyned holographic FTS has a particular phase phenomenon associated
with it due to the position of the grating rulings with respect to the interfer-
ogram. This may be understood by considering the grating as an absorbing
surface with narrow reflecting lines as apertures. According to Huygens’ prin-
ciple, wavefronts emerging from this surface may be constructed by the sum-
mation of spherical wavelets emerging from the apertures. Figure 3.8(a) shows
this construction for three different optical frequencies: clearly, the wavefronts
intersect only at the apertures of the grating. The propagating wave train is
therefore characterized by localized ‘hubs’ separated by the grating constant as
seen in Figure 3.8(b). When brought to interfere with the reference wavefront,
the positions of zero OPD coincide for all frequency components only when
the reference wavefront coincides with a hub in the diffracted wave train.
Considering one of the frequency components, the figure denotes two neigh-
bouring wavefront intersection points as P and @, and the two closest hubs by
A and B. The intersection between the reference wavefront and the line joining
the hubs is called O. If the detecting surface coincides with the reference wave-
front, we may chose O to represent the origin of the detected interferogram

and the phase of the fringe pattern with respect to the origin is then:

PO
(}5 = Q?TF@

Since the hubs represent the grating apertures the line joining them is an image
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(a) (b)

FIGURE 3.8: Wavefronts of three different colours {represented by contimious,

broken, and dotted lines) emerging from a grating (G) are constructed by
Huygens’ principle, showing that they all coincide at grating apertures (a). In
(b) wavefronts are lmaged onto the detector array where they interfere with
the reference wavefront {represented by the z-axis). The letters correspond to

an argument in the text.

of the grating. We may therefore consider the grating to have a phase with
respect to O given by:
AO

= orlZ,
da Uy

Now, since triangles AOP and BOQ are similar:

40 _ PO
AB PQ’
and so ¢ = ¢g. The phase due to this effect is therefore equal to the phase
of the grating with respect to the interferogram and so constant across the
spectrum.

In our system this phase phenomenon may be observed as a continuous
change between symmetric and asymmetric interferogram shapes as the inter-
ferometer controls are adjusted. Although it is unique to HHS systems, it is
similar to that found in deliberately aliased classical FTS systems [43]. As will
become apparent in the following, constant phase terms are of no importance

for the quality of phase correction; the effect is therefore not serious.
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3.3.4 “Channelled phase”

An unexpected, sinusoidal variation has also been observed in the phase curve.
This effect, presumably due to interference between spurious reflections at the

outer surfaces of the beam splitter, will be discussed in Section 4.3.

3.3.5 The complex spectrum

Phase is introduced in the Fourier transform whenever there is a mismatch
between the origin of the transformation and the position of zero OPD for the
sinusoidal interferogram components. Denoting this mismatch by éz, we may

rewrite Equation 3.8 on the form:

1,

Il

Io[l + kcos2nv(z + 6z))
= Il + kcos(2rvz + ¢)], (3.38)

where ¢ = 27v éx is the spectral phase of the component of spatial frequency
v. The broad-band interferogram, given by integrating Equation 3.38 over all
spatial frequencies, now no longer represents an even function and its equiva-
lence with the Fourier cosine transform is therefore lost. Use of the complex
transformation is imperative for such interferograms. Letting ¢{v} be an odd
function such that ¢(—v) = —¢(v), the broad-band interferogram may be

written as:
Iz) = Li+ /_Z B, cos(2nvz + ¢) dv
= Jo-+ /_o:o B, el@rvetd) g,
= Ig+ /_Z B, e ™" gy
= I+ F ' {B,e"?} dv, (3.39)
By rearranging and transforming both sides we then find that:
B, = F{I(z) - I} = F{I(z)}. (3.40)

The transiormed interferogram therefore gives a complex function whose
modulus is the spectrum: B, = |F {Z(z)}|. In practice, taking the modulus is

not a good method by which to calculate the spectrum since when the spectrum
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is noisy it causes low spectral values to fluctuate about the RMS level of the
noise rather than about the actual spectral value. A better spectral estimate
may be obtained if the phase is known: a phase corrected spectrum is then
found as the real part of the complex spectrum multiplied with the conjugate

of the phase function:

B, = R[F {Z(z)}e™¥]. (3.41)

The imaginary part of this complex product is zero apart from in cases when
the spectrum is noisy, then it contains half the noise power, i.e. /2 of the
total noise amplitude. This part of the noise is discarded and the noise left
in the spectral estimate is correspondingly reduced. The advantage of phase

correction over taking the modulus is therefore two-fold:
e it gives correct spectral leve] even at low signals, and

o it reduces spectral noise by a factor /2.

3.3.6 Phase estimation

It is tempting to take the argument of the complex spectrum directly as the
phase function. .Although this is indeed an estimate of the phase and the
basis upon which the phase is usually determined, it will not do to use it di-
rectly since Equation 3.41 is then exactly equivalent to the modulus of the
complex spectrum. Instead, a noise-less “fiducial” phase estimate must be
produced. Two procedures are frequently used to extract the fiducial phase:
“hard” apodization, and curve fitting. By the former method, the central part
of the interferogram is isolated by the use of a narrow {hard) apodization func-
tion. Fourier transformed, this gives a low-noise spectrum with a resolution
which is much lower than the original spectrum but high enough to resolve the
phase which is usually a slowly varying function [37]. By the second method,
the interferogram is also apodized although not necessarily as strongly as in
the first method. The resulting high-resolution and noisy phase curve is then
fitted either to a general function or to a specific function which is known to
describe the phase variation well, the latter being preferable since it allows

interpolation into spectral regions where the signal is low,
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As will be seen in the following, the problem of phase correction becomes
somewhat more complicated when the effect of truncation is considered. We
find then that the argument of the transformed interferogram only is an ap-
proximation to the actual spectral phase, and that its error is inversely propor-
tional to the square of the length of interferogram used in the phase estimation.
This fact favours a “soft” rather thaﬁ a hard apodization and hence the second

rather than the first method of phase estimation.

3.3.7 The effect of truncation

The preceding phase considerations are strictly correct only if the interfero-
gram is infinitely long. Truncating the interferogram complicates the situation
because the phase shifted sinusoids no longer ‘fit” within the truncation win-

dow as illustrated in Figure 3.9—it is as if a guitar string is expected to vibrate

gUOVANY
N

Ficure 3.9: Two sinusoidal components of an interferogram without (a) and

with (b) spectral phase, bounded by a rectangular truncation function.

with nodes which do not coincide with its fixed points. Denoting the truncation

function by 7(x), the measured (active) interferogram is:
I(xYT (z), (3.42)

and its transform is the complex function C. By the Fourier convolution

theorem:

C = Ce'®? = B,e® *t, (3.43)
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where t 1s the transform of 7. If T is not restricted to be symmetric about
the origin of the transformation then t is complex and so C is a convolution
between the complex spectrum and a complex instrument function. This is
notably the case for single sided interferograms as will be discussed in Sec-
tion 3.3.9 but a similar situation occurs with double sided interferograms af-
fected by a nonlinear phase function. Qur phase correction procedure must
therefore not only remove the spectral phase, but als;) ensure the spectral es-
timate to be a convolution between the actual spectrum and an ‘acceptable’,
real instrument function. For unapodized spectra the acceptability criterion
requires the instrument function to be a good approximation to a sinc function,
the value of ‘good’ depending on the instrument’s performance criteria.

Writing out in full the convolution integral of Equation 3.43 for a frequency
Vg gives:

Clug) = f Z B, (vg — 1) =)t(u) dv (3.44)

Since the phase is slowly varying it may be written as a Taylor expansion of
the form [38]:

V2¢5”(1/0) _

d(ro—v) = ¢lwo) —vd'(vo)+ 5
= ¢lry) — 2rué, : (3.45)

where 6 represents the variation of the phase. Note that é has the dimen-
sions of distance and that it in the simple case of linear phase signifies the
position error éz of the interferogram on the sampling grid. In the general
case of a slowly varying phase and a narrow instrument function, é is approx-
imately proportional to the local slope of the phase curve: § & ¢'/(2%). The

convolution integral now becomes:

C(ry) = f— B, (vo — v)e'lete)-2mely (1)) qy
— eiqﬁ(w) /DO BU(VO — v)t(y)e—ﬂfrw? dv
= €909 B, (1) x t(v)e~ ]

(B, (1) + A(v)], (3.46)

where:

A(v) = t(v)e ¢ (3.47)



is a complex mstrument function for the real spectrum. Knowing the phase
function therefore allows phase correction as suggested in Equation 3.41, giving

as a real spectral estimate:
Br =R (Ce™) = B, « A, (3.48)

where Ap = R(A). Bp is an acceptable estimate of B, as long as Ag is an
acceptable instrument function.

The imaginary part of the phase corrected spectrum is:

By =S (Ce™) = B, « Ay, (3.49)

e

where A; = I(A). This “imaginary spectrum” becomes important when
¢ is not precisely known, in which case a certain fraction of the imaginary
spectrum is added to the real spectrum. Denoting the error in ¢ by ¢, the

spectral estimate becomes:
BE ‘SR (Ce_i(qH-E))

= B,*(Arcose+ Arsine)

~ Br+ebBr, (3.50)

where the approximation is valid when ¢ is small enough that its cosine ap-
proximates unity and its sine approximates itself. Bg therefore has an error
A B approximately equal to the imaginary spectrum multiplied with the phase
error:

3.3.8 Accuracy of phase estimation

As mentioned earlier, the basis of our phase estimate is the phase of the com-
plex Fourier transform of the interferogram, C. Accepting this phase function,
® = Arg (C), only to be an approximation of the actual phase function ¢, we

may write: ® = ¢ + ¢, where € is the phase error. Hence:
e=®—¢ = Arg (Ce“i‘i’)

& (C e_“-‘ﬁ)'
R (Cem*#)

= tan~!
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B
= tan™? (—B—;-) ,

i.e. approximately proportional to the imaginary spectrum. Since the imagi-
nary spectrum is minimized by using a symmetrical truncation function, such
truncation should therefore allways be used for the phase estimation measure-
ment,

If a source with a slowly varying spectrum (e.g. a blackbody) is used for the
phase estimation measurement then the spectrum may be well described by a
Taylor expansion similar to that of Equation 3.45. The convolution integral of

Equation 3.44 may then be written as:
oo .
C = / Bl(ig — v)e®o=v)i () dy

= B, /“’ e =2 () 4y

—o0 i
- B:,ei‘ﬁ /OO Ve—i(r/¢’—v2¢"/2+---)t(L,) du
-0
B;requ

: / V2e-—i(1/¢"--v2¢"f2+'")t(V) dv

where t(v) is the (real) Fourier transform of the symmetrical truncation func-
tion. If ¢() is sufficiently narrow, then v is small enough within the nonzero
range of ¢(1) that orders in v higher than the second may be ignored. With this
approximation the expression may be written as a sum of a series of integrals
many of which disappear because their integrands are odd—remembering that

t(v) is even. Inserting what is left into Equation 3.52 it may be written as [45]:

(B 8 [ ) dy
€= (':B— Q5 =+ —2') m (353)

The first term of this expression shows how the phase error depends upon
the shape of the phase curve. In parts of the spectrum where spectral intensity
changes rapidly—typically at optical filter edges—the spectral derivative is
considerable and so the first derivative of the phase dominates the error. Where
the spectral value is essentially constant, it is the second phase derivative which
has the greatest effect.

The second term may be recognized as the normalized second moment
(variance) of the instrument function. For phase estimation a quickly dimin-

ishing instrument function is therefore important; this is achieved by the use
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of a smooth apodization function. Note also that by the change of variable
u = v/a, where a is the full-with at half maximum (FWHM) of the instrument

function, the integrals may may be written as:

) ffooo VQt(V) dv _ ag ffooo U2tN(U) du
S twydy [ tn(u)du ’

where fy is a ‘normalized width’ version of #: ¢5(u) = ¢(v). The variance is

(3.54)

therefore proportional to the square width of the instrument function.
To estimate the variance consider the particularly smooth apodization pro-

vided by a Gaussian function, see Figure 3.10. Since the Fourier transform of

F(x) tv),

-

1.0

05

-
'

-1 /2 0 L2 X -ar2 0 a2 v

FiGURE 3.10: The Fourier transform of a Gauss function is itself a Gaussian
function. If 94% of the area under the curve in the spatial domain is contained
within a length L as shown, then the reciprocal of L/2 equals the FWHM, a,

of the curve in the frequency domain: a = 2/L.

a Gaussian is another Gaussian, this is also the functional shape of the instru-

ment function:?

T(z)=e™ & t(v) =",

so that the FWHM of ¢t{v}is a = QW. It is useful to note that 7(1/a) =
0.028 and that the interval —1/a < & < 1/a therefore contains almost all (94%)
of the area under 7. Letting L = 2/a represent the length of interferogram
used in the phase estimation and performing the integrals of Equation 3.53,
we find the variance of our Gaussian instrument function to be 1/(2L%In2) ~
0.72/ L%

Calculation of variance for other instrument functions is less straight for-

ward but we will assume that for a smooth apodization function (such as the

}We ignore here for simplicity that the apodizing Gaussian necessarily is truncated caus-

ing the instrument function to be somewhat modified.
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Hann window) the variance is of the order of 1/L?. Hence we estimate the

error of the phase estimate to:
BI ; 1 1
€~ (E & + _.2*) = (3.55)
3.3.9 Single or double sided measurements

An ideal interferogram is, as we have seen, perfectly symmetrical about a
strong central peak. There is therefore a redundancy of information and it is
sufficient for a complete reconstitution of the spectral information to measure
only one of the two sides. Such a measurement is called “single sided” as
opposed to a symmetrical measurement where both sides are included, called
“double sided”. The interest of single sided measurements lie in the prospect
of a more efficient use of a given instrument: for classical FTS instruments it
represents a halving of the scan length required for a given resolving power, in
holographic FTS it represents a potential doubling of the resolving power in a
given instrumental configuration.

When the interferogram is not symmetrical, the idea of single sided mea-
surements is no longer evident. It is still possible but, as will be shown in
the following, it requires much improved accuracy of the phase estimate for
proper phase correction. Also, in order to measure the phase, a certain length
of interferogram is needed from the ‘other side’ of the origin. This reduces the

potential gain in resolving power.

Double sided. Double sided interferogram measurements use a symmetri-
cal truncation function which—in the unapodized case--is a top hat function
centered at the origin. Its Fourier transform is the real and symmetrical sinc

function, see Figure 3.4(b):
t = F{Tsym} = sinc Lv. (3.56)

Due to spectral phase, the instrument function given by Equation 3.47 is still
complex however:

A = e ginc L. (3.57)
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Taking real and imaginary parts and using well known trigonometric relations

gives the following real and imaginary instrument functions respectively:

_sin(wLv — 2név) + sin(w Lv + 27év)

Ar 2 Lv

(3.58)

and

cos(rLv + 27év) — cos(n Ly — 2mév)
2w Ly '

When é is small compared with L, these relationships may to good approxi-

Ar=

(3.59)

mations be written as:

AR ~ sinc Lv (3.60)
and
A = % cosc Lv, (3.61)

defl . . . . .
where coscz % (1 — cosma)/(rz) is the antisymmetric function shown in

Figure 3.11.

FIGURE 3.11: The cosc funetion, coscu = (1 - cos 7u)/(mu), plotted as a solid

line compared with the sinc function (dotted).

As long as both ¢ and é are small, the error AB in the spectral estimate of

a double sided interferogram may now be calculated by Equation 3.51:

AB =~ g%é (B, * cosc Lv). (3.62)

Since the cosc function is asymmetric, its effect is to asymmetrize and shift
sharp spectral features. For it to be negligible, A B should be smaller than the
spectral noise, hence requiring:

2 1

L ™ SNR,

(3.63)
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where SNR,, is the spectral signal to noise ratio. Hence the phase error toler-

ance 1s:

e< L
~ 25SNR,

Combining this phase error tolerance with the estimated phase error of

(3.64)

Equation 3.55, using the approximation that é ~ ¢'/(2r) gives:

B N1 Lrn
(54+5) 55 v (3:69
which may be expressed as a requirement for interferogram length:
’ " 1/3
L> [SNR,q&’ (% &+ 92_) ;1;] (3.66)

As shown in Figure 4.9 the instrument suffers from a parabolic phase func-
tion due to poor dispersion compensation. For an unheterodyned spectrum
well centered in the instrument’s spectral range the phase has a curvature of
¢" = 200 rad Elements®. If we assume that the spectrum used for phase es-
timation has a relatively flat central portion where B’/B = 0 within which
¢' < 10 rad Elements then, for an SNR, & 1000, the phase estimation inter-
ferograin must at least be of length L 2 68 Elements. Clearly, with a detector

array of length 512 Elements this requirement is easily met.

Single sided. For single sided interferograms, the truncation function is no
longer symmetric but shifted so as to start at or near the origin. Its transform

is found by the Fourier shift theorem, yielding in the unapodized case:
t = F {Togmlz — L)2)} = e 2 sinc L. (3.67)

By the use of well known trigonometric relations this complex function may

be rewritten as:

sintlvcostLly  sin®wlLy
t = —— g
m Ly m Ly

sin 2w Ly . 1 —cos2nLv
9xlv ' 2nLv

= sinc2Lv — icosc2Lv. (3.68)

Its real part is thus a sinc function of half the with of the double sided in-

strument function, and its complex part is the asymmetric cosc function. The
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complex instrument function defined in Equation 3.47 may therefore be ex-

pressed in terms of its real and imaginary parts as:

Ap = sinc2Lvcos2nédy — cosc2Lvsin2wéy
6
~ sinc2Lv + T sinc 28v (1 — cos 2w Lv) (3.69)
and:
A; = —sinc2Lvsin2réy — cosc 2Ly cos2nwéy
é
~ —cosc2Ly ~7 sinc 26y sin 27 Lv (3.70)

respectively, the approximations being valid when § < L/2. Ignoring the
additional terms for the moment, these functions are similar to their double
sided equivalents given by Equation 3.60 and Equation 3.61. Their widths are
halved, however, and the imaginary instrument function is much larger since
it has lost its 26/ factor. While the former effect causes the desired increase
in resolving power, the latter effect causes a greatly increased sensitivity to
errors in the phase estimate. Still ignoring the additional terms, the error in

the spectral estimate given by Equation 3.51 now becomes:
AB = ¢(B, » cosc2Lv). (3.71)

Hence, by the same criterion as for double sided measurements, the single sided

tolerance on ¢ becomes:

€< !
~ SNR,

For an SNR of 1000, the phase must therefore be determined with an accuracy

(3.72)

exceeding 1 milliradian.
Combining this tolerance with the phase error estimate of Equation 3.55
gives the following length tolerance for the double sided section of a single

sided measurement:

B’ uy 1/2
L 2 [SNR, (73— ¢ + —2—)] (3.73)

which, with the same assumptions as in the double sided case described above
gives I, 2 320 Elements. It is therefore necessary to include about 160

Elements on the “short” side of the central peak in single sided measurements,
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leaving about 350 Elements on the long side. Instead of the ideal doubling of
resolving power this only offers an improvement of factor 1.4 compared with
double sided measurements. We nofe however that in the heterodyned modes
the phase curvature is smaller, possibly allowing a higher gain in resolving
power.

We return now to the additional terms in Equation 3.69 and Equation 3.70:
these are found to be significant because of their shapes rather than their size.
The extra sinc appearing in the expression for Ag has its first zero crossing at
v = 1/(26). In the case of a strictly linear phase error, where é§ < 0.5 Elements
always may be ensured by an appropriate choice of origin, this function is
therefore wider than the spectral range allowed by the sampling theorem. Con-
volved with the spectrum, it therefore spreads spectral signal outside the region
bounded by the sampling theorem, and, by the phenomenon of aliasing, this
signal is folded back into the spectrum and appears as a spurious background.

[See p.85a] A different remedy which is interesting in our case because we

only have very short interferograms is to perform the phase correction

as a convolution in the interferogram plane rather than as a multiplication in

the spectral plane [38] by rewriting Equation 3.41 on the form:
B, =R[F{Z(x)* F' (e)}] (3.74)

By this method, demonstrated in Figure 4.38, all the sinusoidal interferogram
components are brought into phase before the Fourier transformation thus
avoiding the awkward problem depicted in Figure 3.9. Note that the problem
of overlapping aliases does not occur for double sided interferograms; such
measurements may therefore still enjoy the simplicity of multiplicative phase

correction.

3.4 Noise

In addition to the fundamental limitations to the FTS technique in general
and the HFTS technique in particular discussed until now there is a range of

other, more or less system dependent effects which limit the quality of spec-

85



To demonstrate the signifficance of these terms we consider the trivial case
of a quasi-continous spectrum where all spectral elements have value B. In-
cluding the effects of overlapping aliases, the contributions from the first and
second terms of Equation 3.69 to a spectral point are then proportional to the
area under their functions. Remembering that the area under the ‘unit width’
sinc function is [ sine (u)du = 1, this equals for the first term 1/(2L). Ignor-
ing the quickly varying cosine factor in the second term, the area under this
curve is also 1/(2L). Although less populated spectra have a smaller contri-
bution from the error term, this calculation does demonstrate its importance.

Efficient reduction of this effect is achieved by using a trapezeium-shaped
truncation function. The short part of the interferogram measured on the
‘other’ side of the central peak is then taken into account by multiplying the
central region with a slope passing through 0.5 at the peak [38]. Further im-

provement by an additive correction method has also been demonstrated [40].
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tral estimates. Some of these such as thermodynamic and photon statistical
fluctuations appear as random noise in the measurements and set limitations
for optimal use of the instrument. Other effects including spatial throughput
variations and dark current nonuniformity are fixed from one measurement to
another and may be corrected for provided appropriate additional measure-
ments are taken, see Section 4.6. Aberrations in the interferometer causes a
different kind of measurement error, affecting the phase of the interferogram
rather than its intensity. They therefore affect spectral estimates in a rather
different manner, as will be sen in Section 3.5. We presently consider theoret-
ically the consequences of random noise.

After a presentation of the most prominent sources of noise encountered
m our instrument, their balance is discussed in the view of achieving optimal
noise performance. The effect of measurement noise on the spectral estimate
is then considered, leading to a comparison between the noise performance of

FTS instruments and classical grating instruments.

3.4.1 Sources of random noise

In holographic FTS the main sources of random noise are:

1. Shot noise (es): statistical uncertainty in the signal level due to discrete-

ness of photo-electric events,

2. Resetting noise (eg): thermodynamic uncertainty in resetting a detector

cell after readout,

3. Digital noise (ep): error in the digitized signal due to the discrete nature

of digital numbers,

4. Amplifier nowse: random signal fluctuations produced in the analogue

circuitry,
5. Flatness error: spatial variations in optical and electronic gain, and

6. Dark nowse: spatial and temporal variations in the level of dark current,

where ¢; represent the RMS noise of a system dominated by noise source 1. As

will be demonstrated in Section 4.6, flatness error and dark noise are under
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most circumstances well eliminated by the use of auxiliary measurements. As-
suming also that the amplifier noise is sufficiently reduced by good electronic
design, the system is dominated by either of the three first noise sources. All of
these are assumed to be ‘white’, i.e. equally affecting all frequency components
of the measured signal.

Shot noise is inherent to the signal, representing the minimum amount of
noise associated with a certain signal. In optimizing noise performance we
therefore want to make Shot noise the limiting noise source. It shares with
resetting noise the property of being indeterminate, i.e. to vary randomly from
one measurement to another even if the signal to be measured stays constant.
Averaging many measurements therefore reduces the noise by a factor equal
to the square root of the number of measurements. Digital noise on the other
hand is determinate: a certain signal level produces a certain, calculable error
in the digitized signal. Averaging has no effect on a signal dominated by digital

noise.

3.4.2 Quantification of noise

In the evaluation of the noise from these three sources, we will assume an
ideally symmetric interferogram with optimal contrast, see Figure 3.12. This
facilitates the treatment because the signal level at the well-defined, centrally
located peak of the interferogram then equals twice the background level: Ip =
I{0) = 21y. Hence the peak of the active interferogram is Z(0) = I(0) —Ip = Ip.
Letting €, be the total RMS noise of the interferogram, we define the signal-to-
noise ratio of the interferogram as SNR, = Z(0)/e, = Ip/(2¢;). Similarly, we
define the component signal-to-noise ratio as SNR; = Z(0)/¢; which is used to
describe the noise contributions from the individual noise sources listed above.
Since these sources are independent from each other, their contributions to the
total noise adds in a root-square fashion, i.e. ¢, = \/,-‘e?, and so it follows

that
1

/T, SNR?

Shot noise measured in photo-electric events equals the square root of the

SNR, = (3.75)

signal when this is also measured in photo-electric events. Since the average
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F1gure 3.12: The ideal interferogram assumed in the noise calculations: per-
fectly symmetric and with optimal contrast. Intensity of the active interfer-
ogram {right hand axis) equals intensity of the measured interferogram (left

hand axis) minus the background level: Z(z) = I(z) — I;.

signal level of the interferogram equals (or at least approximates) Iy, its average

I
es =l =1/~ (3.76)

Hence the Shot noise component of the SNR is:

Shot noise equals:

20 _ [l (3.77)

SNRS = €s 3

Resetting noise is independent of signal level and measured by the manu-
facturer to eg &~ 2000 photo-electric events. The component SNR is therefore:

7(0) Ip

SNRr ™ 5056 = 2000°

(3.78)

Digital noise depends upon the number of bits (Ng) used in the digital
representation of the measurement: the value of each interferogram sample is
digitized with a certain dynamic range given by: D = 2V8. Since the digital
signal only contains integers, the smallest variation in its size is unity, corre-
sponding to a signal variation of Al. The discrete nature of the digital signal
gives it a ‘staircase’ appearance; the RMS noise implied by this misrepresen-

tation of the measured signal may be shown to be:
ep = AI/(V12) ~ 0.3A1 (3.79)
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If the peak of the interferogram exactly fills the dynamic range of the ADC,
then AT = Ip/D, and so the component SNR is given by:

~ 2L 17D, (3.80)

3.4.3 Optimal operating conditions

Figure 3.13 shows SNRs plotted against peak interferogram intensity. Thin,
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Ficure 3.13: Signal-to-noise ratio (SNR) plotted against peak signal level in
electrons. Thin, solid lines represent ‘component’ SNRs and thick lines show
total SNR; for 12 and 14 bit digitization. Operating points are shown as

discussed in the text.

solid lines show the component ratios, and total ratios, calculated for 12 and 14
bit digitization, is represented by thick lines. The latter are seen to increase
steeply at low intensities where the resetting noise is dominant, then rising
less steeply as Shot noise takes over, and at high intensities they flatten out
as digital noise becomes dominant. The unshaded region represents the useful
range of the detector: below it resetting noise dominates, and above it the
detector saturates.

Maximum interferogram SNR for a single exposureis 1/I,, /2 ~ 8 x10° elec-

Sat

trons, where I, = 1.2x10% is the saturation signal of the detector. This may

Sat

only be achieved with at least 13 bit digitization and by letting a ‘just un-

saturated’ signal completely fill the digital dynamic range. Shot noise limited
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performance may also be achieved with 11 and 12 bit digitization, but then
only at signal levels well below detector saturation.

In practice, ‘just unsaturated’ operation should be avoided because of the
danger of nonlinearities close to saturation, and since the signal may acci-
dentally exceed the saturation level due to fluctuations. To investigate such
non-optimal operation, consider the concept of a “digital operating point”.
Such a point may be plotted in Figure 3.13 on the curve for the digital SNR,
corresponding to the digitization used, at the ordinate corresponding to a com-
pletely filled digital dynamic range. The horizontal position of the operating
point may thus be varied by adjusting the gain of the analogue amplification.

Four such points (P, Q, R, and S) are plotted in the figure for the case
of 14 bit digitization. From these points a dotted line is drawn showing the
reduction in digital SNR as the collected signal is reduced: as long as the signal
level stays within the unshaded region and the dotted line does not cross the
Shot noise curve, the instrument is still Shot noise limited. ‘Safe’ operation, for
which digital noise never dominates, clearly requires that the operating point
(e.g. P) be situated at a signal level lower than the intersection between the
resetting and digital noise curves (Q). If the operating point is set at a higher
level (e.g. at ), the range of Shot noise limited operation reduces quickly
with the danger of being rendered impossible (as in case S). Optimally, the

operating point should be placed in the vicinity of point Q.

3.4.4 Spectral effects of white noise

White noise is equally distributed over all the frequency components of the
measured signal. QOur spectral estimate—which is the Fourter transform of
the measured signal—is therefore assumed to have a uniform level of noise
unaffected by local spectral value. This is different from the case of Shot noise
limited spectra produced by classical grating spectrometers where the noise
varies with the square root of the local spectral value. In the following we
will find the relationship between interferogram noise and spectral noise in
an HIF'TS system and compare its performance with that of a corresponding

grating system.
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Two important Fourier theorems are useful in these calculations: the Parse-
val identity known as the ‘Power Theorem’ relates the noise in the two domains,
and the ‘Area Theorem’ relates the signals. The former states that the power
contained in a function equals the power contained in its Fourier transform.
Hence since the spectral noise with RMS value ¢, is the transform of the in-
terferogram noise with average RMS value ¢,, the theorem may be expressed
as:

Le=v, e, (3.81)

where L is the interferogram length, v, is the sampling frequency (i.e. the
length of the spectrum including negative frequencies), and er, is the total
spectral RMS noise. Half of the spectral noise power is in the imaginary part

however, so for a phase corrected spectrum the RMS noise in the real spectral

€& | L [LAx IN
€, = ﬁ -V-;- — € "““é— - €$AZL 'E, (382)

where Az = 1/v, is the sample separation and N = L/Az is the number of

estimate is:

interferogram samples.

The Fourier Area Theorem states that the value of a function at its origin
equals the area under its Fourier transform. Assuming the active interferogram
to be perfectly symmetrical with its origin chosen at the central peak (see
Figure 3.12}, its transform is real and equals the spectrum B,. The Area

theorem may then be expressed as:

v [2 . P
I(0) =év > B,(v)=Br, = —, (3.83)
ot Az
where the summation represents the sum of all the spectral samples and B =

B, /N is their average. Since interferogram signal-to-noise ratio is SNR, =
g g g

Z(0)/e,, the interferogram noise may now be writien as:

B

~ SNR, Az’ (3.84)

€

and so, by the power theorem, the spectral noise becomes:

B [N
6 = g‘ﬁf{;\/; (3.85)
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Local spectral signal-to-noise ratio may therefore be expressed in terms of

interferogram signal-to-noise ratio as:

B B
NV:'_U':N;L.-::V—
SNR. SNR. i

€y

. (3.86)

ch

The ratio B/B, is often called “spectral fill factor”. For quasi-continous
spectra where B, ~ B, the fill factor is unity. We find then for our instrument
where N = 512 that SNR, a~ SNR, /16, i.e. giving a reduction with respect
to interferogram’s SNR. For single line emission spectra where almost all the
signal is concentrated in one single spectral element, the fill factor is very low.
For B, ~ B N/2 the spectral SNR at the line is SNR, = 16 SNR,, i.e. greater
than the interferogram’s SNR.

As noted earlier, a ‘just unsaturated’ interferogram could reach a maximum
Shot noise limited SNR of /7s5,./2, i.e. approximately 7.7 x10%. For a quasi-
continous spectrum, the optimal SNR is therefore about 480. If only half
the spectral range is “filled” however, the fill factor is a half and so the SNR
increases to about 1000. For single line emission spectra the SNR soars to
105, but this value will probably never be reached due to other effects such as

sampling grid errors as will be discussed shortly.

3.4.5 Comparison with CGS instruments

Due to the fundamental difference between the way FTS and CGS type instru-
ments produce spectral estimates, measurement noise affects the estimates in
different ways. For the FTS pioneers, working in the infrared where detector
noise was predominant, this difference turned out as an advantage, called the
multiplex or Fellgett advantage. Modern detectors in the visible are, as shown
above for our detector, usually Shot noise limited; the situation is then dif-
ferent and the multiplex advantage —more appropriately called the multiplex
effect—turns out to be a mixed blessing.

For a comparison with classical grating spectrometers we consider the non-
scanning detector array based type discussed in Chapter 2. Here the spectral
signal-to-noise ratio is simply equal to the square root of the number of photo-

electric events contained in the signal. Assuming a spectrum whose peak value
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‘just fails to saturate’ the detector, the local SNR in the CGS instrument may

SNRg = 1/ Bf”k Tsae. (3.87)

Writing out the spectral SNR for the HFTS instrument under similar condi-

then be expressed as:

tions, i.e. for a ‘just unsaturated’ interferogram, by combining Equation 3.77

and Equation 3.86 gives:

SNRU — __JE:_ ISat

=7 (3.88)

The ratio between these two expressions may be written:

SNR, /B, [Bpeax
SN\Re VBV NEB- (3.89)

For a quasi-continous spectrum where B, ~ B & Bp..x, grating instruments

therefore have an advantage of factor v/N, while at the peak of a single line
emission spectrum where B, = Bpey and B & 2Bpe. /N, the HFTS instru-

mernt has an advantage of factor /N /2.
[see_ P 738._?

3.4.6 Discussion

The foregoing analysis is obviously stylised, notably in its assumption of op-
timal interferogram contrast. The contrast k of a sinusoidal interferogram
component enters as a multiplying factor in the Fourier integral, giving a re-
duction of the spectral signal. It does not enter the integral for the background
intensity, however, and so it does not affect the noise. The effect of reduced
contrast is therefore a proportional reduction in spectral SNR.

Another simplification is the disregard of dark current in the noise calcu-
lations. Dark current produces noise in two different ways: its level varies
randomly from element to element, and it contributes to the Shot noise. For-
tunately the spatial variations are virtually constant in time and may therefore
be reduced greatly by measuring the dark signal separately and subtracting
it from signal measurements as will be demonstrated in Section 4.6.3. The
Shot noise contribution can not be removed, but as long as the dark current

is small compared to the signal, its Shot noise contribution is insignificant to
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In the above comparison we have allowed the exposure‘time to vary, choos-
ing optimal, just unsaturated exposure for both instruments. This is a nec-
essary condition for Shot-limited operation when charge-integrating detectors
are used (see Section 3.4.3). A more complete comparison between the two
types of instrument should also take into account the throughput advantage
(Section 3.4.6), however.

For the grating instrument, detector signal Iz may be expressed as in Equa-

tion 2.32b, giving an SNR of:

SNRg = \/Ig o /Go B (3.89a)

{where B = B,). For HHS instruments, the local SNR may be found from

Equation 3.88 by replacing Is, with 2f, = 2Ty, with E given by Equa-

SNRy = = ﬁ‘ 2;’ ,/ (3.89b)
D

(where SNRy = SNR, and Np =

tion 2.32a:

Ratioing the two SNRs now give:

SNRy 2G \/E
SRR =/ v VE (3.89¢)

Note the similarity between this ratio and that of detector signals in Equa-

tion 2.32c. As might be expected, the SNR ratio depends upon the square
root of the throughput ratio. Less obvious is its dependence upon the inverse
of the fill factor (f = B/B) which gives a net improvement in favour of the
HHS method as f decrases.

Substituting for throughputs from Equations 2.20 and 2.32 and using the
same instrumental parameters as in the throughput comparison of Section 3.4.6,

Equation 3.89¢ evaluates to:

SNRH _ 16 F? Yy i 690
SNRe V fIbR VTR

(3.89d)

Solved for the condition SNRy > SNRg this equation gives R < 690/ f.
For quasi-continous spectra (f ~ 1) HHS instruments therefore have a net

advantage over CGS instruments when resolving power is less than 690.
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the total noise. At long exposures however, when dark current starts to dom-
inate over signal cﬁrrent, its effect becomes serious. As seen in Chapter 2,
the throughput advantage of FTS instruments over CGS instruments allows
shorter exposure times and hence less dark current. For broad-band spectra
it 1s therefore mainly under poor light conditions that our instrument may be

expected to gain a noise advantage over its CGS equivalent.

3.5 Interferometer aberrations

Some of the most serious deficiencies of our prototype instrument are caused
by aberrations in the interferometer due to poor mounting of the reflectors.
This causes the interfering wavefronts to be curved rather than plane, giving

reductions in spectral quality in two ways:

e Curved fringes which, when imaged onto a one-dimensional detector ar-
ray, causes a “leakage” of information between the detectors, and hence

a reduction in contrast, and

e Non-linear relationship between phase difference and distance across the

interferogram causing the period of the fringes to vary with position.

The former effect is blamed for the instrument’s poor fringe contrast or mod-
ulation transfer {see Section 4.3.6), resulting in a reduction in signal-to-noise
ratio. The latter effect modifies the spectrum as will be seen in the following.

Poorly mounted reflectors is not the only cause of interferometer aberra-
tions. Grating ruling errors also give rise to such errors, as do inhomogeneities
in optical components. When considering the effects of interferometer aberra-

tions we distinguish between three different types:

Random, caused chiefly by small-scale inhomogeneities and surface defects

of optical components in the interferometer,
Periodic, caused typically by grating ruling errors, and

Monotonic, caused by poor reflector mounting.
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3.5.1 Apparent sampling grid errors

A monochromatic interferogram produced by an aberrated interferometer ap-
pears as if it had been sampled on an irregular sampling grid. Hence the
error may be counteracted by resampling. For unheterodyned measurements
the apparent sampling error is the same for all spectral components; resam-
pling therefore also improves broad band spectra in this mode. In heterodyned
modes, however, the apparent sampling error is frequency dependent, leaving
resampling of broad-band measurements ineffective.

If w,.(x) is the wavefront aberration in the interferometer, then the distance
between the wedged, interfering wavefronts is given by z sin o + w.(z). Equa-
tion 3.7, describing the phase difference between the wavefronts, must hence

be rewritten as:

Aé = 27olzsina+ w(z)]
= 27v{z+e¢), (3.90)

where ¢ = w.(x)o /v is the apparent sampling error and v is the fringe spatial
frequency as defined in Equation 3.10. In unheterodyned operation, ¢ is fre-
quency independent since spatial and optical frequencies are proportional. For
heterodyned systems this proportionality is lost and the apparent sampling
error varies from one spectral component to another, leaving resampling of
broad-band measurements useless.

We think that it is still possible to correct heterodyned interferograms, but
that this involves a much increased computational load. The “original”, un-
heterodyned interferogram may be recreated by shifting the spectrum onto a
frequency axis which is proportional to wavenumbers before transforming it
back into the interferogram domain. This original interferogram would have
a number of points of the order of the resolving power of the spectrum. Pre-
sumably, resampling applied at this point should give the required spectral
improvement.

A better way to go about things is of course to remove the interferometer
aberrations in the first place. Avoiding the monotonic error should be achieved

relatively easily by improving the way the reflectors are supported, see Sec-
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tion 6.4. Periodic errors, assumed to be caused by grating ruling deficiencies,
are also seen to be significant however (Figure 4.35), and so, to remove such
errors without placing too high demands upon grating manufacture, a compu-

tational correction method is still desirable.

3.5.2 Spectral effects of interferometer aberrations

We have modelled theoretically the effects of interferometer aberrations on
spectral estimates by assuming the sampling grid error equivalence.

Let Z(z) represent an ideally symmetric interferogram and Z.(z) = Z(z+¢)
an erroneously sampled version of it. They may be related in terms of a Taylor

series, viz:

I.(z) = T(a+¢)
= ﬂ@+fﬂﬂmy+§zm@)

ot ST £ (3.91)

where T9)(2) is the nth derivative of the interferogram. Fourier transformation
of this series according to the Fourier Derivative Theorem [31] gives the spectral

estimate:

Beg = B,+ R(ej%xi2rvB,) — R (ez* (21”/)23,,)

oot R(en* (1200)°B) + - -, (3.92)

where e, = F {¢"/n!} is an “error instrument function of the nth order”. The
spectral estimate is affected by a series of error terms which may be found
by convolving the error instrument functions with spectra modified by the
multiplication with (:27v)". Note that smooth spectral features act as filters
for the error instrument function so that ‘smooth’ spectra are less affected than
‘sharp’ spectra.

As long as the sampling error is small, the size of the error instrument
function decreases with the order, and a good estimation of the error may
then be obtained by considering only the first order term in Equation 3.92.
For random and periodic errors this condition must necessarily be fulfilled,

otherwise the interferogram should be modified beyond recognition. In the
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case of monotonic errors however, the error may well become considerable
towards the edges of the interferogram. For such errors we have therefore
found it necessary to include also the second order.

When ¢ is random, with RMS value ¢, the first order error instrument
function is also random with RMS value in each of its real and imaginary parts

as given by the Fourier Power Theorem (Equation 3.81):

€or = €y AT \/%r—. (3.93)

Because of the filtering effect noted above, broad spectra appear less noisy
than sharp spectra: the effect of randem sampling error is therefore opposite
to the effect of intensity noise for which sharp (emission-type) spectra have a
noise advantage.

A periodic sampling error has ¢ = ¢ cos(27wz + 8) where &g is its am-
plitude, « its spatial frequency, and # its phase. It is useful to decompose
the error into even and odd in-phase contributions: € = eg(cos 8 cos 2rwz ~
sin @ sin 2rwz). The first order error instrument function, e,, is given by the
Fourier transform of ¢ and has therefore a real part with two positive peaks of
size (€9 cos #)/2 at £w and an imaginary part with two peaks of size (g0 sin §)/2,
negative at +w and positive at —w. By Equation 3.92, only the imaginary part
of e; contributes to the real spectral estimate, and the resulting spectral €r7or
is therefore a pair of oppositely signed ghosts of relative magnitude mvgeg sin 6
around sharp spectral features at 1y + w, where », is the frequency of the
mother feature.

For sufficiently small errors, only the first order ghosts will be visible over
the noise, but as the error increases, higher order ghosts increase in importance
and will eventually dominate over both first order ghosts and the mother fea-
ture. The effect is similar to diffraction at a sinusoidal phase grating where
the intensity of the various diffraction orders are described by Bessel functions
with respect to the modulation depth of the grating [1].

As will be argued in Section 4.6.5, periodic sampling errors are encountered
in heterodyned holographic FTS as the result of a periodic ruling error in the

grating. The resulting ghosts are different from those occurring if the grating
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was used in a classical grating spectrometer in that they are one pos'itive and
one negative. They are also larger since they are directly proportional to the
amplitude of the ruling error rather than to the amplitude square as in the
classical case.

Monotonic errors may have many functional shapes. The simplest is
linear, but this only corresponds to an extra wedge between the interfering
wavefronts. Of more serious consequence is the quadratic error (e « 2?) caused
by astigmatism in the interferometer. Letting ¢ = kz?/Ax, the nth term of
the interferogram expansion (Equation 3.91) may be written as:

kn

(Az)rn! =4 I0(z) (3-99)

The Fourier transform of this expression yields the spectral error term of the

nth order and may, by the Fourier Derivative Theorem, be seen to equal:

ik )“ D?*» [V”B»(V)]’ (3.95)

AB,(v) = (271' Az

where DP stands for the derivation operator d?/di?. Hence each order of the

n!

spectral error consists itself of a series of terms, and these may be found by
the Leibnitz rule for higher derivatives of products.

Note that, since DP(v™) = 0 when p is greater than or equal to n, B™,(v) is
the lowest derivative of B,(r~) present in the nth order error term. Since only
even order terms are real, the lowest spectral derrivative affecting the real
estimate 1s therefore the second. For smooth spectra whose derivatives are
small the effect is therefore also small. Sharp features such as unresolved lines
have large derivatives however, and, assuming that each order of the spectral
error is dominated by the term containing the highest spectral derivative, the

following approximation may be justified:

(3.96)

27 Az n!

i n _n {2n)
ABn(u)m( ”‘) B, )

Hence the nth order spectral error term is proportional to the 2nth spectral
derivative. A line feature is therefore al ways affected by a symmetric error,
both in its real and imaginary parts. Note also that the error depends upon

the nth power of frequency and is hence highly variable across the spectrum.

98



0.5 0.2 -

0.0 - 0.0- _
008 010 012 018 020 022 028 030 032

0.2 0.4+ 0.4 -

0.0 4 0.0+ 0.0 1

<4

0.08 010 012 018 020 022 028 030 082

(a) (b) (c)

FIGURE 3.14: The effect of a monotonic sampling error of & = 2 x 10~° at
different points in the spectrum. Top graphs show real instrument functions,
bottom ones show imaginary instrument functions. The horizontal (frequency)

axis has units of fringe cycles per detector element (Elements™?!).

Figure 3.14 shows the real and imaginary parts of an unresolved spectral
line calculated by this approximation at three different frequencies by using
error terms of the first and second orders. Comparisons with measured line
spectra (see Section 4.6.5) verifies the validity of these calculations. In (a) the
error is apprechiable only in the imaginary part because the second order term
is not yet significant. In (b) and (c) the real spectral estimate is also affected:
first as a broadening and a reduction of the wings, later a double peak appears

with large and slowly decreasing wings.

3.6 Conclusion

After a brief review of the literature and historical development of holographic
Fourier transform spectroscopy, we have in this chapter shown how the in-
terference pattern from a two-beam interferometer yields spectral information
via the Fourier transformation. By the aid of familiar physical phenomena,
the formation of interference in a non scanning Michelson interferometer has
been explained, and the effects of finite and sampled measurements have been
presented.

An important part of the signal processing required for obtaining good
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spectral estimates is phase correction. We give a theoretical treatment of the
problem with particular attention to effects relevant to our instrument. At the
end of the section we give numerical examples where operational tolerances
for our instrument are calculated. Of some interest are the results regarding
the technique of single sided measurements by which ideally a factor of two in
resolving power may be gained. Acéording to our calculations we may expect
a gain of at least 1.4 by this technique.

Causes and effects of random intensity noise are presented, and a method
for choosing the optimal operating point is described. A comparison of the
noise performance of our instrument with that of a non scanning grating spec-
trometer is given, showing that the HFTS technique suffers a disadvantage with
respect to CQGS instruments for quasi-continuous spectra under Shot noise lim-
ited conditions. Signal-to-noise ratios in HFTS spectra of the order of 1000
are expected however, even under very poor light conditions.

Finally, we discuss the problem of apparaent sampling errors caused by
interferometer aberrations. The aberrations are classified in three groups:
random, periodic and monotonic. Periodic aberrations are encountered in het-
erodyned holographic FTS when the grating has a periodic ruling error and
produces ghosts as in classical grating spectrometers. Monotonic aberrations
occur in holographic F'T'S when the interferometer is affected by astigmatism.
The interfering wavefronts are then curved instead of plane, causing a varia-
tion in fringe frequency across the interferogram. As shown by simulations,
the effect of this error is primarily to broaden the instrument function. Inter-
ferometer aberrations may, at least in some cases, be cancelled by resampling

of the interferogram.
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Chapter 4

Instrument Design

Designing and constructing the prototype instrument has been the major part
of the work for this thesis and it is the purpose of this chapter to describe and
characterize the working instrument. Far from trying to describe the entire
design process with all its stumbling and ‘cut-and-try,” we will concentrate on a
description of the main components of the design. These are presented against
the background of the design considerations upon which they are based and
their measured performance.

Two components of the design stand out as key elements: the beam split-
ter and the fringe lmaging lens; a large part of the chapter is consecrated to
describing these two components. Mechanical and electronic designs are also
described but only in broad lines. Signal processing is of course an impor-
tant part of the design of an FT'S5-type instrument, without which its output
would be practically meaningless. Although the scope of our work has not
imcluded the development of a purpose built signal processing system, we have
implemented all its basic features in an experimental system based on a gen-
eral purpose mathematics programme with hardware interface capability. We
describe the features of this implementation and discuss points of experience.

First, however, we offer a brief overview of the system.

4.1 Design overview

Apart from the ability to gather spectral information of a certain resolution

with a certain sensitivity, three criteria have been particularly important for
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the design of this instrument:
¢ Ruggedness,
o Compactness, and
e Low power consumption.

In order to fulfil these criteria, we have kept the number of moving parts at a
minimum, and motorized drives and detector cooling have been avoided.
Optical and electronic systems are both contained within a single unit.
Supplied with power from a small external battery pack, the instrument is
capable of stand-alone, automatic data logging controlled by its own on-board
micro-processor. Manual operation from a portable computer is ensured via
a standard RS-232 serial data link, see Figure 4.1. Processing of data is per-

formed on the portable computer.

RS5-232

-

Computer

Instrument

Battery

FIGURE 4.1: Schematic view of the instrument system. Two-way communica-

tion with a portable computer is ensured via a standard serial link.

Looking into the instrument itself reveals—apart from an impressive pres-
ence of electronics—a construction based on four optical units: a filter com-
partment, the interferometer, the fringe imaging lens, and the detector housing.
Figure 4.2 shows a perspective view of the optical components stripped of their
mechanical fixtures. 1t is clearly a rather simplistic optical design, and we have
tried to reflect its simplicity in the mechanical design as will be described in

Section 4.4.
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FIGURE 4.2: Perspective view of the optical system, stripped of its support

mechanisms.

We have seen in the preceding chapter that the HFT'S method of spec-
troscopy consists of forming, by interference, an intensity pattern known as
the interferogram. Imaged onto a detector array, this pattern is measured and
digitized and yields spectral information after some signal processing. Design
criteria for the optical part of the system are based mainly on a desire to
optimize the contrast of the interferogram. The notion of fringe contrast or
modulation depth has been introduced in the context of interference but, as
will be seen in the following, it is also affected by stray light and the quality

of the imaging system.
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The instrument may operate with a resolving power of up to about 10 000
and cover a spectral window of 256 independent spectral samples anywhere
within the range 0.4-1.0 ym. Changing resolving power is done by a change
of grating, while a shift of the spectral window is achieved by adjusting the
interferometer and changing the filters. The instrument is optimized for oper-
ation at a resolving power of 1000 with its window centred at about 700 nm;
this mode has been specifically conceived for studies of the vegetation red-edge
and will be referred to as the medium resolution mode. Unheterodyned op-
eration with its maximum resolving power of 256 covers the entire spectral
range of the instrument and is referred to as the low resolution mode. A
third mode, the high resolution mode, with resolving power 5000 has also
been implemented to demonstrate the instrument’s high resolution capability
and with the specific alm of studying atmospheric NO, absorption. At this
resolution we resolve well the sodium doublet and observe Fraunhofer lines in

the solar spectrum.

4.2 Beam splitter assembly

The beam splitter assembly consists of two optical components: the substrate
onto which a semi-transparent film is deposited, and a dispersion compensation
plate. In order to save space and gain ruggedness we have chosen to glue the
two components together, forming a sandwich with the semi-transparent film
sealed between them, see Figure 4.3. The successes and failures of this choice
will be discussed, together with considerations with respect to materials and
coatings, but in order to gain objective criteria for the specification of the
beam splitter, we first take a closer look at how it affects fringe contrast and

instrument transmission factor.

4.2.1 Fringe contrast

Equation 3.6 defines fringe contrast in terms of the ratio between intensities
of the recombining beams. We assumed then a loss-less interferometer, but in
harsh reality this assumption is not always valid and we must therefore take

mto account absorptions as well as outer surface reflections. We introduce for
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F1GURE 4.3: Cross section of the interferometer showing the sandwiched beam
splitter design. The figure also shows the notation used in the text for reflection
and transmission coefficients. Full lines represent the desired light paths and

broken lines the main spurious light paths.
this some new quantities (see Figure 4.3):

o R and T Reflection and transmission coefficient of the beam splitter
whose sum, when the beam splitter is absorbing, does not reach unity.
Since the assembly is essentially symmetric, the coefficients are assumed
to be equal for light incident from either side. This is not strictly true
since the Jayer of glue makes the sandwich asymmetrical, but the refrac-
tive index of the glue is close to that of the substrate and its asymmetriz-

ing effect is therefore assumed to be negligible.

e [/ and 1”": Reflection and transmission coefficients respectively of the
outer surfaces of the beam splitter assembly. There is no absorption
since it 1s a boundary between two dielectrics, and their sum is therefore

equal to one.

o R; and R,: Reflection coefficients of the two interferometer reflectors. In
the heterodyned mode, where a grating replaces the mirror in one arm,

R, denotes the diffraction efficiency of the grating.
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With reference to Figure 4.3, we may now express the intensities of the two

interfering beams as:
11 = IU Thr]%irm.RlT"'TTr == Io T";RlRT (41)

and:
L =L T'TT'R,T'RT = I, 7" R, RT. (4.2)
The beam splitter also produces stray light in the form of spurious reflec-
tions off its outer surfaces. In general these spurious reflections are out of
phase with each other and do not create interference; they contribute there-
fore only to the background level, thus reducing the contrast. We will see in
Section 4.2.6 that some spurious reflections do interfere, but since these have
seen several passes through the beam splitter they are very weak. Here we
only consider spurious reflections of the first order: those which suffer a single
pass through the beam splitter. There are two such paths, drawn in dotted

lines in Figure 4.3, and their intensities are:

Ii=LRRTTI = I, RT*TR, (4.3)
and

L= TTT'RR = I RT*TR,, (4.4)
respectively.

With reference to Equation 3.3 and Equation 3.4 and assuming I and I}

to be incoherent, the interference pattern may then be written as:

I = ]1+12+I;+Ié+2 1112COSA6

= (1 + LZ_ZI_}{Z cos A(S) >, (4.3)

where 3~ I is the sum of the individual intensities, equal to the background

level of the interferogram. It may be written as:
I =LT*T(T*R+ R) (R, + Ry), (4.6)

and so the interferogram contrast defined in Equation 3.6 may be expressed
as;
2v I 1,
i
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T%R 2v/E1 Ry

(T?R+ R (R, + Ry) |
= kBkR, (47)

where kg and kg are contrast factors related to the beam splitter and the
reflectors, respectively. These factors become more accessible by assuming R’
to be much less than R and the difference between R, and R; (6g, say) much

less than their average (Rg, say). We then find the following approximations:

kB 1 — % (48)
and
kn o1 — 2R (4.9)
R~ 1 — . .
SR

Equation 4.8 shows that interferogram contrast is proportional to the beam
splitter’s outer surface reflection, but not at all affected by the balance between
reflectance and transmittance in the beam splitter. By Equation 4.9, the bal-
ance between reflector reflectances is important only in the second order; this
is of great comfort for heterodyned operation where the diffraction efficiency
of the grating may be expected to be lower than the reflectance of the mirror
and to vary greatly across the spectrum.

Figure 4.4 shows plots of kg against R for different values of R’, and kg

I
1.0 s 1.0
0.9 — o.on" L o9+
0.05 :
0.8 | - 08
kg 0.10 kn

0.7 — — 0.7 —
0.6 — — 0.6 —
0.5 T 0.5 ' —TF—1—7—

0.0 0.2 04 06 08 1.0 00 02 04 06 08 1.0

R A,

(a) (b)
FIGURE 4.4: Plots of the contrast factors kg (a) and kr (b). The former is

plotted against beam splitter reflectance (R) and outer surface reflectance (R'),

the latter against reflector reflectances (R; and Rp).

versus fi, for a range of K as calculated from their exact definitions in Equa-

tion 4.7. Useful in setting manufacturing specifications, these curves reiterate
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the conclusions drawn from the approximate relations. For the interferometer
to produce high-contrast fringes it is clearly of great importance to control
the outer surface reflection at the beam splitter but, as is further discussed
in Section 4.2.5, this is difficult due to the strong polarization effect at 45°

incidence.

4.2.2 Transmission factor

High contrast is not the only criterion for the interferometer, however; it should
also have a high transmission factor so that as much as possible of the incoming
light is passed on to the detectors. Since the total transmitted light is =1 the
transmission factor may be found by deviding Equation 4.6 by Iy, the incident
light. Assuming an ideal situation where R; and R, approximate unity and
outer surface reflections are small, then:

ZI@QRT: (1—A)?— 63

= - , (4.10)

where A is the beam splitter’s absorption coefficient and gy = R — 7' is the
difference between the beam splitter’s reflection and transmission coefficients,
the.“beam splitter balance”. The approximation is plotted against 8gz for
some values of A in Figure 4.5. Its maximum value of 0.5 reflects the fact that
half the collected radiation returns out through the input.

Estimates of contrast and transmission factors for the constructed inter-
ferometer will be given a bit further on (Figure 4.7), and a measurement of
the actual contrast in the form of the modulation transfer function is shown in

Figure 4.21.

4.2.3 Beam splitter design

The semi-transparent film of the beam splitter is supported by a substrate
of fused silica (*synthetic quartz’). In order to compensate for the dispersion
of the substrate, a compensator plate of identical material and thickness is
situated on the other side of the film. For compactness and ruggedness, the
two pieces are in owr design cemented together. To avoid that the layer of

cement ruins the dispersion compensation, the compensator is made slightly
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FIGURE 4.5: Beam splitter transmittance-reflectance product representing the
transmission factor of an idealized interferometer {see text). The product is

plotted against the difference érr for various levels of absorptance.

(9 pgm) thinner than the substrate by cutting the two plates from a single,
wedge-shaped work-piece.

Fused silica has been chosen as substrate material mainly because of its
low coefficient of thermal expansion which allows substrate and compensator
to be cemented together immediately after handling. With optical glass the
two pieces would have to rest for about an hour after touch to regain thermal
equilibrium and this would require more complicated and expensive rigging.
Otherwise the materials are equivalent since the good transmission character-
istics of siliéa‘ in the UV are lost to a strong absorption in the cement just
short of 400 nm [67].

The beam splitter assembly is placed at 45° to the direction of the incoming
light, but thanks to refraction at the outer surfaces the angle of incidence at
the semi reflecting surface is only 29.5°. This reduction in angle is beneficial

since it weakens the effect of polarization.

4.2.4 Beam splitter coating

For the semi-reflecting surface we have considered three different thin films:
a “standard” metallic film, a silver film, and an all-dielectric multi-layer film.

The standard metallic film has a very good reflection-transmission balance
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(R =T = 0.3 +£0.05), but it was rejected because of its very high absorption
(A = 0.4). Both of the remaining films promised far better performances with
absorptions less than 0.1 for the silver and essentially zero for the dielectric film.
When the dielectric option eventually was dropped, this was chiefly because
its manufacturer was uncooperative with respect to detailed specifications.
For the silver film, which was produced in a local facility under our control,
properties and characteristics could be studied in the literature.

The optical performance of thin silver films is strongly affected by the for-
mation of ‘isolated islands’ during the deposition process which causes greater
absorption than predicted from bulk properties [64]. For films produced by
thermal evaporation the problem may be considerably reduced by fast evapo-
ration (10 A/s) giving films with virtually bulk characteristics for thicknesses
down to about 150 A [66]. Since calculations based on bulk properties showed
that a film of thickness 160 A would perform well in our instrument the prob-
lem should therefore be negligible.

Figure 4.6(a) shows a comparison between calculated and measured per-
P
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FIGURE 4.6: Comparison between simulated and measured beam splitter char-
acteristics at normal incidence (a), and simulated characteristics at 45° inci-
dence of the manufactured sandwich with a silver semi-reflective coating (b). In
{b) solid lines represent the perpendicular polarization and broken lines parallel

polarization.

formance of the finished beam splitter assembly at normal incidence; apart

from a somewhat higher absorption, the film performs well compared with
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theory. Figure 4.6(b) shows calculated performance for the assembly at 45
degrees to the incident radiation—direct measurement of its performance at
this angle has not been possible. The effect of this change of angle is seen to
give a difference of about 0.1 in both R and T between the two polarization
components. Apart from a slight polarization dependence for the transmission
factor, this is of little consequence for the instrument performance.

There are two important classical problems with silver films: poor adher-
ence to the substrate and a tendency to oxidize. These are both solved in our
design by hermetically sealing the film between substrate and compensator. A
test of the gluing process was made with a film deposited on a microscope slide
to ensure that it was not ruined by the sandwiching. Because of these problems
however, silver films are little used nowadays; alternative materials with better
mechanical and chemical properties are used instead. As a consequence, prac-
tical experience is rare, and we found it necessary to run an extensive series
of tests in order to establish appropriate routines and a sufficiently accurate
thickness calibration. This took a lot of time and may be a good reason for
looking into alternative coatings for future work. As will be seen further on,

other arguments indicate the same conclusion.

4.2.5 Anti-reflection coating

Equation 4.8 suggests a strong dependence of interferogram contrast on outer
surface reflection, promising high returns from a reduction in its value, i.e. by
applying an anti-reflective (AR) coating. We find however that for an angle
of incidence of 45°, the polarization dependence of AR coatings is very strong,
making it difficult to control both polarizations at once.

An uncoated surface at 45° incidence reflects 8.0% of the perpendicular
component and 0.64% of the parallel component, the good performance of
the latter is due to the Brewster effect [6, page 43]. Its average of 4.3% gives
according to Equation 4.8 a contrast of 0.91 in an otherwise ideal interferometer
(f£ = 0.5 and Ry = R; = 1.0). With a single, quarter-wave layer of magnesium
fluoride (Mg[F,), reflectance for the perpendicular component may be kept

below 5% within the interval 1150 to 900 nm with a minimum of 3.7% while
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that for the parallel component is reduced to below 0.3%. Contrast is then
increased to 0.96. Of more sophisticated coatings, a three layer structure
specifically designed for a 45 degree incidence has been described [65], but
its effectiveness is still limited to only one of the polarizations and its total
performance is hardly any better than that of the single layer.

Figure 4.7(a) shows the expected contrast and throughput for an uncoated
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FIGURE 4.7: Expected contrast (solid lines) and transmission factors (bro-
ken lines) for the unheterodyned interferometer without (a) and with (b)

anti-reflection coating.

beam splitter, and (b) shows its performance when its outer surfaces have
been coated with a single layer of MgFs. Although clearly present, the im-
provement is limited and has not been considered worth the investment. The

beam splitter’s outer surfaces have therefore been left uncoated.
I

4.2.6 Dispersion compensation

The purpose of the compensator plate is to make sure that the two interfering
beams travel equal optical paths regardless of their frequency, usually ensured
by making the compensator plate identical to the beam splitter substrate.
Our glued sandwich structure renders such a simplification impossible since
the layer of glue—necessarily restricted to one side of the semi-transparent
film—has itself a dispersion. In order to achieve optimal compensation, the

compensator must instead be made slightly thinner than the substrate.



A small diﬁefence in plate thickness is accurately achieved by cutting both
components from a single work-piece into which a wedge has been polished,
taking the compensator from the thinner part. Of much greater difficulty is
the task of getting the glu.e thickness right, and as will be seen shortly we have
not been very successful in this respect. Using shims was found unattractive
because the thinnest shims available of 12.7 um would dictate an unpractically
large wedge.” Instead we chose to rely upon an estimated thickness of between
4 and 5 pm for an optimally squeezed-out layer of cement. A more precise
method which might be looked into is to thermally evaporate ‘shims’, whose
thickness may be controlled very accurately, directly onto the substrate.

Figure 4.8 shows the refractive indexes of fused silica and optical cement
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FIGURE 4.8: Refractive index of fused silica (a) and optical glue (b) plotted

against wavenumber. The data fit well to the straight line model discussed in

the text.

plotted versus wavenumber. Since our method of compensation can only hope
to achieve a first order dispersion compensation, we have fitted these data to
straight lines. Fortunately the fits are good, at least within the ranges were
data has been available. These straight lines may be expressed mathematically
as:

n; & nyg + a;0, (4.11)
where the subscript 7 is replaced with @ for fused silica and C for the cement.

The coefficients for the two materials are listed in Table 4.1.

*The wedge is controlled by observing the fringes formed by interference between the

surfaces of the work-piece. Too dense a fringe pattern renders the method unpractical.
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TABLE 4.1: Refractive indices of fused silica and optical cement used are found
to fit well to the equation n; = nip + a:o. In addition to refractive indices at

A = 0.5 pm, the table shows the results of such fits.

Malerial n; at 0.5 pm ng a; (pm)
Fused silica (Q) 1.46 1437 1.278x1072
Cement () 1.57 1516 2.573x10™?

Optical path difference (OPD) between the two interfering beams due to

their passage through the beam splitter assembly is:

Al = |l — 1]
= *{2ngsgr — 2(ngsg: + nesc)]
= +2(ng Asg —nesce), | (4.12)

where s; represents physical path lengths and I; = n;s; represents optical path
lengths. Using our straight line index model the OPD may be approximated
by:

Al 7 £2[ngg Asg — nease + o{ag Asg — acsc))]. (4.13)

Hence, for it to be independent of o, we must require:
ag ASQ —dodo = 0, (414)

and so, using the coeflicients from our linear fits (Table 4.1):

ASQ ao

o T o T 20 (4.15)

Physical path length through a plate of thickness t; depends upon the angle
a; at which it is traversed: s; = {;/ cosa;. When a ray of light changes from
one material to another, its angle changes by the law of refraction, but since
the indexes of silica and glue are similar (see Table 4.1); the angular change is

very small (less than 10%), and the ratio of the cosines is within 3% of unity.

We adopt therefore the compensation requirement:
Alg = 2.01¢, (4.16)

where Atg is the difference in thickness between substrate and compensator

and t¢ is the glue thickness.
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Since it was estimated that the glue thickness would be between 4 and 5
pm, we specified the work-piece wedge to give a thickness difference of 9.0
pm between substrate and compensator (55 arc seconds, corresponding to 12
fringes of helium-neon laser light per cm or 32 fringes per inch).

That our compensation scheme has been less than successful is clear from

the phase curve displayed in Figure 4.9. This curve is parabolic with a second
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FIGURE 4.9: The spectrum of a blue sky as measured with our instrument in
the low resolution mode (R = 256). Superposed on it, plotted as dots, is the

corresponding phase curve with its characteristic parabolic shape.

order coefficient of 3.37 um®. Optical path difference (OPD) is related to
the phase by ¢ = 2wroAl so this phaée curve signifies a linear variation of
OPD with wavenumber at a slope of 0.536 um?. The compensation condition
of Equation 4.14 is therefore violated, and by differentiating Equation 4.13,

using thicknesses instead of path lengths:

dAl to — act
280 0536 pm? = 42099 A% — acto) (4.17)
do COs &

Solving with respect to tc with a = 29.5°and Atfg = 9.0 pmand taking ag
and a¢ from Table 4.1, we find tc = 13.5 pm as an estimate for actual glue

thickness.

It must be mentioned that the parabolic coefficient of phase curves from
different spectra show a considerable variation, and that estimated glue thick-
nesses are generally greater than that found in the above calculation. An
average over seven measurements thus gives {¢ = 15 ym with a standard error

of £10 %. We offer no rigorous explanation for this, but it may be due to
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the fact that most spectra measured in the low resolution mode tend to have
a Gaussian shape. Combined with the parabolic phase function, this spectral
shape produces a curvature error in the phase according to Equation 3.53.
The chosen spectrum (Figure 4.9) is that of the blue sky which, through the
response of our instrument, is exceptionally flat over a considerable range.
Our confidence in this explanation is strengthened by the considerations on

channelling described in the following section.

4.2.7 Channelling

Subtracting the best fitting parabola from the phase curve of Figure 4.9 re-
veals the existence of a sinusoidal ripple, see Figure 4.10. The same pattern
1s also found in the spectrum, there even more clearly. The ripple period,

Wavelength (¢m)
0.7 0.6 0.5

Amplitude
{sueipels) aseyd

1.4 1.6 1.8 2.0 2.2
Wavenumber (um™)

FIGURE 4.10: Spectrum (solid line) and phase (dotted hine) of the same blue
sky as in the previous figure but now with slowly varying features removed.

Channelling is clearly present in both curves.

Acg = 0.053 pm™!, is highly repeatable from measurement to measurement
and between different resolutions with an error of less than three per cent. In
the medium resolution mode the ripple represents only about six periods across
the spectral range. It is then no longer apprec iable in the specfral amplitude,
but clearly present in the phase. At the highest resolution the phase is still
affected although only about one period is present.

These ripple effects are most certainly due to “channelling”, a common

problem in spectroscopic instruments. Due to interference between spurious
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reflections, usually from the surfaces of plane parallel plates, it tends to oc-

cur where it is least expected. Figure 4.11 shows how channelling is usually
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FIGURE 4.11: Spectral channelling due to spurious reflections in a plane par-

allel plate.

produced, giving the transmittance of a glass plate maxima when the spurious
beam is in phase with the transmitted beam. If the extra optical path repre-
sented by two crossings of the plate is Al then the period of the spectral ripple
is Aop = 1/AL

In our system, the spectral resolution is sufficiently small that we had ex-
pected all channelling to be negligible simply by using sufficiently thick optical
components so that Aor would be less than the resolution element. Clearly,
we have not succeeded, but we must seek other explanations than that given
by the classical “plane parallel plate” model since the observed ripple suggests
an OPD of only 19 pm, i.e. a plate thickness of 9.5 yum. Note also that the
plane parallel plate explanation does not suggest a ripple on the phase curve.

"The observed ripple period leads the attention to the beam splitter. Con-
sider the spurious reflections marked ‘A’ in Figure 4.12. They interfere for a
second time after each beam has travelled twice through its respective half of
the beam splitter assembly. Since the two halves are not equal—their differ-
ence is aggravated by the poor adjustment of the glue thickness—-channelling
occurs and the amount of light which is transmitted through to the detector
varies sinusoidally with wavenumber.

Optical path difference (Al) between the spuriously reflected beams is given

by Iiquation 4.12. Solving for the cement thickness gives:

"2ngAtg F Alcosa
tc = .

4.1
e (4.18)
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Fi1GURE 4.12: Suggested explanation of channelling due to the cemented beam
splitter. Solid lines represent desired light beams, dotted lines represent inter-
fering spurious beams. Those marked ‘A’ are supposed linked with channelled
spectra, those marked ‘B’ and ‘By’ are supposedly the culprits of channelled

phase.

Using the reciprocal ripple period for Al we find two positive solutions ac-
cording to the choice of sign: 3.16 pm and 13.58 um. Arguing that the first
solution is wrong since it would have given a much better dispersion compen-
sation, we chose the second solution which, lo and behold, corresponds well
with the thickness calculated previously.

Since we also see channelling in the phase curve, a kind of oscillation with
wavenumber must occur in the optical path difference between the two inter-
ferometer arms. It seems that the spurious reflections marked ‘B;’ and ‘B;’ in
Figure 4.12 may produce this effect. Here two beams are brought together to
interfere before they are launched into the interferometer arms and we imagine
that this creates a ‘switching’ of the light between the arms.

We note with some alarm that the observed channelling effects cannot be
entirely removed in a glued beam splhitter even if the glue thickness is well
adjusted. This is because it is impossible to make both Equation 4.12 and

Equation 4.14 vanish simultaneously. Unless some acceptable compromise can
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be found, the only way to remove it (and at the same time facilitate phase
compensation) is to discard the layer of cement altogether and hold the plates
together by other means (optical contacting or mechanical pressure). This
may render silver impractical as film material since it would no longer be
hermetically sealed. Even better from a channelling point of view would be to
introduce an air gap between the substrate and compensator, thus ensuring the
spurious reflections to be sufficiently out of phase not to create problems. This
solution definitely renders silver films impractical and it is less advantageous
from a miniaturization point of view.

We must search for the bright sides of life, though! Spectral channelling is
efficiently suppressed when two spectral measurements are divided (the chan-
nelled signal being proportional to the spectral signal), a process which is
usually carried out anyway in order to remove the transmission coefficient of
the instrument itself. It may also be used as a means of spectral calibration:
in situations where a calibration source is not available the period (and phase
in the heterodyned modes) of the channelled signal reveals the relationship

between spatial frequency and wavenumber to an accuracy of 3%.

4.3 Fringe imaging lens

The purpose of fringe imaging is to transfer the interference pattern, local-
1zed at the interferometer mirrors, onto the detector surface. One important
prerequisite for the design of a lens to perform this imaging is that it should
only accept light with a direction close to parallel with the axis; i.e. it must
have a telecentric entrance aperture. This requirement follows from the cosine
dependence of optical path difference with ray angle shown in Equation 2.25:
unless telecentricity is ensured, the variations in OPD becomes unnecessarily
large and the symmetry of the instrument function disappears. Telecentricity
is achieved by locating the aperture mask (or its image) at ‘infinity’, i.e. in the
focus of a lens, see Figure 4.13.

Physically, the aperture may he situated either before or after the interfer-
ometer. The former is more ‘correct’ since it ensures identical masking of both

the interfering beams. It requires an additional optical system (‘fore optics’)
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FIGURE 4.13: Illumination at near-normal incidence is ensured by the telecen-

tric aperture, placed in the focal plane of the imaging lens.

however, and is therefore less desirable than the latter option where the aper-
ture may be located within the fringe imaging lens. By this latter scheme the
two interfering beams are masked differently resulting in reduced contrast and
an asymmetry in the instrument function, but for resolving powers less than
10 000 these effects are very small.

Although the fringe pattern is two-dimensional, the along-fringe dimension
does not carry any information. To optimize optical throughput the fringes
should therefore be as long as possible, but this in turn requires long detector
elements. A more efficient way of achieving high throughput is to collapse
the fringes with the aid of a cylindrical lens. While improving throughput (as
long as the numerical aperture of the cylindrical lens is larger than that of the
fringe imaging lens), this also offers the opportunity for spatial resolution by
using a two-dimensional array detector. This option is not exploited because of
the increase in complexity required: a high-quality, possibly custom designed
cylindrical lens would then be needed. Instead we have found that for the
present instrument without imaging a plano-convex cylindrical singlet with a

focal ratio of 2 offers sufficient quality, see Section 4.3.5.

4.3.1 Alternative fringe imaging lenses

The simplest alternative for fringe imaging is a doublet with an aperture placed
in its focal plane, see Figure 4.14(a). It may be optimized for zero spherical

aberration and coma. and well corrected for chromatic aberrations, but it
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FIGURE 4.14: Alternative designs for the fringe imaging lens using specially

designed doublets (a, b, and ¢} and off-the-shelf profile-projection and camera
lenses (d).



suffers from curved image fields and distortion. Symmetrizing the design by
using two doublets, see Figure 4.14(b), removes the distortion, but not the field
curvature. For this to be eliminated, a negative element must be included,
either in the form of a field flattener as shown in dotted line in the figure, or as
a negative lens at the aperture, see Figure 4.14(c). Attempts have been made
at designing such lenses, but no successful version with acceptable dimensions
has been found.

Alternatively, off the shelf units such as ‘profile projection lenses’ may
be used. Two such lenses placed back to back, or one followed by a pho-
tographic lens, see Figure 4.14(d), would probably offer more than adequate
image quality. They would contain many surfaces however, causing a reduction

in transmittance, and they would be very expensive.

4.3.2 The Offner lens

The lens we have found most satisfactory is an all-reflecting design consisting
of two concentric, spherical mirrors one of which has a radius of curvature
twice as long as that of the other {8]. As illustrated by the meridional! section
through the lens shown in Figure 4.15, it is used off axis, the light being
reflected twice off the large primary mirror (M1) and once off the secondary
{M2). Since M2 is located in the focal plane of M1, an aperture mask mounted
in front of M2 ensures that the lens is telecentric.

Free from all third order ray aberrations®, the lens is dominated by fifth

order astigmatism causing the tangential focal surface’ to have a shape given

TThe meridional plane of an axially symmetric optical system is that containing the axis

and the object point. By symmetry, the image is also contained in this plane [6, page 151].
+To simplify algebraic analysis of optical systems the aberration function is usually ex-

pressed as an expansion. Ray aberration terms of first order in the object’s position co-
ordinates correspond then to paraxial optics. Even orders do not appear in axially sym-
metric systems, but third order terms are of great importance, often referred to as ‘Seidel’
or ‘primary’ aberrations. Fifth order terms are the most important of the ‘higher order’

aberrations.
YAn astigmatic system images a point object in two focal lines, the sagittal and the

tangential. The sagittal focal line lies in the meridional plane, the tangential focal line is

normal to this plane. Their positions in the image space for varying object positions give
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FiGure 4.15: Meridional section of the Offner lens. With two concentric,
spherical mirrors and the object (and hence image) placed in the plane con-
taining the centre of curvature, the lens offers excellent unit magnification

imaging.

by:
Az = 25 (4.19)

where Az 1s distance from the paraxial focal plane, Ry is radius of curvature
of M2, r is the height of the object above the axis, and as 1s a dimensionless
coefficient which, by ray tracing, is found to be 0.322. The sagittal focal surface
is plane, the properly focussed lens images therefore a point source as a radially
directed line of length:

[ =28Az, (4.20)

where [ is the numerical aperture identical to the interferometer’s field of view
(see Equation 2.29).

Because of the one-dimensional nature of the fringe pattern the system is
tolerant to curvature of the tangential focal surface as long as the fringes are
parallel with the focal line. This condition is violated for fringes outside the
meridional plane as shown in Figure 4.16, and a tolerance limit is therefore
necessary. I{ seems reasonable to demand that the component [, of the fo-
cal line in the across-fringe direction (the a-direction) should not exceed the

spacing between detector elements,¥ Az = 25 um. From Figure 4.16 we see

rise to two surfaces, the tangential and sagitial focal surfaces [6, page 215).
TH. H. Hopkins [7} has calculated the amount of astigmatism which produces a 20% loss
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FIGURE 4.16: The astigmatic focal line is shown for a point in the fringe

pattern image. /; is its component in the across-fringe direction

that:
L=1% (4.21)
r

hence, by Equation 4.19 and Equation 4.20, I, < Az is equivalent to:

r\3

28zas (-—) < Az (4.22)

it
Evaluating this inequality in the worst case we choose a point at the edge
of the fringe field where z = Az Np/2. The aperture is at its greatest in the
~unheterodyned mode, where, by Equation 3.31 substituted into Equation 2.29:
B =2/+/Np. The condition of Equation 4.22 may then be rewritten as:

1/3

2 > (200y/Np) (4.23)

r

The physical dimensions of the lens are here related to the number of detector
elements so in our case, where Np = 512, the Ry/r-ratio should exceed 2.4.
Since our interferometer design requires a maximum value of r equal to 29 mm,
the radius of curvature of the secondary mirror in the Offner lens is designed

to be Ry = 70 mm.

4.3.3 Manufacturing tolerances

The Offner lens is well behaved with respect to manufacturing tolerances.
Simulations show that even quite large perturbations of design parameters

add no other aberrations of significance than third order astigmatism and field

of contrast at a given spatial frequency. Adapted to our system with light of wavelength 0.5
pm, his calculation shows that thisloss of contrast occurs for a spatial frequency equal to

half the sampling frequency when the astigmatic focal line has a length of 22.4 ym.
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curvature, causing changes in the curvatures of the two focal surfaces. Math-

ematically, we may define the shapes of the focal surfaces by the expansion:
Az =20 y" +4Ciyt, (4.24)

where Az; is the distance between the focal surface and the paraxial image
plane, and the subscript ¢ is replaced by S for the sagittal focal surface and T'
for the tangential. The ,C; coefficients correspond to third order aberrations
and denote spherical curvature of the focal surfaces; the (C; coefficients corre-
spond to fifth order aberrations and describe parabolic surface shapes. Thus
the ideal Offner lens has ,C7 = ;Cs = 4Cs = 0, while, according to Equa-
tion 4.19, 4Cr = a3/R}. We may furthermore define an astigmatic defocus

denoting the distance between the two focal surfaces:
AZA - AZS — AZT. (4.25)

It may also be written as an expansion, and its coefficients, ,C 4 and 4C4, are
found by subtracting the appropriate S and 7' coefficients.
We have simulated the effects of errors in object distance, mirror separa-

tion, and mirror curvatures; Table 4.2 shows the observed changes in third

TABLE 4.2: Astigmatic effects of manufacturing errors. A,Cs and +Cp denote
changes in third order coefficient for the sagittal and tangential focal surfaces
respectively, and AaCy = A,Cp — AyCys is the change in astigmatic defocus

coefficient. The manufacturing tolerances are set as discussed in the text.

Error (mm) Aberrat_ioﬁs {(x10~* mm™1) Manufacturing

Type _ Amount ACs ACr . AaCy tolerance {mm)
Object position 10,0 0646 -1.852  1.206 10
Mirror separation 3.0 6.178 1787 -11.69 0.5
M1 radius of curv. 3.0 -6.179 -12.84 6.664 0.5

M2 radius of curv. 3.0 5.717 5.248 0.469 0.5

order coeflicients for the two image surfaces and for the astigmatic defocus.
Note that when a combination of errors occur, the coefficients add up. It

is therefore possible to add, say, tangential field curvature while keeping the
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sagittal curvature zero by increasing R, and decreasing the mirror separation.
This allows for a balance between third order and fifth order astigmatism [8].
To set manufacturing tolerances we must consider the case when the sagittal

focal surface is curved, see Figure 4.17. Following the imaging criterion used

S Ya

The central
fringe X
Centre of HGL
curvature z

FIGURE 4.17: Optimal focussing of the interferogram’s central fringe giving
a maximum blur in the r-direction of I} at the extremes of the fringe. The
y-axis coincides with the paraxial image plane and the sagittal focal surface is

indicated by the line 5.

in the previous section, we demand that the width of the focal spot in the
z-direction never exceeds the detector spacing (Az). If the detector is placed
n the paraxial image plane (represented by the y-axis in Figure 4.17), then

the width [, of the spot at 2 = 0 varies with position as:
. = CsBy>. (4.26)

A more optimal focus may be found where one point on the central fringe
coincides with the sagittal focal surface and the two extremes of the fringe
are equally far away from it (as illustrated). At the extremes of the fringe (at

Yy =1y and Y2, say), the spot then has a width of:

2

lip — L, 2 _
ho= 2B o Cep BN (4.27)

o -

Hence, for the width to be less than the detector spacing we require I/ < Az,

Le.

2 Ax
Blys — i)
when Az = 25 um, 8 = 0.071 radians, y; = 16.5 mm, and y, = 28.5 mm.

2Cs < = 1.30 x 107° mm™", (4.28)

To allow for the effects of = # 0 and several errors added together, we have
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divided this criterion by 10; the resulting manufacturing tolerances are given
in Table 4.2.
4.3.4 Interferometric test

The finished lens has been tested in a Fizeau interferometer for optical quality

and aberrations. Figure 4.18 shows a photo of the measurement setup and Fig-

FIGURE 4.18: The interferometric test setup. A converging laser beam emerges
from the Fizeau interferometer (A} and enters the Offner lens (B). In the image
plane a spherical test surface (C) intercepts the beam and returns it back along

its path.

ure 4.19 shows a typical interferogram. Apart from the slight wedge between
the fringes due to astigmatism, the fringes are nice and straight, proving the
high optical quality of the lens.

Interferometric measurements do not measure the absolute position of the
focal surfaces but the distance between them, i.e. the astigmatic defocus. It
is therefore impossible from this test to predict the actual performance of
the lens. Still, astigmatic defocus has been measured for two different object
positions and a fourth order polynomial has been fitted to the values as shown
in Figure 4.20. Also shown is the astigmatism expected for the ideal lens. It is
clear from comparing the two curves that the manufactured lens suffers from
third order astigmatism in addition to the expected fifth order astigmatism.

Partly, this is due to an error of 10 mm in the axial object distance during
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FIGURE 4.19: Straight fringes produced at an object height of 22.5 mm. The
straightness of the fringes prove the good quality of the optica) surfaces. Look-

ing closely reveals a slight wedge between the fringes due to astigmatism.
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FIGURE 4.20: Comparison between simulated (solid line) and measured (bro-
ken line) astigmatism in the Offner lens. The third order shape of the measured

curve is partly due to the measurement setup, partly manufacturing errors.

the test due to bulky components. Subtracting the astigmatism predicted
for this error leaves a residue which is probably due to manufacturing errors.
Although it is impossible to predict how the error is distributed among the
design parameters, we may make an “informed guess” by assuming that mirror
separation is more likely to be erroneous than mirror curvatures. We then find
a separation error of 0.5 mm, which is within the specified tolerance. The lens

should therefore perform according to our requirements.
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4.3.5 Other optical components

Fringe imaging is also affected by the other optical components in the system,
i.e. the beam splitter and the cylindrical lens. These contribute with spherical
aberration, but as one is in a diverging beam and the other is in a converging
beam, their contributions have opposite signs and cancel to some extent, and
we find that the net effect is negligible. Aberrations introduced by the tilt of
the beam splitter are also found to be small. The focussing performance of the
cylindrical lens in the along-fringe direction is limited by spherical aberration,
but with a blur spot of length just under 1 mm its performance is sufficient
since the height of the detector elements is 2.5 mm. |

The focal plane of the primary mirror, located at the secondary mirror,
15 also affected by spherical aberration with a blur spot of 0.1 mm diameter.
This aflects the accuracy with which the field limiting aperture defines the
field-of-view of the instrument, but since the aperture diameter is 2 mm at a

resolving power of 10 000, this blur represents at most only 5% of the field.

4.3.6 Modulation transfer function

As an ultimate test for the optical system as a whole (beam splitter and fringe
imaging lens together) we have measured the system’s modulation transfer
function (MTF). This function describes the depth of modulation or contrast
with which a sinusoidal intensity pattern is imaged through the system. As
has been pointed out earlier, this is particularly important in our system where
each spectral component is represented by a sinusoidal intensity (fringe) pat-
tern. A reduction in contrast is equivalent to a reduction in apparent spectral
intensity.

We have measured the system MTF by recording interferograms from a
monochromatic source with different ‘fluff’ adjustments, i.e. at different spa-
tial frequencies. From each interferogram, contrast is estimated as shown in
Figure 3.1, resulting in the curve show in Figure 4.21. Clearly, the perfor-
mance is rather poor with a modulation of about 0.4 throughout most of the
range. The dotted line shows the MTF curve of the detector alone as mea-

sured by the manufacturer: ideally, this should be the main factor in the MTF
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FIGURE 4.21: Measured fringe contrast plotted against fringe spatial frequency
(o). The curve corresponds to the system MTF. Shown in dotted line is the
detector MTF as measured by the manufacturer. Optical MTF (e) is found as

the ratio hetween system MTF and detector MTF,

budget. Taking the ratio of these two curves!l gives the optical MTF due to
interferometer and fringe imaging lens.

Although we expect some modulation loss due to stray light from outer
surface reflections at the beam splitter (Figure 4.4) and small-scale, random
homogeneity and surface errors in optical components [9], we believe that
most of the loss is due to the astigmatic deformation of the interferometer
reflectors. We have already discussed one serious effect of this ceficiency: the
spatial variation in fringe frequency appearing as a monotonic sampling error.
Another effect is that the fringes to become curved. Since the pattern is then
no longer one-dimensional, a one-dimensional detector array is not capable of
measuring it properly. Bach fringe is effectively averaged over several detectors,
resulting in the observed loss of contrast.

A reduction in MTF causes a proportional reduction in the spectral signal.
It does not reduce the spectral noise however, since the noise relates to an
interferogram’s background level. The SNR is therefore proportional to the

MTTF as will be verified in an example in Section 4.6.

TAn important feature of the MTF concept is: that the total systemmn MTF equals the
product of the MTFs of each component of the system [9].
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4.4 Mechanical design

Many details of the mechanical design have cost considerable care and consid-
eration. This fact is of course partly%if not wholly—due to our inexperience
in the work involved, a discrepancy which to some degree has been corrected.
To avoid this Thesis becoming a construction manual however, the mechanical

design will only be presented in the form of an overview.

4.4.1 General description

The instrument, see Figure 4.22, is contained in a box of 158 mm by 188 mm
by 125 mm onto which a cylinder of diameter 110 mm and length 100 mm

containing the fringe imaging lens is mounted. Although care has been taken

R RS R

FIGURE 4.22: External view of the instrument mounted in its gimbal.

to avoid leakage of light through the cover, no particular precautions have been
taken to make it moisture proof. This might be necessary in later versions, but
the extra work involved has not been granted for the prototype. The assembly
is suspended in a gimbal which, attached to a tripod as shown in Figure 4.22,
allows the instrument to be pointed and held stable in any direction. A central
hole in the tripod head allows unobstructed view straight down.

Light enters the instrument through a window in the front panel. Before
entering the interferometer, it passes through a filter compartment with

room for three 50 mm by 50 mm filters of 5-6 mm thickness. This allows for
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a high-pass, a low-pass, and a band-pass filter to be employed simultaneously.

4.4.2 Interferometer unit

The interferometer unit, see Figure 4.23, is as far as possible constructed in

one piece for thermal and mechanical stability. This piece has the shape of a

Adjustable reflector ‘Fluffer

Beam splitter ‘ .
support N\ | O-ring

A 4

-
Beam splitter
assembiy

Fixed reflector

FIGURE 4.23: Cross section of the interferometer unit. It consists of a solid
main block with holes machined for beam splitter support and light paths, and

two reflector cells, one fixed and one adjustable.

cube in which suitable holes for light paths and beam splitter supports have
been machined. The beam splitter is supported at 45 degrees to the optical
axis on three points, each of which consists of a ball-bearing fixed to a shelf
in the cube with a spring loaded ball-bearing directly opposite as shown in
Figure 4.24(a).

A reflector cell blocks each of the interferometer arms. One of them, con-
taining a mirror, is completely fixed and bolted onto the cube; the other, con-
taining a mirror in the unheterodyned mode and a grating in the heterodyned
modes, is adjustable and supported in a ‘hole-slot-plane’ (HSP) fashion. This
involves three spherical support points (i.e. ball-bearings) one of which rests
in a cone-shaped hole and has therefore no possibility for lateral movement,

the second one rests in a V-shaped slot and is therefore allowed movement
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MB RC
(a) (b)

FIGURE 4.24: Details of the mechanical construction: the support system for
the beam splitter (a}), and the lever providing fine adjustment for fringe pattern
rotation (b). S = spring, BS = beam splitter, BB = ball bearings, MB = main

block, L = lever, RC = reflector cell, and MS = micrometer screw.

i one direction, and the third rests on a flat surface, having freedom in two
directions. The cell is thus fixed in space at an angle to the optical axis freely
adjustable by vertical movement of the support points.

Two of the support points are situated on opposite sides of the reflector
such as to produce an axis of rotation located in the plane of its reflecting
surface and in a direction parallel with the fringes. Adjusting either of these
support points produces a rotation of the fringe pattern. Since such adjustment
is generally required to be very fine, these points are connected to micrometer
screws via levers, see Figure 4.24(b). HSP type mount‘ing ensures stability and
unrestrained movements of the levers as well.

Adjustment of the third support point changes tilt of the reflector and
hence the spatial frequency or “fluff” of the fringes; the micrometer screw
controlling this poiﬁt is therefore called the “fuffer”. Its movements are usually
quite coarse so no lever action is required. When the instrument is used in a
heterodyned mode with a grating as reflector the fluffer is adjusted to provide

the required grating tilt.
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4.4.3 Reflector supports

Both reflectors are supported on flat, turned surfaces and secured by the pres-
sure of an O-ring on their back surface. This method of support was chosen
because it allows the position of the mirror surfaces to be known accurately
with respect to a reference surface. The choice proved to be a poor one however,
since due to it the interfering wave fronts are contaminated by astigmatism
which causes an apparent sampling error (Section 3.5) as well as a reduction of
the fringe contrast (Section 4.3.6). Pressed against a supporting surface, the
reflector substrates are forced to take on the shape of this surface; any shape
error is therefore transmitted to the mirror. Shape errors in turned surfaces
often result from vibrations in the lathe, or from ‘warping’ due to a release of
stresses in the material when the work piece is machined after turning. The
deficiency is serious and should be removed in future redesigns, probably by
using three-point supports. This is further discussed in Section 6.4.

Aperture masks are mounted in front of the mirrors to give a rectangular
fringe field, and slots for insertion of shutters are provided. Shutting off each
interferometer arm in turn provides one method for measuring the background

illumination, see Section 4.6.1.

4.4.4 Fringe imaging lens

In the fringe imaging lens, see Figure 4.25 the light undergoes three reflections
off the two spherical, concentrically mounted mirrors. The mirrors are mounted
according to a commonly used principle: a spherical surface resting on a sharp
circular edge has its centre of curvature fixed with respect to the edge. The
mirror substrate may thus “wander about” on the edge without affecting the
direction of the optical axis and sufficient criterion for the two mirrors to be
co-axial is that the support edges are co-axial. Since the mirrors face each
other it is difficult to turn the edges in the same piece without changing the
lathe setup. Two pieces are therefore made, fitting into each other with a
‘sliding fit” which ensures the axial symmetry to within +0.1 mm.

O-rings press the mirrors against their support edges, following the same

principle as for the interferometer reflectors. Again this might provoke some
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FIGURE 4.25: Mechanical construction of the Offner fringe imaging lens.

astigmatic error in the mirror surfaces, but it is not as critical here as in the
interferometer since it would not affect the shape of the interference pattern.
Instead it would modify the (already astigmatic) aberration function of the
lens with an essentially field independent astigmatic component. Such an
effect was not seen during the interferometric test of the lens (Section 4.3.4)
and we assume it therefore to be negligible.

The telecentric aperture mask (see Section 4.3) is mounted in front of the
secondary mirror. It is accessible only by removing the primary mirror from
its support cell, a process which is less than optimal because it carries the
risk of damaging the mirror. A re-design should take care of this problem by

changing the way in which the two main pieces of the lens are joined.

4.4.5 Detector housing

Both interferometer and lens are bolted onto the ‘floor’ of the instrument case;
interferometer on the upper side, lens on the lower side. Light enters the lens
through a hole in the floor and exits through another hole displaced by 45 mm.
It then enters the detector housing, a little .box mounted via a slide to the side
of the interferometer unit. The slide allows focussing of the interferogram on
the detector array, but this is considered ouly to be necessary as a one-off
adjustment to take up manufacturing errors. The cylindrical fringe-collapsing

lens i1s mounted at the entrance of the detector house. Since the detector
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elements are 2.5 mm tall, the focussing tolerance of this lens is +£1 mm which
is assumed achievable without the need for adjustments. In the other end
of the detector house a printed circuit board (PCB) is mounted carrying the

detector chip itself.

4.5 Electronic design

The electronic design for the instrument has been left in safe and far more
experienced hands than ours. Although it is therefore not strictly part of the

work done for this thesis, completeness requires an overview of it as well.

4.5.1 General description

A purpose-built, microprocessor-based electronic system for control and data-
logging has been constructed. Apart from its power source, the system in-
cluding memory to hold about 100 interferograms is fully contained within the
instrument. Powered by a small battery pack, it is capable of automatic stand-
alone operation. Interrogation and programming requires a suitable terminal
such as a portable personal computer with which communication is ensured
through a standard serial port.

The electronics is distributed on a number of printed circuit boards. Care
has been taken to screen all analogue signal paths and to separate physically
analogue and digital circuitry in order to control noise due to interference from

high frequency digital signals.

4.5.2 Detector control

The detector chip contains a one-dimensional array of photo diodes. It is a
‘switched access array’ and should not be confused with the more familiar CCD
(charge coupled device) array where the charge packets collected by each diode
are read out strictly serially in a conveyer belt fashion. Instead, all the cells
are connected via switches to a common ‘video’ line and may be interrogated
randomly, although in practice the cells are accessed one after the other in a

well defined, regular sequence called the readout cycle.
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Each photodiode consists of a “bar” of p-type silicon embedded in an n-type

substrate as shown in Figure 4.26. The equivalent electronic circuit for this

FiGUrRe 4.26: Cut through the diode array chip showing the bars on p-type

silicon embedded in an n-type substrate.

structure is a parallel connection of a diode and a capacitor, see Figure 4.27(a).

The capacitance is inherent in the diode construction, but contrary to usual

Power Reset

D!_‘—‘,:c "’"L-T_

Read t
T Video

_ Bias N
Video o A

(a) (b)

FiGURE 4.27: Circuit diagrams for two key components in the electronic design:

Output

the detector diode cell (a), and the charge integrator (b). D = diode, C =

capacitor, T = transistor switch, and A = operational amplifier.

practice where it is minimized, it is instead optimized and serves as charge
integrator. When a photon is absorbed by the diode the capacitor increases
its charge by one electron.

Interrogation of a diode in the array after a suitable exposure proceeds by
closing the “read” switch connecting that diode to the video line. Its con-
tained charge is thus transferred to a charge-to-voltage converter consisting

of an operational amplifier with a capacitor connected in negative feed-back,
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see Figure 4.27(b). This configuration translates the charge very. accurately
into a proportional voltage suitable for input to an analogue to digital con-
verter (ADC). After conversion the integrator is reset.by shorting its feedback
capacitor. This is achieved under logic control by closing a transistor switch

connected in paralle]l with the capacitor.

4.5.3 Timing

The process of opening and closing the switches required for measuring the
charge collected by each diode cell is controlled by a logic sequence called the
diode cycle whose timing diagram is shown in Figure 4.28. A diode cycle lasts

six clock cycles, so with a clock frequency of 154 kHz its duration is 39 us.

F<6 clock cycles = 1 diode cycle_;i

Read / _I

Readi+1 |

Integrator | I
reset : :

Integrator : '

output ' r

FiGURE 4.28: Timing diagram for the interrogation of diode cells. ‘Read #°
is the read pulse for the ith detector element. It lasts three clock cycles and
causes all the charge collected by that detector to be transferred to the voltage
convertor. This also serves to reset the charge to zero thus preparing for a new
exposure. 'The output of the convertor is sampled during the third clock cycle
and reset by the ‘Reset’ pulse during the fourth clock cycle. The system is then

allowed two clock cycles to stabilize before the next diode is interrogated.

The readout cycle for the 512 element array lasts 515 diode cycles including
starting up and closing down procedures, i.e. 20 ms.
An exposure cycle contains two readout cycles separated by a time delay,

and the exposure time (7)—the time allowed for each diode to collect photons—
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is equal to the time between the start of these readout cycles. Hence the
minimum exposure, called an ezposure unit (), has the length of a readout
cycle. It is in practice convenient to measure the exposure in logarithmic units;

we introduce therefore the exposure step, £, defined by:

£ = log, ‘Tio. (4.29)

A change of one exposure step doubles the collected radiation and is equivalent
to ‘stepping the aperture one stop’ in traditional photography. The system
offers exposure times in multiples of the exposure unit up to a maximum of
256 units (about 5 seconds) covering a range of 8 steps. Longer exposures are
possible by using the real-time clock included in the system. In practice, the
exposure time is limited by the dark current in the detector diodes which at
room temperature saturates the capacitors after 3 minutes (£ = 13). The dark
current is highly temperature sensitive however, and at 0°C the dark saturation
time is increased to almost 3 hours representing a range of 29 exposure steps.
Operation of the instrument could then be pushed .into conditions of deep
twilight (Section 2.5). With the current design, such operation depends upon
natural cooling from ambient temperature. Artificial cooling is possible, but

it has not been implemented because of its high power consumption.

4.5.4 Data logging and power

The analogue to digital converter has a word length of 14 bits giving it a dy-
namic range of 16384 steps. Its linearity is guaranteed to better than half a
least significant bit thanks to a self-calibration facility, and its noise is domi-
nated by the digitizing noise.

Superior control, storage of data, and communication with the user (repre-
sented by the personal computer) is provided by an on-bhoard micro processor

system. Among its features are:

s Standard serial communication via RS-232:
o Capability of simultaneous collection of up to eight scans;

o Arithmetic unit for simple mathematical operations on these scans, e.g.

adding them all up, thus increasing the precision to 16 bits;
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e Storage space for about 100 scans including a header with circumstantial

information such as date, time, and exposure; and
e Real time clock for timed operation and referencing of scans.

- Power is supplied from two 12 V rechargeable lead acid batteries, each
of 1.2 Ah capacity. They are connected to give + 12 V as required by the
operational amplifiers, and the +5 V required for digital circuits is derived
from 412 V. Since the detector timing circuit consumes considerably more
power than the rest of the system, a relay has been incorporated to put the
detector to ‘sleep’ when not in use. The lifetime of fully recharged batteries
is thus increased from 7.5 hours under full operation towards 40 hours under
minimal operation. A future redesign of the timing circuit is expected to
reduce its consumption considerably, thus allowing a corresponding increase

in battery lifetime during full operation.

4.6 Signal processing

It has been within the scope of our work to investigate signal processing meth-
ods for the instrument. An experimental processing environment has been
created with the aid of a general purpose mathematics programme in which
macros and functions are written in a high level ‘language’. We present here
the various processing elements involved and discusses alternative implemen-
tations.

Signal processing for Fourier transform spectroscopy is naturally divided
into two parts separated by the Fourier transformation: space domain (or time
domain in classical FTS) and frequency domain calculations. Some calcula-
tions may equally well be performed in either domain, however. Apodization
1s an example of this where the ‘“tailoring’ of the instrument function achieved
by multiplying the interferogram with a smoothly tapered truncation function
may just as well be done in the frequency domain by a convolution between
the unapodized spectrum and the appropriate instrument function. Phase cor-
rection of double sided interferograms is another example although here the

situation is inverted: the simple multiplicative correction performed in the fre-
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quency plane may be substituted by a convolution in the interferogram plane.
Some processes also cross the boundary between the domains within them-
selves. During phase correction, for example, the apodized spectrum which is
required for determination of the phase function is obtained by going back to
the interferogram and performing an additional, apodized, transformation.
The processing is generally done in two main steps: background correction,
and transformation with phase cofrection. Interferograms taken at long expo-
sures are additionally corrected by dark current subtraction, and, in appropri-
ate cases, the interferogram is resampled before transformation. We describe
the operations performed in each step and illustrate them with examples. At
the end of the section a description of the present, experimental operator in-
terface is given including remarks on practical aspects and recommendations

for an operative version.

4.6.1 Interferogram correction

Raw interferograms measured with our instrument show some distinct features,

see Figure 4.29(a):
¢ Offset from zero,
¢ “Waviness”, and
o High frequency ripple.

Apart from the offset which is a natural attribute of the interference pattern,
these features are caused by instrumental deficiencies such as vignetting, dust,
variations in detector sensitivity, etc., and they have seriously detrimental
effects upon the spectral estimate as seen in Figure 4.29(b). The tall spike
close to the origin is due to offset and waviness, the poor signal to noise ratio
(SNR) is caused by the ripple.

Although the waviness varies somewhat from target to target—probably
due to variations in the illumination geometry affecting stray light and vign-
etting-—we find that the ripple is virtually constant from one interferogram to
another, andt is therefore possible to remove it. The Hterature suggests two

methods for measuring the background alone by removing the interferometric
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FIGURE 4.29: Demonstration of the interferogram correction procedure. The

left hand column show interferograms in various stages of the correction and

the right hand column shows the complex amplitude of their corresponding

Fourier transforms (not phase corrected) plotted on a logarithmic scale. See

text for explanation.
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information. One method involves the use of two measurements where each of
the interferometer arms has been blocked off in turn [61]. By the other method
the interferometer is adjusted so as to give the fringes a tilt with respect to the
detector array: each detector then sees an average over several fringes, leaving
them essentially invisible [56].

Mechanically, we have allowed for both methods, but since the former seems
likely to introduce more uncertainties than it removes (not only will the shut-
ters never be completely black, but each time they are inserted or removed
they will probably disturb particles of dust inside the interferometer and may
even introduce new ones) this method remains untested. Instead we use to
great satisfaction the second method by which the background shown in Fig-
ure 4.29(c) has been measured. Its Fourier transform (d) displays the same
features as the uncorrected spectrum, apart, luckily, from any of the spectral
signal. Correction proceeds now in principle by dividing the measured interfer-
ogram (Ip) by the background (/) and subtracting unity to give an improved

estimate of the active interferogram:
Ig = — — 1y, (4.30)

where 7y = 1. In practice the process is somewhat more involved: in order to
take into account differences in illumination between the two measurements,
it 1s the average of their ratio which is subtracted instead of unity: Z, =
m. The result is afterwards multiplied with the average of Ig in order to
give a scaling of the corrected interferogram similar to that of the measured
interferogram. Figure 4.29(e) shows the result of these operations and (f)
shows the spectral estimate produced from it.

When interferogram and background have been measured with different
targets, the corrected interferogram tends to be affected by a slope and some
residual waviness. We reduce these deficiencies quite efficiently by letting 7,
be a polynomial curve fitted to the Ips/Ip-ratio. The interferogram in Fig-
ure 4.29(g) is the same as in (e) but corrected with a different background.
Again the spectrum has a good reduction of the high frequency ripple while
leaving a somewhat higher noise level in the low frequency range, see Fig-

ure 4.29(h). Considering the simplifications in measuring technique conferred
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by the use of a standard background (no need for readjustment of the interfer-

ometer nor recalibration for every new target) this loss seems fully aceptable.

4.6.2 Noise evaluation

Background correction has reduced the RMS noise level in this example by
a factor of about 20 in the low frequencies, and about 2 in the high fre-
quencies. The RMS noise level in Figure 4.29(f) is thus brought down to
about 30 SU (spectral units*™) across the range from about 0.05 Elements™!
to 0.5 Elements™!. According to the Fourier power theorem (Equation 3.81)
this corresponds to an average RMS noise level in the interferogram of ¢, =
e,/(Az /N) =1 ADC unit with 512 interferogram samples.

Signal-to-noise ratio (SNR) reaches in this example a peak value of about
650 at the highest spectral point of 20 000. In Equation 3.88 the spectral
SNR of HFTS instruments was estimated to SNR, = \/m /f, where the
square root equals 1/(1.2x10%/512) ~ 500 and f = B/B, is the spectral fill
factor. With a fill factor of 0.2 in the current example, the ideal SNR is thus

2500, 1.e. roughly four times the measured SNR. This comparison is incor-
rect because of three factors: (1) the measured spectrum has not been phasé
corrected, (2} it is the result of two independent measurements (interferogram
and background), and (3) it has been apodized. While the two first factors
cause a reduction in the measured SNR of 1/1/2 each, the third factor improves
it somewhat. Assuming that improvement to represent about a factor /2 aé
well, the ratio between measured and ideal SNR should be corrected by the
remaining /2, giving approximately 0.4.

Note that this factor corresponds to the system MTF presented in Fig-
ure 4.21; the stated relationship between modulation transfer and noise per-
formance is hence verified. Note also that the measured interferogram itself
bears witness of the poor modulation: the ratio between its peak value and its

average background level is 3500/8500 =~ 0.4.

**The spectral unit denotes power per spectral interval. Calibrated, this should be given
in watts per micron (W um™!) or watts per inverse micron {W pum). Uncalibrated however,
the unit of power is the ADC unit and the spectral unit is the inverse diode array element

separation. Hence: 1 SU = 1 ADC-unit Elements.
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4.6.3 Dark signal subtraction

For long exposures, the dark signal becomes significant. Dark signal con-
tributes to the noise by two different mechanisms: Shot noise (equal to the
square-root of the number of dark electrons) and diode-to-diode variations.
The former contribution is indeterminate and can not be removed, but the
latter, referred to as “dark noise”, is constant (or almost constant: a slow,
‘1/ f-type, variation is expected [52]) and is efficiently removed by subtracting
a “dark scan” (a scan taken with the aperture covered) from both interferogram
and background measurements. The RMS level of the dark noise, denoted ¢g,

1s proportional to the dark current Iy
€4 = pfd, (431)

where p &~ 6x107% according to our measurements, is the proportionality fac-
tor.

To ensure that dark noise never affects our measurements we demand that
a dark signal be subtracted whenever the dark noise exceeds the digitizing

noise, €p. Hence: ¢; > ¢p, which, by Equation 3.79 becomes:

0.31p
D

ply > (4.32)

where Ip is the peak signal and D is the digital dynamic range. Dark signal
measured in number of electrons may be expressed in terms of the dark current
1g as: Iy = 497 /e, where 7 is exposure time and e is the electron charge, and
so the dark correction condition may be rewritten as:

03I e
D iy

(4.33)

At 20°C ambient temperature, 15 = 0.045 pA according to Figure 2.12, so for an
operating point (see Section 3.4.3) adjusted to Ip = 108 and 14 bit digitization,
dark correction is required for measurements with exposures longer than 1.2
seconds (& = 5.8). Note that at this exposure the dark signal is less than 1%
of the peak signal.

Figure 4.30 demonstrates the effect of dark correction showing a ‘raw’ dark

scan measured at an exposure of £ = § (a) and the difference between two
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FIGURE 4.30: A “raw” dark scan (a) and its Fourier transform (b} compared

with the difference between two dark scans (¢) and its transform (d).

dark scans (c) together with the real part of their Fourier transforms (b and
d, respectively). Note that for the raw scan the mean has been subtracted
before transformation in order to avoid the spike at zero frequency. The noise
reduction is dramatic, leaving a RMS noise in- the difference scan of about one
ADC ynit, The RMS noise in the corresponding spectrum is about 16 SU, as
predicted by Equation 3.82.

The remaining noise compares well with what we predict from the treat-
ment of noise in Section 3.4.1. We see from Figure 3.13 that with 14 bit
digitization and an operating point at Ip = 102, the resetting noise and dig-
ital noise are approximately equal: eg = ¢p =~ 0.3 ADC units. In addition
there is the shot noise of the dark current, es = /Ty, equivalent to 0.24 ADC
units for the present measurement. These noise components add together in a
root-sum-square fashion, not forgetting to count each component twice since
we have combined two measurements, to give an expected noise level of 0.7
ADC units. When the measured noise is slightly higher, it may signify that

the detector resetting noise has been underestimated.
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Note the sharp spike (negative in this plot) at the highest frequency (v =
0.5 Elements~!) in Figure 4.30(b). It is due to a ripple in the detected signal
of peak-to-peak amplitude 1.2 ADC units with a very accurate period of two
samples. Present in all our measurements, it is probably caused by ‘leakage’
from a digital signal. It is harmless, however, since it is confined to one sin-
gle frequency component situated at the extremity of the spectrum, and it

disappears entirely when the difference between two scans is taken.

4.6.4 Interferogram resampling

An astigmatic aberration in the interferometer causes an apparent error in the
sampling of interferograms, as described in Section 3.5. The error is partic-
ularly troublesome in unresolved emission spectra, but it is also noticed in
unresolved absorption spectra, e.g. the solar spectrum measured in the in-
strument’s high resolution mode. We describe a method by which it may be
measured and corrected for in software. Two examples, the sodium doublet

and the spectrum of a fluorescent “daylight” tube, are given.

Measuring the sampling error. Measurement of the error is possible by
comparing the measured interferogram for a known spectral distribution with
its theoretically predicted interferogram. This is particularly easy when the
source has a single, unresolved spectral line. Then the active interferogram is
given by:

I(z) = cos 27inz, (4.34)

where vy is the spatial frequency representing the optical frequency of the line.
When a sampling error is present, the sampled version of the interferogram

must, according to Equation 3.91, instead be written:

I(z)=T(z+¢) = cos2nvfz+ e(z)]
= cos[2rmiz + ()], (4.35)

where:

0.(z) = 2n11e(x) (4.36)
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is the phase of the sampling error. Note that this phase is spatially varying
{across the interferogram) rather than spectrally varying as the dispersive phase
described in Section 3.3.

With analogy to radio theory we may regard the erroneous interferogram
as a carrier signal of frequency »; phase modulated by the function 8,(z) [2,
page 577]. Fourier transforming the interferogram thus produces the trans-
form of the modulation function convolved with a pair of é-functions at =+uy.
Since the modulation functon is slowly varying, its transform is quite narrow;
the resulting spectrum therefore consists of two peaks, identical apart from
a difference in sign in the imaginary part. Demodulation may now proceed
by isolating one of the peaks and shifting it to the position of zero frequency.
Transformed back into the spatial (interferogram) domain, this produces a
complex function whose argument is 4..

This may be proved mathematically by rewriting Equation 4.35 on the
form:

Tc(x) = cos 2nvya cos §, — sin 2wz sin 0, (4.37)

whose Fouriler transform is:

FiZlz)} = [6(v — 1)+ 8(v + )] % F {cos 8}
—i[6(v —v1) — 6(v + )] * F {sinf}, (4.38)

where §(v) denotes the Dirac delta function. Rearranging and using exponen-

tial notation this expression may be written as:-

F{Z)} = 8(v~w)xF{e}
+8(v + vy)* F et} (4.39)

as required.

In practice the isolation of one of the peaks (the positive) is done by mul-
tiplication with a bell-shaped function to avoid ripple in the estimate of f..
The technique works very well and without intervention as long as 6. never
exceeds +7, in which case a discontinuity occurs. Algorithms which can han-
dle such occurrences may be devised but none has as yet been implemented.

If discontinuities do occur, they must be corrected manually.
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Correcting the sampling error. Correct sample values may now be found
by interpolation between existing samples. Theoretically this is permissible as
long as the interferogram is sampled according to the sampling theorem. Since
interferograms usually are sampled close to critically (two samples per period),
however, simple linear interpolation is unreliable. Again a recourse is made to
the Fourier transform: the transformed interferogram is extended {(or ‘padded’)
with zeros to, usually, four times its length before it is transformed back into
interferogram space. This produces three new samples between each original
pair of samples, and further interpolation may now be simply linear. Nonlinear
interpolation would probably improve the accuracy of the resampling even
further, but since the linear method gives satisfactory results for demonstration
purposes we have not implemented such refinements at this stage.

As pointed out in Section 3.5 this straightforward resampling process is
strictly only valid for unheterodyned spectra. It does improve narrow-band
heterodyned measurements however, as demonstrated by the second example
below. We think it is possible to achieve resampling of broad-band heterodyned

measurements as well by a different method, but this has not yet been tried.

4.6.5 Resampling examples

A fluorescent “daylight” spectrum Improvements in an unheterodyned
broad-band spectrum by resampling its interferogram-is well demonstrated by
considering the spectrum of a fluorescent “daylight” tube (standard Blackett
Laboratory illumination). As seen in Figure 4.31 the spectrum consists of a
100 nm wide continuous band centred at 600 nm with two strong peaks on
its blue flank. This version of the spectrum is calculated by apodizing the
interferogram and the effect of resampling is therefore not very great. For the
unapodized version however, the effect is evident as seen in Figure 4.32. In
the original version (a), both peaks appear as doublets, and the imaginary
part contains a considerable signal. Note the similarity between these peaks
and those shown in Figure 3.14(c), found from the simulation model. After
resampling, Figure 4.32(b), the real peaks have refound their ideal sinc-shape

and the imaginary parts are significantly reduced.
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FIGURE 4.31: Apodized version of the fluorescent lamp spectrum.

‘The apparent sampling error has been measured from the interferogram
of a 670 nm red diode laser which at this resolving power appears strictly
monochromatic. As seen in Figure 4.33 the apparent sampling error function
1s smooth and follows a parabolic shape as expected. At one edge of the inter-
ferogram the error reaches 1.5 samples, representing a considerable distortion

of the measurement,

Example 2: The sodium doublet. Good improvement of the spectral
estimate has also been achieved by resampling the interferogram of narrow-
band, heterodyned spectra. This is clearly demonstrated on a high-resolution
sodium spectrum, see Figure 4.34. The dotted and solid traces represent the
spectrum before and after resampling, respectively. No apodization was ap-
plied so the ideal instrument function is the sinc function (Figure 3.4) with a
distance between the peak and the first zero crossing equal to 1/(512 Elements)
= 1.95x1072 Elements ™. The corrected version comes close to this ideal with
a peak-to-first zero distance equal to 2.4x107® Elements~!. In contrast, the
uncorrected spectral instrument function is twice as wide and has a marked
double peak as predicted by theory (Figure 3.14).

Once again a parabolic shape due to astigmatism in the interferometer
dominates the apparent sampling error, see Figure 4."35. Now a ripple is also
clearly present however, and isolating the ripple by subtracting a best fit-
ting paraboloid reveals a quasi-sinusoidal function with a period of about 38

Elements, corresponding to about 1 mm. It is unlikely that an aberration in
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FIGURE 4.32: Unapodized versions of a part of the fluorescent lamp spectrum
before (a) and after (b) resampling of the interferogram. Solid lines show real

parts, dotted lines show imaginary parts.

the interferometer should take on such a fast variation; we propose instead that
the error reflects a ruling error in the grating. By the treatment of periodic
sampling errors in Section 3.5, we predict this error to cause spectral ghosts.
As will be seen shortly this is indeed the case, and the magnitude of the ghosts
correspond well with those predicted by the grating’s specification sheet.
Figure 4.36 shows logarithmic plots of the uncorrected (a) and corrected
(b) spectra. This time apodization has been applied in order to reduce the
wings of the instrument functions. Note that the dotted traces show negative
intensities. Apart from a reduction of about half a decade of the ‘grass’ around

the double peak, the most striking improvement in the corrected spectrum
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FIGURE 4.34: Comparison between the Sodium D-line spectrum before {dotted

line) and after (solid line) resampling of the interferogram.

is the disappearance of two pairs of ‘humps’ seen only in the uncorrected
spectrum (marked with arrows). They resemble the sodium lines in that they
have the same inter-peak separation, but they have only a fraction of the
height (1.5%). Note that one pair is positive while the other is negative, an
unmistakable sign of ghosts due to a periodic sampling error (Section 3.5).
The ghosts are separated from their “mother” feature by 0.026 Elements—?!,
whose reciprocal, 38 Elements, is equal to the period of the ripple seen on the
sampling error.

The specification sheet for the grating warns about ghosts with maximum
intensity 0.030% of the mother feature. The specification is made for the
classical grating user, however, and he is bothered not by the amplitude of the

ruling error but the amplitude squared. We must therefore take the square
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FIGURE 4.35: Estimate of the apparent sampling error for the sodium interfer-
ogram. Again the dominating shape is parabolic but an undulating structure

is also seen, supposedly due to quasi-periodic ruling errors in the grating.

root of the specified ghost intensity to make it applicable to our situation,
arriving at 1.7%, almost exactly equal to the observed ghost intensity. This
result is somewhat disconcerting since it seriously toughens the tolerances for
grating ruling errors. Seeing that we are in fact able to correct for it (at least
in narrow-band spectra) is therefore a great comfort.

A new, unwanted feature has appeared in the corrected spectrum of Fig-
ure 4.36(b): two “blobs” (marked with arrows), one on either side of the
doublet. Like ghosts they are of opposite signs, but they are introduced by
the correction process itself and witness the fact that the reference source was
not strictly monochromatic. Again the red diode laser was used as reference,
but as shown in Figure 4.37 it displays a great mode-hopping activity and is
never quite monochromatic. The measurement used as reference in the present
example (plotted in solid line in the figure) was the best one of the lot, but it

has a marked contribution from secondary modes.

4.6.6 Transformation and phase correction

Fourier transformation of the interferogram is performed by the fast Fourier
transformation (FFT) algorithm [34). For an N-points, complex input signal
the FFT routine produces at its output another N-points, complex signal. If,
as in our case, the input is real, the output becomes symmetrical about its
origin, leaving N/2 + 1 (including the origin) independent complex points in

the output.

153



™
AN

)
)
~

A
J

|

!
-
I
_
J—— L

Arbitrary spectral unit
E;I\J
!

— .
L I )
o -
1 1
-
: )
iyt |
—

—

| 1 I~
0.22 0.24 0.28 0.28 0.30 0.32

Spatial frequency (Elements™)
(a)

= 107 -
[y
2 10% 4
o
S 10° - pa
5% 2 f
2 A
- APC I B I | P
i"é 10" i
< 10° :

1074 ] T T I

0.22 0.24 0.26 0.28 0.30 0.32

Spatial frequency (Elements™)
(b)

FIGURE 4.36: Logarithmic plot of the apodized sodium spectrum before (a)

and after (b) resampling of the interferogram. Dotted lines show negative

spectral values,

It is possible to use the magnitude of the complex FFT output as spectral
estimate, but as seen in Section 3.3 a better estimate may be found by applying
phase correction. This process requires knowledge of the phase introduced by
the interferometer and as a basis for its estimation the phase of the complex
spectrum itself is used. As seen by Equation 3.53, the latter is affected by an
error depending upon both slope and curvature of the phase. Given a certain
curva.t.ure, we must use the freedom of choice of interferogram origin to reduce
the slope as much as possible, i.e. to obtain a position of stationary phase [32,
page 21]. Often this is achieved by placing the interferogram origin at the
sample of greatest amplitude, but not always, as in the case of an antisym-
metric interferogram whose optimal origin is at the zero crossing between the
two main peaks.

We are currently using the simple option of placing the origin at the in-
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FIGURE 4.37: Sucsessively measured high resolution spectra of the diode laser
used as reference for resampling. The unstable line structure and position is

attributed to the phenomenon of “mode hopping”.

terferogram sample of highest amplitude, but an intelligent routine searching
for a more optimal choice should not be too difficult to implement. We have
found, however, that if the peak value is negative it is beneficial to multiply
the entire interferogram by —1 causing the phase curve to be located in the
vicinity of zero rather than +#. Since the argument of a complex function is
determined within the range —m to +, this avoids unnecessary discontinuities.

Having found the optimally flat phase curve, we choose a range within
which the spectral amplitude is also reasonably flat and strong enough to en-
sure a well defined phase. A parametric function is then fitted to the phase
curve within this range to give a ‘fiducial phase function’ which may be ex-
trapolated into the less well defined regions. For this technique to be efficient,
a function which describes the phase curve well with a minimum of coefficients
should be used. Alternatively, a numerical function could be determined once
and for all and the fit involving simply a change of its slope and zero offset.
Presently we have not fully implemented either of these techniques; instead we
use simply a polynomial fit of variable order. This gives good results in the
unheterodyned case where the phase is essentially parabolic, but for high reso-
lution measurements where it is the sinusoidal phase shape due to channelling
which dominates, the method offers very poor extrapolation.

From the fiducial phase ¢; a conjugated complex phase function is calcu-
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lated:
e™'*f = cos ¢y — isin ¢;. (4.40)

Calculation of the phase-corrected spectral estimate now proceeds according
to Equation 3.41. Note that all complex arithmetic is performed on complex
numbers in their rectangular rather than polar form to avoid nonlinear oper-

ations such as tangents and square roots.

Single sided interferograms. Although we have not made an in-depth
performance study of the instrument’s capability to measure single sided in-
terferograms, we have implemented the basic algorithms necessary for treating
such measurements. The major difference compared with double sided inter-
ferograms is that phase correction according to Equation 3.41 is no longer
desirable because of the problem of overlapping aliases (Section 3.3.9). In-
stead, correction must be performed in the interferogram space according to
Equation 3.74.

As seen in Section 3.3.9 the “single sided” interferogram should never be en-
tirely single sided. A double sided interferogram of a certain length is necessary
(140 samples was calculated as a minimum for the unhetefodyned interfero-
gram due to its strongly nonlinear phase curve) in order to calculate a fiducial
phase function. A fraction of the total interferogram length must therefore be
sacrificed to include the required number of samples on the “other” side of the
central peak.

Again a conjugated complex phase function is produced, but this time it is
reversely Fourier transformed into a “phase interferogram.” Since ¢ is slowly
varying, the phase interferogram has only a very short non-zero range. This is
convenient since a good approximation of the convolution in Equation 3.74 is
obtained by using only a few points on either side of its central peak. The result
of the convolution is impressive, the corrected interferogram is (or appears, at
least) completely symmetrical as illustrated in Figure 4.38.

Fourier transformed after having discarded its short part and arranged
its peak to be at the origin, the corrected interferogram produces a complex

spectrum whose real part is the desired spectral estimate. Our phase model
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FIGURE 4.38: Demonstration of the convolution method for phase correction.

_ The original interferogram (a) is convolved with the ‘phase interferogram’ (b)

to yield the symmetrized interferogram (c).

is at present not good enough to produce reliable spectral estimates however,
and it remains therefore to be seen how well actual single-sided measurements

may perform and which gains in resolving power may be achieved.
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4.6.7 Calibration

The final signal processing operation necessary before displaying the spectral
information is calibration of the spectral unit. Spectral calibration of our
instrument requires in general three pieces of information, although when used

in its unheterodyned mode, only one of them (the first) is required:
¢ One known frequency component within the spectral range,
¢ The resolving power of the grating, and
e The direction of the spectrum.

The calibration formula may be deduced from Equation 3.17 by solving it
with respect to the Littrow frequency:

vqo

= (4.41)
*v + v

oL

If a known frequency component o, is represented by spatial frequency vy,

then, since oy, is constant:

Voo el
= 4.42
i1 + v +v 4+ vg ( )
which, when solved with respect to o, gives:
+
= o LT YG (4.43)

o1 m
By Equation 3.33 the effective grating frequency is given by vg = mNg/L =
Re/Np, where Rg = mNg is the grating’s resolving power, L is the length
of the interferogram, and Np is the number of detector elements; the equality
between L and Np is valid when the sample separation is used as unit of length
along the interferogram. Hence the relationship between optical and spatial

frequencies may be written as:

Npv £ Rg

7T Non £ Re

(4.44)

where top and bottom have been multiplied with +1.
The signs in Equation 4.44 are chosen according to the direction of the

spectrum: + for positive direction, — for negative direction, and depends
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upon which of the two filtering conditions of Section 3.2.4 has been chosen,
i.e. whether the Littrow wavenumber is above or below the measured spectral
range. It may be deduced from observing the interferogram when the grating
angle (and hence the Littrow wavenumber) is varied: if the fringes widen
(i.e. their spatial frequency decreases) as the grating angle increases then the
direction is negative; if the fringe frequency increases with grating angle then
the direction is positive.

Calibration is most easily performed by the use of a monochromatic refer-
ence source within the spectral range. Its peak position may then be deter-
mined automatically and calibration proceed without intervention. A known
feature in a broad-band spectrum may also be used, but manual determination
of the spatial frequency of the reference point is then required.

If no reference feature is known for a spectrum then the channelling effect
described in Section 4.2.7 may be used to determine the calibration, either
from the period of the ripple (unheterodyned mode) or from the phase of the
ripple (heterodyned modes). We have not considered this possibility in any

detail, however.

In FTS spectra measured with a photon-counting device such as the photo-
diode, spectral intensity is obtained in photons per unit wavenumber, B,.
Spectral intensity may be converted to photons per unit wavelength by the
following relationship:

B, =0o%B,. (4.45a)

For conversion to power per unit wavelength, we note that the energy con-
tained in a photon equals hc/A. For exposure time 7, the (average) spectral

power is therefore given by: 5
o, = 0B, -;‘3 (4.45b)

4.6.8 User interface

Thanks to the hardware interface of our general purpose signal processing
software, we have incorporated a simple user interface for operation of the
instrument. Although slow, it provides a good test bed for the various features
of such an interface.

In a test mode, the instrument is instructed to scan the diode array com-
tinuously and to send to the computer the highest and lowest interferogram

values. I'tom these a contrast figure is calculated and displayed, continuously
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updated, on the computer screen. This feature allows readjustment of the in-
terferometer, e.g. after a background scan has been taken. For adjustment in
connection with a change of grating or spectral range, the full interferogram is
required. This is currently available only by connecting the analogue video line
directly to an oscilloscope {the instrument is equipped with a co-axial connec-
tor for the purpose), but a specially designed control software should be fast
enough to down-load the central section of the interferogram to the computer
and display it in real time on the screen.

To read scans, the programﬁé asks for a name for the session, the type
of scan (background, target, or reference), and a label (in case many scans
of the same type are taken). It then acquires a pre-scan from which the
optimal exposure level is determined, sets the exposure level accordingly and
acquires the measurement scan. Down-loaded to the computer this scan is
stored together with a header (containing exposure level, date, and time) in
a file named according to session, type, and label. The data is also displayed
on the screen and stored in programme memory in one of three ‘accumulators’
containing the most recent scan of each type. Data may similarly be read in
from a file and stored in the appropriate accumulator.

Data analysis may be performed in two simple steps: calibration of the
spectral axis according to the current reference scan, and full transformation
including background correction of the interferogram and phase correction of
the spectrum. Optionally, the process may be performed in several separate
steps; this is at present necessary for the process of resampling. There are also
several possibilities for tailoring of the process, allowing additional interfero-
gram correction by polynomial fitting, alternative apodization functions and

widths, manual choice of interferogram origin, etc.

4.7 Conclusion

We have in this chapter described the design of a prototype holographic FTS
instrument. Small, rugged, and with a low power consumption the instrument
is capable of self-contained operation in the field, controlled either automati-

cally by its own, built-in micro-processor, or manually via a portable computer.
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Its resolving power is adjustable by the change of a grating, and the spectral
range of 256 independent spectral samples may be placed anywhere between
0.4 and 1.0 pm.

Much attention has been given to the optical designs of beam splitter and
fringe imaging lens. The former is particularly critical and appears to be
at the root of some undesired deficiencies in the instrument: poor dispersion
compensation and a “channelling” effect both in the spectrum and in the phase.
Apart from a sinusoidal ripple on the spectral estiamte which disappears when
two spectra are ratioed, these effects are found not to impede seriously on
normal operation of the instrument.

For fringe imaging we have chosen an all reflective, two-mirror lens whose
advantages over transmission optical designs include simplicity and compact-
ness. It is also tolerant to manufacturing errors and.we have devised simple
design criteria for the lens in the current application. Interferometric measure-
ments show that its performance is according to its specifications.

A second weak point in the instrument design is the method chosen for
supporting the interferometer reflectors. The deficiency manifests itself in
two ways: as a reduction in the system’s modulation transfer function and
hence the signal-to-noise ratio, and as a broadening and sometimes splitting
of the spectral instrument function. While nothing can be done to recover
from the reduction in MTF, correction of the deformed instrument function
by resampling of the interferogram has been demonstrated. As a by-product
of resampling we find that ghosts, presumably due to periodic ruling errors in
the grating, are also efficiently suppressed.

While mechanical and electronic designs are presented only in terms of their
main features, the signal processing is described in somewhat more detail. The
‘cleaning up’ procedures for the interferograms are described and illustrated
with examples, and noise calculations which verify well the theoretical predic-
tions are shown. Phase correction and spectral calibration are described and
the user interface of the experimental control system is portrayed.

The prototype instrument i§ currently in working order and produces good

quality spectra. Some examples of its performance will be shown in Chapter 5,
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notably giving a demonstration of the high resolution mode where an apodized
resolving power of 2100 is achieved. This allows for identification of Fraunhofer
lines in the solar spectrum and detection of the atmospheric pollutant NO; at

an estimated concentration of 7 parts per billion.



Chapter 5

Practical Operation

We describe in this chapter the instrument in practical operation, starting off
with an overview of the three resolution settings or ‘modes of observation’
that we have implemented: the low, medium, and high resolution modes.
The sodium doublet spectrum is used to illustrate each mode. We then give
a description of the procedures for initial adjustment and mbde changing.
Explained in some detail, this description will no doubt interest the user more
than the examiner, but it is included here to give an idea of the operational
complexity of the instrument. On this basis we discuss the possibilities for
untrained operation.

In the following sections, each mode is described separately in terms of
practical examples. In the low resolution mode we have measured the blue sky
spectrum in which we observe the major atmospheric absorptions due to water
and oxygen. We use this spectrum also to estimate the spectral response of
the instrument.

To present the two heterodyned modes we return to the examples used to
illustrate our radiation budget in Chapter 2. A plant reflectance spectrum has
been measured in the medium resolution mode; at this resolution the ‘red edge’
i1s isolated within a window covering the range 650 to 800 nm and analyzed
with a resolution of about one nanometer. The idea is to study fine features
of the edge which are brought to light by taking the first derivative of the
spectrum. High resolution operation is presented via a study of absorption
by the atmospheric pollutant NO,. Wavelength calibration is here achieved

by using strong Fraunhofer lines. Two different ‘targets’ are measured for
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the absorption: a glass tube containing concentrated NQO,, and the London
atmosphere. By applying the Beer-Lambert law of absorption in a gas together
with—in the case of the London atmosphere measurement—a crude guess of

the absorption path length, gas concentrations are estimated in the two cases.

5.1 Modes and adjustments

Although our instrument may be adjusted to any resolving power up to about
10 000 and operated within any spectral window between 400 and 1000 nm, we
have implemented—by the purchase of appropriate gratings and filters—two
heterodyned modes in addition to the unheterodyned mode. We have therefore

been able to demonstrate the following:

¢ A low resolution mode with a maximum resolving power of 256, cover-
ing the entire spectral range visible to the instrument (400 to 1000 nm).
This is the unheterodyned mode in which both interferometer reflectors

are plane mirrors and no band limiting filters are required.

» A medium resolution mode with a maximum resolving power of 1024.
For this mode we are equipped with filters to study the range between

650 and 800 nm, chosen to cover the red edge of plant reflectance spectra.

e A high resolution mode with a maximum resolving power of 5120.
The mode is applied to the study of an NO; absorption centred at 489
nm. At this wavelength the mode covers a range of 25 nm out of which

we 1solate 10 nm by the use of a standard interference filter.

Maximum resolving powers are here quoted for unapodized spectra accord-
ing to the definitions given in Equation 3.31 and Equation 3.32. In practice
apodization is often used to reduce sidelobes around sharp speciral features
and—in the present prototype—the effect of interferometer aberrations. Re-
solving power of apodized spectra may be estimated as the ratio between
the wavelength of an unresolved line and its full-width at half the maximum

(FWHM). When the Hann window is used as apodization function the thus
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estimated resolving power is down by a factor of about 2.4 with respect to the
unapodized resolving power.

While in heterodyned modes the resolution is very nearly constant within
the spectral range, in the unheterodyned mode it varies proportionally with
wavenumber and the maximum resolving power is therefore attained only at
the highest wavenumber measured. This mode also has a considerable ‘dead’
capacity wasted on frequencies outside the detectable range. In practice the
useful range tends to be centred about half-way up the spatial frequency axis,
and the resolving power is therefore usually between 50 and 100 for apodized

spectra in this mode.

5.1.1 Spectral analysis of the sodium doublet

Figure 5.1 shows interferograms and spectra measured off a sodium discharge
lamp in each of the modes. The interferograms have been resampled as de-
scribed in Section 4.6 and left unapodized in order to show their optimal
resolution. At low resolution the doublet lines centred at 589.3 nm are seen
as essentially monochromatic. At medium resolution the doublet is still not
resolved, although the spectrum is seen to have a finite bandwidth. Note the
automatic suppression of sidelobes (“self apodization”) in this mode caused
by the width of the unapodized resolution element (0.6 nm) being about equal
to the separation between the doublet lines (0.597 nm). Sidelobes of opposite
signs are then superposed and all but cancel. Measured in the high resolution
mode the doublet is fully resolved and a difference in intensity between them
is observed as expected. Their separation is here measured as 0.593 nm, i.e.
with an error of 0.004 nm with respect to the publishéd value, corresponding
to 0.7%.

Note the correspondence between these observations and the features seen
i the interferograms: while the unresolved, low resolution measurement is
featureless, the medium resolution one fits in exactly one ‘hump’ of the char-
acteristic sodium interferogram. It appears therefore as if it has been apodized,
hence the suppression of spectral wings. The high resolution mterferogram in-

cludes several of the humps and is therefore fully resolved.
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FIGURE 5.1: Interferograms and spectra of a sodium lamp measured at differ-
ent resolutions. (a) and (b): ‘low’ resolution; (¢) and (d): ‘medium’ resolution;

(e) and (f): ‘high’ resolution.

5.1.2 Initial adjustment

The interferometer is—not unlike most—quite ‘iddly’ to adjust, particularly
at assembly and for an inexperienced user. This situation is aggravated by the
lack of a single adjustment for lateral movement of the adjustable reflector:
for adjustment of path length, all three control screws must be adjusted in

turn. Once zero path difference has been found, however, such movement is
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no longer necessary: from then on one of the side screws may (and should!)
be left untouched, leaving only the centre screw (the“ﬂuffer’) for adjustment
of fringe frequency, and one side screw for adjustment of fringe rotation.

One half of the interfering light escapes the interferometer through its in-
put aperture. Although a nuisance in radiation budget calculations, this ‘de-
ficiency’ is of great help in the adjustment procedure since it allows visual
observation of the interferogram.

Initial adjustment should be done with mirrors in both interferometer arms.
Looking into the input aperture at the reflection of a point object allows align-
ment of the mirrors by ensuring the two images to be superposed. Switching
to diffuse illumination from a sodium lamp should now give fringes; further
adjust appropriate screws to give horizontal fringes of a comfortably visible
spatial frequency.

Now switch to diffuse illumination from a mixture of white and monochro-
matic light; fluorescent light tubes provide an excellent mixture (see Fig-
ure 4.31). Weak fringes should be visible due to the monochromatic com-
ponents, and as the path length is varied (by turning all three screws one after
the other in the same direction) the contrast should either increase or decrease
according to whether or not zero path difference is approached. Choose the
direction of increasing contrast; this should eventually lead to the position of
zero path difference where the full splendour of white light fringes is displayed.
Ensuring the fringes to be horizontal, the electronics may be switched on and
{ringes should be visible as a sinusoidal pattern on the oscilloscope screen. Fine
adjustment of a side screw allows optimizatio.n of fringe contrast.

The fringes are modulated by a bell-shaped envelope whose peak represents
the position of zero path difference. Adjusting the fluffer at this point will
probably cause this position to move across the screen, but some additional
fine tuning allows an adjustment to be found where the position of zero path
difference is almost stationary, located at the centre of the fringe field. This
corresponds to the position of the axis between the support points of the side
screws (see Section 4.4). When this position has been found, one of the side

screws should be left strictly untouched during all subsequent adjustments.
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5.1.3 Change of resolving power

Increasing the resolving power of the instrument is done by replacing the mirror
in the-é.djustable reflector cell with a grating. The most critical point in this
process is to get the grating rulings well aligned with the direction of the
fringes: unless this is achieved, fringes of different frequencies will be orientated
at different angles, resulting in reduced—and variable—fringe contrast. A
well oriented grating will also greatly facilitate adjustment between different
wavelength bands. The crux of the method for achieving good alignment of
the gratings is to start off from a well adjusted interferometer and to leave
both side screws untouched until the new grating is well secured in its cell.

Starting off from a well-adjusted, unheterodyned mode, open the reflector
cell and remove the mirror. Insert the grating roughly oriented in the right di-
rection (rulings running perpendicular to the instrument’s line of sight). With-
out closing the cell, look into the input at the reflection of a point source and
adjust the fluffer until a spectral image of the source produced by the grating
becomes visible in addition to the white image produced by the stationary
mirror. Now rotate the grating in its cell (don’t touch the side screws!) until
the spectral image is in line with the white image. Further adjust the fluffer
to make the yellow spectral band coincide with the white spot; switching to
diffuse sodium illumination should now again give fringes.

Looking ét the sodium fringes, rotate the grating to make them horizontal;
switching on the electronics, the sinusoidal pattern should again be visible
on the screen. Replace the cover on the reflector cell without tightening its
screws. Slots in the cover allow it to be rotated, and by pushing it lightly
down while rotating, friction allows fine adjustment of the grating orientation.
Thus tune the fringe contrast to its maximum before tightening the screws.
Following this procedure ensures the grating rulings to be well aligned with
the fringe pattern. Changing directly from one gratiﬂg to another follows the
same procedure, but if good adjustment is accidentally lost it is recommended

to restart with the mirror.
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5.1.4 Change of wave band

Looking again at a white point source, the heterodyned interferometer may be
adjusted to any desired wave band simply by adjusting the fluffer to make the‘
white image of the source coincide with the appropriate colour in its spectral
image. Inserting filters and switching on the electronics should produce fringes
on the screen. Adjust the fluffer to produce the desired fringe frequency and
one of the side screws (always the same one) to optimize contrast. Note that the
fringes may be difficult to see, representing a mere ‘twiddle’ on the oscilloscope
screen. A facility for displaying fringes on the computer screen in real-time
should improve the situation greatly.

Adjustment is greatly facilitated if a monochromatic source is available
within the desired band. The instrument may then be fine tuned using this
source before switching onto white light.

Operation beyond the visible range requires of course a different approach
to the adjustment. Lack of experience deprives us of the ability to describe it,
but we think that given a well adjusted grating, ‘blind” adjustment should be
possible without too much difficulty.

When the desired wave band is found, the fluffer must be adjusted to posi-
tion the band within the appropriate range of spatial frequencies. Care must
be taken to avoid information leakage below zero or above half the sampling
frequency, as well as to choose the ‘direction’ of the spectrum correctly (see
Section 4.6). If a monochromatic source is ava.iIa.blé, the spatial frequency
that it should occupy is calculated from Equation 3.17 and the fluffer adjusted
to produce fringes of that frequency. If no monochromatic or narrow band
source is available, some trial and error may be required. Note that a broad-
band source whose spectral intensity is approximately uniform across the band
gives a fringe pattern whose mean spatial frequency corresponds to the optical
frequency in the middle of the band. An interferogram whose fringes occupy
about four detectors per cycle (i.e. » = 0.25 Elements™) therefore gives a

nicely centred spectrum.
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5.1.5 Background measurements

After the optimal adjustment has been found, one additional operation is re-
quired before starting to take spectral data: measurement of the background.
As described in Section 4.6.1 this is done by adjusting one of the side screws
to rotate the fringes with respect to the detector elements. When the fringes
are well removed (requiring about half a turn of the screw) a scan is taken and
the interferometer readjusted by turning the same screw back to its original
position. This is a critical operation which—at least with the present display
facilities—requires some practice if it is to be performed ‘in the field’. It is
possible, however, and it should be made easier by improved display software.

Note that the slightest adjustment of the interferometer changes the wave-
length calibration of the instrument. Spectra taken before and after a back-
ground measurement or even only a readjustment of fringe contrast must there-
fore be calibrated separately. If a reference spectrum is required from a special
purpose source, a new measurement of this source must be made after each

readjustment.

5.1.6 The possibility of untrained operation

While the full adjustment procedure probably requires a certain “feel” for op-
tical instruments in general and interferometers in particular, we think that
operation of the preadjusted instrument may be done by an “untrained” oper-
ator. The only manual intervention required at this stage is that of background
measurements and this only involves adjustments of a single screw. With the
current display facility the operation is a bit critical, but the situation should
greatly improve with more sophisticated software.

Looking a step further, towards a redesign of the instrument, full automa-
tion of the instrument may be envisaged by the usé of motorized or piezo-
electric interferometer adjustments. Contrast optimization and background

measurement may then be performed automatically at the push of a button.
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5.2 Low resolution:

Unheterodyned operation

When the instrument is operated without heterodyning, spatial frequencies in
the fringe pattern are directly proportional to optical frequencies (wavenum-
bers). Zero spatial frequency represents zero wavenumber (A = oc), and so,
when any radiation visible to the instrument is measured in this mode, all
(invisible) radiation beyond A = 1 um is also ‘measured’, although with very

poor resolution.

5.2.1 The blue sky spectrum

'To demonstrate this mode we take a closer look at the blue sky spectrum of
Figure 4.9 where it was shown there on a linear plotted on a wavenumber scale
with wavelengths indicated on the top axis. Note that, on the wavelength scale,
the blue end of the spectrum is favoured with a considerably better resolution
than the red end.

Assuming that the blue tint of the clear sky is produced purely by Rayleigh
scattered sunlight, the solar spectrum may be deduced from this measurement
by multiplying it with A* [3, page 514]. Dividing the result by the standard
solar spectrum at the top of the earth’s atmosphere (see Figure 2.6) gives the
transmission spectrum of the entire path from the top of the atmosphere to
the detector, including the response of the detector itself, Figure 5.2 shows

the result of these operations, plotted on a wavelength scale.

5.2.2 Spectral instrument response

As seen from the published atmospheric transmission spectrum shown in Fig-
ure 2.8, atmospheric absorption features are fairly narrow compared with the
instrumental bandwidth (400 to 1000 nm). In contrast, both the instrumental
transmission spectrum as estimated in Figure 4.7 and the published spectral
sensitivity of the detectors (Figure 2.5) have very broad features. We assume
therefore that the general shape of Figure 5.2 represents the spectral instru-

ment response, and that its high frequency features represent the atmospheric
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FIGURE 5.2: Combined atmospheric transmittance and instrumental response
spectrum obtained from a blue sky spectrum by “correcting” it for Rayleigh

scattering and dividing it by the solar spectral irradiance.

transmission.

We obtain the general shape of the measured spectrum by low-pass filtering

it. The result, shown in Figure 5.3, is not quite as expected, however. Given

Response (arb. unit)
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FIGURE 5.3: Estimated instrumental response spectrum (solid line) plotted

together with the detector response as measured by the manufacturer {broken

fine).

N

by Figure 4.7 that the predicted instrumental transmission spectrum is quite
flat, we would expect the response curve to look very much like the detector
sensitivity curve, shown as a broken line in Figure 5.3. The correspondence
is good at the red end of the spectrum with a ten percent cut-off at about
1000 nm. At the blue end, however, the response has its 10% cut-off at 420

nm instead of carrying on well into the ultra violet. This deficiency may be
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due to instrumental absorptions which have not been accounted for, e.g. an
ageing of the beam splitter film or a deficiency in the detector array. We have
not had the opportunity to study the problem, but this may be done by using
an appropriate source (e.g. a high temperature tungsten-halide filament lamp)

together with a ‘short pass’ filter to attenuate the longer wavelengths.

5.2.3 Atmospheric absorptions

High frequency features in the blue sky spectrum are isolated by dividing

it with the estimated instrument response, see Figure 5.4. Comparing this

Transmittance {(arb. unit)

] ' | ' I
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Wavelength (nm)

FIGURE 5.4: Atmospheric transmission spectrum obtained as described in the

text.

spectrum with the published atmospheric transmission spectrum of Figure 2.8
allows all the major absorption bands due to water and oxygen to be recognized
and identified. We notice, however, that short of 650 nm where atmospheric
absorption shows little detail, our measurement has a ripple of about 10% peak-

to-peak amplitude. This is due to the channelling effect shown in Figure 4.10.

5.3 Medium resolution:
The vegetation red edge

In this mode, the interferometer is heterodyned with a grating of 80 grooves per
millimeter. In the region of the vegetation red edge (see Figure 2.13) at about
700 nm, this gives a spectral resolution of down to 0.7 nm and a free spectral

range of about 170 nm. To isolate the required band, a ‘long pass’ filter cutting
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off at 600 nm and a ‘short pass’ filter cutting off at 850 nm are combined as

shown in Figure 5.5. Note that choice of spectral direction (Section 4.6) is

Spatial frequency (Elements™)
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FIGURE 5.5: Transmittance spectra of the band pass limiting filters estimated
from the manufacturer’s specifications. The top axis shows spatial frequencies
for a well adjusted instrument, and the shaded areas are outside the filtering

conditions.

critical in this mode; the positive direction giving a considerably shorter free
spectral range than does the negative. With our choice of filters it is importart
that the negative direction be chosen.

Calibration is provided by a diode laser emitting at 670 nm, conveniently
within the spectral range of interest. The laser has the size of a small torch

and, powered by a little 9 volt battery, is therefore easily carried out in the

field.

5.3.1 Grey card measurement

Reflectance spectra are measured by taking the ratio between reflected and
mcident spectral intensities. A practical method of measuring the incident
intensity is to measure the reflection off a surface with a known, preferably flat,
reflectance spectrum, a so called ‘grey card’. Our grey card has a reflectance
equal to 0.526 with a standard deviation of only 0.002 within the range 400~

1000 nm. We will therefore assume it to be ideally flat.
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Our demonstration spectrum of the vegetation red edge was taken under
less than optimal conditions. A green plant was brought into the laboratory
and illuminated by the ambient light, a combination of scattered sunlight and
artificial light from a fluorescent “daylight” tube whose spectrum is shown in
Figure 4.31. Dominated by the fluorescent light the spectral irradiance fell off
steeply with wavelength, resulting in a rather coloured grey-card measurement
as shown in Figure 5.6. This situation provoked a reduction in signal to noise

ratio in the red end of the spectrum.
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FIGURE 5.6: The grey-card spectrum. Its sharp decrease across the spectrum
is caused by an illumination dominated by fluorescent light. Atmospheric ab-

sorptions are identified as labelled.

We recognize the presence of scattered sunlight from the features of atmo-
spheric absorptions observed in the spectrum. They are now better resolved
than in the low-resolution spectrum presented above, and a new absorption
has also appeared: the unresolved c-line due to hydrogen at 656.2816 nm [3,

page 433]. This feature may be useful as an alternative calibration reference.

5.3.2 Plant measurement

Figure 5.7 shows the measured green-plant spectrum. Here the monotonic de-
cline in illumination with increasing wavelength is counteracted by the sharply
risimg edge at 700 nm. Dividing this spectrum with that of the grey card clearly
shows this feature, see Figure 5.8. The absorptions identified in the grey card
spectrum have all but disappeared in the ratioed spectrum, apart from some

traces of the oxygen line at 760 nm which is probably an artifact of excessive
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FIGURE 5.7: Spectral radiance from the green plant.
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FIGURE 5.8: Reflectance spectrum of the green plant obtained by dividing the

plant’s spectral radiance with that of the grey card.

noise. The poor illumination has clearly influenced the noise level by giving a

noticeable increase in spectral fluctuations towards the red end.

5.3.3 Analysis

According to Horler et al. [24] and Boochs et al. [27] the diagnostic features
of the vegetation red edge are brought out by differentiating the reflectance
spectrum. Differentiation amplifies the noise, however, so we have found it
neceséary to reduce the noise by low-pass filtering the spectrum before dif-
ferentiation. This has been done by convolution: each spectral value in the
filtered spectrum is found as the weighted sum of neighbouring spectral samples
in the original spectrum. Note that this process is equivalent to apodization,

the apodization window and the weighting function being each other’s Fourier
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transform. We find the convolution method more practical to implement in
the present context, however.

Differentiation is done numerically by calculating the difference between
neighbouring samples. It is therefore important that the spéctrum 1s smooth
with high-frequency noise well suppressed, i.e. that the transform of the weight-
ing function falls off quickly. Using the rectangular (top hat) function as
weighting function, representing simply an averaging of a certain number of
neighbouring samples, is sub-optimal because of the sidelobes in its Fourier
transform cause “leakage” of high-frequency noise. Instead the weighting func-
tion should be bell-shaped, falling off smoothly towards the edges. We have
found that the raised cosine function (the Hann window) works very well as

weighting function, efficiently reducing the noise. Figure 5.9 compares the ef-

First derivative (arb. unit)
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FIGURE 5.9: First derivatives obtained after convolving the red-edge spectrum
with a rectangular function (dotted line) and a raised cosine function (solid

line). Both functions had FWHM = 8 nm.

fect on the red edge derivative of using a rectangular filter (dotted line) and a
Hann filter (solid line). Both filters had a width (FWHM) of 8 nm. Note that
the rectangularly filtered version has details of width down to 2 nm.

Figure 5.10 compares the effect of using different filter widths: 4, 8, and 12
nm. While the highest resolution version has large fluctuations not accounted
for in the literature, the medium resolution has lost these and is left with two

clear peaks, one at 705 nm and one at 721 nm. Similar peaks are described
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FiGurE 5.10: First derivatives obtained after convolving the red-edge spec-
trum with different raised cosine functions: FWHM = 4 nim (dotted line), 8

nm (solid line), 12 nm (broken line).

in the literature and is one of the main topics discussed by Horler et al. [24].
They argue that the first peak (705 nm) represents the edge of the chlorophyll
absorption band while the second peak (721 nm) is caused by a sharp increase
with wavelength in scattering within the leaf. A shift in the position of the
red edge may therefore be accounted for by a variation in importance of these
mechanisms. Note that in the lowest resolution spectrum in Figure 5.10 the
peaks are hardly visible, leaving instead just a linear section. According to an
experienced worker in the field of “botanic spectroscopy” the study of the red
edge is often hampered by such a lack of clear peaks. We suggest that this

may be due to a lack of resolution.

5.3.4 Requirement study

To evaluate the requirements for use of our instrument to obtain reliable red-
edge spectra we have added noise to a synthetic spectrum and estimated the
SNR of its derivative after applying filters of different widths. Figure 5.11
shows the results of this experiment, revealing an essentially linear relationship
between the SNR in the spectrum before filtering, SNREgge, and that of the
differentiated, filtered spectrum, SNRpig: |

w
SNR-Edge i "IE}- SNRDiﬂ", (5.1)
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FIGURE 5.11: Estimated signal-to-noise ratio (SNR) in the first derivative
spectrum plotted against the SNR of the measured red-edge spectrum for a

range of filter widths (w).

where w is the FWHM of the filter and w is a constant, evaluated to 3447 nm.
Requiring a resolution of 5 nm and an SNRp;g of 100, we must therefore require

an SNRgqg. of about 700.

[See page 179a.] Since a spectral estimation usually

requires two measurements (an interferogram and a background), its actual
SNR is reduced by 1 /\/i (Given a more even illumination than that used in
our demonstration measurement, the grey card spectrum has a fill factor of
about 0.7 while the plant spectrum has a fill factor of 0.5. Their respective
SNRs are therefore about 200 and 270. Combined according to Equation 3.75
this gives an estimated SNR of the red edge spectrum of SNREgqge =~ 160, i.c.
4.4 times less than required by the above study.

Improving SNRpage may be achieved by averaging several measurements,
thus reducing the noise by the square root of the number of measurements.
This requires 20 measurements to be taken. With reference to Table 2.3(a) a
well illuminated vegetative target requires an exposure of 5 ms. The minimum
exposure allowed by the instrument is 20 ms however, so attenuation by the
use of neutral density filters is in this case necessary. For 20 scans the total

exposure time is then 0.4 seconds. Note that with an improvement in instru-
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Equation 3.88 gives an expression for the Shot-limited signal-to-noise ra-
tio in HFTS instruments in the case of optimal fringe contrast: SNR, =
ﬂf sat/IN)/f where Ig, = 1.2x10°% electrons is the detector saturation sig-
nal, N = 512 is the number of detectors in the array, and f = B/B, is the
spectral fill factor. According to the discussion in Section 3.4.6, a reduction
in fringe contrast may be taken into account by multiplying with a factor k,

measured to about 0.4 (see Figure 4.21). Hence, the estimated spectral SNR
is 190/ f.
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ment contrast the red edge SNR may be expected to reach 400, in which case

the requirement is reached with the averaging of only 3 scans.

5.3.5 Discussion

We have studied the possibilities for reliable red edge measurements with our
instrument. For a spectral resolution of 5 nm it has been found necessary
to produce spectral estimates with signal-to-noise ratios of about 700. With
the instrument in its present condition this requires averaging of many (~ 20)
independent measurements, but with an improvement in contrast performance
the number is considerably reduced.

Although it seems possible to obtain satisfactory results by this method,
we put a question mark at its efliciency. Is it really necessary to use such high
resolution (the medium resolution mode has an optimal resolution of 0.7 nm in
this wavelength range) when the resolution anyway is reduced to 5 nm? If we
instead use the low resolution (unheterodyned) mode to measure the spectral
range from 650 to 800 nm, a resolution of $ nm may be achieved. More

importantly, we would benefit from a very small fill factor of about 1/%.

[See p. /o0 a._]

This calculation demonstrates a key feature of the instrument: its great
flexibility allows it to be employed in different ways in different situations,
allowing an optimization of its performance according to the requirements at

hand.

5.4 High resolution: NO, absorption

The atmospheric pollutant NO, absorbs strongly in a 2 nm wide band centred
at 489 nm, and we have implemented a ‘high resolution mode’ to study this
absorption with an apodized resolution of 0.2 nm. The free spectral range is
about 25 nm, but we use a standard 10 nm wide interference filter for band-pass
limitation. This reduction in band width is beneficial from a signal-to-noise

point of view since it reduces the spectral fill factor, It also
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The effect of this change may be seen by considering Equation 3.88. Assume
the spectrum to consist of Ng = Np/2 spectral elements (where Np = N is
the number of detectors), with Nr elements of value B and the rest of value
zero. The average spectral value is then B = 2BNg/Np and so Equation 3.88

may be rewritten:

vV Npiga

2Np
(where SNRyz = SNR, ). Whether spectral resolution is reduced by filtering or

SNRy = (5.1a)

by a change of mode, the number of filled spectral elements in the resulting
(low-resolution) spectrum remains constant. Filtering is equivalent to short-
ening the interferogram, i.e. wasting detector elements. Np is therefore not
constant in the two cases, the low-resolution measurement benefiting from
seven times more detectors than the filtered case. According to Equation 5.1a
this gives a spectral SNR advantage of /7 & 2.6 in the low-resolution mea-
surement,

For optimally measured data with the instrument in its present state, we
estimated in the above that an improvement in SNR of factor 4.4 was required
for proper red-edge measurements. This was proposed achieved by averaging
(4.4)* &~ 20 measurements. Opting for the low-resolution mode brings the
improvement factor down by v/7 to 1.7, thus the number of required measure-

ments to three.
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gives a good tolerance to instrument adjustment by making it easier to attain

the filtering condition.

5.4.1 Calibration

We do not possess a portable calibration source for this wave band. Instead
we find that Fraunhofer lines seen in the measured spectra themselves provide
excellent calibration signals. The line structure fits well with that measured in
1940 by Minnaert et al. [14], and in particular two strong lines are recognized
as the I line due to hydrogen (486.1327 nm) and the c line due to iron (495.7609
nm) {3, page 453].

Figure 5.12 shows the spectrum measured off the blue sky and calibrated

with respect to the I' line. The spectrum is apodized, and it has been normal-
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FIGURE 5.12: Fraunhofer lines measured with our instrument at a resolving
power of about 2100. The two strong lines are the F-line due to hydrogen and

the c-line due to iron.

ized by dividing it with a low-pass filtered version of the same SPéctrum. The
¢ line now falls at 495.836 nm, having an error of 0.075 nm with respect to
its published position. This error represents 0.8% of the separation between
the peaks, i.e. essentially the same as the error found in the high resolution
sodium spectrum (see Section 5.1.1).

Note that the FWHM (full width at half the maximum) of the narrowest
spectral feature (the c-line) is about 0.24 nm. This suggests an actual resolving
power of 2100 which, despite of the interferometer aberrations, compares well

with the expected (apodized) resolving power of this mode of about 2200.
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5.4.2 Concentrated NO,

We have been provided with concentrated NO; in a glass tube of length 100
mm and diameter 22 mm. The tube bears evidence of its content by displaying
a light, yellowish-brown tint. We have measured its spectral transmittance by
placing it in front of the instrument aperture while pointing at the blue sky
and dividing the thus obtained spectrum with that of the blue sky alone, see

Figure 5.13.

! L | | | |
’lBasa
T; \
0.70_.-..8959 .................................................... IO

Transmittance {(arb. unit

i | T | 1
486 487 488 489 490 491 492

Wavelength (nm)

FIGURE 5.13: The absorption spectrum of an NOj-filled glass tube as measured

with our Instrument.

Absorption in a gas is described by the Beer-Lambert law which may be

expressed as:

T = :% = ¢~PLal) (5.2)

where T' is transmittance, S is transmitted spectral power, Sy is the spectral
power measured off the background, p is partial pressure of the gas, L is
absorption path length, and a(A) is absorption coefficient of the gas. When
the gas is contained in a mixture with other gases, the ratio between its partial
pressure and the total pressure of the mixture gives the concentration of the
gas in number of molecules per total number of molecules.

The absorption coeflicient for NO; has been measured by Woods and Jolliffe
[22], see Figure 2.14. The good fit between our curve and the published results
indicates that our measurement is of a good quality.

‘We may estimate the concentration of NO, in the tube by comparing the

two curves quantitatively. In order to avoid errors due to ambiguities in abso-
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lute levels of the measured spectra, it is necessary to compare the transmittance
at two points. We chose two extreme points on the absorption coeflicient curve:
Apcak = 488.8 nm and Apsee = 491.2 nm, at which points the transmittance
is Tpeay and T'Base and the absorption coeflicient is apeax and gy, respec-
tively. The product between partial pressure and path length, refered to as
the “absorption depth” D, may then be found as:

— - 1n(T'P‘eak/T‘Base)
Opegk = (Base

pl=D (5.3)

Picking the required values of o from Figure 2.14 (apea = 12.6 cm™! atm™?
and @pase = 5.7 cm™ atm™") and those of T from Figure 5.13 (Tpeu = 0.437
and Tgase = 0.701} gives an absorption depth for the NO; trapped in the glass
tube of 6.86x107% cm atm. Hence, since the absorption path is 10 cm, the
partial NO; pressure is 6.86x107% atm. Assuming the total gas pressure in
the tube to equal one atmosphere, the concentration of NO, is therefore about

seven parts per thousand (ppt).

5.4.3 Atmospheric NO;

We have also attempted to measure absorption due to the atmospheric content
of NO,. Installed on the roof of the Blackett laboratory, we have pointed the
instrument towards the east; the city of London. The measurements were
taken in the afternoon, with the sun at our back, on a clear spring day with
good visibility and little wind. We took four measurements of the blue sky
spectrum, the first pointing towards the horizon, with a sightline about 5° over
the horizon in order to avoid obstacles in the city, the second pointing 30° over
the horizon, the third at 60°, and the last towards the zenith.

The light measured in this setup is predominantly sunlight scattered off air
molecules and dust particles. Assuming a simple first order scattering model as
illustrated in Figure 5.14 where each photon is scattered only once, it is clear
that light measured close to the horizon has suffered a considerably longer
absorption path length than light measured close to the zenith. We are also
tempted to believe that the concentration of NO; decreases exponentially with

altitude so that the horizontal path suffers more frequent encounters with NO,
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FIGURE 5.14: In our simplified, first order model for atmospheric scattering
we assume each observed light ray to have undergone only one scattering event.
The model predicts a considerably longer absorption path for horizontal than

for zenithal rays.

molecules than the vertical path. We expect therefore to see a difference in
absorption depth between the four measurements, a difference which should
be brought out by ratioing the spectra with each other. Using the zenith
measurement as a reference, we have hence divided all the others by it. These
ratios are dominated by slow Va.riafions, typically spectral tilt and curvature,
probably due to other absorption and scattering mechanisms. We remove
these variations by dividing by a best fitting polynomial curve to obtai1_1 flat
transmittance curves.

The 30° and 60° measurements show no visible trace of NO; absorption;
this is no surprise considering the weak increase in path length predicted by
the model of Figure 5.14. For the horizontal measurement a clear “hole” in
transmittance curve is seen, however, see Figure 5.15. The curve is markedly
noisy, but its shape is unmistakably similar to that of the curve obtained from
measuring concentrated NO,. Estimating ‘Peak’ and ‘Base’ transmittances we
find that this measurement represents an absorption depth of 1.64x10~2 c¢cm
atm, i.e. about one quarter of that found in the glass tube. Although this is
not strictly a measure of absolute absorption depth for the horizontal path,
the large difference between horizontal and vertical path lengths should ensure

it to be a good estimate.
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FIGURE 5.15: The NO2 absorption is clearly recognized in this ratio between

a lorizontal and a zenithal blue sky spectrum.

It is difficult to take this measurement any further since the absorption path
1s unknown. We note however that the ‘visibility’ or ‘meteorological range’ for
a ‘standard clear atmosphere’ is 23.5 km [15]. Looking east from the roof of the
Blackett laboratory this brings us almost to the Dartford tunnel. Assuming
this range to represent the order of magnitude for the horizontal absorption
path we find that the partial pressure of NO, over London is about 7x10~°

atm, representing a concentration of seven ppb (parts per billion).

5.4.4 Discussion

While a concentration of 7 ppb appears to be of the right order, it is pos-
sible that a more sophisticated scattering model together with a method for
measuring the meteorological range would yield a more precise estimate of
the concentration. Another, more commonly used method of measuring atmo-
spheric gas concentrations, is to compare a transmission spectrum measured
towards the zenith with.a synthetic spectrum generated from atmospheric
models. Since, according to our scattering model, the absorption depth is
much smaller towards the zenith than towards the horizon, this method puts
considerably higher demands on instrumental performance.

The spectrum of Figure 5.15 with its signal-to-noise ratio of ~ 100 does
not represent the optimal performa.ncelof our instrument. Apért from the
reduction in SNR caused by the aberrant interferogram, a further reduction of

about a factor of three is due to the omission of dark-signal correction: the sky
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light is sufficiently weak to require 3 second exposures, i.e. about three times
longer than the limit for dark current correction estimated in Section 4.6.3.
Furthermore, only single exposures were taken, thus missing the opportunity to
improve the SNR by averaging. Properly dark-signal corrected, and averaged

over eight measurements, spectra should attain an SNR of about §00.

5.4.5 Detection limit

If we demand the absorption “hole” to be three times as deep as the RMS
noise level (¢, } for it to be detectable, we may calculate a minimum detectable
absorption depth, Dy,. Since the SNR outside the absorption feature is :

SNR, = LBase (5.4)

€y

the detection requirement dictates:

TBase
T ase""T eak S ’ 5.5
B Peak = 3¢ 3 SNR, (5.5)
equivalent to:
TPeak 3
1— . .
TBase < SNRU (5 6)

Substituted into Equation 5.3 this gives the minimum detectable absorption

depth:
—In(1 —3/SNR,)

YPeak — O'Base

DMin = (5 7)

which, with an SNR of 800, gives Dy, = 2x107% cm atm, or 2 ppb km.
Assuming an atmospheric NO; concentration of 7 ppb as estimated above this
detection limit allows absorption path lengths down to a minimum of 300

meters.

5.5 Conclusion

We have in this chapter presented the instrument in practical operation. The
three modes of operation which have been implemented are first described and
illustrated by their rendering of the sodium doublet. In the low resolution
mode which results from using a mirror as reflector in both interferometer

arms, the doublet is completely unresolved and appears as monochromatic.
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In the medium resolution mode, where an 80 grooves-per-millimeter grating
replaces one of the mirrors, the doublet is still unresolved but the spectrum no
longer appears truly monochromatic. We note that in this mode the width of
the resolution element equals the separation of the doublet giving the effect of
auto apodization. In the high resolution mode, using a grating of 400 grooves
per millimeter, the sodium doublet is fully resolved.

A description of the adjustment procedures for the instrument is included
to give a picture of the complexity involved in practical operation of the in-
strument and to evaluate the possibilities for untrained operation. We think
that for routine situations where changes of mode and spectral range are not
required, such operation is fully possible.

Each mode is then presented more thoroughly through their application
in case studies. The low resolution mode is used for an analysis of the solar
spectrum within the instrument’s entire spectral range in which we recognize
the major atmospheric absorption bands due to water and oxygen. We also
estimate the spectral response of the instrument from this measurement. At
long wavelengths it corresponds well with what has been expected, but at sho1:t
wavelengths the instrument cuts off earlier than predicted. The reason for this
discrepancy remains unknown.

For the presentation of the medium resolution mode we study the vegeta-
tion red edge in a window from 650 to 800 nm. Despite of a poor choice of
illumination a good rendering of the edge is obtained. The diagnostic features
of the red edge are most clearly displayed by taking the first differential of the
spectrum. For this our demonstration spectrum is too noisy however, so we
have reduced the noise by filtering, thus reducing resolving power.

It has been outside the scope of the present work to contest the field of
botanic spectroscopy, we have therefore not had the opportunity to use the
instrument in a guantitalive study of the vegetation red edge. Instead we
have considered the qualitative aspect through a study of noise performance
requirements. The study shows that for a signal-to-noise ratio of 100 in the
differentiated spectrum, a ratio of 700 between signal and noise in the original

red-edge spectrum is needed. With the instrument in its present state this
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requires averaging of 20 independent measurements together with a strong
reduction in resolution when the medium resolution mode is used. Calcula-
tions suggests, however, that performing the same measurements with the low
resolution mode may yield the required performance with only one scan.

In our demonstration of the high resolution mode we look at the absorption
band of NO; in a 10 nm wide window at 490 nm. Calibration is in this
mode achieved by.the ald of strong Fraunhofer lines observed in the blue
sky spectrum. We have successfully reproduced the transmittance spectrum
of NO; by measuring light transmitted through a concentration of the gas
contained in a glass tube. Comparing our measurement with a published
NO, absorption curve, we have estimated the concentration to seven parts per
thousand. By ratioing two blue-sky spectra, one measured towards the horizon,
the other towards the zenith, we have also detected NO; absorption in the
atmosphere, here at an estimated concentration of seven parts per billion. With
the instrument in its present state it should be possible to detect atmospheric
NO; at this concentration with absorption path lengths down to about 300

meters.
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Chapter 6

Conclusion

The purpose of the work presented in this thesis has been to design an in-
strument for field spectroscopy which answers demands for increased spec-
tral resolution and throughput. Different spectroscopic techniques have been
studied and the most promising one chosen on the basis of radiation budget
calculations.

A prototype instrument has been built and tested. It has been found to
perform satisfactorily, although some poor design solutions prevent optimal
performance. These faults have been pointed out and improvements have
been suggested. Demonstration projects, involving different resolving powers
and wave bands, have been implemented to show the flexibility offered by the
imstrument,.

We present in this chapter the main conclusions drawn in the thesis and

sum up recommendations for future work,

6.1 Choice of concept

A new family of satellite-based optical remote sensors with much higller spec-
tral resolution than its predecessors set new standards for ground based ref-
erence measurements. To meet the new requirements; but also as an analytic
tool in its own right, we have set out to design a new, high resolution field
spectrometer.

Field operation sets strong mechanical constraints for the instrument: it

must be light, rugged, and consume little power. Translated into practical
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terms these constraints dictate a minimum of moving parts, no motorized
scanning, and no artificial cooling. |

We have studied various solutions to the optical problem of spectral anal-
ysis and found that the most appropriate candidates for our purpose are the
concave grating spectrometer (CGS) and the holographic Fourier transform
spectrometer (HFTS). Both are based on a linear array detector as the means
of collecting spectral information without mechanical scanning.

To compare the two techniques we have chosen two practical remote sens-
ing applications for which an estimate of available optical power has been
made. This ‘radiation budget’ has allowed an assessment of the two spec-
troscopic technigues by showing under which conditions they may be used.
Thanks to the throughput advantage of Fourier transform spectrometers, the
HFTS method allows spectroscopic measurements to be made under far less
favourable conditions than does the CGS method. While the latter reaches its
limit for medium resolution vegetation reflectance measurements under con-
ditions of ‘overcast daylight’, the former pushes operation into conditions of
twilight, or even further by assuming natural cooling from the ambient tem-
perature. This may be interesting for operation during the dark season in
northern areas. High resolution measurements of atmospheric absorptions us-
ing the blue sky as background similarly pushes the CGS instrument to its
limit while being well within reach for the HFTS construction.

In comparing noise performances of the two instrument types, we have as-
sumed optimal exposure in both cases in order to ensure Shot-limited noise
performance. Under these conditions, for quasi-continous spectra, CGS instru-
ments have a noise advantage due to the multiplex effect. Considering equal
exposure conditions however, the HFTS method is found to be superior. We
note that under normal conditions (i.e. optimal fringe contrast) HFTS spectra.

with fill factor ~ 1/2 attain signal-to-noise ratios of about 1000.

6.2 Theory of operation

Having pinned down the concept, we proceed with a study of the theory behind

1t. Fourier transform spectrometers work on the principle of interference, and

190



by analogy with classical physics experiments we explain the particular way in
which the holographic method produces its ‘interferogram.” We see thus that
the spectral information is obtained as the Fourier transform of the intensity
distribution in this interferogram. An important feature of the HFTS method
is that by using a grating instead of a mirror in one of the interferometer arms,
the interferogram may be frequency shifted or ‘heterodyned.” This allows for
the implementation of high resolution measurements.

One of the major challenges in the design of FTS-type instruments is the

diffevenca
minimization of phase¥between the sinusoidal interferogram components and

difterences

to correct for the residual phase'by signal processing. In studying this problem
we have found that heterodyned HFTS instruments suffer from a particular
type of phase related to the position of the grating rulings with respect to the
position of the zero path difference. The phase caused by this effect is constant
throughout the spectrum however, and is therefore not considered to be of
importance for the functioning of the instrument. More serious phase effects
are due to improper compensation of the bearmsplittér substrate’s dispersion
which causes a nonlinear phase curw%md toughens the tolerances for the phase
correction procedure. We find an unexpectedly large amount of such error in
our instrument due to a poor choice of beam-splitter construction, but the
resulting phase-correction tolerances are well within reach for normal operation
of the instrument.

Noise performance of HFTS instruments has been estimated by assuming
an optimal balance between the most important noise sources. We find that
Shot noise limited performance is attainable, but that the SNR of the spectral
estimate is strongly dependent upon the shape of the spectrum. A single line
emission spectrum may thus (theoretically) achieve an SNR of 10°, while a
broad-band spectrum filling half the available spectral range has a maximum

SNR of 1000.

6.3 The prototype instrument

The performance of our prototype instrument suffers from the effects of two

poor design solutions: a cemented beam splitter assembly and the use of turned
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surfaces as the supports for the interferometer reflectors. One effect of the
former is poor dispersion compensation causing a non-linear phase curve. This
effect is particularly important in the low resolution, unheterodyned mode of
operation since the bandwidth is then large. In heterodyned modes where
the bandwidth is much smaller, the dispersion effect is considerably reduced.
Another effect of the cemented beam splitter is channelling, giving a sinusoidal
modulation of the spectral estimate as well as the phase curve. The spectral
modulation is found to be efficiently suppressed by ratioing two measurements.

Probably due to a release of tension in the metal after turning, the surfaces
upon which the interferometer reflectors rest have lost their flat shape. Since
the reflectors are pushed against these surfaces by the pressure of an O-ring,
they are forced to take on the shape error, and the interfering wave fronts are
therefore deformed. This causes the effects of non-straight and non-equidistant
mnterferogram fringes. Non-straight fringes cause a loss of contrast and hence
a reduction in SNR, estimated to a factor 0.4. Variation in fringe separation
causes an effect similar to that of a sampling error and has been found to
corrupt the shape of spectral lines. Counteracting the error by a resampling
of the interferograim has been demonstrated, but while this method works well
for unheterodyned spectra, its effectiveness is restricted to very narrow-band
spectra when heterodyning is used.

The other components of the design have been found to function well.
Particular attention has been given to the lens which images the interferogram
onto the detector array. An all-reflective, two-mirror design, the Offner lens,
has been chosen for this purpose. Optimal désign criteria. are calculated and
the satisfactory results of an interferometric test is presented. Mechanical and
electronic designs for the instrument are likewise found to fulfil their roles with
merit,

Instrument control and signal processing, implemented in a rudimentary
form on a portable computer, have been described. Although some less than
optimal shortcuts have been taken at this stage, the system demonstrates well
the capabilities of the instrument. In particular, the interferogram correction

procedures allow noise to be reduced to the expected level, and the phase

192



correction routine takes good care of the phase problem.

The instrument has been applied to the measurement of the vegetation red
edge at 700 nm and the atmospheric NO; absorption at 489 nm. We observe
the double inflection of the red edge and succeed in detecting atmospheric NO,

at an estimated concentration of seven parts per billion.

6.4 Recommendations

Apart from the development of a purpose designed control and signal process-
ing system, an improvement of the two noted instrumental deficiencies has
the highest priority on the list of recommendations for future work. Such
improvements may he undertaken without a full redes.ign of the instrument.

The problems related to the cemented beam splitter may be partly or fully
removed by making a new beam splitter assembly where the compensator plate
is fixed to the substrate by some other means than cementing. The two pieces
should then be made identically thick for optimal dispersion compensation.
They may be mounted in optical contact, but it is probably safer with respect
to interference between spurious reflections to introduce a wedged air gap
between them.

Rectification of the faulty reflector supports may be done by letting the
reflectors rest on three ball bearings instead of the turned surface. The pressure
necessary to keep the reflectors in position may be supplied from three rubber
ball bearings placed directly opposite, see Figure 6.1. As a preliminary solution
one may try to rectify the shape error by reinstalling the reflector cells in the
turning lathe and remove a few microns from the support surfaces.

Other improvements of the instrument hardware which might be tried in-
clude the use of a stray-light baffle at the input. Stray-light performance has
not been tested directly, but it seems to be insufficient particularly when a
strong point source (e.g. the sun} is approached [30]. It is also possible that
differences in the shape of the interferogram background which have been ob-
served as the target geometry changes are caused by stray light. Adding baf-
fling may therefore improve background correction and hence the instrument’s

low frequency performance.
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O-ring Rubber bal bearing

Mirror

Flat turned surface Ball bearing

FIGURE 6.1: Cross section of the interferometer reflector cell showing the sug-
gested new support system using three ball bearings (right hand side) compared

with the existing system (left hand side).

In the original design it was thought that the filter compartment placed in
front of the interferometer would provide sufficient baflling. Further protection
may be added by mounting a tube in front of the input aperture with an

internal structure similar to that shown in Figure 6.2.

Interferometer

Fr ver
ont cove ~—a

Entrance window ——uJ»

Proposed baffle Filter compartment

FIGURE 6.2: A typical baffle design added onto the existing instrument.

The instrument may be made more accessible to the untrained user by the
inclusion of automatic fringe-contrast control. The simplest way to implement
this would be to replace one of the interferometer adjustment screws with a
motorized micrometer screw. Controlled from software, this may allow au-
tomatic background measurements, thus removing the need to ‘fiddle’ with
instrument adjustments in routine measurement situations.

Finally, we recommend that a test is made of the measurement of single
sided interferograms, a technique which theoretically promises a doubling of

the resolving power. Although we have predicted a somewhat lower gain in
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our instrument due to the excessive phase curvature, we still believe that it
is worth the effort to test its possibilities, particularly if an improved beam

splitter design results in an flatter phase function.
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